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ABSTRACT

P, M. Cohn calls a submodule P of the left A-module M pure
iff 0 --2E®@P --» E@MN is exact for all rt. modules E. DMNost
of the well-known theorems on pure subgroups are valid for pure
submodules. Extending a definition of.Maranda to arbitrary rings,
a module Q is called pure projective iff Hom(Q,M) --3 Hom(Q,M/P) --» O
is exact whenever P is pure in M. Maranda's results on pure

projectivity are extended and a complete structure for pure projective
modules is obtained.

Generalizing a known property of regular rings, a (left) A-module
is called regular iff all its submodules are pure., The ring A is
shown to be regular iff all left (or all rt.) A-modules are regular.

A structure theorem for regular projective modules is obtained. A
regular socle is defined, analogous to the semi-simple ( = usual) socle,
and its basic properties established. Several new characterizations

of regular rings are given.

It is known that a left modﬁle F is flat iff its character module
HomZ(F,Q/Z) is injective. For (left) noetherian rings, the dual holds:
the left module I is injective iff its character module is flat. It
is also shown that the weak ( = flat) global dimension of A is equal
to: sup weak dimension E, with the sup taken over all left (or rt.)
finitely presented cyclic modules E.

Pure simple and indecomposable rings are related to the PP and
PF rings of Hattori. The latter are rings in which every principal
(left) ideal is projective (or flat). These rings are characterized

both in the commutative and non-commutative cases,

Localization theorems for purity, regularity, PP and PF rings
are obtained.

Finally, as an application, flat covers of modules are constructed
and their basic properties established. They always exist and coincide
with the projective cover for the perfect rings of Bass. However,

they are not in general unique.
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PREFACE

Following P. M. Cohn we call a submodule P of the left A-module
N{ pure iff O --> E@®@ P --> B ®M is exact for all rt. modules E.
This generalizes the definition of purity for abeiian gro?ps, and
we prove that most of the well-known theorems on pure subgroups are
valid for pure submodules.

For Principal Ideal Domains, Maranda calls a module Q@ pure
projective iff Hom(Q,M) --» Hom(Q,M/P) --» O is exact whenever P
is pure in M, ..Adopting this definition for arbitrary rings, we are
able to extend his results on pure projectivity and get a complete
structure theorem for pure projective modules,

It is easy to verify that a ring A is (von Neumann) regular
iff every left (or every rt.) ideal is pure. Generalizing this
idea, we call a (left) A-module regular iff all its submodules ére
pure. We prove that the ring A is regular iff all left (or all rt.)

A-modules are regular. A structure thearem for regular projective



module is obtained. We also define a regular socle, analogous to
the semi-simple ( = usual) socle, and establish its basic properties.
Several new characterizations of regular rings are also proved.
Lambek has shown that a left module F is flat iff its character
module HomZ(F,Q/Z) is injective. PFor (left) noetherian rings we
prove the dual: the left module I is injective iff its character
mo%gle is flat. We are also able to show that the weak ( = flat)
global dimension of A is equal‘to: sup weak dimension E, with
the sup taken over all left (or rt.) finitely presented cyclic
modules E, This extends and considerably simplifies the proof of
a corresponding result of Auslander and Buchsbaum on the global
homological ( = projective) dimension of A.
Next we relate pure simple and indecomposable rings to the PP
and PP rings of Hattori., The latter are rings in which every
principal (left) ideal is projective (or flat). We characterize

these rings both in the commutative and non-commutative cases,



Our next chapter gives a number of localization theorems for
purity, regularity, PP and PF rings,

Finally, as an application, we dbstruct flat covers_of modules
and establish their basic properties. They always exist and coincide
with the projective cover for the perfect rings of Bass. Howevér,
they are not in general unigue.

Originality can be claimed for the results in this thesis,
except in a few places where specific acknowledgement is made in
the text., For a@viqe given in conversation T am indebted to members
of the McGill staff, in particular Dr. Connell and Dr. Kuyk. Most of

all I would like to thank ny supervisor, Dr. J. Lambek, for the great

deal of time and encouragement he has given me,
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CHAPTER O: NOTATION, TERMINOLOGY, AND PRELIMINARIES

In general we use the notation and terminology of Bourbaki;
divergences are noted explicitly.

Throughout this thesis the word ring will mean associative ring
with unit element, bu? not necessarily commutative. Ring homo-
morphisms preserve unit elements; the unit element of a subring is
the unit element of the overring. Rings are usually denoted by the
letters A, Bf Cy, ¢e¢e and their unit elements by lA’ lB’ lc, cee
respectively.

All modules will be unitarye. Unless the contrary is stated,
all modules and submodules will be left. Modules are usually denoted
by the letters E, P, G, ooe M, N, ... and B, E", etc.

The word ideal will mean two-sided ideal., Ideals (both one~ and
two-sided) are often denoted by the letters I, J, K, ¢ee Or m, N, Py eee

Module homomorphisms are denoted: u:E --» F or fe¢Hom(M,N). If

u is in Hom(F,G) then for any M, H(M,u):Hom(M,F) --> Hom(M,G)




denotes the map defined by: H(M,u)(w) = uwe If f:M --3 M/N is
the canonical homomorphism, we often set m = f(m) for m in M.
Often our considerations involve only one ring, say Ae. In
that case we let 1 be its unit element (instead of lA)’ and write
® 1in place of Cgh. The word module is then understood to mean left
A-module, and the expression "Let u:E -~=» F " +o mean: 1let u be
ag A-homomorphism from the left A-module E +o the left A-module F.
If more than one ring is involved, we emphasize the distinction by
writing A-flat, B-flat, etc,.
As a rule, x, x', x" denote elements from the sets X, Xt, X"
respectively. The sets may be rings, modules, ideals, etce

An exact commutative diagram is a commutative diagram in which

all rows and all columns are exact,
Definitions, theorems, etce. are usually given for the “left"
side. It is understood, of course, that a corresponding statement

holds for the rt. side, although we do not always state it explicitly.

In the case of non-symmetric ring properties, the absence of the words



left and rt. means that both hold; e.g. by noetherian ring we mean both

left and rt. noetherian.

The letters I, J, K, ... are often used for index sets. We use
the convention that any summation is over the repeated indices. Thus

Zai;jxj will mean Zaijx:j (j in J)

and

zaijbjkckl will mean zaijbjkckl (i in J, k in K)

Since frequent reference is made to:

(B1) Bourbaki, N. Algdbre Commutative, Ch. I and II,
(B2) Bourbaki, N, Algebre, Ch. II,
(B3) Bourbaki, N, Algebre, Ch. VIII,

these three books are referred to as (Bl), (B2) and (B3) respectively.
Other references are given in the usual way.

The following abbreviations are used: Mono, epi, iso for one-one,
onto, one-one and onto homomorphisms, rt., fg, iff for right, finitely
generated, if and only ifNreSpectively.

We will now recall the definitions and elementary properties of

several concepts which will be used frequently in this thesis.



l., Finitely Presented Modules

These modules play an important rdle in our work. A left A-module
E is called a fp ( = finitely presented) module iff there exists an
exact sequence of left A-modules
G --PF --5E -->0
with both G and F fg free modules. This definition, as well as the

basic properties of fp modules, are given in (Bl, p. 35).

PROPOSITION 1l.1. Fo.f any module E the following conditions
_are equivalent:

(1) E is fp.

(2) There exists an exact sequence O =-=» K ==» F --» E -~>» 0
with P fg free and K fg.

(3) There exists an exact sequence O --» H -=3» P -=» E --> 0

with P fg projective and H fg.

Proof.
(1) =>(2): If E is fp, there exists an exact sequence

G -=PF -=3»E --»0 with G and F bhoth fg free. Hence we have an



exact sequence 0 --) K -=» F -~ E --» O. By (Bl, Lemma 9, p. 37),
K is fge

(2) => (3): is obvious.

(3) = (1): Let p:.L generate P, with i in I, a finite index
set, and let u:f --9» E Dbe the given homomorphism, There exists a
free module ‘F with base fi’ iin I, such that P =P@®Q for some
Q, and fi = pi@qi'(:Bz, Cor. 1, p. 62). Define v:F -->E by
v(fi) = u(pi). .It is routine to verify that Ker v = H@® Q. Since
H and Q are fg, so is Ker v, witih generators kj say, with
J in d, a finite index set. Let G be free with‘base gj, jin g,

and define w:G -->» F by w(gj) = kj' Clearly we have an exact

gsequence G -~ P == E -=> 0 with G and F =£g free; hence E

is fp.



2. Change of Rings

In this section, we recall some facts about change of rings. For
further details and proofs, see the indicated reference in (B2).
Throughout this section let f:A --3 B be a ring homomorphism,

(a) Restriction of Scalars from B to A 'via f (B2, p. 49).

Any left B-module E can be canonically made into a left A-module by
defining ae = f(a)e. for all a in A and e in E.

(b) Extension of Scalars from A to B via f (B2, p. 116).

By restricting the scalars from B to A, B can be made into a rt.
A-module BA' With any left A-module E we can canonicelly associate
a left B-module E]3 = BA ®A E, and an A-homomorphism E --9 EB given

by e —-91®A e.



3e Perfect Rings

The definitions and results in this section are almost all due
to Bass (4). A left or rt, ideal I of A will be called left

T-nilpotent iff for any sequence al, Aoy see of elements of I, there

exists n»0 such that 818, eee B8 = 0 (right T-nilpotence requires
that 8,8, 1 ees 8y = 0 for some n). A submodule S of E is small

in E iff for every submodule F of E such that S + F = E, we have

F=E. An epi u:P --) E is called a projective cover of E iff P

is projective and Ker u is small in P. We call a ring A left

perfect iff every left A-module has a projective cover. We quote

without proof:

THEOREM 3.1 (Bass)es Let N ©be the Jacobson radical of A. Then
the following conditions are equivalent:

(1) N dis left T-nilpotent and A/N is semi-simple,

(2) A is left perfecte.

(3) BEvery flat left A-module is projective.

(4) A has no infinite sets of orthogonal idempotents, and every

nonzero right A-module has nonzero socle.



CHAPTER 1: PURITY

This chapter will be devoted to defining and establishing the

basic properties of pure submodules,

le Definition and Elementary Properties of Purity

We will adopt a definition of purity due to P. M. Cohn (11). 4n
exact sequence of left A-médules O -=>E == F --HG --» 0 will be
called pure exact iff for every rt. A-modu}e D, the induced‘seqﬁence
0 -->D@E ~--»D®F --» D@ G -->» 0 is exact. Usually we identify
E ﬁith its image in F and say that E is pure in F., Conversely,

a submodule E of F will be called a pure submodule iff the
associated exact sequence O --3 E -~3» F --> F/E --> 0 is.pure exacte.
It is easy to verify that for any module E, both O and E are pure
submodules. Consequently any collection of submodules of E which
contains O will always contain a pure submodule of E. Since for any
rt. A-module D, the functor D@ is rt. exact, the condition that E

be pure in F is equiwvalent to the requirement that D(j) = 1I)@Dj




/ .
be mono for all rt. A-modules D, where j:B -->F is the canonical

injection.
In order to explain the name purity, we quote without proof the

following fundamental result of P. M, Cohn (11):

THEOREM 1.1 (P. M. Cohn). Let P be a submodule of M. Then
P is pure in M iff given Zaijmj =q in P for all i in I, some
finite index set,where aijG A, mje M, and Jj in J, a finite index set,

then there exist pj in P for all J in J, such that

a.,.m, = .p. for all i in I
1357 Z‘a.i:]p:l r i .

Remark 1.1,

(i) This result will sometimes be used as a test for purity. For
convenience we shall use the following (equivalent) abbreviated form:
P is_ pure in M iff Z aijmje P =3 Zai;jmj = 2aijpj'

(ii) For PID's (Principal Ideal Domains), Kaplansky (25) defines
a submodule P of M +to be pure iff

(1) am in P =PHam = ap for all a in A and some p in P.
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which is equivalent to:

(2) aMAP = aP for all a in A,
It is clear that Cohnts definition of purity is a generalization of
(1); in fact, as he remarks, his definition coincides with that of
Kaplanskiy for PID!s.- Chase (10) has adopted the formulation (2) as .a
definition of purity for arbitrary rings. In Section. 3, we shall

examine these two definitions in greater detail, and prove a theorem

which extends Cohn's remark to a wider class of ririgs. However, unless

the contrary is stated explicitly, the word pure will always mean pure
in the sense of Cohn,
Our next proposition shows that several well-known properties of

pure subgroups are alsc valid for pure submodules.

PROPOSITION 1.2, Suppose EGFEG are left A-modulés. Then
(1) E purein F and F pure in G =» E pure in G.

(2) E pure in G =>E pure in F.

(3) F pure in G = F/E pure in G/E.

(4) If E is pure in G then F/E pure in G/E =3 F pure in

Ge
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(5) If E is pure in Gy then under the one-one correspondence
between the submodules of G containing E and the submodules of

G/E, pure submodules correspond to pure submodules,

Proof. TFor any rt. A-module D, we have the following exact

cohmutative diagram:

u v
DOE ~-3D@®F ~~>DQ@F/E -3 0

1“&, b 1’ JV c
"D®E -->D@®G --» DBG/E --» 0
. ut v?
where all the maps are those induced by the canonical maps arising from
the inclusions: E€FCG.
(1) Since bu = u', we have u mono and b mono =» ut mono and
(2) u' mono =% u mono.,
For (3) and (4) we use the Snake Lemma (Bl, Prop. 1, p. 17).
(3) If b is mono then c¢ is mono since 1 and v are epi, by
Corollary 2 of the Snake Lemma,
(4) If u' and ¢ are mono then b is mono since 1 is mono,

by Corollary 1 of the Snake Lemma,

(5) follows immediately from (3) and (4).
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For the most part, the results of the next proposition were given
by Cohn (1l). For completeness we collect them together here; note
that flat modules play the same rdle for pure submodules as torsion

free abelian groups do for pure subgroups.

PROPOSITION 1.3, Let O ~-3 E -=» F == G —-» O be exact. Then:

(1) If ¢ 4is flat, E 4is pure in F.

(2) - The converse holds if P is flat. In that case E is also
flat,.

(3) If P is flat, then E 4dis pure in F iff G is flat,.

(4) If G is flat, then under the one-one correspondence between

submodules of P containing E and submodules of G, pure submodules

correspond to pure submodules.

(5) If E is a direct summand of F then E is pure in F.

Proof., Let j:E --> F be the given homomorphism. For any rt.
A-module D, the given exact sequence yields the long exact sequence:

Tor(D,F) --> Tor(D,G) --> D@®E --> DO F.
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(L) If ¢ dis flat, Tor(D,G)

0 and D(j) =1,@®J 4is mono.

Hence E is pure in T,

it

(2) 1I£ P is flat, Tor(D,F) = O and Tor(D,G) = Ker D(j).
Hence if E is pure, D(j) is mono and Tor(D,G) =0 and G is flat,
Also E is flat since F and G are flat (Bl, Prop. 5, p. 31).

(3) This follows by combining (1) and (2).

(4) If G is flat, B is pure and the result follows from

Proposition l.2.

(5) is immediate since & commutes with @ (B2, Core 5, De 93).

The following corollary is the analogue of a well-known proposition

for projective modules,

COROLLARY., The left A-module F dis flat iff every exact sequence

O ==>D ==> E == P «=» 0 of left A-modules is pure exact.:

Proof.

=2 : is immediate by Part (1).

&=: Taking E flat, the result is immediate by Part (2).
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Remark 1,3,

(i) The converse of (1) is false in general: let P be a module
which is not flat, and let F = I’C)P. Then P is pure in F by
Part (5), but G = F/P £ P .is not flat,

(ii) The dual of the situation descriped in the corollary, i.e.
modules D for which every exact sequence O ==P D =~=DE «=H F ~=> 0
is pure exact has been studied by Maddox (31). He calls such modules

absolutely pure.

(iii) The converse of (5) is not in general true. In fact we have:

PROPOSITION l.4. For any ring A the following conditions are
equivalent:

(1) A is left pérfect.

(2) Pure submodules of flat left A-modules are direct summands.

(3) Every pure exact sequence of left A-modules

O ~=>E -=3F --30C ~--» 0 with P flat is split exact.

Proof.

(1) =» (2): If P is a pure submodule of the flat module F, then
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F/P is flat by Proposition l.3. Since A is left perfect, F/P is
projective by Theorem 3.1 of Chapter O, and the exact sequence
0 -=»P == F --» F/P --> 0 splits (B2, Prop. 4, p. 61), i.e. P is
a direct summand,

(2) =3 (3): is obvious.

(3) =$ (1): For any flat left A-module F, there exists an exact
sequence O ~-» D ~~3 E -=» F -=-> 0 with E projectives Since P is

flat, the sequence is pure exact, hence split exact and F is projective.

COROLLARY 1. If every pure submodule is a direct summand, then

A is left perfect.
Proof, Obvious.

COROLLARY 2, There exist pure submodules which are not direct

summands.

Proof. There exist rings which are not perfect (the ring of

integers for example). See Bass (4).



16

Remark l.4. In Chapter 2, we shall examine conditions under which

f

every pure submodule is a direct summand.

"PROPOSITION 1.5, Let O == Pi -—3 Mi —-— Ni -=>» 0 be exact
for all i in I, any index set, and let P =@Pi (1iin I) and

M=®Mi (i in I), Then P is pure in M iff P, is pure in M,

for all i in I,

Proofs Let ki:Pi - Mi and k:P --» M be the canonical
injectionse Then k =®ki (1 in I) (B2, Prop. 7, P. 26)e For any rte
A-module E, let E(k) = 1, @k, etc. Then E(k) =@ E(k,) since @
commutes with @ (B2, Prop. 7, p. 90), and the direct sum map E(k)
is mono iff each component map E(ki) is mono (B2, Cor. 1, pe 27).

