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ABSTRACT 

P. M. Cohn calls a submodule P of the left A-module M pure 

iff 0 --~ E Œ) P --~ E @ M is exact for aIl rte modules E. Most 

of the well-known theorems on pure subgroups are valid for pure 

submodules. Extending a definition of Maranda to arbitrary rings~ 

a module Q is called pure projective iff Hom(Q,M) --~ Hom(Q,M!P) --~ 0 

is exact whenever P is pure in M. Maranda's results on pure 

projectivity are extended and a complete structure for pure projective 

modules is obtained. 

Generalizing a known property of regular rings, a (left) A-module 

is called regular iff all i ts submodules are pure. The ring A 1.s 

shown to be regular iff all left (or all rt.) A-modules are regular. 

A structure theorem for regular projective modules is obtained. A 

regular socle is defined, analogous to the semi-simple ( = usual) socle, 

and its basic properties established. Several new characterizations 

of regular rings are gi ven. 

It is known that a left module F is fIat iff its character module 

Homz(F,Q/Z) is injective. For (left) noetherian rings, the dual holds: 

the left module l is injective iff its character module is fIat. It 

is also shown that the weak ( = fIat) global dimension of A is equal 

to: sup weak dimension E, with the sup taken over all left (or rt.) 

finitely presented cyclic modules E. 

Pure simple and indecomposable rings are related to the pp and 

PF rings of Hattori. The latter are rings in which every principal 

(left) ideal is projective (or fIat). These rings are characterized 

both in the commutative and non-commutative cases. 

Localization theorems for purity, regularity, PP and PF rings 

are obtained. 

Finally, as an application, fIat covers of modules are constructed 

and their basic properties established. They always exist and coincide 

with the projective cover for the perfect rings of Bass. However, 

they are not in general unique. 
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PREFACE 

Following P. M. Cohn we calI a submodule P of the left A-module 

M pure iff 0 --~ E ~ P --~ E ®M is exact for aIl rte modules E. 

This generalizes the definition of purity for abelian groups, and 

we prove that rnQst of the well-known theorems on pure subgroups are 

valid for pure submodules. 

For Principal Ideal Domains, Maranda calls a module Q pure 

projective iff Hom(Q,M) --~ Hom(Q,M!P) --~ 0 is exact whenever P 

is pure in M •.. Adopting t ms defini tion for arbi trary rings, we are 

able to extend his results on pure projectivity and get a complete 

structure theorem for pure projective modules. 

It is easy to verify that a ring A is (von Neumann) regular 

iff every left (or every rt.) ideal is pure. Generalizing this 

idea, we calI a (left) A-module regular iff aIl its submodules are 

pure. We prove that the ring A is regular iff aIl left (or aIl rt.) 

A-modules are regular. A structure thearem for regular projective 



module is obtained. We a1so define a regu1ar socle, analogous to 

the se~-simp1e ( = usua1) socle, and estab1iSh its basic properties. 

Sever al new characterizations of regu1ar rings are a1so proved& 

Lambek has shown that a 1eft module F is f1at iff its character 

module HomZ(F,Q/Z) is injective. For (left) noetherian rings we 

.prove the dual: the 1eft module l is injective iff i ts character 

module is fIat. We are also able to show that the weak ( = f1at) 
' .. 

global dimension of A is equa1 to: sup weak dimension E, with 

the sup taken over a11 1eft (or rte )finite1y presented cyc1ic 

modules E. This extends and considerably simplifies the proof of 

a corresponding result of Auslander and Buchsbaum on the global 

homo10gica1 ( = projective) dimension of A. 

Next we relate pure simple and indecomposab1e rings to the pp 

and PF rings of Hattori. The latter are rings in which every 

~rincipa1 (left) ideal is projective (or fIat). We characterize 

these rings both in the commutative and non-commutative cases. 



Our next chapter gives a number of localization theorems for 

purity, reffula~ity, pp and PF rings. 

Finally, as an application, we c~struct fIat covers of modules 

and establish their basic properties. They always exist and coincide 

with the projective cover for the perfect rings of Bass. However, 

they are not in general unique. 

Originality can be claimed for the results in this thesis, 

except in a few places where specifie acknowledgement is made in 

the texte For advice given in conversation l am indebted to members 

of the McGill staff, in particular Dr. Connell and Dr. Kuyk. Most of 

aIl l would like to thank my supervisor, Dr. J. Lambek, for the great 

deal of time and encouragement he has given me. 
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CHAPTER 0: 'NOTATION. TERMINOLOGY, AND PRELIMINARIES 

In general we use the notation and terminology of Bourbaki; 

divergences are noted explicitly. 

Throughout this thesis the word ring will mean associative ring 

with unit element, but not necessarily commutative. Ring homo-

morphisms preserve unit elements; the unit element of a subring is 

the unit element of the overring. Rings are usually denoted by the 

letters A, B, C, ••• an'd their unit elements by lA' lB' lC' ••• 

respecti vely. 

All modules will be unitary. Unless the contrary is stated, 

all modules and submodules will be left. Modules are usually denoted 

by the letters E, F, G, ••• M, N, ••• and E', En, etc. 

The word ideal will mean two-sided ideal. Ideals (both one- and 

two-sided) are often denoted by the letters l, J, K, ••• or m, n, p, ••• 

Module homomorphisms are denoted: u:E --~ F or f E Hom(M,N). If 

u is in Hom(F,G) then for any M, H(M,u):Hom(M,F) --~Hom(M,G) 
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denotes the map defined by: H(M,u)(w) = uw. If f:M --~MiN 1s 

the canonical homomorphism, we often set m = f(m) for m in M. 

Often our considerations involve only one ring, say A. In 

that case we let 1 be its unit element (instead of lA)' and write 

® in place of ~A. The word module is then understood to mean left 

A-module, and the expression "Let u:E --~ F" to mean: let u be 

an A-homomorphism from the left A-module E to the left A-module F. 

If more than one ring is involved, we emphasize the distinction by 

writing A-flat, B-flat, etc. 

As a rule, x, x·, x" denote elements from the sets X, X', X" 

respectively. The sets may be rings, modules, ideals, etc. 

An exact commutative diagram is a commutative diagram in which 

all rows and all columns are exact. 

Defini tions, theorems, etc. are usually given for the "left" 

side. It is understood, of course, that a corresponding statement 

holds for the rte side, although we do not always state it explicit1y. 

In the case of non-symmetric ring properties, the absence of the words 
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left and rte means that both hold; e.g. by noetherian ring we mean bath 

left and rte noetherian. 

The letters l, J, K, ••• are often used for index sets. We use 

the convention that any summation is over the repeated indices. Thus 

i a .. x. will mean ~a .. x. (j in J) 
1J J 1J J 

and 

ra .. b .kCld (j in J, k in K) 
1J J 

Since frequent reference is made to: 

(BI) Bourbaki, N. Algèbre Commutative, Ch. l and II, 

(B2) Bourbaki, N. Algèbre, Ch. II, 

(B) Bourbaki, N. Algèbre, Ch. VIII, 

these three books are referred to as (BI), (B2) and (B) respectively. 

Other references are given in the usual way. 

The following abbreviations are used: Mono, epi, iso for one-one, 

onto, one-one and onto homomorphisms, rt., fg, iff for right, finitely 

generated, if and only if respectively. 

We will now recall the definitions and elementary properties of 

several concepts which will be used frequently in this thesis. 
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1. Finitely Presented Modules 

These modules play an important rôle in our work. A left A-module 

E is called a ~ ( = finitely presented) module iff there exists an 

exact sequence of left A-modules 

G --~ F --~ E --~ 0 

with both G and F fg free modules. This definition, as well as the 

basic properties of fp modules, are given in (Bl, p. 35). 

PROPOSITION 1.1. For any module Ethe following conditions 

are equivalent: 

(1) E is f'p. 

(2) There exists an exact sequence 0 --~ K --~ F --~ E --~ 0 

with F f'g free and K fg. 

(3) There exists an exact sequence 0 --~ H --~ P --~ E --~ 0 

with P f'g projective and H fg. 

Proof. 

(1) =~(2): If E is fp, there exists an exact sequence 

G --~ F --~ E --~ 0 with Gand F both fg free. Bence we have an 
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exact sequence 0 --~ K --~ F --~ E --~ o. By (B1, Lemma 9, p. 37), 

K is fg. 

(2) =~ (3): is obvious. 

(3) =~ (1): Let Pi generate P, with i in l, a finite index 

set, and let u:P --~ E be the given homomorphisme There exists a 

free module F wi th base fi' i in l, such that F = PŒ> Q for some 

Q, and f. = p. Cf) a. (B2, Cor. l, p. 62). 
]. J. ""J. 

Define v:F _.::.~ E by 

V(fi ) = u(P.). It is routine to verify that Ker v = H œ Q. Since 
• J. 

H and Q are fg, so is Ker v, with generators k. 
J 

say, with 

j in J, a finite index set. Let G be free wi th base j in J, 

and define w:G --.!) F by w(g.) = k .• 
J J 

C1ear1y we have an exact 

sequence G --~ F --.!) E --~ 0 with Gand F fg free; hence E 

is fp. 
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2. Change of RingS 

In this section, we recall some facts about change of rings. For 

further details and proofs, see the indicated reference in (B2). 

Throughout this section let f:A --~B be a ring homomorphisme 

(a) Restriction of Scalars from B to A via f (B2, p. 49). 

Any left B-module E can be canonically made into a left A-module by 

defining ae = f(a)e for all a in A and e in E. 

(b) Extension of Scalars from A to B via f (B2, p. 116). 

By restricting the scalars from B to A, B can be made into art. 

A-module BA. With any left A-module E we can canonically ~ssociate 

a left B-module ~ = BA @A E, and an A-homomorphism E --~ ~ given 

l;>y e --~ 1 0 A e. 
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3. Perfect Rings 

The definitions and results in this section are almost all due 

to Bass (4). A left or rte ideal l of A will be called ~ 

T-nilpotent iff for any se~ence al' a2, ••• of elements of l, there 

exists n) 0 such that al a 2 ••• an = 0 (right T-nilpotence requires 

that a al ••• al = 0 for some n). n n- A submodule s of E is small 

in E iff for every submodule F of E such that S + F = E, we have 

F = E. An epi u:P --~ E is called a projective caver of E iff P 

is projective and Ker u is small in p. We call a ring A ~ 

perfect iff every left A-module bas a projective cover. We qlote 

without pro of: 

THEOREM 3.1 (Bas s) • Let N be the Jacob son radi caJ. of A. Then 

. the following conditions are e~ivalent: 

(1) N is left T-nilpotent and A/N is semi-simple. 

(2) A is left perfect. 

(3) Every flat left A-module is projective. 

(4) A has no infinite sets of orthogonal idempotents, and every 

nonzero right A-module has nonzero socle. 
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CHAPTER 1: PURITY 

This chapter will be devoted to defining and establiShing the 

basic properties of pure submodules. 

1. Definition and Elementary Properties of Purity 

We will adopt a definition of purity due to P. M. Cohn (11). An 

exact sequence of left A-modules 0 --~ E --~ F ---> G --~ 0 will be 

called pure exact iff for every rte A-module D, the induced seqùence 

o --~ D ® E --~ D ® F --~ D ~ G --~ 0 is exact. Usually we identify 

E wi th its image in F and say that E is pure in F. Conversely, 

a submodule E of F will be called a pure submodule iff the 

associated exact sequence 0 --+ E --~ F --~ FIE --~ 0 i5 pure exact. 

It i8 easy to verity that for-any module E, both 0 and E are pure 

submodules. Consequently any collection of submodules of E which 

contains 0 will always contain a pure submodule of E. Since for any 

rte A-module D, the functor Dcg) is rte exact, the condition that E 

be pure in F is equivalent to the requirement that D(j) = ID ® j 

,';., 
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/ 

be mono for a11 rte A-modules D, Where j:E --~F is the canonical 

injection. 

In order to exp1ain the name purity, we quote without proof the 

fo11owing fundamenta1 resu1t of P. M. Cohn (11): 

THEOREM 1.1 (P. M. Cohn). Let P be a submodu1e of M. Then 

P is pure in M iff given L aijm
j = ~ in P for a11 i in l, some 

finite index set,where aijE A, m.E M, and j in J, a finite index set, 
J 

then there exist Pj in P for al1 j in J, such that 

Remark 1.1. 

(i) This resu1t will sometimes be used as a test for purity. For 

convenience we shall use the fol1owing (equivalent) abbreviated form: 

P is pure in M iff 2 a .. m. E P =" 'IIi" a .. m. = ~ a .. p .• 1J J L 1J J L 1J J 

(ii) For PID's (Principal Ideal Domains), Kaplansky (25) defines 

a submodule P of M to be pure iff 

(1) am in P =~am = ap for all a in A and sorne p in P. 
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which is equivalent to: 

(2) aMnP = aP for all a in A. 

It is clear that Cohn's definition of purity is a generalization of 

(1); in fact, as he remarks, his definition coincides vdth that of 

Kaplansky for PIDts.- Chase (10) has adopted the formulation (2) as a 

definition of purity for arbitrary rings. In Section 3, we shall 

examine these two definitions in great~~ detail, and prove a theorem 

which extends Cohn's remark to a wider class of rings. However, unless 

the contrary is stated explicitly, the word pure will always mean pure 

in the sense of Cohn. 

Our next proposition shows that several well-known properties of 

pure subgroups are alsû valid for pure submodules. 

PROPOSITION 1.2. Suppose ESF€ G are left A-modules. Then 

(1) E pure in F and F pure in G =~ E pure in G. 

(2) E pure in G =~ E pure in F. 

(3 ) F pure in G =") FIE pure in G/E. 

(4) If E is pure in G then FIE pure in G/E =~ F pure in G. 
\ 
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(5) If E is pure in G, then under the one-one correspondence 

between the submodules of G containing E and the submodules of 

G/E, pure submodules correspond to pure submodules. 

Proof. For any rte A-module D, we have the following exact 

commutative ~iagram: 

u v 
D ® E --~ D ® F --~ D 0 FIE --~ 0 

1· ~ b .l, J, c 

. D ®.E --~ D ® G --~ D ® G/E --+ 0 
u· v' 

where all the maps are those induced by the canonical maps arising from 

the inclusions: E <: F € G. 

(1) Since bu = ut, we have u mono and b mono =~ut mono and 

(2) ut mono =~ u mono. 

For (3) and (4) we use the Snake Lemma (Bl, Prop. l, p. 17). 

(3) If b is mono then c is mono since 1 and v are epi, by 

Corollary 2 of the Snake Lemma. 

(4) If ut and c are mono then b is mono since 1 is mono, 

by Corollary 1 of the Snake Lemma. 

(5) follows immediately from (3) and (4). 
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For the most part, the results of the next proposition were given 

by Cohn (11). For completeness we c ollect them together here; note 

that flat modules play the saroe rôle for pure submodules as torsion 

free abelian groups do for pure subgroups. 

PROPOSITION 1.3. Let 0 --~ E --~ F --~ G --~ 0 be exact. Then: 

(1) If G is flat, E is pure in F. 

(2) "The converse holds if F is flat. In that case E is also 

flat. 

(3) If F is flat, then E is pure in F iff G is flat. 

(4) If G is flat, then under the one-one correspondence between 

submodules of F containing E and submodules of G, pure submodules 

correspond to pure submodules. 

(5) If E is a direct summand of F then E is pure in F. 

Proof. Let j:E --~ F be the given homomorphisme For any rte 

A-module D, the given exact sequence yields the long exact sequence: 

Tor(D,F) --~ Tor(D,G) --~ D ® E --~ D ® F. 
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(1) If G is flat, Tor(D,G) = 0 and D(j) = ID®j is mono. 

Hence E is pure in F. 

(2) If F is flat, Tor (D, F) = 0 and Tor(D,G) = Ker D(j). 

Hence if E is pure, D(j) is mono and Tor(D,G) = 0 and G is flat. 

Also E is flat since F and G are flat (Bl, Prop. 5, p. 31). 

(3) This follows by combining (1) and (2). 

(4) If G is flat, E is pure and the result follows from 

Proposi tion 1.2. 

(5) is immediate since ® commutes with e (B2, Cor. 5, p. 93). 

The following corollary is the analogue of a well-known proposition 

for projective modules. 

COROLLARY. The left A-module F is flat iff every exact se~ence 

o --~ D --~ E --7> F --~ 0 of left A-modules is pure exact: 

Proof. 

=~: is immediate by Part (1). 

~=: Taking E flat, the result is immediate by Part (2). 
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Remark 1.3. 

(i) The converse of (1) 1s false in general: let P be a module 

which is not fIat, and let F = P ($> P. Then P is pure in F by 

Part (5), but G = F/P ~ P . is not fIat. 

(ii) The dual of the situation described in the corollary, i.e. 

modules D for which every exact sequence 0 --~ D --~ E --~ F --~ 0 

is pure exact has been studied by Maddox (31). He calls such modules 

absolutely pure. 

(iii) The converse of (5) is not in ge~eral true. In fact,we have: 

PROPOSITION 1.4. For any ring A the following conditions are 

e qui val en t: 

(1) A is left perfect. 

(2) Pure submodules of fIat left A-modules are direct summands. 

(3) Every pure exact sequence of left A-modules 

o --~E --~ F --~ G --~ 0 with F fIat is split exact. 

Proof. 

(1) =~ (2): If P is a pure submodule of the fIat module F, then 
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F/p is flat by Proposition 1.3. Since A is left perfect, F/p is 

projective by Theorem 3.1 of Chapter 0, and the exact sequence 

o --7 P --~ F --~ F/P --~ 0 splits (B2, Prop. 4, p. 61), i.e. P is 

a direct summand. 

(2) =~ (3): is obvious. 

(3) =:) (1): For any flat left A-module F, there exists an exact 

sequence 0 --~ D --~ E --~ F --~ 0 wi th E projective. Since F is 

flat, the sequence is pure exact, hence split exact and F is projective. 

COROLLARY 1. If every puresubmodule is a direct summand, then 

A is left perfect. 

Proof. Obvious. 

COROLLARY 2. There exist pure submodules which are not direct 

summands .. 

Proof. There exist rings which are not :perfect (the ring of 

integers for example)o See Bass (4). 
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Remark 1.4. In Chapter 2, we shall examine conditions under whioh 

every pure submodule i s a direct summand. 

PROPOSITION 1.5. Let o --~ P. --~ M. --~ N. -~ 0 be exact 
3. 3. 3. 

for all i in l, any index set, and let P = G> P. 
3. 

(:t ,in 1) and 

M = éMi(i in I). Then P is p1l,re in M iff Pi is pure in Mi 

for all i in I. 

Proof. Let ki:Pi --~ Mi and k:P --~ M be the canonical 

inj ecti ons. Then k = (;p) k. (i in I) (B2, Prop. 7, p. 26). 
3. 

