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Abstract 

 

An exponential growth in internet usage and penetration amongst the general 

population has led to an ever increasing demand for e-commerce applications and 

other internet-based services. E-commerce applications must provide high levels of 

service that include reliability, low response times and scalability. Most e-commerce 

applications follow a multi-tier architecture. As they are highly dynamic and data-

intensive, the database is often a bottleneck in the whole system as most systems 

deploy multiple application servers in the replicated application tier, while only 

deploying a single database as managing a replicated database is not a trivial task. 

Hence, in order to achieve scalability, caching of data at the application server is an 

attractive option. 

 

In this thesis, we develop effective load balancing and caching strategies for read-only 

transaction workloads that help scaling multi-tier architectures and improve their 

performance. Our strategies have several special features. Firstly, our strategies take 

into account statistics about the objects of the cache, such as access frequency. 

Secondly, our algorithms that generate the strategies, despite being object-aware, are 

generic in nature, and thus, not limited to any specific type of applications. The main 

objective is to direct a request to an appropriate application server so that there is a 

high probability that the objects required to serve that request can be accessed from 

the cache, avoiding a database access. We have developed a whole suite of strategies, 

which differ in the way they assign objects and requests to application servers. We use 

distributed caching so as to make better utilization of the aggregate cache capacity of 

the application servers. Experimental results show that our strategies are promising 

and help to improve performance. 
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Résumé 

 

Une croissance exponentielle de l'utilisation d'Internet et sa pénétration dans la 

population générale ont conduit à une demande toujours croissante d'applications de 

commerce électronique et d'autres services basés sur l’internet. Les applications de 

commerce électronique doivent fournir des niveaux élevés de services qui 

comprennent la fiabilité, un court temps de réponse et de la variabilité 

dimensionnelle. La plupart des applications de commerce électronique suivent une 

architecture multi-niveau. Comme elles sont très dynamiques et possèdent une forte 

intensité de données, la base de données est souvent un goulot d'étranglement dans 

le système en entier comme la plupart des systèmes déploient des serveurs 

d'applications  multiples dans l'application tierce reproduite. D’un autre côté, le 

déploiement d'une base de données unique pour la gestion d'une base de données 

répliquée n'est pas une tâche simple. Ainsi, afin de parvenir à une variabilité 

dimensionnelle, la mise en cache des données au serveur d'applications est une option 

attrayante. 

 

Dans cette thèse, nous développons un équilibrage de charge efficace et des stratégies 

de mise en cache qui aident à échelonner les architectures multi-niveaux et à 

améliorer leurs performances. Nos stratégies ont plusieurs caractéristiques 

particulières. Premièrement, nos stratégies prennent en compte les statistiques sur les 

objets de la mémoire cache, comme la fréquence d'accès. Deuxièmement, nos 

algorithmes qui génèrent les stratégies, tout en étant conscients des objets, sont de 

nature générique, et donc, ne se limitent pas à un type spécifique d'applications. 

L'objectif principal est de diriger une requête au serveur d'applications approprié afin 

qu'il y ait une forte probabilité que les objets requis pour servir cette demande 

puissent être consultés à partir de la mémoire cache, évitant un accès à la base de 

données. Nous avons développé toute une série de stratégies qui différent dans leur 
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façon d’assigner des objets et des requêtes aux serveurs d'applications. Nous utilisons 

une mise en cache distribuée de manière à mieux utiliser la capacité totale de la 

mémoire cache des serveurs d'applications. Les résultats expérimentaux montrent que 

nos stratégies sont prometteuses et permettent d'améliorer les performances. 
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Chapter 1 

1 Introduction 

 

Electronic Commerce (or e-commerce) can be defined as the buying or selling of goods 

over the internet. With the explosive growth in internet usage across the world in the 

last decade, e-commerce has become one of the most important and rapidly growing 

internet-based activities. Forrester Research [33] predicts that online retail sales in the 

U.S. will reach $278.9 billion in 2015. Over the years, with increase in internet usage 

and improvement in technology, the face of e-commerce has changed from simply 

being a process for executing commercial transactions electronically by Electronic 

Funds Transfer (EFT) to being a complete store-like retail experience for the consumer 

today. Service providers nowadays are bound to provide a guaranteed level of service 

to their customers. Given the market-size and the dependence of businesses on e-

commerce, it has been essential to develop e-commerce applications which are highly 

available, scalable and have low response times. Hence, the architecture of e-

commerce systems, their flexibility to change with change in business needs and 

increase in consumer growth and their ease-to-use has come under close scrutiny over 

the past few years. 

 

Keeping into consideration these demands of e-commerce businesses, applications 

that follow a multi-tier architecture approach have become the norm. A multi-tier 
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architecture basically splits up the entire system into three separate components: the 

client tier, the application tier and the data tier. The client tier is the point of 

interaction for the users with the system. The application tier consists of the business 

logic which is at the core of the e-commerce system. Finally, the data tier is the tier 

where all the data related to the application is stored. Since the components are 

separated, it is easier to develop, maintain and scale such systems. 

 

In order to scale multi-tiered architectures, we can increase the number of resources 

present at any tier either by augmenting the hardware at each machine or by 

replication of a tier. Replication is often the preferred approach, since it is cheaper and 

improves availability of the system. If we are using replication, usually a load balancer 

is placed in front of the replicated tier which acts as a point of contact for the tier 

preceding it. Since a distributed database is difficult to manage, replication of the data 

tier is not as common as that of the application tier. Thus, with a single database the 

database tier more often than not ends up being the bottleneck in the system. This is 

especially true for e-commerce applications which are dynamic and data-driven. As 

the total number of users of the system increase, there is a tremendous increase in 

the size and the load on the database layer. 

 

In order to lower the load on the database, caching of the data at the application tier 

is a popular solution. Data stored in the cache can be accessed very fast, and thus, it 

helps to improve performance since requests for the cached data need not go to the 

database and can be served from the cache itself in an efficient manner. To 

summarize, advantage of cached data is two-fold: access is extremely fast, and load on 

the database is reduced. 

 

In this thesis, we examine how intelligent load balancing and caching can improve 

performance in multi-tier architectures and make them scale better. We analyze the 
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cache usage statistics of the application server by the means of logging, and develop 

several different load balancing and caching strategies for the application server tier. A 

monitoring tool has been specially created for analyzing access logs and for 

subsequent generation of load balancing and caching strategies. The monitoring tool 

runs on a server independent of the machines in any tier. A key characteristic of the 

developed strategies is that they are developed primarily based on the statistics of the 

objects that are recorded to be accessed at the cache.  

 

The load balancing and caching strategies are closely coupled together and are 

constructed with the global objective of directing a request to an application server 

which is most likely to have the data required by the request in its own cache, i.e. 

increasing the cache hit rate. The load balancing strategy consists of instructions to 

the load balancer where to direct the requests coming from the clients. The caching 

strategy contains instructions to the application servers regarding which objects to 

cache and for how long to cache them. An important feature of our strategies is that 

they also explore how placement of cache objects impacts performance. For example, 

we investigate how replication of cache objects affects performance of the system. 

 

Moreover, we collect statistics which are then analyzed in real-time (i.e. when the 

system is currently running), and create load balancing and caching strategies on the 

fly. Also, the monitoring tool allows for great flexibility, giving us the choice of 

configuring the interval of strategy generation. Since these strategies are basically an 

outcome of the analysis of the cache usage statistics at the application server, our 

solution is application-independent. 

 

Further, we use an existing distributed co-operative caching infrastructure [4], which 

increases the aggregate cache capacity of the system. It allows us to fetch requested 

data from the cache of other application server in addition to the cache of the server 
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where the request has arrived. We evaluate the performance of our strategies using a 

well-known e-commerce benchmark. The results show that there is a significant 

potential of improving performance with effective load balancing and caching 

strategies. 

 

1.1 Contribution 

 

The following are the main contributions of this thesis: 

 

 Development of scalable caching and load balancing strategies for read-only 

transactions in multi-tier architectures primarily based on the characteristics of 

the objects used in the application 

 

 Development of a monitoring tool as the necessary infrastructure for 

generation of these strategies 

 

 A detailed analysis and evaluation of these strategies based upon various 

parameters and in different scenarios 

 

1.2 Thesis Outline 

 

This thesis is divided into 6 chapters, including this introductory chapter. In Chapter 2, 

we give background information on topics concerning our thesis such as multi-tier 

architectures, scalability, load balancing, caching, and a distributed caching framework 

[4] that we are utilizing in this thesis. We also discuss related work. Chapter 3 

describes the architecture and the working of the monitoring tool that we have 

developed in order to generate our caching and load balancing strategies. We explain 
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in detail our caching and load balancing algorithms in Chapter 4, which is the main 

contribution of this thesis. Experimental results and evaluation of strategies are 

discussed in Chapter 5. Finally, in Chapter 6, we put forth our conclusions and some 

possible directions for future work on this thesis. 
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  Chapter 2 

2 Background 

 

2.1 Multi-Tier Architectures 

 

Initially, when computers came into use, there were mostly mainframes wherein both 

the application and the database were co-located in a single machine. Clients accessed 

this machine using minimal functionality terminals. This model was followed by the 

popular two-tier client-server architecture, where the client and the server could be 

located on different networks. In a thin client/fat server model, the client just contains 

the user interface while the business logic and the database are located at the server 

side. On the other hand, in a fat client/thin server model, the client also hosts the 

business logic along with the user interface. With the exponential use in web-based 

applications and services, the client-server architecture is no longer a scalable model. 

A multi-tier architecture is essentially a repeated application of the client-server 

model, in which one of the middle tiers is a client for the immediate lower tier and a 

server to the immediate higher tier. 

