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ABSTRACT

We consider the problem of rendezvous between two robots exploring an unknown environment.
That is, how can two autonomous exploring agents that cannot communicate with one another over
long distances meet if they start exploring at different locations in an unknown environment. The
intended application is collaborative map exploration.

Ours is the first work to formalize the characteristics of the rendezvous problem, and we ap-
proach it by proposing several alternative algorithms that the robots could use in attempting to
rendezvous quickly while continuing to explore. The algorithms are based on the assumption that"
potential rendezvous locations, called landmarks, can be selected by the robots as they explore;
these locations are based on a distinctiveness measure computed with an arbitrary sensor.

We consider the performance of our proposed algorithms aralytically with respect to both
expected- and worst-case behaviour. We then examine their behaviour under a wider set of conditions
using numerical analysis. This numerical analysis is confirmed using realistic simulation of multi-
agent exploration and rendezvous. We also examine the exploration speed, and show that a multi-
robot system can explore an unknown environment faster than a single-agent system, even with the
constraints of performing rendezvous to allow communication.

We conclude with a demonstration of rendezvous implemented in the real world.



RESUME

Nous traitons le probléme du rendez-vous entre deux robots qui explorent un environnement inconnu.
Plus précisément, nous étudions comment deux agents d’exploration autondmes, ne pouvant com-
muniquer sur de longues distances, peuvent se rencontrer lors de I'exploration d’un terrain inconnu
a partir de positions initiales différentes. L application visée est celle de I’exploration collaborative.

Aprés une formalisation des caractéristiques du probleme de rendez-vous, nous proposons
plusieurs alternatives d’algorithmes utilisables par des robots pour se retrouver rapidement tout
en explorant ['’environnement. Les algorithmes utilisent 1’hypothése que les sites de rencontre poten-
tiels, appelés «landmarks>>, peuvent étre déterminés par les robots an cours de l'exploration. Ces
sites sont choisis selon une mesure de distinctivité ou de qualité a partir d’un déctecteur arbitraire.

Nous examinons alors analytiquement les algorithmes proposés, selon leurs comportements at-
tendu ou selon le pire cas. Nous etudions ensuite plus largement leur comportement par 'analyse
numérique. Cette analyse numérique est vérifiée par la simulation réaliste d’explorations et de ren-
contres multi-agents. L’aspect de la vitesse d’exploration est également envisagé et nous démontrons
qu’un systéme multi-robots peut explorer un environnement inconru plus rapidement que dans le
cas de l'utilisation d’un seul robot, et cela méme si un rendez-vous est nécessaire pour permettre la
communication des informations acquises.

Nous terminons avec un démonstration de rendez-vous dans le monde réel.
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CHAPTER 1

Introduction

With the advent of relatively cheap and robust mobile robots, the possibility of using teams of mobile
robots to perform simple tasks has become a reality. In many contexts, multi-agent systems may
be more effective, faster, or more desirable than a single, very powerful monolithic robot system.
Despite the loss of one agent in a multi-agent system, the remaining agents can potentially continue
the task to completion. Manufacturing several small, unsophisticated agents may be much cheaper,
even without without sacrificing speed or functionality, than manufacturing a single, powerful robot.
Several small, independent agents may be capable of more than any existing monolithic system.
Furthermore, there are many tasks that simply require more than one agent, either human or
mechanical, working in tandem.

These advantages notwithstanding, there are difficulties associated with multi-agent systems.
The problems of task division, synchronisation and coordination are significant; the correct behaviour
to follow if a member of team becomes lost, damaged or stuck is not always clear. Furthermore, the
correct behaviour to maximise the efficiency of the distributed team is equally difficult to determine.
Practical considerations can further contribute to the complexity of a multi-agent system when
compared with a single agent system.

One example of such a practical limitation is inter-agent communication. Most existing hard-
ware agents are cnly capable of communication over short distances. Eanvironmental geometry,
wireless transmission technology, power considerations and atmospheric conditions (or water condi-
tions for underwater agents) all contribute to limitations on communication range. In the absence
of sophisticated satellite receivers or high power devices, a common constraint for successful com-
munication is maintaining “line-of-sight” between agents, a constraint that is rarely satisfied in the
real world. However, existing research indicates that multi-agent robot systems for the majority
of real-life applications enjoy substantial speed gains only with some level of communication [6],

when compared with single-agent systems or multi-agent systems that do not communicate. Many



1.1.1 PROBLEM STATEMENT

distributed-agent algorithms, for instance dynamic path-planning, assume and rely upon instanta-
neous, infinite bandwidth communication between agents at all times in order to achieve promised
performance levels [12].

Another limitation is the ability of the collaborating agents to share information in a manner
that allows any advantage over single agent systems at all. Using the example of exploration, the
agents must be able to merge the maps generated by the exploration process; if the maps cannot be
merged, then each agent must itself explore the environment to completion, and no task speed-up
is achieved. However, under many circumstances, the agents must often share a common reference
point to be able to merge maps! - completely independent maps cannot always be merged reliably.
Unless the agents start at exactly the same place in the environment, they must agree on a place to
meet g priori, and share information. However, choosing a meeting point reliably, especially in an
unknown, unconstrained environment is a very difficult problem.

The solution proposed in this work to these problems is termed ‘Multi-agent Rendezvous’. A
rendezvous is a meeting between two or more agents at an appointed place and time, for example,
when two people meet to share notes at a familiar location. This problem is ubiquitous in nature ~
migratory animals must be able to meet to share information about food. Non-social animals must
be able to find each other during mating season. Humans are equally familiar with the problem of
rendezvous, as any family whose members become separated at a zoo or mall well knows. Multi-
agent robot systems also have an inherent need for the ability of inter-agent rendezvous. The ability
to meet facilitates localisation, allows collaborative map exploration and has a plethora of other

advantages, but most importantly allows communication.

1.1. Problem Statement

The problem discussed in this thesis is that of how to determine the best strategy for a successful
rendezvous between two agents in optimal time. The context that will be used in this thesis for
studying the problem of rendezvous is multi-robot exploration of unknown environments. Although
multi-agent robotic systems are useful to a rumber of domains, exploration of unknown environments
is an appropriate context for a number of reasons. The task of exploration is one that has been
studied previously, and there is a well-established body of work on single robot and multi-robotic
exploration methods. The existence of such established algorithms allows this thesis to focus more

narrowly on the problem of rendezvous. Furthermore, some of the difficulties with multi-agent

LIt is sometimes possible to merge maps using their shapes. Hewever, if the agents’ sensors are substantially different,
or there are spatial ambiguities, the merging process may fail.



1.1.2 THE APPROACH

systems that are solved by rendezvous, in particular the problems of communication and of map-
fusion, are integral to the exploration task. If these problems can be addressed by rendezvous in the
context of exploration, then the technique is generalisable to other domains.

In particular, we are interested in multi-robot exploration using video or sonar sensing. In prac-
tice, the particular sensing modality has numercus pragmatic implications, 2 major factor being the
range at which the agents can either recognise one another, or any landmarks in the environment. In
the context of a general rendezvous strategy, we will initially, however, consider a generic “abstract”
sensor that allows the agents to recognise one another when they are sufficiently close together and
which allows them to evaluate any point in space as to its suitability as a rendezvous point. We will
consider how the rendezvous task can be efficiently accomplished under various assumptions about

the environment and the perceptual abilities of the agents involved.

1.2. The Approach
The rendezvous task itself is divided into two sub-problems.

(i) The first sub-problem is how to choose an appropriate rendezvous point, given an unknown
environment. The ability of the agents to meet in the environment is a function of their
ability to reliably choose appropriate rendezvous points. For instance, mountain tops may
be a good outdoor rendezvous point. However, if the agents cannot reliably measure the
height of mountains or the agents are indoors, another notion of good rendezvous points

may be appropriate.

@

FIGURE 1.1. Two robots, searching an unknown environment for good rendezvous points.

(ii) The second sub-problem is that of dealing with confounding factors to the rendezvous pro-

cess. One such factor is the ability for agents to agree on the same location for rendezvous.



1.1.3 CONTRIBUTION

Sensor noise may cause agents to disagree; agents may not be aware of the same spatial ar-
eas, and therefore may choose different points. For instance, if two agents have explored two
different mountain ranges, then they will not choose the same peak as the highest mountain
peak. An appropriate rendezvous strategy will take into account such asymmetry between
the agents’ exploration. If the agents agree to meet at noon, and one agent cannot reach the
rendezvous point by noon, pre-arranged behaviour must account for such asynchronies, and

allow for missed rendezvous attempts.
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FIGURE 1.2. Two robots, after a successful rendezvous, sharing map information.

&

In the simplest formulation, the rendezvous will involve the agents searching through the
environment for good meeting points, and then travelling to the best meeting point at a

pre-arranged time.

1.3. Contribution

This is the first description of this problem in multi-agent mobile robotics. Most multi-agent
algorithms rely upon certain assumptions that are not necessarily tenable in practice. Certainly,
unlimited communication is not a realistic assumption, yet many of the classical path-planning and
task division algorithms assume it. The method of rendezvous is the first proposed as a solution to
these problems with practical mobile robotics.

This thesis describes the idealised task of mobile robot rendezvous formally, including several

issues that complicate the task in practice.

e We formalise the parameters of the rendezvous problem that necessitate more than one

attempt.

e Two classes of solutions are proposed, and analysed both analytically and empirically.
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. e We simulate the rendezvous problem at two levels; the first level is a purely algorithmic
simulation, simply to test the efficacy of the various algorithms under the different conditions
we describe.

e Subsequently, we have developed a realistic simulation, using spatial metrics and simulated
sensing and motion.
e Finally, we demonstrate the speed-up possible under multi-agent systems by comparing the

running-time of the multi-agent system versus the single-robot system.

In order to motivate the rendezvous process, we also develop a novel, simple and robust explo-
ration algorithm, that uses a hybrid of local potential field descent and global optimisation. Using
the exploration method, we simulate robots exploring an unknown environment and periodically

performing rendezvous.

1.4. Outline

This thesis begins by describing the task of rendezvous, and some of the issues that must be
addressed by any system that is attempting multi-agent meetings. The problem of choosing the
rendezvous locations is formalised, as are the factors that make rendezvous difficult. In the context
of this formalisation, some representative algorithms which illustrate key classes are defined and
discussed, first analytically, and then numerically. A simulation of multi-agent exploration with
rendezvous is developed, and finally implemented on a physical multi-robot system. The algorithms
for rendezvous are the focus of the work, both on a qualitative and quantitative basis.

The outline of this thesis follows:

Chapter 2 discusses related work, both to the problems of multi-agent robotics, and also to the
problem of exploration of unknown environments.

Chapter 3 presents a formalised notion of space that will be used both for exploration and
for rendezvous. It is in this chapter that we begin to break the rendezvous problem down into
multiple components. First, the framework for finding rendezvous points will be described, as well
as associated issues. We then present a description of the algorithms, and examples of each. We
conclude with an analytical description of the algorithm performances at representative sample
points in the problem space.

Chapter 4 presents a numerical analysis of the algorithms under more detailed conditions than
the extreme cases analysed in Chapter 3. The experimental framework is first described, and then an

examination of the results. This numerical analysis is shown to be a confirmation of the analytical

. results.
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Chapter 5 describes the implementation of the exploration algorithm. The potential field al-
gorithm is detailed, along with the underlying occupancy grid representation that is used for rep-
resenting the spatial information gathered during exploration. It is this exploration method that is
used to motivate the rendezvous problem.

Chapter 6 describes the experimental framework of the spatial simulation, and then presents
the results of the spatial simulation. The results are highly illustrative of many of the problems of
rendezvous.

Chapter 7 describes an implementation of the exploration and rendezvous tasks using real
robots. The experimental context is an indoor laboratory situation.

Finally, we conclude with a summary of the work, and a description of the important results.
As this is a new research area, a considerable number of issues remain to be addressed. We discuss

some of the unresolved problems of rendezvous, and remaining open questions.



CHAPTER 2

Related Work

The interdisciplinary nature of this thesis results in related work in a number of subject areas. The
first such area, and the main thrust of this thesis, is the coordination of multiple robots engaged in

some common task.

2.1. Rendezvous

The problem of rendezvous is not a new one; there exists a body of research in the optimisation
and operations research community involving search problems. Rendezvous is a particular variant
of the search problem, similar to games with mobile hiders, called princess and monster games [2].
There are many variants of the rendezvous problem itself, involving distinguishable [3] or indistin-
guishable agents [4] and collaborating or interfering agents. The environment may have focal points,
or may be completely homogeneous.

There are a number of differences between the highly theoretical approach most prior work

takes and the approach used in this thesis:

e In the existing literature, the assumption made is that the environment is known e priori.
In this thesis, the environment is not known, and one of the key problems is to find the focal
points (what we term lendmarks) and meet.

o In prior work, the problem of what to do when the initial rendezvous fails has not been ad-
dressed, since the theoretical agents have perfect sensing, synchronisation, etc. In this thesis,
we are dealing with realisable agents, with the concomitant problems of noise, asynchrony,

real-time travel limitations.

However, there are is a key similarity between the prior work and this thesis:
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‘ o Communication between agents is prohibited, until the agents are within a pre-determined
line-of-sight range. Indeed, the graph-theoretic approach reduces this distance to 0 in many
cases.

It is interesting to note that one of the algorithms proposed by Alpern [2] is equivalent to the

first deterministic algorithm we propose in Chapter 3.

2.2. Multi-agent robotics
There are two principle approaches to multi-robot collaboration:

(i) The first approach is to examine a particular task that has been studied for uni-robotic
systems and extend it to multiple-agent systems. This approach generally yields multi-robot
algorithms for a given task.

(ii) The second approach is to examine the properties and abilities of multiple-agent systems,
either gue a robotic system, or in comparison to uni-robotic systems. This approach often

results in behaviour studies of collectives, or swarms of robots.

Almost all of the algorithms that have been developed for multiple-agent systems assume either
a central controller, or a large degree of communication. Latombe [37] divides the motion planning
algorithms for multiple agents into those using centralised planner, and those using decoupled plan-
ning. An example of the centralised planner is Schwartz and Sharir’s [51] exact cell decomposition
method for motion planning of two discs, discussed in a part of their classic “Piano Mover’s Problem”
series. These systems are barely multi-robotic, as opposed to multi-effector, single-brained robot
systems. Clearly, a centralised planner assumes full communication between the planner and each
agent. Furthermore, the high complexity of perfect, centralised planning of multiple agents implies
a static environment; most centralised planners cannot cope with dynamic environments [5]. With
centralised planners, there are the two most common assumptions of both full communication with
the agents, and the permanence of the plan, once computed. Neither one of these assumptions is
valid for most real-world mobile robot scenarics. As a result, there has been considerable research
of late in distributed planners and conflict-resolution strategies.

The decoupled planners, such as prioritised planners [25, 13|, path-coordination [44] or dy-
namic multi-agent planners [12] require no central planner, but require considerable communication,
initially and often during the execution of the motion. Within the class of decoupled planners, and
in particular, conflict-resolution strategies between plans across agents, Azarm and colleagues [5]
further added the types of distributed planners based on master-slave relationships [55], and traffic-

‘ rule based dynamic planners [28]. Mutual-exclusion across spatial resources [1] demands static
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environments similar to centralised planners, whereas sensor-based planners [29] suffer from the
same limitations as the uni-robot reactive control methods.

In the context of studying the behaviour of multiple-robot systems, Dudek et al. [23] provided
a comprehensive taxonomy of the different types of multiple-agent systems, or swarms, including the
various types of communication available. In addition, the three possible types of communication
were described:

e No communication (“COM-NONE”)

e limited communication (“COM-NEAR")

e full communication (“COM-INF”)
As the authors point out, COM-INF “is the classical assumption, which is probably impractical if
[the number of agents] > 1.” A modest understatement, given that radio communication breaks
down in many situations as soon as line-of-sight is lost. This thesis makes the assumption of swarms
of range-limited communication, instantiated in this case using a line-of-sight constraint.

There has been considerable work in studying the range of behaviour of multiple-agent systems,
especially attempting to maximise efficiency and minimise complexity [41] [26]. Mataric has looked
at models of collaborative behaviour between mobile robots [41], and examined the “emergent
behaviour” properties that result. She also observed that the form of communication plays an
important role in how collaborative actions proceed. Parker [45, 46] has developed control strategies
for heterogeneous multiple robot systems, and made clear the need for effective communication.

Arkin and his colleagues give a description of the canonical tasks of multiple-agent robots, and
the effect of various levels of communication on speed of task completion, including the difference
between explicit (i.e., by radio) and implicit communication. Implicit communication is the infor-
mation that the robot embeds in the environment as a byproduct of performing a task - such as
tire tracks. Implicit communication is also an important issue in multiple-agent robotics, in that it
leads to dramatic speed increases for some tasks, without the constraints of explicit communication
modalities. Donald et al. also discuss using implicit information in the context of co-ordinated
furniture pushing [19]. However, we do not intend to deal with implicit communication in this work;
the technique of rendezvous is being applied to solve the limitations of explicit communication.

Balch and Arkin [6] describe several tasks: consuming, foraging and grazing. In this thesis,
the task of exploration is an example of a grazing task, in that the entire environment needs to
be covered by at least one robot’s sensors, in order to acquire a complete representation. Further
tasks that have been addressed in the context of multi-agent systems are box-pushing (45, 19, 18],
formation holding (7, 9, 52] and exploration and mapping [49, 15]. Like Donald’s box-pushing and

the grazing task, many of these applications use passive sensing or implicit information to perform
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their task. There is a dearth of work in real applications that demand full, active communication
that have been implemented on real robots. Rekleitis and colleagues’ [49] work on using multiple
robots for exploration is very much in the spirit of this work, using multiple agents to overcome
limitations in the use of a single robot for exploration. While their approach overcomes inherent
limits in localisation in an unknown environment, the goal is to increase the precision of the map
acquired. This work is focussed on increasing the speed of map acquisition.

Yoshida et al. addressed the problem of how to reduce a global communication network to local
communication, in order to minimise information complexity [54]. However, there has not been
much research in overcoming communication limitations, except by limiting the scope of the system
to some area. (such as a factory or a port) where communication between agents can be guaranteed
by some global co-ordinator.

Finally, the problem of map generation from co-operative multi-agent exploration was discussed
and implemented by Ishioka et al. [30]. Their work is a canonical example of the potential applica-
tions of the technique presented in this paper, in which co-operative heterogeneous robots generated
maps of unknown environments. They did not discuss the problem of rendezvous, but focussed only
on how to merge maps once the rendezvous has occurred. It is worth noting that map fusion is also

closely related to the generic image-registration problem.

2.3. Spatial Reasoning

The secondary thrust of this paper is in the area of spatial reasoning, in particular spatial
representation and exploration techniques. There exist a plethora of different techniques both for
representing space and also moving about in both unknown and known environments. Kuipers [34]
lists some of the representations as “Configuration space, Generalised Cones, Voronoi Diagrams,
the Grid Model, the Segment Model, the Vertex Model, the Convex Polygon Model, the Graph
Model and the Polygonal Region Model”, not including his own contribution of the topological
model [33]. Perkaps one of the most successful methods of spatial representation was the work
of Moravec and Elfes’ on occupancy grids, which are used in this thesis [43, 24|. Kadonoff and
his colleagues developed a strategy for combining several of these models in the same system [27].
Dudek also developed a strategy for combining different spatial models [20], employing different
levels of symbolic and sub-symbolic abstraction for localisation, navigation and long-term planning.

While it is clear from the graph-theoretical work that focal points in the environment are
essential to effective rendezvous, it is Kuipers’ selection of distinctive locations in a simple 2-D

environment (considered previously in the context of map-making [34]), that is the basis for the
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landmarks in this thesis. The distinctive locations in that work were determined by active hill-
climbing over the distinctiveness function, that is, by local gradient ascent over some function of
the sensor output. The local maxima in a continuous property of the environment allowed for the
conversion a metric environment representation into a graph-like or topological one [14, 22, 35].
Similar approaches to this organisation of space have been approached by Levitt, using visual sensing
as opposed to sonar [39]. Miller divided space into voronoi regions based on the degrees of freedom
in the error estimate, creating a semantic hierarchy of space of a different nature [42]. Brian Pinette
used visual landmarks, as opposed to spatial landmarks, for his work in qualitative homing [48].

After developing the visual map making system [10], Brooks attempted to abolish internal
representations completely [11]. Brooks’ claim was that the world itself would serve as its own
representation, and that internal maps were not important at many lower levels. The experience of
the subsumption architecture that implemented these ideas has shown that only the most primitive
of behaviours can exist without some higher level of abstraction, however, the “intelligence without
representation” is an interesting comment on the ideas of spatial representation.

In this work we ignore dead-reckoning error; in practice, one can use one of several existing

techniques to update continuously the robot’s position estimate [8] [38] [40] [20] [32].

