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Abstract

This thesis is made of two parts. In the first part, we study pattern formations

and dissipation of energy and matter by using hypetbolic reaction-diffusion equa­

tions for reacting systems. Two-dimensional hyperbolic reaction-diffusion equations

are numerically solved for the Selkov model and the Brusselator. It is shown th;:t1: the

evolution equations used can give rise to various kinds of patterns such as hexagonal

structures, stripes, maze structures~ chaotic structures, etc., depending on the val­

ues of the reaction-diffusion ntllI'.ber and the initial and boundary conditions. The

values of the entropy production computed indicate that the sy~tem mailltains th~

particular organized local structures at the expense of energy and matter. However.

when the system produces a chaotic pattern, the entropy production is lower than

the locally organized structures. The phase speed of travelling oscil1ating chemical

waves can be obtained from the linearized hyperbolic reaction-diffusion equations.

The Luther-type speed formula is obtained in the lowest order approximation in the

case of the Brusselator. The two-dimensional power spectra computed for chaotic

patterns still preserve seme kind of symmetry.

In the second part of this thesis, the generalized hydrodynamics is applied to

calculate the shock profile~~ shock widths, and calortropy production for a ~laA.~ell

gas. Shock solutions are shawn to exist for all J\tIach numbers. This is in contrast

to the Grad moment equation method which does not admit shock solution for

N M > 1.65 and to the method of Anile and NIajorana which breaks down for

N M > 2.09. The energy dissipation in the shock is shown ta increase with the :Ylach

number as a power law of the form (NJ\1 - a)ct where a and Q are real constants.
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RésUIIlé

Cette thèse est divisée en deux parties. La première traite la formation des

modèles et la dissipation cl'énergie et de matiere en utilisant les équations hyper­

boliques de reaction-diffusion pour les systèmes réactifs. Celles ci sont résulues

numériquement en detLx dimensions pour le modèle de Selkov et celui de Brussela­

tor. Il a été demontré que les équations d'évolution utilisées fournissent différents

modèles comme des formes hexagonales~ des raies, des structures labyrinthés et chao­

tiques etc.~ dépendement du nombre de réaction-diffusion ainsi Que des conditions

initiales et celles aux limites. Les valeurs de production d'entropie montrent que

le système maintient les structures locales organisées S~tr la dépense d'énergie et de

matière. Cependant, lorsque le système produit un modèle chaotique, la production

d'entropie da: s celui-ci est plus petite que celle d'un système produisant des struc­

tures locales organisées. La vitesse de phase de l'onde propagée peut être obtenue

à partir du système des équations hyperboliques de réaction-diffusion linéairisées.

Une formule de type Luther est obtenue pour le moidre ordre d'approximation. Les

spectres de puissance bidimensionels calculés pour des modèles chaotiques gardent

un certain genre de symétrie.

La deuxième partie traite l'application de équations hydrodynamiques géneralisées

pour étudier les profiles de l'onde du choc, la largeur du choc et la production de

calortropie pour un gaz de :Ylaxwell. La solution du choc existe pour tous les non1­

bres de :Ylach, contrairement au traitement de Grad où il n'y a pas de solution du

choc pour !'i."v[ > 1.65 et celui de Anile et Nlajorana pour N A/ :2: 2.09. La dissipation

d'énergie dans le choc augmente avec le nombre de l\tIach comme une loi de puissance

de la forme (N/0.-/ - a)O où a et Q sont des nombres constants réels.
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Chapter 1

Introduction

1.1 History

The phenomena treated in this thesis involve chemical oscillations~ patterns and

turbulence. These have become of great interest in the chenlistry and physics com­

munity. However, there is a long history that has unfolded in this area paving the

way for the explosion of activity in the last two decades. In what follows. we shall

present sorne important history of the theoretical and experimental aspects of the

aforementioned phenomena. In the seventeenth century~ Robert Boyle[l] noted a

periodic flaring-up of phosphorus in a loosely stoppered containeL which is cur­

rently understood to arise from the interaction of chemical kinetics and diffusion.

The reaction between phosphorus and oxygen is a branched chain process that leads

to an ignition. The ignition consumes the cxygen available in the fiask and so

the reaction ceases. As more oxygen diffuses into the flask~ the reaction does not

immediately recommence. Instead, the oxygen concentration must reach a criti­

cal value before the chain branching leads to another ignition process. Published

observations of chemical oscillations date back at least to the early nineteenth cen­

tury when Fechner[69] discovered an oscillatory dissolution and Davy[70] the cool

2
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Hames l
. In the eighteen thirties. ~Iunck performed the oscillatory P ignition. In

those early days~ oscillating chemical reactions did not attract attention. By the be­

ginning of the twentieth century, two excellent examples of heterogeneous oscillating

reactions had been discovered: the so called ;'iron nerve" - the periodic dissolution

of an iron wire in nitric acid by Heathcote[3] , and the '"mercury hearf' -the oscil­

latory decomp03ition of hydrogen peroxide on the surface of metallic mercury by

Bredig[2]. Soon after that, attempts to understand mechanisms of chemical oscilla­

tions were made. However, the study of heterogeneous reactions was difficult at that

time since they involve phase transitions and transport processes. Homogeneous re­

actions are much simpler; so it was natural to begin a theoretical study of such

systems. In 1910, Hirniak[5] proposed sorne cyclic reactions that can oscil1ate and

tried to link those oscillations to thermodynamics. About the same time, Lotka[6]

proposed his famous models of oscillating chemical reactions based on irreversible

autocatalytic steps. These models attracted the attention of biologists who made

the link between Lotka's chemical oscillations and the multiplications and oscilla­

tions in the population densities. Chemists did not accept the Lotka models for

the reason that his mechanisms were oversimplified. Aiso in 1910, Luther[15] was

the first to observe a single trigger wave in the permanganate-oxalate reaction and

stated without proof that the wave speed is a simple consequence of the differen­

tial equations that describe the reaction kinetics. In 1921, Bray[7] published the

recipe of the first oscillating chemical reaction in the liquid phase: the catalytic

ùe."'omposition of hydrogen peroxide under the influence of iodate ion. Again, the

chemistry community did not accept the oscillations and attributed instead these

oscillations to impurities. In 1937, Fisher[8] suggested a nonlinear reaction-diffusion

equation as a deterministic version of a stochastic model for the spatial spread of a

favored gene in a population. This equation adrnits travelling wave solutions and was

studied first by Kolmogorov et al.[9]. In the late 1930s and begining1940s, Newitt

and Thornes obtained cool flames in propane oxidation[37]. Denbigh theoretically

1Cool Bame is an oscillatory mode that occurs in closed systems during the oxidation of
hydrocarbons.
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studied autocatalytic reactions and Sal'nikov proposed a model for thermokinetic

oscillations[38]. In early 1950s, Ashmore and Norrish[71] discovered the CO oscilla­

tions and Alan Turing[32] published ms influential paper on pattern formation and

morphogenesis in chemical systems. In 1955! Prigogine[10] showed that oscillations

can exist far from equilibrium systems. This was still not enough to convince the

chemistry community~ and for half a century! chemists believed that the oscillations

of homogeneous chemical reactions are impossible even though there was no logical

basis for their assumption! In 195L B. Belousov discovered his famoliS reaction.

He tried several tirnes to publish bis results~ but bis paper was repeatedly rejected

by chemical journals. ünly in 1959 he was able to publish it in an obscure journal

entitled "A collection of Short Papers on Radiation ~Iedicine"[11]. In the Belousov

reaction, color oscillates during the cerium-catalyzed oxidation of citric acid by bro­

mate. Among other things Belousov showed that the period of oscillations decrease

with temperature. The real mechanism of Belousov reaction was unknown. Around

tbis time! Aris and Amundson performed the stability analysis[39]. In early 1960s!

Zhabotinsky took over the Belousov reaction and studied it extensively to clearly es­

tablish the evidence of the existence of a genuine, homogeneous, oscillating chernical

reaction[12, 13]. At about the same time, a series of papers by B. Chance et a1.(14]

appeared on glycolytic oscillations in yeast. Selkov[67] proposed a model ta describe

glycolytic oscillations. During this period, an extensive theoretical work was carried

out by Prigogine and Nicolis[19] who proposed the famous Brusselator model for the

Belousov-Zhabotinsky reaction. Linnett, Reuben and Wheatley studied the CO-02

oxidation[48] and then Gray and Young performed the local stability analysis for hy­

drocarbons and presented a unified theory of explosions, cool flames and two-stage

ignitions[49] . On the other hand, Lorenz[33] proposed bis famous set of equations

that exhibit chaos. From 1972 to 1974, Field, Koros and Noyes[23] elucidated the

B-Z mechanism and the Oregonator[25] was proposed as a skeletal model for the B-Z

reaction. Winfree[19] began the study of spiral waves in the B-Z reaction. In 1973,

the Briggs-Rauscher[30] oscillating reaction was discovered. In late 1970s, Epstein,

De Kepper, Orban and Kustin[47] began the design of chemical oscillators. Boisson-
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ade and de Kepper[50] proposed the cross-shaped diagrams in the CSTRs. Chaos

and mixed mode oscillations in the B-Z reaction were discovered experimentally(43].

Olsen and Degn[21] discovered chaos in enzyme systems. NIoreover, Rossler[42] pro­

posed his model that exhibits chaos. In early 1980s, the Texas chaos[73] in the B-Z

systems was discovered. Showalter and Ganapathisubamarian[72] experimentally

discovered the existence of isolas and mushrooms. The Brandeis group[77] proposed

a systematic approach to designing oscillating reactions which led to the develop­

ment of literally dozens of new oscillators. Digital imaging techniques introduced

by ~ilüller, Plesser, and Hess allowed precision measurements of the spiral wave

dynamics[20]. Hudson begall the study of electrodissoultion reactions[74]. Tyson

and Keener[40] began an extensive theoretical study of spiral waves and scrolls

in the B-Z reaction. In late 1980's till now, De Kepper, Boissonade[81L Ollyang

and Swinney[44, 81] and Epstein and Lengyel[81] experimentally studied pattern

formation in unstirred flow reactors. New techniques for manipulating dynamical

systems, originating with the Ott-Grebogi-Yorke[75] method for controlling chaos,

have stimulated a flurry of experimental applications[76].

1.2 Phenomenology

Nonlinearities and feedback are the key features of the chemical kinetics underlying

the exotic phenomena to be described in this part of the present thesis. Feedback

arises when the products of later steps in the mechanism influence the rate of sorne

of the earlier reactions. Very interesting behaviors arise from this feedback, and

they are described in the following subsections:

1.2.1 Clocks

Clock-type behavior is observed not only in solution phase reactions, but also in

a wider context like gas phase reactions. The classic dock reaction, discovered by

Landolt[16] in 1886, involves autocatalytic iodate-bisulfite system. The reactants are
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colorless in water in the presence of starch as an indicator. There is a long induction

period during which the iodide ion concentration increases slowly~ followed by a rapid

acceleration in the rate wmch leads ta a sharp color change. If the reductant is in

stoichiometric excess, the color fades again. The induction period depends on the

initial concentrations of the reactants iodate and reductant:

tind = k/[IO;]o[H50;]0,

with k = 4 X 10-3 A12 S. By varying the initial concentrations~ the dock time can

be adjusted over a wide range. A reaction that is initially O.OlAI in each of the

reactants has a 40s induction time. In gas phase reactions involving the oxination

of simple hydrocarbons such as n-butane, long induction periods of the order of days

is observed. Clock reaction behavior has also been observed in the polymerization

of a mutant fonn of haemoglobin, associated with the sickle cell anemia~ to form

a highly viscous gel[51]. The apparent rate law here indicates a dependence of

rate on sùmewhere between the 20th and 30th power of the initial haemoglobin

concentration. In some cases, the dock induction time appears not to be repeatable

from experiment to experiment. Instead, the observed dock times are distributed

statistically about a mean value which is reproducible from one experiment ta the

other. The origin of this phenomena is not dear and it is termed supercatalysis[29]

to indicate a high degree of chemical feedback through the autocatalytic species.

1.2.2 Fronts

Instead of a well-mL"'{ed solution to capture a dock behavior, the reaction can be per­

formed in a petri dish in which we can initiate the reaction using a thin Pt electrode

negatively biased with respect ta the CoUll~C~ ~!~~trodc in the case of the Landolt

system. This causes a local increase in the concentation of 1- via electrochemical

reduction of 103. In this case, the dock reaction spreads away from the initiation

site, gÏving rise ta a spatialiy resolved dock or chemical wavefront. The reactants

ahead of any wavefront. are thus effectively frozen kinetically in their initial state
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and rely on the diffusion of iodide from the wave to initiate the conversion to prod­

ucts locally. Once the reaction begins. locally, much more iodide is produced and

this can then diffuse into neighboring regions, initiating the dock reaction there.

Thus the wave is a combined reaction-diffusion process that converts the system

from its initial state to its final equilibrium composition. This is what we calI a

front. The fronts travel at a constant velocity through the reaction mixture. Typ­

ical wave speeds for the iodate-arsenite reaction are of the order of 1 mm 'min -1 .

This is to be compared with the time taken for diffusion to cause spreading over 1

cm wruch is approximately 400 min! Reaction-diffusion processes are believed to

underlie the signal mechanisms in many biological systems which exploit this poten­

tial for enhanced propagation velocity[34]. For the B-Z reaction, the wave velocity

was found to be strongly dependent on the initial concentrations of sulfuric acid and

sodium bromate but independent of malonic acid concentration[24] . In addition. a

slight dependence on ferroin concentration was found[26]. This velocity dependence

on initial concentrations was expressed in the following formula [26] as

where a and b are constants. It is also believed that the speed of the wave goes as the

square root of the diffusion coefficient [34]. Systems which exhibit waves following

quadratic autocatalysis indude the bromate-and nitrate-ferroin reactions. It also

occurs in. population models, Fisher-Kolmogorov equation and in models for the

spread of infectious diseases such as AIDS or rabies[34]. AIso flames are reaction

diffusion fronts travelling at a constant speed. The role of the autocatalyst is played

by temperature rise resulting from the chemical heat release with the feedback acting

through the Arrhenius ~;emperatw·e dependence of the rate constant. The flame

speed can be expressed[27]:
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where 2/'i,/Cpa is the thermal diffusivity and B is a numerical factor. Typical flame

speeds are of the order of 0.1 ta 1 ms-la For circular waves[45], the initial wave-speed

is usually slower than that predicted earlier because of the curvature effect. A curved

wave front allows the êlutocatalyst diffusing ahead to become diluted, thus reducing

the chemical reaction rate, leading to a lower speed of the front. However. as the

radius of the circle increases, the wave front appears locally planar and the afore­

mentioned formula applies. Oscillatory wave speeds are observed experimentally in

solid pyrotechnie mixtures, for example.

1.2.3 Pulses

An excitable system is characterized by having a stable steady state and hence

is not spontaneously oscillatory. Smal1 perturbation, e.g., by small reduction in

bromide concentration in the case of the B-Z reaction, disturbs the system from

this state transiently, but the system returns quickly without any changes in color.

With slightly larger perturbations, the system is stimulated into a single excursion,

with a color change back and a single large peak in the intermediate concentrations.

similar to a large oscillation, before returning to the original steady state. The

system responds in a qualitatively different way ta perturbations that are below

and above sorne critical or threshold value. The perturbations get amplified above

this value. An excitable system subjected ta a single, sufficiently large perturbation

will support a single wave pulse. Usually, the front of the pulse is little different

from the front discussed earlier. To illüStrate more of this kind of waves we use

again the B-Z system as explained by the Field-K6r6s-Noyes(FKN) mechanism[23].

This can be summarized by the following two processes:

(

Process A

Process B

BrO:; + 2Br- + 3H+ -.3HOBr

BrO:; + H Br02 + 2l'v[red + 3H+ -. 2HBr02 + 21'v[ox + H20
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Ahead of the front, the mixture is in the reduced state (red). The front is a wave of

oxidation wmch causes an increase in H Br02 and lV[ox, with a consequent decrease

in Br-. Immediately after the wave1 there is a period during wmch [HBr02] falls

only slowly. Just sorne distance behind a '~wave back" follows. This is a reduction

wave through wmch H Br02 and !v[ox are consumed and Br- is recovered. The

wave propagates at constant speed of the order of 1 mm min-l. In two dimensions

this is nothing but a circle wave or target pattern of bIue circles nested in a bIue

background. The spontaneous initiation of these target patterns seems ta rely on

heterogeneities like dust or defects on the surface of the petri dish. Each target

reflects the frequency of the initiation at its centre. When targets collide they

create cusp-shaped regions and then annihilate each other. The highest frequency

source will entra~n the whole dish after sorne time[17]. .

1.2.4 Spirals

If targets are broken, for example, by gently tilting the dish l the circular waves may

break up and give rise to a pair of counter-rotating spirals. In the B-Z reaction~

aIl spirals rotate with the same period and wavelength. reflecting the bulk kinetics

rather than local heterogeneities. The propagation speed of the spiral must be

constant or the spiral will deforrn as it evolves. Spirals with nlultiple arms rotating

around a common core have also been created experimentally. At the centre of a

given spiral is a region of the arder of 350 /-lm in which the c0ncentration variations

are distinctly less than in the development front. At the centre of this region is

a core with a diameter of the order of 30 /-Lm. The tip of the spiral~ where the

oxidation front and the reduction back meet, rotates around the core with the same

frequency as the bulk spiral. As the conditions are varied, the tip of the spiral begins

to meander. This means that the tip begins to follow a quasi-periodic motion. The

motion may become very complicated and its trajectory may close, indicating a

~phase locked' quasi-periodic motion[53, 54]. Spirals are also observed in the growth

cycle of the slime mould Dictyostelium discoideum[52].
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In three dimensional systems, spirals are generalized to seroils. The a.xÏs or filament

of the scroll is straight in the simplest case. In other situations, the filament may

bend or twist. In some cases, the inner sheets of the spirals may collide with outer

turns, leading to annihilations. Sorne very complex three dimensional structures

are created with the filament forming a loop or becoming knotted. giving rise to

very complicated structures[78] . On the other hand, seroU waves have been linked

reasonably firmly to cardiac arrhythmias[46] ..

1.2.6 Phase Waves

If the period of the spontaneous oscillations varies in space, this can give rise to

an apparent travelling wave[22]. This happens when there is a temperature or pH

gradient established along a tube which contains the B-Z reagents. for example.

vVhen reactarJ.Ls are left unstirred in a vertical cylindrical tube, horizontal bands of

blue and red form. These bands usually start to appear at the bottom of the tube

and move slowly upwards.. Eventually, the cylinder is filled by these bands with

nonunifonn density, the doser to the bottom. the denser the wave packing. This

phase wave has little to do with diffusion since there is no spatial gradient.

1.2.7 Turing Patterns

In 1952, Alan Turing[32] predicted theoretically that chemical systems shov.-ing feed­

back in situations where not aH species diffuse with the same mobility might give rise

to spontaneous pattern formation. An initially well-mi..xed, homogeneous solution

would then evolve of its own volition to produce spatial gradients in the participat­

ing species. Turing suggested that this reaction-diffusion process might underlie the

spontaneous development of spatial form in morphogenesis like a developing embryo.

The mechanism has also been implicated in the spots and stripes marking animal

coats and how these change with the size of the animal[34]. The main condition

on the diffusion coefficients, as derived by Turing, is that the autocatalytic spp~les
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must be sufficiently less than that for the reactant. Since ions have very compara­

ble diffusion constants in solution, Turing structures have not been widely observed

in chemieal systems. However, only recently, Turing patterns were discovered in

chemieal systems by the Bordeaux and Texas groups independently[55, 56].

1.3 Irreversible Thermodynamics

According to the second law of thermodynamics, an isolated system reaches in time

the state of thermodynamic equilibrium wmch is the state of maximum entropy.

This law applies to both equilibrium and nonequilibrium systems. In the 19th

century, classical thermodynamics was developed but it dealt mainly with equilib­

rium situations. Based on the work of Onsager[79] , classical thermodynamics was

extended to what is called "tinear irreversible thermodynamics~' which eovers the

range of situations in wmch the fluxes in irreversible processes a.re linear functions

of athermodynamic forces" like temperature or concentration gradients. Linear irre­

versible thermodynamics ean be applied to study is the coupling between heat and

diffusion, namely, thermal diffusion. If we apply a thermal gradient to a mLxture

of two different gases, we observe an enrichment of one of the components at the

hot wall while the other conc~ntrates at the cold wall. Clearly, the entropy of such

a process is lower than that of the uniform mLxture. From this, one can conclude

that nanequilibrium may be a source of arder. Prigogine and Nicolis termed ··dissi­

pative structures" [19] the ordered structures which occur far from equilibrium and

contrast the equilibrium structures like crystals and liquids, and can be maintained

far-from-equilibrium through a sufficient flow of energy and matter into the system.

The aim of this part of the thesis is the study of self-organization in nonequi­

librium systems, charaeterized by the appearance of dissipative structures through

the amplification of appropriate fluctuations, and of a quantification of this arder

with relation ta the second law of irreversible thermodynamics. Assuming that a

dissipative structure has been formed, we would like to find a set of thermodynamic

properties characterizing this structure as uniquely as possible or try to seek astate



CHAPTER 1. INTRODUCTION 12

(

,(

(

function whose properties are indicative of the properties of the dissipative structurp

itself. This is a very diffieult task because there exists in general no potential whose

value would charaeterize the state of the system[80]. Instead, we eonsider how a

state function like calortrop,!? or caloriropy production[59] behaves on a dissipative

structure. Then~ we may come up with a criterion for evolution and dissipation

during the formation and development of a pattern. thus a thermodynantic theory

of pattern formation. In addition, bifurcation theory is a natural approach to the

problem and is used to study the possible branching of solutions that arises under

certain conditions.

1.4 Kinetic Theory and Generalized Hydrodynam-
.
les

In this thesis, we use kinetic theory to derive a set of evolution equn.tions for the

macroscopic variables that deseribe the system. In what follows. we shaH intro­

duce the kinetic theory approach. In fact, if the thermodynamic gradients are small

enough, the fluid is in a near equilibrium state and may be adequately described

by linearized constitutive relations such as Newton's law of viscosity, Fourier's law

of heat conduction, Fick's !aw of diffusion, etc. On the other hand, when a fluid

is subject ta a large thermodynamic force, such as a steep temperature or concen­

tration gradient, the system is said to lie far-from-equilibrium, and the linear or

time independent constitutive equations are inadequate for proper description of

the process. A kinetie equation for reaeting liquids is assumed to be the equation

describing the dynamics of the particles on the microscopie level[60]. To link this

description to something we can measure, Le., to thermodynamics, we project the

description onto the thermodynamic space by always respecting the second law of

2Calortropy, '1', is a nonequilibrium generalization of Clausius entropy. It is a differentiable
function such that d\f! = ~ + diV, where dJV is the infinitesimal uncompensated heat and dQ is
the infinitesimal heat transfer. T is the temperature. '1' is exact in the e..xtended thermodynamic
space.



CHAPTER 1. INTRODUCTION 13

(

(

{

thermodynamics wruch should be at the heart of any macroscopic theory. In this

description, the physical macroscopic variables of interest are defined as statistical

averages of corresponding microscopie quantities or moments with respect to a dis­

tribution function. This function is a probability density distribution function over

the phase space of position and velocity coordinates. Once the distribution func­

tion is known, various macroscopic variables cao in principle be deterrnined from

their statistical definitions. A generalized Boltzmann equation(60] is assumed to

govem the distribution function. Sa the goal is to solve this equation subject to

appropriate initial and boundary conditions. The solution of such an equation in

phase space involves solving an N -body problem wruch makes the task impossible.

Instead, we use the modified moment method initiaily developed by EU[57. 58] ta

solve the Boltzmann equation for gases and extended later to liquids. The method

assumes a canonical form of the distribution function wruch would ensure that the

calortropy production(59] remains positive sernidefinite to any order of approxima­

tion. The method yields a set of generalized hydrodynamic equations for the evo­

lution cf the various macroscopic variables. The resulting constitutive equations

include nonlinear tenns absent in other theories. The dissipation terms arising from

different irreversible processes are determined by means of a cumulant expansion

which provides an effective method of series resummation. The calortropy pro­

duction is closely related to the collisional processes imbedded in those dissipative

terms and it is a rughly nonlinear function of the fluxes as opposed to the case

of linear irreversible thermodynamies. However. the calortropy production reduces

ta the Rayleigh-Onsager quadratic form when the thermodynamic forces are small.

When the constitutive equations are derived, we couple them to the conservation

equations. Now we have the complete tools to describe àIlY macroscopic process.

We have studied chemical waves and patterns far-from-equilibrium. The gener­

alized hydrodynamic equations are simplified a great deal to mimic the experimental

conditions of the system in hand, i.e., L1.c conditions of homogeneous temperature

and no flow inside the system. Since we are interested in reaction-diffusion processes,

ail other nonequilibrium fluxes are neglected except for the diffusion fluxes. The
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constitutive equations of these fluxes are assumed to be linear but time dependent

contrary ta Fick's law which assumes that the diffusion fllDceS reach equilibrium

faster than the corresponding concentration. When these linear time-dependent

constitutive equations are used tagether with the highly nonlinear evolution equa­

tians for species concentration, a set of hyperbolic reaction-difIlli;ion equations are

derived and they are believed to be more adequate to describe wave phenomena and

patterns. Our hyperbolic reaction-diffusion equations cao be reduced to the con­

ventional parabolic reaction-diffusion equations(61, 34] as a limiting or special case.

The r~sulting equations subject to appropriate initial and boundary conditions are

numerically solved for different chemical systems by using suitable techniques. We

showed that indeed these equations can explain a great deal of the phenomenolagy

cited earlier in this introduction. To gain more insight into the problem described

by hyperbolic reaction-diffusion equations, we develop a multiple scale perturbation

theory to the equations from the Brusselator that describes heuristically the B-Z

system[66]. The resulting amplitude equations are much more complicated than

the ones obtained from their parabolic counterparts. An explicit exp:ession for the

speed of the chemical pulse is also obtained from the hyperbolic reaction-diffusion

equations[64, 65]. It has the same form of the expression suggested by Luther[15].

"Vith these hyperbolic reaction-diffusion equations, we also study glycolysis using

the modified Selkov model[68]. We explored a wide region of the stability phase

diagram and obtained a wide collection of chemical patterns and turbulence[62, 63].

The calortropy production of these patterns is calculated and a criterion was for­

mulated regarding organization of patterns and waves and the rate of dissipation of

matter and energy. It turns out that the system, in order to maintain its structures,

needs to dissipate larger amount of energy and matter as opposed to the state of

the system when it is chaotic or homogeneous.
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Chapter 2

Model for Glycolysis in One

Dimension

2.1 Introduction

Systems undergoing chemical reactions show many different pattern-forming phe­

nomena which combine hydrodynamics with the molecular reactions taking place in

chemistry. ~Jany of the traditional spatial patterns occurring in hydrodynamics and

in thermodynamics, like Liesegang patterns[l]. diffusive instabilities in photochemi­

cal reactions[2J, and various types of catalytic reactions[3] are strongly infiuenced by

chemical processes[5]. Chemical oscillations and waves have been extensively studied

experimentally and theoretically in recent ye3fs[5]. ~'1ore complicated phenomena

are biological oscillators, switches and patterns. morphogenesis, etc. In facto the

immensely complex biological systems behave in a highly and compactly efficient

manner. Such systems concisely store the information and means of generating the

mechanisms required for repetitive cellular reproduction, organization and control.

Important examples are the periodic pacemaker in the heart [6], nerve action poten­

tials which are the electrical impulses propagating along a nerve fibre[7], and glycol­

ysis wrnch is treated in this thesis using a very simplified mechanism but captures

some qualitative aspects of this very important phenomena. Glycolysis is the process

21
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that breaks down glucose to provide the energy for cellular metabolism: oscillations

periods of severa! minutes are observed in the concentrations of certain chemicals in

the process[ti}. To study those macroscopk phenomena, continuum theory is used to

supply the evolution equations of the macroscopic fields that act on and inside the

system. In the field of chemical oscillations and waves, parabolic reaction-diffusion

equations have been used to study them theoretically. Since macroscopic processes

and phenomena are believed to be subject to the thermodynamic laws~ efforts have

been made by Prigogine and his school[6, 7} to frame a thermodynamic theory of

such phenomena associated with dissipative structures. Their theory has been for­

mulated under the local equilibrium hypothesis and linear thermodynamic force-fhL"<:

relations for diffusion, heat conduction, and stress with the exception of chemical

reactions. In the case of chemical reactions, the constitutive relations are generally

nonlinear because of the mass action law. The linear thermodynamic force-fitLx re­

lations necessarily give rise to a set of parabolic hydrodynamic equations, and the

reaction-diffusion equations commonly used for studying chemical waves are typical

examples. As a thermodynamic theory, the theory of dissipative structures unrler

the local equilibrium hypothesis requires a generalization since there is no physically

inevitable reason that the diffusion fluxes, heat fluxes, or stresses should be constant

in time, especially, when the system is in the early stage of evolution. and should

obey linear constitutive relations if the system is removed far from equilibrium or

subjected to steep thermodynamic gradients. It is indeed possibie to formulate a

more general thermodynamic theory[8} by removing the local equilibrium hypothesis

and generalize the linear thermodynamic force-fiux relations to nonlinear relations.

In such a generalized theory the evolution equations for macroscopic variables, such

as the fluid velocity, concentrations, temperature, etc., can be hyperbolic but not

parabolic1. In facto the hyperbolicity of the evolution equations is a more desirable

lSecond-order partial differential equations are classified into three different types according to
the eigenvalues of the characteristic equation. Hyperbolic and parabolic types are two of them. To
give simple examples, the well-known diffusion equation is a parabolic differential equation whereas
the classical wave equation is a hyperbolic differential equation. The parabolic partial differential
equations have only a fust-order time derivative and thus the disturbance in the system instan-
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feature than the parabolicity since disturbances characterizing waves in macroscopic

systems cannot propagate in infinite speed which parabolic partial differential equa­

tions for the evolution equations predict them to have(54] . This feature was already

noticed by Nicolis and Prigogine in ref. [6], but no attempt has since been made~

except in a couple of papers(ll~ 12), ta remedy the weakness of parabolic differential

equations as mathematical representations for chemical waves in excitable media.

It is true that as far as the mathematical structure of the differential equations in

long time is concerned, this aspect is not a great problem for many situations in

practice~ since if the steady state is stable the fllLxes decay ta their steady-state

values in a sufficiently long time which is often the regime of time where experi­

ments are done, and in that limit the aforementioned distinction between the types

of evolution equations disappears because the time dependence is no longer a matter

of interest. In fact, both parabolic and hyperbolic differential equations give rise ta

the same partial differential equation in space. In other words, if the phenomenon of

interest reduces to or requires a time-independent description, then the distinction

of hyperbolic and parabolic systems disappears. However, if the system is nonlinear

and evolves through transient states, despite the mathenlatical convergence of their

structures in the longtime Limit one can expect sorne subtle effects of the hyperboL­

icity that would not vanish and make the longtime behavior of the system different

frOID the behavior of the system described by a set of parabolic differential equa­

tions from the beginning. The reason is that the transient effects survive in time

and affect the behavior of the solutions at Later times because of the nonlinearity

and the well-recognized sensitivity of llonlinear systems ta their history.

We assume that the system is free from convection, the temperature is uniform

so that there is no heat flow, and there is no stress applied to the system. Fl.lrther­

more, the fluid is incompressible. Especially, the first set of assumptions is Hable

taneously propagates to infinity (i.e., the speed of disturbance propagation is infinite), whereas
the hyperbolic partial differential equations have a seeond-order time derivative and a finite speed
of disturbance propagation. For discussions on the classification of second-order partial differ­
ential equations, see S. G. ~fikhlin, .J.vlathematical Physic.s, An .1dvanced Course (North-Rolland,
Amsterdam, 1970).
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to be broken in real systems, but they are made to reduce the number of evolution

equations so that they become numerically more tractable. These assumptions are

also implicit in almost all the works that deal with reaction-diffusion equations in

the literature. They will have to be removed in more complete studies in the future.