Therefore P is pure in M iff Pi is pure in Mi for all i in I,

THEOREM 1.6. Let I be any directed set, and let (Pi)’ (Mi),
and (Ni) be directed systems of modules with P = lig Pi, M= lig)ﬁ Mi

and N = _]E)Ni and suppose u,:P ~--> M, and v;:M, -- N,
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are directed systéms of A-homomorphisms with u = lig uy and
v =1 B vy such that 0 =-3» Pi - Mi - Ni --» 0 is exact for

all i in I, -Then if Pi is pure in Mi for all i din I, P isg pure

in M,

Proof. For any rt. A-module E let E(u) =1E@u etc. Then
we have E(u) = 1i5 E(uﬁ) Ssince the direct limit commutes with

® (B2, Prop. 12, p. 145). Hence if E(ui) is mono for 2ll i, then

E(u) is mono (B2, Prop. 6, p. 134).

COROLLARY 1, The direct limit of any directed system of pure

submodules of a given module is pure.
Proof., We apply the theorem with M = Mi for all i,

COROLLARY 2, The union of any chain of pure submodules of a module

is pure, i.e. purity is an inductive property.

Proof. Any chain forms a directed system of submodules, Apply

Corollary 1.



COROLLARY 3. If P is a submodule of M such that every fg

submodule of P is pure in M, then P is pure in M,

Proof. Any submodule P of M is the direct limit of its fg

submodules, which are pure in M. Hence P is pure,

COROLLARY 4. If every fg submodule of M is pure, then every

submodule of M is pure.
Proof. Obvious using Corollary 3,

THEOREM l.7. Let P be a submodule of M, and consider the
following conditions:

(1) M/P is flat.

(1)* P is pure in M.

(2) KMAP = KP for all rt. ideals K.

(2)' KM AP = KP for all fg rt. ideals K.
(2)" XMAP = KP for all principal rt. ideals K.
(3) aMAP = aP for all a in 4.

18
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Then we always have the follcwing‘ implications:
(1) = (1) =2 (2) &» (2)' =3 ()" &> (3).

If M is flat we have (1) &> (L)' &> (2).

Proof,

, (1) => (1)?: is given in Proposition 1.3,

Since KP dis always cc;ntained in KM AP, we need only show the
opposite inclusion in each case.

(L)t = (2): If p = ijmj (j in J, a finite set) is a typical
element of KMaAP then p = ijpjeKP since P is pure in M
(Theorem 1.1). Therefore KMaP is contained in KP.

(2) => (25': is obvious.

(2)* =>(2): If p = kjmj (j in J, a finite set) is a typical
element of KM aP, let K' be the fg rt. ideal generated by the kj'
Then Pp 1is contained in K'M (\P = K'P, which is contained in KP.
Therefore KMAP is contained in KP.

The remai;'xing implications are obvious.

If M is flat, the equivalences (1) &= (1)' ¢&=> (2) are given

in Proposition 1.3 and (Bl, Cor., p. 33).
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2o Pure Left Ideals

Before proceeding to the main theorem of this section, we make
a number of important definiﬁions which will be used here and later.

A subset S of A is idempotent iff 82 = S, where 82 is the
collection.of all finite sums of elements of the form sst! with

s and s' in S.

An element a of A will be called a left zero divisor iff there

exists O £ b in A so that ab = O. This is equivalent to saying

that the homomorphism fa:A --> A (as left A-modules) defined by

fa(b) = ab is not mono. Similar comments apply for rt. zero divisors.

If we set r(a) = (beA)ab = 0), the rt. annihilator of a, then a is

a left zero divisor iff r(a) £ O. The same comments apply to rt. zero

divisors, with 1(a) = (b€ A |ba = 0), the left annihilator of a. We

note that r(a) is a rt. ideal of A and 1l(a) is a left ideal of A.
Since O is both a left and rt. zero divisor, we call a zero divisor

proper iff it is nonzero. We say that the ring A has no left zero

divisors iff A has no proper left zero divisors; similarily for rte.

zero divisors. And we say that A has no zero divisors iff A has no
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left zero divisors and no rt. zero divisors, i.e. 1l(a) = 0 = r(a)

for a1l O #£ a in A,

A left A-module M £ O will be called simple (resp. pure simple,

indecomposable) iff O and M are the only submodules (resp. pure
submodules, direct summands) of M. The ring A will be called

left simple (resp. left pure simple, left indecomposable) iff it is

simple (resp. pure simple, indecomposablp) as a left module; and it

will be called simple (resp. pure simple, indecomposable) iff it is

both left and rt. simple (resp. pure simple, indecomposable). Clearly
every simple module or ring is pure simple, and every pure simple module

or ring is indecomposable.

THEOREM 2.l. For any left ideal P of A the following
conditions are equivalent:

(1) A/P is flat,

(1)* P is pure in A,

(2) Xp

1]

KaP for all rt. ideals K,

(2)* KP

KaP for all fg rt. ideals K.
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' (2)" kP

KAP for all principal rt. ideals K.

aAnP for all a in A.

(3) aP
(4) PFor each p in P, there exists an a in r(p) = (xe A | px = 0),

such that & = 1 (where & 4is the image of a in A/P).

Furthermore a £ O unless P = A.

Proof. Since A is flat, it suffices by Theorem 1.7 to show

(3) =>(4): pe€P => pepAnlP

PP = p = pp?t for some p!' in P,
And a =1 - p* dis in »(p) with &4 =1 since p' is in P,

Clearly a £ 0 unless P = A.

(4) =5 (1): To prove that A/P is flat, it suffices to show that

Tor(A/K,A/P) = O for any rt. ideal K (Bl, Prop. 1, p. 55). Now

Tor(A/K,A/P)

(KAP)/KP by Cartan-Eilenberg ((8), p. 126). If k
is in KaP, there exists a in A such that ka =0 and & = 1.
Hence 1 - a =p is in P, Therefore kp = k(1-a) = k and

KaP = KP., Hence Tor(a/K,s/P) = 0.
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CORULLARY 1.

(1) If P A A is a pure left ideal of A, then all its elements

are left zero divisors.
(2) If A has no left zero divisors, A is left pure simple.
(3) If A has no zero divisors, A is pure simple.

(4) Every integral domain is pure simple.

Proof.

(1) By (4) of the theorem, r(p) £ O for each p in P since

PﬁAo

(2), (3) ana (4) are obvious.

COROLLARY 2.

(1) If P is a pure left ideal of A, then for each p in P,
there exists a sequence pi inP, i=1, 2, ... such that
P = PP1Py eoo 1 for all n =1, 2 eee

(2) 0 is the only left T-nilpotent pure left ideal of = A.
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Proof,
(1) The sequence can be constructed inductively using the
method which was used in proving (3) =9 (4) in the theorem.

(2) Por any sequence p; in P, there exists an n such that

Py «-e P, = 0. (See Section 3 of Chapter O.)

COROLLARY 3.
(1) Every pure left ideal P is idempotent,

(2) Let P be a left ideal. If KaP is idempotent for all

principal rt. ideals K, then P is pure in A.

Proof,

(1) Tet P' = PA2P, Then P2 = P'P = P'AP = P,

(2) EaP = (KnP)2 = (KaP) (KnP)SKP.

Hence KNP = KP for all principal rt., ideals K, and P dis pure in

COROLLARY 4, If P is a principal left ideal, say Ab, then

Part (3) of the theorem becomes (3)': aAb = aAnAb for all a in A,

A.



25

3. Types of Purity

In this section, we study several possible definitions of purity
for arbitrary rings, and the relationships between them,

A left module- E will be called principal cyclic (resp. £p
cyclic) iff it has the form E = A/I with I a principal (resp. fg)
left ideal of A. Clearly every principal cyclic modul.e is fp cyclic,

and every fp cyclic module is both fp and cyclice.

PROPOSITION 3.l. Let O =-«HE =-3 F ==» G =--»0 be an exacf
sequence of. left A-modules and jJ:E -=-> F the given map.

(1) B is pure in F iff D(J) = 1D®j is mono for all fp
rt. A-modules D,

(2) 0 -->» (KFAE)/KE --% E/KE -=-> F/KF --> G/Ké --» 0 is exact,

and hence (KFAE)/KE = Ker(A/K®E --5 A/K@ F) for any rt. ideal K.

Proof.
(L) If B is pure in F then D(j) is mono for all rt,.
A-modules D by definition. Conversely, any rt. A-module D is the

direct limit of fp rt. A-modiles Di {B1, Ex. 10, p. 62). Since the
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direct limit commutes with @ (B2, Prop. 12, p. 145),
D(j) = lim Di(j). Since D, is fp, Di(j) is mono for all i, and
therefore D(j) is mono (B2, Prop. 6, p. 134). Hence E is pure
in P,

(2) since A/K@E = E/KE etc. (B2, Cor. 2, p. 89), the map
jK:E/KE ~--> F/KF is defined by jK(e) = (je) ( ~ denotes the image in
the quotient module). Hence & is in Ker ig

P
iff (je) = 0.
iff je is in K,
iff e is in XFPnAaBE.

iff & 4is in | (KFaE)/KE,

Consequently the given sequenqe is exact. The other statement is
obvious,

In view of Theorem 1.7, one mighf use any one of the conditions
(1)*, (2) or (3) as a definition of‘purity for arbitrary rings. In
fact, (1)! is purity in the gense of Cohn (11), and (3) is purity in
the sense of Chase (10), Maranda (33) has defined a purity similar

to (2), using two-sided ideals instead of rt. ideals.
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Let E Ybe a submodule of the left A-module F. For purposes

of this section only, let us say that E is I-pure, II-pure, or

IlI-pure in F decording as:

(1) E is pure in F in the sense of (Cohn.
(I1) KFAE = KE. for all (fg) rt. ideals K.
(I11) KFAE = KE for all principal rt. ideals K,

By Theorem 1.7, (II) is the same for both rt. ideals and fg
rt. ideals, and (III) is the same as: aFAE = aE for all a in A,

Let J:E --» F be the canonical injection, and for any rt.

A-module D, let D(j) = 1D®j.

THEOREM 3.2. E is I-pure, II-pure, or III-pure in B,

according as D(j) is mono for all

(1) fp rt. D,
(11) fp cyclic rt. D or (II)': cyclic rt. D,

(111) principal cyclic rt. D.

Proof, The proof is immediate, using Proposition 3.l. The

equivalence of (II) and (II)* follows from Theorem 1.7.
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COROLLARY. Let ‘E> be a submodule of the left A-module F. Then
E is I-pure in P =3»E dis II-pure in F =2 E is III-pure in F.

This may be summarized by saying I = II = III.

Proof, Every principal cyclic rt. module D is fp cyclic,

and every fp cyclic module is fp.

Using the corollary of Theorem 3.2, we can deduce that some of
the reverse implications hold, provided that there is some connection

between fp, (fp) cyclic, and principal cyclic modules,.

THEOREM 3.3.

(1) If every fp rt. module D is a direct summand of a direct
sum of cyclic (résp. principal cyclic) modules, then
IT =3I (resp. III =3 I).

(2) If every fp vrt. module D is the direct limit of cyclic

(resp. principal cyclic) modules, then II = I (resp. III = I).

Prbof.

(1) Suppose D @ Dt =®Ni where the Ni are cyclic (resp.

prineipal cyclic), then D(j) @ D*(j) =®Ni(j) since @ commutes
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with ® (B2, Prop. 7, p. 90). »If the Ni(j) are all mono, so is
D(j) (B2, Cor. 1, p. 27).

(2) Suppose D = ;;g;ﬂi with Ni cyclic (resp. principal
cyclic), then D(j) = ;%Ni(j)’ since (® commutes with the direct
limit (B2, Prop. 12, Pe 145) and if the Ni(j) are all mono, so is

D(j) (B2, Prop. 6, p. 134).

COROLLARY le If A is any one of

(a) PID,

(b) semi-principal ( = Bezout) domain (i.e. every fg ideal is
principal),

(c) uniserial ring,

then III =3I (and hence III = II).

Proof,

() If A is a PID; it is well known that everyfgﬁlodule is the
direet sum of cyclic modules, which are principal cyclic since the

domain is principal.
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@ED ()

If A is semi-principal, Chadeyras (9) has shown that every
fp module is the direct sum of principal cyclic modules..

(c) Koethe (2?) haé shown that if A is uniserial, then every
left and every rt. module is the direct sum of cyclic modules.
Asano (1) and (2) and Paith (15) have shown that A is uniserial iff
A dis a left and rt. artinian and _1eft and rt. principal idgal ring.

~

Hence every fp module is the direct sum of principal cyclic modules,

COROLLARY 2. If A is an almost maximal valuation ring, then

II =$ Io

Proof, Kaplansky ((24), p. 339) has shown that for such rings

every fg module is the direct sum of cyclic modules. Hence IT = I,

Remark 3.3,
(i) We note that in this theorem we are deducing some factg
about left purity, from the structure of the »t. A-modules. 1In Chapter 2

we deduce some more facts about left purity using the structure of the

left A-modules.




(i1) Since a domain is artinian iff it is a field, Corollary 1
gives us two different types of examples. Consesquently this is an
extension of Cohn's Remark (see Remark 1.1).

(iii) Since almost maximal valuation rings are not in_general

PID's (see Kaplansky (25), pe. 75), Corollary 2 gives us a third type

of example.
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4, Change of Rings

THEOREM 4.1. Let f:A --» B be any ring homomorphism. If
0 --E --PF --» G -->»0 is a split (resp. pure) exact sequence of
left A-modules, then the induced sequence 0O --3% E]3 -—-> FB = GB -=> 0

is a split (resp. pure) exact sequence of left B~modules,

Proof. The split exact case is given by (B2, Cor., pe 120, and
Prop. 7, p. 90). The pure exact case: Since Ey = A®A E etec.,
the fact that the given sequence is pure exact implies that the induced
sequence is exact. If M is any rt. B-module, then M@B B is a rt.
A-module since B is g rt. A-module. Therefore
(M®B B@A E == (M®B B)®A P is mono.
But (M@B B)@A'E = M@B(BA®A E) = uQ, E; etc. (See ﬁz, Prop. 8,
Pe 94.) Therefore M@B Eg -—9M®B Fp is mono for all rt. B-modules

M and the induced sequence is a pure exact sequence of left B-modules,
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COROLLARY, If O ~-)E -=3 F -3 G --> 0 is an exact sequence
of left B-modules which is split (resp. pure) exact as a sequence of

left A-modules, then it is pure exact as a sequence of left B-modules,

Proofe Clear since E = E
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CHAPTER 2: PURE PROJECTIVITY

1, Another Criterion for Purity

For the proof of our main theorem, we need the following

technical lemma:

. u
LEMMA 1.,1. Let O == G == F == E -->» 0 be exact with F fg

free on base fj, J in J, a finite index set, and G fg with generators
g;» 1inI, a finite index set. And let g, = Zaijfj with a;. in A
and u(fj) = e:i for all j in J. Then the following are equivalent:

) 2 bse; = 0, with b, in A,

(2) bd = Zciai:j for some ci in A.

(3) Each by isin ZAaij (1 in I), the left ideal generated

by the aij’ i in I.

Proofe ) b.e, =0 iff ijfj is in G
iff 2 bjfj = Zcigi = zciaijfj for some c; in A.
iff b, = .a.. (since the f. are a base).
5 = Logayy (sine i )

iff each b, is in l Aay; (i in I).
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We 'proceed now to our main theorem,
u
THEOREM l.2. The exact sequence O ==DE =D P =-=DG -->0
of left A-modules is pure exact iff H(M,u):Hom(M,F) -~> Hom(M,G)

is epi for all fp left A-modules M, where H(M,u)(w) = uw for all

w in Hom(M,F),.

Proof,

=»: Let w be in Hom(M,G) with M any fp module. Thfen we
have an exact sequence O ==dK «=P N -=H M -=> 0 with N =£g free,
on base na., j in J, a finite index set, and K <£fg with generators
ki’ i in I, a finite index set. For all J in J, let | m‘j be fhe image
of n ; and forall iinT, let k; =Za;.n, with a;;din A, Then

we have z aijmj = 0, Since N is projective; we have an exact

commutative diagram:
Hom(M,F) ~--> Hom(M,G)
Hom(N,F) =-> Hom(N,G) ~->0

Let ® in Hom(N,G) be the image of w and let v in Hom(N,F)

be a pre-image of ®. Set v(nj) = fj for all j in J.
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@ We have an exact commutative diagram:

0 ==D>K ~=3 N -3 N --*-} o

| | =
O ==DE ~=HPF -3 G == 0
u

Now wu( ) ai;jfj) = uv( Zaijnj) =w( Ja 2y 5 :l) = w(0) = 0. Hence
Z aijfj is in E for all i in I. And by the purity of E in F

Zaa.j 5= Zai for some e, in E,

J

Define w' in Hom(M,F) by w'(mj) = fj - ej for all j in J.
Since the mj generate M, we need only verify %“hat this is well

defined and that H(M,u)(w') = w. If m = ijmj = 0, we have

zcl i:l for some Sy in A, by Lemma 1,1, fTherefore

wt(m) = Zci 13 - Zc ( z 13 3 - Za‘lgeg) = ZciO = 0.

Also for 21l j in J, uw'(mj) = u(fa. - ej) = u(fj) = w(mj) by the
commutativity of the diagraem, and therefore H(M,u)(w') = uw! = w.

