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Abstract

This thesis concerns the relationship between four graph invariants: ω, χf , χ, and

∆. These are the clique number, the fractional chromatic number, the chromatic

number, and the maximum degree, respectively1. Trivially ω ≤ χf ≤ χ ≤ ∆ + 1. We

seek to improve the upper bound on χ. We are motivated by a conjecture of Reed,

which essentially states that χ is at most the average of its trivial upper and lower

bounds:

Conjecture. For any graph, χ ≤ d1
2
(∆ + 1 + ω)e.

We call this the Main Conjecture, and propose a Local Strengthening based on

the neighbourhood of a single vertex:

Conjecture. For any graph G, χ ≤ maxv∈V (G)d1
2
(d(v) + 1 + ω(G[N̄(v)]))e.

We begin by showing that much of the early evidence supporting the Main Con-

jecture also supports the Local Strengthening. In particular, the variant of the Local

Strengthening obtained by replacing χ by χf holds, as does the Local Strengthening

when the stability number is two.

Guided by the first of these results we look towards line graphs, for which χf and

χ agree asymptotically. We prove the Main Conjecture for line graphs, then we seek

to generalize this result.

To do this we use recent results of Chudnovsky and Seymour, who characterized

the structure of all claw-free graphs. We refine their results by introducing a graph

reduction on certain types of homogeneous pairs of cliques that preserves the chro-

matic number. Thus we need only consider the problem of colouring skeletal claw-free

graphs, which cannot be reduced. The structure of skeletal claw-free graphs is simpler

than that of general claw-free graphs.

1We use standard graph theory notation, which can be found in the glossary.
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We generalize two results from line graphs to the class of quasi-line graphs.

Namely, that the Main Conjecture holds, and that χf and χ agree asymptotically.

We then consider all claw-free graphs. We prove the Main Conjecture for all claw-

free graphs and we prove the Local Strengthening for claw-free graphs with a three-

colourable complement. Our proofs yield polynomial-time colouring algorithms that

achieve the conjectured bounds.



Résumé

Cette thèse a pour sujet la relation entre quatre invariants de graphes : ω, χf , χ, et ∆.

Il s’agit respectivement du nombre de clique, du nombre chromatique fractionnaire,

du nombre chromatique, et du degré maximum. Ces paramètres vérifient trivialement

l’encadrement suivant : ω ≤ χf ≤ χ ≤ ∆ + 1, dans lequel on cherche à améliorer

la borne supérieure sur χ. Une des principales motivations pour ce travail est une

conjecture de Reed, qui dit essentiellement que χ est au plus la moyenne de ses bornes

inférieures et supérieures triviales.

Conjecture. Pour tout graph, χ ≤ d1
2
(∆ + 1 + ω)e.

On appelle cet énoncé la Conjecture Principale, et on propose un Renforcement

Local basé sur le voisinage de chaque sommet.

Conjecture. Pour tout graphe G, χ ≤ maxv∈V (G)d1
2
(d(v) + 1 + ω(G[N̄(v)]))e.

On commence par montrer que la plupart des arguments en faveur de la Conjec-

ture Principale incitent également à croire que le Renforcement Local est vrai. En

particulier, la borne donnée par le Renforcement Local vaut pour χf et le Renforce-

ment Local peut être montré lorsque le nombre de stabilité vaut deux.

Guidé par ces premiers pas, on s’intéresse aux graphes adjoints, pour lesquels χf

et χ sont asymptotiquement équivalents. On montre la Conjecture Principale dans

le cas des graphes adjoints et on cherche ensuite à généraliser ce résultat.

Pour cela on utilise des résultats récents de Chudnovsky et Seymour, qui ont

caractérisé la structure les graphes sans griffes. On affine ces résultats en intro-

duisant la notion de graphes squelettes. Dans les problèmes auxquels on s’intéresse,

on peut facilement se ramener au cas des graphes squelettes, et la structure des

graphes squelettes sans griffes est plus simple que celle des graphes sans griffes en

général.
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On étend deux résultats des graphes adjoints aux graphes quasi-adjoints : on

montre que la Conjecture Principale est vérifiée pour ces graphes et que leurs nom-

bres chromatique et chromatique fractionnaire sont asymptotiquement équivalents.

On considère ensuite l’ensemble des graphes sans griffes, qui sont construits de deux

manières différentes par deux opérations de composition, selon que χ(G) ≤ 3 ou pas.

On prouve la Conjecture Principale pour tous les graphes sans griffes et le Renforce-

ment Local pour les graphes sans griffes dont le complémentaire est 3-colorable. Les

preuves de ces résultats donnent des algorithmes de coloration en temps polynomial.
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Part I

ω, ∆, and χ

It is well-known and easy to prove that for any graph2, the chromatic number χ

is at least the clique number ω, and at most one more than the maximum degree ∆.

We seek better bounds on the chromatic number in terms of ω and ∆.

Our work originates from a conjecture of Reed, who proposed that χ is essentially

closer to ω than to ∆+1. Our main goal is to prove this Main Conjecture for claw-free

graphs, but there will be many detours along the way.

In the first chapter we cover the necessary graph colouring preliminaries. We look

all the way back to Brooks’ Theorem, the first step in bounding the chromatic number

away from its trivial upper bound. We also discuss the polyhedral approach to graph

colouring and its relationship to the theory of perfect graphs.

In Chapter 2 we trace the origin of the Main Conjecture, beginning with early

attempts to strengthen Brooks’ Theorem. We also propose a new, stronger variant

of the Main Conjecture, which we call the Local Strengthening. We present three

early results that support the Main Conjecture, and prove that their local analogues

hold, thereby giving evidence in support of the Local Strengthening. The first of

these states that the Local Strengthening holds for fixed ∆− ω and sufficiently large

∆. The second states that the bound proposed by the Local Strengthening holds for

the fractional chromatic number; this is an unpublished result of McDiarmid. The

third states that the Local Strengthening holds for graphs containing no stable set of

size three. This is the first step towards bounding the chromatic number of claw-free

2We use standard graph theory notation, which can be found in the glossary.
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Chapter 1

Introduction

This thesis concerns colourings of graphs1. Graphs arise as a natural model of net-

works in a variety of fields, including cellular biology, industrial optimization, com-

munications network management, sociology, and of course computer science. In such

models the edges represent the connections of the network. Edges can also represent

undesirable interaction between elements of a set. For example, the vertices of a

graph may represent events, and an edge between two vertices may indicate that the

corresponding events cannot be run simultaneously. In such situations it is useful to

partition the events into subsets of events that can be run simultaneously. This is

one type of problem for which graph colouring is a very natural and practical model.

A k-colouring of a graph G is an assignment of k colours to the vertices of G under

which no two adjacent vertices receive the same colour. The chromatic number of G,

denoted χ(G), is the least k for which there is a k-colouring of G.

We are particularly interested in three graph invariants, χ(G) being the first. The

second is the maximum degree of G, denoted by ∆(G) and equal to maxv∈V (G){d(v)}
where d(v) is the degree of the vertex v. A clique in G is a set of pairwise adjacent

vertices. The third key invariant is the clique number of G, denoted by ω(G) and

equal to the size of a largest clique in G.

Computing the chromatic number of a graph is a difficult (i.e. NP-complete)

problem. Indeed even approximating the chromatic number is difficult [FK98]. The

same is true for the clique number [H̊as99], although computing the maximum degree

is a simple matter.

1Throughout the thesis we use standard graph theory notation, which can be found in the glossary.
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4 Introduction

Bounding the chromatic number is the central concern of this thesis. We inves-

tigate two approaches to doing so. The first is to obtain bounds by looking at the

local structure of the graph. It is easy to see that the clique number of a graph G

gives a lower bound for the chromatic number: there is some set of ω(G) mutually

adjacent vertices, and in any proper colouring of G these vertices must each receive a

different colour. Thus at least ω(G) colours are needed and ω(G) ≤ χ(G). This is an

example of a local bound, i.e. a bound that is determined by the vertices of distance

at most k from some fixed vertex, for some fixed k (in this case k = 1). A local upper

bound for χ(G) is ∆(G) + 1. To see this we take ∆(G) + 1 colours and attempt to

colour the vertices one by one in some arbitrary order. Since no vertex has more than

∆(G) neighbours, when we come to colour a vertex there will always be a colour not

already appearing in its neighbourhood. So χ(G) ≤ ∆(G) + 1.

Our second approach to bounding the chromatic number is to consider the frac-

tional relaxation of the natural integer program that describes the chromatic number

(the uninitiated reader will find definitions and some basic results in Section 1.2). The

solution to this fractional relaxation is the fractional chromatic number, denoted by

χf (G). Fractional colourings, interesting in their own right, sometimes give us insight

to the chromatic number in the form of approximation results – we will prove such a

result in Chapter 7. For some classes of graphs (e.g. line graphs and perfect graphs) it

is very fruitful to consider optimization problems over a variety of polyhedra. We will

consider this flavour of approach, along with the study of perfect graphs, in Chapter

3.

In Chapter 4 we consider two classes of graphs for which the chromatic number is

close to the fractional chromatic number: line graphs and circular interval graphs. In

later chapters we will focus on two graph classes which generalize line graphs, using

structural properties of graphs in these classes to bound their chromatic number.

The first is the class of quasi-line graphs, in which the neighbours of any vertex can

be covered by two cliques. The second, even more general than quasi-line graphs, is

the class of claw-free graphs, in which no neighbourhood contains a stable set of size

three.

In Chapters 5, 6 and 7 we consider quasi-line graphs. Their structure was de-

scribed by Chudnovsky and Seymour, who generalized earlier work of Chvátal, Maf-

fray, Reed, and Sbihi on the structure of Berge quasi-line graphs. In studying quasi-
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line graphs we will introduce several tools and methods that will help us describe and

colour claw-free graphs. In Chapter 7 we prove two bounds on the chromatic number

of quasi-line graphs, thereby generalizing known results on line graphs.

In Chapter 8 we consider claw-free graphs with α ≥ 4 that are not quasi-line. Such

a graph contains an odd antihole in some neighbourhood. In fact as Fouquet showed,

such a graph contains an induced C5 in some neighbourhood. By examining the

structure around this W5 we can decompose such graphs and reduce them to quasi-line

graphs. In Chapter 9 we use Chudnovsky and Seymour’s recent structure theorems

for claw-free graphs to give a specific description of all claw-free graphs. Theirs is a

unified approach, covering the case α ≤ 3 and reducing from claw-free graphs and

quasi-line graphs to line graphs in one step. They also use a completely different

technique for decomposing claw-free graphs with a three-colourable complement. In

Chapter 10 we give a new bound on the chromatic number of claw-free graphs, in

particular proving a conjecture of Reed on the relationship between ω, ∆, and χ.

The remainder of this chapter gives a gentle introduction to graph colouring and

presents the two aforementioned approaches to the problem. We say that a vertex

u sees a vertex v precisely if u and v are adjacent, and that vertex sets S and T

are complete or joined to one another if every possible edge between them exists.

If no edge exists between them they are anticomplete. When we say that a graph

G contains a graph H we mean that H is an induced subgraph of G. A hole is a

chordless cycle of length ≥ 4 and an antihole is the complement of a hole.

1.1 Local bounds on χ

We have already shown that by virtue of easy local bounds on the chromatic number,

ω(G) ≤ χ(G) ≤ ∆(G) + 1. Either one of these bounds can be tight. For example

if G is a complete graph, i.e. the entire vertex set of G forms a clique, then ω(G) =

∆(G) + 1 and both bounds are tight. If G is a cycle of odd length than ω(G) = 2

and ∆(G) + 1 = 3, but in any 2-colouring of G we will have two adjacent vertices of

the same colour, so χ(G) = 3 = ∆(G) + 1.

In 1941, Brooks [Bro41] proved that odd cycles and cliques are the only two

situations in which a connected graph G will have χ(G) = ∆(G) + 1. The proof we

give is similar to the one given by Lovász in [Lov73].



6 Introduction

Theorem 1.1 (Brooks’ Theorem). For any graph G, χ(G) ≤ ∆(G) unless some

component of G is a clique of size ∆ + 1, or some component of G is an odd cycle

and ∆(G) = 2.

Proof. Let G be a minimum counterexample. We know that graphs with ∆ = 2 are

either bipartite or odd cycles, so G must have maximum degree at least three. It is

easy to see that G has no cutvertex v, otherwise we could apply induction to ∆(G)-

colour G′ ∪ {v} for each component G′ of G− v. By permuting the colour classes in

the coloured graphs, we can ensure that the same colour appears on v for each G′, so

we can paste the coloured subgraphs together on v to complete a ∆(G)-colouring of

G.

So G is 2-connected with maximum degree at least three. We claim that there are

three vertices v1, v2, and vn such that vn sees both v1 and v2, which do not see each

other, and such that G − {v1, v2} is connected. We make the easy proof an exercise

for the conscientious reader. It appears in the proof of Brooks’ Theorem in [Wes00].

Beginning with vn, we will label the vertices of G−{v1, v2} from vn−1 down to v3.

To do this, we repeatedly label a vertex which already has a labeled neighbour. This

is possible because G− {v1, v2} is connected. This gives us an ordering v1, v2, . . . , vn

of the vertices of G such that for every i < n, vi has a neighbour vj for some j > i.

Consequently we can give v1 and v2 the same colour, then greedily ∆(G)-colour the

remaining vertices of G in order from v3 to vn. Since our ordering ensures that no

vertex will ever have ∆(G) colours already in its neighbourhood when we want to

colour it, we can complete the ∆(G)-colouring safely.

This proof introduces two important ideas. First is the idea of repeated colours

in a neighbourhood – in this case we begin by insisting on a repeated colour in the

neighbourhood of vn. Second is the idea of ensuring that in a sequential colouring, a

vertex has few neighbours appering before it in the ordering. Both ideas ensure that

when we want to colour a vertex, few colours will already appear in its neighbourhood.

In contrast to Brooks’ characterization of graphs for which χ(G) = ∆(G) + 1,

the class of graphs for which χ(G) = ω(G) is much richer. These graphs include, for

example, the class of perfect graphs – a graph is perfect precisely if χ(H) = ω(H) for

every induced subgraph H of G.

Given a multigraph H, the line graph of H, denoted G = L(H), is constructed as

follows. Let V (G) = E(H), and let two vertices in G be adjacent precisely if their
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Figure 1.1: A multigraph H and its line graph G = L(H). An edge colouring of H
corresponds to a vertex colouring of G.

corresponding edges in H share an endpoint. Note that the matchings of H corre-

spond naturally to the stable sets of G. Likewise an edge colouring of H corresponds

naturally to a vertex colouring of G. We say that G is a line graph if there is some

multigraph H for which G = L(H), and if there is a simple graph G = L(H) we

say that G is a line graph of a simple graph. We will explore line graphs and their

colourings in much more depth later in this thesis, but for now we will just state one

of the first fundamental results in the area, Vizing’s Theorem. The multiplicity of a

multigraph is the maximum number of edges between two vertices.

Theorem 1.2 (Vizing’s Theorem [Viz64]). If G is the line graph of a multigraph H

of multiplicity µ, then χ(G) ≤ ∆(G) + µ.

Corollary 1.3. If G is the line graph of a simple graph H, then χ(G) ≤ ω(G) + 1.

For perfect graphs and line graphs of simple graphs, χ(G) is always near ω(G)

but may be far from ∆(G). Is χ(G) essentially always as close to ω(G) as it is to

∆(G)+1? We explore this question throughout the thesis, particularly in Chapters 2,

4, 7, and 10. Brooks’ Theorem tells us that if ∆(G) > 2, then the bound of ∆(G) + 1

is tight for χ(G) only if the bound ω(G) is tight.
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1.1.1 Sequential colouring

We proved earlier that any graph G can be coloured using ∆(G)+1 colours regardless

of the order in which we process the vertices. As we showed in the proof of Brooks’

Theorem, we can hope to improve the situation by carefully choosing the order in

which we colour the vertices. Ideally we would like to ensure that every uncoloured

vertex has few coloured neighbours. To this end we define the colouring number of a

graph G, denoted by col(G), as the maximum of δ(H) + 1 over all subgraphs H of G.

We can always colour the vertices of G in order such that no uncoloured vertex has

more than col(G) coloured neighbours when we come to colour it.

Lemma 1.4. For any graph G, χ(G) ≤ col(G).

Proof. Choose an ordering v1, . . . , vn of the vertices as follows, Having chosen vj for

n ≥ j > i, let vi be a minimum degree vertex in G−{vi+1, vi+2, . . . , vn}. Now col(G)-

colour the vertices in order from v1 onwards, noting that if vi already has col(G)

coloured neighbours then the graph G − {vi+1, vi+2, . . . , vn} has minimum degree at

least col(G), contradicting the definition of the colouring number.

This early result was proved independently by several people, including Erdős and

Hajnal [EH66] and Szekeres and Wilf [SW68]. One special application of this idea is

the following: If a graph G has chromatic number k and a vertex v with d(v) < k−1,

then G− v also has chromatic number k. This is because a (k− 1)-colouring of G− v
will never result in v having k − 1 coloured neighbours, so we can always extend

such a colouring of G − v to a (k − 1)-colouring of G. We will use this argument

repeatedly throughout the thesis. A good example appears in the proof of Theorem

III.2, specifically in the proof of Lemma 7.5.

Brooks’ Theorem tells us which graphs satisfy χ(G) = ∆(G)+1 and which graphs

satisfy χ(H) = ∆(H) + 1 for every induced subgraph H of G (G must be a clique).

In contrast it is difficult (i.e. NP-complete) to decide whether or not χ(G) = ω(G),

but we can determine whether a graph is perfect in polynomial time [CCL+05]. This

is done through a structural characterization of perfect graphs; we discuss this result

in Section 3.6.

It is natural to ask the same question about the colouring number. It is not known

whether we can efficiently decide if χ(G) = col(G) for any graph, and no structural
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characterization for such graphs is known. However along these lines Markossian,

Gasparian and Reed introduced the class of β-perfect graphs [MGR96]. A graph

is β-perfect precisely if χ(H) = col(H) for every induced subgraph H of G (β(G)

is sometimes used to denote the colouring number of G). Can we characterize the

structure of β-perfect graphs? It is easy to see that no β-perfect graph contains an

even hole. An even hat (resp. odd hat) is an even (odd) cycle of length ≥ 4 with

exactly one chord, which makes a triangle with two edges of the cycle. Markossian,

Gasparian and Reed provide two structure theorems [MGR96], although it is still not

known whether β-perfect graphs can be recognized in polynomial time.

Theorem 1.5. If a graph G contains no even hole or even hat, then G is β-perfect.

Theorem 1.6. A graph G and its complement are both β-perfect precisely if neither

G nor G contains an even hole.

Theorem 1.5 was strengthened by de Figueiredo and Vušković so that only even

hats on four or six vertices need to be restricted [dFV00]; Keijsper and Tewes offer

more complicated strengthenings [KT02]. Theorem 1.6 is an interesting analogue of

the Strong Perfect Graph Theorem, which we present in the next section.

1.2 Fractional colouring and perfect graphs

The chromatic number is the least number of colours needed to properly colour the

vertices of a graph. Since each colour class in a proper colouring is a stable set, the

chromatic number is also the least number of stable sets needed to cover the vertex

set. Therefore we consider the following integer program, where S(G) denotes the

family of stable sets in a graph, and for S ∈ S(G), wS is 1 precisely if S is a colour

class. (For definitions and preliminaries on linear programming, see [Chv83].)

minimize
∑

S∈S(G)

wS

subject to ∀v ∈ V (G),
∑
S3v

wS = 1 (1.1)

and ∀S ∈ S(G), wS ∈ {0, 1}
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In this case we insist that we cover each vertex with precisely one stable set. But

it is often useful to consider covering a vertex with a combination of stable sets. Thus

we consider the fractional relaxation (1.2) of the above integer linear program (1.1).

minimize
∑

S∈S(G)

wS

subject to ∀v ∈ V (G),
∑
S3v

wS ≥ 1 (1.2)

and ∀S ∈ S(G), wS ∈ [0, 1]

A weighting of stable sets that satisfies the conditions of the fractional relaxation

is a fractional colouring of G, and if
∑

S∈S(G) wS = c we call it a fractional c-colouring.

The fractional chromatic number of G, denoted by χf (G), is the least c for which there

is a fractional c-colouring of G. Since we are dealing with the fractional relaxation

of a minimization problem, we always have χf (G) ≤ χ(G). In Chapter 3 we will

prove that for any graph, χ(G) ≤ dlog n · χf (G)e. These are most definitely not

local bounds in any sense. Since χf (G) ≤ χ(G) ≤ dlog n · χf (G)e and it is NP-hard

to approximate χ(G) to within n1−ε for any ε > 0, we can see that computing the

fractional chromatic number of a graph is also hard, since doing so would give us a

(log n)-approximation to χ(G).

One way to approach (1.2) is to study its dual. In this case the dual linear program

maximizes the total weight on vertices so that no stable set has total weight more

than 1:

maximize
∑
v∈V

xv

subject to ∀S ∈ S(G),
∑
v∈V

xv ≤ 1 (1.3)

and ∀v ∈ V, xv ∈ [0, 1]

Let ωf (G) denote the total weight of an optimum dual solution. LP duality tells

us that ωf (G) = χf (G). So putting weight 1 on every vertex of a maximum clique

and 0 elsewhere gives the bound ω(G) ≤ ωf (G) = χf (G). This is a trivial bound and

we do not need duality to see it. However, we will later exploit this duality to make

nontrivial statements about constructing fractional colourings of claw-free graphs.
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There are several important polyhedra related to this linear program – we will

discuss them in Chapter 3. Its feasible region is the fractional clique polytope, which

is the fractional stable set polytope of G. The fractional stable set polytope of G

contains the stable set polytope, which is the convex hull of the incidence vectors of

the stable sets of G.

One class of graphs for which the stable set polytope is well understood is line

graphs, in which stable sets correspond to matchings in the base multigraph – the

characterization of the stable set polytope of line graphs is a fundamental result of

Edmonds [Edm65a]. We have a good understanding of the stable set polytopes of

perfect graphs as well: In Chapter 3 we will show that G is perfect precisely if the

fractional stable set polytope is equal to the stable set polytope.

Perfect graphs have been an important area of research from the 1960s onwards,

thanks in large part to their connection to communication theory and two conjectures

posed by Berge [Ber61] (translated to English in [BR01]):

Conjecture 1.7 (The Weak Perfect Graph Conjecture). A graph G is perfect pre-

cisely if its complement G is perfect.

A graph is called Berge if it contains neither an odd hole nor an odd antihole.

Conjecture 1.8 (The Strong Perfect Graph Conjecture). A graph G is perfect pre-

cisely if it is Berge.

The key to the proof of the Strong Perfect Graph Conjecture by Chudnovsky,

Robertson, Seymour, and Thomas [CRST06] is the fact that any Berge graph either

lies in some well-understood graph class or is pieced together from smaller graphs in

some well-understood way. This is the same angle of attack we use for proving the

results on quasi-line and claw-free graphs.

In Chapter 3 we will discuss how both of Berge’s conjectures were proved (thirty

years apart) and how the theory of perfect graphs relates to fractional colourings,

polyhedra and optimization, structural decompositions, and claw-free graphs.

The Strong Perfect Graph Theorem offers a structural characterization of a class

of graphs for which χf (G) = χ(G). By Vizing’s Theorem, the fractional and integer

chromatic numbers must be within 1 of each other for line graphs of simple graphs.

The same is not known to be true for line graphs of multigraphs, but would be implied
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by the Goldberg-Seymour Conjecture [Gol73]. Kahn [Kah96] proved that they agree

asymptotically using properties of the stable set polytope of line graphs.



Chapter 2

ω, ∆, and χ: Conjectures Old and

New

We consider the following conjecture of Reed,

Conjecture 2.1 ([Ree98]). For any graph G and integer k ≥ 1, if G contains no

clique of size greater than ∆(G) + 1− 2k, then χ(G) ≤ ∆(G) + 1− k.

and a strengthening which is proposed for the first time here,

Conjecture 2.2. For any graph G and integer c ≥ 1, if every vertex of v satisfies

d(v) + 1 + ω(v) ≤ 2c, then G is c-colourable.

where ω(v) denotes the size of the largest clique containing v. We can see that the

second conjecture is stronger by replacing d(v) + 1 + ω(v) with ∆(G) + 1 + ω(G).

The two strongest pieces of evidence for Reed’s conjecture are that a fractional

variant is true, and for any k there is a ∆k for which the conjecture holds whenever

∆(G) ≥ ∆k. Further supporting the conjecture is the fact that when ω(G) is bounded,

the ratio χ(G)/∆(G) approaches zero as ∆(G) increases.

In this chapter we discuss these results and extend them by proving analogues for

the local variant of Reed’s conjecture. We then present related results and a further

strengthening of the two conjectures, which we prove is false. We begin by presenting

the motivation for Conjecture 2.1.

13
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Figure 2.1: A graph G with ω(G) = 6, ∆(G) = 8, and χ(G) = ∆(G).

2.1 Beyond Brooks’ Theorem

From Brooks’ Theorem, we know that we can always colour G using at most ∆(G)

colours as long as no connected component of G is a clique of size ∆(G) + 1 (or a

cycle of odd length, if ∆(G) = 2). This gives a complete characterization of graphs for

which χ(G) = ∆(G)+1. In an attempt to characterize graphs for which χ(G) ≥ ∆(G),

Borodin and Kostochka proved that if ω(G) ≤ ∆(G)/2 then χ(G) ≤ ∆(G)− 1, then

made the following conjecture:

Borodin-Kostochka Conjecture ([BK77]). If a graph G with ∆(G) ≥ 9 contains

no clique of size ∆(G), then χ(G) ≤ ∆(G)− 1.

Figure 2.1 illustrates that the Borodin-Kostochka Conjecture is the strongest vari-

ant of this conjecture which is not false. Beutelspacher and Hering independently

made the weaker conjecture that there is some ∆2 for which χ(G) ≤ ∆(G) − 1

provided ∆(G) ≥ ∆2 and ω(G) ≤ ∆(G)− 1 [BH84]. Reed proved the Beutelspacher-

Hering Conjecture for ∆2 = 1014 [Ree99].

This result suggests the possibility that for all k there may be a ∆k such that G

has χ(G) ≤ ∆(G) + 1 − k provided that ∆(G) ≥ ∆k and ω(G) ≤ ∆(G) + 1 − k.

However, this is easily disproved for k = 3. To do so, we can join a (∆− 4)-clique to

a C5 to get a graph with maximum degree ∆, clique number ∆ − 2, and chromatic

number ∆ − 1. So as we move the upper bound on ω(G) away from ∆(G) + 1, we

cannot hope that χ(G) will move away from ∆(G) + 1 at the same rate. But we
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can hope that it moves away from ∆(G) + 1 at some rate for k > 2. An example in

[Ree98] shows that a rate of 1
2

would be best possible, and Reed gave evidence that

it may in fact be the case:

Theorem 2.3 ([Ree98]). For any positive integer k there is some constant ∆k such

that any graph G with ∆(G) ≥ ∆k and ω(G) ≤ ∆(G) + 1 − 2k will have chromatic

number at most ∆(G) + 1− k.

This result is actually a corollary of a more significant theorem from the same

paper, which states that the Conjecture 2.1 holds provided that ω(G) and ∆(G) + 1

are sufficiently close together:

Theorem 2.4 ([Ree98]). There is a universal positive constant η such that if ω(G) ≥
(1− η)(∆(G) + 1) then χ(G) ≤ 1

2
(∆(G) + 1 + ω(G)).

This result also tells us that we can find a nontrivial upper bound for χ(G) by

taking a convex combination of ω(G) and ∆(G) + 1:

Corollary 2.5 (Reed). There is a universal positive constant a such that χ(G) ≤
(1− a)(∆(G) + 1) + aω(G).

Following this thread, Reed posed Conjecture 2.1, which is equivalent to saying

that a can be as high as 1
2

if we round up. We therefore define γ(G) as d1
2
(∆(G) +

1 + ω(G))e and restate Conjecture 2.1, which we call the Main Conjecture:

Main Conjecture. For any graph G, χ(G) ≤ γ(G).

Accordingly, we define γl(v) as d1
2
(d(v) + 1 + ω(v))e and we define γl(G) as

maxv∈G γl(v). Equivalently, γl(v) = γ(G[N̄(v)]) and γl(G) = maxv∈G γ(G[N̄(v)]).

Thus we can restate the local variant of the Main Conjecture, which we call the Local

Strengthening:

Local Strengthening. For any graph G, χ(G) ≤ γl(G).

Theorem 2.3 is the first major piece of evidence for the Main Conjecture. We now

prove that we can strengthen it to find evidence supporting the Local Strengthening.

Theorem 2.6. For any positive integer k there is some constant ∆′k such that any

graph G with ∆(G) ≥ ∆′k in which every vertex v satisfies d(v)+1+ω(v) ≤ 2(∆(G)+

1− k) will have chromatic number at most ∆(G) + 1− k.
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To prove this we use a result of Molloy and Reed that guarantees the existence of

a small χ(G)-chromatic subgraph of G under certain conditions.

Theorem 2.7 (Molloy and Reed [MR01]). There is an absolute constant ∆0 such that

for any ∆ ≥ ∆0 and k ≤
√

∆ − 3, if G has maximum degree ∆ and χ(G) > ∆ − k
then G contains a subgraph H such that: (i) |H| ≤ ∆ + 1; (ii) χ(H) = ∆ + 1− k.

Corollary 2.8. There is an absolute constant ∆0 ≥ 4 such that for any ∆ ≥ ∆0

and k ≤ 1
2

√
∆, if G has maximum degree ∆ and χ(G) > ∆ − k then G contains a

subgraph H with a universal vertex such that χ(H) = ∆− k + 1.

Proof. We claim that given our further constraint on k, there is a subgraph H guar-

anteed by Theorem 2.7 that contains a universal vertex. To this end, assume that H

is minimal and take an optimal colouring of H. The singleton colour classes make up

a clique C in H, and since |H| ≤ ∆ + 1 we can see that |C| ≥ ∆ + 1− 2k and there

are at most 2k vertices outside C. Since χ(H) = ∆− k + 1 and by minimality H is

vertex-critical, every vertex in H − C has at most k non-neighbours in H. Thus the

number of universal vertices in C is at least ∆+1−2k−2k2 > ∆+1−
√

∆− 1
2
∆ > 0,

so there is at least one universal vertex in C.

Now we can easily prove Theorem 2.6. The key to the proof is the fact that if v

is a universal vertex in a graph G, then ∆(G) + 1 + ω(G) = d(v) + 1 + ω(v).

Proof of 2.6. Let ∆k and ∆0 be as in Theorems 2.3 and 2.7 respectively, and let

∆′k = 2 · max{∆k,∆0, 2k
2}. Suppose G is a counterexample to the theorem, i.e.

χ(G) > ∆(G)+1−k, but ∆(G) ≥ ∆′k and every vertex v of G satisfies d(v)+1+ω(v) ≤
2(∆(G) + 1− k).

By Corollary 2.8 there is a χ(G)-chromatic subgraph H of G with a universal

vertex v. Let k′ = k+ ∆(H)−∆(G); then k′ ≤ k and χ(H) > ∆(H) + 1−k′. By our

choice of ∆′k, χ(G) > ∆k ≥ ∆k′ , therefore H satisfies the conditions of Theorem 2.3.

Thus ω(H) > ∆(H)+1−2k′ because χ(H) > ∆(H)+1−k′. Since v is universal it is

in every maximum clique of H, so dH(v) + 1 + ωH(v) > 2(∆(H) + 1− k′). Therefore

dG(v) + 1 + ωG(v) > 2(∆(G) + 1− k), contradicting our choice of G.

Next we will give our second piece of evidence: the fractional analogues of the

Main Conjecture and Local Strengthening are true.
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2.2 Fractionally, χ ≤ γ

One of the most encouraging pieces of evidence for the Main Conjecture is the fact

that it holds for the fractional chromatic number. We use γ′(G) to denote 1
2
(∆(G) +

1 + ω(G)), i.e. the unrounded version of γ(G). Similarly we use γ′l(G) to denote

maxv∈V {1
2
(∆(G) + 1 + ω(G)}, the unrounded version of γl(G).

Theorem 2.9 ([MR00]). For any graph G, χf (G) ≤ γ′(G).

One can easily see that χf (G) ≥ n
α(G)

, thus the fractional version of the Main Con-

jecture implies that every graph G contains a stable set of size at least 2n
∆(G)+1+ω(G)

,

i.e. n
γ(G)

. This weaker result was proven much earlier by Fajtlowicz [Faj78, Faj84].

Here we prove that the Local Strengthening also holds fractionally. This is an un-

published result of McDiarmid whose proof closely follows the proof of Theorem 2.9

in Chapter 21 of [MR00]; it is left as an exercise in the book.

Theorem 2.10. For any graph G, χf (G) ≤ γ′l(G).

The key to this result is the following lemma, which tells us that a random max-

imum stable set either hits a vertex or two of its neighbours with sufficiently high

probability. It strengthens 21.10 from [MR00], replacing ω(G) with ω(v).

Lemma 2.11. Let G be a graph and let S be a maximum stable set of G chosen

uniformly at random. Then for every vertex v of G,

E(|S ∩N(v)|) ≥ 2− (ω(v) + 1)Pr(v ∈ S). (2.1)

We will prove this lemma later in the section. As a warm-up to the proof of

Theorem 2.10 we will use Lemma 2.11 to easily prove the natural strengthening of

Fajtlowicz’s result:

Lemma 2.12. For any graph G, α(G) ≥ n
γ′l(G)

.

Proof. Let S be a uniformly random maximum stable set in G. Rearranging (2.1)
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and summing over all vertices, we get

2n ≤
∑
v

(ωv + 1)Pr(v ∈ S) +
∑
v

E(|S ∩N(v)|) (2.2)

=
∑
v∈V

(ωv + 1)Pr(v ∈ S) +
∑
v

∑
u∼v

Pr(u ∈ S) (2.3)

=
∑
v∈V

(ωv + 1)Pr(v ∈ S) +
∑
u∈V

Pr(u ∈ S) (2.4)

=
∑
v∈V

(ωv + 1 + d(v))Pr(v ∈ S) (2.5)

=
∑
v∈V

(ωv + 1 + d(v))Pr(v ∈ S) (2.6)

≤ 2γ′l
∑
v∈V

Pr(v ∈ S) (2.7)

Since the expected size of a maximum stable set is precisely the sum of the probabil-

ities of each vertex being in the set, we get E(|S|) ≥ n/γ′l. The theorem follows.

If every vertex was in the same number of maximum stable sets, then this lemma

would immediately imply the desired result, Theorem 2.10. We could find a suitable

fractional colouring by placing equal weight on every maximum stable set and no

weight on smaller stable sets. However, in general we do not have this desirable

condition. For example in the star graph K1,k for k > 1, one vertex is in no maximum

stable sets, and every other vertex is in every maximum stable set (although there

is only one). So instead we must use Lemma 2.11 in an iterative fashion. The proof

of Theorem 2.9 given in [MR00] uses the same method but uses weaker supporting

lemmas.

Proof of Theorem 2.10. We fractionally colourG using the following iterative method.

1. Set wS = 0 for every S ∈ S. Set G0 = G. Set i = 0.

Set T = 0. T stands for total weight used.

For each v ∈ V , set wov = 0 (wo stands for weight on).

2. If V (Gi) = ∅ or T = γ′l then stop.
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3. For each vertex v of Gi, let pi(v) be the probability that v is in a uniformly

random maximum stable set of Gi. Set low = min{1−wov
pi(v)
|v ∈ V (Gi)}. Set

vali = min(low, γ′l − T ).

4. Let Si be the set of maximum stable sets of Gi. For each stable set in Si,
increase wS by vali

|Si| . For each vertex v of Gi, increase wov by pi(v)vali. Increase

T by vali.

5. Let Gi+1 be the graph induced by those vertices v which satisfy wov < 1.

Increment i and go to Step 2.

Our choice of vali ensures two things: that T never exceeds γ′l, and that if the

ith iteration is not the last, then V (Gi+1) is properly contained in V (Gi). Thus the

algorithm must terminate.

We claim that at the end of the procedure, the wS yield a fractional γ′l-colouring.

It is easy to show by induction that at the end of each iteration and for every v ∈ V ,

wov =
∑
{S∈S|v∈S}wS and T =

∑
S∈S wS. The definitions of low and vali ensure that

no wov is ever more than 1. We stop if V (Gi) = ∅ or T = γ′l; in the first case we know

that we have the desired fractional colouring. We must now show that the same is

true in the second case. It suffices to show that in this case, each wov = 1.

So assume that for some v we have wov < 1 when we complete the process.

For each vertex u and iteration i, denote by ai(u) the amount by which wou was

augmented in iteration i, i.e. ai(u) = valipi(u). By Lemma 2.11, E(|S ∩ N(v)|) ≥
2− (ωv + 1)Pr(v ∈ S). It follows that since v was in each Gi, we have, for each i,

∑
u∈N(v)

ai(u) ≥ 2(vali)− (ωv + 1)ai(v). (2.8)

Summing over the iterations, we get∑
u∈N(v)

wou ≥ 2T − (ωv + 1)wov > (ωv + d(v) + 1)− (ωu + 1) = d(u). (2.9)

But since wou ≤ 1 for every u, we cannot have
∑

u∈N(v) wou > d(v). Thus we obtain

a contradiction and so wov = 1. This completes the proof.

It remains for us to prove Lemma 2.11. We will first prove one intermediate result.
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Lemma 2.13. If S is chosen uniformly at random from the maximum stable sets of

G, then for every vertex v of G we have

Pr(|S ∩N(v)| = 1) ≤ (ωv − 1)Pr(v ∈ S). (2.10)

Proof. We fix v and condition on our choice of S ′ = S − N̄(v), showing that the

inequality holds no matter what the value of S ′ is. So fix some R ∈ S(V − N̄(v))

that can be extended to a maximum stable set of G by adding vertices in N̄(v). To

prove the lemma, it is enough to show that for any choice of R,

Pr(|S ∩N(v)| = 1|S ′ = R) ≤ (ωv − 1)Pr(v ∈ S|S ′ = R). (2.11)

So fix a choice of R and let W = N̄(v) − N(R). First suppose that W is not a

clique. Then we know that |R| ≤ α(G) − 2, and since v is universal in R we have

|S ∩ N̄(v)| ≥ 2 if S ′ = R, since S is a maximum stable set. Now suppose that W is a

clique; we know that |W | ≤ ωv since v ∈ W . Since R can be extended to a maximum

stable set, |R| = α(G)−1 and S is equally likely to be R+u for any vertex u ∈ N̄(v).

If u = v then |S ∩ N̄(v)| = 0, so it follows that

Pr(v ∈ S|S ′ = R) =
1

|W | (2.12)

and

Pr(|S ∩N(v)| = 1|S ′ = R) =
|W | − 1

|W | ≤ ωv − 1

|W | . (2.13)

The lemma follows.

Proving Lemma 2.11 from here is a simple matter.

Proof of Lemma 2.11. Since S is a maximum (and therefore maximal) stable set,

Pr(v ∈ S) = Pr(S∩N(v) = ∅). So since |S∩N(v)| is a nonnegative integer variable,

we have E(|S ∩N(v)|) ≥ 2−Pr(|S ∩N(v)| = 1)− 2Pr(|S ∩N(v)| = 0). The result

now follows from Lemma 2.13.
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2.3 Graphs with small clique number

We have seen that the Main Conjecture holds when ω(G) is close to ∆(G)+1. We now

consider the other end of the spectrum, when ω(G) is very small. When ω ∈ {0, 1},
χ = ω and the result is trivial. However, the conjecture is not known to hold when

ω = 2.

This special case is equivalent to the statement that any triangle-free graph has

chromatic number at most ∆
2

+ 2. A classical result of Lovász [Lov66] implies that

we can partition the vertices of a graph G into m parts, each inducing a subgraph

of maximum degree at most three, if 4m ≥ ∆(G) + 1. If G is triangle-free, then by

Brooks’ Theorem each induced subgraph is 3-colourable; this implies that χ(G) ≤
3m ≤ 3d(∆(G)+1)/4e. Kostochka (see [JT95], Section 4.6) proved that any triangle-

free graph G satisfies χ(G) ≤ 2
3
∆(G) + 2. He also proved that for every ∆ > 4

there is a g∆ such that any graph with maximum degree ∆ and girth at least g∆ is

(∆
2

+ 2)-colourable.

In a stronger asymptotic result, Johansson [Joh96] (also see [MR00]) proved that

triangle-free graphs have chromatic number at most O( ∆(G)
log ∆(G)

), extending a result

of Kim [Kim95] for graphs with girth at least five. Asymptotically, this is a much

stronger bound than is required by the Main Conjecture. However, the Main Con-

jecture is still open for triangle-free graphs of small maximum degree greater than

four. In unpublished work, Johansson [Joh] claimed a proof that for any fixed k,

graphs containing no k-clique satisfy χ(G) ≤ O(∆(G) log log ∆(G)
log ∆(G)

). Johansson’s results

give equal support to the Main Conjecture and Local Strengthening, since as ∆(G)

grows, both γ(G) and γl(G) approach 1
2
∆(G) asymptotically when the clique number

is fixed.

