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ABSTRACT

In this thesis, I mainly study the forms of a smooth projective variety over a fi-
nite field & and the attached Hasse-Weil zeta functions. I also study the forms of a

scheme.

The study begins with understanding the relationship between étale cohomology
and the Hasse-Weil zeta function of a smooth projective variety over k. In order
to classify forms of a quasi-projective variety V over a perfect field K, I study non-
abelian cohomology and Galois descent to give a proof of the bijection between the
equivalence classes of K’/ K-forms of V and H'(Gal(K'/K), Auty:(V)), where K’/ K
is some Galois extension. I also present explicitly forms of elliptic curves and their

corresponding Hasse-Weil zeta functions.

The second part of my thesis is focused on forms of a scheme, especially in the affine
case. This is a generalization of forms of a variety. I define an étale form of a scheme
and generalize Milne’s definition of the first Cech cohomology of a non-abelian sheaf
to any (not necessarily abelian) presheaf. I prove there exists an injective map in the
affine case from the set of equivalence classes of affine étale forms into the first Cech
cohomology of a contravariant functor. I prove that the definition of an étale form of
a scheme is compatible with the definition of a form of a variety over a perfect field.
I also prove that the first Galois cohomology can be canonically identified with the

first Cech cohomology when the base is Spec k for some perfect field k.

iii






ABREGE

Dans cette these, j’étudie les formes d'une variété projective douce au-dessus d’un
corps fini k et les fonctions zeta d’Hasse-Weil ci-jointes. J'étudie également les formes

d’un schéma.

L’étude commence par l'arrangement le rapport entre la cohomologie étale et la
fonction zeta d’Hasse-Weil d’une variété projective douce au-dessus k. Afin de clas-
sifier des formes d’une variété quasi-projective au-dessus d’un corps parfait, j’étudie
la cohomologie galoisienne non abélienne et la descente galoisienne pour fournir
des preuves du bijection entre K'/K-formes de V et H(Gal(K'/K), Autg (V)),
ou K'/K est galoisien. Je présente également explicitement des formes de courbes

elliptiques et de leurs fonctions zeta d’Hasse-Weil correspondantes.

La deuxiéme partie de ma these est principalement concentrée sur des formes d’un
arrangement, particulierement dans la caisse affine. C’est une généralisation des
formes d'une variété. Je définis une forme étale d’un schéma et trouve une preuve
dans le cas d’affinage de l'existence d’une carte injective de ’ensemble de classes
d’équivalence de pour formes affines étales dans la premiére cohomologie de Cech

d’un functor contravariant.
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CHAPTER 1
Introduction

Given a smooth projective variety X of dimension d defined over a finite field k = F,,,
one can attach to it its Hasse-Weil zeta function Z(X/F,, T):

TT

)
T

Z(X/Fy,T) =exp y _ #X(Fy)

r=1

where # X (IF,;+) is the number of F,-points of X.

Using étale cohomology, one can prove the Weil’s conjectures and the following for-
mula:

__1)1'-1—1

2d
Z(X,T) =[] P(x, 7)Y,
=0

where P(X,T) = det(1 — (Fr')*T|H*(X,Qg))(i = 0,1,...,2d) and Fr is the geomet-

ric or relative Frobenius map. Chapter 1 is devoted to this purpose.

Suppose X is another smooth projective variety defined over k and let K/k be a
Galois extension, then X is a K/k-form of X if X is isomorphic to X when both are

considered defined over K, ie. X X K =2 X x; K.

Since Galois descent (or coefficient extension in the language of categories) is satis-
fied, not only can we classify all forms of a smooth projective variety over k£ using
non-abelian cohomology, but also there is a close relation between the Hasse-Weil

zeta function of a smooth projective variety and the zeta function of a form of it.



Chapter 3 and 4 are dedicated to this purpose. Chapter 5 provides concrete examples

of varieties in order to illustrate such classification and relations.

Besides giving an overview of the definition of the zeta function of a scheme over
SpecZ based on Serre’s paper [22], the last chapter mainly focuses on forms of a
scheme, whose definition is based on [7]. A form of a scheme is a generalization
of that of a variety over a field. Let X be a scheme. I define an étale form of an
X-scheme Y and prove that when both X and Y are affine, there exists an injective
map from the set of equivalence classes of affine étale forms of Y into the first Cech
cohomology H'(X s, Aut(Y xx —)). Since Aut(Y xx —) is a contravariant functor
from X4 to the category of groups G but not an abelian sheaf over X, in general,
I define directly the Cech cohomology H'(X, &) for any contravariant functor &
from X to G. I also show that if X = Speck where k is some perfect field, the
definition of an étale form of an X-scheme Y coincides with that of a form of a vari-
ety over k, and moreover, H'((Spec k)¢, Aut(Y x; —)) can be canonically identified

with HY(Gal(k/k), Aut(Y x; k)) as pointed sets.



CHAPTER 2

Zeta functions of varieties over finite fields

2.1 Zeta Functions

Let k = F, be a finite field with ¢ elements. Let X be a projective variety defined
over k. For each positive integer r, X can also be considered as defined over the
finite field k, = Fy» with ¢" elements. Let N, be the number of k,-points of X. The

Hasse-Weil zeta function of X is defined as a formal power series

Z(X,T) = exp (i NT—7;> . (2.1)

When X/k is a smooth projective variety, we have the following famous Weil’s con-

jectures prdven by Dwork and Deligne:

Theorem 2.1.1 (Weil’s Conjectures). Let X be a smooth projective variety of di-
mension d defined over F,. Then

1. Z(X,T) can be written as

P(T)YPs(T) ... Poa_1(T)

2 T) = = T BT . Paa(T)

(2.2)

where Po(T) =1 —T, Poy(T) = 1 — T and for 1 < s<2d—1, P(T) € Z[T)

and
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/BS

PS(T) = H(l - as,iT)

i=1

for some non-negative integer By, where each o, ; 45 an algebraic integer with
A .
|as.i| = g2 for any choice of complex absolute value.

2. Z(X,T) satisfies the following functional equation:
1 xd
Z(X,"q—df) ::tQQTXZ(X,T)7

where x is the self-intersection number of the diagonal A of X %3 X.

The proof can be found in [8]. In the next section, we give a brief introduction to

étale cohomology and the expression of zeta functions in terms of étale cohomology.

2.1.1 Etale Cohomology

For general references to étale cohomology, see for example [19] and [26]. Here we

only recall some basic definitions.
Definition 2.1.2. Let X be a scheme. Define ét/X to be the category of X -schemes

such that the morphism C — X 1is étale for any object C in ét/X. Such a scheme is

called an étale X -scheme.

By properties of étale morphisms ([1], p.116), any morphism between objects in ét/X
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is also étale.

Definition 2.1.3. The étale site Xg consists of the category ét/X and coverings
each of which is some set {Y; Yy | i € I} of morphisms in ét/ X, where I is some

index set, such that' Y = ‘UIqSi(Y;).
S

It is easy to verify that X is actually a site in the sense of Grothendieck. For the

definition of Grothendieck’s site, see the Appendix or [26], p.24.

The category of abelian sheaves on X is denoted by Sy, ;

ét?

an object in Sy,, is

also called an abelian étale sheaf on X.
For each abelian sheaf F' on X, and for each étale X-scheme Y, general theorems
([26], Chapter 1) guarantee the existence of cohomology group H(Y, F') with values

in F' for any integer ¢ > 0. HI(Y, F) is also denoted by H?(X«;Y, F). When Y is a

final object in X, i.e. Y 2 X, Y is omitted and the notation H9( X, F') is adopted.

2.1.2 (-adic Cohomology

For any abelian group GG endowed with the discrete topology, we also use GG to denote

the constant sheaf on Xy with respect to G.

Let £ be a prime number. Using the constant sheaves Z/¢"7Z on X4, where n > 1 is
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an integer, we define ([18], p.114-116)
H' (X, Ze) = limH" (X, 2/ 0T,
and

H"(Xet, Qp) := H" (Xet, Ze) @z, Qo

Let X be a scheme of finite type over an algebraically closed field &, then H™ (X, Q)

has the following well-known properties ({11], p.453):

H"(X¢,Qp) can be considered as a vector space over Q.

H"(Xe,Q¢) =0 when r > 2dim X.

o H"(X, Q) is a finite dimensional vector space over Q, if X is proper over k.
H"™ (X4, Q) is a contravariant functor in X.

o There is the cup product structure,
H" (X, Qe) x H*(Xet, Qo) — H™™° (X, Qy),

defined for all  and s.
o (Poincaré duality) Suppose X is smooth and proper over k with dimension n,

then H?"( X4, Q) is a 1-dimensional vector space over Q; and the cup product,

HY( Xy, Qp) x H (X, Qo) — H*™( X, Qu),

is a perfect paring for each 0 <17 < 2n.
o (Lefschetz trace formula) Let & be an algebraically closed field, X be a complete

smooth variety over k, and ¢ : X — X be a regular map with isolated fixed
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points. Denote the number of fixed points of ¢ with multiplicity by #¢, then

#eo = Z ) (P H (Xat, Q))- (2.3)

o (Comparison Theorem) Suppose X is a smooth scheme over the field of complex
numbers C and A is a finite abelian group, then H"(X4, A) can be canonically
identified by the singular cohomology of X/C, i.e. there is a natural isomor-
phism:

H'(X/C,A) = H (X4, A),

where the X on the left hand side is regarded as a complex manifold. In

particular, let A =Z/¢"Z, then
H'(X/C,Z/6"Z) = H(Xe, Z/O"Z)).
So
H'(X/C,Z¢) = limH"(X/C,Z/0*Z) = UimH" (X, Z/O"Z) = H" (X1, Ze),

and hence

H™(X/C,Qe) & H(Xu, Qp).

2.1.3 Frobenius Maps
In this section, I mainly follow notes by Gabriel Chénevert ([4]).

Let k be the finite field IF,, where ¢ = p" for some prime number p and some

natural number n > 1. Let X be a scheme over k. Denote by X the scheme X Xg kK,
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where k is the algebraic closure of k.

Definition 2.1.4. The absolute Frobenius map Frx : X — X is defined in the
following way:
e As an endomorphism of the topological space X, Frx is the identity map.

e For any open set U C X, we have the ring homomorphism:

Frﬁ,x :0x(U) — Ox(U), ar— o, YVa € Ox(U).

Definition 2.1.5. The relative Frobenius morphism Fr, is defined on X as follows:

Fr, : X — 77 Fr, := Frx Xy 1Spec% :

Definition 2.1.6. The arithmetical Frobenius morphism Fr, is defined as follows:

FI’Q = 1X Xk P‘rspeCE .

Definition 2.1.7. The geometrical Frobenius morphism Fry is defined as follows:

-1

Fry :=1x X4 FrspecE ,

which is the inverse of the arithmetical Frobenius morphism.
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Example 2.1.8. Let X = Spec A where A is the polynomial ring Fplz] for some

finite field F,, where p is a prime number. Then
X = Spec (F, ®r, A) = SpecF,|z].

We have:
e Fr, corresponds to the map F,[z] — F,[z], z — 2P.
e Fr, corresponds to the map F,z] — F,[z], z + 2, a — aP,Va € F,,.
e Fr, corresponds to the map F,lz] — Fylz], z +— z, a — av,Va € F,.

e Fry corresponds to the map F,[z] — F,z], z + 2P, a — aP,Va € F,.

Proposition 2.1.9. Let X be a scheme of characteristic p. For any étale sheaf F

on X = X xi k, Fr, and Fr, = Fr;! induce the same map on cohomology groups:

Fry = B} s 1 (X, FiF) — H'(Ra, F).

Since FryF' = F' if F is a constant sheaf, we see that Fr, induces a linear transfor-

mation of the Q-vector space H™(X,Q,) for any r > 0.

2.1.4 Weil’s Conjectures

Using the Lefschetz trace formula, one can prove the following result ([19], p.288):
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Theorem 2.1.10. For any smooth projective variety X/F, of dimension d,
2d ‘
—1}i+1
z(X,7) =[] Px, )",
=0

where P,(X,T) = det(1 — (Fr!)*T|H (X, Q.))(i = 0,1,...,2d). Here Frf|H'(X, Q)
is the matriz representation of relative Frobenius morphism as a linear transformation

on H'(X, Q) which is regarded as a Qq-vector space.

When X is a scheme of finite type over Z, we have the fact that a point x € X is
closed in X if and only if the residue field k(z) is ﬁnite.. Let X be the set of closed
points in X and N(z) the order of k(z) for any = € X. The number of closed points
whose orders of residue fields are the same is finite. One can define the zeta function

of scheme X to be the formal product ([22]):

(X,8)=1] S (2.4)

1- N(z)~
xe)? (iE)
This definition coincides with the definition of Hasse-Weil zeta function when the

scheme X is of finite type and defined over F,. In fact in this case, for any = € X ,

the residue field k(x) is a finite extension of F, and we have

N.(x) = glF@)Fd],

So
X8} — 1
C( 78) - H 1— (q—s)[k(m)?Fo] ’
ceX
Let T = ¢, then
1
s) = 1 T 29)

zeX
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Denote the rightside of (2.5) by Z(X,T), then

[ee] 1 o0 1 Qn
Z(X’T):Ul 11 1—T":I_Il<1—T“> ’

zeX
[k(z):Fq}=n

where a,, is the number of closed points whose residue fields are finite field extensions

of F, with degree n. So

log Z(X,T) = Zan log (1 _1Tn> _ i (“"i T;)

n=1 i=1

n=1 i=1
x© i
5 dad TJ . (2.6)
>((z

i
On the other hand, let k; be the finite extension of I, with degree j. Denote the set
of points of X in k; by X(k;). Each point can be identified with a pair (z, f) for
some z € X and some injective F,-homomorphism of k(x) into k; which implies k(z)
must be a subfield of k; and hence [k(z) : F,]|j. Also for each z € X, when k(z) is a
subfield of k;, k(x)/F, is a finite Galois extension and hence the number of distinct

injective homomorphisms of k(z) into k; is just [k(z) : Fy]. So

E doyg . (2.7)

Hence we can replace dill'dad in (2.6) with #X(k;) and we obtain
j .

log Z(X,T) = Z#x

SO

Z(X,T) = Z(X,T).
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Example 2.1.11. Let X be the projective n-dimensional space P" defined over a

finite field k = F,. X is clearly a smooth projective variely and for any positive

integer T,
#P'(Fyr) =1+¢ +¢" +...+¢".
Hence
n - - J T‘TT
Z(P",T) =exp(} > (¢') —)
r=1 j=0
1 1 1
T 1-T 1-—qT 1— g7’

which is clearly a rational function.

On the other hand, when 0 < i < 2n ([19], p.245),

, 0 4 odd,
dierHl (Pn, Qg) =

1 i even,

so when i is even, Fr' acts on H'(P*, Q,) as a multiplication by ¢*/* ([20], p.3). Hence

when 0 <1 < 2n,

. . i odd
det(1 — (Fri)*T|H'(P", Qy)) =

1—¢"?T i even ,

and we obtain the same zeta function for P, as predicted by Theorem 2.1.10.

Example 2.1.12. In the case of an elliptic curve E/F, ([12], p.248), H(Es, Qe)
can be identified with V;(E) which is the dual of V,(E) = T)(E) ®2Q, where T;(E) is
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the Tate module of E/F, and £ is any pm'rﬂe number not equal to p. For any positive
integer m prime to p, the m-torsion subgroup of E, Elm| = Z/mZ x Z/mZ, and
therefore, Vy(E) is a Qp-vector space of dimension 2, and so the dimension of V,*(E)
over Qg is also 2. The zeta function of E/k has the following expression:

det(1 — FryT|V7(E)) 1 — Te(Fe)T + qT?
1-T)(1-¢T) — (A-T)(1~qT) "’

Z(E,T) = (2.8)

where Tr(Fr;) = Tr(Fr) |V (E)). Using the Lefschetz trace formula (2.3), since E

has dimension 1, we have

2

#E(F,) = 3 (<1 Tr(F;

i=0

H' (B4, Q)

= Tr(Fr; H*(Eq, Q)

H(E4,Qp)) — Tr(Fri|H (E s, Qr)) + Tr(Fr;

=1-—Tr(Fr)) +q.

