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ABSTRACT

We consider the problem of rendezvous between two robots exploring an unknown environment.

That is, how can two autonomous e.xploring agents that cannot communicate with one another over

long distances meet if they start e.'X:ploring at different locations in an unknown environment. The

intended application is collaborative map e.'X:ploration.

Ours is the first work to formalize the characteristics of the rendezvous problem: and we ap­

proach it by proposing severa! alternative algorithms that the robots could use in attempting to

rendezvous quickly while continuing to e.xplore. The algorithms are based on the assumption that·

potential rendezvous locations, called landmarks, can be selected by the robots as they explore;

these locations are based on a distinctiveness measure computed with an arbitrary sensor.

We consider the performance of our proposed algorithms analytically with respect to both

expected- and worst-case behaviour. We then e.'X:amine their behaviour under a \vider set of conditions

using numerical analysis. This numerical analysis is confirmed using realistic simulation of multi­

agent exploration and rendezvous. We also examine the exploration speed, and show that a multi­

robot system can e.'X:plore an unknown environment faster than a single-agent system, even with the

constraints of performing rendezvous to allow communication.

\Ve conclude with a demonstration of rendezvous implemented in the real world.
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RÉsuMÉ

Nous traitons le problème du rendez-vous entre delLx robots qui explorent un environnement inconnu.

Plus précisément, nous étudions comment deu..x agents d'exploration autonômes, ne pouvant com­

muniquer sur de longues distances, peuvent se rencontrer lors de l'eJ-.--ploration d'un terrain inconnu

à partir de positions initiales différentes. L:application visée est celle de l'e."q>loration col1aborative.

Après une formalisation des caractèristiques du problème de rendez-vous, nous proposons

plusieurs alternatives d'algorithmes utilisables par des robots pour se retrouver rapidement tout

en explorant l'environnement. Les algorithmes utilisent l'hypothèse que les sites de rencontre poten­

tiels, appelés «:landmarks», peuvent être déterminés par les robots au cours de l'exploration. Ces

sites sont choisis selon une mesure de distinctivité ou de qualité à partir d'un déctecteur arbitraire.

Nous e.xaminons alors analytiquement les algorithmes proposés, selon leurs comportements at­

tendu ou selon le pire cas. Nous etudions ensuite plus largement leur comportement par l'analyse

numérique. Cette analyse numérique est vérifiée par la simulation réaliste d'e."q>lorations et de ren­

contres multi-agents. L'aspect de la vitesse d'e.xploration est également envisagé et nous démontrons

qu'un système multi-robots peut e.xplorer un environnement inconnu plus rapidement que dans le

cas de l'utilisation d'un seul robot, et cela même si un rendez-vous est nécessaire pour permettre la

communication des informations acquises.

Nous terminons avec un démonstration de rendez-vous dans le monde réel.
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CHAPTER 1

Introduction

'Vith the advent of relatively cheap and robust mobile robots, the possibility of using teams of mobile

robots to perform simple tasks has become a reality. In many conte.."ds, multi-agent systems may

be more effective, faster, or more desirable than a single, very powerful monolithic robot system.

Despite the loss of one agent in a multi-agent system, the remaining agents can potentiaUy continue

the task to completion. lVIanufacturing severa! small, unsophisticated agents may be much cheaper,

even \\'Ïthout without sacrificing speed or functionality, than manufacturing a single, powerful robot.

Severa! smaU, independent agents may be capable of more than any e.xisting monolithic system.

Furthermore, there are many tasks that simply require more than one agent, either human or

mechanical, working in tandem.

These advantages notv.-ithstanding, there are difficulties associated with multi-agent systems.

The problems of task division, synchronisation and coordination are significant; the correct behaviour

to follow if a member of team becomes lost, damaged or stuck is not always clear. Furthermore, the

correct behaviour to ma.ximise the efficlency of the distributed team is equa1ly difficult to determine.

Practical considerations can further contribute to the comple.."<ity of a multi-agent system when

compared with a single agent system.

One e..xample of such a practical limitation is inter-agent communication. Most existing hard­

ware agents are only capable of communication over short distances. Environmental geometry,

wireless transmission technology, power considerations and atmospheric conditions (or water condi­

tions for underwater agents) aU contribute to limitations on communication range. In the absence

of sophisticated satellite receivers or high power devices, a cornmon constraint for successful com­

munication is maintaining "line-of-sight" between agents, a constraint that is rarely satisfied in the

real world. However, e.."'<isting research indicates that multi-agent robot systems for the majority

of real-life applications enjoy suhstantial speed gains only with some level of communication [6],

when compared with single-agent systems or multi-agent systems that do not communicate. !\-'!any



•

•

1.1.1 PROBLEM STATEMENT

distributed-agent algorithms, for instance dynamic path-planning, assume and rely upon instanta­

neous, infinite bandwidth communication between agents at all times in order to aehieve promised

performance levels [12].

Another limitation is the ability of the collaborating agents to share information in a manner

that alIows any advantage over single agent systems at aIl. Using the e..xample of e.'Cploration, the

agents must be able to merge the maps generated by the e.xploration process; if the maps cannot be

merged, then each agent must itself e.xplore the environment to completion, and no task speed-up

is achieved. Rowever, under many circumstances, the agents must often share a common reference

point to be able to rnerge mapsl - completely independent maps cannot always be merged reliably.

Unless the agents start at exactly the same place in the environment, they must agree on a place to

meet a priori, and share information. However, choosing a meeting point reliably, especially in an

unknown, unconstrained environment is a very difficult problem.

The solution proposed in this work to these problems is termed 'Multi-agent Rendezvous'. A

rendezvous is a meeting between two or more agents at an appointed place and time, for example,

when two people meet to share notes at a familiar location. This problem is ubiquitous in nature ­

migratory animals must be able to meet to share information about food. Non-social animals must

be able to find each other during mating season. Rumans are equally familiar with the problem of

rendezvous, as any family whose members become separated at a zoo or malI weIl knows. :NIulti­

agent robot systems also have an inherent need for the ability of inter-agent rendezvous. The ability

to meet facilitates localisation, allows collaborative map exploration and has a plethora of other

advantages, but most importantly alIows communication.

1.1. Problem Statement

The problem discussed in this thesis is that of how to determine the best strategy for a successful

rendezvous between two agents in optimal time. The conte."-'"t that will be used in this thesis for

studying the problem of rendezvous is multi-robot e.xploration of unknown environments. Although

multi-agent robotie systems are useful to a number of domains, exploration of unknown environments

is an appropriate context for a number of reasons. The task of e.xploration is one that has been

studied previously, and there is a well-established body of work on single robot and multi-robotie

exploration methods. The e.xÏstence of such established algorithms allows this thesis to focus more

narrowly on the problem of rendezvous. Furthermore, sorne of the difficulties with multi-agent

lIt is sometimes possible to merge maps using their shapes. Hcwever, if the agents' sensors are substantially different.
or there are spatial ambiguities, the merging process may fail.

2
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1.1.2 THE APPROACH

systems that are solved by rendezvous, in particular the problems of communication and of map­

fusion, are integral to the exploration task. If these problems can be addressed by rendezvous in the

context of e."q)loration, then the technique is generalisable to other domains.

In particular, we are interested in multi-robot e.xploration using video or sonar sensing. In prac­

tice, the particular sensing modality has numerous pragmatic implications, a major factor being the

range at which the agents can either recognÏse one another, or any landmarks in the environment. In

the conte.~ of a general rendezvous strategy, we will initially, however, consider a generic "abstract"

sensor that allows the agents to recognise one another when they are sufficiently close together and

which allows them to evaluate any point in space as to its suitability as a rendezvous point. \Ve will

consider how the rendezvous task can be efficiently accomplished under various assumptions about

the environment and the perceptual abilities of the agents involved.

1.2. The Approach

The rendezvous task itself is divided into two sub-problems.

Ci) The first sub-problem is how to choose an appropriate rendezvous point, given an unknown

environment. The ability of the agents to meet in the environment is a function of their

ability to rellably choose appropriate rendezvous points. For instance, mountain tops may

be a good outdoor rendezvous point. However, if the agents cannot rellably measure the

height of mountains or the agents are indoors, another notion of good rendezvous points

may be appropriate.

FIGURE 1.1. Two robots, search.ing an unknown em·ironment for good rendezvous points.

(ü) The second sub-problem is that of dealing with confounding factors to the rendezvous pro­

cess. One such factor is the ability for agents to agree on the same location for rendezvous.

3
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1.1.3 CONTRIBUTION

Sensor noise may cause agents to disagree; agents may not be aware of the same spatial ar­

eas, and therefore may choose different points. For instance, if two agents have e.'"Cplored two

different mountain ranges, then they will not choose the same peak as the highest mountain

peak. An appropriate rendezvous strategy will take into account such asymmetry between

the agents' e.xploration. If the agents agree to meet at noon, and one agent cannot reach the

rendezvous point by noon, pre-arranged behaviour must account for snch asynchronies, and

allow for missed rendezvous attempts.

Information
Transfer

•

FIGURE 1.2. Two robots, after a successful rendezvous, sharing map information.

In the simplest formulation, the rendezvous vrill involve the agents searching thraugh the

environment far good meeting points, and then travelling to the best meeting point at a

pre-arranged time.

1.3. Contribution

This is the first description of this problem in multi-agent mobile robotics. NIost multi-agent

algorithms rely upon certain assumptions that are not necessarily tenable in practice. Certainly,

unlimited communication is not a realistic assumption, yet many of the classical path-planning and

task division algorithms assume it. The method of rendezvous is the first proposed as a solution to

these problems with practical mobile robotics.

This thesis describes the idealised task of mobile robot rendezvous formal1y, including severa!

issues that complicate the task in practice.

• We formalise the parameters of the rendezvous problem that necessitate more than one

attempt.

• Two classes of solutions are proposed, and analysed both analyticaIly and empirically.

4
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Ll.4 OUTLINE

• We simulate the rendezvous problem at two levels; the first level is a purely algorithmic

simulation, simply to test the efficacy of the various algorithms under the different conditions

we describe.

• Subsequently, we have developed a realistic simulation, using spatial metrics and simulated

sensing and motion.

• Finally, we demonstrate the speed-up possible under multi-agent systems by comparing the

running-time of the multi-agent system versus the single-robot system.

In order to motivate the rendezvous process, we also develop a novel, simple and robust e..xplo­

ration algorithm, that uses a hybrid of local potential field descent and global optimisation. Using

the e..xploration method, we simulate robots e..'q>loring an unknown environment and periodically

performing rendezvous.

1.4. Outline

This thesis begins by describing the task of rendezvous, and some of the issues that must be

addressed by any system that is attempting multi-agent meetings. The problem of choosing the

rendezvous locations is formalised, as are the factors that rnake rendezvous dmcult. In the conte..xt

of this formalisation, sorne representative algorithms which illustrate key classes are defined and

discussed, first analytically, and then numerically. A simulation of multi-agent e.xploration with

rendezvous is developed, and finally implemented on a physical multi-robot system. The algorithms

for rendezvous are the focus of the work, both on a qualitative and quantitative basis.

The ontline of this thesis follows:

Chapter 2 discusses related work, bath to the problems of multi-agent robotics, and also to the

problem of exploration of unknown environments.

Chapter 3 presents a formalised notion of space that will be used both for exploration and

for rendezvous. lt is in this chapter that we begin to break the rendezvous problem down into

multiple components. First, the framework for finding rendezvous points will be described, as weIl

as associated issues. "\Ve then present a description of the algorithms, and e.xamples of each. We

conclude with an analytical description of the algorithm performances at representative sample

points in the problem space.

Chapter 4 presents a numerical analysis of the algorithms under more detailed conditions than

the e..xtreme cases analysed in Chapter 3. The e..xperimental framework is first described, and then an

e.xamination of the results. This numerical analysis is shown to be a confirmation of the analytical

results.

5
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Chapter 5 describes the implementation of the exploration algorithm. The potential field al­

gorithm is detailed, along with the underlying occupancy grid representation that is used for rep­

resenting the spatial information gathered during e..xploration. 1t is this e..xploration method that is

used to motivate the rendezvous problem.

Chapter fi describes the e..xperimental framework of the spatial simulation, and then presents

the results of the spatial simulation. The results are highly illustrative of many of the problems of

rendezvous.

Chapter 7 describes an implementation of the e.xploration and rendezvous tasks using real

robots. The e..xperimental context is an indoor laboratory situation.

Finally, we conclude with a summary of the work, and a description of the important results.

As this is a new research area, a considerable number of issues remain to be addressed. vVe discuss

some of the unresolved problems of rendezvous, and remaining open questions .

6
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CHAPTER 2

Related Work

The interdisciplinary nature of this thesis results in related work in a number of subject areas. The

first such area, and the main thrust of this thesis t is the coordination of multiple robots engaged in

some comillon task.

2.1. Rendezvous

The problem of rendezvous is not a new one; there e.."Ci.sts a body of research in the optimisation

and operations research community involving search problems. Rendezvous is a particular variant

of the search problem, similar to games with mobile hiders, called princess and monster games [2].

There are many variants of the rendezvous problem itself, involving distinguishable [3J or indistin­

guishable agents [4] and collaborating or interfering agents. The environment may have focal points,

or may be completely homogeneous.

There are a number of differences between the highly theoretical approach most prior work

takes and the approach used in this thesis:

• In the e.."Ci.sting literature, the assumption made is that the environment is known a priori.

In this thesis: the environment is not known, and one of the key problems is to find the focal

points (what we term landmarks) and meet .

• In prior work, the problem of what to do when the initial rendezvous fails has not been ad­

dressed, since the theoretical agents have perfect sensingt synchronisation, etc. In this thesis,

we are dealing with realisable agents t with the concomitant problems of noise, asynchrony,

real-time travel limitations.

However, there are is a key similarity between the prior work and this thesis:
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• Communication between agents is prohibited, until the agents are within a pre-determined

line-of-sight range. Indeed, the graph-theoretic approach reduces this distance to 0 in many

cases.

It is interesting to note that one of the algorithms proposed by Alpern [2J is equivalent to the

first deterministic algorithm we propose in Chapter 3.

2.2. Multi-agent robotics

There are two principle approaches to multi-robot collaboration:

(i) The first approach is to examine a particular task that has been studied for uni-robotic

systems and e.."ctend it to multiple-agent systems. This approach generally yields multi-robot

algorithms for a given task.

(ü) The second approach is to examine the properties and abilities of multiple-agent systems,

either qua a robotic system, or in comparison to uni-robotic systems. This approach often

results in behaviour studies of collectives, or swarms of robots.

AImost aIl of the algorithms that have been developed for multiple-agent systems assume either

a central controller, or a large degree of communication. Latombe [37J divides the motion planning

algorithms for multiple agents into those using centralised planner, and those using decoupled plan­

ning. An e.."'Cample of the centralisee!- planner is Schwartz and Sharir's [51] e.."'Cact cell decomposition

method for motion planning of two dises, discussed in a part of their classic "Piano 1Iover's Problem"

series. These systems are barely multi-robotic, as opposed to multi-effector, single-brained robot

systems. Clearly, a centralised planner assumes full communication between the planner and each

agent. Furthermore, the high complexity of perlect, centralised planning of multiple agents implies

a static environment; most centralised planners cannot cope with dynamic environments [5J. With

centralised planners, there are the two most common assumptions of both full communication with

the agents, and the permanence of the plan, once computed. Neither one of these assumptions is

valid for most real-world mobile robot scenarios. As a result, there has been considerable research

of late in distributed planners and conflict-resolution strategies.

The decoupled planners, such as prioritised planners [25, 13J, path-coordination [44} or dy­

namic multi-agent planners [12] require no central planner, but require considerable communication,

initially and often during the e.."'Cecution of the motion. Within the class of decoupled planners, and

in particular, conflict-resolution strategies between plans across agents, Azarm and colleagues [5]

further added the types of distributed planners based on master-slave relationships [55], and traffic­

rule based dynamic planners [28]. Mutual-e.."'Cclusion across spatial resources [IJ demands static

8
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environments similar to centralised planners, whereas sensor-based planners [29] suffer from the

same limitations as the uni-robot reactive control methods.

In the conte.xt of studying the behaviour of multiple-robot systems, Dudek et al. (23) provided

a comprehensive ta..xonomy of the different types of multiple-agent systems, or swarms, incIuding the

various types of communication available. In addition, the three possible types of communication

were described:

• No communication ("COlvI-NONE")

• limited communication ("COM-NEAR")

• full communication ("COlvI-INF")

As the authors point out, COlVI-INF "is the cIassical assumption, whÏch is probably impractical if

[the number of agents) »1." A modest understatement, given that radio communication breaks

down in many situations as soon as line-of-sight is lost. This thesis makes the assumption of swarms

of range-Iimited communication, instantiated in this case using a line-of-sight constraint.

There has been considerable work in studying the range of behaviour of multiple-agent systems,

especially attempting to maximise efficiency and minimise comple.."dty [41) [26]. NIataric has looked

at models of collaborative behaviour between mobile robots [41], and e..xamined the "emergent

behaviour~' properties that result. She aIso observed that the form of communication plays an

important l'ole in how collaborative actions proceed. Parker [45, 46J has developed control strategies

for heterogeneous multiple robot systems, and made cIear the need for effective communication.

Arkin and his colleagues give a description of the canonicaI tasks of multiple-agent robots, and

the effect of various levels of communication on speed of task completion, incIuding the difference

between e.xplicit (i.e., by radio) and implicit communication. Implicit communication is the infor­

mation that the robot embeds in the environment as a byproduct of performing a task - such as

tire tracks. Implicit communication is also an important issue in multiple-agent robotics, in that it

leads to dramatic speed increases for some tasks, without the constraints of explicit communication

modalities. Donald et al. also discuss using implicit information in the context of co-ordinated

furniture pushing [19]. However, we do not intend to deal with implicit communication in this work;

the technique of rendezvous is being applied to solve the limitations of eÀ-plicit communication.

Balch and Arkin [6) describe several tasks: consuming, foraging and grazing. In this thesis,

the task of e..xploration is an e..xample of a grazing task, in that the entire environment needs to

be covered by at least one robot 's sensors, in order to acquire a complete representation. Further

tasks that have been addressed in the context of multi-agent systems are box-pushing [45, 19, 18],

formation holding [7, 9, 52J and e.xploration and mapping [49, 15]. Like Donald's box-pushing and

the grazing task, many of these applications use passive sensing or implicit information to perform

9



•

•

2.2.3 SPATIAL REASONING

their task. There is a dearth of work in real applications that demand full, active communication

that have been implemented on real robots. Rekleitis and colleagues' [49] work on using multiple

robots for e.xploration is very much in the spirit of this work, using multiple agents to overcome

limitations in the use of a single robot for exploration. While their approach overcomes inherent

limits in localisation in an unknov..-n environment, the goal is to increase the precision of the map

acquired. This work is focussed on increasing the speed of map acquisition.

Yoshida et al. addressed the problem of how ta reduce a global communication network to local

communication~ in order to minimise information comple.xity [54]. However, there has not been

much research in overcoming communication limitations, e.xcept by limiting the scope of the system

to sorne area (such as a factory or a port) where communication between agents can be guaranteed

by some global co-ordinator.

Finally, the problem of map generation from co-operative multi-agent e.xploration was discussed

and implernented by Ishioka et al. [30}. Their work is a canonical e.xample of the potential applica­

tions of the technique presented in this paper, in which co-operative heterogeneous robots generated

maps of unknown environrnents. They did not discuss the problem of rendezvous, but focussed only

on how to merge maps once the rendezvous has occurred. 1t is worth noting that map fusion is also

closely related to the genelic image-registration problem.

2.3. Spatial Reasoning

The secondary thrust of this paper is in the area of spatial reasoning, in particular spatial

representation and e.xploration techniques. There e.xist a plethora of different techniques both for

representing space and also moving about in both unknown and known envTIonments. Kuipers [34]

lists sorne of the representations as "Configuration space, Generalised Cones, Voronoi Diagrams,

the Grid Model, the Segment IVIodel, the Vertex Model, the Convex Polygon Nlodel, the Graph

Model and the Polygonal Region IVIodeP', not including his own contribution of the topological

model [33]. Perhaps one of the most successful methods of spatial representation was the work

of lIIoravec and Elfes' on occupancy grids, which are used in this thesis [43, 24]. Kadonoff and

his colleagues developed a strategy for combining severa! of these models in the same system [27].

Dudek also developed a strategy for combining different spatial models [20), employing different

levels of symbolic and sub-symbolic abstraction for localisation, navigation and long-term planning.

While it is clear from the graph-theoretical work that focal points in the environment are

essential to effective rendezvous, it is Kuipers' selection of distinctive locations in a simple 2-D

environment (considered previously in the conte.xt of map-making [34]), that is the basis for the

10
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landmarks in this thesis. The distinctive locations in that work were determined by active hill­

climbing over the dîstinctiveness function, that is, by local gradient ascent over sorne function of

the sensor output. The local maxima in a continuous property of the environment allowed for the

conversion a metric environment representation into a graph-like or topological one [14, 22, 35).

Similar approaches to this organisation of space have been approached by Levitt, using visual sensing

as opposed to sonar [39J. Miller divided space into voronoi regions based on the degrees of freedom

in the error estimate, creating a semantic hierarchy of space of a different nature [42J. Brian Pinette

used visuallandmarks, as opposed to spatiallandmarks, for his work in qualitative homing [48J.

After developing the visual map making system [10], Brooks attempted to abolish internal

representations completely [11]. Brooks' daim was that the world itself would serve as its own

representation, and that internal maps were not important at many lower levels. The e..xperience of

the subsumption architecture that implemented these ideas has shown that only the rnost primitive

of behaviours can exist without some higher level of abstraction, however, the "intelligence without

representation" is an interesting comment on the ideas of spatial representation.

In this work we ignore dead-reckoning error; in practice, one can use one of several e..xisting

techniques to update continuously the robot's position estimate [8) [38] [40J [20] [32].