&=: Suppose Za £,€E (with finite index sets I and d).

Let N Dbe fg free on base nj, J in J, and let KX be the fg submodule

]

generated by k:i.’ i in I, where ki

2a..n.. Porm the exact sequence
1) J
O ==K «-DN ~~DM «=P 0 and let mj be the image of nj. Then

Za.ijm:j = 0., Let v in Hom(N,F) be defined by v(nj) =f;j for
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S J in J. Then v(k;) = 2aijfj is in B forall iinI and hence
v(K) is a submodule of E, so that we may pass to quotient modules to
get an exact commutative diagram, which defines w:
0 ~-3K -3 N -3 1 «-3 0
L A(v,L ‘Lw\‘

0 =3 E ~-3F ~=»G =5 0
u

Since M is fp, there exists wt' in Hom(M,F) such that uw' = we
Let w'(mj) = xy in P, for a1l j in J. Then for all j in J,
u(xj) = w(mj) = u(fj) by the commutativity of the diagram and hence

e, = f, = xj isin E for all j in Je. Also

w?( Z gijmj) =w'(0) =0 for a1 i in I. Hence

aijfj = aijej for @11 i in I, and E dis pure in F.

Remark 1.2, Kaplansky ((24), p. 332) remarks in a footnote that
"It is conversely true for a module M over an arbitrary ring that
purity of a submodule S is implied by the ability toAléft elemen?s of
M/S with preservation of the order ideal. This stronger property should
perhaps be used as the definition of purity when working over general

rings." (My underlining.,) We have shown that rather than lifting
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elements and preserving the order ideal (which is equivalent to lifting
maps from cyclic modules), a better choice is lifting maps from fp

modules (Theorem 1.2).

COROLLARY 1. Suppose for all i in I, any index set, that Ei is
a submodule of F,. Then E =TIE, (i in I) is pure in P =TrFi (i in I)
iff Ei is pure in Fi for all i in T,

!
Proof, Let O —-9'Ei -—> Fi -= Gi -=3» 0 and
. u

O -~>E -~ F --»G -->» 0 be the corresponding exact sequences., Then
u =Ty, (i in I), and for any M, H(W,u) =TrH(M,ui) (i in I)

(B2, Cor. 2, p. 27), and hence the product map H(M,u) is epi iff

each component map H(M,ui) is epi for all i in I by (B2, Cors., ps 23).
COROLLARY 2. BEvery fp flat module is projectivee.

Proof, Suppose G is fp flate Let Q0 == E =--) P «=» G «=3 0
be exact. Then - E is pure in F since -G is flat by Proposition 1.3
of Chapter 1. Hence H(G,u):Hom(G,F) --> Hom(G,G) dis epi since G is

fp. Therefore the sequence splits, and G is projective,
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v u
THEOREM l.3. The exact sequence O =«3E =D PF -=D G --» 0 is

split exact iff either of the following two equivalent conditions holds:
(1) H(M,u):Hom(M,F) --> Hom(M,G) is epi for all M,

(2) H(v,M):Hom(F,M) ~- Hom(E,M) is epi for all M.

Proof. 1If 'the given exact sequence splits, then the induced
sequence O ~-> Hom(M,E) == Hom(m,r‘) --; Hom(M,G). ~~» 0 is split
exact (B2, Prop. 2, p. 60) for all M. Conversely by putting M = G,
‘there exists w in Hom(G,F) such that H(G,u) (w) = uw = 1G i.e. the
sequence splits. Consequently we have the equivalence of splitting

and (1). The equivalence of splitting and (2) is established in

exactly the same way.

Remark l.3.

(1) This theorem shows clearly just how much weaker purity is
than direct summand.

Y

(ii) It also shows that any attempt to define a concept for
Hom(M, ) or Hom( M) which corresponds to the definition of purity for

@M or M@ does not yield anything new; we just get direct summands.
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@ 2. Pure Projectivitx

We will call a module P pure projective iff for any pure exact -

sequence 0 «=P E -~H P -I-J:-> G --» 0, the induced sequence

0 --» Hom(P,E) --% Hom(P,F) --> Hom(?,G) --» 0 is exact. This is,
of course, equivalent to requiring that the map

H(P,u):Hom(P,F) --» Hom(P,G) be epi. Any projective module P is
pure projective since H(P,u) is epi for all exact Sequences, We
shall determine completely the structure of pure projective modules

(Theorem 2.4).

PROPOSITION 2.1. Let P =@ Pi (i in I, any index set), Then P

is pure projective iff Pi is pure projective for all i in I.

u
Proof, Suppose O =-P E -~PF --» G --P 0 is pure exact. Since
H(P,u) =TTH(Pi,u) (i in'I) (B2, Cor. 2, p. 27), the product map H(P,u)

is epi iff each component H(Pi,u) is epi (B2, Cor., p. 23).

THEOREM 2.2. Every fp module is pure projective,

u
Proof. Suppose O ~-J E -3 F -=>¢ --» 0 is pure exact. If M

is any fp module then H(M,u) is epi by Theorem 1l.2.
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THEOREM 2.3. For any module E +there exists a pure exact sequence
0 —-3K ~-9P =-»E --»0 with P a direct sum of fp modules, and

hence pure projective,

Proof, For any fp module M and any h in the gset Hom(M,E).
Let M, be a copy of N, Define f_ﬁ to be the direct sum of the Mh;
with h ranging over Hom(M,E). Define P +to be the direct sum of
the ﬁ, with M rénging over thelggg of all fp modules., The class of
all fp modules is a set, and hence we can make this construction; the
same comment applies to the constructioﬁ of ﬁ, since Hom(M,E) is
a set,

Let u:P -~» E be the canonicél homomorphism. Then u is epi
since every module can be writiten as the direct limit of fp modules
(B1, Ex. 104 p. 62),

For any fp module M, the map H(M,u):Hom(M,P) --> Hom(M,E) is
epi gince for any h in Hom(M,E) let h':Mh -~ P be the canonical
injection. Then H(M,u)(h') = uht = h, Hence

0 ~~>K ~~-> P --» E --» 0 is pure exact.
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Remark 2.3. Maranda (32) defined and studied pure projectivity

for PID's, We have extended his results to arbitrary rings. Our

Theorem 1.2 is a generalization of his Lemma 1 for PID's. He remarks

"that one need not restrict oneself to the class of all cyclic

modules ... but that one may use just certain types of cyclic modules

Or even more generally, any arbitrary class of modules with suitable

properties." We have shown (Theorem 1.2) that the suitable class to

choose is the class of fp modules,

THEOREM 2.4 (Structure Theorem for Pure Projective Modules),

For any module P +the following conditions are egquivalent:

(1)

(2)

splits.

(3)

(4)

mcdules,

P 1is pure projective.

Every pure exact sequence of the form 0 --) K -—»E -2 P ~=»0

P is a direct summand of a direct sum of fp modules.,

P 1is a direct sum of countably generated pure projective
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Proof,

(1) =»(2): Since P is pure projective,

H(P,u):Hom(P,E) --$ Hom(P,P) is epil and there exists an h in
Hom(P,E) such that uh = 1P and the seqence splits.:

(2) =3 (3): By Theorem 2.3, there exists an exact sequence of the
form O ;-9 K -->E --» P --» 0 with E a direct sum of £p modules.
This sequence splits by (2) and we have the desired result.

(3) => (4): By Kaplansky ((26), Thzﬁ. 1) P is a direct sum of
countably generated modules. Since P is a direct summand of pure
projective (since fp) modules, it is pure projective by Proposition 2.1.
By the same proposition the countably generated modules are pure

projective, since they are direct summands of a pure projective module.

(4) =5 (1): Follows immediately from Proposition 2.1.

Remark 2.4. Theorem 2.4 is a generalization of the following
well-known result for PID's (see Kaplansky (25), p. 15): If H is

a pure submodule of G such that G/H is a direct sum of cyclic

modules, then H is a direct summand.
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The next theorem shows that any pure submodule is in a certain

sense "locally" a direct summand.

THEOREM 2,5, Let O == E -9 F --» G --> 0 be an exact
sequence of left A-moduless Then E is pure in F iff E is a

direct summand of 2ll modules D such that ES€DEF and D/E is fLpe.

Proof.

= : Suppose D is such a module and E is pure in F. Then

E is pure in D by Proposition 1.2 of Chapter 1, and therefore we

have a pure exact sequence O -;--> E-->D ~--» D)E -~» 0 which is

split exact by Theorem 2.4 since D/E is pure projective by Theorem 2.2.
&=: We use Cohn's Criterion (Theorem 1.1 of Chapter 1). Suppose

z a’ijfj '= ;éi in E with i in I, j in J, finite index sets. Let

D be the submodule of F' generated by E and all the fj' Let M

be the free 1ef'l; module with base mj, jin d, and K the fg

submodule generated by ki = z aijmj" Then M/K is.  fp by Préposition‘ 1.1

of Chapter O,.
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We will show that D/E is fp by showing that D/E ¥ M/K. Define
u:M --» D/E by u(mj) = fj (where 4  denotes the image of 4 in D/E).
This homomorphism is clearly onto since D is generated by E and

the fj‘ Since u(ki) = aijfj %, = 0, K is contained in the kernel
of u. Passing to quotient modules, we have an isomorphism M/K = D/E.
Therefore E is a direct summand of D, say D = E@® He Hence
f. = e, h, and . = a..f, = a,.e. a..h, and fo 11 i i
; 5 * By x; Zl:la Zlaa+zlja’ r a idinI
X, = a..e.,€¢ EaH = 0, Therefore a,.f. = a..e for all
1 = lagge € Ba Z 1373 Z 13°3

iinlI and E is pure in P by Cohn's Criterion.

THEOREM 2,6. Let f:4 --> B be any ring homomorphism and E

any left A-~module.

(L) Ir E is A-~fp then EB is B-fp.

(2) If E is the direct sum (resp. direct limit) of A~fp modules,
then EB is the direct sum (resp. direct limit) of B-fp modules.

(3) If E is A-pure projective, then E]3 is B-pure projectives
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Proof,
(1) follows immediately from (Bl, p. 36).
(2) follows immediately from (1) and the facts:
(1) By, =B@ E for any BE.
(ii) @% commutes with both the direct sum and the
direct limit,
(3) follows from the above and the usual direct sum argument,

since pure projectivity is equivalent to being a direct summand of a

, direct sum of fp modules,
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3. Types of Purity

In this section, we add some results to those of Section 3 of

Chapter 1. We will again use I-purity and III-purity.

u
THEOREM 3.1, Let 0 =~ E =-H> F --> G ~-> 0 be an exact

sequence of left A-modules. Then aFaAE = aE for all a in A
(i.e. E is III-pure in F) iff H(N,u):Hom(N,F) --» Hom(N,G) is

epi for all principal cyclic modules N,

Proof. The proof is analogous to, but much simpler thar; the

proof of Theorem 1,2,

The following corollaries are cbvious:

COROLLARY 1, If H(N,u) 4is epi for all cyclic modules N then

aFAE = aB for all a in A.

COROLLARY 2. If A is a left principal idesl ring then

aFAE = aE iff H(N,u) is epi for all cyclic modules N.
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We can now deduce, using the structure of the left A-modules,

some facts concerning I~ and III-purity.

THEOREM 3.2, If every left fp module M is a direct summand

of a direct sum of left principal cyclic modules, then III =3 I.

Proof. Suppose M@ M? =@Ni with Ni principal cyclic.
Then H(M,u) @ H(M',u) =TrH(Ni,u). If each H(N,,u) is epi, so

is H(M,u).

COROLLARY l.. If A 1is any one of

(a) PID,

(b) semi-principal ( = Bezout) domain,
(¢c) uniserial ring,

then III =% I (and hence III =3 II).

Proof. These follow from Corollary 1 of Theorem 3.3 of Chapter 1:
(a) and (b) since A is commutative and (c) since uniserial is left-

rte symmetric,
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4. Rings for which Pure Submodules are Direct Summands

We know (Proposition 1.3 of Chapter 1) that every direct summand
is pure. Here we s’hall study the class of rings for which the
converse holds,

The ring A will be called left PDS iff pure submodules of left

A-modules are direct summands; and PDS iff it is both left and rt. PDS.

THEOREM 4,l. For any ring A the following conditions are
equivalent:

(1) A is left PDS.

(2) ZEvery left A-module is pure projective.

(3) Every left.A-module is the direct sum of countably generated

‘pure projective modules,

(4) EBvery pure exact sequence is split exact.

Proof,

(1) = (2): For any left A-module E, there exists a pure exact

sequence 0 -~3 K «-=DP =3 E -->»0 with P pure projective, by

Theorem 2.3. Since K is pure in P, X is a direct supmand, and E



50

is a direct summand of a pure projective module, hence pure projective,
The equivalence of (2) and (3) is immediate by Theorem 2.4.
(2) =»(4): If 0 --$»D --HE --DF --> 0 is pure exact, then
by Theoremv2.4 it is split exact since F is pure projective.
(4) =3 (1): If D is pure in E then the exact seqence
0 ~~>D -~ E --3E/D --» 0 is pure exact, hence split exact and D

is a direct summand of E.
THEOREM 4.2, Every left PDS ring is left artinian.

Proof. Since pure submodules are direct summands, A is left
perfect by Corollary 1 of Proposition 1.4 of Chapter 1. Sincel every
left A-module is the direct sum of countably generated A-modules
(Theorem 4.1), A ‘is left noetherian by Faith's Theorem on noetherian
rings (see Faith (16), Theorem 1.l). But as Bass ((4), pe 475) has

remarked, any left perfect, left nostherian ring is left artinian.

We do not know the complete structure of PDS rings. However, we

can show:



51

THEOREM 4.3, Every uniserial ring A is PDS.

Proof. BEvery left A-module is the direct sum of cyclic modules,
Since A is left artinian, and therefore left noetherian, these
cyclic modules are fp modules. (For detailed reasons, see Corollary 1
of Theorsm 3.3 of Chapter 1.) Hence every left A-module is ﬁure
projective and A is left PDS by Theorem 4.1, Since uniserial is

left~-rt, symmetric, A is rt. PDS, i.e. PDS.

It is of some interest to classify rings for which every fg'flat
module is projective. To this end we make the following small

contributions:

PROPOSITION 4.4, Let F be a fg flat left A-module. Then the
following conditions are equivalent:

(1) F is projective.

(2) P is fp.

(3) P is pure projective.
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Proof,
(1) =3 (2): Every fg projective module is fp (B1, Lemma 8, p. 36),
{2) =3 (3): BEvery fp module is pure projective by Theorem 2.2,
(3) =»(1): Let 0 -=3D --%E —-> P --» 0 be an exact

sequence with E projective, S8Since P is flat, the sequence is

pure exact (Proposition 1.3 of Chapter 1). Since F is pure

pProjective, the sequence splits by Theorem 4.1, and F is projective.

»
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CHAPTER 3: REGULAR MODULES

In this chapter, we define the concept of regular module, We
will show that regular modules bear the same relationship to (von

Neumann) regular rings as semi-simple modules bear to semi-simple rings.

1. Another Properiy of Purity

Our main theorem gives a very useful property of purity:

THEOREM l.l. Suppose we have an exact commutative diagram of

left A-modules:

u
O ~==9E === F ~==3 G —==> 0

A T
O ~==3 Bt == F! «=p G? ~=p 0
v

with ¢ an isomorphism, If E is pure in ¥, then E' is pure in P?,

Proof. We have cu = vb and hence for any (fp) M
H(M,c) H(M,u) = H(M,v) H(M,b). Since c¢ is iso, so is H(M,c). Hence
H(M,u) epi =5 H(M,v) epi. And therefore if E is pure in F, then

E* is pure in P!,
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COROLLARY 1, Let P and Q be two submodules of M. Then
(1) (PAQ) pure in Q =»P pure in (P+Q).
(2) (P+Q) pure in M and (PaQ) pure in Q => P pure in M,
.(3) (P+Q) pure in M and (PAQ) pure in M =3P pure
in M and Q pure in M.

(4) PaQ pure in P+Q =3P and Q are both pure in P+Q.

Proof, We have an exact commutative diagram:
0 -=>PAQ ~-> Q --2Q/(PAQ) --» 0
} l |
0 --3 P --3P+Q -=5 (P+Q)/P ~--30
where all homomorphisms arise from thg natural injections, and c¢ is
an isomorphism,
(1) is é straightforward application of the theorem.
(2) By (1), P is pure in (P+Q). But (P+Q) is pure in WM
and hence P is pure in M by Proposition 1.2 of Chapter 1,
(3) (PAQ) pure in M =3 (PnQ) pure in P and (PnaQ)

pure in Q. Apply (2).

(4) 4apply (3) with M = P+Q.
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COROLLARY 2. TPor &ll i in I, any index set, let Ni be a submodule
of a fixed module M and let N = Z Ni (i in I). Por each k in I
define N_ = ZNi (1 in I, i # k). Then for all k in I, N pure

in M and (Nank) pure in N =» N, pure in I,

Proof. Apply Corollary 1 with P = N and Q = Ny o

k

Remark 1.l. Parts (2) and (3) of Corollary 1 are the most important
for us, We give an example to show that the conve:ses' are false. Take
A = 2, the ring of integers, and M = 2 ®%Zs, Let P = the su;ogroup
generated by (1,1), and Q = the subgroup generated by (1,~1). Then
both P and Q are pure since n(a,b) = m(1,#1) == na = m = + nb
and therefore a = + b; hence (a?b) isin P or Q and n(a,b)
is in nP or in nQ. (See Remark l.1 (ii) of Chapter 1.) The
elements of P4Q have the form a(1l,1) + b(1l,-1) = (at+b,a-b). Now
2(1,0) = (3,1) + (1,-1) 4is in P+Q. But if 2(1,0) = 2(a+b,a=b),
then a+b =1 and a-b = 0, which cannot be solved for integers,

Hence P+Q is not pure in M.
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2. Regular Rings

In this section, we give some new characterizations of regular
rings, Which_will be used to define regular modules in Section 3.