So
Tr(Fry) = 14 q — #E(F,).

Now let E be a supersingular elliptic curve (for the definition, see [12], p.248-251)
defined over T, for some prime number p (e.g., y¥* = z* + 1 defined over Fs, and
y2 +y = 2® defined over Fy), then #E(F,) = p+ 1. So in this case Tr(Fry) = 0 and
the zetd function of E is

1+ pT?

A=D1~ pT) (29)

Z(B,T) =

On the other hand, let us look at a specific supersingular elliptic curve E given by

3 —n’z over F, for some positive integer n and p = 3(mod 4) such that p{ 2n.

Yy =z
To see E is supersingular, since p = 3(fnod 4), p > 2 and therefore the equalion

23 — nx = 0 has three distinct roots over F,, the algebraical closure of F,. So from
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[25], p.140, to prove E is supersingular, it is enough to show the coefficient of ¥~

3 p-1

in (8 —nz)"T s zero. On the other hand,

(:L,S — n2$)%l = .’E%(JIQ — n2)%1

So it is enough to show the coefficient o =" in the binomial expansion of (r?—n? Byt
g

is 0. Consequently one has to show there is no positive integer b satisfying 2b = —’%i,

i.e. 41 (p—1). But this follows from p = 3(mod 4).

Using Gauss sum and Jacobi sum, one can prove ([14], p.56-61):

#E(Fy) =1+p" — (ivp) — (—ivP), (2.10)

for any positive integer r. Hence

Z(E,T) = exp 2 #E(FPT)Y:>
— exp f; (149 = Gy - (—iﬁ)");’;—)
- 171? . _1pT Xp (2 ( —(=p)" - (—p)’”) Y;T)

1 o . . T2r
CE IO R (‘ 2 e )
1

_ e T2
S a-na=pn Y <' 2D “—">

1+ pT?
(1-=7)1-pT)

So we obtain the same zeta function for E.



CHAPTER 3
Non-abelian Cohomology

3.1 Cohomology of Profinite Groups

A profinite group G can be defined as lim G;, where {G; |z € I,1 is an index set} is
a projective system of finite groups each of which is endowed with the discrete topol-
ogy. Equivalently, a profinite group G can alsb be deﬁned‘as a topological group that
is Hausdorff, compact, and totally disconnected. In particular, every Galois group is

profinite. Conversely, every profinite group is a Galois group of some field extension

([21], p.16).

Example 3.1.1.

1. The Priifer group 7= l&n Z/nZ is the Galois group of the field extension FP/IF,,
for any prime number p.
2. For any prime £, the ring of (-adic integers Zy can be defined as follows:

Zg = lim Z/0"Z,

which is clearly a profinite group and is also a commutative ring. For any finite

field ¥, where p is a prime number, consider the following Galois extensions:

FpCszCFpng---C]Fme' .
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Define
o<
Fpeo = nL:JO]pr .

Then we have ([21], p.6):

Gal(F e /F,) = (Zg, +).

Definition 3.1.2. Let G be a profinite group and let A be an abelian group endowed
with the discrete topology (the operation on A is written additively). The group A is
called o (discrete) G-module if we have a continuous map Gx A — A, (g,a) — g-a,
such tﬁat:

e l-a=a,

e (gh)-a=g-(h-a),

eg-(a+b)y=g-a+g-b,
for any g,h € G and any a,b € A. Here 1 is the identity of G. The product g - a is

sometimes denoted also by g(a) or ‘.

In the notation above, let
CYG,A):={f:G"— A| [ is continuous},
for any integer ¢ > 0, and define the coboundary operator,

d: CYG,A) — (G, A),
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by
(df)(glygfb e 7gq+1) =4g1- f(927 e >9q+1)

q
+ Z(——l)lf(glyg% 3 GiGis1s -5 Ggit)
i=1

+ (=1 f(g1,92,- - 9q)-

Define g-th cohomology group
HY(G,A) = 721G, A)/BYG, A),

where

Z9(G, A) = ker(d : CU(G, A) — CT(G, A)),

and

BY(G, A) = Im(d : CT(G, A) — CYG, A)).
Let Y = {U C G | U is open in G and U <1 G}, then ([21], p.114)
H'(G, A) = limH'(G/U, AV),
U
where U runs over U.
Example 3.1.3. For H(G, A), define B® = {0}, the group with only the identity
element, and define G° = {1}. Then clearly
C%G,A) ={f: {1} — A},

which can be canonically identified with A. We also have

df(g) =g-f(1) — (1),
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for any g € G. Hence
ZG.A) = {f € CG, A) |g - f(1) = f(1) for any g € G} = A,

where AC is defined to be {a € A | g-a=a,Vg € G}.

For HY(G, A), we have
HY(G, A) = Z(G, A)/B'(G, A),
where
ZNG,A)={[:G— A| f is continuous, f(gh)=g- f(h)+ f(9),Yg, h € G},

and

BYG,A)={f:G — A| f is continuous and for some a € G,

flg)=9g-a—aVge G}

Example 3.1.4. (The Kummer sequence) Let k be a perfect field, then its algebraic
closure k is a Galois extension of k. Given a positive integer n, suppose characteristic

of k is 0 or is prime to n, then we have the exact sequence:

1 — pn(k) SECE T S,

where p, (k) is the group of the n-th roots of unity in k. Hence we have the following
exact sequence:
L= G, pm(R)) = H*(Gi,B") = HO(G K)

— HY (G, ptn(k)) = HY(G,, k),
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where Gy, = Gal(k/k). Clearly HO(Gy, tin(k)) = pin(k) and H*(Gy, k") = k*. From
Hilbert’s Theorem 90, we have Hl(Gk,EX) 18 trivial. Hence the following sequence 1s

exact:

1 — pn(k) = k< 5 B — HY (G, pn(k)) — 1.
Therefore we have the isomorphism:

H' (G, un(k)) Z B/ (k)" 3.1)

In particular, let k = F, for some prime number p ( p { n and not necessarily

pn(E) C KX ). Since k* is cyclic of order p — 1, we have k™ /(k*)? = sy and

1, p=3orp=2(mod3),
kX (k) = (3.2)

M3, D= 1(m0d 3)1

and
.

pa, p>2 and p = 1(mod 4),
K/ (k)

IR

pa, p>2 and p= 3(mod 4), (3.3)

1, p=2

3.2 Non-abelian Cohomology

This section mainly follows [24], §5.
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When A is not abelian, we do not say A is a G-module any more, but a G-group if
we have a continuous map G x A — A, (g,a) — g - a such that (the operation on A
is written multiplicatively because A may be not abelian):

e l.-a=a,

e (gh)-a=g-(h-a),

* g-(ab)=(g-a)(g-b),
for any g,h € G and any a,b € A. Here A is also endowed with the discrete topology.
Similarly, when A is just a set, we give A the discrete topology and call A a G-set if
we have a continuous map G x A — A, (g,a) — g - a such that:

o 1-a=a,

* (gh)-a=g-(h-a),

for any g,h € G and any a € A.
Definition 3.2.1. Define

HY(G,A)=A°={ac Alg-a=a,VgeG}
Let

ZNG,A) ={f:G — A| [ is continuous, f(gh) = f(g)(g- f(h)),Vg, h € G}.

Elements in Z'(G, A) are called 1-cocycles. Two cocycles fy and fo in Z1(G, A) are

called to be cohomologous if for some b € A, we have

fo(g) =07 fi(g)(g - b), Vg €G.

It is easy to check this is an equivalence relation on Z'(G, A), denoted by ~.
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Define HY(G, A) = ZY(G, A)/ ~. We have the unit cocyle
f-G—A flg=1VgeC.
The equivalence class of the unit cocycle is called the neutral element of H'(G, A)

and is denoted by 0 or 1. HY(G, A) is a pointed set with respect to its neutral element.

Similarly, the identity element of A is in H%(G, A). Define the neutral element
of HY(G, A) to be the identity of A. H°(G, A) is then a pointed set with respect to

its neutral element.

Consequently we can define exact sequences, similar to the abelian case, although

now H'! is just a pointed set, and in general we do not have H? cohomology sets.
Definition 3.2.2. Let A, B and C be pointed sets whose neutral elements are ag, b
and cq respectively. Given the following sequence,

AS BSC, (3.4)
where afag) = by and B(by) = co, we say (3.4) is exact if a(A) = ker(f3), where
ker(8) = {b € B|B(b) = co}. The set ker(B) is called the kernel of B.

Similar to cohomology groups in abelian case, let
U={UCG|UisopeninGand U <G},

then

HY(G, A) = lim HY(G/U, AY), (3.5)
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where U runs over U ([24], p.45).

Let B be a G-group and let A be a subgroup of B closed under the action of G
(iie. g-a € A for aﬁyg € G and any a € A). Let the map v : A — B be
just the inclusion map. Denote by B/A the set of cosets of A in B. Clearly B/A
is a well-defined G-set. It is obvious that 1, the coset that 1 € B belongs to, is
in H°(G,B/A)! . We call 1 the neutral element of H*(G, B/A). Define a map
§: HG,B/A) — H*(G, A) as follows:

For any ¢ € (B/A)®, let ¢ € B represent ¢. Define the map 6(¢) : G — A by

3(e)(g) = ¢ 'g(c), Vg € G.

First, §(¢) is a cocycle. Indeed, for any ¢y, 92 € G,

8(2)(91)91(8(€)(92)) = ¢ ' g1(c)g91(c " g2(c))
=c 'g1(c)g1(c ") g1(g2(c))
= ¢ g1(g2(c))

= 6(C)(9192)-

Suppose ¢; € B also represents ¢, then ¢; = ¢b; for some b; € B. Hence

8(c1)(g) = ¢ gler)
= (cb1) ' g(chy)

=br'cg(c)g(br).

' Given a G-set S, define HY(G,5) = {s € S|g-s = s for any g € G}, which is
g g
also denoted by S¢.
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Hence 6(¢;) and §(¢) are cohomologous. Finally,

hence § maps the neutral element in H°(G, B/A) to the neutral element in H(G, A).
So 4 is well-defined and consequently the following proposition holds.

Proposition 3.2.3. The following sequence is exact as pointed sets:

1 — H%G, A) — H(G, B) —» HY(G, B/A) > H'(G, A) — HY(G, B).

If A is not only a subgroup of B but also normal in B, it is easy to see B/A is a

G-group and we have a stronger result:

Proposition 3.2.4. If A is a normal subgroup of B, the following sequence is exact

as pointed sets:

1 — HG, A) — H*(G,B) — HY(G, B/A) & HY(G, A) — HY(G, B) —» H (G, B/A).

If one further assumes A is a subgroup of the center of B, we have the following

result: ([24], p.55)

Proposition 3.2.5. Suppose that as G-groups, the sequcnce

1-A—-B—-(C-=—1
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18 exact and A is a subgroup of the center of B, then the following sequence is exact:

1 — H(G, A) — HY(G, B) — H°(G,C)

2 HYG, A) — HYG,B) —» HY(G,C) — H*(G, A).

Example 3.2.6. Let k be any finite field, G = Gal(k/k). Then we have ([23], p.151)
HYG,GL,(k)) = 1. In particular, when n = 1, HY(G,GL,(k)) = H'(G, k) = 1,

and we recover the famous Hilbert’s Theorem 90. We also have the exact sequence

X

1 — SL, (k) — GL, (k) 5% & — 1,
which gqives the exact sequence
HY(G,GLa(k)) — HY(G, k") % HY(G,SL.(R)) & HY(G,GL.(R)) = 1,

1.€.

GLa(k) 25 k* 2 HY(G,SLa (%)) 2 1.

Since GL, (k) det kx s surjective, ker(a) = k*, and therefore the image of a con-
tains only one element 1, which is the neutral element of H'(G,SL,(k)). Hence

HY(G,SLy(k)) = ker(B) = a(k*) = 1.
The following lemma is used in the example bellow:

Lemma 3.2.7. Let A and B be G-groups and let ¢ : B — Aut(A) be a group

homomorphism such that

(w(g-0))(g-a) =g- ((¢())(a)), (3.6)
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forany g € G, anya € A and any b € B, then the semi-product A x, B with respect
to @ is a G-group, the action of G on which is defined as g - (a,b) = (g -a,g-b) for
any g € G and any (a,b) € A x, B.

Proof. First for the identity element 1 of G, 1+ (a,b) = (1-a,1-b) = (a,b) for any
(a,b) € Ax, B.

For any g1,92 € G, (0192) - (a,0) = ((9192) - a,(9192) - b), and g1 - (g2 - (a,D)) =
g1~ (92 “a,92-b) = (g1- (92 : a),g1 : (92 : b)) = ((9192) " a, (9192) : b)- Therefore,

(9192) - (a,b) = g1 (g2 - (a,])).

Finally, for any g € G, and any (a;,b1) and (aq,b2) € A %, B,

g9 - ((a1,01)(az,b2)) = g - (al((so(bl)) (a2))vb1b2>
= (9 : (al ((so(bl))(az))>,g : (b1b2))
= ((g~a1> <9' (‘P(bl))(%))):(g'bl)(g'b2)>
)

= ((g a1) ((elg - 0)) (9 ) ) (g b1)(g - ba)
=(g9-01,9-b1)(g-az,g-ba)

( (a1, bl)) (g (a2, bg)).

Hence A %, B is a G-group. O

Example 3.2.8. Let k = F, for some odd prime p > 3. Then the absolute Galois

group Gy, = Gal(k/k) = 7. For any positive integer m, let w,, be the group of m-th
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roots of the unity in k. Since p > 3, us and po are cyclic groups with order 3 and 2
respectively, and consequently we can let po = {£1} and ps3 = {1, o, a*}, where « s
any non-trivial third root of the unity in k. Clearly Gy, acts trivially on py. For any

g € Gi, any a € us and any b € uy, define

g-(a,b)=(g-a,g-b)=(g-a,b). (3.7)

Now we will verify that us X pa becomes a Gy-group under the action (3.7) using
Lemma 3.2.7. Here py acts on us by the unique non-trivial way. It is enough to

show
(g-0)-(g-a)=g-(b-a), (3.8)
i.e.
b-(g-a)=g-(b-a). (3.9)
Whenb=1,b-(¢g-a)=g-aandg-(b-a) =g-b, so (3.9) holds. When b= —1,
b-(g-a)=(g-a)*=g-(a®) =g-(b-a), hence (3.9) is also true. Therefore Lemma

3.2.7 shows p3 X po is a G-group under the action (3.7).

