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Abstract

Blood’s major function aside from being a source of immune cells, is to supply oxygen, nutrients
and to provide a sink for metabolic wastes. Tissues are reliant on a sufficient blood flow to maintain
their viability, and if the blood flow is reduced or interrupted, tissues ultimately die at a point
known as the ischemic limit. Oxygen is a major limiting factor of tissue survival during ischemia:
it is an essential component of the oxidative phosphorylation that produces energy for cells. It is
not uncommon to find clinical situations in which oxygen concentration fails to meet metabolic
requirements, and even a mild ischemia e.g. due to diabetes can impair wound healing. A more
severe and prolonged ischemia due to a trauma or a surgery may result in much more extensive

damage.

Many different technologies have been reported to address clinical issues related to oxygen
insufficiency such as hyperbaric oxygen therapy (HOBT), perfluorocarbon technologies,
hemoglobin-based carriers, peroxides, etc. Amongst all of these technologies, peroxides, e.g.
hydrogen peroxide, sodium percarbonate and calcium peroxide have the particular advantage of
producing oxygen in situ. Indeed, while it would require several hundreds of grams of red blood
cells, several kilograms of perfluorocarbons or plasma to deliver one liter of pure oxygen gas, less
than gram of peroxides would be required. However, peroxides have an inherent toxicity that makes
them of limited value for cell and tissue applications wherein direct of close or direct contact with

tissues required.



This thesis investigates the potential benefits of a calcium peroxide-based biomaterial previously
developed in our laboratory to deliver oxygen locally. The rapid decomposition of the compound,
that forms both oxygen and hydrogen peroxide, is controlled using hydrophobic polymers.
Inorganic catalysis transforms the toxic hydrogen peroxide byproduct into water and oxygen thus
reducing the inherent toxicity of the compound. The material was processed into different forms
and tested in topical, subcutaneous and as an in vitro cell support or self-sustaining scaffold. This
is important because common issues resulting in insufficient or damaged vascularization such as
ageing, diabetes, radiotherapy, trauma, etc., are not easily treatable and give rise to significant
reduction in quality of life and increase healthcare costs. Indeed, tissue necrosis may occur at the
center of large ischemic wounds and spread to the surrounding healthy tissue causing significant
tissue loss. An oxygen releasing wound dressing was designed and used as a patch to prevent

necrosis and promote healing in large ischemic wounds.

Similarly, skin flaps are an important approach to reconstructive wound repairs that when
performed, damage a part of the skin’s vascularization and can lead to ischemia if not sufficiently
perfused. Outcomes of these procedures are worsened by common comorbidities like diabetes,
radiotherapy, etc., and often result in necrosis. To date the in vivo delivery of oxygen to prevent
ischemic damages has hardly been studied. A subcutaneous implant generating oxygen was
developed to determine if the sub-dermal oxygen delivery could significantly prevent ischemic

necrosis and to study the limitation of oxygen delivery in a rat ischemic skin flap model.

Absence of a blood flow can also be an issue in tissue engineered constructs, whether it is in vitro
or upon implantation, as they do not possess intrinsic functioning vascularization. For this reason,

the size of the constructs and their application are limited. Oxygen releasing microparticles were
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formed so that they could be incorporated to engineered constructs and mimic blood’s ability to

deliver oxygen locally in order to support the size increase of tissue engineered constructs.

In this thesis we provide compelling proofs of concept that oxygen delivery with biomaterials can
augment conventional treatments and improve tissues and cells survival. These materials are a first

step towards building systems able to mimic blood functions.



Résumé

En plus d’étre une source de cellules immunitaires, le sang a pour fonction d’apporter de I’oxygéne,
des nutriments et est un puits pour les déchets métaboliques. Les tissus dépendent d'un flux sanguin
suffisant pour maintenir leur viabilité et, si le flux sanguin est réduit ou interrompu, les tissus
meurent a un point appelé limite ischémique. L'oxygeéne est un facteur limitant majeur de la survie
des tissus pendant I’ischémie : c'est un composant essentiel de la phosphorylation oxydative qui
produit de I'énergie pour les cellules. Il n’est pas rare de trouver des situations cliniques dans
lesquelles la concentration en oxygeéne ne répond pas aux besoins métaboliques, et méme une
Iégere ischémie, par exemple en raison du diabéte, peut nuire a la guérison des plaies. Une ischémie
plus grave et prolongée due a un traumatisme ou a une intervention chirurgicale peut entrainer des

dommages beaucoup plus importants.

De nombreuses technologies différentes ont été rapportées pour traiter les problémes cliniques liés
a l'insuffisance en oxygeéne, tels que l'oxygénothérapie hyperbare (HOBT), les technologies
perfluorocarbonées, les supports a base d'hémoglobine, les peroxydes, etc. Parmi toutes ces
technologies, les peroxydes, comme le peroxyde d'hydrogéne, le percarbonate de sodium et le
peroxyde de calcium présentent I'avantage particulier de produire de I'oxygeéne in situ. En effet,
alors qu'il faudrait plusieurs centaines de grammes de globules rouges, plusieurs kilogrammes de
perfluorocarbones ou de plasma pour délivrer un litre d'oxygene pur, il faudrait moins d'un gramme
de peroxydes. Cependant, les peroxydes ont une toxicité inhérente qui les rend d’une valeur limitée

pour les applications de cellules et de tissus nécessitant un contact direct ou étroit avec les tissus.



Cette these étudie les avantages potentiels d'un biomatériau & base de peroxyde de calcium mis au
point dans notre laboratoire pour délivrer de I'oxygene localement. La décomposition rapide du
composé, qui forme a la fois de I'oxygene et du peroxyde d'hydrogéne, est contrblée a l'aide de
polyméres hydrophobes. La catalyse inorganique transforme le sous-produit toxique, le peroxyde
d'hydrogéne, en eau et en oxygene, réduisant ainsi la toxicité inhérente du composé. Le matériau a
été traité sous différentes formes et testé dans des environnements topiques et sous-cutanés ainsi
que sur un support cellulaire in vitro pour un échafaudage autonome. Ceci est important car les
problémes courants résultant d'une vascularisation insuffisante ou endommagée, tels que le
vieillissement, le diabete, la radiothérapie, les traumatismes, etc., ne peuvent pas étre traités
facilement et entrainent une réduction significative de la qualité de vie et augmentent les codts de
soins de santé. En effet, une nécrose tissulaire peut se produire au centre de grandes plaies
ischémiques et se propager aux tissus sains environnants, entrainant une perte importante de tissu.
Un pansement libérant de I'oxygéne a été congu et utilisé comme patch pour prévenir la nécrose et

favoriser la guérison des grosses plaies ischémiques.

De méme, les lambeaux cutanés constituent une approche importante des réparations de plaies
reconstructives qui, lorsqu’elles sont effectuées, endommagent une partie de la vascularisation de
la peau et peuvent conduire a une ischémie s’ils ne sont pas suffisamment perfusés. Les
conséquences de ces procédures sont aggravees par des comorbidités courantes telles que le
diabéte, la radiothérapie, etc., et aboutissent souvent & une nécrose. A ce jour, I'apport in vivo
d'oxygéne pour prévenir les dommages ischémiques n'a pratiquement pas été étudié. Un implant
sous-cutané générant de I'oxygéne a été développé pour déterminer si l'apport d'oxygéne sous-
cutané pourrait prévenir de maniere significative la nécrose ischémique et étudier la limitation de

I'apport d'oxygéne dans un modele de lambeau cutané ischémique de rat.
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L'absence de circulation sanguine peut également étre un probléme dans les constructions
d’ingénierie tissulaire, a la fois in vitro ou lors de I'implantation, car elles ne possedent pas de
vascularisation. Pour cette raison, la taille des constructions et leur application sont limitées. Des
microparticules libérant de 1’oxygeéne ont été fabriquées pour étre incorporées dans des
constructions d’ingénierie tissulaire et imiter la capacité du sang a libérer de I’oxygéne localement

afin de supporter leur augmentation de la taille.

Dans cette thése, nous fournissons des preuves convaincantes que 1’apport d’oxygeéne avec des
biomatériaux peut augmenter les traitements conventionnels et améliorer la survie des tissus et des
cellules. Ces matériaux constituent un premier pas vers la construction de systémes capables

d'imiter les fonctions sanguines.
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Fibroblast growth factor
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Hydrogen peroxide
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Bicarbonate ions
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mMRNA
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Human umbilical vein endothelial cell
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Sodium

Nicotinamide adenine dinucleotide
Sodium bicarbonate
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Oxygen releasing microparticles
Platelet derived growth factor
Inorganic phosphate
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Reactive oxygen species
Transforming growth factor
Tumor necrosis factor

Vascular endothelial growth factor
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Chapter 1 - Introduction

1 Ischemia

Ischemia is a restriction of blood supply to tissues causing a shortage of oxygen and nutrients that
are needed for cellular metabolism.[1] It generally is caused by problems with blood vessels, and
results in damage or dysfunction of tissue. The reduced blood supply will fail to sustain delivery
of oxygen and nutrients necessary to meet metabolic requirements, leading to an inadequate
removal of metabolic wastes. Ischemia can be partial (reduced blood flow in the tissues) or total
(no blood flow). Reduction of blood flow can have different causes such as atherosclerosis or
vasoconstriction and will lead to partial ischemia, which in turn will results in chronic issues
(chronic ischemia) like non-healing wounds, chronic pain, etc. On the other hand, the sudden total
occlusion of a blood vessel due to thrombosis or embolism will result in acute problems (acute
ischemia) such as stroke or necrosis of tissues. It is not uncommon that chronic ischemia due to a
precondition like atherosclerosis results thrombosis and lead to acute ischemia. If impaired blood
flow lasts long enough, it triggers the ischemic cascade that will eventually lead to tissue and organ
malfunction or damage. This chapter will focus on the causes of ischemia, the normal the metabolic
mechanisms that are be involved in ischemia and how these processes are impaired, leading

eventually to tissue malfunction and ultimately tissue death.

1.1 Cause of ischemia
1.1.a Atherosclerosis
Atherosclerosis is a disease in which the buildup of plaque narrows the inside of an artery. Because
it develops slowly over time, symptoms are rarely apparent. [2] Depending on which arteries and
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organs are affected it can result in coronary artery disease, stroke, peripheral artery disease, or
kidney problems. Plaque buildup is most often found where there is a decreased shear stress or
turbulence (bifurcations, bends) .[2] Plaque accumulation results in a swelling of the inner wall of
the artery, narrowing the blood flow. It is composed of mostly debris, lipids, calcium, variable
amount of fibrous connective tissues and inflammatory cells [3] that have taken up oxidized low-
density lipoprotein. Activated macrophages release chemoattractants which in turn recruit more
macrophage and smooth muscle cells as well as lymphocytes and other inflammatory cells. This
accumulation alters the endothelial wall and lead to platelet deposition and form a fibrous cap.
Platelet-derived growth factor is released by the platelets, which participates to the recruitment of
more plaque precursors. This cycle repeats and progressively leads to a large buildup of plague and
narrows blood vessels even further. Inflammation increases activity of matrix metalloproteinases
and other enzymes weakening the fibrous cap, leading to plaque instability. Rupture may occur

leading to plaque hemorrhage and thrombus formation. [2]

1.1.b Arterial thrombosis
Aurterial thrombosis refers to a blood clot that develops in an artery and obstructs or stops the blood
flow. It usually occurs after degradation or rupture of an atherosclerotic plaque, forming a platelet-
mediated thrombus and can cause ischemic injuries. It can have devastating consequences when
affecting major organs, such as cardiac ischemia and stroke, which are the most severe clinical
manifestations of atherothrombosis. Ischemia can arise slowly from the progression of

atherosclerotic disease or acutely in the case of vascular or intracardiac thromboembolization. [4]
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1.1.c Arterial embolism
Arterial embolism is a sudden interruption of blood flow due to an embolus adhering to the wall of
an artery blocking the blood flow. It shares many similarities with thrombosis but is a unique
condition. Unlike thrombosis, that occurs when a thrombus develops and obstructs a blood vessel,
embolism occurs when a piece of a blood clot, foreign object, or other substance obstructs a blood
vessel.[5] Thromboembolism the major type of embolus being a blood clot and is the major cause

of infarction.

1.1.d Vasculitis
Vasculitis is a group of inflammatory disorders that destroy blood vessels by inflammation. Both
arteries and veins are affected. The vascular inflammation may cause the narrowing of the vessels

or occlusion and leads to ischemia. It may also result in vessel rupture and hemorrhage.[6]

1.2 Impaired blood flow and organs
Organs and tissues oxygen consumption varies depending on their size, cell density, etc. In arterial
blood oxygen concentration is usually 104 to 146 pmol/L (10 to 15% dissolved oxygen, 70 to a
100mmHgQ).[7] The equilibrium between the delivery and the consumption results in a wide variety
of physoxic oxygen levels.[8] When the blood flow is disrupted and results in ischemia of tissues
or a whole organ, and the rate of oxygen delivery is lower than that of consumption, the oxygen

depletion results in hypoxia.

Sustained or chronic changes in the environment induce changes in the metabolic machinery.
Chronic heart ischemia exhibit few or no symptoms. The heart adapts to reduced oxygen delivery

to prevent reversible damage by a mechanism known as hibernating myocardium resulting in a
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switch from fat to glucose metabolism and an augmented glycogen storage. In the case of peripheral
arterial disease and chronic limb ischemia the symptoms varies, depending on the severity of the
ischemia, from no symptoms or claudication to ischemic ulceration and necrosis. [9] However,
tissues can adapt by slowly creating new vessels as hypoxic conditions are a stimulus for
angiogenesis.[10]

In case of acute ischemia, myocardial blood flow is insufficient to match the metabolic activities
of myocardial cells, the imbalance between myocardial oxygen supply and consumption results in
a rapid hypoxia of myocardial cells and causes myocardial ischemia.[11] Chest pain is the most
common symptom of acute myocardial infarction and is often described as a sensation of tightness,
pressure, or squeezing, principally due to cardiomyocytes contracture caused by an overload of
calcium in the cells, that will eventually result in necrosis.[12] The brain consumes a massive
amount of oxygen and glucose, and an ischemic episode that would result in the reduction of about
50% of its blood flow could result in a loss of energy production, followed by a calcium and
glutamate overload inside the cells and in the case and ultimately tissue necrosis.[13] Acute limb
ischemia also follow a similar pathway of loss of energy production, cells overload, swelling and

ultimately death. [14]

2 Cellular injury
The decrease of oxygen availability and metabolic substrates decreases the energy available to the
cells and in turn leads to reversible or non-reversible cell injury. The extent of this injury is

determined by the severity of ischemia, its duration, the metabolic and physical changes, etc.
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2.1 Biological processes
2.1.a Energy production

In animal cells and non-photosynthetic cells, adenosine triphosphate (ATP) is generated mainly by
aerobic oxidation, which consist in glucose and oxygen are metabolization to form carbon dioxide
(CO2) and water (H20). Glycolysis is the initial steps in the oxidation of glucose and occur in the
cytosol in both eukaryotes and prokaryotes and does not require oxygen (Equation 1-1). It results
in the production of ATP and pyruvic acid that in turns serve the production of acetyl CoA
(Equation 1-2). Acetyl CoA is then used with oxygen in the Krebs cycle to further produce ATP
(Equation 1-3). Products of Krebs cycle are finally used in the electron transport chain, the final
steps, which also require oxygen and generate most of the ATP (Equation 1-4). In eukaryotes, this
later stage of aerobic oxidation occurs in mitochondria (Figure 1-1).
Equation 1-1: Glycolysis: 2 ADP + Glucose — 2 Pyruvic Acid + 4H* + 4 ATP
Equation 1-2: Acetyl CoA formation: 2 Pyruvic Acid + 2 CoA — 2 Acetyl CoA + 2 CO, + 2 H*
Equation 1-3: Krebs Cycle: 2 PAcetyl CoA + 3 0, —» 2 ATP + 4 CO, + 6 H*
Equation 1-4: Electron Transport System: 12 H* + 3 0, - 32 ATP + 4 H,0

Equation 1-5: Overall reaction: Glucose + 6 0, —» 6 CO, + 6 H,0 + 36 ATP.
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2.1.b lonic exchanges across cell membrane
Cell membranes are composed of a phospholipid bilayer with protein, glycoproteins, glycolipids,
carbohydrates, etc., embedded in the membrane or tightly adsorbed to the surface of the membrane.

The hydrophobic ends of the phospholipid molecules are directed toward the middle of the
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membrane and the hydrophilic ends toward the outside of the membrane forming the inside and
outside of the cells. [16] Diffusion is the process by which gases, liquids and dissolved molecules
or ions tend to blend because of their spontaneous motion caused by thermal agitation. All diffusing
substances tends to move from regions of higher concentration to regions of lower concentration
until an uniform distribution appear at equilibrium. [17]

Cell membranes have a fixed negative charge on their outer and inner surfaces at physiological pH
because of acidic nature of the phospholipids of the bilayer and the proteins it contains as their
isoelectric point is acidic. The number of ionized charge groups is affected by pH and ionic
strength, and a too low or high binding of proton (H*) or cation on the outer surface can result in a

depolarization of hyperpolarization of the membrane.

A selective and regulated migration of ions and molecules across the membrane is essential for
cellular homeostasis. Maintenance of cell pH, volume, intake of nutrients and waste removal

depends on membrane transport.

The hydrophobicity of the phospholipid bilayer turns the cell membrane into an impermeable
barrier that excludes the passage of hydrophilic ions (anion, cation) or non-electrolyte molecules.
Their selective passage across the barrier, is mediated through membrane transport proteins located
in the bilayer. Transport proteins subdivided depending on their functions into channels, pumps
and carriers depending on the different mechanisms by which they mediate ions and non-
electrolytes transport [18]

Two types of transport mechanism can be distinguished: passive transport is defined as movement
of a solute from a region of high electrochemical potential on one side of the cell membrane to a

region of lower electrochemical potential on the opposite side. Active transport is defined as
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movement of a solute from a region of low electrochemical potential or concentration on one side
of the cell membrane to a region of higher electrochemical potential or concentration on the
opposite side, thus transferring ions or non-electrolytes across the membrane in an opposite
direction to the prevailing electrical gradient and/or chemical concentration gradients. To perform
the work, active transport mechanisms require energy through ATP hydrolysis.

Amongst active transporter two class can be distinguished: primary active transport, like ion
translocating ATPases or pumps, is directly coupled to ATP hydrolysis and use the energy to form
an ion electrochemical potential difference. Secondary active transport mechanisms, like
cotransporters and counter-transporters, are indirectly coupled to ATP hydrolysis and transfer the
energy from one solute electrochemical potential difference to the formation of a second solute
electrochemical potential difference.

In normal condition, the electrochemical gradient is orientated from the outside of a cell towards
the inside as the extracellular space possesses a higher electrochemical potential than the inside

(Table 1-1)

Table 1-1: Summary of the lon Distributions in Most Types of Cells. Reproduced and modified

from Sperelakis et al (2012) [16]

lon Extracellular Intracellular
Distribution (mM) Distribution (mM)
Na+ 145 15
Cl- 100 52
K* 4.5 150
Ca?t 1.8 0.0001
H* 0.0001 0.0002

a Assuming CI™ is passively distributed and resting En is =80 mV. The extracellular H*

concentration is given for pH 7; it would be 40 nM at pH 7.4.
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There are three main types of ATP-driven ion pumps: The F-type, the V-type and the P-type.
F-type ion pumps are found in chloroplasts and bacteria, these proteins seem to function
exclusively to synthesize ATP from adenosine diphosphate (ADP) and inorganic phosphate (Pi).
V-type are structurally similar to F-type pumps and actively transport H* using ATP hydrolysis,
thereby coupling H* transport to ATP hydrolysis or synthesis.

P-type ATPases are a superfamily widely distributed throughout the plant and animal kingdoms,
and they catalyze the transport of a wide variety of cations, heavy metals, and phospholipids. They

are critical to maintain cell viability. [19]

Proton exchanges

The distribution of H* cations between the extracellular and intracellular space is influenced by the
negative membrane potential, which tends to cause intracellular H* accumulation and acidification
of the cell due to a number of mechanisms. H* ions alone can only enter by protein-mediated
membrane transport because the phospholipid membrane is totally impermeable to H*. [20]
Virtually all of the H™ ions within a cell are buffered by reversible binding to weak acids and bases,
resulting in a low free H" ion activity. [21]

If H" ions were passively equilibrated across the cell membrane, the intracellular pH would be
more than one pH unit lower than the extracellular pH. However, the extracellular pH remains
relatively constant near 7.4, and the intracellular pH in a resting cell is about 7.2. This difference
between the cellular and extracellular space indicates that H* ions actively equilibrated across
membranes. In intact cells, the cellular H* concentration remains low because H* is transported out
against the inward-directed electrochemical gradient. Several membrane transport mechanisms and

buffer systems contribute to the decrease in the intracellular H* concentration.
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Amongst the many proteins at the surface membrane of cells, several are dedicated to the active
transport of acids and bases across the membrane. Extremely important to cellular pH regulation,
they have been extensively studied and have been divided into five groups: (1) direct H" exchange
with another cation; (2) those that move bicarbonate ions (HCO3") and carbonates ions (CO3*");
(3) H™-ATPases; (4) anionic weak base and sodium (Na*) cotransporters; (5) anionic weak bases

and chlorine ions (CI7) exchangers.

The sodium-proton exchanger is the classical pH-regulating transport system present in most cell
types. This exchanger responds to cellular acidification. The general scheme is that the set point
for activation of the sodium-proton exchanger is close to normal internal pH of 7.2, implying that
acidification of the cell activates H™ extrusion in exchange for the influx of one Na*. This activation
ensures a normalization of internal pH.