For any.rt. 

A-module E, let· E(k) = ~ ~ k, etc. Then E(k) = G) E(k. ) 
3. 

since ® 

comm1l,tes wi th Œ> (B2, Prop. 7, p. 90), and the direct sum map E(k) 

is mono iff each component map E(k
i

) is mono (B2, Cor. 1, p. 27). 

Therefore P is pure in M iff Pi is pure in M. 
3. 

for al1 i in I. 

THEOREM 1.6. Let l be any directed set, and let (P. ), (M.), 
3. 3. 

. 
and (Ni) be direc ted syst ems of modules wi th P = li, Pi' M = 1i~ Mi 

and N = ~ Ni and suppose u i : P i --~ Mi and vi: Mi --~ Ni 
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e·· are directed systems of A-homomorphisms wi th u = li~ ui and 

such that 0 --~ P. --~ M. --~ No; --~ 0 is exact for 
~. ~ ... 

aIl i in I. ·~hen if Pi is pure in Mi for all i in l, P is pure 

in. M. 

Pro of. For any rte A-module E let E(u) = lE (2S) u etc. Then 

we have E(u) = li~ E(u~i) since the direct limi t commutes wi th 

~ (B2, Prop. 12, p. 145). Hence if E(Ui ) is mono for all i, then 

E(u) is mono (B2, Prop. 6, p. 134). 

COROLLARY 1. The direct limit of any directed system of pure 

submodules of a given module is pure. 

Proof. We apply the theorem with M = Mi for aIl i. 

COROLLARY 2. The union of any chain of pure submodules of a module 

is pure, i.e. purity is an inductive property. 

Proof. Any chain forms a directed system of submodules. Apply 

Corollary 1. 
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CQROLLARY 3. If' P is a submodule of' M such thàt every f'g 

submodule of' P is pure in M, then P is pure in M. 

Proof'. Any submodule P of' M is the direct limit of' its f'g 

submodules, which are pure in M. Hence P is pure. 

COROLLARY 4. If' every f'g submodule of' M is pure, then every 

submodule of' M is pure. 

Proof. Obvious using Corollary 3. 

THEOREM 1.7. Let P be a submodule of M, and consider the 

following conditions: 

(1) M/P is fIat. 

(1)' P is pure in M. 

(2) KM"p = KP for all rte ideals K. 

(2)' KM I\P = !CP for aIl fg rte ideals K. 

(2)" KM ('\P = KP for aIl principal rte ideals K. 

(3) aM "p = aP for aIl a in A. 
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Then we always have the following implications: 

(1) =~ (1)' =~ (2) ~~ (2)' =~ (2)" ~~ (J). 

If M is fIat we have (1) <fo~ (1)' ~~ (2). 

Proof. 

(1) =:) (1)': is given in Proposition 1.3. 

S:nce KP is always contained in KMnP, we need only show the 

opposite inclusion in each case. 

(1)' =::) (2): If p = Ik.m. 
J J 

(j in J, a finite set) is a typical 

element of KM" P then p = 2). p . E KP 
J J 

since P is pure in M 

(Theorem 1.1). Therefore KM f\ P is contained in KP. 

(2) =~ (2)': is obvious. 

(2)' =~(2): If p = Lkjmj (j in J, a finite set) is a typical 

element of KM f\P, let K' be the fg rte ideal generated by the k j • 

Then p is contained in K'M "p = K'P, which i3 contained in KP. 

Therefore KM f\ P is contained in KP. 

The remaining implications are obvious. 

If M is fIat, the equivalences (1) (==> (1)' <==) (2) are given 

in Proposition 1.3 and (BI, Cor., p. 33). 
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2. Pure Left Ideals 

Before proceeding to the main theorem of this section, we make 

a number of important definitions which will be used here and later. 

A subset S of A is idempotent iff 2 S = S, where is the 

collection-of all finite sums of elements of the form ss' with 

s and SI in S. 

An element a of A will be called a left zero divisor iff there 

exists 0 /: b in A so that ab = O. This is equivalent to saying 

that the homomorphism f :A --~ A a (as left A-modules) defined by 

f (b) = ab is ~ mono. Similar comments apply for rte zero divisors. a 

If we set r(a) = (b' A 1 ab = 0), the rte aIÏn:i,hilator of a, then a is 

a left zero divisor iff r(a) /: O. The sarne comments apply to rte zero 

divisors, with l(a) = (b E A \ ba = 0), the left annihilator of a. We 

note that r(a) is art. ideal of A and l(a) is a left ideal of A. 

Since 0 is both a left and rte zero divisor, we call a zero divisor 

proper iff it is nonzero. We say that the ring A has no left zero 

divisors iff A has no proper left zero divisors; similarily for rte 

zero divisors. And we say that A has no zero divisors iff A has no 
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left zero divisors and no rte zero divisors, i.e. l(a) = 0 = r(a) 

for all 0 1= a in A. 

A left A-module M 1= 0 will be caLled simple (resp. pure simple, 

indecomposable) iff 0 and M are the only submodules (resp. pure 

sUbmodules, direct summands) of M. The ring A will be called 

left simple (resp. left pure simple, left indecomposable) iff it is 

simple (resp. pure simple, indecomposabl.e) as a left module; and it 

will be called simple (resp. pure simple, indecomposable) iff it i8 

both left and rte simple (resp. pure simple, indecomposable). Clearly 

every simple module or ring is pure simple, and every pure simple module 

or ring i8 indecomposable. 

THEOREM 2.1. For any left ideal P of' A the following 

condi tions are e quivaLent: 

(1) A/p i6 flat. 

(1) • P i6 pure in A. 

(2) KP = KnP for all rte ideals K. 

(2)t KP = KI\P for all fg rte ideals K. 
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(2)" KP = K "p :f or all pr.i. nei pal rte ideala K. 

(3 ) aP = aAn P :for al1 a in A. 

(4) For each p in P, there exista an a in r(p) = (x cf A 1 px - 0) , 

sueh that â = 1 (where â is the image o:f a in A/P) • 

Furthermore a F 0 unless P = A. 

Proo:f. Sinee A is :flat, it su:f:fiees by Theorem 1.7 to show 

(3) ==) (4): pEP =~ P E pA ft P = pP =~ p = pp' :for sorne p' in P • 

... 
And a = 1 - p' is in r(p) w.ith â = 1 sinee p' is in P. 

Clearly a F 0 unless P = A. 

(4) =~(l): To prove that A/P is fiat, it su:ffiees to show that 

Tor(A/K,A!P) = 0 :for any rte ideal K (Bl, Prop. l, p. 55). N~{ 

Tor(A/K,A/P) = (K ",p)/KP by Cartan-Eilenberg «8), p. 126). I:f k 

is in K"P, there exists a in A sueh that ka = 0 and â = 1. 

Renee l - a = p is in P. There:fore kp = k(l-a) = k and 

K" P = KP. Renee Tor(A/K,A/P) = O. 
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COROLLARY 1. 

(1) If P 1= A is a pure left ideal of' A, then all i ts elements 

are left zero d:Lvisors. 

(2) If A has no left zero divi sors, A is left pure simple. 

(3) If A has no zero di vi sors, A is pure simple. 

(4) Every integral domain is pure simple. 

Pro of • 

(1) By (4) of the theorem, r(p) 1= 0 for each p in P since 

P 1= A. 

(2), (3) and (4) are obvious. 

COROLLARY 2. 

(1) If P is a pure left ideal of A, then for each p in P, 

there exists a sequence 

for aIl 

p. in P, 
J. 

i = l, 2, ••• such that 

n = l, 2 ••• 

(2) 0 is the only left T-nilpotent pure left ideal of A. 



Proo!. 

(1) The sequence can be constructed inductively using the 

method which was used in proving () =~ (4) in the theorem. 

For any secpJ.ence p. in P, there exists an n 
). 

Pl ••• Pn = O. (See Section) of Chapter O.) 

COROLLARY ). 

(1) Every pure left ideal P is idempotent. 

such that 

(2) Let P be a left ideal. If K"P is idempotent for all 

principal rte ideals K, then P is pure in A. 

Pro of. 

(1) Let p' = PA~ P. Then p
2 

= p'p = p' f\ P = P. 

(2) 
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Rence K "p = KP for aIl principal rte ideals K, and P is pure in A. 

COROLLARY 4. If P is a principal left ideal, say Ab, then 

Part (J) of the theorem b ecoine s (J)': aAb = aA f\ Ab f or aIl a in A. 
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3 •. Types of Purity 

In this section, we study several possible definitions of purity 

for arbitrary rings, and the relationships between them. 

A left module E will be called principal cyclic (resp. ~ 

cyclic) iff it bas the form E = A/I wi th l a principal (resp. fg) 

left ideal of A. Clearly every principal cyclic module is fp cyclic, 

and every fp cyclic module is both fp and cyclic. 

PROPOSITION 3.1. Let 0 --~ E --~ F --~ G --~ 0 be an exact 

se~ence of left A-modules and j:E --~ F the given map. 

(1) E is pure in F iff D(j) = lD ® j is mono for all fp 

rte A-modules D. 

(2) 0 --~ (KF"E)/KE --..!) E/KE ---)1 F/KF --.-. G/KG --~ 0 is exact, 

and hence (KFnE)/KE = Ker(A/K ® E --~ A/K ® F) for any rte ideal K. 

Proof. 

(1) If E is pure in F then D(j) is mono for all rte 

A-modules D by definition. Conversely, any rte A-module D is the 

direct limit of fp rte A-mûdules D. (Bl, Ex. 10, p. 62). 
J. 

Since the 
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direct limit commutes with ® (B2, Prop. 12, p. 145), 

therefore D(j) is mono (B2, Prop. 6, p. 134). Hence E is pure 

in F. 

(2) Since A/K®E = E/KE etc. (B2, Cor. 2, p. 89), the map 

'" jK:E/KE --~ F/KF is defined by jK(ê) = (je) ( ... ·denotes the image in 

the ~otient module). Hence ê is in Ker jx 

iff 
A 

(je) = o. 

iff je is in KF. 

iff e is in KFnE. 

iff ... is in ( KFt\E)/KE • e 

Consequently the given sequence is exact. The other statement is 

obvious. 

In view of Theorem 1.7, one might use any one of the conditions 

(1)', (2) or (3) as a definition of ptirity for arbitrary rings. In 

fact, (1)1 is puri ty in the sense of Cohn (11), and (3) is puri ty in 

the sense of Chase (10). Maranda (33) bas defined a purity similar 

to (2), using two-sided ideals instead of rte ideals. 
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Let E. be a submcdule cf the left A-module F. Fcr purpcses 

cf this secticn cnly, let us say .that E is I-pure, II-pure, cr 

III-pure in F a:cccrding as:. 

(I) E is pure in F in the sense cf Cchn~ 

(II) KF" E = KE fcr all (fg) rte ideals K. 

(III) KF nE = KE fcr aIl principal rte ideals K. 

By Thecrem 1.7, (II) i8 the same fcr bcth rte ideals and fg 

rte ideals, and (III) is the same as: aF ilE = aE fcr all a in A. 

Let ;r:E --~ F be the cancnical injecticn, and fcr any rte 

A-mcdule D, let D(j) = ID Gr) j. 

TH EO REM 3.2. E is I-pure, II-pure, or III-pure in F, 

acccrding as D(j) is mcnc fcr all 

(1) fp rte D, 

(II) fp cyclic rt. D cr (II)t: cyclic rte D, 

(III) principal cyclic rte D. 

Prccf. The prccf is immediate, using Propcsiticn 3.1. The 

equivalence cf (II) and (11)' follcws fram Thecrem 1.7. 



28 

COROLLARY. Let E be a submodule of the left A-module F. Then 

E is I-pure in F =~E is II-pure in F =~E is III-pure in F. 

This may be summarized 'by saying l''';~ II =~ III. 

Proof. Every p~incipal cyclic rte module D is fp cyclic, 

and every fp cyclic module is fp. 

Using the corollary of Theorem 3.2, we can deduce that some of 

the reverse implications hold, provided that there is some connection 

between fp, (fp) cyclic, and principal cyclic modules. 

THEOREM 3.3. 

(1) If every fp rte module D is a direct summand of a direct 

sum of cyclic (resp. principal cyclic) modules, then 

II =~ l (resp. III =~ 1). 

(2) If every fp rte module D is the direct limit of cyclic 

(resp. principal cyclic) modules, then II =~ l (resp. III =~ 1). 

Praof. 

(1) Suppose D ~ Dt = ® Ni where the Ni are cyclic (resp. 

principal cyclic), then D(j) 9Dt(j) .=t$Ni(j) sinee ® commutes 



with G> (B2,.Propo 7, p. 90). 

D(j) (B2, Cor. l, p. ZI). 

If the N.(j) are all mono, sa is 
J. 

(2) Suppose D = ~Ni wi.th Ni cyc1ic (resp. principal. 

cyclic), then D(j) = liD)Ni(j), since ® commutes with the direct 

limit (B2, Frop. 12, p. 145) and if the Ni(j) are all mono, sa is 

D{j) (B2, Prop• 6, p. 134). 

COROLLARY 1. If A is any one of 

(a) PID, 

(b) semi-principal ( = Bezout) domain (i.e. ever,y fg ideal. is 

principal) , 

(c) uniserial ring, 

then III =~ l (and hence III =~ II). 

Proof. 
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(a) 
#V. 

If A is a PID; i t is well~own that every" module is the 

direct sum of cyclic modules, which are principal cyclic since the 

domain is principal. 
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(h) If A is semi-principal, Chadeyras (9) has shown that every 

fp module is th~ direct sum of principal cyclic modules. 

(c) Koethe (27) has shown that if A is uniserial, then every 

left and every rte module is the direct sum of cyclic modules. 

Asano (1) and (2) and Faith (15) have shown that A is uni seri al iff 

A is a left and rte artinian and left and rte principal ideal ring. 

Hence every fp module is the direct sum of principal cyclic modales. 

COROLLARY 2. If A is an almost maximal valuation ring, then 

II =~ I. 

Pro of. Kaplansky «24), p • .3.39) has shown that for such rings 

every fg module is the direct sum of cyclic modules. Hence II =~I. 

Remark .3 • .3. 

(i) We note that in this theorem we are deducing some facts 

about left purity, from the structure of the rte A-modules. In Chapter 2 

we deduce some more facts about left purity using the structure of the 

left A-modules. 
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(ii) Sinee a domain is artinian iff i~ is a field, Corollary 1 

gives us two different types of examples. Consequently this is an 

extension of Cohn's Remark (see Remark 1.1). 

(iii) Sinee almost maximal valuation rings are not in general 

PID's (see Kaplansky (25), p. 75), Corollary 2 gives us a third type 

of example. 
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4. Change of Rings 

THEOREM 4.1. Let f:A --~ B be any ring homomorphisme If 

o --~E --~ F --~ G --~ 0 is a split (resp. pure) exact se~ence of 

1eft A-modules, then the induced sequenc~ o --~ E.- --.,. F --~ G --~ 0 -:B B B 

is a split (resp. pure) exact se~ence of 1eft B-modu1es. 

Proof. The split exact case is given by (B2, Cor., p. 120, and 

Prop. 7, p. 90)~ The pure exact case: Binee ~ = BA ~A E etc., 

the fact that the given se~ence is pure exact imp1ies that the induced 

sequence is exact. If M is any rte B-modu1e, then M~ B is art. 

A-module Binee B is a rte A-module. Therefore 

p. 94.) Therefore M ~ EB --~ M d% FB is mono for a11 rte B-modu1es 

M and the induced se~ence is a pure exact sequence of 1eft B-modu1es. 
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COROLLARY. If 0 --~ E --~ F --~ G --~ 0 is an exact sequence 

of 1eft B-modu1es which is split (resp. pure) exact aS a sequence of 

1eft A-modules, then it is pure exact as a sequence of 1eft B-modu1es. 

Proof. C1ear sinee E = EB-



34 

CHAPTER 2: PURE PROJECTIVITY 

1. Another Criterion for Purity 

For the proof of our main theorem, we need the following 

technical lemma: 

u 
LEMMA 1.1. Let ° --) G --) F --~ E --) ° be exact wi th F fg 

free on base j in J, a finite index set, and G fg with generators 

i in l, a finite index set. And let g. = la .. f. 
l. l.J J 

with 

and u( f .) = e. for all j in J. Then the f ollowing are e qui vaJ.en t: 
J J 

(1) l bjej = 0, with b. in A. 
J 

(2) b.j 
,J 

= i ciaij for some ci in A. 

(3) Each b j is in L Aaij (i in I), the left ideal generated 

by the aij , i in I. 

Proof. iff L bjfj is in G. 

iff l b.f. = lc.g. = Lc.a .. f. for some c. in A. 
J J l. l. l. l.J J l. 

iff b j = r ciaij (since the fj are a base). 

iff each b j is in r Aaij (i in I). 
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We proceed now to our main theorem. 

u 
THOOREM 1.2. The exact sequence 0 --~ E --~ F --~ G --~ 0 

of 1eft A-modules is pure exact iff H(M,u):Hom(M,F) --~Hom(M,G) 

is epi for a11 fp 1eft A-modules M, where H(M,u)(w) = uw for a11 

w in Hom(M, F). 

Pro of. 

=~: Let w be in Hom(M,G) with M any fp module. Then we 

have an exact secpence 0 --~ K --~ N --~ M --~ 0 wi th N fg free, 

on base n., j in J, a finite index set, and K fg w:i.th generators 
J 

k
i

, i in l, a finite index set. For aIl j in J, let m. be the image 
J 

of n j ; and for a11 i in l, let k. = L a .. n. w:i. th a .. in A. Th en 
~ ~J J ~J 

we have l aijmj = o. Since N is projective, we have an exact 

commutati ve diagram~ 

Hom(M,F) --~ Hom(M,G) 

Hom(N,F) --~Hom(N,G) --~o 

Let ~ in Hom(N,G) be the image of w and let v in Hom(N,F) 

be a pre-image of ~. Set ven .) = f. for a1l j in J. 
J J 



We have an exact commutative diagram: 

" . ., 
o ---),K --~ N ---') M --~ 0 

~ 'v t Jw' 
o --'"l> E --.,. F --~ G --., 0 

u 

ï aijfj is in E for aJ.1 i in I. And by the purity of E in F 

for some 
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Define w' in Hom(M,F) - e. 
J 

for a.11 j in J. 

Since the m. generate M, we need on1y ver.ify that this is we11 
J 

defined and that H(M,u)(w') = w. If m = L b .m. = 0, we have 
J J 

b j = L Ci aij for some Ci in A, by Lemma 1.1. Therefore 

A1so for a11 j in J, uw·(m.) = u(f. - e.) = U(f
J
.) = w(mj ) 

J J J 
by the 

commutativity of the diagram, and therefore H(M,u)(w') = uw· = w. 

