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1. Introduction

Personalized medicine is an expanding area of interest in health research wherein patient

management is driven by subject-level, rather than diagnosis-level, data. Within this frame-

work theory concerning dynamic treatment regimens, or DTRs (Chakraborty and Moodie,

2013; Chakraborty and Murphy, 2014; Zhao and Laber, 2014), has developed. Its focus lies in

estimating the optimal sequence of decision rules - taking patient information as input and

recommending treatment as output - that maximize long-term patient outcome. Identifying

the optimal DTR is therefore of considerable interest, and numerous methods have been

developed to tackle this particular problem (for a comprehensive review, see Chakraborty

and Moodie 2013).

A common theme in the DTR literature is the trade-off between methodological com-

plexity and robustness to model mis-specification. This idea is manifest in the dichotomy

between single and double robustness ; while methods of the former type require a specific

model to be correctly specified to ensure consistent estimators, the latter requires correct

specification of at least one of two models. These doubly-robust methods therefore offer

an attractive property that typically comes at the cost of more difficult implementation.

For example, the relatively well-established method of Q-learning (Watkins, 1989; Sutton

and Andrew, 1998) relies largely on standard regression techniques, but also on the correct

specification of the outcome mean model. An alternative approach of G-estimation (Robins,

2004), meanwhile, introduces some additional methodological complexity but in return offers

consistent estimators if either the outcome model or the model of expected treatment level

given patient information is correct. Other doubly-robust approaches to DTR estimation

include dynamic weighted ordinary least squares (Wallace and Moodie, 2015), A-learning

(Murphy, 2003; Robins, 2004; Blatt et al., 2004; Schulte et al., 2014), targeted maximum

likelihood (van der Laan and Rubin, 2006; Neugebauer et al., 2010), and augmented inverse



2 Biometrics, October 2014

probability of treatment weighting (Zhang et al., 2012). In this paper, we will focus on G-

estimation, however our proposed diagnostic approach applies directly to other doubly-robust

methods of estimation.

It is usually the case that the analyst does not know with certainty whether either of the

two models required for consistency is correct, and as such doubly-robust methods cannot

be viewed as a ‘statistical panacea’ to be used with impunity. Indeed, some authors have

counselled caution when both models are even ‘slightly’ mis-specified (see Kang and Schafer

2007 and associated Comments), and with DTRs often encompassing multiple stages of

modeling the combined impact of repeated mis-specification could be considerable. Thus,

there is a real need to develop methods of model assessment, with a view to ensuring at least

one model is indeed correctly specified.

In this paper we present how the property of double robustness can be exploited to either

provide evidence that neither model has been correctly specified, or reassurance that at least

one has. The basic principle we shall use has been briefly noted by Robins and Rotnitzky

(2001) when considering comparing doubly-robust estimates with two different singly-robust

ones, while Bang and Robins (2005) also touch on the issue in the context of a missing

data problem. Pursuing these ideas in greater depth, we provide a detailed discussion of

earlier work, consider the difficulties with formal testing, present some novel approaches

within this framework and demonstrate how we can proceed using only the desired doubly-

robust method (rather than requiring additional singly-robust approaches to be considered).

These ideas are illustrated in the specific case of G-estimation within the DTR environment,

wherein some additional challenges lie.

2. DTRs and G-estimation

We first introduce the general DTR estimation problem as well as the G-estimation process

by which we shall illustrate the model checking approach. For simplicity of exposition and
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notation we shall first limit ourselves to the single-stage setting - where one treatment

decision is to be made for each patient - but note everything presented extends to the

multi-stage setting (which will be illustrated through simulated and real datasets).

For a given dataset we aim to identify the optimal DTR: the decision rule recommending

the treatment a given patient information (or history) x that maximizes expected patient

outcome E[Y |A = a,X = x] (with Y chosen so that larger values are preferred). A typical

model for Y could be E[Y |A = a,X = x; β, ψ] = f(xβ; β) + γ(a, xψ;ψ) where xβ and xψ

are two (potentially identical) subsets of the full patient information x. This formulation

sees the mean outcome split into two components: the treatment-free (sometimes expected

counterfactual) f(xβ; β) and the blip γ(a, xψ;ψ). The blip function is the expected mean

difference between patients who receive treatment a and those who receive some baseline (or

control) treatment. As such, the treatment only affects outcome through the blip function,

and so the optimal treatment for a patient with information xψ is that which maximizes

γ(a, xψ;ψ). In the common case of a binary treatment a ∈ {0, 1} (where a = 0 corresponds

to no treatment or a control) and a linear blip γ(a, xψ;ψ) = axψψ the optimal regimen is

particularly straightforward: “treat (a = 1) if xψψ > 0 and do not treat (a = 0) otherwise”.

If we obtain estimates of the blip parameters then the estimated optimal regimen follows.

While this appears a straightforward regression problem it is complicated by the treatment-

free component of the outcome model which is seldom known or reliably estimable. G-

estimation is one approach that has been developed to circumvent this. In addition to

specifying models for the blip function (which must be done correctly), and the treatment-

free model, one may also specify a treatment model E[A|xα;α] (which is the propensity score

when treatment is binary). G-estimation then produces consistent estimates of ψ as long as at

least one of the treatment or treatment-free models is correctly specified. Thus G-estimation

is said to be doubly-robust.
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The G-estimation approach, like some other DTR estimation methods such as Q-learning

and dWOLS, proceeds in a recursive manner. In the multi-stage setting, the analyst begins

by estimating the optimal final-stage treatment and then, using this information, moves

backwards through stages estimating each previous optimal decision rule in turn. This

recursive approach allows each subsequent decision to be based on the assumption that

all future treatments are optimal. The specific details of G-estimation are included in the

Web Appendix. An important aspect of G-estimation within the DTR framework is that its

recursive nature means blip parameter estimates from later stages are used for estimation at

earlier ones. As such, any mis-specified models at later treatment stages could ‘feed’ into this

process, potentially adversely affecting results at earlier stages even if the proposed models

at those stages are correct. Additional care must therefore be taken with model selection

and validation in the DTR setting.

