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" Abstract \

Al

Lot G e & fiake Abslisn group with cyclic 2.8ylow ssbgroup. In the first part of this thesis, we obtain &
.mmumwmmmweuu.mr.mmm
of finite type. This theorem is then to determine the siructure of the Hilbert symbol'on an
unramified extension X of a 3-adic aumber flald &, in the case whare X doesn’t comtain the
of ualty.

I &k is an frreguiar p-adic number fleld, and k(p) is the maximal p-extension of
X =Gal{k(p)/4) s & Demuikin group, and ths maximal unramified Abslian
‘s *Ey-towes” in X. The second part of this thesis endeavors to classify 8,
pr;‘!udheuuhcmvhup-Q a complate classific is found,
0ma necessy invariants are givea.
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° Résumé

o

D;

Seit G un groupe Abélien fini doat lo 3-groupe de Sylow ssPcyclique. Dans la premiire partie de cette
o: on obtiens une classification de formes bilinéxires, nen dégénirdes, non symétriques, ot invariasntes
par U, var une éspace ¥3[Gl-libre do type fal Ensuite, on we cotte thiarle pour détérminer la -
siraciure du symbole de Hilbert pour ces extensions X non d’un corps 2-adique k, dont K ne

contisnt pes les racines quatridmes de 'unité.

Solt k un corps p-adiqus irrégulier, ot soit k(p) I plus grande extension de k dont ls groupe de Galois
X oot un pro-p groups. X sst doac ua groupe de Demaulkin , ot si T st la plus grands extension non
remifde de k contenws dans k(p), T donne “wa tour de 5, dans X*. Daas la dieuxidme partie de cotte
$hise, on se propose de classer les tours £, dans les groupes de Demulkin . Pour les cas od p 3 3,
& quelquafois pour p = 3, on donne une classifcasion complite. En ¢a qui concerne les autres cas, on

Proposs quelques iavarissie qui pourraient éventuellement intervenir dans la classificition, .
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Lot & be & padic mumber feld, and Job T be the maximal mol;yﬂ&@ﬁt;u‘hdh'—!‘/k
s Galols, and the sirucure of the Galoie group § was determined by Hases and Frmsows. Lot K/k
be an htmndiuc fie)d which is ﬁnhg and nﬂn&lwzm Gdok grosp G, and assume that K, is

‘iu'uhr-xcontdnlthp“ro‘ohduity. ’ . . ‘ \ '

In [Ko), H. Koch cmmod the Hilbert oymbol on Iho l,-mur space K*/K*? ag o G-invariant  *
symphctic form, uld for p % 2 was able to duumino the Mctm of this form in & pmicnh.rly nice
This structure theorem was extended by Jukovhv‘ in [Ja 1}-{Ja ¢], and becams the principal ingrediant '~
in Jakoviev's construction of the absolute Galois group of k in JJa 8], Pollowing Koch sad Jakovlev,
Zelvinakii was able to obtain a similgr structure theorem for the Hilbert symbol on tamly ramified
extensions K of 2-adic number fields when K contiins the fourth rooks of waily, and in [Z 1] used this
I.Iuot-un to construct the absolute Galois group of thoss 2-adic number fiélds £ whoss maximal tl-ll;ﬂy

" raimified extension T contains the fourth roots of unity. ‘

In {Ko 4}, Koch gave a very elegant axionmatic description of the abeoluts Galois group X, of the
p-adic number Beld k (in the case p # 2) by introducing the notion of a “Demulkin ion over §°;
Inspired by Koch’s work, U. Jannsen and K. Wingberg were able to give a finite preseatation Iw
1]). Pollowing Juuuu and Wingberg, and using the results of {2 1}, V. Diskart was able to give a similar
présentation of X; for dlon 2-adic number Selds k whose mzxﬁm.l tamely ramified extension contain the
fourth roots of unity.

When & is & 2-sdic number field whoss maximal tame extension does not coatdp the fo/v;;l roots
of lnily the o-ly publhhod result known to this author is due again to Koch: h [Ko 8], » classification

»

tlmmildm for the symplectic structupe of the Hilbert symbol for uaramified extensions of k of
- &

z-pow; order.
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?&iﬂ-&?i!ggw , G-lavariast, sti.&._.g.?:f.ras& ,H
, wtu._a..!n-r..qr!nrﬂ»;l..i_.&;ﬁﬁ;«f. ubgrowp, the maia result beixg
Proposition 1.11: 3-8?..5-.7.?5%?.:58-&5 are determined up to lsometry
| + * by the raak of the space, and by what we call their “Koch invafiant® s, which is sither 0 or 1. In chapler
2 we apply our structure theorem to the main object of interest: the Hilbert symbol on saramifed.
gﬁ&.u.&xns_]nnoﬁ-!?orog(ra‘ kmo‘urooap&a.r-g.qoetl;.
" Our main contribution appears as the, Cdrollary to proposition 3.3.

Chapter 3 Sizsﬁgafggsiruiiﬁ.gg
In chapter 4, we defins the notion of 4 “E,-towa” in s Dessnliin group, hwr:i:!_& course,
some ¢ases whea p = 3), t-or‘.-. g?‘%&i?%&lﬁs using ia
an essentisl way pr N&\gng\drg-}iognﬁuanggg

“The motivational germ: for the ...Rrr»rr.rlrt-.r desire to formulate an adsquate definition
: &.?s._._.raﬂa,gvnq!ut_.xhs.:Tsaﬁ&..x_.._...r%:a.swﬂs_isiv.
adic number Selds whose maximal tame extension dossn’t comtain the fourth roots of unity. In the last
two sectiohs of chapter 4, we define some invariants of ‘Za-towsrs in Demulkin groups which must be
considered in any such definition, and give some examples. ,
_ The suthor wishes fo thank J. P. Labute and B. Kisilevaky for bringing to my attention the work
of Jannaen and Wingberg on Demulkkin formations; and c.u-u.iw..woot.-!-pgrq

some qplightaning discussions. The author aleo wishes to thank the J.W.McConnsell Foundation for their .

- gemarous support.
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|l.lhckbolmtadv"h.,Mhhhlbwlymwnh‘-'m.fam;\,peR:

(AR)" = 5°2%, (* + 4°) = (A + W)Y, and (A%)° = A. An Reiavariast forsa & cu the Remodule M is &

h-bilinesr form : M x M — ksuchthat for all vy, 3 € M aad A € R/

: N
C $(Av1, ) = §(n,A°va). - .
We will use the notatiom (M, #) to denote the space Al with the form @ if am¥iguity would result by
. . ™

using M alome. !

As wsual, the bilinear form @ is said to be symmetric (respectively, satisymmatric) if for all vy,0; €V,

one has #(v1,v3) = &(v3,v1) (resp.$(v), 93) = —@(vs, w)); & vector v € V s said to be isotropic if
®(v,¢) = 0, and the form & s called Muum vector is iotropic. Note that an alterating
form is aAlways antisymmaetric: 0-0(0;+n3.01+u,)-0(u,,v.)+0(§.o;);82hhmibhinh, them
the converse-is true. A form is nom-alternating if & possessss & noa-isotropic vector. In the sequel, we
will concern ourselves cmly with symmetric and astisymmetric forms.

Given a vactor w € V, It wt = (v E\V : #(w, v) = 0}, u;i foaoWCV, ot Wt -n;“ww. Note

that i W is kn R-submodule of.V, thea 30 is W, The subest W is called totally isotropic if W+ > W.

’

‘T&Iam.hnondomcﬂonV(mmmbdy,noldmncmonthohﬁ,bu!ampm

- \ "
left- and right- nondegeneracy ars equivalest) if V4 = {0}. In this case, we will say that V is complate.
LotVndeoeom}pldumwth-Wfo:mQud '.‘A‘nhomct}yolthmwilu
R-isomorphism f:V:-oWuchthordlrv,,u,eV,

4

\ " Rflon). Sa)) = Slon, o).

Two such ‘ornlom called lsometric or equivalent.
Any M-bilinear form @ on the R-module V: defines 3 homomorphism

- - fo:V — Homy(V, k), L].(v)(u) = @(v,w). (l.})

_1f we lat R act on Homy(V, k) by the rule (Af)(v) = f(A°v), them the R-invariance of ® impliss that fo
is a homomorphism of R-modules; if fy is an isomorphism, the form @ is said to be non-singular (on the

b
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hﬁ) Whnkutﬁddusbcdlmg,udV-lmlymmudmk Gh(m-)nom.‘hrnd
M)quunh& K
lTlcmahhspmeaidtodmmpouuthonmdmpkhmV,nndV,il:hmm
unoduhd.eompodtin-VlV;oV,nchtﬂ&h.mﬂobnm&gmformonth%,'
and ®(v;,v3) = 0 for all & € Vi. w.-munm.jmpm-pmwam&umuaufmmu,,
existe. Coaversely, if #; is ap R-invarisat form on the complete space M; for 1S i < ¢, define the ‘ren

of the spaces AL to be the space AC = MG with form ® defined by

b4

(3w, Y o) = 3 H(w, vl),
i ¢

-

for v, v} € M. .

LY

Lemma 1.1. Lukboulcldornbcdrh‘ udchbo:h:ubmaudR—modlkpro(
lmumkov-'k. ht.haaomw,mmkfcﬂaonv and supposs thst W C V is |
ABﬂbnoduht;;hudﬂcmtmuond'QcoWhnudomm ﬂdexompanunmo! )
complete subspac W @ W+, | /

PROOPLcthV ndlctf.e Homy (W, k) be the mtnctxouof!.(v)e Bom.,(V,k)toW Since @ .
-noldqoncm«lW there is & w € W such that [.(u) = fo(v)on W. Lt o/ = v-w, 00 tbn\tv '

fo(w’) = fo(v) — fo(w) vanishes on W,and hence ' € W. 1t follows that V = W + W, and this sum

(0} = V4 = (W4 W)L =Wt N W.

~

Sincc,ihlo-dqi-d-luonvuan,kmmmh;mhndW"'uwcn.o
/ ‘ v = X -
. »Ldubcuﬁ-nodnhwithmdqw.nﬁ-cymﬁr’km‘. We will say that M possesses

a *hyperbolic decamposition® if there exist submodules Ay, Ma of M such that M = M, @ M;
R-modules, and the restriction of @ to each of the spaces Ad; is totally isotropic. .

Lemma 1.3. Suppose that k is & field, and that M is an R-module which is daite dizpensional over k.
Luf-M;oM, give a Ayperbolic decomposition of M for esch of the iwo nondegenerate, R-invariaat,
anti-symmetric forms & and 9. Thea' there axists an isometry betweea (M, ®) aad (M, ®).

3
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PROOF Let fy denote the composition, -

Mz-’“ Bom(M k)-—OHom(Mh k)
]

f. is certainly an Axhomomorphism. It is injoctm, for if v3 € My and fo(vy) = 0 then [.(ug) =0
(since A3 is totally isotropic) and luna v2 = 0”'Thus dmuMz < dim;Hom(M;,k) -~ dim.M; Defining
in o similar manner 2q: A0, — Hom{Mz, k) shows that dimpAd; S dimyHom(Ms, k). It f d{- thet J o

an isomorphism. Define [y in the same way, and lot

. L 4

0,:M? — Mz, 0;(v) = Job o fe(v).

Extend 63 to an isomorphism # of M onto ltulfby the identity on the submodule M). For v = v; + »
and w = w; +w; in M, we have, ’ |
(0(v),9(w)) = ¥(v; + 0{vs), 03 + 0(wy))

= ¥(vs, 0(pa)) + ¥(8(va), w1)

= ~Jo (0(23))1) + Ju (8(v3)) (101)

= ~fo (wa)(v1) + fo(va)(w1)

= Oy, w). ~
Thus # gives aa isometry.0 7.

§ 1,3 In this section, we will sugiposs M_Gkacyclkmpdpﬁm,pmz;mduq-p‘ generated by
the slement 0. Let A be the group ring ¥,(G], and define the involution ‘¢’ by the rule

\ : o (Tae) =Y e
: 'y T

One easily chocks that the P -algebea A is & ring with involution in the sense of §1.1. If & is an ¥,-bilinear

form om the A-module M, thnnﬁ. is said to be “G-invariant” if for all g € G and 2,4 € A one has

’(g'zo 9-7) - q’. VS'

A simple calculation shows that a G-invariant form is A-invariant (for the involution ).

6



Lemma 1.8. A is a local ring whose maximal ideal M is principal, penerated by the element x = g — 1.
The powers of M are stabje under the involution s, and the powers of x form an R ,.basis for A; the

“norm-element” of the group ring A is

Spo=) g=at"t

9. 1€G

PROOF 'Itho augmentation map &:A — F,, defined bys' mapping ¢ ++ 1 and extending to & ring homo-
morphism, has kernel M generated by of — 1 = (0 — 1)(1+ o + ... +0°"), hence M is principal. Notice
that A is the homomorphic image of F,[X] under the map X ++ 0 ~ 1 = x, with the kernel generated by
114 X)t~1=X";since 1,X,..., X! clearly gives a basis of F,|X]/ XY, it follows that the powers of

x give a basis of the P, -vector space A. In F,[X], one has
r

JX) -1 (14 X9 -1 4

+x) -1 X

1+ (14 X))+ (14 XP+...+ (1 + X)?

so thatin A, #*~! = Spg. Spc is certainly fixed under ¢, 80 if u € A%, then (Spgu)” = u’Spc and hence
u® € A%, It now follows that if #* = x'v with v s utit, then SpZ, = (x171)° = (x*)t~ 1 = (x*)9- 111,
so that t = 1, and the powars of M are stablised.¢

For any z € A, we can write z = x**4=(8)y, with u € A%, uniquely defining the *grading function”

ord,. For the remainder of this section, we will assume that p is an odd prime.

Lemma 1.4. Let & be a nondegenerate, anti-symmetric form on the A-module M. If x € M, then

®(x, Spox) = 0.

PROOF We can wri

\ " Spgmat~t = Tt - Tty

with u € F,. Thus, <
- a OxSpox) = &(x,x° 't ux), -

¢ -0(‘.?Xa“".i.l:()’ : (129)
= 0.0 o /

7
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Proposition 1.1. Let M be s free A-module of rank n, with & a nondegenerate, anti-symmetric form
on M. Then n is even, and M can be written as the sum of 3 mutually orthogonal complete subspaces,

"each being free of rank 2 as a A-module,

PROOF Let x1 € M such that Spox: # 0, and let x2 be such that ¥(Spoxi,xa) = 1. Then x; and
X2 generate a complete subspace of M, fres of rank 2. Indeed, since G(Spqx;,‘x,) = &(x1,5p0xa) ¥ 0,

X3 must generate a free A-module; if A x; = Aaxa for some \; € A, then Spgx: = bSpoys for some

. be XX, and this would contradict lemma 1.4. If x = A, x; + A3x3 € M, and (without loss of generality)

t = ord,();) S ord;();), then &(x?7* "1y, x) # 0. Let M, = Ax, @ Axa, so that M = M, & M as
complete spaces, with M free of rank n — 2. The proposition follows by induction.¢

Proposition 1.2. (i) A free rank two A-module M with condegenerate, anti-symmetric form ® possesses
a splitting into two (necessarily free) totally isotropic subapa;;a

(i} Such s “hyperbolic piane” is unique up to isometry. Precisely, thers exist generators x; and x3 of M

such that the Ax; are totally isolropic submodules, and such that, ’
1, #i=0 '
— ‘(XIra‘XS) - {0: ochenn:u. '(1.3)

5

PROOF As in the proof of proposition L1, let xi and x; generate M, with ®(Spax1, x2) = 1. Notice
first that the spaces M"i'”x‘ are totally isotropic, since for A; € M'i'l,

' ®(Aix1, Aax1) = {:(x:.usmx:). if‘:"dwg)u.),- orde(}g) = 234

. Assume that we have found gemerators x1,x2 90 that &(Spcx1,xa) = 1 and so that M*x; and Mtxs

are totally isotropic sabspaces of M, with t < '-31 If M*~1x, is not totally isotropic, then for some
Auda € M1, we have (A1x1,)ax1) = L. Since {x¥x;,5 = ¢~ 1,...,0~ 1} gives a basis of M*~1x,,
an easy calculation shows that &(x*~!x;,#'x)) = ¢ ¥ 0. Let x] = x1 + 607"~ x3, with €5 to be chosen

later. For A; € A, we have )
* O(Audh, Xax}) = S(Aaxs + A1eon" % x3, dax1 + Aafex?" ¥ x3) 4

o = ®axndaxa) + B(drsox?"¥xa, Aasor? =¥ xy)

+ ®(xs, (X:o\ztol'-” - A;A;to"’u)x’).
8

il



O

If the A; are in M*, this expression is easily seen to be 0, while

O(x*=2x) 7' xi) = B2 x1, 7' x2) + Slxr, 07t (i — #°Jaont " xa)
(1.4)
= ¢ + ®(x1,¢1605Pax3).

