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ABSTRACT

Climate and weather modelling (CWM) is an important area where machine learning
(ML) models are used for subgrid modelling: making predictions of processes occurring at
scales too small to be resolved by standard solution methods. These models are expected
to make accurate predictions, even on out-of-distribution (OOD) data, and are additionally
expected to respect important physical constraints of the ground truth model. While
many specialized ML PDE solvers have been developed, the particular requirements of
CWM models have not been addressed so far, marking the motivation behind this thesis.
In this work, we explore the intersection of machine learning and PDEs, proposing and
developing a novel model architecture which matches or exceeds the performance of
standard ML models, and which demonstrably succeeds in OOD generalization. The
architecture is based on expert knowledge of the structure of PDE solution operators,
which also permits the model to obey important physical constraints.
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ABRÉGÉ

La modélisation du climat et de la météo (CWM) est un domaine important où les modèles
d’apprentissage automatique (ML) sont utilisés pour la modélisation sous-maille qui con-
siste en la prédictions sur des processus se produisant à des échelles trop petites pour être
résolues par les méthodes de solution standard. Ces modèles doivent faire des prédictions
précises, même sur des données hors distribution (OOD), et sont également contraints
de respecter les contraintes physiques importantes du modèle de vérité terrain. Bien que
de nombreux solveurs d’EDP (équations aux dérivées partielles) utilisant le ML aient été
développés, les exigences particulières des modèles CWM n’ont pas encore été abordées,
ce qui motive cette thèse. Dans ce travail, nous explorons l’intersection de l’apprentissage
automatique et des EDP, en proposant et en développant une nouvelle architecture de
modèles qui égalise ou dépasse les performances des modèles ML standards, et qui mani-
festement, réussit à se généraliser dans les situations OOD. L’architecture est basée sur la
connaissance experte de la structure des opérateurs de solution des EDP, ce qui permet
également au modèle de respecter les contraintes physiques importantes.

iii



LIST OF FIGURES

2.1 Multilayer Perceptron with 2 hidden layers. . . . . . . . . . . . . . . . . . . . . . 7

6.1 Fourier Spectra for in-distribution and out-of-distribution data in one and two
dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Coefficients of the ground truth process. . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Example of subgrid coarsening in one and two space variables. . . . . . . . . . 29
6.4 ConvN Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.1 In-distribution and out-of-distribution relative errors for subgrid models in one
and two dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.2 Two dimensional modelled solutions for an in-distribution and out-of-
distribution example in a subgrid with a resolution of 16 × 16. . . . . . . . . . . 34

7.3 One dimensional modelled solutions for an in-distribution and out-of-
distribution example in a subgrid with a resolution of 32. . . . . . . . . . . . . . 35

7.4 Fourier spectra for in-distribution and out-of-distribution data in the ablation
study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.5 Subgrid errors for both simple Fourier spectra and complex Fourier spectra. . . 36
7.6 Training dynamics of our model and the standard neural networks in a

two-dimensional subgrid of resolution 16 × 16. . . . . . . . . . . . . . . . . . . . 36
7.7 Learnt coefficients of our model and the standard neural networks in a

one-dimensional subgrid of resolution 32 and a two-dimensional subgrid of
resolution 16 × 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.8 Training dynamics for different bounding constants in 1D. . . . . . . . . . . . . 38
7.9 Training dynamics for different bounding constants in 2D. . . . . . . . . . . . . 38

iv



LIST OF TABLES

7.1 Model parameters for our model and the standard neural networks in one
dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.2 Model parameters for our model and the standard neural networks in two
dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3 Training dynamics for the 1D model with different bounding conditions. . . . . 39
7.4 Training dynamics for the 2D model with different bounding conditions. . . . . 39

v



LIST OF ABBREVIATIONS

The next list describes several abbreviations that will be later used within the body of the
document:

AI: Artificial Intelligence

CFD: Computational Fluid Dynamics

ConvN: Convolutional Network

CWM: Climate and Weather Modelling

FCN: Fully Connected Network

ML: Machine Learning

MLP: Multilayer Perceptron

MSE: Mean Squared Error

OOD: Out-of-Distribution

PDEs: Partial Differential Equations

PINNs: Physics Informed Neural Networks

SGD: Stochastic Gradient Descent

vi



CONTENTS

Abstract ii

Abrégé iii

List of Figures iv

List of Tables v

Acknowledgements ix

Contribution of Authors x

1 Introduction 1
1.1 Partial Differential Equations, Numerical methods, and Stability . . . . . . . 1
1.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 ML for PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Subgrid Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Climate and weather modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Machine Learning 6
2.1 Neural Networks: The Foundation of Deep Learning . . . . . . . . . . . . . 6
2.2 Training Optimization: Navigating the Parameter Space . . . . . . . . . . . . 7
2.3 A simple example: Linear Regression . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Architecture: The key to best-performing models . . . . . . . . . . . . . . . . 9

3 Stability Theory 10
3.1 The Continuous Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 The Discrete Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Learning PDEs with Data 16
4.1 The PDE Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 The ML Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



viii CONTENTS

4.3 The Subgrid Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Relevant Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Our Model 21
5.1 Model Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 The Complete Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Experiments 25
6.1 Dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Baseline neural network models . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Error Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Results and Discussion 32
7.1 Modelled solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Data complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3 Training dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 Conclusion 40

Bibliography 42



ACKNOWLEDGEMENTS

First and foremost, I extend my deepest gratitude to my supervisor, Adam. Your constant
support, expert guidance, and invaluable mentorship have been the cornerstones of my
research journey. Your academic insights and dedication have not only enriched this thesis
but have also fostered my intellectual growth. Your financial support through research
grants and scholarships has made pursuing this degree a reality, for which I am immensely
thankful. I would also like to express my profound appreciation to McGill University
for providing me with the opportunity to pursue this master’s degree. In particular, I
would like to thank the many professors and instructors at the university who shaped
my academic journey. Your commitment to education and your passion for teaching have
inspired me to strive for excellence.

To my parents, Alejandro and Christine, I owe an immeasurable debt of gratitude. Your
unwavering belief in my potential, your sacrifices, and your continuous encouragement
throughout my academic journey have been the pillars of my success. Your love and sup-
port have sustained me through the challenges, and I dedicate this achievement to you. To
my girlfriend, Emily, your unconditional support, patience, and understanding have been
my comfort during the highs and lows of this journey. Your continuous encouragement
and belief in my abilities have been my constant source of motivation and none of this
would have been possible without you. Lastly, to all my friends and family, thank you for
always being there for me when things got hard. Whether it was going for a drink, playing
soccer, or making a simple phone call, you always made things more enjoyable.

This master’s thesis is the culmination of years of dedication, hard work, and the support
of a remarkable community of individuals. I am deeply grateful for every opportunity,
every lesson, and every person who has been part of this transformative experience. Thank
you from the bottom of my heart.

ix



CONTRIBUTION OF AUTHORS

This thesis is entirely authored by me, reflecting my comprehensive research during the
duration of my Master’s program. The foundation of this work is grounded in a paper that
I co-authored with my supervisor, Adam Oberman, which was submitted to a conference
workshop. The paper served as a pivotal starting point for the broader and more detailed
exploration presented in this thesis, which significantly expands on the concepts presented
in the paper, offering a deeper and more nuanced understanding of the subject matter,
solely developed through my dedicated research efforts.

x



CHAPTER 1

INTRODUCTION

In the contemporary landscape of computational science, the quest for efficient and ac-
curate solutions to partial differential equations (PDEs) stands as a cornerstone of ad-
vancement across diverse scientific and engineering domains. PDEs, the mathematical
models that describe the continuum of physical phenomena ranging from fluid dynamics
to electromagnetic fields, pose significant challenges due to their complexity and the often
intractable nature of their analytical solutions. This thesis aims to bridge the gap between
machine learning (ML) and traditional numerical methods by exploring the potential
of machine learning algorithms in approximating PDE solution operators, particularly
focusing on the critical aspect of subgrid modelling.

This thesis is structured to first lay the theoretical groundwork, introducing the basics of
machine learning as well as defining the fundamental concepts of PDEs and the challenges
inherent in their numerical solutions. It then delves into the research problem and its
connection to PDEs, ML, and subgrid modelling. We then define our proposed model
and test it against basic standard ML models. Finally, we present our results and set the
direction for future research.

1.1 PARTIAL D IFFERENTIAL EQUATIONS , NUMERICAL METHODS , AND STABILITY

In short, partial differential equations are mathematical models that explain physical
processes. They occur in a variety of applications like financial modelling, potential fields
(gravitational, electrostatic, magnetostatic, etc.), probability densities, heat flow problems,
and biological phenomena [Larsson and Thomée, 2009]. Solving these models, however, is
not an easy task, and sometimes it is even impossible to obtain analytical solutions. When
this occurs, numerical methods are a way to obtain approximations of solutions in an
accurate way.

Finite difference methods dominated the early development of numerical analysis of
partial differential equations. In this method, space is broken down into a finite grid of
points, and the approximation of the differential equation is accomplished by replacing
derivatives with difference quotients, reducing the differential equation problem to a finite
linear system of algebraic equations [Larsson and Thomée, 2009]. While a simple method,
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2 1.2. MACHINE LEARNING

many mathematical details must be carefully addressed for the method to work correctly.
One of the most important conditions is stability, since in an unstable finite differences
scheme, solutions do not converge but rather "blow up" to infinity [Larsson and Thomée,
2009]. We will see later how having a stable scheme is crucial for solving PDEs.

1.2 MACHINE LEARNING

Machine learning is a field of artificial intelligence (AI) that focuses on the development of
algorithms and statistical models that enable computers to perform a task without using
explicit instructions. Instead, these systems learn and make decisions based on patterns
and inferences from data [Shalev-Shwartz and Ben-David, 2014]. These models can be
incredibly powerful, and thus machine learning has become a trending topic in today’s
world. Every year, numerous models are created that improve efficiency over previous
models. Thus, as the field progresses and research in ML continues, we can generate
models that we never thought would be possible before. ChatGPT, for example, might be
the most significant advancement in recent years, with the whole world now constantly
using it to increase productivity.

1.3 ML FOR PDES

With the vast range of uses of ML models and the powerful computational capacity
available these days, it is no surprise that ML models can also be used to solve PDEs.
Recently, there has been a lot of research into the intersection of these two areas and how
we can leverage ML to help us solve PDE problems more accurately and more efficiently.