3. Exploiting double robustness

G-estimation offers estimators that are robust to mis-specification of one of two component

models, but in practice it may not be possible to say with much certainty whether at least one

model is correctly specified. Nevertheless we can still investigate this in a relatively simple

manner. Suppose one model is correctly specified. By the definition of double robustness,

estimators will remain consistent if analyses are repeated using the same correct model

while changing the other. Furthermore, it is known that variance of the estimators attains

a minimum when both models are correctly specified (see Web Appendix). For example,

suppose our treatment model is correctly specified but not our treatment-free model. If we

repeat the analysis but with a different treatment-free model then the resulting parameter

estimates should be similar (if n is large) to those obtained from our first analysis. If, however,

changing our treatment-free model resulted in a dramatic shift in our parameter estimates,
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this would provide evidence our treatment model was mis-specified. The same argument

applies to a specific treatment-free model with varying treatment models.

Robins and Rotnitzky (2001) mention this property of doubly-robust estimators in passing

and comment that comparison of estimates resulting from doubly-robust analyses with those

from the appropriate singly-robust ones provides a “useful informal goodness of fit test”.

However, we note a singly-robust method can be viewed as a special case of a doubly-robust

approach where the second model is mis-specified. We further observe that this logic extends

to comparing doubly-robust estimates where one model is kept fixed while the other is varied.

Taking advantage of this property to inform analysis is, however, non-trivial. Deriving

formal statistical tests presents a particular challenge as both the interdependence of our

model choices and the resulting parameter estimates needs to be considered. There are, of

course, standard tests available which may appear to serve our requirements. For example,

in their setting of estimating the mean of a partially observed outcome Bang and Robins

(2005) explicitly outline a typical Z-test type approach. Using estimates µ̂D and µ̂S resulting

from doubly- and singly-robust analyses respectively, they observe that if τ̂ 2 is the empirical

variance of µ̂D − µ̂S (estimated via bootstrap, perhaps) then a test with rejection region∣∣(µ̂D − µ̂S)/(τ̂)
∣∣ > 1.96 is a valid - though inconsistent - large sample 0.05 level test of the

null hypothesis that the model used in the singly-robust method is correctly specified.

The lack of consistency relates to a general problem when using doubly-robust methods in

this way: two wrong models may still lead to the same wrong estimate. A further complication

here is that Bang and Robins’ example concerns a single parameter estimate, whereas

in practice we will typically deal with vectors of blip parameters. As such a multivariate

extension (such as Hotelling’s T-squared test) may prove useful in identifying whether our

proposed models have been correctly specified or, as we shall demonstrate, by considering

statistics which ‘collapse’ our vectors of parameter estimates into univariate statistics. Again,
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however, incautious use of such tests may prove unwise given the potential for deceptive

results.

Within the multi-stage DTR framework, methods such as G-estimation provide an ad-

ditional challenge. A recursive approach uses results from each stage of an analysis in the

estimation process for previous stages. Incorrect modeling at the final stage, for example,

could then render any subsequent work useless. We observe, however, that in practical

situations we implicitly assume that our model fitting at every stage is correct – or at least

‘correct enough’. We also note that if we happened to know the correct stage 1 treatment

model (such as via knowledge of the study design) we may be able to assess our stage 2

model specification. If analysis using the correct stage 1 treatment model and a variety of

stage 1 treatment-free models resulted in widely varying stage 1 parameter estimates, for

example, this could be suggestive of an error in our stage 2 model fitting. This latter example

is, however, something of a special case, and as such we shall not pursue it here.

Thus, rather than pursuing a formal test, we suggest instead a variety of quick and simple

investigations following analysis with a number of different models. This gives rise to the

following informal ‘step-by-step’ procedure where, at each stage of our analysis we perform

the following steps:

(1) Propose a set of candidate treatment models and treatment-free models.

(2) Using bootstrap replicated datasets, perform G-estimation using every possible combination

of treatment and treatment-free models.

(3) Within each bootstrap sample, examine the variation in estimates obtained for each given

treatment model under every different treatment-free model. The correct treatment model

should be identifiable by being that which results in the lowest such variation most often.

The treatment-free models may be assessed similarly.

(4) If all models lead to widely varying estimates (identifiable through, for example, boxplots
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of bootstrapped point estimates), consider the possibility of all models being wrong and

investigate new candidate models.

(5) If there are further stages to analyze, use the above to choose the best combination of

treatment and treatment-free model and use these when analyzing the earlier stages.

More precise details of this approach are demonstrated in the examples that follow.

3.1 Simulated example: a simple illustration

While our natural interest lies in the multi-stage setting, we begin with a simple hypothetical

example in the single-stage setting so as to most clearly illustrate our basic principles. As

per our previous notation we focus on a single treatment decision a based on a single piece

of patient information x and wish to maximize an expected outcome. Our data (sample size

n = 1, 000) are generated as X ∼ U(0, 1), A ∈ {0, 1} with P(A = 1|X = x) = x, and

Y ∼ N(1 + x + ex + A(ψ0 + ψ1x), 0.5) with ψ0 = ψ1 = 1. The treatment-free model in this

setup is thus f(x) = 1 +x+ ex, the blip model is γ(x, a;ψ) = a(ψ0 +ψ1x) and the treatment

model is P(A = 1|X = x) = x.

We conduct analyses using three treatment models and three treatment-free models, with

only the first of each three correctly specified. Our treatment models are T1 : P(A = 1|X =

x) = x, T2 : P(A = 1|X = x) = x2, and T3 : P(A = 1|X = x) = 0.5, while our treatment-

free models are F1 : f(x; β) = β0 + β1x + β2e
x, F2 : f(x; β) = β0 + β1x + β2 log(x), and

F3 : f(x; β) = β0 + β1x. Performing our analyses nine times - once for each treatment and

treatment-free model pair - the double robustness property of G-estimation should lead to

biased or unbiased results depending on whether at least one is correctly specified.

We carry out such analyses on 10, 000 simulated datasets. In Table 1 we first present

the results of analysis on just one of these datasets to illustrate our general principle: when

either the treatment or treatment-free model is correct (T1 or F1) estimates exhibit little bias,

whereas when both are mis-specified bias is evident. Moreover, if we compare the standard

deviation in parameter estimates across rows (keeping the treatment model the same), or
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down columns (keeping the treatment-free model the same) the lowest values occur when one

model is correctly specified. This pattern manifests across the entire simulation run (Figure

1), and can also be applied to a single dataset via bootstrapping, which yields near-identical

results to those observed across simulation runs.