2.4. Conclusion

There are some interesting and unusual approaches to multi-agent robotics that are worth
menticning. Russell has developed a method of leaving short-lived heat trails, that allow agents
to find one another at a distance by searching and following the trails of heat [50]. A similar
approach is used by Deveza {17] to use chemical odours for navigation. These techniques, motivated
by ethology, are very similar to techniques used by animals in the wild. It reflects the very strong

human tendency to navigate by modifying the environment by visual signs.
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CHAPTER 3

The Rendezvous Problem

This chapter presents a formal description of the rendezvous problem. We have separated it into
two separate sub-problems. The first sub-problem is how to select points in the environment for
potential rendezvous; we discuss issues of representation and issues of task dependence. The second
sub-problem, the major focus of this work, deals with factors that can affect the success of any
rendezvous attempt. We formalise these parameters and propose two main classes of algorithms to
solve the problem appropriately. We give examples of each class of algorithm and give examples of
the individual algorithms in operation.

Finally, we conclude with an analytical examination of the algorithm performances at certain
extremes; we will by analysing the time to rendezvous under the parameters that affect performance.
This analysis prefaces the numerical analysis in the following chapter which contains a more detailed

depiction of the algorithm performances.

3.1. The Rendezvous Algorithm

In the simplest, idealised, noise-free case, each robot should select the location in the environ-
ment that is the most distinctive. Each robot should navigate to this location and wait for the other
robot(s) to arrive. At such a time, they should fuse their maps and suitably partition any remaining

exploration to be done.

(i) Travel throughout environment
(ii) Record points in the environment that are good rendezvous locations
(iii) At the pre-arranged meeting time, choose the best rendezvous location

(iv) Travel to the best location, and share information with the other agents
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Unfortunately, this happy scenario rarely occurs outside of simulation, thus making this thesis
somewhat longer than it might otherwise be. The problem in practice is that due to sensor vari-
ations or disjoint landmark sets, the agents may not agree on where the single, ideal landmark is
situated. Therefore, the problem of rendezvous is also one of determining what action to take when
a rendezvous attempt fails. We are interested in strategies that would permit a robot to interleave
exploration and attempted rendezvous so that if the rendezvous fails, the robot can continue its
work. This approach will allow the strategies to remain robust even in the face of a robot’s complete

inability to find its associates.

3.2. Landmark Selection

The tractability of most problems in computer science, and in many other disciplines for that
matter, depends to a great extent of the particular choice of representation used to solve the prob-
lem. For the purposes of the rendezvous problem the representation of the environment will have
considerable effect on our ability to choose points in the surroundings that may or may not constitute

“good” rendezvous locations — these points we refer to as landmarks.

3.2.1. Spatial Representations. David Miller [42] gave three purposes for the spatial

representation system in a mobile robot:
(i) It provides a framework for incorporating newly discovered information about
the robot’s environment.
(ii) It provides the recessary information to do route planring.
(iii) It gives information from monitoring the position of the the robot during task
execution.

Our ability to choose which point or points to visit at every rendezvous attempt will be dic-
tated in part by our spatial representation. Therefore, the representation of the environment must
be considered carefully. There are two principle classes of spatial representations. The first repre-
sents space as a metric grid, where each location is either filled with some object, or empty. This
representation uses a discretised map, also referred to as an “occupancy grid”. The chief advantage
of this representation is that it gives a reasonably non-lossy description of space, up to the level of
the discretisation. As a consequence, many other forms of spatial representation and other spatial
information, such as object shapes, can be derived from the grid. However, the occupancy grid
has two major disadvantages. It is tremendously storage intensive, and suffers from discretisation
artefacts in many instances that are difficult to eliminate without increasing the resolution (and

therefore the storage requirements). Furthermore, deriving useful information from a metric map,

13
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while usually possible, is often computationally intensive. One example is path-planning, which is
O(n) in the number of cells in the grid.

An alternative representation of space is the topological map, which represents space as a
set of connected nodes. The arcs of the connected graph can be used to represent a number of
properties, such as distance, travel time, or control strategy for travelling from one node to the
next. The topological map has the advantage of being storage efficient, and depending on the
information stored at nodes and arcs, can provide information such as navigation paths in much
shorter time-complexities. However, the topological map suffers in that any spatial information
not stored explicitly in the nodes and arcs is lost. For example, not every location in a mapped
environment is represented in the topological map. Furthermore, the topological map created for
one application may not be easily transformed to another. For example, in a world where travelling
up sharp inclines requires a disproportionate amount of power, a map created for navigating in
optimal time between nodes is not likely to contain the information for navigating with minimal
power consumption.

From the discussion of these two spatial representations arises the first question of which to
choose for representing good landmarks. Since the problem of rendezvous only requires storing the
location of small set of points in a much larger environment, clearly a topological representation is
likely sufficient. The further question then is how to choose points in the environment to serve as

landmarks, for future rendezvous.

3.2.2. Landmarks. In the context of cultural environments, typical notions of good land-
marks generally rely upon some knowledge of the environment to facilitate rendezvous. For instance,
humans often rely upon pre-existing structures such as building doors, monuments or hilltops to
identify rendezvous locations. In the context of exploration of unknown environments, no such as-
sumptions can be made about the existence of such structures. Therefore, we define the notion of
distinctiveness, or landmarkness, as a value defined at every point in the environment, and use
this value to find landmarks in the environment. If the distinctiveness is a function of the agent’s
sensor(s), then there is no issue of environmental dependence on the ability to find landmarks —

every location is a potential landmark.

An ezample of a rendezvous situation would be two people who agree to meet at a
large zoo, never having uvisited this zoo before. The two people agree to meet on the
highest hill at the zoo; for these two people, the hilltops are good rendezvous locations,

or landmarks.

14
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As an agent travels throughout the environment, every visited location is evaluated by the agent
in terms of its distinctiveness. By restricting landmarks to lie along the robot trajectory, we avoid
issues of landmark visibility and viewpoint independence. However, it should be emphasised that
these landmarks need not be recognisable as such from afar, such as a mountaintop is. We recognise

locations as landmarks by actually visiting them.

The zo00 where the two people are meeting is moderately forested; as a result, it is
very difficult to tell from afar where the hilltops are, and how high they are. So, the
two people at the zoo travel to eack hilitop, to see how high it is compared to the other

hilltops.

The assumption is that distinctive locations (with respect to some sensor-based computation)
serve as locations that all robots can independently select as good landmarks. We refer to the scalar
measure of suitability as a rendezvous point as distinctiveness: D(z,y,6). The position (z,y) and
orientation 8 of the robot are commonly termed the pose of the robot; the pose vector is § = (z, y,6).
Therefore, for a pose vector §’ we can define D(§).

This is implicitly a function of sensor data f'(:I), so we have a new distinctiveness function D,

such that:

D:(z,y,8) — R (3.1)
fiz,y,6) = S (3.2)
D:S - R (3.3)
D=Do f({ (3.4)

Although the agent’s sensor may not return scalar values, some scalar suitability measure can
be usually be computed from the sensor. Some intuitive examples of environmental attributes that
might serve as distinctiveness measures are: spatial symmetry, distance to the nearest obstacle,
or altitude (for 3D surfaces — for example humans might select hill tops). If we choose our the

distinctiveness function to be orientationally invariant, then

D(z,y,6) = D(z,y) (3.5)

The possible distinctiveness measures are heavily dependent on the types of sensors the robots

have at their disposal. Because the robot assigns a value to every point, a good sensing modality is
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one that allows the distinctiveness to be defined at any location in the environment, and for which
there exists some metric that can order the resultant landmarks in the environment ir terms of
distinctiveness. This ordering allows the landmarks to be ranked in terms of their likelihood to lead

to a successful rendezvous.

3.2.3. Distinctiveness Surfaces. Certain generic properties apply to suitable landmarks
and the distinctiveness function D(z,y) independent of the sensing modality. If the distinctiveness
function is smooth, locally convex, and has few local extrema or inflection points, then it may
be possible to define highly stable and mutually agreed-upon landmarks with great ease; these
landmarks could be found by having the robots perform gradient ascent over the measured surface.
However, although this strategy is attractive in principle, we believe that in many real environments,
sensor noise, occlusion and other factors may make the “distinctiveness surfaces” highly non-convex
and thus complicate the process.

This function D(z,y) then defines a surface across the z — y plane. The task of choosing
landmarks then becomes the task of identifying the local maxima (or minima, if preferred), of the
distinctiveness surface. Figure 3.1 shows an example of a bounded environment and its associated
distinctiveness surface. Note that although the surface is not particularly smooth, there are a few
definite sharp peaks in the surface that would make good rendezvous points. The very flat areas in
the surface are regions of the space that are inaccessible to the robot. These areas were computed by
generating an occupancy grid from the map, and then performing a breadth-first, connected-space
search of the grid. The distinctiveness was measured only in regions accessible to the search through
connected space.

The principal measure of distinctiveness! used in this work (and used to generate the surface
of Figure 3.1) encompasses both a notion of enclosed space and symmetry, by summing the ranges

returned from the sonars, and dividing by the difference of opposing sonar pairs:

- 2 i1 R(6:)
D - Z?:l { R(Bt) e R(ei-{-n/?) l (3'6)

This measure is presented here for reference only; it will be explained further in Chapter 6

during the discussion of the actual robot exploration.

3.2.4. Finding Distinctiveness Peaks. One way to identify the potential rendezvous
points, or landmarks, is to sample the distinctiveness surface uniformly across the space, and then

identify the maxima in the surface off-line. However, this method has the disadvantage of being

!Recail that we have assumed the function is rotationally invariant, so that D(z,y,8) = D(z,y). The issues of
rotational invariance associated with this distinctiveness function will be address in Chapter 6.
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FIGURE 3.1. An example map, and its associated distinctiveness surface.

both storage- and time-intensive. The robot must visit every position in space where the surface
will be sampled, and must store the equivalent of an occupancy grid with the distinctiveness for

each sample. Since we want only points at the distinctiveness maxima, such an exhaustive sampling

would be an unnecessary waste of time and storage.
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The notion of a landmark also serves as the basis of the topological mapping strategy proposed
by Kuipers [34]. The strategy defined by Kuipers follows contours in the distinctiveness surface un-
til local minima or maxima are perceived, and then performs gradient ascent, hill-climbing to that
landmark, which is represented as a node in the graph. Connections between the landmarks are rep-
resented as control strategies that allow the agent to follow the distinctiveness contour. However, this
strategy has a very tight coupling between the search for landmarks and the actual trajectory of the
robot — the trajectory of the robot is dictated by a distinctiveness function at landmarks. The ded-
ication of the agent’s resources to the task of identifying landmarks is essential, and Kulpers’ agents

are constantly actively searching for landmarks without interference from competing behaviour.

The two people at the z00 are primarily interested in seeing the zoo. They therefore

limit the hilltops they visit to those Rilltops that contain animals they want to see.

However, the task of locating landmarks for rendezvous cannot always dictate the robot tra-
jectory. Although we are developing the technique of multi-agent rendezvous in the context of
exploration, we would like to generalise rendezvous to any multi-agent system. As a result, the
agents must be able to gather landmarks during the execution of any task. The constraints of some
tasks may not allow the agent to suspend execution of the primary algorithm in order to follow the
distinctiveness surface, hunting for landmarks.

We therefore must be able to gather landmarks independently of the agent’s trajectory, or we
must be able to overcome any landmark dependencies on the robot’s trajectory through space. We
therefore impose two constraints on the distinctiveness function - that it is time-independent and
orientation-independent. For example, the “Northern-most” point in the already-explored environ-
ment is a poor choice. If the explored area of each robot is circular, then two robots will only have
the same “northern-most” point if the environment is highly constrained or if the explored regions
are very similar. In Figure 3.2, we see that despite having relatively similar explored regions, the
robots will choose quantitatively different landmarks. If the landmarks are separated substantially,
either by distance or by some obstacle such as a wall, a rendezvous at these landmarks will fail.

Furthermore, an orientation-dependent function will be equally troublesome. A distinctiveness
function that is simply the sum of the front and back sonar ranges will give very different values for a
robot looking down a corridor, as opposed to a robot looking at a wall. Unfortunately, most immedi-
ately obvious distinctiveness functions are orientation-dependent, especially those that use the sonar
rings found on most mobile robots. The solution we have chosen is to sample the distinctiveness

function at pre-determined orientations.
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Northern-most Points \

FIGURE 3.2. An example of the effect of choosing a paor measure of distinctiveness. Even
though the two robots have relatively similar explored regions, the best landmark each
chooses is different enough to cause rendezvous difficulties.

There still remains the issue of spatial sampling — as the agents travel through the environment
they must sample the distinctiveness function sufficiently often that they capture the landmarks
accurately. Coarse sampling can lead to mis-measuring a peak’s height, or even failing to observe
a landmark entirely. One possible solution is to be careful to sample the environment as finely as
possible. However, since the distinctiveness sampling is a function of the task-dependent trajectory,
the problem is independent of the distinctiveness function and must be addressed in some other

manner. Possible solutions to this problem will be discussed with rendezvous algorithms.

3.2.5. Inter-agent Differences and Sensor Noise. In addition to using the same distinc-
tiveness function, the agents must compensate for differences in their perceptions of the environment.
In order for two robots to agree on a good landmark, they must have similar perceptions of the en-
vironment or be able to convert their percepts into a common intermediate form. In the extreme
case of two agents with dramatically different sensing modalities, there is essentially no way for
them to rendezvous based on the recognition of environmental characteristics. Sensor noise can play
a similarly problematic role. We model this aspect of the problem by parameterising the extent
to which the two agents can reliably obtain the same measurement of distinctiveness at the same
location. The two parameters are systematic differences between agents, and random noise.

We consider the base case, D(z,y), to be “ground truth” with respect to the distinctiveness
that should be measured by all the agents. However, D(z,y) is a function of the sensors the agents

use:

Si(z,y) = S(z,y) +ilz,y) + X (3.7)

Di(z,y) = D(Sz,y)) (3-8)
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where S (z,y) is the ideal perception of the environment by the given sensor, in the absence of
any noise. Sy(z,y) is Agent 1’s perception of the environment at position (z,y) that encapsulates
the agent’s systematic error 77(z, y) over the measurement at that position; X; is that agent’s random
sensor noise.

For the purposes of modelling the inter-agent differences, we model A ad 7 as scalars, and
collapse the random and system errors into one term. With full generality, we can consider one of
the agents as the reference perceiver (the arbiter of good taste) with a percept D;(z.y) = D(z,y)
while the other robots obtain a sensor measurement which can be viewed as noisy with respect to

that of the first robot:

Di(z,y) — Di(z,y) = d&imi(z,y) +6:D1(z.y) (3.9)
Di(z,y) = (1-4&;)Di(z.y)+dii(z,y) (3.10)
(3.11)

where 7;(z,y) is all stochastic and systematic noise processes of each robot, and d; specifies the
extent to which the two robots (D; and D;) sense (or perceive) the same thing. If both robots have
exactly the same perceptions of the environment we have § = 0. In the context of this formalism,

n(zg,y) combines both intrinsic sensor noise and any differences in the type of sensor used.

3.2.6. Assumptions. In this research, we have neglected issues of navigation and assume
an agent can always accurately reach a desired goal in the environment. While our framework
can accommodate navigational error, it is outside the scope of this paper. For concreteness, the
reader can imagine a point robot capable of arbitrary motion within free space. We also assume an
ideal compass on each robot, to allow perfect orientation. As previously mentioned, we assume an
unknown environment, and no shared spatial information or communication between agents except

at landmarks.

3.3. Rendezvous Strategies

3.3.1. Formal Parameters of the Rendezvous Problem. Even with this formalism that
describes how to gather landmark locations, there remains the issue of how to choose which landmark
to visit, and when. In the ideal case, the obvious choice is the “best” landmark, i.e., the point in
the environment that has the largest known maximum of the distinctiveness function. However,

the ideal case is rarely, if ever, observed in practical mobile robotics. Therefore, strategies must
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. be developed to accommodate the various confounding factors that make the rendezvous problem
challenging in practice.
In order to estimate the effectiveness of alternative strategies for rendezvous, we have identified

key attributes that must be formalised. Important attributes of the rendezvous problem are:

e Similarities — the reproducibility of the perceptions between agents.

The similarity of two agents is a function of whether they sense the same environmental
attributes, or do they even use the same sensors. This parameter is the § parameter of
Equation 3.10.

e Sensor noise — the distinctiveness measures observed by the two robots are unlikely to be
identical. This is expressed by the fj(z,y) term of Equation 3.10, and leads to strategies
that must effectively consider a larger number of candidate rendezvous landmarks since the
single best candidate may not be determined reliably across agents.

Note that the for the purposes of modelling differences in sensor measurement across agents,
the 77 and 5 parameters can be treated as a single parameter, 6. Varying the effect of noise on
the measurement between agents is akin to varying the noise parameter itself. We therefore
will perform all simulations by varying § alone, and letting 77 be a randomly distributed
value.

The people at the zoo cannot measure the height of the hills with a great deal

of precision. Therefore, there is some disagreement over which hills are really

higher.

¢ Landmark Commonality — the extent of overlap between the spatial domains of the agents.
In the ideal case, the agents will share all landmark knowledge. However, this is clearly not a
realistic scenario, and not ideal for exploration. In order for all agents to have all landmarks
in common, they would have identical spatial knowledge. This would either demand infinite
communication abilities, which is the very limitation we are attempting to overcome, or
would prevent the robots from separating, and therefore would prevent any speed-up in any
of the multi-agent tasks being attempted.

More likely is that the robots have explored partially-overiapping areas, and will have some
different landmarks that are not in the common region. This is modelled formally as the
number d of landmarks out of a total set of n that are not common to the robots. The effect
of the non-commonality is that both robots must consider a larger number of candidate
landmarks, since any given subset of landmarks selected by one robot may not be known to

the other robot. If the agents have no landmarks in common, any rendezvous attempts are
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doomed to fail. This is possible any time two agents do not have any part of their trajectories
in common, or where the common area contains no landmarks.

The two people at the zoo do not have time to visit every hilltop. They therefore

miss some hilltops, and do not have the chance to visit every hilltop to see how

high they all are.

e Synchronisation — the level of synchronisation between the agents.

If the agents cannot agree to meet at the same time, rendezvous becomes a much more
difficult task. Further confounding factors may involve the time delays implicit in travelling
between landmarks. If an agent fails to make a rendezvous because the path is blocked, or
if there is insufficient time to travel to the landmark, appropriate action must be taken by
the other agents. The probability that a agreed rendezvous is missed is modelled by the
parameter j. This effect leads to a need for strategies that may re-visit the same landmarks
repeatedly to compensate for missed meetings. One such behaviour might be to return to
very good landmarks more often, while another strategy might dictate actively seeking out
alternative landmarks.

The two people at the zoo do mnot have synchronised watches. Also, one walks

a lot slower. Therefore, sometimes they miss each other on their rendezvous

attempts.

e Landmark Cardinality — the number n of points considered for rendezvous by each agent.
If there is exactly one landmark, then the rendezvous algorithm cannot make any attempt to
compensate for variations in the problem parameters, including asynchrony. In this extreme
case, the problem is “solved” simply by waiting at (i.e., revisiting) that one landmark until
the other robot arrives, or the batteries run down. At the other extreme, if every point
visited is considered as a landmark, the algorithm may be swamped, preventing it from

exploiting its abilities to find the other agents.

Implicit in the description of these attributes are certain assumptions. It is assumed that if the
agent roles are asymrnetric, that there is an a priori agreement of which agent will play which role.
It is assumed that all agents share some notion of synchronisation — that is, all agents can agree on
when rendezvous attempts should be made, however, this synchronisation may be noisy. The second
assumption is that all agents have the same landmark set cardinality — they all attempt rendezvous
over the same number of landmarks (even if they are not using identically the same landmarks in
their sets). Finally, it is assumed that all agents are performing the same task, and using the same

rendezvous strategies.
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3.3.2. Landmark Selection Algorithms. Looking to biology, some simple algorithms
are observed. Most animals rely upon well-known common meeting points, such as a beehive or
a watering hole. In an unknown environment with mutually unknown starting locations, however,
such an absolute reference point is almost impossible to define. A common strategy has one agent
(e.g.. a child lost at the zoo) wait to be found while other agents (e.g., desperate parents) cover the
space, performing search. Another equally naive but much less common strategy has agents moving
from landmark to landmark randomly until a rendezvous occurs.

We have developed two main classes of algorithm: deterministic and probabilistic. The de-
terministic class of algorithm creates a list of all possible combination of landmarks and specifies
the order the landmarks should be visited. There is no random aspect to the landmark sequence,
and therefore the algorithms will generate the same landmark visits for a given landmark set. The
probabilistic class of algorithm does not generate an a priori ordering of landmarks, but simply
generates probabilities for landmarks being visited.

3.3.2.1. Deterministic Algorithms.

Given the same set of landmarks and associated distinctiveness values, these algo-

rithms will always create the same ordering of landmarks.

e Sequential — One robot picks a landmark and waits there for the other robot, which visits
every landmark in turn. If the second robot has visited every landmark without encountering

the first robot, the first robot moves to another landmark it has not yet visited.