The ring A will be called (von Neumann) pegglar iff ae€ aha
‘féf all a in A. Bpurbaki uses the word regular in (B3, Ex. 15, p. 76)
but has changed this to absolutely flat in CBl, Ex. 16, p. 64). We
will use the word regular with this single meaning throughout.

We remark that regular is a left-rt. symmetric concept. Therefore,
all our results gbout left ideals or modules will have analogues for
rt. ideals and modules, which will be assumed and used, although they
have not been stated explicitly.

Before proceéding, we recall that regular rings are characterized

by the fact that all modules are flat (Bl, Ex. 16, p. 64).

THEOREM 2.1. The following conditions are equivalent for any ring A:
(1) A is regular.
(1)' Every fg left ideal is a direct summand,

(1)" Every principal left ideal is a direct summand,
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(2) Every left ideal is pure.
(2)* Bvery fg left ideal is pure.
(2)" Every principal left ideal is pure,

(3) KaI = KI for all rt. ideals K and all left ideals I.

i

(3)* KA = KI for all fg rt. ideals K and all fg left ideals I,

(3)" KanI

KI for all principal rt., ideals X and principal

left ideals I,

(4) aAndb = 2aAb for all a and b in A,

Proof., We shall give the proof according to the following schemas

(1) =3 (1)t = (1)

Voo I
(2) =5 (2)1 =3 (2)
v

(3) =5 (3)' =% (3)" = (4) => (1)
The equivalence of (1), (1)* and (1)" is well known and given

in (B3, Ex. 15, p. 76).

The implications (2) =3 (2)* = (2)" and (3) => (3)? =3 (3)" = (4)

are obvious.

(1) =5 (2):. Por any left ideal I, A/I 4is flat since all left
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A-modules are flat in a regular ring (Bl, Ex. 16, p. 64). Therefore,

I is pure in A by Theorem 2.1 of Chapter 1,

.

(2) =>(3): follows immediately from Theorem 2.1 of Chapter 1.

The implications (1)* =3 (2)* and (1) =9 (2)" hold since every
direct stimmand is pure.

The implications (2)* =3 (3)* and (2)" = (3)" are immediate

consequences of Theorem 2.1 of Chapter 1.

(4) =5 (1): PFor all a in A, a¢aAnAa = aka and A is regular,

CORQLLARY,.

(1) I A is regular, every left (or rte) ideal is idempotent,

(2) The converse holds if A is commutative.

‘Proof.

(1) Since A is regular, every left (or rt.) ideal is pure, and
therefore idempotent by Corollary 3 of Theorem 2.1 of Chapter 1.

(2) For any ideals P and K, KaP vwill be an idempotent

ideal (since A is commutative)., Therefore by the same Corollary 3,

referred to above, P will be pure in A and A will be regular.



59

€§9 PROPOSITION 2.2, For any element a in.A, the following conditions
are equivalent:
(1) Aa is a direct summand of A.
(2) Aa ié‘a pure left ideal of A,

(3) a € ala.

Proof,

(L) =9 (2): is immediate since every direct summand is pure.

(2) => (3): By Theorem 2.1 of Chapter 1 aAnAa = aAla = ala
since aA is a rt. ideal, But a is in aAn Aa,

(3) =5 (1): If a = axa then xa = e is an idempotent and

Aa = Ae, which is a direct summand of A.

Following Lambek (30), we will call a ring A semi-primitive iff

its Jacobson radical J(A) is zero, and semi-prime iff its prime
radical is zero. We remark that since the prime radical of A is
contained in J(A), every semi-primitivg ring is semi-prime, Bourbaki
uses "without radical" (B3, p. 64) for semi-primitive, and “reduced"

(B1, Def. 5, p. 97) for semi-prime in the commutative case,
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THEOREM 2.3, For any ring A, consider the following conditions:
(1) A is a regular ringe
(2) A/I is a regular ring for every two-sided ideal I of A.
(3) A/I is a semi-primitive ring for every two-sided ideal I of A.
(4) A/I is a semi-prime ring for every two-sided ideal I of
A. Then we always have (1) =3 (2) => (3) => (4)s If A is commutative,

(4) => (1).

Proof.

(1) =» (2): is given in (B3, Ex. 15, p. 76).

(2) =% (3): Every regular ring is semi-primitive (B3, Ex. 15, p. 76).
(3) =3 (4): Every semi-primitive ring is semi-prime.

(4) = (1) (A commutative): Suppose K and J are any two

ideals of A mnd let I =KJ, Then XJ = O in the ring B = A/I,

~

where denotes the image in B. Since B is semi-prime, Xad =0

(see Lambek (30), p. 56). Hence Kad is contained in KJ. Since we

always have the opposite ineclusion, A is regular by Theorem 2.1.
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3. _Regular lModules

A left A-module R will be called (von Neumann) regular iff
every submodule is pure. This generalizes the idea of regular ring,

as the following theorem shows:

THEOREM 3.1. For any ring A, the following conditions are

equivalent:
(1) A is a regular ring.
(2) Every left A-module is regular.

(3) The left A-modnle A is a regular module.

Proof,

(1) => (2): since A is a regular ring, every rt. A-module F
is flat (Bl, Ex. 16, p. 64). Hence if D is any submodule of the left
A-module E, the sequence O =--PD@F -->E@F --> E/D@F --> 0 is

exact (Bl, Prop. 1, p. 26), and D is pure in E. Therefore E is

regular.

(2) =>(3): is obvious.



62

@ (3) =>(1): If A is a regular left A-module, then all the left

ideals of A are pure and A is a regular ring by Theorem 2.1l.

Remark 3.1,
(1) This theorem shows that any theorem about regular modules
implies a theorem about modules over regular rings.

(i) It is an easy exercise to see that A is a regular ring iff

every left A-module is absolutely pure. See Remark 1.3 of Chapter 1.

PROPOSITION 3.2, R dis a regular module iff every fg submodule

is pure. .
Proof;
= : 18 clear,

¢&=: Every submodule of R is the direct limit of fg submodules

of R, i.e. the direct limit of pure submodules, and hence pure, by

Corollary 4 of Theorem l.7 of Chapter 1.

THEOREM 3.3 Let O ==3 R -=»S -=-> T -->» 0 be an exact sequence

of left A~modules, Then S is a regular module iff both R and T

. are regular modules, and R is pure in S,
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Proof. In the course of this proof, we shall refer seweral times
to Proposition 1.2 of Chapter 1. For convenience, this will be denoted
(1.2) for this proof only.

=3 : R 48 regular since every submodule of R is a submodule of
S, hence pure in S, and therefore pure in R by (l.2). BEvery submodule
of T has the form V/R with REVES. But V is then pure in §
and therefore V/R is pure in S/R =T by (1.2). Hence T is regular.
And R is pure in S, since S is regular.

(==: Let V %be any submodule of S. Then (V+R)/R is pure in
S/R =T, since T is regular. But R is pure in S. Hence V4R is
pure in S by (le2). Also VaR is pure in R, since R is regular.
Hence VAR is pure in S, since R is pure in S, again by (1.2).
Therefore, both V+ﬁ and VAR are pure in S, Hence V dis pure in

S by Corollary 1 of Theorem 1l.l.

THEOREM 3.4, Let R = 2 R, (i in I, any index set) be left
A-modules, Then R is a regular module iff Ri is a regular modnle

for 2all i in I,
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Proof.

=»: For each i in I, R, isg r.egular by Theorem 3,3 since it is
a submodule of R.

&=: Since R is a homomorphic image of S = ®R; ({inI), it
suffices to show that S 1is regular by Theorem 3.3. We will use
Proposition 3.2: Let P be any fg submodule of S. Then P is a
submodule of T =®Ri (iinJd, J some finite subset of I)e Since T
is a direct summand of S, it is pure in S. Hence if we show that ‘1"
is regular, we are finished because tpen P will be pure in T and

hence in S. We have reduced the problem to proving the following lemma:

n
LEMMA 3.5. If T=@Ri, then T dis regular if each Ri is
1

regular,
k
Proof., We use induction. For each k<n, let T(k) =@Ri.
' 1

Clearly T(1l) = R, is regular. Assume T(k) is regular; then
0 =-> Rk+l == P(k+1l) ~=> T(k) -=-» 0 is exact with ©T(k) and Rk+1

regular and Rk+1 pure in T(k+l) (since it is a direct summand).

Hence T(k+l) is regular by Theorem 3.3.
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COROLLARY. PFor any left A-module R, the following conditions

are equivalent:

(1) R is a regular module,

(2) Ax is a regular module for all x in R and Ax is pure
in Re

(3) Ax is a regular module for all x in R.

Proof. The proof is clear since R = ¢ Ax (x in R)..
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4. Regular Projective Modules

The main result of this section is a structure theorem for
regular projective modules, i.e., modules which are both regular and

projective,

THEOREM 4.le Suppose O «-HP P =3 F --HE -=-» 0 is exact with
F free. Then the following conditions are equivalent:

(1) P is pure in P,

(2) E is flat.

(3) Given any x in P, there exists a homomorphism u:F --> P
such that u(x) = x.

(4) Given any X; in P, lesigm, there exists é homomorphism

u:P =3P such that u(xi) = Xy for all i,

Proof, The equivalence of (1) and (2) has been shown
(Proposition 1.3 of Chapter 1). The equivalence of (2), (3) and (4)

has been shown by Chase ((10), Prop. 2.2), who attributes the result

to Villamayar.
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COROLLARY. Suppose O =-> P -=» Q =->» E --» 0 1is exact with
Q projective and P pure in Q. Then given x; in P, l1€ign,

there exists a homomorphism u:Q =->7P guch that u(xi) = X for all

Proof. Since Q is projective, there exists F = Q@ Q' with
F free. And P- pure in @, Q pure :Ln ‘F =3P pure in F by
Proposition 1.2 of Chapter 1, By the theorem, there exists wiF é_-.-) P
such that w(xi) = X4 Let u=w|Q. Then u:Q --»P and

u(x,.) = w(x,) = x, for a11 i, since x. is in P.
i i i i

-

THEOREM 4.2, Suppose O ==> P «=%» Q --» F --» 0 is exact with

P fg and Q projectives Then P is pure iff P is a direct summand.

Proof. Since any direct summand is pure, it suffices to show the

converse. Suppose then that P is pure and let x

A in P, (L€ifm),

generate P. Then there exists u:Q --» P such that u(xi) = X foxr

all i, If j:P --3.Q 1is the natural_injection, then we have

uj = 1 whence the sequence splitse.

p’
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COROLLARY 1, If Q is regular projective then every fg submodule

is a direct summand.
Proof. BEvery (fg) submodule is pure.

COROLLARY 2 (Osofsky (38)). A is regular iff every fg submodule

of a projective module is a direct summand,

Proof,

== 3 If A is regular, every module is regular (Theorem 3.1),
and the result follows from Cdrollary 1.
G=: Every fg left ideal is a direct summand, hence pure, and A

is regular by Theorem 2,1.

THEOREM 4.3 (Structure Theorem for Regular Projective Modules).
A left A-module P dis regular projective iff P = @Ji where Ji is

a regular projective principal left ideal, which is a direct summand

of A,

Remark 4.3. This generalizes and simplifies the proof of a theorem

of Kaplansky ((26), Thm. 4).
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PI‘OOfo

¢=: If each J; disregilar, so is P (Theorem 3.4). If each

Ji is projective, so is P. Hence the result in one direction.

= : By Kaplansky'!s Theorem ((26), Thm. 1), every pro jective
module is the direct sum of cg ( = countably generated) projective
moaules; hence we can reduce our problem to this case, and assume that
P is cge Let Xy i=1, 2, 3, oo generate P. We shall define
inductively ¥; in P, i =1, 2, 3, ... such tha"l:: ?or all n, the sum

od

P = Ayi is direct and P =?Ayi. Define ¥, =X and assume ¥y

n

M

: n
defined for i€n, so that B =@Ayi. Since P, is fg pure and P
' 1

is projective, there exists Q so that P = Pn®Q. Let

Xn#l = Pp * Vpq (P in P, y . in Q). Clearly the sum

n+l n '
2 Ay. dis direct. Since for all n +the sum P =@ Ay, is
1 1 n 1 i

Pn+1
@ | ‘
direct, so is the sum P' =@ Ayi. Also for each n,
v 1
A . . . .
Xp41 1S in Pn@Ayn+1 = Pn-t-l' Therefore P is contained in Pf,
The opposite inclusion holds too since each y, isin P = P ® Q.
Since P is regular projective, so is Ayn for all n. Since Ayn

is projective, it is isomorphic to a left ideal Jn’ which is a direct.

summand of A, and hence principal.
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COROLLARY 1., If P is a regular projective module, every cg

submodule is projective.

Proof. Let X i=1, 2, e+ generate the cg submodule M of

P, We define Y i=1, 2, ... exactly as we did in the proof of

®

the theorem. Then M @Ayi is projective since each Ay; is
1l

projective,

COROLLARY 2, If A is regular, every cg submodule of a projective

module is projective,

THEOREM 4.4, Let P be a regular projective left A-module. Then
(1) If A is left indecomposable, then P is free
(2) If A is left pure simple, then either P = 0 or A is

-left simple (i.es A has no left ideals other than O and A)e

Proof.

(1} By Theorem 4,3, P =®Ji where the J; are left ideals

which are direct summands of Aj; therefore Ji =0 or A.
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(2) Continuing from (1), if Ji = A for some i, then A 1is
regular since the Ji are all regular. But A is pure simple, and
therefore A must be left simple. If A is not left simple, then we

must have Ji = 0 for all i, and therefore P = O,

COROLLARY. If A is an integral domain which is not a field,

0 is the only regular projective A-module.

Proof. A is pure simple, but not simple.

A fg module E ~will be said to be n-generated (n an integer) iff

there exists a finite set of generators with not more than n elements.

A module E will be said to be c-generatéd (e any cardinal) iff there

exists a generating set with cardinality c.

PROPOSITION 4.5. Let DeP €Q with

(1) D fe.

(2) P pure in Q.

(3) Q an n-generated projective module,

Then there exists an n-generated saubmodule € of P such that DEE€SP.
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Proof, Let Xy l1€4if€m, generate D.' Then by the corollary
to Theorem 4.1, there exists a homcmorphism wu:Q --3 P such that
u(xi) = x;, for all i. Hence u(x) = x for all x in D. Then

D=u(D)€u(Q) =EEP and E is n-generated.

THEOREM 4.6, If Q is n-generated projective, then every pure

submodule is the direct limit of n-generated submodules,

Proof, Any pure submodule P is the direct limit of its fg
submodules, By Proposition 4.5, the n-generated submodules are

cofinal”and hence P is the direct limit of n-generated submodules.

COROLLARY 1. Let P be an n-generated projective module (n an
integer). Then P is regular iff every n-generated submodule is a
direct summand (and hence pure) and every submodule is the direct

limit of n-generated submodules.

Proof,

=3 : is clear by the definition of regular module and Theorems

4-.2 and. 4.60
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&=: Every submodule is the direct limit of pure submodules, hence

pure by Corollary 3 of Theorem 1.6 of Chapter 1., Therefore P is

regular.

COROLLARY 2., The preceding corollary is true if we replace n

by ¢, any cardinal,

Proof, This is clear since any module is the direct limit of fg

modules and hence c-generated modules,

COROLLARY 3. A is a regular ring iff every principal left ideal
is a direct summand (and hence pure) and every left ideal is the

direct limit of principal ideals,

Proof. A is a l-generated projective module.
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CHAPTER 4: THE REGULAR SOCLE

In this chapter, we define socles which are generalizations of
the usual socle (B3, Ex. 9, p. 58). We remark that both Maranda (33)
and Dickson (12) have studigd radicals, and in doing so, have introduced
preradicals which correspond to our socles. However, there is little,
if ahy, overlap with our work.

We also define a regular socle (of a module or ring) and compare
it with the semi-simple ( = usual) socle and with the regular radical

of Brown and McCoy (7).

l. Socles
Let ¢ bé the ca%egony bf all ‘left A-modules. A socle is a
function T which assigns to each module N of C a submodule
T(M) of M in such a way that f£:M -=3 N =3 £(r(M)) € (N),
i.e. f£(T(M)) in a submodule of T(N) (or equivalently fp = | o(M)

is a map from T(M) to T(N)). In categorical language, a socle

is a subfunctor of the identity functor.
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Let T be a socle. We make the following definitions:
T is torsion iff T(N) = NaT(M) for all submodules N of M.
2

T 1s idempotent iff T° =T, i.e. T(T(M)) = T(M) for all M,

T has padical property iff T(M/T(M)) =0 for all M,

A module M is P~complete iff T(M) = M.
If T and T' are socles, TET' iff T(M) 4is a submodule
of T'(M) for all modules M, It is easy to verify that if T is

torsion, then it is idempotent and T(M) is T-complete.

We now prove a theorem which establishes the basiec properties

of socles.

THEOREM l.l. Let T be any socle.

(1) If N is a submodule of M, then T(N) is a submodule
of T(M) and (T(M)+N)/N is a submodule of T(M/N).

(2) T(A) is a two-sided ideal of A.

