
INFORMATION Ta USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be tram any type of

computer printer.

The quality of this reproduction is cfependent upon the quality of the

copy submltted. Broken or indistinct print colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. AJso, if unauthorized

copyright material had to be rernoved, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, char1S) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from left ta right in squal sections with small overlaps.

Photographs induded in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographie prints are availabte for any photographs or Dlustrations appearing

in this copy for an additional charge. Contact UUI directly ta order.

proQuest Information and Leaming
300 North Z8eb Raad, Ann Arbor, MI 48106-1346 USA

800-521-Q600





•

•

•

Network Traftie Control and Bandwidth Management

in Internet: A Differentiated Services Case Study

Suqiao Li

School of Computer Science

McGill University, Montreal

JuIy,1999

A thesis submitted ta the

Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

© Suqiao Li, 1999



National lIbrary
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A 0N4
canada

Bibliothèque nationale
duC8nada

Acquisitions et
services bibrlOgraphiques

395. rue WelinglDn
oaawa ON K1A 0N4
canada

The author bas granted a non
exclusive licence a1lowing the
National Library ofCanada to
reproduce, loan, distribute or sell
copies ofthis thesis in microform,
paper or electronic formats.

The author retains ownership ofthe
copyright in tbis thesis. Neither the
thesis Dor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-64392-1

Canad~



•
Abstract

This Master's thesis deals with network traffic control and bandwidth management in

Internet, and includes four parts. In pan l, we introduce network traffic, the basic

principles of traffic control, control methods and components, which are used ta support

the Quality of Service (QoS) in" different network environments. In part 2, we present

network bandwidth management concepts and its methods. Bandwidth is finite and

valuable, sa we need ta manage it efficiently. Bandwidth management can support traffic

control ta lighten the traffic load. Bandwidth management and traffic control are

complementary, and together can assure a high QoS. In pan 3, we address the QoS issues

in Internet, since the Internet is increasingly important and popular. We focus on the

Differentiated Services (DiffServ) in Internet, and implement the two-bit

• (Premiurn/Assured) based DiffServ by coordinated control. Coardinated control is the

combination of traffic control. bandwidth control and queue control. Since the two-bit

based DiffServ has two major drawbacks, in part 4, we propose sorne new methods and

aIgorithms ta improve them. These methods and algorithms include Multilevel Assured

Service, Taken-based Assured Service, Constraint Based Routing and load balancing.

•
ü



•
Résumé

Ce mémoire de Maitrise comprend quatre parties. La première partie introduit les

concepts du contrôle de trafic~ ses méthodes et ses composants. La plupan d'entre eu:<

sont utilisés pour supporter la Qualité de Service dans un environement réseau

quelconque. La deuxième partie discute de la gestion de la bande passante du réseau et de

ses méthodes. La bande

passante est finie et côuteuse~ elle a donc besoin d'être gérée efficacement. La gestion de

la bande passante peut supporter le contrôle du trafic pour alléger la charge du trafic. La

gestion de la bande passante et le contrôle du trafic sont complémentaires et supportent

tous la redisation de la Qualité de Service. A partir de la troisième partie. nous presentons

la Qualité de Service au sein de l'Internet~ vu la popularité grandissante de celui ci. On

• s'intérèsse particulièrement au:< services différenciés sur 11ntemet, pour les implémenter

selon sur une architecture deux-bit~ par un contrôle coordonné. Le contrôle coordonné est

la combinaison du contrôle du trafic, du contrôle de la bande passante et du contrôle de la

file d'attente. Il y a deu.'t inconvénients majeurs au.'\ services différenciés deux-bits. La

quatrième partie présente de nouvelles méthodes et algorithms afin de r améliorer. Ces

méthodes compend le Service Assuré Multi-couches, le Service Assuré basé sur le jeton.

le Routage basé sur la contrainte et l'équilibre de la charge.

•
iü



•

•

•

Acknowledgements

l would like ta express my thanks ta my supervisor Dr. Petre Dini for bis encouragement

and sound judgemen4 and for giving me sa Many great opportunities ta grow as a

researcher under his thoughtful guidance. This thesis would not have been possible

without his support. On a technical notey this thesis aIso benefited enormously from

Andrei Negulescuy who gave me the most helpful guidance and suggestions. Special

thanks are due ta Prof. Newborn for bis guidance during my stay at McGill University.

l aIso truly thanIe CRIM (Centre de recherche informatique de Montréal), which provides

a so wonderful research environment for me.

l wish ta thank the School of Computer Science for the graduate courses and the research

environment. Thanks ta Franca Cianci, Vicki Keirl, Lise Minogue, and Lucy St-James,

for their great helps.

Many thanks also ta Yihong Shangguan, Yuan Zhang, Huan Wang, Xiaobo Fany Feng

Xue, Mounina Bocoum, and Evelyna Evelguieva for their fruitful discussions within the

group and for their kind encouragement.

Rnally, my deepest thanks are due ta Elaine X. Yu, for her endIess suppon and amazing

patience.

iv



•
Table of Contents

~lJstl1lct........................................................................................... ii

1l~lIlé............................................................................................Di

~cknowledgments......................... ••.••.•••••••••••••••••••••••.•••.•••••••••••.••••••• iv

List of Figures.....•. .•..........•..•••......•..••.... ...•.•..... ix

List or Abbreviations....................................................................... x.

1 Introd.uctioD ..................•........•.........•....•..•.•....•... ...• 1

•
LI

l.2

1.3

1.4

Network traffic control .. . ...... ... .. ... ... ..... ........ ... .... .. ..... .... 2

Bandwidth and bandwidth management........ .. .. 3

Quality of Service (QoS)................................................... 4

1.3.1 QoS architecture... 5

1.3.2 End-to-End QoS models............................................... 6

1.3.3 QoS broker... 7

The relationship between QoS, traffic control and bandwidth

management. ........... ....... .... ....... ....... .. ... . .... ... ...... ...... ...... 8

•

2 The principle of traftic control and its methods ••••••••.•.•.•••••••••••••••••:.••

2.1 Principle of traffic controL .

2.1.1 Open-loop control .

2.1.2 Closed-Ioop control .

2.2 Congestion control .

2.2.1 Closed-loop congestion controL .

2.2.2 Congestion detection and RED .

2.2.3 Congestion communication .

, 24 C . . ._.. ongesnon pnetng .

2.2.5 Congestion control algorithms .

v

10

10

10

10

12

12

13

15

16

16



•

•

2.2.6 Decongestion................................... 17

2.2.7 Flow control overcongestion control scheme................. 17

2.3 Flow control............. 17

2.3.1 Open-loop flow control.................. 18

2.3.2 Closed-Ioop flow control.......... 18

2.3.3 Hybrid flow control.................. . . .. . .. .. . .. . . . .. ... .. 20

2.4 Traffic descriptors...... 21

2.4.1 Peak rate.. 22

2.4.2 Average rate.... 22

2.5 Traffic shaping..... 23

2.6 Traffic scheduling.................................. 24

2.7 Traffic policing...................................... .. . 25

2.7.1 Leaky bucket policing and algorithm......... 25

2.7.2 Token bucket algorithm.... .. .. 26

2.8 Traffic signaling...................................... 27

2.9 Network pricing........ 27

2.9.1 Peak-Ioad pricing......... 27

2.9.2 Re-negotiation......... 28

2.10 Admission control and measurement-based admission control.......... 29

3 Bandwidtb management and its methods....... •••••••••••••••••••• ••••••••••••.• 31

3.1 Bandwidth management :. . 31

3.2 Sorne Methods for Bandwidth management................................. 33

3.2.1 Bandwidth allocation and dynamic bandwidth allocation..... .... 33

3.2.2 Bandwidth sharing and dynamic bandwidth sharing............... 33

3.2.3 Bandwidth borrowing...... 34

3.2.4 Bandwidth reservation u............ 35

3.2..5 Preventing bandwidth starVation................. 35

3.2.6 Bandwidth pricing and dynamic bandwidth pricing.................. 36

3.3 A bandwidth management architecture for Internet....................... 37

• 3.3.1 Bandwidth management nodes 37

vi



•

•

•

4

3.3.1.1 Bandwidth Broker: A possible solution for bandwidth

allocation........................... 37

3.3.1.2 Management nodes assign bandwidth....................... 38

3.3.2 Agents.... 41

3.3.3 Mobile agents........ 42

3.3.4 Negotiation process... 43

3.3.4.1 Negotiation and agents... 43

3.3.4.2 Credit-based bandwidth allocation 43

3.3.4.3 Enforcement of allocations...... 45

Differentiated services in Internet.....••••••••••••• ••.• 47

4.1 GeneraIized and specialized differentiated services of Networks....... 47

4.1.1 A Generalized differentiated services (GDS) network model.... 48

4.1.2 Generalized differentiated services (ODS)..................... 48

4.1.3 Specialized differentiated services (SnS)... 48

4.2 Differentiated services in Internet..... .. . 49

4.2.1 General architecture of DiffServ........ .. . . 49

4.2.2 Related control for supporting Oiffserv........ .. .. .. 50

4.2.2.1 Traffic control for DiffServ in boundary routers......... 50

4.2.2.2 Traffic control in core router based on PHB............... 52

4.3 Implement DiffServ based on two-bit architecture......................... 55

4.3.1 Service Level Agreement (SLA) ~.. 56

4.3.2 Premium Service implementation.............. 56

4.3.3 Assured Service implementation..................... 57

4.3.4 Two-bit DiffServ implementation................................. 58

4.3.5 Implementation performance.... 59

4.4 Coordinated controL.. .. 60

4.4.1 Trafficcontrol 61

4.4.2 Bandwidth controL....... 65

4.4.3 Queue control.................... 65

4.5 The relationship of DiffServ~ coordinated control and priee.............. 65

vii



•

•

•

S Improving two-bit based DiflServ ••••••••••••••••••••••••••••• •.• ••• •••• •• •••••••• 67

5.1 Drawbacks of two-bit based DiffServ 67

5.2 The scalability of service quality in Assured Service.................. 68

5.2.1 Multilevel Assured Service... 68

5.2.2 Scheme of Multilevel Assured Service..... .... .. .... .. ... .. .. ...... 69

5.2.3 Multilevel Assured Service supports scalable service quality... 70

5.2.4 Choosing a fitting service level... 71

5..3 The utilization of network resources............................... 72

5.3.1 Token-based Assured Service.. 73

5.3.2 Dynamic token priee..................... 73

5.3.3 Token-based Assured Service supports high utilization of

bandwidth........... 74

5.3.4 Increasing the resource utilization by Consttaint Based

Routing............... 75

5.4 Implementation.... 75

5.4.1 Agent-Broker architecture...... 76

5.4.2 Agent-Broker negotiation.. 78

5.4.3 Broker behavior...... SO

5.4.4 Implementation of Multilevel Assured Service....................... 81

5.4.5 Implementation ofToken-based Assured Service..................... S4

5.5 Simulation :.... 89

6 Conclusion and future work.....•••••••••••••••••••••••••••••••••••••••••••• •• •.•• .... 90

Reference5"................ 91

Appendi1:.................................••••••••••••••••••••••••••••••••••••.•••••••••••••••••.•• 96

A. Source Code for Service Level Negotiation••••••••••••••••••••••.••••••••••_ 96

B. Source Code for Bandwidth Negotiadon••••••••••••••••.•••••••••••••••••••_ lOS

viü



•
Figure 1.1

Figure 2.1

Figure 2.2

Figure 3.1

Figure 4.1

Figure 4.2

Figure 4.3

Figure 5.1

Figure 5.2

Figure 5.3

• Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

•

List of Figures

The relationship between QoS, traffic control and bandwidth

management............ 8

The relationship between feedhack control and various components

of traffic control............ Il

A shaper based on Token Bucket Algorithm............................... 26

Management nodes assign bandwidth............... 40

DiffServ's General Architecture.................. 49

Two-bit DiffServ architecture................................. 55

The relationsllip of QoS, Coordinated Control and Priee.............. 66

The scheme of Multilevel Assured Service.. 69

Agent-Broker Architecture.................................................... 76

Hosts send agents to ISP...................................................... 78

The negotiation of Agent and QoS Broker.................................. 79

QoS Broker behavior............... 80

Broker sets the service level............................................... 82

Agent asks for service level................................................ 83

Agent asks for tokens (bandwidth amount).. . 86

Broker assigns ail available tokens ta agents.................. 88

ix



• List of Abbreviations

( in alphabetical arder)

ATM: Asynchronous Transfer Mode

BA: Behavior Aggregate

BB: Bandwidth Broker

BF: Bellman-Ford's

DiffServ: Differentiated Services

DS: Differentiated Services

ECMP: Equal-Cost Multi-Path

FlfO: First In Frrst Out

GDS: Generalized Differentiated Services

IETF: Internet Engineering Task Force• IntServ: Integrated Services

IP: Internet Protocol

ISP: Internet Service Provider

LANs: Local Area Networks

MANs: Metropolitan Area Networks

MF: Multi-Field

MPLS: Multi-Pretocol Label Switching

OSPF: Open Shortest Path First

QoS: Quality of Service

PHB: Per-Hop-Behavior

RED: Random Early Detection

RIO: Random Early Detection with In and Out

RIP: Routing Infonnation Protocol

RSVP: ReSerVation Protocol

• sns: Specialized Differentiated Services



•

•

•

SLA:

TOM:

VR:

WAN:

WFQ:

WRR:

Service Level Agreement

Time Division Multiplexing

Virtual Reality

Wide Area Networks

Weighted Fair Queuing

Weighted Round Robin

xi



•

•

•

Chapter 1 Introduction

Nawadays telecom networIes are increasingly complex because they make use of Many

protocal and network architectures, such as Ethernet, Token Ring, FOD!, SONET, ATM,

Internet, and sa on [lI. Different netwarIes provide different services far users. In arder

ta get good Quality of Service (QaS) from the network, we need ta control the network

traffic and to manage the available bandwidth, because ''no control, no service; good

control, good servke."

We will discuss the network traffic control and sorne control methods in Chapter 2,

bandwidth management and sorne methods in Chapter 3. AlI these methods can he used

ta support QoS. QoS is our goal for building and managing the networks [2]. Generally,

QoS has several levels: best-effort services, differentiated services, and guaranteed

services. QoS has a tight relationship with traffic control and bandwidth management.

We present an adaptive bandwidth management architecture for the Internet in Chapter 3.

The concepts behind this architecture are used in Chapter 5 ta improve the two-bit based

Differentiated Services.

Sînce the Internet îs sa important and popular, Many new services need ta be

implemented in the Internet, such as multimedia communication, videoconferencing,

Internet telephony, etc. But, the current Internet cannat satisfy these requirements

because of its best-effort basis, where all packets are treated equally. The Internet

Engineering Task Force (IETF) has defined a new service for the Internet-Differentiated

Services (DiffServ)- but this service has not yet been standardized. There are sorne

architectures supporting the DiffServ in the Inteme~ like the two-bit (PremiumlAssured)

architecture [3]. The implementation of two-bit architecture is addressed in Chapter 4.

DiffServ is implemented by coordinated control~ which is the combination of traffic

control, bandwidth control and queue control. The relationship between DiffServ and

coordinated control is described in Chapter 4.

1



• The two-bit architecture has some drawbacks. In this thesis, we focus on the two most

important ones. One drawback is the lack of scalability of service quality, and the other

one is the Iack of high utilization of network resources. We build new models and

propose new algorithms to solve these problems in Chapter 5. The algorithms have been

implemented in Java. The Java simulation program May he found in the Appendix. The

conclusion and future work are described in Chapter 6.

1.1 Network Traftie Contr~l

Network traffic control is a set of policies and mechanisms that allows a network to

efficiently satisfy a diverse range of service requests [4]. There are two fundamental

aspects of traffic control, diversity in user requirements and efficiency in satisfying them.

Traffic control includes a rich set of mechanisIDS, such as traffic shaping, scheduling,

monitoring, policing, signaling, pricing, admission conttol, congestion control and tlow

control, etc. In another way, trafflc control refers ta a set of actions taken by the network

• ta avoid congested conditions, which shapes the behavior of data flows at the entry, and

at specifie points within the system [l}.

Traffic control allows a network to give the most utiUty with the available resources.

Traffic control consists of a collection of specification techniques and mechanisms to:

• Specify the expected characteristics and requirements of a data stream;

• Shape data streams at the edges and selected points within the queuing network;

• Police data streams and take corrective actions when traffic devîates from its

specification.