Amongst the other pH-regulating transport systems, the sodium/bicarbonate cotransporters (NBCs)
are the most important. The entry of bicarbonate shifts the CO2/bicarbonate equilibrium decreases
H* concentration. H" efflux from the cell could also be mediated by lactate/H" cotransporters

(monocarboxylate transporter isoforms).

Some organellar compartments maintain their functions by having a different pH than the pHi. For
intracellular organelles like endosomes, lysosomes and storage granules, maintaining an internal

pH of 5-6 is essential for this function.

ATP production is the main role of mitochondria. It requires a H* gradient across the inner
mitochondrial membrane: the electron transport chain allows to bring H* from mitochondria to the

cytoplasm across the inner mitochondrial membrane. This H* extrusion establishes a H* gradient
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that renders mitochondria alkaline when compared to the cytoplasm (Intramitochondrial pH varies
between 7.5 and 8.0). Then a passive H* influx from the cytoplasm into mitochondria occurs
through a membrane-bound ATPase that produces ATP. [20] To achieve its purpose, mitochondria,
are using different H* pump (Figure 1-2):

Complex I (Ubiquinone oxidoreductase or NADH dehydrogenase), in eukaryotes, is located in the
inner mitochondrial membrane and it is the entry point of most electrons involved in the respiratory
chain. Itisa H" pump driven by electron transport. It oxidizes NADH generated by the Krebs cycle
and catalyzes the transfer of electrons to coenzyme Q10 (CoQ10). As this reaction and the electron
transfer occur, the resulting electron current powers an active extrusion of H* from the
mitochondria. [22, 23]

Complex 11l (Cytochrome bcl or Coenzyme Q) is the second enzyme in the mitochondrial
respiratory chain that couples the electron transfer from the coenzyme Q10 from Complex | to
cytochrome C. The electron transfer from this reaction drives H* extrusion from the mitochondria.
[23]

Complex 1V (Cytochrome C oxidase), is the terminal enzyme of the respiratory chain reduces O>
to H20 using the electron transport chain. In the process, it translocates H* across the membrane.
[23]

ATP synthase is an enzyme that couples the electrochemical gradient created by the difference H*
between the inner membrane space of the mitochondria and the intermembrane space of a cell to

drive synthesis ATP from ADP and Pi.
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Sodium exchanges

Sodium channels are highly selective transporters of sodium ions across cell membranes, working
by encapsulation of the sodium ion in a large molecule’s cavity.[25] They play a major role in in

many different physiological processes ranging from locomotion to cognition.

The sodium-proton (Na*/H*) exchanger (or antiporter) is a membrane protein that transports Na*
into the cell, and H* out of the cell or organelles.[26] They are pH dependent and help to regulate
intracellular pH, sodium levels, and cell volume.[27] Their dysfunction is associated with a number
of different diseases, and they are well-established drug targets.[28, 29] Na*/H* exchanger will
bind Na* in the extracellular space and exchange it against a H* from the intracellular space through
a series of conformational changes for which the mechanistic steps have not reached a consensus
but would consist in a conformational change induced by alkaline pH, exposing the Na* binding
site. The ion binding leads to further conformational changes resulting in the exchange of Na* and

H*.[27, 30]

Sodium-potassium (Na*/K*) exchanger is found in the plasma membrane of all animal cells and
is responsible for the active transport of Na™ and potassium (K*) across the membrane. It is
responsible for both the extrusion of Na* outside the cells against its concentration gradient, and
for the intake of K* also against its concentration gradient using ATP. (Table 1-1).[31] The pump
mechanism is decomposed into a set of six elementary and reversible reactions consisting in the
binding of ATP Na* ions by the enzyme, ATP hydrolysis inside the cell resulting in the enzyme
phosphorylation, followed by a conformational change and the extrusion of the Na* ions and their
dissociation. The subsequent binding of K* ions outside the cells induce a dephosphorylation

resulting in a conformational change and the binding of ATP and the intake of the K* ions.[31, 32]
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Calcium exchanges

Calcium exchanges through the cellular membrane are governed by calcium channels, calcium

exchangers and calcium pumps.[33]

Calcium channels, as described previously, are pores that allow calcium ions (Ca?*) to flow
through cells membrane following their concentration gradient. Their opening/closing is tightly
regulated by either the membrane potential (voltage-gated) or by chemicals (ligand-gated). There
is a wide variety of Ca®* channels distributed on cells membrane and organelles and serving
different functional and regulatory purposes from cell contraction, secretion, synaptic transmission,

enzyme regulation, protein phosphorylation/dephosphorylation, and gene transcription.[33, 34]

Sodium-calcium exchanger (Na*/Ca?*) is an antiporter channel that removes calcium from cells.
It uses the energy stored as the electrochemical gradient of Na* by allowing Na* to flow down its
gradient across the plasma membrane in exchange of Ca?*. Na*/Ca?* exchanger is one of the most
important cellular mechanisms for removing Ca?*, it has a low affinity for Ca?" thus allowing a
rapid ion transport but requires large concentrations of Ca?* to be effective. Its ions movements are
reversible and determined by electrochemical forces, and the direction of the exchange determined

by intracellular concentration of Na* and Ca?".

Calcium pumps are responsible for the active transport of calcium out of the cell for the
maintenance of the Ca* electrochemical gradient across the cell membrane and plays a crucial role
in cell signaling.[35] Three types of Ca?* ATPase have been described in animal cells located in

either the cell membrane or different organelles.[36, 37]

40



A simplified reaction scheme, valid for all three Ca?* pumps, consist in two basic conformational
states of the pumps, one that have a high Ca?* affinity in the cytosol, and one with a low affinity
that releases the ion in the extracellular space. The reversible transition between the two states and
the migration of Ca2* through the membrane is based upon phosphorylation of the enzyme by
reaction with ATP Ca?* binding in the first state, and a release of inorganic phosphate after the

release of Ca®* in the second state.

2.1.c Ischemic Cascade
The ischemic cascade is the series of overlapping cellular events occurring when the blood supply
is disrupted. Although the different types of cells react differently, there is an overall common
process leading to cell death. In blood, the glucose concentration is regulated between 1.4 mmol/L
and 6.2 mmol/L [38], and oxygen concentration 104 to 146 umol/L.[7] According to the overall
reaction of ATP production, during ischemia the first limiting factor is oxygen. Without oxygen
the ATP production cycle is limited to a yield of 2 ATP for 1 glucose. In absence of a functioning
Krebs cycles, glucose is turned into lactates and the intracellular pH increases. Without ATP the
Na*/K* ATPase stop its functions leading to a Na* buildup in the cells, followed by a water influx
inside the cells causing a cell swelling (Figure 1-3). The resulting depolarization of the cell
membrane cause the Na*/Ca?* transporter to malfunction and a Ca?* accumulation inside the cells.
The high Ca?* content excites proteases [39] and triggering catabolic processes mediated by lipases
and nucleases that will degrades the cell membrane and increase its permeability, leading to further
depolarization. At the same time Ca?* will cause an increase in reactive oxygen species (ROS)
production that will also damage the cells.[40] The swelling of the cells will eventually lead to
necrosis. In addition, in this harmful environment, mitochondria’s membrane is disrupted and open

its permeability transition pore which further decrease the ATP production and the releases of
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apoptotic factors and start the apoptotic cascade.[1, 41] In neurons, the high intracellular Ca?
content causes glutamate release which in turn causes an increased calcium intake. These
alterations and thus the degree of tissue injury vary with the magnitude of the decrease in the blood

supply and with the duration of the ischemic period.

2.1.d Reperfusion injury
Reestablishing blood supply in ischemic tissues will restore oxygen and nutrient necessary to the
production of ATP and normalization of the extracellular pH. However sudden reperfusion can
have devastating consequences for cells as it triggers a cascade of events that exacerbate tissue
injury. The mechanisms underlying reperfusion injury are complex. First the reintroduced oxygen
first feeds the generation of ROS, then the intracellular pH normalization increases Na* intake
through the Na/H* exchanger, and by extension Ca2?* through the Ca?*/Na* exchanger, thus
aggravating the calcium overload and permeability transition pore opening. Following these direct
effects, reperfusion has been shown to result in endothelial dysfunction as well as a pronounced

inflammatory response, further aggravating tissue damage (Figure 1-3).[1]
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2.2 Cell death
Cellular death can occur following different types processes. Necrosis will occur after extrinsic
factors (loss of energy, toxic molecules, etc.). Apoptosis and autophagy are programmed cell death

that will be initiated by cellular signaling mechanisms (Figure 1-4).

2.2.a Apoptosis
Apoptosis is the process of programmed cell death. It occurs during development and aging, as a
mechanism to maintain cell populations in tissues, a proper development and functioning of the
immune system, embryonic development, chemical-induced cell death, etc. A dysfunction of
apoptosis is common in different conditions like neurodegenerative diseases, ischemic damage,
autoimmune disorders or cancer.[42] Apoptotic mechanisms can be divided into extrinsic pathways
(upon ligation of death receptor like tumor necrosis factor (TNF) receptors) and intrinsic pathways
(mitochondrial damage by ischemia, radiations, etc.).[43] Apoptosis will result in different
simultaneous processes of cell degradation (deoxyribonucleic acid (DNA), protein, membranes),
and will form apoptotic bodies and express of ligands for phagocytic cell receptors. During
ischemia, cells undergo different damage capable of initiating apoptosis. If ischemia is prolonged,
then necrosis occurs as the apoptotic processes are energy dependent. However, if energy

production is restored, the apoptotic cascade that was initiated may proceed.

2.2.b Autophagy
Autophagy is an important process that balances energy sources in cells during periods of nutrient
stress by self-degradation. It also serves to remove misfolded or aggregated proteins, damaged
organelles such as mitochondria, endoplasmic reticulum, etc.; or eliminates intracellular pathogens.

It is induced by starvation and is a key component of the adaptive response of cells to nutrient
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deprivation that promotes survival until nutrients become available again.[44] It will consist in the
sequestration of the target and the transport to lysosomes followed by their degradation and

utilization of end products.[45]

2.2.c Necrosis
Necrosis is an irreversible cell injury resulting in the premature death of cells in living tissue by
autolysis. It is caused by external factors, such as infection, trauma, ischemia, etc.; which result the
swelling of cells and their organelles, mitochondrial dysfunction, lack of nuclear fragmentation,

plasma membrane rupture, and release of their cellular content into the extracellular space.[46]
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Figure 1-4: The three major pathways of cell death. Cells can be directed to different programmed
cell death mechanisms depending on several factors. In the left, the apoptosis pathway is
represented with the characteristic cellular shrinkage and formation of the apoptotic bodies without
leakage of contents. In the middle, the necrotic pathway shows the cytosol and organelle swelling
and rupture of plasma membrane with subsequent leakage of cellular contents. In the right,
autophagy is illustrated with the appearance of vacuoles, the autophagosome, and its fusion with

the lysosome, which ends in organelle digestion. Reproduced from Nunes et al.[47]
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3 Rationale

The overall aim of this work is to use oxygen delivery biomaterials in different formats to address
in vivo and in vitro ischemia and avascular wounds and to evaluate their limitations.

Oxygen is crucial for survival and function of many cells. To prevent ischemia-induced necrosis
different clinical methods have been used: pneumatic compression, HBOT, angioplasty, bypasses,

drug treatments, exercises programs, etc.[9, 48]

However, during mild ischemia, with or without treatment, even if the blood flow is sufficient to
maintain cell viability it is often insufficient to sustain some basic functions like healing. Oxygen
delivery for ischemic wounds has been widely described in the literature [49] and carried out
through various methods. Hyperbaric oxygen therapy (HBOT) is a medical treatment that aim to
expose a patient for several hours at a time to an oxygenated atmosphere in a chamber at hyperbaric
pressures to increase blood oxygen content by a factor of 3.[50] First hyperbaric chambers were
conceived in 1662 and used to treat decompression sickness successfully in 1937 [51, 52], but the
use of hyperbaric oxygen only appeared in 1955. Today it is often used to help improving chronic
wound healing or free flap take after surgical reconstruction, yet to this day, to the exception of
decompression sickness, there is a lack of evidence supporting its medical use. It is a systemic and
intermittent delivery approach that relies on a functioning vasculature, and its effect on different
types of wounds have not found to be significant and are still debated [50, 51, 53-56], as well as

for skin grafting.[57]

47



3.1 Topical oxygen delivery

Topical oxygen delivery consists in increasing the amount of oxygen directly above the wound bed
and has been shown to stimulate significantly chronic wound healing in both rats and humans.[56,
58, 59] Different technologies have been developed and are commercialized: portable oxygen
chambers (O2Boot®, O2Sacral®, TWO2®) that are relatively intrusive, oxygen concentrators
(EPIFLO®, NATROX®, TransCuO2®) that are more convenient but require the wearing of an
oxygen generating source, have been shown to promote wound closure of non-healing ulcers in
patients.[60, 61] Newer oxygen pre-loaded wound dressings like Oxyband™ has been reported to
improve healing in human burns [62], and OxygenSys™ prevented partially skin flap necrosis in
pigs. [63]. Mednoxa delivers oxygen through catalysis of hydrogen peroxide but has not yet been
shown to be effective in preclinical and clinical settings as it is an early stage start-up. An
experimental sodium percarbonate/calcium peroxide based oxygen releasing wound dressing [64]
has also been shown to promote full thickness surgical wound healing in pigs by 10%.

However, topical oxygen delivery to chronic wounds in clinical settings is not always sufficient to
prevent necrosis.[65, 66] Most prior studies focus on promote healing in patients with impaired
healing and none have intended to salvage tissues that will otherwise undergo necrosis. In theory
local and sustained supply of oxygen, one of several essential nutrients for most cell types, could
prolong ischemic survival and thereby prevent to onset of tissue loss. In chapter 3 we modified the
method of Ahn & Mustoe [67] to create necrotic ischemic wounds and used a previously developed
and proprietary calcium peroxide formulation developed in our laboratory as a dressing patch
changed every three days to determine if the patch could mitigate necrosis. To our knowledge no

biomaterial is capable of preventing necrosis in such wounds.
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3.2 In vivo oxygen delivery

Oxygen can penetrate no more than 0.4mm through intact skin [68] and so topical delivery is likey
effective on in open wounds. Systemic oxygen delivery methods such as HBOT and normobaric
oxygen delivery rely on a functioning vasculature with which to deliver the super-physiologically
oxygenated red blood cells.[57] Only a few studies have investigated implantable oxygen delivery
systems. Harrison et al (2007) [69] reported the use of sodium percarbonate embedded in a
Poly(D,L-lactide—co—glycolide) able to release oxygen over three days and implanted as a film
under skin flaps to temporarily delay the onset of necrosis up to three days in full thickness skin
flaps. Ward et al (2013) [70] also reported that reported that injections of 0.08mg of sodium
percarbonate releasing oxygen over a period of 24h in ischemic limbs allowed partial preservation
of muscle contractility during acute ischemia. No studies developing these concepts has been
published to date.

In chapter 4 we investigate the fabrication and use of an oxygen delivery implant able to sustain
the release of oxygen over 14 days and assess its efficacy in preventing necrosis in a full thickness

skin flap model and examine the limitations of the technique.

3.3 High density cell cultures
The interest in increasing cell density from normal culture (5x10°cells/mL) to high density cell
culture (107 to 5x10%cells/mL) [71] lies in the construction of bioreactors with increased
biomolecules, protein or vaccine production [72], as well as the creation of tissue engineered near
physiological cell density constructs (typically ~1-5x10%cells/mL).[73]
A wide variety of bioreactors for cell cultures in suspension is available [72] and allow the
homogeneous optimization (medium input, oxygenation, waste removal, etc.) by combination of

different methods (stirring, oxygen bubbling, tangential flow, etc.) [74] and allow culture of high
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cell densities (2.14x108cells/mL).[75, 76] Bioreactors for engineering tissues are more limited dues
to low diffusion through cells themselves and their ECM. Tissue engineered constructs do not
possess functioning vasculature, and the movement of medium through the structure is limited to
diffusion or flow through channels and pores that can become occluded as the tissue grows [77] in
vivo, cells are usually found no more than 100um from capillaries [78] and at physiological
densities, oxygen diffusion will be limited to a maximum of 200um.[79, 80] This limits both the
size of the scaffolds that can be build as well as their cellular density depending on the tissues and
their metabolism (at physiological densities, 5 to 8mm for cartilage, 100-200um for cardiac
tissues).[77]

3D-Bioprinting has the potential to create constructs from a mixture of cells, biomaterials and
bioactive agents, also known as bioinks, allowing spatial control of cell position to facilitate the
creation of tissue engineered structure, but do not yet match the required resolution to build
complex organs with vascular networks.[81] Even if some bioprinting methods allow the creation
of organs and tissue mimics with physiologically relevant densities (Laser assisted bioprinting,
108cell/mL) [82], The resulting constructs however still suffers from the limitation of tissue
engineered constructs mentioned previously. Techniques like PFC, HOBT, haemoglobin-based
carriers have allowed improvement of oxygen delivery to increase size viability, protein expression
and production of said constructs.[83] However, these means of delivery are external to the
construct, therefore also require conduits and are subject to diffusion limitation. In situ oxygen
generation may have the potential to mimic capillaries in tissues and organs and deliver oxygen in
a homogeneous manner throughout the constructs. Different techniques like solid peroxides,
photosynthetic biomaterials, myoglobin-polymer-surfactant, polymer-encapsulated oxygen

microbubbles, etc. have been reported to have potential applications in vitro to maintain cell
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survival during hypoxic or anoxic events [83], yet no use of in situ oxygen releasing materials in
constructs at physiological density has been reported.

In chapter 5 we attempt to maintain cell viability at 1x108cells/mL in alginate beads (g 1.7mm) by
using calcium peroxide microparticles (¢ 10-200um). We hypothesise that the new bioink that can
sustain cells could ultimately allow building large engineered constructs at physiological densities

without a functioning vasculature.

3.4 Peroxide based oxygen delivery
Oxygen generating biomaterials were based on the use of calcium peroxide (CaO) and its reaction
with water to form oxygen and hydrogen peroxide, that will further decompose into oxygen,
following Equation 1-6 to Equation 1-8:
Equation 1-6: Ca0, + H,0 = Ca(OH); + 50,
Equation 1-7: CaO, + 2 H,0 = Ca(OH), + H,0,
Equation 1-8: 2 H,0 = 0, + 2 H,0
Reaction of peroxide with water is fast and can release oxygen and also hydrogen peroxide (H203)
in amounts which can be potentially cytotoxic. CaO. was embedded in a hydrophobic polymer
(polycaprolactone, PCL) to reduce and control the reaction rate. To further reduce H-O> potential
cytotoxicity, iron oxide (FesO4), a biocompatible inorganic catalyst [84], was used to catalyze the
decomposition of H20: [85, 86] into oxygen according to a Fenton-Haber-Weiss catalytic reaction

(Figure 1-5).
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Figure 1-5. Fenton-Haber-Weiss catalytic reaction.[87, 88]
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Abstract

Wound dressings and the healing enhancement (increasing healing speed and quality) are two
components of wound care that lead to a proper healing. Wound care today consists mostly of
providing an optimal environment by removing waste and necrotic tissues from a wound,
preventing infections, and keeping the wounds adequately moist. This is however often not enough
to re-establish the healing process in chronic wounds: with the local disruption of vascularization,
the local environment is lacking oxygen, nutrients, and has a modified ionic and molecular
concentration which limits the healing process. This disruption may affect cellular ionic pumps,
energy production, chemotaxis, etc., and will affect the healing process. Biomaterials for wound
healing range from simple absorbents to sophisticated bioactive delivery vehicles. Often placing a
material in or on a wound can change multiple parameters such as pH, ionic concentration,
osmolarity, and it can be challenging to pinpoint key mechanism of action. This article will review
the literature of several inorganic ions and molecules and their potential effects on the different

wound healing phases and their use in new wound dressings.

Key words: Wound healing, chronic wound, wounds dressing, bioinorganic.
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Introduction

Before considering the role that inorganic ions and molecules might play in improving and
accelerating healing, it is necessary to consider current materials used for dressings and what
physical functions they play that also greatly affect healing outcomes. The clinical variability of
wounds and their underlying cause combined with the lack of a control wound, compared to the
reproducibility and ease of studying bilateral injuries in preclinical animal models, also means that
trials can be hard to statistically power. Consensus as to effectiveness is then sometimes lacking,
for example honey has been used for millennia to treat wounds but some wounds are not healed

faster by its use. [89-91]

The wound healing process is divided into orderly and overlapping phases: haemostasis,
inflammation, proliferation and maturation. They are tightly regulated by a series of external and
internal stimuli such as growth factors (GF) and cytokines, resulting in regeneration of the damaged
skin. [92, 93] Acute wounds are injury to the skin resulting from abrasion, avulsion, incision,
laceration, and puncture that heals according to the normal wound healing process. Burns are acute
wounds that differs from other acute wound by its systemic impact. [94, 95]

Disruption of the normal healing process can result in non-healing wounds (chronic wounds). This
impaired healing is often a consequence of an underlying condition (e.g.: diabetes, age, ischemia)
or of external factors (e.g.: infections). [96] These systemic preconditions often result in a partial
or total restriction of the blood flow to a wound that in turns disrupt the healing process by limiting
the amount of nutrients, oxygen, waste removal and homeostasis. In the U.S. alone, 6.5 million
suffer from chronic skin ulcers [92], making restoration or enhancement of wound healing one of

the major challenges in healthcare.
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Wound care today consists of wound cleansing, disinfection, closure if needed and dressing.
Wound dressings should provide optimum parameters for the healing process: prevention of
infections, removal of debris and wastes, proper oxygenation, and a moist environment that allow
migration of cells and wound closure. It also needs to account for type of wounds and the patient
precondition. [95-97] Traditional dressings (gauze, lint, plasters, bandages, cotton wool, etc.) are
mostly used to protect the wound from contamination but they also fail to provide a moist
environment. Modern dressings have been designed to account for the cause and type of wound.
They allow modification of the physical parameters of the wound environment [98] (Table 2-1),
or are bioactive by either playing an important role in healing process (biomaterials derived
generally from natural tissues or artificial sources to provide a extracellular support to cells) or
delivering bioactive molecules that enhance migration and proliferation of cells, etc. Tissue
engineered skin substitutes are modern dressings that are cell-containing matrices or acellular
matrices that release bioactive molecules to accelerate epithelialization. Negative pressure wound
dressings apply a vacuum to the wounds in order to drain exudate. [96] Its efficiency is widely
discussed [99-101], and appears to maintain a moist environment, optimize blood flow, remove

exudates, and applies pressure to promote wound closure.

