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ABSTRACT 

The rapid spread of COVID-19 in the United States initiated shelter-in-place policies that 

significantly impacted human mobility and daily routines. Prior literature has examined the 

differences in lockdown policy efficacy and compliance with government orders between cities, 

as well as the effect of mobility changes on case counts. However, less attention has been placed 

on the connection between mobility and socio-demographics after the onset of COVID-19 within 

the same city. This undergraduate thesis focused on how human mobility patterns in New York 

City during the first three months of the pandemic differed based on socio-demographic factors 

like age, household income, and method of transportation to work. A secondary analysis 

determined if the four measurements of mobility used, namely distance traveled from home, home 

dwell time, non-home dwell time, and percentage time home, yielded significantly different 

findings. Using aggregated and anonymized cellphone mobility data from SafeGraph, I created a 

mobility ratio representing the change in mobility between the first two weeks of February and 

April 2020. I calculated a Global Moran’s Index for each mobility ratio to test for the presence of 

spatial autocorrelation, and then I applied two spatial lag models to account for the existence of 

autocorrelation. That there existed significant differences in mobility patterns based on socio-

demographics reinforced the need for physical distancing policies that acknowledge the 

demographic diversity present not only between but also within cities.  
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CHAPTER 1: INTRODUCTION 

Since the United States detected its first case of the 2019 novel coronavirus in January 

2020, efforts to contain the virus, such as stay-at-home policies, have greatly restricted human 

mobility and upended daily routines and momentous occasions alike. This retroactive analysis of 

the interaction between human mobility patterns during the COVID-19 pandemic, particularly 

after the implementation of state-level shelter-in-place orders, and the socio-demographic 

differences within a city, contributes to a rapidly growing body of literature examining the 

effectiveness of these lockdown policies. This paper seeks to understand the relationships between 

average weekly levels of mobility and population demographics within New York City census 

block groups (CBGs) from February to April 2020, with the intention of providing fine-grained 

analysis on the socio-demographic effects of lockdown measures for policymakers and informing 

future strategies for infection mitigation and safe re-opening. Findings from this research reinforce 

the need for physical distancing policies that acknowledge the existence of demographic diversity 

between not only geographic regions in the U.S. but also within a single city.  

My research is the first to look specifically for the existence of a strong correlation between 

human mobility levels and socio-demographic characteristics in U.S. CBGs, whereas much of the 

prior literature examined the effect of mobility and various explanatory variables on the COVID-

19 case positivity growth rate (Chen et al., 2020; Lamb et al., 2021; Pullano et al., 2020). A study 

by Badr et al., which focused exclusively on mobility and COVID-19 case levels, found that 

decreased mobility, which the authors used as a proxy for increased levels of social distancing, 

had a positive and significant relationship with reduced case growth in several U.S. counties (2020). 

Like Badr et al., I employ SafeGraph’s aggregated mobility data to measure the effectiveness of 

social distancing interventions, based on the assumption that fewer trips align with less physical 

contact and interactions with others (2020). However, my research focuses exclusively on how 

state-wide and city-wide lockdown measures changed mobility measurement values, such as 

median distance traveled from home and median non-home dwell time, with respect to socio-

demographic characteristics per CBG. Furthermore, my research incorporates a more 

comprehensive definition of population mobility by testing not one but four different 

representative variables and their correlations with socio-demographic factors. I also analyze the 

regression results from these four variables to determine if one or more of these mobility variables 

most accurately represents physical distancing adherence.  
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1.1. Research Questions  

Given that the overall aim of my research is to investigate how socio-demographic 

characteristics at the CBG level affect mobility patterns, I propose the following research questions:  

 

• Research Question 1: Which socio-demographic factors have the greatest effect on 

population change in mobility in New York City before and after the implementation of 

COVID-19-related lockdown measures in March 2020?  

• Research Question 2: Of the variables measuring population mobility in this research 

(median distance traveled from home, median home dwell time, median non-home dwell 

time, and median percentage time home), which one(s) act(s) most accurately as a proxy 

for physical distancing adherence?  

 

Research Question 1 relates to my overall research aim by examining the interactions 

between socio-demographic characteristics and changes in mobility. To answer this question, I 

employ four models: the Ordinary Least Squares (OLS) linear regression model, the Spatially 

Lagged X (SLX) model, the Spatial Autoregressive (SAR) model, and the Spatial Error Model 

(SEM). I hypothesize that age, income, and the number of families with children will yield 

significant results, with older populations more likely to reduce mobility as a consequence of 

COVID-19 affecting this group more severely, lower-income residents less likely to be able to 

reduce mobility due to a higher likelihood of being involved in frontline work, and families with 

children more likely to reduce their mobility because of school closures.  

Research Question 2 provides insight into which mobility measurement(s) best represent(s) 

public adherence to physical distancing interventions. Results from this analysis may help future 

researchers choose the most appropriate mobility measurement(s) for their particular research 

questions. I hypothesize that either median home dwell time or median non-home dwell time will 

yield the greatest number of significant correlations with socio-demographic factors because of 

the rigorous methodology that SafeGraph follows to determine a device’s home location and dwell 

status (see Section 3.2 for details). If I included point of interest (POI) data in my analysis, median 

distance traveled from home might have led to the most informative results, since the model could 

account for trips’ origin and destination, as well as environmental factors like POI density. As for 

median percentage time spent at home, many of the results from this variable will likely be the 
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same as those obtained from median home dwell time. However, the percentage time at home 

measurement generalizes dwell time to some value between 0 and 100, whereas median home 

dwell time is a measurement recorded in minutes with a greater range of possible values. These 

differing levels of detail may affect the eventual correlation results.   

 

1.2. Overview of Thesis Structure 

My review of related literature in Chapter 2 has three sub-sections: population mobility 

surveillance, patterns of COVID-19 responses and positive case growth, and spatial mobility 

patterns during COVID-19. I start by examining prior literature on public-health related 

surveillance methods and the ethical dilemmas surrounding population surveillance. Next, I 

provide an overview of the various governmental and non-pharmaceutical interventions introduced 

in response to increasing COVID-19 case rates, both on a worldwide scale and in New York City. 

Finally, I analyze prior research on spatial mobility patterns during the pandemic, both on a global 

scale and in the United States.  

In Chapter 3, I describe the data and methods used in my research and discuss how I address 

limitations that arose in prior studies. In Chapter 4, I present my findings, and then in Chapter 5, I 

summarize the implications of these findings, including how they contribute to a rapidly growing 

body of literature examining the effects of sociodemographic factors on COVID-19-related 

mobility. Lastly, in Chapter 6, I acknowledge the strengths and limitations of my work and provide 

several suggestions for future research.   
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CHAPTER 2: RELATED LITERATURE 

In this section, I will critically examine how prior literature addresses the three tenets 

leading to my research aims of investigating how demographics at the Census Block Group level 

in New York City influence human mobility patterns during COVID-19 and to what extent 

significant results correlate with spatial distance. The organization of this section follows the 

conceptual framework shown in Figure 2.1.  

 

Figure 2.1: Conceptual Framework Guiding This Research  

 

2.1.  Tracking Population Mobility through Smartphone Data 

Analyzing population movement to glean human behavior patterns from aggregated 

smartphone data became increasingly common leading up to the outbreak of COVID-19 (Budd et 

al., 2020; Smith et al., 2015). The increase in academic research interested in utilizing mobility 

datasets from smartphone tracking for COVID-19 research was a result of several private 

companies, including the provider of the dataset used for this research, making their previously 
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industry-only data available for academic analysis while this public health crisis continued. In this 

section on population mobility surveillance, I first explore public health surveillance and its current 

relation to limiting the spread of COVID-19. The second part of the section discusses the ethical 

implications of using passive surveillance technologies to collect population-level data.   

  

2.1.1. Public Health Surveillance and COVID-19  

Mobile phone surveillance has numerous applications for public health, particularly with 

regard to mitigating the spread of COVID-19 and understanding population mobility trends. As 

Buckee et al. argue, “the research and public health response communities can and should use 

population mobility data collected by private companies, with appropriate legal, organizational, 

and computational safeguards in place” to “refine interventions” based on “near real-time 

information about changes in patterns of human movement” (Buckee et al., 2020: 145). Other 

researchers emphasize the need for regulation and rigorous evaluations of these digital 

technologies to ensure that they are used for the benefit of public health and not as exploitive 

tracking mechanisms (Budd et al., 2020). In the next section, I summarize one paper’s suggestions 

for ethically using aggregated mobility data to combat the spread of COVID-19.  

 

2.1.2. Ethical Considerations of Participatory Surveillance  

 Researchers must consider representativeness, situational context, and methods of 

aggregation when working with mobility metrics calculated from GPS-derived aggregated data to 

analyze the spread of COVID-19 (Kishore et al., 2020). In terms of representativeness, the authors 

state that data providers must provide information on the fraction of the population represented in 

the data, the demographic characteristics of the data subjects, and the geographical makeup of the 

data, including whether or not representative bias exists in favor of urban communities over rural 

ones. The authors then advise researchers to communicate how the latter group chose the baseline 

period against which to compare their analyses, which in the context of COVID-19 could be prior 

to the implementation of physical distancing policies. They also suggest that researchers outline 

the uncertainty associated with choosing this baseline period. Lastly, the authors note how data 

aggregation must strike a balance between maintaining an “actionable spatial boundary” on a 

timescale with epidemiologically relevant information and preventing possible re-identification of 

individuals from the data (Kishore et al., 2020, p. e623). The authors declare that a pandemic is 
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not justification for ignoring the risks to an individual’s privacy associated with using personal 

data to calculate disease transmission-related metrics like sources of mass infection or mobility 

habits. They propose statistical thresholds, differential privacy, and appropriate security controls 

that all stakeholders agree to as appropriate privacy protection measures. This paper’s main 

strength is its actionable guidelines for analyzing aggregated cellphone data. The authors also 

provide detailed steps for calculating nine metrics that could be used as measurements of physical 

distancing effectiveness and inputs for models tracking the spread of COVID-19, although the 

information is evidently written for data providers who have access to disaggregated data. I 

attribute this approach to the employee relationship that one of the paper’s authors has with the 

data analysis firm Camber Systems, especially since the paper acknowledges that the company 

may use the metrics described in this paper or ones similar for commercial products in the future. 

The paper’s most noticeable weaknesses are its failures to mention either datasets that successfully 

adhere to their representativeness and aggregation guidelines or studies that effectively state 

situational context. Providing examples for both would have enhanced their argument and 

provided valuable resources for readers.  

  

2.2.  Early Spread of COVID-19 and Mitigation Responses  

In this subsection, I will first provide an overview of how COVID-19 spread across the 

world, starting in late December 2019, and the subsequent government mandates enacted to restrict 

population mobility between and within countries. I will then describe when stay-at-home orders 

occurred in New York City from March to May 2020. Appendix B.1 provides a visual 

representation of the COVID-19 timeline both on the world scale and for New York City.   

 

2.2.1. Global State of COVID-19 from December 2019 to May 2020 

The government of Wuhan, a city with over 11 million people located in China’s Hubei 

province, first confirmed that their health officials were treating “dozens of cases of pneumonia of 

unknown cause” on 31 December 2019 (Taylor, 2021). Twelve days later, on 11 January 2020, 

China reported the first fatality caused by the virus at a time when there were 41 confirmed cases, 

seven of whom were in severe condition (Qin & Hernández, 2020). The news came right before 

Chinese passengers were expected to take an estimated three billion trips in the subsequent five 

weeks to celebrate the Spring Festival, which started on 25 January 2020 and is China’s largest 
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holiday (Qin & Hernández, 2020). At that point, the Wuhan Health Commission had not found 

evidence that the virus spread between humans, so there were no travel restrictions put in place 

(Qin & Hernández, 2020). However, by 23 January 2020, Chinese authorities canceled all planes 

and trains leaving Wuhan and suspended bus, subway, and ferry operations within the city as the 

total number of infections and fatalities reached 570 and 17 respectively in Taiwan, Japan, 

Thailand, South Korea, and the United States (Taylor, 2021). The United States reported its first 

confirmed case in Washington state on 21 January 2020 from a man who developed symptoms 

after returning from Wuhan, and then banned entry to all foreign nationals who had traveled to 

China within the last 14 days, effective as of 31 January 2020 (Taylor, 2021). The day before, on 

30 January 2020, Director-General of the World Health Organization Dr. Tedros Ghebreyesus 

declared a “public health emergency of international concern over the global outbreak of novel 

coronavirus” (WHO Director-General, 2020: online), prompting the U.S. State Department to 

warn Americans against travel to China and U.S. Health and Human Services Secretary Alex M. 

Azar II to declare a public health emergency for the entire United States on 31 January 2020 (HHS 

Press Office, 2020; She et al., 2020; Taylor, 2021).  

The virus spread across Europe throughout early February 2020, with Italy becoming the 

site of the first major outbreak on the continent. Italy’s number of reported cases jumped from 

fewer than five to over 150 on 23 February 2020, prompting Italian officials to lock down towns 

within the Lombardy region, close schools, and cancel sporting and cultural events (Taylor, 2021). 

In the United States, the number of cases continued to increase rapidly since reporting its first case 

on 21 January 2020, eventually prompting the Centers for Disease Control and Prevention to 

advise against gatherings of 50 or more people starting 15 March 2020 and onwards for the 

subsequent eight weeks (Taylor, 2021). On 16 March 2020, the same day that New York City 

public schools closed, U.S. President Donald Trump warned citizens against groups of more than 

10 people (Taylor, 2021). By 26 March 2020, the United States had the highest number of 

confirmed COVID-19 cases in the world. Despite reaching this milestone, state-level lockdown 

policies varied by state throughout March to May 2020 in the absence of an official federal policy, 

as shown in Figure 2.2.  
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Figure 2.2: Type and Duration of COVID-19 State and Territorial Stay-At-Home Orders from 1 

March to 31 May 2020 

From “Timing of State and Territorial COVID-19 Stay-at-Home Orders and Changes in 

Population Movement — United States, March 1–May 31, 2020” by A. Moreland et al., 2020, 

Morbidity and Mortality Weekly Report, 69(35), p. 1200. 

  

2.2.2. State of COVID-19 in New York City from March to May 2020  

In spring 2020, New York City (NYC) was the United States epicenter of the COVID-19 

outbreak, with approximately 203,000 cases of laboratory-confirmed COVID-19 reported by the 
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NYC Department of Health and Mental Hygiene between 1 March and 31 May 2020 (Thompson 

et al., 2020). Governor of New York Andrew Cuomo announced the first case of COVID-19 in 

New York City on 1 March 2020 after the case was confirmed in a laboratory on 29 February 2020 

from a 39-year-old Manhattan woman returning from Iran with mild respiratory symptoms 

(Thompson et al., 2020; Vasquez et al., 2020). The virus spread rapidly throughout both NYC and 

New York State (NYS) during the first week of March, prompting Governor Cuomo to declare a 

state of emergency for NYS on 2020 March 7, when there were 89 cases state-wide and 11 cases 

in NYC (Vasquez et al., 2020). As the number of positive cases in NYC continued to increase 

exponentially during the first two weeks of March 2020, NYC Mayor Bill de Blasio shuttered large 

venues like Barclays Center in Brooklyn, Madison Square Garden in Manhattan, and Radio City 

Music Hall in Midtown Manhattan on 12 March 2020 (Vasquez et al., 2020). Governor Cuomo 

also implemented a state-wide ban on gatherings of 500 people or more and announced that venues 

with capacity below 500 people would have to operate at 50 percent occupancy (Vasquez et al., 

2020). Despite the closure of large public arenas by 12 March 2020, a majority of schools in New 

York City’s public school system, the largest school district in the United States with over 1.1 

million students, remained open until 16 March 2020, when Mayor de Blasio announced that 

schools would be closed until at least 20 April 2020, with plans for remote learning to begin on 23 

March for kindergarten through 12th grade (Eisenberg & Touré, 2020; NYC Department of 

Education, n.d.). In addition to closing schools, Governor Cuomo, along with New Jersey 

Governor Phil Murphy and Connecticut Governor Ned Lamont, lowered the maximum gathering 

threshold to 50 people, shuttered gyms and casinos, and restricted bars and restaurants to providing 

just take-out and delivery services across the Tri-State area on 16 March (Vasquez et al., 2020). 

By 18 March 2020, with 3,437 cases in NYS and more than 1,870 cases in NYC confirmed thus 

far, Governor Cuomo implemented a statewide mandate that non-essential businesses must have 

at least 50 percent of their employees working from home (Vasquez et al., 2020). Two days later, 

on 20 March, Mayor de Blasio mandated that all non-essential businesses in NYC would close at 

20:00 on 22 March until further notice and announced fines could be imposed on non-vulnerable 

individuals who violated rules regarding non-essential gatherings and social distancing, in 

adherence to the NYS on Pause Program’s stipulations that all non-essential workers must stay at 

home (City of New York, 2020). Twenty-three days after the first laboratory confirmed case of 
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COVID-19 in NYC, the entire state had been put into strict and unprecedented stay-at-home 

measures and school closures that Governor Cuomo later extended throughout April and May 2020.   

 

2.3. Spatial Mobility Patterns during the COVID-19 Pandemic  

This section will explore prior literature that focuses on spatial mobility trends during the 

COVID-19 pandemic. I will critically examine research on spatial mobility in countries outside of 

the United States, followed by research on mobility trends in the U.S. Several of the studies in this 

latter group also used data from SafeGraph.  

 

2.3.1. Spatial Mobility on a Global Scale during the COVID-19 Pandemic 

Research that examined the effects of mobility reduction on case counts outside of the U.S. 

include an analysis from Kraemer et al. (2020) on the spread of COVID-19 in China and a social 

network analysis of COVID-19 transmission in India by Saraswathi et al. (2020). In a 

comprehensive review focused on the geospatial and spatial-statistical analysis of the COVID-19 

pandemic, Franch-Pardo et al. (2020) evaluated 63 scientific articles on the subject and concluded 

that interdisciplinary action, proactive planning, and international solidarity were of utmost 

importance for controlling the virus.  

