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Abstract

Advances in cloud computing enabled the development of exciting applications in

the Internet of Things (IoT) domain, however, the higher latency reaching the

clouds from the IoT has motivated the need for the distribution of cloud resources

towards the network edge. One of the complications of the distribution of cloud

resources is resource management, which typically revolves around resource and

task allocation, task scheduling, workload balance and quality of service (QoS) to

achieve performance improvements. The problem of task allocation and scheduling

is more challenging in the distributed configuration when compared to the central-

ized version of cloud computing.

The geo-distribution of cloud servers complicates the server selection problem

for a given task. In this thesis, we develop algorithms for task allocation and

scheduling problems when the cloud servers are distributed to the network edge

from the core. In the first part, we propose a two-phase approach that focuses on

the allocation and scheduling of independent tasks. The first phase decides the

allocation of the devices to the fogs (distributed cloud servers close to the net-

work edge). The fogs are allocated in a two-tiered manner, i.e., for each device,

a home fog and a pool of backup fogs are allocated. In the second phase, the

task requests from the devices are routed to the allocated fogs or the cloud. Using

simulation studies, we compared the performance of the proposed allocation algo-

rithms against existing ones. The results indicate that the proposed algorithms

outperform existing ones.

Applications in IoT tend to have a mix of real-time and non real-time require-

ments, which complicates the task allocation and scheduling problems. In the

second part of this thesis, we propose a two-stage scheduling framework that can

map the tasks of the application across a collection of edge computing servers

(distributed cloud servers that are closer to the network edge than fogs). The

application model focuses on a mix of real-time and non real-time independent

tasks. In the first stage, the framework does a task to resource matching, taking

into consideration the requirements associated with the task. In the second stage,
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the framework schedules the tasks such that real-time deadlines of the tasks are

respected, and non real-time tasks are scheduled to use available free time slots.

Both stages of the framework completely operate in the user-level and deadline

sensitive scheduling is performed by divvying up the CPU resources efficiently in

the user space. We implement the framework over heterogeneous collections of

machines and measure its performance under different conditions. Results show

that the two-stage architecture is better because the flexibility offered by the ar-

chitecture can be used by the edge servers to obtain higher performance.

While task allocation and scheduling are important, we also illustrate that

edge computing is more susceptible to latency variation in the last hop. To handle

this problem, we present an architecture for network-aware scheduling for edge

applications and develop algorithms that go into the architecture. The architecture

observes the state of the network and schedules the application using the observed

knowledge. Our proposed network-aware algorithm deploys the best schedule that

minimizes the application execution time given the network conditions. As part

of the architecture, we develop a switching algorithm that speculatively deploys

better schedules when a network change is detected. The combination of both

algorithms in the architecture offers better performance to the application. We

evaluate the algorithms by comparing them to a baseline approach that is network-

unaware. Our results show the performance benefits of the proposed algorithms

over the network-unaware approach.
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Résumé

Les progrès du cloud computing ont permis le développement d’applications pas-

sionnantes dans le domaine de l’Internet des objets (IoT). Cependant, la latence

plus élevée atteignant les clouds à partir de l’IoT a motivé le besoin de distribuer

les ressources cloud vers la périphérie du réseau. L’une des complications de la dis-

tribution des ressources cloud est la gestion des ressources, qui tourne généralement

autour de l’allocation des ressources et des tâches, de la planification des tâches, de

l’équilibre de la charge de travail et de la qualité de service (QoS) pour améliorer

les performances. Le problème de l’allocation et de la planification des tâches est

plus difficile dans la configuration distribuée par rapport à la version centralisée

du cloud computing.

La géo-distribution des serveurs cloud complique le problème de sélection de

serveur pour une tâche donnée. Dans cette thèse, nous développons des algo-

rithmes pour les problèmes d’allocation de tâches et de planification lorsque les

serveurs cloud sont distribués à la périphérie du réseau à partir du cœur. Dans

la première partie, nous proposons une approche en deux phases qui se concen-

tre sur l’allocation et l’ordonnancement de tâches indépendantes. La première

phase décide de l’affectation des appareils aux fogs (serveurs cloud distribués

proches de la périphérie du réseau). Les brouillards sont alloués de manière à

deux niveaux, c’est-à-dire que pour chaque appareil, un brouillard domestique et

un pool de brouillards de secours sont alloués. Dans la deuxième phase, les de-

mandes de tâches des appareils sont acheminées vers les brouillards alloués ou le

cloud. À l’aide d’études de simulation, nous avons comparé les performances des

algorithmes d’allocation proposés à ceux existants. Les résultats ont indiqué que

les algorithmes proposés surpassent ceux existants.

Les applications dans l’IoT ont tendance à avoir un mélange d’exigences en

temps réel et en temps non réel, ce qui complique les problèmes d’allocation des

tâches et de planification. Dans la deuxième partie de cette thèse, nous proposons

un cadre de planification en deux étapes qui permet de cartographier les tâches

de l’application sur un ensemble de serveurs informatiques de périphérie (serveurs
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cloud distribués plus proches de la périphérie du réseau que les brouillards). Le

modèle d’application se concentre sur un mélange de tâches indépendantes en

temps réel et non en temps réel. Dans la première étape, le cadre effectue une

correspondance entre la tâche et les ressources en tenant compte des exigences

associées à la tâche. Dans la deuxième étape, le cadre planifie les tâches de telle

sorte que les échéances en temps réel des tâches soient respectées, et les tâches en

temps non réel sont planifiées pour utiliser les plages horaires libres disponibles.

Les deux étapes du cadre fonctionnent complètement au niveau de l’utilisateur

et la planification sensible aux délais est effectuée en répartissant efficacement les

ressources CPU dans l’espace utilisateur. Nous implémentons le framework sur des

collections hétérogènes de machines et mesurons ses performances dans différentes

conditions. Les résultats montrent que l’architecture en deux étapes est meilleure

car la flexibilité offerte par l’architecture peut être utilisée par les serveurs de

périphérie pour obtenir des performances plus élevées.

Bien que l’allocation et la planification des tâches soient importantes, nous

illustrons également que l’edge computing est plus sensible aux variations de la-

tence dans le dernier saut. Pour gérer ce problème, nous présentons une archi-

tecture d’ordonnancement sensible au réseau pour les applications de périphérie

et développons des algorithmes qui entrent dans l’architecture. L’architecture ob-

serve l’état du réseau et programme l’application en utilisant les connaissances

observées. L’algorithme réseau que nous proposons déploie le meilleur calendrier

qui minimise le temps d’exécution de l’application compte tenu des conditions

du réseau. Dans le cadre de l’architecture, nous développons un algorithme de

commutation qui déploie de manière spéculative de meilleurs horaires lorsqu’un

changement de réseau est détecté. La combinaison des deux algorithmes dans

l’architecture offre de meilleures performances à l’application. Nous évaluons les

algorithmes en les comparant à une approche de base qui ignore le réseau. Nos

résultats montrent les avantages en termes de performances des algorithmes pro-

posés par rapport à l’approche non consciente du réseau.
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Chapter 1

Introduction

Ericsson predicts that 45% of the global internet data will be generated by the

Internet of Things (IoT) devices in 2026 [3]. Cloud computing, the de facto com-

puting backend for mobiles, is not suitable for IoT, mainly because IoT would

generate data at much higher rates and clouds are not best suited for the timely

processing of such data [4, 5]. Also, the decentralized nature of IoT does not fit

the centralized nature of the cloud as data sourced in a distributed fashion is sent

to the centralized cloud for processing, which results in high link delays, low band-

width between IoT devices as well as IoT devices and potential users [6, 7]. This

problem has created the need for distributing the cloud infrastructures closer to

the network edge where the IoT would live [8, 9, 10].

Organizations need scalable networked computing systems to meet the increas-

ing demands of new and evolving application use cases, from intelligent traffic

management to streaming media, and to deliver the highest-level quality of ser-

vice. Distributing cloud resources to the network edge, closer to where the data

is created and consumed, provides performance gains for latency-sensitive IoT ap-

plications. One of the central challenges of distributing cloud resources to the

network edge is resource management [11, 12], which typically revolves around

task allocation and scheduling at the edge. However, the different application

types at the edge require scheduling solutions different from what is used in the

centralized version of the cloud [13, 14, 15, 16, 17].
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The solutions will need to satisfy requirements such as processing requests in

real-time on edge nodes. Current cloud computing frameworks such as the Amazon

web service [18], Microsoft Azure [19] and Google App Engine [20] can support

data-intensive applications, however, implementing real-time data processing at

the network edge is still a challenge [21]. For example, IoTs capture data in real-

time from real-world situations and want to glean intelligence about the physical

situation from their observations [22, 23]. The intelligence acquisition must be

completed within given time constraints so that IoT can react to events in the real

world safely [24, 25, 26].

In practice, many network edge applications can be composed of multiple mod-

ules performing different tasks, and the tasks can be either independent of each

other or mutually dependent [27] as shown in Fig. 1.1. Furthermore, they can be

broken down into tasks that have deadlines and tasks that do not have deadlines.

Applications such as deep learning algorithms and neural networks demand power-

ful edge resources, whereas real-time applications such as self-driving cars require

real-time responses. The different classes of applications necessitate the need for

efficient scheduling algorithms [28].

First, it is important to schedule the tasks such that they are executed in a

timely fashion and make optimal use of the available resources [29]. One impor-

tant question to be considered in the distributed cloud landscape is to determine

which tasks should be executed in the edge layer, and which ones in the cloud

layer [30]. The proper scheduling of the tasks can help design novel applications

such as smart traffic systems, smart homes, along with reducing the processing

delays.

Second, some applications can have tasks with real-time and non real-time re-

quirements [31]. While tasks with non real-time requirements can tolerate some

quality loss in the computed results, it is important to guarantee deadline com-

pliance for the real-time tasks. Scheduling such applications not only requires

minimizing response times, but ensuring the timing constraint on the application
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is met. Scheduling such tasks can lead to designing novel future applications in

robotics and edge artificial intelligence (AI) etc.

Third, with the introduction of 5G networks, there is high network capacity

available for device connections in the distributed cloud landscape. However, there

are scenarios where there could be network link variations, so that high network

capacity is not always available [32]. Scheduling applications with network link

variations becomes a challenge [33, 34]. It is important to schedule the tasks

while taking the network conditions into consideration. The proper scheduling of

such tasks will be useful for designing applications related to autonomous vehicles,

vehicle-to-everything (V2X), and so forth.

Application 
Model

Independent 
Tasks

Dependent 
Tasks

Deadline 
based

Not deadline 
based

Real-Time 
Tasks

Interactive 
Tasks

Not deadline 
based

Batch 
Tasks

Batch 
Tasks

Chapter 4 Chapter 6
Chapter 5

Figure 1.1 Network edge application model and chapters covering
the different classes.

In this thesis, we handle the allocation and scheduling problem by proposing
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algorithms for the different application classes. In Chapter 4, we use a traffic appli-

cation as a case study and focus on independent batch tasks as shown in Fig. 1.1.

The objective is to minimize the response times of the application tasks. Chap-

ter 5 uses a collaborative robotic application and focuses on a mix of independent

real-time and interactive tasks with deadlines and batch tasks without deadlines.

The objective is to ensure that the deadline of the real-time tasks is met while

maximizing the throughput of the non real-time tasks. In both Chapters 4 and

5, we assume that edge computing resources can always be available at a very

short network link away from the origin of data and the network link connecting

the origin to the edge has a very high capacity so that data can be transferred at

high rates. While this assumption is nominally true, there can be many situations

where this assumption is not true. For example, a mobile device or vehicle can

roam away from high coverage areas to low coverage areas and suffer bad connec-

tion [35, 32]. The network link will not have the expected performance when the

device is dwelling in the low to no coverage area. Therefore, variations on network

links would significantly impact the performance of the application. In Chapter 6,

we introduce network link variation into the scheduling problem and focus on de-

pendent tasks that can be part of a streaming media application. The objective is

to minimize the schedule makespan and improve the application performance.

1.1 Thesis Contributions

This thesis makes the following contributions:

1. We propose a two-phase design for resource and task allocation of inde-

pendent batch tasks. In the first phase called the offline phase, we math-

ematically formulate the resource allocation problem in the form of integer

linear programming (ILP), which could be easily solved with common ILP

solvers. In the second phase called the online phase, we develop a probing

algorithm to route the task requests to the resources. The performance of

the proposed solutions are measured through several metrics, i.e., (i) average

response times, (ii) server utilization and (iii) the above metrics considering

different failure probabilities.
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We evaluate the performance of the proposed algorithms through extensive

simulations and compare to existing solutions under different runtime condi-

tions and configurations. The results show the performance benefits of our

approach over existing solutions.

2. We further propose a two-stage scheduling solution for a mix of independent

real-time and non-real time tasks at the network edge. The first stage period-

ically recomputes the schedule to address the changing node configurations

and application requirements of the real-time tasks while the second stage

uses the schedule obtained from the first stage to execute the real-time tasks

and the available free-time slots to execute the non real-time tasks.

We show the feasibility of our approach by developing schedulability tests

for the proposed scheduling algorithms. We demonstrate that our proposed

scheduler works with high precision. We implemented the scheduling solution

over a heterogeneous collection of machines and measured its performance

under different conditions. Our results show that the two-stage architecture

is better because of the flexibility offered by the architecture can be used to

obtain higher overall performance.

3. We develop a network-aware scheduling architecture for dependent tasks of

an application. The proposed scheduling algorithms that are part of the ar-

chitecture ensure that applications deliver efficient performance in the pres-

ence of network variations. We evaluate the performance of the proposed

algorithms through simulations and compare it to a baseline approach that

is network-unaware. The results show the performance benefits of the pro-

posed algorithms over the network-unaware approach.

1.2 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we provide some

background on distributed computing at the network edge and resource manage-

ment approaches in distributed systems. We develop a taxonomy for resource

management at the network edge. Use cases and application scenarios as well as

challenges in resource management for IoT applications are also given in Chapter 2.
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An overview of existing literature and works on task allocation and scheduling in

distributed systems is given in Chapter 3. In Chapter 4, we introduce algorithms

for resource and task allocation for independent tasks of an IoT application in the

cloud-edge continuum. We propose a two-phase approach for task allocation. The

evaluation of the proposed algorithm is carried out through extensive simulations

and compared with existing schemes. A detailed analysis of the results is given.

Chapter 5 introduces a two-stage approach that considers the scheduling of

real-time application tasks. We evaluate the performance of our algorithms by im-

plementing the two-stage scheduler in a fully working middle-ware - JAMScript;

an open-source programming language for edge computing and present the experi-

mental results. Chapter 6 presents a network-aware scheduling scheme for stateful

applications. We propose algorithms that take the network variation into consider-

ation. The algorithms are evaluated using extensive simulations and the detailed

analysis of the results is likewise given. A summary of the thesis and possible

future extensions is given in Chapter 7.

1.3 Co-author Contribution

Major portions of this thesis are published in the following two publications [36, 37].

In [37], Olamilekan Fadahunsi played the key role of devising the main conceptual

ideas, designing and evaluating the algorithms. Yuxiang Ma provided help with

implementing the algorithms.
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Chapter 2

Background

Current exuberance about the Internet of Things (IoT) is driven by both the

advances and widespread adoption of technologies such as cloud computing [38,

39, 40, 41]. In conventional cloud computing, data processing and storage typically

occur within the boundaries of a cloud and its underlying infrastructure. Cloud

computing is not designed to cater to the scale of geographically dispersed and

low latency required for many IoT use cases. As such, edge and fog computing

have been proposed to cater for the scale of data processing and storage needed to

support the requirements of the IoT to function in a distributed and coordinated

way at minimum latency [42, 43, 10].

2.1 Edge Computing

Edge computing is a computing model that makes use of resources at the edge of

the network [44, 45]. It enables the processing of the data at the edge of the network

by bringing the computation facilities closer to the source of the data [46, 47]. Edge

network consists of edge devices (e.g. mobile phone, smart vehicles, smart objects

etc.) and edge servers (e.g., border routers, base stations, wireless access points

etc.) and these components can be equipped with the necessary capabilities for

supporting edge computation [48, 8]. Edge computing ensures that the localized

computations are performed at the edge and it provides faster responses to the

computational service requests [49, 50, 51].
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Figure 2.1 Cloud, Fog and Edge computational domains (based on
Mahmud et al. [1]

2.2 Fog Computing

Like edge computing, fog computing can also enable edge computation. However,

fog computing is a model that makes use of both the resources at the edge and the

cloud as seen in Fig. 2.1 i.e., it can be extended to the core of the network. It can be

described as a distributed computing paradigm that provides cloud-like services to

the network edge [52, 53, 54, 55, 56, 57]. Fog computing according to the National

Institute of Standards and Technology (NIST) [42] is defined as “... a horizon-

tal, physical or virtual resource paradigm that resides between smart end-devices

and traditional cloud or data centers. This paradigm supports virtually-isolated,

latency-sensitive applications by providing ubiquitous, scalable, layered, federated

and distributed computing, storage and network connectivity”.
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Fog computing extends the cloud computing paradigm to the edge of the net-

work, thereby enabling a new breed of services and applications. While cloud

computing is an efficient alternative to owning and managing private data cen-

ters for customers deploying web applications and batch processing [58, 59], it is

inefficient for latency-sensitive applications that are prevalent in IoTs which re-

quire resources (or nodes) in the vicinity to meet their delay requirements. IoTs

require mobility support and geo-distribution in addition to low latency and lo-

cation awareness. Fog computing was conceptualized as a complement to cloud

computing to meet these needs. It is a highly virtualized platform that provides

compute, storage, and networking services between end devices and traditional

cloud computing data centers. Fog computing can better meet the requirements

of IoT applications compared to the sole use of cloud computing.

The defining characteristics of fog computing include but are not limited to the

following [52, 60]:

• Low latency: The proximity of fog nodes and resources to end-users makes

the support of real-time services (e.g., video streaming, gaming, augmented

reality) possible.

• Geographical and large-scale distribution: Fog provides storage resources

and distributed computing to large distributed sensor networks and applica-

tions. In contrast to the centralized cloud, the fog will play an active role in

delivering high-quality streaming to moving smart vehicles through proxies

and access points that are deployed as roadside units.

• Mobility and Location awareness: Rich services are delivered to moving users

and location-constrained devices.

• Flexibility and heterogeneity: It allows the interaction of different physical

environments and infrastructures among multiple services. Fog nodes will be

in different form factors and can be deployed in a variety of environments.

• Scalability: The closeness of the fog enables scaling the number of connected

devices and services.
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These defining characteristics of fog computing make it the perfect solution for

a broad range of applications such as Smart Home, Smart Connected Vehicles,

Health Care Systems and Big Data Analytics [61]. However, the explosive preva-

lence of big data, IoT and fog computing in the context of cloud computing makes

it very challenging to investigate the efficiency of resource utilization and satisfy

the user’s quality of service requirement.

2.2.1 Fog-Enabled IoT Applications

Device ubiquity is one of the main factors that brought about fog computing. Cur-

rently, there are 25 billion connected devices in the world and the number of IoT

devices is expected to grow rapidly in the coming years [62]. These devices are

made up of both user mobile devices and sensing devices, which have been termed

Internet of Things (IoT) devices. With so many devices, there would be an in-

crease in network traffic, fog will help reduce the network traffic by localizing some

processing and reducing the need of engaging the cloud, thereby ameliorating the

likely bandwidth problems. As shown in the architecture in Fig. 2.2, the fog will

play a role in delivering quality streaming to mobile nodes, like moving vehicles,

through access points positioned accordingly, like along highways. Overall, for

smart communications, fogs are going to play an important role as it suits appli-

cations with low latency requirements, emergency and health-care related services,

video streaming, gaming etc. As shown in Fig. 2.3, many IoT applications, such

as healthcare, smart home, smart grid, autonomous vehicles can be enabled by fog

computing. We present some specific typical applications as follows.