So as Gy-groups, we have the following exact sequence:
1 — pi3 — pi3 X pg — pig — 1.
Consequently, the following sequence is exact:
H®(G, pg) — H'(Gy, pz) — HY (G, pz X pip) — H' (G, pia)-
Since py CFy, HY (G, pa) = po. (3.1) gives

HY(Gr, ps) = &/ (),
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and

H' (Ghy pa) 2 B (k¥

Hence we have the exact sequence:

pr = K/ (K*)* — H (G, ps % pa) — B/ (k)2

When p = 2(mod 3), (3.2) gives k*/(k*)® = 1. Hence the following sequence is
exact:

1 — HY (G, ps % o) — k™ /()2 (3.10)

When p = 1(mod 3), similarly, the following sequence is exact:
po — pig — H(Gy, pig X pig) — k*/(k*)%.
Since the homomorphism ps — ps 1s trivial, we have the exact sequence:

1—>,u3——>H1(Gk7u3 Nug)——)kx/(kx)Q. (311)

Now I will determine the structure of H* (G, ps X p2) with the help of (3.5). In this

case, we have

HY(Gr,y 13 % piz) = lim HY(Z/nZ, (g 2 pug) /), (3.12)

where ky = Fyn. If p3 C T, since 2 — 1 = (z — 1)(z> + z + 1), —3 is a quadratic
residue of p, which is equivalent to say p = 1(mod 3). Therefore when p = 1(mod 3),
ps C F, and consequently both Gal(k,/k) = Z/nZ and Gal(k/k,) act on ps x o
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trivially. So when 6|n,
HY(Z [N, (133 3 o) @50y = HYZ /0, pg % pio)
= Hom(Z/nZ, ps X us)
= pg X .
Hence (3.12) gives

HY(Gr, i3 % pia) = pig X pra. (3.13)

If p# 1(mod 3), us ¢ Fp. But now pz C Fylz]/(z? + z + 1) 2 Fpe, so

_ = 0(mod 2),
(i 4 ) o = 1070 2 0 = Omod )

o n = 1(mod 2).

Hence,
HY(Z/nZ, (ps x uz)Gal(E/k")) = HYZ/nZ, j13) = pa, n = 1(mod 2). (3.14)
When n = 0(mod 2),
HY(Z/nZ, (3 % p12) ' F/¥)) = HY(Z /0T, pi3 % p2)-
Clearly an element f € ZY(Z/nZ, s % ps) is fully determined by f(1). We have the
following cases:
1. f(1) = (a,1). In this case one can easily show that

a,1), m = 1{mod 2),
Fom) — (a;1) ( )
(1,1), m = 0(mod 2),
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for 0 < m < n. Hence such f is an element in Z*(Z/nZ, pu3 % pg). Now we calculate

(@, )71 f(m) ("(, 1)) = (@, 1)/ (m) (o™, 1):

(@, D{a, D)(c?, 1) = (a?,1), when m = 1(mod 2),

™m

(0 1)f(m) (o, 1) =
(a2, 1)(1, (e, 1) = (1,1), when m = 0(mod 2).

Also
(@, 1) f(m) (™(a?,1)) = (@, 1) f(m) (@0, 1)
(@ 1)(a, 1)(a%a2, 1) = (a8, 1) = (1,1), when m = 1(mod 2),
(@ 1)(L,1)(@% 1) = (%, 1) = (1,1),  whenm = O(mod 2).

Hence we have f ~ g in ZYZ/nZ, uz % uo), where g(1) = (1,1) or (c?,1).

2. f(1) = (a, —1). Similarly we have

F2)= FO+1) = F1)Q) = (@, 1),
F3) = F(L+2) = F(1) @) = (1,-1),
F) = F(L+3) = S 3) = (o0 1) = £(1).
This implies f(m) # (1,1) for any m > 0. But that is impossible (because in Z/nZ,

m = 0 when m = n, and we must have f(0) = (1,1)).

3. f(1) = (1,=1). We have f(2) = f(1 +1) = fF1)'f(1) = (1,-1)'(1,—1) =
(17 _1)(1= _1) = (1’ 1) So f € Zl(Z/nZ, M3 A ,MZ):

Hence there are at most two equivalence classes [y1] and [y2] in HY(Z/nZ, iz x p2)
whose representatives y; and Y2 can be chosen to be the unit cocycle and v2(1) =
(1,—1) respectively. Since for any element (a,b) € uz X g and any g € Z/nZ,

the second component in ((a,b)™)(1,1)9(a,b) is b™1b = 1, so y; and 2 can not be
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cohomologous in Z*(Z/nZ, ps X p2). So we conclude that
HYZ/nZ, p3 % pp) = pg, n = 0(mod 2). (3.15)

(3.14) and (3.15) give:
HY (G, pi3 X pig) = pug. (3.16)

The proof gwen above shows that H'(Gy,us X po) can be regarded to have some

intrinsic group structure, and (3.13) and (3.16) hold as groups.



CHAPTER 4
Galois Descent and Forms

In this chapter, we will introduce Galois descent in a general setting using the lan-
guage of categories. The objective is to prove Theorem 4.3.3 and obtain a relation
between the action of the relative Frobenius map (or equivalently, geometric Frobe-
nius map) on the étale cohomology of a given smooth projective variety over a finite
field and the action on the forms of the variety. From such a relation, we can get
a relation between the Hasse-Weil zeta function of a smooth projective variety and

those of its forms. I mainly follow [3] in this chapter.

4.1 Galois Descent

The concept of Galois descent can be explained in the following example coming

from classical Galois theory.

Example 4.1.1. Let F be a field and L/F a Galois extension. Then F' can be viewed
as a subset of L. Galois descent here means that x € L is in F if and only if x is
fized by Gal(L/F). But this is a basic result in classical Galois theory.

The formal definition of Galois descent is given below in terms of coefficient exten-

sion.

31
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Definition 4.1.2. Let €, and &€, be two categories and K/k be a Galois field exten-
sion with Galois group G. A coefficient extension from k to K consists of a covariant
functor F from €; to € and for any objects X and 'Y in €, a (left) G-action on
Iso(F(X), F(Y)), the set of isomorphisms from F(X) to F(Y) in &, such that the
following conditions hold:
1. For any objects X, Y and Z in €, any isomorphism [ : F(X) — F(Y) and
g: F(Y)— F(Z) and any element s € G,

(g0 f) = (%) o (°).
2. For any objects X and Y in &4,
F(Iso(X,Y)) = Iso(F(X), F(Y))°,
where

Iso(F(X), F(Y))° = {a € Iso(F(X),F(Y)) | ‘@ = a, Vs € G}.

Example 4.1.3. Let k be a field and K/k be a Galois extension with Galois group
G = Gal(K/k). Let € be the category of finite dimensional vector spaces over k with
linear maps of vector spaces over k. Let €y be the category of vector spaces over K
with linear maps of vector spaces. Define the functor F': € — € by F(V) =V @, K
for any object V in €; and F(f) = f®1 for any linear map f : Vi — Vo in &€;. Since
for any positive integer n, GL,(K)® = GLy(k), where g € G acls on any element
M € GL,(K) in the usual way. Therefore for vector spaces Vi and Vo in €y, we

have

F(Iso(V1, Va)) = Iso(F(V1), F(V2))“,



4.1 Galois Descent 33

after adopting the convention that 3¢ = @ (Iso(Vi, V2) # 0 if and only if Vi and Vs

have the same dimension over k).

From now on, the categories €, and €, will be denoted by €; and Cx respectively.

It is easy to prove the following proposition.

Proposition 4.1.4. Let k, K, G, € and €k be as above and suppose there are a
covariant functor F from € to €k and a left G-action on Hom(F(X), F(Y)) for
any two objects X and Y in €, such that
1. For any objects X, Y and Z in &, morphisms f : F(X) — F(Y) and
g: F(Y)— F(Z), and any element s € G,

9o f)=(%9)o(*f)
2. For any objects X and Y in €,
F(Hom(X,Y)) = Hom(F(X), F(Y))°.

Then we have a coefficient extension after restricting the G-action to isomorphisms.

For any field L, denote by Varj, the category of (quasi-projective) varieties over L
with morphisms of varieties over L, and denote by Vary 1 the category of (quasi-
projective) varieties over L with isomorphisms of varieties over L (Vary 14, is a cate-
gory since for any variety V over L, the identity map idy : V — V is an isomorphism

over L).
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Theorem 4.1.5. ([3], p.18-24) Let k, K and G be as in Definition 4.1.2. Let the

functor F : Vary — Vary be defined as:
F(X)=Xg =X x; K,
and
FX L vy = (e 255 vy,

For any g € G and f € Hom(X, Yi), where objects X and Y are in Vary, define
the action 9f of g on f to be the morphism which makes the following diagram

commutative:
Xx AN Y

1x, % g*T ' lekx g*

Xg — Yg
9f

where g* is the endomorphism on Spec K induced by g, so
I =1y, x g7)7 o fo(lx, x ¢").

Then we have a coefficient extension after restricting the G-action to isomorphisms,

denoted by F': Varg o — Varg iso-

Example 4.1.6. Let X = Y = Speck[z] for some field k. Let K/k be a Galois
extension with Galois group G. Let ¢ be an endomorphism of X defined over K

which corresponds to a ring endomorphism

ot Klz] = K[zl z — f(2),
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for some polynomial f(x) € Klz]. By abuse of notation, denote ¢* by f. Any

element g € G induces an isomorphism of K|z], denoted by g:
g: Klz] - K[z}, z — z, a— ¢{a), Va € K.
Clearly g7! = F Consequently, % corresponds to the endomorphism f, of Klx]

which makes the following diagram commutative:

Klz] —1— K[a]

al lﬁ

Klz] —— K|z

g

So
fg = 5 © f © E—l-
Suppose
f= zaix"’, (4.1)
i=1
for some positive integer n and some a; € K, i =1,2,...,n, then for any polynomial

h=3"" bat € Kla],

o (Z b:c) =Gofog! (Z W)
=1 =1
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Hence we have

P <Z g(bi)f) = Zg(bi)(fc](f))i,

=1 =1

1.€.

for any h € K[z). This is equivalent to say that for any K-point a € Al,

%(%a) = 9(p(a)).

For any field L and any group H, denote by PRep} the category with objects of
the form (V| ¢) where V is a finite dimensional vector space over L and ¢ is an H-
action defined on V, and morphisms being linear mappings of L-vector spaces that

are H-equivariant.

Denote the absolute Galois groups of k and K by Gy and Gk respectively. Clearly
we can regard G as a normal subgroup of G, and G = Gx/Gk. Consequently, for
the categories ﬂ{epf’“ and i)‘{epf" , we have a natural functor F' from ERepfk to %epf"
given by sending (V, ¢) to (V, ¢|G k) and being the identity mapping on morphisms
in ‘Repf’“. For any § € G, let s be a representative in Gy, (because G = Gi/G). For

any two objects (X1, ¢1) and (X3, ¢2) and any isomorphism

o

f+ F((X1, 1)) = (X17¢>1|GK) — F((X2,42)) = (X2,¢2|GK),

define the action of 5 on f by

f = ¢a(s) o fopi(s). (4.2)
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Theorem 4.1.7. (4.2) defines an action of G on the set of isomorphisms of any two

objects in %epr and %epL SN mepGK

s a coefficient extension with respect to such
action.

Definition 4.1.8. Suppose € EiN Cx and €, , ¢ are two coefficient extensions
from k to K. A morphism from F to F' is a triple (fx, fx,h), where fr: € — @

and fr : € — &€ are covariant functors and h : fxoF — F'ofy is an isomorphism

of functors,

ey

h zH
\F,O ; /

and for any two objects X andY in €, the following diagram is G-equivariant:

Tso(F(X), F(Y)) <%~ Tso(fx o P(X), fic o F(Y))

-~
~

hofa™ ~ ~ %
Iso(F' o fi(X), F' o fi(Y))

Under such definition of a morphism of coefficient extensions, we have ([3], p.91):

Theorem 4.1.9. Let Fy : Varg o — Varg o and Fy : f)‘{epg:f — ?Repgf be those as
defined in Theorem 4.1.5 and Theorem 4.1.7 respectively, where ¢ is a prime number
not equal to the characteristic of k. Fix a non-negative integer i. Define functor
fe + Vargio — ﬂ‘iepg’“ as follows: for any quasi-projective variety X/k, Fi(X) =
H* (Xet,(@g> and for any isomorphism f : X; — Xy in Varyi., Fe(f) = (f*)7F
where f* is the induced group isomorphism H'((X2)e, Qr) — H*((X1)er, Qo). The
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functor fx - lV(lT'KJSO — mepgf s defined similarly. Let X = X xix K. The

canonical isomorphism b : X Xk — Xx X, K induces the canonical isomorphism.:
R fio Fy(X) = H((Xk)a, Q) = H (X &, Qe) = Fp 0 fu(X),

and further (fy, fx, h*) is a morphism from Fy to Fy:

Va?‘K,Iso
F fx
froFy
P
Varg, 1so h* %epgf i
—_—
Faofy
fr 12
Gy
mep@e

In the above theorem, h = 1 if we identify X x; k with Xx xx K.

4.2 Forms under Coeflficient Extension

Let €at be any category, define the relation ~ as follows: for any two objects A and
B in €at, A ~ B if and only if there is an isomorphism f in €at between A and B.

It is trivial to show the relation ~ is an equivalence relation.

Definition 4.2.1. Let F': € — €k be a coefficient extension and ~ be the equiv-
alence relation on € described above. For any object X in €, define the collection

of € [Cx-forms of X to be:

E(Cx /€, X) = {Y € Obj(&) | F(Y) = F(X)}/ ~ .
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Theorem 4.2.2. Let Y be a €x/&-form of X and f : F(Y) — F(X) be an

isomorphism over K. Define the map 7 = Ty by
71 G — Aut(F(X)),s — fo (f™), Vs € G.
Then T € ZY(G, Aut(F(X))), and the map
v E(€r/€, X) — HYG, Aut(F (X)), [Y] s [7], VY] € E(€k/Ck, X)

is injective. If we regard E(Cx /€, X) as a pointed set with the neutral element [X],
then v maps [X] to the neutral element of H'(G, Aut(F(X))), i.e. v is an injective

map of pointed sets.

Proof. First, we prove y is well-defined. For any s and ¢ in G,

r(st) = f o *(f7)
— Jo Ly 0 *(f7)
= Jo (™o fo *(f)
= o CU o o (™)
= (Fo (™o (o (7))
= 7(s) o *r(t).

Hence 7 is a 1-cocyle.

Now we show that 7, in cohomology, does not depend on the choice of f. Sup-

pose there is another isomorphism f': F(Y) 5F (X). Correspondingly, we have
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the map:

™ G— Aut(F(X)), s+ flo (f), Vs € G.

So
T'(s) = f o (S
=(floftof)o((fTof o)
=(fof N o(fof Vo (fo ).

Let h = f o f~1. The map h is clearly an element of Aut(F (X)) and

' (s) = h™t o 7(s) o *h ~ 7(s).

We also check that 7 = 7y, in cohomology, depends only on the class of Y. Suppose
there is another object Y’ in € such that [Y] = [Y’], then there is an isomorphism
a: Y' S Y over k. So F(a) is an isomorphism from F(Y) to F(Y”). Hence fo F(c)
is an isomorphism from F(Y’) to F(X). Therefore with respect to Y’, we have the

map:
n: G — Aut(F(X)), s — (fo F(a))o {((fo F(a))™), Vs €G.

So we have,

71(s) = (f o Fla)) o ((f o F(a))™)
= foF(a)o (F(a)™) o (f7)
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But F is a coefficient extension, so {F(«)™') = F(a)™!. Hence

mi(s) = fo Fla)o F(a)™ o ()
= foy Y
= 7(8).

This implies 7 is independent of the choice of Y up to isomorphism. If we choose
Y=Xand f: F(Y)=F(X) — F(X) to be the identity map, then clearly fof~1)
is the identity map on F(X). So far we have established that there is a well-defined

map of pointed sets v : E(€x /€, X) — HYG, Aut(F(X))).

Suppose ¥([Y]) = y([Y1]) for some object Y} in € which is also a €x/€;-form of X.
So F(Y1) and F(Y') are isomorphic with some isomorphism ¢ from F(Y;) to F(Y).
Let f be an isomorphism from F(Y') to F(X) and so ([Y]) is represented by 7 with
7(s) = fo*f for any s € G. Hence we have an isomorphism foq from F(Y;) to F(X).