One particularly notable paper by Pullano et al. (2020) examined how mobility in France 

changed before and during lockdowns based on aggregated cellphone data from Flux Vision of 

origin-destination travel flows among 1,436 mainland France geographical areas. The authors 

segmented their results by trip distance (all trips and long trips, which were defined as more than 

100 kilometers of geodesic distance between location centroids), user age (under 18, 18-65, and 

over 65 years old), residency (residents had French SIM cards while non-residents did not), and 

time of day (daytime or nighttime and weekend versus weekday, including rush hours). Next, the 

authors analyzed behavioral responses to announcements of physical distancing interventions and 

pandemic burden, i.e. COVID-19-related deaths and hospitalization rates. They found that traffic 

flow significantly decreased from their forecasting model’s extrapolated traffic flow, assuming no 

interference associated with COVID-19 interventions, starting on 14 March 2020. Interestingly, 

they observed a “pre-lockdown exodus out of Paris” on 16 March 2020, one day before lockdown 

took effect, which they attributed to relocation caused by fear of the imminent implementation of 

stricter policies seen prior to that date in Italy, Spain, and Austria (Pullano et al., 2020, p. e642). 
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Data during the lockdown period also revealed larger mobility reductions in regions more severely 

affected by the pandemic in terms of number of hospitalizations, suggesting that individuals in 

these hard-hit regions were more likely to act on concerns about overwhelming the hospital system 

than those in less affected areas. By testing the effects of several explanatory variables on mobility, 

this study provided a robust overview of the demographic, socioeconomic, and behavioral factors 

associated with decreased mobility in France prior to and during the early lockdown period in 

March 2020. The authors reported several interesting results, although they acknowledged the 

limitations of their observational methodology when inferring causal relationships from complex 

interactions between factors. Another limitation was the study’s geographical scale, which at the 

city level allowed for comparisons in travel between major French cities but mostly ignored 

mobility differences in sub-regions within cities. Lastly, the authors failed to elaborate on their 

decision to construct a forecasting model using training data from a period of time (6 January to 9 

March 2020) already affected by COVID-19 restrictions (they state that Phase 2 of France’s 

COVID-19 response, which involved social distancing interventions like closing schools, started 

on 29 February 2020), when they also noted that extrapolated traffic flow after 9 March 2020 

assumed no changes due to COVID-19-related interventions.  

 

 

2.3.2. Spatial Mobility of the U.S. Population during the COVID-19 Pandemic  

Aggregated mobility data have been used in prior research as a proxy for quantitatively 

measuring the effectiveness of social distancing measures (Badr et al., 2020; Buckee et al., 2020). 

In this section, I will go into detail on four representative publications and summarize the wider 

literature in Table 2.1.  

The first paper, written by Chang et al. (2020), sought to understand how SARS-CoV-2 

spread in ten of the largest U.S. metropolitan areas by constructing fine-grained dynamic mobility 

networks derived from SafeGraph cellphone geolocation data that mapped the hourly movements 

of 98 million people from neighborhoods to points of interests at the census block group (CBG) 

level between 1 March and 2 May 2020. The authors found that their metapopulation susceptible-

exposed-infectious-removed (SEIR) model simulating the spread of SARS-CoV-2 with the 

aforementioned mobility networks accurately predicted that higher infection rates occurred during 

the first two months of the pandemic amongst disadvantaged racial and socioeconomic groups as 

a result of only differences in mobility. This result not only supports prior literature indicating that 
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SARS-CoV-2 infections were unevenly distributed across the U.S. population, but also strengthens 

my hypothesis that income levels will correlate significantly with measures of aggregated mobility 

at the CBG level. The authors also noted that the model could predict “super-spreader” points of 

interest (POI) that accounted for a majority of infections. They concluded from this result that 

varying maximum occupancy levels to increase physical distancing based on POI rather than 

uniformly reducing mobility across POIs could be a more effective policy measure. This article’s 

exemplary methodological rigor is a result of the authors paying careful attention to every part of 

the study, including cross-checking mobility trends from SafeGraph data with Google mobility 

data, building an undirected bipartite graph with 5.4 billion edges between 56,945 CBGs and 

552,758 POIs to represent population-level mobility, and providing extensive documentation of 

the mathematical reasoning behind model initialization, calibration, validation, and data analysis. 

A limitation to this study, which the authors themselves acknowledged, was that the SafeGraph 

data underlying their SEIR model did not perfectly represent the population, contain all POIs in 

the metropolitan areas of interest, or provide context at a geographical scale smaller than the CBG 

level. Most importantly, the SEIR model did not take into account all real-world factors 

contributing to SARS-CoV-2 transmission; however, the authors maintained that the predictive 

accuracy of their model based solely on mobility between POIs robustly supported their broad 

conclusions on sociodemographic inequities and uneven sources of infection at various POIs.  

 The second paper by Badr et al. (2020) investigated the effect of large-scale social 

distancing adherence on the spread of COVID-19 in 25 U.S. counties with the highest number of 

confirmed cases as of 16 April 2020 using Teralytics’ aggregated mobility data from 1 January to 

20 April 2020. To evaluate how well decreased mobility affected the rate of new infections, the 

authors fitted a generalized linear model for each county on a given day by using a lagged mobility 

ratio (MR) as the predictor for the COVID-19 case growth rate (GR) ratio, and then tested the 

correlation of the MR and GR at different time lags from both separate models for each county 

and also from a combined model for all counties. Significant correlations in all 25 counties with 

Pearson correlation coefficients above 0.7 (out of 1.0) in 20 of the 25 counties led the authors to 

conclude that social distancing had a significant effect on the spread of COVID-19 and that their 

findings could translate to other U.S. locations, given the geographical diversity of the counties in 

their sample set. The authors also discovered that social distancing was evident in early March 

before any of the first U.S. state-level lockdowns were implemented, which was a phenomenon 
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they partially attributed to county-level restrictions while also noting that all states showed some 

form of social distancing before these county-level restrictions. By analyzing data at the county 

level across 11 U.S. states, this study successfully produced results at a geographical scale small 

enough to account for heterogeneity in the number of confirmed cases and mobility changes within 

a county, while also providing opportunities to compare entire states and thus generalize findings 

on a national level. The authors acknowledged that one of their study’s most significant limitations 

was its ignorance of other case mitigation factors like mask-wearing or handwashing that could 

have significantly contributed to declining COVID-19 case growth rates in March 2020. A follow-

up commentary by the first and last authors of this study emphasized the importance of further 

research on the effect of these other non-pharmaceutical interventions (NPIs), since the strong 

linear correlation between mobility and case growth rates they had observed in their first paper 

was absent after April 2020, thus suggesting that this strong correlation after April could be 

attributed less to mobility having a significant impact on COVID-19 transmission and more 

towards interventions like mask-wearing and avoiding large gatherings that were adopted in 

parallel with initial lockdowns (Badr & Gardner, 2020). Further research quantifying the effects 

of NPIs and their interactions will ultimately determine whether or not restricting mobility alone 

can affect case growth rates.   

 For research on patterns in New York City, Lamb et al. (2021) conducted an ecological 

study of residents in 177 NYC zip code areas using SafeGraph data for the number of daily visits 

to points of interest (POIs). The authors wanted to determine the extent to which aggregate markers 

of socioeconomic status (SES) and daily changes in mobility could explain zip code-level COVID-

19 case positivity, as well as the extent to which daily changes in mobility independently predicted 

case positivity. They concluded from ranking univariate analyses and a multivariable prediction 

model that the proportion of the population living in households with more than three inhabitants, 

the proportion of uninsured 18-64-year-olds, the proportion of population self-identifying as White, 

and median household income were the four aggregate markers of SES that yielded the highest R2 

value for all four time periods (1 April, 10 April, 20 April, and 30 April). Their analyses revealed 

that changes in mobility considered with SES markers explained 56% of the variability in case 

positivity through 1 April 2020, but then dropped to a rate of explanation for case positivity 

variability of just 18% by 30 April 2020, suggesting that after COVID-19 cases peaked on 6 April 

2020 in NYC, these SES markers became less predictive due to several factors, including greater 
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testing capacity, higher SES areas having lower case positivity due to potentially greater 

engagement with unwarranted testing, and lower SES areas containing a higher number of actual 

infections. The authors also found that increased case positivity was independently associated with 

greater reductions in mobility on 10 April and 20 April, but not on 1 April and 30 April, and they 

attributed these mixed findings to the correlation between time and a city-wide decrease in case 

positivity as testing capacity increased. The authors acknowledged the limitations of their study, 

including that its use of zip code areas could not account for the heterogeneity of SES, case 

positivity, and changing mobility levels within these areas. Furthermore, their use of COVID-19 

case positivity as an outcome measurement was highly imprecise, given that the metric was subject 

to fluctuation based on diagnostic test accessibility. However, this study’s most innovative feature 

was its use of physical check-ins to POIs within a zip code area as its measurement of mobility, 

which the Center for Disease Control (CDC) also uses to track mobility patterns, rather than a 

more common metric like average distance displacement.  

The final paper, which was a preprint by Chen et al. (2020), contributed to a growing body 

of literature examining how to best prevent and control COVID-19 infections by examining and 

modeling the spatial factors that led to early COVID-19 outbreaks in New York City using land 

use, travel behaviors, and sociodemographic factors as explanatory variables. The authors 

categorized land use into three main categories based on points of interest (POI) labels with a high 

likelihood of congregation: green spaces and/or parks, grocery stores, and medicine-related places. 

They measured travel activities using the mean distance traveled from home variable from 

SafeGraph’s social distancing metrics. They also used gender, race, poverty, working from home, 

commuting habits, population, and number of workers as their sociodemographic variables. Using 

ordinary least squares (OLS) regression for global relations, the authors determined that areas with 

high medical POI density, green space density, greater median distance traveled from home, 

percentage of males, and percentage of commuting through walking, carpooling, and public 

showed higher rates of positive COVID-19 cases. Using geographically weighted regression 

(GWR) models for local relations, the authors concluded that the effects of working from home 

varied across postal areas, which led them to suggest that future reopening strategies vary between 

NYC boroughs. This study’s use of GWR modeling provided important insight into local 

differences in land use, travel behaviors, and sociodemographic factors. However, the study’s main 

limitation was in its scope, as its focus on just New York City prevented comparisons between 



 15 

other U.S. cities. Furthermore, the authors acknowledged that using just SafeGraph and American 

Community Survey data diminished the reliability of their findings on the effect of public transit 

on COVID-19 infections. By extending this study’s methodology to other U.S. cities and 

incorporating additional data sources, policymakers might be able to consider reopening strategies 

not just within but also between cities. 
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Paper Study Area Region Mobility Dataset Research Question(s) 

(Aleta et al., 2020) Boston, USA Cuebiq 

How does testing, contact tracing, and household 

quarantine affect the number of second wave COVID-

19 cases in the Boston metropolitan area? 

(Badr et al., 2020) 25 U.S. counties Teralytics 
What is the effect of large-scale social distancing on 

the spread of COVID-19 in the USA? 

(Bian et al., 2020) U.S. (county level) 
Google Mobility, SafeGraph, de-

identified individual cellphone data 

How does county-level individualism affect 

adherence to social distancing? 

(Brzezinski et al., 2020) U.S. (county level) SafeGraph 
What is the difference in cost on the economy 

between imposing lockdowns and staying open? 

(Chang et al., 2020) 10 U.S. counties SafeGraph 
How does mobility during COVID-19 affect case 

rates and explain racial and socioeconomic inequities/ 

(Chen et al., 2020) New York City, USA SafeGraph 
Which spatial factors contribute to the rate of positive 

COVID-19 cases in NYC? 

(Cronin & Evans, 2020) 
U.S. (state and county 

levels) 
SafeGraph 

What effect do state and local social distancing 

policies have on foot traffic during COVID-19? 

(Dave et al., 2009) South Dakota, USA SafeGraph 
What were the public health impacts of the Sturgis 

Motorcycle Rally? 

(Dincer & Gillanders, 2020) U.S. (state level) SafeGraph 

What are the links between corruption and 

compliance with social distancing during COVID-19 

in the U.S.? 

(Ding et al., 2020) U.S. (county level) SafeGraph 

To what degree do social capital characteristics 

(community engagement and individual commitment 

to social institutions) account for differences in social 

distancing adherence? 

(Gao et al., 2020) U.S. (state level) SafeGraph 

What is the association between the rate of human 

mobility changes and the rate of confirmed COVID-

19 cases? 

(Holtz et al., 2020) U.S. (county level) SafeGraph, Facebook 

What is the cost associated with an uncoordinated 

government response to COVID-19 with regard to 

stay-at-home orders in the U.S.? 
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(Janssen & Shapiro, 2020) Singapore Lifesight 

How does Singapore’s transparency of case 

information affect voluntary activity reductions, 

particularly in areas with more reported cases? 

(Lamb et al., 2021) New York City, USA SafeGraph 

To what extent can the variability in ZIP-code level 

case positivity be explained by socioeconomic status 

and daily change in mobility? To what extent does 

daily change in mobility independently predict case 

positivity? 

(Li et al., 2020) Wuhan, China 

Self-collected interviews with infected 

persons, relatives, close contacts, and 

health care workers 

How did human-to-human transmission occur 

amongst close contacts in Wuhan, China since mid-

December 2019? 

(Mangrum & Niekamp, 2020) U.S. (county level) SafeGraph 

How did university spring break travel affect the 

evolution of confirmed COVID-19 cases and 

mortality? How did method of travel and destination 

contribute to the spread of COVID-19? 

(Pullano et al., 2020) France Flux Vision 

How did mobility in France change before and during 

lockdown by trip distance, user age and residency, 

and time of day? What spatial heterogeneities exist in 

the regional data? 

(Saraswathi et al., 2020) Karnataka, India 
Public contact tracing data from the 

Karnataka government 

How can social network analysis be used as a tool for 

outbreak monitoring and control for the COVID-19 

outbreak in Karnataka, India? 

(Weill et al., 2020) U.S. (state level) SafeGraph, Google Mobility, Place IQ 
How does income affect responses to social 

distancing policies? 

(Wilder et al., 2020) 

Hubei, China 

Lombardy, Italy 

New York City, USA 

Within-household contact: household 

distributions from census data 

Out-of-household contact: age-

stratified, country-specific estimated 

contact matrices 

What is the role of transmission due to particular age 

groups on total COVID-19 infection and deaths? 

What are the between-population variations in 

COVID-19 transmission? 

 

Table 2.1: Overview of Prior Literature on COVID-19 and Mobility  
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CHAPTER 3: DATA AND METHODOLOGY 

This section will describe the datasets I used and then go into detail on the data collection, 

preparation, and annotation processes. I will also discuss the statistical analyses conducted on the 

cleaned and annotated SafeGraph dataset merged with the American Community Survey and U.S. 

Census boundary datasets.  

 

3.1. Rationale behind Time Interval Choices  

Kishore et al. (2020) argue that researchers who are investigating changes in mobility must 

clearly establish their rationale for choosing a baseline time period against which to compare their 

experimental condition(s), as well as acknowledge the uncertainty associated with their decision. 

In this section, I will explain why I used the first two weeks of February 2020 as my baseline time 

interval and the first two weeks of April 2020 as my experimental time interval.  

To mitigate the influence of outlier data on my analysis, I defined my mobility 

measurements based on the median of 14 values, which corresponded to 14 consecutive days 

within a two-week period. Determining which two-week periods to collect data from that 

represented before and after the onset of COVID-19 required examination of how the virus spread 

in NYC and the subsequent stay-at-home measures implemented both city- and state-wide that 

could influence mobility patterns from one day to the next.  

Based on the timeline of stay-at-home orders affecting human mobility as outlined in 

Sections 2.2.1 and 2.2.2, I hypothesized that the two dates in March that affected mobility most 

significantly in New York City were 16 March 2020, when the NYC school system, gyms, and 

casinos closed and restaurants and bars started providing only take-out and delivery services, and 

22 March 2020, when all non-essential businesses closed and the NYC on Pause Program’s stay-

at-home orders went into effect. Prior studies examining responses to physical distancing mandates, 

such as the one by Badr et al. (2020), found that reduced mobility started in early March in the 11 

states corresponding to the 25 U.S. counties with the highest number of confirmed cases on 16 

April 2020, and thus well before any U.S. state implemented statewide stay-at-home orders. Figure 

3.1 shows how the proportion (i.e. mobility ratio) between (1) the sum of total incoming and 

outgoing trips within a county on a particular day (shown on the x-axis) and (2) the average sum 

of total incoming and outgoing trips within a county from 8 January to 31 January 2020, which 

Badr et al. (2020) used as their baseline time period, declined sharply from 1.0 (indicating no 
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change) several days before the first statewide stay-at-home order in California on 19 March. 

Based on these findings by Badr et al. (2020), I could not assume that the start of a stay-at-home 

mandate catalyzed the first signs of reduced mobility in NYC, so I chose the first two weeks of 

February as a baseline window with stable mobility patterns unaffected by COVID-19.   

 

 

Figure 3.1: Timeseries of Mobility Ratios for U.S. States and Corresponding Dates of Stay-At-

Home Mandates1 

From “Association between mobility patterns and COVID-19 transmission in the USA: a 

mathematical modelling study” by H. Badr et al., 2020, The Lancet Infectious Diseases, 

3099(20), p. 5. 

