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EXECUTIVE SUMMARY 

 In this report we present the culmination of the work done as part of our final design project, in 

which we were tasked with developing a software program and imaging apparatus able to determine 

the visual quality of baguette crumb for Première Moisson. We will briefly revisit the problem definition, 

design objective and criteria defined in our project proposal report, as well as summarize the results of 

our preliminary design analysis. Next, we discuss and explain the design process of the three major 

components of the software program: image acquisition, image analysis and neural networks. This is 

followed by a discussion on the design considerations of the physical imaging apparatus, as well as the 

test evaluations of our prototype design. We will be explaining the specification, prototyping, testing 

and optimization phases of our project, but due to the fast iterative design process of our project, many 

of these phases overlapped. Finally, we finish with a brief look at the functionality of the user interface, 

which was worked on primarily as an independent design project by Sara Tawil. The final product has yet 

to be installed and fully validated, which will be done in the coming weeks, and will monitored to ensure 

functionality. 
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INTRODUCTION 

 The goal of our final design project was to design and develop an imaging apparatus and 

software program able to quantitatively categorize the visual quality of baguette crumb. The need for 

such a product was made apparent at Première Moisson, where the monitoring of various quality 

control factors is an integral part of their production line. How a baguette looks, and the visual texture 

of its inner crumb, are vital factors in dictating consumer appeal towards the product. Currently, visual 

quality is being inspected by a quality control expert, but there are a number of inherent issues with this 

method that we sought to fix and improve upon with our project. These were explained in our previous 

report as part of our problem definition, but they are repeated briefly here. 

 First, the visual quality of baguette crumb is very subjective, and can vary greatly from person to 

person based on their personal preferences. Because of this, it is very difficult to set up a consistent 

grading rubric that can be used among various people of differing opinions, meaning that it always has 

to be same person grading the baguettes for the grading criteria to remain constant. Furthermore, 

human subjectivity, even within the same individual, is not perfectly consistent or repeatable. The 

quality grade attributed to the same baguette might vary depending on factors such as time of day or 

fatigue, or the inclusion of other quality indicators, such as baguette smell, which can influence a 

grading decision. External influencers should be completely removed if the quality grade is to be 

exclusively based on visual criteria. As well, it is very hard for a human’s perception and memory to track 

how quality changes over long time periods, or how precisely quality varies under different recipe or 

production parameters.  

These considerations lead to our design problem definition: the evaluation of the visual quality 

of baguette crumb must be done by a human expert, but it’s time consuming, subjective, non-

comparable and doesn’t provide hard data. Based on these issues, we set out to design a system that 

would be repeatable, consistent and scalable, as well as easy and fast to use. Our design objective was 

then to: develop an imaging apparatus and software program able to autonomously and consistently 

evaluate the visual quality of baguette crumb. 

In our previous report we explained the important criteria we were designing for, the 

constraints we had to adhere to, and assumptions we made. The design criteria are reiterated here: 

1) The program must be able to identify a baguette sample in an image and be able to 

distinguish it among other image objects and noise.  

2) The program must be able to extract pertinent information from the baguette image, such as 

pore area, pore density, pore distribution, etc. 

3) The program must be able to grade the baguette on a scale from 1 (worst) to 5 (best), using 

classifying algorithms able to emulate the grade given by a human expert. 
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4) The program must be flexible enough to allow for multiple baguette varieties or recipes to be 

analyzed. 

5) The program must be interfaced with an accompanying physical imaging apparatus to 

facilitate the analysis of baguette samples. 

6) The program must be equipped with an intuitive user interface. 

7) The program must come equipped with database capabilities suitable to store and display 

necessary information for each variety. 

8) The program must be able to run as a standalone executable application, without requiring 

an installed version of Matlab. 

The primary focus of our previous design proposal report was to determine which classifying 

algorithms would be used to assign a quality grade based on the extracted feature information from the 

baguette image. We reviewed four possible solutions based on the categories shown in Fig. 1: user-

weighted linear classifiers, multinomial logistic regression classifiers, expert systems and artificial neural 

networks. It was decided after careful analysis that artificial neural networks would be the best classifier 

to use for our given requirements. Neural networks were the most flexible of the four options, allowing 

the user to add new varieties easily to the database. Once enough training images have been collected, 

it is possible to train the network to emulate the same quality correlation that would be attributed by 

the expert. However, a large training set of data has to be accumulated before the correlations would be 

accurate. In order to implement neural networks into our program, we used the built in functions from 

the MATLAB® Neural Network Toolbox™ (MATLAB, 2011). 