Therefore v([Y1]) is represented by 7 with 71(s) = (foq)o (fogq)™!) for any s € G.

On the other hand, y([Y]) = v([Y1]) implies 7(s) and 71(s) are cohomologous. So

there exists b € Aut(F(X)), such that 7(s) = b™' o 7(s) o b, i.e.

(fog)o((fog)™)=bTofo(f)o b

So

hence

s(q—l) o s(f~]) o s(b—1> o Sf — q-—l o f—l ob—l o f7
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1.e.

s(q—l Of—l ob—l Of) — q~1 Of“I Ob—l Of.

Let ¢ = g o ftob!of then we have an isomorphism from F(Y) to F(Y})
and °¢' = ¢ for any s in G. Since F is a coeflicient extension, ¢ = F(w) for some

isomorphism w : Y = ¥;. Hence [Y] = [v3]. O

Proposition 4.2.3. Let L be a field and F - iﬁepf’“ - iRepgK be the coefficient
extension defined in Theorem 4.1.7. Denote the image of any element s € Gy in the
canonical map Gy, — G = Gi/Gk = Gal(K/k) by3. Then for any object X = (V, ¢)
in RepS* and [0] € HY(G, Aut(F(X))), the map

¢° 1 Gp — Aut(V), sr— o(3) o ¢(s)

is a group homomorphism. So (V,¢%) is an object in ﬁ‘iepf’“, denoted by X7, and the

equivalence class of X7, [X°] is a RepSx /%epf’“ -form of X. Furthermore the map
v: H'Y(G,Aut(F(X))) — E(Repy™ /Rept*, X),

defined by
[0] = [X°],V[o] € HYG, Aut(F(X)))

is a bijection whose inverse is v defined in Theorem 4.2.2.
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Proof. For any s,t in Gy,

7 (st) = o(3¢) o P(st)
=0(3) 0 "(?) o ¢(s) o p(1)
=0(3) o (¢(s) o o(t) 0 B(s) ') o (¢(s) 0 (1))
= (0(5) 0 ¢(s)) o (o(t) 0 H(1))
= ¢7(s) 0 ¢°(t).

This proves ¢ is a group homomorphism.

Suppose s € Gk, then 3 = 1, the unity in G. So when s is in G,

¢7(s) = o(1) 0 ¢(3) = Laus(r(x)) © #(s) = ¢(s).

Hence (V, ¢°|Gx) = (V, $|Gx) and so [X°] is a Rep® /MRepS*-form of X and 1y can
be taken as an isomorphism in mepf" from X7 to X. Consequently, it follows from

Theorem 4.2.2 that for any s € Gy,

YX)E) = 1v o (1yh)
=1lyod?(s)olyo qb(s)"l
= 0(s) o p(s) 0 p(s)™"
= o(s).

So v(X7) = [o]. ‘ O
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Theorem 4.2.4. Let F': € — Cx and F': € — Cp be two coefficient extensions

and (fx, fx,h) be a morphism from F to F'.

Then we have the following commutative diagram:

Y= [fe (Y , ,
B/, X) — IO poer e fu(X0)

2 Y

HY(G, Aut(F(X))) HYG, Aut(F' o fr(X))).

¥ [o]—lhofxo0]
Proof. ¢ is well-defined. Let Y be a €x/C;-form of X, so there is an isomorphism
w: FY) 5 F(X)in €. Hence fx(w) is an isomorphism from fx(F(Y)) to
fk(F(z)) in €. Since h is an isomorphism between fx o F' and F' o fi, h induces
an isomorphism from fx (F(U)) to F'(fx(U)) for any object U in €, denoted by hy.

Then the sequence
P 0 fe(FOO) 222 Fe(FX) 25 F(f(X)

gives an isomorphism from F'(fx(Y)) to F'(fx(X)) in €. So [fu(Y)] is a T)/€;-
form of fr(X).

Suppose Y) is another object in €, isomorphic to Y in €, with an isomorphism

w: Y1 — Y. Then fi(p): fr(Y1) — fe(Y) is an isomorphism in €},

Take Y = X, then ¢([X]) = [fk(X)], i.e. ¢ is a well-defined map of pointed sets.
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Next we prove ¥ is also well-defined. For any s and ¢ in G,

ho fixoo(st) =ho fxo(a(s)o w(t))
= (ho fxoo(s))o(ho fxo w(t))
Greauiariant (6 fre 0 0(8)) 0 (h o fx 0 a(L)).

So h o fx o o satisfies cocycle condition.

Let o’ be another cocycle with ¢ ~ ¢’. This implies for any s € G, od'(s) =
b=' o o(s) o . Hence
ho ficod(s) = ho fio (5™ 0a(s) o )
= (ho fxob™)o(ho fxoo(s))o(hofxo )
Creauleriant (p o frob) Lo (ho fx 0a(s)) o (ho fx ob).
So (h o fx o ¢') is cohomologous to (h o fix o o). Suppose o is the trivial co-

cycle in Z'(G, Aut(F(X)), then clearly (h o fg o o) is also the trivial cocycle in
ZN(G, Aut(F'(fe(X))))-

Finally,
7o o([Y])(s) = v([fe(¥)])(s)
= (hx o fx owo hy!) o ((hx o fx ow o hy')™h)
= hx o fxowohylohy o (W)
=hx o fxowo (w™),
and

poy([YD(s) =hx o fxowo (w™)

imply yop =¢or. -
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In particular, we have:

Corollary 4.2.5. Let Fy : Varg 5o — Varg s, and Fy : iRepQ‘ — fRepQK be lwo
coefficient extensions as defined in Theorem 4.1.5 and Theorem 4.1.7 respectively and

(fx, fx, h*) be the morphism from Fy to Fy defined in Theorem 4.1.9:

VaTK JIso

/fKOF1

Vary, iso h* Zli %ep

\ F2°fk

Reer
Then we have the following commutative diagram:

E(VGTK,ISO/VCLTMSO, X) n: [Y]=[H" (Y 1,Qp))

E(RepgX /Repgt, H (X e, Qp))
»

v . y=v-

HY (G, Autg (Xk)) HYG, AUtGK(H( Xa,Qp)))

p: {o]— [hA* ofkoa]

where Xy = X X K, Auta, (H (X &, Qp)) is the set of all linear transformations of
ot (—X_éh Qe) as Qg-vector space which are compatible with Gk action. For any g € G,

b o ficoa(g) = b o (o(9)) " = h* 0 (o(9) )" = (o(g) ™ o B}, here we identify
o(g): Xk — Xk
with

(g)XKlK XK—XKXKKHXKXKK XK
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For any smooth projective variety X, suppose we have a Gy-action vx on H* (X4, Q):
vy : Gy — Aut@e(Hi(j{_éuQe))-

For any Vary /Var-form Y of X, we have y([Y]) € HY(G, Autx(Xk)), denote y([Y])
by [cy] for some cy € ZY G, Autg(Xg)). Since Xk is isomorphic to Yx over K,
HY(X,Q,) = HY(Y,Qy) as Q-vector space. By Proposition 4.2.3, the Gy action on
H (Y 4,Qp), vy which is induced by Y and vy is:

vy : G — Autg,(H'(Ye, Qo)), vy = 1/}°"(Y)_

But from Corollary 4.2.5, ¢ oy = 7y on, hence
vy :V§°7(y)

:VB@(CY) )

For any g € Gy, let § be the image of g in G in the canonical map Gy — Gi/Gk = G,

then

vy (3) =5 (@)
=((¢p(ey))(@)) o vx(7)

=h*o fx ocy(g) o vx(9).
Since h = 1, we have

vy (9) =fk o cv(g) o vx(7)

=(cv(9)7)" ovx(9)
In particular, Suppose k = IF, with Frobenius map

f:k—k a—a
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in Gy, then Fr}_ = (cy(f _1)_1)* o Fri . But cy(f _1) o 771@(?) = cy(f o =

cy(lg) = 1x,. So we have proved the following main result:

Theorem 4.2.6. Using notations above, we have

Fr. = (Tlcy(?))* oFry . (4.3)

TY

4.3 Forms of Quasi-projective Varieties

Let X be an object in Vary, where k is a field. Let K/k be a Galois field extension.
Then a Varg /Var-form of X, which is also called a K/k-form for short, is just
an object Y in Vary, such that Y x, K = X x; K as K-varieties. The set of all
equivalence classes of K/k-forms of X is denoted by E(K/k,X). This section will
build a bijection between E(K/k, X) and H'(Gal(K/k), Aut(X X K)). But we will

begin by giving some concrete examples.

Example 4.3.1. Consider the projective variety V = ProjRlz, y, 2]/(2* + * + 2°),
it has no point defined over R and therefore V. % P! over R (denoted by Py). But

when base field R is extended to C, clearly we have
V @r C = Proj Clz,y, 2]/(2* + y* + 2%) 2 PL = Py g C.

This implies V' is a form of P over R.



4.3 Forms of Quasi-projective Varieties 49

Similarly, it is easy to verify that the affine scheme SpecQ[z]/(z* + 1) over Q 1s
a form of any affine scheme SpecQlz]/(z* + bx + ¢) for some b,c € Q such that
b? — 4c #£ 0.

Example 4.3.2. Given the elliptic curve

E: y*=2*+1 (4.4)
defined over s, the elliptic curve

E: 2 =1*+1 (4.5)

is isomorphic to E over F5(v/2) = Fsz. On the other hand, E' is equivalent to
y? = 12 + 1, which in turn is equivalent to y* = 3z + 3 because 27! = 3 in Fs.

Since 23 = 3 in Fs, E' is isomorphic to the elliptic curve
E": y? =23 43, (4.6)

The j-invariants j(E) = j(E') = j(E") = 0, so according to the result in [12], p.71,
E =2 E" over Fs if and only if F5 contains a sizth root of 3. Since there is no element
in s whose square is 3, there is no element in Fs whose sirth power is 3. Hence B

and E" (or E') are not isomorphic over Fs.

The following theorem gives the classification of K/k-forms of a quasi-projective va-

riety, where K/k is a Galois extension.

Theorem 4.3.3. Let K/k be a Galois extension with Galois group G = Gal(K/k).
Let Vary, be the category of quasi-projective varieties defined over k with morphisms

over k and Varg be the category of quasi-projective varieties defined over K with
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morphisms over K. Let the functor F : Vary — Varg be defined as follows:
F(X) =Xk =X x; K,

and
FX L y) = 00 2295, v,

Then for any object X in Vary, there is a natural bijection between the set of isomor-
phism equivalence classes of K/k-forms (i.e. Varg /Varg-forms) and H' (G, Aut(Xk)),
1.€.

E(K/k, X) 2 H\(G, Aut(Xx)).

Proof. From Theorem 4.1.5, F is a coeflicient extension from k to K. So from

Theorem 4.2.2, one has the injective map:
v B(K/k, X) — HY(G, Awt(Xk)), [Y] = [rv], V[Y] € E(K/k, X),
where 7y is defined by
v : G — Aut(Xg), s— fy o *(fy'), Vs € G,
where fy is an isomorphism F (Y)=Yg - X = F(X) in Vdr k. Now it is enough

to show ~ is surjective.

Suppose [c] is an element of H!(G, Aut(Xf)) with a representative ¢ € Z'(G, Aut(Xk)).
For any ¢ € G, g induces an isomorphism on Spec K, which in turn induces an iso-

morphism on Xx = X X K, which is denoted by g*. Hence we obtain an action of

G = Gal(K/k) on Xg = X x3 K by ¢(g7!) o g*:

C(l)Ol* = ]‘XK o 1XK = 1XK’
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and for any ¢1,¢2 € G,

c((g192)") 0 (q192)* = c(95'97 ) 0 g3 0 g}
— 1 - * *
=c(g;") o 2 c(g7)ogsog;
=c(g5")ogsoc(git)o(g) togsogt

= (clgz") 0 g3) o (clgi*) o g7)-

Based on this action of G on X, since Xk is a quasi-projective variety, the quo-
tient X /G is also a qﬁasi—projective variety defined over k and Xx/G is a K/k-
form of X by Weil’s descent theorem ([28], Proposition 1). Suppose we prove that
v(Xk/G) = |d], then if [¢] = [¢] for some ¢ € Z}(G, Aut(Xk)), then under ¢, we
have another G-action on Xk, and denote by Y the quotient variety of Xk under
this G-action. Then we have v(Y') = [¢/| = [c] and so the injectivity of v implies
Y = Xk /G. Hence Xk /G is independent to the choice of representative of [c], which

implies that Xy /G is well-defined. Now we start to prove y(Xx/G) = [c].

Denote Xy /G by X. From the definition of vy, y([X]) = [rx], where [ry] is de-
fined by
v G — Aut(Xg), s+ fo (f1), Vs € G,

where f is an isomorphism X x, K — X X K, where X = X x K. Hence for any

element s € G,

() = fo (™)
—fo(sto f o5,

The left s is the action on Xy defined near the beginning of the proof, hence

rx(s) = focls)o (s) o f os" = foc(s)o (),
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SO

Tx ~ C.



CHAPTER 5
Forms and Zeta Functions — Some General Results and Examples

In this section, k = F, be a finite field with ¢ elements, and K/k be a finite Galois

extension of degree r, i.e. K =F,.

5.1 General Results

From the formula (4.3), we have the following theorem regarding the connection of

the zeta function of a smooth projective variety and those of its forms.

Theorem 5.1.1. Let X be a smooth projective variety of dimension d defined over a
finite field k and letY be a k-form of X, i.e. Y is isomorphic to X over some finite
separable field extension K of k. Let Y correspond to [cy] in H(G, Autx(X)). Let
the zeta function of X be
d
2(X/k,T) = [ P(x, D)™,
=0

where Py(X,T) = det(1 — (Frd)*T|H'(X,Qp)), i = 1,2,...,2d. Then
d .
20v k1) = T] PLOG T
i=0

where P/(X,T) = det(1 — (7 ey (F))* o Fe)IT|HI(X,Q0)), i = 0,1,2,...,2d. Here
f € Gy is the Frobenius map a — af, Ya € k and f is the image of f in the canonical

map Gk — G = Gk/GK
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5.2 Elliptic Curves

In the case of elliptic curves, the first étale cohomology H'(E, Q) of E/k corre-
sponds to V;*(E), which is the dual of V;(E) = Ty(EF) ®z Q, where T,(E) is the Tate
module of E/k and ¢ is any prime number not equal to p. Since for any positive
integer m prime to p, the m-torsion subgroup of E, E[m]| & Z/mZ x Z/mZ, Vi(E)
(and V;*(E)) is a Qg-vector space of dimension 2. The zeta function of E/k has the
following expression:

det(1 — TFr|V,*(E))
AETD) = =0 0 = g1)
1 -Te(B))T + qT?
S (1-T)A-qT)

(5.1)

where Fr, is the relative Frobenius map on E. For Autz(E), we have the following

result:

Theorem 5.2.1. ([12], p.70-75) Suppose E/k is an elliptic curve, then

)
2 J(E) #0,1728 and char(k) # 2,
4 J(F) = 1728 and char(k) # 2,3,
U6 J(E) =0 and char(k) # 2,3,
AutE(E) > ¢
o J(E) # 0 and char(k) = 2,
Z/3Z % iy J(E) =0 and char(k) = 3,
Qg X g = SLQ(Fg) j(E) =0 and char(k) = 2.
\

where Qg is the quaternion group of order 8 and p, s the subgroup of n-th root

of unity in k. Furthe'r, in the case where Aulg(E) = pg, (I = 1,2 or3) and



5.2 Elliptic Curves 55

char(k) # 2, an automorphism p € Autg(E) is defined over k if and only if p € k

when p is considered as an element in .