For example, given the two sets of landmarks (4, B, C) and (D, E, C) and two robots, one robot
assumes the passive role, and the other the active role. They visit the landmarks in the sequence
described in the Table 3.1. Note that the actual distinctiveness values of the landmarks are not
listed; what is important to the sequential search is not the actual values, but the relative ordering
of the landmark values.

The active robot has landmarks (A, B, C, E) where A is the best landmark it has observed so
far. The passive robot has landmarks (D, B, E, C) where D is the best landmark observed so far.
These sets demonstrate the notions of agent dissimilarity, in that the active agent believes that C
is a better landmark than B, whereas the passive agent believes that B is a better landmark than
C. Furthermore, the active agent has explored the area with landmark A, which is unknown to the
passive agent.

As the visit sequence indicates, the active agent cycles through all its landmarks, before re-

turning to the beginning of the set. The passive agent remains at a landmark for n cycles, where
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Robot | Set Sequence

Active |A,C,BLE|ABCEACB
Passive | D,B,C,E|DDDDBBB
TABLE 3.1. The sequence of landmarks visited by the sequential algorithm, from the given
landmark sets. Note that rendezvous occurs on the 7th iteration.

n is the size of the landmark set, before moving to the next landmark. This generates a list of all
pair-wise combinations of landmarks, sorted by distinctiveness.

Although this strategy is asymmetric across agents, the extension from a pair of agents to an
arbitrary number of agents can be easily accomplished by evenly dividing the agents into two classes
of active and passive agents. Since multi-agent rendezvous, especially for tasks such as map-merging,
does not require all agents be present at any given rendezvous, there will be task speed-up from any
subset of agents completing rendezvous.

This strategy is simple and relatively immune to noise because it does not rely heavily on the
relative rankings of landmarks. However, it is sensitive to asynchrony. If the two robots have the
same ordered landmark sets but suffer from synchronisation problems and hence miss meetings at
commonly-selected landmark, n iterations must pass before an identical pair of landmarks occurs
in the visit sequence. An even greater problem is that low landmark commonality in the landmark
sets will cause a delay of up to d x n iterations before a rendezvous will occur, where d is the
number of landmarks unique to an agent. In the above example d = 1, since each agent has one
unique landmark. Since both of those landmarks were unknown to the other robot and were the
best landmark in both sets, we see a delay of d x n =1 x 4. For n of four the cost is minimal, but
for a much larger landmark set, the penalty could be much worse. The following algorithm is more

robust to this type of error.

e Smart-sequential — Each pairwise combination of [andmarks known to a robot is assigned
a “goodness” value. This value is the product of the distinctiveness of the pair. The list of
landmark pairs is sorted by this product, and one side of each pair is discarded, leaving an
ordered list of n? landmarks from a set of n. The robot then visits the landmarks in this

order.

The smart-sequential strategy takes into account the fact that the landmarks may be mis-
ordered across agents, but takes advantage of sensor data by assuming that the relative mis-orderings
are likely to be small. If § is low, landmark combinations with high values are explored before
landmark combinations where one landmark has a very high value and the other has a relatively
low value. The lists of landmarks can be thought of as being “perturbed” rather than grossly mis-

ordered. This leads to an increased probability of meeting even with substantial asynchrony, or with
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high-valued landmarks that are unique to one agent. The smart-sequential method is tantamount
to guessing where the other robot might be, given relatively similar, but not identical, landmark
rankings.

For example, given the two sets of landmarks (A4, B, C) and (D, E,C) and two robots, we again
have one robot assuming a passive role, and the other the active role. It is possible to preserve the
agent symmetry by making all agents take one role, but since the smart-sequential method generates
pair-wise combinations, the method is more effective when one agent a priori takes one “side” of
the list, and the other agent takes the other “side”.

They visit the landmarks in the sequence described in the Table 3.2. Note that the distinc-
tivenesses are listed, because of the dependence that the smart-sequential method has on the actual

values, as opposed to the relative ordering.

Robot Set Sequertial Visit | Smart-sequential visit
Agent 1| A=9, C=8, B=T7, E=2 AAAAC AC
Agent 2 | B=11,C=10,F=5,E=3 | BBBBC BC

TABLE 3.2. The sequence of landmarks visited by the smart-sequential algorithm, from
the given landmark sets. Note that rendezvous occurs on the 2nd iteration.

Each agent generates a list of every pair-wise combination of landmarks. The distinctiveness of
the two landmarks is multiplied, to give a value for the pair, and the pairs are then sorted on this
product. Table 3.3 shows the combinations, the values and the visit sequence generated from the
landmark sets given in Table 3.2. As the table clearly shows, despite unique landmarks (landmarks
A and F), and relative mis-orderings between the agents (C & B are reversed between the agents),
a rendezvous should still occur on the second iteration — a substantial improvement over the seven

iterations necessary for the success of sequential under the same conditions.

Agent 1 Agent 2

Pair Comb. Value | Visited | Pair Comb. Value | Visited | Success
AA 99 A BB 121 B A-B : No
AC 72 C BC 11¢C C C-C : Yes
CcCcC 64 C CB 110 B C-B : No
CA 63 A CC 100 C A-C: No
AB 63 B BF 55 F B-F : No
BA 63 A FB 35 B A-B : No
CB 56 B CF 50 F B-F : No
BC 56 C FC 50 C C-C : Yes
etc...

TABLE 3.3. The pair-wise combination of landmarks for the two robots, their values, and
the visit sequences generated.
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Smart-sequential has its domain of superiority where the agent differences (e.g. noise) are low,
but not negligible, or where the landmark sets are not identical. Although it is not a probabilistic
strategy as such, it essentially groups landmarks together into types of high probability through low
probability, in attempt to “guess” where the other agent(s) might be. Landmarks are allowed to
be revisited regularly, but as it moves through the list from high to low distinctiveness factors, the
revisit rate for good landmarks drops considerably.

Smart-sequential also does not perform well under conditions of high noise or high asynchrony.
It suffers under conditions of high noise, because it relies upon a reasonable, if not 100% accurate
knowledge of the distinctiveness surface; as noise destroys the accuracy of that measurement process,
the estimates based on that knowledge become poor. This algorithm also suffers under the condition
of high asynchrony, because there is no provision for re-visiting a landmark more than n times, in
a set of n landmarks. The problems with the distinctiveness function and asynchrony led to the
development of probabilistic landmarks.

3.3.2.2. Probabilistic Algorithms.

The landmarks are sorted with respect to their distinctiveness and then assigned a
likelihood of visitation p; for landmark i as a function of its rank in the sorted list
i.e p; = f(Z). The algorithm probabilistically selects a landmark to visit, using p; for
each landmark.
The probabilistic algorithms use different probability functions to accommodate different pa-

rameters of the problem space. For example,

¢ Exponential — The likelihood of visiting the i —th best landmark is « e'. This function has
the effect of emphasising the relatively highly distinct landmarks, at the cost of landmarks
with relative low distinctiveness.

¢ Random - On each attempted visit, each robot selects a landmark at random and goes

there.

The particular exponential function used in the simulations was

104 ef(D] —Ds;)

g = W™ 3.12
; (3.12)
. _ 25log(.001/Dy) (3.13)
D,
n
o = S E (3.14)
i=l
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where D; is the distinctiveness of landmark ¢, E; is the output of the exponential function for
landmark ¢, and P; is the probability of visiting that landmark. The constants in these formulae were
chosen empirically. p is a normalisation constant to ensure that the probabilities for the landmark

set sum to 1.0, and p is a user-definable decay constant for tuning the exponential function response.

Robot Set Landmark Probabilities Visit Sequence
Agent 1 | A=9, C=8, B=7, E=2 A=39% C=30% B=24% E=7% | ACC
Agent 2 | B=11, C=10, F=5, E=3 | B=44% C=36% F=12% E=8% | B C C
TABLE 3.4. The sequence of landmarks visited by the smart-sequential algorithm, from
the given landmark sets. Note that rendezvous occurs on the 2nd iteration.

Agent 1 Agent 2
T =-.252 T =-211
p = 2.549 p = 2270

Eis=1 Py =392% || Eg =1 Pg = 44.0%
Ec =.776 | Pc = 30.4% || Ec = .809 } Pc = 35.6%
Eg = 603 | Pc =23.6% || Er = 281 | Pr = 12.4%
Eg = .170 | Pg = 6.6% Eg =.184| P =8.1%
TABLE 3.5. The table showing the output of the exponential function for the landmark sets
given in Table 3.4. E; is the output of the exponential function, and P; is the probability
of visiting that landmark.

Table 3.4 shows a set of sample landmarks, and their associated probabilities, as calculated
from Equation 3.13. The full expansion of the probability calculation from the landmark values is
given in Table 3.5. Once the probabilities have been calculated according to the appropriate formula
(exponential, in the example case), a random process can easily generate a sequence of landmarks to

visit. In the example given in Table 3.4, the agents made a successful rendezvous in three iterations.

3.4. Analytical Analysis

We can make an analytical assessment of the performance of the deterministic rendezvous
algorithms, compared to the random algorithm baseline. If there is no noise, no asynchrony, and
100% landmark commonality, then all of the algorithms which use the distinctiveness measure to
sort landmarks will lead to a rendezvous after only one attempt (i.e., both robots will go straight to
the mutually agreed upon best landmark.). The random algorithm can never assure a rendezvous
but will have a small, equal probability of leading to a rendezvous on every attempt.

More interesting is the performance of the algorithms in the limit of high noise, § = 1, such
that no common ordering between agents of the same landmarks can be reliably determined. The
first assessment is the algorithmic time complexity, i.e., the expected time to rendezvous, for the

three algorithms in the limit of § = 1. The expected time to rendezvous is the median number of
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attempts before a successful rendezvous. For a landmark set of size n, the probability of any single,
random rendezvous attempt being unsuccessful is:

n—1

(3.16)

Punsuccessful = n

If the asynchrony rate is accounted for, then the probability of an attempt being unsuccessful

rises to

2l (3.17)

Punsuccessfnl = n

These equations give rise to table 3.6. The first column refers to both robots having the same
set of landmarks. The second column considers the scenario where the robots may fail to get to
the appointed landmark at the same time {or fail to notice one another). This probability is the
asynchrony, j. The third column deals with the case where d of each robot’s n landmarks are not

in the other robot’s landmark set.

Algorithm | Simple Async. < 100% Comm.
Random [ogg(ln:l Togz2( ":11 Y+logzg [ogg(%)
Sequential n/2 2 +jr% 24 %E:F{
Smart-seq. n n + je7 n+ %ﬁ{
TABLE 3.6. Expected case behaviour. The columns denote the ideal case, the case where

the asynchrony 7 # 0 and the case where the landmark sets are not identical, but each
agent has d non-common landmarks.

In the deterministic sequential algorithm, the expected time of the simplest case (identical
landmark sets, no asynchroay), is very straightforward. One agent sits at a landmark, and the other
agent visits every landmark in turn until they meet — on average n/2 landmarks. However, in the
presence of asynchrony, additional sweeps of all n landmarks will have to be performed. To find the

expected number, k such additional sweeps, we use
0.5 = j* (3.18)

noting that each extra sweep ¢ of k& will reduce the probability of failure, and k such sweeps must
reduce the probability of failure to 50%. Thus, on average j o7 sweeps during the rendezvous will
fail due to asynchrony. Similarly, for non-identical landmark sets, additional sweeps of n landmarks
will have to be performed on average %ﬁ'— times.

In the worst case, the performance time complexity is much more straightforward. For the
probabilistic algorithms, such as the random strategy, or whenever asynchrony is an issue, the

worst-case is always O(c0), because a meeting can never be guaranteed. Similarly, a rendezvous can
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never be guaranteed if any asynchrony is present, and so for j # 0, the worst case for all algorithms
is O(ce)-

However, the deterministic algorithms are guaranteed to terminate when j = 0. In the worst
case, the two algorithms terminate in n? iterations when they share no common landmarks. At this
point, both agents can determine that they cannot meet, and continue exploration. If, however, the
agents share identical landmark sets, the sequential algorithm has a much lower worst-case complex-
ity than the smart-sequential strategy, because one agent is guaranteed to visit every landmark in

the other agent’s set in n iterations.

Algorithm Simple | Async. | < 100% Commonality
Random % oo o0
Sequential n fos) nd+n

Smart Seq. [ n2 —n +1 oo n®—(n—-d)+1

TABLE 3.7. Worst case behaviour. Columns as in Fig. 3.6.

A full derivation of these results is in Appendix A.

3.5. Conclusion

In this chapter, we have described how to choose points in the environment appropriately,
regardless of the underlying task that the agents are performing, independent of rendezvous. We
also show how to represent the landmarks without depending on a particular representation of space
(e.g. metric or topological). Especially relevant to the problem of rendezvous are certain formal
parameters that we have outlined. We describe two principal classes of rendezvous algorithms,
deterministic and probabilistic — these algorithms determine how to choose what landmark to visit,
especially when the first attempt fails.

In the next two chapters, we will show that the choice of an appropriate rendezvous strategy
depends on the extent to which the robots have found the same set of landmarks, the amount of
sensor noise (or, equivalently, the similarity of the sensors) and the reliability of the robots being at

a mutually selected rendezvous point and detecting one another.
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CHAPTER 4

Numerical Simulation

In Chapter 3, we formalised the parameters of the rendezvous problem and described several algo-
rithms that could deal with the problems of rendezvous in different ways. We gave an analytical
description of the algorithms, but neither the expected case estimates nor the worst-case bounds in
the limit of high noise provided a realistic picture of the the performance of the algorithms, as this
limit will rarely, if ever, occur.

The sensor differences, X will likely not be extremal. Therefore, more useful than the analysis
in the limit of high noise in determining the performance of the algorithms is the performance of
the algorithm under conditions of worsening noise, especially under different conditions of disjoint
landmark sets and asynchrony.

One way to determine the ability of a particular algorithm to allow agents to rendezvous quickly
would be to allow the physical robots to explore an environment and actually rendezvous. However,
while this method has the advantage of providing convincing results, it has considerable practical
difficulties, in that a number of effects may be introduced (this is in fact the case, as we shall see
in later chapters) by the nature of the exploration task, the physical robots, the spatial domain
in which the robots move, etc. Before attempting to run the rendezvous algorithms on the actual
robot, we would like to analyse of the rendezvous algorithm alone, independent of any of the practical
considerations of using robots that will introduce new constraints on the problem.

This chapter presents a numerical analysis of the behaviour of the various algorithms under dif-
ferent conditions, and especially performance with increasing noise. First, we discuss the method of
simulating numerically the landmark acquisition and rendezvous process. Subsequently, we demon-

strate the results obtained, and some of the interesting features of these results.



44.1 EXPERIMENTAL METHOD

4.1. Experimental Method

Rather than simulating an actual exploration, two agents were modelled as having already
explored an unknown area, and having collected a set of n landmarks.
(i) The distinctiveness values of the ordered landmarks were generated with a function, f(z)
where = was the landmark index.
(ii) Random noise § as developed in equation 3.10 was then applied to the two sets.
(iii) The appropriate rendezvous strategy was then used to generate a sequence of landmarks for
the two agents, with a maximum length of n®.
eg. {li,la,la,la,. .. ln}, {Mm1,ma,ma, my, ... ,mp}
(iv) The sequences were terminated at the first position with the same landmark, and the running
time was considered to be the length of the sequences.
e.g. {li,l2,l3,l4,--. i}, {m1,ma,m3,my, ... ,m;} where ; = m;.
It should be noted that the parameter space of this problem is substantial, and therefore not all
aspects of the problem were explored. Only the more relevant and interesting aspects are presented

here.

4.1.1. Generating Simulated Landmark Sets. The first step in our simulation is to
generate the distinctiveness values for the landmarks. A number of functions were considered for
generating typical landmark sets, e.g., random, linear, and exponential functions with varying slopes

and decay constants.

Random Disiribution Model over 10 Landmarks
0.s

Random -——
04

03t

Distinctiveness

0 2 8 10

4 [
Landmark Number

FIGURE 4.1. Example random distribution function of landmark distinctiveness values.
All 10 landmarks are equally distinctive in this case.

Figure 4.1 shows a typical distribution function for landmark distinctiveness values. Clearly,
this is a less than ideal scenario, since the point of this exercise is to differentiate positions in
space by their distinctiveness values. If all points in space have the same value, then they are in
fact indistinguishable on basis of distinctiveness. A sensing modality that causes such a uniform

distribution of distinctiveness would be a poor choice; we would indeed be wise to choose either a
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different sensing modality, a different distinctiveness function, or a different line of work. Such a
distribution is also unrealistic in that no real sensor will generate such a uniform distribution —

noise alone will generate different distinctiveness values.

The linear function was used for generating the most realistic set of landmark values, and for

the numerical analysis presented here. Figure 4.2 show a typical linear distribution.

Linear Distribution Model over 10 Landmarks

14 Linear
12 F
«
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FIGURE 4.2. Example linear distribution function of landmark distinctiveness values.

4.1.1.1. Modelling Noise. The landmark set is generated by a distinctiveness distribution
model F(i), with a range of values, [0, maz(F(Z)]. The noise was then modelled as a percentage §

of full scale:

D; = F(i) + Random(0 : é§ - max F (7)) (4.1)

The random function was a uniform random function in the range [0 : § - max F(z)], with mean
16 - max F(3).

The distinctiveness values D; were then re-normalised into the range rmaz(F(i)). Figure 4.3
shows typical sets of landmark values for two agents, using the linear function for generating values,
and a é of 0.1 applied to the resultant values. At § =0, the two ordered sets are identical. The =
axis shows the landmark number, and the y axis is the distinctiveness of that landmark. Clearly, the
two agents share roughly the same perception of the environment, but there are enough differences
that the relative ordering of any two landmarks between the agents can be quite different.

Sorting the landmarks by distinctiveness value gives rise to Table 4.1, where the different relative
orderings becomes much clearer. The numbers represent the indices of the landmarks, z, used by
the linear distribution function, f(z). Note that in the limit of no noise, § = 0, the landmark index

is the same as its position in the sorted list.

4.1.2. Simulating Rendezvous. To simulate rendezvous, we simulated visiting landmarks

by selecting landmarks based on their distinctiveness values. One of the previously defined strategies
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1 andiwih Numbey

FIGURE 4.3. Example values of 2 landmarks sets with § = .1. Due to noise, the agents
may not agree on a preference ordering of the landmark. Note the relative mis-ordering

between landmarks 2 and 3.

Agent1{203148101157691213 14
Agent2)01275463109128 111413
TABLE 4.1. The relative ordering given by the distinctiveness values of the landmarks given
in Figure 4.3. The numbers are the landmark indices used by the distribution function

f(=z)-

was used to create a (potentially infinite) sequence of landmarks for each agent to visit. The sequence
was terminated at the first instance where both agents had a landmark at the same position in the
sequence, corresponding to a successful rendezvous.

Table 4.2 shows example sequences generated by the sequential and smart-sequential algorithm.
The smart-sequential sequence is terminated at the second position (the rest of the sequence that

would have been generated is shown in italics), because the 2nd element of both sequences is identical.

Agent Sequential Smart-Sequential
Agent 122222222 |2|0|1232080

—

Agent201(2(75463 |0(|0}102011
TABLE 4.2. Two possible sequences of landmarks to be visited, generated by Sequential
and Smart-Sequential, from the landmark sets given in Table 4.1. Again, the numbers
correspond to the landmark index used by the distribution function, f(z).

We use the time to successful rendezvous as a measure of the algorithm’s success. The length
of the sub-sequences until rendezvous is used as a measure of time until successful rendezvous.
Again, without noise, the deterministic algorithms (sequential and smart-sequential) are guaranteed
to generate sequences of length 1, that is, meet on the first try. By generating a sequence for
each algorithm under different conditions, (varying &, the asynchrony j, and the landmark set

commonality d), we can measure the time to rendezvous under the various conditions.
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4.1.3. Modelling Landmark Commonality. Recall from Chapter 3 that we explicitly
parameterise the extent of overlap between the spatial domains of the agents as d landmarks out of
the total set of n that are unique to one robot. The effect is that both robots must search through
more landmarks, as any subset of landmarks may not contain, or even be known to the other robot.
Note that in this case, existing algorithms (discussed in Chapter 2, section 2.1 in the literature may
fail, unless the the rendezvous is successful on the first attempt.

For this numerical analysis, each agent chooses a set of n random landmarks out of a possible
n+d, thus giving n—d common landmarks, and d unique landmarks. Which landmarks are unique is
generated randomly. These n landmarks are ther used by the algorithms to generate the appropriate
visit sequences. However, there is a reduced chance that the sequences will match at any given index,
since each sequerce is now populated with landmarks that have no match in the other sequence.
Table 4.3 shows an example landmark set where the commonality is fairly low, d = 5 out of n =15

landmarks are unique.