Table 2-1: Representative list of the different types of modern dressings, their advantages and

disadvantages

Examples of
Dressings types Advantages Drawbacks Commercial Ref
brands
Semi-permeable 02 and CO> Low exudate Opsite™, [102]
film permeant, absorption Tegaderm™,
impermeable, and Biooclusive ™

55



can adapt to the
shape

Semi-permeable Allows gaseous Not suitable for low  Lyofoam™, [103,
foam exchange, and exudating wounds Allevyn™, 104]
absorbs exudates Tielle™
Hydrogels Suitable for all Low mechanical Intrasite™, Nu-  [105]
stages of wound strength and exudate ~ gel™,
healing accumulation Aquaform™
Hydrocolloid Permeable to water ~ Not indicated for Granuflex™, [106,
vapor but neuropathic ulcers or  Comfeel™, 107]
impermeable to highly exudating Tegasorb™
bacteria, wounds
debridement and
wound exudate
absorption
Alginate Limits wound Inhibits keratinocyte ~ Sorbsan™, [108]
exudates and migration, not Kaltostat™,
minimizes bacterial ~ suggested for dry Algisite™
contamination, wound, third degree
accelerate healing burn wound and
severe wounds with
exposed bone
Bioactive (collagen, Facilitate cell Low mechanical [109-
hyaluronic acid, migration and ECM  strength and exudate 116]
chitosan, alginate,  production accumulation
elastin)
Tissue engineered Facilitate and Low exudate Alloderm™, [117]
skin substitutes stimulate cell absorption, risk of Integra™,
migration, infection, antigenicity Laserskin™,
proliferation and Biobrane ™,
ECM production Bioseed™,
Hyalograft3-
DTM
Medicated Can be tuned to Cutisorb™,
Dressings exhibit specific Debridace™

properties
(Antibacterial,
proliferation
promotion, wound
debridement, etc.)
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Bioglass Can stimulate cells ~ Toxic potential of DermaFuse™ [118]
function using by ions in contact with Mirragen™
releasing ions physiological tissues

Providing an optimal environment for the wounds to heal is often not enough to re-establish the
healing process in chronic wounds. When a patient suffers from a blood flow limiting precondition
not only is exchange of nutrients and wastes limited, but there is also a localized imbalance of ions
and molecules affecting cell homeostasis. Bioinorganics is a field that manipulates inorganic ions
to lead to a variety of therapies. [119-121] Systemic inorganic ion deficiency and overload effects
on health are well documented. For example iron overload and deficiency lead to thrombosis
suggesting an involvement of iron in the coagulation cascade. [122] Most of this knowledge is
based on systemic delivery and little is known about localized delivery for localized effect. This
article will review the literature of different organic ions and their effects on the different wound
healing phases and their use in new types of wound dressings.

Protons, calcium ions, carbonate ions, etc. are also deeply involved in cell biology through ionic
pumps and channels. They participate in ionic exchanges between the cell and the extracellular
environment and drive energy production, cells migration, etc. [123]

Inorganic ions or molecules, and more particularly metal ions, are essential catalytic and structural
elements of some proteins, enzymes, transcription factors, and can inhibit or increase their
expression level and activity sometime through conformational changes.

Compared with biologic/organic agents there have been relatively few studies focusing on the
influence of inorganic ions on wound healing even though some have demonstrated a potent
influence. This review focuses on the influence of a selection of inorganic ions or molecules on the
different phases of wound healing, their use to promote wound healing in vivo and their potential
use in the development of new dressings.
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Wound Healing Process

Haemostasis

In the normal wound healing process, haemostasis is the first stage of wound healing occurring
within the first minutes after wounding. This process involves (i) vasoconstriction that reduce the
blood flow; (i) the formation of a platelet plug: platelets express receptors and (iii) the formation

of a fibrin clot around the platelet plug (Figure 2-1). [124]

Inflammation

Within an hour after clotting, polymorphonuclear neutrophils (PMNs), become the predominant
immune cells in the wound bed up to two days after the injury [125] and phagocytize debris and
kill bacteria by releasing free radicals (respiratory burst) and break down damaged tissues through
proteases. PMNs either undergo apoptosis after two days or are degraded by macrophages. After
monocytes then enter the wound bed they mature into macrophages that participate in
phagocytosis, secreting several growth factors and cytokines. promoting angiogenesis and

indirectly stimulate granulation tissue formation, and re-epithelialization.

Proliferation

Before the inflammatory phase has ended, factors released by macrophages activate fibroblasts,
endothelial cells and keratinocytes from surrounding tissues that start migrating and proliferating,
laying down a new extracellular matrix and forming granulation tissue, gradually forming a barrier

between the wound and the environment and closing the wound.
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Maturation
Maturation of the wound can start as early as three days after wounding. During this phase, the

previously lay down collagen matrix is slowly remodeled.
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Figure 2-1: Schematic representation of different phases of wound healing. a) Haemostasis and
Inflammation: Following injury the wounded area is filled with blood clots which seal the wound
and creates haemostasis. Followed by the hypoxic inflammation phase, where the bacteria,
neutrophils and platelets are abundant in the wound bed. b) Proliferation: Endothelial cells migrate
into the clot where they proliferate and form new blood vessels. Following migration and
proliferation of fibroblasts cells they deposit extracellular matrix and form granulation tissue. At
the wound edge, keratinocytes proliferate and migrate along the injured dermis and above the
provisional matrix. ¢) Remodeling phase: includes wound contraction and collagen deposition by
fibroblasts. Finally, neo-epidermis completely covers the wound. Reproduced with permission

from Mohanty et al. [126]

Calcium
Calcium can form stable coordination complexes with organic molecules (enzymes, proteins, etc.).

It acts as an electrolyte and is vital to the health of the muscular, circulatory, and digestive systems;
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is indispensable to the building of bone; and supports synthesis and function of blood cells. It is
involved in energy production/consumption in eukaryotic cells through calcium channels and
pumps and is required for the cells to assume their roles, and an alteration of calcium level will

have an impact on the wound healing process summarized in Figure 2-2.

Haemostasis

Assembly of procoagulant complexes and generation of thrombin requires calcium. It mediates the
interaction and activation of different factors of the coagulation cascade. Increased calcium
concentration can increase clot formation speed by increasing the rate of fibrin-monomer
polymerization. [127-129] Accumulation of calcium in vascular smooth muscle cells results in their

contraction and leads to vasoconstriction, an important phase for the haemostatic process. [130]

Inflammation

A correlation has been shown to exist between calcium concentration and the inflammatory and
proliferative activity in the different layers of the skin. Exchanges of calcium ions between the
extra/intracellular spaces of neutrophil modulate their respiratory burst and mobility in the early
stage of inflammation. [131, 132] Calcium entry in the neutrophils is necessary for the generation
of superoxide, an increase or decrease in extracellular calcium concentration leads to a similar
variation in superoxide production. At a later stage of the inflammatory response, calcium has a
chemokine effect regulating macrophages and monocytes. [133] Monocytes migrate toward Ca?*
in a dose-dependent manner, which will in turn play a role in the formation of granulation tissue
and angiogenesis process by secretion of various factors such as vascular endothelial growth factor
(VEGF) and fibroblast growth factor (FGF). They will also participate to the removal of

neutrophils. [134, 135]
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Proliferation

A decrease in calcium concentration diminishes fibroblast adhesion and proliferation. [136] On the
contrary, a high calcium content can increase keratinocyte differentiation, thus inhibiting their
proliferation. [137]

Extracellular calcium can upregulate expression of different angiogenesis-related genes involved
in the production of cytokines and growth factors important for endothelial cells proliferation and
migration. [138-140] For instance, it has been claimed that calcium phosphate coatings increase
angiogenesis. [141] Controversially, the use of calcium channel blockers has been demonstrated to
have a positive impact on wound healing [142-145] exhibiting faster wound closure, with better
fibroblast and endothelial cell proliferation and an improved collagen deposition. These effects
have been demonstrated in both acute and diabetic wound models and appear to be mostly due to

an enhancement of nitric oxide production in endothelial cells. [146-149]

Calcium-based materials

Because calcium is the main component of mineral in bones and teeth, calcium-based biomaterials
(calcium carbonate, sulphate and phosphates) have been used for orthopaedic and dental
applications [150] Those that are poorly soluble have a property known as osteoconduction
whereby bone grows along the material’s surface. While widely exploited for osteointegratration
through osteoconduction, most of what is known about osteoconduction was empirically
determined in preclinical models and the biological mechanism by which these materials support
bone growth is not known. Only a few studies have been performed on the utilization of calcium-
based biomaterials for acute/chronic wounds and indeed superficially it is counter intuitive to

introduce high modulus ceramics to a soft and painful wound bed. Calcium crosslinked alginate
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has been widely investigated mostly because of its ability to keep a wound moist and absorb
exudates while delivering active agents. [151]

Calcium chloride or calcium carbonate nanoparticles [152] (topical application and intravenous
injection), calcium phosphate particles (local injection [153], and as cream for topical application
[154]) have demonstrated the potential of calcium delivery to improve wound healing. Calcium-
containing bioactive-glasses have been studied for different kinds of applications (drug delivery
agent, bone tissue engineering, antibacterial agent, etc. [155]). In wound healing, utilization of
calcium-containing bioglasses have exhibited stimulatory effects on endothelial cells [156] and
fibroblast [157] proliferation, migration, and expression of proteins and growth factors in vivo.
Bioglasses are composed of several different ions and the so the effect of calcium within this
material is yet to be understood, as are also the specific mechanism of action of bioglasses on
wound healing. Ethylenediaminetetraacetic acid (EDTA) is a molecule that can chelate metals like
calcium, iron, magnesium, etc., have been used in rat brass comb burn model and resulted reduced
damage from reactive species. [158] Furthermore EDTA has also exhibited antibacterial properties.

[159]

Hydrogen peroxide (H203)

Hydrogen peroxide is naturally produced and degraded by enzymes inside and outside cells where
it serve as a signaling molecule in a variety of biological processes from cell death and cell
proliferation [160-163] to protein secretion [164] and gene expression. [165, 166] It has the
property to dismutate to generate oxygen or radicals and can potentially be cytotoxic due to its high
oxidizing potential. [167, 168] Figure 2-2 summarizes some of the literature indicating which

phase of wound healing may be affected by altering hydrogen peroxide levels.
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Haemostasis
Hydrogen peroxide has demonstrated potential as a haemostatic agent [169, 170]: it triggers the
activation of platelets via the cyclooxygenase pathway and also appears to stimulates platelet

derived growth factor (PGDF) activation and aggregation. [170]

Inflammation

Hydrogen peroxide level increase significantly during the inflammatory phase [171] and have a
variety of effects: [172] briefly, hydrogen peroxide induces leukocytes recruitment by
macrophages through mRNA expression and increases their adhesion to endothelial cells. It
participates to the creation of molecule with high oxidative potential that act as bactericide or are
turn into free radicals through Fenton reaction. It is also able to enhance expression of inflammatory
genes and pro-inflammatory cytokines. A defective production of hydrogen peroxide can cause a

persistence of the inflammation phase and impair wounds.

Proliferation

A sub-lethal concentration of hydrogen peroxide (up to 500uM) has been shown to increase
keratinocyte proliferation and migration in scratch wound models. [160, 173, 174] Moreover it has
been shown to increase VEGF expression in keratinocytes [175, 176], macrophages [177] and
vascular smooth muscle cells [178] through ribonucleic messenger (MRNA) expression. Increased
VEGEF level are also observed in vivo in full-thickness wound model in mice. [171] Taken together
these results are implying that hydrogen peroxide within a certain range (up to 500M) can enhance
vascularization in wound healing. Furthermore, endothelial cells chemotaxis has been reported to

be mediated through hydrogen peroxide and cyclooxygenase-2 interactions. [179]
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Clinical and Preclinical Studies

Hydrogen peroxide has long been clinically used in wound management for its bactericidal,
fungicidal and sporicidal properties [180] and as an haemostatic agent. [169] It was shown to
facilitate healing in full-thickness wound model in mice [171, 181] when used at low concentration
(10 to 50 mM) concentrations, it was not found beneficial when used at a commercial concentration
(166 to 975mM) [182] and could even slow down wound healing.

Clinical studies on hydrogen peroxide [183] and drugs containing hydrogen peroxide [184] have
been developed to treat cutaneous infections and were found beneficial to wound healing and skin
graft intake in cases of burns and ulcers.

As described previously, honey has been used as a dressing in wound management. Amongst the
previously described properties, it also contains glucose oxidase that allows the release of low
hydrogen peroxide concentration from the conversion of glucose to gluconic acid [185, 186] that

would be beneficial to wound healing.
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Figure 2-2: Summary reported effects of calcium and hydrogen peroxide level changes on cells

involved in stages of wound healing. With the exception of fibroblasts, elevated calcium levels

generally have pro-chemotactic effects. When administered at non-toxic concentrations, hydrogen

peroxide can promote keratinocyte proli

Molecular Oxygen

feration and migration.

Oxygen is a highly reactive gas, an oxidizing agent that readily forms oxides with most elements

as well as with other compounds. By mass, oxygen is the third-most abundant element. At standard

temperature and pressure, it is usually

oxygen is at the center of many biologic

found as dioxygen (O2, molecular oxygen). In biology

al systems. Without it many cells cannot, it allows aerobic
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respiration and efficient ATP production in cells. A lack of oxygen reduces energy production in
cells and will eventually lead to cell death through the ischemic cascade In wound healing, after
injury, oxygen availability decreases in the wound due to of the absence of functioning vasculature
resulting in a hypoxic environment.[187] Thus, alteration of oxygen level will influence the

different wound healing phases (Figure 2-3).

Inflammation

During inflammation, most of the oxygen is consumed by inflammatory cells (mainly neutrophils)
to produce reactive oxygen species during the respiratory burst. [188] However, when approaching
the proliferation phase, oxygen overload leads to the generation of reactive oxygen species and to
the persistence of the inflammation. It has been demonstrated that Intermittent hypoxic
environment initiate release of growth factors (transforming growth factor (TGF), TNF and VEGF)

from platelets and monocytes [189], and a continuous hypoxia inhibits VEGF release. [190]

Proliferation

Elevation of oxygen levels in the skin through the utilization of hyperbaric oxygen, (HBO), has
been shown to stimulate the reconstruction of an epidermis by enhancing fibroblast proliferation
(in vitro and in vivo) [191, 192] as well as proliferation, migration, and differentiation
keratinocytes. [191, 193] Interestingly hypoxia has been shown to also increase keratinocyte
motility in vitro. [173]

Oxygen is needed for collagen synthesis and release (production of collagen is proportional to the
oxygen tension). [190, 194-196] It has been demonstrated that an optimum oxygen concentration

exists for collagen production in fibroblasts. [197]
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Exposure of endothelial cells to low oxygen tension results in a inhibition of Nitric oxide
production (NO) as NO synthase requires arginine, NADPH and oxygen [198], which in turns
participates to in a variety of physiological processes and is beneficial to wound healing. [199]
Topical oxygen treatment was associated with higher VEGF expression in the wound edge tissue.

[56]

Oxygen and wound healing

Oxygen delivery for wound healing has been widely described in the literature [49] and carried out
through various methods, ranging from systemic approaches like HBO [50, 53-55] which has been
shown to be effective for some cases of delayed wound healing [53-55] but is not always found to
bring statistically significant improvements to healing [56], it also presents several disadvantages
like the need for pressure chamber (Figure 2-4), risks of cataract maturation, barotrauma,
pneumothorax, oxygen toxicity seizures, etc., [200] with only a temporary effect as oxygen levels
are systemically elevated by HBO for the 1-2 hour treatment time, but return to baseline within 3
minutes up leaving the chamber [50] ; to local delivery using perfluorocarbons or Inorganic
peroxides and percarbonates that either allowed to temporarily delay necrosis appearance in
ischemic skin flap models [69] although the influence of the produced peroxides have not been
discussed, or increased wound closure, re-epithelialization, epidermal thickness, collagen content
of dermis and neovascularization. [201] Recently polymer/perfluorocarbon-based oxygen loaded
particles have been prepared as a mean of oxygen delivery [202], but only allowed and increased

oxygen level in blood during few minutes.
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Boron

Boron is found in nature as various oxides of B(Il1), often associated with other elements. Boron
Is similar to carbon in its capability to form a stable covalent bond. It has long been used with its
derivative in chemistry as a catalyst (Suzuki reaction) as it is able to act as a Lewis acid and can
form adducts with Lewis bases (e.g.: amines, alcohol, carboxylic acids). Thus, like iron, it can bind
to proteins and nucleotides and modify their stereochemistry or stabilize some structures. Boron
bio-absorption is mainly through inorganic and organic forms that are easily transformed in boric
acid in acidic conditions. [203] It is considered as a probably essential element and has roles in
steroid hormone metabolism, bone development, and cell membrane maintenance. It also affects
various mechanisms in animals including carbohydrate, mineral metabolism, energy consumption,
the regulation of several enzyme activities and embryonic development.[204] Boron deficiency
effects are still being researched, it has however been found to affect calcium and bone metabolism,
steroid hormones and brain function. [205] In wound healing, boric acid and borax solutions have
historically been used as antiseptics in wound treatment but are no longer recommended because
of their potential toxicity. [203] Sodium tetra-borate decahydrate (Borax) has extensively been used
to form hydrogels as an ionic crosslinker for various applications including wound healing (Figure

2-3). [206, 207]

Haemostasis
There is no direct evidence of boron being involved in haemostasis. However increased boron
concentration in the blood appear to exacerbate the effects of low vitamin K level which can result

in bleeding and death. [208]
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Inflammation

Boron is reported to be involved in stabilization of the antigen-receptor complex on lymphocyte
surface, as well stabilization their proliferation. It is also hypothesized that similar effects could be
observed in inducing the synthesis and secretion of pro-inflammatory cytokines by macrophages.

It is a regulator of the immune and inflammatory reactions and macrophage polarization. [209]

Proliferation

Low concentrations of boron (up to 0.5% w/v) in medium have been reported to be nontoxic to
fibroblast cultures with no effect on their proliferation. It appears to inhibit the proteoglycan chain
and collagen synthesis, but increase the release of these molecules which increases the turnover of
the extracellular matrix [210-212]; these effects, added to boron’s ability to enhance protease,
collagenase and cathepsin D activities in fibroblasts [213], make boron an active effector of the
extracellular matrix turnover in wound healing. Boron also enhances TNFa synthesis in fibroblasts
[210] (a pro-inflammatory cytokine important for lymphocyte proliferation), the recruitment of
monocytes, and the promotion of angiogenesis.

Boron does not appear to enhance keratinocyte proliferation but stimulates their migration and
extracellular matrix production by modulating matrix metalloproteases. [214, 215]

It is observed in vitro for boron and its derivatives an inhibition of endothelial cells tube-like
structure formation of and micro-vessel sprouting of endothelial cells in a dose-dependent manner.
[216] However, an in vitro dynamic study of borate-based bioactive glass fibers demonstrated that

boron could promote angiogenesis via stimulation of fibroblast VEGF secretion. [217]
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Boron and wound healing

Boric acid and its derivative’s ability to bring improvements to wound healing when used as an
ointment is unclear and appear to not entirely related to pH, but also to their ability to regulate the
production of extracellular matrix, protein and collagen. [211, 218] Boron can be used to fabricate
variety of dressings: boron based gels [216, 219] have been found to significantly increase the
proliferation, migration of dermal cells as well as growth factor and gene expression levels. The
use of a combination of boron and Pluronics has been shown to improve wound healing full
thickness excisional wounds [220, 221] by enhancing fibroblast migration, superoxide dismutase
activity, fibroblast growth factors and TNF- level, VEGF and TNF-a. Boron based bioglass are
ceramic similar but more soluble than silica based bioglass, this results in a higher ions release
(boron and calcium) dissolution where it stimulates angiogenesis and improve collagen deposition
thus improving wound healing in full thickness wounds and diabetic wound models. [222-225]
Doping of such material with copper ions has demonstrated increased properties [224], and a

doping with different ions (zinc, iron, strontium) are considered. [226]

Zinc

Zinc is a trace element and is the most abundant intracellular metal and the second most abundant
in the body after iron. Zinc is ubiquitously found in the body, with 85% stored in muscle and bone,
11% in the skin and liver, and the rest in other tissues. Zinc is located intracellularly and in
extracellular matrix in epidermal and dermal tissues in the form of protein complexes where zinc
acts as a stabilizer of cell membranes and an essential cofactor. It also plays a central role in mitosis,
migration, and maturation. [227]

More than 3000 unique human zinc proteins have been identified, suggesting that more than 10%

of the human genome encodes zinc proteins essential in enzymatic and structural roles, transport
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and storage, DNA repair, replication, and translation. [228, 229] Zinc can relocate calcium by
modifying calcium dependent processes [230-232] and participate to cells membrane stability. Zinc
is crucial in countless physiologic processes; it is essential in growth, immune function, tissue
maintenance, and wound healing. There is a marked increase in zinc during inflammatory phase of
wounds, zinc levels in the wound des can increased by 15-20% within 24 hours and up to 30%
with granulation tissue formation and proliferation. [227] Figure 2-3 summarizes some of the

literature indicating which phase of wound healing may be affected by altering zinc levels.