 

In the three-tier architecture, there are the following three tiers: 

 The client tier, which contains the user interface. 

 The application tier, which contains the business logic that performs all the 
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processing. 

 The data tier where the database servers lie and all the information is stored. 

 

A three-tier architecture can be visualised as shown in Figure 2-1. 

 

 

 

Figure 2-1 Three-tier architecture 

 

Each tier can be deployed on different platforms independent of each other. Having a 

three-tier architecture makes it easier to make changes or replace any tier without 

affecting the other tiers. With growth in internet usage, data requirements have also 
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increased exponentially and hence, with a separate database tier, data can be 

managed efficiently independent of the other tiers resulting in greater scalability.  

 

2.2 Scalability 

 

Scalability refers to the capability of the system to increase total throughput under 

increasing load along with increase in resources available. A scalable application is one 

which is able to increase throughput in proportion to the increase in load on the 

system and the corresponding increase in resources to serve them. 

 

Scalability may be achieved by one of the two following methods:  

 

 Scaling horizontally, in which we add new nodes to a system. For example, in 

the context of a multi-tier architecture, we may add multiple application 

servers to the application tier or add database servers to the database tier. A 

drawback of this approach is that it leads to increased management complexity 

amongst the different nodes in a given tier. 

 

 Scaling vertically, where we try to increase resources such as number of CPUs 

and memory available to a single node in the system. Though simpler to 

manage, adding hardware to an existing system is highly expensive. Moreover, 

vertical scaling leads to all the resources being located on a single machine. If 

that machine is unavailable, the entire system becomes unavailable. Hence, 

though scalability may be achieved, availability is not addressed by this 

approach. 

 

Due to its properties, scaling horizontally is preferred for the application tier. 

However, if we have multiple application servers, the client has to be aware of the 
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addresses of each of them. In order to avoid this resulting loss of transparency, load 

balancers are usually placed in front of the application tier and subsequently all 

requests to that tier must be routed through that load balancer. Thus, the load 

balancer distributes the incoming requests amongst the different servers available in a 

given tier. It is also possible to horizontally scale the database tier, having multiple 

machines at the database layer. However, this results into a distributed database, 

which is very complex to manage, and hence is not used in this thesis. 

 

In Figure 2-2, we can see how a load balancer in front of the application tier distributes 

incoming requests from a client in a three-tier architecture. In this thesis, all 

experiments conducted follow this model. 

 

 

Figure 2-2 Three-tier architecture with horizontally scaled application tier 
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2.2 Load Balancing 

 

As shown in the previous section, load balancing is used to distribute the incoming 

workload across multiple servers. A load-balancing solution usually has two 

components; the entity performing the load balancing and the algorithm which it uses 

to do it. The method of load balancing can have a significant impact on the 

performance of the system. 

 

Cardellini et al. [1] classify load balancing solutions into four main approaches based 

on the entities that perform load balancing:  

 

 Client Based Approach 

In this approach, web clients themselves are aware about the replicated 

servers and route the request accordingly. Clearly, this approach is not scalable 

because as the number of web servers increase or change, it becomes 

increasingly difficult to store and maintain information about them at the web 

clients. 

 

 DNS Based Approach 

A DNS server is used to map IP addresses to their respective domain names. In 

the DNS based load balancing approach, load balancing can be achieved by 

mapping more than one IP address to a domain name. The DNS server then 

chooses the IP address based on some load balancing algorithm. 

 

 Dispatcher Based Approach 

The dispatcher based approach provides more control over load balancing by 

having a node in the system act as a dispatcher. This method is also 

transparent to the client since the dispatcher has a unique and virtual IP 
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address. The dispatcher is aware of the servers in the tier and identifies them 

through private addresses. Dispatcher based approaches can use a variety of 

load balancing algorithms. 

 

 Server Based Approach 

This approach uses a two-level dispatching mechanism. Initially, a server is 

chosen using a DNS server. Following this step, this server chooses another 

server to serve the request. Thus, all servers have a chance to participate in the 

load balancing process. 

 

In this thesis, we work with the dispatcher based method.  

 

Load balancing algorithms usually fall into two categories:  

 

 Content aware load balancing algorithms 

In these algorithms, a server is chosen based on the information contained in 

the request sent by the client. Custom algorithms can be implemented in this 

approach to exploit the knowledge contained in the request to the fullest.  

 

 Content unaware load balancing algorithms 

In these algorithms, a server is chosen without any consideration to the 

content of the request sent by the client. Examples of this approach include 

random choice, round robin, weighted round robin, sending the request to the 

server with the least number of outstanding requests, etc. 
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2.4 Caching in JBoss Server 

 

In this thesis, we use JBoss Application Server (JBoss AS) by Red Hat as the application 

server. JBoss AS is an open-source Java EE-based application server. From JBoss AS 4.0 

and upwards, Hibernate integration support is provided [2]. Hibernate is a well-known 

object persistence framework developed by the JBoss community. It is an object-

relational mapping (ORM) library for Java, providing a framework for converting Java 

objects to tables in relational databases and vice versa. 

 

In computer systems, a cache is an area of high speed memory that is used to store 

frequently accessed data. If requested data is contained in the cache (also known as a 

cache hit), this request can be served by simply reading the cache. If it is not present in 

the cache (also known as cache miss), the data has to be recomputed or fetched from 

its original storage location such as a database. A cache miss is comparatively slower 

than a cache hit. The percentage of accesses that result in cache hits is known as the 

hit rate of the cache. A higher hit rate means more requests being served from the 

cache, leading to faster performance. Thus, caching is used to improve system 

performance; however it is essential that its usage and configuration parameters such 

as size are adjusted depending on the type of application so as to make optimal use of 

it. For example, for applications wherein the same data is requested frequently, it can 

improve performance to a great extent. For applications where the data requested 

varies a lot or there are frequent changes to the data, it may not improve performance 

greatly. This is because the cache has a fixed capacity, and as data changes frequently, 

cached data is no longer valid and cannot be used. 

 

In order to improve performance, Hibernate uses caching [3]. This caching occurs at 

chiefly two levels: 
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 First-level Cache 

The first-level cache in Hibernate is a session-level cache. A session in 

Hibernate is a unit of work that groups data access operations. Hibernate uses 

this cache by default. In the course of a session, Hibernate stores objects and 

queries corresponding to that session in this cache. At the end of the session, 

the contents of the cache are neither accessible nor valid, and are destroyed.  

 

 Second-level Cache 

The second-level cache in Hibernate has an application-wide scope and one 

can plug in any cache that implements a well-defined interface. All requests 

have access to this second-level cache. In our implementation, we use Ehcache 

[5] as the second level cache. 

 

Figure 2-3 shows the organization of the two-level cache in Hibernate. 

 

 

Figure 2-3 Two level cache in Hibernate 

 

In addition to these two levels, Hibernate also uses a query cache, which is closely 

integrated with the second-level cache. The query cache is used to store the result set 
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of a query made against the database. The key of the query cache contains the query 

string itself and any other parameters passed with the query. The value consists of just 

the primary key identifiers for all of the entities returned by the query. When a query 

is made that hits the query cache, that set of entity identifiers can be retrieved and 

then resolved through the first or second level caches instead of retrieving those 

entities from the database. 

 

Elements in the cache can be removed by eviction due to memory constraints or by 

invalidation, wherein the cached element is removed since it is no longer relevant due 

to passage of time or changes to the copy of the data at the database. The removal in 

the second-level cache and the query cache is independent of each other. For 

example, if an element from the query cache is removed, only the query string and the 

object identifiers are removed, the corresponding elements in the second-level cache 

remain intact. The same is true for an element removed from the first or second-level 

cache; the corresponding elements in the query cache remain unaffected. 

 

Consistency of the cache is also an issue which needs to be managed well. In order to 

ensure that the request is served with the correct data, it is important to keep the 

contents of the cache consistent with that of the database. Also, since we have a 

replicated application tier, it is possible that the same element is replicated across the 

caches at multiple sites. In this case too we need a protocol to ensure that the copies 

of the cache remain consistent at all the sites. There are several cache consistency 

mechanisms that can be used such as TTL (time-to-live) fields, client polling and 

invalidation protocols. [31] and [32] present comparative studies about these different 

methods. 

 

In this thesis we do not deal with write operations to the database; hence we do not 

implement a consistency mechanism for the cache. However, we could plugin one of 
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the above mentioned consistency mechanisms into our solutions to ensure cache 

consistency. 

 

 

2.5 Distributed Caching Infrastructure 

 

As described earlier, we use horizontal scaling for the application tier, which results in 

having multiple application servers. Each application server has its own cache and so 

we have multiple caches present at the application tier. In order to utilise the 

combined capacity of the caches, we make use of a distributed co-operative cache as 

described in [4]. An architectural diagram of the same is shown in Figure 2-4. It uses 

JBoss AS as the application server, Hibernate for ORM, Ehcache [5] as the second-level 

cache for Hibernate and PostgreSQL [25] as the database.  All the communication that 

takes place between the application servers to maintain this distributed caching 

infrastructure is done using JGroups [34], which is a reliable multicast system written 

in Java. 
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Figure 2-4 Distributed co-operative cache 

 

In this system, each application server has knowledge about the contents of the 

caches of all application servers and can access these contents. Thus, we have a larger 
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effective cache capacity and hence, the load on the database decreases considerably, 

improving performance. As an illustration, if a client requests a query or object to an 

application server that does not have that query or object in its own cache it can check 

if other caches have that requested query or object. If it is present at one of the other 

servers, a remote call is made to that cache to retrieve it from there. 