Healthcare

Data management in health related issues is a sensitive topic since the health data

contains valuable and important private information [63]. With fog computing, the

patient can have custody of their health data locally [64]. These data would be

stored in a fog node such as a smart vehicle or a smartphone. The computation will

then be outsourced in a privacy-preserving manner when the patient is seeking help

from a physician’s office or a medical laboratory. The modification of the health

data happens directly on the patient-owned fog node [65]. In [66], the authors
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proposed FAST which is a fog computing assisted distributed analytics system to

monitor fall for stroke patients. They developed a set of fall detection algorithms

that were based on acceleration measurements, time series analysis methods and

filtering techniques to enhance the fall detection process. The authors designed

a real-time fall detection system that is based on fog computing, which divides

the detection task between the edge devices and the cloud. The system achieved

a high sensitivity when tested against real world data and the response time and

energy consumption were close to the most efficient existing approaches.

Smart Home

With the development of Internet of Things, more and more sensors and smart

devices are connected at home [67]. This would require different devices from

separate vendors to work together (which is a hard task) and it would also require
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a large amount of computation and storage. For example, real-time video analytics

is infeasible because of the limited capability of the hardware. To solve these

problems, fog computing is used to integrate all entities into a single platform and

empower those smart home applications with elastic resources [65]. For example,

given a home security application, widely deployed secure sensors consist of smart

locks, various sensor monitors, video/audio recorder etc. If they are not products

of the same vendors, those secure devices are hard to combine. Fog computing can

provide home security applications with the following:

• a unified interface to integrate all kinds of independent applications

• flexible resources to support computation and storage

• real-time processing and low-latency response

Once the fog platform is set up, each secure sensor can be connected as a client

and the corresponding server application can be installed on independent virtual
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machines (VMs). Advanced processing logic can also be implemented on VMs,

which can process the data shared by those secure monitor applications. Fog

computing plays a key role in achieving localized services and low latency for

smart homes.

Smart Grid

A smart grid is an electricity distribution network. Smart meters are deployed

at various locations to measure real-time information. A Supervisory control and

data acquisition (SCADA) server is used to stabilize the power grid in case of fluc-

tuations, emergency, or demand changes. It does this by gathering and analyzing

status information and issuing commands in response to any demand change or

emergency. Fog computing can be used to benefit SCADA immensely by intro-

ducing a decentralized model with micro-grids. This would not only improve the

scalability, cost efficiency, security, and rapid response of the power system but

also integrate distributed power generators (wind farms, solar panels, etc.) with

the main power grid. Using fog computing, the smart grid will be a hierarchical

system with the interplay between fog and SCADA [68]. In this scenario, the fog

is in charge of a micro-grid and communicates with neighboring fogs and higher

tiers. The higher the tier, the wider the geographical coverage and the larger the

latency as well. SCADA provides the final global coverage, which is responsible

for economic analytics and long-time repository.

Smart Vehicles

The smart vehicle deployment displays a rich scenario of connectivity and interac-

tions: cars to access points (Wi-Fi, roadside units, 3G, smart traffic lights), cars to

cars and access points to access points. Fog computing has many attributes that

make it a suitable platform for delivering a rich menu of services in infotainment,

traffic support, safety and analytics: geo-distribution (throughout cities and along

roads), location awareness and mobility, heterogeneity, low latency and support

for real-time interactions.

Popular applications of vehicular fog computing include traffic light scheduling,

parking facility management, congestion mitigation, precaution sharing, traffic in-
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formation sharing. Fog computing can be integrated into vehicular networks, and

it can be classified into two types depending on whether extra infrastructure is

needed. The types are infrastructure-based [69] and autonomous-based [70]. In

infrastructure-based, driving-by vehicles rely on the fog nodes deployed on the

roadside to send and retrieve information while in autonomous-based, the vehicles

can be used to form a fog resource and support ad-hoc events. New applications

such as virtual reality, self-driving etc. deal with complex data processing and

storing applications. Thus, they require a higher level of communication, compu-

tation, and storage.

2.3 Differences between Edge Computing and Fog

Computing

Both edge computing and fog computing share a lot of similarities. They are both

enablers of data traffic to the cloud. While edge computing carries out processing

where the data is being generated i.e., at the edge of a given application network,

the traffic of data being sent to the cloud can be massive and irrelevant data can

be sent to the cloud. Fog computing can act as a layer between the cloud and the

edge such that instead of the edge sending large streams of data directly to the

cloud, fog computing can filter the data from the edge layer and decide what is

relevant or not. With fog computing, the relevant data gets stored in the cloud

while irrelevant data can be analyzed at the fog layer to inform localized learning

models, or it can be deleted. Fig. 2.4 shows the edge, fog and cloud layers of a

computing infrastructure. The rationale behind edge computing is that computing

should happen at the proximity of data sources. Edge computing focuses on the

things side while fog computing focuses on the infrastructure side [71].

2.4 Resource Management

Due to the heterogeneity and limitations of the fog resources, the dynamic nature

and unpredictability of the fog environment along with the application deployment

in both fogs and physical servers in the clouds, resource management becomes one

of the challenging problems to be considered in the fog landscape. We catego-
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rize the resource management problem in fog computing using the following ap-

proaches: load balancing, resource allocation, service scheduling, task offloading,

and resource provisioning.

2.4.1 Load Balancing

Load balancing is the process of redistributing workload among fog nodes to im-

prove both resource utilization and job response time. It avoids situations where

some fog nodes are heavily loaded while others are idle or doing little data pro-

cessing. In such scenarios, load balancing between fog nodes helps minimize user

response time and detect events in real-time. Load balancing in distributed envi-

ronments such as fog computing is divided into two main approaches: static and

dynamic load balancing [72]. In static allocation, a set of tasks is provided to

specific fog nodes so that the performance function is minimized. The allocation

is done using either probabilistic or deterministic means. In a probabilistic alloca-

tion technique, a fog node I allocates its overloaded tasks with some probability

to some backup fogs. E.g., it allocates the overloaded tasks to fog node K with
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probability x and to fog node L with probability y. In a deterministic allocation

technique, a fog node I allocates its overloaded tasks to a backup fog node J all

the time. The major disadvantage of static allocation is that the destination fog

node resource status is not considered when making the allocation decision. In

dynamic load balancing, the current status of the fog nodes is taken into con-

sideration when making the allocation decision. As a result, tasks are allocated

dynamically from an overloaded fog node to an underloaded fog node. Although

it is more challenging, it gives a more efficient solution to achieve a sustainable

load balancing/allocation. We consider the dynamic allocation strategy in our

proposed solution.

2.4.2 Resource Allocation

Resource allocation deals with allocating a set of geographically distributed het-

erogeneous fog nodes to competing IoT services/users with different Quality of

Service (QoS) requirements while considering fairness and service priority. In the

IoT era, the demand for low-latency computing services for time-sensitive applica-

tions (e.g., mobile augmented reality applications, real-time navigation using wear-

ables, real-time smart traffic management) has been growing rapidly [73, 74, 75].

Fog computing provides a suitable infrastructure to fill the latency gaps between

the IoT devices and the core network infrastructure (i.e., back-end computing in-

frastructure). Ensuring that resources are allocated fairly while considering the

applications’ QoS requirements is a challenging task.

2.4.3 Resource and Service Scheduling

Service requests from IoT devices can be served by several fog nodes. An applica-

tion request can be divided into a set of tasks. Fog computing scheduling problem

determines an optimal assignment of the tasks submitted to the fogs to meet the

agreed quality of service with the IoT end-user while minimizing the execution time

for the submitted task [76, 77]. A scheduling algorithm searches for an optimal

solution in an enormous search space that schedules a set of tasks with various QoS

requirements (cost, deadline etc.) onto a set of fog nodes with different capabili-

ties for optimizing the scheduling objective function (i.e., minimizing the execution
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time). In a fog computing environment, the objective of resource scheduling is to

assign appropriate resources for submitted tasks according to scheduling goals.

2.4.4 Task Offloading

IoT devices have limited computational power, storage space, and battery energy

and are therefore constrained to run compute-intensive tasks. As a result, some of

their tasks need to be outsourced to the cloud or fog to improve their performance

and save battery. The process of executing tasks on behalf of IoT devices on the

fog or cloud and returning the results to the devices is called task offloading [78,

79, 80]. It is a mechanism by which compute-intensive tasks are transferred from

resource-constrained IoT devices to resource-rich computing nodes to improve the

performance of delay-sensitive IoT applications. It should be noted that tasks are

not bound to computation only but also to other resources such as storage [81].

2.4.5 Resource Provisioning

IoT device application requests (i.e., services workload) change over time thereby

leading to workload fluctuations [82, 83]. The fluctuating workload can lead to

either under-provisioning or over-provisioning problems. Under-provisioning oc-

curs when the allocated fog resources are less than the actual loads of the IoT

user demand, leading to Service Level Agreement (SLA) violations and loss of IoT

users. On the other hand, over-provisioning occurs when the allocated resources

for a given IoT service are more than the actual loads of the IoT user demand. It is

important to dynamically provide the appropriate number of resources to handle

the IoT workload for minimizing costs while meeting the QoS constraints.

2.5 Taxonomy and Use cases

2.5.1 Taxonomy

The fog computing platform can provide many services to support IoT-based ap-

plications. It usually consists of multiple fog nodes that are distributed across a

city to enable IoT applications such as real-time traffic control systems [84, 85]
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that require low latency responses to avoid potential collisions, virtual and aug-

mented reality applications [86, 87, 88, 89], real-time smart grid management sys-

tems [90, 91, 92, 93] that aggregates data from geo-distributed sensors and control

the grid in real-time.

The platform allows services to be executed geographically close to the IoT-

based applications, thereby providing low latency, location awareness, mobility,

and real-time support. The fog services are categorized as follows:

• Stateless Services Vs Stateful Services: The fog services that are provided

depend on the IoT application. A stateful fog maintains state data that is

updated with each service invocation, and the operations and outcomes of the

service invocation can be affected by the current state data [94]. Examples of

such stateful fog services include a service that coordinates and synchronizes

local IoT devices, a service that provides aggregate and/or average measure-

ments of sensors within a defined period. In both examples, the fog services

need to keep information that propagates from one invocation to the next

and cannot operate correctly without it. This type of service requires that

all current state data be replicated and must be updated continuously with

any changes in the state data, making it challenging to accurately maintain

at all times.

In contrast, a stateless fog service performs a specific task invocation without

requiring or updating state data. Both its operation and outcomes are not

affected by the state data. Examples of such services include a computation

service that performs a specific calculation on a provided data, a service

to retrieve the current measurement of a sensor etc. Generally, a stateless

service can be easily replicated on another fog node as it does not maintain

any state data.

• Non Real-Time Services Vs Real-Time Services: Real-time fog services are

services that need to be completed within a time frame [95, 96]. The re-

sponses and actions are useless if they are not completed within the specified

time. As a result, the operations of the application using the service may

be negatively affected if the actions and responses are not delivered within

the specified time. Fog computing is better equipped than cloud computing
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to support real-time services as fog nodes are better and closer placed to

the requesting applications. Fog computing can also support non real-time

services that do not have time constraints to perform their tasks. Fault

tolerance handling with non real-time services is easier compared to real-

time services. This is mainly due to the time constraints as non real-time

services can be offloaded to other fog nodes or the cloud with minimal im-

pact. However, with real-time services relocation, a suitable fog that meets

the required time constraints must be identified. Therefore, it is important

to identify suitable backup fog nodes that are close enough and have the

required capabilities to perform the service.

• Mobile Vs Non-Mobile services: Mobile services are services that require

mobility. Either the IoT devices are running applications while being mobile

or the fog nodes are allowed to be transported in a specified region [97, 98].

We focus on mobile IoT devices such as smart vehicles. Non mobile services

encompass services that are fixed, i.e., the devices are stationary when re-

questing for a fog service. Examples of mobile services include smart cars,

automotive technologies, while non-mobile services include smart buildings,

shopping malls etc.

The resource management architecture for fog computing is classified using the

fog services identified. There are eight types of services for IoT applications as

shown in Table 2.1. They exhibit different levels of difficulty in handling fault tol-

erance, task allocation, and scheduling. For example, stateless, non real-time and

non-mobile services are the easiest as there are limited constraints and replication

can be done easily and stateful, real-time services and mobile are the most complex

as they require multiple constraints and continuous monitoring for replication.

2.5.2 Use Cases

We discuss various application use cases that fall into our stated taxonomy.

A Stateless, non real-time and non-mobile services

IoT applications such as smart building controls fall into this category [99,
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Table 2.1 Combination of different types of services
Number Service Type
1 Stateless, non real-time and non-mobile services
2 Stateless, non real-time and mobile services
3 Stateless, real-time and non-mobile services
4 Stateless, real-time and mobile services
5 Stateful, non real-time and non-mobile services
6 Stateful, non real-time and mobile services
7 Stateful, real-time and non-mobile services
8 Stateful, real-time and mobile services

100, 101, 102]. Sensing applications such as temperature and humidity read-

ing of a room do not need stateful data and are not time-constrained.

B Stateless, non real-time and mobile services

Applications that fall into this category include smart mall shopping [103,

104, 105]. Fog services are provided on every floor of a mall and as cus-

tomers move about, they request different information from that section of

the mall. General purpose tasks where there is no hard deadline such as

image recognition also falls in this category.

C Stateless, real-time and non-mobile services

Content retrieval such as file transfer and video streaming are stateless since

the client-server is agnostic of the client device session [106]. The extremely

low response times enabled by the fog can enhance the user experience.

D Stateless, real-time and mobile services

A moving car requesting weather readings or pothole information from a

roadside unit fall into this category [107].

E Stateful, non real-time and non-mobile services

Data gathering and processing on millions of devices require stateful fog

services [108]. The fog can handle and help process data on devices where

the data for the device and computation are co-located.

F Stateful, non real-time and mobile services

Data analytics and workflow processing applications such as those available
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in financial and transitional systems fall under this category [109]. The fog

service can support application processing pipeline where results must be

reliable and passed on to the next processing stage without any loss.

G Stateful, real-time and non-mobile services

Gaming and session-based interactive applications require low latency read

and writes [110]. The fog service supports these interactive stateful applica-

tions without having to create a separate store or cache at the client device.

H Stateful, real-time and mobile services

Applications for autonomous driving fall in this category [111]. Traffic moni-

toring applications used in smart autonomous vehicles allow the user to avoid

potential dangers and traffic scenarios in real-time.

2.6 Summary and Discussion

In this thesis, we explore a variety of algorithms that focuses on the different re-

source management approaches for the identified fog services. We develop resource

and task allocation algorithms that help minimize the average response times of

stateless applications. We propose scheduling algorithms for real-time services

that help meet the application deadlines, and we consider mobile services by in-

troducing network-aware algorithms to minimize the stateful application execution

times.
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Chapter 3

Related Work

In this chapter, we discuss the literature on task allocation and scheduling algo-

rithms related to our work. Given that IoT applications are latency-sensitive and

have both real-time and non real-time constraints, a proper scheduling framework

that employs both edge and cloud resources is needed to achieve the objectives of

IoT applications. We classify these objectives into two parts, which are termed fast

computing and real-time computing. In the first part - fast computing, we address

algorithms that aim to provide low latency by minimizing the average response

time of a set of tasks in the application and then in the second part - real-time

computing, we describe solutions that aim to meet the individual timing require-

ments of each of the tasks in the application [112]. While the works discussed in

the first two parts assume that the computing resources are always available at

a very short network link away from the end device with high capacity to trans-

fer data, the works presented in the network-aware scheduling section show some

scenarios where the network link variation can have an impact on the application

performance.

3.1 Fast Computing

In fast computing, we examine task allocation algorithms in the context of fog

computing that aim to minimize the average response time of the application.

Hou et al. [113] proposed a combined system with an edge-cloud and a backend



3 Related Work 23

cloud. Tasks served by the edge-cloud incur smaller overall costs compared to the

ones that eventually get served by the backend servers because those tasks incur

processing costs at the edge and communication costs over the backhaul connec-

tions that connect the edge to the backend. If a service is popular, it should be

downloaded to the edge-cloud at a cost. This will allow subsequent tasks to get

served at lower costs. The objective [113] is to minimize the total costs of the

system by intelligently reconfiguring the set of services around the edge-cloud.

Oueis et al. [114] dealt with load balancing in a small cell cloud computing

system while simultaneously optimizing the power consumption costs and latency

constraints. The user tasks are associated with small cells and small cell clusters.

Small cell clusters are composed of small cells and are formed for tasks that cannot

be served by a small cell. In forming the cluster, several strategies were employed

such as minimizing the cluster latency and power consumption costs. The au-

thors formulated a clustering problem for multiple users as a joint optimization of

communication and computational resources with the objective of minimizing the

overall power consumption in the cluster. The heuristics proposed by the authors

join task scheduling and cluster formation. The goal is to allocate resources to

satisfy as many user tasks as possible while keeping both the power consumption

and processing complexity low.

Song et al. [115] presented an approach to increase the number of tasks that

can be processed at the edge. They formulated a task distribution problem that

includes satisfying the quality of service (QoS) requirements of application tasks

amid constraints stipulated by the edge resources. They solved the task distribu-

tion problem using an algorithm that relies on relaxation, rounding, and validation.

They evaluated their work against two baseline approaches, which are a random

approach that routes tasks randomly to any edge node and a local approach that

executes the task locally without distributing it to the edge computing network.

The main contribution of this work focuses on increasing the number of tasks

served, with metrics such as response times added as constraints in the problem

formulation.
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Dang and Hoang [116] developed fog-based regions to provide nearby comput-

ing services and proposed a scheduling algorithm that distributes tasks to mul-

tiple regions and the cloud when resources are needed. The aim is to minimize

the completion time of tasks and improve users’ experience. The author’s concept

of “region” addresses the latency requirements of applications in fog computing

and in collaboration with the cloud to provision resources on demand. In their

work, tasks are sorted in the order of latency constraints and resources are allo-

cated according to the policy that aims to minimize the computation latency for

each task. They evaluated the proposed scheduling policy against two approaches,

namely, “Cloud-based” that schedules all tasks on the cloud and “Region-based”

that schedules all tasks on the fogs until they are fully loaded.

Yousefpour et al. [117] proposed a delay-minimizing allocation algorithm for

IoT applications. When a device sends a task to a fog, the fog will serve the task

if its waiting time is less than a specified threshold; otherwise, the fog offloads the

task to the ‘best’ fog in its domain. When offloading the task, fogs use a reliability

table to decide the task processing. The reliability table shows, for each fog in the

domain, the sum of the propagation and processing delay in ascending order. The

fog with the lowest delay is selected as the best fog to offload the task to. If a

selected fog’s waiting time is greater than a threshold, the next best fog is selected

in the domain and the task is offloaded to it. The process is repeated until either a

fog’s waiting time is less than the threshold and it serves the task, or it is offloaded

to the cloud after a limit (em) has been reached, or all fogs have been visited (Nfwd).

Skarlat et al. [118] modeled a task placement problem for IoT applications over

fog resources as an optimization problem. They considered the heterogeneity of the

applications and resources in terms of quality of service attributes. They solved

the optimization problem using the IBM CPLEX library 1 and also proposed a

genetic algorithm (GA) heuristic to show that the task execution achieves a re-

duction of network communication delays when the GA is employed and a better

utilization of fog resources when the exact optimization method is applied.

1https://www.ibm.com/analytics/cplex-optimizer.
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Table 3.1 Comparison of related task allocation algorithms.

MinDelay [117] FRBC [116] QoS-Approach [115] Fog Balancing [114] VFR (Proposed algorithm)

QoS / Metric considered Minimize response time Minimize response time Maximize number of tasks completed Optimize power consumption Minimize response time

Load Balancing Yes Yes No Yes Yes

Cloud Involved Yes Yes No No Yes

Mode of Interaction Decentralized Decentralized Centralized Centralized/Distributed Decentralized

Regions/Clusters Yes, formed dynamically Yes, formed dynamically No Yes No

Location Sensitive Yes Yes Yes No Yes

Service Offered Task allocation Task scheduling Task allocation Task scheduling Task allocation & scheduling

Table 3.1 gives an overall comparison of the related studies as it relates to

fast computing and our proposed algorithm which will be discussed in Chapter 4.

Our algorithm does not use clusters or regions. At least for task offloading among

the fogs, our algorithm does not expect any tuning parameters. The tuning pa-

rameters are involved in forwarding the tasks to the cloud when fogs are deemed

underperforming. The proposed algorithm does not do explicit load balancing

among the fog nodes. It spreads the workload when it detects bad performance at

the designated fog node.