 

Our design project falls into three separate categories: the image processing and analysis 

algorithms, the imaging apparatus, and the user interface. Each of these three components underwent 

their own specification, prototyping, optimization and testing phases. Only once each was in a functional 

state were they integrated with the other components. As such, we will be treating the design cycle 

Fig. 1: Possible classifier categories. 
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explanation of each component separately in this report. The main focus will be on the imaging program 

and apparatus, as the user interface was primarily worked on as an independent project in conjunction 

with ours by Sara Tawil. 
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IMAGE PROCESSING AND ANALYSIS 

 The image processing and analysis program was built entirely in MATLAB®. Due to MATLAB®’s 

workspace environment, it is very easy to perform fast specification, prototyping, testing and 

optimization. Because of this, there aren’t very clearly defined distinctions between these four phases of 

the design cycle since each run of the program would effectively run through this cycle. For example, a 

few lines of code would be written to specify a certain action that is wished to be performed 

(specification). This would first be tested directly in the command window interface with some 

placeholder variables to see if the syntax is correct and the code is behaving as expected (prototyping). 

Next, this bit of code is then integrated with the rest of the program function file, changing the 

placeholder variables to the desired variables in the function. The entire function is run from the start to 

see how it performs, and determine where it breaks (testing). Finally, the bugs are detected and fixed, 

and the code simplified in order to speed up the function execution time (optimization). 

 This design process, on a miniature scale, has been repeated hundreds of times during the 

course of this project. Every new addition to the program requires that the program be tested to ensure 

that it works before moving on to the next step. As a result, this section will not be structured by 

explaining the work done for each design cycle stage. If we were to do so, it would be structured as 

follows: 

Specification:  the algorithms used in the program 

 Prototyping:  testing the program without being interfaced with apparatus and user interface 

 Testing:  testing program once interfaced with apparatus and user interface 

 Optimization:  optimizing program based on results of testing  

However, we feel that it makes more sense to offer a complete description of how the program 

works from start to finish. For instances where large changes were made, decided upon during the 

testing and optimization phases, we will describe what was changed and why these changes were 

decided upon.   

Image Acquisition 

 The first step is to acquire an image of the baguette sample. Originally (during the “prototype” 

phase), this was just done by loading a sample image that had already been saved on the computer. 

When the program was interfaced with the imaging apparatus, the image would come directly from the 

webcam setup.  

Next, it is required that the program identify the baguette sample in the image. This is done by 

applying a contrast threshold to separate the light and dark areas of the image. The baguette will be 

predominantly pale in comparison to the black surface behind it. Pixels above a certain grayscale 

threshold brightness are painted white, while those below the threshold are painted black, resulting in a 

binary (black and white) image (Fig. 2). The use of contrast thresholds are a fast and computationally 

cheap method to pick out certain objects in an image. Although not as robust as more complex methods 
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such as color, shape, edge or texture recognition, early prototyping showed that it would be adequate 

for our requirements. 

 

 

The resulting image will now have many unconnected groups of white pixels, which often arise 

from particulate matter on the surface (such as baguette crumbs), glare from the lighting, or areas 

where the camera picks up parts of the imaging apparatus other than the black surface. It is important 

that the program select the correct group of pixels (those belonging to the baguette) and ignore all the 

others. This is done by determining the area of all white objects and selecting the largest one, which will 

correspond to the baguette sample. In order to ensure this is accurate, the imfill(holes) command is first 

used to fill in all holes in an image object (MATLAB, 2011). For example, the pores in the baguette will 

show up as black and not be counted towards the area of the baguette, but these will become white 

once the imfill(holes) command is used. 

Once the largest object is selected (the baguette) the regionprops command is used to extract 

certain properties about that image object (MATLAB, 2011). The important properties extracted are the 

orientation and bounding box. The orientation finds the angle of the object’s major axis above the 

horizontal axis of the image. If the baguette was put into the apparatus crooked, this will straighten the 

image. The bounding box specifies the pixel coordinates that creates a box that will completely enclose 

the object, enabling the original image to be cropped to only include the baguette object. This greatly 

reduces computation time and memory requirements because the image size is minimized as much as 

possible. The cropped version of the original image is now passed onto the next function. 