In contrast to these upper bounds on χ, we have known for a long time that χ

can be arbitrarily high even when ω is bounded. In 1955, Mycielski showed how to

construct a sequence of graphs Gi for i ≥ 1 such that χ(Gi) = i while ω(Gi) ≤ 2

[Myc55]. A few years later, Erdős gave a probabilistic proof of the existence of k-

chromatic graphs with girth at least g for any fixed g and k [Erd59].



22 ω, ∆, and χ: Conjectures Old and New

Figure 2.2: The Chvátal graph, a triangle-free 4-regular 4-chromatic graph.

2.4 Tightness of both conjectures

We now give some examples to show the Main Conjecture and the Local Strengthening

are tight. That is, the round-up in γ and γl are necessary. Equivalently, it is necessary

to insist that k in Conjecture 2.1 and c in Conjecture 2.2 are integers. Odd cycles are

one class of graphs for which the round-up is necessary. It remains necessary even

if ∆(G) > 2: The 4-regular, 4-chromatic, triangle-free Chvátal graph [Chv70], shown

in Figure 2.2, is one example showing this. Kostochka [Kos84] gives an example

for arbitrarily high ∆: take the line graph of a 5-cycle in which there are k copies

of every edge for some odd k. This graph has ∆(G) + 1 = 3k, ω(G) = 2k, and

χ(G) = d5k/2e = dn/αe; Figure 2.1 actually shows this graph for k = 3. It follows

that there is no a > 1
2

such that χ ≤ d(1 − a)(∆ + 1) + aωe for all graphs. The

aforementioned example in [Ree98], which has α = 2, gives the same upper bound on

a.

2.5 Early work on the Main Conjecture

Attacks on the Main Conjecture tend to fall into two categories: attempts to bound

the chromatic number away from ∆(G) + 1 and towards ω(G) for all graphs (e.g.

Theorem 2.4), and attempts to prove the conjecture outright for restricted classes of

graphs. In this thesis we present several results of the latter type. In Chapters 4, 7,

and 10 we prove that the Main Conjecture holds for three increasingly general classes
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of graphs: line graphs (in joint work with Reed and Vetta [KRV07], quasi-line graphs

(in joint work with Reed [KR08b]), and claw-free graphs (in joint work with Reed).

Randerath and Schiermeyer proved the conjecture for several classes of graphs,

including graphs on at most 12 vertices and graphs for which ∆(G) ≥ n − α(G)

[RS06, Sch06, Sch07b]. Rabern improved this latter result [Rab08]:

Theorem 2.14. Let G be a graph satisfying ∆(G) ≥ n+ 2−α(G)−
√
n+ 5− α(G).

Then χ(G) ≤ γ(G).

He also proved that χ(G) ≤ γ(G) for any graph with a disconnected comple-

ment and any graph with χ(G) > dn
2
e or α(G) = 2. We now prove that the Local

Strengthening also holds whenever α(G) = 2. Our proof is similar to but independent

of Rabern’s proof that the Main Conjecture holds when α(G) = 2.

Theorem 2.15. Let G be a graph with α(G) = 2. Then χ(G) ≤ γl(G).

Before proving this theorem we need some background on matchings in graphs.

If α(G) = 2, then an optimal colouring of G corresponds to a maximum packing

of vertex-disjoint stable sets of size two, which in turn corresponds to a maximum

matching in G. We say that a matching hits a vertex if the vertex is an endpoint of

an edge in the matching, otherwise the matching misses the vertex. A near-perfect

matching is a matching that misses exactly one vertex. The Edmonds-Gallai structure

theorem [Edm65b, Gal59] describes the structure of a graph in terms of its maximum

matchings (also see [LP86, Pul87]). We say that a connected component of a graph

is odd if it contains an odd number of vertices, otherwise it is even.

Theorem 2.16 (Edmonds-Gallai structure theorem). For any graph G, let Y be the

set of vertices not hit by every maximum matching in G, and let X = N(Y )\Y . Then

every even component of G − X has a perfect matching, and every odd component

has, for each of its vertices v, a near-perfect matching that misses v. Furthermore

the odd components of G−X have union Y .

We now use this theorem to prove Theorem 2.15.

Proof of Theorem 2.15. Let G be a minimum counterexample to the theorem. By

minimality of G, removing any vertex will reduce the chromatic number. Therefore
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every vertex v is missed by some maximum matching of G, otherwise we would have

χ(G− v) = χ(G).

By the Edmonds-Gallai structure theorem, either G is not connected or it has

a near-perfect matching. In the first case, V (G) can be partitioned into nonempty

V1 and V2 such that every possible edge between V1 and V2 exists. It is easy to

confirm that χ(G) = χ(G[V1]) +χ(G[V2]) ≤ γl(G[V1]) +γl(G[V2]) ≤ γl(G), the middle

inequality following from the minimality of G.

In the second case, n is odd and χ(G) = dn
2
e. Since χf (G) ≥ n

α(G)
, we have

χ(G) = dχf (G)e. By Theorem 2.10, χ(G) = dχf (G)e ≤ dγ′l(G)e = γl(G). This

proves the theorem.

It is not hard to prove the case χ(G) = dn
2
e without using Theorem 2.10. But

applying the fractional result in this way is a useful technique which we will use

again in proving the Main Conjecture for line graphs and the Local Strengthening for

circular interval graphs in Chapter 4.

We will now provide some insight as to why the Local Strengthening is useful when

considering the Main Conjecture, and why it is in a certain sense the best possible

strengthening of the Main Conjecture.

2.6 Genesis of the Local Strengthening

The Local Strengthening did not arise in a hunt for a strongest possible conjecture.

Rather, it arose naturally because it is sometimes easier to prove than the Main

Conjecture. Here we explain why.

A class G of graphs is hereditary if for any graph G ∈ G, every induced subgraph

of G is in G. One way to prove the Main Conjecture for such a class of graphs is to

prove that if G ∈ G, then G contains a stable set S for which γ(G−S) < γ(G). Since

S can be a colour class in a proper colouring of G, χ(G − S) ≥ χ(G) − 1. Thus we

can prove the Main Conjecture for G by induction. This approach involves finding

an S whose removal either lowers ω(G), or lowers ∆(G) by two. (Any stable set S in

a graph can be extended to a maximal stable set whose removal lowers ∆(G) by at

least one.) However, finding such an S is not always possible.

To make this inductive approach easier, we introduced the invariant ω(v) for every

vertex v; recall that it is the size of the largest clique containing v. Now we ask: can
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we find a stable set S whose removal lowers d(v) + ω(v) by two for every vertex v

maximizing d(v) + ω(v)? In other words, can we rip out a stable set and reduce γl,

rather than trying to reduce γ?

This idea arose during efforts to prove the Main Conjecture for antiprismatic

thickenings, which are an important subclass of claw-free graphs (we will define them

in Chapter 9). If G is an antiprismatic thickening with α(G) > 2, it is very easy to

remove a stable set and lower γl(G), but it seems much more difficult to do the same

for γ(G). Thus to prove the Local Strengthening for antiprismatic thickenings we

can repeatedly remove a stable set, lowering γl(G) each time, until we are left with a

graph with α ≤ 2. We then appeal to Theorem 2.15 to complete the proof.

We need more definitions and background before we give a formal proof of the

Local Strengthening for antiprismatic thickenings in Chapter 10, but it is important to

understand that the Local Strengthening is particularly appealing because it is often

much easier to prove than the Main Conjecture. We will exploit this fact repeatedly

when we prove the Main Conjecture for claw-free graphs.

2.6.1 Further tightness of the Local Strengthening

The Local Strengthening replaces the global invariant γ(G) with the maximum over

all local invariants γl(v). Can we go one step further and formulate a conjecture that

imposes a restriction for each local invariant simultaneously? We close the chapter by

suggesting a further strengthening of the Main Conjecture in this vein and proving

that it is not true.

Proposition 1. For any graph G there is a proper γl(G)-colouring of G such that

for any vertex v of G, at most d1
2
(d(v) + 1 + ω(v))e colours appear in the closed

neighbourhood of v.

In a proper γl(G) colouring of a graph G, there is some vertex v such that at most

d1
2
(d(v)+1+ω(v))e colours appear in the closed neighbourhood of v. The proposition

insists that this property is satisfied by every vertex. The following theorem disproves

the proposition.

Theorem 2.17. For any positive integer k, there is a graph Gk such that for any

proper colouring of G, there is a vertex v of degree k whose neighbourhood of v induces

a k-coloured stable set.
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Proof. We will construct Gk beginning with stable sets V1, V2, . . . , Vk, X that partition

V (G). Let V1 be a stable set of size N = k3; N will define the sizes of the other stable

sets. We call a vertex set a transversal of V1, . . . , Vi if it has size i and intersects

each of V1, . . . , Vi in exactly one vertex. If it is a stable set, we call it an independent

transversal.

For i > 1, let Vi be a stable set containing exactly one vertex for every transversal

of V1, . . . , Vi−1. Accordingly, for every transversal S of V1, . . . , Vi−1 there is a vertex of

Vi whose neighbourhood in Gk[∪ij=1Vj] is S. Finally, let X be a stable set consisting

of one vertex for each stable set of size k in G[∪ki=1Vi]; for every stable set S of size

k in Gk[∪ki=1Vi] there is a unique vertex in X with neighbourhood S.

We say that a colouring of Gk is good if it is proper and there is no vertex in X

that sees k different colours. It suffices to prove that there is no good colouring of G.

Suppose we have a good colouring of Gk. First observe that each Vi (moreso, every

subset of it) receives fewer than k colours. We will show that this forces a k-coloured

independent transversal, giving us the desired contradiction.

There is some colour c1 seen on at least N/k vertices of V1. Accordingly there are

at least N/k vertices of V2 that cannot receive colour c1, hence there is some colour

c2 seen on at least (N/k)(1/k) = N/k2 vertices of V2. Moving on to V3, there are at

least (N/k)(N/k2) vertices that cannot receive c1 or c2, so there is some third colour

c3 seen on at least (N/k)(N/k2)(1/k) = N2/k4 vertices in V3.

Continuing this analysis, we find that there are unique colours c1, c2, . . . , ck such

that for i = 2, 3, . . . , k, the colour ci appears on at least (N/k2)2i−2
vertices of Vi, and

c1 appears on at least N/k vertices of V1. In particular, for i = 1, 2, . . . , k there are

at least k vertices of colour ci in Vi.

We will find a k-coloured independent transversal S of V1, . . . , Vk starting at Vk

and working our way back as follows: From Vi, add to S any vertex with colour ci

with no neighbours in S. This is always possible, because at any point each vertex of

S will have at most one neighbour in Vi. Thus we can find our k-coloured independent

transversal S, proving that the colouring is not good since there is a vertex in X with

neighbourhood S. This completes the proof.

Notice that the theorem says nothing about the total number of colours used in

the colouring; it is easy to see that χ(Gk) ≤ k + 1. The proposition may be true for

claw-free graphs. The counterexample we just constructed contains a claw for k ≥ 2.
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We conjecture that the fractional weakening of the proposition is also false.

Conjecture 2.18. There exists a graph G such that in any fractional colouring there

is a vertex v for which the stable sets intersecting N(v) have total weight greater than
1
2
(d(v)− 1 + ω(v)).

We actually suspect that the graph constructed in the proof of Theorem 2.17 may

also prove Conjecture 2.18.
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Part II

Fractional and Integer Colourings

Over the next two chapters we explore the connection between fractional and

integer colourings of graphs. The next chapter focuses on perfect graphs, for which

the fractional and integer chromatic numbers are equal. As we will explain, the

relationship between fractional and integer colourings of perfect graphs is actually

much deeper than this. Perfect graphs have been the subject of much attention over

the past four decades. We trace the development of the field and in doing so gather

many useful tools that will help us deal with claw-free graphs in later chapters. The

most useful of these are structural decompositions which arose in both the study of

restricted subclasses of perfect graphs and the pursuit of the Strong Perfect Graph

Conjecture.

In Chapter 4 we investigate two important classes of claw-free graphs for which the

fractional and integer chromatic numbers are close together: line graphs and circular

interval graphs. As we will see in Chapters 5, 8, and 9, these two classes suggest two

composition operations that we will use to construct general claw-free graphs, and

they are also used as base classes of these compositions. In a step towards proving

the Main Conjecture for claw-free graphs, we will prove the Main Conjecture for line

graphs and circular interval graphs. Our proof leads to a polynomial-time γ-colouring

algorithm for these graphs.
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Chapter 3

Fractional Colouring and Perfect

Graphs

Since we are interested in graphs for which χ(G) is closer to ω(G) than to ∆(G) + 1,

it is natural to consider graphs for which χ(G) = ω(G). However, this property does

not tell us anything about the structure of the graph other than the fact that it

contains a χ(G)-clique. For example, taking the disjoint union of any graph G and a

clique of size χ(G) gives us a graph for which χ(G) = ω(G).

In this chapter we focus on graphs with the stronger property that χ(H) = ω(H)

for every induced subgraph H of G. These widely studied perfect graphs were intro-

duced by Claude Berge [Ber61], who was motivated by a problem of Shannon about

the rate at which information can be transmitted across an empty channel without

any chance of error [Sha56].

Early interest in perfect graphs was motivated by two conjectures due to Berge.

The Weak Perfect Graph Conjecture (WPGC) proposes that G is perfect precisely

if G is perfect. The Strong Perfect Graph Conjecture (SPGC) proposes that G is

perfect precisely if neither G nor G contains an odd hole. If neither G nor G contains

an odd hole we say that G is Berge. The strong conjecture obviously implies the weak

conjecture.

Since the fractional chromatic number lies between the clique number and the

chromatic number, we know that χf (G) = χ(G) for any perfect graph G. As we

discuss later in this chapter, to actually find an optimal colouring we use the stronger

fact that when G is perfect the fractional stable set polytope QSTAB(G) has only

31
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integer extreme points, and is therefore equal to the stable set polytope STAB(G);

we define these polytopes in the next section. It turns out that in fact the stable set

polytopes of perfect graphs can be used to characterize exactly those polytopes of

the form Ax = 1 which have only integer extreme points and for which A is a (0, 1)

matrix. For any such A, we can solve every integer program of the form

max cx s.t. Ax = 1 and x is integral

by solving the linear program obtained by dropping the integrality constraint. This

fact generated considerable interest in perfect graphs amongst combinatorial optimiz-

ers.

This second, polyhedral motivation is of more direct interest to us, since we will

use the facts that χ(G) is equal to or near χ(G) and that QSTAB(G) = STAB(G) for

various classes of graphs repeatedly when studying claw-free graphs. So we begin the

chapter with a discussion of the ratio between χf (G) and χ(G) for general graphs,

a description of the proof that QSTAB(G) = STAB(G) for perfect graphs, and a

discussion of algorithms for computing χ(G) and solving other optimization problems

on perfect graphs.

We also discuss the proofs of Berge’s two conjectures, which are separated by

thirty years. Lovász’ 1972 proof of the WPGC is short and elegant, relying on the

Replication Lemma and homogeneous cliques. We will need to consider homogeneous

cliques throughout our work on claw-free graphs in later chapters. In contrast to the

proof of the WPGC, the proof of the SPGC due to Chudnovsky, Robertson, Seymour,

and Thomas is over 100 pages long and we will not be able to reproduce it. We will

however sketch the proof for two reasons. First, it implies the Main Conjecture for

Berge graphs. Second, we will introduce structural decompositions and tools that will

be of great use to us in our study of claw-free graphs. In particular, we rely heavily

on 2-joins and homogeneous pairs for reasons we explain fully in Chapters 5 and 6

respectively.

To round off the chapter, we discuss recognition algorithms for perfect graphs.
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3.1 Fractional colouring

In Section 1.2 we defined the fractional chromatic number χf (G) of a graph G as the

optimal value of the following linear program (1.2):

minimize
∑

S∈S(G)

wS

subject to ∀v ∈ V (G),
∑
S3v

wS ≥ 1

and ∀S ∈ S(G), wS ∈ [0, 1]

The feasible region of this program is STAB(G), the stable set polytope of G. As we

will show, χf (G) is also equal to the minimum β such that ( 1
β
, 1
β
, . . . , 1

β
) is in STAB(G)

– our result from the previous chapter implies that ( 1
γl
, 1
γl
, . . . , 1

γl
) is in STAB(G). If

we can optimize over the stable set polytope of G efficiently, we can determine the

fractional chromatic number of G efficiently.

We consider another polytope, the fractional stable set polytope of G, denoted by

QSTAB(G). It consists of all nonnegative vertex weightings on G such that no stable

set of G has total weight more than 1. For all graphs, STAB(G) ⊆ QSTAB(G). Later

in this chapter we will show that a graph is perfect precisely if STAB(G) = QSTAB(G)

and furthermore, we can optimize over these polytopes efficiently.

For a probability distribution p on the stable sets of a graph, the value Pr(v ∈ S) is

called the marginal of p at v. We now present the relationship between STAB(G), the

fractional chromatic number, and marginals achievable by probability distributions

on the stable sets of a graph, which was hinted at in the proof of Theorem 2.10.

Observation 3.1. The following statements are equivalent:

(1) χf (G) = k

(2) ( 1
k
, 1
k
, . . . , 1

k
) ∈ STAB(G)

(3) There is a probability distribution p on the stable sets of G such that the marginal

of p at each vertex is 1
k
.

Thus the stable set polytope actually characterizes precisely (and in turn is defined

by) the marginal vectors that can be achieved by some such p.
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Proof. Suppose for some k ∈ R+ the |V |-dimensional vector ( 1
k
, 1
k
, . . . , 1

k
) is in the

stable set polytope of G. Then there is a convex combination of stable sets of G

in which every vertex has weight 1
k
. Taking k times this convex combination gives

a combination of stable sets with total weight k in which every vertex has weight

1. This is a fractional k-colouring of G, so χf (G) ≤ k and so (2) implies (1). It is

easy to see that the reverse implication is also true, i.e. that ( 1
k
, 1
k
, . . . , 1

k
) ∈ STAB(G)

precisely if χf (G) ≤ k. Furthermore the convex combination of stable sets actually

gives a probability distribution on stable sets of G such that if S is drawn from the

distribution, then for any v ∈ V , Pr(v ∈ S) = 1
k
. Specifically, the probability of S in

the distribution is precisely the weight of S in the convex combination. So (2) implies

(3) and again it is clear that the converse is also true.

We mentioned earlier that any graph G satisfies χ(G) ≤ dlog n·χf (G)e. This result

is due to Lovász, who gave a different proof of a more general result on set covers

[Lov75]. The proof we present uses the relationship between χf (G) and probability

distributions on the stable sets of G.

Theorem 3.2. For any graph G, χ(G) ≤ dlog n · χf (G)e.

Proof. By Observation 3.1 there is some probability distribution on the stable sets

of G such that if S is drawn from the distribution, for all v ∈ V we have Pr(v ∈
S) = 1

χf (G)
. We colour G by drawing dlog n · χf (G)e random colour classes from this

distribution and arguing that with nonzero probability, each vertex is in at least one

colour class. This gives a dlog n · χf (G)e-colouring of G, since if a vertex is in more

than one colour class we can just choose one of these colours arbitrarily for the vertex.

Let v be any fixed vertex. Every colour class S has the property that Pr(v ∈ S) =
1

χf (G)
. Since the colour classes are drawn independently from the same distribution,

the probability that v is in no colour class is

(
1− 1

χf (G)

)dlogn·χf (G)e
≤
((

1− 1

χf (G)

)χf (G)
) dlogn·χf (G)e

χf (G)

<

(
1

e

)logn

=
1

n
.

Thus the probability of every vertex being in at least one colour class is greater than

1− n 1
n

= 0. The theorem follows.
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This proof is an example of the simple but powerful first moment method (see, for

example, Chapter 3 in [MR00]).

In Chapter 1 we showed that ω(G) ≤ χf (G) ≤ χ(G). Here we give examples that

prove χf (G) can be at either end of this range, even if the difference between ω(G)

and χ(G) is large. This is in contrast to the previous chapter, in which we disproved

the analogous statement for χ(G) and the range ω(G) ≤ χ(G) ≤ ∆(G) + 1. The

fractional chromatic number can also be in the middle of the range [ω(G), χ(G)].

We first show that χf (G) can be equal to ω(G) but far from χ(G). Given positive

integers a and b for which b ≤ a
2
, the Kneser graph Ka:b has order

(
a
b

)
. Its vertices

correspond to the b-subsets of a base set of size a, and two vertices are adjacent

precisely if their corresponding subsets are disjoint. (The famous Petersen graph is

actually K5:2.) For any integers k ≥ 2 and b ≥ 2, the graph Kkb:b has clique number

k. One can use the well-known Erdős-Ko-Rado Theorem [EKR61] and the vertex-

transitive property of Kneser graphs to prove that χf (Kkb:b) = k; the proof is given

in Chapter 3 of [SU97]. Lovász [Lov78] proved that χ(Ka:b) = a − 2b + 2, and so

χ(Kkb:b) = (k − 2)b+ 2, far away from the fractional chromatic number.

To see that χf (G) and χ(G) can be equal and far from ω(G), let G be the line

graph of C5 with k copies of every edge (as we did in Section 2.1). If k is even, G has

clique number 2k and independence number 2, thus χf (G) ≥ 5
2
k. It is easy to show

that χ(G) = 5
2
k, so χf (G) = χ(G).

To see that χf (G) can be in the middle of the range [ω(G), χ(G)], let G be k

disjoint copies of C5 with all possible edges between them. Then ω(G) = 2k, χf (G) =
5
2
k, and χ(G) = 3k. We will revisit this example later in the thesis. Larsen, Propp,

and Ullman [LPU95] proved that Mycielski’s sequence of graphs Gk, mentioned in

Section 2.1 (see [Myc55]), have ω(Gk) = 2, χ(Gk) = k, and χf (Gk) = χf (Gk−1) +
1

χf (Gk−1)
. Thus χf (Gk) asymptotically approaches

√
2k − 2.

3.1.1 Inapproximability of χ and χf

We have shown that ω(G), χf (G), and χ(G) can be far apart from one another, even

though they are all equal for perfect graphs. It turns out that all three of them are

difficult to compute and even approximate in general. Since the fractional chromatic

number can be found by solving a linear program, one might make the mistake of

thinking that we can find χf (G) in polynomial time. But the linear program contains
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a variable for every stable set of G, and can therefore have exponential size compared

to the size of G.

Indeed it is NP -hard1 to approximate the chromatic number of a graph to within

a factor of |V |εχ for some positive εχ. Bellare, Goldreich, and Sudan proved that

this εχ is at least 1
7

[BGS98]. By Theorem 3.2, χ(G) exceeds χf (G) by at most a

factor of log(|V |), thus it is hard to compute the fractional chromatic number of a

graph in general under the assumption that P 6= NP because χf (G) gives a log(|V |)-
approximation to χ(G). As pointed out in Exercise 10.8 in [AL95], this implies that

approximating χf (G) is also hard.

By results of H̊astad [H̊as99] and Feige and Killian [FK98], if we make stronger

assumptions2 than P 6= NP , then it is hard to approximate ω, χ, and χf to within a

factor of |V |1−ε for any ε > 0.

In spite of these difficulties it is possible to efficiently compute the chromatic

number for a perfect graph and even find an optimal colouring, as we will show later

in this chapter. First we must lay out the foundation of these optimization results:

the Replication Lemma and the proof of the Weak Perfect Graph Theorem, which

have extensive implications in both structural and polyhedral aspects of perfect graph

theory.

3.2 The Replication Lemma and the Weak Perfect

Graph Theorem

In 1972, Lovász proved the Weak Perfect Graph Conjecture [Lov72]. His proof hinges

on the following lemma.

Definition 3.3. We replicate a vertex v in G by adding a vertex v′ to G with neigh-

bourhood N̄(v) (recall that N̄(v) denotes the closed neighbourhood {v} ∪ N(v) of a

vertex v). In other words, we add a twin of v to G.

1See [GJ79] for definitions related to NP -hardness.
2Inapproximability of ω relies on the assumption that NP 6= co-RP , and inapproximability of χ

and χf relies on the assumption that NP 6= ZPP . We refer the interested reader to [Pap94] for the
definitions of these complexity classes. We know that P ⊆ ZPP ⊆ co-RP ⊆ NP but all four classes
may be equal, although this is widely disbelieved.
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Replication Lemma (Lovász3 [Lov72]). If G is obtained from a perfect graph by

replicating a vertex then G is perfect.

Proof. We need to show that if G′ is obtained by adding a twin v′ of a vertex v to a

perfect graph G then for every induced subgraph H ′ of G′, we have χ(H ′) = ω(H ′).

Since G is perfect we are done if v′ /∈ H ′ because in this case H ′ is an induced

subgraph of G. Similarly, we are done if v′ ∈ H ′ but v /∈ H ′ since in this case H ′ is

isomorphic to H ′ + v − v′
So assume both v and v′ are in H ′ and let H = H ′−v′. If v is in an ω(H) clique in

H then ω(H ′) = ω(H) + 1 and we can ω(H ′)-colour H ′ using an ω(H)-colouring of H

and a new colour for v′. If v is in no ω(H) clique, we ω(H)-colour H and let the stable

set S be the colour class containing H. Observe that ω(H−S) = ω(H)−1. It follows

that H−(S−v) has no ω(H) clique and since G is perfect, χ(H−(S−v)) = ω(H)−1.

Using S− v+ v′ as a final colour class gives us the desired ω(H ′)-colouring of H ′.

We immediately get the following corollary.

Corollary 3.4. If G is obtained from a perfect graph through a sequence of vertex

replications then G is perfect.

This motivates an important definition.

Definition 3.5. To substitute a graph H for a vertex v in a graph G, we first take

the disjoint union of G − v and H, then make each vertex in H adjacent to each

vertex in N(v).

So repeatedly replicating a vertex is equivalent to substituting a clique for the

vertex, and this operation preserves perfection. Lovász actually proved that if a

perfect graph H is substituted for a vertex v in a perfect graph G, the resulting

graph is perfect (see Chapter 2 in [RR01]).

The Replication Lemma is also the key to proving that QSTAB(G) = STAB(G)

if G is perfect, as we will show in the next section. We say that a set S of vertices

in G is a homogeneous set if |S| ≥ 2, |V (G) \ S| ≥ 2, and every vertex in V (G) \ S
sees either all or none of S. If S is a clique, we say that S is a homogeneous clique.

3Fulkerson had previously noted that the Replication Lemma would be enough to prove the Weak
Perfect Graph Conjecture [Ful72].
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The notions of replication, substitution, and homogeneous sets are closely related: If

we replicate a vertex in a graph on at least three vertices, the resulting graph will

contain a homogeneous clique. If we substitute H for v in G, then the vertices of H

will be a homogeneous set in the resulting graph.

This idea remains extremely important when we shift our focus from perfect

graphs to claw-free graphs in the next chapter. In particular, we will rely heavily

on the notion of thickenings, which generalize repeated vertex replication, and homo-

geneous pairs of cliques, which generalize homogeneous cliques.

We close this section with a proof the Weak Perfect Graph Conjecture, which is

now the Weak Perfect Graph Theorem.

Theorem 3.6 (Lovász [Lov72]). If G is perfect then G is perfect.

Proof. It suffices to prove that if G is perfect, then χ(G) = ω(G), so assume G is a

minimal counterexample to this statement. Thus every proper induced subgraph H

of G can be covered with α(H) cliques.

Let t be the number of maximum stable sets in G, and for every vertex v of G

let tv be the number of maximum stable sets containing v. Construct the graph G′

from G by deleting every vertex v for which tv = 0, then replicating every remaining

vertex tv − 1 times. Thus we get G′ from G by substituting a clique Cv of size tv for

every vertex v. We can label each vertex of Cv with a unique maximum stable set of

G containing v; it follows that G′ is t-colourable.

G′ has tα(G) vertices and α(G′) = α(G), so χ(G′) ≥ |V (G′)|/α(G′) = t, so

χ(G′) = t. By Corollary 3.4, G′ is perfect and therefore contains a clique C ′ of

size t. The maximum stable sets of G give a t-colouring of G′, so C ′ intersects

each of these stable sets. Let C ⊆ V (G) be the set of vertices v for which C ′

intersects Cv; C is clearly a clique and it intersects every maximum stable set in G,

so α(G−C) = α(G)−1. By minimality of G, G−C can be covered by α(G)−1 cliques.

It follows that G can be covered by α(G) cliques, so χ(G) = ω(G), a contradiction.

Remark: In Section 2.2 we noted that if every vertex in a graph G is contained in

the same number of maximum stable sets, then χf (G) = |V (G)|/α(G), and we get

an optimal fractional colouring by giving equal weight to every maximum stable set.

The above proof follows this line of thinking, as the t-colouring of G′ is the result

of fractionally colouring G using only maximum stable sets so that every vertex v
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receives total weight tv.

To prove that QSTAB(G) = STAB(G) when G is perfect, we will use a similar

construction based on repeated replication. But instead of substituting a clique for

each vertex we will substitute a stable set for each vertex, noting that the resulting

graph is still perfect.

3.3 Optimizing over perfect graphs

We have established that finding the chromatic number or fractional chromatic num-

ber of a graph is hard in general. In this section we will explain how to optimally

colour a given perfect graphG in polynomial time. SinceG is perfect, computing χ(G)

is equivalent to computing χf (G) and ω(G). By the Weak Perfect Graph Theorem,

if we can compute χ(G) efficiently we can also compute χ(G) and α(G) efficiently.

Even more impressive is the fact that we can actually find a maximum stable set and

optimally colour G in polynomial time.

Our first step is to calculate ω(G), which we do by optimizing over STAB(G)

to find a maximum stable set of G. Grötschel, Lovász, and Schrijver proved that

we can approximately solve a convex optimization problem efficiently if we can solve

the associated separation problem approximately. For integer programs in which the

vertices of the feasible region are (0, 1) vectors, this implies that we can find an exact

solution efficiently if we can separate efficiently. We refer the reader to [GLS93] for

further explanation.

To optimize over perfect graphs we exploit the equality of the stable set polytope

and fractional stable set polytope. This equality was first proved using antiblocking

polyhedra [Ful72]. Chvátal [Chv75] later gave a simple proof that QSTAB(G) =

STAB(G) for perfect graphs, based on Lovász’ proof of the Weak Perfect Graph

Theorem.

Theorem 3.7. If G is perfect, then QSTAB(G) = STAB(G).

Proof. We already know that STAB(G) ⊆ QSTAB(G). To show that QSTAB(G) ⊆
STAB(G) it suffices to show that there is no direction in which QSTAB(G) exceeds

STAB(G). Thus since the vertices of both polyhedra are rational and in the non-

negative orthant, it suffices to show that there is no rational vector contained in
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QSTAB(G) \ STAB(G). That is for any rational vector c, the maximum of c · x over

QSTAB(G) is achieved by a point in STAB(G), i.e. a characteristic vector of a stable

set in G. If c is the 1-vector, this follows from the fact that G can be covered by α(G)

cliques by the WPGT, so the maximum of c · x over QSTAB(G) is α(G). We need

only consider nonnegative integer-valued c because we can rescale c to have integer

values without changing its direction.

For arbitrary nonnegative integer-valued c, we construct a graph Gc by substitut-

ing a stable set of size cv for every vertex v of G. This is equivalent to substituting a

clique of size cv for every vertex v of G, then taking the complement. So by the Weak

Perfect Graph Theorem and the Replication Lemma, Gc is perfect. Every stable set

S in G corresponds to a stable set of size
∑

v∈S cv in Gc. Furthermore, just as we

bounded the chromatic number of G′ in the proof of the WPGT, we can see that

α(Gc) is the maximum of c · x such that x is the characteristic vector of a stable set

in G.

Since Gc is perfect it can be covered by α(Gc) cliques, so there is no point yc ∈
QSTAB(Gc) for which 1 · yc > α(Gc). Suppose there is a point y ∈ QSTAB(G) for

which c · y > α(Gc). This point corresponds to a weighted combination of stable sets

Si in G, and each Si corresponds to a stable set of size
∑

v∈Si cv in Gc. Combining

these stable sets in Gc gives us a point yc ∈ QSTAB(Gc) for which 1 · yc > α(Gc), a

contradiction.

We mentioned earlier that QSTAB(G) = STAB(G) precisely if Gc is perfect. If

G is not perfect then it contains an odd hole or antihole as an induced subgraph by

the Strong Perfect Graph Theorem. Knowing this, it is a simple matter to prove that

QSTAB(G) 6= STAB(G).

The key to optimizing over perfect graphs is a convex body called the theta body

of G, denoted TH(G). The theta body, first introduced by Lovász [Lov79], lies be-

tween QSTAB(G) and STAB(G) for any graph, so for any perfect graph G the three

bodies are equal. Grötschel, Lovász, and Schrijver proved that we can approximately

solve convex optimization problems over the theta body efficiently using the ellipsoid

method, which is a form of geometric binary search [GLS81]. Since the vertices of

TH(G) are integral, we can find a maximum stable set in a perfect graph in poly-

nomial time. In fact we can find a maximum weight stable set for any nonnegative

integer weighting on the vertices of G.
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Since G is also perfect by the WPGT, we can also efficiently compute ω(G),

χ(G) and χf (G). Recall that χf (G) ≤ k precisely if ( 1
k
, 1
k
, . . . , 1

k
) is in STAB(G),

so the vector ( 1
ω
, 1
ω
, . . . , 1

ω
) is in STAB(G) and it represents a convex combination of

stable sets. Equivalently, it can be expressed as a convex combination of vertices of

STAB(G). We can find such an expression efficiently [GLS93]; we now show how this

fact allows us to find an optimal colouring of G.

If a stable set S is given nonzero weight in a fractional ω(G)-colouring of a perfect

graphG, then S intersects every maximum clique ofG. Therefore ω(G−S) = ω(G)−1

and by perfection, χ(G− S) = χ(G)− 1. Thus we can use S as a colour class in an

optimal colouring of G and recursively colour G − S using χ(G) − 1 colours. So to

efficiently find an optimal colouring of a perfect graph, it suffices to find such an S

efficiently. To do this, we first compute ω(G) by optimizing over the theta body of

G. We then express ( 1
ω
, 1
ω
, . . . , 1

ω
) as a convex combination of vertices of STAB(G),

and take S to be the stable set represented by some vector given nonzero weight in

this expression.

3.4 Combinatorial algorithms and some subclasses

of perfect graphs

The decades leading up to the proof of the Strong Perfect Graph Theorem saw a huge

amount of work in the theory of perfect graphs. In particular, many classes of Berge

graphs were shown to be perfect, and many properties of minimal imperfect graphs4

were proved. In this section we discuss some classes of perfect graphs that yield

efficient detection algorithms and combinatorial algorithms for solving optimization

problems. These algorithms are of interest to us for two reasons. First, the ellipsoid

method is not very efficient in practice, and optimizing over the theta body does not

give us a strong intuition as to how we are exploiting the structure of the graph.

Second, the tools and ideas we introduce in this section are of use to us in more

general settings, in particular when dealing with claw-free graphs.

4An imperfect graph is minimal imperfect if all of its proper induced subgraphs are perfect.
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3.4.1 Bipartite graphs and their complements

A graph is bipartite precisely if it is 2-colourable. Bipartite graphs are perfect. It is

easy to show that a graph is bipartite precisely if it contains no cycle of odd length.

If G is the complement of a bipartite graph, then G is cobipartite. Equivalently,

G is cobipartite if its vertices can be covered by two cliques. Clearly an optimal

colouring of a cobipartite graph consists of a maximum matching in G and a set of

singleton colour classes. By König’s Theorem [Kön16], the maximum matching in

a bipartite graph has size equal to that of a minimum vertex cover, which implies

that cobipartite graphs are perfect without using the perfection of bipartite graphs.

We will use the perfection of cobipartite graphs repeatedly throughout the remaining

chapters, particularly in the context of homogeneous pairs of cliques, which we define

later in this section.

3.4.2 Line graphs of bipartite graphs

The edges of a bipartite graph H can be coloured using ∆(H) colours. This follows

easily from the fact that a maximum matching and minimum cover have the same

size in a bipartite graph. Since ω(L(H)) = ∆(H) for bipartite H, this implies that

the line graph of any bipartite graph is perfect. The Replication Lemma extends

this result to line graphs of bipartite multigraphs, and the WPGT implies that the

complement of the line graph of a bipartite graph is perfect. Line graphs of bipartite

graphs make up an important class of claw-free Berge graphs, and as we show in the

next section, they also make up an important class of general Berge graphs.

3.4.3 Clique cutsets

A clique C in a graph G is a clique cutset if G − C is disconnected. If G1, . . . , Gl

are the connected components of G − C, then we can construct G from the graphs

Gi ∪ C by identifying C in each of the graphs. We call this operation by which we

paste together the graphs Gi ∪ C a clique sum.

If we have a ki-colouring of each graph Gi∪C, then in each colouring, every vertex

of C receives a different colour. Thus by permuting the colour classes we can obtain

colourings that agree on C; together these colourings yield a proper colouring of G

using max1≤i≤l ki colours.
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It follows that if B is a class of perfect graphs and BC is a hereditary class of

graphs each of which is in B or contains a clique cutset, then BC is also a class of

perfect graphs.

Whitesides [Whi81] proved that we can find a clique cutset in O(nm) time. Tarjan

extended this [Tar85], proving that inO(nm) time we can construct a clique cutset tree

for any graph. A clique cutset tree of a graph G is a rooted tree defined recursively

as follows: the root of the tree corresponds to a clique cutset C of G, or to G if

G contains no clique cutset. From the root we hang the clique cutset trees of the

resulting graphs Gi ∪ C. Thus if we have a polynomial-time algorithm for colouring

graphs in B, we have a polynomial-time algorithm for colouring graphs in BC that

involves working our way up the clique cutset tree, starting with the leaves.

We now describe some classes of perfect graphs for which this approach is partic-

ularly effective.

Chordal graphs

A graph is chordal if it contains no holes. Chordal graphs, also known as triangulated

or Gallai graphs, were first identified and characterized by Dirac [Dir61]. They are

perfect, so we can colour them in polynomial time using the ellipsoid method. Dirac

proved that G is chordal if and only if every induced subgraph of G is a clique or has

a clique cutset. Thus if B is the class of cliques then BC is the class of chordal graphs.

Therefore we have an algorithm for colouring chordal graphs that is far more efficient

and illuminating than the polyhedral approach we use for general perfect graphs.

Fulkerson and Gross proved that G is chordal precisely if every induced subgraph

ofG has a simplicial vertex, i.e. a vertex whose neighbourhood induces a clique [FG65].

Thus any chordal graph G has a simplicial ordering of its vertices in which we can

remove simplicial vertices one at a time until only a single vertex remains. Unless G

is a clique, the neighbourhood of any simplicial vertex is a clique cutset. We can find

a simplicial vertex in a chordal graph in O(m) time, which is faster than the best

known algorithm for general graphs.

Clique-separable and i-triangulated graphs

Let B be the class of graphs that are complete multipartite or a clique joined to a

bipartite graph. In this case BC is the class of clique-separable graphs. For G ∈ B,
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if some component of G is not a clique, then it is a cobipartite graph and all other

components of G are isolated vertices. Thus G is perfect and it follows that B is

a subclass of perfect graphs. The structure of G yields an efficient algorithm for

colouring graphs in B, so we immediately get an efficient combinatorial algorithm for

colouring clique-separable graphs.

A graph is i-triangulated if every cycle of odd length has at least two noncrossing

chords. Gallai [Gal62] proved that these graphs are perfect, and in fact they form

a subset of clique-separable graphs. It turns out that we can use the structure of

i-triangulated graphs to find a maximum-weight induced k-partite subgraph in poly-

nomial time for any fixed k [AKK+08]. To do this, we decompose using clique cutsets

with special properties which we can show exist because of the special structure of

i-triangulated graphs.

3.4.4 Star cutsets, even pairs, and weakly triangulated graphs

A star cutset A in a graph G is a cutset such that some vertex v in A sees every other

vertex in A. We call v the centre of the star cutset. Note that every clique cutset is

also a star cutset. Chvátal [Chv85] proved that no minimal imperfect graph contains

a star cutset, and so by the WPGT its complement does not contain a star cutset.

Lemma 3.8 (Star Cutset Lemma). No minimal imperfect graph contains a star

cutset.

Proof. Suppose G is minimal imperfect and contains a star cutset A with centre v,

and let the components of G − A be Gi for 1 ≤ i ≤ l. Then each Gi ∪ A is perfect;

take an ω(Gi ∪ A)-colouring of each graph and permute the colour classes so that v

always receives the same colour. Let the stable set S in G be the union of these colour

classes. Every graph (Gi ∪ A) − S is ω(G) − 1 colourable and hence has no ω(G)

clique, so G− S has no ω(G) clique. Since G− S is perfect it is ω(G)− 1 colourable

so G is ω(G) colourable, a contradiction.

Given a class B of perfect graphs, let B∗ be the class of graphs that are in B
or admit a star cutset or admit a star cutset in the complement. The Star Cutset

Lemma implies that B∗ is a class of perfect graphs. By properties of star cutsets

pointed out by Chvátal [Chv85], it is easy to find a star cutset in polynomial time.
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However, unlike the case for clique cutsets, we do not necessarily have an efficient

combinatorial algorithm for colouring graphs in B∗ since we do not know how to paste

together the colourings of Gi ∪ A given a star cutset A.