In recent years, many novel ML models have been developed to approximate PDE solution
operators. Probably the most well-known is PINNs (Physics Informed Neural Networks),
which uses known laws of physics described by general nonlinear partial differential
equations to define the ML model architecture [Raissi et al., 2019]. PINNs demonstrate
the key element that we are after; implementing PDEs structure directly into the model’s
architecture with the goal of obtaining more accurate solution operators. ML for PDEs is
an active area of research, and numerous novel models have shown promising results. We
discuss them further in Chapter 4.

1.4 SUBGRID MODELLING

Subgrid modelling is a concept used primarily in numerical simulations, especially in
fields like computational fluid dynamics (CFD), meteorology, and climate and weather
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modelling. Subgrid modelling addresses the challenge of simulating physical phenomena
that occur at scales smaller than the grid resolution of the model (or, more practically,
smaller than the scale at which we have observations) [Brasseur and Jacob, 2017]. In other
situations, it might also be computationally impractical, or even impossible, to resolve all
the scales of motion or changes due to limited computational resources. Subgrid models
aim to solve these problems by approximating the effects of these smaller-scale phenomena
on the larger scales that the grid can resolve.

1.5 CLIMATE AND WEATHER MODELLING

In this section, we introduce the main motivation behind our work; Climate and Weather
Modelling (CWM). CWM is an important research area which consists of the study of
predictive models for physical and atmospheric processes. These processes are represented
by time-dependent partial differential equations of fluid mechanics [Mcsweeney and
Hausfather, 2018]. In order to model these PDEs, traditional climate and weather models
break the ocean, atmosphere, and land up into many grid points and features that are too
small or complex to be explicitly calculated in the model are approximated using coarser
grids [Brasseur and Jacob, 2017, Balaji et al., 2022].

Recently, ML approaches have been used to make better approximations of these subgrid
processes [Weyn et al., 2019, Bretherton et al., 2022, Watt-Meyer et al., 2021]. For example,
Bolton and Zanna [2019] applied deep learning to ocean modelling, and found that they
could decrease the data resolution by a factor of 5 to 10 while maintaining accuracy
and conservation of momentum. However, these models fail to generalize to out-of-
distribution (OOD) data, and they can violate physical constraints [Kashinath et al., 2021],
two requirements of the CWM models. Thus, our motivation behind this work is to propose
a new mechanism to develop ML models for climate and weather processes that also
satisfies these requirements. We note that we are not creating climate models themselves,
but rather proposing a mathematical framework that can address the limitations of current
climate and weather models.

1.6 RESEARCH OBJECTIVES

Numerous Neural PDE solvers exist, each with its own unique approach and application.
However, many of these models grapple with two critical limitations: Firstly, they often
can’t learn directly from data, necessitating a complete knowledge of the governing
equations — a requirement that’s infeasible in complex scenarios like weather and climate
modelling. Secondly, they are constrained by the curse of dimensionality, compelling
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them to resolve at finer scales and thereby excluding the use of subgrid models. While
recent advancements in neural PDE solvers are promising, they often don’t incorporate the
comprehensive controls that traditional PDE solvers offer, such as stability, convergence
guarantees, and the preservation (or near-preservation) of qualitative solution attributes
like energy, mass, and linearity, to name a few. In this study, we focus on a specific PDE
problem pertinent to climate, atmospheric, and oceanic modelling.

Standard machine learning models have shown efficacy in learning PDE solution operators.
However, when applied to climate and weather models, their limitations become evident.
Specifically, they might not always adhere to the fundamental governing laws of physical
systems, and their generalizability to out-of-distribution data can be questionable, as
pointed out by Kashinath et al. [2021]. It is imperative for PDE solvers in this context to be
not only physically consistent and scientifically rigorous but also data-efficient, requiring
fewer input data points. Moreover, they should be adept at making reliable predictions for
unseen and non-stationary scenarios, such as changing climates.

Subgrid models address some of these challenges by solving PDEs at coarser resolutions,
thus necessitating fewer data points to capture the complete physical process. The impor-
tance of these models in climate and weather studies is underscored by the fact that no
single resolution can capture all climate-relevant phenomena [Balaji et al., 2022]. Addition-
ally, subgrid models offer computational advantages over fully-resolved grid models in
many climate areas, for example, orographic precipitation [Leung and Ghan, 1995]. Bolton
and Zanna [2019] implemented neural networks to model turbulent processes and subsur-
face flow fields at coarser resolutions, but their results showed a need for generalization
and better subgrid accuracy. A different approach outlined by Kashinath et al. [2021] is
custom-designed neural network architectures to enforce physical constraints. However,
until now, these have not been made to work.

The challenge of OOD generalization is pervasive across the machine learning landscape.
In scientific applications, the ability to apply models to data distributions distinct from
the training set is of incredible value. Yet, this remains one of ML’s most formidable
challenges, with climate and weather models often falling short in their generalization
to novel weather patterns [Kashinath et al., 2021]. Through our research, we aim to
demonstrate that incorporating extensive domain knowledge and expected mathematical
properties directly into the models can facilitate OOD generalization. We contend that
a deep understanding of the underlying mathematical structures and domain-specific
knowledge can guide the training process, rendering models that are not just data-driven
but also grounded in theory, fostering a robust generalization performance for unseen data
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distributions.

In this paper, we propose a pioneering architecture crafted for solving inverse problems
in PDEs while aiming to exhibit exceptional out-of-distribution generalization. Our con-
tribution is a hybrid neural network model that has many of the controls built into PDE
solvers, but can also learn from data and overcome the grid limitations. Leveraging the
mathematical properties inherent to PDEs, this innovative architecture promises to carve a
pathway toward resolving the long-standing issue of OOD generalization by embedding
structured knowledge into the learning process.

1.6.1 Key contributions

Our key contributions through this research are outlined as follows:

1. OOD generalization for subgrid PDE solution operators: By restricting to an
architecture grounded in theory, we show that we can accurately approximate the
true solution operator, even on OOD data.

2. Accurate subgrid models: Addressing the needs of scientific computing, we develop
and integrate subgrid solvers into our model, which maintain accuracy even at
reduced grid resolutions (data dimensionality).

3. Physical constraints satisfied: Our model hypothesis class has the benefits of tradi-
tional PDE solvers, which satisfy physical constraints by construction, and has the
framework of a neural network training pipeline.

In the broader landscape, many are making significant strides, like establishing foundation
models for climate and weather. Our paper’s intent is to spotlight the OOD generalization
challenge using a concise example where we can study precisely what happens. We
illustrate the construction of an architecture adept for OOD generalization in subgrid
models, hoping our insights will pave the way for future endeavours in more expansive
projects.



CHAPTER 2

MACHINE LEARNING

Machine Learning stands as one of the most transformative fields in computer science and
artificial intelligence. In its essence, ML is a subset of artificial intelligence that focuses on
enabling computers to learn from data and make predictions or decisions without being
explicitly programmed. At its core, ML algorithms seek to uncover patterns, correlations,
and structures within datasets, allowing them to generalize from observed examples to
unseen data. This chapter presents a brief literature review that navigates through the core
elements of machine learning, encompassing neural networks, loss functions, and training
optimization.

2.1 NEURAL NETWORKS : THE FOUNDATION OF DEEP LEARNING

Neural networks, inspired by the human brain’s neural architecture, are the cornerstone of
modern ML [Stanley et al., 2019]. These computational models consist of interconnected
layers of artificial neurons, which process information and learn complex representations
from data. While neural networks vary in architecture, they all share the same underlying
concept.

Each layer of a neural network consists of a linear mapping composed with a non-linear
activation:

fi(x) = σi(Wix + bi),

where Wi is a matrix of learnable parameters (or weights), bi is a (learnable) bias vector,
and σi(·) is a non-linear activation function that is applied element-wise. Of course, the
dimensions of Wi and bi are chosen to match the input size and desired output size of the
layer.

A Multilayer Perceptron (MLP), the simplest version of a neural network, is just a combi-
nation of many of these layers one after another [Kruse et al., 2022]. An MLP of K layers
would then take the form

fMLP (x) = fK(fK−1(. . . f2(f1(x)) . . . ))

= σK(WKσK−1(WK−1 . . . σ2(W2σ1(W1x + b1) + b2) · · · + bK−1) + bK).

(2.1)

6
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Here x is our input vector and the final output is our output vector. Each intermediate
output obtained after applying fi for i ̸= K is considered a hidden layer of the network.
Hence the network described above would contain K − 1 hidden layers and one output
layer. Below is a graphical representation for K = 3.

Figure 2.1: An example of a multilayer perceptron with 2 hidden layers [LeNail, 2019].

The activation functions at the end of each layer are crucial to the computational power
of neural networks. While there are many common choices for the activation functions
of hidden layers, the output layer will usually have a softmax or identity activation
function, depending on the task of the network (usually identity for regression problems
and softmax for classification problems) [Kiaei et al., 2023]. But more importantly, it is
precisely the non-linearity between layers that allows neural networks to fit data in such
accurate ways. In fact, the universal approximation theorem states that a neural network
with a single hidden layer and suitable activation function is able to approximate any
continuous function up to arbitrary accuracy [Kidger and Lyons, 2020, Cybenko, 1989].

2.2 TRAINING OPTIMIZATION : NAVIGATING THE PARAMETER SPACE

Having defined an architecture for a neural network (number of layers, activation functions,
etc.) we now turn to the question of how to train the network in order to get the best-
performing model. This involves optimizing the internal parameters in the model to
minimize a given loss function. Loss functions quantify the disparity between predicted
outcomes and actual data [Mohri et al., 2018]. The simplest example would be the L2 loss,
or mean squared error (MSE).

For a given network fθ(x) (where θ represents the collection of parameters of the network),
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we define the L2 loss of a given (input, output) pair as

L2(x, y) = (x − y)2.

The total loss of the model is then defined as an average of the MSE over all the training
data [Shalev-Shwartz and Ben-David, 2014]:

Lfθ
= 1

N

N∑
i=1

(fθ(xi) − yi)2. (2.2)

There are many modern optimization algorithms for minimizing the loss, such as Adagrad,
RMS Prop, and Adam [Duchi et al., 2011, Kingma and Ba, 2014]. The simplest of all,
however, is stochastic gradient descent (SGD). This involves taking a small step in the
direction of negative the gradient of L at every iteration. More precisely, we have that the
parameters of the model are updated according to

θi+1 = θi − µ∇Lfθ
,

where µ is just a small constant (called the step-size).