[Table 1 and Figure 1 about here.]

Another graphical assessment method is possible by comparing point estimates from var-

ious models on each individual bootstrap resample: when one model is correct we should

find that each analysis yields more similar estimates than if both models are wrong. An

illustration is presented in the Web Appendix where, from analysis of bootstrap samples of

a single dataset, estimates resulting from analyses using different treatment-free models are

visibly more correlated when the treatment model is correctly specified.

While our primary interest lies in these blip parameter estimates, comparisons such as those

above become impractical once we move into more complex (higher dimensional) settings.

Instead, we can consider the linear combination of our blip parameters and covariates:

ψ0 + ψ1x (i.e. our blip function without the preceding a term) which we regard as our

‘treatment effect’: the change in expected outcome from receiving treatment. This combines

our parameter estimates into a single numeric value, and while this necessarily comes at

the cost of a loss of some information, it yields a more straightforward means to assess

our models. For example, from a model selection perspective we might choose the treatment

model that results in the lowest standard deviation in mean treatment effect estimates for the

dataset across the three treatment-free models, and vice-versa. Across our 10,000 simulation

runs this selects the correct treatment-free model 99% of the time, but only selects the

correct treatment model some 60% of the time, selecting the ‘null’ model (P(A = 1) = 0.5)

the remaining 40%. Alternatively, working with an individual dataset we could identify the

model which results in the lowest standard deviation when analyzing each bootstrap sample,



Model assessment in DTRs via double robustness 9

and then choose that which yields the lowest standard deviation most often. Across 1,000

simulated datasets, with 200 bootstrap samples of each, this selected the correct treatment-

free model for over 99% of the datasets and the correct treatment model in 75%.

The apparent poor performance across multiple simulation runs for selecting the correct

treatment model is a consequence of the simplifying step of collapsing our parameter es-

timates into a single function. In contrast to when we compared blip parameter estimates

directly (where the correct treatment and treatment-free models are selected in over 98% of

simulations), this simplification led to a situation where despite the ‘null’ model resulting

in markedly biased estimates, they combined with the covariate x to return very similar

treatment effect estimates across the three treatment-free models. This further highlights

how a ‘quick fix’ for model selection in this manner may be optimistic, and that it is prudent

to look at individual parameter estimates.

3.2 A two-stage example

The preceding example demonstrated some fundamental principles behind model assessment

and selection using doubly-robust approaches. Interested as we are in the DTR framework,

however, we now pursue a more complex, two-stage example. For these simulations we

introduce the stage j regret µj(hj, aj), defined as the expected decrease in our outcome

from using treatment aj at stage j instead of the optimal treatment, assuming optimal

treatment thereafter. In the binary treatment setting the regret relates to the blip via

µj(hj, aj) = γj(hj, a
opt
j )− γj(hj, aj), where aoptj denotes the stage-j optimal treatment.

Our simulations are intended to reflect a common real-world scenario where the same

covariates are recorded at each stage, and where stage 2 covariates may be affected by the

treatment received at stage 1. Data are generated as follows:

• Stage 1: X11 ∼ N(0, 1), X12 ∼ N(0, 1), X13 ∼ N(0, 1)

P(a1 = 1|x11, x12, x13) = expit(x11 + x12 + x13)
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µ1(h1;ψ1) = (aopt1 − a1)(ψ10 + ψ11x11);

• Stage 2: X21 ∼ N(x11 + a1, 1), X21 ∼ N(x12 + a1, 1), X23 ∼ N(x13 + a1, 1)

P(a2 = 1|x21, x22, x23) = expit(x21 + x22 + x23)

µ2(h2;ψ2) = (aopt2 − a2)(ψ20 + ψ21x21);

• Outcome: Y ∼ N(x11 + x12 + x13 − µ1(x1, a1;ψ1)− µ2(x2, a2;ψ2, 1);

where expit(x) = 1/(1+e−x) is the logistic function, ψ10 = ψ20 = −1
2

and ψ11 = ψ21 = 1. Our

regret functions allow an alternative formulation of our expected outcome, which we can view

as an optimal outcome Y opt = x11 +x12 +x13 from which the regret functions are subtracted.

The regret functions correspond to blips of the form γj(xj, aj;ψj) = aj(ψj0 + ψj1xj), and

so aoptj = 1 if ψj0 + ψj1xj > 0 and 0 otherwise. This leads to true treatment-free models

complicated by the presence of indicator functions:

• f1(x;β1) = x11 + x12 + x13 − 1{ψ10+ψ11x11>0}(ψ10 + ψ11x11); and

• f2(x;β2) = x11+x12+x13−(1{ψ10+ψ11x11>0}−a1)(ψ10+ψ11x1)−1{ψ20+ψ21x21>0}(ψ20+ψ21x21).

The precise form of these models depends on the very parameters we are trying to estimate,

and so in reality their identification can be difficult. However, one ad hoc approach in this

setting is to specify the general form of our treatment-free models based on our blips and

an estimate of the treatment decision rule which governs the indicator functions. We could

obtain such an estimate through a preliminary analysis, a prior belief, or some other means.

Here, for the sake of illustration, we propose reforming the indicator function used at stage

1 as “treat (a1 = 1) if a subject’s x11 value is greater than the population mean of x11”, and

similarly for stage 2 based on x21. As with our single-stage analysis, we consider 3 treatment

models and 3 treatment-free models, each of which corresponds to including 1, 2, or all 3 of

the available covariates. This mimics real-world model assessment problems where inclusion

or exclusion of a particular variable is often of interest.

