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Abstract

Hyper-redundant mechanisms (HRMs), also known as snake-like robots, have been

the target of a small but focused research push over the past four decades. Consist-

ing of a simple kinematic chain with a large number of redundant degrees of freedom

(DoF), they can act manipulators approximating the form and function of an ele-

phant’s trunk, or undulatory locomotors mimicking the motions of snakes, worms,

and other creatures. Although past research on locomotion has largely restricted it-

self to land-based studies, hyper-redundant mechanisms are inherently well suited to

aquatic propulsion. Their structural form allows them to directly mimic the swimming

motions of anguilliform fish. Biological anguilliform swimmers are both maneuver-

able and extremely efficient, however, these properties hinge upon finely tuned body

deformations. The current understanding of undulatory swimming does not provide

a clear method to optimally define these deformations for a highly articulated sys-

tem. The present study solves this issue by developing a scheme capable of producing

optimal gaits for a hyper-redundant swimmer. The optimization process consists of

a self-propelled swimming model and a custom particle swarm algorithm. The pro-

posed scheme is used to produce optimal gaits for efficient swimming over a range of

different velocities and for high acceleration. Although the development of the gait

generation process is an end in itself, the properties of the optimal swimming kine-

matics also provide insight on HRMs and undulatory swimming in a more general

sense. Simple control strategies, key issues for design, and potential topics for future

work are extracted from the results.
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Abrégé

Les recherches précédentes on montrés que des mécanismes hyper-redondants (MHR)

sont fortement adaptables en bougeant sur la terre. Cependant, leurs capacités pour-

raient aussi être étendues aux environnements aquatiques par la propulsion semblable

à celle de l’anguille. Les nageurs anguilliforme naturels sont autant manuvrables

qu’extrêmement efficaces. Cependant, ces propriétés dépendent de déformations très

spécifiques du corps. La compréhension actuelle de la nage ondulatoire ne fournit

pas de méthode claire ou de façon optimale afin de définir ces déformations pour un

système fortement articulé. L’étude présentée ici résout cette question en développant

un processus informatique capable de produire des démarches optimales pour un robot

hyper-redondant nageant. Le processus est composé d’un modèle nageant et d’un al-

gorithme d’essaim de particules faits sur mesure. Cette solution d’optimisation est

utilisée pour produire des démarches efficaces pour la natation sur une gamme de

vitesses différentes et pour la haute accélération. Bien que le développement du pro-

cessus d’optimisation soit une fin en soi, les propriétés de la cinématique de la nage

optimale fournis aussi un aperu sur les MHRs et sur la natation ondulatoire dans

un sens plus général. Des stratégies de contrôle simples, des problèmes-clés pour le

design, et des sujets potentiels pour le travail à venir sont extraits des résultats.
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Chapter 1

Introduction

Hyper-redundant mechanisms (HRMs), also known as snake-like robots, have been the

target of a small but focused research push over the past four decades. Consisting of a

simple kinematic chain with a large number of redundant degrees of freedom (DoF),

they can act manipulators approximating the form and function of an elephant’s

trunk, or undulatory locomotors mimicking the motions of snakes, worms, and other

creatures.

In terms of locomotion they have proven themselves to be highly adaptable. Through

the work of number of groups, it has been shown that they are capable of negoti-

ating a wide range of obstacles and terrain types [1, 2, 3]. Although past research

has largely restricted itself to land-based studies, hyper-redundant mechanisms are

inherently well suited to aquatic propulsion. With the ability to operate underwater,

HRM’s could potentially fulfill a wide range of robotic applications which call for

high maneuverability in complex aquatic environments. Examples include inspection

of mechanical systems, search and rescue in flooded areas, and demining operations

[2, 3]. These aquatic capabilities could likely be implemented while maintaining the

ability to operate on land, producing a highly adaptable amphibious system.

On both land and water, HRM locomotion is achieved through periodic deformations

which generate a net displacement of the robot’s body [1]. Due to the complexity of
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the system, defining these motions in an optimal or even functional manner is a non-

trivial issue. Faced with this problem, engineers have turned to biological systems for

guidance. Although there is a considerable body of literature on the theoretical basis

of natural undulatory locomotion, our knowledge of the topic is incomplete. As such,

reverse engineering these biological systems to truly replicate their performance has

been a daunting task. Considerable time and resources have been invested in solving

this problem for mechanisms on land, but relatively little attention has been given

to gaits for aquatic HRM locomotion. The work presented here aims to address this

issue by developing an algorithmic solution capable of generating optimal HRM gaits

for a variety of swimming behaviours.

1 Hyper-Redundant Mechanisms

The following section gives an overview of previous studies on HRM locomotion. Al-

though our work is targeted at hyper-redundant swimming, this review begins with

a survey of land-based HRMs to establish the history of the field. While numerous

researchers have contributed to the knowledge of HRM locomotion, focus is given

to three primary groups which represent of the bulk of previous development. Fol-

lowing this, a discussion of previous work on the aquatic capabilities of HRMs is

provided.

1.1 Land-Based Locomotion

The first HRMs were developed by Hirose in the the early 1970’s. At this point

the primary motivation of his group was to understand and replicate the undulatory

movement of snakes. Considering previous studies of snake locomotion to be incom-

plete, Hirose began his efforts by first developing an improved understanding of the

subject through observing live animals. His resulting theory of serpentine kinemat-

ics and locomotion methods is laid out in [4]. Hirose applied this theory to develop
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the the ACM-III (Active Cord Mechanism), the first robot to achieve true snake-like

locomotion. Pictured in figure 1.1 the device uses passive wheels along the base to

provide the directional friction properties required for undulatory locomotion [2]. In

terms of dimensions the ACM-III robot was actually quite large, each of its 20 links

weighs 1.4kg resulting in a mass of 28kg for the entire mechanism. The total length

of the system is 2m.

Figure 1.1: Photograph of the ACM-III mechanism. Locomotion is achieved using an
undulatory gait and passive wheels. [2].

In [2], Hirose highlights the next major HRM development of his group as the ACM-

R3 robot. Designed and built in 2001, the device is composed of 20 discrete links.

It has a total mass of 12 kg and a length of 1.8m. Once again passive wheels are

used for directional friction. As shown in figure 1.2, it is capable of three-dimensional

deformation. This is achieved by offsetting every second joint axis by 90 degrees.

Three-dimensional body movements allow the device to replicate the more complex

behaviours of natural undulatory locomotors. Examples include sinus lifting, a gait

in which body segments aligned with the direction of travel are lifted to eliminate

axial friction, and sidewinding, a gait applied by snakes on low shear surfaces.

In addition to these two landmark projects, Hirose’s lab has developed a several addi-

tional HRM-like mechanisms to explore different actuation methods and geometries.
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Figure 1.2: Photograph of ACM-R3 mechanism, an improved snake-like robot capable of
three dimensional actuation. [2].

The Slim Slime robot, is a novel pneumatically actuated snake-like robot[2]. Through

the unique properties of its actuators the mechanism is able to contract and expand

longitudinally while also bending its body in a continuous fashion. This allows the

device employ worm-like creeping gaits for locomotion in spaces too small for the

undulatory motions of snakes. A number projects undertaken by Hirose’s group have

also explored the potential of combining active wheels or tracks with an HRM body

[2]. These mechanisms exploit the inherent adaptability of the elongated snake-like

form, while employing simplistic locomotion methods which are much simpler to con-

trol. Two examples of such devices are pictured in figure 1.3.

Hirose’s pioneering work introduced the topic hyper-redundant locomotion to the en-

gineering research community. His early studies of undulatory locomotion led to the

design of the first biomimetic snake-like mechanisms and over the years his group has

consistently been at the forefront of HRM hardware development. In terms of applica-

tions, Hirose envisions numerous possibilities for HRMs, examples include exploration

of complex environments, inspection or repair of pipes and other mechanical systems,

and active versions of elongated tools such as endoscopes, ropes, or hoses. However,

while Hirose’s group has pushed to develop the necessary hardware for these appli-

cations, each task also represents a complex control problem. Even simple motions,
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Figure 1.3: Examples of HRM designs actuated through active wheels or tracks [2]. The
mechanism on the left is the ACM-R4 and the device on the right is the
Genbu-III.

such as raising the mechanism’s head, require that numerous joints are actuated in

a coordinated fashion. The hyper-redundant nature of the system makes it virtually

impossible for a human operator to directly accomplish this. Instead, control must

be executed through carefully designed predefined maneuvers.

The work of Burdick and his students (Chirikjian, Ostrowski, and Choset) at Cal-

Tech during the 1990’s, and the continued work of Choset at Carnegie Mellon Univer-

sity over the past decade represent two of largest contributions to the HRM control

problem. During the early 90’s Chirikjian and Burdick developed a computationally

efficient method to fit the discrete body of an HRM to a continuous backbone curve

[5]. This allowed them to develop a series of HRM behaviours using continuous func-

tions to define the system’s posture. Within their work, they explore the kinematics

required to mimic a variety of undulatory locomotion methods, while investigating

additional issues such as adapting to variations in terrain, obstacle avoidance, and

grasping operations [5, 6, 7]. At approximately the same time as Chirikjian’s work,

Ostrowski and Burdick developed an analytical model of Hirose’s ACM-III mecha-

nism based on a Lagrangian approach [8, 9]. Using geometric mechanics, the model is

separated into two distinct components: internal changes in body configuration and

the resulting displacement in the inertial frame. This approach allows Ostrowski to

comment on the controllability of the system and suggest periodic locomotive gaits

based on the mathematical connection between the model components [8].
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Choset’s work with Burdick explores sensor based motion planning with HRMs as a

potential application [10], however, his most significant contributions occured after

he founded the BioRobotics Lab at Carnegie Mellon University. Over the past 10-15

years Choset and his students have worked on a number problems related to state

estimation [11], mechanism design [12], and motion planning/gait generation[13, 14]

for HRMs. The sum of these efforts has a produced a series of hyper-redundant robots

capable of a wide range of behaviours. Examples include undulatory locomotion on

grass, mud, or confined spaces, and climbing of ramps, stairs, or even poles. A num-

ber of these behaviours are pictured in figure 1.4.

Figure 1.4: Examples various HRM behaviours developed by the BioRobotics group at
Carnegie Mellon University [15].

1.2 Aquatic Locomotion

In recent years, HRM research has expanded significantly. Numerous groups have

constructed prototype devices and are currently using them to explore various meth-

ods of locomotion. HRM swimming in particular has received the attention of several

researchers within the past decade. Hirose’s group at the Tokyo Institute of Technol-

ogy, demonstrated the feasibility of aquatic HRMs through the HELIX and ACM-R5

robots. HELIX [2], pictured in figure 1.5, is an amphibious HRM capable of locomo-

tion on land and in water. While using standard undulatory locomotion on land; in

6



water it mimics the spiral swimming kinematics of spirochete bacteria. The design of

the device was later refined to produce the ACM-R5 which uses simple undulatory

motions in water rather than a complex helical gait [16, 2]. Choset’s group has also

shown that their HRMs are capable of surface swimming, however no work has been

published on specific swimming kinematics or aquatic mechanism design.

Figure 1.5: Right: The HELIX, a swimming snake-like robot which uses a helical gait
[17]. Left: The ACM-R5, an improved amphibious HRM [2].

Ostrowski continued his research on undulatory locomotion, as a Professor at the

GRASP lab of the University of Pennsylvania. Applying the geometric methods of his

previous work, Ostrowski and McIsaac, develop a mathematical model of a swimming

snake-like robot. To reduce the physics of the system to a tractable problem they

quantify fluid forces as a basic linear drag term [18]. In [19] a perturbation analysis

is applied to the model to identify gaits for turning, forward, and even transverse

swimming. In [20], these methods are extended to produce a closed loop control

scheme for an undulatory swimmer. The resulting algorithm is tested with a simple

5-link servo actuated mechanism. Through these experiments, it is demonstrated

that their control solution allows the mechanism to track simple paths while rejecting

external disturbances.

Crespi and Ijspeert, researchers of the BioRobotics Laboratory at EPFL, are currently

pursuing a project to develop a biomimetic amphibious robot. In its present state,

the robot consists of a kinematic chain of discrete links connected by angular position
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servos. As shown in figure 1.6, legs can added or removed to replicate the locomotion

methods of various animals such as eels, salamanders, or centipedes. The project

aims to develop a functional amphibious robot which can be used as a test-bed to

explore novel control solutions based on the nervous systems of real animals. Multiple

prototypes of the device have already been produced [21] and in [22] it is shown that

these system can be controlled via central pattern generators roughly tuned using

online optimization techniques.

Figure 1.6: Amphibot, designed by the BioRobotics group at EPFL. Shown here with and
without legs [23].

The final major HRM research initiative discussed here, is the the Robot Anguille

project of the ROBEA program in France. Motivated by the astounding performance

of biological swimmers, several French researchers are collaborating to produce an

eel-like autonomous underwater vehicle. The project consists of several parallel re-

search streams to develop hardware [24], low-cost simulations [25, 26, 27], and three

dimensional control [28] for an elongated, highly articulated swimmer. In their most

recent publications, the robot remains incomplete [24], however solutions have been

developed for actuated three DoF joints, compliant waterproof skin, and onboard

control and power. In its final form the envisioned system contains 12 links and has

total length over 2m. Based on current actuator choices it has a maximum power out-

put of 100w and can swim continuously for 20 minutes. A six body segment portion

of the mechanism is shown during testing in figure 1.7, along with a single segment

with the outer skin removed.
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Figure 1.7: Left: A six link system during underwater testing. Right: Photograph of a
single mechanism link with outer skin removed [24].

2 Swimming Optimization

Despite the fact that HRM swimming has been a topic of interest for over a decade,

the problem of generating truly optimal swimming gaits has been given relatively lit-

tle attention. In most cases, a simple sinusoidal motion pattern is applied to achieve

forward propulsion. Although biological swimmers exhibit impressive performance,

it has been found that this performance hinges upon specific swimming kinematics.