We consider the case of linear diffusion flux evolution equations since it is desired to

make comparison with the results by the conventional parabolic reaction-diffusion

equations. One must bear in mind that the diffusion flux evolution equations are

not generally linear if there is a steep concentration gradient or diffusion is coupled

with the stress in the system.

2.2 Generalized Hydrodynamics

Irreversible kinetic equations are not derivable from reversible equations of motion

unless approximations are made to break their time reversaI invariance symmetry.

That is why it is more convenient to postulate a kinetic equation which contains two

distinctive features otIered by the Boltzmann equation and the Liouville equation.

If we add to Liouville equation an irreversible collision term we can obtain such a

kinetic equation[15]. It is not necessary to have an explicit form of this collision

term to formulate the theory. This collision term is split into two contributions. the

elastic collision term denoted by C[F(N)l and the reactive collision term denoted by

'R.[F(N)]. F(N) denotes the N -particle distribution function which obeys the following

kinetic equation:

where

(2.1)

(2.2)

(
It is proven[15] that the collision operator C[F(N)], in the context of a mixture

without chemical reactions, has to obey the following general properties: First it
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( has collision invariants; second, it should be postulated so that the H theorem is

satisfied; and third, it should be invariant to canonical transformations for Liouville

equation is invariant under such transformations. As a consequence, at equilibrium,

the system is described by a Liùuville equation:

(2.3)

where the collision terms cancel. From equation (2.1) we can derive the evolution of

any macroscopic variable wmch is given as an average of certain microscopie quan­

tities. Note that the development of this theory completely parallels that of gases

except for the complications arising frorn molecular interactions. The statistical

average of any molecular quantities .4(x(N) = L::=l L~l Qja(x(N)8(Rja - r) of

a species, assuming only pairwise additivity for the two-particle contributions, is

given by

(
(2.4)

where the angular brackets denotes integration made over phase space variables

x(N).

The local form of the evolution of Q is given by[15]

where ~ = ~ + u· V is the substantial time derivative and

(

iW> - (1;jt o(Rja - r) [:uaja(x(Nl)] F(N)) ,

iWl - (1;~ Cjao(Rja - r) [a:aja(x(N))] F(Nl) ,

(2.6)

(2.7)

(2.8)
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(2.9)

(2.10)

(

- (tj~ o(Rja - r) (VR,.v) . (VRj.O<ja(X(NJ)) F(NJ) ,

A(.4) - (tj~ O<jao(Rja - r) {C[F(NJ] + R[F(N)J} ) .

- (tj~ O<jao(Rja - r\C[F(N)]) + (tj~O<jao(Rja - r)R[F(N)j)

- A~A) + AkA
) , (2.11)

where Cja is the peculiar velocity of particle ja of species r. In equation (2.11) A(A)

is the dissipation term due ta elastic and reactive collisions. This term is separated

inta A~A) and A<;) which describe elastic and reactive collisions, respectively. From

equation (2.5) we can identify various statistical expressions for the nonconserved

variables or fluxes. For example, the mass density is given by

then for Ca = PalP,

and

r / r Na )

p = ~Pr = \~j~mj.5(Rja -r)F(NJ .

d
p-_Ca = -V· Ja + A~(c),

dt

(2.12)

(2.13)

(2.14)

is the expression for the diffusion flux. The statistical definitions of other fltLxes can

be written as: .

(

Q

p

r r

L Qa = L ((h~Q)) +haJa) ,
a=1 a=1

r r

L Pa = L ((h~n)) + (h~A)) U+PaU ) ,
a=1 a=1

(2.15)

(2.16)
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F

r

LcaFa,
a=l

(2.17)

(

with the following definitions of the moments:

No.

h1IT ) = L [maCjaCja](2) c5(Rja - r)
ja=l

l l r No. Nb

+1dÀ2L L L Fjakb [RjaRja](2) exp (->.RJa . V)8(RJb - l').
o b=l ja=l kb=l

(2.18)

- (a~akb/a Rjakb ) • (2.21)

(2.22)

\tjakb in equation (2.21) is the pûtential between particles ja and kb. In generaL

fluxes of species a obey the following general evolution equation:

(

P~~(A) = Z(A) + A(A)
dt a a a'

(2.23)
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where zà·4.) is called the kinematic term and is given by

Z~A) _ (~[(dt + DN») h}:l] 6(R,a - r)]p(N»)

+ (~h}:) [D N1 6(Rja - r)] P(N»),

r Na a av a a
L - =LLcja · aR . -aR. ·ap. +Fa · ap .·

a=l ja=l Ja Ja la Ja

28

(2.24)

(2.25)

(

Suppose the fluid consists of an r-component reacting mL"Cture. The generalized

hydrodynamic equations for the system, consistent with the thermodynamic laws,

are the partial differential equations governing the fiuid density p, mass fractions Ca

of species a, velocity u, internai energy density E ! diffusion flux J a. net heat fllL"C

Q~ = Qa - haJa given in terms of the heat flux Qa and the enthalpy ha per mass

of species a, shear stress rra = Pa - kTrPa, excess normal stress ~a = Pa - PaU.

etc., where Pais the stress (pressure) tensor of species a and Pa is the hydrostatic

pressure. The constitutive equations for the mentioned fluxes are then obtained by

using equations (2.18), (2.20) and (2.19) into (2.5):

8p
éJt

- -V ·pu.

- -V· J a + A~(c),

(2.26)

(2.27)

pdtu - -V·P+pF, (2.28)

r

pdtE - -V· Q -P: Vu+ LFa ·Ja, (2.29)
a=l

( pdtîa - -V·P -p(dtu-F)-J ·Vu+V(J)+A(J) (2.30)a a a a a a'
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pdtQ~ - -V '1/J~Q) - (dtu - Fa)' (Pa - Pa6) - (Q~ - cp~Q}) . Vu

- - (Q) (Q)
-Jadtha - Pa' Vha + Va + Aa ,

29

(2.31)

(

(

pdtITa - -V '1/J~n) - 2 [(dtu - Fa) J a](2) - 2 [(rra + aa6 ) . VU](2)

-2pa [VU](2) + [V~P)] (2) + A~n). (2.32)

pd,J..a - -V· ..p~A) - ~(d,u - Fa)· Ja - ~(IIa + Â at5) . Vu

-Pad,ln(PaV5/3) - V· (JaPa/Pal + ~V~P) : U + A~A). (2.33)

In these equations, the various symbols are defined by

î a = Jalp, Q~ = Q~Ip, IÎa = ITa / P, â a = d a/ p, P = 2:::=1 Pa, Q = 2::=1 Qa.

A~(c) is the reaction rate for species a; A1J
), A1Q). A1n ), and A14

) are the dissipation

terms which are generally nonlinear functions of the macroscopic variables (Gibbs

variables) T. p, Ca: J a, Q~, rra, ~a, etc.; 1/J~Q), 1/J~n), and 1/J~4) are fllL""<:es of Q~, rra,

and aal respectively. They are given by

Na

1/J~4) = L (Cja [maCjaCjaj<2) 8(Rja - r)
ja=l

1~ ;:-. (2)+2~ ~ FjakbCja [RjakbRjakb] 8(Rja - r)) ,
b=1 kb=f;ja

(2.3--1)

1 Na \ [ 1 r Nb ] )- - L 8(Rja - r) maCJa + 2L L FjakbRjakb' R jakb _maPa C ja .

3 ja=1 b=1 kb#=ja Pa

(2.35 )

(2.36)
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The higher order flux <.piQ) is a function of T, p, Ca, J a1 Q~, lIa, ~a' etc.

30

The F is the external force per mass and Fais the species component of F such that

F = La caFa· The 6 is the unit second-rank tensor and [A](2) denotes the traceless

symmetric part of the second-rank tensor A. The terms viP), viQ) , and viJ
) are

higher order moments which contain sorne molecular information:

r Na Nb

v~P) - E E E {8(Rja - r)Fjakb {(Cja - Ckb)Rjakb})

b=l ja=l kb=l
(ja=l=kb)

+ (~6(Rja - r)F}~~b(Cja - C kb ) . RjakbRjakbRjakb) , (2.38)

(
v(Q)

a

r Na Nb

E E E {8(Rkb - r)Fjakb (C ja · CjaRjakb + 2CjaRjakb . C ja ))

b=l ja=l kb=l
(ja=l=kb)

+ (8(Rja - r)Fjakb [(CjaCkb - CkbCja ) . R jakb + C ja . (Cja - Ckb)Rjakb])

(
{ (2) \

+ (\Rja - r)Fjakb(CJa - C kb ) . RjakbRjakb . CjaRjakb)

+ (8(Rja - r)FjakbRjakbRjakb(\!jakb + FjakbRjakb . R jakb )) ~ (2.39)

v{J)
a

1 Na Nb (( 8\/'. ) )- -2 ~ E aE!.::: [8(Rja - r) + 8(Rkb - r)] .
Ja=l kb=l J

(ja=l=kb)

(2.40)

(

2.3 Hyperbolic Reaction-Diffusion Equations and

Irreversible Thermodynamics

Chemical oscillations and waves are macroscopic phenornena and, as such, their

description is made by means of the evolution equations of macroscopic variables

which must be subjected to the thermodynamic laws. The generalized hydrodynamic
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( theory[8] on which the present work is based is consistent with the thermodynamic

laws. The collection of evolution equations for macroscopic variables required to de­

scribe flow phenomena in a general context is presented in the previous section. In

what follows we will derive thermodynamic quantities which we will use in connec­

tion with the dissipative structures computed later in this chapter. The dissipation

terms. together with the kinematic terms (i.e.~ the rest of the terms on the right­

hand side of the flux evolution equations), obey an inequality related to the second

Law of thermodynamics, and when the dissipation terms are chosen under such con­

dition~ the system of evolution equations (2.26)-(2.33) is made consistent[16] with

the thermodynamic laws. If the stoichiometric coefficient times the mass of species

a involved in reaction k is denoted by lIak under the convention that it is counted

as positive if it is associated with a product and negative if it is associated with a

reactant, then for a system of m reactions the reactive dissipation ternl is given by

the reaction rate formula
m

( A~(c) = L VakRk

k=L

(2.41)

where Rk is the rate of reaction k obeying the mass action Law. It is convenient to

write the evolution equations (2.30)-(2.33) for nonconserved variables (Ja , Q~, IIa ,

aa) in a general form

P
d <Î>(q) = - V . 'I/,(q) + Z(q) + \.(q)

t a If/a a ~ a (q ~ 1) (2.42)

(

by suitabLy ordering the nonconserved variables. Here A1q
) represents the dissipative

terms A1J
) ~ A1Q) , etc. appearing in (2.30)-(2.33) and zàq

) the remainder of the right­

hand side of the evolution equation. These evolution equations (2.42), which are

constitutive equations, and the conservation laws (2.26)-(2.29) must be subjected

to the second Law of thermodynamics if their description of macroscopic processes

is to be thermodynamically legitimate. According to the theory developed in Refs.

[8, 16, 18], the second Law of thermodynamics demands that there exists an exact
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differential dt lÎJ in the form

r r

dt \Î1 = T-1(dtE + pdtv - L itadtCa + L L X~q)dt4?~q))
a=l a=l q~l

32

(2.43)

(

where xàq
) are constitutive parameters depending on the variables G = (E: u. Ca.

J a , Q:, lIa, da, ... ). In the phenomenological theory these constitutive parameters

should be suitably assumed to be functions of the variables in G. The quantity lÎJ is

called the calortropy[18]. This is a nonequilibrium generalization of the equilibrium

entropy introduced by Clausius for reversible processes or equilibrium. The second

law also demands that the following inequality is satisfied by the evolution equations

(2.26)-(2.33):

r

=c =_T- 1 L[(IIa + ~aD) : Vu + Q~ . VinT + J a · (Viti - Fa) -

a=l
m r

L 1/Jiq) . V x~q) + L itavakRk] + T- 1 L L x~q) (zàq) + A~q)) ~ O.
q~l k=l a=l q~l

(2.44)

Here

Qc = Q - IÎ J + ~I.(q) x(q)
a a r-a a (J./a a' (2.-15 )

The =c is called the calortropy production. This condition (2.44) is a generalized

form of the calortropy production obtained in Refs. [16, 18]. The present generalized

form includes a reactive contribution absent in the previous form. If we adopt the

assumptions stated earlier, then there remain the evolution equations (2.27) and

(2.30). Furthermore, we linearize the kinematic terms zàJ
) and retain only the

thermodynamic force term depending on the concentration gradient:

(

z~J) = - (:~) Vpa- (2.46)
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We also linearize the dissipation terms to the linear fonn:

r

A~J) = - L LabJb
b=l

33

(2.47)

where Lab are phenomenological coefficients obeying the Onsager reciprocal rela­

tions:

(2.48)

The diffusion coefficients are defined in terms of L = (Lab )

(2.49)

In addition to the aforementioned assUlllptions, the constitutive parameters X~J)

are approximated by the linear form[8]

(
In these approximations, the calortropy production (2.44) takes the form

=c = _ri~ [Ja' V {ta - !/JiJ ) . V x~J) + i; JÎavakRk] +ri~ xiJ)(Z~J)+A~J)) ~ O.

(2.51)

The term La 1/JiJ )V xàJ
) does not appear in the approximation neglecting higher­

order fluxes other than J a . Furthermore, if the solution is assumed to be ideaL then

the chemical potentials are given by J..La = J..L~(T~ P) + kbTlnpa. Consequently, by

using this form of chemical potential J..La and approximations (2.46) and (2.50L we

find
r

-J . V IÎ_ +~ X(J) Z(J) = aa ,..-aL....,aa .
i=l

(2.52)

lVloreover, the chemical reaction part of the calortropy production may be written

in the form

(
T m

=chem = _T-1 L L ÎLaLlakRk,

a=l k=l

(2.53)
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( where Ri+) and Ri-) are the forward and reverse reaction rates of the kth reaction,

respectively, for which we have used the mass action law. On use of (2.47) for Al-J)

in (2.51), we find the diffusion part of =c to be in the form

r r r

L: ",Yl-J) A~-J) = L L p;lLabJa . J b •

a=l a=l b=l

Therefore, the total calortropy production is given by the formula

(2.54)

(2.55 )

(

In the approximations enumerated earlier, this form of calortropy production =c
completely coincides with the entropy production in the theory of linear irreversible

processes[6]. Therefore, we will henceforth use the more familîar but less general

term, entropy production, for it in deference to the traditional terminology. (This

does not mean that the calortropy production is the same as the entropy production

in general.) This form of entropy production clearly consists of two parts: one is

chemical and the other is diffusion. It will be examined numerically when various

patterns emerge for the solutions of the hyperbolic partial differential equation sys­

tem under consideration. Under the assUII1ptions enumerated earlier, the hyperbolic

differential equations are

a
at Pa -

m

-\7 . J a + L lIak Rk (a = l, ... , r),
k=l

r

-(kbT/lna)VPa - LLabJb (a = l .... ,r).
b=l

(2.56)

(2.57)

(

This set of evolution equations will be used for a cubic reversible chemical reaction

model.
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( 2.4 Cubic Reversible Chemical Reaction Model

(

(

In this thesis, we compare hyperbolic and parabolic reaction-diffusion equations~

this time, by using a model mimicking the nonlinearity of t;he modified form[55]

of the Selkov model[14] for glycolysis and therefore reversible in chemical kinetics.

\Ve note that the Selkov model has been studied in the literature[15] by means of a

lattice Boltzmann equation devised to yield parabolic reaction-diffusion equations.

However, the Boltzmann equation generally gives rise to hyperbolic partial differen­

tial equations presented below~ if the lVlaxwell-Grad moment method is used[8]. In

addition to assessing the utility of hyperboli~ reaction-diffusion equations. we exam­

ine the modes of energy-matter dissipation by the system and its possible connection

with, or implications for, pattern formations when a particular pattern emerges from

another as the system evolves under a given set of initial and boundary conditions.

As will be shown later, a rather interesting picture emerges as ta how the system

utilizes energy or matter ta organize itself ioto a pattern in space-time and maintain

it. We hope to better understand eventually the role of thermodynarnic principles~

if they play a raIe at all, in pattern formation through this type of study. In the

study of control and dissipation in chemical engines~ Richter et al. [55] modified the

Selkov model[14] which consists of three steps of chemical reactions

A
kl
;=S
k_ l

S+2P
k2
;= 3P
k-2

P
k3
<==B
k-3

In these reactions A and B are kept at fixed concentrations and the intermediates

S and P change in time. In this work, we take this chemical reaction system as a

model and construct the evolution equations under the assumption that these species

also depend on position. The reaction rates for the two intermediate species S and
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Pare given by

36

(2.58)

(2.59)

where ki and k_i represent the reaction rate constants for the forward and reverse

reactions in the i th step~ respectively. To make our equations simpler we assulne

that the phenomenological coefficients Lsp = L ps are equal to zero. vVe remark that

this assumption is generally not valld for real systems, but it is taken here to make

the equations simpler to study. This assumption is also taken in virtually all works

on chemical waves in the literature. The evolution equations then are:

(

(2.60)

(2.61)

(2.62)

(2.63)

(

Here Bt = Blât. Since it is convenient to work with dimensionless equations~ the

following reduced variables are introduced:
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With these reduced variables, the evolution equations take the forms

37

(2.64)

8,.Y - - V ~ . v + A - RY - X 2 y + K X 3
, (2.65)

(
8,.u - -lVrdf(ÎJxV~X + u), (2.66)

(

where the reaction-diffusion number Nrd is defined by

and other dinlensionless parameters are:

(2.67)

(2.68)

(2.69)

(2.70)
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(2.71)

The diffusion coefficients Dp and D s are defined by the diagonal components of D ab

in (2.49). They are essentially the self-diffusion coefficients. The reaction-diffusion

number gives a measure of relative time scales of the diffusion flux evolution to the

chemical evolution of material species X and Y when the reduced time is reckoned

in the relative scale of the rate constant k3 and the mean diffusion constant to the

sound speed; see (2.68). The characteristic determinant of this system of differential

equatlons (2.64), (2.65) and (2.66). (2.67) is

(

-À

o
det

o

which gives the eigenvalues

o

-...\

o

l

o

-À

o

o

1

o
=0

(2.72)

(

Since these eigenvalues are all real~ the system is seen to be hyperbolic. If the mean

diffusion coefficient is of the order of lO-9m 28 - 1 and the rate constant is of the

arder of 10128-1, then the reaction-diffusion number Nrd is of the order of 102 at

the room temperature. In this case~ the transient time regime must be described by

the hyperbolic wave equations, but in the longtime regime the system behaves as if

it is parabolic. It is helpful to put the equations in the form of wave equations ta

have better insight to them in relation to the classical theory of waves. To this end,

if the first two equations (2.64) and (2.65) in the aforementioned set of evolution

equations are differentiated with T'and the flux evolution equations (2.66) and (2.67)



are used, the following second-order partial difIerential equations in time and space

are obtained:•
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(2.73)

z
)(

y

(2.74)

R - =

(2.76)

o

=f2R'. (2.75)

o

1 0

o

D -

(

H - (2.77)

with the definitions

(2.78)

2 ­-X INrd , (2.79)

( (2.80)
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(
-2 2 -HY1J = / + (R + X )/lVrd • (2.81)

Eq. (2.73) is a set of coupled nonlinear telegraphist equations. This kind of wave

equations also appears in the context of shear flows in a non-Newtonian fiuid[8].

Since the eigenvalues in (2.72)-roughly speaking, of the inverse coefficient matrix

to the spatial second derivative term in (2.73)-are the wave velocities (group veloc­

ity, more precisely) which are proportional to viNrd2, we see that as viiVrd or the

wave speed increases to infinity, the coupled wave equations reduce to the parabolic

reaction-diffusion equations

(2.82)

for which use is made of Hoc = H(Nrd = (0) = /2 and

( 1 0

I2 - (2.83)

o /-2

Dx 0

Ô - (2.84)

o Dy

R' - (2.85)

Eq. (2.82) clearly shows that the parabolic differential equation system is the infinite

wave speed limit of the corresponding hyperbolic differential equation system. Since

the disturbance cannot propagate at infinite speed, the hyperbolic system is physi-

(
2The mean wave velocity c may be defined by 2/t? = Ils + l/c~. If Dz = Dyf2, then c =

(FlrdD:r) 1/2.
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(

(

cally more appropriate than the parabolic system, which can give rise to physically

unrealistic situations. For example, if the medium is inflammable, our everyday

experience indicates that the Rame set off at a point (say, a boundary) cannot prop­

agate instantly through the medium to infinity. But the parabolic reaction-diffusion

equations would predict otherwise.

For further study on the difference between the hyperbolic and parabolic systems

with respect to the wave speed. one can look at the appendix at the end of the

chapter.

2.5 Steady States

The steady states can be homogeneous or inhomogeneous. Since the properties of

homogeneous and inhomogeneous steady states are significantly different. they will

be studied separately.

2.5.1 Homogeneous Steady States

If the system is homogeneous in space, then

(2.86)

and the wave equation becomes

(2.87)

where Zh, X h , and Yh denote the spatially homogeneous solutions and H h stands

for H evaluated with such solutions. The homogeneous steady state solution is then

defined by

8r Zo =: 0, (2.88)

(
or

R(Xo, Yü) = O. (2.89)
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Figure 2-1: Stability phase diagram for the hyperbolic system. This diagram is
constructed by using the Hurwitz conditions in the case of R = 0.1. K = 1 ~ f = 1 ~

and B = 0.09. It must be noted that aU modes of k can give tise to an unstable
steady state. They are therefore potential candidates for a Turing instability mode.
This feature is distinctive from the parabolic case shown in Fig. 2-3.

Written out explicitly, this equation yields a pair of the algebraic equations

(

.) 3
B-Xo+XoYo-KXo = 0,

A-RYo-XJyo+KJyg - o.

This set may be rearranged to the equations

ra = (A + B - Xo)/R,

(2.90)

(2.91)

(2.92)

(2.93)
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Figure 2-2: Stability phase diagram fOT homogeneous steady states. In the domain
where f(B, C) > 0, there are one real root and two complex conjugate roots. In the
domain where f(B, C) < O~ there are three distinct real roots. One root is unstable
and the other two are stable; thus the system is bistable. On the curve f(B. C) = 0,
there are one single and a pair of double roots aU of which are real.

where

az - -(A + B)/(l - KR).

al - R/(l - KR),

ao - -RB/(l- KR) = -Bal.

(2.94)

(2.95)

(2.96)

{

There can be one or three real roots of the algebraic equation, depending on the

values of the parameters. There are two parameters which are experimentally vari­

able: A and B. Therefore, it is useful to investigate the domains of the variables

A and B where the root structure changes. For this purpose it is conVE=nient to

use a new parameter set (B, C), where C = A + B, instead of the set (A, B). The
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Figure 2-3: Stability phase diagram for the hyperbolic system plotted in another way
in the (k, Dy) plane. The shaded region is for the stable phase. For this diagram Dx

is fixed at Dx = 0.006 together with f = 1. The ordinate is in theunits of 10-4 .

discriminant of (2.93) takes the foUowing form

(2.97)

where

(

(2.98)

(2.99)

(2.100)
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( Therefore, there is one real and two complex conjugate roots if f(B. C') > 0 which

yields the conditions

or

B + 2 [A(C) + q3/2(C)] /a > 0,

B + 2 ["(C) ± q3/2(C)] /a < O.

(2.101)

(2.102)

There are three real roots if f(B. C) < 0 for which there holds the condition

(2.103)

There are three real roots with two of them being equal if feR! C) = 0 which is

satisfied by

(2.104)

(

In Fig. 2-2, the curve f(B, C) = 0 is plotted in the (B, C) plant where the domains

of positive and negative feR. C) are indicated: one real root for f(B. C) > 0; three

real roots, of which two are double roots, for feR, C) = 0, that is, on the curve:

three distinct real roots for feR. C) < O.

To analyze the stability of the homogeneous steady states in the time domain.

we define the fluctuations of the solution from the steady state (Xo, Yo) and linearize

the wave equations. Thus, with the definitions

(

x = X - X o, y = y - 1"0.

we obtain

Here various symbols are defined as follows:

x

y

(2.105)

(2.106)

(2.107)
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(

(

-1 + 2XoYO - 3KJY6

Ra -

(-2XoYO + 3KXJ)f-2 -(R - XJ)f-2

H~:z; H~y

Ho -

H~x HO
yy

\\<;th the definitions

2 -
- -Xo/Nrd ,

(2.108)

(2.109)

(2.110)

(2.111)

(2.112)

(2.113)

Eq. (2.106) will he analyzed together with the inhomogeneous steady state.

2.5.2 Inhomogeneous Steady States

If the system is inhomogeneous in space, the steady state is defined by the condition

(2.114)

which yields the equation

(

(2.115)
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where

Xt

Zt -

~

R t - R(X = X t, y = ~).

47

(2.116)

(2.117)

(

At this steady state, the hyperbolic and parabolic systems of differential equations

coincide. However, the temporal evolutions of the two systems (2.73) and (2.82)

differ significantly since the manner in which the inhomogeneous steady state is as­

ymptotically reached by the two systems can be qualitatively different. The evidence

for this difference will be shawn numerically in a later section.

Eq. (2.115) describes steady-state Turing structures for the system of interest.

Since it is useful to exantine the linear stability of such structures, the evolution

equation (2.115) is linearized with respect to the state of vanishing reaction rates,

namely, (....\""0, ra) defined earlier. Then, with the definit ion

x = ....Y"t - Xo, y = ~ - Y'Q.

Eq. (2.115) may be written in terms of new variables x and y as

:2-\l{Z, = MZ, + A(x, y)

where

(2.118)

(2.119)

M -D-1Ro, (2.120)

(

A(x, y) _ D-1 (2.121)
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Dropping the A term yields the linearized evolution equation

48

(2.122)

Combining this equation with the temporal equation (2.1ü6L we obtain the lin­

earized wave equation

(2.123)

which may be used to calculate the linearized waves and their dispersion relations.

Solving this equation by Fourier transform

(-

(

Zl = L L <I>(k~ w) exp[i(k· ç - wr)],
;.,J k

we obtain the linear algebraic set

The dispersion relation is given by the secular determinant

This is a fourth order polynomial of z = -iw and k :

with the definitions

(2.124)

(2.125 )

(2.126)

(2.127)

(2.128)

(2.129)
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(
p (2.130)

Q

T

(

(

Ta write these terms out in less formai forms, we define

and \Vith the abbreviations

1 - 2XoYO + 3KX5,

b1 - -3KX~ + 2XoYO,

(2.133)

(2.134)

(2.135 )

(2.136)

(2.137)

(2.138)

(2.139)

(2.140)

(2.141)
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The following quantities

Then, P, Q, etc. can be written as

50

(2.142)

(2.143)

(2.144)

(2.145)

(2.146)

(2.147)

(2.148)

(2.149)

(2.150)

(2.151)

(2.152)

(
For the polynomials ta have all the roots with the negative imaginary part the
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following Hurwitz cûnditions[23] must be fulfilled:

P > 0,

PQ - T > 0,

PQT - T 2 - p2S > G.

51

(2.153)

(2.154)

(2.155)

(

The first condition (2.153) is independent of k and a function of Band C. The second

condition f2(k, C, B) = PQ - T and the third condition f3(k, C, B) = PQT - T 2
­

p 2S are even functions of k. Since the polynomial P4 (z, k) is real, it has two pairs of

complex conjugate roots. The level curves of the Hurwitz conditions f2(k, C, B) = a

and f3(k, C. B) = afor a give:a value of B are plotted in Figs. 2-2 and 2-3. Note that

the first condition gives a point on the C axis. On the level curves the real parts of

the roots vanish and the solution of the wave equation (2.123) becomes oscillatory

in time.

In the case of the parabolic system the linearized evolution equation takes the

form

which gives rise ta the secular equatian

Z2 + P'z + Q' = a

where

(2.156)

(2.157)

P'

(
(2.159)



(

CHAPTER 2. l\;fODEL FOR GLYCOLYSIS IN ONE DIlYIENSION

1.0~----r----.,........-----'------r-----,

0.1

52

o
0.8

(

stable

0.2

O·~l--_--l5D~---''''''''20---~'80~--~z:T~O~--~300.

k

Figure 2-4: Stability phase diagram for the parabolic system. This diagram is con­
structed by using the Huïl.JJitz conditions in the case of R = 0.1 , K = 1y f = Land
B = 0.09. The unstable domains are closed. Therefore y the Turing instabilitymodes
can ocC'ur within the closed domain. This is in contrast to the hyperbolic system
presented in Fig. 2-1.

The Hurwitz conditions for negative real roots are

P'Q' _ P'Sf2 > O.

(2.160)

(2.161 )

(

The level curves are plotted in Fig. 2-4 which are qualitatively different from the

level curves for the hyperbolic system presented in Fig. 2-1. There is only one

level curve since the second condition Q'(k, C, B) or S(k, B, C) is always positive

for the parameter set chosen for C and B and hence does not appear in the figures.

Comparison of the two figures indicates that the domain of instability is much

larger for the hyperbolic system than the parabolic system which has a maximum
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(

(

k value beyond wrnch instability does not occur whereas there is no such maximum

value for the wave number in the case of the hyperbolic system. This difference in

stability diagrams indicates that the dynamics of the two system can he considerably

different. Othmer[ll] also observed that the stability diagram of a hyperbolic system

is qualitatively different from that of the corresponding parabolic system. The

present result confirms his observation.

According to the Turing theory[24] the diffusion coefficients Dx and Dy must be

different for the Turing iostability to occur. This conclusion was drawn based on the

parabolic reaction-diffusion equations (2.156). However~ the wave equations-namely~

the hyperbolic reaction-diffusion equations-do not require the diffusion coefficients

to be different for the homogeneous stable steady states ta be destabilized by dif­

fusion. vVe discuss this aspect here before presenting numerical solutions of the

hyperbolic wave equations.

We examine the homogeneous steady states of the reacting system for which

all the eigenvalues of the matrix -DM in (2.156) to have negative real parts.

namely~ the steady states are stable. As shown originally by Turing[24] and later by

others[21~ 20], they are destabilized by diffusion, provided that the diffusion coeffi­

cients Dx and Dy are different. This can be readily seen from the secular determinant

of (2.156):

clet 1 - DM - Dk2 + zII = o. (2.162)

Let us assume that :ô = DI, 1 being the unit matrix, and denote the eigenvalues

of - l'v! by /\ (i = l, 2). Then it is easy to see that

(2.163)

(

and Re Zi < 0 since Re Ài < 0 and k2 ~ O. Therefore, if :ô = DI, then the

stable steady states for which Re Ài < 0 cannot be destabilized by diffusion. This

conclusion cannat he drawn if :ô =1= DI, namely, if Oz =1= Dy as is weIl known[21, 24,

20].
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( In the case of the hyperbolic system under the assumption that ÎJz = Dy and

Re Ài < 0, the sectùar determinant for (2.123) is

(2.164)

where z = -iw/ /Nrd . The presence of the term z/NrdHo prevents us from drawing

a conclusion regarding the sign of Re Zi similarly to the one drawn earlier for the

parabolic system. To make this point more definite1 let us assume that j.V'rdHo =

hl where h is positive or negative. Then~ since Re Ài < 0 by ~~umptionand k2 2: O.

(2.164) inlplies that

Re(z; - Zih) < O.