At each stage we assume a logistic regression model for treatment, with model Tjp denoting
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the treatment model for stage j that contains p covariates, with p = 1, 2, 3 corresponding

to (xj1), (xj1, xj2) and (xj1, xj2, xj3), respectively. At stage 1 our treatment-free models are

linear, containing covariates (ãopt1 , ãopt1 x11) where ãopt1 takes the value 1 for a particular subject

if their x11 value is larger than the overall mean of x11, and 0 otherwise (in other words,

our ‘working estimate’ of the optimal stage 1 treatment). These covariates represent the

component of our treatment-free model corresponding to the stage 1 regret when a1 =

0. Treatment-free model F1p then contains these terms along with p covariates, analogous

to the definition of our treatment models. For example, the covariates in treatment-free

model F12 are (ãopt1 , ãopt1 x11, x11, x12). In similar fashion, our stage 2 treatment-free models

contain covariates (a1, a1x11, ã
opt
1 , ãopt1 x11, ã

opt
2 , ãopt2 x21), where ãopt2 takes the value 1 if x21 is

larger than the overall mean of x21, and 0 otherwise. These terms correspond to the stage

1 regret and the stage 2 regret with a2 = 0. Treatment-free model F2p then contains these

terms along with p covariates. For example, the covariates in treatment-free model F23 are

(a1, a1x11, ã
opt
1 , ãopt1 x11, ã

opt
2 , ãopt2 x21, x11, x12, x13).

While our treatment-free models may seem somewhat complex, they merely reflect what we

might propose in this context based on our assumed form of the blip. In particular, we note

that by specifying the form of our blip, this in turn defines the form of the regret, and thence

some of the terms of our treatment-free model. While this requires us to estimate the optimal

treatment despite this being the objective of our analysis, we have found that in practice

including some sort of indicator function term can dramatically improve estimation even

when that estimate is not particularly accurate. Our focus here, meanwhile, is on identifying

which covariates to include in our treatment and treatment-free models.

Each of 1,000 simulation runs involved taking 100 bootstrap samples of a size n = 1, 000

dataset generated as per the above procedure, fitting every combination of stage 1 and stage

2 models. When investigating our stage 1 estimates we separate our results between those
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where at least one of the stage 2 models was correct and those where both stage 2 models

were incorrect, to investigate whether mis-specification had a marked effect on the subsequent

stage 1 analysis. Focusing on the mean treatment effect estimates we find the correct models,

as expected, tend to result in lower variation across the different treatment models, with the

correct models being identified in every simulation run. Furthermore, mis-specification of

stage 2 models had little impact on model selection at stage 1.

In Figure 2 we illustrate visual diagnostics for assessing model validity by looking at the

bootstrap blip parameter estimates for a single simulation run. In particular, we note that

when analysis is repeated using the same mis-specified treatment (or treatment-free) model

and each of the different treatment-free (or treatment) models, then considerable variation

in blip parameter estimates is evident. In contrast, when analysis is repeated using a fixed

correct model there is little variation. Plots for the overall treatment effect (rather than a

specific parameter estimate) exhibited a similar pattern.

[Figure 2 about here.]

Standard methods for assessing the treatment model do, of course, exist, and in these

simulations the use of the Bayesian Information Criterion in fitting our logistic regression

models resulted in the same success rate in identifying the correct treatment model. In

contrast, not only are there no established methods for identifying the correct treatment-

free model in such scenarios, none have, to our knowledge, even been employed. Regardless, a

key advantage of this approach of exploiting double robustness is that it offers the potential

for model validation, and not just model assessment.

Here, for instance, we have simulated an example where there are three covariates that

influence our models. However, it is entirely plausible to encounter a situation such as this

where one of those covariates is not considered, either through omission at the modeling stage,

or even not collected at all. In this scenario standard model selection techniques would be
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limited in their ability to detect that a covariate was missing: they can tell us which model

is best, but are less able to tell us that model is still mis-specified. In contrast, were we to

conduct an analysis based on examining variation in blip parameter (or treatment effect)

estimates through boxplots such as Figure 2 we may have cause for concern. As a simple

illustration, suppose in the preceding analysis we had not considered models containing x13

or x23, in effect simulating the real-world scenario of omitting a covariate altogether. Ignoring

those boxes corresponding to these models in Figure 2 we would have considerable concerns

about either of our two remaining models being correct given the clear variation in parameter

estimates. (On the other hand, when we do include the correct model, this approach offers

reassurance that we have selected the correct choice, and not merely the best one.)

3.3 The Multicenter AIDS Cohort Study

We now apply our approach to data from the Multicenter AIDS Cohort Study (MACS,

Kaslow et al. 1987). Beginning in 1984, and accumulating information from HIV-1 infected

homosexual and bisexual men in four US cities, MACS is a longitudinal observational study

designed to examine the natural history of AIDS. Participants are seen every three to six

months where they complete a questionnaire, undergo physical examination, and provide

blood. To illustrate our approach we present a relatively simplistic analysis of these data.

Following Moodie et al. (2007) we seek to identify the optimal time to implement zidovu-

dine (AZT, used in the treatment of HIV/AIDS) with a view to maximizing CD4 count at 12

months after the baseline visit. We consider two treatment intervals: baseline to six months

(stage 1), and six to 12 months (stage 2), during which AZT could be initiated. Our analysis

is restricted to a dataset of 1,879 HIV-positive, AIDS-free men recruited after March 1986

when AZT became available, and we use last observation carried forward when observations

were unobserved (Hernán et al., 2000). As per Moodie et al. (2007) we use the previous

interval’s CD4 count as the sole tailoring variable in our blip models. Treatment during the
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first six months was assumed dependent on year of study entry, presence of AIDS symptoms

at baseline, and baseline CD4 count. Treatment during the second six months was modeled

on presence of symptoms at six months and six month CD4 count.

We denote stage j CD4 count by cj and presence of symptoms sj (binary), where j = 1

corresponds to baseline and j = 2 to six months. Year of study entry is time-invariant and

denoted by e, while our outcome of 12 month CD4 count is denoted by y. AZT initiation

during the first and second six months is denoted by a1 = 1 and a2 = 1, respectively, with

aj = 0 otherwise. Note that once treatment is initiated it is not discontinued, and so from

a DTR perspective all patients who initiated in the first six months are receiving the ‘best’

(i.e. only) treatment possible in stage 2 given their first stage treatment. As such, we exclude

these patients when estimating stage 2 treatment effects (but they are still used for stage 1

modeling). Of the 1,879 participants, 166 initiated AZT in stage 1 and so while all 1,879 are

used in our estimation of stage 1 parameters, only 1, 713 are used for the stage 2 analysis.

