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ABSTRACT

The rapid spread of COVID-19 in the United States initiated shelter-in-place policies that
significantly impacted human mobility and daily routines. Prior literature has examined the
differences in lockdown policy efficacy and compliance with government orders between cities,
as well as the effect of mobility changes on case counts. However, less attention has been placed
on the connection between mobility and socio-demographics after the onset of COVID-19 within
the same city. This undergraduate thesis focused on how human mobility patterns in New York
City during the first three months of the pandemic differed based on socio-demographic factors
like age, household income, and method of transportation to work. A secondary analysis
determined if the four measurements of mobility used, namely distance traveled from home, home
dwell time, non-home dwell time, and percentage time home, yielded significantly different
findings. Using aggregated and anonymized cellphone mobility data from SafeGraph, | created a
mobility ratio representing the change in mobility between the first two weeks of February and
April 2020. I calculated a Global Moran’s Index for each mobility ratio to test for the presence of
spatial autocorrelation, and then | applied two spatial lag models to account for the existence of
autocorrelation. That there existed significant differences in mobility patterns based on socio-
demographics reinforced the need for physical distancing policies that acknowledge the

demographic diversity present not only between but also within cities.

vii



CHAPTER 1: INTRODUCTION

Since the United States detected its first case of the 2019 novel coronavirus in January
2020, efforts to contain the virus, such as stay-at-home policies, have greatly restricted human
mobility and upended daily routines and momentous occasions alike. This retroactive analysis of
the interaction between human mobility patterns during the COVID-19 pandemic, particularly
after the implementation of state-level shelter-in-place orders, and the socio-demographic
differences within a city, contributes to a rapidly growing body of literature examining the
effectiveness of these lockdown policies. This paper seeks to understand the relationships between
average weekly levels of mobility and population demographics within New York City census
block groups (CBGs) from February to April 2020, with the intention of providing fine-grained
analysis on the socio-demographic effects of lockdown measures for policymakers and informing
future strategies for infection mitigation and safe re-opening. Findings from this research reinforce
the need for physical distancing policies that acknowledge the existence of demographic diversity
between not only geographic regions in the U.S. but also within a single city.

My research is the first to look specifically for the existence of a strong correlation between
human mobility levels and socio-demographic characteristics in U.S. CBGs, whereas much of the
prior literature examined the effect of mobility and various explanatory variables on the COVID-
19 case positivity growth rate (Chen et al., 2020; Lamb et al., 2021; Pullano et al., 2020). A study
by Badr et al., which focused exclusively on mobility and COVID-19 case levels, found that
decreased mobility, which the authors used as a proxy for increased levels of social distancing,
had a positive and significant relationship with reduced case growth in several U.S. counties (2020).
Like Badr et al., | employ SafeGraph’s aggregated mobility data to measure the effectiveness of
social distancing interventions, based on the assumption that fewer trips align with less physical
contact and interactions with others (2020). However, my research focuses exclusively on how
state-wide and city-wide lockdown measures changed mobility measurement values, such as
median distance traveled from home and median non-home dwell time, with respect to socio-
demographic characteristics per CBG. Furthermore, my research incorporates a more
comprehensive definition of population mobility by testing not one but four different
representative variables and their correlations with socio-demographic factors. | also analyze the
regression results from these four variables to determine if one or more of these mobility variables

most accurately represents physical distancing adherence.



1.1. Research Questions
Given that the overall aim of my research is to investigate how socio-demographic

characteristics at the CBG level affect mobility patterns, | propose the following research questions:

e Research Question 1: Which socio-demographic factors have the greatest effect on
population change in mobility in New York City before and after the implementation of
COVID-19-related lockdown measures in March 2020?

e Research Question 2: Of the variables measuring population mobility in this research
(median distance traveled from home, median home dwell time, median non-home dwell
time, and median percentage time home), which one(s) act(s) most accurately as a proxy

for physical distancing adherence?

Research Question 1 relates to my overall research aim by examining the interactions
between socio-demographic characteristics and changes in mobility. To answer this question, |
employ four models: the Ordinary Least Squares (OLS) linear regression model, the Spatially
Lagged X (SLX) model, the Spatial Autoregressive (SAR) model, and the Spatial Error Model
(SEM). | hypothesize that age, income, and the number of families with children will yield
significant results, with older populations more likely to reduce mobility as a consequence of
COVID-19 affecting this group more severely, lower-income residents less likely to be able to
reduce mobility due to a higher likelihood of being involved in frontline work, and families with
children more likely to reduce their mobility because of school closures.

Research Question 2 provides insight into which mobility measurement(s) best represent(s)
public adherence to physical distancing interventions. Results from this analysis may help future
researchers choose the most appropriate mobility measurement(s) for their particular research
questions. | hypothesize that either median home dwell time or median non-home dwell time will
yield the greatest number of significant correlations with socio-demographic factors because of
the rigorous methodology that SafeGraph follows to determine a device’s home location and dwell
status (see Section 3.2 for details). If I included point of interest (POI) data in my analysis, median
distance traveled from home might have led to the most informative results, since the model could
account for trips’ origin and destination, as well as environmental factors like POI density. As for

median percentage time spent at home, many of the results from this variable will likely be the



same as those obtained from median home dwell time. However, the percentage time at home
measurement generalizes dwell time to some value between 0 and 100, whereas median home
dwell time is a measurement recorded in minutes with a greater range of possible values. These

differing levels of detail may affect the eventual correlation results.

1.2. Overview of Thesis Structure

My review of related literature in Chapter 2 has three sub-sections: population mobility
surveillance, patterns of COVID-19 responses and positive case growth, and spatial mobility
patterns during COVID-19. | start by examining prior literature on public-health related
surveillance methods and the ethical dilemmas surrounding population surveillance. Next, |
provide an overview of the various governmental and non-pharmaceutical interventions introduced
in response to increasing COVID-19 case rates, both on a worldwide scale and in New York City.
Finally, I analyze prior research on spatial mobility patterns during the pandemic, both on a global
scale and in the United States.

In Chapter 3, | describe the data and methods used in my research and discuss how I address
limitations that arose in prior studies. In Chapter 4, | present my findings, and then in Chapter 5, |
summarize the implications of these findings, including how they contribute to a rapidly growing
body of literature examining the effects of sociodemographic factors on COVID-19-related
mobility. Lastly, in Chapter 6, | acknowledge the strengths and limitations of my work and provide

several suggestions for future research.



CHAPTER 2: RELATED LITERATURE

In this section, | will critically examine how prior literature addresses the three tenets
leading to my research aims of investigating how demographics at the Census Block Group level
in New York City influence human mobility patterns during COVID-19 and to what extent
significant results correlate with spatial distance. The organization of this section follows the

conceptual framework shown in Figure 2.1.

Population Mobility COVID-19 Timeline COVID-19 Spatial
Surveillance and Policy Responses Mobility Patterns

21 2.2 2.3

Mobility Patterns and
Prior Literature on a
Global Scale

Public Health-Related Worldwide Responses
Surveillance Atfecting Mobility

Ethical Considerations New York City Mobility Patterns and
with Digital Surveillane Responses Affecting Prior Literature on the
Data Collection Mobility United States

AIM: Using mobile phone data collected to measure population mobility
activities, | investigate which demographic factors have the most effect on
changing spatial mobility patterns in New York City Census Block Groups before
and after the onset of the COVID-19 pandemic in March 2020.

Figure 2.1: Conceptual Framework Guiding This Research

2.1. Tracking Population Mobility through Smartphone Data

Analyzing population movement to glean human behavior patterns from aggregated
smartphone data became increasingly common leading up to the outbreak of COVID-19 (Budd et
al., 2020; Smith et al., 2015). The increase in academic research interested in utilizing mobility
datasets from smartphone tracking for COVID-19 research was a result of several private

companies, including the provider of the dataset used for this research, making their previously



industry-only data available for academic analysis while this public health crisis continued. In this
section on population mobility surveillance, I first explore public health surveillance and its current
relation to limiting the spread of COVID-19. The second part of the section discusses the ethical

implications of using passive surveillance technologies to collect population-level data.

2.1.1. Public Health Surveillance and COVID-19

Mobile phone surveillance has numerous applications for public health, particularly with
regard to mitigating the spread of COVID-19 and understanding population mobility trends. As
Buckee et al. argue, “the research and public health response communities can and should use
population mobility data collected by private companies, with appropriate legal, organizational,
and computational safeguards in place” to “refine interventions” based on “near real-time
information about changes in patterns of human movement” (Buckee et al., 2020: 145). Other
researchers emphasize the need for regulation and rigorous evaluations of these digital
technologies to ensure that they are used for the benefit of public health and not as exploitive
tracking mechanisms (Budd et al., 2020). In the next section, I summarize one paper’s suggestions

for ethically using aggregated mobility data to combat the spread of COVID-19.

2.1.2. Ethical Considerations of Participatory Surveillance

Researchers must consider representativeness, situational context, and methods of
aggregation when working with mobility metrics calculated from GPS-derived aggregated data to
analyze the spread of COVID-19 (Kishore et al., 2020). In terms of representativeness, the authors
state that data providers must provide information on the fraction of the population represented in
the data, the demographic characteristics of the data subjects, and the geographical makeup of the
data, including whether or not representative bias exists in favor of urban communities over rural
ones. The authors then advise researchers to communicate how the latter group chose the baseline
period against which to compare their analyses, which in the context of COVID-19 could be prior
to the implementation of physical distancing policies. They also suggest that researchers outline
the uncertainty associated with choosing this baseline period. Lastly, the authors note how data
aggregation must strike a balance between maintaining an “actionable spatial boundary” on a
timescale with epidemiologically relevant information and preventing possible re-identification of

individuals from the data (Kishore et al., 2020, p. €623). The authors declare that a pandemic is



not justification for ignoring the risks to an individual’s privacy associated with using personal
data to calculate disease transmission-related metrics like sources of mass infection or mobility
habits. They propose statistical thresholds, differential privacy, and appropriate security controls
that all stakeholders agree to as appropriate privacy protection measures. This paper’s main
strength is its actionable guidelines for analyzing aggregated cellphone data. The authors also
provide detailed steps for calculating nine metrics that could be used as measurements of physical
distancing effectiveness and inputs for models tracking the spread of COVID-19, although the
information is evidently written for data providers who have access to disaggregated data. |
attribute this approach to the employee relationship that one of the paper’s authors has with the
data analysis firm Camber Systems, especially since the paper acknowledges that the company
may use the metrics described in this paper or ones similar for commercial products in the future.
The paper’s most noticeable weaknesses are its failures to mention either datasets that successfully
adhere to their representativeness and aggregation guidelines or studies that effectively state
situational context. Providing examples for both would have enhanced their argument and

provided valuable resources for readers.

2.2. Early Spread of COVID-19 and Mitigation Responses

In this subsection, I will first provide an overview of how COVID-19 spread across the
world, starting in late December 2019, and the subsequent government mandates enacted to restrict
population mobility between and within countries. I will then describe when stay-at-home orders
occurred in New York City from March to May 2020. Appendix B.1 provides a visual
representation of the COVID-19 timeline both on the world scale and for New York City.

2.2.1. Global State of COVID-19 from December 2019 to May 2020

The government of Wuhan, a city with over 11 million people located in China’s Hubei
province, first confirmed that their health officials were treating “dozens of cases of pneumonia of
unknown cause” on 31 December 2019 (Taylor, 2021). Twelve days later, on 11 January 2020,
China reported the first fatality caused by the virus at a time when there were 41 confirmed cases,
seven of whom were in severe condition (Qin & Hernandez, 2020). The news came right before
Chinese passengers were expected to take an estimated three billion trips in the subsequent five

weeks to celebrate the Spring Festival, which started on 25 January 2020 and is China’s largest



holiday (Qin & Hernandez, 2020). At that point, the Wuhan Health Commission had not found
evidence that the virus spread between humans, so there were no travel restrictions put in place
(Qin & Hernandez, 2020). However, by 23 January 2020, Chinese authorities canceled all planes
and trains leaving Wuhan and suspended bus, subway, and ferry operations within the city as the
total number of infections and fatalities reached 570 and 17 respectively in Taiwan, Japan,
Thailand, South Korea, and the United States (Taylor, 2021). The United States reported its first
confirmed case in Washington state on 21 January 2020 from a man who developed symptoms
after returning from Wuhan, and then banned entry to all foreign nationals who had traveled to
China within the last 14 days, effective as of 31 January 2020 (Taylor, 2021). The day before, on
30 January 2020, Director-General of the World Health Organization Dr. Tedros Ghebreyesus
declared a “public health emergency of international concern over the global outbreak of novel
coronavirus” (WHO Director-General, 2020: online), prompting the U.S. State Department to
warn Americans against travel to China and U.S. Health and Human Services Secretary Alex M.
Azar |1 to declare a public health emergency for the entire United States on 31 January 2020 (HHS
Press Office, 2020; She et al., 2020; Taylor, 2021).

The virus spread across Europe throughout early February 2020, with Italy becoming the
site of the first major outbreak on the continent. Italy’s number of reported cases jumped from
fewer than five to over 150 on 23 February 2020, prompting Italian officials to lock down towns
within the Lombardy region, close schools, and cancel sporting and cultural events (Taylor, 2021).
In the United States, the number of cases continued to increase rapidly since reporting its first case
on 21 January 2020, eventually prompting the Centers for Disease Control and Prevention to
advise against gatherings of 50 or more people starting 15 March 2020 and onwards for the
subsequent eight weeks (Taylor, 2021). On 16 March 2020, the same day that New York City
public schools closed, U.S. President Donald Trump warned citizens against groups of more than
10 people (Taylor, 2021). By 26 March 2020, the United States had the highest number of
confirmed COVID-19 cases in the world. Despite reaching this milestone, state-level lockdown
policies varied by state throughout March to May 2020 in the absence of an official federal policy,

as shown in Figure 2.2.
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Figure 2.2: Type and Duration of COVID-19 State and Territorial Stay-At-Home Orders from 1
March to 31 May 2020
From “Timing of State and Territorial COVID-19 Stay-at-Home Orders and Changes in
Population Movement — United States, March 1-May 31, 2020” by A. Moreland et al., 2020,
Morbidity and Mortality Weekly Report, 69(35), p. 1200.

2.2.2. State of COVID-19 in New York City from March to May 2020
In spring 2020, New York City (NYC) was the United States epicenter of the COVID-19
outbreak, with approximately 203,000 cases of laboratory-confirmed COVID-19 reported by the



NYC Department of Health and Mental Hygiene between 1 March and 31 May 2020 (Thompson
et al., 2020). Governor of New York Andrew Cuomo announced the first case of COVID-19 in
New York City on 1 March 2020 after the case was confirmed in a laboratory on 29 February 2020
from a 39-year-old Manhattan woman returning from Iran with mild respiratory symptoms
(Thompson et al., 2020; Vasquez et al., 2020). The virus spread rapidly throughout both NYC and
New York State (NYS) during the first week of March, prompting Governor Cuomo to declare a
state of emergency for NYS on 2020 March 7, when there were 89 cases state-wide and 11 cases
in NYC (Vasquez et al., 2020). As the number of positive cases in NYC continued to increase
exponentially during the first two weeks of March 2020, NYC Mayor Bill de Blasio shuttered large
venues like Barclays Center in Brooklyn, Madison Square Garden in Manhattan, and Radio City
Music Hall in Midtown Manhattan on 12 March 2020 (Vasquez et al., 2020). Governor Cuomo
also implemented a state-wide ban on gatherings of 500 people or more and announced that venues
with capacity below 500 people would have to operate at 50 percent occupancy (Vasquez et al.,
2020). Despite the closure of large public arenas by 12 March 2020, a majority of schools in New
York City’s public school system, the largest school district in the United States with over 1.1
million students, remained open until 16 March 2020, when Mayor de Blasio announced that
schools would be closed until at least 20 April 2020, with plans for remote learning to begin on 23
March for kindergarten through 121" grade (Eisenberg & Touré, 2020; NYC Department of
Education, n.d.). In addition to closing schools, Governor Cuomo, along with New Jersey
Governor Phil Murphy and Connecticut Governor Ned Lamont, lowered the maximum gathering
threshold to 50 people, shuttered gyms and casinos, and restricted bars and restaurants to providing
just take-out and delivery services across the Tri-State area on 16 March (Vasquez et al., 2020).
By 18 March 2020, with 3,437 cases in NYS and more than 1,870 cases in NYC confirmed thus
far, Governor Cuomo implemented a statewide mandate that non-essential businesses must have
at least 50 percent of their employees working from home (Vasquez et al., 2020). Two days later,
on 20 March, Mayor de Blasio mandated that all non-essential businesses in NYC would close at
20:00 on 22 March until further notice and announced fines could be imposed on non-vulnerable
individuals who violated rules regarding non-essential gatherings and social distancing, in
adherence to the NYS on Pause Program’s stipulations that all non-essential workers must stay at

home (City of New York, 2020). Twenty-three days after the first laboratory confirmed case of



COVID-19 in NYC, the entire state had been put into strict and unprecedented stay-at-home

measures and school closures that Governor Cuomo later extended throughout April and May 2020.

2.3. Spatial Mobility Patterns during the COVID-19 Pandemic

This section will explore prior literature that focuses on spatial mobility trends during the
COVID-19 pandemic. I will critically examine research on spatial mobility in countries outside of
the United States, followed by research on mobility trends in the U.S. Several of the studies in this

latter group also used data from SafeGraph.

2.3.1. Spatial Mobility on a Global Scale during the COVID-19 Pandemic

Research that examined the effects of mobility reduction on case counts outside of the U.S.
include an analysis from Kraemer et al. (2020) on the spread of COVID-19 in China and a social
network analysis of COVID-19 transmission in India by Saraswathi et al. (2020). In a
comprehensive review focused on the geospatial and spatial-statistical analysis of the COVID-19
pandemic, Franch-Pardo et al. (2020) evaluated 63 scientific articles on the subject and concluded
that interdisciplinary action, proactive planning, and international solidarity were of utmost
importance for controlling the virus.

One particularly notable paper by Pullano et al. (2020) examined how mobility in France
changed before and during lockdowns based on aggregated cellphone data from Flux Vision of
origin-destination travel flows among 1,436 mainland France geographical areas. The authors
segmented their results by trip distance (all trips and long trips, which were defined as more than
100 kilometers of geodesic distance between location centroids), user age (under 18, 18-65, and
over 65 years old), residency (residents had French SIM cards while non-residents did not), and
time of day (daytime or nighttime and weekend versus weekday, including rush hours). Next, the
authors analyzed behavioral responses to announcements of physical distancing interventions and
pandemic burden, i.e. COVID-19-related deaths and hospitalization rates. They found that traffic
flow significantly decreased from their forecasting model’s extrapolated traffic flow, assuming no
interference associated with COVID-19 interventions, starting on 14 March 2020. Interestingly,
they observed a “pre-lockdown exodus out of Paris” on 16 March 2020, one day before lockdown
took effect, which they attributed to relocation caused by fear of the imminent implementation of

stricter policies seen prior to that date in Italy, Spain, and Austria (Pullano et al., 2020, p. e642).
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Data during the lockdown period also revealed larger mobility reductions in regions more severely
affected by the pandemic in terms of number of hospitalizations, suggesting that individuals in
these hard-hit regions were more likely to act on concerns about overwhelming the hospital system
than those in less affected areas. By testing the effects of several explanatory variables on mobility,
this study provided a robust overview of the demographic, socioeconomic, and behavioral factors
associated with decreased mobility in France prior to and during the early lockdown period in
March 2020. The authors reported several interesting results, although they acknowledged the
limitations of their observational methodology when inferring causal relationships from complex
interactions between factors. Another limitation was the study’s geographical scale, which at the
city level allowed for comparisons in travel between major French cities but mostly ignored
mobility differences in sub-regions within cities. Lastly, the authors failed to elaborate on their
decision to construct a forecasting model using training data from a period of time (6 January to 9
March 2020) already affected by COVID-19 restrictions (they state that Phase 2 of France’s
COVID-19 response, which involved social distancing interventions like closing schools, started
on 29 February 2020), when they also noted that extrapolated traffic flow after 9 March 2020

assumed no changes due to COVID-19-related interventions.

2.3.2. Spatial Mobility of the U.S. Population during the COVID-19 Pandemic

Aggregated mobility data have been used in prior research as a proxy for quantitatively
measuring the effectiveness of social distancing measures (Badr et al., 2020; Buckee et al., 2020).
In this section, I will go into detail on four representative publications and summarize the wider
literature in Table 2.1.

The first paper, written by Chang et al. (2020), sought to understand how SARS-CoV-2
spread in ten of the largest U.S. metropolitan areas by constructing fine-grained dynamic mobility
networks derived from SafeGraph cellphone geolocation data that mapped the hourly movements
of 98 million people from neighborhoods to points of interests at the census block group (CBG)
level between 1 March and 2 May 2020. The authors found that their metapopulation susceptible-
exposed-infectious-removed (SEIR) model simulating the spread of SARS-CoV-2 with the
aforementioned mobility networks accurately predicted that higher infection rates occurred during
the first two months of the pandemic amongst disadvantaged racial and socioeconomic groups as
a result of only differences in mobility. This result not only supports prior literature indicating that
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SARS-CoV-2 infections were unevenly distributed across the U.S. population, but also strengthens
my hypothesis that income levels will correlate significantly with measures of aggregated mobility
at the CBG level. The authors also noted that the model could predict “super-spreader” points of
interest (POI) that accounted for a majority of infections. They concluded from this result that
varying maximum occupancy levels to increase physical distancing based on POI rather than
uniformly reducing mobility across POIs could be a more effective policy measure. This article’s
exemplary methodological rigor is a result of the authors paying careful attention to every part of
the study, including cross-checking mobility trends from SafeGraph data with Google mobility
data, building an undirected bipartite graph with 5.4 billion edges between 56,945 CBGs and
552,758 POls to represent population-level mobility, and providing extensive documentation of
the mathematical reasoning behind model initialization, calibration, validation, and data analysis.
A limitation to this study, which the authors themselves acknowledged, was that the SafeGraph
data underlying their SEIR model did not perfectly represent the population, contain all POIs in
the metropolitan areas of interest, or provide context at a geographical scale smaller than the CBG
level. Most importantly, the SEIR model did not take into account all real-world factors
contributing to SARS-CoV-2 transmission; however, the authors maintained that the predictive
accuracy of their model based solely on mobility between POIls robustly supported their broad
conclusions on sociodemographic inequities and uneven sources of infection at various POIs.
The second paper by Badr et al. (2020) investigated the effect of large-scale social
distancing adherence on the spread of COVID-19 in 25 U.S. counties with the highest number of
confirmed cases as of 16 April 2020 using Teralytics’ aggregated mobility data from 1 January to
20 April 2020. To evaluate how well decreased mobility affected the rate of new infections, the
authors fitted a generalized linear model for each county on a given day by using a lagged mobility
ratio (MR) as the predictor for the COVID-19 case growth rate (GR) ratio, and then tested the
correlation of the MR and GR at different time lags from both separate models for each county
and also from a combined model for all counties. Significant correlations in all 25 counties with
Pearson correlation coefficients above 0.7 (out of 1.0) in 20 of the 25 counties led the authors to
conclude that social distancing had a significant effect on the spread of COVID-19 and that their
findings could translate to other U.S. locations, given the geographical diversity of the counties in
their sample set. The authors also discovered that social distancing was evident in early March

before any of the first U.S. state-level lockdowns were implemented, which was a phenomenon
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they partially attributed to county-level restrictions while also noting that all states showed some
form of social distancing before these county-level restrictions. By analyzing data at the county
level across 11 U.S. states, this study successfully produced results at a geographical scale small
enough to account for heterogeneity in the number of confirmed cases and mobility changes within
a county, while also providing opportunities to compare entire states and thus generalize findings
on a national level. The authors acknowledged that one of their study’s most significant limitations
was its ignorance of other case mitigation factors like mask-wearing or handwashing that could
have significantly contributed to declining COVID-19 case growth rates in March 2020. A follow-
up commentary by the first and last authors of this study emphasized the importance of further
research on the effect of these other non-pharmaceutical interventions (NPIs), since the strong
linear correlation between mobility and case growth rates they had observed in their first paper
was absent after April 2020, thus suggesting that this strong correlation after April could be
attributed less to mobility having a significant impact on COVID-19 transmission and more
towards interventions like mask-wearing and avoiding large gatherings that were adopted in
parallel with initial lockdowns (Badr & Gardner, 2020). Further research quantifying the effects
of NPIs and their interactions will ultimately determine whether or not restricting mobility alone
can affect case growth rates.