Due to the nonlinearity of neural networks, this is a non-convex optimization problem
which often might have many local minima [Kingma and Ba, 2014]. This is precisely the
reason that SGD is implemented (where one data point is fed in at each iteration) instead of
normal gradient descent (where all the data points are fed in at each iteration). In practice,
batch gradient descent (where a few points are implemented at a time) is a very common
practice.

2.3 A SIMPLE EXA MPLE : L INEAR REGRESSION

One simple problem that demonstrates this optimization pipeline is fitting a linear regres-
sion problem. Suppose we have a set of data,

D = {(xi, yi)}N
i=1

and we want to fit a linear model as well as possible to the data:

fW (x) = Wx.

We can define our loss function as the L2 loss defined above in (2.2) (the standard loss for
least squares regression), and use a standard optimizer like SGD (as explained above) and
we will solve the problem
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min
W

1
N

N∑
i=1

(fW (xi) − yi)2 = min
W

1
N

N∑
i=1

(Wxi − yi)2.

Essentially, we are constraining our models (or hypothesis space) to the set of linear models,
and we are finding the best possible parameters by optimizing the L2 loss through gradient
descent. At convergence, the optimal parameters found, W ⋆, will then give us our optimal
model

f ⋆(x) = W ⋆x.

Of course, there are other standard ways to solve linear regression problems, includ-
ing even analytical solutions, but these methods often have strong requirements like
the covariance matrix being invertible. Therefore, by setting up the problem through a
machine-learning perspective we can obtain very accurate solutions using an efficient
optimization pipeline.

2.4 ARCHITECTURE : THE KEY TO BEST-PERFORMING MODELS

The previous example was just a very simple problem that can be tackled with machine
learning. In practice, we have incredibly complex problems that require models with deep
architectures and large numbers of layers (like in (2.1)). Designing such models is not an
easy task and picking the best architecture (number of layers, type of layers, activation
functions, etc.) for a neural network is an open problem. There is no methodology for
finding the optimal architecture for a given task, and the best architectures and hyper-
parameters are often found through experimentation. Nevertheless, the field of ML
and deep learning has advanced enough for certain models to become the standard
when it comes to particular tasks. For example, convolutional neural networks for image
classification [Krizhevsky et al., 2012] and transformers for large language models [Vaswani
et al., 2017]. Each of these types of models has properties that cater to their respective
objectives, so we can see that even though there is no optimal methodology to find the
best architecture, domain knowledge of the task or goal of the model plays an important
role in designing a good architecture.



CHAPTER 3

STABILITY THEORY

Partial Differential Equations are a fundamental tool for modelling a wide range of physical
phenomena and natural processes in various scientific disciplines, including physics,
biology, and economics [Larsson and Thomée, 2009]. They describe the evolution of
quantities that depend on multiple independent variables and their partial derivatives.
However, solving PDEs analytically is often an unfeasible task due to their complexity,
and therefore mathematicians have come up with diverse numerical methods that provide
practical and efficient solutions. These methods, of course, come with their own set of
challenges and considerations, particularly concerning stability and consistency.

This chapter aims to introduce the Forward Euler Method, a numerical method for solving
PDEs. It emphasizes the significance of stability and consistency in ensuring its conver-
gence, as well as deriving explicit conditions that ensure stability. It is important to note
that while our discussions will use the heat equation as an example, the concepts and
principles outlined are universally applicable to a diverse array of PDEs.

3.1 THE CONTINUOUS PROBLEM

Start with the heat equation with Dirichlet boundary conditions:

ut = uxx, in [0, 1] × R+

u(·, 0) = v(x), in [0, 1]

u(0, t) = u(1, t) = 0, in R+.

(3.1)

The solution to this problem can be obtained through separation of variables and Fourier
Series [Joel, 2007], but we are more interested in the behaviour of the system as time
evolves. More precisely we want to examine the behaviour of the L2 norm of the solution

10
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∥u∥2 =
∫ 1

0
u2dx as t → ∞. Taking the derivative of the norm with respect to t we get

∂
∂t

∫ 1

0
u2 dx =

∫ 1

0

∂

∂t
u2 dx

= 2
∫ 1

0
uut dx

= 2
∫ 1

0
uuxx dx from (3.1)

= 2
(

uux

∣∣∣1
0

−
∫ 1

0
u2

x dx
)

integration by parts

= −2
∫ 1

0
u2

x dx using the boundary conditions

≤ 0

which shows that the solution norm is non-increasing in time [Olof, 2013]. More precisely
we have that

∥u(x, t)∥ ≤ ∥u(x, 0)∥ = ∥v(x)∥. (3.2)

This is a very desirable property since it means that a small perturbation of the initial state
v(x) won’t cause a big discrepancy in the solution. Indeed, note that if we have u1 and u2

satisfying (3.1) with v(x) = g1(x) and v(x) = g2(x) respectively, then u1 − u2 also satisfies
(3.1) with v(x) = g1(x) − g2(x). Then by (3.2) we have that

∥u1 − u2∥ ≤ ∥g1 − g2∥

so the difference in the solutions is bounded by the difference in the initial conditions, and
we say that the system is stable.

3.2 THE D ISCRETE PROBLEM

Now take (3.1) and discretize it by introducing mesh points {(x, t)} = (xj, tn) where we
have xj = jh and tn = nk [Larsson and Thomée, 2009]. Here h is the mesh width in x

(this is our discrete approximation of dx) and k is the time-step (discrete approximation of
dt). Now, using the notation Un

j := u(xj, tn) we define our discrete approximations to the
partial derivatives as:

• ux ≈ ∂xUn
j := Un

j+1−Un
j

h
,
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• ux ≈ ∂̄xUn
j := Un

j −Un
j−1

h
, and

• ut ≈ ∂tU
n
j := Un+1

j −Un
j

k
.

We can then turn back to (3.1) and use the forward Euler method to define a discrete
approximation to the equation as

∂tU
n
j = ∂x∂̄xUn

j , for j ∈ {0, 1, . . . , J} , n ∈ N

U0
j = v(xj), for j ∈ {0, 1, . . . , J}

Un
0 = Un

J = 0, for n ∈ N,

(3.3)

where J = h−1 is the number of intervals in the space mesh [Larsson and Thomée, 2009].
Plugging our discrete operators into (3.3) we get that

Un+1
j − Un

j

k
=

Un
j+1 − 2Un

j + Un
j−1

h2

and then we can solve for Un+1
j to get

Un+1
j = λUn

j+1 + (1 − 2λ)Un
j + λUn

j−1, (3.4)

where we defined λ = k
h2 .

Equation (3.4) defines the core algorithm that we will use to generate the numerical solution
to our problem, and there are some important properties we would like it to satisfy before
we continue with our discussion. These properties are consistency and stability and are
defined below.

Definition 3.2.1 (Consistency). A numerical method is said to be consistent if its discrete
operator converges towards the continuous operator.

In other words, if we replace the continuous operator in (3.1) with its discrete analogue in
(3.3), the discrepancy should tend to zero as the step sizes tend to zero [LeVeque, 2007].
Mathematically this takes the form

τn
j = ∂tu

n
j − ∂x∂̄xun

j − (ut(xj, tn) − uxx(xj, tn))

= (∂tu
n
j − ut(xj, tn)) − (∂x∂̄xun

j − uxx(xj, tn))

=
(

u(xj ,tn+k)−u(xj ,tn)
k

− ut(xj, tn)
)

−
(

u(xj−h,tn)−2u(xj ,tn)+u(xj+h,tn)
h2 − uxx(xj, tn)

)
.

(3.5)
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Now using the Taylor series expansion for u we get that

u(xj, tn + k) = u(xj, tn) + kut(xj, tn) + k2

2 utt(xi, t̄n)

for some t̄n ∈ (tn, tn + k) and thus rearranging we get that

u(xj, tn + k) − u(xj, tn)
k

= ut(xj, tn) + k

2utt(xj, t̄n).

On the other hand, we have that

u(xj + h, tn) = u(xj, tn) + hux(xj, tn) + h2

2 uxx(xj, tn) + h3

6 uxxx(xj, tn) + h4

24uxxxx(x̄j, tn)

for some x̄j ∈ (xj, xj + h) and similarly that

u(xj − h, tn) = u(xj, tn) − hux(xj, tn) + h2

2 uxx(xj, tn) − h3

6 uxxx(xj, tn) + h4

24uxxxx(x̃j, tn)

for some x̃j ∈ (xj − h, xj).

Hence adding the last two equations we get that

u(xj − h, tn) + u(xj + h, tn) = 2u(xj, tn) + h2uxx(xj, tn) + h4

24uxxxx(x̄j, tn) + h4

24uxxxx(x̃j, tn),

u(xj − h, tn) − 2u(xj, tn) + u(xj + h, tn)
h2 = uxx(xj, tn) + h2

24 (uxxxx(x̄j, tn) + uxxxx(x̃j, tn)) .

Replacing these results into (3.5) we get that

τn
j = k

2utt(xj, t̄n) − h2

24 (uxxxx(x̄j, tn) + uxxxx(x̃j, tn))

and thus τn
j → 0 as k, h → 0 so the method is consistent.

It is important to note though that we assumed smoothness conditions for u when applying
its Taylor series. Namely, we assume that u is C2 in t and C4 in x.

Definition 3.2.2 (Stability). A numerical method is said to be stable if for any T > 0, there exists
a constant C > 0, which depends only on T , such that for n = 0, 1, . . . , T

∆t
we have that

(
∆x

∑
i

|un
i |2
) 1

2

< C.

In simpler words, stability means that the L2 norm of un at every time-step less than T is
bounded by T [Lee and Jeong, 2017]. This is a very important property since it guides us in
determining whether small disturbances in the initial conditions will eventually dissipate



14 3.2. THE DISCRETE PROBLEM

or amplify, offering insight into the system’s long-term behaviour.

Now take (3.4) and note that if λ ≤ 1
2 this is a convex combination of previous solution

states and thus we have that

|Un+1
j | = |λUn

j+1 + (1 − 2λ)Un
j + λUn

j−1|

≤ |λUn
j+1| + |(1 − 2λ)Un

j | + |λUn
j−1|

= λ|Un
j+1| + (1 − 2λ)|Un

j | + λ|Un
j−1|

≤ sup
j

|Un
j |.