(3) T commutes with direct sums, i.e. T( @Mi) =®T(Mi)‘

(4) T(P) = T(A)P for all projective modules P.

(5) T(A)M is a submodule of T(M) for all modules M.
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(6) If M is T=-complete, so is any image of M,

of 5 T- conplile i+
(7) T(M), is the largest T-complete submodule of M.

Proof,. -

(1) Let k:N --» M and f£:M ==» l/N be the canonical maps.
Since T is a socle, T(N) = k(T(N))E€ T(M) and
(T(M)+N)/N = £(T(M)+N) € T(M/N).

(2) T(4) is a left ideal by definition. For any a in 4,
define f_:A --> 4 (as left A-modules) by fa(x) = xa for all
x in Ae Since T is a socle, (T(A))a = fa(T(A))ST(A)'. Hence T(A)
is also a right ideale.

(3) Let E=@M;. By (1) for each i, T(M;) is a submodule
of T(M). Hence 2 T(M,) =@T(M,)ET(M). The sum is direct since
for each i, T(Mi) is a submodule of Mi. Let py M == M, be
the canonical projection. Then pi(T(M)) is a submodule of T(Mi)°
Ir x is':i-.n P(M) then x = z:ci with x; in M. Then

x; = pi(x) which is in T(Mi)' Hence T(M) =@T(Mi).
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(4) If P is free, F =@A and by (3),

T(F) =@T(4) =@ (T(4)4) = (A @A) = T(A)F. Ir P is projective
then F =P@Q with F frée. Hence

T(P) ® T(Q) = i(F) = (A (P® Q) = T(A)P ®T(A)Q. Therefore

T(P) = T(A)P.

(5) For any M, let f£:P =->M be epi with F free. Then
CE(T(F)) = £(D(A)F) = T(A)E(F) = T(A)ML ‘But f£(T(F)) is a submodule
of T(M). Hence the result.

(6) Let f£:M --3»N be epi and T(M) = M. Then

N = 2(M) = £(T(M))E T(N)E N.

(7) If T(N) = NEM then N = T(N)C T(M) by (1).

COROLLARY. T(P) = O for all projective modules P iff

T(4) = O.

Proof. Obvious since T(P) = T(A)P by (4).
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PROPOSITION 1.,2. If the socle T has radical property, then
T(M) is the smallest of the submodules N of M such that

T(M/N) = 0.

Proof. By definition of radical property, T(M/T(M)) = O,
If for some N we have T(M/N) = 0, then (T(M)+N)/N € T(M/N) = O

and T(M)+N = N. Hence T(M)¢E N.
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2. Semi-Simple and Regular Socles

In this section, we shall define the regular socle of a module
which is analogous to the semi-simple ( = usual) socle of a module,
with purity playing the rdle of direct summand,

A left A-module M 4 O is called simple iff O and M are its

only submodules, and semi-simple iff it is the sum of simple modules.
For basic facts on (semis) simple modﬁles and rings, see (B3) or
Lambek (30).

For any left A-module M, its ss ( = semi-simple) socle S(M)
is defined to be the sum of all its simple submodules ( = the sum of
all its semi-simple submodules), In an analogous way, we will define

the regular socle R(M) of a module M +to be the sum of all its

regular submodules (i.e. submodules which are regular modules).

Thus R(M) = 2Ax (xin M and Ax regular).

THEOREM 2.1, Both the ss socle S and the regular socle R are
torsion socles, and hence have all the properties given in Theorem l.l.

A module is S-complete iff it is semi-simple, and R~complete iff it is
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S(M) =M iff M is semi-simple and R(M) =M iff M

is regular, Also S¢<R.

Remark 2.1,

(i) Neither S nor R are radicals., See Proposition 2.3 for

examples and discussion.

(ii) By taking A to be a ring which is one of-

(a)
(v)
(e)
(a)
(e)

we easily have

(a)
(b)
(e)
()
(e)

regular,

not regular,
semi-simple,

not semi-simple,

regular but not Semi-simple,
examples where

R(M) = M,
R(M) £ M,
S(M) = N,
s(M) £ M,
S(M) £ R(M) etc.

Proof, Let T be either § or R

Socle: T(M) was defined to be a submodule. T(M)

of simple (resp. regular) modules. Hence if £:N -~ N

is the sum

then f£(T(M))

is the sum of simple (resp. regular) modules, since the image of a



81

simple module is simple or zero (easy to verify), and the image of a
regular module is regular (Theorem 3.3 of Chapter 3).

Torsion: If N is a submodule of ‘M, we know that T(N) is
a submodule of T(M), by Theorem l.l. T(M) is the sum of simple or
regular modules and hence T(M) is either 'semi-simple (well known)
or regular (Theorem 3.4 of Chapier 3). Hence the submodule NaAaT(M)
of T(M) dis either semi-simple (well known) or regular (Theorem 3.3
of Chapter 3), and therefore containéd in T(N).

The properties concerning S-complete and R-complete are clear,
Also S'sR since every simple module is regular.‘

For any socle T, the ring A will be called left T-faithful

iff for all left A-modules M £ O, we have (M) £ O.
For example, Bass (4) has shown that a left perfect ring is rt.
S-faithful, where 'S = ss socle. See Theorem 3.1 of Chapter‘ C.
Clearly if TgT' then if A is left T-faithful, it is left
T*~faithful. Hence A' left perfect =5 A is rt. S-faithful =3 A is

rt. R-faithful.
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PROPOSITION 2.3, If A is left P-faithful for some socle T,

then the left A-module M is T-complete iff T(M/T(M)) = O.

Proof,
=3 : is clear since T(M) = M,

¢=: Since A is T-faithful, we have M/T(M) = O whence

M=7(M) and M is T-complete,

COROLLARY 1. If A is left T-faithful, then the socle T has

radical property iff all left A-modules are T-complete.

Proof,.

=P : For any M, T(M/T(M)) = O whence M/T(M) = O and M = T(M).

" ¢=: is clear since T(M) =M for all M.
COROLLARY 2, Neither S nor R have radical property.

Proof. Let A be left perfect, but not regular. Then A is

r¥. T-faithful for T =R or S by Bass (4), but not all rt. modules

are regular ( = R-complete) and hence not all are semi-gsimple

( = S-complete).
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Before stating the next proposition, we recéll that the (Johnson)
singular submodule K(E) of a left A-module E is the submodule
consisting of all x in B sach that O(x) = (aealax = 0) "‘.is a
large left ideal of A. TFor details see Johnson (23) or Lambek (30).
Foilowing Bourbaki (Bl, Ex. 24, p. 164), the ring A will be called
left neat iff K(4) = o, regardipg A as a left A-module, i.e,

K(AA) = O, and neat iff it is both left and rt. neat,

' ‘Pudhd‘w
PROPOSITION 2.4, The singular submodule, K is a torsion socle,

Proof, Suppose u:E --» F. Since 0(x) 1is contained in
O(ux) for all x in E, x in K(E) =3 0(x) is large in A
=> 0(ux) is large in A =3 u(x) is in K(F) and X is a socle,
If E is a submodule of F, then K(E) is contained in
E nK(¥) by Theorem 1.1. Conversely, if x is in EnK(F), O0(x)

is large in A and x is in X(E)s Therefore K is a torsion socle,
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3« The Brown-McCoy Regular Radical

In this section, we compare our regular socle R(A) with the

Brown-McCoy regular radical.

THEOREM 3.1, If A is a left semi-principal ring (i.e. every
fg left ideal is principal), then for any a in A, Aa is regular

iff Aba 1is pure in Aa for all Db in A.

Proof.
=2>: holds by definition of regular.
&=: Let ZAbia be any fg subiéeal of Aa, then
ZAbia = ( ZAbi)a = Aba since A is left semi-principal and Aba

is pure in Aa, vwhich is therefore regular.

Brown and McCoy (7) define a regular radical M(A) of the ring A.
They call an element a in A regIJlar iff a €ala, and a two-sided ideal
regular iff all its elements are regular. They then prove that the set
M(A) = (ae A] (a) = Aan is a regular two-sided ideal) is a two-sided

ideal of A, which they call the regular radicals Thus A is a
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regular ring iff M(A) = A. We note and emphasize that the Brown-
McCoy use and our use of the word regular Aiffer. We shall not use
regular in the Brown-Mc¢Coy sense, except ia this paragraph, since we
can avoid it in view of Proposition 2.2 of Chapter 3: An element

a in A is Brown-McCoy regular iff Aa is pure in A (or equivalently:
aA 1is pure in A). From now on the word regular will have the meaning
given in Chapter 3,

We now show the connection between the Brown-lcCoy regular

radical and our regular socle,

THEOREM 3.l. If A is commutative semi-principal ring, then

M(A) =)Aa (Aa regular and Aa pure in A).

Proof, a is in M(a)
iff Aba is pure in A for all b in A (definition of N(4)),
iff Aba is pure in Aa for all b in A and Aa pure in A by

Proposition 1.2 of Chapter 1,
iff Aa is regular and Aa is pure in A (Theorem 3.3 of Chapter 3).
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COROLLARY. M(A) dis contained in R(A) for A commutative

semi-principal.

Proof. R(A) =2Aa (A2 regular).

Remark 3,1, Since A is regular iff M(A) = A iff R(A) = A
we have an example where M(A4) = R(A). Theorem 3.1 shows that for
A commutative semi-principal, M(A) is contained in R(A).

We now give an example to show that this may be a strict
containment:

Example 3.1. Let A be a commutative artinian principal ring
which is not semi-simple. For example take A = Z/an p prime, n»2,
Let P be any pure ideal. Then A/P is flat, hence projective
(since an artinian ring is perfect). Therefore P is a direct summand,
i.e. every pure ideal is a direct summand. Since A is not semi-simple,
there exist ideals which are not direct summands, i.e. not pure,

Since A 1is artinian, we can choose a minimal non-pure ideal I.
Hence I £ 0 (since O is a pure ideal). If J dis an ideal of A4,

contained in I, then J =1I =3J is pure in I, and
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J AL =>J is pure in A by the minimality of I, and therefore
J is pure in I. Hence I is regular and therefore I is contained
in R(A) but I is not contained in M(A) since I is not

pure in A,
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4. The Rggular Socle over a Dedekind Domain
This section is devoted to computing “.l:he regular socle R(E)
of a module E over any Dedekind domain which is not a field. We
make use of various well-known propverti es of Dedekind domains, all
of which can be found in Zari ski-Samuel (40).
Let A %be ‘any commutative ring, P the collection of its
prime ideals, .and E an 'A-module.
We recall that theideal Q of A is P-primary (P in P) iff
(1) Q is contained in P,
(2) a in P => a® in Q for some integer n.
(3) ab in “.Q- end a not in P =»b is in Q.
For any x in B, let O(x) = (a€A |lax = 0) be the order ideal.
E is a torsion module iff O(x) .;é 0 for all O £ x in E.
E is P-primary (P in P) iff O(x) is P—priﬁmw for all O # x in E.
12 o(x) =Mp™®) (P in ®) with n(P) an integer, and n(P) = O
for almost all (i.e. éll but a finite number) of P in P, then we say

that x has square free order iff n(P)§1 for all P in P,
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We note that if A dis a Dedekind domain, then any ideal I £ O

can be expressed as such a product.

THEOREM 4.1. Let A be a commutative noetherian ring and M a
maximal ideal, Then

(1) An ideal Q £ A is M-primary iff MnQQ for gsome integer n.
Also K€ Q =3 QS kK,

(2) Por any module E, By = (0 and xeE|0(x) is M-primary)

is an M-primary submodule of E, called the M-primary component of E.

Proof.

(1) 4is well known., For a proof see Northcott ((36), Prop. 9,
Pe 23). ’Also Mng QEN for some maximal ideal N. Hence MEN, since
N is prime, and therefore M = N since both M and N are maximal

ideals,

(2) If x and y are in Ey, then O(x+y) contains

] 1
0(x)no(y)2M Al = M* . Hence O(x+y) is M-primary by (1)
Similarily for a in A and x in E,, O(ax)?2O0(x)2M®. Therefore

M

Ey is a submodule of E; clearly it is M-primary.
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THEOREM 4.2, If A is a Dedekind domain, P the collection of
its nonzero prime ( = maximal) ideals, and T a torsion module, then

(1) T=@®T, (PinP).

(2) If x isin T and x = Z X, with x, =0 for almos

all P, Then for xP;éO, O(xP) =_Pn(P) for some integer n(P) and

o(x) = [T22(®),

Proof,

(1) has been shown by Matlis (35).

n(P).

(2) Since Tp is P-primary, O(Jr_P)?P Since A is

n+1l

Dedekind, for all n, there are no ideals between P and P°.

n(P)

Hence O(x.P) ‘= P for some integer n(P). Let I =TrPn(P).

Then Ix, = 0 for all P, and therefore Ix =0 and I€¢O0(x).
Since A is Dedekind, O0(x) has a factorization 0(x) ='|Tpn'(P)
with n*(P)E&n(P) since IS0(x). If for some Q in B,

nt(Q) £ n(Q), let It ='ﬂpm(?) where m(P) = n(P) for all P £ Q

and m(Q) = n*(Q). Then ICI*S€O0(x) and I'xP =0 fovr all

P £ Q but I'xQ;éO since n'(Q)<n(Q). Therefore
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® 0

= I'x = I'xQ # O. This contradiction shows that we must have

n(P) = n*(P) for all P and therefore I = 0(x).

THEOREM 4.3, If A is a semi-hereditary domain (i.e. Pruefer)
which is not a field, then
(1) O is the only regular torsion free module.

(2) BEvery regular module is torsion.

Proof,
(1) Suppose F is a regular torsion free module, and take

x in F. Then Ax is a fg torsion free module, hence projective

(since A is.Pruefer), and therefore a rogular projective module.

By the corollary of Theorem 4.4 of Chapter 3, Ax = O, Therefofe P =0,
(2)  Let T be the torsion submodule of the regular module R.

Then F = R/T is regular torsion free and therefore F = 0O by (1).

Hence T = R.

Since any direct summand is pure, there are many examples of

pure submodules. The following proposition shows how to construct

non-pure submodules,
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@ PROPOSITION 4.4. Let A be a ring with a left ideal I such

I? £FI A A, Then E I/IIZ2 is not pure in M = A/IZ.

IA2I. Then I'I =I° and

Proof, Let It

I'MAE = I'/Iaf\ I/I2 1/12 ;é 0, but I'E = 12/12 = 0+ Therefore

E is not pure in M by Theorem 1.7 of Chapter l.

PROPOSITION 4.5 Let I be any left ideal such that I2 £ I £ A

Then A/In ig regular iff n =1 and A/I is regular,
Proof,

=2 : By Proposition 4.4, I/I2 is not pure in A/12 and therefore

A/I2 is not regular. For n)l, InS 12, hence A/I2 is a homomorphic
image of A/In. 1f A/In were regular, then A/I2 would be too
(Theorem 3.3 of Chapter 3). Therefore if n%DH1l, 1\/]’.n is not regular.

&=: is obvious,

Remark 4.5, If A is a Dedekind domain, then for any ideal I £ A
we have 12 # I. This follows readily from the unique decomposition »

of I as a product Tl'rn(l’).
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THEOREM 4.6, Let M be a maximal left ideal of A such that
for all integers n »0, there is no proper left ideal between

¥ ana W%, Then the left module A/M" is pure simple.

Remark 4.6, If A is a noetherian domain, then A is Dedekind
iff for all maximal ideals M and all integers n »0, there is no

proper ideal between M and Mn+l. See Bourbaki ((6), Ex. 7, p. 92.)

Proof, The only proper submodules of A/Mn are Mm/lllln with
Ofm¢n. If n =1, then A/M is simple and therefore pure simple.
Suppose O<m<nd>2.. We will show that Mm/M'n is not .pure in A/Mn.
If it is pure, then I A/M°A M/N® = T(MZ/M") for all rt. ideals T.
Let k = Max (m,n=m) and I = MkA. Then mgk<n since 0 £ m £ n,
and I A/ AMY/NY = W/ AN/W - /WP £ O since mek £ n. Bu
I MYyM = l!t[k"'m/Mn =0 since 'k+m>,n. Therefore by Theorem 1.7 of

Chapter 1, l\ilm/hl[n is not pure in A/M .

COROLLARY. The quasi-cyclic group Z(p”) and the cyclic groups

Z/pn are all pure simple.
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Proof, These groups form a chain
2
0CZ/PEZ/DP™ ave B/D" eee 2(p™")
and there are no other subgroups. If Z/pn were pure in some group

containing it, then 2/p" would be pure in z/p™*%., But by the

theorem Z/pn+1' is pure simple for all n, giving us the desired

result,

THEOREM 4.7. Let A be a Dedekind domain which is not a field, then

(1) R is a regular A-module iff R is torsion and every element

of R has square free order.

(2) Por any module E, the regular socle R(E) is the collection

of all torsion elements of E with square free order.

Remark 4.7. If A is a field, them A is regular, hence e;ery

module is regular and the statement of the theorem does not hold,

Proof.

(L) =2: By Theorem 4.3, R is torsion, and therefore R =@RI>

by Theorem 4.2. Hence RP is regular by Theorem 3.4 of Chapter 3.
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For any x in RP’ 0(x) = P? and A/Pn = Ax is regular. Therefore
n =1 by Proposition 4.5'and Remark 4.5, Hence every element of R
has square free order.
=: By Theorem 4.2, R =@RP. Since every element of R has

square free order, O(x) = P for all x in RP' But Ax = A/P is
simple (since P is maximal), hence regular. Therefore RP is
regular for each P, and so R is regular.