Bere ¢ € ¥, is defined by »**~!#* 7! (x ~ x*}n?~% = ¢, 5pg. Thus if we take 5o = —s7''s, then M*~!x}
is totally isotropic, and Spgx} = Spaxi. We can apply the same procedure to x3, producing » x5 such
that M*~ 1y} is totally isotropic, with ®(Sp,x}, x3) = 1. This proves (i). _

Supposs that & has the hyperbolic decomposition M = Ay; @ Axg\and ¥ has the hyperbolic de-
compasition M = Aty @ Ava. The mapping o: i —+ X extends xniquelf to & A-isomorphism of M onto

itself, and we can define the form ¥/ on M by

¢

0'(3, y) - w(a—l(’)’ ! (v).

¥ and ¥' are isometric forms. On the other hand, ¥' has the hyparbolic decomposition Ax; & Axs,
and s0 by lemma 1.2, & and ¥’ are isometric. It follows that all forms having the properties of (i) are
isometric. Defining & by (1.3) and extending by G-invariance, anti-symmetry, and total isotropy of the

submodules Ay, gives one representative of this isometry class.{

Corollary. A free A-module M with an anti-symmetric, nonduan;nu, G-invariant form ® possesses a
decomposition into two totally isotropic subspaces; the isometry class of @ is determined completely by

the rank of M.

PROOF This follows from propositions 1.1 and 1.2,

§ 1.8 In this gection we examine the situation with p = 2. Thus G = G, & s cyclic group of order
g = 3™ with generatdr o, A is the group ring F3(G], and et A be a fres AShoduls of rank n, possessing
an énti-aymmetric (and hence, symmetric) nondegenerate, G-invariaat fnn; MxM-—¥; Suchas
triple {M, ®, G} will somtetimes be called a symplectic spacs. '
There are two complications arising in this situation which didn't appear for 0dd primes. The first
problem is that now the form need not be alternating—not every vector need be isotropic. The second
9
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(iv) M possesses a splitting into two totally isotropic submodules. - ~—

/ - ~

problem is that the result of lemma 1.4 need not hold. Following Koch [Ko 3], we will call & a “trace-form®

if it satisfies the condition, :

-

®(x,x) = #(x, Spox) forall x € M. (1.5)

This trace condition is equivalent to the condition (ses [D 1}) that for all x € M, ®(x,c¥x) = 0. Indeed,

- x

Hx,0'x) = ®(o ™ x,x) = O(x.v";‘x)

forim=1,...,§ ~ 1, wa hisve &(x, (0 + c*¢)x) = 0, and hence
< A

G(x,‘{pax) - ®(x,(1+obx).

1

Proposition 1.8. Suppose that the form & is alternating and satisfies the irace condition(1.5). Then
(i) The rank n of M is even, and M c'!ccompoou into a sum of § mn'clully orthogonal simple complete
spaces of A-rank two; -

(ii) In a decomposition givea as in (i) above, each of the rank two submodules {“hyperbolic planes®)
m“‘i s splmﬁ.u into two sokally isotropic submodules;

. 7 . '
(iii) The reetriction of ® to a hyperbolic plane is unique up to isometry; |

PROOF Assuming the trace condition, (i) follows by repeating the proof of proposition 1.1 verbstim ef
ktteratim. For (it), one follows the idea of the proof of proposition 1.2 mutstis mutendis: et x; and x3

generate the rank two A-module 4, with
&(x1, Spoxa) = 1. | (1.6)

It is clear that the subspaces MJx; are totally isotropic; the trace condition mow shows that M-y,
are totally isotropic. Now assums that gemerators x¢ satisfying (1.6) have been found such that My,
are totally isotropic, with ¢ < § — 1. By changing.the x; if necessary with x| = x; + #*~%~1x; and

-

10
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Xh = X3+ **"*=1x,, we obtain generators y} satisfying (1.6) with M*~1y; totally isotropic sabspaces.
For example, ‘
A xiwx) = o xﬁ'xx) + @t Ny, wrtemH=1y)
s +.(X1 (’,arﬂ*l—ﬁ-l + ﬂ’“l"*'-’-‘)x:) (1.1)
By induction, and wsing the fact ths the form is alternating, we need only check thecsa r = ¢, e m ¢ -1,

The socond term of the right-hand-side of {1.7) becomes
(%" " xa, 517" 2xa) = B{xa, 3qu:l§- 0,

while the tird term of (1.7) is

]

Ox1, #7424 2°)xa) = Hx1, Spoxa) =1,

since x 4 w* = ox?, Thus, if M*~2x; is not isotropic, M*~2x} will be. Proceeding in this way, we obtain
(ii). The proof of (iii) is the same as the proof of proposition 1.2(ii}~one mmly needs the existencs of

a hyporbolic decomposition; (iv) follm from (i) and (ii).¢

Suppose now that & ks alternating and does not satisfy the trace condition {1.5) on the free A-module

-

M. Define the operator . 4

Bo:M — ¥a, Bo(x) = &(x,Spox). #

lt’tncytomthu.&ehn(ﬁ.);),ﬁbe!mpMumeydO

‘Muhw&by;m.mloeﬂz > . -

Bolx) = #(fo,x) forallx€ M. .

Shaﬂo,klafndudtthmblda,"gmn»ohobolmdbyd,ndhmthunhs‘ndthn
8paé = Iy, i Bo(¢) = 1, then A¢ = Ao is & complete subspace of A, and we may write

#

*_

M =(A¢) @ (Ad)Lt = My @ M,

a
with the trace condition necesearily holding for the restriction of @ to M.

*

1

’

[}
i
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-

ﬂ&(il-o.uun-whdcdxvJWBo(ﬁ)-O(Oo.h)-1 and as in the proof of propasition
1.1, Ad @ A¢; is & complete subspace My of M of raak two. Further, since

Bo(#1) = 8(#1,Sp0#:) = 1,

»

“;hamnhmdﬂo.nuduod;«nmuA:mdmﬁompkumkouuhm.
mhruuouhdwlkhbdunnhgudmoahmckom»u&h The restriction of ® to
the orthogensl complement of Mo is dtcuth( and does satisfy the trace condition.

Suppose aow that & i nou-alternating on A and doeisatisfy the trace condition. As above, define

Co: M — Vs, Oo(x) - .(XDX) - .(thPOX)t

aad represant Co € Hom(M, Fa) by the unique element go:

AN

Colx) = #(eo,x) fof ol x €M,

Again, Co, and hemca go, is fxed by G, 00 thers is & ¢ with Spge = . If Cola) = 1, then Ag is a
complete subspace of M, and the restriction of @ to the orthogonal complement of Ag is alternating and

— satiufies the trace condition. If, on the other hand, Co(g) = 0, then for any v with Co(v) = &(g,v) = 1,

the subspace Ag @ Av = Ay is complete, and the restriction of & to My is alternating and satisfies the
trace condition. Furthermors, since ®(», Spgy) = 1, Av is complste, and M, docon':pom as the sum of
fwo complete rank one subspaces, on each of which the form is a non-alternating trace form.

Finally, suppose that the form & on M is nom-alternating and is not a trace-form. As above, let
Co(x) = ®(x,x), aud represent Co by the G-na"m 20, with Spag = go. If Cofg) = 1, then Agis a
complete subspace M, of M (on ;vhif:h the restriction of ® is u u:aco-form), and the restriction of & to

M# is alternating and doesn’t satisfy the trace condition. If Co(¢) = 0, chooss n with

Co(n) = ®(n,n) = &(n, 20) = 1

L4

¥ 100 that My = An@ k¢ is & complete subspace of A, and the restriction of & to M is ahernating—® may

or may not be a trace form on Mg, but either case is treated above. On Adp, the form is a trace-form
12
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if and only if ®(n,n) = &(n, Span) = 1; if this occurs, then Ay decomposes into $wo complete rank one
subspaces with the trace condition holding.

If the trace condition doesn’t hold on My, then §(n, Spgn) = 0, and Ay is mecessarfly simple. We
now shéw’ that this rank two space is unique up to isometry. Pinat note that & is alternating on widy,
simes @(wx, #x) = ®(xx, Spge) = 0. Assume th; we have found 5 and g eo that M*n and M*g are totally
lsotropic subspaces, with t 2 2. If M*~1¢ and M*~'n are not totally isotropic, the same calculation as'
(1.7) shows that we can find ' and ¢’ sc that Spod’ = Spce, ®(n', Spad’) =1, and M=o and M'~ty’

are totally isotropic. Proceeding inductively, we thus can find n and o so that @ is totally isotropic on

" the subspaces Mn and Mp. Now &(p, @) = 0, 50 that we may apply the above procedurs one more time

¥ aecessary to ¢ to insure that Ap is totally isotropic. The story is different with n: we can, if necessary,
change n to n’ = n + 7% so that both &(n’, #n’) = 0 holds, and Mn’ is istropic. Thus the values of &
on An and on Ag are determined.

We now show that ¢ can be chosen so that
%(n, "‘0) =1, , (1.8)

for all § < ¢—1. Indeed, having found ¢ so thyt (1.8) bolds for ¢ < & < g— 1, suppose that ®{n, x'~1¢) = 0.
Letting ¢ = g+ #1-%g, we obtain (1.8) for t—1 < s € ¢ - 1, and proceeding inductively, we obtain (1.8)

for all i < ¢ ~ 1. Since this process amounted merely to finding a new generator for the totally isotropic

~qubspace Ag, the values of @ on the subspaces Ag and An are unchanged. We reétapitulate the above
W

results in the following proposition.

Proposition 1.4. Let M be a free A-module of rank n with the anti-symmetric, G-invariast, nonde-

gonerate form §. Then M is one of the following types:

(1) @ is alternating and satisfies the trace condition (1.3). Thea n is eves, and M can be written as

- & sum of § simple hyperbolic planes; there is, uptohqmctty,ubaoch-dlormo’mhofum

planes.

(3) ® is non-alternating and satisfies the trace condition. If n is odd, then M decomposss as the sum of
A

a simple rank-one subspace on which the form is non-alternating, and a complete subspace of rank . 2

18 -...J
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om whick the fort ls of type (1). If the rank is even, thea M decomposes as the sum of two simple rank
mnm{audolwm~“ofwmbnu-mnuh() and a complete subspace of rank n ~ 2 of
type (1). .

(3) ® lo altrastiog asd dows not sstisly the trace condition. I s odd, uuud.wﬁ?o.uuuum
of 2 simple subspace of rank one (on which the form is slternating aad wiﬁonc the trace condition), and

a complete subspace of rank n ~ 1 of type (1). Knhm,cluﬂdmpanuuoumdmdmpk'
rank one subspaces [on each o{ which the form is slternating and without the trace coadition) .."d a

subspace of rank n — 2 of type (1).

(4) ® is non-alternating and without the trace condition. There is only one class of simple space of this
type, baving rank ¢wo. If n is even then either: {ldnanpuuu tboumolfhhdmpko{ruk two
and a subspace of type (1) of rank n — 2; or as the sum of a simple of thisgype and s subspace of type
(8) of even rank; or as the sum of s simple subspace of type (2), a simpls subspace of type (3}, and a
subspace of type (1) of rank n — 2; or as the au;:: of two simples of type (2), two simples of type '(3). and
a compiste ublpac; of rank n—4 of type (1). If n is 0dd, then we can decompose M in one of two ways:
sither 38 a sum of ¢wo simples of type (2), a simple of type (3), and a rank n — 8 subspace of type (1);

or a8 8 sum of two simples of type (3), a simple of type (1), snd a rank n — 3 subspace of type (1).

PROOF All has been proved except the decompositions given in (4). Since & is non-alternating, we
can represent the homomorphism x — @©(x, x) by & non-trivial G-norm 1p = Spgv in M I &(v,v) =

O(V, Spav) = 1, then Av is complete, snd it's orthogonal complement is of type (38) (if the trace condition
_were satiafied on both components, it would be satisfied on the whols). If &(v,v) = O, find n so that
- ®(n,n) = ®(n, Spov) = 1. Then Mo = An + Ais is complete, and we can write M = Mo @ Mg, with the
form on Mg dhl‘nlti;u. If the form satisfes the trace condition on Afy, then it cannot be a trace-form
on Mg, and Mg is of typs (3); if we do not have a trace form on Mo, then ‘Mp is » simple subspace of
type (4), snd the complement Mz may or may not have the trace condition, being either of typs (1) or

" of type (3).© \
14
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Remark. Note that if one takes the W.u;um,:}c (4) with » sinple of type (2), the resulting
g

space can be decompased 28 the sum of a simple of type (2) sad two simples of type (3). ,

A%
514W-mmn§tubmudcommbudthwioumﬁoa. In order to complete the

Mmb-daympbctkfotmmH,mviﬂn«dbhwﬁobmtrydmudtﬁnqmpm
Hiorwvhldcuoccuumkﬂobmodlb.

Define the Lam‘u' “trace”

‘ o3’
LA—1,, l(Zc.c‘) - ag. . °
prrd .

»

Given any d € A, we can define a pairing ®g: A x A - F3 by
R .
$4(), ) = ¢rdp")

which is $y-bilinear snd G-invariant. Conversely, given any G-invariant form @ on the free A-module
Ax, lot dy = T4°3 dio* be given'by d; = &(x,0'x).

Lemma 1.5. (i} The correspondence ® «+ dy gives 3 bijection between G-invariaat forms on s free -
rank one A-module and elements of A;

— o

(ii) The form @, is nondegenerate if and only if d € A%;
(iii) 84 is symmatric if and culy if d* = d;
(iv) The forms 8, and ® 4 are womstric if and only if shere is & wait « € A* with &' = wiv*;

{v) If 84 is nondegen en ®y is & trace form if and only if ¢(d) = 1.

AN AN

the values &4, (1,6°). Since two diffgrent d’s will give different forms, we have (i}. If X is in the radical of
the form &, thin £()de~¢) = Ofor all 0 S § < g~ 1, s0 that Ad =0, and d is a noa-unit, and conversely.
This proves (5). TR form @ is symmetric if and oaly i ¢{od) = ¢(do ") for all i, s0 that & = dg— and

- 18



. d s fixed by the involution *#", hence (iil). ‘A A-sutomorphism of A is given by (right-) multiplication by

nmuitue’l". Thus, the forms §4 and 94 are isometric if there is & unit u such that

A el e =0 m) .
®

3

for all A and u in A. Hence, with A = 1 and g = o, we have
] <o
Yd'o™%) = Yudu® o)
for all i, and thus &' = udu®. Finally, if €, is & trace form, then $4(1,1) = $4(Spa,1), and hence s
Ydp= {Spad) = 1 for d o' unis. For the converse, one checks that if £(d) = 1, then
: 0,(c',0%) = @4(c*, Spoc’) = 1

for d & wnit.O
Corollary. The isometry classes of symmetric, nondegensrate, G-bmigtlnms on a free rank-one A-
module are in one to one correspondsace with the equivalence classes of elements of A*, whare iwo such /

elements d .and &' are said to be equivalent if there is a u such that &' = udu®,

Let A be a cyclic group generated by g, and let 4 be s A-module. Define the Tate cohomology
groups (see |8 1], chapter VIII) to be the homology groups of the complex,

o ATEA T,

1—-¢ A
2,4 = hisra) " Spad

. 2(A,4)= ker(Spa) \

im(1 - g)
! J
The abovs corcllary thus says tha¥The isometry classes in question are in one-to-one correspondence with

the elements of the cohomology group A°(A,A*), where A is the group {1,s).