~=: SUppose ~ aijfj E E (with finite index sets I and J). 

Let N be fg free on base n j , j in J, and let K be the fg submodu1e 

generated by ki , i in l, where ki = ,aijnj~ Form the exact sequence 

o --~ K --.:;> N --~ M --~ 0 and let be, the image of n j • Then 

L aijmj = O. Let v in Hom(N,F) be defined by v(nj ) = fj for 
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j in J. Then v(k.) = "ai.f. ~ l. J J 
is in E for aIl i in l and hence 

. ~ 

v(K) is a submodule of E, sa that we may pass ta quotient modules ta 

get an exact commutative diagram, whicb. defines w: 

0 --~ K --.:, N --~ M --~ 0 

t ... v t Lw 
0 --+ E --~ F --i' G --~ 0 

u 

Since M is fp, there exists w' in Hom(M,F) such that uw' 

Let w' (m
j

) = x. in F, for all 
J 

j in J. Th en for aIl j in J, 

u(x.) = w(m.) = u(f
j

) by the commutativity of the diagram and henoe 
J J 

e = fJ. - x. is in E for all j in J. Al sa 
j J 

= wt ( L ~ijm.) = w'(O) = 0 for aJ.l 
, . J 

i in I. Hence 

= 

Remark 1.2. Kaplansky «24), p. 332) remarks in a footnote that 

"It is conversely true for a module M over an arbitrary ring that 

w. 

purity of a submodule S is implied by the ability to ltft elements of 

Mis wi. th preservation of the order ideaJ.. This stronger property should 

perhaps be used as the definition of purity when working over generaJ. 

rings." (My underlining.) We have shawn that rather than lifting 
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elements and preserving the order ideal (which is equivalent to lifting 

maps from cyclic mod~es), a better choice is lifting maps from fp 

modules (Theorem 1.2). 

COROLLARY 1. SUppose for aIl i in l, any index set, that Ei is 

a submodule of Fi. Then E =TrEi (i in I) is pure in F = TrFi (i in I) 

iff Ei is pure in Fi for all i in I. 

Proof. Let 

. u 
o --~E --~ F --~G --~ 0 be the corresponding exact sequences. Then 

u =lTu. (i in I), and for any M, H(M,u) =TfH(M,u.) (i in I) 
1 1 

(B2, Cor. 2, p. 27), and hence the product map H(M,u) is epi iff 

each component map H(M,u.) 
1 

is epi for aIl i in l by (B2, Cor., p. 23). 

COROLLARY 2. Ever,y fp fIat module is projective. 

Pro of. Suppose G is fp fIat. Let 0 --~E --~ F --7 G --~ 0 

be exact. Then· E is pure in F since - G is fIat by Proposition 1.3 

of Chapter 1. Hence H(G,u):Hom(G,F) --~ Hom(G,G) is epi since G is 

fp. Therefore the se~ence splits, and G is projective. 
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v u 
THEORElVI 1.3. The exact sequence 0 --.:; E --~ F --,) G --~ 0 is 

split exact iff either of the following two equivalent conditions holds: 

(1) H(M,u):Hom(M,F) --~ Hom(M,G) is epi for all M. 

(2) H(v,M):Hom(F,M) --7Hom(E,M) is epi for all M. 

Pro of. If the given exact sequence splits, then the induced 

sequence 0 --ol) Hom(M,E) --~ Hom(M.F) --~ Hom(M,G) --~ 0 i8 split 

exact (B2, Frop. 2, p. 60) for· all M. Conversely by putting M = G, 

there exists w in Hom(G,F) such that H(G,u) (w) = uw = lG i.e. the 

sequence splits. Consequently we have the equivalence of splitting 

and (1). The equivalence of splitting and (2) is established in 

exactly the same way. 

Remark 1.3. 

(i) Thi$ theorem shows clearly just how much weaker purity is 

than direct summand. 
"' 

(ii) It also shows that any attempt to define a concept for 

Hom(M, ) or Hom( M) which corresponds to the definition of purity for 

~ M or M: ® does not yield anything new; we just get direct summands. 
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2. Pure Projectivity 

We will call a module P pure projective iff for any pure exact 

u 
sequence 0 --~ E --~ F --~ G --~ 0, the induced sequence 

o --~ Hom(P,E) --~Hom(P,F) --~ Hom(P,G} --~ 0 is exact. This is, 

of course, equivalent to requiring that the map 

H(P,u):Hom(P,F) --~ Hom(P,G) be epi. Any projective module P is 

pure projective since H(P,u) is epi for all exact sequences. We 

shall determine completely the structure of pure projective modules 

(Theorem 2.4). 

PROPOSITION 2.1. Let P = (f) Pi (i in l, any index set). Then P 

is pure projective iff Pi is pure projective for all i in I. 

u 
Proof. Suppose 0 --~ E --." F --~ G --~ 0 is pure exact. Since 

H(P,u) =lTH(P.,u) (i in I) (B2, Cor. 2, p. 27), the product map H(P,u) 
J. 

is epi iff each component H(P. ,u) 
J. 

is epi (B2, Cor., p. 23). 

THEOREM 2.2. Every fp module is pure projective. 

u 
Proof. Suppose 0 --~ E --~ F --~ G --,. 0 is pure exact. If M 

is any fp module then H(M,u) is epi by Theorem 1.2. 
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THEOREM 2.3. For any module Ethere exists a pure exact se~ence 

o --~ K --~ P --~ E, --~ 0 wi th P a direct SUIn of fp modules, and 

hence pure projective. 

Pro of. For any fp module M and any h in the ~ Hom(M,E). 

Let Mb be a copy of M. Define M to be the direct sum of the ~, 

with h ranging over Hom(M,E). Defïne P to be the direct sum of 

the M, wi th M ranging over the ~ of all fp modules. The class of 

all fp modules is a set, and hence we can rnake this construction; the 

.... 
same comment applies t 0 the construction of M, since, Hom(M,E) is 

a set. 

Let u:P --~ E be the canonical homomorphisme Then u is epi 

since every module can be written as the direct limit of fp modules 

(BI, Ex. 10, p. 62). 

For any fp module M, the map H(M,u):Hom(M,P) --~ Hom(M,E) i8 

epi since for any h in Hom(M,E) let h':Mh --~ P be the canonical 

injection. Then H(M,u)(h') = uh' = h. Hence 

° --~ K --~ P --~ E --~ ° is pure exact. 
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Remark 2.3. M~anda (32) defined and studied pure projectivity 

for PIDts. We have exte~ded his results to arbitrary rings. Our 

Theorem 1.2 is a generalization of his Lemma l for PID's. He remarks 

"that one need not restrict oneself ta the class of all cyclic 

modules ••• but that one may use just certain types of cyclic modules 

or even more generally, any arbitrary class of modules with suitable 

properties." We have shawn (Theorem 1.2) that the suitable class to 

choose is the class of fp modules. 

THEOREM 2.4 (Structure Theorem for Pure Projective MOdules). 

For any module P the following conditions are equivalent: 

(1) P is pure projective. 

- (2) Every pure exact sequence of the form 0 --~ K --~ E --~ P --~ 0 

splits. 

(3) P is a direct summand of a direct sum of fp modules. 

(4) P is a direct SUffi of countably generated pure projective 

mcdules. 



4) 

Proof. 

(1) =~_(2): Sinee P is pure projective, 

H(P,u):Hom(P,E) --~Hom(P,P) is epi and there exists an h in 

Hom(P,E) such that uh = Ip and the sequence splits. 

(2) ==) (): By Theorem 2.3, there exists an exact sequence of the 

form 0 --~ K --~ E --~ P --~ 0 with E a direct sum of fp modules. 

This sequence splits by (2) and we have the desired result. 

() =~ (4): By Kaplansky «26), Thm. 1) P is a direct sum of 

countably generated modules. Since P is a direct summand of pure 

projective (since fp) modules, it is pure projective by Proposi tion 2.1. 

By the sarne proposition the countably generated modules are pure 

projective, since they are direct summands of a pure projective module. 

(4) =~ (1): Follows immediately from Proposi tion 2.1. 

Remark 2.4. Theorem 2.4 is a generalization of the following 

well-known result for Plnts (see Kaplansky (25), p. 15): If H is 

a pure submodule of G such that G/H i9 a direct sum of cyclic 

modules, then H is a direct summand. 
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The next theorem shows that any pure submodule is in a certain 

sense "locally" a direct summand. 

THIDJREM 2.5. Let 0 --~ E --~ F --~ G --~ 0 be an exact 

sequence of left A-modules. Then E is pure in F iff E is a 

direct summand of all modules D such that E ~ D ~ F and DIE i9 fp. 

Pro of. 

==>: Suppose D is such a module and E is pUre in F. Then 

E is pure in D by Proposition 1.2 of Chapter l, .and therefore we 

have a pure exact sequence 0 --~ E --~ D --~ DIE --~ 0 which is 

split exact by Theorem 2.4 sinee DIE is pure projective by Theorem 2.2. 

~=: We use Cohn's Criterion (Theorem 1.1 of éhapter 1). Suppose 

~ aijfj = Xi in E with i in l, j in J, finite index sets. Let 

D be the submodule of F generated by E and all the fj_ 

be the free left module wi th base m., j in J, and K the fg 
J 

Let M 

submodule generated by ki = !aijmj - Then M/K is fp by Proposition 1.1 

of Chapter O •. 
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We will show that DIE is fp by showing that DIE ';t M/K. Defi ne 

,., 
u:M --~ DIE by u(mj) = fj (where a; denotes the image of d in DIE). 

This homomorphism is clearly onto since D is generated by E and 

the l' .• 
J 

Since u(k.) = la .. f-l =X.i =0, K is contained in the kernel 
1 1J. cJ 

of u. Passing to quotient modules, we have an isomorphism M/K ~ D/E~ 

Therefore E is a direct su.mmand of D, say D = E <:& R.. Renee 

1'. = e. +h. 
J J J 

and X
1
' = Zao .1'. = La .. e. + Za.-1h., 

1;) J 1J J 1cJ J 
and for an i in l 

x -i 
Therefore for all 

i in l and E is pure in F by Cohn's Criterion. 

'IHEOIŒM 2.6. Let f:A --~ B· be any ring homomorphism and E 

any left A-module. 

(1) If E is A-fp th en EB 
is B-fp. 

(2) If E is the direct su.m (resp. direct limit) of A-fp module s, 

then ~ is the direct sum (resp. direct limit) of B-fp module s. 

(J) If E is A-pure projective, then EB 
is B-pure projective. 



Pro of'. 

(1) f'ollows immediate1y f'rom (BI, p. 36). 

(2) f'ollows immediately f'rom (1) and the f'acts: 

(1) EB = B ®A E f'or any E. 

(ii) ®A commutes wi th both the direct wm and the 

direct limi t. 

(3) f'ollows from the above and the usual direct sum argument, 

since pure projectivi ty i8 equ.ivalent ta being a direct wmmand of a 

,direct sum of' fp modules. 
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3. Types of Purity 

In this secti on, we add sorne resul ts _ t.o those of Section 3 of 

Chapter 1. We will again use I-purity and III-purity. 

u 
THEOREVI 3.1. Let 0 --~ E --~ F --~ G --~ 0 be an exact 

sequence of left A-modules. Then aF" E = aE for all a in A 

(i.e. E is III-pure in F) iff H(N,u):Hom(N,F) --~ Hom(N,G) is 

epi for all principal cyclic modules N. 

Proof. The proof is analogous to, but much simpler than the 

proof of Theorem L2. 

The following corollaries are cbvious: 

COROLLARY 1. If H(N,u) is epi for aIl cyclic modules- N then 

aF "E = aE for all a in A. 

COROLLARY 2. If A is a left principal ideal ring then 

aFI\E = aE iff H(N,u) is epi for aIl cyclic modules N. 



We can now deduce, using the structure of the 1ill. A-modules, 

some fact s conc ern:ing I- and III-puri ty. 

THEOREM 3.2. If every ~ fp module M is a direct summand 

of a direct sum of left principal cyclic modules, then III =~ I. 

Proof. SUppose M$M' =(l>N. 
1 

with N. 
1 

principal cyclic. 

Then H(M,u) ®H(M' ,u) = TrH(Ni,u). If each H(Ni,u) is epi, so 

is H(M,u). 

COROLLARY 1.· If A is any one of 

(a) PID, 

(b) semi-principal ( = Bezout) domain, 

(c) uniserial ring, 

then III =; l (and hence III =~ II). 
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Proof. These follow from Corollary 1 of Theorem 3.3 of Chapter 1: 

(a) and (b) aince A is commutative and (c) aince uniserial is left-

rte symmetrico 
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4. Rings for which Pure Submodules are Direct Summands 

We know (Proposition 1.3 of Chapter 1) that every direct 5ummand 

is pure. Rere we shall study the class of rings for which the 

converse holds. 

The ring A will be called lef't PDS iff pure submodules of left 

A-modules are direct summands; and ~ iff i t is b oth left and rte PDS. 

THEORE'd 4.1. For any ring A the following conditions are 

equivalent: 

(1) A is left PDS. 

(2) Ever,y left A-module i5 pure projective. 

(3) Every left·A-module i5 the direct sum of countably generated 

pure projective modules. 

(4) Every pure exact sequence i5 split exact. 

Proof. 

(1) =9 (2): For any left A-module E, there exists a pure exact 

sequence 0 --~ K --7> P --~ E --~ 0 wi th P pure projective, by 

Theorem 2.3. Since K is pure in P, K is a direct summand, and E 
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is a direct summand of a pure projective module, hance pure projective. 

The e~ivalence of (2) and (3) is immediate by Theorem 2.4. 

(2) =~ (4): If 0 --~ D --.!) E --.l;> F --~ 0 is pure exact, then 

by Theorem 2.4 it is split exact since F is pure projective. 

(4) =~ (1): If D is pure in E th en. the exact se~ence 

o --.l;> D --~ E --~ E/D --~ 0 is pure exact, hence split exact and D 

is a direct sumrnand of E. 

THEORl!N 4.2. Every left PDS ring is left artinian. 

Pro of. Since pure submodules are direct summands, A is left 

perfect by Corollar,y 1 of Proposition 1.4 of Chapter 1. Since every 

left A-module is the direct sum of countably generated A-modules 

(Theorem 4.1), A is left noetherian by Faith's Theorem on noetherian 

rings (see Faith (16), Theorem 1.1). But as Bass «4), p. 475} has 

remarked, any left perfect, left noetherian ring is left artinian. 

We do not know the complete structure of PDS rings. However, we 

-" 
can show: 
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THEOREM 4.3. Every uniserial ring A is PDS. 

Pro of. Every 1eft A-module is the direct wm of cyc1ic modules. 

Since A is 1eft artinian, and therefore 1eft noetherian, these 

cyc1ic modules are fp modules. (For detai1ed reasons, see Coro11ary 1 

of Theorem 3.3 of Chapter 1.) Hence ever,y 1eft A~modu1e is pure 

projective and A is 1eft PDS by Theorem 4.1. Since uniserial is 

1eft:-rt. symmetric, A is rte PDS, i.e. PDS. 

It is of some interest to c1assify rings for which every fg flat 

module is projective. To this end we make the fol1owing sma11 

contri buti on: 

PROPOSITION 4.4. Let F be a fg fIat left A-module. Then the 

fol1owing condi ti ons are equi valent: 

(1) F is projective. 

(2) F is fp. 

(3) F is pure projective. 
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" 

Proof. 

(1) =~'(2): Every fg projective module is fp (El, Lemma 8, p. 36). 

(2) =~ (3): Every fp module is pure projective by Theorem 2.2. 

(3) =~ (1): Let 0 --~ D --~ E --~ F --~ 0 be an exact 

se~ence with E projective. Since F is fIat, the se~ence is 

pure exact (Proposition 1.3 of Chapter 1). Since F is pure 

projective, the sequence splits by Theorem 4.1, and F is projective. 
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CHAPTER 3: REGULAR MOWLES 

In this chapter, we define the concept of regular module. We 

will show that regular modules bear the same relationship to (von 

Neumann) regular rings as semi-simple modules bear to semi-simple rings. 

1. Another Property of Purity 

Our main theorem gives a very useful pro pert y of purity: 

THEOREM 1.1. Suppose we have an exact commutative diagram of 

left A-modules: 

u 
o ---~ E ---~ F ---~ G ---~ 0 

b L ~c 
o ---~ Et --~ F' --~ G' --~ 0 

v 

with c an isomorphisme If E is pure in F, then El is pure in F'. 

Proof. We have cu = vb and hence for any (fp) M 

H(M,c) H(M,u) = H(M,v) H(M,b). Sinee c is iso, so is H(M,c). Hence 

H(M,u) epi =~ H(M,v) epi. And therefore if E is pure in F, then 

E' is pure in Ft. 
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COROLLARY 1. Let P and Q be two submodules of' M. Then 

(1) (P"Q) pure in Q =~ P pure in (P+Q). 

(2) (P+Q) pure in M and (Pn Q) pure in Q =~ P pure in M. 

(3) (P+Q) pure in M and (p" Q) pure in M =~ P pure 

in M and Q pure in M. 

(4) PI\Q pure in P+Q =:;> P and Q are bath pure in P+Q. 

Pro of'. We have an exact commutative diagram: 

o --~ Pt\Q --~ Q --~ Q/(P" Q) -""+ 0 

~ ~. ~ c 
o --~ P --~P+Q -~+ ,(P+Q)/P --~ 0 

where aIl homomorphisms arise f'rom the natural injections, and c 1s 

an isomorphisme 

(1) i8 a straightf'orward application of' the theorem. 

(2) By (1), P is pure in (P+Q). But (P+Q) is pure in M 

and hence P is pure in M. by Proposition 1.2 of' Chapter 1. 

(3) (P 1\ Q) pure in M =~ CP t\ Q) pure in P and CP" Q) 

pure in Q. Apply (2). 

(4) Apply (3) wi th M = P+Q. 
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COROLLARY 2. For all i in l, any index set, let Ni b e a su bmodule 

of a fixed module lVl and let N = lN. 
J. 

(i in I). For each k in l 

,. 
= LN. define Nk (i in l, i 1= k). Then for all k in l, N pure 

J. 

A ... 
in M and (NkI\Nk) pure in Nk =~Nk pure in M. 