2.4. Conclusion

There are sorne interesting and unusual approaches to multi-agent robotics that are worth

mentioning. Russell has developed a method of leaving short-lived heat trails, that allow agents

ta find one another at a distance by searching and following the trails of heat [50]. A similar

approach is used by Deveza (17] to use chemical odours for navigation. These techniques, motivated

byethology, are very similar to techniques used by animals in the wilde It reflects the very strong

human tendency to navigate by modifying the environment by visual signs.

Il
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CHAPTER 3

The Rendezvous Problem

This chapter presents a formaI description of the rendezvous problem. We have separated it into

two separate sub-problems. The first sub-problem is how to select points in the environment for

potential rendezvousj we discuss issues of representation and issues of task dependence. The second

sub-problem, the major focus of this work, deals with factors that can affect the success of any

rendezvous attempt. \iVe formalise these parameters and propose two main classes of algorithms to

solve the problem appropriately. We give examples of each class of algorithm and give e.xamples of

the individual algorithms in operation.

Finally, we conclude with an analytical examination of the algorithm performances at certain

extremesj we will by analysing the time to rendezvous under the parameters that affect performance.

This analysis prefaces the numerical analysis in the following chapter which contains a more detailed

depiction of the algorithm performances.

3.1. The Rendezvous AIgorithm

In the simplest, idealised, noise-free case, each robot should select the location in the environ­

ment that is the most distinctive. Each robot should na\igate to this location and wait for the other

robot(s) to arrive. At snch a time, they should fuse their maps and suitably partition any remaining

exploration to be done.

(i) Travel throughout environment

(ü) Record points in the environment that are good rendezvous locations

(ili) At the pre-arranged meeting time, choose the best rendezvous location

(iv) Travel to the best location, and share information with the other agents
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Unfortunately, this happy scenario rarely occurs outside of simulation, thus making this thesis

some\l;hat longer than it might otherwise be. The problem in practice is that due to sensor vari­

ations or disjoint landmark sets, the agents may not agree on where the single, ideallandmark is

situated. Therefore, the problem of rendezvous is also one of determining what action ta take when

a rendezvous attempt fails. We are interested in strategies that would permit a robot ta interleave

e.xploration and attempted rendezvous so that if the rendezvous fails, the robot can continue its

work. This approach will allow the strategies to remain robust even in the face of a robot's complete

inability ta find its associates.

3.2. Landmark Selection

The tractability of most problems in computer science, and in many other disciplines for that

matter, depends to a great extent of the particular choice of representation used ta solve the prob­

lem. For the purposes of the rendezvous problem the representation of the environment will have

considerable effect on our ability ta choose points in the surroundings that may or may not constitute

;'gaod" rendezvaus locations - these points we refer to as lanchnarks.

3.2.1. Spatial Representations. David !vIiller [42] gave three purposes for the spatial

representation system in a mobile robot:

(i) It provides a framework for incorporating newly discovered information about

the robot '5 environment.

(ü) Ii provides the necessary information to do route planning.

(iü) It gives information from monitoring the position of the the robot during task

execution.

Our ability ta choose which point or points to visit at every rendezvous attempt will be dic­

tated in part by our spatial representation. Therefore, the representation of the environment must

be considered carefully. There are two principle classes of spatial representations. The first repre­

sents space as a metrie grid, where each location is either filled with some object, or empty. This

representatian uses a discretised map, also referred to as an "occupancy grid". The chief advantage

of this representation is that it gives a reasonably non-Iassy description of space, up to the level af

the discretisation. As a consequence, many other forms of spatial representation and other spatial

information, such as object shapes, can be derived from the grid. However, the occupancy grid

has twa major disadvantages. It is tremendously storage intensive, and suffers from discretisation

artefacts in many instances that are difficult to eliminate without increasing the resolution (and

therefore the storage requirements). Furthermore, deriving useful information from a metric map,

13
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while usually possible, is often computationally intensive. One e..'\':ample is path-planning, which is

Ven) in the number of cells in the grid.

An alternative representation of space is the topological map, which represents space as a

set of connected nodes. The arcs of the connected graph can be used to represent a number of

properties, such as distance, travel time, or control strategy for travelling from one node ta the

ne..xt. The topological map has the advantage of being storage efficient, and depending on the

information stored at nodes and arcs, can provide information sucb as navigation paths in much

shorter time-complexities. However, the topological map suffers in that any spatial information

not stored e.'\':plicitly in the nodes and arcs is lost. For e.'\':ample, not every location in a mapped

environment is represented in the topological map. Furthermore, the topological map created for

one application may not be easily transformed to another. For e..'\':ample, in a world where travelling

up sharp inclines requires a disproportionate amount of power, a map created for navigating in

optimal time between nodes is not likely to contain the information for navigating with minimal

power consumption.

From the discussion of these two spatial representations arises the first question of whicb to

choose for representing good landmarks. Since the problem of rendezvous only requîres storing the

location of small set of points in a much larger environment, clearly a topological representation is

likely sufficient. The further question then is how ta choose points in the environment to serve as

landmarks, for future rendezvous.

3.2.2. Landmarks. In the conte::-...-t of cultural environments, typical notions of good land­

marks generaIly rely upon some knowledge of the environment to facilitate rendezvous. For instance,

humans often rely upon pre-e..xisting structures sucb as building doors, monuments or hilltops to

identify rendezvous locations. In the context of e.'\.-ploration of unknown environments, no such as­

sumptions Can be made about the e.'\':Ïstence of sucb structures. Therefore, we define the notion of

distinctiveness, or landmarkness, as a value defined at every point in the environment, and use

this value to find landmarks in the environment. If the distinctiveness is a function of the agent's

sensor(s), then there is no issue of environmental dependence on the ability to find landmarks ­

every location is a potential landmark.

An example of a rendezvous situation would be twa people who agree to meet at a

large zoo, never having visited this zoo be/ore. The two people agree to meet on the

highest hill at the zoo; for these two people, the hilltops are good rendezvous locations,

or landmarks.

14
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As an agent travels throughout the environment, every visited location is evaluated by the agent

in terms of its distinctiveness. By restricting landmarks ta lie along the robot trajectory, we avoid

issues of landmark visibility and viewpoint independence. However, it should be emphasised that

these landmarks need not be recognisable as such from afar, such as a mountaintop is. We recognise

locations as landmarks by actually visiting them.

The zoo where the two people are meeting is moderately forested; as a result, it is

very difficult ta tell from afar where the hilltops are, and how high they are. Sa, the

two people at the zoo travel ta each hilitop, ta see how high it is compared to the other

Mlltops.

The assumption is that distinctive locations (with respect to some sensor-based computation)

serve as locations that ail robots can independently select as good landmarks. vVe refer ta the scalar

measure of suitability as a rendezvous point as distinctiveness: D(x, y, 8). The position (x, y) and

orientation B of the robot are commonly termed the pose of the robot; the pose vector is q = (x, y, 8).

Therefore, for a pose vector q we can define D (if).

This is implicitly a function of sensor data f(q), so we have a new distinctiveness function D,
such that:

D : (x,y,B) -+ n (3.1)

f: (x,y,B) -+ S (3.2)

D:S -+ n (3.3)

D = ÎJ 0 f(if) (3.4)

Although the agent's sensor may not return scalar values, some scalar suitability measure can

be usually he computed from the sensor. Some intuitive examples of environmental attrihutes that

might serve as distinctiveness measures are: spatial symmetry, distance to the nearest obstacle,

or altitude (for 3D surfaces - for e.xample humans might select hill tops). If we choose our the

distinctiveness function to be orientationally invariant, then

The possible distinctiveness measures are heavily dependent on the types of sensors the robots

have at their disposai. Because the robot assigns a value ta every point, a good sensing modality is•
D(x,y,8) = D(x,y) (3.5)
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one that allows the distinctiveness to be defined at any location in the environment, and for which

there exists some metric that can order the resultant landmarks in the environment in terms of

distinctiveness. This ordering alIows the landmarks to be ranked in terms of their likelihood to lead

to a successful rendezvous.

3.2.3. Distinctiveness Surfaces. Certain generic properties apply to suitable landmarks

and the distinctiveness function D(x, y) independent of the sensing modality. If the distinctiveness

function is smooth, locally conve.x, and has few local e.xtrema or inflection points, then it may

be possible to define highly stable and mutually agreed-upon landmarks with great ease; these

landmarks could be found by ha'\.ring the robots perform gradient ascent over the measured surface.

However, although this strategy is attractive in principle, we believe that in many real environments,

sensor noise, occlusion and other factors may make the "distinctiveness surfaces" highly non-convex

and thus complicate the process.

This function D(x, y) then defines a surface across the x - y plane. The task of choosing

landmarks then becomes the task of identifying the local ma.uma (or minima, if preferred), of the

distinctiveness surface. Figure 3.1 shows an e.xample of a bounded environment and its associated

distinctiveness surface. Note that although the surface is not particularly smooth, there are a few

definite sharp peaks in the surface that would make good rendezvous points. The very fiat areas in

the surface are regions of the space that are inaccessible to the robot. These areas were computed by

generating an occupancy grid from the map, and then performing a breadth-first, connected-space

search of the grid. The distinctiveness was measured only in regions accessible to the search through

connected space.

The principal measure of distinctiveness1 used in this work (and used to generate the surface

of Figure 3.1) encompasses both a notion of enclosed space and symmetry, by summing the ranges

returned from the sonars, and dividing by the difference of opposing sonar pairs:

D = (3.6)

•

This measure is presented here for reference only; it will be e.xplained further in Chapter 6

during the discussion of the actual robot e.xploration.

3.2.4. Finding Distinctiveness Peaks. One way to identify the potential rendezvous

points, or landmarks, is to sample the distinctiveness surface uniformly across the space, and then

identify the ma.'Cima in the surface off-lïne. However, this method has the disadvantage of being

l Recall that we have assumed. the function is rotationally invariant, sa that D(x, y,8) = D(x, y). The issues of
rotational invariance associated with this distinctiveness function will be address in Chapter 6.
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FrGURE 3.1. An example map, and its associated distinctiveness surface.

both storage- and time-intensive. The robot must visit every position in space where the surface

will be sampled, and must store the equivalent of an occupancy grid with the distinctiveness for

each sample. Since we want only points at the distinctiveness maxima, such an exhaustive sampling

would he an unnecessary waste of time and storage.
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The notion of a landmark aIso serves as the basis of the topological mapping strategy proposed

by Kuipers [34]. The strategy defined by Kuipers follows contours in the distinctiveness surface un­

tillocal minima or ma.xima are perceived: and then performs gradient ascent: hill-climbing to that

landmark, which is represented as a node in the graph. Connections between the landmarks are rep­

resented as control strategies that allow the agent to follow the distinctiveness contour. However, this

strategy has a very tight coupling between the search for landmarks and the actual trajectory of the

robot - the trajectory of the robot is dictated by a distinctiveness function at landmarks. The ded­

ication of the agent's resources to the task of identifying landmarks is essential, and Kuipers: agents

are constantly actively searching for landmarks without interference from competing behaviour.

The two people at the zoo are primarily ïnterested in seeing the zoo. They therefore

limit the hilltops they visit to those hilltops that contain animais they want to see.

However: the task of locating landmarks for rendezvous cannot always dictate the robot tra­

jectory. Although we are developing the technique of multi-agent rendezvous in the conte..xt of

e..xploration: we would like to generalise rendezvous to any multi-agent system. As a result: the

agents must be able to gather landmarks during the e..xecution of any task. The constraints of some

tasks may not allow the agent to suspend execution of the primary algorithm in order to follow the

distinctiveness surface, hunting for landmarks.

We therefore must be able to gather landmarks independently of the agent:s trajecto.ry, or we

must be able to overcome any landmark dependencies on the robot's trajectory through space. We

therefore impose two constraints on the distinctiveness function - that it is time-independent and

orientation-independent. For example, the "Northern-most" point in the already-e..xplored environ­

ment is a poor choice. If the explored area of each robot is circular: then two robots will only have

the Saille "northern-mose' point if the environment is highly constrained or if the e..'X:plored regions

are very similar. In Figure 3.2: we see that despite having relatively similar e.xplored regions, the

robots will choose quantitatively different landmarks. If the landmarks are separated substantially:

either by distance or by some obstacle such as a wall, a rendezvous at these landmarks will fail.

Furthermore, an orientation-dependent function will be equally troublesome. A distinctiveness

function that is simply the sum of the front and back sonar ranges will give very different values for a

robot looking down a corridor, as opposed to a robot looking at a wall. Unfortunately, most immedi­

ately obvious distinctiveness functions are orientation-dependent: especially those that use the sonar

rings found on most mobile robots. The solution we have chosen is to sample the distinctiveness

function at pre-determined orientations.
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Northem-most Points

FlOURE 3.2. An e.-..c:ample of the effect of choosing a poor measure of distinctiveness. Even
though the two robots have relatively similar explored regions, the best landmark each
chooses is different enough to cause rendezvous difficuities.

There still remains the issue of spatial sampling - as the agents travel through the environment

they must sampie the distinctiveness function sufficiently often that they capture the landmarks

accurately. Coarse sampling can lead ta mis-measuring a peak's height, or even failing to observe

a landmark entirely. One possible solution is to be careful to sampie the environment as finely as

possible. However, since the distinctiveness sampling is a function of the task-dependent trajectory,

the problem is independent of the distinctiveness function and must be addressed in same other

manner. Possible solutions ta this problem will be discussed with rendezvous algorithms.

3.2.5. Inter-agent Differences and Sensor Noise. In addition to using the same distinc-

tiveness function, the agents must compensate for differences in their perceptions of the environment.

In order for two robots to agree on a good landmark, they must have similar perceptions of the en­

vironment or be able to convert their percepts into a common intermediate form. In the extreme

case of two agents with dramaticaily different sensing modalities, there is essentially no way for

them to rendezvous based on the recognition of environmental characteristics. Sensor noise can play

a similarly problematic role. We model this aspect of the problem by parameterising the extent

to which the two agents can reliably obtain the same measurement of distinctiveness at the same

location. The two parameters are systematic differences between agents, and random noise.

We consider the base case, D(x,y), to be "ground truth" with respect to the distinctiveness

that should be measured by ail the agents. However, D(x, y) is a function of the sensors the agents

use:

•
Si (X, y) = S(x,y) + iiï(x, y) +Xi

Di(x,y) = D(Si(X,y»

(3.7)

(3.8)
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where S(X, y) is the ideal perception of the environment by the given sensor, in the absence of

any noise. Sl(X,y) is Agent l's perception of the environment at position (x,y) that encapsulates

the agent's systematic error ij(x, y) over the measurement at that position; Xi is that agent's random

sensor noise.

For the purposes of modelling the inter-agent differences, we model À ad 1] as scalars, and

collapse the random and system errors into one term. 'Vith full generality, we can consider one of

the agents as the reference perceiver (the arbiter ofgood taste) with a percept D1(x,y) = D(x,y)

while the other robots obtain a sensor measurement which can be viewed as noisy with respect to

that of the first robot:

Di(x,y) - D1(x,y) = SfTh(x,y) + SiDl(X,y)

Di (x, y) = (1 - Si)D l (x, y) + S(lÎi (x, y)

(3.9)

(3.10)

(3.11)

where 1Îi (x, y) is all stochastic and systematic noise processes of each robot, and Si specifies the

e..~ent to which the two robots (Di and Dr) sense (or perceive) the same thing. If bath robots have

exactly the same perceptions of the environment we have J = O. In the conte..~ of this formalism,

TJ(;, y) combines both intrinsic sensor noise and any differences in the type of sensor used.

3.2.6. Assumptions. In this research, we have neglected issues of navigation and assume

•

an agent can always accurately reach a desired goal in the environment. vVhile our framework

can accommodate navigational error, it is outside the scope of this paper. For concreteness, the

reader can imagine a point robot capable of arbitrary motion within free space. \Ve also assume an

ideal compass on each robot, ta allow perfect orientation. As previously mentioned, we assume an

unknown environment, and no shared spatial information or communication between agents e..xcept

at landmarks.

3.3. Rendezvous Strategies

3.3.1. Formai Param.eters of the Rendezvous Problem. Even with this formalism that

describes how to gather landmark locations, there remains the issue of how ta choose which landmark

to visit, and when. In the ideal case, the obvious choice is the "best" landmark, i.e., the point in

the environment that has the largest known ma.""<Ïmum of the distinctiveness function. However,

the ideal case is rarely, if ever, observed in practical mobile robotics. Therefore, strategies must
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be developed to accommodate the various confounding factors that make the rendezvous problem

challenging in practice.

In order to estimate the effectiveness of alternative strategies for rendezvous, we have identified

key attributes that must be fonnalised. Important attributes of the rendezvous problem are:

• Similarities - the reproducibility of the perceptions between agents.

The similarity of t'Wo agents is a function of whether they sense the same environmental

attributes, or do they even use the same sensors. This parameter is the t5 parameter of

Equation 3.10.

• Sensor noise - the distinctiveness measures observed by the two robots are unlikely to be

identical. This is e.xpressed by the ij(x, y) term of Equation 3.10, and leads to strategies

that must effectively consider a larger number of candidate rendezvous landmarks since the

single best candidate may not be determined reliably across agents.

Note that the for the purposes of modelling differences in sensor measurement across agents,

the ij and J parameters can be treated as a single parameter, tS. Varying the effect of noise on

the measurement between agents is akin to varying the noise parameter itself. vVe therefore

will perform all simulations by v"aIYÏng tS alone, and letting il be a randomly distributed

value.

The people at the zoo cannat measure the height of the hills with a great deal

of precision. Therefore, there is sorne disagreement ouer which hills are really

higher.

• Landmark Commonality - the e."Ctent of overlap between the spatial domains of the agents.

In the ideal case, the agents v.rill share alilandmark knowledge. However, this is clearly not a

realistic scenario, and not ideal for e.xploration. In order for all agents to have all landmarks

in common, they would have identical spatial knowledge. This would either demand infinite

communication abilities, which is the very limitation we are attempting to overcome, or

would prevent the robots from separating, and therefore would prevent any speed-up in any

of the multi-agent tasks being attempted.

IvIore likely is that the robots have e.xplored partially-overlapping areas, and will have some

different landmarks that are not in the common region. This is modelled formally as the

number d of landmarks out of a total set of n that are not common to the robots. The effect

of the non-commonality is that bath robots must consider a larger number of candidate

landmarks, since any given subset of landmarks selected by one robot may not be known ta

the other robot. If the agents have no landmarks in common, any rendezvous attempts are
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doomed to fail. This is possible any time two agents do not have any part of their trajectories

in cornrnon, or where the common area contains no landmarks.

The two people at the zoo do not have time to visit every hilltop. They therefore

miss sorne hilltops7 and do not have the chance to visit every hilltop to see how

high they ail are.

• Synchronisation - the level of synchronisation between the agents.

If the agents cannot agree to meet at the same time, rendezvous becornes a much more

difficult task. Further confounding factors may involve the time delays implicit in travelling

between landmarks. If an agent fails to make a rendezvous because the path is blocked, or

if there is insufficient time to travel to the landmark, appropriate action must be taken by

the other agents. The probabiiity that a agreed rendezvous is missed is modelled by the

parameter j. This effect leads to a need for strategies that may re-visit the same landmarks

repeatedly to compensate for missed meetings. One such behaviour might be to return to

very good landmarks more often, while another strategy might dictate actively seeking out

alternative landmarks.

The two people at the zoo do not have synchronised watches. Also7 one walks

a lot slower. Therefore7 sometimes they miss each other on their rendezvous

attempts.

• Landmark Cardinality - the number n of points considered for rendezvous by each agent.

If there is e.1Cactly one landmark, then the rendezvous aIgorithm cannat make any attempt to

compensate for variations in the problem parameters, including asynchrony. In this extreme

case, the problem is "soIved" simply by waiting at (Le., revisiting) that one landmark until

the other robot arrives, or the batteries run down. At the other e."Ctreme, if every point

visited is considered as a landmark, the algorithm may be swamped, preventing it from

exploiting its abilities ta find the other agents.

Implicit in the description of these attributes are certain assumptions. It is assumed that if the

agent roles are asymmetric, that there is an a priori agreement of which agent will play which role.

lt is assumed that ail agents share sorne notion of synchronisation - that is, all agents can agree on

when rendezvous attempts should be made, however, this synchronisation may be nais)'. The second

assumption is that all agents have the same landmark set cardinality - they ail attempt rendezvous

over the same number of landmarks (even if they are not using identically the same landmarks in

their sets). Finally, it is assumed that ail agents are performing the same task, and using the same

rendezvous strategies .
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3.3.2. Landmark Selection AIgorithms. Looking to biology, sorne simple algorithms

are observed. Most animals rely upon well-known common meeting points, such as a beehive or

a watering hole. In an unknown environment with mutually unknown starting locations, however,

such an absolute reference point is almost impossible to define. A cornmon strategy has one agent

(e.g'1 a child lost at the zoo) wait ta be found while other agents Ce.g., desperate parents) caver the

space, performing search. A.nother equally naive but much less common strategy has agents rnoving

from landmark to landmark randomly until a rendezvous occurs.

We have developed two main classes of algorithm: deterministic and probabilistic. The de­

terministic class of algorithm creates a List of all possible combination of landmarks and specifies

the order the landmarks should be visited. There is no random aspect to the landmark sequence,

and therefore the algorithms will generate the same landmark visits for a given landmark set. The

probabilistic class of algorithm does not generate an a priori ordering of landmarks, but simply

generates probabilities for landmarks being visited.

3.3.2.1. Determinîstic Algorithms.

Given the same set of landmarks and associated distinctiveness values, these algo­

rithms will always create the same ordering of landmarks.

• Sequential - One robot picks a landmark and waits there for the other robot, which visits

every landmark in turne If the second robot has visited every landmark \\-ithout encountering

the first robot, the first robot moves ta another landmark it has not yet visited.