•

There are three generallaws for traffic control:

1) The network should try ta match its menu of service qualities to user requirements.

Service menus that are more closely aligned with user requirements are more

efficient.

2) Building a single network that provides heterogeneous QoS is better than building

separate networks for different IeveIs ofQoS.

2

. 0S!1Ai



•

•

•

3) For typical utility functions, if network utilization remains the same, the sum of user

utility functions increases more than linearly with an increase in network capacity.

To effectively control traffic, a network provider must know not only the requirements of

individual applications and organizations, but a1so their typical behavior. A traffic model

summarizes the expected behavior of an application or an aggregate of applications.

Networks that provide heterogeneous QoS are likely to cost less than networks that

provide a single QoS. Traffic classes represent the shared requirements of a set of widely

used applications, which aIso represent the types of service provided by the network. We

partition applications into two fundamental classes: "guaranteedn and "best-effonn
•

The "guaranteed" applications include videoconferencing, telephony, reroote sensing,

video-on-demancL interactive multi-player games" etc. With these applications, users

derive utility from the network ooly if the network limits the delay and provides a

minimum amount of bandwidth. The utility function for a '-guaranteed" application

penalizes traffic that does not meet its service requirement., which is typically described

by three parameters: bandwidth" delay. and 1055.

The "best-effort" applications are willing to adapt to whatever QoS is available. The

utility function for a best-effon application does not degrade significantly with a drop in

service quality. Unlike a guaranteed application, a best-effon application derives utility

from the network eveo if its packets suffer long delays., or it receives ooly a small

bandwidth allocation from network.

To conclude, the above are the general concepts of network traffic control. We will

describe the traffic control principles and control methods in Chapter 2.

1.2 Bandwidth and Bandwidth Management

Bandwidth is an important system resource [5J. In digital systems, bandwidth is data

speed in bits per second (bps). Thus, a modem that works at 57,600 bps has twice the

3



•

•

•

bandwidth of a modem that works at 28,800 bps. In analog systems, bandwidth is defined

in terms of the difference between the highest-frequency signal component and the

lowest-frequency signal component. Frequency is measured in cycles per second (Hertz).

Generally speaking, bandwidth is directly proportional ta the amount of data transmitted

or received per unit time. In a qualitative sense, bandwidth is proportional ta the

complexity of the data for a given level of system performance. For example, it takes

more bandwidth ta download a photograph in one second than it takes to download a

page of text in one second. Large sound files, computer programs, and animated videos

require still more bandwidth for acceptable system performance. Virtual reality (VR) and

full-Iength three-dimensional audio/visual presentations require the most bandwidth of

ail.

Until now, and at the present time bandwidth has been and is a finite and important

system resource, even for local networks. Cheap and abundant bandwidth may be

available in the future [6], but in the present we have to manage the bandwidth, ta save it

and to use it economically and efficiently, therefore we need bandwidth management.

Bandwidth management is another important way to ensure the QoS. We consider that

there is a tight relationship between bandwidth and QoS. [t is easier ta get good QoS if

the bandwidth is large. Bandwidth management May support traffic control. When the

bandwidth is abundant, traffic control will he easier, because there is no need to use

complicated traffic control methods.

In short, the wider the bandwidth.. the easier the traffic control and the better the QoS. We

will propose sorne methods for bandwidth management and present an active bandwidth

management architecture for Internet in Chapter 3.

1.3 Quality ofService (QoS)

Qos refers to the ability of a network to provide better service ta selected network traffic

over various underlying technologies including Frame Relay, Asynchronous Transfer

4



• Mode (ATM), Ethemet and 802.1 networks, SONEr, and IP-routed networks [7]. In

particuIar, QoS features provide better and more predictable network service by:

• Supporting dedicated bandwidth;

• Improving loss characteristics;

• Avoiding and managing network congestion;

• Shaping network traffic;

• Setting traffic priorities across the network.

Traffic control and bandwidth management are (Wo major ways to achieve the QoS. QoS

is core for traffic and bandwidth control.

1.3.1 QoS Architecture

We configure QoS features throughout a netwark ta pravide for end-to-end QoS delivery

• [7]. The following components are necessary to deliver QoS across a heterogeneous

network: (1) QoS within a single network elemen~ which includes queuing, scheduling,

and traffic shaping features. (2) QoS signaling techniques for coordinating QoS between

network elements. (3) QaS policing and management functions to control and administer

end-to-end traffic across a network.

Not ail QoS techniques are appropriate for all network muters. Because edge muters and

backbone muters in a network do not necessarily perfonn the same operations, the QoS

tasks they perfarm might differ as weIL

Generally, edge routees perform the following QoS functions:

• Packet classification;

• Admission control;

• Configuration management.

•
5



•

•

•

Generally, backbone routers perform the following QoS functions:

• Congestion management;

• Congestion avoidance.

1.3.2 End·to·End QoS Models

End-to-end QoS is the ability of a network to deliver service required by specifie network

traffic from one end of the network to another. There are three main types of service

models: best effort, integrated, and differentiated services [7].

A) Best-effort Service

Best-effort is a single service model in which an application sends data whenever it must,

in any quantity, and without requesting permission or first informing the network. For

best-effort service, the netwark delivers data if it can, without any assurance of reliability,

delay bounds, ar throughput. A large amaunt of Internet traffic nowadays is best-effart

based.

B) Integrated Service

Integrated service is a multiple service mode1 that can accommodate multiple QoS

requirements. In this model the application requests a specific kind of service from the

network hefore sending data. The request is made by explicit signaling; the application

informs the network of its traffic profile and requests a particular kind of service that can

encompass its bandwidth and delay requirements. The application is expected to send

data only after it ge15 a confinnation from the network. It i5 aIso expected to send data

that lies within i15 described traffic profile. The network performs admission control,

based on information from the application and available network resources. It aIse

commi15 ta meet the QoS requirements of the application as long as the traffic remains

within the profile specifications. The network fulfills its commitment by maintaining per

flow state and then performing packet classification, poücing~ and intelligent queuing

based on that state.

6



•

•

•

C) Differentiated Service

Differentiated service is a multiple service model that can satisfy different QoS

requirements. However, unlike the integrated service model, an application using

differentiated service does not e:<plicitly signal the router before sending data. For

differentiated service, the network tries ta deliver a particular kind of service based on the

QoS specified by each packet. This specification can accur in different ways. For

example, using the IP Precedence bit settings in IP packets or source and destination

addresses. The nerwork uses the QoS specification to classify, shape, and police traffic,

and ta perform intelligent queui!1g. The differentiated service model is used for severa!

mission-critical applications and for providing end-to-end QoS. Typically, this service

model is appropriate for aggregate tlows because it performs a relatively coarse level of

traffic classification.

We focus on differentiated service in the Internet in Chapter4 and 5, because we consider

that differentiated service is easier to implement than integrated service. We believe that

differentiated service is the first step of a wide-scale QoS in the Internet.

1.3.3 QoS Broker

The QoS Broker provides end-to-end guarantees, balances resources among applications,

the network and operating systems at end-points, and between end-points and the

network. It manages resources at the end-points, coordinating resource management

aeross layer boundaries. As an intermediary, it bides implementation details from

applications and per-Iayer resource managers.

A QoS Broker uses translation, admission and negotiation services to configure the

system to application needs. Configuration is achieved via QoS negotiation resulting in

one or more connections through the communications system. The negotiation involves

all components of the communication system needed for the setup [81.

7



• The roles of the QoS Broker may include: (1) managing resources needed for tasks in the

application and transport subsystems at the end-points, (2) negotiating with network

resource management, and (3) negotiating with remote QoS Brokers.

An important property of the QoS Braker is its raie as an active intermediary which

insulates cooperating entities from the operational details of other entities. The QoS

Braker manages communications among different entities to create the desired system

configuration.

1.4 The Relationship Between QoS, Trame Control and Bandwidth

Management

Traffic control and bandwidth management are complementary in supporting a high QoS.

The better the traffie control and bandwidth management, the better the QoS. The

relationship of QoS, traffic control and bandwidth management is shown in Figure 1.1.

• Traffic control and bandwidth management combine together to ensure a satisfactory

level QoS for the customer.

bes~ort ~~.1 ttMfr con~l I~--I bandwilth management I~__~~..~r

Figure 1.1 The relationship between QoS, traffic control and bandwidth management

•
8



•

•

•

In the following chapters9 we will describe the principle of traffic control and its methods9

bandwidth management and its methods, differentiated services in Intemet9 and

improving two-bit differentiated service architecture, respectively.

9



•

•

•

Chapter 2 The Principle of Tramc Control and its Methods

In this chapter, we discuss the principle of traffic control, sorne control methods and

control components. Ail of these concepts are used in Chapter 4.

2.1 Principle of Traffic Control

Based on control theory, there are two kinds of control mechanisms: (1) open loop, (2)

closed loop.

2.1.1 Open·loop Control

Open loop control is based on good design. When designing the control system, we have

to make sure that ail kinds of problems will not accur in the fust place. Once the system

is up and nmnïng, corrections cannot he made. An open-loop control system does not

compare the actual resuIt with the desired resuit to detennine the control action. Instead, a

calibrated setting is used to obtain the desired resulL The primary advantage of open-Ioop

control is that it is less expensive than closed-Ioop control, as there is no need to measure

the actual result. In addition, the controller is much simpler because corrective action

based on the error is not required. The disadvantage of open-Ioop control is that errors

caused by unexpected disturbances are not corrected [9].

2.1.2 Closed·loop Control

In contrast., closed-loop control is based on the concept of a feedhack Ioop. Feedback is

the action of measuring the difference between the actual result and desired result, and

using the difference to drive the actual result towarcl the desired resuit. The term feedhack

cornes from the direction in which the measured value signal traveIs in the black

diagram. The signal begins at the output of the controlled system and ends at the input to

the controller. The output of the controller is the input ta the controlled system. Thus the

measured value signal is fed back from the output of the controlled system to the input.

10



•

•

•

Figure 2.1 The relationship between feedhack control and various components of traffic

Control [1]

Bath open loop and closed loap control methods must keep the whole system stable.

Sorne situations~ such as congestion, can make the system unstable, so the system needs

to control congestion [LJ.

Feedhack is the core of closed-loop control. The relationship hetween feedhack control

and various components of traffic control is shown in Figure 2.1. Traffic control and

congestion control must he distinguishe~ as they are two different concepts. Congestion

control is just one aspect of traffic controL

Il



•

•

•

2.2 Congestion Control

Congestion control is an important problem for network traffic control. Many articles

have addressed the issue of congestion control in almost every kind of network, such as

congestion control in ATM networks, congestion control in the Internet, and so on

(l0.11]. Congestion control refers to the set of actions taken by the network to minimize

the intensity, spread, and the duration of congestion. Congestion can be caused by

unpredictable statistical fluctuations of traffic f10ws and fault conditions within the

network. Congestion is a phenomenon where the amount of traffic injected into the

network exceeds the capacity of the netwark [9].

Congestion control includes two parts:

1. The network must he able to signal the transport endpoints that congestion is

occurring or about to oceUf.

2. The endpoints must have a poliey that decrease utilization if this signal is received

and increases utilization if the signal is not received.

Congestion control can he achieved using either open-Ioop or closed-loop mechanisms.

The open-loap scheme is based on designing and configuring the system careful1y to

avaid the occurrence of congestion. The closed-Ioop scheme is based on feedback. We

rather prefer to use the closed-Ioop scheme.

2.2.1 Closed.loop Congestion Control

For the closed-loop feedhack control system, there are three steps to approaching

congestion control:

L Monitoring the system to deteet when and where congestion occurs.

2. Passing this information to places where action can be taken.

3. Adjusting system operation to correct the problem.

Congestion control schemes try ta proteet the shared network resources from saturation

by dynamically adjusting the traffic of the network. Congestion control schemes can he

12



•

•

•

classified into two categories: reactive control and preventive control. With reactive

control, sources adjust their traffic flows based on feedhack information received from

the network about the presence of congestion. With preventive control, sources must

reserve network resources in advance, hefore they can access the network, and are

required to remain within their allocated resources [12].

Various metrics can he used to monitor the congestion. Chief among these are the

percentage of all packets discarded for lack of buffer space, the average queue lengths,

the number of packets that time .out and are retransmitted, the average packet delay, and

the standard deviation of packet delay. In all cases, rising numbers indicate growing

congestion. The second step in the feedback loop is to transfer the information about the

congestion from the point where it is detected to the point where something can he done

about it. The obvious way is for the router detecting the congestion to send a packet ta the

traffic source, announcing the problem. Of course, these extra packets increase the load at

precise1y the moment that more load is not needed as congestion is happening.

2~2 Congestion Detection and RED

Congestion grows exponentiaIly, and must he detected as early as possible [14]. We

describe sorne methods to detect congestion helow.

• The Most common method in use is to notice that the output buffers at a switch are

full., and there is no space for incoming packets. If the switch wishes to avoid packet

10ss, congestion avoidance steps can be taken when sorne fraction of the buffers are

fulL A time average of buffer occupancy can help smooth transient spikes in queue

occupancy.

• A switch may monitor output line usage. It has been founded that congestion occurs

when trunk usage goes over a threshold and so this menie can he used as a signal of

impending congestion.

• A source May monitor round-trip delays. An increase in these delays signals an

increase in queue sizes, and poSSIble congestion.

• A source may probe the network's state using sorne probing scheme.

13



• • A source can keep a timer that sets off an alarm when a packet is not acknowledged

in time. When the alarm goes off~ congestion is suspected

Random Early Detection (RED) is a usefuI method for congestion detection. RED

improves on early modom drop in three ways. FUS4 pack ets are dropped based on an

exponential average of the queue length. rather than the instantaneous queue length. This

allows small bursts ta pass through unharme~ dropping packets on1y during sustained

overloads. Second., the packet drop probability is a linear function of the average queue

length. As the Mean queue length increases~ the probability of packet 10ss increases. This

prevents a severe reaction to mild overload (as with early random drop). Finally, RED

switches can not only drop packets, but mark offending packets. With suitably modified

endpoints, RED switches allow congestion avoidance similar ta the DECbit scheme [25].

One mechod for gateways to notify the source of congestion is ta drop packets. This is

done automatically when the queue is full. The default algorithm is, when the queue is

• full, to drop the any new packets. This is called tail-drop. Another algorithm is when the

queue is full and a new packet arrives, one packet is randomly chosen from the queue to

be dropped. This is called random-drop. The drawback ta tail-drop and random-drop

gateways is that it drops packets from Many connections and causes them to decrease

their windows at the sarne time resulting in a loss of throughput.

Early-random-drop gateways are a slight improvement over tail-drop and random-drop in

that they drop incoming packets with a fixed probability whenever the queue size exceeds

a certain threshold.

•

• Algorithm of RED

In RED metho~ once the average queue is above a certain threshold the packets are

dropped with a certain probability related ta the queue size. To caiculate the average

queue size the aIgorithm uses an exponentially weighted moving average:

avg =(l-wq)avg + wq*Queue_Size

l4



• The probability to drop a packet, pb, varies linearly from 0 to maxp as the average queue

length varies from the minimum threshold, minth, to the maximum threshold, maxth. The

chance that a packet is dropped is aIse related to the size of the packet. The probability ta

drop an individuaI packet, p~ increases as the number af packets since the last dropped

packet, caunt, increases:

pb = ma.:cb(avg-minch)/(ma:crh-minch)

pb =pb*Packet_SizelMax_Packet_Size

pa = pbl(l-counc*ph)

In this algarithm as the congestion increases, more packets are drapped. Larger packets

are more likely to be dropped than smaller packets that use less resources [251.

• Advantages of RED

There are several advantages of RED:

• 1) Absarbs bursts bette~

2) Avoids sYDchronization;

3) Signais end systems earlier.

2.2.3 Congestion Communication

Communication of congestion information from the congested switch to a source can be

implicit or explicit. When communication is explici~ the switch sends information in

packet headers or in control packets such as source quench packets, choke packets, state

exchange packets, rate-control messages, or throttle packets to the source [151.

•

Implicit communication occurs when a source uses probe vaIues, retransmission timers,

throughput monitoring, or delay monitoring to indicate the occurrence of congestion.

Explicit communication imposes an extra burden on the netwo~ since the network neeels

to transmit more packets than usuaI, and this May lead to a loss in efficiency. On the

other band, with implicit communication, a source may not he able to distinguish

15



•

•

•

between congestion and other performance problem, such as a hardware problem. Thus,

the communication channel is quite noisy, and a cause of potential instability.