In their optimization work [21], Crespi and Ijspeert find that the velocity of their

swimmer can change significantly for even small variations of the gait parameters. In

their well-known work on bioimimetic swimming, Barrett and Triantafyllou find that

efficiency drops off rapidly if optimal kinematics are altered [29]. Considering this, lo-

comotive gaits which appear similar in a qualitative sense may provide very different

end results. Consequently, a crude of replication of fish-like motions is likely inad-

equate to reproduce the capabilities of natural swimmers. Achieving truly optimal

performance will require a solution for producing well tuned swimming gaits.

Gaits for land-based locomotion in HRMs have typically been defined through a

manual tuning process. This is effective in producing functional HRM behaviours,

however it is poorly suited to generating highly optimized kinematics. Due to the
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complexity of the encompassing optimization problem, the sheer size of the of required

parameter space would necessitate a massive time investment to adequately explore

it using online tuning methods. Simulation based optimization has been explored by

a number of groups looking at other types of swimming mechanisms, however it has

never been applied for HRM-like swimmers. Simulation based optimization requires

two key components: a self-propelled swimming model, and an effective optimization

scheme. The model is used to predict the mechanism’s performance as an emergent

property of its gait and the resulting interactions with the surrounding fluid. The

optimization process then applies this model to search for gait kinematics which

maximize specific performance parameters such as efficiency or speed. The following

thesis aims to address the HRM swimming problem by developing a simulation based

gait optimization solution which is tailored to meet the needs of HRM geometry

and actuation characteristics. In preparation for this, the following section will first

provide an overview of previous work related to the modelling problem. Once this

has been established, a review is given on past studies related to simulation based

swimming optimization.

2.1 Modelling the Fluid-Swimmer Interaction

The modelling component of the optimization scheme presents a major challenge; the

fluid mechanical basis of undulatory swimming has been a topic of interest for almost

a century [30]. Among early works on undulatory swimming, two of the most notable

analyses are the resistive approach proposed by Taylor [31] and Lighthill’s reactive

model [32, 33, 34, 35]. The reader may refer to [36] for a summary of their models.

Both Lighthill’s and Taylor’s work contributed significantly to our understanding of

undulatory swimming, however their analytical methods require a number of major

simplifying assumptions to produce tractable mathematical solutions. The validity

of these assumptions varies significantly based on the flow regime and geometry of

the swimmer in question. For small swimmers (< 10cm) in low Reynolds Number

flow, viscous forces dominate and Taylor’s drag based approach is most applicable.
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In developing his reactive analysis, Lighthill acknowledges this fact, hypothesizing

that a solely resistive model may be applicable up to Re as high as 103 for elongated

cylindrical animals [34]. However, Lighthill argues that in larger swimmers, evolved

to maximize added-mass effects, reactive forces are the primary source of thrust. Un-

fortunately, large anguilliform swimmers and HRMs typically lie somewhere between

these two extremes. Consequently, resistive and reactive forces both play a critical

role in their propulsion [37].

Considering this, a representative model of HRM swimming must account for both

drag and added mass effects. There are a number significant analytical works in addi-

tion to the models of Taylor and Lighthill, noteworthy examples include [38, 39, 40],

nevertheless an analytical solution which encompasses both resistive and reactive

forces has yet to be realized. The advent of low-cost high-power computing tech-

nology has enabled researchers to instead approach the problem through CFD based

investigations. However, devising effective and efficient CFD methods remains diffi-

cult as the swimming problem involves transient flow structures around a deforming

body coupled to the fluid which surrounds it. A number of research groups have

developed CFD solutions capable of dealing with these issues and have applied them

to great effect [41, 42, 43, 44, 45, 46]. However, the computation time required by

such methods remains prohibitive in the context of gait optimization. As a result,

the CFD approach is generally restricted to studies which investigate a narrow scope

of swimming conditions.

When low computational cost is required, researchers often turn to low-order semi-

empirical models. Within these models, the analytical methods for both added mass

and drag based propulsion are combined to produce a swimmer which is propelled

by both effects. This approach is frequently employed in biological studies for the

calculation of internal powers and torques during recorded fish maneuvers [47]. In

this role, the model is limited to inverse dynamics, however, a number of groups have

extended it to study swimming performance in a forward sense, where the motion

of the swimmer is determined as function of body deformation and fluid-swimmer
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interaction. Although this method cannot produce the elegant mathematical results

of its analytical constituents nor the fidelity of CFD based solutions, it has been

shown to provide reasonably accurate, low cost simulations of intermediate Reynolds

number swimming [37, 48, 26].. Based on this, it is taken as the method of choice for

the optimization work presented here.

2.2 Past Work on Swimming Gait Optimization

The second component of the optimization scheme is the optimization algorithm it-

self. Due to the complexity of the optimization space, gradient-free approaches are

well-suited to the swimming problem. These methods generally provide improved per-

formance in large optimization spaces where gradient based methods tend to get stuck

in local optima. Over the past decade, a number of research groups have combined

gradient-free optimization with swimming simulation to study undulatory propulsion.

Morgan and Smart apply a drag-based swimming model with both a genetic algorithm

and simulated annealing to generate optimally efficient gaits for a four link swimmer

[49]. Kuo and Grierson model a three segment carangiform swimmer and employ a

genetic algorithm to explore gaits for both efficient and fast-start swimming. They

apply a simplified fluids model based on the Kutta-Jukowski theorem to quantify the

thrust generated by the foil-like tail of the swimmer [50].The most rigorous optimiza-

tion study to date is likely the work of of Kern and Koumoutsakos [44]. They use

a custom evolutionary algorithm and a three dimensional numerical solution to the

Navier-Stokes equations to produce gaits for both efficient and high velocity swim-

ming with an anguilliform swimmer. However, due to the computational cost of their

model only two optimization runs are executed, one for each fitness goal.

It should be noted that a small number of groups have conducted optimization studies

using physical robots to experimentally assess gait fitness. In the work of Crespi and

Ijspeert, mentioned earlier, Powell’s method is used to generate roughly optimized

gaits for a variety of behaviours. In [51], Barrett et al. employ a genetic algorithm to

maximize the efficiency of the well-known swimming robot, RoboTuna. Interestingly,
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the time required to evaluate a gait with the physical robot is actually significantly

shorter than full CFD simulation (minutes versus hours), however the process requires

constant supervision and resetting of the robotic system.

3 Thesis Objectives and Layout

The work presented here aims to develop an algorithmic solution capable of generating

optimal HRM gaits for a variety of swimming maneuvers. To accomplish this, a

semi-empirical swimming model is applied within a custom gradient-free optimization

algorithm. The resulting optimization scheme is then used to generate gait definitions

for two swimming behaviours: efficient locomotion and rapid acceleration. For each

optimization goal the trends and properties of the resulting swimming kinematics are

used to suggest design modifications for future HRMs while highlighting simple but

effective methods for mechanism control

This optimization process is developed and then applied within the proceeding docu-

ment as follows. First, the swimming model is presented in Chapter 2. This includes

discussions of the kinematics, dynamics, and energetics of the simulated swimming

mechanism. In Chapter 3, the optimization algorithm is laid out. As highlighted

in the preceding review, genetic algorithms are the method most commonly applied

in previous work. A custom GA was initially developed to serve as the optimiza-

tion component of the gait design process, however, its performance was found to

be somewhat lacklustre for our particular problem. Considering this, an alternative

gradient-free method known as Particle Swarm Optimization is investigated. Relative

to GA, it is found to produce consistently superior results while requiring consider-

ably less development time. Based on this, it is chosen as the final algorithm for

the optimization study. The structures of the both the GA and PSO algorithms are

presented, and test runs are then compared to demonstrate the superiority of the

PSO approach.
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In Chapter 4 the swimming model and PSO algorithm are applied to generate opti-

mally efficient swimming gaits. The process involves the development of an appropri-

ate gait parameterization, presentation of the optimization results, and a discussion

of the resulting kinematics as they relate HRM design and control. This process is

repeated to produce high acceleration gaits in Chapter 5. In the last section of Chap-

ter 5, a simple control solution is proposed to demonstrate that the optimal efficiency

and acceleration kinematics can be concisely but effectively combined for swimming

control.
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Chapter 2

Modelling

The first component of the gait optimization algorithm is the swimming simulation.

The development of the self-propelled model is broken into three sections. The dis-

cussion begins with the kinematics of the simulated mechanism. This includes a de-

scription of the swimmer’s geometry and an overview of biological swimming modes.

Once this has been done, the dynamics equations of the system are presented. With

the dynamics established, the fluid-swimmer interaction model is developed. Finally,

having fully elucidated the three major components of the model, the performance

of the completed simulation is demonstrated and the energetics of the system are

investigated in preparation for the analysis of efficient swimming.

1 Geometry and Kinematics

1.1 Mechanism Geometry

While snakes and eels can have hundreds of vertebrae, hyper-redundant robots typ-

ically have significantly fewer discrete links. The mechanism simulated for the opti-

mization study is represented as a kinematic chain made up of ten segments connected

by single degree of freedom pin joints as shown in figure 2.1. To approximate the geom-
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etry of a typical swimming HRM, each segment is represented as an elliptical cylinder

with its major diameter parallel to the joint axis. The head and tail segments are

assumed to have streamlined hemispherical caps to reduce drag. The motion of the

system is restricted to a two dimensional plane to ensure that the problem remains

tractable for gait optimization. Biological swimmers on the scale of the mechanism

typically employ planar gaits which suggests that this is a reasonable simplification.

Swimming HRMs presented in previous works range from 50 cm up to 2 m [16, 25] in

length. To roughly approximate this range, the length of the simulated mechanism

is chosen as 1m. The cylindrical links are specified to have a major diameter of 0.1m

and a minor diameter of 0.05m. Since the mechanism is made of up ten segments,

each cylinder is 0.1m in length. The mechanism is assumed to have same density as

water to eliminate buoyancy effects.

Figure 2.1: Visual depiction of ten link swimming mechanism.

1.2 Swimming Kinematics

The Serpenoid Curve

The basic gait observed in undulatory locomotors consists of a body wave which

propagates from head to tail. Initially, it was believed that this wave could be best

represented as sinusoidal variation of lateral body displacement, however in 1993 Hi-

rose observed that this definition required an unnatural pattern of muscle activations
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Figure 2.2: Diagram of variables used in description of Serpenoid Curve.

along the animal’s body. Based on this, he proposed an alternative gait definition

known as the Serpenoid Curve. The Serpenoid Curve describes the body undulations

as a sinusoidal wave of curvature rather than lateral position. Since body curva-

ture is directly controlled by the antagonistic muscle pairs along the animal’s spine

this definition ensures a smooth sinusoidal activation pattern. In terms of Cartesian

coordinates, the Serpenoid Curve is mathematically defined as follows,

x(s) =

∫ s

0

cos(a cos(bσ) + cσ)dσ, (2.1)

y(s) =

∫ s

0

sin(a cos(bσ) + cσ)dσ, (2.2)

where s is the body-coordinate along the specified curve as depicted in figure 2.2.

x(s) and y(s) are the cartesian coordinates of the point delineated by a given value

of s and σ is a dummy variable for integration. It can be shown that this curve has

the following curvature expression,

κ(s) = ab sin(bs)− c. (2.3)

Variables a, b, and c determine the properties of the curvature wave. While the def-

inition of the Serpenoid curve is considerably more complex than a simple Cartesian

sinusoid, it reduces to a relatively compact form when discretized to a function of joint

angles for a segmented mechanism [52]. This makes it ideal for defining the motions

of the simulated HRM. The resulting joint angle expression is given as follows,
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φi = α sin(iβ + β/2) + γ, (2.4)

where φi is the angle between consecutive segments and,

α = a| sin(β/2)|, β = b/2, γ = −c/n. (2.5)

The coefficient, α, determines the amplitude of the serpenoid curve, γ introduces

constant curvature to the body, and the β terms inside define the phase difference

between consecutive segments. This expression, derived in [52], is simplified to define

the gait of the simulated mechanism during straight line motion. The γ term is

dropped to ensure a symmetrical gait for straight swimming and the β/2 term is

eliminated, as the gait of the swimmer depends only on the relative phase of the joint

angles. A time term is added inside the sine function to generate undulations as the

simulation advances. These changes result in the following gait definition,

φi = α sin[2π(iL/λ− t/T )]. (2.6)

Undulatory Swimming Modes

In most swimmers, the amplitude of the curvature wave grows as it travels towards

the tail. Applying this knowledge, the joint angles of the simulated mechanism can

be defined using the discrete approximation of Hirose’s Serpenoid curve coupled with

an exponential amplitude function. The resulting expression is given as follows,

φi = AeεiL sin[2π(iL/λ− t/T )]. (2.7)

This expression is used as the gait parametrization during the process of developing

the swimming model and the optimization algorithm. It will be revisited in Chapter

4, prior to the formal optimization study.
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Figure 2.3: Comparison of the four body-caudal fin swimming modes a) anguilliform b)
subcarangiform c) carangiform d) thunniform (Figure taken from [54]).

Biological swimmers which propel themselves through body and caudal fin undula-

tions are often classified based on the amplitude function (AeεiL) and wavelength

λ which best describe their gait [45]. They are typically divided into four primary

categories: anguilliform, subcarangiform, carangiform, and thunniform [53] . Fish

classified as anguilliform swim with a wavelength of around 60% to 70% of body

length and an amplitude profile with relatively gentle slope which engages most of

the body. In the subcarangiform mode, the wavelength increases and anterior undu-

lations are attenuated. These trends continue in the transition to the carangiform

mode. Carangiform swimmers such as sunfish or trout, employ a wavelength slightly

larger than total body length and body undulations are typically limited to the last

third of the fish [30]. The final class, thunniform, applies to fish which are propel

themselves almost entirely through oscillations of a foil like tail, examples include

tuna and swordfish. Figure 2.3 provides a visual comparison of the four swimming

classes. The reader is referred to [53] for further information on the various swimming

modes.
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2 Dynamics Model

With the geometry and kinematics of the mechanism established, it is now possi-

ble to lay out the dynamics model of the system. The particular dynamics problem

addressed here is that of forward dynamics: given a joint motion time history, find

the ensuing system motion and required joint torques. Previous works on the mod-

elling of a discretized swimmer employ a variety of approaches to accomplish this. A

Lagrangian method is applied by McIsaac and Ostrowski [55] for the purposes of a

perturbation study. By contrast, the Robot Anguille researchers approach the prob-

lem from a robotics background and thus apply a recursive Newton-Euler algorithm

[25]. For the investigation presented here, we elect to apply a simple force balance

method similar to that of Ekeberg [56]. The simplicity of this approach makes it

relatively easy to implement and transparent to the reader.