For e."'{ample, given the two sets oflandmarks (A., B, C) and (D, E, C) and two robots, one robot

assumes the passive raIe, and the other the active role. They visU the landmarks in the sequence

described in the Table 3.1. Note that the actual distinctiveness values of the landmarks are not

listed; what is important ta the sequential search is not the actual values, but the relative ordering

of the landmark values.

The active robot has landmarks (A, B, C, E) where A is the best landmark it has observed so

far. The passive robot has landmarks (D, B, E, C) where D is the best landmark observed sa far.

These sets demonstrate the notions of agent dissimilarity, in that the active agent believes that C

is a better landmark than B, whereas the passive agent believes that B is a better landmark than

C. Furthermore, the active agent has explored the area with landmark A, which is unknown ta the

passive agent.

As the visit sequence indicates, the active agent cycles through all its landmarks, before re­

turning to the beginning of the set. The passive agent remains at a landmark for n cycles, where
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Robot Set Sequence
Active A,C,B,E ABCEACB
Passive D,B,C,E DDDDBBB

..
TABLE 3.1. The sequence of Iandmarks VlSlted by the sequentlal algorithm, from the given
landmark sets. Note that rendezvous occurs on the 7th iteration.

•
n is the size of the landmark set, before moving to the ne.xt landmark. This generates a list of ail

pair-wise combinations of landmarks, sorted by distinctiveness.

Although this strategy is asymmetric across agents, the e.xtension from a pair of agents to an

arbitrary number of agents can be easily accomplished by evenly dividing the agents into two classes

of active and passive agents. Since multi-agent rendezvous, especially for tasks such as map-merging,

does not require all agents be present at any given rendezvous, there will be task speed-up from any

subset of agents completing rendezvous.

This strategy is simple and relatively immune to noise because it does not rely heavily on the

relative rankings of landmarks. However, it is sensitive to asynchrony. If the two robots have the

same ordered landmark sets but suifer from synchronisation problems and hence miss meetings at

commonly-seleeted landmark, n iteration.s must pass before an identical pair of landmarks oceurs

in the visit sequence. An even greater problem is that low landmark commonality in the landmark

sets will cause a delay of up ta d x n iterations before a rendezvous will occur, where d is the

number of landmarks unique to an agent. In the above a'"'Cample d = 1, since each agent has one

unique landmark. Since bath of those landmarks were unknown to the other robot and were the

best landmark in both sets, we see a delay of d x n = 1 x 4. For n of four the cost is minimal, but

for a much larger landmark set, the penalty could be much worse. The following algorithm is more

robust to this type of error.

• Smart-sequential - Each pairwise combination of landmarks known to a robot is assigned

a "goodness" value. This value is the product of the distinctiveness of the pair. The list of

landmark pairs is sorted by this product, and one side of each pair is discarded, leaving an

ordered list of n 2 landmarks from a set of n. The robot then visits the landmarks in this

order.

•

The smart-sequential strategy takes into account the fact that the landmarks may be mis­

ordered across agents, but takes advantage of sensor data by assuming that the relative mis-orderings

are likely to be small. If c5 is low, landmark combinations with high values are e.xplored before

landmark combinations where one landmark has a very high value and the other has a relatively

low value. The lists of landmarks can he thought of as being "perturbed" rather than grossly mis­

ordered. This leads ta an increased probability of meeting even with substantial asynchrony, or with
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high-valued landmarks that are unique to one agent. The smart-sequential method is tantamount

ta guessing where the other robot might be, given relatively similar, but not identical, landmark

rankings.

For example, given the two sets oflandmarks (A, B, C) and (D, E, C) and two robots, we again

have one robot assuming a passive raIe, and the other the active raIe. It is possible to preserve the

agent symmetry by making ail agents take one role, but since the smart-sequential method generates

pair-wise combinations, the method is more effective when one agent a priori takes one "side" of

the list, and the other agent takes the other "side".

They visit the landmarks in the sequence described in the Table 3.2. Note that the distinc­

tivenesses are listed, because of the dependence that the smart-sequential method has on the actual

ralues, as opposed to the relative ordering.

Robot Set Sequential Visit Smart-sequential visit
Agent 1 A=9, C=8, B=7, E=2 AAAAC AC
Agent 2 B=11, C=10, F=5, E=3 BBBBC BC

..
TABLE 3.2. The sequence of landmarks VlSlted by the smart-sequentral algonthm, from
the given landmark sets. Note that rendezvous occurs on the 2nd iteration.

Each agent generates a list of every pair-wise combination of landmarks. The distinctiveness of

the two landmarks is multiplied, to give a value for the pair, and the pairs are then sorted on this

product. Table 3.3 shows the combinations, the "alues and the visit sequence generated from the

landmark sets given in Table 3.2. As the table clearly shows, despite unique landmarks (landmarks

A and F), and relative mis-orderings between the agents (C & B are reversed between the agents),

a rendezvous should still occur on the second iteration - a substantial improvement over the seven

iterations necessary for the success of sequential under the same conditions.

•

Agent 1 Agent 2
Pair Comb. Value Visited Pair Comb. Value Visited Success
AA 99 A BB 121 B A-B : No
AC 72 C BC 110 C C-C : Yes
CC 64 C CB 110 B C-B : No
CA 63 A CC 100 C A-C : No
AB 63 B BF 55 F B-F : No
BA 63 A FB 55 B A-B : No
CB 56 B CF 50 F B-F: No
BC 56 C FC 50 C C-C : Yes
etc...

TABLE 3.3. The patr-WlSe combmatlon of landmarks for the two robots, thelI values, and
the visit sequences generated.
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Smart-sequential has its domain of superiority where the agent differences (e.g. noise) are low,

but not negligible, or where the landmark sets are not identical. Although it is not a probabilistic

strategy as such, it essentially groups landmarks together into types of high probability through low

probabilitYI in attempt to "guess" where the other agent(s) might be. Landmarks are allowed to

be revisited regularly, but as it moves through the list from high to low distinctiveness factors, the

revisit rate for good landmarks drops considerably.

Smart-sequential also does not perform weil under conditions of high noise or high asynchrony.

It suffers under conditions of high noise, because it relies upon a reasonable, if not 100% accurate

knowledge of the distinctiveness surface; as noise destroys the accuracy of that measurement process,

the estimates based on that knowledge become poor. This algorithm also suffers under the condition

of high asynchrony, b~ause there is no provision for re-visiting a landmark more than n times, in

a set of n landmarks. The problems with the distinctiveness function and asynchrony led to the

development of probabilistic landmarks.

3.3.2.2. Probabilistic Aigorithms.

The landmarks are sorted with respect to their distinctiveness and then assigned a

likelihood of visitation Pi for landmark i as a function of its rank in the sorted list

i.e Pi = f(i). The algorithm probabilistically selects a landmark to visit, using Pi for

each landmark.

The probabilistic algorithms use different probability functions to accommodate different pa­

rameters of the problem space. For c-xample,

• Exponential - The likelihood of visiting the i - th best landmark is oc et. This function has

the effect of emphasising the relatively highly distinct landmarks, at the cost of landmarks

with relative low distinctiveness.

• Random - On each attempted visit, each robot selects a landmark at random and goes

there.

The particular c-xponential function used in the simulations was

E i
104 e"T(Dt-D;}

(3.12)=
p

T =
.2510g(.001/Dr)

(3.13)
Dl

n

p = 2::: Et (3.14)
i=l

Pi = 100
Ei

(3.15)
P
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where Di is the distinctiveness of landmark i r Ei is the output of the e.."\:ponential function for

landmark i! and Pi is the probability of visiting that landmark. The constants in these formulae were

chosen empirically. p is a normalisation constant to ensure that the probabilities for the landmark

set sum to 1.0, and p is a user-definable decay constant for tuning the e.."\:Ponential function response.

Robot Set Landmark Probabilities Visit Sequence
Agent 1 A==9, C=8, B=7! E=2 A=39% C=30% B==24% E=7% ACC
Agent 2 B==11, C==10, F==5, E=3 B=44% C==36% F=12% E==8% BCC..

TABLE 3.4. The sequence of landmarks Vl51ted by the smart-sequentlal algonchm, from
the given landmark sets. Note that rendezvous occurs on the 2nd iteration.

Agent 1 Agent 2
T == -.252 T = -.211
P = 2.549 p = 2.270
E A = 1 PA = 39.2% EB = 1 PB == 44.0%
Ec = .776 Pc == 30.4% Ee = .809 Pe = 35.6%
EB = .603 PE == 23.6% EF = .281 PF == 12.4%
EE == .170 PB == 6.6% EE == .184 PE = 8.1%

TABLE 3.5. The table showmg the output of the exponentIal functlon for the landmark sets
given in Table 3.4. Ei is the output of the exponential function, and Pi is the probability
of visiting that landmark.

Table 3.4 shows a set of sample landmarks, and their associated probabilities, as calculated

from Equation 3.13. The full expansion of the probability calculation from the landmark values is

given in Table 3.5. Once the probabilities have been calculated according to the appropriate formula

(exponential, in the e."(ample case), a random process can easily generate a sequence of landmarks to

visite In the example given in Table 3.4, the agents made a successful rendezvous in three iterations.

3.4. Analytical Analysis

•

We can make an analytical assessment of the performance of the deterministic rendezvous

algorithms, compared to the random algorithm baseline. If there is no noise, no asynchrony, and

100% landmark commonality, then ail of the algorithms which use the distinctiveness measure to

sort landmarks wililead to a rendezvous after only one attempt (Le., both robots will go straight to

the mutually agreed upon best landmark.). The random algorithm can never assure a rendezvous

but will have a small, equal probability of leading ta a rendezvous on every attempt.

More interesting is the performance of the algorithms in the limit of high noise, 8 == 1, such

that no common ordering between agents of the same landmarks can be reliably determined. The

first assessment is the algorithmic time comple.."\:ity, i.e., the expected time ta rendezvous, for the

three algorithms in the limit of 8 == 1. The e."q>ected time to rendezvous is the median number of
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attempts before a successful rendezvous. For a landmark set of size n, the probability of any single~

random rendezvous attempt being unsuccessful is:

n-1
Punsuccesslul = -­

n
(3.16)

If the asynchrony rate is accounted for, then the probability of an attempt being unsuccessful

rises to

n-l
Punsuccess/ul = --j

n
(3.17)

These equations give rise to table 3.6. The first column refers to both robots having the same

set of landmarks. The second column considers the scenario where the robots may fail to get to

the appointed landmark at the same time (or fail to notice one another). This probability is the

asynchrony, j. The third column deals with the case where d of each robot's n landmarks are not

in the other robot's landmark set.

Algorithm Simple Async. < 100% Comm.
Random

logZ(n:1) log2( n:1 )+logzj logz( dnn_J)

-1
-1

Sequential nf2 ~ + jTDgi !!. + .!!.Iog '*2 n
-1 -1

Smart-seq. n n + jrog; n + 4. log *
"

TABLE 3.6. Expected case behavlOur. The columns denote the Ideal case, the case where
the asynchrony j i= a and the case where the landmark sets are not identical, but each
agent has d non-common landmarks.

In the deterministic sequential algorithm, the e.'Xpected time of the simplest case (identical

landmark sets, no asynchrony), is very straightforward. One agent sits at a landmark, and the other

agent visits every landmark in tUrn until they meet - on average nf2 landmarks. However, in the

presence of asynchrony, additional sweeps of all n landmarks ~ill have to be performed. To find the

expected number, k such additional sweeps, we use

0 - ·k
.~ =) (3.18)

•

noting that each e.'Xtra sweep i of k will reduce tl1e probability of failure, and k such sweeps must
-1

reduce the probability of failure to 50%. Thus, on average jrog; sweeps during the rendezvous will

fail due to asynchrony. Similarly, for non-identical landmark sets, additional sweeps of n landmarks
-1

will have to he performed on average *log*times.

In the worst case, the performance time comple.'Xity is much more straightforward. For the

probabilistic algorithms, such as the random strategy, or whenever asynchrony is an issue, the

worst-case is always 0(00), because a meeting can never be guaranteed. Similarly, a rendezvous can
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never be guaranteed if any asynchrony is present, and 50 for j i: 0, the worst case for ail algorithms

is 0(00).

However, the deterministic algorithms are guaranteed to terminate when j = O. In the worst

case, the two algorithms terminate in n2 iteratians when they share no common landmarks. At this

point, bath agents can determine that they cannot meet, and continue e..xploration. If, however, the

agents share identicallandmark sets, the sequential algorithm has a much lawer worst-ca.se comple.x­

ity than the smart-sequential strategy, because one agent is guaranteed to visit every landmark in

the other agent's set in n iterations.

Algorithm Simple Async. < 100% Commonality
Random 00 00 00

Sequential n 00 nd+n
Smart Seq. n 2 -n + 1 00 n 2 - (n -d) + 1

TABLE 3.7. \Vorst case behavlOur. Columns as ln Flg. 3.6.

A full derivation of these results is in Appendix A.

3.5. Conclusion

In this chapter, we have described how ta choose points in the environment appropriately,

regardless of the underlying task that the agents are performing, independent of rendezvous. \Ve

aIso show how to represent the landmarks without depending on a particular representation of space

(e.g. metrie or topological). EspeciaIly relevant ta the problem of rendezvous are certain formai

parameters that we have outlined. \Ve describe two principal classes of rendezvous algorithms,

deterministic and probabilistic - these aIgorithms determine how ta choose what landmark to visit,

especially when the first attempt fails.

In the ne.xt two ehapters, we will show that the ehoice of an appropriate rendezvous strategy

depends on the e..xtent to which the robots have found the same set of landmarks, the amount of

sensor noise (or, equivalently, the similarity of the sensars) and the reliability of the robots being at

a mutually selected rendezvous point and deteeting one another.

29



•

•

CHAPTER 4

Numerical Simulation

In Chapter 3, we formalised the parameters of the rendezvous problem and described several algo­

rithms that could deal with the problems of rendezvous in different ways. We gave an analytical

description of the algorithms, but neither the e..'\.-pected case estimates nor the worst-case bounds in

the limit of high noise provided a realistic picture of the the performance of the algorithms, as this

limit will rarely, if ever, occur.

The sensor differences, Xwill likely not be extremal. Therefore, more useful than the analysis

in the limit of high noise in determining the performance of the algorithms is the performance of

the algorithm under conditions of worsening noise, especially under different conditions of disjoint

landmark sets and asynchrony.

One way to determine the ability of a particular algorithm to allow agents to rendezvous quickly

would be ta allow the physical robots ta explore an environment and actually rendezvous. However,

'vhile this method has the advantage of providing convincing results, it has considerable practical

difficulties, in that a number of effects may he introduced (this is in fact the case, as we shall see

in later chapters) by the nature of the e..xploration task, the physical robots, the spatial domain

in which the robots move, etc. Before attempting to run the rendezvous algorithms on the actual

robot, we would like to analyse of the rendezvous algorithm alone, independent of any of the practical

considerations of using robots that will introduce new constraints on the problem.

This chapter presents a numerical analysis of the behaviour of the various algorithms under dif­

ferent conditions, and especially performance with increasing noise. First, we discuss the method of

simulating numerically the landmark acquisition and rendezvous process. Subsequently, we demon­

strate the results obtained, and sorne of the interesting features of these results.
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4.1. Experimental Method

Rather than simulating an actual e..xploration, two agents were modelled as having already

e..xplored an unknown area, and having collected a set of n landmarks.

(i) The distinctiveness values of the ordered landmarks were generated with a function, f(x)

where x was the landmark inde.."<:.

(li) Random noise 5 as developed in equation 3.10 was then applied to the two sets.

(iii) The appropriate rendezvous strategy was then used to generate a sequence of landmarks for

the two agents, with a ma."CÏmum length of n2 •

(iv) The sequences were terminated at the first position with the same landmark, and the running

time was considered ta he the length of the sequences.

It should he noted that the parameter space of this problem is suhstantial, and therefore not ail

aspects of the prohlem were explored. Gnly the more relevant and interesting aspects are presented

here.

4.1.1. Generating Simulated Landmark Sets. The fust step in our simulation is to

generate the distinctiveness values for the landmarks. A numher of functions were considered for

generating typicallandmark sets, e.g., random, linear, and e.."<:ponential functions with varying slopes

and decay constants.

Random Distribution Model over 10 Landmarks
05

1 R~om -1004

0.3

0.2

0.1 t------------
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o

FIGURE 4.1. Example random distribution function of landmark distinctiveness values.
AlI 10 landmarks are equally distinctive in this case.

•

Figure 4.1 shows a typical distribution function for landmark distinctiveness values. Clearly,

this is a less than ideal scenario, since the point of this e..xercise is to differentiate positions in

space by their distinctiveness values. If aU points in space have the same value, then they are in

fact indistinguishable on hasis of distinctiveness. A sensing modality that causes such a uniform

distribution of distinctiveness would he a poor choice; we would indeed he wise to choose either a
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different sensing modalitY1 a different distinctiveness function~ or a different line of work. Such a

distribution is also unrealistic in that no real sensor will generate such a uniform distribution ­

noise alone will generate different distinctiveness values.

The linear function was used for generating the most realistic set of landmark values, and for

the numerical analysis presented here. Figure 4.2 show a typical linear distribution.

Linear Distribution Model over 10 Landrtklrlcs

14

12
'"u 10

~~ g

.~ 6
0 4

2

0
a

Line= -

2 4 6 g 10
Landmark Numbc:r

FIGURE 4.2. E.."(ample linear distribution funetion of Iandmark distinctiveness values.

4.1.1.1. Modelling Noise. The landmark set is generated by a distinctiveness distribution

model F(iL with a range of vaIues~ [0, max(F(i)]. The noise was then modelled as a percentage Q

of full scaIe:

Di = F(i) + Randam(O : t5. ma.''{F(i)) (4.1)

•

The random function was a uniform random function in the range [0 : t5. ma.xF(i)], with mean

~t5 . ma.xF(i).

The distinctiveness values Di were then re-normalised into the range max(F(i)). Figure 4.3

shows typical sets of landmark values for two agents, using the linear function for generating values1

and a Q of 0.1 applied to the resultant values. At t5 = 0, the two ordered sets are identical. The x

a.xis shows the Iandmark number, and the y a.xis is the distinctiveness of that landmark. Clearly, the

two agents share roughly the same perception of the environment, but there are enough differences

that the relative ordering of any two landmarks between the agents can be quite different.

Sorting the Iandmarks by distinctiveness value gives rise to Table 4.1, where the different relative

orderings becomes much clearer. The numbers represent the indices of the landmarks1 x, used by

the linear distribution function, fCx). Note that in the limit of no noise, Q = 0, the landmark inde."{

is the same as its position in the sorted list.

4.1.2. Sim.u1ating Rendezvous. To simulate rendezvous, we simulated visiting Iandmarks

by selecting landmarks based on their distinctiveness values. One of the previously defined strategies
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FlGURE 4.3. Example values of 2 landmarks sets with 5 =.1. Due to noise, the agents
may not agree on a preference ordering of the landmark. Note the relative mis-ordering
between landmarks 2 and 3.

Agent 1 2 0 3 1 48 10 Il 5 ï 6 9 12 13 14
Agent 2 0 1 2 7 5 4 6 3 10 9 12 8 Il 14 13

TABLE 4.1. The relative ordering given by the distinctiveness values of the landmarks given
in Figure 4.3. The numbers are the landmark indices used by the distribution function
J(x).

was used to create a (potentially infinite) sequence oflandmarks for each agent to visit. The sequence

was terminated at the first instance where both agents had a landmark at the same position in the

sequence, corresponding to a successful rendezvous.

Table 4.2 shows example sequences generated by the sequential and smart-sequential algorithm.

The smart-sequential sequence is terminated at the second position (the rest of the sequence that

would have been generated is shown in italics), because the 2nd element of both sequences is identical.

Agent Sequential Smart-Sequential
Agent 1 2 2 2 12 12 12 2 2 2 0 2:1 2 0 :1 0
Agent 2 0 1 2 75-4 6:1 0 0 1 020 1 1

TABLE 4.2. Two possible sequences of landmarks ta be visited, generated by Sequential
and Smart-Sequential, from the landmark sets given in Table 4.1. Again, the numbers
correspond ta the landmark inde.x used by the distribution function, J(x).

vVe use the time to successful rendezvous as a measure of the algorithm's success. The length

of the sub-sequences untiI rendezvous is used as a measure of time until successfuI rendezvous.

Again, '\\'Ïthout noise, the deterministic algorithms (sequential and smart-sequential) are guaranteed

to generate sequences of length 1, that is, meet on the first try. By generating a sequence for

each algorithm under different conditions, (varying 5, the asynchrony j, and the landmark set

commonality d), we cao measure the time to rendezvous under the various conditions.
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• 4.1.3. Modelling Landmark Commonality.

4.4.1 EXPERIMENTAL METHOO

Recall from Chapter 3 that we e.xplicitly

•

parameterise the extent of overlap between the spatial domains of the agents as d landmarks out of

the total set of n that are unique ta one robot. The effect is that bath robots must search through

more landmarks, as any subset of landmarks may not contain, or even be known ta the other robot.

Note that in this case, e.xisting algorithms (discussed in Chapter 2~ section 2.1 in the literature may

fail, unless the the rendezvous is successful on the first attempt.

For this numerical analysis, each agent chooses a set of n random landmarks out of a possible

n+d, thus giving n-d common landmarks, and d unique landmarks. Which landmarks are unique is

generated randomly. These n landmarks are then used by the algorithms ta generate the appropriate

visit sequences. Rowever, there is a reduced chance that the sequences will match at any given index,

since each sequence is now populated with landmarks that have no match in the other sequence.

Table 4.3 shows an e.xample landmark set where the commonality is fairly low, d = 5 out of n = 15

landmarks are unique.