For research on patterns in New York City, Lamb et al. (2021) conducted an ecological
study of residents in 177 NYC zip code areas using SafeGraph data for the number of daily visits
to points of interest (POIs). The authors wanted to determine the extent to which aggregate markers
of socioeconomic status (SES) and daily changes in mobility could explain zip code-level COVID-
19 case positivity, as well as the extent to which daily changes in mobility independently predicted
case positivity. They concluded from ranking univariate analyses and a multivariable prediction
model that the proportion of the population living in households with more than three inhabitants,
the proportion of uninsured 18-64-year-olds, the proportion of population self-identifying as White,
and median household income were the four aggregate markers of SES that yielded the highest R?
value for all four time periods (1 April, 10 April, 20 April, and 30 April). Their analyses revealed
that changes in mobility considered with SES markers explained 56% of the variability in case
positivity through 1 April 2020, but then dropped to a rate of explanation for case positivity
variability of just 18% by 30 April 2020, suggesting that after COVID-19 cases peaked on 6 April
2020 in NYC, these SES markers became less predictive due to several factors, including greater
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testing capacity, higher SES areas having lower case positivity due to potentially greater
engagement with unwarranted testing, and lower SES areas containing a higher number of actual
infections. The authors also found that increased case positivity was independently associated with
greater reductions in mobility on 10 April and 20 April, but not on 1 April and 30 April, and they
attributed these mixed findings to the correlation between time and a city-wide decrease in case
positivity as testing capacity increased. The authors acknowledged the limitations of their study,
including that its use of zip code areas could not account for the heterogeneity of SES, case
positivity, and changing mobility levels within these areas. Furthermore, their use of COVID-19
case positivity as an outcome measurement was highly imprecise, given that the metric was subject
to fluctuation based on diagnostic test accessibility. However, this study’s most innovative feature
was its use of physical check-ins to POIs within a zip code area as its measurement of mobility,
which the Center for Disease Control (CDC) also uses to track mobility patterns, rather than a
more common metric like average distance displacement.

The final paper, which was a preprint by Chen et al. (2020), contributed to a growing body
of literature examining how to best prevent and control COVID-19 infections by examining and
modeling the spatial factors that led to early COVID-19 outbreaks in New York City using land
use, travel behaviors, and sociodemographic factors as explanatory variables. The authors
categorized land use into three main categories based on points of interest (POI) labels with a high
likelihood of congregation: green spaces and/or parks, grocery stores, and medicine-related places.
They measured travel activities using the mean distance traveled from home variable from
SafeGraph’s social distancing metrics. They also used gender, race, poverty, working from home,
commuting habits, population, and number of workers as their sociodemographic variables. Using
ordinary least squares (OLS) regression for global relations, the authors determined that areas with
high medical POI density, green space density, greater median distance traveled from home,
percentage of males, and percentage of commuting through walking, carpooling, and public
showed higher rates of positive COVID-19 cases. Using geographically weighted regression
(GWR) models for local relations, the authors concluded that the effects of working from home
varied across postal areas, which led them to suggest that future reopening strategies vary between
NYC boroughs. This study’s use of GWR modeling provided important insight into local
differences in land use, travel behaviors, and sociodemographic factors. However, the study’s main

limitation was in its scope, as its focus on just New York City prevented comparisons between
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other U.S. cities. Furthermore, the authors acknowledged that using just SafeGraph and American
Community Survey data diminished the reliability of their findings on the effect of public transit
on COVID-19 infections. By extending this study’s methodology to other U.S. cities and
incorporating additional data sources, policymakers might be able to consider reopening strategies
not just within but also between cities.
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Paper

Study Area Region

Mobility Dataset

Research Question(s)

How does testing, contact tracing, and household

(Aleta et al., 2020) Boston, USA Cuebiqg quarantine affect the number of second wave COVID-
19 cases in the Boston metropolitan area?
(Badr et al., 2020) 25 U.S. counties Teralytics What is the effect of large-scale social distancing on

the spread of COVID-19 in the USA?

(Bian et al., 2020)

U.S. (county level)

Google Mobility, SafeGraph, de-
identified individual cellphone data

How does county-level individualism affect
adherence to social distancing?

What is the difference in cost on the economy

(Brzezinski et al., 2020) U.S. (county level) SafeGraph between imposing lockdowns and staying open?
(Chang et al., 2020) 10 U.S. counties SafeGraph How does mobility during COVID-19 affect case
" o rates and explain racial and socioeconomic inequities/
. Which spatial factors contribute to the rate of positive
(Chen et al., 2020) New York City, USA SafeGraph COVID-19 cases in NYC?
. U.S. (state and county What effect do state and local social distancing
(Cronin & Evans, 2020) levels) SafeGraph policies have on foot traffic during COVID-19?
(Dave et al., 2009) South Dakota. USA SafeGraph What were the public health impacts of the Sturgis
B ’ Motorcycle Rally?
What are the links between corruption and
(Dincer & Gillanders, 2020) U.S. (state level) SafeGraph compliance with social distancing during COVID-19
in the U.S.?
To what degree do social capital characteristics
. (community engagement and individual commitment
(Ding etal., 2020) U.S. (county level) SafeGraph to social institutions) account for differences in social
distancing adherence?
What is the association between the rate of human
(Gao et al., 2020) U.S. (state level) SafeGraph mobility changes and the rate of confirmed COVID-

19 cases?

(Holtz et al., 2020)

U.S. (county level)

SafeGraph, Facebook

What is the cost associated with an uncoordinated
government response to COVID-19 with regard to
stay-at-home orders in the U.S.?
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(Janssen & Shapiro, 2020)

Singapore

Lifesight

How does Singapore’s transparency of case
information affect voluntary activity reductions,
particularly in areas with more reported cases?

(Lamb et al., 2021)

New York City, USA

SafeGraph

To what extent can the variability in ZIP-code level
case positivity be explained by socioeconomic status
and daily change in mobility? To what extent does
daily change in mobility independently predict case
positivity?

(Li et al., 2020)

Wuhan, China

Self-collected interviews with infected
persons, relatives, close contacts, and
health care workers

How did human-to-human transmission occur
amongst close contacts in Wuhan, China since mid-
December 2019?

(Mangrum & Niekamp, 2020)

U.S. (county level)

SafeGraph

How did university spring break travel affect the
evolution of confirmed COVID-19 cases and
mortality? How did method of travel and destination
contribute to the spread of COVID-19?

(Pullano et al., 2020)

France

Flux Vision

How did mobility in France change before and during
lockdown by trip distance, user age and residency,
and time of day? What spatial heterogeneities exist in
the regional data?

(Saraswathi et al., 2020)

Karnataka, India

Public contact tracing data from the
Karnataka government

How can social network analysis be used as a tool for
outbreak monitoring and control for the COVID-19
outbreak in Karnataka, India?

(Weill et al., 2020)

U.S. (state level)

SafeGraph, Google Mobility, Place 1Q

How does income affect responses to social
distancing policies?

(Wilder et al., 2020)

Hubei, China
Lombardy, Italy
New York City, USA

Within-household contact: household
distributions from census data
Out-of-household contact: age-
stratified, country-specific estimated
contact matrices

What is the role of transmission due to particular age
groups on total COVID-19 infection and deaths?
What are the between-population variations in
COVID-19 transmission?

Table 2.1: Overview of Prior Literature on COVID-19 and Mobility
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CHAPTER 3: DATA AND METHODOLOGY

This section will describe the datasets | used and then go into detail on the data collection,
preparation, and annotation processes. | will also discuss the statistical analyses conducted on the
cleaned and annotated SafeGraph dataset merged with the American Community Survey and U.S.

Census boundary datasets.

3.1. Rationale behind Time Interval Choices

Kishore et al. (2020) argue that researchers who are investigating changes in mobility must
clearly establish their rationale for choosing a baseline time period against which to compare their
experimental condition(s), as well as acknowledge the uncertainty associated with their decision.
In this section, I will explain why | used the first two weeks of February 2020 as my baseline time
interval and the first two weeks of April 2020 as my experimental time interval.

To mitigate the influence of outlier data on my analysis, |1 defined my mobility
measurements based on the median of 14 values, which corresponded to 14 consecutive days
within a two-week period. Determining which two-week periods to collect data from that
represented before and after the onset of COVID-19 required examination of how the virus spread
in NYC and the subsequent stay-at-home measures implemented both city- and state-wide that
could influence mobility patterns from one day to the next.

Based on the timeline of stay-at-home orders affecting human mobility as outlined in
Sections 2.2.1 and 2.2.2, | hypothesized that the two dates in March that affected mobility most
significantly in New York City were 16 March 2020, when the NYC school system, gyms, and
casinos closed and restaurants and bars started providing only take-out and delivery services, and
22 March 2020, when all non-essential businesses closed and the NYC on Pause Program’s stay-
at-home orders went into effect. Prior studies examining responses to physical distancing mandates,
such as the one by Badr et al. (2020), found that reduced mobility started in early March in the 11
states corresponding to the 25 U.S. counties with the highest number of confirmed cases on 16
April 2020, and thus well before any U.S. state implemented statewide stay-at-home orders. Figure
3.1 shows how the proportion (i.e. mobility ratio) between (1) the sum of total incoming and
outgoing trips within a county on a particular day (shown on the x-axis) and (2) the average sum
of total incoming and outgoing trips within a county from 8 January to 31 January 2020, which

Badr et al. (2020) used as their baseline time period, declined sharply from 1.0 (indicating no
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change) several days before the first statewide stay-at-home order in California on 19 March.
Based on these findings by Badr et al. (2020), | could not assume that the start of a stay-at-home
mandate catalyzed the first signs of reduced mobility in NYC, so | chose the first two weeks of
February as a baseline window with stable mobility patterns unaffected by COVID-19.
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Figure 3.1: Timeseries of Mobility Ratios for U.S. States and Corresponding Dates of Stay-At-
Home Mandates?
From “Association between mobility patterns and COVID-19 transmission in the USA: a
mathematical modelling study” by H. Badr et al., 2020, The Lancet Infectious Diseases,
3099(20), p. 5.

Despite Badr et al.’s findings that populations in eleven states decreased their mobility
prior to stay-at-home orders, | hypothesized that mobility would decline further following New
York’s stay-at-home orders implemented on 22 March 2020. | chose the first two weeks of April
as the two-week period that would best represent these orders’ effect on the mobility of New York
City’s population because a week past the start of the stay-at-home orders could account for
potential fluctuations in the data as the population adjusted to the new physical distancing
measures. Figures Figure 3.2 through Figure 3.9 support this time frame choice, since the

histograms for each of the dependent mobility variables differed in shape and peak value between

! Notes: Dots represent the raw mobility ratio (MR) data for each day and the vertical dashed lines correspond to state
stay-at-home orders. Since some orders occurred on the same day, only eight lines are shown for the 11 states. Plotted
lines were smoothed with a generalized additive model.
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the first two weeks of February shown on the left and the first two weeks of April shown on the
right.
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3.2. SafeGraph Social Distancing Metrics Dataset

SafeGraph, which is a private data company that provides location data for around seven
million points of interest (POI) and aggregated mobility pattern data for over four million POls in
the United States, created a new dataset called “Social Distancing Metrics” for researchers and
industry analysts to track daily physical distancing practices. SafeGraph generates their data using
GPS pings from almost 20 million anonymous cellphone devices at the Census Block Group (CBG)
level, which is a statistical division of Census Tracts and thus greater in geographical precision
and data granularity (SafeGraph, n.d.-b; U.S. Census Bureau, n.d.). For my research purposes, this
level of granularity provided data suitable for fine-grained analysis of human behavior. To
calculate a mobile device’s home, SafeGraph determines the device’s common nighttime location
to a Geohash-7 granularity of about 153 meters by 153 meters (SafeGraph, n.d.-b). SafeGraph then
groups devices into “home” CBGs based on their common nighttime location and provides
aggregated data from the devices for each CBG (SafeGraph, n.d.-b).

To maintain individual cellphone users’ privacy and ensure “ethical harvesting” of
cellphone user data, SafeGraph applies a differential privacy algorithm known as DBSCAN
clustering to all device count metrics except the field with the number of devices per CBG, such
that there is no personal-identifying information saved from the devices (Goodale-Sussen &
Kishore, 2020: online; SafeGraph, n.d.-b). This precaution may cause a discrepancy between the
reported number of devices in a CBG and the actual number of devices in that CBG involved in

data collection, particularly in sparsely populated CBGs; however, my analysis did not involve
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variables that included device counts. Table 3.1 shows the dependent variables | used to represent

spatial mobility patterns at the CBG level.

Table 3.1: Dependent Variables Used in Regression Equations

Variable Name

“distance_traveled_from_home’

Metadata
Reported as an Integer. The value represents the median distance
(in meters) of the median distance per device in a CBG traveled
from the device’s calculated “home” (i.e. Geohash-7 common
nighttime location) within a 24-hour period. SafeGraph excluded
distances equal to 0.

“median_home_dwell_time

Reported as an Integer. The value represents the median time (in
minutes) of the sum of all total time per device in a CBG spent at
the device’s Geohash-7 common nighttime location within a 24-
hour period. Included in the total time are time ranges that may or
may not have stopped or started within the 24-hour period.

“median_non_home_dwell_time’

Reported as an Integer. The value represents the median time (in
minutes) of the sum of all total time per device in a CBG spent
outside of the device’s Geohash-7 common nighttime location

within a 24-hour period.

“median_percentage_time_home’

Reported as an Integer. The value represents the ratio between
median percentage of time spent at “home” for all devices in a
CBG and the median total time observed within a 24-hour period.

3.2.1. SafeGraph Data Collection
The first step of the data collection process was to download the SafeGraph data from their

online data catalog, accessible at https://catalog.safegraph.io. Accessing the data for free as an

academic researcher required a SafeGraph account, which | obtained by joining the SafeGraph
COVID-19 Data Consortium, now called the Placekey community (SafeGraph, n.d.-a). SafeGraph
approved my request for data on 15 April 2020, and my signed Non-Commercial Data License
Agreement can be found in Appendix E. The data were in comma-separated values (CSV) format,
with each file corresponding to a specific date (e.g. 1 February 2020) and each row in a file

corresponding to one CBG. | downloaded data for the entire months of February and April 2020.

3.2.2. SafeGraph Data Preparation
| used PostgreSQL 12 to load and merge all of the SafeGraph CSV files onto a remote
server in pgAdmin V4. | then queried for all of the rows in the database whose origin census block

group started with the State of New York’s Federal Information Processing Standards (FIPS) code
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(36) and exported the selected rows into a new CSV file. Next, | narrowed the dataset from New
York State CBGs to just the CBGs that intersected with a shapefile of NYC CBGs to create a new
CSV file with data for just NYC. Lastly, | wrote a series of scripts with Python 3.9 that created
one dataset with NYC data from 1 February to 14 February 2020 and another dataset with NYC
data from 1 April to 14 April 2020.

3.3. American Community Survey

The American Community Survey (ACS) is an ongoing survey that releases new data every
year on population and housing at the national, state, county, Census Tract, and even Census Block
Group (CBG) level (United States Census Bureau, 2017). ACS users range from federal, state, and
local agencies to educators and journalists, and the data are useful because they are more recent
than the Census, whose data are collected every 10 years (United States Census Bureau, 2017).
The ACS has three different types of data releases that come out each year: 1-year estimates, 1-

year supplemental estimates, and 5-year estimates.

3.3.1. ACS Data Collection

| used demographic data from the ACS rather than the 2010 Census because incorporating
the most recent possible demographic data provided a more accurate representation of the areas
that | was analyzing in the context of a time-sensitive event like the COVID-19 pandemic. More
specifically, I chose to use the ACS 5-year estimates, and while the U.S. Census Bureau released
the most recent version, which covered 2015-2019, on 10 December 2020, | opted for the 5-year
estimates from 2016 that covered 2012-2016 because SafeGraph had already organized the latter
estimates into a set of CSV files, thus eliminating the extensive wrangling process required when
working with Open Census Data. As was the case with collecting the SafeGraph mobility data, |

accessed the ACS’s 2016 5-year estimates by CBG using SafeGraph’s online data catalog.

3.3.2. ACS Data Preparation and Annotation

Since the 5-year estimates data were reported at the CBG level, | merged the SafeGraph
mobility patterns dataset with the 5-year estimates using the CBG ID code. | then renamed the
columns with the full variable name and merged the CSVs for February, March, and April 2020

into one CSV file to facilitate calculations between monthly variables.
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3.4. United States Census Bureau Boundaries

Shapefiles from the United States Census Bureau have cartographic boundary levels at the
2020 CBG level for each state. However, the NYC Department of City Planning provides
shapefiles for the NYC boundary at only the 2010 census block level, which is at an even higher
resolution than the CBG level. To obtain a shapefile with NYC CBGs, | used ArcMap v.10.7.1 to
reproject both the NYC 2010 census block shapefile and the NY 2020 CBG shapefile to the WGS
1984 UTM Zone 18N coordinate system, which is the one recommended for representing data at
a scale smaller than 1:10,000 (New York Standards Work Group, n.d.). Next, I dissolved the NYC
census block shapefile into census block groups, and then intersected the result with the NY 2020
CBG shapefile using the GEOID column, which held the census block group codes. Lastly, I linked
the shapefile with the CSV file containing SafeGraph and ACS data.

3.5. Statistical Analyses

I ran my analyses using the 3.6.2 version of the R programming language in version
1.2.5033 of RStudio. To compare the differences in distance traveled from home before and after
the onset of COVID-19 in New York City, | divided the median distance traveled from home in
the first two weeks of February 2020 for each CBG by the median mobility value in the first two
weeks of April 2020 for the equivalent CBG to create a mobility ratio (MR). | then repeated the
process to compare the differences in median home dwell time, median non-home dwell time, and
median percentage time home. This approach loosely follows Badr et al. (2020)’s methodology,
as they also created a MR variable to quantify mobility changes from baseline.

To avoid dividing by zero when computing the four mobility ratios, | changed all instances
of “0” to “0.1” for the four variables representing changes in mobility between February and April
2020. For median distance traveled from home, 0.1 corresponded to one-tenth of a meter or ten
centimeters. For median home dwell time and median non-home dwell time, 0.1 corresponded to
one-tenth of a minute or six seconds. Lastly, for median percentage time spent at home, 0.1
corresponded to one-tenth of a percentage.

Next, | prepared the inputs needed for the regression models. First, I converted a shapefile
containing NYC block groups to a neighbours list based on gueen contiguity, which meant that a

block group sharing a single boundary point with another counted as neighbors. Of the 6,863 block
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groups, only one had zero links to other block groups, which was the block group for Ellis Island.
| also created a vector of power traces of the spatial weights matrix to use as input for the spatial
lag model rather than the neighbours list (LeSage & Pace, 2009). Using the "trW" function, | set
the type for powering the matrix to "moments,” which uses Smirnov and Anselin (2009)’s looping
space saving algorithm to transform the matrix values.

My approach to computing the global and local regression models stayed the same for all
four mobility ratios. | first fitted an ordinary least squares (OLS) linear regression model to the
data in R to determine the global relations between mobility and sociodemographic factors. Table

3.2 shows the explanatory variables used in the regression equation.

Table 3.2: Explanatory Variables Used in Regression Equations

Variable Name Metadata
‘age” Estimated median age of the population
‘race’ Estimated number of people who identify as only White

Estimated number of workers 16 years and older who use public

“transport’ . ) .
P transportation (excluding taxicabs) to travel to work

“female_workers’ Estimated number of female workers 16 years and older

Estimated number of renter occupied housing units with over 1.5

“housing_occupancy_rent’
- - occupants per room

Estimated number of households that earned less than $25,000 a year

in 2016 (accounting for inflation)

“min_wage Note: The base minimum wage in New York City from 12/31/15 to 12/31/16 was
$9.00/hour, which worked out to about $18,000/year (New York State Department
of Labor, n.d.).

“children® Estimated number of families with children under the age of 18

Estimated number of people 25 years and older with a regular high

“education” :
school diploma

Estimated number of people from the civilian noninstitutionalized

“health_insurance ) ) -
- population with no health insurance coverage

While each of the non-spatial OLS models yielded reasonable results, my low R? values
led me to check for spatial autocorrelation using the Global Moran’s Index correlation test for
regression residuals. Spatial autocorrelation determines “how related the values of a variable are
based on the locations where they were measured.” (UCLA Institute for Digital Research &

Education Statistical Consulting, n.d.: online). The R command from the “spdep” library,
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“Im.morantest,” required two inputs. The first was the OLS regression equation that provided the
residuals for the linear correlation test. The second input was the large “listw™ object holding the
spatial relationship matrix | calculated based on queen contiguity (Anselin, 2007). 1 also set the
zero policy to "TRUE" so that | could include the island block groups for Ellis Island in my analysis.

Next, | ran Lagrange Multiplier diagnostics for spatial dependence in linear models using
the “Im.LMtestss command from the “spdep™ library to determine how much my model
performance would improve if | used the simple LM test for error dependence (LMerr), the simple
LM test for a missing spatially lagged dependent variable (LMIlag), the robust version RLMerr,
which tests for error dependence in the possible presence of a missing lagged dependent variable
and attempts to filter out possible false positives, or the other robust version, RLMIlag, which has
the same idea but tests the other way around (DataCamp, n.d.). The Lagrange Multiplier
diagnostics tests also included the portmanteau test (SARMA) for completeness, even though this
test is rarely the most suitable model (BurkeyAcademy, 2018). To determine which model to use,
| compared the p-values of LMerr and LMlag. If they were both significant, | chose the model that
corresponded to the robust model (RLMerr or RLMIlag) with the lower p-value (Anselin, 2003,
2005). The figure in Appendix C.1 illustrates this decision process.

Next, | ran two spatial regression models. Both of these models determined whether the
mobility patterns in surrounding CBGs affected the mobility pattern in one CBG (Medina &
Solymosi, 2019). However, the first, called Spatially Lagged X (SLX), tested local spatial relations,
which meant that surrounding block groups were those immediately adjacent to a block group. The
second model, which was the spatial autoregressive (SAR) Spatial Lag model, tested global spatial
relations, which meant that surrounding block groups were all of the observations in the data. |
used the “spdep” command "ImSLX" to run my SLX models and the “impacts’ command to observe
the direct, indirect, and total effects. The “spdep” command “lagsarim™ for the SAR models was
more complex, as | used the vector of power traces rather than the “listw™ object and specified the
approximate log-determinant method as "Chebyshev.” To summarize the impacts from the SAR
models, | set the number of simulations to 5,000 to compute distributions for the impact measures.

The third and final spatial regression model was the Spatial Error Model (SEM), which 1
ran using the “spdep” command “errorsarlm.” This model also used the "Chebyshev’ method,
although I used the "listw" object rather than the vector of power traces as input. After running the

model, | conducted a spatial Hausman test to determine if differences existed between the OLS
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and SEM coefficients. A significant result suggested that neither OLS nor SEM were “yielding
regression parameter estimates matching the underlying parameters in the [data generating
process]” (Pace & LeSage, 2008: 283). If | obtained a significant result from the spatial Hausman
test, 1 ignored the OLS and SEM results.