Image Analysis 

Now that the baguette sample has been identified and the image re-oriented and cropped, it is 

possible to extract the important image feature information. This is once again done using the contrast 

thresholds. Originally a threshold value was specified manually in order to obtain the best results, but 

once we started testing with the imaging apparatus, we realized that there was too much variation in 

lighting for this value to work consistently. Instead, we decided to use the graythresh command to 

minimize the variation between the black and white pixels in an image (MATLAB, 2011). What this does 

Fig. 2: Binary images with 0.4 and 0.6 contrast thresholds, respectively. 
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is find a contrast threshold value that best balances black and white for a given image. We had to 

manually adjust the multiplication factor until testing showed it gave consistent results. 

The baguette surface now appears white, and pores appear black. This is working under the 

principle that since the pores are deeper than the surface, they will be darker due to the shadows. The 

lighting requirements and design considerations to emphasize these pore features will be further 

discussed in imaging apparatus design section. Originally we used several contrast thresholds in order to 

find an equivalent pore “depth” (Fig. 3). However, once we begun testing the system, we realized that 

our lighting doesn’t adequately emphasize pores to enable the determination of depth. Furthermore, 

this greatly added computational requirements to process additional image layers. This was removed 

during a large optimization sweep and the program began running between 5-10 times faster. 

 

 

It is also important to ensure that no junk data is included in our analysis. For example, it is 

possible for the program to confuse parts of the background surrounding the baguette as being pore 

features. This is because during the analysis, any black object is considered a pore. However, this is 

solved by disregarding any object touching the edges of the image. What this does is ensure that only 

black objects (pores) within the baguette object are considered. Furthermore, the area of each pore was 

determined, and pores that fell below a certain minimum size (ex: 20 pixels) were excluded from the 

analysis. The reason for this is that it is possible to get a lot of image noise which doesn’t add any 

valuable information to the analysis, but will significantly increase the computational time, as each 

image object, no matter how small, would have to be analyzed. This had previously been done (during 

the prototype phase) by applying smoothing filters to the image to eliminate noise. It was later 

determined that these filters were actually eroding the image, and valuable data such as the exact pore 

area were being altered. Once these filters were removed and replaced with the minimum-size screen, 

the program begun running faster. 

 The information for the location and size of each pore is determined using the regionprops 

command (MATLAB, 2011). With this information it is now possible to determine the parameter values 

Fig. 3: Image with approximate pore depth. 



Beaudin & Wattie - 10 

 

that will be used in the neural network. We had to decide on parameters that would be able to 

meaningfully describe the features of the baguette surface and are somewhat independent from each 

other. We decided on the following: 

Pore density 

Pore area / total area 

Average pore area 

Pore area coefficient of variance 

Pore distribution 

As can be seen, the first four parameters are very similar, although they each describe a slightly 

different feature consideration. Pore density is an indicator of how many pores there are on the surface. 

Typically, high pore density will be caused by baguettes with many small pores, while low pore density 

will be caused by fewer larger pores. However, it is also possible to have baguette with only a few small 

pores and vice versa. This factor is accounted for by the pore area / total area parameter which is a ratio 

of the area consisting of pores over the total baguette area. This allows the neural network to 

differentiate between small and large pores, even if the pore density is the same between two different 

samples.  

Average pore area gives an approximate estimate of the pore sizes, while the pore area 

coefficient of variance gives a good indicator of the distribution of pore sizes. For example, it might be 

desirable for the pores to be as similar in size as possible if the average is below a certain size. Finally, 

pore distribution is a measure of how the pores are distributed with respect to the centerline. For 

example, a value of 0.5 means that the pores are evenly distributed over the surface of the baguette, 

while a value of 0.25 means the pores are concentrated near the middle, and a value of 0.75 means they 

are concentrated near the edges. This was calculated by taking the average distance of all pores to the 

centerline, divided by half the width of the baguette to obtain a value that ranges from 0 to 1. 

Despite there only being five quasi-independent parameters, it is still possible to obtain a very 

large set of different potential combinations. The neural network will be able to correlate these different 

combinations with the quality value associated with the sample during the training phase, and correctly 

assign newly analyzed samples. 