Agent 1 2 a 17 1 4 19 10 Il 15 ï 6 9 12 13 14
Agent 2 a ï 5 4 6 3 10 9 12 8 16 Il 14 13 18

TABLE 4.3. The relative ordering given by the distinctiveness values of a linear distribution
function, with 8 = .1, and d = 5, n = 15. The numbers are the landmark indices used by
the distribution function fCx). The emphasised numbers are unique to each agent.

4.1.4. Modelling Asynchrony. Again, recall from Chapter 3 that we explicitly parame-

terise asynchrony, j, as the likelihood that any particular rendezvous attempt will fail. This effect

leads to a need for strategies that may re-visit the same landmarks repeatedly to compensate for

rnissed meetings.

For this numerical analysis, each position in the visit sequences has a probability assigned to

it. If that probability is greater than j, only then is it e.xamined to see whether the sequences match

at the position. If the probability of a particular sequence position is less than j, it is skipped.

Table 4.4 shows an e."Cample run with asynchrony. Each pair of landmarks in the sequences

has an associated probability, listed in the bottom row. If the probability is less than j = .5,

then it cannot be used and must be skipped. The emphasised numbers are those that have an

insufficient probability to be used. Note that the sequences do terminate after three iterations, since

the sequences match at the third position, and the probability at i = 3 is greater than j. Rad this

probability been lower, then the sequences would have been at least n landmarks longer r given the

sequential algorithm.
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4.4.2 EXPERIMENTAL RESULTS

Agent Sequential
Agent 1 2 2 2 2 2 2 2 2
Agent 2 a 1 2 7 5 4 6 3
Probability .4 .3 .6 .5 .3 .8 .7 .7

..
TABLE 4.4. The VlSlt sequences generated by the Sequentlal algonthm. with the associated
probabilities. The asynchrony parameter. j is set to 0.5. Agam, the numbers correspond
to the landmark inde."C used by the distribution function, ICx).

•
4.2. Experimental Results

Using the foregoing models, a set of e."q>erïments was conducted to simulate the rendezvous

process. Each measurement determined the number of rendezvous attempts, or iterations, needed

to achieve rendezvous under different conditions. j\lIeasurements were taken at 14 values of 8, where

each measurement was made 1000 times; these 1000 trials gave a mean number of iterations to

rendezvous for a particular algorithm and a particular value of 8.
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4.2.1. Base case: Tim.e as a function of Noise. The baseline simulation shows the

•

performance of four algorithms in the face of increasing noise. The size of the landmark set is 50

landmarks, asynchrony j is 0, and the landmark sets have 100% commonality. The four algorithms

are the deterministic sequential and smart-sequential algorithms, and weighted probabilistic distri­

butions with e.xponential and linear probability functions. Recail that the e.xponential probabilistic

function, for e.'"<ample, would have an e.xponentially higher probability of visiting the best landmark

on any given rendezvous attempt over any other landmark. Figure 4.4 shows that the sequential
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algorithm is the best performer, especially in the face of high noise (Le., 5 > 0.2) ! which concurs

with the analytical result. Clearly, e."Cponentîal is a very fragile function, failing catastrophically

with noise, 5 > 0.2.
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the algorithms with different landmark set cardinalities. Unsurprisingly, the performance of the

algorithms scales with landmark set size.
• 4.2.2. Different Landmark Set Sizes.

4.4.2 EXPERIMENTAL RESULTS

Figures 4.5 and 4.6 show the performance of

4.2.3. 50 % Asynchrony. In the face of asynchrony, however, the algorithms e..'Chibit

less intuitive behaviour. Asynchrony, again, is the probability that a particular rendezvous at a

mutually agreed place and time actually occurs. The simulation (which creates landmark sequences)

implemented asynchrony as the probability that a particular sequence element could be used. Even if

the pair of landmark sequences contained the same landmark at identical positions~ the sequence may

not have terminated there, because the asynchrony probability prevented the first pair of matching

landmarks in sequence from being compared, as if the robots had failed to rendezvous successfully

despite attempting to do so at the same location at the same time.
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FIGURE 4.ï. Performance with 50% Asynchrony rate

Figure 4.7 shows the performance of the algorithms given a 50% asynchrony rate, or a 50%

probability of successfully IDaking a rendezvous. In this case, the smart-sequential and e..xponential

algorithms out-perform the sequential strategy, because the sequential form suffers from having ta

visit every other landmark before being able to return to the landmark that failed on a particular

iteration, whereas the other two algorithms can return to landmarks relatively quicldy. However,

once noise dominates the values, (5 > 0.5) the sequential aIgorithm outperforms the other algorithms

because it does not rely heavily on particular landmark values - it is not returning to the same

landmark over and over again.
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4.2.4. 80 % Asynchrony. Even more interestingin the case of very high (80%) asynchrony,

Figure 4.8 shows that the exponential probabilistic function outperforms the deterministic algorithms

in the face of low noise (0.5 < ~ < 0.25), but again fails rapidly in the case of high noise (~ > 0.25).

The ex:ponential algorithm essentially forces the robot to return to the same landmark over and over

again, which is the correct strategy when asynchrony is high. However, when noise is high, the odds

that the recurrent landmark is the wrong one increase, and the deterministic algorithms, which do

not return to the same landmark as often, perform better.

4.2.5. 75 % LandInark Commonality. Finally, Figures 4.9 and 4.10 show performance

for maps v.-ith only 75% of the landmarks in common. The performance with non-identicallandmark

sets (akin to non-isomorprnc maps) is very similar to performance under low- to medium-asynchrony.

The smart-sequential algorithm performs better with low noise because it can return to landmarks

faster than sequential, but in the case of high noise (~ > 0.35), retuming to landmarks too frequently

can be costly, and the sequential aJgorithm again dominates.

4.3. Conclusion

•
In this chapter, we have described a numerical analysis of the time comple."tity of the algorithms

presented in Chapter 3, and discussed some of the results. The parameter space of the rendezvous

problem is sufficiently large that an exhaustive analysis of the behaviour of the algorithms under ail

conditions is beyond the scope of this paper. What has been described is a numerical analysis of
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•

the algorithms under sorne of the more realistic conditions that may be encountered by two mobile

robots exploring an unknown environment.

In the presence oflarge amounts of sensor noise (which we are modelling as agent dissimilarity),

the landmark selection will be essentially random, in which case the best strategy is simply to have

one robot visit every landmark, and have the other robot sît and wait for it. However, this is also an
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unrealistically pessimistic scenario. If the robots have been constructed ta facilitate rendezvous, they

are likely to have a somewhat common perception of the environment and to have some commonality

in their e.xplored areas. In reality, the robots will probably e.xperience some limited sensor noise,

minimal dissimilarities, some asynchrony, and partial but not complete landmark commonality. So,

the best strategy takes these factors into account, and chooses a series of landmarks to visit in same

intelligent way.

Each of these methods has particular advantages and disadvantages. The sequential method is

simple, but makes no effort to account for relative likelihoods, or asynchrony. In view of the potentiai

shortcomings of the sequentiai method, we have proposed an alternative method, the probabilistic

method, that has an increased chance of compensating for a missed rendezvous and aIso attempts

to compensate for small variations in the respective rankings of the landmarks selected by the two

robots. For instance, the distinctiveness of each landmark couid be the same, which would lead

to a uniform random visitation strategy. The probability distribution f(D(x,y)) could be a linear

function of value, Of, if we assume that the amount of sensor noise is low, an e.xponential strategy.

However, if sensor noise is high and the two agents do not share the same ordering of landmarks, then

the agents may be forced into revisiting the incorrect landmarks much too often. A good compromise

between these two methods is the smart-sequential method. The advantage of this method is that,

if delta is low, landmark combinations with high values are e......-plored before landmark combinations

where one landmark has a very high value, and the other has a relatively low value. This leads ta

an increased probability of meeting even with substantial asynchrony. The smart-sequential method

is tantamount to guessing where the other robot might be, given relatively similar but not identical

landmark rankings.

In the following chapters, we present an Implementation of the algorithms in the conte.xt of

both simulated and real mobile robot exploration, and show how the lessons learned in this chapter

persist into the Implementation on reaI robots.
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CHAPTER 5

Exploration

In Chapter 4, we described some of the more interesting aspects of the performance of the algorithms

proposed for the rendezvous problem. The numerical analysis technique showed that the probabilistic

algorithms are in many respects much worse than the deterministic algorithms, although each type

of algorithm has areas of best performance.

Recall that the context we are using for the rendezvous problem is e:-..-ploration of an unknown

environment. This chapter is a presentation of the particular e.xploration method used as the un­

derlying application for the rendezvous problem. We show a number of different techniques used for

the e.xploration, and sorne results of the exploration, before conducting the simulation experiment

in Chapter 6.

5.1. Exploration Methods

There are many different algorithms that have developed for exploration of an unknown envi­

ronment, however, most e.xploration algorithms are used to describe the spatial characteristics of the

environment from one of two standpoints. The first describes the environment in terms of the objects

in the environment. The other point of view describes space in terms of the connectedness of the free

space. The first method of spat:al description most often results in either low-Ievel descriptions of

discretised space with free and occupied pb::els, or verte.x-edge pairs of filled polygons. A..lternatively,

the spatial description might result in high-Ievel descriptions assigning semantic labels to points in

space, that represent objects recognised in the environment, such as a human might construct for

describing space. The opposing view of space most often results in a similar low-Ievel description of

discretised space or verte.x-edge pairs of free space polygons. Alternatively, the spatial description

might result in a high-Ievel route map, describing how to get from point to point in space, again

such as a human might make for navigating in an unknown environment .
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The e.."\.-ploration methodology used by an autonomous agent is driven then by the consideration

of the particular spatial representation in use by that agent, but there is also the consideration of the

sensors available to that agent. If the spatial representation of the robot demands polygon verte..x

descriptions, then the e..xploration algorithm must be geared to the precise and complete e.."'{amination

of as many polygon vertices as possible. "Vhether the robot has sonar sensors or laser range sensors

makes considerable difference as to the speed and precision of acquisition of range data, which again

should profoundly affect the choice of exploration strategy.

For the purposes of this research, there is in fact no commitment to one spatial representation

over another for the exploration algorithme The only constraint is that we would prefer an e.."'Cploration

strategy that allows us to e.."'Cplore the space as quickly and as broadly as possible. This is by no

means an essential requirement - the sole purpose of the exploration algorithm, besides the meta­

purpose of providing a test application of the rendezvous problem, is to provide a trajectory over

which the landmark set is acquired. Since Iandmark acquisition is trajectory independent, the actual

trajectory generated by the exploration is irrelevant - we simply want the landmarks along the path.

If the path covers a substantial area of of space, so much the better - the experiments will have more

chance to elicit interesting results. A second consideration is that the robots that will eventually

be used in this research have sonar transducers as their primary spatial sensor. Therefore, the

exploration algorithm must respect the limitations of the sensors in terms of range, precision and

likely sources of error.

vVe therefore would like ta devise an exploration algorithm that will caver large amounts of

unexplored space reasonably rapidly using sonar data. Ideally, the limiting factor of the e.."'{ecution of

the e..xploration algorithm should be the mechanical running time of the algorithm; any exploration

method that is dominated by the time to compute the next position is undesirable for our methods.

vVe shall also see in Chapter 7 that an algorithm that ,,"in allow also that data to be corrected over

time will be very useful.

5.1.1. Topological Mapping. There are a number of different exploration algorithms

developed for different purposes that could be used as the basis for OUI exploration algorithme

EA-ploration algorithms e..xist that use both metric and topological representations of space, or com­

binations thereof. Different algorithms have different purposes, such as speed, or accurate mapping.

One example of an e.."'{ploration algorithm is the topological robot exploration strategy developed

by Kuipers and Byun [34]. The notion of distinctive places that drives this exploration strategy is

the basis for the landmarks we use for the rendezvous process. This e.."'{ploration strategy describes

the notion of "distinctive" places in the environment, much the same as our distinctive landmarks.
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These distinctive places forro. nodes in the graph, and the nodes are connected by distinctiveness

contours - paths through space that have equal distinctiveness.

However, none of the e.xisting algorithms was appropriate to the purposes of this research. As a

result, the method we have used is derived from traditional path-planning algorithms. The aim of our

exploration method is to move the agent through known space as rapidly as possible to unexplored

space. \Ve therefore treat this as the problem of path-planning a route away from known obstacles

to unknown space. The approach we use is a path-planning approach known as "potential fielclsn
•

vVe also use on-tine search to perform global path-planning for generating paths between e..xplored

regions of space. By using path-planning algorithms as the bases of the e..xploration aIgorithm, we

ensure that the robots are moving towards une..xplored space as much as possible.

5.2. Potentia1 Fields

The potentiai field method is inspired from classical physics, and treats space as a potential

field such as a gravitational field, or electrostatic field. Goals e..xert an attractive force, such as a

positive charge or a gravity well. Obstacles exert a repuIsive force, such as negative charge, or an

infinite gravitational potential. Each point in space then has an associated potential, computed from

the known obstacles and goals. Using techniques borrowed from optimisation, the agent then moves

clown through the potential field to the nearest minimum. If the placement of goals is correct, the

local minimum should be the nearest goal.

An alternative view of the potential field method treats space as a rubber sheet, where obstacle

poke the sheet upwards, and the goals pull the sheet downwards. The robot is ball-bearing on the

sheet, allowed to roll freely through the force of gravity. Once the ball is released, it will roll between

the obstacles without actually colliding with any of them, and roll œto one of the pits where the

goal has pulled the rubber sheet downwards. By using this technique, the robot will naturally move

away from obstacles towards une.'\.lJlored space. As it moves between obstacles, it will choose a path

equidistant from the surrounding obstacles.

5.2.1. The Exploration Algorithm. The following describes each step of the e..xploration

aIgorithm:

(i) Acquire sensor data

Given that the sensors available ta us with our current robots are sonar transducers, the

assumption is that the data returned by the sensors will be of the form (range, angle), where

range is from the centre of the robot. Given the current pose of the robot, the (x, y) position

of each data point can be easily computed
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(ii) Update potential field to reflect new data

We are moving "downhill" through the potential field. The downhill motion should represent

motion away from obstacles (e.g. walls, furniture, etc.); these points are therefore represented

as points of high potentiaL

The data points aIso affect the surrounding area, with sorne function, just as mass has an.

effect on the surrounding gravitational field. The potential function used in this work is1
:

ç
<p(d) = --d + ç

'"
(S.l)

We set ç to 1 X 103 : the height of the potential field at the obstacle; '" is a constant that

represents the maximum area over which the field is applied (75cm in this case). d is the

distance from the data point. It should be noted that the robot may still roll close to a wall,

unless additional precautions are taken. These are explained in step 4.

(ili) Update potential field to account for position

In order to prevent the agent from repeated e.xploration of regions, we allow the agent's

position to affect the potential field as weil. The agent itself raises the potential to some

level, 50 that even in fiat regions of the potential surface, the agent continues to roll forward

(propeiled into the future by its own history, as it were) , until sorne environmental feature

alters its path.

We used the same potential function as for the data points to represent the potential effect

of the agent's history, with different constants:

(S.2)

•

where Çr is 700. Çr is lower then ç of Equation S.l to reduce the effect of the robot potential

function compared to that of the sonar data.

(iv) Search for location of minimum potential over local neighbourhood

If either the minimum potential is found ta be the current location, or the minimum potential

found is above sorne threshold, then this must be treated as a special case. This special case

will be addressed in 5.2.3.

The local neighbourhood used was a circle of radius 30cm (the same radius of the robot).

The potential at points around the robot is found by representing the environment as a

IThîs potential funetion was arrived at empirically in order to maximise the exploration algorithm efficiencYi it should
be noted that it is not related to the traditional potential functions of gravitation or electromagnetic fields, and does
not have the same fonn .
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discretised grid of potentiaIs, much like the occupancy grid stores probabilities. vVhile it

would be possible to dispense with the potentiaI grid and analytically determine the local

(within the neighbourhood) potential minimum point from the occupancy grid r this would

become e.."'dremely computationally costly as information accumulated in the occupancy grid.

We have instead opted for computing the change in potentials at discrete points in the

environment as data is accumulated, and searching the discretised grid.

1t should be noted that when a potential is applied to a cell, it only changes the cel! potential if

the new potential raises the potential at that cell - it is not added, and two different potentials

are never combined in any way. Therefore, the wall potential effects usually dominate over

the robot potential effects.

(v) 1'Iove to the location of the local minimum

By keeping the local neighbourhood relativelr small, and ignoring the possibility of dynamic

obstacles r we can assume that the straight-line path from the current location to any point in

the neighbourhood is also the best path (in terms of distance and time), and path-planning

of any non-trivial sort is unnecessary.

(vi) Go back to Step l.

The advantages to the potential field method are simplicity and effectiveness. The potential field

descent automatically encapsulates both known-obstacle avoidance and e..xploration. Furthermorer

the potential field method is a well-established and weIl-understood method; considerable literature

exists both on its implementation and use.

However r the potential field method has some drawbacks, as weil. The potential field relies upon

a discretisation of space r and as such has the substantial storage requirements of any discretised map

of space. Furthermore r it is computationally intensive. Finally, it has two substantial issues which

are addressed in the following two subsections r namely the issues of sampling rate, and the presence

of local minima.

Figure 5.1 shows an example trajectory through an environment, and the resulting potential

field.

5.2.2. Sampling. In order to overcome this issue ofcomputational comple..'Xity, the potential

is stored for a sampling of points over space, and the local neighbourhood is searched over what

points have been sampled in that neighbourhood. As new information about obstacles is acquired by

the sensors, only those points in the sample set that are affected by the obstacles have their potential

recomputed. 1t should be pointed out that it is this storage of sampled points that raises the storage
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FIGURE 5.1. An example trajectory through an environment, and the resulting potential field.

requirements for the potential field planning method. If the potential could be recomputed quickly

for each point in the neighbourhood there would not be the same storage constraints.

Besides the tradeoff between computation and storage, there is a performance balance within

the sampling itself - how coarsely to sampIe space. If space is over-sampled, the storage requirements
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balloon with limited. performance benefit. However, if space is undersampled, then e."dsting paths

may not be found witwn the undersampled representation, local ma.xima and minima may not be

found, and other undesirable effects may occur.

A.nother issue is how large of a local neighbourhood to search, in order to find the ne.xt position.

Too large of a local neighbourhood, and the search time dominates the running time of the algorithm.

Too small a local neighbourhood, and the mechanical running time becomes unnecessarily high. The

size of the local neighbourhood over which the potential is searched for a minimum is akin to the

step size that the robot takes every iteration during exploration. The step size should be small

enough that the the agent will not miss any environmental features between steps, but should be

large enough that the robot can move from point to point in the environment in a reasonable amount

of time. In the e.xperiments performed in this thesis, the step size was 30 cm, which is a little bit

larger than the robot radius. This is an ad hoc parameter, but one that appears to have worked

reasonably weil.

-- [ , - .
· ,

Ci) · ,

~ · Ci) ·· ·
· ·

1
f) ·

,

·"""'_~","" ...

·
~

~

· Ci)
~

··, .
·
-
·

,

·
FIGURE 5.2. An illustration of the sensor undersampling problem. The circIe in the center
of each image is the robot. The upper left image is the actual map, the upper right image
is the resuIt of 16 range measurements, where the black dots correspond to where the range
measurement was observed. The lower image is the result of 64 range measurements.

47



•
5.5.2 POTENTIAL FIELDS

The final sampling issue is that of sensor sampling of the environment. At every step~ the robot

takes a certain number of sensor measurements in the environment. These measurements are range

data from the centre of the robot, at equally spaced anguIar ïntervals. The robots used for these

e.xperiments have 12 (in the case of the RWI B12 robot) and 16 (in the case of the Nomad 200)

sonar transducers mounted around the sonar base, at reguIar angular intervals. These transducers

can aU be used more or less simultaneously.2
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FIGURE 5.3. On left is the trajectory that results from using 16 sonar measurements
per iteration. Each cross represents the position of the robot at an iteration. The stan
position is the same as in Figure 5.2. On the right is the e.."'q)loration trajectory from the
same location, using 64 sonars.

SLxty-four sonar samples were used for our potential field navigation, because fewer sonar sam­

pIes could capture enough information about the environment to direct the robot in a reasonable

fashion. Figure 5.2 demonstrates the sensor undersampling problem. In this example, the 16 range

measurements (left box) capture most of the large structure of the corridor, however, they do not

emphasise the major escape route down the middle of the corridor, as is emphasised using 64 mea­

surements (right box). As a result, the trajectory of the robot moves between the interleaved

"bumps" in the potential field surface. VVith 16 data points, these bumps are not close enough

together to forro a coherent barrier, 50 the surface is rippled. Figure 5.3 shows the robot trajectory

moving from Ieft to right across the corridor using 16 sensors, but moving correctIy using 64. By

using 64 sensors, the surface is still rippled, but the dominant direction is now towards the centre

of the corridor, and down the length of the corridor. The ripples do not determine the direction.

The solution to this problem is to ensure that the space is being sampled sufficiently by the

sonars. 64 sonar measurements was empirically determined to elicit the e.xpected behaviour from

the exploration algorithme It should he noted that in reality, the sonar beam is oot as precise

210 principle, adjacent sonar transducers cannot be fired simultaneously due to acaustic crosstaIk, but the arnount of
time ta acquire data from aIl transducers is on the order- of a second or less.
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as indicated by the diagrams in Figure 5.2. The sonar cone has a spread of about 12°, and the

angular displacement between two consecutive sonar measurements of 64 is only 5.60
• Consequently,

there will be ovedap between measurements at anything more than a meter. How to handle these

sonar artefacts is a topic of ongoing research. One possibility is to represent sonar measurements as

something other than single range measurements. We have elected to use the perhaps over-simplistic

but sufficient range point representation, and accept sorne inevitable artefacts in the data.