 

Despite Badr et al.’s findings that populations in eleven states decreased their mobility 

prior to stay-at-home orders, I hypothesized that mobility would decline further following New 

York’s stay-at-home orders implemented on 22 March 2020. I chose the first two weeks of April 

as the two-week period that would best represent these orders’ effect on the mobility of New York 

City’s population because a week past the start of the stay-at-home orders could account for 

potential fluctuations in the data as the population adjusted to the new physical distancing 

measures. Figures Figure 3.2 through Figure 3.9 support this time frame choice, since the 

histograms for each of the dependent mobility variables differed in shape and peak value between 

 
1 Notes: Dots represent the raw mobility ratio (MR) data for each day and the vertical dashed lines correspond to state 

stay-at-home orders. Since some orders occurred on the same day, only eight lines are shown for the 11 states. Plotted 

lines were smoothed with a generalized additive model. 
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the first two weeks of February shown on the left and the first two weeks of April shown on the 

right.   

 

 

Figure 3.2: Histogram for Median Distance 

Traveled from Home in NYC, February 2020 

(5,000 breaks) 

 

Figure 3.3: Histogram for Median Distance 

Traveled from Home in NYC, April 2020 

(5,000 breaks) 

 

Figure 3.4: Histogram for Median Home 

Dwell Time in NYC, February 2020 

(50 breaks) 

 

Figure 3.5: Histogram for Median Home 

Dwell Time in NYC, April 2020 

(50 breaks) 

 

Figure 3.6: Histogram for Median Non-Home 

Dwell Time in NYC, February 2020 

 

Figure 3.7: Histogram for Median Non-Home 

Dwell Time in NYC, April 2020 
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3.2. SafeGraph Social Distancing Metrics Dataset 

SafeGraph, which is a private data company that provides location data for around seven 

million points of interest (POI) and aggregated mobility pattern data for over four million POIs in 

the United States, created a new dataset called “Social Distancing Metrics” for researchers and 

industry analysts to track daily physical distancing practices. SafeGraph generates their data using 

GPS pings from almost 20 million anonymous cellphone devices at the Census Block Group (CBG) 

level, which is a statistical division of Census Tracts and thus greater in geographical precision 

and data granularity (SafeGraph, n.d.-b; U.S. Census Bureau, n.d.). For my research purposes, this 

level of granularity provided data suitable for fine-grained analysis of human behavior. To 

calculate a mobile device’s home, SafeGraph determines the device’s common nighttime location 

to a Geohash-7 granularity of about 153 meters by 153 meters (SafeGraph, n.d.-b). SafeGraph then 

groups devices into “home” CBGs based on their common nighttime location and provides 

aggregated data from the devices for each CBG (SafeGraph, n.d.-b).  

To maintain individual cellphone users’ privacy and ensure “ethical harvesting” of 

cellphone user data, SafeGraph applies a differential privacy algorithm known as DBSCAN 

clustering to all device count metrics except the field with the number of devices per CBG, such 

that there is no personal-identifying information saved from the devices (Goodale-Sussen & 

Kishore, 2020: online; SafeGraph, n.d.-b). This precaution may cause a discrepancy between the 

reported number of devices in a CBG and the actual number of devices in that CBG involved in 

data collection, particularly in sparsely populated CBGs; however, my analysis did not involve 

(50 breaks) (50 breaks) 

 

Figure 3.8: Histogram for Median Percentage 

Time at Home in NYC, February 2020 

(50 breaks) 

 

Figure 3.9: Histogram for Median Percentage 

Time at Home in NYC, April 2020 

(50 breaks) 
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variables that included device counts. Table 3.1 shows the dependent variables I used to represent 

spatial mobility patterns at the CBG level.  

 

Table 3.1: Dependent Variables Used in Regression Equations 

Variable Name Metadata 

`distance_traveled_from_home` 

Reported as an Integer. The value represents the median distance 

(in meters) of the median distance per device in a CBG traveled 

from the device’s calculated “home” (i.e. Geohash-7 common 

nighttime location) within a 24-hour period. SafeGraph excluded 

distances equal to 0. 

`median_home_dwell_time` 

Reported as an Integer. The value represents the median time (in 

minutes) of the sum of all total time per device in a CBG spent at 

the device’s Geohash-7 common nighttime location within a 24-

hour period. Included in the total time are time ranges that may or 

may not have stopped or started within the 24-hour period. 

`median_non_home_dwell_time` 

Reported as an Integer. The value represents the median time (in 

minutes) of the sum of all total time per device in a CBG spent 

outside of the device’s Geohash-7 common nighttime location 

within a 24-hour period. 

`median_percentage_time_home` 

Reported as an Integer. The value represents the ratio between 

median percentage of time spent at “home” for all devices in a 

CBG and the median total time observed within a 24-hour period. 

 

3.2.1. SafeGraph Data Collection  

The first step of the data collection process was to download the SafeGraph data from their 

online data catalog, accessible at https://catalog.safegraph.io. Accessing the data for free as an 

academic researcher required a SafeGraph account, which I obtained by joining the SafeGraph 

COVID-19 Data Consortium, now called the Placekey community (SafeGraph, n.d.-a). SafeGraph 

approved my request for data on 15 April 2020, and my signed Non-Commercial Data License 

Agreement can be found in Appendix E. The data were in comma-separated values (CSV) format, 

with each file corresponding to a specific date (e.g. 1 February 2020) and each row in a file 

corresponding to one CBG. I downloaded data for the entire months of February and April 2020.  

 

3.2.2. SafeGraph Data Preparation  

I used PostgreSQL 12 to load and merge all of the SafeGraph CSV files onto a remote 

server in pgAdmin V4. I then queried for all of the rows in the database whose origin census block 

group started with the State of New York’s Federal Information Processing Standards (FIPS) code 

https://catalog.safegraph.io/
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(36) and exported the selected rows into a new CSV file. Next, I narrowed the dataset from New 

York State CBGs to just the CBGs that intersected with a shapefile of NYC CBGs to create a new 

CSV file with data for just NYC. Lastly, I wrote a series of scripts with Python 3.9 that created 

one dataset with NYC data from 1 February to 14 February 2020 and another dataset with NYC 

data from 1 April to 14 April 2020.  

 

3.3.  American Community Survey  

The American Community Survey (ACS) is an ongoing survey that releases new data every 

year on population and housing at the national, state, county, Census Tract, and even Census Block 

Group (CBG) level (United States Census Bureau, 2017). ACS users range from federal, state, and 

local agencies to educators and journalists, and the data are useful because they are more recent 

than the Census, whose data are collected every 10 years (United States Census Bureau, 2017). 

The ACS has three different types of data releases that come out each year: 1-year estimates, 1-

year supplemental estimates, and 5-year estimates.  

 

3.3.1. ACS Data Collection  

I used demographic data from the ACS rather than the 2010 Census because incorporating 

the most recent possible demographic data provided a more accurate representation of the areas 

that I was analyzing in the context of a time-sensitive event like the COVID-19 pandemic. More 

specifically, I chose to use the ACS 5-year estimates, and while the U.S. Census Bureau released 

the most recent version, which covered 2015-2019, on 10 December 2020, I opted for the 5-year 

estimates from 2016 that covered 2012-2016 because SafeGraph had already organized the latter 

estimates into a set of CSV files, thus eliminating the extensive wrangling process required when 

working with Open Census Data. As was the case with collecting the SafeGraph mobility data, I 

accessed the ACS’s 2016 5-year estimates by CBG using SafeGraph’s online data catalog.  

 

3.3.2. ACS Data Preparation and Annotation  

Since the 5-year estimates data were reported at the CBG level, I merged the SafeGraph 

mobility patterns dataset with the 5-year estimates using the CBG ID code. I then renamed the 

columns with the full variable name and merged the CSVs for February, March, and April 2020 

into one CSV file to facilitate calculations between monthly variables.   
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3.4. United States Census Bureau Boundaries  

Shapefiles from the United States Census Bureau have cartographic boundary levels at the 

2020 CBG level for each state. However, the NYC Department of City Planning provides 

shapefiles for the NYC boundary at only the 2010 census block level, which is at an even higher 

resolution than the CBG level. To obtain a shapefile with NYC CBGs, I used ArcMap v.10.7.1 to 

reproject both the NYC 2010 census block shapefile and the NY 2020 CBG shapefile to the WGS 

1984 UTM Zone 18N coordinate system, which is the one recommended for representing data at 

a scale smaller than 1:10,000 (New York Standards Work Group, n.d.). Next, I dissolved the NYC 

census block shapefile into census block groups, and then intersected the result with the NY 2020 

CBG shapefile using the GEOID column, which held the census block group codes. Lastly, I linked 

the shapefile with the CSV file containing SafeGraph and ACS data.  

 

3.5. Statistical Analyses 

I ran my analyses using the 3.6.2 version of the R programming language in version 

1.2.5033 of RStudio. To compare the differences in distance traveled from home before and after 

the onset of COVID-19 in New York City, I divided the median distance traveled from home in 

the first two weeks of February 2020 for each CBG by the median mobility value in the first two 

weeks of April 2020 for the equivalent CBG to create a mobility ratio (MR). I then repeated the 

process to compare the differences in median home dwell time, median non-home dwell time, and 

median percentage time home. This approach loosely follows Badr et al. (2020)’s methodology, 

as they also created a MR variable to quantify mobility changes from baseline. 

To avoid dividing by zero when computing the four mobility ratios, I changed all instances 

of “0” to “0.1” for the four variables representing changes in mobility between February and April 

2020. For median distance traveled from home, 0.1 corresponded to one-tenth of a meter or ten 

centimeters. For median home dwell time and median non-home dwell time, 0.1 corresponded to 

one-tenth of a minute or six seconds. Lastly, for median percentage time spent at home, 0.1 

corresponded to one-tenth of a percentage.  

Next, I prepared the inputs needed for the regression models. First, I converted a shapefile 

containing NYC block groups to a neighbours list based on queen contiguity, which meant that a 

block group sharing a single boundary point with another counted as neighbors. Of the 6,863 block 
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groups, only one had zero links to other block groups, which was the block group for Ellis Island. 

I also created a vector of power traces of the spatial weights matrix to use as input for the spatial 

lag model rather than the neighbours list (LeSage & Pace, 2009). Using the `trW` function, I set 

the type for powering the matrix to `moments,` which uses Smirnov and Anselin (2009)’s looping 

space saving algorithm to transform the matrix values.  

My approach to computing the global and local regression models stayed the same for all 

four mobility ratios. I first fitted an ordinary least squares (OLS) linear regression model to the 

data in R to determine the global relations between mobility and sociodemographic factors. Table 

3.2 shows the explanatory variables used in the regression equation.  

 

Table 3.2: Explanatory Variables Used in Regression Equations  

Variable Name Metadata  

`age`   Estimated median age of the population  

`race` Estimated number of people who identify as only White  

`transport` 
Estimated number of workers 16 years and older who use public 

transportation (excluding taxicabs) to travel to work 

`female_workers`  Estimated number of female workers 16 years and older 

`housing_occupancy_rent` 
Estimated number of renter occupied housing units with over 1.5 

occupants per room  

`min_wage` 

Estimated number of households that earned less than $25,000 a year 

in 2016 (accounting for inflation)  

Note: The base minimum wage in New York City from 12/31/15 to 12/31/16 was 

$9.00/hour, which worked out to about $18,000/year (New York State Department 

of Labor, n.d.).  

`children` Estimated number of families with children under the age of 18 

`education` 
Estimated number of people 25 years and older with a regular high 

school diploma 

`health_insurance` 
Estimated number of people from the civilian noninstitutionalized 

population with no health insurance coverage 

 

While each of the non-spatial OLS models yielded reasonable results, my low R2 values 

led me to check for spatial autocorrelation using the Global Moran’s Index correlation test for 

regression residuals. Spatial autocorrelation determines “how related the values of a variable are 

based on the locations where they were measured.” (UCLA Institute for Digital Research & 

Education Statistical Consulting, n.d.: online). The R command from the `spdep` library, 
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`lm.morantest,` required two inputs. The first was the OLS regression equation that provided the 

residuals for the linear correlation test. The second input was the large `listw` object holding the 

spatial relationship matrix I calculated based on queen contiguity (Anselin, 2007). I also set the 

zero policy to ̀ TRUE` so that I could include the island block groups for Ellis Island in my analysis.  

Next, I ran Lagrange Multiplier diagnostics for spatial dependence in linear models using 

the `lm.LMtests` command from the `spdep` library to determine how much my model 

performance would improve if I used the simple LM test for error dependence (LMerr), the simple 

LM test for a missing spatially lagged dependent variable (LMlag), the robust version RLMerr, 

which tests for error dependence in the possible presence of a missing lagged dependent variable 

and attempts to filter out possible false positives, or the other robust version, RLMlag, which has 

the same idea but tests the other way around (DataCamp, n.d.). The Lagrange Multiplier 

diagnostics tests also included the portmanteau test (SARMA) for completeness, even though this 

test is rarely the most suitable model (BurkeyAcademy, 2018). To determine which model to use, 

I compared the p-values of LMerr and LMlag. If they were both significant, I chose the model that 

corresponded to the robust model (RLMerr or RLMlag) with the lower p-value (Anselin, 2003, 

2005). The figure in Appendix C.1 illustrates this decision process.  

Next, I ran two spatial regression models. Both of these models determined whether the 

mobility patterns in surrounding CBGs affected the mobility pattern in one CBG (Medina & 

Solymosi, 2019). However, the first, called Spatially Lagged X (SLX), tested local spatial relations, 

which meant that surrounding block groups were those immediately adjacent to a block group. The 

second model, which was the spatial autoregressive (SAR) Spatial Lag model, tested global spatial 

relations, which meant that surrounding block groups were all of the observations in the data. I 

used the ̀ spdep` command ̀ lmSLX` to run my SLX models and the ̀ impacts` command to observe 

the direct, indirect, and total effects. The `spdep` command `lagsarlm` for the SAR models was 

more complex, as I used the vector of power traces rather than the `listw` object and specified the 

approximate log-determinant method as `Chebyshev.` To summarize the impacts from the SAR 

models, I set the number of simulations to 5,000 to compute distributions for the impact measures.  

The third and final spatial regression model was the Spatial Error Model (SEM), which I 

ran using the `spdep` command `errorsarlm.` This model also used the `Chebyshev` method, 

although I used the `listw` object rather than the vector of power traces as input. After running the 

model, I conducted a spatial Hausman test to determine if differences existed between the OLS 
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and SEM coefficients. A significant result suggested that neither OLS nor SEM were “yielding 

regression parameter estimates matching the underlying parameters in the [data generating 

process]” (Pace & LeSage, 2008: 283). If I obtained a significant result from the spatial Hausman 

test, I ignored the OLS and SEM results.   

 

3.6. Methodological Limitations   

Prior studies using aggregated and anonymized mobility data have commented on the 

various limitations involved with this approach, including incomplete population 

representativeness,  differences in individual mobility and SES factors, and perhaps incorrectly 

inferring causal relationships from complex interactions between factors (Chang et al., 2020; Chen 

et al., 2020; Lamb et al., 2021; Pullano et al., 2020). My methodology attempted to rectify some 

of these limitations by correcting for sampling bias, examining data at the CBG level, which is the 

second most granular geographical scale typically reported, and noting in my discussion when 

external factors may have influenced observed relationships between mobility and 

sociodemographic variables.   

 

3.7. Ethics  

While I am not personally interacting with the subjects represented in the SafeGraph or 

ACS datasets, I hold a responsibility as an academic researcher to ensure that my data usage does 

not overstep the boundaries protecting individual privacy. As Kishore et al. (2020) note, a 

pandemic is not justification for ignoring the risks to an individual’s privacy associated with using 

personal data to calculate disease transmission-related metrics like sources of mass infection or 

mobility habits. To ensure that data privacy standards were upheld during my research, I selected 

data from a provider who applied a differential privacy algorithm to the data, signed a data license 

agreement, and did not attempt to re-identify subjects during my analysis by reporting findings 

generalized across NYC CBGs. 
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CHAPTER 4: RESULTS  

This chapter contains all of the results I obtained from calculating descriptive statistics, 

running four regression models, and visualizing my results. I begin this chapter in Section 4.1 with 

the descriptive statistics for the sociodemographic factors, mobility variables, and mobility ratios. 

In Section 4.2, I present the outputs from the four regression models: the Ordinary Least Squares 

(OLS) linear regression model, the Spatially Lagged X (SLX) model, the Spatial Autoregressive 

(SAR) model, and the Spatial Error Model (SEM). This section contains the results from regression 

models with the dependent variable 𝑦 as the change in median distance traveled from home. In the 

subsequent sections, I report the results from running the four regression models with the 

dependent variable 𝑦 as the change in median home dwell time (Section 4.3), median non-home 

dwell time (Section 4.4), and median percentage time spent at home (Section 4.5).  

 

4.1. Frequency Distributions and Descriptive Statistics  

Both the frequency distribution and descriptive statistics for the change in median distance 

traveled from home indicate that, overall, most NYC block groups experienced decreased median 

mobility in the first two weeks of April 2020 compared to the first two weeks of February 2020. 

Based on how I calculated the ratio of February distances to April distances, a value less than one 

suggested that people in a block group traveled farther in April than in February, while a ratio 

value greater than one showed that people in a block group traveled farther in February than in 

April. Figure 4.1 is the frequency distribution of values for the ratio between median distance 

traveled from home in NYC during the first two weeks of February and the same data for the first 

two weeks of April. The histogram shows that most of the ratio values fell between zero and five, 

but with more values greater than one than less than one. The median values in Table 4.1 support 

this finding, since M = 3794.50 meters for median distance traveled from home in February versus 

M = 2448.00 meters for median distance traveled from home in April. Furthermore, in Table 4.2, 

M = 1.6178 for the change in median distance traveled from home, which indicates that there was 

a difference in the distance traveled from home between February and April.  