2.2.4 Congestion Pricing

The first economic principle is that there is only a marginal cast ta carrying a packet

when the network is congested. When congestion happens, the cast of carrying a packet

from user A is the increased delay seen by user B. The traffic of user B, of course, caused

delay for A. But if A somehow were given higher priarity, so that B saw most of the

delay, A would be receiving better service, and B paying a bigher priee, in tenns of

increased delay and dissatisfaction. According ta economic principles, A should receive

better service ooly if he is willing to pay enough ta e:<ceed the "cast" ta B of bis

increased delay. This can be achieved in the marketplace by the setting of suitable prices.

In principle, one can determine the pricing for access dynanùcaIly by aIlowing A and B

ta bid for service, aIthough this has Many practical problems. When the network is under

loaded, however, the packets from A and from B do not interfere with each other. The

marginal or incremental cast ta the service provider of carrying the packets is zero. In a

circumstance where priees follow intrinsic costs, the usage-based component of the

charge ta the user should be zero. This approach is called congestion pricing [13].

2.2.5 Congestion Control Algorithms

The closed loop aIgorithms are divided inta twa subcategories (1) explicit feedback, (2)

implicit feedback.

• E"<plicit feedhack: packets are sent back from the point of congestion to wam the

source.

• Implicit feedback: the source deduces the existence of congestion by making local

observations, sueh as the time needed for acknowledgements to come back.

The presence of congestion means that the load is greater than the resources cao handle.

Two solutions can he used: increase the resources or decrease the loarl. Splitting traffic

over multiple routes instead of always using the best one May aIso effectively increase

the bandwidth. Spare routers that are normally used ooly as backups can he put on-lïne ta

16



•

•

give more capacity when serious congestion appears. However, sometimes it is not

possible ta increase the capacity, or it has already been increased to the limit. The only

way then to beat back the congestion is ta decrease the load. Several ways exist ta reduce

the load, including denying service to sorne users, degrading service ta sorne or all users,

and having users schedule their demands in a more predictable way.

2.2.6 Decongestion

An overloaded switch can signal impending congestion to the sources, an~ at worst, can

drop packets. If buffer usage is a congestion metric, switches drop packets or throttle

sources when a source exceeds its share of buffers. This share is determined by the buffer

allocation strategYt and the rate at which the buffers are emptied depends on the service

discipline. Thus. the buffer allocation strategy and the service discipline jointly determine

which sources are affected [161.

2.2.7 Flow Control over Congestion Control Scbeme

A number of congestion control schemes have been proposed that operate at the sources.

These schemes use the loss of a packet ta reduce the source sending-rate in sorne way.

The (WO main types of schemes are choke schemes and rate-control schemes. In a choke

scheme. a source shuts down when it detects congestion. After sorne time, the source is

allowed to stan again. Choking is not efficient, since the reaction of the sources is too

abrupt. In a rate<ontrol scheme, when a source detects congestion it reduces the rate at

which it sends out packets, either using a window adjustment scheme or a rate adjustment

scheme. The advantage of rate control schemes over choke schemes is that rate control

aIlows a graduai transition between sending no packets at all to sending out packets full

blast [17].

2.3 Flow Control

Row control refers to the set of techniques that enable a data source to match its

transmission rate to the currently available service rate at a receiver and in the network.

Besides this primary goal, a flow control mechanism should meet severa! other,

• sometimes mutually contradictory objectives.. It should he easily implemented so that the

17



•

•

•

least possible network resources are use~ and to work effectively even when used by

Many sources. If possible, each member of the entire set of flow-controIled sources

sharing a scarce resource should restrict its usage to its fair share. Finally, the set of

sources should be stable, so when the number of sources is fIXe~ the transmission rate of

each source settles down to an equilibrium value. Stability aIso implies that, if a new

source becomes active, existing active sources adjust their transmission rates, and, after a

brief transition period, the system settles down to a new equilibrium. We can implement

tlow control at the application, transport, network, or data link layer of a protocol stack.

The choice of layer depends on the situation at hand. The Most common design is ta

place end-to-end flow control at the transport layer, and hop-by-hop tlow control in the

data link layer [18].

Aow control is often confused with congestion control. Congestion refers to a sustained

overload of intennediate network elements. Thus, flow control is one mechanism for

congestion control. We can divide flow control techniques into three broad categories:

open loop, closed loop, and hybrid.

2.3.1 Open-loop Flow Control

In open-Ioop tlow control, a source has to describe its entire future behavior with a

handful of parameters" because the network's admission control algorithm uses these

parameters to decide whether to admit the source or not. Open-Ioop flow control works

best when a source can describe its traffic weIl with a small number of parameters, and

when it neeels to obtain QoS guamntees from the network. If either of these conditions

fails to apply, the source is betteroffwith closed-Ioop orhybrid flow control [15].

2.3.2 Closed-Ioop Flow Control

In closed-loop flow control, we assume that network elements do not reserve sufficient

resources for the connection, either because they do not support resource reservation, or

because they overbook resources [0 get additional statistical multiplexing. Sorne

protocols can he used for close-loop flow control, as follows:

18



•

•

•

• On-off Dow control

In on-off flow control, the receiver sends the transmitter an On signal when it can

receive data, and an Off signal when it can accept no more data. The transmitter sends as

fast as it can when it is in the On state, and is idle when it is in the Off state. On-off

control is effective when the delay between the receiver and the sender is smalL It works

poody when the propagation delay between the sender and receiver is large, because the

receiver needs ta buffer ail the data that arrive before the Off signal takes effect [1].

• Stop-and-wail

In the stop-and-wait protocol, one of the earliest attempts at flow control, a source sends

a single packet and waits for an acknowledgment before sending the next packet. If it

received no acknowledgment for sorne time, it times out and retransmits the packet.

Stop-and-wait simultaneously provides errer control and flow control. It provides errer

control because if a packet is lost.. the source repeatedly retransmits it until the receiver

acknowledges it. It provides flow control because the sender waits for an

acknowledgment befare sending a packet. Thus, stap-and-wait forces the sender to slow

dawn to a rate slowerthan can be supported at the receiver [1].

• DECbit Dow control

The key idea behind the DECbit scheme is that every packet header canies a bit ~at can

be set by an intermediate network element that is experiencing congestion. The receiver

copies the bit from a data packet ta its acknowledgment, and sent the acknowledgment

back to the source. The source modifies its transmission-window size based on the series

of bits it receives in the acknowledgment header as follows: The source increases its

windows until it starts building queues at the bottleneck server, causing the server to set

bits on the source's packets. When this happens, the source reduces its window size, and

bits are no longer set [20].

In the DECbit scheme, each network element monitors packet arrivai from each sourc: to

compute its bandwidth demand and the Mean aggregate queue length. The DECbit

19



•

•

•

scheme has severa! useful properties. It requires only one additional bit in the packet

header and does not require per-connection queuing at servers. Endpoints can implement

the scheme in software, without additional hardware support.

• TCP Dow control

The flow-control scheme in Tep is similar to the DECbit scheme, but differs in one

important detail. Instead of receiving explicit congestion information from network

elements, a source dynamically adjusts its flow control window in response ta implict

signais of network overload.

2.3.3 Hybrid Flow Control

In open-Ioop flow control, a source reserves capacity according to its expected traffic,

whereas in closed-Ioop flow control, the source must adapt ta changing network

conditions. In hybrid control. a source reserves sorne minimum capacity, but may obtain

more if other sources are inactive. Hybrid control schemes not only inherit the problems

of open-Ioep and closed-Ioop control, but aIso introduce sorne new ones. Source

descriptors in hybrid control can he less stringent than in open-Ioop control. because its

descriptor does not limit a source. Hybrid controlled sources must obey all appropriate

closed-Ioop control mechanisms. Hybrid control has a strong advantage: a guaranteed

minimum resource allocation ta an admitted packet, even when the network is

overloaded. Thus, a hybrid-controlled source, once admined, knows that even in the

worst case, it has sorne minimum bandwidth guaranteed to it, and that in the average

case, it will obtain substantially more bandwidth [I5].

Te sum up, despite having all the problems of open-loop and clase-loop flow control,

hybrid control has the advantage of being able ta guarantee minimum service rate ta

admitted caUs even in the worst case.

20



•

•

•

2.4 Traftie Descriptors

A traffic descriptor is a set of parameters that describes the behavior of a data source.

TypicaIly, it is a behavior envelope, describing the worst possible behavior of a source,

rather than its exact behavior. A descriptor plays three raIes besides describing source

traffic. First, it farros the basis of a traffic control between the source and the network:

the source agrees not to violace the descriptor, and in turn, the network promises a

particular QoS. Second, the descriptor is the input to a regulator, a device through which

a source can pass data before it enters the network. To ensure that the source never

violates its traffic descriptor, a reguJator delays traffic in a buffer when the source rate is

higher than expected. Thi~ the descriptor is aIso the input to a policer, a device supplied

by the network operator that ensures that the source meels its portion of the contract. A

policer delays or drops source traffic that violates the descriptor. The regulator and

policer are identicai in the way they identify descriptor violations: the difference is that a

regulator typically delays excess traffic, while a policer typically drops it [21].

A practicai traffic descriptor must have these important properties:

• Representativity: The descriptor must adequately represent the long-term behavior of

the traffic. sa that the network does not reserve too HttIe or too much.

• VerifiabiIity: The network must he able to verify quicldy, cheaply, and preferably in

hardware that a source is obeying its promised traffic specification.

• Preservability: The network may inadvertenùy modify source traffic beha\ior as it

travels aIong its path. Thus, the amount of resources allocated ta a channel may

change the path. The network must he able either ta preserve the traffic characteristics

aIong the path, or to calculate the resource requirements of the modified traffic

stream.

• Usability: Sources should he able ta describe their traffic easily, and network elements

shouJd be able ta perfonn admission control with the descriptor easily.

Coming up with good traffic descriptors is difficuIt because of these conflicting

requirements. We chaose the source's peak rate as the descriptor. It is usable~

preservable, and verifiable, but not representative~ because resource reservation at the

21



• peak rate is wasteful if a source rarely generates data at this rate. There are two common

descriptors: peak rate and average rate.

2.4.1 Peak Rate

The peak rate is the highest rate at which a source can ever generate data during a packet.

A triviallimit on the peak rate of a connection is the speed of the source's access Hnk,

because this is the instantaneous peak rate of the source during actual packet

transmission. For networks with fixed-size packets, the peak rate is the inverse of the

closest spacing between the starting limes of consecutive packets. For variable-sized

packets, we must specify the peak rate along with a lime window over which we measure

this peak rate. Then, the peak rate limits the total number of packets generated over ail

windows of the specified size. A peak-rate regulator consists of a buffer and a timer. For

the moment, assume a fixed size packet network. When the first packet arrives at the

buffer, the regulator forwards the packet and sets a timer for the earliest time il can send

the next packet without violating the peak-rate bouncL that is, the smallest inter-arrivai

• time. It delays subsequently arriving packets in a data buffer until the timer expires. If the

timer expires before the next packet arrives, it restarts the timer on packet arrivaI~ and the

incoming packet is forwarded without delay [22].

The peak-rate descriptor is easy ta compute and police. Peak-rate descriptors are useful

oruy if the traffic sources are very smooth, or if a simple design is more important than

efficiency.

2.4.1 Average Rate

The key problem with the peak rate is that it is subject ta outliers. The motivation behind

average-rate descriptors is that averaging the transmission rate over a period of time

reduces the effect of outliers. Two types of average-rate mechanisms have been

proposed. Bath mechanisms use two parameters, T and At defined as fol1ows:

T =time window over which the rate is measured;

A =the number of bits that can be sent in a window of time 1:•
22



•

•

•

In the jumping-window descriptor, a source claims that over consecutive windows of

length T seconds, no more than A bits of data will he transmittecl. The term ~~jumping

window" refers to the fact that a new time inrerval starts immediately after the end of the

earHer one. The jumping-window descriptor is sensitive to the choice of the starting time

of the frrst window.

In the maving-window scheme, the time window moves continuously, so that the source

daims that over ail windows of length t seconds, no more than A bits of data will he

injected inta the network. The moving-windaw scheme removes the dependency on the

starting time of the first window. It aIso enforces a tighter bound on spikes in the input

traffic. An average·rate regulator is identical to a variable-packet-size peak-rate

regulator, because beth restrict the maximum amount of information that can be

transmitted in a given interval of time. For a jumping-window descriptor. at time 0, a

counter is initiaIized ta 0 and is incremented by the packet size of each departing packet.

Every Tseconds, the counter is reset ta O.When a packet arrives, the regulator computes

whether sending the packet would result in too much data being sent in the current

window. This test reduces ta testing whether the sum of the current counter value and the

current packet size is larger or smaller than A. Depending on the result, the regulator

either forwards the packet immediately or buffers it until the next time window [22].

2.5 Trame Shaping

Traffic shaping can be done either at the end systems, or in the network by the switch

hardware. Traffic shaping at the end systems can he implemented by the server using a

Leaky Bucket (single or dual) shaper consisting of a buffer and a rate controller. The

main issues are the rate control mechanism~ shaper delay and delay variation, and the

shaper buffer size at the server. The rate controller determines the outgoing data rate

which should he consistent with the bandwidth available from the network. An easy-to

implement set of traffic descriptors is therefore a key factor in obtaining good

performance from the shaper. Close-loop feedback rate control which utilizes feedback

obtained from the network can he used to control the traffic rate [23}.The shaper needs a

large buffer for accumulating the incoming bursty stream. However, if the outgoing rate

23



• of the shaper is low, a large shaper buffer MaY result in long delay variation. Therefore,

there exists a trade-off between the buffer size, shaper delay, and outgoing rate of the

shaper.

Traffic shaping Iimits the data transmission rate. We can Iimit the data transfer to a

specifie configured rate, or a derived rate based on the level of congestion. As mentioned,

the rate of transfer depends on these three components that constitute the token bucket:

burst size, Mean rate, measurement interval. The Mean rate is equal to the burst size

divided by the interval. When traffic shaping is enablecL the bit rate of the interface will

not exceed the mean rate over any integral multiple of the interval. In other words, during

every interval, a maximum burst size can he transmitted. Within the intervaI, however,

the bit rate may he fasterthan the Mean rate at any given time [24].

Traffic shaping smoothes traffic by storing traffic abave the configured rate in a queue.

When a packet arrives at the interface for transmission. the following happens:

• • If the queue is empty, the arriving packet is processed by the traffic shaper. If

possible, the traffic shaper sends the packet. Otherwise, the packet is placed in the

queue.

• If the queue is not empty, the packet is placed in the queue.

When there are packets in the queue, the traffie shaper removes the numher of packets it

can transmit from the queue every time intervai [23].

2.6 Trame Scheduling

Scheduling disciplines such as weighted fair queuing and rate-controIIed statie priority

scheduling allow individual connections to obtain guarantees on bandwidth, delay, and

delay jitter. Thus, packets from guaranteed-service sources should he scheduled

according to one of these disciplines. These sources shouId reserve enough resources to

meet their performance requirements.

•
24



•

•

Scheduling should meet not only individual, but aIso organizational performance

requirements. Note that a conflict between individual and organizational performance

requirements is possible, in that a packet might need to he given a low delay to meet its

delay bound, but the connection on which the packet arrived might have already used its

bandwidth quota. If the scheduler delays the paeket, the organizational performance

requirement is met, but the individual performance requirement is not. If the scheduler

sends the packet before its deadline, the opposite holds is true.

2.7 Traftie Policing

Since the network must proœct guaranteed·service clients from malicious users, it needs

ta monitor the traffic from each source ta ensure that it satisfies its traffic specification.

Such an access control functian at the network's edge is called palicing. The input ta the

policer cornes from the saurce, and the output goes to the network. The function of the

policer is to ensure that the traffle it outputs to the netwark satisfies the traffic constraint

functian. To achieve this, the policer may need to buffer or drop packets when the input

stream exceeds the limit. If the input stream ta the saurce palicer satisfies the traffic

constraint functian, no buffering ardelay is incurred in the policer [19].

2.7.1 Leaky Bueket Policing and Aigorithm

Effective policing of traffic cao prevent congestian from occurring and therefore a

policing functian that contrais traffic ta the reliability level necessary is a' crucial

requirement. One such policing requirement, known as the Leaky Bucket policing

function, has the potential to meet this criticai demande

Each host is cannected t9 the network by an interface containing a leaky bucket, which is

a finite internai queue. When a packet arrives, if there is room on the queue it is appended

to the queue; atherwise, it is discarded [27]. Leaky Bucket Algarithm enCartes a rigid

output pattern at the average rate, no matter how bursty the traffic is. For many situatians,

it is better to allow the output ta speed up somewhat when large bursts arrive, such as in

• the Token Bucket Algorithm.