Agent1:2 0 17 1 4 19 10 11 15 7 6 9 12 13 14
Agent2|0 7 5 4 6 3 10 9 12 8 16 11 14 13 18
TABLE 4.3. The relative ordering given by the distinctiveness values of a linear distribution
function, with § = .1, and d = 5, n = 15. The numbers are the landmark indices used by
the distribution function f(x). The emphasised numbers are unique to each agent.

4.1.4. Modelling Asynchrony. Again, recall from Chapter 3 that we explicitly parame-
terise asynchrony, j, as the likelihood that any particular rendezvous attempt will fail. This effect
leads to a need for strategies that may re-visit the same landmarks repeatedly to compensate for
missed meetings.

For this numerical analysis, each position in the visit sequences has a probability assigned to
it. If that probability is greater than 7, only then is it examined to see whether the sequences match
at the position. If the probability of a particular sequence position is less than 7, it is skipped.

Table 4.4 shows an example run with asynchrony. Each pair of landmarks in the sequences
has an associated probability, listed in the bottom row. If the probability is less than j = .5,
then it cannot be used and must be skipped. The emphasised numbers are those that have an
insufficient probability to be used. Note that the sequences do terminate after three iterations, since
the sequences match at the third position, and the probability at ¢ = 3 is greater than j. Had this
probability been lower, then the sequences would have been at least n landmarks longer, given the

sequential algorithm.
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Agent Sequential

Agent 1 2 2 2 2 2 2 2 2
Agent 2 0 1 2 7 5 4 6 3
Probability | 4 3 6 .5 3 .8 .T .7

TABLE 4.4. The visit sequences generated by the Sequential algorithm, with the associated
probabilities. The asynchrony parameter, j is set to 0.5. Again, the numbers correspond
to the landmark index used by the distribution function, f(z).

4.2. Experimental Results

Using the foregoing models, a set of experiments was conducted to simulate the rendezvous
process. Each measurement determined the number of rendezvous attempts, or iterations, needed
to achieve rendezvous under different conditions. Measurements were taken at 14 values of 4, where
each measurement was made 1000 times; these 1000 trials gave a mean number of iterations to

rendezvous for a particular algorithm and a particular value of 4.

Noise vs. Time
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i "Smart-Sequential” -x--
80| 4

FIGURE 4.4. Baseline Performance - Time to Rendezvous as a function of Noise-level §

4.2.1. Base case: Time as a function of Noise. The baseline simulation shows the
performance of four algorithms in the face of increasing noise. The size of the landmark set is 50
landmarks, asynchrony j is 0, and the landmark sets have 100% commonality. The four algorithms
are the deterministic sequential and smart-sequential algorithms, and weighted probabilistic distri-
butions with exponential and linear probability functiors. Recall that the exponential probabilistic
function, for example, would have an exponentially higher probability of visiting the best landmark

on any given rendezvous attempt over any other landmark. Figure 4.4 shows that the sequential
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algorithm is the best performer, especially in the face of high noise {(i.e., § > 0.2) , which concurs
with the analytical result. Clearly, exponential is a very fragile function, failing catastrophically

with noise, ¢ > 0.2.
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FIGURE 4.6. Performance with 100 Landmarks, ideal case
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4.2.2. Different Landmark Set Sizes. Figures 4.5 and 4.6 show the performance of
the algorithms with different landmark set cardinalities. Unsurprisingly, the performance of the

algorithms scales with landmark set size.

4.2.3. 50 % Asynchrony. In the face of asynchrony, however, the algorithms exhibit
less intuitive behaviour. Asynchrony, again, is the probability that a particular rendezvous at a
mutually agreed place and time actually occurs. The simulaticn (which creates landmark sequences)
implemented asynchrony as the probability that a particular sequence element could be used. Even if
the pair of landmark sequences contained the same landmark at identical positions, the sequence may
not have terminated there, because the asynchrony probability prevented the first pair of matching
landmarks in sequence from being compared. as if the robots had failed to rendezvous successfully

despite attempting to do so at the same location at the same time.

Noise vs. Time, 50% Asynchrony Rate
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FIGURE 4.7. Performance with 50% Asynchrony rate

Figure 4.7 shows the performance of the algorithms given a 50% asynchrony rate, or a 50%
probability of successfully making a rendezvous. In this case, the smart-sequential and exponential
algorithms out-perform the sequential strategy, because the sequential form suffers from having to
visit every other landmark before being able to return to the landmark that failed on a particular
iteration, whereas the other two algorithms can return to landmarks relatively quickly. However,
once noise dominates the values, (§ > 0.5) the sequential algorithm outperforms the other algorithms
because it does not rely heavily on particular landmark values — it is not returning to the same

landmark over and over again.
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Noise vs. Time, 80% Asynchrony Rate
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FIGURE 4.8. Performance with 80% Asynchrony rate

4.2.4. 80 % Asynchrony. Even more interesting in the case of very high (80%) asynchrony,
Figure 4.8 shows that the exponential probabilistic function outperforms the deterministic algorithms
in the face of low noise {0.5 < § < 0.25), but again fails rapidly in the case of high noise (6§ > 0.23).
The exponential algorithm essentially forces the robot to return to the same landmark over and over
again, which is the correct strategy when asynchrony is high. However, when noise is high, the odds
that the recurrent landmark is the wrong one increase, and the deterministic algorithms, which do

not return to the same landmark as often, perform better.

4.2.5. 75 % Landmark Commonality. Finally, Figures 4.9 and 4.10 show performance
for maps with only 75% of the landmarks in common. The performance with non-identical landmark
sets (akin to non-isomorphic maps) is very similar to performance under low- to medium-asynchrony.
The smart-sequential algorithm performs better with low noise because it can return to landmarks
faster than sequential, but in the case of high noise (§ > 0.35), returning to landmarks too frequently

can be costly, and the sequential algorithm again dominates.

4.3. Conclusion

In this chapter, we have described a numerical analysis of the time complexity of the algorithms
presented in Chapter 3, and discussed some of the results. The parameter space of the rendezvous
problem is sufficiently large that an exhaustive analysis of the behaviour of the algorithms under all

conditions is beyond the scope of this paper. What has been described is a numerical analysis of
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FIGURE 4.9. Performance with 25% non-commonality in landmark sets
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FIGURE 4.10. Performance with non-identical landmark sets, and 50% Asynchrony rate
the algorithms under some of the more realistic conditions that may be encountered by two mobile
In the presence of large amounts of sensor noise (which we are modelling as agent dissimilarity),

the landmark selection will be essentially random, in which case the best strategy is simply to have

one robot visit every landmark, and have the other robot sit and wait for it. However, this is also an
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unrealistically pessimistic scenario. If the robots have been constructed to facilitate rendezvous, they
are likely to have a somewhat common perception of the environment and to have some commonality
in their explored areas. In reality, the robots will probably experience some limited sensor noise,
minimal dissimilarities, some asynchrony, and partial but not complete landmark commonality. So,
the best strategy takes these factors into account, and chooses a series of landmarks to visit in some
intelligent way.

Each of these methods has particular advantages and disadvantages. The sequential method is
simple, but makes no effort to account for relative likelihoods, or asynchrony. In view of the potential
shortcomings of the sequential method, we have proposed an alternative method, the probabilistic
method, that has an increased chance of compensating for a missed rendezvous and also attempts
to compensate for small variations in the respective rankings of the landmarks selected by the two
robots. For instance, the distinctiveness of each landmark could be the same, which would lead
to a uniform random visitation strategy. The probability distribution f(D{z,y)) could be a linear
function of value, or, if we assume that the amount of sensor noise is low, an exponential strategy.
However, if sensor noise is high and the two agents do not share the same ordering of landmarks, then
the agents may be forced into revisiting the incorrect landmarks much too often. A good compromise
between these two methods is the smart-sequential method. The advantage of this method is that,
if delta is low, landmark combinations with high values are explored before landmark combinations
where one landmark has a very high value, and the other has a relatively low value. This leads to
an increased probability of meeting even with substantial asynchrony. The smart-sequential method
is tantamount to guessing where the other robot might be, given relatively similar but not identical
landmark rankings.

In the following chapters, we present an implementation of the algorithms in the context of
both simulated and real mobile robot exploration, and show how the lessons learned in this chapter

persist into the implementation on real robots.
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CHAPTER 5

Exploration

In Chapter 4, we described some of the more interesting aspects of the performance of the algorithms
proposed for the rendezvous problem. The numerical analysis technique showed that the probabilistic
algorithms are in many respects much worse than the deterministic algorithms, although each type
of aigorithm has areas of best performance.

Recall that the context we are using for the rendezvous problem is exploration of an unknown
environment. This chapter is a presentation of the particular exploration method used as the un-
derlying application for the rendezvous problem. We show a number of different techniques used for
the exploration, and some results of the exploration, before conducting the simulation experiment

in Chapter 6.

5.1. Exploration Methods

There are many different algorithms that have developed for exploration of an unknown envi-
ronment, however, most exploration algorithms are used to describe the spatial characteristics of the
environment from one of two standpoints. The first describes the environment in terms of the objects
in the environment. The other point of view describes space in terms of the connectedness of the free
space. The first method of spatial description mast often results in either low-level descriptions of
discretised space with free and occupied pixels, or vertex-edge pairs of filled polygons. Alternatively,
the spatial description might result in high-level descriptions assigning semantic labels to points in
space, that represent objects recognised in the environment, such as a human might construct for
describing space. The opposing view of space most often results in a similar low-level description of
discretised space or vertex-edge pairs of free space polygons. Alternatively, the spatial description
might result in a high-level route map, describing how to get from point to point in space, again

such as a human might make for navigating in an unknown environment.
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The exploration methodology used by an autonomous agent is driven then by the consideration
of the particular spatial representation in use by that agent, but there is also the consideration of the
sensors available to that agent. If the spatial representation of the robot demands polygon vertex
descriptions, then the exploration algorithm must be geared to the precise and complete examination
of as many polygon vertices as possible. Whether the robot has sonar sensors or laser range sensors
makes considerable difference as to the speed and precision of acquisition of range data, which again
should profoundly affect the choice of exploration strategy.

For the purposes of this research, there is in fact no commitment to one spatial representation
over another for the exploration algorithm. The only constraint is that we would prefer an exploration
strategy that allows us to explore the space as quickly and as broadly as possible. This is by no
means an essential requirement - the sole purpose of the exploration algorithm, besides the meta-
purpose of providing a test application of the rendezvous problem, is to provide a trajectory over
which the landmark set is acquired. Since landmark acquisition is trajectory independent, the actual
trajectory generated by the exploration is irrelevant - we simply want the landmarks along the path.
If the path covers a substantial area of of space, so much the better - the experiments will have more
chance to elicit interesting results. A second counsideration is that the robots that will eventually
be used in this research have sonar transducers as their primary spatial sensor. Therefore, the
exploration algorithm must respect the limitations of the sensors in terms of range, precision and
likely sources of error.

We therefore would like to devise an exploration algorithm that will cover large amounts of
unexplored space reasonably rapidly using sonar data. Ideally, the limiting factor of the execution of
the exploration algorithm should be the mecharical running time of the algorithm; any exploration
method that is dominated by the time to compute the next position is undesirable for our methods.
We shall also see in Chapter 7 that an algorithm that will allow also that data to be corrected over

time will be very useful.

5.1.1. Topological Mapping. There are a number of different exploration algorithms
developed for different purposes that could be used as the basis for our exploration algorithm.
Exploration algorithms exist that use both metric and topological representations of space, or com-
binations thereof. Different algorithms have different purposes, such as speed, or accurate mapping.

One example of an exploration algorithm is the topological robot exploration strategy developed
by Kuipers and Byun [34]. The notion of distinctive places that drives this exploration strategy is
the basis for the landmarks we use for the rendezvous process. This exploration strategy describes

the notion of “distinctive” places in the environment, much the same as our distinctive landmarks.
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These distinctive places form nodes in the graph, and the nodes are connected by distinctiveness
contours - paths through space that have equal distinctiveness.

However, none of the existing algorithms was appropriate to the purposes of this research. As a
result, the method we have used is derived from traditional path-planning algorithms. The aim of our
exploration method is to move the agent through known space as rapidly as possible to unexplored
space. We therefore treat this as the problem of path-planning a route away from known obstacles
to unknown space. The approach we use is a path-planning approach known as “potential fields”.
We also use on-line search to perform global path-planning for generating paths between explored
regions of space. By using path-planning algorithms as the bases of the exploration algorithm, we

ensure that the robots are moving towards unexplored space as much as paossible.

5.2. Potential Fields

The potential field method is inspired from classical physics, and treats space as a potential
field such as a gravitational field, or electrostatic field. Goals exert an attractive force, such as a
positive charge or a gravity well. Obstacles exert a repulsive force, such as negative charge, or an
infinite gravitational potential. Each point in space then has an associated potential, computed from
the known obstacles and goals. Using techniques borrowed from optimisation, the agent then moves
down through the potential field to the nearest minimum. If the placement of goals is correct, the
local minimum should be the nearest goal.

An alternative view of the potential field method treats space as a rubber sheet, where obstacle
poke the sheet upwards, and the goals pull the sheet downwards. The robot is ball-bearing on the
sheet, allowed to roll freely through the force of gravity. Once the ball is released, it will roll between
the obstacles without actually colliding with any of them, and roll into one of the pits where the
goal has pulled the rubber sheet downwards. By using this technique, the robot will naturally move
away from obstacles towards unexplored space. As it moves between obstacles, it will choose a path

equidistant from the surrounding obstacles.

5.2.1. The Exploration Algorithm. The following describes each step of the exploration
algorithm:

(i) Acquire sensor data
Given that the sensors available to us with our current robots are sonar transducers, the
assumption is that the data returned by the sensors will be of the form (range, angle), where
range is from the centre of the robot. Given the current pose of the robot, the (z,y) position

of each data point can be easily computed
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(ii)

(i)

(iv)

5.5.2 POTENTIAL FIELDS

Update potential field to reflect new data

We are moving “downhill” through the potential field. The downhill motion should represent
motion away from obstacles (e.g. walls, furniture, etc.); these points are therefore represented
as points of high potential.

The data points also affect the surrounding area, with some function, just as mass has an

effect on the surrounding gravitational field. The potential function used in this work is!:

&(d)=-Sd+¢ (5.1)

K
We set £ to 1 x 103, the height of the potential field at the obstacle; x is a constant that
represents the maximum area over which the field is applied (75cm in this case). d is the
distance from the data point. It should be noted that the robot may still roll close to a wall,
unless additional precautions are taken. These are explained in step 4.
Update potential field to account for position
In order to prevent the agent from repeated explorationr of regions, we allow the agent’s
position to affect the potential field as well. The agent itself raises the potential to some
level, so that even in flat regions of the potential surface, the agent continues to roll forward
(propelled into the future by its own history, as it were), until some environmental feature
alters its path.
We used the same potential function as for the data points to represent the potential effect

of the agent’s history, with different constants:

where &, is 700. &, is lower then £ of Equation 5.1 to reduce the effect of the robot potential
function compared to that of the sonar data.

Search for location of minimum potential over local neighbourhood

If either the minimum potential is found to be the current location, or the minimum potential
found is above some threshold, then this must be treated as a special case. This special case
will be addressed in 5.2.3.

The local neighbourhood used was a circle of radius 30cm (the same radius of the robot).

The potential at points around the robot is found by representing the environment as a

1This potential function was arrived at empirically in order to maximise the exploration algorithm efficiency; it should
be noted that it is not related to the traditional potential functions of gravitation or electromagnetic fields, and does
not have the same form.
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discretised grid of potentials, much like the occupancy grid stores probabilities. While it
would be possible to dispense with the potential grid and analytically determine the local
(within the neighbourhood) potential minimum point from the occupancy grid, this would
become extremely computationally costly as information accumulated in the occupancy grid.
We have instead opted for computing the change in potentials at discrete points in the
environment as data is accumulated, and searching the discretised grid.
It should be noted that when a poteatial is applied to a cell, it only changes the cell potential if
the new potential raises the potential at that cell - it is not added, and two different potentials
are never combined in any way. Therefore, the wall potential effects usually dominate over
the robot potential effects.

(v) Move to the location of the local mirimum
By keeping the local neighbourhood relatively small, and ignoring the possibility of dynamic
obstacles, we can assume that the straight-line path from the current location to any point in
the neighbourhood is also the best path (in terms of distance and time), and path-planning
of any non-trivial sort is unnecessary.

(vi) Go back to Step 1.

The advantages to the potential field method are simplicity and effectiveness. The potential field
descent automatically encapsulates both known-obstacle avoidance and exploration. Furthermore,
the potential field method is a well-established and well-understood method; considerable literature
exists both on its implementation and use.

However, the potential field method has some drawbacks, as well. The potential field relies upon
a discretisation of space, and as such has the substantial storage requirements of any discretised map
of space. Furthermore, it is computationally intensive. Finally, it has two substantial issues which
are addressed in the following two subsections, namely the issues of sampling rate, and the presence
of local minima.

Figure 5.1 shows an example trajectory through an environment, and the resulting potential

field.

5.2.2. Sampling. In order to overcome this issue of computational compiexity, the potential
is stored for a sampling of points over space, and the local neighbourhood is searched over what
points have been sampled in that neighbourhood. As new information about obstacles is acquired by
the sensors, only those points in the sample set that are affected by the obstacles have their potential

recomputed. It should be pointed out that it is this storage of sampled points that raises the storage
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FIGURE 5.1. An example trajectory through an environment, and the resulting potential field.

requirements for the potential field planning method. If the potential could be recomputed quickly
for each point in the neighbourhood there would not be the same storage constraints.
Besides the tradeoff between computation and storage, there is a performance balance within

the sampling itself - how coarsely to sample space. If space is over-sampled, the storage requirements
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balloon with limited performance benefit. However, if space is undersampled. then existing paths
may not be found within the undersampled representation, local maxima and minima may not be
found, and other undesirable effects may occur.

Another issue is how large of a local neighbourhood to search, in order to find the next position.
Too large of a local neighbourhood, and the search time dominates the running time of the algorithm.
Too small a local neighbourhood, and the mechanical running time becomes unnecessarily high. The
size of the local neighbourhood over which the potential is searched for a minimum is akin to the
step size that the robot takes every iteration during exploration. The step size should be small
enough that the the agent will not miss any environmental features between steps, but should be
large enough that the robot can move from point to point in the environment in a reasonable amount
of time. In the experiments performed in this thesis, the step size was 30 cm, which is a little bit

larger than the robot radius. This is an ed hoc parameter, but one that appears to have worked

reasonably well.
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FIGURE 5.2. An illustration of the sensor undersampling problem. The circle in the center
of each image is the robot. The upper left image is the actual map, the upper right image
is the result of 16 range measurements, where the black dots correspond to where the range
measurement was observed. The lower image is the result of 64 range measurements.
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The final sampling issue is that of sensor sampling of the environment. At every step, the robot
takes a certain number of sensor measurements in the environment. These measurements are range
data from the centre of the robot, at equally spaced angular intervals. The robots used for these
experiments have 12 (in the case of the RWI B12 robot} and 16 {in the case of the Nomad 200)
sonar transducers mounted around the sonar base, at regular angular intervals. These transducers

can all be used more or less simultaneously.>
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FIGURE 3.3. On left is the trajectory that results from using 16 sonar measurements
per iteration. Each cross represents the position of the robot at an iteration. The start
position is the same as in Figure 5.2. On the right is the exploration trajectory from the
same location, using 64 sonars.

Sixty-four sonar samples were used for our potential field navigation, because fewer sonar sam-
ples could capture enough information about the environment to direct the robot in a reasonable
fashion. Figure 5.2 demonstrates the sensor undersampling problem. In this example, the 16 range
measurements (left box) capture most of the large structure of the corridor, however, they do not
emphasise the major escape route down the middle of the corridor, as is emphasised using 64 mea-
surements (right box). As a result, the trajectory of the robot moves between the interleaved
“bumps” in the potential field surface. With 16 data points, these bumps are not close enough
together to form a coherent barrier, so the surface is rippled. Figure 5.3 shows the robot trajectory
moving from left to right across the corridor using 16 sensors, but moving correctly using 64. By
using 64 sensors, the surface is still rippled, but the dominant direction is now towards the centre
of the corridor, and down the length of the corridor. The ripples do not determine the direction.

The solution to this problem is to ensure that the space is being sampled sufficiently by the
sonars. 64 sonar measurements was empirically determined to elicit the expected behaviour from

the exploration algorithm. It should be noted that in reality, the sonar beam is not as precise

2In principle, adjacent sonar transducers cannot be fired simultaneously due to acoustic crosstalk, but the amount of
time to acquire data from all transducers is on the order of a second or less.
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as indicated by the diagrams in Figure 5.2. The sonar cone has a spread of about 12°, and the
angular displacement between two consecutive sonar measurements of 64 is only 5.6°. Consequently,
there will be overlap between measurements at anything more than a meter. How to handle these
sonar artefacts is a topic of ongoing research. One possibility is to represent sonar measurements as
something other than single range measurements. We have elected to use the perhaps over-simplistic

but sufficient range point representation, and accept some inevitable artefacts in the data.