In certain cases, however, we can further exploit the structure of B∗ to colour

graphs efficiently. A graph is weakly triangulated if it contains no hole or antihole of

length greater than four. The class of weakly triangulated graphs lies between Berge

graphs and chordal graphs. Hayward [Hay85] proved that weakly triangulated graphs

are the class B∗ when B is the class of graphs on at most two vertices, so they are

perfect. To find a combinatorial colouring algorithm for weakly triangulated graphs

we must introduce the notion of even pairs.

Two nonadjacent vertices u and v in a graph form an even pair if every chordless

path between u and v has an even number of edges. For an even pair {u, v} in a

graph G we contract {u, v} by replacing u and v with a new vertex uv adjacent to

N(u) ∪N(v). We use G/uv to denote the resulting graph.

Even pairs are of interest to us because contracting on an even pair in a perfect

graph always results in a perfect graph, as proved by Fonlupt and Uhry [FU82]. Their

result follows from the fact that neither the chromatic number nor the clique number

changes:

Theorem 3.9. Let {u, v} be an even pair in a graph G. Then ω(G/uv) = ω(G) and

χ(G/uv) = χ(G).

Proof. Obviously ω(G/uv) ≥ ω(G). Suppose ω(G/uv) > ω(G). Then there is a

maximum clique in G containing vertices w adjacent to v but not u, and x adjacent to

u but not v. The four vertices v, w, x, u induce a path on three vertices, contradicting

the fact that {u, v} is an even pair.

Given a χ(G/uv) colouring of G/uv we get a χ(G/uv) colouring of G by giving

both u and v the colour appearing on uv, so χ(G) ≤ χ(G/uv).

If there is a χ(G) colouring of G such that u and v receive the same colour, we can

χ(G) colour G/uv by giving uv that same colour. Suppose we have a χ(G) colouring

of G such that u and v receive different colours, and let G′ be the subgraph of G

induced on these two colour classes. If u and v are in the same component of G′ then

we get an odd chordless path from u to v, contradicting the fact that {u, v} is an

even pair. Therefore we can take the component of G′ containing v and exchange the
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two colour classes to reach a proper χ(G) colouring of G in which u and v receive the

same colour. It follows that χ(G) = χ(G/uv).

This idea of reducing a graph without changing its chromatic number will be of

use to us when we colour claw-free graphs, particularly in the setting of homogeneous

pairs of cliques. Note, however, that contracting on an even pair can increase the

maximum degree of the graph, so even pairs are of little use to us when considering

the Main Conjecture and the Local Strengthening.

A graph G is called even-contractile if we can reduce G to a clique through

a sequence of even pair contractions. If the resulting sequence of graphs is G =

G0, G1, . . . , Gk where Gk is a clique of size χ(G), we can optimally colour G as fol-

lows. Start with a colouring of Gk. Having optimally coloured Gi for some i, and

letting {ui, vi} be the even pair in Gi−1 for which Gi = Gi−1/uivi, we χ(G)-colour

Gi−1 by giving both ui and vi the colour appearing on uivi in the colouring of Gi, and

using the same colouring on Gi−1 − ui − vi and Gi − uivi.
This approach leads to a polynomial-time colouring algorithm for even-contractile

graphs as long as we can find the desired sequence of even pairs in polynomial time.

However, the problem of deciding whether or not G admits an even pair is co-NP -

complete (and thus not believed to be solvable in polynomial time) in general [Bie91].

Hayward, Hoáng, and Maffray proved that every weakly triangulated graph is

even-contractile [HHM89]. Since contracting on an even pair in a weakly triangulated

graph does not always leave a weakly triangulated graph, they considered a special

type of even pairs. A 2-pair is an even pair {u, v} in which every chordless path

from u to v has length two. Hayward, Hoáng, and Maffray proved that every weakly

triangulated graph is either a clique or contains a 2-pair. Contracting a 2-pair will

not create a long hole or antihole, so this easily implies that every weakly triangulated

graph is even-contractile. To colour weakly triangulated graphs efficiently it is enough

to know that we can find a 2-pair in polynomial time. This is easy, because {u, v}
is a 2-pair precisely if u and v are in different components of G − (N(u) ∩ N(v)).

Arikati and Pandu Rangan later gave an O(nm)-algorithm for finding a 2-pair in an

arbitrary graph if one exists [AP91].
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Figure 3.1: A bull.

3.4.5 Bull-free Berge graphs and homogeneous pairs

A bull is a triangle along with two pendant vertices that are adjacent to distinct

vertices of the triangle (see Figure 3.1). A graph is bull-free if it does not contain a

bull as an induced subgraph. Bull-free graphs generalize bipartite graphs. Chvátal

and Sbihi proved that all bull-free Berge graphs are perfect [CS87].

Their proof uses two important tools: star cutsets and homogeneous pairs. A

homogeneous pair is a pair (A,B) of disjoint nonempty sets of vertices such that

1. Every vertex outside A∪B sees either all of A or none of A, and sees either all

of B or none of B.

2. At least one of A and B contains at least two vertices.

3. There are at least two vertices outside A ∪B.

Homogeneous pairs generalize homogeneous sets, since a homogeneous set is just a

homogeneous pair in which one set is empty. If A and B are both cliques then (A,B)

is a homogeneous pair of cliques; these generalize homogeneous cliques. Homogeneous

pairs of cliques are a key idea in the structure theorems for claw-free graphs. Everett,

Klein, and Reed gave an O(mn3) for finding a homogeneous pair in a general graph

[EKR97]. We will give faster algorithms for finding specific types of homogeneous

pairs of cliques later in this thesis.

Chvátal and Sbihi’s work relies on the Star Cutset Lemma, which we already

proved, and the Homogeneous Pair Lemma, proved by Chvátal in [CS87]:

Lemma 3.10 (Homogeneous Pair Lemma). No minimal imperfect graph contains a

homogeneous pair.

To prove that bull-free Berge graphs are perfect, Chvátal and Sbihi proved the

following structure theorem:
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Theorem 3.11. Let G be a bull-free Berge graph. Then one of G or G contains a

star cutset or a homogeneous pair, or is bipartite.

This immediately yields the result that bull-free Berge graphs are perfect, since

no minimal imperfect graph is bipartite or the complement of a bipartite graph, thus

no minimal imperfect graph is both bull-free and Berge. Reed and Sbihi proved a

different structure theorem for bull-free Berge graphs that yields a polynomial-time

detection algorithm [RS95]. As we discuss at the end of this chapter, it was not until

recently that a polynomial-time detection algorithm was found for general Berge

graphs.

The Homogeneous Pair Lemma is also implied by results of Olariu [Ola88] and

Conforti, Cornuéjols, Gasparyan, and Vuškovič [CCGV02] (see [PS01]). Later in this

thesis we will prove results that easily imply that no minimal imperfect graph contains

a homogeneous pair of cliques.

3.5 The Strong Perfect Graph Theorem and a struc-

tural characterization of Berge graphs

The Strong Perfect Graph Conjecture was for a long time one of the most significant

open problems in the field of graph theory. Chudnovsky, Robertson, Seymour, and

Thomas finally announced that the conjecture is true in 2002. The proof, at a length

of about 150 pages, was published in 2006 [CRST06]. Chudnovsky and Seymour

[CS08c] later shortened it by about 50 pages using an even pairs approach inspired

by similar work by Maffray and Trotignon [MT06]. For an idea of how the proof was

found, we refer the reader to Seymour’s gentle introduction to the work [Sey06]. Since

χ = ω for Berge graphs, the SPGT gives a strengthening of the Main Conjecture and

the Local Strengthening for Berge graphs.

The proof of the SPGT follows from a structure theorem for Berge graphs due to

Chudnovsky, Robertson, Seymour, and Thomas [CRST06]. The structure theorem

was conjectured to exist by Conforti, Cornuéjols, and Vuškovič (see [Sey06]). It states,

essentially, that a Berge graph G must be in one of several well-understood classes of

perfect graphs, or else it admits one of several structural decompositions. Thus the

structure theorem is of the same flavour as the structure theorems for bull-free Berge
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graphs and claw-free graphs, the latter of which we discuss in the next chapter. A

minimum counterexample to the SPGT cannot admit any of the decompositions in

question, so the theorem follows (since it holds for the base classes of graphs).

It stands to reason, considering the Weak Perfect Graph Theorem, that the base

classes of graphs should come in complementary pairs. There are three pairs:

• Bipartite graphs and their complements, cobipartite graphs.

• Line graphs of bipartite graphs and their complements.

• Double split graphs are defined as follows. Let H be a split graph, i.e. a

graph whose vertices can be partitioned into a stable set A and a clique B. We

double the vertices of H such that the pairs from A are adjacent and the pairs

from B are nonadjacent. That is, we let V (G) =
⋃
v∈V (H){v1, v2}. For u ∈ A

and v ∈ B, we have:

– u1 sees u2 if and only u ∈ A
– If u, v ∈ A then ui does not see vj for {i, j} ⊆ {1, 2}.
– If u, v ∈ B then ui sees vj for {i, j} ⊆ {1, 2}.
– If u ∈ A and v ∈ B, there are two edges between {u1, u2} and {v1, v2}.

They are u1v1 and u2v2 if u sees v in H. Otherwise they are u1v2 and u2v1.

Notice that the complement of a double split graph is again a double split graph,

so to show that they are perfect we need only show that they contain no odd

holes; this is easy.

If G or its complement is bipartite or the line graph of a bipartite graph or a double

split graph, we say that G is basic (this definition only applies to this chapter, as we

will use different types of basic graphs in the study of claw-free graphs). If a Berge

graph is not basic then it yields one of two types of structural decomposition, which

we define and discuss now.

3.5.1 2-joins

We already know that no minimal imperfect graph contains a clique cutset. One

special type of clique cutset is a 1-join. A graph G admits a 1-join if we can partition
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the vertices of G into A1, B1, A2, B2 such that A1 ∪A2 is a clique, N(B1) ⊆ A1 ∪B1,

and N(B2) ⊆ A2∪B2 (that is, the only edges between A1∪B1 and A2∪B2 are those

between A1 and A2). Observe that A1 ∪A2 is a clique cutset, so it is easy to see that

no minimal imperfect graph (and thus no minimum counterexample to the SPGT)

contains a 1-join.

Generalizing 1-joins are 2-joins, which were introduced by Cornuéjols and Cun-

ningham [CC85]. A 2-join is a partitioning of V (G) into V1 and V2 with disjoint

nonempty Xi, Yi ⊆ Vi for i ∈ {1, 2} such that X1 is complete to X2 and Y1 is com-

plete to Y2, and there are no other edges between V1 and V2.

The decomposition theorem for Berge graphs uses a special type of 2-join called

a proper 2-join. A proper 2-join is a 2-join with the additional properties that:

• For i ∈ {1, 2}, every component of G[Vi] intersects both Xi and Yi.

• For i ∈ {1, 2}, if |Xi| = |Yi| = 1 and G[Vi] is an induced path, then it has odd

length ≥ 3.

2-joins are a special case of 2-amalgams, in which we allow a homogeneous clique

adjacent to X1 ∪X2 ∪ Y1 ∪ Y2.

To show that 2-joins preserve perfection, as proved by Cornuéjols and Cunningham

[CC85], we need to prove that we can find suitable ω(G)-colourings of G1 = G[V1]

and G2 = G[V2] so that we can paste them together to reach a proper ω(G)-colouring

of G. But observe that G may contain a cycle of odd length even if both G1 and G2

are perfect, even if the 2-join is proper. So instead of insisting that G1 and G2 are

perfect, we insist that two auxiliary graphs G′1 and G′2 are perfect. For i ∈ {1, 2} we

construct G′i from Gi by adding a vertex v1 with neighbourhood Xi, and a vertex v2

with neighbourhood Yi ∪ {v1} (see Figure 3.2). Denote the clique numbers ω(Gi[Xi])

and ω(Gi[Yi]) by pi and qi respectively. Construct the graph Hi from G′i by adding a

vertex u with neighbourhood {v2} ∪ Yi. We can see that H1 and H2 are perfect, in

particular because {v2} ∪ Yi is a star cutset in Hi.

The following lemma provides us with the desired colourings of G1 and G2.

Lemma 3.12. Assume Hi is perfect. For any l ≥ ω(Gi) there is a proper l-colouring

of Gi in which pi colours appear on Xi, qi colours appear on Yi, and max{0, pi+qi− l}
colours appear on both Xi and Yi.
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Figure 3.2: A graph G admitting a 2-join into G1 and G2. The 2-join is built from
auxiliary graphs G′1 and G′2. If G′1 and G′2 are perfect then so is G.
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Proof. Beginning with Hi, replace v1 with a clique C1 of size l− pi, replace v2 with a

clique C2 of size min{l−qi, pi}, and replace u with a clique C3 of size max{l−pi−qi, 0}.
The resulting graph H ′i is perfect by the Replication Lemma, and it is easy to confirm

that ω(H ′i) = l.

Consider an l-colouring of H ′i restricted to Gi (Gi is an induced subgraph of H ′i).

Since Xi is joined to a clique of size l − pi and Yi is joined to a clique of size l − qi
(i.e. the cliques replacing v2 and u), pi colours appear on Xi and qi colours appear on

Yi. Since we have an l-colouring, at least pi + qi − l colours appear on both Xi and

Yi. Furthermore, the colours appearing on neither Xi nor Yi are precisely the colours

appearing on both C1 and C3, of which there must be max{l− pi− qi, 0} in a proper

l-colouring of H ′i, since H ′i[C1 ∪Xi] and H ′i[C2 ∪ C3 ∪ Yi] both have clique number l.

The result follows.

With this lemma in hand it is now easy to prove that 2-joins preserve perfection:

we argue that taking our guaranteed ω(G)-colourings of G1 and G2, we can simply

permute the colour classes and paste the colourings together to get a proper ω(G)-

colouring of G. However, different types of 2-joins are very important to us when we

bound the chromatic number of quasi-line and claw-free graphs later in this thesis.

With this in mind we present a proof that is less straightforward, but which better

motivates our approach to 2-joins in claw-free graphs.

Lemma 3.13. If G′1 and G′2 are perfect, then G is perfect.

Proof. Let G be a minimum counterexample with clique number ω. We claim that

G is minimal imperfect. For if some proper induced subgraph G′ of G is imperfect,

it admits either a 1-join (if G′ contains none of some Xi or Yi) or a 2-join resulting

from perfect induced subgraphs of G′1 and G′2. The 1-join preserves perfection since

it is a clique sum, so by minimality of G, G′ is perfect and G is minimal imperfect.

It suffices, then, to prove that G is ω-colourable. To do this we find a stable set

S such that G′1 − S and G′2 − S are both ω − 1 colourable, which proves the lemma

by minimality of G.

We begin with an ω-colouring of G1 and an ω-colouring of G2 as provided by the

previous lemma (setting l = ω). Since p1 < ω there is a colour class S1 in G1 that

intersects Y1 but not X1. Suppose there is a colour class S2 in G2 that intersects X2

but not Y2. Observe that ω = max{ω(G1), p1 +p2, q1 + q2, ω(G2)}. Thus since S1∪S2
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intersects both X1 ∪X2 and Y1 ∪ Y2, it is easy to see that ω(G− (S1 ∪ S2)) = ω − 1

and we are done.

So we can assume that there is no such S2 in G2, i.e. that every colour in X2 is

also in Y2. By the previous lemma, ω = ω(G2) = q2. But this is clearly impossible

since Y1 ∪ Y2 is a clique and Y1 is nonempty.

We just illustrated a simple example of a very important approach, variations of

which we will apply repeatedly throughout this thesis. To prove that G is ω(G)-

colourable, we removed a stable set that lowered ω(G). In later chapters we will

remove stable sets that lower γ(G) or γl(G) in order to prove that χ(G) ≤ γ(G) or

χ(G) ≤ γl(G).

3.5.2 Balanced skew-partitions

Proper 2-joins are the first type of decomposition we need for the SPGT. The other

is a specific type of skew-partition. A skew-partition is a partitioning of V into A

and B such that neither G[A] nor G[B] is connected. Because G[A] is not connected,

skew-partitions are sometimes called skew-cutsets. If we split A into A1 and A2 with

no edges between them and we split B into B1 and B2 with all edges between them,

we say that (A1, A2, B1, B2) is a split of a skew-partition. Given a split we define the

graphs G1 = A1 ∪B and G2 = A2 ∪B.

If a graph G contains a star cutset X with centre v, then G[X] is disconnected in

the complement so G admits a skew-partition into X and G−X, thus skew-partitions

generalize star cutsets (and also clique cutsets). If G contains a homogeneous set H

such that the setsN and A of vertices inG−H which see none and all ofH respectively

are both nonempty, then (N ∪ (H \ {v}), A ∪ {v}) is a skew-partition. Thus skew

partitions also generalize homogeneous sets.

Chvátal [Chv85] first introduced skew-partitions upon proving the Star Cutset

Lemma. He conjectured that they could not exist in a minimum counterexample to

the SPGT; this conjecture remained open until the proof of the SPGT rendered it

trivial [Sey06].

A heavy focus on general skew-partitions brought about difficulties in the search

for a structure theorem for Berge graphs. As a response, Chudnovsky, Robertson,

Seymour, and Thomas introduced balanced skew-partitions. A skew-partition (A,B)
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is balanced if every induced path of length ≥ 2 with endpoints in B and interior in

A has even length, and the same property holds for (B,A) in the complement of

G. These are the second type of decomposition needed for the structure theorem on

Berge graphs.

To prove that no minimum order counterexample to the SPGT contains a balanced

skew-partition we must first lay some groundwork.

Lemma 3.14 (The Colouring Lemma). Suppose (A1, A2, B1, B2) is a split of a skew-

partition in a minimal imperfect graph G. Then there do not exist ω(G)-colourings

C1 of G1 and C2 of G2 in which B1 receives the same number of colours.

Proof. For i ∈ {1, 2} let Xi be the union of the k colour classes intersecting B1 in

the colouring of Gi and let X = X1 ∪ X2. No stable set intersects both B1 and

B2, so X ∩ B2 = ∅. No clique intersects both A1 and A2, and G − B2 is perfect,

so G[X] contains no k + 1 clique and is therefore k-colourable. Our colouring of

Gi further shows that Gi − Xi is ω(G) − k colourable. Since G − X is perfect and

has clique number max{ω(G1 − X1), ω(G2 − X2)} = ω(G) − k, it follows that G is

ω(G)-colourable, contradicting the assertion that it is minimal imperfect.

To apply the Colouring Lemma, we use a weaker version of an observation made

by Hoàng [Hoà96]:

Observation 3.15. Construct G∗i from Gi by adding a vertex v∗ with neighbourhood

B. If G∗i is perfect then there is an ω(G)-colouring of Gi in which precisely ω(B1)

colours appear on B1.

Proof. At least ω(B1) colours appear on B1 in any colouring. Denote by ω∗ the size of

the largest clique in G∗i containing v∗. Replace v∗ with a clique C∗ of size ω(G)−ω∗+1

(this size may be zero, in which case we simply delete v∗). The resulting graph, which

we call G′i, is perfect and has clique number ω(G). Furthermore, the vertices of B1

are joined to a clique of size ω(G) − ω(B1) contained in B2 ∪ C∗. It follows that in

an ω(G)-colouring of G′i, precisely ω(B1) colours appear on B1. Deleting the vertices

of C∗ gives us the desired colouring of Gi.

The reason behind the restriction on path parity in a balanced skew-partition

now makes sense, for if the skew-partition is balanced, both G∗1 and G∗2 will be Berge.
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Rather than proving that a minimal imperfect graph cannot admit a balanced skew-

partition, we prove that a minimum order counterexample to the SPGT cannot admit

one.

Lemma 3.16. If G is a minimum order imperfect Berge graph, it does not admit a

balanced skew-partition.

Proof. First observe that G is minimal imperfect. Suppose it admits a balanced skew-

partition with split (A1, A2, B1, B2); we can assume that each of these sets has size

at least two, otherwise either G or G contains a star cutset. For i ∈ {1, 2} we make

G∗i from Gi as in the previous observation. Both G∗1 and G∗2 have smaller order than

G, and by the parity restrictions on a balanced skew-partition, both are Berge and

therefore perfect.

By the previous observation, there are ω(G)-colourings C1 of G1 and C2 of G2 in

which precisely ω(B1) colours appear on B1. Therefore by the Colouring Lemma, G

is not minimal imperfect, a contradiction.

We refer the interested reader to Reed’s paper on skew-partitions [Ree08], in

which he discusses the original genesis of these ideas, how some related lemmas were

used in the proof of the Strong Perfect Graph Theorem, and algorithmic aspects of

skew-partitions.

3.5.3 The decomposition theorem

In the original proof of the SPGT, one more decomposition was needed: proper

homogeneous pairs. A homogeneous pair (A,B) is proper if no vertex in A sees all

or none of B, no vertex in B sees all or none of A, and there is at least one vertex in

V (G) \ (A ∪B) that sees both A and B (resp. A but not B, B but not A, neither A

nor B). The original decomposition theorem is:

Theorem 3.17. For any Berge graph G that is not basic, either G or G admits a

2-join or a balanced skew-partition or contains a proper homogeneous pair.

However, Chudnovsky proved that proper homogeneous pairs are unnecessary

by characterizing the structure of Berge trigraphs [Chu06]. Homogeneous pairs and

trigraphs are important concepts in the study of claw-free graphs, and we will discuss
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them further in Chapter 6. Chudnovsky’s strengthening of the original structure

theorem (both appear in [CRST06]) is quite beautiful in its simplicity:

Theorem 3.18. For any Berge graph G that is not basic, either G or G admits a

proper 2-join or a balanced skew-partition.

In light of the results we have discussed in this section, this theorem immediately

implies the Strong Perfect Graph Theorem, because no minimum order counterex-

ample admits a 2-join or a balanced skew-partition.

This decomposition theorem is much simpler than the structure theorems for claw-

free graphs for several reasons. For claw-free graphs, there are many more types of

“basic” graphs, several cases of exceptions, and two separate structure theorems, de-

pending on whether or not G is 3-colourable. Furthermore, when we use the structure

theorem to prove the Main Conjecture for claw-free graphs, we rely on 2-joins in which

we have a very thorough understanding of the structure of either V1 or V2. We would

be very interested in a general theorem proving that no minimum counterexample to

the Main Conjecture admits a 2-join (or, even better, a 2-amalgam).

The structure theorem for Berge graphs suggests that it may be possible to de-

rive an efficient combinatorial χ-colouring algorithm for perfect graphs. We already

showed how to optimize over perfect graphs using the ellipsoid method, but a com-

binatorial algorithm would be of great interest and none is yet known.

3.6 Recognizing Berge graphs

In spite of everything that was known about perfect graphs, there was a major ques-

tion that the proof of the Strong Perfect Graph Theorem did not settle: Given a

graph G, can we decide whether or not G is Berge in polynomial time?

We have already shown that this is possible for many classes of perfect graphs,

for example chordal graphs, in which we forbid all holes. The situation is much more

complicated when we only forbid holes of even length. Conforti, Cornuéjols, Kapoor,

and Vuškovič proved a structural decomposition theorem for even-hole-free graphs

[CCKV02a] and gave polynomial-time algorithms to decide whether or not a graph

contains an even hole, and find an even hole if one exists [CCKV02b]. Chudnovsky,

Kawarabayashi, and Seymour improved on this result, giving a simpler and more
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general algorithm that does not use the structure theorem [CKS04]. In an analogue

of Fulkerson and Gross’ characterization of chordal graphs in terms of simplicial

vertices, Addario-Berry, Chudnovsky, Havet, Reed, and Seymour proved that every

even-hole-free graph contains two nonadjacent bisimplicial vertices (and therefore has

a bisimplicial ordering) [ACH+08].

It is still unknown whether or not the problem of deciding whether or not a

graph G is odd-hole-free is NP -complete. However, Chudnovsky, Cornuéjols, Liu,

Seymour, and Vuškovič found a polynomial-time algorithm for recognizing Berge

graphs [CCL+05]. Surprisingly, their algorithm does not use the structure theorem

for Berge graphs. Given a graph G, the algorithm either decides that G is not Berge,

or that G contains no odd holes. This does not tell us whether or not G is odd-

hole-free, since the algorithm can simply return “not Berge” for a graph regardless of

whether or not it contains an odd hole. However, running the algorithm on both G

and G will tell us whether or not G is Berge.

This algorithm does not seek out proper 2-joins and balanced skew-partitions

as per the structure theorem for Berge graphs. In fact, it was not until later that

Trotignon [Tro08] proved that balanced skew-partitions can be detected in a Berge

graph in polynomial time. This result is based on Cornuéjols and Cunningham’s

result that proper 2-joins can be found in polynomial time [CC85], and uses the

structure theorem for Berge graphs. Trotignon’s detection algorithm does not find

a specific balanced skew-partition if there is one. In the same paper he proved that

the problem of detecting balanced skew-partitions is NP -complete for general graphs.

In contrast, de Figueiredo, Klein, Kohayakawa, and Reed gave a polynomial-time

(O(n101)) algorithm for finding a skew-partition in a graph G [dFKKR00]. A much

faster (O(n4m)) algorithm was later given by Kennedy and Reed [KR08a].
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Chapter 4

Proving the Conjecture When χ

and χf Are Close

As discussed in Chapter 2, dχf (G)e ≤ γl(G) so if χ(G) ≤ dχf (G)e then the Local

Strengthening holds. In this chapter, we use this fact to prove the Main Conjecture

for two classes of graphs: circular interval graphs (defined below) and line graphs.

Our focus on these graphs is motivated by the fact that these classes are used in the

decomposition theorem for claw-free graphs. They are used both as the base classes

into which we decompose and in defining some of the operations used to decompose.

Niessen and Kind proved the round-up property, that χ ≤ dχfe, for circular in-

terval graphs [NK00], and hence proved that the Local Strengthening holds for these

graphs. In Section 4.1, we present a corollary of their result which we will use in

bounding the chromatic number of quasi-line graphs.

Seymour and Goldberg conjectured that the round-up property holds for a line

graph G of H provided the fractional chromatic number of G exceeds ∆(H). Since

ω(G) ≥ ∆(H), this easily implies the Local Strengthening for line graphs (as a

connected graph which satisfies γl(G) < ω(G)+1 is a clique and so satisfies the Local

Strengthening). However, this famous conjecture has not yet been proved and the

Local Strengthening remains open for line graphs.

It is known that the round-up property holds for the line graph G of H provided

χ(G) > 1.1∆(G)+0.8. In Section 4.2, we use this partial result towards the Seymour-

Goldberg Conjecture to prove the Main Conjecture for line graphs.

59
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4.1 Linear and circular interval graphs

Two well-known classes of claw-free graphs are linear interval graphs and circular

interval graphs. Circular interval graphs are sometimes called proper circular arc

graphs and are not to be confused with circular arc graphs, which are not necessarily

claw-free. Linear interval graphs are often known as unit interval graphs. As we shall

see, these two classes of graphs play an important role in the structure theorems for

claw-free graphs.

A linear interval representation of a graph G = (V,E) consists of a point on the

real number line corresponding to each vertex, along with a set of closed intervals such

that two vertices u and v of the graph are adjacent precisely if there is an interval

containing the two points corresponding to u and v. Obviously in a representation

with the fewest number of intervals, none contains another. A linear interval graph

is a graph for which there is a linear interval representation. These graphs can be

both recognized and represented in linear time [DHH96]. Linear interval graphs are

chordal and therefore perfect, and they can be ω-coloured in linear time by colouring

the vertices greedily, moving from left to right along the real line.

A circular interval representation of a graph G = (V,E) consists of a point on

the boundary of the unit circle corresponding to each vertex, along with a set of

closed intervals on the boundary of the unit circle such that two vertices of G are

adjacent precisely if there is an interval containing both points associated with the

vertices (again we assume no interval contains another). A circular interval graph is a

graph for which there is a circular interval representation. Like linear interval graphs,

circular interval graphs can be recognized and represented in linear time [DHH96].

Henceforth, when we are given a circular (resp. linear) interval graph on n vertices

we will assume the vertices are labelled v1, . . . , vn in clockwise (resp. left-to-right, i.e.

ascending) order. Given a linear interval representation of a linear interval graph G

in which the points corresponding to v1, . . . , vn appear in left-to-right order, we can

easily find a circular interval representation of G in which the points corresponding

to v1, . . . , vn appear in clockwise order, so there is no ambiguity.

As mentioned earlier, Niessen and Kind proved that χ = dχfe for circular interval

graphs, implying the Local Strengthening:

Theorem 4.1. For any circular interval graph G, χ(G) ≤ γl(G).



Linear and circular interval graphs 61

Teng and Tucker [TT85] gave an algorithm for optimally colouring a circular

interval graph in polynomial time; Shih and Hsu [SH89] later improved the complexity

analysis:

Theorem 4.2. Given a circular interval graph G, we can χ(G)-colour G in O(n3/2)

time.

We now use Niessen and Kind’s result to construct an integer colouring of a linear

interval graph that emulates a given fractional colouring at the far left and right ends

of the graph.

4.1.1 Fractional and integer colourings in linear interval graphs

When we say that a linear interval graph G has end-cliques L and R, we mean that G

has specified cliques L and R consisting of the |L| leftmost and |R| rightmost vertices

in the linear interval representation, respectively. We use the round-up property of

circular interval graphs to prove that we can closely emulate any fractional colouring

of a linear interval graph with an integer colouring, with respect to L and R. This

lemma will be of use to us in relating χf and χ for quasi-line graphs.

Lemma 4.3. Let G be a linear interval graph with end-cliques L and R, and let c

and w be nonnegative integers. If there is a fractional c-colouring of G such that the

weight of the stable sets intersecting both L and R is precisely w, then there is an

integer c-colouring of G such that exactly w colours intersect both L and R.

Proof. Consider such a fractional c-colouring. Let D be the set of colours appearing

in both L and R, let X be the set appearing in L but not R, Y the set appearing in

R but not L, and Z the set appearing in neither L nor R.

Observe that since c, w, |L| and |R| are integers, all of wt(D) = w, wt(X) =

|L| − w, wt(Y ) = |R| − w and wt(Z) = c− |L| − |R|+ w are integers. We construct

a circular interval graph G′ based on the fractional colouring of G.

Say the n vertices of G are v1, . . . , vn, left-to-right – thus in a circular interval

representation of G they appear in clockwise order. To construct G′ from G, we add

cliques VX , VZ , and VY of size wt(X), wt(Z), and wt(Y ) respectively, in clockwise

order starting after vn. To determine their adjacency to each other and the vertices

of G, we make three new intervals IR, IZ , and IL. These span, respectively: {vi |
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V (G) \ (L ∪R)

Figure 4.1: G′, with the vertices of G along the top.

n− |R| < i} ∪ VX ∪ VZ , VX ∪ VZ ∪ VY , and {vi | i ≤ |L|} ∪ VY ∪ VZ (see Figure 4.1).

Thus VX is complete to R and VZ , VZ is complete to VX and VY , and VY is complete

to VZ and L. Since IL and IR define c-cliques and IZ defines a c − w clique, it is

easy to see that G′ is a circular interval graph with clique number c, hence both the

fractional chromatic number and the chromatic number of G′ are at least c.

Now we give a fractional c-colouring of G′. On the vertices belonging to G, we

keep our initial fractional colouring. We can then cover VX with the colours in X,

VZ with the colours in Z, and VY with the colours in Y . Hence χf (G
′) = c and so by

Niessen and Kind’s result that for circular interval graphs, χ = dχfe, we know that

χ(G′) = c. So consider an integer c-colouring of G′. We claim that on the vertices of

G this gives us an integer c-colouring of G containing exactly w colours that appear

in both L and R.

Suppose fewer than w colours appear in both L and R. Then there are more

than |L| + |R| − w colours that cannot appear in VZ . But VZ is a clique of size

c − (|L| + |R| − w), contradicting the fact that we have a proper c-colouring. Now

suppose more than w colours appear in both L and R. Then none of these colours

can appear in VX ∪ VZ ∪ VY . But VX ∪ VZ ∪ VY is a clique of size c− w so again we

cannot have a proper c-colouring. Thus exactly w colours appear in both L and R.

Restricting this colouring of G′ to the vertices of G gives us the desired colouring.



Line graphs 63

4.2 Line graphs

Line graph colouring is of particular interest because a colouring of a line graph

corresponds to an edge colouring of the underlying multigraph. Much of the interest

in quasi-line graphs and claw-free graphs comes from the fact that they are both

natural generalizations of line graphs. This link to edge colouring also makes line

graphs easy to colour using techniques from that domain. So it is not surprising that

line graphs were the first substantial subclass of claw-free graphs for which the Main

Conjecture was proved. This was done by the author with Reed and Vetta [KRV07].

Before we prove this result we need to review some past results on colourings of line

graphs, i.e. edge colourings of multigraphs.

4.2.1 Fractional and integer colourings in line graphs

The chromatic index of a graph or multigraph H, written χ′(H), is the chromatic

number of L(H). Similarly, the fractional chromatic index χ′f (H) is equal to the

fractional chromatic number of L(H). Holyer proved that determining the chromatic

index of an arbitrary graph is NP -complete [Hol81], so practically speaking we are

bound to the task of approximating the chromatic index of multigraphs and hence

the chromatic number of line graphs (and, for that matter, claw-free graphs).

Vizing’s Theorem for multigraphs [Viz64] bounds the chromatic index of a multi-

graph in terms of its maximum degree and multiplicity d, stating that ∆(H) ≤
χ′(H) ≤ ∆(H) + d, where d is the maximum number of edges between any two ver-

tices in H. Both bounds are achievable, but a more meaningful bound should consider

other invariants of H.

Of course, χ′(H) is always bounded below by χ′f (H). Let w be a non-negative

weighting on the edges of H. Duality tells us that given a non-negative weighting w

on the edges of H such that for every matching M in H,
∑

e∈M w(e) ≤ 1, χ′f (H) ≥∑
e∈E(H) w(e). Two such weightings give us lower bounds. In the first, we assign a

weight of 1 to each edge incident to a given vertex v of maximum degree; every other

edge is assigned weight 0. In the second, we take an induced subgraph W of H and

assign to each edge of W a weight of 1/b|V (W )|/2c; other edges of H are assigned

weight 0. Edmond’s theorem for matching polytopes (presented in [Edm65a], also

mentioned in [Kah00]) tells us that the greater of these lower bounds is tight, so
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setting

Γ(H) = max

{
2|E(W )|
|V (W )| − 1

: W ⊆ H, |V (W )| is odd

}
,

we have

χ′f (H) = max{∆(H),Γ(H)}. (4.1)

The long-standing conjecture posed by Seymour [Sey79] and Goldberg [Gol73]

proposes that this gives us a very nearly tight bound on the chromatic index of a

multigraph:

Seymour-Goldberg Conjecture. For a multigraph H for which χ′(H) > ∆(H)+1,

χ′(H) = dΓ(H)e.

Kahn [Kah96] proved that this bound holds asymptotically, i.e. that χ′(H) ≤
(1 + o(1))χ′f (H). He later proved that in fact, the fractional chromatic index asymp-

totically agrees with the list chromatic index [Kah00]. More useful to us in proving

the Main Conjecture is the following algorithmic approximation result:

Theorem 4.4 (Nishizeki and Kashiwagi [NK90]). For any multigraph H, χ′(H) ≤
max{b1.1∆(H)+0.8c, dΓ(H)e}. Furthermore in O(|E(H)| · |V (H)|) time we can find

an edge colouring of H that achieves this bound.

Caprara and Rizzi [CR98] later improved the term b1.1∆(H) + 0.8c in the bound

to b1.1∆(H) + 0.7c, and Scheide [Sch07a] recently improved it to b15
14

∆(H) + 12
14
c.

Note that this implies the Seymour-Goldberg Conjecture for any multigraph H with

∆(H) ≤ 15, since in this case we have b15
14

∆(H) + 12
14
c ≤ ∆(H) + 1.

With these results in hand we can prove the Main Conjecture for line graphs.

4.2.2 Proving the Main Conjecture for line graphs

In this section we prove the main result of [KRV07]:

Theorem 4.5. For any line graph G = L(H), χ(G) ≤ γ(G).

To prove this we use the standard approach described in Section 2.6: Assuming G

is a minimum counterexample, we find and remove a stable set S such that γ(G−S) <

γ(G). If we cannot find such an S, we somehow exploit this fact to prove χ(G) ≤ γ(G)

directly.
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For line graphs, we can find the desired S unless ∆(H) and ∆(G) are far apart,

in which case the following easy corollary of Theorem 4.4 allows us to prove directly

that the Main Conjecture holds.

Lemma 4.6. If G is the line graph of a multigraph H and ∆(G) ≥ 3
2
∆(H)− 1, then

χ(G) ≤ γ(G).

Proof. We know that χf (G) = max{∆(H),Γ(H)}, so Theorem 4.4 tells us that

χ(G) ≤ max{b1.1∆(H) + 0.8c, dχf (G)e}. We know that the Main Conjecture holds

fractionally for G by Theorem 2.10, so dχf (G)e ≤ γ(G). Since ∆(G) ≥ 3
2
∆(H) − 1,

we have γ(G) = d1
2
(∆(G) + 1 + ω(G))e ≥ d1

2
(3

2
∆(H) + ∆(H))e ≥ d5

4
∆(H)e ≥

b1.1∆(H) + 0.8c, so γ(G) ≥ χ(G) and we are done.

We can now proceed to the case in which ∆(G) < 3
2
∆(H)−1. In this case we will

find a stable set S hitting every maximum clique in G. This stable set corresponds

to a matching M in H. First we introduce some notation. For vertices u and v in a

multigraph, the multiplicity of uv, denoted µ(u, v), is the number of edges between u

and v. We denote by tri(H) the maximum number of edges in a triangle in H.

Proof of Theorem 4.5. Let G be a minimum counterexample to the theorem; we know

that ∆(G) < 3
2
∆(H)− 1. Note the following facts that relate the invariants of G and

H:

Fact 1. ∆(G) = maxv1v2∈EH{deg(v1) + deg(v2)− µ(v1, v2)− 1}.

Fact 2. ω(G) = max{∆(H), tri(H)}.

We will find a maximal matching M whose removal from H lowers both ∆(H)

and max{∆(H), tri(H)}. To this end, let S∆ be the set of vertices of degree ∆(H) in

H and let T be the set of triangles in H that contain max{∆(H), tri(H)} edges. It

is instructive to consider how the elements of T interact.

Observation 4.7. If two triangles of T intersect in exactly the vertices a and b then

ab has multiplicity greater than ∆(H)/2.

Proof. For any edge e of H between a and b, the degree of the corresponding vertex

of G is at least 2∆(H)− µ(a, b).
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Observation 4.8. If abc is a triangle of T intersecting another triangle ade of T in

exactly the vertex a then µ(b, c) is greater than ∆(H)/2.

Proof. The degree of a vertex of G corresponding to an edge between a and d is at

least 2∆(H)− µ(b, c)− 1.

Observation 4.9. If there is an edge of H joining two vertices a and b of S∆ then

µ(a, b) > ∆(H)/2.

Guided by these observations, we let T ′ be those triangles in T that contain no

pair of vertices of multiplicity > ∆(H)/2 and S ′∆ be those elements of S∆ which are

in no pair of vertices of multiplicity greater than ∆(H)/2. We treat T ′ ∪ S ′∆ and

(T \ T ′) ∪ (S∆ \ S ′∆) separately. A few more observations regarding S ′∆ and T ′ will

serve us well. Recall that for a set S of vertices we denote the union of the vertices’

neighbourhoods by N(S).

Observation 4.10. For any S ⊆ S ′∆, |N(S)| ≥ |S|.

Proof. It follows from Observation 4.9 that S ′∆ is a stable set. This means that S and

N(S) are disjoint, and given S ⊆ S ′∆ there are |S|∆(H) edges between S and N(S);

the result follows from the fact that no vertex in N(S) has degree ≥ ∆(H).

Observation 4.11. If an edge ab in H has exactly one endpoint in a triangle bcd of

T ′, then the degree of a is less than ∆(H).

Proof. Any vertex in G corresponding to an edge between a and b has degree at least

deg(a)− 1 + ∆(H)− µ(c, d), and µ(c, d) ≤ ∆(H)/2.

Observation 4.12. If an edge ab in H has exactly one endpoint in a triangle bcd of

T ′, then µ(a, b) ≤ ∆(H)/2.

Proof. The degree of any vertex in G corresponding to an edge between b and c has

degree at least µ(a, b) + ∆(H)− 1.

Observation 4.13. For any vertex v with two neighbours u and w, deg(u)+µ(vw) ≤
3
2
∆(H).

Proof. An edge between u and v is incident to at least deg(u) + µ(vw) − 1 other

edges.
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Finally, we state Hall’s Theorem (see [Hal35]), a fundamental result on matchings

in bipartite graphs.

Hall’s Theorem. Let G be a bipartite graph with vertex set V = (A,B). There is a

matching that hits every vertex in A precisely if for every S ⊆ A, |N(S)| ≥ |S|.