As noted above, the models chosen at stage 2 will influence the estimates obtained at

stage 1. Here, we therefore first compare treatment and treatment-free models in terms of

their stage 2 blip parameter estimates before selecting one choice for each and proceeding

to compare models at stage 1. At both stages we assume simple linear blip functions of the

form γ(aj, x
ψ
j ;ψj) = ajc

ψ
j ψj. Our candidate stage 2 treatment models are:

• T21: P(A2 = 1|C2 = c2, S2 = s2) = expit(α(1, c2, s2)
T );

• T22: P(A2 = 1|S2 = s2) = expit(α(1, s2)
T ); and

• T23: P(A2 = 1) = 0.5

where parameters α are estimated via logistic regression of stage 2 treatment a2 on the

corresponding covariates. As such, our ‘primary’ treatment model T21 is a logistic regression

of treatments on stage 2 CD4 count and stage 2 presence of symptoms, T22 is a logistic

regression of treatments on stage 2 presence of symptoms alone, while T23 can be considered

the ‘null’ model assuming no relationship between treatment and patient history. We consider
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four treatment-free models of the form f(h2; β) = h2β where for F21, F22, F23, and F24, h2 =

(1, c2), (1, c2, log(c2)), (1, c2, c1) and (1, c2, log(c2), c1, log(c1)), respectively. This represents

two pairs of dichotomies: whether to include c1 as well as c2, and whether to include log-

transforms of the CD4 counts. We took 200 bootstrap samples and carried out G-estimation

for each of these model combinations.

In Figure 3 we summarize the standard deviations of blip parameter and treatment effect

estimates for each fixed model, noting that while the blip parameters seem to suggest the first

treatment model, things are rather less clear with the treatment effect results. Meanwhile, all

three metrics suggest that it is advisable to include log-transformations of CD4 counts in our

treatment-free models, along with some evidence that including baseline CD4 counts (c1) as

well as those at six months is worthwhile. If we inspect which models resulted in the lowest

variation in estimates for each bootstrap sample (Table 2), we find treatment model T21 is

overwhelmingly preferred based on blip parameter estimates, and is still the preferred model

based on treatment effect estimates, albeit less clearly. The treatment-free models F22 and

F24 were clearly preferred by both metrics with little to distinguish them. Meanwhile, the

resulting point estimates of the blip parameters (Table 3) exhibit considerably more variation

under treatment models T22 and T23, and treatment-free models F21 and F23. Based on these

results, we proceed to stage 1 of the analysis using models T21 and F24 (the latter chosen

over F22 given its marginally better performance).

[Figure 3 and Table 3 about here.]

With our stage 2 models determined we now consider possible stage 1 models. Again we

consider three treatment models analogous to those investigated at the second stage with

the addition of year of entry (e):

• T11: P(A1 = 1|C1 = c1, S1 = s1, E = e) = expit(α(c1, s1, e)
T );

• T12: P(A1 = 1|S1 = s1, E = e) = expit(α(s1, e)
T ); and

• T13: P(A1 = 1) = 0.5
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with α estimated from fitting logistic regression models of stage 1 treatment a1 on the

corresponding covariates. We consider just two treatment-free models of the form f(h1; β) =

h1β where for F11 and F12, h1 = (1, c1) and (1, c1, log(c1)), respectively.

G-estimation proceeds using the recommended models for the second stage of treatment

followed by all combinations of these stage 1 treatment and treatment-free model pairs.

Analogous statistics based on standard deviations are also summarized in Table 2. We observe

in particular that while the parameter-based metrics again strongly favour model T11 this

apparently clear recommendation is largely disguised when considering the treatment effect

statistic instead. Meanwhile, model F12 is - perhaps unsurprisingly given our stage 2 results

- convincingly preferred. The resulting parameter estimates are also summarized in Table

3, where again our selected models seem to result in considerably less variable parameter

estimates. At both stages, however, these estimates are not significantly different from zero.

4. Discussion

The potential for model mis-specification exists in virtually all data analyses, and the

estimation of dynamic treatment regimens is no exception. Indeed, in this setting recur-

sive methods and covariate-dependent treatments present additional challenges which can

make correct model specification both more important and more challenging. Doubly-robust

methods offer a convenient, intuitive, and novel route to diagnosing model inadequacies.

While doubly-robust methods are not universally preferred (Kang and Schafer, 2007), the

methods proposed in this paper can shed light on their reliability using straightforward,

easy-to-apply checks. By exploiting the simple fact that estimators are consistent as long as

one model is correct we are able to investigate the validity - or otherwise - of other models

under consideration.

This fundamental principle has been noted before (Robins and Rotnitzky, 2001; Bang and

Robins, 2005; Ogburn et al., 2014), though not in great depth. Further, the use of multiple
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singly-robust estimates to check a doubly-robust estimate seems unnecessarily complex.

In this paper, we have presented how the consistency of doubly-robust estimators can be

exploited for the purpose of model assessment, and provided a concrete and intuitive means

to do so. Along with simple inspection of the resulting point estimates, visual diagnostics offer

tangible and intuitive insights into how one’s models compare. We would also argue that,

just as the study of residual plots is essential in a standard linear regression, the diagnostic

plots we propose should form a routine part of any analysis conducted using doubly-robust

methods.

A key property of this approach is that rather than merely an avenue towards model

selection, double robustness may be used for model validation. In particular, while standard

methods for selecting a treatment model may be used within the DTR framework, they will

often only be able to identify the best model, without necessarily providing insights into

whether that model is correct. Moreover, assessment of the treatment-free model remains

much harder, with Rich et al. (2010) proposing the only notable method to date.

A valuable direction for future work would be an investigation of more formal testing

procedures. We are also interested in the idea of the degree to which models may be mis-

specified (informally, the idea of one model being ‘worse’ than another on some scale). We

note that our approach can potentially identify when two or more models are ‘more correct’

than others (as we saw in the MACS example), and that in this instance choosing between

such models should have little impact as the resulting parameter estimates are necessarily

close to one another. Additional simulations that introduce this concept (as well as others

demonstrating the methods discussed in this paper) are included in the Web Appendix.