(2) By (1), since R(E) is regular, it is torsion and every
element has square free order, Conversely, if x in E is torsion,
with square free order, then Ax is torsion and every element of Ax

has square free order, since O0(ax) 20(x) for all a in A. Therefore

Ax is regular and AxSR(E).
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5 Radicals

A socle T with radical property, i.e. T(M/T(M)) = O for all
modules M will be called a radical. In this section; we give a
general construction for radicals,.

Let ¥ ©be any collection of left A-modules. A submodule N of
the left A-module M will be called Z_—maxixﬁal iff M/N is in Y.
For example, if ¥V is the collection of all simple modules, then
V-maximal just means maximal. A module M may have no V-maximal
submodules, Clearly if VE€ V' +then V-maximal =3 V'-maximal. Note
that any module M is V-maximal in itself iff the. 0 module is in
V; and that 0 is ¥-maximal in M iff M dis in ¥V. Thus if O
is in ¥, every module M has V-maximal submodules since M is

mM
V-maximal in &,

PROPOSITION 5.l If N dis =z submodule of M, then under the
one-one correspondence between submodules of M containing N and

submodules of M/N, V-maximal submodules correspond to V-maximal submodules.
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Proof. Suppose N&KEM.
Then K is V-maximal iff N/K is in Y,

iff (M/N)/(X/N) dis in V.
iff K/N dis V-maximal.

THEOREM 5.2, Let YV Dbe any collectionI of left .A-modules which
contains O and is closed under submodules. For any left A-module N,
define V(M) to be the intersection of all Y-maximal submodules of M. Then

(1) V(M) is the intersection of the kernels of all epis
uiM ~=»V with V in V.

(2) V is a radical, and hence has all the properties of
Tlr;eorem 1l.1.

(3) V(W/N) = V(M)/N for all submodules N of V(M)

(4) v(TTW,) is a subtmodule of TMv(w,) for any family M
of modules.

(5) v(M) = O iff M is isomorphic to a submodule of a product
v, wth Vv, in¥.

(6) If ¥ is contained in Y' then V!§ V.
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Proof, We note that since O is in v, v(m) ;s well defined.
(1) ‘This is clear since the V-maximal submodules are precisely
the kernels of epis u:M --3» V with V in V.
(2) Socle: Suppose £:M --) N. Then for all epis u:N --> V
with V in ¥, uf:M --> V' dis an epi with V! = Imuf in ¥V since
Y is closed under submodules. Therefore if x is in V(M),
uf(x) = 0 and fx is in Ker u. Hence f(V(M)) is contained in
V(N), and V is a socle. The fact that V is a radical follows from (3).
(3) holds because of the one-one correSpondencé betweep the
V-maximal submodules of M (containing N) and the V-maximal

submodules of M/N,

(4) If N, is V-maximal in M then M

=N _x i]M. is
k k -,
i4k

V-maximal in M ='TTMi. Hence V(M) 4is contained in each such M

hence in the intersection of all such Mk’ Therefore V(M) is

contained in'TTﬁ(Mi).
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(5) =>: If V(M) = 0, there exists a family V, in ¥ and a

i

family u,:M -->V, of epis such that Ker u; = O. The canonical map
M --)T]-Vi defined by m ==> (ui(m)) defines a mono and gives the
required result.

¢==: Suppose f:M --;]Tvi = P is mono gnd let pi:P -=3 Vi be .

the projection maps and set u; = £,

Py
Then m in V(M) => pi:f'(m) = u.i(m) =0 for all i.
=» f(m) = 0 (since the p; are projection maps).
. => m =0 since f is mono,

Hence V(M) = O.

(6) Any V-maximal submodule of M dis V'-maximal,

Remark 5.2. If we take ¥V +to be the collection of all simple

left A-modules together with O, then V is just the Jacobson radicale.
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6o  Primitivity

In this section, we define and study a general type of
primitivity.

Let ¥V be any collection of left A;-modules. A two-sided ideal P

will be called left V-primitive iff it is the largest two-sided ideal

contained in some V-maximal left ideal M, The ring A will be called

left V-primitive iff it is a left V-primitive ideal. For example,

if ¥ is the collection of all simple modules, a left V-primitive
ideal or ring is a left primitive ideal or ring. Bergman (5) has

shown that left and rte. V-primitivity are not equivalent.

PROPOSITION 6.1, Let P be a two-sided ideal and M a left
V-maximal ideal. Then P is left V-primitive (with V-maximal left
ideal M) iff P = (a€A|aASM).

Proof,

=»: a is in P 4iff AaA¢P since P is an ideal. |

iff AaACM since P is the largest ideal

contained in M,
iff aA€ M since M is a left ideal,
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&=: P is clearly the largest ideal contained in M.

PROPOSITION 6.2, If P is a two-sided ideal, then P is a left

V-primitive ideal iff A/P is a left V-primitive ring,

Proof, This follows immediately from the one-one correspondence

between the V-maximal left ideals of A containing P and those

of A/P.

THEOREM 6.3+ Let ¥ be any collection of left A-modules containing
0 and closed under submodule, Then V(A), the intersection of all
V-maximal left ideals, is equal to the intersection of all left

V-primitive (two-sided) ideals.

Proof. By Theorem 5.2, V is a radical, hence a socle, and
therefore V(A) is a two-sided ideal by Theorem 1,1, Since V(A) is

a two-sided ideal,

a is in V(A) iff aacvV(a).

iff aA€M for all V-maximal left ideals M.
iff a is in all left V-primitive ideals.
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COROLLARY. V(A) = O iff A is a subdirect product of left

V-primitive rings,

Proof, Let Pi be the family of left V-primitive ideals of A.
Then V(A) =1T§i =0 iff A is the subdirect product of the rings
A/Pi which are left V-primitive., If V(A) = 0, we call A

a V-semi-primitive ringe.

For any left A-module N, define Ann N = (a €A | aN = 0).
Then Ann N is a two-sided ideal of A, N is called faithful

iff Ann N = O,

THEOREM 6.4 A is a left V-primitive ring iff there exists a

V-maximal left ideal M such that A/M is a faithful module.

Proof.
=2 : 0 is left V-primitive, and hence the largest ideal in some
V-maximal left ideal M, Ann A/M is a two-sided ideal which is

clearly contained in M. Therefore Ann A/M =0 and A/M is faithful,
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&=: Let P be any ideal contained in M. Then
P Ann A/M = O. Therefore O is the largest ideal contained in M,

and hence A 1is left V-primitive.
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CHAPTER 5: DIMENSION THEORY

In this chapter, we shall prove a number of results on the weak
dimension of modules and weak global dimension of rings. We relate

these to the homological ( = projective) dimension anad global

dimension.,

l. Weak Dimension

In this section, we adopt the weak dimension definition of
Cartan-Eilenberg ((8), p. 122) and prove a number of results which
are analogues of results for homological dimehsion (see Cartan-Eilenberg
(e),‘ pe 109 ff.).

A resolution of the left module E is a sequence of modules
(Fi), i=o0,1, 2, .;. which form an exact sequence

-—> B, --> Fi g =P ees ==> Fl > Fy =~®»E-30
A resolution (Fi) of E is free (resp. projective, flat) iff each
Fi is free (projective, flat). For any resolution (Fi) of E we let
ui:Fi -— Fi’_‘.1 i=1, 2;... be the given maps and

ﬁ%@ Ki = Ker u; = Im Ui for i =1, 2, ... and K;l = Eo
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A resolution (Fi) .of E has length n iff
0 == Fn ~—> see =D Fo ==3> E --» 0 is exact. If no such integer

exists we say that (Fi) has infinitive length.

dlearly every free resolution (of E) is a projective resolution,
and every projective resolution is a flat resolution. It is well known,
and easy to show (see Jans (23), p. 33), that every module has a free

resolution; hence every module has free, projective and flat resolutions,

THEOREM lels If O ==3 K ==% F == E --» 0 is an exact seaquence
of left A-modules with P flat, then for any rt. module X,

Torm_l(X,E) = Torn(X,K) for all n>O0,

Remark 1.1, For simplicity, we have written = fop

e

Proof. For all n>0 and for all rt. A-modules X, we have
0 = 'Torn+l(X,F) -—> 'I'orm_l(x,E) -=> ‘.Porn(X,K) s Torn(X,F) =0

since F is flat. Hence the desired result.

COROLLARY, If (Fi) is a flat resolution of E, then for any rt,.

module X, and for all n 0 we have Tor_. . (X,E) = Torl(X,Kn_l).

n+l
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Proof, For all i3 0, we have exact sequences

0 —->K;, --> F, >k 5 ~~>» 0 with Fy .ﬂat. Hence for all n 0,

- < vl - = Y .
and for -1€ign-l, we have Torn+1(X,Ki_1) Torn(X,Ki) Therefore

Torn+1(X,E) = Torn+1(X,K_1) = Torn(x,Ko) ,
= Torn-_i(x.’Ki), for -18ig n-1
= Tor, (X,K__,).

For any left A-module E £ O, we define wd E ( = weak dimension

of E) +to be the largest integer ‘n such that Torn(x,E) £ 0 for
some rt. A-module X. If no such integer exists, define wd E = % ..
For completeness, we define wd O = -1, These definitions are all due
to Cartan-Eilenberg ((8), p. 122). We remark that wd ESO0 iff E is

flat. Weak dimension for rt. modules is defined similarily.

THEOREM 1.2, For any left module E and any integer n %0, the
following conditions are equivalent:
(1) Any exact sequence 0O --3 K 4 -—> Foq =P tee ==D F, ->E -0

with Fi flat for all O€is§n-1 has Kn_ flat too,

1

(2) E has a flat resolution of length n.

(3) wd Egn.
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(4) Tork(X,E) = 0 for all integers kQpn and for all rt.
modules X,

(42) Tork(X,E) = 0 for all integers. kpn and for all fg
rt. modules X.

(4v) Tork(X,E) = 0 for all integers kdn and for all fp rt.
modules X.

(4c) Tork(X,E) = 0 for all integers k®»n and for all cyclic
rt. modules X.

(44) Tork(X,E) = 0 for all integers kpn and for all fp cyclic

rt. modules X,

(5) Torm_l(X,E) = 0 for all rt. modules X.

(52) Torn+l(X,E) = 0 for all fg rt. modules X,

(5b) Torn+1(X,E) = 0 for all fp rt. modules X.

(5¢) Torn+1(X,E) = 0 for all cyclic rt. modules X.

(54) Torn+1(X,E) = 0 for all fp cyclic rt. modules X,
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Proof,

(1) =3 (2): Let (F,) be a flat resolution of E and
0 -=> Kn—l-_?-Fn-l =D see =D Fo --»E =-->» 0 be exacte
By (1), K , is flat. Hence (2).

(2) =>(3): Let 0 --> Fn -— Fn—l -‘--9 .... -—p FO == E -=>» 0 .
be a flat resolution of E, of length n. Then for all rt. modules X,
Torn+1(X,E) = Torl(x,Kn_l) =0 since K , =F is flat. Hence wd ESn.

(3) =» (4): If for some rt. module X and some kpn,
Tork(X,E) £ O, then wd E »kgn., Contradiction.

Clearly we have the implications (4) = (5) and (4x) => (5x) for
X =a, by, ¢, & as well as (5) = (5a) ==(5b)

v ¥
(50) =% (5d)

To conclude the proof, we will show (5) =3 (1) and
(58) =»'(5¢) =» (5a) =% (5).

(5) =» (1): Suppose we have an exact sequence
0 ==> Kn-l ——> Fn-l =P ees == Fo =9 E -=» 0 with Fi flat for

0gi€n-1l. PForm a flat resolution of E, the first n terms of which

are Fi’ 0¢i¢&n-1., Then for all rt. modules X,
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Torl(X,Kh_l) = Torn+l(X,E) = 0 by the corollary of Theorem l.l. Hence

Kn-l ig flat.

(5a) =9 (5): holds since every (rt.,) module X is the direct

}imit of its fg submodules, and Torn+1( ,E) commutes with direct limitse.
(5¢) = (5a): We show this by induction on the number k of

generators of X. The case k =1 holds by assumption; assume that

we have established the implication fgr all modules with not more than

k generators, and let X have k+l generators. Let x in X be one

of these generators, X' = xA and X" = X/X'. Then we have an exaci

sequence Torn+l(x',E) -—é'Torn+1(X,E) -—> Torn+1(X“{E). We have

Torn+1(X',E) = 0 since X' is cyclic, and Tor

n+l(X“,E) = 0 since
X" has not more than k generators. Hence Tarh 1(X,E) = O,

(54) =p (5¢c): Let I be any rt. ideal of A. Then I is the

direct limit of its fg submodules ( = rt. ideals) Ik' Therefore

X = A/I is the direct limit of A/Ik‘ Since Torn+1( ,E) commutes

with direct limits, we have the desired result.

Remark 1l.2.

(i) Clearly a similar theorem holds for rt. modules.
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(ii) Parts (1), (3) and (4) of this theorem are in Hillel (21).
We have strengthened the theorem by adding Parts (2), (5), as well as
the Parts (4a), (4b), (5a), (5b), etce The significance of these

additions (espe. (5d)) is explained in Remark 2.2.

THEOREM le3e If O «=3K ==D F -=3> E =-> 0 is exact with
F flat, then wd ES1+ wd K, Equality holds iff wd E 31,

i.e. iff E is not flat. (We assume K 4 O £ E.)

Proof. By Theorem.l.l, Torn+1(X,E) = Torn(X,K) for a&l1 n >0
aad for all rt. X. If. wd K =, then the inequality valways holds.
If wd K = n<w, then by ‘Tﬁeorems 1.1 and 1.2, Torn+2(X,E) = Torn+1(X,K) =0
for all rt. X. Therofore ‘wd B $nsl = wd K 41,
- If equality holds, we hav; | wd E %1. Conversely, supp;se wd E 21,
If wd E =0, then we have equality.' Assﬁme therefore fhat wd E =m
with 1€ mcee Then for all rt. X, ?orm(X,K) = Torm+l(X,E) =0

(since m3%»1). Therefore wd K€m-1, and 1+ wd K¢m = wd E giving

us the desired equality.
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We have the following obvious:

COROLLARY. For any nonzero left ideal I of A, wd A/If1 + wd I,

with equality holding iff wd A/I%1.

THEOREM 1.4, If O ==» E' =-> E -=» E" --> 0 is exact and any

two of the modules have finite weak dimension, then so does the third

one.

Proof, For any rt. module X and all n »1 we have an exact sequence
--> Tor__,(X,E") --3 Tor (X,E*) --» Tor (X,E) - Tor (X,E") --> Tor__,(X,E*).
For n sufficently large the Tort's of the finite dimensional modules

vanish, and the Tar of the other module must be zero too.
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2. Weak Global Dimension

In this section, we define and stﬁdy the weak global dimension
of a ring. This is, of course, analogous to the (homological) global

AL

dimension of a ring.
We define the left weak global dimension of A to be
lwgl A = sup wd E, with the sup taken over all left A-modules Ee.

The rt., weak global dimension of A is defined similarily:

rwgl A = sup wd E, with the sup taken over all rt. A-modules E.
Northcott ((37), p. 150) has shown that 1wgl A = rwgl A. Their -
common value will be called the wgak global dimension of A and written
wgl A. Since wgl A is left-rt. symmeitric, every theorem concerning
left module; and.ideals gives us an "opposite" theorem about rt.
modules and ideaié. These corresponding theorems will be assumed and

used, although they are not always studied explicitly.

PROPOSITION 2.1. The ring A is regular iff wgl A0,

Proof,

A is regular iff all left A-modules are flat (Bl, Ex. 17, pe. 64).
iff wd E€0 for all left A-modules E.
iff wgl ASO0,.
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One of the main results of this section is:

. THEOREM 2,2, wgl A = sup wd E with the sup taken over all left
‘ fp cyclic modules BE.
= sup wié E with the sup taken over all rt. fp
‘ cyclic modules E.

Proof, Since wgl A is left-rt. symmetric, it suffices to

t
8

prove the first equality. Clearly sup wd E Swgl .A. . If sup wd E
we have eguality. Assume thereforg that sup wd E = n<<we. Hence
wd ESn for all fprleft cyclics E. And Torn+1(X,E) = 0 for all
such E, and for all rt. modules X' (Theorem 1,2, Part (54)).
Therefore by Part (5d) of the "rt." version of Theorem 1.2 (see
Remark 1.2 (i)), we have wd X€n for all rt. modules >X, i.e,

wgl AS$n = sup wd E. Hence the desired result.

COROLLARY 1. wgl AS§1l+ sup wd I with the sup taken over all

fg left ideals I« '

Proof. For any fg left ideal I, we have O =3 I =3 A —=3 A/I —=> 0
exact and hence wd A/IS1 + wd I by Theorem 1.3, Therefore

wgl A = sup wd A/IS1 + sup wd I with the sup taken over sll fg left

ideals.,
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COROLLARY 2, If wgl A21 then wgl A =1 + sup wid I where the

sup is taken ow}er all fg left ideals I,

Proof. Since wgl A1, there exists a fg left ideal K such
that wd A/K21 and hence A/K 1is not flat. Therefore by Theorem 1.3,
1 +wdK=wd A/K€wgl A and 1 + sup wd I€wgl A. The opposite

inequality is given in Corollary 1,

Remérk 2.2 This strenghtens é theorem of Hillel (21); he proved
the result for all cyclic modules (not fp cyclié). More important than
this, we remark that by the addition of condition (5d) to Theorem 1.2,
the proof of which is not too difficult, we have very significantly

vshortened‘énd simplifieqﬁthé}origihal proéf;gi;en By Hillél (21).