5.2.3. Local Minima. One final concern with potential-field based e.~loration is the prob­

lem of local minima. Recall that at each iteration of the algorithm, we are searching for the minimum

potential over a local neighbourhood, and moving to that location. If, however, that position lies

at the CUITent location, then the algorithm will become stuck in an infinite loop, never moving the

robot. We therefore must trap this special case, and use an altemate method to potential field

descent for escaping local minima.

Recall from Step 4 of the algorithm, we also must use an alternate method if the local potential

minimum is above some, arbitrary, threshold, T. This threshold T ensures that the potential field

does not push the robot into a wall. T was chosen such that the robot can never be close to an

obstacle than 1.5 times its radius.3 Note that this threshold T also prevents the robot from moving

too close to a previous location, but closer to a previous location than a wall.

5.2.4. Breadth-First Search. The failure of the local potential-field descent during ex-

ploration suggests a global approach to path-planning problem. vVe use the need for a more global

strategy as an opportunity to perform a global search for distant potential minima - we e.'-~and

the search neighbourhood to the entire map, searching every point for which we have gathered in­

formation. This strategy takes us from the recently explored regions to the fringes of the known

emrironment.

The search region is now substantially larger than the local neighbourhood being searched

during the potential field descent, and almost invariably irregular in shape. Consequently, we use an

exhaustive breadth-first over the potential field originating from the position of the robot, examining

every point in the potential field for which we have sensor information.

The technique for performing breadth-first search on a field such as this is well-established with

time comple.'àty O(n) in the number of cells to be searched; a good a reference is Cormen, Leiserson

and Rivest [16]. However, there must be some method of determining which of the potential field

cells is to be searched. vVe only wish to search those cells for which we have any sensor information at

3From Equation 5.1, given the values of ç = 1 X 103, 1\. = 75 and the robot radius of r = 23, the threshold must he
T =530.
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all- searching the potential of cells for which we have no information is dangerous, since the potential

is aImost certainly going to be incorrect. We therefore turo to the metric map, the occupancy grid.

5.3. Occupancy Grids

The initial state of the occupancy grid has every point set to sorne value representing unknown.

As the data points are added, the cells at those locations are set to the value representing the

probability that the cell is filled, or occupied Chenee the name). However, each data point represents

information not only about one point in the environment that contains an obstacle! but also about

every point in the environrnent between the robot and the obstacle. Inside the occupancy grid

representation, these points are set to the value representing the probability that the cell is empty.

These points are identified by performing scan-conversion across the occupancy grid between the

robot position and the data point; the scan-conversion is accomplished using a technique borrowed

from computer graphies, the Bresenham or mid-point algorithm. Figure 5.4 demonstrates the scan­

conversion algorithm. The grey eells are assigned a low probability of being occupied, whereas the

cross-hatched cell is assigned a high probability of containing an obstacle. No other square is affected

by the sonar beam - if aU other squares are currently unknown, then they remain unknown, and

only the coloured squares in the image now contain some sensor information.

Robot

Occupancy Grid

Obstacle

Robot

•

FIGURE 5.4. An illustration of the Bresenham aIgorithm. The dark grey cells are low­
probability occupied, and the black cel! is high-probability occupied.

Those cells that are unaffected by the sonar measurement, that remain in the unknown state,

represent the boundary of the breadth-first search. Recall that the breadth-first seareh should not

e."'q)lore those cells for which no sensor information has been aequired! as the potential is likely to

he wrong. Therefore, by performing fiood-fill, breadth-first seareh, from the current position to the

edges of the region that consists of low-probability (Pi < 0.5) cells, we can constrain the search.

Note that we do not e.."'qland cells containing sensor information and have a high probability of being
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occupied (Pi ~ 0.5) because we are looking for an available place for the robot, with low potential.

The robot clearly should not be sent to a location containing an obstacle.

5.3.1. Antialiasing. Because the sonar beam. model has sorne finite thickness, the beam.

is anti-aliased, that ïs, the points one either side of the beam are given sorne probability indicating

that they are empty as well. This is another technique borrowed from computer graphies, to prevent

images displayed on low-resolution raster devices (such as low-resolution printers and monitors) from

having jagged edges. We use it in this instance, to account for the \vidth of the sonar cone.

Affected Occupancy Grid
eeus in grey - less
affected ceIls are lighler

Robot

FlOURE 5.5. An. illustration of aliasing - the lighter squares receive less of a change in probability.

5.3.2. Bayesian Recombination of Data. Frequently, two successive measurements will

provide information about the same location in the environment. If a probability is being assigned

ta an occupancy grid square that already contains a probability, the two probabilities must be

recombined in sorne consistent manner. For this, we use Bayes' rule as formulated for combining

independent data [47]:

(5.3)

•

where Pi+1 (x, y) is the probability of occupancy at location (x, y) after the recombination,

Pi(x,y) is the probability before, w(x,y) is the recombination weighting at location (x,y), and v(x,y)

is the new measurement. V will always be either 0, meaning empty, or 1, meaning occupied. The

weighting recombination we used in this experiment was unifonn for all positions, w(x, y) = w = 0.5.

That is, the new measurement is equaI in weight to the old value.

In princip!e, the value at a particular point should never change. However, the reaIity of

using sonars as sensors means that some measurements will sometimes be wrong. This probabilistic
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recombination of data allows us to account for these errors, and by averaging the measurements

through time, we should get a more realistic picture of the environment.

[>
i>

<J

FrGURE 5.6. The diagram on the left is the original map, with an exploration trajectory
marked ln. The diagram on the right is the occupancy grid representation that results
from the exploration. The third diagram is the c-space representation. The grey areas are
pixels ,vith no information. Black areas are free pi.."'Cels (probability of occupancy < 0.5)
and the white areas are occupied pixels (probabiIity of occupancy > 0.5).

Finally, we convert the occupancy grid into a configuration space. This representation models

the robot as a point in space, by e."\..1Janding obstacles by the robot's radius. Since the robots

have only holonomic motion constraints (within our domain of interest) and are regular cylinders,

combining configuration space with the occupancy grid is a relatively simple proposition - each data

point is e."\..1Janded to a dise with radius equal to the robot's radius. The rotational symmetry of the

robot allows us to use only two dimensions for the configuration space representation.

By e."'<:panding the occupancy grid to configuration space (or c-space), we can ensure (to the

limit of sensor accuracy) that the robot will never come in contact with an obstacle. Every time the

e..xploration algorithm moves the robot to a new location, we can verify that the location i5 free of

obstacles using the occupancy grid. vVhile the potential field alone should be sufficient to prevent

the robot from driving through obstacles, the occupancy grid is an added security measure.
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Figure 5.6 shows an e.xploration trace, and the resulting occupancy grid. The black regions are

those that are free of obstacles. The white pixels are obstacle pL"'<els. The grey areas are pbcels that

contain no sensors information.

Figure.5.6 aIso shows the result of converting the occupancy grid into c-space. The c-space

map can now be used to perform such tasks as path-planning more easily, by treating the robot as

a point. Notice that the white areas are much more pronounced in size, as a result of e.xpanding the

obstacles.

5.4. Exploration and Rendezvous

Finally, we can use the e.xploration method to e.xplore space, and the occupancy grid will give

us a metric map of the environment. (Although the occupancy grid is in fact in c-space, it is a

relatively simple matter to e......"tract the original map.)

Figure 5.7 shows a demonstration e.xploration trajectory that ran for 200 seconds. The first

image taken is the initial position of the robot. Each subsequent image is immediately after the robot

found itself in a local minimum, or had e.xceeded the potential threshold, either of which triggered a

breadth-first search for a new region of low potential. Notice that each breadth-first search results

in exploration of a new, orten far-removed and disconnected region of space, which is in fact very

much the desired result.

5.5. Conclusion

In this chapter, we have described the exploration method we will be using as the underlying

task for the rendezvous experiments in the following chapters. vVe presented the techniques the

e.xploration method used, namely potential field descent and occupancy grids, and how the data

is used to generate both the potential field and recombined over time into the configuration space

occupancy grid.

In the following chapter, we describe e."'q)eriments using this exploration method with the ren­

dezvous algorithms described in Chapters 3 and 4, and e."Camine the results of those experiments.
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FlOURE 5.7. 6 snapshots of a 200 sec. exploration trajectory. Each small cross is a point
on the trajectory. Connected lines have not been drawn in, for clarity.•
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CHAPTER 6

Simulation

In the preceding chapters, our discussion of the rendezvous problem has been on a theoretical basis.

Although Chapter 4 encapsulated a number of practical issues with parameters sucb as sensor noise,

our analysis did not address the problems of space. In this chapter, we will he simulating mobile

robots in a two-dimensional environment, and performing an analysis of the algorithms similar to the

numerical analysis of Chapter 4. However, this numerical analysis was abstracted from the domain

of mobile robotics to a considerable degree.

In the previous cbapter we proposed an e.'q>loration algorithm that will motiv-ate our rendezvous

algorithm. The conte.xt of this research is e.'q>loration of an unknown environment; the objective is,

as always, to increase the speed of the e.."q)loration by using multiple robots, and we wish to overcome

the inevitable communication limits by using the technique involving periodic rendezvous to bring

the robots together to share information at reguJar intervals.

By performing the e.-xploration with rendezvous first in simulation, we are able to address

many issues that result from coupling rendezvous to a primary task such as e..-..cploration, and issues

that result from the spatial domain of the problem. We \vill not be addressing the problems of

physically-realisable robots, such as overcoming sensors artefacts. Once the simulation is working

to our satisfaction, we then move to the e.-xperiments performed on real robots; these e.-xperiments

are described in Chapter 7.

The e..-xperiments that we describe in this chapter have two goals; the first is to determine the

behaviour of the various rendezyous algorithms (proposed in Chapter 3) under different e.-xperimental

conditions. The second goal is to determine the speed-up of the e.-xploration of two robots performing

rendezvous, when compared with a single robot. First we oudine the experimental method we used

for the e.-xperiments, in particular the method of landmark acquisition and the rendezvous process.

Secondly, we demonstrate the results obtained, and the relationship to previous results.



•
6.6.1 EXPERIMENTAL METHOD

6.1. ExperiUlenta1 Method

The agents were modelled as idealised Nomad 200 robots with perfect (noise-free) sensing

abilities and odometry.l The agents a""q)lored the unknown environment for a pre-determined length

of time; at the end of this length of time the agents attempted rendezvous. The agents then took

the n best landmarks 5een 50 far, and used those for the rendezvous algorithm. Each agent was

running the same rendezvous algorithm; where the algorithms demanded asymmetrical agents, the

agents were assigned raIes randomly ab initio. Instead of generating sequences of algorithms, as in

Chapter 4, we simulate the robot motion between rendezvous points, and simulate communication

attempts.

6.1.1. Acquiring Landm.arks. The trajectory of the robot through the environment is

given by the a'Cploration algorithm as described in Chapter 5. In principle, all that remains to be

done for landmark acquisition is ta measure the distinctiveness function along the trajectory and

retain the local ma..XÏIna. This can be captured by naive algorithm depicted by the flowchart in

Figure 6.1.

However, this simplistic description hides several complax issues, the first of which is choosing

an appropriate distinctiveness function.

6.1.1.1. The Distinctiveness Function. Recall from Chapter 3 that we would like a distinc-

tiveness function that is smooth and has few local a.....-trema over the a'Cploration space. However,

in most non-trivial environments a number of factors such as sensor noise and occlusion make the

distinctiveness surface highly non-conve.x and complicated. Our choice of a distinctiveness function

was based human experience; we would like the function to peak in wide-open areas that correspond

to large rooms, foyers, etc. These are more traditional meeting points from a human perspective

than, for instance, corridors, alleys or alcoves. Figure 6.2 shows an e.xample of a robot in a room,

taking 16 sonar measurements.

\Ve can measure the "'openness", 'R, of any point in the environment simply by summing the

range returned by each sensor:

n

R(x,y) = LR(x,y,Bd
i=l

(6.1)

•
Figure 6.3 shows the result of the robot using 4 of its sonar transducers ta compute the openness

of its position, from Equation 6.1.

l While we did have the ability to simulate the sonars using a more realistic sonar simulator, this simulator was simply
too computationally slow to be of much use - 64 data points took over 1 minute to compute, as opposed ta 1 second,
using the noise-free simulator, a speed difference of at least one order of magnitude.
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FIGURE 6.1. The landmark acquisition algorithm.
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FIGURE 6.2. A typical measurement taken by a robot using 16 idealised sonar transducers.

•
Furthermore, we would like to pick the middle of these open spaces, that is ta say, the most

symmetrical points in the environment. Given that we have round robots with evenly spaced sensors,

where each sensor has a diametrically-opposed mate, then measuring symmetry is a relatively easy

task. We measure the asymmetry, A, of each point by summing the absolute of the differences from
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FIGURE 6.3. The result of using 4 transducers and Equation 6.1 to compute the openness
of the surroundîng space.

these diametrically-opposed pairs. If each pair of sensors measures the same, then the asymmetry

fails ta O.

n/2
A(x, y) = LI R(x,y,lJd - R(x,y,th+n/2) 1

i=l

(6.2)

•

Figure 6.4 shows the same robot as figures 6.2 and 6.3 using 4 transducers to compute the

asymmetry of its position. Notice how the asymmetry falls ta 0, when the robot is positioned

exactly in the middle of two walls. The zero asymmetry- case could only occur when the the robot

is in the middle of a regular polygon with same number of sides as the robot has transducers.

!
1
1
1
1 3m1
1

-----------------~~~--------
8m 4m

1

1
1 3m1
1
1

8m-4m=4m Total: 4 m
3m-3m=Om

FIGURE 6.4. The result of using 4 transducers and Equation 6.2 to compute the asymmetry
of the surrounding space at the robot's position.

We then combine the openness and the asymmetry by dividing R (6.1) by A (6.2) ta get

58



•
6.6.1 EXPERIMENTAL ~ŒTHOD

(6.3)D =
L~::l 1 Rï - ~+32 1

Recall from Chapter 3 that we showed an e.xample distinctiveness surface in Figure 3.1. vVe

used this distinctiveness function (Equation 6.3) ta compute that surface.

6.1.1.2. The Distinctiveness Distribution. The numerical analysis conducted in Chapter 4 had

an underlying assumption that the distribution of the landmark values was approximately linear.

Certainly, in the case of no noise, this was completely true, as the landmark values were computed

using a line function. However, this assumption is not necessarily valid for landmark values acquired

in real space, or even in simulation.

The main reason for suspending this assumption is that the environment and the distinctive­

ness function dictate the landmark values. Even with a knowledge of environmental features, it

is e."ctremely difficult to pick a distinctiveness function that has few, dominant local extrema, let

alone determining a function that '\\rill give these e.xtrema a linear distribution. vVith our assump­

tion of a totally unknown environment, picking such a distinctiveness function is clearly impossible.

The question, then, is whether or not the analyses under the assumption of a linear distinctiveness

distribution are relevant to the real robot.

Figure 6.5 shows a sample landmark distribution. These landmark values were generated from

a simulated robot trajectory through a sampIe environment that is morphologically similar to an

indoor environment (rectilinear walls, etc.). This is the same map used ta generate the sample

distinctiveness surface (Figure 3.1).

JOO

100

o '-----'_--'-_-'-_-'--_'-----'-_--'-_----'----l
o

•
FIGURE 6.5 .•o.\.n e.."'Cample distribution of landmark values from a simulated e."'Cploration
run, with no noise applied to the distinctiveness values.

Figure 6.5 shows the landmark distribution is roughly linear. lt is a noisy line, but not unlike

the landmark distribution produced by the linear function with 10% noise. Figure 6.6 shows a
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sample landmark distribution acquired in the same manner as Figure 6.5, but with roughly 10%

noise (±25 on a ma.ximum value of 250). Here the tinear distribution is preserved in ail but the first

distinctiveness value.
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FIGURE 6.6. An example distribution of landmark values, from a simulated exploration
run, with ±25 applied to the Distinctiveness.

However, the distribution for the very high noise simulation (±400 on a ma.ximum value of250)

shows again the tinear distribution of landmark values, plotted in Figure 6.7.
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FIGURE 6.7. An e..xample distribution of landmark values, from a simulated exploration
run, with ±400 applied to the Distinctiveness.

Figure 6.7 shows a linear distribution, again with substantial noise. However, given the fun­

damentally linear natures of the three sample distributions shown here, it can be safely concluded

that the assumption of linear distributions for the landmark values collected by the agents during

e.xploration is tenable, and the numerical analysis performed in Chapter 4 is valid.

6.1.2. Trajectory Dependencies. One of the problems with using the exploration method

described in Chapter 5 is that there is no guarantee that any particular point in the environment
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will be visited during the exploration process (in fact, there are no guarantees about anything, since

no semantics are ever ascribed to any part of the spatial representation). Consequently, two agents

that have explored the same areas of space may have trajectories that do not overlap in any manner.

Even more troubling are the issues of landmark distributions, and accurately recognising peaks in

the distinctiveness surface.

6.1.2.1. Landmark Distributions in Space. One of the difficulties of demanding trajectory-

independent landmark acquisition, is that any notion of the landmarks' relative positions in Eu­

clidean free space is lost. While it is possible to determine how close two landmarks are in absolute

distance, obstacles may intervene, making two landmarks appear relatively close together, whereas

they may be separated by some considerable distance through free space.

Ideally, however, only landmarks which are not mutually vi.sible should be kept in the landmark

set, otherwise a number of undesirable conditions may result. One such condition is that two

landmarks (which are in reality distinctiveness ma."CÏma along the trajectory) may in fact be too

close together, because two points along the trajectory that are separated in time (or distance along

the trajectory) are in fact very close together. Figure 6.8 demonstrates this effect. The robot travels

along the distinctiveness surface, storing only the local ma.xima that it sees along the trajectory.

Recall that the robot is only considering the distinctiveness of points that it actually visits. The

robot does not perceive that there is a peak in the distinctiveness surface between the two peaks in

the trajectory.

Maximum in Distinctiveness Surface
Local Maxima in Trajectory

Robot Trajectory

FIGURE 6.8. An e."Cample trajectory that covers bath sicles of the peak in the distinctiveness
surface, but never sees, or measures the actual peak in the surface.

vVhile this is not a problem for the algorithms, if the environment is large, or the area of the

environment common to the agents is relatively small, then the time to rendezvous becomes a serious

issue. Since the goal is to have the agents rendezvous in minimum time, it is undesirable for the

agents to spend time visiting points in the environment that are close together. The algorithms,
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and the testing performed on them in Chapter 4 assume that two agents at two different landmarks

cannot communicate, or "see" one another. By invalidating this assumption, the strengths of the

algorithms we have developed are, in some sense, being defeated. Points in the environment are

essentially being revisited, regardless of whether it is appropriate to do 50.

There are a number of ways of dealing with this problem. Each method has its strengths and

drawbacks. These methods are only necessary for weeding out those landmarks that have been

already acquired and lie within some visibility range, e.g. radio range, etc.

• If the robot has a range sensor, it can be used to determine whether any of the previously

acquired landmarks is visible from each potential landmark, as it is acquired. This has

the advantage of being fast, and requiring minimal additional storage and computation.

However, most range sensors are both inaccurate and have insufficient range to be practical.

• The robot can suspend the primary task Ce.g. ~xploration, etc.) and attempt to travel in

a straight line to each of the other landmarks that lie within the visibility range. If no

obstacle is hit then the two landmarks can be considered mutually visible. The advantage to

this method is the same as using the range sensor, but does not have the same accuracy or

range problems of the range sensor. However, it does add substantial mechanical complexity

to the rendezvous problem. As the number of landmarks grows, the complexity becomes a

sufficiently large drawback as to make this method of determining mutual visibility worse

than simply allowing the mutually visible landmarks to remain in the landmark set.

• If the primary task (e.g. ~xploration, etc.) provides a metric map, such as an occupancy grid,

this can be used by the rendezvous algorithm to determine whether or not two landmarks are

mutually visible. This method does demand substantial storage for such a map, but if one

is already available from the primary task, then making use of the map is a computationally

cheap option. However, the map must contain appropriate information, and must be reliable.

Since the task that we are performing is e..xploration and an occupancy grid is available, the third

method was used in the e..xperiments for eliminating mutually visible landmarks from the landmark

set. As the results will indicate, it worked with success.

6.1.2.2. Accurate Peak Measurement. The method described in section 6.1.2.1 suffices for

eliminating multiple landmarks that represent the structure in the distinctiveness surface. However,

there still remain the issues of accurately recognising the distinctiveness peaks, and even more

importantly, measuring the peak height accurately.

The problem of accurately measuring the peak height is related to ensuring that the agents

have the same perception of the environment. In addition to noise and sensor differences which were
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discussed in Chapter 3, care must he taken to ensure that the agents view the environment from the

same (or equivalent) standpoints.

If the agents share the same trajectories through the environment, then this issue is solved.

Such a situation would occur, for instance, if the agents were employing Voronoi diagrams or freeway

methods for navigation. ""1ûle there will in practice he sorne positional error across agents, this will

largely he due to sensor error and can he encapsulated in the sensor mode!. However, if the primary

task does not involve navigation along mandated trajectories, then it is likely that the agents will,

while capturing the same peaks in the distinctiveness, have very different perceptions of the height

of the peaks, as Figure 6.9 demonstrates. 2

2nd RoboCs Landmark

'n Roba< Tmj"""'" .../

/ijF
2nd Robot Trajectory

FIGURE 6.9. Two agents exploring the distinctiveness surface. Because of the nature of the
e.'Cploration algorithm, one agent passes direetly over top of the peak, and thus measures
its height correctly. The other agent passes first to one side, and then the other, retaining
only the higher of the two ma."cimal measurements, never measuring the peak correctly at
its maximum height.