The balance method consists of formulating the moment and x-y force equations and

kinematic constraints for each segment of the simulated swimmer, this generates six

equations per link. Since the robot moves freely in the inertial frame, the position

constraints are dropped for the head link. This results in a total of 6n−3 equations to

completely define the system, where n is the total number of body links. To illustrate

the process of creating the model, the equations for a three link eel are developed

here. Figure 2.4 provides a diagram of the necessary vector quantities.
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Figure 2.4: Force and vector quantities used in dynamics model.
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Known Variables:

• Fifluid , Tifluid - Force and moment on link i due to fluid-structure interaction

• ri,j - Vector from the centre of mass of link i to joint j

• φ̈i - Second derivative of joint angle i

• mi, Ii - Mass and angular inertia of link i

Unknown Variables:

• Fi - Internal force at joint i

• Mi - Internal moment at joint i

• ai - Acceleration of ith link’s centre of mass

• θ̇i, θ̈i - Angular velocity and acceleration of ith link

Link 1 m1a1 = F1 + F1fluid (2.8)

I1θ̈1 = T1 + T1fluid + r1,1 × F1 (2.9)

Link 2 m2a2 = −F2−1 + F2 + F2fluid (2.10)

I2θ̈2 = −T1 + T2 + T2fluid − r2,1 × F1 + r2,2 × F2 (2.11)

θ̈2 = θ̈1 + φ̈1 (2.12)

a2 = a1 − θ̇21r1,1 + θ̈1 × r1,1 + θ̇22r2,1 − θ̈2 × r2,1 (2.13)

Link 3 m3a3 = −F2 + F3fluid (2.14)

I3θ̈3 = −T2 + T3fluid − r3,2 × F2 (2.15)

θ̈3 = θ̈2 + φ̈2 (2.16)

a3 = a2 − θ̇22r2,2 + θ̈2 × r2,2 + θ̇23r3,2 − θ̈3 × r3,2. (2.17)
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The force and moment balance equations consist of constant terms defined by the

properties of the mechanism, fluid forces calculated based on the velocity and accel-

eration of the system, and unknown internal forces. The constraint equations consist

of linear and angular expressions based on the joint angles (φi) defined by the pre-

scribed gait. In total there are 6n− 3 unknown variables: Ti and Fi for n− 1 joints

and, ai and θi for n links. At each time step, the system of equations is solved simul-

taneously for all unknowns. The accelerations are then numerically integrated using

a MATLAB variable step solver (ODE45) to advance the simulation.

3 Fluids Model

The force and moment balance equations require that we define the fluid terms Fifluid

and Tifluid for each link of the mechanism. As highlighted in Chapter 1, this is not a

simple task. The proposed mechanism swims at a Reynolds number of approximately

104 to 105. Taylor and Lighthill’s models can provide reasonable approximations of

fluid forces at low and high Re respectively, however intermediate Reynolds numbers

remain somewhat intractable. Under these conditions both added mass and drag play

an important role. A detailed representation of these fluid effects can only be achieved

through a full numerical solution to the Navier-Stokes equations. Unfortunately, the

prohibitive computational costs of such methods are not suitable within the intended

optimization approach. A solution to this issue is proposed by Jordan in [37]. A

modification of his method is applied here to produce a computationally efficient self-

propelled swimming model suitable for an investigation of efficient swimming.

3.1 Lateral Fluid Forces

The primary fluid effect within the system are the lateral forces on the segments of

the swimmer’s body as they oscillate transversely in the fluid. Jordan’s method for

quantifying these forces is essentially a hybrid of the resistive and reactive approaches
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proposed by Taylor and Lighthill. The lateral forces are quantified as a linear com-

bination of pressure drag and added mass effects. Viscous forces are also present in

the lateral direction, however, their magnitude is negligible so they are not included

in the model. Each link of the mechanism is considered as an isolated segment and

end effects are ignored. The proposed expression for the lateral fluid force on each

link is given as follows,

Fifluid ⊥ = FiD⊥ + FiA⊥ (2.18)

FiD⊥ = −1
2
CD dL ρ v⊥|v⊥|

FiA⊥ = −CA madded a⊥.

Subscript ⊥ denotes the perpendicular component of a vector relative the longitudinal

link axis, while FiD⊥ and FiA⊥ represent the drag and added mass components of the

perpendicular fluid force. The rest of the variables are defined as follows, CD is the

drag coefficient, CA is the added mass coefficient, d is major diameter of the body,

L is link length, ρ is density, madded, is the theoretical added mass of the link in the

lateral direction, and v and a are velocity and acceleration. The Reynolds number

based on section diameter and average lateral velocity is approximately 104 to 105.

For the 2:1 elliptical cylinders which make up the swimmer, the steady state values of

CD and CA are 2 and 1 respectively. However, the drag and added mass coefficients

of the system should ideally be determined experimentally as they may vary due to

unsteady effects. For a submerged cylinder in a crosswise oscillatory flow, the values

of the CD and CA are primarily dependent on two dimensionless parameters, Re and

the Keulegan-Carpenter (KC) number [57]. Based on the geometry in question these

parameters are defined as follows,

Re =
ρUmd

µ
, KC =

UmT

d
, (2.19)

where Um is the peak velocity during oscillation, µ is dynamic viscosity, and T is

the oscillation period. For studies involving sinusoidal motion the KC number can
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be reduced to a dimensionless oscillation amplitude, where a is the oscillation ampli-

tude,

δ =
a

d
. (2.20)

There are a number of experimental studies which provide CD and CA over a range

of Re and δ values, however the majority are intended for large structures at sea and

do not cover values applicable to the swimmer. Fortunately, a single study, [58], was

found which investigates the Re and δ ranges of the simulated mechanism during

efficient locomotion (Re: 104 − 105, δ: 0.5− 2) . Within the study, coefficient values

are provided for elliptical cylinders of several axis ratios. For an axis ratio of 2:1,

CD is found to vary from approximately 2 to 3 and CA remains relatively constant,

varying from 0.93 to 1.

In reality, the flow around the simulated mechanism differs some what from the oscil-

lating cylinder experiments. In addition to transverse motions, the segments are also

subject to sustained axial velocities and oscillatory rotations. Considering this, we

elect to simply apply the steady-state coefficients in our optimization study. Nonethe-

less, the empirical results presented in [58] suggest that during efficient swimming the

fluid force coefficients may not deviate significantly from steady-state values.

3.2 Axial Fluid Forces

Forces in the axial direction arise through various fluid effects: viscous shear on the

mechanism’s surface, form drag on the body, and axial added mass. In a number of

previous studies [55, 56], axial forces are completely neglected as they are deemed

to be negligible with respect to the much larger transverse forces. This approach is

reasonable when the mechanism is swimming with a non-optimal gait, however, when

the gait is tuned for efficiency, transverse forces generate relatively small amounts

drag in the direction of travel. Consequently, axial effects become a primary source

of drag to balance out thrust during steady locomotion.
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Due to the elongated streamlined shape of the mechanism, pressure and added mass

effects are relatively small in comparison to frictional drag. Based on this, they are

neglected in the formulation of the model. The frictional forces are quantified using

the coefficient based approach proposed by Taylor in [31]. The friction drag expression

is given as follows, where subscript ‖ denotes the perpendicular component of a vector

relative the longitudinal link axis.

FiD‖ =− 1

2
ρdL Cfv‖|v|. (2.21)

The value of the friction coefficient (Cf ) is selected from a review of published ex-

perimental data presented by Paidoussis in [36]. The Reynolds number based on

the swimmer’s length and forward velocity is roughly 105, considering this, the axial

friction coefficient is chosen as Cf=0.03.

3.3 Fluid Moment

Torsional drag and added mass effects (Tifluid) are also incorporated into the fluids

model. Many previous studies of multi-link swimmers neglect fluid moments as they

have little effect on the overall motion of the system [55, 56]. This is confirmed

through our own investigations, however the fluids moments are found to contribute

significantly to the required actuation torques at the mechanism’s joints. Since these

torques directly determine the power consumed by the system, it is critical that they

be accurately represented for the efficiency optimization. Considering this, the fluid

moments are incorporated into the dynamics equations using a finite segment ap-

proach. The transverse drag and added mass expressions are formulated as functions

of link coordinate “x” and then integrated over each body section to determine the

resulting torque. The drag moment (TiD) integral is evaluated numerically, while the

added mass moment (TiA) reduces to a simple analytical form. The required vector

quantities and link coordinate are defined in figure 2.5. The resulting expressions are

given as follows,
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Figure 2.5: Velocity components and link coordinate for torque calculation.

Tifluid = TiA + TiD (2.22)

TiA =− CM madded
L2

12
θ̈i

TiD =− CDρd

2

∫ L/2

−L/2
xui × |vix⊥|vix⊥dx.

4 Demonstrating the Model

With the fluids terms defined, the swimming model is now complete. An example

simulation demonstrating the model’s performance is provided in figure 2.6. The gait

of the mechanism is prescribed using the expression given in (2.7), with T = 1s, A =

0.001rad, ε = 7, and λ = 1m. The swimmer accelerates from rest and then gradually

approaches an equilibrium state in which drag forces balance out the thrust produced

by its gait. At the beginning of the simulation the swimmer is completely straight

with all joint angles set to zero. A ramp function is appended to the expression given

in (2.7) to transition the mechanism to the steady state gait without introducing

discontinuities. This ramp consists of a fifth order polynomial constrained to provide

continuity of joint accelerations at the beginning and end of the ramp period. In the

simulation shown here the ramp is set to 5 seconds, however it is lowered to 1 second

for optimization trials to reduce simulation time. During optimization the fitness of
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Figure 2.6: Velocity plot for swimmer accelerating from rest to a constant speed. Gait is
defined with (2.7) where T = 1s, A = 0.001rad, ε = 7, and λ = 1m.

the swimmer’s gait is evaluated once it reaches steady state. For our purposes, this

is considered to occur once the velocity change from one gait cycle to the next is less

than 1% of the current speed.

5 Energetics

In preparation for the efficient swimming optimization study, the energetics of the sim-

ulated mechanism are now dicussed. Power is input to the system through torques

generated at the pin joints between each pair of body segments (Pjoints). This energy

is then either stored as kinetic energy (Pinertia) or dissipated to the surrounding fluid

(Pfluid). Perfect joints are assumed so there are no losses due to internal friction or

other non-ideal effects. The evolution of the various power quantities during accelera-

tion from rest is shown in figure 2.7. Each of the three powers can be mathematically

defined as follows,

Pjoints =
∑n−1

i=1 −Tiφ̇i (2.23)

Pfluid =
∑n

i=1(Fifluid · vi + Tifluid · θi) (2.24)

Pinertia =
∑n

i=1(Iθ̈iθ̇i +mvi · v̇i). (2.25)
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For the optimization problem it will be necessary to quantify the efficiency of the

mechanism. The efficiency of conventional aquatic vehicles is often evaluated using

Froude efficiency as given by [32],

η =
Thrust ∗ V elocity
Power Input

(2.26)

However, the ultimate goal of efficiency optimization study is to generate gaits which

minimize the energy required to propel the eel over a given distance. This can

be directly represented as transport economy: swimming velocity over power in-

put. Through early optimization trials it was found that Froude efficiency actually

favoured gaits with power requirements significantly higher than those produced using

the transport economy metric. Froude efficiency maximizes the ratio between thrust

and power input rather than minimizing power consumption. In conventional aquatic

vehicles, drag is independent of the propulsion system. As a result, Froude efficiency

and transport economy are theoretically equivalent for optimization purposes. How-

ever, in undulatory swimmers both drag and thrust are determined by the system’s

gait, consequently the two efficiency metrics converge to different swimming regimes.

Taking this into account, transport economy is applied as the efficiency metric within

the formal optimization work.

To calculate transport economy the power consumed by the system must be deter-

mined. The theoretical power input to the eel can be simply evaluated using the joint

power expression given by (2.23). A plot of the individual joint powers at the tail of

the mechanism during a typical gait is provided in figure 2.8. The resulting curves

reveal that multiple joints are subject to significant periods of negative work. This

finding is consistent with the results of a number of previous works [59, 60]. Using

(2.23) to define power consumption implies that this negative work offsets the cost

of positive work. Through the elasticity of their muscles and tendons, animals and

humans are often able to capture negative work and exploit it to reduce the overall

cost of motion. However, attempts to mimic this process in man-made systems have,

for the most part, been unsuccessful. Gains are usually negated by the additional
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Figure 2.7: Power balance for swimmer accelerating from rest to a constant speed. Gait
is defined with ( 2.7) where T = 1s, A = 0.001rad, ε = 7, and λ = 1m.

weight and complexity of regenerative systems [61].

Conventional hyper-redundant robots make no attempt at energy recovery; they are

typically actuated by a series of angular position servos. Based on this, these periods

of negative work would actually result in a significant energy cost as the mechanism

must draw power to produce resistive torques. The power consumption due to nega-

tive work is largely dependent on specific actuator properties. A servo model could

be employed to approximate the resulting power draw, however it is likely that future

robotic swimmers will employ a different means of actuation. Thus, to quantify the

cost of negative work in a more general sense, we calculate power consumption as

the absolute value of the theoretical joint power. This approach has been applied in

previous studies of HRM locomotion [61]. The absolute joint power is integrated over

a complete swimming cycle to determine average power consumption. This results in

the following expression,

PAvg = 1
T

∫ τ+T
τ

∑n−1
i=1 | − Ti(t) φ̇i(t)| dt. (2.27)

As highlighted in the introduction, the differing negative work responses of biological

and artificial systems may significantly alter the performance and optimal kinematics

of the simulated mechanism relative to a live eel. To investigate this issue, the op-

29



0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Cycle Time (s)

Jo
in

t 
P

o
w

e
r 

(W
)

 

 

Joint 7

Joint 8

Joint 9

Figure 2.8: Plot of joint power for actuators near tail of mechanism during undulatory
gait. Gait is defined with (2.7) where T = 1s, A = 0.001rad, ε = 7, and
λ = 1m.

timization study will first be conducted using the absolute joint power expression in

(2.27) and then repeated with net joint power to allow for recovery of negative work.