The next theorem characterizes rings for which submodules of

flat modules are flate.

THEOREM 2.3, For any ring A, the following conditions are

equivalent:

(2) Every submodule of every flat left module is flat.
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(2)'. Every fg submodule of every flat left module is flat,
(3) Every left ideal of A . is flat,.

(3)* Bvery fg left ideal of A is flate

Proof,
(1) =>(2): "Suppose O K --3 P ---)k E --» 0 is exact with
F flat, If E is flat them K is flat (Bl, Prope 5, ps 31). If
E is not flat, by Thecrem 1.3, 1 + wd K'é wd E. But wd ES1l by (1),

whence wd K€O and K is flat., The implications (2) =9 (2)' are obvious.

& > B
(3)r =5 (1): Let B .= A/I be a fp left cyclic module., By Theorem
1.3, wd E€1 +wd I =1 since I is fg left ideal and therefore flat.

By Theorem 2.2, wgl AS1l.

COROLLARY. If A is left or rt, semi-hereditary, them wgl A€ 1.

Proof.. If A is left (resp. rt.) semi-hereditary, every fg

left (rt.) ideal is projective and therefore flat.

Remark 2.3.

(i) Each of the corresponding "rt." statements of the theorem is also

equivalent to wgl AS 1.
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(ii) Cf. the analogous result of Cartan-Eilenberg ((8), p. 112)
for 1lgl A€1.
(iii) The converse of the corollary is-false unless A is left

(or rt.) coherent. See Chase (10).

THEOREM 2.4 If A is left artinian, then 1lgl A = wgl A = sup wd S
with the sup taken over all simple left modules S. _ Furthermore if
wgl A21 then wgl A =1 + sup wd M where the sup is taken over all

maximal left ideals M,

Proof.  If A is left artinian, it is left noetherian and thez;efore
1gl A = wgl A (see Northcott (37), p. 154) and wd S = hd S for all
simple left modules S since they are fg (Northcott (37), p. 153). Also
if A is left artinian, Jans (t22); p. 56) has shown that 1gl A = sup hd S.
Therefore, we have the desired result,
' Ir wel A%1, Jans ((22), p. 57) has shown that lgl A = 1 + sup hd M.
Since A is left noethez;ie.n, every le‘ft ideal is fg and therefore

wd M = hd M (Northcott (37), pe. 153). But wgl A = 1lgl A, so we are

finished,
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3« The Dual of Lambek's Theorem

Lambek (28) has shown that a module is flat iff its character
module is injective., We now prove the dual for noetherian rings:
a module is injective iff its character module is flate.

Let E be a left A-module and E' = Homz(E,Q/Z) (Q = rationals,
%2 = integers) be its character module. Then E! is, in a natural
way, a rt. A-module. For further details, see Lambek (28) or
vNOrthco'tt‘((37), P. 71 £f.). There it is shown that ( )! is an
additive exact contravariant functor from tﬁe category of left
A-modules to the category of rt. A-modules. Thus if
0 ~->E --»F -~-3 G ~=>0 is an exact Sequence of left A-modules, then
0 --évé* ~=> F! =D E! —=3 0 is an Qxact sequence of rt. A-modules.

We shall also use the fact that for any left A-module E we have
E=0 iff BBt = Os A proof may be found in Lambek (28).

In order to prove our main result, we need:

PROPOSITION 3.1. Let A be rt. noetherian and M a fg rt.
A-module, Then for any rt. A-module E we have a module isomorphism:

Tor(M,E!) = (Ext(M,E))?
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@@9 Proof, This follows immediately from Northcott ((37), p. 152,

Lemma 5), since Q/Z is Z-injective.

THEOREM 3.2. Let A be rt. noetherian, Then any rt. A-module

E is injective iff the left A-module .E' is flate

Proof, E dis injective
iff Ext(M,E) = O for all fg rt. M. See Jans ((22), p. 50).

0 for all fg rt. M.

iff (Ext(M,E))?

iff Tor(M,E') = O for all fg rt. M by Proposition 3.l.

iff Bt is flat by (Bl, Prope. 1, pe 55).

COROLLARY, If A 1is left noetherian, then any left A-module E

is injective iff the rt. A-module E' dis flat.

Proof. Interchange left and rt. throughout.




CHAPTER 6: PURE SIMPLE AND INDECOMPOSABLE RINGS

In this chapter, we study pure simple and indecomposable rings

and relate them to the PP and PF rings of Hattori (20).

l, Small Submodules

We recall that a submodule S of E is small in E iff for
every submodule F of E such that S+F = E, we have' F = E.

Clearly any submodule of a small submodule is. small,

LEMMA 1.1, Any finite sum of small submodules of E is small
L ]

in E.

Proof, Use induction on the number of small submodules,

PROPOSITION 1.2, For any x in E, any left A-module, Ax is

small in B iff x 4is in the sum of all small submodules of E,

Proof,

=» : is clear since x is in Ax.

119
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&=: We must have x = ZJ%_(finite sum) with X; in 8,, a
small subﬁodule of E. Each Axi is a submodule of Si’ and hence
small in E. Therefore S = ZAxi is small in E, since the sum is
finite, Since x is in S, Ax is a submodule of S and therefore

small in E.

THEOREM l.3. For any module E, J(E) (the Jacobson radical

of E) is the sum of all small submodules of E.

Remark 1.3, The statement of this theorem is due to Sandomierski
and Kasch and was communicated to me by Prof. J. Lambek. The proof is

original,

Proof, By Proposition 1.2, it suffices to show that Ax is
small in E iff x is in J(E), or equivalently: x is not in J(E)
iff Ax is not small in E. We shall show the latter statement,

= : If x is not in J{E), then there exists some maximal
submodule M of B such that x is not in M. Therefore Ax+M = E,

and Ax cannot be small since M £ E.
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&=: We will call a submodule F of E proper iff F £ E.
The collection C of all proper submodules F of E such that
Ax+F = E 1is non-empty since Ax is not small. Since each F of ko]
is a proper submodule, we have x#F for each F. It is also clear
that any proper submodule qf E which contains a member of ¢, is
itself a member of (. Therefore if we order C by set inclusion,
the union F of any chain- F& of members of € is a proper submodule,
since x 1is not in‘ Fi for all i. Hence F is a member of (,
since it contains each Fi’ Therefore by Zorn's Lemma we can choose
a maximal element M of C., We claim that M is a maximal submodule
of E. Since M isin C, x is not in M and therefore M is
proper. Any proper submodule of E containing M is a member of
C, and therefore equal to M by the maximality of M in Ce
Therefore M is a maximal submodule of E, Since x is n?t in M,

x is not in J(E).

COROLLARY 1. If J(E) 4is small in E, then it is the largest

small submodule of E,.
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Proof, Obvious.

COROLLARY 2.
(a) If E is fg, then J(E) 4is small in E.

(b) J(A) 4is small in A and therefore all left ideals and

all rt. ideals contained in J(A) are small.

(c) If A is a local ring, then all ideals I £ A (left, rt.,

and two-sided) are small,

PI‘O of.

(a) Suppose J(E) + FP=E. If FPAE then F is contained in
some maximal submodule ’M of E, since E is fg (B3, Proﬁ. 4, pe. 30).
Therefore J(E) + F is contained in M £ E. This contradiction shows
that we must have F = E, i.e. J(E) small in E.

(b) A is fg.

(c) All ideals are contained in J(A), which is small.

Remark 1.3,

(i) Corollary 2 is untrue for E non fg. For example, Q the
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abelian group ( = Z-module) of rationals has no maximal subgroups

and therefore J(Q) = Q.

(ii) Mares (34) has shown that J(E) 3s small in E 4if

E is semi-perfect.

We now come to one of the main theorems of this section:

THEOREM l.4., If P is a projective module, then O dis the

only small pure submodule of P,

Proof, Since P is projective, there exists a free module
P=P®Q. Let S be any small pure submodule of ©P. Then S is
a small pure submodule of F, since S pure in P and P pure in F
imply that S is pure in F (Proposition 1.2 of Chapter 1). The
smallness is clear. Since S is small in F, SENP = J(F), where
N = J(A), the Jacobson radical (Theorem 1.3). The fact that J(P) = NP
for any projective module has been shown by Mares (34).

Let (xh) (h in H, an arbitrary index set) be a base for PF. Then

']

for any x in SENPF we have x = Znixi (i in I, a finite subset of H)
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with n, in N. By Cohn's Theorem (Theorem 1.1 of Chapter 1), since
S is pure in P, x = Znixi = Znisi with S; in 5. For each
iinlI, s = )3 m; 5%5 (j in Ji) mth m 5 in N and J; a finite

subset of H, Then J

U3, (iinI) is a finite subset of H. For

each i in I, set mij O for each j in J which is not in Ji.

Then for each i in I, s; = Zmijxj (j in J) ana

’ X = Znixi = Znisi = Zni( Z' mijxj) = Z( Znimij)xj since the index

sets are finite. Since (x.h) is a base, for all k in I,

n, = Znimik (i in I)., Let Bx = anA (k in I) be the (fg) rt.

ideal generated by the n,. Then each h, is in BxN since m is

ik

in N; therefore Bx = BxN' But since Bx is fg, B_ =0 by

X

Nakayama's Lemma (B3, Thm. 2, p. 68). Hence =0 for all k in I

By

and X =.O, ioe. S = Oo

COROLLARY.

(1) If J(P) is a small submodule of the projective module P,
then O is the only pure submodule of P contained in J(P).

(2) J(a) contains no pure left ideals and no pure rt., ideals

of A other than O,
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(3) If P is a regular projective module, then O is the only

small submodule, and therefore NP = J(P) = 0.

Proof,

(1) Any pure submodule of P contained in J(P) “is a pure
small submodule of a projective module and therefore zero.

(2) Since A is projective and J(A) is small in A, we can
apply (1).

(3) sSince all submodules are pure, O is the only small
submodule and therefore NP = J(P) = 0 since it is the sum of all

small submodules (Theorem 1.,3).

THEOREM 1l.5. Any local ring A is pure simple and hence

indecomposable.

Proof, If P # A is any pure left or rt., ideal of 4, then P
is contained in the radical of A. Therefore P is pure'small in A
and hence P = 0 by Corollary 1 of Theorem 1.4, Thus A is both

left and rt. pure simple.
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é@b COROLLARY . Ahy regular local ring A 1s a skewfield.

Proof, Since A 1is regular, its radical is pure in A. But
the radical is always small in A, and therefore must be O by

Theorem 1.4, and A is a skewfield.
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2. PP and PP Rings

Following Hattori (20), we will call a ring A 1left PP
(resp. left PF) iff every principal left ideal of A is projective
(resp. flat), and PP (resp. PF) iff it is both left and rt. PP

(resp. PF). We recall that the ring A is left (semi-) hereditary

iff every (fg) left ideal is projective. See Cartan-Eilenberg

((8), p. 13.)

PROPOSITION 2.1,

(1) Every 1eft PP ring is left PPF; every PP ring is DF.
(2) Every left semi-hereditary ring is left PP,

(3) Every regular ring is PP.

(4) If wgl AS1, then A is PF.

(5) If 1g1 AS1, then A is left PP,

Proof.
(1) Every projective left ideal is flat.

(2) Every fg left ideal is projective by definition.
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(3) Every fg left and every fg rt. ideal is a direct summand,

and therefore projective.

(4) Every left and every rt. ideal is flat by Theorem 2,4 of

Chapter 5.

(5) _Every left ideal is projective since A is left-hereditary.
We now charactsrize both left PP 'and left PF ringse.

THEOREM 2.2, A. 1is left PP (resp. left PFR) iff
1(a) = (bealba = 0) is a direct summand of (resp. pure in) A

for all a in A.

Proof. - Fof any a in-A, we have an exact sequence of left
A—modulés 0 ;—é»l(a) -~ A --P Aa -~ 0, And A is 1eft‘ PP
(resp. left .PF) iff. Aa is projective (resp. flat) for all a in A.
iff. 1(a) is a direct summand of (resp. pure in) A

for all a in A (see Proposition 1.3 of Chapter 1).

THEOREM 2.3,

(1) If A has no left zero divisors, then A is left pure simple

and rt. PP . and hence ieft indecomposable and rt. PF.
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(2) If A is left pure simple and left PF op if A is left
indecomposable and left PP then A has no rt. zero divisors.
(3) If A has no left zero divisors and A is left PF then

A has no rt, zero divisors.

Proof,

(1) If a has no left zero divisors, then A is left pure
simple, and hence left indecomposable by Corollary 1 of Theorem 2.1 of
Chapte'i' 1. Also ("beA | ab = 0).=r(a) = 0 for all O g a. in A,
and therefore r(a) is a direct summand of A (gs rt. modulés) for
all a in A, since »(0) = A. Hence by Theorem 2.2 A dis rt. PP
énd thefefore rt. PF.

(2) If A is left PF (résp. left . PP) then 1(a) dis pure in
(resp. a direct summand of) A, as left A-moduies. Since A dis left
pure simple (resp. left indecomposable), 1(a) =0 or A, But
1(a) = A implies a = O. Therefore 1(a) = 0 for all b £ ain A,
and A has no rt. zero divisors.

(3) follows immediately from (1) and (2).
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COROLLARY 1, ©Por any ring A, the followirg conditions are

equivalent:
(1) A has no zero divisors.
(2) A is pure simple and PP,

(3) A is indecomposable and PP.
Proof. Follows immediately from the theorem.

COROLLARY 2, fbr a‘local ring A, the following conditions are
equivalent:

(1) A has no zerb'divisors.

(g) A is PP,

(3) A is pPpP.

Proof, Any local ring is pure simple and hence indecomposable

(Theorem 1.5).

COROLLARY 3. If A is a commutative local ring then A is an

integral domain iff A is PP iff A is PFr.
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Proofs Obvious using Corollary 2,

Following Bourbaki (Bl, Ex. 12, p. 63) we will call the ring 4

left coherent iff every fg left ideal of A is fp. Chase (10)

has shown that A is left éoherent iff every product of flat rt,
A-modules is flat, It is easy to see that every left noetheriaﬁ ring
is left cohérent. Recall that a ring A ié left neat iff its 1gft

singular ideal is O, See Chépter 4e

THEOREM 2.4.

(1) Bvery left PP ring is left neat, and therefore its complete
ring of quotients (onithe left side) is regular.

(2) Every left coherent left PF riﬁg is left PP, and therefore

has all the properties given in (1).

PI‘OOfo
(1) For any element a in A we have an exact'sequence
0 == 1(a) ~=9 A =~» A2 --> O vwhich is split exact since 4a is

projective. If a is in K(AA), the left Johnson singular ideal of
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A, then 1ia) is large in A and therefore 1(a) = A since 1(a)
is a direct summand of A. But 1(#) = A implies a = 0._ Therefore
K(AA) =0 and A is left neat. If A is left nedt then its
cqmplete ring of quotients (on the left side) is regular. See
Laﬁbek ((30), p. 106,)

(2) For a#y a in 4, the left ideal .Aa is a fg and therefore 
a fp flat module; hence projegtive by Corollary 2 of Theo;em 1,2 of

Chapter 2, Consequently A is left PP,

Remark 2.4. Cf. the characterizations given for commutative

PP and PF in Chapter 7.
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CHAPTER 7: TLOCALIZATION

We make the convention that ﬁherever localization is discussed,
all rings under consideration are commitative; ideals are t.isually
denoted by small letters m, p, etc. Since localization is a special
case of chanée of rings, all our results for change of rings ciarrjr
over imniediately,' and in many cases can be extended. We use the

notation and terminology of Bourbaki (Bl, Ch. 2), with the foliowing
minor cﬁanges:

When only ong base i'ing A 1is being considered, we let
®-Q,. If s is‘.a‘ mult, ( = multiplicative) set of A then
AS, ES’ and Uy denote the localization at S of A, E (an A-module)
and u (an A-—homomorphisxﬁ) Hrespectively. We write Homs(Es,FS) for
HomAs(ES,Fs) and @g for @A_S. If S dis the complement of a prime
(or maximal) ideal p (or m),-then we write p (or m) in place

of S everywhere: A

% Aﬁ’ B @n’ u,s etc. We let M = M(A)

denote the collection of all maximal ideals m of A.
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Le Purity and Regulari ty

In this section, we characterize both purity and regularity

"locally" and make comparisohs with direct summands and semi-simplicify.

THEOREM 1.1. Let E be any A-module, D any submodule of E

and S any mult. éet of A.

(1) If D is an A-direct summand of E (resp. A-pure in) B

s

then Ds is an As-direct summand of (resp. As-purefin) _Es.

(2) Ir E is A-semi-simple (resp. A-regular), then E_ is

S

As-semiesimple (resp. AS

~regular).
(3) (T(E))SQ TS(ES) where T (r.esp. TS) is either the ss socle
or the regular socle with respect to A (resp. AS).

(4) “If E is A-simple, then ES- is A ~simple,

S

Proof,
. (1) The direct summand case is given in (B2, Cor., p. 120 and
Prop. 7, p. 90). The pure case follows from Theorem 4.1 of Chaptexr 1.

(2) ' Any Ag-submodule of Eg has the form D where D is an

S
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{ﬂ' . A-submodule of E (Bl, Prop. 10, p. 89).‘ If E vis A-semi-simple
(resp. A-regular) then D is an A-direct summand of (resp. A-pure in)
E, and therfesult follows.from (1).
(3) T(E) is A-semi;siﬁple (resp. A-regular) (sée Chapter 3);
therefore by (2) (T(E))S' is an As-semi—simple‘(resp, A—regular)

submodule of Eg and hence contained in TS(ES).