While the goal of Hou’s work [113] is to minimize cost, Oueis [114] aim to

maximize resource allocation while keeping power and processing complexity low.

Song [115] also focused on maximization on the number of tasks that can be served

by the fogs. Dang’s [116] objective was to offload the tasks appropriately to fog

and cloud resources while minimizing response times. Yousefpour [117] focused on

minimizing response times when tasks are injected to the fog and cloud resources.

Skarlat [118] aimed at reducing the communication delays incurred by processing

tasks and offers better utilization of fog resources. Our goal is to minimize the

response time it takes for tasks to get served while using as little fog resources as

we can. Our approach, therefore, minimizes the cost of using a fog resource, the

response time of serving tasks, and using the fog resources efficiently.
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3.2 Real-time Computing

In real-time computing, we examine algorithms that aim to meet the individual

timing requirements of the application tasks.

Isovic et al. [119] dealt with a combination of a mixed set of tasks and con-

straints. These include periodic tasks, firm aperiodic tasks and sporadic tasks.

They proposed an offline scheduler to manage the start times and deadlines of

periodic tasks using the Earliest Deadline First (EDF) model. The execution of

offline scheduled tasks is flexibly shifted at run time to allow for the feasible inclu-

sion of arriving sporadic and aperiodic tasks. The maximum frequency of sporadic

tasks is assumed to be known, however, the exact knowledge of arrival is known

at runtime. Therefore, using the maximum frequency assumption, sporadic tasks

undergo an acceptance test and are guaranteed offline. Since resources are reserved

for a pessimistic scenario of sporadic tasks offline, the online arrival of sporadic

tasks is assumed to be less pessimistic and the extra freed-up resources are used

to serve firm periodic tasks.

Tang et al. [120] proposed a method where slack windows are prescheduled in

a non-preemptive system that consists of hard periodic and soft aperiodic tasks.

The aim was to improve the acceptance rate and waiting time of aperiodic tasks

without violating periodic task deadlines. The proposed method creates an offline

schedule of periodic tasks and pre-scheduled slack, which models the estimated

characteristics of the aperiodic tasks. The offline schedule is used at runtime by

the local schedulers to guide their decisions to adjust start times of periodic task

instances while scheduling aperiodic tasks arriving from the global scheduler.

Tang et al. [121] focused on scheduling soft aperiodic tasks alongside periodic

tasks with hard deadlines. They proposed a method to improve the aperiodic

task responsiveness without breaking the periodic task deadline guarantees. The

method schedules periodic tasks offline while using the remaining slack time to

dynamically schedule aperiodic tasks. The authors noted that the quality of ape-

riodic scheduling depends on two factors: a) the slack distribution across and
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within resources after scheduling periodic tasks, and b) the flexibility of the sched-

uler to rearrange slacks to accommodate incoming aperiodic tasks.

Jeon et al. [122] proposed a method to reduce the response time of aperiodic

tasks while meeting the deadline of periodic tasks. They developed a slack steal-

ing algorithm that attempts to make time for servicing aperiodic tasks by stealing

the processing time from the periodic tasks without causing the periodic tasks to

miss their deadline. The authors claim that their method results in a significant

reduction in the response time of aperiodic tasks.

A soft-real system was modeled for multimedia applications in a UNIX sys-

tem by Chu et al. [123]. The system supports different service classes of tasks

such as periodic and aperiodic constant processing, variable and one-time process-

ing classes. The classification was based on the processor usage pattern of the

real-time processes. The EDF algorithm was used for the scheduling of multiple

real-time processes. The authors implemented the system in the user space with-

out any modifications to the underlying kernel.

Lin et al. [124] developed a system for mixing batch and interactive virtual ma-

chines on physical machines subject to the latency and execution constraints for

each workload. The system uses a periodic real-time scheduling model to schedule

the virtual machines.

A system that supports a mix of interactive and batch application tasks in com-

modity operating systems was presented by Yang et al. [125]. The authors aim

to maximize the responsiveness of interactive applications even in the presence

of extreme workloads. An EDF-based algorithm was used to schedule interactive

applications.

Tasks with hard real-time constraints were considered by Zhao et al. [126].

The authors developed a system that does not consider the prior and complete

knowledge of the task set. Tasks arrive in a batch mode and are scheduled non-

preemptively.
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Chen et al. [127] addressed challenges related to communicating processes from

different nodes sending data to one another. To realize end-to-end predictability,

a challenge that was resolved by the authors is integrating real-time and non real-

time tasks on the same platform.

Our system design given in Chapter 5 works with non-preemptive tasks. We

also consider a system where a mix of hard real-time, soft real-time (i.e., interactive

tasks), and batch tasks are scheduled. Some works [119, 126, 122, 124] deal with

preemptive systems and those that deal with non-preemptive [120] do not take

the three classes of tasks into consideration as we have done. Furthermore, some

works considered scheduling tasks on a single node [126]. Those that considered

distributed systems schedule the task exclusively on the distributed nodes [119,

124]. In this work, tasks can be scheduled in distributed systems in both exclusive

and non-exclusive ways, i.e., tasks are allowed to run on several resources. Finally,

we designed a two-stage system architecture where tasks are matched to resources

in the first stage and then scheduled onto the matched resources in the second

stage. Isovic et al. [119] employ a 2-phase approach but task matching does not

occur. Instead, tasks are assumed to be assigned to the resources and a schedule

is created offline in the offline phase for periodic tasks, while the aperiodic tasks

are scheduled on top of the offline schedule at runtime in the online phase.

3.3 Network-Aware Scheduling

A handful of research efforts have been performed for network-aware scheduling

in cloud environments, while very few have been undertaken in fog and edge com-

puting environments.

LaCurts et al. [128] propose Choreo - a system that tenants (cloud service

provider clients) can use to place a mix of applications on the cloud infrastructure

by understanding the underlying cloud network as well as the application demands.

The proposed system has three components a) a measurement component to ob-

tain the network rates between the virtual machines (VMs) b) a component to
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profile the data transfer characteristics of the application, and c) an algorithm to

map the application tasks to VMs such that tasks that communicate often are

placed on VMs with higher rates between them. Choreo’s placement method aims

to minimize the application completion time. The authors formulated the place-

ment method as an integer linear program problem, however, they noticed it took

a very long time to solve, thereby hampering the ability to place application tasks

quickly. Alternatively, they proposed a greedy network-aware approach that places

pairs of tasks that transfer the most data on the fastest paths.

Arslan et al. [129] proposed an algorithm for the reduce task scheduling compo-

nent of a map-reduce application by taking both data locality and network traffic

into consideration. The network-aware component of their work aims to distribute

network traffic over the whole network to reduce the effects of congestion on data

transfer. The authors combined data locality (by moving reduce tasks to where

the map tasks are located) with network-traffic awareness to decrease the shuttle

phase duration as well as lower the network traffic caused by data transfers. The

authors consider the network bandwidth capacity and congestion when comparing

a pair of potential paths for reduce tasks input data movement. The scheduling

decisions are made by considering the impact of network congestion on the end-end

performance of the application.

Conversely, He et al. [130] focused on map tasks of a map-reduce application

and proposed Firebird - a derivative of spark as a network-aware scheduling method

in Spark that runs on top of Software Defined Networks (SDN). The authors argue

that data processing and network are separate entities that do not communicate

with one another and therefore make it hard to create a relationship between the

network and Spark. The introduction of SDN removes the communication barriers

between the underlying network and the compute clusters, and it provides direct

application programmable interfaces (APIs) for the applications to control and

monitor the state of the network. This ensures that tasks can be scheduled based

on the network conditions in Spark clusters. Their method aims to avoid network

congestion and achieve efficient scheduling to increase the throughput of the whole

system. Essentially, when a compute node requires a task, the scheduler selects
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tasks that will not experience congestion during data shipping, which thereby ac-

celerates the execution process.

Fiore et al. [131] proposed a data-centric meta-scheduling scheme for dis-

tributed big data processing architectures based on clustering techniques. The

objective is to aggregate tasks around storage repositories, driven by a “gravita-

tional” attraction between tasks and their data of interest. The authors stated

that their proposed scheme benefits from a heuristic criterium based on network

awareness and advance resource reservation to suppress long delays in data trans-

fer operations and result in optimal use of data storage and runtime resources.

While most of the works discussed above are suited to cloud computing en-

vironments, the work done by Santos et al. [132] is suited to fog computing

environments. The authors proposed a network-aware scheduling approach for

container-based applications in Smart city deployments. They validated their ap-

proach on the Kubernetes platform, and it is implemented as an extension to the

default scheduling mechanism available in Kubernetes. The proposed network-

aware approach is presented to provide up-to-date information about the current

network status to Kubernetes to enable it to make informed resource allocation

decisions. They compared the performance of the approach with the available

standard scheduling features in Kubernetes, and they state that their approach

achieves a network latency reduction of 80% when compared to the Kubernetes

default scheduling mechanism.

Although existing and ongoing research cited address network-aware scheduling

in cloud and fog computing environments, they have not considered mobility as

well as variations in wireless network conditions such as 5G. Our proposed network-

aware scheduling approach discussed in Chapter 6 focuses on applications that run

in a mobile environment with varying network conditions while the edge device

is on the move. We consider the implications of dynamically changing network

conditions on the execution of the application.
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Chapter 4

Task Allocation Algorithms for

Fog and Cloud Servers

In this chapter, we introduce solutions for resource and task allocation for indepen-

dent batch tasks of an IoT application in a distributed cloud computing system.

The distributed cloud configuration complicates the server selection problem for a

given task. Therefore, we deal with the server selection problem by developing a

two-phase fog (distributed cloud server at the edge) selector.

In the first phase, the selector allocates a set of fogs to a device in a tiered

configuration: a primary and pool. In the second phase, the tasks are allocated

to the nodes, including the primary and pool. One of the unique aspects of the

algorithm is its probing design that adapts according to the network latencies that

connect the device to the fogs and cloud. As the network or network plus server

latencies changes with time, the fog selector changes the fog that is chosen to serve

a task. The two-phase procedure allows us to control the dispersion of the tasks

because the task routing function is confined to the fogs that are selected by the

allocation algorithm.

The described framework allows us to provide a suitable fog resource manage-

ment approach, i.e., a solution for the distribution of IoT tasks among fog nodes

which aims at minimizing the delays arising from the transfer times between the
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fog and cloud and efficiency of resource usages of the fog nodes. To evaluate our

approach, we compare different scenarios and task allocation policies. We aim to

identify the best allocation policy by comparing suitable metrics, e.g., response

time and resource usage.

4.1 System Architecture

The overall system architecture is shown in Fig. 4.1. The fog resource management

system has components running in the devices, fogs, and cloud. We have the Fog

Allocator running in the cloud with a global perspective. It is responsible for run-

ning the fog allocation optimizer given in Sect. 4.2. Another important component

of the fog resource management system is the Fog Resolver. This component runs

in each device. It is responsible for forwarding the task to different fogs. The Fog

Allocator sets up the Fog Resolver periodically or at triggers generated by the Fog

Resolver, so that the Fog Resolver can make decisions according to the state of

the system.

The Fog Resolver maintains a routing table as shown in Fig. 4.1 via device a.

In this table, homeFog (the default fog to use) and the pool (alternate or backup

fogs) are set up by the Fog Allocator. Collectively, the homeFog and the pool are

known as the virtualFog. It is the job of the Fog Resolver to resolve the virtualFog

to a physical fog (i.e., the homeFog or one of the fogs in the pool). The pool

concept is introduced to replicate services in it for fault tolerance purposes. It is

similar to what is obtained when distributing databases in a cloud framework such

as Openstack and Rackspace. The use of backups is generally proposed to meet the

high availability constraint that is mandatory in production infrastructures [133].

To provide consistency, when a task is processed by an instance of a fog, changes

to the service is propagated to the associated pool where the data are replicated.

This ensures that the data which the devices interact with at the fogs are updated.

One of the unique aspects of our allocation system is the ability to consider

data linking among the devices. The data linking (also referred to as the linked

data) comes from one device generating data that another device wants to use (i.e.,
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Figure 4.1 Overall Fog Resource Management Architecture.

data dependency) or the fog making a collective decision as a result of the linked

data processing. More than two devices could be involved in a data dependency.

By placing all such devices in a fog (assuming the fog capacity and proximity con-

straints are satisfied), we could get the data transmitted faster from one device

to another or have data aggregation occur at the fog for faster processing. For

example, a sprinkler actuator device and a fire sensor need to be connected to

the same fogs so that they can interchange the data very quickly. We could have

multiple redundant interchanging fogs to provide fault tolerance.

We describe a traffic management application use case that shows the feasi-

bility of our architectural design. Traffic congestion is a severe problem that has

the potential to paralyze major cities, choking off growth and development. Some

cities resolve to drastic and expensive solutions to mitigate the problem, such as
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expanding toll roads or restricting the number of license plates issued. Our archi-

tecture can provide a source of solution to help combat traffic-related problems.

By leveraging traffic related data, congestion can be alleviated by connecting and

analyzing previously unconnected infrastructure devices, on-board vehicles, and

roadside sensors, to redirect traffic based on real-time data. We consider two

aspects of the described use for which our architecture applies.

1. A device can ask a fog to perform some computational processing while

sending the data for the function to be performed.

2. Device(s) can receive updates or tasks to be carried out from the fog.

In case 1, cars can ask a fog for the best route to take while supplying their

source and destination information. Similarly, they can ask for infotainment ser-

vices or a recommendation of a nearby service based on their location input.

In case 2, fogs situated on a roadside can collect data from all kinds of sensors

and devices installed along a roadway. The fog can perform local analysis and

trigger an automated emergency response such as “Flooded roads ahead: take the

next exit” or “Water on road: slow down”. Sensors and local devices can send

their data to the same fog for faster analysis and enable city officials to respond

to the emergency needs on time.

For the second case, devices are grouped such that their data is being fed into

the same fog or nearby fogs for processing. Data from vehicles in the same area

can be aggregated to quickly clear the traffic congestion or road flooding. Using

vehicles’ data, dynamic routing scenarios can be planned in real-time or planned

in advance using historical data. Congestion can be anticipated and alleviated

before it happens. Similarly, vehicles can connect to roadside sensors, aggregating

their data to provide a larger view of traffic and roadside conditions. This is done

to avoid traffic-causing accidents and makes the vehicle safer.

In Fig. 4.1, we have linked data between some devices and not others. For

example, devices a, b, and c are interconnected by linked data and want to be in
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the same fog, while device i does not have any linked data. The Fog Allocator

considers all factors while allocating the virtualFog. In the example shown, for

device a, we have homeFog fog 2 and pool fogs 1, 3, 4. Because the network laten-

cies and fog state can change with time, the Fog Allocator needs to recompute the

allocation after some time to account for the changes, including device mobility.

This recomputation is carried out when the Fog Resolver in the device notices that

the assigned homeFog is not suitable for the device because the pool or the cloud

is performing better.

In our architecture, the Fog Resolver is responsible for allocating the tasks to

the fogs and monitoring the response times of the fogs. If the fogs are not yielding

acceptable response times, the Fog Resolver can request the Fog Allocator for a

remapping of the virtualFog.

4.2 Allocation Optimization Problem

The fog allocation problem is seeking to allocate multiple fogs for each device. One

of the fogs (possibly the best candidate) is denoted as the primary fog (termed

homeFog in the system architecture section) and remaining fogs that cover (or

are assigned) a device are called the backup fogs (termed pool in the system

architecture). This allocation problem is quite different from the widely solved

facility-location problem where a single server is allocated to satisfy the demands

originating from a given device [134]. The problem we have here can be solved

using a related idea called the Q-coverage problem [135]. In Q-coverage, we as-

sume that a device is going to be covered by a homeFog and Q-1 backup fogs. The

objective is to find fog locations such that the total latency between all devices and

their nearest fogs is minimized. We now formulate the model with the Q-coverage

requirement.

• Sets of Indices:

i ∈ I : set of device locations

j ∈ J : set of fog locations
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• Parameters:

m = number of fogs (m = |J |)
n = number of devices (n = |I|)
ri = number of tasks issued by device i

capj = capacity of fog j

cij = latency between device i and fog j

dik = link relation cost between devices i and k

fj = setup cost of fog j

Q = minimum number of coverage (assignment) required

• Decision Variables:

yj =

1 if fog j is available

0 otherwise

xij =

1 if device i is assigned to fog j

0 otherwise

• Objective function:

min
∑
i∈I

∑
j∈J

∑
k∈I

ricijdikxij +
∑
j∈J

fjyj (4.1)

• Constraints:∑
j∈J

xij = Q, ∀i ∈ I (4.2)∑
i∈I

rixij ≤ capj, ∀j ∈ J (4.3)

xij ≤ yj, ∀i ∈ I, j ∈ J (4.4)

yi, xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (4.5)

The first term in the objective function (4.1) seeks to minimize the total

weighted latency between devices and their nearest fogs while taking the link rela-

tion cost between devices into consideration. The link relation cost is introduced
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to enable us to place devices that share similar data in the same fog or nearby fogs.

The second term in the objective function aims to minimize the setup cost of the

fogs. Constraint (4.2) ensures that all devices are covered by Q fogs. Constraint

(4.3) ensures that the capacity of the fog is respected when processing the demands

at the devices. Constraint (4.4) ensures that the fogs that are not activated cannot

cover any device. Constraint (4.5) declares the variable types. The model is solved

using IBM CPLEX1 optimization solver and the solution is given as input to the

Virtual Fog Resolver (VFR) algorithm that is described in the next section.

We describe a small example scenario to illustrate the benefits of linked data.

Given 4 fogs and 6 devices and a fog setup cost of $10, with the fogs having a

capacity of 3 tasks at any given time and each device issuing a single task. The

device to fog latency is given in Table 4.1. Using CPLEX to solve this scenario

without linked data cost, the output is given in Table 4.3. For this scenario, each

device is mapped to each fog such that device 1 is mapped to fog 1, device 2 to

fog 2 and so on. With the linked cost introduced as shown in Table 4.2, device 1

shares data with device 6 and device 2 shares data with device 3. The solution

shows that devices 1 and 6 should be mapped to fog 2 while devices 2 and 3 should

be mapped to fog 3 as shown in Table 4.4.

This solution shows us the benefit of having devices sharing similar data being

grouped in the same fog. The mapping obtained from this algorithm is passed into

the VFR algorithm as an input.

Table 4.1 Device to Fog Latency.
Fog 1 Fog 2 Fog 3 Fog 4

Dev 1 2 4 6 8
Dev 2 8 2 4 6
Dev 3 6 8 2 4
Dev 4 4 6 8 2
Dev 5 2 4 6 8
Dev 6 8 2 4 6

1https://www.ibm.com/analytics/cplex-optimizer.
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Table 4.2 Linked Data Input.
Dev 1 Dev 2 Dev 3 Dev 4 Dev 5 Dev 6

Dev 1 1 0 0 0 0 2
Dev 2 0 1 2 0 0 0
Dev 3 0 0 1 0 0 0
Dev 4 0 0 0 1 0 0
Dev 5 0 0 0 0 1 0
Dev 6 0 0 0 0 0 1

Table 4.3 Solution without Linked Data.
Primary Fog Backup Fog

Dev 1 Fog 1 Fog 2
Dev 2 Fog 2 Fog 3
Dev 3 Fog 3 Fog 4
Dev 4 Fog 4 Fog 1
Dev 5 Fog 1 Fog 2
Dev 6 Fog 2 Fog 3

Table 4.4 Solution with Linked Data.
Primary Fog Backup Fog

Dev 1 Fog 2 Fog 3
Dev 2 Fog 3 Fog 4
Dev 3 Fog 3 Fog 4
Dev 4 Fog 4 Fog 1
Dev 5 Fog 1 Fog 2
Dev 6 Fog 2 Fog 3
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4.3 Task Allocation Algorithms

In this section, we describe the task allocation algorithms. As mentioned in

Sect. 4.1, each device runs a Fog Resolver that is responsible for forwarding a

task from the application in the device to the appropriate fog. The task from the

application could explicitly specify its destination or leave it to the Fog Resolver.

The Fog Resolver needs to take various factors such as the type of task, cloud and

fog latencies into consideration while determining the best destination for a task.