,., 
Proof. Apply Corollary 1 with P = Nk and Q = Nk • 

Remark 1.1. Parts (2) and (3) of Corollary 1 are the most important 

for us. We give an example to show that the converses are false. Take 

A = Z, the ring of int egers, and M = Z ® Z. Let P = the subgroup 

generated by (1,1), and Q = the subgroup generated by (1,-1). Then 

both P and Q are pure since n(a,b) = m(l,+l) == na = m = ± nb 

and therefore a = ± b; hence (a~b) is in P or Q and n(a,b) 

i8 in nP or in nQ. (See Remark 1.1 (ii) of Chapter 1.) . The 

elements of P+Q have the form a(l,l) + b(l,-l) = (a+b,a-b). Now 

2(1,0) = (1,1) + (1,-1) i8 in P+Q. But if 2(1,0) = 2(a+bja-b), 

then a+b = 1 and a-b = 0, which cannot be solved for integers. 

Hence P+Q is not pure in M. 
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2. Regular Rings 

In this section, we give some new characterizations of regular 

rings, which will be used to define regular modules in Section 3. 

The ring A will be called (von Neumann) regular iff a E aAa 

for aIl a in A. Bourbaki uses the word regular in (B3, Ex. 15, p. 76) 

but has changed this to absolutely fiat in (BI, Ex. 16, p. 64). We 

will use the word regular with this single meaning throughout. 

We remark that regular is a left-rt. symmetric concept. Therefore, 

aIl our results about left ideals or modules will have analogues for 

rte ideals and rnodules, which will be assumed and used, although they 

have not been stated explicitly. 

Before proceeding, we recall that regular rings are characterized 

by the fact that all modules are fIat (BI, Ex. 16, p. 64). 

THEOREM 2.1. The following conditions are equivalent for any ring A: 

(1) A is regular. 

(1)1 Every fg left ideal is a direct summand. 

(1)" Every principal left ideal is a direct summand. 
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(2) Every left ideal is pure. 

(2)' Every fg left ideal is pure. 

(2)" Every principal left ideal is pure. 

(3) K" I = KI for all rt. ideals K and all left ideals I. 

(3)' K nI = KI for all fg rte ideals K and all fg left ideals I. 

(3)" K" I = KI for aIl princi pal rte ideals K and principal 

left ideals I. 

(4) aA 1\ Ab = aAb for all a and b in A. 

Proof. We shaH give the proof according to the following schema; 

(1) =~ (1)' =~ (l.)" 

U, ~ ~ 
(2) =~ (2) 1 =~ (2)" 

~ ~ ~ 
(J) ==> (3) 1 =1> (3)" =~ (4) =:) (1) 

The equivalence of (1), (1)' and (1)" is weli known and given 

in (B3, Ex. 15, p. 76). 

The implications (2) =~ (2)' =~ (2)" and (3) =~ (3)' =~ 0)" =~ (4) 

are obvious. 

(1.) =~ (2):. For any left ideal I, A/I is flat since all left 
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A-modules are f1at in a regu1ar ring (B1, Ex. 16, p. 64).' Therefore, 

l is pure in A by Theorem 2.1 of Chapter 1. 

(2) =~ (3): fo11ows immediate1y from Theorem 2.1 of Chapter 1. 

The implications (1)' =~ (2)' and (1)" =~ (2)" ho1d since every 

direct summand is pure. 

The implications (2)' =~ (3)' and (2)" =~ (3)" are immediate 

consequencœof Theorem 2.1 of Chapter 1. 

(4) =9 (1): For a11 a in A, a E aA I\Aa = aAa and A is regu1ar. 

COROLLARY. 

(1) If A is regular, every left (or rt.) ideal is idempotent. 

(2) The converse holds if A is commutative. 

Pro of. 

(1)' Since A is regular, every left (or rt.) ideal is pure, and 

therefore idempotent by Corollary 3 of Theorem 2.1 of Chapter 1. 

(2) For any ideals P and K, K "p will be an idempotent 

idea1 (since A is commutative). Therefore by the sarne Corol1ary 3, 

referred to above, P will be pure in A and A will be regu1ar. 
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PROPOSITION 2.2. For any element a in.A, the following conditions 

are equ.ivalent: 

(1) Aa is a direct summand of A. 

(2) Aa isa pure left ideal of A. 

(3) a E aAa. 

Proof. 

(1) =~ (2): is immediate since every direct summand is pure. 

(2) =~ (3): By Theorem 2.1 of Chapter l aA 1\ Aa = aAAa = aAa 

since aA is art. ideal. But a is in aAr. Aa. 

(3) =~ (1): If a = axa then xa = e is an idempotent and 

.As. = Ae, which is a direct summand of A. 

Following Lambek (30) 7 we will calI a ring A semi-primitive iff 

its Jacobson radical J(A) is zero, and semi-prime iff its prime 

radical is zero. We" remark that sinee the prime radical of A is 

contained in J(A), every semi-primitive ring is semi-prime. Bourbaki 

uses "without radical'! (B3, p. 64) for semi-primitive, and "reduced" 

(BI, Def. 5, p. 97) for semi-prime in the commutative case. 
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THEOREM 2.3. For any ring A, consider the following condi tians: 

(1) A is a regular ring. 

(2) A/I is a regular ring for every two-sided ideal l of A. 

(3) AIl is a semi-primi ti ve ring for every two-si ded ideal l of A. 

(4) A/I is a semi-prime ring for every two-sided ideal l of 

A. Then we always have (1) =~ (2) =~ 0) =~ (4). If A is commutative, 

Proof. 

(1) =~ (2): is given in (B3, Ex. 15, p. 76). 

(2) =~ (3): Every regular ring i9 semi-primitive (B3, Ex. 15, p. 76). 

(3) =:) (4): Every semi-primi tive ring is semi-prime. 

(4) =~ (1) (A commutative): Suppose K and J are a:ny two 

...... 
ideals of' A and let l = KJ. Then KJ = 0 in the ring B = A/l, 

" .. where ... den otes the image in B. Sine e B is semi-prime, K f\ J = 0 

(see Lambek (0), p. 56). Renee K"J is contained in KJ. Since we 

always have the opposite inclusion, A is regular by Theorem 2.1. 
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3. Regular Modules 

A left A-module R will be cal.1ed (von Neumann) regular iff 

every submodule is pure. This genera1izes the idea of regŒ1ar ring. 

as the fo11owing theorem shows: 

THEOREM 3.1. For any ring A, the fol1ovd.ng conditions are 

equiva1ent: 

(1) A is a regular ring. 

(2) Every left A-module is regŒ1ar. 

(3) The left A-module A is a regular module. 

Pro of. 

(1) =~ (2): Since A is a regu1ar ring, every rte A-mOdule F 

is f1at (B1, Ex. 16, p. 64). Bence if D is any submodu1e of the left 

A-module E, the sequence 0 --~ D ® F --~ E ® F --;. E/D cg) F --~ 0 is 

exact (B1, Prop. 1, p. 26), and D is pure in E. Therefore E is 

regu1ar. 

(2) =:!> (3): is obvious. 
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(3) =~ (1): If' A 1s a :t'egular lef't A-module, then all the 1ef't 

ideals of' A are pure and A 1s a regular ring by Theorem 2.1. 

Remark 3.1. 

(1) This theorem shows that any theorem about regular modules 

implies a theorem about modules over regular rings. 

(11) It is an easy exercise to see that A is a re~lar ring 1f'f' 

every lef't A-module is absolutely pure. See Remark 1.3 of' Chapter 1. 

PROPOSITION 3.2. R 1s a re~lar module if'f' every f'g submodule 

is pure. 

Pro of'. 

~ : is clear. 

(==: Every submodule of' R is the direct limit of' f'g submodules 

of' R, i.e. the direct limit of' pure submodules, and hence pure, by 

Corollary 4 of' Theorem 1.7 of' Chapter 1. 

THEOREM 3.3. Let 0 --~ R --~ S --~ T --~ 0 be an exact sequence 

of' 1ef't A-modules. Then S is a re~lar module if'f' both R and T 

are regular modules, and R is pure in S. 



63 

Proof. In the course of this proof, we shal1 refer seyeral times 

to Proposition 1.2 of Chapter 1. For convenience, this will be denoted 

(1.2) for this proof only. 

=~: R is regular since every submodule of R is a submodule of 

S, hence pure in S, and therefore pure in R by (1.2). Every submodule 

of T bas the form v/R wi th R~ V~ S. But V i8 then pure in S 

and therefore V/R is pure in SIR = T by (1.2). Hence T is regular. 

And R is pure in S, since S is regular. 

(==: Let V beany submodule of S. Then (V+R)/R is pure in 

SIR = T, since T is regular. But R is pure in S. Hence V+R is 

pure in S by (1.2). Also V"R is pure in R, since R is regular. 

Hence V f\ R is pure in S, since R is pure in S, again by (1.2). 

Therefore, both V+R and V 1\ R are pure in S.' Hence V is pure in 

S by Corol1ary l of Theorem 1.1. 

THE 0 REM .3.4. Let R = ZR. 
J. 

(i in l, anY index set) be left 

A-modules. Then R is a regular module iff Ri is a regular module 

for all i in I. 
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Pro of'. 

=~: For each i in l, Ri is'regular by Theorem 3.3 since it is 

a submodule of' R. 

~=: Since R is a homomorphie image of' S = 9 Ri (i in I), it 

suf'f'ices to show that S is regular by Theorem 3.3. We will use 

Proposition 3.2: Let P be any f'g submodule of' S. Than P i8 a 

submodula of' T = G> Ri (i in J, J some f'ini te subset of' I). Since T 

is a direct summand of' S, it i8 pure in S. Hence if' we show that T 

is regular"we are f'inished because then P will be pure in T and 

hence in S. We have reduced the problem to proving the f'ollowing lemma: 

LElVllVIA 3.5. 

regular. 

n 
If' T = $ R., 

l ). 
then T is regular if' each Ri is 

k 
Proof'. We use induction. For each k ('n, let T(k) = 6> Ri. 

l 

Clearly T(l) = RI is regular. Assume T(k) is regular; then 

o --~ Rk+l --~ T(k+l) --~ T(k) --~ 0 is exact with T(k) and Rk+l 

regular and Rk+l pure in T(k+l) (since it is a direct summand). 

Hence T(k+l) is regular by Theorem 3.3. 
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COROLLARY. For any left A-module R, the following conditions 

are equivalent: 

(1) R is a regular module. 

(2) Ax- is a regular module for aIl x in R and Ax is pure 

in R. 

(J) Ax- is a regular module for all x in R. 

Proof. The proof is clear sinee R = l Ax (x in R). 
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4. Regular Projective Modules 

The main result of this section is a structure theorem for 

regular projective modules, i.e. modules whiCh are both regular and 

projecti ve. 

THEOREM 4.1. Suppose 0 --~ P --~ F --~ E --~ 0 is exact wi th 

F free. Then the f'ollowing conditions are equivalent: 

(1) P is pure in F. 

(2) E is fiat. 

(3) Given any x in P, there exists a homomorphism u:F --~P 

such that u(x) = x. 

(4) Given any xi in P, l~ i~ m, there exists a homomorphism 

u:F --+ P SIlch that u(x.) = X 
J. i 

f'or aIl i. 

Pro of'. The equivalence of' (1) and (2) bas been shown 

(Proposition 1.3 of' Chapter 1). The equivalence of' (2), (3) and (4) 

has been shown by Chase «10), Prop. 2.2), who attributes the result 

to Villamayœ. 
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COROLLARY. SUppose 0 --~ P --~ Q --~ E --~ 0 is exact vvi th 

projective and P pure in Q. Then given x. in P, 
~ 

1 Si$' m, 
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there exists a homomorphism u:Q --~ P such that u(xi ) = Xi for all i. 

Proof. Since Q is projective, there exists F = Q ® QI with 

F free. And P pure in Q, Q pure in F =:) P pure in F by 

Proposition 1.2 of Chapter 1. By the theorem, there exists w:F .-~ P 

such that w{xi ) = xi. Let u = w' Q. Then u:Q --~ P and 

w{x.) = x 
~ i 

for all i, since x. 
~ 

is in p. 

THEOREM 4.2. Suppose 0 --~ P --~ Q --~ F --~ 0 is exact vvith 

P fg and Q projective. Then P is pure iff P is a direct summand. 

Proof. Since any direct summand is pure, i t suffi ces to show the 

converse. Suppose then that P is pure and let Xi in P, (l$'i~m)t 

generate p. Then there exists u:Q --~ P such that u{x
i

) = Xi for 

all i. If j:P --~Q is the natural injection, then we have 

uj = J. , Whence the sequence splits. 
p 
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COROLLARY 1. If Q is regular projective then every fg submodule 

is a direct summand. 

Proof. Every (fg) submodul.e is pure. 

COROLLARY 2 (Osofsky (38». A is regular iff every fg submodule 

of a projective module is a direct summand. 

Proof. 

=9): If A is regular, every module is regular (Theorem 3.1), 

and the result fol1ows from Corollary 1. 

(r:=: Every fg left ideal is a direct summand, hence pure, and A 

is regular by Theorem 2.1. 

THEOREM 4.3 (Structure Theorem for Regular Projective Modules). 

A left A-module P is regular projective iff P = ® Ji where Ji is 

a regular projective principal left ideal, which i8 a direct summand 

of A. 

Remark 4.3. This generalizes and simplifies the pro of of a theorem 

of Kaplansky «26), Thm. 4). 
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Proof. 

<cc: If each Ji is re~lar, so is P (Theorem 3.4). If each 

J. isprojective, so is P. Rence the resu1t in one direction. 
~ 

=9): By Kap1ansky's Theorem «26), Thm. 1), every projective 

module is the direct sum of cg ( = countab1y generated) projective 

modules; hence we can reduce our prob1em to this case, and assume that 

P is cg. Let xi' i = 1, 2, 3, ••• generate P. We shal1 define 

inducti ve1y Yi in P, i T: 1, 2, 3, ••• such that: For ail n, the sum 

n Ob 

P = l AYi is direct and P = œ Ayi. Define Y1 = xl and assume n 1 1 
n 

defined for i~ nt so that P = ® Ayi· Since P is fg pure and P n 1 n 

is projective, there exists Q so that P = Pn (t) Q. Let 

xn+1 = Pn + Yn+1 (Pn in Pn' Yn+1 in Q). C1ear1y the sum 

n+1 n 
p 1 = l Ayi ia direct. Since for a11 n the sum P = G> AYi :i.s n+ 1 n 1 

CCI 
direct, so is the sum p. = $ Ayi. Also for each n, 

1 

The opposi'i;e iüc1usion holds too since each Y n is in P = P n ® Q. 

Since P is regu1ar projective, so is AYn for all n. Since Il .... 
~n 

Yi 

is projective, it is isomorphic to a left ideal Jn , which is a direct. 

summand of A, and hence principal. 



70 

COROLLARY 1. If P is a regular projective module, every cg 

submodule is projective. 

Pro of. Let i = l, 2, ••• generate the cg submodule M of 

p. We de fi ne Yi' i = l, 2, ••• exactly as we did in the proof of 

cao 
the theorem. Then M = (f) Ayi is projective since each Ayi is 

1 

projective. 

COROLLARY 2. If A is regular, every cg submodule of a projective 

module is projective. 

THEOREM 4.4. Let P be a regular projective left A-module. Then 

(1) If A is left indecomposable, then P is free. 

(2) If A is left pure simple, then ei ther P = 0 or A is 

left simple (i.e. A has no left ideals other than 0 and A). 

Pro of. 

(1) By Theorem 4,3, P = Œ> Ji where the Ji are left ideals 

which are direct summands of A; therefore Ji = 0 or A. 



(2) Continuing from (1), if J. = A 
~ 

for some 
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i, then A is 

regular since the Ji are aIl regular. But A is pure simple, and 

therefore A must be left simple. If A i9 not left simple, then we 

must have Ji = 0 for all i, and therefore P = O. 

COROLLARY. If A is an integral domain which is not a field, 

o is the only regular projective A-module. 

Proof. A is pure simple, but not simple. 

A fg module E will be said to be n-generated (n an integer) iff 

there exists a finite set of generators with not more than n elements. 

A module E will be said to be c-generated (c any cardinal) iff there 

exists a generating set with cardinalit,y c. 

PROPOSITION 4.5. Let D~P~Q \'lÏ.th 

(1) D fg. 

(2) P pure in Q. 

(3) Q an n-generated projective module. 

Then there exists an n-generated submodule E of P such that DSE~P. 
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Proof. Let xi' 1 ~ i ~m, generate D. Then by the corollary 

to Theorem 4.1, there exists a hom~morphism u:Q --~ P such that 

u(Xi ) = xi for all i. Hence u{x) = x for all x in D. Th en 

D = u(D) ç u( Q) = E ~ P and E is n-generated. 

THEOREM 4.6. If Q is n-generated projective, then ever,y pure 

submodule is the direct limit of n-generated submodules. 

Proof. Any pure submodule P is the direct limit of its fg 

submodules. By Proposition 4.5, the n-generated submodules are 

cofinal and hence P is the direct limit of n-generated submodules. 

COROLLARY 1. Let P be an n-generated projective module (n an 

integer). Then P is regular iff every n-generated submodule is a 

direct summand (a.'1d hence pure) and every submodule is the direct 

limit of n-generated submodules. 

Proof. 

=~: is clear by the definition of regular module and Theorems 

4.2 and 4.6. 
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~=: Every submodule is the direct limit of pure submodules, hence 

pure by Corollary 3 of Theorem 1.6 of Chapter 1. Therefore P is 

regular. 

COROLLARY 2. The preceding corollary is true if we replace n 

by c, any cardinal.. 

Pro of. This is clear since any modUle is the direct limit of fg 

modules and hence c-generated modules. 

COROLLARY J. A is a regular ring iff every principal left ideal 

is a direct summand (and hence pure) and every left ideaJ. is the 

direct limit of principal. ideals. 

Proof. A is a l-generated projective module. 
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CHAPTER 4: THE REGULAR SOCLE 

In this chapter, we define socles which are generalizations of 

the usual socle (B3, Ex. 9, p. 58). We remark that both Maranda (33) 

and Dickson (12) have studied radicals, and in doing so, have introduced 

preradicals which correspond to our socles. However, there is little, 

if any, overlap with our work. 

We also define a regular socle (of a module or ring) and compare 

i t wi th the semi-simple ( = usual) socle and wi th the regular radical 

of Brown and McCoy (7). 

1. Socles 

Let Q be the category of allleft A-modules. A socle is a 

function T which assigns to each module M of ~ a submodule 

T(M) of M in such a way that f:M --? N =::l> f(T(M»ÇT(N), 

i.e. f(T(M» in a submodule of T(N) (or equ.ivalently fT = fi T(M) 

is a map from T(M) to T(N». In categorical language, a socle 

is a subfunctor of the identity functor. 
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Let T be a socle. We make the following defin1 tions: 

T is torsion iff T(N) = N nT(M) for all submodules N of M. 

T is idempotent 1ff 2 
T = T, i.e. T(T(M» = T(M) for all M. 

