
B-Splines in Joint Parameter, State, and
Input Estimation in Linear Time-Varying

Systems

Deepak Sridhar

Department of Electrical & Computer Engineering

McGill University

Montreal, Canada

March 2018

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Engineering.

c© 2018 Deepak Sridhar



To my parents, my brother and my teachers.



ii

Abstract

Non-asymptotic observers have received a great deal of attention in recent times due to the

advancement in hybrid control system theory. This is because fast and switching control

methods are essential for hybrid systems. Conventional observers such as the Luenberger

observers and Kalman filters are asymptotic in nature and fail to achieve this. Algebraic

state and parameter estimation methods offer the alternative to conventional methods since

they are non-asymptotic and have other superior features. Algebraic state and parame-

ter estimation methods have been studied extensively in LTI systems. For LTV systems,

there is very limited literature related to state and parameter estimation especially using

algebraic methods. This thesis provides a new method of joint state, parameter and input

estimation for linear time-varying systems.

The objective of this thesis is to propose and describe a new method to construct non-

asymptotic state, parameter and input estimators for LTV systems that employs a kernel

functional representation of linear time-varying systems in conjunction with B-spline func-

tional approximation techniques. The double-sided kernel for LTV systems is a generaliza-

tion of its LTI counterpart developed by Dr.Michalska and her team. Total observability of

the estimated system must be assumed. Practical identifiability conditions for parametric

estimation are also stated in this thesis.

In the absence of output measurement noise the observer provides almost exact recon-

struction of the system state and delivers high fidelity functional estimates of the time vary-

ing system parameters. It also shares the usual superior features of algebraic observers such

as independence of the initial conditions of the system and good noise attenuation proper-

ties. Other advantages of the kernel and B-spline based identification of linear time-varying

systems are elucidated. In the presence of output measurement noise the performance of

the estimator deteriorates with decreasing signal-to-noise ratios. Results are presented for

both noiseless and noisy output measurements. An example is also presented to show that

the joint parameter and state estimation is superior using P-Splines than using B-Splines.
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Résumé

Les observateurs non-asymptotiques ont reçu beaucoup d’attention ces derniers temps en

raison de avancement dans la théorie du système de commande hybride. C’est parce que

la commande rapide est essentielle pour les systèmes hybrides. Des observateurs conven-

tionnels tels que l’observateur de Luenberger et les filtres de Kalman sont asymptotiques et

ne parviennent pas à atteindre cet objectif. D’autre part, les méthodes algébriques offrent

des alternatives d’estimation non-asymptotiques. Cela a été étudié de manière approfondie

dans les systèmes LTI. Dans le cas des systèmes LTV, il y a une littérature très limitée

pour l’estimation d’état et des paramètres. Cette thèse fournit une nouvelle méthode

d’estimation simultanée de l’état et des paramètres pour des systèmes LTV.

L’objectif de cette thèse est de proposer et de décrire la nouvelle méthode dans laquelle

un noyau qui sert de représentation fonctionnelle des systèmes LTV est employée en con-

jonction avec des techniques d’approximation fonctionnelle par les B-Splines pour construire

d’estimateurs non-asymptotique. Le noyau double pour les systèmes LTI a été développé

par le professeur Michalska et ses anciens étudiants. Observabilité totale du système estimé

doit être supposé. Les conditions d’identification pratiques pour l’estimation paramétrique

sont également définies.

En l’absence de bruit de mesure, l’observateur fournit reconstruction de l’état du système

presque exacte et fournit des estimations de haute fidélité de paramètres du système. Il

partage également les caractéristiques supérieures habituelles de observateurs algébriques

tels que l’indépendance des conditions initiales du système et la bonne propriétés d’atténuation

du bruit. D’autres avantages du noyau pour les systèmes LTV et de l’identification basée sur

les B-Splines sont élucidés. En présence de bruit de mesure la performance de l’estimateur

se détériore. Les résultats sont présentés pour les mesures de sortie silencieuses et bruyantes.

Un exemple est également présenté pour montrer que l’estimation conjointe des paramètres

et des états est supérieure en utilisant P-Splines que d’utiliser B-Splines.
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Chapter 1

Introduction

Control and automation play a crucial role in today’s technology by ensuring safety, stabil-

ity and reliability of engineering systems used in industry. Control systems are ubiquitous.

In our homes, we find them in everything from toasters to heating systems to DVD players.

Control systems also have widespread applications in science and industry, from steering

ships and planes to guiding missiles. Control systems also exist naturally; our bodies con-

tain numerous control systems. Even economic and psychological system representations

have been proposed based on control system theory. Control systems are used where power

gain, remote control, or conversion of the form of input is required.

The field of Control systems has rich history associated with it. Automatic control sys-

tems were first developed over two thousand years ago [2]. The first feedback control device

on record is thought to be the ancient water clock of Ktesibios in Alexandria Egypt around

the third century B.C. It kept time by regulating the water level in a vessel and, therefore,

the water flow from that vessel. From there, the field of control systems has come a long way.

Mathematical techniques made it possible to control, more accurately, and more sig-

nificantly, complex dynamical systems. These techniques include developments in optimal

control in the 1950’s and 1960’s, followed by progress in stochastic, robust, adaptive and op-

timal control methods in the 1970’s and 1980’s. Applications of control methodology have

helped make possible space travel and communication satellites, safer and more efficient

aircraft, cleaner auto engines, cleaner and more efficient chemical processes, to mention
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but a few. More recently, futuristic dreams have become a reality such as reusable rockets,

self-driving cars, unmanned aerial vehicles, autonomous underwater vehicles, smart homes,

and smart grids with the development of novel control methods.

Definition 1.0.1 [1] A control system consists of subsystems and processes (or plants)

assembled for the purpose of obtaining desired output with desired performance, given a

specified input.

Figure 1.1 Simplified description of a control system [1]

Figure 1.1 shows a control system in its simplest form, where the input represents a

desired output. There are two major configurations of control systems: open loop and

closed loop. We can consider these configurations to be the internal architecture of the

total system shown in Figures 1.2 and 1.3.

Figure 1.2 Block diagram of an open-loop control system [1]
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Figure 1.3 Block diagram of a closed-loop control systems [1]

1.0.1 Open Loop Systems

A generic open-loop system is shown in Figure 1.2. It starts with a subsystem called an

input transducer, which converts the form of the input to that used by the controller. The

controller drives a process or a plant. The input is sometimes called the reference, while

the output can be called the controlled variable. Other signals, such as disturbances, are

shown added to the controller and process outputs via summing junctions, which yield the

algebraic sum of their input signals using associated signs. The distinguishing characteristic

of an open-loop system is that it cannot compensate for any disturbances that add to the

controller’s driving signal (Disturbance 1 in Figure 1.2). The output of an open loop

system is corrupted not only by signals that add to the controller’s commands but also by

disturbances at the output (Disturbance 2 in Figure 1.2). The system cannot correct for

these disturbances, either. Some examples of open loop systems are toasters, mass-spring-

damper systems, and open loop temperature controllers that work in coordination with

timer devices.

1.0.2 Closed Loop Systems

The disadvantages of open loop systems, namely sensitivity to disturbances and inability to

correct disturbances or model system error, may be overcome in closed loop systems. The

generic architecture of a closed loop system is shown in Figure 1.3. The input transducer
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converts the form of the input to the form used by the controller. An output transducer, or

sensor, measures the output response and converts it into the form used by the controller.

The first summing junction algebraically subtracts the input signal from the output signal,

which arrives via the feedback path i.e. the return path from the output to the summing

junction; see Figure 1.3. The result is generally called the actuating signal. However, in

systems where both the input and output transducers employ a unity gain, the actuating

signal’s value is equal to the actual difference between the input and the output. Under

this condition, the actuating signal is called the control error. The closed loop system com-

pensates for disturbances by measuring the output response, feeding that measurement

back through a feedback path, and computing that response to the input at the summing

junction. If there is any difference between the two responses, the system drives the plant,

via the actuating signal, to make a correction. If there is no difference, the system does not

drive the plant, since the plant’s response is already the desired response. Hence, closed

loop systems are less sensitive to noise, disturbances, and changes in the environment.

Transient response and steady state error can be controlled more conveniently and with

greater flexibility in closed loop systems.

In order to implement a good feedback control technique, three main problems must

be addressed. These are (a) state estimation, (b) parameter estimation and (c) robustness

with respect to external disturbances or modelling errors.

State Estimation

The states of a system are those variables that provide a complete representation of the

internal condition or state of the system at a given instant of time [1]. For example, the

states of a motor might include the current through the windings, and the position and

speed of the motor shaft. State estimation is applicable to virtually all areas of engineer-

ing and science. Any discipline that is concerned with the mathematical modelling of its

systems is a likely candidate for state estimation.

State estimation is interesting to engineers for the following reasons:

• States are estimated to implement a state-feedback controller. For example, estimate

the winding currents of a motor to control its position.
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• States are estimated since it is expensive and impractical to measure all the states of

the system using sensors.

• Additionally, the measurements are disturbed by noise thereby resulting in uncer-

tainities and this is overcome through state estimation.

• In general, states are also estimated to monitor the health of the system.

Parameter Estimation

Parameter estimation is the process of using observations from a dynamic system to de-

velop parametric mathematical models that adequately represent the system characteristic

behavior [1]. In parametric estimation the structure of the model is assumed known while

the parameters need to be estimated using special estimation techniques. Mathematical

modelling via parameter estimation is one of the ways that leads to deeper understanding

of the system’s characteristics. These parameters often determine the stability and control

behavior of the system. Estimation of these parameters from input-output data (signals)

of the system is thus an important step in the analysis of the dynamic system.

The problems of state and parameter estimation have been extensively studied for the

case of LTI systems. However, for LTV systems, these problems are still largely untackled.

The estimation in LTV systems is hence the major objective of this thesis. The initial

results derived in this thesis are presented in our first conference paper; [3].

1.1 Estimation in LTV systems: Literature

Linear time-varying systems have received considerable attention in recent years. De-

scription and analysis of physical systems by time-varying models, analysis of existing

time-varying systems, more effective use of physical devices exhibiting time-varying char-

acteristics, and adaptive feedback control of time-varying systems are some examples of

practical as well as theoretical interest. A systematic design procedure for the synthesis of

feedback control inputs, which guarantee asymptotic stabilization to zero of the incremen-

tal state variables, is possible only with accurate representation of the LTV system. Hence,
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state and parameter estimation of LTV systems is significant with this regard.

Non-asymptotic state and parameter estimation is attracting increased interest as the

development of more efficient control technologies than current methods poses new chal-

lenges. Rapidly switching or hybrid control strategies are best matched with dead-beat

observers to deliver optimal closed loop performance. A dead-beat observer has the special

property that the estimated state will converge to the true state in exactly (at most) n

steps, where n is the order of the state-space model. It is the fastest observer that is theoret-

ically possible. Recursive estimation algorithms, with the powerful family of Kalman filters

feature good noise rejection properties, but require careful implementation and tuning, as

any errors in the assumptions about the system model, noise characteristic, or initial con-

ditions of the system can have highly destabilizing effect resulting in their slow convergence.

Non-asymptotic algebraic observers would be an obvious choice if not the consensus

of opinion that accurate higher order differentiation of noisy signals is unrealistic. Still,

the algebraic differentiation approach based on operational calculus, as first introduced

in [4], [5] has remarkably good noise rejection properties as discussed in [6]. Further im-

provements in the direction of derivative estimation are offered by [7], [8] and lead to the

development of high fidelity non-asymptotic state and parameter estimators for LTI sys-

tems that do not exhibit singularities and thus deliver fast estimates of the states. A kernel

linear system representation is proposed which exploits the obvious differential invariance

in homogeneous linear systems that is a direct consequence of the validity of the Cayley

Hamilton Theorem. Generally, a differential invariant of a dynamical system is a function

J (t, y(t), y(1)(t), ..., yn(t)) of time, output, and a number of its derivatives which remains

constant under the action of the flow of the system. Any differential invariant can be

regarded as a “deterministic signature” of the system that holds regardless of any uncer-

tainties, a behavioral law that can be harnessed to help eliminate errors in measurement

or numerical integration by simply enforcing its validity at all times.

A similar double-sided kernel representation of linear time-invariant systems employs

the notion of a controlled invariance and captures the behaviour of systems with exogeuous

inputs, as presented in [9]. The LTV kernel system represenation is singularity free, delivers

a recursive formula for computation of output derivatives and immediately yields a non-
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asymptotic state observer on any finite observation window, much like the one presented

in [10], but is developed entirely in the time domain and exhibits improved performance.

The estimation window is moved forward as new output measurements arrive, which can

be carried out safely in the absence of singularities. The observer does not need initializa-

tion as the notion of “initial conditions” is removed from the “behavioral” kernel system

representation. The measurement noise is “filtered naturally” as all estimates are obtained

as output functions of integral operators.

The ensemble of results pertaining to parameter estimation in LTV systems is relatively

modest, see e.g. [11], [12], [13], [14] and references therein. The prevailing techniques in-

clude least squares optimization and involve assumptions about specific model structure

e.g. convex polytopic structure (Takagi-Sugeno model) [13].

The approach presented here build on the ideas of [7], [8], [15], [9] and extends the

application of kernel system representations to joint state, input and functional parameter

estimation in linear time-varying systems. The kernel system representation for LTV sys-

tems is discussed in Chapter 3.

1.2 Detailed Thesis Objectives and Organization

The primary objective of this Master’s thesis is to develop a new method for joint param-

eter, state, and input estimation for linear time-varying systems using B-spline functional

approximation techniques combined with a double sided kernel representation of the system.

The motivation to use B-splines is that B-splines work well for functional approximations

over time and fit a wide variety of functions. To achieve the non-asymptotic state and

parameter estimation, the double sided kernel is derived using the differential invariance

principle of linear systems and the parameters are estimated by solving a system of lin-

ear equations as discussed in Chapter 4. The states are then estimated by evaluating the

double sided kernel using the estimated parameters. The joint state, parameter, and input

estimation constitute an original contribution as reported in [3].

Chapter 2 gives an overview of B-splines: its definition and its properties. A recursive
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formula for computing the B-splines is discussed along with its differentiation formula. The

chapter also briefly touches upon P-splines and their properties which can provide improved

performance over B-splines in the estimation as discussed in Chapter 5.

Chapter 3 discusses the detailed derivation of the double sided kernel for LTV systems.

It exploits the differential invariance principle valid for linear systems to derive the forward

and backward kernels for the system output and its time derivatives. An example of a

third order LTV system is presented to validate the double sided kernel and our approach

to estimation of LTV systems .