Related work has been conducted in the general structural mean model (SMM) envi-

ronment for a single interval in the context of non-compliance in randomized trials. Re-

cently Taguri et al. (2014), building on the work of Pan (2001), introduced a model selec-
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tion approach based on quasi-likelihood and an extension of Akaike’s Information Criterion

(Akaike, 1973). While their work could be translated to the DTR setting, the focus of their

approach is solely on selection of the general analog of our blip model, whereas we have

been primarily concerned with the two ‘nuisance’ models besides the blip. That is, Taguri

et al. (2014) assume fixed nuisance models so that consistency of the blip parameters is

assured provided at least one of the two is correct. In contrast, we do not assume that model

specification of the nuisance models is correct but rather aim to ‘diagnose’ whether this

might be the case. Like Taguri et al. (2014), Fischer et al. (2011) also consider SMMs in the

presence of non-compliance with treatment and propose a ‘partial’ goodness of fit test. We

have investigated application of this approach in the G-estimation setting and found that

it does not distinguish between mis-specification of treatment and treatment-free (or indeed

blip) models. Also, as Taguri et al. (2014) note, this test will tend to select models which are

too large. Nevertheless this presents a possible avenue for further investigation of the general

model selection problem in doubly-robust settings.

An alternative perspective has been illustrated in the missing data setting by Han (2014).

In contrast to our general approach of comparing several estimators from multiple models,

Han combines the working models so as to derive a single final estimator that is consistent as

long as at least one of the working models is correct. It may be possible to extend this idea to

the DTR framework. Until such a ‘multiply-robust’ model is proposed, the techniques that

we have proposed, which fully exploit the properties of double robustness, are important new

tools for model assessment and selection.

Supplementary Materials

Details of G-estimation’s implementation (referenced in Section 2), some additional theory

concerning the variance of its estimators (referenced in Section 3), results of some further

simulation studies (referenced in Sections 3.1 and the Discussion), and code used for gener-
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ating the simulations reported in Sections 3.1 and 3.2 are available with this paper at the

Biometrics website on Wiley Online Library.
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Figure 1: Standard deviations of sets of parameter estimates for each of 10, 000 simulated
datasets resulting from applying G-estimation with one model fixed and the other varying.
For example the leftmost box in the top-left figure summarizes the distribution of standard
deviations of the three parameter estimates of ψ0 obtained by applying G-estimation with
treatment model 1 and treatment-free models 1, 2 and 3.
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Figure 2: Estimates of ψ20 from 100 bootstrap samples of a single dataset generated as per
the procedure in Section 3.2. Each plot corresponds to three sets of analyses combining one
fixed treatment (treatment-free) model with each of the candidate treatment-free (treatment)
models. Dashed line indicates true ψ20 = −0.5, grayed boxes indicate analyses where at least
one model is correctly specified.
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Figure 3: Standard deviations of sets of bootstrapped parameter and mean treatment effect
estimates via G-estimation of second stage blip parameter estimates of MACS data where
one model is fixed and the other varies. The top row corresponds to the variation in estimates
when each corresponding treatment model was held fixed (while the treatment-free model
varied), while the bottom corresponds to variation when each treatment-free model was held
fixed.



Model assessment in DTRs via double robustness

Table 1: Results of G-estimation analysis of a single simulated dataset with different
combinations of treatment (T ) and treatment-free (F ) models.

Treatment-free
ψ0 ψ1

Treatment F1 F2 F3 SD F1 F2 F3 SD

T1 1.030 1.034 1.035 0.0026 1.008 1.001 0.999 0.0046
T2 1.049 1.054 1.034 0.0130 0.972 0.930 0.953 0.0207
T3 1.036 0.920 0.899 0.0738 0.996 1.226 1.266 0.1459

SD 0.0100 0.0726 0.0781 0.0185 0.1544 0.1689



Biometrics, October 2014

Table 2: Analysis of results of G-estimation on MACS data. Columns indicate how many
times each model was selected during 200 bootstrap samples based on minimal standard
deviation of the corresponding estimate (blip parameters or T.E.j = stage j treatment effect)

ψj0 ψj1 T.E.j

T11 199 199 61
T12 0 0 91
T13 1 1 48

F11 22 18 31
T12 178 182 169

T21 187 185 88
T22 2 1 62
T23 11 14 50

F21 1 1 7
F22 79 99 89
F23 1 1 32
F24 119 99 72



Model assessment in DTRs via double robustness

Table 3: Results of G-estimation analysis of MACS data with different combinations of
treatment (T2i) and treatment-free (F2i) models. Bold indicates estimates from recommended
models.

Stage 1 Treatment-free
ψ10 ψ11

Treatment F11 F12 F11 F12

T11 -1.233 0.751 -0.029 -0.030
T12 -16.152 -1.165 0.003 -0.024
T13 -16.167 -0.860 0.005 -0.024

Stage 2 Treatment-free
ψ20 ψ21

Treatment F21 F22 F23 F24 F21 F22 F23 F24

T21 27.332 27.803 18.660 20.564 -0.095 -0.094 -0.079 -0.080
T22 8.800 26.286 5.515 18.145 -0.054 -0.092 -0.048 -0.074
T23 7.108 24.868 4.988 17.922 -0.050 -0.090 -0.049 -0.075



Web-based Supplementary Materials for “Model
assessment in dynamic treatment regimen estimation via
double robustness” by Michael P. Wallace, Erica E. M.

Moodie and David A. Stephens.

1 G-estimation: theoretical details

We first present the step-by-step approach to implementation of the G-estimation method,
where we introduce a subscript j notation to indicate the jth (of K) treatment stage, and
hj denotes all information available immediately prior to the jth treatment decision.

1. Propose a model for the blip function γj(hj, aj;ψj), and define a vector-valued function
Sj(aj) (with dimension equal to that of ψj) chosen to contain variables thought to
interact with treatment to effect a difference in expected outcome. The optimal form of
Sj(aj), though known (Robins, 2004), requires additional assumptions and so typically
∂
∂ψ
γj is used.

2. Define the function Gj(ψ) = y − γj(hj, aj;ψj) +
K∑

k=j+1

γ(hk, a
opt
k ;ψk) − γ(hk, ak;ψk),

where aoptk is the optimal stage k treatment decision.