In order to determine the Galois action on Autz(E) when j(E) = 0 and char(k) = 2
or 3, or j(F) # 0 and char(k) = 2, we need to explicitly write elements in Autz(E).

When j(E) = 0 and char(k) = 3, the Weierstrass form of E can be written as:

y2 = 23 + asx + ag,
for some a4 and ag € k with a4 # 0, then([12], p.73)

Autg(E) = {(0, £1), (o, £1), (8, £1), (B + o, 4) },
where « is a solution of the equation 7> + a4 = 0 and (3 is a solution of the
equation 7% + a4r + 2ag = 0 (from chark = 3, (8 + a)® + ay(B8 £ @) + 206 =
3%+ ad + ag(B £ @) + 2a¢ = (8% + a8 + 2a¢) £ a(a? + a4) = 0).
When j(E) = 0 and char(k) = 2, the Weierstrass form of E can be written as:
2 _ .3
Y~ +azy =" + a4 + as,

for some a3, aq and ag € k with az # 0, then({12], p.75),

Autz(E) = {(8,7) |fy3 = 1,82+ asfB+ 6 + 6%a4 = 0 where §* 4 a3 + a4 + yag = 0}.

When j(E) # 0 and char(k) = 2, the Weierstrass form of I can be written as:

y2+xy=:c3+a2x2 + ag,
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for some ay, ag € k with ag # 0. Then Autz(E) is the roots of the equation s*+s =0

([12], p.75).

Theorem 5.2.2. ([25], p.329) Suppose the elliptic curves E/k and E\/k satisfy
j(E) = j(E,), then E and E; are isomorphic over a Galois extension K/k of degree
dividing 24 and if j(E) # 0,1728, the extension K/k can be chosen to have degree 2.

Now suppose char(k) # 2,3. When j(E) # 0,1728, Autz(E) = u, and any k/k-form
E, is isomorphic with E over K = F,2 and can be described by H'(u2, p2). But since
po = {1,—1} C k, which implies G acts on ug trivially, H*(js2, p12) = Hom(pg, po) =
{1,,,c}, where 1,, is the identity map on uy and ¢ maps every element in p to 1.

Since G acts on pg trivially, (4.3) becomes

B, = (cs () o Fiy, (5.2)

Clearly, cg, (f) = 1 or —1, whose actions on V;*(E) correspond to (39) and (3 %)

respectively for any Q,-basis of V;*(E).

From Weil’s conjecture, we can choose a Q-basis of V,*(E) such that the action

of Fr}_on V;(E) is (§ 2), for some algebraic number o such that
1—Tr(Fr; )T + qT? = (1 — oT)(1 — ).

So from(5.2), the matrix for Fr;:E1 is (§2) or (¢ 2%)- Consequently, the zeta
function of E\/k is
1+ Te(Fry )T + ¢T7

(1 -T)(1 —q7T)

Z(ElvT) =
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Hence when By 2 F,

1+ Tr(Fry )T 4 qT°

e [y

When j(E) = 1728, Autz(E) = ps. The Weierstrass equation of £/k can be written
as ([12], p.71):

2 3
Y =27+ agz,

for some a4 € k*. Then E/k is supersingular if and only if the coefficient of zP~! in

(2% + a42)"T is 0 ([25], p.140). On the other hand,

(z* + a4$),,;_1 =z"7 (22 + a4)P;_1,
so when p # 1(mod 4), the coefficient of zP~! in (z® + asz)™® is 0, and when
_ p-1 '
p = 1(mod 4), the coefficient of 2P~ in (23 + a4z)"% is (:_3,1)“4 which is not zero
4

because ay # 0 and p 1 (

p—1
2
p—1

4

). Hence E/k is supersingular if and only if p # 1(mod 4).

Suppose p = 1(mod 4), then
(—1)*2" = 1(mod p).

So from Euler’s criteria for quadratic residues, there exists x € F, C k, such that
22+ 1=0, so pug C k. Therefore if pug ¢ k, p #Z 1(mod 4) and consequently F/k is

supersingular.

For any ¢ € HY(Gal(k/k), iu4), suppose c(f) = i € pg, where i2 = —1 (the case
c(f) = +1 is trivial). When g C k, f7'¢(f) = i. Clearly we can choose the prime
number £ in Qg such that 4]/£—1, then py C Z,. So when ¢ is considered as an element
in Autg(E)., the characteristic polynomial of 7 is z2 + 1 over V;*(E), and then there

exists a basis e;, e; of V,*(E), such that action of i on V;*(E) is the matrix (§ ).
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Since f* is Ze-linear and i € Z,, when 1 is defined over k, for any v € V;(E),

()W) = f() = i(f* ().

So
1o ff=frou.

The following lemma is easy to prove:

Lemma 5.2.3. Let V' be a vector space over a field of finite dimension n. Let «
and 3 be two linear transformations on V' such that a o f = o a. Suppose that o
can be represented by a diagonal matriz in some basis, and 3 can be represented by
a diagonal matriz in some (maybe different) basis, then there exists a basis such that

in that basis, both a and B can also be represented by diagonal matrices.

From this lemma, we have that f* can also be represented by a diagonal matrix

(‘(’; g) for some o € C. Consequently

. ar 0
FrrE1 =
0 —on
Similarly we can deal with the case where ¢(f) = —i and hence we have the following

result:

Theorem 5.2.4. Let k be a finite field F, with char(k) # 2,3 and G = Gal(k/k).
Let E be an elliptic curve defined over k and j(E) = 1728 which implies Autz(E) =

pa = {xi, £1} where > = —1. When uy ¢ k, E is supersingular. When py C k, let
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a form Ey of E correspond to c € HY(G, py) with c(f) = B € pa, we have

1= (aB+aB)T +qI?
A (R (N

We can deal with the case j(E) = 0 using the same technique. Now Autz(E) = pg =
{1,-1,p,P, 0,0}, where p and 7 are the roots of 2> — 2+ 1= 01in k and p and g are

the roots of 2% +z + 1 = 0 in k. The Weierstrass equation of E /k is
y* = 2° + as,

for some ag € k*. Then from ([25], p.140, Theorem 4.1), E/k is supersingular if and
only if the coefficient of 2P~! in (z3 + ag)"s is 0. Hence when p # 1(mod 6), the
coefficient of zP~! in (z3+ ag) "= is 0, and when p = 1(mod 6), the coefficient of 27!
in (z° + as)pg_l is (‘:—gj)ag which is not zero because ag # 0 and p ¢ (g_—i) So E/k
is supersingular if and only if p # 1(mod 6). But p = 1(mod 6) means there exists
a € F, C k, such that a® = —3(mod p). This means each of equations > —z+1 =0
and 22 + z — 1 = 0 has two distinct roots in F,, i.e. pg C k. Hence if ug ¢ &,

p # 1(mod 6) and consequently E/k is supersingular.

Choose prime number ¢ such that 6|¢ — 1 and so ug C Z,. Since 2 — x + 1 is

also the characteristic polynomial of p and p over V;*(E), there exists a basis ej, e,

such that the action of p on V;(E) is (§3). When p (so is p) is defined over &,

po f*= f*op, hence f* = (‘(’)‘g) for some o € C and

o 0
Frr = p
T‘El

0 pa
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Consequently we have the following theorem:

Theorem 5.2.5. Let k be a finite field F, with char(k) # 2,3 and G = Gal(k/k).
Let E be an elliptic curve defined over k and j(E) = 0 which implies Autz(E) =
pe = {£1,0,D,0,0}. When ug ¢ k, E is supersingular. When ug C k, let a form E;

of E correspond to c € HY (G, ug) with c(f) = 8 € pg, we have

1 —(af +af)T +qT*?
(1-T)1 - qT)

Z(Ey, T) =

When char(k) # 2,3, we can assume E/k has the Weierstrass equation: y* = z* +
Ax + B for some A, B € k. Then the twisted form F; has one of the following

expressions ([25], p.306-309):

’

dy? =23+ Az + B for each d(mod k**) when j(E) # 0,1728 (AB # 0),

By y? =284 dAx for each d(mod k**) when j(E) = 1728 (B = 0),

y*=z*+dB for each d(mod k*°®) when j(E) = 0(A = 0).
\
(5.3)

For other cases, we have the following result([12], p.72-76): when char(k) = 3 and

J(E) # 0, the Weierstrass form of E can be written as
y2 =%+ a2:r:2 + ag,
for some a,, ag € k>, then F; has the form

y? = 2% + dayz® + dPa,
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for each d(mod (k*)?). When char(k) = 3 and j(F) = 0, the Weierstrass form of £
can be written as

E y2=x3+a4a:—|—a6,

for some aq4, ag € k with a4 # 0, then if F} 22 E over k, E) has the form
Ey - y* =23 + dagx + af,

for each d € k> and each ag € k such that not all the following conditions are
satisfied:
e d is a forth power u* for some u € k*.

o ubal — ag = r® + a4r has a solution for 7 in k.

E = FE; over k if and only if both conditions above are satisfied.
When char(k) = 2 and j(E) 5# 0, the Weierstrass form of E can be written as:

E: y*+zy = 2° + agx® + ag,
for some ag, ag € k with ag # 0, then if By 2 E; over k, F; has the form

By y? + oy =23+ (ay + d)z* + ag,

for each d € k such that d # r?> +r for any r € k and E = E; over k if and only if
d = 1%+ for some r € k.
When char(k) = 2 and j(E) = 0, the Weierstrass form of E can be written as:

By y? +agy = z° + agx + ag,
for some a3, a4 and ag € k with as # 0, then if £} 2 F over k, E; has the form

E, : y* +dagy = 2* + ajz + a,
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for all d and ajj, ag € k such that not all the following conditions are satisfied:
¢ d is a cube u? for some u € k
e s'+ azs + a4 +u*a), = 0 has a solution for s in k,
o %+ azt + (s® + s%ay4 + ag + ubag) = 0 has a solution for ¢ in k.

E = F) over k if and only if all conitions above are satisfied.

Let char(k) > 3. When j(E) = 1728, the Weierstrass equation of £ can be written
as |

y* = 1% + ayz, (5.4)
for some a4 € £*. We already know E/k is supersingular if and only if the coefficient
of 271 in (23 + asz)"F is 0. From the equality (z3 + a4z)™> =27 (22 —4)"T, we
know since a4 # 0, whether the coefficient of zP~! is zero or not does not depend on
the choice of a4 but only p. Since from (5.3), any form of (5.4) can be written as
y? = 2® +dayz for some d(mod (k*)*) and d # 0. So when (5.4) is supersingular, any
form of it is also supersingular. Similarly, when j(£) = 0 and E is supersingular,

any form of F is also supersingular. Hence we have the following result:

Proposition 5.2.6. Let k = F, with char(k) > 3. Let E/F, be a supersingular
elliptic curve. Then when j(E) = 0 or 1728, any form E; of E is also supersingular

and if ¢ = p for some prime number p > 3, Z(E,,T) = Z(E,T).
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5.3 Brauer-Severi Varieties

Suppose X is a variety over a field k. X is called a Brauer-Severi variety if X/K is
isomorphic to P¥ for some finite, separable field extension K/k and some positive
integer N. K is called a splitting field for X and we say X splits over K. It is easy

to prove X is projective and regular ({13}, p.23).

Let K/k be a Galois extension and Bf / If be the set of all non-isomorphic Brauer-
Severi varieties defined over k of dimension n — 1 that split over K. Then there is a

natural bijection:

BX/% 2, HY(Gal(K/k), PGL,(K)).

Now let £ be a finite field F, and X be a Brauer-Severi variety defined over k. The

following sequence is exact:
1 - K* — GL,(K) — PGL,(K) — 1.

Since K* is the center of GL,(K) (identify element o € K* with al, where I, is
the n X n unitary matrix in GL,(K)), so from proposition 3.2.5, we have the exact

sequence:

HY(G,GL,(K)) — HY(G,PGL,(K)) —» H*G, K*),
where G = Gal(K/k). Since K/k is a Galois extension, we have ([23], p.162)
H*(G,K*) = 1.

It is also well-known that H*(G, GL,(K)) = 1 ([24], p.122). Therefore, we have the
exact sequence:

1 — HY(G,PGL,(K)) — 1.
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So
HY(G,PGL,(K))=1. (5.5)

This implies any Brauer-Severi variety X defined over finite field £ = F, with dimen-
sion 1 must be isomorphic to P"™ over k. Hence

Z(X/k,T) = Z(P*(k)) = H - _1qiT.

For a general field L (not necessarily finite), we have the following theorem whose

proof can be found in [13], p.26:

Theorem 5.3.1. Let X be a Brauer-Severi variety of dimenstion n over a field L,

then X(L) # 0 if and only if X = P}.

5.4 Tori

The multiplicative group G, defined over a field L is Spec L[z, y]/(zy — 1), which is
an algebraic group of dimension 1. An n-dimensional torus T over L ([9], p.11) is an

algebraic group isomorphic over L to GJ, = G, X Gy X ... X Gy,

n copies

Let L be a finite field F,, then Autz(G}) = GL,(Z) ([9], p.14). Therefore all k-
forms of G” is classified by H'(Gy, GL,(Z)), where G = Gal(k/k). Since Gy acts
trivially on GL,(Z), H'(Gk, GL,(Z)) is the set of conjugacy classes of homomor-
phisms of G, to GL,(Z).
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One important case is when k = I, for some prime number p. In this case,

Gy =limZ/mZ = Z,

m.
and hence

HY(Gk, GL,(Z)) = lim H'(Z/mZ, GL,(Z)).

Since the image of any homomorphsim from Z/mZ to GL,(Z) is a finite cyclic sub-
group of GL,(Z), it is enough to consider finite order elements in GL,(Z). It follows
from Jordan-Zassenhaus theorem ([5], p.110), that the number of orders of finite
order elements in GL,(Z) is finite, say, ni, ng,...,ns and the number of conjugacy
classes of finite subgroups of GL,(Z) is finite, which implies the set ©,, of conjugacy
classes of finite order elements in GL,(Z) is finite. I use the notation [A] to represent

a class in O, with representative A of GL,(Z).

Since any group homomorphism ~ from Z/mZ to GL,(Z) is determined by ~(1),

HY(Z/mZ,GL,(Z)) can be canonically identified with A,, which is defined to be
Ap = {[4] € O, l o(A)|m},

where o(A) is the order of the cyclic subgroup of GL,(Z) generated by A. So

Gy, GLa(Z)) = lim  Ap.

nilm
for some
i=1,2,...,8
It is easy to see that
l_igl Am = Oy,
n,|m
for some
i=1,2,..8

and so

HY(Gy, GLo(Z)) = ©,,.
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When n = 1, GL1(Z) = {1} whose elements are not conjugate with each other. So

we have

1, m is odd;
HY(Z/mZ,GL,(Z)) =

{£1}, mis even.

Hence one has the following proposition:

Proposition 5.4.1. Let K/F, be a finite Galois extension with Gal( K/F,) = Z/mZ
for some odd positive integer m. If there is some affine group scheme G over F,

isomorphic to Gy, in K, then G is isomorphic to G,, in Fp.