Chapter 4 proposes the new estimation method which combines B-splines with the ker-

nel representation of the LTV system. It describes the algebraic equations employed to

obtain the parameters of the system and the linear identifiability conditions necessary for

it. It also describes the technique employed for state and input estimation. The chapter

concludes with sections describing joint state, parameter, and input estimation using the

proposed approach.

Chapter 5 presents the simulation results of the proposed novel method of estimation in

LTV systems. The results are presented for second and third order LTV systems. In order

to prove the robustness of the proposed method, four cases are considered for both second

and third order LTV systems. The proposed method is valid only for the output corrupted

by little or no noise. However, results for the noisy case are also presented for clarification.

Finally, the last section presents the simulation results obtained using P-splines.

Chapter 6 concludes the thesis by providing a synopsis of the results and suggesting

possible future work.
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Chapter 2

B-splines

2.1 Introduction

A B-spline function is a piecewise defined polynomial function with several beneficial prop-

erties such as numerical stability of computations, local effects of coefficient changes and

built-in smoothness between neighboring polynomial pieces [16]. A common application

of B-spline functions, curves and surfaces is fitting of data points. Fitting can either be

interpolation or approximation. An interpolating B-spline function passes through the data

points, whereas an approximating B-spline function minimizes the residuals between the

function and the data but does not pass through the data points in general. The representa-

tion using B-splines is popular in computer-aided design, modeling and engineering as well

as computer graphics for the geometry of curves, objects and surfaces [17]. It is also used

for planning trajectories of computer controlled industrial machines [18] and robots [19, 20].

We define k-th order B-splines as appropriately scaled k-th divided differences of the

truncated power function and its properties in the following section.

Definition 2.1.1 [21] Let t := (ti) be a nondecreasing sequence (which may be finite or

infinite). The i-th (normalized) B-spline of order k for the knot sequence t is denoted by

Bi,k,t and is defined by the rule

Bi,k,t(x) := (ti+k − ti)[ti, ....., ti+k](.− x)k−1+ , all k ∈ N (2.1)

The ”placeholder” notation employed here may be unfamiliar to the reader. It is used here
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to indicate that the k-th divided difference of the function (t − x)k−1+ of the two variables

t and x. The divided difference is calculated by fixing x and considering (t − x)k−1+ as a

function of t alone. The resulting number depends, of course, on the particular value of x

we chose prior to the calculation, i.e., the resulting number varies as we vary x, and so we

obtain eventually the function Bi,k,t of x.

2.2 Properties

A function Bi,p,t(x), Bi,p,t(·) : R → R is called the i-th B-spline of order p with a knot se-

quence t := {t1, · · · , tp+1}, tj ≤ tj+1; see [21] for a comprehensive introduction to B-spline

spaces, their properties and applications.

A B-spline of order p is a piecewise polynomial function of degree p−1 in the variable x

(the pieces connect continuously at the knots). A B-spline is uniquely defined by the p+ 1

knots and is zero outside the interval (t1, · · · , tp+1). B-splines are called “uniform” if the

knots are equidistant. Some derivatives of B-splines may also be continuous, depending on

whether the consecutive knots are distinct or not. If all knots in a B-spline are all distinct,

then their derivatives are continuous up to order p−1. If the knots are coincident at a given

value of x, the continuity of derivative order is reduced by 1 for each additional coincident

knot.

The B-splines have the property that any spline function of order p on a given set of

knots t can be expressed as a linear combination

Sp,t(x) =
∑
i

αiBi,p,t(x) (2.2)

hence lending themselves well to function approximation or interpolation. To approximate

a desired function over some inteval [a, b] the splines should cover a superset of [a, b].

Expressions for the polynomial pieces B(i, p, t) can be derived by means of the Cox-de

Boor recursion formula:

Bi,1,t(x) =

1 if ti ≤ x ≤ ti+1

0 otherwise
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Higher order B-splines are constructed using the recursion

Bi,p,t(x) = ωi,p(x)Bi,p−1,t(x) + (1− ωi+1,p(x))Bi+1,p−1,t(x)

where ωi,p(x) is given by

ωi,p(x) =
x− ti

ti+p−1 − ti
The following differentiation formula is valid for B-splines

d

dx
(
n∑
i=1

αiBi,p,t(x)) =
n∑
i=1

αiB
′

i,p,t(x) (2.3)

where B
′

i,p,t(x) is given by

B
′

i,p,t(x) =
p− 1

ti+p−1 − ti
Bi,p−1,t(x)− p− 1

ti+p − ti+1

Bi+1,p−1,t(x) (2.4)

Again the differentiation formula is recursive in the sense that higher order derivatives are

obtained by recursion from equation (2.4). It is given by,

B
(i)
i,p,t(x) =

p− 1

ti+p−1 − ti
B

(i−1)
i,p−1,t(x)− p− 1

ti+p − ti+1

B
(i−1)
i+1,p−1,t(x) (2.5)

While writing function approximations by B-splines it is convenient to omit indicating the

order and knot sequence in the index of the B-splines, thus denoting the k-th B-spline by

Bk while letting the order and knot sequence be clear from the context.

2.3 P-Splines

P-Splines are a variation of B-Splines. There are two components of a P-Spline: B-Splines

and discrete penalties. As we have discussed B-Splines in the previous section, let us

proceed to discrete penalties.

Discrete Penalties

With the number of B-splines in the basis of polynomial functions we can tune the smooth-

ness of a curve to the data at hand. A smaller number of splines gives a smoother result.
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However, this is not the only possibility. We can also use a large basis and additionally

constrain the coefficients of the B-splines, to achieve the desired smoothness. A properly

chosen penalty allows this.

O’Sullivan (1986) first proposed to use a large number of knots and a penalty on the

second derivative of the curve to prevent overfitting. The penalty is a way to measure the

roughness of a curve and is given by:

R =

∫ u

l

[f (2)(x)]2dx

where l and u indicate the bounds of the domain of x. If f(x) =
∑

j ajBj(x), we can

derive a banded matrix P such that R = aTPa. The elements of P are computed as the

integrals of products of second derivatives of neighbouring B-splines [22].

The computation of P is not trivial, and it becomes quite tedious when the third

or fourth order derivative is used to measure roughness. P-splines circumvent the issue

by dropping derivatives and integrals completely. Instead they use a discrete penalty

matrix from the start. It is also simple to compute, as it is based on difference for-

mulas. Let ∆aj = aj − aj−1, ∆2aj = ∆(∆aj) = aj − 2aj−1 + aj−2 and in general

∆daj = ∆(∆d−1aj). Let Dd be a matrix such that Dda = ∆da. If we replace the penalty by

λ||Dda||2 = λaTDT
dDda = λaTPa, we get a similar construction as O’Sullivan’s, but with

a minimal amount of work. In modern languages like R and Matlab, Dd can be obtained

mechanically as the dth order difference of the identity matrix.

2.3.1 Properties

P-splines have a number of useful properties, partially inherited from B-splines [23].

• P-splines show no boundary effects, as many types of kernel smoothers do. By this

we mean the spreading of a fitted curve or density outside of the (physical) domain

of the data, generally accompanied by bending toward zero.

• P-splines can fit polynomial data exactly. Let data (xi, yi) be given. If the yi are a

polynomial in x of degree k, then B-splines of degree k or higher will exactly fit the
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data [21]. The same is true for P-splines, if the order of the penalty is k+1 or higher,

whatever the value of λ.

• The limit of a P-splines fit with strong smoothing is a polynomial. For large values

of λ and a penalty of order k, the fitted series will approach a polynomial of degree

k − 1, if the degree of the B-splines is equal to, or higher than, k.

The discrete penalties are somewhat less interpretable in terms of function shape than

the traditional derivative based spline penalties, but tend towards penalties proportional

to traditional spline penalties in the limit of large basis size. However, part of the point of

P-splines is not to use a large basis size. In addition, the spline basis functions arise from

solving functional optimization problems involving derivative based penalties, so moving

to discrete penalties for smoothing may not always be desirable. Hence, P-splines with

derivative based penalties has been proposed by [24]. We use the approach mentioned in

[24] to compute the penalties for the joint parameter and state estimation in LTV systems.

As the kernel system representation of [9] is linear in the system parameters, the ap-

proach presented here can be seamlessly combined with standard B-spline functional ap-

proximation. Under mild identifiability assumptions the sampled input-output data is

employed in the kernel system representation to deliver linear algebraic equations for the

values of the B-spline coefficients thereby reconstructing the unknown functional param-

eters in finite time with almost uniform accuracy. State reconstruction follows by way of

calculating the time derivatives of the system output. The joint B-spline estimation ap-

proach is non-asymptotic. This is discussed in Chapter 4.
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Chapter 3

A Double Sided Kernel for an LTV

System

3.1 Introduction

As seen in Chapter 1, parameter and state estimation literature for LTV systems is limited

compared to its LTI counterpart. We develop a novel method of estimation by deriving

a kernel representation for linear time-varying systems using the differential invariance

principle . The kernel representation of the LTV system is combined with B-Spline func-

tional approximations to estimate the parameters, input, and the states of a system. The

derivation details are presented in the next section.

3.2 Kernel Representation of an LTV System with Exogenous

Input

3.2.1 Model Assumptions

The LTV system considered is assumed to be stated in the state space form:

ẋ = A(t)x+B(t)u ; y = C(t)x (3.1)
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where the state, input and output are: x ∈ Rn, u ∈ Rm and y ∈ Rd; with A(t) ∈ Rn×n,

B(t) ∈ Rn×m, and C(t) ∈ Rd×n are known, n − 1 times differentiable matrix functions of

time.

The following definitions and criteria for complete and total observability of a general sys-

tem (3.1) can be found in [25] and [26]:

Definition 1

• System (3.1) is completely observable on a time interval [t0, tf ] if any initial state can

be determined from the knowledge of the system output and input, y(t) and u(t), on

the interval t ∈ [t0, tf ].

• System (3.1) is totally observable on a time interval [t0, tf ] if it is completely observ-

able on any subinterval of [t0, tf ].

Theorem 1 [26] System (3.1) restricted to the time interval [t0, tf ] is:

• completely observable if rank O(t) = n for t ∈ [t0, tf ];

• totally observable if and only if rank O(t) = n on any subinterval of [t0, tf ];

where the observability matrix is defined by

O(t) = {S0(t), S1(t), . . . , Sn−1(t)} (3.2)

S0(t) = C(t)T ;

Sk+1(t) = A(t)TSk(t) + Ṡk(t); k = 0, . . . , n− 2

3.2.2 A Controlled Differential Invariant - the Input-Output Equation

Henceforth, only single-input, single-output and strictly proper systems will be considered,

i.e., m = 1, m < n, with d = 1 so u, y ∈ R.

With assumption of total observability, the state variable of system (3.1) can be expressed

in terms of the system input, output, and their derivatives; see, e.g., [10] for a simple proof

of this fact:
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Theorem 2 [10] Under the total observability assumption the input-output relation in sys-

tem (3.1) is of the form:

n∑
i=0

ai(t)y
(i) +

m∑
i=0

bi(t)u
(i) = 0 for t ∈ [t0, tf ] (3.3)

with an = 1, m < n. The state x can be expressed as a linear function of the input and

output and their derivatives:

x(t) =



Γ0

Γ1

Γ2

...

Γn−1



−1 



y

y(1)

y(2)

...

y(n−1)


−M



u

u(1)

u(2)

...

u(n−2)




(3.4)

where

Γ0(t) = C(t)

Γk(t) =

((
A(t)T +

d

dt

)k
C(t)T

)T

, 0 < k < n

M =



0 0 0 . . . 0

∆11 0 0 . . . 0

∆21 ∆22 0 . . . 0
...

...
...

...
...

∆(n−1)1 ∆(n−1)2 ∆(n−1)3 . . . ∆(n−1)(n−1)



∆k0(t) = Γk(t)B(t)
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∆kj(t) =

{
C(t)B(t); if j = k

∆(k−1)(j−1)(t) + d
dt

∆(k−1)j(t); if 1 ≤ j < k
(3.5)

The invertibility of the matrix in (3.4) is guaranteed by the total observability assumption

on the system; see the definition of the observability matrix in Theorem 1.

Equation (3.3) constitutes a “controlled differential invariant” of system (3.1) which deliv-

ers a non-singular integral kernel representation of the system as well as integral transforms

for computation of the output derivatives.