-» .
We can compute the (A, A]) by hand, where wa're latting Ao, = P2{G):

gl
W #

A = {1,0,0%,c*,1+0+ 0% 1+0+0*1+0? +0% 0 +0% + %),

kee(l = o) = {1,067, 1+ 0 + 0% 0 + 0% + 07},
‘ 16

b TP Ry Ty



”"

< a
§

m(1+4) = {1}; im(1= o) = (1,6%); ker(1+0) =A%, ’

We thus obtain that
B°(A,A)) % 2/2Z @ /22,

generated by the classes of 02 and 1 4 0 + 0®; and that
B A0 )™ Z/220 2/23,
concnt.:d by the classes of ¢ and 1+ o + ¢®. As an aid-to computing A¥(A,A%), we first compute the
cohomology of the sddstive group Ay for ¢ = 2™ > 4,
Lemma 1.6. A°(A,A) & BY(A,A) & Z/22 @ Z/3Z, generated by the classes of 1 and o'},

PROOF In this case, the operators 1—« and 1+ ¢ are the same, so the cohomology groups are isomorphic.
Now the A-fixed elements of A have the basts (1,0 +071,... 081 +ai*‘,c§}-; the subspace of norms

is precisely the subspace generated by the (1 + ¢)o = o + 0~¢.0

Lemma 1.7. For all m 2 3, one has
BoAAX)w Z/2Z @ Z/22,

gonerated by the classes of 03" ud 1+0+0-; and

A, A,’,‘,)~ = Z/22 @ 2/22,

generated by the ciasses of ¢ and 1+ 03" " +0-2""",

£

.
PROOPF We proceed by induction, the case m = 2 having been already proved above. The surjection of

groups G, ~ G, _; induces the surjective ring homomorphism #:4,, = A, -3, ud hence one has the

axact soquence of groups: 3 “w \/

1—oKm—ohZLoaX_ —1, (1.9)

~

. where Km = 14+ M3™"" & the subgroup of AX of elements of order 3. It’s easy to see that (1.9) is an

exact sequence of A-modules, and thus gives rise to the fMg “exact hexagon” ([8 1),VIIT§4),

“

17
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ALK S Aea, %)

7%

ma.nx_,) oA, ax_,) (1.10)

1

R/ N\®
2N

Boay) L (8K
We can identify X and AY_, as A-modules by the map,

-

$:hmey = K, 214 (140" ")s,
7] N —

where £ € 4, is any lifting under # of 2 € A1 (any two such Hﬂinuwﬂl@i!cbyuohmontol)(’"",
50 ¢ is well-defined). Using lemma 1.6, it follows that

BO(A, K) % B (A, Kon) % 3/23 o‘j/zz,

e

tnsrated by the classes of ghe elements 1+ (1+07")(1) = ™" and 1+ (14077 )e?™") =
14037 404377,

We must compute the commecting homomorphisms (using the “snake-lemma®): if 2 €
ker(AX_, 224X _,), then 5?(;) is (the class of) the element 5(3°)~!, where = is any lifting of 2 in
AX. By induction, we find that image of 6% is generated by the class of

\ P ) = () =™ *

udhytﬁ}di‘(1+a+3—“f) -1
If now 3 € ker(AX_, 1¥34,._,), then §1(2) is the clase of the element s3* in A°(A, Kom). Thus the
image of §* is generated by the classes of §1(2) = 1 and
(14T 4o ) m (1465 40T 1402 40
=140 44777
The axactaes of (1.10) now shows that A°(A, AX) must be generated by the image of 07" under 9
and by & pre-image of 1 +2 + o-7, hence by (the classes of) 03"~* and 140 +0~2; A2(A, 4%) will be

generated by 2 (140%™ + 092" ") and by a pﬂ-luu« of 2, hence by o aad 1403%° 400

18
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Corollary. Let m > 2. A fres, rank-one A-module possssses four distince isometry classes of nondegen-
. \ st
arate cymplfﬁc forms. There are two classes of non-alternating trace-forms, given by the representatives
1]
1 and 1+ & +0-1; and there are two classes of alternating, noa-trace-forms, given by the repressntatives
’z--l l.d a’l-‘l + c"-l'fl + ’:‘-‘—l.
Lemma 1.8. Let & hnm»aucnomgmhrmu&cgbmoduh M, and let oo represent the

homomorphism x — ®(x,x). If @ € M with Spge = go, then *
o x*20) =i (1.11)

is an invariant of the symplectic space M. ‘ —
™
PROOF If Spgd = go, then ¢ = ¢+ xv for some 4 € M, and

(', " %0") = @0, 7" 20) + ®(my, x*"3) + #(0, 7" 27) + Ny, ¥ %)

= iag + B(xx"1 "7 + %729, 0) + €(+,5pa7) (1.12)

* o opr + O(x (x0T + #173), o) + (1, o).
Now x(x9~3 + 2°1~3) = Spg: indeed, one has, ‘

M 3milto+ot+a®+.. +o M 4ot 4 ot 40, (1.13)
as may be verified by multiplying both sides of the identity |
X3 m14 (24 X)+...+(1+X)?
in P3[X] by (1 + X)? and reducing mod X*. Applying the involv'mol * to equation (1.13) gives
i 1+o;"+c'“ +0' ... +ot+ 0 (1.14)

v

Inspection shows that -

Mmoo+t .. 40,
and multiplying this equation by r proves the claim. Finally,

&(ﬁav. ¢) = ®(~, Spce) = ®(v, ),

which, when substituted into calculation (1.12).‘M that s¢ is independent of the choice of 0.0

EN

We call ¢3¢ the “Koch invariant® * of the form &. .

-

* Koch's original invariast, defined ia Ko 3), is of the opposite parity.

19
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Lemma 1.9. The chh invariant distinguishes between the two non-alternating trace-forms on a fra

~
Ay

rank-one A-module M.

"

PROOF Let Ag = M; by the corollary to lemma 1.7, the generator ¢ may be chosen so that

woar= (s

In case 1, we have from equation (1.14),
e =(l+o+o" )1+t +,..+0%)) =0,

while in case 2,

i =l14+0" 4 ...+ =1 O

Lemma 1.10. There are two isometry classes of non-alternating trace-forms on a free rank-two A-module
M, distinguished by their Koch invariant.

PROOFY Let Ml = Ax; @ Ayxs be a decomposition of M into simple spaces. Suppose first that the Koch

-
invariaat of the restriction of ® to sach of thess subspaces is 1—that is, the x; can be chosen so that
C O O(Axn pxd) = LAp").

Simce go = Spa(x1 + Xa), the Koch invariant of M is

B

e =000+ x0, 7" (x1+x2)) =1+ 1m0 @.18)

If we Iat

X1 = X1+ %x3, . X3 = %"X1+ X5

th;: M = Ay} ® Ax} as symplectic spaces, and one can chack that the Koch invariant of each of these
spaces is 0. Hence two spaces M), and M;, each the nun of two .timplu having the same Koch invariant,
are isometric, and this is veflected by the fact that :u. -c;;, = 0. If the Koch invariant of Ay, is 1, and
the Koch invariant of Axa i:o, then a calculation similar to (1.15) shows that ¢y = 1.0

-20
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Propodition 1.5. The i{("d invariant ipg, together with the rank of the free A-module M, give a

complets set of invariants for the isometry classes of non-alternating trace-forms ox; M.
PROOF This follows immediatly from proposition 1.4 and lemmas 1.8-1.10. ¢

Though in the sequel we will be concerned only with trace-forms, we complete the classification of

_ symplactic forms ca free A-modules with the following proposition.

Proposition 1.6. Let & be an alternating non-trace-form on the free A-module M, and let 8, represent
the homomorphism x - &(x, Ipox). Let Spgl = 8o, and doh' 1,
T ke = @0, 57%).

Then xy is well-defined, inid x)s together with the reak of M form a complete set of invariants for the
isometry class of 9. ' ‘

PROOF One repeats the proofs of lemmas 1.7-1.9 mstatis metandis, to show ‘that sy distinguishes

classes of rank-one and rank-two spaces, and then applies proposition 1.4.0

~/ !
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§ 1.5 In this section, G will denote an Abelilg group with Splow z-ubp'oup G3 cyclic of order q. Let H
bae the subgroup of G of elements of order prime to 2, s0 that G = HGj;, und Jet A = ¥3[G|. The object
of this section is to classify nondcge%m, symmetric, G-invariant forms on a free A-module M of rank

n.

>
‘Wo first decompose the ¥;-algebra A into its indecomposable constituants as follows: the sub-algebra

¥3[ H], being semisimple, decomposes as s direct sum of sub-algebras isomorphic to finite fleld extensibns
5 L]
of rﬂ:

23K = @} TalH]es M Q,K,, ' (110

i

whare the ¢;'s are {uniquely defined) primitive orthogonal idempotents—in what follows we will identify
¥3[H]e; with K; by means of a fixed isomorphism, and consider (when necassary) K; as » {loft) ¥5[H}-
!
module by means of this identification. Of particular interest in the sequel is the idempotent,
2 1

E=ey=Spu= 3 h,
heH

which splits the augmentation map s: ¥3{H] — P;, so that Ky = F;. All other K;’s are nontrivial
extensions of P3.

The-iuvolation » on A restricts to an (anti-) isomorphism of ¥3[H]| onto itesl, sending primitive
idempotents to primitive idempotents. Order the q'l’ o0 that ¢;,...,¢,, are thoss idempotents fixed by
s, and ¢,, 41, c:,,.,,...r',c,,.;,,,l:l_.,,, are those idempotents interchanged in pairs. It follows that for -
1< ¢ < ry, the involution restricts to an sutomorphism of the summand ®,[H]e;, and hence may be
identified with & Galois automorphism J = J; of the field K. J, is certainly trivial, but for 2 <i < ry,
Ji is the unique non-trivial galois automorphism of order 2. Indeed, lot A € H have image £ 3 1 under
the composition,

. ' ¢

r,lﬂ] - Iz[H]q x K.

#

Then h* = h~! has image §7 = £~1 o €, 00 that J is nontrivial

22
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We now "adjoin® G, keeping in mind that the idempotents ¢; remain central and mutually orthog-

onal: . )
A =F3[G] = ¥,|H.G;) - ¥a[H|(Ga)

= oF[H|[G5]e

. o Qk«[az].
This is & decomposition of A into indecomposables, since the summands K;[G3] sre local rings. Note

that, for 1 < § < 7y, the involution ¢ will restrict to an involution (alio called ¢) on the summand KX:|G3],
(Yt =2 &0
9€Gs 9€Gy
Lemma 1.11. Let R be aring with involution s, and Jet ® be a nondegenerate, R-invariant form on the
Icﬂ R-module M. Suppose that E‘ are contnl. mutually orthogonal idempotents which m fixed by »,
suppose 3 E; = 1 in R, and Jet R‘; o R E;. ﬁnn the form ® restricts to a nondcmcnu, R;-invariant
form &; om the R-submoduls E;. M = M;, and the isomstry ch'- of & is uniquely dourmin-d by t&c

isometry classes of the &;. '

PROOF If z = E;.x € E;.M, and ®(z,y) v O, then ®(E;.x,y) = 8.z, E;.y) = & (E; .2, E;.y) % 0, 50
that the ®; are nondegenerate; if a: M — M is an i.omotr/y of forms @ and ¥, then a(E;.2) = E;.az),
s0 that a restricts to an isometry a; of forms ®; and ¥; on A;. Conversely, given R;-invariant forms ¥,
on' M;, we may coyutnct an R-invariant fbn‘n«O on M o @M; in the obvious way: namely, consider the
M; as R-modules by means of the surjection R — R.E‘}R‘, 30 that the forms &; bocoxyo R-invariant
forms; tl;o form & is defined to be their sum (as R-invariant forms). A formal compnmiouruhom that

R;-isometries of forms ®; and ¥ will determine an R-isomatry of the constructed forme & and ¥.¢

Wa will apply this lsmma with R = A = F3|G|, the idempotents being

-

forl <isr, ‘
E‘-{R+C‘, fOl‘l’;'PlS‘?ﬁ'Fh.

In view of the above lemma, if AM is a fres A-module, then the isometry classss of symmaetric, nonde-

generate, G-invariant forms on A are in one-to-one correspondence with sums of isometry classes of

AE;-invariuPt forms on the free Af.-mdnht E.M.
28
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jl.ohthi'mtion,htkhulniulddaundonofrg,htJeamdthccﬁvhlotofadw
2, and let G2 be a cyclic 2-group of order ¢ = 2™. Let R be the group ring k{G3}, with involution
defined by -

- ()= e (1)
r€Gy . 9€Gy
If M is a free loft R-module of rank n, s “sesquilinear form* # on M is a bi-additive pairing M x M — R
such that for all r € R and my, mz € M one has

¢
O(r.m;,my) = r‘l(ml,mg_) = §(my,r*.my).

V{o will call such a form ‘Hmnithnz if ®{my, ma) = F(my, m;)*, and @ is said to be nondegenerate (on

the left) if for any m; € M there is an m3 such that, ®(m;,m;} 9 0. T'wo sesquilinear forms © and ®

are said to binuiuhnt on M if there is a non-singular, R-linear transformation o of M such that for

sll m;, my € M,

L}

Bla(my), alma)) = ©(my, ms).

Proposition 1.7. There isa one-to-one correspondence between équivalence classes ol (nondegenerate,
Hermitian) sesquilinear forms on the free R-module M, and ilam,trychnu of R-invariant forms : M x
M — ':. *

PROOF Define (a2 in [F'M 1], section 7) the “involution-trace” to be the composition
TN ALN%IX

where 4,(3° £,.9) = £, and Tr is the fleld trace from k to F3. £ satisfies the following properties:

1) (4 ¥s-linear; ) | (
2) {(a*) = Ya);
8) The pairing L: R x R — ¥, givea by _ ‘ ’
L(ay,02) = ¢a,103),
is mon-singular.
L) “ o
.- - P -y - \
[ ’ ,A_‘,.: 'j,};r '? - 4

N4
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Lot a;,...,0¢ be a busis for Rover B3, and det f3, ..., fs be the dual basis with respect Lo the pairing
ind): foif})mbyy . ,
Given @ & swequilinear form on M, define :

S MxM — ra, ‘o("‘h"‘ﬂ) - t(.(mll "‘3»'

It s immediate from the definitions that &, is an R-invariant form on M, and that equivalent sesquilinear
forms give sometric R-invariant forms. It is also clear that if @ is & Hermitian form, thea @, is symmatric.

. H @ is nondegenerats, and m; € M, there is an my € M with &(m;,m3) = A € R. Let 4 € R be sach

that {(Ax®) = 1—this can be done by property 3) of &0 that
- 0. (m1, umg) = YB(my, pmy)) = Lu*)) = 1,
and the form @, is nendegenerats,
_ Conversely, supposs that ¥ is an R-invarisnt form on M, and define the pairing ¢ .

. 8
@' (m, ma) = Y ¥(my, fima)e € R.
imi .

Then ¥* is sesquilinear: given x € R, lat

]
".("‘MM) - le.h
g ! fm}

M= L(z9°(my, ), /i) = Ys9°(m1, m) () € ¥

But then, . .
Aw (w3 9(ma, fyma)eg) 1) )

Jmi
=Y Us¥(my, f;mo)es f)
s
= 3 sy £7) 9 (my, f;ma)) .
s .

=y, ) Uzes ) ym).
j )

(1.18)

The propersies of £ show that &(ze;f7) = £(x* fie]), and using the fact thal the f;'s are a basis of R
having the ¢;'s as dual basis (for the palring L),

S Ui f2) 1 = U 1i6) 1y = 5" 5,
F) ' F
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from which it follows that #° is sesquilinear.
Finally, she associations & — @, and ¥ — 9° are mutually inverse to each other:
(9<)°(m1,ma) = EQ-(’M. fima)y
) ‘

= 3 U@(my, fima))es -
‘ 1
T W UL, )
[

= §(my, my);

-

(€°)e(m1, ma) = &(®° (1, my)) .
/7. =43 ¥(my, firma)es)
- Z‘W(nu, fima){es)
- ‘:(Mx. ; tes) fsrma)

= ¥(m,, my),

since in R we can write 1 = ¥, L(1, &) fi = 3 £(¢]) fi = 3 £{ef) f:. The proposition follows. ’

Lemma 1.12. Suppose that J acts non-tvivially on k, and let A be the group {i, s}, Thea the A-modules

R* and R¥ are cohomologically trivial.
PROOF The additive group R* has a filiration given by the powers of the maximal ideal M which is
stable under the action of the involution, giving for 0 < 5 < g — 1 the exact sequences of A-modules,

O—s M+ — e M Zak—s0, (1.19)

whaers e(s) = 3 mod M+, Now #5(A, k) = 0: for j = 0 because the trace map is surjective from k onto
the fixed field of J; and for 5 = 1 by the additive version of Hilbcrt"l Zhoonm 90. From the long exact
cohomology e-quence sssociated to (1.19), we find that A7(A, M*) & AY(A, M'*2) for 0S i S g-1, and
hence ‘

(6, RY) = B(A, M) u (A, M) “..u A, M-Y)mo.