T has radical property 1ff T(M/T(M» = 0 for all M. 

A module M 1s T-complete iff T(M) = M. 

If T and T'are socles, T$ T' iff T(M) 1s a submodule 

of T'(M) for all modules M. It 1s easy to verify that if T 1s 

torsion, then it is idempotent and T(M) is T-complete. 

We now prove a theorem which establishes the basic properties 

of socles. 

THEOREM 1.1. Let T be any socle. 

(1) If N is a submodule of M, then T(N) is a submodule 

of T(M) and (T(M)+N)/N is a submodule of T(MlN). 

(2) T(A) is a two-sided 1deal of A. 

(3) T commutes wi th direct sums, i.e. T( ® Mi) = ® T(Mi ). 

(4) T(P) = T(A)P for all projective modules P. 

(5) T(A)M is a submodule of T(M) for all modules M. 
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(6) If M îs T-complete, so îs any îmage of M. 

?f .;, 1- C4>1-~, ;t 
(1) T(M)A îs the largest T-complete submodule of M. 

Pro of. 

(1) Let k:N --~ M and f:M --~ M/N be the canonîeal maps. 

Sînce T îs a socle, T(N) = k(T(N»~ T(M) and 

(T(M)+N)/N = f(T(M)+N) ~ T(M/N). 

(2) T(A) is a left ideal by defînîtîon. For any a in A, 

define f:A --~ A (as left A-modules) by f (x) = xa for all a a 

x in A. Since T is a socle, (T(A»a = f (T(A» ~ T(A). Renee T(A) 
a 

îs also a right îdeal. 

(3) Let ~ = 6) Mi. By (1) for each i, T(M.) i6 a submodule 
l. 

of T CM). Renee IT{M.) =(i)T(M_)~T(M). The suro îs direct sînce 
l. l. 

îs a submodule of M .• 
l. 

the eanonîcal projectîon. Then p. (T(M» 
l. 

If x i6 in T(M) then x = I x î wi th x î in Mi. Then 
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(4) If F :isfree, F={f)A andbyO), 

T(F) = 0 T(A) = G> (T(A)A) = T(A)( ® A) = T (A)F. If P is proj ecti ve 

then F =P $ Q with F free. Hence 

T(P) e T(Q) = T(F) = T(A) (P ® Q) = T(A)P ® T(A)Q. Therefore 

T(P) = T(A)P. 

(5) For any M, let f:F --~ M . be epi with F free. Then 

f{T(~» = f(T(A)F) = T(A)f(F) =T(A)M. But f(T(F» is a submodule 

of T(M). Bence the result. 

(6) Let f:M --~N be epi and T(M) = M. Then 

N = f(M) = f(T(M»~ T(N)Ç N. 

(7) If T(N) = N ~ M then N = T(N) ~ T(M) by (1). 

COROLLARY. T(P) = 0 for aIl projective modules P iff 

T(A) = O. 

Proof. Obvious sinee T(P) = T(A)P by (4). 
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PROPOSITION 1.2. If the socle T has radical property, then 

T(M) is the smallest of the submodules N of M such that 

T(MlN) = O. 

Pro of. By definition of radical property, T(M/T(M» = O. 

If' for some N we have T(MlN) = 0, then (T(M)+N)/N ~T(M/N) = 0 

and T(M)+N = N. Hep.ce T(M) ~ N. 
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2. Semi-Simple and Re~lar Socles 

In this section, we shall define the regular socle of a module 

which is analogous to the semi-simple ( = usual) socle of a module, 

wi th puri ty playing the rôle of direct summand. 

A left A-module M fo 0 is called simple iff 0 and M are its 

only sUbmodules, and semi-simple iff it is the sum of simple modules. 

For basic facts on (semi-) simple modules and rings, see (B,3) or 

Lambek (,30). 

For any left A-module M, its ss ( = semi-simple) socle SeM) 

is defined ta he the suro of all its simple submodules ( = the sum of 

aIl i ts semi-simple submodules). In an analogous way, we will define 

the regular socle R(M) of a module M ta be the sum of all it s 

regular submodules (i.e. submodules which are regular mOdules). 

Thus R(M) = ï Ax (x in M and Ax regular). 

THEOREM 2.1. Both the ss socle S and the regular socle Rare 

torsion socles, and hence have aIl the properties given in Theorem 1.1. 

A module is S-complete iff it is semi-simple, and R-complete iff it is 



80 

re~lar, i.e. SeM) = M iff M i8 semi-simple and R(M) = M iff M 

is regular. Also S ~ R. 

Remark 2.1. 

(i) Neither Snor Rare radicals. See Proposition 2.3 for 

examples and discussion. 

we 

(ii) By taking A to be a ring which is one of 

(a) regular, 

(b) not regular, 

(c) semi-simple, 
(d) not semi-simple, 
(e) regular but not semi-simple, 

easily have examples where 

(a) R(M) = M, 
(b) R(M) 1: M, 
(c) SeM) = M, 
(d) SeM) 1: Mt 
(e) SeM) 1: R(M) etc. 

Proof. Let T be either S or R. 

Socle: T(M) was defined to be a submodule. T(M) is the sum 

of simple (resp. regular) modules. Hence if f:M --~N then f(T(M» 

is the sum of simple (resp. re~lar) modules, since the image of a 
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simple module is simple or zero (easy to verify), and the image of a 

regular module is regular (Theorem 3.3 of Chapter 3). 

Torsion: If N is a submodule of M, we know that T(N) is 

a submodu1e of T(M), by Theorem 1.1. T(M) is the sum of simple or 

regular modules and hence T(M) is either semi-simp1e (wel1 known) 

or regular (Theorem 3.4 of Chapter 3). Rence the submodule N n T(M) 

of T(M) is either semi-simple (well known) or regular (Theorem 3.3 

of Chapter 3), and therefore contained in T(N). 

The propertiès concerning S-complete and R-comp1ete are c1ear. 

Also S ~ R since every simple module is regular. 

For any ~cle T, the ring A will be cal1ed 1eft T-fai thfu1 

iff for a1l left A-modules M F 0, we have T(M) F O. 

For example, Bass (4) has shown that a left perfect ring is rte 

S-faithful, where S = ss socle. See Theorem 3.1 of Chapter O. 

C1early if T ~ T' then if A i8 1eft T-fai thfu1, it i8 1eft 

T'-faithful. Rence A 1eft perfect =~ A is rte S-fai thful =~ A is 

rte R-faithful. 
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PROPOSITION 2.3. If A 2S left T-faithfUl for some socle T, 

then the left A-module M 2S T-complete iff T(M/T(M» = O. 

Proof. 

=~: 2S clear since T(M) = M. 

(==: Since A is T-faithfUl, we have M/T(M) = 0 whence 

M = T(M) and M is T-complete. 

COROLLARY 1. If A is left T-faithfUl, then the socle T has 

radical pro pert y iff aIl left A-modules are T-complete. 

Proof. 

=~: For any M, T(M/T(M» = 0 whence M/T(M) = 0 and M = T(M) • 

. ~=: i8 clear sine e T(M) = M for aIl M. 

COROLLARY 2. Neither S nor R have radical property. 

Proof. Let A be left perfect, but not regular. Then A is 

rte T-faithfUl for T = R or S by Bass (4), but not all rte modules 

are regular ( = R-complete) and hence not all are semi-simple 

( = S-complete). 
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Before stating the next proposition, we reca11 that the (Johnson) 

singu1ar submodu1e K(E) of a 1eft A-module E i8 the submodu1e 

consisting of al1 x in E web that O(x) = (aS AI ax = 0) 'is a 

large left ideal of A. For details see Johnson (23) or Lambek (0). 

Following Bourbaki (Bl, Ex. 24, p. 164), the ring A will be called 

left neat iff K(A) = 0, regarding A as a left A-module, i.e. 

K{AA) = 0, and ~ iff i t is both left and rte neat. 

fL.lmW PROPOSITION 2.4. The singular submodule A K is a torsion socle. 

Pro of. SUppose u:E --~ F. Since O{x) is contained in 

O{ux) for 811 x in E, x in K{E) =~ O(x) is large in A 

=~ O(ux) is large in A =~ u{x) is in K(F) and K is a socle. 

If E is a submodule of F, then K(E) is contained in 

E "K{lt') by Theorem 1.1. Conversely, if x is in E I\K{F), O(x) 

is large in A and x is in K(E). Therefore K is a torsion socle. 
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3. The Brown-McCoy Regular Radical 

In this section, we compare our regular socle R(A) with the 

Brown-McCoy regular radical. 

THEOREM 3.1. If A i8 a left serni-principal ring (i.e. ever.y 

fg left ideal is principal), then for any a in A, Aa is regular 

iff Aba i8 pure in Aa for all b in A. 

Proof. 

=~: holds by d efini ti on of r egular. 

<==: Let L Abi a be any fg subideal of Aa, then 

L Abia = ( r Abi)a = Aba since A i8 left serni-principal and Aba 

i8 pure in Aa, v.hich is theref'ore regular. 

Brown and McCoy (7) def'ine a regular radical M(A) of' the ring A. 

They call an element a in A regular if'f' a Ci aAa, and a two-sided ideal 

regular iff all i ts elements are regular. They then prove that the set 

M(A) = (a f A f (a) = AaA is a regular two-sided ideal) i8 a two-sided 

ideal of' A, which they call the regular radical. Thus A is a 
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regular ring iff M(A) = A. We note and emphasize that the Brown-

McCoy use and our use of the word regular liliffer. We shall not use 

regular in the Brown-McCoy senae, except ia this paragraph, since we 

can avoid it in view of Proposition 2.2 of Chapter 3: An element 

a in A is Brown-McCoy regular iff Aa ia pure in A (or e~ivalently: 

aA is pure in A). From now on the word regular will have the meaning 

given in Chapter 3. 

We now Show the connection between the Brown-McCoy re~lar 

radical and our regular socle. 

THEOREM 3.1. If A is commutative semi-principal ring, then 

M(A) =LAa (Aa regular and Aa pure in A). 

Pro of. a is in M(A) 

if:f Aba is pure in A for all b in A (definition of M(A», 

iff Aba is pure in Aa for al1 b in A and Aa pure in A by 

Proposition 1.2 of Chapter l, 

ift' Aa is regular and Aa is pure in A (Theorem 3.3 of Chapter 3). 
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COROLLARY. M(A) is eontained in R(A) for A commutative 

semi-principal. 

Proof. R(A) = LAa (Aa regular). 

Remark 3.1. Since A is re~lar iff M(A) = A iff R(A) = A 

we have an example Where M(A) = R(A). Theorem 3.1 shows that for 

A commutative semi-principal, M(A) 18 contained in R(A). 

We now give an example to show that this May be a strict -

eontainment: 

Example 3.1. Let A be a commutative artinian principal ring 

which is not semi-simple. For example t ake n A = Z/p Z p prime, 

Let P be any pure ideal. Then A/P is flat, hance projective 

(since an artinian ring is perfect). Therefore P is a direct summand, 

i.e. ever,y pure ideal is a direct summand. Sinee A is not semi-simple, 

there exist ideals which are not direct summands, i.e. not pure. 

Sinee A is artinian, we can choose a minimal non-pure ide al I. 

Hence l ~ 0 (sinee 0 is a pure ideal)c If J is an ideal of A, 

contained in l, then J = l =:;) J is pure ::Ln l, and 
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. J 1: l =~ J is pure in A by the minimality of l, and therefore 

J is pure in I. Hence l is regular and therefore l is contained 

in R(A) but l is not contained in M(A) since l is not 

pure in A. 
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4. The Regular Socle over a Dedekind Domain 

This section is devoted to computing the regu.lar socle R(E) 

of a module E over any Dedekind domain which :i.s not a field. We 

make use of various well-known properties of Dedekind domains, aJ.l 

of which can be found in Zariski-Samuel (40). 

Let A be any commutative ring, P the collection of its 

prime ideals, and E an A-module. 

We recaJ.l that theideaJ. Q of A is P-primary CP in 1:) ift" 

(1) Q is contained in P, 

a in 
n 

p =~ a in Q for s ome integer n. 

(J) ab in Q and a not in P =~ b is in Q. 

For any x in E, let O(x) = (a E A 1 ax = 0) be the order ideal. 

E is a torsion module iff O(x) 1: 0 for aIl 0 1: x in E. 

E is P-primary (p in 1:) iff O(x) is P-primary for all 0 F x in E. 

If O(x) = lfpn(p) (p in 1:) with n(P) an integer, and "n(p) = 0 

for almost aIl (i.e. all but a finite number) of P in ~, then we say 

that x has square free order iff n(P) ~ l for aIl P in 1:-

" .. 
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We note tbat if A is a Dedekind domain, then any ideal I F 0 

can be expressed as such a product. 

THEOREM 4.1. Let A be a commuta"tive noetherian ring and M a 

maximal. ideal. Them. 

(1) An ideal. Q FAis M-pr.i.mar,y iff ~~ Q for s ome integer n. 

Also rf1ç Q =~ Q~ M. 

(2) For any module E, Er4 = (0 and x, E 10(x) is M-primary) 

1s an M-primary submodule of E, cal.led the M-pr1ma;y component of E. 

PrO of. 

(1) 1s well known. For a proof see Northcott «36), Prop. 9, 

p.23). Also Jél~Q~N forsomemaximal.ideal N. Hence MSN,since 

N is prime, ap.d therefore M = N since both M and N are maximal 

ideals. 

(2) If x and y are in E
M

, then O(x+y) contains 

. .n" = llIl. • Hence O(x+y) is M-primary by (1). 

Similarily for a in A and x in E
M

, O(ax)? O(x) 2 rfl. Theref(,re 

~ is a submodule of E; clearly i t is M-primary. 
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THEOREM 4.2. If A is a Dedekind domain, P the collection of 

its nonzero prime ( = maximal) ideals, and T a torsion module, then 

(1) T = @Tp (P in ~). 

(2) If x is in T and x = ï ~ wi th ~ = 0 for almost 

all P. Then for Xp p 0, O(xp) = pn(P) for some integer n(P) and 

O(x) = lT pn(P) • 

Proof. 

(1) has been shown by Matlis (35). 

(2) Since Tp is P-primary, O(xp)? pn(p). Since A is 

Dedekind, for all nt there are no ideals between pn+l n 
and P. 

Hence O(xp) = pn(p) for some integer n(P). Let l = lTpn(p). 

Then Ixp = 0 for all P, and therefore Ix = 0 and l ~ O(x). 

Sinee A is Dedekind, O(x) has a faetorization O(x) = Tfpn'(p) 

with ni (p) $ n(P) since l ~ O(x). If for some Q in ~, 

nl(Q)pn(Q),let Il = "Tfpm(p) where m(P)=n(P) forall PpQ 

and m(Q) = n' (Q). Then l c: If S O(x) and l'xp = 0 for all 

p p Q but IlxQ p 0 sinee n' (Q) < n(Q). Therefore 



o = l'x = l'xQ ~ O. This contradiction shows that we must have 

n(P) = n'CP) for all P and therefore l = O(x). 

THEOREM 4.3. If A :l.s a semi-hereditary d,omain (i.e. Pruefer) 

which is not a field, then 

(1) 0 is the only regular torsion free module. 

(2) Every regular module is torsion. 

Proof. 

(1) Suppose F ia a regular torsion free module, and take 

x in F. Then Ax is a fg torsion free module, hence projective 

(since A ia Pruefer), and therefore a regular projective module. 
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By the eorollary of Theorem 4.4 of Chapter 3, Ax = o. Therefore F = o. 

(2) Let T be the torsion submodule of the regular module R. 

Then F = RIT is regular torsion free and therefore F = 0 by (1). 

Henee T = R. 

Sinee any direct summand is pure, there are many examples of 

pure submodules. The following proposition shows how to construct 

non-pure submodulea. 



PROPOSITION 4.4. Let A be a ring with a 1eft ideal l suCh 

Then E = I/I
2 is not pure in 

. 2 
M = A/I • 

Proof. Let Il = lA 21. Then III = 1 2 and 

E is not pure in M by Theorem 1.7 of Chapter 1. 
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PROPOSITION 4.5. Let l be any 1eft idea1 sueh that 1
2 F l F A. 

Then A/In is regu1ar iff n = 1 and A/I is regu1ar. 

Proof. 

=~: By Proposition 4.4, I/I2 is not pure in A/I2 and therefore 

A/I2 is not regu1ar. For n > l, In~ 1 2 , henee A/I2 is a homomorphie 

image of A/In. If A/In were regu1ar, then A/I2 wou1d be too 

(Theorem 3.3 of Chapter 3). Therefore if n') l, A/In is not regu1ar. 

~-. is obvious. 

Remark 4.5. If A is a Dedekind domain, then for any ideal l F A 

we have 1 2 F I. This fo11ows readi1y from the unique decomposition 

of l as a produet Trpn(P>. 
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THEOREM 4.6. Let M be a maximal left ideal of A sueh that 

for aIl integers n >0, there is no proper left ideal between 

M?+l and ~.' Then the left module A/~ is pure simple. 

Remark 4.6. If A is a noetherian domain, then A is Dedekind 

iff for all maximal ideals M and aIl integers n )0, there is no 

proper ideal between ~ and ~+l. See Bourbaki «6), Ex. 7, p. 92.) 

Pro of. The only proper submodules of A/MP are MM/~ with 

° ~ m < n. If n =0 l, then A/M is simple and therefore pure simple. 

Suppose ° < m < n > 2 •.. We will show that rif/Nf is not pure in A/r. 

If it is pure, then lA/Nf" r(l1/N
n = I(~/~) for all rte ideals l. 

Let k = Max (m,n-:-m) and l = rtrA. Then m, k("'n sinee ° 1= m 1= n. 

And l A/rf!f\Nf!/MP = Mk/'Nfl,.,Mm/Nf = Mk/ri'- 1= ° sinee m*"k 1= n. But 

l rfD"/'Nf = Mk+m/yf = ° Binee k+m :,.n. Therefore by Theorem 1.7 of 

Chapter l, rffI!/Nf is not pure in A/rf1. 

COROLLARY. The quasi-eyelie group. Z(p 00) and the eyelie groups 

z/pn are aIl pure simple. 
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Proof. These groups form a chain 

2 n eO o <?: Z/p t; Z/p ••• Z/p ••• Z(p . ) 

d th th b r oi>' z/pn . an ere are no 0 er su groups. ~ were pure ~n some group 

containing it, then Z/pn would be pure in z/pn+l. But by the 

theorem z/pn+l is pure simple for aIl n, giving us the desired 

result. 

THEOREM 4.7. Let A be a Dedekind domain whiCh is not a field, then 

(1) R is a regular A-module iff R is torsion and every element 

of R has square free order. 

(2) For any module E, the regular socle R(E) is the collection 

of aIl torsion elements of E wi th square free order. 