It is now straightforward to show that the desired matching exists. We begin

with a matching M consisting of one edge between each vertex pair with multiplicity

greater than ∆(H)/2 – this hits S∆ \ S ′∆ and contains an edge of each triangle in

T \T ′. Observation 4.10 tells us that we can apply Hall’s Theorem to get a matching

in H that hits S ′∆; Observation 4.13 dictates that this matching cannot hit M , so the

union M ′ of these two matchings is a matching in H that hits S∆ and contains an edge

of each triangle in T \ T ′. Every edge in this matching either hits a maximum-degree

vertex in H or has endpoints with multiplicity greater than ∆(H)/2.

What, then, can prevent us from extending this M ′ to contain an edge of every

triangle in T ′? Observations 4.7 and 4.8 tell us that any two triangles in T ′ are vertex-

disjoint, so our only worry is that M ′ already hits two vertices of some triangle in T ′.

Observations 4.9, 4.11 and 4.12 guarantee that at most one such vertex in a given

triangle is hit, and if there is such a vertex, it has degree ∆(H). We can therefore

extend M ′ to contain an edge of every triangle in T ′. The result is a matching that

satisfies all of our requirements, so the proof of the theorem is complete.

4.2.3 Algorithmic considerations

We can determine whether or not a graph G is quasi-line or claw-free by looking at

the structure of each neighbourhood in G, but for line graphs this is not the case.

Beineke [Bei70] characterized line graphs of simple graphs in terms of nine forbidden

subgraphs, one of which is the claw (see Figure 4.2). This characterization gives us a

trivial O(n6) algorithm for testing whether or notG is the line graph of a simple graph.

Lehot [Leh74] and Roussopoulos [Rou73] independently gave O(m)-time algorithms

that find a graph H for which G = L(H) if it exists, and determine that G is not a

line graph of a simple graph otherwise.

We can assume that if two vertices u and v are together in a homogeneous clique

in a line graph G, then they correspond to parallel edges (i.e. edges between the

same two endpoints) in the base multigraph H. Thus to find H quickly, we first
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Figure 4.2: The 9 forbidden subgraphs for line graphs of simple graphs.

find the maximal homogeneous cliques in G – they are disjoint. Contracting each

homogeneous clique down to a single vertex gives us a graph G′ which is a line graph

of the simple graph H ′ underlying H. We can find H ′ from G′ in O(m) time, then

construct H from H ′ using our knowledge of the homogeneous cliques. Thus we can

construct H from G in O(m) time if we can find the maximal homogeneous cliques

of G in O(m) time. And we can do this using the modular decomposition tree of the

graph, which can be computed in linear time [CH94, MS94, MdP04].

With H in hand, a polytime algorithm for γ(G)-colouring G follows naturally from

our proof of Theorem 4.5. Theorem 4.4 implies that using Nishizeki and Kashiwagi’s

result, we can γ(G) colour a line graph G = L(H) in O(|E(H)| · |V (H)|) time if

∆(G) ≤ 3
2
∆(H) − 1. If ∆(G) > 3

2
∆(H) − 1 we find a maximal matching M in

H whose removal lowers ω(G) and therefore lowers γ(G). To do this we first hit

high-multiplicity (i.e. > ∆(H)/2) edges, then we find a matching saturating S ′∆.

Finally we hit the outstanding triangles of weight at least max{∆(H), tri(H)}. The

difficult part of this process is saturating S ′∆, but we can reduce this to the problem of

finding a maximum matching in a bipartite graph between S ′∆ and its neighbourhood.

Using Hopcroft and Karp’s O(
√
nm) algorithm for finding a maximum matching in a

bipartite graph [HK73], we can find M in O(|V (H)|1/2|E(H)|) = O(|E(H)|3/2) time.

Thus we can find a γ(G) edge colouring of H in O(|V (G)|5/2) time as follows.
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1. While ∆(L(H)) < 3
2
∆(H)− 1, remove a matching M from H as in the proof of

Theorem 4.5 (and let it be a colour class).

2. Employ Nishizeki and Kashiwagi’s algorithm to complete the edge colouring of

H.

This gives us the following algorithmic version of Theorem 4.5:

Theorem 4.14. Let G be a line graph on n vertices. Then in O(n5/2) time we can

find a proper γ(G)-colouring of G.

Remark: In [KR08b] the complexity of our colouring algorithm was stated as

O(n7/2). This was obtained by treating the running time of Hopcroft and Karp’s

matching algorithm as O(|V (H)5/2|) = O(|V (G)|5/2), when in fact the running time

of the algorithm is O(|V (H)|1/2|E(H)|) = O(|V (G)|3/2).

In the next chapter we will reduce the problem of γ-colouring quasi-line graphs

to the problem of γ-colouring line graphs.
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Part III

Quasi-line Graphs and Thickenings

If every vertex in a graph G is bisimplicial, i.e. its neighbours can be covered by two

cliques, then the graph is clearly claw-free. Such a graph is quasi-line. The next

three chapters concern these graphs. In the next chapter we describe their structure.

In the process we introduce compositions of strips, a method of composition which

also plays a key role in the description of the structure of claw-free graphs. We also

describe two ways to expand vertices and edges in quasi-line graphs: augmentations,

which are used for Berge quasi-line graphs, and thickenings, which are more general

and are used for all claw-free graphs.

Thickenings result in homogeneous pairs of cliques. In Chapter 6 we explain how

we can manipulate homogeneous pairs of cliques to our advantage. We introduce

a reduction that we can apply to certain types of them. This reduction preserves

the chromatic number and fractional chromatic number and leaves a graph whose

structure is easier to characterize. These irreducible or skeletal graphs contain only

very simple homogeneous pairs of cliques, and we can restrict our attention to them

when proving our colouring results in Chapters 7 and 10.

In Chapter 7 we use a refined structure theorem for skeletal quasi-line graphs to

bound the chromatic number of all quasi-line graphs. We extend two bounds from

line graphs to quasi-line graphs. First we prove the Main Conjecture for quasi-line

graphs, then we prove that χf and χ agree asymptotically for these graphs:

Theorem III.1. For any quasi-line graph G, χ(G) ≤ γ(G).

Theorem III.2. For any quasi-line graph G, χ(G) ≤ χf (G) + 3
√
χf (G).
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Chapter 5

The Structure of Quasi-line Graphs

In this chapter we describe the structure of quasi-line graphs, i.e. graphs in which

every vertex is bisimplicial. We begin by describing the structure of Berge quasi-

line graphs. They arise from two base classes that foreshadow those used in the

construction of general quasi-line graphs. Quasi-line graphs are built from circular

interval graphs and line graphs via a composition operation that will also be useful

for more general classes of claw-free graphs. To expand vertices and edges in quasi-

line graphs and claw-free graphs we use thickenings and their more specific precursor,

augmentations.

After introducing the necessary machinery we present a version of Chudnovsky

and Seymour’s structure theorem for quasi-line graphs that we will sharpen in the

next chapter.

5.1 Berge quasi-line graphs

If a claw-free graph G contains a vertex v that is not bisimplicial, then G[N(v)]

contains an odd antihole of length at least five, so G is not Berge. Thus the Berge

claw-free graphs are precisely the Berge quasi-line graphs. The first step towards

characterizing Berge quasi-line graphs was a theorem of Chvátal and Sbihi [CS88],

which we state now.

Definition 5.1. A graph G is elementary if its edges can be 2-coloured such that for

distinct t, u, v ∈ V with t nonadjacent to v but u adjacent to both t and v, the edges

tu and uv receive different colours.

73



74 The Structure of Quasi-line Graphs

A1

A2

A3

B1

B2B3

K1

K2

K3

Figure 5.1: A peculiar graph. Circles represent cliques. Two cliques with a solid
(resp. dashed) line between them are complete (resp. not complete). Cliques with no
line between them are anticomplete.

Definition 5.2. A graph G is peculiar if it can be obtained by the following construc-

tion. Begin with three non-complete pairwise disjoint cobipartite graphs (A1, B2),

(A2, B3), and (A3, B1), and add all edges between them1. Now add three pairwise dis-

joint nonempty cliques K1, K2, K3, and add all possible edges between Ki and Aj∪Bj

for i 6= j (see Figure 5.1).

Theorem 5.3 ([CS88]). Any Berge quasi-line graph contains a clique cutset or is

elementary or peculiar.

This result was refined by Maffray and Reed, who characterized the structure

of elementary graphs [MR99]. To do this they introduced augmentations, which we

describe now.

Let M be a nonempty matching in G, no edge of which is in a triangle. We con-

struct G′ as follows. The vertices of G′ are partitioned into |V (G)| disjoint nonempty

1Since none of these cobipartite graphs is a clique, all the cliques Ai and Bi are nonempty.
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cliques {I(v) | v ∈ V (G)}. If v ∈ V (G) is not the endpoint of an edge in M , then

|I(v)| = 1. If u and v are nonadjacent then I(u) is anticomplete to I(v). If uv ∈ M
then I(u) is neither complete nor anticomplete to I(v). If uv ∈ E(G) \M then I(u)

is complete to I(v). We say that G′ is an augmentation of G under M . See Figure

5.2

Maffray and Reed [MR99] proved:

Theorem 5.4. A graph G is elementary precisely if it is an augmentation of a line

graph of a bipartite multigraph.

Combining this with Theorem 5.3 we obtain:

Theorem 5.5. Any Berge quasi-line graph contains a clique cutset or is peculiar or

is an augmentation of a line graph of a bipartite multigraph.

Augmentations have many useful properties. Suppose G′ is an augmentation of

G under M . Then:

• G is a proper induced subgraph of G′.

• G′ is quasi-line precisely if G is quasi-line. G′ is claw-free precisely if G is

claw-free.

This follows easily from the fact that no edge of M is in a triangle.

• For uv ∈M , (I(u), I(v)) is a homogeneous pair of cliques unless both I(u) and

I(v) are singletons.

• Suppose G is claw-free. Then for uv ∈ M , G admits a 2-join ((NG(u) −
v,NG(v)−u), ({u}, {v})) andG′ admits a 2-join ((NG(u)−v,NG(v)−u), (I(u), I(v))).

To see this, note that u and v have no common neighbours, thus NG(u)−v and

NG(v)− u are disjoint cliques (see Figure 5.2).

With these facts in hand we can easily prove the Strong Perfect Graph Conjecture

for quasi-line graphs (and therefore claw-free graphs). Of course, this immediately

implies both the Main Conjecture and the Local Strengthening for Berge quasi-line

graphs.
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vu

N(u)− v

N(u)− v

N(v)− u

N(v)− u

I(v)I(u)

G′

G

Figure 5.2: The graph G′ is an augmentation of G under M = {uv}. If G is claw-free
then both N(u)− v and N(v)− u are cliques and a 2-join arises.
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Theorem 5.6. Every Berge quasi-line graph is perfect.

Proof. Observe that the class of Berge quasi-line graphs is hereditary. Thus if the

theorem is not true there must be a minimal imperfect Berge quasi-line graph G. We

know that G cannot contain a clique cutset, so it is elementary or peculiar.

Suppose G is peculiar. Then A1∪B1∪A2∪B2 is a star cutset with a centre in B1;

it separates K3 from the rest of the graph. This contradicts the Star Cutset Lemma,

so G cannot be peculiar.

Therefore G is elementary. It cannot be a line graph of a bipartite multigraph,

because these graphs are perfect. Thus G arises via augmentation and therefore

contains a homogeneous pair of cliques. Thus contradicts the Homogeneous Pair

Lemma. Therefore G cannot exist.

Our use of homogeneous pairs of cliques in this proof foreshadows their importance

throughout the rest of this thesis. For many classes of claw-free graphs, we can

simplify the structure by assuming that no homogeneous pair of cliques exists. For

Berge quasi-line graphs, we get the following:

Theorem 5.7. Let G be a Berge quasi-line graph containing no homogeneous pair of

cliques. Then G is either a circular interval graph on nine vertices, or the line graph

of a bipartite graph.

Proof. Suppose that G contains no homogeneous pair of cliques. Observe that since

G has at least four vertices, then it cannot contain a homogeneous clique, otherwise

it would contain a homogeneous pair of cliques, one of which is a singleton. If G is

peculiar, it follows that K1, K2, and K3 are singletons. And since none of (A1, B2),

(A2, B3), or (A3, B1) is a homogeneous pair of cliques, the sets Ai and Bi, 1 ≤ i ≤ 3

are also singletons. Thus G must be a circular interval graph on nine vertices (see

Figure 5.1) in which dashed lines represent either adjacent or nonadjacent vertices.

If G is an augmentation of a line graph of a bipartite multigraph, then since it

contains no homogeneous pair of cliques, I(v) must be a singleton for every vertex v

of the base line graph. It follows that G is a line graph of a bipartite multigraph.

So the assumption that a graph contains no homogeneous pair of cliques simplifies

the description of Berge quasi-line graphs. The same is true for describing quasi-line
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graphs and claw-free graphs. We would like to take advantage of this fact by some-

how reducing the problem of colouring claw-free graphs to the problem of colouring

claw-free graphs containing no homogeneous pair of cliques. We cannot do this, but

in the next chapter we will look closely at reducing homogeneous pairs of cliques,

and find that we can simplify homogeneous pairs nicely without sacrificing too much

information about colourings.

Remark: Theorem 5.6 was first proved in 1976 by Parthasarathy and Ravindra

[PR76]. An alternative proof was given by Giles, Trotter, and Tucker in 1984 [GJT84].

Reed presents a simplified version of Parthasarathy and Ravindra’s proof in his Ph.D.

thesis [Ree86]. These proofs, which came before Chvátal and Sbihi’s decomposition

theorem, use the Weak Perfect Graph Theorem.

5.2 Compositions of strips

To describe the structure of quasi-line graphs we first need to generalize augmenta-

tions of line graphs. We do this using compositions of strips. These compositions,

introduced by Chudnovsky and Seymour [CS05], are essential to the structure of both

quasi-line graphs and claw-free graphs. They generalize augmentations, but more

importantly they provide a way to build many claw-free graphs using a beautiful

generalization of line graphs.

Consider a multigraph H, possibly containing loops. To find its line graph L(H)

we begin with a vertex ue for each edge of H. For every v ∈ V (H) we define the set

Cv ⊆ V (L(H)) as

Cv = {ue | e is incident to v in H}.

Two vertices u and u′ in L(H) are adjacent if and only if they are both in Cv for some

v ∈ V (H). We construct L(H) from our set {ue | e ∈ E(H)} of isolated vertices by

adding edges to make each Cv a clique.

This perspective invites a generalization of line graphs. Instead of replacing each

edge in H with a vertex, we will replace each edge with a claw-free graph, being

careful not to create a claw in the process.

Definition 5.8. A strip (S,X, Y ) is a claw-free graph S with two cliques X and Y
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such that for any vertex v ∈ X (resp. Y ), the neighbourhood of v outside X (resp. Y )

is a clique.

We compose m strips in the following way. First we take a directed multigraph

H with m edges corresponding to the m strips. That is, for every every edge e of H

we have a strip (Se, Xe, Ye). For v ∈ V (H) we define the set Cv as

Cv =
(⋃
{Xe | e is an edge out of v}

)
∪
(⋃
{Ye | e is an edge into v}

)
.

We construct G from the disjoint union of {Se | e ∈ E(H)} by making each Cv a

clique (see Figure 5.3). If G can be built in such a way, we say that G is a composition

of strips, and that the multigraph H is the underlying multigraph. We direct the edges

of H to avoid ambiguity between Xe and Ye: Xe corresponds to the tail of e, and Ye

corresponds to the head.

Note that Xe and Ye need not be disjoint. If Xe = Ye = Se for every strip then

G is the line graph of the multigraph obtained by replacing each edge e of H with

|Se| copies of it. Observe that any vertex in Xe or Ye will be bisimplicial in G, and

as a result we can be sure that G is claw-free. Furthermore, G is quasi-line precisely

when each Se is quasi-line. Compositions of strips clearly generalize line graphs, and

they also extend augmentations of line graphs. If we have a strip (S,X, Y ) in which

X and Y partition the vertices of S, then not only is (X, Y ) a homogeneous pair of

cliques, but G is an augmentation of the graph G′ that we get by replacing X and

Y with two adjacent vertices. Conversely, every augmentation of a line graph H is a

composition of strips for which H is the underlying line graph.

Remark: Chudnovsky and Seymour originally defined a strip (S ′, a, b) as a claw-free

graph in which a and b are nonadjacent simplicial vertices [CS05, KR08b]. We define

(S,X, Y ) where S = S ′−{a, b}, X = N(a), and Y = N(b). Our definition is basically

equivalent and is easier to work with.

5.2.1 2-joins arising from compositions

To solve optimization problems on compositions of strips we need to know how to

decompose them. We will do this via 2-joins. Our definition is slightly different than

the definition used by Cornuéjols and Cunningham [CC85].
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Figure 5.3: We compose a set of strips {(Se, Xe, Ye) | e ∈ E(H)} by joining them
together on their end-cliques. A hub clique Cu will arise for each vertex u ∈ V (H).
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Definition 5.9. Suppose vertex sets V1 and V2 partition V (G) and there are cliques

Xi and Yi in Vi such that X1 ∪ X2 and Y1 ∪ Y2 are cliques, and there are no other

edges between V1 and V2. Then we say that ((X1, Y1), (X2, Y2)) is a 2-join.

This is equivalent to a generalized 2-join as defined by Chudnovsky and Seymour

[CS05].

In a composition of strips we replace each edge xy of the underlying multigraph

by a strip Sxy and attach it to the graph by joining Xxy to Cx and joining Yxy to Cy.

Thus it is clear how we should decompose these graphs, because we end up with a

2-join for any strip Sxy. The 2-join is

( (Cx \Xxy, Cy \ Yxy), (Xxy, Yxy) ).

Knowing that a claw-free graph admits such a 2-join is not enough to prove our

bounds on the chromatic number. We need to know the structure of Sxy so we can

exploit properties of restricted colourings in the strips. It turns out that we need five

types of strips to describe claw-free graphs, but only one to describe quasi-line graphs.

5.3 The structure of quasi-line graphs

5.3.1 The basics

Chudnovsky and Seymour showed that any quasi-line graph containing no homoge-

neous pair of cliques is either a circular interval graph or a composition of one special

type of strip [CS05], which we define now.

Definition 5.10. Let S be a linear interval graph with vertices v1, . . . , vn in linear

order, and let X = {v1, . . . , v|X|} and Y {vn−|Y |+1, . . . , vn} be cliques in S. Then

(S,X, Y ) is a linear interval strip.

Chudnovsky and Seymour [CS05] proved:

Theorem 5.11. Every quasi-line graph containing no homogeneous pair of cliques is

a circular interval graph or a composition of linear interval strips.
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To decompose quasi-line graphs we will exploit the structure of the 2-joins corre-

sponding to linear interval graphs. A 2-join ((X1, Y1), (X2, Y2)) separating G1 and G2

is an interval 2-join if (G2, X2, Y2) is a linear interval strip. We say that an interval

2-join is trivial if V (G2) = X2 = Y2. A nontrivial interval 2-join is canonical if X2∩Y2

is empty. Given a nontrivial interval 2-join ((X1, Y1), (X2, Y2)) where C = X2 ∩ Y2,

observe that ((X1 ∪ C, Y1 ∪ C), (X2 \ C, Y2 \ C)) is a canonical interval 2-join.

If every interval 2-join in a composition of linear interval strips is trivial then the

graph is a line graph. This implies a useful decomposition result:

Lemma 5.12. For any quasi-line graph G, one of the following is true:

• G contains a homogeneous pair of cliques

• G is a circular interval graph

• G is a line graph

• G admits a canonical interval 2-join.

Since we already know a lot about colouring circular interval graphs and line

graphs, to prove Theorem III.1 and Theorem III.2 our only concern is how to deal

with homogeneous pairs of cliques and canonical interval 2-joins. We now introduce

thickenings, which generalize augmentations. They help us to understand homoge-

neous pairs of cliques in quasi-line and claw-free graphs.

5.3.2 Thickenings

Here we present thickenings, which broaden the definition of augmentations in two

ways. First we allow vertex multiplication, so we can focus on a description of graphs

containing no homogeneous clique. Both quasi-line and claw-free graphs are closed

under vertex multiplication. Second, we modify the restrictions on the matching M ,

allowing it to be empty or to contain any edge whose removal does not introduce a

claw. This relaxes the restriction we use for augmentations, i.e. that no edge in M is

in a triangle.

Definition 5.13. An edge e in a claw-free graph G is claw-neutral if its removal

does not introduce a claw. A matching M in G is claw-neutral if every edge in M is

claw-neutral.
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Observation 5.14. If M is a claw-neutral matching in a claw-free graph G, then

G−M is claw-free.

Let M be a claw-neutral matching in a claw-free graph G. We say that G′ is a

thickening of G under M (or sometimes just a thickening of G) if we can construct it

from G in the following way. First we multiply each vertex, substituting a nonempty

clique I(v) for every vertex v of G. Then for every uv ∈ M , we remove from G′ a

nonempty proper subset of the edges between I(u) and I(v). If M = ∅ we say that

G′ is a proper thickening of G. In this case G′ arises from G by a sequence of vertex

replications. For a set S ⊆ V (G) we use I(S) to denote ∪v∈SI(v).

We have given theorems describing Berge quasi-line graphs and general quasi-line

graphs containing no homogeneous pair of cliques. But these results don’t really tell

us anything about homogeneous pairs of cliques in a quasi-line graph. Thickenings, on

the other hand, tell us how homogeneous pairs of cliques arise: some trivial pairs will

arise from vertex replication, and some more interesting pairs will arise from edges

in M . If we can describe M , we reach a more useful description of graphs that can

be expressed as a thickening of G. This becomes very important when we consider

claw-free graphs in later chapters.

To illustrate this point, take the example of peculiar graphs. Looking at Figure

5.1, we can see that there are three special homogeneous pairs of cliques: (A1, B2),

(A2, B3), and (A3, B1). Furthermore, any peculiar graph is a thickening of a circular

interval graph G on nine vertices under some matching M . The vertices of G are

{ai, bi, ki | i ∈ {1, 2, 3}}, corresponding to the cliques {Ai, Bi, Ki | i ∈ {1, 2, 3}}.
If two cliques are complete to each other, their corresponding vertices are adjacent.

If they are anticomplete, their corresponding vertices are nonadjacent. If they are

neither complete nor anticomplete then their corresponding vertices are adjacent, and

the edge between them is in M . This description is more specific than the simple

statement that a peculiar graph contains a homogeneous pair of cliques or is some

circular interval graph on nine vertices. Obviously we do not need this specificity to

colour peculiar graphs – they are perfect. But for other classes of claw-free graphs we

need a good understanding of the structure of M . Thus the same idea will be very

useful when we colour other classes of claw-free graphs in Chapter 10.

Thickenings were inspired by augmentations, and they arise naturally in the study

of trigraphs, first introduced in Chudnovsky’s Ph.D. thesis [Chu03]. Chudnovsky and



84 The Structure of Quasi-line Graphs

Seymour actually characterized the structure of claw-free trigraphs [CS08b], in which

a claw-neutral matching M of “semi-adjacent” vertices is specified.

5.3.3 Fuzzy linear and circular interval graphs

Thickenings allow us to decribe two important types of quasi-line graphs. If a graph

is a thickening of a linear interval graph, we say it is a fuzzy linear interval graph.

If it is a thickening of a circular interval graph, we say it is a fuzzy circular interval

graph.

Now suppose we have a linear interval strip (S,X, Y ), and S ′ is a thickening of

S. Then defining X ′ = ∪{I(v) | v ∈ X} and Y ′ = ∪{I(v) | v ∈ Y }, (S ′, X ′, Y ′) is a

strip, and we say it is a fuzzy linear interval strip. This gives us a full description of

quasi-line graphs due to Chudnovsky and Seymour [CS05]:

Theorem 5.15. Every quasi-line graph is a fuzzy circular interval graph or a com-

position of fuzzy linear interval strips.

To colour a quasi-line graph we must restrict the structure of its homogeneous

cliques. In the next chapter we introduce two appropriate restrictions. The first is

sufficient for quasi-line graphs. The second one is stronger, and we make use of it

when looking at other classes of claw-free graphs.



Chapter 6

Skeletal Graphs

In the previous chapter we introduced thickenings, which result in homogeneous pairs

of cliques. In this chapter we consider the structure of these homogeneous pairs. We

show that certain types of homogeneous pairs of cliques cannot appear in a minimum

counterexample to our theorems bounding χ. The types of homogeneous pairs of

cliques that we cannot easily eliminate from a minimum counterexample are skeletal

homogeneous pairs of cliques, and a graph containing no nonskeletal homogeneous

pair of cliques is a skeletal graph. As we will show, to prove our bounds on χ we need

only prove them for skeletal graphs.

Skeletal quasi-line graphs and skeletal claw-free graphs can be characterized with

simpler structure theorems than their unrestricted counterparts. This is the first

reason we prefer to deal with them. For quasi-line graphs under a weaker restriction on

homogeneous pairs of cliques, a similar result was proved by Chudnovsky and Seymour

[CS05] and then applied by Chudnovsky and Fradkin [CO07] to bound the chromatic

number of quasi-line graphs. Our stronger restriction simplifies the structure of claw-

free graphs, not just quasi-line graphs. The second advantage of insisting that all

homogeneous pairs of cliques are skeletal is that skeletal homogeneous pairs of cliques

have a very simple structure. This makes it easy to analyze how invariants drop

when we remove a stable set from a minimum counterexample when proving the

Main Conjecture for quasi-line graphs and claw-free graphs.

85
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6.1 Restricting homogeneous pairs of cliques

Given a homogeneous pair of cliques (A,B) in a graph G we want to remove edges

between A and B in G to reach a graph G′ such that:

• G′ is easier to describe and colour than G

• given a k-colouring of G′ we can easily find a k-colouring of G.

We call this action reducing on (A,B). The fact that we can do this rests on our

understanding of cobipartite graphs. In a proper colouring of G, the number of colours

intersecting both A and B can be any value between 0 and |A|+ |B| − ω(G[A ∪B]).

Now suppose we construct G′ from G by removing edges between A and B without

changing ω(G[A ∪ B]). Then since (A,B) is a homogeneous pair of cliques in both

G and G′, it follows that χ(G) = χ(G′). We will prove this and give a more detailed

explanation in the next section. In this section we will introduce two useful ways to

restrict homogeneous pairs of cliques.

Note that one of the most natural ways to eliminate a homogeneous pair of cliques

(A,B) is to contract A and B down to single vertices. This is essentially the inverse

of the thickening operation, and through repeated application allows us to arrive

at a graph containing no homogeneous pair of cliques. However, we lose too much

information about colourings when we do this. Specifically, suppose we want to k-

colour G and we contract (A,B) down to two vertices to reach G′. A k-colouring of

G′ doesn’t tell us how we might k-colour G, or even whether such a colouring exists.

Thus we must use more careful reductions on homogeneous pairs of cliques.

6.1.1 Linear and nonlinear homogeneous pairs of cliques

As we have seen, circular interval graphs and linear interval graphs are fundamental

to the structure of quasi-line graphs. Thus one natural restriction on (A,B) is to

insist that G[A ∪B] is a linear interval graph.

Definition 6.1. A homogeneous pair of cliques (A,B) is a linear homogeneous pair

of cliques if it induces a linear interval graph. Otherwise it is called a nonlinear

homogeneous pair of cliques.

We can characterize linear homogeneous pairs of cliques in another way:
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Lemma 6.2. A homogeneous pair of cliques (A,B) in a graph G is nonlinear precisely

if G[A ∪B] contains an induced C4.

Proof. It is easy to see that if G[A ∪ B] is a linear interval graph then it contains

no induced C4. Now suppose G[A ∪ B] contains no induced C4. Order the vertices

{a1, . . . , a|A|} of A and then {b1, . . . , b|B|} from left to right so that

• For 1 ≤ i < j ≤ |A|, aj has at least as many neighbours in B as ai does.

• For 1 ≤ i < j ≤ |B|, bi has at least as many neighbours in A as bj does.

Suppose for some 1 ≤ i < j ≤ |A|, N(aj) ∩ B does not contain N(ai) ∩ B. Then

there must be vertices bk and bl such that ai sees bk but not bl, and aj sees bl but

not bk, contradicting the fact that G[A ∪ B] contains no induced C4. Therefore for

1 ≤ i < j ≤ |A|, N(aj) ∩ B contains N(ai) ∩ B. By symmetry, for 1 ≤ i < j ≤ |B|,
N(bi)∩A contains N(bj)∩A. It follows that G[A∪B] is a linear interval graph with

vertex ordering {a1, . . . , a|A|, b1, . . . , b|B|}.

Linear homogeneous pairs of cliques are extremely useful in characterizing the

structure of quasi-line graphs. Chudnovsky and Seymour1 [CS05] proved the follow-

ing.

Lemma 6.3. Any fuzzy linear (resp. fuzzy circular) interval graph containing no

nonlinear homogeneous pair of cliques is a linear (resp. circular) interval graph.

Theorem 6.4. Let G be a quasi-line graph containing no nonlinear homogeneous

pair of cliques. Then G is a circular interval graph or a composition of linear interval

strips.

Chudnovsky and Fradkin later proved that nonliner homogeneous pairs of cliques

can be reduced nicely with respect to colourings [CO07].

Lemma 6.5. Let G be a quasi-line graph containing a nonlinear homogeneous pair

of cliques. Then there is a proper subgraph G′ of G such that G′ is quasi-line and

χ(G) = χ(G′).

1Chudnovsky and Seymour originally called linear homogeneous pair of cliques trivial homoge-
neous pairs of cliques.
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The proof of this lemma rests on the simple fact that if (A,B) contains a C4 then

we can remove an edge between A and B without changing the clique number of

G[A ∪ B]. We now introduce a stronger restriction on homogeneous pairs of cliques,

which carries this idea through to its logical conclusion.

6.1.2 Skeletal homogeneous pairs of cliques

We can reduce on a nonlinear homogeneous pair of cliques (A,B) by removing edges

between A and B in an induced C4 in G[A ∪ B] until no such edge remains. This

operation makes G[A ∪ B] a linear interval graph and does not change the clique

number of G[A ∪ B]. If we focus on this clique number instead of induced 4-holes,

then we can remove even more edges and further simplify the structure of G[A ∪B].

Definition 6.6. Let (A,B) be a homogeneous pair of cliques in a graph G. We say

that (A,B) is skeletal if we cannot remove an edge between A and B without reducing

ω(G[A ∪B]).

If (A,B) is skeletal then the edges between A and B are contained in a single clique

Ω(A,B), which we consider to be empty if there are no edges between A and B (see

Figure 6.1). Thus A ∪ B is partitioned into the four sets A ∩ Ω(A,B), B ∩ Ω(A,B),

A \ Ω(A,B), B \ Ω(A,B), each of which is a homogeneous clique, a singleton, or

empty. This is the simple structure we want, and we will exploit it repeatedly when

colouring claw-free graphs in Chapter 10. We want to consider graphs in which every

homogeneous pair of cliques is skeletal.

Definition 6.7. A graph is skeletal if it contains no nonskeletal homogeneous pair

of cliques.

Observe that any skeletal homogeneous pair of cliques is linear. Thus no skeletal

graph contains a nonlinear homogeneous pair of cliques. This immediately gives us a

characterization of skeletal quasi-line graphs as a corollary to Theorem 6.4.

Theorem 6.8. Every skeletal quasi-line graph is a circular interval graph or a com-

position of linear interval strips.

We use the corresponding decomposition theorem to prove our bounds on the

chromatic number in the next chapter.
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Ω(A,B)

Ω(A,B)

Ω(A,B)

A

A

A

B

B

B

Figure 6.1: Three homogeneous pairs of cliques: one nonlinear (top), one nonskeletal
linear (middle), and one skeletal (bottom). We reduce a nonskeletal homogeneous
pair of cliques (A,B) by removing edges without changing the size of a maximum
clique in G[A ∪B].
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Theorem 6.9. Any quasi-line graph that is not a line graph or a circular inter-

val graph contains a nonskeletal homogeneous pair of cliques or admits a canonical

interval 2-join.

Insisting that the graph is skeletal does not refine the structure theorem. However,

this is an anomalous case. For many classes of claw-free graphs, skeletal homogeneous

pairs of cliques allow us to simplify structural characterizations in a way that linear

homogeneous pairs of cliques do not. We give a simple example now, using a class

that we have already seen.

Skeletal Berge quasi-line graphs

To illustrate the usefulness of skeletal graphs in simplifying structure theorems, we

rephrase the structure theorem for Berge quasi-line graphs one last time.

Theorem 6.10. Let G be a skeletal Berge claw-free graph containing no clique cutset.

Then G is a circular interval graph or the line graph of a bipartite multigraph.

Proof. First suppose that G is a skeletal peculiar graph. We claim that G is a proper

thickening of the circular interval graph on at most fifteen vertices shown in Figure

6.2. We split Ai and Bi into two cliques each for i ∈ {1, 2, 3}. Let A1
i (resp. B1

i+1) be

the set of vertices in Ai (resp. Bi+1) with no neighbour in Bi+1 (resp. Ai), with indices

taken modulo 3. Let A2
i and B2

i be Ai \A1
i and Bi \B1

i respectively. So in the skeletal

homogeneous pair of cliques (Ai, Bi+1), the sets A2
i and B2

i+1 are Ω(Ai, Bi+1)∩Ai and

Ω(Ai, Bi+1)∩Bi+1 respectively. When |Ai ∪Bi+1| = 2, (Ai, Bi+1) is not technically a

homogeneous pair of cliques, but in this case our abuse of terminology is harmless.

Now suppose G is a skeletal augmentation of a bipartite line graph H. Take an

edge xy along which H was augmented by (X, Y ) with |X ∪Y | > 2. Then (X, Y ) is a

skeletal homogeneous pair of cliques. Therefore if X∪Y is not a clique we can assume

there is a vertex v ∈ X with no neighbour in Y . But NH(x) − y is a clique, so v is

simplicial, contradicting the assumption that G contains no clique cutset. Therefore

G is a proper thickening of a line graph of a bipartite graph, so G is a line graph of

a bipartite multigraph.

Note that in this case we cannot replace “skeletal” with “containing no nonlinear

homogeneous pair of cliques.”
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Figure 6.2: A skeletal peculiar graph. Each circle represents a clique; two cliques are
complete to each other if they have an edge between them in the figure, otherwise
they are anticomplete.
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6.2 Reducing nonskeletal graphs

Now that we have explained how to restrict homogeneous pairs of cliques, we will

prove that we can reduce nonskeletal graphs efficiently. The main goal of this section

is to prove the following:

Theorem 6.11. Let G be a nonskeletal graph. Then there is a skeletal subgraph G′

of G such that:

1. If G is quasi-line (resp. claw-free) then G′ is also quasi-line (resp. claw-free).

2. If G is Berge then G′ is also Berge.

3. χ(G′) = χ(G) and χf (G
′) = χf (G).

Furthermore we can find G′ in O(n2m2) time, and given a k-colouring of G′ we can

construct a k-colouring of G in O(n2m2) time.

Crucial to the proof of this result are the following two lemmas, which we apply

repeatedly:

Lemma 6.12. Given a graph G and a nonskeletal homogeneous pair of cliques (A,B),

in O(n5/2) time we can find a proper subgraph G′ such that:

1. If G is quasi-line (resp. claw-free) then G′ is also quasi-line (resp. claw-free).

2. If G is Berge then G′ is also Berge.

3. χ(G′) = χ(G) and χf (G
′) = χf (G).

Furthermore given a k-colouring of G′ we can construct a k-colouring of G in O(n5/2)

time.

Lemma 6.13. For any graph G, we can find a nonskeletal homogeneous pair of

cliques, or determine that none exists, in O(n2m) time.

Theorem 6.11 follows immediately from these two lemmas, because every time we

reduce on a homogeneous pair of cliques we remove an edge, thus we do at most O(m)

reductions. We simply reduce on nonskeletal homogeneous pairs of cliques one at a

time until none remains.
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Reducing on a pair (A,B) (i.e. applying Lemma 6.12) involves finding a maximum

clique X in ω(G[A ∪ B]) and removing all other edges between A and B. If |X| =

max{|A|, |B|} then we simply remove all edges between A and B. Thus (A,B) will

become a skeletal homogeneous pair of cliques and X will become Ω(A,B). See Figure

6.1.

These results rely heavily on the fact that any homogeneous pair of cliques (A,B)

induces a cobipartite (and therefore perfect) subgraph G[A∪B]. Results of Hopcroft

and Karp provide an O(n5/2)-time algorithm for optimally colouring a cobipartite

graph and finding a maximum clique in a cobipartite graph [HK73]. Recall that if

α(G) = 2 then an optimal colouring of G corresponds to a maximum matching in G.

6.2.1 Reducing on a nonskeletal homogeneous pair of cliques

We now prove Lemma 6.12. This will tell us exactly how we reduce on a nonskeletal

homogeneous pair of cliques (A,B) and how we can manipulate colourings on (A,B).

Proof of Lemma 6.12. Assume |A| ≥ |B|. We can find a maximum clique X of

G[A∪B] in O(n5/2) time, choosing X to be A if A is a maximum clique. To construct

G′ from G, we remove precisely the edges between A and B that are not in X. Clearly

ω(G′[A ∪ B]) = ω(G[A ∪ B]) = |X|. Since (A,B) is not skeletal, G′ is a proper

subgraph of G. We can find G′ in O(n5/2) time.

We must prove that G′ is claw-free. Suppose there is a vertex v seeing three

mutually nonadjacent vertices a, b, c in G′. Then without loss of generality, a ∈ A,

b ∈ B, and c /∈ A ∪ B since G is claw-free. Since c sees neither a nor b in G′, c sees

nothing in A∪B in G. It follows that v /∈ A∪B, so v sees all of A∪B in G. Therefore

since A and B are not complete to each other in G, G contains a claw centred at v,

a contradiction. So G′ is claw-free.

Now suppose G is quasi-line; we must show that G′ is quasi-line. Suppose a vertex

v is not bisimplicial in G′ and let (S, T ) be a partitioning of NG(v) into two cliques.

If v has a neighbour w ∈ S \ (A ∪ B) that sees A but not B, then B ⊆ T and thus

S ∪A and T \A are two cliques covering NG′(v) in G′. By symmetry we can assume

that if no such w exists then all of NG′(v) \ (A∪B) sees A∪B, therefore (S ∪A) \B
and (T ∪B) \A are two cliques covering NG′(v) in G′. Therefore G′ is quasi-line if G

is quasi-line. This proves (1).
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Suppose G is Berge but G′ contains an odd hole or antihole H. H does not contain

a homogeneous set, so it must intersect each of A and B exactly once, in vertices a1

and b1. But there are nonadjacent ai and bj in G. Replacing a1 and b1 with ai and bi

in H gives us an odd hole or antihole in G, contradicting the assumption that G is

Berge. This proves (2).

Let cG′ be a proper colouring of G′ using k ≥ χ(G′) colours. Since (A,B) is a

homogeneous pair, to construct a k-colouring of G it is enough to find a colouring of

G[A ∪B] that uses the same set of colours as cG′ on A and on B. We can do this in

O(n5/2) time because the number of colours which appear on both A and B in the

colouring of G′ is at most the maximum size of a matching in G
′
, which is the same

as the size of a maximum matching in G, i.e. |(A ∪B)−X|.
Since G[A ∪ B] is perfect, this extends to fractional colourings. Specifically, for

any l ≥ ω(G[A ∪ B]) there is a fractional l-colouring of G[A ∪ B]. Suppose we have

a fractional k-colouring of G′. This colouring uses weight l ≥ ω(G[A∪B]) on A∪B,

so since (A,B) is a homogeneous pair of cliques we can combine the colouring of

G′ − (A ∪ B) = G − (A ∪ B) with a fractional l-colouring of G[A ∪ B] to find a

fractional k-colouring of G. This proves (3).

6.2.2 Finding homogeneous pairs of cliques

In Chapter 3 we mentioned Everett, Klein, and Reed’s O(mn3) algorithm for find-

ing homogeneous pairs, but we have not yet discussed finding homogeneous pairs of

cliques.

We begin with an algorithm for finding a nonlinear homogeneous pair of cliques.

Then we will give a more efficient algorithm for finding a nonskeletal homogeneous

pair of cliques in a graph containing no nonlinear homogeneous pair of cliques.

Observe that if an edge a1a2 is contained in A for some nonlinear homogeneous

pair of cliques (A,B), then any edge b1b2 such that {a1, b1, a2, b2} induces a C4 must

be contained in B.

Lemma 6.14. For any graph G we can find a nonlinear homogeneous pair of cliques

in G, or determine that none exists, in O(n2m) time.

Proof. Since a nonlinear homogeneous pair of cliques contains an induced C4, we

proceed by checking, for every edge contained in an induced C4, whether or not there
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is a homogeneous pair of cliques such that this edge is in one of the cliques. Observe

that if this is the case, then the other vertices of the C4 are in the other clique and

hence the homogeneous pair of cliques is nonlinear.

For each edge a1a2, we first check that it appears in an induced C4; this can be

determined in O(m) time. If it is in a C4, we then iteratively grow cliques Ai and

Bi such that if there is a homogeneous pair of cliques (A,B) with a1, a2 ∈ A, then

Ai ⊆ A and Bi ⊆ B. As mentioned above, if b1b2 is an edge and G[{a1, a2, b1, b2}]
is a C4 then b1 and b2 must be in B and so if such an (A,B) exists it is a nonlinear

homogeneous pair of cliques. Let A0 = {a1, a2} and let B0 = ∅. For t = 1, 2, . . . n− 2

we do the following.