 

At each application server, the co-operative cache maintains a cache directory for a 

look-up of the cache objects’ location. For each object lying in any of the caches, the 

directory contains a reference to the location of that object. Each entry in this 

directory looks like:  

Object Key ↔ Location of Object 

 

In order for the directory information to be consistent and up-to-date, information 

about an object being added/removed from the cache is multicast to all the caches 

present in the tier. 

 

In the distributed co-operative cache, a given object can be stored only at a single 

location at a time. This means that if a request arrives at a given application server, it 

checks if the objects required to satisfy the request are present in any of the caches. If 

they are present at a remote location, they are fetched from the remote site. If not, 

the local cache is checked and if present they are fetched from the local cache. If this 

fails, they are loaded from the database. However, in order to implement the various 

caching strategies described later in this thesis, we have modified this distributed co-

operative cache so that it is possible for a given object to be present at more than one 

location at a time. In this case, a directory entry looks like: 

Object Key ↔ <List of Locations of the Object> 
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Thus, replication of objects in the cache may be possible. 

 

2.6 Related Work 

 

Several different approaches have been explored for content aware load balancing 

and replication of popular data items. Both of these strategies help to improve 

performance by increasing the cache hit rate.   

 

Elnikety et al [6], put forward a memory-aware load balancing (MALB) technique to 

dispatch transactions to replicas in a replicated database. They show their technique 

performs better than traditional algorithms such as round-robin and least connections 

for dynamic-content workloads. The reason for the improvement is that their load 

balancer utilises information about the size and the contents of the working set of 

transactions to assign them to replicas in such a way that the data items accessed can 

be cached in main memory. However, in this case the load balancer lies in front of the 

database replicas, and not in front of the application server as in our case and in [7]. In 

[7], a cache aware load balancing solution is presented which makes effective usage of 

the second-Level cache of Hibernate in the application server. With the help of 

intelligent load balancing techniques, an effort was made to distribute each request to 

an application server which could possibly have the data needed for this request in its 

own cache. The algorithm used for this is inspired from the concepts used in [6]. 

However, this load balancing solution does not have a corresponding cache 

assignment scheme and is application-dependent. 

 

Cherkasova L. [8] proposed a locality aware solution called FLEX for a cluster hosting 

several websites, mainly applicable for web content hosting services. FLEX allocates 

sites to different machines in a cluster based on their popularity. The load balancing 

strategies that we produce utilise the information about the popularity of the objects, 
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and tend to distribute them across the application servers. HACC [9] distributes 

incoming requests to a cluster of web servers to nodes in such a way that the locality 

of reference that occurs on individual nodes in the cluster is maximized, which helps in 

improving performance. Our load balancing strategies also share this objective of 

directing a request to an application server where the request can be served from the 

local cache, without having to access the database. 

 

A strategy to replicate very popular data items is presented in [10]. An algorithm 

known as workload-aware request distribution strategy (WARD) is proposed, which 

assigns a small set of most frequently accessed files to each node in a cluster, while 

distributing the rest of them across the different nodes in the cluster. In addition, they 

also describe an algorithm to compute the ideal size of these replicated files. Similarly, 

in this thesis, we try to exploit the popularity of data items, and some of the 

algorithms replicate the most popular objects across the application servers. 

 

Although maintaining and serving web documents is a different problem and is not 

directly related to the work in this thesis, certain concepts regarding replication and 

caching of web documents are useful in our scenario, too. For our context, web 

documents may be thought of as cache objects. In [11], the need for dynamic selection 

of caching and replication strategies for web documents is shown. Pierre et al [12] 

illustrate that there is no single way of caching or replicating documents efficiently and 

that each document should be replicated with a custom policy. We try to make use of 

these concepts for our caching and load balancing strategies, wherein we produce our 

load balancing and caching strategies in real-time, and also make different policies for 

each object. 

 

Issues pertaining to scalability of multi-tier architectures have also been investigated 

previously. Consistency of data is an area which has been thoroughly worked upon. 
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Management of multiple replicated tiers is discussed in [13]. Replication solutions for 

each tier are examined independently and then strategies to combine the replicated 

tiers are presented. In [14], an approach that takes care of both availability and 

scalability for multi-tier J2EE applications is presented. The authors propose a 

replicated multi-version cache that takes care of consistency, availability and 

scalability and also takes into account both the application-tier and the database-tier. 

[15] puts forward different mechanisms for providing consistency in dynamic web 

applications. In [16], the authors deal with reliability in three-tier architectures. They 

provide a specification of an end-to-end reliability contract in the context of a three-

tier architecture. [17] analyses the effects of query caching on multi-tier architectures 

with a replicated application-tier. However, none of this work on multi-tier 

architectures has its focus on load balancing or cache assignment. 

The concept of co-operative caching and replication of data has also been explored in 

the context of peer-to-peer systems. In [18], the authors propose a co-operative 

caching scheme for XML documents. Replication strategies in unstructured peer-to-

peer systems are analysed in [19]. Co-operative cache is also used for full text 

document search in peer-to-peer systems in [20]. A decentralized peer-to-peer web 

cache called Squirrel is introduced in [21] which basically allow web browsers to share 

their local caches. 

 

Memcached [30] is an open source distributed memory object caching system 

developed by Danga Interactive. However, in our thesis, we use the distributed co-

operative cache, since it is easier to implement the concepts of replication of objects 

on top of it compared to Memcached. Also, we want to have better control on where 

to put certain objects in the cache, which would be difficult if we were to use 

Memcached. 
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Chapter 3 

3 Monitoring Tool 

 

The caching and load balancing strategies, which are the main contribution of this 

thesis, are developed by statistical analysis of the logs generated at the application 

servers when the application servers are running. There are mainly two tasks involved 

in this process: generating logs, and analysing these logs. A monitoring tool has been 

developed in collaboration with Rizwan Maredia [35] to take care of these two tasks. 

This monitoring tool has two components. The log capture component of the tool at 

the application servers take care of generating the logs, while the log processing and 

analysis component, which can be located on a separate server, receives and analyses 

the logs. 

 

A component diagram of the monitoring tool is shown in Figure 3-1. 
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Figure 3-1 Monitoring Tool 

 

3.1 Log Capture Component 

 

The log capture component at the application server does mainly the following two 

functions: 

 intercept incoming requests 

 log and forward the logs to the log processing and analysis component 

 

We place an interceptor at the application server, which intercepts requests coming in 

from the client via the load balancer. Information contained in this request that is 
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important to our analysis server is extracted and subsequently sent to the log 

processing and analysis component. 

 

We call the logs referring to the request as access logs. Furthermore, we log all calls to 

the second-level cache of Hibernate. This includes calls to fetch an object from the 

cache or put an object into the cache. This enables us to record the access frequency 

and other metrics of each cache object. We call this information a cache log.  

 

Logs are sent immediately to the log processing and analysis component. The log 

processing and analysis component is typically running on a different machine to not 

interfere with the application processing. Therefore, we refer to our approach as 

remote logging. The analysis tool is fed with the logging data in real-time, as it is 

produced, providing for dynamic load balancing and caching.  

 

Since the logs are directly sent to the log processing and analysis component from the 

various application servers, they may arrive out of order. This makes it impossible to 

determine a relationship between a request (tracked through the access logs) and the 

cache objects it accesses (tracked through the cache logs). But such information is 

crucial to the analysis. In order to address this issue, we introduce a Globally Unique 

Identifer (GUID) for each request to be inserted into all the logs, including cache logs 

that are triggered by this request. This ensures that we have the mappings between 

the requests and the cache objects it accesses. More details about the GUID 

implementation are given in Section 5.5. 

 

3.2 Log Processing and Analysis Component 

 

Log processing and analysis are the most important tasks of the monitoring tool. In our 

implementation, both these tasks are done on the same machine. This is efficient and 
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desirable since the information statistics computed from the logs are used in our 

analysis to decide the appropriate load balancing and caching strategy. 

 

3.2.1 Log Processing  

 

The log processing and analysis component listens on a specified port for logging 

events that come from the log capture component at the application server. The 

remote loggers at the application servers send the access logs and the cache logs to 

the log processing and analysis component as described in the previous section.  

 

Statistics Manager 

 

When the log processing and analysis component starts, it instantiates a statistics 

manager which in turn loads different components depending on parameters defined 

in a configuration file. These components are able to communicate with each other as 

they all share this manager. The statistics manager receives log events as they arrive at 

the log processing and analysis component. 

 

The statistics manager sends the log message to each of the log processors (see Log 

Processors section) which have registered with it for further processing.  

 

Log Processors 

 

The main tasks that the log processors do are to generate useful statistics from the 

logs that could be used in our analysis to generate strategies for caching and load 

balancing. Examples of this include determining access frequency of a cache object, 

frequency of a HTTP request and mapping a HTTP request with the corresponding 
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cache objects it accesses. The log processors maintain separate data structures (and 

hence separate statistics) for each application server. 

 

In line with the above mentioned tasks, we have the following log processors: 

 

A. Cache Log Processor 

The cache log processor processes the cache logs. It maintains a list of 

Cache_Objects, known as cacheObjectList. A Cache_Object is a data structure 

which contains the following information: 

 

 Object key, which serves as a unique identifier. 

 

 A counter which maintains the count of how many times this object has 

been accessed at this particular application server. 

 

B. HTTP Request Log Processor 

The HTTP request log processor processes the access logs. It maintains a list of 

HTTP_Request_Objects. An HTTP_Request_Object is a data structure which 

contains the following information: 

 

 The URL of the request, which serves as a unique identifier. 

 

 A counter which maintains the count of how many times this request 

has arrived at this particular server. 
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C. Request - Resource Mapping Processor 

The request-resource mapping processor keeps a track of both the cache and 

the access logs. Utilising the information contained in both logs, it maintains 

two maps: 

 

 Request_to_Resource_Map, which maps HTTP requests to the cache 

objects it has accessed. 