The frequency distribution and descriptive statistics for the change in home dwell time 

indicate that, overall, most NYC block groups experienced increased home dwell time in the first 

two weeks of April 2020 compared to the first two weeks of February 2020. Based on how I 

calculated the ratio of February home dwell times to April home dwell times, a value less than one 
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suggested that people in a block group stayed home for longer periods of time in April than in 

February, while a ratio value greater than one showed that people in a block group stayed home 

for longer periods of time in February than in April. Figure 4.2 is the frequency distribution of 

values for the ratio between median home dwell time in NYC during the first two weeks of 

February and the same data for the first two weeks of April. The histogram shows that almost all 

of the ratio values fell between zero and one, thus suggesting that median home dwell times across 

all block groups were mostly greater in April than in February. The median values in Table 4.1 

support this finding, since M = 705.50 minutes for median home dwell time in February versus M 

= 1125.80 minutes for median home dwell time in April. Furthermore, in Table 4.2, M = 0.6170 

for the change in median home dwell time, which indicates that there was a difference in the home 

dwell time between February and April. 

The frequency distribution and descriptive statistics for the change in non-home dwell time 

indicate that, overall, most NYC block groups experienced decreased non-home dwell time in the 

first two weeks of April 2020 compared to the first two weeks of February 2020. In other words, 

people spent more time at home in April than in February. Based on how I calculated the ratio of 

February non-home dwell times to April non-home dwell times, a ratio value greater than one 

suggested that people in a block group spent time away from home for longer periods of time in 

February than in April, while a ratio value less than one showed that people in a block group spent 

time away from home for longer periods of time in April than in February. Figure 4.3 is the 

frequency distribution of values for the ratio between median non-home dwell time in NYC during 

the first two weeks of February and the same data for the first two weeks of April. Besides the 

histogram’s large spike at around zero, most of the values were greater than one, thus suggesting 

that median non-home dwell times across all block groups were mostly greater in February than 

in April. The median values in Table 4.1 support this finding, since M = 128.00 minutes for median 

non-home dwell time in February versus M = 0.10 minutes for median non-home dwell time in 

April. Since I changed all values of “0” to “0.1” during data pre-processing, I interpreted the 

median non-home dwell time in April of 0.10 minutes to mean that a large majority of block groups 

experienced essentially no time spent away from home. The median ratio value for the change in 

median non-home dwell time shown in Table 4.2, M = 1085.0000, further supports that there was 

a difference in the non-home dwell time between February and April. 
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Lastly, the frequency distribution and descriptive statistics for the change in percentage 

time at home indicate that, overall, most NYC block groups experienced an increase in the 

percentage of time spent at home in the first two weeks of April 2020 compared to the first two 

weeks of February 2020. Based on how I calculated the ratio of February percentage time at home 

to April percentage time at home, a ratio value less than one suggested that people in a block group 

spent more of their time at home in April than in February, while a ratio value greater than one 

showed that people in a block group spent more of their time at home in February than in April. 

Figure 4.4 is the frequency distribution of values for the ratio between the median percentage time 

spent at home in NYC during the first two weeks of February and the same data for the first two 

weeks of April. Most of the ratio values lie between 0.5 and 1, thus suggesting that the median 

percentages of time spent at home across all block groups were mostly greater in April than in 

February. The median values in Table 4.1 support this finding, since M = 76.50 for median non-

home dwell time in February versus M = 100.00 for median non-home dwell time in April. The 

median ratio value for the change in percentage time spent at home shown in Table 4.2, M = 0.7750, 

further supports that there existed a difference in the percentage time spent at home between 

February and April. 

 

Figure 4.1: Histogram for the Ratio of Median 

Distance Traveled from Home in NYC 

between February and April 2020  

(50 breaks) 

 

Figure 4.2: Histogram for the Ratio of 

Median Home Dwell Times in NYC between 

February and April 2020  

(100,000 breaks) 
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Table 4.1: Descriptive Statistics for Mobility Variables 

Variable 
Month 

(in 2020) 
Minimum 1st Quarter Median Mean 3rd Quarter Maximum NA’s 

Median distance 

traveled from 

home (meters) 

Feb 142.50 2944.20 3794.50 4349.20 4908.80 835874.00 1056 

Apr 89.00 1542.00 2448.00 11410.00 3880.00 1166288.00 1062 

Median home 

dwell time (min) 

Feb 0.10 622.00 705.50 660.60 762.00 1316.50 1056 

Apr 0.10 874.20 1125.80 1016.60 1307.00 1438.00 1059 

Median non-home 

dwell time (min) 

Feb 0.10 81.00 128.00 143.20 193.00 475.50 1056 

Apr 0.10 0.10 0.10 16.31 0.10 1374.00 1059 

Median percentage 

time home 

Feb 0.10 71.00 76.50 75.93 83.00 100.00 1056 

Apr 0.10 100.00 100.00 95.15 100.00 100.00 1059 

Note: Values of “0” were replaced with “0.1” for median home dwell time, non-home dwell 

time, and percentage time home. Outlier data were retained. 

 

Table 4.2: Descriptive Statistics for Mobility Ratios Variables between February and April 2020 

Ratio Variable Minimum 1st Quarter Median Mean 3rd Quarter Maximum NA’s 

Median distance 

traveled from home  
0.0002 1.0476 1.6178 2.1304 2.4536 41.5222 1075 

Median home dwell 

time  
0.0000 0.5590 0.6170 117.1270 0.7360 9265.0000 1073 

 

Figure 4.3: Histogram for the Ratio of Median 

Non-Home Dwell Times in NYC between 

February and April 2020  

(50 breaks) 

 

Figure 4.4: Histogram for the Ratio of 

Median Percentage Time at Home in NYC 

between February and April 2020  

(35,000 breaks) 
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Median non-home 

dwell time  
0.0000 555.0000 1085.0000 1201.0000 1755.0000 4360.0000 1073 

Percentage time home 0.0010 0.7200 0.7750 16.8280 0.8500 1000.0000 1073 

Note: Outlier data were retained.  

 

Table 4.3: Descriptive Statistics for Explanatory Variables by Census Block Group 

Variable Name Minimum 1st Quarter Median Mean 3rd Quarter Maximum NA’s 

`age`   10.30 31.90 36.20 37.40 42.0 87.2 1114 

`race` 0.00 172.00 481.00 565.90 835.00 6476.00 1035 

`transport` 0.00 190.00 304.00 344.20 456.00 4107.00 1035 

`female_workers`  0.00 190.00 268.00 295.40 370.00 3565.00 1035 

`housing_occupancy_

rent` 
0.00 0.00 0.00 14.36 20.00 386.00 1035 

`min_wage` 0.00 54.00 98.00 129.30 170.00 876.00 1035 

`children` 0.00 121.00 206.00 239.20 319.00 1890.00 1035 

`education` 0.00 95.00 167.00 185.50 253.00 902.00 1035 

`health_insurance` 0.00 50.00 110.00 143.30 198.00 1295.00 1035 

 

Map 4.1 depicts the change in median distance traveled from home between February and 

April 2020 at the CBG level in NYC, while Map 4.2 shows the change in median home dwell time 

during the same time period. Map 4.3 shows the change in median non-home dwell time and Map 

4.4 illustrates the change in median percentage time at home. For all four maps, I removed outlier 

data by excluding the CBGs whose change in median home dwell time were greater than 2.0. Since 

I had changed “Null” values to -999 for data parsing purposes, I also excluded ratios that were less 

than 0. I used natural breaks to create the categories.   

In Map 4.1, the darker red values correspond to a greater difference in median distance 

traveled from home between February and April. The smallest category, which includes ratio 

values from 0.00 to 1.71, shows block groups that had either a greater median distance traveled 

from home in April, which would make the ratio value less than one, or a slightly larger distance 

traveled from home in February, which would make the ratio value just above one. However, based 

on the descriptive statistics for the ratio of median distance traveled from home, I assumed that 

most of these values belong to the latter category. Block groups in the four largest categories have 

about a two-fold or greater increase in median travel distance from February to April.  
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Map 4.2 shows the change in median home dwell time, with the darker red categories 

corresponding to a greater difference in home dwell time between February and April. The upper 

ratio value shown is 2.0 because I restricted the outlier values greater than this threshold; however, 

a majority of the block groups had ratio values less than 1.0, which correspond to more time spent 

at home in April than in February.   

The darker red categories in Map 4.3 correspond to a greater difference in median non-

home dwell times between February and April. The first category has ratio values ranging from 

0.03 to 495.00. Since I used natural breaks to create the categories, I interpreted this enormous gap 

to mean that there were few values less than one, which would correspond to more time spent 

away from home in April, and many more values greater than 495, which would suggest that block 

group experienced enormous differences in non-home dwell time, with greater time spent away 

from home in February.  

Lastly, Map 4.4 illustrates the change in median percentage time at home. Most values are 

less than one, thus showing that a majority of block groups experienced a greater percentage of 

time at home in April than in February.  

 

Map 4.1: Change in Median Distance Traveled from 

Home between February and April 2020 in NYC 

 

Map 4.2: Change in Median Home Dwell Time 

between February and April 2020 in NYC 
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Map 4.3: Change in Median Non-Home Dwell Time 

between February and April 2020 in NYC 

 

Map 4.4: Change in Median Percentage Time at 

Home between February and April 2020 in NYC 

 

4.2. Effects of Demographic Factors on Distance Traveled from Home in NYC  

In this section, I explore the effects of various demographic factors on the change in median 

distance traveled from home using four regression models. The first model was an ordinary least 

squares (OLS) regression, also known as a simple linear model, and does not involve a spatial 

component. Appendix D.1 contains the summary statistics from the OLS regression with change 

in median distance traveled from home as the dependent variable. Despite including nine 

explanatory variables in the model, I obtained an R2 value of 0.02913, which was quite low. This 

result led me to check if my residuals contained spatial autocorrelation.  

To test for spatial autocorrelation, I performed a Global Moran’s Index linear correlation 

for regression residuals test. The null hypothesis is that there is no spatial correlation in the 

residuals, whereas the alternative hypothesis states that there is spatial correlation in the residuals. 

Appendix D.2 shows the results of this test. Based on the difference in the observed Moran’s I 

value (0.0661) and the expected value (-0.0005), as well as the significant p-value (p < 0.001 for 

𝛼 = 0.05), I rejected the null hypothesis and accepted the alternative hypothesis that there existed 
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spatial autocorrelation in the residuals. This result indicated that the OLS model was no longer the 

appropriate model to use with change in median distance traveled from home as the dependent 

variable. Instead, I needed to use a spatial regression model.   

To determine which spatial model might best fit the data, I ran a Lagrange Multiplier 

Diagnostic Tests for Spatial Dependence with the dependent variable as median distance traveled 

from home. Appendix D.3 shows the results of these tests. Since the p-values for both LMerr and 

LMlag were statistically significant (p < 0.001), I compared the p-values for the robust versions, 

RLMerr and RLMlag. While the p-values for these models were also statistically significant (p < 

0.001), the p-value for RLMlag was smaller than the one for RLMerr. Therefore, the lag model 

appeared to be a more appropriate fit for the data.   

The first spatial regression model, the Spatial Durbin Model or Spatially Lagged  X (SLX) 

model, was a local spatial regression model. The summary statistics of the model are shown in 

Appendix D.4. There were six explanatory variables with significant results (𝛼 = 0.05) both 

within a block group, which relates to the direct effect, and the neighboring block groups, which 

relate to the indirect effects (see Appendix D.5). These six variables were median age, number of 

people who took public transit (excluding taxicabs) to work, number of female workers 16 years 

and older, number of renter occupied housing units with over 1.5 occupants per room, number of 

families with children under 18, and number of people 25 years and older whose highest degree 

earned is a regular high school diploma.  

The positive coefficient estimate associated with the original age variable indicated that a 

block group with a higher median age experienced increased change in distance traveled from 

home (p < 0.001). The neighboring block groups with a greater number of people who take public 

transit to work also experienced increased changes in distance traveled from home (p < 0.001). 

Additionally, the positive total effect impact measure shown in Appendix D.5 indicates that if the 

median age in every block group increased, the median change in distance traveled from home 

would also increase overall (p < 0.001). These findings indicate that block groups with an older 

median age likely experienced a decrease in distance traveled from home between April and 

February, since a smaller value in the denominator (April) caused the mobility ratio to increase. 

This result aligned with my expectation that block groups consisting of mostly older people would 

decrease their mobility more than those primarily made up of younger populations.  
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The positive coefficient estimate associated with the original transit variable indicated that 

a block group with a greater number of people who take public transit to work experienced 

increased change in distance traveled from home (p < 0.01). The neighboring block groups with a 

greater number of people who take public transit to work also experienced increased changes in 

distance traveled from home (p < 0.05). Additionally, the positive total effect impact measure in 

Appendix D.5 indicates that if the number of public transit users in every block group increased, 

the median change in distance traveled from home would also increase overall (p < 0.001). These 

findings indicate that block groups with more public transit users likely experienced a decrease in 

distance traveled from home between April and February. 

The negative coefficient estimate associated with the original female workers variable 

indicated that within a block group with a higher number of female workers over 16, the change 

in distance traveled from home decreased (p < 0.001). The neighboring block groups with a greater 

number of female workers over 16 also experienced a decrease in the change in distance traveled 

from home (p < 0.001). Additionally, the negative total effect impact measure in Appendix D.5 

indicates that if the number of female workers over 16 in every block group increased, the median 

change in distance traveled from home would decrease overall (p < 0.001). These findings indicate 

that block groups with more working women likely experienced an increase in distance traveled 

from home between April and February, since a larger value in the denominator (April) caused the 

mobility ratio to decrease.  

The positive coefficient estimate associated with the original housing occupancy variable 

indicated that a block group with a greater number of renter occupied housing units with over 1.5 

occupants per room experienced increased change in distance traveled from home (p < 0.05). The 

neighboring block groups with a greater number of renter occupied housing units with over 1.5 

occupants also experienced increased changes in distance traveled from home (p < 0.05). 

Additionally, the positive total effect impact measure in Appendix D.5 indicates that if the number 

of renter occupied housing units with over 1.5 occupants in every block group increased, the 

median change in distance traveled from home would also increase overall (p < 0.01). These 

findings indicate that block groups with more crowded rental units likely experienced a decrease 

in distance traveled from home between April and February. 

The positive coefficient estimate associated with the original children variable indicated 

that a block group with a greater number of families who have children under 18 years old 
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experienced increased change in distance traveled from home (p < 0.01). The neighboring block 

groups with a greater number of families who have children also experienced increased changes 

in distance traveled from home (p < 0.001). Additionally, the positive total effect impact measure 

in Appendix D.5 indicates that if the number of families who have children in every block group 

increased, the median change in distance traveled from home would also increase overall (p < 

0.001). These findings indicate that block groups with a greater number of families with children 

likely experienced a decrease in distance traveled from home between April and February. 

Lastly, the positive coefficient estimate associated with the original education variable 

indicated that a block group with a greater number of people whose highest degree is a high school 

diploma experienced increased change in distance traveled from home (p < 0.01). The neighboring 

block groups with a greater number of high school graduates also experienced increased changes 

in distance traveled from home (p < 0.01). Additionally, the positive total effect impact measure 

in Appendix D.5 indicates that if the number of high school graduates in every block group 

increased, the median change in distance traveled from home would also increase overall (p < 

0.001). These findings indicate that block groups with more people who graduated high school 

likely experienced a decrease in distance traveled from home between April and February. 

The second spatial regression model, the Spatial Autoregressive (SAR) Lagged Response 

model, was a global spatial regression model. The summary statistics of the model are in Appendix 

D.6, with the rho value indicating that the change in median distance traveled from home in 

neighboring block groups had a positive effect on the change in median travel distance within a 

block group (p < 0.001). Unlike the SLX model, interpretations of the SAR model must draw upon 

the impacts reported in Appendix D.7 rather than the coefficient estimates and their p-values 

because of an infinite feedback loop on the 𝑦-value in which an increase in a block group’s 𝑦-

value will affect the neighboring block groups’ 𝑦-values, which will in turn affect the individual 

block group’s 𝑦-value. It is also important to note that since the model simulated the impact 

measures’ p-values (R = 5,000 iterations), the p-values changed slightly between runs. Therefore, 

I provided a caveat for variables whose p-values fluctuated around 0.001 or greater and assumed 

that variables with p-values much lower than 0.001 were always significant (see Appendix D.7). 

The four variables with consistently significant simulated p-values for the impact measures were 

median age, number of female workers, number of families with children, and number of people 

whose highest degree is a high school diploma. The two variables whose simulated p-values 
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fluctuated around p < 0.001 were number of White-only residents and number of public transit 

users. Lastly, the two variables whose simulated p-values fluctuated around p < 0.05 were number 

of renter occupied housing units with over 1.5 occupants per room and number of households who 

earned less than $25,000 a year.    

The positive direct impact value associated with the age variable indicates that if the 

median age of block group 𝐴 were to increase, 𝐴’s change in travel distance from home would 

also increase. Similarly, the positive indirect impact value shows that an increase in the median 

age of 𝐴’s neighboring block groups would increase 𝐴’s change in travel distance. Since the SAR 

model is a global spatial model, a second interpretation of the indirect impact is that an increase in 

𝐴’s median age would lead to increased change in travel distance for all block groups in the data. 

These findings indicate that block groups with an older median age likely experienced shorter 

travel distances from home in April compared to February.  

The negative direct impact value associated with the female workers variable indicates that 

if the number of female workers in block group 𝐴 were to increase, 𝐴’s change in travel distance 

from home would decrease. Similarly, the negative indirect impact value shows that an increase 

in the number of female workers in 𝐴’s neighboring block groups would decrease 𝐴’s change in 

travel distance. Additionally, an increase in 𝐴’s number of female workers would lead to decreased 

change in travel distance for all block groups in the data. These findings indicate that block groups 

with more working females likely experienced greater travel distances from home in April 

compared to February.  