1. Search for a vertex v not in At−1 ∪ Bt−1 that sees some but not all of At−1

(resp. Bt−1) – it must be in B (resp. A), so let Bt = Bt−1 ∪ {v} (resp. At =

At−1 ∪ {v}) and increment t. If there is no such v then (At−1, Bt−1) form a

nonlinear homogeneous pair of cliques; return this fact and terminate.

2. If At and Bt are not both cliques or t = n−2, terminate. A and B do not exist.

When building (A,B) we only add a vertex to the homogeneous pair if it cannot

be outside the pair, hence we never face the possibility of putting an unnecessary

vertex in A ∪ B. It follows that if our method fails there is no homogeneous pair

of cliques containing A0. The method is clearly polytime: we can construct (At, Bt)

from (At−1, Bt−1) in O(m) time, and there are O(m) possible edges to check, so the

total running time is at most O(nm2). However, we can actually do this in O(n2m)

time by maintaining the sets of vertices outside (A,B) that see all of A, none of A, all

of B, and none of B – all others must be put in the homogeneous pair. To maintain

these lists, when putting a vertex v into A, for example, we check to see if this forces

any outside vertex to be put into B. We can check this in O(n) time whenever we put

a vertex in the homogeneous pair, so we can find a minimal nonlinear homogeneous

pair of cliques, or determine that there is none, in O(n2m) time.

Now we need to find linear nonskeletal homogeneous pairs of cliques. First we

prove a structural result that renders the task almost trivial.

Lemma 6.15. Suppose a graph G contains a nonskeletal linear homogeneous pair of

cliques. Then G contains three nonempty disjoint cliques A1, A2, B1 such that
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• |A1| ≥ |B1|.

• Each of A1, A2, and B1 is either a singleton or a homogeneous clique.

• A1 ∪A2 is a clique, A2 ∪B1 is a clique, and there are no edges between A1 and

B1.

• (A1 ∪ A2, B1) is a nonskeletal linear homogeneous pair of cliques.

Proof. Suppose the vertices of G[A ∪B] are a1, . . . , a|A|, b1, . . . , b|B| in linear order.

By swapping the names of A and B, we can make an important assumption

without loss of generality: Either A is a maximum clique in G[A ∪ B], or there is a

maximum clique X of G[A ∪ B] and some vertex in B that sees some but not all of

X \ B. If we cannot assume this, then ω(G[A ∪ B]) > max{|A|, |B|} and there is a

unique maximum clique X in (G[A ∪ B]). Furthermore since (G[A ∪ B]) is a linear

interval graph, no vertex in A \ X (resp. B \ X) has a neighbour in B (resp. A),

contradicting the assumption that (A,B) is nonskeletal.

To construct A1, A2, and B1 we first select two vertices ap and aq in A. Let p

be minimum such that ap is in a maximum clique X of G[A ∪ B]; note that p = 1

if ω(G[A ∪ B]) = |A|. We claim that there is some minimum q > p such that

N̄(ap) ⊂ N̄(aq), i.e. ap and aq are not twins. If q does not exist then by our above

assumption either (i) X = A and there are no edges between A and B, a contradiction

since (A,B) is nonskeletal, or (ii) |X| > |A| and no vertex in B sees some but not all

of X \ B, a contradiction since in this case X must be the unique maximum clique

of G[A ∪B].

Let A1 be ap along with its twins, and let B1 be the set of vertices that see that

see ap but not aq. Clearly B1 ⊆ B, and observe that |A1| ≥ |B1|, otherwise ap would

not be in a maximum clique in G[A ∪ B], whereas aq would. So let A2 be q along

with its twins. An example is shown in Figure 6.3.

To see that (A1 ∪ A2, B1) is a homogeneous pair of cliques, it is enough to show

that ({ap, aq}, B1) is a homogeneous pair of cliques. By the structure of linear interval

graphs, every vertex in A \ (A1 ∪ A2) sees either all of B1 or none of B1, so B1

is a singleton or a homogeneous clique. Therefore ({ap, aq}, B1) is a homogeneous

pair of cliques, following from the fact that (A,B) is a homogeneous pair of cliques.

Furthermore since B1 is complete to A2 and anticomplete to A1, and |A1| ≥ |B1|, it
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Figure 6.3: If a linear homogeneous pair of cliques is not skeletal, we can find within
it a homogeneous pair of cliques with a very specific structure.

is easy to see that (A1 ∪ A2, B1) is a nonskeletal linear homogeneous pair of cliques

(in particular, A1 ∪ A2 is a maximum clique in G[A1 ∪ A2 ∪B1]).

Thus when searching for a linear nonskeletal homogeneous pair of cliques, we can

focus on this specific structure.

Lemma 6.16. Let G be a graph containing no nonlinear homogeneous pair of cliques.

Then in O(nm) time we can find some nonskeletal linear homogeneous pair of cliques

(A,B) in G, or determine that G is skeletal.

Observe that Lemma 6.13 follows immediately from this lemma and Lemma 6.14.

Proof. We find a nonskeletal homogeneous pair of cliques (A,B) by finding the cliques

A1, A2, and B1 guaranteed by the previous lemma, as follows. First we partition the

vertices of G into maximal homogeneous cliques in O(m) time as discussed in Section

4.2.3. After that we just need to find three vertices a1, a2, and b1 inducing a path

such that a1 has at least as many twins as b1, no vertex sees a1 but not a2, and b1

and its twins are the only vertices that see a2 but not a1. We can easily do this in

O(nm) time by first guessing b1, then deleting b1 and checking for the appropriate

resulting twins in O(m) time.

Finally, we remark that we can find a skeletal homogeneous pair of cliques in

O(m) time. First we search for twins in time O(m) – twins immediately lead to a



98 Skeletal Graphs

homogeneous pair of cliques if the graph has at least four vertices. But the existence

of a skeletal homogeneous pair (A,B) implies the existence of twins: Either (A ∩
Ω(A,B), B ∩Ω(A,B)) is a homogeneous pair of cliques with all edges between them,

or (A,B) is a homogeneous pair of cliques with no edges between them. Either case

leads to twins. With the results of this section, this implies the following:

Theorem 6.17. In O(n2m) we can find a homogeneous pair of cliques in a graph or

determine that none exists.

6.3 Decomposing skeletal quasi-line graphs

We conclude the chapter with an algorithm to decompose a skeletal composition

of linear interval strips. Specifically, for such a graph G we will give an efficient

method for determining strips (Se, Xe, Ye) and an underlying graph H such that G is

a composition of the strips under H. We call this a strip representation of G. This

strip representation is by no means unique, as one can easily see by considering a

cycle.

6.3.1 Finding a canonical interval 2-join

To find a strip representation, we first need to find a canonical interval 2-join effi-

ciently.

Lemma 6.18. Let G be a connected quasi-line graph. In time O(n2m) we can find a

canonical interval 2-join in G or determine that none exists.

Proof. Suppose a canonical interval 2-join ((X1, Y1), (X2, Y2)) exists such that X2 and

Y2 are nonempty, and G2 is connected. Then there are non-simplicial vertices x and

y in G such that G2 has a linear interval representation with x and y at the extreme

left and right. We proceed by guessing x and y, then checking to see if they yield a

desired join.

Since x is not simplicial both X1 and N(x) \ (X1 ∪ X2) are nonempty. Thus

N̄(x) has exactly two maximal cliques, namely X1 ∪ X2 and N̄(x) \ X1. We can

find one maximal clique greedily in linear time, and having generated one of them,

C, we can find the other by generating a maximal clique in N̄(x) containing some
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arbitrarily chosen element of N̄(x) \ C. Thus, X2 is the intersection of these two

maximal cliques and there are two choices for X1. Similarly we can deduce Y2 and

two possible choices for Y1. For each of these four possible choices of (X1, Y1) we first

check if we indeed have a 2-join. We check that it is an interval 2-join by adding to

G2 vertices x′ and y′ with neighbourhoods X2 and Y2 respectively along with a vertex

z with neighbourhood {x′, y′}, then checking to see if the result is a circular interval

graph. All of this can be done in O(m) time, so checking every possible x and y takes

O(n2m) time. Furthermore, any simplicial vertex will result in a canonical interval

2-join in a trivial way, and we can find such vertices in O(nm) time.

6.3.2 Decomposing a composition of linear interval strips

We are almost ready to find a strip representation of G. We will do this by finding

strips one at a time and replacing Xe and Ye with nonadjacent vertices. This ensures

that we will never introduce a nonlinear homogeneous pair of cliques, so we can

repeatedly apply Theorem 6.4. We continue until we have a line graph, from which

we determine a strip representation of G. However, we must address one case in

which this may introduce a claw. This occurs when Se is a clique. We now show that

if each Se is a clique then G is a line graph.

One case of this is when Se = Xe ∪ Ye for every strip, in which case we already

know G is a line graph. Suppose that every Se is a strip. To show that G is a

line graph, take H and instead of replacing each edge e = {xe, ye} with a strip,

add a vertex ve. We deal with two cases: the case V (Se) = Xe ∪ Ye and the case

V (Se) \ (Xe ∪ Ye) 6= ∅. First suppose V (Se) = Xe ∪ Ye. Put |Xe \ Ye| edges between

ve and xe, put |Ye \ Xe| edges between ve and ye, and put |Xe ∩ Ye| edges between

xe and ye. If V (Se) contains a vertex outside Xe ∪ Ye but is still a clique, then by

the definition of a strip we can see that Xe and Ye are disjoint (otherwise adding

nonadjacent vertices with neighbourhoods Xe and Ye would result in a claw). Thus

as in the previous case we put |Xe| edges between ve and x, |Ye| edges between ve and

y, but now we put |V (Se) \ (Xe ∪ Ye)| edges between ve and a new pendant vertex

ze. If we construct H ′ from H by doing this for each strip (Se, Xe, Ye), then G will

be the line graph of H ′.

Thus we will disregard canonical interval 2-joins for which G2 is a clique, allowing

us to proceed safely and still arrive at a line graph.
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Theorem 6.19. Let G be a connected quasi-line graph containing no nonlinear ho-

mogeneous pair of cliques. Then in O(n2m) time we can either determine that G is

a circular interval graph or find a strip representation of G.

Proof. If G is a circular interval graph, we can determine this in O(m) time. If G

is a line graph, then in O(m) time we can determine this and find a multigraph H

such that G = L(H), as discussed in Section 4.2.3. Note that this gives us a strip

representation of G, setting each strip to be a singleton.

So assume that G is neither a line graph nor a circular interval graph. We begin

by finding a strongly canonical interval 2-join ((X1, Y1), (X2, Y2)) such that G2 is

connected and is not a clique; we are guaranteed that this exists because G is not

a line graph, as we discussed above. We proceed by insisting that G2 is a strip and

recursing in the following way. We construct GS from G by deleting G2 and adding

nonadjacent vertices x2 and y2 with neighbourhoods X1 and Y1 respectively. It is

easy to see that GS is an induced subgraph of G, so it is quasi-line.

We claim that GS contains no nonlinear homogeneous pair of cliques, so by Theo-

rem 6.4 it is a circular interval graph or a composition of linear interval strips. To see

this, suppose GS contains a nonlinear homogeneous pair of cliques (A,B). If neither

x2 nor y2 is in A∪B, then each of A and B is either in X1 or Y1, or completely outside

X1 ∪ Y1. In this case it is easy to confirm that (A,B) is a nontrivial homogeneous

pair of cliques in G, a contradiction. So assume at least one of x2 and y2, say x2, is

in A. Thus A ⊆ X1.

Clearly in this case B is not in X1. If B ∩ X1 = ∅, then it is straightforward

to confirm that (A \ {x2}, B \ {y2}) is a nonlinear homogeneous pair of cliques since

neither x2 nor y2 is in an induced C4 (but note that y2 is not necessarily in B). So

assume that B is partially in X1. Since X1 ∩B is complete to A∩B, (A,B \X1) is a

nonlinear homogeneous pair of cliques in GS. Thus so is (A\{x2}, B\(X1∪{y2}). But

as in the previous paragraph, this implies the existence of a nonlinear homogeneous

pair of cliques in G, a contradiction. Therefore GS contains no nonlinear homogeneous

pair of cliques and is either a circular interval graph or a composition of linear interval

strips.

Observe that ifGS is a circular interval graph, then it is also a composition of linear

interval strips. Four strips, to be exact, two of which are singletons ({x2}, {x2}, {x2})
and ({y2}, {y2}, {y2}). Thus it follows easily that G is a composition of three linear
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interval strips, and the underlying multigraph H consists of three parallel edges. We

can easily find this strip representation in O(m) time by first finding a circular interval

representation of GS.

If GS is a composition of linear interval strips, then we find a strip representation

of it recursively in O(n2m) time. If x2 and y2 are two singleton strips then we can

proceed as before. Otherwise we can modify the strips to find a strip representation

in which x2 and y2 are singleton strips. If x2 is not in a singleton strip but is rather

in an end-clique of another strip, say Xe, then we can simply remove x2 from Xe and

insist that x2 is a singleton strip because it is simplicial and therefore sees nothing

outside its own hub clique. If x2 is in the middle of a strip Se, i.e. not in Xe ∪ Ye,
then since x2 is simplicial we can break Se into three smaller strips: one is x2, and

the other two consist of the vertices to the left and to the right of x2, respectively, in

a linear interval representation of (Se, Xe, Ye). We can easily do the extra work for

this step in O(nm) time.

The only thing to make clear is how we find our 2-joins – we do not want to spend

O(n2m) time finding one at each step. Our method for finding canonical interval

2-joins actually finds all possible canonical interval 2-joins, i.e. O(n2) of them. We

must maintain our set of possible subgraphs G2 – in a strip representation they will

partition the graph, so we never want to take a 2-join giving us a G2 that intersects

a vertex already selected to be in a strip. Each time we make a recursion step, we

just take the first canonical interval 2-join such that G2 is connected and X2 and Y2

are both nonempty, and such that G2 contains no vertex already assigned to be in a

strip. We can do this in O(n2m) time overall, and this method naturally limits us to

making O(n) iterations. The result follows.

We remark that this algorithm gives us a strip decomposition with a nice prop-

erty: Every strip (Se, Xe, Ye) is either a singleton or has Se connected and not a

clique, and Xe and Ye disjoint. We call such a strip representation a canonical strip

representation.
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Chapter 7

Colouring Quasi-line Graphs

Now we can apply the tools that we have gathered to bound the chromatic number

of quasi-line graphs. Given any quasi-line graph G we can find a skeletal quasi-

line subgraph G′ with equal chromatic number, so any minimum counterexample to

Theorem III.1 or Theorem III.2 must be skeletal. Thus by Theorem 6.8 we need only

prove these results for circular interval graphs and compositions of linear interval

strips.

We begin by proving the Main Conjecture. Our approach is to decompose a

minimum counterexample on a canonical interval 2-join, colour what remains, then

complete the colouring of the entire graph. This is a very straightforward approach.

To prove Theorem III.2 we need to be a bit more clever. As we will show, both proofs

lead to polynomial-time algorithms that find a colouring satisfying their respective

bounds.

7.1 Proving the Main Conjecture

Theorem 4.1 implies that the Main Conjecture holds for circular interval gaphs. The-

orem 4.5 tells us that the Main Conjecture holds for line graphs. Therefore by Theo-

rems 6.9 and 6.11 we only need to prove that a minimum conterexample to Theorem

III.1 cannot admit a canonical interval 2-join. We do this now.

103
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7.1.1 Dealing with canonical interval 2-joins

In Chapter 3 we showed that clique cutsets are easy to deal with when colouring

graphs. This idea is relevant to the 2-joins arising from compositions of strips in two

ways. First, if some Xi or Yi is empty then our 2-join amounts to a clique cutset

and G2 is a linear interval graph. So if we have a γ(G1)-colouring of G1 then we can

easily extend it to a γ(G)-colouring of G. Second, we can paste together colourings

on 2-joins provided we have suitable colourings of G1 and G2 – this is what we did

when proving that 2-joins preserve perfection in Chapter 3.

Before stating Lemma 7.1, which implies that no minimum counterexample to the

Main Conjecture or Local Strengthening admits a canonical interval 2-join, we give

some notation. Given G admitting a canonical interval 2-join ((X1, Y1), (X2, Y2)) let

H2 denote G[V2 ∪X1 ∪ Y1].

For v ∈ H2 we define ω′(v) as the size of the largest clique in H2 containing v and

not intersecting both X1 \ Y1 and Y1 \X1, and we define γil (H2) as maxv∈H2dd(v) +

1 + ω′(v)e (here the superscript i denotes interval). Observe that γil (H2) ≤ γl(G). If

v ∈ X1 ∪ Y1, then ω′(v) is |X1|+ |X2|, |Y1|+ |Y2|, or |X1 ∩ Y1|+ ω(G[X2 ∪ Y2]).

Lemma 7.1. Let G be a graph on n vertices and suppose G admits a canonical

interval 2-join ((X1, Y1), (X2, Y2)). Then given a proper l-colouring of G1 for any

l ≥ γil (H2), we can find a proper l-colouring of G in O(nm) time.

Since γil (H2) ≤ γl(G) ≤ γ(G) this lemma implies the Main Conjecture for quasi-

line graphs. Furthermore it implies that a proof of the Local Strengthening for line

graphs would imply the Local Strengthening for quasi-line graphs.

Proof. We proceed by induction on l, observing that the case l = 1 is trivial. We

begin by modifying the colouring so that the number k of colours used in both X1

and Y1 in the l-colouring of G1 is maximal. That is, if a vertex v ∈ X1 gets a colour

that is not seen in Y1, then every colour appearing in Y1 appears in N(v). This can

be done in O(n2) time. If l exceeds γil (H2) we can just remove a colour class in G1

and apply induction on what remains. Thus we can assume that l = γil (H2) and so

if we apply induction we must remove a stable set whose removal lowers both l and

γil (H2).

We use case analysis; when considering a case we may assume no previous case

applies. In some cases we extend the colouring of G1 to an l-colouring of G in one
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step. In other cases we remove a colour class in G1 together with vertices in G2 such

that everything we remove is a stable set, and when we remove it we reduce γil (v) for

every v ∈ H2; after doing this we apply induction on l. Notice that if X1∩Y1 6= ∅ and

there are edges between X2 and Y2 we may have a large clique in H2 which contains

some but not all of X1 and some but not all of Y1; this is not necessarily obvious but

we deal with it in every applicable case.

Case 1. Y1 ⊆ X1.

H2 is a circular interval graph and X1 is a clique cutset. We can γl(H2)-colour

H2 in O(n3/2) time using Theorem 4.2. By permuting the colour classes we

can ensure that this colouring agrees with the colouring of G1. In this case

γl(H2) ≤ γil (H2) ≤ l so we are done. By symmetry, this covers the case in

which X1 ⊆ Y1.

Case 2. k = 0 and l > |X1|+ |Y1|.
Here X1 and Y1 are disjoint. Take a stable set S greedily from left to right

in G2. By this we mean that we start with S = {v1}, the leftmost vertex of

X2, and we move along the vertices of G2 in linear order, adding a vertex to

S whenever doing so will leave S a stable set. So S hits X2. If it hits Y2,

remove S along with a colour class in G1 not intersecting X1∪Y1; these vertices

together make a stable set. If v ∈ G2 it is easy to see that γil (v) will drop: every

remaining vertex in G2 either loses two neighbours or is in Y2, in which case

S intersects every maximal clique containing v. If v ∈ X1 ∪ Y1 then since X1

and Y1 are disjoint, ω′(v) is either |X1|+ |X2| or |Y1|+ |Y2|; in either case ω′(v),

and therefore γil (v), drops when S and the colour class are removed. Therefore

γil (H2) drops, and we can proceed by induction.

If S does not hit Y2 we remove S along with a colour class from G1 that hits Y1

(and therefore not X1). Since S ∩ Y2 = ∅ the vertices together make a stable

set. Using the same argument as before we can see that removing these vertices

drops both l and γil (H2), so we can proceed by induction.

Case 3. k = 0 and l = |X1|+ |Y1|.
Again, X1 and Y1 are disjoint. By maximality of k, every vertex in X1 ∪ Y1 has

at least l − 1 neighbours in G1. Since l = |X1| + |Y1| we know that ω′(X1) ≤
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|X1|+ |Y1|−|X2| and ω′(Y1) ≤ |X1|+ |Y1|−|Y2|. Thus |Y1| ≥ 2|X2| and similarly

|X1| ≥ 2|Y2|. Assume without loss of generality that |Y2| ≤ |X2|.

We first attempt to l-colour H2 − Y1, which we denote by H3, such that every

colour in Y2 appears in X1 – this is clearly sufficient to prove the lemma since

we can permute the colour classes and paste this colouring onto the colouring

of G1 to get a proper l-colouring of G. If ω(H3) ≤ l− |Y2| then this is easy: we

can ω(H3)-colour the vertices of H3, then use |Y2| new colours to recolour Y2

and |Y2| vertices of X1. This is possible since Y2 and X1 have no edges between

them.

Define b as l − ω(H3); we can assume that b < |Y2|. We want an ω(H3)-

colouring of H3 such that at most b colours appear in Y2 but not X1. There

is some clique C = {vi, . . . , vi+ω(H3)−1} in H3; this clique does not intersect X1

because |X1 ∪ X2| ≤ l − 1
2
|Y1| ≤ l − |Y2| < l − b. Denote by vj the leftmost

neighbour of vi. Since γil (vi) ≤ l, it is clear that vi has at most 2b neighbours

outside C, and since b < |Y2| ≤ 1
2
|X1| we can be assured that vi /∈ X2. Since

ω(H3) > |Y2|, vi /∈ Y2.

We now colour H3 from left to right, modulo ω(H3). If at most b colours appear

in Y2 but not X1 then we are done, otherwise we will “roll back” the colouring,

starting at vi. That is, for every p ≥ i, we modify the colouring of H3 by

giving vp the colour after the one that it currently has, modulo ω(H3). Since

vi has at most 2b neighbours behind it, we can roll back the colouring at least

ω(H3)− 2b− 1 times for a total of ω(H3)− 2b proper colourings of H3.

Since vi /∈ Y2 the colours on Y2 will appear in order modulo ω(H3). Thus there

are ω(H3) possible sets of colours appearing on Y2, and in 2b+ 1 of them there

are at most b colours appearing in Y2 but not X1. It follows that as we roll back

the colouring of H3 we will find an acceptable colouring.

Henceforth we will assume that |X1| ≥ |Y1|.

Case 4. 0 < k < |X1|.

Take a stable set S in G2 − X2 greedily from left to right. If S hits Y2, we

remove S from G, along with a colour class from G1 intersecting X1 but not Y1.

Otherwise, we remove S along with a colour class from G1 intersecting both X1
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and Y1. In either case it is a simple matter to confirm that γil (v) drops for every

v ∈ H2 as we did in Case 2. We proceed by induction.

Case 5. k = |Y1| = |X1| = 1.

In this case |X1| = k = 1. If G2 is not connected then X1 and Y1 are both

clique cutsets and we can proceed as in Case 1. If G2 is connected and contains

an l-clique, then there is some v ∈ V2 of degree at least l in the l-clique. Thus

γil (H2) > l, contradicting our assumption that l ≥ γil (H2). So ω(G2) < l. We

can ω(G2)-colour G2 in linear time using only colours not appearing in X1∪Y1,

thus extending the l-colouring of G1 to a proper l-colouring of G.

Case 6. k = |Y1| = |X1| > 1.

Suppose that k is not minimal. That is, suppose there is a vertex v ∈ X1 ∪ Y1

whose closed neighbourhood does not contain all l colours in the colouring of

G1. Then we can change the colour of v and apply Case 4. So assume k is

minimal.

Therefore every vertex in X1 has degree at least l + |X2| − 1. Since X1 ∪X2 is

a clique, γil (H2) ≥ l ≥ 1
2
(l + |X2| + |X1| + |X2|), so 2|X2| ≤ l − k. Similarly,

2|Y2| ≤ l− k, so |X2|+ |Y2| ≤ l− k. Since there are l− k colours not appearing

in X1 ∪ Y1, we can ω(G2)-colour G2, then permute the colour classes so that no

colour appears in both X1∪Y1 and X2∪Y2. Thus we can extend the l-colouring

of G1 to an l-colouring of G.

These cases cover every possibility, so we need only prove that the colouring can

be found in O(nm) time. If k has been maximized and we apply induction, k will

stay maximized: every vertex in X1∪Y1 will have every remaining colour in its closed

neighbourhood except possibly if we recolour a vertex in Case 6. In this case the

overlap in what remains is k− 1, which is the most possible since we remove a vertex

from X1 or Y1, each of which has size k. Hence we only need to maximize k once. We

can determine which case applies in O(m) time, and it is not hard to confirm that

whenever we extend the colouring in one step our work can be done in O(nm) time.

When we apply induction, i.e. in Cases 2, 4, and possibly 6, all our work can be done

in O(m) time. Since l < n it follows that the entire l-colouring can be completed in

O(nm) time.
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Chudnovsky and Ovetsky Fradkin [CO07] proved that χ(G) ≤ 3
2
ω(G) for any

quasi-line graph G, extending a result of Shannon for line graphs [Sha49]. Our theo-

rem strengthens these results, since for any quasi-line graph ∆(G) ≤ 2ω(G)− 1 and

consequently γ(G) ≤ 3
2
ω(G).

7.2 Asymptotics of the chromatic number for quasi-

line graphs

In Chapter 4 we presented two important classes of graphs for which χ and χf are

close: line graphs and circular interval graphs. In this section we prove that χ and χf

are close together for quasi-line graphs. We do this by combining the structure the-

orem for quasi-line graphs with colouring results on line graphs and circular interval

graphs.

As we mentioned in Chapter 4, Kahn first proved that χ and χf agree asymptot-

ically for line graphs. Sanders and Steurer followed this with a more precise result

[SS05]:

Theorem 7.2. Any line graph G can be coloured in polynomial time using χf (G) +√
9
2
χf (G) colours.

We now extend this result, which gives a strengthening of the main result of

[KR07]:

Theorem 7.3. Any quasi-line graph G can be coloured in polynomial time using

χf (G) + 3
√
χf (G) colours.

We first prove that χ(G) ≤ χf (G) + 3
√
χf (G), leaving algorithmic considerations

until later.

Let G be a minimum counterexample to the theorem. Theorem 6.11 implies

that G must be skeletal. Theorem 4.2 tells us that G cannot be a circular interval

graph, and Theorem 7.2 tells us that G cannot be a line graph. Therefore G is some

composition of linear interval strips (Se, Xe, Ye) with underlying directed multigraph

H, and it must admit a canonical interval 2-join.

We deal with a 2-join by emulating a fractional colouring on the corresponding

linear interval strip with an integer colouring. However, we cannot deal with these 2-

joins one at a time as we did in the previous section. Each time we turn a fractional
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colouring of a linear interval strip (S,X, Y ) into an integer colouring, we need to

use an extra colour in case the total weight of stable sets intersecting both X and

Y in the fractional colouring is not an integer. Thus we must deal with all 2-joins

simultaneously, emulating an optimal fractional colouring as closely as possible. Our

approach is as follows:

We begin by finding a near-optimal fractional colouring of G in which the total

weight of stable sets intersecting both Xe and Ye is an integer, for every e. We then

use this fractional colouring to construct a line graph G′ by contracting each strip

into a carefully chosen clique. Using Theorem 7.2, we find a (1+o(1))χf (G)-colouring

of G′. This colouring gives us a partial colouring of G on the end-cliques. Finally we

complete the colouring of G by emulating our near-optimal fractional colouring on

by integer colourings on the strips.

We now address the specifics of this approach.

7.2.1 Finding a good fractional colouring

Given a fractional colouring of G, we use we to denote the total weight of stable sets

in the colouring that intersect both Xe and Ye. Our first job is to find a near-optimal

fractional colouring of G in which we is an integer for every edge e of the underlying

multigraph H. We will prove:

Lemma 7.4. There is a fractional (χf (G) + 1
3

√
ω(G))-colouring of G such that we

is an integer for all e ∈ E(H).

To find this fractional colouring will take a fractional χf (G)-colouring and modify

it on the cliques Xe. We can assume that for all e ∈ E(G), |Xe| ≤ |Ye| – if |Xe| > |Ye|,
simply change the direction of e in H and swap the names of Xe and Ye. Note that

the case Xe = ∅ will result in a simplicial vertex, which cannot exist in a minimum

counterexample.

We begin by proving that we don’t need to modify too many cliques Xe which have

edges between them. To this end, we say that an edge e of H is trivial if Xe = Ye. For

a trivial edge e, we is always equal to |Xe| and is therefore an integer. For v ∈ V (H),

let D(v) denote the number of nontrivial edges out of v. Let D(H) be the maximum

of D(v) over all v ∈ V (H). We bound D(H) using the following result:

Lemma 7.5. If e is a nontrivial edge of H, then |Xe| > 3
√
χf (v).
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Proof. By the minimality of G, every vertex in G must have degree at least χ(G)−1 >

ω(G) + 3
√
χ(G)− 1.

Let the vertices of Se be {u1, . . . , uV (Se)} in linear order, such thatXe = {u1, . . . , u|Xe|}.
Because e is nontrivial and |Ye| ≥ |Xe|, the vertex u|Xe|+1 exists. By the structure

of linear interval graphs, its closed neighbourhood outside Xe is a clique if u|Xe|+1 is

not in Ye. If u|Xe|+1 ∈ Ye then its neighbourhood outside Xe is contained in the hub

clique containing Ye. Therefore ω(G) + |Xe| ≥ d(u|Xe|+1) + 1 > ω(G) + 3
√
χ(G).

This immediately gives us a bound on D(H), because every hub clique Cv has size

at most ω(G) ≤ χf (G).

Corollary 7.6. D(H) < 1
3

√
χf (G).

We use our bound on D(H) to prove the existence of the desired fractional colour-

ing. We omit the simple proof of the following lemma, which reduces to finding an

optimal edge colouring of a set of disjoint stars:

Lemma 7.7. We can colour the nontrivial edges of H with D(H) < 1
3

√
ω(G) colours

such that no two edges out of the same vertex get the same colour.

We deal with one of these colour classes at a time:

Lemma 7.8. Let E1 be a set of nontrivial edges in H, no two of which go out of the

same vertex. Given a fractional k-colouring of G with overlaps {we | e ∈ E}, there is

a fractional (k + 1)-colouring of G with overlaps {w′e | e ∈ E} such that w′e = bwec
for e ∈ E1, and w′e = we for e /∈ E1.

Proof. Take some single edge e of E1 and an optimal fractional colouring of G. We

claim that we can make w′e an integer by adding we − bwec extra weight to the

fractional colouring. To do this, take a collection of stable sets, each intersecting

both Xe and Ye, of total weight we − bwec in the colouring (it may be necessary to

split one stable set into two identical stable sets of lesser weight to do this). Now

remove the vertex in Xe from each of these stable sets, and fill the missing weight

in Xe (i.e. we − bwec) with singleton stable sets. This gives us the desired fractional

colouring in which w′e is an integer. Note that we did not change the colouring outside

Xe, so every other overlap is unchanged.
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To see that we can “integralize” each we using extra weight less than 1, note that

for e, e′ ∈ E1, there are no edges between Xe and Xe′ . Thus we can integralize Xe

for every e ∈ E1 using |E1| extra weight, and replace the resulting singleton colour

classes with stable sets of size up to |E1|, with total weight less than 1.

This gives us an easy proof of Lemma 7.4:

Proof of Lemma 7.4. Begin with a fractional χf (G)-colouring of G and a colouring of

the edges of H guaranteed by Lemma 7.7. For each matching in this edge colouring,

apply Lemma 7.8. The result is a fractional (χf (G)+D(H))-colouring of G for which

each overlap we is an integer.

7.2.2 Completing the proof

We are now ready to prove our bound on χ(G).

Proof of Theorem 7.3. Let G be a minimum counterexample to the theorem. We

know that it is a composition of strips (Se, Xe, Ye) with underlying multigraph H. We

construct a line graph G′ from G as follows. Take a fractional (χf (G) + 1
3

√
ω(G))-

colouring of G such that every we is an integer. We want to replace every strip

(Se, Xe, Ye) with a new strip (S ′e, X
′
e, Y

′
e ) such that (i) the resulting composition G′ of

these strips is a line graph, (ii) |X ′e| = |Xe| and |Y ′e | = |Ye|, and (iii) in any colouring

of G′, precisely we colours intersect both X ′e and Y ′e .

With this in mind, for each e we define a new linear interval strip (S ′e, X
′
e, Y

′
e )

on |Xe| + |Ye| − we vertices such that X ′e and Y ′e are cliques of size |X ′e| and |Y ′e |
respectively, and |X ′e ∩ Y ′e | = we. Furthermore S ′e itself is a clique. Let G′ be the

composition of the strips (S ′e, X
′
e, Y

′
e ) with H as the underlying multigraph (see Figure

7.1). Equivalently, we construct a multigraph H ′ from H by replacing every edge e

of H with a triangle on |Xe| + |Ye| − we edges, exactly we of which are between the

original endpoints of e. We then set G′ = L(H ′).

We can see that χf (G
′) ≤ χf (G)+ 1

3

√
ω(G): Because X ′e\Y ′e , Y ′e \X ′e, and X ′e∩Y ′e

are all homogeneous cliques in G′, we can safely map the colours in G that hit Xe

(resp. Ye) into stable sets that hit X ′e (resp. Y ′e ). Thus Theorem 7.2 gives us a bound

on χ(G′):
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Cu

Cu

Cv

Cv

Se

Xe Ye

S ′
e

X ′
e Y ′

e

Figure 7.1: We construct a line graph G′ from G by contracting each strip (Se, Xe, Ye)
into a (S ′e, X

′
e, Y

′
e ) where S ′e is a clique, X ′e∪Y ′e together cover S ′e, and |X ′e∩Y ′e | = we.
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χ(G′) ≤ χf (G
′) +

√
9

2
χf (G′) (7.1)

≤ χf (G) +
1

3

√
χf (G) +

√
9

2

(
χf (G) +

1

3

√
χf (G)

)
(7.2)

≤ χf (G) +
1

3

√
χf (G) +

√
9

2

(
4

3
χf (G)

)
(7.3)

≤ χf (G) + 3
√
χf (G). (7.4)

Consider a colouring of G′ using bχf (G) + 3
√
χf (G)c colours. Since S ′e is a clique

for every edge e of H, the number of colours appearing in both X ′e and Y ′e is precisely

we. So from this colouring of G′ we can construct a partial colouring of G′, colouring

∪{Xe ∪Ye | e ∈ E(H)} with bχf (G) + 3
√
χf (G)c colours so that precisely we colours

appear in both Xe and Ye.

The original fractional (χf (G) + 1
3

√
ω(G))-colouring of G gives us a fractional

colouring of each Se such that the overlap between Xe and Ye is precisely we, so

Lemma 4.3 tells us that we can dχf (G)+ 1
3

√
ω(G)e-colour each Se such that precisely

we colours appear in both Xe and Ye. Thus by permuting colour classes, we can

complete the partial colouring of G and find a proper bχf (G) + 3
√
χf (G)c-colouring

of G, proving the theorem.

7.3 Algorithmic considerations

In this section we prove that given a quasi-line graph G, in polynomial time we can

colour G using min{γ(G), χf (G) + 3
√
χf (G)} colours.

7.3.1 The Main Conjecture

Our approach to colouring quasi-line graphs as in the proof of Lemma 7.1 suggests

an algorithm for γ(G)-colouring these graphs in polynomial time.

Theorem 7.9. Let G be a quasi-line graph on n vertices. Then in O(n2m2) time we

can find a proper γ(G)-colouring of G.
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Proof. We first apply Theorem 6.11 to construct a skeletal quasi-line subgraph G′ of

G such that χ(G) = χ(G′) and χf (G) = χf (G
′). We can do this in O(n2m2) time.

We then γ(G′)-colour G′. If G′ is a circular interval graph then we can γ-colour it in

O(n3/2) time by Theorem 4.2. If G′ is a line graph we can γ-colour it in O(n5/2) time

by Theorem 4.14.

Otherwise G′ is a composition of linear interval strips containing no nonlinear

homogeneous pair of cliques, so we first find a canonical strip representation of G′

as described in the previous chapter. Take a non-singleton strip (Se, Xe, Ye). We

can recursively γ(G′)-colour G − Se in O(n2m) time, then apply Lemma 7.1 on the

canonical interval 2-join ((X1, Y1), (Xe, Ye)) associated with (Se, Xe, Ye). This gives

us a γ(G′)-colouring of G′ in O(n2m2) time.

The final step is to convert this into a γ(G′)-colouring of G. But Theorem 6.11

tells us that we can do this in O(n2m2) time, so we are done.

7.3.2 Achieving the asymptotic bound

We now prove that we can bχf (G)+3
√
χf (G)c-colour a quasi-line graph G in polyno-

mial time. Just as with γ-colouring, if G is not a composition of linear interval strips

then we can reduce the problem in polynomial time. If G is a composition of linear

interval strips but the underlying directed multigraph H has D(H) ≥ 1
3

√
χf (G), then

G has a vertex v of degree at most χf (G)+3
√
χf (G)−1. We can reduce this case by

colouring G− v and giving v a colour not appearing in its neighbourhood. Thus we

can assume that G is a composition of linear interval strips and D(H) < 1
3

√
χf (G),

as in the proof of Theorem 7.3.

As with the Main Conjecture, we begin by determining a canonical strip represen-

tation of G. Once we have constructed the line graph G′ from G as in the proof of The-

orem 7.3, it is straightforward to show that we can find a proper bχf (G)+3
√
χf (G)c-

colouring of G in polynomial time. To see this, first note that Theorem 7.2 tells us

that we can find the desired colouring of G′ in polynomial time. This immediately

gives us a partial colouring of G. The only remaining step is to find the restricted

colourings of the strips. But the proof of Lemma 4.3 tells us that this can be done

by colouring an auxiliary circular interval graph for each strip. We can do this in

polynomial time by Theorem 4.2.

The only remaining job is to construct the line graph G′ from G.
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Constructing the line graph

We must now show that we can indeed construct G′ from G in polynomial time. Minty

[Min80], Nakamura and Tamura [NT01], and recently Oriolo, Pietropaoli, and Stauffer

[OPS08] give polynomial-time algorithms for finding a maximum-weight stable set in

any claw-free graph. By polynomial equivalence results of Grötschel, Lovász, and

Schrijver (see [GLS81] §7), this implies that we can compute the fractional chromatic

number of any claw-free graph in polynomial time. We can deal with weights as well:

Given positive integer weights β(v) for each vertex v of the graph G, let Gβ be the

graph obtained from G by substituting a clique of size β(v) for each vertex v of G.

We can find χf (Gβ) in polynomial time in terms of |V (G)|+ log(maxv∈V (G) β(v)).

But in fact the equivalence results in [GLS81] tell us that for claw-free graphs, we

can efficiently optimize over the feasible region of the linear program (1.3). That is,

the dual of the linear program (1.2), which we can solve to compute the fractional

chromatic number. Theorem 6.5.14 in [GLS93] states:

Theorem 7.10. There exists an oracle-polynomial time algorithm that, for any well-

described polyhedron (P ;n, φ) given by a strong separation oracle and for any c ∈ Qn,

either

1. finds a basic optimum standard solution, or

2. asserts that the dual problem is unbounded or has no solution.

We refer the reader to [GLS93] for the formal definitions of a well-described polyhe-

dron and an oracle-polynomial time algorithm. In our specific situation, this theorem

states that since we can optimize over the dual feasible region (1.3), we can find a

basic solution to (1.2) in polynomial time for any claw-free graph. A basic solution

to this linear program is a fractional colouring in which the incidence vectors of the

stable sets with nonzero weight are linearly independent. Thus by the dimension

of the stable set polytope, there are at most n nonzero stable sets in the fractional

colouring.

Once we have a basic fractional colouring of G, it is a simple matter to compute

the overlaps for the strips and construct the line graph G′ in polynomial time.
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Part IV

Claw-free Graphs

We now move on from quasi-line graphs to the more general class of claw-free graphs,

with the eventual goal of proving new bounds on the chromatic number.

We note that a claw-free graph G is not quasi-line precisely if there is an odd

antihole in the neighbourhood of some vertex. Fouquet has shown that in fact if

α(G) ≥ 3 then G is not quasi-line precisely if no vertex contains an induced C5 in

its neighbourhood, i.e. precisely if G contains no W5. The next chapter begins with

a proof of this result. Then, by characterizing the first and second neighbourhoods

of such a C5, we generalize the structure theorem for quasi-line graphs to obtain a

simple structure theorem for claw-free graphs with stability number at least four.