5.2.3. Local Minima. One final concern with potential-field based exploration is the prob-
lem of local minima. Recall that at each iteration of the algorithm, we are searching for the minimum
potential over a local neighbourhood, and moving to that location. If, however, that position lies
at the current location, then the algorithm will become stuck in an infinite loop, never moving the
robot. We therefore must trap this special case, and use an alternate method to potential field
descent for escaping local minima.

Recall from Step 4 of the algorithm, we also must use an alternate method if the local potential
minimum is above some, arbitrary, threshold, =. This threshoid r ensures that the potential field
does not push the robot into a wall. T was chosen such that the robot can never be close to an
obstacle than 1.5 times its radius.> Note that this threshold 7 also prevents the robot from moving

too close to a previous location, but closer to a previous location than a wall.

5.2.4. Breadth-First Search.  The failure of the local potential-field descent during ex-
ploration suggests a global approach to path-planning problem. We use the need for a more global
strategy as an opportunity to perform a global search for distant potential minima - we expand
the search neighbourhood to the entire map, searching every point for which we have gathered in-
formation. This strategy takes us from the recently explored regions to the fringes of the known
environment.

The search region is now substantially larger than the local neighbourhood being searched
during the potential field descent, and almost invariably irregular in shape. Consequently, we use an
exhaustive breadth-first over the potential field originating from the position of the robot, examining
every point in the potential field for which we have sensor information.

The technique for performing breadth-first search on a field such as this is well-established with
time complexity O(n) in the number of cells to be searched; a good a reference is Cormen, Leiserson
and Rivest [16]. However, there must be some method of determining which of the potential field

cells is to be searched. We only wish to search those cells for which we have any sensor information at

3From Equation 5.1, given the values of £ = 1 x 103, x = 75 and the robot radius of r = 23, the threshold must be
T = 530.
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all - searching the potential of cells for which we have no information is dangerous, since the potential

is almost certainly going to be incorrect. We therefore turn to the metric map, the occupancy grid.

5.3. Occupancy Grids

The initial state of the occupancy grid has every point set to some value representing unknown.
As the data points are added, the cells at those locations are set to the value representing the
probability that the cell is filled, or occupied (hence the name). However, each data point represents
information not only about one point in the environment that contains an obstacle, but also about
every point in the environment between the robot and the obstacle. Imside the occupancy grid
representation, these points are set to the value representing the probability that the cell is empty.
These points are identified by performing scan-conversion across the occupancy grid between the
robot position and the data point; the scan-conversion is accomplished using a technique borrowed
from computer graphics, the Bresenham or mid-point algorithm. Figure 5.4 demonstrates the scan-
conversion algorithm. The grey cells are assigned a low probability of being occupied, whereas the
cross-hatched cell is assigned a high probability of containing an obstacle. No other square is affected
by the sonar beam - if all other squares are currently unknown, then they remain unknown, and

only the coloured squares in the image now contain some sensor information.

[ / Obstacle | Obstacle

/ / / 1 amcle cell

/ / L —
/ pd |
/ A Affected Occupancy
A Grid Cells in grey
Occupancy Grid
Robot Robot

FIGURE 5.4. An illustration of the Bresenham algorithm. The dark grey cells are low-
probability accupied, and the black cell is high-probability occupied.

Those cells that are unaffected by the sonar measurement, that remain in the unknown state,
represent the boundary of the breadth-first search. Recall that the breadth-first search should not
explore those cells for which no sensor information has been acquired, as the potential is likely to
be wrong. Therefore, by performing flood-fill, breadth-first search, from the current position to the
edges of the region that consists of low-probability (P; < 0.3) cells, we can constrain the search.

Note that we do not expand cells containing sensor information and have a high probability of being
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occupied (P; > 0.5) because we are looking for an available place for the robot, with low potential.

The robot clearly should not be sent to a location containing an obstacle.

5.3.1. Antialiasing. Because the sonar beam model has some finite thickness, the beam
is anti-aliased, that is, the points one either side of the beam are given some probability indicating
that they are empty as well. This is another technique borrowed from computer graphics, to prevent
images displayed on low-resolution raster devices (such as low-resolution printers and monitors) from

having jagged edges. We use it in this instance, to account for the width of the sonar cone.

Obstacle

\
Obstacle cell

Affected Occupancy Grid
B Cells in grey - less
affected cells are lighter

Raobot

FIGURE 5.5. An illustration of aliasing - the lighter squares receive less of a change in probability.

5.3.2. Bayesian Recombination of Data. Frequently, two successive measurements will
provide information about the same location in the environment. If a probability is being assigned
to an occupancy grid square that already contains a probability, the two probabilities must be
recombined in some consistent manner. For this, we use Bayes’ rule as formulated for combining

independent data [47]:

Pip1(z.y) = Pz, y)w(z,y) + (1 - w(z,y))v(z,y) (5-3)

where Py i(z,y) is the probability of occupancy at location (z,y) after the recombination,
Pi(x,y) is the probability before, w(z, y) is the recombination weighting at location (z,y), and v(z, y)
is the new measurement. V will always be either 0, meaning empty, or 1, meaning occupied. The
weighting recombination we used in this experiment was uniform for all positions, w(z,y) = w = 0.5.
That is, the new measurement is equal in weight to the old value.

In principle, the value at a particular point should never change. However, the reality of

using sonars as sensors means that some measurements will sometimes be wrong. This probabilistic
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recombination of data allows us to account for these errors, and by averaging the measurements

through time, we should get a more realistic picture of the environment.

_!
|

FIGURE 5.6. The diagram on the left is the original map, with an exploration trajectory
marked in. The diagram on the right is the occupancy grid representation that results
from the exploration. The third diagram is the c-space representation. The grey areas are
pixels with no information. Black areas are free pixels (probability of occupancy < 0.5)
and the white areas are occupied pixels (probability of occupancy > 0.5).

Finally, we convert the occupancy grid into a configuration space. This representation models
the robot as a point in space, by expanding obstacles by the robot’s radius. Since the robots
have only holonomic motion constraints (within our domain of interest) and are regular cylinders,
combining configuration space with the occupancy grid is a relatively simple proposition - each data
point is expanded to a disc with radius equal to the robot’s radius. The rotational symmetry of the
robot allows us to use only two dimensions for the configuration space representation.

By expanding the occupancy grid to configuration space (or c-space), we can ensure (to the
limit of sensor accuracy) that the robot will never come in contact with an obstacle. Every time the
exploration algorithm moves the robot to a new location, we can verify that the location is free of

obstacles using the occupancy grid. While the potential field alone should be sufficient to prevent

the robot from driving through obstacles, the occupancy grid is an added security measure.
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Figure 5.6 shows an exploration trace, and the resulting occupancy grid. The black regions are
those that are free of obstacles. The white pixels are obstacle pixels. The grey areas are pixels that
contain no sensors information.

Figure 5.6 also shows the result of converting the occupancy grid into c-space. The c-space
map can now be used to perform such tasks as path-planning more easily, by treating the robot as
a point. Notice that the white areas are much more pronounced in size, as a result of expanding the

obstacles.

5.4. Exploration and Rendezvous

Finally, we can use the exploration method to explore space, and the occupancy grid will give
us a metric map of the environment. {Although the occupancy grid is in fact in c-space, it is a
relatively simple matter to extract the original map.)

Figure 5.7 shows a demonstration exploration trajectory that ran for 200 seconds. The first
image taken is the initial position of the robot. Each subsequent image is immediately after the robot
found itself in a local minimum, or had exceeded the potential threshold, either of which triggered a
breadth-first search for a new region of low potential. Notice that each breadth-first search results
in exploration of a new, often far-removed and disconnected region of space, which is in fact very

much the desired result.

5.5. Conclusion

In this chapter, we have described the exploration method we will be using as the underlying
task for the rendezvous experiments in the following chapters. We presented the techniques the
exploration method used, namely potential field descent and occupancy grids, and how the data
is used to generate both the potential field and recombined over time into the configuration space
occupancy grid.

In the following chapter, we describe experiments using this exploration method with the ren-

dezvous algorithms described in Chapters 3 and 4, and examine the results of those experiments.
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FIGURE 5.7. 6 snapshots of a 200 sec. exploration trajectory. Each small cross is a point
on the trajectory. Connected lines have not been drawn in, for clarity.
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CHAPTER 6

Simulation

In the preceding chapters, our discussion of the rendezvous problem has been on a theoretical basis.
Although Chapter 4 encapsulated a number of practical issues with parameters such as sensor noise,
our analysis did not address the problems of space. In this chapter, we will be simulating mobile
robots in a two-dimensional environment, and performing an analysis of the algorithms similar to the
numerical analysis of Chapter 4. However, this numerical analysis was abstracted from the domain
of mobile robotics to a considerable degree.

In the previous chapter we proposed an exploration algorithm that will motivate our rendezvous
algorithm. The context of this research is exploration of an unknown environment; the objective is,
as always, to increase the speed of the exploration by using multiple robots, and we wish to overcome
the inevitable communication limits by using the technique involving periodic rendezvous to bring
the robots together to share information at regular intervals.

By performing the exploration with rendezvous first in simulation, we are able to address
many issues that result from coupling rendezvous to a primary task such as exploration, and issues
that result from the spatial domain of the problem. We will not be addressing the problems of
physically-realisable robots, such as overcoming sensors artefacts. Once the simulation is working
to our satisfaction, we then move to the experiments performed on real robots; these experiments
are described in Chapter 7.

The experiments that we describe in this chapter have two goals; the first is to determine the
behaviour of the various rendezvous algorithms (proposed in Chapter 3) under different experimental
conditions. The second goal is to determine the speed-up of the exploration of two robots performing
rendezvous, when compared with a single robot. First we outline the experimental method we used
for the experiments, in particular the method of landmark acquisition and the rerdezvous process.

Secondly, we demonsirate the results obtained, and the relationship to previous results.
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6.1. Experimental Method

The agents were modelled as idealised Nomad 200 robots with perfect (noise-free) sensing
abilities and odometry.! The agents explored the unknown environment for a pre-determined length
of time; at the end of this length of time the agents attempted rendezvous. The agents then took
the n best landmarks seen so far, and used those for the rendezvous algorithm. Each agent was
running the same rendezvous algorithm; where the algorithms demanded asymmetrical agents, the
agents were assigned roles randomly ab #nitio. Instead of generating sequences of algorithms, as in
Chapter 4, we simulate the robot motion between rendezvous points, and simulate communication

attempts.

6.1.1. Acquiring Landmarks. The trajectory of the robot through the environment is
given by the exploration algorithm as described in Chapter 5. In principle, all that remains to be
done for landmark acquisition is to measure the distinctiveness function along the trajectory and
retain the local maxima. This can be captured by naive algorithm depicted by the flowchart in
Figure 6.1.

However, this simplistic description hides several complex issues, the first of which is choosing
an appropriate distinctiveness function.

6.1.1.1. The Distinctiveness Function. Recall from Chapter 3 that we would like a distinc-
tiveness function that is smooth and has few local extrema over the exploration space. However,
in most non-trivial environments a number of factors such as sensor noise and occlusion make the
distinctiveness surface highly non-convex and complicated. Our choice of a distinctiveness function
was based human experience; we would like the function to peak in wide-open areas that correspond
to large rooms, foyers, etc. These are more traditional meeting points from a human perspective
than, for instance, corridors, alleys or alcoves. Figure 6.2 shows an example of a robot in a room,
taking 16 sonar measurements.

We can measure the “openness”, R, of any point in the environment simply by summing the

range returned by each sensor:

R(z,y) = 3 R(z,y,6)) (6.1)

i=1
Figure 6.3 shows the result of the robot using 4 of its sonar transducers to compute the openness

of its position, from Equation 6.1.

I While we did have the ability to simulate the sonars using a more realistic sonar simulator, this simulator was simply
too computationally slow to be of much use - 64 data points took over 1 minute to compute, as opposed to 1 second,
using the noise-free simulator, a speed difference of at least one order of magnitude.
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“lr Measure distinctiveness ]

I Move according to the exploration algorithm
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Is new
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recorded?

Save last recorded
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FIGurE 6.1. The landmark acquisition algorithm.

FIGURE 6.2. A typical measurement taken by a robot using 16 idealised sonar transducers.

Furthermore, we would like to pick the middle of these open spaces, that is to say, the most

symmetrical points in the environment. Given that we have round robots with evenly spaced sensors,
where each sensor has a diametrically-opposed mate, then measuring symmetry is a relatively easy

task. We measure the asymmetry, A, of each point by summing the absolute of the differences from

a7
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Total: 18 m

FiGURE 6.3. The result of using 4 transducers and Equation 6.1 to compute the openness
of the surrounding space.

these diametrically-opposed pairs. If each pair of sensors measures the same, then the asymmetry

falls to 0.

n/2

.A(JT, y) = Z [ R(I1 Yy, 6!) - R(xiyyei-i—n/'.’) I (6'2)

i=1
Figure 6.4 shows the same robot as figures 6.2 and 6.3 using 4 transducers to compute the
asymmetry of its position. Notice how the asymmetry falls to 0, when the robot is positioned
exactly in the middle of two walls. The zero asymmetry case could only occur when the the robot

is in the middle of a regular polygon with same number of sides as the robot has transducers.

m-4m=4m Total: 4 m
3m-3m=0m

FIGURE 6.4. The result of using 4 transducers and Equation 6.2 to compute the asymmetry
of the surrounding space at the robot’s position.

We then combine the openness and the asymmetry by dividing R (6.1) by A (6.2} to get
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64 o5
D = gl (6.3)
Donei | Ri — Rigaa |

Recall from Chapter 3 that we showed an example distinctiveness surface in Figure 3.1. We
used this distinctiveness function (Equation 6.3) to compute that surface.

6.1.1.2. The Distinctiveness Distribution.  The numerical analysis conducted in Chapter 4 had
an underlying assumption that the distribution of the landmark values was approximately linear.
Certainly, in the case of no noise, this was completely true, as the landmark values were computed
using a line function. However, this assumption is not necessarily valid for landmark values acquired
in real space, or even in simulation.

The main reason for suspending this assumption is that the environment and the distinctive-
ness function dictate the landmark values. Even with a knowledge of environmental features, it
is extremely difficult to pick a distinctiveness function that has few, dominant local extrema, let
alone determining a function that will give these extrema a linear distribution. With our assump-
tion of a totally unknown environment, picking such a distinctiveness function is clearly impossible.
The question, then, is whether or not the analyses under the assumption of a linear distinctiveness
distribution are relevant to the real robot.

Figure 6.5 shows a sample landmark distribution. These landmark values were generated from
a simulated robot trajectory through a sample environment that is morphologically similar to an
indoor environment (rectilinear walls, etc.). This is the same map used to generate the sample

distinctiveness surface (Figure 3.1).

D: of L values from Exple Na Nose

First Agent ——
Sccond Agent ~~—

Landmark Distinctivencss Value

FIGURE 6.5. An example distribution of landmark values from a simulated exploration
run, with no noise applied to the distinctiveness values.

Figure 6.5 shows the landmark distribution is roughly linear. It is a noisy line, but not unlike

‘ the landmark distribution produced by the linear function with 10% noise. Figure 6.6 shows a

59



6.6.1 EXPERIMENTAL METHOD

sample landmark distribution acquired in the same manner as Figure 6.5, but with roughly 10%

noise (%25 on a maximum value of 250). Here the linear distributiorn is preserved in all but the first

distinctiveness value.
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FIGURE 6.6. An example distribution of landmark values, from a simulated exploration
run, with +£25 applied to the Distinctiveness.

However, the distribution for the very high noise simulation (+400 cr 2 maximum value of 250)

shows again the linear distribution of landmark values, plotted in Figure 6.7.
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FIGURE 6.7. An example distribution of landmark values, from a simulated exploration
run, with 400 applied to the Distinctiveness.

Figure 6.7 shows a linear distribution, again with substantial noise. However, given the fun-
damentally linear natures of the three sample distributions shown here, it can be safely concluded
that the assumption of linear distributions for the landmark values collected by the agents during

exploration is tenable, and the numerical analysis performed in Chapter 4 is valid.

6.1.2. Trajectory Dependencies. One of the problems with using the exploration method

described in Chapter 5 is that there is no guarantee that any particular point in the environment
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will be visited during the exploration process (in fact, there are no guarantees about anything, since
no semantics are ever ascribed to any part of the spatial representatior). Consequently, two agents
that have explored the same areas of space may have trajectories that do not overlap in any manner.
Even more troubling are the issues of landmark distributions, and accurately recognising peaks in
the distinctiveness surface.

6.1.2.1. Landmark Distributions in Space.  One of the difficulties of demanding trajectory-
independent landmark acquisition, is that any notion of the landmarks’ relative positions in Eu-
clidean free space is lost. While it is possible to determine how close two landmarks are in absolute
distance, obstacles may intervene, making two landmarks appear relatively close together, whereas
they may be separated by some considerable distance through free space.

Ideally, however, only landmarks which are not mutually visible should be kept in the landmark
set, otherwise a number of undesirable conditions may result. One such condition is that two
landmarks (which are in reality distinctiveness maxima along the trajectory) may in fact be too
close together, because two points along the trajectory that are separated in time (or distance along
the trajectory) are in fact very close together. Figure 6.8 demonstrates this effect. The robot travels
along the distinctiveness surface, storing only the local maxima that it sees along the trajectory.
Recall that the robot is only considering the distinctiveness of points that it actually visits. The

robot does not perceive that there is a peak in the distinctiveness surface between the two peaks in

the trajectory.

Maximum in Distinctiveness Surface

S

Local Maxima in Trajectory

%* *

AN
e

Robot Trajectory

FIGURE 6.8. An example trajectory that covers both sides of the peak in the distinctiveness
surface, but never sees, or measures the actual peak in the surface.

While this is not a problem for the algorithms, if the environment is large, or the area of the
environment common to the agents is relatively small, then the time to rendezvous becomes a serious
issue. Since the goal is to have the agents rendezvous in minimum time, it is undesirable for the

agents to spend time visiting points in the environment that are close together. The algorithms,
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and the testing performed on them in Chapter 4 assume that two agents at two different landmarks
cannot communicate, or “see” one another. By invalidating this assumption, the strengths of the
algorithms we have developed are, in some sense, being defeated. Points in the environment are
essentially being revisited, regardless of whether it is appropriate to do so.

There are a number of ways of dealing with this problem. Each method has its strengths and
drawbacks. These methods are only necessary for weeding out those landmarks that have been

already acquired and lie within some visibility range, e.g. radio range, etc.

e If the robot has a range sensor, it can be used to determine whether any of the previously
acquired landmarks is visible from each potential landmark, as it is acquired. This has
the advantage of being fast, and requiring minimal additional storage and computation.
However, most range sensors are both inaccurate and have insufficient range to be practical.

e The robot can suspend the primary task (e.g. exploration, etc.) and attempt to travel in
a straight line to each of the other landmarks that lie within the visibility range. If no
obstacle is hit then the two landmarks can be considered mutually visible. The advantage to
this method is the same as using the range sensor, but does not have the same accuracy or
range problems of the range sensor. However, it does add substantial mechanical complexity
to the rendezvous problem. As the number of landmarks grows, the complexity becomes a
sufficiently large drawback as to make this method of determining mutual visibility worse
than simply allowing the mutually visible landmarks to remain in the landmark set.

e If the primary task (e.g. exploration, etc.) provides a metric map, such as an occupancy grid,
this can be used by the rendezvous algorithm to determine whether or not two landmarks are
mutually visible. This method does demand substantial storage for such a map, but if one
is already available from the primary task, then making use of the map is a computationally

cheap option. However, the map must contain appropriate information, and must be reliable.

Since the task that we are performing is exploration and an occupancy grid is available, the third
method was used in the experiments for eliminating mutually visible landmarks from the landmark
set. As the results will indicate, it worked with success.

6.1.2.2. Accurate Peak Measurement.  The method described in section 6.1.2.1 suffices for
eliminating multiple landmarks that represent the structure in the distinctiveness surface. However,
there still remain the issues of accurately recognising the distinctiveness peaks, and even more
importantly, measuring the peak height accurately.

The problem of accurately measuring the peak height is related to ensuring that the agents

have the same perception of the environment. In addition to noise and sensor differences which were
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discussed in Chapter 3, care must be taken to ensure that the agents view the environment from the
same (or equivalent) standpoints.

If the agents share the same trajectories through the environment, then this issue is solved.
Such a situation would occur, for instance, if the agents were employing Voronoi diagrams or freeway
methods for navigation. While there will in practice be some positional error across agents, this will
largely be due to sensor error and can be encapsulated in the sensor model. However, if the primary
task does not involve navigation along mandated trajectories, then it is likely that the agents will,
while capturing the same peaks in the distinctiveness, have very different perceptions of the height

of the peaks, as Figure 6.9 demonstrates. >

2nd Robot’s Landmark
Ist Robot’s Landmark

2nd Robot Trajectory

FIGURE 6.9. Two agents exploring the distinctiveness surface. Because of the nature of the
exploration algorithm, one agent passes directly over top of the peak, and thus measures
its height correctly. The other agent passes first to one side, and then the other, retaining
only the higher of the two maximal measurements, never measuring the peak correctly at
its maximum height.