Neural Networks 

 As was previously mentioned, we are using the built-in neural network commands from the 

MATLAB® Neural Network Toolbox™. As such, we aren’t concerned with the internal workings of the 

neural networks (we assume they have been validated by MathWorks®), only how to properly set them 

up and use them. A neural network has three main “visible” components: the input array, the target 

array and the net. When creating a new neural network, it is assumed that the training data set has 

already been defined. The input array consists of all the samples (columns) that make up that variety 

and the parameters (rows) assigned to each sample, as shown in Fig. 4.  
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 The target array consists of all the samples (columns) within that variety, and the target 

category (row) assigned to each sample. The target category will be assigned a 1 while all others are 

assigned a 0, as shown in Fig. 5. Each category is assigned a particular outcome. In our case, this is 

simply the quality grade, ranging from 1 to 5. If the fourth row has a 1, for example, then that sample 

was graded a quality value of 4. However, since neural networks use categorical classification, the target 

array simply signifies which category that sample falls within. It’s therefore possible to assign string 

names to particular categories, as is often done when neural networks are used as means to diagnose 

patients in medical cases.  

   

 

Finally, the net is the neural network function that will correlate the inputs with the targets. An 

empty net is first defined and created. The input and target arrays from the training data set are then 

inputted into the train function, and the neural network is trained using 70% of the training set 

parameters. 15% is used for validation of the network, and the remaining 15% is used as independent 

testing of the network. Once the training function has converged on a network that satisfies the 

validation and testing requirements, the net variable is saved and stored along with the training data for 

that variety.  

When a sample of a specific variety is to be analyzed, the program loads the neural network 

associated with that variety. Once the image is taken and processed, the image features are sent as an 

input array into the neural network. This then returns a target array based on the correlations, and the 

quality value of the sample can then be displayed. 

So far we have been able to test the system and ensure that the neural networks are being 

trained, saved, accessed and used properly for each variety of baguette. However, we have not yet been 

able to validate the classifying performance of the neural networks because that would require 

inputting a very large training data set which we’ve not yet had the time to do. This validation step will 

take place once we install the system at Première Moisson. 

Fig. 4: Sample neural network input array. Fig. 5: Sample neural network target array. 

Sample number 

Parameter value 

Sample number 

Quality value  
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IMAGING APPARATUS 

In this section of the report we will review the process that we went through in developing the 

physical apparatus for image acquisition. We have three 3D models made using Google SketchUp, and 

we built two physical prototypes. We will go through each model and its respective prototype in a 

chronological order. Although the design cycle was used, some phases occurred simultaneously. Our 

main goal as aforementioned was to acquire images in a controlled, consistent and repeatable fashion.  

In the first design drawing (Fig. 6) we identified the basic functions that we needed to include, 

and used the drawings to communicate with our industry partner Claude Seanosky at Première Moisson, 

and receive feedback from Scott Manktelow on material choice, and construction techniques. 3D 

modeling allowed us to continuously return to the synthesis step of the design cycle, adding or changing 

aspects of our design, such as the lighting equipment. These discussions and research are analogous to 

the synthesis and evaluation components of the design cycle.  

 

 

The first prototype is where we first addressed the specification and prototyping aspects of the 

design process. There were two main aspects of our design that needed specification. We needed the 

height of the apparatus so as to capture the whole baguette in the field of view of the camera, and the 

lighting of the sample. The height was determined experimentally as we built the prototype, and the 

lighting was tested by trial and error. Then we gathered many images for testing.  

After reviewing the test results we made the necessary changes to our model and built a new 

prototype. For our processing algorithms to be robust, we needed to acquire images in a controlled, and 

repeatable fashion. Thus our goal was to design and build an apparatus that would house a camera in a 

fixed position, deliver the same amount of light at the same angle, and placed the bread in the same 

position and orientation. Moreover, we wanted the apparatus to be easy to load and reload.  

In developing our first design we used Google SketchUp to produce a 3D model to identify the 

necessary functions, discuss equipment choices, and their placement.  We knew there needed to be a 

lighting source, and some form of deflection to prevent direct illumination. To acquire the necessary 

Fig. 6: Preliminary imaging apparatus design. 
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information from the bread surface, adequate contrast is need to find the differences between the two 

phases in the image (Hall & Bracchini, 1997). To enhance the contrast we needed a diffuse light source, 

with as little direct light on the surface the bread. In the first design drawing the panels that extend from 

the top piece of the apparatus are to deflect any light that might shine directly on the sample.  To 

control the intensity of light within the apparatus we included a dimmer switch, this would allow even 

more user control over the imaging parameters.  We needed a surface for the bread that clearly 

delineated the bread contour, and did not reflect light and create interference. At this point in our 

design process we had little notion as to the actual dimensions of the apparatus as we did not yet know 

the standard baguette length, or how high our camera would be placed. 