In Chapter 9 we complete the description of skeletal claw-free graphs using Chud-

novsky and Seymour’s characterization of all claw-free graphs. This includes a char-

acterization of claw-free graphs with stability number at most three, as well as a

more rigorous treatment of claw-free graphs with stability number at least four. This

description will give us enough knowledge about the structure of claw-free graphs to

prove our bounds on the chromatic number. In Chapter 10 we consider the Main Con-

jecture once again. We prove that it holds for all claw-free graphs, and furthermore

we prove that the Local Strengthening holds for all three-cliqued claw-free graphs.
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Chapter 8

An Invitation to the General

Structure Theorems

In this chapter we examine the structure of connected claw-free graphs. First we prove

a result of Fouquet, which implies that a connected claw-free graph G with α(G) ≥ 3

is quasi-line precisely if it contains no W5 or 5-wheel (see Figure 8.1). We then show

that when α(G) ≥ 4, every W5 in the graph is separated from its non-neighbourhood

by a 1-join or a 2-join. Using this result, we easily extend the structure theorem for

quasi-line graphs to a structure theorem for claw-free graphs with α(G) ≥ 4. These

results were obtained independently and slightly earlier by Oriolo, Pietropaoli, and

Stauffer [OPS08], and should be credited to them. We obtained the result in August

of 2008, while they had presented it at a conference that May.

These results can easily be obtained as a corollary of Chudnovsky and Sey-

mour’s much more detailed decomposition and structure theorems for claw-free graphs

[CS07c, CS08b]. Furthermore, both we and Oriolo, Pietropaoli, and Stauffer rely on

Chudnovsky and Seymour’s work, since the only known proof of the structure the-

orem for quasi-line graphs is also as a corollary to the claw-free structure theorem.

Given this fact, one might be tempted to consider these results useless.

However, this would be incorrect for two reasons. First, if a short proof of Theo-

rem 5.11 were to be found, this would lead to a short and very natural proof of the

decomposition theorem for claw-free graphs with α ≥ 4. This would be very attrac-

tive, particularly as Chudnovsky and Seymour’s proof of the decomposition theorem

is very technical and over eighty pages long. Second, the decomposition given here

119
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Figure 8.1: W5, the smallest claw-free graph that is not quasi-line.

is more intuitive and easier to work with, and has been used to prove several inter-

esting results. For example, Oriolo, Pietropaoli, and Stauffer first used it in a new

algorithm for finding a maximum weight stable set in a claw-free graph [OPS08].

Galluccio, Gentile, and Ventura have used the distinction between quasi-line graphs

and claw-free graphs to make progress in characterizing the stable set polytope of

claw-free graphs [GGV08]. We describe their work briefly in Section 8.4.

Unfortunately, we were unable to prove the Main Conjecture for claw-free graphs

using this decomposition; we needed the extra detail provided by Chudnovsky and

Seymour’s theorems. We present our colouring results in Chapter 10, after presenting

their structure theorems in Chapter 9. It would be of interest to find a shorter, simpler

proof of their result based on the decomposition we present in this chapter.

8.1 Graphs with no C5 in a neighbourhood

Ben Rebea’s Lemma [Ben81], proved in [CS88], states that if a claw-free graph with

stability number at least three contains an odd antihole, then it contains an antihole

of length 5, i.e. C5. We are interested in a C5 contained in the neighbourhood of

some vertex. Fouquet [Fou93] provided a result analogous to Ben Rebea’s Lemma;

we prove it now.

Theorem 8.1 (Fouquet). Let G be a claw-free graph with α(G) ≥ 3. Then for every

vertex v of G, either v is bisimplicial or the neighbourhood of v contains an induced

C5.

Proof. Assume for a contradiction that G is a counterexample containing a stable

set of size three. Then G contains a non-bisimplicial vertex v whose neighbourhood
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contains an odd antihole H of length k ≥ 7, and no shorter odd antihole. Denote

the vertices of H v1, . . . , vk with indices taken modulo k such that vi misses vi+1 for

1 ≤ i ≤ k.

The key to the proof is to analyze the possible neighbourhoods in H of the vertices

in V −H. We begin with the following:

Observation 8.2. Every vertex of V −H either sees none of H or misses exactly a

clique of H.

Proof. If u ∈ V −H misses vi and vi+1 for some i, then u must miss H −{vi−1, vi+2}.
Since vi+2 is adjacent to vi+4 and vi+5, u cannot see vi+2 or there would be a claw.

By symmetry, u cannot see vi−1, thus u sees none of H.

From this we easily obtain the next observation:

Observation 8.3. Every vertex of V − H misses exactly a clique of H, and hence

sees more than half of the vertices of H.

Proof. By the last observation and the fact that H induces an odd cycle, it is enough

to show that no vertex misses all of H. Suppose the contrary. Since G is connected,

there are two vertices u and w in V − H such that u misses H and w sees some of

H. But w misses a clique of H, so it sees two nonadjacent vertices in H and there is

a claw, a contradiction.

Observation 8.4. If a vertex u of V −H sees v then it misses at most two vertices

of H. Furthermore if u misses exactly two vertices of H then they are vi and vi+2 for

some i.

Proof. Suppose u ∈ V − H sees v, and there exists some i and some odd j with

3 ≤ j < k − 2 such that u misses vi and vi+j but sees {vi+l | 1 ≤ l < j}, with indices

modulo k. Then {u} ∪ {vi+l | 0 ≤ l ≤ j} induces an odd antihole of length less than

k (see Figure 8.2), and this antihole is in the neighbourhood of v, contradicting the

minimality of k.

Suppose u misses exactly two vertices of H. Since k is odd and u misses no two

consecutive vertices of H, it follows that these i and j exist unless u misses vi and

vi+2 for some i: there are two paths between the non-neighbours of u in H, one of

which is even and one of which is odd. Similarly, if u misses at least three vertices of
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u

H

vi

vi+1 vi+j

Figure 8.2: Any u ∈ W is contained in an odd antihole of length less than k, passing
through u and a contiguous portion of H.

H then i and j exist since k is odd: the gaps between the non-neighbours of u in H

have odd sum and are all at least two.

Now let T be a stable set of size three in G.

Observation 8.5. T cannot contain two vertices of H.

Proof. This follows immediately from the fact that α(H) = 2 and every vertex of

V −H misses a clique in H.

Observation 8.6. T cannot contain exactly one vertex of H.

Proof. Suppose T contains vi and vertices u and u′ in V −H. Since there is no claw

in G, no vertex in H − {vi−1, vi+1} sees both u and u′. Thus since k ≥ 7 and neither

u nor u′ can miss two consecutive vertices of H, both u and u′ miss at least three

vertices of H. By Observation 8.4, neither u nor u′ sees v. But by Obervation 8.3

both u and u′ see vi+1 since they miss vi. Therefore {u, u′, v, vi+1} induces a claw, a

contradiction.

Observation 8.7. T cannot be disjoint from H.

Proof. Suppose T = {t1, t2, t3} is contained in V −H. Observation 8.3 tells us that

v cannot be in a stable set of size three with two vertices of T , otherwise this stable

set would be in the neighbourhood of some vertex of H. On the other hand v cannot

see all of H as G is claw-free. Thus v sees two vertices t1 and t2 of T and misses the

third, t3. By Observation 8.4, both t1 and t2 miss at most two vertices of H.
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Now, no vertex of H sees all of T or there would be a claw. Thus t3 must miss at

least k − 4 vertices of H, and since t3 misses a clique (of size at most k−1
2

) in H, we

can see that k = 7 and t3 misses three vertices of H. Thus t1 and t2 each miss two

vertices of H, and since they see v Observation 8.4 tells us that there are i1 and i2

such that t1 misses {vi1 , vi1+2} and t2 misses {vi2 , vi2+2}.
There is only one possible configuration. Without loss of generality we can assume

that the non-neighbourhoods inH of t1, t2, and t3 are {v1, v3}, {v5, v7}, and {v2, v4, v6}
respectively. Since v sees t1 and t2, {t1, v4, t2, v3, v5} induces a C5 in the neighbourhood

of v, a contradiction.

Observations 8.5, 8.6, and 8.7 together imply Theorem 8.1.

This theorem immediately implies that if α(G) ≥ 3, G is quasi-line or contains a

W5.

Corollary 8.8. Let G be a connected claw-free graph in which no neighbourhood

contains an induced C5. Then α(G) ≤ 2 or G is quasi-line.

We now examine how a W5 and its neighbourhood can be connected to the rest

of a claw-free graph.

8.2 Investigating the attachments of a W5

In this section we will prove that if α(G) ≥ 4, then any W5 and its neighbourhood are

separated from the rest of the graph by a special type of 1-join or 2-join. The main

results in this section were first proved by Oriolo, Pietropaoli, and Stauffer [OPS08].

8.2.1 The neighbourhood of a W5

Let H be a C5 in the neighbourhood of some vertex v. To prove our results we

partition the vertices into sets depending on their neighbourhood in H. We then ex-

amine how these sets interact with one another. Beginning with the vertices v1, . . . , v5

of H in cyclic order (note that in the previous section we used cyclic order in the

complement) we define our sets as follows, with indices modulo 5:

• A is the set of vertices seeing all of H; A contains v.
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• N is the set of vertices with no neighbour in H.

• For i = 1, . . . , 5, Bi is the set of vertices outside H whose neighbourhood in H

is precisely {vi, vi+1} (with indices taken modulo 5). B = ∪iBi.

• Ui is the set of vertices in Bi with a neighbour in N . U = ∪iUi.

• For i = 1, . . . , 5, Ci is the set of vertices whose neighbourhood in H is precisely

{vi, vi+1, vi+2}. Denote Ci∪{vi+1} by C ′i and define C = ∪iCi and C ′ = ∪iC ′i =

C ∪H.

• For i = 1, . . . , 5, Di is the set of vertices whose neighbourhood in H is precisely

{vi, vi+1, vi+2, vi+3}. D = ∪iDi.

Since G is claw-free, if a vertex outside H sees vi, then it also sees vi−1 or vi+1.

Thus we can see that the sets A,B,C ′, D,N partition V (G).

We can begin with some simple observations. Again and throughout this chapter,

indices are modulo 5.

• For i = 1, . . . , 5, Bi ∪ C ′i ∪Di is a clique. This follows from the fact that G is

claw-free, every vertex in Bi ∪ C ′i ∪Di sees vi, and none sees vi−1.

• There is no edge between B and A, since a vertex in Bi is nonadjacent to vi−1

and vi+2, which are nonadjacent to each other but both adjacent to every vertex

in A. Thus an edge between B and A would imply a claw in G.

By the same reasoning, for i = 1, . . . , 5 there is no edge between Bi and Di−1 ∪
Di+1 ∪Di+2 ∪ C ′i+2.

• For i = 1, . . . , 5, Bi ∪Bi+1 is a clique, since vi+1 sees Bi ∪Bi+1 and v.

These facts are symmetric in the sense that just as Bi ∪ C ′i ∪Di is a clique, so is

Bi ∪ C ′i−1 ∪Di−2.

8.2.2 A dominating W5

If G is connected and U is empty, then N(H) is the entire graph and H is dominating.

We now prove that in this situation, α(G) ≤ 3. This was proved by Lovász and

Plummer, appearing as Claim 5 in the proof of 12.4.3 in [LP86].
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Theorem 8.9. If a claw-free graph G contains a dominating W5 then α(G) ≤ 3.

Proof. Let H be a dominating 5-hole in the neighbourhood of some vertex v. We

partition the vertices of G as described above. In this case N is empty and A is

nonempty. Suppose G contains a stable set X of size four.

If |H ∩ X| = 2, then the other two vertices of X are in the clique Bi for some

i, a contradiction. Suppose then that H ∩ X = v1. Then X − H is contained in

B ∪ C ′ ∪D. More specifically, it is contained in B2 ∪B3 ∪B4 ∪ C ′2 ∪ C ′3 ∪D2. Since

G is claw-free, v2 and v5 each have at most one neighbour in X − v1 while v3 and v4

each have at most two neighbours in X − v1. Since each vertex of X − v1 has at least

two neighbours in H, it follows that X − v1 consists of one vertex from each of B2,

B3, and B4. This contradicts the fact that B2∪B3 and B3∪B4 are cliques. Therefore

X and H are disjoint.

There cannot be more then ten edges between H and X, otherwise some vertex

of H has three neighbours in X, giving a claw. Since α(G[B]) ≤ 2, it follows that

X ⊆ B ∪ C ′, and |X ∩ B| = 2. Assume by symmetry that X contains a vertex of

B1 and a vertex of B3. But Bi is complete to both C ′i and C ′i−1, so X contains two

vertices in C ′4, a clique. Therefore X cannot exist and α(G) ≤ 3.

8.2.3 The second neighbourhood of a W5

Every vertex with a neighbour in H and a neighbour in N must see a clique in H.

Therefore the only vertices with a neighbour in H and a neighbour in N are those

vertices in U .

Suppose a vertex w ∈ N has a neighbour in Ui. Observe that if Bi+1 is nonempty,

then w must see all of Ui ∪ Bi+1, otherwise there would be a claw. Furthermore the

set of vertices of N with a neighbour in Ui form a clique. This simple fact suggests

something more significant: By characterizing U based on which sets Ui are empty

and nonempty, we can determine how N(H) is attached to the rest of the graph

via the second neighbourhood of H. Specifically, we deal with two separate cases,

depending on whether or not the nonempty Ui sets appear in contiguous order around

the cycle. Specifically:

Definition 8.10. The set U is contiguous if there is no i such that Ui and Ui+2 are

nonempty but Ui−1 and Ui+1 are empty.
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Because two consecutive nonempty Ui and Ui+1 imply homogeneity of Ui and Ui+1

outside the neighbourhood of the W5, the way in which H and its neighbourhood

are connected to the rest of the graph is strongly influenced by whether or not U is

contiguous. In the remainder of this section we will show:

• If U is contiguous, then either α(G) ≤ 3 or N(H) is separated from the rest of

the graph by a 1-join.

• If U is not contiguous, then N(H) is separated from the rest of the graph by

one of two specific types of 2-join.

As the decomposition that we find depends on the structure of U , our first job is

to prove that α(G) ≤ 3 whenever U is empty.

8.2.4 Decomposing around a non-dominating W5

Now suppose U is nonempty, which is equivalent to saying that our W5 is non-

dominating. We examine the structure around H in two cases, depending on whether

or not U is contiguous. When U is contiguous we get a 1-join or α(G) = 3. When U

is not contiguous we get one of two types of 2-join.

Case 1: U is contiguous

Note that U is a cutset, so if U is a clique it is obviously a clique cutset. Proving

that it is one side of a 1-join takes a little more work. We will additionally show that

the 1-join has a specific structure with respect to H.

Definition 8.11. A 1-join (X, Y ) is a W5 1-join if X = U , and N(H) is equal to

either G2 or G2 ∪ U .

Lemma 8.12. If U is a clique, then G admits a W5 1-join (U,X) for some set X.

Proof. Assume U is a clique. First suppose U = Ui for some i; assume i = 1. Since

every vertex in U1 has a neighbour in N , we can see that U1 is complete to B5∪B1∪B2,

C ′1 ∪C ′5, and D1 ∪D4. Likewise U1 is anticomplete to A, D2 ∪D3 ∪D5, C ′2 ∪C ′3 ∪C ′4,

and B3 ∪ B4. Letting X be the set of vertices in V (G) \ (N ∪ U) that are complete

to U , it is easy to see that X is a clique and so (U,X) is a 1-join.



Investigating the attachments of a W5 127

Now suppose U has vertices x ∈ Ui and y ∈ Uj for some nonequal i and j. Since

any vertex in Ui has neighbourhood {vi, vi+1} in H, x does not see every neighbour of

y in H, and vice-versa. Thus x and y have the same neighbourhood in N since x sees

y and G is claw-free. It follows that every vertex in U has the same neighbourhood

X in N , so U is complete to X. Since G is claw-free X is clearly a clique, thus (U,X)

is a 1-join.

We now prove, in several steps, that if U is contiguous but not a clique, then

α(G) = 3.

Lemma 8.13. Suppose U is contiguous but is not a clique. Then U = B and N is a

homogeneous clique.

Proof. Since U is contiguous, we can assume by symmetry that there is a j ≤ 5 such

that Ui = ∅ precisely if i > j. Since U is not a clique, j ≥ 3.

Suppose that there is a vertex x in Bi for i ≤ j − 1 and a vertex y ∈ Ui+1 such

that N(x) ∩N ⊂ N(y) ∩N . Then there is a vertex z ∈ N that sees y but not x, so

x, y, and z form a claw with vi+1, a contradiction. Therefore for 1 ≤ i < j, every

vertex in N seen by a vertex in Ui+1 is seen by every vertex in Bi. By symmetry, for

1 < i ≤ j every vertex in N seen by a vertex in Ui is seen by every vertex in Bi−1. It

follows that U = B and every vertex in U has the same neighbourhood in N . Since

G is claw-free, N ∩N(U) is a clique. And since U is not a clique, N ⊆ N(U).

With this result in hand, we can prove that if Ui is nonempty for all 1 ≤ i ≤ 5,

then α(G) ≤ 3 when U is not a clique.

Lemma 8.14. Suppose Ui is nonempty for i = 1, . . . , 5. If U is not a clique, then

α(G) ≤ 3.

Proof. Assume that U is not a clique and there is a stable set X of size four. Theorem

8.9 tells us that α(G−N) ≤ 3, so X must contain a vertex of N . Thus X does not

intersect B since by the previous lemma B = U .

If X contains two vertices of H, then every vertex in C ′ ∪ D ∪ A sees at least

one of these vertices, so X cannot be a stable set of size four. Suppose then that

X ∩ H = {v1}. There are two vertices of X in C ′ ∪ D ∪ A, and they must both

be in C ′2 ∪ C ′3 ∪ D2. We already know that C ′2 ∪ D2 and C ′3 ∪ D2 are cliques, so X
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must contain two vertices of C ′2 ∪ C ′3. But B2 is nonempty and sees C ′2 ∪ C ′3 ∪ N ,

contradicting the fact that G is claw-free. Thus X ∩H = ∅.
Since Bi is nonempty for every i, we can see that C ′i ∪C ′i+1 is a clique for every i,

otherwise there would be a claw containing a vertex of Bi. It follows that α(C ′) ≤ 2,

so |X ∩ C ′| ≤ 2. And since there are at most ten edges between X ∩ (C ′ ∪ D ∪ A)

and H, we see that X ∩ A = ∅ and |X ∩ C ′| ≥ 2, so |X ∩ C ′| = 2 and |X ∩D| = 1.

Thus we can assume that X contains a vertex of C ′1 and a vertex of C ′3, and since G

is claw-free the vertex in X ∩D must be in D4. But every vertex of B1 is complete

to C ′1 ∪D4 ∪ U , giving us a claw and a contradiction. Therefore X cannot exist.

Lemma 8.15. If U is contiguous and is not a clique, then α(G) ≤ 3.

Proof. By the previous lemma, assume that U is not a clique, j ∈ {3, 4}, and Ui is

nonempty precisely when i ≤ j. We claim that in this case G has a dominating W5,

which implies the result by Theorem 8.9.

Take v0 ∈ A, u2 ∈ U2, and u3 ∈ U3. The vertices v2u2u3v4v0 induce a C5 in the

neighbourhood of v3. It is simple to confirm that this 5-wheel is dominating if B5 is

empty. Lemma 8.13 implies B5 = U5 = ∅, so we are done.

We have just proved that α(G) = 3 if G has a nondominating 5-wheel for which

Ui is nonempty precisely when i ≤ j for some j ∈ {3, 4, 5}. In these cases G contains,

as an induced subgraph, a large (i.e. at least ten vertices) induced subgraph of the

icosahedron. It is possible to prove that in this situation G is very close to being

a thickening of this induced subgraph of the icosahedron. More specifically, G is

an icosahedral thickening; we define these graphs in the next chapter. We omit the

straightforward details of this characterization, which was done by Chudnovsky and

Seymour in Section 5 of [CS07c].

Case 2: U is not contiguous

If U is not contiguous there are two cases to consider, by symmetry. In the first case,

Ui 6= ∅ if and only if i ∈ {1, 3}. In the second, Ui 6= ∅ if and only if i ∈ {1, 3, 4}. We

will prove that these two cases result in two types of 2-join, which we define now.

Definition 8.16. A 2-join ((X1, Y1), (X2, Y2)) is a W5 2-join if there is an induced

5-hole H in the neighbourhood of some vertex v such that G2 ∪X1 ∪ Y1 = N(H) and

with respect to H, U = U1 ∪ U3 where U1 and U3 are nonempty.
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Definition 8.17. A 2-join ((X1, Y1), (X2, Y2)) is a gear 2-join if there is an induced

5-hole H in the neighbourhood of some vertex v such that G2 ∪ Y1 = N(H) and with

respect to H, U = U1 ∪ U3 ∪ U4 where U1, U3, and U4 are nonempty.

Galluccio, Gentile, and Ventura [GGV08] investigated gear 2-joins and W5 2-joins

(and introduced the term gear), describing facets of the stable set polytope of claw-

free graphs with α(G) ≥ 4.

Denote by N1 those vertices of N with a neighbour in U1, and denote by N3 those

vertices of N with a neighbour in U3 ∪ U4. Denote by U ′1 those vertices of B1 with a

neighbour in B3 ∪B4.

Lemma 8.18. Suppose Ui is nonempty precisely for i ∈ {1, 3, 4}. Then G admits a

gear 2-join.

Proof. We claim that

( (U1 ∪ U ′1, N3 ∪ U ′1), ((B1 \ (U1 ∪ U ′1)) ∪ C ′5 ∪ C ′1, U3 ∪ U4) )

is a 2-join; it is easy to confirm that it is a gear 2-join. Since B3 is nonempty, D1

must be complete to A, but since B1 and B3 are nonempty there is a claw at D1 if D1

is nonempty. Thus by symmetry D1 and D4 are both empty. We already know that

B1 is complete to C ′5 ∪ C ′1. If v ∈ U ′1 then v is complete to N3 ∪ B3 ∪ B4 otherwise

there would be a claw at B3 ∪ B4. Furthermore N3 is complete to U3 ∪ U4. Since no

vertex outside B sees a vertex in N , we have the desired gear 2-join.

Lemma 8.19. Suppose Ui is nonempty precisely for i ∈ {1, 3}. Then G admits a W5

2-join.

Proof. Now we assume U4 is empty. In this case, U1 is complete to B′1, C ′1, C ′5, D1,

and D4, and anticomplete to A, C ′2, C ′3, C ′4, D2, D3, and D5. Similarly, U3 is complete

to B′3, C ′3, C ′2, D3, and D1, and anticomplete to A, C ′4, C ′5, C ′1, D4, D5, and D2. Thus

again we have a 2-join:

( (U1, U3), (B′1 ∪ C ′1 ∪ C ′5 ∪D1 ∪D4, B
′
3 ∪ C ′2 ∪ C ′3 ∪D3 ∪D1) ).

It is easy to confirm that it is a W5 2-join.



130 An Invitation to the General Structure Theorems

Combining the results from this chapter gives us a decomposition theorem, which

corresponds to Lemma 3.6 in [OPS08].

Theorem 8.20. Let G be a connected claw-free graph with α(G) ≥ 4. If G is not

quasi-line then G admits a W5 1-join or a W5 2-join or a gear 2-join.

Proof of Theorem 8.20. SupposeG is claw-free but not quasi-line, and suppose α(G) ≥
4. If U is contiguous we know it must be a clique, but then G admits a W5 1-join. If

U is not contiguous then it admits either a W5 2-join or a gear 2-join.

We have just shown that if α(G) ≥ 4, the 5-wheels of G lie in clusters that can be

separated from the rest of the graph by 1-joins and 2-joins. In the next section we

will turn this decomposition theorem into a structure theorem.

8.3 Reducing on a W5 2-join

In this section we extend Theorem 5.15, the structure theorem for quasi-line graphs.

We use Theorem 5.15 to prove the following: By allowing “W5 strips” and “gear

strips” (which we define shortly) as well as fuzzy linear interval strips, we can con-

struct any claw-free graph with α(G) ≥ 4 that does not admit a 1-join and is not a

fuzzy circular interval graph.

Theorem 8.21. Let G be a claw-free graph with α(G) ≥ 4. Then one of the following

applies:

• G admits a 1-join

• G is a fuzzy circular interval graph

• G is a composition of fuzzy linear interval strips, W5 strips, and gear strips.

First we must define W5 strips and gear strips, which are the simplest strips that

result in W5 2-joins and gear 2-joins under the composition operation.

Let H1 be the graph on vertices v0, v1, . . . v5, u1, u3 such that v1, . . . , v5 induce,

in order, a C5 in the neighbourhood of v0. Let u1 and u3 have neighbourhoods

{v1, v2} and {v3, v4} respectively (see Figure 8.3). Now suppose G is a claw-free graph

containing H1 as an induced subgraph, such that u1 and u3 are simplicial in G and
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Figure 8.3: The graph H1 from which W5 strips are built.
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u1

u3

u4

x

Figure 8.4: The graph H2 from which gear strips are built.
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every vertex in G has a neighbour in {v1, . . . , v5}. Then (G−{u1, u3}, N(u1), N(u3))

is a strip and we say it is a W5 strip.

ConstructH2 fromH1 by adding vertices u3 and x with neighbourhoods {v4, v5, u3}
and {u3, u4} respectively (see Figure 8.4). Suppose G is a claw-free graph containing

H2 as an induced subgraph, such that u1 and x are simplicial in G and every vertex

in G has a neighbour in {v1, . . . , v5, u3, u4}. Then (G−{u1, x}, N(u1), N(x)) is a strip

and we say it is a gear strip.

We are now ready to prove the structure theorem.

Proof of Theorem 8.21. Let G be a minimum counterexample to the theorem. We

know that G is not a quasi-line graph, therefore it contains a W5 which we call H.

By the results of the previous section, we know that H is nondominating and that G

admits either a W5 2-join or a gear 2-join, ((X1, Y1), (X2, Y2)), separating G1 from G2

and such that H is contained in G2. We will prove that G is a composition of strips

in which the vertices of G2 arise from a single W2 strip or gear strip.

To do this we first construct a graph G′ from G1 by adding a path G′2 on five

vertices p1, . . . , p5 in order such that p1 sees all of X1, p5 sees all of Y1, and there are

no other edges between G1 = G′1 and G′2. Observe first that α(G′) ≥ 4 since H is

nondominating in G, and second that |V (G′)| < |V (G)|. Finally, observe that since

G admits no 1-join, G′ admits no 1-join: a 1-join in G′ would have to be contained

in G′2, but this is clearly impossible.

Thus by the minimality of G, G′ is either a fuzzy circular interval graph or a

composition of fuzzy linear interval strips, W5 strips, and gear strips.

Suppose first that G′ is a fuzzy circular interval graph. We make two observations.

First, G′ contains a hole of length at least five, so it cannot be a fuzzy linear interval

graph. Second, no vertex in G′2 is in a homogeneous pair of cliques, so since G′2
is a path, the vertices p1, . . . , p5 are in consecutive circular order in any circular

interval representation of G′. It follows that G1 is a fuzzy linear interval graph, and

it has a linear interval representation with X1 at the far left and Y1 at the far right.

Therefore G′ is a composition of two fuzzy linear interval strips: (G1, X1, Y1) and

(G′2, {p1}, {p5}). Thus G is a composition of two strips: (G1, X1, Y1) and (G2, X2, Y2).

We can therefore assume that G′ is not a fuzzy circular interval graph, so it is a

composition of fuzzy linear interval strips, W5 strips, and gear strips. It is straight-

forward to confirm that no vertex in a W5 strip or a gear strip has a disconnected
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neighbourhood, so no vertex of G′2 is in a W5 strip or a gear strip.

Now we claim that there is a strip representation for G′ in which one of the strips

is (G′2, {p1}, {p2}). To see this, consider a strip representation for G′ in which pi

and pi+1 are in different fuzzy linear interval strips (S1, {a}, {b}) and (S2, {c}, {d})
respectively. Since pi and pi+1 are adjacent, we can assume that b = pi and c = pi+1.

Observe that removing (S1, {a}, {b}) and (S2, {c}, {d}) from the strip representation

and replacing it with (S1 ∪ S2, a, d) again yields a strip representation for G′. By

repeating this argument we can find a strip representation for G′ in which every

vertex of G′2 is in the same fuzzy linear interval strip.

So consider this strip representation and let (S,X, Y ) be the fuzzy linear interval

strip from which the vertices of G′2 arise. We will break the strip into three smaller

strips to get the desired strip representation of G′. There is a fuzzy linear interval

representation of S in which p1, . . . , p5 appear in consecutive linear order; let SL

and SR be the vertices of S to the left of p1 and the right of p5 respectively. Then

it is simple to confirm that replacing (S,X, Y ) with the three strips (SL, X,X1),

(G′2, {p1}, {p2}), (SR, Y1, Y ) (omitting any empty strips) gives us a strip representation

for G′.

From this strip representation for G′ we now construct a strip representation for

G. We need only replace (G′2, {p1}, {p2}) with (G2, X2, Y2). Observe that this is

equivalent to replacing G′2 with G2 in the graph. Thus G is a composition of fuzzy

linear interval strips, W5 strips, and gear strips. This proves the theorem.

Remark: We replace G2 with a path on five vertices to ensure that α(G′) ≥ 4. The

natural thing to do is to replace G2 with a path on three vertices, in which case G′

is actually an induced subgraph of G whether we have a W5 2-join or a gear 2-join.

This would require more careful consideration of compositions of two strips.

8.4 Applying the decomposition

We conclude the chapter with a brief description of two recent applications of the

decomposition described in this chapter. The first is an O(n6) algorithm for finding

a maximum weight stable set in a claw-free graph due to Oriolo, Pietropaoli, and

Stauffer [OPS08]; the decomposition first appeared in this paper.
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Their approach is straightforward, and similar to our approach to fractionally

colouring quasi-line graphs. Suppose G is a composition of strips, one of which is

(Gs, Xs, Ys). A stable set in G intersects Gs in Xs, or Ys, or both, or neither. For

each of these intersection cases, find a maximum weight stable set in Gs subject to

the intersection restriction. Call the weights wX,Y , wX̄,Y , wX,Ȳ , and wX̄,Ȳ , labelled

according to whether or not the stable set intersects Xs or Ys (e.g. the heaviest stable

set in Gs intersecting both Xs and Ys has weight wX,Y ).

Having computed these values for Gs, they construct G′ from G by replacing Gs

with a three vertex strip (G′s, {x, z}, {y, z}), weighting the vertices x, y, and z as

wX,Ȳ −wX̄,Ȳ , wX,Y −wX̄,Ȳ , and wX̄,Y −wX̄,Ȳ , respectively. It is not hard to see that

αw(G′), the maximum weight of a stable set in G′, is exactly αw(G)− wX̄,Ȳ .

It is easy to solve the maximum weight stable set problem for graphs with stability

number at most three in O(n3) time. Thus this approach of strip replacement can be

used to reduce the maximum weight stable set problem on claw-free graphs to that

on quasi-line graphs.

To solve the problem on quasi-line graphs first note the following. Given a non-

linear homogeneous pair of cliques in a quasi-line graph, we can remove an edge from

the graph without changing the fact that it is quasi-line or without changing the max-

imum weight of a stable set. Thus by the structure theorem for quasi-line graphs,

only circular interval graphs and compositions of linear interval strips remain. Sec-

ond, circular interval graphs belong in a class called “distance claw-free”, for which

Pulleyblank and Shepherd provided and O(n3) algorithm for the maximum weighted

stable set problem [PS93]. So we are left to deal with compositions of linear interval

strips. Given a strip decomposition, we can reduce each strip, thereby reducing the

problem to finding a maximum weight stable set in a line graph. This problem is

equivalent to finding a maximum weight matching in a graph, so we can apply Ed-

monds’ matching algorithm [Edm65b] to complete the solution.

In [GGV08], Galluccio, Gentile, and Ventura investigated polyhedral properties

of claw-free graphs, in particular the effect of gear strips. The stable set polytope of

quasi-line graphs was recently described in two cases by Chudnovsky and Seymour

[CS05] and Eisenbrand, Oriolo, Stauffer, and Ventura [EOSV05]. Galluccio, Gentile,

and Ventura conjectured that the stable set polytope of a claw-free graph G that
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has α ≥ 4 and is not quasi-line can be described by nonnegativity inequalities, rank

inequalities, and two separate types of inequalities that they call lifted 5-wheel inequal-

ities and lifted geared inequalities. They arise in compositions of strips containing W5

strips and gear strips, respectively, and it was proved that lifted W5 inequalities alone

are not sufficient [GGV08].
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Chapter 9

The structure of claw-free graphs

In this chapter we refine the results of the previous chapter, giving a detailed char-

acterization of skeletal claw-free graphs. We do this by adapting Chudnovsky and

Seymour’s more general characterization of claw-free trigraphs [CS08b].

We have already shown that compositions of W5 strips, gear strips, and linear

interval strips provide a natural way to decompose claw-free graphs when α ≥ 4.

However, our description of W5 strips and gear strips is not very detailed, and in

particular it is not detailed enough to let us prove our colouring results in the next

chapter. Therefore we will discuss Chudnovsky and Seymour’s more thorough inves-

tigation of the structure of these strips, and that will allow us to bound the chromatic

number as desired.

There is one other composition that we will use to build claw-free graphs with

a three-colourable complement. These compositions are called worn hex-joins, and

require several base classes of claw-free graphs that we will define in Section 9.3.2.

We begin by describing some fundamental types of claw-free graphs. These let us

characterize W5 strips, gear strips, and the base classes of worn hex-joins, but they

also cover skeletal claw-free graphs that do not arise as a composition of strips or a

worn hex-join.

In the next chapter we will use these refined structural results to bound the

chromatic number of claw-free graphs.

137
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9.1 Some important types of claw-free graphs

Here we present several fundamental classes of claw-free graphs. We will use them to

describe the base classes for our two composition operations.

9.1.1 Long circular interval graphs

We discussed circular interval graphs in Chapter 4. A circular interval graph is a long

circular interval graph if it has a circular interval representation in which no three

intervals cover the entire circle. Note that it is still possible for three intervals to

cover all vertices. Just as a fuzzy circular interval graph is a thickening of a circular

interval graph, a long fuzzy circular interval graph is a thickening of a long circular

interval graph. It is not hard to show that if G is a thickening of a long circular

interval graph G′ under a claw-neutral matching M , then we can assume that each

edge of M corresponds to the two extreme vertices of an interval. Using this fact,

one can easily see that a skeletal long fuzzy circular interval graph is a long circular

interval graph. Chudnovsky and Seymour described the structure of these graphs in

depth and provided a forbidden subgraph characterization [CS08a].

9.1.2 Nearly-line thickenings

We now define a slight generalization of line graphs. They are nearly-line thickenings,

which are special thickenings of line graphs.

Suppose G = L(H) for some graph H. Let M be a matching of G such that for

any uv ∈ M , the edges of H corresponding to u and v share an endpoint of degree

two in H. In this case M is a claw-neutral matching, so any thickening G′ of G under

M is claw-free. We call such a graph G′ a nearly-line thickening.

If M is empty then G′ is a line graph, and if M is nonempty then G′ admits a

linear interval 2-join.

Lemma 9.1. Every skeletal nearly-line thickening is a line graph.

This result is based on an important property of skeletal homogeneous cliques. For

a thickening of H under a matching M , if v1v2 ∈M and (I(v1), I(v2)) is skeletal, then

we can simply replace v1 and v2 in H by four vertices corresponding to I(v1)∩Ω(v1v2),
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I(v1) \ Ω(v1v2), I(v2) ∩ Ω(v1v2), and I(v1) \ Ω(v1v2). The resulting graph will be a

line graph, just as H is.

Proof. Suppose G, a skeletal nearly-line thickening, is a thickening of a line graph H

under a claw-neutral matching M . We choose H to be minimal, so we can assume

that H is the line graph of a simple graph J . We proceed by induction on |M |. If

M = ∅ then G is clearly a line graph.

Let e1, e2 be edges of J corresponding to vertices v1, v2 of H with v1v2 in M .

We construct the graph J ′ from J as follows. Make two new pendant edges e′1, e
′
2 of

J , such that e′1 (resp. e′2) is incident to the endpoint of e1 (resp. e2) not shared by

e2 (resp. e1). If I(v1) ⊆ Ω(v1v2) then delete e′1, and if I(v2) ⊆ Ω(v1v2) then delete

e′2. Denote L(J ′) by H ′ and call the vertices corresponding to e′1 and e′2, v′1 and v′2
respectively.

We claim that G is a thickening of H ′ under M−{v1v2}, which implies the lemma

by induction on |M |. To see this observe that the thickening will remain the same

except on I(v1), I(v′1), I(v2), and I(v′2). Simply let I(v′1) = I(v1) \ Ω(v1v2) and let

I(v′2) = I(v2) \ Ω(v1v2).

9.1.3 Antiprismatic thickenings

A triad is a stable set of size three. A graph G is antiprismatic if every triad T

contains exactly two neighbours of every vertex in G − T . Such graphs are clearly

claw-free. Let M be a matching in G such that G −M is also antiprismatic. Then

M is claw-neutral in G. If G′ is a thickening of an antiprismatic graph G under such

a matching M , then we say that G′ is an antiprismatic thickening.

Just like skeletal nearly-line thickenings, skeletal antiprismatic thickenings behave

nicely:

Lemma 9.2. Every skeletal antiprismatic thickening is a proper thickening of an

antiprismatic graph.

The proof of this result uses the same idea as the proof for nearly-line thickenings.

Proof. Suppose G, a skeletal antiprismatic thickening, is a thickening of an antipris-

matic graph H under a matching M . Again we proceed by induction on |M |, so



140 The structure of claw-free graphs

assume M is minimum. Clearly if M = ∅ then G is a proper thickening of H and we

are done.

Take vertices v1 and v2 of H such that v1v2 ∈M . Then (I(v1), I(v2)) is a skeletal

homogeneous pair of cliques. Construct H ′ from H by adding vertices v′1 and v′2 with

neighbourhoods N̄(v1) \ {v2} and N̄(v2) \ {v1} respectively. We claim that G is a

thickening of H ′ under M − {v1v2} and that H ′ is antiprismatic.

To see that H ′ is antiprismatic, we recall that by the definition of an antipris-

matic thickening, H − v1v2 is antiprismatic. Chudnovksy and Seymour characterized

“changeable edges” of this type (§16 in [CS07a]), proving that in this case neither v1

nor v2 is in a triad. It easily follows that H ′ is antiprismatic.

As in the previous proof, to see that G is a thickening of H ′ under M − {v1v2}
we use the same thickening, except we set I(v′1) = I(v1) \ Ω(v1v2) and I(v′2) =

I(v2) \ Ω(v1v2).

This proof, along with Lemma 6.12, provides a useful corollary:

Corollary 9.3. Suppose G is an antiprismatic thickening of an antihat H under

a matching M of H. Then there is a subgraph G′ of G such that G′ is a proper

thickening of an antihat graph H ′, and χ(G) = χ(G′).

Antiprismatic thickenings are very easy to define, but describing their structure

is a different matter altogether. Chudnovsky and Seymour provided a lengthy and

difficult characterization of their structure [CS07a, CS07b], but we do not need to

use it in this thesis. In fact our desire to avoid it inspired us to consider both

skeletal graphs and the Local Strengthening. Proving the Local Strengthening for

these graphs is very easy given Lemma 9.2.

It is important to bear in mind that any graph G with α(G) ≤ 2 is trivially

antiprismatic, just as it is trivially claw-free.

9.1.4 Antihat thickenings

We need to consider certain thickenings of graphs that are nearly antiprismatic.

Let k ≥ 2. We first define a graph H with vertex set A ∪ B ∪ C as follows. Let

A = {a0, a1, . . . , ak}, B = {b0, b1, . . . , bk}, and C = {c1, . . . , ck} be disjoint cliques.

Adjacency between the cliques is as follows:
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• a0 has no neighbour outside A∪{b0}, and b0 has no neighbour outside B∪{a0}.

• For 1 ≤ i, j ≤ k, ai and bj are nonadjacent if i 6= j and adjacent if i = j.

• For 1 ≤ i, j ≤ k, ai and bi are adjacent to cj if i 6= j, and nonadjacent to cj if

i = 0 or if i = j.

Let X ⊂ A∪B ∪C \ {a0, b0} such that |C \X| ≥ 2, and let G = H−X. We say that

G is an antihat graph. To define antihat thickenings, we first define a set M ∈ V (G)2

as follows:

• M is a matching in G ∪M containing no edge of G[A], G[B], or G[C].

• a0b0 is in M if a0 and b0 are adjacent in G.

• If 1 ≤ i, j and aibj ∈M then i = j and ci ∈ X.

• If 1 ≤ i, j and bicj ∈M then i = j and ai ∈ X.

• If 1 ≤ i, j and aicj ∈M then i = j and bi ∈ X.

In this case G∪M is claw-free and M is a claw-neutral matching in G∪M . If G′

is a thickening of G ∪M under M then we say that it is an antihat thickening.

Observe that given an antihat graph G, adding an edge between a0 and b0 gives

us an antiprismatic graph, as does deleting one or both of a0 and b0.

9.1.5 Icosahedral thickenings

The icosahedron is the unique vertex-transitive graph on twelve vertices in which the

neighbourhood of every vertex induces a C5. Theorem 8.1 tells us that a claw-free

graph with α ≥ 3 is quasi-line precisely if no neighbourhood contains an induced C5,

so the icosahedron is the epitome of a claw-free graph that is not quasi-line.

There are several graphs related to the icosahedron that we must treat as a struc-

tural exception. These were hinted at in Section 8.2.4. The first is the icosahedron

itself, which we define explicitly. Let the graph G0 have vertices v0, v1, . . . , v11. For

i = 1, . . . , 10, vi is adjacent to vi+1 and vi+2 with indices modulo 10. The neigh-

bourhood of v0 is {vi : 1 ≤ i ≤ 10, i is odd}, and the neighbourhood of v11 is

{vi : 1 ≤ i ≤ 10, i is even}. G0 is the icosahedron (see Figure 9.1).