If m is even, then HY(Z/mZ,GL(Z)) = {£1}. Let p > 2. The element —1 cor-
responds to a quadratic extension K = F,(v/d) for some d € FX which is not a
square in F,. We have a natural isomorphism f over K : F,s,t]/(st — 1) =
F,(vd)[z,y]/(z® — dy* — 1), 5 — T+ Vdj, T — T — /dj. Since p > 2, f has
the inverse f~! over K : F,(Vd)[r,y)/(z? — dy®> — 1) S Fyls,t]/(st — 1), T +>
36 +1), 7 55(5 —1). Take the element 1 in Z/mZ, then 1- Vd = —Vd. So
[71of(3) = [ E-VAY) = 3(5+D) - 5(5-1) = Tand [T'olf(?) = f(T+Vdy) =5
Hence f corresponds to the element —1 in H'(Z/mZ,GL,(Z)). Hence we have the

following result:

Proposition 5.4.2. Suppose G,, = SpecF,[z,y]/(zy — 1) for some prime number
p # 2, then any non-trivial form of G,, over F, is SpecFplz,y]/(z* — dy*> — 1) for
some d € FX with d % 1(mod (FX)?).
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5.5 Grassmann Varieties

Fix a field k. Let V be a vector space of finite dimension n over k. The Grassmannian

G(d,n) is defined as

G(d,n) = {W|W is a subspace of V, dim V = d}.

Given a basis ey, e9,...,¢e, for V, /\d V has the following canonical basis:
{Gil/\6i2/\.../\€id|1§i1<i2<...<id§n}. (56)
For any d-dimensional subspace W of V', let a basis of W be wy, wo,...,wy, then

wy Awg A ...\ wg can be uniquely expressed as a linear combination of the basis
(5.6), i.e.

W NANWa N... Nwg = E aim,__ide,;l/\62»2/\.../\61-(1.
1<i1<i2<.. . <ig<n

So we can map W to the coordinates (ai,i,. i,)1<ii<iz<..<ig<n, this map is called
Pliicker map. One can prove such map is well-defined up to a constant ({15]) and
consequently G(d,n) can be embedded in the projective space P( /\d V') using Pliicker
map. After such an embedding, G(d,n) can be regarded as a projective algebraic

variety and dim (G(d,n)) = d(n — d).

For the number of points |G(d,n)(F,)| of G(d,n) over the finite field £k = F,, we

have the following result ([15], p.17):

|GLy ()|

|G(d, n)(Fy)| = ¢¥=D[GLy(F)|[GLn—a(F,)|

Since for any positive integer wu,

|GLu(IFq)| = H(qu - qi_l)a
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we have

ﬁ(q”—qi‘1
q¥n= ‘”H(q — ¢~ 1)H q")

Now it is easy to calculate zeta functions of Grassmannian varieties.

|G (d, 1) (Fg)| =

Example 5.5.1. For G(3,5) defined over Fy, we have
(@ =D& — )(@® = ¢*)(" — )& — ¢)

565 = G - )@ A - U~ )

=14+q+2¢°+2¢° +2¢* + ¢" + ¢,

hence

1G(3,5)(Fgr)| = 1+ " + 20" +2¢° + 2¢" +¢* + ¢

for any positive integer r. So

o0 ) T’r
Z(G(3.5),T) = exp(>_(1+ ¢ + 20" +2¢° +2¢" + ¢" + qﬁ’)T)
=1
1

T A-D - - TP - TP — ¢ D1~ ¢T) (1~ ¢°T)

For the automorphism group of G(d, n) over a algebraically closed field L, we have the

following result ([10], p.122, [29])! : When n # 2d or 2d = n = 2, Aut (G(d,n)) =
PGL,(L). When n = 2d and n # 2, [Aut;(G(d,n)) : PGL,(L)] = 2 and so PGL,(L)

is a normal subgroup of Auty(G(d,n)) with index 2. In our case, from (5.5) we

conclude that for n # 2d or 2d = n = 2, there are no non-trivial forms of G(d,n).

! In the proof ([10], p.122), the author ignors the special case n = 2d = 2, in which

G(d—1,n) = G(0,2) = {0} .
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When n = 2d and n # 2, we have the following exact sequence:
1 — PGL,(k) = Autg(G(d,n)) — Autz(G(d,n))/PGL,(k) 2 Z/27 — 0.
Let Gy = Gal(k/k), then the sequence,
1 = H'(Gy, PGL,(k)) — H"(Gk, Autz(G(d,n))) — H'(Gk, Z/27Z),

is exact. Since H(Gy, Z/27) = Z/2Z, G(d,n) has at most one non-trivial form.

5.6 Fermat Hypersurfaces

A Fermat hypersurface §], over a field k is a smooth projective variety defined by
Xi+X5+...+ X, =0,

for some positive integers n,r > 2. Clearly smoothness requires char(k) { r. It is

obvious that

Hr l Sn S AUtE(%:;,)a

where p, 1 Sy, is the wreath product of the group g, of r-th roots of unity in & and
symmetry group S, ([3]). So all forms of §7, over k is classified by H*(Gk, pr 1.Sp),
where G}, = Gal(k/k).

Briinjes proves the following two results (for the definition of étale algebra, see the

Appendix):
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Proposition 5.6.1 ([3], p.116). H'(Gy, u- 1 Sn) can be identified by the following
set:

{(L,z) | L is an étale algebra of degree n over k, x € L*}/ ~,

where ~ is an equivalence relation defined as follows: (L,x) ~ (L', 2") if and only if
there is a k-isomorphism ¢ : L = L, an elementy € L* and an element ¢ € Auty (L)

such that
' = ¢(p(zy"))-
Proposition 5.6.2 ([3], p.123). Let ¢ € HY (G, pr 1Sy,) which by proposition 5.6.1

corresponds to a pair (L,x) for some étale algebra of degree n over k and some

m —_
element x € L*. Let L = [][L; for some finite field extension L; of k in k with
=1
degree ni, © = 1,2,...,m. Also let x = (1, T2, ..., Tp) withz; € LY, 1=1,2,...,m.
For each L; (i = 1,2,...,m), choose a k-basis €1 ;,€2, ..., €, ; of L;, then the §..(c),

the Fermat equation §, twisted by c is given by
m 1 ng .
SHOEDY Tl‘m/k(;(z €5 X;i)");
i=1 =1

where Trp, e @ LilX1, Xo4, - Xngil = LilX14, Xoj, - -, Xnga) 1s the k-linear map

sending constants in L; to their traces in k.

As an example, we give the forms of § over k = F,. Let v be any generator of ]F;‘Q.

Let + = v and § = 2. Define
F,xF, d¢ (kx)2,
Ls =
Fo(vo) 6¢ (k)

Then there are two possibilities (char(k) # 3 because of smoothness):



5.6 Fermat Hypersurfaces 71

1. k has has the third root of unity, i.e. ¢ = 1(mod 3), then F,/F,-forms are

exactly the following twisted equations:

o F5((Fy x Fo, (1,1))) = X7 + X3,
FH(F, x Fy, (1,6))) = X3 +8X3,

o F5((Fg x Fp, (1,6%)) = X7 +6°X3,

o F3((Fy x g, (6,9))) = 0X7 + 05,

o F3((F, x Fy, (6,6%)) = X3 + 62X,

o F3((F, x Fy, (82,6%))) = 62X} + 62X3,

o 33((Ls, 1)) = 2X3 + 60X, X3,

o F3((Ls,v)) = Tre y/m, (W)X} + 3Ttw, o, (V1) X2Xz + 38Txe  m, () X2 X3 +
0Trr o /¥, (v) X3,

o 3((Ls,v?)) = Tr]pqz/]pq(1/2)Xf+3Tr]Fq2/]Fq(VQL)XfX2+36TrFq2/Fq(1/2)X1X§+
0Tre 5 /p, (VA1) X3

2. k does not contain the third root of unity, i.e. ¢ = 2(mod 3), then F,/F,-forms

are exactly the following twisted equations:

o F((Fy x Ty, (1,1)) = X7 + X3,

o §3((Ls, 1)) = 2X3 + 60X, X2,

o F3((Lsyv)) = Trquz/Fq(u)Xf + 3TrFq2/]Fq(m)X12X2 4 36Tr]qu/]Fq(V)X1X22 n
0Tty , /r, (V1) X5

[3] also gives some examples on how to calculate the zeta functions of twisted Fermat
equations in the case of F, contains the r-th root of unity. The calculation is based

on the fact that for hypersurfaces, only middle cohomology is non-trivial.
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Lemma 5.6.3 (Hard Lefschetz theorem (Deligne) ? )). Let X be a smooth projective
hypersurface X of dimension n—2 over a finite field k, then for anyd € {0,1,...n—
3n—1mn,...,2(n-2)},

0 d = 1(mod 2),

Heelt(—X7 QE) =
Qu(—%) d=0(mod 2).

So we have

_ 1 d = 1{mod 2),
det(1 — FriT|HL(X,Qp)) =

1—¢*T d=0(mod 2),

for any d € {0,1,...n—3,n—1,n,...,2(n — 2)}. Hence

zZX, 1) =) [ —

— adT’
de{0,1,....n—2} 1 q T
d;ﬁn;2

where Q(T) = det(1 — Fr;T|HZ (X, Qy)).

2 Deligne proved it in general case.



CHAPTER 6
Schemes

6.1 Zeta Functions

According to D. Eisenbud and J. Harris ([7], p.81), an arithmetic scheme X is a
scheme isomorphic to Spec A for some commutative ring A that is finitely generated
(as a ring) over Z. When X is an arithmetic scheme, the zeta function attached to X

is defined as (2.4) and converges absolutely when the real part of s in (2.4) satisfies:
Re(s) > dim X.

We have the following result ([22], p.84):

Theorem 6.1.1. ((X,s) can be analytically continued in Re(s) > dim X — 3 as a

meromorphic function. Suppose further X to be irreducible with a generic point x
and let k(z) be the residue field of x. Then
o If char(k(z)) = 0, the only pole of (X, s) in Re(s) > dim X —3 is al s = dim X
and it is a simple pole.
e Suppose char(k(zx)) = p for some prime number p. Let q be the highest power
of p such that Fy C w(z), then all poles of ((X,s) in Re(s) > dim X — 1 are

the points
2nme

dim X + ,
loggq

n € 7,

73
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and all such poles are simple.
The following result is important([22], p.85):

Theorem 6.1.2. Suppose X andY are schemes of finite type overZ and f : X —Y
is a morphism. Denote the set of closed points in'Y by Y and the fibre X xy k(y)
of f overyeY by X,. Then

C(X7 8) = H C(va 5)'

y€17

In particular, if X is a smooth scheme of finite type over the ring of integers O of a
number field, O is a Dedekind domain and so every non-zero prime ideal p in O is a
closed point in Spec O, hence

C(X7 5) = H C(Xpas)'

peSpec O, p#£0

[6] shows that if X is proper and flat over SpecZ and its generic fibre X xz Q
is smooth, then X has good reduction at all but a finite number of prime numbers,

and the factor for the primes of the good reduction in the zeta function attached to

X is
2d
_ N , — _1yi+1
[T I det(t—p Bl Hi(X x2 @, Q)0
=0 good
reduction
at p

where d is the dimension of X.

Example 6.1.3. Let k be a number field, and E/k be an elliptic curve. For any

finite place v at which E has good Teductibn, the reduction of E at v, E, can be
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considered defined over k,, the residue field of k at v, which is finite. Hence the zeta

v v v, )

where ky , s the field extension of k, with degree n in a fized algebraic closure of k,,.

This zeta function is a rational function:

_ 1—a,T + q,T?
Z(E,.T) =
(B, T) 1=T)1-¢gT)’

where q, is the order of k,, and a, = q, + 1 — #E,(k,).

Let L,(T) = 1~ a,T + q,T%. Extend L,(T) to the case of bad reduction by ([25],
p.360)

(

1~T FE has split multiplicative reductive reduction at v
L(T)=41+T E has non—spl'ii multiplicative reduction at v

1 E has additive reduction at v.

\
Then for any kind of finite place v, define the Hasse-Weil zeta function at v of E,
18

L,(T)

2EeT) = Aop 1= o)

Define the L-series of E/K to be

Lop(s)= ] ILelg®)™

finite place v

Define the global zeta function ((E/k,s) to be

(Ehs= ] 2E.0)

finite place v
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Then it is easy to see ((E/k,s) can be expressed by Dedekind’s zeta function of k
and L-series of E/k:

LE/k(S)
C(8)Ck(1 — 5)’

where ((s) is the Dedekind’s zeta function of k given by

C(E/kvs) =

= ] -9

finite place v

6.2 Forms

Based on the definition of an étale form of an X-scheme Y, where X is a fixed
scheme, the main results in this section are the Theorem 6.2.4 and Theorem 6.2.5,
which assert that when both X and Y are affine, there exists an injective map from
the set of equivalence classes of affine étale forms of Y into the Cech cohomology
HY( X4, Aut(Y xx —)), and when X = Speck for some perfect field &k, and Y is any
(not necessarily affine) scheme, H'(Gy, Aut(Y X k) =2 HY (X g, Aut(Y x4 —)).

6.2.1 Etale Forms

This section uses concepts like flatness, faithful flatness, and étale morphism. See

the Appendix for their definitions and general references.

In the language of schemes, a variety V defined over k implies V' is a Spec k-scheme.
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A variety V' defined over k is a K/k-form of V means V' xy K = V x;, K as K-
schemes for some finite separable field extension K/k, i.e. V and V' are isomorphic
over some base extension. Such point of view leads to the concept of forms of a

scheme.

As an example, consider the two affine Spec Z-schemes SpecZ[z,y]/(y* — z?) and
Spec Z[z, y]/(v* + x?). As Z-algebras, Z[z,y]/(y* + x%) 2 Z[z,y]/(y* — x*) because
y? — 2% is reducible in Z[z,y] while y* + 2% is irreducible in Z|z,y]. But clearly
(Z[i)[=z, y}/(z* — ¥*) = (Z]i)[z,y]/(z* + y*) over Z[i]. On the other hand, as Z[i]-
algebras,

(Z[Dle, y)/(@® - y*) = Lz, y)/(«* — y*) @ L[],
and

(ZlDz, 9/ (@ +y*) = Zlz,y)/ (=" + y°) @ Z[i].

Hence as Spec Z[i]-schemes,
Spec Z[z,y}/ (y* — %) x Spec Z[i] = Spec Z|z,y]/(y* + =*) x SpecZ]i].

Since Z[i] is a free Z-module, Z[i] is a flat Z-module. Hence for any prime ideal p
in Z[g}, Z[4], is a flat Zpnz-module. Here p NZ = j~'(p), where j is the canonical
inclusion map j : Z — Z[i]. So the induced map j* : SpecZ[i] — SpecZ is a flat

morphism (Theorem 3 in the Appendix). Clearly j* is surjective.

It is a well-known fact in algebraic number theory that for any number field K,
there exists at least one prime number p, such that (p) in Z is ramified in the ring
of integers Ok of K. So j* is not an unramified morphism because Z[7] is the ring
of integers of Q(z). Finally it is natural that a form of a scheme should be defined

locally as usually happened in schemes. For a variety V defined over a field L, a
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form of V' looks like to be defined globally, but this is because Spec L contains only
one point as a topological space. The discussion above provides a motivation to the

following definition:

Definition 6.2.1. ([7], p.204) Let S be s scheme and let X be a scheme over S.
A scheme Y over S is a form of X if for any point s € S, we can find an open
neighborhood Us of s in S, a scheme Ts and a flat surjective morphism f, : Ts — Us

such that as T,;-schemes,

XXSTS%JYXSTS,

where the morphism from T, to S is the composition of fs and the canonical open

embedding of Us into S.