This holds for all j so we get that sup
j

|Un+1
j | ≤ sup

j

|Un
j |, or more precisely

∥Un+1
j ∥∞ ≤ ∥Un

j ∥∞

which clearly implies that for all n:

∥Un
j ∥∞ ≤ ∥U0

j ∥∞ = ∥v(x)∥∞.

This is the discrete analogue of (3.2) and we can see that under the condition λ ≤ 1
2 the

numerical solution is stable.

Theorem 3.2.3 (Lax Equivalence Theorem). A consistent numerical method is convergent if
and only if it is stable.

We proved that under the step-sizes condition k
h2 ≤ 1

2 , the Forward Euler Method is both
consistent and stable. Therefore, by the Lax Equivalence Theorem, the method is also
convergent. For a proof of the theorem see [Tekriwal et al., 2021].

It is crucial to remark on the importance of the λ ≤ 1
2 bound since we cannot ensure the

stability (and hence the convergence) of the numerical method when λ > 1
2 . As an example,

set an initial value problem as

vj := U0
j = v(xj) = (−1)j sin(πjh), for j = 0, 1, . . . , J

[Larsson and Thomée, 2009] which satisfies the boundary conditions Un
0 = Un

J = 0 (re-
calling that h = J−1) and then applying the forward Euler method we get by induction
that

Un
j = (1 − 2λ − 2λ cos(πh))nvj. (3.6)
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The base case is trivial and then note that

vj−1 = (−1)j−1 sin(π(j − 1)h)

= (−1)j−1(sin(πjh) cos(−πh) + cos(πjh) sin(−πh))

= −(−1)j(sin(πjh) cos(−πh) + cos(πjh) sin(−πh)).

Similarly we get that vj+1 = −(−1)j(sin(πjh) cos(πh) + cos(πjh) sin(πh)) and thus we have
that

vj−1 + vj+1 = −2(−1)j(sin(πjh) cos(πh))

= −2vj cos(πh).

Now let λ̄ = 1 − 2λ − 2λ cos(πh) and then using (3.4) we get that

Un+1
j = λUn

j+1 + (1 − 2λ)Un
j + λUn

j−1

= λ(λ̄)nvj+1 + (1 − 2λ)(λ̄)nvj + λ(λ̄)nvj−1

= λ(λ̄)n(vj+1 + vj−1) + (1 − 2λ)(λ̄)nvj

= −2λ(λ̄)nvj cos(πh) + (1 − 2λ)(λ̄)nvj

= (1 − 2λ − 2λ cos(πh))(λ̄)nvj

= (λ̄)n+1vj

= (1 − 2λ − 2λ cos(πh))n+1vj

so we proved (3.6) by induction.

Then we can easily see that by letting h be small enough |1 − 2λ − 2λ cos(πh)| ≥ γ > 1 and
thus we get that

∥Un
j ∥ = ∥(1 − 2λ − 2λ cos(πh))nvj∥

= |1 − 2λ − 2λ cos(πh)|n∥vj∥

≥ γn∥vj∥

which goes to infinity as n goes to infinity, and thus the solution becomes unstable.



CHAPTER 4

LEARNING PDES WITH DATA

Having traversed the fundamental concepts in PDEs, stability theory, and numerical
methods, we now stand ready to define our research problem. This chapter marks the
transition from theory to application as we use all of our previous tools to address a
pressing research problem that emerges at the intersection of mathematics and cutting-
edge technology: the learning of PDEs through the integration of Machine Learning
techniques, Stability Theory, and subgrid methods.

4.1 THE PDE PROBLEM

Start with a parabolic PDE of the form ut = a(x)uxx + b(x)ux + c(x)u + d(x) and define a
PDE operator S that takes in as inputs an initial condition v(x) and a vector of coefficient
functions (a(x), b(x), c(x), d(x)), and outputs the solution to the underlying PDE u(x, t). S

is then the "forward" PDE operator. For example, for the heat equation with non-constant
coefficients:

ut = a(x)uxx, in [0, 1] × R+

u(·, 0) = v(x), in [0, 1]

u(0, t) = u(1, t) = 0 in R+

(4.1)

we would have that S takes in v(x) and a(x) and returns the solution u(x, t). If for example
a(x) = 1 and v(x) = sin(πx) we have that

S(v(x), a(x)) = sin(πx)e−π2t,

where the solution is obtained by just solving the PDE through separation of variables
[Joel, 2007].

4.2 THE ML PROBLEM

Now we consider the other direction. Given samples of solutions of a time-dependent
PDE at several time slices, our goal is to learn a solution operator F that maps an initial
condition to its corresponding solutions at the respective time points:

16
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F (u(x, 0); θ) = u(x, t), x, t ∈ Ω × T , (4.2)

where θ are the parameters of the model, Ω is our space domain, and T is the set of times
at which we have observations.

We assume that the functions are all solutions of some time-dependent advection-diffusion
partial differential equation, with unknown coefficients, a(x, t):

∂tu(x, t) = L(a(x, t), ∇xu(x, t), ∇2
xxu(x, t)), u(x, 0) = u0(x),

along with some known boundary conditions.

The ML problem is then to learn a function F : D → Y through a dataset

D = {ui(x, 0), {ui(x, tk)}K
k=1}N

i=1,

where ui(x, 0) and ui(x, tk) are the initial conditions and their respective solutions at times
tk. In essence, we wish to generate a solution operator such that it approximates the
solutions with high fidelity, i.e.,

F (u(x, 0); θ) ≈ u(x, tk), ∀tk ∈ T,

where θ are the parameters of the learned operator and T is the set of times at which we
have observations.

At its core, our ML problem will be similar to the linear regression problem discussed in
Section 2.3. The solution operator we are modelling (the heat equation) is linear in the
data, and therefore we are just applying a sort of “deep linear regression.” Each layer of
our model will take the previous output and apply a convolution operator, which can
equivalently be represented as matrix multiplications. The shorter the convolution kernel,
the more sparse the matrix is. Combining all the layers will therefore just amount to
combining all these matrices into a big matrix multiplication, and then we optimize it
through ML algorithms.

The only technicality about our model is that the entries of these matrices will be non-
linear in the parameters themselves (not in the data) to account for stability conditions. We
discuss the architecture of our model in more detail in Chapter 5, but we can essentially
view our approach as a linear model with a non-linear parametrization.
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4.3 THE SUBGRID PROBLEM

Subgrid modelling is a crucial concept in the realm of computational science and numerical
simulations, finding applications in diverse fields, from climate and weather modelling to
fluid dynamics and material science. In scenarios where simulating physical phenomena
at fine spatial resolutions becomes computationally infeasible, subgrid modelling steps in
to bridge the gap. Typically, it involves the representation of smaller-scale, unresolved fea-
tures within a coarser grid by incorporating parameterized models that capture the effects
of these subgrid-scale processes. In climate and weather modelling, for instance, subgrid
modelling techniques are indispensable for capturing complex atmospheric and oceanic
interactions that occur at spatial scales beyond the reach of high-resolution numerical
simulations [Brasseur and Jacob, 2017].

In this section, we delve into the domain of subgrid modelling in the context of Partial
Differential Equations. Building upon the foundation of machine learning and PDEs, we
adapt our machine learning problem to address the specific challenges posed by subgrid
modelling. Our objective is to develop a solution operator that accurately represents the
behaviour of PDEs on a coarser grid, leveraging the insights gained from a finer grid.

Similar to before, we start with a dataset consisting of sample values of m functions of the
form ui(x, t) for x in a physical domain, and t ∈ [0, T ]. The functions are sampled at points
xj in a uniform grid in space of resolution Nx, and at time intervals T fine, consisting of
NT , uniformly spaced time intervals. Each function is represented by a vector of the form
Ui,j,k = ui(xj, tk) and our training dataset, on the fine grid, is of the form,

Dfine = {Ui,j,k = ui(xj, tk) x, t ∈ Gfine × T fine, i = 1, . . . , m}.

We are now given a list of target subgrid resolutions (for example, from fully resolved to
an 8 times smaller grid resolution) and coarsened data of the form,

Dcoarse = {Ui,j,k = ui(xj, tk) x, t ∈ Gcoarse × T coarse, i = 1, . . . , m}.

The goal is to learn, from the fine grid data, a solution map for each of the target grids

F (u(x, 0); θ) = u(x, t), x, t ∈ Gcoarse × T coarse, (4.3)

where θ are the parameters of the model and T coarse is the set of times at which we have
observations on the coarse grid.

Note that the function values on the fine (well-resolved) grid would be sufficient to
solve the PDE with acceptable accuracy using standard numerical PDE methods if the
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coefficients were known. However, building a solution operator on the coarse grid requires
machine learning tools since there are no analytical formulas for the operator of a coarse
grid. For example, in current climate models, simplified operators are approximated, but
this leads to a known loss of accuracy [Rasp et al., 2018]. Thus, our goal is to learn a
subgrid solution operator as defined in equation (4.2) that accurately approximates the
ground truth solution, as represented by the fine grid PDE solver in our example, or by
assimilated data in a full-scale weather or climate model.

4.4 RELEVANT WORK

In recent years, there has been a lot of work on ML PDE models, physics-informed models,
inverse problems, subgrid models, and out-of-distribution generalization. For example,
Liu et al. [2022] build neural network models that integrate PDE operators directly in the
model while retaining the large capacity neural network architecture. However, they solve
a different problem: learning the solution operator of several different PDEs but with
constant coefficients. Additionally, Long et al. [2018] explored the learning of coefficients
for the solution operator, though they did not delve into the subgrid aspects. On the
other hand, the potential issues of out-of-distribution generalization with neural networks,
especially for data with varied spectra, were highlighted by Rahaman et al. [2019]. In
addition, early attempts at using physics-informed neural networks (PINNs) as PDE
solvers were presented by Karniadakis et al. [2021] and Shin et al. [2020]. While innovative,
these PINNs occasionally struggled with accurately representing the solution operator
and ensuring physical constraints.

The inverse problem in PDEs has been widely studied. Its goal is to learn the coefficients of
an operator given input-output pairs [Stuart, 2010, Kaipio and Somersalo, 2006], but it does
not address the subgrid aspects of a solver. On the other hand, homogenization of PDEs
takes the extreme approach of replacing an operator with a spatially homogeneous one
[Marchenko and Khruslov, 2008], an approach that is valid in fields like material science
but not in weather and climate modelling, where the emphasis is on the heterogeneous
nature of operators.