We develop a probing-based task allocation algorithm. In this algorithm, tasks

are sent to a set of potential destinations and based on the responses collected

from the probed destinations, the allocation algorithm adapts. The design of the

probing algorithm is quite simple and is inspired by the process adopted by the

Transmission Control Protocol (TCP) [136] to detect the available bandwidth in

a transmission link. In the design of the probing algorithm for task allocation, we

consider the following objectives:

1. To use the least amount of resources (fogs) as possible, that is, to reduce

superfluous task submissions as much as possible.

2. To recover from fog failures or slow fog responses as quickly as possible. The

fog failure like condition can be triggered due to device mobility because a

fog being used by a device could easily get distant from the device as the

device moves or the network path gets congested.

3. To determine the characteristics and reconfigure the fog assignments in the

best possible way as quickly as possible. The response characteristics of a

fog depend on the application characteristics as well as the fog loading.

4.3.1 Using Fogs Only

Here, we introduce the algorithm that allocates the tasks. The algorithm is given

a virtualFog as the input. The virtualFog consists of a homeFog (i.e., the main

fog the device wants to reach) and a pool (a set of backup fogs the device could
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reach). The virtualFog is obtained from the output of the optimizer. The algo-

rithm is responsible for probing and determining the best fog among them to serve

a particular task. The algorithm can either forward the task to (a) the homeFog

or (b) the pool.

In option (a), the algorithm sends the task to the homeFog for service as it

is determined to be a better choice based on relative latency to serve the tasks.

On the other hand, in option (b), the algorithm determines the pool to be a

better choice than the designated homeFog. This could be as a result of the

homeFog being overloaded (i.e., it has many tasks that needs to be processed) or

the homeFog failure.

In the algorithm, we run the simulation until a number of tasks have been

served, alternatively, we could run it until a time duration has elapsed. The vari-

ables given are h resp, p resp, decay, probes, numTask, order and are all initialized

to zero unless otherwise stated. Variable h resp is the response time of the home-

Fog when a task is sent to it by the device. It encompasses the time it takes to serve

the task, along with the waiting times and transmission times along the network.

Variable p resp is the response time for the pool when a task is forwarded to a fog

in the pool, probes is introduced to measure the number of unsuccessful attempts

at using the homeFog while numTask keeps count of the number of tasks that

have been served. The order variable is used to increment the total delay expo-

nentially. This is introduced to reduce the total number of tasks being submitted

to the pool. Assuming that the homeFog is performing well, but the delay is of

small value, superfluous tasks would be submitted to the pool. However, it can be

avoided if the delay is large enough. Experiments were run to determine an opti-

mal order value, and the results show that a value of 4 is sufficient. Similarly, the

decay variable is introduced to reduce the delay when the homeFog is performing

well and after a series of experiments, our results show that 0.3 is sufficient.

The ProbeFog algorithm generally works as follows: A device wants to send

a batch of tasks for computation purposes. The first task in the batch is sent to

both the homeFog and fog pool. This is because the delay is initially set to zero.

Assuming that the response from the homeFog returns first (since it is the closest
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Algorithm 1: Fog Probing Algorithm

1 Input: a virtual fog
2 function ProbeFog(virtualFog)
3 variables: h resp, p resp, decay, probes, numTask, order
4 while(numTask < TotalNumTasks)
5 if (first task)
6 send task to both homeFog and poolFog
7 note response times and calculate delay as in line 14
8 go to line 15
9 else

10 h resp = send(task, homeFog)
11 if h resp > delay
12 p resp = send(task, poolFog)
13 probes++

14 delay = | p resp− h resp | ∗probesorder
15 if (h resp < p resp)
16 homeCount++ ; . task is served by homeFog
17 responseTime = h resp
18 ArrayResponseTimes.add(responseTime)
19 else
20 poolCount++ ; . task is served by pool
21 responseTime = p resp
22 ArrayResponseTimes.add(responseTime)
23 else
24 delay *= decay ; . decay is less than 1.0
25 homeCount++ ; . task is served by homeFog
26 responseTime = h resp
27 ArrayResponseTimes.add(responseTime)
28 numTask++
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fog), the response time is measured and the result is returned to the device. At

some later point, the response from the pool returns and the response time is also

measured (we have 3 fogs in the pool, but we only take the fastest response time

among them). We now set the delay to the absolute difference between the two

response times. The next task is then sent to the homeFog and if the response

does not return before the delay, we send the task to the pool, otherwise we re-

duce the delay. The reduction in delay is done to ensure that while the homeFog

is performing well, the task will not be sent to the pool. Also, if the homeFog were

to be overloaded or failed, there will not be a long wait before sending the task to

the pool.

Assuming that the homeFog response does not return before the delay, two

things can happen, the homeFog response can either arrive before the pool response

or the pool response arrives before the homeFog response. In either case, we send

the results of the task to the device and update the delay accordingly. It is quite

possible that the cloud can be best suited to serving the application task especially

when the virtualFog is not performing well. This could be due to overloaded tasks

at the fog or network congestion. In Algorithm 1, the task allocation only deals

with the homeFog and pool. Therefore, a complete solution to the task allocation

problem needs to handle the cloud as well.

4.3.2 Using the Cloud

In this section, we introduce the Virtual Fog Resolver (VFR) algorithm. A pseudo-

code for VFR is shown in Algorithm 2. The VFR uses the cloud when it detects

bad performance from the virtualFog.

The following new variables are introduced: c resp, cap level, p inc, T min,

T max, probe cloud and probe prob. All variables are initialized to zero unless

otherwise stated. Variable c resp is the response time of the cloud when a task is

served by the cloud, probe prob is the probability of probing the cloud, and it is ini-

tialized to 0.5 while cap level is the maximum capacity level that the cloud probing

probability (i.e., probe prob) can reach. Variable p inc is an over-subscription rate
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that determines the probability with which a task should be sent to the cloud in

the event of a malfunctioning virtualFog. Variable probe cloud determines whether

a task should be sent to the cloud, and it is initialized to false.
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Figure 4.2 Flowchart of the Probing Algorithm

Variables T min and T max in lines 10 and 7, respectively, are defined as the

lower and upper threshold of the expected response time of the virtualFog. For

the simulations reported here, T min is the average value of the responses received

from the fogs in virtualFog and T max is the maximum value of the responses re-

ceived from the fogs in virtualFog.

The VFR algorithm is given a virtualFog by the Fog Allocator. The VFR
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Algorithm 2: Virtual Fog Resolver (VFR) Algorithm.

1 Input: a virtual fog
2 function ProbeCloud(virtualFog)
3 variables: h resp, p resp, c resp, decay, probes, numTask, order, p inc

T min, T max, probe cloud, probe prob
4 while(numTask < TotalNumTasks)
5 if ArrayResponseTimes is not empty
6 T min = mean(ArrayResponseTimes)
7 T max = max(ArrayResponseTimes)
8 if (first task)
9 send task to both homeFog and poolFog

10 note response times and calculate delay as in line 16
11 go to line 19
12 else h resp = send(task, homeFog)
13 if home resp > delay
14 p resp = send(task, poolFog)
15 probes++

16 delay = | p resp− h resp | ∗probesorder
17 else
18 delay *= decay ; . decrement delay
19 if probe cloud is true
20 c resp = send(task, cloud)
21 if h resp or p resp < c resp
22 probe prob *= decay ; . decrement probability
23 with (1 - probe prob) make probe cloud false
24 if (h resp < p resp)
25 homeCount++; . task is served by homeFog
26 responseTime = h resp
27 ArrayResponseTimes.add(responseTime)
28 else
29 poolCount++ ; . task is served by pool
30 responseTime = p resp
31 ArrayResponseTimes.add(responseTime)
32 else
33 cloudCount++ ; . task is served by cloud
34 responseTime = c resp
35 ArrayResponseTimes.add(responseTime)
36 else
37 if h resp or p resp < T min
38 if probe prob < cap level
39 probe prob += p inc
40 else
41 probe prob = cap level
42 else if h resp and p resp > T min
43 with (probe prob) make probe cloud = true
44 c resp = send(task, cloud)
45 responseTime = c resp
46 ArrayResponseTimes.add(responseTime)
47 else if h resp and p resp > T max
48 probe cloud = true
49 responseTime = c resp
50 ArrayResponseTimes.add(responseTime)
51 numTask++
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Figure 4.3 Flowchart of the VFR Algorithm

uses the same probing algorithm as in Algorithm 1 to send the tasks to homeFog

and pool. While the tasks are routed to the virtualFog (i.e., not to the cloud),

the cloud probing probability keeps increasing, but it is capped at the maximum

value of cap level. Once it reaches the cap level, there is a very high probability

of sending the task to the cloud should the virtualFog fail. However, when the

cloud is used to serve a task (i.e, probe cloud is true), if a virtualFog happens to

perform better than the cloud (lines 19-31), then we decrement the cloud probing

probability by multiplying it with a decay in line 22. This ensures that we do not

send superfluous tasks to the cloud.
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Lines 37-41 show that if the virtualFog responds before T min (i.e., virtual-

Fog is performing very well), we increment the cloud probing probability by the

over-subscription rate p inc. Line 42 ensures we send the task to the cloud with

a computed probability if virtualFog does not respond after T min. If virtualFog

does not respond after T max, we can consider that the virtualFog has malfunc-

tioned and send the task to the cloud if it has not been sent yet.

The virtualFog is explicitly described as follows: Given that the cloud is now

introduced, we only probe the cloud upon the failure of the fogs. However, the

cloud is probed with some probability. This probability is increased or decreased

based on the functioning of the virtualFog. A flowchart to describe both algorithms

is given in Figs. 4.2 and 4.3.

4.3.3 Overload and Fault Tolerance

We consider a scenario whereby a task sent to a fog by the Fog Resolver fails to

respond. This could be due to fog failure. In cloud computing, it is common to

implement fault tolerance by replicating the services hosted in a virtual machine

across several virtual machines with independent failure modes. This way, when

one machine fails, another machine is bound to be available to take over the com-

putation. More precisely, for a given service, we should be able to find a quorum

of functioning server replicas running that service. In fog computing, at any given

location, the amount of resources will be limited. As a result, a pure replication

based fault tolerance strategy as obtained in the cloud is not suitable. When a fog

node fails or has so many tasks to attend to, a pool is created from the partitions

of nearby fog nodes and that partition (pool) is used as a backup to serve the

task. The virtualFog algorithm detects when the homeFog is taking longer than

usual to respond and forwards the application task to the fog nodes in the fog pool.

In our work, we had established a quorum to be a collection of 3 backup fogs,

earlier termed as the fog pool. Upon partial failure of the homeFog, the results

from the fog pool are updated to the homeFog when it is back up and running
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properly. In the MinDelay algorithm [117], when the manager (i.e., fog resolver -

used for comparison purposes) detects that the waiting time at the fog is greater

than a specified threshold which might be due to an overload of tasks at the fog or

fog failure, the resolver forwards the incoming application task to the neighboring

fogs.

4.4 Evaluation and Simulation Results

In this section, we compare the performance of the proposed VFR algorithm with

the existing ones. To deploy different task allocation approaches to a fog computing

system, we developed a simulator in Java using the Stochastic Simulation in Java

(SSJ) discrete event library [137]. The simulator can support configurations with

cloud, many fogs connecting to the cloud, and devices connecting to the fogs.

The experiments are carried out on a powerful machine cluster with the following

hardware specification: it has 125 GB of system memory and an Intel(R) Xeon(R)

CPU E5-2630 v3 @ 2.40 GHz. We describe the other related algorithms in the

next section.

4.4.1 Related Task Allocation Algorithms

In addition to our algorithm which is discussed in Sect. 4.3, we study four more

algorithms in this chapter. They are the HomeFog algorithm, Power of Two (PO-

2) algorithm, Modified Power of Two (MODPO-2) algorithm, and Minimum Delay

(MinDelay) algorithm.

HomeFog Algorithm

The HomeFog algorithm is proposed and implemented as a baseline to evaluate

the other task allocation algorithms. In this algorithm, the fog resolver routes

the application task to the closest fog, which is termed the homeFog. It does not

matter if the homeFog is overloaded or failed, all tasks are to be routed to the

designated homeFog.
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Power of Two(PO-2) Algorithm

The power of two is adapted from the algorithm presented by Mitzenmacher [138].

In PO-2, any two random fogs are selected from the available fog nodes. Among

the two randomly selected fogs, the fog nodes with the fewer number of tasks on

its queue are selected to serve the incoming application task.

The power of two choices states that having two choices leads to a significant

reduction in the maximum load over having one choice [138]. With this obser-

vation, it is easy to notice that routing tasks to a single fog (as in the case of

the homeFog) can lead to significant overloading. Although PO-2 is very good in

load balancing, in fog computing, fog selection matters as much as the load. That

is, the overall distance from the originating device and the fog is an important

measure in selecting the fog.

Modified Power of Two (ModPO-2) Algorithm

We propose a modified Power of Two that addresses the major issue with PO-

2, where tasks could be sent to far away fogs. Instead of selecting two random

fogs, modified PO-2 selects two fog nodes in a predefined zone. The zones can be

created by clustering the fog nodes such that all fog nodes in a cluster are close to

each other (i.e., one fog in the cluster could be substituted for another fog without

losing much in terms of response time). The application tasks are allocated to fogs

within a particular zone. Therefore, random fog selections occur within the zone

to which the device belongs to.

Minimum Delay (MinDelay) Algorithm

The MinDelay algorithm is an algorithm from the related literature that is reim-

plemented for comparison purposes [117] and to serve as a provisioning policy by

which we can measure the performance of our proposed approach. In MinDelay,

tasks are routed to the homeFog first. If the waiting time of tasks in the homeFog

is greater than a threshold, the task is routed to its neighbors. The neighbors

are the nearby fogs closest to the homeFog. However, when routing the task to

the neighbors, the neighboring fogs are sorted in an ascending latency and waiting
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times at the fog. The fog with the lowest latency and waiting time is probed first,

and the rest are probed in that order. At a neighboring fog, the task is served if

the waiting time at the fog is less than a threshold, otherwise, it is routed to the

next fog in the neighborhood and so on. If all neighboring fogs of the homeFog

have been probed and none can serve the task, it is then forwarded to the cloud.

4.4.2 Evaluation Scenarios

The allocation optimization model is solved using the IBM CPLEX optimization

solver and it is implemented in Java. The solution to the model is used as input

to the VFR algorithm. We simulated the different task allocation algorithms

along with the proposed VFR and compared their performance and resource (fog)

utilization. We evaluated them against the stated objectives in Sect. 4.3 while

considering two scenarios; when there are no fog failures and when failures are

present. The results indicate that the VFR approach provides a better overall

performance while maintaining good utilization of fog resources.

4.4.3 Experimental Setup

A network of IoT devices, fogs, and cloud nodes are simulated using the process-

based simulation facility offered in SSJ. The network topology is obtained from

the Cogent network topology data available at the Internet Topology Zoo [139].

We use a subset of the graph provided by the dataset. The topology used in the

simulations contained 1 cloud node, 20 fog nodes, and 290 devices. Each device

hosts a number of applications, and this number is varied during the simulation.

Each application issues 1000 tasks for service and the first 100 tasks are ignored

to warm up the simulations. Tasks are processed in a FIFO order and the tasks

are homogeneous for simplicity’s sake (i.e., there is no variation in task type).

The link rate between nodes is 1 Mbps and the processing capacities of the fog

nodes vary from 10 to 12 CPU cores while the cloud node is 100 CPU cores. The

number of CPU cores is obtained from an aggregated Google trace data used to

set up the fogs’ configuration [140]. We ran each of the simulations 10 times and

obtained an average of the runs.
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For the optimization model, we used the location data obtained from the cogent

data and computed a latency matrix, which was given as input into the optimiza-

tion solver. We also used a fixed setup cost of $100. The number of tasks is varied

from 1000 to 4000 tasks. The capacity of the fog is obtained from the Google trace

data and normalized to serve a number of tasks at a time. The linked data input

is a matrix that was generated to show the relationships between devices. In the

experimental setup described, the allocation problem is solved very quickly (0.05

s) by the optimization solver. It is feasible to rerun the optimizer when the Fog

Resolver determines the need for a change in virtualFog allocation.

In our simulator, there is a relationship between the number of tasks and the

number of applications on a device. Each application issues a number of tasks for

service - 1000 tasks each. By increasing the number of applications on a device,

we are increasing the number of tasks that can be served by the fog resources.

Therefore, 1 application issues 1000 tasks while 2 applications issue 2000 tasks

and so on.

4.4.4 Discussion of Simulation Results

Comparing VFR versus Other Algorithms

In Figs. 4.4 and 4.5, we vary the number of applications per device which changes

the workload intensity on the fog. We measure the response times and fog re-

source utilization in these experiments. By varying the number of applications per

device, we effectively examine how the different algorithms are performing as the

workload intensity changes.

Response time is the time elapsed since launching a task for service until it

gets served by the selected server. The time includes the processing delay at the

nodes (fogs or cloud), the propagation delay (i.e., sending the task on the link and

getting a response back after it has been served) and the waiting time at the nodes.

We discuss the results in terms of the objectives stated in Sect. 4.3. However,



4 Task Allocation Algorithms for Fog and Cloud Servers 51

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1App/Dev 2Apps/Dev 3Apps/Dev 4Apps/Dev

U
ti
liz
a
ti
o
n

HomeFog
ModPO-2

PO-2
MinDelay

VFR

Figure 4.4 Resource utilization - variation of fog performance with
different number of tasks/applications

 20

 40

 60

 80

 100

 120

 140

 160

1Apps/Dev 2Apps/Dev 3Apps/Dev 4Apps/Dev

T
im

e
 (

m
s)

HomeFog
ModPO-2

PO-2
MinDelay

VFR

Figure 4.5 Response times - variation of fog performance with dif-
ferent number of tasks/applications



4 Task Allocation Algorithms for Fog and Cloud Servers 52

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1_Fog_Fail 2_Fogs_Fail 3_Fogs_Fail 4_Fogs_Fail

U
ti
liz
a
ti
o
n

HomeFog
ModPO-2

PO-2
MinDelay

VFR

Figure 4.6 Resource utilization - variation of fog performance with
different number of fog failures

 0

 500

 1000

 1500

 2000

 2500

 3000

1_Fog_Fail 2_Fogs_Fail 3_Fogs_Fail 4_Fogs_Fail

T
im

e
 (

m
s)

HomeFog
ModPO-2

PO-2
MinDelay

VFR

Figure 4.7 Response times - variation of fog performance with dif-
ferent number of fog failures



4 Task Allocation Algorithms for Fog and Cloud Servers 53

we look closely at two scenarios; when there is no fog failure and when there are

fog failures.

1. As shown in Figs. 4.4 and 4.6, the resource usage for VFR algorithm is

the lowest with PO-2 being the highest. In terms of resource efficiency, the

proposed VFR algorithm uses the least amount of fog resources due to the

optimal mapping of devices to fogs and the resources being well managed

by the routing algorithm. PO-2 algorithm uses the most amount of fog

resources due to the random selection of fog resources. Fig. 4.4 shows when

the number of applications is increased per device and as the number of

tasks being served increase, the resource usage increases as well. However,

in Fig. 4.6, the number of fog failures is varied while keeping the number of

tasks constant at 1000 or 1 application per device. The utilization across the

algorithms is fairly constant with VFR using the least amount of resources

and PO-2 using the most amount of resources.

2. To recover from fog failures, we measured the response times of the algo-

rithms as fogs fail. Fig. 4.7 shows that the response time is minimal for

VFR when compared to the rest of the algorithms. When the fogs fail, the

failure is well masked to the requesting device as the task is processed by

other available allocated fogs. As more fogs fail, the response time increases.

Note that the baseline algorithm (HomeFog) has the highest response time

because even if the designated homeFog fails, the task is still sent to the

failed fog and it times out after a long time has elapsed.

3. To determine the characteristics and reconfigure the fog assignment, we mea-

sured the response times when the load intensity on the fogs increase. As

observed from the results in Fig. 4.5, as the load intensity (the number of ap-

plications per device) increase, the response time increases as well. VFR has

the lowest response times among the algorithms, while PO-2 has the highest

response times. The response times of PO-2 algorithm can be attributed

to the random selection of fog nodes. Fog node serving a device might be

farther from the device, on the other hand, MODPO-2 performs better than

PO-2 due to its selection criteria being biased toward nearby fogs, however,

it is still worse off than the rest of the algorithms.
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Comparing VFR against MinDelay

We examine how VFR and MinDelay are using the fog and cloud resources, respec-

tively. To measure that, we look at the ratio of the tasks placed by the algorithm

at fog or cloud divided by the total number of tasks. In this examination, we

selected MinDelay and VFR because they use both cloud and fog components.