)

(4) as in (2), any Ag

~submodule of E has the fdrm D

S where

D 1is an A-sub..dule of E. If E is A-simple then D=0 or D = E

and DS =0 or DS = Es. Hence ES .;s As-31mple.'

COROLLARY, Let S be any mult. set of A,
(1) If A is semi-simple (resp. regular), so is Age
(2) If A is simple, so is Age

Proof. Apply Parts (2) and (4) of the theorem with E = A.

The following theorem shows that both purity and regularity are

local properties,
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THEOREM 1.2, Let E be any A-module and D any submodule of E.
(1) D is A-pure in E 1ff Dm is Am-pure in Em for all
min Eo

(2) E is A-regular iff E_ is A -regular for all m in M,

Proof, By Theorem i.l, we need on‘iy show é: in" each case;

(1) &=: Let j:D --3» E be the canoni‘c‘al. injection. For any
A-module F, let f = 1.® Je Then £ = ‘1Fm@n'5m‘ Thié féliows‘ easily
from (B2, Secte. 5, p. 116). Since D, is Am-pu're in E ., .fm is
moﬁo for all m in M, and therefoz.'g" f is mono (Bl, Thm. 1, pe 111).
Hence D is A~-pure in BE.

(2) &=: If D is any submodule of E, D, 1is Am—i)ure in Em.’

and therefore D is A-pure in E by (1), and E is A-regular,

In general, the property of being a direct summand is not local.

However, we have:

THEOREM l.3,. Let O «-3 D -=3> E =->» F ~-» 0 be an exact sequence

of A-modules. If F is A-pure projective, then
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(1) D is an A-direct summand of E iff Dm is an Am-direc'l:
summand of Em for all m in M. :

(2) E is A-semi-simple iff Em is Am-semi—simple, for all m in M.

Proof., By Theorem l.l, we need only show é: in each case.

(1) &=: It D, is A -pure in E_ for 'al'i m in M, then. D is
A-pure in E by Theorem l.2. Since F is pu;cé proje‘ctive, the sequence
is séli'b exact by Theorem 2,4 'of Chapter 2,

(2) =: For any submodule 'v D of :E, DmlsanAm-direct
summand of E  for all m in M, Therefore by (J.), D is a direg'.b'

summand of E.

COROLLARY., If A is PDS, then any exact sequence
0 ~-3D == E =~> F =-» 0 1is split exact iff

0 --> D, --» E, =-—> F,-=> 0 is split exact for all m in M.

Proof. If A is PDS, then all A-modules are pure projective

by Theorem 4.1 of Chapter 2, Apply the above theorem.
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THEOREM l.4, Let 0 --» D --» E --» F -=-» 0 be an exact
sequence of A-modules, If F is fg flat, then ])p is an Ap-direc‘l:

summand of Ep for all prime ideals p of A.

Proof. For all p, Fp is a fg flat Ap-module (Bl1, Prop. 13,
pe 115) and hence Ap—free’ since AP is a local ring (Bl, Ex. 3, pe. 167).
Since any free module is pure projective (see Chapter 2), the exact

sequence O -~ Dp —-——3 Ep -— Fp -=> 0 splits.
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@ 2. PP and PF _ Rings

In this section, we give a local characterization of PF rings
and connect it with known characterizations of related properties

(PP, etce ).

THEOREM 2.1. Let A _have any one of the following properties:
(1) wgl-ASO (i.e« A is regulér).-

(2) A is semi-hereditary.

(3) wsl AS1,

(4) A is PP..

(5) A is PP,

(6) A is semi-prime,

Then the ring AS has the same property, for any mult. set S,

Proof.

(l). and (3): PFor any mult. set S, wgl ASS wgl A (see Cartan-
Eilenberg (8), p. 123 and p. 142), and these parts are immediate.

(2), (4), (5): Any fg (resp. principal) ideal of A‘S has the

form Is where I is a fg (resp. principal) ideal of Ae If I is
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projective (respe. flat) then Is is projective (resp. flat). See
(B2, Cor., ps 120 and Prop. 7, p. 90) for the projective case, and
(B1, Prope. 13, p. 115) for the flat case.

(6) is given in (Bl, Prop. 1T, p. 97).

THEOREM 2.2. Let XK be the total quotient ring of A in the
sense of Bourbaki (Bl, Example 7, p. T7).
(1) wegl A€0 (i.ee A is regular) iff A is a field for

.

all min M.

(2) A is semi-hereditary iff 'K is qregﬁ.éf ring and A
is a valuation domain for all m in M,

(3) " wgl AS€1 iff A is a valuation domain for all m in M.

(4) A is PP iff K is a regalar ring, and A, is a local
domain for all m in M,

(5) A is PF iff A is a local domain for all m in M.

(6) A is semi-prime iff Am is semi-prime for 4 1 m in M.

Remark 2.2, The first four parts are due to Endo (13) and (14).
We have restated them, sometimes in slightly different form, in order

to emphasize the relationships between them.
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Proof. In view of the remark, we shall only prove (5) and (6):

(5) =>: By Theorem 2.1, . Am. is a local PF 1ring and therefore
an integral domain by Corollary 3 of Theorem 2.3 of Chapter 6.

&=: If I is any principal ideal of A then for all _m.in M,
Im is a principal ideal of A, and therefore Am-flat since Am’ is
a (local) dom#in, hence PF. Therefore I :is A—flaf kBl, Cor., p. 116),
and A is PPF.

(6) By Theorem 2.1 we need only show:

&=: Let N be the nilradical of A. ‘Th.en for all m in _nﬁ, Nm.
is the nilradical of. Am (B1, Prop. 17, pe. 97). Since-each Am is semi-

prime, N_ =0 for all. minM and N =0 (Bl, Cor. 2, . 112)..

COROLLARY., Every commutative PF ring is semi-prime and

therefore neat,

Proof. Use (5) and (6) of the theorem and the fact that every
(local) domain is semi-prime. A commutative ring is semi-prime iff

it is neat. See Lambek ((30), p. 108,)
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3. _Solution of Bass! Conjecture for Commutative Perfect Rings

Bass (4) has‘conjectured that a ring A is left perfect iff

every non;:}g left ;Pmodule has a maximal sﬁbmgdule aqd A has no
infinite sets of orthogonal idémpotehés.. As he remaiks, this ig the
naturel dual to Part (4)»of Theorem 3.l:.of Chapter o.v

Hamsher (19) has given an affirmative‘sqlﬁtion for commutafive
noetherian ringé. We-shall extend hié'spiﬁfibp to arbitrary commutative
:;ngs. Kfter“diséovering fhe.follcwing solufion, we noticed that
Hamsher has aﬁnounced.a complete solution to the conjectﬁpe ig the
commutative case, Howe&er, the solution presepted below has the
advantage of being more direét and less computatioﬁal than thq
one of Hamsher.

For the rest of this section, let A be commutative. We

quote without proof:

LEMMA 3.1 (Hamsher (19)). If every nonzero module has a maximal

'submodule, then every prime ideal of A is a maximal ideal.

and add the obvious:
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COROLLARY. In this case the Jacobson radical dJ = J(A) of A

coincides with the prime radical of A.

Proof. J(A) is the intersection of all maximal idesls and the

prime radical is the intersection of all prime ( =.maximal) idealse

For our main theorem we prove:

TEMMA 3.2, If A has the property that every prime ideal is
maximal, then
(1) Every quotient ring A/I has the same property.

(2) Ay bas the same property for any mult. set S.

Proof,

(1) is an immediate consequence of thé one-one correspondence
between the prime (resp. maximal) ideals of A and the prime (resp.
maximal) ideals of A/I.

(2) Any prime ideal of A hes the form pg vwhere p is a
prime ideal of A disjoint from S (Bi, Prop. 11, p. 90). But p is

maximal and disjoint from S, and therefore a maximsl ideal among
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S

ideals disjoint from S. Hence PS is a maximal ideal of A

(Bl, Prop. 11, p. 90).

THEOREM 3.3. The ring A 1is perfect iff every nonzerc A-module

has a maximal submodule and A has no infinite sets of orthogonél

idempotents.

Proof,
=>: has been shown by Bass (4),
&=: Bass has also shown that under these conditions the Jacobson

radical J of A is T-nilpotent. Therefore by Theorem 3.1 of Chapter O,

it only remains to show that B = A/J is semi-simple .

Lambek ((30), p. 72) has shown that if J is a nil ideal of A,
any countable orthogonal set of nonzero idempotents in B = A/J can
be lifted to an orthogonal set of nonzero idempotents of A. Since
any T-nilpotent ideal is clearly a nil ideal, this implies that B
has no infinite sets of orthogonal idempotents. Osofsky (38) has

remarked that any regular ring with no infinite sets of orthogonal



jdempotents ié a semi-simple ?ing. Therefore to complete the proof
it suffices to show that B is a regular ring.

Using Theorem 2,2 we will prove that B is a regular ring by
showing that Bn is a field for all maxima;-ideals“n of B,

By the corollary of Lemma 3.1, J = fherprime raéical of A
and hence B = A/J is a semi-prime ring (séejiémbek'(BO), Pe 56).
Therefore Bn" is sémi-prime for all ﬁaxiﬁal ideais Q of B by
Theorem 2.1. Since in Ah every prime ideal'is'maximal,.the same
is truevar B and Bn by iemma 3.2, Conséquéntiy*fOr-élé ﬁ;

n

B is a local semi-primitive ring, i.e. a field, and B is a

regular ring by Theorem 2.2,

145
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CHAPTER 8: FLAT COVERS

In this chapter, we shall define and study flat covers. We will
show that they always exist, and coincide with the projective cover

of Bass (4) in the case that A is perfect, but that they are in

general not unique,

1. Definition and Bxistence of Flat Covers

We begin with a few preliminary définitibns. .A submodule D - of -
E will pe cailed impure in E ;ff, D,A E and D ’cpntains-no pure
squodﬁle of E other than 0. Thus all propef submodules of a pure
simple module afe impure.

Any éxact sequence O =-P K ~=» F --3 E --5-0 of left A-modules
will be called a refinement of B:; it will be calléd Bfoger iff K £ O,
Any refinement O «-» K ==3 F ==3 E =~=3 0 ﬁill be called flat

(resp. impure) iff F is flat (resp. K is impure in F), and

impure flat iff it is both impure and flat. It is well known that

every module has a flat refinement.

A refinement u:F --» E will be called minimal iff for any
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factorization u =vw, w epi =) w iso. A minimal flat refinement
(i.e. minimal among the flat refinements) of E will be called a

flat cover of E.

. u
PROPOSITION 1l.1. The flat refinement O =-3 K =-» F -->E --3>0

is minimal flat (i.e. a flat cover) iff it is impure flat.

Proof.
= : We wish to show that X is impure in F. Suppose P is
e submodule of K and P is pure in F. Then u has the canonical
w v
factorization wu:F --%» F/P ——)'E. Since w 1is epi, it is iso and
P =0, Hence K is impure in TF.
&=: Suppose u:F --3 E has a factorization u = vw with
w epi, say w:FP --» F/P, and F/P flat. By Proposition 1.3 of

Chapter 1, P is pure in F. Since P is clearly a submodule of K,

we have P =0 and w is iso. Therefore the refinement is minimal flat,

THEOREM l.2. Every module E has a flat cover.

Proof. Let O =% K ==> P «-=» E ~=3 0 be a flat refinement
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of E, The collection of all pure submodules of F qontained in K
is non-empty, since 0 is suc£ a submodule. If we order the
collection by set theoietic inclusion, we can choose a maximal

element P ﬁy‘Zorn's Lemma, since purity i§ an inductive property
(Coroliary 2 gf ?heorem 1.6 of Chapter;l). S;ncé P is pure submoduie
of the flat module F, F/P is flat (gropqsi#ion 1.3 of Chapter 1)
“and 0 ==» K/P «=> F/P ~-=» E -~» 0 is a flat rgfineméntof E. The
refinement is impure, since if K'/P 'were'a*pure submodu}e of

¥/P contained in K/P +then X' would be puré in. F and therefore

"K' = P by the maximality of P, i.e. K'/P = O.

The proof of the theorem also yields the following obvious:

COROLLARY, Every flat refinement can be fadtored through a

minimal flat refinement.

PROPOSITION l.3. A nonzero module F is flat iff it has no

proper impure refinement.
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Proof,
=i Let 0 =-PK--3G == F -=>0 be an impure refinement.
Since F dis flat, K is pure in' @ and therefore K = 0O,
&=: Let 0 == K --» G ~=>F -=>0 be a flat v_cover of P,
Since it is an impurg refinement we muéf h;vé K>= 0 sgince it is

not proper. Hence F = G is flat,

The following corollary shows that every flat module is its

own (and therefore unique) flat cover.

COROLLARY. A nonzero module F is flat iff for every flat

cover 0 =-3 K ==3 G --» F == 0 we have K = O,

Proof,

==>: Every flat cover is an impure refinement (Proposition 1.1)
and therefore K = 0 by the proposition.

¢=: Every P has a flat cover 0 -3 K ~-) @ == F -->0

(Theorem 1.2), Since K = O, F =G dis flat,
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2. Flat Covers over Perfect Rings and PID's
In this section; we show that for perfect rings, the flat cover
defined in Section 1 coincides with the projective cover of Bass (4),

whenever it exists; i.e. for left perfect rings.

THEOREM 2.1. If A is left perfect, then any refinement is a
flat cover iff it is a Bass projective cover (énd therefore uniaque

up to isomorphism).

-‘Proof,
. u _ ' : '
=>: Let O == K =~->» F =-> E ==) O be a flat cover of E.
Since A is left perfect, E has a Bass projecfive cover
0 ~~» S ==»P =-> E ~--) O where S is small in P (Theorem 3.1 of
Chapter 0). Since A is left perfect, F is projective and u
factors through P, and we have an exact commutative diagram:

u
0 =K ~=»F == E =-30

Vvl l’lE

0~-»8 --3P --HE >0

(one readily verifies that w(K) is contained in S).
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Now it is ggsy to verify that P,= S+Im w where Im”% imagé.
Thergfore P=Imnw since § is small, i.e. w is'epi; But
u:P --> E is a flat cover and therefore w is iso, with inverse w?
say. Then K = w'w(K) is contained in .w'(S)i_since w(K) is
contained in 8. But the image qf an&'émall éubmpdu;e is small
(see Lambek (30), Ex. 8, p. 93) and the?‘efbre" w'(S) is ;mall,
whence K is small. Hence O -) K -I-}_ P -§>_ E--»O0 is a
projective cover of E.

G=: Let O ==» S == P --}.E__;> o~‘be a'projéctivequver
of B If K i; pure in P and~containeqvin S then K is a

small pure submodule of é_projective module, and therefore K =0

by Theorem 1,4 of Chapter 6.

Bass (4) has shown the uniqueness, up to isomorphism, of the

projective cover,
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3e Non-Uniggggggs of the flat Cover

We will now givg an example of a module with two distinet flat
covers, Let A = i, the ring of integers. Then I- and III-purity
coincide (see Chapter 1) and torsion-fre§ and flat coincide
(Bl, Prop. 3, p. 295. Using III—purityi( = I-purify for 2),
Banaschgwski (3) has sh;wn that

’ W .
0 --> K =3 Hom,(Q,0/2) --> ¥/z =-$0

where w is defined by w(f£) = £(1), is a minimal torsion-free cover,

i.e., a Flat cover of Q/Z.

We claim:

LEMMA"3.1_. 0 ~-P2Z ~->Q =P WUZ --$» 0 is also a flat cover

of Q/Z - R

Proof, Since Q is flat, we need only show that 2 is impure
in Q (Proposition 1.1). Suppose that the subgroup P of 2 is
pure in Q. Then P is pure in Z. Since Z is pure simple,

P =0 or Z. But Z is not pure in Q since Q/Z is not flat
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( = torsion-free). Therefore P = 0 and the given exact sequence

is a flat cover,
PROPOSITION 3.2 Q is not isomorphic to Hom(Q,Q/2).

Proof, Let Qt = Hom(Q,Q/2). We will show fhat for ahy prime p
Q' contains a éopy of Zp, the p-adic integers. Fof this we use
three well-known facts:

(1) Q/Z2 dis the direct sum of the groups ,Qp(z whe?e Qp »is
the subrihg of Q consisting‘of those rationals, denominétors,éf
which are powers of the prime p. (See Lambek»(BO),»Ex. 6, De 19.)

»

(2) z_ = Endz(Qp/z), See Fuchs (17).

(3) Zp is uncountable. See Fuchs (17).

For any £ in Zp, we have an induced map described by
u v hif k
Q --> /2 --> Q /% --> Q /7 == ¥z

where v and k are the canonical projections and injections arising

from the direct sum decomposition of (1), and u is the canonical
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epi. Define hzzp ==» Q% by f --» kfvu., It is straightforward
to verify that this is a homomorphism., Since k is mono and v and
u are epi, the mapping h is mono. Since Q is countable, we have

that Q is not isomorphic to QV.
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4. Localization
We can prove one localization theoxrem:

THEOREM 4.1, Let O --> K -;--'> P --» E --» 0 be any refinement
of E, If 0 ==» K --> F -—> E, -»0 isan A ~flat cover of _Em

for all m in M, then the original refinement is a flat cover of E,

Proof. Since F is A -flat for all min M, F is flat
(B1, cor., p. 116). If the 'submég‘lule P. of K is pure in F,
then for all m in M, the submoduie L of Km ié pure in Lo
(Theorem‘ 1.2 of Chapter 7). Thergfore ém =O sz_- all min M a.nd

P = 0 (Bl, Cor. 2, pe 112).
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