Moving onto the subgrid area, Li et al. [2020] introduced the Fourier neural operator, which
supports varying grids. However, their focus diverged towards a different PDE challenge:
learning the map from the coefficients to the solution, which is different from our case,
where we want to allow for different initial data to evolve in time. Recent contributions
from Pfaff et al. [2021] and Han et al. [2022] present a PDE solver on irregular meshes.
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Several other works connect neural network architectures and solution operators for dif-
ferential equations. Chen et al. [2018] proposed a neural network architecture based on
ODE solvers, and Haber and Ruthotto [2017] focused on the stability aspects of the archi-
tecture. In addition, Ruthotto and Haber [2020] advanced in this domain and proposed
architectures based on discretized PDE solvers.



CHAPTER 5

OUR MODEL

In this chapter, we delve into the intricate architecture of the proposed model, a symbiotic
fusion between machine learning and the rich theoretical domain of partial differential
equations. The model’s foundation lies in its ability to encode the underlying physical
laws governing the system under study while harnessing the flexibility and adaptability
of machine learning techniques. Through a meticulous exploration of the properties
satisfied by the PDEs modelling the physical process, this chapter unveils the architecture
and construction principles of this hybridized model, showcasing its unique capacity to
synthesize domain expertise with data-driven intelligence, thereby offering a promising
avenue for tackling complex real-world challenges like climate and weather modelling.

As we have mentioned several times, in this work we focus on the heat equation as the
foundational physical process of our research. Hence, it is also the pillar for the model’s
construction since we will integrate domain-specific knowledge from it into the model’s
architecture. However, it should be noted that while our immediate focus lies within
this domain, our work is intended as a novel proof-of-concept approach to showcase the
efficacy of our architecture in capturing and leveraging physical processes. We chose the
heat equation since it is much simpler to analyze than a system of advection-diffusion
PDEs, or the Navier-Stokes equations, yet complex enough to highlight the results. This
deliberate choice aims not only to demonstrate the model’s capability from both a practical
and theoretical point of view but also to beckon further research and exploration in this
direction, fostering an avenue for a more expansive and impactful application of this
hybridized approach. The overarching goal would be to establish a robust and adaptable
framework capable of accommodating a spectrum of physical processes, underscoring our
aspiration for this work to serve as a catalyst, motivating future endeavours to model and
simulate a diverse array of complex phenomena across various scientific disciplines.

5.1 MODEL PROPERTIES

Based on the physical properties of the process being modelled: ∂t(x, t) − a(x)∆u(x, t),
our strategy is grounded in four theoretically desirable properties for our solution oper-
ator. These are locality, stability, linearity, and memory-less recurrence. We explain and
implement each of those four properties into our model’s architecture as follows:

21
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5.1.1 Locality

PDEs are local operators since they depend on the derivatives of the functions. Based on
this, we aim to integrate the same locality property into our model architecture. To achieve
this, we structure each layer as a convolutional layer, which will ensure that output values
are only affected by nearby input values.

For all grid resolutions, we require that the solution operator be the discretization of some
coarser heat equation. For this reason, it is more restrictive than a standard convolutional
neural network. The convolution kernel will be a diagonal multiple (corresponding
to the unknown coarsened coefficients) of the fixed Laplacian operator. The Laplacian
convolution kernel corresponds to

WLap,1 = dt

dx2 [1, −2, 1], WLap,2 = dt

dx2


0 1 0

1 −4 1

0 1 0

 ,

in one and two dimensions, respectively.

5.1.2 Stability

As seen in Chapter 3, when solving any PDE numerically, we are bound by some stability
constraints that are necessary for obtaining a convergent solution. Using the same proce-
dure as in Chapter 3 we can generalize our result to the case of non-constant coefficients.
Then for the heat equation with non-constant coefficients, assuming we take space intervals
of dx (and equal in all dimensions) and time intervals of dt, we are bound by the stability
constraint 0 ≤ a(x) · dt

dx2 ≤ 1
2·D where D is the dimension of the data [Courant et al., 1967].

Thus, when one knows the coefficients a(x), then one can simply pick dt and dx to satisfy
the stability constraint.

In this case, we take the opposite approach. Given fixed values of dx and dt, we can bound
the coefficients themselves by

0 ≤ a(x) ≤ Ca = dx2

2D · dt
. (5.1)

This is a crucial constraint since the parameters of our model will take the place of the
coefficients of the equation being modelled. In this way, we design our model precisely
with the aim of learning the physical process that we are trying to approximate.

In order to satisfy the stability constraint, we bound the raw parameters learned by the
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model with a scaled sigmoid function. This is, if the model’s parameters are θ, then the
values that we multiply with the output of the convolution layer are given by Ca · σ(θ).
This ensures that the parameters are bound by the stability region of the PDE and thus
forces the model to find a solution in the parameter space in which the PDE itself is stable.

It is important to note that when coarsening our data to subgrids, the same stability
constraint must be satisfied. Thus, we will always coarsen our data according to the same
dt

dx2 factor. More precisely, if we coarsen our data in space by a factor of λx, we will sample
our time steps at intervals of λt = λ2

x.

5.1.3 Linearity

Since the differential operator of the heat equation: ∂t(x, t)−a(x)∆u(x, t) is linear, we want
our model to be linear in the data as well. This is achieved by requiring that our model
be linear in the data U , which is not typically the case for neural networks. We achieve
this by simply not including non-linear activation functions in our model. However, we
note that to satisfy the stability constraints mentioned above, the model is nonlinear in the
parameters θ.

5.1.4 Memory-less recursion

Our differential operator is time-independent, meaning that no matter what the starting
time t0 is, the physical process is the same. Naturally, we implement this property into our
model by making each layer identical, ensuring the same physical process between each
predicted time step.

5.2 THE COMPLETE MODEL

Putting all of it together, our model is then a composition fθ(U0) = l0 ◦ l0 ◦ · · · ◦ l0(U0)
of repeated layers. The layer is defined as (i) the convolution of the data with the fixed
(non-learnable) dimension-dependent Laplacian WLap, dim defined above, followed by (ii)
component-wise multiplication by weights bounded between zero and a fixed, given
upper bound (determined by the PDE operator as explained in equation (5.1)), and finally
(iii) this update is added back to the input vector U . We note that since the bound on the
weights is achieved using a sigmoid nonlinearity, the model is linear in the data U , and
nonlinear in the model parameters θ:

l0(U) : U −→
(
diag(Ca · σ(θ))conv(WLap,dim, U)

)
+ U. (5.2)
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Thus, the number of weights in the model is on the order of the number of grid points
(spatial data points) as shown in tables 7.1 and 7.2. The architecture is motivated by
domain expertise: the coarsened solution of a time-independent PDE should be captured
approximately by an operator which also looks like a coarse solution operator [Pavliotis
and Stuart, 2008]. In the case where the PDE coefficients depend on time, we would have a
similar structure but with different weights for each layer.

Another way to look at our model architecture is to visualize its resemblance to the forward
Euler method for solving PDEs numerically. The core algorithm of the Euler method for
solving the heat equation in one dimension is given by [Larsson and Thomée, 2009]

Un+1
j = a(x)λ

(
Un

j+1 − 2Un
j + Un

j−1

)
+ Un

j , (5.3)

where Un
j = u(xj, tn) represents the solution at space point j and time step n, a(x) repre-

sents the non-constant coefficients of the equation, and λ = dt
dx2 .

We can then see that each layer in our model’s architecture in equation (5.2) is built to
resemble equation (5.3):

• λ(Un
j+1 − 2Un

j + Un
j−1) is replaced by our fixed convolution operator conv(WLap,dim, U).

• a(x) is replaced by the bounded model parameters diag(Ca · σ(θ)).

• Adding this update back to Un
j in equation (5.3) is analogous to adding the update to

U in equation (5.2).

Thus, at its core, our model is designed to learn a solution operator that resembles the Euler
method but at coarser grids, with coarser (fewer) coefficients as the resolution decreases.



CHAPTER 6

EXPERIMENTS

In this chapter, we describe the experiments conducted. We will dive into how we created
the dataset for the experiments and how we define out-of-distribution data. We will also
define the two baseline models that we will use to compare our proposed architecture
and then define the experiments conducted. This chapter gets down to the mathematical
details, detailing how we set up the experiments, compare across models, and interpret
our comparison metrics.

6.1 DATASET GENERATION

We construct our training dataset by:

1. Generating m distinct initial conditions u(x, 0) from a fixed Fourier spectrum.

2. Generating n distinct initial conditions ũ(x, 0) from a different fixed Fourier spectrum.

3. Solving for u(x, t) numerically using the forward Euler method (as described in
Chapter 3) for t ≤ T .

4. Averaging down the data in space by a factor of λ and sampling down the data in
time by a factor of λ2 to obtain the data for the subgrid problems.

6.1.1 Initial conditions

Our initial conditions u(x, 0) are of the form

u(x, 0) =
10∑

i=1
cisin(πix) 0 ≤ x ≤ 1 (6.1)

in 1D, and of the form

u((x, y), 0) =
4∑

i=1

4∑
j=1

cijsin(πix)sin(πiy) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (6.2)

in 2D, where the coefficients ci and cij are obtained from fixed data distributions.

More precisely, we generate the functions through the following procedure:

25
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1. For the 1D data: randomly generate a vector w ∈ R10 where each component of the
vector is sampled from a uniform distribution wi ∼ U [−0.5

f(i) , 0.5
f(i) ]. The function f(i) for

i ∈ {1, . . . , 10} is fixed, and will determine the decay of the coefficients.

For the 2D data: randomly generate a matrix W ∈ R4 × R4 where each entry of
the matrix is sampled from a uniform distribution Wij ∼ U [ −0.5

f(i,j) ,
0.5

f(i,j) ]. Again the
function f(i, j) for i ∈ {1, . . . , 4}, j ∈ {1, . . . , 4} is fixed, and will determine the decay
of the coefficients.

2. For the 1D data: Generate a function v(x) = ∑10
i=1 wisin(πix) based on the generated

vector w as Fourier coefficients.