 

 Resource_to_Request_Map, which maps a Cache_Object to the HTTP 

requests that have accessed that object. 

 

All those log processors that have registered with the log processing and analysis 

component receive logging events from it. The log processors read the log and parse 

the message for extracting information from it and store it into their respective data 

structures. These data structures are passed on to the analyser for further processing.  

 

3.2.2 Analyser  

 

The analyser is the brain of the entire monitoring tool - it runs the algorithm which 

generates the caching and load balancing strategies using the statistics produced by 

the log processors. In this thesis, we have developed several algorithms, each 

producing a different load balancing and caching strategy. 

 

The analyser runs at periodic intervals of time. The desired interval can be read from a 

configuration file. The algorithms which can be run in the analyser are described in 

detail in the next chapter. The period from which we want to use the statistics can also 

be specified. For example, we can specify that we want to use the statistics computed 

from the last 15 minutes only for our analysis.  
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The analyser takes the data structures generated by the log processors as inputs, and 

produces caching and load balancing strategies as its output. At the end of the run of 

the analyser, a unique caching strategy is produced for each application server, called 

ASPolicy (since it is produced for the application server) and is sent to the application 

server. The analysis also produces a load balancing strategy, called LBPolicy (since it is 

produced for the load balancer) to be sent to the load balancer. After the strategies 

are received at the respective sites, the application servers use the ASPolicy to make 

caching decisions for objects, and the load balancer uses the LBPolicy to make load 

balancing decisions.  

 

ASPolicy 

 

The ASPolicy is a set of entries of the form: 

 

Object_Key ↔ Rule 

 

Here each Object_Key is the unique identifier of an object, and Rule is a data structure 

that contains a set of instructions that may be applied to that object.  When an object 

is fetched from or put into the cache at the application server, the application server 

checks ASPolicy to see if there is a rule to be applied for this particular object.  Rule 

consists of a Rule_Type which can be to store or move a given cache object, a Time-To-

Live (TTL) to be specified for that object, and a Destination_Server_List, if the 

Rule_Type is move. The Rule_Type store is for instructing the application server 

receiving that rule to store the object at the cache at that site with a TTL specified in 

the Rule. The Rule_Type move is for instructing the application server receiving that 

rule to move the object to o the application servers listed in Destination_Server_List. 
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We have divided TTL into three categories, which can ideally be assigned to objects in 

decreasing order of their popularity: 

 

 STABLE; objects having STABLE TTL have the greatest TTL value. 

 LONG; objects having LONG TTL have a medium TTL value. 

 SHORT; objects having SHORT TTL have the least TTL value. 

 

If an object which is accessed at the application server is not cached anywhere and is 

not present in the ASPolicy, it is simply stored with a SHORT TTL. 

 

Creating separate categories for TTL values provides a ranking scheme for cache 

objects. For example, when the cache is full, and an object must be evicted to make 

way for a new object to be inserted into the cache, the object with the greatest 

evictionPotential (where evictionPotential is calculated as last accessed time minus TTL 

value) will be chosen as an eviction candidate. Thus, the higher the TTL, the lesser the 

chances are that the object will be evicted from the cache. In this way we can ensure 

that the most popular objects are the least likely to be evicted from the cache.  

 

Although we do offer a move rule, we have not used it in our strategies. Upon 

receiving a move, an application server has to send the object to another application 

server. This creates additional communication between the application servers and it 

would also result in additional overhead related to the maintenance of the directory 

that is a part of the distributed co-operative cache, as described in Section 2.4. 

Instead, the effect of a move can be achieved by the use of two store rules for the 

same object, but at different application servers. We can set the TTL for the object to 

be SHORT for the server which should be releasing the object, and setting the TTL at 

the server receiving the object to be STABLE/LONG. 
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LBPolicy 

 

The LBPolicy is a set of entries of the form: 

 

HTTP_Request_URL ↔ IPAddresses 

 

Here for each HTTP request, its URL is mapped to a set of IP Addresses of application 

servers (each application server has a private address known to the load balancer). 

When a request arrives at the load balancer, it checks LBPolicy to see if there is an 

entry for that request. If there is an entry for that request, the load balancer chooses 

an IP address at random from the set and sends the request to that application server. 

If the request does not have an entry in LBPolicy it is simply directed to the application 

server chosen by the default load balancing algorithm running at the load balancer (for 

e.g., round robin). 

 

3.3 Request Flow 

 

We have seen the architecture and the functions of the various components of the 

monitoring tool. Now, let us examine how the presence of the monitoring tool 

changes the data flow in a single request. 

 

In absence of the monitoring tool, the request flow is as shown in Figure 3-2. 
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Figure 3-2 Request flow in absence of monitoring tool 

 

The client submits the request, which goes to the load balancer. The load balancer 

selects an application server by its own load balancing algorithm, where the request is 

sent. The application server does not request the database for objects if the objects 

required are in its own cache or a remote cache. Else, it requests objects from the 

database, puts the object in the local cache and the response to the client follows the 

reverse path. 

 

In presence of the monitoring tool, the request flow looks like as shown in Figure 3-3. 

The difference in this case is at both the load balancer and the application server. 

When the request arrives at the load balancer, the load balancer checks if there is a 

LBPolicy present, and if it is present, if the URL of the request has an entry in the 

LBPolicy, it sends the request to that application server. At the application server, if 
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there is a rule present for the cache objects required to serve the request, it is applied. 

The logs generated are sent to the log processing and analysis component.  

 

 

Figure 3-3 Request flow in presence of monitoring tool   
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Chapter 4 

4 Object Based Load Balancing and Caching 

Strategies 

 

4.1 Introduction  

 

In this thesis, we focus on developing caching and load balancing strategies primarily 

based on the statistics of the objects of the cache which have been generated by the 

log processors. The load balancing strategy, to a great degree, is closely tied to the 

caching strategy. Our ultimate goal is to develop a holistic caching solution, wherein 

there is a great chance that the request sent to an application server by the load 

balancer can be served from the cache of that application server only or at least the 

cache of another application server, minimizing requests sent to the database, which 

more often than not becomes a bottleneck in the system. Hence, the load balancing 

strategies we develop in this thesis are cache-aware.  

 

The caching strategies developed explore both replication and distribution of cache 

objects across application servers. An important characteristic of the algorithms is that 

they are dynamic, and hence they can be adapted to change in workload 

characteristics. Moreover, they are also application – independent. Thus, although we 



33 
 

have performed experiments in this thesis on the RUBiS benchmark, they could be 

used for any application without any changes. This chapter describes in detail the 

algorithms we have developed for use in the analyser in the log processing and 

analysis component.  

 

In Ehcache [5], the cache size can be specified in terms of the number of objects it can 

hold. The caching strategies that our algorithms produce create a cache assignment 

policy that essentially divides the total cache available at a given application server 

into three parts: 

 

a) One part of the cache is reserved for objects replicated at each server. These 

objects are the ones that have been identified during our analysis as the most 

popular ones and have been added to the ASPolicy typically with a STABLE TTL. 

We denote the number of replicated objects in the cache as 

REPLICATION_COUNT. 

 

b) The second part of the cache is intended for objects that are distributed across 

the application servers. These objects have also been added to the ASPolicy 

with a STABLE/LONG TTL. We denote the number of distributed objects as 

DISTRIBUTION_COUNT. 

 
c) The remaining part of the cache acts as the default distributed co-operative 

cache would. The objects present in this part are not present in the ASPolicy 

and are stored with a SHORT TTL. Thus, if the total capacity of the cache is 

TOTAL_COUNT objects, the number of objects that this cache can hold is 

effectively TOTAL_COUNT – (REPLICATION_COUNT + DISTRIBUTION_COUNT). 

We denote this by DEFAULT_COUNT. 
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Finally, given the above parameters, if the number of servers is denoted by 

SERVER_COUNT, then the aggregate cache capacity is REPLICATION_COUNT + 

SERVER_COUNT * (DISTRIBUTION_COUNT + DEFAULT_COUNT). Since at each site the 

part of the cache which stores the replicated objects contain identical objects, as 

compared to the distributed co-operative cache, our aggregate cache capacity is 

(SERVER_COUNT -1) * REPLICATION_COUNT times lesser. Also, if our strategies would 

not incorporate replication and/or distribution of objects, then REPLICATION_COUNT = 

0 and/or DISTRIBUTION_COUNT = 0 respectively. 

 

The algorithms mainly use the characteristics and properties of the cache objects; 

however, we also make use of the information about the requests. This is made 

possible by the request–resource mapping log processor which is described in the 

previous chapter. Using that log processor, we are able to determine the requests 

which have accessed any given cache object. Thus, based on whether or not the 

algorithms use this information about requests, we can divide them into two 

categories:  

 

 Request-unaware algorithms, which do not utilize information about HTTP 

requests 

 

 Request-aware algorithms, which utilize information about HTTP requests that 

access the objects from the request–resource mapping log processor 

 

At any given time, the analyser can run only one algorithm. The possible algorithms 

are described in the rest of the sections in this chapter.  

 

Some common data structures and notations which are used across the algorithms in 

this chapter are listed below: 
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 ASi stands for an application server, where 1≤i≤n, and n is the number of 

application servers we have in the system. 

 

 ASPolicyi is the ASPolicy assigned to ASi. 

 

 globalCacheObjectList is a data structure formed by merging cacheObjectList 

(described in the previous chapter) of each ASi. 

 

 candidateObjectList is a list of objects selected from globalCacheObjectList  

which are to be included in some ASPolicyi. 

 

 candidateReplicationList is a list of objects from candidateObjectList which are 

to be replicated at multiple sites. 