This will provide a comparison of the optimal gaits for an HRM versus a swimmer

capable of regenerative actuation.
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Chapter 3

The Optimization Algorithm

Fluid systems are known to have complex optimization spaces containing numerous

minima and maxima [44]. Consequently, the development of a customized approach

was necessary to generate satisfactory results for the swimming optimization study.

This chapter documents the development of this approach and demonstrates the

efficacy of the final algorithm. The discussion begins with a formal definition of the

optimization problem. Once this has been established, the development and testing

of the algorithm is examined in sections that follow.

Two different optimization approaches were explored during the development process,

both consisted of stochastic schemes which use the swimming model to evaluate the

performance of the system at various operating points. The first method we tested,

the genetic algorithm, is the standard solution for stochastic gait optimization. How-

ever, through a preliminary investigation, it was found that an alternative method

known as Particle Swarm Optimization (PSO) might be better suited to our problem.

Considering this, a PSO algorithm was developed and tested in addition to the GA.

The following section explains the development process of both algorithms. A brief

review of each algorithm’s basic structure is first provided. This is then followed by

an outline of the modifications required to tailor the algorithm to the HRM swimming

problem. The modified algorithm is then tested through an extensive series of opti-
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mization runs. Finally, with both algorithms fully developed and tested, the relative

performance of the two approaches is discussed. It is found that PSO provides the

best overall performance: it consistently produces gaits of higher fitness than those

of the GA, while being much simpler to implement.

1 The Efficient Swimming Optimization Problem

When formulating an optimization problem, the objective function and constraints

must be properly defined. Although the final optimization study explores both effi-

cient and fast-start maneuvers, only the efficient swimming problem is used during

development. The ultimate goal of the efficiency optimization is to minimize the

power required to swim at a specified velocity. This is accomplished by maximizing

the following objective function which consists of the transport economy metric [61]

and a penalty term to enforce the desired swimming speed,

F =Vf/PAvg + Cv, (3.1)

Cv = 1 ∗ 1010 [Heaviside(Vd − Vf ) ∗ (Vd − Vf )2], (3.2)

where F is the fitness of a given gait and the Cv is the penalty term. From early trials

it was observed that, when maximizing transport economy without the constraint,

the optimization algorithm naturally converges to the slowest possible gait due to

the quadratic nature of the drag model. Cv is used to penalize gaits with a forward

velocity, Vf , below the desired swimming velocity, Vd. This causes the optimization

algorithm to converge to the most efficient gait at the specified velocity limit.

For the purposes of testing the algorithm the gait parametrization given in Chapter

2, (2.7), is employed. Limits are applied to the parameters β, A, and λ to restrict

the swimmer to kinematically feasible gaits. The gait period (T ) is constrained to

match the capabilities of current swimming HRMS. The imposed ranges are defined

as follows,
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0 ≤ β ≤ 10

0 ≤ A ≤ 0.5rad

0.2 ≤ λ ≤ 3m (3.3)

1 ≤ T ≤ 5s.

In summary, the efficiency optimization problem applied during algorithm develop-

ment consists of maximizing (3.1) with respect to β, A, λ, and T subject to the

constraints defined in (3.3).

2 The Genetic Algorithm

The first optimization approach tested is the genetic algorithm. First developed in

the 1960’s, genetic algorithms mimic the process of biological evolution to generate

optimal solutions for engineering problems. To accomplish this, the process of evolu-

tion is simplified to a relatively compact algorithm consisting of a few basic steps. The

basic genetic algorithm, as outlined by [62], consists of three standard components:

mating pair selection, cross-over, and mutation.

2.1 Outline of Genetic Algorithm Structure

The progression of the basic GA is given as follows. First, a population of candidate

solutions is randomly generated. For the problem posed here, each solution consists

of a four parameter swimming gait. The solutions are then encoded as binary strings,

as will be detailed in the following sections. These strings serve as ”chromosomes”

to represent the genetic material of each population member. With the initial pop-

ulation initialized and encoded, the fitness of each candidate solution is evaluated.

Fitness is defined using (3.1), where the simulation is used to determine power input
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(Pinput) and swimming velocity (Vforward). This represents the bulk of the computa-

tional cost of the algorithm as the swimming simulation must be run once for each

gait. Once this is done, a mating selection process is applied to choose solution pairs.

Each pair of solutions then exchanges genetic material through the crossover process

to generate two child solutions. Finally, a mutation operator is applied to the new

generation which then replaces the parents. This cycle of mating and mutation con-

tinues until a predetermined convergence condition is satisfied. If the algorithm is

effective, the population will gradually evolve over numerous generations to produce

solutions with optimal fitness. The key steps of the standard GA are outlined in the

following pseudocode. A detailed description of how each step is implemented within

the final genetic algorithm is provided in the following subsections.

Basic Genetic Algorithm Structure

1. Randomly generate and encode a population of N swimming gaits.

Begin Loop

2. Evaluate fitness of each population member

3. Selection of mating pairs

4. Mating by crossover

5. Mutation of children

End Loop

2.2 Modifications to the Basic Genetic Operators

Selecting Mating Pairs

Once the fitness values have been determined, the first step of the optimization cycle

is to select mating pairs from the population. The classic selection process is the
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roulette wheel method [62]. A hypothetical roulette wheel is divided into segments

representing each population member. The size of a given segment is proportional

to the fitness of the corresponding gait. To select a mating pair the wheel is simply

spun twice. This is done until N/2 couples have been generated, where N is the total

number of individuals in the population. This process favours the reproduction of the

best gaits while still allowing the algorithm to explore the parameters within lower

fitness solutions. The hypothetical roulette wheel for a five member population is

depicted in figure 3.1 to demonstrate this process.

12%

14%

31%

5%

38%

Fittest individual has

largest share of wheel Least �t individual has

smallest share of wheel

Selection

Point

Roulette Wheel Selection

Figure 3.1: Visual depiction of roulette wheel selection process [63].

The standard roulette wheel selection method is poorly suited to the optimization

problem posed in section 2. The constraint term, Cv, results in a large fitness dis-

crepancy between gaits above and below the desired velocity. The fitness of solutions

that do not meet the required velocity condition is several orders of magnitude lower

than those that do. As a result, the few gaits which satisfy the velocity constraint
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during early generations constitute over 99% of the selection wheel. This imbalance

results in premature convergence and poor final results. To address this issue, a rank-

ing method [64] is applied in place of the classical approach. The solutions are sorted

according to fitness and the size of each solution’s roulette wheel segment is propor-

tional to its sorted ranking rather than the actual fitness value. This approach ensures

that all solutions are reasonably represented during the selection process; discouraging

the domination of a small number of solutions during early generations.

In addition to the ranking method, a second modification was applied to the selection

process. The basic GA outlined in [62] specifies that the selection process should be

done with replacement. This means that each parent is chosen at random from the

full population pool and can selected multiple times over the crossover process. This

allows a single population member to serve as both parents within a given couple.

When this occurs, two children identical to the parent chromosome are produced. The

odds of pairing with two identical parents increases with each additional copy. As a

result, this effect can build upon itself to rapidly generate a nearly uniform population.

This was observed to be a major issue during trial optimization runs. Fortunately,

this issue is easily resolved by enforcing unique couples. This is essentially a simpli-

fied representation of the incest taboo observed by most animal species. A number

of researchers have extended this concept to create comprehensive incest-prevention

schemes which track solution families and disallow pairings of closely related popu-

lation members [62]. While certainly interesting, an approach of this complexity was

avoided in the interest of reducing development time.

Gait Encoding and Crossover

The second step of the genetic optimization cycle is the mating/crossover process. The

gait parametrization used during algorithm development consists of four parameters:

amplitude (A), wavelength (λ), exponent (β), and period (T ). To represent each

gait as a chromosome, the four parameters are encoded as a binary string through

standard decimal to binary conversion. The number of bits representing each gait
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parameter was chosen to provide a reasonable balance between precision and chro-

mosome length. Amplitude, wavelength, and period are represented using 6 bits,

while the exponent parameter is represented using 7 bits as it varies over a relatively

large range. This results in a total of 25 bits to represent each gait, as shown in figure

3.2.

Figure 3.2: Diagram of gait encoding applied within the genetic algorithm.

Once the mating pairs have been selected, the crossover operation is applied. Crossover

consists of cutting the binary string of each parent at a random location and then

swapping the resulting string segments to create two children. This operation is de-

picted in figure 3.3. During basic crossover only the gait parameter at the crossover

point is altered through a new combination of genetic material, the rest are simply

transferred directly from the parent chromosomes. Through preliminary optimization

runs it was found that this encourages the survival of suboptimal parameter values

from early generations. To encourage the creation of new genetic material the single

chromosome string representing each gait was separated into four distinct chromo-

somes, one for each gait parameter. The new encoding scheme is represented in Figure

3.4. During the mating process a crossover point is randomly selected within each

chromosome. This results in children which contain new combinations of the existing

genetic material for each parameter rather than large sections of genetic code directly

transmitted from parent to child. The modified crossover operation was observed to

increase the diversity of genetic material within the population and provided better

end results.

The crossover operation of the GA algorithm was also modified to include elitism.
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Figure 3.3: Visual depiction of crossover process.

Figure 3.4: Visual depiction of the modified crossover process.

First proposed in [65], elitism consists of directly transferring fittest members of the

population from one generation to next. The children with the lowest fitness are

dropped to maintain a constant population size. The optima within the swimming

optimization space are relatively peaked. Consequently, they can easily be lost after

they are found due to the stochastic nature of the algorithm. The elitism opera-

tor protects the best solutions to ensure that their genetic material survives within

the population over multiple generations. Within our algorithm the top 5% of the

population is maintained from one generation to the next

Mutation

The final step of the optimization cycle is mutation. At this stage a small number

of mutations are introduced to the child population. This allows the algorithm to

generate new genetic material even after the majority of the population has converged

to a given region of the optimization space, making the it robust to local optima. The
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mutation process is the only portion of the algorithm implemented in standard form:

after the crossover process there is small chance for any bit within the child population

to flip to the opposite value. Through preliminary runs, a mutation rate of 3% was

found to provide good performance.

2.3 Testing the Modified Algorithm

A large battery of test runs was conducted to evaluate the effectiveness of the modified

genetic algorithm in its final form. A total of 20 runs were executed. Each run had

a population size of 100 individuals which was evaluated for 300 generations. The

desired swimming velocity was set to 0.3m/s for the first 10 runs and 0.7m/s for the

second 10. The resulting fitness values of the best overall individual in each final

generation are presented in figure 3.5. These results are discussed alongside the PSO

results in section 4.
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Figure 3.5: Test runs for genetic algorithm. Efficiency is optimized at swimming speeds
of 0.3 and 0.7 m/s.
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3 Particle Swarm Optimization

3.1 Outline of Particle Swarm Algorithm Structure

Based on the findings of a preliminary investigation, PSO was explored as an alterna-

tive to GAs for our optimization problem. PSO was first proposed by Kennedy and

Ebehart in 1995 [66]. The algorithm aims to mimic a group of animals cooperatively

searching for a goal such as food or shelter. Within the algorithm these animals are

represented as a swarm of particles which explore the parameter space of the optimiza-

tion problem. For the efficient swimming study, the location of each particle within

the search space is represented as vector of the gait parameters (Pj = [ β A λ Tgait]
T ).

The particles cooperatively explore the parameter space searching for regions of op-

timal fitness. The standard algorithm structure consists of the following steps,

Basic PSO Structure

1. Randomly initialize coordinates (Pj) and velocity (Vj) for N particles

Begin Loop

2. Find best point in history of each particle P best
j

3. Find the overall best point in history of all particles Gbest

4. Update Velocities and Positions - see update equations

End Loop

Velocity Update : V New
j = w ∗ Vj + C1 ∗ rand() ∗ (P best

j − Pj) (3.4)

+ C2 ∗ rand() ∗ (Gbest − Pj)

Position Update : PNew
j = Pj + V New

j (3.5)
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Initially, a swarm of particles is distributed randomly throughout the optimization

space. The fitness of each particle’s position is then determined by running the swim-

ming simulation with the gait parameters which correspond to its coordinate vector.

After the fitness of the entire swarm has been evaluated, each particle then adjusts

its velocity and position based on its own fitness history and the fitness information

of the rest of the swarm. The coefficients C1 and C2 determine the relative weighting

of global and personal fitness during this process. Typically, they are both simply

set to one. By repeating the fitness evaluation and position/velocity update over

and over, the particles travel through the space searching for high fitness regions. If

the algorithm functions properly, the swarm gradually collapses over time, eventually

converging to a small optimal region. The convergence process is depicted in figure

3.6 for a swarm of 40 particles over 100 velocity/position updates.

Figure 3.6: Plots depicting the convergence process of the PSO swarm. The randomly
distributed point cloud collapses to relatively small region of the optimization
space.

When using the basic PSO algorithm the swarm particles sometimes get stuck in

unstable oscillations. This causes them travel large distances back and forth within

the optimization space during each position update. Two standard measures are

usually applied to discourage this behaviour. First, the maximum allowable velocity

is restricted to control the total displacement of the particles within each position

update. In our case, the imposed velocity limit along each dimensions of the opti-
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mization space is set to be half of the total range of the corresponding parameter.

Second, an inertia term, w, is added to the velocity update equation [67]. When w is

less than one, it introduces a damping effect which dissipates energy from the system

and ensures that the swarm collapses over time.