25



• 2.7.2 Token Bucket A1gorithm

The leaky bucket holds tokens, generated by a clock at the rate of one token every N

seconds. For a packet to he transmitte~ it must capture and destroy one token. The token

bucket algorithm provides a different kind of traffic shaping than the leaky bucket

algorithm, which does not allow idle hosts to save permission to send large bursts later.

The token bucket algorithm does allow saving, up to the maximum size of the bucket.

This property means that bursts of up to the maximum packets can be sent at once,

allowing tolerance for bursts in. the output stream and giving (aster response to sudden

bursts of input. Another difference between the two algorithms is that the token bucket

algorithm throws away tokens when the bucket filis up but never discards packets [28].

The leaky bucket and token bucket algorithms can he used to design the traffic shaper. A

shaper based on token bucket algorithm is shawn in Figure 2.2.

• Token
Generation r

NEIWORK

Token
pool

Departing packets

M

Shaper buffer
Somce

~O~d
packets

• Figure 2.2 A shaper based on Token Bucket Algorithm

26



•

•

•

2.8 Traftic Signaling

Signaling is the process by which an endpoint requests the network to set up, tear down,

or renegotiate a request. Two distinct mechanisms are involved in signaling: one that

carries signaling messages reliably between signaling entities, and another that interprets

the messages. Signaling is often the most complex component of a computer network.

Signaling is necessary for providing complex network services. Signaling has strict

requirements for performance and reliabiIity. RSVP (resource ReSerVation Protocol) is a

kind of signaling protocol [29].

2.9 Network Priciog

Network pricing is how much a public network should charge for its services. Suppose

we claim that a network provider can infer users' utilities from their willingness ta pay

for services. The idea is that the more utility a user obtains from using the network, the

higher the priee he is willing to pay. Thus, the network could charge different priees for

different services, and users' willingness ta pay this price would reveal their utility

functions. Image that in the real world, you can drive a car ta get ta the destination by

highway or by local road, you can save rime if you choose highway, but you have to pay

more. The key point is that by setting a priee for usage, the network can control user

demand, at [east broadly, thus modifyjng the traffic load on the system.. Therefore,

pricing can he used as a tool for traffic control [30].

2.9.1 Peak·load Pricing

Traffic exhibits strong cyclical behavior at the rime seale of a clay and at the time scale of

a week.. In facl, operators look for traffic anomalies simply by overlaYing traffic

measured a week eartier over the CUITent measurement.. During the clay. traffic peaks

from 9am ta 5pm. reflecting the working day. There is a typically a drop at lunchtime and

dinnertime. Howevert it picks up again around Ilpm, when telephone rates and Internet

usage rates become lower, thus allowing users to save on tolls. This shifted peak is the

result of peak-Ioad pricing. which is a traffic control mechanism operating at the time

seale of a day. Peak-Ioad pricing shifts some user demand from the peak: time to off-peak

27



•

•

•

time, decreasing the peak load [18}. With peak-load pricing, the network charges more

during peak hours, and less during off-peak hours. Sorne customers cannat wait until the

off-peak hours, and they thus pay more. However, sorne customers can wai~ and their

demand is shifted ta off-peak hours. Thus, peak-load pricing allows the network provider

to deliver more utility to its customers, because overloading is reduced. In the future,

with intelligent endpoints, sophisticated peak-load pricing scheme may become more

popular [6].

2.9.2 Re-oegotiation

Recall that a guaranteed-service connection must specify its traffic descriptor at the time

of connection establishment. However, it is often impossible ta a priori detennine

satisfactory traffic descriptors a priori. The application designer or application user can

ooly guess the expected average rate of the application. If the guess is tao higb, then the

user pays an unnecessarily high fee for its service, because the network must reserve

resources for at least the user's declared average rate. If the guess is too low, the policer

drops excess traffic, sa that the received quality degrades. Sometimes, finding an

adequate descriptor is hard even if we know the entire source behavior in advance. But if

the application can renegotiate its traffic descriptor, these problems cao be solved.

If a source can renegotiate its traffic descriptor at the beginning and end of every burst,

its effective reserved rate is identical ta its long-term average rate. However, this imposes

a heavy signaling load on the network. Keeping worst-case delay and loss rate fixed, as

the renegotiation frequency decreases, the effective reserved rate moves farther away

from the average rate and approaches the source's peak rate. With stored traffic, the

series of renegotiation points and renegotiation values can be pre-computed. Even for

online interactive traffic, the application can observe past behavior and use this ta predict

future behavior. Thus't renegotiation does not pose a severe burden on applications. It

does increase the network simaline loa~ and a user must trade-off between reneeotiation- - -
frequency and the degree to which the effective reserved rate approaches the true long-

term average rate [31].

28



•

•

•

2.10 Admission Control and Measurement-based Admission Control

When a connection is requested with its traffic descriptors and QoS requirements, the

network decides whether to accept or reject the connection. The network determines if it

has the necessary resources available to meet the requirements of the new connection

while maintaining those of the ongoing connections [32].

The signaling network carries signaling messages and makes resource reservations.

However, before a router controller can make these reservations, the admission control

algorithm checks whether admitting the packet would reduce the service quality of

e:<isting packets, or whether the incoming packeCs QoS requirements cannot be met. This

decision depends on the choice of scheduling disciplines and the set of services provided

by the network. If either of these conditions holds, the packet is either delayed until

resources are available, or rejected. Admission control plays a crucial raie in ensuring

that a network meets its QoS requirements.

Measurement-based admission control allows us to deal with traffic sources that do not

describe themselves. The idea is to admit packets based on a nominal description, but

then [0 measure actual source behavior ta automatica!ly consrruct an appropriate

descriptor. The danger with measurement-based admission control is that it assumes that

past measurements of the system are a good indication of future behavior. The.hope is

mat with enough packets, a switch's loarl will change ooly very slowly compared with

the number of packets arriving and leaving the network. Thus, even if the controller

admits too many packets, it can simply deny admission to future packets, sa that as sorne

packets Ieave, the remaining packets reeeive adequate service quality.

Measurement-based admission control is particularly weil suited for the cantrolled-Ioad

service model [21]. Recall that in this service model, the network guarantees a connection

a nominal delay bound, but the connectian's packets May still suffer deviations from this

bound. If the connections behave similarly in the futurey the delay bound will continue ta

hold. Because control-load service applications are willing to toleme some packets with

29



•

•

•

excessive delays, the measurement-based admission control algorithm can malee sorne

errors without aggravating customers. Measurement-based admission control is aIse

necessary when sources can renegotiate their resource allocation. When a source sets up a

packet, it May not know its future renegotiations. Thus, the admission control algorithm

must guess, based on past behavior, whether or not to admit the packet [6].

In this chapter, we discussed sorne traffic control methods and components, all of them

will he used to implement DiffServ in the Internet in Chapter 4. Traffic control is a

necessary requirement for achieving a high QoS. If the traffic is controUed well, a good

QoS is easily attainable. Bandwidth management is another important method to support

QoS, which we will discuss in the next chapter.

30



•

•

•

Chapter 3 Bandwidth Management and its Methods

In this chapter we discuss network bandwidth management. The bandwidth is always

finite and is an important system resaurce. Cheap and abundant bandwidth May he

available in the future [33}, but at presen~ we have ta manage the bandwidth ta use it

efficiently. Bandwidth management is aIsa an important way ta ensure the QoS. We

believe that there is a tight relatianship between bandwidth and QoS, as it is easier to get

good QoS if the bandwidth is adequate. A combination of bandwidth management and

traffic control ensures a satisfactory level of QoS for the custamer.

3.1 Bandwidth Management

There are four key areas of bandwidth management: bandwidth on demand, bandwidth

aggregation, bandwidth augmentation, and switchover [34}.

1) Bandwidth on demand

Bandwidth on demand means bandwidth is available when it is needed and charges are

ooly incurred when data is actually being transmitted aver the lïoe. With bandwidth on

demand, a connection is opened only when there is data to send and it is then closed as

saon as the data has been sent. This process is totally transparent to users on the ~etwork.

For example, when users are running a Web browser ta access a remate Web server via

ISDN, they cause an ISDN connection ta he opened at the point of first access ta the

Web. While they are reading the data they have received, the connection times out

because no data are being sent or received. As saon as they access the next page of

information, the connection is re-openecl Since making the ISDN connection is so rapid,

the users appear ta have been connected all the time. The time-out parameters are usually

configurable on the ISDN access devices and the most suitable values will depend on

carrier tariff policy and the applications being used.

31



•

•

•

2) Bandwidth aggregation

Combining the bandwidth of two or more channels of the same type, on the same

interface or across interfaces, is termed aggregation. In this situation, when a router

receives the first packet for transmission, a channel is opened to the remote router. A

further channel is then dynamically opened when the number of packets or bytes queued

exceeds a certain value, which is nonnally user-definecl After each new channel is

opened, there is a short delay before a subsequent channel is opened, aIlowing the

existing queue to be emptied. When the measured data throughput indicates that fewer

channels are needed, data are no longer transmitted on the channel that was opened last.

If both ends stop sending data, the channel is closed after a user-specified time-out. This

latency is used to accommodate bursty traffic patterns.

3) Bandwidth augmentation

Channels from different interfaces can also be combined. For instance, one channel on an

interface is specified as primary while another is specified as secondary. Channels on the

primary interface are used before channels from the secondary interface. This technique

is used ta combine bandwidth from interfaces of simiIar speecl Adding bandwidth from a

different type of interface is known as augmentation. For example, using an ISDN B

channel as on-demand bandwidth for a leased tine is a comman application of combined

bandwidth. This alIows a 64Kbps leased line ta he used for average laad, while ~ ISDN

B channel is added when the leased tine is saturated.

4) Switchover

Swîtchover enables traffic to he moved from one circuit ta another, depending upon the

traffic rate. A slow-speed leased line running at 19.2Kbps can be linked to a 64Kbps

ISDN B channel. When the traffic rate on the Ieased line reaches saturation, the ISDN

link is opened and traffic moved ta it. Once the traffic rate drops below that of the leased

fine, the ISDN fink is closed down and traffic diverted back to the leased lîne. The

threshald at which traffic switches can he defined by the user. Switchover ensures that

32



• the most cost-effective circuit is always use~ and provides a very cost-effective solution

for networks with changing bandwidth needs throughout the day.

3.2 Some Methods for Bandwidth Management

Bandwidth is limite~ but the requirement of bandwidth is not. Bandwidth management

involves deciding what traffic has the highest priority, ensuring that it gets the bandwidth

it needs, and decicling how to handle the lower-priority traffic. Bandwidth management

ensures that network services are used 001y when required and cIosed down when there is

no user data transmission [35]. This is critically important when services are heing paid

for, regardIess of the amount of traffic being transmitted across the network. It aIso

ensures that optimal services are used for particular applications and/or particular remote

sites, and that extra bandwidth can he made available when there are unexpected bursts of

traffic. Sorne methods for bandwidth management are addressed below.

3.2.1 Bandwidth Allocation and Dynamic Bandwidth Allocation

• The system, made up of the users as weIl as the network, has various resources that can

he used to meet service demands. However, in ail realistic systems these resources are

limited and sorne methods of allocating them is needed when total demand is greater than

the resource limit. Bandwidth allocation is about efficiently allocating the network

bandwidth among the sources.

Dynamic bandwidth allocation refers to techniques that allocate bandwidth according to

instantaneaus demand. For example, a typical TDM (Time Division Multiplexing)

network would require separate allocations of bandwidth for the voice and data. Dynamic

bandwidth techniques allow data to burst into the unused vaice bandwidth, as it becomes

available and force data ta back off as voice connections are activated [36].

3.2.2 Bandwidth Sharing and Dynamic Bandwidth Sharïng

The bandwidth sharing method relies on sharing the Iink bandwidth among a number of

• connections using one of the following methods:

33



• 1) Fair bandwidth sharing is based on sbaring the link bandwidth among the different

connections.

2) Bandwidth scheduling assigns a limited amount af bandwidth to a number of

connections according ta specific scheduling time slo15.

Dynamic bandwidth sharing methods which rely on increased sharing af resources would

yield becter utilization of the network bandwidth. The bursty nature of data traffic could

he explaited by allawing sorne users to consume the bandwidth during other users' idle

periods.

3.2.3 Bandwidth Borrowing

If the wbale bandwidth is assigned ta all class of packets. each class is allocated a

percentage of the bandwidth. When that limit is reached, normally no more traffic from

chat class can be farwarded. However, if the network link is not being fully used, a class

can borrow bandwidth tempararily from its neighbor class, and send traffic at a

• percentage that exceeds its allocation. The configuration of a class defines the maximum

percentage of bandwidth. including that balTOwed, that can he used by a class at any time.

Spare bandwidth is allocated tempararily ta classes having the highest priority [34]. The

proportion of the spare bandwidth given to a class depends on the percentage of

bandwidth configured for the class. For example, suppose 20% of the available

bandwidth is not being used, and there are three classes with packets queued. T~o of the

classes have priority t with bandwidths 1% and 9%, and the third class has priority 3 and

bandwidth 12%. The priority l classes are given an additional 2% and 18% respectively,

and the priority 3 class is not given any additional bandwidth. It is possible to define a

class that has 0% bandwidth alIocated but May borraw bandwidth from its parent cIass. A

packet allocated to such a class is oRly forwarded if there is no other traffic of higher

priority waiting. A class that bas 0% bandwidth allocated is given borrowed bandwidth as

though it had 1% bandwidth aIlocated. Allocating 0% and no barrowing to a cIass means

that the class is blocked.

•
34



•

•

•

3.2.4 Bandwidth Reservation

Bandwidth reservation means that a request is made to the network to aIlocate a specifie

amount of bandwidth for data flow. It allows applications to reserve bandwidth and QoS

aIong the data path. Many new content-rich applications, such as video conferencing,

interactive multimedia video games or training programs, need stable, predictable QoS in

terms of bandwidth and delay in order ta function weIl. Bandwidth reservation protocol is

based on the stan~d network control protocol RSVP (ReSerVation ProtocoI) [29],

which aIlows Internetlintranet applications ta reserve special QoS for their data. RSVP

was proposed by the Internet Engineering Task Force (IETF), and is emerging as a

standard pretocol for bandwidth management. It is a component of the future Integrated

Services (IntServ) in the Internet. When an RSVP-enabled multimedia application

receives data for which it needs a cenain QoS, it sends an RSVP request back along the

data path. to the sending application. At each stage aIong the route, the QoS is negotiated

with the routers or other network components. Non-RSVP net\vork equipment simply

ignores RSVP traffic and takes no part in the negotiation.

3.2.5 Preventing Bandwidth Starvation

Bandwidth can be controlled by simple mechanisms such as guarantees and limits.

However, priorities provide the most powerful and flexible method to dynamically

allocate limited bandwidth. The objective of priorities is to grant preferential priv~leges to

one c1ass of traffic over another. For example, a network manager could grant a higher

bandwidth priority for Web traffic than SMTP traffic.

There are (wo types of bandwidth priarities: absolute and weighted. Absolute priority

means ta assign a priority level to each class of traffic. For example, if there are seven

priarity levels available for Internet traffic, Web traffic May be given a priarity of 7, and

SMTP traffic assigned a priority of 6. Absolute priority is inefficient because it aperates

on an all-or-nothing basis. When the tine is aversubscribe~ ail higher priority traffic gets

through before any Iawer priarity traffic receives bandwidth. As a resuI~ heavy Web

usage May deny bandwidth to all SMfP connections. This situation is defined as

35



•

•

•

bandwidth starvation. In arder ta avoid bandwidth starvation~ we have ta use weighted

priority. Weighted priority allocates available bandwidth based on relative merlt or

importance. When using weighted priarities, each cIass of traffic is given a weight that is

relative to all other weights defined in the management policy. The weights define the

basis upan which traffic competes for available bandwidth. For example, Web traffic can

he assigned a weighted priority of 60, and SMTP traffic can he given a weight of 20.

When bandwidth resaurces are oversubscribe~ the ratio of Web traffic ta SMTP traffic is

accurately maintained at a 60:20 ratio. Weighted priority provides the only Mean to

prioritize traffic and prevent starvatian.