Theorem 3 There exist Hilbert-Schmidt kernels [27] Ky, Ku, Ki
y, K

i
u, i = 1, · · ·n−1, and

functions f iy, f
i
u, i = 0, · · ·n− 2, defined respectively on [a, b]× [a, b] and [a, b]

such that the output y of system (3.1) satisfies the following integral equation on [a, b]

y(t) =

∫ b

a

Ky(t, τ)y(τ) dτ +

∫ b

a

Ku(t, τ)u(τ) dτ (3.6)

while the derivatives of the output y(1), · · · y(n−1) for i = 1, · · ·n − 1 satisfy the recursive

relationships :

y(i)(t) =
i−1∑
k=0

fky (t)y(k)(t) +
i−1∑
k=0

fku (t)u(k)(t) +

∫ b

a

Ki
y(t, τ)y(τ) dτ +

∫ b

a

Ki
u(t, τ)u(τ) dτ

(3.7)

�

While the analytical formulae for the kernels for a general n-dimensional system maybe

somewhat cumbersome their derivation is surprisingly straightforward. It is to mention that

the derivation of such system representation can equivalently be conducted in the Laplace

domain or else by direct embedding of (3.3) into a Sobolev space H2
n[a, b] of functions whose

n-th derivatives are absolutely integrable. The proof of the above theorem is done through

induction and is presented elsewhere. For clarity and simplicity we will only demonstrate

the derivation directly in the time domain with reference to a 3-dimensional example. To

this end, let n = 3, and consider two equations obtained from (3.3) by pre-multiplication
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by the respective factors (ξ − a) and (b− ζ):

(ξ − a)3y(3) + a2(ξ)(ξ − a)3y(2) + a1(ξ)(ξ − a)3y(1) + a0(ξ)(ξ − a)3y

+b2(ξ)(ξ − a)3u(2) + b1(ξ)(ξ − a)3u(1) + b0(ξ)(ξ − a)3u = 0
(3.8)

(b− ζ)3y(3) + a2(ζ)(b− ζ)3y(2) + a1(ζ)(b− ζ)3y(1) + a0(ζ)(b− ζ)3y

+b2(ζ)(b− ζ)3u(2) + b1(ζ)(b− ζ)3u(1) + b0(ζ)(b− ζ)3u = 0
(3.9)

Each of the above is then integrated three times, on the respective intervals [a, a+ τ ] and

on [b−σ, b] while assuming that τ and σ are related by a+τ = b−σ. Integration by parts is

used whenever it allows to lower the degree of the derivatives appearing under the integrals

and the result is then simplified algebraically before proceeding to the next integration. To

illustrate this process, integrating the first term of (3.8) yields

a+τ∫
a

(ξ − a)3y(3)(ξ) dξ = (ξ − a)3y(2)(ξ) |a+τa −
a+τ∫
a

3(ξ − a)2y(2)(ξ) dξ

= τ 3y(2)(a+ τ)−
[
3(ξ − a)2y(1)(ξ) |a+τa −

a+τ∫
a

6(ξ − a)y(1)(ξ), dξ

]

= τ 3y(2)(a+ τ)− 3τ 2y(1)(a+ τ) + 6(ξ − a)y(ξ) |a+τa −
a+τ∫
a

6y(ξ) dξ

= τ 3y(2)(a+ τ)− 3τ 2y(1)(a+ τ) + 6τy(a+ τ)−
a+τ∫
a

6y(ξ) dξ (3.10)

When we integrate again, the upper limit on the integral becomes a ’dummy variable’, that

is we set ξ
′
= a+ τ then,

τ 3y(2)(a+ τ) is integrated as (ξ
′ − a)3y(2)(ξ

′
)

3τ 2y(1)(a+ τ) is integrated as 3(ξ
′ − a)2y(1)(ξ

′
)

6τy(a+ τ) is integrated as 6(ξ
′ − a)y(ξ

′
)
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Integrating (3.10) again,

a+τ∫
a

ξ′∫
a

(ξ − a)3y(3)(ξ) dξdξ′

= (ξ
′ − a)3y(1)(ξ

′
) |a+τa −

a+τ∫
a

3(ξ
′ − a)2y(1)(ξ

′
) dξ

′ −
a+τ∫
a

3(ξ
′ − a)2y(1)(ξ

′
) dξ

′

+

a+τ∫
a

6(ξ
′ − a)y(ξ

′
) dξ

′ −
a+τ∫
a

ξ
′∫

a

6y(ξ) dξdξ
′

= (ξ
′ − a)3y(1)(ξ

′
) |a+τa −

a+τ∫
a

6(ξ
′ − a)2y(1)(ξ

′
) dξ

′
+

a+τ∫
a

6(ξ
′ − a)y(ξ

′
) dξ

′ −
a+τ∫
a

ξ
′∫

a

6y(ξ) dξdξ
′

= τ 3y(1)(a+ τ)− 6(ξ
′ − a)2y(ξ

′
) |a+τa +

a+τ∫
a

12(ξ
′ − a)y(ξ

′
) dξ

′

+

a+τ∫
a

6(ξ
′ − a)y(ξ

′
) dξ

′ −
a+τ∫
a

ξ
′∫

a

6y(ξ) dξdξ
′

= τ 3y(1)(a+ τ)− 6τ 2y(a+ τ) +

a+τ∫
a

18(ξ′ − a)y(ξ′) dξ′ −
a+τ∫
a

ξ′∫
a

6y(ξ) dξdξ′ (3.11)

As shown earlier,the upper limit again becomes a ’dummy variable’ and now we set

ξ
′′

= a+ τ . Integrating the third time yields,

a+τ∫
a

ξ′′∫
a

ξ′∫
a

(ξ − a)3y(3)(ξ) dξdξ′dξ′′

=

a+τ∫
a

(ξ
′′ − a)3y(1)(ξ

′′
)dξ

′′ −
a+τ∫
a

6(ξ
′′ − a)2y(ξ

′′
)dξ

′′
+

a+τ∫
a

ξ′′∫
a

18(ξ′ − a)y(ξ′) dξ′dξ′′

−
a+τ∫
a

ξ′′∫
a

ξ′∫
a

6y(ξ) dξdξ′dξ′′
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= (ξ
′′ − a)3y(ξ

′′
) |a+τa −

a+τ∫
a

3(ξ
′′ − a)2y(ξ

′′
)dξ

′′

−
a+τ∫
a

6(ξ
′′ − a)2y(ξ

′′
)dξ

′′
+

a+τ∫
a

ξ′′∫
a

18(ξ′ − a)y(ξ′) dξ′dξ′′ −
a+τ∫
a

ξ′′∫
a

ξ′∫
a

6y(ξ) dξdξ′dξ′′

= τ 3y(a+ τ)−
a+τ∫
a

9(ξ′′ − a)2y(ξ′′) dξ′′

+

a+τ∫
a

ξ′′∫
a

18(ξ′ − a)y(ξ′) dξ′dξ′′ −
a+τ∫
a

ξ′′∫
a

ξ′∫
a

6y(ξ) dξdξ′dξ′′ (3.12)

Integrating the second term in (3.8) first time,

a+τ∫
a

a2(ξ)(ξ − a)3y(2)(ξ) dξ

= a2(ξ)(ξ − a)3y(1)(ξ) |a+τa −
a+τ∫
a

[
3a2(ξ)(ξ − a)2 + (ξ − a)3a

(1)
2 (ξ)

]
y(1)(ξ) dξ

= a2(ξ)(ξ − a)3y(1)(ξ) |a+τa −
[
3a2(ξ)(ξ − a)2 + (ξ − a)3a

(1)
2 (ξ)

]
y(ξ) |a+τa

+

a+τ∫
a

[
6(ξ − a)a2(ξ) + 3(ξ − a)2a

(1)
2 (ξ)

]
y(ξ)dξ

+

a+τ∫
a

[
3(ξ − a)2a

(1)
2 (ξ) + (ξ − a)3a

(2)
2 (ξ)

]
y(ξ)dξ

= a2(a+ τ)(τ)3y(1)(a+ τ)

−
[
3a2(a+ τ)(τ)2 + (τ)3a

(1)
2 (a+ τ)

]
y(a+ τ)

+

a+τ∫
a

[
6(ξ − a)a2(ξ) + 3(ξ − a)2a

(1)
2 (ξ)

]
y(ξ)dξ
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+

a+τ∫
a

[
3(ξ − a)2a

(1)
2 (ξ) + (ξ − a)3a

(2)
2 (ξ)

]
y(ξ)dξ (3.13)

As shown earlier,the upper limit again becomes a ’dummy variable’ and now we set ξ
′

=

a+ τ . Integrating the second time yields,

a+τ∫
a

ξ′∫
a

a2(ξ)(ξ − a)3y(2)(ξ) dξdξ′

=

a+τ∫
a

a2(ξ
′)(ξ′ − a)3y(1)(ξ′) dξ′ −

a+τ∫
a

[
3a2(ξ

′)(ξ′ − a)2 + (ξ′ − a)3a
(1)
2 (ξ′)

]
y(ξ′) dξ′

+

a+τ∫
a

ξ′∫
a

[
6(ξ − a)a2(ξ) + 3(ξ − a)2a

(1)
2 (ξ)

]
y(ξ)dξdξ′

+

a+τ∫
a

ξ′∫
a

[
3(ξ − a)2a

(1)
2 (ξ) + (ξ − a)3a

(2)
2 (ξ)

]
y(ξ)dξdξ′

= a2(ξ
′)(ξ′ − a)3y(ξ′) |a+τa −

a+τ∫
a

[
3a2(ξ

′)(ξ′ − a)2 + (ξ′ − a)3a
(1)
2 (ξ′)

]
y(ξ′) dξ′

−
a+τ∫
a

[
3a2(ξ

′)(ξ′ − a)2 + (ξ′ − a)3a
(1)
2 (ξ′)

]
y(ξ′) dξ′

+

a+τ∫
a

ξ′∫
a

[
6(ξ − a)a2(ξ) + 3(ξ − a)2a

(1)
2 (ξ)

]
y(ξ)dξdξ′

+

a+τ∫
a

ξ′∫
a

[
3(ξ − a)2a

(1)
2 (ξ) + (ξ − a)3a

(2)
2 (ξ)

]
y(ξ)dξdξ′

= a2(a+ τ)(τ)3y(a+ τ)−
a+τ∫
a

2

[
3a2(ξ

′)(ξ′ − a)2 + (ξ′ − a)3a
(1)
2 (ξ′)

]
y(ξ′) dξ′

+

a+τ∫
a

ξ′∫
a

[
6(ξ − a)a2(ξ) + 3(ξ − a)2a

(1)
2 (ξ)

]
y(ξ)dξdξ′
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+

a+τ∫
a

ξ′∫
a

[
3(ξ − a)2a

(1)
2 (ξ) + (ξ − a)3a

(2)
2 (ξ)

]
y(ξ)dξdξ′ (3.14)

Integrating the second term of (3.8) third time yields,

a+τ∫
a

ξ′′∫
a

ξ′∫
a

a2(ξ)(ξ − a)3y(2)(ξ) dξdξ′dξ′′

=

a+τ∫
a

a2(ξ
′′)(ξ′′ − a)3y(ξ′′) dξ′′ −

a+τ∫
a

ξ′′∫
a

2
[
3a2(ξ

′)(ξ′ − a)2
]
y(ξ′) dξ′dξ′′

−
a+τ∫
a

ξ′′∫
a

2
[
(ξ′ − a)3a

(1)
2 (ξ′)

]
y(ξ′) dξ′dξ′′ +

a+τ∫
a

ξ′′∫
a

ξ′∫
a

[
6(ξ − a)a2(ξ)

]
y(ξ)dξdξ′dξ′′

+

a+τ∫
a

ξ′′∫
a

ξ′∫
a

[
3(ξ − a)2a

(1)
2 (ξ)

]
y(ξ)dξdξ′dξ′′ +

a+τ∫
a

ξ′′∫
a

ξ′∫
a

[
3(ξ − a)2a

(1)
2 (ξ)

]
y(ξ)dξdξ′dξ′′

+

a+τ∫
a

ξ′′∫
a

ξ′∫
a

[
(ξ − a)3a

(2)
2 (ξ)

]
y(ξ)dξdξ′dξ′′ (3.15)

Integrating the third term of (3.8) first time yields,

a+τ∫
a

a1(ξ)(ξ − a)3y(1)(ξ) dξ

= a1(ξ)(ξ − a)3y(ξ) |a+τa −
a+τ∫
a

3a1(ξ)(ξ − a)2y(ξ) dξ −
a+τ∫
a

a
(1)
1 (ξ)(ξ − a)3y(ξ) dξ

= a1(a+ τ)(τ)3y(a+ τ)−
a+τ∫
a

3a1(ξ)(ξ − a)2y(ξ) dξ −
a+τ∫
a

a
(1)
1 (ξ)(ξ − a)3y(ξ) dξ (3.16)
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Integrating the second time,

a+τ∫
a

ξ′∫
a

a1(ξ
′)(ξ′ − a)3y(1)(ξ′) dξdξ′

=

ξ′∫
a

a1(ξ
′)(ξ′ − a)3y(ξ′)dξ′ −

a+τ∫
a

ξ′′∫
a

3a1(ξ
′)(ξ′ − a)2y(ξ′) dξ′dξ′′

−
a+τ∫
a

ξ′′∫
a

a
(1)
1 (ξ′)(ξ′ − a)3y(ξ′) dξ′dξ′′ (3.17)

Integrating the third time yields,

a+τ∫
a

ξ′′∫
a

ξ′∫
a

a1(ξ)(ξ − a)3y(1)(ξ) dξdξ′dξ′′

=

a+τ∫
a

ξ′′∫
a

a1(ξ
′)(ξ′ − a)3y(ξ′) dξ′dξ′′ −

a+τ∫
a

ξ′′∫
a

ξ′∫
a

3a1(ξ)(ξ − a)2y(ξ) dξdξ′dξ′′

−
a+τ∫
a

ξ′′∫
a

ξ′∫
a

a
(1)
1 (ξ)(ξ − a)3y(ξ) dξdξ′dξ′′

(3.18)

Finally, the fourth term is

a+τ∫
a

ξ′′∫
a

ξ′∫
a

a0(ξ)(ξ − a)3y(ξ) dξdξ′dξ′′ (3.19)

Repeating the same procedure for the next three terms involving the input we obtain the

following. Integrating the fifth term yields,

a+τ∫
a

ξ′′∫
a

ξ′∫
a

b2(ξ)(ξ − a)3u(2)(ξ) dξdξ′dξ′′
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=

a+τ∫
a

b2(ξ
′′)(ξ′′ − a)3u(ξ′′) dξ′′ −

a+τ∫
a

ξ′′∫
a

2
[
3b2(ξ

′)(ξ′ − a)2
]
u(ξ′) dξ′dξ′′

−
a+τ∫
a

ξ′′∫
a

2
[
(ξ′ − a)3b

(1)
2 (ξ′)

]
u(ξ′) dξ′dξ′′ +

a+τ∫
a

ξ′′∫
a

ξ′∫
a

[
6(ξ − a)b2(ξ)

]
u(ξ)dξdξ′dξ′′

+

a+τ∫
a

ξ′′∫
a

ξ′∫
a

[
6(ξ − a)2b

(1)
2 (ξ)

]
u(ξ)dξdξ′dξ′′ +

a+τ∫
a

ξ′′∫
a

ξ′∫
a

[
(ξ − a)3b

(2)
2 (ξ)

]
u(ξ)dξdξ′dξ′′

(3.20)

Integrating the sixth term yields,

a+τ∫
a

ξ′′∫
a

ξ′∫
a

b1(ξ)(ξ − a)3u(1)(ξ) dξdξ′dξ′′

=

a+τ∫
a

ξ′′∫
a

b1(ξ
′)(ξ′ − a)3u(ξ′) dξ′dξ′′ −

a+τ∫
a

ξ′′∫
a

ξ′∫
a

3b1(ξ)(ξ − a)2u(ξ) dξdξ′dξ′′

−
a+τ∫
a

ξ′′∫
a

ξ′∫
a

b
(1)
1 (ξ)(ξ − a)3u(ξ) dξdξ′dξ′′ (3.21)

Integrating the last term gives,

a+τ∫
a

ξ′′∫
a

ξ′∫
a

b0(ξ)(ξ − a)3u(ξ) dξdξ′dξ′′ (3.22)

Collecting the terms in (3.10) - (3.22) yields

τ 3y(a+ τ)

=

a+τ∫
a

[
9(ξ′′ − a)2 − a2(ξ′′)(ξ′′ − a)3

]
y(ξ′′) dξ′′

+

a+τ∫
a

ξ′′∫
a

[
− 18(ξ′ − a) + 6a2(ξ

′)(ξ′ − a)2 + (ξ′ − a)3(2a
(1)
2 (ξ′)− a1(ξ′))

]
y(ξ′) dξ′dξ′′
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+

a+τ∫
a

ξ′′∫
a

ξ′∫
a

[
6− 6a2(ξ)(ξ − a)− 6(ξ − a)2a

(1)
2 (ξ)− (ξ − a)3a

(2)
2 (ξ) + 3a1(ξ)(ξ − a)2

+ (ξ − a)3a
(1)
1 (ξ)− a0(ξ)(ξ − a)3

]
y(ξ) dξdξ′dξ′′ −

a+τ∫
a

b2(ξ
′′)(ξ′′ − a)3u(ξ′′) dξ′′

+

a+τ∫
a

ξ′′∫
a

[
6b2(ξ

′)(ξ′ − a)2 + (ξ′ − a)3(2b
(1)
2 (ξ′)− b1(ξ′))

]
u(ξ′) dξ′dξ′′

+

a+τ∫
a

ξ′′∫
a

ξ′∫
a

[
− 6b2(ξ)(ξ − a)− 6(ξ − a)2b

(1)
2 (ξ)− (ξ − a)3b

(2)
2 (ξ) + 3b1(ξ)(ξ − a)2

+ (ξ − a)3b
(1)
1 (ξ)− b0(ξ)(ξ − a)3

]
u(ξ) dξdξ′dξ′′ (3.23)

Since the integrals in (3.23) are of a special form, this can be reduced to single integrals

using Cauchy formula for repeated integration which can be recollected as follows. Let f

be a continuous function on the real line, the nth repeated integral of f based at a,

f (−n)(x) =

∫ x

a

∫ σ1

a

...