3.2 Modifications to the Basic Particle Swarm Algorithm

As with the genetic algorithm, each component of the PSO structure can be mod-

ified as needed to suit the the optimization task at hand. Fortunately, the basic

PSO algorithm required relatively few changes to produce good results for the effi-

cient swimming problem. In the end, only a single customization was needed. The

standard PSO algorithm allows particles to travel freely along all dimensions of the

optimization space, however, the gait parameters must be constrained as defined in

(3.3). To implement this, limits are enforced on swarm particles using the damped

reflection method suggested in [68]. This essentially encloses the swarm within a solid

box. When a particle reaches a boundary, it effectively bounces off the box wall while

losing a fraction of its initial velocity as shown in figure 3.7. This approach discour-

ages the swarm from settling on local optima at the boundaries of the parameter space.
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Figure 3.7: Diagram of damped reflection process. Particle effectively bounces off the y
limit, while losing a portion of its initial velocity.
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3.3 Testing the Algorithm

As in the case of the GA, 20 optimization runs were executed to evaluate the effec-

tiveness of the PSO algorithm. Each run had a swarm size of 100 particles which was

evaluated for 300 iterations. The desired velocity was set to 0.3m/s for the first 20

runs and 0.7m/s for the second 10. The inertia parameter is set to 0.9, as preliminary

trials indicated that this value provided reasonable convergence while still allowing

the swarm to fully explore the optimization space. Based on standard practice for

PSO algorithms, the coefficients C1 and C2 in the velocity update equation are both

set to 1. The highest fitness value out of the entire swarm during each run is presented

in figure 3.8.
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Figure 3.8: Test runs for Particle Swarm algorithm. Efficiency is optimized at swimming
speeds of 0.3 and 0.7 m/s.

4 Comparing the Algorithms

The results produced during the testing of the GA and PSO algorithms are compared

in figure 3.9. The amalgamated fitness values indicate that the PSO algorithm is

superior to the GA. At high velocity the gaits produced using PSO have transport

economies tightly clustered around 0.52m/J. At low velocity three PSO runs appear
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to have converged on a local maximum at 3.6m/J, however the rest are scattered fairly

close to 4m/J. In contrast to this, the GA results exhibit a relatively high degree of

variance. While the best GA gaits are roughly equivalent to the maximum fitnesses

produced by the PSO algorithm, overall, the GA is significantly less consistent.
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Figure 3.9: Comparison of optimization test runs of GA and PSO algorithms.

With further development it is likely the GA could eventually match the performance

of the PSO algorithm. Within the genetic approach, the implementation of an ap-

propriate encoding scheme and mating process is critical to achieving good results

[62]. However, designing these elements requires an understanding of the problem

which can only acquired through a time consuming iterative development process

[62]. Within the intended optimization work, it will be necessary to investigate a

variety of different gait parameterizations and fitness goals. Considering this, it is

essential that our optimization process is robust and relatively quick to implement.

Based on the development process presented here, the PSO algorithm appears to be

far superior in this respect. It produces gaits with consistent fitness values, higher

than those of the GA, while requiring significantly less customization. Taking this

into account, it chosen for application in the optimization studies of Chapters 4 and

5. The results of these investigations support the findings suggested here. The pro-

posed PSO algorithm produces consistent results for both the efficient and fast-start

swimming optimization problems in their final form.
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Chapter 4

Efficient Swimming

Optimization

With the model and optimization routine fully developed, they can now be applied

together to generate optimal swimming behaviours. The first behaviour explored is

efficient swimming as defined in the optimization problem used for algorithm develop-

ment. The full solution to the proposed optimization task is presented in the following

chapter. The study begins with a discussion of the gait parametrization. The gait

definition provided in Chapter 2, (2.7), represents a relatively narrow variety of body

undulations. A more general representation is developed in its place to investigate

a wider range of locomotory modes. Once the final parametrization is established,

the formal optimization study begins. Optimization runs are conducted over a range

of speeds. Each run is executed twice, first with and then without energy recovery.

The resulting gaits are discussed in relation to the efficacy of the proposed optimiza-

tion scheme, and the control and design of swimming HRMs. A simple but optimal

strategy for velocity control and key problems for future work are developed based

on the trends within the optimal gaits. In addition to this, energy recovery is found

to increase efficiency by a factor of ten. This increase is observed to arise through a

distinct change in swimming kinematics.
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1 Revisiting the Gait Parameterization

The gait parametrization given in (2.7) is based on observations of live undulatory

swimmers, however the internal dynamics and actuator properties of a robotic system

are very different from the muscles of biological fish. Damping, stiffness, other losses,

and negative work response differ significantly between the two systems. Considering

this, it may not be correct to assume that the optimal gaits for the mechanical system

can be described within the constraints of a biological gait function. Taking this into

account, a more general gait definition is implemented in its place.

The generalized representation must balance complexity and compactness [61]; it

should be compact enough to facilitate convergence while still allowing enough free-

dom to explore all relevant gait geometries. Finding this balance is an iterative

process. The most general method for gait representation is to simply use the joint

angles at each simulation time step as optimization variables. However, the sheer

size of this parametrization scheme would severely hinder convergence and likely pro-

duce poor results. Based on this, we elect to begin with a Fourier series approach. A

completely generalized Fourier parametrization would theoretically require an infinite

number of series terms. However, actuator limits of both biological and man-made

swimmers typically limit body movement to a relatively low frequency region. Based

on this, higher order terms can be neglected. In fact, most swimming studies em-

ploy only a single sinusoid per joint [49, 50, 69]. Each joint trajectory is then fully

described using only four variables: phase (αi), amplitude (Ai), period (Ti), and off-

set (ψi). Period is assumed to be the same for all joints to prevent asynchronous

body movements. This results in a total of 3n + 1 parameters to define a complete

swimming gait. Constraints are imposed based on the limitations of current HRMs

[16, 70]. The proposed parametrization is expressed mathematically as follows,

φi(t) = Ai sin(2πt
T

+ αi) + ψi i = 1, 2, 3 . . . (n− 1), (4.1)
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0 ≤ Ai ≤ π/2 rad 0 ≤ ψi ≤ 2π (4.2)

−π/2 ≤ ψi ≤ π/2 rad 1 ≤ T ≤ 5s.

Several optimization trials were conducted to test the Fourier parametrization. Two

emergent swimming behaviours were observed in the resulting gaits: a propagating

wave mode similar to anguilliform or carangiform swimmers and a flapping mode

somewhat similar to the legs of a frog or a jellyfish. Figures 4.1 and 4.2 illustrate

the kinematics of the two gait types produced by the algorithm. While the sys-

tem successfully propels itself through the water, the gait definitions are clearly not

optimal. The motions of the swimmer are highly asymmetrical in both cases. To en-

force symmetry in the flapping and wave gaits, two modifications of the basic Fourier

parametrization are proposed. They are defined as follows,

Propagating Wave : φi(t) = Ai sin(2πt/T + αi) i = 1, 2 . . . (n− 1), (4.3)

Flapping : φi(t) = Ai sin(2πt/T + αi) + ψi i = 1, 2 . . . 5. (4.4)

In the propagating wave parametrization the offset variable (ψi) is removed to en-

force symmetry about the axial direction. For the flapping mode, joints one to five are

freely defined. The motions of one to four are then mirrored onto joints seven to ten

to enforce a symmetry about the center joint. A series of optimization trials is con-

ducted using the two modified Fourier parametrizations, the resulting fitness values

are presented in figure 4.3.The comparison shows that the wave gait is significantly

more efficient than the flapping gait. Based on this, the flapping parametrization is

dropped and sole focus is given to the propagating wave representation.

The amplitude and phase curves produced by the Fourier Wave parametrization indi-

cate that the system is converging on simple, smooth variable profiles. Consequently,

it is unnecessary to explicitly define the amplitude and phase at each joint. Based

on this, five spline nodes are used in place of the ten joint parameters to define both

the amplitude and phase of the gait. This reduces the dimension of the problem to
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Figure 4.1: Crude propagating wave gait produced using the general Fourier representa-
tion. Displacement is exaggerated to clearly show kinematics.
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Figure 4.2: Crude flapping gait produced using the general Fourier representation. Dis-
placement is exaggerated to clearly show kinematics.

a 11 variables (5 amplitude nodes + 5 phase nodes + 1 period). Constraints remain

unchanged from (4.3), the spline parametrization is thus given as follows,

φi = A(s) sin(2πt
T

+ α(s)), s = i · l, i = 1 . . . (n− 1). (4.5)

Test results for the new spline parametrization are provided in figure 4.3 and 4.4.

Due to improved convergence, the resulting gaits generally exhibit an increase in effi-

ciency relative to those produced by the Fourier approach. Through experimentation

with the model it was found that the spline phase profiles produced by the optimiza-

tion process can be replaced by a linear approximation with minimal effect on the

performance of the swimmer. Based on this, the 5 phase spline nodes are replaced

with a single wavelength variable which defines a constant phase shift along the body.

This reduces the generalized representation to a total of only 7 variables. The new

wavelength variable is restricted to 0.2m to 3m as preliminary runs indicated that the

optimal value falls within this range, all other constraints remain unchanged. The

modified spline parametrization is expressed as follows,
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Figure 4.3: Comparison of optimal transport economies produced using the various pa-
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Figure 4.4: Relative comparison of optimal transport economies produced using the vari-
ous parameterizations. The Fourier - Wave results are used as a baseline.

φi = A(s) sin[2π( s
λ
− t

T
)], s = i · l, i = 1 . . . (n− 1). (4.6)

As shown in figure 4.4, this final iteration of the gait parametrization provides the

best overall performance. The low speed efficiency is similar to the previous parame-

terizations, while the efficiency at higher speeds increases considerably. Considering

this, this representation is applied in the formal optimization study that follows.
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2 Optimization Results

Using gait parametrization given in (4.6) and the PSO algorithm, the optimization

scheme is run at 10 different swimming velocities evenly spaced from 0.1 to 1m/s. Two

runs are executed at each velocity: one using absolute work as power consumption

and another using net work to allow energy recovery. For each run, a population of

200 particles is evaluated over 600 iterations. This requires a run time of 10 to 15

hours on a Core i7 desktop CPU. The resulting optimal gait parameters are presented

in figures 4.5 to 4.10.
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Figure 4.5: Optimal frequency at each swimming velocity for optimization runs with and
without energy recovery.

From these figures it is apparent that the trends in the optimal gait parameters are

highly consistent despite being the product of a stochastic algorithm. This suggests

that the optimization scheme is able to effectively identify curves of optimal perfor-

mance within the parameter space. In figure 4.5 it can be seen that the frequency of

the swimming mechanism increases linearly for both the net and absolute work cases

up to the maximum frequency constraint. The absolute work swimmer maintains

the maximum frequency from 0.4m/s onwards while the net work swimmer does so

after 0.6m/s. The velocities at which each swimmer hits the frequency limit should

be noted as they mark clear transitions in the other optimal gait parameters. The
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Figure 4.6: Optimal wavelength at each swimming velocity for optimization runs with and
without energy recovery. Vertical lines highlight where the swimmer hits the
1Hz frequency limit.

0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Velocity (m/s)

T
ra

n
sp

o
rt

 E
co

n
o

m
y

 (
m

/J
)

 

 

Absolute Work

Net Work

Figure 4.7: Optimal transport economy at each swimming velocity for optimization runs
with and without energy recovery.

absolute work swimmer maintains a wavelength of approximately 1.3m to 1.4m across

all swimming velocities. The net work swimmer exhibits a very different wavelength

of around 0.55m to 0.6m until it hits the 1Hz frequency limit at 0.6m/s. After this,

it converges towards the wavelength of the absolute work swimmer.

Consistent behaviour is also apparent in the amplitude curves of the optimal gaits.

Despite having to optimize 5 independent spline nodes the PSO algorithm generates

a series of curves which change in a smooth predictable fashion as velocity increases

51



0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Velocity (m/s)

S
tr

o
u

h
a

l 
N

u
m

b
e

r
 

 

Absolute Work

Net Work

Figure 4.8: Strouhal number of optimal gait at each swimming velocity for optimization
runs with and without energy recovery. Vertical lines highlight where the
swimmer hits the 1Hz frequency limit.

from 0.1 to 1.0m/s. For the absolute work swimmer all curves below 0.4m/s are

extremely similar. At higher speeds the amplitude peak at the tail begins to shift

towards the center of the mechanism and undulations appear at the head. The same

trends are present in the amplitude curves of the net work swimmer, however, the

changes begin at the net work frequency limit point of 0.6m/s.

Having reviewed the optimization results it is apparent that both swimmers maintain

a relatively constant amplitude curve and wavelength up to the point where they hit

the 1Hz frequency limit. However, these values differ significantly in the absolute

and net work cases. The absolute work swimmer employs a highly carangiform gait.

Undulations are restricted to a small segment at the tail, while the forebody remains

relatively straight. By contrast, the net work swimmer exhibits a clearly anguilliform

gait; significant undulations are present along most of the swimmer’s length. These

kinematic differences are illustrated by the low speed gait envelope plots provided in

figure 4.11. As highlighted earlier, the gait kinematics of both swimmers begin to

change once they hit the frequency limit. As the two swimmers approach 1.0m/s,

their amplitude and wavelength converge resulting in similar high speed gaits. This

is demonstrated by the similarity of the high speed envelopes shown in figure 4.11.
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Figure 4.9: Optimal amplitude curves WITHOUT energy recovery (absolute work). The
slowest (0.1m/s) and fastest (1.0m/s) gaits are omitted to reduce clutter.
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Figure 4.11: Comparison of gait envelopes for low (0.3m/s) and high (0.9m/s) speed gaits
produced by absolute and net work optimization. The gait envelope is com-
posed of snapshots of the mechanisms centerline throughout a full gait cycle.

It is also worth considering the Strouhal number at which the swimmer operates. The

expression used to calculate Strouhal number is given as follows [29],

St =
fAtail
Vforward

, (4.7)

where f is the undulation frequency, Atail is the peak to peak amplitude of the tail

beat, and Vforward is the swimming velocity. In studies of biological eels and other

fish it has been found that they typically swim at a constant St between 0.2 and 0.4

during efficient locomotion [71]. Figure 4.8 shows that, below the frequency limit, the

absolute work swimmer undulates at a constant Strouhal number of St = 0.33. The

net work swimmer also maintains a constant Strouhal number, but appears to swim

best at approximately St = 0.4. In both cases the St rises to roughly St = 0.5 as the

swimmers’ speeds increase beyond the frequency limit.

The constant Strouhal number of the gaits produced by the optimization process sug-

gests that the St related effects required for efficient swimming are somehow captured

within the low-order approximation of fluid forces. This is somewhat surprising as

St is typically linked to wake structure and vortex shedding; neither of which are

accounted for here. In a recent study by Eloy [72], Lighthill’s elongated body theory

54



is used to predict optimal Strouhal numbers for a wide variety of swimming animals.