In practice, the measurement of landmarks can be refined, thus solving the sampling problem,
by performing gradient ascent over the distinctiveness surface every time a potential landmark is

identified. There are three possibilities for when this landmark refinement process occurs:

(1) During the landmark acquisition process
Refining the landmarks during the acquisition process does not effect the mechanical com-

plexity of the rendezvous process, although it increases the complexity of the acquisition

2This is, of course, a sampling problem. However, given the prevalence of high-frequency information in the dis-
tinctiveness surface, undersampling is inevitable without serious increases in mechanical complexity. In the worst
case scenario, if the agents drastically undersample the distinctiveness surface, they will not only mis-measure the
distinctiveness peaks, but miss some peaks altogether. If the distinctiveness function is also used for the primary task
(as it is in this research, as the sonar is used both for the distinctiveness measurements as well as generating the map),
the primary task must be aware that rendezvous is being performed, and must be willing to relinquish control of its
sensors to the landmark acquisition process. This requires some coupling between the landmark acquisition process
and the primary task, but the coupling can be eliminated if necessary by giving the rendezvous process a separate
sensor.
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process. While the rendezvous process has an accurate perception of the environment, and
therefore no recalculation is necessary during the rendezvous algorithm, the primary task
(e.g. exploration) is no longer completely decoupled from rendezvous; again, it must be
aware that periodically it will be suspended while the landmark acquisition process refines
the landmark measurements.

Between the primary task and the rendezvous process

Before the rendezvous process begins, the agent visits each landmark it has acquired, and per-
forms gradient ascent over the distinctiveness surface starting from each landmark. Armed
with the refined landmark measurements, it then computes the visit sequence according to
the specified algorithm and attempts rendezvous. The advantage is that the rendezvous
process is again decoupled from the primary task, but the rendezvous sequence is computed
correctly, and only once. The disadvantage is the non-trivial mechanical complexity that
results from revisiting every landmark, before begirning rendezvous. For a process that has
many, widely separated landmarks, this will be unacceptable.

During the rendezvous process

The landmark measurements can be refined during the rendezvous process. This has the
advantage that the rendezvous process and primary task are decoupled as in the previous
method, but the additional mechanical complexity is low, as in the first method. The
disadvantage is that the visit sequence must be recomputed in the majority of cases if a
deterministic algorithm is being used. Furthermore, if the measurements are completely

wrong, the measurement may not be corrected until after a substantial number of iterations.

The method chosen for the simulation and real robot experiments in this research was the

first one, since maintaining the decoupling between the rendezvous and exploration tasks was not a

primary concern.

Figure 6.10 shows the result of the hill-climbing operation.

Table 6.1 shows the change in the distinctiveness values, as a result of the refinement process.

Note the reordering of the landmarks, especially landmark 5, which was initially at position 2. Also

note the substantial increase in overall distinctiveness values.

As the diagram shows, some of the landmarks are positioned some distance away from the initial

estimate. Since both agents perform the same landmark refinement, the trajectory dependency is
overcome, and the only differences in landmark perceptions should be due to noise and sensor

differences.
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FIGURE 6.10. The result of the landmark refinement process. The dashed circles are the
initial peak estimates, acquired during the exploration process. The solid circles are the
final positions of the landmarks. The box is the best landmark.

Final Landmark Initial Final
Rank Distinctiveness | Distinctiveness
1 40.74 (3) 616.86
2 60.12 (1) 583.98
3 35.96 (4) 477.76
4 19.34 (6) 265.54
3 48.38 (2) 254.00
6 10.95 (8) 242.94
7 7.50 (9) 215.90
8 22.06 (5) 187.96
9 7.57 (10) 67.10
10 15.66 (7) 25.40

TABLE 6.1. The change in landmark values as a result of the landmark refinement process.
The initial rank of each landmark is in parentheses.

6.1.3. Modelling Noise. = Two of the formal parameters developed in Chapter 3 were 4,
random noise, and 7n(z,y), systematic noise at position (z,y). Recall that in Equation 3.10, we
combined these two parameters into the one parameter, 7(z,y). For the purposes of the numerical
analysis, n{z,y) was generated independently for each (z,y) pair from the function Random(0 :
r x maz(F(2}))-

During the robot simulation, the noise modelled by Equation 3.10 was applied only to the
distinctiveness value in order to isolate the distinctiveness sensor from the exploration sensor. This

explicit decoupling may appear counter-intuitive. However, since the primary task is not necessarily
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exploration, or even driven by sonar data, separating the noise model from the exploration sensors is
more consistent with the separation between rendezvous and the primary task that has been main-
tained throughout this work. By treating the noise model as applicable only to the distinctiveness
values, the distinctiveness sensor becomes a qualitatively different sensor to the exploration sensor.
This approach has the added advantage of simplifying the exploration algorithm - no effort must be
made to clean up noisy data for map generation. It should be noted that this clean decoupling was
not used during the real robot experiments. There is no question of modelling noise on areal robot
- the noise is the real thing.

Initially, the same approach as the numerical analysis was used for modelling the noise during
the robot simulation. An independent random value was generated for each possible position on the
distinctiveness surface, to create an equivalent error surface. When a simulation measurement was
made at that position, the random value from the error surface was added to the same position on
the distinctiveness surface. However, this method proved to be problematic, due to the non-smooth

nature of the resulting error surface, as Figure 6.11 depicts.

FIGURE 6.11. An example error surface, generated by a random error function, |p{z,y)} =
{0, 50), 20% of mazx(F(7)).

This is clearly not a smooth surface, which does not affect the algorithms for low ranges of
noise. However, as the noise level rose past 10%, maxima in the error surface started to appear as
maxima in the noisy distinctiveness surface. While this is an intended side-effect, the discontinuous
nature of the surface resulted in many more local maxima in the surface than had original been

there, changing the distribution of the landmarks considerably between agents. At the macroscopic
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level, the same major features were present in the surface, yet small maxima form equally valid
landmarks compared to large maxima — not as distinct landmarks, but landmarks nonetheless.
Consequently, another method was used to generate a smoother error surface. This method
computes each error value as a change from the previous value. The change has two components: a
random component, and a component that is dependent on the previous value. These two compo-

nents are summed to get the change from position to position.

7(z,y) = Random(~5 : 5) + b,(z,1)(| K2L=1)) (6.4)

maz(n)

dy is a different 0 from Equation 3.10. 4, specifies a preferred direction of motion - away from

the extrema. of the error surface, and towards the zeropoint.

5,,(:::,y) = -l: TI(IAI - 1) >0 (6-5)
l:n9(z,y—1) <=0 (6.6)
Figure 6.12 shows an example error surface that results from this method of noise modelling.

While still not a completely smooth surface, it is an improvement over the random noise surface at

high noise values.
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FIGURE 6.12. An example error surface, generated by the smooth error function,
[n(z, y)| = [0, 30), 20% of maz(F(i)).

67



6.6.1 EXPERIMENTAL METHOD

. This error function has two main advantages:

(i) Each value is dependent on the preceding value. There is a notion of time as the error surface
grows from one corner across to the other corner, however, this is inevitable - some values
have to be computed first. These values that are computed first are edge elements, which
are a special case.

(ii) The surface tends toward the zeropoint (and therefore does not get clamped at one ex-
tremum), and moves faster towards the zeropoint, the further away it gets, thus giving some

stability to the surface.

6.1.4. Modelling Landmark Commonality and Asynchrony.  Modelling the landmark
commonality, d, and asyuchrony, 7, explicitly was impractical, as these are not parameters that can
be explicitly set without communication between agents. The landmark commonality parameter is
a reflection of the degree to which the trajectories of the agents overlap; this parameter is a function
of the trajectories, not the inverse. Similarly, the asynchrony is a function of environmental and
robot characteristics; it is extremely difficult to extract the appropriate characteristics from the
single parameter.

However, the simulation did model these characteristics indirectly. The landmark commonality
parameter was set by altering the size of the bounded world, and altering the time allowed between
rendezvous attempts. For example, if an agent explored the world completely in 600 seconds, then,
in principle, the commonality, d, could be set to d = n/2 by setting time to rendezvous to 300
seconds, or doubling the world size. In both cases, the initial poses of the robots would have to
selected carefully, to allow for some, but not complete overlap of trajectories.

Asynchrony was modelled using the radio communication simulator. The simulator had a
locking mechanism that prevented the robots from moving to the next landmark, until both had
made a communication request. By allowing the locking mechanism to operate probabilistically, the
parameter j could be included in the simulation. The locking mechanism had a probability p of
failing, so that the robot made a communication request which was instantaneously filled, regardless
of whether the other robot was capable of accepting the request. The probability p of failing was
set explicitly to equal the asynchrony, j. The communication request could only be filled if the
other robot was available for communication (i.e. the locking mechanism had succeeded), and the
two robots were mutually visible and within range. This implementation of asynchrony is somewhat
limited, in that the rendezvous failure is attributed almost wholly to radio failure, as opposed to

a myriad of factors inciuding communication, but within the scope of this simulation, it served its

. purpose.
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6.1.5. Simulating Rendezvous. The simulation of detecting other robots and achieving
rendezvous was implemented using a special process that simulated radio communication. The pro-
cesses controlling the simulated robots communicated to the radio simulator during the rendezvous
phase of the simulation. Requests were made by each controlling process to the radio simulator,
and the simulator then determined, based on its knowledge of the complete map and the current
positions of the two simulated robots within the map, whether or not the robots were mutually

visible (line-of-sight), and whether they were in radio range of one another (13.5 m 3).

6.2. Experimental Results

There were three main experiments performed on the simulated exploration and rendezvous,
and each was a variant of a test of the rendezvous algorithm performance vs. noise. Each data point
is the average of 25 trials. The trial was terminated at 100 rendezvous attempts if the agents had

not achieved rendezvous by then.

FI1GURE 6.13. The map for the simulated experiments, with the starting positions marked
as circles. One agent always started from the position labelled 'A’, whereas the other agent
started 5 times at each of the positions marked with numbers.

Figure 6.13 shows the map used for the first test suite, the baseline algorithm performance. In
each set of 25 trials, one agent was started at the same point every trial, the A in Figure 6.13, and
the other agent was put at one of 5 locations, the circles labelled 1-5 in Figure 6.13, for 5 trials per

location. The trials were conducted for 15 values of 4.

3This number for the radic range was based on the radius of the smallest robot we used, the RWI B12. 13.5m is one

hundred B12 diameters.
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6.2.1. Baseline Performance. Figure 6.14 demonstrates the performance of the 4 main
algorithms, in the face of increasing noise. The size of the landmark set was 10 landmarks and
asynchrony j was 0. In order to have the agents have as close to 100% landmark commonality as
possible, the simulation explored for 600 seconds - this proved to be sufficient for the agents to have
explored almost all of the space. The four algorithms were sequential, smart-sequential and the

probabilistic functions exponential and random.
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FIGURE 6.14. Baseline Performance - Time to Rendezvous as a function of Noise-level § = [0, 50].

6.2.1.1. Low-Noise Performance. Figure 6.14 is the equivalent graph to Figure 4.4, although
the noise range is much shortened. The graphs are superficially different, however, most of the main
features are preserved. The deterministic algorithms are dominant throughout the noise range, and
in particular, smart-sequential is the fastest algorithm in the lowest noise case, but as noise begins
to dominate the measurements, the smart-sequential algorithm’s ability to guess where the other
agent might be is hampered by poor estimates of the environment. Smart-sequential was designed
explicitly to handle small perturbations in the landmark orderings between agents; at the level of
the simulated robots, it is succeeding. Note also that exponential very quickly fails, although the
failure is not as dramatic as in the numerical analysis.

Figure 6.15 shows the performance of more variants of the exponential algorithm. With a higher
T constant in the exponent, the algorithm again fails very quickly. Clearly, exponential is not the
algorithm of choice for high-noise situations. Recall that these data points are averages of 25 trials

and so many of the individual trials failed to meet in the allotted time.
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FIGURE 6.16. Baseline Performance - Time to Rendezvous as a function of Noise-level § = [0, 500].

6.2.1.2. High-noise.

Figures 6.16 and 6.17 demonstrate the effect of further noise on the

performance of the algorithms. At the highest noise level in Figure 6.16, the noise is 80% of the

highest noise-free peak in the environment; however, certain algorithmic characteristics manifest

themselves. For example, sequential continues to out-perform all other algorithms.
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FIGURE 6.17. Baseline Performance - Time to Rendezvous as a function of Noise-level § = [0, 1500].

However, in Figure 6.17, noise has become by far the dominant characteristic of the environment;
the agents are essentially operating blind. There appear to be some interesting phenomena in the
highest noise region, but further investigation revealed these to be artefacts of the initial conditions,
the size of the environment and the fairly low number of trials. The only real conclusion that can
be drawn from these figures is that sequential is a robust algorithm if the agents have no way of

reliably quantifying the environment.

6.2.2. Disjoint Exploration Areas. This was the second of the three experiments per-
formed using the simulated exploration and rendezvous was the explicit case of disjoint landmark
sets, representing areas of the environment explored by only one agent. Again, each data point is
the average of 25 trials. The trial was terminated at 100 iterations if the agents had not achieved
rendezvous by then.

Figure 6.18 shows the larger map used for this test suite, the algorithm performance with
disjoint exploration areas. Just as in the baseline tests, in each set of 25 trials, one agent was started
at the same point every trial, the letter A in Figure 6.18, and the other agent was put at one of 5
locations, the digits 1-5 in Figure 6.18, for 5 trials per location. The trials were conducted for 15
values of 6.

Figure 6.19 shows an example of the exploration carried out by two agents in this environment.

Clearly, the two agents have explored the majority of the environment, and yet the overlapping
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FIGURE 6.18. The map for the simulated experiments for the disjoint landmark set exper-
iments, with the starting positions marked as circles. One agent always started from the
position marked with 'A’, whereas the other agent started 5 times at each of the positions
marked with a digit.

areas of their trajectories is fairly minimal. This is the first experiment where the speed-up of the

algorithms can be tested; the results of the speed-up of the algorithms will be in section 6.3.
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FIGURE 6.19. Two example trajectories through a larger space. The exploration was
allowed to continue for 600 seconds, before rendezvous occurred. The circles indicate
landmarks. Notice that the rendezvous occurred successfuily, even though a large part of
the trajectories were unique to the agent.
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6.2.3. Algorithm Performance. Figure 6.20 demonstrates the performance of the 4 main
algorithms, in the face of increasing noise. The size of the landmark set was 10 landmarks and
asynchrony j was 0. The four algorithms were sequential, smart-sequential and the probabilistic

functions expounential and random.
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FIGURE 6.20. Non-Identical Landmark sets - Time to Rendezvous as a function of Noise-
level, Low Noise é = [0, 50].

Notice that smart-sequential is no longer the best algorithm, even in this low noise region of
the parameter space. The ability of the smart-sequential algorithm to guess the locaiion of the other
agent is damaged by the incomplete knowledge that results from disjoint landmark sets.

The exponential algorithms fare somewhat better than they did in the previous experiments, as
Figure 6.21 indicates. This is more a reflection of the fact that the deterministic algorithms cannot
perform any better; it does not indicate an improvement on the part of the exponential algorithms.

Finally, in the high noise case shown in Figure 6.22, the algorithms are relatively close together.
This is because the failure rate of all the algorithms was relatively high - much higher for the
deterministic algorithms than in the numerical analysis. This is because with the high noise level,
there is no way to guarantee that the the landmark sets will be identical. As the noise level increases,
the likelihood of the two agents choosing two points in the environment to be landmarks falls
considerable. As the noise level increases, the agents are essentially blind. The size of the bounded
environment and the restrictions on the relative spacing of the landmarks prevent the landmark sets

from being completely disjoint, so all the algorithms converge on a average time to rendezvous for
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FIGURE 6.21. Non-Identical Landmark sets, Exponential Performance - Time to Ren-

dezvous as a function of Noise-level, Low Noise § = [0, 50].
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FIGURE 6.22. Non-Identical Landmark sets - Time to Rendezvous as a function of Noise-

level, High Noise § = [0, 400].

the other.

this particular environment. In this high noise case, none of the algorithms is any more useful than

6.2.4. Asynchrony. In this final set of experiments, we test the ability of the agents to

rendezvous under conditions where the robots would sometimes fail to meet successfully, even if they
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were at the same location. Each data point is the average of 25 trials, and trials were terminated
at 100 rendezvous attempts if the agents had not met by that point. The map that was used
was the same as for the baseline simulations; the robots were allowed to explore for 600 seconds,
sufficient for the agents to have covered almost all of the space. The size of the landmark set was,
again, 10 landmarks. The four algorithms evaluated were sequential, smart-sequential, random and
exponential, and exponential was tested with three different exponential constants.

We are particularly interested in the low-noise region of the parameter space, as the numeri-
cal analysis indicated that the exponential algorithms performed best under these conditions. As
Figure 6.23 indicates, the superior performance of the stochastic algorithms is present in the spatial

simulation.
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FIGURE 6.23. 80% Asynchrony - Time to Rendezvous as a function of Noise-level, Noise
§ = [0,100].

Focussing further on the region where ¢ is small, we see in Figure 6.24 that in the case of no
noise, the algorithm that has the fastest performance is the exponential algorithm with a very large
exponential constant. That this algorithm should be the fastest is expected, since the exploration
suffers only from missed meetings - both agents should have chosen the same landmarks. Since this
algorithm will revisit the best landmark more often than any other algorithm, it has the best chance
of overcoming the asynchrony problem.

However, once any noise is present in the system, this highly tuned algorithm fails rapidly since
the algorithm is unstable with even the slightest noise. The algorithms with much lower exponential

constants, and thus are less tuned to the best landmark, perform much better. The smart-sequential
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Time To Rendezvous vs. Sonar Error, Exponentials, 80% Asynchrony, Low Noise
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FIGURE 6.24. 80% Asynchrony - Time to Rendezvous as a function of Noise-level, Expo-
nential performance, Noise § = [0, 50}.

algorithm is close to the behaviours of these exponential algorithms, and much better than the large
constant exponential algorithm. Once the noise begins to dominate the signal, the deterministic
algorithms prove superior. However, smart-sequential outperforms sequential for much of this part
of the parameter space; the inability of the sequential algorithm to return to landmarks more often

inhibits its performance much as it did in the previous experiment.

6.3. Multi-Agent Exploration

Of particular interest in this experiment is the ability for the rendezvous algorithm to overcome
the commmurication restriction and yet maintain the increase in speed that multiple-agent robotics
promises. What we would like to do is demonstrate a significant increase in exploration speed, even

accounting for the time to rendezvous.

As our metric for measuring speed increase in exploration, we used the change in mapping

speed, S,
S== (6.7)

where A is the percentage of the environment that has been mapped, and T is the time to complete

the mapping.
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Since the experiment was constructed so that the occupancy grid matched the size of the
bounded environment, we used the number of cells in the occupancy grid that contained information
of any kind (occupied or not) as our measure of the size of the mapped environment.

The increase in speed of the mapping process is then given by Equation 6.10,

Secombined — S
AS = co bt'g'ed Ssmgle (58)
single
A A4,

= =t (6.9)

Tc

AT
= £ (6.10)

As de

We took the area of a single agent, 4, to be the area explored by the active agent, and the time
of the single agent T to be the time allowed for the exploration process alone. The combined area,
A, was the explored area of the merged maps, and the combined time, 7, was the time to explore,

T, added to the time to rendezvous, T;.

T.=T,+T, (6.11)

Recall that each data point in the preceding graphs represents the mean of 25 trials. These 25
trials were composed of 5 possible initial configurations, with 5 trials per configuration. Since the
environment was bounded, it was possible to determine what percentage of the environment each
agent had explored. Once the maps from the two agents had been merged, it was then possible to
determine how much of the environment had been explored by the two agents together, and in fact
the increase in explored speed, compared to the efforts of a single agent. The increase in explored

area for each of these 5 configurations is given in Table 6.2.

Index | Active Passive Combined || % Increase in Area
0 48.0 42.2 69.1 44.2
1 48.0 584 72.0 90.2
2 48.0 66.5 74.6 35.6
3 48.0 39.5 68.5 428
4 48.0 67.7 73.9 54.1
Average 49.4

TaBLE 6.2. The increase in explored area, as a percentage of the environment, for each of
the 5 initial configurations.

As Table 6.2 shows, the increase in explored areas was a minimum of 42.8%, and on average

49.4%. If the agents were capable of merging their maps immediately after the exploration phase,
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then T, = T, and the increase in area is exactly equal to the increase in speed. However, this ideal
situation is equivalent to total communication, and is not realistic.

There are two possible ways to interpret the exploration speed results: the first treats each
exploration iteration and rendezvous iteration as a single time increment, as if travelling through a
graph where each arc is of time-length 1, and T is simply the number of rendezvous iterations.