3.6. Methodological Limitations

Prior studies using aggregated and anonymized mobility data have commented on the
various limitations involved with this approach, including incomplete population
representativeness, differences in individual mobility and SES factors, and perhaps incorrectly
inferring causal relationships from complex interactions between factors (Chang et al., 2020; Chen
et al., 2020; Lamb et al., 2021; Pullano et al., 2020). My methodology attempted to rectify some
of these limitations by correcting for sampling bias, examining data at the CBG level, which is the
second most granular geographical scale typically reported, and noting in my discussion when
external factors may have influenced observed relationships between mobility and

sociodemographic variables.

3.7. Ethics

While | am not personally interacting with the subjects represented in the SafeGraph or
ACS datasets, | hold a responsibility as an academic researcher to ensure that my data usage does
not overstep the boundaries protecting individual privacy. As Kishore et al. (2020) note, a
pandemic is not justification for ignoring the risks to an individual’s privacy associated with using
personal data to calculate disease transmission-related metrics like sources of mass infection or
mobility habits. To ensure that data privacy standards were upheld during my research, | selected
data from a provider who applied a differential privacy algorithm to the data, signed a data license
agreement, and did not attempt to re-identify subjects during my analysis by reporting findings

generalized across NYC CBGs.
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CHAPTER 4: RESULTS

This chapter contains all of the results | obtained from calculating descriptive statistics,
running four regression models, and visualizing my results. | begin this chapter in Section 4.1 with
the descriptive statistics for the sociodemographic factors, mobility variables, and mobility ratios.
In Section 4.2, | present the outputs from the four regression models: the Ordinary Least Squares
(OLS) linear regression model, the Spatially Lagged X (SLX) model, the Spatial Autoregressive
(SAR) model, and the Spatial Error Model (SEM). This section contains the results from regression
models with the dependent variable y as the change in median distance traveled from home. In the
subsequent sections, | report the results from running the four regression models with the
dependent variable y as the change in median home dwell time (Section 4.3), median non-home

dwell time (Section 4.4), and median percentage time spent at home (Section 4.5).

4.1. Frequency Distributions and Descriptive Statistics

Both the frequency distribution and descriptive statistics for the change in median distance
traveled from home indicate that, overall, most NYC block groups experienced decreased median
mobility in the first two weeks of April 2020 compared to the first two weeks of February 2020.
Based on how | calculated the ratio of February distances to April distances, a value less than one
suggested that people in a block group traveled farther in April than in February, while a ratio
value greater than one showed that people in a block group traveled farther in February than in
April. Figure 4.1 is the frequency distribution of values for the ratio between median distance
traveled from home in NYC during the first two weeks of February and the same data for the first
two weeks of April. The histogram shows that most of the ratio values fell between zero and five,
but with more values greater than one than less than one. The median values in Table 4.1 support
this finding, since M = 3794.50 meters for median distance traveled from home in February versus
M = 2448.00 meters for median distance traveled from home in April. Furthermore, in Table 4.2,
M = 1.6178 for the change in median distance traveled from home, which indicates that there was
a difference in the distance traveled from home between February and April.

The frequency distribution and descriptive statistics for the change in home dwell time
indicate that, overall, most NYC block groups experienced increased home dwell time in the first
two weeks of April 2020 compared to the first two weeks of February 2020. Based on how |

calculated the ratio of February home dwell times to April home dwell times, a value less than one
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suggested that people in a block group stayed home for longer periods of time in April than in
February, while a ratio value greater than one showed that people in a block group stayed home
for longer periods of time in February than in April. Figure 4.2 is the frequency distribution of
values for the ratio between median home dwell time in NYC during the first two weeks of
February and the same data for the first two weeks of April. The histogram shows that almost all
of the ratio values fell between zero and one, thus suggesting that median home dwell times across
all block groups were mostly greater in April than in February. The median values in Table 4.1
support this finding, since M = 705.50 minutes for median home dwell time in February versus M
= 1125.80 minutes for median home dwell time in April. Furthermore, in Table 4.2, M = 0.6170
for the change in median home dwell time, which indicates that there was a difference in the home
dwell time between February and April.

The frequency distribution and descriptive statistics for the change in non-home dwell time
indicate that, overall, most NYC block groups experienced decreased non-home dwell time in the
first two weeks of April 2020 compared to the first two weeks of February 2020. In other words,
people spent more time at home in April than in February. Based on how | calculated the ratio of
February non-home dwell times to April non-home dwell times, a ratio value greater than one
suggested that people in a block group spent time away from home for longer periods of time in
February than in April, while a ratio value less than one showed that people in a block group spent
time away from home for longer periods of time in April than in February. Figure 4.3 is the
frequency distribution of values for the ratio between median non-home dwell time in NYC during
the first two weeks of February and the same data for the first two weeks of April. Besides the
histogram’s large spike at around zero, most of the values were greater than one, thus suggesting
that median non-home dwell times across all block groups were mostly greater in February than
in April. The median values in Table 4.1 support this finding, since M = 128.00 minutes for median
non-home dwell time in February versus M = 0.10 minutes for median non-home dwell time in
April. Since I changed all values of “0” to “0.1” during data pre-processing, | interpreted the
median non-home dwell time in April of 0.10 minutes to mean that a large majority of block groups
experienced essentially no time spent away from home. The median ratio value for the change in
median non-home dwell time shown in Table 4.2, M = 1085.0000, further supports that there was

a difference in the non-home dwell time between February and April.
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Lastly, the frequency distribution and descriptive statistics for the change in percentage
time at home indicate that, overall, most NYC block groups experienced an increase in the
percentage of time spent at home in the first two weeks of April 2020 compared to the first two
weeks of February 2020. Based on how I calculated the ratio of February percentage time at home
to April percentage time at home, a ratio value less than one suggested that people in a block group
spent more of their time at home in April than in February, while a ratio value greater than one
showed that people in a block group spent more of their time at home in February than in April.
Figure 4.4 is the frequency distribution of values for the ratio between the median percentage time
spent at home in NYC during the first two weeks of February and the same data for the first two
weeks of April. Most of the ratio values lie between 0.5 and 1, thus suggesting that the median
percentages of time spent at home across all block groups were mostly greater in April than in
February. The median values in Table 4.1 support this finding, since M = 76.50 for median non-
home dwell time in February versus M = 100.00 for median non-home dwell time in April. The
median ratio value for the change in percentage time spent at home shown in Table 4.2, M =0.7750,

further supports that there existed a difference in the percentage time spent at home between

February and April.
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Histogram for Ratio of February to April 2020
Median Non-Home Dwell Times in New York City CBGs
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Figure 4.3: Histogram for the Ratio of Median
Non-Home Dwell Times in NYC between
February and April 2020
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Figure 4.4: Histogram for the Ratio of
Median Percentage Time at Home in NYC
between February and April 2020
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Table 4.1: Descriptive Statistics for Mobility Variables

Month

Variable (in 2020) Minimum 1%t Quarter Median Mean 3™ Quarter Maximum NA’s
Median distance Feb 14250 294420 379450 434920  4908.80  835874.00 1056
traveled from
home (meters) Apr 89.00 1542.00  2448.00 1141000 3880.00  1166288.00 1062
Median home Feb 0.10 622.00 70550  660.60 762.00 131650 1056
dwell time (min) — ppy 0.10 87420 112580 101660  1307.00 143800 1059
Median non-home  Feb 0.10 81.00 128.00  143.20 193.00 47550 1056
dwell time (min) Apr 0.10 0.10 0.10 16.31 0.10 137400 1059
Median percentage Feb 0.10 71.00 76.50 75.93 83.00 100.00 1056
time home Apr 0.10 100.00 100.00  95.15 100.00 100.00 1059

Note: Values of “0” were replaced with “0.1” for median home dwell time, non-home dwell

time, and percentage time home. Outlier data were retained.

Table 4.2: Descriptive Statistics for Mobility Ratios Variables between February and April 2020

Ratio Variable Minimum 1t Quarter  Median Mean 39 Quarter Maximum NA’s
Median distance 0.0002 1.0476 16178 21304 2.4536 415222 1075
traveled from home
Median home dwell
0.0000 0.5590 0.6170 117.1270 0.7360 9265.0000 1073

time
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Median non-home
dwell time

Percentage time home 0.0010 0.7200 0.7750 16.8280 0.8500 1000.0000 1073
Note: Outlier data were retained.

0.0000 555.0000 1085.0000 1201.0000 1755.0000 4360.0000 1073

Table 4.3: Descriptive Statistics for Explanatory Variables by Census Block Group

Variable Name Minimum 1%t Quarter  Median Mean 39 Quarter Maximum NA’s
‘age 10.30 31.90 36.20 37.40 42.0 87.2 1114
“race’ 0.00 172.00 481.00 565.90 835.00 6476.00 1035
“transport’ 0.00 190.00 304.00 344.20 456.00 4107.00 1035
“female_workers® 0.00 190.00 268.00 295.40 370.00 3565.00 1035
hous'ngr—;ﬁ?wamy— 0.00 0.00 0.00 14.36 20.00 386.00 1035
‘min_wage 0.00 54.00 98.00 129.30 170.00 876.00 1035
“children 0.00 121.00 206.00 239.20 319.00 1890.00 1035
“education 0.00 95.00 167.00 185.50 253.00 902.00 1035
“health_insurance’ 0.00 50.00 110.00 143.30 198.00 1295.00 1035

Map 4.1 depicts the change in median distance traveled from home between February and
April 2020 at the CBG level in NYC, while Map 4.2 shows the change in median home dwell time
during the same time period. Map 4.3 shows the change in median non-home dwell time and Map
4.4 illustrates the change in median percentage time at home. For all four maps, | removed outlier
data by excluding the CBGs whose change in median home dwell time were greater than 2.0. Since
| had changed “Null” values to -999 for data parsing purposes, | also excluded ratios that were less
than 0. | used natural breaks to create the categories.

In Map 4.1, the darker red values correspond to a greater difference in median distance
traveled from home between February and April. The smallest category, which includes ratio
values from 0.00 to 1.71, shows block groups that had either a greater median distance traveled
from home in April, which would make the ratio value less than one, or a slightly larger distance
traveled from home in February, which would make the ratio value just above one. However, based
on the descriptive statistics for the ratio of median distance traveled from home, | assumed that
most of these values belong to the latter category. Block groups in the four largest categories have

about a two-fold or greater increase in median travel distance from February to April.
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Map 4.2 shows the change in median home dwell time, with the darker red categories
corresponding to a greater difference in home dwell time between February and April. The upper
ratio value shown is 2.0 because | restricted the outlier values greater than this threshold; however,
a majority of the block groups had ratio values less than 1.0, which correspond to more time spent
at home in April than in February.

The darker red categories in Map 4.3 correspond to a greater difference in median non-
home dwell times between February and April. The first category has ratio values ranging from
0.03 to 495.00. Since I used natural breaks to create the categories, | interpreted this enormous gap
to mean that there were few values less than one, which would correspond to more time spent
away from home in April, and many more values greater than 495, which would suggest that block
group experienced enormous differences in non-home dwell time, with greater time spent away
from home in February.

Lastly, Map 4.4 illustrates the change in median percentage time at home. Most values are
less than one, thus showing that a majority of block groups experienced a greater percentage of

time at home in April than in February.
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4.2. Effects of Demographic Factors on Distance Traveled from Home in NYC

In this section, | explore the effects of various demographic factors on the change in median
distance traveled from home using four regression models. The first model was an ordinary least
squares (OLS) regression, also known as a simple linear model, and does not involve a spatial
component. Appendix D.1 contains the summary statistics from the OLS regression with change
in median distance traveled from home as the dependent variable. Despite including nine
explanatory variables in the model, | obtained an R? value of 0.02913, which was quite low. This
result led me to check if my residuals contained spatial autocorrelation.

To test for spatial autocorrelation, | performed a Global Moran’s Index linear correlation
for regression residuals test. The null hypothesis is that there is no spatial correlation in the
residuals, whereas the alternative hypothesis states that there is spatial correlation in the residuals.
Appendix D.2 shows the results of this test. Based on the difference in the observed Moran’s 1
value (0.0661) and the expected value (-0.0005), as well as the significant p-value (p < 0.001 for
a = 0.05), | rejected the null hypothesis and accepted the alternative hypothesis that there existed
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spatial autocorrelation in the residuals. This result indicated that the OLS model was no longer the
appropriate model to use with change in median distance traveled from home as the dependent
variable. Instead, | needed to use a spatial regression model.

To determine which spatial model might best fit the data, | ran a Lagrange Multiplier
Diagnostic Tests for Spatial Dependence with the dependent variable as median distance traveled
from home. Appendix D.3 shows the results of these tests. Since the p-values for both LMerr and
LMlag were statistically significant (p < 0.001), I compared the p-values for the robust versions,
RLMerr and RLMIlag. While the p-values for these models were also statistically significant (p <
0.001), the p-value for RLMlag was smaller than the one for RLMerr. Therefore, the lag model
appeared to be a more appropriate fit for the data.

The first spatial regression model, the Spatial Durbin Model or Spatially Lagged X (SLX)
model, was a local spatial regression model. The summary statistics of the model are shown in
Appendix D.4. There were six explanatory variables with significant results (e« = 0.05) both
within a block group, which relates to the direct effect, and the neighboring block groups, which
relate to the indirect effects (see Appendix D.5). These six variables were median age, number of
people who took public transit (excluding taxicabs) to work, number of female workers 16 years
and older, number of renter occupied housing units with over 1.5 occupants per room, number of
families with children under 18, and number of people 25 years and older whose highest degree
earned is a regular high school diploma.

The positive coefficient estimate associated with the original age variable indicated that a
block group with a higher median age experienced increased change in distance traveled from
home (p < 0.001). The neighboring block groups with a greater number of people who take public
transit to work also experienced increased changes in distance traveled from home (p < 0.001).
Additionally, the positive total effect impact measure shown in Appendix D.5 indicates that if the
median age in every block group increased, the median change in distance traveled from home
would also increase overall (p < 0.001). These findings indicate that block groups with an older
median age likely experienced a decrease in distance traveled from home between April and
February, since a smaller value in the denominator (April) caused the mobility ratio to increase.
This result aligned with my expectation that block groups consisting of mostly older people would

decrease their mobility more than those primarily made up of younger populations.
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The positive coefficient estimate associated with the original transit variable indicated that
a block group with a greater number of people who take public transit to work experienced
increased change in distance traveled from home (p < 0.01). The neighboring block groups with a
greater number of people who take public transit to work also experienced increased changes in
distance traveled from home (p < 0.05). Additionally, the positive total effect impact measure in
Appendix D.5 indicates that if the number of public transit users in every block group increased,
the median change in distance traveled from home would also increase overall (p < 0.001). These
findings indicate that block groups with more public transit users likely experienced a decrease in
distance traveled from home between April and February.

The negative coefficient estimate associated with the original female workers variable
indicated that within a block group with a higher number of female workers over 16, the change
in distance traveled from home decreased (p < 0.001). The neighboring block groups with a greater
number of female workers over 16 also experienced a decrease in the change in distance traveled
from home (p < 0.001). Additionally, the negative total effect impact measure in Appendix D.5
indicates that if the number of female workers over 16 in every block group increased, the median
change in distance traveled from home would decrease overall (p < 0.001). These findings indicate
that block groups with more working women likely experienced an increase in distance traveled
from home between April and February, since a larger value in the denominator (April) caused the
mobility ratio to decrease.

The positive coefficient estimate associated with the original housing occupancy variable
indicated that a block group with a greater number of renter occupied housing units with over 1.5
occupants per room experienced increased change in distance traveled from home (p < 0.05). The
neighboring block groups with a greater number of renter occupied housing units with over 1.5
occupants also experienced increased changes in distance traveled from home (p < 0.05).
Additionally, the positive total effect impact measure in Appendix D.5 indicates that if the number
of renter occupied housing units with over 1.5 occupants in every block group increased, the
median change in distance traveled from home would also increase overall (p < 0.01). These
findings indicate that block groups with more crowded rental units likely experienced a decrease
in distance traveled from home between April and February.

The positive coefficient estimate associated with the original children variable indicated

that a block group with a greater number of families who have children under 18 years old
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experienced increased change in distance traveled from home (p < 0.01). The neighboring block
groups with a greater number of families who have children also experienced increased changes
in distance traveled from home (p < 0.001). Additionally, the positive total effect impact measure
in Appendix D.5 indicates that if the number of families who have children in every block group
increased, the median change in distance traveled from home would also increase overall (p <
0.001). These findings indicate that block groups with a greater number of families with children
likely experienced a decrease in distance traveled from home between April and February.

Lastly, the positive coefficient estimate associated with the original education variable
indicated that a block group with a greater number of people whose highest degree is a high school
diploma experienced increased change in distance traveled from home (p < 0.01). The neighboring
block groups with a greater number of high school graduates also experienced increased changes
in distance traveled from home (p < 0.01). Additionally, the positive total effect impact measure
in Appendix D.5 indicates that if the number of high school graduates in every block group
increased, the median change in distance traveled from home would also increase overall (p <
0.001). These findings indicate that block groups with more people who graduated high school
likely experienced a decrease in distance traveled from home between April and February.

The second spatial regression model, the Spatial Autoregressive (SAR) Lagged Response
model, was a global spatial regression model. The summary statistics of the model are in Appendix
D.6, with the rho value indicating that the change in median distance traveled from home in
neighboring block groups had a positive effect on the change in median travel distance within a
block group (p < 0.001). Unlike the SLX model, interpretations of the SAR model must draw upon
the impacts reported in Appendix D.7 rather than the coefficient estimates and their p-values
because of an infinite feedback loop on the y-value in which an increase in a block group’s y-
value will affect the neighboring block groups’ y-values, which will in turn affect the individual
block group’s y-value. It is also important to note that since the model simulated the impact
measures’ p-values (R = 5,000 iterations), the p-values changed slightly between runs. Therefore,
| provided a caveat for variables whose p-values fluctuated around 0.001 or greater and assumed
that variables with p-values much lower than 0.001 were always significant (see Appendix D.7).
The four variables with consistently significant simulated p-values for the impact measures were
median age, number of female workers, number of families with children, and number of people

whose highest degree is a high school diploma. The two variables whose simulated p-values

37



fluctuated around p < 0.001 were number of White-only residents and number of public transit
users. Lastly, the two variables whose simulated p-values fluctuated around p < 0.05 were number
of renter occupied housing units with over 1.5 occupants per room and number of households who
earned less than $25,000 a year.

The positive direct impact value associated with the age variable indicates that if the
median age of block group A were to increase, A’s change in travel distance from home would
also increase. Similarly, the positive indirect impact value shows that an increase in the median
age of A’s neighboring block groups would increase A’s change in travel distance. Since the SAR
model is a global spatial model, a second interpretation of the indirect impact is that an increase in
A’s median age would lead to increased change in travel distance for all block groups in the data.
These findings indicate that block groups with an older median age likely experienced shorter
travel distances from home in April compared to February.

The negative direct impact value associated with the female workers variable indicates that
if the number of female workers in block group A were to increase, A’s change in travel distance
from home would decrease. Similarly, the negative indirect impact value shows that an increase
in the number of female workers in A’s neighboring block groups would decrease A’s change in
travel distance. Additionally, an increase in A’s number of female workers would lead to decreased
change in travel distance for all block groups in the data. These findings indicate that block groups
with more working females likely experienced greater travel distances from home in April
compared to February.

The positive direct impact value associated with the children variable indicates that if the
number of families with children in block group A were to increase, A’s change in travel distance
from home would also increase. Similarly, the positive indirect impact value shows that an increase
in the number of families with children in A’s neighboring block groups would increase A’s change
in travel distance. Additionally, an increase in A’s number of families with children would lead to
increased change in travel distance for all block groups in the data. These findings indicate that
block groups with more families with children likely decreased their travel distances from home
in April compared to February.

The positive direct impact value associated with the education variable indicates that if the
number of people with high school diplomas in block group A were to increase, A’s change in

travel distance from home would also increase. Similarly, the positive indirect impact value shows
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that an increase in the number of high school graduates in A’s neighboring block groups would
increase A’s change in travel distance. Additionally, an increase in A’s number of high school
graduates with children would lead to increased change in travel distance for all block groups in
the data. These findings indicate that block groups with more high school graduates likely
decreased their travel distances from home in April compared to February.

For the variables with p-values fluctuating around 0.001 or greater, the interpretations are
very similar. The negative direct and indirect impact values associated with the number of White-
only residents indicate that block groups with more White-only residents likely experienced
greater travel distances from home in April compared to February. Similarly, the negative direct
and indirect impact values associated with the number of households who earned less than $25,000
a year indicate that block groups with more low-income residents likely experienced greater travel
distances from home in April. In terms of the number of public transit users and renter occupied
housing units, the positive direct and indirect impact values associated with these two variables
suggest that block groups with more public transit users and crowded rental units likely
experienced shorter travel distances from home in April.

The third and final spatial regression model was the Spatial Error Model (SEM). While the
Lagrange tests | ran previously (see Appendix D.3) suggested that the lag model was more
appropriate than the error model for a regression with median travel distance as the dependent
variable, | included the SEM model in my analysis because the results for LMerr and RMerr were
both significant at « = 0.05. However, | did not report the summary statistics because the
statistically significant spatial Hausman test result (p < 0.001 at @ = 0.05) shown in Appendix D.8
confirmed there were enough differences in the coefficients to establish that neither OLS nor SEM

were the right models to use for estimating the coefficients.

4.3. Effects of Demographic Factors on Home Dwell Time in NYC

In this section, | explore the effects of various demographic factors on the change in median
home dwell time using four regression models. The first model was an ordinary least squares (OLS)
regression. Appendix D.9 contains the summary statistics from the OLS regression with change in
median home dwell time as the dependent variable. Despite including nine explanatory variables
in the model, | obtained an R? value of 0.05419, which was quite low. This result led me to check

if my residuals contained spatial autocorrelation.
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To test for spatial autocorrelation, | performed a Global Moran’s Index linear correlation
for regression residuals test. Appendix D.10 shows the results of this test. Based on the difference
in the observed Moran’s I value (0.1201) and the expected value (-0.0005), as well as the
significant p-value (p < 0.001 for « = 0.05), | rejected the null hypothesis and accepted the
alternative hypothesis that there existed spatial autocorrelation in the residuals. This result
indicated that the OLS model was no longer the appropriate model to use with change in median
home dwell time as the dependent variable. Instead, | needed to use a spatial regression model.

To determine which spatial model might best fit the data, | ran a Lagrange Multiplier
Diagnostic Tests for Spatial Dependence with the dependent variable as median home dwell time.
Appendix D.11 shows the results of these tests. Since the p-values for both LMerr and LMlag were
statistically significant (p < 0.001), | compared the p-values for the robust versions, RLMerr and
RLMlag. While the p-values for these models were also statistically significant (p < 0.001), the p-
value for RLMlag was smaller than the one for RLMerr. Therefore, the lag model appeared to be
a more appropriate fit for the data.

The first spatial regression model, the Spatial Durbin Model or Spatially Lagged X (SLX)
model, was a local spatial regression model. The summary statistics of the model are shown in
Appendix D.12. The positive coefficient estimate associated with the original female workers
variable indicated that within a block group with a higher number of female workers over 16, the
change in median home dwell time increased (p < 0.01). The neighboring block groups with a
greater number of female workers over 16 also experienced an increase in the change in median
home dwell time (p < 0.001). Additionally, the positive total effect impact measure in Appendix
D.13 indicates that if the number of female workers over 16 in every block group increased, the
median change in home dwell time would also increase overall (p < 0.001). These findings indicate
that block groups with more working women likely experienced shorter home dwell times in April
compared to February. The positive coefficient estimate associated with the original female
workers variable indicated that within a block group with a higher number of female workers over
16, the change in median home dwell time increased (p < 0.01). The neighboring block groups
with a greater number of female workers over 16 also experienced an increase in the change in
median home dwell time (p < 0.001). Additionally, the positive total effect impact measure in
Appendix D.13 indicates that if the number of female workers over 16 in every block group

increased, the median change in home dwell time would also increase overall (p < 0.001). These
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findings indicate that block groups with more working women likely experienced shorter home
dwell times in April compared to February.