In & similar way, we filter the multiplicative group R* by the subgroups of “principal units® U; =

14 M for 1 <i < gr 1, U, = 1. This filtration gives the following exact sequences of A-modules:

1ol e R® 220X s}, : (1.20),
20

PR et
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1y y —s Ui —Lek+ —0, (1.33)

NP ‘ where &o is the augmentation map and whare ¢(z) = z ~ 1 mod M*+2. Now B7(A, k%) -0 for j =0
becanse the norm map is surjective from k to the fixed field of J (ses Bourbaki, {Bo 2]); and for 5 = 1 by

the multiplicative version of Hilbert’s Theorsm 90. From the long exact sequence mocutod to (1.20),

we deduce that B7(A,R*) & AV(A,U;), and for 1 <5 S g~ 1 the long exact sequence associated o

(1.21) gives B7(A, /A 3"({,(1‘“). It follows that R* is cohomologically trivial, since Uy = 1 has

trivial cohomology. ¢

Propoaition 1.8. Assuming still that J acts nontrivially on k, thers is, up to equivalence, one class of
nondegenerate Hermitian forms on the free R-module M of given rank 1. More precisely, every Hermitian

form ® has an orthonormal basis.

PROOF The proof is by induction on the rank n of M. Let first n = 1, and let x be a generator of the

fres R-module A; since for any A;,\; € R,
‘ ' ©(Aix,dax) = A239(x, x),

the foom @ is determined by the dlement dp = ®(x,x). Since ® is Hermitian, d¢ is ixed by o, and
conversely, any such d determines & Hesmitian form. &’ is an equivalent form if thers is a unit u € R

such that ®(uy,ux) = ¥(x, x), so that uu®dy = dgs. It fcllows that the equivalence classes of Hermitian

B

forms on M are in one-ta one correspondence with the elements of the cohomology group m(A.R"),
. which is trivial by lemma 1.12. In particular, we may find a generator x such that &(x,x) = 1.

Let now & be a nondegenerate Hermitian form on the fres R-module M of rank n + 1, and let x;

be a gunerator. If &(x;, x1) = u is & unit, then (® being Hermitian) u is fixed by the involution; by the

@

lemma there is a unit v such that wv; = 1,90 x' = vx) generstss a free submodule of M, and

N

O(x',x') = 1. (1.22)

¥ u is not » unit, we can (by the nondegeneracy of @) find & x3 with ®(x1,x2) = 1. If &(xa,x2) is &
n;ic, proceed as sbove to find a x’ such that &(x’',x’) = 1. If both ®(x1,x1) and ®(xa,x2) are in the

O o

e o e SRR
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maximal ideal M, choose A such that A+1* = 1—=this can be done by lemma 1.12—and let x = x1 + Axa.

\ Then x is & generator of a fres submodule of M, and

O(x, x) = ®(x1, x1) + AA*®(x2, x2) + (A + A°)®(x1, X2)

, . is s unit in R. Aqain bygltho procedure above, we can find & x’ which generates a free submodule of M,
. such that (1.22) is satisfied.

Let Mg = Ry, with x’ satefling (1.22). Then the restriction of ® to Mp is nondegenerate; as usual,
Jot

voos Mg = (m € M,8(m,m,) =0 for all m, € M,.

M s clearly an R-module, and by using the same idea as in the proof of lemma 1.1, it follows that
M = Mo @ Mj. By the Krull-Schmidt theorem, My is fres of rank n, and (as in lemma 1.1) the restiction

of ® to Mg is nondegenerate. By induction M4 has an orthonormal basis, hence s0 does M.O

Corollary. Let R = k[.Gg] with involution given by (1.17), and suppose that J acts non-u:ividly. M
. is a free R-module of rank n, then all R-invariant forms ®: M x M — P; are isometric.
U < . PROOF This folk:ws from propositions 1.7 and 1.8.$
Proposition .1.9. Let G be a finite Abalian groap with cyclic 2-Sylow subgroup Gj, let H ba'the
subgroup of G of elements of order prime to 2, and let A = P;3|G|. If M is a free A-module of rank

. ) . /
\ n, then the isometry class of the symplectic space { M,®,G} is uniquely determined by the class of the

A

symplectic space {Ey M, ®,G,}, where E, is the primitive idempotent Spy € A.

( ) ' PROOF Let E; be the idempotents defined in § 1.5, and let AE; = R;. From lemma 1.11 it follows that
the isomatry classes the symplectic space {M,$,G} is uniquely determined by the isometry classes of
the symplectic spaces {E;M, ®, B;}. For 2 < i < r; the corollary to proposition 1.8 implies that for a

given rank n of the free A-moduls M, there is a unique class of symmetric, nondegenerate, R;-invariant

Wumpodﬁom ¢iM @ M, and hence by lemma 1.2, the isometry class of {E;AM, &, R;} s

again uniquely determined by the rank n. Hence, the isometry class of the form @ on Af is determined

C : . |

A . Y - P

form on E;M. For r1 + 1 <1 < r;1 + ra, the restiction of any nonedegerats form ® to E;M possssses a



by the isomstry clam of {£M, ®, R;}. The inclasion G *+ G induces an isomorphism of Py-algebras
¥3{G3] = AE; = R; which is compatible with the respective actions of G and R, on E)M; hince, the
W’{E;M, ®,G;) and {E;M;, Ry} are isometric.O

\ c
Remark. Let G = G/H, and let X = ¥5{0). Since hr(;vévl) = ker(A—1X), ws may identify B; with
1, and this identiSication is compatible with the nstural uiion of 7 E; M. Thus the symplectic space
{M,®, G} uniquely defines the symplectic space {N,¥, T}, where

' and ‘Iathingatéform.

One can extend the definition of *form with trace condition® to G-invariant forms @ in the obvious

are writing ¥ = M/ker(M 2L M)

1

way: if S is ;\pubponp of G, then foral e?t .‘O(z, z) = ®(z, Spg.x).

Lemma 1.13. \ The symplectic space {M,®, G} has the trace condition if and only if the space (M, ®, G5}

has the trace condition.

P?OOF The co;ndition is certainly necessary. On the other hand, if § is an arbitrary subgroup of G,
write 8 = TU with T the 2-Sylow subgroup of § and U the subgroup of elements of § of crdet prime to
2. Assumae that { M, &, G3) has the trace condition. Then,
®(x, Ips.2) = &(z, SprSpy.5)

= &(Spy =, SprSpy =)

= &(Spy .=, Spy a)

= &(z, Spy.=). )
Because U has odd order, "hfrdlly element of U fixed by the involution.s is the identity cment—
M“"M‘_N_Q‘Oflﬂ' dm.,u are im:chu«l in pairs. The anti-symmetry of @ shows that for r € U, r 96 |,
(s, (r + r~*).5) = 0, from which it follows that &(z, Spy.x) = 8(s, £).0

Proposition 1.10. We resain the hypotheses of proposition 1.9. Let & be a symplectic trace-form on

\ the froe A-module of rank n. Then @ belongs to one of two isometry classss, distinguished by the Kock

Q

invariant of the space {Spy M, ®,G,) (or squivalently, by the Koch invariant of (N, ¥,T)).

PROOF This all follows immedeately from proposition 1.9 and lammas 1.10 and 1.13.$

l
1
!
i
i




Let o be a generator of G3, and let # = o ~ 1. By proposition 1.10, the structure of the space
{M,®, G} is determined by the invariant : of the space {Spx.M, ®, G3). Let 0o represent the homomor-
phism x ++ &(x, x) in Spy .M, and let § € Spyr. M be such that Spg,0 = #o. Then ¢ = (0, x—30). I

¢ € M is such that Spgé = 0o, then
(¢, " 3Spu€) = O(Spu &, 7~ 3Spu §)

- =i, 4

Wa will call ¢ the invariant of the space {M,®, G}. )
f

Proposition 1.11. Let n be the rank of the symplectic space {M,8,G), and let ¢ = ¢y be the
invariant. The isometry class of this space is completely determoned by these invariants. In particular,

there exist A-free generators x1,..., Xxn such that @ takes the following values: (i) If n is odd,

M= Axy L (Axa+ Axs) L... L (Axn-1 + Axa),

with Ax: totally isotropic for 2Si < n,aad fors 2 1,
®(xa, ox2+1) = {é: :‘::,:L.,
and
. 1, ifgm=1;
N ®(x1,9x1) = {t+1. ifgmoot;

the values of & on other genaraiors being determined by the G-invariance and the symmetry. (ii) If n is
oven,

MmAxy LAxs L{Axs +Axe) L ... L {Axn—-1+ Axn)
Here, the Ay; are totally isotropic for $ <1 S n; for 2 S n/l,

1, Hgwm1;
.(Xﬂ-h'Xﬂ) = {0' otﬁ"h; I
1; ifgml;
®(x1,9x1) = {c+ 1, ifgmo,0™};

0, otherwise;
1, ifgm1;

.(XIJX3) - {o' ‘:‘:mh.

All other values of @ oca generators of M are determined from these ones by G-invrisace and symmetry.

PROOF That the invariants n and sps determine the isometry class of M follows from proposition 1.9;
the particular representatives given in (i) and (ii) are easily shown to have the proper invariant.$

]
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Chapter 3. The Symplectic Structure of the Hilbert Symbol.

*

§2.1 We begin this chapter with an example of G-invariant forms coming from fnite Selds. Let k be a
finite extension of W3 of degree fo, and let K/k be a finite extension of k of order f and Galois group
G—we will sssume throughout this section that 4 divides f. As is well knowp {ses, .5, [Ls 1)), the
group @ is cyclic of order f, generated by the “Frobenius automorphism” o: o.x =23 forall z € K.

Furthermore, the extension K/k M a normal basis: there'ip a € € K such that

K= @ kg.£;
2€C

«

- [

in other words, X is free of rank one as a k|{G}-module. Since k itoelf is of rank fo over I:'. it follows
that as an 3[Gl-moduls, K is free of rank fo.
Define the Po-bilinear form @ = Ox/s : K x K —¥3 by )

’(% V) jond “'th (’y)\

® is certainly symmetric, and is nondegenerate since the trace map is surjective for extensions of finite

. , 1
fields ([Bo 1],chapter V § 11). Letting G’ = Gal(K/¥3), we have for any g € G,

®(9.2,9.v) -":/r.(a-(zv)) = Y ¢(o-(=zv))

vea
~ )
s€O
= 0(’. V)'
#0 that @ is G-inveriant. Finally, @ is a non-alternating trace-form: indeed, for = € K,

O(=, 3) = texsp, (7)) = (tr/p, (2))? = trx /s (2),

and this is non-sero for some = by urjectivity of the trace. Note that this computation also shows that

©(z.3) - o(s,1). U p? =1 in G, and if X' ia the fixed field of (1,5}, then
®(z,p.2) = trxeesp, o bty i (3p.3) = trxcesp, (22p.3) = 0,

since zp.2 € K'. I follows from lemms 1.13 and the discussion prior to proposition 1.3 that ® is »
3 \
trace-form. Let ix/p be the invariant of the space (K, 8x/, G}

s1




—~ Lemma 3.1. Let H be the subgroup of G of elements of order prime to 2, let G = G/H, and let X be
the fixed-field of H. Then IX/n ™ bty /0
N
PROOF If €isa mMof a normal basis of X/k, then try /s € = n % O, and by letting &' = £n?,

may musume that trx/a € = 1. By the discussion following proposition 1.10,
oxcsn = ®(&, %" Spy§)

= (Spué " 3Spu¢)
= trye/p, (Spa €) (' *Sps §))
= trycy/7e(Spr (SPu E(x' 28y §))

- “Ko/':(splf('.-asp E))o
since H has odd order. Now Spy €& = £ has trx,u(€) = 1,

- ) trry (& #7%8) = @nen (€, 7*%F)

that

r~ =pine ©

degree over Py, and let W = Gal(K/L). Let I = N L; | is the subfield of K/IF; fixed by the group

generated by W and G.
Lemma 3.2, ix/, =tz /1.

PROOF Let ¢ € K be such that Spg.¢ o trx/aé = 1. Then Spc(Spw.€) = Spw Spa.€ = Spw.1= 1,

so that we may assume £ was chosen in/ L. Then

O.0) = tez o, o b6 =2.0)
= 2, (E)(=*.0) :

-6 r2.8)

sx/h = ATK/R,

- 4.0
Lemma 2.8. Suppose that K/k ig of 2-power degree g, and that kfR; is of 2-power degree fo. Let K'
ba the subfield of degree 4 over k. Then ixx/s = ix:/a-
PROOF Let trx/u(¢) = 1, so that
. . ;
s/ = AT sw, ((€)(x12.€)) = trxssp, o trnyace ((€)(wart(0/4-1) g)).

R




}\ a
. -
But o generifes the subgroup H = Gal(K/K'), and x4(¢/¢=)) = (1 -'-,a‘)'/"“- Spy. With § =

Spu € = trx/x+(€), we have )

ixc/n = trieryp (b1 (E(7.0)) = trpeesp, ((tr e/ xce (€)) (-0)) ”
=ty (0(x.9))
=t n®

Lemma 34. For K/F; of 2-power order, i)y, = 0.

PROOF By lemma 2.3, it suffices to compute ¢ for X/P; of order 4. In this case, s normal basis of X/F,
is generated by a primitive fifth root of unity § (since trx/p, = 1), and the galois group G is generated

by the Frobenius o:x 1+ 22 for all z € K. Then

ix/ry = AT r, (E(x.6)) = tracsp, (E(€ + %))

= trx/v, (€ + €

-O,

since both ¢? and €° are conjugates of £, and hence each has trace 1.0 !

4

Proposition 3.1. Let k be a finite axtension of ¥; of degres fo, and let K /k be a finite extension
of order g divisible by 4, with Galois group G generated by the Frobenius automorphism c. Then the

invaciant ox;y is given by the parity of fo +1.

PROOF By lemmas 2.1, 2.2, and 2.4, we may assume that k/¥; is of 2-power order fy, and ¢ = 4. Let '

G = Gal(K/¥;), and let s be the Frobenius automorphism = - 22, #0 that #/* = 0. Let £ generate a

3
i
3
+
%

normal basis for X/¥;; by lemma 3.4 udth;prodofhmmls,fmbochmutku,

(i) = {5 G0 S 8

Letting 8 = 1755 €%, it follows that trx/y(¢) = 1. If k = F; we are done by lemma 2.4, while for k/F,
3

&




»

& non-trivial extension, we have trx/y, (¢7) =0, 0
X/ = t\rg/p,“ﬂ) . (l + a)ﬂ)

= trx/p, (9’) + trx/y, (0-00)
fo2 fo—1

-hx/'i(z f“ . gl* Z ea’)
im0 S=o

-3 teeym, (6 6°"")
&y

- z:“l’[l’(f N f'h“-‘).
(K]

Now fo+5 —s ®m 1 (mod 4fo) only if j = 0 and ¢ = fp — 1, and cannot take on the values 0 or —1. From

(2.1) it follows that sx/a = 1.0




JU———

U

§ 3.3 The second application of our structure theorem concerns the symplectic structure of the Hilbert
symbol in n;/lnnuﬁod (and hence, Abalian) extensions of 2-adic number fields. Our main result (propo-
liti;m 2.4) is an extension of Satr 9 of Koch [Ko 8). We begin by reviswing the definition of the Hilbert
symbol for local fields—for the donih,am [Sh 1], [8 1}, or [Ko 2].

For the tims baing, lat p be any prime, and let X be 2 so-called “irregular® p-adic number field—that
is, K contains the p* roots of unity u,. for some s > 1. Lotnbguﬁnddgobnkdoomofx,udl«

Xx = Gal{f}/ K) be the absolite Galols group of K. Kummer theory gives a group homomorphism

N
x: K> — Hom(Xx, pips), (2.1)

&

defined as follows: givul: any element ¢ € K%, let & = a}/?° be any solution in ) of z*° ~ a = 0. Given

o€ Xx, let
\ x{a)(o) -? € piye.

x is surjective, and its karnel is precisely the subgroup of p’-powers in >, thus ind,\klcing an isomorphism

(which we will tho call x) -

3

x

K
Ax = y<id & Hom (X, pps ).

On the other hand, the reciprocity map of local class field theory gives an injective group homomor-
phism

Ox:K* — XP.

One can thus define the paizing,

(» )K:Kxxxx = iy

(2,80 = x{a) (0 ).

This is the (p-) Hilbert symbol for the field X, and gives s bi-multiplicative form whose left- and
right- kernels contain the subgroup K**°, thus inducing s form (also denoted by (, )x) on the free
Z/p* Z-module Ax = K> /K**", -

N




-

Remark. Throughout this section, we will retain the multiplicative notation, but if ¢ is a generator of
tipe, wo may (non-canonically) identify uy- with Z/p'Z (as Abselian groups) by means of the map

a mod p* — ¢%, '

If the group G acts on y,-, we may define a (canonicall) homomorphism a: G — Z/p*E* so that
~N .