 

 

Dimensions 

Preceding the construction of our first prototype following the first model, we needed to 

determine our apparatus dimensions. The length of the apparatus was determined by consulting with 

our industry partner. Their baguette product has very little variation in length, as their process is highly 

automated and precise. Given a baguette length of 55 cm we added an additional 5 cm of length to the 

apparatus to ensure that there was ample space for the baguette to be placed. Once we determined the 

length of our imaging area we were also able to determine the height. The only constraint on the height 

was that the camera needed to capture the whole length in its field of view.  For loading and unloading 

of the sample we needed a door. In the construction of our first prototype we added an angled 

extension to the walls so that the door could rest without the need for a latch.  

 

Fig. 7: Design of first imaging apparatus prototype. 
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Lighting 

Two lights were placed at each end of the apparatus at a perpendicular angle to the imaging 

surface. A third light was placed on the roof beside the camera facing the imaging surface.  We used 

three 20W halogen lamps that were encased in a screw mountable shell. These lights far outweighed 

other options. They were inexpensive at 10$ a unit.  The set of three we used came with an electrical 

plug eliminating the need for any circuit work, they simply plug into a standard 120V outlet.  However, 

these lights did not have the dimming capability that we had included in our first design drawings. Other 

options with this capability were much more expensive, and while controlling the intensity of light is 

desirable as a perfect intensity could be obtained, it can also be a liability. If the user has control over 

light intensity we would have needed to add controls to our image-processing algorithm that adjusted 

for light intensity, and include sensors further raising the cost of the project. Otherwise the process 

would not have been consistent in its conditions affecting the comparison from sample to sample.  

 

Materials 

To build our apparatus we chose 5/8” medium density fiberboard, as it is inexpensive, readily 

available and easy to work with. Its finished surface suited our project well, as it is ideal for paint, and 

provided a smooth finish with little disruption to the lighting for image acquisition. Assembly was also 

fairly quick; we used wood glue instead of screws to fasten the pieces together. The main drawback of 

this material choice was that our prototypes were quite large making them heavy and difficult for one 

person to move.  

We used a matte black paint to paint the entire interior surface of the first prototype. Matte 

black provides a distinct contrast with the colour of the bread, and causes little reflection or glare, thus 

improving image quality.  

Design Evaluation 

Our first prototype was then paired with a preliminary user interface and sent to Première 

Moisson to collect our first set of images.  After a week of use they had amassed several photos of each 

quality category. Unfortunately, when we applied our image processing algorithms to these photos we 

Fig. 8: 20 W halogen lamps used for lighting. 
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found that the quality was very poor, and much of the detail we needed in the bread crumb was being 

bleached out by our lighting arrangement.  

Upon visual inspection of the image and the processed result, it is clear that there is too much 

incident light shared by the pore and the surface giving them very similar color properties. Thus our 

processing algorithm cannot distinguish between the two. The pores are highly eroded, their calculated 

areas are much smaller than their actual areas, and small pores are being missed entirely.   

 

 

 

These problems were very critical and needed to be addressed, thus leading us to our second 

design and prototype.  

 

 

Fig. 9: First prototype, original image. 

Fig. 10: First prototype, processed image. 

Fig. 11: Design of second imaging apparatus prototype. 
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From the results of our first prototype we knew that our main issue was the lighting of the 

sample. The details of the bread crumb pore structure are most easily extracted when there is a large 

contrast in color from the surface to the pore. In our previous prototype the contrast was not sufficient.  

To enhance the contrast we made one key change, and a few improvements.  

To improve the contrast we moved the lighting underneath the sample and allowed it to reflect 

through the box. To enhance the reflection we chose not to paint the entire interior surface with matte 

black paint. In this prototype we only painted the surface of the trays and a small rectangle on the door 

and back wall to make sure that if that sample was placed   Furthermore we needed to increase the 

height of the apparatus to be able to place a tray for the sample over the lights while not blocking the 

light too much. The tray also included beveled edges to ease placement and ensure the bread was fully 

surrounded by a black background.  

   

 
Fig. 12: Front view of second prototype. Fig. 13: Side view of second prototype. 
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Another change we made was to the door. We decided to remove the gravity rest and make a 

sideways swinging door. However, fiberboard made hinge placement for the doors challenging as it is 

prone to splitting. To place screws on the sides we used very small screws as the door is small and the 

screws did not have to bear a large load. The screws were also placed far enough from the edges so that 

splitting would not reach the corners. When splitting did occur the cracks were filled with wood glue and 

clamped to prevent further splitting and secure the hinges. 