3.2.6 Bandwidth Pricing and Dynamic Bandwidth Pricing

The bandwidth allocated ta a user is considered ta he a commodity, which is sold by the

netwark to the user. We view the users as placing a benefit, or willingness-to-pay, on the

bandwidth they are allocatecl Given a price per unit of bandwidth, a user's benefit

function completely determines that user's traffic input. Users are assumed ta act in their

own best interests and to he capable of responding to changes in the price for bandwidth

[13].

Assigning dynamic priority is difficult If the real-rime applications such as voice and

video are given priority ta ensure timely delivery, then data traffic May suffer higher loss

though it May not he able to talerate ceII 10ss as weIl as vaice. On the other ~and, if

priarity is given ta data and a lot of buffering is emplayed, then real-time applications

May suffer large variable delays [30]. Rence we need a dynamic adaptive inter temporal

priority scheme. The priorities should change ta track changes in the network state or in

the application requirements over multiple time periods. Rather man having a

complicated priority scheme, a pricing scheme cauid he useel. The operator would set the

henefit functions for the different applications, and couid aIso set different benefit

fonctions for applications of the same type. Each application wouid then input traffic

according to its assigned benefit function and the current state of the netwark, as reflected

in the priees.

36



•

•

•

3.3 A Bandwidth Management Architecture for Internet

In this section we expIain the general idea of Internet bandwidth management

architecture. There are four entities in the architecture: nodes, hosts, applications and

agents. The agents negotiate for bandwidth within the nodes and send their answers back

ta the hasts, which enforce the allocations on the applications. Hasts communicate

through nodes in the interior of the Internet. These nodes have explicit knowledge of the

characteristics of each connection through them, through negotiation with the host ta set

up connection. The nodes continually arbitrate and enforce ma:<imum bandwidths for

each connection.

This architecture ensures network fairness and makes it impossible for the network to

become over-committed, since the nodes would keep the allocations below the timit of

their capacity. Applications executing on hosts send agents to nodes [41].

3.3.1 Bandwidth Management Nodes

The management node combines two components, the Bandwidth Broker and routers.

Routers include core router, boundary router, etc. These routers have different functions.

The core router is for packet delivering, the boundary router is for packet shaping,

marking, dropping, etc. The Bandwidth Broker is another important component, and is

addressed below.

3.3.1.1 Bandwidth Broker: A Possible Solution for Bandwidth Allocation

Traditionally, the relation between a customer and the service provider is based on a

fL'{ed bandwidth, in whîch all traffic is handied in the same way (best-effort service). The

recent popularity of the network has led to a shonage in network capacity. This can cause

problems especially for the performance of mission critical applications. To solve this

problem network service providers want to create new services, mat guarantee the

customer bandwidth, or al least a bener than best-effort service. These guarantees are not

aIways neede~ and May be changed in the course of time.

37



•

•

•

Wc propose the Bandwidth Broker architecture as a possible solution for the Internet

bandwidth allocation [37]. The tasks a Bandwidth Broker can fulfill are numerous, but

the main task is to negotiate a contract hetween the customer and the service provider,

which sets the specifications (bandwidth, QoS, duration of contract~ priee, etc.) of a

desired connection. The parameters of the Bandwidth Booker May vary depending on

where the priorities of an application lie. An FrP connection would want high

bandwidth, which may vary, and low package loss but does not care much about delay.

An Internet Telephony connection would demand low delay, low jitter and a fixed

bandwidth.

Since the management node contains Bandwidth Broker and routers, it has two main

functions-arbitration and packet forwarding. The Bandwidth Broker is in charge of

arbitration; the router is in charge of packet forwarding. They can be separated clearly.

Arbitration is the process of determining the bandwidths aUocated to each connection

through the management node. Whenever the availability of bandwidth at the

management node has changed sufficiently since the last negotiation round~ the node

detennines the available resources and conducts a negotiation roun~ through which the

applications communicate their desires for bandwidth and the management node sets

their bandwidth allocations. Once the bandwidth allocations are set~ a fai~ packet

forwarding scheme can he used to pass packets a10ng according to the allocations.

3.3.1.2 Management Nodes Assign Bandwidth

The management nodes assign bandwidth to connections based on agents that user

applications send them. The application can he aware of what kinds of data rate tradeoffs

are best for it~ sa it can compose an agent to negotiate for bandwidth on its behalf and

send it ta the management nodes along a connection. Each management node uses a

bidding process ta determine the amount of bandwidth each agent wantsy after that, the

bandwidth is assigned.

38



•

•

1---1 1---1
: S-----i-~~~t---r----1 BB21 :

1Host 1~ 1 ,.: 1 1 1

"" 1 / 1 1 1

Age~t',JQ r::l l 1 r::l r::l l

l~_~_: :_~_~_:
Nodel Node2

a) Hostl submits an agent to Bandwidth Brokers.

;-----: 1----
1

l, 1

8B1 l~:_~~l ~ BBl 1 1

'1 1
; 1 1

1Host l ~" ,"', anoc~n ! :/\, anodtion1Host 21
' .: 1 1 1 1 ;

anoc~~",ln ni I~ 6::/
il~~ Ôi i~ L~JI
Il! i
-----

Node! Node2

•
b) The Bandwidth Brokers allocate bandwidth at any time t send the results to the

routers and back to the Host!.

39



•
Host l

data

1----,
1 1

EJi
[- - - -----.,

1BB21

data

Host 2

RI

Nodel

R2
data

R3 R4

Nod2

•

•

c) Data flows through the routers according to the bandwidth allocations..

Figure 3.1 Management nodes assign bandwidth

• Scenario

The process of management nodes assigning bandwidth is shown in Figure 3.1.. We

assume that there are only two nodes. We propose the following scenario:

1. Host1 sends an agent of application ta Nodel, the application includes sorne

connection parameters" such as bandwidth, delay, jitter, rate" priee, etc.. The agent is

on behalf of the application ta negotiate with the Bandwidth Broker.. The agent gets

the connection information from the application.

2.. Routerl (RI) receives the agent. forwards it to the Bandwidth Brokerl (BB 1). BB l

negotiates with the agent based on the current situation of traffic and bandwidth. The

price is dynamic because the situation of traffic and bandwidth is variable..

40



•

•

•

3. Two or more agents apply for service at the same lime, and bandwidth is not enough

to satisfy all the connections.. bidding for service happens. The agent who pays more

wins, athers are refused.

4. The request is accepted by BBI. BBI farwards the agent ta Bandwidth Broker2

(BB2). If the request is denied, an errer message is sent back to Host l by the Agent

5. BB2 negotiates with the Agent like step 2. If sorne agents are applying for service

simultaneously and the bandwidth is not enough, then they bid for service like step 3.

When the request is accepted, BB2 sets the cannection and informs R3 and R4 of the

classification and the policing mies. After that, BB2 sends the Agent to BB1 with a

confirmed message. If the request is denied, an errer message is sent back ta Host!.

6. BB l receives the Agent with a confirmed message from BB2, it sets the cannection

and infonn RI and R2 the classification and shaping rules. So, if the traffic of the

admitted flow is non-conformant RI will shape it. Then, BBI sends back the Agent to

Host l with a conftrnled message.

7. Hostl receives the Agent with the confirmed message, it starts to transmit data.

This negotiation idea can he used for Differentiated Services (DiffServ) in the Internet.

We will discuss it in greater detail in Chapter 5.

3.3.2 Agents

One factor that limits the responsiveness of any arbitration mechanism is the s~ed with

which an application running on a local computer can communicate with management

nodes within the network. Most networks do not have a direct-line topology, and there is

overhead in forwarding packets. AH of this adds up. Furthermore, sorne possible schemes

for negotiation between the management nodes and the applications require severa!

rounds of communication. AlI this time adds up and decreases the speed with which the

network can adapt.

Ta counteract this~ the applications could send agents to negotiate on their behalf. Agents

are smalI programs that can run on remote machines. These agents woald he propagated

along each connection to all of the affected management nodes. Once at anode, they

41



• would be invoked by the arbitration process and respond as the application woul~ except

without the round-trip delay of communicating with the application itself. An agent is an

interpretable function that takes a number of inputs and produces a bid for bandwidth.

The inputs depend on the negotiation scheme used by the architecture. An application

that wishes to open a connection across the network would encapsulate the relevant

information about the connection in an agent and send it onward to the nearest

management node. These functions are taken in by a network node and are used to

negotiate for resources on behalf of the application. remotely. The arbitration process

detennines allocations of bandwidth for alI the connections through a particular

management Rode. with the agents providing knowledge of the behavior and

requirements of each application ta the management node [39}.

•

•

Mobile agents can he used if it is necessary.

3.3.3 Mobile Agents

Mobile agents are autonomous. intelligent prograrns that can migrate from machine to

machine in a heterogeneous network. The prograrn chooses when and where to migrate.

It can suspend its execution at an arbitrary point. jump to another machine and resume

execution on the new machine. From a computation point of view. mobile agents co

locate data and computation by bringing the computation ta the data. rather than by

bringing the data ta the computation. Mobile agents have the necessary autonomy ta

make decisions~ and ta interact with other agents and services to accamplish their goals.

Mobile agents can reduce the network traffic. Most communication protocols involve

severa! interactions, especiaiiy when security measures are enabled. This causes a lot of

network traffic. With mobile agents, one can package up a conversation and ship it ta a

destination hast where the interactions can take place locally [35.38}. Mobile agents can

he used ta build up tomorrow·s intelligent Internet. But., in our model, the situation is

simple as we just use the normal agent.

42



•

•

3.3.4 NegoüaüoD Process

Onee agents are installed in management nodes, they must cooperate with the arbitration

meehanism in the DOde ta determine allocations of bandwidth. The arbitration mechanism

will use sorne sorts of negotiation methods that are bath fair for all agents and diffieult

for an agent ta subvert.

3.3.4.1 Negotiation and Agents

The negotiation process works as follows. The management node tracks a eurrent priee

for bandwidth, whieh the agentS buy from il The node doles out a certain amount of

credits per second ta the agents, whieh they use ta purehase bandwidth. Each hast

submits an agent ta the ISP's management node. These agents take as inputs their last

request for bandwidth and the eurrent priee of bandwidth, and retum a new request for

bandwidth. The management node cycles through the agents, asking them for their new

requests for bandwidth and determines a new priee for bandwidth based on their requests.

Once the total bandwidth requests converge, the management Dode sends out the

allocations ta hasts [40).

3.3.4.2 Credit·based Bandwidth AUocatiOD

Using a priciDg method is an effective way ta manage bandwidth allocation [13,41]. The

main idea of a prieing method is for aIl applications ta bid money for services. An

auction of network bandwidth would presumably he the best possible way ta ensure that

applications do not anempt to grab alI available bandwidth, since that would cast large

amounts of money. In this scheme, great hurdles need ta avercome, such as aecurate

billing, secure transactions, etc.

Within a single organization, like an intranet,. sorne of these restrictions can he relaxed.

50, we propose another method, called Credit-based method. In our method, bidding

could he done with credits replacing money. Relative faimess can he assured by doling

out credits on a regular basis, with more money going ta bigher-priority connections.

• This devolves to a weighted fair share algorithm if alI agents can do is spend the money

as they receive it - each cannection gets a proportion of the bandwidth equal ta its share

43



• of the entire pool of credits doled out at a time. However, if the agents have sorne ability

ta save credits, perhaps even to spend credits they don't have, then they can plan for the

future. For instance, an application with quantized bandwidth requirements could save

credits when forced ta switch ta a bandwidth step lower than its share, in anticipation of a

time when it will he able ta maintain a higher bandwidth step. In another instance, if there

is sorne channel for agents ta receive commands from the application, or even for agents

ta he replaeed, an agent might hoard sorne credits, looking ahead ta a time when the

application needs to send data more urgently than it does now. The basic algorithm

arrives at a priee by stating a priee to eaeh agent and taking the resultant bandwidth

requests and determining the bandwidth allocation. The priee is then changed and the

agents are invoked again. Stepwise retinement continues until the requests converge on a

value that is mutually satisfaetory to the agents and does not over allocate the outbound

network link [39}.

• The aIgorithm is as follaws:

do

for each agent

bandwidth allocation[agenr] = agent (price, credit.balance)

bandwidrh.allocarions = summalion ofbandwidth.allocation[J••ni
allocation.ratio =bandwidth.aIlocations / bandwidth.available

price =price *allocation.ratio

until (allocation.ratio converges on 1)

•

Sinee the amount of credits agents have to spend is limited, and all agents receive the

same amount of credits, the priee of bandwidth must aIways be finite. The algorithm will

converge as long as the minimum. balance the agents ean negotiate sums to less than the

available bandwidth, although if bidding forces priees unreasonably high it may take

longer. When the agents are forcing the priee of bandwidth high temporarily, they are

aIso spending their allocations of credits very quickly~ and will not he allowed ta spend

44



•

•

more credits than they have. This is effective at ensuring sane negotiations. Agents that

do not have bandwidth prices above which they are not willing to buy any bandwidth at

all could he considered incorrect. If, however, the minimum bandwidth needs of all the

agents at an arbitrator add up ta more bandwidth than is available, the management node

is over-committed. Some other mechanism must he used in this case ta police the

allocations and retum the system from an over-committed state. Since this case ooly

occurs in the case of variability-intolerant applications or very paody wrinen or actively

malicious agents, we would like this mechanism ta detennine which agents are most at

fault and deny them service. We would aIso like to use the amount of money given to this

agent as a criterion - if an application is particularly important, human intervention ta

provide it with more resources before it runs out should ensure that it is not capriciously

killed. 50, sorne combination of credit allocations and observed adaptiveness of the

agents should be a workable method of policing this unfortunate case.

3.3.4.3 Enforcement of Allocations

Queues, packet scheduling and packet dropping are use to enforce allocations.

• Queues

The management node will keep a separate packet queue for every connection it handIes.

Each of these queues will he of sorne reasonable length - sufficient to store -enough

packets to smooth out any unwarranted variations in the networ~ while short enough that

applications counting on low-Iatency connections are not unduly affected.

• PacketScheduling

Packets will he removed from the queues as the network permits, using a fair scheduling

algori~ such as Virtual CIock or Weighted Fair Queuing to ensure that the allocations

are obeyed [33,42]. By accepting packets, placing them into queues and then draining the

queues in a priority-based fair manner, it ensures that all data Ieaving the management

• node abides by the allocations, and thus enforces the allocations.

4S



• • Packet Dropping

The queues have a finite length, and if an application's queue is filled faster than it drains

for a long enough peria<L packets are dropped. This acts ta penalize applications for

sending tao much data, providing their authors incentive to remain within their

allocations.

In this chapter, we propose an adaptive bandwidth management architecture, which

allows Internet users to transmit data of different speeds at different prices. This idea May

he expanded to differentiated pricing for differentiate services in the Internet. In Chapter

4 we present the main concepts behind differentiated services in Internet.

•

•
46



• Cbapter 4 DitTerentiated Services in Internet

Differentiated Services is a multiple service mode1 that can satisfy different QoS

requirements, and is based on the principle "pay more, get more". The network should

provide customers with different QoS based on their different levels of payment. Today,

the Internet hasts a wide range of applications and user applications with different

requirements. If the network were able to offer proper QoS for all applications, both the

amount of services and users would he higher.

4.1 Generalized and Specialized DitTerentiated Services of Networks

There are many kinds of networks in the world, but there is no generally accepted

taxonomy into which all computer networks fit. Computer networks can he classified

based on severa! factors. for example, bandwidth. common applications, common

hardware, etc. An alternative criterian for c1assifying networks is their physical size.

• Distance is important as a classification metric because different techniques are used at

different scale. We give a classification example in the Table 4.1 [1]:

Interprocessor distance Processors located in same Example

•

0.1 m Circuit Board Data flow machine

lm 1 System Multiprocessor

lOm Room Local area network

lOOm Building Local area network

1km. Campus Local area network

10 km City Metropolitan area networlc

100 km Country Wide area network

1,000 km Continent Wide area network

10,000 km Planet The internet

Table 4.1 The classification of networks

47



•

•

•

Sorne important netwarks [1]:

• LANs (Local Area Networks). for example. a computer network in a campany's

department~ such as Ethemet network;

• ~lANs (Metropolitan Area Networks), for example, a cable television network within

a city and FDDI network;

• WANs (Wide Area Networks), for example, an ISDN network;

• internet, for example, the well-known worldwide Internet.