 

 candidateDistributionList is a list of objects from candidateObjectList which are 

to be distributed only, i.e. they are not replicated. 

 

 urlList is a list of HTTP Request URLs which are to be added to the LBPolicy. 

 

 A HashMap urlCounter of the form URL ↔ urlASCounter*no_servers+. Here 

urlASCounter is an array of counters of size of the number of application 

servers. For each URL, urlASCounter[i] contains the number of cache objects 

assigned to ASi by ASPolicyi that are accessed by the HTTP request with that 

URL. 
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 statPeriod is the time interval of the statistics that we wish to utilise for our 

analysis. Thus, if we set statPeriod to 10 minutes, it would use the statistics of 

the last 10 minutes only in the analysis. 

 

 analysisInterval is the time interval at which the analyser should run. Thus, at 

the end of each analysisInterval, our algorithm would run, generating the load 

balancing and caching strategies. 

 

4.2 Request-unaware Algorithms  

 

In request-unaware algorithms, we develop the caching and load balancing strategies 

primarily based on the statistics pertaining to cache objects. We have the following 

algorithm that follows this approach: 

 

 Replication-only  

 

4.2.1     Replication-Only  

 

In this algorithm, we choose to have only replication of cache objects across the 

caches of the application servers. The ASPolicy is constructed for each application 

server in such a way that the most popular objects are replicated at all application 

servers, while there is no distribution of cache objects. Since we replicate the same 

objects at each site, there is no need to have a LBPolicy, the load balancer can simply 

use a round-robin algorithm to send the requests.  

 

The algorithm is described below: 
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Input Parameters: 

 

 REPLICATION_COUNT 

 

Algorithm: 

 

1. Merge cacheObjectList of each ASi into a globalCacheObjectList. Thus, the 

globalCacheObjectList will contain all cache objects that have been accessed at 

any application server during statPeriod. 

 

2. Sort globalCacheObjectList on the frequency of the cacheObjects. 

 

3. Select the first REPLICATION_COUNT objects from globalCacheObjectList and 

add them to candidateReplicationList. 

 

4. For each cacheObject in candidateReplicationList 

o For each ASPolicyi 

 Add a mapping cacheObjectKey ↔ Rule (Store with Stable TTL) 

 

5. For each ASi 

o Send ASPolicyi 

 

4.3 Request-aware Algorithms  

 

In request-aware algorithms, we still develop the caching and load balancing strategies 

based on the cache objects; however we make use of the information contained in the 

resource–request map of the request–resource mapping log processor to a greater 
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extent. 

 

We have the following three algorithms that follow this approach: 

 

 Request-distribution  

 Request-distribution with replication 

 Replication-distribution 

 

4.3.1     Request-Distribution  

 

The request-distribution algorithm, as the name suggests, distributes the requests 

across application servers. In this algorithm, we do not create caching strategies for 

the application servers, i.e. we do not create any ASPolicy. Instead, we create a 

LBPolicy that distributes requests across application servers. Since a given request is 

sent to the same application server each time based on the LBPolicy, it is likely that 

the objects needed to serve that request are present in the cache of that application 

server. Thus, even though this is the only strategy in which we do not explicitly create 

a caching strategy (ASPolicy), the request distribution makes the load balancing in a 

way cache-aware. 

 

In this algorithm, we determine the URLs corresponding to the most popular objects. 

The mapping between the URLs and the objects is obtained from the request-resource 

mapping log processor, and we assume that this mapping is deterministic. For 

dynamically generated web pages, if the objects corresponding to a URL change over 

time, the latest mapping would be stored at the request-resource mapping log 

processor. We then distribute these URLs equally amongst the application servers. 

Thus, for example, if we have 3000 URLs corresponding to the most popular objects, 

each application server would be assigned 1000 URLs. 
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The algorithm is described below: 

 

Configuration Parameters: 

 

 OBJ_FOR_REQ is the number of objects that we want to use to create the 

LBPolicy. 

 

Algorithm: 

 

1. Merge cacheObjectList of each ASi into a globalCacheObjectList. Thus, the 

globalCacheObjectList will contain all cache objects that have been accessed at 

any application server during statPeriod. 

 

2. Sort globalCacheObjectList on the frequency of the cacheObjects. 

 

3. For the first OBJ_FOR_REQ cacheObjects in globalCacheObjectList 

o Determine the URLs associated with cacheObject (using the resource – 

request mapping) and add it to urlList 

 

4. For each URL in urlList 

o Select an  ASi  on a round-robin basis 

 Add a mapping URL <-> ASi to LBPolicy 

 

5. Send LBPolicy 
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4.3.2     Request-Distribution with Replication 

 

This algorithm is very similar to the request-distribution algorithm, except that in 

addition to distributing the requests across the application servers, this strategy also 

replicates the most popular objects across the application servers. Thus, we create 

both caching and load balancing strategies. However it is important to note that the 

load balancing strategy is not derived from the caching strategy. That is, LBPolicy and 

ASPolicy can be created in parallel. 

 

The algorithm for this strategy is described below: 

 

Input Parameters: 

 

 REPLICATION_COUNT 

 

Configuration Parameters: 

 

 OBJ_FOR_REQ is the number of objects that we want to use to create the 

LBPolicy. 

 

Algorithm: 

 

1. Merge cacheObjectList of each ASi into a globalCacheObjectList. Thus, the 

globalCacheObjectList will contain all objects that have been accessed at any 

application server during statPeriod. 

 

2. Sort globalCacheObjectList on the frequency of the cacheObjects. 
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3. For the first OBJ_FOR_REQ cacheObjects in globalCacheObjectList 

o Determine the URLs associated with cacheObject (using the Resource – 

Request Mapping) and add it to urlList 

 

4. For each URL in urlList 

o Select an  ASi  on a round-robin basis 

 Add a mapping URL <-> ASi to LBPolicy 

 

5. Select the first REPLICATION_COUNT objects from globalCacheObjectList and 

add them to candidateReplicationList. 

 

6. For each cacheObject in candidateReplicationList 

o For each ASPolicyi 

 Add a mapping cacheObjectKey ↔ Rule (Store with Stable TTL) 

 

7. For each ASi   

o Send ASPolicyi 

 

8. Send LBPolicy 

 

4.3.3     Replication-Distribution 

 

In this algorithm, we choose to have a mix of replication and distribution of cache 

objects across the caches of the application servers. The ASPolicy is constructed for 

each application server in such a way that the most popular objects are replicated on 

all application servers, while a fraction of the rest are distributed across them. We can 

specify a threshold to determine which objects are to be classified as “most popular”. 

In order to create the LBPolicy, we examine the ASPolicy for each application server 
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and make a list of URLs accessing the objects in each ASPolicy. Then, we assign the 

URL to the application server which has been assigned the maximum number of 

objects accessed by that URL. 

 

The algorithm for this strategy is described below: 

 

Input Parameters: 

 

 REPLICATION_COUNT 

 

 DISTRIBUTION_COUNT 

 

Algorithm: 

 

1. Merge cacheObjectList of each ASi into a globalCacheObjectList. Thus, the 

globalCacheObjectList will contain all objects that have been accessed at any 

application server during statPeriod. 

 

2. Sort globalCacheObjectList on the access frequency of the cacheObjects. 

 

3. Select the first REPLICATION_COUNT objects from globalCacheObjectList and 

add them to candidateReplicationList. 

 

4. Select the next DISTRIBUTED_COUNT objects from globalCacheObjectList and 

add them to candidateDistributionList 

 

5. For each cacheObject in candidateReplicationList 

o For each ASPolicyi 
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 Add a mapping cacheObjectKey ↔ Rule (Store with Stable TTL) 

 

6. For each cacheObject in candidateDistributionList 

o Select an  ASi  on a round-robin basis and for ASPolicyi 

 Add a mapping cacheObjectKey ↔ Rule (Store with Long TTL) 

 

7. For each ASPolicyi 

o For each cacheObjectKeyi in ASPolicyi 

 For each URL that accesses the cache object with key 

cacheObjectKey (we can determine the URLs using the request – 

resource mapping log processor) 

• Retrieve the mapping corresponding to URL from 

urlCounter (Create a new one if it does not exist) 

• urlASCounter[i]++ 

 

8. For each URL in urlCounter  

o Determine the maximum value amongst urlASCounter[i] 

o Add a mapping URL ↔ IP Address of ASi  to LBPolicy 

 

9. For each ASi   

o Send ASPolicyi 

 

10. Send LBPolicy 
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4.4 Summary  

 

Thus, we have seen the different algorithms that have various levels of complexities. 

In Table-1 we can see how these algorithms can be categorised based on what type of 

strategies they generate (load balancing/caching): 

 

Algorithm LBPolicy ASPolicy 

Replication-only No Yes 

Request-distribution Yes No 

Request-distribution with replication Yes Yes 

Replication – distribution Yes Yes 

 

Table-1 Categorizing algorithms based on strategies produced 

 

We can see from the table that the replication-only and the request-distribution 

algorithms are the most simple algorithms which produce only caching and load 

balancing strategies. The other two algorithms are more complex in nature, producing 

both caching and load balancing strategies. 
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Chapter 5 

5 Experimental Results and Evaluation 

 

5.1 Introduction 

 

In this chapter, we first explain certain specific implementation details regarding the 

monitoring tool. Then, the software and hardware environment in which the 

experiments have been carried out is described. We also explain details about the 

benchmark RUBiS that we use for evaluating our algorithms. After that experimental 

results are shown. We analyse different scenarios and cases, followed by a discussion 

on the suitability of the developed algorithms. 