 

 

 

 

Fig. 14: Top view of lighting arrangement. Fig. 15: Lighting with bread sample. 

Fig. 16: Second prototype, original image. 

Fig. 17: Second prototype, processed image. 
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The image quality given by our second prototype was distinctly improved. Now even smaller 

pores are being detected. There are still some small issues with the results. For example in Figure 9 we 

can see that the top left corner has been interpreted as one big pore when in fact there are a few pore 

within a larger depression. This is likely an issue with our processing algorithm and it should be easily 

fixed, however should it be unresolvable it may not be a prohibitive error as we are using artificial neural 

networks and if the error is constantly repeated perhaps this flaw in the data will not sway the quality 

result too much. While we continue to improve our algorithms, we now have sufficient image quality 

given the physical parameters, and have met our original design goals for the physical apparatus. 
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USER INTERFACE 

 Although the baguette analysis program can be run directly from the MATLAB®’s work 

environment, this can be a very tedious, slow and complicated method of running the program. The 

need for an intuitive user interface is essential if the program is to be used by people unfamiliar with 

MATLAB®. The user interface was primarily worked on by Sara Tawil as part of her BREE 497 

Independent Design Project. This section will only provide a brief overview of the features and 

functionality of the user interface, but will forgo a description of its development cycle and inner 

programming.  

 The interface consists of various panels and tabs, as can be seen in Fig. 18 & 19. The panel in the 

top left corner, titled “à Remplir”, is used to input the batch ID number, the bread variety (or recipe), 

and other useful analysis information such as the length, width, height and weight of the bread sample. 

The panel in the lower left corner, titled “Ajouter/Supprimer”, is used to either add a new variety (or 

recipe) to the system, or delete an existing one. 

 The rest of the interface consists of the tabbed panels “Video/Image”, “Résultats” and 

“Database” (which will be translated to “Base de Donnés”). In the video/image tab there is a direct video 

feed from the webcam installed inside the imaging apparatus. When an image is captured (“Prise 

d’image”) a cropped image appears. The user can keep adjusting the sample and taking pictures until 

they are pleased. Next, the user chooses between either analyzing the image or adding it to the 

database. 

 If the user has created a new variety, it is required that they add images to the database to build 

up the training data set. When adding to the database, the user is prompted to enter a quality value, 

from 1 to 5, for the baguette sample. When this is done, the image is sent through the analysis program 

to determine the baguette features, and this data is saved in an input array for that variety. As long as 

samples are being added to the database, the input and target arrays for that variety are continuously 

updated. Once enough samples have been entered to constitute an adequate training data sample size, 

the user clicks on the “Train” button in the lower right corner. This will create a new neural network for 

the chosen variety based on the input and target arrays for that variety. The user is able to continuously 

add more data to the database, and retrain the neural networks each time. 

 If a database (and neural network) for a variety already exists, then the user can simply click on 

the image analysis button. When this is done, the image is sent through the analysis program and the 

feature parameters are then sent through the neural network for that variety. The interface then 

automatically switches to the results tab and displays the quality value for the baguette. This 

information is not saved to the database, but the user can choose to do so by returning to the 

video/image tab and adding it. The results tab will display both the original cropped image, as well as 

the processed binary image so that the user can get a visual indication of how the program performed. 

 There is still some work that has to be done before the user interface is completely ready to go. 

The results section will also display a histogram to the right of the processed image displaying how this 
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sample’s quality compares to the others of this variety. Furthermore, some statistical information from 

the image analysis will be displayed. This will include: the total pore area in mm2, the pore area to total 

area ratio in percentage, the centreline distribution ratio, the total number of pores, and the 

distribution of area, divided into bins (ex: 10-20 mm2, 20-30 mm2, etc.). 

 In addition to this, we will also be including a logbook features that will write the results of the 

image analysis to an excel file, along with tracking information such as time and date, batch ID, variety, 

etc. This information can then be extracted from the excel file and used by Première Moisson to conduct 

more in depth analysis of baguette quality, either over time or over different varieties and recipes. 

 

 

 

Fig. 18: User interface with video/image tab. 