The positive direct impact value associated with the children variable indicates that if the 

number of families with children in block group 𝐴 were to increase, 𝐴’s change in travel distance 

from home would also increase. Similarly, the positive indirect impact value shows that an increase 

in the number of families with children in 𝐴’s neighboring block groups would increase 𝐴’s change 

in travel distance. Additionally, an increase in 𝐴’s number of families with children would lead to 

increased change in travel distance for all block groups in the data. These findings indicate that 

block groups with more families with children likely decreased their travel distances from home 

in April compared to February.  

The positive direct impact value associated with the education variable indicates that if the 

number of people with high school diplomas in block group 𝐴 were to increase, 𝐴’s change in 

travel distance from home would also increase. Similarly, the positive indirect impact value shows 
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that an increase in the number of high school graduates in 𝐴’s neighboring block groups would 

increase 𝐴’s change in travel distance. Additionally, an increase in 𝐴’s number of high school 

graduates with children would lead to increased change in travel distance for all block groups in 

the data. These findings indicate that block groups with more high school graduates likely 

decreased their travel distances from home in April compared to February.  

For the variables with p-values fluctuating around 0.001 or greater, the interpretations are 

very similar. The negative direct and indirect impact values associated with the number of White-

only residents indicate that block groups with more White-only residents likely experienced 

greater travel distances from home in April compared to February. Similarly, the negative direct 

and indirect impact values associated with the number of households who earned less than $25,000 

a year indicate that block groups with more low-income residents likely experienced greater travel 

distances from home in April. In terms of the number of public transit users and renter occupied 

housing units, the positive direct and indirect impact values associated with these two variables 

suggest that block groups with more public transit users and crowded rental units likely 

experienced shorter travel distances from home in April.  

The third and final spatial regression model was the Spatial Error Model (SEM). While the 

Lagrange tests I ran previously (see Appendix D.3) suggested that the lag model was more 

appropriate than the error model for a regression with median travel distance as the dependent 

variable, I included the SEM model in my analysis because the results for LMerr and RMerr were 

both significant at 𝛼 = 0.05 . However, I did not report the summary statistics because the 

statistically significant spatial Hausman test result (p < 0.001 at 𝛼 = 0.05) shown in Appendix D.8 

confirmed there were enough differences in the coefficients to establish that neither OLS nor SEM 

were the right models to use for estimating the coefficients.  

 

4.3.  Effects of Demographic Factors on Home Dwell Time in NYC  

In this section, I explore the effects of various demographic factors on the change in median 

home dwell time using four regression models. The first model was an ordinary least squares (OLS) 

regression. Appendix D.9 contains the summary statistics from the OLS regression with change in 

median home dwell time as the dependent variable. Despite including nine explanatory variables 

in the model, I obtained an R2 value of 0.05419, which was quite low. This result led me to check 

if my residuals contained spatial autocorrelation.  
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To test for spatial autocorrelation, I performed a Global Moran’s Index linear correlation 

for regression residuals test. Appendix D.10 shows the results of this test. Based on the difference 

in the observed Moran’s I value (0.1201) and the expected value (-0.0005), as well as the 

significant p-value (p < 0.001 for 𝛼 = 0.05), I rejected the null hypothesis and accepted the 

alternative hypothesis that there existed spatial autocorrelation in the residuals. This result 

indicated that the OLS model was no longer the appropriate model to use with change in median 

home dwell time as the dependent variable. Instead, I needed to use a spatial regression model.  

To determine which spatial model might best fit the data, I ran a Lagrange Multiplier 

Diagnostic Tests for Spatial Dependence with the dependent variable as median home dwell time. 

Appendix D.11 shows the results of these tests. Since the p-values for both LMerr and LMlag were 

statistically significant (p < 0.001), I compared the p-values for the robust versions, RLMerr and 

RLMlag. While the p-values for these models were also statistically significant (p < 0.001), the p-

value for RLMlag was smaller than the one for RLMerr. Therefore, the lag model appeared to be 

a more appropriate fit for the data.   

The first spatial regression model, the Spatial Durbin Model or Spatially Lagged  X (SLX) 

model, was a local spatial regression model. The summary statistics of the model are shown in 

Appendix D.12. The positive coefficient estimate associated with the original female workers 

variable indicated that within a block group with a higher number of female workers over 16, the 

change in median home dwell time increased (p < 0.01). The neighboring block groups with a 

greater number of female workers over 16 also experienced an increase in the change in median 

home dwell time (p < 0.001). Additionally, the positive total effect impact measure in Appendix 

D.13 indicates that if the number of female workers over 16 in every block group increased, the 

median change in home dwell time would also increase overall (p < 0.001). These findings indicate 

that block groups with more working women likely experienced shorter home dwell times in April 

compared to February. The positive coefficient estimate associated with the original female 

workers variable indicated that within a block group with a higher number of female workers over 

16, the change in median home dwell time increased (p < 0.01). The neighboring block groups 

with a greater number of female workers over 16 also experienced an increase in the change in 

median home dwell time (p < 0.001). Additionally, the positive total effect impact measure in 

Appendix D.13 indicates that if the number of female workers over 16 in every block group 

increased, the median change in home dwell time would also increase overall (p < 0.001). These 
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findings indicate that block groups with more working women likely experienced shorter home 

dwell times in April compared to February.  

The negative coefficient estimate associated with the original children variable indicated 

that within a block group with a higher number of families with children, the change in median 

home dwell time decreased (p < 0.001). The neighboring block groups with a greater number of 

families with children also experienced a decrease in the change in median home dwell time (p < 

0.001). Additionally, the negative total effect impact measure in Error! Reference source not found. 

indicates that if the number of families with children in every block group increased, the median 

change in home dwell time would decrease overall (p < 0.001). These findings indicate that block 

groups with more families with children likely experienced longer home dwell times in April 

compared to February.  

Lastly, the negative coefficient estimate associated with the original education variable 

indicated that within a block group with a higher number of people whose highest degree obtained 

is a high school diploma, the change in median home dwell time decreased (p < 0.001). The 

neighboring block groups with a greater number of high school graduates also experienced a 

decrease in the change in median home dwell time (p < 0.001). Additionally, the negative total 

effect impact measure in Appendix D.13 indicates that if the number of high school graduates in 

every block group increased, the median change in home dwell time would decrease overall (p < 

0.001). These findings indicate that block groups with more high school graduates likely 

experienced longer home dwell times in April compared to February.  

There were three explanatory variables with significant results (𝛼 = 0.05) both within a 

block group, which relates to the direct effect, and the neighboring block groups, which relate to 

the indirect effects (see Appendix D.13). These three variables were number of female workers 16 

years and older, number of families with children under 18, and number of people 25 years and 

older whose highest degree earned is a regular high school diploma.  

The positive coefficient estimate associated with the original female workers variable 

indicated that within a block group with a higher number of female workers over 16, the change 

in median home dwell time increased (p < 0.01). The neighboring block groups with a greater 

number of female workers over 16 also experienced an increase in the change in median home 

dwell time (p < 0.001). Additionally, the positive total effect impact measure in Appendix D.13 

indicates that if the number of female workers over 16 in every block group increased, the median 
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change in home dwell time would also increase overall (p < 0.001). These findings indicate that 

block groups with more working women likely experienced shorter home dwell times in April 

compared to February.  

The negative coefficient estimate associated with the original children variable indicated 

that within a block group with a higher number of families with children, the change in median 

home dwell time decreased (p < 0.001). The neighboring block groups with a greater number of 

families with children also experienced a decrease in the change in median home dwell time (p < 

0.001). Additionally, the negative total effect impact measure in Appendix D.13 indicates that if 

the number of families with children in every block group increased, the median change in home 

dwell time would decrease overall (p < 0.001). These findings indicate that block groups with more 

families with children likely experienced longer home dwell times in April compared to February.  

Lastly, the negative coefficient estimate associated with the original education variable 

indicated that within a block group with a higher number of people whose highest degree obtained 

is a high school diploma, the change in median home dwell time decreased (p < 0.001). The 

neighboring block groups with a greater number of high school graduates also experienced a 

decrease in the change in median home dwell time (p < 0.001). Additionally, the negative total 

effect impact measure in Appendix D.13 indicates that if the number of high school graduates in 

every block group increased, the median change in home dwell time would decrease overall (p < 

0.001). These findings indicate that block groups with more high school graduates likely 

experienced longer home dwell times in April compared to February.  

The second spatial regression model, the Spatial Autoregressive (SAR) Lagged Response 

model, was a global spatial regression model. The summary statistics of the model are in Appendix 

D.14, with the rho value indicating that the change in median home dwell time in neighboring 

block groups had a positive effect on the change in median home dwell time within a block group 

(p < 0.001). Like Section 4.2, I provided a caveat for variables whose p-values fluctuated around 

0.001 or greater and assumed that variables with p-values much lower than 0.001 were always 

significant (see Appendix D.15). The four variables with consistently significant simulated p-

values for the impact measures were median age, number of White-only residents, number of 

families with children, and number of people whose highest degree is a high school diploma. The 

two variables whose simulated p-values fluctuated around p < 0.001 were number of female 

workers and number of public transit users.  
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The negative direct impact values associated with the age, children, and education variables 

indicate that if the median age, number of families with children, or number of people with a high 

school diploma in block group 𝐴 were to increase, 𝐴’s change in home dwell time would decrease. 

Similarly, the negative indirect impact values show that an increase in the median age, number of 

families with children, or number of high school graduates in 𝐴’s neighboring block groups would 

decrease 𝐴’s change in home dwell time. Since the SAR model is a global spatial model, a second 

interpretation of the indirect impact is that an increase in 𝐴’s median age, number of families with 

children, or number of high school graduates would lead to decreased change in home dwell time 

for all block groups in the data. These findings indicate that block groups with an older median 

age, greater number of families with children, and high school graduates likely experienced greater 

home dwell times in April compared to February.  

The positive direct impact value associated with the race variable indicates that if the 

number of White-only residents in block group 𝐴 were to increase, 𝐴’s change in home dwell time 

would also increase. Similarly, the negative indirect impact value shows that an increase in the 

number of White-only residents in 𝐴’s neighboring block groups would increase 𝐴’s change in 

home dwell time. Additionally, an increase in 𝐴’s number of White-only residents would lead to 

increased change in home dwell time for all block groups in the data. These findings indicate that 

block groups with more White-only residents likely experienced shorter home dwell times in April 

compared to February.  

For the variables with p-values fluctuating around 0.001, the interpretations are very 

similar. The negative direct and indirect impact values associated with the number of public transit 

users indicate that block groups with more public transit users likely experienced greater home 

dwell times in April compared to February. Meanwhile, the positive direct and indirect impact 

values associated with the number of female workers indicate that block groups with more female 

workers likely experienced shorter home dwell times in April.  

The third and final spatial regression model was the Spatial Error Model (SEM). While the 

Lagrange tests I ran previously (see Appendix D.11 suggested that the lag model was more 

appropriate than the error model for a regression with median home dwell time as the dependent 

variable, I included the SEM model in my analysis because the results for LMerr and RMerr were 

both significant at 𝛼 = 0.05 . However, I did not report the summary statistics because the 

statistically significant spatial Hausman test result (p < 0.001 at 𝛼 = 0.05) shown in Appendix 
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D.16 confirmed there were enough differences in the coefficients to establish that neither OLS nor 

SEM were the right models to use for estimating the coefficients.  

 

4.4. Effects of Demographic Factors on Non-Home Dwell Time in NYC  

In this section, I explore the effects of various demographic factors on the change in median 

non-home dwell time using four regression models. The first model was an ordinary least squares 

(OLS) regression. Appendix D.17 contains the summary statistics from the OLS regression with 

change in median non-home dwell time as the dependent variable. Despite including nine 

explanatory variables in the model, I obtained an R2 value of 0.1344, which was quite low. This 

result led me to check if my residuals contained spatial autocorrelation.  

To test for spatial autocorrelation, I performed a Global Moran’s Index linear correlation 

for regression residuals test. Appendix D.18 shows the results of this test. Based on the difference 

in the observed Moran’s I value (0.1170) and the expected value (-0.0005), as well as the 

significant p-value (p < 0.001 for 𝛼 = 0.05), I rejected the null hypothesis and accepted the 

alternative hypothesis that there existed spatial autocorrelation in the residuals. This result 

indicated that the OLS model was no longer the appropriate model to use with change in median 

non-home dwell time as the dependent variable. Instead, I needed to use a spatial regression model.  

To determine which spatial model might best fit the data, I ran a Lagrange Multiplier 

Diagnostic Tests for Spatial Dependence with the dependent variable as median non-home dwell 

time. Appendix D.19 shows the results of these tests. Since the p-values for both LMerr and LMlag 

were statistically significant (p < 0.001), I compared the p-values for the robust versions, RLMerr 

and RLMlag. While the p-values for these models were also statistically significant (p < 0.001), 

the p-value for RLMlag was smaller than the one for RLMerr. Therefore, the lag model appeared 

to be a more appropriate fit for the data.   

The first spatial regression model, the Spatial Durbin Model or Spatially Lagged  X (SLX) 

model, was a local spatial regression model. The summary statistics of the model are shown in 

Appendix D.20. There were six explanatory variables with significant results (𝛼 = 0.05) both 

within a block group, which relates to the direct effect, and the neighboring block groups, which 

relate to the indirect effects (see Appendix D.21). These six variables were median age, number of 

White-only residents, number of public transit users, number of households earning less than 
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$25,000 a year, number of families with children under 18, and number of people 25 years and 

older whose highest degree earned is a regular high school diploma.  

The positive coefficient estimates associated with the original age, race, children, and 

education variables indicated that within a block group with a higher median age, number of 

White-only residents, number of families with children, and number of people with a high school 

diploma, the change in median non-home dwell time increased (p < 0.001 for all). The neighboring 

block groups with a higher median age (p < 0.001), number of White-only residents (p < 0.05), 

number of families with children (p < 0.05), and number of high school graduates (p < 0.001) also 

experienced an increase in the change in median non-home dwell time. Additionally, the positive 

total effect impact measures in Appendix D.21 indicated that if the median age, number of White-

only residents, number of families with children, and number of high school graduates in every 

block group increased, the median change in non-home dwell time would also increase overall (p 

< 0.001 for all). These findings indicate that block groups with a higher median age, greater 

number of White-only residents, greater number of families with children, and greater number of 

high school graduates likely experienced shorter non-home dwell times in April compared to 

February.  

The negative coefficient estimate associated with the original transport and minimum wage 

variables indicated that within a block group with a higher number of public transit users and 

households earning less than $25,000 a year, the change in median non-home dwell time decreased 

(p < 0.001 for both). The neighboring block groups with a greater number of public transit users 

(p < 0.01) and low-income households (p < 0.001) also experienced a decrease in the change in 

median non-home dwell time. Additionally, the negative total effect impact measure in Appendix 

D.21 indicated that if the number of public transit users and low-income households in every block 

group increased, the median change in non-home dwell time would decrease overall (p < 0.001 for 

both). These findings indicate that block groups with more public transit users and low-income 

households likely experienced greater non-home dwell times in April compared to February.  

The second spatial regression model, the Spatial Autoregressive (SAR) Lagged Response 

model, was a global spatial regression model. The summary statistics of the model are in Appendix 

D.22, with the rho value indicating that the change in median non-home dwell time in neighboring 

block groups had a positive effect on the change in median non-home dwell time within a block 

group (p < 0.001). Like the previous sections in this chapter, I provided a caveat for variables 
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whose p-values fluctuated around 0.001 or greater and assumed that variables with p-values much 

lower than 0.001 were always significant (see Appendix D.23). The six variables with consistently 

significant simulated p-values for the impact measures were median age, number of White-only 

residents, number of public transit users, number of households earning less than $25,000 a year, 

number of families with children, and number of people whose highest degree is a high school 

diploma. The variable whose simulated p-value fluctuated around p < 0.001 was the number of 

female workers. Lastly, the two variables whose simulated p-values fluctuated around p < 0.05 

were number of renter occupied housing units with over 1.5 occupants per room and number of 

people from the civilian noninstitutionalized population without health insurance coverage.  

The positive direct impact values associated with the age, race, children, and education 

variables indicate that if the median age, number of White-only residents, number of families with 

children, and number of people whose highest obtained degree was a high school diploma in block 

group 𝐴 were to increase, 𝐴’s change in non-home dwell times would also increase. Similarly, the 

positive indirect impact value shows that an increase in the number of White-only residents in 𝐴’s 

neighboring block groups would increase 𝐴’s change in travel distance. Additionally, an increase 

in 𝐴’s median age, number of White-only residents, number of families with children, and number 

of high school graduates would lead to increased change in median non-home dwell times for all 

block groups in the data. These findings indicate that block groups with older residents, greater 

number of White-only residents, greater number of families with children, and greater number of 

high school graduates likely experienced smaller median non-home dwell times in April compared 

to February.  

The negative direct impact values associated with the transport and minimum wage 

variables indicate that if the number of public transit users and low-income households in block 

group 𝐴 were to increase, 𝐴’s change in non-home dwell time would decrease. Similarly, the 

negative indirect impact values show that an increase in the number of public transit users and 

low-income households in 𝐴’s neighboring block groups would decrease 𝐴’s change in non-home 

dwell time. Since the SAR model is a global spatial model, a second interpretation of the indirect 

impact is that an increase in 𝐴’s number of public transit users and low-income households would 

lead to decreased change in non-home dwell time for all block groups in the data. These findings 

indicate that block groups with a greater number of public transit users and low-income households 

likely experienced larger non-home dwell times in April.  
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For the female worker variable with p-value fluctuating around 0.001, the interpretation is 

very similar to prior explanations. The positive direct and indirect impact values associated with 

the number of female workers indicate that block groups with more female workers likely 

experienced shorter non-home dwell times in April.  