 

5.2 Implementation Details 

 

In this section, we discuss some implementation details regarding the logging that we 

do at the application servers, the GUID that we discussed earlier in Section 3.1.2 and 

some changes that we have made to Hibernate for our implementation. 
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5.2.1  Logging 

 

Logging is done in the log capture component at the application server using the open 

source log4j [22] logging API for Java. Log4j has three main components: loggers, 

appenders and layouts. These three types of components work together to enable 

developers to log messages according to message type and level, and to control at 

runtime how these messages are formatted and where they are reported. Loggers are 

the main component of log4j. Loggers help to define a hierarchy for the logging and 

allow us to decide at run-time which log statements to print or not. A log statement is 

printed depending on its level and its logger.  

 

Log4j allows logging requests to print to multiple destinations. In log4j terminology, an 

output destination is called an appender. It is possible to have the output destination 

to be a variety of components such as console, files, GUI and remote socket servers. 

The remote socket server appender is known as SocketAppender. SocketAppender 

sends the logging events directly to a remote location as described in Section 3.2.1. 

 

5.2.2     GUID 

 

The need for a Globally Unique Identifier (GUID) is mentioned in Section 3.1. The 

architecture of JBoss is such that when a request arrives at the application server, 

JBoss gets a thread from a thread pool, and subsequently the entire request is 

processed in the same thread. By storing the GUID in a thread-local variable in Java (a 

ThreadLocal class object), we can insert the same GUID in both the access logs and 

the cache logs, and subsequently map HTTP requests with the objects in the log 

processors. The GUID is a 32 byte string which is encoded to 24 bytes using a fast 

base64 encoder. We make use of the Mapped Diagnostic Context (MDC) of log4j. The 
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MDC is a map which stores the context data of the particular thread where the 

context is running. Each thread has its own MDC which is global to the entire thread. 

Hence, we put the GUID inside the MDC, which is later extracted inside the log 

processors. We also need to store the hostname of the application server inside the 

MDC, so that the log processors get to know the source of the log.  

 

5.2.3     Hibernate 

 

As described earlier, we use two types of logs, access logs and cache logs. The access 

log is the log generated at the Interceptor. The cache logs that log the fetch and the 

put calls in the second-level cache of Hibernate are generated by actually adding the 

log statements inside the Hibernate code. For example, in the code, just before the 

statement where a call to fetch the object from the second-level cache is made, we log 

the event and it is sent to the log processing and analysis component. 

 

5.3 Hardware Platform 

 

All machines, which include the client emulator, load balancer, application servers and 

the database, have the same hardware configuration. Each machine has an Intel (R) 

Core (TM) 2 CPU 2.66GHz processor with 8 GB RAM. The machines share a file system 

which has a 542 GB hard drive. All the machines are connected through a 1 Gbps LAN 

switch. 

 

5.4 Software Platform and Architecture 

 

All the experiments performed are on a multi-tier architecture. The client machine 

that sends the requests interacts with the load balancer. The load balancer is placed in 



48 
 

front of a cluster of application servers that act as the application tier and a database 

server which is a part of the database tier. All the machines on the cluster lie on a 

single LAN. All the experiments except those discussed in Section 5.6.2.7 use 3 

application servers.  

All the machines run on Fedora 13 (Goddard) [23] with Linux kernel version 2.6.27.25-

78. We use JBoss 5.1.0 [24] as the Java EE compliant application server that is installed 

on the machines at the application tier. Hibernate [3] is used for providing ORM 

(Object Relational Mapping) at the JBoss AS. We use Ehcache 2.0.1 [29] as the second-

level cache provider in Hibernate.  The Ehcache source code has been modified to 

incorporate the functionality of the distributed co-operative cache described in 

Section 2.5, and also to support certain extensions such as enabling replication of 

objects in the cache which have been developed by us. For persistence, we use 

PostgreSQL 8.4.1 [25] as our database server. All the machines have Java from Oracle 

with version 1.6.0_25 installed. 

 

For load balancing, we have Apache HTTP Server Version 2.2 [26] installed.  It acts as a 

dispatch-level load balancer. Apache comes with a set of core modules and a set of 

other modules which can be installed if required. We utilise the mod_proxy and the 

mod_proxy_balancer [27, 28] modules of Apache HTTP server for load balancing 

(which are not present in the default installation). In our setup, the Apache HTTP 

server works as a reverse proxy, where the server acts as a single gateway to all the 

application servers that are behind the load balancer. It distributes requests to the 

application servers as per the load balancing algorithm which is in force at the load 

balancer, and also sends the response back to the client from the application server in 

a manner which is completely transparent.  

 

In order to implement the load balancing strategy using the LBPolicy created by the 

analyser, we have made changes to the mod_proxy_balancer module of the Apache 
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server, so that once the strategy is received at the load balancer, that strategy is used 

for load balancing instead of the default algorithm. We choose to run the Request 

Counting algorithm as the default algorithm, which already comes with the Apache 

installation.  The request counting algorithm allows us to configure each member of 

the cluster behind the load balancer to receive their fair share of work based on the 

total number of requests a particular member should handle. Suppose that we 

indicate a share of a member’s work by lbfactor, and we have the configuration as 

shown in Table-2. 

 

 Server 1 Server 2 Server 3 

lbfactor 1 2 1 

 

Table-2 Sample configuration for request counting algorithm 

 

In this case, Server 2 would be handling twice the number of requests as Server 1 and 

Server 3 do. The algorithm keeps track of the number of requests that have been 

directed to each server, and accordingly it sends the next request to a server such that 

the ratio of requests served across the servers remains as configured above. Thus, if 

the lbfactor for all servers is kept the same, it turns out that the request counting 

algorithm simplifies into a round robin algorithm. 

 

5.5 Benchmark 

 

We use the RUBiS benchmark [29] in our experiments to evaluate our algorithms. It is 

a free and open-source auction site prototype which is modelled after the highly 

popular action site eBay.com. It is chiefly used to evaluate performance and scalability 

of application servers and also to evaluate various application design models. RUBiS 

implements the most common type of functionality that an auction site offers, namely 
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selling, browsing and bidding. For our evaluation purposes, we only use the browsing 

mix since it consists of read-only transactions.  Our algorithms develop caching and 

load balancing strategies, and with a read-only workload we can best utilise the cache 

to our advantage. In contrast, write transactions cause updates to the database, 

putting greater load on the database server.  Furthermore, we would need a cache 

invalidation mechanism if we decided to use write-transactions as a part of the 

workload, which was out of the scope of this thesis. Moreover, we would also have to 

take into account consistency issues of the data cached across the servers if we were 

to use a workload that contained any write operations. Thus, for reasons of simplicity 

we used only the read-only workload. 

 

A client-browser emulator (written in Java) is also available along with the application. 

For each customer session, the emulator starts a persistent HTTP connection to the 

web server (in our case the load balancer), and closes the connection at the end of the 

session. A session consists of a sequence of interactions (having different transactions) 

for the same customer. There is also a think time for each customer before the next 

interaction starts. The think time and session time are generated from a negative 

exponential distribution with a mean of 7 seconds and 15 minutes respectively. The 

number of concurrent clients determines the load submitted to the system. As the 

number of clients increase, the load on the system increases. At the end of each run, 

the client produces performance results of the run with useful statistics such as 

average response time, throughput, network traffic, system statistics etc. The 

characteristics of each run such as workload, runtime, warm-up period, server 

information, etc. are set through a properties file. 

 

There are about 16 different interactions that can be performed from the client’s 

browser such as browsing items by category/region, bidding, buying/selling of items, 

viewing user profiles or comments on the items.  The sequence of interactions 



51 
 

depends upon a state transition matrix that defines the probability to go from one 

interaction to another one. One can change this transition matrix according to the 

workload mix that we wish to follow. In order to vary the load on the site, we can 

adjust the number of clients that run concurrently. 

 

The RUBiS application itself has to be deployed on an application server (in our case it 

is JBoss). The application has both static and dynamic content. The static content 

consists of the HTML pages and images. The dynamic content deals with the database. 

Several versions of RUBiS are available which have been implemented using PHP, Java 

Servlets and EJB (Enterprise Java Beans). For our experiments, we use the Java Servlets 

version.  

 

5.6 Experiments and Results 

 

In this section, we first discuss the configuration details for the experiments that we 

run, followed by an evaluation of the performance of the various algorithms that have 

been described in the previous chapter. 

 

5.6.1 Configuration 

 

As mentioned in the previous section, we use only a read-only workload for our 

experiments. So, the transactions in RUBiS follow a browsing mix workload. The 

transition matrix is set so that the following pages are hit: 

 

1. Home 

2. Browse 

3. BrowseCategories 

4. SearchItemsInCategories 
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5. BrowseRegions 

6. BrowsCategoriesInRegions 

7. SearchItemsInRegions 

8. ViewItem 

9. ViewUserInfo 

10. ViewBidHistory 

 

Out of these pages, Home and Browse are static pages, while the rest are dynamic, i.e. 

their content is fetched from the database. 

 

The RUBiS database size that we use in our experiments is 1 GB. The size of the cache 

at each application server is set to 30,000 objects (approximately 60 MB) in the 

experiments unless specified otherwise.  We run each of our experiments for 1 hour. 

This consists of 30% warm-up time and a 15% down-ramp time whose results we do 

not include in the performance figures.  All experiments are performed with 3 

application servers unless specified otherwise. In most of our experiments, we try to 

show our results at two different scenarios: when the system is running at low loads, 

and the other when the system is nearly saturated. 

 

5.6.2 Results 

 

5.6.2.1   Access Times 

 

In order to better understand our results and the reasons for them, we first present a 

rough approximation of the time it takes to fetch a single object from the cache of the 

application server locally (a local cache hit), from the cache of another application 

server (a remote cache hit) and the time it takes to fetch an object from the database. 