Remark 4.7. If A is a field, then A is regular, hence ever,y 

module is regular and the statement of the theorem does not hold. 

Proof. 

(1) =~: By Theorem 4.3, R is torsion, and therefore R = 9R"l? 

by Theorem 4.2. Hence Rp isregular by Theorem 3.4 of Chapter 3. 
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For any x in R:P' O{x) = pn and A!pn = Ax is regular. Therefore 

n = 1 by ~roposition 4.5 and Remark 4.5. Henee every element of R 

has square free order. 

~=: By Theorem 4.2, R =G>Rp. Sinee every element of R has 

square free order, O(x) = P for aIl x in Rp. But Ax = A/P is 

simple (sinee P is maximal), henee regular. Therefore ~ is 

regular for eaeh P, and so R is regular. 

(2) By (1), sinee R(E) is regular, it is torsion and ever,y 

element bas square free order. Conversely, if x in E is torsion, 

with square free order, then Ax is torsion and every element of Ax 

has square free order, sine e O(ax) i O(x) for aIl a in A. Therefore 

Ax is regular and AxS R(E). 
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5. Radicals 

A socle T with radical property, i.e. T(MVT(M» = 0 for all 

modules M will be called a radical. In this section j we give a 

general construction for radicals. 

Let ! be any collection of left A-modules. A submodule N of 

the left A-module M will be called y-maximal iff MIN is in y. 

For example, if ! is the collection of all simple modules, then 

y-maximal just means maximal. A module M may have no y-maximal 

submodules. Clearly if VC VI -- - then !-ma.:x:i.mal =~ y' -ma:x:i.mal. Note 

that any module M is !-ma.:x:i.mal in i tself iff the 0 module is in 

!; and tha tOi S !,-maximal in M iff M is in y. Thus if 0 

is in y, every module M has y-maximal submodules since M 1s 

M 
y-maximal in E. 

PROPOSITION 5.1. If N is a submodule of M,.then under the 

one-one c orrespondence between submodules of M containing N and 

submodules of M/N, y-maximal submodules correspond to y-maximal submodules. 



Proof. SUppose N S K ç M. 

Then K is X-maximal iff M/K is in y. 
iff (M/N)/(K/N) is in !. 

iff K/N is !-maxi.mal. 
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THEOREM 5.2. Let ! be any collection of left A-modules which 

contains 0 and is closed under submodules. For any left A-module M, 

de fine V(M) to be the intersection of all X,-maximal submodules of M. Then 

(1) V(M) is the intersection of the kernels of aIl epis 

u:M ~-~V with V in!. 

(2) V is a radical, and hence has aIl the properties of 

Theorem 1.1. 

(3) V(NVN) = V(M)/N for aIl submodules N of V(M). 

of modules. 

(5) V(M) = 0 iff M is isomorphic to a submodule of a product 

(6) If Y is contained in y' than vt~ V. 



98 

Froof. We note that since 0 is in y, V(M) is well definedc 

(1) This is clear since the y-maximal submodules are precisely 

the kernels of epis u:M --~ V With V in y. 

(2) Socle: Suppose f:M --~ N. Thenfor all epis u:N --~ V 

wi th V in y, uf:M --~ V' is an epi wi th V' = Im uf in y since 

Y is closed under submodules. Therefore if x is in V(M), 

uf(x) = 0 and fx is in Ker u. Rence f(V(M» is contained in 

VeN), and V is a socle. The fact that V is a radical follows from (3). 

(3) holds because of the one-one correspondence between the 

y-maximal submodules of M (containing N) and they-maximal 

submodules of MIN. 

If Nk is y-maximal in ~ 

y-maximal in M = lTM .. 
). 

Rence V(M) 

then Mk = Nk x 1TM. 
i 1= Tt 

is 

is contained in each such Mk' 

,. 
hence in the intersection of all sueb ~. Therefore V(M) i8 

contained in TrV(M. ). 
). 
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(5) =~ : If V(M). = 0, there exists a family Vi in V and a 

family u.:M --~V. of epis such that 
~ ~ 

Ker u
i 

= O. The canonical map 

M --~TrVi defined by m --~ (ui (m» defines a mono and gives the 

required result. 

(==: Suppose 1': M --~ TT V i = P is mono and let Pi: P --~ Vi be. 

the projection maps and set ui = Pif. 

Then m in V(M) =~ Pif(m) = ui(m) = ° for all i. 

=~ f(m} =0 (sinc~ the Pi are projection maps). 

=~ m = ° since l' is mono. 

Renee V(M} = O. 

(6) Any Y,-maximal sub:üodule of M is l'-maximal. 

Remark 5.2. If we take V to be the collection of all simple 

left A-modules together with 0, then V is just the Jacobson radical. 
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6. Primitivi ty 

In this section, we define and study a general type of 

primitivity. 

Let y be any collection of left A-modules. A two-sided ideal P 

will be called left y-primitive iff it is the largest two-sided ideal 

contained in some y-maximal left ideal !VI. The ring A will be called 

left y-primitive iff it is a left y-primitive ideal. For example, 

if Y is the collection of all simple modules, a left y-primitive 

ideal or ring is a left primitive ideal or ring. Bergman (5) has 

shown that left and rte y-primitivity are not equivalent. 

PROPOSITION 6.1. Let P be a two-sided ideal and M a left 

y-maximal ideal. Then P is left y-primitive (withy-maximalleft 

ideal M) iff P = (a E AI aAc; M). 

Proof. 

=~ : a is in' P iff AaAÇP sinee P is an ideal. 

iff AaA Ci !VI sinee P is the largest ideal. 

eontained in Mo 

iff aA~ M sinee !VI is a left ideal.. 



101 

40=: P is clearly the largest ideal contained in M. 

PROPOSITION 6.2. If P 1s a two-sided ideal, then P is a left 

V -primi ti ve i deal iff A/ P is a left !.-primi ti ve ring. 

Proof. This fol10ws immediately from the one-one correspondence 

between the y-maximal left ideals of A containing P and those 

of A/P. 

THEOREM 6.3. Let y be any collection of left A-modules containing 

o and closed under submodule. Then V(A), the intersection of all 

y-maximal left ideals, i8 e~al to the intersection of all left 

y-primitive (two-sided) ideals. 

Proof. By Theorem 5.2, V is a radical, hence a socle, and 

therefore V(A) is a two-sided ideal by Theorem 1.1. Since V(A) is 

a two-sided ideal, 

a is in V(A) iff aA S V(A). 

iff aA~ M for al1 y-maximal left ideals M. 

iff a is in all left y-primitive ideals. 
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COROLLARY. V(A) = 0 iff A is a subdirect product of left 

y-primitive rings. 

Proof. Let Pi be the family of left V-primitive ideals of A. 

Then V(A) = Tf Pi = 0 iff A is the subdirect product of the rings 

A/Pi which are 1eft V-primitive. If V(A) = 0, we calI A 

a y-semi-primi ti ve ring. 

For any left A-module N, define Ann N = (a E A 1 aN = 0). 

Then Ann N is a two-sided ide al of A. N is cal1ed faithful 

iff Ann N = O. 

THEOREM 6.4. A i5 a left y-primitive ring iff there exists a 

V-maximal 1eft ideal M such that A/M is a fai th fuI module. 

Pro of. 

=~: 0 is left y-primitive, and hence the 1argest ideal in some 

y-maximal 1eft ideal M. Ann A/M is a two-sided ideal which is 

clearly contained in M. Therefore Ann A/M = 0 and A/M 1s faithful. 
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<$:=: Let P be any idea1 contained in M. Then 

P Ann A/M = O. Therefore 0 is the 1argest ideal contained in M, 

and hence A is 1eft y-primitive. 
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CHAPTER 5: DIMENSION THEORY 

In this chapter, we shall prove a number of results on the weak 

dimension of modules and weak global dimension of rings. We relate 

these to the homological ( = projective) dimension and global 

dimension. 

1. Weak Dimension 

In this section, we adopt the weak dimension definition of 

Cartan-Eilenberg «8), p. 122) and prove a number of results which 

are analogues of results for homological dimension (see Cartan-Eilenberg 

(8), p. 109 ff.). 

A resolution of the left module E is a sequence of modules 

(Fi)' i = 0, l, 2, ••• which form an exact sequence 

A"resolution (Fi) of E is free (resp. projective, flat) iff each 

Fi is free (projective, flat). For any resolution (Fi) of E we let 

u. :Fi --~ F. l 
J. J.-

i = l, 2,... be the given maps and 

for i = l, 2, ••• and K_l = Eo 
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A resolution (Fi) of E has length n iff 

o --~ Fn --~ ••• --~ FO --~ E --~ 0 is exact. If no such integer 

exists we say that (Fi) has infinitive length. 

Clearly every free resolution (of E) is a projective resolution, 

and eve~J projective resolution is a flat resolution. It is well known, 

and easy to show (see Jans (2a), p. 33), that every module has a free 

resolutlon; hence every module has free, projective and flat resolutions. 

THEOREM 1.1. If 0 --~ K --+ F --~ E --~ 0 ls an exact sequence 

of left A-modules with F flat, then for any rte module X, 

Torn+l (X,E) = Torn(X,K) for all n>O. 

Remark 1.1. For simplici ty, we have wri tten = for ... ,=. 

Proof. For all n >0 and for aJ.l rte A-modules X, we have 

since F i6 flat. Hence the desired result. 

COROLLARY. If (Fi) is a flat resolution of E, then for any rte 

module X, and for all n > 0 we have Torn+l (X,E) = Torl (X,Kn_l ). 
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Proof. For aIl i ~ 0, we have exact sequences 

o --~ Ki --) Fi --)- Ki _l --~ 0 wi th Fi fiat. Bence for aIl n > 0, 

Torn+l(x,E) = Torn+l(X,K~l) = Torn(X,KO) 
= Torn_i (X,Ki ) for -1$ i~ n-l 

= Torl (x, Kn_l ). 

For any left A-module E 1: 0, we define !!S....! ( = .weak dimension 

of E) to be the largest integer n such that Torn(X,E) 1: 0 for 

some rte A-module X. If no such integer exists, define wd E = ~ • 

For completeness, we define wd 0 = -1. These definitions are all due 

to Cartan-Eilenberg «8), p. 122). We remark that wd E$O iff E is 

flat. Weak dimension for rte modules is defined similarily. 

THEOREM 1.2. For any left module E and any integer n ~O, the 

following conditions are equivalent: 

with 

(1) Any exact sequence 0 --~ Kn_l --~ Fn_l --~ ••• --~ FO --) E --~ 0 

flat for all o ~ i t: n-l bas K n-l flat too. 

(2) E has a flat resolution of length n. 

(3) wd Et:n. 
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(4) Tork(X,E) = 0 for all integers k~n and for all rt. 

modules x. 

(4a) Tork(X,E) = 0 for all integers. k~n and for all fg 

rte modules X. 

(4b) Tork(X,E) = 0 for all integers k~n and for all fp rte 

modules X. 

(4c) Tork(X,E) = 0 for all integers k)n and for all cyclic 

rte modules X. 

(4d) Tork(X,E) = 0 for all integers k~n and for all fp cyclic 

rte modules X. 

(5) Tor n+l (X, E) = 0 for all rte modules X. 

(5a) Tor l(X,E) = 0 for all fg rte modules X. n+ 

(5b) Tor n+l (X,E) = 0 for all fp rte modules X. 

(5c) Torn+l (X,E) = 0 for all qyclic rte modules X. 

(5d) Torn+l(X,E) = 0 for all fp cyclic rte modules X. 
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Proof. 

(1) =:l) (2): Let (Fi) be a flat resolution" of E and 

By (1), K is fIat. Rence (2). n-l 

(2) =~ (J): Let a --+ Fn --~ Fn_l --ol) ••• --~ Fa --~ E --~ a 

be a flat resolution of E, of "length n. Then for aIl rte modules X, 

(3) =~ (4): If for some rte module X and some k~n, 

Tork(X,E) F 0, then wd E ~k )n. Contradiction. 

Clearly we have the implications (4) =:l> (5) and (4x) c~ (5x) for 

x = a, b, c, d as wellas (5) =~ (5a) =~(5b) 

~ ~ 
(50) =~ (5d) 

To conclude the prooi', we will show (5) =+ (1) and 

( 5 ) =~ (1) : Suppo se we have an exac t sequence 

a --~ Kn_l --~ Fn_l --~ ••• --!; Fa --~ E --~ a wi th Fi fIat for 

0$ i ~ n-l. Form a flat resolution of E, the first n terms of which 

are Fi' a ~ i ~ n-l. Then for all rte modules X, 
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Torl(X,K 1) = Tor l(X,E) = 0 by the corollary of Theorem 1.1. Bence n- n+ 

Kn_l is flat. 

(5a) =~ (5): holds since ever.1 (rt.) module X is the direct 

, 
limit of its fg submodules, and Torn+i( ,E) commutes with direct limits. 

(5c) ==3> (5a): We show this by induction on th.e number k of 

generators of X. The case k = l holds by assumption; assume that 

we have established the implication for all modules with not more than 

k . generators, and let X have k+l generators. Let x in X be one 

of these generators, X· = xA and X" = X/X'. Then we have an exact 

sequence Torn +l (X' ,E) --~ Tor n+l (X,E) --:, Torn +l (X" ,E). We have 

Torn+l(X',E) = 0 since X· is cyclic, and Torn+l(XR,E) = 0 since 

X" has not more than k generators. Hence !for l(X,E) = O. n+ 

(5d) =~ (5c): Let l be any rte ideaJ. of A. Then l is the 

direct limit of its fg submodules ( = rte ideals) Ik. Therefore 

x = Ail is the direct limit of A/Ik. Since Torn +l ( ,E) commutes 

with direct limits, we have the desired result. 

Remark 1.2. 

(i) Clearly a similar theorem holds for rte modules. 
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(ii) Parts (1), (3) and (4) ofthis theorem are in Ri11e1 (21). 

We have strengthened the theorem by adding Parts (2), (5), as well as 

the Parts (4a), (4b), (5a), (5b), etc. The significance of these 

additions (esp. (5d» is explained in Remark 2.2. 

THEOREM 1.3. I~ 0 --~ K --~ F --~ E --~ 0 is exact with 

F fIat, then wd E ~ 1+ wd K. Equali ty ho1ds iff wd E ~1, 

i.e. iff E is ~ fIat. (We assume K pOp E.) 

Proof. By Theorem 1.1, Tor l(X,E) = Tor (X,K) n+ n 
for al1 n >0 

~ïd for all rte X. If. wd K = 00, then the inequa1ity a1ways ho1ds. 

If wd K = n (16, then by Theorems 1.1 and 1.2, Tor 2(X,E) = Tor l(X,K) = 0 n+ n+ 

for aIl rt. X. Therefore· wd E ~ n+1 = wd K +1. 

-' If equality holds, we have wd E ~1. Converse1y, suppose wd E ~1. 

If wd E =00, then we have equality. Assume therefore that wd E = m 

wi th 1 ~ m <00. Then for aIl rte x, Tor (X,K) = Tor l(X,E) = 0 m m+ 

(sinee m~l). Therefore wd K$m-1, and 1+ wd K$'m = wd E giving 

us the desired equality. 
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We have the follow:i..ng obvious: 

COROLLARY. For any nonzero left ideal l of A, wd A/I ~ l + wd l, 

wi th equali ty holding iff wd A/I -:"1. 

THEOREM 1.4. If 0 --) E' --~ E --) En --)" 0 is exact and any 

two of the modules have finite weak dimension, then so does the third 

one. 

Proof. For any rte module X and all n>l we have an exact sequence 

--~ Tor l(X, E") --~ Tor (X,E') --) Tor (X,E) --) Tor (X,E") --.". Tor l(X,E'). n+ n n n 7 n-

For n sufficently large the Torts of the finite dimensional modules 

vanish, and the Tor of the other module must be zero tao. 
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2. Weak Global Dimension 

In this section, we def'ine and study the weak global dimension 

of' a ring. This is, of course, analogous to the (homological) global 

dimension of' a ring. 

We def'ine the lef't weak global dimension of' A to be 

lwgl A = sup wd E, with the sup taken over all lef't A-modules E. 

The rte weak global dimension of' A is def'ined similarily: 

rwgl A = sup wd E, with the sup taken over all rte A-modules E. 

Northcott ((37), p. 150) has shown that lwgl A = rwgl A. Their 

common value will be called the weak global dimension of' A and wri tten 

wgl A. Since wgl A is lef't-rt."s,ymmetric, ever,y theorem concerning 

left modules and ideals gives us an "opposite" theorem about rte 

modules and ideals. These corresponding theorems will be assumed and 

used, although they are not always studied explicitly. 

PROPOSITION 2.1. The ring A is regular if'f' wgl A ~ O. 

Proof'. 

A is regular 1ff' all left A-modules are :flat (Bl, Ex. 17, p. 64). 
iff wd E ~ 0 for all left A-modules E. 

iff wgl A ~ O. 
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One of the main re~ults .of this section i8: 

TREOREM 2.2. wg1 A = sup wd E with the sup taken over a11 1eft 

fp cyc1ic modules E. 

= sup wd E wi th the sup taken over all rte fp 

cyclic modules E. 

Proof. Since wg1 A is 1eft-rt. symmetric, it suffices to 

prove the first equa1i ty. CIe arly sup wd E ! wg1 A. If sup wd E = GD, 

we have equaJ.ity. Assume therefore that sup wd E = n <10. Renee 

wd E ~ n for 811 fp 1eft cyc1ics E. And Tor l(X,E) = 0 n+ 
for all 

such E, and for aL1 rte modules X (Theorem 1.2, Part (5d)). 

Therefore by Part (5d) of the "rt." version of· Theorem 1.2 (see 

Remark 1.2 (i», we have wd X$ n for al1 rte modules X, i •. e .• 

wg1 A ~ n :;: sup wd E. Rence the desired resul t. 

COROLLARY 1. wg1 A ~ 1+ sup wd l wi th the sup taken over a11 

\ ; ~. 

fg 1eft idea1s I. 

Proof. For any fg 1eft ideal l, we have 0 --~ l --~ A --~ A/I --~ 0 

exact and hence wd AIl ~ 1 + wd l by Theorem 1.3. Therefore 

wg1 A = sup wd A/I ~ 1 + sup wd l wi th the sup taken ov-er aL1 fg 1eft 

ideals" 
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COROLLARY 2. I:t' wgl A ~ 1 then wgl A = 1 + sup wd l where the 

sup is taken oyer all :t'g le:t't ideals l. 

Proo:t'. Since wgl A ~ l, there exists a :t'g le:t't ideal K such 

that wd.A/K ~l and hence .A/K is not :t'lat. There:t'ore by Theorem 1.3, 

1 + wd K = wd .A/K ~ wgl A and 1 + sup wd l $'wgl A. The opposite 

inequality is given in Corollar,y .1. 