Lastly, for the variables with p-values fluctuating around 0.05, the negative direct and 

indirect impact values associated with the number of renter occupied housing units indicate that 

block groups with more crowded rental units likely experienced greater non-home dwell times in 

April than in February. Meanwhile, the positive direct and indirect impact values associated with 

the number of uninsured people indicate that block groups with more uninsured people likely 

experienced shorter non-home dwell times in April.  

The third and final spatial regression model was the Spatial Error Model (SEM). While the 

Lagrange tests I ran previously (see Appendix D.19) suggested that the lag model was more 

appropriate than the error model for a regression with median non-home dwell time as the 

dependent variable, I included the SEM model in my analysis because the results for LMerr and 

RMerr were both significant at 𝛼 = 0.05. However, I did not report the summary statistics because 

the statistically significant spatial Hausman test result (p < 0.001 at 𝛼 = 0.05) shown in Appendix 

D.24 confirmed there were enough differences in the coefficients to establish that neither OLS nor 

SEM were the right models to use for estimating the coefficients.  

 

4.5. Effects of Demographic Factors on Percentage Time at Home in NYC  

In this section, I explore the effects of various demographic factors on the change in median 

percentage time spent at home using four regression models. The first model was an ordinary least 

squares (OLS) regression. Appendix D.25 contains the summary statistics from the OLS regression 

with change in median percentage time spent at home as the dependent variable. Despite including 

nine explanatory variables in the model, I obtained an R2 value of 0.05837, which was quite low. 

This result led me to check if my residuals contained spatial autocorrelation.  

To test for spatial autocorrelation, I performed a Global Moran’s Index linear correlation 

for regression residuals test. Appendix D.26 shows the results of this test. Based on the difference 

in the observed Moran’s I value (0.1133) and the expected value (-0.0005), as well as the 

significant p-value (p < 0.001 for 𝛼 = 0.05), I rejected the null hypothesis and accepted the 

alternative hypothesis that there existed spatial autocorrelation in the residuals. This result 
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indicated that the OLS model was no longer the appropriate model to use with change in median 

percentage time spent at home as the dependent variable. Instead, I needed to use a spatial 

regression model.  

To determine which spatial model might best fit the data, I ran a Lagrange Multiplier 

Diagnostic Tests for Spatial Dependence with the dependent variable as median percentage time 

spent at home. Appendix D.27 shows the results of these tests. Since the p-values for both LMerr 

and LMlag were statistically significant (p < 0.001), I compared the p-values for the robust 

versions, RLMerr and RLMlag. While the p-values for these models were also statistically 

significant (p < 0.001), the p-value for RLMlag was smaller than the one for RLMerr. Therefore, 

the lag model appeared to be a more appropriate fit for the data.   

The first spatial regression model, the Spatial Durbin Model or Spatially Lagged  X (SLX) 

model, was a local spatial regression model. The summary statistics of the model are shown in 

Appendix D.28. There were three explanatory variables with significant results (𝛼 = 0.05) both 

within a block group, which relates to the direct effect, and the neighboring block groups, which 

relate to the indirect effects (see Appendix D.29). These three variables were number of female 

workers, number of families with children under 18, and number of people 25 years and older 

whose highest degree earned is a regular high school diploma.  

The positive coefficient estimate associated with the original female worker variable 

indicated that within a block group with a greater number of female workers, the change in median 

percentage time spent at home increased (p < 0.01). The neighboring block groups with a greater 

number of female workers also experienced an increase in the change in median percentage time 

spent at home (p < 0.001). Additionally, the positive total effect impact measures in Appendix 

D.29 indicated that if the number of female workers in every block group increased, the median 

change in percentage time at home would also increase overall (p < 0.001). These findings indicate 

that block groups with a higher number of female workers likely experienced smaller percentage 

times at home in April compared to February.  

The negative coefficient estimate associated with the original children and education 

variables indicated that within a block group with a higher number of families with children and 

number of high school graduates, the change in median percentage time at home decreased (p < 

0.001 for both). The neighboring block groups with a greater number of families with children and 

number of high school graduates also experienced a decrease in the change in the median 
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percentage time at home (p < 0.001 for both). Additionally, the negative total effect impact 

measure in Appendix D.29 indicated that if the number of families with children and high school 

graduates in every block group increased, the median change in percentage time at home would 

decrease overall (p < 0.001 for both). These findings indicate that block groups with more families 

with children and high school graduates likely experienced higher percentages of time at home in 

April compared to February. 

The second spatial regression model, the Spatial Autoregressive (SAR) Lagged Response 

model, was a global spatial regression model. The summary statistics of the model are in Appendix 

D.30, with the rho value indicating that the change in median percentage time at home in 

neighboring block groups had a positive effect on the change in median percentage time at home 

within a block group (p < 0.001). Like the previous sections in this chapter, I provided a caveat for 

variables whose p-values fluctuated around 0.001 or greater and assumed that variables with p-

values much lower than 0.001 were always significant (see Appendix D.31). The five variables 

with consistently significant simulated p-values for the impact measures were median age, number 

of White-only residents, number of public transit users, number of families with children, and 

number of people whose highest degree is a high school diploma. The two variables whose 

simulated p-values fluctuated around p < 0.05 were number of female workers and number of 

renter occupied housing units with over 1.5 occupants per room.  

The positive direct impact values associated with the race variable indicate that if the 

number of White-only residents in block group 𝐴 were to increase, 𝐴’s change in percentage time 

at home would also increase. Similarly, the positive indirect impact value shows that an increase 

in the number of White-only residents in 𝐴’s neighboring block groups would increase 𝐴’s change 

in percentage time at home. Additionally, an increase in 𝐴’s number of White-only residents would 

lead to increased change in median percentage time at home for all block groups in the data. These 

findings indicate that block groups with a greater number of White-only residents likely 

experienced smaller median percentages of time spent at home in April compared to February.  

The negative direct impact values associated with the age, transport, children, and 

education variables indicate that if the median age, number of public transit users, number of 

families with children, and number of people whose highest degree obtained is a high school 

diploma in block group 𝐴 were to increase, 𝐴’s change in percentage time at home would decrease. 

Similarly, the negative indirect impact values show that an increase in the median age, number of 
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public transit users, number of families with children, and number of high school graduates in 𝐴’s 

neighboring block groups would decrease 𝐴’s change in percentage time at home. Since the SAR 

model is a global spatial model, a second interpretation of the indirect impact is that an increase in 

𝐴’s median age, number of public transit users, number of families with children, and number of 

high school graduates would lead to decreased change in percentage time at home for all block 

groups in the data. These findings indicate that block groups with a greater median age, number of 

public transit users, number of families with children, and number of high school graduates likely 

experienced larger percentage times spent at home in April.  

For the variables with p-values fluctuating around 0.05, the positive direct and indirect 

impact values associated with the number of  female workers and number of rental units with more 

than 1.5 occupants per room indicate that block groups with a greater number of female workers 

and crowded rental units likely experienced smaller percentage times spent at home in April.  

The third and final spatial regression model was the Spatial Error Model (SEM). While the 

Lagrange tests I ran previously (see Appendix D.27) suggested that the lag model was more 

appropriate than the error model for a regression with median percentage time at home as the 

dependent variable, I included the SEM model in my analysis because the results for LMerr and 

RMerr were both significant at 𝛼 = 0.05. However, I did not report the summary statistics because 

the statistically significant spatial Hausman test result (p < 0.001 at 𝛼 = 0.05) shown in Appendix 

D.32 confirmed there were enough differences in the coefficients to establish that neither OLS nor 

SEM were the right models to use for estimating the coefficients.   
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CHAPTER 5: DISCUSSION 

In this chapter, I address the implications of my results and how they relate to my main 

research questions. In Section 5.1, I explore how my findings help answer my research aim of 

understanding which sociodemographic factors had the most effect on population changes in 

mobility. In Section 5.2, I discuss my approach to determining which of the four mobility variables 

most accurately represented physical distancing adherence.  

 

5.1. Sociodemographic Factors and Their Effects on Changes in Mobility   

My main research aim sought to understand which sociodemographic factors had the most 

effect on population change in mobility in New York City before and after the implementation of 

COVID-19-related lockdown measures in March 2020. To answer this first question, I chose nine 

noncollinear explanatory variables and ran four regression models with the four different 

measurements of change in mobility from February to April 2020: change in median distance 

traveled from home, change in median home dwell time, change in median non-home dwell time, 

and change in median percentage of time spent at home.  

Based on the difference between the observed and expected Moran’s I value, as well as the 

significant p-value (p < 0.001 for 𝛼 = 0.05 ) for each of the Global Moran’s Index linear 

correlation for regression residuals tests, I rejected the null hypothesis and accepted the alternative 

hypothesis that there existed spatial autocorrelation in the residuals from all OLS models. Similarly, 

the significant p-value (p < 0.001 for 𝛼 = 0.05) obtained for all of the spatial Hausman tests 

confirmed there were enough differences in the Standard Error Model (SEM) regression 

coefficients such that neither OLS nor SEM were appropriate models  Thus, I used only the 

Spatially Lagged X (SLX) and Spatial Autoregressive (SAR) models to interpret my results. Table 

5.1 summarizes the findings from these two models.  

A caveat for the strength of the findings is that the SLX multiple R2 values, while larger 

than the OLS multiple R2 values for each dependent variable, were still quite low despite including 

nine explanatory variables (R2 = 0.048 for distance traveled from home, R2 = 0.077 for home dwell 

time, R2 = 0.162 for non-home dwell time, and R2 = 0.081 for percentage time spent at home). 

These low R2 values indicate that the proportions of the variance in the dependent variables 

predictable from the explanatory variables were quite low. Solutions for increasing the R2 value in 

future research include using other data sources and adding more explanatory variables. 
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Importantly, since the R2 value is not an indicator of whether or not the independent variables 

cause changes in the dependent variable, the interpretations of which explanatory variables have 

an effect on mobility are still valid.  

 

Table 5.1: Summary of Results from the Spatially Lagged X and Spatial Autoregressive Models 

 
Travel 

distance 

Home 

dwell 

Non-home 

dwell 

Percent 

home 

Age 
SLX ***  ***  

SAR *** *** *** *** 

Race 
SLX   ***  

SAR * *** *** *** 

Transport 
SLX ***  ***  

SAR * * *** *** 

Female 

workers 

SLX *** ***  *** 

SAR *** * * * 

Housing 
SLX **    

SAR *  * * 

Income 
SLX   ***  

SAR *  ***  

Children 
SLX *** *** *** *** 

SAR *** *** *** *** 

Education 
SLX *** *** *** *** 

SAR *** *** *** *** 

Health 

insurance 

SLX     

SAR   *  
Significance codes: p < 0.001 ‘***’, p < 0.01 ‘**’, p < 0.05 ‘*’ 

Notes:  

• For Spatially Lagged X (SLX) models, green represents a positive coefficient 

estimate and red a negative coefficient.  

• For Spatial Autoregressive (SAR) models, green represents a positive total 

estimate value and red a negative total estimate. P-values reported at R = 5,000 

simulations, with ‘***’ denoting p-values much less than 0.001 and ‘*’ denoting 

p-values around 0.001 or greater. 

 

5.1.1. Effect of Age on Mobility   

For the SLX model, the median age of a block group correlated positively with the change 

in median distance traveled from home (p < 0.001) and the change in median non-home dwell time 

(p < 0.001). This result indicated that as the median age of a block group increased, it experienced 

both comparatively shorter distances traveled from home and also comparatively shorter amounts 

of time spent away from home in April. Thus, older residents were not only staying home for 

longer but also traveling shorter distances in April. Given that age alone posed the most significant 
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risk factor for dying from COVID-19, with older populations affected much more severely by the 

disease compared to younger populations (Mueller et al., 2020; Santesmasses et al., 2020; 

Williamson et al., 2020), it makes sense that older people would curtail activities and time spent 

away from their homes to a greater extent if they could. Additionally, the scale of the SLX direct, 

indirect, and total impacts for age with median home and non-home dwell times as dependent 

variables were much higher than for any of the other explanatory variables. Whereas the impact 

scores for the rest of the explanatory variables were all between -3.0 and 2.0 for home dwell time 

and non-home dwell time, the direct, indirect, and total impact scores for age with home and non-

home dwell times were [-6.65, -3.06, -9.71] and [14.52, 11.11, 25.63], respectively. These results 

indicate that increasing the median age within a block group had a greater effect on mobility 

defined as home and non-home dwell time than the other explanatory variables within that block 

group (direct impact), in the block group’s immediate neighbors (indirect impact), and in all block 

groups in the data (total impact) (Golgher & Voss, 2016).  

For the SAR model, the median age of a block group correlated positively with the change 

in median distance traveled from home (p < 0.001) and the change in median non-home dwell time 

(p < 0.001) as well, thus supporting the conclusions from the SLX model. The SAR model also 

yielded significant results with change in median home dwell time or change in median percentage 

time at home as the dependent variable. That the median age of a block group correlated negatively 

with both of these variables (p < 0.001 for both) indicated that as the median age increased in these 

block groups, the change in home dwell time and percentage time at home decreased. A decrease 

in these variables meant that residents of these block groups spent longer amounts of time at home 

in April. These findings support the earlier conclusions that older populations traveled shorter 

distances from home and stayed away from home less.  

In addition to examining the impact values and simulated p-values for R = 5,000 iterations, 

I also noted the direct, indirect, and total impact scores. Similarly to the SLX model, whereas the 

impact scores for the rest of the explanatory variables were all between -2.5 and 1.5 for home dwell 

time and non-home dwell time, the direct, indirect, and total impact scores for age with home and 

non-home dwell times were [-6.39, -2.81, -9.20] and [15.08, 6.50, 21.58], respectively. These 

results indicate that increasing the median age within a block group had a greater effect on mobility 

defined as home and non-home dwell time than the other explanatory variables within that block 
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group (direct impact) and in all block groups in the data (indirect and total impacts) 

(BurkeyAcademy, 2018; Golgher & Voss, 2016). 

 

5.1.2. Effect of Race on Mobility   

For the SLX model, the estimated number of White-only residents in a block group 

correlated positively with only the change in median non-home dwell time (p < 0.001). This result 

indicated that as the White-only population within a block group increased, those residents 

experienced comparatively shorter amounts of time spent away from home in April. Thus, block 

groups with more White-only residents were staying home for longer periods of time in April 

compared to February. My findings align logically with the fact that 75% of all NYC frontline 

workers, who held jobs that required them to leave their homes, are people of color (Stringer, 

2020). Thus, I inferred that a greater proportion of non-White residents could not switch to remote 

work, which in turn led to longer times spent away from home compared to White-only residents.  

Another possible explanation for longer times spent at home regardless of race was the 

unprecedented 14.8% national unemployment rate in April 2020 (Falk et al., 2021). However, a 

report from the Congressional Research Service found that national unemployment rates for White 

workers (14.2%) were lower than for Black workers (16.7%), and lower for non-Hispanics (13.6%) 

than for Hispanic workers (18.9%) (Falk et al., 2021). Furthermore, in NYC areas, Asian, Black, 

and Hispanic/Latinx adults experienced a 48%, 67%, and 68% loss of income since 13 March 2020 

respectively, compared with 45% of White adults (Nischan, 2020). Notably, these numbers do not 

include income loss statistics for noncitizens, which is a group who experience income loss at a 

higher rate than citizens (Nischan, 2020). Thus, the observed difference in non-home dwell times 

between White-only and non-White residents cannot be explained entirely by unemployment rates.  

For the SAR model, the estimated number of White-only residents in a block group 

correlated positively with the change in median home dwell time (p < 0.001), the change in median 

non-home dwell time (p < 0.001), and the change in percentage time spent at home (p < 0.001). 

These results were particularly interesting, since a positive correlation for both home and non-

home dwell times meant that an increase in the number of White-only residents correlated with 

both less time spent at home and also less time spent away from home in April. While seemingly 

contradictory, one possible explanation is that the differences arose based on income level, where 

higher income White-only residents spent less time away from home and lower income White-
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only residents spent less time at home. Further research on the interaction between race and income 

would clarify these results. The SAR model also yielded significant results with change in median 

distance traveled from home as the dependent variable. That the number of White-only residents 

correlated negatively with travel distance (p < 0.05) suggested that block groups with more White-

only residents experienced increased travel distance from home in April. These findings prompt 

the need for future research that examines the origin and destination of trips made from these block 

groups, as one explanation could be that higher income White residents sheltered in place at a 

second home outside of the city during early lockdown measures (Frank, 2020; Gordon, 2020; 

Tully & Stowe, 2020). However, more detailed analyses are necessary to confirm this hypothesis.  

 

5.1.3. Effect of Transport Method to Work on Mobility   

For the SLX model, the estimated number of people who use public transit to travel to work 

in a block group correlated positively with the change in median distance traveled from home (p 

< 0.001) and negatively with the change in median non-home dwell time (p < 0.001). This result 

showed that an increase in the number of public transit users within a block group led to shorter 

distances traveled from home and longer non-home dwell times in April. While seemingly 

contradictory at first, one possible explanation for these phenomena could be that the overall 

decrease in public transit ridership, particularly on buses and subways, after the March 2020 

lockdowns (Penney, 2021) contributed to a decrease in distances traveled from home for certain 

NYC populations, whereas essential workers, 55% of whom used the subway, bus, or rail to travel 

to work prior to the pandemic, continued to use public transit to get to work during the pandemic 

(Stringer, 2020). Analysis of trips taken from block group could reveal another possible scenario, 

which is if block groups with more public transit users correlated with a greater number of people 

spending time outside in nearby green spaces, which would contribute both to greater time away 

from home and also decreased travel distance from home.  

For the SAR model, the estimated number of public transit users in a block group correlated 

positively with the change in median distance traveled from home (p < 0.05) and negatively with 

the change in median home dwell time (p < 0.05), the change in non-home dwell time (p < 0.001), 

and the change in percentage time spent at home (p < 0.001). These results were particularly 

interesting, since a negative correlation for both home and non-home dwell times meant that an 

increase in the number of public transit users correlated with both more time spent at home and 
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also more time spent away from home in April. While seemingly contradictory, one possible 

explanation is that the differences arose based on other related explanatory factors, similarly to the 

SAR model results associated with White-only residents as a factor.   