For the 2D data: Generate a function v(x) = ∑4
i=1

∑4
j=1 Wijsin(πix)sin(πiy) based on

the generated matrix W as Fourier coefficients.

3. In both cases, normalize the function by setting u(x, 0) = v(x) · 2
max v(x)−min v(x) . This

will result in functions of the form (6.1) and (6.2) where the ci and cij are just scaled
versions of the wi and Wij respectively.

In this way, every time we run the process we will generate a new initial condition
with amplitude of 2. However, each of these functions will be sampled from the same
distribution since the wi and Wij respectively were sampled from the same distributions.

We also note that, by construction, all of our initial conditions (and hence the full solutions)
satisfy the Dirichlet boundary conditions u(0, t) = u(1, t) = 0 and u((0, y), t) = u((1, y), t) =
u((x, 0), t) = u((x, 1), t) = 0 for 1D and 2D respectively.

6.1.2 Out-of-Distribution Data

Generating the out-of-distribution data is now a simple task. We run the same process
explained in the previous section but change the functions f(i) and f(i, j) that define the
sampling distributions. In this way, the new data now corresponds to a different Fourier
spectrum (distribution of the coefficients) than the original training data.

Thus, it is important to note that here we consider OOD data to be initial data with a
different shape (Fourier spectrum) from data previously seen by the models. In a climate
model, this would correspond to the problem of having the same physical dynamics, but a
different distribution of the density of particles (e.g. a more oscillatory density profile).
However, we assume that the solution operator (the coefficients of the equation of the
underlying process) remains the same. A different OOD problem that we do not address
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in this work would be where the underlying dynamics changed (resulting in different
coefficients of the equation modelling the physical process), which corresponds to learning
a different solution operator.

We can now visualize the spectra of both data distributions by calculating the empirical
expected value of the square of the coefficients E[c2

i ] and E[c2
ij] for 1D and 2D respectively.

These are shown in Figure 6.1 below.

(a) Distribution spectra for one-
dimensional data

(b) In-distribution spectrum for
two-dimensional data

(c) Out-of-distribution spec-
trum for two-dimensional data

Figure 6.1: Fourier Spectra for in-distribution and out-of-distribution data in one and two dimensions.

6.1.3 Solving in the fine grid

Once our sets of initial conditions are generated, we solve the equation numerically to
obtain a solution u(x, t) for all t ≤ T . For this, we need to define two things first: the PDE
to solve (i.e. the coefficients of the heat equation) and the discretization of the fine grid (i.e.
define our dx and dt).

As mentioned several times before, we are solving the PDE: ∂t(x, t) − a(x)∆u(x, t) = 0, so
we need to define our coefficients a(x) before being able to solve the equation numerically.
We define the coefficients randomly by using the same procedure as we used to generate
our initial conditions with some minor adjustments:

1. First, we generate another instance of a possible initial condition.

2. Second, we add 1 to all of the coefficients.

3. Finally, we bound the coefficients between ϵ and 2.5 − ϵ for a small constant ϵ.

Step 3 is necessary since we need to know the maximum bound on the coefficients in order
to solve numerically under a stable algorithm. Step 2 is just done so that the coefficients are
more meaningful (otherwise we would have a lot of zeros). This bound on the coefficients
is precisely the bound that will be implemented in our model parameters in equation (5.1).
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More precisely, we will set Ca = 2.5. We will see the importance and effect of this bound in
Section 7.6.

Below we show the coefficients generated, and for which the experiments were carried on.

(a) 1D heat equation (b) 2D heat equation

Figure 6.2: Coefficients of the ground truth process.

We now define our space domain to be [0, 1] in 1D and [0, 1]2 in 2D, which is consistent
with the Dirichlet boundary conditions described before. We then discretize our space
grid by making it have Nx = 256 points in the 1D case and Nx = 64 × 64 points in the 2D
case. Hence, in 1D we get dx = 1

255 and in 2D we get dx = dy = 1
63 . Now, according to

the stability constraints from Chapters 3 and 5, we must choose dt small enough so that
dt ≤ dx2

2D max a(x) [Courant et al., 1967], where max a(x) = 2.5 by construction and D is the
dimension of the data so D ∈ {1, 2}. To allow for leniency, we chose dt = 3.05 · 10−6 for the
1D case and dt = 2.44 · 10−5.

Having chosen dx and dt that guarantee stability, we now solve the PDE numerically to ob-
tain a solution u(x, t) for t ≤ T , where T must be large enough to allow for downsampling
in time for the subgrids (explained in the next section). For our experiments, T = 0.002
and T = 0.0156 are sufficient for the one- and two- dimensional experiments respectively.

Now for the fully resolved grid, we simply train our model with the data generated. More
precisely, the initial conditions are our inputs, and the solutions at the first k time steps are
our outputs. For the results presented, k = 10.

6.1.4 Subgrid Data

To obtain the coarse data for the subgrid problems, we average our data in space and
sample it in time according to the stability constraints described before. We take our data
and average it down in space by a factor of λx (in each dimension) and sample it down in
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time by a factor of λt = λ2
x. More precisely, the subgrid data has a dimension of Nx

λD
x

where
D ∈ {1, 2} is the number of space variables and every time step is λt · dt apart where dt is
the original, fine grid time interval. An example is shown below where we average our
data by a factor of 16 in 1D and 4 in 2D.

(a) 1D data in fine and coarse
grid (sizes 256 and 16)

(b) 2D data in fine grid of size
64 × 64

(c) 2D data in coarsened grid of
size 16 × 16

Figure 6.3: Example of subgrid coarsening in one and two space variables.

We note that by construction, the subgrids still follow the same stability constraints as the
original fine grid since we averaged down in space and time by the proportional factors
(i.e. the ratio dt

dx2 remained the same). This will play a crucial role in our model learning as
described in the results section later on.

We also note that we manually set the boundary end points to zero to satisfy the boundary
conditions (i.e. just for the endpoints we set them manually to zero, rather than the average
of their neighbouring points).

We will apply this subgrid coarsening to both the training/test data and the out-of-
distribution data, and run the experiments on both data sets. For each subgrid, our
data is thus our coarsened initial conditions as inputs, and our coarsened solutions at the
corresponding (down-sampled) first k time-steps as outputs.

6.2 BASELINE NEURAL NETWORK MODELS

We are now in a position to define our off-the-shelf ML models for comparison. We conduct
the experiments for both our proposed model architecture and for two baseline models
which are: (1) a standard fully connected 2-layer ReLU neural network (FCN), and (2) a
standard convolutional 2-layer ReLU neural network (ConvN). We chose these models
given their simplicity and as a proxy for off-the-shelf ML models.
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6.2.1 FCN

The fully connected network consists of 10 layers, each being a multilayer perceptron with
a single hidden layer of size 32 and ReLU activation (similar to Figure 2.1 but with only
one hidden layer). We note that for the 2D case, before feeding the data to each MLP, we
must first flatten it to a 1D vector (so for example an 8 × 8 grid would be flattened to a
vector of length 64). After passing the flattened vector through the MLP, we re-shape it
back to its original dimensions.

It is important to note that layers are not repeated in this network, and the model learns
different weights for every MLP.

6.2.2 ConvN

The convolutional network consists of 10 layers, each being a simple 2-layer convolutional
neural network with 3 × 3 kernel, ReLU activation, and hidden layer with 16 channels, as
shown in Figure 6.4 below.

Figure 6.4: Convolutional network corresponding to each layer of the ConvN model [LeNail, 2019].

Again, we note that layers are not repeated in this network, and the model learns different
weights in every layer. Logically, we apply 2D convolutions for the two-dimensional case
and 1D convolutions for the one-dimensional case.
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6.3 ERROR MEASURES

Since the norm of the solutions might vary within the dataset (and more importantly
between the training/test data and the out-of-distribution data), we measure the error as
the relative L2 error with respect to the norm of the solutions, using a normalization that
sets the variance of the initial data (as a function of x) to be 1. Thus, the relative errors
plotted in Figure 7.1 in the next chapter are calculated as the average normalized error of
the predicted solutions. More precisely, we calculate

ϵ =
(

1
N

N∑
i=1

∥fθ(ui(x, 0)) − ui(x, t)∥2

σ2
ρ

) 1
2

,

where σ2
ρ = E

[∫ T
0
∫

x (u(x, t) − ū(x, t))2 dxdt
]

is a normalization factor that sets the variance
of the initial data (as a function of x) to be 1, and allows us to do a fair comparison across
distributions. In short, we are measuring how far off, percentage-wise, the predicted
solution is from the ground truth solution.
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RESULTS AND DISCUSSION

We conducted the experiments for 4 subgrids of varying resolution in both 1D and 2D,
and Figure 7.1 below shows the results obtained. We can see from the figure that the FCN
achieves 10% training and test error, nearly constant across grid resolutions. The error
decreases slightly as the grid gets coarser, which is contrary to what we would expect.
However, we note that as the grids get coarser, the models also have fewer parameters,
as shown in tables 7.1 and 7.2. This is an indication that the FCN might be overfitting
to the training data, and as the model parameters decrease, the overfitting is reduced.
Nevertheless, the test error is not significantly larger than the training error, indicating
that overfitting is not the main problem with the model. On OOD data, however, the FCN
performs poorly, with a relative error close to 100%. Thus, the model is unable to adapt to
distinct distributions and is learning aspects of the dataset itself rather than features and
properties of the underlying physical process.

(a) One space variable (b) Two space variables

Figure 7.1: In-distribution and out-of-distribution relative errors for subgrid models in one and two
dimensions.

Subgrid resolution 256 128 64 32
Parameters in our model 256 128 64 32

Parameters in FCN 166, 720 83, 520 41, 920 21, 120
Parameters in ConvN 1, 130 1, 130 1, 130 1, 130

Table 7.1: Model parameters for our model and the standard neural networks in one dimension.
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Subgrid resolution 4, 096 1, 024 256 64
Parameters in our model 4, 096 1, 024 256 64

Parameters in FCN 2, 662, 720 665, 920 166, 720 41, 920
Parameters in ConvN 3, 050 3, 050 3, 050 3, 050

Table 7.2: Model parameters for our model and the standard neural networks in two dimensions.