The negative coefficient estimate associated with the original children variable indicated
that within a block group with a higher number of families with children, the change in median
home dwell time decreased (p < 0.001). The neighboring block groups with a greater number of
families with children also experienced a decrease in the change in median home dwell time (p <
0.001). Additionally, the negative total effect impact measure in Error! Reference source not found.
indicates that if the number of families with children in every block group increased, the median
change in home dwell time would decrease overall (p < 0.001). These findings indicate that block
groups with more families with children likely experienced longer home dwell times in April
compared to February.

Lastly, the negative coefficient estimate associated with the original education variable
indicated that within a block group with a higher number of people whose highest degree obtained
is a high school diploma, the change in median home dwell time decreased (p < 0.001). The
neighboring block groups with a greater number of high school graduates also experienced a
decrease in the change in median home dwell time (p < 0.001). Additionally, the negative total
effect impact measure in Appendix D.13 indicates that if the number of high school graduates in
every block group increased, the median change in home dwell time would decrease overall (p <
0.001). These findings indicate that block groups with more high school graduates likely
experienced longer home dwell times in April compared to February.

There were three explanatory variables with significant results (¢ = 0.05) both within a
block group, which relates to the direct effect, and the neighboring block groups, which relate to
the indirect effects (see Appendix D.13). These three variables were number of female workers 16
years and older, number of families with children under 18, and number of people 25 years and
older whose highest degree earned is a regular high school diploma.

The positive coefficient estimate associated with the original female workers variable
indicated that within a block group with a higher number of female workers over 16, the change
in median home dwell time increased (p < 0.01). The neighboring block groups with a greater
number of female workers over 16 also experienced an increase in the change in median home
dwell time (p < 0.001). Additionally, the positive total effect impact measure in Appendix D.13
indicates that if the number of female workers over 16 in every block group increased, the median
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change in home dwell time would also increase overall (p < 0.001). These findings indicate that
block groups with more working women likely experienced shorter home dwell times in April
compared to February.

The negative coefficient estimate associated with the original children variable indicated
that within a block group with a higher number of families with children, the change in median
home dwell time decreased (p < 0.001). The neighboring block groups with a greater number of
families with children also experienced a decrease in the change in median home dwell time (p <
0.001). Additionally, the negative total effect impact measure in Appendix D.13 indicates that if
the number of families with children in every block group increased, the median change in home
dwell time would decrease overall (p <0.001). These findings indicate that block groups with more
families with children likely experienced longer home dwell times in April compared to February.

Lastly, the negative coefficient estimate associated with the original education variable
indicated that within a block group with a higher number of people whose highest degree obtained
is a high school diploma, the change in median home dwell time decreased (p < 0.001). The
neighboring block groups with a greater number of high school graduates also experienced a
decrease in the change in median home dwell time (p < 0.001). Additionally, the negative total
effect impact measure in Appendix D.13 indicates that if the number of high school graduates in
every block group increased, the median change in home dwell time would decrease overall (p <
0.001). These findings indicate that block groups with more high school graduates likely
experienced longer home dwell times in April compared to February.

The second spatial regression model, the Spatial Autoregressive (SAR) Lagged Response
model, was a global spatial regression model. The summary statistics of the model are in Appendix
D.14, with the rho value indicating that the change in median home dwell time in neighboring
block groups had a positive effect on the change in median home dwell time within a block group
(p < 0.001). Like Section 4.2, | provided a caveat for variables whose p-values fluctuated around
0.001 or greater and assumed that variables with p-values much lower than 0.001 were always
significant (see Appendix D.15). The four variables with consistently significant simulated p-
values for the impact measures were median age, number of White-only residents, number of
families with children, and number of people whose highest degree is a high school diploma. The
two variables whose simulated p-values fluctuated around p < 0.001 were number of female

workers and number of public transit users.
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The negative direct impact values associated with the age, children, and education variables
indicate that if the median age, number of families with children, or number of people with a high
school diploma in block group A were to increase, A’s change in home dwell time would decrease.
Similarly, the negative indirect impact values show that an increase in the median age, number of
families with children, or number of high school graduates in A’s neighboring block groups would
decrease A’s change in home dwell time. Since the SAR model is a global spatial model, a second
interpretation of the indirect impact is that an increase in A’s median age, number of families with
children, or number of high school graduates would lead to decreased change in home dwell time
for all block groups in the data. These findings indicate that block groups with an older median
age, greater number of families with children, and high school graduates likely experienced greater
home dwell times in April compared to February.

The positive direct impact value associated with the race variable indicates that if the
number of White-only residents in block group A were to increase, A’s change in home dwell time
would also increase. Similarly, the negative indirect impact value shows that an increase in the
number of White-only residents in A’s neighboring block groups would increase A’s change in
home dwell time. Additionally, an increase in A’s number of White-only residents would lead to
increased change in home dwell time for all block groups in the data. These findings indicate that
block groups with more White-only residents likely experienced shorter home dwell times in April
compared to February.

For the variables with p-values fluctuating around 0.001, the interpretations are very
similar. The negative direct and indirect impact values associated with the number of public transit
users indicate that block groups with more public transit users likely experienced greater home
dwell times in April compared to February. Meanwhile, the positive direct and indirect impact
values associated with the number of female workers indicate that block groups with more female
workers likely experienced shorter home dwell times in April.

The third and final spatial regression model was the Spatial Error Model (SEM). While the
Lagrange tests | ran previously (see Appendix D.11 suggested that the lag model was more
appropriate than the error model for a regression with median home dwell time as the dependent
variable, | included the SEM model in my analysis because the results for LMerr and RMerr were
both significant at « = 0.05. However, | did not report the summary statistics because the

statistically significant spatial Hausman test result (p < 0.001 at « = 0.05) shown in Appendix
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D.16 confirmed there were enough differences in the coefficients to establish that neither OLS nor

SEM were the right models to use for estimating the coefficients.

4.4. Effects of Demographic Factors on Non-Home Dwell Time in NYC

In this section, | explore the effects of various demographic factors on the change in median
non-home dwell time using four regression models. The first model was an ordinary least squares
(OLYS) regression. Appendix D.17 contains the summary statistics from the OLS regression with
change in median non-home dwell time as the dependent variable. Despite including nine
explanatory variables in the model, | obtained an R? value of 0.1344, which was quite low. This
result led me to check if my residuals contained spatial autocorrelation.

To test for spatial autocorrelation, | performed a Global Moran’s Index linear correlation
for regression residuals test. Appendix D.18 shows the results of this test. Based on the difference
in the observed Moran’s 1 value (0.1170) and the expected value (-0.0005), as well as the
significant p-value (p < 0.001 for « = 0.05), | rejected the null hypothesis and accepted the
alternative hypothesis that there existed spatial autocorrelation in the residuals. This result
indicated that the OLS model was no longer the appropriate model to use with change in median
non-home dwell time as the dependent variable. Instead, | needed to use a spatial regression model.

To determine which spatial model might best fit the data, | ran a Lagrange Multiplier
Diagnostic Tests for Spatial Dependence with the dependent variable as median non-home dwell
time. Appendix D.19 shows the results of these tests. Since the p-values for both LMerr and LMlag
were statistically significant (p < 0.001), I compared the p-values for the robust versions, RLMerr
and RLMlag. While the p-values for these models were also statistically significant (p < 0.001),
the p-value for RLMIlag was smaller than the one for RLMerr. Therefore, the lag model appeared
to be a more appropriate fit for the data.

The first spatial regression model, the Spatial Durbin Model or Spatially Lagged X (SLX)
model, was a local spatial regression model. The summary statistics of the model are shown in
Appendix D.20. There were six explanatory variables with significant results (a« = 0.05) both
within a block group, which relates to the direct effect, and the neighboring block groups, which
relate to the indirect effects (see Appendix D.21). These six variables were median age, number of

White-only residents, number of public transit users, number of households earning less than
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$25,000 a year, number of families with children under 18, and number of people 25 years and
older whose highest degree earned is a regular high school diploma.

The positive coefficient estimates associated with the original age, race, children, and
education variables indicated that within a block group with a higher median age, number of
White-only residents, number of families with children, and number of people with a high school
diploma, the change in median non-home dwell time increased (p < 0.001 for all). The neighboring
block groups with a higher median age (p < 0.001), number of White-only residents (p < 0.05),
number of families with children (p < 0.05), and number of high school graduates (p < 0.001) also
experienced an increase in the change in median non-home dwell time. Additionally, the positive
total effect impact measures in Appendix D.21 indicated that if the median age, number of White-
only residents, number of families with children, and number of high school graduates in every
block group increased, the median change in non-home dwell time would also increase overall (p
< 0.001 for all). These findings indicate that block groups with a higher median age, greater
number of White-only residents, greater number of families with children, and greater number of
high school graduates likely experienced shorter non-home dwell times in April compared to
February.

The negative coefficient estimate associated with the original transport and minimum wage
variables indicated that within a block group with a higher number of public transit users and
households earning less than $25,000 a year, the change in median non-home dwell time decreased
(p < 0.001 for both). The neighboring block groups with a greater number of public transit users
(p < 0.01) and low-income households (p < 0.001) also experienced a decrease in the change in
median non-home dwell time. Additionally, the negative total effect impact measure in Appendix
D.21 indicated that if the number of public transit users and low-income households in every block
group increased, the median change in non-home dwell time would decrease overall (p < 0.001 for
both). These findings indicate that block groups with more public transit users and low-income
households likely experienced greater non-home dwell times in April compared to February.

The second spatial regression model, the Spatial Autoregressive (SAR) Lagged Response
model, was a global spatial regression model. The summary statistics of the model are in Appendix
D.22, with the rho value indicating that the change in median non-home dwell time in neighboring
block groups had a positive effect on the change in median non-home dwell time within a block

group (p < 0.001). Like the previous sections in this chapter, | provided a caveat for variables
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whose p-values fluctuated around 0.001 or greater and assumed that variables with p-values much
lower than 0.001 were always significant (see Appendix D.23). The six variables with consistently
significant simulated p-values for the impact measures were median age, number of White-only
residents, number of public transit users, number of households earning less than $25,000 a year,
number of families with children, and number of people whose highest degree is a high school
diploma. The variable whose simulated p-value fluctuated around p < 0.001 was the number of
female workers. Lastly, the two variables whose simulated p-values fluctuated around p < 0.05
were number of renter occupied housing units with over 1.5 occupants per room and number of
people from the civilian noninstitutionalized population without health insurance coverage.

The positive direct impact values associated with the age, race, children, and education
variables indicate that if the median age, number of White-only residents, number of families with
children, and number of people whose highest obtained degree was a high school diploma in block
group A were to increase, A’s change in non-home dwell times would also increase. Similarly, the
positive indirect impact value shows that an increase in the number of White-only residents in A’s
neighboring block groups would increase A’s change in travel distance. Additionally, an increase
in A’s median age, number of White-only residents, number of families with children, and number
of high school graduates would lead to increased change in median non-home dwell times for all
block groups in the data. These findings indicate that block groups with older residents, greater
number of White-only residents, greater number of families with children, and greater number of
high school graduates likely experienced smaller median non-home dwell times in April compared
to February.

The negative direct impact values associated with the transport and minimum wage
variables indicate that if the number of public transit users and low-income households in block
group A were to increase, A’s change in non-home dwell time would decrease. Similarly, the
negative indirect impact values show that an increase in the number of public transit users and
low-income households in A’s neighboring block groups would decrease A’s change in non-home
dwell time. Since the SAR model is a global spatial model, a second interpretation of the indirect
impact is that an increase in A’s number of public transit users and low-income households would
lead to decreased change in non-home dwell time for all block groups in the data. These findings
indicate that block groups with a greater number of public transit users and low-income households

likely experienced larger non-home dwell times in April.
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For the female worker variable with p-value fluctuating around 0.001, the interpretation is
very similar to prior explanations. The positive direct and indirect impact values associated with
the number of female workers indicate that block groups with more female workers likely
experienced shorter non-home dwell times in April.

Lastly, for the variables with p-values fluctuating around 0.05, the negative direct and
indirect impact values associated with the number of renter occupied housing units indicate that
block groups with more crowded rental units likely experienced greater non-home dwell times in
April than in February. Meanwhile, the positive direct and indirect impact values associated with
the number of uninsured people indicate that block groups with more uninsured people likely
experienced shorter non-home dwell times in April.

The third and final spatial regression model was the Spatial Error Model (SEM). While the
Lagrange tests | ran previously (see Appendix D.19) suggested that the lag model was more
appropriate than the error model for a regression with median non-home dwell time as the
dependent variable, | included the SEM model in my analysis because the results for LMerr and
RMerr were both significant at « = 0.05. However, | did not report the summary statistics because
the statistically significant spatial Hausman test result (p < 0.001 at « = 0.05) shown in Appendix
D.24 confirmed there were enough differences in the coefficients to establish that neither OLS nor

SEM were the right models to use for estimating the coefficients.

4.5. Effects of Demographic Factors on Percentage Time at Home in NYC

In this section, | explore the effects of various demographic factors on the change in median
percentage time spent at home using four regression models. The first model was an ordinary least
squares (OLS) regression. Appendix D.25 contains the summary statistics from the OLS regression
with change in median percentage time spent at home as the dependent variable. Despite including
nine explanatory variables in the model, | obtained an R? value of 0.05837, which was quite low.
This result led me to check if my residuals contained spatial autocorrelation.

To test for spatial autocorrelation, I performed a Global Moran’s Index linear correlation
for regression residuals test. Appendix D.26 shows the results of this test. Based on the difference
in the observed Moran’s 1 value (0.1133) and the expected value (-0.0005), as well as the
significant p-value (p < 0.001 for a = 0.05), | rejected the null hypothesis and accepted the
alternative hypothesis that there existed spatial autocorrelation in the residuals. This result
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indicated that the OLS model was no longer the appropriate model to use with change in median
percentage time spent at home as the dependent variable. Instead, | needed to use a spatial
regression model.

To determine which spatial model might best fit the data, | ran a Lagrange Multiplier
Diagnostic Tests for Spatial Dependence with the dependent variable as median percentage time
spent at home. Appendix D.27 shows the results of these tests. Since the p-values for both LMerr
and LMlag were statistically significant (p < 0.001), I compared the p-values for the robust
versions, RLMerr and RLMlag. While the p-values for these models were also statistically
significant (p < 0.001), the p-value for RLMIlag was smaller than the one for RLMerr. Therefore,
the lag model appeared to be a more appropriate fit for the data.

The first spatial regression model, the Spatial Durbin Model or Spatially Lagged X (SLX)
model, was a local spatial regression model. The summary statistics of the model are shown in
Appendix D.28. There were three explanatory variables with significant results (a« = 0.05) both
within a block group, which relates to the direct effect, and the neighboring block groups, which
relate to the indirect effects (see Appendix D.29). These three variables were number of female
workers, number of families with children under 18, and number of people 25 years and older
whose highest degree earned is a regular high school diploma.

The positive coefficient estimate associated with the original female worker variable
indicated that within a block group with a greater number of female workers, the change in median
percentage time spent at home increased (p < 0.01). The neighboring block groups with a greater
number of female workers also experienced an increase in the change in median percentage time
spent at home (p < 0.001). Additionally, the positive total effect impact measures in Appendix
D.29 indicated that if the number of female workers in every block group increased, the median
change in percentage time at home would also increase overall (p < 0.001). These findings indicate
that block groups with a higher number of female workers likely experienced smaller percentage
times at home in April compared to February.

The negative coefficient estimate associated with the original children and education
variables indicated that within a block group with a higher number of families with children and
number of high school graduates, the change in median percentage time at home decreased (p <
0.001 for both). The neighboring block groups with a greater number of families with children and

number of high school graduates also experienced a decrease in the change in the median
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percentage time at home (p < 0.001 for both). Additionally, the negative total effect impact
measure in Appendix D.29 indicated that if the number of families with children and high school
graduates in every block group increased, the median change in percentage time at home would
decrease overall (p < 0.001 for both). These findings indicate that block groups with more families
with children and high school graduates likely experienced higher percentages of time at home in
April compared to February.

The second spatial regression model, the Spatial Autoregressive (SAR) Lagged Response
model, was a global spatial regression model. The summary statistics of the model are in Appendix
D.30, with the rho value indicating that the change in median percentage time at home in
neighboring block groups had a positive effect on the change in median percentage time at home
within a block group (p < 0.001). Like the previous sections in this chapter, | provided a caveat for
variables whose p-values fluctuated around 0.001 or greater and assumed that variables with p-
values much lower than 0.001 were always significant (see Appendix D.31). The five variables
with consistently significant simulated p-values for the impact measures were median age, number
of White-only residents, number of public transit users, number of families with children, and
number of people whose highest degree is a high school diploma. The two variables whose
simulated p-values fluctuated around p < 0.05 were number of female workers and number of
renter occupied housing units with over 1.5 occupants per room.

The positive direct impact values associated with the race variable indicate that if the
number of White-only residents in block group A were to increase, A’s change in percentage time
at home would also increase. Similarly, the positive indirect impact value shows that an increase
in the number of White-only residents in A’s neighboring block groups would increase A’s change
in percentage time at home. Additionally, an increase in A’s number of White-only residents would
lead to increased change in median percentage time at home for all block groups in the data. These
findings indicate that block groups with a greater number of White-only residents likely
experienced smaller median percentages of time spent at home in April compared to February.

The negative direct impact values associated with the age, transport, children, and
education variables indicate that if the median age, number of public transit users, number of
families with children, and number of people whose highest degree obtained is a high school
diploma in block group A were to increase, A’s change in percentage time at home would decrease.

Similarly, the negative indirect impact values show that an increase in the median age, number of
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public transit users, number of families with children, and number of high school graduates in A’s
neighboring block groups would decrease A’s change in percentage time at home. Since the SAR
model is a global spatial model, a second interpretation of the indirect impact is that an increase in
A’s median age, number of public transit users, number of families with children, and number of
high school graduates would lead to decreased change in percentage time at home for all block
groups in the data. These findings indicate that block groups with a greater median age, number of
public transit users, number of families with children, and number of high school graduates likely
experienced larger percentage times spent at home in April.

For the variables with p-values fluctuating around 0.05, the positive direct and indirect
impact values associated with the number of female workers and number of rental units with more
than 1.5 occupants per room indicate that block groups with a greater number of female workers
and crowded rental units likely experienced smaller percentage times spent at home in April.

The third and final spatial regression model was the Spatial Error Model (SEM). While the
Lagrange tests | ran previously (see Appendix D.27) suggested that the lag model was more
appropriate than the error model for a regression with median percentage time at home as the
dependent variable, | included the SEM model in my analysis because the results for LMerr and
RMerr were both significant at @« = 0.05. However, | did not report the summary statistics because
the statistically significant spatial Hausman test result (p < 0.001 at « = 0.05) shown in Appendix
D.32 confirmed there were enough differences in the coefficients to establish that neither OLS nor

SEM were the right models to use for estimating the coefficients.
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CHAPTER 5: DISCUSSION

In this chapter, | address the implications of my results and how they relate to my main
research questions. In Section 5.1, | explore how my findings help answer my research aim of
understanding which sociodemographic factors had the most effect on population changes in
mobility. In Section 5.2, | discuss my approach to determining which of the four mobility variables

most accurately represented physical distancing adherence.

5.1. Sociodemographic Factors and Their Effects on Changes in Mobility

My main research aim sought to understand which sociodemographic factors had the most
effect on population change in mobility in New York City before and after the implementation of
COVID-19-related lockdown measures in March 2020. To answer this first question, | chose nine
noncollinear explanatory variables and ran four regression models with the four different
measurements of change in mobility from February to April 2020: change in median distance
traveled from home, change in median home dwell time, change in median non-home dwell time,
and change in median percentage of time spent at home.

Based on the difference between the observed and expected Moran’s I value, as well as the
significant p-value (p < 0.001 for @ = 0.05) for each of the Global Moran’s Index lincar
correlation for regression residuals tests, | rejected the null hypothesis and accepted the alternative
hypothesis that there existed spatial autocorrelation in the residuals from all OLS models. Similarly,
the significant p-value (p < 0.001 for « = 0.05) obtained for all of the spatial Hausman tests
confirmed there were enough differences in the Standard Error Model (SEM) regression
coefficients such that neither OLS nor SEM were appropriate models Thus, | used only the
Spatially Lagged X (SLX) and Spatial Autoregressive (SAR) models to interpret my results. Table
5.1 summarizes the findings from these two models.

A caveat for the strength of the findings is that the SLX multiple R? values, while larger
than the OLS multiple R? values for each dependent variable, were still quite low despite including
nine explanatory variables (R? = 0.048 for distance traveled from home, R? = 0.077 for home dwell
time, R2 = 0.162 for non-home dwell time, and R? = 0.081 for percentage time spent at home).
These low R? values indicate that the proportions of the variance in the dependent variables
predictable from the explanatory variables were quite low. Solutions for increasing the R? value in

future research include using other data sources and adding more explanatory variables.
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Importantly, since the R? value is not an indicator of whether or not the independent variables
cause changes in the dependent variable, the interpretations of which explanatory variables have

an effect on mobility are still valid.

Table 5.1: Summary of Results from the Spatially Lagged X and Spatial Autoregressive Models

Travel Home Non-home | Percent
distance dwell dwell home
SLX **k* ***
Age S
AR ***k **k* **kx *k*k
SLX Fhx
Race SAR * *** **k* **k*
SLX *** **k*

Transport SAR - * . e
Female SLX aladed fakaled fakaied
workers | SAR el * * *

. SLX **
Housing SAR - * *
SLX ERaRa3
Income SAR - .
. SLX *** **k* *** ***x

Chlldren SAR **k* *** **k* **k*

B SLX ***k **k* **k* ***

Educatlon SAR **k* *** **k* **k*
Health | SLX

insurance | SAR *

Significance codes: p < 0.001 “***’ p <0.01 “**° p <0.05 “*’

Notes:

e For Spatially Lagged X (SLX) models, green represents a positive coefficient
estimate and red a negative coefficient.

e For Spatial Autoregressive (SAR) models, green represents a positive total
estimate value and red a negative total estimate. P-values reported at R = 5,000
simulations, with “***’ denoting p-values much less than 0.001 and ‘*’ denoting
p-values around 0.001 or greater.

5.1.1. Effect of Age on Mobility

For the SLX model, the median age of a block group correlated positively with the change
in median distance traveled from home (p < 0.001) and the change in median non-home dwell time
(p <0.001). This result indicated that as the median age of a block group increased, it experienced
both comparatively shorter distances traveled from home and also comparatively shorter amounts
of time spent away from home in April. Thus, older residents were not only staying home for

longer but also traveling shorter distances in April. Given that age alone posed the most significant
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risk factor for dying from COVID-19, with older populations affected much more severely by the
disease compared to younger populations (Mueller et al., 2020; Santesmasses et al., 2020;
Williamson et al., 2020), it makes sense that older people would curtail activities and time spent
away from their homes to a greater extent if they could. Additionally, the scale of the SLX direct,
indirect, and total impacts for age with median home and non-home dwell times as dependent
variables were much higher than for any of the other explanatory variables. Whereas the impact
scores for the rest of the explanatory variables were all between -3.0 and 2.0 for home dwell time
and non-home dwell time, the direct, indirect, and total impact scores for age with home and non-
home dwell times were [-6.65, -3.06, -9.71] and [14.52, 11.11, 25.63], respectively. These results
indicate that increasing the median age within a block group had a greater effect on mobility
defined as home and non-home dwell time than the other explanatory variables within that block
group (direct impact), in the block group’s immediate neighbors (indirect impact), and in all block
groups in the data (total impact) (Golgher & Voss, 2016).