Setting Zi = Qi + ij3i 1we can express this condition in the form

(2.165 )

(2.166)

(

(

If this condition is Dot satisfied, Re Zi is not guaranteed a negative real part and the

homogeneous ~teady states can be destabilized, namelY1 the Turing instability can

occur even if Dx = Dy. This feature is also one of the properties of the hyperbolic

system distinctive from the parabolic system. Numerical evidence of this difference

will be shown later.

2.6 Numerical Solution in One Dimension

In this section, we examine numerical solutions for one dimension by using the

hyperbolic and parabolic equations. The main aim is to compare the behaviors

predicted by the hyperbolic and parabolic systems of partial differential equations

and see if there are any characteristic differences which may be discernible in the

laboratory or numerical data on chemical waves.
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The boundary and initial conditions are chosen as follows:

X(O, t) - 6X-(1, t) = Cx

Y(O, t) - Y(l, t) = Gy,

U(ç,O) - v(ç,O) = o.

55

(2.167)

(

(

where Gx and Gy are constants which have been chosen to be 0.2 in reduced units for

most of calculations performed in this work unless stated otherwise. The reason for

choosing this set of boundary and initial conditions is that in many experiments the

reacting system is initially weIl stirred and rnade spatially uniform before the system

is let evolve. This experimental condition is consistent with the initial conditions

chosen here. In order to ascertain the reliability of the numerical results obtained.

typical numerical solutions have been obtained by the L\ISL subroutine ~IOLCH

and also by the Fourier spectral Inethod[21] combined with Gear's method for stiff

ordinary differential equations. The number of collocation points taken for the

spectral method was 128 for all the cases studied. The two methods have produced

tolerable agreements for the cases compared.

2. 7 Effeets of Diffusion via Hyperbolie or Par­

abolie Systems

We first consider the case of no chemical reactioDs which yields linear wave equations,

both parabolic or hyperbolic. In both cases, the steady state is stable and the waves

get damped in amplitude owing to the effect of diffusion. To show the effect of

diffusion on the evolution of chemical reactions and pattern formation, we have set
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( u and v equal to zero (i.e., no diffusion) and solved the resulting ordinary differential

equations in time for the parameters chosen ta yield a limit cycle.
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Figure 2-5: (aJA limit cycle in the case of no diffusion. Two different initial condi­
tions tend to the same Limit cycle. (b) A quasiperiodic motion shown by the hyperbolic
system at Nrd = 0.1. (c)A quasiperiodic motion shown by the parabolic system. If
the diffusion is turned on, the trajectory winds a toms.

The result is shown in Fig. 2-Sa. When diffu~ion is turned on, the temporal

oscillation gets affected. In the case of Nrd = 0.1, the oscillation becomes quasi­

perioclic in the XY plane, winding a torus as is shown in Fig. 2-5b. The power

spectrum shows that there are three fundamental frequencies and their subharmon­

ics. This is shown in Fig. 2-6a. This result should be compared with the case of

the parabolic system which may be regarded as the hyperbolic system in the limit

of lVrd ~ 00. We have ascertained that the hyperbolic system becomes practically

parabolic and gives the sarne results as the latter if Nrd is increased to at least

about 20 and beyond. (The maximum value studied was 50). In this regime of

large Nrd , although the maximum amplitudes are a little reduced, the trajectories

are similarly quasiperiodic in the XY plane (Fig. 2-5c) as is the hyperbolic system,

but the power spectrum in Fig. 2-6b shows that there are only two fundamental

frequencies. Since this seems to suggest that the reaction-diffusion number plays a

role in changing the number of fundamental frequencies, the value of Nrd is further

decreased ta N rd = 0.01 so that the hyperbolicity is amplified. It must be remarked
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here that for this case the initial conditions for fluxes were taken U(ç, 0) = 0.1 and

v(ç,O) = 0 to get physical solutions to the hyperbolic differential equations. Belo\\~

this particular value of Nrd = 0.01 the present set of boundary and initial condi­

tions failed to produce physical solutions. In any case, at Nrd = 0.01 the motion

now begins to show a chaotic behavior and its power spectrum (Fig. 2-6c) shows

a broad and diffuse structure. This trend probably will continue as the reaction­

diffusi~\Yl number gets smaller and the initial and boundary conditions are varied

suitably. From this investigation the following picture seems to emerge for the par­

ticular case of parameters of the system: If there is no diffusion, there is a single

frequency limit cycle. As diffusion is turned on at a very large value of Nrd so that

the disturbance propagates at infinite speed and thus the system is parabolic, there

appears a two-fundamental frequency quasiperiodic motion-period dOi.l.bling. As the

reaction- diffusion number is reduced 50 that the disturbance propagates at a finite

speed and the system thus becomes hyperbolict the number of frequencies is increased

to three or more and eventually to infinity, and the motion becomes chaotic.

Unlike the parabolic system the hyperbolic system enables us to examine the evo­

lution of diffusion fluxes in time. Intuitively, we know that the parabolic system of

hydrodynamic equations emerges when the diffusion fluxes change rapidly compared

with the concentrations. This picture is borne out when the reaction-diffusion num­

ber is sufficiently large. When the value of the reaction-diffusion number is in the

range where the trajectories are not chaotic in the XY plane (e.g., lVrd ~ 0.1), the

diffusion fluxes fluctuate rapidly and their spatial mean values, namely, their spatial

integrals, become very small in magnitude, indicating that they do not change over a

significant span of time. This is shown in Fig. 2-7a and the power spectrum is shown

in Fig. 2-7b. As evident from the figures in this regime of the reaction-diffusion

number the diffusion fluxes may be regarded as stochastic variables. However, as

the reaction-diffusion number is lowered weil below Nrd = 0.1, say, to lVrd = 0.01

and the trajectories of X and Y become chaotic, the trajectories of u and v become

regular as is shown in Fig. 2-7c which shows the trajectory of (u, v) integrated over

space, namely, the spatial means of u and v. We thus see that the stochasticity
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Figure 2-6: (a)The power spectrum of the hyperbolic system at N rd = 0.1. It indi­
cates that there are three fundamental frequencies in the case ofb at Vt = l, 1I2 == 17 ~

and V3 = 43~ and subhannonics at Vl -2112+1I3 = 10, V3 -1I2 = 26, 2V2 -Vt = 33, etc.
(b) The power spectrum for the case of the parabolic system (the limit of IVrd ~ (0).
It shows that there are two fundamental frequencies at Vt = 1 and V2 = 20. The
other is a subharmonic: Vt + 2V2 = 41. (c)The power spectrum of the hyperbolic
system at N rd = 0.01. The fundamentals are still discernable at VI = 1J v2 = 20,
and 1/3 = 41. However, the spectrum has become broader and diffuse, indicating a
chaotic motion.

(
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( is exchanged between the two sets of variables (X, Y) and (n. v), that is, the slow

variables have become fast variables and the previously fast variables have become

slow variables. This indicates that the hyperbolicity will become significant as
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Figure 2-7: (a) Trajectory of space-integrated (mean) fluxes n and v in the uv plane.
This figure is in the units of 10-19 for the abscissa and 10-18 for the ordinate.
Notice that their magnitudes are rather small. Nrd = 0.1. (b )The corresponding
power spectrum of li indicating a chaotic motion. (c) Trajectory of space-integrated
(mean) fluxes n and v in the uv plane in the case of lVrd = 0.01. The fluxes do
not oscillate and their motions are regular, whereas the concentrations X and Y
fluctuate chaotically in this case.

(

the matter begins to diffuse on the time scale of change comparable to the con­

centration variations in the reacting species. This aspect of course is absent in the

parabolic system since the fluxes are necessarily steady, namely, U = -D'XV X and
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( v = -DyVY. Fig. 2-7d shows the trajectories in the (u, v) plane which are not

integrated over space unlike those in Figs. 2-7a - c. If the parameters are chosen

in the stable steady-state region of Fig. 2-2, then the trajectory in the XY plane

tends to a fixed point as shown in Fig. 2-8.
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Figure 2-8: Trajectory of X and Y in the XY plane in the case of the parameters in
the stable steady state domain in Fig. 2-2. The trajectory tends to the stable steady
state. A = 0.2, B = 0.09, Nrd = 0.1, Dx = 0.006, Dy = 0.0016, and f = 1.0.

(

There is a characteristic difference between the behaviors of the travelling waves

predicted by the hyperbolic and parabolic systems. In the case of the former. the

wave maintains a sharp front whereas the wave is rather diffuse and nonzero in am­

plitude throughout the space in the case of the latter, reflecting an instantaneous

propagation of matter. This probably is the most noticeable frOID the experimen­

ta! viewpoint when a travelling wave is involved. This characteristic difference is

demonstrated in Fig. 2-98a where waves travelling from the boundaries to the cen­

ter are shown. The solid curve denotes the prediction by the hyperbolic system

at N rd = 0.1 and the curve of open circles the prediction by the parabolic system.

This kind of difference will he later exhibited in space-time for other values of the
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( reaction diffusion number and for different boundary conditions in this work. The

mid portions of these curves are not equal ta zero because the concentrations are

built up locally oWÎng to the initial conditions chosen for the numerical study made

here: see (2.167).
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Figure 2-9: Comparison of travelling wave patterns predicted by the hyperbolic and
parabolic systems. The solid curve is for the hyperbolic syste-m whereas the curve of
open circles is for the parabolic system. N rd = 0.1. Notice the sharp fronts in the
case of the hyperbolic system.

It is also noticed that after the waves travel toward the middle and merge.

they split and travel back toward the boundaries, and then get refiected and travel

back toward the middle. This process is repeated. An example of this behavior is

presented jn Fig. 2-10 where a sequence of wave merging and splitting is shawn.

This behavior appears for ail values of Nrd studied: from N rd = 0.01 on to lVrd = 20

which is the maximum value of the reaction-diffusion number studied in this work

under the initial and boundary conditions. It probably happens for higher values of

the reaction-diffusion number since Petrov et al. [22] have observed the phenomenon

with a system of one-dimensional parabolic reaction-diffusion equations for a cubic

reaction mode!. The wave splitting behaviors are shown in space-time in Figs. 2-11a

and 2-11b for the case of Nrd = 50. At this value of Nrd the hyperbolic system
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Figure 2-10: Sequence of wave merging and splitting: a ----. b~ c ~ d. This prOCf'8.~

is repeated over a long time span.

practically behaves as if it is parabolic and gives the results virtually coinciding

with the latter in all qualitative aspects. In the figures in color, the amplitude of

the wave increases in the following order of colors: dark orange, yellow, green,

light bIue, dark bIue, pink, and red3 as shawn in the color code strip in Fig.

2-11. In tLese figures the waves are plotted in space-time over 1000 units of r

(reduced time); the abscissa is for time (T) whereas the ordinate is for space (ç).

Notice that there are more than one wave length discernible and the waves merge

and split in the middle of ç = [0,1]. The hyperbolic system at Nrd = 0.1 predicts

more complicated patterns of waves in space-time which are generally shorter in

( 3The original figures were published in color, and these colors follows these original figures.
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Figure 2-11: Space-time plot of concentration waves for X in the case of the paraboLic
system for X = Y = 0.2 at the boundaries. (a)X, (b)Y, (c)u, and (d)v. These result
coincide with those of the hyperbolic system at Nrd = 50. In the accompanying COLOT
code the intensity increases from left to right in the order of dark orange, yellow,
green, light bIne, dark bIue, pink, and red. AU the figures in color in this
work confoTm to this COLOT code.
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wavelength. These waves and the corresponding fluxes are shawn in Figs. 2-12a - d.

The wave merging and splitting phenomenon is still discernible at this value of

Figure 2-12: Space-time plot of concentration waves for X in the case of the hyper­
bolic system for X = Y = 0.2 at the boundaries and N rd = 0.1. (a)X, (b)Y, (c)u,
and (d)v.

Nrd . These patterns may be regarded as an example of one-dimensional patterns

where the spots appear and disappear as time progresses. This behavior reminds us

of the recent experimental results by Lee et al. [23] on birth and demise of spots in a

reacting system. In Figs. 2-13a and 2-13b the waves are plotted in space-time in the

case of Nrd = 0.01. The wave merging and splitting phenomenon is still noticeable

in them.

To study the effect of the boundary conditions, the hyperbolic system was solved

for difIerent boundary conditions X = 1.5 and Y = 2.5 which are quite difIerent

from those for the results in the previous figures. As shown in Figs. 2-14, the pat-
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Figure 2-13: Space-time plot of concentration waves for X in the case of the hyper­
bolic system for X = Y = 0.2 ai the boundaries and Nrd = 0.01. (a)X, (b)Y, (c)u,
and (d)v.
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terus have changed significantly. We observe that the nonstationary waves in the

early stages (on the left edge in the figures) evolve to a steady peak in the center

fianked by steady waves of long fixed wave lengths. These may be regarded as a

pattern in space-time. They appear to satisfy the necessary requirements of Turing

patterns that the pattern is stationary, symmetry is spontaneously broken, and the

wavelength is intrinsic[24]. In particular, the central peak may be regarded as what

Figure 2-14: Space-time plot of the hyperbolic system at X = 1.5 and Y = 2.5 and
Nrd = 0.02. (a)X, (b)Y, (c)u, and (d)v.

is termed as the Turing hole in the literature[26]. For the same initial and boundary

conditions chosen, the parabolic reaction-diffusion equations did not produce this

kind of patterns where the Turing hale is flanked by waves; they produced only

diffusive waves in space. In arder to see the effect of the difference in the diffusion

coefficients we have set them equal and solved the hyperbolic equations. The results

are shown in 2-15A. As is shown, there still appears a space-time pattern although
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Figure 2-15: Space-time plot of concentration waves for X in the case of the hyper­
bolic system at X = 1.5 and Y = 2.5 and Nrd = 0.1, f = 0.1, and ÎJx = Dy = 0.006.
(a)X, (b)Y, (c)u, and (d)v. (B) Same as in (A) except for 1-1.
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they are quite different and less striking than those in Figs. 2-14a - d which are

for different diffusion coefficients. The Turing theory[24] predicts that the diffusion

coefficients must be different in order for spatial patterns to appear, but the hyper­

bollc system indicates otherwise as we have discussed earlier. Numerical evidence

for this can be seen in 2-15A for which ÎJx = Dy = 0.006 and f = 0.1 were taken.

We show how the patterns change as the parameter f is changed in 2-15B where

Dx = Dy = 0.006 and f = 1 are taken. In this case, a more structured pattern

appears in the early time, but it is transformed to another stationary form of a

different symmetry for the rest of time. These patterns are rather sensitive to the

parameters taken.

2.8 Energy and Matter Dissipation in the Case of

a Single Steady State

:\Iacroscopic systems evolve to a dissipative structure at the expense of energy and

matter on the part of the surroundings. The mode of energy and matter dissipa­

tion to create a structure therefore is of considerable interest. The theory of irre­

versible processes on which the present theory is based shows that the calortropy

production must be positive semidefinite for the irreversible process involved. In the

case of the present chemical system described by the hyperbolic reaction-diffusion

equations under the assurnptions stated earlier, this calortropy production coincides

with the entropy production in the theory of linear irreversible processes as we have

shown earlier. We now investigate how the entropy production (2.53) depends on

the frequency and wave number of a pattern evolved from a given set of initial

and boundary conditions. Since we have noticed that the patterns change as the

reaction-diffusion number changes, we study the Nrd dependence of the entropy

production. First, we have examined the global entropy production integrated over

a period, namely, the integral of the entropy production in space-time for a given

set of initial and boundary conditions. These values turn out to be almost inde-
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( pendent of Nrd over the entire range except for the region of small Nrd where it

decreases significantly. This is the region where the motion gets chaotic and there is

no recognizable pattern. It is interesting that a chaotic motion has a lower entropy

production than a structured motion. This result is presented in Fig. 2-16. It sug-
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Figure 2-l6: Spaee-integrated global entropy production vs. reaction-diffusion num­
ber. Sinee different patterns appears as Nrd is increased. this figure indieates how
the global entropy production changes with patterns.

gests that the global energy-matter dissipation by the system is higher when there is

an organized pattern than a chaotic state, but almost independent of the organized

patterns formed in the system for a given initial and boundary conditions. That is,

different patterus consume about the same amount of energy and matter globally. It

suggests that the global energy-matter dissipation by the system is independent of

what is happening locally in the system for a given initial and boundary conditions.

This is reasonable and what it should be in retrospect, since the system evolves to

a local structure from a homogeneous state with the energy and matter provided
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Figure 2-17: Two-dimensional dissipation (entropy production) spectrum for the
hyperbolic system at (a)Nrd = 0.1, (b)Nrd = 2, (c)Nrd = 4, and (d)Nrd = 50.
Boundary conditions: X = 0.2 and Y = 0.2. Dx i= Dy.

by the surroundings, but the global consumption of energy and matter should he

the same regarclless of which structure is formed locally, if the boundary and initial

conditions are the same. Next, we take twü-dimensional Fourier transform of the

entropy production in space-time and plot its logarithm in the w - k plane in the

same color code as for the previous figures in color. The abscissa is for k and the

ordinate is for w. Figs. 2-17a - d show how intense the entropy productions are for

different modes (w, k); the low w modes have the highest intensities for all k and are

thus favored by the system at the expense of energy and matter. Notice also that

there are certain k values where patterns of high frequency w modes are formed.

2-18 shows the space-integrated entropy production vs. r for the system and its

Fourier transform for patterns in Fig. 2-14.

The Fourier transform indicates there are many patches of high amplitude modes
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Figure 2-18: (a)Space-integrated entropy production corresponding to Fig. 2-14.
(b)/ts Fourier trans/orm plotted in the (w, k) plane. The darkest shade corresponds
to the lowest entropy production.

as in the case of Fig. 2-17a for a different set of boundary conditions. Since the high

intensity of entropy production also means a high wave amplitude, these figures show

that the sysb:~m tends to create low wave-number or long wavelength waves (struc­

tures) at all frequencies at the expense of high wave-number waves (structures).

There also appear islands of (w, k) modes that maintain structures appropriating

energy and matter from the neighboring modes. The entropy production patterns

for the hyperbolic and parabolic systems virtually coincide with each other as the

reaction-diffusion number is increased, indicating that the hyperbolic system tends

to the parabolic system as Nrd increases. Even though the entropy production com­

puted and the reaction-diffusion equations strictly conform to the requirement of

the second law, namely, is positive semidefinite, at least for this case studied, the

second law of thermodynamics does not clirectly control creation and selection of
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( a particular dissipative structure; it only controls the global aspect of the energy­

matter consumption of the system. Pattern selection seems to be in the province of

local dynamics dictated by the dynamical evolution equations-the reaction-diffusion

equations in the present case.

2.9 Bistable Region

We have also examined the region of bistability. The set of parameters is chosen
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Figure 2-19: Phase space trajectoT7.J in the casse of a bistable system. The trajectory
moves from the lower corner to the upper left corner if the initial state was in the
vicinity of the stable steady state at the lower corner.

to be C = 2.5, B = 0.005, and Nrd = 0.1 sa that the solution of the steady state

equation gives rise ta three steady states: Xo = 2.2321, 0.00585, 0.03478. The first

two are stable and the third one is unstable. If the initial conditions are taken to be

(

X(ç,O) = Y(ç,O) = u(ç, 0) = v(Ç",O) = 0.1 and the boundary conditions are taken

to be X(O, t) = X(l, t) = 0.1 and Y(O, t) = Y(l, t) = 0.1 at the boundaries, we

notice that the system tends to the stable steady state at Xo = 0.0585 to stay in its

neighborhood for a short time and then moves to the vicinity of the unstable state
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Figure 2-20: Local behavior in the bistable region. The figure is the section at ç = 0.5.

at X o = 0.03478 which is very close ta the stable state at Xo = 0.00585, and then

it gets kicked out ta the neighborhood of the steady state at ~"(o = 2.2231. This is

shawn in Fig. 2-19 and the local behaviors of X and Y are presented in Fig. 2-20.

Steady temporal oscillations take place near the boundaries as is shown in Figs.

2-21a - d. The integrated entropy production is computed for such process. It

changes abruptly, as shown in Fig. 2-22, when the system makes transition from the

unstable state to the stable state where oscillations take place near the boundaries.

Such a Turing pattern is maintained in a higher dissipation state. Apparently, it

costs a high uptake of energy and matter to maintain such a pattern. For the

parabolic system no transition is induced and the system relaxes directly to the

neighborhood of the stable steady state at X o = 0.0058547 instead of the other

steady state Xo = 2.2321. In Fig. 2-23 a three-dimensional plot of the entropy

production is presented in space-time in the case of Nrd = 0.1. Near the baundaries

where Figs. 2-21a - d indicate oscillatory structures the entropy production exhibits

a corresponding oscillatory structure. The entropy production bursts to high peaks

near the boundaries relatively early on in time and then settles down to a fairly
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Figure 2-21: Space-time plot of the X concentration of the hyperbolic system in the
bistable regime. Notice the transition region between the two stable states and the
wavy behavior induced near the boundaries. A similar behavior was obtained in the
case of parabolic system. Nrd = 0.1 and the boundary conditions are: X = 0.1,
Y = 0.1. (a)"Y, (b)Y, (c)u, and (d)v.
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( Figure 2-22: (a)Space-integrated entropy production in the case of the bistability.
Notice the abrupt change between the two states. (b)Fourier transform of the entropy
production pLotted in the (w, k) plane. The darkest shade corresponds to the Low
intensity modes and thus Low entropy production modes.

regular structure as time progresses(Fig. 2-23).

2.10 Conclusion

(

In this chapter we have presented sorne results of our ongoing study of chemi­

cal oscillations and waves by using hyperbolic partial clifferential equations-wave

equations-instead of diffusion equations commonly used in the literature. The hy­

perbolic reaction-diffusion equations used follow directly from the irreversible ther­

modynamic theory of processes in systems removed far from equilibrium, and the

present study is also an effort to apply the irreversible thermodynamic theory to

chemical oscillations and wave phenornena. We have pointed out sorne formaI dif-
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Figure 2-23: Entropy production for a bistable case. Nrd = 0.1. This figure C01Te­
sponds ta Fig. 2-18.

ferences between hyperbolic and parabolic systems of partial difIerential equations

for systems of interest here and observed sorne numerical differences between them.

Although hyperbolic differential equations are numerically more difficult to handle

than the parabolic counterparts, there are conceptual and theoretical advantages to

use hyperbolic differential equations as have been indicated in the text.

In this chapter, we have also examined the entropy productions associated with

wave phenomena in the hope of understanding the role of thermodynamic principles

in pattern formations and chemical oscillations. We have observed sorne interesting

features, which seem to have been obvious in retrospect. We do not have as yet a

satisfactory understanding of thermodynamic reasons for pattern selections, if there

is any ground for believing that there should be a thermodynamic reason at all. This

Line of question is completely open and should be a subject of more intense study in

the future. The present thermodynamic theory is hoped to provide sorne theoretical

framework for such study, and the present numerical solution approach gives reasons

to believe that hyperbolic differential equations are reasonable evolution equations

for chemical oscillations and waves.
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( Appendix A: The À - w Model

In this appendix, we consider a study of the speed of the chemical wave using

the hyperbolic reaction-diffusion equations. 'VVe take the À - w model[20, 21} that

has been used for calculating the wave speed for a parabolic system. In the À - w

model the reaction source term is given by

R'(X, Y) =
À -w

w

x

y

(A.1)

(

where À and w are real functions of r = (X2 + y 2 ) 1/2. It must be noted that the

reaction source term is still cubic in X and Y. The À(r) is assumed to have an

isolated zero ra : À(ro) = 0 whereas w(ra) i= o. For this model the source term R in

(3.10) LS given by

R=

-w x

y

(A.2)

To make the equations less cumbersome we will aBsume f = 1 and Dx = Dy = l.

In this case,

R=

À -w

w

)(

y

(A.3)

and

XWy + YÀy

(A.4)

XÀy - YWy

XWx + YÀx

XÀx - YWx

wo 1

1 0

H=

(
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( where At = 8À/8X, W y = 8w/8Y, etc. Sînce it is convenient to seek the polar

representation of X and Y, we set

= T (A.5)

y sin8

X cos8

Then the wave equation (2.73) with R and H defineà by (3.19) and (3.20), respec­

tively, may be written in the following two equations

r TT

+ (.~.6)

(

TBTT +2TTBT - Nrd(2TçBç + T8~f.) - TTW

+ r(Nrd - À)(}T - TWrTT = lVrdTW, (A.ï)

where the subscripts T and ç denote partial derivatives with respect to T and ç,

respectively, and the subscript T denotes the derivative with respect to T. If there is

a limit cycle, then T = Q, Q being a constant. Furthermore, since a travelling wave

is looked for, we set (} = G'T - kç. Then, (A.6) and (A.7) reduce to the form

(A.8)

(A.9)

Solving these equations for a to calculate the dispersion relation, we obtain the

travelling wave speed c frOID the dispersion relation

(
c = (j = (Nrd) 1/2 ( 1 - À(Ct)/k2

) 1/2 .

k 2 l - A(Ct)/2Nrd
(A.IO)
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( In the case of the parabolic system for the À - w model, the travelling wave speed

c is given by[21]
a

C --. -- -
le

w(a)
JA(a) .

(A.ll)

Thus, if the limit cycle approaches TO, namely, if T = a ~ ro, then À(a) ~ a and the

wave speed diverges. In contrast to this, the wave speed of the hyperbolic system.

(A.lD), predicts that

(A.. 12)

If À = , - r2 , then ro = J'Y and if there is a limit cycle of radius ra = J" then

there is a travelling wave of critical wave number kc such that

(A.13)

(

(

which travels at the well-defined speed c given by (A.12). This result is Dot possible

to obtain from the wave speed formula (A.ll) predicted by the parabolic differential

equations (2.82) in the A - w model since it diverges at the limit cycle. For this

reason, if the parabolic equations are used for the A - w model, tré'.velling wave

solutions can be examined only in the neighborhood of the limit cycle as was orig­

inally done by Koppel and Howard[2l]. The hyperbolic system is free from such a

difficulty. This is another distinguishing feature of hyperbolic and parabolic systems

of differential equations.
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Chapter 3

Model for Glycolysis in Two

Dimensions

3.1 Introduction

Biologicaily, glycolysis is a very complicated set of reactions that take place on the

cellular level. It should be noted that the usage of a model that accounts rea­

sonably weil for the observed phenomena, even though the molecular picture on

which it is based is not quite correct, is to our advantage since we can almost al­

ways describe the cooperative phenomena which are insensitive to the underlying

mechanism, using the universality noted in self-organizing systems. It is well known

that morphogenesis, the development of structure and form, proceeds sequentially

through continuous symmetry breaking bifurcations as suggested by Truing in his

seminal paper[28]. He also proposed that the morphogens obey reaction-diffusion

equations. So it is really important to study the early stages of development of the

form which will influence the final selected shape. Also in small geometries, like the

cel!, it is most likely that the concentration gradients would be very large. Partly

because of these arguments, we can see how parabolic reaction-diffusion equations

can be inadequate to describe glycolysis in small geometries. In fact, we will show

at the end of this chapter that hyperbolic reaction-diffusion equations are more ad-

83
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equate than their parabolic counterpart in more general situations if scaling for the

evolution equations is done more carefully. The other basic motivation for studying

hyperbolic reaction diffusion-equations for the Selkov model in two dimensions~ is in

framing the theory of chemical oscillations and waves under the principles of ther­

modynamics so that the macroscopic description of chemical oscillation and wave

phenomena is consistent with the thermodynamic laws as any macroscopic theory

should and to look for any relationships between spatial symmetries selected by the

system and the mentioned laws; comparing the differences in results such as the

patterns and their spatic:rtemporal evolutions predicted by the two different types

of differential equations; and their implications for energy and matter consumption

and irreversible thermodynamics. In the previous chapter, we have discussed that

as the reaction-diffusion number ~ which characterizes the relative time scales of re­

actions and diffusion to the time scale of hydrodynamic fiow, increases beyond a

characteristic value, the hyperbolic reaction-diffusion equations taken for the study

of the Selkov model reduce to the conventional parabolic reaction-diffusion equa­

tions. We have also shown that the local patterns of certain frequencies and wave

nurnbers are formed and maintained at the expense of energy and matter yet the

total global energy dissipations are the same for different patterns formed. This

means that sorne patterns of pariicular frequencies and wave numbers appropriate

energy and matter ta themselves at the expense of those of other frequencies and

wave numbers[5]. These results are interesting on their own right, but also po­

tentially useful for improving our understanding of pattern formation phenomena

as weIl as nonlinear wave phenomena. In this chapter, we would like to describe

various modes of pattern and wave formations in two dimensions under the noo­

random initial and boundary conditions as weIl as random initial conditions. and

the modes of energy and matter dissipation by the various patterns formed. Unlike

the parabolic reaction-diffusion equations conventionally used in connection with

chemical oscillations and waves, the hyperbolic reaction-diffusion equations taken

for the study here describe transient behaviors of the system. For example, they

cau describe a phenomenon akin to cell divisions observed in the simulations of



(

(

(

CHAPTER 3. l\;IODEL FOR GLYCOLYSIS IN TWO DIMENSIONS 85

the CIl\:IA reaction[7] and the Lengyel-Epstein rnodel[8]. The Selkov model adrnits

monostable and bistable regions of stability. In this work, we explore the modes

of pattern formation in bath regions. We find empirically that sorne interesting

behaviors occur in the vicinity of the unstable steady state in the bistable region.

Spirals and solitary waves are observed to arise under sorne conditions. The spirals

interact and their tips meander. Two solitary waves for each specics can also be

formed and propagate at two different speeds. They cao also merge to a single front

which propagates at a constant speed. These features ail arise from the single set

of hyperbolic reaction-diffusion equatioDS! depending on the initial and boundary

conditions. 'VVe have computed the speed of such waves.

3.2 Cubic Reversible Chenncal Reaction Madel

and the Governing Evolution Equations

The Selkov model for glycolysis[12] was modified by Richter et al.[55] who assumed

the three coupled chemical reactions

k1

A ~ S..--

k_ 1

k2

S+2P ~ 3P..--

k_2

k3

P ~ B...--

k_3

In these reactions A and B are kept at fixed concentrations and the intermediates S

and P change in space-time. The reaction-diffusion Nrd number is a dimensionless

number which characterizes the relative magnitude of the time scale of sound wave to
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the time scales of a ehemieal reaetion and diffusion. It is a parameter that determines

the hyperbolicity of the differential equations . The governing evolution equations

for the dimensionless intermediate species X and Y and their eorresponding fluxes

u and v are given by the following evolution equations

2 38r X = - V ~ . u + B - X + .X" y - K X . (3.1)

(3.2)

(3.3)

(3.4)

(
and cao be combined into coupled wave equations as done in the previous chapter:

(3.5)

(

where now V~ = 8[1 +8i2is a two dimensional Laplacian operator in scaled Cartesian

coordinates €1and €2 ..

3.3 Numerical Solutions of the Wave Equations

The coupled wave equations (3.5)-the generalized telegraphist equations-are solved

for two dimensions by a suitable numerieal integration method. The fixed bound­

ary conditions are taken, but the initial conditions are taken to be either random

or nonrandom. The case of random initial conditions gives rise to rather interest­

ing results not seen in the ease of nonrandom initial conditions. In this work, we

have applied a combination of a spectral method[16] and Gear's method for stiff

differential equations. The solutions obtained were interpolated by using the Mat­

lab interpolation and graphies software[18] to produce pictorial representations of
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the patterns produced. A number of patterns have been produced in the course

of calculation, such as travelling waves, hexagonal structures, stripes, squares, and

turbulent patterns, as the reaction-diffusion number N rd is changed. This is con­

sistent with the reaction-diffusion number dependence of patterns observed in the

study of the one-dimensional hyperbolic reaction-diffusion equations reported in

Ref. [5]. A. reduction in the reaction-diffusion number cao destabilize patterns and

give rise to loss of their syncbronizations which could eventually produce a turbu­

lent pattern. In most of the calculations, we have chosen the set of parameters in

the unstable region away from the threshold in the phase diagram to ensure fully

developed patterns and reveal the complexity of the nonlinear dynamics and also

the possible difference from the dynamics of pattern formations produced by the

corresponding parabolic reaction-diffusion equations. Patterns obtained with the

hyperbolic reaction-diffusion equations are different from those by the parabolic

reaction-diffusion equations as will be shown by exarnples and as was the case for

the one-dimensional system reported in Ref. [5]. We will present various patterns

observed below. The range of ..l\frd studied in this work is from 0.1 to 10-3 except for

sorne special cases involving spirals and solitons for which N rd is taken of the order

of 1 and the other parameters are taken for the bistability regime of the system.