Haemostasis

One of the symptoms of zinc deficiency is tendency to bleed and impaired platelet aggregation
[233, 234] which can be reversed by zinc supplementation. An important enzyme that takes place
in platelet activation is the calcium-dependent protein kinase. Zinc deficiency decreases platelet
calcium capture, reducing their activity; this is possibly linked to defective calcium channels due
to a lack of zinc that usually protect them by chelation. [235]

Thrombocytes accumulate zinc ions, platelet stimulation during blood clotting involves a local
increase of the zinc concentration at the site of blood-vessel injury [236, 237] which affects
haemostasis through plasma clotting factors, platelet aggregation, and platelet interactions between
themselves and with endothelial cells. [235] Adding calcium ions to a fibrin oligomer solution
causes its polymerization and that this phenomenon is intensified several times after addition of

zinc ions at physiological levels. [238]

Inflammation
The immune system is highly proliferative, and thus particularly susceptible to Zn deficiency. [239]

Zinc ions function as chemo-attractants for some immune cells: a super-physiological Zn
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concentration induces PMN chemotaxis in vitro and a deficiency leads to reduced PMN
chemotaxis, phagocytosis and NAPDH production in association with reduced production of ROS.
Zinc deprivation reduced monocyte adhesion and maturation of macrophages therefore the

production of cytokines was also modified. [240]

Proliferation

Zinc-dependent matrix metalloproteases, capable of degrading essentially all components of the
ECM, are synthesized by various cell types in the wound, notably keratinocytes, macrophages,
fibroblasts, and endothelial cells. [241] Like copper and manganese, zinc enhance keratinocyte
migration: supplementary zinc promotes induction of some integrin subunits that influence

keratinocyte motility in the healing phase. [242, 243]

Zinc in wound healing

Zinc supplementation (topical and systemic) in case of zinc-deficient rats has allowed to re-
establish proper healing in full thickness wounds, [244] however a systemic supplementation to
non-deficient rats did not improve wound healing. [227] Local application of a zinc oxide cream
on a full thickness wound was found to increase wound contraction [245] and wound debridement
in rats full-thickness scald burns; [246] it was also reported to advance epithelialization in surgical
wounds in rat. [247] Interestingly in partial thickness wounds in pigs, zinc oxide was found
beneficial to wound healing, however zinc sulphate [248] or zinc gluconate [249] were found to
have no or even deleterious effects on healing. Zinc oxide was found to have no influence on
granulation tissue formation [250] and a local application of zinc oxide on granulating wounds in
rats was shown to have no effect on the healing rate [251] which correlates results obtained with

zinc oxide added to hydrocolloids dressing on full thickness wounds in pig. [252] However locally

72



applied zinc oxide has been reported to enhance the repair of ulcerated skin in patients [253] and

clinical study of gauze impregnated with zinc oxide applied on ulcer promoted the removal of

necrotic tissues [254] and improved wound closure. [255-257] Similar results were obtained in a

clinical study of Zinc tape that also led to reduction of wound debris and necrotic material in burns.
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Figure 2-3: Summary of re reported effects of oxygen, boron and zinc level changes on wound

healing. Zinc is mostly reported to have an influence on neutrophils, and boron to affect mostly the

proliferation phase. All phases of wound healing are reported to be modified by altering oxygen

levels.
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Figure 2-4: Multiplace hyperbaric oxygen treatment chamber. Reproduced with permission from

Mortensen. [259]

Iron

Iron is an important metal for many different biological processes. It can be found as a stable free
ion (Fe*") in plasma (50 to 250 umol/dL) usually bound to proteins or enzymes, mostly heme where
which serves to transport oxygen. Like most ions, iron concentrations are tightly regulated [260]
and a deficiency or an overload can have severe consequences. [261] In its free ionic form iron
may form reactive oxygen species via Fenton reactions [262, 263] and may impair some cells

functions during wound healing (Figure 2-6)

Haemostasis
Iron deficiency can lead to reactive thrombocytosis, which in turns can lead to thrombosis. On the
other hand, similar effects can be observed with iron overload that causes an increased production

of hydroxyl radical that accelerate thrombus formation. [122] Thrombin conversion to fibrin is
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sensitive to iron concentration; after wounding, during the early stage of healing, it bounds to the

protein and has a stabilizing effect, preventing the formation of a fibrin clot. [264]

Inflammation

Iron deficiency has been also shown to delay and decrease neutrophil activation. [265] Under its
free ionic form, iron is involved in the regulation of reactive oxygen species (via Fenton reactions)
and can be a nutritional for bacteria. Macrophages play major roles in iron recycling during the
inflammation phase. [266, 267] In the case of skin injury, sequestration of iron allows a decrease
in radical production and inhibits bacteria proliferation, whereas an overload of iron can cause a
persistence of inflammation and damage to tissues. [268] Sequestering of iron can serve to promote
the degradation of foreign bodies after the phagocytosis by generation of radicals. [267]

As iron is a cofactor of Hypoxia Inducible Factors alpha (HIF-1a) hydroxylation [269, 270], its
chelation or deficiency can induce HIF-1a expression leading to an accumulation of the factor by
its stabilization thus simulating hypoxic conditions and the appropriate response from hypoxia
responsive elements (erythroprotein, VEGF, etc.) and facilitate the adaptation to hypoxic
conditions. [271, 272] However, H1F-1a increases macrophage recruitment and mobility allow
expression of pro-inflammatory cytokines as well as neutrophil survival resulting in sustained
inflammation. [269, 273] Cell permeable iron inhibits VEGF receptors and consequently inhibits
endothelial cells proliferation, migration and viability. [274] In addition, the increased level of
VEGF and HIF-1a due to iron chelation promotes angiogenesis [270, 274, 275] which is beneficial

to wound healing.
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Iron chelation in wound healing

Several proteins and enzymes can bind with iron, either for transport and regulation or to assume
their function. Amongst them, lactoferrin is involved at many different levels of the healing
process. [276] This protein has a strong affinity for iron (K~10?2M) and is completely bound to
iron (holo-lactoferrin) up to pH 4, and releases it completely at pH2.5 to form apo-lactoferrin. [277]
It can be synthesized by glandular epithelial cells and polymorphonuclear neutrophils and is
attributed several host defenses activities namely: antibacterial, antiviral, and antifungal. [277]
Briefly, in addition to its iron chelating properties, lactoferrin is first involved during the early
inflammatory phase where it promotes the production of proinflammatory cytokines, then during
the proliferation-remodeling phase by promoting fibroblast migration and proliferation as well as
extracellular matrix synthesis (collagen and hyaluronan production).[276]

Iron chelation has been used to modify wound healing. Deferoxamine (DFO) is one of the most
widely studied iron chelators and is clinically used to treat iron overload. In the case of topical
wound healing, topical DFO has been shown to improve wound closure in diabetic wound model
and diabetic pressure ulcers [278-280] by modulating the expression of cytokines and growth
factors and to facilitate angiogenesis. Topical application of deferoxamine on ischemic skin flaps
has resulted in a reduction of necrosis by two fold. [281] Similarly, in diabetic wound models other
iron chelators such as deferiprone, kojic acid and ciclopiroxolamine resulted in a faster wound
closure. [282-284] In parallel, topical application of a metal chelator lotion has been demonstrated
to protect burn wound progression by reducing oxidative stress. [158] Combination of
deferoxamine with a polymer carrier has been recently carried out and could potentially improve
iron chelation treatments by reducing its toxicity [285] and facilitate the incorporation in dressings.

[286]
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Iron Based Biomaterials

Iron is a degradable metal and has been used for bioabsorbable metallic stents and plate systems.
[287] Direct topical utilization of iron in wound healing has been mainly limited to the magnetite
(Fe30O4) phase. Because it is insoluble and biocompatible, it is easy to functionalize and has often
been used in medical imagery or as a magnetic drug delivery agent. In the case of incisional
wounds, a treatment with magnetite bound thrombin was exhibiting a better healing than thrombin
treatment alone, potentially due to the stabilization of thrombin against its natural inhibitors. [288]
The use of magnetite as a component in a hydrocolloid dressing also exhibited a faster healing than

an undressed wound [289], this could however be due to the effect of the dressing alone.

Copper

Copper is a metal that possesses two common ionic forms (Cu(l) and Cu(ll)). Like iron and boron,
it forms coordination complexes with ligands and can bind organic molecules to influence their
activity and stability. Copper proteins have diverse roles in biological electron transport and
oxygen transportation, processes that exploit the easy interconversion between Cu(l) and Cu(ll).
Copper appears to facilitate iron intake [290], and a deficiency can produce symptoms similar to
anaemia, neutropenia, bone abnormalities, hypopigmentation, osteoporosis, hyperthyroidism,
abnormalities in glucose and cholesterol metabolism, etc. It also can impair wound healing. [291]
An accumulation of copper in tissues caused by Wilson's disease causes can result in liver disease,
neuropsychiatric symptoms, cardiomyopathy, etc. Figure 2-6 summarizes some of the literature

indicating which phase of wound healing may be affected by altering copper levels.

77



Proliferation

Copper has been demonstrated as a potent angiogenic factor [292] and is used to stimulate vessels
formation in different biomaterials [293] like stainless steel stents, ceramics and hydrogels [224,
294-296] and even as guide to direct vascular growth. [297] When added as a bolus to culture
medium (up to 0.5uM) has been shown to increase endothelial cell proliferation, but not fibroblast
in vitro. [298] It also increases keratinocytes migration through integrin expression. [242, 299]
Activation of platelet-derived growth factor (PDGF) signaling is copper dependent [300] and a
decrease in copper levels or inactivation of high affinity copper uptake protein 1 can cause
significant inhibition of angiogenesis. [301] Indeed, copper chelation has been trialed clinically as
an anti-angiogenic therapy for tumor control. [302] Copper also has a clear effect on VEGF
production from keratinocytes where an increase in copper concentration results in a significant
increase in production of the factor [303] mediated by HIF-a [304]. Copper has a synergistic effect
with VEGF or FGF-2 in enhancing angiogenesis in vitro [305] and promotes tube-like formation
as well as VEGF and FGF-1 expression from endothelial cells. In vivo implantation of copper
sulphate doped ceramics demonstrated the possibility to enhance and guide micro-vessels
formation in ceramic implants. [297, 306] Matrix metalloproteases (MMP) involved in wound
healing are also affected by copper: low copper concentration (0.3—3uM) stimulate their activity,
and high concentration (1-100uM) stimulates their expression in fibroblasts [307] which stimulates
cell proliferation, for wound re-epithelization, and extracellular matrix (ECM) remodeling. [308]
It has also been demonstrated that even low concentrations of copper ions can crosslink type |
collagen fibrils when under mechanical stimuli, resulting in enhanced mechanical properties of the

collagen construct and with increased resistance to proteolytic enzymes.[308]
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Copper in wound healing

Topical copper sulphate treatment on rats has demonstrated to significantly accelerated wound
closure un murine full thickness excisional wound model. [303] Copper-doped borate bioactive
glass microfibers stimulated the proliferation, migration and tube formation of human umbilical
vein endothelial cell (HUVEC), and the expression levels of angiogenic-related genes of fibroblasts

in vitro and accelerated the healing of the full-thickness skin wounds in rats (Figure 2-5). [224]
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Figure 2-5: (A) Representative images of full-thickness skin defects in rodents, left untreated
(control) or treated with the BG or 3Cu-BG microfibers, at 0, 5, 10 and 14 days post-surgery. (Scale
bar = 10 mm). (B) Percent wound closure for the untreated defects (control) and the defects treated
with the bioglass (BG) or 3Cu-BG microfibers at 5, 10 and 14 days post-surgery. Mean + SD;
n=6. %p < 0.05 compared to control; %p < 0.05 compared to BG. Reproduced with permission

from Zhao et al. [224]
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Copper GHK complex

GHK is a tripeptide with the amino acid sequence glycyl-histidyl-lysine that functions as a complex
with Cu(ll) and naturally occurs in humans. The GHK-Cu complex induce various well
documented effects in tissues remodeling [309]: it has an anti-inflammatory action, can act as a
chemoattractant of endothelial cells and macrophages, activate the synthesis and production of the
extracellular matrix and induce angiogenesis, it is involved in numerous gene up- and down
regulation and has been widely studied for its role in skin regeneration. [310]

In wound healing, the topical application of the complex as a cream accelerated the wound closure
of ischemic wounds in rats [311] when compared to application of the peptide alone. Similar results
were obtained for full thickness wounds in rabbits [245] when compared to commonly used zinc
oxide ointment, and also for full-thickness pad wounds in dogs [312, 313], pig punch biopsy
wounds where it was found to increase granulation tissue formation by increasing blood vessel
formation and the level of antioxidant enzymes [245, 314] a stimulating collagen production in
fibroblasts. [315] In diabetic wounds it was found to also increase the rate of wound contraction.
[316] Interestingly systemic injections of the complex produced similar results for mice, rats and
pigs in full thickness wound model. [317] Surprisingly, clinical studies failed to reach clinical

significance [309] even though the complex did improve healing of diabetic ulcers clinically. [318]

Magnesium

Magnesium is an alkaline earth metal in the same group as calcium that possesses only one ionic
form (Mg(Il)) and like other metals is able to coordinate molecules: it is a cofactor for hundreds of
enzymes, involved in the transfer, storage, and utilization of energy. [319] It coordinates DNA
duplication, influence ribonucleic acid (RNA) translation, ribosome assembly and the opening and

closure of ions channels and its influence in the different wound healing phases is summarized in
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Figure 2-6. A magnesium deficiency can contribute to coronary atherosclerosis or thrombosis

[320], hypermagnesemia can lead to similar issues, but is very rare.

Haemostasis

Systemic injections of magnesium sulphate have been shown to have an anti-thrombotic effect by
inhibiting platelet-dependent thrombosis thus increasing the time needed for coagulation [321,
322], despite the fact that magnesium accelerates factor-VII calcium-mediated induced
coagulation. [323] It also naturally compete with calcium by antagonizing calcium channels,
potentially modulating the vascular smooth muscle contractibility leading to vasoconstriction and

vasodilatation. [324]

Inflammation

Acute magnesium deficiency induces an inflammatory response suggesting that a reduced
extracellular magnesium might be responsible for the activated state of immune cells. [325] It was
suggested that anti-inflammatory effects of magnesium are mainly related to its ability to
antagonize calcium channels [326] and that high magnesium levels can impair the immune
function. Magnesium deficiency in rats can also cause early activation of neutrophils resulting in a
higher production of radicals during the respiratory burst than non-deficient rats [327], an increase

in extracellular magnesium concentration is able to attenuate the neutrophil respiratory burst. [328]

Proliferation
When added as a bolus to culture medium, magnesium ions can not only stimulate the proliferation

of endothelial cells but also increase their chemotaxis [329-332] and a lack of it has a reversible
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inhibitory effect [333]. Supraphysiological magnesium levels in combination with low calcium

levels promotes keratinocytes and fibroblast migration. [334, 335]

Magnesium in wound healing

Magnesium inhibits calcium ions entering cells by blocking N-methyl-D-aspartate receptors, which
causes an antinociceptive effect. [287] Although magnesium has been studied to develop
biodegradable implants for bone repair or vascular stents [287, 336], there are only very few studies
on its applications for wound healing. There are case reports of magnesium sulphate being used on
patients with infected war wounds [337] as well as in ulcers [338] resulted in healing. Magnesium
dietary supplementation was recently found to be beneficial to diabetic foot ulcer healing in a

clinical study. [339]
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Figure 2-6: Summary of literature reported effects of iron, copper and magnesium level changes
on cells types and stages of wound healing. Elevated iron is reported to be detrimental to the healing
process and can increase the reactive oxygen species (ROS) production. In contrast, Magnesium is
reported to decrease the respiratory burst and increase some functions of fibroblast. Copper is

reported to mostly affect the proliferation phase.

Protons and Hydroxide ions: pH

pH is the negative logarithm of proton (H*) concentration. Protons intervene in cell metabolism
through proton pumps and is involved in many reactions and mechanism (NADPH/NADP+
conversion, Energy production through the ATP mechanism, etc.). pH influences molecular

conformation and therefore their activity, and can change protein and enzyme activity. [340] In the
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case of wound healing, proteases and metalloproteases are the most prevalent enzymes affected by
pH.[341, 342] It also directly influences the chelation properties of metallic ions: most chelating
agents are unstable at low pH, whereas at high pH metals tend to form insoluble hydroxides which
are less accessible to chelating agents. [343]

Physiologically skin surface has an acidic pH (4 to 6). [344] After wounding, the pH of the wound
evolves: in acute wounds the pH is acidic (<6), whereas in chronic wounds the pH is usually found
to be near neutral (>7.4). In these wounds a local increase of ammonia concentration and
dissipation of CO> is responsible for a pH increase [344, 345]; such alteration can turn an acute
wound into a chronic one. pH modulation of chronic wounds has a potent effect on their healing
[346]: it has been reported that acidification of wounds was found beneficial for chronic wound
healing by having an antibacterial effect and neutralizing cytotoxic effects of ammonia [347-349]
by keeping it in the less toxic ammonium form. Additionally, low pH causes oxygen release from
heme into surrounding tissues [345, 349] and a decrease protease activity slowing degradation of
the extracellular matrix. [342, 346] Some reported influences of pH on wound healing process are

summarized in Figure 2-7.

Inflammation

Neutrophil activity of is pH related. The respiratory burst is optimal at pH 7.2 and will decrease
with higher or lower pH. Hydrogen peroxide production can be increase by an alkalization of the
extracellular space as well as their apoptosis. [350] On the contrary, low pH delays neutrophil
death, inhibiting reactive oxygen species production and enhancing neutrophil endocytosis while
diminishing their killing ability. [350-352] Similarly, an increase in pH causes an augmented

production of hydrogen peroxide by monocytes. [353]
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Extracellular acidification can cause macrophages to activate caspase-1 and release pro-
inflammatory cytokines thus aggravating inflammation. [354] It is to be noted that different types
of pH changes, for example metabolic acidosis caused by different sources (Lactic acid, HCI)
exhibit different results on immune functions: Lactic acid will exhibit anti-inflammatory effects

and pro-inflammatory for HCI. [355]

Proliferation

pH influences proliferation and migration of fibroblasts. It as demonstrate in in vitro scratch wound
model that a pH increase from 7.4 to 8.4 causes a decrease in fibroblast proliferation and migration.
[356] In contrast, it was shown that alkaline pH (pH= 8.5) could increase proliferation while
decreasing the migration. [357] pH also affects keratinocyte behavior, it has been shown that
lowering the pH was deleterious to the cells for both proliferation and migration. [358] Proliferation
was found to be optimal in slightly alkaline environment, but migration decrease in both acidic and

alkaline. [357]
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wound healing.

pH modification in wound healing

The use of dressings in wound care alters the wound bed pH. Many available dressings (Fibers,

hydrogels, hydrocolloids, and polymers) can absorb wounds exudate thus modifying the pH of the

wounds as an unintended side effect. [359-361] Acidification has been used to improve impaired

wound healing and has been found to be beneficial for wound closure in most cases for both clinical

and clinical studies. [341, 342, 345-349, 362] Direct application of an acidic dressing on a wound

is not sufficient to maintain its pH for a long period, [349] but different types of materials such as

manuka honey, sodium carboxymethylcellulose fibers (pH 4.51), protease modulating collagen
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cellulose (pH 2.3), Poly(ethylene glycol)/Alginate hydrogel dressings loaded with acrylic acid,
have been shown to actively modulate the buffering properties of dressings. [363, 364]

In contradiction to the animal and clinical studies, Kruse et al. have shown using titanium chambers
implanted in rats that contain culture medium buffered at different pH [357, 365] that prolonged
exposure of the wound to an acidic environment prevents wound closure and re-epithelialization,
whereas an alkaline environment did not have a negative impact on wound closure or re-
epithelialization when compared to physiological pH. This suggests that a temporary exposure to
acidic conditions is more beneficial to heeling than full time exposure and that a on term exposure

to an alkaline pH (8.5) would be beneficial for wound healing.

Honey has long been used as a wound dressing [366, 367], and has been demonstrated to be
beneficial to wound healing. [368, 369] Its acidic pH (3.2 to 4.5) [370] is involved in its anti-
bacterial activity and wound healing properties. [371, 372] It is however a complex mixture and it
is difficult to ascertain to what extent its pH is responsible for its healing. Indeed, its high osmotic
potential, the high glucose content and its ability to produce hydrogen peroxide [373] could all also
potentially account for a part of the alleged effects. In contrast, other reports have found that there
was insufficient evidence that honey was beneficial to healing [374] it had no significant effect on
legs ulcers [375] or even appeared to delay healing of burns when compared to surgical treatment.

[376]

Carbon Dioxide, Bicarbonates and Carbonates
Carbon dioxide is an end product of cellular respiration in organisms that obtain energy by breaking

down sugars, fats and amino acids with oxygen as part of their metabolism.
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Carbon dioxide is soluble in water, in which it reversibly forms H>COz3 (carbonic acid, a weak
acid), the relative concentrations of CO2, H.COg, and the deprotonated forms HCOz3™ (bicarbonate)
and COs*(carbonate) depends on the pH. In solution, it can easily bind with metals such as calcium,
magnesium, lithium, etc., to form carbonated compounds with a limited solubility. Not often
studied as it is usually associated with metals (Ca, Li) that have physiological effects. The buffering
effects of carbonates also augment the difficulty of the studies as it can induce a pH change. HCOz
is involved in cell homeostasis through different chlorine/sodium transporters and cotransporters
and will serve to regulate pH. Acute carbon dioxide exposure resulting in elevated levels in the
blood (hypercapnia) is accompanied by respiratory acidosis which decreases serum pH. Oxygen
binding to haemoglobin is influenced by carbon dioxide concentration (Bohr effect)[377]: the
carbon dioxide entering the tissue capillaries promotes the release of oxygen by decreasing the
blood oxygen affinity, and the corresponding decrease in pH promote the release as well. Influences
of carbon dioxide, bicarbonates and carbonates level alteration on the wound healing process are

summarized in Figure 2-8.