The predicted optima are found to coincide well with biological data. Lighthill’s

swimming theory does not allow the wake to influence the dynamics of the swimmer.

Its success in predicting biological behaviour in spite of this suggests that the charac-

teristic wake structures often linked to optimal St values may simply be the signature

of efficient swimming rather than the underlying cause. Eloy highlights that this idea

has previously been proposed by Muller et al. in [73]. If true, this proposition may

explain the link between St and efficiency within our swimming simulation.

3 Discussion

The efficient swimming gaits generated by the optimization study exhibit a number of

clear trends. These trends will now be discussed in terms of the insight they provide

for the control and design of an efficient swimming HRM. The discussion will consist

of three three primary topics. First, we examine the efficacy of the proposed gait

optimization process and explore and how it can be adapted to physical swimming

mechanisms. Once this is done, the key trends of the optimization results are used to

devise optimal strategies for mechanism control and design. Finally, a comparison of

the absolute and net work gaits is used to examine the role of negative work recovery

in efficient undulatory swimming.

3.1 Stochastic Gait Optimization and Efficient Swimming

From the results presented in this chapter, it is clear that the PSO algorithm generates

a set of highly consistent swimming gaits. It serves as an effective tool for generating

optimal gait definitions for the simulated mechanism. The gait parametrization is

found to be a critical aspect of the optimization scheme. The performance discrep-

ancy between the initial and final parametrization in this chapter demonstrates the

importance of selecting an appropriate gait representation. The final parametrization
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was produced through an iterative process beginning with a relatively general gait

representation and gradually paring it down to an ideal set of gait variables. The

resulting definition is capable of representing the full range of amplitude curves re-

quired by the mechanism while at the same time limiting the swimmer’s phase, offset,

and frequency to an ideal segment of the full optimization space.

The final parametrization consists of a sinusoidal curvature wave defined by a single

period and wavelength with five spline nodes for amplitude. This is actually quite

similar to the biologically based parametrization given in 2.7, the only change is the

amplitude function. However, the splined amplitude definition is important to the

optimization process as it allows the mechanism to explore non-exponential curves.

This is critical at higher velocities where the optimal amplitude curves exhibit local

minima and maxima.

The next challenge in the development of the optimization process would be to ex-

perimentally test the gaits on a swimming mechanism. Due to the simplicity of the

fluids model, the optimal gaits produced by the simulation may not transfer directly

to the physical system. To adjust for differences between the simulation and reality

the gaits presented here could be fine tuned on the actual mechanism. Our optimiza-

tion approach provides a sound parametrization for this tuning process and a first

approximation of the optimal gait solution.

3.2 Control and Design for Efficient Swimming

Although the specific gait parameters would likely require tuning to be truly optimal

for a given robotic swimmer, there are overarching trends within the results which can

be applied to a wide range of swimming mechanisms. Controlling a highly articulated

swimmer in an optimal fashion is a challenging problem. The flexibility of the system

presents many possible solutions for any given task. For instance, velocity can be

modulated by varying any single parameter of the gait representation. In previous

work on control for robotic swimmers, the chosen velocity tracking strategies are
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effective but somewhat arbitrary [74, 28, 75]. The trends exhibited by the optimal

gaits allow us to derive an optimal strategy for modulating velocity while highlighting

issues of interest for the design of future swimming HRMs.

From the optimization results it is apparent that the amplitude curves and wave-

lengths remain constant at low speeds while frequency and swimming velocity are

linearly related. As a result, the numerator and denominator of the Strouhal func-

tion vary proportionally. This allows the system to maintain the optimal St value

purely through frequency modulation. This velocity control strategy is actually ob-

served in natural anguilliform swimmers [76]. Applying this knowledge to the control

of a general HRM we arrive at the following conclusion. Velocity control through

simple frequency modulation can provide optimal swimming efficiency. This means

that only a single optimal amplitude curve must be determined for efficient low speed

locomotion.

At speeds beyond the frequency limit the swimmer must resort to amplitude based

velocity control. The amplitude changes are relatively similar in the absolute and net

work gaits. As the desired swimming velocity rises, the amplitude peak at the tail

creeps forward to engage most of the swimmer’s body, while posterior amplitude is

reduced to control tail tip oscillation. At the highest speeds, a significant amplitude

peak appears near the head of the mechanism. These head rotations serve to ensure

that the head remains aligned with the direction of travel thus minimizing drag. Due

to the numerous complex changes in the amplitude curves, it is difficult to reduce them

to simple trends for the control of a general swimming HRM. As a result, optimally

efficient high speed locomotion can only be achieved through a direct application of

the gait parameters. Based on this, a look up table approach would likely be required

to implement the high speed results.

Comparing the optimal behaviour above and below the frequency limit, it is clear

that the optimal solution for efficient swimming is considerably simpler below it.

Unfortunately, the standard servos currently employed in most swimming HRMs are

poorly suited to sustained oscillatory actuation. This results in restrictive frequency
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capabilities. Typical HRM’s have a maximum frequency of 0.5 to 2Hz, however

undulations frequencies of 5Hz or more are often observed in biological swimmers.

An increase in frequency capability to match biological limits would not only simplify

gait design and control, but also improve high speed efficiency, and increase maximum

speed. Considering this, there is significant motivation to investigate high frequency

actuation technologies for future work in biomimetic swimming and design.

3.3 Negative Work and Energy Recovery

The final issue addressed in this study is the role of energy recovery in undulatory

swimming. From the gait envelopes presented in figure 4.11 it is clear that the absolute

and net work optimizations produce distinct swimming methods. The absolute work

swimmer favours a carangiform gait while the swimmer capable of energy recovery

swims best in the anguilliform mode. Thus, the optimal kinematics are found to be

highly depedendent on the swimmer’s handling of negative work.

Below the frequency limit the transport economy of the swimmer with energy recov-

ery is roughly ten times that of the swimmer without. These results would not apply

to a physical swimmer as it could not recover 100% of the negative work. However, it

does suggest an opportunity for a significant increase in efficiency if the mechanism

can recover at least a fraction of this energy. To understand how the absolute and

net work gaits differ, a comparison of the power dissipated to the fluid along the

mechanism in each case is provided in the left plot of figure 4.12. The theoretical

power consumption at each joint is given in the right plot. The shape of the resulting

joint power curves closely matches the bending power analysis of live anguilliform and

carangiform swimmers presented by Hess in [59]. For the swimmer optimized without

energy recovery, there is no benefit to negative work, consequently the system con-

verges to a gait which simply minimizes all energy dissipated to the fluid. This results

in negligible action by forebody actuators and power consumption is concentrated in

the joints near the tail. For the gait optimized with regeneration, the anguilliform

properties result in large regions of negative power dissipation along the swimmer’s
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body where it actually extracts energy from the flow. This results in negative work at

the joints which the swimmer exploits to reduce the overall cost of locomotion.
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Figure 4.12: Left: Average power dissipated to fluid by each body segment, for absolute
and net work swimmers at 0.3m/s. Right: Average power consumed at each
joint, for absolute and net work swimmers at 0.3m/s

It can be logically concluded that the energy extraction arises entirely through added

mass effects. By definition, drag forces will always oppose segment velocity. To opti-

mize the negative work on a given segment, the PSO algorithm tunes the swimmer’s

gait to align a complex set of conditions. The relative phase of rotation and transla-

tion for specific body segments is set to optimize periods of energy extraction while

minimizing power dissipation. While attempting to do this, the swimmer must also

minimize losses due to link rotation and axial viscous drag. A deeper analysis is

required to understand exactly how the optimal gait arises from a balance of these

competing effects.

From a hydrodynamic perspective anguilliform swimming is thought to be inefficient.

Lighthill’s theory predicts that undulations of the anterior portion of the swimmer’s

body contribute very little to forward thrust [32]. The time-averaged thrust distribu-

tion of the optimal net and absolute work gaits is provided in figure 4.13. The resulting

curves show that, as predicted, the anterior undulations generate a relatively small

amount of net propulsive force. Despite this finding, a number of studies have shown

that anguilliform swimmers are extremely efficient in terms of a cost of transport

metric [77, 78], often outpacing their carangiform counterparts. The optimal gaits
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Figure 4.13: Thrust distribution along absolute and net work swimmers for optimal gaits
at 0.3m/s.

produced with and without recapture of negative work suggest that anguilliform kine-

matics may increase efficiency by allowing the swimmer to extract energy from the

flow along the anterior portion of its body. In contrast to this, the carangiform mode

simply minimizes the absolute power magnitude along the swimmer’s entire length.
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Chapter 5

Acceleration Optimization and

Swimming Control

The efficient swimming results provide a basic framework for the velocity control of

the mechanism, however many of the efficient gaits exhibit extremely poor accelera-

tion. When starting from rest the robot can require up to thirty seconds to attain

its steady state velocity. By contrast, biological swimmers are noted for their excel-

lent acceleration performance. Considering this, an optimization study is conducted

to develop high acceleration maneuvers which complement the efficient swimming

results.

To accomplish this, the gait parametrization of the previous chapter is modified to

represent the kinematics required for rapid acceleration. Once this has been estab-

lished, an objective function suitable for generating high acceleration maneuvers is

defined. Finally, the proposed optimization framework is applied within the PSO

algorithm to produce the desired high acceleration gaits. The gaits produced by this

process appear to be well optimized, however the resulting acceleration performance

is well below that of natural fast-start swimmers. Design modifications to improve

performance are suggested based on the physiological features of biological fish, and

the limiting factors observed in the optimization results.
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Despite the moderate acceleration performance of the system, it is found that the

kinematics for optimal acceleration can be easily merged with those of the efficiency

study. Based on this, in the final section of this chapter the high acceleration gaits are

combined with those of the efficiency optimization to produce a simple but effective

velocity tracking scheme.

1 Acceleration Maneuvers in Fish

Maneuvers for acceleration from rest, known as fast-starts, have been extensively

studied in natural fish. The most common fast-start strategies are typically broken

down into two varieties: C-starts and S-starts. C-starts consist of three distinct kine-

matic stages: the preparatory stroke, the propulsive stroke, and continued swimming

[79]. During the initial preparatory stroke, the muscles along one entire side of the

fish’s body rapidly contract. This causes the animal to take on a C-like shape. Once

this stage of the maneuver is complete, the fish initiates the propulsive stroke by

contracting the muscles on the other side of its body. This causes it to straighten

out and whip its tail backwards. In the process, the tail generates a large amount of

thrust causing the fish to accelerate forward. Backbone traces of a live fish execut-

ing a C-start are shown in figure 5.1. C-starts are generally associated with escape

behaviour, the final trajectory of the fish can vary up to + or -180 degrees from its

original heading. This allows the fish to escape predators approaching from any direc-

tion. The entire maneuver typically lasts between 30 and 100 ms with final velocities

of approximately 10 body lengths/s [79].

The second maneuver type, know as an S-start, generally serves a different role in

fish fast-start behaviour. While C-starts are primarily used as an escape mechanism,

S-starts are typically employed for predatory strikes [79]. The basic maneuver begins

with a preparatory phase in which the fish contracts its body into an S shape as

shown in Figure 5.1 . The fish then transitions into series of periodic tail beats. The

properties of this gait can vary based on the intended goal of the fish. In [80], Harper
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Figure 5.1: Backbone traces of live fish executing C-Start and S-Start[79]. 0ms indicates
starting position, following frames are labeled according to time (also in ms).

and Blake observe that S-starts in pike typically consist of minimum of 1 complete

gait cycle with additional half cycles added as need based on the intended velocity or

displacement. S-starts usually have a slightly longer timespan than C-starts, ranging

from 100-200 ms, and final velocity is similar but varies considerably based on the

number of tail beats within the maneuver [79].

For the acceleration of the simulated mechanism, we elect to emulate the S-start

behaviour. There are two primary reasons for this decision. First, the S-start produces

straight, controlled, acceleration rather than the explosive turning of the C-start. This

makes it far simpler to implement for the control of a physical mechanism. Second,

it can be reasonably represented by a modification of the sinusoidal gait used in the

efficiency optimization. This will prove invaluable in attempting to merge the optimal

efficiency and acceleration kinematics within a single control solution.
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2 Setting Up the Optimization Problem

2.1 Parameterizing the Maneuver

The first step in setting up the acceleration optimization problem is to develop an

appropriate parameterization of the maneuver. To do this we adopt the basic sinusoid

of the previous chapter and append a ramp function to transition the mechanism

from its resting position to the full acceleration gait. This allows the optimization

algorithm to generate S-start like maneuvers without a major departure from the

methods established in the efficient swimming work. The resulting expression is

given as follows,

φi = R(t) · A(s) sin[2π( s
λ
− t)], s = i · l, i = 1 . . . (n− 1). (5.1)

The amplitude function, A(s), is once again defined using five splined nodes limited

to the following range, (0 ≤ Ai ≤ π/2rad). The wavelength constraint also remains

unchanged, (0.2 ≤ λ ≤ 3m). During preliminary optimization it was found that

the optimization algorithm naturally converges to lower period limit to maximize

acceleration. Based on this, the gait period is not included as a variable of the

parameterization, instead it is fixed at the lower limit of the mechanism (1s).

In all previous chapters a simple ramp function, R(t), has been applied to start the

swimmer from rest. It consists a fifth order polynomial which satisfies the following

conditions,

R(t) = At5 +Bt4 + Ct3 +Dt2 + Et+ F, (5.2)

R(0) = 0, R(tramp) = 1,

R′(0) = 0, R′(tramp) = 0,

R′′(0) = 0, R′′(tramp) = 0.
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During the process of developing the acceleration parameterization, more complex

ramps based on splined curves were considered. However, preliminary optimization

runs indicated that they do not provide a significant increase in mechanism perfor-

mance. Based on this, the simple ramp of previous work is also applied here. The

ramp time, tramp, is included as an optimization variable and is limited to a range

of 0 < tramp ≤ 1s. In summary, 7 parameters in total are required to define a given

acceleration gait (5 amplitude nodes, 1 wavelength, 1 ramp time).