From the definition, to prove an X-scheme Y’ is a form of an X-scheme Y, we first
have to find an open covering {U; |z € I, U; is an open set of X} of X, where I is an
index set and for each i € I, a scheme T; and a flat surjective morphism f; : T; — Us,.
Compared to the definition of a manifold M of dimension n, in which M locally
looks like R™, it is natural to require T; be “similar” to U; in some sense. One way
to see the similarity is to look at a morphism f : X — Y, where X and Y are two
smooth varieties defined over a algebraically closed field F'. For the similarity of the
two varieties, we at least should require f induce an isomorphism on tangent spaces
for any closed point of X. This is equivalent to f being an étale morphism ([19],
p.32). Another point is that in the definition 6.2.1, f, maps T (which itself is open)
onto an open subset Us of S, and an étale morphism automatically satisfies this
condition because any étale morphism is an open map ([19], p.14). Such requirement
of similarity leads us to a special case of a Grothendieck topology, the étale site Xy

over X. That is, we add an extra condition of unramification on each f;, i.e. that
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each f; besides being flat must also be unramified and locally of finite type, then to

prove Y’ is a form of Y over X, it is enough to find a covering
¢ ={T,— X|iel} (6.1)

in Xg, such that Y xx T; 2 Y’ xx T; as T;-schemes for each i € I.

Based on the discussion above, I give a restricted definition of a form of X-scheme

Y, which I call an étale form.

Definition 6.2.2. Let X be a scheme and Xy be the étale site in the sense of
Grothendieck. Let Y be an X-scheme. Then an X -scheme Y’ is an étale form of Y
if there exists a covering {T; %, x lz € I} in X4, where I is some indez set, such
that for each i € I,

Y xxT, 2Y xxT;

as T;-schemes. If Y’ is affine, Y’ is also called an affine étale form of Y (over X).

6.2.2 Forms and Cech cohomology

From now on, forms and affine forms mean étale forms and affine étale forms respec-
tively. Our aim is to relate forms with Cech cohomology. The following standard

result is needed in the sequel and its proof can be found in e.g. [27], p.104.
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Theorem 6.2.3. If p: A — B is a faithfully flat ring homomorphism and M 1is an

A-module, then the following sequence is exact:
0=MS5MesBL Me,Bo.B,

where a(m) =m @1 foranym € M and f(m@b) =mb®1—-m®1Kb for any
me M and b€ B.

Similar to the definition of non-abelian Galois cohomology, Milne defines the first
Cech cohomology for sheaves of (not necessarily commutative) groups on X ([19],
p.122). I will extend Milne’s idea to define directly the Cech cohomology H( Xy, F)
for any contravariant functor % from Xg to the category of groups G. This is done

as follows:

First, for any open set U Y, X in X4, denote .F (U N ) by just F#(U) for conve-
nience. Let

¢ ={U; "5 X |jeJ}
be an étale covering of X, where J is some index set. Define U;; = U; x x U; for any
i,7 € J. Under this fixed €, a cocycle (¢;;) is defined as ¢;; € Z (Uy;) such that
CijCjk = Cik

on Uy for any i,j,k € J via the built-in maps Z(U;) — F (Ui), F(Ujx) —
f(Uijk) and y(Uzk) — y(Umk)

Let Z(€/X,%) be the set of all cocycles defined above. Define a relation “~”
in Z(¢/X,.F) as follows: for any (c¢;;) and (d;;) in Z(€/X,.F), (ci;) ~ (dij) if and

only if there exists w; € #(U;), such that d;; = wicijw;1 on Uy;. Clearly (ci;) ~ (cij)
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and (cij) ~ (di;) implies (d;;) ~ (ci;). Suppose (ci;) ~ (dij) and (di;) ~ (e;;) in

Z(€ /X, %), then there exist w;, 9; € % (U;) such that

. -1
dij = wicijwj

and
€ij = P; 0 dij¢;1-
So |
eij = ¢iwi0ijwj_1¢j—l = (i) ey (Pyw;)
i.e. (¢i) ~ (e;). Hence “~” is an equivalence relation. Consequently, we can define
the first Cech cohomology HY (€ /X, F) with respect to a given étale covering €
to be

HY €)X, F) = Z(€ ) Xar, F)] ~ .

o,
Let € = {U; > X | 7 € J}, where J is an index set, be another covering in X.
Define € < ¢" if there is a map o : J — I and a map v; : U; — U,y for each j € J,
such that ¥ = ¥,(;) o v, i.e. the following diagram is commutative:

7

Vj
|

Us(y)

The partial order < defined above is directed. This is because according to the prop-

. . def
erties of Xz, € xx €' =

C <C xx€ and € <€ xx €.

{SxxT | S e T e %} is also a covering and clearly

With respect to this partial order, the first Cech cohomology H'(Xe, %) is defined
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to be

Hl(Xét,egZ): (%/Xetad‘)

imH
—>
€, <

where € runs through all coverings in Xy;.

Let Y be an X-scheme. Define a contravariant group functor Aut(Y x x —) from X
to the category of groups as follows: for any open set U % X in Xz, Aut(Y xx —)
maps U to Aut(Y xx U), the antomorphism group of Y x x U as U-schemes, and for
any morphism U = V in X¢, Aut(Y x x —) maps h to Aut(Y x xh) : Aut(Y xxV) —
Aut(Y xx U) induced by the composition U 2V — X: for any v € Aut(Y xx V),

we have an automorphism v# induced by v:
VY xx VxyU—=Y xxVxy U v =vxly,

where 1y is the identity map on U, and note that V xy U = U. In particular,

suppose h is an isomorphism h : U 2 Vover X , then for any v € Aut(Y xx V),

1xh lxh) 1

y#:YxXU—>Y><XV—>Y xxV——"5Y xyU,
and hence
=(1xh)tovo(lxh),
i.e.
vt =1y, (6.2)

(6.2) will be used to prove Theorem 6.2.5.

Define an equivalence relation ~ as follows: let X be a scheme and Y be an X-
scheme. Let X-schemes Y] and Y5 be forms of Y, then define Y; ~ Y; if there is an

isomorphism f: Y] — Y, as X-schemes. It is obvious ~ is an equivalence relation.
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Now we will prove the two main results of this section:

Theorem 6.2.4. Let X be an affine scheme and let Y be an affine scheme over X.
Let % be the equivalence classes of affine X -forms of Y with respect to the equivalence

relation ~ defined above, then there is an injective map
n: Y — H (Xe, Aut(Y xx —)), (6.3)

where H' (X4, Aut(Y x x —)) is induced by taking the direct limit of (6.4) with respect

to all étale coverings € .

Proof. Suppose we are given an affine X-form Y’ of Y relative to a cover
¢ ={T " X|iel},
where [ is an index set. Then for each i, we have an isomorphism ; over T;:
bi: Y xx T, S Y xx T
Hence for any i,j € I, 1;' o1; is an isomorphism of Y xx Tj; over Tj;, where

T;; = T; xx T;. Denote ¢! 0 ; by ci;.

For any 4,5,k € I, let T;j = T; xx T; X x Ty. Then via canonical projection maps
pij © Lijk = Tij, Pk © Tigk — T and pjr © Tije — T, clearly cjx o ¢i = cy in Tijy.

Hence (c;;) is a cocycle in H'(%/ X, Aut(Y xx —)).

Suppose there is another isomorphism ¢} : ¥ xx T; 5 Y xx T, foreachi € I , then

let \; = wg‘l o 1;, which is an automorphism of Y xx T, i.e. A; € Aut(Y xx T3),
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and ¥; = th; o A;. Let ¢; = Yo ;. We have

Cij = %’_1 o 1;
= (Yo X) " o (¥ o \;)
=Nyl ogo
=X "odj;0M\;.

Hence [(c;;)] = [(c};)] which implies (c;;) does not depend on the choice of ;.

A similar argument shows that [¢;;] is also independent of the choice of Y’ up to
isomorphism. Let T /% be the set of equivalence classes of affine forms of Y over X

with respect to the fixed cover € in X4, then we have a well-defined map:
e : T/C — H(E)Xer, Aut(Y xx =), Y = [(cij)]- (6.4)

Let Y} and Y5 be two affine forms of Y with respect to the same given cover % such
that Y; and Y5 give the same class of cocycles. This means we have isomorphisms as
Ti-schemes ¢; : Y xxT; > Yy xx Ty and ¢; 1 Y xx T; — Yy xx T, for each i € I
such that [(; ! 0 p;)] = [(¢;' o ¢;)]. Then there exists h; € Aut(Y xx T;) such that

;o =hil 0 ¢t o gy ohy,

hence
Biohiopt = ¢y 0hy 0 (6.5)

Each ¢; o h; o ¢; ! denoted by f;, gives an isomorphism as Tj-schemes:
Bi: Y ><XTiiY2 xx T;. (6.6)

(6.5) shows
| (6.7)

L)
7

/Bi|Y1X)(71ij = ﬂjlY}X){’T,
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which is true even if ¢ = j. Hence we have a set of isomorphisms
(Vixx T 5 Yy xx Tifi € 1,

such that (6.7) holds for any 7,j € I.

Since each scheme can be covered by open affine subscheme in the usual sense, any
open immersion is étale and the composition of any two étale morphisms is étale, as

a result, we can assume each T; is affine, i.e. T; = Spec B; for some ring B;.

Since Y;, Y, and X are all affine, we can let Y; = SpecA;, Yo = Spec A, and
X = Spec B for some rings A;, As and B respectively. So Y7 x x T; = Spec (A1 ®p B;)
and Yy x x T; = Spec (A, ®p B;) for each 7 € I. Also, since X is an affine scheme, and
any affine scheme is quasi-compact and any étale homomorphism is an open map,

we can assume [ is a finite set.

Since the morphism §; : Y; xx T; — Y3 xx T; is an isomorphism as T;-schemes,

we have the following commutative diagram:

R| =

Spec (Al ®Rp Bi) Spec (A2 ®p Bi)

\/

Spec (B;)

which is equivalent to the following commutative diagram:

#

ek
A, ®p B; A, @p B; (6.8)
blb—% AX}(),
B;

where ﬁi# is the corresponding ring homomorphism which induces the scheme mor-

phism §; : Y1 xx T; = Y2 xx Ti.
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Let the ring homomorphism 51# : B — B; correspond to the morphism §; : Spec B; —

Spec B. Because of (6.8), we have for any b € B,
FrL @8 (1) =10 87 (b).

This implies [3;# is a B-algebra isomorphism if A; ®p B; and Ay ®p B; are regarded
as D-algebras and consequently, we have a B-algebra isomorphism
(ﬂz#)iel : A2 ®p (H B;) 2 A9 (H By),
iel i€l

where B-algebra structure of [[,.; B; is defined by

iel

(51#)’%51 . B — 1_‘[Bz

iel

Both A; ® B; and A; ®p B; are also B;-algebras and (6.8) gives for any b; € B;,
BE1®b)=1®b;.

Hence [31.# is also a B;-algebra homomorphism.

Since the set {Spec B; N Spec B | i € I} is an étale covering of X = Spec B, as
sets, we have

_gISpec B; = Spec B.

This implies the map Spec ([];.; B;) — Spec B = X induced by (4;):cs is surjective,

i€l
hence the corresponding ring homomorphism (67 )ic; : B — [Lc; Bi is faithfully flat.
Consequently, by base extension, we have the faithfully flat ring homomorphism:

1® (67 )ier : A2 ®p B — Ay @5 (]| B).

icl
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This implies 1 ® (6%),¢; is injective. Hence it can be regarded that

Ay ®p B C Ay @5 ([ B).

iel

1°. Assume #/ = 1. Then (6.7) gives

(6.9)

ﬂl \Spec (A1®BBI®BBI) = /61 lSpeC (A1®B‘BI®BBI)7

where the 1 at the left hand side arises from the base change A; ®p By to A; ®p
B, ®p By viaa®b— a®b® 1, while the (; at the right hand side arises from the
base change A, ®p B1to A ® By ®p By viaa®@b—a®@1®b.

(6.9) implies for any as € A, let ﬂf(@@ 1) =3, au®by, for some a1, arz, . .., a1n
in A; and some byy, bio,...,by in By, then

n ) n

Zau®b1z®1= Zau@l@bu,

=1 =1

i.e.
i

S (0 ®bu®1—ay®@1@by) =0.

=1

We have already shown the ring homomorphism 6# : B — D is faithfully flat, hence
from Theorem 6.2.3,

Zall @by €A ®p1,
=1

where A; ®p 1 is defined to be the set {a @1 I a € A}, So

GF (A, ®p1) C A ®p 1.
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2°. Let #1 = 2. Then we have isomophism:

ﬁ# X /8;# ZAQ KR (Bl X BQ) = (Az ®B Bl) X (A2 ®B B2) i
(A1 ®p B1) x (A1 ®p By) 2 A, ®p (B1 X By).

Similarly, (6.7) gives

P % 52|spec(A1®B(mx32)®3(31x32)) =P % ﬁz’spec(A@B(leBl)@B(BlxBl))’ (6.10)

where (3; X (32 on the two sides has the similar interpretation as that given to 3; in
(6.9). (6.10) implies for any ay € Ay, let 7 x 8 (a; ® (1,1)) = 321, an @ (by, by)
for some a1, a12, - . ., a1, in Ay and some (b1, ba1), (b12,b22), - - -, (D1n, b2n) in By X Bo,

then (6.7) gives

Ms

ay ® (b, by) ®(1,1) Zau@) (1,1) ® (b, bay),
=1 =1

1.e.

3

Z (@ ® (b, ba) ® (1,1) —au ® (1,1) @ (by, by)) = 0.

=1

Since (67,67): B — By x B, is faithfully flat, from Theorem 6.2.3,

Zau ® (b, by) € A1 ®@p (1,1) = {a® (1,1) | a € A},

=1
i.e.

(B x A1) (A ©5 (1,1)) C A ®5 (1,1).

3°. For any finite set I with #1 = m, since the ring homomorphism

(5#)iel : B— HBi

iel
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is faithfully flat and

(ﬂi)iél|spec (4108 ([Tic; B)®s(lic; B) — (ﬁi>i€I|SPeC (A1®B8([1;cr Bi)®s(Ilier Bi))’

with the similar interpretation as that given to (6.9) and (6.10). Similar to 1° and

2°, we can prove the isomorphism

(BFVier + Az ®p HBi 5 4 ®p HBi
el i€l
satisfies

(ﬂz#)iEI(Az ®p (1,1,... 1)) Cc A ®p(1,1,...1).
#I=m #I=m

Since (87 )es is also a B-algebra isomorphism, we have
(87 )ier(A2 ®5 B) C A ®p B.
Hence we have an injective ring hbmomorphism
(161#)1'6] 1Ay — Ayl
By symmetry, we also have an injective ring homomorphism
(61#)1'—611 DAy — A
Hence

Al = AQ.