Haemostasis
Sodium bicarbonate (NaHCO3) have been demonstrated to amplify platelet aggregation [378], the
use of solid carbon dioxide (-80°C) appear to shortened haemostasis time [379, 380] (mainly due

to freezing).

Inflammation
It augments the synthesis of nitric oxide in alveolar macrophages [381] and also reversibly inhibit

TNF and interleukin-6 expression in different macrophages, known for their ability to promote
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inflammation and their association with tissue injury, suggesting that hypercapnia would have anti-

inflammatory effects. [382]

Proliferation

Exposure of fibroblasts to elevated levels of carbon dioxide to 7.5 and 15% (5% is the usual
concentration in vitro) did not appear to promote cell death but decreased cell metabolism. [383]
It was suggested that hypercapnia may contribute to the promotion of vascular regeneration and
tissue repair therefore wound healing [384], depending on its level, timing, and duration, as well
as the prevailing oxygen tension: a 10% carbon dioxide exposure up to 48 hours has been shown
to supports the maintenance of endothelial integrity and homeostasis by promoting wound repair
that has been compromised under hypoxic conditions. carbon dioxide also augments the synthesis

of nitric oxide in cerebral endothelial cells. [385]

Carbon Dioxide Bicarbonates and Carbonates in wound healing

Often associated with calcium (under CaCOz form), the direct effects of carbonates are rarely
investigated but utilization of carbonate salts (discussed previously) has resulted in interesting
positive results on wound closure [152], or as haemostatic agents. [386] Carbonate enriched hot
water has been demonstrated to significantly improve wound closure [387] however the influence
of the other ions potentially beneficial to the healing (e.g.: calcium) was not studied. Local delivery
of carbon dioxide releasing microparticles has been shown to improve blood flow, wound closure

as well as micro-vessel formation and collagen deposition. [388]
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Nitric Oxide (NO)

Nitric oxide or nitrogen monoxide (NO) is a gas. It is one of the principal oxides of nitrogen and is
a free radical with a short half-life that will react with water and oxygen to form nitrite and nitrite.
[389] It is enzymatically produced by different human and animal cells from L-arginine through
different calcium dependent Nitric oxide synthase isoforms (neuronal NOS (nNOS) in nervous
tissues [390], endothelial NOS (eNOS) by the endothelium [391]) an calcium independent
inducible NOS (iNOS) by the immune system. [392] The synthesized NO is involved in many
different physiological and pathophysiological processes, its effects on vasodilation have been
extensively studied [393, 394], it be used as a neurotransmitter, and has anti-neoplastic, anti-
microbial, and anti-proliferative effects. [395] Figure 2-8 summarizes some of the literature

indicating which phase of wound healing may be affected by altering nitric oxide levels.

Haemostasis

During haemostasis, NO can act as an inhibitor of platelet and leukocyte aggregation [393, 396] in
response to different stimuli, and impairs platelet adhesion to the endothelial cell. [397] It has been
demonstrated that the inhalation of NO was resulting in a prolongation of the bleeding time in
animals [398], and was controlling blood fluidity in humans. [399] Intravenous injection of NO
generating agent resulted in a decreased inactivation of tissue-plasminogen activator by

plasminogen activator inhibitors and an increased fibrinolysis. [399]

Inflammation
During the inflammation phase human PMN produce NO [392, 400] to modulate different
physiological functions and its effect are well documented. [401, 402] NO inhibition significantly

enhances neutrophils chemotaxis in a dose dependent manner and downregulate neutrophils
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recruitment. [403, 404] NO reduces neutrophil adhesion to endothelial cell, [403] plays a key role
during the respiratory burst as a messenger and as a reactive specie [405] ; it regulates as well their
apoptosis through caspase 8 cleavage and caspase 9 activation that are enhance in presence of NO.
[406] Similarly, macrophages are capable to sustain and high NO release initiated by inflammatory
cytokines for a cytostatic or cytotoxic purpose against bacteria, fungi, tumor cells, etc. [407] NO

also up and down regulates expression of different cytokines, chemokines and growth factors. [408]

Proliferation

The effects of NO on endothelial functions has been extensively studied. [394, 409] On one hand,
increased levels of NO were associated with an inhibition of vascular smooth muscle proliferation,
decreased VEGF production [410] and decreased collagen | and 111 production in endothelial cells
[411] ; a suppression of NO formation on the other hand was associated with an increased smooth
muscle cells proliferation. [409]

VEGEF stimulates production of NO from rabbit and human endothelial cells via upregulation of
eNOS [412], and also stimulates proliferation of postcapillary endothelial cells through the
production of NO. [413] Results regarding NO stimulation or inhibition of VEGF production
remains debated as there is reports of different NO-generating agents having contradictory
effects.[414]

Fibroblasts can be stimulated by cytokines to synthesize NO, while wound-derived fibroblasts
synthesize NO spontaneously. [415] NO has been however associated with a decrease fibroblast
cytotaxis and an increase of collagen production. [416] NO releasing nanoparticles applied to a
fibroblast in vitro scratch model resulted in an improved fibroblast migration and collagen type |
and |11 deposition. [417] Similar results were observed with NO-releasing gel. [418] Keratinocytes

respond to NO-donating agents in a biphasic manner with increased proliferation and decrease
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differentiation at low concentration, and increased cytostasis and increased differentiation at high

NO concentrations. [419, 420]

Nitric oxide modulation in wound healing

On wounds, the use of NOS inhibitors topically applied or by intraperitoneal injection, resulted in
decreased epithelial proliferation in different models (i.e.: photodamaged skin [421], of skin
excisions [422] and burns [423]).

NO production can be increased by up regulating NOS using statins. Oral treatment [424], topical
application as a cream [424] or a dressing [425] or a combination of both cream and oral [424] in
normal rats or in type | diabetic rat model has been shown increase NO level in the wounds and
resulted in improved healing speed.

L-Arginine is the substrate for NOS, and has been shown to improve collagen deposition and
wound strength in both animals and humans. [199] L-arginine supplementation resulted in an
increased NO level in the fluids of incisional wounds in normal and diabetic mice and was
associated with increased breaking strength and collagen deposition. [426, 427] Similar results
were observed in wound healing following trauma/haemorrhagic shock. [428] On burn wound
model in rats L-Arginine supplementation affect positively epithelialization and accelerated the
synthesis of reparative collagen in a dose dependent manner. [429] On the contrary, L-arginine
supplementation had no effect in NOS-Knock out mice. [427] A comparison between oral and
topical delivery demonstrated that a systemic application was leading to more VEGF and NO
expression and was resulting in healing improvement in incisional diabetic wound model in
rats.[430] In humans, L-arginine supplementation has been shown to promote pressure ulcer

healing in diabetic patients, in a dose independent manner. [431]
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Nitric oxide delivery in wound healing

NO release has been achieved using different NO-generating agents that will fit different uses
depending on the purpose of the NO release (intravenous injections, topical application, etc.). They
have been associated to different carriers to help the localization and timing of delivery with
dendrimers, polymers, nanocarriers, liposomes, etc.; or associate to applicators to applicators for
topical applications (gels, pastes, oil, etc.). [432, 433] On wounds the use of NO-releasing dressings
(gels, nanoparticles) on excisional wounds [418, 434-436] or ischemic excisional wounds [437],
resulted in lower amount of inflammatory cells, a faster wound closure related to an acceleration
of collagen deposition and granulation tissue formation. [418, 434, 435, 437] However Schanuel
et al. reported having a higher number of inflammatory cells with NO-generating agents related to
an excess of NO despite observing a similar healing then the other studies.[435] NO increase also
has been associated with an increase blood vessel density in wounds [417, 435, 436] as well as
epithelialization. [417, 434, 437] Currently commercially available NO-generating use
nitroglycerine and are dedicated to preventing chest pain caused by angina (Nitro-bid, Nitrol), or

to relieve pain in anal fissure (Rectiv).
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Figure 2-8: Summary of reported effects of changes in levels of carbon dioxide, bicarbonates,
carbonates and nitric oxide level changes on cells types and stages of wound healing. Carbon
dioxide, bicarbonates, carbonates are linked to NO production which affects all phases of the

process.

Manganese

Like other metals, manganese can complex organic molecules and influence the activity of several
enzymes. It is relatively non-toxic, and is essential to human health as it acts as a co-factor of
enzymes, is required for nerve and immune cells normal development and maintenance, and

regulation of blood sugar and vitamins. [438] Its antioxidant properties are due to Fenton-Haber-
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Weiss type reaction, modulating ROS [439, 440] in a free form. When bound to superoxide
dismutase it can affect collagen contraction and has been found to accelerate wound healing in
diabetic mice. [441, 442] Like magnesium, manganese can accelerates factor-VII induced
coagulation [323] only in the presence of calcium ions. It also has been found to enhance

keratinocytes migration through the modulation of integrins expression. [214, 242, 243]

Concluding remarks

Wound dressings and the healing enhancement (increasing healing speed and quality) are two
components of wound care that lead to a proper healing. Wound care today consists mostly in
removing waste and necrotic tissues from a wound, preventing infections, and keeping the wounds
adequately moist. There are many types of wounds, and the wide variety of wound dressings
available makes it relatively easy to find a fitting dressing that would achieve these goals. Creation
of an adequate environment is however challenging because of the local disruption of
vascularization the local environment is lacking oxygen, nutrients, and has a modified ionic and
molecule concentration which may limit the healing process. The ionic concentration change may
affect ionic pumps, energy production, chemotaxis, etc. If re-establishing oxygen has been
considered and partially achieved using oxygen permeable dressings and other medical devices,
re-establishing the ionic balance has not been thoroughly investigated. Some studies have shown
that in normal wounds the exudate content of some ions was not significantly different than plasma.
[443, 444] If similar results were observed in chronic wounds, the study was limited in number of
patients and did not differentiated between the types of chronic wounds. Furthermore, of the ions

presented in this review, only calcium, magnesium and bicarbonates have been quantified. [444]
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Paying attention to wounds and wound exudates inorganic content in correlation with the types of
wounds and re-establishing the “balance” could possibly allow to further improve wound healing

outcomes.

Today’s research is mostly focusing in enhancing healing using cells [445], growth factors [446],
pro-regenerative dressings [447, 448], etc. to increase cells recruitment, migration and
proliferation; and meet different grades of success. Most of these “healing enhancers” are not
available clinically and are under in vitro/ in vivo evaluation and will have challenging regulatory
requirements. Some however are commercially available like Dynamatrix® products, containing
FGF-2 and TGF-B, and dedicated to being used for bone regeneration and healing of periodontal

defects, for gingival augmentation, to maintain or enhance alveolar ridges.

Review of the literature shows that Bioinorganic could be an opportunity to enhance healing to an
extent (Table 2-2), using inorganic compounds for which some are already approved for different
use (Calcium alginate as a dressing, systemic Deferoxamine Mesylate injections, Copper sulphate
as food additive, etc.). Due to the overlapping nature of wound healing phases, finding a single
inorganic agent to improve wound healing is unrealistic: the outcome of the healing process is the
sum of all its stages, and a constant addition or removal of a molecule or ion all along the process
may not be in the best interest of the process as an alteration of one step might interfere with another
one by slowing it down or even impairing it. There are a great number of factors that can impair
wound healing, some of which can be predicted and targeted to improve healing outcomes. For
example, Bevacizumab is a chemotherapeutic agent that targets VEGF and impairs angiogenesis
and often results in surgical wound complications. [449] Similarly, glucocorticoids have a negative

impact on fibroblast proliferation and collagen production which could be answered by pH
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modification or the use of oxygen. [449] Considering this precondition, adding to post-surgical
wound care bioinorganic compounds that will promote VEGF-producing cells (calcium) and/or
VEGF release (Boron, Hydrogen peroxide, etc.) may one day allow to preparation of personalized
dressing formulations.

Different wound types and different wound healing stages mean that it is hard to say that changing
one ionic concentration consistently throughout will have a beneficial outcome. This review has
not discussed infection a risk associated with large and long-term open wounds, and there is a
revival of interest in pre-antibiotic era antimicrobials such as silver and peroxides [450]now that
antibiotic resistant bacteria are becoming a prevalent problem.

Most researchers envisage a topical application yet in a poorly vascularized wound it is not clear
how effective delivery can be. There have been studies considering systemic injection notably the
work of Kawai et al [152] in which calcium chloride and calcium carbonate were delivered
systemically, but for practical day to day application the risk and difficulty associated with such an
injection limits the approach. As described in this review, some pre-existing dressings already have
been adapted to deliver ions. [254, 364, 418, 435, 451].

Although some studies have shown the promising effects of bioinorganics in wound care, the level
of clinical and even preclinical evidence to support their use is low. Some of the main advantages
of such dressings are their relatively low cost, long term stability, and relatively well-established
safety profiles: zinc oxide, copper sulphate, magnesium chloride, etc. are already approved by
health authorities for consumption and some for topical application.

Many materials that are used in wound care already alter inorganic ion concentration even though
that is not their intended mode of action, for example absorbents based on alginate hydrogels can
either complex or release cations and chitosans have a high affinity for some cations and anions.

[452]
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An important role of biomaterials science might be to produce test systems that can isolate
interrelated physical and chemical effects, for example by using bioglasses, to understand better
how materials can have a beneficial biological effect on wound healing. The encouraging work of
Sun et al [447, 448] reported that burns could regenerate a mature epithelial structure with hair
follicles and sebaceous glands simply by treatment with a proangiogenic hydrogel with degradation
profiles appropriate for each stage of healing. Biomaterials have historically sequentially been
limited first by availability of natural substances and then by a lack of understanding of wound
biology and more recently by an incomplete understanding of how materials can modify the body’s
normal progression of wound repair. By better appreciating how ions either deliberately released
or as degradation products may be used to manipulate healing environments it may be possible to
further improve healing with cytokine, growth factors, and cell-free materials offering simplified

treatments to a growing healthcare problem.
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Table 2-2: Summary of literature reported effects of the different ion concentration changes presented in this review on the different

cell types involved in wound healing (C*: carbon dioxide, bicarbonates and carbonates; concentration increase: t upregulate, \

t ! ; |

downregulate; concentration decrease: upregulate, ¢ downregulate;

upregulate, ™ downregulate; lon chelation/blocker:

intermitent changes; > Optimum range.)

Neutrophils Macrophages Endothelial cells Fibroblasts Keratinocytes
Ca 14 J Respiratory burst [131, t Chemotaxis [134, % Chemotaxis; t Chemotaxis; t Differentiation
132] 135] proliferation [141] proliferation [137] [137]
Chemotaxis; I Proliferation [137]

proliferation;
collagen deposition; NO
production [142-149]

H202 ¢ ROS production [172] t VEGF expression % Chemotaxis;
[177] proliferation; VEGF
production [160, 173-
176]
02 l Respiratory burst; 1 NO production [198] % Proliferation [191, % Chemotaxis,
VEGF production [188, 192] Proliferation,
189] 5o Collagen synthesis differentiation [191,
TGF; VEGF; TNF = [197] 193]
production [189] t Chemotaxis [173]
Zn ¢ Chemotaxis; % Chemotaxis [242,
phagocytosis [240] 243]

1 ROS production [240]
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B I Vessel formation 1. Chemotaxis; Chemotaxis;
[216] Proliferation; Collagen production
Collagen synthesis; [214, 215]
PDGF; TNF; TGF; FGF
production [210]
Fe ] Activation [265] t ROS production  Ji  Chemotaxis;
[267] proliferation [274]
i HIF expression
[271, 272]
Cu % Proliferation; Vessel % Collagen synthesis t Chemotaxis;
formation; VEGF ; [315] VEGF production
FGF production [298] [242, 299, 303]
Mg 4 Activation [327] t Chemotaxis;
I Respiratory burst proliferation [329-
[328] 333]
pH .‘u’ Respiratory burst ‘-9, Debrisand (75-g5: Chemotaxis;  (75_gs: Chemotaxis;
[350] = bacterial proliferation proliferation
Vo Apoptosis [350] scavenging [342] [357, 365] [357, 365]
-~ Respiratory burst  }>¢; ROS
Y2t 1350.352] " production [353]
Cc* NO NO production[385] | Proliferation[383]
production[381]
TNF production
[382]
NO ¢ Apoptosis [406] Chemotaxis, Chemotaxis;
4+ Chemotaxis [403, 404] Collagen synthesis proliferation [419,
[416, 417] 420]
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Chapter 3 - Anti-necrotic oxygen releasing wound dressings

Anti-necrotic oxygen releasing wound dressings
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Abstract

Insufficient or damaged vascularization is a contributing factor to delayed wound healing in
commonly encountered clinical conditions that impair healing and may occur due to ageing,
diabetes, radiotherapy, etc).[93] Presently treatment options for ischemic wounds are limited and
eventual loss of tissue is often unavoidable. Indeed, tissue necrosis may occur at the center of large
ischemic wounds and spread to the surrounding healthy tissue causing tissue loss greater than the
original wound. Targeting this regenerative roadblock, we developed a degradable biomaterial gel
system to deliver oxygen directly to tissues. This study aimed to evaluate preclinical efficacy of
this oxygen-producing dressing [49] (named O2patch) to promote healing and prevent necrosis in
large ischemic wounds. The use of the O2patch significantly improved wound closure in wounds
with restricted blood flow (P<0.05). The exposed cartilage rapidly became necrotic in the control
group, but oxygen delivery allowed to significantly retain its viability. The necrotic tissue amount
was significantly different between both groups (P<0.01) suggesting that by locally delivering
oxygen, it was possible to limit secondary necrosis while the healing process is taking place. This
first study provides compelling proof of concept that in situ oxygen delivery with biomaterials can

augment conventional treatments and improve tissue survival.
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Introduction

Skin is the largest organ of the human body. When the skin integrity is disrupted, a tightly regulated
cascade of external and internal stimuli and biochemical events is set into motion to repair the
damage (i.e.: hemostasis, inflammation, proliferation and maturation), referred to as wound
healing. [92, 93] Disruption of the normal healing process can result in non-healing wounds or
delayed healing (chronic wounds). This impaired healing is often a consequence of the patient pre-
condition (e.g.: diabetes, age, ischemia) or of external factors (e.g.: infections) [96]. In the U.S.
alone, 6.5 million suffer from chronic skin ulcers [92], making restoration or enhancement of
wound healing one of the major challenges in healthcare.

In ischemic wounds, reduction or cessation of blood flow limits the supply of oxygen and nutrients
and wastes removal thus delaying the healing process or even preventing it. Similarly, surgical
wounds from the incisions made during surgery can progress to chronic wounds if the blood supply
was damaged or the wound care inadequate. Reestablishment of vasculature through capillary
regrowth takes time during which necrosis can occur.

In blood, the glucose concentration is regulated between 1.4mmol/L and 6.2mmol/L, [38] and
oxygen concentration 104 to 146umol/L.[7] According to the overall reaction of ATP production,

during ischemia the first limiting factor to energy production in cells is oxygen.

The concept of delivering oxygen to poorly vascularized tissues either as gas or an oxygenated
perfused solution is well known and life-saving but requires a functioning vascular network or the
recreation of vascular conduits. Hyperbaric oxygen therapy (HBOT) which consists in the medical
use of oxygen at a higher pressure than of the atmospheric pressure to increase systemic oxygen
levels in the body, has been widely clinically used and associated with more rapid chronic wound

healing [53-55] but is not always found to bring statistically significant improvements to healing.
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[56] HBOT can also have serious drawbacks like barotrauma, pneumothorax, oxygen toxicity,
seizures, etc. [200], and its effect is temporary as oxygen levels are systemically elevated by HBOT
for the 1-2 hour treatment time, but returns to baseline within minutes after leaving the chamber.
[50] Previously reported local oxygen delivery using perfluorocarbons or inorganic peroxides and
percarbonates either enabled the temporary delay of necrosis appearance in ischemic skin flap
models [69], or increased wound closure, re-epithelialization, epidermal thickness, collagen
content of dermis and neovascularization [201]. Recently polymer/PFC-based oxygen loaded
particles have been prepared as a mean of oxygen delivery [202], but only increased oxygen level
in the blood during 2h in vitro. The use of inorganic peroxide is not straightforward since they react
very rapidly when in contact with water and can result in both the production of oxygen and
hydrogen peroxide that is potentially cytotoxic. Traditionally, inorganic peroxides have been used
in agriculture to prevent root rot and in aquaculture to sustain fish in high density caging or as
remediation after oxygen-reducing pollution events.

Hydrogen peroxide has long been clinically used in wound management for its bactericidal
properties, fungicidal and sporicidal [180] and as an hemostatic agent. [169] It was shown to
facilitate healing in full thickness wound model in mice [171, 181] when used at low concentrations
(10 to 50 mM), it was not found beneficial when used at a higher concentrations (166 to 975mM)
[182] and even retarded wound healing as a result of its cytotoxicity. Clinical studies on hydrogen
peroxide [183] and topical ointments containing hydrogen peroxide [184] have been developed to
treat cutaneous infections and were found to be beneficial to wound healing and skin graft ‘take’
in the cases of burns and ulcers.