3. Propose a model for E[Gj(ψ)|Hj = hj; βj] and use the data to estimate its parameters
in terms of ψj. This is our treatment-free outcome model. For example fj(hj; βj) may
be a posited linear model for E[Gj(ψ)|Hj = hj; βj] from which ordinary least squares

estimates β̂j(ψj) may be determined up to a parameter.

4. Propose a treatment model E[Aj|Hj = hj;α]; use the data to obtain estimates α̂j.

5. Construct the function

Uj(ψj, βj, αj) = (Gj(ψj)− E[Gj(ψj)|Hj = hj; βj])(Sj(aj)− E[Sj(aj)|Hj = hj;αj])

and by using parameter estimates from the previous steps estimate the blip parameters

ψj by solving the system of estimating equations 0 =
n∑
i=1

Uj(ψj, β̂j(ψj), α̂j).

1.1 A more friendly presentation

While G-estimation is a powerful tool for DTR identification, its typical presentation can
prove intimidating, particularly to those without extensive statistical and computational ex-
perience. Although simpler methods such as Q-learning require little more than familiarity
with standard regression techniques, G-estimation introduces considerable pre-computation,

1



requires estimating the β parameters in terms of other unknowns, and familiarity with esti-
mating equation techniques. We take a moment aside from the primary focus of this paper to
offer a more accessible presentation of G-estimation implementation when the blip function
is linear. Our approach extends to the multi-stage setting, but for simplicity we introduce
in the single-stage case. In this context we assume our outcome Y can be modeled as

E[Y |X; β, ψ] = Xββ + AXψψ

where the treatment-free model f(Xββ) is now assumed linear in β. Here, our blip is AXψψ,
and so for G-estimation as above we define G = Y − AXψψ.

If treatment A depends on Xα ∈ X then we can write the final estimating equation step
of G-estimation as

0 =
n∑
i=1

Xψ
i (Ai − E[Ai|Xα

i ; α̂])(Yi − AiXψ
i ψ −X

β
i β̂(ψ))

where estimates α̂ are obtained from the treatment model (such as via logistic regression)
and estimates β̂(ψ) are typically obtained via ordinary least squares. That is, we obtain
β̂(ψ) by solving

0 =
n∑
i=1

Xβ
i (Yi − AiXψ

i ψ −X
β
i β)

for β in terms of ψ. We can, however, make an aesthetic tweak by instead writing these two
steps as a single set of equations

0 =
n∑
i=1

(
Xβ
i

Xψ
i (Ai − E[Ai|Xα

i ; α̂])

)
(Yi − AiXψ

i ψ −X
β
i β) (1)

and if we convert this to matrix form by defining Xδ = (Xβ, AXψ), Xw = (Xβ, Xψ(A −
E[A|Xα; α̂]) and δ = (β, ψ) then we can write (1) as

0 = (Xw)T (Y −Xδδ)

from which estimates of δ can be obtained via

δ̂ = ((Xw)TXδ)−1(Xw)TY.

The required ψ̂ terms can then be simply ‘read off’ from the vector δ̂ and used for regimen
estimation in the usual way.

This approach therefore allows G-estimation to be carried out by standard matrix equa-
tions rather than via the more complex implications of its standard presentation. As such,
the need for specialized software is greatly reduced, with G-estimation possible with only a
few lines of programming code and little specialized knowledge. Furthermore, this approach
can be extended to the continuous treatment (as per Rich et al. 2014, for example) and
multi-stage environments in a straightforward manner.

1.2 Variance for recursive G-estimation

Moodie (2009) showed the variance of the optimal decision rule parameters ψ̂ adjusting for
the plug-in estimates of nuisance parameters in the estimating function Uj{ψj, β̂j, α̂j} is
given by

Σψ = E

{(E [ ∂
∂ψ

Uadj{ψ, β∗, α∗}
])−1

Uadj{ψ, β∗, α∗}

}⊗2 ,
2



where α∗ and β∗ are the limiting values of the nuisance parameters for the treatment model
and treatment-free model, respectively, and

Uadj(ψ) = U{ψ, β∗, α∗}+ E

[
∂

∂β
U{ψ, β∗, α∗}

](
β̂ − β∗

)
+E

[
∂

∂α
U{ψ, β∗, α∗}

]
(α̂− α∗) + op(1).

Note that this variance calculation does not assume correct specification of either of the
two nuisance models, but Robins (2004) has shown that the G-estimator is semiparametric
efficient when both are correctly specified, and so this variance must attain its minimum
under correct specification of the nuisance models.

Let α], β] denote the (“true”) limiting values of the nuisance models when they are
correctly specified. We can then re-write Uadj(ψ) as follows (ignoring the op(1) term):

Uadj(ψ) = U{ψ, β∗, α∗}+ E

[
∂

∂β
U{ψ, β∗, α∗}

](
β̂ − β∗

)
+E

[
∂

∂α
U{ψ, β∗, α∗}

]
(α̂− α∗)

= U{ψ, β∗, α∗}+ E

[
∂

∂β
U{ψ, β∗, α∗}

](
β̂ ± β] − β∗

)
+E

[
∂

∂α
U{ψ, β∗, α∗}

]
(α̂± α] − α∗)

= U{ψ, β∗, α∗}+ E

[
∂

∂β
U{ψ, β∗, α∗}

]
(β̂ − β])

+E

[
∂

∂α
U{ψ, β∗, α∗}

]
(α̂− α])

+E

[
∂

∂β
U{ψ, β∗, α∗}

]
(β] − β∗)

+E

[
∂

∂α
U{ψ, β∗, α∗}

]
(α] − α∗).

It can then be seen that the variance inflation due to incorrect specification of the treat-
ment model is a function of E

[
∂
∂α
U{ψ, β∗, α∗}

]
(α]−α∗) and similarly, variance inflation due

to incorrect specification of the treatment-free model is a function of E
[
∂
∂β
U{ψ, β∗, α∗}

]
(β]−

β∗). Of course for consistency of the DTR parameters, at least one model must be correctly
specified so that either α] = α∗ or β] = β∗ and the corresponding variance-increasing term
is eliminated from Uadj(ψ).

2 Supplementary figure and tables

We also include some additional results mentioned in the associated paper. In Figure 1 we
see that when the correct treatment model is specified the blip parameter estimates obtained
by using two different treatment-free models are visibly more correlated than when the
treatment model is mis-specified. In Tables 1 and 2, meanwhile, we present some analogous
results to those discussed in Section 3.1 of the paper for some smaller sample sizes.