Before proceeding to the presentation, we would like to elaborate on the numerical

solution procedure.

3.3.1 Description of the Numerical Solution Method Used

For the purpose of numerical solutions the wave equations (3.5) cao be written as a

set of differential equations as follows:

8r Z(X, Y) = W(X, Y), (3.6)

8r W(X, Y) = -NrdHW(X, Y)+NrdQ(X, Y)+.lVrdR(X, Y), (3.7)

( Q(X, Y) = DV;Z(X, Y)., (3.8)
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The last equations for the spatial derivative (3.8) are solved by the Foùrier spectral

method[16] with 128 collocation points for most of the cases and 64 collocation points

atherwise. When The resulting system of ordinary differential equations in time are

solved in the physical space by using Gear's method for stiff differential equations.

This prùcedure requires Fourier transforming the spatial derivatives back and forth.

but it al10ws ta compute the second derivative terms in the wave equations with a

high accuracy and at the same time to avoid camputing the Fourier transforms of

nonlinear terms in the second equation which result in time-consuming convolution

surns of Fourier components of X and Y. The solution did not change qualitatively

when eomputed respectively with 32,64 and 128 collocation points. The boundary

conditions ehosen are:

X(Çl -

Y(Çl -

(
"'Y"(Çl, T -

u(e,O)

0, r) = X(Çl = 1, r) = CX , X(Ç2 = 0, r) = X(Ç2 = 1, r) = C:,

0, r) = Y(Çl = 1, T) = Cy, Y(Ç2 = 0, r) = Y(Ç2 = 1. r) = C~,

(4.2)

0) = CX , X(Ç2 = O. r) = C:, Y(Çl, r = 0) = Cy, Y(Çl' r = 0) = C~

v(e,O) = o.

(

Here Çl and Ç2 are two reduced Cél,rtesian coordinates. In another set of calcula­

tions we have chosen random initial conditions. For the sake of arguing, we should

mention that in biological systems, these boundary conditions are far from being re­

spected. Biological systems are generally quite small (Lko ~ 1-10) and the patterns

are therefore influenced by boundary conditions. Often nû-flux boundary conditions

are assumed for the diffusing substance, since they are intuitively reasonable, but

they are rather special from the point of view of pattern formation. As for pattern

selection, those idealized conditions render it weak because of the many possibilities

of choosing between mathematically acceptable nonlinear solutions near threshold

which could have been narrowed down with the constraint of real boundary con­

ditions. Arenri and Nlurray[7] have investigated one-dimensional reaction-diffusion
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equations wiin bath inhomogeneous and rigid bound8.J.-Y conditions, and indeed find

a greater selectivity in the former case.

Division of a Pattern and Competition between Stripes and Hexagons

In the regime of Nrd of the order of 10- 1 and in the regime of parameters where only

an unstable steady state is available (Le.. A = 0.5~ B = 0.09 ) a phenomenon akin

to a cel! division was observed. Namely, regardless of whether the initial conditions

are random or nonrandom, the system initially has no clearly recognizable organized

patterns wruch one might consider random. As time progresses and reaches the

interrnediate tinte regime, such initially random patterns get synchronized to form

a circular spot of high concentration in the middle of the square. In the case of

nonrandom initial conditions, the patterns oscillate and the oscillations continue for

a long time. This behavior and the patterns are very similar to those observed in

the parabolic system for the same value of A and B as shown in Fig. 3-1.

Actually, in the case of the parabolic system the patterns were stable with respect

to all sorts of small perturbations to the initial conditions with a randoID noise. for

it was able to synchronize in space and time to produce coherent oscillatory patterns

as shown in Fig. 3-1.

For the hyperbolic system, if the initial conditions are random, the circular pat­

tern eventually sr!it~ ir-to two and then into four circular patterns which move to the

four corners of the square. The amplitudes of the patterns oscillate synchronized,

thus producing patterns of a depressed concentration. These patterns then merge

and divide into more circular patterns which either elongate or vanish, but they

maintain symmetry even though the patterns become more intricate. There can

also simultaneously occur patches of hexagons and stripes oriented differently. This

process of organization and synchronized oscillations of local structures continue

until the local symmetric patterns lose their stability and develop irregular stripe

structures. This evolution of patterns frOID the stage of patterns similar to those

shown in Fig. 3-1 is shown in the sequence of patterns shown in Figs. (3-2, 3-3,



(

CHAPTER 3. lvIODEL FOR GLYCOLYSIS IN TWO DINIENSIONS 90

(

a

c

b

d

(

Figure 3-1: Patterns fonned by parabolic reaction-diffusion equations with random
initial conditions. They were able to form coherent oscillatory behaviùr. The hy­
perbolic system at high Nrd or with nonrandom initial conditions shows very similar
patterns (not shown). The darker the shade, the lower the concentration is in this
figure.
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2

3

(

Figure 3-2: Evolution of patterns in the hyperbolic reaction-diffusion system in the
case of Nrd = 0.1. Random initial conditions (Xb = 0.2, Yb = 0.2 perturbed by a 1%
random Gaussian noise) are supplied.
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Figure 3-3: Continuation of Fig. 3-2.
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9

Figure 3-4: Continuation of Fig. 3-3.



CHAPTER 3. AiIODEL FOR GLYCOLYSIS IN TWO DIAfENSIONS 94

(

(

(

3-4) 1. Since they are very interesting, we show the set although the set is not small

in number. In these figures the blue means a low concentration of species X and Y

whereas the brown means a high concentration of X and Y, the colors in-between

meaning intermediate concentrations in the order of the colors from bIue to red.

That is, where X is low in concentration, Y is high in concentration, for example.

We observe that although the symmetry of the patterns are basically the same for X

and Y except that they have opposite color codes for the magnitudes of concentra­

tion, the fine structures are not the same, and it refiects the fact that their governing

equations are not symmetric with respect ta X and Y. We also observe that the

patterns are created on the basic hexagonal lattice arranged on mutually crossing

straight lines as the spots on the lattice points get larger than the lattice spacing and

merge together. The crossing lines may be regarded as the intersections of charactef­

istic planes with the surface of the figure at a given time T and the basic hexagonal

structure created is periodic oscillations of concentrations in the characteristic sur­

faces of the two-dimensional hyperbolic reaction-diffusion equations. The pattern

splitting-oscillation behavior continues in a perfectly symmetrical fashion as long as

the system is kept out of equilibrium. The system eventually reaches a saturation

1Description of Figures 3-2, 3-3, and 3-4: Evolution of patterns in the hyperbolic reaction­
diffusion system in the case of lVrd = 0.1. Random initial conditions (Xb = 0.2, Yb = 0.2 perturbed
by a 1% random Gaussian noise) are supplied. The system homogenizes and then breaks symmetry
and forms random incoherent patches of high concentrations which subsequently merge to a circular
pattern (not shown but similar to those shown in Fig. 3-1) in the midclle of the square. This
circular pattern breaks up into two and then into four which move, as shown, to the corners of the
square leaving images of smaller sets of patterns of altemating concentrations in the middle. The
concentration begins to oscillate with the symmetry of the patterns unchanged. Then, there appear
patterns of more intricate structures in the middle which also oscillate concentration-wise. This
structure subsequently becomes more intricate although the number of symmetry axes remains the
same and the concentration continues to oscillate and form a pattern of higher symmetry. The
pattern in panel 6 bifurcates to a pattern of a lower symmetry shown in panel 7 since the number
of symmetry axes is reduced by half; two diagonals. There are also two diagonal symmetry axes
in panel 8. In panel 9, the patt~rn has bifurcated to astate where we can no longer distinguish
any global symmetry. Locally, patches of stripes and hexagons and mixed modes of different
orientations begin to appear. The stripes compete with the basic hexagonal pattern in an irregular
fashion, producing an irregular structure. The stripes in panel 9 which are filling aImost half the
area are later replaced by he.xagons or squares (not shown here) which are the basic texture of
ail patterns from which various patterns are formed as the concentration fluctuations along the
intersecting characteristic surfaces get broadened and merge together. The corresponding parabolic
reaction-diffusion system does not produce the sequence of patterns produced by the hyperbolic
system as shawn here; it produces patterns shown in Fig. 3-1.
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point which is astate where the entropy production (calortropy production) reaches

an asymptotic value. The pattern therefore is maintained at a high but asymptotic

state of energy and matter consumption. At this stage, continuous competition be­

tween stripes and hexagonal structures is active. Sometimes one symmetry pattern

wins over the other and vice versa. An example of this phenomenon can be seen in

the figure3 in the last stage of evolution shown in Fig. 3-4(9). This competition and

interactions between hexagonal and stripe patterns could be due ta the additional

frequencies and resulting complexities provided by the hyperbolic reaction-diffusion

equation system as a result of interactions of different frequency modes. However,

if the state of the system is near the critical (Hopf) point, then one pattern wins

campletely over the other. The same situation arises if the evolution is started from

a 16 x 16 square in the middle of the grid of 128 x 128 meshpoints and the system

is perturbed by a 1% random noise added ta the initial conditions. For the lack

of space we do not show them here. It must be noted here that for the same set

of parameters as for the hyperbolic reaction-diffusion equations the corresponding

parabolic reaction-diffusion equations do not produce the evolution of patterns as

shown in Fig. (3-2, 3-3, 3-4). Neither does there appear a hexagonal structure. AI­

though a circular spot appears and eventually splits up ioto four spots which move

ta the four corners in a way similar to Fig. 3-1 and this behavior repeats over time,

none of the transient patterns seen in the hyperbolic system could be observed in

the case of the parabolic system. ft must be also noted that the transient patterns

of the hyperbolic system are not 50 transient as the term transient implies; they

are fairly long lived and comparable in their lifetime to those of the patterns of the

parabolic system shown in Fig. 3-1, the span of T for each panel in Figs. (3-2,

3-3, 3-4) being about 100T which is about the same value of T required for the last

pattern to form in Fig. 3-l.

In summary, in the case of nonrandom initial conditions the evolution of patterns

from initially random patterns is quite different from and less intricate than the

sequence presented earlier in Figs. (3-2, 3-3, 3-4) for random initial conditions. In

fact, the p9.ttern evolution was found ta he rather similar ta those parabolic systems,
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and Fig. 3-1 may weil substitute for the pattern evolution for the hyperbolic system

subjected ta the boundary and nonrandom initial conditions comparable with those

for the parabolic system.

Superposition of Squares-Hexagons and Spiral Waves

As the reaction-diffusion number is further lowered from iVrd = 0.1, more interesting

and complicated phases and patterns appear. For example, if Nrd is set equal to

0.01 with nonrandom initial conditions, hexagonal structures begin to form initially,

but defects begin to develop and minute spirals around the defects begiD to farm

(

on the basic hexagonal-rhombic-squared texture as shawn in Fig. 3-5. Spirals

(

Figure 3-5: Evolution of spirals in the hyperbolic reaction-diffusion equation system
at lVrd = 0.01 in the case of nonrandom initial conditions (Xa = 0.25, Ya = 3.5).
The boundary conditions: X b = 0.26, Yb = 3.5. The spirals formed change their
shape only slightly but do not evolve over a long time span. This is in contrast to
the behavior of the random initial conditions shown in Fig. 3-6 belo'W.

do appear but do not grow in the case of the nonrandom initial conditions taken.

However, if initial conditions are made random, the chemical inhamogeneities are

tended ta be redistributed to patterns in an ordered manner and then hexaganal-
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( rhombic structures emerge (Fig. 3-6a'). This sequence is shown in Fig. 3-62
! where

we also notice structures at the four corners and symmetrical wave-like patterns near

the boundaries. They look like spirals that are being annihilated at the boundaries.

The hexagonal-rhombic-squared phase was time-dependent and their amplitudes

oscillating. Before spirals appear in the middle of the square, two spots of high

concentration are visible in the middle of the hexagonal region, and then an almost

symmetrical pair of spirals of opposite chirality begins to form and therefrom grow

on the squared texture (Fig. 3-6a-d). These spirals are multiarmed; there are 2 or

3 arrns. They have a minimum of wavelength approximately three to four times

bigger than that of the hexagonal structure. They begin ta interfere and destroy

each other, leaving a kind of turbulent spots behind until the whole pattern becomes

chaotic and remains so as shown in Fig. 3-6e. It was noticed that spirals and

(

(

incomplete rings develop near the boundaries. We remark that this behavior is also

encountered in numerical simulations in a square geometry by other authors[19] . If

N.-d is varied slightly around 0.01 with other parameters kept the same as for the

previous figures, spirals still emerged in a pair of opposite chirality but their spatial

orientations were altered, for example, by 90 degrees ~ith respect to the spirals of the

previons value of N rd , which suggests that the evolution of spirals is sensitive to the

value of the reaction-diffusion number. In this particular instance, the interesting

result of the nonlinear interaction of hexagons and spirals is that the tips of the

spirals were fixed in space (pinning) and did not meander. When the magnitude of

20escription of Fig 3-4: Evolution of spirals in the hyperbolic reaction-diffusion system.
The boundary conditions are the same as for Fig. 3-5. In the regime of lVrd = 0.01 a mi'Xture
of hexagonal, rhombic and square structures is organized along the lines which appear to be
intersections of characteristic surfaces with the plane of the figure (at time T = SOO). There then
develop structures at the four corners and along the boundarles. These boundary structures appear
to be propagating waves. Subsequently, a pair of concentration defects of high concentration
C' black holes") appear inside the square as shown in panel a. Panel al is a magnification of a
he.'Xagonal-rhombic-square region in panel a. The tips then develop into a pair of spirals of opposite
chirality as shown in panels b (T = 550) and c CT = 600) while in the meantime the structures
at the four corners and along the boundaries maintain the wavy patterns although there occur
sorne minor changes in them. The spirals grow and collide with each other and with the boundary
structures as in panel d (T = 800). Eventually, the pattern develops into an irregular mixture
of hexagonal patterns, strip«::s and maze-like structures shawn in panel e CT = 1000). Again, we
observe that the various patterns are built out of the basic texture of a hexagonal structure, when
the spots along the characteristic lines merge together.
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Figure 3-6: Evolution of spirals in the hyperbolic reaction-diffusion system. The
boundary conditions are the same as for Fig. 3-5.
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(
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the interaction increased, the pattern decayed ta a very complicated and irregular

one. Experimentally, the CINIA reaction exhibited a very similar pattern[20]. This

behavior contrasts that of the spirals in the case of the bistable region as will be

discussed later.

Since the details of dynamics of nonlinear systems can differ from system to

system although there are general underlying features common to them ail. the

present results can be only suggestive for other experimental systems such as the

CIl\IA reaction. Therefore, we can only make note uf similarities in qualitative

features at this point. If a more quantitative comparison is desired for such systems,

they must be analyzed on their own merits by means of the governing equations

similar to those studied here.

Chaotic Patterns at Low Reaction-Diffusion Numbers

\Vhen lVrd was further lowered to 0.001 under the nonrandom initial conditions

with the boundary conditions and other parameters kept the same as for the pre;;­

ous cases, the wave behavior disappeared and no disturbances were observed. Only

homogeneous oscillations were encountered. As the initial conditions were made ran­

dom, there emerged random patterns which did not get organized to a steady regular

pattern over the sufficiently long tinle span investigated. We show an example of

such patterns in Fig. 3-7. These irregular patterns persisted in the intermediate

time regime, but later decayed into minor structures (not shown here) which were

randomly dispersed ail over the space. Their oscillations were not regular in time.

and this is consistent with the mode in which the one-dimensional system becomes

temporally chaotic. vVe have found in the one-dimensional case[5] that the hyper­

bolic system loses its stability and temporal chaos appears as the reaction-diffusion

number is lowered ta lVrd ~ 0.001. The power spectrum of the patterns shawn in

Fig. 3-7 clearly indicates spatial chaos.
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Figure 3-7: Chaotic irregular patterns in the hyperbolic reaction-diffusion system.
As the reaction-diffusion number Nrd is lowered to 0.001 under nonrandom initial
conditions, the wave behavior does not appear and only homogeneous oscillations
occur. If the initial conditions are made random, patterns emerge. However. the
basic hexagonal structure does not appear, but rather irregular patterns appear dis­
persed over the entire square. Their oscillations are irregular(r = 1000). The power
spectrum indicates a chaos as shown in the next figure .

3.3.2 Entropy (Calortropy) Production and Patterns

If the flux evolution equations (constitutive equations for fluxes) are linear with re­

spect to fluxes as is for the present system, then the calortropy production[5, 21J co­

incides with the entropy production in the theory of linear irreversible processes[23].

In the previous chapter, it was shawn that the contribution of diffusion processes to

the entropy production is much smaller, except near the boundaries, than that of the

chemical reactions in the reaction-àiffusion system considered. In the light of this

result, we ignore the diffusion contribution to the entropy production in this work.

We have calculated the global entropy productions accompanying various patterns

formed. The behavior of the entropy production over time is quite dependent on

the patterns formed, but one common feature is that whenever an organized and

well-correlated structure of a frequency and wave number emerges, the energy and

matter dissipation rate, which the entropy production is, becomes relatively high,

although the global energy and mé:L~ter dissipation rate remains the same regardless
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Figure 3-8: Power spectrum of concentration X for the case of patterns shown in
Fig. 3-5 at Ç2 = 0.5 .

of the structures formed, provided that the boundary conditions and the parameters

A and B remain the same.

In Fig. 3-9, we show the global entropy production :=:g (in the units of 103 Rg

where Rg is the gas constant) vs. T accompanYing the sequence of the patterns shown

in Fig. 3-2 (Nrd = 0.1). In fact, the sequence of patterns in this figure contains more

than those presented in Figs. (3-2. 3-3, 3-4). Sorne of the peaks correspond ta

the patterns shown in Figs. [(3-2, 3-3, 3-4)(1)-(9)]. For example, the first peak

corresponds to Fig. 3-2(1); the second peak to Fig. 3-2(2), etc. The troughs

correspond to a homogeneous phase between patterns where even a basic hexagonal

texture is not present. These peaks reach an asymptotic regime in the longtime

limit where hexagonal structures become mixed with stripe structures and compete

with each other. In this regime of time, the entropy production oscillates around

a plateau value. In the case of spiral patterns shown in Fig. 3-6 (Nrd = 0.01), we

notice a very steep but continuous jump as the tips ('black hales') of the spirals begin

ta appear as shown in Fig. 3-10. The entropy production reaches an asymptotic
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Figure 3-10: Global entropy production associated with spirals in the case of lVrd =
0.01. This figure corresponds to Fig. 3-6.

In most of patterns obtained in this work, continuous competitions were ob­

served between the patterns of different symmetries. For example, when hexagonal

structures were attained, stripes began to appear and grew until the texture was

almost free from hexagons. And then hexagons began to grow and dominate again

over the stripes. This oscillatory behavior continued for a long time. In other cases,

especially, when Nrd was low (typically approximately 0.01) where spirals occur.

no hexagonal structure or stripes could be maintained over a long time span, but

chemical turbulence instead took place. The entropy productions calculated for the

competing structures cannot elucidate such competition, for it simply saturates and

remains practically at a con:tant value. Therefore, the only thing we can say is

that such structures dissipate more energy and matter than otherwise, but as to

the details of pattern competition it seems to say little. Therefore, if there is a

thermodynamic principle that can guide us in connection \vith pattern competition

and pattern selection, it does not appear that the second law of thermodynamics is
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the one that should be looked up to for a clue. The salient role of the second law 50

far has been in providing a set of macroscopic (hydrodynamic) evolution equations

consistent with a positivity criterion for energy dissipation that may be regarded

as a local form of the second law, but pattern formation and selection seems to be

controlled by something other than the positivity condition provided by the second

law.
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Figure 3-11: Global entropy production in the case of "'Vrd = 0.001 where chaotic
irregular patterns occur. This figure correspond to Fig. 3-7. The global entropy
production does not reach a plateau value in this case.

•

We have studied the effects of the parameters A and B on pattern formation. In

the region where only one unstable steady state is possible, lowering the value of A

causes a faster saturation of the pattern. We can also say tentatively that when the

value of A were relatively small, hexagons were dominant, but in other cases stripes

were dominant. vVe have also computed the effects of these parameters on the rate

of energy dissipation. This is summarized in Fig. 3-12 where we plot as a function

of A the mean global entropy production E (normalized by Ernax ) defined as the
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time average of the global entropy production (entropy production integrated over

space) for three different values of B: 0 for B = 0.09; *" for B = 0.06; and + for

B= 0.02. The value of 1Vrd is 0.1. The system is in a homogeneous phase before the

value of A reaches approximately 0.58 whence the system exhibits the sequence of

patterns shown and similar to those in Figs. (3-2, 3-3: 3-4) in the case of B = 0.09

and 0.06. In the case of B = 0.02, the system shows only a homogeneous phase.

•
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0.8 • • •
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0 ••• + +
+ ++

0
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A

Figure 3-12: Relative mean global entropy production (L/Lmax ) vs. A at vanous
values of B : 0 for B = 0.09; *" for B = 0.06; and + for B = 0.02. The maximum
region corresponds to the sequence of patterns similar ta those in Fig. 3-2.

3.3.3 The Bistable Region

•
When the parameters are taken such that the system is in the bistahle region (para­

meter values: A = 0.6202, B = 0.02), sorne interesting solutions were obtained such

as solitons and spirals when the other parameters such as lVrd and f are changed.

When random initial conditions were taken for the aforementioned set of parameters

in wmch case the three steady states of X concentration have the values: 0.2920,
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0.266ï, and 0.02335, and we set the value of f to 1.31 and Nrd to 0.7. the system

was able to remove and distribute the chemicals to reach a homogeneous state from

which defects appeared on the boundary of the square. These defects grew until

they met and merged together. Once they coalesce with each other, they formed a

packet wmch then traveled at a constant speed to the other side of the square where

it vanished; see Fig. 3-13 for the sample of the sequence. These are solitary waves.

Figure 3-13: Solitary waves in the bistable region in the case of Nrd = 0.7. When the
paramcters are taken such that the system is in the bistable region (A = 0.6202, B =
0.02, f = 1.31) and the initial conditions are random, the initial pattern becomes
irregular. Then the system becomes homogeneous over the entire square except for
the two spots on the left boundary. These spots grow and propagates as solitary
waves and eventually merge and propagate at a constant speed to the right. For the
lack of space we show only two stages of the evolution of solitary waves and their
three-dimensional rendering which clearly shows that they are indeed solitary waves
(merged in this case) laterally oscillating.

Snch a solitary wave was observed in the literature [24]. The speeds of two chemical

waves have been calculated from the distances covered by the foremost fronts of the

solitary waves over a unit time interval. They are Dot the same as can be seen in
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Fig. 3-14. From the observation made, it is possible to state that there is a station­

ary wave in one direction (say, Çl direction) and in the perpendi~ular direction (Ç2

direction) a solitary wave progressing at a constant speed with no dispersion at ail.

Thus we are led to conjecture that the reaction-diffusion equations are decoupled

in the two directions in this case. In the ç1direction we have a one-dimensional

version of the hyperbolic differential equations where a time-independent mode gets

selected and in the Ç2 direction another solution corresponding to a solitary wave

gets selected. For the set of parameters that gives rise to the solitary \\~ave front we

have computed the time-independent œode from the linear dispersion relation [Eq.

(2.128)]. This immediately gives w = 0 for the real wave vector k = 6.35. In the
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Figure 3-14: The distance covered by the solitary waves over time intervals. This
figure is constructed from the sequence of patterns shown in Fig. 3-11. The slopes
of the curues show the wave speeds. Each time internal corresponds to 50 units of T.

•
reduced units this t:Œ responds to an envelope of waves whose wave length À is ap­

proximatelyequal ::) 1. The entropy production of the solitary wave is given in Fig.

3-15. The global entropy production of the solitary waves, which is roughly equal to
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the local entropy production because of the localized nature of the waves~ is large in

the initial stage before a chaotic phase sets in where it shows a minimum. It begins

to rise as two spots grow out of a homogeneous phase reaching a peak as the solitary

waves collide and merge. Then it remains roughly constant in the interrnediate time

interval when the waves have grown in size. As the wave approaches the boundary

on the right-hand side and begins to get annihilated, the global entropy production

becomes low in value and constant in time.
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Figure 3-15: Global entropy production for the system admitting the solitary waves.
The leftmost point represents the global entropy production at the initial stage. The
peak corresponds to the state where two solitary waves collide and merge. The last
stage is the annihilation stage at the boundary.

For another set of parameters (A = 0.6202, B = 0.02, f = 0.8, Nrd = 0.8) spirals

were obtained, as shown in Fig. 3-16, when the initial and boundary conditions were

chosen so as to make them correspond to the unstable steady state perturbed with

1% random noise. The spirals obtained do not have fixed centers which meander

around. This may be due to quasi-periodic rotations arising from a destabilizing

curvature effect(20]. Sorne of spirals merge when they collide forming a cusp and
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sorne others repulse each other when they come close to each other. In most of

cases~ spirals were created in pairs of opposite chirality. What was noticeable is

that after sorne time the spirals get elongated as shown in Fig. 3-16d. We remark

Figure 3-16: SpiraLs originating from the unstabLe steady state in the bistable region
perturbed by a 1% random noise. (a)Spirals are created near the fixed bO'undaries
and attract each other (i = 300). (b)Spirals come to a proximity and interfere a
Little bit (i = 550). (c)Spirals repulse each other (i = 900). (d)SpiraLs get elongated
(i = 1000).

that the vortex dynamics has been extensively studied in the literature[21~ 22, 23]

and what is observed here may be relevant to them. The spirals also depend on

the value of Nrd. When this parameter is lowered, the radius of curvature of the

spirals increases. Figure 3-17a shows only one spiral which meanders in the square

at Nrd = 0.5. At Nrd = 0.35 the pattern looks like stripes. In fact, at early stages

the pattern is nothing but two patches of stripes which are perpendicuIar ta each

other. With time, the stripes tend to get parallel to each other and end up like the

one in Fig. 3-17b where roughly parallel stripes (lamellar structures) are maintained
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but the defects maye around cantinuausly. A further decrease of N rd ta 0.1 resulted

in an irregular pattern shown in Fig. 3-17c.

The entropy production of the spiral waves and stripes is shown in Fig. 3­

18. The entropy productions appear to get saturated at an almost same value for

different values of Nrd . The weak oscillations in the entropy productions decrease in

amplitude as lVrd decreases. The curve for the chaotic pattern lies below all other

curves, and it again seems to suggest that a chaotic pattern dissipates less matter

and energy than the organized ones.

A recent experiment on glycolysis(24] has shown wave fronts propagating from

one boundary to another which is rather reminisccnt of the solitary wave front

observed in Fig. 3-13. There are other patterns which also remind us of those

observed in this work, but a quantitative analysis and comparison with the present

theory are not possible at this point for lack of quantitative data. However. such

studies would be useful and we defer them to future work.

3.4 Discussion and Concluding Remarks

In this chapter, we have shown the two-dimensional solutions of the hyperbolic

reaction-diffusion equations for three different values of the reaction-diffusion num­

ber and for different boundary and initial conditions. Especially, when random

initial conditions are taken, the system exhibits varions intriguing series of patterns

grown on the basic texture of a hexagonal pattern. This hexagonal pattern ap­

pears arranged on mutually crossing lines which we believe are the intersections of

characteristic planes with a plane perpendicular to the time axis (i.e., the plane of

the figure at time T). The presence of such characteristic planes (or surfaces) is a

hallmark of hyperbolic systems, and it is not surprising that patterns of the corre­

sponding parabolic system studied are not observed on a hexagonal texture. The

patterns of the hyperbolic system are formed as the spots of the basic hexagonal

texture accumulate around symmetrically arranged spots to form a symmetric struc­

ture just like a shock structure is formed along a characteristic Hne. This feature
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is quite interesting and insightful, we believe, for understanding how patterns are

formed. The patterns, organized even though started by random initial conditions!

gradually become more elaborate yet still rnaintain a weIl defined symmetry. This

is quite suggestive, but we have no fundamental understanding of the basic mech­

anism for such behavior at this point. We have made attempt to relate pattern

formation to the entropy production in the system. It is observed that the pat­

terns are formed at relatively high states of energy and matter dissipation yet the

global entropy productions summed over ail modes and over a characteristic time

period remain the same for ail patterns at gjven boundary conditions. This result

is at variance with the minimum entropy production theorem[23] observed in the

linear irreversible processes where the system tends toward a state of minimum en­

tropy production compatible with the boundary conditions. In the present theory,

we see that the system selects a mode or different modes, specially if the system is

away fram threshald, by some mechanism and maintains the structure of the mode

at the cast of energy and matter and at the expense of other modes. It seems that

thermodynamic laws as known at present do not give us guidance in our efforts ta

understand the pattern selection, although they do demand that the macroscopic

evolution equations should be consistent with them. It may be that the role of ther­

modynamic laws ends just there, and there may be another principle complementing

them in connection with pattern selections but yet to be uncovered.

The point we wish to make in this chapter in a general context is that, as is clearly

shown in the Note added at the end of this chapter, if there is a product of rate

constant and initial concentrations which is comparable in magnitude ta, or smaller

than, the mean diffusion constant present, then the reaction-diffusion number is of

the order of unitY or less than unitY and a hyperbolic behavior becomes significant.

In such events, it is necessary to use hyperbolic partial differential equations similar

to those studied in this work. In any case, if one is interested in transient behaviors

of systems, then hyperbolic partial differential equations are right mathematical

tools to use to study such behavior from the macroscopic viewpoint consistent with

the thermodynamic principles.



•

•

•

CHAPTER 3. LVIODEL FOR GLYCOLYSIS IN TWO DIlvIENSI01VS 112

The conclusion we can tentatively draw from the present series of calculations

is that the hyperbolic reaction-diffusion Equations seem to be more descriptive of

patterns and their Evolution over time than the corresponding parabolic reaction­

diffusion Equations specially in small scale geometries like the cells where diffusion

competes with chemical reactions. In o.ny caser hyperbolic systems are more suit­

able from the viewpoint of irreversible thennodynamics[25J. As in the case of one­

dimensional system studied in Ref. [5], patterns are selected and maintained at a

relatively high cast of matter and energy, namely, entropy production. This fea­

ture is revealing of sorne aspects of pattern formation phenomena and irreversible

processes[23] , but is at variance with the minimum entropy production theorem

known in the linear theory of irreversible processes. Further study on this question

may help elucidate the role of irreversible thermodynamics in pattern formation

and selection. Detailed studies on the amplitude and phase equations derived from

hyperbolic reaction-diffusion equations probably will give us more insight into the

mechanisIIlS and differences with parabolic equations.
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Note

In this Note we would like ta add a remark in connection with reducing the gov­

erning equations (3.1)-(3.4) and the definition of reaction diffusion number arising

from the reduction method used.. After finishing the present work, we have found

a more suitable scheme of reducing the governing differential equations~ which re­

quires a slightly different definition of time scale and consequently results in a more

appropriate form of reaction-diffusion number J.Vrd• This new definition of Nrd does

not alter the numerical results and the conclusion with regard to the relative mer­

its of hyperbolic and parabolic differential equations for chemical oscillations and

waves, but the range of N rd where the crossover occurs between the hyperbolic and

parabolic systems can be altered. The new definition of Nrd gives rise to a much

better understanding of the relative utility of the two systems of partial differential

equations. In any case, the old set of reduced equations (3.1)-(3.4) becomes a special

case of the new reduced set when a parameter is taken for a particlùar value. We

show the new reduction method and the new definition of reaction-diffusion number

belovl.