Fig. 19: User interface with results tab. 
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CONCLUSION 

 The scale and computer software oriented nature of our project gave us the opportunity to 

produce rapid iterations of the design cycle. As we move forward there will always be improvements to 

be made and features to be added. Our design is not entirely validated, as we still need to have it 

implemented and monitored at Première Moisson. Once in full use with a large data set it will be 

important to verify that the imaging apparatus is taking consistent images with repeated use, and that 

the artificial neural network has sufficient training data to make predictions that are accurate.  

 From this point forward, we are also currently working on including different functionality in the 

user interface, including a histogram of past data for comparison, a log book to record use, and the 

ability to process 5 different images and return an average score.  Throughout the summer one of our 

group members, Bryan Wattie, will work with Première Moisson to integrate this design with their 

quality assurance protocol. 
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APPENDIX – OPTIMIZED CROPPING AND FEATURE EXTRACTION CODE 

 

 

%%-----------------------------------------%% 

SAMPLE IDENTIFACTION AND CROPPING PROGRAM 

%%-----------------------------------------%% 

 

 

function [pic13, maxi] = bread_cropper(pic1); 

% Takes the original image and crops it to only have the bread sample. 

 

% determines the thresh value needed to identify the bread sample 

thresh = graythresh(pic1)*.8; 

pic2=im2bw(pic1,thresh); 

 

pic3=imfill(pic2,'holes'); 

 

%find areas and orientation of each object 

cc1=bwconncomp(pic3); 

rr1=regionprops(cc1,'Area','Orientation'); 

%loop to extract the area info for the objects 

rr1size = size(rr1); 

for k = 1:rr1size(1); 

    rrr(k,1) = rr1(k).Area; 

end 

%figure out which object is the largest 

[maxi,ind]=max(rrr); 

 

pic4=imrotate(pic3,-rr1(ind).Orientation); 

 

cc2=bwconncomp(pic4); 

rr2=regionprops(cc2,'Area','Centroid','BoundingBox','MajorAxisLength','MinorAxisLength','Orientat

ion'); 

% BoundingBox = [x-topleft, y-topleft, x-width, y-width] 

% Orientation = angle between x-axis and major axis of bread 

 

%find max for new rr 

rr1size = size(rr1); 

for k = 1:rr1size(1); 

    rrr(k,1) = rr1(k).Area; 

end 

%figure out which object is the largest 

[maxi,ind]=max(rrr); 

 

%bounding box coordinates 

bounding_box(1,:) = [rr2(ind).BoundingBox(1),rr2(ind).BoundingBox(2)]; %top-left corner 

bounding_box(2,:) = [rr2(ind).BoundingBox(1)+rr2(ind).BoundingBox(3),rr2(ind).BoundingBox(2)]; 

%top-right corner 

bounding_box(3,:) = 

[rr2(ind).BoundingBox(1)+rr2(ind).BoundingBox(3),rr2(ind).BoundingBox(2)+rr2(ind).BoundingBox(4)]

; %bottom-right corner 

bounding_box(4,:) = [rr2(ind).BoundingBox(1),rr2(ind).BoundingBox(2)+rr2(ind).BoundingBox(4)]; 

%bottom-left corner 

 

pic12 = imrotate(pic1,-rr1(ind).Orientation); 

pic13 = imcrop(pic12,rr2(ind).BoundingBox); % the original image cropped 

end 
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%%-----------------------------------------%% 

SAMPLE FEATURE EXTRACTION PROGRAM 

%%-----------------------------------------%% 

                    

                           

function [pic5,input_matrix] = porefinder_clean(pic1,total_area) 

% This is the main function that process the image, connected to bread_cropper 

 

format short g 

 

imsize = size(pic1);  

x_length = imsize(2); 

y_length = imsize(1); 

 

% reads the cropped image and displays it 

imshow(pic1), title('Original image, cropped') 

 

%%% MAKE THE THRESHOLD MULTIPLIER A VARIABLE THAT CAN BE ADJUSTED 

% determines good threshold amount 

thresh = graythresh(pic1); 

thresh1=thresh*.8; 

 

%converts to binary image 

pic2=im2bw(pic1,thresh1); 

 

%inverts the black/white of the image 

pic3=zeros(imsize(1),imsize(2)); 

black1=find(pic2==0); 

pic3(black1)=1; 

 

% fills in the wholes of the objects, determines connectivity 

pic4=imfill(pic3,'holes'); 

cc1=bwconncomp(pic4);  

rr1=regionprops(cc1,'area','Centroid'); 