∫ σn−1

a

f(σn)dσn...dσ2dσ1 (3.24)

is given by the single integration

f (−n)(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt (3.25)

Applying the Cauchy formula for repeated integration stated above on (3.23) while letting

a+ τ = t, we get,

(t− a)3y(t) =

t∫
a

[
9(ξ − a)2 − a2(ξ)(ξ − a)3

]
y(ξ) dξ +

t∫
a

(t− ξ)
[
− 18(ξ − a) + 6a2(ξ)(ξ − a)2

+ 2(ξ − a)3a
(1)
2 (ξ)− a1(ξ)(ξ − a)3

]
y(ξ) dξ +

1

2

t∫
a

(t− ξ)2
[
6− 6a

(1)
2 (ξ)(ξ − a)
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− a(2)2 (ξ)(ξ − a)3 + 3a1(ξ)(ξ − a)2 + a
(1)
1 (ξ)(ξ − a)3 − a0(ξ)(ξ − a)3

]
y(ξ) dξ

+

t∫
a

[−b2(ξ)(ξ − a)3]u(ξ) dξ

+

t∫
a

(t− ξ)
[
6b2(ξ)(ξ − a)2 + 2(ξ − a)3b

(1)
2 (ξ)− b1(ξ)(ξ − a)3

]
u(ξ) dξ

+
1

2

t∫
a

(t− ξ)2
[
− 6b

(1)
2 (ξ)(ξ − a)− b(2)2 (ξ)(ξ − a)3 + 3b1(ξ)(ξ − a)2

+ b
(1)
1 (ξ)(ξ − a)3 − b0(ξ)(ξ − a)3

]
u(ξ) dξ

,

t∫
a

KFy(t, τ)y(τ) dτ +

t∫
a

KFu(t, τ)u(τ) dτ (3.26)

with KFy(t, τ) defined as

KFy(t, τ) ,

[
9(τ − a)2 − (τ − a)3a2(τ)

]
+ (t− τ)

[
− 18(τ − a) + 6(τ − a)2a2(τ) + 2(τ − a)3a

(1)
2 (τ)− (τ − a)3a1(τ)

]
+

(t− τ)2

2

[
6− 6(τ − a)a2(τ)− 6(τ − a)2a

(1)
2 (τ)− (τ − a)3a

(2)
2 (τ)

+ 3(τ − a)2a1(τ) + (τ − a)3a
(1)
2 (τ)− (τ − a)3a0(τ)

]
(3.27)

and KFu(t, τ) defined as

KFu(t, τ) ,

[
− (τ − a)3b2(τ)

]
+ (t− τ)

[
6(τ − a)2b2(τ) + 2(τ − a)3b

(1)
2 (τ)− (τ − a)3b1(τ)

]
+

(t− τ)2

2

[
− 6(τ − a)b2(τ)− 6(τ − a)2b

(1)
2 (τ)− (τ − a)3b

(2)
2 (τ)

+ 3(τ − a)2b1(τ) + (τ − a)3b
(1)
2 (τ)− (τ − a)3b0(τ)

]
(3.28)
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In order to derive the backward kernel we employ the same procedure developed above on

(3.9). See Appendix A for details. From (3.26) and (A.15) we have the following,

(t− a)3y(t) =

∫ t

a

KFy(t, τ)y(τ) dτ +

∫ t

a

KFu(t, τ)u(τ) dτ (3.29)

(b− t)3y(t) =

∫ b

t

KBy(t, τ)y(τ) dτ +

∫ b

t

KBu(t, τ)u(τ) dτ (3.30)

Adding side by side (3.29) and (3.30) while dividing both sides by [(t−a)3 + (b− t)3] yields

y(t) =

∫ b

a

Ky(t, τ)y(τ) dτ +

∫ b

a

Ku(t, τ)u(τ) dτ (3.31)

with

Ky(t, τ) =
1

C[a,b](t)

{
KFy(t, τ) for τ ≤ t

KBy(t, τ) for τ > t
(3.32)

Ku(t, τ) =
1

C[a,b](t)

{
KFu(t, τ) for τ ≤ t

KBu(t, τ) for τ > t
(3.33)

where C[a,b](t) = [(t− a)3 + (b− t)3].
This delivers the formula for the “double-sided” kernel that effectively combines the

operations of forward integration on [a, t] and backward integration on [b, t].

The recursive expressions for the derivatives of the output (3.7) can be derived by

proceeding similarly as when deriving the Ky and Ku. To obtain the expression for y(1) the

equations (3.8) & (3.9) need to be integrated two times :

(t− a)3y(1)(t) = 6(t− a)2y(t)− a2(t)(t− a)3y(t)

+

∫ t

a

[
− 18(τ − a) + 6a2(τ)(τ − a)2 + 2a

(1)
2 (τ)(τ − a)3 − a1(τ)(τ − a)3

]
y(τ) dτ

+

∫ t

a

(t− τ)
[
6− 6a2(τ)(τ − a)− 6a

(1)
2 (τ)(τ − a)2 − a(2)2 (τ)(τ − a)3 + 3a1(τ)(τ − a)2

+ a
(1)
1 (τ)(τ − a)3 − a0(τ)(τ − a)3

]
y(τ) dτ − b2(t)(t− a)3u(t)
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+

∫ t

a

[
6b2(τ)(τ − a)2 + 2b

(1)
2 (τ)(τ − a)3 − b1(τ)(τ − a)3

]
u(τ) dτ

+

∫ t

a

(t− τ)
[
− 6b2(τ)(τ − a)− 6b

(1)
2 (τ)(τ − a)2 − b(2)2 (τ)(τ − a)3 + 3b1(τ)(τ − a)2

+ b
(1)
1 (τ)(τ − a)3 − b0(τ)(τ − a)3

]
u(τ) dτ (3.34)

and

(b− t)3y(1)(t) = −6(b− t)2y(t)− a2(t)(b− t)3y(t)

+

∫ b

t

[
18(b− τ)− 6a2(τ)(b− τ)2 + 2a

(1)
2 (τ)(b− τ)3 + a1(τ)(b− τ)3

]
y(τ) dτ

+

∫ b

t

(t− τ)
[
6 + 6a2(τ)(b− τ)− 6a

(1)
2 (τ)(b− τ)2 + a

(2)
2 (τ)(b− τ)3 + 3a1(τ)(b− τ)2

− a(1)1 (τ)(b− τ)3 + a0(τ)(b− τ)3
]
y(τ) dτ − b2(t)(b− t)3u(t)

+

∫ b

t

[
− 6b2(τ)(b− τ)2 + 2b

(1)
2 (τ)(b− τ)3 + b1(τ)(b− τ)3

]
u(τ) dτ

+

∫ b

t

(t− τ)
[
6b2(τ)(b− τ)− 6b

(1)
2 (τ)(b− τ)2 + b

(2)
2 (τ)(b− τ)3 + 3b1(τ)(b− τ)2

− b(1)1 (τ)(b− τ)3 + b0(τ)(b− τ)3
]
u(τ) dτ (3.35)

The final expression for y(1)(t) is obtained by adding the results of (3.34) and (3.35) while

dividing by [(t− a)3 + (b− t)3].

[
(t− a)3 + (b− t)3

]
y(1)(t) =

[
6(t− a)2 − 6(b− t)2 − [(t− a)3 + (b− t)3]a2(t)

]
y(t)

−
[
(t− a)3 + (b− t)3

]
b2(t)u(t)

+

∫ t

a

K1
Fy(t, ξ)y(ξ)dξ +

∫ t

a

K1
Fu(t, ξ)u(ξ)dξ

+

∫ t

a

K1
By(t, ξ)y(ξ)dξ +

∫ t

a

K1
Bu(t, ξ)u(ξ)dξ (3.36)
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where the kernel functions K1
Fy and K1

Fu are:

K1
Fy(t, τ) =

[
− 18(τ − a) + 6a2(τ)(τ − a)2 + 2a

(1)
2 (τ)(τ − a)3 − a1(τ)(τ − a)3

]
+ (t− τ)

[
6− 6a2(τ)(τ − a)− 6a

(1)
2 (τ)(τ − a)2 − a(2)2 (τ)(τ − a)3 + 3a1(τ)(τ − a)2

+ a
(1)
1 (τ)(τ − a)3 − a0(τ)(τ − a)3

]
(3.37)

K1
Fu(t, τ) =

[
− 6b2(τ)(b− τ)2 + 2b

(1)
2 (τ)(b− τ)3 + b1(τ)(b− τ)3

]
+ (t− τ)

[
− 6b2(τ)(τ − a)− 6b

(1)
2 (τ)(τ − a)2 − b(2)2 (τ)(τ − a)3 + 3b1(τ)(τ − a)2

+ b
(1)
1 (τ)(τ − a)3 − b0(τ)(τ − a)3

]
(3.38)

and the kernel functions K1
By and K1

Bu are:

K1
By(t, τ) =

[
18(b− τ)− 6a2(τ)(b− τ)2 + 2a

(1)
2 (τ)(b− τ)3 + a1(τ)(b− τ)3

]
+ (t− τ)

[
6 + 6a2(τ)(b− τ)− 6a

(1)
2 (τ)(b− τ)2 + a

(2)
2 (τ)(b− τ)3 + 3a1(τ)(b− τ)2

− a(1)1 (τ)(b− τ)3 + a0(τ)(b− τ)3
]

(3.39)

K1
Bu(t, τ) =

[
− 6b2(τ)(b− τ)2 + 2b

(1)
2 (τ)(b− τ)3 + b1(τ)(b− τ)3

]
+ (t− τ)

[
6b2(τ)(b− τ)− 6b

(1)
2 (τ)(b− τ)2 + b

(2)
2 (τ)(b− τ)3 + 3b1(τ)(b− τ)2

− b(1)1 (τ)(b− τ)3 + b0(τ)(b− τ)3
]

(3.40)

To obtain a formula for y(2)(t), equations (3.8) & (3.9) need to be integrated only once :

(t− a)3y(2)(t) = 3(t− a)2y(1)(t)− a2(t)(t− a)3y(1)(t)

+
[
− 6(t− a) + 3a2(t)(t− a)2 + a

(1)
2 (t)(t− a)3 − a1(t)(t− a)3

]
y(t)

+

∫ t

a

[
6− 6a2(τ)(τ − a)− 6a

(1)
2 (τ)(τ − a)2 − a(2)2 (τ)(τ − a)3 + 3a1(τ)(τ − a)2

+ a
(1)
1 (τ)(τ − a)3 − a0(τ)(τ − a)3

]
y(τ) dτ − b2(t)(t− a)3u(1)(t)

+
[
3b2(t)(t− a)2 + b

(1)
2 (t)(t− a)3 − b1(t)(t− a)3

]
u(t)

+

∫ t

a

[
− 6b2(τ)(τ − a)− 6b

(1)
2 (τ)(τ − a)2 − b(2)2 (τ)(τ − a)3 + 3b1(τ)(τ − a)2

+ b
(1)
1 (τ)(τ − a)3 − b0(τ)(τ − a)3

]
u(τ) dτ (3.41)
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and

(b− t)3y(2)(t) = −3(b− t)2y(1)(t)− a2(t)(b− t)3y(1)(t)

+
[
− 6(b− t)− 3a2(t)(b− t)2 + a

(1)
2 (t)(b− t)3 − a1(t)(b− t)3

]
y(t)

+

∫ b

t

[
6 + 6a2(τ)(b− τ)− 6a

(1)
2 (τ)(b− τ)2 + a

(2)
2 (τ)(b− τ)3 + 3a1(τ)(b− τ)2

− a(1)1 (τ)(b− τ)3 + a0(τ)(b− τ)3
]
y(τ) dτ − b2(t)(b− t)3u(1)(t)

+
[
− 3b2(t)(b− t)2 + b

(1)
2 (t)(b− t)3 − b1(t)(b− t)3

]
u(t)

+

∫ b

t

[
6b2(τ)(b− τ)− 6b

(1)
2 (τ)(b− τ)2 + b

(2)
2 (τ)(b− τ)3 + 3b1(τ)(b− τ)2

− b(1)1 (τ)(b− τ)3 + b0(τ)(b− τ)3
]
u(τ) dτ (3.42)

The expression for y(2)(t) is obtained by adding (3.41) and (3.42) while dividing by the

factor [(t− a)3 + (b− t)3].