In Fig. 4.8, we obtained the percentages of jobs served by the homeFog, pool,

and cloud for both VFR and MinDelay algorithms. While VFR uses more of its

homeFog and less of the cloud, MinDelay algorithm is heavily reliant on the cloud.

This also explains why VFR response time is better than MinDelay due to the

distribution of the tasks to nearby fogs rather than relying on a distant cloud.
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As seen from the results, the VFR algorithm is robust in allocating tasks to

appropriate servers. In terms of overload and failures, it can minimize the response

times for service requests (i.e., requests to run application tasks), which is one of

the primary goals of fog computing.
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Chapter 5

Scheduling Framework for

Real-Time & Non Real-Time

Tasks

In the previous chapter, we focused on resource and task allocation algorithms

for non real-time independent tasks. In this chapter, we focus on scheduling al-

gorithms for applications with a mix of real-time and non real-time tasks. In

particular, we focus on Edge Intelligence (EI) applications. Edge Intelligence [141,

142, 143, 71, 144] is one of the most exciting edge computing scenarios envi-

sioned, where Artificial Intelligence (AI) is deployed at the edge of the network

to process the data there and respond to requests from devices and users very

fast. EI is expected to enable several new application use cases including EI for

autonomous driving [145, 146], EI for collaborative robots [147], EI for smart

spaces [148, 149, 150], and EI for environmental sensing [151]. Although EI got

much of its impetus from 5G, it is considered as a key driver of wireless technolo-

gies 6G and beyond [152, 153].

Some key use cases of EI need coordinated scheduling of tasks across differ-

ent resources. For instance, with platoons of autonomous cars or collaborative

robots [11, 154], it is necessary to perform real-time task scheduling with coordina-

tion requirements. The task scheduling model we consider in this chapter supports
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such coordinated scheduling. In our scheduling model, tasks are categorized into

real-time, interactive, and batch classes. The real-time tasks are scheduled by a

global scheduler. The allocation of a time slot in the global schedule puts the tasks

for execution on the same time slot across different resources, thus, providing the

task coordinated execution across the resources.

In this chapter, we introduce a two-stage scheduling framework to support EI.

An edge zone would run a global scheduler (also referred to as the L1-Stage).

The L1-Stage only handles tasks with real-time constraints. The L1-Stage of the

scheduler is responsible for creating partial schedules and matching them with L0-

Stage schedulers that run in the eventual resource. The L0-Stage scheduler takes

the partial schedule from the L1-Stage and activates it subject to the constraints

in the schedule. The L0-Stage scheduler is non-preemptive and is implemented at

the user level. It can influence the underlying kernel-level scheduler to get a share

of the CPU. Because the L0-Stage scheduler is non-preemptive, we insert pseudo-

preemption (yield) points into the tasks to keep the interactive and batch tasks

from hogging the CPU. We implemented the two-stage scheduler as a middleware

and ran it on Linux and macOS. The results indicate that the flexibility offered

by the two-level architecture improves performance. The L0-Stage can decide to

switch between the normal and greedy modes depending on the local task mix to

maximize the number of tasks successfully completed by the scheduler.

5.1 Motivating Scenario

One of the key use cases of EI is collaborative robots (Cobots) [11, 155]. Cobots is

a well established idea in robots that deals with machines that heavily collaborate

with humans like in factory floors and are expected to play an increasingly promi-

nent role in many other domains (e.g., healthcare facilities). Cobots need to do

autonomous navigation within a factory floor, automatic monitoring of machine

health properties, collaborate with other cobots, and collaborate interactively with

humans. For instance, autonomous navigation can be solved by a collaborative ac-

tivity among the cobots and the navigating computers on the factory floor that

are in the same zone as the cobots. The cobots can be connected using a 5G
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network. To complete the collaborative computations for autonomous navigation

and other collaborative activities on time (for real-time processing), we need to

schedule the tasks across all different computers (including the cobots) at the same

time. Further, tasks associated with autonomous navigation have real-time dead-

lines because without completing the navigation processing, the cobots would not

be able to proceed with the next move. This brings us to the first problem.

Problem P-1 – Real-time and coordinated task scheduling: The dis-

tributed resource manager we seek for EI must handle this problem efficiently.

EI would run on virtualized platforms (e.g., virtual machines) that would be host-

ing multiple tenants. As a result, the infrastructure (i.e., underlying OSes) itself

may not support real-time computing. We need solutions that implement real-time

support at the user level.

As one of the key purposes of cobots is to create robots that collaborate with

humans, cobots can receive a lot of user interaction tasks. Unlike the real-time

tasks in P-1, these tasks happen at human speeds and can also tolerate low rates

of error. For the users to have responsive interactions with the cobots, we need to

complete as many interaction tasks as possible before their soft deadlines elapse.

This brings us to the second problem.

Problem P-2 – Responsive scheduling of interactive tasks: Cobots can

interact with the humans at different rates based on where they are on the factory

floor and the particular application they are running. In certain times, the cobots

need to give higher preference for interactive tasks and reduce their engagement

with other cobots while at other times they need to run more of the real-time

tasks with coordination constraints. The resource manager needs to shift the task

scheduling preferences to cater to the changing requirements.

Cobots need to run periodic health checks, analytics, and other data-intensive

tasks to detect impending failures and keep the overall reliability levels high. Be-

fore the cobots undertake safety critical tasks, we need to schedule all necessary

health checks to minimize cobot failures. Similarly, analytics tasks are necessary
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to improve the overall management procedures on the factory floor and they must

be scheduled when cobots and the factory computing infrastructure have sufficient

free processing capacity. This brings us to the third problem.

Problem P-3 – High-throughput batch task processing: The resource man-

ager needs to give a higher preference for the real-time and interactive tasks. How-

ever, if the batch tasks keep piling up, the cobots might have to be taken away

from routine activity into a service mode so that pending tasks can be cleared.

In the sections below, we show how the scheduling framework we propose in

this chapter addresses problems P-1 to P-3.

5.2 System Model and Scheduling Algorithms

In our system model, applications can have three types of tasks: real-time tasks,

interactive tasks and batch tasks [156]. Real-time tasks of the application are

periodic in nature and have a hard deadline, whereas interactive and batch tasks

are aperiodic. Interactive tasks have soft deadlines and batch tasks do not have

deadlines.

Let τRi denote a real-time task in the application. It has a corresponding arrival

time aRi (time the task is launched for service), computation time cRi , deadline

DR
i , and period TR

i . Let τ Ii denote an interactive task in the application. It has a

corresponding arrival time aIi , computation time cIi and deadline DI
i . Similarly, a

batch task of the application is denoted by τBi and it has a arrival time aBi , and

computation time cBi . Note that “R”, “I” and “B” refer to Real-time, Interactive

and Batch tasks, respectively. The full set of parameters for the tasks are given in

Table 5.1. The following assumptions are made about the task properties:

• Parameters of periodic real-time tasks are known a priori given the deter-

ministic nature of the tasks.

• The worst-case computation time is assumed.

• Real-time tasks deadline is equal to its period, i.e., DR
i = TR

i .
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• Preemption of tasks is not allowed.

Table 5.1 Real-time, Interactive and Batch Task Parameters
Parameters for a real-time task τRi
aRi the arrival time of the first instance of τRi
cRi the computation time of τRi
DR

i the relative deadline of τRi (the deadline of each τRi
instance is DR

i time units after its arrival);
dRi the absolute deadline of τRi ; dRi = aRi +DR

i

TR
i the period of τRi , which is the length of time

between the arrivals of two consecutive τRi instances
Parameters for an interactive task τ Ii
λIi the average arrival rate of instances of τ Ii
cIi the computation time of τ Ii
DI

i the relative deadline of τ Ii
Parameters for a batch task τBi
λBi the average arrival rate of instances of τBi
cBi the computation time of τBi

A two-stage approach for scheduling the application tasks is proposed. The

first stage termed ‘L1-Stage’ deals with scheduling the real-time tasks of the appli-

cation while the second stage, termed ‘L0-Stage’ deals with executing the real-time

tasks according to the schedule from the L1-Stage and executing interactive and

batch tasks as well. In the first stage, real-time tasks are mapped to appropriate

resources based on the task requirements using a task matching algorithm. For

example, the task requirements could be the amount of memory or CPU cycles

the edge resource should have for processing the task. A scheduling algorithm is

then proposed to generate schedules for the tasks which will be executed on the

matched resources. The schedules generated are termed ‘Normal’ and ‘Greedy’

schedules according to the scheduling algorithm.

In the second stage, the L0 scheduler running at the resource executes the tasks

using the generated schedules. The scheduler selects the best schedule among the

two schedules at each scheduling cycle. The selection is based on the arrival pat-

tern of the real-time tasks and how the slack server is utilized by the interactive
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Table 5.2 Important concepts used in the algorithms
Term Definition
Hyper-period the Least Common Multiple (lcm) of all pe-

riods of the real-time tasks in the system.
It is also referred to as scheduling cycles in
the chapterr.

Matching algorithm the task matching algorithm is developed
as a matrix where the real-time tasks are
specified on the rows and their resource at-
tribute requirements are specified on the
columns. Resources are matched to the
columns of the matrix.

Payoff(s) are associated with tasks in each column in
the specified matrix. It allows tasks with
higher priority to be selected. It is also ad-
justed at every matching iteration to limit
task starvation. In the chapter, we use con-
stants, however, the payoff is a tuning knob
the tasks can use to influence the decision
of the matching algorithm.

Priority values these are values obtained as a result of the
total payoffs in the columns of the matrix.

Slack servers are the idle processing time available after
real-time tasks have been scheduled.

Scheduling algorithm is an algorithm proposed to create static
schedules for the real-time tasks assigned
to a resource. Two static schedules are de-
veloped. They are ‘Normal’ and ‘Greedy’
schedules.

Normal schedule is an extension of the non-preemptive
Earliest Deadline First (EDF) algorithm.
Real-time tasks are scheduled using the
EDF algorithm.

Greedy schedule developed as a means of enlarging the slack
servers available in the Normal Schedule.
We define this concept as ”borrow”. This
is the second schedule developed in the
scheduling algorithm.

Fitness values are associated with the utilization of the
slack servers based on the arrival of the
tasks. This value is used to control the
selection among the two schedules at every
scheduling cycle.

Virtual clock is used for selecting between batch and in-
teractive tasks when a slack server becomes
available. Penalties associated with the
virtual clock is to give preference to inter-
active tasks due to missed deadline at the
head of the interactive queue.
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Figure 5.1 Scheduling Architecture

and batch tasks. A slack server is the idle processing time available for execut-

ing interactive and batch tasks without violating the deadline requirements of the

real-time tasks. A fair selection algorithm is proposed to select between batch

and interactive tasks when a slack server is available. This is to ensure the non-

starvation of either batch or interactive tasks.

Problem P-1 identified in Section 5.1 is addressed using the task matching and

scheduling algorithms while Problems P-2 and P-3 are addressed using the fair

selection algorithm.

The two-stage scheduling architecture is shown in Fig. 5.1. We define the im-

portant concepts used in the scheduling architecture and algorithms in Table 5.2.

Tasks arrive from devices to the L1-Stage edge zone manager in a particular zone.

Batch and interactive tasks are queued up at the edge zone manager in the zone.

The figure shows three real-time tasks R1, R2 and R3 and three edge servers de-

noted as F1, F2 and F3. The edge servers satisfy different location requirements,

such as their association with different areas of a zone. For instance, edge server

F1 is placed in Area A1, F2 in Area A2 and F3 in Area A3 assuming that the zone

is divided into three distinct areas A1, A2 and A3. Task R1 requires that the task

is served in all areas of the zone, task R2 requires that the task should be served

in areas A1 and A2 while task R3 requires that the task should be served in areas

A2 and A3. Furthermore, note that for simplicity, the payoff values are equal for
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each task (5) since the edge server selection is exclusive, but it need not be.

The task matching algorithm generates a set of columns as shown in the figure

based on the requirement specification. In the first column, A1, edge server F1 sat-

isfies the location criteria since it is located in A1, therefore it selects the column.

Similarly, edge servers F2 and F3 select columns A2 and A3 respectively. In this

example, a location requirement was used for simplicity, therefore, edge servers can

only be placed at one location at a time. However, in a general case, the require-

ment need not be exclusive. Edge servers can satisfy one or more requirements. In

such a scenario, edge servers match columns with the highest priority value. After

the resources have selected the columns, a scheduling algorithm is used to gen-

erate real-time task schedules at the respective resources. The schedule contains

the ordering of the tasks and idle processing times, known as slack servers. In the

second stage, the resource executes the tasks using the generated task schedules.

The two stages are described fully in the next sections.

5.2.1 L1-Stage Scheduling

In this stage, two algorithms are proposed, and they are run in the edge zone

manager. The algorithms are the task matching algorithm and the scheduling al-

gorithm. The task matching algorithm is shown in Algorithm 3 on page 65. It

takes as input a set of real-time tasks, their resource attribute requirements, i.e.,

the attributes the resources should have when executing the task. It uses the task

requirements to create a schedule that consists of a subset of tasks collectively

satisfying the resource requirement.

Lines 5 - 6 assign the real-time task set (i.e., rows) and edge server attributes

(i.e., columns). Line 7 initializes the set of tasks assigned to a resource attribute.

Lines 8 - 12 relate to step 1, it checks the task requirements and assigns the task to

a column matching the resource attribute. Lines 13 - 18 relate to step 2, it carries

out a schedulability test 1 check on the tasks assigned to a resource type. Lines

19 - 21 relate to step 3, it computes the priority value(s) which is the sum of the

1The tests is given as necessary conditions in Section 5.3.
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individual task payoffs matched to the resource type. Edge servers select columns,

i.e., a group of tasks, based on the priority values if they match more than one

resource attribute. Lines 22 - 24 relate to step 4, it calls the scheduling algorithm

(which is described next) on the selected columns to generate the schedules of the

tasks.

The scheduling algorithm is given in Algorithm 4 on page 66. It takes as

input a set of real-time tasks. The output is two schedules containing reservation

slots for real-time tasks and the slack server(s), which is the idle processing time

left after reserving slots for real-time tasks on the edge server resource. Lines 9

- 13 describe the normal schedule generation. The real-time tasks are sorted ac-

cording to their deadlines in a non-decreasing manner. The hyper-period of the

task set is computed and a counter for each task which shows the number of task

instances expected in the hyper-period, is derived. The task instances are then

scheduled using their earliest starting times. Lines 14 - 25 describe the greedy

schedule. The greedy task scheduling is divided into two components. The tasks

are sorted according to their laxity, i.e., 2 * (Deadline - Computation time). Ties

are broken in favour of the task with a larger period. The first two periods are the

first component of the greedy schedule, and the remaining periods until the hyper-

period is the second component. In the first component, the first two instances of

tasks whose deadline falls within the range of the first task in the sorted list are

scheduled using the earliest and latest starting times respectively. By scheduling

the second instance using its latest starting time rather than the earliest starting

time, we introduce the concept of ‘borrow’ by flexibly shifting the task to accom-

modate a larger idle processing time, i.e., a slack server. In the second component,

task instances are scheduled using their earliest start times. The purpose of the

greedy schedule is to compact the real-time tasks as much as possible to fit in large

slack servers as possible. The scheduling algorithm thus produces two schedules:

a normal schedule where the ‘borrow’ concept is not applied and a greedy sched-

ule where the ‘borrow’ concept is applied. An example illustrating the scheduling

algorithm producing normal and greedy schedules on a set of real-time tasks is

shown in Fig. 5.2 on page 67. The tasks shown are R1, R2, R3 and R4. The

values for the tasks e.g., R1(0,1,5,5) represent the arrival time of 0, a computation
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time of 1, a deadline and period of 5. The normal schedule produces slack servers

with execution lengths {1,1,1,0.5,0.5,3} and the greedy schedule produces slack

servers with execution lengths {4,3}.

The normal schedule is an implementation of the non-preemptive Earliest

Deadline First (EDF) algorithm and the schedulability test is given in [157]. In

the normal schedule, the scheduler considers the deadline DR
i as the task property

and schedules the tasks as soon as possible using the earliest start time denoted as

smin
i , whereas, in the greedy schedule, the scheduler considers the following task

properties: the deadline dRi , computation time ciR, earliest possible start time smin
i

and latest possible start time smax
i . Initially smin

i = aRi and smax
i = DR

i − cRi , but,

in contrast to DR
i and cRi , these properties are not constant. Instead, they vary

depending on the properties of the other tasks and the scheduling decisions. The

interval [smin
i , smax

i ] represents the period where the ith task (τRi ) must begin its

execution. This interval cannot be increased, but only decreased as a result of

the other tasks. In particular, if we know that a task (τRi ) must be postponed,

i.e., delayed for a certain amount of time, its smin
i parameter must be increased.

Similarly, if this increase means that another task (τRj ) cannot start as late, smax
j

would be decreased.

The schedulability test for the scheduling functions - normal and greedy sched-

ules is given in Section 5.3. The scheduling algorithm generates global schedules

for the real-time tasks that effectively create reservations for the tasks. This solves

Problem P-1 that needs coordinated execution over multiple resources.

5.2.2 L0-Stage Scheduling

In this stage, the L0-Scheduler runs at each resource. The schedules are assigned to

the resource by the L1-Scheduler running in the zone manager in the L1-Stage. The

tasks of the application are executed in this stage. Real-time tasks are executed

on arrival according to the schedule to ensure end-to-end performance guarantees.

Interactive and batch tasks are queued up and executed at the resource and are

offered best-effort service.
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Algorithm 3: Task Matching Algorithm.

1 Input:Real-time task set T with resource type requirements, Resource types A
2 Output: Task schedules
3 function TaskMatch(A, T):
4 step 1: Do initialization
5 A = resource type i, i = 1,2,...,m;
6 T = real-time task j, j = 1,2,...,n;
7 Si = ∅ Set of tasks assigned to a resource type i
8 foreach task j
9 foreach resource type i

10 Check the requirements of task j
11 if a resource type requirement is specified as compulsory, tag with

’+’, if optional, tag with ’*’ otherwise leave as blank
12 Append required symbol Sij

13 step 2: Do feasibility check
14 foreach resource type i
15 Carry out schedulability tests
16 if feasible
17 Si is the schedule for each type resource type
18 else drop some optional tasks OR Append column as not feasible
19 step 3: Compute priority values
20 foreach resource type i
21 priority value =

∑m
j=1 Pj

22 step 4: call Scheduling Algorithm
23 foreach resource type i
24 call scheduling algorithm on feasible column (or schedule)
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Algorithm 4: Scheduling Algorithm.

1 Input: Real-time task set T, mode m
2 Output: Schedule containing real-time tasks and Slack servers
3 function GenerateSchedule(T, m)
4 variables: Pi : period of task i, Ci : computation requirement of task i, Di :

deadline of task i, H : Hyper-period of task set, Cnti : Counter - (H/Pi) of
task i, smin

i : earliest start time of task i, smax
i : latest start time of task i, n :

number of tasks in the task set.
5 if (m is equal to 1)
6 call NormalSchedule(T)
7 else
8 call GreedySchedule(T)
9 function NormalSchedule(T)

10 Sort the tasks according to their non-decreasing deadlines
11 for i = 1 to n
12 for j = 1 to Cnti
13 Schedule task i using its smin

i at each period
14 function GreedySchedule(T)
15 Sort the tasks according to their idle times over 2 periods using 2(Di − Ci)
16 If there is any tie, break in favour of the task with the largest period
17 Select the first task and over the initial 2 periods, do the following
18 Schedule first two instances of the selected task over 2 periods using smin

i and
smax
i .