For the SAR model, the median age of a block group correlated positively with the change
in median distance traveled from home (p < 0.001) and the change in median non-home dwell time
(p < 0.001) as well, thus supporting the conclusions from the SLX model. The SAR model also
yielded significant results with change in median home dwell time or change in median percentage
time at home as the dependent variable. That the median age of a block group correlated negatively
with both of these variables (p < 0.001 for both) indicated that as the median age increased in these
block groups, the change in home dwell time and percentage time at home decreased. A decrease
in these variables meant that residents of these block groups spent longer amounts of time at home
in April. These findings support the earlier conclusions that older populations traveled shorter
distances from home and stayed away from home less.

In addition to examining the impact values and simulated p-values for R = 5,000 iterations,
| also noted the direct, indirect, and total impact scores. Similarly to the SLX model, whereas the
impact scores for the rest of the explanatory variables were all between -2.5 and 1.5 for home dwell
time and non-home dwell time, the direct, indirect, and total impact scores for age with home and
non-home dwell times were [-6.39, -2.81, -9.20] and [15.08, 6.50, 21.58], respectively. These
results indicate that increasing the median age within a block group had a greater effect on mobility

defined as home and non-home dwell time than the other explanatory variables within that block
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group (direct impact) and in all block groups in the data (indirect and total impacts)
(BurkeyAcademy, 2018; Golgher & Voss, 2016).

5.1.2. Effect of Race on Mobility

For the SLX model, the estimated number of White-only residents in a block group
correlated positively with only the change in median non-home dwell time (p < 0.001). This result
indicated that as the White-only population within a block group increased, those residents
experienced comparatively shorter amounts of time spent away from home in April. Thus, block
groups with more White-only residents were staying home for longer periods of time in April
compared to February. My findings align logically with the fact that 75% of all NYC frontline
workers, who held jobs that required them to leave their homes, are people of color (Stringer,
2020). Thus, | inferred that a greater proportion of non-White residents could not switch to remote
work, which in turn led to longer times spent away from home compared to White-only residents.

Another possible explanation for longer times spent at home regardless of race was the
unprecedented 14.8% national unemployment rate in April 2020 (Falk et al., 2021). However, a
report from the Congressional Research Service found that national unemployment rates for White
workers (14.2%) were lower than for Black workers (16.7%), and lower for non-Hispanics (13.6%)
than for Hispanic workers (18.9%) (Falk et al., 2021). Furthermore, in NYC areas, Asian, Black,
and Hispanic/Latinx adults experienced a 48%, 67%, and 68% loss of income since 13 March 2020
respectively, compared with 45% of White adults (Nischan, 2020). Notably, these numbers do not
include income loss statistics for noncitizens, which is a group who experience income loss at a
higher rate than citizens (Nischan, 2020). Thus, the observed difference in non-home dwell times
between White-only and non-White residents cannot be explained entirely by unemployment rates.

For the SAR model, the estimated number of White-only residents in a block group
correlated positively with the change in median home dwell time (p < 0.001), the change in median
non-home dwell time (p < 0.001), and the change in percentage time spent at home (p < 0.001).
These results were particularly interesting, since a positive correlation for both home and non-
home dwell times meant that an increase in the number of White-only residents correlated with
both less time spent at home and also less time spent away from home in April. While seemingly
contradictory, one possible explanation is that the differences arose based on income level, where

higher income White-only residents spent less time away from home and lower income White-
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only residents spent less time at home. Further research on the interaction between race and income
would clarify these results. The SAR model also yielded significant results with change in median
distance traveled from home as the dependent variable. That the number of White-only residents
correlated negatively with travel distance (p < 0.05) suggested that block groups with more White-
only residents experienced increased travel distance from home in April. These findings prompt
the need for future research that examines the origin and destination of trips made from these block
groups, as one explanation could be that higher income White residents sheltered in place at a
second home outside of the city during early lockdown measures (Frank, 2020; Gordon, 2020;

Tully & Stowe, 2020). However, more detailed analyses are necessary to confirm this hypothesis.

5.1.3. Effect of Transport Method to Work on Mobility

For the SLX model, the estimated number of people who use public transit to travel to work
in a block group correlated positively with the change in median distance traveled from home (p
< 0.001) and negatively with the change in median non-home dwell time (p < 0.001). This result
showed that an increase in the number of public transit users within a block group led to shorter
distances traveled from home and longer non-home dwell times in April. While seemingly
contradictory at first, one possible explanation for these phenomena could be that the overall
decrease in public transit ridership, particularly on buses and subways, after the March 2020
lockdowns (Penney, 2021) contributed to a decrease in distances traveled from home for certain
NYC populations, whereas essential workers, 55% of whom used the subway, bus, or rail to travel
to work prior to the pandemic, continued to use public transit to get to work during the pandemic
(Stringer, 2020). Analysis of trips taken from block group could reveal another possible scenario,
which is if block groups with more public transit users correlated with a greater number of people
spending time outside in nearby green spaces, which would contribute both to greater time away
from home and also decreased travel distance from home.

For the SAR model, the estimated number of public transit users in a block group correlated
positively with the change in median distance traveled from home (p < 0.05) and negatively with
the change in median home dwell time (p < 0.05), the change in non-home dwell time (p < 0.001),
and the change in percentage time spent at home (p < 0.001). These results were particularly
interesting, since a negative correlation for both home and non-home dwell times meant that an

increase in the number of public transit users correlated with both more time spent at home and

55



also more time spent away from home in April. While seemingly contradictory, one possible
explanation is that the differences arose based on other related explanatory factors, similarly to the

SAR model results associated with White-only residents as a factor.

5.1.4. Effect of Female Worker Share on Mobility

For the SLX model, the estimated number of female workers correlated negatively with
the change in median distance traveled from home (p < 0.001) and positively with the change in
median home dwell time (p < 0.001) and change in percentage time at home (p < 0.001). This
result showed that an increase in the number of female workers within a block group led to longer
distances traveled from home, shorter home dwell times, and smaller percentage times at home in
April. At first, | found this result surprising, given reports that women were more likely than men
to quit their jobs and assume childcare responsibilities when schools closed (Bateman & Ross,
2020; Gogoi, 2020). However, 60% of all frontline workers in NYC are women, with the highest
percentages in healthcare (74% are women) and childcare, homeless, food, and family services
(81% are women) (Stringer, 2020). Thus, one possible explanation could be the decomposition of
NYC frontline workers by sex, as it suggests that these women continued to leave home for work,
which contributed to less time spent at home and greater distances traveled from home.

For the SAR model, the estimated number of female workers in a block group correlated
negatively with the change in median distance traveled from home (p < 0.01) and positively with
the change in median home dwell time (p < 0.05), the change in non-home dwell time (p < 0.05),
and the change in percentage time spent at home (p < 0.05). These results were particularly
interesting, since a positive correlation for both home and non-home dwell times meant that an
increase in the number of public transit users correlated with both more time spent at home and
also more time spent away from home in April. While seemingly contradictory, one possible
explanation is that the differences arose based on other related explanatory factors, similarly to the
SAR model results associated with the number of White-only residents and public transit users as

factors.
5.1.5. Effect of Housing Occupancy on Mobility

For the SLX model, the estimated number of renter occupied housing units with more than

1.5 residents per room correlated negatively with the change in median distance traveled from
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home (p < 0.01). This result indicated that block groups with a greater proportion of crowded rental
homes correlated with shorter travel distances in April, which was surprising since over half of all
NYC frontline workers are renters (Stringer, 2020). However, since travel distance was the only
mobility variable to yield a significant result for the SLX model, perhaps a more appropriate
measurement would have been the total number of rental units or the number of renters rather than
rental units with 1.5 or more people per room.

For the SAR model, the estimated number of renter occupied housing units with more than
1.5 residents per room in a block group correlated negatively with the change in median non-home
dwell time (p < 0.05) and positively with the change in median distance traveled from home (p <
0.05) and the change in percentage time spent at home (p < 0.05). The results for non-home dwell
time and percentage time home, which suggested that people in block groups with a higher number
of crowded rental units spent less time at home in April, appeared contradictory to the result for
distance traveled for home, which implied that people traveled shorter distances in these block
groups. However, these differences may relate to other related factors, such as limited access to
green space in crowded neighborhoods contributing to lower travel distances, and a high
percentage (59%) of frontline workers being renters leading to more time spent away from home
(Stringer, 2020).

5.1.6. Effect of Annual Income on Mobility

For the SLX model, the estimated number of households making less than $25,000 a year
correlated negatively with the change in median non-home dwell time (p < 0.001). This result
indicated that block groups with a greater proportion of households whose annual income amount
corresponded to a full-time minimum wage job experienced greater time spent away from home
in April. This result could come in part from the statistic that 8% of all frontline workers are at or
below the poverty line, which is defined as $26,200 for a family of four (Stringer, 2020). However,
8% is a small proportion of frontline workers compared with the 24% of all frontline workers at
or below twice the poverty line, which is defined as $52,400 for a family of four (Stringer, 2020).
There are particularly high percentages of grocery, convenience, and drug store workers (35%),
childcare, homeless, food, and family services workers (34%), and building cleaning services
(39%) that fit into this latter category of twice the poverty line (Stringer, 2020). Thus, a more
appropriate statistic to assess mobility trends might have been the number of households making
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less than $55,000 a year, since this income bracket would include 32% of all frontline workers
compared to just 8%.

For the SAR model, the estimated number of households making less than $25,000 a year
in a block group correlated negatively with the change in median distance traveled from home (p
< 0.05) and median non-home dwell time (p < 0.001). These results indicated that an increase in
the number of low-income households within a block group led to an increase in distance traveled
from home and non-home dwell time in April. If only 8% of NYC frontline workers are at or below
the federal poverty line (Stringer, 2020), this conclusion is somewhat surprising. Furthermore, a
survey conducted in October 2020 found that 80% of NY C adults earning less than $35,000 a year
experienced a loss of income since 13 March 2020 compared with the 54% NYC area average
(Nischan, 2020), suggesting that low-income households were the most affected by the staggering
unemployment rate and thus did not have reason to leave their homes. Additional research
exploring where residents of block groups with a higher number of low-income households may

help clarify the correlation with increased non-home dwell time and travel distance from home.

5.1.7. Effect of Families with Children on Mobility

For the SLX model, the estimated number of families with children under age 18 correlated
positively with the change in median distance traveled from home (p < 0.001) and the change in
median non-home dwell time (p < 0.001). These results indicated that block groups with a greater
number of families with children experienced shorter travel distances from home and less time
spent away from home in April. Similarly, the number of families with children correlated
negatively with the change in median home dwell time (p < 0.001) and median percentage time at
home (p < 0.001), meaning that block groups with more families with children experienced greater
amounts of time at home. These conclusions make sense given that once schools closed, many
parents stayed home to take care of young children while juggling full-time jobs. School closures
and uncertainty with regard to childcare left parents, particularly working mothers, with home
school responsibilities that prompted some mothers to leave their jobs entirely (Bateman & Ross,
2020). Research by the U.S. Census Bureau and Federal Reserve found that of the adults not
working, women ages 25-44 were almost three times as likely as men (32.1% compared to 12.1%)
to not be working due to childcare demands (Heggeness & Fields, 2020). While these results are

based on national data, there is little reason to believe that this phenomenon did not extend to NYC
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families as well. Furthermore, the U.S. Census study also found that working mothers in states
with early stay-at-home orders and school closures were 68.8% more likely to leave their jobs than
working mothers in states with later closures (Heggeness & Fields, 2020). Given that NY state
was one of the first states to implement stay-at-home measures (see Figure 2.2), it seems likely
that NYC working mothers fit into the category of being more likely to leave their jobs.

For the SAR model, the results were the same: the estimated number of families with
children in a block group correlated positively with the change in median distance traveled from
home (p < 0.001) and the change in median non-home dwell time (p < 0.001). These results
indicated that an increase in the number of families with children within a block group led to an
increase in distance traveled from home and non-home dwell time in April for all block groups.
The SAR model also found that the estimated number of families with children in a block group
correlated negatively with the change in median home dwell time (p < 0.001) and median
percentage time at home (p < 0.001), meaning that block groups with more families with children
experienced greater amounts of time at home. Thus, the SAR model results confirm the

conclusions made from the SLX model results.

5.1.8. Effect of Educational Attainment on Mobility

For the SLX model, the estimated number of people with just a high school diploma
correlated positively with the change in median distance traveled from home (p < 0.001) and the
change in median non-home dwell time (p < 0.001). These results indicated that block groups with
a greater number of high school graduates experienced shorter travel distances from home and less
time spent away from home in April. Similarly, the number of people with a high school diploma
correlated negatively with the change in median home dwell time (p < 0.001) and median
percentage time at home (p < 0.001), meaning that block groups with more high school graduates
experienced greater amounts of time at home. One explanation for this finding was the 15%
seasonally adjusted unemployment rate in April and that those more likely to face unemployment
due to COVID-19 in NYC were workers with lower educational attainment (Nischan, 2020). As
confirmation, 61% NY C adults without a bachelor’s degree experienced a loss in income since 13
March 2020, compared with 45% of adults with more than a bachelor’s degree (Nischan, 2020).
Without a job to go to, this demographic traveled shorter distances and stayed at home for longer

periods of time.
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For the SAR model, the results were the same: the estimated number of people with just a
high school diploma in a block group correlated positively with the change in median distance
traveled from home (p < 0.001) and the change in median non-home dwell time (p < 0.001). These
results indicated that an increase in the number of high school graduates within a block group led
to an increase in distance traveled from home and non-home dwell time in April for all block
groups. The SAR model also found that the estimated number of people with just a high school
diploma in a block group correlated negatively with the change in median home dwell time (p <
0.001) and median percentage time at home (p < 0.001), meaning that block groups with more
high school graduates experienced greater amounts of time at home. That the SAR and SLX
models yielded the same results for all mobility variables seemed to strengthen the findings that

educational attainment significant correlated with mobility.

5.1.9. Effect of Health Insurance Status on Mobility

For the SLX mode, there were no significant correlations between the estimated number of
people from the civilian noninstitutionalized population with no health insurance coverage and
mobility. However, for the SAR model, the estimated number of non-insured people in a block
group correlated positively with the change in median non-home dwell time (p < 0.05). This
finding suggested that as the number of non-insured people in a block group increased, the time
not spent at home in April decreased across all block groups. While 11% of all NYC frontline
workers are uninsured, with higher percentages for grocery, convenience, and drug store workers
(12.1%), trucking, warehouse, and postal service workers (14.8%), and building cleaning services
(29.1%) (Stringer, 2020), the finding that uninsured workers spent more time at home was likely
more related to the share of low-income workers who lost jobs due to COVID-19. Nationally, low-
and middle-income workers are more likely to be uninsured (Institute of Medicine (US) Committee
on the Consequences of Uninsurance, 2001), and 80% of NYC workers who earned less than
$35,000 a year reported losing income due to COVID-19, which could have been from either

reduced work or unemployment (Nischan, 2020).
5.2. Differences in Population Effects

Having obtained several significant results from the SLX and SAR regression models, |

wanted to determine which of the variables measuring population mobility (median distance
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traveled from home, median home dwell time, median non-home dwell time, and median
percentage time home) most accurately served as a proxy for physical distancing adherence. I used
a three-step process to examine possible answers to this question. First, | examined the results from
the four regression models in the context of the nine explanatory variables for each of the mobility
measures and chose the mobility measurement that yielded the greatest number of logical results.
Next, | evaluated how SafeGraph collected this data to see if their methodology helped create a
more accurate measurement. Finally, | compared my findings with my hypothesis in Chapter 1.

The mobility measurement that yielded the greatest number of results from the SLX and
SAR models was median non-home dwell time. Not only did every explanatory variable have a
significant correlation with non-home dwell time for the SAR model, but also the SLX model’s
R? value (0.162) with this dependent factor was the highest. SafeGraph defined this measurement
as the aggregated median dwell time of devices at places outside of their Geohash-7 home for the
entire 24-hour period (SafeGraph, n.d.-b). The specificity of 153 meters by 153 meters to which
devices were tracked outside of the home certainly made the measurement more accurate, as a
smaller radius meant SafeGraph got as close as it could to determining when a device was outside
the home without actually knowing the device’s true home.

This finding that median non-home dwell time was the most accurate proxy for physical
distancing adherence aligned with my original hypothesis that either home dwell time or non-home
dwell time would be the most accurate factors. The other dependent variables, while also highly
accurate, had limitations or dependencies. Median distance traveled from home could have
provided greater insight into where people were going during the pandemic stay-at-home orders,
but I had not included place visits in my model, so this variable seemed less likely to be the most
accurate measurement. For percentage time spent at home, since the measurement was based on
home dwell time calculations, it made sense that the results for home dwell time and percentage
time at home aligned almost exactly, with the exception of housing occupancy and percent time at
home for the SAR model. Therefore, if median home dwell time had been the most accurate
measurement, there was a high chance that median percent time home would also be highly
accurate. Since home dwell time did not yield the greatest number of significant results, non-home

dwell time surpassed both home dwell time and percent time home.
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CHAPTER 6: CONCLUSION
This chapter will address limitations of the research, suggest pathways for future research,

and summarize the research findings.

6.1. Limitations of this Research

As was the case with prior literature using aggregated cellphone mobility data, the
representativeness of SafeGraph’s data made it challenging to draw definitive conclusions from
regression models. Despite its exceptional size and granularity, the data came from fewer than
500,000 devices and accounted for only one-ninth of the NYC population. On the one hand, this
share of the population may seem small, but on the other hand, mobility data from 500,000 devices
is a staggeringly large sample size compared to early mobility research that relied on recruiting
participants to self-report data. Furthermore, a vast majority of block groups contained data.
Therefore, the limitation was worth noting in the sense that any conclusions drawn from my
findings must acknowledge that they illustrate general population mobility trends from aggregated
data. I could also strengthen my findings by running the four regression models using different
mobility datasets and comparing the results. Additionally, summarizing differences in mobility
datasets and providing a comprehensive evaluation of the strengths and limitations of each could
help researchers choose the most appropriate datasets for their research questions (Dodge, 2021).

A second limitation to this work was the potential for additional factors besides stay-at-
home restrictions to influence mobility patterns. For example, warmer weather in April could have
contributed to greater time spent away from home for some demographics. To account for seasonal
change, an alternative baseline could have been April 2019, assuming that weather patterns were
similar at that time to those observed in April 2020.

Lastly, aggregated mobility data collected from everyday human behavior patterns are
inherently messy. The motivations, desires, and beliefs of every human differ, so the findings that
apply to one person might be entirely misaligned with the behavior of another person who has a
similar sociodemographic profile. Thus, drawing conclusions other than sweeping generalizations
can be difficult when using data collected from human interactions taking place in the real-world
as opposed to a strictly controlled laboratory setting. One possible way to add an individualistic
component and validate the broad population findings would be to conduct interviews with

residents from the study area.
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6.2. Pathways for Future Research

In addition to the research opportunities already discussed, there are five additional
possibilities 1 will present. The first is to extend my methodology to data from other cities. A
between-city comparison might provide greater insight into how stay-at-home policies affected
regions differently based on sociodemographic patterns, public transit infrastructure, or population
density. In addition to comparing cities, there are other explanatory factors that could be added to
the regression models, such as the number of households who own second homes or citizenship
status. Instead of simply sociodemographic variables, one could also use points of interest (POI)
data to expand on the findings in this paper. For example, to better understand the large-scale
impact of age, it would be useful to understand where younger people were going. National data
indicated that younger workers were more likely to face unemployment due to COVID-19, and a
survey of NYC metro adults found that 56% of them had lost income during the pandemic (Nischan,
2020). Therefore, if younger workers were more likely to experience unemployment and 37% of
NY C frontline workers are over 50 years old (Stringer, 2020), where were the younger age groups
going? In addition to POI data, this question could be answered by using age-bracketed data to
determine which age group left home the most. Lastly, there are several types of datasets that could
be used to cross-reference these findings and evaluate how other non-pharmaceutical interventions
affected mobility. For example, the Delphi Group at Carnegie Mellon University provides a variety
of real-time COVID-19 indicators at the U.S. county and state level. Comparing their data on
vaccine acceptance or the proportion of mask-wearers with mobility trends at the county level
could be a fascinating next research topic. This last potential avenue of research exploring other
human behavior indicators and non-pharmaceutical interventions has particularly important
implications, as researchers found that mobility and infection rates did not positively correlate as
strongly after April 2020 (Badr & Gardner, 2020). Their findings suggest that other non-
pharmaceutical interventions like mask-wearing or handwashing played a significant role in
mitigating the spread of the virus early on in the pandemic, so future research should add these

factors to their models when looking at the relationship between mobility and case positivity.
6.3. Concluding Thoughts

My intention for this research was to provide fine-grained analysis for policymakers on the

varying effects of lockdown measures and inform future strategies for infection mitigation and
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safe re-opening. My findings that there exist significant differences in mobility based on
sociodemographic factors, particularly age, education level, and whether or not families have
children, reinforce the need for physical distancing policies that acknowledge the demographic
diversity present not only between but also within cities. Future research can both confirm these
findings and also examine the implications of reduced mobility on the spread of COVID-19
compared with other non-pharmaceutical interventions. By providing a detailed analysis of the
various sociodemographic effects on different measurements of mobility, this paper emphasizes
that stay-at-home policies introduce unevenly distributed effects to different groups and that there

are several ways to measure mobility patterns within a city.
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APPENDIX A: GITHUB REPOSITORY
A repository with all aspects of the data collection, cleaning, and analysis processes exists

at https://github.com/emilyemchen/honours-research. The repository’s 'README.md" file

provides a broad overview of the file structure and contents.

APPENDIX B: LITERATURE REVIEW-RELATED FIGURES
Appendix B.1: Timeline of the COVID-19 pandemic from December 2019 to March 2020

. 31DECEMBER 2019
Government offiials in Wehan, China
confirm that several residents have cases of

pneumonia without a known cause.

TIJANUARY 2020 @)
China reports its first fatality caused by the
preumonia-like virus.

. 21JANUARY 2020
The United States reports its first confirmed
case in the State of Washington.

23 JANUARY 2020 .
China cancels all planes and trains from
Wuhan and suspends bus, subway, and
ferry trips within the city.
. 30 JANUARY 2020

The World Health Organization Director-

31JANUARY 2020 . General declares the novel coronavirus a

Public Health Emergency of Intemational

The United States bans foreign nationals
Corncem (PHEIC).

from entering the country who have
traveled fo China in the last 14 days and
cautions Americans against fravel to China;
U.S. Health and Human Services Secretary
declares a public health emergency.

. 23 FEBRUARY 2020
Italian officials lock down towns within the
Lomboardy region, close schools, and cancel
sporting and cultural events in the northern

regions of the country.

29FEBRUARY 2020 .
The firstlaboratory-confirmed case of
COVID-19 emerges in New York City. . 1MARCH 2020
New York Governor Andrew Cuomo
announces the first cose of COVID-9 in
New York City.

7MARCH 2020 .