[
(t− a)3 + (b− t)3

]
y(2)(t) =

[
3(t− a)2 − 3(b− t)2 − [(t− a)3 + (b− t)3]a2(t)

]
y(1)(t)

+

[
− 6(t− a) + 3a2(t)(t− a)2 + a

(1)
2 (t)(t− a)3 − a1(t)(t− a)3

− 6(b− t)− 3a2(t)(b− t)2 + a
(1)
2 (t)(b− t)3 − a1(t)(b− t)3

]
y(t)

− b2(t)
[
(t− a)3 + (b− t)3

]
u(1)(t)

+

[
3b2(t)(t− a)2 + b

(1)
2 (t)(t− a)3 − b1(t)(t− a)3

− 3b2(t)(b− t)2 + b
(1)
2 (t)(b− t)3 − b1(t)(b− t)3

]
u(t)

+

∫ t

a

K2
Fy(t, ξ)y(ξ)dξ +

∫ t

a

K2
Fu(t, ξ)u(ξ)dξ

+

∫ t

a

K2
By(t, ξ)y(ξ)dξ +

∫ t

a

K2
Bu(t, ξ)u(ξ)dξ (3.43)
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where the kernel functions K2
Fy and K2

Fu are:

K2
Fy(τ) =

[
6− 6a2(τ)(τ − a)− 6a

(1)
2 (τ)(τ − a)2 − a(2)2 (τ)(τ − a)3 + 3a1(τ)(τ − a)2

+ a
(1)
1 (τ)(τ − a)3 − a0(τ)(τ − a)3

]
(3.44)

K2
Fu(τ) =

[
− 6b2(τ)(τ − a)− 6b

(1)
2 (τ)(τ − a)2 − b(2)2 (τ)(τ − a)3 + 3b1(τ)(τ − a)2

+ b
(1)
1 (τ)(τ − a)3 − b0(τ)(τ − a)3

]
(3.45)

and the kernel functions K1
By and K1

Bu are:

K2
By(τ) =

[
6 + 6a2(τ)(b− τ)− 6a

(1)
2 (τ)(b− τ)2 + a

(2)
2 (τ)(b− τ)3 + 3a1(τ)(b− τ)2

− a(1)1 (τ)(b− τ)3 + a0(τ)(b− τ)3
]

(3.46)

K2
Bu(τ) =

[
6b2(τ)(b− τ)− 6b

(1)
2 (τ)(b− τ)2 + b

(2)
2 (τ)(b− τ)3 + 3b1(τ)(b− τ)2

− b(1)1 (τ)(b− τ)3 + b0(τ)(b− τ)3
]

(3.47)

Note that, in general, the kernel functions Ki
Fy, K

i
Fu, K

i
By and Ki

Bu would have terms

involving t, except when i = n− 1.

Refer to [15] for the derivation of the kernels for a second order linear time-varying system

which proceeds in a similar fashion.

3.3 Example

To validate the double-sided kernel derived for the third order LTV system we use the

following system as an example.

System

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = −(t2 + 1)x3(t)− (t2 + 1)x2(t)− (t2 + t)x1(t) +
1

t+ 1000
u(t)

with y = x1 as the measured output, x1, x2 and x3 as the states, and with u = 120 sin(t)

as the control input.
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The controlled system invariance is:

y(3)(t) + (t2 + 1)y(2)(t) + (t2 + 1)y(1)(t) + (t2 + t)y(t)− 1

t+ 1000
u(t) = 0 (3.48)

Validation by State Estimation

The estimates of the system output and its derivatives are obtained by evaluating the

double-sided kernel using the measured system output with known system parameters which

are shown in Figures 3.1, 3.2, and 3.3. The measured output signal is defined over a horizon

of 5 seconds with 1000 sample points for every second, yielding 5000 sample measurements.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
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Estimated y

Figure 3.1 True y(t) vs Estimated y(t)

The Figure 3.1 shows that the estimated y(t) exactly coincides with the true y(t) thereby

validating the derived Double sided Kernel for third order system.
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Figure 3.2 True y(1)(t) vs Estimated y(1)(t)

The Figure 3.2 shows that the kernel expressions derived for y(1)(t) are accurate.
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Figure 3.3 True y(2)(t) vs Estimated y(2)(t)

The Figure 3.3 shows that the expressions derived for y(2)(t) are also correct. The small

mismatch between 1 and 1.5 seconds is due to the error in numerical integration which can

be ignored.
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Chapter 4

State and Parameter Estimation

4.1 Parameter Estimation for LTV Systems

For the purpose of estimation, the system parameters a0, · · · , an−1 and b0, · · · , bn−1, are

first expressed by their respective approximations in the B-spline bases:

aj(t) =
∑
i∈Iaj

αjiBi(t), bj(t) =
∑
i∈Ibj

γjiBi(t), j = 0, · · · , n− 1 (4.1)

Their derivatives are then also linear combinations of B-splines by virtue of the differen-

tiation formula (2.3) - (2.4). This further implies that the kernels in the system repre-

sentation of Theorem 3, which are themselves linear functions of these parameters and

their derivatives, then appear in the form of linear combinations involving the ensemble of

the coefficients in the B-spline approximations (4.1). More precisely, there exist functions

gy,k, k ∈ Sy and gu,j, j ∈ Su, such that the kernels of the system representation can be

expressed in the following form

Ky(t, τ) =
∑
k∈Sy

βkgy,k(t, τ)Bk(τ)

Ku(t, τ) =
∑
j∈Su

βjgu,j(t, τ)Bj(τ) (4.2)

where the index sets Sy, Su contain the ensemble of indices of B-splines that appear in the

B-spline approximations of the system parameters a0, · · · , an−1 and b0, · · · , bn−1, respec-



4 State and Parameter Estimation 36

tively.

It further follows that the evaluation functional (3.6) of Theorem 3 can be written as

y(t) =
∑
k∈Sy

βk

∫ b

a

gy,k(t, τ)Bk(τ)y(τ)dτ

+
∑
j∈Su

βj

∫ b

a

gu,j(t, τ)Bj(τ)u(τ)dτ (4.3)

Defining

hk(y, t) :=

∫ b

a

gy,k(t, τ)Bk(τ)y(τ)dτ ; k ∈ Sy

hj(u, t) :=

∫ b

a

gu,j(t, τ)Bj(τ)u(τ)dτ ; j ∈ Su (4.4)

and stacking the vectors

β := [βk; k ∈ Sy | βj; j ∈ Su]T ;

h(y, u, t) := [hk(y, t); k ∈ Sy | hj(u, t); j ∈ Su] (4.5)

gives β, h(y, u, t) ∈ Rs; s := card{Su ∪ Sy} and

y(t) = h(y, u, t)β (4.6)

Let the output y in (4.6) be the measured output yM . Given distinct time instants

t1, · · · , tm ∈ (a, b], m ≥ 2n, the last equation is now re-written point-wise as a system of

linear algebraic equations

q(yM) = P (yM , u)β (4.7)

q(yM)
def
=


yM(t1)

...

yM(tm)

 ;P (yM , u)
def
=


h(yM , u, t1)

. . .

h(yM , u, tm)

 (4.8)

where, clearly, q ∈ Rm and P ∈ Rm × Rs while β ∈ Rs.
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As no assumptions are made about the noise which may determine the invertibility of

the matrix P , the following practical definition of linear identifiability is introduced

4.1.1 Practical Linear Identifiability

Definition 1. The linear time-varying system (3.1) is practically linearly identifiable on

[a, b] with respect to a particular realization of the output measurement, yM(t), t ∈ [a, b]

corresponding to a known input u , if there exist distinct time instants t1, · · · , tm ∈ (a, b]

such that the matrix P (yM , u) has rank 2n.

By analogy with the nomenclature used in [4] output trajectories which render the sat-

isfaction of the condition rankP (yM , u) = 2n are called persistent.

The estimation of the β coefficient vector that deliver the best fitting B-splines approx-

imations of the sytem parameters is best performed solving (4.7) in terms of the pseudo-

inverse P † of P :

β = P †(yM , u) q(yM) (4.9)

The coefficients β so obtained are then used in (4.1) to deliver the estimates of the time-

varying system parameters.

4.2 State Estimation for LTV Systems

4.2.1 A Non-Asymptotic Observer for LTV Systems

The results in Theorem 2 readily deliver a state estimator for system (3.1) on an arbitrary

window [a, b]. Given a measured output yM : [a, b] → R in response to a known system

input uK : [a, b]→ R the estimator equations are:

yE(t) =

∫ b

a

Ky(t, τ)yM(τ) dτ +

∫ b

a

Ku(t, τ)uK(τ) dτ
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y
(i)
E (t) =

i−1∑
k=0

fky (t)y
(k)
E (t) +

i−1∑
k=0

fku (t)u
(k)
K (t) (4.10)

+

∫ b

a

Ki
y(t, τ)yM(τ) dτ +

∫ b

a

Ki
u(t, τ)uK(τ) dτ

xE(t) =


Γ0

...

Γn−1


−1 


yE(t)

...

y
(n−1)
E (t)

−M


uK(t)
...

u
(n−2)
K (t)




where the input derivatives : u
(k)
K : [a, b] → R are also considered known, and where

yE, y
(i)
E ; i = 1, . . . n − 1, and xE are the estimated outputs, output derivatives, and the

estimated states, over the estimation window [a, b], respectively.

4.3 Input Estimation

The Input signal is estimated in a similar way as discussed in Section 4.1. The input signal

is approximated as a B-spline functional evaluation and combined with the double sided

kernel to form a system linear algebraic equations as shown in (4.8) . The coefficients of the

B-splines are obtained by solving the system of linear equations. Again, the estimation is

possible only if the linear time-varying system is practically linearly identifiable as described

in the Section 4.1.1 but with unknown input.

4.4 Joint State, Parameter, and Input Estimation

Theorem 4 The kernels Ky and Ku of (3.6) are linear functions of the system parameters

a0(t), a1(t), .., an−1(t), b0(t), b1(t), .., bn−1(t), and their time derivatives up to order n − 1.

The evaluation functional (3.6) is an equivalent LTV system representation in the follow-

ing sense: any trajectories y(τ) and u(τ), for τ ∈ [a, b] satisfy the input-output system

representation (3.3) if and only if they satisfy the integral representation (3.6). Clearly, the

boundary conditions for (3.3) play no role in this equivalence.

�
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Although the kernels in the system representation depend linearly on the system param-

eters (Theorem 4), the parameters bi, i = 0, ...,m, appear in products with the input func-

tion and its derivatives. This follows directly from the original input-output system equa-

tion (3.3) in which the right hand side is not jointly linear in b0, ..., bm and u, u(1), ..., u(m)

that precludes their simultaneous identifiability based solely on the system output data.

To carry out linear identification of all system parameters and also estimate the system

input the following two stage procedure is, however, viable:

Stage (1): select a test input such as a monic polynomial of order m, apply it to the

system recording its output trajectory; use the recorded test data to estimate system pa-

rameters a0(t), ..., an(t), b0(t), ..., bm(t), t ∈ [a, b] employing the algorithm outlined in [3].

Stage (2): acquire the system output data in response to the input signal to be esti-

mated on the time interval [a, b]; use this output data and the B-spline approximations

of the b0(t), ..., bm(t), t ∈ [a, b], obtained during Stage (1) to re-estimate the parameters

a0(t), ..., an(t), t ∈ [a, b] , cross-validating with those computed in Stage (1); simultaneously

estimate the unknown system input and the full state vector of the system on [a, b].

It should be clear that Stage (1) will be redundant if m = 0 on the right hand side

of the system input-output representation in (3.3). In that case the system input can be

recovered as the product b0(t)u(t), t ∈ [a, b].

To begin with, the unknown system parameters a0, · · · , an−1 and the unknown system

input u are first expressed by their respective approximations in the B-spline bases for

j = 0, · · · , n− 1 :

aj(t) =
∑
i∈Iaj

αjiBi(t), u(t) =
∑
i∈Iu

γiBi(t) (4.11)

Their derivatives are then also linear combinations of B-splines by virtue of their differ-

entiation formula (2.3) - (2.4). This further implies that the kernels in the system rep-

resentation of Theorem 3, which are themselves linear functions of these parameters and

their derivatives, then appear in the form of linear combinations involving the ensemble of

the coefficients in the B-spline approximations (4.11). More precisely, there exist functions

gy,k, k ∈ Sy and gu,j, j ∈ Su, such that the system representation (3.6) of Theorem 3 can
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be written as

y(t) =
∑
k∈Sy

βk

∫ b

a

gy,k(t, τ)Bk(τ)y(τ)dτ

+
∑
j∈Su

βj

∫ b

a

gu,j(t, τ)Bj(τ)dτ (4.12)

where the index sets Sy, Su contain the ensemble of indices of B-splines that appear in the

B-spline approximations of the system parameters a0, · · · , an−1 and u, respectively. In the

above discussion there is no mention of the parameters b0, ..., bm as these are considered

known in Stage (2), i.e. are parts of the functions gu,j(t, τ). Defining

hk(y, t) :=

∫ b

a

gy,k(t, τ)Bk(τ)y(τ)dτ ; k ∈ Sy

hj(t) :=

∫ b

a

gu,j(t, τ)Bj(τ)dτ ; j ∈ Su (4.13)

and stacking the vectors

β := [βk; k ∈ Sy | βj; j ∈ Su]T ;

h(y, t) := [hk(y, t); k ∈ Sy | hj(t); j ∈ Su] (4.14)

gives β, h(y, t) ∈ Rs; s := card{Su ∪ Sy} and

y(t) = h(y, t)β (4.15)

Let the output y in (4.15) be the measured output yM in response to the unknown

input u. Given distinct time instants t1, · · · , tp ∈ (a, b], p >> s, the last equation is now

re-written point-wise as a system of linear algebraic equations

q(yM) = P (yM)β (4.16)

q(yM)
def
=


yM(t1)

...

yM(tm)

 ;P (yM)
def
=


h(yM , t1)

. . .

h(yM , tm)

 (4.17)
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where, clearly, q ∈ Rm and P ∈ Rm × Rs while β ∈ Rs.

As no assumptions are made about the noise which may determine the invertibility of

the matrix P , the following practical definition of linear identifiability is introduced.

4.4.1 Practical Linear Identifiability

Definition 1. (Identifiability of a0, ..., an and input u)

The linear time-varying system (3.1) is practically linearly identifiable on [a, b] with respect

to a particular realization of the output measurement, yM(t), t ∈ [a, b] corresponding to an

unknown input u , if there exist distinct time instants t1, · · · , tp ∈ (a, b] such that the

matrix P (yM) has full column rank.

The least squares estimate of the β coefficient vector for the best fitting B-splines

approximations of the sytem parameters and the system input signal is then delivered in

terms of the pseudo-inverse P † of P :

β = P †(yM)q(yM) = [P (yM)TP (yM)]−1P (yM)T q(yM) (4.18)

The coefficients β so obtained are then used in (4.11) to deliver the estimates of the time-

varying system parameters and input signal.