3
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Figure 1: Contrasting bootstrapped G-estimation parameter estimates of ψ0 for each pair
of treatment-free models (F ) while keeping each treatment model fixed (T ) as discussed in
Section 3.1 of the associated paper.
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Table 1: Simulation results as per the setup in Section 3.1 with varying sample sizes. Num-
bers indicate the proportion of simulation runs where the correct model was selected based
on which resulted in the smallest standard deviation in resulting estimates of the treatment
effect (TE) and blip parameters (ψ0 and ψ1) when the given model was held fixed. First
six rows correspond to results from 10,000 simulated datasets, bottom two rows (TE (BS))
correspond to results from analysis of 200 bootstrap samples across 1,000 simulated datasets.

Sample size
Method Model 100 500 1,000

TE Treatment 0.560 0.590 0.588
TE Treatment-free 0.874 0.972 0.995
ψ0 Treatment 0.821 0.943 0.989
ψ0 Treatment-free 0.835 0.940 0.983
ψ1 Treatment 0.810 0.954 0.990
ψ1 Treatment-free 0.856 0.946 0.986

TE (BS) Treatment 0.752 0.755 0.748
TE (BS) Treatment-free 0.977 0.999 0.999

Table 2: Simulation results as per the setup in Section 3.1 with varying sample sizes. Num-
bers indicate the proportion of 1,000 simulation runs where a one-way analysis of variance
on bootstrapped treatment effect estimates (while keeping the corresponding model fixed)
smaller than 0.05.

Sample size
Model 100 500 1,000

T1 0.147 0.055 0.045
T2 0.487 0.877 0.981
T3 0.220 0.128 0.104
F1 0.006 0.000 0.000
F2 0.264 0.554 0.817
F3 0.568 0.889 0.991
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3 Simulated example: degrees of model mis-specification

An interesting issue in the context of model selection is whether some candidate models
can be viewed as ‘more mis-specified’ than others. Some basic intuition would, of course,
suggest so. If we suppose a true treatment model P(A = 1|X) = X, for example, then it
would seem reasonable to consider the model P(A = 1|X) = X1.1 as being ‘more correct’
(or closer to the truth) than, say, the model P(A = 1|X) = X2. In general, however, things
are far less clear-cut. We take this opportunity to present some related observations in the
context of doubly-robust model assessment.

We simulate datasets (size n = 1, 000) as follows:

• X ∼ U(0, 1);

• A ∈ {0, 1} with P(A = 1|X) = x;

• Y ∼ N(1 + x+ x3 + a(ψ0 + ψ1x), 0.5) with ψ0 = ψ1 = 1;

and conduct G-estimation analyses using five different treatment and treatment-free models:

• Treatment models: P(A = 1|X = x) = xt for t = 0, 1, 2, 3, 4; and

• Treatment-free models: f(x;β) = β0 + β1x+ 1f 6=1β2x
f for f = 1, 2, 3, 4, 5,

where 1f 6=1 is the indicator function taking value 0 when f = 1 and 1 otherwise. As such, the
treatment model is correct when t = 1 and the treatment-free model is correct when f = 3.
Intuitively we might expect the treatment models to perform worse as t moves further from 1,
and for the treatment-free models to perform worse as f moves further from 3. The analyses
were carried out across 10, 000 simulated datasets, and within-model standard deviations of
parameter estimates are summarized (in analogous fashion to Figure 1 in the main article)
in Figure 2.

For both parameters, and for both the treatment and treatment-free models, we see our
intuition is reflected in the results. When the treatment model is correctly specified the
parameter estimates resulting from the five different treatment-free model analyses exhibit
the lowest standard deviation, and vice-versa for the correct treatment-free model. We note,
however, that while the treatment model results give a fairly clear indication of the ‘best’
model, the treatment-free model results exhibit considerable overlap. This is reflected in
how often the correct model is identified if we look, for each simulation, at which models
return the lowest standard deviation of estimates. The correct treatment model is estimated
for both stages over 97% of the time, while the correct treatment-free model is identified
for both stages in around 40% of simulations. This latter result, however, should be set in
the context of the other possibilities: the next ‘most likely’ treatment-free model (f(X) =
β0 + β1X + β2X

2) was indicated only 27% of the time and so the correct choice is still clear.
How, then, do these observations translate to the results of the analyses themselves?

While in practice (and thus the primary purpose of this paper) we do not know what the
true parameter values are, we can in this example assess model performance. In Table 3
we summarize the mean parameter estimates for each pair of treatment and treatment-free
model analyses. While the least biased estimates arise when at least one of the models
is correctly specified, there is some association between how ‘wrong’ our models are (both
intuitively and in terms of the standard deviation results presented in Figure 2) and the bias
in the resulting estimates.
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Figure 2: Standard deviations of sets of bootstrapped parameter estimates via G-estimation
for each of 10, 000 simulated datasets where one model is fixed and the other varies. Treat-
ment models: P(A = 1|X = x) = xt. Treatment-free models: f(X;β) = β0 + β1X +
1f 6=1β2X

f .

Table 3: Mean blip parameter estimates from G-estimation analysis of 10,000 simulated
datasets with different combinations of treatment (P(A = 1|X = x) = xt) and treatment-
free (f(X) = β0 + β1X + 1f 6=1β2X

f ) models. Bold rows/columns indicate correct models.

Treatment-free
ψ0 ψ1

Treatment f = 1 f = 2 f = 3 f = 4 f = 5 f = 1 f = 2 f = 3 f = 4 f = 5
t = 0 0.695 0.997 0.997 0.980 0.959 1.607 1.003 1.003 1.004 1.004
t = 1 0.996 0.997 0.997 0.997 0.997 1.005 1.003 1.003 1.004 1.004
t = 2 0.967 1.019 0.998 0.981 0.970 0.961 0.959 1.002 1.031 1.050
t = 3 0.932 1.028 0.997 0.974 0.956 0.975 0.937 1.003 1.048 1.078
t = 4 0.908 1.031 0.997 0.970 0.949 0.999 0.926 1.003 1.058 1.097
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