Govemor Cuomo declares a state of

emergency for the State of New York. . 12 MARCH 2020
Large venues in NYC like Barclays Center,
Madison Square Garden, and Radio City
Music Hall close; statewide ban in NY on

15 MARCH 2020 . gatherings of 500 people or more.
The U.S. Centers for Disease Control and
Prevention achises against gatherings of . 16 MARCH 2020
50+ people for the next eight weeks USS. President Donald Trump warms citizens
against gatherings of 10+ people; the NYC
public school system closes; Tri-State areat

18 MARCH 2020 . (CT, NJ, NY) bans gatherings of 50 people
or more; gyms and casinos close;

Non-essenticl businesses in New York must
restaurants and bars restricted to take-out
have at least 50% of their employees

and delivery sevices.
working from home. o

@ 22MarcH2020
Statewide stay-at-home orders
implemented through the New York State
on Pause Program; all non-essential
businesses close until further notice.

26MARCH2020 @)

The U.S. has the highest number of
confirmed COVID-19 cases in the world.

Source: Information retrieved from Taylor, 2021 and Qin & Hernandez, 2020
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APPENDIX C: METHODOLOGY-RELATED FIGURES AND TABLES

Appendix C.1: Spatial Regression Decision Process Flowchart

‘ Run OLS Regression )
Y

LM Diagnostics
LM-Error
LM-Lag

Run Spatial
Error Model

Neither LM-Error

nor LM-Lag One Significant

Both LM-Error
and LM-Lag

Stop
Keep OLS
Results

Y

Run Spatial
Lag Model

Robust LM Diagnostics
Robust LM-Error
Robust LM-Lag

Run Spatial Run Spatial
Error Model Lag Model

Source: From “Exploring Spatial Data with GeoDa™: A Workbook” by L. Anselin, 2005,

Robust LM-Error

Robust LM-Lag

Center for Spatially Integrated Social Science, p. 199.

Appendix C.2: Mathematical Equations for Regression Models

Model Name Equation Variable Definitions
. X = independent/explanatory variables
Ordinary Least P - P Y
y=Xf+¢ B = slope coefficient
Squares Model .
& = random error term (residuals)
Spatial Durbin X = matrix of observations for explanatory variables
Model (Spatially y=Xf+e+0WX [ = parameter vector
Lagged X) & = vector of error terms
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6 = vector of response parameters
WX = weights matrix Wof exogenous spatial lags
for explanatory variables X

X = matrix of observations for explanatory variables

Spatial B = parameter vector
Autoregressive & = vector of error terms
=X w . .
Lagged Response y pretpWy p = spatial autocorrelation parameter
Model (SAR) Wy = spatially lagged dependent variable y for
matrix W

X = matrix of observations for explanatory variables
B = parameter vector

& = vector of spatially autocorrelated error terms

A = autoregressive coefficient (indicates existence
of stochastic shock to neighbors)

W = spatial weights matrix

u = vector of independent identically distributed
(i.i.d.) errors

Spatial Error

Model (SEM) Y = XB+et+AWu

APPENDIX D: RESULTS-RELATED FIGURES AND TABLES
Appendix D.1: Results of Ordinary Least Squares Regression with Median Distance Traveled

from Home as the Dependent Variable

Coefficients:

Estimate Std. Error t value Pr(>I1tl)
(Intercept) 1.33044625 ©0.19252860 6.910 5.36e-12 ***
age 0.02131064 ©0.00443277 4.808 1.57e-06 ***
race -0.00028701 ©0.00007339 -3.911 9.30e-05 ***
transport 0.00085691 ©0.00025090 3.415 0.000642 ***
female_workers -0.00234845 0.00033416 -7.028 2.34e-12 ***
housing_occupancy_rent ©0.00323193 0.00142172 2.273 0.023048 *
min_wage -0.00077529 ©0.00030858 -2.512 0.012016 *
children 0.00118689 0.00024657 4.814 1.52e-06 ***
education 0.90155179 ©0.00030695 5.056 4.43e-07 ***
health_insurance 0.00028636 ©.00029970 ©.955 0.339367

Signif. codes: @ ‘***’ 9.001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 2.263 on 5727 degrees of freedom
(1126 observations deleted due to missingness)

Multiple R-squared: 0.02913, Adjusted R-squared: 0.0276

F-statistic: 19.89 on 9 and 5727 DF, p-value: < 2.2e-16

Appendix D.2: Results of Global Moran | test for Regression Residuals with Median Distance
Traveled from Home as the Dependent Variable

Moran | Statistic
Standard Deviate
8.8898 < 2.2e-16 0.0661 -0.0005 0.0001

p-value Observed Moran | Expectation Variance
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Appendix D.3: Results of Lagrange Multiplier Diagnostic Tests for Spatial Dependence with

Median Distance Traveled from Home as the Dependent Variable

Test
LMerr
LMlag

RLMerr
RLMlag
SARMA

Appendix D.4: Results of Spatial Durbin Model (Spatially Lagged X Model) with Median

Appendix D.5: Impact Measures for Spatially Lagged X Model with Median Distance Traveled

Test Statistic

77.65

106.30

75.01

103.66
181.31

p-value
< 2.2e-
<2.2e-
< 2.2e-
< 2.2e-
<2.2e-

df
16
16
16
16
16

NP R R

Distance Traveled from Home as the Dependent Variable

Coefficients:

Estimate
(Intercept) 0.17204039
age 0.02087746
race @.00003684
transport 0.00077025
female_workers -0.00195471
housing_occupancy_rent 0.00282303
min_wage -0.00045253
children 0.00077537
education 0.00085205
health_insurance -0.00018900
lag.age ©9.03179430
lag.race -0.00058029
lag.transport 0.00103696
lag. female_workers -0.00291046
lag.housing_occupancy_rent @.0075183@
lag.min_wage -9.00139381
lag.children 0.00182330
lag.education 0.00157441
lag.health_insurance 0.00105318
Signif. codes: @ ‘***’ 0.001 ‘**' 0.01

Residual standard error: 2.243 on 5718 degrees of freedom
Multiple R-squared:

F-statistic: 15.96 on 18 and 5718 DF,

Impact measures (SLX, estimable, n-k):

age

race

transport
female_workers
housing_occupancy_rent
min_wage

children

education
health_insurance

Direct
0.02087745518
0.00003684238
0.00077024770

-0.00195471343
©.00282302778
-@.00045252591
0.00077537169
0.00085204580
-0.00018899954

@.04784,

Adjusted R-squared:
p-value: < 2.2e-16

Std. Error t value
©0.38363225 0.448
©0.00458903  4.549 0.00|
0.00008827 0.417
0.00027603 2.79@
©0.00035060 -5.575 0.00
0.00142641 1.979
0.00033014 -1.371
0.00025079  3.092
0.00032980  2.583
0.00030869 -90.612
0.00891418  3.567
0.00013820 -4.199 0,00
0.00048760 2.127
0.00068541 -4.246 0,00
0.00315441  2.383
0.00060059 -2.321
0.00053038  3.435
0.00060850  2.587
0.00060728 1.734
“*'@g.es L7011
0.04484

Pri=Itl)
@.653845
00054905
@.676419
0.005280
00000258
0.047851
@.170520
0.002000
@.009805
0.540383
0.000364
08272224
0.033490
00220881
0.017185
®.020337
0.000597
@.0@9695
0.082927 .

from Home as the Dependent Variable

Indirect
0.0317942952
-0.0005802885
0.0010369630
-0,0029104561
0.0075183018
-0.0013938079
0.0018239040
0.0015744134
0.0010531755

Total
0526717504
0005434462
0018072107
0048651695
0103413296
0018463338
0025992757
0024264592
0008641760

[~~~ I~ R~ R~ I~

Standard errors:

age
race

transport
female_workers
housing_occupancy_rent
min_wage

children

education
health_insurance

Direct
0.00458903186
0.00008827144
0.00027602679
0.00035059686
0.00142640994
0.00033014045
0.00025079033
0.00032980408
0.00030868605

(IR~~~

Indirect
0089141839
0001381984
0004875993
0006854141
0031544133
0006005945
0005309843
00B6A84964
00B6A72788

[~ R~~~ I~

Total
0089543066
0001196394
00G4655346
0006845234
0032874082
0005782219
0005431107
BBB5949798
0006114668

Z-values:

age
race

transport
female_workers
housing_occupancy_rent
min_wage

children

education
health_insurance

p-values:

age
race

transport
female_workers
housing_occupancy_rent
min_wage

children

education
health_insurance

75

Direct In
5494248
4173759
7904817
5753878
9791139
3707073
0917129
5834908
6122711

w

-4,

n

!
B

S NW R R NS A

BPONwW NN

Direct
0.000005379276
9.6764035
0.0052630
0.000000024698
9.0478032
@.1704662
9.8019901
0.0097806
@.5403584

direct Total
.566708 5.882281
198953 -4.542367
.126670 3.882012
246274 -7.107382
383423 3.145739
320714 -3.193123
434949 4.785904
587383 4.078221
734254 1.413284
Indirect Total

0.00036149 4.0465e-09
0.000026815 5.5626e-06
0.03344748 0.0001036
0.000021736 1.1826e-12
0.01715246 ©.0016567
0.02030230 ©0.0014074
0.00059267 1.7022e-06
0.00967080 4.5382e-05
0.08287308 ©.1575723



Appendix D.6: Results of Spatial Autoregressive Lagged Response Model with Median Distance

Traveled from Home as the Dependent Variable

Regions with no neighbours included:

3374
Coefficients: (numerical Hessian approximate standard errors)

Estimate Std. Error z value Pr(>1zl)
(Intercept) 0.96509907 ©0.19418119 4.9701 0.00000066919941
age 0.02001987 ©.00438409 4.5665 0.00000495975950
race -0.00022088 ©0.00007288 -3.0307 0.0024399
transport 0.00082252 ©.00024806 3.3159 0.0009136
female_workers -0.00215358 ©.00033096 -6.5070 ©.00000000007668
housing_occupancy_rent ©.00287263 ©0.00140594 2.0432 0.0410318
min_wage -0.00065053 0.00030532 -2.1306 0.0331205
children 0.00105116 0.00024416 4.3052 0.00001668418093
education 0.00135396 ©0.00030415 4.4516 0.00000852171454
health_insurance 0.00013699 0.00029669 0.4617 0.6442790

Rho: ©.19253, LR test value: 88.022, p-value: < 2.22e-16

Approximate (numerical Hessian) standard error: ©.020298
z-value: 9.4848, p-value: < 2.22e-16

Wald statistic: 89.961, p-value: < 2.22e-16

Log likelihood: -12777.99 for lag model
ML residual variance (sigma squared): 5.0066, (sigma: 2.2375)
Number of observations: 5737

Number of parameters estimated: 12
AIC: 25580, (AIC for 1m: 25666)

Appendix D.7: Impact Measures for Spatial Autoregressive Lagged Response Model with
Median Distance Traveled from Home as the Dependent Variable

Impact measures (lag, trace):

Direct Indirect Total
age 0.0201778511 0.00461536543 0.0247932165
race -0.0002226193 -0.00005092066 -0.0002735400
transport 0.0008290078 ©.00018962247 ©.0010186303
female_workers -0.0021705691 -0.00049648346 -0.0026670525
housing_occupancy_rent 0.0028952944 0.00066225296 0.0035575474
min_wage -0.0006556616 -0.00014997227 -0.0008056339
children 0.0010594541 0.00024233342 ©.0013017875
education 0.0013646388 ©0.00031213963 ©0.0016767785
health_insurance 0.0001380683 0.00003158094 0.0001696492
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Simulation results (mixed Hessian approximation variance matrix):

Direct:

Iterations = 1:5000
Thinning interval = 1
Number of chains = 1

Sample size per chain = 5000

1. Empirical mean and standard deviation for

plus standard error of the mean:

Mean
age 0.0202375 0
race -0.0002251 @
transport 0.0008269 @
female_workers -0.0021701 @
housing_occupancy_rent ©.0028966 0
min_wage -0.0006537 @
children 0.0010674 @
education 0.0013593 @
health_insurance 0.0001348 @

2. Quantiles for each variable:

2.5%
age 0.01150871
race -0.00036897
transport 0.00034724
female_workers -0.00281885
housing_occupancy_rent ©.00005612
min_wage -0.00125525
children 0.00058616
education 0.00077646
health_insurance -0.00044218
Indirect:

Iterations = 1:5000
Thinning interval = 1

Number of chains = 1

Sample size per chain = 5000

SD
.00442075
. 00007404
00025374
.00033646
.00143511
00030740
00024621
.00030486
.00029970

each variable,

Naive SE Time-series SE
0.000062519 0.000064558
0.000001047 0.000001047
0.000003588 0.000003588
0.000004758 0.000004758
0.000020295 0.000020295
0.000004347 0.000004166
0.000003482 0.000003482
0.000004311 0.000004311
0.000004238 0.000004238

25% 50% 75%

1 |
(SRS SR

® e

.0173190 @.0201998 @.0231434 0,
.0002761 -0.0002247 -0.0001764 -0.
.0006571 ©.0008209 0.0009%61 O.
.0024024 -0.0021723 -0.0019393 -0.
.0019358 ©.0028884 ©.0038664 O.
-0.0008574 -0.0006508 -0.0004449 -
.0009019 0.0010612 ©.0012343
.0011508 ©.0013560 @.0015664
-0.0000646 ©.0001361 ©.0003420

(=]

(SR ]

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean

age 0.00462336 0
race -0.00005128 @
transport 0.00018900 @
female_workers -0.00049526 0
housing_occupancy_rent 0.00066166 0.
min_wage -0.00014907 0
children 0.00024350 0
education 0.00031009 @

0

health_insurance 0.00003020

2. Quantiles for each variable:

SD
.00117186
00001783
00006332
.00009649
00034083
00007267
. 00006306
00007857
.00006888

2.5% 25%
age 0.00248037 0.00383170
race -0.00008785 -0.00006251
transport 0.00007612 0.00014528
female_workers -0.00069505 -0.00055701
housing_occupancy_rent 0.00001173 ©0.00043543
min_wage -0.00030137 -0.00019488
children 0.00013072 0.00019938
education 0.00017065 0.00025608
health_insurance -0.00010236 -0.00001449
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Naive SE Time-series SE
0.0000165726  0.0000162261
0.0000002521  0.0000002521
0.0000008956  0.0000008956
0.0000013646 0.0000013646
0.0000048201  0.0000048201
0.0000010277  0.0000009727
0.0000008917 0@
0.0000011111 0@
0.0000009741 @

0000008637
.0000011111
0000009741

50% 75%
.00456941 0.00535254
.00005093 -0.00003937 -
.00018588 0.00022889
00049138 -0.00042766 -

00014708 -0.00009980 -
.00024025 ©0.00028396
.00030515 0.00035905
.00003014 0.00007646

0 0
0 0
0 0
0 0
0.00065114 0.00087810 0.
0 0
] 0
0 0
0 0

97.5%
02913623
00007681
00133408
00151349
00567672

. 00005029
.00155074
.00196149
00072345

97.5%
00709867
.00001727
00032306
00031992
00136187
.00001171
.00037422
00047877
.00016532



Total:

Iterations = 1:5000

Thinning interval = 1
Number of chains = 1

Sample size per chain = 5000

1. Empirical mean and standard deviation for
plus standard error of the mean:

age
race

transport
female_workers

housing_occupancy_rent @.0@35582 @.00176553

min_wage
children
education
health_insurance

2. Quantiles for each variable:

age
race

transport
female_workers

housing_occupancy_rent @.0000674

min_wage
children
education
health_insurance

Simulated standard errors

age
race

transport
female_workers

housing_occupancy_rent

min_wage
children
education
health_insurance

Simulated z-values:

age
race

transport
female_workers

housing_occupancy_rent

min_wage
children
education
health_insurance

Simulated p-values:

age
race

transport
female_workers

housing_occupancy_rent

min_wage
children
education
health_insurance

each variable,

Mean SD Naive SE Time-series SE
0.0248609 0.00546474 0.000077283 0.000079272
-0.0002764 ©.00009078 0.000001284 0.000001284
0.0019159 0.00031302 @.000004427 0.000004427
-0.0026654 ©.00041477 ©.000005866 0.000005866
0.000024968  0.000024968
-0.0008028 ©.00037766 0.000005341 0.000005105
0.0013109 0.00030270 0.000004281 0.000004120
0.0016694 ©.00037479 0.000005300 0.000005300
0.0001650 ©.00036806 0.000005205 0.000005205
2.5% 25% 50% 75% 97.5%
0.0141515 ©.02120145 ©.0248414 0.0284351 0.03582909
-0.0004549 -0.00033876 -0.0002762 -0.0002161 -0.00009556
0.0004234 ©.00080802 ©.0010082 0.0012254 0.00164318
-0.0034592 -9.00294693 -0.0026670 -0.0023845 -0.00185147
9.00238415 ©.0035493 0.0047511 0.00701348
-0.0015500 -0.00105197 -2.0003002 -0.0005467 -0.00006124
0.0007251 ©.00110572 ©.0013079 0.0015160 ©.00191298
0.0009526 ©.00141548 ©.0016637 0.80019242 0.00241930
-0.0005419 -0.00007797 ©.0001663 0.0004195 0.00088479
Direct Indirect Total
0.00442075402 0.00117185743 0.0054647412
0.00007404103 0.00001782574 0.0000907829
0.00025374311 0.00006332499 0.0003130184
0.00033646493 0.00009649420 0.0004147702
0.00143510568 @.00034083195 0.0017655307
0.00030740018 0.00007266801 0.0003776633
0.00024620824 @.00006305507 0.0003026992
0.00030485656 0.00007856640 0.0003747894
0.00029969671 @.00006888275 @.0003680572
Direct Indirect Total
4.5778388 3.9453288 4.5493211
-3.0400723 -2.8764728 -3.0442441
3.2589961 2.9845863 3.2456458
-6.4497730 -5.1325275 -6.4261639
2.0183766 1.9413092 2.0153962
-2.1266566 -2.0513288 -2.1257048
4.3352380 3.8617037 4.3306069
4.4588459 3.9468505 4.4542297
0.4497284 0.4384403 ©.4482539
Direct Indirect Total
0.00000469804400 0.00007969054 @.00000538192624
@.0023652 0.0040215 9.0023327
0.0011181 0.0028396 0.0011718
0.00000000011202 0.00000028588 @.00000000013086
0.0435521 0.0522208 0.0438632
0.0334486 0.0402349 0.0335278
0.00001456024705 0.0001126 0.00001486989518
0.00000824021360 0.00007918597 @.00000841949436
0.6529063 0.6610671 0.6539700
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Appendix D.8: Results of Spatial Hausman Test with Median Distance Traveled from Home as

the Dependent Variable

df
10

Hausman Test Statistic
86.183

p-value
3.053e-14

Appendix D.9: Results of Ordinary Least Squares Regression with Home Dwell Time as the

Dependent Variable

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 440.29069 68.38638 6.438 1.31e-1@ ***
age -6.29183 1.57389 -3.998 6.48e-05 ***
race 0.28752 0.02607 11.027 < 2e-16 ***
transport -0.30830 0.08914 -3.459 0.000547 ***
female_workers 0.45031 0.11873 3.793 0.000151 ***
housing_occupancy_rent  ©0.43147 0.50473  ©.855 0.392664
min_wage 0.13975 0.10963 1.275 0.202457
children -0.60517 0.08759 -6.909 5.39e-12 ***
education -0.86088 0.10907 -7.893 3.52e-15 ***
health_insurance 0.02648 0.10650 0.249 0.803614
Signif. codes: @ “***’ 9. @01 ‘**’ 0.01 ‘*’ 9.05 ‘.’ 0.1 * ’ 1

Residual standard error: 8@4.3 on 5729 degrees of freedom
(1124 observations deleted due to missingness)

Multiple R-squared:
F-statistic: 36.47 on 9 and 5729 DF,

0.05419, Adjusted R-squared: @.0527

p-value: < 2.2e-16

Appendix D.10: Results of Moran’s I Calculations with Home Dwell Time as the Dependent

Moran | Statistic
Standard Deviate
16.125

Variable
p-value Observed Moran | Expectation Variance
< 2.2e-16 0.1201 -0.0005 0.0001

Appendix D.11: Results of Lagrange Multiplier Diagnostic Tests for Spatial Dependence with

Test
LMerr
LMlag

RLMerr
RLMlag
SARMA

Home Dwell Time as the Dependent Variable

Test Statistic p-value df
257.14 < 2.2e-16 1
312.46 < 2.2e-16 1
29.56 5.4e-08 1
84.88 < 2.2e-16 1
342.02 < 2.2e-16 2
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Appendix D.12: Results of Spatial Durbin Model (Spatially Lagged X Model) with Home Dwell

Appendix D.13: Impact Measures for Spatially Lagged X Model with Home Dwell Time as the

Time as the Dependent Variable

Coefficients:

(Intercept) 645
age -6.
race

transport -0.
female_workers
housing_occupancy_rent
min_wage -0.
children -0.
education -0.
health_insurance

lag.age -3.
lag.race

lag.transport -0.
lag. female_workers
lag.housing_occupancy_rent
lag.min_wage

lag.children -0.
lag.education -1.
lag.health_insurance -0.
Signif. codes: @ “***' 9.001

Estimate Std.

Q.

Q.
Q.

Q.
Q.
Q.

1.
a.

97058 135.
64974
23594
44832
34667
18863
06225
44636
39129
16210
06295
03654
05593
95963
21562
47670
66508
41516
18472

oo rHreeWe e er

Error t value

88816
62531
93128
09779
12424
50504
11699
08884
11689
18939
15448
04898
17279
24286
11707
21292
18814
21568
21525

4
-4

7.
-4.
2.
0.
-0.
-5.
-3.
1.
-0.
0.
-0.
3.
1.
2.
-3.
-6.
-0.

C¥%7 0.01 “*’ @.05 .

Residual standard error: 795 on 5720 degrees of freedom
Adjusted R-squared:

Multiple R-squared:

0.07735,
F-statistic: 26.64 on 18 and 5720 DF,

Dependent Variable

Impact measures (SLX, estimable, n-k): Z-values:

Direct Indirect Total
age -6.64973636 -3.06294771 -9.71268406 age
race @.23594485 0.03653967 0.27248452 race
transport -0.44831626 -0.05593345 -0.50424971 transport
female_workers 0.34666716 0.95962680 1.30629395 female_workers
housing_occupancy_rent @.18863441 1.21561912 1.4@425353 housing_occupancy_rent
min_wage -0.06225124 0@.47670369 0.41445245 min_wage
children -0.44636247 -0.66508024 -1.11144271 children
education -0.39129081 -1.41516457 -1.80645537 education
health_insurance 0.16200825 -0.18472349 -0.02262524 health_insurance
Standard errors: p-values:

Direct Indirect Total
age 1.62530564 3.15447647 3.16785700 age
race 0.03127788 0.04897548 0.04240065 race
transport @.09778594 0.17279420 0.16499061 transport
female_workers 0.12424413 ©.24285860 0.24250493 female_workers
housing_occupancy_rent @.50503829 1.11707498 1.16423930 housing_occupancy_rent
min_wage 0.11698718 @.21291739 0.20495483 min_wage
children 0.08883824 0.18813884 0.19246757 children
education 0.11689257 0.21568373 0.21089585 education
health_insurance 9.10939175 0.21524881 0.21673044 health_insurance
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Pr(>1t1)
.754 2.05e-06
.091 4.35e-05
544 5.29e-14
585 4.64e-06
790 @.005285
374 0.708786
532 0.594663
024 5.20e-07
347 0.000821
482 0.138445
971 .331597
746 0.455649
324 0.746177
951 7.86e-05
088 0.276546
239 0.025200
535 0.000411
561 5.80e-11
858 0.390826
t .11
0.07445

p-value: < 2.2e-16

Direct
.9913759
.5435057
.5846699
. 7992094

©.3735052
-0.5321202
-5.0244407
-3.3474395
.4818143

~

B

[

Direct

2882e-05
574le-14
5470e-06
00526740
70877250
59464277
0490e-07
00081562
13838972

(SR B T~ R~ T e

'
MNEWe e

-3.
-6.