Instead of taking kil as the time scale taken in this work, we take the time scale

based on the autocatalytic step, namely, k2 as follows:

o 0 2 Jmpms _ 0 0 (L)2
te = k2PAPBL kBT = k2PAPB ii '

where P~ and p~ are the initial concentrations of A and B, respectively. We remark

that this choice of reference concentrations is arbitrary and can be made with other

experimentally more suitable concentrations, if there is any. Therefore, te is related

to the mean time for the molecules ta traverse the system length L and the lifetime

of chemical species P and S in the autocatalytic step. With this time te and the
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length L, we scale various quantities as follows:

T - 1..
- te'

(N.2)

Then, with the definitions of the parameters

•
(N.3a)

(N.3b)

and the reaction-diffusion number

(NA)

•

the governing partial clifferential equations can be cast in the reduced fonns

arX - -Vcu+B - RxX + X 2y - K.X"3
, (N.5a)

ary - -V{·v+A - RyY - X 2 y + KX3
, (N.5b)

aru - -Nrdf(ÎJxV{X + u), (N.5c)

a/v - -Nrdf-l(Dy V{Y + v). (N.5d)

This set, except for the parameters Rx and Ry, is the same in structure as (3.1)-(3.4)

where R:r = 1 and Ry = R. Here the reduced diffusion coefficients ÎJx and Dy are
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defined by

(N.6)

•

•

In this manner of reduction diffusion coefficients are calculated relative te. the num­

ber of partides crossing area L 2 in time te. If V of the moleclùes is such that

v/ L = (k2k3P~P~) 1/2, then Ry = k_ l / k3 = R. Therefore, the reduced system

(2.2a)-(2.2d) studied in this work is a special case of the new reduced syst.em (N.5)

where the condition viL = (k2k3P~p~)1/2 holds. Since the charaeteristic eigenvalues

of the hyperbolic system (N.5) is proportional to JNrd~ it ean be estimated that the

group velocity of the waves is proportional to JNrd . This reaction-diEusion num­

ber dependence appears ta be relevant ta experimental observations[26, 27} on the

ehemieal wave speed whieh depends on concentrations. The new reaction-diffusion

number defined here has a much more transparent meaning and a doser relevance to

experiments than the one defined in the main text. It is possible to determine eas­

ily from Nrd whether the behavior of the system fails in the hyperbolic or parabolic

regime; if the reaction diffusion number is small, the behavior will be that of a hyper­

balle system and if it is large, then the behavior will be that of a parabolic system.

However, the crossaver from one behavior to another is asymptotic since there is no

sharp critical value and the range of hyperbolicity can be fairly wide, especially. for

systems where chemieal reaetions are competing with diffusion. Finally, we remark

that one could have chosen te = k3 (L/v)2 and obtain the reaction-diffusion number

in the form Nrd = L2k3 / J DpDs and the reduced system of differential equations in

the same form as (N.5) but with slightly different definitions of the parameters from

those in (N.3) and (N.6). This multiplicity of choice is due to the large number of

rate constants associated with the reaction system since they all ean provide time

scales of one sort or another. The rate constant associated with the autocatalytic

step may be the most logical ehoice for it sinee it is an essential feature in nonlinear

chemically oscillating systems.
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Figure 3-17: Same parameters as for Fig. 3-16. (a)LoweTing Nrd to 0.5 gives Tise
to a single spiral which meanders in the square. (b)Lowering Nrd to 0...!5 gives Tise
to paraUel stripes which originate from perpendicular patches of stripes. The defects
continuously move around over the pattern. (c)Decreasing Nrd funher to 0.1 causes
stripes to decay to an irregular turbulent maze-like pattern.
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Chapter 4

The Brusselator

4.1 Introduction

In a typical experimental setting a pattern may form spontaneously as a result of

the instability of the homogeneous state or can be excited by a short localized ex­

ternal perturbation of the system. The patterns forming in bûth these cases do

not have any qualitative differences. They are essentially the domains of high and

low concentrations of certain substances separated by relatively sharp walls. The

pattern may have sophisticated geometry and in general may show very cornpli­

cated spatio-temporal behavior. The properties of the patterns do not significantly

depend on whether the system is rnonostable or bistable. It appears that dornain

patterns forming in very different systems may in fact have common features. This

has recently been noticed in the case of static domain patterns forming in both equi­

librium and nonequilibrium systems, where a certain set of domain shapes~ snch as

spots, stripes, multidomain and labyrinthine patterns, and the transition between

them has been observed[l]. The same conclusion can be extended to the dynamic

patterns in nonequilibrium systems. Indeed, travelling, pulsating, self-replicating,

and stochastically oscillating patterns are observed in the systems as diverse as au­

tocatalytic reactions[2], semiconductor and gas plasma[3], or premixed flames[4] .

Ail this suggests that there exists a universality c1a.ss of the nonequilibrium systems

120



in which pattern formation and self-organization scenarios are essentially the same.

Another important question raised by experiments is to identify the totality of pos­

sible types of patterns and their behaviors in the systems under considerations, and

ta understand the requirements the system should meet in order ta be able ta pro­

duce one type of pattern or the other. Another important question can be asked

about the quantification of arder and disorder in patterns, and whether a pattern is

completely turbulent or not. In previous chapters, we saw how disorder and order

can be linked to the amount of energy and matter dissipation inside the system

in hand. However, no precise or detailed criterion is concluded from such study.

In this chapter, we go ahead to exploring sorne of these questions. vVe have seen

from prcvious chapters how by using hyperbolic reaction-diffusion equations one

can obtain a ~zoology' of different patterns. We examine numerical solutions of the

hyperbolic reaction-diffusion equations for the irreversible Brusselator in the case of

two spatial dimensions. In the case of the Brusselator, there are sorne experimental

measurements[54, Il] of the speeds of oscil1ating travelling waves (periodic waves) .

These speeds appear to follow the generic form of travelling wave speed in an oscillat­

ing chemical system which was first suggested by R. Z. Luther[12] and later discussed

by Showalter and Tyson[55]. Although there have been sorne attempts[14. 15. 16]

ta derive the Luther formula on the basis of parabolic reaction-diffusion equations,

they appear to be inconclusive and ambiguous as far as the explicit formulas go and

the derivation of an explicit formula consequently still remains an open problem. vVe

take it up in this work on the basis of hyperbolic reaction-diffusion equations. \Ve

show that a Luther-type formula can be obtained from the linearized telegraphist

equations since the phase speed remains unchanged even though the amplitude gets

modified as the Hopf instability occurs. Furthermore, what is really interesting is

to explore patterns and try to find any kind of measure of the order and disorder in

them. With this in mind, we have explored the reciprocal space for these patterns ta

see the symmetry exhibited by the resulting transform. We have found that chaotic

patterns may exhibit symmetrical patterns in their corresponding Fourier space.

•

•

•
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4.2 The Brusselator

122

The Brusselator[16] serves as a simple two-species model for the Belousov-Zhabotinsky

reaction and it is, in the case of the irreversible Brusselator, described by the four

coupled reactions

•

A~X

2X + Y ~ 3.1X"

k.t
X~E.

These reactions suggest the following the reaction rate formulas:

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

If it is assumed that the temperature is uniform over the system and there are

no flow and stress in the system, the evolution equations for relevant macroscopic

observables are those of densities Px and py of species X and Y together with their

diffusion flux evolution equations. They are as follows:

•
(4.8)
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kaT
---Vpx - LxxJx ,

mx

123

(-t.9)

(-t.10)

•

Here mx and my are the masses of .X: and Y: Lxx and Lyy are phenomenological

coefficients for diffusion; and J x and J y are the diffusion fltLxes of X and Y. respec­

tively. The diffusion flux evolution equations taken here are linear with regard to

Jx and J y , but they cao in general be nonlinear. These equations are consequences

of the extended version of irreversible thermodynamics(18]. This set of evolution

equations are hyperbolic partial differential equations since the characteristic eigen­

values of the set are all real. These equations are believed to be more appropriate

for describing wave phenomena than the parabolic reaction-diffusion equations con­

ventionally used in connection with pattern formations and chemical oscillations

and waves[16, 19]. We have investigated sorne aspects of differences these evolution

equations make in contrast to the parabolic reaction-diffusion equations(5! 6, 7] in

the previous papers in this series. In this work, we continue the investigation. this

time numerically studying tw~dimensional pattern formations by the Brusselator

and calculating the phase speeds of travelling oscillatory chemical waves.

It is convenient to cast the evolution equations in dimensionless reduced forms.

For this purpose we introduce the reference densities (e.g., initial densities) p~ and

p~ of species A and B, respectively, and define the diffusion coefficients D x and Dy

in terms of the phenomenological coefficients Lxx and Lyy and the time scale te,

respectively, by the formulas

D - kaT D _ kaT
x - y-

mxLxx' myLyy '
(4.11 )

•
(4.12)

where l2 = tdVDx Dy with td denoting the mean time required for particles to

diffuse a unit distance and il = (kaT/ vmXmy) 1/2 is the mean thermal speed or



the speed of sound wave. Therefore~ l is the mean distance diffused by the species

in time td and the time te is a composite measure of particle diffusion in the time

scale of reactions and thermal disturbance (e.g.~ sound wave) in the system. The

time will be reckoned in this time scale in the present work. We aIso denote the

system length by L. Various variables in the equations \\i11 then be reduced in the

following manner:

•
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çy = y/L.

x = Jk3tePx~ y = ";k3tePY~ (4.13)

•
vVe aiso define the parameter

(4.14)

Given this reduction scheme, there appears a dimensionless parameter called the

reaction-diffusion number:

(4.15)

This reaction-diffusion number therefore is a measure of diffusion time relative to

reaction time for the system. This parameter, as in the previous works, plays an

important role in identifying the range of applicability for hyperbolic and parabolic

differential equations. We remark that the reduced variables in this work are defined

somewhat differently from the previous papers[5, 6, 7]. The previous reduction

scheme can be recovered as a special case of the present scheme if Sx is set equal ta

unity since then te = kil which is the time scale used in the previous scheme.

The dimensionless hydrodynamic equations will take the forro:

•
(4.16)
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BrY = -V{·v + BX _ ..,y2y,
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(4.17)

Bru

OrV

(4.18)

(4.19)

where

f = JmvDy b = Dxte b Dyte
rnxDx' X L2' y=-V' (4.20)

•

This set of evolution equations reduces to the one used in Ref. 1 if we set Sx = 1. We

will use this special case for the numerical soLutions in the present work. Eqs. (4.16)

- (4.19) can be combined into coupled second-order partial differential equatiûns

which are coupled telegraphist equations:

(4.21)

z=
x

y

(4.22)

~= =f~ l (4.23)

•

f=

1

o
(4.24)
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?R'=
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(4.25)

D =f = fÔ~ (4.26)

•

•

H = (4.27)

\\tith the matrix elements of H defined by the derivatives of ~ with respect to X

and Y:

- -1 a~x --1
- l - .'Vrd ax = 1 + (S:r; + B - 2XY)Nrd !

H _ü-1a~'( - _X2N-- 1
:ry - 1. vrd ay - rd !

(4.28)

- -1 a~y --1
- -Nrd ax = -(B - 2XY)Nrd '

Since the matrix H tends to unit matrix 1 as the reaction-diffusion number be­

cornes infinite, the coupled telegraphist equations (4.21) reduce to the conventional

reaction-diffusion equations which are parabolic partial differential equations. Eq.

(4.21) is better suited for describing transient phenomena where waves evolve in

space over a period of finite time. Note that parabolic differential equations imply

that a disturbance at a point in the system is instantaneously felt throughout the

system as soon as it is turned on, and it is unphysical ta be so.

Eq. (4.21) admits a noutrivial homogeneous steady state which is given by



("-Yo,YQ) = Cs:' Bir). The stability analysis of the system around this steady state

has been studied in Ref. [5] to which the reader is referred for details.•
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4.3 Phase Speeds of Chemical Waves

The speeds of oscillatory waves are experimentally observable and can characterize

the chemical waves in terms of experimental inputs. They are aIso of theoretical

interest. Such a speed formula was first suggested by R. Z. Luther[12] for sorne os­

eillating ehemieal waves and there have been a number of papers devoted to deriva­

tions of sueh formulas on the basis of parabolic reaction-diffusion equations in the

literature[55 , 14, 15, 20]. However, their derivation appears to be still an open ques­

tion. especially, when oscillatory travelling waves are involved, sinee the parabolic

reaction-diffusion equations are not wave equations and therefore usually are not

expeeted tû admit a physieal dispersion relation. Nevertheless. if there are nonlin­

ear ehemical reaetions coupled to diffusion, there cau be sorne special range of wave

numbers for which such a relation is possible. On the other hand, the telegraphist

equations (4.21) are genuine wave equations and generally supply the phase veloc­

ities when oscillatory travelling waves are the solutions. Since the equations are

nonlinear it, however, is not simple to solve them analytically, and sorne approxi­

mation rnethod is required to obtain the desired result. Here we will argue that it is

suffieient to solve the linearized telegraphist equations ta obtain the desired phase

speed formula sinee the higher-order corrections to the solution simply modify the

amplitudes of the travelling periodic wave solutions. For this we rely on the impli­

cation of the Hopf bifurcation theorem[17] whieh suggests that the amplitude of an

unstable oscillatory solution grows ta a plateau value to produce a finite amplitude

oscillatory wave. We then use the stationary phase approximation to draw the afore­

mentioned conclusion on the phase speed. For simplicity we will consider the case

of one spatial dimension for the purpose. It is convenient to cast the telegraphist
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equations inta a moving coordinate system by using the transformation

1] = {- CT,

128

(4.29)

where c is the phase speed in reduced unïts. Then the telegraphist equations can

he transformed into the following equations

Note that .X"o = A/Sx and YQ = BSx/A. Eq. (4.30) is now an eigenvalue problem

for c. Now define the new d€pendent variables

•

where 1 is the unit matrix. The homogeneous steady state is defined by

R(Xo, }'Q) =0.

x = X - X o, y = y - YQ,

(
Xy ) ,'II = Z - Z(X01 10) =

and the small parameter by

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)
B-Be

p.=
Be

where the critical value Be cao be suitably chosen as indicated later. The choice

depends on the type of instability involved. It then is possible to rewrite Eq. (4.30)

in a form where the small parameter appears explicitly:

(4.35)

•
In this equation

(4.36)
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(4.37)

(4.38)

(4.39)

with various matrices and colurnn vectors defined by the formulas

(4.41)

1 0

Fa = (4.40)

-1 0

-Be -A2/Sx
•

(4.42)

2Sr8çX + 2A y 2A
XA S: S:

-2y -x
X

(4.43)F 2 = ---
Nrd

2y X

- -1FI = N rd

•

1

-1

(4.44)
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1

-1
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(4.45)

Eq. (4.35) rnay be solved by a perturbation theory[21] such that secular terrns do

not appear! if sorne analytical results are desired for the solutions. Here we rnake

the following analysis without an approximation. Since travelling oscillatory waves

(periodic solutions) are desired for the solutions of Eq. (4.35), 'It may be written in

the form

'It (T}) =L ~q exp (iq'r/) ,
q

(4.46)

•

where the amplitude ~q does not depend on Tl. The solution satisfies the periodic

boundary condition and q = n1r/ L with n denoting an integer. On substitution of

this into Eq. (4.35) and integration over Tl after multiplying exp (-iqTl), we obtain

the integral equation for the amplitude

(4.-17)

where

w = cq,

L2 (q) = L -1 L L 2 (~et, ~q'-q, f.L) ,
et

L3 (q) = L-2 L LL3 (~et, ~et" ~qI+qlf_q)'
et et'

(4.-18)

(4.49)

(4.50)

•

We remark that since L2 (x, y, J.L) and L3 (x, y) are homogeneous with respect to x

and y, the former being second order and the latter being third order, the exponential

factors integrate to delta functions of wave numbers and only the amplitude parts

are left over in L2 and L3 in the sums in Eqs. (4.49) and (4.50). Therefore, Eq.
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(4.47) is a set of coupled nonlinear integral equations for the amplitudes

<pX
q

tPq =

vVe now consider the homogeneous equation

for which the solvability condition is

This solvability condition gives the dispersion relation

w=w(q),

131

(4.51 )

(4.52)

(-l.53)

(4.54)

ta which we will return to consider its q-dependence. For the moment we will assume

that w (q) is real. Let us define the matrix n (€) by

where f is a small positive parameter that will be taken equal to zero after compu­

tation of the solution ta Eq. (4.47) is completed. TheIl the formai solution of Eq.

(4.47) can he written as

(4.55)

•
Here n-1(€) is the Green's function in the q space for Eq. (4.52) and the ampli­

tude equation. This amplitude equation may he solved by applying a perturbation

technique. For example, varions quantities involved may be expanded into power



series of p. and the resulting hierarchy can be solved step by step. In a similar spirit .

Eq. (4.55) may be solved iteratively. If the amplitudes obtained from Eq. (4.55)

are bounded-and according to the Hopf bifurcation theorem[17] they are bounded

since there is an oscillatory (periodic) solution bifurcating from the Hopf instability

point and attaining a finite amplitude--then it is possible to infer that the phase

speed of the travelling oscillatory wave is simply given by the roots of the determi­

nant clet lai. The reason is as follows. Suppose the amplitude 4Pq is bounded and

smooth. The sum in Eq. (4.46) may be replaced 'with an integral over q

It then is possible to evaluate the integral in Eq. (4.56) by means of the method of

steepest descent (i.e., the stationary phase method) [22]. The stationary phase of

the integral is given by

•
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: (qç - w(q)rJI = 0,
q q=q~

where qs is the wave number for the stationary phase. That is.

which yields
dw(qs)

C = dqs .

Evaluating the integral around the stationary phase, we obtain

[ ]

1/2
21r -irr/4' .

-Ir (ç, r) ~ éI>q, rdw~~,) e exp zlqsç - w(qs)r].
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(4.56)

(4.57)

(4.58)

(4.59)

•
This solution suggests that the phase speed of the travelling oscillatory wave (pe­

riodic solution) is still given by the solution of the determinant det la(qs)/ and

therefore it is sufficient ta use the result by the linearized telegraphist equations for

the purpose of calculating the bifurcating oscillatory wave. Under the ~~gh;; of this



argument we now calculate the phase speed by using Eq. (4.53) in the case of f-L = o.
The determinant det I~(JL = 0)1 gives a fourth-order polynomial in z = iWQ =

iw (f-L = 0) :
•
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Z4 + p(q)z3 + Q(q)z2 + T(q)z + S(q) = O~

where the coefficients are all real and given by

2 -
P(q) = Sr: - Be + A + 2Nrd ,
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(4.60)

(4.ô1)

•
(4.63)

(4.64)

(4.65 )

Note that the polynomial in Eq. (4.60) is the lowest-order result in the perturbation

theory that can be obtained from the hyperbolic reaction-diffusion equations. There

are four roots for the puly uumial in Eq. (4.60). They will be all negative real if the

Hurwitz conditions are satisfied:

If one of these conditions are broken, sorne roots may acquire non-negative real parts

or become complex. For the present case, if there exist parameters such that

•

P> 0,

PQ - T > 0,

PQT - T 2
- p 2 S > O.

PQT - T 2
- p 2S = 0,

(4.66)

(4.67)

(4.68)

(4.69)
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then one pair becomes pure imaginary. In fact, they are

~ .fp.,.~- -_ -±'l p'

That is~

134

(4.70)

(4.71)

Under condition (4.69), which gives rise to the parameter associated with the Hopf

bifurcation if q = 0 as \\-ill be seen in the subsequent section~ the other pair of roots

is given by

(4.72)

which are negative provided that p2 - 4 (Q - T / P) > O. Therefore, we find the

phase speed Co = wo/q under the conditions stated:

• Co=
lVrd (Dx + Dy) {fp

2 P'

where

p p
- 2Nrd

,

T
T

- 2 2'N rd ( Dx + Dy)q

(4.73)

(4.74)

•

If the parameter Be is chosen such that it corresponds to the Hopf bifurcation value

then P = 1.

The phase speed formula in Eq. (4.73), when the reaction-diffusion number is
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inserted, takes the form

where D is the mean diffusion coefficient

\tVhen converted into the real units, this formula yields

135

(4.75)

(4.76)

(4.77)

•

where Vc = Lite, the speed of disturbance to traverse the system length in time

tc. This result, when taken in the lowest order that neglects the terms of the order

of Nrd in the expressions for Q and S, is rather reminiscent of the formula for

the oscillating chenucal wave speed suggested by Luther[12]. There are additional

parameters in the present formula which are absent in the Luther formula. This

concludes the discussion on the derivation of a Luther-type formula for chemically

oscillating travelling waves from the hyperbolic reaction-diffusion equations or the

telegraphist equations. In this work, we have chosen p~ and p~ for the reference

densities, but this choice can be altered te another set of reference densities within

the present variable reduction scheme, if necessary. With an appropriate choice

of species A and B, the formula is seen to have the correct power law for the

densities, compared with the experimental result by Wood and Ross[54]. Note that

the factorJt1P does not depend on densities.

We now would like ta consider the paraboIic reaction-diffusion equations for

the irreversible Brusselator, which, if the moving coordinate is used as for the

telegraphist equations, may be written in the fonn

•
(4.78)
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By linearizing Eq. (4.78) we obtain in the case of J.l = 0 the equation

136

(4.79)

where Co = c (J.l = 0) and MO = M(J.L = 0). Again, we look for the solution of Eq.

(4.79) in the forro

•

for which the solvability condition is

det I-Dq2 + iqCOI + Mli =0.

The solution for this algebraic equation is

1 yi 2±-i [(Dv - D y )q2 - (NfD - ~fO.)l + 4.NfOAfo2·'\. xx t11I _ xy YX'

which is imaginary unless

(Dx + D y )q2 - (lVf~x + Al~) = o.

(4.80)

(4.81 )

(4.82)

(4.83)

(4.84)

•

These two conditions (4.83) and (4.84) are not generally met. If not, there is no

travelling oscillatory wave solution for Eq. (4.79) and hence there i8 no phase speed

of an oscillatory travelling wave. This is the most distinguishing feature of the par­

abolie reaction-diffusion equations from the hyperbolic reaction-diffusion equations.

The absence of the dispersion relation for the parabolic equations, however, does

not mean that there is no travelling front or pulse described by Eq. (4.79). Such a
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solution can be constructed from the general solution for Eq. (4.79):

'li =1: dq~(q) exp(iQ1/).

If the initial condition is

we then find

137

(-l.85)

(4.86)

(4.87)'li(ç, T) = ~o1:dqexpi [qç - Wo(q)T].

where ~o(q) is given by Eq. (4.82). To perforrn the integration in Eq. (4.87) we will

consider a special case where Dx = Dy = D. In this case, we obtain

(4.88)

•
where

(4.89)

Substitution of Wo in (4.88) into Eq. (4.87) and integration yield the familiar result

W(ç, T) - ~oJ21r exp (T lv[+ - .L)
DT 4rD

for which we have chosen lv[+. If there is a front or a pulse characterized by this

solution, then it fonns a one-parametcr family of solutions. That is. there is a

constant u such that

•
Therefore, we have

aw aw
dw = aÇ dÇ + 8r dr = D,

(4.91)

(4.92)
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which implies that the speed of the travelling wave is given by

d{ 2D1''1'/+ ç D
-= +---.
dT ç 2T ç

The solution of this equation is given by

ç = 2TJlvI+ D - DT-lIn T.

which in the large T limit yields the speed of travelling wave in the form
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(4.93)

(4.94)

(4.95)

•

•

where Ve = Lite. This result, wmch could have been readily inferred from the second

line in Eq. (4.90), coincides with the formula obtained by Showalter and Tyson[55]

except for the factor Ve which appears when the variables are restored to the real

scales from the reduced scales. This should be compared with the formula in Eq.

(4.77) which is its hyperbolic counterpart for the wave speed. It must be noted that

A;f+ does not contain a rate constant in it. It must be also noted that the travelling

wave has arisen on account of the autocatalytic oscillating chemical reactions.

4.4 Patterns and Their Fourier Transforms

In this section we would like ta present sorne numerical results obtained by solving

the telegraphist equations. Contrary to the parabolic reaction-diffusion equations

which we have also solved by using an explicit finite-difference method both in

space and tirne, the hyperbolic reaction-diffusion equations cannot be solved by the

same relatively simple method. We have used a spectral rnethod for the hyperbolic

reaction-diffusion equations. In fact, the telegraphist equations are written as four

coupled fust-order differential equations and then a Fourier collocation method is

used for the spatial derivatives which are substituted by their Fourier collocation

derivatives(23]. A grid of 128 x 128 collocation points was taken. This method



gives rise to four ordinary differential equations in time where the position variables

appear as parameters. These ordinary differential equations are then solved by us­

ing Gear's method for stiff differential equations. This method requires repeatedly

taking Fourier transforms which can be implemented by the fast Fourier transform

method. In arder to check the numerical results so obtained, we have also used a

three-point finite difference scheme to discretize space and then solved the resulting

system by Gear's method. "Vhen patterns such as hexagonal or stripe patterns.

which are stable, appear for sorne particular parameter values, the numerical differ­

ences between the two methods have been noticed. Since the spectral collocation

method is believed to be more reliable for simple geometries, it has been used as

the main numerical method in this work. We have aIso changed the time integrator

from Gear's to a sixth-order Runge-Kutta scheme to test the methods used. In

this case, the results by the two different methods in the chaotic region have been

found to be slightly different, but the qualitative features like the symmetries of the

selected patterns and the values of the critical parameters have been found to be the

same. Both fixed and periodic boundary conditions have been used. For the cases

we have examined, neither of the two types of boundary conditions has removed the

frustrations of the selected symmetry observed in the patterns if the random initial

conditions are used. We have chosen Sx = 1 and f = 1 for the present numerical

work. The fixed boundary conditions taken are: X = A and Y = B / A.

We have explored different regions of the parameter space, especially, with regard

to the reaction-diffusion number to compare patterns obtained from the parabolic

and hyperbolic reaction-diffusion equations. We have also stuclied the effects of the

reaction-diffusion number Nrd on the symmetry of the patterns produced. An in­

teresting result is that the hyperbolic reaction-diffusion equations tend to produce

patterns of a lower symmetry than the corresponding parabolic reaction-diffusion

equations. We have noticed this tendency in our previous studies[6] and it was found

to he associated with a lower entropy production for the pattern of lower symmetry.

Two-dimensional Fourier transforms are computed for the patterns obtained. The

patterns in the Fourier space are often found to preserve some semblance of symme-

•

•

•
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•
Figure 4-1: Frustrated hexagonal pattern for the parameter set A = 3, B = 6.6!
Dx = 0.0016, Dy = 0.006, and Nrd =2.89.

try even if the spatial patterns and the power spectra may look rather chaotic. The

patterns of power spectra in the reciprocal wave number space are rather suggestive

and may be worthy of further study.

The Turing instability occurs when we have Wo = 0 in the dispersion relation

(4.60) and the derivative of S(q) vanishes: that is,

S(qT) = dS(qr) = 0,
dqr

(4.96)

where qr is the critical wave number. We consider the case of f = 1 and Sx = 1.

Solving this equation yields the following critical parameters for Turing instability

to occur

(4.97)

• A
(4.98)



Figure 4-2: The two-dimensional power spectrum of the pattern in Fig. 4-1. The
ordinate is qy and the abscissa is qx. The lighter the shade, the higher the power is.
The same relative color coding scheme is used for other power spectra in this work.
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(4.99)

At the Hopf instability, the condition that ImwQ = 0 at q = 0 is given by one of the

Hurwitz conditions(24}

P(O)Q(O)T(O) - T 2 (O) - p2(0)S(O) = 0,

which yields

Turing instability occurs below the Hopf instability point when

(4.100)

(4.101)

•
(4.102)

Otherwise, the two instability modes will mix. These relations for the parameters



were used as a guide to choose parameter values for the patterns produced.

The parameter values used in this work are: A = 3, D;x = 0.0016, and Dy = 0.006

for ail figures presented. In aàdition to these fixed parameters, B is varied occasion­

ally and the reaction-diffusion number N rd is varied. The random initial conditions

were used iil most of simulations in this work, and when they were applied. the four­

fold symmetry in the patterns formed for the case of n0nrandom initial conditions

was broken, namely, patterns of lower symmetries, e.g., two-fold symmetries, were

produced. For relatively high N rd four-foid symmetry patterns were preserved if

nonrandom initial conditions were taken. As IVrd is lowered, very complicated pat­

terns can be obtained where only two-fold symmetry may be noticed if the patterns

are carefully examined. Such a pattern is shown in Fig. 4-1 where there appear

frustration lines in the hexagonal pattern, producing a patchwork of hexagonal do­

mains. A similar pattern was noticed to arise when the corresponding parabolic

reaction-diffusion equations were solved. The reason for this coincidence is the suf­

ficiently large reaction-diffusion number which practically renders the hyperbolic

system to behave as if it is parabolic. To see the nature of the pattern better. we

have constructed a two-dimensional power spectrum shown in Fig. 4-1 where the

magnitude of the power spectrum is color-coded. The lighter the color, the higher

the spectrum. The two-dimensional power spectrum thus constructed cIearly ex­

hibits a global symmetry as shown in Fig. 4-2 where the ordinate is qy and the

abscissa is q;x. The origin of the (q;x, qy) coordinates is at the center of the square of

the figure. This figure shows there are two symmetric sets of wave vectors for the

frustrated hexagonal pattern in Fig. 4-1. In addition to the octagonal spots there

are four quadrants of a circular pattern at the four corners. Other two-dimensional

power spectra have the same ordinate and abscissa as for Fig. 4-2. If the power spec­

trum is plotted against q in the conventional manner, we then obtain a rather broad

random spectrum which is incapable of showing a global feature in two dimensions,

but when plotted in the two-dimensional space of (qx, qy), the result is not only

rather striking and intriguing but also insightful. It must be noted that if a spatial

pattern, e.g., a hexagonal structure, is homogeneously distributed in space then the

•

•

•
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Figure 4-3: Transition of a hexagonal pattern ta a square pattern which appears in
patches. The same parameters as for Fig. 4-1 except for Nrd = 2.88.

two-dimensional power spectrum will contain six hexagonally arranged peaks[20].

Fig. 4-2 suggests that even a disordered pattern has a characteristic distribution

of wave vectors in the two-dimensional reciprocal space which indicates an intrinsic

structure of the pattern in question.

Lowering the value of Nrd to 2.88 gives rise to the pattern shown in Fig. 4-3

where we can cIearly notice transition from a pattern of hexagonal symmetry to

that of square or rhombic symmetry. Fig. 4-4 is a blowup of a small square in

the pattern shawn in Fig. 4-3. The two-dimensional power spectrum is shown in

Fig. 4-5 for this pattern. The peaks are seen distributed symmetrically around a

diagonal and the distribution of the peaks in the center is aiso symmetrical as shown

in the blowup in panel 4-6. As for the pattern in Fig. 4-1, there are two distinct

symmetrical sets of wave vectors for this pattern. The outer peaks are those of the

shorter wavelength structure whereas the peaks in the center are those of the longer

wavelength structure in Fig. 4-3.