¢ mgtlo),

Define mow the “twisted” action of G on Z/p’Z by gd = a(g), and let Z/p°Z(a) denote the resulting
G-module. Then i, % Z/p"Z(a) s G-modules. With this identifcation, we may consider the Hilbert
symbol to be an anti-symmetric, G-invariant bilinear form in the semse of chapter 1.1

Proposition 2.3. The Hilbart symbol (, )x has the following propartiss:

(i) (, )x is s nondegenerate, anti-symmétric bilinear form on Ar;

(i) (a,a)x = (a, —1)x for all a € K*;

(iii) (a, 1 - a}x = 1 for all a % 0,1;

(iv} If K is a finite extension of L, and L also contains the p° roots of unity, then

-

(a,8)x = (a,Nx/zb)r

for all a € L™ and b € K* (Nx/;, is the usual field-theoretic norm from K to L);

() (a,8)x = 1 for allb € K* if and only if a is & p*-power in K.
(vi) (a,8)x = 1 if and only if a is & norm from K(b+") (for which reason (, )x is sometimes called the
‘norm-residue® symbol);

(vii) If K/k is Galois with group G, then the pairing is G-invariant:

-
->

(0a,00)x = (a,8)%

for alllo € G. .
t The involution ou the group ring Z/p*ZG being (I a,g)* = 3 aya(g)g~!. In the sequel the o will
be trivial.

R
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* PROOF This is all well-known. ‘See, Yor example, [Ko 1}, § 8.12. ¢

Remark. Property (iv) can be interpretied in terms of the commutative didgram,

‘x X ‘x (-'-!f
Ny ixss :‘W ) . (2.9)

L x A, ek

Hers, the first vertical arrow i the map induced by the norm, whihﬂn second vmlul arvow is the map

induced by the inclupion L - K. -

Lemma 2.5. Suppose that K/k is Galois with group G, and suppose that k contains the p’ roots of

unity. Then (, )x is a trace-form.

PROOF Lat H be a subgroup of G, and let L be the fixed-field of H. First note that if a € K* and #f

denotes the image of a in Ax, then Spgd = i‘q(,(m. Thus for any g € K*,

(a,a)x = (o,~1)x
~ = (Nxsza,~1)

= (Nx;.a, quz.c)t.

, = (a,Nx/Lo)x. ¢ . ‘

Let k be a p-adic numbaer fald containing the p*-roots of unity, and let 6 be a uniformising parameter

for k. A p*-primary number in kis a # such that k(85 is the unique nnr;miﬁod extension of k of degres

p. Becanse of the nondegeneracy of the Hilbert symbol and the fyct that svery unit of k is a norm from

ny unramified axtension of & (se, .4, (8h 1] proposition 58), it follows that (4, 8)s s a FHimitive p*

root of unity. Agsin, because 5 is a norm from k(87), (#,8)s = 1. If p o 2, then the anti-symmetry of

.

the Hilbert symbol implies (¢,0)s = 1.

L

Lemma 2.8. Suppose that the 2-adic aumber fleld k dossn’t contain the fourth roots of mnity, and
suppose thas k(y/—1) is ramified over k. Thea a uniformising parsmeter # can be found s0 thas (§,4), = 1.

PROOF The extension k{(—~1)"/3)/k is unramified if and only if 1 = (u,—1)s = (u,u)a for all units
u € k. Thus, ¥ b{{—1)*/2)/k is ramified, there is a unit u € & #o that (v,u), = ~1. If § is any
uniformising parameter, and {#,4)y = ~1, then the uniformising pmmur ¥ = ud will work.$

~
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Let k be s p-adic number field containing the p* roots of unity (with p arbitrary), and let K be a

tanuly ramified extension of k having Galois group G. Let # be & uniformining parameter of £, and let

£ be & p*-primury element of X.

Proposition 3.3. The subgroup of Ax genarated by the imaages of § aad A is free of rank 3 ovar T/p*%
and is stable udarchuﬁonda ﬂ-?lbmlynbolbnoudcmmu shis subspace, and the
arthogomal complement My = My, is & % %/p* %|G)-module of rank n = [k : Q,], on which (, )x

restricts ¢o a nondegenerate, antisymmetric, G-invariant form.

PROOF Proof of the proposition involves a detailed examination of explicit reciprocity formuha given
by the “Shafarevich E-function® ([Sha 1]). For p ¥ 2, this theorem is contained in [Ja 1), lemmas 23 and

'24. For p = 2, see Sats 9 of [Ko 3] or theorsm 3 of |2 1}.0

§ 2.3 We now restrict our attention to the following situation: k is a 2-adic number field of degroe

-

n = & fo over Q, ¢o being the ramification indtxl and fo the residue degree of the extension k/Q;. Let

K be an unramified (Abslian) extension of k with Galois group G of order g¢’, where ¢ is of 2-power
. A '

order and ¢’ is prime to 2. We further supposs that 4 divides g, and that X doesn't contain tThe-fourth—

roots of unity. ' \‘

As in the previous section, let 0 be a nnilormhih. parameter for k, A a 3-primary elsment of X, and
My the complement of the subspace generated by (the images of) # and 4 in Ax. ,

1

Lemma 2.7. The restriction of the Hilbert symbol to My _b non-alternating.

PROOF Since X(y/#)/K is unramified, ~1 is s norm from K(/5), so by (vi) of proposition 2.3, (#,—1) =

1; singe K/k is even, ,
- ) (0, =2)x = (Nxc/at, 1)
, - “"'o “'l)b

= -1.

80 that =1 € Mx. Since —1is not & square, mnudom«uydﬁcqmbdhmtt‘omm«du
4 € My with
-1 = (a,~1)x = (s,a)x.

{

8 ‘




1t follows that Ny/, Mx © Mz, and hence that

b
B et bty

In view dpropocitionlz.s and lemma 2.7, we denote by ix/s the Koch invariant of the symplectic
W(ux.(. )x.G}. “ ] "

Lemma 3.8. Let L be the maximal subfield of K of 2-power order over k, ot H =GalK/L), and et
G = G/H %Gal(L/k). If By is » 3-primary element of L, and My, is the complemunt in A;, of the subspace
gonerated by # and o with respect to the form (, )z, then the invariants ix;, of {Mx,(, )x,G} n’

tLin “(u&o( ' )L'm are equal
' »

PROOF First note that we may take Sy as our 2-primary element of X, since K/L is of odd dogrn?;

the oddnesa of ¢’ also implies that the maps Ny and iy of diagram 3.2 are, repectively, surjective

‘

.and injective. We claim that sx/z (ML) = Spy.Mx. Indeed, given 7€ M,

Spuin/e(®) =ix/L ()" = ixs(8),

«

s0 that ;'x/‘,(llx,) C 8py.Mx. On the other hand, given any a € K%,

-

' . Y
Spu B = ix;  (Nxjza),

v 1= (0,a)x = (8, Nx;pa)z,

1 = (Bo,a)x = (Bo, Nx/a)L.

N i ©

<

Spur.-Mx =ix; o Nx;p (Mx) C ix/0(ML).

Tke eymplactic spaces {My,(, )z,0} sad {Spx.Mx,(, )x,C} are thus isometric, so by proposition

——

1.10 and the discussion following that proposition, iz /s ™= tx/s. O .

The following proposition, due to Koch ([K 3], Sats 9}, shows how the invariant of the form is

dependent om the krithmetic of the feld &.
3
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Proposition 3.8. (H. Koch) Det 2 be a 2-adic aumber field of degres n = 8o fo over Q;, where s is the
ramification index and fo the residue degree of the extension k/Qa. Let K be the unramified extension
of k with degree ¢ > 4 of 2-power order over k. Amume that the fourth roots of unity do not Lie in K.

Then the invariant 1\f, =ax/, = i s,

tn=eo(fo+1).

PROOF Let G =Gal{(K/k), and let 0 be the Probenius automorphism of X/k, hence s generater of G.
By the proof of lemma 2.7, =1 € My repressnts the homomorphism x (x,‘x)x, 80 to compute ix/y,
we must computs (¢, x* 3¢}y for some ¢« € X with Spg.Z = —1 (recall that # = o — 1). Let T be the
largest subfield of K which is unramified and of 2-power degree f over Q3, and let TV = T'Nk. Then
J = qf', {’ baing the degres of the axtension T"/Q3. Let r be the Frobenius of the extension T/Qa.
Then the restriction of & to T'fs 7/, Let v € T be such that Nr/q,7 = ~1, and let

Nyt = Ny;ram Nrjg,7= —1.

' Now ¢ € Mx. Indeed, (’.l)x\:l siuce ¢ is & unit, and (0, ¢)x = (4, ~1), = 1 for § chosen ¢ in lemma

2.6. Thes

(6,8 %) x = (5T 24"2¢)1 = (¢, x*" 2P, _ (2.9)

since 44 fa 0dd.
We now compute (¢, #~%¢)r as in the proof of proposition 2.1. Namely,"we may first assame that
“T/T" is of degres &: if Ty ia the subfield of T of degree 4 over T°, then #1~%¢ = Nyr,¢, and
" . (6w = (¢ Nem, (s | ¢
= (Ny/z,(¢), % No 1y (),
Suppose now that T has degres 4 over T' = Qy, and let ¢ be a primitive Ak root of wnity in T'
Define ¢o = 1 — 3¢. Then Nr/q,¢0 = 51 = =T in 4g,, and hence

r/Q, ™ (to, 7o)
40
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Now

(%0, %0)7 = (€0, ~1)r = (~1,~1)q, - -1.

To evaluate (6o, 0¢)r = (1~ 2,1 —2¢%)r, we make use of the following formula, due to Kneser ({Kn 1},

_ equation 13): iotnys,y#O,linT,hta-'{‘:';?. Then since (a,1~a)r =1, ws have

!‘l—cl 1-y
1 (l-zy'l-sy)r N
w(y,1-2py)r(1-2,1~y)r(l~21—-29)7 (1 - 25,1~ y) 7' (1 -2y, 1 = 3y)r

=(=p =25 (1~ 5,1 y)r(l - 5,1 — sy)7}{1 — ay,1 - y)7?,

from which ons obtains,
(t=31-y)r =(-y1-a)r(1~51-3y)r(l~asy,1-y)r. (3.4)
With z = 2¢ and y = 2¢2, equation (2.4) gives *

(1-2¢,1 ~ 2% = (—2¢%,1 — 4¢®)p(1 = 2,1 - 4¢®)p (1 — 4%, 1 - 2¢%)r.

If in equation (3.4) zy is an integer of T congruent to O (mod 8), thon‘tlu principal unit 1 -3y is & square
in T (see, for example, [Shaf 1], page 79). It follows that O
(1= 36,1-26%)r = (<2¢%, 1~ 4%)r = (-2, 1 - 4%}y
(= ERNya =4,
= (-3,5)q,
-’-1,
Thus ir/q, = 0.
Now asswme that T/T" Is unramified of 2-powsr degres ¢ divisible by ¢ (with Galois group genarated
by ¢), aad that T%/Qq is uaramified of 3-power degree f' % 1. One repeats the proof of proposition 2.1
mutatis mutandss, the only change being that the Hilbert symbol is being written multiplicatively. We
comclude that in this case, sp/p = spr = 1.
It follows that in general, ¢y is givea by the parity of '+ 1, and hence by the parity of fo + 1. Wa
Row obtain from (2.3) that 4, is given by the parity of eo(fo 4 1).¢
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Corollary. Let k be a 2-adic aumber feld, and ot K be ax varamified axteasion of k haviag order
- divisible by 4, and not comtaining the fourth roots of unity, If ¢o and fo are, respectively, the ram--

iestion index and the residue degree of the extension k/Qa, the symplectic structure of the space w
{K*/K*3,(, )x, Gal(K/k)} is determined by the invariant i = 1, = ¢o(fo + 1).

PROOF From the proofs of lemmas 2.6 and 2.8, we may find a uniformising parameter ¢ and "a 2-primary
unit Ao ‘:o that
) ('0’)3’ - (ﬁo.ﬂn)x = 1, (‘oﬁO)K - -1,

and, - .

K*[K*3 = (8,8) L Mx.

R

As in proposition 1.11, we may chooes goimtton of Mx with the values of the Hilbert lymbt\»l on these

generators determined completely by the ingsiant sx/n.¢
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Chapter 3. Profinite Cohomology and Demulkin Groups
§ 3.1 This first section reviews some of the shkmentary aspects of profinite cohomology needed in the
sequel. Por more details, ses (8 2], [8h 1}, or [Ko 2). ‘

A profinits group X is a compuct, totally disconnectad topological group. A discrste X-modnle A

‘ fs an Abelian group with the discrete topology on which X acts continuously. For U a closed subgroup

of X, we denote by AY the submeduls of 4 fixed by U. Note that if U is a normal subgroap, then A
is aa X/U-module.

Let C™(X, A) ba the group of continuous mape from X™ so A, and define the coboundary operators
8,:C™(X, A) — C™*+1{X, A} by the usual formula,

»

(OaT) (201 20) = Sl 5m) + D1 oty ) 4 (™ (o e
Wa thus get the standard cochain complex 0 — C*(X, A) whose cohomology groups are H™(X, A) =
ka1 (8,)/im(Bn-1), with HO(X, A) defined to be AX. ’

Giv;n an exacs sequence of X-modules 0—A; -543-!»&—00, one obtains a “long exact sequence” of

cohomology groupe,

ot H™H (X, A) e H™ (X, A1) 2 H™(X, A2} 2o ™ (X, Ag) =~ H**1(X, A))— ...,

where the maps a* and #° are induced from the maps on the cochains, and the connecting homomorphiems -

§ coma from the “snake lemma® (see [Sh 1], page 19).

Let X and Y be profnite groups, and let A and B be, respactivaly, & diacrete X-module and a
discrete Y-module. One says that the pair of maps ¢: X — Y and ¢: B._' A are compatible, if for any
z € X and b € B, y(¢(x).b) = z.9(). One easily checks that any such compatible pair induces a map

on the cohomology groups (¢, 9)°: H*(Y, B) — H*(X, A), given om cocycles by
(‘l‘).‘!)(’l’ LR !‘ﬂ) - *(f(‘(’l)l o v‘(’nn)-

lorumplo,if(!hnlapdnbmpdx'ithqnotwa.mdAan-moduh,tl\uA”htG-
module, and the maps X -{Gnd AY — A are compatibls; the induced maps obtained oa cohomology
! 43
A

D s T




are the “inflation” homorphisms, inf: H%(G,AY) — HY(X, A). As snother important example of this
principle: with U still normal in X, define for = € X the maps ¢,: U — U to be conjugation by s (where
we use the convention y — X~!yz), and ¥s: A ~ A by a ~ z.a. The compatibility of the pair (¢,, ¥s)
thus induces an action of X on the cohomology groups H™(U, A) in which U acts trivially. We thus have
s natural action of G % X/U on H*(U, A).

Let X be a profinite group, U a (closed) subgroup of X, and let 4 be s discrete U-module. Define

the induced modauls,

MZ(A)={f:X — A such that f(us)=u.f(z) forall u€U and s € X}

The induced module carries an X-action defined by (z.f)(y) = f(yz) for all 2,y € X. This action is
compatible with the X-module homomorphism MY(A) — A defined by f ~— f(1) , and we thus get
a map on the coh\omology groups H¢(X, MY (A)) — H*(U, A), which is an isomorphism by Shapiro’s
lemma (Ko 2]." Using this, we can define the standard “change of group” maps on cohomology : if 4 is
an X-module, define the X-module homorphism s: 4 — M,’(((A) by ¢(a)(z) = z.a. The induced map on
cohomology is the restriction map, res: HY(X, A) — H*(U, A). Similarly, if U is open in X, define the

3

X-module homomorphism

nMI(A)— A, [~ Z a.f(e?).
~ & XU

This definition is independent of the choice of coset representatives o of U in X, and induces on coho-

mology the corestriction map, cor: H*(U, A) — H*(X, A).