4.4.2 A Multi-Task Non-Asymptotic Observer for LTV Systems

Non-asymptotic joint state, input, and parameter estimation is carried out by using the raw

measurement data yM to first obtain the estimates for the time-varying system parameters

and system input signal employing the approach described above. The estimates can be

validated in a number of ways prior to state reconstruction e.g. using prior information

about the parameters (Stage (1)) or sentinel ideas; see e.g. [8]. The trusted estimates of

the parameters and the estimates of the input signal, denoted by uE, then deliver estimates

of the output and its time derivatives by application of the formulae of Theorem 3, i.e :

yE(t) =

∫ b

a

Ky(t, τ)yM(τ) dτ +

∫ b

a

Ku(t, τ)uE(τ) dτ
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y
(i)
E (t) =

i−1∑
k=0

f i,ky (t)y
(k)
E (t) +

i−1∑
k=0

f i,ku (t)u
(k)
E (t) (4.19)

+

∫ b

a

Ki
y(t, τ)yM(τ) dτ +

∫ b

a

Ki
u(t, τ)uE(τ) dτ

xE(t) =


Γ0

...

Γn−1


−1 


yE(t)

...

y
(n−1)
E (t)

−M


uE(t)
...

u
(n−2)
E (t)




where the estimates of the input derivatives : u
(k)
E : [a, b]→ R are immediately obtained by

way of the B-splines differentiation formulae applied to (4.11) (whose coefficients are known

from uE), and where yE, y
(k)
E ; k = 1, . . . n − 1, and xE are the estimated outputs, output

derivatives, and the estimated states, over the estimation window [a, b], respectively.
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Chapter 5

Results

In the previous two chapters, we have shown the development of a Double-Sided Kernel for

LTV systems and proposed our new approach of using B-Spline functional approximations

for the estimation of parameters, input as well as the state and its time derivatives. We

devote this chapter towards presenting the results of the proposed theory with the help of

various examples for second order and third order LTV systems with exogenous input.

Due to the inherent properties of B-splines, the approximation precision degrades at

the ends of any given estimation interval. In the case when estimation is required over

extended periods of time, good approximation precision can be maintained by employing a

sliding estimation window. Therefore, the results are presented here on a smaller window

where the B-spline estimation is accurate.

We consider four cases of a second order system to show that the proposed method works

in disparate situations. We also consider four cases of a third order system to validate our

method of estimation. All the examples shown in the following sections assume that the

output is not distorted by noise. However, a separate section is dedicated to show the

results of parameter and state estimation in the presence of noisy output. Joint state and

parameter estimation of LTV systems with noisy measurements is outside the scope of this

thesis. n is the number of B-splines used over the entire time horizon and p is the order

of the B-spline for the results shown in the next sections. The value of n was chosen by

experimenting over a range of values for n ranging from 5 to 100. The optimal value was
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chosen depending on the computational cost and the estimation accuracy. A value of p = 3

was chosen as the order of the B-splines for the results shown in the next section since the

parameters are quadratic polynomials. In general, cubic B-splines (p = 4) works well for

general polynomial functions but is computationally more expensive than using quadratic

B-splines. In practice, n is chosen by evaluating over a range of values of n, however,

in our experiments n = 17 works well for all cases. A non-uniform knot sequence with

knots crowded towards the end of the estimation interval was used for the estimation of

the parameters, input and states of the system. The motivation for the examples chosen

in the next section is to encompass a wide class of LTV systems to show that the proposed

method works in disparate situations. The examples chosen are a modification of the

simplified model of a DC motor as used in [15].

5.1 Second Order System: Estimation

5.1.1 Case 1: One constant and one time-varying parameter

System Description

ẋ1(t) = x2(t)

ẋ2(t) = −x2(t)− (t2 + 1)x1(t) +
1

t+ 1000
u(t)

with y = x1 as the measured output, x1 and x2 as the states, and with u = 120 sin(t) as

the control input. The controlled system invariance is:

y(2)(t) + y(1)(t) + (t2 + 1)y(t)− 1

t+ 1000
u(t) = 0 (5.1)

The above system consists of one constant parameter and one time-varying parameter.

The results were obtained using n = 16 and p = 3 (quadratic B-spline). The total length

of the estimation window is [0, 10s], but the results are shown on an inner window of [2, 8s]

where the B-spline estimation is considered to be reliable.
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Figure 5.1 True a0(t) vs Estimated a0(t)

The Figure 5.1 shows that the true value of a0(t) coincides with the estimated value.

The estimated value of the constant a1 is 1.007. True value of the constant a1 is 1.

2 3 4 5 6 7 8
Time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
True y
Estimated y

Figure 5.2 True y(t) vs Estimated y(t)

Fig. 5.2 shows the estimated y(t) exactly against the true y(t). The small mismatch

near t = 5.5 s is due to the numerical error in the integration of B-splines in the kernel
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representation of the system (5.1). Fig. 5.3 shows that the y(1)(t) estimate matches with

the true value with high accuracy.
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Figure 5.3 True y(1)(t) vs Estimated y(1)(t)

5.1.2 Case 2: Two time-varying parameters

System Description

ẋ1(t) = x2(t)

ẋ2(t) = −(t2 + 1)x2(t)− (t2 + 1)x1(t) +
1

t+ 1000
u(t)

with y = x1 as the measured output, x1 and x2 as the states, and with u = 120 sin(t) as

the control input. The controlled system invariance is:

y(2)(t) + (t2 + 1)y(1)(t) + (t2 + 1)y(t)− 1

t+ 1000
u(t) = 0 (5.2)

The example presented involves two unknown parameters. The parameter estimates

obtained as linear combinations of B-splines deliver state estimates of remarkably high

accuracy. The estimation method can use an estimation window of arbitrary length which

can be dragged forward as necessary to deliver continued time varying estimates.
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Parameter Estimation Equations

yE(t) =

∫ b

a

Ky(t, ξ)yM(ξ) dξ +

∫ b

a

Ku(t, ξ)uK(ξ) dξ (5.3)

Let C[a,b](t) = [(t− a)2 + (b− t)2]

yE(t) =
1

C[a,b](t)

{∫ t

a

KFy(t, ξ)yM(ξ) dξ +

∫ b

t

KBy(t, ξ)yM(ξ) dξ

+

∫ t

a

KFu(t, ξ)uK(ξ) dξ +

∫ b

t

KBu(t, ξ)uK(ξ) dξ
}

C[a,b](t)yE(t) =

∫ t

a

KFy(t, ξ)yM(ξ) dξ +

∫ b

t

KBy(t, ξ)yM(ξ) dξ

+

∫ t

a

KFu(t, ξ)uK(ξ) dξ +

∫ b

t

KBu(t, ξ)uK(ξ) dξ (5.4)

Replacing the kernels with the actual expressions of the system described in (5.2)containing

the B-Spline coefficients in equation (5.4) yields,

[(t− a)2 + (b− t)2]yE(t)

=
n∑
k=1

αk

{∫ t

a

[
−(ξ − a)2 + 2(t− ξ)(ξ − a)

]
yE(ξ) dξ

+

∫ b

t

[
(b− ξ)2 + 2(t− ξ)(b− ξ)Bk,p,t(ξ) + (ξ − a)2B

(1)
k,p,t(ξ)

]
yE(ξ) dξ

}
+

n∑
k=1

βk

{∫ t

a

−(t− ξ)(ξ − a)2Bk,p,t(ξ)yE(ξ) dξ +

∫ b

t

(t− ξ)(b− ξ)2Bk,p,t(ξ)yE(ξ) dξ
}

+

∫ t

a

(4(ξ − a)− 2(t− ξ))yE(ξ) dξ +

∫ b

t

(4(b− ξ) + 2(t− ξ))yE(ξ) dξ

+

∫ t

a

((t− ξ)(ξ − a)2/(t+ 1000))yE(ξ) dξ −
∫ b

t

((t− ξ)(b− ξ)2/(t+ 1000))yE(ξ) dξ

Bringing the known terms to the left side, we have

{
[(t− a)2 + (b− t)2]yE(t)−

∫ t

a

(4(ξ − a)− 2(t− ξ))yE(ξ) dξ
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−
∫ b

t

(4(b− ξ) + 2(t− ξ))yE(ξ) dξ −
∫ t

a

((t− ξ)(ξ − a)2/(t+ 1000))yE(ξ) dξ

+

∫ b

t

((t− ξ)(b− ξ)2/(t+ 1000))yE(ξ) dξ
}

=
n∑
k=1

αk

{∫ t

a

[
−(ξ − a)2 + 2(t− ξ)(ξ − a)

]
yE(ξ) dξ

+

∫ b

t

[
(b− ξ)2 + 2(t− ξ)(b− ξ)Bk,p,t(ξ) + (ξ − a)2B

(1)
k,p,t(ξ)

]
yE(ξ) dξ

}
+

n∑
k=1

βk

{∫ t

a

−(t− ξ)(ξ − a)2Bk,p,t(ξ)yE(ξ) dξ +

∫ b

t

(t− ξ)(b− ξ)2Bk,p,t(ξ)yE(ξ) dξ
}

γ(t, yE(t)) =
n∑
k=1

αkPαk(t) +
n∑
k=1

βkPβk(t) (5.5)

with Pαk(t) as

Pαk(t) =

∫ t

a

[
−(ξ − a)2 + 2(t− ξ)(ξ − a)

]
yE(ξ) dξ

+

∫ b

t

[
(b− ξ)2 + 2(t− ξ)(b− ξ)Bk,p,t(ξ) + (ξ − a)2B

(1)
k,p,t(ξ)

]
yE(ξ) dξ

and Pβk(t) as

Pβk(t) =

∫ t

a

−(t− ξ)(ξ − a)2Bk,p,t(ξ)yE(ξ) dξ +

∫ b

t

(t− ξ)(b− ξ)2Bk,p,t(ξ)yE(ξ) dξ

Simplfying the equation (5.5) in matrix form gives,

γ(t, yE(t)) =
[
Pαk(t) Pβk(t)

] [αk
βk

]
k = 1, 2, ..., n (5.6)

Taking distinct time instants t1, · · · , tm ∈ (a, b], m ≥ 2n, equation (5.6) is now re-written
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point-wise as a system of linear algebraic equations.


γ(t1, yE(t1))

...

γ(tm, yE(tm))

 ; =


Pα1(t1) · · · Pαn(t1) Pβ1(t1) · · · Pβn(t1)

...
...

...
...

Pα1(tm) · · · Pαn(tm) Pβ1(tm) · · · Pβn(tm)





α1

...

αn

β1
...

βn


(5.7)

The parameters are then estimated by solving the system of linear equations obtained

in (5.7). The state is then estimated using equation (5.3) by substituting the parameters

obtained from equation (5.7). The time derivative of the state is obtained similarly using

the Kernel expression for y(1)(t).

The results were obtained using n = 17 and p = 3 (quadratic B-spline). The total

length of the estimation window is [0, 20s], but the results are shown on an inner window

of [3, 17s] where the B-spline estimation is considered to be reliable.
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Figure 5.4 True a0(t) vs Estimated a0(t)

Fig. 5.4 and Fig. 5.5 show that the estimates of the time-varying parameters.



5 Results 50

2 4 6 8 10 12 14 16 18
Time (s)

0

50

100

150

200

250

300
True a1
Estimated a1

Figure 5.5 True a1(t) vs Estimated a1(t)
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Figure 5.6 True y(t) vs Estimated y(t)
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Figure 5.7 True y(1)(t) vs Estimated y(1)(t)

Fig. 5.6 shows that the estimated y(t) exactly coincides with the true y(t) thereby

validating the estimation method. Fig. 5.7 shows the estimated y(1)(t) against the true

y(1)(t).

5.1.3 Case 3: Input

System Description

ẋ1(t) = x2(t)

ẋ2(t) = −(t2 + 1)x2(t)− (t2 + 1)x1(t)− u(t)

with y = x1 as the measured output, x1 and x2 as the states, and with u = 120 sin(t) as

the control input. The controlled system invariance is:

y(2)(t) + (t2 + 1)y(1)(t) + (t2 + 1)y(t) + u(t) = 0 (5.8)

The results were obtained using n = 17 and p = 3 (quadratic B-spline). The total

length of the estimation window is [0, 5s], and the results are shown for the same window

length.
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Figure 5.8 True u(t) vs Estimated u(t)

Fig. 5.8 shows the estimated input u(t) = 120 sin(t).
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Figure 5.9 True y(t) vs Estimated y(t)
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Figure 5.10 True y(1)(t) vs Estimated y(1)(t)

Fig. 5.9 shows that the estimated y(t) exactly coincides with the true y(t) and Fig.

5.10 shows the estimated y(1)(t).

5.1.4 Case 4: Two time-varying parameters and Input

System Description

ẋ1(t) = x2(t)

ẋ2(t) = −(t)x2(t)− (t2 + 1)x1(t) + u(t)

with y = x1 as the measured output, x1 and x2 as the states, and with u = t2 as the control

input. The controlled system invariance is:

y(2)(t) + (t)y(1)(t) + (t2 + 1)y(t) + u(t) = 0 (5.9)

The results were obtained using n = 17 and p = 3 (quadratic B-spline). The total

length of the estimation window is [0, 10s], but the results are shown on an inner window

of [1, 9s] where the B-spline estimation is considered to be reliable.
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Figure 5.11 True a0(t) vs Estimated a0(t)

Fig. 5.11 and Fig. 5.12 show that the estimates of the time-varying parameters of the

system in (5.9).
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Figure 5.12 True a1(t) vs Estimated a1(t)
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Figure 5.13 True u(t) vs Estimated u(t)

Fig. 5.13 shows the estimated input against the true input u(t) = t2.
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Figure 5.14 True y(t) vs Estimated y(t)

Fig. 5.14 shows that the estimated y(t) and Fig. 5.15 shows the estimated y(1)(t). The

small mismatch near t = 7 s is due to the numerical error in the integration of B-splines in

the kernel representation of the system (5.9).
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Figure 5.15 True y(1)(t) vs Estimated y(1)(t)

5.2 Third Order System: Estimation

The following results were obtained using n = 17 and p = 3 (quadratic B-spline).