19 for i = 2 to n
20 if taski 2Di < task1 2D1

21 Schedule first 2 instances of task i over 2 periods using smin
i and smax

i

respectively
22 else
23 Schedule the first instance of task i using its smin

i

24 For the remaining periods after the initial 2 periods of the first scheduled
task

25 Sort the tasks using their deadlines and schedule them using their smin
i

26
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Figure 5.2 Illustration of the scheduling algorithm - Normal and
Greedy schedules

To avoid starvation between both task types when a slack server is available

to execute them, we propose a fair selection algorithm that uses a virtual clock to

ensure fairness. Each task queue has an associated virtual clock such that when-

ever a slack server is available, the slack with the lower virtual time is selected.

The fair selection algorithm is shown in Algorithm 5 on page 69. Line 4 checks

the virtual clock time of both queues. Lower clock time at the batch task queue

ensures tasks are selected from the batch queue, otherwise tasks from the interac-

tive queue (Line 13) are selected. The tasks in the batch queue are sorted using a

First In First Out (FIFO) policy. Line 6 checks if the selected batch task can be

executed on the available slack server. Line 7 executes it, and the available slack

server time is reduced by the task execution time in line 8.

Line 13 selects a task from the interactive queue. Tasks in the queue are sorted

according to their deadlines. Lines 15 and 16 check whether the task can be exe-
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cuted on the slack server before the server’s deadline. If the task is executed, the

virtual clock is incremented by the execution time while the slack server time is

appropriately reduced.

However, if the task execution length, i.e., the time required is more than the

available slack server time length, then the task is dropped because it cannot be

executed without real-time tasks missing their deadlines. Line 23 checks if the

deadline is already past the slack server deadline and if true, tasks within the

slack server deadline are selected and executed.

The fair selection algorithm through the use of a virtual clock ensures that

interactive tasks that will meet their deadlines are scheduled while also ensuring

that batch tasks are not starved. In doing so, Problems P-2 and P-3 identified in

Section 5.1 are addressed.

The selection between the normal and greedy schedules is carried out by the

L0-Scheduler at this stage. The selection is based on the utilization of the slack

servers, which is determined by the arrival of the tasks. The selection is handled

by the fitness values of the slack server. At each scheduling cycle, the slack servers

from both schedules are probed, and the best schedule is selected. Whenever

a task is scheduled on the slack server, the slack server is rewarded, whereas

dropped tasks lead to a smaller reward or a ‘penalty’ being assigned to the slack

server. The cumulative reward, i.e., the sum of rewards and penalties, determine

which schedule is chosen to execute the tasks. The flowchart for the fair selection

algorithm is given in Fig. 5.3.

5.3 Schedulability Test for Scheduling Algorithm

In this section, we show the necessary conditions for our algorithm that ensure

that the hard deadline of the periodic tasks is guaranteed. An algorithm’s schedu-

lability test checks if a task set is schedulable without building the entire execution

sequence over the scheduling period [158].
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Algorithm 5: Fair Selection Algorithm.

1 Input: Slack server S with length Ls and deadline Ds

2 function SelectTask(S)
3 variables: tBl : batch task execution length, tIl : interactive task execution

length, tId : interactive task deadline, VB: batch queue virtual time, VI :
interactive queue virtual time

4 if VB < VI

5 Select tasks from batch queue (sorted by FIFO)
6 if tBl <= Ls

7 Execute the task and advance the virtual time VB by execution length
8 Ls = Ls − tBl
9 reward fitness value

10 Go to line 10
11 else if tBl > Ls

12 skip task and penalize fitness value
13 else if VB >= VI

14 Select task from interactive queue (sorted by EDF)
15 if tId < Ds

16 if tIl <= Ls

17 Execute the task and increment the virtual time VI by task execution
length

18 Ls = Ls − tIl
19 reward fitness value
20 Go to line 10
21 else if tIl > Ls

22 skip task and penalize fitness value
23 else if tId > Ds

24 decrement the virtual time VI and drop the task
25 Go to line 14
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Figure 5.3 Selection Algorithm Flowchart

The scheduling algorithm consists of two functions: a normal schedule func-

tion which is a description of the non-preemptive Earliest Deadline First (EDF)

algorithm and a greedy schedule function which combines Least Laxity First and

Earliest Deadline First algorithms. The necessary conditions for the normal sched-

ule are given in [157] and is repeated here in Theorem 1. In addition to these

conditions, an additional condition which is adapted from [159] is necessary for

the schedulability of the greedy schedule, and it is given in Theorem 2.

The greedy schedule tasks are sorted according to their laxity in a non-decreasing

order. The laxity is given as DR
i − cRi . In our work, ties are broken in favour of

larger periods. We observe that since the laxity is computed at the initial arrival

of the tasks and all tasks are released at time 0, the Least Laxity First algorithm
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is equivalent to the Earliest Deadline First algorithm. Therefore, conditions that

are necessary for EDF also apply to the greedy schedule function. We derive the

feasibility conditions for the greedy schedule function.

The following theorems establish the necessary conditions for ensuring the correct-

ness of the scheduling functions.

Theorem 1. Let τR be a set of periodic real-time tasks {τR1 , τR2 , ..., τRn } sorted in

a non decreasing order by period, the following conditions are necessary for τR to

be scheduled non-preemptively by a uni-processor.

U ≤ 1 where U =
n∑

i=1

cRi
TR
i

(5.1)

∀i, 1 < i ≤ n;∀L, TR
1 < L < TR

i ;L ≥ cRi +
i−1∑
j=1

⌊
L− 1

TR
j

⌋
cRj (5.2)

Proof : Condition (5.1) ensures that the resource cannot be overloaded, and

condition (5.2) ensures that the worst case processor demand in an interval cannot

exceed the length of the interval. The necessity of both conditions are proven in

[157] but are repeated here. To validate condition (5.1), we show the following:

For a set of tasks τR, the processor demand in the interval [a,b], written da,b is

defined as the minimal processing time required by τR in the interval [a,b]. That

is, da,b is the minimum amount of processor time required in the interval [a,b]

to ensure that no deadline is missed in the interval [a,b]. If a set of tasks τR is

feasible, then for all a and b, a < b, it follows that da,b ≤ b− a.

For all i, 1 ≤ i ≤ n, let aRi = 0 and let t = TR
1 ∗ TR

2 ∗ ... ∗ TR
n . In the interval

[0,t],
t

TR
i

CR
i is the total processor time that must be allocated to task τRi to ensure

that τRi does not miss a deadline in the interval [0,t]. If τ is feasible then

d0,t =
n∑

i=1

t

TR
i

cRi ≤ t,

or simply

.

n∑
i=1

cRi
TR
i

≤ 1.
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For condition (5.2), choose a task τRi , 1 < i ≤ n, and let aRi = 0, aRj = 1 for

1 ≤ j ≤ n, j 6= i. This gives rise to a pattern of task execution requests shown in

the Figure 5.4
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Figure 5.4 Construction for the necessity of condition (5.2)

For all L, TR
1 < L < TR

i , in the interval [0,L], the processor demand d0,L, is

given by

d0,L = cRi +
i−1∑
j=1

⌊
L− 1

TR
j

⌋
cRj .

Hence for τ to be feasible, we must have

L ≥ cRi +
i−1∑
j=1

⌊
L− 1

TR
j

⌋
cRj .

Theorem 2. The following condition in addition to the condition (5.1) are nec-

essary for the schedulability of tasks scheduled by the greedy schedule.
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cRi ≤ 2(LR
1 − cR1 ) (5.3)

Proof : Condition (5.3) limits the execution time of tasks to the slack of the

least laxity task. The tasks are sorted in non-decreasing order by laxity with

arbitrary period ratio, ki > 0, 1 < i ≤ n. To validate Condition (5.3), the tasks

are indexed as follows: LR
1 , L

R
2 , . . . , L

R
n where LR

1 is the period of the first task

sorted by its laxity. The period ratio is denoted by ki ∈ R+ where ki = LR
i /L

R
i−1

for 1 < i ≤ n.

We select k2 and consider the following three cases regarding the value of k2:

Case 1: If k2 < 1, then LR
2 < LR

1 i.e., LR
1 > LR

2 . According to Condition (5.1)

the utilization U ≤ 1, therefore, cR1 + cR2 ≤ LR
1 .

Moreover, for the same reason, cR1 ≤ LR
1 . If both inequalities are added, we

obtain cR1 + cR1 + cR2 ≤ LR
1 + LR

1 , and hence cR2 ≤ 2(LR
1 − cR1 ).

Case 2: If k2 = 1, then LR
1 = LR

2 . The same conditions in Case 1 applies.

Case 3: If k2 > 1. If Condition (5.3) does not hold, it means there is a task

τRj , 1 < j ≤ n, with execution time cRj = 2(LR
1 − cR1 )+ ε and ε > 0. Given that the

tasks are all released at time 0, then the task is released synchronously with task

τR1 . First, assume that this task enters the processor before task τR1 . Consequently,

it will be finished at time t+ 2(LR
1 − cR1 ) + ε.Thelatestfeasiblestart− timeforτR1

is t + LR
1 − cR1 , however, because of the blocking caused by τRj , task τR1 cannot

enter the processor and therefore misses its deadline. On the other hand, in the

best case where τRj enters the processor right after τR1 , it will leave the processor

at t + cR1 + 2(LR
1 − cR1 ) + ε which is greater than the latest start-time of the next

instance of τR1 i.e., t+ 2LR
1 − cR1 . This situation is shown in Fig. 5.5. As a result,

no task may have an execution time greater than 2(LR
1 − cR1 ).

5.4 Experimental Results

We have implemented the two-level scheduler in a fully working middleware that

will be the core of an open-source programming language for edge computing.

This section presents the results from experiments that executed synthetic tasks



5 Scheduling Framework for Real-Time & Non Real-Time Tasks 74

Taskj

Missed 
deadline

...

Task1

Figure 5.5 A counter example showing why in the task sets, maxi-
mum execution time of low priority tasks is bounded to 2(LR

1 − cR1 )

using the middle-ware. The experiments faithfully emulate edge scenarios with

real-time tasks. We did not find a work that is doing real-time task scheduling at

the middleware level for edge computing that we can use as a baseline, as this is

an unexplored area to the best of our knowledge. Therefore, we performed many

experiments to establish the feasibility of our approach using the prototype imple-

mentation.

Our results show that we addressed the problems identified in Section 5.1. The

results from the experiments evaluating the L1-Stage are shown in Fig. 5.6 to

Fig. 5.9. The L1-Stage is responsible for matching the real-time tasks to the edge

servers. It uses two matching schemes: sole matching and grouped matching. In

sole matching, an edge server arriving at the L1-Stage is matched to a workload

(i.e., a set of real-time tasks to execute and the associated Slack servers). In the

grouped matching, the edge servers are grouped, and the matching algorithm tries

to find the best way of satisfying the requirements of the tasks given the capabili-

ties of the edge servers.

We inject a workload of seven real-time tasks to the L1-Stage that has four edge

servers. The L1-Stage matches the real-time tasks to edge servers and then the

L0-Stage running in the edge servers gets the actual task instances for real-time,

interactive (I), and batch tasks (B). The B/I tasks arrive in a Poisson process

with the specified arrival rates. Fig. 5.6 shows the B/I Goodput (number of in-

teractive tasks completed + throughput obtained for batch tasks) variation with
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arrival rates of the B/I tasks for the L0 schedules derived using sole and grouped

matching schemes. The grouped matches have higher locality of mapping the

tasks to edge servers than the sole matching scheme, which explains the better

performance obtained by the group matching. Fig. 5.8 shows the B/I Goodput

variation with the number of edge servers. There we don’t see a major differ-

ence between the two schemes because neither scheme can provide higher locality.

This observation shows that the proposed fair selection algorithm provides high

throughput for batch tasks, as required in Problem P-3. Using a fixed arrival rate,

we can also observe as shown in Fig. 5.8, that the fair selection algorithm ensures

a fair throughput for both interactive and batch tasks without any task type being

starved.

Another interesting observation we can make is that the Goodput of the inter-

active (number of tasks completed before the soft deadline) drops as the arrival

rate increases. This is because the higher arrival rates introduce execution delays

and make the interactive tasks miss their deadlines. This problem does not arise

with the batch tasks.

Once a particular L0 schedule is matched to an edge server, the task in-

stances (real-time) start arriving at the local scheduler. The maximum through-

put obtained (i.e., the number of real-time task instances completed) are shown

in Figs. 5.7 and 5.9. We can observe that sole matching outperforms the grouped

matching in terms of real-time throughput. This is because the sole matches an

edge server with the columns in the task matching matrix that has high priority.

The columns with more real-time tasks have high priority values.

Additional experiments performed at the L0-Stage are shown in Figs. 5.10

to 5.14. These experiments focus on the performance delivered by the L0-Stage

to the interactive tasks. We use a measure called guarantee ratio (GR) which

is the number of interactive tasks completed over the total number of interactive

tasks that arrived to investigate the performance. The L1-Stage provides a Normal

schedule and a Greedy schedule to the L0-Stage. These experiments examine the

performance of these schedules and a hybrid scheme that L0-Stage implements,
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where it selects the best schedule between the two based on the task mix present

at the edge server. This hybrid scheme is shown as the “Combined” scheme in the

figures.

In the hybrid scheme, the L0-Stage selects the best between the two schedules

by measuring the sum of work that can be completed using the two different sched-

ules. For interactive tasks, the contribution to the measure of work depends on

whether the task was executed before the deadline or not. The hybrid scheduler

assumes that the task arrivals have some locality (i.e., the arrival pattern in a

scheduling cycle is related to the pattern in the previous cycles). Therefore, the

hybrid scheduler evaluates the schedule in a cycle or a set of cycles and selects the

winning schedule to deploy for the next few cycles.

The results show that the Combined scheme is better than Normal or Greedy

in terms of the GR obtained by the interactive tasks. In these experiments, the

arrival rates of the interactive tasks are varied while the processor utilization due

to real-time tasks is varied from 0.2 to 0.75. It is important to observe that the

processor utilization due to real-time tasks are set by the workload when it is

matched at the L1-Stage. In addition, this processor utilization is an upper bound

of CPU fraction that can be consumed by real-time tasks. If the real-time task

instances do not arrive to occupy the scheduled slots, the actual CPU utilization

can be lower than this value.

From the experimental results, we can observe that Combined is outperform-

ing Normal and Greedy. Normal performs a real-time task execution as early as

possible and greedy pushes it as late as possible (for the first period) along the

time dimension. With Combined, we are enabling the L0-Stage to make the lo-

cal decision as to when the flexibility of selecting between Normal and Greedy

should be exercised. The results confirm that offering the L0-Stage that flexibility

is better than L1-Stage selecting Normal or Greedy based on its observations. The

Combined approach performs very well across the board when the utilization is

both 0.3 and 0.75. In the figures, the deadlines of the interactive tasks are set to

their worst-case execution times (WCET), cIi , and three times WCET. Figs. 5.12
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and 5.13 show the effectiveness of our approach when the utilization is varied and

arrival rates are at 0.4 and 0.6. Given that the utilization changes from 0.2 when

the system is lightly loaded and 0.75 when it is highly loaded, the guarantee ratios

are high and the Combined approach outperforms the two other scheduling ap-

proaches. In Fig. 5.14, we show the guarantee ratio variation when the deadlines

of interactive tasks vary from small to large. The Combined approach gives a high

guarantee ratio even with tight deadlines and outperforms the other approaches.

The high guarantee ratio shows that a large fraction of interactive tasks are suc-

cessfully scheduled by the algorithms that we proposed, addressing Problem P-2.

The L0-Stage is implemented as a user-level CPU scheduler. That is, the tasks

are coroutines and a coroutine-to-coroutine switch can be performed entirely in the

user space. While the context switch is very fast (mostly less than 35 nanoseconds

in an Intel i7 running at 3.0 GHz), the fact that it runs entirely in the user-space

calls for a deeper examination of the performance. In Figs. 5.15 to 5.17, we examine

the scheduler jitter and study its variation with various parameters. The scheduler

jitter is defined as the difference between the actual and scheduled starting times of

an event. As it becomes difficult to control the precision of the scheduled starting

times, the jitter increases and eventually leads to dropped starting events (i.e.,

the start events get dropped by the scheduler because it is way past the scheduled

start time). From the figures, we can see that the jitter remains less than 50 us

in these experiments. We ran the experiments in macOS (x86, 64bits), Linux (in

Raspberry Pi4 (AArch64)), and Linux (x86, 64bits)) and the jitter remains less

than 100 us in many experiments. This shows a user-level L0-Stage that is capable

of running on a variety of platforms and scheduling coroutines with high precision.
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Chapter 6

Network-Aware Scheduling for

Edge Computing Tasks

In the previous chapter, we considered applications having independent tasks and

assumed that the edge resources are always available at a very short network link

away from the origin of data (e.g., end device like a vehicle) and the network link

connecting the origin to the edge has a very high capacity, so data can be trans-

ferred at high rates. While this assumption is nominally true, there can be many

situations where this assumption is not true. We consider such scenarios in this

chapter.

In this chapter, we consider distributed applications with dependent tasks that

are across edge devices and edge servers. That is, some tasks run in edge devices

(i.e., mobiles or vehicles) and others in the edge servers at or near the 5G base sta-

tions. The application is modelled as a directed acyclic graph (DAG) [160, 161, 162]

with nodes denoting computations and edges denoting data communication and

precedence constraints. The key objective of the edge task mapping problem is

to optimally distribute the DAG across the devices and edge servers such that

the makespan for executing the DAG is minimized. In this problem, the DAG is

mapped onto a resource graph that has a time-varying configuration. That is, as

the devices roam, the device-to-edge server association can change or the network

link connecting the devices to the edge server can change in characteristics (i.e.,
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from being fast to slow or vice-versa). We are focused on tackling the problems

arising from variations in network link characteristics.

Using expected resource graph configurations [163, 164], we create a list of

possible schedules for executing the tasks in the DAG at the edge. As the net-

work conditions change, the different schedules among the precomputed schedules

become the best for minimum makespan. The scheduling framework we develop

here provides a runtime schedule switcher that deploys the best schedule among

the precomputed ones as the execution proceeds.

The primary idea of schedule switching is deferring task executions. That is,

if the expected network link conditions are not favourable, a particular task ex-

ecution is deferred to a later time when the network link is favourable. A DAG

with many tasks will have many schedules, so it is a matter of selecting the sched-

ules that would defer the task pair, that is having a heavy network link usage

and run task combinations without much network usage. Because the network

conditions can change in the runtime, we need a way of switching the schedules

on-the-fly [165].

The benefit of network-aware scheduling is twofold. First, network-aware

scheduling improves the makespan of a single application by lessening the sit-

uations where a task would wait on a data transfer over a weak network link.

Second, network-aware scheduling helps the network operator by enabling the op-

erator to serve the network transfer requests in an application-specific manner.

That is, using the network-aware scheduler, the network operator can provide a

service to re-prioritize application tasks that would benefit both the applications

and the provider.

We provide an overall framework for network-aware scheduling. As part of

this framework, we developed a schedule switching algorithm and network-aware

scheduling algorithm that minimizes the makespan of an application DAG. We

simulated the algorithm using datasets1 from 4G/LTE and representative appli-

1https://www.kaggle.com/anuragk240/mobile-data-speeds-of-all-india-during-march-2018
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cation DAGs. The evaluation of the algorithms is carried out in two stages. In

the first stage, we compare the performance of our network-aware algorithm with

a network-unaware scheduling algorithm. In the second stage, we compare the

performance of our speculatively chosen schedules (i.e., changing schedules with

predicted network changes) with non-speculative schedules. The results indicate

the benefits offered by network-aware scheduling for edge computing.

6.1 Problem Motivation

In this section, we motivate the need for network-aware scheduling with edge

computing in two different ways. First, we illustrate why the shift from cloud to

edge makes network-aware task scheduling a necessity. Second, we illustrate the

performance benefit network-aware task scheduling could provide. Both of these

illustrations make a case for investigating network-aware scheduling in the context

of edge computing.

6.1.1 Need for Network-Awareness in Edge Computing

Consider a scenario where a device (i.e., a vehicle) is accessing a backend service.

Let the backend service be located at the edge or cloud levels (two possibilities). If

the backend service (e.g., a high fidelity mapping service to aid autonomous driv-

ing) is at a cloud server, the same backend server will be suitable for serving the

device no matter what its physical location is. On the other hand, if the backend

is hosted at an edge server it has to be different depending on the location of the

vehicle. An example network configuration for this scenario is shown in Fig. 6.1.