An ischemic wound model that can replicate some features of diabetic ulcers was developed by
Ahn & Mustoe (1990) [67, 453] and consists of four full thickness 6mm diameter skin wounds on

an ear in which blood flow is compromised. While adequate for quantifying healing and closure
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rates the wound is not big enough to develop necrosis. We modified it first by increasing the size
of the four defects to 15mm. While necrosis was reproducibly induced, we observed that healing
varied depending on which side of the ear was measured, presumably because the inhomogeneous
blood flow. We further modified the model by placing the three 15mm wounds along the center
line of the ear and found this minimized variability and allowed better comparisons. We developed
a new oxygen delivery bioinorganic dressing able to maintain oxygen delivery for three days and
measured oxygen in the wound bed at the interface between the skin and the dressing. Experimental
treatment maintained cartilage viability and promoted wound healing, and more importantly greatly

reduced necrosis in this model of impaired wound healing.

Methods

O2patch preparation

O2patches were prepared by preparing a suspension of 1g CaO2 and 4g FezO4 in 10% (w/v) PCL
solution in chloroform. The resulting mixture was cast into 3x3cm molds and left to dry for 24h.
O2patches were immersed in ethanol for 30 minutes and left to dry under a sterile hood, they were
then embedded with 6mL of a sterile 3% (w/v) sodium alginate and crosslinked with 6mL of

sterilized CaCl; (1M).

Oxygen & Hydrogen peroxide measurements

In vitro release of oxygen and hydrogen peroxide was performed by immersing O2patches in 40mL
water at 37°C and compared to a non-oxygenating alginate patch. Measures were performed at 24,
48 and 72h (N=6 per group). Oxygen release was measured on the surface of the O2patches using

an oxygen probe (AL300 Oxygen Sensor Probe, Ocean Optics) calibrated using water flushed with
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0, 21, 50% dissolved oxygen at 37°C. Hydrogen peroxide was measured using a peroxide

measurement kit (Pierce™ Quantitative Peroxide Assay Kit (Aqueous), Thermofisher, Canada).

Surgical methods

Five New Zealand white rabbit (3.5 to 4 kg) were allowed to acclimatize for 7 days prior to
intervention. Anesthesia pre-medication was induced with .M. injection of 5 mg/kg of xylazine
and 0.75mg/kg of acepromazine followed by I.M injection of 20-35mg/kg of ketamine. An
isoflurane mask was used for anesthesia induction. The rabbits received 0.12mg/kg of
Buprenorphine slow release prior to the surgery. Following induction, the rabbits were intubated,
and anesthesia was maintained with isoflurane 1-5% endotracheal intubation inhalation. A single
dose of Baytril (5-10mg/kg) was given pre-operatively. The same dose was given post-op to
prevent wound infection. Aseptic procedures were carried out after the animal showed signs of
being fully anesthetized. The animals were placed in sternal recumbency, the ear shaved, and the
cutaneous surface was disinfected with a chlorhexidine, Lidocaine/Bupivacaine (dilute to 2 %, 20
mg/ml) was administered prior the surgery (during preparation). Ischemia was induced by arterial
ligation and defects were performed following a modified protocol previously described in
literature [453]. Briefly, to simulate ischemia, three vertical incisions were made closely to each of
the 3 main ear bundles (composed of the artery, vein and nerves) at a distance of 1cm from the base
of the ear. The central artery was ligated but venous circulation was preserved. Both the artery and
vein of cranial bundle were ligated. The caudal bundle was left untouched. Connectives tissues in
between the bundles were sectioned to remove peripheral vessels. Vicryl 4-0 non-resorbable suture
material was used to ligate the vessels. Three 15mm full-thickness skin wounds were created on
each ear. Care was taken to remove both the skin and the perichondrium to expose the cartilage.

The wounds were then properly cleaned using saline and dressed. For each rabbit, ears received
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either O2patch or a non-oxygenating alginate patch as control (3 defects per ear, 5 ears per group).
The dressings were changed every 3 to 4 days up to 17 days, the rabbits were anesthetized using a
combination of butorphanol 0.2mg/kg and acepromazine 1mg/kg for induction, followed by with
isoflurane 1-5%. Bandages were then removed, and the wound cleaned using saline and gauzes.
Wound vascularization was assessed using injections of a 10% fluorescein solution (15mg/kg) and
a black light (A=395nm), pictures were taken 15min after injection.

Sacrifice was performed after sedation of the animals using intramuscular injection of xylazine and
0.75mg/kg of acepromazine followed by an intravenous overdose of Sodium pentobarbital

(Euthanyl) after sedation is confirmed.

Dressing preparation and change

Prior the wound dressing, O2patches were washed with saline. The wounds were cleaned, and the
dressing applied directly on the wounds, then covered with a Tegaderm dressing. 3M surgical tape
was used to completely recover the membrane and Vaseline was applied on the whole dressing. A

dressing wrap was used to keep the dressing in place.

Wound size measurement
At each dressing change pictures of the ear were taken using standard lighting, zoom and distance
with a scale included in the image. Dimensions of the wounds were calculated from the pictures at

day 17 after euthanasia using ImageJ software.

Histology and Histomorphometry
After sacrifice, were individually collected and fixed in 4% paraformaldehyde for 24h. Samples

were cut in half to expose the center of the wound and underwent paraffin embedding and H&E
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staining, pictures were taken under microscope. Area of necrosis, epithelialization and granulation

tissue were measured using ImageJ software.

Results

O2patches allowed increasing significantly the dissolved oxygen concentration of 40mL water
from 263+4pmol/L (~21% dissolved oxygen) to a maximum of 513+59umol/L (~42%) at day 2
and a minimum of 457+22umol/L (~37% dissolved oxygen) at day 3. Hydrogen peroxide release
peaked at day 1 with a maximum concentration of 1101+89umol/L (Figure 3-1).

Oxygen concentration at the interface of the ear and the gel was measured after dressing the wound
at 564+146umol/L for O2patch and 219+28umol/L for alginate (N=25 and 10 respectively,
P<0.01). Oxygen was measured before removal of the dressing at 117+37umol/L for O2-gel and

55+59umol/L for alginate (N=21 and 10 respectively, P<0.01).

A B C
umol/L umol/L umol/L
- %k
600 [ Control "% 1600 - 800 *%
500 - mO2patch EEm * % [JControl  ® O2patch (
| * % 600
400 1 1200
ns * % * %
300 - o 800 - 400 * %k
200 T
400 - 200
100 - ﬁ
0 0 0
Oh ‘ 24h ‘ 48h ‘ 72h ‘ 24h ‘ 48h ‘ 72h Control OZPatch‘ Control O2Patch
Dissolved Oxygen ‘ Hydrogen peroxyde Wound dressing ‘ Dressing removal

Figure 3-1: In vitro dissolved oxygen (A) and hydrogen peroxide (B) released from O2patches and
non-oxygenating alginate dressing measured in 40mL deionized water at 25°C. The dotted line in
(A) represents the standard oxygen concentration in water at 25°C, and (B) the potentially harmful
concentration of hydrogen peroxide. (C) Represent the oxygen concentration at the interface
between the wound and the O2patch after dressing of the wound and before its removal. (ns= not

significant, **P<0.01)
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Wound closure at day 17 was 54+29% for the group receiving O2patch versus 31+23% for the
group receiving alginate only (Figure 3-2). For the alginate group, the exposed cartilage appeared

to be thinner as soon as day 4 and sign of full thickness necrosis could be observed at day 7, whereas

in the O2patch group this was rarely observed.

D

Wound

closure *
80%

60%

40%

54%
20%

0%

Control O2patch
Figure 3-2: Representative photograph of the defects (A) after surgery and (B) and (C) dressed 17
days with alginate or O2patch, respectively. (D) Wound closure at 17 days, mean = SD, expressed

as area of the wound divided by its initial area (N=15 for each group; *p<0.05).

Fluorescein injections at day 0 and 4 gave rise to weak or no fluorescence on the edges of the
wounds for both groups. At days 7, 11, 14 and 17 the surface of fluorescence of the wounds
increased but was still limited to the edges in the control group, whereas the fluorescence was
partially covering the wounds in the experimental group as soon as day 7. The quantification the

fluorescent surface exhibited significant differences between the two groups (Figure 3-3).
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Figure 3-3: Ear photograph under fluorescent light (395nm) 15min after injection of a 10%
fluorescein solution (15mg/kg): (A) Post surgery and (B) digitally extracted fluorescence; and after
17 days treated with control (C, D) or O2patch (E, F). (G) Fluorescence from day 0 to 17, expressed

as the visible fluorescence in the wound divided by the wound total size (**P<0.01).

At day 7, in the control group, 87% of the wounds had visibly detectable full thickness necrosis
and only 40% (N=15 for each group) with O2patch. H&E staining of the paraffin embedder

sections (Figure 3-4) of the center of the wounds exhibited significant differences between the two
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groups. On the outside of the ear, on the edge of the wounds, granulation tissue was visible in most
of the samples for both groups. In the experimental group, a thin coherent epithelial layer was
covering the granulation tissue, whereas in the control group wounds exhibited a wide range of
epithelialization levels, from almost no epithelialization to normal or large clumps of epithelialized
tissues. On the inside of the ear, signs of ischemia were visible in both groups. In the center of the
wounds, in the control group the cartilage was exposed on the outside of the ear and was showing
clear signs of full thickness necrotic skin and cartilage (14 out of 15 wounds). In most wounds of
the experimental group, the outside of the ear was covered with granulation tissue and the cartilage

had disappeared, however some wounds exhibited full thickness necrosis (4 out of 15 wounds).
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Figure 3-4: Representative histological sections (H&E staining) of wounds centers for the control

group (A) and the O2patch treated group (B). Arrow (a) shows full thickness necrosis. Black
rectangles are magnifications displayed in (C) and (D) (respectively control and O2patch groups).
Arrows (b) and (b’) exhibit the epithelial layer, (c) and (c’) live cartilage and (d) and (d’) dead

cartilage.
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Histomorphometric analysis was performed on the H&E stained sections. Each wound section was
split in two parts: top and bottom (Figure 3-5, A). On the top part the amount of necrotic tissue
was not significantly different between both groups. The amount of granulation tissue in the wound
was significantly higher in the wounds treated with O2patch than in the control group (43.7+25.5%
and 27.3+13.9% respectively). Similarly, the epithelialized surface was significantly higher in the
experimental group than in the control (0.85+0.4mm?2 and 0.47+£0.22mm?2 respectively). In the
bottom part, the amount of necrotic tissues and necrotic cartilage was significantly higher in the
control than in the oxygen group (41.7+32.7% and 16.6+19.4% for issue necrosis and 56.5+11.3%

and 32.8+24.5% respectively).
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Figure 3-5: (A) Representative histological section (H&E staining) of wounds centers for the
O2patch treated group, the green rectangle illustrates the top part and the bottom part in orange.
(B) Histogram exhibiting the amount of necrotic tissue surface expressed as necrotic area over total
tissue in the top part. (C) Percentage of granulation tissue expressed as area of granulation tissue
over total volume of the wound. (D) Epithelialized area of the top part expressed in mmz2. (E)
Amount of necrotic tissue surface expressed as necrotic area over total tissue in the bottom part.
(F) Percentage of necrotic cartilage in the wounds relative the total amount of cartilage observed

in the H&E section. (ns= not significant, *P<0.05, **P<0.01)
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Discussion

Local oxygen concentration increased was significant over 3 days in vitro as well as in vivo. HOBT
only increases arterial oxygen concentration to maximum of 700umol/L with several exposures a
day and decrease within minutes when the treatment is over.[50] With O2patch dressing it was
possible to continuously increase significantly oxygen concentration in vivo and in vitro to within
the range of HBOT treatments. Furthermore, hydrogen peroxide release was found to be below

concentrations potentially harmful to the wound healing processes (166 to 975mM). [182]

In this animal model initially developed by Ahn & Mustoe (1990) [67], healing proceeds with a
minimal contraction and all the new granulation tissue comes from the edges of the wound,
signifying that the increased wound closure observed with the O2patch treatment is due to an

augmented tissue formation.

Fluorescein injection allowed clear visualization of the formation of a new functional
vascularization from the edges to the center of the wounds and therefore the formation of
granulation tissue. With this technique it was possible to observe a tissue granulation surface
coverage during the whole length of the experiment. Results observed at day 7 by Ahn & Mustoe
[67] for their ischemic control with a 6mm diameter wound displayed a similar wound surface
coverage by granulation tissue observed in this study with a 15mm wound. Histomorphometric
measurements of the granulation tissue area performed by Chen et al [454] in a similar animal
model (6mm wound) showed that the control group was 40% of the value obtained for the
experimental group at day 7, within the range of what was observed by fluorescence in this study

with a control group exhibiting a fluorescent area value of 30% of the experimental group
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fluorescent area. In a study by Howard and al [455] (6mm wound) the ischemic control has shown
about 5% of granulation tissue coverage and about 55% at 17 days, similar to what was observed
under fluorescence in this study with 12+9% and 41+11% at day 7 and 17 respectively for a 15mm

wound.

Histomorphometry analysis showed the amount of necrotic tissue in the upper part of the wound
was not different between experimental and control groups. The amount of granulation tissue is
higher in the oxygen group, this suggests an increase in proliferation and migration from the cells
forming the granulation tissue composed mostly of fibroblast and endothelial cells.[456] Increasing
oxygen levels in the skin through HBO has been shown to stimulate the reconstruction of an
epidermis by enhancing fibroblast proliferation (in vitro and in vivo) [191, 192] as well as
proliferation, migration, and differentiation keratinocytes. [191, 193] In addition, the work Gordillo
et al, showed that normobaric topical oxygen treatment was associated with higher VEGF
expression in the wound edge tissue in humans. [56] This would correlate with the higher and faster
amount of granulation tissue found in the experimental group. Sub-lethal concentrations of
hydrogen peroxide (up to 500uM) have been also shown to increase VEGF expression in
keratinocytes [175, 176], macrophages [177] and vascular smooth muscle cells [178] through
MRNA expression. Increased VEGF level are also observed in vivo with full thickness wound
models in mice. [171] Furthermore, endothelial cells chemotaxis has been reported to be mediated
through hydrogen peroxide and cyclooxygenase-2 interactions that play an important role in the
promotion of wound repair. [179] These effects combined may have participated to a faster

formation of blood vessels and an improved healing.
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Cartilage is avascular; it receives oxygen and nutrients by diffusion of extracellular fluid from
surrounding blood vessels in the skin. Cartilage consumption of oxygen/nutrients is relatively low
when compared to other tissues. [457] For both groups, observing the wounds under black light
after fluorescein injections exhibited that up to 7 to 11 days more than 50% of the cartilage surface
in the center of the wound does not receive blood which is sufficient to bring it to its ischemic limit
[458, 459], and signs of full thickness necrosis were visible in the wounds at day 7. This suggests
that supplying oxygen directly to the surface of the wound allowed to maintain cartilage viability
while the healing process was taking place, thus preventing cartilage necrosis.

Once necrosis appears in tissues, the cellular content is released into the extracellular space and is
potentially harmful to surrounding cells, which in turn causes secondary necrosis and lead to its
spreading. [460] In wound care, secondary necrosis can be prevented by debriding the wounds and
removing the necrotic parts. In this model the necrotic cartilage was not removed, and necrosis was
left to spread to the bottom part of the ear that should not show signs of necrosis, thus resulting in
a non-healing wound. The necrotic tissues amount was significantly different (P<0.01) between
both groups suggesting that by limiting necrosis occurrence with oxygen, it was possible to also

limit secondary necrosis while the healing process is taking place.

Conclusion

There is no consensus today on the best wound dressings available. Wound care today consists of
wound cleansing, disinfection, closure if needed and dressing. Wound dressings mostly consist in
providing optimum parameters for the healing process that is patient-dependent. Today’s research
consist in creating modern dressings designed to account for the cause and type of wound and allow

modification of the physical parameters of the wound environment, or are bioactive by either
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playing an important role in healing process or delivering bioactive molecules enhancing migration
and proliferation of cells, etc., and is still at an early stage.[461]

Topical oxygen delivery into the wound bed and has been shown to improve healing in chronic
wounds.[56, 58, 59] The different technologies developed and commercialized like portable
oxygen chambers (O2Boot®, O2Sacral ®, TWO2®) are intrusive. Oxygen concentrators
(EPIFLO®, NATROX®, TransCuO2®) require to wear an oxygen generating source but have
been shown to improve ulcer healing in patients.[60, 61] Newer oxygen pre-loaded wound
dressings like Oxyband™ has been reported to improve healing in human burns. [62] More recently
an experimental sodium percarbonate/calcium peroxide based oxygen releasing wound dressing
[64] has also been shown to improve full thickness surgical wound healing. However, topical
oxygen delivery to chronic wounds in clinical settings is not always sufficient to prevent necrosis
[65, 66], and its prevention also rely on the re-establishment of a nutrient supply and wound’s
homeostasis. Studies are focusing on improving healing in patients with impaired healing and not
on salvaging tissues that will otherwise likely undergo necrosis. A local and sustained supply of
oxygen, one of several essential nutrients for most cell types, should in theory prolong ischemic
survival and thereby prevent to onset of tissue loss.

Here we report a modified the method of Ahn & Mustoe [67] to create necrotic ischemic wounds
and the use of oxygen releasing wound dressing with proprietary calcium peroxide formulation
able to maintain tissue viability and prevent necrosis while maintaining the healing process. To our
knowledge this has not been attempted previously and the results are highly encouraging as they

bring a new tool for wound care.
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Chapter 4 - Pilot study of efficacy of oxygen delivery biomaterial for ischemic skin preservation

B. Dalisson!, M. Gilardino?, J. Barralet?

! Faculty of Dentistry. 2 Dept. Surgery, Faculty of Medicine, McGill University

Abstract

Impaired or inadequate blood supply (e.g. in a wound, or an avascular graft) can result in tissue
ischemia. As revascularization can be a slow process, the limited supply of oxygen and nutrients
and the lack of waste removal may induce necrosis, depending of the extent of the wound.
Secondary necrosis can spread to surrounding healthy tissue and treatment options are limited such
that loss of tissue in ischemic limbs or wounds is considered unavoidable. Here we developed a
biomaterial implant able to deliver oxygen directly to tissues and evaluated its preclinical efficacy
in preventing ischemic necrosis and spreading in full thickness random skin flaps. Necrosis of the
distal portion of the skin flap was delayed, but not prevented. Secondary necrosis in the middle
part of the flap however was prevented indicating prolonged survival of skin with restricted blood
flow for sufficiently long for the native vascular bed to re-establish blood supply. This study
indicates that topical oxygen delivery alone cannot completely mitigate necrosis. Further
experimentation is warranted to develop materials that can completely prevent necrosis.
Nonetheless it provides a compelling proof of concept that materials can improve survival of tissue

at least to augment conventional treatments or to gain time until surgical intervention.
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Introduction

The skin flap is an important approach to reconstructive wound repairs. When performing a skin
flap a part of the vascularization of the skin is sectioned which may lead to an inadequate blood
supply and induce ischemia. In addition, comorbidities like diabetes, radiotherapy, etc., may
worsen the outcomes of the procedure. Ischemia is a restriction of blood supply to tissues causing
a shortage of oxygen and nutrients that are needed for cellular metabolism [1] and results in damage
or dysfunction of tissue when delivery fails to meet metabolic requirements. In blood, the glucose
concentration is regulated between 1.4 mmol/L and 6.2 mmol/L, [38] and oxygen concentration is
104 to 146 umol/L.[7] Without oxygen the adenosine triphosphate (ATP) production cycle is
limited to a yield of 2 moles of ATP for 1 mole of glucose. In absence oxidative phosphorylation,
glucose is turned into lactates through glycolysis and the intracellular pH increases. The lack of
ATP leads to various ATPase dysfunctions and a Na*, water and Ca®* accumulation, cell membrane
depolarization, protease activation as well as an increased reactive oxygen species (ROS)
production[40] that will damage cells and lead to necrosis. In addition, in this harmful environment,
the mitochondrial membrane is disrupted and opens its permeability transition pore which further
decreases the ATP production and the releases of apoptotic factors and initiate the apoptotic
cascade.[1, 41] These alterations and thus the degree of tissue injury varies with the extent and
duration of the ischemic period. At the same time, secondary necrosis can spread to surrounding
healthy tissue, and treatment options are still currently so limited that loss of tissue in ischemic
limb or wounds is considered unavoidable.[462]

We developed an implantable biomaterial to deliver oxygen directly to tissues. This study aimed
to evaluate preclinical efficacy of this oxygen-producing biomaterial (O2-implant) to prevent

ischemic necrosis and its spreading in full thickness random skin flaps.
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Methods

Scaffold preparation

700mg PCL was dissolved at 15% (w/v) in chloroform (Fisher Scientific, Canada) and 500mg
calcium peroxide (CaOz; Aldrich, USA) and 1.1g FesO4 nanoparticles (50-100nm; Sigma-Aldrich,
Canada) were suspended in the solution. The resulting mixture was cast into a 7x2cm rectangle,

and was decontaminated by immersion into ethanol for 24h, then left to dry before the surgery.

Surgical methods

Wistar rats (male, 5 to 6-month-old, 500 to 600g, Charles River Laboratories Inc. Montreal, QC,
Canada) were randomized into 2 groups. The control group received no biomaterial, the oxygen
group received the oxygen releasing biomaterial (N=8 per group). All procedures were performed
in accordance with the animal care and use committee. Animals received carprofen (10mg/kg) 30
min prior the surgery, all surgeries were performed under general anesthesia using 2% isoflurane.
Full depth skin flaps of 9x2 cm in size were created on the back.[463] A silicone sheet was placed
over the muscle to prevent revascularization and reperfusion of the flap from the underlying tissue,
then the biomaterial was positioned, and the skin replaced on top of it and sutured. Animals
received carprofen (10mg/kg) every 24h for 3 days post-surgery then slow release buprenorphine
ever three days until the end of the experiment. Animals were allowed free access to food and water
and housed in a 12 h day/night cycle. Five animals were sacrificed at days 6, three animals at day

10 using COa..