-2

In

Q
@
Q
Q
Q.
[}
[}
Q
Q

Indirect Total

.9709845 -3.0660109

. 7460810 6.4264235

.3236998 -3.0562329

.9513808 5.3866697

.0882162 1.2061554

.2389138 2.0221648

5350502 -5.7747012

5612951 -8.5656278

.8581859 -0.1043935
direct Total
.3315560 9.0021694
.4556185 0.00000000013004
. 7461653 0.0022414
.000077701573975 @.00000007177517
2764997 8.2277576
.0251615 9.0431593
. 0004077 ?.000000007 70897
.000000BRB53342 < 2.22e-16
.3907898 9.9168571



Appendix D.14: Results of Spatial Autoregressive Lagged Response Model with Home Dwell

Time as the Dependent Variable

Regions with no neighbours included:

3374
Coefficients: (numerical Hessian approximate standard errors)
Estimate Std. Error z value Pr(zlzl)
(Intercept) 394.044230 66.270576 5.9460 0.000000002748
age -6.242689 1.523866 -4.0966 0.000041923793
race @.242147 0.025391 9.5366 < 2.2e-16
transport -0.316812 0.086303 -3.6709 0.0002417
female_workers ©.357819 0.115093 3.1089 0.0018776
housing_occupancy_rent  ©.321551 ©0.488728 @.6579 0.5105794
min_wage @.071857 0.106225 @.6765 0.4987491
children -0.509782 0.084994 -5.9979 0.000000001999
education -0.629270 0.106515 -5.9078 0.000000003467
health_insurance ©.083436 0.103167 ©.8088 0.4186577

Rho: ©.32132, LR test value: 261.17, p-value: < 2.22e-16

Approximate (numerical Hessian) standard error: ©.019259
z-value: 16.684, p-value: < 2.22e-16

Wald statistic: 278.36, p-value: < 2.22e-16

Log likelihood: -46401.71 for lag model

ML residual variance (sigma squared): 606480, (sigma: 778.77)
Number of observations: 5739

Number of parameters estimated: 12

AIC: 92827, (AIC for 1m: 93087)

Appendix D.15: Impact Measures for Spatial Autoregressive Lagged Response Model with

Home Dwell Time as the Dependent Variable

Impact measures (lag, trace):

Direct Indirect Total
age -6.39013419 -2.80816927 -9.1983035
race 0.24786635 0.10892583 0.3567922
transport -0.32429524 -0.14251280 -0.4668080
female_workers 0.36627014 0.16095884 0.5272290
housing_occupancy_rent 0.32914608 0.14464452 ©.4737906
min_wage 0.07355408 0.03232363 0.1058777
children -0.52182282 -0.22931706 -0.7511399
education -0.64413277 -0.28306664 -0.9271994
health_insurance 0.08540715 0.03753251 0.1229397
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Simulation results (mixed Hessian approximation variance matrix):
Direct:

Iterations = 1:5000

Thinning interval = 1

Number of chains =1

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
age -6.39025 1.57071 @.0222132 0.0222132
race 0.24766 ©.02618 0.0003703 0.0003595
transport -0.32531 ©.08974 ©.0012692 0.0012692
female_workers 0.36944 0.12005 0.0016977 0.0016483
housing_occupancy_rent ©.32346 0.50162 0.0070939 0.0070939
min_wage 0.07267 0.10842 0.0015333 0.0015333
children -0.52065 0.08629 ©.0012204 0.0012204
education -0.64384 0.10710 ©.0015146 0.0014441
health_insurance 0.08377 0.10657 0.0015071 0.0015071
2. Quantiles for each variable:

2.5% 25% 50% 75%  97.5%
age -9.4432 -7.4551386 -6.38983 -5.3379 -3.2815
race 0.1950 ©.2301554 ©.24805 0@.2654 0.2984
transport -0.5014 -0.3843406 -0.32486 -0.2641 -0.1511
female_workers 0.1360 ©.2895769 ©.36916 0.4500 0.6100
housing_occupancy_rent -0.6585 -0.0200138 ©.32662 0.6710 1.2821
min_wage -0.1324 -0.0005433 0.07138 0.1465 0.2891
children -0.6892 -0.5789422 -0.51982 -0.4613 -0.3524
education -0.8538 -0.7144464 -0.64472 -0.5722 -0.4355
health_insurance -0.1268 ©0.0126351 ©0.08419 @.1557 ©0.2894

Indirect:

Iterations = 1:5000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
age -2.81271 ©.73259 0.0103605 0.0103605
race 0.10892 0.01400 0.0001980 0.0001980
transport -0.14328 0.04165 0.0005890 0.0005890
female_workers 0.16244 0.05421 0.0007667 0.0007457
housing_occupancy_rent 0.14243 0.22161 0.0031340 0.0029710
min_wage 0.03181 0.04790 0.0006774 0.0006774
children -0.22901 0.04164 0.0005889 0.0005889
education -0.28301 0.05064 0.0007161 0.0006670
health_insurance 0.03694 0.04724 0.0006681 0.0006774

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
age -4.32451 -3.2989002 -2.78641 -2.31253 -1.40549
race 0.08284 0.0991294 0.10844 0.11822 ©0.13768
transport -0.22939 -0.1699632 -0.14227 -0.11462 -0.06564
female_workers 0.05928 ©.1255713 0.16135 0.19688 0.27419
housing_occupancy_rent -0.28487 -0.0086362 0.14148 0.29101 0.56731
min_wage -0.06000 -0.0002358 0.03176 0.06407 0.12955
children -0.31357 -0.2561181 -0.22684 -0.20052 -0.15181
education -0.38750 -0.3153295 -0.28198 -0.24770 -0.18759
health_insurance -0.05746 ©0.0054847 0.03656 ©0.06830 0.12918
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Total:

Iterations = 1:5000
Thinning interval = 1
Number of chains = 1

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

SD Naive SE Time-series SE

Mean

age -9.2030 2.27541 0.0321791
race 0.3566 0.03795 0.0005366
transport -0.4686 0.13012 0.0018402
female_workers 0.5319 0.17298 0.0024463
housing_occupancy_rent ©.4659 0.72244 0.0102169
min_wage 0.1045 0.15616 0.0022085
children -0.7497 0.12471 0.0017636
education -0.9268 0.15373 0.0021741
health_insurance 0.1207 0.15363 0.0021727
2. Quantiles for each variable:

2.5% 25%

age -13
race 0.
transport -0
female_workers Q.

housing_occupancy_rent -0

min_wage -0
children -0
education -1
health_insurance -0

Simulated standard errors

.6242 -10.7586419 -9.2

2821

0.3309376 0.3

.7274 -0.5557953 -0.4

1960

0.4163135 0.5

.9386 -0.0285074 0.4
.1918 -0.0007718 0.1
.9936 -0.8340338 -0.7480 -0.6652 -0.
.2265 -1.0262486 -0.9

.1832

Direct
age 1.57070747
race 0.02618218
transport 0.08974471
female_workers 0.12004752
housing_occupancy_rent ©.50161652
min_wage 0.10842266
children 0.08629320

education 0.10710118
health_insurance 0.10657082

Simulated z-values:

0.0180230 0.1

Indirect

]

50%

(SIS IS S B IS S RS

.0321791
.0005366
.0018402
.0023748
.0102169

0022085

.0017636
.0020271
.0022030

75% 9

091 -7.6724 -4.
572 0.3822 0.
689 -0.3802 -0.
323 0.6467 0.

700 0.9643 1

034 0.2114 0.

262 -0.8233 -0.
211 0.2245 0.

Total

.73259494 2.27540684
.01399993 0.03794623
.04165084 0.13012041
.05421264 0.17298089

.04790204 0.15616435
.04164341 0.12470651
.05063561 ©.15373267
.04724146 0.15363284

]
]
]
]
9.22160901 0.72244268
@
@
4]
@

7.5%
7159
4310
2178
8831

.8618

4186
5066
6311
4166

Direct Indirect Total

age -4.0683925 -3.8393861 -4.0445379
race 9.4590463 7.7800674 9.3969515
transport -3.6248305 -3.439928@ -3.6011667
female_workers 3.0774556 2.9963654 3.0748008
housing_occupancy_rent ©.6448359 0.6427151 ©0.6448841
min_wage 0.6702043 ©.6641542 0.6690367
children -6.0334937 -5.4992168 -6.0113588
education -6.0115277 -5.5890750 -6.0289589
health_insurance 0.7860277 ©.7819549 0.7856934
Simulated p-values:

Direct Indirect Total
age 0.0000473385981 0.00012334 0.0000524264189
race < 2.22e-16 7.3275e-15 < 2.22e-16
transport 0.00028915 ©.00058187 ©.00031679
female_workers 0.00208776 ©.00273219 ©.00210643
housing_occupancy_rent @.51903355 ©.52040899 ©.51900230
min_wage 0.50272754 ©.50659164 0.50347209
children 0.0000000016045 3.8148e-08 0.0000000018397
education 0.0000000018378 2.2828e-08 0.0000000016502
health_insurance 0.43185126 0.43424106 0.43204712
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Appendix D.16: Results of Spatial Hausman Test with Home Dwell Time as the Dependent
Variable
Hausman Test Statistic p-value df
97.136 < 2.2e-16 10
Appendix D.17: Results of Ordinary Least Squares Regression with Non-Home Dwell Time as

the Dependent Variable

Coefficients:
Estimate Std. Error t value Pr(>1tl)

(Intercept) 490.90319 69.12322 7.102 1.38e-12 ***
age 17.13034 1.59085 10.768 < 2e-16 ***
race 0.14984 0.02635 5.686 1.37e-08 ***
transport -0.89200 0.09010 -9.901 < 2e-16 ***
female_workers 0.57243 0.12001 4.770 1.89%e-06 ***
housing_occupancy_rent -1,49497 0.51017 -2.930 ©.0034Q **
min_wage -1.71649 0.11081 -15.490 < 2e-16 ***
children 0.45702 0.08853 5.162 2.52e-@7 ***
education 1.16949 0.11025 10.608 < 2e-16 ***
health_insurance 0.32927 0.10764 3.059 0.00223 **

Signif. codes: @ “***’ 0.001 ‘**’ 0.01 ‘*’ ©.05 ‘.” 0.1 * ' 1

Residual standard error: 813 on 5729 degrees of freedom
(1124 observations deleted due to missingness)

Multiple R-squared: ©.1344, Adjusted R-squared: ©.1331

F-statistic: 98.86 on 9 and 5729 DF, p-value: < 2.2e-16

Appendix D.18: Results of Moran’s I Calculations with Non-Home Dwell Time as the

Dependent Variable

Moran | Statistic
Standard Deviate
15.705 < 2.2e-16 0.1170 -0.0005 0.0001

p-value Observed Moran | Expectation Variance

Appendix D.19: Results of Lagrange Multiplier Diagnostic Tests for Spatial Dependence with

Non-Home Dwell Time as the Dependent Variable

Test Test Statistic p-value df
LMerr 243.86 <2.2e-16 1
LMlag 366.98 < 2.2e-16 1

RLMerr 38.95 4.3e-10 1
RLMlag 162.07 <2.2e-16 1
SARMA 405.93 < 2.2e-16 2
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Appendix D.20: Results of Spatial Durbin Model (Spatially Lagged X Model) with Non-Home

Dwell Time as the Dependent Variable

Coefficients:

Estimate Std. Error t value Pr>1tl)
(Intercept) 110.48119 136.8685@0 0.807 0.419581
age 14.51725 1.63703 8.868 < 2e-16 ***
race 9.10556 9.03150 3.351 0.000811 ***
transport -0.52613 0.09849 -5.342 0.000000095564 ***
female_workers 9.39943 9.12514 3.192 0.001421 **
housing_occupancy_rent -1.04930 0.50868 -2.063 2.039178 *
min_wage -1.27086 9.11783 -10.785 < 2e-16 ***
children 9.35261 0.08948 3.941 0.000082202827 ***
education 0.72048 9.11774 6.119 0.000000001001 ***
health_insurance 9.18415 9.11018 1.671 0.094706
lag.age 11.11101 3.17723  3.497 0.000474 ***
lag.race 9.10517 9.04933 2.132 0.933e51 *
lag.transport -90.46289 09.17404 -2.660 0.007843 **
lag.female_workers -0.12404 0.24461 -0.507 ©.612123
lag.housing_occupancy_rent -1.43531 1.12513 -1.276 0.202122
lag.min_wage -1.31363 0.21445 -6.125 ©.000000000264 ***
lag.children 90.42129 9.18950 2.223 0.026241 *
lag.education 1.48334 0.21724 6.460 ©.000000000113 ***
lag.health_insurance 90.30175 9.21680 1.392 0.164030

Signif. codes: @ “***’ 9.001 ‘**’ 0.01 ‘*’ @.05 *.” 0.1 ‘' * 1

Residual standard error: 80@.8 on 5720 degrees of freedom
Multiple R-squared: ©.1616, Adjusted R-squared: ©0.1589
F-statistic: 61.24 on 18 and 5728 DF, p-value: < 2.2e-16

Appendix D.21: Impact Measures for Spatially Lagged X Model with Non-Home Dwell Time as
the Dependent Variable

Impact measures (SLX, estimable, n-k): Z-values:

Direct Indirect Total Direct Indirect Total
age 14.5172521 11.1110118 25.6282639 age 8.868037 3.497071@ 8.032149
race ©0.1055618 @.1051680 ©.2107299 race 3.350794 2.1319801 4.934370
transport -0.5261253 -0.4628938 -0.9890191 transport -5.341841 -2.6596860 -5.951461
female_workers 0.3994317 -0.1240355 ©0.2753962 female_workers 3.191867 -0.5070734  1.127497
housing_occupancy_rent -1.0492998 -1.4353074 -2.4846073 housing_occupancy_rent -2.062782 -1.2756771 -2.118818
min_wage -1.27086@7 -1.3136325 -2.5844931 min_wage -10.785438 -6.1254905 -12.519741
children 0.3526130 @.4212898 ©.7739028 children 3.940728 2.2232108 3.992151
education 0.7204845 1.4033417 2.1238262 education 6.119499 6.459876@ 9.998367
health_insurance 0.1841514 @.3017497 ©.4859011 health_insurance 1.671354 1.3918237 2.225902
Standard errors: p-values:

Direct Indirect Total Direct Indirect Total
age 1.637031@1 3.1772337 3.19071075  age < 2.22e-16 0.0004704 8.8818e-16
race 0.03150352 0.0493288 0.04270654  race 0.00080858 0.0330085 8.0410e-07
transport ©.09849139 0.1740408 ©.16618089 transport 0.0000000920076 0.0078214 2.6576e-09
female_workers 0.12514046 0.2446106 0.24425442  female_workers 0.0014136 0.6121034 0.259532
housing_occupancy_rent ©.50868177 1.1251339 1.17263842  housing_occupancy_rent @.0391333 0.2020697 0.034106
min_wage ©.11783116 ©.2144534 0.20643343  min_wage < 2.22e-16 0.00000000090405 < 2.22e-16
children ©.08947914 0.1894961 @.19385608 children 0.0000812346081 @.0262016 6.5477e-05
education ®.11773586 0.2172397 0.21241731  education 0.0000000009387 @.00000000010479 < 2.22e-16
health_insurance 0.11018093 0.2168017 ©.21829399  health_insurance 0.0946517 0.1639758 0.026021
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Appendix D.22: Results of Spatial Autoregressive Lagged Response Model with Non-Home

Dwell Time as the Dependent Variable

Regions with no neighbours included:

3374

Coefficients: (numerical Hessian approximate standard errors)
Estimate Std. Error z value Pr(>lzl)

(Intercept) 210.844039 68.626013 3.0724 0.0021237
age 14.740204 1.542523 9.5559 < 2.2e-16
race 0.108733 0.025562 4.2537 2.103e-05
transport -0.660785 ©.088002 -7.5087 5.973e-14
female_workers 0.446700 ©.116137 3.8463 0.0001199
housing_occupancy_rent -1.194454  ©.493050 -2.4226 0.0154106
min_wage -1.415268 ©.108385 -13.0578 < 2.2e-16
children ©.397485 0.085575 4.6449 3.403e-06
education 0.896063 ©0.107609 8.3271 < 2.2e-16
health_insurance 9.251789 0.104062 2.4196 0.0155377

Rho: ©.31691, LR test value: 291.81, p-value: < 2.22e-16

Approximate (numerical Hessian) standard error: @.017965
z-value: 17.64, p-value: < 2.22e-16

Wald statistic: 311.18, p-value: < 2.22e-16

Log likelihood: -46447.89 for lag model
ML residual variance (sigma squared): 616630, (sigma: 785.26)
Number of observations: 5739

Number of parameters estimated: 12
AIC: 92920, (AIC for 1lm: 93210)

Appendix D.23: Impact Measures for Spatial Autoregressive Lagged Response Model with Non-

Home Dwell Time as the Dependent Variable

Impact measures (lag, trace):

Direct Indirect Total
age 15.0779188 6.50080933 21.5787281
race @0.1112239 ©.04795394 @.1591779
transport -0.6759244 -0.29142321 -0.9673476
female_workers 0.4569342 0.19700612 0.6539403
housing_occupancy_rent -1.2218201 -0.52678486 -1.7486049
min_wage -1.4476937 -0.62416973 -2.0718634
children 0.4065915 0.17530098 @.5818925
education ©0.9165933 0.39518704 1.3117803
health_insurance @.2575578 0.11104546 ©.3686033
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Simulation results (mixed Hessian approximation variance matrix):
Direct:

Iterations = 1:5000

Thinning interval = 1

Number of chains =1

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
age 15.9739 1.58053 @.0223521 9.0223521
race ©9.1115 ©.02594 ©.0003669 0.0003822
transport -0.6764 0.09005 @.0012735 0.0012735
female_workers ©.4581 ©.11918 ©.0016855 0.0016180
housing_occupancy_rent -1.2055 0.50590 @.0071545 @.0071545
min_wage -1.4480 0.11029 0.0015597 0.0015597
children 0.4063 ©0.08689 0.0012289 0.0012289
education 9.9194 0.11100 ©.0015697 0.0015697
health_insurance ©0.2557 ©.10660 @.0015075 0.0015075

2. Quantiles for each variable:

2.5% 25% 50% 75%  97.5%
age 11.97651 14.03299 15.0611 16.1082 18.1656
race 0.05939 ©0.09467 ©.1118 ©0.1289 ©0.1613
transport -0.85313 -8.73707 -0.6770 -0.6161 -0.4973
female_workers @.22429 ©.37835 0.4586 0.5395 0.6901
housing_occupancy_rent -2.19978 -1.54787 -1.2019 -0.8796 -0.2255
min_wage -1.66176 -1.52423 -1.4473 -1.3744 -1.2302
children @.23763 ©.34752 ©.4055 0.4645 @.5756
education ©.70142 ©.84228 ©.9194 0.9965 1.1354
health_insurance 0.03684 ©.18830 0.2560 0.3271 0.4613

Indirect:

Iterations = 1:5000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
age 6.51740 0.83412 0.0117962 0.0117962
race 0.04819 0.01165 0.0001648 0.0001706
transport -0.29215 0.04254 0.0006016 0.0006016
female_workers 0.19791 0.05317 0.0007520 0.0007212
housing_occupancy_rent -0.52098 0.22255 0.0031474 0.0031474
min_wage -0.62587 0.06436 0.0009102 0.0010105
children 0.17565 0.03974 0.0005620 0.0005620
education 0.39717 0.05373 0.0007599 0.0007599
health_insurance 0.11050 0.04673 0.0006608 0.0006608

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
age 4.97119 5.94029 6.49632 7.06323 8.20576
race 0.02542 0.04050 0.04804 0.05603 0.07153
transport -0.37815 -0.31927 -0.29086 -0.26380 -0.21134
female_workers 0.09546 0.16148 0.19686 0.23405 0.30395
housing_occupancy_rent -0.96751 -0.66935 -0.51647 -0.37729 -0.09686
min_wage -0.75688 -0.66753 -0.62249 -0.58175 -0.50328
children 0.10081 0.14881 0.17419 0.20213 0.25866
education 0.29827 0.35993 0.39477 0.43253 0.50635
health_insurance 0.01595 ©0.08009 ©0.11028 0.14175 0.20245
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Total:

Iterations = 1:5000

Thinning interval = 1
Number of chains = 1
Sample size per chain

5000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-seri
age 21.5913 2.29415 0.0324442 0.0
race 0.1597 0.03713 0.0005251 0.0
transport -0.9685 ©.12789 ©.0018086 0.0
female_workers 0.6560 0.17062 0.0024129 0.9
housing_occupancy_rent -1.7265 ©.72533 0.0102577 0.0
min_wage -2.0739 0.15961 0.0022572 0.0
children 0.5820 ©.12483 0.0017653 0.0
education 1.3166 ©.15781 ©.08022317 2.0
health_insurance 0.3662 0.15264 ©.0021587 0.0
2. Quantiles for each variable:
2.5% 25% 50% 75%

age 17.06925 20.8320 21.5633 23.1375 26.
race 0.08544 ©0.1357 ©0.1600 ©.1849 @
transport -1.21810 -1.0551 -0.9678 -0.8827 -0.
female_workers 0.32015 ©.5411 ©.6578 ©0.7733 @
housing_occupancy_rent -3.12948 -2.2166 -1.7211 -1.2553 -0.
min_wage -2.38149 -2.1808 -2.0749 -1.9649 -1.
children 0.33885 ©0.4993 0.5802 0.6643 0
education 1.01294 1.2079 1.3160 1.4243 1
health_insurance 0.05332 0.2693 0.3668 0.4694 0
Simulated standard errors

Direct Indirect Total
age 1.58053380 ©.83411679 2.29414950
race 0.02594224 0.01165314 0.03712738
transport 0.09004764 @.04254304 0.12788858
female_workers 0.11918205 ©.05317247 0.17061710
housing_occupancy_rent @.50589912 @.22255475 0.72532583
min_wage 0.11028894 0.06435758 0.15960661
children 0.08689346 0.03974221 0.12482721
education 0.11099579 @.05373403 0.15780834
health_insurance 0.10659835 0.04672611 0.15264138
Simulated z-values:

Direct Indirect Total
age 9.537227 7.813531 9.411465
race 4.299880 4.135327 4.302433
transport -7.511484 -6.867107 -7.573304
female_workers 3.843715 3.722019 3.844930
housing_occupancy_rent -2.382903 -2.340916 -2.380297
min_wage -13.129191 -9.724959 -12.99369%4
children 4,675883 4.419712 4.662007
education 8.283251 7.391457  8.342897
health_insurance 2.398315 2.364923 2.398826
Simulated p-values:

Direct Indirect Total

age < 2.22e-16 5.5511e-15 < 2.22e-16
race 1.7089%e-05 3.5445e-05 1.6893e-05
transport 5.8398e-14 6.5516e-12 3.6415e-14
female_workers 0.00012119 ©.00019764 ©.00012059
housing_occupancy_rent 0.01717671 0.01923650 @.01729871
min_wage < 2.22e-16 < 2.22e-16 < 2.22e-16
children 2.9269%9e-06 9.8832e-06 3.1305e-06
education 2.2204e-16 1.4522e-13 < 2.22e-16
health_insurance 0.01647070 ©.01803382 0.01644775
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Appendix D.24: Results of Spatial Hausman Test with Non-Home Dwell Time as the Dependent
Variable

Hausman Test Statistic
134.69

p-value
<2.2e-16

df
10

Appendix D.25: Results of Ordinary Least Squares Regression with Percentage Time Spent at

Home as the Dependent Variable

Coefficients:

Estimate Std.
(Intercept) 61.407858 8
age -0.890047 ©
race 0.036739 @
transport -0.041412 0
female_workers 0.056000 @
housing_occupancy_rent 0.122420 @
min_wage 0.021296 0@
children -0.081407 0
education -0.108450 @
health_insurance 0.001344 0

Signif. codes: @ ‘***’ p.001 ‘**’' 0,

Error t value

.383115
.192935
.0@3196
.010927
014555
.061872
.013439
010737
.013371
.013@55

7.
4.
11.
-3.