Note that the figures are only an approximation, which are calculated at a time when 
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there is no load on the system. It is difficult to get an estimation of the same when the 

experiment is running, and the figures would greatly vary in the case of fetching the 

data from the database especially with different types of queries, database sizes and 

object sizes. Also, when there is a cache hit (local or remote), the objects are fetched 

one-by-one, whereas when there is a need to fetch the objects from the database, the 

objects may be returned together as part of a single query. Further, there is some 

overhead involved of the application itself and other processing which is difficult to 

separate. Hence, an accurate comparison is difficult to establish. 

 

In Table-3, we can see the difference between the access times. The access time in 

case of a local cache hit is the lowest, whilst the time for a remote hit is slightly better 

than accessing an object from a database. The database tier is often the bottleneck in 

a multi-tier system and this figure is expected to go up significantly in a high workload 

situation, whilst the access times for local and remote cache hits are not expected to 

shoot up too much unless the application server gets overloaded. We calculate these 

times as follows by modifying the Ehcache source code: 

 

 Local cache hit: Measuring the system time before and after the get call to the 

local (second-level) cache 

 

 Remote cache hit: Measuring the system time before and after the remote call 

to another application to fetch the object from that server’s cache 

 

 Database hit: Measuring the system time at the end of the get call (which 

returns null since it is neither present in the local or remote cache) and the 

beginning of the put call to put the object in the local cache (since the object 

fetched from the database is put in the local cache immediately) in the 

Ehcache source code that we have modified 



54 
 

 

Type of Access Approximate Time (in ms) 

Local cache hit 0.2 

Remote cache hit 2 

Database hit 2.2 

 

Table-3: Access times for local cache hit, remote cache hit and database hit 

 

Thus, the maximum gain which can be obtained from our strategies is when there is a 

local cache hit.  Our strategies try to maximize the number of local cache hits in order 

to improve performance. 

 

5.6.2.2   Ehcache v/s Distributed Co-operative Cache 

 

We use the distributed co-operative cache on top of the default Ehcache since the co-

operative cache has significantly less response time and higher throughput.  The co-

operative cache can store more objects than Ehcache as the caches co-operate and 

hence have a combined cache capacity greater than in the case of Ehcache where the 

cache at each application server is independent of the other caches. Having a greater 

cache size means that there are less frequent accesses to the database, and so the 

database server does not saturate as soon as in the case of Ehcache. Although there is 

some additional overhead related to maintaining this distributed cache, it still 

outperforms the Ehcache. 
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Figure 5-1 Comparison of response times for Ehcache and distributed co-operative 

cache at 600 and 900 clients 

 

We can see in Figure 5-1 that 600 clients, when there is not much load on the system, 

the distributed co-operative cache performs better by about 35%. At 900 clients, 

Ehcache has already reached saturation with an average response time of 1683 ms, 

whilst the distributed co-operative cache is still performing well. Thus, the distributed 

co-operative cache has better scalability than Ehcache. 
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Figure 5-2 Comparison of throughput for Ehcache and distributed co-operative cache 

at 600 and 900 clients 

 

In Figure 5-2, we can see the throughput (measured by number of requests per second 

served) for Ehcache and distributed co-operative cache. At 600 clients, we see a 6% 

increase in throughput in the distributed co-operative cache as compared to Ehcache. 

We subsequently observe a marked increase in throughput from 103 req/sec to 128 

req/sec (about 25%) from Ehcache to the distributed co-operative cache at 900 clients. 

As Ehcache is saturated at 900 clients, it can no longer serve the full load.  

 

The reason for this improvement in response time and throughput is mainly due to the 

increased second-level cache hit rate. In Table-4, we see comparison of the hit and 

miss count for both cases. For the distributed co-operative cache, a hit at the local 

cache or a remote cache is a cache hit. 
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Second – Level 

Cache Hit Count 

Second – Level 

Cache Miss Count 

Ehcache 683483 176244 

Distributed                   

Co-operative Cache 
1407207 22950 

 

Table-4 Comparison of second-level cache hit / miss counts for Ehcache and 

distributed co-operative cache 

 

5.6.2.3   Logging Overhead 

 

Since only the log capture component of the monitoring tool is present at the 

application server, the monitoring tool itself does not have a lot of performance 

overhead. The log processing and analysis component, which does the bulk of the 

processing done by the monitoring tool, is located on a separate server, and hence it 

does not affect the performance of the application itself. In Figure 5-3, we can see the 

average response times for the distributed co-operative cache when the logging in the 

monitoring tool is enabled, and when it is disabled. For a normal workload at 900 

clients, and even at 1800 clients when the database server has started to saturate, we 

see an approximately 1% degradation in performance, which is negligible. 

 

Thus, we can see that the logging itself has minimal impact on the performance; 

however, we need to run a separate server for the log processing and analysis 

component for this purpose. 
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Figure 5-3 Comparison of response times for distributed co-operative cache at 900 and 

1800 clients with and without logging 

 

 

Figure 5-4 Comparison of response times for various strategies 
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5.6.2.4   Comparative Evaluation of Algorithms 

 

Next, we discuss the performance of our algorithms. We compare their performance 

against the distributed co-operative cache since they are built on top of this 

infrastructure.  In Figure 5-4, we can see average response times with increase in 

number of clients for the distributed co-operative cache, request-distribution, 

request-distribution with replication, replication-only and the replication-distribution 

algorithms.  

 

For the request-distribution algorithm, we take the 4000 most popular objects (as 

determined at the log processing and analysis component), determine the URLs 

corresponding to them and distribute them equally across the servers. For request-

distribution with replication, we take the 4000 most popular objects, determine the 

URLs corresponding to them and distribute them equally across the servers. In 

addition to that we also replicate these 4000 objects at each server. For replication-

only, we take the 4000 most popular objects and replicate these objects in the cache 

of each of the servers.  For the replication-distribution, we take the 4000 most popular 

objects and replicate these objects in the cache of each of the servers. In addition to 

that, we distribute the rest of the objects equally amongst the servers. 

 

For 600 clients, the request-distribution algorithm shows an improvement of about 

50% as compared to the distributed co-operative cache.  In addition to that it reaches 

saturation a lot later than the distributed co-operative cache. At 2000 clients, the 

distributed co-operative cache has already reached saturation and the response time 

has reached 1525 ms, while for the request-distribution algorithm it is 255 ms. The 

request-distribution with replication algorithm performs the best at lower loads (until 

1200 clients), but after that the request-distribution algorithm outperforms it. We see 
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that the replication-only is slightly better than the distributed co-operative cache, 

however its curve follows the distributed co-operative cache curve more closely, and 

performs better than the distributed co-operative cache at higher loads. The 

replication-distribution algorithm performs better than the replication-only algorithm, 

however still it does not match the performance achieved by the two request-

distribution algorithms.  

 

Thus, to conclude, we see that the replication-only algorithm does not offer much 

improvement compared to the distributed co-operative cache. The request-

distribution and request-distribution with replication algorithms have the best 

performance of all the algorithms. The replication-distribution algorithm, although 

being the most sophisticated one on paper, is better than the replication-only 

algorithm but does not match the performance of the request distribution and request 

distribution with replication algorithms. 

 

The chief contributing factor behind the behaviour of these algorithms is the access 

times that have been shown in Table-1. In the request-distribution algorithm, we 

develop a load balancing strategy that consists of distributing the requests associated 

with the most popular objects across the servers. This leads to the most popular 

requests being sent to the same server each time, and thus, there is a greater 

probability that all the objects that are required to serve this request are present in 

the local cache only, whose access time is the lowest. For the request-distribution with 

replication algorithm, we see that for lower workloads, it performs slightly better than 

the strategy without replication. This can be explained by the fact that since the most 

popular objects have been replicated at all sites; there are no remote calls for these 

objects, and thus, they can be accessed from the cache locally which reduces response 

time.  As the load increases with increasing number of clients, the number of objects 
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accessed increases, and hence replication decreases the combined cache capacity. In 

this case, replication of objects is no more advantageous. 

 

For the replication-only algorithm, we do not have a load balancing strategy and there 

is a caching strategy sent to the application servers that the 4000 most popular objects 

are replicated at each site. Thus, an individual request type is not always sent to the 

same server, and hence there is a much lower probability of all of the objects 

corresponding to the request being present at that particular site. This results into 

greater number of remote accesses (where an object is fetched from the cache of 

another application server). Since a remote access takes more time than a local access, 

the replication-only algorithm does not perform as well as the request-distribution 

algorithm. The replication-distribution algorithm performs better than the replication-

only algorithm since it produces a load balancing strategy as well which the latter does 

not. In this algorithm, a URL is assigned to the server which is assigned the maximum 

number of objects in the caching strategy which has been developed by it. This leads 

to a decrease in the number of remote hits compared to the replication-only 

algorithm. However, since we distribute the non-replicated objects equally but 

randomly amongst the remaining servers, it does not perform as well as the two 

request-distribution algorithms, which have more local hits. 

 

In Figure 5-5, we show a comparison of the number of local hits and remote hits. 
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Figure 5-5 Comparison of local and remote hits at 2000 clients 

 

5.6.2.5   Parameter Variation 

 

We also try to give an insight how various parameters that have been used in 

developing our strategies may impact performance. As an example, we take the 

replication-only algorithm. We change the number of objects to be replicated at each 

site from 4000 to 8000 and see how this influences our results. In Table-5, we see the 

results of changing this parameter. When we increase the number of objects to be 

replicated to 8000, we see a slight increase in response time, and decrease in the 

throughput achieved. The reason for this is since we replicate 8000 objects at each 

server, it takes up space equivalent to that of 24,000 objects across the caches at all 

servers. While for 4000 objects it would take up 12,000 objects. Having a higher 
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number of objects replicated at each server leads to lesser cache size available for the 

remaining objects. Hence, although having more objects replicated across all the 

servers may lead to lesser remote hits, it effectively decreases overall cache capacity. 