2.2 The Objective Function and Power Constraints

To evaluate the effectiveness of a given gait, the mechanism is allowed to accelerate

for a fixed length of time and the fitness is then taken as the average acceleration

over the complete maneuver. As stated earlier, S-starts in pike typically consist of

at least one complete swimming cycle (two tail beats) with additional half cycles

added as needed. During their experiments, Harper and Blake observed that average

acceleration decreases with each appended tail beat [80]. Based on this, the fixed

acceleration period for optimization was initially set to a a single swimming cycle

(1s). During preliminary optimization runs it was found that this produced gaits in

which the swimmer curled up at the end of the maneuver to maximize acceleration.

Although this results in high fitness values, it is not suitable for a transition to

continuous swimming. To remedy this issue, the acceleration time was extended

to 1.5 gait periods (1.5s). This ensures that system converges to a gait which can

smoothly transition into additional swimming cycles.

In terms of constraints, the primary factor limiting the fast-start performance of the

swimmer is power. In hyper-redundant mechanisms high-torque hobby servos are the

standard actuation method. Servos in this category have a maximum output on the

order of 10 Watts [81]. Although future HRMs will likely employ a different means

actuation, this value is used as a rough approximation of the limitations at this scale.

Power consumption is calculated as the absolute value of the system’s theoretical

power usage and the 10W constraint is applied to each joint individually. During
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optimization the constraint is implemented as a penalty term, CP . The resulting

objective function and constraint expression are given as follows,

f = aavg + CP , (5.3)

CP = 1 · 1010 [Heaviside(PMax − Plim)(PMax − Plim)2] (5.4)

aavg is the average acceleration of the maneuver, Plim is the 10W power limit, and

Pmax is the maximum individual joint power observed during a given acceleration

maneuver.

3 Results and Discussion

Having established the acceleration optimization problem and parameterization, it is

now possible to combine these components with the PSO algorithm to generate high

acceleration maneuvers. The following section presents the results of this process and

compares the optimal performance of the system to that of natural swimmers. It is

found that while the results appear to be well optimized, the swimmer’s acceleration is

still far below that of natural fish. The primary causes of this performance discrepancy

are investigated and design changes are suggested to improve acceleration for future

mechanisms. In preparation for the control design task section 4, the acceleration

results are also discussed in terms of how they relate to the efficiency results of the

previous Chapter. It is found that optimal efficiency and acceleration kinematics

exhibit a number of similarities which will facilitate the process of combining them

within a single control scheme.
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3.1 Results

To produce the desired optimal acceleration maneuvers the PSO algorithm is run

ten times. This makes it possible to evaluate the the consistency of the results and

verify that the algorithm is able to repeatedly converge on a single optimum set

of parameters. As in the previous chapter, each run evaluates a swarm size of 200

particles over 600 iterations and all algorithm parameters (w, C1, C2) are unchanged

from Chapter 3. The properties of the resulting gaits are presented in figures 5.2 and

5.3.
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Figure 5.2: Left: Ramp times for optimal acceleration gaits. Right: Wavelengths for
acceleration gaits.

A fitness plot is not included here as the final fitness was extremely consistent across

all runs. Without exception, the best maneuver in each of the 10 optimization trials

had an average acceleration between 0.75 and 0.77m/s2. From figure 5.2 it is shown

that the wavelength and amplitude curves are also relatively consistent between runs.

The optimal wavelength ranges from 1.3 to 1.4 with a mean value of 1.32m. Inter-

estingly, this matches the range observed for efficient swimming with absolute work

in Chapter 4. The amplitude curves for optimal acceleration demonstrate a similar

correspondence. They are nearly identical to those for maximum efficiency at higher

swimming speeds (0.9-1.0m/s), exhibiting the same major peaks at the mid-body and

the head of the robot. These similarities are discussed further in Section 3.2.

67



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.4

0.8

1.2

Body Coordinate (m)

A
m

p
li

tu
d

e
 (

ra
d

)

 

 

Run 1

Run 2

Run 3

Run 4

Run 5

Figure 5.3: Amplitude curves for optimal acceleration gaits. Runs 6 through 10 are omit-
ted here to reduce clutter.

In contrast to the relatively consistent values for wavelength and amplitude, the PSO

algorithm has identified several different values for ramp time, ranging from 0.77s to

the upper limit of 1.0s. Despite this large spread, the final average acceleration was

still constant across all ten runs. This suggests that the variation is not a major issue,

it appears that the ramp period can change somewhat without significantly impacting

final performance. Further investigation of the results did reveal a small difference

between runs with shorter versus longer ramp periods. The longer ramp times tend

to cause less deviation from the horizontal course. This difference is demonstrated

through backbone traces of gaits with the highest and lowest ramp times (run 3:

1.0s and run 7: 0.77s) which are presented in figure 5.4. Considering that any sort

of deviation will have to be corrected through control action which may impact the

system’s performance, this finding makes the 1.0s ramp time the preferable choice for

implementation.

If the backbone traces of figure 5.4 are compared to those of natural fish (as shown

in figure 5.1), from a qualitative perspective it is apparent that the acceleration

kinematics of the robotic system are quite distinct from those used by biological
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Figure 5.4: Backbone trace for acceleration gaits with the longest (Run 3 - 1.0s) and
shortest (Run 7 - 0.77s) ramp times.

swimmers. The robot’s undulations during acceleration are significantly higher in

amplitude than those of the fish. This is primarily due to 1Hz limitation. The

biological S-start in figure 5.1 consists of single full gait cycle which occurs over a

period of 0.1s. Based on this, the swimmer is moving at a frequency of 10Hz. Since the

mechanism is restricted to a maximum undulation rate of 1Hz, it is forced to use high

amplitudes to maximize acceleration rather than a high swimming frequency.

A quantitative comparison of the mechanism’s performance and that of natural fish

is provided in table 5.1. The performance specifications of the acceleration maneuver

from Run 3 are tabulated against the average performance values recorded for pike

in [47] and [80]. The pike power numbers were calculated by Frith and Blake [47]

using recorded kinematics and a fluids model similar to our own. From the resulting

comparison it is clear that the optimal acceleration of the mechanism is well below

that of the natural swimmer. The average and peak acceleration of the mechanism are

roughly 29 times less than those of the pike. In terms of absolute value, the average

and peak power consumption of the pike is more than twice that of mechanism. When

mass is considered this difference increases tenfold; the pike has an average specific

power of approximately 130W/kg, while the average specific power consumption of

the mechanism is only 4.6W/kg. Interestingly, the ratio of the average specific powers

of the mechanism and the pike, approximately 28, corresponds almost exactly to the

ratio of their average acceleration.
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Table 5.1: Acceleration performance for gait produced in run 3, compared to the perfor-
mance of a pike. Power values represent the sum power throughout all 9 joints
of the mechanism or the entire body of the fish.

Mechanism Pike

Avg. Acceleration (m/s2) 0.76 22*

Peak Acceleration (m/s2) 2.8 100**

Timespan (s) 1.5 0.12*

Peak Velocity (m/s) 1.15 2.6*

Avg. Power (W ) 18 53*

Peak Power (W ) 42 90*

Mass (kg) 3.9 0.4*

*Pike fast-start performance is taken from [47]
**Peak acceleration during pike fast-starts is taken from [80]

3.2 Discussion

Designing to Improve Acceleration

Based on the preceding comparison it is quite clear that the primary factor limiting

the mechanism’s acceleration is power. With thirty times less specific power than the

natural pike, the robot cannot possibly match its performance. This highlights cur-

rent actuation and energy storage technology as one of the major barriers to achieving

truly biomimetic swimming behaviour. Although these issues remain a limiting fac-

tor, there are number of biological design cues which could be applied to improve

the performance of the mechanism within the constraints of conventional systems.

During fast-starts in natural swimmers, power consumption is concentrated at the

median segments of the body. Consequently, fish have adapted a muscle mass distri-

bution which peaks at the mid-body and tapers off rapidly towards tail [59]. Plots

of the average net and absolute power along the mechanism throughout the optimal

acceleration gait of run 3 are provided in figure 5.5.
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Figure 5.5: Mean net and absolute power along mechanism during the optimal accelera-
tion gait of run 3.

From the absolute power curve it is clear that the mechanism’s power consumption is

also concentrated in a relatively small region around its mid section. Approximately

80% of the total power consumed throughout the maneuver is generated by only 4

of the 9 servos. Considering this, the mechanism’s uniform actuator layout is poorly

suited the acceleration task. Servos at the head and tail expend relatively little

power, while the brunt of the load is left to the those at the centre body of the robot.

Mimicking the natural design of biological swimmers, a redesign of the mechanism

to concentrate actuation at the mid-sections of the body could significantly improve

performance.

A second issue of concern is the negative work in the posterior joints of them mech-

anism. The presence of this work during the acceleration maneuver is demonstrated

by the large discrepancy between the absolute and net power curves in figure 5.5.

Fish have evolved high stiffness caudal muscles to passively resist bending near the

tail at low energy cost. In the absence of this design feature, the simulated swimmer

must expend significant quantities of power actively resist bending as the tail sweeps

through the water. A solution to implement a similar elastic system within the mech-

anism would reduce power consumption and eliminate the need for large servos in the

tail, thus facilitating the previously proposed redistribution of actuation power.
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Despite the potential benefits of these modifications it is not immediately clear as

to whether or not they should be implemented. Configurations for a given task may

compromise the mechanism’s performance in another. Furthermore, considerable

work would be required to implement any sort of change in an optimal fashion. Mass

distribution, actuator properties, and maneuver kinematics are all directly coupled

to one another, resulting in an extremely complex design problem.

The optimization process developed here could serve as a powerful tool in exploring

these issues. Despite the limitations of the simulated swimmer, the fast-start ma-

neuvers produced by the algorithm are reasonably well-optimized. Across a large

number of distinct algorithm runs, the gait design process has repeatedly converged

on a very specific set of kinematic parameters. Considering this, the PSO algorithm

appears to be reasonably robust, it is of capable generating highly efficient swimming

gaits and maneuvers for rapid acceleration, with no modification to its basic struc-

ture. Based on this versatility, it is possible that additional maneuver types could

be investigated, such as turning or braking. In addition to this, geometry and actua-

tion related variables could be added the optimization problem to investigate various

design modifications.

Comparing the Acceleration and Efficiency Results

The system parameters for optimal acceleration are strikingly similar to those of the

high velocity gaits from the efficiency study. As stated earlier, for acceleration the

optimal wavelength is approximately 1.32m, while the best wavelength for efficiency

based on absolute power consumption is around 1.3-1.4m. The amplitude profiles

of the two studies are compared in figure 5.6. From this plot, it is clear that the

optimal acceleration profile once again exhibits the same characteristics as the high

speed absolute power efficiency gaits.

During the efficiency study, optimization runs were conducted at velocity increments

of 0.1m/s, the highest velocity achieved through this process was 1.0m/s. For compar-
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Figure 5.6: Comparison of amplitude profiles from efficiency optimization and run 3 of
the acceleration optimization.

ison, if the optimal acceleration gait is maintained over several cycles, the swimmer

settles at steady-state speed of 1.03m/s. Considering this, it is likely that the steady

speed of the optimal acceleration gait approaches the upper limit of the system.

Consequently, if the optimal acceleration gait is appended to the efficient swimming

results, a continuous spectrum of increasing velocity is produced. Within this spec-

trum, acceleration also increases in a continuous fashion. Velocity plots of the efficient

swimming gaits are presented in figure 5.7. Acceleration performance rises monoton-

ically as speed increases from 0.1 to 1.0m/s attaining its maximum at the 1.03m/s

acceleration gait. This natural progression within the optimization results of the two

studies serves as the basis of the velocity tracking scheme proposed in the following

section.

4 Combining the Optimal Behaviours for Control

In this section, the high acceleration gaits are combined with those of the efficiency

optimization to produce a simple but effective velocity tracking scheme. The resulting
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control strategy improves the poor acceleration performance of the efficient swimming

gaits to produce an end result which is capable of rapid acceleration during velocity

transitions and minimal energy consumption during steady-state locomotion. No

rigorous testing of the scheme is presented beyond a few simple examples. Due to

the complexity of system, in depth control work without physical experiments would

be ill advised. The aim here, is to simply develop the basic concepts of the proposed

tracking strategy. Through this process it is demonstrated that the optimization

results can be implemented in a concise yet effective control scheme.

4.1 Velocity Tracking Control

The structure of the control scheme is based on the velocity tracking strategies ob-

served in live eels. In, [82], Tytell investigates how the gait kinematics of the American

eel relate to acceleration and velocity. He finds that swimming velocity is strongly

correlated to body wave speed, while acceleration correlates to a deviation in tail tip

velocity but is independent of wave speed. Assuming the gait the of eels approximates

a sinusoidal wave with an exponential amplitude function, peak tail tip velocity and
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body wave speed are expressed in terms fundamental gait parameters as follows,

Vtip =Atail · 2πf (5.5)

Vwave =fλ (5.6)

To change Vtip without affecting Vwave, Vtip must either be modulated entirely through

changes in amplitude (Atail), or wavelength (λ) must vary in conjunction with fre-

quency (f). Unfortunately, noise in the amplitude and wavelength data prevents a

firm conclusion as to which strategy the live eels actually use.

For the simulated swimmer, wavelength is relatively constant across all swimming

speeds and optimization goals. This suggests that pure amplitude modulation is

the simplest method to replicate the acceleration behaviour of natural eels, while

frequency modulation should primarily serve to determine steady-state velocity. To

accomplish this, the control structure presented in figure 5.8 is proposed.