3.

1.

1.
-7.
-8.

0.

PrC>1tl)
325 2.72e-13 ***
613 4.05e-06 ***
494 < 2e-16 ***
790 0.000152 ***
847 0.000121 ***
979 ©.047908 *
585 ©.113101
582 3.94e-14 ***
111 6.09e-16 ***
103 0.918008

01 ‘** .05 ‘.’ 0.1 * ' 1

Residual standard error: 98.6 on 5729 degrees of freedom

(1124 observations deleted due to missingness)

Multiple R-squared: @.05837, Adjusted R-squared:
p-value: < 2.2e-16

F-statistic: 39.46 on 9 and 5729 DF,

0.05689

Appendix D.26: Results of Moran’s I Calculations with Percentage Time Spent at Home as the

Dependent Variable

Moran | Statistic
Standard Deviate

15.205 <2.2e-16 0.1133

p-value Observed Moran |

Expectation
-0.0005

Variance
0.0001

Appendix D.27: Results of Lagrange Multiplier Diagnostic Tests for Spatial Dependence with

Percentage Time Spent at Home as the Dependent Variable

Test Test Statistic
LMerr 228.54
LMlag 284.76

RLMerr 32.59
RLMlag 88.82
SARMA 317.35
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p-value
<2.2e-16
< 2.2e-16
1.1e-08
<2.2e-16
< 2.2e-16
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Appendix D.28: Results of Spatial Durbin Model (Spatially Lagged X Model) with Percentage

Time Spent at Home as the Dependent Variable

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 99.4304668 16.6614571 5.968 2.55e-09 ***
age -0.9150041 ©.1992812 -4.592 4.49e-06 ***
race 0.0301627 ©.003835@ 7.865 4.38e-15 **+*
transport -0.0563862 ©.0119897 -4.703 2.63e-06 ***
female_workers 0.0415895 ©.0152338 2.730 0.006351 **
housing_occupancy_rent 0.0973353 ©0.0619235 1.572 0.116037
min_wage 0.0008224 ©.0143440 ©.057 0.954280
children -0.0610821 ©.0108926 -5.608 2.15e-08 ***
education -0.0544048 ©.0143324 -3.796 0.000149 ***
health_insurance 0.0177214 ©.0134127 1.321 0.186474
lag.age -0.6912135 ©.3867752 -1.787 0.0@73971
lag.race 0.0049162 ©.0060050 ©.819 0.412999
lag.transport -0.0143470 ©.0211866 -0.677 0.498322
lag. female_workers 9.1289507 ©.0297773  4.331 1.51e-@5 ***
lag.housing_occupancy_rent ©.0887697 ©.1369663 ©.648 0.516938
lag.min_wage 0.0443206 ©.0261061 1.698 0.089617
lag.children -0.0948064 ©.0230680 -4.110 4.01e-@5 ***
lag.education -0.1596432 0.0264453 -6.037 1.67e-09 ***
lag.health_insurance -0.0200953 ©.0263920 -0.761 0.446440

Signif. codes: @ “***’ @.001 ‘**’ 0.01 “*’ 0.05 ‘.7 0.1 * * 1

Residual standard error: 97.48 on 5720 degrees of freedom
Multiple R-squared: 0.08103, Adjusted R-squared: ©.07814
F-staotistic: 28.02 on 18 and 5720 DF, p-value: < 2.2e-16

Appendix D.29: Impact Measures for Spatially Lagged X Model with Percentage Time Spent at
Home as the Dependent Variable

Impact measures (SLX, estimable, n-k): Z-values:

Direct Indirect Total Direct Indirect Total
age -0.9150041322 -0.691213451 -1.606217583 age -4,5915219 -1.7871193 -4.13530415
race 0.0301627497 ©0.004916182 0.035078932 race 7.8650648 0.8186870 6.74749413
transport -0.0563862007 -0.014347011 -0.070733211 transport -4.7028927 -0.6771758 -3.49649418
female_workers 0.0415894858 0.128950704 0.170540190 female_workers 2.7300859 4.3305084 5.73554672
housing_occupancy_rent ©.0973353363 ©.088769710 ©@.186105046 housing_occupancy_rent 1.5718637 0.6481136 1.30372065
min_wage 0.0008224192 ©0.044320635 ©.045143054 min_wage 0.0573355 1.6977099 1.79639329
children -0.0610820825 -0.094806354 -0.155888436 children -5.6076712 -4.1098658 -6.60579343
education -0.0544047792 -0.159643218 -0.214047997 education -3,7959352 -6.0367299 -8.27773993
health_insurance 0.0177213829 -0.020095274 -0.002373891 health_insurance 1.3212400 -0.7614157 -0.08933251
Standard errors: p-values:

Direct Indirect Total Direct Indirect Total

age 0.199281228 0.386775220 ©.388415828 age 4.4003e-06 0.073918  3.5448e-05
race 0.003835029 0.006004959 0.005198809 race 3.7748e-15 0.412965  1.504Ze-11
transport 0.011989685 0.021186563 0.020229752 transport 2.5650e-06 ©.498295  0.00047141
female_workers 0.015233765 0.029777267 @0.029733903 female_workers 9.00633178 1.4877¢-05 9.7198¢-09
housing_occupancy_rent @.061923523 0.136966285 0.142749174 housing_occupancy_rent ©.11598217 0.516911  ©.19232885
min_wage 0.014343978 0.026106129 0.025129828 min_wage 0.95427794 0.089563  ©.07243199
children 0.010892594 0.023067993 0.023598745 children 2.0507e-08 3.9589e-05 3.953%-11
education 0.014332378 0.026445314 0.025858265 education 0.00014709 1.5727e-09 2.2204e-16
health_insurance 0.013412690 0.026391988 0.026573653 health_insurance 0.18642136 0.446409  0.92881766
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Appendix D.30: Results of Spatial Autoregressive Lagged Response Model with Percentage

Time Spent at Home as the Dependent Variable

Regions with no neighbours included:

3374
Coefficients: (numerical Hessian approximate standard errors)
Estimate Std. Error z value Pr(>1zl)
(Intercept) 54.0052306 8.1536611 6.6970 0.00000000002127
age -0.8646352 ©.1874001 -4.6138 0.00000395286854
race 0.0314528 ©0.0031224 10.0733 < 2.2e-16
transport -0.0421589 0.0106128 -3.9724 0.00007113787987
female_workers 0.0448765 ©.0141544 3.1705 0.001522
housing_occupancy_rent @.1107175 ©.0600992 1.8422 0.065439
min_wage 0.0140925 ©.0130611 1.0790 0.280602
children -0.0696336 0.0104547 -6.6605 0.00000000002729
education -0.0820529 0.0130933 -6.2668 ©.00000000036859
health_insurance 0.0081590 ©.0126871 0.6431 0.520161

Rho: ©.30435, LR test value: 235.71, p-value: < 2.22e-16

Approximate (numerical Hessian) standard error: ©.019227
z-value: 15.829, p-value: < 2.22e-16

Wald statistic: 250.56, p-value: < 2.22e-16

Log likelihood: -34368.54 for lag model
ML residual variance (sigma squared): 9171.3, (sigma: 95.767)
Number of observations: 5739

Number of parameters estimated: 12
AIC: 68761, (AIC for Llm: 68995)

Appendix D.31: Impact Measures for Spatial Autoregressive Lagged Response Model with

Percentage Time Spent at Home as the Dependent Variable

Impact measures (lag, trace):

Direct Indirect Total
age -0.882763999 -0.360149998 -1.24291400
race ©.032112292 ©.013101171 ©.04521346
transport -0.043042895 -0.01756@637 -0.06060353
female_workers ©.045817442 0.018692597 ©.06451004
housing_occupancy_rent ©.113038889 0.046117598 ©.15915649
min_wage ©.014387998 0.005870014 0.02025801
children -0.071093644 -0.029004780 -0.10009842
education -0.083773302 -0.034177826 -0.11795113
health_insurance ©.008330091 0.00339851@ ©.01172860
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Simulation results (mixed Hessian approximation variance matrix):

Direct:

Iterations = 1:5000
Thinning interval = 1

Number of chains = 1

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD  Naive SE Time-series SE
age -0.884857 0.193707 0.00273944 9.00268171
race 0.032083 ©.003213 0.00004544 0.00004544
transport -0.043191 0.010908 0.00015426 0.00015426
female_workers 0.046098 0.014443 0.00020425 0.00020425
housing_occupancy_rent @.1123@5 0.061411 @.00086849 0.00088884
min_wage 0.014466 0.013328 0.00018849 0.00018849
children -0.070990 0.010723 0.00015165 0.00015165
education -0.083919 0.013150 @.00018596 0.00018596
health_insurance 0.008277 ©.012864 0.00018193 0.00017504
2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
age -1.26477 -1.0148898 -0.883838 -0.75216 -0.51211
race 0.02577 ©.0299544 0.9032102 0.03429 0.03831
transport -0.06408 -0.0505321 -0.043137 -0.03593 -0.02154
female_workers 09.01759 ©.0363047 ©.046386 ©.05578 0.07369
housing_occupancy_rent -0.01034 ©.0705985 @.113178 ©.15463 @.22956
min_wage -0.01185 0.0054542 0.014482 0.02367 0.04047
children -0.09177 -0.0782505 -0.070958 -0.06371 -0.05014
education -0.10994 -0.0927758 -0.084118 -0.07510 -0.05764
health_insurance -0.01696 -0.0004992 ©.008223 0.01700 0.03402

Indirect:

Iterations = 1:5000
Thinning interval = 1

Number of chains = 1

Sample size per chain = 5000

1. Empirical mean and standard deviation for
plus standard error of the mean:

Mean SD
age -0.361857
race 09.013111
transport -0.017671
female_workers 0.018832
min_wage 0.005899
children -0.029011

education -0.034261
health_insurance 0.003394

0

0 %]
] %]
0 4]

housing_occupancy_rent @.045910 0.025448 @.00035989 0.00035986

] %]
] 4]
] [%]
0 Q

2. Quantiles for each variable:

2.5% 25%
age -0.536243 -0.4173085
race 0.009956 0.0119576
transport -0.027106 -0.0207716
female_workers 0.007110 0.0147691
housing_occupancy_rent -@.004091 @.0285549
min_wage -0.004822 ©0.0021988
children -0.039028 -0.0323307
education -0.046143 -0.0381748
health_insurance -0.006996 -0.0002074
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.005486 @.00007759
.004954 0.00007005
.005846 0.00008267
.085293 @.00007486

each variable,

Naive SE Time-series SE

.085646 0.00121122 0.00118532
.001669 0.00002361
004747 0.00006714
.006087 0.00008608

00002361
00006714
00008608

00007759
00007005
00008267
00007222

50% 75% 97.5%
-0.357746 -0.303394 -0.202739
0.013043 0.014202 ©.016524
-0.017663 -0.014404 -0.008604
0.018828 ©0.022792 0.030930
0.045817 ©0.062978 ©.096976
0.005837 ©0.009523 0.016694
-0.028847 -0.025571 -0.019709
-0.034093 -0.030318 -0.023297
0.003323 0.006928 0.014024



Total:

Iterations = 1:5000
Thinning interval = 1
Number of chains = 1

Sample size per chain = 5000

1. Empirical mean and standard deviation

plus standard error of the mean:

for each variable,

Mean SD Naive SE Time-series SE
age -1.24671 0.275180 0.0038916 0.0038057
race 0.04519 0.004589 0.0000649 0.0000649
transport -0.06086 0.015476 0.0002189 0.0002189
female_workers 0.06493 0.020363 0.0002880 0.0002880
housing_occupancy_rent ©.15821 0.086583 0.0012245 0.0012526
min_wage 0.02036 0.018784 0.0002656 0.0002656
children -0.10000 0.015214 0.0002152 0.0002152
education -0.11818 0.018442 0.0002608 0.0002608
health_insurance 0.01167 0.018139 0.0002565 0.0002470
2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
age -1.78675 -1.4313663 -1.24177 -1.05887 -0.72038
race 0.03620 ©0.0420554 0.04518 0.04832 0.05431
transport -0.09054 -0.0713874 -0.06077 -0.05053 -0.03033
female_workers 0.02476 0.0510646 0.06548 0.07878 0.10407
housing_occupancy_rent -0.01434 0.0991228 0.15921 0.21867 0.32511
min_wage -0.01666 ©0.0076394 0.02041 0.03329 0.05686
children -0.12967 -0.1103793 -0.09999 -0.08967 -0.07027
education -0.15357 -0.1308288 -0.11831 -0.10580 -0.08133
health_insurance -0.02378 -0.0007041 0.01163 0.02394 0.04801
Simulated standard errors

Direct Indirect Total
age 0.193707370 0.085646337 0.275179744
race 0.003212833 0.001669292 0.004589211
transport 0.010907706 @.004747477 ©.015475726
female_workers 0.014442595 0.006086638 ©.020362550
housing_occupancy_rent @.061411396 0.025448264 0.086582526
min_wage 0.013328433 0.005486385 0.018784030
children 0.010722980 0.004953554 0.015213567
education 0.013149645 @.005845757 ©.018442305
health_insurance 0.012864043 @.005293060 0.018138643
Simulated z-values:

Direct Indirect Total
age -4.5680077 -4.2250155 -4.5305437
race 9.9857444 7.8539479 9.8476765
transport -3.9597032 -3.7221139 -3.9327348
female_workers 3.1918105 3.0939368 3.1886822
housing_occupancy_rent 1,.8287280 1.8040572 1.8273302
min_wage 1.085329@ 1.0752026 1.0841502
children -6.6203689 -5.8566561 -6.5731688
education -6.3818542 -5.8607666 -6.4080781
health_insurance 0.6434443 0.6412227 0.6434509
Simulated p-values:

Direct Indirect Total

age 0.00000492381947 2.3892e-05 @.000005883207486
race < 2.22e-16 3.9968e-15 < 2.22e-16
transport 0.00007504296913 ©.00019756 @.00008398487071@
female_workers 0.0014138 0.00197520 ©.0014292
housing_occupancy_rent @.0674404 9.07122234 0.0676501
min_wage 0.2777760 0.28228403 ©.2782982
children 0.00000000003583 4.7228e-09 0.000000000049255
education 0.00000000017496 4.6074e-09 @.000000000147365
health_insurance 0.5199359 ©.52137799 ©.5199316
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Appendix D.32: Results of Spatial Hausman Test with Percentage Time Spent at Home as the
Dependent Variable

Hausman Test Statistic p-value df
97.53 <2.2e-16 10

APPENDIX E: SAFEGRAPH NON-COMMERICAL DATA LICENSE AGREEMENT

START DATE; #/15/2020
LICENSE PERIOD: Minimum of 1 year or until COVID-19 (Coronavirus) global response
has subsided

DESCRIPTION OF DATA TO BE PROVIDED: SafeGraph Patterns data (or other as
mutually agreed upon)

USAGE: SafeGraph data is to be used for COVID-19 (Coronavirus) response

PUBLISHING: Company must credit SafeGraph if it publishes anything or creates content
using SafeGraph data

Non-Commercial DATA LICENSE AGREEMENT

This DATA LICENSE AGREEMENT (“Agreement”) is entered into as of start date set forth
above (the

“Effective Date”), by and between SafeGraph, Inc., a Delaware corporation, with its principal
place of business at 182 Howard Street, Suite 842, San Francisco CA 94105 (“Licensor”) and the
company identified below (“Company”) (each referred to herein as a “Party” and collectively as
the “Parties”).

WHEREAS, Licensor has compiled anonymized information and is willing to make available the
data set described above (the “Data”); and

WHEREAS, Company wishes to use the Data in connection with Company’s products or
services in accordance to the terms and conditions herein as well as the Usage described.

NOW, THEREFORE, in consideration of the mutual promises, agreements and conditions stated
herein, the Parties agree as follows:

1. Limited License. Subject to the terms and conditions of this Agreement, Licensor hereby
grants Company a temporary, limited, royalty free, non-exclusive, non transferable, non-
sublicensable, revocable, license to the Data during the License Period solely for the
purpose of developing response to helping fight Coronovirus and its first-order and
second-order effects and in accordance with the terms and conditions of this Agreement.

94



Company must mention SafeGraph as originator of the data in any work product.
The Data is provided for noncommercial purposes only and Company may not authorize
another to use the Data for any commercial, resale, distribution or other purpose. For
further clarity, Company shall not: (i) sell, rent, lease, sublicense, distribute, transfer or
otherwise provide the Data or any portions or copies thereof to any third party or enable
any third party to do any of those acts; (ii) copy, adapt,

translate, reverse engineer, or create derivative works therefrom (other than as expressly

authorized herein). UNLESS OTHERWISE AGREED BY A SEPARATE WRITING,
COMPANY AGREES AND UNDERSTANDS THAT IT ISNOT AUTHORIZED TO
DISTRIBUTE OR OTHERWISE USE THE DATA.

2. Further Obligations. Company agrees that it is responsible for any acts or omissions of
its agents or permitted subcontractors that access or use any of the Data and Company
will ensure that such agents and permitted subcontractors comply with the terms of this
Agreement. SafeGraph may use Company logo on corporate website and in marketing
materials, and companies will work together on co-marketing initiatives.

3. Ownership. As between the Parties, Licensor shall own and retain all right, title and
interest in and to the Data, together with all intellectual property rights therein and
thereto. Licensor reserves
all rights not expressly granted hereunder. Nothing contained in this Agreement shall be

construed as transferring any right, title, or interest in the Data except as expressly set
forth herein.

4. Confidentiality. Data shall constitute confidential information belonging to Licensor, and
accordingly, Company shall not disclose the Data to any third party, except with
Licensor's prior written consent and as permitted under the next sentence. Company may
disclose the Data to its employees, consultants or other agents who have a bona fide need
to know the Data under the limited license rights herein, provided, that each such
employee, consultant or agent is bound by confidentiality obligations at least as
protective as those set forth herein. Company shall protect the confidentiality the Data in
the same manner that it protects the confidentiality of its own confidential information of
like kind (but in no event using less than with reasonable care). Company shall promptly
notify Licensor if it becomes aware of any actual or suspected breach of confidentiality of
the Data. If Company is compelled by law or legal process to disclose the Data, it shall
provide Licensor with prompt prior notice of such compelled disclosure (to the extent
legally permitted) and provide reasonable assistance, at Licensor’s expense, if Licensor
wishes to contest the proposed disclosure. Company acknowledges and agrees that any
disclosure or use or breach of the Data would result in irreparable injury to Licensor for
which money damages would be inadequate and in such event Licensor shall have the
right, in addition to other remedies available at law and in equity, to seek immediate
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injunctive relief. Upon any termination of this Agreement, to the extent that any Data is
retained, Company shall continue to maintain the confidentiality of the Data.

Term and Termination. The license rights in section 1 is limited in duration to a time
period starting from the Effective Date and continuing for period set forth above (the
“License Period”), unless terminated herein. Company may terminate this Agreement at
any time by notifying Licensor. Licensor may terminate this Agreement immediately if it
has reason to believe that Company is not in compliance with the terms of this
Agreement. Upon expiration or termination of this Agreement, the license rights stated
in section 1 shall terminate and Company shall immediately discontinue all use of the
Data and take steps to remove or destroy all copies of the Data from Company (including
employees’) hardware. Company shall not disclose, retain or use the Data or Test
Analytics after the expiration or termination of this Agreement.

DISCLAIMERS. TO THE FULLEST EXTENT PERMISSIBLE PURSUANT TO
APPLICABLE

LAW, LICENSOR MAKES NO WARRANTIES OR REPRESENTATIONS,
EXPRESS, IMPLIED,

ORAL, WRITTEN, OR OTHERWISE, AND LICENSOR EXPRESSLY DISCLAIMS
(I) ANY

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR

NONINFRINGEMENT, (II) ANY WARRANTY REGARDING CORRECTNESS,
QUANTITY,

QUALITY, ACCURACY, COMPLETENESS, RELIABILITY, PERFORMANCE,
TIMELINESS OR

CONTINUED AVAILABILITY OF THE DATA. UNDER NO CIRCUMSTANCES
SHALL

LICENSOR BE LIABLE FOR ANY INDIRECT, PUNITIVE, INCIDENTAL,
SPECIAL,

CONSEQUENTIAL OR EXEMPLARY DAMAGES, INCLUDING WITHOUT
LIMITATION

DAMAGES, FOR LOSS OF PROFITS, GOODWILL USE, OR OTHER INTANGIBLE
LOSSES

THAT RESULT FROM THE USE OF OR INABILITY TO USE THE DATA. TO THE
MAXIMUM

EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR ASSUMES NO
LIABILITY OR

RESPONSIBILITY FOR (1) ANY PERSONAL INJURY OR PROPERTY DAMAGE,
OF ANY NATURE WHATSOEVER, RESULTING FROM COMPANY’S ACCESS
TO AND USE OF THE

DATA; (11) ANY ERRORS OR OMISSIONS IN, OR ANY LOSS OR DAMAGE
INCURRED AS A
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RESULT OF THE USE OF THE DATA. IN NO EVENT SHALL LICENSOR, ITS
DIRECTORS, EMPLOYEES, AFFILIATES OR LICENSORS BE LIABLE TO
COMPANY FOR ANY CLAIMS,

PROCEEDINGS, LIABILITIES, OBLIGATIONS, DAMAGES, LOSSES OR COSTS
ARISING

UNDER OR RELATING TO THIS AGREEMENT FOR MORE THAN $1,000. THIS
LIMITATION

OF LIABILITY APPLIES WHETHER THE ALLEGED LIABILITY IS BASED ON
CONTRACT, TORT, NEGLIGENCE, STRICT LIABILITY, OR ANY OTHER BASIS,
EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

7. General. This Agreement shall be governed by the laws of California, except for its
conflicts of laws principles. All disputes arising under or relating to this Agreement shall
be within the exclusive jurisdiction of the state or federal courts located in San Francisco,
California and each Party hereby consents to such exclusive jurisdiction and venue.
Neither Party may assign this
Agreement to any third party without the prior written consent of the other Party.
Nothing in this Agreement is intended to confer any rights or remedies on any person or
entity that is not a party to this Agreement. No modification of this Agreement or waiver
of the terms and conditions hereof shall be binding upon the Parties unless approved in
writing by each of the Parties. Except as otherwise provided herein, the failure of either
Party to enforce at any time any provision of this Agreement shall not be constituted to be
a present or future waiver of such provision, nor in any way affect the ability of either
Party to enforce each and every such provision thereafter. If any provision of this
Agreement is held invalid or unenforceable at law, such provision will be deemed
stricken from this Agreement and the remainder of this Agreement will continue in effect
and be valid and enforceable to the fullest extent permitted by law. This Agreement
represents the entire agreement between the Parties and supersedes any and all prior
understanding, agreements, or representations by or among the Parties, written or oral,
related to the subject matter hereof. This Agreement may be executed in counterparts
with the same force and effect as if each of the signatories had executed the same
instrument.

IN WITNESS WHEREOF, each of the Parties hereto has caused this Agreement to be executed
as of the Effective Date.

SafeGraph. ING s,
Josla (pwite,

B - 213008BE19RE84684

Joshua Levitz

Name:
Title:

BDR

4/15/2020
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Date Signed:

McGill University
COMPANY

DocuSigned by:

Emw UéiﬁHHUUJIU4 I

Name:
Title: Undergraduate student

4/15/2020

Date Signed:
Address: 805 Sherbrooke St W, Montreal, Quebec H3A 2K6, Canada

State of Incorporation: Montreal, QC
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