In practice, the measurement of landmarks can be refined, thus solving the sampling problem,

by performing gradient ascent over the distinctiveness surface every time a potential landmark is

identified. There are three possibilities for when this landmark refinement process occurs:

(i) During the landmark acquisition process

Refining the Iandmarks during the acquisition process does not effect the mechanical com­

plexity of the rendezvous process, although it increases the complexity of the acquisition

2This is, of course, a sampling problem. However, given the prevalence of high-frequency information in the dis­
tinctiveness surface, undersampling is inevitable without serious increases in mechanical complexity. In the worst
case scenario, if the agents drastically undersample the distinctiveness surface, they will not ooly mis-measure the
distinctiveness peaks, but miss sorne peaks altogether. If the distinctiveness function is also used for the primary task
(as it is in this research, as the sonar is used both for the distinctiveness measurements as weil as generating the rnap),
the primary task must be aware that rendezvous is being performed, and must be willing to relinquish control of its
sensors to the landmark acquisition process. This requires sorne coupling between the landmark acquisition process
and the primary task, but the coupling can be eliminated if necessary by giving the rendezvous process a separate
sensor.
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process. While the rendezvous process has an accurate perception of the environment, and

therefore no recalcuIation is necessary during the rendezvous algorithm, the primary task

Ce.g. e.~loration) is no longer completely decoupied from rendezvous; again, it must be

aware that periodically it will be suspended while the landmark acquisition process refines

the landmark measurements.

(ü) Between the primary task and the rendezvous process

Before the rendezvous process begins, the agent visits each landmark it has acquired, and per­

forms gradient ascent over the distinctiveness surface starting from each landmark. Armed

with the refined landmark measurements, it then computes the visit sequence according to

the specified algorithm and attempts rendezvous. The advantage is that the rendezvous

process is again decoupied from the primary task, but the rendezvous sequence is computed

correctly, and only once. The disadvantage is the non-trivial mechanical comple."àty that

results from revisiting every landmark, before beginning rendezvous. For a process that has

many, widely separated landmarks, this will be unacceptable.

(üi) During the rendezvous process

The landmark measurements can be refined during the rendezvous process. This has the

advantage that the rendezvous process and primary task are decoupled as in the previous

method, but the additionaI mechanical comple."àty is low, as in the first method. The

disadvantage is that the visit sequence must be recomputed in the majority of cases if a

deterministic aIgorithm is being used. Furthermore, if the measurements are completely

wrong, the measurement may not be corrected until after a substantial number of iterations.

The method chosen for the simulation and real robot experiments in this research was the

first one, since maintaining the decoupling between the rendezvous and e.~loration tasks was not a

primary concern.

Figure 6.10 shows the resuIt of the hill-climbing operation.

Table 6.1 shows the change in the distinctiveness values, as a resuIt of the refinement process.

Note the reordering of the landmarks, especially landmark 5, which was initially at position 2. Also

note the substantial increase in overaIl distinctiveness values.

As the diagram shows, some of the lanclmarks are positioned some distance away from the initial

estimate. Since both agents perform the same landmark refinement, the trajectory dependency is

overcome, and the only differences in landmark perceptions should be clue to noise and sensor

differences.
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FIGURE 6.10. The result of the landmark refinement process. The dashed circles are the
initial peak estimates, acquired during the e..xploration process. The solid circles are the
final positions of the landmarks. The box: is the best landmark.

Final Landmark Initial Final
Rank Distinctiveness Distinctiveness

1 40.74 (3) 616.86
2 60.12 (1) 583.98
3 35.96 (4) 477.76
4 19.34 (6) 265.54
5 48.38 (2) 254.00
6 10.95 (8) 242.94
7 7.50 (9) 215.90
8 22.06 (5) 187.96
9 7.57 (10) 67.10
10 15.66 (7) 25.40

TABLE 6.1. The change in landmark values as a result of the landmark refinement process.
The initial rank of each landmark is in parentheses.

6.1.3. Modelling Noise. Two of the formal parameters developed in Chapter 3 were 6,

random noise, and TJ(xry), systematic noise at position (x, y). Recall that in Equation 3.10, we

combined these two parameters into the one parameter, 1J(xr y). For the purposes of the numerical

analysis, TJ( x, y) was generated independently for each (x, y) pair from the function Randam (0 :

r x max(F(i»).

During the robot simulation, the noise modelled by Equation 3.10 was applied only to the

distinctiveness value in order to isolate the distinctiveness sensor from the e..xploration sensor. This

e..""q)licit decoupling may appear counter-intuitive. However, since the primary task is not necessarily
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~~loration,or even driven by sonar data, separating the noise model from the e."q>loration sensors is

more consistent with the separation between rendezvous and the primary task that has been main­

tained throughout this work. By treating the noise model as applicable only to the distinctiveness

values, the distinctiveness sensor becomes a qualitatively different sensor to the e.~loration sensor.

This approach has the added advantage of simplifying the e.\':ploration algorithm - no effort must be

made to clean up noisy data for map generation. It should be noted that this cIean decoupling was

not used during the real robot experiments. There is no question of modelling noise on a real robot

- the noise is the real thing.

Initially, the same approach as the numerical analysis was used for modelling the noise during

the robot simulation. An independent random value was generated for each possible position on the

distinctiveness surface, to create an equivalent error surface. 'Vhen a simulation measurement was

made at that position, the random value from the error surface was added to the same position on

the distinctiveness surface. However, this method proved to be problematic, due to the non-smooth

nature of the resulting error surface, as Figure 6.11 depicts.

FIGURE 6.11. An. e.xample error surface, generated by a random error function, 17J(x,y)1 =
[0,50), 20% of max(F(i)).

This is cIearly not a smooth surface, which does not affect the algorithms for low ranges of

noise. However, as the noise level rose past 10%, ma.xima in the error surface started ta appear as

ma.--ama in the noisy distinctiveness surface. While this is an intended side-effect, the discontinuous

nature of the surface resulted in many more local ma.xima in the surface than had original been

there, changing the distribution of the landmarks considerably between agents. At the macroscopic
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level, the same major features were present in the surface, yet small ma.xima form eqnally valid

landmarks compared to large ma.xima - not as distinct landmarks, but Iandmarks nonetheless.

Consequently, another method was used to generate a smoother error surface. This method

computes each error value as a change from the previons value. The change has two components: a

random component, and a component that is dependent on the previous value. These two compo­

nents are summed to get the change from position to position.

1J(X, y) = Random(-.5 : .5) + §1J(x, y)(I 1J(x, y ~ )1) 1)
max TJ

(6.4)

01] is a different 0 from Equation 3.10. 01] specifies a preferred direction of motion - away from

the e:-...-trema of the error surface, and cowards the zeropoint.

cS1J(X,y) = -l:71(x,y-l»O

1 : TJ(x, y - 1) <= 0

(6.5)

(6.6)

•

Figure 6.12 shows an e..xample error surface that results from this method of noise modelling.

While still not a completely smooth surface, it is an improvement over the random noise surface at

high noise values.

FIGURE 6.12. An e.xample error surface, generated by the smooth erro! function,
/11(X, y)1 = [0,50), 20% of max(F(i)) .
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This error function has two main advantages:

(i) Each value is dependent on the preceding value. There is a notion of time as the error surface

grows from one corner across to the other corner, however, this is inevitable - some values

have to be computed first. These values that are computed first are edge elements, which

are a special case.

(ü) The surface tends toward the zeropoint (and therefore does not get clamped at one e."\:­

tremum)~ and moves faster towards the zeropoint, the further away it gets, thus giving some

stability to the surface.

6.1.4. Modelling Landmark Com.m.onality and Asynchrony. !\IIodelling the landmark

commonality, d, and asynchrony, j, e.-x:plicitly was impractical, as these are not parameters that can

be e.-x:plicitly set without communication between agents. The landmark commonality parameter is

a reflection of the degree to which the trajectories of the agents ùverlap; this parameter is a function

of the trajectories, not the inverse. Similarly, the asynchrony is a function of environmental and

robot characteristics; it is extremely difficult to e.xtract the appropriate characteristics from the

single parameter.

However, the simulation did model these characteristics indirectly. The landmark commonality

parameter was set by altering the size of the bounded world, and altering the time allowed between

rendezvous attempts. For e.xample, if an agent e.xplored the world completely in 600 seconds, then,

in principle, the commonality, d, could be set to d = n/2 by setting time to rendezvous to 300

seconds, or doubling the world size. In both cases, the initial poses of th.e robots would have to

selected carefully, to allow for sorne, but not complete overlap of trajectories.

Asynchrony was modelled using the radio communication simulator_ The simulator had a

locking mechanism that prevented the robots from moving to the ne."\:t landmark, until both had

made a communication request. By allowing the locking mechanism to operate probabilistically, the

parameter j could be incIuded in the simulation. The locking mechanism had a probability p of

failing, 50 that the robot made a communication request which was instantaneously filled, regardless

of whether the other robot was capable of accepting the request. The probability p of failing was

set e.xplicitly to equal the asynchrony, j. The communication request could only be filled if the

other robot was available for communication (i.e. the locking mechanism h.ad succeeded), and the

two robots were mutually visible and within range. This implementation of asynchrony is somewhat

limited, in that the rendezvous failure is attributed almost wholly to radio failure, as opposed to

a myriad of factors including communication, but within the scope of this simulation, it served its

purpose.
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6.1.5. Sirnulating Rendezvous. The simulation of detecting other robots and achieving

rendezvous was implemented using a special process that simulated radio communication. The pro­

cesses controlling the simulated robots communicated to the radio simulator during the rendezvous

phase of the simulation. Requests were made by each controlling process to the radio simulator,

and the simulator then determined, based on its knowledge of the complete map and the current

positions of the two simulated robots within the map, whether or not the robots were mutually

visible (line-of-sight), and whether they were in radio range of one another (13.5 m 3).

6.2. Experimental Results

There were three main e.xperiments performed on the simulated e..'"(ploration and rendezvous,

and each was a variant of a test of the rendezvous algorithm performance vs. noise. Each data point

is the average of 25 trials. The trial was terminated at 100 rendezvous attempts if the agents had

not achieved rendezvous by then.

o

o~

. ,

o
...o

, :

o

:0

FIGURE 6.13. The map for the simulated e."'q)eriments, with the starting positions marked
as circles. One agent always started from the position labelled 'A', whereas the other agent
started 5 times at each of the positions marked with numbers.

Figure 6.13 shows the map used for the first test suite, the baseline algorithm performance. In

each set of 25 trials, one agent was started at the same point every trial, the A in Figure 6.13, and

the other agent was put at one of 5 locations, the circles labelled 1-5 in Figure 6.13, for 5 trials per

location. The trials were conducted for 15 values of d.

3This number for the radio range was based on the radius of the smallest robot we used, the R\VI B12. 13.5m is one
hundred B12 diameters.
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6.2.1. Baseline Performance. Figure 6.14 demonstrates the performance of the 4 main

algorithms, in the face of increasing noise. The size of the landmark set was la landmarks and

asynchrony j was O. In order to have the agents have as close to 100% landmark commonality as

possible, the simulation e.xplored for 600 seconds - this proved to be sufficient for the agents to have

e..xplored almost aU of the space. The four algorithms were sequential, smart-sequential and the

probabilistic functions e..xponential and random.
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FIGURE 6.14. Baseline Performance - Time to Rendezvous as a function of Noise-Ievel 5 = [0, 50J.
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6.2.1.1. Low-Noise Performance. Figure 6.14 is the equivalent graph to Figure 4.4, although

the noise range is much shortened. The graphs are superncially different, however, most of the main

features are preserved. The deterministic algorithms are dominant throughout the noise range, and

in particular, smart-sequential is the fastest algorithm in the lowest noise case, but as noise begins

to dominate the measurements, the smart-sequential algorithm's ability to guess where the other

agent might be is hampered by poor estimates of the environment. Smart-sequential was designed

e..xplicitly to handIe small perturbations in the landmark orderings between agents; at the level of

the simulated robots, it is succeeding. Note also that e..xponential very quickly fails, although the

failure is not as dramatic as in the numerical analysis.

Figure 6.15 shows the performance of more variants of the e.xponential algorithm. \-Vith a higher

T constant in the e.xponent, the algorithm again fails very quickly. Clearly, e.xponential is not the

algorithm of choice for high-noise situations. Recall that these data points are averages of 25 trials

and 50 many of the individual trials failed to meet in the allotted time.
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FIGURE 6.15. Baseline Performance - Time to Rendezvous as a functian of Noise-Ievel
o= [0,50], with probabilistic (e."qJonential) algarithms, sequential is aIso shawn for refer­
ence.
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FIGURE 6.16. Baseline Performance - Time to Rendezvous as a function of Noise-level d = [0,500].
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6.2.1.2. High-noise. Figures 6.16 and 6.17 demonstrate the effect of further noise on the

performance of the algorithms. At the highest noise level in Figure 6.16, the noise is 80% of the

highest noise-free peak in the environment; however, certain algorithmic characteristics manifest

themselves. For e.xample, sequential continues to out-perform all other algorithms.
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FIGURE 6.17. Baseline Performance - Time to Rendezvous as a function of Noise-Ievel 5 = [0, 1500}.

However, in Figure 6.17, noise has become by far the dominant characteristic of the environment;

the agents are essentially operating blinde There appear to be some interesting phenomena in the

highest noise region, but further investigation revealed these to be artefacts of the initial conditions,

the size of the environment and the faïrly low number of trials. The only real conclusion that can

be drawn from these figures is that sequential is a robust algorithm if the agents have no wayof

reliably quantifying the environment.

6.2.2. Disjoint Exploration Areas. This was the second of the three e.'--perïments per-

•

formed using the simulated exploration and rendezvous was the e.xplicit case of disjoint landmark

sets, representing areas of the environment explored by only one agent. Agaïn, each data point is

the average of 25 trials. The trial was terminated at 100 iterations if the agents had not achieved

rendezvous by then.

Figure 6.18 shows the larger map used for this test suite, the algorithm performance with

disjoint exploration areas. Just as in the baseline tests, in each set of 25 trials, one agent was started

at the same point every trial, the letter A in Figure 6.18, and the other agent was put at one of 5

locations, the digits 1-5 in Figure 6.18, for 5 trials per location. The trials were conducted for 15

values of 6.

Figure 6.19 shows an e.xample of the e.xploration carried out by two agents in this environment.

Clearly, the two agents have e.xplored the majority of the environment , and yet the overlapping
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FIGURE 6.18. The map for the simulated e."ï)eriments for the disjoint landmark set eJ\.ï)er­
iments, with the starting positions marked as circles. One agent always started frOID the
position marked with 'A', whereas the other agent started 5 times at each of the positions
marked with a digit.

areas of their trajectories i5 fairly minimal. This i5 the first e.xperiment where the speed-up of the

algorithms can be tested; the results of the speed-up of the algorithms will be in section 6.3.

.:;1

~.5-- .

:':'10 -~9

:7

-, ,..:.8.

.,6

___~__ ;10
;:;1

.2:

------- -:..5s---------~

--,--..S--

:.8!

•
FraURE 6.19. Two example trajectories through a larger space. The e.-q>loration was
allowed to continue for 600 seconds, before rendezvous occurred. The circles indicate
landmarks. Notice that the rendezvous occurred successfuHy, even though a large part of
the trajectories were unique to the agent.
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6.2.3. Algorithm. Performance. Figure 6.20 demonstrates the performance of the 4 main

algorithms, in the face of increasing noise. The size of the landmark set was 10 landmarks and

asynchrony j was O. The four aIgorithms were sequential, smart-sequential and the probabilistic

functions e.xponential and random.

Time To Rendezvous vs. Sonar Error - Medians of 25 trials
100 .....--.........--..-------.----r----r---r----,----r----y--...,

Sequc:ntial __
Smart Sejluential ---­

Exponenûal. Tau ~.5 -8-­
Random ->(~

80

60

40

20

OL..--....J----'--..J......---'--...J---L.--..l.:---L-.--l.:--......J
o 5 lO 15 20 25 30 35 40 45 50

Sonar Error (+1- cm)

FIGURE 6.20. Non-Identical Landmark sets - Time to Rendezvous as a funetion of Noise­
level, Low Noise a= [0,50].

Notice that smart-sequential is no longer the best algorithm, even in this low noise region of

the parameter space. The ability of the smart-sequential algorithm to guess the locat.ion of the other

agent is damaged by the incomplete knowledge that results from disjoint landmark sets.

The e.xponential algorithms fare somewhat better than they did in the previous e.xperiments, as

Figure 6.21 indicates. This is more a reflection of the fact that the deterministic algorithms cannot

perform any better; it does not indicate an improvement on the part of the exponential algorithms.

Finally, in the high noise case shown in Figure 6.22, the algorithms are relatively close together.

This is because the failure rate of all the algorithms was relatively high - much higher for the

deterministic algorithms than in the numerical analysis. This is because with the high noise level,

there is no way to guarantee that the the landmark sets will be identical. As the noise level increases,

the likelihood of the two agents choosing two points in the environment to he landmarks fails

considerable. As the noise level increases, the agents are essentially hlind. The size of the hounded

environment and the restrictions on the relative spacing of the landmarks prevent the landmark sets

from being completely disjoint, 50 all the algorithms converge on a average time to rendezvous for
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FIGURE 6.21. Non-Identical Landmark sets, Exponential Performance - Time to Ren­
dezvous as a function of Noise-Ievel, Low Noise 0 = [0,50].
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FIGURE 6.22. Non-Identical Landmark sets - Time to Rendezvous as a function of Noise­
level, High Noise a= [0,400].

this particular environment. In this high noise case, none of the algorithms is any more useful than

the other.

rendezvous under conditions where the robots would sometimes fail ta meet successfully, even if they•
6.2.4. Asynchrony. In this final set of e.xperiments, we test the ability of the agents to
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were at the same location. Each data point is the average of 25 trials, and trials were terminated

at 100 rendezvous attempts if the agents had not met by that point. The map that was used

was the same as for the baseline simulations; the robots were allowed to e..xplore for 600 seconds,

sufficient for the agents to have covered almost all of the space. The size of the landmark set was,

again, 10 landmarks. The four algorithms evaluated were sequential, smart-sequential, random and

exponential, and e..xponential was tested with three different e..xponential constants.

We are particularly interested in the low-noise region of the parameter space, as the numeri­

cal analysis indicated that the e..xponential algorithms performed best under these conditions. As

Figure 6.23 indicates, the superior performance of the stochastic algorithms is present in the spatial

simulation.
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FIGURE 6.23. 80% Asynchrony - Time to Rendezvous as a function of Noise-level, Noise
a= [0, 100J.

Focussing further on the region where 6 is small, we see in Figure 6.24 that in the case of no

noise, the algorithm that has the fastest performance is the e..xponential algorithm with a very large

e..xponential constant. That this algorithm should be the fastest is e..xpected, since the e..-..::ploration

suffers only from missed meetings - bath agents should have chosen the same landmarks. Since this

algorithm 'will revisit the best landmark more often than any other algorithm, it has the best chance

of overcoming the asynchrony problem.

However, once any noise i5 present in the system, this highly tuned algorithm fails rapidly since

the algorithm is unstable with even the slightest noise. The algorithms with much lower e..xponential

constants, and thus are less tuned to the best landmark, perform much better. The smart-sequential
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algorithm is close to the behaviours of these e..'\:Ponential algorithms, and much better than the large

constant e::-..!>onential algorithm. Once the noise begins to dominate the signal, the deterministic

algorithms prove superior. However, smart-sequential outperforms sequential for much of this part

of the parameter space; the inability of the sequential algorïthm to return to landmarks more often

inhibits its performance much as it did in the previous experiment.

6.3. Multi-Agent Exploration

Of particular interest in this experiment is the ability for the rendezvous algorithm to overcome

the communication restriction and yet maintain the increase in speed that multiple-agent robotics

promises. What we would like to do is demonstrate a significant increase in exploration speed, even

accounting for the time to rendezvous.

As our metric for measuring speed increase in e..~-ploration, we used the change in mapping

speed,5,

ï7

where A. is the percentage of the environment that has been mapped, and T is the time to complete

the mapping.•
s=A.

T
(6.ï)



•
6.6.3 MULTI-AGENT EXPLORATION

Since the experiment was constructed sa that the occupancy grid matched the size of the

bounded environment~we used the number of cells in the occupancy grid that contained information

of any kind (occupied or not) as our measure of the size of the mapped environment.

The increase in speed of the mapping process is then given by Equation 6.10,

6..S =
Scombined - Ssingle (6.8)

Ssingle

&_&
= Te T. (6.9)

&
Tc

A·c Ts (6.10)= ---1
As Tc

We took the area of a single agent, A.s to be the area ~xplored by the active agent, and the time

of the single agent Ts to be the time allowed for the ~"'Cplorationprocess alone. The combined area,

A.c was the e.xplored area of the merged maps, and the combined time, Tc was the time to explore,

Ts added ta the time to rendezvous, Tr .

(6.11)

•

Recall that each data point in the preceding graphs represents the mean of 25 trials. These 25

trials were composed of 5 possible initial configurations, with 5 trials per configuration. Since the

environment was bounded, it was possible ta detennine what percentage of the environment each

agent had explored. Once the maps from the two agents had been merged, it was then possible to

determine how much of the environment had been e."{plored by the two agents together, and in fact

the increase in ~"{plored speed, compared ta the efforts of a single agent. The increase in explored

area for each of these 5 configurations is given in Table 6.2.

Ind~x Active Passive Combined % Increase in Area
0 48.0 42.2 69.1 44.2
1 48.0 58.4 72.0 50.2
2 48.0 66.5 74.6 55.6
3 48.0 59.5 68.5 42.8
4 48.0 67.7 73.9 54.1

Average 49.4

TABLE 6.2. The increase in e."q)lored area, as a percentage of the environment, for each of
the 5 initial configurations.

As Table 6.2 shows, the increase in e.xplored areas was a minimum of 42.8%, and on average

49.4%. If the agents were capable of merging their maps immediately after the ~xploration phase,
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then Tc = Ts, and the increase in area is e.xactly equal to the increase in speed. However, this ideal

situation is equivalent to total communication, and is not reaIistic.