The first hop of the network (from the device) is always the access link. In this

scenario, the access link is the 5G network. The edge server is accessible at the

base station that terminates the access link or connected to that base station by a

very fast link. The cloud servers are connected to the core network such that they

are equally accessible from anywhere on the Internet.

In the example configuration shown in Fig. 6.1, we consider two scenarios: the

vehicle in a high coverage zone and the vehicle in a low coverage zone. When the

vehicle is in the high coverage zone, the latency of transmitting over the 5G link
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is 5 ms (let us say). Conversely, when the vehicle is in the low coverage zone, the

latency of the same link is 8ms (a 60% increase). The 5G link takes the packets

from the device to the base station. From the base station, the packets are trans-

ported through multiple links to the core of the network where the cloud servers

are located. Let us say the latency of crossing those links is another 25 ms and

the total end-to-end latency of accessing the cloud server from the device is 30 ms

when the vehicle is at the high zone. When the vehicle is at the low zone, this

value changes to 33 ms. That is, the end-to-end latency increases by 10% due to

the vehicle moving from high to low zone for the cloud scenario.

Because the percentage increase is high for the edge computing scenario, the

effective performance of the application would degrade more from 5G link variation

in the edge scenario and less in the cloud scenario. That is, with edge computing,

it is more important to consider the network state.

RAN

5 ms

Edge 
Server

Cloud 
Server

Device

25 ms

8 ms 25 ms

Total  Cloud 
Latency

Device to 
Edge Server

Device to 
Cloud Server

30 ms

33 ms
60% 10%

Core 
network

high coverage zone

low coverage zone

Figure 6.1 Network-Awareness in Edge computing vs Cloud com-
puting

6.1.2 Need for Network-Aware Scheduling for Maximum Performance

Consider a smart vehicle running a Machine Learning (ML) application. Let us

say that the ML application is capturing data from the vehicle and uploading it to
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the edge server for training a neural network model. The neural network model is

then downloaded into the vehicle to provide it intelligence that is context-specific

(i.e., sensitive to the data being captured). The vehicle has two options to exercise:

use an older neural network model or a newer model. Using the newer model needs

uploading the captured data and downloading the trained model, which can incur

a significant transfer overhead.

The ML application is represented by the directed acyclic graph (DAG) shown

in Fig. 6.2. The tasks are split into vehicle tasks and edge server tasks. In the

figure, vehicle tasks are on the left while the edge server tasks are on the right. The

double arrows show transfers between the device (vehicle) and edge server sides.

The single arrows show transfers in either the vehicle side or edge server side (i.e.,

transfers that would not use the 5G network link). As illustrated in the DAG,

the vehicle can run a variety of tasks such as tasks for capturing data through

cameras, preprocess the data, execute a local task, decode the model received

from the edge, and deploy the model. Similarly, the edge server can also run a

variety of different tasks such as data cleaning (i.e., another level of pre-processing

on the data exported by the vehicle), model training, and packaging the model for

pushing to the vehicle.

Now, consider a particular situation with the smart vehicles as shown in Fig. 6.3.

Here, three vehicles A, B, C are running the ML application described above. The

vehicles are all utilizing the network to send data to the edge servers (data push)

and download data from the edge servers (model push). Depending on their loca-

tion, the vehicles can be in a network with high, neutral or low signal strengths.

Imagine that the vehicles are currently uploading the camera feeds captured to

the edge servers and the data size is 100MB (megabytes). The bandwidth of the

network at the high, neutral and low regions are respectively, 10MB/s, 5MB/s and

2MB/s. If all the vehicles are uploading the data in the low zone, it will take them

50s each to transfer the data. The overall throughput in the low network zone will

be low as it takes a longer time for all the vehicles to complete their data transfer.

Conversely, if all the vehicles are uploading the data in the high zone, it will take

them 10s each to transfer the data.
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Figure 6.2 Example of a DAG model of ML application running in
a smart vehicle

In Fig 6.3, Car A can delay its data transfer until it gets to a high zone if will

take a longer time to get the results required, however, it can carry out local tasks

that do not require data transfers when it is in the low network zone. Conversely,

Car B can carry out its data transfers since it is in the high zone and schedule its

local tasks when it gets to the neutral or low zones. By scheduling the application

to defer data transfers when possible, the overall application performance can be

improved.

In this particular ML application, the vehicle has the option of either using the

old model or requesting a new model (we assume that there is some degradation

in decision making if an older model is used, thus needing to pull a newer model).
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Figure 6.3 An illustration of an application DAG running in differ-
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Therefore, we can defer the data and model transfers until the vehicle has reached

a high zone. This way, network throughput can be maximized. As a lot of vehicles

will be on the road at any given time, we can make an overall schedule, so that

high zone vehicles have priority to use the network.

6.2 Models

This section introduces the different models we use in this thesis. The architecture

model shows how the components of the network-aware scheduling framework fit

together. The application model describes the way applications are represented

and distributed among the devices and edge servers in the network-aware schedul-

ing framework. The transfer model explains how the network is captured in our

work.

6.2.1 Architecture Model

The overall architecture of the network-aware scheduling for edge is shown in

Fig. 6.4. It contains six components: (1) a physical layer (2) a sensing layer (3) a
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neural network model (4) a performance map (5) an ahead-of-time scheduler and

(6) a schedule fitness evaluator (SFE). Below, we describe the functions performed

by each component.

• Physical layer: this is made up of the physical world and includes end devices

(e.g., vehicles), edge servers, 5G links, applications running in the end de-

vices, applications or services running on the edge servers, and other sensors.

The applications are represented according to the application model.

• Sensing layer: it is composed of sensors that are placed in the physical layer.

The sensors measure network performance such as the latency of accessing an

application service from the end device while the service is hosted at an edge

server. This measurement would be repeated for many device locations (as

observed using a GPS sensor). The measurements obtained from these sen-

sors provide a dataset that quantifies the variation of network performance

with vehicular positions. That is, for selected coordinate positions a vehicle

has visited, we would have measurements about the network performance at

those points.

• Neural network model: it is a machine learning model that continuously

observes the states of the network in the physical layer through the sensing

layer. The model creates a performance map as the output. The performance

map gives a predicted network performance for a physical location for a given

time duration. The predicted performance value is an expected range (for

example, a high range for bandwidth would indicate that the network is very

likely to yield very high transfer rates). In this work, we use three ranges:

High, Neutral, Low for the modelling of network performance. The neural

network model itself will continuously learn using the measurements that are

made by the vehicles in their sensing layer.

• Performance map: it is a lookup table created by the neural network model

to provide a prediction of the expected network performance. The map

is a time-dependent data structure because the predictions change as time

increases. Also, the performance map should cover all the regions of interest

to the vehicles that subscribe to the framework (i.e., the performance map
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should provide predictions for all points a vehicle could go assuming we have

a vehicular application). Using the performance map we should be able

to get predictions over different time scales. For example, we should be

able to obtain the predicted network state for the next 100 milliseconds or

the next 10 seconds. The Ahead-of-Time Scheduler (described below) uses

predictions over long time windows. The runtime schedule switcher would

use predictions over short time windows.

• Ahead-of-Time (AoT) Scheduler: it is a component that runs in the cloud

and takes the application DAG and performance map as the input. For an

application DAG, it generates many valid schedules for executing the appli-

cation on the networked system. AoT can use values from the performance

over future time intervals to select a few of the many possible schedules or

output all possible schedules. A backtracking algorithm similar to that given

in [166] can be used to generate all possible valid schedules for the applica-

tion DAG. In addition to the list of schedules, AoT also provides a ‘Switch

matrix’ that specifies the switch points where the application execution can

change from a schedule to another schedule. The idea is that as the net-

work conditions change, the optimal schedule to use can change. The Switch

matrix provided by AoT allows the runtime to change the schedule instead

of sticking to a single schedule for the duration of a possibly long-running

application. The Switch matrix will be explained in detail in Section 6.3.

• Schedule Fitness Evaluator (SFE): runs in the edge server and device at

runtime. It evaluates the schedules given by the AoT scheduler along with

the network states given by the performance map. It runs the proposed

network-aware scheduling algorithm given in Section 6.3 to determine the

best schedule to deploy in the edge device and server given the network

configurations by the performance map. It is also responsible for triggering

the schedule switching if necessary.

As shown in Fig. 6.4, the neural network model gets data from the sensor layer

and learns a performance map for the network. The performance map is used

with the device trajectory (e.g., estimated path of the vehicle) and the output is
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fed into the SFE evaluator. The AoT scheduler creates a list of schedules from

the application model and it feeds the schedule into the SFE evaluator. The SFE

evaluator uses the schedules from the AoT scheduler and the network models from

the performance map to obtain the schedule the edge device and server should

deploy. There is a feedback loop from the SFE evaluator to the AoT scheduler. The

feedback loop gives the AoT scheduler a subset of the best performing schedules

after evaluation. The schedules can then be used to obtain the switch matrix. The

switch matrix is employed to enable the runtime scheduler switch to the better

performing schedules at runtime if there is an anticipated network change.

6.2.2 Application Model

An application is modelled as a directed acyclic graph (DAG). DAG is a directed

graph with no cycles and it consists of a set of vertices and directed edges, each of

which connects one vertex to the other. DAG model is described by a two tuple

G = (T,E), where T is the task set T = (T1, ..., TN) consisting of different associ-

ated tasks of the application and E is the set of edges between tasks denoting the
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execution order and communication between two adjacent tasks, which specifies

their dependencies. An edge (i, i′) between task nodes i and node i′ represents

that task Ti is the predecessor of task T ′i and therefore task Ti should complete its

execution before task T ′i .

An example DAG is shown in Fig. 6.2. The tasks are executed on compu-

tational resources, which can either be an edge device or an edge server. The

inter-dependency among the different tasks of the application is captured using

the DAG model. The weight attached to each task Ti represents the computation

requirement, described by ci. The weight attached to each edge represents the

communication cost in terms of data size between two tasks Ti and T ′i , denoted

as Ci,i′ = data(Ti, T
′
i ). The data transfer between two tasks is only required when

the two tasks are assigned to different computational resources, i.e., the communi-

cation cost is negligible when two tasks are executed on the same computational

resource. A DAG model can produce multiple ordering of the tasks. Our goal is

to determine the different ordering of task instances to be deployed depending on

the network conditions to minimize the execution time.

In our work, we focused on batch mode for data transfers, i.e., once a task has

finished processing its input data, it sends the results to the successor task for

processing. However, our application model can be extended to consider stream

processing where there is a continuous flow of data between tasks. That is, a task

will continuously send data to its successor task as it is being processed piece-

by-piece. We can handle data streaming with our current model by splitting the

data into chunks similar to the idea presented in the HTTP Live Streaming (HLS)

protocol [167]. High quality chunks can be delivered to the successor task when

the predecessor task is transferring data in a high network zone, while low quality

chunks can be delivered when the transfer is done in a low network zone.

6.2.3 Transfer Model

We model our network as having different states as shown in Fig. 6.3. The perfor-

mance map in the figure shows the High, Neutral and Low network regions given
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the locations of the vehicle. The performance map gives different communication

bandwidth between the vehicles and the edge servers in the different regions. The

average communication bandwidth among computational resources executing task

Ti and T ′i is denoted as Bϕi,ϕ′
i
. We denote ϕi as the resource for executing task Ti.

Then, the transfer time - Γi,i′ of task i on edge (i, i′) is given as

Γi,i′ =


Ci,i′

Bϕi,ϕ
′
i

, if ϕi 6= ϕ′i

0, if ϕi = ϕ′i

(6.1)

The above equation is used to compute the transfer time if the tasks between

an edge are located on different resources. As seen, if the tasks are located on the

same resource, then the communication cost is 0. We classify the communication

links between tasks into three types as follows:

• inter-transfer communication links: These are data transfers happening be-

tween two tasks such that they are executing on different resources and there

is an execution dependency between the two tasks. That is, a task Ti is exe-

cuted on an edge server and task T ′i is executed on an edge device. However,

task Ti must complete its execution before task T ′i can start executing. In

this work, we are focused on inter-transfers since they incur data transfer

costs on the network and therefore have to be taken into consideration when

scheduling the tasks.

• intra-transfer communication links: These are data transfers happening be-

tween two tasks on the same resource type. That is, both tasks Ti and T ′i are

executed on an edge server (or an edge device). However, task T ′i is executed

after the completion of task Ti. The communication cost is assumed to be

0 since the data transfer is happening on the same resource and does not

require the network.

• non-transfer links: These are tasks that do not have any data transfer be-

tween them and therefore no edges exist between the tasks.

In Fig. 6.2, inter-transfer communication links are denoted with the double arrows

and intra-transfer communication links are denoted with single arrows.
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6.3 Scheduling Algorithms

We propose three scheduling algorithms in this work. The first two are part of our

architecture model and the last one is implemented as a baseline to evaluate our

proposed algorithm. The algorithms are the network-aware algorithm, the switch-

ing algorithm and network-unaware algorithm, respectively. They are described

in detail in the next section.

6.3.1 Network-Aware Scheduling Algorithm

We propose a network-aware scheduling (NAS) algorithm to select the best sched-

ule ordering among the many available orderings. The algorithm considers the

network conditions when deploying the best schedule. The schedule fitness evalu-

ation (SFE) component in the architecture runs the NAS algorithm and outputs

the schedule to deploy to the computational resources.

In the NAS algorithm, we evaluate the schedules given by the AoT scheduler.

The AoT scheduler gives a topological ordering of the DAG, which produces many

different orderings - schedules. The NAS algorithm evaluates the selected sched-

ules against the network model given by the performance map and computes their

completion times. The output of the NAS algorithm is the schedule with the best

completion time. At runtime, when the schedule is deployed, a change in network

conditions necessitates a re-evaluation of the schedules. However, the switching

algorithm discussed in the next section is employed to determine which schedules

should be re-evaluated as tasks have been executed. So the new schedule needs to

consider the previously executed tasks of the DAG, so it does not violate prece-

dence constraints.

The NAS algorithm given in Algorithm 6 takes as input a set of schedules

and computes the completion time for each of the schedules under a given set of

network states. A task expected start time (EST) and expected finish time (EFT)

is defined as follows: if a task is the first task in the schedule, then its EST is 0,

otherwise a task EST is given as:
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Algorithm 6: Network-Aware Scheduling (NAS) Algorithm

1 Input: S - list of schedules, I - set of DAG inter-transfer edges, N - Network
data, T - Edge device trajectory

2 Output: Schedule s
3 function Nas(S, I, N, T)
4 variables: makespan
5 compute the makespan of each schedule as follows
6 for each schedule s in S
7 for each edge in the schedule s
8 if edge is not in set I
9 compute the EFT for the destination task using equation 6.3

10 makespan = makespan + EFT
11 else
12 get the position of the edge device from T
13 get the network state at that position
14 while the edge datasize > 0 do
15 compute the transfer time using equations 6.1
16 compute the EFT of the destination task using equation 6.3
17 makespan = makespan + EFT + transfer time
18 return the schedule with the least makespan

EST (T ′i ) = EFT (Ti) + Γi,i′ (6.2)

The EFT of a task is given as:

EFT (Ti) = EST (Ti) + ci (6.3)

At compile time, the schedule with the minimal completion time is selected for

execution. In the algorithm, the selected schedules completion times are computed

by taking the EST and EFT of each task in a given schedule. The completion

time of a schedule is the EFT of the last task in that schedule. The task with the

minimal completion time is given as the output of the algorithm. Ties are broken

arbitrarily if more than one schedule has the minimal completion time.
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6.3.2 Schedule Switching Algorithm

The switching algorithm is developed as a means to obtain an efficient schedule at

runtime. Our application model employs different ordering of the task instances

of the DAG. A continuously running application will deploy the optimal schedule

at different time points. Consider that the network condition is constant, i.e., no

variation in the access links, then we can deploy a single ordering of the DAG.

However, since the network condition can vary at different points in time, we need

to consider the ordering that delivers the best performance to the application at

that point in time.

The schedule switching algorithm is shown in Algorithm 7. It takes a list of

schedules along with the currently running schedule and generates a matrix that

shows the schedules that can be switched to at different switch points. The switch

points are the points in the task ordering where schedules can be switched.

The algorithm is used to determine the appropriate schedules that can be

switched to at runtime. It considers tasks that have already been executed up

until that switch point. The schedule that is being switched to needs to have the

same subset of tasks as the current schedule that is running up until that switch

point. The algorithm gives a matrix that shows the different schedules that can

be switched to at different switch points.

The switching algorithm can be executed in the AoT scheduler component to

determine the schedules that can be switched to. It can also be run at runtime to

determine the appropriate schedules to switch to. However, running it in the AoT

scheduler ahead of time saves time and only a lookup on the matrix needs to be

done when a network change is detected.

6.3.3 Network-Unaware Scheduling Algorithm

We develop a network-unaware algorithm (NUS) as a baseline to evaluate network-

aware algorithm. In the network-unaware scheduling algorithm, the schedules are

evaluated without being aware of the network.
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Algorithm 7: Switching Algorithm

1 Input: S - list of schedules
2 Output: A - Switch Matrix
3 function SwitchMatrix (S)
4 for each schedule si ∈ S do
5 for each task position t ∈ si do
6 A[i,t] = Switch(si, S, t)
7 return A
8 function Switch(c, S, t)
9 variables: ct - set of tasks in current schedule c, st - set of tasks in a given

schedule s, C: empty array
10 ct = getTasks(c, t)
11 for each schedule s ∈ S do
12 if c 6= s do
13 st = getTasks(s, t)
14 if ct is equal to st do
15 add schedule s to C
16 return C
17 function getTasks(s, t)
18 variables: T : empty set
19 for i = 0 to t− 1 do
20 add task s[i] to T
21 return T
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Algorithm 8: Network Unaware Scheduling (NUS) Algorithm

1 Input: S - list of schedules, I - set of DAG inter-transfer edges
2 Output: Schedule s
3 function Nus(S, I)
4 variables: count: integer, transfers: array of integers for each schedule
5 for each Schedule s in S
6 for each edge w(vi, vi+1) in the schedule s
7 if edge is in set I
8 increment count by 1
9 else

10 add count to transfers and reset count
11 assign the highest count in transfers array to schedule
12 return the schedule that has the least length of the longest sequence of

consecutive transfers

Here, the objective is to choose the schedule that minimizes the number of inter-

transfers among the tasks. We assume that the network has a constant bandwidth,

therefore, the data transfer time is not affected. Ties are arbitrarily broken if more

than one schedule has the minimal number of inter-transfer communication links.

The algorithm is given in Algorithm 8. In the algorithm, we count the number

of sequential inter-communication links for each schedule. Each schedule is as-

signed the highest number of such links. The algorithm then returns the schedule

that has the fewest number of sequential transfers among all schedules that are

evaluated.

6.3.4 Speculative Scheduling

In this thesis, we introduce speculative scheduling as selecting the ‘best’ schedule

in advance based on the predicted network states. By using the switch matrix, we

can change our schedules to reflect the changing network conditions.

At compile time, we are given the states of the network and the trajectory of the

edge device that will be running the application. The NAS algorithm is employed

to select the best schedule to deploy. At runtime, when a change in network state

(different from what was used at compile time) is anticipated, the current schedule
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is evaluated against the alternate schedules provided by the AoT along with the

switch matrix. The NAS algorithm is employed to evaluate the partial tasks in the

schedules using the anticipated network states, and the schedule with the minimal

completion time is selected for execution and a switch is performed at runtime.

If the network change prediction is correct, we deploy the new2 schedule selected

by the NAS algorithm. On the other hand, if there was no network change,

the application is deployed with the current running schedule. Either way, the

performance delivered to the application is maximized.

6.4 Example Walk-through

Given the application DAG in Fig. 6.5, we will illustrate the algorithms with the

figure. A subset of the exhaustive schedules generated using the topological sort

algorithm is given below:

Vehicle tasks Edge server 
tasks

Figure 6.5 An Application DAG

1. T4, T5, T0, T2, T3, T1

2. T4, T5, T2, T3, T0, T1

3. T4, T5, T2, T3, T1, T0

2the schedule given by the NAS algorithm can be the current running schedule if that was
the best schedule to deploy.
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4. T5, T2, T3, T4, T0, T1

5. T5, T2, T4, T0, T3, T1

Using the five generated schedules, the switching algorithm in Algorithm 7

generates the switch matrix which is shown in Table 6.1. The columns are the

switch points which are represented by the number of tasks in a schedule (or the

DAG) and the rows are the schedules. At each switch point from 1 to n, where

n is the number of tasks, we obtain the set of schedules that we can switch to at

that switch point. The schedules must have the same set of tasks up until that

switch point.