Remark 2.2. This strènghtens a theorem o:t' Hillel (21); he proved 

the result :t'or all cyclic modules (!!2! :t'p cycli·c). More important than 

this, we remark that by the addition o:t' condition (5d) to Theorem 1.2, 

the proo:t' of which is not too di:t':t'icult, we have very signi:t'icantly 

shortened and simplified the original proo:t' given by Hillel (21). 

The next theorem characterizes rings :t'or which submodules o:t' 

:t'lat modules are :t'lat. 

THEOREM 2.3. For any ring A, the :t'ollowing conditions are 

equivalent: 

(1) wgl A~l. 

(2) Every submodule of every :t'lat left module is flat. 
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(2)'· Every fg submodule of every flat left module is flat. 

(3) Every left ideal of A is flat. 

(3)' Every fg left ideal of A is flat. 

Proof. 

(1) =~ (2): Suppose 0 --~ K --~ F --~ E --~ 0 is exact wi th 
." 

F flat. If E is flat then K is flat (Bl, Prop. 5, p. 31). If 

E is not fIat, by Theorem 1.3, 1 + wd K = wd E. But wd E $lby (1), 

whence wd K ~ 0 and K is fIat. • The implications (2) =::> (2)' are obvious. 

(t)=~ (t),: 

(3)' =~ (1): Let E. = AIl b e a fp left cyclic module. By Theorem 

1.3, wd E ~ 1 + wd l = 1 since l is fg left ideal and therefore fiat. 

By Theorem 2.2, wgl A~ 1. 

COROLLARY. If A is left or rte semi-hereditary, then wgl A~ 1. 

Proof. If A is left (resp. rt.) semi-hereditary, every fg 

left (rt.) idealis projective and therefore fiat. 

Remark 2.3. 

(i) Each of the corresponding "rt." statements of the theorem is also 

equivalent to wgl A~ 1. 
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(ii) Cf. the analogous resu1t of Cartan-Eilenberg «8), p. 112) 

for 19l A~ 1. 

(iii) The converse of the corol1ary is'fa1se unless A is left 

(or rt.) coherent. See Chase (10). 

THEOREM 2.4. If A is 1eft artinian, then 19l A = ,wgl A = sup wd S 

with the sup taken over all simple left modules S. Furthermore if 

wgl A ~ 1 then wglA =1 + sup wd M where the sup is taken over all 

maximal left ideals M. 

Proof. If A· is 1eft artinian, it is left noetherian and therefore 

19l A = wgl A (see Northcott (37), p. 154) and wd S = hd S for all 

simple left modules S since they are fg (Northcott (37), p. 153). Also 

if A is 1eft artinian, Jans «22), p. 56) has shown that 19l A = sup hd S. 

Therefore, we have the desired result. 

If wg~ A~l, Jans «22), p. 57) has shown that ~g~ A = 1 + sup hd M. 

Since A is left noetherian, every 1eft idea~ is fg and therefore 

wd M = hd M (Northcott (37), p. 153). But wgl A = 19~ A, so we are 

fini shed. 
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3. The Dual of Lambek's Theorem 

Lambek (28) has shown that a module is flat iff its character 

module is injective. We now prove the dual for noetherian rings: 

a module is injective iff its character module is flat. 

Let E be a left A-module and E' = HomZ(E,Q/Z) (Q = rationals, 

Z = integers) be its character module. Then E' is, in a natural 

way, a rte A-module. For further details, see Lambek (28) or 

Northcott «37), p. 71 ff.). There it is shown that ( )' is an 

additive exact contravariant functor from the categor.y of left 

A-modules to the category of rte A-modules. Thus if 

o --~E --~ F --~ G --~ 0 is an exact se~ence of left A-modules, then 

o --~G' --~ F' --~ E' --~ 0 is an exact sequence of rte A-modules. 

We shall also use the fact that for any left A-module E we have 

E = 0 iff E' = O. A proof may be found in Lambek (28). 

In order to prove our main result, we need: 

PROPOSITION 3~1. Let A be rte noetherian and M a fg rte 

A-module. Then for any rte A-module E we have a module isomorphism: 

Tor(M,E') = (Ext(M,E»' 
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Proof. This follows immediately from Northcott «37), p. 152, 

Lemma 5), since Q/Z is Z-injective. 

THEOREM 3.2. Let A be rte noetherian. Then any rte A-module 

E i8 injective iff the left A-module .E' is fiat. 

Proof. E is injective 

iff Ext(M,E) = 0 for all fg rte M. See Jans «22), p. 50). 

iff (Ext(M,E»' = 0 for all fg rte M. 

iff Tor(M,E') = 0 for all fg rte M by Proposition 3.1. 

iff E' is flat by (Bl, Prop. 1, p. 55). 

COROLLARY. If A is left noetherian, then any left A-module E 

i8 injective iff the rte A-module E' is flat. 

Proof. Interchange left and rte throughout. 
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CHAPT ER 6: PURE SIMPLE AND INDECOMPOSABLE RINGS 

In this chapter, we study pure simple and indecomposable rings 

and relate them to the PP and PF rings of Hattori(20). 

1. Small Submodules 

We recall that a submodule S of E is small in E iff for 

every submodule F of E such that S+F ~ E, we have' F = E. 

Clearly any submodule of a small submodule is small. 

LEMMA 1.1. Any finite sum of small submodules of E is small 
• 

in E. 

Proof. Use induction on the number of small submodules. 

PROPOSITION 1.2. For any x in Et any left A-module, Ax is 

small in E iff. x is in the sum of all small submodules of E. 

Proof. 

=~: is clear since x is in Ax. 
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<==: We must have x = ~ x. (fini te sum) wi th xl.. in S., a l. l.. 

small submodule of E. Each Axi is a submodule of Si' and hence 

small in E. Therefore S = Z Axi is small in E, since the sum is 

fini te. Since x is in S, Ax is a submodule of S and therefore 

small in E. 

THEOREM 1.3. For any module E, J(E) (the Jacobson radical 

of E) is the sum of all small submodules of E. 

Remark 1.3. The statement of this theorem is due to Sandomierski 

and Kasch and was communicated to me by Prof. J. Lambek. The proof is 

original. 

Proof. By Proposition 1.2, it suffices to show that Ax is 

small in E iff x i~ in J(E), or e~ivalently: x is not in J(E) 

iffAx is not small in E. We shall show the latter statement. 

=~ If x is not in J{E), then there exists sorne maximal 

submodule M of E su ch that x is not in M. Therefore Ax+M = E, 

and Ax cannot be small sinee M 1= E. 
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<==: We will call a submodule F of E proper iff F # E. 

The collection C of all proper submodules F of E such that 

Ax+F = E is non-empty since Ax is not small. Sinee each F of Q 

is a proper submodule, we have x 1 F for each F. It is al so cl ear 

that any proper submodule of E whieh contains a member of C, is 

itself a member of Q. Therefore if we order Q by set inclusion, 

the union F of any chain' F. of members of C is a proper submodule, 
J. 

sinee x is not in Fi for all i. Hence F is a member of Q, 

since it contains each Fi- Therefore by Zorn's Lemma we can ehoose 

a maximal element 'M of Q. We claim tha t M is a maximal submodule 

of E. Sinee M is in ~, x is not in M and therefore M ~s 

proper. Any proper submodule of E containing M is a member of 

Q, and therefore equal to M by the maximality of M in Q. 

Therefore M is a maximal submodule of E. Since x is not in M, 

x is not in J(E). 

COROLLARY 1. If J(E) is small in E, then it is the large st 

small submodule of E. 
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Proof'. Obvious. 

COROLLARY 2. 

(a) If' E is f'g, then J(E) is small in' E. 

(b) J(A) is small in A and theref'ore aIl lef't ideals and 

aIl rte ideals contained in J(A) are small. 

(c) If' A is a local ring, then all ideals l p A (lef't, rt., 

and two-sided) are small. 

Pro of'. 

(a) Suppose J(E) + F = E. If' F p E then F is contained in 

some maximal submodule M of' E, since E is f'g (B3, Prop. 4, p. 30). 

Theref'ore J(E) + F is contained in M p E. This co'ntradiction shows 

that we must have F = E, i.e. J(E) small in E. 

(b) A is f'g. 

(c) AlI ideals are contained in J(A), which i8 small. 

Remark 1.3. 

(i) Corollary 2 i9 untrue f'or E non f'g. For example, Q the 
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abelian group ( = Z-moduJ.e) of rational.s has no maximal subgroups 

and therefore J(Q) = Q. 

(11) Mares (.34) has shown that J(E) is small in E if 

E is semi-perfect. 

We now come to one of the main theorems of this section: 

THEOREM 1.4. If P is a projective module, then 0 is the 

only smaJ.l pure submodule of P. 

Proof. Since P 1s projective, there exists a free module 

F = P. <t> Q. Let S be any smalJ. pure submodule ofP. Th en S is 

a smaJ.l pure submodule of F, since S pure in P and P pure in F 

imply that S is pure in F (Proposition J..2 of Chapter J.). The 

smallness is clear. Since S is small in F, S ~ NF = J(F), where 

N = J(A), the Jacobson radical. (Theore~ 1 • .3). The fact that J(p) = NP 

for any projective moduJ.e bas been shown by Mares (.34). 

Let (~) (h in H, an arb~trary index set) be a base for F. Then 

for any x in S ç NF we have x = r ni x:1. (i in l, a fini te subset of H) 
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with ni in N. By Cohn's Theorem (Theorem 1.1 of Chapter 1), sinee 

S is pure in F, x = ! n. x. = ln. s. wi th s. in S. 
1 1 111 

For eaeh 

i in l, m .. in N and J. 
1J 1 

a finite 

subset of H. Then J = U Ji (i in I) is a fini te subset of H. For 

eaeh i in l, set m .. = 0 for eaeh 
1J 

j in J whieh is not in Ji. 

Then for eaeh i in l, s. = rm .. x. (j in J) and 
1 1J J 

x = ln.x. = rn.si = ~n.( ~m .. x.) = 4;"( ~n.m .. )x. 
1 1 1 ~ 1 ~ 1J J L L 1 1J J 

sinee the index 

sets are finite. Since (~) 

n k =2n.m' k (i 
·11 

in I)~ Let 

ideal generated by the n k • 

in N; therefore B = B N. x x 

is a base, for all k in l, 

Bx = L nkA (k in I) be the (fg) rte 

Then eaeh n k is in B N sinee mik is 
x 

But sinee Bx is fg, 

Nakayama's Lemma (B3, Thm. 2, p. 68)~ Hence = 0 for all k in l 

and x = 0, i.e. S = O. 

COROLLARY. 

(1) If J(P) is a small submodule of the projective module P, 

then 0 is the on1y pure submodu1e of P eontained in J(p). 

(2) J(A) contains no pure 1eft ideals and no pure rte ideals 

of A other than O. 
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(3) If P is a regular projective module, then 0 is the only 

small submodule, and therefore NP = J(p) = O. 

Proof. 

(1) Any pure submodule of P contained in J(p) is a pure 

small submodule of a projective module and therefore zero. 

(2) Since A is projective and J(A) is small in A, we can 

apply (1). 

(3) Since all submodules are pure, 0 is the only small 

submodule and therefore NP = J(p) = 0 since it is the sum of all 

small submodules (Theorem 1.3). 

THEOREM 1.5. Any local ring A is pure simple and hence 

indecomposable. 

Proof. If P FAis any pure left or rte ideal of A, then P 

is contained in the radical of A. Therefore P is pure small in A 

and hence P = 0 by Corollary l of Theorem 1.4. Thus A is both 

left and rte pure simple. 
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COROLLARY. Any regular local ring A is a skewfield. 

Proof. Since A is regular, its radical is pure in A. But 

the radical is always small in A, and therefore must be 0 by 

Theorem 1.4, and A is a skewfield. 
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2. pp and PF Rings 

Following Hattori (20), we will call a ring A left pp 

(resp. left PF) iff every principal left ideal of A is projective 

(resp. flat), and ~ (resp. EE) iff it is both left and rte pp 

(resp~ PF). We recall that the ring .A is left (semi-) hereditary 

iff every (fg) left ideal is projective. See Cartan-Eilenberg 

«8), p. 13.) 

PROPOSITION 2.1. 

(1) Every left PP ring is left PF; every PP ring is PF. 

(2) Every left semi-hereditary ring is left PP. 

(3) Every regular ring is PP. 

(4) If wgl A ~l, th en A is PF. 

(5 ) If 19l A ~ l, then A is left PP. 

Proof. 

(1) Every proj ective left ideal is flat .• 

(2) Every fg left ideal is projective by definition. 
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(3) Every fg 1eft and every fg rte idea1 is a direct aummand, 

and therefore projective. 

(4) Every 1eft and every rte idea1 ia fIat by Theorem 2.4 of 

Chapter 5. 

(~) __ Every 1eft ideal ia projective aince A is 1eft-hereditary. 

We now characte~ze both 1eft pp and 1eft PF rings. 

THEOREM 2.2. A is 1eft pp (resp. 1eft PF) iff 

1( a) = (b e Alba = 0) is a direct summand of (resp. pure in) A 

for aIl a in A. 

Proof. For any a in-A, we have an exact sequence of 1eft 

A-module's 0 --~ l(a) --~ A --~ Aa --~ O. And A is 1eft pp 

(resp. 1eft PF) iff, Aa ia projective (resp. fiat) for aH a:Ln A. 

iff l(a) is a direct summand of (resp. pure in) A 

for a11 a in A (see Proposition 1.3 of Chapter 1). 

THEOREM 2.3. 

(1) If A has no 1eft zero divisors, then A is 1eft pure simple 

and rte PP ,and hence lef~ indecompoaable and rte PF. 
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(2) If A is left pure simple and 1eft PF or if A is left 

indecomposable and left pp then A has no rte zero divisors. 

(3) If A has no left zero divisors and A is left PF then 

A has no rte zero divisors. 

Proof. 

(1) If A bas no leftzero divisors, then A is left pure 

simple, and hence left indecomposable by Corollar,y 1 of Theorem 2.1 of 

Chapter 1. Also (b' A 1 ab = 0), = r(a) = 0 for all 0 1: a in A, 

and therefore r(a) is a direct SIlmmand of A (as rte modules) for 

aIl a in A, Binee r(e) = A. Bence by Theorem 2.2 A is rte pp 

and therefore rte PF. 

(2) If A, is left PF (resp. left pp) then l(a) is pure in 

(resp. a direct summand of) A, as left A-modules. Since A isleft 

pure simple (resp. left indecomposable), l(a) = 0 or A. But 

l(a) = A implies a = O. Therefore l(a) = 0 for aIl 0 1: a in A, 

and A has no rte zero divisors. 

(3) follows immediately from (1) and (2). 
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COROLLARY 1. For any ring A, the f'ollowir,g conditions are 

equivalent: 

(1) A has no zero divisors. 

(2) A is pure simple and PF. 

(3) A is indecomposable and PP. 

Proof. Follows immediately from the theorem. 

COROLLARY 2. FQr a local ring A, the f'ollowing conditions are 

e qui val ent : 

(1) A has no zero divisors. 

(2) A is PF. 

(3) A is PP. 

Proof. Any local ring is pure simple and hence indecomposable 

(Theorem 1.5). 

COROLLARY 3. If A is a commutative local ring then A is an 

integral domain iff A is PP iff A is PF. 
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Proof. Obvious using Corollary 2. 

Fol1owing Bourbaki (Bl, Ex. 12, p. 63), we will cal.l the ring A 

left coherent iff every fg left ideal of A is fp. Chase (10) 

has shown that A is left coherent iff every product of flat rte 

A-modules is flat. It i8 easy to see that every left noetherian ring 

is left coherent. Recal1 that a ring A is left neat iff its 1eft 

singular ideal is O. See Chapter 4. 

THEOREM 2.4. 

(1) Every left pp ring is left neat, and therefore its complete 

ring of quotients (on the left side) is regular. 

(2) Every left coherent left PF ring is left PP,and therefore 

has all the properties given in (1). 

Proof. 

- (1) For any element a inA we have an exact sequence 

o --~ l(a)'--~ A --~ Aa --~ 0 Which is split exact since Aa is 

projective. If a is in K(AA), the left Johnson singular ideal of 
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At then l(a) is large in A and therefore l(a) = A since l(a) 

is a direct summand of A. But lCa) = A implies a = O. Therefore 

K(AA) = 0 and A is left neat. If A is left neat then its 

complete ring of quotients (on the left side) is regular. See 

Lambek «30), p. 106.) 

(2) For any a in A, the left ideal Aa is a fg and therefore 

a fp flat module, hence projective by Corollary 2 of Theorem 1.2 of 

Chapter 2. Consequen~ly A is left PP. 

Remark 2.4. Cf. the characterizations given for commutative 

PP and PF in Chapter 7. 



lJJ 

CHAPl'ER 7: LOCALIZATION 

We make the convention that wherever localization is discussed, 

all rings under consideration are commutative; ideals are usually 

denoted by small letters m, p, etc. Since localization is a special 

case of change of rings, all our results for change of rings carry 

over immediately, andin many cases can be extended. We use the 

notation and terminology of Bourbaki (Bl, Ch. 2), with the following 

minor changes: 

When only one base ring A is being considered, we let 

CE> = ®A. If S is·a mult. ( = multiplicative) set of A then 

AS' ES' and Us denote the localization at S of A, E (an A-module) 

and u (an A-homomorphism) respectively. We write HomS(ES,Fs) for 

and Ci% for <81 • 
S 

If s is the complement of a prime 

(or maximal) ideal p (or m), then we write p (or m) in place 

of S everywhere: Ap' u , 
m 

etc. We let ! = M(A) 

denote the collection of all maximal ideals m of A. 
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1. Puri ty and Ref?Jl.larity 

In this section, we characterize both purity and regularity 

"locally" and make comparisons wi th direct swnmands and semi-simplici ty. 

THEOREM 1.1. Let E be any A~module, D any submodule of E 

and S any mu1t. set of A. 

(1) If D is an A-direct summand of E (resp. A-pure in) E, 

then DS is an AS-direct summand of (resp. AS-pure °in) ES. 

(2) If E is A-semi-simple (resp. A-regalar), then ES is 

AS-semi~simple (resp. As-regular). 

(3) (T(E»sÇTS(E
S

) where T (resp. T
S

) is either the ss socle 

or the regular socle wi th respect to A (resp. AS). 

(4) ,- If E is A-simple, then ES is AS-simple. 

Pro of. 

(1) The direct summand case is given in (B2, Cor., p. 120 and 

Prop. 7, p. 90). The pure case follows from Theorem 4.1 of Chapter 1. 