9,
So the 7y in (6.4) is injective. Let €' = {T] - X |j € J}, where J is an index set,

be another covering in Xy such that ¥ < €”’. Hence there is a map o : J — I and

amap v;: T; — T,(; for each j € J, such that

19; = 190(3) [e] I/j. (611)
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Suppose we are given an X-form ) of Y with respect to €, 1.e. Y xx T; 2Y xx T;

as T;-schemes for each i € I. Because of (6.11), we have for any 7 € J,
Vxx T3 2 Y xx Tj X, Tog) 2 Y xx T X,y Ty 2 Y xx T
as TJ’ schemes. So Y is also an X-form of Y with respect to ¥’. So we have

Y =limY/%. (6.12)
b, <

Since for each covering € in Xy, s : Y/€ — H'(€)Xa, Aut(Y xx —)) is injective,
we have an injective map 7 induced by 7y:
n: ¥ =lmY/¢ — l_i_Ing(‘m”/Xét, Aut(Y xx —)) = H' (X, Aut(Y xx —)). (6.13)
%< %<

(]

We can obtain more results if X in Theorem 6.2.4 is Speck, where k is a perfect
field (e.g. a number field or a finite field) and E be a scheme (not necessarily affine,
e.g. an elliptic curve) over k. Note that Spec k has only one point as a topological
space, and hence E’ is a form of FE over X if and only if we have an étale covering
{T 2 Speck} such that E x;, T = E’ x; T. From Theorem 8 in the Appendix, we
can assume that T = Spec K’, where K’ is a finite separable field extension of k. So
if E' is a form of E over Speck, there is a finite separable field extension K'/k, such
that E' xx K' & E x K’ as K'-schemes. But since k is perfect and K'/k is a finite
separable extension, there exists a field K such that K D K' D k and K/k is a finite

Galois extension. Clearly the following diagram is commutative:

Kt i (6.14)

%
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where £ is the canonical inclusion map. This in turn gives the following commutative
diagram:

SpecKh—#>SpeC K’ (6.15)

h#l %

Spec k
where each h# is induced by the corresponding h in (6.14). Clearly each h# is
étale because all field extensions K'/k, K/k and K/K' are finite and separable.
Because of (6.15), we have E' x, K = E x;, K as K-schemes. Conversely, sup-
pose we have a k-scheme E’' and a finite Galois field extension K/k such that
E' xp K 2 E x; K as K-schemes, then since K/k is a finite Galois field exten-
sion, the morphism Spec K — Speck induced by the inclusion map from k to K is
étale. Hence E’ is a form of E over Speck. So E’ is a form of E over Speck if and
only if there exists a finite Galois field extension K/k such that E' Xy K = E x4 K

as K-schemes.

Now let E be a scheme (e.g. a Quasi—projective variety) over k and K/k be a fi-
nite Galois field extension with Galois group G = Gal(K/k). By abuse of notation,
write H'(K /X, Aut(E x, —) to denote H*(Spec K/ X, Aut(E x; —)). Recall that
here X = Speck for some perfect field k. We have (]2]):
KewK =[] K, | (6.16)
9eG
as K-algebras, where K, is an isomorphic copy of K for each g € G. Hence there

exists an isomorphism o:

o: H Spec K, 5 Spec K Xgpeck Spec K.
geG
Since K/k is a finite Galois extension, Spec K is an étale covering of X = Speck.

Let [(c)] be an element in I'(K/Xg, Aut(E x) —)) with a representative (c) €
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Z(K/ X e, Aut(E xj, —)), then ¢ € Aut(E x; K x; K). From (6.16),

Ex K xx K = Ex;Spec(]] K,)

geG
~F Xk(H Spec K,)
geG
=~ J]E x« K,, (6.17)
geG
where ][ means disjoint union. So
Aut(E xi K x, K) = [ Aut(E x, Ky). (6.18)
geG

Hence ¢ can canonically be identified with the map ¢ : G — Aut(E x; K) defined
by c*(g) = c|A XK, Vg € G. By definition, the element ¢ also satisfies the
u 9

condition

coc=c, (6.19)

on Ex, K x, K x; K, where the second c on the left hand side acts on X K X K X K
via the projection from E xj K X K X K to the first, third and forth component;
the second ¢ on the left hand side acts via the projection from E x; K X, K xi K to
the first, second and third component; and the ¢ on the right hand side acts via the
projection from E xj K X K Xy K to the first, second and forth component. From
(6.16), as K-algebras,

Ky K@ K=K Qy (HKQ) = H K(H,h)’
geG g9,heG

where K,y = K. Hence by abuse of notation, there also exists an isomorphism o:

o

o: H Spec K(gny — Spec K Xgpeck Spec K Xgpeck Spec K,
g,heG
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and similarly we have:

Ex, K x,, K ) K & H E xy Kgn- (6.20)
g9,heG

Consider the following diagram:

do
d
Hg,hec Spec K(gn) d: ngG Spec K (6.21)

Po
——

Spec K Xspeck Spec K Xgpeck Spec K —2> Spec K Xgpeck Spec K
P2

where p; (I = 0,1,2) is defined as follows: let K, K. .., K, be some field extensions

of field k, then p; (1 =0,1,...,n — 1) is defined to be the standard projection map:

Pi 3SPeC Kl X Speck Spec KZ X Speck - - - XSpeck SPeC Ki+1 ><Speck - -+ XSpeck SD(’C Kn -

—

Spec Kl XSpeck Spec KQ XSpeckz v XSpeck Spec Ki+1 XSpeck R XSpeCk SDQC [{TH

where Spg]\(j,“ means to omit Spec K;,1; dg,d; and ds are defined as follows: for
each (¢g,h) € G x G,

do = g* : Spec K,y — Spec K},

where ¢* is the isomorphism Spec K — Spec K induced by the ring isomorphism
g: K — K, dy is the identity map from Spec K ) to Spec Ky, and d, is the iden-

tity map from Spec K,y to Spec K.

It is shown in [19], p.100, that the diagram in (6.21) is commutative for each pair

(diyps), 1 =0,1,2. Apply Aut(E x4 —) to (6.21). Consider the pair (pg,dy). As we

have discussed, any element f € Aut(Ex,][ cqSpec Ky) = [[,cq Aut(E X, Spec Ky)

geG

can be identified with the (continuous) map f# : G — Aut(E x; Spec K) by

[*(g) = f\Aut(EXk:Kg). Fix any g € G, then for any h € G, since d, is an isomorphism
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from Spec K1) to Spec Ky, from (6.2) we see that for each f#(h), dy induces an
element djf#(g,h) in Aut(E xx Kyp) by djf*(g,h) = 9 f#(h), which is, by our
convention, denoted by 9f#(h). Similarly, we have that di f#(g,h) = f*#(gh) and
d3f*(g,h) = f*(9)-

Hence the first ¢ on the left hand side of (6.19) acts on [[, 4cc E %k K(gn) by
(c#(9))g.nec, the second ¢ on the left hand side of (6.19) acts on [ [, e E Xk K(gn)
by 9¢#(h), and the ¢ on the right hand side of (6.19) acts on ][ o E xx Kgn) by

(c#(gh))g nec- Hence (6.19) gives
c#(gh) = c#(g) o 9c*(h). (6.22)

So ¢ € ZYG,Aut(E x, K)). Suppose we have [(c)] has another representative (c’)
in Z(Spec K/ X¢, Aut(E x; —)), then ¢ ~ ¢, i.e. there is w € Aut(F x; K), such
that on F x, K x; K,

d=wlocouw, (6.23)

where the second w on the right hand side acts on E x; K x K via the projection of
E x; K x, K to the first and third component, and the first w acts via the projection
of EF xy K x; K to the first and second- component. As expected, the following

diagram is commutative ([19], p.100):

do
UyeeSpec K, ,  SpecK (6.24)

Po

Spec K Xgpeck Opec K Spec K

p1

for each pair (dy, po), where for each g € G,

dy = ¢g* : Spec Ky — Spec K,
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and d; is the identity map from Spec K, to Spec K. Using similar argument as above
one can easily see that the first w on the right hand side of (6.23) is (w),ee and the

second w in (6.23) is (w)sec. So (6.23) implies

1

d#(g) =w™ o c*(g) 0 ‘w,

which is equivalent to say ¢'# ~ c¢#. Clearly the above argument can be reversed be-
cause ¢’ and ¢# can be canonically identified. Hence we have a well-defined injective

map f:

f: H(K/Xg, Aut(E x —)) — HY(G, Aut(E xi K)), [(c)] — [¢*].

Now we prove the surjectivity of f. Let [f] is an element in G* (G, Aut(E ka K)) with
representative f € Z'(G,Aut(E x; K)), then f can be identified with (f(g))sec-
Since (6.18) is an isomorphism, f canonically corresponds to a unique element fin
Aut(E x;, K x K). If we can prove f € Z(Spec K/Xe, Aut(E x; —)), then clearly
£(f) = f. But since (6.17) and (6.20) are isomorphisms and diagrams in (6.21) and

6.24) are commutative, reversing the argument used to prove (6.22) gives
g g
fof=/,

on Exy K x; K x, K, hence f € Z(Spec K/ X¢, Aut(Ex;—)). From the isomorphism
in (6.18), which maps the identity map on F x; K xj; K to identity map on each
E % K, it is obvious that § maps the neutral element in H'(K/X, Aut(E xx —))

to the neutral element I1'(G, Aut(E x; —)). Hence
. i
Hl(K/Xét,Aut(E Xk —)) = Gl(G,Aut(E Xk K))

as pointed sets.
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For any finite separable field extension F'/k, since k is a perfect field, there always

exists a finite Galois extension K /k such that k C F' C K, therefore we have

H'(Xet, Aut(E x K)) = lim  H'(F/Xg, Aut(E xj —))
F/k finite
separable
= lim H'(K/Xa, Aut(E x; —))
K/k finite
Galois
lim B (Gal(K/k), Aut(E x K))
K/k finite
Galois
= lim H'(Gal(K/k), Aut(E x k)C*/K))
K/k finite

Galois

= Hl(Gk, Aut(E Xk E)),

IR

where G, = QGal(k/k). In particular, if F is a quasi-projective variety over k
which is perfect, the set of equivalence classes of k/k-forms of E is classified by
HY(Gy, Aut(E xx k)), so we have a bijection between the set of equivalence classes
of k/k-forms of E and H'(X, Aut(E x; —)). The conclusion of the above argument

is the following result:

Theorem 6.2.5. Let E be a scheme over a perfect field k and let X = Speck. Then
we have that E' is a form of E over Xg if and only if there exists a finite Galois
extension K of k such that

EX}CK?—‘JE/X}CK,

and

Hl(Gk,AUt(E Xk E)) = Hl(Xét,Aut(E Xk —))

If E is a quasi-projective variety over k, there exists a bijection between the set of

equivalence classes of forms of E over Xe and H'(Xa, Aut(E x5, —)).
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Hence for a variety FE over a perfect field k, the definition of forms of F based on

étale site coincides that given in the previous chapters.

Example 6.2.6. Let X = Spec A for some ring A and G} be the additive group
scheme over X. Let GL, be the covariant functor S — GL,(I'(S,Og)) for any
scheme S. Then Aut(G} xx —) = GL,.

When A is a local ring, H'(Xe,GLy) = 0 ([19], p.124). This implies there are

iy n
no non-trivial affine forms of G over X.

Another special case is n = 1, then GL; = G,,, which is the multiplicative group

scheme. A version of Hilbert’s Theorem 90 ([19], p-124) gives:
H'(X4,Gy) = Pic(X),

where Pic(X) is the Picard group of X. For the general discussion of Picard group,
see e.g. [11}, IL6. If A is a unique factorization domain, PicX = 0 ([16], p.273), and

consequently there are no non-trivial affine forms of G, over X.

Example 6.2.7. Given a scheme S, the set of isomorphic classes of S-forms of the
projective space P% for ALL positive integers n is characterized by the Brauer group
of S, denoted by Br(S) ([7], p-205). Br(S) is the generalization of the Brauer group
of a field L. When S = Spec L, Br(S) = Br(L) = H?*(Gal(L*/L), (L*)*), where L*
is the separable closure of L. For the details of Brauer group of a scheme, see [19],

chapter IV.
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Let S‘ be Spec L for some field L. We have shown that if L is a finite field, then
Br(L) is trivial. It can also be shown the following cases: ([23], p.162-163)
o Br(Q%®) is trivial.
e The Brauer group of any field extension of transcendence degree 1 over any
algebraically closed field is trivial.
o [ =R, the field of real numbers, we have Br(R) = Z /27, where the non-zero

element in Z/27 corresponds to variety
X2+Y*+22=0

o L is a local field (complete with finite residue field), then Br(L) = Q/Z.



Appendix A

1. Flatness and faithful flatness

The reference is [17], p.17-26.

Definition 1. Let B be an A-module. B is called a flat A-module if for any injective

A-module homomorphism f : M — N, the induced B-module homomorphism
f®idp: M®sB — N®4 B,

is also injective, where idp is the identity map on B.

Theorem 2. Let A and B be rings with ring homomorphism f: A — B, then B is

flat over A if and only if B, is flat over Ap-1¢, for any p € Spec B.

Theorem 3. Let o : A — B be a flat ring homomorphism, then the followings are
equivalent:

a) M Bl M @4 B s injective for any A-module M.

b) If N®@4 B =0 for some A-module N, then N = 0.

¢) Let f: M — N be a map of A-modules. Then if fQidp: M®sB - N®, B

15 injective, [ is also injective.
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Definition 4. Let ¢ : A — B be a flat ring homomorphism. We say ¢ is faithfully

flat if ¢ satisfies the equivalent conditions of Theorem 3.

2. Etale morphisms

The reference is ([19], chapter I). Let S be a scheme. Denote by Og; the stalk

at point s € S and denote by m, the maximal ideal of Og .

Definition 5. Let X and Y be schemes and let f : 'Y — X be a morphism which
is locally of finite-type. Let y € Y and x = f(y). f is said to be unramified at y if
m; - Oy, = my and Oy, /m, is a finite separable field extension of Ox . /m,. f is
said to be unramified if it is unramified at all points in Y. Here my - Oy, is defined

by the map Ox , — Oy, induced by f.

Definition 6. Let X and Y be schemes and f : Y — X be a morphism. f is said

to be flat if for any point y € Y, the induced map Ox 5, — Oy, is flat.

Definition 7. Let X and Y be schemes and f : Y — X be a morphism which s

locally of finite-type. f is called to be étale if it is flat and unramified.

Theorem 8 ([1], p.115). Let k be a field and X be a scheme. Then a morphism
[+ X — Speck is an étale morphism if and only if X =[]\, Speck; for some finite

separable field extensions ki, ko, ...k, of k. Here || means disjoint union.
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Definition 9. Let F' be a field. An étale F'-algebra L is an F-algebra and is isomor-
phic to a finite product Fy x Fy X ... X F,,, as F-algebras, where F; (i =1,2,...,m)
is a finite separable field extension of k. The degree of L is its dimension dimgL as

an F-vector space, i.e.

dimpL=[F : F]+[Fp: F]l+...+[F,: F).

It is clear the definition of étale algebra is consistent with that of étale morphism.

3. Etale Site

A good introduction to site is [26], Chapter I, II. A site is a generalization of the

notion of a topological space.

Definition 10 (Grothendieck). A Site ¥ is a category T and a set C each element

of which is called a covering and is a set of morphisms in T :
(U 5 Uliel},

where I is some index set, such that for any morphism ¢ : V. — U in T, the fiber
product U; xy V' exists in T for any i € I. C must also satisfy the following condilions:
e For any isomorphism X Y in T, {X 2, Y}eC.
o For any element {U; 25 U |z € I} € C and any morphism ¢ : V - U in T,
{UixyV—=V]|iel}eC.
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o Let {U; 25 5 Uli € I} be an element in C. For eachi € I, let {Vi; — 2y, Uilj e L}

be a covering. Then {V; LNy Iz el,jel}ecC.

Definition 11 ([26], p.86). Let X be a scheme. Denote by Et/X the category of
X -schemes in which an object (also called an open set) is an étale morphismY — X
for some scheme Y, and a morphism between two objects Y1 — X and Yo — X is a

morphism ¢ : Yy — Ya such that the following diagram is commutative:

,—2 sy,
X

Define a site X4, called the étale site of X, as follows:

o The underlying category T of X is Et/X.
o A covering is a set of morphisms {Y; £ Y I i € I}t over X in T such that
Y = Uierp:i(Y5).

Definition 12. Let ¥ be a site with underlying category 7. Let Ab be the category

of abelian groups. A presheaf on T with values in Ab is a contravariant functor

F . T — Ab.

Definition 13. Using notations in Definition 12, % is called a sheaf if F is a
presheaf and for every covering {U; £5 U l i € I} in X, the following sequence is

exact:

FU) - [[ZW) =[] Wi xv Uy).

el i,5€rl
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