Increasing the value of B to around 8.0 and reducing the value of Nrd to 2.5



•

•

•

CHAPTER 4. THE BRUSSELATOR

Figure 4-4: This panel is a blowup of a square region in Fig. 4-3.

Figure 4-5: The two-dimensionc.! pOêCer 3pectrum of Fig. 4-3.
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Figure 4-6: A blowup of the central portion of the power spectrum in Fig. 4-5.

produces a rather different pattern; this time a maze-like structure is produced as

shown in Fig. 4-7. For the same parameter set, nonrandom initial conditions yield

a completely symmetrical stripe structure (not shown here for the lack of space).

The two-dimensional power spectrum of this irregular structure produces a smehow

regular wave vector distribution indicating where the major peaks (white spots)

clearly show a square symmetry as shown in Fig. 4-8. If cross sections of this

two-dimensional power spectrum are plotted against q~ or qy, they show spectra

characteristic of a chaotic spatial pattern. Such cross sections are shown in Fig. 4-9

for qy = 0.5 and in Fig. 4-10 for qy = 0.128. As the value of Nrd is further lowered

to 2.0 the maze-like structure makes transition to a turbulent pattern with patches

of a square structure distributed randomly over space as shown in Fig. 4-11.

The two-dimensional power spectrum of this pattern is shown in Fig. 4-12 where

white spots still maintain a symmetric form although the distribution of wave vec­

tors more widely spread throughout the wave vector space than in the previous

figure. If the value of B is increased to 10.1, there appears a more irregular pattern

shown in Fig. 4-13. This parameter value puts the system far removed from the
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Figure 4-7: A maze-like pattern for B = 8 and Nrd = 2.5. Other parameters are
the same as for Fig. 4-1 .

Figure 4-8: The two-dimensional power" spectrum of the pattern in Fig. 4-5.
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Figure 4-9: Cross section of the power spectrum in Figure 4-8 is plotted against qx
for qy = 0.5. It characteristically indicates a chaotic pattern.

Turing instability point and into the region where the Hopf bifurcation is possible.

The pattern produced is rather chaotic, but its power spectrum, although widely

distributed, still has major peaks showing some semblance of symmetry as shown in

Fig. 4-14. But in this case~ the circular wave vector distributions in the wave vector

space inclicate::i a random structure.

In Fig. 4-15 we show a chaotic-Iooking pattern obtained when nonrandom initiaI

conditions are taken in the case of the parameter values B = 6.6 and Nrd = O.l.

At this value of the reaction-diffusion number the system is rather hyperbolic. Vve

have noticed in the earlier work[6, 7] on the modified Selkov model that the patterns

tend ta be chaotic as the reaction diffusion number is lowered to the values of this

magnitude. The two-dirnensional power spectrum of this pattern is shown in Fig. 4­

16. Although the pattern in the wave vector space is rather blurred, the distribution

of major peaks has sorne elernents of symmetry; it has a two-fold syrnmetry alang a

diagonal.

In Fig. 4-17 we show a mixed pattern obtained for random initial conditions in

the case of the parameter set A = 3, B = 10.1, Dx = 5 X 10-3 , Dy = 1 X 10-3 , and

Nrd = 2.5. Its two-dimensional power spectrum is shown in Fig. 4-18. The wave

vector distribution is rather blurred except for the central portion of white spots
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Figure 4-10: Cross section of the power spectrum in Figure 4-8 is plotted against qx
for qy = 0.128. ft characteristically indicates a chaotic pattern.

which appears to correspond to the short wave length structure in Fig. 4-17. The

central part seems to have sorne elements of symmetry.

From the patterns and their two-dimensional power spectrum presented, we are

able to conclude that each pattern, even a chaotic looking one, appears to have a

characteristic wave vector distribution which has a symmetric structure. This seems

to be an interesting feature worthy of further study since chaotic patterns may be

amenable to some scheme of classification into categories.

4.5 Concluding Remarks

In this chapter, we have studied a set of hyperbolic reaction-diffusion equations

which results in coupled telegraphist equations for the irreversible Brusselator that

has been conventionally investigated with parabolic reaction-diffusion equations in

the literature. Based on the telegraphist equations and the amplitude equation in a

form amenable to a perturbation theory, we have explicitly calculated the speed of

a travelling periodic wave for the Brusselator from the linearized telegraphist equa­

tions. The formula obtained has the generic form first suggested by Luther many

decades ago and should be regarded as an approximate derivation of bis formula. It
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Figure 4-11: A chaotic pattern in the case of Nrd = 2.2 and B = 8. Other parameters
are the same as the rest of the figures .

Figure 4-12: The two-dimensional power spectrum of the pattern in Fig. 4-11. The
distribution of the peaks is quite symmetrical.
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Figure 4-13: A Chaotic maze-like pattern in the case of B = 10.1 with other para­
meters are the same as for Fig. 4-7.

Figure 4-14: Two-dimensional power spectrum of the pattern in Figure 4-13.
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Figure 4-15: A chaotic-looking pattern obtained when nonrandom initial conditions
are taken. The parameters are: A = 3, B = 6.6, Nrd = 0.1.

Figure 4-16: The two-dimensional power spectrum of the regular pattern in Fig.
4-15.
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Figure 4-17: A mixed pattern obtained for random initial conditions in the case of
parameters Dx = 5 X 10-3 , Dy = 1 X 10-3 , A = 3, B = 10.1, Nrd = 2.5.

Figure 4-18: Two-dimensional power spectrum of the pattern shown in Fig. 4-17.



is not an exact resu1t, but in view of the nonlinear nature of the equations involved,

such an approximate result probably is the most one can hope for from the analyt­

ical approach. Albeit approximate and probably quite limited in applicability, the

formula provides considerable insights to the nature of the waves involved and their

origins, and we hope that this kind of result will be of sorne use to experiments.

We have also studied the numerical solutions of the telegraphist equations in

comparison with the corresponding parabolic reaction-diffusion equations, although

much of the retiults for the parabolic equations have not been presented for the lack

of space. It must be noted that the large Nrd results for the hyperholic equations

(i.e., telegraphist equations) essentially correspond to the results for the parabolic

reaction-diffusion equations. As the vaIues of parameters and, especially, that of

Nrd are varied, various patterns emerge. The twü-dimensional power spectra of

such patterns reveal patterns of wave vector distributions with sorne elements of

symmetry. This suggests that spatial patterns can be classified according to the

wave vector distributions and symmetries of their multidimensional power spectra.

This seems to be a rather intriguing and, perhaps, important feature worthy of

further serious study in the future .

•
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Chapter 5

Perturbation Equations In One

Dimension

5.1 Introduction

In many physical problerns, partial differential equations describing processes in the

space-time domain prove to be a very useful too!. For instance~ one may mention

the Navier-Stokes fluids, chemical reactions including diffusion! sorne ecological sys­

tems with migration, etc. Suppose that oscillatory motions occur in any of these

continuous media as sorne control parameter is varied, and consicler how to describe

them. It is true that if the system is confined in a finite volume, the governing

partial differential equations can in principle be transformed into a discrete set of

ordinary differential equations which describe the evolution of the amplitudes of

the basis functions satisfying prescribed boundary conditions. Although the system

then involves an infinite number of degrees of freedorn, a rnode-truncation approx­

imation is usually allowed. The application of a multi-scale rnethod will lead to a

Stuart-Landau equation. However, there may be sorne situations where keeping to

formai bifurcation theories easily makes us overlook a fact of considerable physical

importance. The situation of particular interest is when the system size is very

large. Then, formai bifurcation techniques applied near /-Le, the critical Hopf bifur-
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cation point, cannot daim full validity except in an extremely limited parameter

range about /-Lc· This is basically because the €igenvalue spectrum obtained from the

linearization about the reference steady state is almost continuous for large system

size, 50 that, in addition to the couple of modes which are becoming unstable, a

large number of degrees of freedom come into play as soon as /-L deviates from /-Le'

Thus it is more desirable to generalize the Stuart-Landau type of equations 50 as

tu cover such circumstances. Researchers in the field of fluid mechanics have de­

veloped theories in this direction, which proved to be very useful in understanding

instabilities arising in systems with large dimensions at least in one or two direc­

tions. Typical examples are the Newell-Whitehead theory[l] on a fluid layer heated

from below with an infinite aspect ratio and the Stewartson-Stewart theory[2] on

plane Poiseuille flow. In these theories, one works with partial differential equations

throughout, not transforming them into ordinary differential equations. A method

was contrived to reduce the equations to a generalized form of the Stuart-Landau

equation, thereby admitting slow spatial and temporal modulation of the envelope

of the bifurcation fiow patterns. We caU that equation the Ginzburg-Landau equa­

tion. The derivation of the Ginzburg-Landau equation usually involves the method

of multiple scales in both space and time. It is now widely known that the Ginzburg­

Landau equation is not only related to a few fiuid mechanical or optical problems but

can be dedu~ed from a rather general class of partial differential equations[3, 4,5,6].

Chemical reactions with diffusion are a simple and particularly interesting class of

systems in this connection[8, 9]. Just as the Stuart-Landau equation describes the

simplest field of a nonlinear oscillator, the Ginzburg-Landau equation describes the

simplest field of nonlinear oscillators. We have derived an amplitude equation for

the hyperbolic reaction-diffusion equation describing the Brusselator. The result­

ing amplitude equations are of the Ginzburg-Landau type and similar in form to

the amplitude equations derived from the parabnlic reaction-diffusion equations. In

the next sections, we shall derive those amplitude equations for Hopf and Turing

instabilities, respectively.
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5.2 Amplitude Equations of Perturbation Analy-
.

SIS

The following version of the Brusselator will be adopted for the present chapter.

1t differs from the one in the previous chapter since sorne constants are adjusted

in order to make comparison with the literature values for the parabolic partial

differential equations for the Brusselator. We will consider the parameter B as

the dynamical parameter and study bifurcation with respect to it. Since we are

interested in oscillations we have to compute the critical values Be beyond which

Hopf or Turing instability occurs. To compute the marginal stability we have to

linearize the system and study its stability with respect to perturbations around its

steady state. The system around (B/A.! A) is given by

with the definitions of x = X - A and y = y - B/A~ Z = (x, y),

Hr:x

(5.2)

(5.3)

•

The rnatrix elements are defined by
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• o -
Hyx = B/Nrd'

- -2[(B/A)x + Ay + xy]/Nrd ,

2 -
- -(X + 2Ax)/N rd ,

(5.4)

(5.5)

H~ - -Ir;y.

•
The other symbols are:

1- B -A2 îL (5.6)-

A2f-2) ,BI-2

A=

-[(B/A)x2 + 2Axy + x2y]

(5.7)

•
Linear stability analysis can be performed on (5.1) if the nonlinear terms on

the right-hand sicle are neglected. For this purpose we look for the solution of the
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linearized. differential equations in the form

Zl = L L ep(k~w) exp(ik· r + wt).
k .JJ

Upon substitution of (5.8) into (5.1) we obtain the following algebraic system

(5.8)

(5.9)

For the system (5.9) ta have nontrivial solutions its determinant must vanish. The

deterllÙnant gives the following dispersion relation

P4(k, z) = w4 + P(k)w3 + Q(k)w2 + T(k)w + S(k) = 0, (5.10)

•
where

P(k)

Q(k)

T(k)

2 -
l - B + A + 2Nrdl

- 2 - 2 2[.N"rd(Dx + Dy) + Nrd(A Dx - (B - l)Dy)]k

+1V;d(1 - B + /-2A 2
) - Nrd(l + f-2)A2

!

(5.11)

(5.12)

(5.13)

The simultaneous conditions for wmch (5.10) adnùts solutions ail with negative real

part are given by

• P > 0, (5.15)
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• Q > 0,

T > o~

PQT - T 2 - p2S > o.

The first type of instability can be readily seen when

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

•

but as we will see later, this instability accurs always above the Hopf bifurcation

point.

Let J1. be a small expansion parameter of the farm

B-Bc
J..L=

Be

Following [7], we cau then expand our operators L and H in term of J.L. vVe obtain

the fol1owing expressions:

L - Lo + J-LL 1 + ...,

M - Mo + J.LM l + ... ~

(5.21)

N - No + J-LN l + .. "

He - Ho + J-LH 1 + .. '.

We also scale time and space as

•
T - J..Lt, (5.22)



CHAPTER 5. PERTURBATION EQUATIONS IN ONE DIlYIENSI01V 163

• 1/')ç = IILI - r,

which imply rescaling the derivatives in the following manner:

8
ât

(5.23)

(5.24)

(5.25)

By substituting (5.24)and (5.25) into (5.1), using (5.21), and equating tenns of like

power of J.L on the left and right hand side, we get the following set of equations:

•
G l - 0,

- 2 - -
+(NrdDVeZ l + 2NrdDVe,VrZ2 + XNrdLIZl

-28T8t Z l - NrdH18TZl - NrdH08tZd, etc...

Here

5.3 Hopf Instability

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

•
Clearly, in the neighborhood of the Hopf critical point, the temporal part of the

hyperbolic system is identical to the one of the parabolic partial differential equa­

tian system. Let JL be an expansion parameter and let e be the normalized right-
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eigenvector of the linear operator with no space dependence Lo = 8; + iVrdH08t

-NrdLo corresponding to the eigenvalue iwo. The eigenvalue equations are

and

LoeH = iwOeH

'" r . '"eHJ.·oO = lwoeH •

(5.31 )

(5.32)

We will also denote the complex conjugates of the eigenvectors eH and eH by an

overbar. Note that e'HeH= ëHe'H= O.

Form = l, (5.26) is homogeneous and its solution can be looked for in the form l

Zl = A(ç, T) exp (iwot) eH+A(ç, T) exp (-iwot) ë. (5.33)

•
where A(s, T) is the amplitude of the oscillatory solution corresponding ta the eigen­

value iwo at the critical point in question. For other values of m the inhomogeneous

equations in (5.26) can be solved subject to the solvability condition

r2tr
/

wO

Jo dt exp( -iwot)eû .G m = O. (5.34)

The solution Zl in (5.33) suggests that G m is also a periodic function of wot. There­

fore G m , periodic in wot, may be expanded as fol1ows:

:le

G m = L G~ exp(ilwoi).
l=-<:Xl

The solvability condition (5.34) can thenbe written as

eH' G~) = O.

(5.35)

(5.36)

•
For m = 2 the solvability condition is clearly satisfied. The solution Z2 of (5.26) in

IThe amplitude A(ç, T) is a complex function of the slow variables ç and T. "Ve denote it bya
bold symbol 'A' on1y to distinguish it from the experimental parameter A.
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the case of m = 2 is found in the forro

Z2 = B(ç, 1) exp(2iwot)eH2 + B(ç, r) exp(2iwot)ë2 + C(ç, t) + W(ç, 1) exp('iwot)

(5.3ï)

where

C(ç,/) = -2Lû1M oee IA(ç, T)1 2
. (5.40)

Here 1 is the lUlit matrix. W(ç, T) cannot he determined at this stage. By inserting

equations (5.38), (5.39), (5.40) and (5.33) into the solvability condition (.5.36). we

obtain

• e * G(l)
H· 3 .rVrdeH [2Mo(AB + AC)eH + 3Noeee IAI2 A]

-eH [2iwo8t - Nrd (XLI - DV; + Hl - H o8t )] AeH

- 0 (5.41)

On substitution ofB and C in (5.38), (5.39), (5.40) into (5.41), we find the amplitude

equation

(5.42)

where with definitions

•

(5.43)

(5.44)
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various coefficients are given by the formulas

p - -NrdQ [2eÊiMo(-2eH Lo1M oeHëH + lVrdeKMoeHeH)

+3eHN oeHeHeH] .

(5..15)

(5..16)

(5..17)

(5.48)

•
If the corresponding parabolic reaction-diffusion equations are used to derive the

amplitude equation, we obtain

(.5..19)

where the coefficients cf 1 p', and ÏY are given by

q' - XÀ 1 = X [Re(Àd + iwd .

p' - eÊiMo [-2MoLo1eHëH + eH (2iwoI - Lo)-1 MoeHeH]

+3NoeHeHëH,

D' = eÊiDeH.

(5.50)

(5.51)

(5.52)

•
Therefore, we see that the hyperbolic reaction-diffusion equations give rise to basi­

cally the sarne form of amplitude equation as the parabolic reaction-diffusion equa­

tions except for the coefficients involved. The coefficients are dependent on the

reaction-diffusion number. F\.u'ther, we can rescale (5.49) by making the following
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substitutions

T -+ OIT (01 = Re(q)),

[

_ ] 1/2
ç -+ Re(D)/Ol ç,

A -+ [01/ Re(p)] 1/2 A.

then it will take the following popular form

(5.53)

(.5.54)

(5.55)

where

CO - wi/al l (5.57)•
Cl - Im(ÏJ)/ Re(ÏJ) , (5.58)

C2 = Im(p)/ Re(p). (5.59)

To apply the aforementioned procedure to the Hopf bifurcation for the Brusselator,

we must identify tb8 condition at which the Hopf bifurcation occurs. This is for

which (5.10) admits pure oscillatory modes at k = O. It is given by the following

Hurwitz condition

•

P(O)Q(O)T(O) - T(O)2 - p(0)2S(0) = o.

From this follow the critical values of B :

Be = 1 + A2 = Bpare ,

(5.60)

(5.61)
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where Brzr is the unique critical value of B in the case of the parabolic Brusselator

for which a Hopf bifurcation occurs. The oscillatory modes corresponding ta these

critical values are given

Wa = ±iA. (5.62)

Having the critical parameter defined, we can perform the expansion like in (5.21).

(5.63)

(5.64)

(5.65)

We obtain the following operators:

A2 -A2

La -

1 +A2 A2

-(1 + A2) 0

L1

(1 + A2
) 0

- 2 -A2

• iVrd - A

NrdHLO -

1 +A2 - 2
iVrd + A

-(1 + A2
) 0

The eigenvectors are given by

1

eH -
1.

-1+-
A

• H1 - iAeH -

= eI;r, (5.66)
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The parameter À will have the form

(5.67)

With the definitions of the quantities given earlier. the amplitude equation from

perturbation analysis is given by

where the coefficients Co, Cl, and C2 are given by

•

Co = Im(q)/ Re(q) = 0,

(
_) ( _) Q2 - 1

Cl - lm D / Re D = - A Q2 + 1 '

where

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

•
In the limit of infinite Nrd we regain the coefficient C3 from the perturbation analysis
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of the parabolic Brusselator! mainly

r 4-7A2+4A4
- ~ = 3A(2 + A2) . (5.74)

From this analysis! it is clear that we are expecting more complicated results in the

case of the amplitude equation computed from the hyperbolic system than that from

parabolic one. We note that there is going to be a region in the parameter space

(Nrd , A), where we have resonances, i.e., where the denominator of the coefficient

C3 may vanish. The locus of the resonance of the coefficient C3 is given by:

Ares =

•
(5.75)

As an example, we have studied the case of A = 6.0. 'V'le found that a singularity

in C3 occurs at f\lrd = 2.3297 and C3 is zero at Nrd = 1.2596 and ..Vrd = 10.3608.

To understand the behavior of the numerical solution of the amplitude equa­

tion (5.68), it is llseful to perform a linear stability analysis of the homogeneous

oscillations. Let

•

A = (1 + 6A) exp(-ic2t).

The linearized version of (5.68) will then be

ô,DA = (1+icdV~6A-(1 + iC2)(6A + <5A*).

If we define <5A to be

6A = (u + iv) exp(ikç),

separating the imaginary part from the real part we get

(5.76)

(5.77)

(5.78)

(5.79)
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• dv [ 2] 2dT = - 2C2 + c1k u - k v.

The characteristic equation of this system is

(5.80)

(5.81)

The sum of the roots is obviously negative. The only instability that can arise is

through the last constant term vanishing and subsequently becoming negative. This

requires that the parameters Cl and C2 are such that

1 + CIC2 < o. (5.82)

•

•

This inequality constitutes a condition for spatio-temporal complexity since in this

range a homogeneous oscillation may no longer be sustained. This instability is

induced by the presence of complex coefficients in (5.68) or equivalently by the

presence of nontrivial phase variable related to the imaginary part of the arder

parameter A. Therefore this is called a phase instability. The function 1 + CIC2

contains a singularity in the reaction diffusion number Nrd due ta the singularity

in the parameter C3. If B = 6.0, D'X = 0.006 and Dy = 0.0016. the singularity

is at IV;:? = 2.3297. Also, the condition 1 + CIC2 is zero at Flrd = 1.3737 and

Nrd = 13.9390. In between of the previous zeros the condition changes sign, i.e., the

stability of the oscillations will consequently change. The solution of the amplitude

equation confirms what is predicted by the phase instability condition (5.82) .
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Space-time plot for Nrd = 0.1.
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Spcae-time plot for Nrd = 1.7.

Spcae-time plot for Nrd = 100.

5.4 The Phase Equation

In this section, the derivation of the phase equation follows exactly the method

presented by Kuramoto[7]. Let Wo(t) be a linearly stable T-periodic solution of an
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n-dimensional system of ordinary differential equations

dW'o
dt = F(Wo), (5.83)

Wo(t + T)

Let this vector field be perturbed as

Wo(t). (5.84)

dW
dt = F(W) + q>(X), (5.85)

•

where €"p(X) is a small perturbation, ê is a smallness parameter. The periodic

motion will persist when the perturbation cp(X) is turned on, but its period will

dev'iate slightly from T. Let C denote a closed curve corresponding to the periodic

motion of equation (5.83). Since C is assumed ta be stable, then as t --. -')C. each

state point W will approach C in the absence of perturbations. We associate a

certain value of scalar r/J to each W E C in such a way that the motion on C may

produce a constant increase in (jJ. Because a weak perturbation will kick the state

point out of C, we then need ta define the phase function in the neighborhood of C,

say C', which can he thought as filled with one-parameter family of hypersufaces of

constant phase[15, Il, 18]

dtl>~:') = 1, W E Cf. (5.86)

The quantity r/J may be called the phase defined on C', and its value is determined

to an integer multiple of T. We need ta see how a weak perturbation, where q)

need only be defined in the vicinity of C, could modify the phase r/J. The following

equalities follow simply from equations (5.83) and (5.86)

•
d4>(W)

dt

'VwcP . F(W) - 1.

(5.87)

(5.88)
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For the perturbed motion, we replace (5.85) in (5.87) to get the following equation

for the phase

drjJ(W) _ \lwifJ. [F(W) + ep(X)]
dt

= 1 + ë'VwifJ . p(X).

(5.89)

(5.90)

Because the deviation IW - Wo(ljJ) 1 ---+ 0 in the asymptotic regime of t -+ X. it

is valid to use W = Wo(~) in (5.90) to a first order approximation

•
with the definitions

O(ljJ) - Z(4))· II(4)),

II(4)) = p(Wo(ifJ))·

(5.91)

(5.92)

(5.93)

(5.94)

The vector Z(4)) may be called the phase dependent sensitivity[ll], and it measures

how sensitively the oscil1ator responds to external perturbations. Z( 4» and Il( dJ)

are T-periodic functions of 4>, which means that the right hand side of (5.86) is also

T-periodic functions of 4>. In order to obtain the average frequency, we introduce

the phase disturbance 1/J via 4> = t + 1/J and express (5.86) as

•
d1/;di = en(t + 1/;) . (5.95)
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This equation shows that 1/J is a slow variable which hardly changes during the period

T. \Vhen averaged over time, (5.87) becomes

d'l/J
dt

- êW, (5.96)

1 fT
w - T Jo o'(t)dt, (5.97)

which gives the desired frequency.

If q> is interpreted as a Laplacian operator multiplied by the matri..x D as

ëp = Dyr2, (5.98)

then the Ginzburg-Landau equation can be written, after setting € to l, as follows

•
(5.99)

(5.100)

where

(5.101)

(5.102)

On averaging the periodic coefficients over the period T, we obtain

•
(5.103)

(5.104)
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where

1 fT
Q - T Jo n(l)(t)dt,

1 fT
f3 = T Jo n(2)(t)dt.

(.5.105)

(5.106)

(5.107)

Equation (5.104) is equivalent to the Burgers equation which can be reduced to

a linear diffusion equation through the Cole-Hopf transformation[16]. In order to

calculate the coefficient Q and ,B for the Landau-Ginzburg equation, we should make

use of the Floquet theory(17] which concems fust-order linear systems with periodic

coefficients. If we linearize (5.85) about Wo(t) by putting

W(t) = Wo(t) + u(t),

•
this leads to

du
dt = L(t)u,

where L is an Nrd x Nrd T -periodic matrbc with elements

(5.108)

According to the Floquet theory, it is possible to define an eigenvalue problem for

(5.108) which has a general solution expressed as

u(t) = S(t)eAtu(O), (5.109)

where Set) is a T-periodic rnatrix with the initial condition SeO) - l, and A is

sorne time-independent matrix. The identity follows from (5.108) and (5.109)

Let Ul and Ut respectively denote the right and left eigenvectors of A and the•
d~~t) + S(t)A _ L(t)S(t) = O. (5.110)
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corresponding eigenvalues by Àl :

AUi - À,UI,

ui . U m = Olm, (L m = O. l, ... ! i'Vrd - 1).

(5.111)

(5.112)

(5.113)

(.5.114)

•

Since W 0 is assumed to be stable, no eigenvalues have a positive real part. Let Ào

be the zero eigenvalue, which corresponds to phase disturbances, and assume that

the remaining Flrd - 1 eigenvalues have negative real parts. The null eigenvector Uo

may be taken as

_(dWo(t))
Uo - d 1

t t=O

because the right hand side gives a tangent vector to C at W 0 (t) and bence has the

same direction as that of the infinitesimal phase disturbances. We can also show

that

S(t)Uo -
dWo(t)

dt
(5.115)

!!: (dWo(t))
dt dt

dWo(t)
dt

There follow the equations [7] :

_ L(t) (~~(t)) ,

_ S(t)eAt (dWo(t)) .
dt t=O

(5.116)

(5.117)

•
Z (0) . Ui = 0, l i 0,
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which implies that Z(O) is proportional ta nô as

Uô= Z(O).

By choosing point W on C! we get from (5.117)

Z(t) . (~~(t)) = 1,

From (5.115) and (5.119) we deduce

Z(t) = uÔS-1(t).

Using (5.120) and (5.115), we redefine 0(4)), O(l)(t/» and 0(2)(t/» as

(5.118)

(5.119)

(5.120)

O((j») - UÔS-1(4))II(4», (5.121 )

• n(l)((j») uÔS-1( d>)DS( ci>)nl)~- (5.122)

n(2)(~) •S -1 ( ')D dS (4>) (5.123)- Uo cp dt Uo·

5.5 Phase Equation frOID the Landau-Ginzburg

Equation

In this section, we will apply the previous calculation to derive a phase equation

from the Landau-Ginzburg equation. For the aforementioned equation (.5.68) the

matrÎ.."'<: D is given by

•
D=
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and neglecting diffusion equation (5.68) has the form of the Stuart-Landau equation

•

If W = ..:'( + iY then equation (5.124) will have the form

dX
dt = ...""< - Coy - (X - C2 Y )(X2 + y-2).

Let w( t) denote a disturbance defined by

W(t) = Wo(t) [1 + w(t)] ~

where Wo(t) is the periodic solution of (5.124)

Wo(t) = Xo(t) + i}'Q(t) = exp(iwot),

Wo = Co - C2'

The linearization of (5.124) about Wo(t) gives

If we put w = ~ + iT/, (5.130) cao he expressed as

(5.124)

(5.125)

(5.126)

(5.127)

(5.128)

(5.129)

(5.130)

ç ç
d

=A (5.131)-
dt

Tl Tl

•
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• or by integration

~(t) ~(O)

= eAt (5.132)

71(t) '1(0)

where

1

A - -2

C2

x ~

- Set)

y 1]

o
(5.133)

o

(.5.134)

and
coswot - sinwot

• Set) = (5.135)

sinwot COSWf)t

Thus (5.132) is equivalent to

x(t) x(O)

= S(t)eAt (5.136)

y(t) y(O)

which is of the form of equation (5.109). Calculation of the eigenvectors of A are

then straight forward

a
Uo - Wo

1

U~ -1 ( 1 ) ,• - wo -C2 ,

(5.137)

(5.138)
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1•
ui = (1 o ) .

(5.139)

(5.140)

The eigenvalues are "\0 = 0 and À l = -2. By applying the above values of S. uo~ and

llÔ to (5.121), (5.122L and (5.123), we find that n(1) and 0(2) are q>-independent

and given by

(5.141)

•
(5.142)

So the nonlinear phase diffusion equation derived from the Ginzburg-Landau equa­

tion takes the following explicit form

81lJ 2 2
ât = ( 1 + Cl C2) \7 'lb + (C2 - Cl) (V'1/J) . (5.143)

•

An attempt to describe populations of oscillators in terms of phases was made by

vVinfree(11], although the theory involved sorne drastic assumptions. ~Iore recently.

Neu(lO] developed a phase description method for discrete populations. In context of

reaction-diffusion dynamics, Ortaleva and Ross(12] were the first ta derive a partial

differential equation for the phase in the discussion of phase waves. However, an

important nonlinear term representing the effect of frequency modification due ta a

phase gradient was lacking in their phase diffusion equation, and this was properly

taken care of by Kuramoto et al. and Neu(13, 14].

The Newell criterion for phase instability for the Ginzburg Landau equation is

when 1 + CIC2 < O. In other words, when the diffusion coefficient of t/J in (5.143)

becomes negative, an 'antidiffusion' behavior sets in leading to increasingly large
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values of the phase gradient. One can push further the aforementioned systernatic

procedure[7] to add a saturation term to the phase equation (5.143) of the forrn

- À('V4'l/J) and the resulting equation is known as the Kuramoto-Shivanshinski equa-

tion.

Explicitly! the phase instability condition is given by:

(5.144)

where

< 0, (5.145)

•
2 -') -

a6 - (8a - 12)N;d - 8Nrd + 12,

. 2 -3 ') -2 2 -
a2 - (180 - 4)Nrd - (21a- + 9)Nrd + (68a + 52)Nrd~

(5.146)

(5.147)

(5.148)

(5.149)

(5.150)

(5.151)

•
(5.152)

Phase equations provides a very interesting insight into the origin of the defects
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characterizing nonequilibrium structures and we will in the future explore these

equations in the context of hyperbolic reaction-diffusion equation.