(2) . Any AS-submodule of ES has the form DS where D is an 
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A-submodule of E (Bl, Frap. 10, p. 89). If E 1s A-semi-simple 

(resp. A~regular) then D 1s.an A-direct summand of (resp. A-pure in) 

E, and the resul t follows from (1). 

(3) T(E) is A-semi-simple (resp. A-regular) (see Chapter 3); 

therefore by (2) (T{E»s is an AS-semi-simple (resp. A-regular) 

submodule of ES and hence contained in TS{ES>. 

(4) As in (2), any AS-submodule of ES hasthe form DS where 

D is an A-sub ... .:.dule of E. If' E is A-simple then D = ° or D = E 

COROLLARY. Let S be any mult. set of' A. 

Cl) If' A i9 semi-simple (resp. regular), so is AS. 

(2) If A is simple, so is AS. 

Pro of. Apply Parts (2) and (4) of' the theorem with E = A. 

The following theorem shows that both purity and regulari ty are 

local propert1es. 
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THEO REM 1.2. Let E be any A-module and D any submodule of E. 

(1) D is A-pure in E iff D is Am-pure m in Em for all 

m in !. 

(2) E is A-regular iff E is A -regular for all m in Ms m m 

Pro of. By Theorem 1.1, we need only show <F= in each case. 

(1) ~=: Let j:D --~ E be the canonical injection. For any 

A-module F, let f = IF® j. Then f = IFC!fujm· m This fo:Llows· easily 
m 

from (B2, Sect. 5, p. 116). Since Dm . is Am-pure in Em' f is m 

mono for aJ.l m in ,!, and therefore f is mono (BI, Thm. l, p. Ill). 

Hence D is A-pure in E. 

(2) ~=: If D is any submodu1e of E, Dm is Am-pure in Em' 

and therefore D is A-pure in E by (1), and E is A-regular. 

In generaJ., the property of being a direct summand ia not local. 

However, we have: 

THEOREM 1.3.· Let 0 --+ D --~ E --~ F --,. 0 be an exact aequ.ence 

of A-modules. If F 1s A-pure projective, then 
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(1) D is an A-direct summand of E iff Dm is an Am-direct 

summand of Em for aIl m in !. 

(2) E is A-semi-simple iff is A -semi-simple. for aIl 
m m in !l. 

Pro of. By Theorem 1.1, we need only Show ~= in e~ch case. 

(1) <F=: If Dm is Am-pur~ in Em for aIl m in M, then D is 

A-pure in E by Theorem 1.2. Since F ~ pure projective, the sequence 

is split exact by Theorem 2.4 of Chapter 2. 

For any submodule D of E, is an A :;"direct 
m 

summand of Em for aIl min!. Therefore by (1), D is a direct 

summand of E. 

COROLLARY. If A is PDS, then any exact sequence 

o --~ D --~ E --~ F --~ 0 is split exact iff 

Proof. If A is PDS, then all A-modules are pure projective 

by Theorem 4.1 of Chapter 2. Apply the above theorem. 
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THEOREVI 1.4. Let 0 .--~ D --~ E --~ F --,. 0 be an exact 

sequence of A-modules. If F is fg flat, then Dp is an Ap-direct 

summand of Ep for all prime ideals p of A. 

Proof. For all p, is a fg flat A -modnle (Bl, Prop. 13, 
p 
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p. 115) andhence Ap-free sinee Ap 1s a local ring (Bl, Ex. 3, p. 167). 

Since any free modnle is pure projective (see Chapter 2), the exact 

sequence o --~ D --~ E --i> F --~ 0 ppp split s. 
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2. pp and PF Rings 

In this section, we give a local cbaracterization of PF rings 

and connect it with known characterizations of related properties 

(PP, etc.). 

THOOREM 2.1. Let A.,have any one of the following properties: 

(1) wgl A ~ 0 (i. e. A is regular).· 

(2) A i6 semi-hereditary. 

(3) wgl A ~l. 

(4) A is PP., 

(5) A is PF. 

(6) A i6 semi-prime. 

Then the ring AS has the sarne property, for any mult. set S. 

Proof. 

(1) and (3): Fo!' any mult. set S, wgl AS' wgl A (see Cartan

Eilenberg (8), p. 123 and p. 142), and these parts are immediate. 

(2), (4), (5): Any fg (resp. principal) ideal of AS bas the 

form IS where l is a fg (resp. principal) ideal of A. If l is 



projective (resp. flat) then IS is projective (resp. flat). See 

(B2, Cor., p. 120 and Prop. 7, p. 90) for the projective case, and 

(Bl, Prop. 13, p~ 115) for the flat case. 

(6) is given in (Bl, Prop. 17, p .• 97). 

THEOREM 2.2. Let K be the total quotient ring of A in the 

sense of Bourbaki (Bl, Example 7, p. 77). 

(1) wgl A' 0 (i.e. A is regular) iff Am is a field for 

all m.:in.M. 

(2) A is semi-heredi tary iff K is a regular ring and Am 

is a valuation domain for all m inM. 

(3) . wgl A ~l iff A- is a valuation domain for all m in M. 
m 

A is pp iff K is a r egular ring, and 

domain for all min!. 

A is a local 
m 

(5) A is PF iff Am is a local domain for all m in M. 

(6) A is semi-prime iff Am is semi-prime for à 1 m in M. 
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Remark 2.2. The first four parts are due to Endo (13) and (14). 

We have restated them, sometimes in Slightly different form, in order 

to emphasize the relationships between them. 
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Proof. In view of the remark, we shall only prove (5) and (6): 

(5) =~: By Theorem 2.1, A is a local PF ring and therefore 
m 

an integral domain by Corollary 3 of Theorem 2.3 of Chapter 6. 

<F=: If l is any principal ideal of A then for all m in !, 

lm is a principal ideal of Am' and therefore Am-fIat since Am is 

a (local) domain, hence PF. Therefore" l i8 A-fIat (BI, Cor., p. 116), 

and A is PF. 

(6) By Theorem 2.1 we need only show: 

~=: Let N" be the nilradical of A. Then for all m in!1t Nm 

is the nilradical of Am (Bl, Prop. 17, p. 97). Since each Am 1s semi-

prime, N = 0 for all min M and N = 0 (BI, Cor. 2,p. 112). 
m 

COROLLARY. Every commutative PF ring is semi-prime and 

therefore neat. 

Proof. Use (5) and (6) of the theorem and the fact that every 

(local) domain is semi-prime. A commutative ring is semi-prime iff 

i t is neat. See Lambek «JO), p. 108.) 
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3. Solution of Bass' Conjecture for Commutative Perfect Rings 

Bass (4) bas conjectured that a ring A is left perfect iff 

'\, 
every nonzei-f> left A-module has a maximal. SIlbm9d.ule and A bas no 

infini te sets of orthogonal idempotents. As he remarks, this isrl:he 

natural dual to Part (4) of Theorem 3.1 .of Chapter O. 

Hamsher (19) bas given an affirmative solution for commutative 

noetherian rings. Weshall extend his solution to arbi trary commutative 

ripgs. .A:f'ter"discovering the following solution, we noticed that 

Hamsher has announced a complete solution to the conjecture in the 

commutative case. However, the solution presented below has the 

advantage of being more direct and less computational than the 

one of Hamsher. 

F.or the rest of th:i.s section, let A be commutati ve_ We 

quote without proof: 

LEMMA 3.1 (Hamsher (19». If every nonzero module bas a maximal 

·submodule, then every prime ideal of A is a maximal ideal. 

and add the obvious: 



COROLLARY. In this case the Jacobson radical J = J(A) of A 

coincides with the prime radical of A. 

Pro of. J(A) is the intersection of all maximal ideals and the 

prime radical is the intersection of all prime ( -maximal) ideals. 

For our main theorem we prove: 

LEMMA 3.2. If A has the property that every prime ideal is 

maximal, then 

(1) Every quotient ring A/I has the sarne property. 

(2) AS has the sarne property for any mult. set S. 

Proof. 

(1) is an immediate conse~ence of the one-one correspondence 
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between the prime (resp. maximal) ideals of A and the prime (resp. 

maximal) ideals of A/I. 

Any prime ideal of AS has the form where p is a 

prime ideal of A disjoint from S (BI, Prop. Il, p. 90). But p is 

maximal and disjoint from S, and therefore a maximal ideal among 
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ideals disjoint f'rom S. Hence Ps 1s a maximal ide al of' AS 

(Bl, Prop. 11, p. 90). 

THEOREM 3.3. The ring A 1s perf'ect if'f' every nonzero A-module 

has a maximal submodule and A has no inf'inite sets of' orthogonal 

idempotents. 

Pro of'. 

=~ : bas been shown bS Bass (4). 

<!==: Bass has also shown that under these conditions the Jacobson 

radical J of A is T-nilpotent. Theref'ore by Theorem 3.1 of Chapter 0, 

it only remains to show that B = A/J is semi-simple. 

Lambek «30), p. 72) bas shown that if' J is anil ideal of At 

any countable orthogonal set of' nonzero idempotents in B = A/J can 

be lifted to an orthogonal set of nonzero idempotents of' A. Since 

any T-nilpotent ideal is clearly a nil ideal, this implies that B 

has no infinite sets of orthogonal idempotents. Osof'sky (38) has 

remarked that any re@Ular ring with no inf1nite sets of orthogonal 



idempotents is a s&mi-simple ring. Therefore to compl.ete the proof 

it suffices to show that B i9 a regular ring. 

Using Theorem 2.2 we.will provethat B is a regular ri~g by 

showing that Bn is a fiel.d for all. maximalideals n of B. 

By the corol.lary of Lemma 3.l., J = the prime radical. of A 

and hence B = AI J is a semi-prime ring (see. Lambek (30), p. 56). 

Therefore B "" is semi-prime for all maximal ideals n n of B by 

Theorem 2.l.. Since in A every prime ideal is maximal, the sarne 

is true for B and Bn by Lemma 3.2. Congequentl.y"f6r all. n, 

Bn i9 a local. semi-primitive ring, i.e. a fiel.d, and B i9 a 

regul.ar ring by Theorem 2.2. 

l.45 
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CHAPrER 8: FLAT COVERS 

In this chapter, we shall define and study flat covers. We will 

show that they always exist, and coincide with the projective cover " 

of Bass (4) in the case that A is perfect, but that they are in 

general not unique. 

1. Definition and Existence of Flat Covers 

We begin with a few preliminary definitions. A submodule D of 

E will be called impure in E iff" D fo E and D containsno pure 

submodule of E other than O. Thus all propersubmodules of apure 

simple module are impure. 

Any exact sequence 0 --~ K --~ F --~ E --~o of "left A-modules 

will be called a refinement of E; it will be called proper iff K P O. 

Any refinement 0 --"~ K --~ F --!) E --~ 0 will be called ~ 

(resp. impure) iff F is flat (resp. K is impure in F), and 

impure flat iff it is both impure and flat. It is well known that 

every module has a flat refinem~nt~ 

A refinement u:F --~ E will be called minimal iff for any 
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f'actorization u = vw, w epi ==) w iso. A minimal fiat ref'inement 

(i.e. minimal among the f'lat ref'inements) of' E will be called a 

f'lat co ver of' E. 

u 
PROPOSITION 1.1. The fiat ref'inement 0 --). K --~ F --~ E --~ 0 

1s minimal f'lat (i.e. a f'lat cover) iff it is impure f'lat. 

Proof. 

=~: We wish to show that· K is impure in F. SUppose P is 

a submodule of' K and P is pure in F. Then u has the canonical 

w v 
factorization u:F --~ F/P --~ E. Since w is epi, it is iso and 

P = O. Hence K is impure in F. 

(==: Suppose u:F --~ E has a f'actorization u = vw with 

w epi, say w:F --~ F/P, and F/P f'lat. By Proposition 1.3 of' 

Chapter l, P is pure in F. Since P is clearly a submodule of K, 

'Ile have P:: 0 and w is iso. Theref'ore the ref'inement is minimal fiat. 

THEOREM 1.2. Every module E has a-flat cover. 

Proof. Let 0 --~ K --~ F --) E --~ 0 be a flat ref'inement 
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e 
of E. The collection of all pure submodules of F contained in K 

is non-empty, since 0 is such a submodule. If we order the 

collection by set theoretic inclusion, we can choose a maximal 

,element P by Zorn's Lemma, since purity i;'l an inductive property 

(Corollary 2 of Theorem 1.6 of Chapterl). Since 1> is pure submodule 

of the flat module Ft F/"2 is flat (Proposition 1.3, of Chapter 1) 

and 0 --~ KIP --~ F/P --~ E --~ 0 is a',fiat refinement of E. The 

refinement is impure, since if Kt IP 'were a pure submodul-e of 

F/P contained in KIP then K' would be pure in F and therefore 

Kt = P by themaximality of P, i.e. Kt/P = O. 

The proof of the theorem also yields the fOllowing obvious: 

COR OLL ARY • Every fiat refinement cah be :f'aètored through a 

minimal f1at refinement. 

PROPOSITION 1.3. A nonzero module F i8 f1at iff it has no 

proper impure refinement. 
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e Proof. 

=~: Let 0 --~ K --~ G --> F --~ 0 be an impure refinement. 

Sinee F is fIat, K is pure in· Gand therefore K = O. 

4==: Let 0 --~ K --~ G ._-~ F --~ 0 b e a flateover of F. 

Sinee it is an impure refinement we must have K = 0 ainee it is 

;, not proper. Henee F = G is fIat. 

The following eorollary shows that every :fIat module is its 

own (and therefore unique) fIat eover. 

COROLLARY. A nonzero module F is fIat iff·for every fIat 

eover 0 --~ K --~ G --) F --~ Owe have K = O. 

Proof • 

. =::0): Every fiat eover ia an impure refinement (Proposition 1.1) 

and therefore K = 0 by the proposition. 

<==: Every F has a fIat eover 0 --~ K --) G --~ F --~ 0 

(Theorem 1.2). Sinee K = 0, F = G is fIat. 
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2. Flat Covers over Perfect Rings and PIDts 

In this section, we show that for perfect rings, the flatcover 

defineù in Section 1 coincides with the projective cover of Bass (4), 

whenever it exists, i.e. for 1eft perfect rings. 

THEOREM 2.1. If A is 1eft perfect, then any refinement is a 

f1at co ver iff it is a Bass projective cover {and therefore unique 

up tci isomorphism). 
J 

·Proofo 

u 
=~: Let 0 --~ K --~ F --) E --~ 0 be a f1at cover of E. 

Since A is 1eft perfect, E bas a Bass projective cover 

o --~ S --~P --~ E --~ 0 where S is sma11 in P (Theorem 3.1 of 

Chapter 0). Since A is 1eft perfect, F is projective and u 

, factors through P, and we have an exact commutative diagram: 

u 
o --~ K --~ F' --~ E --~ 0 

~ w ~ ~lE 
o --~ S --) P --~ E --~ 0 

(one readi1y verifies that w(K) i9 contained in S). 
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Now it is easy to verify that P = S+lm w where lm = image. 

Therefore P = lm w since S is sma11, i.e. w is epi~ But 

u:F --~ E is a fIat cover and therefore w is iso, with inverse w' 

say. Then K = w'w{K) is contained in w'{S). since w{K) is 

contained in S. But the image of any 'small s,ùbmodu:J.,.e is sma11 

(see Lambek (30), Ex. 8, p. 93) and therefore w' (S) i8 small, 

whence K is sma1l. Bence 0 --~ K --~ F -~~ E --~ 0 is a 

projective cover of E. 

(==: Let 0 --~ S --~ P --~ E --~ 0 be a projective coyer 

of ~. If K is pure in P and- contained in S then K is a 

smaII pure submodule of a projective module,and therefore K = 0 

by Theorem 1.4 of Chapter 6. 

Bass (4) has shown the uni~eness, up to isomorphism, of the 

projective cover. 
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3. Non-Unigueness of the Flat Cover 

We will now give an example of a module with two distinct fIat 

covers. Let A = Z, the ring of integers. Then I- and III-purity 

coincide (see Chapter 1) and torsion-free and fIat coincide 

(BI, Prop. 3,p. 29). Using III-purity( = I-purity for Z), 

Banaschewski (J) has shown that 

, 1V ' 
o --~ K --;. HomZ(Q,Q/Z) --~ Q,lZ ~-~O 

where w is defined by w(f) = f(l), is a minimal torsion-free cover, 

i.e. a flat cover of Q/Z. 

We claim: 

LEMMA' 3.1. 0 .--~ Z --~ Q --~·Q/Z··--~ 0 is also a fIat caver 

of Q/Z. 

Proof. Since Q is fIat, we need only show that Z i8 impure 

in Q (Proposition 1.1). Suppose that the 8ubgroup P of Z i8 

pure in Q. Then P is pure in Z. Since Z i8 pure simple, 

P = 0 or Z. But Z is not pure in Q aince Q/Z i8 not fIat 
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(= torsion-free). Therefore P = 0 and the given exact sequence 

is a f1at cover. 

PROPOSITION 3.2. Q is not isomorphic to Hom(Q,Q/Z). 

Proof. Let Qt = Hom(Q,Q!Z). We will show that for any prime p 

contains a copy of 

three we11-known facts: 

Z , the p-adic integers. 
p 

For this we use 

(1) Q/z is the direct sum of the groups Qp/z where is 

the subring of Q consisting of those rationa1s, denominators of 

which are powers of the prime p. (See Lambek (30), Ex. 6, p. 19.) 

(3) Zp i9 uncountab1e. See Fuchs (17). 

For any f in z , we have an induced map descri bed by 
p 

u v f k 
Q --~ Q/Z --> Q /Z --~ Q /Z --~ Q/Z p p 

where v and k are the canonica1 projections and injections arising 

from the direct sum decomposition of (1), and u is the canonical 
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P 

by 
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:f --~ kfvu. It is straightforward 

to verify that this is a homomorphism. Since k is mono and v and 

u are epi, the mapping h is mono. Since Q is countable, we have 

that Q is!!2i isomorphic t 0 Q' • 



155 

4. Localization 

We can prove one localization theo:l.'em: 

THEOREM 4.1. Let 0 --~ K --;> F--~ E --) 0 beany refinement 

of E. If 0 --~ K --> F -_ ..... E --""'" 0 is an A -fiat cover of Em m m 7 m 7 m . 

for all m in At, then the original refinement is· a flat cover of E. 

Proof. Since Fm i6 Am-flat for all m in Mt F is flat 

(Bl, Cor., p. 116). If the submodule P of K i6 pure in F, 

then for all m in!t the submodule Pm of Km is pure in Fm 

(Theorem 1.2 of Chapter 7). 

P = 0 (Bl, Cor. 2, p. 112). 

Therefore P = 0 for all m in! and 
m 
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