142 The structure of claw-free graphs

v0v0

v0

v1v1

v1

v2v2

v2

v3 v3

v3

v4v4

v4

v5v5

v5

v6v6

v6

v7v7

v7

v8v8

v8

v9v9

v9

v10

v10

v11

Figure 9.1: The icosahedron G0 (top), with its derivative graphs G1 (left) and G2∪M
(right). In G2 ∪M , each of {v1, v4} and {v6, v9} is a nonadjacent pair or is in M .
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We obtain G1 from G0 by deleting v11, and we obtain G2 from G1 by deleting

v10. Note that if M ∈ V (G2)2 is a subset of {v1v4, v6v9}, then M is a claw-neutral

matching in G2 ∪M . We say that G′ is an icosahedral thickening if it is a proper

thickening of G0 or G1, or is a thickening of G2 ∪M under some M ⊆ {v1v4, v6v9}.
Any icosahedral thickening G′ has α(G′) = 3 and χ(G′) = 4.

9.2 Claw-free graphs with α ≥ 4

In the previous chapter we proved that any claw-free graph containing a stable set of

size four is quasi-line or admits a 1-join or is a composition of fuzzy linear interval

strips, gear strips, and W5 strips. To prove our colouring results we need a better

description of W5 strips and gear strips. We now present such a description that

follows from Chudnovsky and Seymour’s work [CS08b].

9.2.1 Five types of strips

In total we need to consider five types of strips. The first is linear interval strips,

which we already defined and used when considering quasi-line graphs. Now we define

the other four. Their structure will be enough to let us prove the Main Conjecture

for compositions of strips.

Antihat strips

Let G be an antihat graph, and let G′ be an antihat thickening, i.e. a thickening of

G ∪ M under M as defined in Section 9.1.4. We specify two cliques of G′: A′ =

I(A \ (X ∪ {a0})) and B′ = I(B \ (X ∪ {b0})). Then (G′ − I(a0)− I(b0), A′, B′) is a

strip and if it contains a W5 we say that it is an antihat strip. These antihat strips

are a slight generalization of the antihat strips used in Chudnovsky and Seymour’s

survey [CS05].

Pseudo-line strips

We will define a type of line graph and modify it slightly. Let J be a graph containing

a path on vertices j1, j2, j3 in order such that every edge of J is incident to at least

one of j1, j2, j3. Let H = L(J), and for i ∈ {1, 3} let Xi be the set of vertices of H
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a1
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b1

b2
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c1c2

Figure 9.2: The graph underlying strange strips. Dashed lines represent edges in M .

corresponding to edges incident to ji in J . Both X1 and X3 are cliques. Let v1 and v2

be the vertices of H corresponding to the edges j1j2 and j2j3 respectively. Let G be

a thickening of H under M = {v1v2}. Then (G,X1, X3) is a strip and if it contains a

W5 we say it is a pseudo-line strip.

These strips correspond to thickenings of the class Z3 defined in [CS08b]. We call

the vertices of J other than {ji | 1 ≤ i ≤ 3} centres of J .

Strange strips

Let H be a claw-free graph on cliques A = {a1, a2}, B = {b1, b2, b3}, and C = {c1, c2}
with adjacency as follows: a1, b1 are adjacent; c1 is adjacent to a2 and b2 and b3; c2 is

adjacent to a1, a2, b1, and b2. All other pairs are nonadjacent. Let G be a thickening

of H under M = {b3c1, b2c2} (see Figure 9.2). Then (G, I(A), I(B)) is a strip and we

say that it is a strange strip.

Gear strips

Now we give a full description of the structure of gear strips – there is only one

type. We begin with a graph H on vertices {v1, . . . , v10} with adjacency as follows.

The vertices v1, . . . , v6 are a 6-hole in order. Next, v7 is adjacent to v1, v2, v3, v6; v8

is adjacent to v3, v4, v5, v6, v7; v9 is adjacent to v3, v4, v6, v1, v7, v8; v10 is adjacent to

v2, v3, v5, v6, v7, v8. There are no other edges in H. Let X ⊆ {v9, v10}. See Figure 9.3.

If G is a thickening of H \ X under a matching M ⊆ {v7v8}, then (G, I(v1) ∪
I(v2), I(v4)∪ I(v5)) is a strip, and we say that it is a gear strip. These correspond to
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Figure 9.3: The graph underlying gear strips.

thickenings of the class Z5 in [CS08b] and are a slight generalization of thickenings

of XX-strips as defined in [CS05]. In the definition of Z5 there is another vertex

with neighbourhood {v1, v2, v4, v5}, but we can consider this vertex to be a part of a

separate strip.

9.2.2 Five types of 2-joins

Just as we defined interval 2-joins using linear interval strips in Chapter 5, we will

define 2-joins corresponding to our other strips. These will allow us to prove the Main

Conjecture for these graphs using a minimum counterexample approach, just as we

did for quasi-line graphs in Section 7.1.1.

Suppose in our claw-free graph G there is a 2-join ((X1, Y1), (X2, Y2)) separating

G1 and G2, such that X1, X2, Y1, and Y2 are cliques and are pairwise disjoint except

for possibly X1 and Y1.

• Antihat 2-joins. If (G2, X2, Y2) is an antihat strip then we say that ((X1, Y1), (X2, Y2))

is an antihat 2-join.
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• Pseudo-line 2-joins. If (G2, X2, Y2) is a pseudo-line strip then we say that

((X1, Y1), (X2, Y2)) is a pseudo-line 2-join.

• Strange 2-joins. If (G2, X2, Y2) is a strange strip then we say that ((X1, Y1), (X2, Y2))

is a strange 2-join.

• Gear 2-joins. If (G2, X2, Y2) is a gear strip then we say that ((X1, Y1), (X2, Y2))

is a gear 2-join.

IfG arises as a composition of strips, one of which is a pseudo-line strip (G2, X2, Y2),

G will admit a pseudo-line 2-join with X2 and Y2 disjoint – we can simply consider

their intersection to be in X1 ∩ Y1 instead, as we did with canonical interval 2-joins.

These types of 2-joins allow us to use a decomposition theorem analogous to the

structure theorem. We now present these theorems to close the section.

9.2.3 Stating the theorems

Here we state the structure theorem and the decomposition theorem for skeletal

claw-free graphs with α ≥ 4. First is the refinement of Theorem 8.21 with the new

characterizations of strips.

Theorem 9.4. Let G be a skeletal claw-free graph with α(G) ≥ 4. Then one of the

following applies:

• G admits a 1-join

• G is a circular interval graph

• G is a composition of linear interval strips, antihat strips, pseudo-line strips,

strange strips, and gear strips.

This theorem is a corollary of Theorem 7.2 from [CS08b], stated in the terms

we have defined in this chapter. Of the fifteen types of strips defined in [CS08b],

ten correspond to 1-joins and five correspond to the five types of strips we have just

defined.

To attack optimization problems on these graphs we will need a corresponding

decomposition theorem:
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Theorem 9.5. Let G be a skeletal claw-free graph with α(G) ≥ 4. Then one of the

following applies:

• G admits a 1-join

• G is a circular interval graph or a line graph

• G admits a canonical interval 2-join, an antihat 2-join, a pseudo-line 2-join, a

strange 2-join, or a gear 2-join.

9.3 Claw-free graphs with α ≤ 3

We now describe the structure of skeletal claw-free graphs containing no stable set

of size four. We must consider two separate cases, depending on whether or not

χ(G) ≤ 3.

9.3.1 Graphs not covered by three cliques

We already have all the tools we need to describe claw-free graphs with α(G) ≤ 3

and χ(G) ≥ 4.

Theorem 9.6. Let G be a skeletal claw-free graph with α(G) ≤ 3 and χ(G) ≥ 4.

Then one of the following applies:

• G admits a 1-join

• G is a circular interval graph

• G is a composition of linear interval strips, antihat strips, pseudo-line strips,

strange strips, and gear strips

• G is an antiprismatic thickening

• G is an icosahedral thickening.

From this structure theorem we get a corresponding decomposition theorem.

Theorem 9.7. Let G be a skeletal claw-free graph with α(G) ≤ 3 and χ(G) ≥ 4.

Then one of the following applies:
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• G admits a 1-join

• G is a circular interval graph or a line graph

• G admits a canonical interval 2-join, an antihat 2-join, a pseudo-line 2-join, a

strange 2-join, or a gear 2-join

• G is an antiprismatic thickening

• G is an icosahedral thickening.

9.3.2 Three-cliqued graphs

We now turn our attention to claw-free graphs with χ(G) = 3. Given cliques A,

B, and C that partition the vertices of G, we say that (G,A,B,C) is a three-cliqued

claw-free graph. We also sometimes just call G a three-cliqued claw-free graph without

specifying a 3-colouring of G.

A skeletal three-cliqued claw-free graph either admits a worn hex-join or belongs

to one of several base classes. We first define these base classes, then we explain how

to compose them. For a worn hex-join to result in a skeletal graph, most base graphs

must be weakly skeletal:

Definition 9.8. Let (X, Y ) be a nonskeletal homogeneous pair of cliques in a three-

cliqued graph (G,A,B,C). Then (X, Y ) is weakly skeletal if at least one of X or Y

intersects more than one of A, B, and C. We say that (G,A,B,C) is weakly skeletal

if every nonskeletal homogeneous pair of cliques is weakly skeletal.

The following fact justifies our focus on weakly skeletal base graphs; we leave the

simple proof to the reader:

Observation 9.9. Let (X, Y ) be a non-weakly-skeletal homogeneous pair of cliques in

a three-cliqued graph (G1, A1, B1, C1). If (G,A,B,C) is a worn hex-join of (G1, A1, B1, C1)

and any three-cliqued graph (G2, A2, B2, C2), then (X, Y ) is not skeletal in (G,A,B,C).

In particular, (G,A,B,C) is not skeletal.
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Base classes of three-cliqued claw-free graphs

The first four classes we define correspond to thickenings of members of the classes

T C1, . . . , T C4 as defined by Chudnovsky and Seymour [CS08b]. Recall once again that

a triad is a stable set of size three.

• A type of line graph. Let H be a multigraph with pairwise nonadjacent

vertices a, b, c such that each of a, b, c has at least three neighbours, and such

that every edge of H has an endpoint in {a, b, c}. We further insist that for

distinct u, v ∈ {a, b, c} there is at most one vertex outside {a, b, c} that sees u

but not v. Let G = L(H), and let cliques A, B, and C in G correspond to the

edges incident to a, b, and c respectively in H. Then (G,A,B,C) is a three-

cliqued claw-free graph. Let T T C1 be the set of all such three-cliqued graphs

such that every vertex is in a triad, with the added condition of being weakly

skeletal.

• Long circular interval graphs. Let (G,A,B,C) be a three-cliqued long

circular interval graph with a circular interval representation such that each of

A, B, C is a set of consecutive vertices in circular order. Let T T C2 be the set

of all such graphs such that every vertex is in a triad.

• Antihat thickenings. Let G be an antihat thickening, and let A,B,C, and

X be as they are in the definition of G. Let A′ = A \ X and define B′ and

C ′ accordingly. Then (G − X, I(A′), I(B′), I(C ′)) is a three-cliqued claw-free

graph. Let T T C3 be the class of all such three-cliqued graphs with the added

condition of being weakly skeletal.

• Antiprismatic thickenings. Let (G,A,B,C) be a three-cliqued antiprismatic

graph, and let (G′, I(A), I(B), I(C)) be a proper thickening of G. Let T T C4 be

the class of all such graphs (G′, I(A), I(B), I(C)).

The final two exceptional cases correspond to thickenings of graphs in Chudnovsky

and Seymour’s class T C5 [CS08b].

• Exception I. Let G be a graph on vertices v1, . . . , v8 with adjacency as follows:

v1 is adjacent to v2, v3, v6, v7; v2 is adjacent to v3, v4; v3 is adjacent to v4, v5;



150 The structure of claw-free graphs

v1

v1
v2

v2

v3

v3
v4

v4
v5

v5
v6

v6
v7

v7

v8
v8

v9

Figure 9.4: The graphs underlying exceptional thickenings in T C ′5 (left) and T C ′′5
(right). Solid, dashed, and dotted lines represent adjacent vertices, edges in M , and
unspecified adjacency respectively. All other pairs are nonadjacent.

v4 is adjacent to v5, v6; v5 is adjacent to v6; v6 and v8 are adjacent to v7; v2

may or may not be adjaecnt to v5. There are no other edges. Now let M

be a matching containing v1v4, v3v6, and possibly v2v5. Let X ⊆ {v3, v4}.
Let G′ be a thickening of (G ∪ M) − X under M (see Figure 9.4). Then

(G′, I({v1, v2, v3}), I({v4, v5, v6}), I({v7, v8})) is a three-cliqued claw-free graph.

Let T T C5 be the set of all such graphs with the added condition of being weakly

skeletal.

• Exception II. Let G be a graph on vertices v1, . . . , v9 with the following struc-

ture. Let A = {v1, v2}, B = {v7, v8}, and C = {v3, v4, v5, v6, v9} be cliques. Let

v1 be adjacent to v3, v8, and v9. Let v8 be adjacent to v6 and v9. Let v2 be

adjacent to v3 and possibly v4. Let v7 be adjacent to v6 and possibly v5. Now

let M be a matching in G containing v1v3 and v6v8, as well as possibly v2v4 and

v5v7 (see Figure 9.4). Let X be a subset of {v3, v4, v5, v6} such that:

– v2 and v7 each have a neighbour in C \X.

– If X contains neither v4 nor v5 then v2 is adjacent to v4 and v7 is adjacent

to v5.

Again we insist that every vertex of (G − M) − X is in a triad. Let G′ be

a thickening of G − X under M . Then (G′, I(A), I(B), I(C \ X)) is a three-

cliqued claw-free graph. Let T T C6 be the set of all such graphs with the added
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condition of being weakly skeletal.

We allow permutations of the sets A,B,C for any of these classes, so if (G,A,B,C)

is in T T Ci for some 1 ≤ i ≤ 5 and {A′, B′, C ′} = {A,B,C}, then (G,A′, B′, C ′) is

also in T T Ci.
Having described the building blocks for three-cliqued claw-free graphs, we now

move on to how they can be combined.

Worn hex-chains and worn hex-joins

We build three-cliqued claw-free graphs from the base classes we just defined, using a

single composition operation: worn hex-chains. First we define a simpler version, hex-

chains, that we prefer to use whenever possible. These composition operations are

closely related to circular interval graphs. For k ≥ 1 and 1 ≤ i ≤ k let (Gi, Ai, Bi, Ci)

be a three-cliqued graph. Suppose we construct G from the disjoint union of Gi,

1 ≤ i ≤ k by adding edges as follows:

• Let A = ∪ki=1Ai, B = ∪ki=1Bi, C = ∪ki=1Ci be cliques.

• For 1 ≤ i, j ≤ k, make Ai ∪Bj, Bi ∪ Cj, and Ci ∪ Aj cliques precisely if j < i.

Then we call the sequence (Gi, Ai, Bi, Ci) a hex-chain for (G,A,B,C). If k = 2, we

say that (G,A,B,C) is a hex-join of (G1, A1, B1, C1) and (G2, A2, B2, C2).

Suppose (G,A,B,C) admits a hex-chain into (Gi, Ai, Bi, Ci) for 1 ≤ i ≤ k, and

let J ⊆ {1, . . . , k} be the set of terms in T T C4. Further suppose that (G′, A,B,C)

is constructed from (G,A,B,C) by adding edges such that (i) every added edge is

between a vertex in Gi and a vertex in Gj for i 6= j both in J , and (ii) no endpoint of

an added edge is in a triad in G. Then we say that (G′, A,B,C) is a worn hex-chain

of (Gi, Ai, Bi, Ci) for 1 ≤ i ≤ k. If k = 2 we call it a worn hex-join.

To see why hex-chains generalize circular interval graphs, consider the three-

cliqued circular interval graph (Gc, {a1, . . . , ak}, {b1, . . . , bk}, {c1, . . . , ck}) such that

ai and bj (resp. bi and cj; ci and aj) are adjacent precisely if j < i. Then the hex-

chain (G,A,B,C) of (Gi, Ai, Bi, Ci) is the result of taking the disjoint union of these

graphs and joining those cliques whose corresponding vertices in Gc are adjacent.
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Thus (G,A,B,C) is also a generalization of a fuzzy circular interval graph, where in-

stead of allowing homogeneous pairs of cliques, we allow certain homogeneous triples

of cliques that induce claw-free graphs.

Our structure theorem for skeletal three-cliqued claw-free graphs tells us that aside

from the complication of worn hex-chains, the minimal homogeneous triples of cliques

are in the base classes we just defined:

Theorem 9.10. Let (G,A,B,C) be a skeletal three-cliqued claw-free graph. Then

for some k ≥ 1, (G,A,B,C) admits a worn hex-chain into terms (Gi, Ai, Bi, Ci) for

1 ≤ i ≤ k, each of which is in one of T T C1, . . . , T T C6.

This theorem is a straightforward weakening of Chudnovsky and Seymour’s more

precise structure theorem for three-cliqued claw-free trigraphs (4.1 in [CS08b]). Notice

that if (G,A,B,C) is a worn hex-join of (G1, A1, B1, C1) and (G2, A2, B2, C2) and T

is a triad in G1, then every vertex in G2 has exactly two neighbours in T . This leads

to a useful observation about graphs in T T C4.

Lemma 9.11. If (G,A,B,C) is a worn hex-join of (G1, A1, B1, C1) and (G2, A2, B2, C2),

both of which are in T T C4, then (G,A,B,C) is in T T C4.

Observe that for the worn hex-chain in the previous structure theorem, (G\G1, A\
A1, B \ B1, C \ C1) admits a worn hex-chain into (Gi, Ai, Bi, Ci) for 2 ≤ i ≤ k. If

every term is in T T C4 then (G,A,B,C) is in T T C4, otherwise we can assume that

(G1, A1, B1, C1) is in one of T T C1, T T C2, T T C3, T T C5, T T C6. This leads us to the

desired decomposition theorem:

Theorem 9.12. Any skeletal three-cliqued claw-free graph (G,A,B,C) not in T T C4

admits a hex-join into terms (G1, A1, B1, C1) and (G2, A2, B2, C2), where (G1, A1, B1, C1)

is in one of T T C1, T T C2, T T C3, T T C5, T T C6.

Now that we know the structure of every skeletal claw-free graph, we look at how

we can colour them.



Chapter 10

Proving the Main Conjecture for

Claw-free Graphs

In this chapter we will prove two results:

Theorem 10.1. For any claw-free graph G, χ(G) ≤ γ(G).

Theorem 10.2. For any three-cliqued claw-free graph G, χ(G) ≤ γl(G).

That is, the Main Conjecture holds for all claw-free graphs, and the Local Strength-

ening holds for all three-cliqued claw-free graphs. Our proofs lead to polynomial-time

algorithms for finding a colouring that satisfies the bound.

The proof of the Main Conjecture for line graphs, which we presented in Chapter

4, illustrates our general approach to these two theorems. We assume that G is

a minimum counterexample and use the decomposition theorems from the previous

chapter. If possible, we remove a stable set S from G such that γl(G − S) < γl(G)

or γ(G − S) < γ(G). This contradicts the minimality of G. If this is not possible,

we use the structure of the graph to prove that χ(G) ≤ γl(G) or χ(G) ≤ γ(G).

Actually the situation is sometimes slightly more complicated; when dealing with

strips we will ensure that a carefully chosen invariant related to γl(G) and γ(G)

behaves appropriately.

153
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10.1 The importance of being skeletal

In Chapter 6 we explained that skeletal claw-free graphs are easier to describe and

colour than general claw-free graphs. In the previous chapter we gave a simplified

version of Chudnovsky and Seymour’s structure theorems by describing only skeletal

claw-free graphs. The ease with which we can describe skeletal claw-free graphs

certainly helps us with the colouring, but skeletal graphs are also simple to colour for

a very specific reason which we now explain.

Our approach to colouring often involves removing a stable set S from a supposedly

minimum counterexample G and looking at what happens to a set C of vertices. We

generally need to confirm that when we remove S from G, maxv∈C(d(v) + ω(v))

drops by two. We can easily insist that S be a maximal stable set, so d(v) + ω(v)

drops by at least one for every vertex in C − S. Thus we only need to worry about

vertices in C maximizing d(v) + ω(v). In particular, if there is a vertex v in C whose

closed neighbourhood properly contains the closed neighbourhood of v′, we can safely

disregard v′ in our analysis. In this case we say that v trumps v′.

Now consider the vertices in a homogeneous pair of cliques (A,B). If (A,B) is

skeletal, then all edges between A and B are contained in a clique Ω(A,B). We can

make several simple observations:

1. Any vertex in A \ Ω(A,B) is trumped by any vertex in A ∩ Ω(A,B).

2. Removing a vertex from A ∩ Ω(A,B) lowers d(v) for any v ∈ A ∪ Ω(A,B).

3. Removing a vertex from A ∩ Ω(A,B) lowers ω(v) for any v ∈ A.

4. Removing a vertex from A∩Ω(A,B) and a vertex from B \Ω(A,B) lowers d(v)

by two for any v ∈ B ∩ Ω(A,B), and lowers ω(v) for any v ∈ B \ Ω(A,B).

These facts will be of great use to us throughout this chapter.

Before moving on we present some terminology and notation that will aid us.

For a set of vertices S we define ∆(S) as maxv∈S d(v). Likewise we define ω(S)

as maxv∈S ω(v) and γl(S) as maxv∈S γl(v). For convenience, when talking about a

thickening we often use Ω(vivj) to denote Ω(I(vi), I(vj)).

We begin by proving the Local Strengthening for antiprismatic thickenings. This

serves as an illustrative warm-up.
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10.2 A warm-up: Antiprismatic thickenings

In Section 2.6 we explained that antiprismatic thickenings motivated the Local Strength-

ening of the Main Conjecture. The easiest way to prove the Main Conjecture for

antiprismatic thickenings is by proving the Local Strengthening. Recall Lemma 9.2,

which states that skeletal antiprismatic thickenings are precisely the proper thicken-

ings of antiprismatic graphs. Also note that antiprismatic thickenings are a hereditary

class of graphs.

Theorem 10.3. Let G be an antiprismatic thickening. Then χ(G) ≤ γl(G).

Proof of Theorem 10.3. Let G be a minimum counterexample to the theorem. By

Corollary 9.3, we can assume that G is a proper thickening of an antihat graph H.

By Theorem 2.15 we know that α(G) = 3. Let T be any triad in G; we claim that

γl(G− T ) < γl(G), contradicting the minimality of G.

Suppose v /∈ T has only one neighbour in T . Lemma 9.2 tells us that G is a proper

thickening of some antiprismatic graph H. By the definition of antiprismatic graphs,

v has some twin u ∈ T . Thus T intersects every maximal clique containing v, so if

d(v) does not drop by two when T is removed, ω(v) drops by one and d(v) drops by

one. Therefore γl(G − T ) < γl(G), contradicting the minimality of G. The theorem

follows.

10.3 Three-cliqued claw-free graphs

To bound the chromatic number of three-cliqued claw-free graphs, we generalize our

approach of removing triads, which we just used to deal with antiprismatic thick-

enings. Three-cliqued claw-free graphs have stability number three unless they are

antiprismatic. We will proceed by removing a triad with nice properties whenever

possible.

Definition 10.4. Let T be a triad in a graph G. If every vertex v in G− T has two

neighbours in T or a twin in T or is trumped by a vertex in T , then we say that T is

a good triad.

Good triads make very good candidates for a colour class when we are trying to

γl-colour a graph:
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Lemma 10.5. Let T be a good triad in a graph G. Then γl(G− T ) < γl(G).

Corollary 10.6. No minimum counterexample to Theorem 10.2 contains a good

triad.

Furthermore, good triads behave nicely with respect to worn hex-joins:

Observation 10.7. Suppose that a three-cliqued claw-free graph (G,A,B,C) admits

a worn hex-join into (G1, A1, B1, C1) and (G2, A2, B2, C2). If T is a good triad in G1,

then it is also a good triad in G.

Let G be a minimum counterexample to Theorem 10.2. Then G is skeletal and

is not an antiprismatic thickening. So Theorem 9.12 implies that G admits a worn

hex-join into (G1, A1, B1, C1) and (G2, A2, B2, C2), where (G1, A1, B1, C1) is in T T C1,

T T C2, T T C3, T T C5, or T T C6. We deal with these three possibilities individually.

First note that G2 may be empty, but this does not affect our approach. Also

note that since G is skeletal, (G1, A1, B1, C1) is weakly skeletal.

10.3.1 Five classes to consider

We now prove a set of lemmas that together imply Theorem 10.2, dealing with the

easier cases first.

Long circular interval graphs (T T C2)

Lemma 10.8. Any three-cliqued graph (G1, A1, B1, C1) in T T C2 contains a good triad.

Proof. Suppose to the contrary that (G1, A1, B1, C1) is in T T C2, and call the vertices

of G {a1, . . . , ai, b1, . . . , bj, ci, . . . , ck} in circular order.

We can find a triad T containing a1 by adding bp for the minimum p such that bp

does not see a1, then adding cq for the minimum q such that bp does not see cq. The

triad T exists since a1 is in a triad and it follows from the structure of circular interval

graphs that a1 and bp are in a triad together. If some vertex in (A\{a1})∪{bx | x < p}
does not see both a1 and bp, then we are in a degenerate case where G1 is a linear

interval graph, and the vertex in question is a twin of a1 or bp, or it is trumped by a1

or bp. The same applies to every vertex in {bx | x > p} ∪ {cy | y < q}: each vertex

has two neighbours in T or a twin in T or is trumped by a vertex in T . Similarly, if
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some vertex v in {cl | l > q} has only one neighbour in T then it has no neighbours

in A, hence it is trumped by or is a twin of cq. Thus T is a good triad.

Antihat thickenings (T T C3)

Lemma 10.9. Any three-cliqued graph (G1, A1, B1, C1) in T T C3 contains a good triad.

Proof. Let T be a triad consisting of a vertex a of I(a0) and vertices b in I(B\{b0}) and

c in I(C) respectively, following the definition of an antihat thickening. Furthermore

if b and c are in I(bi) and I(ci) respectively, we insist that T intersects Ω(bici). We

insist that if I(a0) ∩ Ω(a0b0) is nonempty, then T intersects it. It is easy to confirm

from the structure of an antihat thickening that T exists and is a good triad.

Exception I (T T C5)

Lemma 10.10. Any three-cliqued graph (G1, A1, B1, C1) in T T C5 contains a good

triad.

Proof. Let T be a triad including one vertex in each of I(v7), I(v2), and I(v5), such

that T intersects Ω(v2v5) if it is not empty. It is easy to confirm that T is a good

triad, since any vertex in I(v2) \ Ω(v2v5) is trumped by a vertex in I(v3) if v3 /∈ X,

and is trumped by a vertex in I(v6) if v3 /∈ X. Similarly any vertex in I(v2) \Ω(v2v5)

is trumped (see Figure 9.4).

Exception II (T T C6)

Lemma 10.11. Any three-cliqued graph (G1, A1, B1, C1) in T T C6 contains a good

triad.

Proof. Let T be a triad including one vertex in each of I(v2), I(v7), and I(v9), such

that T intersects Ω(v2v4) if it is not empty, and intersects Ω(v5v7) if it is not empty.

It is easy to confirm that T is a good triad (see Figure 9.4).

A type of line graph (T T C1)

We now prove the necessary lemma for G1 in T T C1. This is by far the most difficult

case. We make extensive use of the fact that line graphs of bipartite multigraphs are

perfect.
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Lemma 10.12. Let (G,A,B,C) be a minimum counterexample to Theorem 10.2 and

suppose it admits a worn hex-join into (G1, A1, B1, C1) and (G2, A2, B2, C2). Then

(G1, A1, B1, C1) is not in T T C1.

Proof. Suppose (G1, A1, B1, C1) is in T T C1. Then G1 is the line graph of some bipar-

tite multigraph H which has a stable set {a, b, c} corresponding to A1, B1, and C1.

Assume without loss of generality that |C1| ≤ |B1| ≤ |A1|. We call the other vertices

of H centres. Depending on the structure of G1 we will take one of two actions:

1. Remove a triad from G1, lowering γl(G).

2. Remove edges from G1 without changing χ(G).

Every vertex of G1 is in a triad. If there are only three centres then removing

any triad T will lower γl(G) since every vertex in G1 − T will have two neighbours

or a twin in T – this can be confirmed easily since the graph underlying H will be a

subgraph of K3,3. So there are at least four centres. Call the four centres of highest

degree w, x, y, and z such that d(w) ≥ d(x) ≥ d(y) ≥ d(z).

For any centre s, denote by As the clique corresponding to the edges of H between

a and s. Define Bs and Cs accordingly. Denote As∪Bs∪Cs by Xs. We now consider,

for some vertex v ∈ As, what cliques of size ω(v) can contain v. By the structure of

a hex-join1, observe that such a clique must be one of:

• A clique in G1 intersecting all of A1, B1, C1. Specifically, As ∪Bs ∪ Cs = Xs.

• A clique in A1 ∪B1 ∪ A2 containing all of A2. Specifically, A2 ∪ As ∪Bs.

• A clique in A1 ∪ C1 ∪ C2 containing all of C2. Specifically, C2 ∪ As ∪ Cs.

• A clique in A1 ∪ A2 ∪ C2 containing all of A1. Such a clique has size at least

|A1|+ max{|A2|, |C2|}.

Note also that the closed neighbourhood of v is A1 ∪ Xs ∪ A2 ∪ C2. We can make

similar observations about the cliques of size ω(v) when v is in A1 \ As or B1 or C1.

These observations tell us when removing a triad T lowers ω(v) and therefore γl(v).

1As we noted at the end of the previous chapter, the worn hex-join is a hex-join because every
vertex of G1 is in a triad.
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Note that at most two centres have degree ≥ d(a), since there are at least four

centres and the sum of their degrees is d(a) + d(b) + d(c). Suppose there are at most

three centres with degree ≥ d(c). Then we can hit them all with a triad T by the

definition of T T C1. We will now show that removing T will lower γl(v) for all v ∈ G1.

This triad T will hit A1, B1, and C1. Any vertex v in G1 without two neighbours

or a twin in T will correspond to an edge in H incident to some centre s, where

d(s) < d(c). By our above observations about cliques of size ω(v), we can see that

since |Xs| < |C1| ≤ |B1| ≤ |A1|, any clique of size ω(v) containing v must contain one

of C1, B1, or A1. Therefore such a clique intersects T , so removing T lowers ω(v) and

also γl(v). This contradicts the minimality of G, so we can assume that there are at

least four centres of degree ≥ |C|, i.e. d(z) ≥ d(c). We now consider several cases.

Case 1: d(w) ≥ d(a) and c sees w.

Since d(w) ≥ d(a) it follows that d(x) + d(y) + d(z) ≤ |B1|+ |C1|, and so d(x) +

d(y) ≤ |B1| and |C1| ≤ d(z) ≤ 1
3
(|B1|+|C1|). Therefore 2|C1| ≤ 2d(z) ≤ d(x)+d(y) ≤

|B1|. Take a triad T that hits Xw, Xx, and Xy, and consider a vertex v for which ω(v)

does not drop when T is removed. Clearly v is not in Xw ∪Xx ∪Xy, so it is in Xs for

some centre s with d(s) ≤ d(z) ≤ 1
2
|B1|. Since |Xs| < |B1| and ω(v) does not drop,

v must be in Cs. Take some u ∈ Cw. We will show that d(u) + ω(u) > d(v) + ω(v),

which implies that γl(G− T ) < γl(T ).

Clearly u has at least |A1| − |C1| neighbours in G1 − C1. But v has at most
1
2
|B1| − 1 neighbours in G1 − C1. Therefore d(u) > d(v) + 1

2
|A1| − |C1|. Recall

the structure of maximal cliques containing u and v. If ω(v) > ω(u) then either

|Cs| + |As| > max{|Cw| + |Aw|, |C1|} or |Cs| + |Bs| > max{|Cw| + |Bw|, |C1|}. But

in this case ω(v) ≤ ω(u) + d(s) − |C1| ≤ ω(u) + 1
2
|A1| − |C1|. It follows that

d(v) + ω(v) < d(u) + ω(u), completing the case.

Case 2: d(w) ≥ d(a) and c does not see w.

Make the subgraph G′ of G by removing all edges between C1 and G1 \ C1 –

observe that G′ is claw-free and three-cliqued. Further observe that because H has

at least four centres, if G′ = G then (A1, B1) is a nonskeletal homogeneous pair of

cliques in G, a contradiction. Thus G′ is a proper subgraph of G. We claim that

χ(G′) = χ(G), contradicting the minimality of G. Denote by G′1 the subgraph of G′
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induced on the vertices of G1.

Take a χ(G′)-colouring C ′ of G′. We will rearrange the colour classes of C ′ on G′1
to reach a proper colouring of G1. Denote by t the number of triad colour classes in

C ′ restricted to G′1. Denote by dAB, dAC , and dBC the number of diads (i.e. colour

classes of size two) in C ′ restricted to G′1 intersecting A1 and B1, A1 and C1, and

B1 and C1 respectively. It suffices to show that we can pack the appropriate disjoint

stable sets into G1. That is, we want to find t triads in G1, dAB diads intersecting

A1 and B1, dAC diads intersecting A1 and C1, and dBC diads intersecting B1 and C1,

such that all of these stable sets are disjoint.

We begin with |A1|+ |B1| − d(w) diads intersecting A1 and B1. Since G[A1 ∪B1]

is cobipartite, these diads hit every vertex of (A1 ∪ B1) \ Xw. Observe that |A1| +
|B1| − d(w) ≥ t + dAB. So we want to extend some of the diads to triads. We can

actually extend |C1| of them. To see this, note that there are at least three triads of

degree ≥ |C1| other than w, so every vertex in C1 has at least C1 non-neighbours in

(A1 ∪ B1) \ Xw. So we have |A1| + |B1| − d(w) − |C1| disjoint diads intersecting A

and B and a further |C1| disjoint triads.

Thus it is clear that we can find the desired disjoint stable sets, beginning with

the diads intersecting A and B. When picking our dAC + dBC remaining diads we

take a vertex in Xw not intersecting an AB diad whenever possible. Once we have

found the necessary diads, we have enough AB diads remaining so that we can extend

them to triads. These stable sets give us a χ(G′)-colouring of G, contradicting the

minimality of G.

Case 3: d(w) < d(a).

As in the previous case, we remove edges from G1 without introducing a claw or

changing the chromatic number of G. There is at most one clique X in G[B1 ∪C1] of

size greater than |B1|. If X exists, construct G′ from G by removing all edges from

G1 except those within A1, B1, C1, and X. If such an X does not exist, set X as B1

and construct G′ from G by removing all edges from G1 except those within A1, B1,

and C1. It is easy to confirm that G′ is claw-free and a proper subgraph of G. We

will show that χ(G′) = χ(G), contradicting the minimality of G.

We claim that there is an ω(G1)-colouring of G1 using |B1| + |C1| − |X| triads.

To see this, we remove |A1| − |X| vertices from A1 one at a time, always taking one
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from the largest clique Xs that still has a vertex in A1. If after removing k vertices

we have disjoint Xs and Xs′ of size |A1| − k, then we have |A1| + |B1| + |C1| ≥
k + 2(|A1| − k) + 2|C1|, contradicting the fact that there are at least four centres of

degree ≥ |C1| in H and |B1| ≥ |A1| − k. Thus we can see that we reach a perfect

graph on |X|+ |B1|+ |C1| vertices with clique number |X|. In an |X|-colouring of this

graph every colour class intersects both A1 and X, thus the colouring uses exactly

|B1| + |C1| − |X| triads. The other colour classes are diads intersecting X and A1.

Thus as in the previous case, we can rearrange the colour classes of a χ(G′)-colouring

C ′ of G′ to construct a χ(G′)-colouring of G.

10.3.2 Completing the proof

We now combine our lemmas to prove Theorem 10.2.

Proof of Theorem 10.2. Let (G,A,B,C) be a minimum counterexample to the the-

orem. Then G is skeletal and is not an antiprismatic thickening. Combining The-

orem 9.12 with Lemma 9.11 tells us that (G,A,B,C) admits a worn hex-join into

(G1, A1, B1, C1) and (G2, A2, B2, C2) such that (G1, A1, B1, C1) is in one of T T C1,

T T C2, or T T C4. Lemmas 10.12, 10.8, 10.9, 10.10, and 10.11 tell us that (G1, A1, B1, C1)

cannot be in T T C1, T T C2, T T C3, T T C5 or T T C6 respectively. Thus G cannot exist,

proving the theorem.

10.4 Icosahedral thickenings

Now that we have proved the Local Strengthening for three-cliqued claw-free graphs,

we can extend the result to icosahedral thickenings. We do this by removing triads

once again, so first we need to consider induced subgraphs of icosahedral thickenings.

Lemma 10.13. Let G be an icosahedral thickening. Then any induced subgraph G′

of G is an icosahedral thickening or contains a clique cutset or admits a canonical

linear interval 2-join.

The proof of this lemma is straightforward. We leave it to the end of this section.

This lemma allows us to prove the desired result:
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Theorem 10.14. Suppose G is an induced subgraph of an icosahedral thickening.

Then χ(G) ≤ γl(G).

Proof. Let G be a minimum counterexample to the theorem. By Lemma 10.13 we

know G is an icosahedral thickening or contains a clique cutset or is three-cliqued

or admits a canonical interval 2-join. But G is vertex-critical so it cannot contain a

clique cutset. Lemma 7.1 and Theorem 10.2 tell us that G is in fact an icosahedral

thickening.

First suppose that G is a proper thickening of G0, the icosahedron. We remark

that the icosahedron is 4-colourable, so we remove four stable sets with union X

containing exactly one vertex in I(vi) for every vertex vi of G0. When X is removed,

every remaining vertex v in G loses six neighbours (one of which is a twin), and since

every maximal clique in G corresponds to a triangle in G0, ω(v) drops by three. Thus

d(v)+ω(v) drops by nine and it follows that γl(G) drops by at least four, contradicting

the minimality of G.

Now suppose that G is a proper thickening of G1 (see Figure 9.1). Again we

remove one vertex from each I(vi), this time for 0 ≤ i ≤ 10, again using four stable

sets. When we remove the vertices, every remaining vertex loses five neighbours, one

of which is a twin. And as with G0, every vertex v of G has ω(v) drop by three. Thus

γl(G) drops by at least four, contradicting the minimality of G.

Finally suppose that G is a thickening of G2 ∪M under a matching M ; we know

that M ⊆ {v1v4, v6v9}. By minimality of G, (I(v1), I(v4)) and (I(v6), I(v9)) are

skeletal homogeneous pairs of cliques. We remove two stable sets with union X. One

intersects I(v1), I(v4), and I(v7) and intersects Ω(v1v4) if it is not empty. The other

intersects I(v3), I(v6), and I(v9) and intersects Ω(v6v9) if it is not empty. These

stable sets must exist because neither I(v1) ∪ I(v4) nor I(v6) ∪ I(v9) is a clique.

It is straightforward to confirm that X intersects every maximal clique in G, so

ω(v) drops by at least one for every v ∈ G−X, thus γl(v) drops by at least two for

any vertex with three neighbours in X. Observe that any vertex in G−X with only

two neighbours in X must be in (I(v1)∪ I(v4)) \Ω(v1v4) or (I(v6)∪ I(v9)) \Ω(v1v4).

Furthermore, every such vertex has a twin in X. Thus we can easily confirm that

ω(v) drops by two for every such vertex. So for any v with only two neighbours in X,

ω(v) drops by two. Therefore γl(G − X) ≤ γl(G) − 2, contradicting the minimality

of G. This completes the proof.
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We now prove Lemma 10.13.

Proof of Lemma 10.13. Suppose first that G is a thickening of G2 ∪M (see Figure

9.1). If G′ has I(vi) nonempty for all 0 ≤ i ≤ 9 then clearly G2 is an icosahedral

thickening. If I(vi) is empty for some i ∈ {0, 2, 5, 8} then it is not hard to check

that G′ is three-cliqued. If I(vi) is empty for some i ∈ {1, 4, 6, 9} then G′ contains

a clique cutset. If none of these aforementioned sets I(vi) is empty but one of I(v3)

and I(v7) is empty, then G′ admits a canonical interval 2-join. For example, if G′ is

reached from G by deleting I(v3), then ((I(v0) ∪ I(v9), I(v5 ∪ I(v6)), (I(v1), I(v4))) is

a canonical interval 2-join.

Now suppose that G is a thickening of G1. Obviously G′ is an icosahedral thicken-

ing if I(vi) is nonempty for all 0 ≤ i ≤ 10. If I(vi) is empty for any i ∈ {2, 4, 6, 8, 10}
then the desired result follows from the previous paragraph. If I(v0) is empty then G′

is a circular interval graph. If I(vi) is empty for some i ∈ {1, 3, 5, 7, 9} then it is easy

to see from Figure 9.1 that G′ admits a canonical interval 2-join or a clique cutset.