Oxygen and lactate measurements
Oxygen release of the scaffolds was assessed using an oxygen probe (AL300 Oxygen Sensor Probe,

Ocean Optics. For in vitro measurements, the scaffolds were immersed in 40mL phosphate-
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buffered saline (PBS) at 25°C in an open beaker (@=5cm; 19.65cm? interface, 2cm liquid depth)
and oxygen content was measured in PBS. For in vivo measurements, the probe was inserted under
the skin flap at 3 different positions namely proximally centrally and distally. Measurements were
performed under anesthesia just after the surgery (day 0) and at day 1, 2, 4, 6, 8, 10. At the moment
of euthanasia sections of the flap were frozen at -80°C and processed using previously described

methods[69] to measure the lactate content of the tissues using a Lactate assay kit (Sigma-Aldrich).

Results

O2-Implants were able to sustain oxygen delivery (Figure 4-1) over 14 days in vitro causing a
significant increase in the dissolved oxygen concentration of 40mL PBS from 256+11umol/L
(~20% dissolved oxygen) to 427+45umol/L after 15 minutes and kept increasing to 586+10 ETC
pmol/L and 637+38umol/L at 1 and 2 days respectively. The concentration decreased to
614+26umol/L, 606+47umol/L, 501+8umol/L, 513+£51umol/L and 544+5umol/L at days 4, 6, 8,

10 and 14 respectively.
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Figure 4-1: Dissolved oxygen released from O2-implant measured in 40mL PBS at 25°C. The

dotted line represents normal PBS oxygen content for comparison.
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Immediately after the surgery the distal part of the flaps appeared slightly blue (Figure 4-2, A, F),
and dark blue at day 1 with some necrosis at the extremity (black color and hard leathery texture).
At day 2, necrosis was visible (black color and hard leathery texture) on the distal portion of the
flap for both groups (Figure 4-2, B, G). At day 4 the dark blue portion that did not became necrotic
turned brown, and slowly turned necrotic up to day 10. The visible necrotic surface was
significantly higher (P<0.05) in the control group than in the experimental at day 6, 8 and 10.
(Figure 4-2, K). In the control group, the necrotic surface area was stable at around 41+12% of
necrotic surface from day 4 to day 8 and increased to 48+2% at day 10. In the experimental group
a similar trend was observed, with a stabilization between 30+£11% and 32+4% from day 4 to 10.

Subcutaneous oxygen concentration was measured after the surgery and at days 1, 2, 4, 6, 8, 10 in
the middle of the three sections. In the control group, no significant differences (P>0.05) in
subcutaneous oxygen level was observed from day 0 to day 10 in the proximal, middle and distal
sections (Figure 4-3). A similar observation was done for the experimental group. The
subcutaneous oxygen concentration was found to be significantly higher in the oxygen group than

in the control, and near physoxic concentration for each section of the flap.
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Figure 4-2: Representative photograph of the skin flap control group at days 0 (A), 2 (B), 4 (C), 6
(D), 10 (E); and for the O2-implant group (F, G, H, I, J). (K) Histogram representing the visible
relative necrotic area over time, expressed as necrotic area (red dotted line in picture (1)) over total

visible flap area (white dotted line in (E)) (*P<0.05).
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Figure 4-3: Histogram representing the subcutaneous oxygen concentration of the sin flap for the
proximal, middle and distal part of the flap for both the control and the experimental group all time
points combined. The dotted line represents physoxic oxygen concentration for comparison (5+2%)

(*P<0.05; **P<0.01).

Lactate mesaurements for each section of the flap did not exhibited significant differences between

the groups at days 6 and day 10 (Figure 4-4)
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Figure 4-4: Histogram representing lactate quantification of each section of the flap for control
and experimental group at days 6 and 10. Results are expressed as absorbance per milligram of

tissue and were not significantly different between groups (P=0.05).
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Flaps were separated into sections (proximal, middle and distal) and then cut in half lenghtwise
parafin embeded and stained with hematoxylin and eosin (H&E) and hematopoietic progenitor cell
antigen CD34 to identify blood vessels. Little diference was visible in the tissue architecture
between both groups in the proximal section when observed under H&E staining (Figure 4-5, A,
B; Figure 4-6, A, B). In the middle sections the control group was exhibiting a larger necrotic area
than the experimental (Figure 4-5, C and Figure 4-6, C). At the interface between the necrotic and
healthy tissue polymorphonuclear neutrophils (PMN) were visible (Figure 4-5, E; Figure 4-6, F),
and less nuclei were discernable as the distance from the proximal section inceased. In the necrotic
protion of the flap ghost cells were visible around the appendages identified as preserved cell
outlines without nuclei (Figure 4-5 D, G; Figure 4-6 G). For both groups the distal section mostly
consisted of necrosed tissues resembling some of the aspects of coagulative necrosis with the
diapearance of the nuclei and appendages. (For clarity puroposes both groups are displayed

together in Figure 9-1)
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Proximal section Middle section

Figure 4-5: Representative histological sections (H&E staining) of skin flap sections for the
control group: (A) proximal section of the flap and (B) magnified picture exhibiting live epidermis
(a) and appendages (b). (C) middle section of the flap (proximal direction to the left) and (D) its
high magnification exhibiting ghost cells around the appendages (c); (E) high magnification of (C)
exhibiting inflammatory cells where? at the interface between necrotic and non-necrotic tissue. (F)
shows the distal section and (G) its high magnification also exhibiting ghost cells around the

appendages (c).
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Proximalsection Middle section

Figure 4-6: Representative histological sections (H&E staining) of skin flap sections for the
experimental group: (A) proximal section of the flap and (B) magnified picture exhibiting viable
epidermis (a) and appendages (b). (C) display the middle section (proximal direction to the left)
and (D) its high magnification also exhibiting live epidermis (a) and appendages (b). (E) Distal
section of the flap and (F) its magnification exhibiting ghost cells around the appendages (c); (G)
is a high magnification of (E) exhibiting inflammatory cells at the interface between necrotic and

non-necrotic tissue.
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Histomorphometric measurement of the relative necrotic area in the skin flaps (epidermis, dermis

and hypodermis) was performed on the H&E stained sections (Figure 4-7). At day 6 the amount

of necrotic tissues in the proximal (0% for both groups) and distal section (100£0% and 86+11%

for control and O2-implant group respectively) of the flaps was not significantly different. In the

middle section necrosis reached 49+37%of necrotic area in the control group and 19+10% for the

0O2-implant (P=0.11, N=5 for both groups). At day 10 the amount of necrotic tissues in the proximal

(0% for both groups) and distal section (100£0% and 87 £13% for control and O2-implant group

respectively) of the flaps was not significantly different. In the middle section necrosis was

significantly higher in the control group with 31 £14% of necrotic area in the control group versus

6+6% for the O2-implant. (N=3 for both groups).
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Figure 4-7: Histogram representing relative necrotic area observed histological sections (H&E

staining) of the different skin flap sections for the control and O2-implant groups at day 6 and day

10, expressed as necrotic area over total flap area (ns= not significant, *P<0.05).
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Immunohistochemistry and CD34 stainting (Figure 4-8; Figure 4-9) exhibited no significant
difference in blood vessel surface bewteen both groups. Measurements of the of blood vessel
density (mm?2 of blood vessels per mm2 of tissue; Figure 4-10) revealed no significant difference
between the proximal (0.239£0.034mm2 and 0.032+0.013mm?2 for control and O2-implant group
respectively) and distal section (0.047£0.004mm2 and 0.146+0.05mm?2 for control and O2-implant
group respectively). In the middle blood vessel density was 0.076+0.036mm2 in the control group

and 0.146+0.05mm2 for the O2-implant.
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Figure 4-8: Representative histological sections (CD34 staining) of skin flap sections for: upper

Image proximal section (A) O2-implant group, (B) control group, lower image distal section

(proximal direction to the left, (C) O2-implant, (D) control group).
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Figure 4-9: Representative histological sections (CD34 staining) of skin flap sections for the

middle section of the flap (proximal direction to the left, (A) O2-implant group, (B) control group).
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Figure 4-10: Histogram representing relative blood vessel density in epidermis, dermis and

hypodermis, expressed as mm?2 of blood vessels per mm? of tissue for of the different skin flap

sections for the control and O2-implant groups at day 6. Results were not significant (P<0.05).
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Discussion

Many different technologies have been developed to address issues encountered when oxygen is
insufficient in vitro and in vivo [83] like HOBT, perfluorocarbon (PFC) technologies, Hemoglobin
based carriers, etc. The particular advantage of the use of peroxide like hydrogen peroxide, sodium
percarbonate and calcium peroxide is to produce oxygen and carry it. That makes peroxides more
suitable for implant design, indeed to produce one liter of pure oxygen less than gram is required
for peroxides, were it would require several hundredth of gram of red blood cells, several kilograms
of PFC or plasma.[464] In this study, the oxygen generating implant was able to release oxygen
using the reaction between calcium peroxide and water. Skin oxygen consumption is approximately
0.38ul/h/mg (~0.017umol/h/mg)[465] equivalent to 2.6g of CaO, for a 7.5g skin flap over 6 days.
Such amount of peroxide would drastically change the subcutaneous pH and result in skin damage.
Hyperbaric oxygen therapy (HOBT) has been shown to improve groin[466, 467] and dorsal[468]
skin flap survival in rats and swine[469] as well as in humans[470], and can increases arterial
oxygen up to 300mmhg (422umol/L). [50] With 500mg CaO: it was possible to maintain in an
open beaker of PBS at concentration significantly higher than its normal content (from 256umol/L
to a minimum of 520umol/L) for up to 10 days, demonstrating that the implant is a steady source

of oxygen.

In vivo implantation allowed the delay and partial prevention flap necrosis. In vivo oxygen
measurements show that with the implant, a near physoxic subcutaneous oxygen concentration was
re-established. However, the lactate concentration, a marker of tissue hypoxia, inside each section
of the flap was not significantly different between both groups. This suggests that oxygen delivery

alone was not sufficient to maintain aerobic mechanism in the whole skin thickness.
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The coagulative necrosis observed corresponds to what is typically observed in organs under severe
ischemia: tissue is firm, and architecture is maintained days after cell death, preserved cell outlines
without nuclei and apparition of ghost cells.[471]

Histomorphometric analysis of the histological sections at 6 days did not show a significant
difference in total necrotic area but a trend was visible with 41+£14% and 27+12% (P= 0.13, N=5)
for the control group and the oxygen implant respectively, similar to what was observed on the top
of the skin during the experiment. At day 10 the total necrotic area was significantly different with
36+4% and 25+5% for the control group and the oxygen implant respectively, lower that wat was
observed on the top of the skin. This may be explained by the shrinkage of the necrotic sections
over time.

This study demonstrates the potential benefits of oxygen delivery, and results are in accordance
with previously published work consisting in increasing oxygen in the flap with normobaric
hyperoxia therapy[472], HOBT.[466-470] The only previous work on subcutaneous implants for
oxygen delivery to skin flaps published by Harrison et al (2007)[69] used sodium percarbonate in
PLGA able to release oxygen over 3 days. The authors have shown the necrosis was significantly
reduced at day 3, but not significantly different from the control at day 7. In our study we were able
to deliver oxygen subcutaneously for 10 days and we have shown significant improvement in skin
flap survival over those 10 says, yet it was not sufficient to prevent necrosis. The results obtained
for the control group in this study are consistent with other studies in literature using a similar
model and a similar size.[473-476]

Oxygen diffusion distance through tissues is rarely more than 200um[477], yet the thickness of the
skin was several millimetres, implying that a part of the flap was not receiving oxygen from the

implant. This is confirmed by the non significant difference that was found between the skin lactate
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content of both groups. In that regards, it is possible that the use of split thickness skin flap could
result in improved viability.

Another limitation of this experiment was evidenced by the skin’s blue color post-surgery,
indicating a venous stasis, a pathology that commonly occurs in skin flaps and that may have
participated in necrosis occurrence and spreading [478] and may have hindered partially the
potential benefits of the implant. This pathology is usually addressed clinically using for example
compression methods[479], antithrombotics[480] or leeches.[481, 482] One can easily envisage a
combination of O2implants to other techniques to extend further skin flap survival. The use of
leeches have been shown to improve epigastric flap survival during venous congestion[483], and
in a similar model the use of some antithrombotic has also been shown to improve skin flap
viability.[484] Beyond the prevention of venous congestion, other methods have been shown to
increase skin flap survival, like N-acetylcycstein[485, 486], an antioxidant scavenging the radicals
formed during the ischemic cascade, or nitric oxide producing agents like nitroglycerin[487, 488]

that will act as vasodilators.

Conclusion

Here we report the fabrication and use of a non-biodegradable oxygen delivery implant able to
sustain the release of a large amount of oxygen over 14 days. Although we demonstrate its efficacy
to prevent necrosis, the study is inherently limited by the oxygen amount delivered, by the ischemic
model used as oxygen is not the only factor of necrosis onset and venous congestion that may have
played a non-negligible role. This situation in not uncommon and clinically relevant, and oxygen

delivery is here shown as a tool to help preventing necrosis onset.
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Chapter 5 - Self-oxygenating bioinks

Introduction

A clear clinical need exists for the development of technologies such as tissue engineering
strategies, facilitating the on demand regeneration of damaged tissues. [489] Numerous tissues
types would benefit from this type of technologies (muscles bones, liver pancreas, etc.), however
the clinical applications have remained limited to tissues with low metabolic demand (e.g. skin,
cartilage and bladder). Tissues with higher metabolic demand (muscle, myocardium, liver, etc.) are
sensitive to oxygen and nutrient levels and are highly vulnerable to ischemia [490], hindering the
survival of clinically relevant volumes during in vitro culture or after implantation in vivo. Indeed,
oxygen and nutrients supply in bioreactors is only possible through the movement of the culture
medium through their structure and thus limited by diffusion.[77] and such construct do not possess
a functioning blood vessel network that could anastomose to the host vasculature upon
implantation. Without an integrated vascularization their in vivo survival depends on the host
ability to vascularize the graft and previous researches have shown that the complete

vascularization of a 3mm tissue engineered construct could take between one and two weeks.[83]

3D-Bioprinting has the potential to deliver a mixture of cells, biomaterials mimicking extracellular
matrix environment to support their adhesion, proliferation, migration, etc., and bioactive agents.
Also known as bioinks, these mixtures are allowing some degree of spatial control of cell position
to facilitate the creation of tissue engineered structure, but do not yet match the required resolution
to build complex organs with vascular networks. [81] In vitro, techniques like PFC, HOBT, define
haemoglobin-based carriers have allowed to improve oxygen delivery to increase size and quality

of said constructs.[83] However, these means of delivery are extrinsic to the construct, therefore
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also require conduits and are subjected to the laws of diffusion. In vitro, many different well
documented approaches have been developed to induce rapid vascularization in vivo or direct
vascular integration in vivo by creating in vitro vascularized tissue [491-493], from immobilization
of angiogenic factors, to structured based approaches using 3D bioprinting with different bioinks.
However, anastomosis of a pre-vascularized construct to the host vascularization after implantation
can take a few days [494], and partial tissue death may occur during this time. Indeed, upon
implantation the cellular scaffold becomes isolated and the oxygen delivery inside the construct
relies solely on diffusion of oxygen and nutrients from the surrounding tissues and vessel. But in
those conditions oxygen diffusion distance is rarely more than 200um.[477] Direct surgical
anastomosis to perfuse immediately vascularized tissues has only been demonstrated using
vascular explants but requires multiple surgeries to harvest the vascular bed. [495, 496]

This limit both the size of the scaffolds that can be build or implanted as well as their cellular
density.

Tissue engineered constructs would greatly benefit from technologies delaying cell death by
mimicking the primary functions of blood (i.e.: oxygen and nutrient delivery, waste removal) in
order to build larger constructs with biologically relevant cellular densities i.e. high density cultures
(107 to 5x10%cells/mL)[71]. As oxygen concentration is the major limiting factors for cell survival
(its concentration is about 50 times lower than glucose blood [8, 497] and is used 6 times more),
achieving in situ oxygen delivery in cellular constructs is the first step towards building self
sustaining system.

We developed oxygen releasing microparticles (OuP) that could be incorporated in bioinks to
deliver oxygen locally in order to prolong cell survival. Material oxygen release was first assessed,

then its cytotoxicity as well as its ability to deliver oxygen to cells under anoxic condition and re-
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establish primary functions such as proliferation of two different cells types (Madin-Darby Canine
Kidney (MDCK) and Chinese hamster ovary (CHO) cells) in two dimensions.

High density three-dimensional cellular constructs were then created under a bead format (g
1.7mm) with a cell density (CHO cells, 1x108 cells/ml) close to those found in organ (1-5x10®
cells/ml)[73] and cultured first in medium to observe the changes in viability to simulate conditions
where the construct would be surrounded by blood vessels after implantation. The medium was
then replaced by PBS to simulate absence of surrounding blood vessels, then OuP and glucose

were incorporated to the bioink to sustain the cells.

Method

Microparticles and bioink preparation

Oxygen releasing microparticles (OuP) were produced by phase separation method.[498] Briefly,
1g PCL (Mw 70,000-90,000, Aldrich, USA) was dissolved at 10% in chloroform (Fisher Scientific,
Canada) and 100mg calcium peroxide (CaO2; Aldrich, USA) and 1g FesOs nanoparticles (50-
100nm ; Sigma-Aldrich, Canada) were suspended in the solution. The resulting mixture was slowly
added to glycerol 1% PVA under agitation to form the microparticles. Once dried, the particles
were collected by centrifugation and washed with ethanol then dried.

The bioink was prepared by mixing OuP with 1% sodium alginate solution and extruded through

a 20G needle in a 0.1M calcium chloride solution to form 20uL beads.

Characterization: Morphology, Oxygen and hydrogen peroxide release measurements
Scanning electron microscopy (FE-SEM, FEI Inspect F-50, FEI, USA) was used to examine the
morphology OpP. Oxygen release was measured on the surface of the bioink immersed in 1mL

PBS using an oxygen probe (AL300 Oxygen Sensor Probe, Ocean Optics), hydrogen peroxide
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released from the bioink in the water was measured using a peroxide measurement kit (Pierce™

Quantitative Peroxide Assay Kit (Aqueous), Thermofisher, Canada).

Cytotoxicity and proliferation assay

Bioink cytotoxicity was assessed using MDCK cells: cells were seeded at 2500 cell/cm?2 in 2mL
DMEM high glucose and left to attach the plate for 2h. The bioink was then supplemented with a
loading of 0, 5, 10, 25mg/mL of microparticles and incubated 24h in DMEM under 21% air and
5% CO2. Cells were the detached using trypsin and counted using trypan blue. Anoxia cytotoxicity
was assessed by keeping the cultured cells in a sealed jar flushed with 95% N2 and 5% CO; kept
in a desiccator constantly flushed with N2 at 37 °C for 24h. Anoxic conditions were confirmed by
measuring the using an oxygen content of the medium at the end of the experiment using the oxygen
probe.

Proliferation assays under anoxic conditions culture was carried out by seeding MDCK or CHO
cells in similar conditions than previously described with the bioink in a sealed jar flushed with
95% N2 and 5% CO2 kept in a desiccator which was constantly flushed with N2 at 37 °C. After 3
days anoxic conditions were confirmed as previously described. Live/dead (Thermofischer
scientific, Canada) assay and Hoechst 33258 (Thermofischer scientific, Canada) staining were used
to observe the cultures under a fluorescent microscope. Cells were then detached using trypsin and

counted using trypan blue

Three-dimensional cellular constructs
A 100pL suspension CHO cells at 2x108 cells/mL were thoroughly mixed to 100uL of 2% sodium
alginate solution then extruded through a 20G needle in a 0.1M calcium chloride solution to form

20pL beads (g 1.7mm). Beads containing cells alone were cultured either in ImL DMEM high
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glucose (DMEM group) or in ImL PBS (PBS group). Beads were prepared containing glucose
(225mg/mL, resulting in 4.5g/L when cultured in 1mL PBS; Glucose group); 25mg/mL OuP (OuP
group) or with glucose (225mg/mL) and OpP (25mg/mL, Bioink group) were cultured in cultured
in ImL PBS. At days 1, 2 and 3 alginate beads were dissolved using a sodium citrate/ sodium
chloride solution (55mM / 90mM)[499] and live cell number was assessed using MTT assay
(Vybrant® MTT Cell Proliferation Assay Kit; Invitrogen, Canada). Figure 5-1 summarizes the

different experiment and groups.

24h Cytotoxicyty & © o

1x108 cells/mL in alginate; 1 mL DMEM —
DMEM group

1x108 cells/mL inalginate; 1 mL PBS —
PBS group

=i

@ 1x108 cells/mL, 25mg/mL OpP in
< w alginate; 1 mL PBS— OpP group

é 1x108 cells/mL, 225mg/mL glucose in

1x108 cells/mL in = alginate; 1 mL PBS — Glucose group
alginate
/ﬁ 1x108 cells/mL, 25mg/mL OuP,
W 225mg/mL glucose in alginate; 1 mL PBS

L — Bioink group

Figure 5-1: Scheme summarizing performed experiments
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Results

Microparticles characterization

Scanning electron microscopy revealed that the oxygen-release microparticles were roughly
spheroidal with a diameter ranging from 10-200 um (Figure 5-2). The bioink sustained a release
of oxygen and hydrogen peroxide over 3 days, a trend as visible as the microparticle loading
increased both release increased. Oxygen release from the bioink loaded with 5 and 10mg/mL OuP
was not significantly different over the course of the experiment (286.3+6.5umol/L and
297+7.5umol/L; 320.3£7umol/L and 317+0umol/L; 298.6+14.2umol/L and 275.9+21.7umol/L
for 5 and 10mg/mL at day 1, 2 and 3 respectively). A similar observation was made between 25
and 50mg/mL OpP (320.745.6umol/L and 328.1x5umol/L; 340.4+3.3umol/L and
338.3+5.1umol/L; 294.1+1.4pumol/L and 284.3+18.4umol/L for 25 and 50mg/mL at day 1, 2, 3
respectively). Oxygen release from 5 and 10mg/mL loading was significantly lower than 25 and
50mg/mL at day 1 and 2 but no significant difference was measured at day 3 between those four
groups. As expected 100mg/mL loading released significantly more oxygen than lower loadings
on the first day (346.5+18.42umol/L) and was not significantly different than 25 and 50mg/mL

ones at day 2 (344.1+£5.63umol/L).