Desired 

Speed

Actual 

Speed
PID

Amplitude

 Table

Swimming 

Mechanism

Set Point

(0 - 1)

+

-

Frequency

 Table
Frequency 

(f )

Rate Limiter

Amp. Pro!le

(A(s))

Speed Control

Figure 5.8: Diagram of proposed control loop for speed tracking

The amplitude of the swimmer’s gait is controlled though a basic feedback loop with

a look-up table. The look-up table takes in a unitless set point value from the PID

block and outputs a corresponding amplitude profile. The set point range is limited

to between 0 and 1, where 0 corresponds to the constant amplitude profile of the

low speed efficient gaits (0.1-0.4m/s) and 1 corresponds to the optimal acceleration

gait. Intermediate set points are mapped to the amplitude profiles of the high speed

efficient gaits (0.5-1.0m/s) to produce a continuous range.
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The gait frequency is determined through a feedforward path which converts the

desired velocity to the appropriate frequency based on the optimization results. A rate

limiter is included to prevent rapid changes in the frequency value. As a result, the

feedforward path has little effect on the mechanism’s short term response to changes

in desired speed, instead, the amplitude controller dominates the initial response to

tracking error. When a step change in desired speed occurs, the system transitions to

the high acceleration amplitude profiles at the upper limit of the set point range and

then gradually settles on the optimally efficient amplitude profile as frequency reaches

a steady-state value. Thus, amplitude modulation is used for bursts of acceleration

while frequency determines long term behaviour. In figure 5.9, the performance of the

controller is demonstrated for acceleration from rest to three different final velocities

(0.3, 0.6, and 0.9m/s). The PID gains are set to KP = 3sm−1, KI = 1.5m−1, and

KD = 0.1s2m−1. In all cases the system attains its desired velocity in roughly 1s,

with rise time increasing slightly for the higher speeds.
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Figure 5.9: Speed error during acceleration from rest using the proposed control loop.
From left to right desired speeds are 0.3, 0.6, and 0.9m/s.

4.2 Velocity Tracking with Waypoint Navigation

In addition to starts from rest, the controller is also effective in transitioning between

speeds and tracking the set velocity after high drag maneuvers such as turns. To

demonstrate this, the control loop is embedded in a way-point navigation scheme

taken from [83]. Within the navigation algorithm, the mechanism chases a virtual

swimmer which is constrained to travel along a path laid out by a series of waypoints.
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The virtual swimmer’s velocity is defined as follows,

Vvirtual = V
R∗

R
(5.7)

V is the actual speed of the simulated mechanism and Vvirtual is the speed of the

virtual swimmer. R is the absolute distance between the mechanism and the virtual

swimmer and R∗ is a predefined distance value. By defining the virtual swimmer’s

speed in this fashion it tends to swim a distance R∗ ahead of the actual mechanism.

The mechanism tracks the virtual swimmer by selecting a heading to swim directly

towards it at any given instant. This is accomplished using the following expression for

desired heading (ψdesired). As shown in figure 5.10, the terms Rx and Ry are the x and

y components the displacement vector between the real and virtual mechanism.

ψdesired = arctan
Ry

Rx

(5.8)

Actual Swimmer

Virtual Swimmer

R
Y

R
X

Figure 5.10: Diagram illustrating Rx and Ry used to calculate desired heading.

While the navigation algorithm provides a desired heading, a method to actually

control the mechanism’s heading has not yet been demonstrated. To accomplish this,

a solution proposed by McIsaac in [20] is applied. The mechanism is given the ability

to turn by adding an offset term (γ) to the sinusoidal gait expression as follows,
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φi = A(s) sin[2π(
s

λ
− t

T
)] + γ, s = i · l, i = 1 . . . (n− 1). (5.9)

A nonzero value of (γ) causes the mechanism to assume a C-like shape while undulat-

ing, thus initiating the desired turn. The severity and direction of the turning motion

is controlled by altering the magnitude and sign of the offset value. The heading

controller used to define γ is given in the following equation and a snapshot of the

turning procedure is given in figure 5.11.

γ = Kγ(ψ − ψdesired) (5.10)

Figure 5.11: Left: Mechanism during straight swimming. Right: Mechanism during offset
turning maneuver. The mechanism is travelling in the negative x direction

Combining this turning process with the navigation scheme and velocity tracking loop

produces the overall control structure illustrated in figure 5.12. In figure 5.13, this

control structure is used to guide the mechanism through a series of waypoints while

tracking a set velocity. The mechanism’s path is shown on the left and the actual

swimming velocity throughout the tracking task is given on the right. Step changes

in desired speed occur at waypoints 1 and 2. The gains of the speed controller are

unchanged and the heading gain, Kγ, is set to 0.15

The data presented in figure 5.13 demonstrates that the speed control algorithm is

also effective for tracking a set velocity through turns and speed transitions. The

mechanism begins by rapidly accelerating to the first velocity set point of 0.3m/s.
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As it approaches the first waypoint it begins to turn, at the same time it must also

respond to a step change up to a desired velocity of 0.8m/s. Using the speed control

loop, it is able to do this relatively quickly. At the second waypoint the desired

velocity drops to 0.6m/s. The drag of the sharp turn causes the actual velocity to dip

below this value, however, once again by using the speed control loop the mechanism

promptly returns to the specified setting.
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Figure 5.12: Diagram of complete control scheme for velocity and path tracking.
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Although it has been shown that the proposed velocity tracking scheme is effective

over a range of different situations, there are several issues which will have to be

addressed in the development of a detailed control solution. For instance, the un-

steady nature of the mechanism’s velocity results in continuous small oscillations of

the control signal. Further investigations are required to explore how this affects the

performance of the gaits produced by the optimization process and how its impact

can minimized or eliminated. In addition to this, the mechanism was observed to have

relatively poor braking performance within the proposed scheme, it decelerates by as-

suming the lowest speed gait and gradually drifting down to the desired speed. Brak-

ing gaits or even featherable fins could be explored to resolve this problem. Finally,

the implemented path following scheme is functional but in no way optimal. Further

investigations could target alternative turning techniques and navigation methods.

Regardless of these issues, the simple velocity tracking scheme demonstrates that the

results of the optimal acceleration and efficiency studies can be combined within a

single concise control solution. The resulting process provides high acceleration in

response to velocity error and optimal efficiency during steady-state swimming.
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Chapter 6

Conclusions and

Recommendations

The work presented within this thesis has demonstrated an optimization scheme capa-

ble of producing effective swimming gaits for an n-link hyper-redundant mechanism.

The scheme consists of a self-propelled swimming model applied within a custom

PSO algorithm. The optimization process is used to generate gaits for two differ-

ent objectives: efficiency and acceleration. The resulting gait definitions are then

combined to propose a simple but effective control scheme for velocity tracking in a

hyper-redundant swimmer. In each optimization case, the resulting gait kinematics

and performance characteristics also provide insight on key issues related to mech-

anism design. For both efficiency and acceleration, negative work is found to be a

significant factor in the mechanism’s performance, while power and frequency lim-

itations are identified as a major barrier to matching the behaviour of biological

swimmers.

The following sections will review each major component of this optimization process:

the swimming model, the optimization algorithm, and the optimization results. For

each topic, key conclusions are highlighted and recommendations are then made for

future work.
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1 The Swimming Model

The modelling portion of the optimization process is adapted from a semi-empirical

method initially proposed by Jordan in [37]. This approach is necessary to account

for both drag and added mass within a single solution while maintaining relatively

low computational cost. This computational efficiency makes it possible explore a

broad optimization space while still producing reasonably refined swimming gaits.

Jordan’s method has been applied in the past for the simulation of both mechanical

and biological swimmers [37, 48, 26]. However, the model has not been explicitly

validated for a device of the exact geometry and dimensions simulated within the

work presented here.

Considering this, experimental validation of the model is the obvious next step for

further research. This would require the construction or acquirement of a physical

HRM suitable for underwater operation. Although previous efforts to design HRMs

have often required a considerable amount of design work and resources, these projects

generally aim to produce robust final products capable of autonomous operation. To

run validation experiments, a much simpler device would be adequate. For instance,

the device employed by McIsaac and Ostrowski to validate their modelling work,

was designed and constructed by an undergraduate researcher over the course of a

summer internship [84]. In terms of the experiments, a reasonable starting point for

the validation process would be constant velocity swimming. A variety of different

gaits throughout the parameter space of the final gait definition (as given in Chapter

2) could be tested to evaluate the accuracy of the model in predicting steady-state

behaviour.

Beyond simply reinforcing the results presented here, a firmly validated low-order

model of intermediate Reynolds number swimming would represent a significant re-

search contribution. The complexity of the encompassing fluids problem has made

it impossible to effectively investigate undulatory swimmers within this regime using

standard analytical or computational methods. This issue is further exacerbated by
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the fact that the parameter space of these systems is almost always too large for

adequate study through experimental work. The development of a robust, accurate,

low-order modelling solution would open this topic to the application of a variety of

optimization and analytical techniques which could be used to highlight key regions

interest for targeted experimental or computational study.

The issues discussed up to this point focus on the fluid-swimmer interaction, however

the internal mechanics of the mechanism can also be targeted to improve fidelity.

Servo models could be implemented to provide a better representation of energy

consumption and system limitations, while elastic, damping, and frictional elements

could added to simulate the effects of body dynamics. These features could potentially

be critical to producing optimization results which are directly applicable to present

HRMs, and will likely be necessary for many of the future research topics outlined

the following sections.

2 The Optimization Algorithm

Based on the complexity of the swimming optimization task [44], Gradient-free meth-

ods were identified as the ideal option for the optimization component of the gait de-

sign scheme. In previous studies on similar problems, genetic algorithms (GA) are the

gradient-free method of choice. Considering this, a custom GA was initially developed

for the problem. To achieve decent performance several modifications were required,

including elitism, rank-based selection, incest prevention, and multi-chromosome en-

coding. In its final form, the GA was able to produce reasonably optimized swimming

gaits, however results remained somewhat inconsistent between runs. Based on this,

a second gradient-free method, known as Particle Swarm Optimization (PSO), was

investigated. Through testing, PSO was found to generate results superior in both ab-

solute fitness and consistency, while requiring considerably less customization. Based

on this, it is applied in the investigations of both Chapters 4 and 5. Within this work

it is able to produce well-optimized gaits for both efficiency and acceleration.
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Although the scope of the present PSO algorithm is limited to gait kinematics, the

results of optimization work suggest that the mechanism could benefit from investi-

gations of several additional design variables (as will be discussed in section 3). This

would require an extension of the optimization problem to include numerous variables

related to geometry and actuator properties. This increase in design parameters will

likely necessitate an improved optimization algorithm to maintain reasonable levels

of convergence. In Chapter 4, the results produced with the initial 28 parameter gait

representation show that the PSO algorithm clearly struggles when faced with large

number of optimization variables. Fortunately there are numerous potential avenues

for improving optimization performance. The PSO algorithm is a relatively simplis-

tic optimization approach and as such it could undoubtedly be improved upon by

replacing it or even combining it with more advanced techniques.

3 The Optimization Results

In the optimization study of Chapter 4, highly efficient swimming gaits are generated

over a range of different velocities. To accomplish this, an appropriate gait parame-

terization is first developed and it is then applied with the swimming model and PSO

algorithm. Through the optimization process, it is determined that the mechanism

swims most efficiently by mimicking the gaits observed in natural carangiform and

anguilliform swimmers. It does so by undulating at approximately the same con-

stant Strouhal numbers, and by employing similar strategies for steady-state velocity

control.

In addition to gait design, the optimization scheme is leveraged to study how energy

recovery impacts optimal gait properties. It is found that energy recovery provides

a significant increase in locomotion efficiency, and that this increase is accompanied

by a distinct change in swimming kinematics. The swimmer with energy recov-

ery favours an anguilliform gait while the swimmer without prefers the carangiform

mode. The observed transition between swimming modes suggests that energy recov-

84



ery may contribute to the extraordinary, yet poorly understood, efficiency of anguil-

liform swimmers. However, due to the simplicity of the simulation employed here a

firm conclusion cannot be made. Further research is required to explore this issue. A

complete answer will likely require a high order fluids model to confirm the energy

extraction phenomenon and a full biomechanical model of the swimmer to under-

stand how internal mechanics may allow it to exploit this fluid effect. Nonetheless,

the results have identified a research avenue which could potentially provide insight

on the anguilliform efficiency question and lead to significant improvements in future

biomimetic swimmers.

In Chapter 5, the optimization process is used to produce high acceleration gaits

which complement the Chapter 4 results. The efficient swimming parameterization

is modified to represent an acceleration maneuver and then once again applied with

the swimming model and PSO algorithm. The resulting gaits provide improved ac-

celeration relative to those for optimized efficiency, however the performance of the

mechanism is found to be severely restricted by its relatively low power density.

The characteristics of the mechanism’s power consumption suggests that acceleration

performance could be improved by redistributing actuators to concentrate power in

specific body regions, and by introducing elastic elements in the tail to reduce the

cost of negative work. Upon comparing the acceleration gaits to those of the effi-

ciency study, it is found that they can be naturally merged within a single control

scheme. This property is used to develop simple control solution for velocity tracking

which provides optimal efficiency during steady-state swimming and high acceleration

during velocity transitions.

In terms of future optimization topics, additional maneuvers could certainly be inves-

tigated. For instance, in the process of developing the control algorithm both turning

and braking are identified as problems which would benefit from further study. How-

ever, this task is complicated by the fact that the accuracy of the swimming model

may not extend to these behaviours, and experimental validation for these situations

would be quite difficult. Considering this, these topics are likely poor candidates for
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immediate work. Priority should be given to conducting a thorough validation of the

swimming model for simple steady-state locomotion, and improving the optimiza-

tion process. Once this has been accomplished, the resulting scheme can be applied

to investigate the design issues highlighted within the present study. For instance,

the optimization results suggest that energy recovery could significantly improve the

efficiency of the simulated mechanism. A simplistic version of this is could be imple-

mented by introducing elastic elements at each joint. However, the stiffness of each

element would have to be properly tuned to ensure that it actually assists actuation

rather than hindering it. In addition to this, a number of other design changes could

explored to further improve performance. Possibilities include varying actuator size,

cross-section, and link length, along the mechanism’s body.

All of these issues are closely coupled to one another, rendering the system somewhat

intractable to conventional design methods. The algorithmic approach implemented

here provides a solution to this problem. If the problem statement were extended

to include geometry and actuation variables in addition to gait kinematics, the op-

timization process could potentially output complex solutions which simultaneously

optimize multiple design factors. In the past, our incomplete understanding of undula-

tory swimming has made it difficult to artificially replicate their locomotion strategies

in an informed fashion, and the limitations of current technology make direct mimicry

infeasible. A proven algorithmic design process would make it possible to generate

optimal design solutions in the absence of a complete understanding of the problem

at hand. The resulting design features could then be studied to reveal new insights

on undulatory locomotion while highlighting key requirements for future actuation

technologies. The work presented within this thesis represents a first step towards

accomplishing this goal.
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