Finally, suppose that G is a thickening of G0. If G′ has any I(vi) empty for 0 ≤
i ≤ 11 then the desired result follows from the previous two paragraphs. Otherwise

G′ is clearly a thickening of G0. This completes the proof.

10.5 Compositions of strips

In Section 7.1.1 we proved Lemma 7.1, which implies that no minimum counterex-

ample to the Local Strengthening or the Main Conjecture admits a canonical interval

2-join. We now extend this approach, proving that no minimum counterexample to

the Local Strengthening or the Main Conjecture admits an antihat, strange, or gear

2-join. Like line graphs, pseudo-line 2-joins present some difficulty with the Local

Strengthening. However, later in this section we will prove that a minimum coun-

terexample to the Main Conjecture cannot admit a pseudo-line 2-join. This allows

us to prove Theorem 10.1 using our decomposition result, Theorem 9.5.

As with the proof for canonical interval 2-joins, we consider a 2-join ((X1, Y1), (X2, Y2))

joining G1 and G2, and we let H2 denote G[V2 ∪X1 ∪Y1]. For v ∈ H2 we define ω′(v)

as the size of the largest clique in H2 containing v and not intersecting both X1 \ Y1

and Y1 \ X1, and we define γjl (H2) as maxv∈H2ddG(v) + 1 + ω′(v)e (here the super-
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script j denotes 2-join). Observe that γjl (H2) ≤ γl(G). If v ∈ X1 ∪ Y1, then ω′(v) is

|X1|+ |X2|, |Y1|+ |Y2|, or |X1 ∩ Y1|+ ω(G[X2 ∪ Y2]).

In light of what we have already done, the following lemma, which is a general-

ization of Lemma 7.1, deals with antihat 2-joins, strange 2-joins, and gear 2-joins.

Lemma 10.15. Suppose a skeletal claw-free graph G admits a canonical interval 2-

join or an antihat 2-join or a strange 2-join or a gear 2-join ((X1, Y1), (X2, Y2)). Then

given a proper l-colouring of G1 for any l ≥ γjl (H2), we can find a proper l-colouring

of G.

We split the proof up unto three lemmas corresponding to antihat 2-joins, strange

2-joins, and gear 2-joins. Our approach in each case is to set up the colouring of

G1 so that we can do one of two things. When possible, we colour G2 directly by

constructing an auxiliary graph from G2 and appealing to perfection or Theorem 10.2.

If that is not possible then we remove stable sets, reducing γjl (H2) each time, until

G2 becomes degenerate and we can appeal to a previous result.

Lemma 10.16. Suppose a skeletal claw-free graph G admits an antihat 2-join ((X1, Y1), (X2, Y2)).

Then given a proper l-colouring of G1 for any l ≥ γjl (H2), we can find a proper l-

colouring of G.

Proof. Consider a minimum counterexample for some fixed l. As in the proof of

Lemma 7.1, we can assume that l = γjl (H2). Furthermore if G2 contains a skeletal

homogeneous pair of cliques (A,B) then one of A and B is partially but not completely

contained in one of X2 or Y2. We denote G2 −X2 − Y2 by Z2.

Let k be the number of colours appearing in both X1 and Y1. We begin by

making k minimal, as we did in Case 6 of the proof of Lemma 7.1. This minimality

of k ensures a bound on l, as long as k ≥ 1. Let vertices u ∈ X1 and v ∈ Y1 have the

same colour. Then d(u) + 1 ≥ |X2| + (l − |Y1| + k), since minimality ensures that u

has a neighbour in G1 of every colour except possibly those in Y1 not appearing in

X1. Similarly, d(v) + 1 ≥ |Y2| + (l − |X1| + k). Therefore since ω′(u) and ω′(v) are

at least |X1|+ |X2| and |Y1|+ |Y2| respectively, l ≥ |X2|+ 1
2
(l + k + |X1| − |Y1|) and

l ≥ |Y2|+ 1
2
(l + k + |Y1| − |X1|). Consequently l ≥ |X2|+ |Y2|+ k if k > 0.

Suppose there is a colour class S in G1 hitting X1 but not Y1. Then add to this

colour class a stable set S ′ of size two intersecting Y2 and Z2. By the structure of
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antihat thickenings, we can assume that S ′ intersects I(b1) and I(c1) without loss of

generality. If Ω(b1c1) is nonempty, we insist that S ′ intersect it.

Note first that every vertex in I(b1) ∪ I(c1) is trumped or has a twin in S ′ or has

two neighbours in S ′. Every vertex in Z2 \ I(c1) has two neighbours in S ′, as does

every vertex in Y2\I(b1). Every vertex in X2 has a neighbour in S and a neighbour in

S ′ – this neighbour will be in Y2 for vertices in I(a1), and in Z2 for all other vertices

in X2 (recall from the definition of an antihat 2-join that since I(b1) and I(c1) are

both nonempty, I(a1) is complete to I(b1) and anticomplete to I(c1)). Thus γjl (v)

drops for any v ∈ G2. Since S ∪ S ′ intersects both X1 ∪X2 and Y1 ∪ Y2, γjl (v) drops

for any v ∈ X1 ∪ Y1. Therefore we remove S ∪ S ′ and lower γjl (H2).

We repeat this approach until either Y2∪Z2 is a clique, or all colours in X1 appear

in Y1. Suppose we remove t1 stable sets in this way. We then take colour classes of G1

hitting Y1 but not X1, and remove them along with stable sets of size two in X2∪Z2,

using the symmetric argument to show that γjl (H2) drops each time. We do this until

either all colours appearing in Y1 are in X1, or until X2 ∪Z2 is a clique. Let t2 be the

number of stable sets we remove in this way, let S1 be the set of all vertices we have

removed from G, and let t = t1 + t2. Notice that γjl (H2 − S1) ≤ γjl (H2)− t.
Suppose X1 \ S1 is empty. Then we can colour G2 − S1 using l − t colours by

Theorem 10.2, since G2 is three-cliqued. Since Y1 \ S1 is a clique cutset in G − S1,

this immediately gives us an (l − t)-colouring of G− S1 and therefore an l-colouring

of G. So we can assume X1 \ S1 and symmetrically Y1 \ S1 are nonempty.

Now suppose every colour hitting Y1 \S1 also hits X1 \S1. Again we (l− t)-colour

G2− S1, noting that at most |X2|+ |Y2| − t colours appear on (X2 ∪ Y2) \ S2 because

|(X2 ∪Y2) \S2| = |X2|+ |Y2| − t. We ensure that no colour hits both X1 and X2, and

that no colour hits both Y1 and Y2. This is possible because l−t > |(X1∪X2)\S1| and

l− t ≥ |X2|+ |Y2|+k− t, as we proved above. This gives us a proper (l− t)-colouring

of G− S1, and therefore an l-colouring of G.

By symmetry, this covers the case in which every colour hitting X1 \ S1 also hits

Y1 \ S1. Thus there is a colour in X1 but not Y1, and one in Y1 but not X1. So our

method stopped because both (Y2 ∪ Z2) \ S1 and (X2 ∪ Z2) \ S1 are cliques.

In this final case, we (l − t)-colour G2 − S1 by applying Lemma 7.1 as follows.

Notice that (X2 \ S1, Y2 \ S1) is a homogeneous pair of cliques in G− S1. We reduce

it to a skeletal homogeneous pair of cliques without changing the chromatic number
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using Lemma 6.12; the result is a graph G′ in which ((X1\S1, Y1\S1), (X2\S1, Y2\S1))

is a canonical interval 2-join. We can therefore apply Lemma 7.1 to find an (l − t)-
colouring of G′. Again using Lemma 6.12, we can construct an (l − t)-colouring of

G− S1. This immediately gives us an l-colouring of G, proving the lemma.

The next case is strange 2-joins; we use a similar approach.

Lemma 10.17. Suppose a skeletal claw-free graph G admits a strange 2-join ((X1, Y1), (X2, Y2)).

Then given a proper l-colouring of G1 for any l ≥ γjl (H2), we can find a proper l-

colouring of G.

Proof. As in the proof of the previous lemma, assume γjl (H2) = l and let k denote

the number of colours appearing in both X1 and Y1. We begin by modifying the

colouring of G1 so that k is minimal, so again we can assume that either k = 0 or

l ≥ |X2|+ |Y2|+ k. Denote G2 −X2 − Y2 by Z2.

Let t = min{|I(a1)|, |I(c1) ∩ Ω(c1, b3)|, |Y2| − k}. We remove t colours hitting Y1

but not X1. With each colour class we remove a vertex of I(a1) and a vertex of

I(c1) ∩ Ω(c1, b3). Together these vertices form t stable sets; call their union S1. As

in the proof of the previous lemma, we now consider our situation depending on the

value of t. Note that each time we remove a stable set, every vertex in G2 is either

trumped or loses two neighbours or loses a twin. It is therefore easy to see that

γjl (H2 − S1) ≤ γjl (H2)− t.
Suppose I(a1) is empty. We apply Lemma 7.1 to (l− t)-colour G− S1 as follows.

First observe that removing S1 turns ((X1 \S1, Y1 \S1), (X2 \S1, Y2 \S1)) into a fuzzy

linear interval 2-join, in which (Z2 \ S1, Y2 \ S1) is a homogeneous pair of cliques. We

reduce this homogeneous pair to a skeletal homogeneous pair of cliques using Lemma

6.12, at which point ((X1 \ S1, Y1 \ S1), (X2 \ S1, Y2 \ S1)) becomes a canonical linear

interval 2-join in a graph G′. We can therefore apply Lemma 7.1 to G′, since we

already have an (l− t)-colouring of G1−S1, to find an (l− t)-colouring of G′. Lemma

6.12 tells us that we can use this colouring to construct an (l− t)-colouring of G−S1.

Combining this with a t-colouring of G[S1] gives us an l-colouring of G.

Now suppose I(c1) ∩ Ω(c1, b3) is empty but I(c1) is not empty. To (l − t)-colour

G − S1, we first remove the vertices of I(b3), which have become simplicial. Now

observe that ((X1 \ S1, Y1 \ S1), (X2 \ S1, Y2 \ (I(b3) ∪ S1)) is an antihat 2-join. The

remaining sets of G2 are I(a1), I(a2), I(b1), I(b2), I(c1), and I(c2). To see the antihat
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2-join, we relabel these sets as in the definition of an antihat thickening. Respectively,

these sets become I(a1), I(a2), I(b1), I(b3), I(c3), and I(c1) (see Section 9.1.4). We

can therefore apply Lemma 10.16 to find an (l− t)-colouring of G− (S1∪ I(b0)), then

replace and colour the simplicial vertices in I(b0) to get an (l− t)-colouring of G−S1.

This gives us an l-colouring of G, completing the case of strange 2-joins.

The final and most difficult case is that of gear 2-joins.

Lemma 10.18. Suppose a skeletal claw-free graph G admits a gear 2-join ((X1, Y1), (X2, Y2)).

Then given a proper l-colouring of G1 for any l ≥ γjl (H2), we can find a proper l-

colouring of G.

Proof. We proceed by induction on |G|, taking as our basis the trivial case in which

min{|X1|, |Y1|} = 0; in this case we have a 1-join and the result follows from Theorem

10.2 since gear strips are three-cliqued. So assume both X1 and Y1 are nonempty.

Let Z2 denote G2 \ (X2∪Y2). Again we can let G be a minimum counterexample and

assume that l = γjl (H2).

In this case we make k, the overlap between X1 and Y1 in the colouring of G1,

maximal.

Case 1: k > 0.

If k > 0, we remove a colour class hitting both X1 and Y1, along with one vertex

each of I(v9) and I(v10), if they are both nonempty. In this case every vertex of G2

loses a twin or two neighbours. Since we remove a vertex in both X1 and Y1, it is

easy to see that γjl (H2) drops. Since removing vertices from I(v9) and I(v10) will

not change the fact that we have a gear 2-join, we can proceed by induction, having

reduced both γjl (H2) and l.

So assume that I(v9) ∪ I(v10) is a clique, i.e. one of I(v9) and I(v10) is empty.

We do the same thing, but instead we remove a colour class hitting both X1 and Y1,

along with a vertex of I(v3) and a vertex of I(v6). Clearly γjl (H2) drops as before and

we can proceed by induction, since as long as neither I(v3) nor I(v6) becomes empty

we will still have a gear 2-join.

Suppose I(v6) becomes empty, and one of I(v9) and I(v10) is empty. By symmetry

we can assume that I(v9) is empty. We are now left with a fuzzy linear interval 2-

join. The vertices, in linear order, are I(v1), I(v2), I(v7), I(v3), I(v10), I(v8), I(v4),
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I(v5), and the possibly nonlinear homogeneous pairs of cliques are (I(v7), I(v8)) and

(I(v3) ∪ I(v10), I(v4) ∪ I(v5)). The reader can confirm this, along with symmetry

between v9 and v10, by consulting Figure 9.3.

So, as in the proof of the previous two lemmas, we can find our l-colouring of G

by reducing on these two homogeneous pairs of cliques and invoking Lemma 7.1.

This completes the proof of the lemma when k > 0.

Case 2: k = 0; l > |X1|+ |Y1|.
In this case we remove a colour class hitting neither X1 nor Y1, along with a stable

set of size three in G2. Call their union S. If I(v10) is nonempty, we remove a vertex

of I(v10) along with on vertex each of I(v1) and I(v4). Every vertex in G2 loses a twin

or two neighbours, so it is easy to confirm that γjl (H2) drops. Thus we can proceed

by induction, provided that both I(v1) and I(v4) are still nonempty.

If I(v1) and I(v4) are both empty, then we extend the colouring of G1 to an

l-colouring of G1 ∪ I(v2) ∪ I(v5). We then note that ((I(v2) ∪ I(v10) \ S, I(v5) ∪
I(v10) \ S), (I(v3) ∪ I(v7), I(v6) ∪ I(v8))) is a fuzzy linear interval 2-join, in which

(I(v3)∪I(v7), I(v6)∪I(v8)) is the only possible nonlinear homogeneous pair of cliques.

So we can construct an (l − 1)-colouring of G − S by Lemma 7.1 as in the previous

two proofs. This gives us an l-colouring of S.

So assume I(v1) is now empty but I(v4) is not. Clearly we can extend the (l− 1)-

colouring of G1 − S to a proper (l − 1)-colouring of (G1 − S) ∪ I(v2). We claim that

we now have an antihat 2-join and we can find an (l − 1)-colouring of G − S using

Lemma 10.16.

The 2-join in G − S is ((I(v2), Y1 \ S), ((I(v3) ∪ I(v7)) \ S, Y2 \ S)). To see that

(G2 − S)− (I(v1) ∪ I(v2)) is an antihat strip, we will relabel the vertices to conform

with the definition of an antihat thickening. We relabel the sets I(v3), I(v10), and

I(v7) as I(a1), I(a2), and I(a3) respectively. We relabel I(v4) and I(v5) as I(b1) and

I(b2) respectively. Finally, we relabel I(v6), I(v9), and I(v8) as I(c1), I(c2), and I(c3)

(or I(c4) if I(v7)∪ I(v8) is a clique) respectively. It is straightforward to confirm that

this is an antihat strip. We therefore have an antihat 2-join in G− S, so by Lemma

10.16 we can find an (l − 1)-colouring of G− S and an l-colouring of G.

If I(v10) is empty, then instead of taking vertices from I(v10), I(v1) and I(v4), we

take vertices from I(v1), I(v3) and I(v5), and proceed symmetrically. This time, we
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may worry that I(v3) will become empty, but in this case, since I(v10) is also empty,

we get a fuzzy linear interval 2-join exactly as in Case 1.

Case 3: k = 0; l = |X1|+ |Y1|.
In this final case, every colour appears in X1 ∪ Y1, and no colour appears twice.

Therefore X2 and Y2 must receive colours appearing in Y1 and X1 respectively. Since

k is maximal, l ≥ |X2|+ |X1|+ 1
2
|Y1| (from a vertex in X1), and l ≥ |Y2|+ |Y1|+ 1

2
|X1|

(from a vertex in Y1). It follows that 2l ≥ 3
2
(|X1|+|Y1|)+|X2|+|Y2|, so |X2|+|Y2| ≤ 1

2
l.

Notice that Z2 is cobipartite, and that the only non-edges in Z2 are in I(v3) ∪
I(v6), I(v7) ∪ I(v8), and I(v9) ∪ I(v10). We begin with an optimal colouring of Z2,

removing the colour classes of size two. Let t1 be the number of such colour classes

in I(v3)∪ I(v6), and let t be the total number of such colour classes. Denote these 2t

vertices by S, noting that Z2 − S is a clique.

We construct an auxiliary graph G′ from G2 − S by adding all possible edges

between X2 and Y2. Now G′ is cobipartite and perfect, and since a proper colouring of

G′ will give vertices in X2 and Y2 distinct colours, it suffices to prove that ω(G′) ≤ l−t.
This gives us an l-colouring of G2 in which no colour appears twice on X2 ∪Y2, so we

can use it to extend the l-colouring of G1 to an l-colouring of G.

Suppose there is a clique W of size greater than l − t in G′. We will now prove

that l − |X2| − |Y2| ≥ 1
2
|Z2| ≥ t, which implies that W cannot be X2 ∪ Y2. Consider

vertices u, v, x, y in I(v1), I(v2), I(v4), and I(v5) respectively. Since every vertex in

Z2 has two neighbours in this set, the sum of the four degrees is at least 2(|X1| +
|X2| + |Y1| + |Y2| + |Z2|) − 4. Therefore the sum γjl (u) + γjl (v) + γjl (x) + γjl (y) is

at least 4l ≥ 2(|X1| + |X2| + |Y1| + |Y2|) + |Z2|. Thus 2l ≥ |Z2| + 2(|X2| + |Y2|), so
1
2
|Z2|+ |X2|+ |Y2| ≤ l.

A maximal clique W in G′ intersecting both I(v1) and I(v2) as well as Z2 must be

(I(v1)∪I(v2)∪I(v7))\S. But a vertex v in (I(v7)∩Ω(v7, v8))\S (this set is nonempty

because (I(v7), I(v8)) is a skeletal homogeneous pair) has either two neighbours or a

twin in each stable set of size two in S. This means that if |W | > l−t, then γjl (v) > l,

a contradiction. So W is not such a clique, and by symmetry W does not intersect all

three of I(v4), I(v5), and I(v8). A similar argument implies that W cannot intersect

only one of I(v1), I(v2), I(v4), and I(v5). Since |X2| + |Y2| ≤ l − t we can see that

W cannot intersect three of these sets. Furthermore |Z2 − S| = ω(Z2)− t ≤ l − t, so
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W cannot be contained in Z2 − S. Therefore W intersects all three of X2, Y2, and

Z2, and we can assume by symmetry that W is I(v4) \ S and its neighbourhood in

X2 ∪ Y2, i.e. (I(v2) ∪ I(v3) ∪ I(v4)) \ S.

Suppose that |W | > l − t. This inequality will provide us with new bounds on

l, giving us a contradiction and completing the proof of the lemma. Let u and v

be vertices in I(v2) and I(v4) respectively. Observe that d(u) + 1 ≥ |X1| + |X2| +
|I(v3) \ S| + t, since u sees one vertex in every stable set in S. Thus d(u) + 1 ≥
|X1|+|X2|+|I(v3)|+(t−t1), and likewise d(v)+1 ≥ |Y1|+|Y2|+|I(v3)|+(t−t1). Since

I(v2)∪I(v3)∪I(v10)∪I(v7) is a clique, it follows that ω′(u) ≥ |I(v2)|+|I(v3)|+(t−t1),

because every stable set of S hits I(v3) ∪ I(v7) ∪ I(v10) exactly once. Likewise,

ω′(v) ≥ |I(v4)|+ |I(v3)|+(t− t1). The sum of these figures is at most 2γjl (u)+2γjl (v),

which is at most 4l. This implies:

4l ≥ (|X1|+ |Y1|) + (|X2|+ |Y2|) + 4(t− t1) + 4|I(v3)|+ |I(v2)|+ I(v4)|.

We know that |X1|+ |Y1| = l, |X2|+ |Y2| > |I(v2)|+ |I(v4)|, and by assumption,

|I(v2)|+ |I(v4)|+ |I(v3)| − t1 > l − t. Therefore,

3l ≥ 2(|I(v2)|+ |I(v4)|+ |I(v3)|) + 2|I(v3)|+ 4(t− t1)

≥ 2l + 2|I(v3)|+ 2(t− t1)

Thus |I(v3)| − t1 ≤ l
2
− t. And since |X2|+ |Y2| ≤ l

2
, we get |W | = |I(v2)|+ |I(v3)|+

|I(v4)| − t1 ≤ l − t, contrary to our assumption.

It follows that ω(G′) ≤ l− t, so we can indeed complete the l-colouring of G2 that

is compatible with the colouring of G1. This proves the lemma.

Lemmas 10.16, 10.17, and 10.18 together immediately imply Lemma 10.15.

To deal with pseudo-line 2-joins we use another invariant, which is essentially a

global analogue to the local γjl . Define ω′(H2) as maxv∈H2 ω
′(v), and define γjg(H2)

as d1
2
(∆G(H2) + 1 + ω′(H2))e. Note that ∆G(H2) is the maximum degree in G over

all vertices in H2. Clearly γjl (H2) ≤ γjg(H2) ≤ γ(G).

Lemma 10.19. Suppose a skeletal claw-free graph G admits a canonical interval 2-

join or an antihat 2-join or a strange 2-join or a gear 2-join or a pseudo-line 2-join
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((X1, Y1), (X2, Y2)). Then given a proper l-colouring of G1 for any l ≥ γjg(H2), we

can find a proper l-colouring of G.

Proof. We prove the lemma by induction on l. We let G be a minimum counterex-

ample, noting that l = γjg(H2). Assume that |X1| ≥ |Y1|.
If ((X1, Y1), (X2, Y2)) is a canonical interval 2-join or an antihat 2-join or a strange

2-join or a gear 2-join, then the lemma is immediately implied by Lemma 10.15 given

the observation that γjl (H2) ≤ γjg(H2). So we can assume that we have a pseudo-line

2-join.

Recall that G2 is based on the line graph of a graph J , and the vertices of J other

than j1, j2, and j3 are called centres. For a centre t in J , we call the corresponding

clique Ct. That is, Ct = ∪I(e) over all vertices e of H whose corresponding edge in

J is incident to t. Let the edges j1j2 and j2j3 be e1 and e2 respectively. Note that Z2

is a clique and so is Z2 ∪ Ω(e1, e2).

We begin by making the number k of colours in G1 that hit both X1 and Y1

maximal. First suppose that there is no colour class appearing in neither X1 nor Y1.

As in the previous case, l > |X1|. Since k is maximal, there is a vertex v ∈ X1 with

a colour not appearing in Y1, and it must have at least l − 1 neighbours in G1. This

vertex is in X1∪X2, so l = γjg(H2) ≥ 1
2
l+ 1

2
|X1|+ |X2|. Hence l ≥ |X1|+ 2|X2|. Since

l = |X1|+ |Y1| − k, we have |X2| ≤ 1
2
|Y1| − 1

2
k. Now since |X2| is nonempty, |Y1| > k

and there is a vertex in Y1 with a colour not appearing in X1. We can therefore

apply the symmetric argument to prove that l ≥ 1
2
l + 1

2
|Y1|+ |Y2|, and consequently

|Y2| ≤ 1
2
|X1| − 1

2
k.

Observe that if |Z2| ≤ 1
2
(|X1| + |Y1|) we can easily finish the colouring by giving

X2 colours appearing in Y1 but not X1, Y2 colours appearing in X1 but not Y1, and

Z2 colours appearing in both X1 and Y1, and any leftover colours. In fact we can do

this whenever |Z2| ≤ l − |X2| − |Y2|. So assume |Z2| > l − |X2| − |Y2|. Let A be

a maximum clique in G[X2 ∪ Z2]. Since G[X2 ∪ Z2] is cobipartite, we can colour it

with |A| colours, |X2| of which intersect X2. Therefore if |A| ≤ l− |Y2| we can colour

Y2 using colours that appear in X1 but not in Y1, then colour X2 and Z2 using |A|
colours such that those colours appearing in X2 do not appear in X1.

To see that |A| ≤ l − |Y2|, note that ω′(H2) ≥ |A| and since the degree of any

vertex in I(e1) is at least |X1|+|X2|+|Z2|−1, l = γjg(H2) ≥ 1
2
(|A|+|Z2|+|X2|+|X1|).

Since |Z2| > l − |X2| − |Y2|, this implies that l > |A| + |X1| − |Y2| ≥ |A| + 1
2
|Y2|.
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Therefore |A| ≤ l − |Y2| and we can complete the γjg(G)-colouring of G.

We can now assume that there is a colour class S in G1 that appears in neither X1

nor Y1. We will find a stable set S2 in G2 such that removing S ∪ S2 lowers γjg(H2);

this will imply that χ(G) ≤ l by induction.

First note that if there are at most two centres then we actually have an antihat

2-join – this is straightforward to confirm as there are only five vertices in J . So we

can assume that there are at least three centres.

Suppose we set S2 to be a diad (i.e. a stable set of size two) in G[I(e1) ∪ I(e2)]

such that S2 intersects Ω(e1, e2) if it is nonempty. S2 exists because G[I(e1)∪I(e2)] is

not a clique. If removing S ∪S2 does not lower ωj(G), then there must be a maximal

clique in G2 disjoint from S2. Such a clique must be Ct for some centre t that sees

j1, j2, and j3 in J .

The size of Ct must be at least max{|X1 ∪X2|, |Y1 ∪ Y2|, |Z2|} > 1
3
|V (G2)|, so by

the number of vertices in G2 there can be at most two such “centre cliques” of size

ω′(H2), since they must be disjoint – call the other one Ct′ if it exists. If we let S2 be

a stable set corresponding to a matching in J that hits three centres and in particular

hits t and (if it exists) t′, we can see that removing S ∪ S2 lowers ωj(G) so we are

done. This S2 must exist because Ct intersects all of X2, Y2, and Z2, so we can find

S2 unless every other centre has neighbourhood j2 in J . If this is the case we can

again easily confirm that we have an antihat 2-join, so we are done.

We can now prove Theorem 10.1:

Proof of Theorem 10.1. Let G be a minimum counterexample. Then it is skeletal

and contains no clique cutset. Furthermore, G is not three-cliqued or an icosahedral

thickening or an antihat thickening or a quasi-line graph. Therefore by Theorem 9.5,

G admits an antihat 2-join or a pseudo-line 2-join or a strange 2-join or a gear 2-join.

Thus Lemma 10.19 contradicts the minimality of G, proving Theorem 10.1.

10.6 Algorithmic Considerations

We now show that our proofs of Theorems 10.1 and 10.2 yield polynomial time algo-

rithms for γ(G)- and γl(G)-colouring G, respectively.
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By Theorem 6.11 we can assume that G is skeletal. Furthermore we can identify

sets of twin vertices in G in polynomial time. This immediately implies that we can

recognize skeletal antiprismatic thickenings and skeletal icosahedral thickenings in

polynomial time. We deal with these two simple cases first.

If G is an antiprismatic thickening, we can repeatedly remove triads from G,

each time lowering γl(G). These triads will be colour classes. What remains is a

graph containing no triad; we can colour these optimally in polynomial time, since

an optimal colouring corresponds to a maximum matching in the complement.

If G is an icosahedral thickening, then observe that since G is skeletal there are at

most 12 equivalence classes of twin vertices; therefore there are at most 123 different

types of stable sets. We can formulate the problem of colouring G as an integer

program in which each variable represents the number of stable sets of a given type

we use in the colouring. Each variable has size at most n, so we can exhaustively

solve the problem in O(n123
) time. This is clearly not optimal.

We now consider the problem of colouring three-cliqued claw-free graphs.

10.6.1 Three-cliqued graphs

Maffray and Preissmann proved that it is NP -complete to decide whether or not a

triangle-free graph is three-colourable [MP96]. Consequently it is NP -complete to

decide whether or not a claw-free graph is three-cliqued. This makes dealing with

three-cliqued claw-free graphs a slightly delicate issue. However, consider a claw-free

graph G. If α(G) ≤ 2 we know we can optimally colour it in polynomial time. We

will show that if α(G) = 3, then in polynomial time we can either γl(G)-colour G, or

determine that G is not three-cliqued.

To prove that we can γl(G)-colour skeletal three-cliqued claw-free graphs in poly-

nomial time, we first note that we can find a good triad efficiently:

Lemma 10.20. Let G be a skeletal claw-free graph with α(G) ≤ 3. If G contains a

good triad then we can find one in polynomial time.

Proof. To find T we check every set of three vertices, of which there are O(n3), to see

if it satisfies the requirements. Since we can efficiently determine which vertices are

twins and which vertices trump which vertices, we can do this in polynomial time.



174 The Main Conjecture for Claw-free Graphs

Lemma 10.21. Let G be a skeletal claw-free graph with α(G) = 3, and suppose G

contains no good triad. Then in polynomial time we can γl(G)-colour G or determine

that G is not three-cliqued.

Proof. We define the triad graph t(G) of G. We let V (t(G)) = V (G), and two vertices

are adjacent in t(G) precisely if some triad in G contains both of them. We can easily

find the components of t(G) in polynomial time; there is at least one which is not a

singleton.

Suppose thatG is three-cliqued. Then it admits a hex-join into terms (G1, A1, B1, C1)

and (possibly empty) (G2, A2, B2, C2) such that G1 is minimal and contains a triad.

Since G contains no good triad, it follows from the proofs of Lemmas 10.8, 10.9,

10.10, and 10.11 that (G1, A1, B1, C1) is in T T C1. Furthermore the graph from which

G1 arises, i.e. H such that G1 = L(H), has more than three centres and hence more

than six vertices, otherwise G would contain a good triad.

It is therefore easy to confirm that there is a component X of t(G) such that

X = V (G1). We can find such a component X in polynomial time, because any

graph in T T C1 is a proper thickening of a line graph of a specific bipartite graph H.

In particular we can find (G1, A1, B1, C1) efficiently, because we can find H efficiently

and the definition of T T C1 implies that the choice of vertices a, b, and c of H is

unique. Thus since G1 is a term in a hex-join, we can determine A2, B2, and C2 by

taking a vertex in G2 and looking at its neighbourhood in G1, assuming that G is

three-cliqued.

We now proceed as in the proof of Lemma 10.12. With our base graph H of

(G1, A1, B1, C1) in hand, it is not hard to see that we can decide which action is

necessary in polynomial time. In each case we find a triad whose removal is guaranteed

to lower γl(G) or we remove edges from G to reach a graph G′ such that χ(G′) = χ(G).

From the proof of Lemma 10.12 it is clear that we can find G′ in polynomial time, and

given a k-colouring of G′ we can find a k-colouring of G in polynomial time. We can

recursively γl(G)-colour G′ in polynomial time, possibly appealing to Lemma 10.20,

since it is a proper subgraph of G.

Now suppose G is not three-cliqued. If there is a component X of t(G) such that

G[X] is in T T C1, then again we have a unique choice of a, b, and c in H and a unique

expression of G[X] as (G1, A1, B1, C1). Let A2 be the set of vertices in G − X with

a neighbour in A1 and a neighbour in B1; we define B2 and C2 accordingly. Since G
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is not three-cliqued, either A2, B2, and C2 do not partition the vertices of G−X, or

they are not all cliques. Either way we can determine this in polynomial time.

Using these two lemmas we can prove the desired result:

Theorem 10.22. Let G be a claw-free graph with α(G) ≥ 3. Then in polynomial

time we can either γl(G)-colour G or determine that χ(G) ≥ 4.

Proof. By Theorem 6.11 we can assume G is skeletal. If G contains a good triad T ,

we can find T in polynomial time and recursively γl(G)− 1 colour G− T . If G does

not contain a good triad, then the result follows immediately from Lemma 10.21.

10.6.2 Graphs that are not three-cliqued

By Theorem 9.5 and Theorem 9.7, if G is a skeletal claw-free graph that is not three-

cliqued, then one of the following applies:

1. G is an antiprismatic thickening

2. G is an icosahedral thickening

3. G is quasi-line

4. G contains a clique cutset

5. G admits an antihat 2-join or a pseudo-line 2-join or a strange 2-join or a gear

2-join.

We already know how to deal with all of these cases efficiently, either by colouring

in polynomial time or reducing to a smaller colouring problem, except in the case of

2-joins. To see that we can find an antihat 2-join or a pseudo-line 2-join or a gear

2-join efficiently, recall Chapter 8, in which we describe the structure of such a 2-join

relative to a W5. Given the correct choice of a W5 in G, we can easily find a W5 2-join

or a gear 2-join ((X1, Y1), (X2, Y2)) separating G1 from G2. There are O(n6) 5-wheels

in G, so we can find such a 2-join in polynomial time.

Since G is skeletal, we can easily check whether or not G2 is a gear strip in

polynomial time: a skeletal gear strip has at most twelve equivalence classes of twin

vertices. So assume that we have an antihat 2-join or a pseudo-line 2-join or a
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strange 2-join. Checking if we have a strange 2-join is trivial. Checking if we have

an antihat 2-join is straightforward once we determine the adjacency between X2

and Y2. Otherwise we have a pseudo-line 2-join. In this case, I(e1) and I(e2) are

precisely those vertices in X2 and Y2 respectively that are complete to G2−X2− Y2.

Furthermore, adding all edges between I(e1) and I(e2) leaves us with a line graph,

the structure of which we can easily determine. Thus we can find these desired 2-joins

in polynomial time.

To reduce on these 2-joins, we now consider the proof of Lemmas 10.16, 10.17,

10.18, and 10.19. We do one of two things: reduce the size of the graph and apply

induction, or complete the l-colouring of G in one step. Just as with Lemma 7.1,

showing that we can do this in polynomial time is straightforward given the proof of

the lemma. Thus we get the desired algorithmic result:

Theorem 10.23. For any claw-free graph G, we can γ(G)-colour G in polynomial

time.



Chapter 11

Future Directions

We now conclude the thesis by describing some related questions that remain unan-

swered. They lie mainly in the two general areas of the Main Conjecture and claw-free

graphs.

Problems related to the Main Conjecture

The most prominent problem that remains open is Reed’s conjecture on ω, ∆, and χ,

i.e. the Main Conjecture. An outright proof would represent an enormously significant

result in the field of graph colouring. However, at this moment it seems quite far out

of reach. Here we describe some more accessible steps towards a solution.

Triangle-free graphs

The Main Conjecture is still open for triangle-free graphs, i.e. the case ω = 2. In this

case we get a special case of the Main Conjecture:

Conjecture 11.1. For any triangle free graph G, χ(G) ≤ 1
2
∆(G) + 2.

This conjecture is implied by Brooks’ Theorem when ∆ = 4, and when ∆ > 104

it is implied by Johansson’s result that triangle-free graphs have chromatic number

at most 9 ∆
log ∆

(see [MR00]). It is striking that the conjecture is open even for ∆ ∈
{5, 6, 7}, and although they are attractive cases to work on they should not be taken

lightly. The case ∆ = 6 should be the easiest of the three, and would easily imply the

177
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case ∆ = 5. The triangle-free case of the Main Conjecture is of significant interest

in its own right, and of further interest because it is a prerequisite to attacking the

Main Conjecture for bull-free graphs using Chudnovsky’s recent structure theorem

[Chu08]. Since we know that the Main Conjecture holds for graphs containing no

triad, this would give us the first nontrivial self-complementary class of graphs, other

than perfect graphs, for which the Main Conjecture is known to be true (the class

would be all graphs for which max{α, ω} = 2).

Some steps towards the triangle-free case of the Main Conjecture have been made.

Kostochka [Kos78] proved that the conjectured bound holds for graphs containing no

cycle of length at most 4(∆+2) log ∆. And as mentioned in Chapter 2, he also proved

that triangle free graphs have chromatic number at most 2∆
3

+ 2.

Let k∆ be the largest possible chromatic number of a triangle-free graph with

maximum degree ∆. Suppose we can prove that k5 ≤ 4, k7 ≤ 5, k10 ≤ 6, k13 ≤ 7,

k17 ≤ 10, and k19 ≤ 11. Then we could combine these results using a classical result

of Lovász to prove the Main Conjecture for all triangle-free graphs. Observe that

the Main Conjecture requires all of these partial results except k10 ≤ 6 and k13 ≤ 7,

which are stronger than the Main Conjecture’s bound by one.

Asymptotic approaches

Very little is known about asymptotic weakenings of the Main Conjecture. In the

original paper, Reed made two weaker conjectures: χ ≤ 1
2
(∆ + ω) + o(∆) and χ ≤

1
2
(∆ + ω) + o(ω) [Ree98]. Both seem difficult.

If we insist that ω = o(∆), can we prove that χ ≤ (1
2

+ o(1))∆? With or without

this restriction, can we prove that χ ≤ (1
2

+ a)(∆ + ω) for some value of a much

smaller than 1
2
? The most obvious approach to this problem is the Rödl Nibble, in

which groups of randomized stable sets are removed as colour classes and invariants

related to ∆ and ω are proven to decay at some desirable rate (see [MR00]). However,

maintaining any kind of independence among randomly chosen stable sets (which

hopefully allows us to apply the Lovász Local Lemma) poses a challenge when we

need γ to drop sufficiently between nibbles.
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Problems related to claw-free graphs

The work in this thesis has brought up several questions about fractional and integer

colourings of claw-free graphs. We know that χ can be as high as 6
5
χf for claw-free

graphs, and we know that χ and χf agree asymptotically for quasi-line graphs. When

α ≤ 2 it is well-known that χ ≤ 6
5
χf , and we think this extends to all claw-free graphs

with stability number at most three. In contrast, we can generalize our approach to

quasi-line graphs to show that the fractional and integer chromatic numbers agree

asymptotically for claw-free graphs with α ≥ 4. The only remaining details concern

the ten types of 1-joins defined by Chudnovsky and Seymour [CS08b]. These must

be treated with some care because they force us to consider claw-free graphs with

α(G) ≤ 3 containing a simplicial vertex. Our current case analysis is somewhat

lacking in elegance – a deeper investigation into fractional colourings of three-cliqued

claw-free graphs may yield a nicer solution.

Many other questions related to claw-free graphs remain. In Chapter 8 we gave

a natural and easy reduction from claw-free graphs with α ≥ 4 to quasi-line graphs.

However, at this time the only known proof of the structure theorems for quasi-line

graphs are as a special case of claw-free graphs. A direct proof of the structure

theorems would be a very nice result.

Finally, in Chapter 6 we introduced skeletal graphs, which have never been used

before. Our work in this thesis tells us that homogeneous pairs of cliques should be

a point of interest outside the area of perfect graph theory. Are there other classes of

graphs that can be better described and manipulated using nonskeletal homogeneous

pairs of cliques? Can skeletal homogeneous pairs be generalized in a useful way to

homogeneous k-tuples of cliques? It would be very interesting to see whether or not

skeletal graphs have useful applications outside the domain of this thesis.
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[Chv75] V. Chvátal. On certain polytopes associated with graphs. Journal of

Combinatorial Theory Series B, 18:138–154, 1975.
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[PS01] M. Preissmann and A. Sebő. Some aspects of minimal imperfect graphs.
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Glossary

Here we use G to denote a graph, u and v to denote vertices, e to denote an dge, and

S and T to denote vertex sets.

Basic graph terminology

Term Symbol Meaning

graph G = (V,E) a set V of vertices and a set E of

unordered pairs of vertices

multigraph H = (V,E) a set V of vertices and a multiset

E of unordered pairs of vertices

vertex set of G V (G) the set of vertices of G

edge set of G E(G) the set of edges of G

clique a set of mutually adjacent vertices

stable set a set of mutually nonadjacent vertices

u sees v u is adjacent to v

there is an edge between u and v

{u, v} ∈ E(G)

neighbour of v a vertex adjacent to v

neighbourhood of v N(v) the set of neighbours of v

closed neighbourhood of v N̄(v) N(v) ∪ {v}
matching a set of edges, no two of which share

an endpoint

subgraph of G induced on S G[S] V (G[S]) = S,

E(G[S]) = {uv ∈ E(G) | {u, v} ⊆ S}
complement of G G V (G) = V (G),

E(G) = {uv | {u, v} ∈ V (G), uv /∈ E(G)}
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Graph invariants

Term Symbol Meaning

clique number of G ω(G) size of the largest clique in G

stability number of G α(G) size of the largest stable set in G

degree of v d(v) size of N(v)

maximum degree of G ∆(G) maxv∈V (G) d(v)

minimum degree of G δ(G) minv∈V (G) d(v)

clique number of G ω(v) ω(G[N̄(v)])

chromatic number of G χ(G)

gamma of G γ(G) d1
2
(∆(G) + 1 + ω(G))e

local gamma of v γl(v) d1
2
(d(v) + 1 + ω(v))e

local gamma of G γl(G) maxv∈V (G) γl(v)

Main Conjecture for all G, χ(G) ≤ γ(G)

Local Strengthening for all G, χ(G) ≤ γl(G)

Further terminology

Term Symbol Meaning

claw a vertex v and three mutually nonadjacent

neighbours of v

triad a stable set of size three

S is complete to T every possible edge between S and T exists

S is anticomplete to T no edges between S and T exists

hole an induced cycle of length ≥ 4 in G

antihole induced cycle of length ≥ 4 in G