On the other hand, our model maintains high accuracy, with less than 1% training and
test error, except on the coarsest grid in two dimensions. More importantly, on the out-of-
distribution data, the model is also quite accurate, with below 10% error on all subgrid
problems except the coarsest grid in two dimensions, which is just slightly higher. Thus,
we have a 10 fold improvement in distribution versus the FCN and success versus failure
on out-of-distribution data. This is a remarkable result since most current PDE models fail
on OOD data, even though it is a very desirable property in areas like climate and weather
modelling [Kashinath et al., 2021].

As for the ConvN model, we observe that it performs significantly better than the FCN for
both in-distribution and out-of-distribution data, but it still underperforms significantly
compared to our model. This result is not surprising, since the ConvN model contains one
of the properties of our model: locality (created by the convolution layers), while the FCN
shares none of the properties of our model. This reinforces the claim that incorporating
physics knowledge of the underlying processes into the ML model framework creates
better-performing models for simulating physical processes. In this particular case, having
the locality property, which is inherent to PDEs, helps the ConvN outperform the FCN,
while it still underperforms with respect to our model, which has an additional 3 properties
derived from knowledge of the process being modelled.

7.1 MODELLED SOLUTIONS

We now show some of the modelled solutions across all three models tested. Figures 7.2
and 7.3 show an instance of the predicted solutions for both our model and the standard
neural networks for both in-distribution and out-of-distribution examples. Figure 7.2
shows an example of a two-dimensional subgrid problem with resolution 256 (16 × 16)
where we recall that the original fine grid had a resolution of 4096 (64 × 64). Interestingly,
we can observe that even though Figure 7.1 showed that our model is around 10 times
more accurate on average, both neural networks’ relative error is still good enough to
produce a visually similar solution for in-distribution data.
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On OOD data, however, it is visually clear that the fully connected neural network does
not learn an accurate solution operator and tries to adapt the new data to what it was
trained on. Our model, on the other hand, can adapt to the new distribution with high
accuracy, producing a solution that is visually similar in structure to the ground truth
solution. As expected, the convolutional network fares in between, producing a solution
with a similar structure but less accurate than our model and visually different from the
ground truth solution.

We note that to compare accurately with the original solution in the fine grid, the subgrid-
generated solutions by the models were linearly interpolated back to the original, fine grid
resolution.

(a) In-distribution
ground truth

(b) In-distribution our
model solution

(c) In-distribution
ConvN solution

(d) In-distribution FCN
solution

(e) Out-of-distribution
ground truth

(f) Out-of-distribution
our model solution

(g) Out-of-distribution
ConvN solution

(h) Out-of-distribution
FCN solution

Figure 7.2: Two dimensional modelled solutions for an in-distribution and out-of-distribution example in
a subgrid with a resolution of 16 × 16.

Figure 7.3 shows an instance of a modelled solution in one dimension in a subgrid problem
with a resolution of 32, where we recall that the original fine grid had a resolution of 256.
Again, we observe the same phenomenon, with all models being able to produce a curve
very close to the actual solution for in-distribution data (with our model being the most
accurate) but only our model being able to adapt to out-of-distribution data accurately
(with the FCN completely failing and the ConvN replicating some structure but failing to
capture the full dynamics).
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(a) In-distribution solutions (b) Out-of-distribution solutions

Figure 7.3: One dimensional modelled solutions for an in-distribution and out-of-distribution example in
a subgrid with a resolution of 32.

7.2 DATA COMPLEXITY

In addition to the standard experiments, we also performed an ablation study on the data
complexity used in the model. To do this, we changed our functions f(i) and f(i, j) that
define our data-generating process to create data with more complex Fourier spectra. Fig-
ure 7.4 shows the empirical Fourier spectra for the in-distribution and out-of-distribution
data used in the ablation study, which shows a jump in data complexity compared to the
spectra used for the main results in Figure 6.1.

(a) In-distribution spectrum (b) Out-of-distribution spectrum

Figure 7.4: Fourier spectra for in-distribution and out-of-distribution data in the ablation study.

Figure 7.5 below shows the numerical results for the experiments under the complex
data spectrum compared to those under the simple data spectrum (conducted before).
We can see that under the new data spectrum, the fully connected neural network was
unable to learn an accurate solution operator, with relative errors of around 50%. On the
other hand, our model exhibited a stable pattern across both sets of data, demonstrating
that it is resilient to changes in the data complexity. As usual, the convolutional network
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stood in the middle, losing some accuracy when translating to the complex spectrum but
performing significantly better than the fully connected network. We note that at this level
of data complexity, it was not possible to resolve the data at the coarsest resolution, so we
stopped at 256.

(a) Simple data spectrum (b) Complex data spectrum

Figure 7.5: Subgrid errors for both simple Fourier spectra and complex Fourier spectra.

7.3 TRAINING DYNAMICS

As remarkable as the results themselves, the training dynamics of the models display
insights into the benefits of our model architecture and the incorporation of domain
knowledge. Figure 7.6 displays a sample of the training dynamics for all three models. It
shows that our model’s dynamics are a lot smoother than those of the standard neural
networks, leading to less volatility in the training and a more stable model. Furthermore,
we recall that tables 7.1 and 7.2 showed that our model had significantly fewer parameters
than the standard neural networks (as a function of the subgrid size), which is desirable
for computational efficiency.

(a) Training dynamics of our
model

(b) Training dynamics of the
FCN model

(c) Training dynamics of the
ConvN model

Figure 7.6: Training dynamics of our model and the standard neural networks in a two-dimensional
subgrid of resolution 16 × 16.
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Moreover, when we step inside to take a look at the learned parameters of our model, we
can compare them with the actual coefficients of the equation being modelled. Figure 7.7
shows the learned coefficients of our model for a given subgrid compared to the actual
coefficients of the heat equation modelled (where we again linearly interpolated back to
the original grid size for comparison). We can see that the coefficients learned are very
similar to those of the ground truth process, looking like a sort of (non-linear) average of
them. This is not entirely surprising, since we expected the optimal solution operator in the
coarsened grids to behave like a coarsened version of the heat equation. This underscores
another advantage of our model architecture, which, by construction, has parameters that
act as the coefficients of a coarsened solution operator.

(a) Coefficients in 1D (b) Actual coefficients in 2D (c) Predicted coefficients in 2D

Figure 7.7: Learnt coefficients of our model and the standard neural networks in a one-dimensional sub-
grid of resolution 32 and a two-dimensional subgrid of resolution 16 × 16.

7.3.1 Stability

Now, we discuss probably the most fascinating result of all: How the training dynamics of
the model relate to the stability constraints embedded in its architecture. Recall that the
coefficients in our model were bounded between ϵ and 2.5 − ϵ to ensure the stability of the
solution operator. These same bounds are applied to our model architecture by bounding
the coefficients in each layer through the constant Ca = 2.5 in equation (5.1). This means
that the parameter space of our model is the same as the stability space of the original
PDE. In other words, our model is constrained to look for a solution within a "stable" set
of parameters. How important this bound is becomes clear when we change its value.

If we change Ca to different values, we are essentially allowing the model to search outside
the stable parameter space. Figure 7.8 below shows a specific instance of the training
dynamics for the 1D model with a subgrid size of 32 in which Ca = 10 (compared to the
original Ca = 2.5). We can see that allowing the model to search a wider parameter space
made it take longer to converge. In fact, it almost seemed to have reached a suboptimal
solution between 2, 000 and 3, 000 epochs (and one could have even assumed convergence
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by then), before moving towards the optimal solution. This suggests that searching in an
unstable region might lead to suboptimal solutions. Figure 7.9 below shows the training
dynamics for the 2D model in a subgrid of size 16 × 16 with Ca = 2.5 (stable) and Ca = 10
(unstable). We can see that the model converges to a sub-optimal solution under the
unstable regime.

(a) Ca = 2.5 (stable) (b) Ca = 10 (unstable)

Figure 7.8: Training dynamics for different bounding constants in 1D.

(a) Ca = 2.5 (stable) (b) Ca = 10 (unstable)

Figure 7.9: Training dynamics for different bounding constants in 2D.

We now fixed the subgrid size (32 for 1D and 16 × 16 for 2D) and repeated the experiments
with different values of Ca and also by changing the sigmoid function to a tanh function
(to allow for negative values). In tables 7.3 and 7.4 below, we show the epochs required
for convergence for both activations and bounding constants. Where no value is shown
it means that the model did not converge to the optimal solution. We also conduct the
experiment without any activation function (and hence the bounding constant is irrelevant
in this case since the parameters are unbounded).
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Activation Ca Epochs to optimal convergence

sigmoid 2.5 600
sigmoid 5 1, 000
sigmoid 10 3, 700

tanh 2.5 1, 000
tanh 5 2, 000
tanh 10 3, 200

identity − 2, 000

Table 7.3: Training dynamics for the 1D model with different bounding conditions.

Activation Ca Epochs to optimal convergence

sigmoid 2.5 600
sigmoid 5 1, 100
sigmoid 10 −

tanh 2.5 1, 600
tanh 5 3, 500
tanh 10 −

identity − 3, 700

Table 7.4: Training dynamics for the 2D model with different bounding conditions.

We can see that allowing the bounding constant to increase (and assuming random and
uniform initialization of parameters) leads to slower convergence and can even lead to
sub-optimal convergence of the model. This is a very interesting result since it shows that
PDE models should search in the appropriate "stable" parameter space to guarantee the
best results and computational efficiency.

An interesting case is when we have no activation function at all. While the model takes
longer to converge, it does always converge to the optimal solution. This is likely due to
the linearity of the solution operator modelled (heat equation) and the fact that removing
the activation function makes the model linear in the parameters. This does not, however,
diminish the importance of the result found for non-linear activations, since 1) almost all
ML models are non-linear and 2) other climate and weather processes are non-linear (e.g.
the Navier stokes equations [Rind, 1999]).



CHAPTER 8

CONCLUSION

In this work, we have explored the relationship between ML models, PDEs, and subgrid
modelling, shedding light on the technicalities of their interplay and their potential in areas
like climate and weather modelling. Our findings underscore the significant promise that
neural PDE solvers hold, especially when equipped with the robust controls traditionally
associated with PDE solvers.

We introduced a novel neural network architecture that is firmly grounded in theory
and meticulously designed to uphold the physical constraints inherent to the PDE. This
architecture consistently outperformed standard models and has three properties desired
for climate and weather modelling:

1. Accurate subgrid modelling: Our proposed model outperformed the standard ML
models in every subgrid tested.

2. Satisfying physical constraints: Our model satisfies the physical constraints of the
process being modelled (represented by the boundary conditions of the PDE), by
construction.