4.1.1 A Generalized Differentiated Services (GDS) Network ~Iodel

We can imagine that all currently existing networks are all in this GOS network modeI,

where there are a great many different users, different tasks~ and many different networks

providing tremendous services. The GDS network model is a virtuaI network mode!. but

it gives the idea of Generalized Differentiated Services and Specialized Differentiated

Services.

4.1.2 Generali2ed DitTerentiated Services (GDS)

The GDS model of networks is a general idea, but for more specificity it can he divided

ioto Hard Differentiated Services (Hard OS) and Soft Differentiated Services (Soft OS).

Hard DS îs based on different network hardware~ such as Ethemet and Token Ring. Soft

OS is based on different network software. Protocol is the most important network

software. There are a lot of protocols, Iike TCPIIP, ATM protocol, etc.

4.1.3 Specialized DitTerentiated Services (SDS)

Here, SDS is used just for IP (Internet Protocol). Because IP is the most important data

transport protocot it is supponed widely. IP networks are based on Internet Protocol.

Internet is the largest IF network~ which is a worldwide collection of computer networks.

IP provides a connectionless~ unreliable, best-effort packet delivery system.

48



• 4.2 DitTerentiated Services in Internet

Differentiated Service (DiffServ) has been developed by the Internet Engineering Task

Force (ŒTF), which is the first step for QoS in the Internet. sns is the same as DiffServ.

The Internet is 50 important and popular, it bas an enormous amount of users in the

world. But today's Internet can only provide best-effort service, and it is not able to offer

proper QoS to meet ail needs. ŒTF defines severa! kinds of QoS for the Internet, such as

Differentiated Services (DiffServ) [43}, Integrated Services (IntServ) [44,45], Multi

Protocol Label Switching (MPLS) [46,47A8], etc.

Here, we ooly focus on DiffServ, because it is easy ta he implemented.

•
4.2.1 General Architecture of DiffServ

Network edge and network boundary are important concepts in DiffServ. Network

boundary is basically a router which links two network clouds. Netwark edge is a

particular baundary node, which resides at the edge of the whole DiffServ-compliant area

[49]. The architecture of DiffServ is shawn in Figure 4.1.

•

1

o
\

fbst Source NetWork Edge
boundary ocde

Network Boundary

ISP (Internet Service Provider)

Figure 4.1 DiffServ's General Architecture

49

o
\

Network Edge lbst DestûWion
boundary oode



•

•

The boundary nodes evaluate and set the bits in the Differentiated Service byte (DS byte)

for each packet and condition the packets based on preinstalled service profùes [50}. The

profiles are set by the operators accarding ta the contracts with their custamers. DS byte

is used to determine how the packets are treated. The treatmen~ called Per-Hop-Behavior

(PHB) or Behavior Aggregate (BA), can include different priorities involving the queuing

delay, different priorities in the drop decisians if the queues overflaw, route selection,

etc. At the boundaries, packets are classified using any information in the packet headers,

for example, IP addresses and port numbers. The classification and the profiles can be as

simple or as complicated as desired. In the core network, only the OS byte needs ta he

investigated, which simplifies the classification [51].

This architecture is use<i because:

1) Sophisticated classification, marking, policing and shaping operations are only

needed at boundary of the networks. ISP core routers only need to implement

Behavior Aggregate (BA) classification. Therefore, it is easier to implement and

deploy DiffServ.

2) ISP networks usually consists of boundary routers connected to customers, and core

routerslswitches intercannecting the boundary routers. Core routers must forward

packets very rapidly and therefore must be simple. Boundary routers need nat

forward packets very rapidly because customer links are relativeLy slow. Therefare,

they can spend more time on sophisticated classification, policing and shaping~

4.2.2 Related Control for Supporting Dift'Serv

We need sorne related contraIs for supporting the implementation of DiffServ, such as

traffic control, bandwidth and queue managemen~ etc.

4.2.2.1 Traftie Control for Dift'Serv in Boundary Routers

Traffic control is usually performed at the boundary routers and it consists of four

processes: classification, markingy policing and shaping. For each traffic flow through the

• boundary, the router only performs either policing or shaping [52]. Sorne traffic control

operations are as follows.

50



• • Admission Control

This process is ta decide whether to accept a request for resources.

• Classification

The process of sarting packets is based on the content of packet headers according ta

defined mIes. Classification is done for matching packet headers against entries in the

classifier table. Every packet is classified ta a cIass. After the classification.. the packets

within a particular class receive similar treatment, while the treatment can vary.between

different classes. Trearment is compased of marking, policing, shaping, scheduling, etc.

•

•

In the DiffServ boundaries, classification can he based an any cambination of packet

header fields. In IPv4, the fields in the headers that are meaningful in the classification

are the source and destination IP addresses, protocols, such as UDP, TCP, ICMP, etc.,

and the source and destination port numbers in UDP and TCP. If only IP addresses are

used.. the network can provide DiffServ on host or sub-network level. If application level

differentiation is required.. the classification has to take the port numbers into account.

Sorne of the port numbers are well knawn.. but IP telephany (or H.323) uses dynamic port

numbers. In that case.. the application would have to signai its port numbers dynarnically

ta the DiffServ edge. Of course, the hast can do DS marking by itself and thus avoid the

problem. ln IPv6, there is aIso the flow label field.. which is applicable. In DiffServ, the

point is that complex classification is needed ooly at the boundaries, otherwise, only the

OS-byte is used. In other words, OiffServ aggregates the classifier's state in the core

network [50}.

• Behavior Aggregate (BA) Classification

BA Classification is the process of sorting packets based ooly on the contents of the

Differentiated Service field (OS field). The DS field is the field in which the

Differentiated Services class is encoded. It is the Type of Service octet in the IPv4 header

orthe Traffic CIass octet in the IPv6 header [53}.

SL



• • ~lulti·Field ~IF) Classification

The process of c1assifying packets based on the content of multiple fields such as source

address, destination address, ros byte, protocol ID, source port number, and destination

port number.

• Marking

Marking is the process of setting the OS field in a packet at the network boundaries.

Marking can be performed by the application, the operating system or the edge router.

Marking gives each packet a particular PHB, which determines the treatment the packet

gets in the core routers. Marking is usually performed according to the results of either

policing or shaping.

•
• Shaping

Shaping is the process of delaying packets within traffic stream to conform it to sorne

defined traffic profile. Shaping causes the packet stream to be conformed to sorne

configured traffic properties. Shaping is often based on the leaky bucket algorithm. The

shaper smoothes the bursts of a stream, but delays non-conforming packets.

• Policing

Policing is the process of handling out-of-profile traffic, for example, discarding excess

packets. Policing monitors the packet stream based on its profile. A simple pôlicer is

implemented using the token bucket aIgorithm [28}, which characterlzes the packet

stream with two parameters: average rate and burst size. For each packet of a stream, the

policer declares whether the packet was conformant or non-conformant ta the stream's

profile.

4.2.2.2 Trame Control in Core Router based on PHB

The purpose of the PHB is that the packets marked with different PHB values shouid

experience differing service in the core moters.. There are severa! ways for a router to

• implement differing service, but the most important mechanisms are scheduling and

queue management.

52



•

•

•

A) Scheduling

Scheduling is the process of deciding which packet to send first in a system of multiple

queues. In general? schedulers can be characterlzed as work<onserving or non-work

conserving. A scheduler is work<onserving if it is never idle when a packet is queued in

the buffer. Non-work<onserving server May, for example, postpone the transmission of a

packet when it expects a higher-priority packet to arrive soon, even though it is currently

idIe.

Sorne scheduling algorithms:

1. Priority Queuing

Priority Queue is a simple scheduling algorithm [3D}. The queues are arranged in strict

priority order, and a particular queue gets service ooly if there are no packets in the

higher priority queues. Priority queuing can guarantee small delay for the highest class?

but the other classes face a possible starvation, if the higher classes use all the available

bandwidth.

2. Weighted Fair Queuing (WFQ)

WFQ is a representative example of a work-conserving priority-based scheduler [30]. If

the weights in WFQ corresponcling to the inclividuai queues are equaI? the algarithms

divide the capacity of the output link by emulating a time-division multiplexer (TDM). If

the weights are not equal. the queues share the capacity according ta their weights. If any

of the queues does nat have enough packets ta send out, the ather queues share its portion

according ta their weights.

3. Weighted Round Robin (WAA)

WRR is a good example of work-conserving frame-based scheduler [30]. WRR serves

each queue in a round-robin fashion, and for each tum, a number of bits corresponding to

the queue?s weight is "puIled out,t from the queue. Thus the linle capacity is divided

according ta the weights as in WFQ. In a worst-case situation, a packet arrives to a queue

just after the queues tum. In that case, the maximum queuing delay will he the som of the

53



• weights of ail other queues, if all the other queues have also enough packets. In that

sense, WRR is not as ideal as WFQ, but it is simple ta implement. This May become a

deciding factor, if the linIe speeds increase faster than the pure processing power does.

Using different queues, the network operator can differentiate the service experienced by

differing PHBs.

•

D) Queue management

Queue management contraIs the length of packet queues by dropping packets when

necessary or appropriate [46}. In DiffServ the idea is that the dropping decisions take the

PHB values into account. Different PHBs can be treated as different drop preferences.

The usual mechanism is that the router constantly measures the length of its queues and

sets dropping thresholds based on the measurements [52}.

If different PHB values translate into differing drop preferences, their service differs

dramatically during congestion. For TCP traffic. this is seen to the users as differing

throughput, because TCP slows down when packets get dropped. For UDP traffic, the

effect is naturally differing packet 10ss ratio, wlùch can be important for example with

streamed video service.

One of the most popular queue management algorithms is Random Early Detection with

In and Out (RIO) [54}.

RED (Random Early Detection) [55] is a queue management scheme that drops packets

randomly. This will trigger the TCP flow control mechanisms at different end hasts to

reduce send rates at different time. By doing 50, RED can prevent the queue at the routers

from overflowing, and therefore avoid the tail-drop behavior (dropping all subsequent

packets when a queue overtlows). Tail-drop triggers multiple Tep flows to decrease and

later increase their rates simultaneously. It causes network utilization to oscillate and can

• hUIt performance significantly. RED has been proved to he useful and has been widely

deployed.

54



•

•

RIO is an advanced RED scheme, it maintains two RED a1gorithms, one for in packets

and the other ane for out packets. RIO use two thresholds to drop packets, the first one is

for out packet. the secand is for in packet. When the queue's capacity exceeds the fust

thresholtL the out packet will he dropped. The in packet will he dropped only when the

second threshold is reached.

4.3 Implement DiffServ based on Two-bit Architecture

The two-bit (premium bit P, assured bit A) DiffServ architecture indicates three traffic

classes OO=best effort, lO=premium, Ol=assured. The premium class is targeted for real

time traffic, whereas the assured class receives better than best-effort treatrnent subject ta

drop probability, and is thus suitable for TCP. At the edge router, the packets are

classified and premium and assured flows are set. Prernium flows are shaped ta constant

bit rate and they are marked with 10. The bucket is very shallow, and averflow packets

are discarded. Assured traffic is subject ta token bucket policer, and conformant packets

are marked with 01, while non-conformant packets are marked with 00. In the care

rauters, Premium bit is used ta classify the packets inta [Wa queues. Premium traffic goes

inta the upper queue, which always has a strict priority over the lawer queue. In the lower

queue, a RIO is run based on the assured bit. Thus the assured traffic has lower drop

probability than the best-effon traffic. The two-bit architecture is shawn in Figure 4.2.

•

lN
P bit Premium

Assured
RIO

Figure 4.2 Two-bit DiffServ architecture

5S

Priority
Scheduler

our



•

•

•

4.3.1 Service Level Agreement (SLA)

In arder far a custamer ta receive OiffServ from their Internet Service Provider (ISP), the

customer must have a Service Level Agreement (SLA) with i15 ISP. SLA is a service

contract between a customer and an ISP. SLA specifies the forwarding service a customer

should receive. A customer may be a user arganizatian or another provider damain. A

SLA basically specifies the service classes supported and the amaunt af traffic allawed in

each class. A SLA can he statie ar dynamic. Statie SLAs are negatiated on a regular

basis. e.g. manthly and yearly. Custamers with Dynamic SLAs must use a signaling

protocol. e.g. RSVP. ta request for services on demand. Customers can mark OS fields of

individual packets ta indicate the desired service or have them marked by the Ieaf router

based on MF classification [51].

At the point of ingress ta the ISP networks. packets are classified, policed and passibly

shaped. The classification. policing and shaping mies used at the ingress routers are

derived from the SLAs. The amount of buffering space needed for these operations is

aIso derived from the SLAs. When a packet transmits from one domain ta another. the

SLA between the two domains will determine whether ta re-mark its OS field.

4.3.2 Premium Service Implementation

The proposai of Premium Service was made by Van Jacobson [56]. Premium Service

provides low-delay and low-jitter service for custamers that generate fixed peak.bit-rate

traffie. Each customer will have a SLA with its ISP. The SLA specifies a desired peak

bit-rate for a specifie flow ar an aggregation of flows. The eustomer is responsible for not

exceeding the peak rate. Otherwise. excess traffic will he dropped. The ISP guarantees

that the contraeted bandwidth will he available when the traffic is sent Premium Service

is suitable for Internet Telephony~ Video Conferencing, etc. [46] Because Premium

Service is more expensive than Assured Service~ it is desirable for ISPs to support bath

statie SLAs and dynamic SLAs. Oynamic SLAs allow customers to request for Premium

Service on demand without subscribing ta it Admission control is needed for dynamic

SLAs. Premium Service can be implemented as follows.

S6



•

•

•

At the customer side, sorne entities will decide which application flow can use Premium

Service. The Ieaf routers connected directly ta the senders will do MF classifications and

shape the traffic. We can consider that there is a P-bit in the DS field. If the P-bit of a

packet is set, this packet belongs to the premiurn class. Otherwise, the packet belongs ta

the Assured Service class or best-effort class. After the shaping, the P-bits of all packets

are set for the flow that is allowed to use Premium Service. The exit routers of the

customer domain May need to reshape the traffic to malee sure that the traffic does not

exceed the peak rate specified by the SLA. At the provider side, the ingress routers will

police the traffic. Excess traffic is dropped. AlI packets with the P-bit set enter a Premium

Queue. Packets in the Prernium Queue will he sent before packets in the Assured Queue.

Firstly, by admission control. the total amount of premium traffic can be limited ta a

small percentage, say 5%, of the total traffic. SecondlYt excess packets are dropped at the

ingress routers of the networks. Non-conformant flows cannot impact the performance of

conformant flows. Thirdly, premium packets are forwarded before packets of other

classes, they can potentially use 100% of the link bandwidth.

Therefore, if premium traffic is distributed evenly, these three factors should guarantee

that the service rate of the Premium Queue is much higher than the arrivai rate.

Therefore, arriving premium packets should find the Premium Queue empty or very short

Most of the time. The delay or jitter experienced by premium packets should he very low.

By limiting the total amount of bandwidth requested by Premium traffic, we use.Weight

Fair Queuing (WFQ) between the Premium. Queue and the Assured Queue to guarantee

that premium traffic will not starve the assured and best-effon traffic.

4.3.3 Assured Service Implementation

The proposai of Assured Service was made by Kathleen Nichols [51]. Assured Service is

intended for customers that need reliable services from their service providers, even in

time of network congestion. Customers will have SLAs with their ISPs. The SLAs will

specify the amount of bandwidth allocated for the customers. Customers are responsible

for deciding ho?! their applications share that amount of bandwidth. SLAs for Assured

57



• Service are usually static, that means the customers can start data transmission whenever

they want without signaling their ISPs. Assured Service can he implemented as follows.

Fustly, classification and policing are done at the ingress routers of the ISP networks. If

the Assured Service traffic does not exceed the bit-rate specified by the SLA, they are

considered as in profile. Profile is a description of properties of a traffic stream such as

rate and burst size. Otherwise, the excess packets are considered as out of profile.

Secondly, all packets, in and our, are put into an Assured Queue to avoid out of arder

delivery. Thirdly, the queue is managed by a queue management scheme called RIO

(RED with In and Out).

•

•

4.3.4 Two-bit DiffServ Implementation

Combining the implementations of Premium Service and Assured Service, we can

implement the two-bit DiffServ as follows.