As a result, as the number of objects in the cache exceeds its capacity, replication 

tends to degrade performance rather than improve it. Thus, it is important to select 

the correct parameters while implementing a particular algorithm for optimal 

performance. 

 

 
Response Time 

 (in ms) 

Throughput  

(in req/sec) 

Replication-only - 4000 Objects 19 171 

Replication-only - 8000 Objects 23 168 

Distributed co-operative cache 20 171 

 

Table-5 Varying strategy parameters for 1200 clients 

 

 

5.6.2.6   Replication 

 

In this section, we have a closer look at replication of objects in the cache. From 

Section 5.6.2.3 and 5.6.2.4, we gather that replication needs to be handled very 

carefully, else it can degrade performance. In Section 5.6.2.3, we see that at higher 

workloads, the request-distribution algorithm performs better than the request-

distribution with replication algorithm, and in Section 5.6.2.4 we observe that 

increasing the number of objects to be replicated beyond a certain limit has a 

detrimental effect on performance. Here, we try to demonstrate that in certain 

scenarios replication is beneficial and improves performance. This is particularly true 
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for applications where a very high percentage of requests access a small subset of data 

items. Thus, these data items are very frequently accessed. 

 

In order to create such a workload wherein there is a small set of data that is 

extremely frequently accessed, we change the state transition matrix of RUBiS. There 

are only 62 distinct Regions and 20 distinct Categories in the RUBiS database. We 

change the share of the BrowseCategories and BrowseRegions pages to about 35% 

from the 2% that we use for the rest of our experiments to show the significance of 

replication. 

 

Figure 5-6 shows the response time of the distributed co-operative cache, request-

distribution and request-distribution with replication algorithms. Since the total 

number of objects accessed for this workload is significantly smaller than for the other 

experiments, we see that even at 2000 clients, the database server does not saturate. 

We see that the distributed co-operative cache has a response time of 14 ms, and the 

request-distribution algorithm has an approximately 21% improvement over the 

distributed co-operative cache. However, in this case we see that even at a higher 

workload, the request-distribution with replication algorithm shows about 18% 

decrease in response time. 
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Figure 5-6 Response times for 2000 clients for a workload that accesses a small but 

highly popular set of objects 

 

Thus, we can conclude that replication is an important tool to improve performance 

depending on the workload characteristic of the application we are using. 

 

5.6.2.7  Cache Size 

 

Next, we examine how the difference in cache size affects performance. We ran our 

experiments at a cache size of 110 MB as compared to the 60 MB cache size used in 

the previous experiments, and see the difference in our results. Figure 5-7 shows the 

difference in response times for the distributed co-operative cache and our 

replication-only algorithm at 1200 and 2000 clients with a cache size of 60 MB and 110 

MB. At 1200 clients, the system is running at low loads, while at 2000 clients, the load 

is enough to nearly saturate the system. For the replication-only algorithm, we 

replicate the 4000 most popular objects at each site. 
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We see that for distributed co-operative cache there is a 30% improvement in 

response time when there is an increase in the cache from 60 MB to 110 MB at 1200 

clients. The replication-only algorithm also shows an improvement of 37% in response 

time for the same case. For 2000 clients, we see that by increasing the cache size, 

there is less saturation of the database for both the distributed co-operative cache 

and replication-only algorithm. As the cache size increases, the number of local hits 

increases as well as the total combined capacity of the cache increases, thus resulting 

into less frequent calls to the database. This leads to less saturation at the database 

server and thus, we can see an improvement in performance when the cache size is 

increased. Since we are using a read-only workload, there is not much additional 

overhead involved in increasing the cache size. 

 

 

 

Figure 5-7 Response times at 60 MB and 110 MB cache for 1200 and 2000 clients 
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5.6.2.8   Scalability 

 

Finally, we have a look at the scalability of our solutions in terms of number of 

application servers. All our previous experiments have been run on an application tier 

that consisted of 3 servers. We increase the number of servers to 5, and see what 

effect it has on performance.  

 

Figure 5-8 shows the difference in response times for both the distributed co-

operative cache and the request-distribution algorithm at 1800 and 2000 clients. We 

can see a significant improvement in response time for the distributed co-operative 

cache, from 375 ms for 3 servers to 13 ms for 5 servers at 1800 clients. This is mainly 

because for the 3 server case, the database server has started to saturate. For our 

request-distribution algorithm we see a 50% decrease in response time for 5 servers 

as compared to 3 servers. A drop in response time similar to that of the distributed co-

operative cache is also seen for the request-distribution algorithm when we utilise 5 

servers.  

 

Although there might be some additional overhead associated with the system in case 

of 5 servers, the overall cache capacity is increased in the case of 5 servers, and hence 

the number of local hits and remote hits will also be more, resulting in fewer number 

of database accesses. It is important to note that the RUBiS application that we are 

using does not have any CPU-intensive operations; hence the gain achieved by 

increasing the number of servers is primarily due to an increased cache capacity and 

not increased processing capacity. 
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Figure 5-8 Response times at 1800 and 2000 clients for 3 servers and 5 Servers 

 

We also see that having 5 servers not only reduces response time by increasing the 

overall cache capacity, but it also increases throughput that can be achieved. We see 

the difference in throughput in Figure 5-9. There is a marked increase of about 5% in 

throughput for the distributed co-operative cache that has reached saturation in the 

case of 3 servers. For the request-distribution algorithm too, we see that the 

throughput increases about 1% from 254 req/sec to 257 req/sec. Thus, this shows that 

our strategies are indeed scalable.  
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Figure 5-9 Throughput at 1800 clients for 3 servers and 5 Servers 

 

5.7 Summary 

 

We presented several different experiments and scenarios to evaluate the 

performance of our algorithms. Although our algorithms are application-independent, 

it is likely that the best algorithm in a given situation depends on various factors such 

as type of application, workload and memory constraints. 

 

However, we see a marked trend in all the experiments that having a load balancing 

strategy is beneficial regardless of other conditions.  This is because having a load 

balancing strategy leads to a higher probability of a request being served with 

maximum local cache hits. We also see how replication affects performance, both at 

low and higher loads. If utilised in an optimal fashion, it can aid in enhancing 

performance.  
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Chapter 6 

6 Conclusions and Future Work 

 

In this chapter, we summarize our findings and discuss the main contributions made 

by this thesis. We also have a look at the possible directions in which this thesis can be 

extended. 

 

6.1 Conclusions 

 

As a first contribution, we have presented a monitoring tool that has been developed 

for the purpose of creating the necessary infrastructure for the generation of our 

caching and load balancing strategies. The monitoring tool itself is application-

independent and thus, can be used across applications. This is a major advantage, 

since as a result of that our solution is not tightly coupled with any specific application. 

Moreover, since the monitoring tool does not consume much processing time at the 

application server itself, and instead does the bulk of processing at a separate server, 

it has minimal effect on the actual application running at the application servers.  

 

The algorithms developed in this thesis utilize the information about both the requests 

and the objects they access. We have run experiments that evaluate the performance 

of our caching and load balancing strategies. The foundation of our strategies is based 
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on our observation that increasing the number of local cache hits leads to a notable 

improvement in performance. It is clear that an effective load balancing strategy is a 

critical component if we are to achieve scalability and significant improvement in 

performance in terms of response time and throughput achieved. The other vital 

aspect about developing effective caching strategies is replication. We have seen in 

several of our experiments that replication can be useful and aid in improving 

performance if utilized well, but if not handled well, we can see that it can actually 

have a detrimental effect on performance.  

 

In the experiments mentioned in Section 5.6.2.7, we saw that an increase in the 

number of application servers resulted into better performance, demonstrating that 

our strategies are scalable. With the exponential growth seen in e-commerce sites and 

other internet-based services and applications, it is crucial that any solution proposed 

is scalable; otherwise it would have no practical value. It is important to note that our 

algorithms have been primarily targeted towards read-only transactions; we would 

need to incorporate a cache consistency mechanism in our algorithms for an 

environment with write transactions as well.  With increase in the number of 

application servers, the cache consistency mechanism would get increasingly complex, 

possibly affecting the scalability of our algorithms. 

 

To summarize, our experiments indicate that load balancing algorithms that are cache-

content aware can result into significant performance gains. 

 

6.2 Future Work 

 

There are a few directions in which the work in this thesis can be extended upon.  

 

Firstly, we work with a read-only cache which does not have any write operations to 
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the database. It would be interesting to see how our strategies fare with a write-

intensive workload. However, for that we would need to incorporate a cache-

invalidation mechanism that maintains the consistency in the caches, i.e. it ensures 

that the data in the cache is consistent with the data in the database, and it is also 

consistent across all the caches.  

 

Another possible direction is to explore different methods of analyzing the logs at the 

log processing and analysis component. At present, the analysis uses the frequency of 

objects as the main parameters while developing the caching and load balancing 

strategies. A more complex mechanism may be used for this purpose, such as machine 

learning techniques. For example, we could automate the process to select the right 

parameters to be used to develop the strategy such as number of objects to be 

replicated. One could also look at other parameters such as CPU utilization, memory 

usage, etc. at the application servers while developing the strategy.  

 

Currently we perform all the analysis on a separate machine. It might be possible to 

put some intelligence at the load balancer itself, thereby reducing the workload on the 

separate server. In this thesis, for the workloads and the benchmark we are using, 

there is not much load at the machine which hosts the log processing and analysis 

component, but that might not be the case with other applications. 
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