5.6 Turing Instability

For Turing instability to occur we need the following conditions ta be satisfied[19]

to determine the two critical values: the critical wave vector ke and the critical

experimental parameter Bc :

S(k) = d~kk) = O. (5.153)

These conditions do not depend on the reaction-diffusion number and yield the same

critical parameters as the parabolic Brusselator:

Be - (1 + AV~:r= (1 + Aa)2,•
k2 A

e -
JDxD y

(5.154)

(5.155)

•

However ~ since the dispersion relation from the hyperbolic system is different from

that of parabolic system where we do have two more eigenvalues~ it is important ta

see the nature and sign of the additional roots or eigenvalues obtained from this dis­

persion relation. These additional roots can interact ~ith those of the critical Turing

wave numbers and may yield structures which vary in time and the speed of variation

may be related ta the reaction-diffusion number. To see this we chose sorne parame­

ters near the region of critical parameters where the linear analysis is expected to

hold and computed the roots of the dispersion relation and then solved the hyper­

bolic reaction diffusion equation for the Brusselator numerically. If A = 2.0, Dx =

0.0016, Dy = 0.006, then B c = 4.13. If Bis takenjust above BCt say B = 4.17, then a

set of spatial modes lying in the interval [kcl = 23.09, kc2 = 27.95] will become unsta­

ble. The solution of the dispersion relation (5.10) yield a set of eigenfrequencies lying
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between Wh = {a, -1.25, -1.79±3.94i} for kcl and Wh ={û, -1.54. -1.65±3.4li} for

k c2 , f'lrd = 2.0, as compared to those of the parabolic system where wp={O~ -6.66}

for kcl and wp = {D, -4.88} for kc2 ' The pattern could not reach a well organized

Turing pattern until the reaction-diffusion number reached the value of 2. A1so the

real part of the roots depends on Nrd in a way that it becomes more negative as

N'rd increases, which means for relatively low lVrd , the pattern reaches a stationary

state and selects a mode in longer times than that of the parabolic case. In facto

the pattern selected in the case of the hyperbolic system was similar to that of the

parabolic system only in high Nrd , whereas for intermediate _Vrd the similarity per­

sists but the pattern is still clifferent. This may be attributed to the other pairs of

eigenfrequencies of the linear dispersion relatiùn. For Nrd less than 2.0 the pattern

was chaotic and slowly varying in time. For Nrd near 2.0, the pattern shows c1ear

organization into a Turing pattern. The perturbation analysis for the Turing mode

leads ta amplitude equations which do not depend on Nrd . This will not allow us

ta study the effect of this parameter on the pattern. It is clear from the simulations

that the transition from a chaotic pattern to a weil organized Turing pattern was

sharp and sudden and not smooth. It seems that there is a need for a perturbation

theory for hyperbolic equations. Investigation of the dispersion relation did not

uncover the role of Nrd = 2; this means that this effect is beyond the linear regime

where the modes i:ateract in a very complicated manner. The amplitude equation

for this time independent mode can be derived also in the same manner, but this

time

(5.156)

Let eT be the normalized right-eigenvector of the linear operator .co corresponding

to the eigenvalue iWQ :

(5.157)

•
where kc is given by equation (5.155) .

(5.158)
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Here T(ç. r) is the amplitude of the oscillatory solution corresponding ta the eigen­

value ikc at the critical point in question. For other values of m the inhomogeneous

equations in (5.26) can he solved subject ta the solvahility condition

1
21f/ kc

o dT exp(-ikcr)er· G m = o. (5.159)

The solution Zl in (5.158) suggests that G m is also a periodic function of 2tr/kc .

Therefore G m , periodic in 2tr/ kc , may be expanded as follows:

~

G m = L G~ exp(ilkcr).
1=-00

Then the solvability condition (5.159) can be written as

(5.160)

•
(5.161)

By inspection~ Z2 has only terms of zeroth, first and second harmonies. To caleulate

explicitly Z2, we make use of (5.158) for Zl and the first harmonie of Z2 will then

be given by

But we know that

(k~D - LO)eT = 0,

(5.162)

(5.163)

which makes the computation of (5.162) impossible because of the singular behavior

(5.163). To overcame this difIiculty we expand eT in k~

•
(5.164)
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and replace it in (5.163) to get

•

2 ( JeT)-Loer(O) + kc Der(O) - Lo 8k~ + ... = o.

Therefore,

-Loer(O) - o.

8eT
Der(O) - LOT - o.

k~

Finally, we take the following limit

from which we get the value of Z~l)

(5.165)

(5.166)

(5.167)

(5.168)

(5.169)

For 'm = 2 the solvability condition is clearly satisfied. The solution Z2 of (5.26) in

the case of m = 2 is round in the form

•

where

Z~2) = R(ç, T) exp(2iwot)eT2 + R(ç, r) exp(2iwot)ër2 (5.170)

(5.171)

(5.172)

(5.173)
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The amplitude equation will now be derived from the third compatibility condition~

I.e. m = 3, as follows:

- - - 2
- ei-(2NrdMoZlZ2 + lVrdNoZlZIZI + (NrdDV~Zl +

2NrdDVe·VrZ2 + X1VrdLIZl - .zVrdH08t Zd = o. (5.174)

Upon substituting the expressions for different quantities in this equation we get

(5.175 )

where

•
p - -NrdQ[2erMo( -2eyLü1M oeTëT + NrdëyKMoeyey)

+3~1VrdOeTeTëT],

(5.176)

(5.177)

(5.178)

(5.179)

Calculation of the listed coefficients yields the following values when kc is used in

equation (5.155):

•

1

= e!!;'T,

-(n/AH1 + (kA)

eT - 1~ 0 2 (l , Ao/(l + Ao) ) =e:rr
,

(5.180)

(5.181)



•
CHAPTER 5. PERTURBATION EQUATIONS IN ONE DIl\'IENSION 189

(5.182)

(5.183)

(5.184)

D -

2 2 -(0: - l)A + 20:A - N rd

(5.185 )

(5.186)

•
It is interesting to see how the Nrd-dependent quantity Q behaves.

- ~A(Q2A + 20 - A) ± l~A2(1 - ?0:2 + 0:4 )
2 -

+4Ao:(a2
- 1) + 4a? - 4P/2.

(5.187)

(5.188)

(.5.189)

(5.190)

•

The amplitude equation (5.175) derived for Turing instability differs from that

derived for Hopf instability in that coefficients are not complex but real. The oc­

currence of singularities is also observed and a physical explanation is yet to be

laid down. In two dimensional systems, the situations gets more complicated. For

each symmetry, stripes for example, an amplitude equation can be derived based

on the fact that amplitude varies slower in one direction than the other. From ba­

sic analysis of such equations, we can define different kinds of instabilities like the

"zig-zag instability" [20] and the Eckhaus instability[21]. This is deferred to a future

investigation.
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Chapter 6

Shock Waves

6.1 Introduction

A shock wave involves the transition from a uniform upstream flow ta a uniform

downstream flow. The fiow is one-dimensional in that there are no flow gradients

in directions parallel to the plane of the wave, and a frame of reference is usu­

ally chosen such that there is no stream velocity in this plane. The problem of

the interna! structure of shock wave, which is determined by viscous and heat con­

duction effects, has played an important role in the development of molecular gas

dynamics because of severa! reasons. First, the fiow involves a marked degree of

thermal n0nequilibrium for large Nlach numbers; second, the flow does not involve

the uncertainties associated with solid boundaries; and third, the flow has proved

accessible to experimental experimentation. Apart from the numerical simulation

methods[53, 7, 45, 47, 13] often used in recent years, shock waves have been con­

ventionally studied by means of Navier-Stokes theory [4, 51, 27L but the theory

does not quantitatively predict the shock wave structure, especially when the ~Iach

number exceeds a value in the neighborhood of 1.5[47, 13]. To remedy the situation

the Boltzmann equation has been used and its Burnett-order solutions have been

explored[52, 25] as a way to extend the Navier-Stokes theory, but they have so far Dot

yielded reliable solutions to the problem in the high Mach Dumber regime. Another
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kinetic theory-based approach is that of wlott-Smith[42] which has been followed

by a number of researchers[43, 49, 10, 33, 39, 3]. The ;\Iott-Smith method yields

different results for different closures taken, although they all exhibit a qualitatively

correct wlach number dependence for the inverse shock widths. Despite the fact that

it accounts for shock structures in reasonable accuracy for wide ranging ~Iach num­

bers the ~Iott-Smith method was deemed to be an ad hoc approximation method

according ta the assessment of Grad[29], and he proposed the mome~t method as

a mathematically more complete theory for shock waves. His moment method has

been taken up by a number of researchers[32, 2]. However, it has encountered a

difIiculty in that the theory predicts that there is no shock solution beyond a criti­

cal i\lIach number which, contrary to experiments, appears at iVAl = 1.65 according

to Grad's own investigation[29], at N M = 1.851 according to Holway [32L and at

NA! = 2.09 according ta Anile and Nlajorana[2]. Therefore, the continuum theories

derived from the Grad moment method encounter difficulties in the regime of ~Iach

number where the Navier-Stokes theory begins to be ineffective, and that is just

the regime where an extended theory is needed. Ali these theories based on the

moment method require suitable closures which make it possible to close the open

set of Grad's moment equations. Generally, in the aforementioned approaches ta

study the existence of shock solutions, the first thirteen moments are retained and

the moments beyond the first thirteen are expressed in terms of the lower-order nla­

ments. Such closures invariably give rise ta a set of partial differential equations for

stresses and heat fluxes which supplement the Rankine-Hugoniot relations. These

sets of equations used 50 far do Dot admit shock solutions beyond the values of Nlach

number mentioned. The precise values for the upper limit of lVlach number appear

ta depend on how the moment equations are structured on the basis of the first 13

moments. But one common feature is that there is an upper limit in Nlach num­

ber beyond which there is no shock solution. This difficulty of the Grad moment

equations derived from the Boltzmann equation is not only a challenge for the shock

wave problem per se, but also poses sorne serious ccnceptual problem for extended

irreversible thermod}'Ilamics[22, 37, 44] which aims to generalize the classical theory

•

•

•
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of linear irreversible thermodynamics based on the local equilibrium hypothesis [12].

The reason is that the former theory is structured on the macroscopic equations at

the level of moment equations for nonconserved variables and the foundations of

the theory become questionable if the theory so constructed is unable to treat flow

problems such as shock waves. Therefore. the shock wave still poses important the­

oretical challenges to both kinetic theory of gases and irreversible thermodynamics.

In this thesis, we study the question from the vie\\1>0int of the generalized hydrcr

dynamics formulated in the nonequilibrium ensemble method[24] and the version

of extended irreversible thermodynamics[23] which is given statistical mechanical

foundations thereby. (Note that the version of extended irreversible thermodynam­

ics used in this thesis is different from that of Jou et al. [37] and NIüller et al.[44]).

Since the generalized hydrodynamic equations employed are basically the moment

evolution equations, one can wonder if there is any basis to hope that they will prcr

vide us with an adequate solution to the problem. The answer is in the affirmative,

since the closure relations used for the constitutive equations in this work make a

crucial difference from those used by Grad [29] and others[32, 2]. Furthermore, the

applications of the steady constitutive equations subjected to the closure relations

used here have produced sorne results which are in quantitative agreement with

experimental rheological data(15, 46, 16 t 21 t 41, 5, 6]. Such agreements have been

rather encouraging and we would like to show that similarly encouraging results

can be obtained for shock wave problems. In this work, we will only consider a

one-dimensional steady shock wave problem.

•
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6.2 Brief Survey of Current Theories

Continuum theories were used ta compute the properties and structures of shock

waves. The Navier-Stokes equations are applied to study the steady shock wave

problems. For such problem, those equations yield a set of coupled nonlinear ordi­

nary differential equations, and can be solved numerically[27], or a closed solution

can he obtained for special case of Prandtl number of 0.75[14]. These works shows



that the Navier-Stokes equations are certainly valid for very low :Ylach number flows.

typically less than 1.25, and most unlikely to be valid for Nlach numbers greater than

two. Experimentally, a good agreement was found between wind tunnel experiments

and Navier-Stokes at Nlach number equal1.8(34, 35]. The Burnett profile differs sig­

nificantly from the Navier-Stokes profile for Nlach numbers of the order of 1.8. which

can give doubt to the Burnett formulation. The thirteen moment equations cannot

be solved for the shock wave structure at :\tlach numbers above 1.65. Because of

the problems with continuum theory, several methods were developed and applied

to the ~Lrong shock structure by solving the Boltzmann equation

•
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•
where f is the distribution function, n is the density, c is the velocity, F is an ex­

ternal force applied on the system, rI is the cross section, {l is the solid angle and

the superscript * denotes the postcollision value. In 1951, Nlott-Smith(42} proposed

a moment method to be applied to the shock wave problem. He suggested that

the distribution function within the shock wave can be written as a linear combina-

tion of the equilibrium upstream and down stream distribution function~.. This is

sometimes called a bimodal distribution:

(6.2)

where the subscripts 1 and 2 denote the upstream and downstream states respec­

tively. Let us take the x-axis to be normal ta the wave, then the equilibrium

Nlaxwellian equations cau he written as

•
f {3~ [{32 (( )2 2 2) ]1 - tr3 / 2 exp - 1 U - UOl + v + w , (6.3)

(6.4)



where {Ji = (2R:Ii)-1/2. U~ v~ w are the velocity component in the x, y and z directions

respectively. UOI and U02 are initial upstream and Low stream velocities in the x­

direction, respectively. The weighting factors Nt and lV2 must be such that JVt = nt.

N2 = 0 upstream and NI = 0, and N2 = n2 downstream. Equation (6.2) may be

integrated over all velocity space to give the following condition

•
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(6.5)

A second condition can be obtained by appLying the mass conservation equation

between the upstream state and a point within the wave:

(6.6)

•
and when evaluating Ua = J~ uf dudvdw for the distribution in equation (6.2) we

have

(6.7)

A third relation can he supplied by an additional moment equation. The choice

of the moment is arbitrary. Nlott-Smith used both u2 and u ~. If /v1 denotes the

moment, then from the Boltzmann equation (6.1), we cao deduce its evolution. Sa

for steady one-dimensional flow

d fOC 14
1t'-d (nuM) = n 2M(f*f; - f fda IC2 - cd dD.dcI ,

x -00 0
(6.8)

where the angular brackets denote the f-weighted veLocity average. Therefore, for

M = u2 we have

•
(6.9)
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For :\tIaxweli malecules, (6.9) can be evaluated[7] ta give

.!!:..- ( 3) _ 8 (2RTd 1/2 n II
nu - 1/2 xx'dx 151ï n 1À 1 m

Now, we make use of (6.2) to evaluate (nu3 )

198

(6.10)

Conservation of energy between the upstream and downstream states requires

•
so that

d 3 2 2 2 d
-d(nu) = -UOl(u02 - UOI)-dNI,

x 5 x

(6.13)

(6.14)

The stress IIxx can be evaluated from its statistical definition in a way similar ta

(nu3) ta give

n
-IIxx
m

(6.15 )

(6.16)

where we used equations (6.5), (6.6), and (6.7) ta go from equation (6.15) ~o (6.16).

Finally, substitution of equations (6.16) and (6.14) inta (6.10) yields the following

differential equation for NI/nI as a function of x/À I

•
(6.17)
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where
8 (2R:Ii) 1/2 UOI - U02

Q=
37r1/ 2 U02 UOl + U02

The solution for (6.17) is

The solution for the density profile follows directly from equation (6.19)

n - n2 NI 1
=-=-------

nI - n2 nI 1 ~ exp (Q(x lA i ) ) .
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(6.18)

(6.19)

(6.20)

•

•

The method has also been extended to other inverse power law rnolecular models[43J.

The lVlott-Smith has been found to be inadequate to describe the thickness of shock

waves at low J\tlach numbers but remarkably good at high l\!Iach numbers. AIso, the

symmetry of the Nlott-Smith solution confiicts with the experimental findings of the

asymmetry of shock waves.

The goal of dilute gas kinetic theory is to solve the Boltzmann equation sub­

ject to appropriate initial and boundary conditions. Sorne of the direct methods

of solution have been attempted[11, 54), but they usually involve sorne kind of ap­

proximation or linearization of the nonlinear collision integral term in the equation.

The linearization procedure is valid only in the limit of a small deviation from equi­

librium. However, many processes of practical interest occur far from equilibrium

and therefore necessitate the inclusion of the nonlinear collision terr:l. Another diffi­

culty associated with the solution to the Boltzmann equation re~ides in the choice of

suitable initial and boundary conditions on the density distribution function. The

Boltzmann equation requires only one initial condition or a condition at any given

time for that matter. As far as the boundary condition is concerned, the density

distribution function must be prescribed on the boundary of interest in phase space

since it is dependent on both the velocity and the position. In the velocity space

the bounding regian is usually taken to lie at infinity and the distribution function

is assumed ta vanish, or more generally, to be bounded there. The remaining task



is then to prescribe the value of the distribution function on the bounding region

in real space. In the case of a dense fiuid, the fiuid molecules are assumed to be

in equilibrium with the bounding walls so that a Nlaxwellian density distribution

with the wall velocity and temperature is readily assigned to the molecules in the

immediate vicinity of the wall. It is in the case of a dilute gas that difficulties are

bound to arise since the gas molecules at the boundary are not assumed to be in

equilibrium with the wall.

Another standard procedure for solving the Boltzmann equation is the Chapman­

Enskog expansion method. The density distribution function J is expressed in the

form of an infinite series in terms of an ordering parameter é as follows

•
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(6.21)

•

•

Physically, the parameter ê may be related to the Knudsen number. The substi­

tution of this series in the Boltzmann equation gives rise to a hierarchy of linear

integral equations governing each function in the expansion. The first approxima­

tion /(O) turns out to be a NIaxwellian distribution function. The normalization

parameters in /(0), namely, n, T and Co, in the notation of reference(ll), are identi­

fied with the number density, the temperature and mass velocity, respectively. This

results in a condition on the rest of the tenns in the expansion, i.e., J{i), which

ensures the uniqueness of the solution to the nonhomogeneous integral equations

governing these terms. Therefore, only the pressure tensor and the heat flux are

expanded in the form of equation (6.21). To first approximation the equations of

change are those governing an inviscid non-heat-conducting fiuid. To second order

in approximation the integral equation governing /(1) is solved and leads to New­

ton's law of viscosity and Fourier's law of heat. The expressions for the coefficients

of viscosity and thermal conductivity are determined in terms of bracket integrals,

which in turn are expanded in tnmcated series of orthogonal Sonine polynomials.

The resulting terms in the latter expansions are complicated int~grals involving the

dynamics of bimolecular collisions wmch in principle are evaluated, once the inter-



action potential is specified. To third order in the expansion. one obtains the Bur­

nett equations which contain higher derivatives of the thermodynamic variables and

powers of lower derivatives. The important issue here is that the Chapman-Enskog

expansion may not conform to the second law of thermodynamics beyond the second

order expansion[12]. To second order approximation of Chapman-Enskog, the sta­

tistical expressions for the calortropy density~ the caloriropy flux and the calortropy

production are identical with the expressions derived on the basis of macroscopic

formulation or phenomenological theory. However, as the method is pushed further

to the third order and higher ~ the calortropy production is no longer guaranteed

to be positive semidefinite and the second law of thermodynamics is not satisfied

in general. However, it might be possible that this method, when continued ta an

infinite number of moments, leads to a set of macroscopic equations consistent with

the second law of thermodynamics.

Grad's thirteen moments method[12] is another weIl known method of solving

the Boltzmann equation. The density distribution function is expanded in terms of

Hermite polynomials in the molecular velocity
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f(C; t) = fo (1 + Ap : [CC](2) + Aq • ~mC2C) •
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(6.22)

where fa is the local equilibrium distribution function and the coefficients Ap and

Aq are proportional to II and Q, respectively. It must be noted that the moments

higher than II and Q are set equal to zero. Therefore, we find

'l/J2 - 'Pq(T, n)Q, (6.23)

(6.24)

•
where '{Jo, i.pq, 'Pp are functions of T and n which cao he explicitly evaluated. A hier­

archy of evolution equations is obtained governing the coefficients in the expansion.

The coefficients are expressed in terms of the macroscopic observables or moments



and their corresponding equations are obtained on the basis of the Boltzmann equa­

tion. Under the assumption that the gas is sufficiently close to equilibrium~ the

expansion of the distribution function is truncat~d to include up to third-rank ten­

sor terms. The resulting coefficients are then identified with the variables defining

the flow field, namely~ density! velocity, temperature. pressure tensor, and heat fhLX.

Unlike Newton's law of viscosity and Fourier's heat law, or the Burnett equations.

Grad's constitutive equations are first order partial differential equations in time[?].

These equations are essentially linear at least in the thermodynamic forces and

fluxes and 50 do DOt apply ta flow processes under high nonequilibrium condItions.

One of tbese conditions of interest in the present thesis is that of a supersonic gas

flow where a shock wave develops. For the shock wave problem Grad[29] proceeded

as follows. The conservation equations are gjven by the known Rankine-Hugoniot

equations for a shock wave:

•
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d
-pu
dx o~
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(6.25)

(6.26)

(6.27)

The conservation equations are supplemented by the following by the following two

relations derived by using the thirteen moment approximation[28]

0, (6.28)

where p is the mass density, u is the fluid velocity, p is the pressure, ITxx is the•
d 22 d d d
-d(2uQx) + -Qx-dU + 2RT-

d
llxx + 7RIIxx -

d
T-

x 5 x x x
2TIxx d d 4
-p-dx (p + ITxx ) + 5Rpdx T + 3f3PQx - D.

(6.29)

(6.30)



xx-component of the shear stress~ E is the internai energy density, and Qx is the

x-component of the heat flux. {3 is a function of temperature determined by the

molecular model used. From the aforementioned equations, Grad[29] was able te

study the direction field generated by the functions u and T. He found that the

singular points of the obtained direction field are different from those obtained

by using the Navier-Stokes equations. From the linearized solution around the

singular point, the conclusion of nonexistence of a shock path was deduced for :Vlach

numbers above 1.65, where the singular points change their behavior. For :Vlach

numbers below the critical value. Grad developed a clever perturbation scheme to

calculate the shock profile. He alse established that in all the cases he studied the

shock thickness is bounded, though rus definition of thickness is different from the

maximum slope definition adopted in this thesis and almost by everyone else. Other

people adopted higher order moment closures but they could not remove the critical

:Ylach number above which the shock solution does not exist; they simply shifted

this number up or down by few decimal places.

In 1980 Eu formulated the modified moment method as an appropriate procedure

for the solution of the Boltzmann equation[55]. The formulation was first restricted

to the case of dilute gases and later generalized to the case of liquids. Recently, Eu

developed the nonequilibrium ensemble method[56] which parallels the equilibrium

ensemble method of Gibbs. In his formalism, Eu used an irreversible kinetic equa­

tion, e.g., the Boltzmann equation, and an extended Gibbs relation for calortropy as

a nonequilibrium generalization of Clausius entropy. The availability of an extended

Gibbs relation for calortropy permits us to identify various parameter appearing in

the nonequilibrium canonical distribution function and thus bridge the phase space

to the phenomenological space of thermodynamics. It must be aclmitted that a ther­

modynamic theory cannot be built with the Boltzmann entropy since its differential

is not exact in the extended Gibbs space[23]. However, the relative Boltzmann en­

tropy cao account for the difference hetween calortropy and Boltzmann entrepy and

it can he expressed in terms of fluctuations in temperature, chemical potentials, and

generalized potentials. A set of deterministic evolution equations for the fluctuations

•
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can be derived from kinetic equations. On the other hand, if a stochastic treatment

of those fluctuations is taken, a new concept of thermodynarnic quantization can

arise. Using this method, one is able ta derive a set of generalized hydradynamics

which are tested in different contexts and proved very successful.

•
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6.3 Governing Generalized Hydrodynamic Equa-

tions

vVe assume that flow is in the direction of the x coordinate. Since we are interested

in a steady shock wave, the governing balance equations for mass, momentum. and

energy are time-independent. They are in the form

d
-pu O.
dx

• d~ (pu2 + P + IIxx ) - 0,

:x [pu (&+~U2) + u (p + IIxx ) + Qx] 0,

(6.31)

(6.32)

(6.33)

where p is the mass density, u is the fluid velocity, p is the pressure, llxx is the

xx-component of the shear stress, E is the internai energy density, and Qx is the

x-component of the heat flux. We note that in one-dimensional flow geometry for

the present problem

These balance equations are supplemented by the evolution equations for flrx and

Qx within the framework of the first thirteen moments. The evclution equation for

the stress tensor and heat fltL,,<[22] are

• pdÎI = -V. tP2 - 2p [Vu](2) - 2 [II· VU](2) - E.IIq(K),
~ ~

(6.34)

(6.35)
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p~ - -V· tP3 - pêpTVInT - II· vA

- pêpT
+V(p6 + II) . II - Q. VU-TQq(K),

205

(6.36)

•

where 6 is the unit second-rank tensor, d/dt = 8/ât + u· V is the substantial time

derivative, and 1/12 and 1/13 are higher-order moments which are defined, in the case

of a dilute monatomic gas, by the statistica1 formulas

1/;2 (me (ec](2) f(C;t)) ,

(6.37)

with C denoting the peculiar velocity and f(C;t) the nonequilibrium distribution

function obeying a kinetic equation, say, the Boltzmann equation. The symbol

[VU](2) stands for the traceless symmetric part of Vu. Other symbols are as follows:

II denotes the traceless symmetric part of pressure tensor P, fi = II/ p; Q is the

heat flux, Q= Q/p; êp is the specifie heat per mass at constant pressure: ft = êpT

is the enthalpy per mass; 170 and '\0 are the Chapman-Enskog viscosity and thermal

conductivity Chapman et al.(ll], respectively; and q(K) is a nonlinear factor defined

by

where

()
sinh",

q K = ,
K

(6.38)

(6.39)

•

(mkB T)1/4 ( 1 1)1/2
'" = -II : II + -Q . Q .

..j2pd 2TJo '\0

Here d denotes the diameter of the IDolecule and m is the molecular mass. In Eq.

(6.36), we haveomitted a term related to a third-rank tensor, namely, (mCCCf(C;t)): Vu

in accordance with the spirit of the thirteen moment method. Furthermore, this

term even if taken into account would not change the basic conclusion of this work;

it will nlerely add to the second term from the last in Eq. (6.36) if it is expressed



in terms of lower-order moments. The higher-order moments t/12 and 1/J3 obey thcir

own evolution equations. Therefore, the e"olution equations (6.35) and (6.36) are

the leading members of an open set of moment equations. It is usually dosed by

expressing 1/J2 and 1P3 in the lower-order mOlnents, namely! II and Q as weIl as the

conserved moments p, u. and E. Within the first thirteen moment approximation

tP2 is proportional to Q whereas 1/J3 is given in terms of II. Such closure relations

give rise to partial differential equations for II and Q, which farm the governing

equations for shock wave problems in the approaches[32, 2] based on the moment

equations following Grad[29]. We have earlier mentioned that such approaches do

not yield shock solutions for the Nlach number beyond a critical value. We propose

a different set of dosures.

vVe take the following dosure relations for VJ2 and VJ3 appearing in the moment

evolution equations for II and Q :

•
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1/J2 = 1/13 = o.
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(6.40)

This set of dosure relations are different from those taken in Grad's theory of solution

for the Boltzmann equation and various existing variants of it, but there is no a priori

reason to disfavor the present closure relations over those which expand 1/;'2 and 1P3

in Q and II as weIl as density and temperature. With these closure relations the

constitutive equations are given by

arr
at

- -2p [Vu](2) - 2 [II . Vu](2) - i-IIq(K),
110

(6.41)

•

BQ - - .. pêpTat - -pCpTV ln T - II· Vh + V(p6 + II) . II - Q. VU-TQq(K).

(6.42)

It has been shown in a number of studies[15, 46, 16, 21, 41, 5, 6] on nonlinear

transport coefficients that the constitutive equations (6.41) and (6.42) give rise to

sufficiently accurate nonlinear transport coefficients and particularly non-Newtonian



viscosities in comparison \V;th experiments. On the strength of this finding, we

take the closure relations in Eq. (6.40) and show their effectiveness for the shock

wave problem. We are thereby able to formulate a continuum hydrodynamic theory

of shock waves which provides shock solutions beyond the critical ~Iach numbers

mentioned earlier in connection with the moment method approaches. Based on the

examination of the direction field for the governing equations in the present theory.

it will become ev;dent that shock solutions should exist for ail :\Iach numbers.

In the case of flow geometry for the present problem, the steady-state constitutive

equations for IIxx and Qx under the closure relations mentioned are obtained from

•
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Eq. (6.35) and Eq. (6.36) as follows:

(6.-13)

•
(6.44)

Eqs. (6.43) and (6.44) are partial differential equations for '.relocity component u

and temperature T'. We emphasize that there do not appear partial derivatives of

IIxx and Qx in these equations owing to the dosure relations taken.

Integration of the balance equations (6.31) - (6.33) yields

pu - Al,

pu2 + P + IIxx _ P,

(6.45)

(6.46)

(6.47)

•
where 1\;[, P, and Q are integration constants with the dimension of momentum

per volume, momentum flux per volume, and energy flow per volume, respectively.

These equations are aIso supplemented by the equation of state and the calorie
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equation of state

p - pR,T,

where R, is the gas constant per ffi3SS. Let us define dimensionless variables

208

1,6..!8)

r = PpM-2 ,

8 = AI21?,Tp-2 •

(6...19)

• The length scale is provided by the mean free path l defined with the upstream

nlomentum per volume, Ai[ = Pl Ul, where the subscript 1 refers ta the upstream.

The downstream will be designated by subscript 2. The upstream mean free path

is defined by

(6.50)

where 1101 is the upstream Newtonian viscasity at the upstream temperature Tl. The

transport coefficients 170 and Ào are reduced with respect to the upstream transport

coefficients 1101 and ÀOl , respectively:

(6.51)

•
With this reduced variables we cast Eqs. (6.45) - (6.48) in the fonns

4> - rf),
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• rv - 1.

(6.52)

ru2 + (j) + a - 1.

rv3 + 54n; + 2av + 2o<.p - o.

From these equations and ail reducing constitutive equations (6.43) and (6.44) we

obtain the following five equatic.ns

•

dm - IJ~

u+4>+a - 1.

v:': + 58 + 2av + 2o<p - o.

1 -4 4
-oaq(K.) + -cr8cv + -r/J8cv - o.
Tt· :3" 3"

Here the new dÜrlensionless paranleter ;3 is defined by

(6.53)

(6.54)

(6.,55)

(6.56)

(6.57)

(6.5R)

•
with BI deuoting the red1..lced upstream temperature and the Prandtl number defined

with the upstreanl quantities: NPr = êpTl1JOl/).,01. Since the reduction scheme used

here is slightly difIerent from that in the literature[29, 27], it is useful to explain

it~ especially, with regard to the appearance of the dimensionless number j3 in Eq.

(6.57). On multiplication of the mean free path l, the first term in Eq. (6.44), apart
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from the nonlinear factor q(K.), can be reduced as follows:

where the second factor on the right can be written as

210

•

The second equality in the equation above follows on making use of the definition

of Prandtl number and the reduced temperature. Finally, we obtain

l h,P
Q

= a(3rdJ<p . p2
'\0 x À- }v12

and Eq. (6.57) follows on dividing the equation with P2 lvl-2 and use of the definition

of j3 in Eq. (6.58). The argument K. in the nonlinear factor q(x:) is given by the

formula

where

(6.59)

l
c = th. (6.60)

•

with th denoting the mean free path for hard spheres in tenns of the hard sphere

viscosity th = TlOl (hard sphere) /1\;/. In the case of a ;\-Iaxwell gas, f = 1 and

where A2(5) = 0.436 and

which i5 the reduced Maxwell potential energy of potential strength Vm for two hard

spheres of radius d/2 at contact. This reduced potential energy is set equal ta unitY



by suitably choosing the reduction parameters Al and P. Therefore, for a 1'faxwell

molecules with Ed so taken we obtain•
CHAPTER 6. SHOCK WA\'ES

K. = (31r) 1/4 (3A2 (5)) 1/2 _1 (2 ..!.. 2. 2) 1/2
5 NA! (j>f)1/4 q + 15f) 0 'P
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(6.61)

We note that the parameter 0 is related to the upstream ~Iach number as fol1ows:

where

J.L = v'25 - 160.

(6.62)

(6.63)

•
The parameter J.L ranges from 0 to 3 which yields NM =x. Note that the upstream

~fach number can be equivalently defined by

where "fO is the polytropic ratio: 10 = Cp/Cv.

To determine the boundary conditions on v, qy, and f), we observe that (j - 0

and cp ~ 0 as ç ~ +00. Eqs. (6.56) and (6.57) are identically satisfied in the limits

if v and B become independent of ç at the boundaries. Therefore, as ç ~ ±oo

•

() _ k.
!.pU,

v + 4> - 1,

(6.64)

(6.65)

(6.66)

(6.67)
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The solutions of Eqs. (6.65) - (6.67) are

212

(6.68)

(6.69)

(6.70)

The upper sign is for the upstream and the lower sign is for the downstream. These

solutions provide the boundary conditions at the upstream and downstream. They

also imply that the reduced density is given by

With the help of Eqs. (6.53) - (6.55) the ditrerential equations (6.56) and (6.57)

may be cast into the following forms•
8

r--­
- 5±p,'

dv 38 (v2 - v + 8) ( )
de - 2( )qK,
~ 4r,.-v 1 - v

d8 _ _ B [I3BV (1 - v) (n + v2 - 2v - 38)

dE. 5v2 (1 - V)2 ,\.