1) Customers negotiate SLAs with ISPs. The SLAs specify what services the customers

will receive. SLAs can he statÎC or dynamic. For static SLAs, customers can transmit

data at any time. For dynamic SLAs, customers must use a signaling protocol such as

RSVP to request for services on demand before transmitting data. The Bandwidth

Brokers (BB) in the customer domains decide how applications share the services

specified by the SLAs. The OS fields of packets are marked accordingly to indicate

the desired services.

2) The ingress routers of ISPs are configured with classification, policing and re

marking mIes. The egress routers of ISP networks are configured with re-shaping

rules. Such nlIes May be configured manually by network administrators or

dynamically by some protocol such as RSVP [45]. ISPs must implement admission

control in order to support dynamic SLAs. Classification, marking7 policing and

shapinglreshaping are on!y done at the boundary muters. Core routers are shielded

from the signaling process. They need ooly implement two queues with strict priority.

They process packets based soIely on their DS fields.

58



• 4.3.5 Implementation Performance

There are two parts of impIementation performance: (a) customer performance, and (b)

ISP performance.

•

•

A) Customer performance

Given a SLA, a custamer damain shauId decide haw its hasts share the services specified

by the SLA. This is customer performance. There are basically twa choices.

l) Each host makes its own decisian to use the service.

2) A resource controller called QoS Broker or Bandwidth Broker (BB) makes decision

for ail hosts [3,81. A Broker can he a hast, a router or a software process an an exit

router. It is configured with the organizational policies and it manages the resources

of a domain. A domain May a1so have backup Brokers. Since all hasts must cooperate

ta share a limited amaunt of resources specified by the SLA, it is technically better ta

have a Broker to allocate resources.

At the initial deployment stage, hasts may send their packets unmarked. The exit routers

mark them befare sending them out to the ISPs. The packets are treated as best-effort

traffic inside the custamer domain. In later deployment stages, when a hast wants to send

traffic.. it will consult the Broker for a service type. The Broker decides the service class

and replies to the sender. For premium traffic, the Broker will then use sarne protocols,

e.g... RSVP, to set the classification, marking and shaping ruIes at the leaf router that is

directly connected to the sender [571. The Broker May aIso set the reshaping mIes at the

exit muter. Senders will send their packets unmarked and the leaf routers will mark them.

If the SLA between a customer and its ISP is dynamic, the Broker in the customer

domain must also use sorne signaling pro[ocol to request resources on demand from its

ISP.

B) ISP performance

Given the SLAs, ISPs must decide how to configure their boundary muters so that they

will knaw how to handle the ineoming traffie, this is ISP performance. For starie SLAs,

boundary muters can be manually configured with the classification, policing and

59



• shaping mies. Resources are therefore statically allocated far each custamer. Unused

resources can he shared by other custamers. For adynamie SLA, resaurce allocation is

clasely related to the signaling process. The Broker in the customer damain uses RSVP ta

request for resources from its ISP. At the ISP side, the admission control decisions can be

made in a distributed manner by the boundary routers or by a Broker. If boundary routers

are directly involved in the signaling process, they are configured with the corresponding

classification, policing and shaping rules when they grant a request. If a Broker is

involved rather than the boundary routers, then the Broker must configure the boundary

routers when it grants a request In bath cases, the ISP core routers must be shielded from

the requests ta avoid the scalability problem.

Bath customer and ISP need routers' support to finish their perfonnances. Routers'

support is as follows.

1. The leaf routers in custamer domains need to implement rvIF classifications, marking,

and shaping.

• 2. The ISP ingress routers need to implement palicing and re-marking.

3. The ISP egress routers need optionally ta implement re-shaping.

4. AlI routers need to implement BA classification and two queues with strict priority.

5. If dynamic SLAs are supported, each customer domain will need a Broker to request

for service on behaIf of the domain and ta allocate services inside the domain.

Signaling and admission control mechanisms are needed in both customer domains

and ISP domains.

DiffServ can he implemented based on two-bit architecture, but the architecture has sorne

drawbacks. We need to improve tha~ the methods will he discussed in Chapter 5.

4.4 Coordinated Control

Coordinated control can he broken down into traffic control, bandwidth control and

• queue control. Tbese control methods have been mentioned in Chapter 2 and Chapter 3.

In arder to get high QoS. we need the coordinated control. because coordinated control

60



• can avoid congestion9 lighten and balance the traffic load. Coordinated control is the

process of arranging how traffic flows through the network so that congestion caused by

uneven networlc utilization can he avoided [66,75].

There are severa! kinds of QoS services in the Internet9 such as Integrated Service

(IntServ)9 DiffServ9MPLS, etc'9but actually, there is little difference when the traffic

load is light. 50, it is necessary to do coordinated control in the first place.

The main aims for coordinated control are as follows.

• Traffic control: avoid congestion by congestion control9 reasonable routing, load

balancing9etc.

• Bandwidth control: supports traffic control by increase the utilization of bandwidth.

• Queue control: supports traffic control by appropriated queue algorithms, such as

RIO, WFQ, etc.

•
4.4.1 Traflie: Control

In DiffServ, where the goal of trafflc control is ta avoid congestion, sorne methods can be

usecl such as congestion contrat the reasonable routing algorithm and the traffic load

balancing algorithm [77,79]. The methods of congestion control have been mentioned in

Chapter 2, here, we describe the reasonable routing algorithm.

Usually sorne parts of the network are overioaded while other parts are lightly loadecl

Uneven traffic distribution can be caused by the current Dynamic Routing protocols such

as RIP (Routing Infonnation Protoco1)9 OSPF (Open Shortest Path Rrst) and IS-IS

(Intermediate System-to-Intermediate System), because they always select the shortest

paths to forward packets [58,62.,63}. As a result, routers and links along the shortest path

between two nodes may become congested while routers and links along a longer path

are idle. The Equal-Cost Multi-Path (ECMP) option of OSPF is useful in distributing Ioad

• to severa! shortest paths. But, if there is only one shortest path, ECMP will he useless. 50,

we need use QoS routing and Constraint Based Routing ta solve the problem [59}.

6L



•

•

•

A) QoS Routing

QoS Routing refers to algorithms that compute paths that satisfy a set of end-to-end QoS

requirements. Given the QoS request of a flaw or an aggregation of flows, QoS Routing

returns the route that is most likely to he able ta meel the QoS requirements [60].

B) Constraint Based Routing

Constraint Based Routing can be used ta compute the routes subject ta QoS and palicy

constraints. The goal is ta meet the QoS requirements of traffie and ta improve utilization

of the networks. Constraint Based Routing evolves from QoS Rauting, it extends QoS

Routing by cansidering ather canstraints of the network such as poliey, it is used ta

compute routes that are subject ta multiple canstraints [61].

Canstraint Based Routing is ta select optimal routes which most likely meets the QaS

requirements of the flaws. Using Constraint Based Routing we can select routes to meet

certain QoS requirement and increase the utilization of the network. While determining a

route, Canstraint Based Routing cansiders nat only topology of the networ~ but aIsa the

requirement of the flow, the resaurce availability of the links, and possibly ather policies

specified by the network administrators. Therefare, Constraint Based Routing can find a

longer and light load path rather than the heavy 10ad shortest path. Network traffic is thus

distributed more evenly. In arder to do Constraint Based Routing, routers need ta

distribute new link state information and to compute routes based an such information.

A router needs topolagy infonnation and resaurce availability information in order ta

compute QoS routes. Here, resaurce availability information means link available

bandwidth. Buffer space is assumed ta he sufficient and is not explicitly considered. One

approach to distribute bandwidth information is to extend the link state advertisements of

protocols such as OSPF and IS-IS [58,62,63]. Because link residual bandwidth is

frequently changing, a trade--off must he made between the need for accurate information

and the need to avoid frequent tlooding of link state advertisements. To reduce the

62



• frequency of link state advertisements, one possible way is to distribute them only when

there are topology changes, or significant bandwidth changes.

The routing table computation algorithms in Constraint Based Routing and the

complexity of such aIgorithrns depend on the metries chosen for the routes. Common

route metrics in Constraint Based Routing are monetary cast. bandwidth, reliability,

delay, and jitter. Routing algarithms select routes that optimize one or more of these

metries. Metrics can he divided ioto three classes. Let d(i,j) he a metrie for liok (ij). For

any path P = (i, j, k~ ... ,1, m), metrie dis:

•

•

additive ifd(P) = d(i.j) + d(j,k) + ... + d(l,m)

multiplicative ifd(P) = d(i,j) *d(j,k) *... *d(l,m)

concave ifd(P) =min{d(i.j), d(j,k), ...• d(l,m)}

According ta this definition. metrics delay, jitter, cost are additive. reliability is

multiplicative. and bandwidth is concave. Algorithms for finding routes with bandwidth

constraint are simple. Bellman-Ford's (BF) Algorithm or Dijkstra's AIgorithm can be

used [64,651. For example, to find the shortest path hetween (wo nodes with bandwidth

greater than l Mbps, aIl the links \Vith residual bandwidth less than l Mbps can he pruned

first. BF Algorithm or Dijstra's Aigorithm can then be used to compute the shortest path

in the pruned network. The complexity of such algorithms is O(N*E).

Bandwidth is the useful constraint than delay and jitter, beeause:

1) Although applications May care about delay and jitter bounds, few applications

cannot tolerate accasional violation of such constraints. Therefore, there is no abvious

need for routing flows with delay and jitter constraints. Besides, since delay and jitter

parameters of a tlow can be determined by the aIlocated bandwidth of the route~ delay

and jitter canstraints can be mapped ta bandwidth constrain~ if needed.

63



• 2) Many real-time applications will require a certain amount of bandwidth. The

bandwidth metric is therefare useful.

Sorne approaches to reduce the computation overhead of Constraint Based Routing

include:

1. using a large-valued timer ta reduce the computation frequency;

2. choosing bandwidth as constraint;

3. using administrative policy to prune unsuitable links before computing the routing

table.

•

•

A Constraint Based Routing scheme can choase one of the followings approaches ta

select a route for a destination.

1. The widest-shortest path, if there are multiple such paths, the one with largest

available bandwidth;

2. The shortest-widest path. i.e., a path with largest available bandwidth;

3. The shonest-distance path.

Using paths other than the shortest paths consumes more resources. This is not efficient

when the load of the network is heavy. A tradeoff must he made between resource

conservation and laad baJancing. The fust approach above is basically the same as

today's Dynamic Routing [66]. It emphasizes preserving network resources by choosing

the shortest paths. The second approach emphasizes load balancing by choosing the

widest paths. The third approach makes a tradeoff between the two extremes. It favors

shortest paths when network [oad is heavy and favors widest paths when network load is

Mediate [66].

64



• 4.4.2 Bandwidth Control

The bandwidth control bas been addressed in Chapter 3. The main idea of bandwidth

control is to increase the utilization of bandwidth by sorne roeans, such as bandwidth

allocation, bandwidth sharing, bandwidth borrowing, bandwidth pricing [76,78].

•

•

We propose a bandwidth control method, the ~4Adaptive bandwidth allocation based on

dynamic pricing", which we believe it may possibly increase the utilization of bandwidth.

The bandwidth priee is not fixed, i.e., users can decide to buy bandwidth based on

bandwidth priee policy. When the price is low, the user can buy more, if all bandwidth

requests are over-committed than the available bandwidth, the provider ean rise the price

ta renegotiate, and the users will decrease their requests if the priee is high. If the

requested bandwidth is equal or almost equal to the available bandwidth, the negotiation

is done, the bandwidth is allocated to users. This approach will he presented in Chapter 5

as method to improve the t'tVa-bit based DiffServ.

4.4.3 Queue Control

Queue control ineludes sorne queue management algorithms, such as RED, RIO, WFQ,

WRR, FIFO, etc. These algorithms can support the traffic control ta avoid congestion.

They can drop the packets ta control the length of the queue based on the requirement

[75].

4.5 The relationship of DitlServ, Coordinated Control and Priee

DiffServ is a kind of QoS Madel. Coordinated Control is the way ta support the DiffServ.

There is a very important element for DiffServ-price. We ean get different QoS by

adjusting the priee [71,74]. When the priee is higher, the QoS is bener. Their

relationships are showed in Figure 4.3.

65



• Coordinated Control

QoSout

1 1

L-----r-----
1-----------1
1

11 ....... bandwidth queue control
......

trafflC control ~ -1- control
1 -

Priee

QoS.
m

Figure 4.3 A

•
Priee

o

âQoS =QoS in - QoS out

Figure 4.3 B

âQoS

Figure 4.3 The relationship of QoS~ Coordinated Control and Priee

•
66



• Chapter 5 Improving Two-bit Based Ditl'Serv

The DiffServ based on Two-bit (PremiumlAssured) architecture has sorne drawbacks. In

this chapter. we focus on the shortcomings of Assured Service. and improve on Assured

Service with new algorithms. The simulation code of the algorithms is written in Java and

is included in the Appendix.

5.1 Drawbacks of Two-bit based Ditl'Serv

Premium Service and Assured Service are two components of the two-bit DiffServ

architecture. Their drawbacks are presented in this section.

A) Premium Service

Premium Service provides low-delay and low-jitter service for customers that generate

• fixed peak bit-rate traffic. Each custamer will have a SLA with its ISP. The SLA

specifies a desired peak bit-rate for a specific flow or an aggregation of flows. The

customer is responsible for not exceeding the peak rate. Otherwise, excess traffic will be

drapped. The Premium Service must keep enough bandwidth based on the peak bit-rate

ta set up the virtual path. Obviously, the drawback of Premium Service is that it wastes a

lot of bandwidth, sa that we cannat get high network resource utilization [3,56]. .

B) Assured Service

Assured Service is intended for customers who need reliable services from their service

providers, even during times of network congestion. Customers will have SLAs with their

ISPs.. The SLAs will specify the amonnt of bandwidth aIlocated for the customers.

Customers are responsible for deciding how their applications share that amount of

bandwidth [3,51}.

•
67



• There are (WO major drawbacks of Assured Service:

1. Lack of the scalability of service quality;

2. Lack of high utilization of network resources.

We focus on these two shortcomings and propose new methods ta overcome them.

5.2 The Scalability of Service Quality in Assured Service

•

The ratio of data according to type of service in two-bit based Internet traffic in our

proposai is as follows: 5% Prermum Service traffic, 35% Assured Service traffic, and

60% for Best-effort Service traffic [49]. Because the Premium Service is so expensive,

only 5% of traffic packets are premium packets. Most of the DiffServ packets are assured

packets, and they represent about 35% of all Internet traffic packets. But, in Assured

Service level, ail traffic packets are treated equally, even though sorne customers prefer

to pay more for their packets in arder ta get higher service quality than athers.

Unfortunately, this cannat he implemented within the current Assured Service level. Sa,

we need ta improve the Assured Service modeL The current Assured Service level is too

coarse, we use multi-class service levels to replace one assured service level, which is

calIed Multilevel Assured Service.

S.2.1l\1lultilevel Assured Service

The main idea of Multilevel Assured Service is as follows:

A customer pays a minimum basic service charge when he uses Multilevel Assured

Service. If he is willing to paya higher price for a higher level of service, bis packets will

get a higher level of priority than packets without extra payment. Paying different levels

of money for different levels of service will help set different priorities for packets and

cause them ta enter different priority queues.

High-priority packets are sent earlier than low-priority packets, and they are dropped rater

than the low-priority packets when there is congestion in the network. We use priority

• queues to model this approach.

68



• 5.2.2 Scheme of Multilevei Assured Service

Multilevel Assured Service has several service Ievels. The number of service levels is

flexible, and May be decided by the service provider based on each particular trdffic

situation. We consider four service Ievels, called Al, A2, A3 and A4, with increasing

priority and service quality. In other words, A4 has the highest priority and Al has the

lowest. In this scheme, Al Queue is an assured queue, which is managed by the RIO

algorithm. Al Queue, A3 Queue, and A4 Queue are priority queues with increasing

priority. Each queue of A2., A3, A4 is managed by the FIFO algarithm. AlI these four

queues are managed by WFQ algarithm in arder ta avaid bandwidth starvation. The

scheme is shown in Figure 5.1.

Priority

~[uItilevel

~sured

Service

WFQ

1 95t~ffort~e 1

mo( A4

A3

:~~pasSe
A2

~

Al~

~larking +

RIO

in profile: < =specifsed bit-rare
out profile: > specifted bit-rate

Packets e:<.ceed the specifled
bit-rote are marked.If netw
congesuouter will drop m
packets;oÛlerwise.let them

1

WFQ
Premium Service

-----_.......