Table 6.3 shows the speed increase in the algorithms in the zero-noise case, using this graph-like
model of the exploration process. Each datum is the average of 25 trials; if the agents failed to meet

(e.g. due to the exponential algorithm), then the change in mapping speed, AS was set to 1.0.

Algorithm % Speed Increase
Sequential 49.1 %
Smart-Sequential 38.1%
Exponential 21.1 %
Random 46.7 %

TABLE 6.3. The speed increase using the graph-like model of the world, in the zero-noise
case. Each number is the average of 25 trials.

Only the exploration speed of the exponential algorithm was seriously degraded by the ren-

dezvous process. Figure 6.25 shows the change in exploration speed as the noise is increased.
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FiGURE 6.25. Increase in exploration speed as a function of noise. Environment modelled
as a graph.
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Characteristically, sequential performed extremely well over the majority of the noise range;
smart-sequential did well in the low-noise range, however once the noise began to dominate the mea-
surements, smart-sequential’s performance was considerable degraded. These results reassuringly
corroborated on a general level the numerical and simulation results.

However, a number of over-simplifying assumptions were made, most questionable of which was
the assumption that each rendezvous iteration takes a single time unit. In order to further bolster
these results, we computed the increase in speed, taking into account the mechanical complexity of
the rendezvous process. Using the actual transiation and rotation speeds of the robots that we used
for the experiments using real robots (these experiments are given in Chapter 7), we determined
that each exploration step tock approximately 30 secs. For the rendezvous time, we used the robot
simulator to provide the actual distance that the robots travelled through the simulated environment
as they moved from landmark to landmark. The speed of the robots is 40 cm/sec; since the distance
the two robots travelled each iteration was usually considerable different, the time to travel between
landmarks on each iteration was assumed to be the longest of the two distances, divided by the
speed of the robot.

Figure 6.26 shows the performance of the rendezvous algorithms, using this realistic model. As
the graph indicates, the realistic model does not affect the speed adversely; despite the fact that
the rendezvous iterations were considerably longer now, the exploration step was still sufficiently

expensive that the speed gains from using two agents were preserved.
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FIGURE 6.26. Increase in exploration speed as a function of noise. Times given using
mechanical model of robots.
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Figure 6.26 is compelling support for multiple-agent robotics in general; despite the necessity of
considerable mechanical complexity to overcome the communication problems, an increase of speed
of up to 50% in the exploration task is still available. It is a problem for future work tc show that

this increase in speed is possible in general.

6.4. Conclusion

In this chapter, we described the experiments we performed in simulation to test the numerical
analysis of Chapter 4. In the course of outlining the experimental method, we also described a
number of issues which affect the rendezvous algorithm as applied to spatial domains. These issues
included trajectory dependence, our model of distinctiveness distributions, spatial sampling and our
noise model.

We then described three main experiments we performed to test the algorithms in the face
of noise, asynchrony, and disjoint exploration areas. The results were consistent with the previous
numerical analysis, although there were some small differences. One important result is that the
stochastic algorithms have their domain of superiority as expected, but inappropriate tuning of the
algorithm parameters can make the algorithms fail very easily. The superiority of these algorithms
is not stable.

We also analysed the rendezvous process in terms of increasing the speed of the exploration
process. The analysis confirmed that even with the communication constrained to occur only during
successful rendezvous, speed increases of up to 50% are attainable, when compared to a single-agent
system performing exploration.

In the following chapter, we will describe an experiment in implementing the exploration and
rendezvous algorithms on actual robots in a laboratory setting, in order to demonstrate the algo-

rithms can be used in reality.
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CHAPTER 7

Rendezvous using Physical Robots

In Chapter 3, we described the rendezvous problem, and motivated the problem with the context of
exploration. In particular, we proposed two main classes of algorithms, and gave particular instances
that exemplify these two classes. In Chapter 4, we gave a numerical analysis of these algorithms.

In the previous chapter, we analysed the algorithms running in a simulated spatial environment,
using the exploration method described in Chapter 5. We performed these experiments in simulation
in order to address a number of issues that relate to the spatial nature of the problem; we did not
address any issues that resulted from using practical robots, as opposed to idealisations. We were,
from these experiments, able to show some interesting features of the rendezvous problem with
respect to our algorithms. In particular, we were able to show that communication problems, if
addressed using rendezvous, do allow for the speed increases that are often assumed to accompany
multiple robot systems.

However, some issues of using mobile robots must still be addressed. All of the prior simulation
experiments assumed the simulation sensors were ideal; noise was explicitly applied in order to
approximate real sensors. Odometric error was assumed to be negligible. Issues of path-planning
were simplified to allow the robots to pass through each other in space, rather than investing time
in allowing the simulated agents to detect each other during the exploration stage. These are all
assumptions that are not valid once a real robot is being used.

In this chapter, we will show that the these and other assumptions can be dealt with without
affecting the utility of the rendezvous procedure. We will not be interested so much in the perfor-
mance of the algorithms under different environmental conditions; this chapter presents a proof of

concept, that, in fact, the rendezvous method is possible and useful on real robots.



7.7.1 EXPERIMENTAL METHOD

7.1. Experimental Method

The experiment was conducted using two mobile robots, a Nomad 200 and an RWI B-12. Both
robots are essentially cylindrical, and quasi-holonomic, in that they are capable of turning with
0° radius. The Nomad 200 is 50cm in diameter, and has 16 sonar transducers equally separated
by 22.5°. The RWI B-12 is 27cm in diameter, and has 12 sonar transducers equally separated
by 30°. Although the Nomad 200 has an onboard 486 processor running Linux, all computation
was performed off-board, on two SGI Indigo platforms running IRIX 5.2, and an Pentium platform
running Linux 2.0.29. The communication between the robots and their controlling platforms was
wireless.

Figure 7.1 show the robots moving through the maze in the laboratory. The right panel of the

figure shows the robots standing next to each other, having made a successfully rendezvous.

FiGURE 7.1. The robots exploring the maze, and ther making a rendezvous.

7.1.1. The environment. Theexperiment was held in a laboratory space measuring 550cm
by 840cm. The walls were free-standing corrugated plastic, 60cm high. The walls were taped together
for structural integrity, and stood off the floor with angle-brackets, measuring 10cm long. The total
wall length, including bounding walls, was 50.4m.

The small square box in the lower left corner was a desk chair; this was included to show the

robustness of the exploration method, and is not especially relevant to the rendezvous problem.

7.1.2. Sonar sensors. The sensor that was used throughout these experiments was the
sonar sensor, which is a range sensor only. Consequently, all our distinctiveness function candidates

relied upon range information only. The sonar sensor operates by emitting a high-frequency sound
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FicUuRE 7.2. The map for the real experiments. The space at the left of the maze was
used for observation, and also held the controlling equipment.

pulse (40 kHz, for our particular robots). The pulse propagates through the atmosphere until it
strikes an object in the environment. The same transducer emitting the pulse then listens for a
pulse at the same frequency echoing off an object in the environment. If the pulse echo is heard
within a short duration, then the time of flight is used to calculate the distance to the obstacle,
otherwise the pulse is assumed to have been lost. Figure 7.3 demonstrates a robot using sonar to

measure the distance to the wall in front of it.

Emitted
Pulse Reflected
-

FIGURE T7.3. A robot using sonar to measure the distance to the wall in front of it.

The maximum range of the robots! is 8m for the Nomad, and 13m for the RWI. The range
precision is £2.54cm for the Nomad, and +1.07cm for the RWI. By using the sonar to measure the
distance to obstacles around it, the robot can acquire a metric map of its environment. There do
exist more sophisticated sonar models such as developed by Kleeman and Kuc {31], Wilkes [53],
and Lacroix and Dudek [36] that can recognise and deal appropriately with sonar artefacts in our
model. However, our simple model of the sonar pulses, combined with some simple outlier handing,
is sufficient for the limited purposes of our experiments; a more sophisticated sonar model would be

more appropriate for long-term exploration and environment modeliing.

1 Assuming speed of sound at 330 m/s.
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7.1.3. Sonar Filtering. Given the nature of real sonar sensors, some processing must be
done on the sonar data. The sensors have a maximum range of 8m, but are extremely unreliable at
that range. There are a number of different artefacts from using sonar sensors that must be dealt
with. Fortunately, these fall into two main categories: outliers, and multiple-bounce reflections.

7.1.3.1. Sonar outliers. If a sonar beam strikes an object along the object’s surface normal,
then the sound beam is reflected back along its incidence path, the ideal trajectory for a sonar pulse.

Figure 7.4 depicts this ideal case.

FIGURE 7.4. The ideal trajectory for a sonar pulse from a robot to an obstacle.

If the sonar beam intersects the surface along an oblique path and the surface is not specular
with respect to sonar pulses, then the pulse will be scattered, and some of the pulse will be reflected
in the direction of the emitting transducer. The sonar transducer that emitted the pulse is the only
transducer that is used to detect the pulse, and so the reflected pulse must be heard by the same

transducer that emitted it. The left panel of Figure 7.5 depicts the behaviour of a sonar pulse,

bouncing off a scattering surface.

Emitted
onar Beam

‘\fﬁ Scattered

Sonar Beam

FIGURE 7.5. The behaviour of a sonar pulse bouncing off a scattering surface. Although
the sonar pulse scatters in all directions, some is reflected in the direction of the transducer.

Emitted
onar Beam Reflected

/ Sonar Beam

FIGURE 7.6. The behaviour of a sonar pulse bouncing off a specular surface. The majority
of the sonar pulse bounces away from the robot and its transducer.

85



7.7.1 EXPERIMENTAL METHOD

However, Figure 7.6 shows that if the surface is specular, then the pulse is reflected away from
the emitting transducer and the pulse is lost. Figure 7.7 shows a typical sonar range scan, using the
Nomad robot and 64 sonar measurements®. As the figure depicts, the majority of the sonar beams
are either too long (along the corridor walls), or fall short (at the ends of the corridors). The walls
have been drawn in black on top of the range data, to emphasise that as the sonar beam does not

accurately measure the range to the walls except at angles that are close to the wall.

FIGURE 7.7. A typical sonar scan from the Nomad 200, in a hallway situation. The walls
have been drawn in black. Note that most of the range data is completely inaccurate.

7.1.3.2. Corner artefacts.  The other main class of sonar error that we will see in our envi-
ronment as a result of our sonar model is corner artefacts. This results when a sonar pulse hits both
walls of a corner, before returning to the emitting transducer [36]. Since this multiple bounce path
takes longer than a simple one-bounce path {and range is measured as time-of-flight of the sound
pulse) then the wall is perceived as being further than it is (53]. Again, note that this is a feature
of highly specular environments. Figure 7.8 shows a schematic of the corner artefact problem, and
some actual data acquired by the RWI B-12 robot, illustrating the error.

7.1.3.3. Lowpass Filtering.  There exist a number of methods of dealing with poor sonar data
such as this. It is beyond the scope of this work to deal with general solutions; since this is a proof
of concept experiment, we will use the domain knowledge to construct a simple filter. The majority
of sonar errors in our environment resulted from the sonar pulse either never returning, or returning
along a complex, multiple-bounce path. As a result, the errors will almost always overestimate the
true range. Consequently, by rejecting range data if the range is above an upper threshold, we
eliminated the majority of errors. As a precaution, we also rejected all data that was below a lower

threshold of the robot’s radius. The upper limit was the same for both robots: 300 cm.
2Although the Nomad has only 16 transducers, it can take many more measurements than this by rotating on one

point by small increments between measurements of 16. Sixty-four data points can be acquired by taking 16 data
points 4 times, and rotating by 5.625° between each set of 16.
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FIGURE 7.8. The left is a depiction of the corner artefact problem. Although the sonar
pulse does return to the robot, it takes longer than if it had bounced only once off the
wall. On the right is data gathered by the RWI B-12, illustrating the same problem. The
RWI is the circle in the centre. The walls pass to its left and in front. However, there is
no corner point, but a third, diagonal line where a corner should be.

This type of filtering was sufficient for most of the errors, but could not handle corner artefacts,
since these errors are consistent across several points (unlike the outliers), and appear to have some
structure that might exist in the environment. There is no easy way to eliminate these artefacts,
without recognising them as such. So in addition to the low-pass filtering, Bayesian recombination
of data was used. Recall from Chapter 5 that this method used Bayes’ rule to allow us to combine
occupancy estimates acquired over time for the same point in space. While this method did not
immediately eliminate corner artefacts, they became much less damaging as information about the

corners accumulated.

7.1.4. Acquiring Landmarks. The same landmark acquisition method was used as in
the simulation in Chapter 6. We acquired local maxima along the trajectory during exploration,
and then returned between the exploration and rerdezvous phases to refine the landmark positions.
There were three alternative possibilities for refining the landmark positions, but in the interests of
simplicity, the same method as the simulation was used.

It should be noted that during both the exploration and rendezvous phases, there are times
when the robot must move between points that are frequently separated by some distance, and often
have intervening obstacles. For instance, when the exploration algorithm moves the robot into a
potential minimum, it uses breadth-first search to move to a new region to explore. There is no
explicit handling of the path to the new location. Similarly, there is no explicit handling of the
robot’s motion from rendezvous location to rendezvous location. There is an assumption that the
robot is capable of finding a path through known space to any point in the environment, if one
exists. We were able to maintain this assumption using potential field gradient descent through the
known map [21]. The rendezvous process fed the range points, after processing, to the path-planner,

so that the path-planner had an accurate picture of the environment. We were then able to assume
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that a path between any two points in the environment that had been visited were accessible, and

relied upon the control software to execute the motion correctly.

7.2. Experimental Results

7.2.1. Trajectory. Figure 7.9 shows the trajectories of the robots moving through the
maze. The RWI B-12’s trajectory is shown in the left panel, and the Nomad 200°s trajectory is
shown in the right panel. It should be emphasised that the maps were overlaid by hand for clarity,

and the robots had no embedded knowledge of the layout of environment.
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Ficure 7.9. The trajectories of the two robots throughout the environment. The RWI
B-12 trajectory is or the right, and the Nomad 200 is on the left.
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The trajectories consist of collections of points, separated by large areas of space. These “is-
lands™ of points were areas of the environment explored using the local potential field descent. Once
a local potential minimum had been reached, the robot used breadth-first search to find a new area
that was known to be clear, yet low in potential (i.e. seen but unexplored).

Notice that the trajectories only overlap on the right hand side of the map; much of the B-12’s
trajectory is in the inner part of the maze, whereas the Nomad spent time moving up and down
the corridor on the right. The B-12’s trajectory is also much longer than the Nomad’s, because the
Nomad spent time performing breadth-first search in the lower part of the corridor. The limitations
of the sonar, combined with the filtering, prevented the Nomad from using much of its data outside
that small area of the map.

It is in these real experiments that we can observe some limitations of the exploration method.

The RWI B-12 occupancy grid indicated that the right-hand corridor to be clear of obstacles, that
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is to say, the wall appeared to be relatively thin. We can see that the cccupancy grid indicated this
by the fact that the RWI moved to the far side the wall after reaching a potential minimum; the
breadth-first search is limited to points in the environment that are known to have a low probability
of being occupied. However, the only way the occupancy grid could contain any information about
cells past the wall would be through sonar error. The coatrol software would have prevented the
robot from running into any unobserved obstacles, so the situation is not as dangerous as it would
seem. However, the problem does kighlight the difficulties of using the simple sonar model for any

serious exploration.

7.2.2. Occupancy Grid. It is difficult to demonstrate the occupancy grid in any reasonable
manner, because the useful data is visually swamped by the sonar artefacts. However, the occupancy
grids at the end of the exploration runs are shown here for completeness sake, in Figure 7.10. The
white pixels correspond to points in the environment for which there is no information, and the
black pixels are points that have a low probability (P(z,y) < 0.3) of being occupied. Notice the
substantial sonar errors present along the corridor explored by the Nomad 200 (right panel), despite

the low-pass filtering in use.

F1GURE 7.10. The occupancy grids generated by the exploration process. The RWI B-12
occupancy grid is on the right, and the Nomad 200 is on the left. Black pixels are empty,
white pixels are unknown.

We were able to improve the occupancy grids however, by running the robots with the same
trajectory, and lowering the rejection threshold from 300 cm to 150 cm, making the filter even
tighter. Figure 7.11 shows the occupancy grids that resulted from this tighter threshold. The map
contains fewer outliers, however, it is also much sparser.

Because of the trade-off between clarity and sparseness, we decided to maintain the map at
two resolutions; one map was used for generating the potential field, and therefore absorbed much

more information (erroneous or not) to prevent the robot from finding potential minima too often.
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FIGURE 7.11. The occupancy grid generated by the exploration process by the robots,
using a narrower threshold. Black pixels are empty, white pixels are unknown.

However, for the purposes of mapping, the data from the narrower filter was preserved, in the
interests of keeping a cleaner map.

The maps generated by the exploration are depicted in Figure 7.123

3These diagrams were generated from the robot control software, which was fed data points by the exploration

. algorithm from the narrow filter.
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FIGURE T.12. The maps generated by the exploration process. The RWI B-12 trajectory

is on the right, and the Nomad 200 is on the left.
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FIGURE 7.13. The same maps, after the neighbourhood filter. The RWI B-12 trajectory

is on the right, and the Nomad 200 is on the left.

Notice however, that there are still a number of artefacts present, despite the Bayesian recom-

bination of data, and the low-pass filtering. The presence of these artefacts, however, tend to be

in areas where the robot was present for a very short time, (the artefacts in the right corridor of
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the RWI map), or where the robot never entered (the artefacts at the bottom of the RWI map).
Interestingly enough, the Nomad 200 had very few such artefacts, but as a result, has a sparser map.
This could be due to sensor noise, or actual differences in the sensors between the two robots. The
differences between the sensors manifested themselves in the relative perceptions of the environments
distinctiveness surface, as shall be shown during the discussion of rendezvous.

Another features is the angular offset of the lower corridor with respect to the upper corridor.
This is due wholly to positional error, both translational and rotational. This error, over long
distances, will cause serious problems to the robot’s ability to accurately represent its environment.
Several solutions are possible, however, this problem is outside the scope of this work.

We were able to refine the map even further by applying a neighbourhood filter, which peri-
odically eliminated any data points that had no neighbours within a certain neighbourhood. The
neighbourhood chosen was 10cm. This filtering was not a part of the occupancy grid or the potential
field in any way, as removing points from either of these two spatial representations is a major task,
and beyond the scope of this work. Figure 7.13 shows the resulting maps after the thinning process
was applied. The majority of points that were removed were those outliers where the robot had not
been present much, if at all.

One of the shortcomings of this approach proved to be the memory requirement. At all times,
three complete spatial representations were maintained (potential field, major occupancy grid and
thinned map), in addition to any temporary representations for the breadth-first search. As an
example, the potential field was typically 10m by 10m, with a discretisation of one cell per square
cm. Storing this map as an array of 4 byte floats consumed 4 megabytes of memory. Combined
with the occupancy grids (also stored as floats, since the grid represents probabilities), 12 megabytes

were consumed. A further 4 megabytes were consumed by the breadth-first search.

7.2.3. Landmarks. Finally, Figure 7.14 shows the landmark positions that were chosen by
the robots for rendezvous.

Although gradient ascent was used in the simulations, it was not used in these experiments due
to the small size of the environment. Notice that the Nomad chose a point in the upper corridor as
its best rendezvous location, whereas the RWI chose a point in the inner maze. This is no doubt

due to sensor differences between the two robots.

7.2.4. Rendezvous. This single experiment provides the clearest support for this thesis, in
demonstrating a need for establishing some appropriate behaviour if the initial rendezvous attempt

is unsuccessful. As Figure 7.14 indicates, the two robots did not choose the same point in the
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FIGURE T7.14. The landmark selections of the two robots overlaid on their trajectories.
The RWI B-12 trajectory is on the right, and the Nomad 200 is on the left. The ranking
of the landmarks is shown as well.

environment for the best rendezvous location. Table 7.1 shows the numerical values for the position *

and distinctiveness of the landmarks.

Landmark 1 | (596.00, 189.00) | Distinctiveness: 11.15
Nomad 200 | Landmark 2 | (738.00, 234.00) | Distinctiveness: 9.73
Landmark 3 | (648.00, 676.00) | Distinctiveness: 9.29
Landmark 1 | (584.00, 715.00) | Distinctiveness: 4.86
RWI B-12 Landmark 2 | (582.00, 279.00) | Distinctiveness: 3.00
Landmark 3 | (817.00, 747.00) | Distinctiveness: 2.99

TABLE 7.1. The positions and distinctiveness of the landmarks acquired by the Nomad
and the RWT during the exploration.

The robots made a successful rendezvous on the 4th attempt among the three landmarks, since
they were using the sequential method of exploration. As the environment in which the experiment
was conducted was too small to allow the robots to use any real form of electromagnetic radio

communication to detect each other, the rendezvous detection was performed using a special process.

4It should be noted that the relative co-ordinates of the landmarks are essentially meaningless, as there was some
offset between the maps of the two robots, which has not been corrected.
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FIGURE 7.15. The final map created from the merged data acquired by the two robots.