There are two possible ways to interpret the e.xploration speed results: the first treats each

exploration iteration and rendezvous iteratian as a single time increment, as if travelling through a

graph where each arc is of time-Iength 1, and Tr is simply the number of rendezvous iterations.

Table 6.3 shows the speed increase in the algorithms in the zero-noise case, using this graph-like

model of the eJl..l)loration process. Each datum is the average of 25 trials; if the agents failed ta meet

(e.g. due ta the e.xponential algorithm), then the change in mapping speed, ÂS was set to 1.0.

Algorithm % Speed Increase
Sequential 49.1 %

Smart-Sequential 38.1 %
Exponential 21.1 %

Random 46.7 %
TABLE 6.3. The speed increase using the graph-like model of the world, in the zero-noise
case. Each number is the average of 25 trials.

Only the exploration speed of the e.xponential algorithm was seriously degraded by the ren­

dezvous process. Figure 6.25 shows the change in e.xploration speed as the noise is increased.

FIGURE 6.25. Increase in exploration speed as a function of noise. Environment modelled
as a graph.
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Characteristically, sequential performed e.."Ctremely weil over the majority of the noise range;

smart-sequential did well in the low-noise range, however once the noise began to dominate the mea­

surements, smart-sequential's performance was considerable degraded. These results reassuringly

corroborated on a generaI level the numerical and simulation results.

However, a number of over-simplifying assumptions were made, most questionable of which was

the assumption that each rendezvous iteration takes a single time unît. In order ta further bolster

these results, we computed the increase in speed, taking into account the mechanical comple..xity of

the rendezvous process. Using the actual translation and rotation speeds of the robots that we used

for the e..xperiments using real robots (these e..xperiments are gîven in Chapter 7), we determined

that each e..'q>loration step took approximately 30 secs. For the rendezvous time, we used the robot

simulator to provide the actual distance that the robots traveIled through the simulated environment

as they moved from landmark to landmark. The speed of the robots is 40 cm/sec; since the distance

the two robots traveIled each Iteration was usually considerable different, the time ta travel between

landmarks on each iteration was assumed ta be the longest of the two distances, divided by the

speed of the robot.

Figure 6.26 shows the performance of the rendezvous aIgorithms, using this realistic modeL As

the graph indicates, the realistic model does not affect the speed adversely; despite the fact that

the rendezvous iterations were considerably longer now, the e..xploration step was still sufficiently

e.."Cpensive that the speed gains from using two agents were preserved.
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6.6.4 CONCLUSION

Figure 6.26 is compelling support for multiple-agent robotics in general; despite the necessity of

considerable mechanical complexity to overcome the communication problems, an increase of speed

of up to 50% in the e......1>loration task is still available. It is a problem for future work to show that

this increase in speed is possible in general.

6.4. Conclusion

In this chapter, we described the e..xperiments we performed in simulation to test the numerical

analysis of Chapter 4. In the course of outlining the e.......1>erimental method, we also described a

number of issues which affect the rendezvaus algorithm as applied ta spatial domains. These issues

included trajectory dependence, our model of distinctiveness distributions, spatialsampling and our

noise mode!.

\Ve then described three main experiments we performed to test the algorithms in the face

of noise, asynchrony, and disjoint exploration areas. The results were consistent with the previous

numerical ana1ysis, although there were some small differences. One important result is that the

stochastic a1gorithms have their domain of superiority as expected, but inappropriate tuning of the

algorithm parameters can make the algorithms fail very easily. The superiority of these algorithms

is not stable.

\Ve also analysed the rendezvous process in terms of increasing the speed of the exploration

process. The ana1ysis confirmed that even with the communication constrained to occur only during

successful rendezvous, speed increases of up to 50% are attainable, when compared te a single-agent

system performing e.xploration.

In the following chapter, we will describe an e..xperiment in implementing the exploration and

rendezvous algorithms on actual robots in a laboratory setting, in order to demonstrate the algo­

rithms can be used in reality.
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CHAPTER 7

Rendezvous using Physical Robots

In Chapter 3, we described the rendezvous problem, and motivated the problem with the conte..xt of

e..xploration. In particular, we proposed two main classes of algorithms, and gave particular instances

that exemplify these two classes. In Chapter 4, we gave a numerical analysis of these algorithms.

In the previous chapter, we analysed the algorithms running in a simulated spatial environment,

using the exploration method described in Chapter 5. We performed these e..xperiments in simulation

in order ta address a number of issues that relate to the spatial nature of the problem; we did not

address any issues that resulted from using practical robots, as opposed to idealisations. \Ve were,

from these e..xperiments, able to show some interesting features of the rendezvous problem with

respect to our algorithms. In particular, we were able ta show that communication problems, if

addressed using rendezvous, do allow for the speed increases that are often assumed to accompany

multiple robot systems.

However, some issues of using mobile robots must still be addressed. AIl of the prior simulation

experiments assumed the simulation sensors were ideal; noise was e..xplicitly applied in arder to

approximate real sensors. Odometric error was assumed ta be negligible. Issues of path-planning

were simplified to allow the robots ta pass through each other in space, rather than investing time

in allO\ving the simulated agents to detect each other during the exploration stage. These are all

assumptions that are not v-alid once a real robot is being used.

In this chapter, we will show that the these and other assumptions can be dealt with v.rithout

affecting the utility of the rendezvous procedure. "Ve will not be interested 50 much in the perfor­

mance of the algorithms under different environmental conditions; this chapter presents a proof of

concept, that, in fact, the rendezvous method is possible and useful on real robots.
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1.1. Experimental Method

The e.xperiment was condueted using two mobile robots, a Nomad 200 and an RWI B-12. Both

robots are essentially eylindrical, and quasi-holonomie, in that they are capable of turning with

0° radius. The Nomad 200 is SOcm in diameter, and has 16 sonar transducers equally separated

by 22.5°. The RvVI B-I2 is 27cm in diameter, and has 12 sonar transducers equally separated

by 30°. A.lthough the Nomad 200 has an onboard 486 processor running Linux, aIl computation

was performed off-board, on two SGr Indigo platforms running IBlX 5.2, and an Pentium platform

running Linux 2.0.29. The communication between the robots and their controlling platforms was

wireless.

Figure 7.1 show the robots moving through the maze in the laboratory. The right panel of the

figure shows the robots standing ne.'ICt to each other, having made a successfully rendezvous.

•

FreURE 7.1. The robots exploring the maze, and then making a rendezvous.

7.1.1. The enviromnent. The experiment was held in a laboratory space measuring 550cm

by 840cm. The walls were free-standing corrugated plastic, 60cm high. The walls were taped together

for structural integrity, and stood off the floor with angle-brackets, measuring IDcm long. The total

wall length, including bounding walls, was 50Am.

The small square box in the lower left corner was a desk chair; this was included to show the

robustness of the €.xploration method, and is not especially relevant to the rendezvous problem.

7.1.2. Sonar sensors. The sensor that was used throughout these e.xperiments was the

sonar sensor, which is a range sensor only. Consequently, all our distinctiveness function candidates

relied upon range information only. The sonar sensor operates by emitting a high-frequency sound
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FIGURE 7.2. The map for the real experiments. The space at the left of the maze was
used for observation, and aIso held the controlling equipment.

pulse (40 kHz, for our particular robots). The pulse propagates through the atmosphere until it

strikes an object in the environment. The same transducer emitting the pulse then listens for a

pulse at the same frequency echoing off an abject in the environment. If the pulse echo is heard

within a short duration, then the time of flight is used to calculate the distance to the obstacle,

otherwise the pulse is assumed ta have been lost. Figure 7.3 demonstrates a robot using sonar to

measure the distance to the wall in front of it.

•

•

FIGURE 7.3. A robot using sonar to measure the distance ta the wall in front of it.

The ma.ximum range of the robots l is Sm for the Nomad, and 13m for the RWI. The range

precision is ±2.54cm for the Nomad, and ±1.07cm for the RWI. By using the sonar ta measure the

distance ta obstacles araund it, the robot can acquire a metric map of its environment. There do

exist more sophisticated sonar models such as developed by Kleeman and Kuc (31], vVilkes [53),

and Lacrobe and Dudek [36] that can recognise and deal appropriately v,.ith sonar artefacts in our

mode!. However, our simple model of the sonar pulses, combined with same simple outlier handing,

is sufficient for the limited purposes of our e.xperiments; a more sophisticated sonar mode! would be

more appropriate for long-term exploration and environment modelling.

l Assuming speed of sound at 330 rn/s.
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7.7.1 EXPERIMENTAL METHOD

Given the nature of real sonar sensors, sorne processing must be

done on the sonar data. The sensors have a maximum range of Sm, but are e.."'ctremely unreliable at

that range. There are a number of different artefacts from using sonar sensors that must be dealt

with. Fortunately, these fail into two main categories: outliers, and multiple-bounce refiections.

7.1.3.1. Sonar outliers. If a sonar beam strikes an object along the object's surface normal,

•

then the sound beam is refiected back along its incidence path, the ideal trajectory for a sonar pulse.

Figure 7.4 depicts this ideal case.

FIGURE 7.4. The Ideal trajectory for a sonar pulse from a robot to an obstacle.

If the sonar beam intersects the surface along an oblique path and the surface is not specular

with respect to sonar puIses, then the pulse will he scattered, and some of the pulse will be reflected

in the direction of the emitting transducer. The sonar transducer that emitted the pulse is the only

transducer that is used ta detect the pulse, and 50 the reflected pulse must be heard by the same

transducer that emitted it. The left panel of Figure 7.5 depicts the behaviour of a sonar pulse,

bouncing off a scattering surface.

a Entiuol~nMBcam
~Scallered

SonarBcam

FIGURE 7.5. The behaviour of a sonar pulse bouncing off a scattering surface. Although
the sonar pulse scatters in aIl directions, sorne is reflected in the direction of the transducer.

Emilted
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L
R.fiec,""
SonarBeam

FIGURE 7.6. The behaviour of a sonar pulse bouncing off a specular surface. The majority
of the sonar pulse bounces away from the robot and its transducer.
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However, Figure 7.6 shows that if the surface is specuIar, then the pulse is refiected away from

the emitting transducer and the pulse is lost. Figure 7.7 shows a typical sonar range scan, using the

Nomad robot and 64 sonar measurements2 . As the figure depicts, the majority of the sonar beams

are either tao long (along the corridor walls), or fall short (at the ends of the corridors). The walls

have been drawn in black on top of the range data, to emphasise that as the sonar beam does not

accurately measure the range ta the walls except at angles that are close ta the walL

FlGURE Î.7. A typical sonar scan from the Nomad 200, in a hallway situation. The walls
have been drawn in black. Note that most of the range data is completely ïnaccurate.

7.1.3.2. Corner artefacts. The other main class of sonar error that we will see in our envi-

ronment as a result of our sonar model is corner artefacts. This results when a sonar pulse hits both

walls of a corner, before returning ta the emitting transducer [36]. Since this multiple bounce path

takes longer than a simple one-bounce path (and range is measured as time-of-fLight of the sound

pulse) then the wall is perceived as being further than it is [53]. Again, note that this is a feature

of highly specular environments. Figure 7.8 shows a schematic of the corner artefact problem, and

sorne actual data acquired by the RWI B-12 robot, illustrating the error.

7.1.3.3. Lowpass Filtering. There exist a number of methods of dealing with poor sonar data

such as this. It is beyond the scope of this work ta deal with general solutions; since this is a proof

of concept experiment, we will use the domain knowledge ta construct a simple filter. The majority

of sonar errors in our environment resulted from the sonar pulse either never returning, or returning

along a comple.,,<, multiple-bounce path. As a result, the errors will almost always overestimate the

true range. Consequently, by rejecting range data if the range is above an upper threshold, we

eliminated the majority of errors. As a precaution, we also rejected all data that was below a lower

threshold of the robot's radius. The upper limit was the same for bath robots: 300 cm.

2 Although the Nornad bas only 16 transducers, it can take many more rneasurements than this by rotating on one
point by small incrernents between measurernents of 16. Sixty-four data points can be acquired by taking 16 data
points 4 times, and rotating by 5.625° between each set of 16.
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FIGURE ï.8. The Ieft is a depiction of the corner artefact problem. Although the sonar
pulse does return to the robot, it takes longer than if it had bounced only once off the
wall. On the right is data gathered by the RWI B-12, illustrating the same problem. The
RWI is the circle in the centre. The walls pass to its left and in front. However, there is
no corner point, but a third, diagonal line where a corner should be.

This type of filtering was sufficient for most of the errors, but could not handle corner artefacts,

since these errors are consistent across several points (unlike the outliers), and appear to have sorne

structure that might exist in the environment. There is no easy way to eliminate these artefacts,

without recognising them as such. So in addition ta the low-pass filtering, Bayesian recombination

of data was used. Recall from Chapter 5 that this method used Bayes' rule to allow us to combine

occupancyestimates acquired over time for the same point in space. Whilc this method did Dot

immediately eliminate corner artefacts, they became much less damaging as informa..~ion about the

corners accumulated.

7.1.4. Acquiring Landmarks. The same Iandmark acquisition method was used as in

•

the simulation in Chapter 6. vVe acquired local ma.~a along the trajectory during e.xploration,

and then returned between the e.xploration and rendezvous phases to refine the landmark positions.

There were three alternative possibilities for refining the landmark positions, but in the interests of

simplicity, the same method as the simulation was used.

It should be noted that during both the e.xploration and rendezvous phases, there are times

when the robot must move between points that are frequently separated by sorne distance, and often

have intervening obstacles. For instance, when the e.'q)loration algorithm moves the robot into a

potential minimum, it uses breadth-first search to move ta a new region to e......"Plore. There is no

e.xplicit handling of the path to the new location. Similarly, there is no e.xplicit handling of the

robot's motion from rendezvous location ta rendezvous location. There is an assumption that the

robot is capable of finding a path through known space ta any point in the environment, if one

e."CÏsts. vVe were able to maintain this assumption using potential field gradient descent through the

known map [21]. The rendezvous process fed the range points, after processing, to the path-planner,

50 that the path-planner had an accurate picture of the environment. We were then able to assume
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that a path between any two points in the environment that had been visited were accessible, and

relied upon the control software to e..xecute the motion correctly.

7.2. Experim.ental Results

7.2.1. Trajectory. Figure 7.9 shows the trajectories of the robots moving through the

maze. The RWI B-12's trajectory is shown in the left panel, and the Nomad 200'5 trajectory is

shown in the right panel. ft should be emphasised that the maps were overlaid by hand for clarity,

and the robots had no embedded knowledge of the layout of environment.

Starting
t>OSltlC"11.

FIGURE 7.9. The trajectories of the t'wo robots throughout the environment. The R\VI
B-12 trajectory is on the dght, and the Nomad 200 is on the 1eft.

The trajectories consist of collections of points, separated by large areas of space. These "is­

lands17 of points were areas of the environment explored using the local potential field descent. Once

a local potential minimum had been reached, the robot used breadth-first search ta find a new area

that was known to be clear, yet low in potential (Le. seen but unexplored).

Notice that the trajectories only overlap on the right hand side of the mapi much of the B-12's

trajectory is in the inner part of the maze, whereas the Nomad spent time moving up and down

the corridor on the right. The B-12's trajectory is aIso much longer than the Nomad's, because the

Nomad spent time performing breadth-first search in the lower part of the corridor. The limitations

of the sonar, combined with the filtering, prevented the Nomad from using much of its data outside

that small area of the map.

ft is in these real e..xperiments that we can observe sorne limitations of the e:\.-ploration method.

The R\VI B-12 occupancy grid indicated that the right-hand corridor to be clear of obstacles, that
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is to say, the wall appeared to be relatively thin. We can see that the occupancy grid indicated this

by the fact that the RWI moved to the far side the wall aftel' l'eaching a potential minimum; the

breadth-first search is limited to points in the environment that are known to have a Low probability

of being occupied. However, the only way the occupancy grid could contain any information about

cells past the wall would be through sonar error. The control software would have prevented the

robot from running into any unobserved obstacles, 50 the situation is not as dangerous as it would

seem. However, the problem does highlight the difficulties of using the simple sonar model for any

serious exploration.

7.2.2. Occupancy Grid. Tt is difficult to demonstrate the occupancy grid in any reasonable

mannel', because the useful data is visually swamped by the sonar artefacts. However, the occupancy

grids at the end of the e.xploration runs are shown here for completeness sake, in Figure 7.10. The

white pi.xels correspond to points in the environment for which there is no information, and the

black pbcels are points that have a low probability (P(x,y) < 0.5) of being occupied. Notice the

substantial sonar errors present along the corridor e.~-plored by the Nomad 200 (right panel), despite

the low-pass filtering in use.

•

FIGURE 7.10. The occupancy grids generated by the e."qlloration process. The R\VI B-12
occupancy grid is on the right, and the Nomad 200 is on the left. Black pLxels are empty,
white pL"<els are unknown.

vVe were able to improve the occupancy grids however, by running the robots with the same

trajectory, and lowering the rejection threshold from 300 cm ta 150 cm, making the filter even

tighter. Figure 7.11 shows the occupancy grids that resulted from this tighter threshold. The map

contains fewer outtiers, however, it is also much sparser.

Because of the trade-off between clarity and sparseness, we decided ta maintain the map at

two resolutions; one map was used for generating the potential field, and therefore absorhed much

more information (erroneous or not) to prevent the robot from finding potential minima too often.
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FIGURE ï.ll. The occupancy grid generated by the exptoration process by the robots,
using a narrower threshold. Black pbcels are empty, white pi."<els are unknown.

However, for the purposes of mapping, the data from the narrower filter was preserved, in the

interests of keeping a cleaner map.

The maps generated by the exploration are depicted in Figure ï.123

3These diagrams were generated from the robot control software, which was fed data points by the exploration
algorithm from the narrow filter.
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FIGURE 7.12. The maps generated by the e.xploration process. The RWI 8-12 trajectory
is on the right, and the Nomad 200 is on the left,
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FIGURE 7.13. The same maps, after the neighbourhood filter. The R\VI 8-12 trajectory
is on the right, and the Nomad 200 is on the left.

Notice however, that there are still a number of artefacts present, despite the Bayesian recom­

bination of data, and the low-pass filtering. The presence of these artefacts, however, tend to be

in areas where the robot was present for a very short time, (the artefacts in the right corridor of
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the RWI map), or where the rabot never entered (the artefacts at the bottom of the RvVI map).

Interestingly enough, the Nomad 200 had very few such artefacts, but as a result, has a sparser map.

This could be due to sensor noise, or actual differences in the sensors between the two robots. The

differences between the sensors manifested themselves in the relative perceptions of the environments

distinctiveness surface, as shall be shown during the discussion of rendezvous.

Another features is the angular offset of the lower corridor with respect to the upper corridor.

This is due whoIIy to positional errar, both translational and rotational. This error, over long

distances, will cause serious problems to the robot's ability to accurately represent its environment.

Several solutions are possible, however, this problem is outside the scope of this work.

We were able to refine the map even further by applying a neighbourhood fiIter: which peri­

odically eliminated any data points that had no neighbours within a certain neighbourhood. The

neighbourhood chosen was 10cm. This fiItering was not a part of the occupancy grid or the potential

field in any way, as removing points from either of these two spatial representations is a major task,

and beyond the scope of this work. Figure ï.13 shows the resuiting maps after the thinning process

was applied. The majority of points that were removed were those outliers where the robot had not

been present much, if at alI.

One of the shortcomings of this approach proved to be the memory requirement. At all times,

three complete spatial representations were maintained (potential field, major occupancy grid and

thinned map), in addition to any temporary representations for the breadth-first search. As an

e.xample, the potentiaI field was typically IOm by 10m, with a discretisation of one ceII per square

cm. Storing this map as an array of 4 byte fioats consumed 4 megabytes of memory. Combined

with the occupancy grids (also stored as fioats, since the grid represents probabilities), 12 megabytes

were consumed. A further 4 megabytes were consumed by the breadth-first search.

7.2.3. Landmarks. Finally, Figure 7.14 shows the landmark positions that were chosen by

the robots for rendezvous.

Although gradient ascent was used in the simulations, it was not used in these experiments due

to the small size of the environment. Notice that the Nomad chose a point in the upper corridor as

its best rendezvous location, whereas the RWI chose a point in the inner maze. This is no doubt

due to sensor differences between the two robots.

7.2.4. Rendezvous. This single e....periment provides the clearest support for this thesis, in

demonstrating a need for establishing some appropriate behaviour if the initial rendezvous attempt

is unsuccessfui. As Figure ï.14 indicates, the two robots did not choose the same point in the
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FIGURE 7.14. The landmark selections of the two robots overlaid on their trajectories.
The RWI 8-12 trajectory is on the right, and the Nomad 200 is on the left. The ranking
of the landmarks is shown as weIl.

environment for the best rendezvous location. Table 7.1 shows the numerical values for the position 4

and distinctiveness of the landmarks.

Nomad 200

RvVI B-12

Landmark 1 (596.00, 189.00) Distinctiveness: 11.15
Landmark 2 (758.00, 234.00) Distinctiveness: 9.73
Landmark 3 (648.00, 676.00) Distinctiveness: 9.29

Landmark 1 (584.00, 715.00) Distinctiveness: 4.86
Landmark 2 (582.00, 279.00) Distinctiveness: 3.00
Landmark 3 (817.00, 747.00) Distinctiveness: 2.99

•

TABLE 7.1. The positions and clistinctiveness of the landmarks acquired by the Nomad
and the R\VI during the e.xploration.

The robots made a successful rendezvous on the 4th attempt among the three landmarks, since

they were using the sequential method of a"'(ploration. As the environment in which the e..1Cperiment

was conducted was too small to allow the robots to use any real form of electromagnetic radio

communication to detect each other, the rendezvous detection was performed using a special process.

4It should be noted that the relative co-ordinates of the landrnarks are essentially meaningless, as there was sorne
offset between the maps of the two robots, which has not been corrected.
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FIGURE Î.15. The final map created from the merged data acquired by the two robots.