 

% turns composite image into a color-mapped image 

pic5=ones(imsize(1),imsize(2),3); 

numb=imsize(1)*imsize(2); 

tier0=find(pic4==0); 

tier1=find(pic4~=0); 

 

% assigns dark blue to pores 

pic5(tier1)=0/255; 

pic5(tier1+numb)=0/255; 

pic5(tier1+2*numb)=160/255; 

% assigns light blue to non-pores 

pic5(tier0)=135/255; 

pic5(tier0+numb)=206/255; 

pic5(tier0+2*numb)=250/255; 

 

% converts structure array to normal array 

rr1Length = length(rr1); 

% pulls out info from the rr1 structure arrays 

% makes it easier to pass on data 

% columns: area, x-centroid, y-centroid 

for k = 1:rr1Length 

    r1(k,1) = rr1(k).Area; 

    r1(k,2:3) = rr1(k).Centroid; 

    r1 = round(r1); 

     

end 

 

%%% FIND OBJECTS TOUCHING EDGES OF IMAGE, TO BE REMOVED 

pixlist = regionprops(cc1,'pixellist'); 

jj = 1; 

for k = 1:rr1Length 

    pix_index = pixlist(k).PixelList; 

     

    x1 = find(pix_index(:,1) == 1); %1 or last x 
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    empt1 = isempty(x1); 

         

    x2 = find(pix_index(:,1) == x_length); %1 or last x 

    empt2 = isempty(x2); 

     

    y1 = find(pix_index(:,2) == 1); %1 or last y 

    empt3 = isempty(y1); 

     

    y2 = find(pix_index(:,2) == y_length); %1 or last y 

    empt4 = isempty(y2); 

     

        if empt1 == 0 

        to_remove(jj) = k; 

        jj = jj+1; 

                            

        elseif empt2 == 0 

        to_remove(jj) = k; 

        jj = jj+1; 

                              

        elseif empt3 == 0 

        to_remove(jj) = k; 

        jj = jj+1; 

                             

        elseif empt4 == 0 

        to_remove(jj) = k; 

        jj = jj+1; 

         

        end 

end 

 

% removes objects touching edges (makes area 0, so that it is filtered out 

% in next step, and not passed on 

for k = 1:length(to_remove) 

    edge_detected = find(r1 == to_remove(k)); 

    is_empt = isempty(edge_detected); 

    if is_empt == 0 

        r1(to_remove(k),1) = 0; 

    end 

end 

 

%%% FILTER TOO SMALL PORES (REMOVE THE PREVIOUS FILTERING?) 

% removes max and min area values (pores too big or small) 

% WARNING: make sure to exclude area of 0 

t1max = 6000; 

t1min = 20; 

% finds where in the array the values fall between the max and min 

% includes this into new array that only has the values of interest 

r1f = find(r1(:,1) >= t1min & r1(:,1) <= t1max); 

tier1_pore_info = r1(r1f,:);    % pore info to be used in neural network 

 

 

 

%%% INPUT VALUES FOR THE NEURAL NETWORK 

 

% PORE NUMBER/DENSITY (number/area - normalized) 

tier1_pore_number = length(tier1_pore_info(:,1))/total_area; 

 

% PORE AREA / TOTAL AREA (indirect pore density) 

tier1_pore_density = sum(tier1_pore_info(:,1))/total_area; 

 

% AVERAGE PORE AREA (as proportion of total area) 

tier1_pore_area_avg = mean(tier1_pore_info(:,1))/total_area; 

 

% PORE AREA COEFFICIENT OF VARIANCE 

tier1_pore_covar = std(tier1_pore_info(:,1))/mean(r1(:,1)); 

 

% PORE DISTRIBUTION (absolute y-position to center) 

% disp('PORE DISTRIBUTION:') 

% not based on pore size 
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% ~0.5 evenly distributed 

% ~0.25 concentrated in middle 

% ~0.75 concentrated near edges 

% imsize = size(pic1); 

height = imsize(1); 

centerline = height/2; 

tier1_pore_dist = mean(abs(tier1_pore_info(:,3) - centerline))/centerline; 

 

% puts the values into a matrix to saved with the neural network matrix 

input_matrix = [tier1_pore_number; 

    tier1_pore_density; 

    tier1_pore_area_avg; 

    tier1_pore_covar; 

    tier1_pore_dist]; 

     

end 