3. Out of distribution generalization: Our model succeeds in out-of-distribution
generalization as opposed to the other basic ML models tested.

While our model just tests one physical process (the heat equation), it serves as a proof-of-
concept that integrating domain knowledge of the physical process being modelled directly
into the ML model’s architecture can lead to better results in subgrid modelling and even
out-of-distribution generalization. Furthermore, we also discovered that our model was
able to adapt to more complex data distributions when compared to the standard ML
models. This is also of great importance for climate and weather modelling since weather
patterns are often represented by complex dynamics [Flato et al., 2014].

Finally, we discovered that the training dynamics of the model are intricately related to the
stability of the PDE being modelled. More precisely, we found that by embedding stability
knowledge in the model architecture itself, we can speed up convergence, which is not
even guaranteed if we omit these crucial stability bounds.

40
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While our results are fascinating, there are also limitations to our work. First, we only
compare our model with very basic standard ML models (a 2-layer fully connected network
and a 2-layer convolutional network). An interesting next step that would be of more
interest to current research would be to test it against current state-of-the-art ML PDE
models such as PINNs [Raissi et al., 2019]. Second, we only address one specific problem:
the heat equation with non-constant coefficients. While this problem is simple enough
to demonstrate our results and complex enough to outline their importance, the next
step would be to expand the model architecture to general advection-diffusion equations,
and later to all parabolic PDEs. Finally, our data is artificially constructed, and it would
be interesting for future research to test our models with real datasets. Nevertheless,
our research serves as a proof of concept that incorporating domain knowledge of PDEs
directly into the model’s architecture can lead to more efficient and accurate PDE solvers
for subgrid modelling.

In summary, this thesis contributes to the growing field of scientific machine learning by
showcasing a successful integration of machine learning with domain-specific knowledge
in PDEs and subgrid modelling. The proposed model not only demonstrates improved
efficiency and accuracy in solving PDEs but also lays a foundation for future research to
build upon, with the potential to revolutionize the way complex physical phenomena are
modelled and understood.



BIBLIOGRAPHY

V. Balaji, F. Couvreux, J. Deshayes, J. Gautrais, F. Hourdin, and C. Rio. Are general
circulation models obsolete? Proceedings of the National Academy of Sciences, 119(47):
e2202075119, 2022.

T. Bolton and L. Zanna. Applications of deep learning to ocean data inference and subgrid
parameterization. Journal of Advances in Modeling Earth Systems, 11(1):376–399, 2019.

G. P. Brasseur and D. J. Jacob. Parameterization of Subgrid-Scale Processes, page 342–398.
Cambridge University Press, 2017. doi: 10.1017/9781316544754.009.

C. S. Bretherton, B. Henn, A. Kwa, N. D. Brenowitz, O. Watt-Meyer, J. McGibbon, W. A.
Perkins, S. K. Clark, and L. Harris. Correcting coarse-grid weather and climate models
by machine learning from global storm-resolving simulations. Journal of Advances in
Modeling Earth Systems, 14(2):e2021MS002794, 2022. doi: https://doi.org/10.1029/
2021MS002794. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
2021MS002794. e2021MS002794 2021MS002794.

R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathematical
physics. IBM journal of Research and Development, 11(2):215–234, 1967.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

G. Flato, J. Marotzke, B. Abiodun, P. Braconnot, S. C. Chou, W. Collins, P. Cox, F. Driouech,
S. Emori, V. Eyring, et al. Evaluation of climate models. In Climate change 2013: the
physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, pages 741–866. Cambridge University Press,
2014.

42

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002794
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002794


Bibliography 43

E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
34(1):014004, dec 2017.

X. Han, H. Gao, T. Pfaff, J. Wang, and L. Liu. Predicting physics in mesh-reduced space with
temporal attention. In The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.
net/forum?id=XctLdNfCmP.

F. Joel. Solution of the heat equation by separation of variables. Lecture Notes of Math 267,
Department of Mathematics at the University of British Columbia, 2007.

J. Kaipio and E. Somersalo. Statistical and computational inverse problems, volume 160.
Springer Science & Business Media, 2006.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-
informed machine learning. Nature Reviews Physics, 3(6):422–440, may 2021.

K. Kashinath, M. Mustafa, A. Albert, J. Wu, C. Jiang, S. Esmaeilzadeh, K. Azizzadenesheli,
R. Wang, A. Chattopadhyay, A. Singh, et al. Physics-informed machine learning: case
studies for weather and climate modelling. Philosophical Transactions of the Royal Society
A Mathematical Physical and Engineering Sciences, 379(2194):20200093, 2021.

A. A. Kiaei, M. Boush, D. Safaei, S. Abadijou, N. Baselizadeh, N. Salari, and M. Moham-
madi. Active identity function as activation function. Preprints, 2023.

P. Kidger and T. Lyons. Universal approximation with deep narrow networks. In Conference
on learning theory, pages 2306–2327. PMLR, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

R. Kruse, S. Mostaghim, C. Borgelt, C. Braune, and M. Steinbrecher. Multi-layer percep-
trons. In Computational intelligence: a methodological introduction, pages 53–124. Springer,
2022.

S. Larsson and V. Thomée. Partial Differential Equations With Numerical Methods, volume 45.
Springer, Chalmers University of Technology and University of Gothenburg 412 96
Göteborg Sweden, 2009.

https://openreview.net/forum?id=XctLdNfCmP
https://openreview.net/forum?id=XctLdNfCmP


44 BIBLIOGRAPHY

J. Lee and M. S. Jeong. Stability of finite difference schemes on the diffusion equation with
discontinuous coefficients. Massachusetts Institute of Technology, Cambridge, 2017.

A. LeNail. Nn-svg: Publication-ready neural network architecture schematics. J. Open
Source Softw., 4(33):747, 2019.

L. R. Leung and S. Ghan. A subgrid parameterization of orographic precipitation. Theoreti-
cal and Applied Climatology, 52:95–118, 1995.

R. J. LeVeque. Finite difference methods for ordinary and partial differential equations: steady-state
and time-dependent problems. SIAM, 2007.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandku-
mar. Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895, 10 2020.

X.-Y. Liu, H. Sun, M. Zhu, L. Lu, and J.-X. Wang. Predicting parametric spatiotemporal
dynamics by multi-resolution pde structure-preserved deep learning. arXiv preprint
arXiv:2205.03990, 2022.

Z. Long, Y. Lu, X. Ma, and B. Dong. PDE-net: Learning PDEs from data. In J. Dy and
A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 3208–3216. PMLR, 10–15 Jul
2018.

V. A. Marchenko and E. Y. Khruslov. Homogenization of partial differential equations, vol-
ume 46. Springer Science & Business Media, 2008.

R. Mcsweeney and Z. Hausfather. Q&a: How do climate models work. Carbon Brief, 2018.
URL https://www.carbonbrief.org/qa-how-do-climate-models-work/.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press,
2018.

R. Olof. Heat Equation. Lecture Notes of DN2255, KTH computer science and communication,
2013.

G. Pavliotis and A. Stuart. Multiscale methods: averaging and homogenization. Springer
Science & Business Media, 2008.

https://www.carbonbrief.org/qa-how-do-climate-models-work/


Bibliography 45

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia. Learning mesh-based
simulation with graph networks. In 9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=roNqYL0_XP.

N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and
A. Courville. On the spectral bias of neural networks. In K. Chaudhuri and R. Salakhut-
dinov, editors, Proceedings of the 36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research, pages 5301–5310. PMLR, 09–15 Jun
2019.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational physics, 378:686–707, 2019.

S. Rasp, M. S. Pritchard, and P. Gentine. Deep learning to represent subgrid processes in
climate models. Proceedings of the National Academy of Sciences, 115(39):9684–9689, 2018.

D. Rind. Complexity and climate. science, 284(5411):105–107, 1999.

L. Ruthotto and E. Haber. Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, 62(3):352–364, Apr 2020.

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Y. Shin, J. Darbon, and G. E. Karniadakis. On the convergence and generalization of
physics informed neural networks. arXiv e-prints, pages arXiv–2004, 2020.

K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1(1):24–35, 2019.

A. M. Stuart. Inverse problems: a bayesian perspective. Acta numerica, 19:451–559, 2010.

M. Tekriwal, K. Duraisamy, and J.-B. Jeannin. A formal proof of the lax equivalence
theorem for finite difference schemes. In NASA Formal Methods Symposium, pages
322–339. Springer, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

https://openreview.net/forum?id=roNqYL0_XP


46 BIBLIOGRAPHY

O. Watt-Meyer, N. D. Brenowitz, S. K. Clark, B. Henn, A. Kwa, J. McGibbon, W. A. Perkins,
and C. S. Bretherton. Correcting weather and climate models by machine learning
nudged historical simulations. Geophysical Research Letters, 48(15):e2021GL092555, 2021.
doi: https://doi.org/10.1029/2021GL092555. URL https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1029/2021GL092555. e2021GL092555 2021GL092555.

J. A. Weyn, D. R. Durran, and R. Caruana. Can machines learn to predict weather?
using deep learning to predict gridded 500-hpa geopotential height from historical
weather data. Journal of Advances in Modeling Earth Systems, 11(8):2680–2693, 2019.
doi: https://doi.org/10.1029/2019MS001705. URL https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1029/2019MS001705.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021GL092555
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021GL092555
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001705
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001705

	Abstract
	Abrégé
	List of Figures
	List of Tables
	Acknowledgements
	Contribution of Authors
	Introduction
	Partial Differential Equations, Numerical methods, and Stability
	Machine Learning
	ML for PDEs
	Subgrid Modelling
	Climate and weather modelling
	Research Objectives

	Machine Learning
	Neural Networks: The Foundation of Deep Learning
	Training Optimization: Navigating the Parameter Space
	A simple example: Linear Regression
	Architecture: The key to best-performing models

	Stability Theory
	The Continuous Problem
	The Discrete Problem

	Learning PDEs with Data
	The PDE Problem
	The ML Problem
	The Subgrid Problem
	Relevant Work

	Our Model
	Model Properties
	The Complete Model

	Experiments
	Dataset generation
	Baseline neural network models
	Error Measures

	Results and Discussion
	Modelled solutions
	Data complexity
	Training dynamics

	Conclusion
	Bibliography