Hydrogen peroxide release from the bioink loaded with 5 and 10mg/mL OuP was not significantly
different over the course of the experiment (9.2+2.6umol/L and 11+2.2umol/L; 6.5+1.8umol/L
and 6.2x0umol/L; 7.6+0.5umol/L and 5.8+.0.6umol/L for 5 and 10mg/mL at day 1, 2 and 3
respectively (P=1 at day 1, 2 and 3; N=6). Hydrogen peroxide release at day 1 the release was
significantly higher for 25, 50 and 100mg/mL (43.9+£0.3umol/L; 101.7£11.7umol/L;
365.9+£24.8umol/L respectively). Hydrogen peroxide content at day 2 sharply decreased for 25 and

50mg/L to 6.68+0.7umol/L and 5x0.5pumol/L respectively and remained stable at day 3
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(5.81+0.49umol/L and 5.5+0.7umol/L respectively). Hydrogen peroxide content at day 2 and 3 for

100mg/mL remained significantly higher with 301+37.7umol/L and 279+30.2umol/L.
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Figure 5-2: Representative SEM pictures of the oxygen releasing micoparticles at different
magnifications (A, B, C). (D) Bioink oxygen release graph over time measured in 1mL PBS for
20uL beads of bioink with different OpP concentrations (in mg per mL of sodium alginate 1%) (E)
Bioink hydrogen peroxide cumulative release graph over time for 20pL beads of bioink with

different OpP concentrations. (ns=not significant, *P<0.05, **P<0.01).
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Cytotoxicity and proliferation assay
24h cytotoxic assay showed no significant differences between normoxic and anoxic conditions
(Table 5-1). Similarly, the bioink did not show any significant difference up to 25mg/mL

microparticle loading.

Table 5-1: Cell viability of MDCK cells seeded at 2500 cell/cm? in 2mL DMEM high glucose after

24h incubation and expressed as number of live cells over total number of cells.

Normoxia  Anoxia 5mg 10mg 25mg

Viability 91.6£6.9%  92+2.6% 89.6+4.5% 92.4+3.2%  85.8+5%

Proliferation assay over 3 days demonstrated that anoxia was significantly reducing both MDCK
and CHO cell’s proliferation (Figure 5-3). In addition, MDCK cells under anoxia did not exhibit
a swollen morphology when compared to normonic culture. Addition of the bioink at 5 and
10mg/mL OpP did not allowed re-establishment of cell proliferation in MDCK anoxic culture.
Similar results were obtained for CHO anoxic culture. A loading of 25mg/mL of OuP allowed

partially re-establishment of proliferation for both cell types.
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Figure 5-3: Fluorescent images of MDCK cells stained with live/dead assay (live cells cytoplasm

shows in green, dead cells nuclei in red) and Hoechst (cells nuclei shows in blue), after 3 days in

normoxic conditions (A) and anoxic conditions (B). Graph (C) represents MDCK cell number as a

percentage of the normoxic culture, expressed as the mean number of cells in the sample divided

by the mean number of cells in the normoxic culture. Graph (D) represent the CHO cell number as

a percentage of the normoxic culture. (ns=not significant, *p<0.05).

Three-dimensional cellular constructs

Fluorescent imaging of the DMEM, bioink and glucose beads at day 1 exhibited mostly live cells

on the surface, the glucose group exhibited the most dead cells (Figure 5-4). At day 3, DMEM
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group was contained mostly live cells whereas bionink and glucose groups exhibited mostly dead
cells.

Beads were seeded at 1x10® cell/mL, equivalent to 2x10° cell /beads. Beads cultured in DMEM
exhibited an increase in cell population up to 2.42+0.31x10° cell /beads over the first day, then a
decrease in cell number for day 2 and 3 to 2.2+0.34x108 and 1.95+0.01x10° respectively. PBS,
OuP, glucose and bioink groups exhibited a sharp decrease in cell population to 0.51+0.28x10°,
0.27+0.04x10°, 0.78+0.27x10° and 1.42+0.34x10° respectively at day 1. For those group the
decrease continued to 0.12+0.08x10°, 0.57+0.12x10° and 1.24+0.17x10° at day 2 and

0.03+0.09x106, 0.006+0.11x10° and 1.12+0.08x10° at day 3.
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Figure 5-4: Representative Fluorescent images of the CHO cell beads stained with live/dead assay
(live cells cytoplasm shows in green, dead cells nuclei in red) of the high-density CHO cell beads
for the DMEM group at day 1 (A) and day 3 (D); glucose group at day 1 (B) and day 3 (E); Bioink
group at day 1 (C) and day 3 (F); live cells cytoplasm shows in green, dead cells nuclei in red.
Graph (G) represents cells number for the DMEM, PBS, OuP, Glucose and Bioink groups over

three days. (ns=not significant, **P<0.01)
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Discussion

This study was designed to partially simulate conditions to which tissue engineered construct
would undergo after implantation in vivo with no vascularization and create a bioink able to sustain
cells viability while vascularization is taking place.

Oxygen generating microparticles were successfully created. Oxygen release was achieved by
reacting calcium peroxide and water to produce oxygen and hydrogen peroxide. Because of the
rapid reaction of CaO. and water, a hydrophobic polymer was used to tune the reaction rate. To
harvest the potential of hydrogen peroxide to produce oxygen and reduce its concentration to
prevent a potential toxicity, magnetite (Fe3O4) was used to catalyze H2O- into oxygen and water
(Fenton-Haber-Weiss catalytic reaction [51, 52]).

When in contact with water the particles released both oxygen and hydrogen peroxide. Oxygen
release from the microparticles when incorporated in a hydrogel rapidly reached a plateau despite
the increasing microparticle loading. This may be explained by the formation of micro bubbles in
the gel appearing as CaO, decomposes.

At 50mg/mL microparticle loading, H2O:> release was above the cytotoxic concentration described
in literature [167, 500] and cytotoxicity was confirmed during cytotoxicity experiment (data not
shown). Because 25mg/mL allowed the release of a maximum of oxygen without significant

cytotoxic effects, this loading was used for further experiments.

In this experiment, anoxic culture of MDCK and CHO cells did not result in significant cytotoxicity
at 24h and 72h, however proliferation of the cells was significantly reduced. This is in accordance
with previously published work where MDCK and CHO cells have ben shown to have a certain

resilience to hypoxic/anoxic conditions in vitro [501-503]. Although the bioink allowed partial re-
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establishment of proliferation for both MDCK and CHO cells, the amount of oxygen delivered in

those conditions was not sufficient to sustain it as it would be in a normoxic culture.

Anoxic/hypoxic conditions can be achieved using chemicals or special chambers. [504] Chemicals
like CoCl> or deferoxamine can simulate hypoxia by inducing HIF-a expression [505], while others
like cyanide and 2-deoxyglucose will inhibit ATP production by mitochondria [506], thus resulting
in a simulation of hypoxia or anoxia. But those compounds may also regulate other genes and
therefore are not adapted for all cell types or experiment. In this study the choice of the hypoxic
chambers was made because unlike chemical hypoxia, it has the advantage of not using drugs

altering cell behavior with no regards of the of the oxygen tension.

The three-dimensional cellular constructs had a cell density of 1x108 cells/ml, a volume of 20uL
and an approximate diameter of 1.7mm. Such high cell density is close to some organs cell density
(1-5x108 cells/ml) [507] and without vascularization oxygen and nutrient enter the beads from the
outside and their diffusion towards the inside is governed by the laws of diffusion. They are at the
same time consumed by the cells, thus producing wastes that undergo a similar diffusion process
toward the outside, and if the diffusion process is too slow, cells in the core of the system maybe
found lacking oxygen and nutrients and face a waste build-up. If oxygen diffusion distance no more
than 200um at physiological cell densities [477] this suggest that 45% of the bead will not receive
a proper oxygen supply. When cultured in DMEM medium the beads exhibited first an increase in
cell number at day 1 followed by a decrease ad day 2 and day 3. Addition of OUP in the beads
cultured in DMEM did not show significant difference with the DMEM group (data not shown)

suggesting that oxygen shortage was not the major detrimental facto to cell survival.
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When placed in PBS, most of the cells died within 24h, and incorporating OuP alone did not
improved viability. Adding glucose in the beads allowed to sustain a higher viability up to 48h and
addition a combination with the oxygen releasing material allowed to further increase the viability
by two-fold at 48h. These experiments suggest that although supplying oxygen and glucose to an
“isolated” system may allow to maintain cell viability to an extent, it is not sufficient.

When in anoxia/hypoxia, cells have the ability to switch their energy production mechanism from
aerobic to anaerobic, thus producing lactates, from which an accumulation which may result in
toxicity if its diffusion outside the bead is too slow. [508] CHO can keep their viability during an
anoxic period of 3 days, suggesting that the decrease in viability observed in the DMEM group is

either due to poor glucose diffusion or a high content of lactates.

Different studies have shown the potential of using peroxide in tissue engineered construct in
vivo.[509] They however rely on catalase to eliminate hydrogen peroxide [510-512], but have
limited applications in vivo due to its limited half-life.[513, 514] In this work we demonstrate the
potential of using peroxide-based and catalase free oxygen releasing biomaterials to help maintain
cell survival. However, blood does not deliver only deliver oxygen, it also brings nutrient and

remove wastes.

Going further in this work these experiments will be performed in anoxia in order to complete the
model. In addition, metabolic waste like lactates quantification in the media and in the construct,
and the measure of pH will be necessary to assess how in situ oxygen delivery impacts cell viability.
Developing a self-sustaining bioink systems will also require developing glucose releasing
biomaterials either based on hydrophobic embedding or using glycogen and glycogen debranching

enzyme.
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3-Dimensional bioprinting can allow to print complex structures containing different cell types
[515, 516], and recent work have shown the possibility to create constructs that will be fully
perfused scaffolds by blood in five days.[517] Combining such techniques with fully developed

self-sustaining bioinks may allow to create larger scaffolds with a higher cell density.
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Chapter 6 - General discussion

Current methods to deliver oxygen do not allow to perform a safe long-term delivery of oxygen.
As demonstrated in chapters 3, 4 and 5, we succeeded in designing safe long-term release oxygen
delivery biomaterials.

In Chapter 3 we use an oxygen releasing wound dressing to an animal model of wound healing. In
this animal model [67], healing proceeds by forming new granulation tissue comes from the edges
of the wound, signifying that the increased wound closure observed is due to an augmented tissue
formation. Increasing oxygen levels in the skin using HBO may stimulate the reconstruction of an
epidermis by enhancing fibroblast proliferation (in vitro and in vivo) [191, 192] as well as
proliferation, migration, and differentiation keratinocytes. [191, 193] Furthermore, Gordillo et al,
showed that normobaric topical oxygen treatment may induce higher VEGF expression in the
wound edge. [56] This correlates with the higher and faster formation of granulation tissue
observed in the experimental group. Hydrogen peroxide at sub-lethal concentrations (up to 500uM)
have been also shown to increase VEGF expression in different cells (keratinocytes [175, 176],
macrophages [177] and vascular smooth muscle cells [178]) through mMRNA expression. It was
also associated with increased VEGF level in vivo with full thickness wound models in mice. [171]
These effects combined may have participated to a faster formation of blood vessels and an
improved healing.

At necrosis, the cellular content is released into the extracellular space and in turn causes secondary
necrosis and lead to its spreading. [460] In wound care, it can be prevented by debriding the
wounds. In this model the necrotic cartilage was not removed, and necrosis was left to spread, thus

resulting in a non-healing wound. The difference in necrotic tissues amount was significant
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between both groups, suggesting that by limiting necrosis occurrence with oxygen it was possible

to also limit its spreading while the healing process is taking place.

In chapter 4, the in vivo implantation allowed the delay and partial prevention flap necrosis. In
vivo oxygen measurements show that the implant allowed to re-established a near physoxic
subcutaneous oxygen concentration. However, the lactate concentration inside each section of the
flap was not significantly different between both groups, suggesting that oxygen delivery alone
was not sufficient to maintain aerobic mechanism in the whole skin thickness. The necrosis
observed is and corresponds to what is typically observed in organs under severe ischemia: tissue
is firm, maintained architecture days after cell death, cell outlines preserved, disappearance of
nuclei and apparition of ghost cells.[471] These experiments demonstrates the potential benefits of
oxygen delivery with results are accordance to previously published work consisting in increasing
oxygen in the flap with normobaric hyperoxia therapy [472] or HOBT.[466-470] The results also
compare to the previous study on subcutaneous implants for oxygen delivery to skin flaps published
by Harrison et al (2007)[69]. The authors have shown the necrosis was significantly reduced at day
3, but not significantly different from the control at day 7. In our study we were able to deliver
oxygen subcutaneously for a longer time and we demonstrated significant improvement in skin
flap survival over those 10 says, yet it was not sufficient to prevent necrosis. Results obtained for
the control group are consistent with other studies using a similar model.[473-476] As discussed
previously, oxygen diffusion distance through tissues is rarely more than 200um [477], implying
that a part of the flap was not receiving oxygen from the implant as the thickness of the skin was
several millimeters. This is confirmed by the non-significant difference that was found between
the skin lactate content of both groups. In that regards, it is possible that the use of split thickness

skin flap could result in improved viability. Another limitation of this experiment was venous
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stasis, evidenced by the skin’s blue color post-surgery. This is a pathology commonly occuring in
skin flaps and that may participate to necrosis onset and spreading [478] and may have hindered

partially the potential benefits of the implant.

In chapter 5, oxygen generating microparticles were successfully created. The oxygen release
achieved by reacting calcium peroxide and water was controlled using a hydrophobic polymer, and
the Fenton-Haber-Weiss catalytic reaction was used to harvest the potential of hydrogen peroxide
to produce oxygen and reduce its concentration thus also preventing a potential toxicity. Different
studies have shown the potential of using peroxide in tissue engineered construct in vivo. [508]
They however rely on catalase to eliminate hydrogen peroxide eficiently [510-512], but have
limited applications in vivo due to its limited half-life.[513, 514] When in contact with water the
particles released oxygen and a non-cytotoxic hydrogen peroxide concentration when in contact
with cells, and allow to partially re-establish cell proliferation, the thus demonstrating the potential
of using peroxide-based and catalase free oxygen releasing biomaterials to help maintain cell

survival.

Biomaterials delivering oxygen safely over an extended period have been prepared in this thesis.
Chapter 3, 4 and 5 clearly show the limitation of a system delivering only oxygen. Blood does not
deliver only deliver oxygen, it also brings nutrient and remove wastes. If today oxygen delivery
can be performed to some extent, nutrient delivery and waste removal cannot. Therefore, the study
of oxygen delivery systems on ischemic cells or tissues in vivo and in vitro is inherently limited by

the absence of control over these parameters.
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Chapter 7 - Conclusion and future work

The main contributions of this thesis to the in vivo and in vitro oxygen delivery applications and

its limitations include:

1. Topical oxygen delivery can prevent necrosis in ischemic wounds.

As described in chapter 2 and chapter 3, oxygen has the potential to bring significant improvements
to wound healing by promoting different aspect of wound healing, but also by preventing ischemia-
induced cell death. In chapter 3 we demonstrate that calcium peroxide-based wound dressing can
allow to maintain tissue viability and prevent necrosis while maintaining the healing process.

To date topical oxygen is clinically delivered under a gas form, with either a systemic or a topical
approach. Systemic oxygen delivery for wound healing has been widely described in the literature
and its effects are still debated. The topical approach using chambers has been proven to have
beneficial effects in chronic wound healing but are punctual treatments. Concentrators can be used
and supply oxygen continuously, but lack convenience and do not fit every dressing and therefore
are not adapted to all wounds. A similar observation can be made for commercial oxygen releasing
wound dressings. The new dressing investigated is sizable, and only requires water to generate
oxygen and could be adapted to a wide variety of wounds, as most wounds are exudating, thus
producing water, and non-exudating wounds require moist dressings. Literature have shown that
an optimum of oxygen exist for wound healing, and all of the technologies available are hardly
controlling the amount of oxygen delivered. In that regards, the oxygen release of the O2patch can
easily be tuned by modification of the formulation in order to fit wound’s oxygen requirements.
All wounds are by their nature, different, depending on their origin, associated comorbidities, etc.,

that are difficult to replicate in preclinical studies. In addition to the difficulty to replicate those
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wounds, there is a lack of consensus on the models that are used, making any comparison between
wound healing studies difficult.

Furthermore, most prior studies focused on improving healing and not salvaging tissues that will
otherwise likely undergo necrosis. As observed in many clinical studies, despite delivering oxygen
some wounds still develop necrosis. Studying necrosis prevention in those wounds may allow
prevention of irreversible damage to tissues. Chapter 3 focused on the prevention of necrosis using
oxygen and examined to which extent damage can be prevented. Going further in this work,
studying the delivery of nutrient and stabilize wound’s homeostasis may bring improvement to

necrosis prevention in impaired wounds.

2. Oxygen delivery implants
Increasing the oxygen concentration of the extracellular fluid of an otherwise ischemic tissue has
been achieved mainly by using vasodilators or hyperbaric oxygen therapy. However, these
systemic approaches are limited if the vasculature itself is poorly functioning. Topical approaches
can only be used for ischemic skin, but its effects are limited by the skin’s lack of oxygen
permeability. In the literature many different approaches have been taken to tackle oxygen delivery
but are not suitable for implantation due to their inherent toxicity and the fact that the sustained
oxygen release and level is so low that neither tissues function, nor survival are possible,
consequently there have been only two studies investigating implantable oxygen delivery systems.
Of all delivery systems, peroxides can generate the most oxygen per unit volume, and as such can
act as miniaturized implantable “oxygen tanks”. In Chapter 4 we demonstrate that such compounds
designed as biomaterials could generate oxygen when implanted and prevent necrosis. The
efficiency of such devices may be limited by the total amount of oxygen delivered and its diffusion

in tissues. Our recent work on this material tries to address these limitations by developing an
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injectable and biodegradable version of the biomaterial that could be injected in multiple points
and different moment in time to ensure to maintain a uniform and steady supply of oxygen.

The study is inherently limited by the ischemic model used as the lack of oxygen is not the only
factor of necrosis; venous congestion also played a non-negligible role in necrosis. This situation
in not uncommon and clinically relevant, and methods have been studied in literature to decrease
venous-congestion induced necrosis using anti-thrombotic.

Other methods have demonstrated a potential in preventing necrosis and could be used in addition
to oxygen. In our recent experiments we started to study the combination of oxygen delivery and
nitroglycerin (vasodilator), but results are for now inconclusive and we have no evidence to suggest
an additive effect. It is also possible that nitroglycerin may have both a positive and a negative
effect as it increases arterial flow, but may decrease venous return, thus worsening the effects of
venous stasis. Further work might combine antithrombotics or antioxidants like N-acetylcysteine
as additive therapy that may help to differentially assess the different types of damage that will
lead to necrosis in this model. Indeed, like for wound healing, there is no consensus in literature

regarding the skin flaps model in term of size, location and orientation.

3. Self-sustaining bioinks
Delivering oxygen homogenously inside tissue engineered constructs would potentially allow to
build larger constructs and an increase the variety of in vivo applications but remains challenging.
The delivery is limited by limited by oxygen diffusion and building mimics of functioning
vascularization inside the construct is first limited by bioprinting’s current constraints, but also by
the fragility of the constructs that limit medium flow through the construct.
In situ oxygen delivery may allow a temporary mimic of oxygen delivery by small vessels, but to

date it has been limited by the potential toxicity of peroxides to cell. This has been addressed in
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vitro using catalase, however applications in vivo are limited due catalase half time limited to only
a few hours. In this work this issue was tackled using catalysis to turn hydrogen peroxide into
oxygen and decrease the inherent toxicity.

In chapter 5 we demonstrated that delivering oxygen in presence of glucose to a three-dimensional
tissue construct with a high cell density may allow maintenance of cell viability.

In this chapter we also showed that oxygen deficiency does not affect cell viability, suggesting that
its decrease may be due to a lack of glucose or accumulation of wastes in at the center of the
construct. Blood’s function is not limited to oxygen delivery and developing slow nutrient release
systems are as challenging as for oxygen. Going further in this work we will develop systems able

to sustain a longer oxygen release.

4. Concluding remarks
In this thesis we demonstrate the potential applications of oxygen delivery systems to prevent
necrosis, or to allow cells to maintain their functions. Different pathologies and different
applications require an optimization of the amount and length of the delivery, and the technology
presented in this thesis is easily tunable to fit those needs. Oxygen is no panacea, and in clinical
settings, most pathologies an oxygen shortage is not the only factor leading to tissue damage. As
such, oxygen delivery material is a tool to improve outcomes and should be used in addition to

other treatments.
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Chapter 9 - Annexes

Annex 1 - Representative histological sections (H&E staining) of skin flap sections for the

experimental and control group

Proximal section

02 implant Control

Figure 9-1: Representative histological sections (H&E staining) of skin flap sections: (A), (B)
middle section of the flap for the experimental and control group respectively; : (C), (D) proximal
section of the flap for the experimental and control group respectively; : (E), (F) distal section of

the flap for the experimental and control group respectively.
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