Lemma 3.1. (i) Let U be an open subgroup of X, and let A be an X-moduls. Then cor ores(a) =
X : Ula for a € H'(X, A).
ii) Suppose in addition thas U is mormal is X with quotient group G. Thea res o cor{a) = Spoa.ﬁ:;

any a € HY(U, A). Here Spg = 3,4 @ is the norm element in the growp ring Z[G].
PROOPF (i) is well-known. For example, cor o res is the map on cohomology induced by the composition,

* A= ME(A) = A,  woi(e)= 3 cila)(e™!) =X :Ula.

e X/U

.
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"(&i)res o cor i the map induced on cohomology by thexomposition MZ (A) — A — MY (4),
) i(x(f)(z) == 2 ofle™}) = Z so.fle™?)

e XU e XU

= Y ofle's)

€ X/U

= ¥ @)

e XU
. = 8pg.f{z).
The result is now immediate in dimension 0, and by dimension-shifting, we obtain the result in general.$

Let 4, B, aad C be X-modules. An X-pairing is & Z-bilinear map (-,-): 4 x B — C such that Jor

allz€ X,a€ A, and } € B, (s.a,1.}) = z.(s,b). For all m,n 2 0, one obtains a bilinsar pairing,
-U- s A™(X, A} x H*(X, B) -« H™**(X,C),
called the cup-wod;ct. defined on cochaina by

(I v gu’h v r’mh) - (!('1! seey ’n)l *1%3... 3n'g(£n+l| oo »3m+n))- ‘

s

Proposition 3.1. The cup-product has the following properties:

(i) rea(f U g) = rea(/) Ures(g);

(ii) cor(f Urea(y)) = cor(f) U g; ,

(i) fug=(-)™gU ;

(iv) If one has axact sequences 0 — Ay — By ~ C; = 0,0 — A3 — By = C3 = 0,0 — Ag —
By — C3 ~ 0, and X-pairings: By x By — By, C, x C3 — C, Ay X Cy — As, Cy X A — As, then for
1€ H™(X,C,) and g € H*(X,C3), cae has

§(fug) = 8(f)ug+(-1)"rusle),

whu'; the § s are the appropriste coasecting homomorphisms; _

(v) Let X andY be profinite groupe, and let (-,-);: Ay X Ay ~ Ay ( respectively, (-, -)3: 31"’8: ~+'By)

be an X-pairing (resp., Y -pairing). If §:Y — X and $¢: A; ~ By are such that the pairs (4, ¥) are
compatible, aad if for all a, € A; and a3 € A, one has

¥s((a1,02)() = (1 (‘l): *("))’l ’ (3.1)
~ o »

A
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then for all f € H™(X, A;) and g € H*(X, A3), one has
¥ = (s L), -

whire ¢ is the map induced on cohomology by the map ¥i.
PROOF (i)—(iii) can be found in [8 3}, (iv) is theorem 9 of {Sh 1], and (v) is Sats 3.26 of [Ko 3].0
' As a particular case of (v), consider the X-pairing A3 X 43 ~ As to be & U-pairing by restriction,
where U is & normal subgroup of X with quotient G.°The maps (¢4, ¥1,s) which induce the natural acti?n
of G on B »(U, As), satiafy the condition (3.1), so that the cup-product defines a G-invariant bi-mdditi'vo
form.

< One says that the profinite group X has cohon‘ologicd p-dimension equal to n (cd,(X) = n) if for
all torsion modules A snd all m > n, thi?rﬁmlry‘plﬂ of the group H™(X, A) = 0, and the p-primary
part of H™(X, A) % 0 for some such A. The strict cohomolo(icai p-dimension of X is n (scd,(X) = n) if
the above statement holds for all d\xnh (not necessarly torsion) X-modules.
Proposition 8.2. If cdy(X) = n < oo, then scdy(X) = n if and only if H™(U, Q/2Z) = O for all open
subgroups U of X.

PROOF Bee [B 1), cor 5.5.0

Locho;proﬁnlu.roup,udl»l]bcaubmupdlniuindox. Lot!boamumdhn-cuot
representatives of X/U, and given any 5 € X; define 2 € R to be the particular coset repredentative of

Q

z: #7323 € U. Define the group-thecretic transfer Ver: X*> — U by
» Ver(s) = H Flar mod [V, U]
where (U, U] is the commutator subgroup ot U. By Sats 3.12 of [Ko 2}, the transer is dual to the
correstriction, ‘
cor: H' (U, Q/2) — H'(X,Q/2).

Proposition $.3. Let X be a proflnite group with scdy(X) = 3, and Jet U be & normal subgroup of X

" with quotient group G. Then the transfor map Ver: X*® — (U*®)? is an isomarphism.

PROOF See [H 1), propositions 10 and 11.0



§ 8.2 A Demuikin group X is a pro-p group ln;kfying the following axioms:
(1 dimp, HY(X, Z/pZ) = n < oo; N
(5) dimny, H3(X, B/p) = 1; -
(iii) The bilinear form on the P -vector space H'(X,Z/pZ) given by the cup-product is nondegen-

erate.
X o

. With the exception of the trivial case p = 2 and n = 1, these axioms suffice to ehow that cdp(X) = 2
(see [3 8)). For any discrete X-module 4, deflne the Q/Z-dual of A by A* = Hom(A, Q/Z), carrying the
X-action: (2.f)(a) = f(~*.a). For X of cohomological dimension 2, one defines the *dualising module”
of X, '

Ix = lim lim H3(U,%/p"2)", o (3.2)

where the direct limit s taken over all open subgroups U of X (the mape being the dual of cor) and
all 4 2 1 (the maps being dual ¢o those induced on cohomology by the projections Z/p'Z — Z/p'%
for s 2 r). It is known (see [S 2|, proposition 30) that if A is any p-primary torsion X.module, then
H3(X,Ix) ™ Q,/Z,, and the cup-proglu:.t '3

HY(X, A) x H3~4(X, Hom(A, )) — (X, )
is & “perfect pairing” for 0 < ¢ < 2, giving the isomorphisms,

H(X, A)* & HP~4(X, Hom(A, 1))

#

As an Abclh’mp, Ix is isomorphic to Q,/Z,, with X-action given by & homomorphism
x: X — Aut(Q,/Z,) ™ Z), ‘o x(zl)a forallz€ X and a € Ix.

x will be called the invariant of the group X. If the image of x s infinite, then sed, (X) = 2 (see (8 7|,
pg. 1-52), and it is shown in [L 1] that this image, together with the rank n = dimg, H}(X,R,) of X,
form & complete set of invariants for X, determining X uniquely up to isomorphism. For the remainder
of this paper, unless othc::v)h_o stated we will assume that sod, (X) = 2. '

a
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'Proposition 3.4. Let U be an open subgroup of the Dgmulkin group X*. Then one has,

(i) Iy = Ix ;

(i) H?(U,Z/p*Z)* %40 U";, where for a:xy Abelian group A, (A is the subgroup of A of exponent g;

iii) The torsion submodule tor{U*®) of U is isomorphic to I¥, and if U is normal in X with quotient_
- x .

.

G, tbu this isomorphism is as G-modules.

PROOPF (i) follows from the definition of the dualising moduls, since to find Jy one tosses out at most
a finite numicr of terms in the inductive limit (3.3). For [ii), consider the long exact sequence obtained

from the exact sequence of U-modules (with trivial action), 0 - Z/p*Z — Q,/Z‘,Z-:Q,/Z, —0:
0 — HM(U, Z/p'Z) —~ H'(U,Q,/Z,) % H*(U,Q,/Zp) — H(U, Z/pZ),

where the last map is surjective by proposition 3.2 since the scd,U = 2. Taking duals, we obtain the
)
exact sequence, ‘ \

0 — H(U, Z/p*T)* — U LWu®, (39)
where we have identified H*(U,Q,/Z,)* with U*®. Note that for s large enough, we have
H*(U,Z/p*Z)* o tor(U*®).

From the commutative diagram {with exact rows),
0 — Z/FZ — QyZ, 2+ Q,/Z, — 0
: miod p° ”r "W .
0 — Z/p’2Z — Q,/Z, £ Q,/Z, - 0
we obtain (after dualising) the commutative diagram (with exact rows),
0 — H3(U,2/p'2Z)* — U — U

; I i I (3.4
0 — HUZ/pZ) — U™ — U™ '

and a little diagram-chasing shows that H2(U, Z/p’Z)* — H?(U, Z/p‘Z)‘ is injective. Now if V < U
is open, and Vo < V is normal in U with quotient G, thcnbypropomion 3.3, Ver: U*® — (Vo*°)% is
an isomorphism; tho\\zpuwvity of the transfer map implies that Ver “factors chrongh' V*® 90 that
U"’-#V“hhioctm It follows that

. w/p‘z)‘ — H3(V,2/p°2)* .
- ' 4 oL

ko



is injective for all s, and hence all the maps in (3.2) are injective. In particular, by choosing s lu:go

() ' muhw.ou‘.umm.e’mﬁsu-b)—.tg. Lt V < X be thy stabliser of 15, o that I = I¥.
; Since U <V, and cheompouitiolm(V"‘)—-otor(U"’)ﬁthhj;cﬁw.ituﬁmuw‘(ﬁi)for
V. }fs is a generator,of I% (as an Abelian group) “coming from" H3(W, Z/p*Z)" for some open normal
subgroup W of V in the direct limit (3.2}, then s € tor(W*P)V. But by proposition 3.3, V2» — (WeP)V

is an isomorphism, so that s € V*° already.¢

The order g of the torsion submodule of X*® is callsd the torsion imvariant of the Demulkin group
X. Inviowofthonbmpropocition,qhdchrmimdby%hhuoinz: of the invariant x: if 1 € Ix

has arder g, then for £ € X, z.5 = x(z)s = s if snd only if x(z) = 1 (mé1 g).

Proposition 3.5. With notation as above, one has the following description of im(x):

(i) Itp¥ ‘2, then im{x) is olth‘lam 14 p*%, for some s > 1 ,and the torsion invariant is ¢ = p*;

I p =3, thers are three possibilities for im(x):

(ii)‘ im(x) = {£1} x {1 + 2°2Z3} with & 2 2, and the torsion imvariant ¢ is 2;

(iii) im(x) = 1+ 23°Z3 with s > 2,and ¢ = 2°;

(iv} im(x) is the subgroup of Z3* generated (as a fres Z,!-moduh) by =142 withs 22,’and g =2.
PROOF These are the only infinite subgroups of ZJ.¢

llary. The Demuikin group X coatains & nsigue subgroup U (the “cyclotomic subgroup®) of index

p ba torsion invariamt strictly greater that that of X.

PROOF 1\ im(x) is as in (i), (iii), o (iv) sbovs, take U = x~E(1 + p**13,), while in (i) let U =

x~1(1+ % Z3). The uniquenees is clear.d

§ 3.8 In [8 3] and {L 1] & method is givea to compute the invariant x of the Demulkin group X explicitly
from a given minimal presentation of X. We develop below a more “geometric® method to find the
cyclotomic subgroup. .




We first remark that if the torsion, invariant of X is g, then
H'(X, Z/q3) x H' (X, 2/eZ) >0 (X, Z/e8) (s9)

Ba ;on—dcpurm‘ form., .Indud, if we let x; denote the (surjective!) maps on the s** cohomology groupe
induced by the surjection T/¢% — Z/pZ, then w1 (f)U x1(g) = ma(f U g) (this follows from proposition
8.1 (v)). If ¢y € HE(X,Z/qZ) has order ¢, them #;(¥;) ¥ O, 50 there is 2 x;(¥3) such that

r1{¥1) Uni(¥a) = ma(¥1 U¥a) % O,
and'¢¥s U ¢ has order g. The claim now follows from the Z/gZ-linearity of the cup product.

Let X have torsion invariant ¢ = p*, and com.ider the long t sequence associated to the exact

sequence 0 —  Jy — ,:Ix—'o,lx —0:

0 — HO(X, ¢Ix) — HO(X, 2 Ix) — B o Ix) % H* (X, (Ix) = ...,

from which one obtains the injection ¢Jx ~ H* (X, (Ix) given by the connecting homomorphism §. Let
5 be & ‘generator of (Ix, and let # = §(s). If w € ¢3Jx is such that g.w = , theFor z €.X,
¢

x)= 5&:)(:) =-z.w—w.

Since w is & generator of g2 Ix, U = ker(#) is the unique subgroup of X ofindex ¢ fixing 4»Ix, so that
p*~10 = 8 will have the cycbto?ﬁc subgroup as its kernel. Using this choice of gemerator s € Ix, we
may identify (Jx with Z/¢Z by 5 ~ 1; we may thus think of ¢ as an element of H'(X,2/¢Z).

The *Bocksteiifoperator® B: H1(X, B/q%) — H(X,Z/qZ) s the connecting homorphism coming

from the sequence 0 — %/q% — 5/3Z-N8/% — 0. An explicis calculation of this connecting homor-

phism shows that .

ker{B) = {% € H'(X, /qZ) such that $(s) = 0 for Z € tor(X*>)}.
Proposition 3.6. The one dimensional subspace ker(B)* of H'(X, Z/qZ) is the subspace gensrated by
the character 8 defined above (where the inner product is givea by the cup-product as in (3.5) above).
PROOF From proposition 8 of [L 1), it i known thas the map H'(X, g Ix) -+ H(X,,Ix) is surjective;
since this map *factors through® H(X, (Jx), and since ¢ is thc‘_tgnionphvuim of X, we may conclude

~




\
that the map (X, s ) ~ H(X, Ix) s aleo -Jﬁimm. 1t follows that the connecting homomorphism
§: HMX,  Ix) = H3(X, JIx) n the long exact sequence associated ¢ the exact sequence 0 — (fx —
o dx = (Ix — 0 ls the sero map. Prom the G-paiings oJx % B/9Z = Jxc and pIx X B/PE — glx,
we thus have the commutative dingram (see proposition 3.1 (iv)),

o B'(X, Ix) x H'(X,Z/qE) 5 HA(X,Ix)
- |» I , (39)
WX.JX) X E’(x_vz/qz) = B’(X,.Ix)

Is follows that the subgroup generated by # is contained ia ker{B)+; but ker(B) has co-dimension 1 in
H'(X,Z/qZ). The cup-product is mondegenerate, so ker{B)! is one-dimensional, hence generated by |
0.0

\

i § 8.4. Examples . (l)Ithu(mn)mknudtotnonhvuimtqﬁz thonbylsslthmudm.

R

. minimal moutiu set 2,,...,2, of X satiefying the deflining relation

1= 31'[’1. ’3]"- (zn-h'u].
and the invariant x: X ~ 27 i given by
L Higs
X (%) = {(1 QY im2
K é1,....90 € HY(X,2/qZ) is the dual basis of the images 2,,..., By of the 2's in X/X*(X, X], then

Y = k() = (1 + 4Z,)

hthulqunbumdeolhdaqhwh;faduhqu’.
(z)l!:hmhﬂmdlbz:ndm.mmmkuhodd.(qoh |8 3]) thers exist generators
zuuhfyluthdchhgnhﬁol 0

1m 45" |23, 3], . [X-1, 8]

\\‘ ~
with s > 2. In this casm, x is givea by ! .
® ) -1’ ‘-1’
- x(a)-{l+2‘. im3, ‘
1, ;. ‘
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the cyclotomic subgroup is
¥ = her(1) = x~1{142°83),

and she torsion invariant of Y e 2°.
(3) I the torsion invariant of X is 2 and the rank n is even, there axist graerators 3 for which s defining
relation can be fousd of one of the following twb forms (see [L 1]): v
1= 23|21, 22)23 [50,54] ... [#n-1, Zn)s (37
\ 1= 23*lsy, 2l[30,24] . . [2n1, Bl (s:8)
with ¢ 2 2 in both cases. The valuss of the invariant are givea by,
-1, t=3;
x(z) = {(l +2)7, dimg . . (s.7)
1, otherwise,
e = {77 Sk o)
' In case (8), the cyclotomic subgronp ’
Y = kar(gy) = x"1(1 +2°%;) ] .
has torsion invarlant 2°, while in {6)
* Y = ker(ds) = x~{14 2°1Z,)
has torsion imvariant 2'*L. °

Note that in sach of the above examples, the character # whose kernal is the cyclotemic subgrowp Y,
can be dstermined (ss in proposition 3.6) as & generator of ker(B)L. For axample, if X is the Damuikin

group determined by relation (3.7),

kee(B) = {¢ € H'(X,Z/2Z): ¥(s) = O for 2 € tor(X*®)}) = (¥s,..., ¥u),
K/ .
and the perpendicular complemant of this subspace of H1(X, Z3) is {¥s).
52
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\/;w any pro-p group Y of finite cobomological dimension. If X is minimally gemersted by n + 7 elements,

. B g

Remark. If the sed,(X) # 2, the result of prop. 3.3 is no longer valid. For example, let X be minimally
generated by 23, 23, x5 with the defining relasion

1= zl[za, 53}.

A calculation ss in (L 1] shows that the invariant x is defined by *

-1, §m],
x(z:) = {1, otherwise, ‘
and the image of x in Z3 is {£1}. By |8 2] it follows th?,kmh(x) = 3. Now ker(B) is the subspace
purqud by 53 and x3, and its perpendicular complement is the subspace generated by x1. One can
show that (ker(x;))*® is torsion-fres.

s

§ 8.8. It is well-known (see [S 3]) that any open subgroup of a Demukkin group s again a Demulkin
group. If U C X is open with index |X : U], then the generating rank of U can be calculated waing
“Buler-Poincaré characteristics® (e.g.,[Ko 2], § 5.2):

Xo = |X:Ulxxy  where x, = i(—l)"dim',ﬂ"(y, Z/pZ), . s
n=0

then xx = 1— (n+2)+ 1 =n, we have x, = n|X : U|, and hance U has generating rank n}X : U} +2.
i .