 

5.1.4. Effect of Female Worker Share on Mobility   

For the SLX model, the estimated number of female workers correlated negatively with 

the change in median distance traveled from home (p < 0.001) and positively with the change in 

median home dwell time (p < 0.001) and change in percentage time at home (p < 0.001). This 

result showed that an increase in the number of female workers within a block group led to longer 

distances traveled from home, shorter home dwell times, and smaller percentage times at home in 

April. At first, I found this result surprising, given reports that women were more likely than men 

to quit their jobs and assume childcare responsibilities when schools closed (Bateman & Ross, 

2020; Gogoi, 2020). However, 60% of all frontline workers in NYC are women, with the highest 

percentages in healthcare (74% are women) and childcare, homeless, food, and family services 

(81% are women) (Stringer, 2020). Thus, one possible explanation could be the decomposition of 

NYC frontline workers by sex, as it suggests that these women continued to leave home for work, 

which contributed to less time spent at home and greater distances traveled from home.  

For the SAR model, the estimated number of female workers in a block group correlated 

negatively with the change in median distance traveled from home (p < 0.01) and positively with 

the change in median home dwell time (p < 0.05), the change in non-home dwell time (p < 0.05), 

and the change in percentage time spent at home (p < 0.05). These results were particularly 

interesting, since a positive correlation for both home and non-home dwell times meant that an 

increase in the number of public transit users correlated with both more time spent at home and 

also more time spent away from home in April. While seemingly contradictory, one possible 

explanation is that the differences arose based on other related explanatory factors, similarly to the 

SAR model results associated with the number of White-only residents and public transit users as 

factors.   

 

5.1.5. Effect of Housing Occupancy on Mobility   

For the SLX model, the estimated number of renter occupied housing units with more than 

1.5 residents per room correlated negatively with the change in median distance traveled from 
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home (p < 0.01). This result indicated that block groups with a greater proportion of crowded rental 

homes correlated with shorter travel distances in April, which was surprising since over half of all 

NYC frontline workers are renters (Stringer, 2020). However, since travel distance was the only 

mobility variable to yield a significant result for the SLX model, perhaps a more appropriate 

measurement would have been the total number of rental units or the number of renters rather than 

rental units with 1.5 or more people per room.  

For the SAR model, the estimated number of renter occupied housing units with more than 

1.5 residents per room in a block group correlated negatively with the change in median non-home 

dwell time (p < 0.05) and positively with the change in median distance traveled from home (p < 

0.05) and the change in percentage time spent at home (p < 0.05). The results for non-home dwell 

time and percentage time home, which suggested that people in block groups with a higher number 

of crowded rental units spent less time at home in April, appeared contradictory to the result for 

distance traveled for home, which implied that people traveled shorter distances in these block 

groups. However, these differences may relate to other related factors, such as limited access to 

green space in crowded neighborhoods contributing to lower travel distances, and a high 

percentage (59%) of frontline workers being renters leading to more time spent away from home 

(Stringer, 2020).  

 

5.1.6. Effect of Annual Income on Mobility   

For the SLX model, the estimated number of households making less than $25,000 a year 

correlated negatively with the change in median non-home dwell time (p < 0.001). This result 

indicated that block groups with a greater proportion of households whose annual income amount 

corresponded to a full-time minimum wage job experienced greater time spent away from home 

in April. This result could come in part from the statistic that 8% of all frontline workers are at or 

below the poverty line, which is defined as $26,200 for a family of four (Stringer, 2020). However, 

8% is a small proportion of frontline workers compared with the 24% of all frontline workers at 

or below twice the poverty line, which is defined as $52,400 for a family of four (Stringer, 2020). 

There are particularly high percentages of grocery, convenience, and drug store workers (35%), 

childcare, homeless, food, and family services workers (34%), and building cleaning services 

(39%) that fit into this latter category of twice the poverty line (Stringer, 2020). Thus, a more 

appropriate statistic to assess mobility trends might have been the number of households making 
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less than $55,000 a year, since this income bracket would include 32% of all frontline workers 

compared to just 8%.   

For the SAR model, the estimated number of households making less than $25,000 a year 

in a block group correlated negatively with the change in median distance traveled from home (p 

< 0.05) and median non-home dwell time (p < 0.001). These results indicated that an increase in 

the number of low-income households within a block group led to an increase in distance traveled 

from home and non-home dwell time in April. If only 8% of NYC frontline workers are at or below 

the federal poverty line (Stringer, 2020), this conclusion is somewhat surprising. Furthermore, a 

survey conducted in October 2020 found that 80% of NYC adults earning less than $35,000 a year 

experienced a loss of income since 13 March 2020 compared with the 54% NYC area average 

(Nischan, 2020), suggesting that low-income households were the most affected by the staggering 

unemployment rate and thus did not have reason to leave their homes. Additional research 

exploring where residents of block groups with a higher number of low-income households may 

help clarify the correlation with increased non-home dwell time and travel distance from home.   

 

5.1.7. Effect of Families with Children on Mobility   

For the SLX model, the estimated number of families with children under age 18 correlated 

positively with the change in median distance traveled from home (p < 0.001) and the change in 

median non-home dwell time (p < 0.001). These results indicated that block groups with a greater 

number of families with children experienced shorter travel distances from home and less time 

spent away from home in April. Similarly, the number of families with children correlated 

negatively with the change in median home dwell time (p < 0.001) and median percentage time at 

home (p < 0.001), meaning that block groups with more families with children experienced greater 

amounts of time at home. These conclusions make sense given that once schools closed, many 

parents stayed home to take care of young children while juggling full-time jobs. School closures 

and uncertainty with regard to childcare left parents, particularly working mothers, with home 

school responsibilities that prompted some mothers to leave their jobs entirely (Bateman & Ross, 

2020). Research by the U.S. Census Bureau and Federal Reserve found that of the adults not 

working, women ages 25-44 were almost three times as likely as men (32.1% compared to 12.1%) 

to not be working due to childcare demands (Heggeness & Fields, 2020). While these results are 

based on national data, there is little reason to believe that this phenomenon did not extend to NYC 
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families as well. Furthermore, the U.S. Census study also found that working mothers in states 

with early stay-at-home orders and school closures were 68.8% more likely to leave their jobs than 

working mothers in states with later closures (Heggeness & Fields, 2020). Given that NY state 

was one of the first states to implement stay-at-home measures (see Figure 2.2), it seems likely 

that NYC working mothers fit into the category of being more likely to leave their jobs.  

For the SAR model, the results were the same: the estimated number of families with 

children in a block group correlated positively with the change in median distance traveled from 

home (p < 0.001) and the change in median non-home dwell time (p < 0.001). These results 

indicated that an increase in the number of families with children within a block group led to an 

increase in distance traveled from home and non-home dwell time in April for all block groups. 

The SAR model also found that the estimated number of families with children in a block group 

correlated negatively with the change in median home dwell time (p < 0.001) and median 

percentage time at home (p < 0.001), meaning that block groups with more families with children 

experienced greater amounts of time at home. Thus, the SAR model results confirm the 

conclusions made from the SLX model results.  

 

5.1.8. Effect of Educational Attainment on Mobility   

For the SLX model, the estimated number of people with just a high school diploma 

correlated positively with the change in median distance traveled from home (p < 0.001) and the 

change in median non-home dwell time (p < 0.001). These results indicated that block groups with 

a greater number of high school graduates experienced shorter travel distances from home and less 

time spent away from home in April. Similarly, the number of people with a high school diploma 

correlated negatively with the change in median home dwell time (p < 0.001) and median 

percentage time at home (p < 0.001), meaning that block groups with more high school graduates 

experienced greater amounts of time at home. One explanation for this finding was the 15% 

seasonally adjusted unemployment rate in April and that those more likely to face unemployment 

due to COVID-19 in NYC were workers with lower educational attainment (Nischan, 2020). As 

confirmation, 61% NYC adults without a bachelor’s degree experienced a loss in income since 13 

March 2020, compared with 45% of adults with more than a bachelor’s degree (Nischan, 2020). 

Without a job to go to, this demographic traveled shorter distances and stayed at home for longer 

periods of time.  
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For the SAR model, the results were the same: the estimated number of people with just a 

high school diploma in a block group correlated positively with the change in median distance 

traveled from home (p < 0.001) and the change in median non-home dwell time (p < 0.001). These 

results indicated that an increase in the number of high school graduates within a block group led 

to an increase in distance traveled from home and non-home dwell time in April for all block 

groups. The SAR model also found that the estimated number of people with just a high school 

diploma in a block group correlated negatively with the change in median home dwell time (p < 

0.001) and median percentage time at home (p < 0.001), meaning that block groups with more 

high school graduates experienced greater amounts of time at home. That the SAR and SLX 

models yielded the same results for all mobility variables seemed to strengthen the findings that 

educational attainment significant correlated with mobility.   

 

5.1.9. Effect of Health Insurance Status on Mobility   

For the SLX mode, there were no significant correlations between the estimated number of 

people from the civilian noninstitutionalized population with no health insurance coverage and 

mobility. However, for the SAR model, the estimated number of non-insured people in a block 

group correlated positively with the change in median non-home dwell time (p < 0.05). This 

finding suggested that as the number of non-insured people in a block group increased, the time 

not spent at home in April decreased across all block groups. While 11% of all NYC frontline 

workers are uninsured, with higher percentages for grocery, convenience, and drug store workers 

(12.1%), trucking, warehouse, and postal service workers (14.8%), and building cleaning services 

(29.1%) (Stringer, 2020), the finding that uninsured workers spent more time at home was likely 

more related to the share of low-income workers who lost jobs due to COVID-19. Nationally, low- 

and middle-income workers are more likely to be uninsured (Institute of Medicine (US) Committee 

on the Consequences of Uninsurance, 2001), and 80% of NYC workers who earned less than 

$35,000 a year reported losing income due to COVID-19, which could have been from either 

reduced work or unemployment (Nischan, 2020).  

 

5.2. Differences in Population Effects  

Having obtained several significant results from the SLX and SAR regression models, I 

wanted to determine which of the variables measuring population mobility (median distance 
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traveled from home, median home dwell time, median non-home dwell time, and median 

percentage time home) most accurately served as a proxy for physical distancing adherence. I used 

a three-step process to examine possible answers to this question. First, I examined the results from 

the four regression models in the context of the nine explanatory variables for each of the mobility 

measures and chose the mobility measurement that yielded the greatest number of logical results. 

Next, I evaluated how SafeGraph collected this data to see if their methodology helped create a 

more accurate measurement. Finally, I compared my findings with my hypothesis in Chapter 1.   

 The mobility measurement that yielded the greatest number of results from the SLX and 

SAR models was median non-home dwell time. Not only did every explanatory variable have a 

significant correlation with non-home dwell time for the SAR model, but also the SLX model’s 

R2 value (0.162) with this dependent factor was the highest. SafeGraph defined this measurement 

as the aggregated median dwell time of devices at places outside of their Geohash-7 home for the 

entire 24-hour period (SafeGraph, n.d.-b). The specificity of 153 meters by 153 meters to which 

devices were tracked outside of the home certainly made the measurement more accurate, as a 

smaller radius meant SafeGraph got as close as it could to determining when a device was outside 

the home without actually knowing the device’s true home.  

This finding that median non-home dwell time was the most accurate proxy for physical 

distancing adherence aligned with my original hypothesis that either home dwell time or non-home 

dwell time would be the most accurate factors. The other dependent variables, while also highly 

accurate, had limitations or dependencies. Median distance traveled from home could have 

provided greater insight into where people were going during the pandemic stay-at-home orders, 

but I had not included place visits in my model, so this variable seemed less likely to be the most 

accurate measurement. For percentage time spent at home, since the measurement was based on 

home dwell time calculations, it made sense that the results for home dwell time and percentage 

time at home aligned almost exactly, with the exception of housing occupancy and percent time at 

home for the SAR model. Therefore, if median home dwell time had been the most accurate 

measurement, there was a high chance that median percent time home would also be highly 

accurate. Since home dwell time did not yield the greatest number of significant results, non-home 

dwell time surpassed both home dwell time and percent time home.  
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CHAPTER 6: CONCLUSION 

This chapter will address limitations of the research, suggest pathways for future research, 

and summarize the research findings.  

 

6.1. Limitations of this Research  

As was the case with prior literature using aggregated cellphone mobility data, the 

representativeness of SafeGraph’s data made it challenging to draw definitive conclusions from 

regression models. Despite its exceptional size and granularity, the data came from fewer than 

500,000 devices and accounted for only one-ninth of the NYC population. On the one hand, this 

share of the population may seem small, but on the other hand, mobility data from 500,000 devices 

is a staggeringly large sample size compared to early mobility research that relied on recruiting 

participants to self-report data. Furthermore, a vast majority of block groups contained data. 

Therefore, the limitation was worth noting in the sense that any conclusions drawn from my 

findings must acknowledge that they illustrate general population mobility trends from aggregated 

data. I could also strengthen my findings by running the four regression models using different 

mobility datasets and comparing the results. Additionally, summarizing differences in mobility 

datasets and providing a comprehensive evaluation of the strengths and limitations of each could 

help researchers choose the most appropriate datasets for their research questions (Dodge, 2021).  

A second limitation to this work was the potential for additional factors besides stay-at-

home restrictions to influence mobility patterns. For example, warmer weather in April could have 

contributed to greater time spent away from home for some demographics. To account for seasonal 

change, an alternative baseline could have been April 2019, assuming that weather patterns were 

similar at that time to those observed in April 2020.  

Lastly, aggregated mobility data collected from everyday human behavior patterns are 

inherently messy. The motivations, desires, and beliefs of every human differ, so the findings that 

apply to one person might be entirely misaligned with the behavior of another person who has a 

similar sociodemographic profile. Thus, drawing conclusions other than sweeping generalizations 

can be difficult when using data collected from human interactions taking place in the real-world 

as opposed to a strictly controlled laboratory setting. One possible way to add an individualistic 

component and validate the broad population findings would be to conduct interviews with 

residents from the study area.  
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6.2. Pathways for Future Research  

In addition to the research opportunities already discussed, there are five additional 

possibilities I will present. The first is to extend my methodology to data from other cities. A 

between-city comparison might provide greater insight into how stay-at-home policies affected 

regions differently based on sociodemographic patterns, public transit infrastructure, or population 

density. In addition to comparing cities, there are other explanatory factors that could be added to 

the regression models, such as the number of households who own second homes or citizenship 

status. Instead of simply sociodemographic variables, one could also use points of interest (POI) 

data to expand on the findings in this paper. For example, to better understand the large-scale 

impact of age, it would be useful to understand where younger people were going. National data 

indicated that younger workers were more likely to face unemployment due to COVID-19, and a 

survey of NYC metro adults found that 56% of them had lost income during the pandemic (Nischan, 

2020). Therefore, if younger workers were more likely to experience unemployment and 37% of 

NYC frontline workers are over 50 years old (Stringer, 2020), where were the younger age groups 

going? In addition to POI data, this question could be answered by using age-bracketed data to 

determine which age group left home the most. Lastly, there are several types of datasets that could 

be used to cross-reference these findings and evaluate how other non-pharmaceutical interventions 

affected mobility. For example, the Delphi Group at Carnegie Mellon University provides a variety 

of real-time COVID-19 indicators at the U.S. county and state level. Comparing their data on 

vaccine acceptance or the proportion of mask-wearers with mobility trends at the county level 

could be a fascinating next research topic. This last potential avenue of research exploring other 

human behavior indicators and non-pharmaceutical interventions has particularly important 

implications, as researchers found that mobility and infection rates did not positively correlate as 

strongly after April 2020 (Badr & Gardner, 2020). Their findings suggest that other non-

pharmaceutical interventions like mask-wearing or handwashing played a significant role in 

mitigating the spread of the virus early on in the pandemic, so future research should add these 

factors to their models when looking at the relationship between mobility and case positivity.  

 

6.3. Concluding Thoughts  

My intention for this research was to provide fine-grained analysis for policymakers on the 

varying effects of lockdown measures and inform future strategies for infection mitigation and 
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safe re-opening. My findings that there exist significant differences in mobility based on 

sociodemographic factors, particularly age, education level, and whether or not families have 

children, reinforce the need for physical distancing policies that acknowledge the demographic 

diversity present not only between but also within cities. Future research can both confirm these 

findings and also examine the implications of reduced mobility on the spread of COVID-19 

compared with other non-pharmaceutical interventions. By providing a detailed analysis of the 

various sociodemographic effects on different measurements of mobility, this paper emphasizes 

that stay-at-home policies introduce unevenly distributed effects to different groups and that there 

are several ways to measure mobility patterns within a city.     
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APPENDIX A: GITHUB REPOSITORY  

A repository with all aspects of the data collection, cleaning, and analysis processes exists 

at https://github.com/emilyemchen/honours-research. The repository’s `README.md` file 

provides a broad overview of the file structure and contents.  

 

APPENDIX B: LITERATURE REVIEW-RELATED FIGURES 

Appendix B.1: Timeline of the COVID-19 pandemic from December 2019 to March 2020 

 

Source: Information retrieved from Taylor, 2021 and Qin & Hernández, 2020 

 

https://github.com/emilyemchen/honours-research
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APPENDIX C: METHODOLOGY-RELATED FIGURES AND TABLES   

 

Appendix C.1: Spatial Regression Decision Process Flowchart  

 

Source: From “Exploring Spatial Data with GeoDaTM: A Workbook” by L. Anselin, 2005, 

Center for Spatially Integrated Social Science, p. 199.  