3(V2 -v+B)(n-V2 -58)] ( )+ qK.
4r7*

(6. il)

(6.72)

(6.73)

•

These governing equations for shock profiles are solved subject to the boundary con­

ditions in Eqs. (6.68) - (6.70). These equations generalize the governing equations

in the Navier-Stokes theory as will be discussed presently.



6.4 Shock Solutions of the Governing Equations•
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The second term on the right-hand side of Eq. (6.73) stems from the thermoviscous

effect involving the second and third terms as well as the term krrxx8x ln T in Eq.

(6.44). These, together with the second term in Eq. (6.43), are the terms that do

not appear in the Navier-Stokes-Fourier theory. To indicate the difference between

the goveming equations in the classical Navier-Stokes-Fourier theory and the present

theory and to facilitate the solution procedure for Eqs. (6.72) and (6.73), we present

the governing equations for a one-dimensional shock wave in the former theory

These equations follow frOID Eqs. (6.72) and (6.73L if 1 - v is replaced by (j). Eq.

(6.65) is made use oL and the second term on the right-hand side of Eq. (6.73) is

omitted since it arises from the thermoviscous coupling term that must vanish in•

dv

dÇ

dB
dÇ

O{3 (0: + v2 - 2v - 38)

5.,\*

(fi.74)

(6.75)

the linear order. Clearly, Eqs. (6.74) and (6.75) are special cases of Eqs. (6.72) and

(6.73).

We note that in the case of a hard sphere gas the reduced transport coefficients

Tl* and À· depend on 8 only:

* ( () ) 3/2
À = - .

BI
(6.76)

•

Ta facilitate comparison of the present governing equations with the gaverning equa­

tians in the literature, we note the relation between the reduced distance ç in the

present work with the reduced distance z in the literature:

(6.77)

This relation stems from the difference in the definitions of mean free path in the



present work and the literature wmch has been used to reduce the governing equa­

tions. The reduced distance z is defined as z = x/ln where the mean free path ln

is given by ln = (1701/pd Jrr/2RT1• The governing equations (6.72) and (6.73) are

quite different from the evolution equations for Cf and cp appearing in the moment

equation approach of Grad[29]. The governing eqnations in the latter approach,

which are differential equations for the stress tensor and heat flux, were found ta

fail ta produce shock solutions for ..!V1\! 2:: 1.65. The differential equations for (j and '"

arise in the Grad theory, primarily because of the particular closure relations for 1/J2

and 1/J3 taken, which inevitably give rise to spatial derivatives of 1/J2 and tP3' In the

following we examine the governing equations (6.72) and (6.73) and the existence

of shock solutions with the help of singularities of the direction field equation.

Here we will examine the governing equations in the case of the transport co..

efficients satisfying Eq. (6.76). For the Navier-Stokes theory the direction field

equation is given by

•

•
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dv w (v2 - v + 8)
---------

dB v (38 + 2v - v2 - Q) ,

where
15À*

:.v =--
4;3r/*B'
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(6.78)

(6.79)

ft is independent of B for the transport coefficients obeying Eq. (6.i6). The singu­

larities of the direction field are given by

V2 - v + () = 0,

V2 - 2v - 3B + Q 0, (6.80)

•
v = o.



•
CHAPTER 6. SHOCK ~VAVES

There are three singular points:

Pl: v = k(5 - 11-), () = i4 (15 + 2f..L - 11-2)
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P2 : v = O. 0=0.

•

Note that Po and Pl coincide with the boundary values given in Eqs. (6.68) and

(6.70). vVe remark that Po and Pl are also the singular points of the governing

equations (6.74) and (6.75) for the Navier-Stokes theory where the derivatives dv/dç

and dO / dÇ vanish. It can be shawn, by calculating the eigenvalues of the linearized

govErning equations~ that Po is a saddle point whereas Pl is a node and P2 is a

spiral. The shock solution is a curve connecting Po and Pl as ç -. ac from ç = -ao.

It is possible to show that there exists a unique such solution for every value of

a[29, 27] since the aforementioned nature of Po and Pl remains invariant for all

~'Iach numbers. Therefore, the Navier-Stokes theory admits shock solutions for all

values of ~Iach number.

We DOW examine the governing equations (6.72) and (6.73) by using the direction

field equation:

dv -w (1 - v) (v2 - v + 0)--::--------_----.:.__..:........:..._-_----.:._-------::-
dO [v (1 - v) (V2 - 21.' - 38 + a) + 4~ (V2 - v + B) (a - v2 - 50)] .

(6.81 )

It is interesting to see that the nonlinear factor q(K) does not appear in this equation

and thus the singularities of the direction field is not affected by the nonlinear factor.

The singularities of the direction field are given by the equations

•
1- v = 0,

2
V - V +0 = 0,

(6.82)

(6.83)



v (1 - v) (V2 - 2v - 39 + a:) + 4~ (v2 - v + 9) (a: - V2 - 59) = o. (6.84)•
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The first two equations are for the loci of zero slopes whereas the last equation is

for the loci of infinite slopes. Eq. (6.84) factorizes ta the farm

The intersections of the curves arising from Eqs. (6.82) - (6.84) are following five

points:•

where

A - 4
P

u (v - 1) [(1 -~) a + (1 + ~) v2 - 2V] !

15 4/3 4,8

213 [( 1).~ ( 5) 3]B ="5* 1 - i3 v" - 1 - 4/3 v - 4/3 a .

P3 : v = l,

(6.85)

(6.86)

(6.87)

P4 : v = l, (} = ~ (a - 1) .

•

The singularities Po, Pl, and P2 coincide with the singularities of the Navier-Stokes

equations. It can be shawn that Po and Pl are also a saddle point and anode,

respectively whereas P2 is a spiral as in the case of Navier-Stakes theory. An example

of loci of zero and infinite slopes for both the Navier-Stokes and present theories

are plotted in the case of NM = 2 in Fig. 6-1, where the broken Hne is for the



Navier-Stokes theory and the heavy solid line is for both the Navier-Stokes and

present theories, whereas the light ane is for the present theory only. The light•
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21.5

- -- --

1
v

0.5o

-1

1

2r----T---r---------.------r---rr-------,

a:> 0

• Figure 6-1: Loci of zero and infinite slopes in the direction field for the lVavier­
Stokes and generalized hydrodynamic theories in the case of lVu = 2. The broken
line is for the Navier-8tokes theory whereas the heavy line is for both the N avier­
Stokes and present theories. The light lines are for the present theory which predicts
a closed loop for a locus. Both theories share the same points of intersection Po
and Pl as well as P2 and the domain of negative slopes bounded by curves passing
through Po and Pl. Shock solutions lie in the domain and connect Po and Pl. Points
P2 an! P3 , which are intersections of the closed loop and the bald salid line, and P4 ,

which is the intersection of the closed loap and line v = l, are not indicated in the
figure. One of the parabolas which should appear· in the the upper left corner is out
of the picture in the present figure.

•

Une is a closed loop. The point Po is loeated at the origin of the (v,O) eaordinates

whereas points P3 and P4 are the intersection of the closed loop with Hne v = 1.

Both theories share the same inverted parabola (heavy line) whieh interseets the

broken Hne and the closed laop deseribed by Eq. (6.84) or Eq. (6.85) at the same

points Po and Pl' Point P3 is neutral in a direction and unstable in the other,

whereas P4 is unstable-an unstable foeus. It therefore means that bath theories



not only share the same boundary conditions at the upstream and dOWIlstream. but

also have an intersection of domains which are bounded by curves of negative slopes

and where the shock solutions lie. Singularities P3 and Pol are not associated with

shock solutions. It must be noted that line v = a is neither the locus of zero slopes

nor the locus of infinite slopes. As the 1'Iach number increases~ the intersections

Po, P3 , and Pot coalesce at v = 1 which corresponds to the boundary value for

velocity at infinite ~Iach number. This situation is almost achieved at J.Vu = 10 as

shown in Fig. 6-2. The shock solution must connect Po and Pl' The fact that the

singularities Po and Pl are shared by both theories and there is an intersection of

domains where the slopes are negative means that a shock solution must exist for

the governing equations (6.72) and (6.73) for ail Nlach numbers as is the case for

the Navier-Stokes equations for all ~Iach numbers. The uniqueness follows from the

lmiqueness of the solution to Eq. (6.81) .
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•

• 6.5
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N umerical Results and Comparison with Sim-

ulation Data

6.5.1 Shock Profiles and Widths

The governing equations are numerically solved subject to the boundary cOllditions

given in Eqs. (6.72) and (6.73). Sorne examples for shock profiles for velocity.

temperature, density, and pressure are given for a few values of ~'1ach number in

Figs.6-6. In these and other figures in this work, the solid Hne is for J.Vu = 1.5,

the bold solid line is for J.VM = 2, the dashed tine is for N M = 5, the dotted Hne i.~

for NA! = 8, and the dash-dotted line is for Nu = la. The corresponding values for

the stress (0') and heat flux (cp) are plotted in Figs. 6-7 and 6-8, respectively. In

the literature, the shock width 8 is defined by means of the density profile in the

following form

• 8 = n2 - nI
(dn) ,

dz max:

(6.88)
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a:> 0

-1

o 0.5
v

1 1.5 2

•

•

Figure 6-2: Same as Fig. 6-1 exceptfor Nu = 10. Notice that Po already has aImost
approached point P3 at v = 1. B = o. The closed loop in Fig. 6-1 becomes aImost
rectangular with the minimum at about B ::::::: -50. The parabola at the upper right
corner almost meets with the closed loop al v = 1 and B = o.

where the reduced distance z has the relation to the reduced distance ç used in this

work; see Eq. (6.77).

In Fig. 6-9 the shock widths calculated (octagon) by the present theory q,re

compared with ~Ionte Carlo simulation data (*) by Nanbu et al. [45], the results

by the ~'1ott-Smith c; (+) and C; (0) closures [42], and the results by Salwen

et al. who modified the lVIott-Smith method ta include an additional moment[49]

[e.g., (C;, Cx C 2 ) (x) or (C;, Cx C2
) (0) closures]. The solid line is drawn through

the results of the present theory to guide the eyes. The Navier-Stokes predictions

are presented in Table 1 together with the inverse shock width values for the points

appearing in Fig. 6-9.

Since the differential equations (6.72) and (6.73) are stiff, the solutions are ob­

tained by using Gear's method with a relatively high tolerance « 10-4 ). Therefore,
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Figure 6-3: Shock profiles for velocity for various N/ach numbers for a !v[axwell gas.
Solid line: N.u = 1.5; bold solid line: lVA/ = 2; dashed line: NA! = 5; dotted line:
NA! = 8; dash-dotted line: NA! = 10.

the numerical results are not of high precision, but they are adequate for comparison.

The present results obtained are doser to those by the ~Iott-Smith c~ dosure (0)

for alllVlach numbers examined whereas they differ from the lVlonte Carlo simulation

data (*) of Nanbu et al. by 14 to 20%. Note that the lVlonte Carlo simulation results

weil agree with the results by the l\tlott-Smith C; closure (+), but this method of

dosure does not give results convergent with those by the lVrott-Smith c~ dosure

(D). The l\tlonte Carlo simulation method of Nanbu et al.[45] is a modification of

Bird's method[7] and, especially, its treatment of collisions is basically the same as

in the latter method.

Consequently, the method of Nanbu et al., as expectedly and noted by them[45] 1

gives the same results as by the Bird method. Since the Mott-Smith method can he

by no means regarded as exact and the C; and C~ closures give divergent results,

the converged results are quite probably located elsewhere if the method ever yklds
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• Figure 6-4: Shock profiles for temperature for various Mach numbers for a Nlaxwell
gas. The same meanings for the lines as in Fig. 6-3.

convergent results as the number of moments included is increased. The reason for

this expectation can be seen in the work of Salwen et al.[49] which gives different

values from those by the ~.fott-SmithC; closure for the inverse shock width. There­

fore, the particular set of results reported by the :NIonte Carlo simulation method of

Nanbu et al. [45], who report that the same results also are obtained by the method

of Bird(7], appears to be as good as the l\lott-Smith C; dosure method is for shock

widths. The present comparison made in Fig. 6-9 therefore does not resolve the

question regarding the accuracy and reliability of the present continuum theory

method, although it produces results that appear to have a qualitatively correct

behavior with regard to the Mach number dependence in the entire regime of NIach

number.

•
To resolve this question, we have performed calculation with a variable hard

sphere model which gives the viscosity as TJo = /Jo (T/To)S where /Jo and To are

constants and we have taken s = 0.75 in this w~rk. This value of s lies between 0.72
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•

• Figure 6-5: Shock profiles for density for uarious lvlach numbers for a lvlaxwell gas.
The same meanings for the lines as in Fig. 6-3.

for the shock tube value and 0.81 for the wind tunnel value suggested in the works

of Pham-van-Diep et al.(47] and Erwin et al.[13]. This model has been tested in

connection with shock widths for argon and helium by Pham-van-Diep et al.(47] and

Erwin et al.(13]. To make comparison of the results by the formulas in the present

theory with experiment it is necessary to use a somewhat different length scale from

the scale given in Eq. (6.77). This difference arises from the different definitions of

mean free path. The experimental data in question are based on the definition of

mean free path by Bird(8] la = (TJOI/pd B v-rr/2'RTl where B = (7 -- 28)(5 - 28) /24.

For this definition of mean free path the reduced distance ~ in the present theory is

related to the reduced distance used for the experimental data considered here as

follows:

•
(6.89)
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•
Figure 6-6: Shock profiles for pressure for various ~Iach numbers for a kIaxwell gas.
The same meanings for the lines as in Fig. 6-3.

Therefore! the shock widths are calculated with the formula

8 = B rs;N n2 - nI
V6 Al (dn) .

d!, max

(6.90)

•

The results calculated (odagan) for the variable hard-sphere model are compared

with various experimental data reported by Alsme~' "[1] (0), Schmidt[50] (~), Garen

et al. [26] (+) 1 Linzer et al. [40] (0) 1 and Camac[9] (x) in Fig. 6-10. A Hne is drawn

through the theoretical values in order to guide the eyes. Although the data of Linzer

et al. and Carnac do not appear to be consistent with the data of AIsmeyer, Schmidt,

and Garen et al. and therefore are difficult to analyze with the present theory

together with those of the latter, they are included in the figure for completeness.

Given the experimental uncertainties (4-5% according to Alsmeyer) and the errors in

the numerical solutions of the governing equations, the theoretical results are judged

to be in good agreement with experiment and, especially, with those by AIsmeyer,
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Figure 6-7: Shock profiles for stress for various lvfach numbers for a Atfaxwell gas.
The same meanings for the fines as in Fig. 6-3.

Schmidt, and Garen et al. In fact, the agreement with Alsmeyer's data is excellent.

Therefore, it can be concluded that the present theory yields reliable results for

inverse shock widths over the entire experimental range of :Nlach number.

The present theory is a continuum hydrodynamic theory for shock waves, and

it provides shock structures adequately for the range of i\'Iach number studied by

other methods and byexperiments. This is in contrast to the Navier-Stokes theory

and other approaches[29, 32, 2] in the moment method mentioned earlier. As far as

the present authors are aware, this is the first time for a continuur.a hydrodynamic

theory to accomplish such results comparable with experiments over the entire range

of Nlach number studied. We thus have achieved an adequate continuum theory

generalization of the Navier-Stokes theory for shock waves in the high Nlach number

regÏme, and the closure relations, together with the nonlinear factor q(K), taken for

the constitutive equations for the stress tensor and heat flux hold the key to the

results obtained.
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• Figure 6-8: Shock profiles for heat flux for various lvlach n-umbers for a A/axwell gas.
The same meanings for the lines as in Fig. 6-3.

6.5.2 Calortropy Production-Energy Dissipation

Energy dissipation is closely associated with shock wave phenomena. It competes

with compression in determining the thickness of a shock wave. Therefore, it is

interesting ta examine energy dissipation. In the framework of irreversible thermo­

dynamics on which the present theory is based, the calortropy production[23j gives

a measure of energy dissipation in the system from a useful to less usefui form. We

have calculated the calortropy production associated with shock waves for various

wlach numbers. For the constitutive equations the calortropy production is given

by Eu[22}.

(j'cal = kBgK. (II, Q) sinh K (II, Q) , (6.91)

•
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• Figure 6-8: Shock profiles for heat flux for various Mach numbers faT a Arfaxwell gas.
The same meanings for the fines as in Fig. 6-3.

6.5.2 Calortropy Production-Energy Dissipation

Energy dissipation is closely associated with shock wave phenomena. It competes

with compression in determining the thickness of a shock wave. Therefore, it is

interesting to examine energy dissipation. In the framework of irreversible thermo­

dynamics on which the present theory is based, the calortropy production[23] gives

a measure of energy dissipation in the system from a useful to less useful form. We

have calculated the calortropy production associated with shock waves for various

)';Iach numbers. For the constitutive equations the calortropy production is given

by Eu(22].

lTcal = kB9K (II, Q) sinh K (II, Q) , (6.92)

•
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where 9 = (mlkaT) 1/2 12n2rF. Therefore a reduced calortropy production relative

ta the upstream condition may be defined by

The reduceà calortropy production is computed from the shock solutions obtained

and presented in Fig. 6-11. It is peaked around the transition point in the shock•
rrF(T1)2= Vt 7 K(a, cp) sinh K(a, cp). (6.92)
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profile and the peak height increases with the Mach number. In the scale of the

figure Ô'ca/. is so small for N},[ = 1.5 that it does not show up in the figure.

Since the global value for calortropy production is of interest and perhaps more

relevant to the present problem, we define a reduced integral calortropy production

• - ff-NM 1:dzlf (~) 2 K(q,~)sinhK(q,~). (6.93)
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This global calortropy production is plotted as a function of Mach number in Fig.

6-12 in the case of the Maxwell mode!. The figure suggests that =c increases with

Nlach number as (NM - a)Q ; namely,

(6.94)

•

where K, a, and Q are constant parameters. For the Maxwell model a ~ 0.85

and Q ~ 3.14 whereas a ~ 0.87 ~d Q ~ 2.98 for the variable hard sphere model

with s = 0.75. It probably is fair to take Q = 3.0 as an approximation~ given the

uncertainties of the numerical results and curve fittings. This energy dissipation

competes with the compressional effect of shock in determining the shock thickness.
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Figure 6-12: Logarithm ofglobal reduced calortropy production ln(CP) vs. ln(NM-a)
for a Maxwell gas. The ordinate is in the units of ln 500. The slope of the line is
3.14 and the value of a is 0.85. The inset is for =c vs. (NM - a) which is presented
to indicate the degree of fidelity of the estimates for the parameters a and Q.

6.6 Discussion and Conclusion

•

In this chapter, we have presented a continuum hydrodynamic theory of shock waves

which yields shock structures (sb.cr"k widths) comparable to those by ~Ionte Carlo

methods and the Matt-Smith methods over the entire range of Mach numbers stud­

ied for the LVlaxweli model of potential. It removes the weakness of the Navier-Stokes

theory of shock waves. However, the present results agree, only within 14-20%, with

the Nlonte Carlo results obtained by Nanbu et al.[45] and with the results by the

Mott-Smith C; dosure method. Our present results are closer in performance to

that by the Mott-Smith C; closure method. Sînce none of the M0tt-Smith meth­

ods can be judged to be exact and they yield nonconvergent numerical results for

the inverse shock widths fer the Maxwell model, it is difficult ta conclude which

one is doser to the true values for shock widths. Ta resolve this question, we have



computed. the inverse shock widths by the present theory for a variable hard sphere

model and compared the results with experimental data on argon. They are found

to be in good agreement with experiments. Thus, we now have a continuum hy­

drodynamic theory for shock waves which correctly performs beyond the regime

of Mach number where the classical Navier-Stokes theory remains useful. Such a

theory is designed from the moment equations derived from the Boltzmann kinetic

equation, primarily, by using different dosures from those used in the moment meth­

ods by others for the same purpose. The performance of the governing equations is

enhanced by the presence of the nonlinear factor q(K.) which basically arises on re­

summation of the Boltzmann collision contributions for all Knudsen numbers. The

present theory is thermodynamically consistent in the sense that it conforms to the

requirement of thermodynamic laws. The aforementioned nonlinear factor is known

to be responsible for correctly accounting for the shear rate dependence of fiuids in

the non-Newtonian regjme of viscosity[15, 46, 16, 21, 41, 5, 6] , the emergence[17]of

boundary layers in fiows under a steep pressure gradient, plug flows[19 , 20], the

resolution[19] of the Knudsen paradox[38], etc. The nonlinear factor q(K.) is not

present in the moment equations in the conventional approach following the formu­

lation of Grad's moment method. As is evident from Eq. (6.92), q(K.) is closely

related to the calortropy production arising from the irreversible process in the

system since Eq. (6.92) can be recast in the form

•
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(6.95)

•

Since 1'.2 (II, Q) is basicaily the Rayleigh dissipation function, this nonlinear fac­

tor q(K.) modifies the Rayleigh dissipation function[48] because there are nonlinear

transport processes present in the system. The generalized hydrodynamic equations

presented in this work have been derived from the Boltzmann equation for dilute

gases. Therefore, one may infer that they are limited to such gases. However, it is

shown in the literature[22] that essentially the same forros of evolution equations

hold for liquids and for dense gases except for the meanings of the parameters ap-



pearing in the equations which must be regarded as those for liquids or dense gases.

More specifica1ly, one can simply regard the transport coefficients 110 and .Ào as weil

as p and êp in the constitutive equations (6.41) aI1d (6.42) as those for the liquid

or dense gas in question and apply them to flow problems in such fluids. Therefore,

the present results also suggest the utility of the present generalized hydrodynamics

approach to shock wave phenomena in liquids or dense gases where Monte Carlo sim­

ulation methods comparable to those of Bird and Nanbu are not available at present.

In this connection, we note that there are some molecular dynamics simulations on

shock waves in liquids[36, 30, 31J. In conclusion, we believe that, together with

the conservation laws for mass, momentum, and energy, the constitutive equations

for II and Q presented in this work form a continuum (generalized hydrodynamic)

theory of flow phenomena including shock waves.

•

•

•
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• Table 1. Inverse Shock widths by various theories for a Maxwell gas

N Ar! M-S2 M-S3 SGZ23 SGZ33 MC Present NS

1.2 0.0557 0.0504 0.0653 0.0650 0.0651

1.5 0.124 0.116 0.136 0.143 0.147

1.7 0.152* 0.164 0.173 0.188

2 0.184 0.193 0.192 0.212 0.193 0.226 0.232

2.25 0.198 0.218 0.200 0.224

2.5 0.201* 0.202 0.239 0.275

3 0.206 0.251 0.196 0.223 0.205 0.244 0.293

4 0.188 0.248 0.170 0.193 0.186 0.228

5 0.165 0.228 0.146 0.165 0.163 0.208

6 0.143* 0.145 0.185

7 0.127* 0.128 0.163

• 8 0.113* 0.116 0.146

9 0.102* 0.105 0.135

10 0.0945 0.138 0.0804 0.0902 0.0925 0.123

~I-S2=Mott-SIJljth C; dosure, IvI-S3=Mott-Smith C; dosure[42];

SGZ23=Salwen, Grosch, Ziering (cr;, Cz C2
) c1osure,

SGZ33=Salwen, Grosch, Ziering (C;, Cz C2) closure[49];

MC=Monte Carlo[45];

NS= Navier-Stokes;

* = data from Ref. [45] .
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Chapter 7

Conclusion

Nonlinear chemical reactions with autocatalytic steps have been attracting a consid­

erable amount of attention in connection with chemical oscillations, waves, pattern

formation and turbulence. These are phenomena occurring far-from equilibrium

and highly nonlinear. In the first part of this thesis, we have carried out the study

of hyperbolic reaction diffusion-equations for the Selkov and the Brusselator. The

basic motivations of this line of work are in framing the theory of chemical oscil­

lations and waves under the principles of thermodynamics 50 that the macroscopic

description of chemical oscillation and wave phenomena is consistent with the ther­

modynamic laws as any macroscopic theory should; and in using hyperbolic wave

equations which are considered to be more appropriate than the conventionally used

parabolic differential equations in describing transient wave phenomena; comparing

the differences in results such as the patterns and their spatio-temporal evolutions

predicted by the two different types of differential equations; and their implications

for energy and matter consumption and irreversible thermodynamics. We have re­

ported that as the reaction-diffusion number, which characterizes the relative time

scales of reactions and diffusion to the time scale of hydrodynamic flow, increases

beyond a characteristic value, the hyperbolic reaction-diffusion equations taken for

the study of the Selkov model reduce to the conventional parabolic reaction-diffusion

equations; and the local patterns of certain frequencies and wave numbers are formed

237



and maintained at the expense of energy and matter yet the total global energy dis­

sipations are the same for difJerent patterns formed. This means that some patterns

of particular frequencies and wave numbers appropriate energy and matter to them­

selves at the expense of those of other frequencies and wave numbers. These results

are interesting on their own right, but also potentially useful for improving our UD­

derstanding of pattern formation phenomena as weil as nonlinear wave phenomena.

We have also described various modes of pattern and wave formations in two dimen­

sions under the non-random initial and boundary conditions as weil as random initial

conditions, and the modes of energy and matter dissipation by the various patterns

formed. Unlike the parabolic reaction-diffusion equations conventionally used in

connection with chemical oscillations and waves, the hyperbolic reaction-diffusion

equations taken for the study here describe transient behaviors of the system. For

example, they can describe a phenomenon akin to cell divisions observed in the

simulations of the CIMA reaction[7] and the Lengyel-Epstein model[8]. The Selkov

model admits monostable and bistable regions of stability. We have explored the

modes of pattern formation in both regions. We find empiricaily that sorne inter­

esting behaviors occur in the vicinity of the unstable steady state in the bistable

region. Spirals and solitary waves are observed to arise under sorne conditions. The

spirals interact and their tips meander. Two solitary waves for each species can

also be formed and propagate at two different speeds. They can also merge to a

single front which propagates at a constant speed. These features ail arise from the

single set of hyperbolic reaction-diffusion equations, depending on the initial and

boundary conditions. We have computed the speed of such waves.

For entropy production concerning the aforementioned patterns we have found

the foilowing: the results of calculation show the global entropy production vs. time

accompanying the sequence of the patterns oscillates with the patterns and reaches

an asymptotic regime in the longtime limit where hexagonal structures become

mixed with stripe structures and compete with each other. In this regime of time, the

entropy production oscil1ates around a plateau value. In the case of spiral patterns

mentioned earlier, a very steep but continuons jump as the tips ('black holes') of

•
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the spirals begin to appear. The entropy production reaches an asymptotic plateau

which we characterize as the state of saturation of the pattern. The case of the spirals

obtained with random initial conditions also show a similar oscillation of the global

entropy production vs. time. We observe that even though the aforementioned

patterns are different, the global entropy productions at the state of saturation

are the same, and it means that their rates of energy and matter dissipation are

similar. In the case of irregular chaotic patterns, the global entropy production

keeps on increasing with time without reaching a plateau, although its magnitude

is much smaller than those for the organized patterns. This seems to suggest that

an organized pattern consumes more energy and matter than a chaotic disorganized

pattern.

The entropy productions calculated for the competing structures cannot eluci­

date such competition, for it simply saturates and remains practically at a constant

value. Therefore, the only thing we can say is that such structures dissipate more

energy and matter than otherwise, but as to the details of pattern competition it

seems to say little. Therefore, if there is a thermodynamic principle that can guide

us in connection with pattern competition and pattern selection, it does not ap­

pear that the second law of thermodynamics is the one that should be looked up

to for a clue. The salient role of the second Iaw so far has been in providing a

set of macroscopic (hydrodynamic) evolution equations consistent with a positivity

criterion for energy dissipation that may he regarded as a local form of the second

law, but pattern formation and selection seems to be controlled by something other

than the positivity condition provided by the second law. As for the bistable region,

we have found that the global entropy production of the solitary waves, which is

roughlyequal to the local entropy production because of the localized nature of the

waves, is large in the initial stage before a chaotic phase sets in where it shows a

minimum. It begins to rise as two spots grow out of a homogeneous phase reaching

a peak as the solitary waves collide and merge. Then it remains roughly constant

in the intermecliate time interval when the waves have grown in size. As the wave

•
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approaches the boundary on the right-hand side and begins to get annibHated, the

global entropy production becomes low in value and constant in time. Establishing

a relation between the observed patterns and the entropy production is an attempt

to understand the underlying irreversible thermodynamic cause for the pattern for­

mation. We observe sorne interesting features, but the picture of the phenomena

is not complete as yet. This aspect of nonlinear phenomena appears to be still an

open subject..

Pattern formations have been numerically studied on the basis of the amplitude

equations generically called the Ginzburg-Landau equation. It is shown that such

amplitude equations can he derived from the hyperbolic reaction-diffusion equa­

tions if the well-known perturbation method originated by Poincaré and Lindst­

edt is applied to the equations. The amplitude equations for the Brusselator are

compared with those obtainpo frOID the corresponding parabolic reaction-diffusion

equations. They have the same form except for the coefficients appearing in the

equations. those coefficients are much more complicated and contain singularities in

the reaction-diffusion number. We have explored those singularities and the ampli­

tude equations were solved numerically. The numerical results confirms the stability

analysis performed for those amplitude equations. We have also noted when solving

for patterns in the case of the Brusselator that the two-dimensional power spectra

of sucb patterns reveal patterns of wave vector distributions with some elements of

symmetry. This suggests that spatial patterns can he classified according to the

wave vector distributions and symmetries of their multidimensional po'Ver sp~~tra.

This seems to be a rather intriguing and, perhaps, important feature worthy of

further serious study in the future.

Based on the telegraphist equations and a perturbation theory for the amplitude

equation, we have explicitly calculated the speed of a travelling periodic wave for the

Brusselator from the linearized telegraphist equations. The formula obtained has the

generic forro first suggested by Luther many decades ago and should be regarded as

an approximate derivation of his formula. It is not an exact resuIt, but in view of the

nonlinear nature of the equations involved, such an approximate result probably is

•
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the most one can hope for from the analytical approach. Although approximate and

probably quite 1imited in applicability, the formula provides considerable insights to

the nature of the waves involved and their origing.

In the second part of this thesis, the generalized hydrodynamic equations are

applied to calculate the shock profiles, shock widths, and calortropy production

(energy dissipation) for a Maxwell and variable hard sphere gas. Shock solutioIld

are shown to exist for all ~Iach numbers (NM ) studied, ranging up to NA! = 10, but

this upper Mach number can be in principle extended to infinity. This is in contrast

to the Grad moment (.~uation method which does not admit shock solutions for

NAl ~ 1.65 and to the method of Anile et al. who aIso used moment equations

and found the shock solutions do not exist for NM > 2.09. The difference of the

present theory from the aforementioned theories lies in the dosure relations used

for higher-order moments. The nonlinear factor in the dissipation terms in the flux

evolution equations of generalized hydrodynamics significantly contributes to pro­

ducing the shock width increasing with the Mach number. The results calculated

are comparable with the Monte Carlo simulation results and the results by various

dosures of the ~Iott-Smithmethod. The present method is aIso applied to calculate

the experimental shock widths for argon and found to give results in good agree­

ment with experiments. The energy dissipation is shown to increase with Nu as

(iVM - 0)Q where a and a are positive constants.
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