Proposition 8.7. Let X be a Demulkin p- with scd) X = 2, and let w € H'(X,Z/pZ). If

Y = ker(w), then one has the exact sequeace,

Ry

HMY,2/pZ) 250" (X, 2 /pZ) 22 HY(X, Z/pZ) — 0.

PROOF From proposition 3.1 (ii), we have the commutative diagram, '

H(X,2/pZ) «x H‘(X,Z/pl){f" — H’(X.Z/pz)‘
( T“ﬂ (s.9)
HYY,2/p2) x H(Y,Z/pZ) — H*(Y,3/pZ),

where cory is an isomorphism by proposition 8.4. Let W = im(cor,); givan any # ¢ « in W, there

v

sag € HY(Y,Z/pZ) euch thet 1 = resd U¢ = # U cord, 80 that elther W is a complete subspace of
53
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HY(X,%/pZ), or the radical of W is (w). If the former case, let $ € W<, and suppose that ¢ ¢ (w).
As sbove, we can find & ¢ such that resy U¢ = 1, and hence that ¥ Ucord = 1, a contradiction. It
follows in this case that E‘(X,Z/{)Z) =W L () as comphu'cpm, and hence that W = ker(w)?t.
If w generates the radical of W, choose n € H'(X, Z/pZ) so that n Uw = 1; then W and n generate &
complete subepace of H'(X, %/pZ) which must be the whole space by arguing as above. Thus in this
case aloo, W = k:r(cot). The surjectivity of - Uw is clear from the non-degeneracy of the cup-product. ¢

Corollary. Let X be a Demulkin 3-group, and lot w € H}(X,Z/3Z). Letting Y = ker(w) and
A = X/Y, one has the following exact sequence:

0— E‘(A, Z/27) =L HA (X, z/zz)-":.é*}y. Z/22) =5 H) (X, Z/1Z) 2% H? (X, Z/2Z) — 0.

PROOF Exactness at the first H1(X, Z/2Z) follows from the Hochschield—Serre spectral sequence {see,
for example, Sats 3.15 of [Ko 2]) and at the second H'(X,Z/2Z) from proposition 3.4 above. Since
cor o res : H'(X,Z/12) — H'(X,Z/2Z) is the sero-map, im(res) C ker(cor). On the other haud, if the
Mstin( rank of X is n+2, im(cor) has rank n+1, 0 that ker(cor) has rank 2n+2—(n+1) = n+1 from
the above computation with Euler-Poincaré characteristics. This is the rank of im(res), giving exactness

at the middle term.$

?
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Chapter 4. Z,-Towers in Demuikin Groups

In this chapter, we define the notion of a Z,-tower in a Demulkia group. Whonp#?ludyhnp-z
and the “tomsion-invariant of the tower” is not 2, we obtain a complete classification of thess towers.
?Ihn the torsion-invariant of the tower is 2, a complete classification is not obtained, but we examine
some necessary invariants. § .1 Let X be a Demullkin group with sed,X = 2. By the Z,-towsr (X, ¢)
we shall mean a (continuous) spimorphisny $: X — Z, of X onto the additive group of p-adic integers.
Two such towsrs (X, ¢,) and (Y,¢3) are said to be isomorphic if thers is an isomorphism a: X — Y
00 that ¢; = §30 a. For s'ﬁnd towsr (X, ¢), define the n'® levs] subgroup X, = ¢~!(p™Z,), so that
X=Xo > X, >... gives a chain of normal subgroups of X with X/ X, = G, % Z/p"Z, and NX,, =V
is the kernel of ¢.

Z, towers in a given Demulkin group are quite plentiful: any non ttivial element of Hom(X, Z,)
will define one. If X has torsion invariant g and is minimally generated by n elements, then X*® &
Z/¢20 Z,""}, 10 that Hom(X, Z,) is & free Z,-module of n.n* n— 1. An example of particular interest
is the “basic tower”: if x is the invariant of X, then for each of the possible images of x listed in
proposition 3.5, there is a unique (up to choics of topological generator) surjection x of im(x) onto Z,;
the composition ¢ = xoy will yield & Z,, tower in X. In fact, if im(x) 3% {+1} x {1 +2°Z,}, then im(x) is
already isomorphic to Z,, whi;. in the remaining case, projection onto the second factor gives a suitable
«. The object of this chipter is to classify isomorphism classes of towers in the following sense: Lot T be

the group of continuous automorphisms of X; then T acts on the space Hom(X, Z,) by

(v4)(z) = ¢(v.3),

-

‘whersv € T, d € Hom(X,Z,), and 5 € X. The orbits under this action will be our equivalence classes,

and we will endeavor to give invariants which distinguish orbits.
Lemma 4.1. "I'h chain of subgroupe X,, in the basic tower is invariant under all sutomorphisms of X.

PROOF Successively find the cyclotomic subgroups ¥; of X, Y3 of Y, ¢*c., whose existence and uniqueness
ot each stage is guaranteed by the corollary to proposition 3.5. The uniqueness implies that each ¥; is
85
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a characteristic subgroup of Yi—1, and hence characteristic in X. It follows that NY; = V' = keey is
charactaristic in X. If im(x) ® Z,, we are done. If im(x) ® Z ® Z/2%, then Vo = x~1(%/23) i
characteristic in X: this follows because V is characteristic in X and V;/V, being the torsion subgroup
of X/V, is characteristic. The X; are the level subgroups in the tower given by X/V;, and since X;/Vo

is characteristic in X/Va, X; is characteristic in X.0

If (X, #) is 8 Zy-tower which is not the basic tower, there is a maximal positive integer no such that

the ny* Jevel subgroup X,, is the same as the ng*® level subgroup in the basic m That is, letting

V = ker(¢), there is an integer g = p* and an integer ng such that for all n 2 ny,
tor(X2") @ Iy & 2/p°Z

as Abalian groups. We will call this g the torsion invariant of the tower (X,¢). If ¢ ¥ 2, define the
homomorphism a:Z, — (2/¢Z)* which gives the action of X/V & Z, on I}: for any ¢ € I%, £ € X,
and Z the image of z in X/V, .

s-r: Zs = a(Z)s.

"In view of lemma 4.1, the intoger g and the image of o in Z/¢Z* will be left unchanged under the
action of any continuous automorphism of X. Proposition 4.2 below shows that, in the ¢ase where g 3 2,

the classes of towers are distinguished by ¢ and a.

§ 4.3 The key ingredient in showing that the invariante ¢ and o defined in the previous section determine
the tower (X, ¢) up to isomor , is the notion (due to Koch, [Ko 4]) of the so-called *Demulkin
formation over G” having specified parameters, which we describe below.

Let §' be the profinite group generated by slaments o and r, subject to the single relation:
oro~! = )

and lat § be any p-closed quotient thereof (La., any quotient divisible by p**). Lat n,s 2 1 be integers,
and bt a: § — (Z/p*Z)* be a continuous homomorphism. A Demulkin formation (X,¢) over § with
invariants n,s, and a is & surjective homomorphism ¢: X — G of topological groups, with pro-p kernel
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.V, satisfying axioms (1), '(z). and (3) balow. Wik ¥ « §, ¥ C ker(a), G = §/X, and Xy = ¢~1(X), we
) . sepposs: ~ , S
: (1) The maximal pro-p quotient Fy of Xy is a Demuikin group of rank n|Gj + 2, hawiag torsion
| invariant p°;
(2) The symplectic spsce H*(X,Z/pZ)*/H'(X, Z/pZ) is & tres F,[G}module of rank n, and the
bilinear form (induced on this space by the cup product) is hyperbolic: thers axists s decomposition of

this spaze into two totally isotropic submodules;

(3) G acts on H?(Xy,Z/p"Z)* by means of the character a.

¥

Propodition 4.1. Ifp ¥ 2, or if p = 3 and ¢ 2 2, any two Demudkin formations over § having the same

invariants n,e,and a are isomorphic.

PROOF The theorem was first stated for p 9 2 by Koch ([Ko 4]), and proved in detail by Wingberg (|W

1}, Sats 1}. The case p = 2 and s > 2 was proved by Diekert ([D 1], § 2.2).

§ 4.3 Let X be a Demulkin group of scd, = 2 and having generating rank n + 2. Suppose that (X, ¢) is

s Z,-towsr which is not the basic tower,let V = ker(¢), and suppose that the torsion invariant ¢ = p* of

the tower is not 2. Deflne a: § -o.Z/p‘Z" to be the character giving the action of § 9 X/V on (Ix. If
p™Z, & N C ker(a), with G = §/X % X/ X, then & computatuion nnn:i‘}nlu-l’obcu“ characteristics #
(s0 §3.5) shows that Xm = Xy is s Demubkin group of rank |G| + 2 with toesion invariant ¢ = p*, and 3
a gives the action of G an oI % H?(Xy,Z/43)". Thus the tower (X,4) satisfes the Grst and thind }
axioms for s Demulkin formation ove: § % Z, with invariants n, », and a.

Define ¢ € H(Xn, 2Z/p2) by s

1

Sreex.(#)(s) (mod ), @ ’

bum(s) =

for s € X

C) N | . 87




Lemma 4.3. ¢,, is fxed under the action of G = X/X,,.

PROOF If ¢(y) = 1, then {1,y,...,5”" ~3} is s complete set of coset representatives of X, in X. Letting

o =g, wa have for any 2 € X,
$5(5) = bm(y'sy) = f,-,.*-o(r*w) (mod p)
b § ,
- #a) (mod’) (43)

. = ¢ (2),
since ¢ vanishes on the commutator |z, y].0

Lemma 4.3\ The image of §n, under cor: H (X, Z/p8) — H*(X,Z/pZ) is do.

PROOF From l‘mm 3.1, res 0 cor(fm) = IpG.#m = |Glém = D, since @ is ixed by G. On the other

hand, ker(res) = {¢o), 80 that cor(ém) = ady for soms a € Z/pZ, and

| it SO -
o= car(dm)(y) = #m (Verx—x. () = dm( [] (0 w')) = b’} = 1,
im0

where § is the coset representative of 5 € Xy

Consider the blk;wing commutative diagram (ses proposition 3.1(ii)):

HY (X, Z/pB) X HY(Xm,Z/pZ) = H3(Xm,2/pZ)
res cor cor . (4.8)
H\(X,Z/p2) x HMX,Z/pZ) = H(X,1/pZ).

- The non-degeneracy of the cup-product allows us to choose n € H (X, Z/pZ) so that nU g = 1, and the

restriction :‘ the cup-product to Vo = ($o,n)* © HY(X,Z/pZ) is » non-degenerats form. From diagram
(4.3),

res(n) U g = nUcor(ém) mnUdo =1,

sothat Vi, = (f...,ra(q)# C HY (X, Z/p2) is & vector space of dimension n|G| with a non-degenerate,

X

G-invariant, siternating form induced by the cup-product.
i-cmnu 4A. cor:V,, =V, is surjective.

PROOF First note that, if X D Y D Z, then cor: H!(Z,2/pZ) — H'(X,Z/pZ) “factors through®

HY(Y, Z/pZ)—this follows easily from an axplicit calculation on cochains. This being the case, it suf-

ficss 60 show that V3V is surjective. We kuow by proposition 8.7 that car: H*(Xm,3/pB) —

Vo
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HY(Xn-1,5/pE) has image oqual 0 ker(- U $pm-1); i # € Vo, choose ¥ € H:(X,,, Z/pZ) such that
cor(#’) = 0, and write #* = ad,, + bn + ¢y with a, b, and ¢ in Z/p%, and with 7 € V,,,. Because

reanU# = nUcord’ = nU P = 0,

we know that @ = 0. Since cor{#') = cor(#’ —~ bn), we conclude that cor(cy) = #, 50 that cor(Vy,) = Vi,
¢

Jo .
Lamma ¢.5. Let G T/p™Z, lot M{hslMModL-',[G]—mddl,pdhtrbomr

of & miaximal free Awummand of M. Then r is the ¥-rank of Spg M, the subspace of “G-norms”® in M.

PROOF ¥,(G] is a local ring having principal maximal ideal generated by the slement x = (o - 1),
where o is & generator of the cyclic group G. Now every indecomposible ¥,[G}-module is isomorphic
to some power of the maximal id:nl. in(r!:;gydm ¥,{G] is the image of the PID. R = 1,[T], M is s
finitely-generated R-module and we may use th; structure theorem for Snitely-generated modules over a
P.w. to w)nu . )

. M=F o R/(a),

R fmi
with a; € R. Reading this modulo the kernel (7°")R of the ring epimorphism B — ¥,[G] induced by

T = , we got the structure of M as an ¥,[Glmodule. In pasticular, if N is indecompoaible, either
N % 7,{G) or N % 1,(G}/(v)® for soms b, One can check that in the laiter cass, N % (x)*"~*F,[G].
The Krull-Schmidt theorem holds for nitely-genersted ¥, [Gl-modules, 50 we may write

MuP,(GTe é(s)'-. ' (4.9)

{=3

Now Spg = (x)*" ! (ses lemma 1.3), 80 ¥ we multiply the equatiéa (4.4) by this element, we obtain

' SM.Y ¥,|G", the non-free terms being annihilated.O

Lemma\¢.8. The space V,, is » fres ¥,(G]-moduls of rank n, and as & symplectic space, possesses the
Yyperbolic® decomposition: Ve = Wi @ Zm, with the submodules Wy, and Z,, totally isotropic.

1 4

PROOF From lemma 3.1, res o cor = Spg; the restriction map res: H:(X, Z/pZ) — H*(Xm,2/pZ) is
injective om Vp, while cor ié surjective, 50 that the imqo of res o cor: Vo, — Vi has By-rank n. Lemma
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4.5 thus mudtﬁul‘,[@Mn&dr&k n. On the other hand, the P,-dimension iux(;ctly
1G], 80 Vi is free as an ¥,[G}-moduls, of rask n. The bilinear form 6a Vin, induced by the cap-product
is non-degemerats, V,,, being the arthogonal complement of the non-degenerats subspace generated by éo
and n. This form is aleo aliernating: the cup-product is always anti-symmatric, and;nlong aspyt 2
this will imply the alternating proparty (ses §1.1). If p = 3, we're still alright: since the torsion-invariant
of the tower is ¢ ¥ 2 by hypothesis, the torsion-tavariant ¢ of X; for ¢ 2 1is at least 4, nd;&m

A

cup-product
L

BY(Xow, B/¢5) X E(Xew, 5/¢'3) — H*(Xe, Z/¢'5)
s nondomm: The maps induced on cohomology by she surjection £/¢'Z — Z/2Z, give the commu-

tative diagram (see proposition 3.1 (v)),
H' (X B/¢Z) x B'Xm B/¢Z) — H(Xem, Z/{2)

[
HY X, Z/22) x H' (X, Z/1Z) — H(Xm,Z/1Z).
The vertical maps in this diagram are all surjective, being ssentially reduction (mod 2). From the antj-
symmetry of the cup-products, if x € H'(X,,,2/¢E), thon‘z(x Ux) = O, and hence x U x(mod 2)= 0.
This implies that the cup-product gives in the bottom row of this disgram is altarnating. By proposition
1.1, we can decompowe V,, into & sum of m/2 free ¥,(G}-modules of rank 2, eack of which possessing a
non-degenerate hyperbolic form, and such that these m/2 spaces are pairwise perpendicular.O>

Proposition 4.3. Les (X,¢) be a Z,.tower in the Demulkin group X which is not the basic wbc
q#'thmduMucdubm:ndMa:l,-OZIQZ"bctbodmdvhﬂbcudonot
the quotiens X/(kee(4)) ™ 3, on I3™%), If (X,¢) is another Tp-tower in X with the same invariaats ¢
aad a, then there is an sutomorphitm § of X suth that yofm ¢, °

PROOF Lot X = p™Z, and Xu = Xy = ¢-}(X). The Z/pB-dual of the surjection X, — X ia the
injection (inflation) H*(¥,2/pZ) — H'(Xm, Z/pZ), and th; image of this map is the subspace generated
by ém. It follows that, as symplectic spaces,

o n X.% FS
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By kmma 4.6, this space possessss a kyperbolic decomposision, and hence the second axiom for &
Demuikin formation is sstisied. Since (X, ¢) is thus s Demulkia formation over E, with invariants
n, ¢, and &, the uniquenss up to an axtomoiphism of X follows from proposition 4.1.0
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{ 4.4 We now turn to Ly-towers in Demulkin groups, where the torsion-invariant of the toweris 2. We are
m;&wq“smpmwandwm.bmw;dolhnm necessary invariants which
must ba considered in amy such classification (and in any appropriate definition of the corresponding
Demulkin formasion).