5.2.1 Case 1: One constant and Two time-varying parameters

System Description

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = −x3(t)− (t)x2(t)− (t2 + 1)x1(t) +
1

t+ 1000
u(t)

with y = x1 as the measured output, x1, x2 and x3 as the states, and with u = 120 sin(t)

as the control input. The controlled system invariance is:

y(3)(t) + y(2)(t) + (t)y(1)(t) + (t2 + 1)y(t)− 1

t+ 1000
u(t) = 0 (5.10)

The total length of the estimation window is [0, 10s], but the results are shown on an inner

window of [1, 9s] where the B-spline estimation is considered to be reliable.
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Figure 5.16 True a0(t) vs Estimated a0(t)

Fig. 5.16 and Fig. 5.17 show the estimates for a0(t) and a1(t) of the LTV system in

(5.10).
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Figure 5.17 True a1(t) vs Estimated a1(t)
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Figure 5.18 True y(t) vs Estimated y(t)

Fig. 5.18 shows the estimated y(t) and Fig. 5.19 shows the estimated y(1)(t).
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Figure 5.19 True y(1)(t) vs Estimated y(1)(t)
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Figure 5.20 True y(2)(t) vs Estimated y(2)(t)

Fig. 5.20 shows the estimated y(2)(t) against the true value.

5.2.2 Case 2: Three time-varying parameters

System Description

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = −(t)x3(t)− (t2 + 1)x2(t)− (t2 + t)x1(t) +
1

t+ 1000
u(t)

with y = x1 as the measured output, x1, x2 and x3 as the states, and with u = 120 sin(t)

as the control input. The controlled system invariance is:

y(3)(t) + (t)y(2)(t) + (t2 + 1)y(1)(t) + (t2 + t)y(t)− 1

t+ 1000
u(t) = 0 (5.11)

The total length of the estimation window is [0, 20s], but the results are shown on an inner

window of [2, 18s] where the B-spline estimation is considered to be reliable.
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Figure 5.21 True a0(t) vs Estimated a0(t)

Fig. 5.21 and Fig. 5.22 show the estimates for a0(t) and a1(t) against the true value.
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Figure 5.22 True a1(t) vs Estimated a1(t)
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Figure 5.23 True a2(t) vs Estimated a2(t)

Fig. 5.23 shows the estimated a2(t) against the true value. The precision of the fit

degrades towards the end of the estimation interval due to the knot selection which was

obtained by a trial-and-error method. The fit to the parameters can be improved by

optimizing for the number and the position of the knots.
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Figure 5.24 True y(t) vs Estimated y(t)
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Fig. 5.24 shows the estimated y(t) and Fig. 5.25 shows the estimated y(1)(t). The small

mismatch near t = 7 s is due to the numerical error in the integration of B-splines in the

kernel representation of the system (5.11).
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Figure 5.25 True y(1)(t) vs Estimated y(1)(t)
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Figure 5.26 True y(2)(t) vs Estimated y(2)(t)

Fig. 5.26 shows the estimated y(2)(t) against the true value.
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5.2.3 Case 3: Input

System Description

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = −(t2 + 1)x3(t)− (t)x2(t)− (t2 + t)x1(t)− u(t)

with y = x1 as the measured output, x1, x2 and x3 as the states, and with u = −120 sin(t)

as the unknown input. The controlled system invariance is:

y(3)(t) + y(2)(t) + (t)y(1)(t) + (t2 + t)y(t) + u(t) = 0 (5.12)

The total length of the estimation window is [0, 5s], but the results are shown on an inner

window of [0.5, 4.5s] where the B-spline estimation is considered to be reliable.
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Figure 5.27 True u(t) vs Estimated u(t)

Fig. 5.27 shows the estimated input u(t) against the actual value.
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Figure 5.28 True y(t) vs Estimated y(t)

Fig. 5.28 shows the estimated y(t) against the true y(t).
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Figure 5.29 True y(1)(t) vs Estimated y(1)(t)

Fig. 5.29 shows the estimated y(1)(t) and Fig. 5.30 shows that the estimate for y(2)(t)
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Figure 5.30 True y(2)(t) vs Estimated y(2)(t)

5.2.4 Case 4: Two time-varying parameters and Input

System Description

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = −(t)x2(t)− (t2 + t)x1(t)− u(t)

with y = x1 as the measured output, x1, x2 and x3 as the states, and with u = t as the

control input. The controlled system invariance is:

y(3)(t) + (t)y(1)(t) + (t2 + t)y(t) + u(t) = 0 (5.13)

The above system consists of two time-varying parameters a0(t) and a1(t). Both the

parameters as well as the input is estimated here. The total length of the estimation

window is [0, 10s], but the results are shown on an inner window of [1, 9s] where the B-

spline estimation is considered to be reliable.
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Figure 5.31 True a0(t) vs Estimated a0(t)

Fig. 5.31 and Fig. 5.32 show that the estimated time-varying parameters of the system

in(5.13). The mismatch towards the beginning of the estimation interval in Fig. 5.32 is

due to the knot selection which was obtained by a trial-and-error method.
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Figure 5.32 True a1(t) vs Estimated a1(t)
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Figure 5.33 True u(t) vs Estimated u(t)

Fig. 5.33 shows the estimated u(t) and Fig. 5.34 shows the estimated y(t).
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Figure 5.34 True y(t) vs Estimated y(t)
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Figure 5.35 True y(1)(t) vs Estimated y(1)(t)

Fig. 5.35 and Fig. 5.36 shows the estimated derivatives of the state y(t).
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Figure 5.36 True y(2)(t) vs Estimated y(2)(t)



5 Results 69

5.3 Noisy Case

5.3.1 Second Order System

System Description

ẋ1(t) = x2(t)

ẋ2(t) = −x2(t)− (t2 + 1)x1(t) +
1

t+ 1000
u(t)

with y = x1 as the measured output, x1 and x2 as the states, and with u = 120 sin(t) as

the control input. The controlled system invariance is:

y(2)(t) + y(1)(t) + (t2 + 1)y(t)− 1

t+ 1000
u(t) = 0 (5.14)

The system output is perturbed by 30 SNR (Signal-to-Noise Ratio) noise. The results

were obtained using n = 16 and p = 3 (quadratic B-spline). The total length of the

estimation window is [0, 10s].
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Figure 5.37 True a0(t) vs Estimated a0(t)

Fig. 5.37 shows the estimated a0(t). The estimated value of the constant a1 is 1.1127.

True value of the constant a1 is 1.
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Figure 5.38 True y(t) vs Noisy y(t)

Fig. 5.38 shows the output y(t) perturbed with 30 SNR additive white gaussian noise.
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Figure 5.39 True y(t) vs Estimated y(t)
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Figure 5.40 True y(1)(t) vs Estimated y(1)(t)

Fig. 5.39 shows that the estimated y(t) which diverges from the true value behaving in

conjunction with the estimated value. Similarly, the estimated y(1)(t) does not fit the true

value as seen in Fig. 5.40.

5.4 Estimation using P-splines

Estimation using P-Splines is similar to the B-Spline estimation but the difference arises

from the added penalty to control the smoothness of the fitting. The parameter λ is used

to control the smoothness of the fitted curve and is known as the smoothness parameter.

P-Splines are superior to B-Splines in terms of the number of splines used for estimation

and improved estimation of the derivatives of the state due to the added penalty. The

following example illustrates it.

System Description

ẋ1(t) = x2(t)

ẋ2(t) = −x2(t)− (t2 + 1)x1(t) +
1

t+ 1000
u(t)

with y = x1 as the measured output, x1 and x2 as the states, and with u = 120 sin(t) as
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the control input. The controlled system invariance is:

y(2)(t) + y(1)(t) + (t2 + 1)y(t)− 1

t+ 1000
u(t) = 0 (5.15)

The above system consists of one constant parameter and one time-varying parameter.

The results were obtained using n = 10 (fewer than the number of B-splines used) and

p = 3 (quadratic B-spline) and the smoothness parameter λ = 10−5. The value of the

smoothness parameter was chosen by a trial-and-error method. The total length of the

estimation window is [0, 10s], but the results are shown on an inner window of [1, 9s] where

the P-spline estimation is considered to be reliable.
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Figure 5.41 True a0(t) vs Estimated a0(t)

Fig. 5.41 shows that the true value of a0(t) coincides with the estimated value. The

estimated value of the constant a1 is 1.0039. True value of the constant a1 is 1.



5 Results 73

0 1 2 3 4 5 6 7 8 9 10
Time (s)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 True y
Estimated y

Figure 5.42 True y(t) vs Estimated y(t)
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Figure 5.43 True y(1)(t) vs Estimated y(1)(t)

Fig. 5.42 shows the estimated y(t) against the true y(t) and Fig. 5.43 shows the y(1)(t)

estimate against the true value.
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As seen from the above plots, estimation using P-Splines is advantageous relative to

using B-Splines since it uses fewer number of splines and has other superior properties as

discussed in Section 2.3.1 together with the features of the B-Splines and hence they can be

used when a large number of splines are required for estimation. The advantages of using

P-Splines are visible more prominently when a large number of splines are required to fit

the time-varying parameters (complex) which will be discussed elsewhere.
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Chapter 6

Conclusion and Future Work

State and parameter estimation is essential to achieve better control strategies. Most of

the research and literature on state and parameter estimation focuses on asymptotic tech-

niques such as Luenberger Observers and Kalman filters. With the development of Hybrid

control strategies, fast switching control methods are imperative. Hence, the development

of unconventional non-asymptotic estimation techniques is rapidly gaining intense research

interest. However, the study of such techniques for LTV systems is limited, primarily due

to difficulty involved in the time varying aspect. The proposed method of estimation in

LTV systems overcomes this problem and is novel in the sense that the parameters, states,

as well as the input is estimated.

Chapter 1 reviewed a brief history of automatic control, discussed open and closed loop

systems and delivered a brief literature study on state and parameter estimation for LTV

systems.

Chapter 2 discussed the background on B-splines and their properties. It also intro-

duced P-splines and clarified their superior properties over B-Splines.

Chapter 3 dealt with the development of the double sided kernel for LTV systems in

detail. The double sided kernel is derived for a third order system and expressions for the

system state and its derivatives are also presented.
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Chapter 4 proposed the estimation method which combines B-spline functional approx-

imation with the double sided kernel to estimate the parameters, input, and subsequently

the states of the system. It also described about the joint parameter, state, and input

estimation approach.

Chapter 5 presented the results of the proposed methods taking examples of some sim-

ple second and third order systems. The results were primarily presented for the case where

the output is free from noise. For the noiseless case, four cases were considered for both

second and third order systems in order to show a comprehensive performance of the new

estimation technique. A single example is also presented to describe the effect of noisy

output measurements on the estimation method. The results show that the proposed ap-

proach works remarkably well for the noiseless case and requires denoisification techniques

for the noisy case. Finally, a section is devoted to P-splines and an example is presented

showing its superior performance over B-splines.

As seen in Chapter 4, the proposed method works remarkably well for the estimation

of linear time-varying parameters and input (3 or fewer) in the noiseless case and it is very

sensitive to noisy measurements as well as to the B-spline knot placement. This problem

can be addressed by optimizing the number and position of the knots prior to the estima-

tion of LTV system parameters. Also, the computational burden for the state, parameter

and input estimation can be somewhat reduced using P-Splines instead of B-Splines since

P-Splines require only fewer knots.

Future work will focus on simultaneous denoisification and parameter estimation in

linear time-varying systems using adequately penalized P-splines with optimal selection of

knots. Our future approach will resemble a kernel-based spline ridge regression approach

to fully adaptive, non-asymptotic filtering of LTV systems. Finally, the latter ideas will be

explored in a Bayesian framework.
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Appendix A

Backward Kernel Derivation

Integrating the first term of (3.9) first time,

b∫
b−σ

(b− ζ)3y(3)(ζ) dζ = (b− ζ)3y(2)(ζ) |bb−σ +

b∫
b−σ

3(b− ζ)2y(2)(ζ) dζ

= −σ3y(2)(b− σ) +

[
3(b− ζ)2y(1)(ζ) |bb−σ +

b∫
b−σ

6(b− ζ)y(1)(ζ)dζ

]

= −σ3y(2)(b− σ)− 3σ2y(1)(b− σ) + 6(b− ζ)y(ζ) |bb−σ +

b∫
b−σ

6y(ζ) dζ

= −σ3y(2)(b− σ)− 3σ2y(1)(b− σ)− 6σy(b− σ) +

b∫
b−σ

6y(ζ) dζ (A.1)

When we integrate again, the upper limit on the integral becomes a ’dummy variable’, that

is we set ζ
′

= b − σ then, σ3y(2)(b − σ) is integrated as (b − ζ ′)3y(2)(ζ ′), 3σ2y(1)(b − σ) is

integrated as 3(b− ζ ′)2y(1)(ζ ′), 6σy(b− σ) is integrated as 6(b− ζ ′)y(ζ
′
)

Integrating (A.1) again,

b∫
b−σ

b∫
ζ′

(b− ζ)3y(3)(ζ) dζdζ ′



A Backward Kernel Derivation 78

= −(b− ζ ′)3y(1)(ζ ′) |bb−σ −
b∫

b−σ

3(b− ζ ′)2y(1)(ζ ′) dζ
′ −

b∫
b−σ

3(b− ζ ′)2y(1)(ζ ′) dζ
′

−
b∫

b−σ

6(b− ζ ′)y(ζ
′
) dζ

′
+

b∫
b−σ

b∫
ζ′

6y(ζ) dζdζ
′

= −(b− ζ ′)3y(1)(ζ ′) |bb−σ −
b∫

b−σ

6(b− ζ ′)2y(1)(ζ ′) dζ
′ −

b∫
b−σ

6(b− ζ ′)y(ζ
′
) dζ

′

+

b∫
b−σ

b∫
ζ′

6y(ζ) dζdζ
′

= σ3y(1)(b− σ)− 6(b− ζ ′)2y(ζ
′
) |bb−σ −

b∫
b−σ

12(b− ζ ′)y(ζ
′
) dζ

′ −
b∫

b−σ

6(b− ζ ′)y(ζ
′
) dζ

′

−
b∫

b−σ

b∫
ζ′

6y(ζ) dζdζ
′

= σ3y(1)(b− σ) + 6σ2y(b− σ)−
b∫

b−σ

18(b− ζ ′)y(ζ ′) dζ ′ +

b∫
b−σ

b∫
ζ′

6y(ζ) dζdζ ′ (A.2)