Table 6.1 Switch Matrix
Schedules/Switch points 1 2 3 4 5 6
S1 {} {S2, S3} {S2, S3} {} {S5} {}
S2 {} {S1, S3} {S1, S3} {S3} {S3, S4} {}
S3 {} {S1, S2} {S1, S2} {S2, S5} {S2, S4} {}
S4 {} {S5} {S5} {} {S2, S3} {}
S5 {} {S4} {S4} {S2, S3} {S1} {}

Given the following network states Z = HLHL and their respective duration

as zd = {5, 2, 4, 5}. A device is in the high network region from time 0 - 5, then

moves into the low network region from time 5 - 7 and is back in the high network

region from time 7 - 11. It goes into the low network region from time 11 - 16.

We will use the NAS algorithm to compute the completion time of the sched-

ules. The execution time of the tasks as shown in Fig. 6.5 is given by the set

ci = {3, 3, 4, 1, 2, 2} where the nodes are represented by T = {T0, T1, T2, T3, T4, T5}.
The data bytes to be transferred on an inter-transfer link is 10 megabytes for our

illustration purpose. The data transfer time is denoted as Γ(Ti,T ′
i )

. The bandwidth

in the high and low network states are 10 MB/s and 5MB/s respectively.

We obtain the schedules completion times as follows:

1. S1 tasks are T4, T5, T0, T2, T3, T1. The EST and EFT for each task in the

schedule is computed. EST(T4) = 0 being the first task. EFT(T4) = 0+2 = 2.

EST(T5) = EFT(T4) + Γ(T4,T5). Since it is a non-transfer communicating link,

the time is 0, so EST(T5) = 2 + 0 = 2. EFT(T5) = 2 + 2 = 4.
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EST(T0) = EFT(T5) + Γ(T5,T0). Since the link between T5 and T0 is an inter-

transfer communication link, there is a data transfer time involved. At time

4, the EFT of task T5, the network is in the ‘High - H’ state since H occurs

from time 0 - 5.

Using equations 6.1, we have

ΓT5,T0 = 10/10 = 1

The data transfer completes at the end of the network being in the high

network state. Therefore, EST(T0) = 4 + 1 = 5 and EFT(T0) = 5 + 3 = 8.

EST(T2) = EFT(T0) + Γ(T2,T0). Given that it is a non communicating link,

the transfer time is 0, therefore the EST(T2) = 8 + 0 = 8 and the EFT(T2)

= 8 + 4 = 12.

EST(T3) = EST(T2) + Γ(T2,T3). Since it is an inter-transfer communicating

link, we compute the transfer time using equation 6.1 as follows: At time

12 (EFT(T2)), the network is in the Low network state, therefore the data

transfer time is

ΓT2,T3 = 10/5 = 2

So, EST(T3) = 12 + 2 = 14 and EFT(T3) = 14 + 1 = 15.

Finally, EST(T1) = EFT(T3) + Γ(T3,T1). Since it is an intra-transfer commu-

nication link, the transfer time is 0. Therefore, EST(T1)= 15 + 0 = 15 and

EFT(T1) = 15 + 3 = 18. So for Schedule S1, the completion time is 18.

2. S2 tasks are T4, T5, T2, T3, T0, T1. EST(T4) = 0 being the first task. EFT(T4)

= 0 + 2 = 2. EST(T5) = EST(T4) + Γ(T4,T5). Since it is a non-transfer com-

municating link, the time is 0, so EST(T5) = 2+0 = 2. EFT(T5) = 2+2 = 4.

EST(T2) = EFT(T5) + Γ(T5,T2). Since the link between T5 and T2 is an inter-

transfer communication link, there is a data transfer time involved. At time

4, the EFT of task T5, the network is in the ‘High - H’ state since H occurs
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from time 0 - 5, so the data transfer time is

ΓT5,T2 = 10/10 = 1

EST(T2)= 4 + 1 = 5 and EFT(T2) = 5 + 4 = 9.

EST(T3) = EFT(T2) + Γ(T2,T3). Since it is an inter-transfer communication

link, the transfer time is computed using 6.1. The network state at time 9

is the High network, so the data transfer time is 1s. Therefore, EST(T3) =

9 + 1 = 10 and EFT(T3) = 10 + 1 = 11.

EST(T0) = EFT(T3) + Γ(T3,T0). Since it is a non-transfer communication

link, the data transfer is 0, therefore, EST(T0) = 11 + 0 = 11 and EFT(T0)

= 11 + 3 = 14.

EST(T1) = EFT(T0) + Γ(T0,T1). Since it is a non-transfer communicating

link, the data transfer time is 0. Therefore, EST(T1) = 14 + 0 = 14 and

EFT(T1) = 14 + 3 = 17. So the schedule completion time for S2 is 17.

3. S3 tasks are T4, T5, T2, T3, T1, T0. It is very similar to schedule S2 until the

5th switch point where T1 is to be scheduled 3. At that point, EFT(T3) is

given as 11.

EST(T1) = EFT(T3) + Γ(T3,T1). Since it is an intra-transfer communication

link, the data transfer is 0, therefore, EST(T1) = 11 + 0 = 11 and EFT(T1)

= 11 + 3 = 14.

EST(T0) = EFT(T1) + Γ(T1,T0). Since it is a non-transfer communicating

link, the data transfer time is 0. Therefore, EST(T0) = 14 + 0 = 14 and

EFT(T0) = 14 + 3 = 17. So the schedule completion time for S3 is also 17.

4. S4 tasks are T5, T2, T3, T4, T0, T1. EST(T5) = 0 and EFT(T5) = 0 + 2 = 2.

EST(T2) = EFT(T5) + Γ(T5,T2). Since it is an inter-transfer communication

link, we compute the transfer time. The network state at time 2 is High -

H. So the data transfer time is 10/10 = 1. Therefore, EST(T2) = 2 + 1 = 3

and EFT(T2) = 3 + 4 = 7.

3We will not repeat the steps as it is very similar to Schedule S2
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EST(T3) = EFT(T2) + Γ(T2,T3). Since the transfer is an inter-transfer com-

munication link, the transfer time is computed. At time 7, the network is in

the High state, so the transfer time is 1. Therefore, EST(T3) = 7 + 1 = 8

and EFT(T3) = 8 + 1 = 9.

EST(T4) = EFT(T3) + Γ(T3,T4). Since T4 is a non-transfer communication

link, the transfer time is 0. So, EST(T4) = 9 + 0 = 9 and EFT(T4) =

9 + 2 = 11.

EST(T0) = EFT(T4) + Γ(T4,T0). Since it is a non-transfer communication link,

the transfer time is 0. So, EST(T0) = 11+0 = 11 and EFT(T0) = 11+3 = 14.

EST(T1) = EFT(T0) + Γ(T0,T1). Since it is a non-transfer communication

link, the transfer time is 0. So, EST(T1) = 14 + 0 = 14 and EFT(T1) =

14 + 3 = 17.

The computation time of the Schedule S4 is 17.

5. S5 tasks are T5, T2, T4, T0, T3, T1. Note that it is similar with S4 up until time-

point 3. So we will evaluate from the third task. At that point, EFT(T2) is

given as 7. EST(T4) = EFT(T2) + Γ(T2,T4). Given that, it is a non-transfer

communication link, the transfer time is 0. So, EST(T4) = 7 + 0 = 7 and

EFT(T4) is 7 + 2 = 9.

EST(T0) = EFT(T4) + Γ(T4,T0). Since it is an intra-transfer communication

link, the transfer time is 0. Therefore, EST(T0) = 9 + 0 = 9 and EFT(T0) =

9 + 3 = 12.

EST(T3) = EFT(T0) + Γ(T0,T3). Since it a non-transfer communication task,

the transfer time is 0. Therefore, EST(T3) = 12 + 0 = 12 and EFT(T3) =

12 + 1 = 13.

Finally, EST(T1) = EFT(T3) + Γ(T3,T1). It is an intra-transfer communication

link, therefore, its transfer time is 0. So, EST(T1) = 13+0 = 13 and EFT(T1)

= 13 + 3 = 16. The completion time for Schedule S5 is 16.

Ranking the completion times of all schedules, Schedule S5 gives the minimal

completion time of 16 and is, therefore, the output of the NAS algorithm.
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Figure 6.6 Illustrating the example walk-through

The example walk-through is illustrated using a diagram in Fig. 6.6.

To illustrate the network-unaware scheduling algorithm, we find the number of

inter-transfers communication links in each schedule. We observe schedules that

have the minimum number of consecutive inter-transfer links. In our example,

schedules S2, S3 and S4 all have 1 consecutive inter-transfer link, so the algo-

rithm returns any schedule among the three. For illustration purposes, the NUS

algorithm returns schedule S4 because it arbitrarily selects a schedule if there is a

tie.

6.5 Experiments & Simulation Results

6.5.1 Metrics Definition

To evaluate the effectiveness of the network-aware scheduling strategy, we perform

comprehensive simulations. Two different metrics were used in the evaluations.

The first is the makespan which is the turnaround time of executing the applica-

tion DAG and the second is the reward which is the utility derived by the service

provider in executing the application DAG. The makespan is the sum of the com-

putation and communication times involved in executing the application, whereas

the reward involves only the communication times.
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The reward is defined as follows: let xzi be the dwell time and Bzi be the

bandwidth in network region zi. Let p be a constant value (measured in $s) and

D be the total data size at a particular edge.

The total transfer time Tt across regions is derived as follows:

while (D > 0) :

zi = probe device location

Tt = Tt +
min((Bzi ∗ xzi), D)

Bzi

D = D −min((Bzi ∗ xzi), D)

(6.4)

The reward U is then given as follows:

U =
p

Tt
(6.5)

where the reward is inversely proportional to the time spent carrying out the

data transfer. In the high zone, the data transfer is done in less time incurring

lower service cost and higher rewards for the service provider, whereas in the low

zone, more time is spent transferring data incurring higher service cost and lower

rewards.

6.5.2 Results

A simulator was implemented in Java and the task graphs were generated randomly

using the following input parameters:

• Task size in the graph(v): the value v is assigned from the set {5, 10, 15}.
The graphs produced are shown in Fig. 6.8 as DAG5, DAG10, and DAG15.

The number of edges for each graph are 7, 23 and 47 while the number of

schedules generated are 3, 54 and 913 respectively.

• Communication-to-Computation Ratio (CCR): the graph’s CCR is the ra-

tio of the average communication cost to the average computation cost.

The CCR measure indicates whether a DAG is communication-intensive,

computation-intensive, or balanced. We used the following values of CCR

= { 0.1, 1.0, 10}, where 0.1 is for computationally intensive DAGs and
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communication is of low significance, 1 is for balanced DAGs and 10 is for

communication-intensive DAGs where the significance of the communication

process is high.

The simulation setup also defines the execution time of each task that is ob-

tained from a cloud workload4 distribution. In addition, the system also defines a

taxi mobility dataset obtained from CRAWDAD [168] and a network bandwidth

dataset obtained from India5.

The mobility and network setup is illustrated in Fig. 6.7. A sample car running

an application in the city is shown in the figure. The red numbers represent the

network data speed in MBps obtained at different locations in the city, while the

blue numbers represent the location of the sample car and the black lines show its

anticipated trajectory path in the city. The location numbers are obtained from

the longitude and latitude coordinates in the mobility dataset and are transposed

into a grid with x and y coordinates. We convert and store the grid coordinates as

a one-dimensional array in the simulation. The experiments are carried out on a

machine with the following hardware specification: it has 16 GB of main memory,

a quad-core Intel Core i7 @ 3.1 GHz CPU.

We use different DAG configurations to evaluate the Network-Aware Schedul-

ing (NAS) and Network-Unaware Scheduling (NUS) algorithms. The experiments

were repeated 100 times and the experimental results were recorded. In Fig. 6.9,

we compare the makespan of the network-aware scheduling algorithm against the

network-unaware scheduling algorithm for the different DAG configurations. NAS

algorithm provides better application performance across the three application

DAGs as it offers an improved execution time. End-users benefit from faster re-

sponse times compared to the NUS algorithm.

Fig. 6.10 shows the reward earned by the service provider when executing the

application DAG configurations. The results show that the reward earned with the

NAS algorithm is higher than the NUS algorithm. The NAS algorithm schedules

4http://fi.ict.ac.cn/data/cloud.html
5https://www.kaggle.com/anuragk240/mobile-data-speeds-of-all-india-during-march-2018



6 Network-Aware Scheduling for Edge Computing Tasks 109

72 42 73 68 88 89 28 58 99 65 

75 53 37 110 72 83 46 27 75 88

59 35 51 58 52 26 58 71 56 67

67 61 57 55 71 65 55 60 53 44

64 69 64 86 62 63 32 28 32 70

40 34 65 43 92 79 27 62 57 60

61 70 56 76 64 45 44 99 99 51

46 61 55 76 83 84 46 83 55 57

75 52 66 80 79 29 55 8 74 51

67 20 74 103 36 65 52 75 99 86
92

82

72

83 84 85

95 96

86 87

76

67

71 73 74 75 77 78 79 80

68 69 70

66595857565554535251

61 62 63 64 65 66

41 42 42 44 45 46 47 48 49 50

31 32 33 34 35 36 37 38 39 40

30292827262524232221

11 12 13 14 15 16 17 18 19 20

10987654321

81

91

88 89 90

93 94 97 98 99 100

Start 

Stop
⑧

E¥*
.

Figure 6.7 Network data and sample edge device mobility path in a
Smart City

the application tasks by utilizing the network conditions, i.e., the task execution

deferral in the low region allows the service provider to use their resources to cater

for task transfers in the high network region, thereby increasing their reward.

We also evaluated the effect of changing network conditions on the NAS and

NUS algorithms. This allows us to assess the performance of our switching algo-

rithm. We introduce network changes by changing the network states at different

time points in the simulation and observing the performance of both NAS and NUS

algorithms. NAS algorithm speculatively changes schedules to the best schedule

when it detects a network change while the NUS algorithm keeps running with

the same schedule. We compared the performance of both algorithms using the

DAG15 application configuration. The network changes were varied from 1 - 4,

that is, we observed the algorithm behaviour for different network change injection

points.

As seen in Fig. 6.11, the NAS algorithm provides a better makespan when com-

pared to the NUS algorithm and it also gives higher rewards as shown in Fig. 6.12.

Overall, we observe that when the network changes from a good state to a bad

state, no improvement is noticed in the schedule deployed as that schedule is the
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best schedule that can give the best performance given that network state con-

dition. However, when the network changes from a bad state to a good state,

then improvements to the performance of the application can be noticed in both

algorithms. The switching algorithm deployed by NAS takes advantage of the

better network states and provides better performance to the application in terms

of reduced makespan and higher rewards.

In the experiments reported so far, the DAG configurations that were evaluated

are computational-intensive, therefore the benefit of NAS over NUS is marginal in

terms of makespan. In Figure 6.13, we evaluated the different CCR values for the

DAG15 configuration for both algorithms. The results show that the makespan for

the computation-intensive DAG is lower than the communication-intensive DAG,

however, the NAS algorithm provides better makespan across the different values

of CCR compared to the NUS algorithm.

Generally, for computation-intensive DAGs, the makespan is close for both

NAS and NUS algorithms. With small CCR values, the communication is less im-

portant than the computation and network-awareness of the NAS algorithm does

not lead to significant benefits over the NUS algorithm. The improvement of the

NAS algorithm becomes significant for balanced (CCR = 1) and communication-

intensive (CCR = 10) DAGs where the network-awareness can benefit from the

increase in the number of data transfers.
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Task running on edge server

Task running on edge device
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Figure 6.8 DAG test cases
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Chapter 7

Conclusion and Future Work

In this thesis, we explore task allocation and scheduling algorithms for different

application types at the network edge. Distributing cloud resources to the edge en-

ables applications to benefit from low latency access to server resources, and they

can be programmed to use both edge and cloud resources. To make this work,

we need task allocation and scheduling algorithms that can cater to the different

applications running at the edge. We classify the applications into different types

and propose algorithms that enhance the performance of the different application

types.

Applications with independent batch tasks need to be sent to the most appro-

priate edge servers such that application-level metrics such as response times can

be minimized without wasting resources. In Chapter 4, we propose a new resource

and task allocation algorithm that achieves the stated objective. We compare our

algorithm with a previously published algorithm and show that the proposed al-

gorithm outperforms the previous algorithm under many application deployment

scenarios. We also examine the performance of the task allocation algorithms un-

der overload and failure scenarios and show that the proposed algorithm is capable

of handling adverse conditions.

In Chapter 5, we focused on Edge Intelligence (EI) applications with a mix of

real-time and non-time tasks. We highlight the challenges involved with schedul-
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ing EI applications by identifying three problems. To tackle these problems, we

propose a two-stage scheduling framework. In this framework, applications have

three classes of tasks: real-time, interactive and batch. The first stage matches

the tasks to the edge servers by taking their execution requirements (e.g., where

the tasks want to run and what type of edge server they want to use). The first

stage provides two possible schedules (termed Normal and Greedy) to the second

stage. Additionally, the first stage places slack servers that can be used by the

second stage to execute non real-time tasks. The second stage is responsible for

adopting the best schedule between the two choices it gets from the first stage.

The experimental results obtained from the prototype implementation show that

the flexibility offered to the second stage by the first stage allows it to meet the

real-time task constraints while maximizing the batch and interactive task execu-

tion rates or deadline compliance rates. Our experimental results show that we

successfully tackled the identified problems.

Finally, in Chapter 6, we focused on applications with dependent tasks. We

tackled the problem of network link variation in scheduling applications. We high-

light the problem network performance variations can have for edge computing

and motivate the need for network-aware task schedulers that would adjust the

execution schedule to minimize data transfers in low network zones. We present

the full architecture for network-aware scheduling for edge and develop the core

algorithms that go into the architecture. Our architecture observes the state of

the network and predicts the future state of the network and speculatively revises

the task execution schedules to maximize the performance. The idea is to defer

task execution such that the data transfers would avoid low network zones.

We developed a network-aware scheduling algorithm as part of this work. This

algorithm returns the best schedule that minimizes the execution time given the

network states and the switching algorithm. Our algorithm effects a schedule

switching when a network change is detected if it deems such a switch is beneficial

with regard to overall performance. At runtime, the combination of both algo-

rithms in our framework offers better performance to the application from both

the end-user and service provider perspectives. Results obtained show that the
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algorithms offer minimized execution time for the end-user and better rewards for

the service provider.

7.1 Future Work

One area of future work is to extend the task matching algorithms developed in

Chapter 5 to be proximity aware (i.e., consider the edge server locations). By

considering the location, we can directly control the latency in the matching step.

Also, real-time tasks are matched to resources by a single attribute i.e., even though

resources have more than one attribute and real-time requests for more than one

matching, resources are only matched to a single column. We will extend this by

ensuring real-time tasks can specify a flexible attribute-aware matching condition

that dictates how the edge server to task matching is carried out. Furthermore,

as part of the future work, we will examine how the results of the L0-Stage can

be used by the L1-Stage to develop efficient matching schemes based on real-time

task throughput values.

In Chapter 6, while we consider the application scheduling from a single edge

device running an application on the network, in the future, we hope to consider

multiple edge devices running applications and scheduling them as a group. We

can schedule multiple application tasks such that the overall performance of all

edge devices is optimized. Furthermore, we can extend the solution to consider the

impact of queuing and heterogeneous delays to deliver a more complete solution.

In addition, we considered an application model where a batch mode is used for

data transfers, i.e., tasks finish their execution before data transfer can begin. As

future work, we will consider streaming data models where data can continuously

be transferred while the task execution is ongoing. Also, as part of future work,

we will consider time-constrained tasks, that is, applications with real-time dead-

lines. Scheduling such real-time tasks with network constraints is a challenging

but interesting research problem.

Finally, we hope to fully implement our solutions into an open source framework
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and programming language for edge computing applications [169, 170] and also

carry out the evaluation using a live test bed under real-life scenarios.
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