Finally, Figure 7.15 shows that the maps were merged. The map merging was performed
manually. Although algorithms exist to merge maps gathered by heterogeneous agents [30], that

praoblem is not the focus of the present work.

7.3. Conclusion

In this chapter, we demonstrated multiple-robot exploration of an unknown environment, fol-
lowed by a successful rendezvous, implemented on physical robots in the laboratory setting. The
exploration method used was local potential field gradient descent combined with potential search,
as described in Chapter 5. The rendezvous method was formalised in Chapter 3, and the sequential
algorithm was used in the actual experiments.

While the experiments discussed in Chapters 4 and 6 were analyses of various algorithms under
different conditions, the experiment discussed in this chapter was a proof of concept experiment,
that rendezvous could be implemented on real robots, and the maps merged successfully. The two
most important conclusions that were drawn from the experiment using the real robot is that the
methodology we have chosen for achieving rendezvous is practical, and that we have addressed one
of the most important issues in our methodology, the sensor differences. The fact that the robots
failed to meet on the first iteration of the rendezvous cycle is a very convincing piece of evidence
that the rendezvous problem is substantially more complex than simply choosing a place to meet in
the environment.

This experiment underlined the issues of sensor differences in a number of ways. The maps

created by the two robots, although structurally the same, differed in the details. Although the two
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robots were using the same type of sensor, the Nomad in general had fewer spurious measurements.
Figures 7.12 and 7.13 show that the Nomad had more accurate data, and as a result, the filtering
process gave the RWI the sparser map. Whether this difference was as a result of the sensors, a
result of the physical configuration of the environment, or even a result of the physical configuration
of the robots themselves, is unknown. However, it is clear that any algorithm that relies on the
sensors of two different robots must take into account the substantial sensor differences, and cannot

assume that the sensors, even if identical in nature, will perceive the environment the same way.



CHAPTER 8

CONCLUSION

8.1. Overview

In this work, we have described the new problem of performing rendezvous between multiple
mobile agents. The objective was to overcome practical communication limits by periodically having
the agents converge and share information. In this manner, we increase the speed of operation of
the multiple robot system compared to the single robot system, while eliminating the traditional
assumption of infinite range, full bandwidth communication between agents. We are specifically
interested in multiple-robot exploration of an unknown environment where communication is limited
to short-range line of sight. Although we dealt primarily with two-agent systems, the work is easily
extensible to larger collections of agents, or swarms. Furthermore, we developed a methodology
that does not depend on any particular task such as exploration, is trajectory independent and
does not require any memory-intensive spatial representations. Although our implementation does
take advantage of metric information that is provided by the exploration algorithm, our rendezvous
methodology can be decoupled completely from the underlying primary task.

We divided the rendezvous problem into two separate subproblems. The first is determining
what points in the environment constitute good rendezvous locations, or landmarks. We addressed
this problem by modelling the environment as a function of the sensors; this function gave rise to
a distinctiveness surface, defined over the domain of the environment. We then chose landmarks at
the local extrema of the surface, limiting our knowledge of the surface only to those points that the
agents have visited. Which points the robot visited was dictated by the trajectory prescribed by the
underlying task, and so we demonstrated how to overcome these trajectory dependencies.

While the problem of rendezvous reduces, in the idealised case, only to the task of choosing the
best point in the environment to which the robots should converge, this is in fact an inappropriate

idealisation. In the formalisation of this problem, we identified 3 key parameters that characterise
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the problem. We showed that a number of different points in the environment must be chosen for
meetings, and these points must be visited in some intelligent manner for rendezvous to be achieved
reliably. These parameters we have called sensor noise, map commonality, and asynchrony.

This problem of which appropriate behaviour to use in choosing the landmarks to visit is
the second of the two subproblems of rendezvous. We proposed two main classes of algorithms,
deterministic and probabilistic, and gave examples of each class of algorithm. In order to determine
the characteristics of the algorithms, we gave a closed-form analysis of the worst- and expected-
case complexity of the algorithms at points in the parameter space. This closed-form analysis was
complemented by a numerical description of the performance of the algorithms at a range of points
in the parameter space.

We then described a particular exploration method that used a combination of potential field
gradient descent, coupled with breadth-first search of the potential field in order to escape potential
minima. This exploration method was devised to cover space quickly, and was the primary task of
the rendezvous process.

Finally, we demonstrated the rendezvous algorithm in use both in simulation and on physical
robots. The simulation tests were used as a confirmation of the numerical results. Within the
class of deterministic algorithms, there were different regions that favoured different algorithms. An
interesting conclusion from these results is that, depending on a combination of these confounding
factors, no strategy is canonically a good or bad choice - under the correct circumstances, a heretofore
poor choice of algorithm can outperform the erstwhile winner. These results were confirmed by both
analytic closed-form solutions of Chapter 3, the idealised numerical simulations of Chapter 4 and the
physically-based simulations of Chapter 6. The physical experiments served as a proof of concept
for the exploration and rendezvous algorithms, and we concluded with a map of an environment
that resuited from the collaborative exploration and subsequent successful rendezvous within our

laboratory of two robots.

8.2. Acquiring Landmarks

The model we developed for multiple-agent systems has two distinct phases: the primary task
phase, and the rendezvous phase. During the main task phase, in which our system explores the
environment, the environment must also be examined for landmarks. We used the notion of “distinc-
tiveness”, that is, a locally convex function defined at every point in the environment. We defined
this particular distinctiveness function as a function of the sensors directly, as opposed to computing
the function from perceived features in the environment. Qur distinctiveness function we used en-

capsulated the semantic notions of both open area, and symmetry, and was designed to be maximal
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at the centre of large areas. It should be noted again that there are 2 number of constraints on a
useful distinctiveness function; it should be trajectory and rotationally invariant, locally convex and
contain few discontinuities.

The landmarks were acquired concurrently with the main task, and in order to preserve the
decoupling from the primary task, the acquisition is passive - the trajectory of the robot was de-
termined wholly by the exploration algorithm. This posed two problems: the first, of determining
whether landmarks that were separated in time along the trajectory, were in fact separated in Carte-
sian space, and the second, eliminating trajectory dependencies in the landmark measurements. We
discussed a number of different methods of dealing with the first problem, and in our implementation
made use of the metric information provided by the exploration method to eliminate the peaks in
order to avoid the mechanical cost that would have resulted otherwise. The secend problem could be
solved only by gradient ascent over the distinctiveness surface at each landmark. However, in order
to preserve the independence between the primary task and the rendezvous process we showed that
there are several choices of when this landmark refnement process could occur, each with different
costs and benefits. In our particular implementation, we performed the gradient ascent interleaved
between the exploration and rendezvous phases. In this manner, we preserved the trajectory inde-
pendence of the landmark acquisition, yet did not suffer the mechanical complexity or algorithmic

performance degradation that the other methods entailed.

8.3. Exploration

We developed an exploration method that would motivate the rendezvous process; The objective
of the exploration algorithm was to generate a map for each robot that could then be fused into a
single map, combining the information from both agents.

The exploration algorithm was based on local potential field gradient descent. In this method,
the robots model the obstacles in the environment as repulsive forces, and maintain an internal
representation of the environment as an idealised potential field that results from the combination
of the forces. As the robots use their sensors to acquire more information about the obstacles in
the environment, they change their representation of the potential field to reflect the new obstacles.
The robots then search their representation of the field for the potential minimum in the local area,
bounded by some arbitrary distance, and move to that point.

One of the difficulties of potential field descent methods, however, is the issue of potential
minima. A number of different environmental configurations can result in the robot becoming
frozen in a local minimum, leaving a large part of the environment unexplored. Consequently, we

developed a special case algorithm for handling these situations. By using breadth-first search, we
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were able to search the potential field for a global minimum in the field. The bounds of the search
were the explored areas of the environment. Two spatial representations of the environment were
maintained, a potential field for navigation, and an occupancy grid which was used as the map of
the environment. The occupancy grid maintained a record of obstacles in the environment, points
in the environment that the robot knew were likely to be unoccupied, and those points for which no
information had been acquired.

The sensors that were used for this research were sonar sensors; consequently, a considerable
degree of processing of the data had to be performed, especially for the experiments performed using
real robots. Similar sonar errors were not present in the simulated experiments, so errors were added
using a random noise model. It is difficult, and computationally extremely costly, to model most
sonar artefacts in any reasonable, physically-based manner. One of the results of the physical robot
experiments was that it became necessary to maintain the map at two levels of processing: one
map was used for supplementing the potential field during navigation, and the other map (which
underwent an additional level of processing) was used for merging with the other agents’ during
rendezvous.

It should be noted that although we took considerable effort to show that the rendezvous process
could be separated from the primary task at all times, there are substantial costs in maintaining this
separation. In fact, the implementation given in this research did not maintain the independence
of the two processes, but instead the rendezvous process exploited the information acquired by the
exploration process. Furthermore, there are efficiency gains that can be made by designing the
primary task so that it is aware of the rendezvous process, and can make choices relevant both to

the primary task and the rendezvous process.

8.4. The Rendezvous Cycle

Once the robots have explored the environment and acquired landmarks, in principle the ren-
dezvous process should involve both robots visiting the most distinct landmark they have visited,
and waiting for the other to arrive. However, as the experiment with the physical robots demon-
strated, the robots may not share the same perception of the environment, and thus may not agree
on the best landmark in the environment. The rendezvous problem is complicated by the three
major subtleties of sensor notse, map commonality, and asynchrony. We formalised sensor noise as
a combination of sensor differences and noise in the sensing process. Map commonality was defined
as the extent to which the robots have explored the same areas of the environment. Asynchrony
referred to the combination of factors that prevent an agent from reaching a landmark at the correct

time.
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In order to overcome these difficulties, we assumed that multiple attempts may have to be made
at different locations in the environment, if any rendezvous failed. We proposed two main classes of
algorithms, deterministic and probabilistic, and gave two examples of each. The numerical analysis
of Chapter 4 showed that each algorithm has considerable variance under different system and en-
vironment conditions. The deterministic class most often outperformed the probabilistic class, but
under conditions of asynchrony, the probabilistic class showed that it had a region of superiority. The
smart-sequential strategy exploited the distinctiveness measure or preference ordering on landmarks
to attempt to compensate for missed rendezvous and was superior under substantial levels of asyn-
chrony and limited noise. The pure sequential strategy was preferable when asynchrony is low, since
without asynchrony a meeting is assured after n visits by avoiding visiting combinations that might
otherwise compensate for asynchrony. With substantial levels of both asynchrony and moderate
noise the stochastic search strategy was preferable to deterministic ones. That these small regions
of parameter space exist indicates that the problem of rendezvous deserves further development.

The physically-based simulation demonstrated that, although it is much harder to isolate the
parameters in a physical sense, many of the main conclusions were upheld, despite several compli-
cating factors that were not part of the numerical simulation. Furthermore, the physically-based
simulation demonstrated that an increase of speed is still attainable with a multiple robot system
using the rendezvous approach to communication.

Finally, the experiments using physical robots gave a compelling demonstration that the ren-
dezvous algorithms are an essential part of the rendezvous process; the assumption that the robots
will meet on the first iteration is simply untenable. Despite very similar sensors and configurations,
and a high degree of overlap between the agents, the robots required 4 rendezvous iterations before

they could successfully meet and share information.

8.5. Future Work

8.5.1. Sensors. Possibly the biggest difficulty with this work is the fact that considerable
effort must be made to overcome sensor error. Much of this is due to the fact that the distinctiveness
function, and as a result the robot’s ability to localise and rank the landmarks correctly, is based
on the sensors’ direct output. The sensors are demonstrably unstable, in that small changes in the
pose of the robot can result in dramatic changes in the sensor output. Vastly preferable would be to
construct a distinctiveness function that was a function of some stable, intermediate representation
of the environment, computed from the unstable sensor output. The ability to attach semantic
information to the sensor output and use that semantic information for determining landmarks

would assist the rendezvous process immeasurably. Unfortunately, it is an open topic of research
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to find any general, stable representation of any sensor currently available. Indeed, such a system

would go a long way to solving the computer vision problem.

8.5.2. Exploration. A second difficulty with this work lies in the nature of the exploration
method. The exploration method was constructed to be implemented quickly and easily, be general
and robust. While it succeeded in these measures, it has a number of shortcomings. Because it uses a
discretised, metric map, it is extremely storage-intensive. Considerable effort was spent reducing the
storage requirements of the rendezvous process, however all of this saved storage was consumed by the
exploration process. Clearly, this can be addressed by reducing the granularity of the discretisation,
however, there will always be an upper limit. A better solution might be to maintain only a local
metric map, and combine the local potential field with a topological representation.

Another issue is the trajectory’s sensitivity to initial conditions. The exploration algorithm used
here could take substantial different paths through the same part of the environment, depending
on the initial conditions. From the point of view of the rendezvous process, it would be preferable
to bave the robats take trajectories that are as similar as possible through the same region of the
environment. Such a strategy, for example, would eliminate the need for landmark refinement.
The undersampling problem would no longer be an issue, since both robots would be sampling the

environment at the same places.

8.5.3. Landmark Acquisition. Only one distinctiveness function was investigated in this
work. No consideration was given to its stability, or its ability to distinguish qualitatively different lo-
cations in the environment. Further investigation should consider different distinctiveness functions,

especially with consideration given to different sensor systems.

8.5.4. Rendezvous. Only a small number of rendezvous algorithms were considered for
this work. There is a body of literature on online search methods, of which rendezvous is a subclass.
Algorithms that were not considered here may have surprising regions of utility.

The majority of this work was conducted with the assumption of a two-agent system. While
many of the principles are easily extensible to multiple agents, the analysis may need to be refined
for an arbitrary number of agents.

Duplicating the analysis of the algorithms in the physically-based simulation proved to be
substantially difficult. For instance, without communication, there was no way to ensure that the
landmark sets were 100% identical. Certainly, by the time sensor noise dominated the original
signal, the landmark sets had lost a considerable degree of commonality. Although the formal
parameters sufficed for an introduction to the problem, further work should be directed in refining

the parameters. The sensor noise parameter could certainly be split into its original components of
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sensor differences and sensor noise. It may not even be possible to model the sensor differences as
probabilities; the sensor noise model may need to be increased to a number of factors. Similarly,
the asynchrony parameter should be divided into the degree of time synchronisation and also a
probability of failed meeting. Currently, the asynchrony factor more closely models probability of
failed radio communication, and in fact was modelled as such for the physically-based simulation.

Of the analysis presented in this work, only limited but critical parts of the parameter space were
examined. Further examination is necessary for examining the behaviour of the algorithms under
conditions of worsening noise, worsening asynchrony, and perhaps most importantly, conditions of
landmark commonality. It is physically likely that as time passes, the areas explored by the agents
will overlap more and more; analysis of the performance of the algorithms under these conditions
would be useful.

One open problem is the ability of the agents to choose the appropriate rendezvous algorithm.
A major part of this problem is allowing the agents to estimate the environmental parameters,
and identify the correct portion of the parameter space that identifies the environment. At no
time did the agent’s attempt to estimate the experimental parameters; the agents did not use any
environmental information in the algorithms. Allowing the agent to vary the parameters, such as
constants in the stochastic algorithms, as rendezvous succeeds or fails, may have considerable power.

Finally, the only consideration used by the algorithms for choosing which landmark to visit
was the distinctiveness of the landmark. Given the sometimes substantial mechanical complexity
of travelling between two landmarks, a better algorithm would consider the mechanical complex-
ity of visiting landmarks in addition to its distinctiveness, so that of two landmarks with similar

distinctiveness, the closer landmark would be visited first.
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APPENDIX A

Derivation of Analytical Results

A.1l. Expected-Case Results

A.l.1. Random.

n—1

Punsuccessful = n

The expected-case time is the median number of iterations k, such that

k
> P(i) =05

i=0

(A.1)

(A.2)

where P(z) is the probability of meeting in exactly 7 iterations. Therefore, probability of meeting

on the kth iteration is 50%. For the probabilistic algorithms such as random, the probability of

meeting on the 7th iteration is Pt(‘;—silcus fut + Psuccessful-

k—1 "
Ptfnsuc)cessful + Psaccessful = .9
k-1 _
stnsugcessful + PUﬂSUCCCSSful = -9
(k) .
Punsuccessful = -9
k
n-—1
= 5
(*+)
n-—1 o
klog® = log®.5
¢ (%) -
1
k =

For asynchrony,

(A.3)
(A.4)

(A.5)
(A.6)
(A.7)

(A.8)
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n-—1
unsuccessful = | —— | J A.
P, ful ( - )J (A.9)
and from equation A.6,
k
n-1
j = .5 Al
(224) = s (A.10)
n—1. _
klog, ( - ]) = log,.5 (A11)
ko= L (A.12)
logy (32 ) + logaj
For disjoint landmark sets,
n—1 d
Pu.nsuccessful = ( . ) (;{) (A.13)
and from equation A.6,
K
(@) - -
n n
—d ,
klog, (dnn ) = log~.5 (A.15)
Eo= — (A.16)

A.1.2. Sequential. Thesequential algorithm consists of the active agent cycling throughout
its n landmarks, while the passive agents waits n rendezvous attempts before moving to the next

landmark. From equation A.2,

i(n;%l) = 03 (A.17)

i=

kn—i k 1
S——-> — 0.5 (A.18)

n—t —n-—1

i=0 =0
k—% = 05 (A.19)
n
Eomog (A.20)

thus solving for & gives expected time = 7.
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A.A.1 EXPECTED-CASE RESULTS

For asynchrony, the probability of any given cycle failing to rendezvous is j. Each additional
cycle involves a cost of n. So, the probability of & cycles meeting is the Pk — 1) nsuccess ful +
P(k)successful. Thus, the expected time is the number of sweeps plus the expected time of the

final sweep.

* = 05 (A.21)
klog,j = -1 (A.22)
-1
E = A.23
log, j ( )

Unsuccessful time = j*n, successful time = 2.

i = jkn+g (A.24)
—1
i = jEETE (A.25)

Similarly, for disjoint landmark sets, the probability of any given cycle failing to rendezvous
is %. Each additional cycle involves a cost of n. So, the probability of & cycles meeting is the
pl-1) + Pk Thus, the expected time is the number of sweeps plus the expected time

unsuccessful success ful*

of the final sweep.

(g)k = 05 (4.26)
klog, (g) = -1 (A.27)
£ logj%) -
Unsuccessful time = (%)k n, successful time = 2.
P (%)kn n 721 (A.29)
P (%)@Iﬂn +2 (A.30)

(A.31)

A.1.3. Smart-Sequential. = The smart-sequential algorithm consists of the two agents cy-

cling throughout its n2 landmark pairs. The probability of an unsuccessful rendezvous on the ith

iteration is:
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n?—i—1
o A.32
Pli) = (4.32)

From equation A.2,

A rn?-i—1
3 (ﬁ) =05 (A.33)

i=0
fen—i &1
Zn_i— ——; = 05 (A.34)
i=0 =0
E-n = 0.5 (A.35)
k =~ n (A.36)

thus solving for k gives expected time = n.

A.2. Worst-Case Results

A.2.1. Random. The worst-case result for the random algorithm is always co, because no
guarantee exists that the robots will meet on any particular iteration. However, it should be noted

that the worst-case has 0 probability of occurring.

A.2.2. Sequential. For the simplest case, the worst-case occurs if the passive robot goes
first to the active robot’s last landmark. Therefore, the active robot will visit go through its entire
cycle of n landmarks, and find the passive robot on the last iteration.

For the asynchrony case, the worst-case occurs if the robots fail to rendezvous due to asynchrony
on every iteration, thus the time to rendezvous is again co. Again, this scenario has a probability
subset of measure 0.

For the disjoint landmark case, the worst-case occurs if the passive robot first visits each of its
unique landmarks (i.e., landmarks unknown to the active robot). Thus, d cycles of length n must
occur before the passive robot is at a landmark the active robot will visit. During the final cycle,
the worst-case occurs if the passive robot is now waiting at the active robot’s last landmark; the
active robot goes through its entire cycle of size n first before finding the passive robot on the last

attempt. Thus, the worst-case is nd + n visits.

A.2.3. Smart-Sequential. The smart-sequential algorithm creates a list of pairs of land-

marks of length n>. Of these n> pairs, n of them contain a potential rendezvous. If all n pairs are

111



A.A.2 WORST-CASE RESULTS

at the end of the list, then the preceding n? — n + 1 pairs do not contain a rendezvous. Therefore,
the worst case for smart-sequential is n? — n + 1.

The asynchrony derivation is the same as for sequential.

If the landmark sets of the two agents are not identical, then the number of potential rendezvous
pairs in the list of n? pairs created by the smart-sequential algorithm is n — d. That is to say, of the
n? ways of selecting two landmarks, one from each agent, only n — d pairs will match. [fall n — d
pairs are at the end of the visit sequence, then n® — n + d + 1 attempts must be made before every
remaining attempt will result in a rendezvous. Therefore, the worst-case for smart-sequential if the

landmark sets are disjoint is n> —n +d + 1.
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