As shown earlier,the upper limit again becomes a ’dummy variable’ and now we set

ζ
′′

= b− σ. Integrating the third time yields,

b∫
b−σ

ζ′′∫
b

ζ′∫
b

(b− ζ)3y(3)(ζ) dζdζ ′dζ ′′

=

b∫
b−σ

(b− ζ ′′)3y(1)(ζ ′′)dζ ′′ +
b∫

b−σ

6(b− ζ ′′)2y(ζ ′′)dζ ′′ −
b∫

b−σ

b∫
ζ′′

18(b− ζ ′)y(ζ ′) dζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′

6y(ζ) dζdζ ′dζ ′′
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= (b− ζ ′′)3y(ζ ′′) |bb−σ +

b∫
b−σ

3(b− ζ ′′)2y(ζ ′′)dζ ′′ +

b∫
b−σ

6(b− ζ ′′)2y(ζ ′′)dζ ′′

−
b∫

b−σ

b∫
ζ′′

18(b− ζ ′)y(ζ ′) dζ ′dζ ′′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

6y(ζ) dζdζ ′dζ ′′

= −σ3y(b− σ) +

b∫
b−σ

9(b− ζ ′′)2y(ζ ′′) dζ ′′ −
b∫

b−σ

b∫
ζ′′

18(b− ζ ′)y(ζ ′) dζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′

6y(ζ) dζdζ ′dζ ′′ (A.3)

Integrating the second term in (3.9) first time,

b∫
b−σ

a2(ζ)(b− ζ)3y(2)(ζ) dζ

= a2(ζ)(b− ζ)3y(1)(ζ) |bb−σ −
b∫

b−σ

[
− 3a2(ζ)(b− ζ)2 + (b− ζ)3a

(1)
2 (ζ)

]
y(1)(ζ) dζ

= a2(ζ)(b− ζ)3y(1)(ζ) |bb−σ −
[
− 3a2(ζ)(b− ζ)2 + (b− ζ)3a

(1)
2 (ζ)

]
y(ζ) |bb−σ

+

b∫
b−σ

[
6(b− ζ)a2(ζ)− 3(b− ζ)2a

(1)
2 (ζ)

]
y(ζ)dζ

+

b∫
b−σ

[
− 3(b− ζ)2a

(1)
2 (ζ) + (b− ζ)3a

(2)
2 (ζ)

]
y(ζ)dζ

= −a2(b− σ)(σ)3y(1)(b− σ) +

[
− 3a2(b− σ)(σ)2 + (σ)3a

(1)
2 (b− σ)

]
y(b− σ)

+

b∫
b−σ

[
6(b− ζ)a2(ζ)− 3(b− ζ)2a

(1)
2 (ζ)

]
y(ζ)dζ
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+

b∫
b−σ

[
− 3(b− ζ)2a

(1)
2 (ζ) + (b− ζ)3a

(2)
2 (ζ)

]
y(ζ)dζ (A.4)

As shown earlier,the upper limit again becomes a ’dummy variable’ and now we set ζ
′

=

b− σ. Integrating the second time yields,

b∫
b−σ

b∫
ζ′

a2(ζ)(b− ζ)3y(2)(ζ) dζdζ ′

=

b∫
b−σ

−a2(ζ ′)(b− ζ ′)3y(1)(ζ ′) dζ ′ +

b∫
b−σ

[
− 3a2(ζ

′)(b− ζ ′)2 + (b− ζ ′)3a(1)2 (ζ ′)

]
y(ζ ′) dζ ′

+

b∫
b−σ

b∫
ζ′

[
6(b− ζ)a2(ζ)− 3(b− ζ)2a

(1)
2 (ζ)

]
y(ζ)dζdζ ′

+

b∫
b−σ

b∫
ζ′

[
− 3(b− ζ)2a

(1)
2 (ζ) + (b− ζ)3a

(2)
2 (ζ)

]
y(ζ)dζdζ ′

= −a2(ζ ′)(b− ζ ′)3y(ζ ′) |bb−σ +

b∫
b−σ

[
− 3a2(ζ

′)(b− ζ ′)2 + (b− ζ ′)3a(1)2 (ζ ′)

]
y(ζ ′) dζ ′

+

b∫
b−σ

[
− 3a2(ζ

′)(b− ζ ′)2 + (b− ζ ′)3a(1)2 (ζ ′)

]
y(ζ ′) dζ ′

+

b∫
b−σ

b∫
ζ′

[
6(b− ζ)a2(ζ)− 3(b− ζ)2a

(1)
2 (ζ)

]
y(ζ)dζdζ ′

+

b∫
b−σ

b∫
ζ′

[
− 3(b− ζ)2a

(1)
2 (ζ) + (b− ζ)3a

(2)
2 (ζ)

]
y(ζ)dζdζ ′

= a2(b− σ)(σ)3y(b− σ) +

b∫
b−σ

2

[
− 3a2(ζ

′)(b− ζ ′)2 + (b− ζ ′)3a(1)2 (ζ ′)

]
y(ζ ′) dζ ′
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+

b∫
b−σ

b∫
ζ′

[
6(b− ζ)a2(ζ)− 3(b− ζ)2a

(1)
2 (ζ)

]
y(ζ)dζdζ ′

+

b∫
b−σ

b∫
ζ′

[
− 3(b− ζ)2a

(1)
2 (ζ) + (b− ζ)3a

(2)
2 (ζ)

]
y(ζ)dζdζ ′ (A.5)

Integrating the second term of (3.9) third time yields,

b∫
b−σ

b∫
ζ′′

b∫
ζ′

a2(ζ)(b− ζ)3y(2)(ζ) dζdζ ′dζ ′′

=

b∫
b−σ

a2(ζ
′′)(b− ζ ′′)3y(ζ ′′) dζ ′′ +

b∫
b−σ

b∫
ζ′′

2
[
− 3a2(ζ

′)(b− ζ ′)2
]
y(ζ ′) dζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

2
[
(b− ζ ′)3a(1)2 (ζ ′)

]
y(ζ ′) dζ ′dζ ′′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

[
6(b− ζ)a2(ζ)

]
y(ζ)dζdζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′

2
[
− 3(b− ζ)2a

(1)
2 (ζ)

]
y(ζ)dζdζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′

[
(b− ζ)3a

(2)
2 (ζ)

]
y(ζ)dζdζ ′dζ ′′ (A.6)

Integrating the third term of (3.9) first time yields,

b∫
b−σ

a1(ζ)(b− ζ)3y(1)(ζ) dζ

= a1(ζ)(b− ζ)3y(ζ) |bb−σ +

b∫
b−σ

3a1(ζ)(b− ζ)2y(ζ) dζ −
b∫

b−σ

a
(1)
1 (ζ)(b− ζ)3y(ζ) dζ

= −a1(b− σ)(σ)3y(b− σ) +

b∫
b−σ

3a1(ζ)(b− ζ)2y(ζ) dζ −
b∫

b−σ

a
(1)
1 (ζ)(b− ζ)3y(ζ) dζ (A.7)
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Integrating the second time,

b∫
b−σ

b∫
ζ′

a1(ζ
′)(b− ζ ′)3y(1)(ζ ′) dζdζ ′

= −
b∫

ζ′

a1(ζ
′)(b− ζ ′)3y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′′

3a1(ζ
′)(b− ζ ′)2y(ζ ′) dζ ′dζ ′′

−
b∫

b−σ

b∫
ζ′′

a
(1)
1 (ζ ′)(b− ζ ′)3y(ζ ′) dζ ′dζ ′′ (A.8)

Integrating the third time yields,

b∫
b−σ

b∫
ζ′′

b∫
ζ′

a1(ζ)(b− ζ)3y(1)(ζ) dζdζ ′dζ ′′

= −
b∫

b−σ

b∫
ζ′′

a1(ζ
′)(b− ζ ′)3y(ζ ′) dζ ′dζ ′′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

3a1(ζ)(b− ζ)2y(ζ) dζdζ ′dζ ′′

−
b∫

b−σ

b∫
ζ′′

b∫
ζ′

a
(1)
1 (ζ)(b− ζ)3y(ζ) dζdζ ′dζ ′′ (A.9)

Finally, the fourth term is

b∫
b−σ

b∫
ζ′′

b∫
ζ′

a0(ζ)(b− ζ)3y(ζ) dζdζ ′dζ ′′ (A.10)

Repeating the same procedure for the next three terms involving the input we obtain the

following. Integrating the fifth term yields,

b∫
b−σ

b∫
ζ′′

b∫
ζ′

b2(ζ)(b− ζ)3u(2)(ζ) dζdζ ′dζ ′′
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=

b∫
b−σ

b2(ζ
′′)(b− ζ ′′)3u(ζ ′′) dζ ′′ +

b∫
b−σ

b∫
ζ′′

2
[
− 3b2(ζ

′)(b− ζ ′)2
]
u(ζ ′) dζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

2
[
(b− ζ ′)3b(1)2 (ζ ′)

]
u(ζ ′) dζ ′dζ ′′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

[
6(b− ζ)b2(ζ)

]
u(ζ)dζdζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′

[
− 6(b− ζ)2b

(1)
2 (ζ)

]
u(ζ)dζdζ ′dζ ′′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

[
(b− ζ)3b

(2)
2 (ζ)

]
u(ζ)dζdζ ′dζ ′′

(A.11)

Integrating the sixth term yields,

b∫
b−σ

b∫
ζ′′

b∫
ζ′

b1(ζ)(b− ζ)3u(1)(ζ) dζdζ ′dζ ′′

= −
b∫

b−σ

b∫
ζ′′

b1(ζ
′)(b− ζ ′)3u(ζ ′) dζ ′dζ ′′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

3b1(ζ)(b− ζ)2u(ζ) dζdζ ′dζ ′′

−
b∫

b−σ

b∫
ζ′′

b∫
ζ′

b
(1)
1 (ζ)(b− ζ)3u(ζ) dζdζ ′dζ ′′ (A.12)

Integrating the last term gives,

b∫
b−σ

b∫
ζ′′

b∫
ζ′

b0(ζ)(b− ζ)3u(ζ) dζdζ ′dζ ′′ (A.13)

Collecting the terms in (A.1) - (A.13) yields

σ3y(b− σ) =

b∫
b−σ

[
9(b− ζ ′′)2 + a2(ζ

′′)(b− ζ ′′)3
]
y(ζ ′′) dζ ′′

+

b∫
b−σ

b∫
ζ′′

[
− 18(b− ζ ′)− 6a2(ζ

′)(b− ζ ′)2 + (b− ζ ′)3(2a(1)2 (ζ ′)− a1(ζ ′))
]
y(ζ ′) dζ ′dζ ′′



A Backward Kernel Derivation 84

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′

[
6 + 6a2(ζ)(b− ζ)− 6(b− ζ)2a

(1)
2 (ζ)

+ (b− ζ)3a
(2)
2 (ζ) + 3a1(ζ)(b− ζ)2 − (b− ζ)3a

(1)
1 (ζ) + a0(ζ)(b− ζ)3

]
y(ζ) dζdζ ′dζ ′′

+

b∫
b−σ

b2(ζ
′′)(b− ζ ′′)3u(ζ ′′) dζ ′′

+

b∫
b−σ

b∫
ζ′′

[
− 6b2(ζ

′)(b− ζ ′)2 + 2b
(1)
2 (ζ ′)(b− ζ ′)3 − b1(ζ ′)(b− ζ ′)3

]
u(ζ ′) dζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′

[
6b2(ζ)(b− ζ)− 6(b− ζ)2b

(1)
2 (ζ) + (b− ζ)3b

(2)
2 (ζ) + 3b1(ζ)(b− ζ)2

− (b− ζ)3b
(1)
1 (ζ) + b0(ζ)(b− ζ)3

]
u(ζ) dζdζ ′dζ ′′ (A.14)

In order to obtain the integrals in the form required to apply the Cauchy formula for

repeated integration, we flip the limits of the integration from (ζ ′ → b) to −(b → ζ ′) and

hence a negative sign is introduced. Also since the integration variable has a negative

sign, a second negative sign is again introduced. Therefore, for odd integrals the sign is

unchanged whereas for even integrals the sign changes. Applying the Cauchy formula for

repeated integration on (A.14) while letting b− σ = t, we get,

(b− t)3y(t)

=

b∫
t

[
9(b− ζ)2 + a2(ζ)(b− ζ)3

]
y(ζ) dζ

+

b∫
t

(t− ζ)

[
18(b− ζ) + 6a2(ζ)(b− ζ)2 − 2(b− ζ)3a

(1)
2 (ζ) + a1(ζ)(b− ζ)3

]
y(ζ) dζ

+
1

2

b∫
t

(t− ζ)2
[
6 + 6a2(ζ)− 6a

(1)
2 (ζ)(b− ζ)2 + a

(2)
2 (ζ)(b− ζ)3 + 3a1(ζ)(b− ζ)2
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− a(1)1 (ζ)(b− ζ)3 + a0(ζ)(b− ζ)3
]
y(ζ) dζ +

b∫
t

[b2(ζ)(b− ζ)3]u(ζ) dζ

+

b∫
t

(t− ζ)

[
6b2(ζ)(b− ζ)2 − 2(b− ζ)3b

(1)
2 (ζ) + b1(ζ)(b− ζ)3

]
u(ζ) dζ

+
1

2

b∫
t

(t− ζ)2
[
6b2(ζ)(b− ζ)− 6b

(1)
2 (ζ)(b− ζ)2 + b

(2)
2 (ζ)(b− ζ)3 + 3b1(ζ)(b− ζ)2

− b(1)1 (ζ)(b− ζ)3 + b0(ζ)(b− ζ)3
]
u(ζ) dζ

,

b∫
t

KBy(t, τ)y(τ) dτ +

b∫
t

KBu(t, τ)u(τ) dτ (A.15)

with KBy(t, τ) defined as

KBy(t, τ) ,

[
9(b− τ)2 + (b− τ)3a2(τ)

]
+ (t− τ)

[
18(b− τ) + 6(b− τ)2a2(τ)− 2(b− τ)3a

(1)
2 (τ) + (b− τ)3a1(τ)

]
+

(t− τ)2

2

[
6 + 6(b− τ)a2(τ)− 6(b− τ)2a

(1)
2 (τ) + (b− τ)3a

(2)
2 (τ)

+ 3(b− τ)2a1(τ)− (b− τ)3a
(1)
1 (τ) + (b− τ)3a0(τ)

]
(A.16)

and KBu(t, τ) defined as

KBu(t, τ) ,

[
(b− τ)3b2(τ)

]
+ (t− τ)

[
6(b− τ)2b2(τ)− 2(b− τ)3b

(1)
2 (τ) + (b− τ)3b1(τ)

]
+

(t− τ)2

2

[
6(b− τ)b2(τ)− 6(b− τ)2b

(1)
2 (τ) + (b− τ)3b

(2)
2 (τ)

+ 3(b− τ)2b1(τ)− (b− τ)3b
(1)
1 (τ) + (b− τ)3b0(τ)

]
(A.17)
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