Thus, let X be a Demulkin 2-group, let ¢: X — Zs lioapontinnom lm\joction w;th kernel V', suppose
that I¥ bhas order 2. Denote by X7 the “cyclotomic mbtrc'mp'-oonlindex 2,and let V' = X' NV,
Th;- V/V = AT/, X'|V' =T % Zy, and X/V' =T @ A; let § be the generator of A, and let 4
be a topological mon;or for I'. -

) ({ (X'.r-(ﬂ)z not the basic tower of X, then there is a ¢ = 2° > 4 s0 that I{ ot Z/qZ as Abelian

groups, and we ;qu define the homomorphism -

a: X/V'—Z/qZ*

H)
which gives the action of X/V' on I% . Note that a is determined by the images of v and of 6. For an

appropriate choice of generator v, we may assume the image of v is 1+ ¢/, where ¢’ > 4 is the cardinality
of Iff'. Being of order 2, a(6) can be either —1 or ~1 + 2*~1 (the third possibility 1+ 2°~! is ruled out:
it woul imply tln)& oIx was fxed by X, contrary to assumption).

Let Yo = ker(a), and let Xy, = ¢"'(¥o). A close inspection of the proof of lemma 4.1 shows

that any continuous automorphism v of X will preserve not only Xy, and hence g, but also the lattice .

structure of thoss subgroups of X which contain Xy,. It follows that under the action of v, the images
a(l') and «:’(A) in Z/¢%* will remain unchanged. In the spirit of proposition 4.2, we thus propose ¢ and

a: @ A = Z/qEB* as imvariaats of the tower (X, ¢). .

Define ¢ € H(Xom,Z/2Z) ab in § 4.3, and lot 0o € H'(X, Z/2Z) be the homomorphism whoss

kernel is the cyclotomic subgroup X’.

Lemma 4.7, The homomarphism ¥ € H'(X,3/3Z) Lifts to an element ¥ € Hom(X, Z,) if and only if

$U B =0, (W.muu¢m.»3e¢-3(modz)).
- . 62
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PROOF ¢ Hfts to such a  if and ouly if ¥ i in the image of H(X,Z/4Z) — H'(X, Z/TZ), hence if

" and oaly if ¢ € ker(B), where B is the Bockstein opetator of § 3.3. By proposition 3.6, we can represest

the Bockstein operator by 4.0

Let X be a pro-p group, and let ¢ be a power of p. Dolnt!ulomq-mtrdw‘hl{X‘""}by
lotting X°9) m X and fori 2 1,
& X424 o ylto)e x, x14.9),

Suppose that X is minimally generated by the slements {5;,..., 5.}, and let 7 be the free pro-p group

on the generators {s,,...,8,}, with the map x: 4 ~+ =; defining & presentation of X:
*

1—sR—s F—"aX—1. . (4.8)

Suppose that (p;,...,p,}mi!inuny generate R » u/non)nllmbuunpdl. If ¢ s the maximal power of
p.so that H(F,2/qZ) & H'(X, Z/q7Z), then the “transgression® map tr: H*(R,T./¢Z)X ~ H3(X,T/qZ)
(comin_!' from the Hochschisld-Serre speciral sequence associsted to (4.4)) is an isbmorphism. This allows
one to define, for each p € R, s map pg: H3(X, Z/q?:) — Z/42Z,

Po(f) =tr=2(1)(p).

Let {X1,---, Xn)} be the dual bagis tothc images (%} of the gemerators (s} in X/ X134

Lemma 4.8. (Serre) Using the Hall collsction process, write p € R in the form,

p= II ¢ Tls,esl 2,

1568n i<y
with the a;’s and the a¢ ¢’s waiqualy determined (mod’q), and with ¢ € P39, Then

-~

st ={ i, £453

v ¥
and

Po(B(xi)) = —a,
where B is the Bockstein operator.

PROOF See {Ko 3}, Sats 7.2 and Sats 7.24.
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Corollary. With the rotation of lamma ¢.7, cupping with 8o represents the homomorphism y — x U .
PROOF Taking p to be a defining relatde for the Demullkin group X, it folows from Serre’s lemma that
xUx = B(x) = x U0

Let 7 € H'(X,3/2%) be chosen 90 that do Uy = 1. We may farther assums that n U/l = O: if
nUlp = l,reloou v oo 'that v U (¢o + o) = 1—by a;lnmptiol. do ¥ §y, so this can be done by the
non-degensracy of the cap-product. If vU g == 1, let ' = v, while if YUl = 1, let o' = n+ 1. Note
that n 9 ¢y, since ¢oUfp = 0.

As in § 4.3, define at each lovsl the subspace Vi, = ($m,n)E. It follows thas'V,, is for each m a
complete subspace of H!(X,,,Z/2Z), that the restriction of res: H2 (X, 2%/28) — H}(X,,,Z/2Z) to V,
is injective into V., and that (following the same proof as for lamma 4.4) cor restricts to a surjection of

Vm onto Vo.
Lemma 4.9. The resiriction of the cup-product to V,, is a symmetric, non-degenerate, Gm = X/ X,,-
invariang trace-form, and is non-alternating.
PROOF At each level m, the cyclotomic subgroup X7, is the kernel of the homomorphism #o = res(fo) €
V. By the corollary above, if x € H(Xn,Z/2Z), then

XUx=xUbl

. - ’ = cory U o
- = cory U cor)
= resocory U X

= Spg XU X.
ﬁu%happrod.dh;tr&o—lnrn. udh'h non-aliernating on Vi, since it is non-altesnating on Vo:

YUY =1hV,, udmx--f.thu‘tﬁabmcompltuh-lhmﬁuxux-th...O

Lemma 4.10. Let cor = corm i H'(Xm,Z/28) — H'(Xa, 3/28), aad given any g € Gum, ot § be

' its image in G wnder the canonical surjection X/Xm — X/Xa. Thes for any x € H*(Xm,%/2%),

{

cor(g.x) = g.cor(x).
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PROOF It suffices to prove the lemma with g = o, whare ¢ is & generator of Ge. Let # be s lifting to X
of . Then o s a generator of X3/Xm, ¢% I8 & representative of o*in X, and for any y € X3,
cor(ox)(y) = ox(Verx,~x.v)

wxe [T 9 %))
/ i 0€iLI™~0 .1

= x(]] ;;rl‘c“w“)
= x([[ s~ Tpasts s~ 1yaa¥)
- o = x(Vaxyx. (s ve))
' = Fx(y).0 ‘

Lemma 4.11. The Koch-iavariant im of the space Vi is dependeat aaly on the tower (X, 4).
PROOF Let m 2 2, and let x € V,, be such that Spa-,x = 0o. Then iy = xUx3""3, Asin lemma 2.3,
we have 137 =% m xq8(3777=1) 253 43" 77=1) m reg ocor:‘V. —+ V3 ~ V. Thus
b = X URHUTT T Dy
i = cory U ¥eory,

Since Spg, cory = #p in V;, the lamma follows.¢

mmwmhmdxmﬁmm“mueodahsudhdmumaﬁcm
groups H*(X, Z/22); using proposition 3.1, one can see that the cup-product is invariant under this action.
Thus any tower which is the image of ¢ under some umhmaxmmmmmm

"

Lot(X,d)h.m;mﬂltmmz,Hrhthqcbtmknbpupdx,
- #l
and ot A = X/X'. One may thus consider Hom(X’,Zy) as & Z3[A}-moduls, with the action of A an

¥ € Bom(X', £;) given by: §¢(z) = ¢(d~'5d), where d is any lifting of § € A to X. 'I'hr.trktiunap‘

res: Hom(X, £3) — Hom(X’, Z4)

has image in the subset of homomorphisms fixed by A, and whether or not the image of ¢ is s A-
sorm will be it invariant under the action of automorphisms of X (simce X' is characteristic in X, any

“ B
' #




sutomorphism of X will act on Hom(X", B5)). Let 55 = 0 if res(¢) is & morm, and 55 = 1 if res(¢) is &

(_,) non-norm.

[3

The author fesls that the invariants g, @, iy, and s are sufficient to distinguish isomorphism classes .

"~df towers having tower invarisat 2,bnuupocu'thom to be interrelated in some way.

<
-

~3

§ 4.5. Examples. Let [z, y] be the commutator 2~ 'y~ izy, and let 2¥ demote the conjugation y~sy. I
X 18 & profinite group, and Y is a normal subgroup of finite index in X, let T be s complete set of kit
coset Tepresentatives; g;\?bnny z € X, lat ¥ € T be the corresponding coset represemtative: 'z €Y.
LotXbaaI/kmdkinz-mpminimAl!y nnmwm»mcl,f./.,z..ht!botbn
pro-2 group on the generators #3,...,4,, and let x: F — X be the homomorphism defined I;y,mippiu
| “Mn\.'nuhmdofwinnuu.duumdtnbaonpd!by;ciuhnworp,mduh:bh
mcuon?/mdumbofoudlothnphumo‘thofmtinnhmtions.t KY is a normal

v ) subgroup of X with finite quotieat G, and if J¥ = x~1(Y), then one has the commautative diagram (with

exact rows and columns),

O . ’ ’ 1—'E-—r‘ -~ — 1 (4.9

»

1 — — F —~ Y — 1 L

Lot T be & “Schreier trasevarsal® for 7 in 7. T s a set of coset representatives ¢ of F¥ i ¥ such
o that ¢ can be written as & finite reduced word in the form, ' \

//h Y ‘-I'I.::, q-il. A \‘s—-

/s { ' 2
m«uaww a“.az‘a“:,...,lnnhh'l'.
I is & theorem of Schreier (sve [S 4], § 3.4) that /¥ is fredly gemerated by the non-trivial elements

~

-1

(Wt at:t€T, 1545}, (e

ﬂnhmwu.mﬂmarwmmwm-w
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method®; see LS 1})
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M'ﬂlb‘mhthmphb‘b'.iflhmdahz”.mwmbolbhtodchur-lol@l
genarators of ¥ and 2™ — 1 of the relators p¢, leaving one with lmhhsimtuhdthbmﬁh
group Y. The main interest in doing all this (and the computations are sometimes rather messy) is that
the resulting preseatation carries with it the action of G on Y*P, Tolixyplify the notation, we will write

the relators p; a8 relations in X or Y.

Let X be the Demulkin group generated by the elements {s1,...,5,}, with the defining relation
1= 5|z, ’2]‘“3&. %4} (¢8)

and lot {x;} be the basis of H!(X, Z/22) which is dual to the basis of X/X?[X, X] given by the images
of the {5;). The cyclotomic subgroup X' of X is (from § 3.4, example (3)) the kernel of xa; hence a
transversal is T = (1, 2;}. The generators of X', as computed in (4.7) above, are

{’h ’:'i 4» T3, ’;’l 24 ’:’ }u

3

and we obtain the two relations, ) had
' 3 1= ‘{[’h ”l‘gl‘h“l - 'l‘:“gl"'“” ' . (49)
- Lo ot ofr, o0 ) = ol Sl o07) (410)

Using (4.10) to write 27" in terms of the other gemerators, and substituting into (4.9), we find that X’
can be generated by the elsments

s - {'li ';n'l. ’:':f". ’:’}i
1= 329,20 (53°) " 21, 23] 27 £f[2s, 24). (¢.12)

Givea 5 € X', lot T be the image of 3 in X"*®, Then X"*® is minimally generated as & Z3-module

-~

»
by the climents {(30,2,5,, 20", %, 77’ ); the torsion submodule of X"*® is gemerated by the element
¢ = x""z;; and the action of A = (1,6} = X/X' on X'*> is given by,

.

(B =B il =8, iy m; inn =B =k,

67

it Ao oo xS Sk O oo -l s £ %
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és .';-l(‘n)-l“h -“;l’gn - ‘-l’
and from (4.10),

5%y =7 imp 4,

We may taks as free generators of Hom(X', Z3) the elements {¥1, ¥a, s, ¥4, ¥}, deflned for s € §
by,

s= {3 o W=y Gk

WO = {3 S, Wit = {3 o=

1, famgy,
! . *(')-{L if o= 23, !
0, otherwise.
The {A-action on these homomorphisms is easily determined; for instance,

o . 1, Hasmg,
(5:40)() = ol 051) = { Yy e
0, otherwise.

Thus we get the actions

b.9s = ¥y — d¥y,
Sy m—yy, Shmey, Sy= %'

The submodule of Hom(X', B5) Sxed by 4 is fresly generated by the slemants {3, (1+ §).9y, 93 — 201},
aad the subspace of A-norms is freely generatad by {293, (1 + §).94,2¢s — 4¥1}.

The 2;-moduls Hom(X, Z,) is !rnly generated by the homomorphisme {42, 43, 44} defined by

$a(x) = {(‘,: :‘;:,iz’"_ bi(xi) = {1' H';;,if' ".._

0, ot
1, ism=3g,
h(n)-{-ﬁ, fimy,
0, otherwise,

One can now compute the image of res: Hom(X, &;) ~ Hom(X’, Zs):

res(fs) m 29y, res(fs) = vy ~ 291, res{dy) = (14 §).9.

Using this information, we can thus compute the invariaat 34 defined in the previous section, for any
explicitly given Zy-towsr (X, ¢).

T s
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Let ¢ = ¢3 € Hom(X, Z;), and let X3 = ¢"'(4Z3). We now use the above technique to explicitly
write down the symplectic structure of the space H*(X3,2/2Z). In view of lemmas 10 and 4.11, this
will allow us to compute the Koch invarisut ¢ of the tower (X, ¢).

We take as our transversal T of X; in X the set {1, 25, 23,23}, and use (4.7) to obéain the 13

generators:
‘A w2y, A% A%, A%, B = =3, B*,B*}, B%, 8 =zl Cm 3,0, 0%, 8
m&: the relation (4.8) in terms of these generators gives
1= A% (B!) 1 ABS(C™) 0. (4.13)
Conjugsting’thisxalation by =4, 33, and =} gives the thres remaining relations,
1 = A% (B3) -1 4% B g(C*h) 2o,

%
1= A™(A%,8][8, B*|(B*)~* 4% B 8(3, Cle~ .

.
Using these last three relations, we may sliminate the generators C*5, O, and C*, and thus
o;&hmfom.mummax, hminhnsﬂynncmdbylhouuokm
{4,4%, 4%, 4%, B, B*, B}, B*}, C, §}, subject fo a gruesome defining relation of the form,
1 A%(4%)2(A°2)2(4°3)25%(4, A% |4, 4%3)jA}, A%2)[4%L, A)|B, B*)[B=, B+}|B*}, Be}|| B, B]
[4, BliA, B**|{4, BH|| 4™, B> || 4", B}|| 4%, Bl|a%}, Bol|[a"3, B*}|(a"3, B*:|

[4%3, B% (4%, B][4*}, B4Y|(4,S](B, 5|4, S||B™,S](C,S)0,
(a.19)

with ¢ € X{*.
' LdG-X/X:,ndhtabﬂhoinunds;iﬁG. Then the action of G on XI° can be read off the

generators, noting that from (4.12) one has -

{

C* m CABA(B%)'8 mod [X;, Xs).
[
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Lot {A:, B,,C,8: i =0,1,2,3) be the basie of H*(Xa, Z/2%) dual to the basis of X,/X3[Xa, X3] given

q

by our generators of Xa. Using the rule o.f(z) = f(5) for 7 € H'(¥2,5/22) and 3 € X;, we obtaia
the following G-module structure of (X3, Z/2Z): '

oCmb, o8m8+8, odomis+C ody=1a g,-x,w.

ohim Ao, oBomBy+0, oBymBy oBymBy+8, oBm Bo.
Lot $0 = rw) (mmod 2). Then “
b= Ao+ A+ A3+ 4+ 8.

Since in H(X,Z/2Z) one has $0) U x4 = X3V x¢ = 1, it follows from lemma 4.2 that res(x() Udys) = 1.
Noting that res(x) = S oweletVy = ($¢2)s €)1, One now uses the form of the relation (4.13) and lemma
4.8 to show that V; is & free F;[G}-module generated by A, and By. Now )

r“(‘o) - Bo + 91 + Bz + Ba - Spaﬁo.

F

oo that the Koch invariant of V,, and hence of the tower (X, ¢), is given by -

tmBoUsBo = BoU(Bo+B3+8)m 1.
[a]
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