Finally, Figure 7.15 shows that the maps were merged. The map merging was performed

manllally. Although aIgorithms exist to merge maps gathered by heterogeneous agents [30], that

problem is not the focus of the present work.

7.3. Conclusion

•

In this chapter, we demonstrated multiple-robot e.xploration of an unknown environment, fol­

lowed by a successful rendezvous, implemented on physical robots in the laboratory setting. The

exploration method used was local potential field gradient descent combined with potential search,

as described in Chapter 5. The rendezvous method was formalised in Chapter 3, and the sequential

algorithm was used in the actual e:\.1>eriments.

\Vhile the e.xperiments discussed in Chapters 4 and 6 were analyses of various algorithms under

different conditions, the e.xperiment discussed in this chapter was a proof of concept e.xperiment,

that rendezvous cOllld be implemented on real robots, and the maps merged successfully. The two

most important conclusions that were drawn from the experiment using the real robot is that the

methodology we have chosen for achieving rendeZVOllS is practical, and that we have addressed one

of the most important issues in our methodology, the sensor differences. The fact that the robots

failed to meet on the first iteration of the rendezvous cycle is a very convincing piece of evidence

that the rendezvous problem is substantially more cample.x than simply choosing a place ta meet in

the environment.

This e.xperiment underlined the issues of sensor differences in a number of ways. The maps

created by the two robots, aIthough structurally the same, differed in the details. Although the two
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robots were using the same type of sensor, the Nomad in general had fewer spurious measurements.

Figures 7.12 and 7.13 show that the Nomad had more accurate data! and as a result, the filtering

process gave the R\VI the sparser map. \Vhether this difference was as a result of the sensors, a

result of the physical configuration of the environment, or even a result of the physical configuration

of the robots themselves, is unknown. However, it is clear that any algorithm that relies on the

sensors of two different robots must take into account the substantial sensor differences, and cannot

assume that the sensors! even if identical in nature, will perceive the environment the same way.
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CHAPTER 8

CONCLUSION

8.1. Overview

In this work, we have described the new problem of performing rendezvous between multiple

mobile agents. The objective was to overcome practical communication limits by periodically having

the agents converge and share information. In this manner, we increase the speed of operation of

the multiple robot system compared to the single robot system, while eliminating the traditional

assumption of infinite range, full bandwidth communication between agents. \Ve are specifically

interested in multiple-robot e..xploration of an unknown environment where communication is limited

to short-range tine of sight. Although we dealt primarily with two-agent systems, the work is easily

e..xtensible to larger collections of agents, or swarms. Furthermore, we developed a methodology

that does not depend on any particular task such as e.."q>loration, is trajectory independent and

does not require any memory-intensive spatial representations. Although our implementation does

take advantage of metric information that is provided by the €.."q>loration algorithm, our rendezvous

methodology can be decoupled completely from the underlying primary task.

vVe divided the rendezvous problem into two separate subproblems. The first is determining

what points in the environment constitute good rendezvous locations, or landmarks. We addressed

this problem by modelling the environment as a function of the sensors; this function gave rise to

a distinctiveness surface, defined over the domain of the environment. vVe then chose landmarks at

the local e.xtrema of the surface, limiting our knowledge of the surface only to those points that the

agents have visited. Which points the robot visited was dictated by the trajectory prescribed by the

underlying task, and 50 we demonstrated how ta overcome these trajectory dependencies.

\Vhile the problem of rendezvous reduces, in the idealised case, only to the task of choosing the

best point in the environment to which the robots should converge, this is in fact an inappropriate

idealisation. In the formalisation of this problem, we identified 3 key parameters that characterise
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the problem. We showed that a number of different points in the environment must be chosen for

meetings, and these points must be visited in some intelligent manner for rendezvous ta be achieved

reliably. These parameters we have called sensor noise, map commonality, and asynchrony.

This problem of which appropriate behaviour to use in choosing the landmarks to visit is

the second of the two subproblems of rendezvous. \Ve proposed two main classes of algorithms,

deterministic and probabilistic, and gave e..xamples of each class of algorithm. In order to determine

the characteristics of the algorithms, we gave a closed-form analysis of the worst- and e.xpected­

case comple.xity of the algorithms at points in the parameter space. This closed-form analysis was

complemented by a numerical description of the performance of the algorithms at a range of points

in the parameter 5pace.

\Ve then described a particular exploration method that used a combination of potential field

gradient descent, coupied with breadth-first search of the potential field in order to escape potential

minima. This e.xploration method was devised to coyer space quickly, and was the primary task of

the rendezvous process.

Finally, we demonstrated the rendezvous algorithm in use both in simulation and on physical

robots. The simulation tests were used as a confirmation of the numerical results. Within the

class of deterministic algorithms, there were different regions that favoured different algorithms. An

interesting conclusion from these results is that, depending on a combination of these confounding

factors, no strategy is canonically a good or bad choice - under the correct circumstances, a heretofore

poor choice of algorithm can outperform the erstwhile winner. These results were confirmed by both

analytic closed-form solutions of Chapter 3, the idealised numerical simulations of Chapter 4 and the

physically-based simulations of Chapter 6. The physical e.xperiments served as a proof of concept

for the e.'-llioration and rendezvous algorithms, and we concluded with a map of an environment

that resulted from the collaborative exploration and subsequent successful rendezvous within our

laboratory of two robots.

8.2. Acquiring Landmarks

The model we developed for multiple-agent systems has two distinct phases: the primary task

phase, and the rendezvous phase. During the main task phase, in which our system e.xplores the

environment, the environment must also be e..xamined for landmarks. We used the notion of "distinc­

tiveness", that i5, a locally conve.x function defined at every point in the environment. We defined

thi5 particular distinctiveness function as a function of the sensors directly, as opposed to computing

the function from perceived features in the environment. Our distinctiveness function we used en­

capsulated the semantic notions of both open area, and symmetry, and was designed to be maximal
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at the centre of large areas. It should be noted again that there are a number of constraints on a

useful distinctiveness function; it should be trajectory and rotationally invariant, locally conve..x and

contain few discontinuities.

The Iandmarks were acquired concurrently with the main task, and in arder to preserve the

decoupling from the primary task, the acquisition is passive - the trajectory of the robot was de­

termined wholly by the e.xploration algorithm. This posed two problems: the first, of determining

whether landmarks that were separated in time along the trajectory, were in fact separated in Carte­

sian space, and the second, eliminating trajectory dependencies in the landmark measurements. We

discussed a number of different methods of dealing with the first problem, and in our implementation

made use of the metric information provided by the e."Cploration method to eliminate the peaks in

order to avoid the mechanical cost that would have resulted otherwise. The second problem could be

solved only by gradient ascent over the distinctiveness surface at each landmark. However, in order

to preserve the independence between the primary task and the rendezvous process we showed that

there are several choices of when this landmark re~nement process could OCCUf, each with different

costs and benefits. In our particular implementation, we performed the gradient ascent interleaved

between the €.."Cploration and rendezvous phases. In this manner, we preserved the trajectory inde­

pendence of the landmark acquisition, yet did not suffer the mechanical comple.'City or algorithmic

performance degradation that the other methods entailed.

8.3. Exploration

vVe developed an e.xploration method that would motivate the rendezvous process; The objective

of the exploration aigorithm was to generate a map for each robot that could then be fused into a

single map, combining the information from both agents.

The e."\:ploration algorithm was based on local potential field gradient descent. In this method,

the robots model the obstacles in the environment as repulsive forces, and maintain an internal

representation of the environment as an idealised potential field that results from the combination

of the forces. As the robots use their sensors to acquire more information about the obstacles in

the environment, they change their representation of the potential field to refiect the newobstacles.

The robots then search their representation of the field for the potential minimum in the local area,

bounded by some arbitrary distance, and move to that point.

One of the difficulties of potential field descent methods, however, is the issue of potential

minima. A number of different environmental configurations can result in the robot becoming

frozen in a local minimum, Ieaving a large part of the environment une..xplored. Consequently, we

developed a special case algorithm for handling these situations. By using breadth-first search, we
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were able to search the potential field for a global minimum in the field. The bounds of the search

were the e..~lored areas of the environment. Two spatial representations of the environment were

maintained, a potential field for navigation, and an occupancy grid wmch was used as the map of

the environment. The occupancy grid maintained a record of obstacles in the environment, points

in the environment that the robot knew were likely to be unoccupied, and those points for which no

information had been acquired.

The sensors that were used for this research were sonar sensors; consequently, a considerable

degree of processing of the data had ta be performed, especially for the e:-"lleriments performed using

real robots. Similar sonar errors were not present in the simulated e)..lleriments, so errors were added

using a random noise mode!. It is di:fficult, and computationally e..xtremely costly, to model most

sonar artefacts in any reasonable, physically-based manner. One of the results of the physical robot

e........lleriments was that it became necessary to maintain the map at two levels of processing: one

map was used for supplementing the potential field during navigation, and the other map (which

underwent an additional level of processing) was used for merging with the other agents' during

rendezvous.

It should be noted that although we took considerable effort to show that the rendezvous process

could be separated from the primary task at ail times, there are substantial costs in maintaining this

separation. In fact, the implementation given in this research did not maintain the independencc

of the two processes, but instead the rendezvous process e..""\:ploited the information acquired by the

e..xploration process. Furthermore, there are efficiency gains that can be made by designing the

primary task so that it is aware of the rendezvous process, and can make choices relevant both to

the primary task and the rendezvous process.

8.4. The Rendezvous Cycle

Once the robots have e..""\:plored the environment and acquired landmarks, in principle the ren­

dezvous process should involve bath robots visiting the most distinct landmark they have visited,

and waiting for the other to arrive. However, as the e..xperiment with the physical robots demon­

strated, the robots may not share the same perception of the environment, and thus may not agree

on the best landmark in the environment. The rendez-vous problem is complicated by the three

major subtleties of sensor noise, map commonality, and asynchrony. vVe formalised sensor noise as

a combination of sensor differences and noise in the sensing process. :Map commonality was defined

as the e.."'{tent to which the robots have e..xplored the same areas of the environment. Asynchrony

referred to the combination of factors that prevent an agent from reaching a landmark at the correct

time.
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In order to overcome these difficulties, we assumed that multiple attempts may have to be made

at different locations in the environment, if any rendezvous failed. vVe proposed two main classes of

algorithms, deterministic and probabilistic, and gave two examples of each. The numerical analysis

of Chapter 4 showed that each algorithm has considerable variance under different system and en­

vironment conditions. The deterministic class most often outperformed the probabilistic class, but

under conditions of asynchrony, the probabilistic class showed that it had a region of superiority. The

smart-sequential strategy e.,,~loited the distinctiveness measure or preference ordering on landmarks

to attempt to compensate for missed rendezvous and was superior under substantiallevels of asyn­

chronyand limited noise. The pure sequential strategy was preferable when asynchrony is low, since

without asynchronya meeting is assured after n "isits by avoiding visiting combinations that might

otherwise compensate for asynchrony. vVith substantial levels of both asynchrony and moderate

noise the stochastic search strategy was preferable to deterministic ones. That these small regions

of parameter space exist indicates that the problem of rendezvous deserves further development.

The physically-based simulation demonstrated that, although it is much harder to isolate the

parameters in a physical sense, many of the main conclusions were upheld, despite several compli­

cating factors that were not part of the numerical simulation. Furthermore, the physically-based

simulation demonstrated that an increase of speed is still attainable with a multiple robot system

using the rendezvous approach to communication.

Finally, the e.xperiments using physical robots gave a compelling demonstration that the ren­

dezvous algorithms are an essential part of the rendezvous process; the assumption that the robots

will meet on the first Iteration is simply untenable. Despite very similar sensors and configurations,

and a high degree of overlap between the agents, the robots required 4 rendezvous Iterations before

they could successfully meet and share information.

8.5. Future Work

8.5.1. Sensors. Possibly the biggest difficulty with this work is the fact that considerable

effort must be made to overcome sensor error. ivIuch of this is due to the fact that the distinctiveness

function, and as a result the robot's ability to localise and rank the landmarks correctly, is based

on the sensors' direct output. The sensors are demonstrably unstable, in that small changes in the

pose of the robot can result in dramatic changes in the sensor output. Vastly preferable would be to

construct a distinctiveness function that was a function of some stable, intermediate representation

of the environment, computed from the unstable sensor output. The ability to attach semantie

information to the sensor output and use that semantic information for determining landmarks

would assist the rendezvous process immeasurably. Unfortunately, it is an open topie of research
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to find any general, stable representation of any sensor currently available. Indeed, such a system

would go a long way to solving the computer vision problem.

8.5.2. Exploration. A second difficulty with this work lies in the nature of the e.'\.-ploration

method. The e.xploration method was constructed to he implemented quickly and easily, be general

and robust. \Vhile it succeeded in these measures, it has a number of shortcomings. Because it uses a

discretised, metric map, it is e.."ctremely storage-intensive. Considerable effort was spent reducing the

storage requirements of the rendezvous process, however all of this saved storage was consumed by the

e.xploration process. Clearly, this can be addressed by reducing the granularity of the discretisation,

however, there will always be an upper limit. A better solution might be to maintain only a local

metric map, and combine the local potential field with a topological representation.

Another issue is the trajectory's sensitivity to initial conditions. The e.xploration algorithm used

here could take substantial different paths through the same part of the environment, depending

on the initial conditions. From the point of view of the rendezvous process, it would be preferable

to have the robots take trajectories that are as similar as possible through the same region of the

environment. Such a strategy, for e.xample, would eliminate the need for landmark refinement.

The undersampling problem would no longer be an issue, since both robots would be sampling the

environment at the same places.

8.5.3. Landmark Acquisition. Only one distinctiveness function was investigated in this

work. No consideration was given to its stability, or its ability to distinguish qualitatively different lo­

cations in the environment. Further investigation should consider different distinctiveness functions,

especially with consideration given to different sensor systems.

8.5.4. Rendezvous. Only a small number of rendezvous algorithms were considered for

trus work. There is a body of literature on online search methods, of which rendezvous is a subclass.

Aigorithms that were not considered here may have surprising regions of utility.

The majority of this work was conducted with the assumption of a two-agent system. \Vhile

many of the principles are easily e..'\."tensible to multiple agents, the analysis may need to be refined

for an arbitraI}' number of agents.

Duplicating the analysis of the algorithms in the physically-based simulation proved to he

suhstantially difficult. For instance, without communication, there was no way to ensure that the

landmark sets were 100% identical. Certainly, by the time sensor noise dominated the original

signal, the landmark sets had lost a considerable degree of commonality. Although the formal

parameters sufficed for an introduction to the problem, further work should he directed in refining

the parameters. The sensor noise parameter could certainly be split into its original components of
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sensor differences and sensor noise. It may not even be possible to model the sensor differences as

probabilities; the sensor noise model may need to be increased to a number of factors. Similarly,

the asynchrony parameter should be divided into the degree of time synchronisation and also a

probability of failed meeting. Currently, the asynchrony factor more dosely models probability of

failed radio communication, and in fact was modelled as such for the physically-based simulation.

Of the analysis presented in this work, only limited but critical parts of the parameter space were

~"'<:amined. Further e.."Camination is necessary for e."'<:amining the behaviour of the algorithms under

conditions of worsening noise, worsening asynchrony, and perhaps most importantly, conditions of

landmark commonality_ It is physically likely that as time passes, the areas e.x:plored by the agents

will overlap more and more; analysis of the performance of the algorithms under these conditions

would be usefuI.

One open problem is the ability of the agents to choose the appropriate rendezvous algorithm.

A major part of this problem is allov.-ing the agents to estimate the environmental parameters,

and identify the correct portion of the parameter space that identifies the environment. At no

time did the agent 's attempt to estimate the ~"Cperimental parameters; the agents did not use any

environmental information in the algorithms. Allowing the agent to vary the parameters, such as

constants in the stochastic algorithms, as rendezvous succeeds or fails, may have considerable power.

Finally, the only consideration used by the algorithms for choosing which landmark to visit

was the distinctiveness of the landmark. Given the sometimes substantial mechanical complexity

of travelling between two landmarks, a better algorithm would consider the mechanical comple."C­

ity of visiting landmarks in addition to its distinctiveness, so that of two landmarks "\Vith similar

distinctiveness, the doser landmark would be \-isited first .
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APPENDIX A

Derivation of Analytical Results

A.l. Expected-Case Results

A.l.l. Random.

n-l
Punsuccessful = -­

n

The expected-case time is the median number of iterations k, sud that

k

L pei) = 0.5
i=O

(A.1)

(A.2)

where pei) is the probability of meeting in e.xactly i iterations. Therefore, probability of meeting

on the kth iteration is 50%. For the probabilistic algorithms such as random, the probability of

t " h" h . . . p(i-l) Pmee Ing on t e lt iteratIon IS unsuccessful + successful"

For asynchrony,

•

(k-I) + Psuccessful .5Punsuccess/ul =
(k-I)

+ Punsuccessful .5P unsuccessful =
(k) .5Punsuccess/ul =

(n:l)' = .5

klog2 (n: 1) 1 "-= og- .n

k
1

=
log2 (n~l)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)



•
and from equation A.6,

(
n -1)

Punsuccessjul = -n- j

A.A.1 EXPECTED-CASE RESULTS

(A.9)

= log2·5

(n~ljr

k log2 (n : 1 j )

k =

For disjoint landmark sets,

.5

1

(A.lO)

(A.1l)

(A.12)

Punsuccessjul = (n: 1) (~)

and from equation A.6,

((n~l)(~)r = .5

(dn -d) log2.5klog2 --n- =

k
1

=
log2 (dn~d)

(A.13)

(A.14)

(A.15)

(A.16)

A.1.2. Sequential. The sequential algorithm consists of the active agent cycling throughout

its n landmarks, while the passive agents waits n rendezvous attempts before moving ta the next

landmark. From equation A.2,

•

k • k

L~=;-Ln~i
i=O i=O

k- ::
2

k

thus solving for k gives expected time = ~ .

= 0.5

= 0.5

= 0.5

n
~

2

(A.17)

(A.18)

(A.19)

(A.20)
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For asynchrony, the probability of any given cycle failing to rendezvous is i. Each additional

cycle involves a cast of n. Sa, the probability of k cycles meeting is the P(k - l)unsuccessful +
P(k)successful. Thus, the e.."'Cpected time is the number of sweeps plus the e..xpected time of the

final sweep.

k log2j = -1

k
-1

=
log2i

(A.21)

(A.22)

(A.23)

Unsuccessful time = jkn , successful time = Î".

i jkn + n
= 2

-1

i = jIOg2i~+~

(A.24)

(A.25)

Similarly, for disjoint landmark sets, the probability of any given cycle failing ta rendezvous

is *. Each additional cycle involves a cast of n. 50, the probability of k cycles meeting is the

P~~-;~~ce$sfUl+ pskuccess/ul· Thus, the expected time is the number of sweeps plus the e},.-pected time

of the final sweep.

( _nd)k = 0 ..5

klog2 (~) = -1

(A.26)

(A.2ï)

k = -1
(A.28)

Unsuccessful time = (*)k n, successful time = ~.

i = (~rn+i
i = (~)log;tf)n +::

n 2

(A.29)

(A.30)

(A.31)

•
A.1.3. SInart-Sequential. The smart-sequential algorithm consists of the two agents cy­

cling throughout its n 2 landmark pairs. The probability of an unsuccessful rendezvous on the ith

iteration is:
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pei) = n- - ~-

n 2 - i-1

From equation A.2,

I:
k (n2 - i - 1) _ _

? • - O.;)
n- -t

i=O

k . k

I: n - t L 1--- ---. .,.
n -1 n- - t

i=O i=O

0.5

A.A.2 WORST-CASE RESULTS

(A.32)

(A.33)

(A.34)

k -n = 0.5

thus solving for k gives expected time = n.

A.2. Worst-Case Results

(A.35)

(A.36)

A.2.I. Random. The worst-case result for the random algorithm is always 00, because no

guarantee exists that the robots will meet on any particular iteration. However, it should be noted

that the worst-case has 0 probability of occurring.

A.2.2. Sequential. For the simplest case, the worst-case occurs if the passive robot goes

•

first to the active robot's last landmark. Therefore, the active robot \vill visit go through its entire

cycle of n landmarks, and find the passive robot on the last iteration.

For the asynchrony case, the worst-case occurs if the robots fail to rendezvous due ta asynchrony

on every iteration, thus the time ta rendezvous is again 00. Again, this scenario has a probability

subset of measure O.

For the disjoint landmark case, the worst-case occurs if the passive robot first visits each of its

unique landmarks (Le., landmarks unknown to the active robot). Thus, d cycles of length n must

occur before the passive robot is at a landmark the active robot will visit. During the final cycle,

the worst-case occurs if the passive robot is now waiting at the active roboCs last landmark; the

active robot goes through its entire cycle of size n first before finding the passive robot on the last

attempt. Thus, the worst-case is nd + n visits.

A.2.3. Smart-Sequential. The smart-sequential algorithm creates a list of pairs of land-

marks of length n 2 • Of these n 2 pairs, n of them contain a potential rendezvous. If all n pairs are
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at the end of the list, then the preceding n 2 - n + 1 pairs do not contain a rendezvous. Therefore,

the worst case for smart-sequemial is n 2 - n + 1.

The asynchrony derivation is the same as for sequential.

If the landmark sets of the two agents are not identical, then the number of potential rendezvous

pairs in the list of n 2 pairs created by the smart-sequential algorithm is n - d. That is to say, of the

n2 ways of selecting two Iandmarks, one from each agent, only n - d pairs will match. If ail n - d

pairs are at the end of the visit sequence, then n 2 - n + d + 1 attempts must be made before every

remaining attempt will result in a rendezvous. Therefore, the worst-case for smart-sequential if the

landmark sets are disjoint is n 2 - n + d + 1.
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