 

Appendix C.2: Mathematical Equations for Regression Models 

Model Name  Equation Variable Definitions 

Ordinary Least 

Squares Model 
𝑦 = 𝑋𝛽 + 𝜀 

𝑋 = independent/explanatory variables 

𝛽 = slope coefficient 

𝜀 = random error term (residuals) 

Spatial Durbin 

Model (Spatially 

Lagged X) 

𝑦 = 𝑋𝛽 + 𝜀 + 𝜃𝑊𝑋 

𝑋 = matrix of observations for explanatory variables 

𝛽 = parameter vector  

𝜀 = vector of error terms  
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𝜃 = vector of response parameters 

𝑊𝑋 = weights matrix 𝑊of exogenous spatial lags 

for explanatory variables 𝑋 

Spatial 

Autoregressive 

Lagged Response 

Model (SAR) 

𝑦 = 𝑋𝛽 + 𝜀 + 𝜌𝑊𝑦 

𝑋 = matrix of observations for explanatory variables  

𝛽 = parameter vector 

𝜀 = vector of error terms 

𝜌 = spatial autocorrelation parameter 

𝑊𝑦 = spatially lagged dependent variable 𝑦 for 

matrix 𝑊 

Spatial Error 

Model (SEM) 
𝑦 = 𝑋𝛽 + 𝜀 + 𝜆𝑊𝑢 

𝑋 = matrix of observations for explanatory variables 

𝛽 = parameter vector 

𝜀 = vector of spatially autocorrelated error terms  

𝜆 = autoregressive coefficient (indicates existence 

of stochastic shock to neighbors)  

𝑊 = spatial weights matrix  

𝑢 = vector of independent identically distributed 

(i.i.d.) errors  

 

APPENDIX D: RESULTS-RELATED FIGURES AND TABLES  

Appendix D.1: Results of Ordinary Least Squares Regression with Median Distance Traveled 

from Home as the Dependent Variable 

 
 

Appendix D.2: Results of Global Moran I test for Regression Residuals with Median Distance 

Traveled from Home as the Dependent Variable 

Moran I Statistic 

Standard Deviate 
p-value Observed Moran I Expectation Variance 

8.8898  < 2.2e-16 0.0661 -0.0005 0.0001 
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Appendix D.3: Results of Lagrange Multiplier Diagnostic Tests for Spatial Dependence with 

Median Distance Traveled from Home as the Dependent Variable 

Test Test Statistic  p-value df 

LMerr  77.65 < 2.2e-16 1 

LMlag 106.30 < 2.2e-16 1 

RLMerr 75.01 < 2.2e-16 1 

RLMlag 103.66 < 2.2e-16 1 

SARMA 181.31 < 2.2e-16 2 

 

Appendix D.4: Results of Spatial Durbin Model (Spatially Lagged X Model) with Median 

Distance Traveled from Home as the Dependent Variable 

 
 

Appendix D.5: Impact Measures for Spatially Lagged X Model with Median Distance Traveled 

from Home as the Dependent Variable 
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Appendix D.6: Results of Spatial Autoregressive Lagged Response Model with Median Distance 

Traveled from Home as the Dependent Variable 

 
 

Appendix D.7: Impact Measures for Spatial Autoregressive Lagged Response Model with 

Median Distance Traveled from Home as the Dependent Variable 
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Appendix D.8: Results of Spatial Hausman Test with Median Distance Traveled from Home as 

the Dependent Variable 

Hausman Test Statistic p-value df 

86.183  3.053e-14 10 

 

Appendix D.9: Results of Ordinary Least Squares Regression with Home Dwell Time as the 

Dependent Variable 

 
 

Appendix D.10: Results of Moran’s I Calculations with Home Dwell Time as the Dependent 

Variable 

Moran I Statistic 

Standard Deviate 
p-value Observed Moran I Expectation Variance 

16.125 < 2.2e-16 0.1201 -0.0005 0.0001 

 

 

Appendix D.11: Results of Lagrange Multiplier Diagnostic Tests for Spatial Dependence with 

Home Dwell Time as the Dependent Variable 

Test Test Statistic  p-value df 

LMerr  257.14 < 2.2e-16 1 

LMlag 312.46 < 2.2e-16 1 

RLMerr 29.56 5.4e-08 1 

RLMlag 84.88 < 2.2e-16 1 

SARMA 342.02 < 2.2e-16 2 
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Appendix D.12: Results of Spatial Durbin Model (Spatially Lagged X Model) with Home Dwell 

Time as the Dependent Variable 

 
 

Appendix D.13: Impact Measures for Spatially Lagged X Model with Home Dwell Time as the 

Dependent Variable 
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Appendix D.14: Results of Spatial Autoregressive Lagged Response Model with Home Dwell 

Time as the Dependent Variable 

 
 

Appendix D.15: Impact Measures for Spatial Autoregressive Lagged Response Model with 

Home Dwell Time as the Dependent Variable 
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Appendix D.16: Results of Spatial Hausman Test with Home Dwell Time as the Dependent 

Variable 

Hausman Test Statistic p-value df 

97.136  < 2.2e-16 10 

 

Appendix D.17: Results of Ordinary Least Squares Regression with Non-Home Dwell Time as 

the Dependent Variable 

 
 

Appendix D.18: Results of Moran’s I Calculations with Non-Home Dwell Time as the 

Dependent Variable 

Moran I Statistic 

Standard Deviate 
p-value Observed Moran I Expectation Variance 

15.705 < 2.2e-16 0.1170 -0.0005 0.0001 

 

Appendix D.19: Results of Lagrange Multiplier Diagnostic Tests for Spatial Dependence with 

Non-Home Dwell Time as the Dependent Variable 

Test Test Statistic  p-value df 

LMerr  243.86 < 2.2e-16 1 

LMlag 366.98 < 2.2e-16 1 

RLMerr 38.95 4.3e-10 1 

RLMlag 162.07 < 2.2e-16 1 

SARMA 405.93 < 2.2e-16 2 
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Appendix D.20: Results of Spatial Durbin Model (Spatially Lagged X Model) with Non-Home 

Dwell Time as the Dependent Variable 

 
 

Appendix D.21: Impact Measures for Spatially Lagged X Model with Non-Home Dwell Time as 

the Dependent Variable 
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Appendix D.22: Results of Spatial Autoregressive Lagged Response Model with Non-Home 

Dwell Time as the Dependent Variable 

 
 

Appendix D.23: Impact Measures for Spatial Autoregressive Lagged Response Model with Non-

Home Dwell Time as the Dependent Variable 
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Appendix D.24: Results of Spatial Hausman Test with Non-Home Dwell Time as the Dependent 

Variable 

Hausman Test Statistic p-value df 

134.69  < 2.2e-16 10 

 

Appendix D.25: Results of Ordinary Least Squares Regression with Percentage Time Spent at 

Home as the Dependent Variable 

 
 

Appendix D.26: Results of Moran’s I Calculations with Percentage Time Spent at Home as the 

Dependent Variable 

Moran I Statistic 

Standard Deviate 
p-value Observed Moran I Expectation Variance 

15.205 < 2.2e-16 0.1133 -0.0005 0.0001 

 

Appendix D.27: Results of Lagrange Multiplier Diagnostic Tests for Spatial Dependence with 

Percentage Time Spent at Home as the Dependent Variable 

Test Test Statistic  p-value df 

LMerr  228.54 < 2.2e-16 1 

LMlag 284.76 < 2.2e-16 1 

RLMerr 32.59 1.1e-08 1 

RLMlag 88.82 < 2.2e-16 1 

SARMA 317.35 < 2.2e-16 2 
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Appendix D.28: Results of Spatial Durbin Model (Spatially Lagged X Model) with Percentage 

Time Spent at Home as the Dependent Variable 

 
 

Appendix D.29: Impact Measures for Spatially Lagged X Model with Percentage Time Spent at 

Home as the Dependent Variable 
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Appendix D.30: Results of Spatial Autoregressive Lagged Response Model with Percentage 

Time Spent at Home as the Dependent Variable 

 
 

Appendix D.31: Impact Measures for Spatial Autoregressive Lagged Response Model with 

Percentage Time Spent at Home as the Dependent Variable 
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Appendix D.32: Results of Spatial Hausman Test with Percentage Time Spent at Home as the 

Dependent Variable 

Hausman Test Statistic p-value df 

97.53  < 2.2e-16 10 

 

 

APPENDIX E: SAFEGRAPH NON-COMMERICAL DATA LICENSE AGREEMENT 

  

START DATE:  4/15/2020 

LICENSE PERIOD: Minimum of 1 year or until COVID-19 (Coronavirus) global response 

has subsided  

DESCRIPTION OF DATA TO BE PROVIDED: SafeGraph Patterns data (or other as 

mutually agreed upon)  

USAGE: SafeGraph data is to be used for COVID-19 (Coronavirus) response  

PUBLISHING: Company must credit SafeGraph if it publishes anything or creates content 

using SafeGraph data  

  

Non-Commercial DATA LICENSE AGREEMENT  

  

This DATA LICENSE AGREEMENT (“Agreement”) is entered into as of start date set forth 

above (the  

“Effective Date”), by and between SafeGraph, Inc., a Delaware corporation, with its principal 

place of business at 182 Howard Street, Suite 842, San Francisco CA 94105 (“Licensor”) and the 

company identified below (“Company”) (each referred to herein as a “Party” and collectively as 

the “Parties”).  

  

WHEREAS, Licensor has compiled anonymized information and is willing to make available the 

data set described above (the “Data”); and   

  

WHEREAS, Company wishes to use the Data in connection with Company’s products or 

services in accordance to the terms and conditions herein as well as the Usage described.   

  

NOW, THEREFORE, in consideration of the mutual promises, agreements and conditions stated 

herein, the Parties agree as follows:  

  

1. Limited License.  Subject to the terms and conditions of this Agreement, Licensor hereby 

grants Company a temporary, limited, royalty free, non-exclusive, non transferable, non-

sublicensable, revocable, license to the Data during the License Period solely for the 

purpose of developing response to helping fight Coronovirus and its first-order and 

second-order effects and in accordance with the terms and conditions of this Agreement.  
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Company must mention SafeGraph as originator of the data in any work product.  

The Data is provided for noncommercial purposes only and Company may not authorize 

another to use the Data for any commercial, resale, distribution or other purpose. For 

further clarity, Company shall not: (i) sell, rent, lease, sublicense, distribute, transfer or 

otherwise provide the Data or any portions or copies thereof to any third party or enable 

any third party to do any of those acts; (ii) copy, adapt,  

translate, reverse engineer, or create derivative works therefrom (other than as expressly  

authorized herein). UNLESS OTHERWISE AGREED BY A SEPARATE WRITING, 

COMPANY AGREES AND UNDERSTANDS THAT IT IS NOT AUTHORIZED TO 

DISTRIBUTE OR OTHERWISE USE THE DATA.    

  

2. Further Obligations.  Company agrees that it is responsible for any acts or omissions of 

its agents or permitted subcontractors that access or use any of the Data and Company 

will ensure that such agents and permitted subcontractors comply with the terms of this 

Agreement.  SafeGraph may use Company logo on corporate website and in marketing 

materials, and companies will work together on co-marketing initiatives.  

  

3. Ownership.  As between the Parties, Licensor shall own and retain all right, title and 

interest in and to the Data, together with all intellectual property rights therein and 

thereto. Licensor reserves  

all rights not expressly granted hereunder.  Nothing contained in this Agreement shall be 

construed as transferring any right, title, or interest in the Data except as expressly set 

forth herein.  

  

4. Confidentiality.  Data shall constitute confidential information belonging to Licensor, and 

accordingly, Company shall not disclose the Data to any third party, except with 

Licensor's prior written consent and as permitted under the next sentence. Company may 

disclose the Data to its employees, consultants or other agents who have a bona fide need 

to know the Data under the limited license rights herein, provided, that each such 

employee, consultant or agent is bound by confidentiality obligations at least as 

protective as those set forth herein.  Company shall protect the confidentiality the Data in 

the same manner that it protects the confidentiality of its own confidential information of 

like kind (but in no event using less than with reasonable care).  Company shall promptly 

notify Licensor if it becomes aware of any actual or suspected breach of confidentiality of 

the Data. If Company is compelled by law or legal process to disclose the Data, it shall 

provide Licensor with prompt prior notice of such compelled disclosure (to the extent 

legally permitted) and provide reasonable assistance, at Licensor’s expense, if Licensor 

wishes to contest the proposed disclosure.  Company acknowledges and agrees that any 

disclosure or use or breach of the Data would result in irreparable injury to Licensor for 

which money damages would be inadequate and in such event Licensor shall have the 

right, in addition to other remedies available at law and in equity, to seek immediate 
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injunctive relief. Upon any termination of this Agreement, to the extent that any Data is 

retained, Company shall continue to maintain the confidentiality of the Data.    

  

5. Term and Termination.  The license rights in section 1 is limited in duration to a time 

period starting from the Effective Date and continuing for period set forth above (the 

“License Period”), unless terminated herein. Company may terminate this Agreement at 

any time by notifying Licensor. Licensor may terminate this Agreement immediately if it 

has reason to believe that Company is not in compliance with the terms of this 

Agreement.  Upon expiration or termination of this Agreement, the license rights stated 

in section 1 shall terminate and Company shall immediately discontinue all use of the 

Data and take steps to remove or destroy all copies of the Data from Company (including 

employees’) hardware. Company shall not disclose, retain or use the Data or Test 

Analytics after the expiration or termination of this Agreement.    

  

6. DISCLAIMERS.  TO THE FULLEST EXTENT PERMISSIBLE PURSUANT TO 

APPLICABLE  

LAW, LICENSOR MAKES NO WARRANTIES OR REPRESENTATIONS, 

EXPRESS, IMPLIED,  

ORAL, WRITTEN, OR OTHERWISE, AND LICENSOR EXPRESSLY DISCLAIMS 

(I) ANY  

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 

PURPOSE OR  

NONINFRINGEMENT, (II) ANY WARRANTY REGARDING CORRECTNESS, 

QUANTITY,  

QUALITY, ACCURACY, COMPLETENESS, RELIABILITY, PERFORMANCE, 

TIMELINESS OR  

CONTINUED AVAILABILITY OF THE DATA. UNDER NO CIRCUMSTANCES 

SHALL  

LICENSOR BE LIABLE FOR ANY INDIRECT, PUNITIVE, INCIDENTAL, 

SPECIAL,  

CONSEQUENTIAL OR EXEMPLARY DAMAGES, INCLUDING WITHOUT 

LIMITATION  

DAMAGES, FOR LOSS OF PROFITS, GOODWILL USE, OR OTHER INTANGIBLE 

LOSSES  

THAT RESULT FROM THE USE OF OR INABILITY TO USE THE DATA. TO THE 

MAXIMUM  

EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR ASSUMES NO 

LIABILITY OR  

RESPONSIBILITY FOR (I) ANY PERSONAL INJURY OR PROPERTY DAMAGE, 

OF ANY NATURE WHATSOEVER, RESULTING FROM COMPANY’S ACCESS 

TO AND USE OF THE  

DATA; (II) ANY ERRORS OR OMISSIONS IN, OR ANY LOSS OR DAMAGE 

INCURRED AS A  
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RESULT OF THE USE OF THE DATA. IN NO EVENT SHALL LICENSOR, ITS 

DIRECTORS, EMPLOYEES, AFFILIATES OR LICENSORS BE LIABLE TO 

COMPANY FOR ANY CLAIMS,  

PROCEEDINGS, LIABILITIES, OBLIGATIONS, DAMAGES, LOSSES OR COSTS 

ARISING  

UNDER OR RELATING TO THIS AGREEMENT FOR MORE THAN $1,000. THIS 

LIMITATION  

OF LIABILITY APPLIES WHETHER THE ALLEGED LIABILITY IS BASED ON 

CONTRACT, TORT, NEGLIGENCE, STRICT LIABILITY, OR ANY OTHER BASIS, 

EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGE.   

  

7. General. This Agreement shall be governed by the laws of California, except for its 

conflicts of laws principles. All disputes arising under or relating to this Agreement shall 

be within the exclusive jurisdiction of the state or federal courts located in San Francisco, 

California and each Party hereby consents to such exclusive jurisdiction and venue. 

Neither Party may assign this  

Agreement to any third party without the prior written consent of the other Party.  

Nothing in this Agreement is intended to confer any rights or remedies on any person or 

entity that is not a party to this Agreement. No modification of this Agreement or waiver 

of the terms and conditions hereof shall be binding upon the Parties unless approved in 

writing by each of the Parties. Except as otherwise provided herein, the failure of either 

Party to enforce at any time any provision of this Agreement shall not be constituted to be 

a present or future waiver of such provision, nor in any way affect the ability of either 

Party to enforce each and every such provision thereafter. If any provision of this 

Agreement is held invalid or unenforceable at law, such provision will be deemed 

stricken from this Agreement and the remainder of this Agreement will continue in effect 

and be valid and enforceable to the fullest extent permitted by law. This Agreement 

represents the entire agreement between the Parties and supersedes any and all prior 

understanding, agreements, or representations by or among the Parties, written or oral, 

related to the subject matter hereof.  This Agreement may be executed in counterparts 

with the same force and effect as if each of the signatories had executed the same 

instrument.  

  

  

IN WITNESS WHEREOF, each of the Parties hereto has caused this Agreement to be executed 

as of the Effective Date.  

  

SafeGraph, INC.  

  

By:  __________________________  
Joshua Levitz 

Name: __________________________ 

Title:  

__________________________BDR   
4/15/2020 
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Date Signed: 

______________________   
  

McGill University 

COMPANY: ______________________  

  

By:  __________________________  
Emily Chen 

Name: __________________________  

Title:  Undergraduate student__________________________  
4/15/2020 

Date Signed: ______________________    

Address: _________________________805 Sherbrooke St W, Montreal, Quebec H3A 2K6, Canada  

State of Incorporation: ______________Montreal,  QC
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