•

• Figure 5.1 The scheme of Multilevei Assured Service

69



•

•

•

5.2.3 ~Iultilevel Assured Service Supports Scalable Service Quality

Multilevel Assured Service supports scalable service quality by roeans of Assured Queue

and Priority Queue. The Assured Queue is clesired for basic assured service~ the Priority

Queue is destined for high quality service. In our scheme, there is one Assured Queue

Al, and tbree Priority Queues-Al, A3, A4. The Assured Queue and Priority Queue

have been designed for different quality services.

l) Assured Queue

First~ if the assured service traffic does not exceed the specified bit-rate, they meet the

requirements of the in profile. Otherwise, the excess packets are considered as out of

profile. Seconcl ail packets, in and out, are put iota Al Queue ta avoid out of order

delivery. Third, A1 Queue is managed by RIO, which maintains two RED algorithrns,

one for in packets and one for out packets. There are [WO thresholds for each queue.

When the queue size is below the first threshold, no packets are dropped. When the queue

size is between the two thresholds~ only out packets are randomly dropped. When the

queue size exceeds the second thresholcl indicating possible network congestion, bath in

and our packets are randomly droppe~ but Oltt packets are dropped more aggressively. In

addition ta breaking the Tep f1ow-control synchronization~ RIO prevents, ta sorne extent,

greedy flows from huning the performance of other flows by dropping the out packets

more aggressively. Because in packets have a low 10ss rate even in the case of

congestion, the customers will perceive a predictable service from the network if they

keep traffic confonnant. When there is no congestion, out packets will aIso be delivered

[3].

2) Priority Queue

Priority Queue is managed by FIFO (Fust In Fust Out) aIgorithm and Marking algorithme

If the priority service traffic does not exceed the specified bit-rate9 they are sent directly

without marking. Otherwise~ the exceeding packets are marked frrs4 and then sent If

there is no congestion in the network, bath marked and unmarked packets can pass; if

70



• congestion happens, unmarked packets can pass but marked packets May he dropped by

the router. This is called the "Markingn algorithm [42}. The marking algorithm allows the

exceeding bit-rate packets to pass when the traffic load is light, thereby increases the rate

of packet delivery and network resource utilization. Without the "Markingn algorithm, ail

exceeding bit-rate packets are dropped before delivery. Even when the traffic load is very

light, they still cannot he delivered, and network resources are wasted. The packets in the

Priority Queue are delivered by RFO aIgorithm after marking.

Packets in the Priority Queue can receive higher quality service than packets in the

Assured Queue, because Priority Queue has a high send-rate and a low drop-rate.

•

•

1) Hieh Send-rate

For the high send-rate scheme, Priority packets are sent earlier than assured packets.

Assured packets have to wait in the Assured Queue and let packets in the Priority Queue

he delivered first. In arder to avoid starving the Assured Queue, we can use WFQ ta

manage the Priority Queue and the Assured Queue.

2) Law drop-rate

For the low drop-rate scheme, marked priority packets will he dropped only after

congestion happens. But assured packets will be dropped by the RIO algorithm not only

when congestion has become reaI, but aIso when the trend towards network cOlJ.gestïon

has been detected.

5.2.4 Choosing a Fitting Service Level

A customer needs to choose a fitting service level before using the Multilevel Assured

Service. We consider there are four service levels in our Multilevel Assured Service

scheme, which are A1, Al, A3 and A4 with increasing priority. Al is for basic assured

service.. the customer ooly needs ta paya basic service charge for it, say X dollars. If the

eustomer is willing ta pay more to get higher priority for bis paekets, he can ehoose a

priority queue (A2.. A3 or A4) ta satisfy bis requirement based on two elements: the priee

and the size of eaeh priority queue.. The priee of each priority queue can he set by the

11



• service provider. Suppose the service price for A2 is 2X dollars, A3 is 3X dollars, and A4

is 4X dollars. The size of the queue is given by the length of all existing packets in the

queue. Since the priority queue is managed by FIFû algorithm, and if the queue size is

too large, the new packets have ta wait for the service for a longer time. 50, if the packets

are important and urgent for the sending application, a higher priority queue will he

chosen.

If the customer is satisfied with bath the priee and the size of the queue, the service level

can be set. After setting the service level, the customer's application sends the packets ta

the network, the network will process the packets based on the setting. The

implementation of Multilevel Assured Service is presented in section 5.4.4.

•

•

5.3 The Utilization of Network Resources

For current Assured Service, the network resource cannat he utilized efficienùy. At the

source ISP, it is hard ta aIlocate ail available bandwidth completely for the requestars,

either when bandwidth is over-committed or under-committed, sa the bandwidth

utilization is low. Between the source ISP and destination ISP t when the spatial

granularity becomes larger than one destination, it is more difficult to support a service

with a fixed bandwidth profile [67,68]. The network needs to provide enough resources

to all possible destinations to eosure the service quality and thus the resource utilization is

low.

We propose to use Token-based Assured Service and Constraint Based Rauting in order

ta address the above problem. In order to improve the bandwidth utilization at the source

ISP, we propose a new algorithm, called Token-based Assured Service. The Constraint

Based Routing, as we have presented in Chapter 4, can select routes to meet the QoS

requirement and increase the resource utilization between the source ISP and the

destination ISP.

12



•

•

To eosure high network resource utilization, we propose the following stages: (1) Using

Token-based Assured Service to increase the bandwidth utilization at the source 15P, (2)

Using Constraint Based Routing ta increase the network resource utilizatian between the

source ISP and destination 15P, and (3) Using LOad Balancing to support the Constraint

Based Rauting if neeessary.

5.3.1 Token-based Assured Service

There are (Wo major elements of the Token-based Assured Service: (1) tokens, and (2)

token priee. Tokens stand for bandwidth amount. For example, if a network has lOOM

bandwidth and every token stands for lM, then the nelWork has 100 tokens in totaL If a

user needs SM bandwidth, he shauld buy 5 takens. Token priee stands for bandwidth

priee. Thal is ta say, $10 for one token means $10 for lM bandwidth. The available token

number is the number of tokens available for allocating at the Mean time. In another

wards, it is the unused bandwidth in the netwark.

Tokens can be used ta avaid over-committing the bandwidth. AlI paekets must hold sorne

tokens before entering the network, whieh means the bandwidth must he aIlocated ta the

paeket fust. No token means no bandwidth, sa there is no entranee for any paeket. A

paeket must hold more tokens than its minimum token requirements; otherwise, the

packet cannat he delivered properly.

The service provider aIlocates tokens to all requestars based on the dynamie token priee,

until ail tokens are allocated completely.

5.3.2 Dynamic Token Priee

Dynamic token price is the tool used ta allocate tokens. When the number of available

tokens is greater than the number of total requested tokens, the bandwidth is under

committed In this case, the service provider needs to reduce token priee to encourage the

• requestors to buy more tokens. When the token price is redue~ the requestors will buy

73



• more tokens. Because more tokens means more bandwidthy and it is easier to get better

QoS, the token priee will he redueed until aIl or almost all tokens have been sold.

If the available tokens are fewer than total requested tokens, the service provider will

inerease the token priee thus trying to reduee requestor demand for tokens. When the

token priee is increased" the number of tokens requested will he cfecrease. Normally, the

eustomer will request a greater number of tokens than bis minimum token requirement.

Having a dynamic token price ean avoid abuse of the bandwidth. Because the bandwidth

is not free, and every one has ta pay for it based on the amaunt used. 50, every one needs

ta apply for a reasonable amount of bandwidth.

•

•

It is very hard to give a reasonable fixed bandwidth priee, beeause if the price is tao low,

sorne greedy users will abuse it; if it is tao high" it will prohibit increased use. 50, we use

dynamic token pricing, which is fair for every user. A user ean buy the exact number of

tokens he needs. When there are fewer tokens available, the token price will be high. In

that case, a user can wait until the lower token price is available, or buy. tokens with a

higher price for delivering his urgent packets.

Dynamic token price provides a chance for sorne users who want ta get high priority.

When total requested tokens are much more than the available tokens, a user ean bid for

tokens against others for bis important packets. This means users ean pay more ta get

priority for delivering packets instead of waiting.

5.3.3 Token·based Assured Service Supports High UtilizatiOD of Bandwidth

As described above, token-based assured service can support high bandwidth utilization

in two ways:

74



• 1) Avoids over-committing the bandwidth based on token-holding enttance.

2) Dynamically adjusts of the token price to encourage or discourage the users ta buy

more tokens or to reduce takens requirements, until aIl available tokens are sold.

The implementation ofToken-based Assured Service is given in the section 5.4.5.

•

•

5.3.4 Increasing the Resource Utilization by Constraint Oased Routing

After assigning all available tokens ta the requestors, the ISP source will he ready ta

process users' packets. The ISP delivers these packets based on Canstraint Based

Routing. The Constraint Based Routing algorithm can find a longer and less loaded path

rather than a more heavily loaded, sharter path, which increases the network utilization

between the source and the destination. Load balancing can reduce the traffic load by

choosing the widest path, and it can be used concurrently with Constraint Based Routing.

We consider that using our method, the bandwidth utilization is more efficient at the ISP

source than before. From ISP source to ISP destination. when the packets pass through

the Internet backbone, Constraint Based Routing and load balancing can ensure high

resource utilization, hence the whole network resource utilization is higher than before.

5.4 Implementation

We propose two implementations, one is for Multilevel Assured Service, the second is

for Token-based Assured Service. Both of them are based on Agent-Broker architecture,

see Figure 5.2.

7S



•
[----1 [----,

QoS Bralrer S --1- --------~~ --------L QoS Brolœr D 1

1 1 1

! 1

........ HostDRouters DRouters SHostS
j

~---D~ 1
L ~

1

---... Ag~nt
--1- -

ISPi ISP2

• Figure 5.2 Agent-Broker Architecture

5.4.1 Agent.Broker Architecture

Agent-Broker architecture can support the implementations of Multilevel Assured

Service and Token-based Assured Service. The Agent-Broker architecture is shawn in

Figure 5.2.

•
In Figure 5.2~ S stands for Source, D stands for Destination. Sa, Host S means Source

Host. QoS Broker S means Source QoS Broker. Routers S means Source routers,

including boundary roUters~ and core routers, etc. Similarly, Host D means Destination

Hos~ QoS Broker 0 means Destination QoS Broker~ and Routers 0 means aIl

Destination mutets.

76



•

•

•

In Agent-Broker architecture, the Host is a service requestor, the ISP is a service

provider. The Host sends an agent to the ISP ta negotiate with the QoS Broker on its

behalf. The Agent, as we described in 3.6..2, is a small program that can mn on remote

machines. The Agent includes sorne QoS parameters, such as service level requirement,

bandwidth requirement, bit-rate, etc. The ISP includes one QoS Broker and sorne routers.

The QoS Broker can negotiate with agents, assign system resources to them, and satisfy

their QoS requirements, such as service level, bandwidth amount, etc. The QoS Broker

can aIso communicate with other remote QoS Brokers.. Routers within the ISP, and they

can he classified as either boundary routers or core routers. Boundary routers are

connected ta hasts and control classification.. marking, policing, shaping operations, etc.

Core routers control the forwarding of packets, and they are connected ta the Internet

backbone.

In Figure 5.2, if Host S wants to transmit data to Host D, it will send an Agent to Routers

S first. The boundary router of Routers S receives the Agent and runs it there. The

boundary router invokes the QoS Broker S based on the Agenfs QoS requirement. The

Broker S responds ta the boundary router, and then the Agent negotiates with the Broker

S. If the Agent's requirement is accepted, the Broker S will forward the Agent to QoS

Broker 0; otherwise, an error message will he sent back to Host S by the Agent. When

QoS Broker D receives the Agent, it will negotiate with the Agent. If the requirement is

accepted.. the Broker 0 will set the classification and policing mies on Routers" 0 .. and

send the Agent back to Broker S with a confmned message; otherwise, it will only send

an errer message to Broker S by the Agent. When the Broker S receives a confirmed

message from Broker Dt it will set the classification and policing mies on Routers S, and

then send the Agent back to Host S with a confumed message; otherwise it will just send

back the Agent with an errar message. When the Host S receives a confumed message

from Broker S, it cao stan transmitting data. The data will pass through the network from

Routers St through the Internet backbone, and Routers D to Host O. If the Host S receives

an errer message from Broker St Host S May change its QoS requiremen4 and then sends

a new Agent to renegotiate with the Broker S.

77



• 5.4.2 Agent-Broker Negotiation

Normally, an ISP has a lot of hasts, and aIl the hasts can send agents ta negotiate with the

Broker for service on their behalf. An example of four Hasts sending four Agents to the

ISP is shawn in Figure 5.3.

•

•

ISP
1----- 1

1 QoS Broker 1

1

1

.1.
Agent 11 J.- . Routers 1 IAgent 4

./' ...... 1 r-.....................
./' ./' -Agent~7/ - - ~J~Agent3- ....................

IHO~I B B B
Figure 5.3 Hasts send agents to ISP

As presented in Figure 5.3, Routers includes baundary muters and core muters. The

boundary router of the ISP receives the four Agents, and it invokes the QoS Broker ta

negotiate with the Agents. AlI four Agents can negotiate with the Broker simultaneously.

The negotiation of the Agent and the QoS Broker is shown in Figure 5.4.

78



• ISP

1--------------[
1

QoS Braker1 Boundary
1 Router
!
1

Ag t. ----------~

ae~~. pc---r----
,', ---------~
1 1 <- --- -- ---

....-_......,' ,'----- Negotiatian .....-----...
l'
"

1

_____ -'- - --------->
1 Ta other
1 QoS Brokers

•

•

1 1

-----'----------~
1 ~
, 1

Result : : Requcst
1 1, ,
, 1

1 1

: 1

Figure 5.4 The negotiatian of Agent and QoS Broker

In Figure 5.4. the Host requests service by sending an Agent ta its ISP. The Agent is

installed in the Boundary Router ta negotiate with the QoS Booker there. The negatiatian

may last several rounds, until Agent and Broker get a mutually satisfying result, which

will he taken back ta the Host by the Agent. If the Agent's requirement cannat he

satisfie~ the Agent will return ta the Host with an error message.

79



• 5.4.3 Broker Bebavior

The Broker behavior in our implementation is shown in Figure 5.5.

Braker in idJe
state

N

•
Braker negatiate
with the Agent

2

Multilevel
Assured Service

A1gorithm for Braker
sets the servX:e level

Taken-based
Assured Service

Algarithm for Braker
assigns avaiIable
takens ta agents

•

Figure 5.5 QoS Broker behavior

The Broker is in an idie state at flrS~ while waiting for the request from the router. When

the router receives Agents, it invokes the Broker. The Broker will negotiate with Agents

how to set the service level and how ta assign all available tokens.

80



•

•

•

5.4.4 Implementation of Multilevel Assured Service

The implementation of Multilevel Assured Service is based on Agent-Broker

architecture, as shawn in Figure 5.2.

The Host sends an Agent ta ISP on its behalf ta negotiate the service level, as shawn in

Figure 5.3. There are Many Hasts, all of them can send Agents ta the Broker ta request

service. Here, we give an example of one Host sending one Agent ta negauate the service

level with the Broker, as presented in Figure 5.4.

A) Service Level Establishment Scenario

Multilevel Assured Service includes four queues, Al, A2, A3 and A4. Al queue charges

a basic priee, while A2 charges double.. A3 triple and A4 four tirnes as much as Al. Hasts

send out their Agents ta negotiate with the QoS Broker. FlI'St, at the Host side.. the Agent

gets information about the maximum service price and the maximum queue size that the

Host can aecept. Second, the Agent is sent ta the ISP. ThircL after the boundary router

receives the Agent, the negotiation of Agent and Broker starts.

The Agent gets the price of the Al level, and if the price is higher than the Agent's

maximum priee, the negotiation process is terminated and Best-effort Service is allocated

ta the Agent. Otherwise, the agent gets the queue size of Al, and if the size is acceptable,

Al is assigned ta the Agent. But if the queue size of Al is tao large.. the agent has to give

up on Al, and asles for the priee of Al. Likewise, if the price and queue size of Al are

bath acceptable, Al Queue service can he assigned to the Agent. If unfanunately, the

price is too high, the Agent is assigned ta Al, and if the size of A2 is too large, the Agent

will go on ta seek A3 queue. Then the process will continue with A3 and A4 queue with

the same strategy.

81



• D) Service Level Establishment Algorithm

The service level establishment algorithm can he divided into two parts. One is the

Broker which sets the service leveI, the other is the Agent which asIes for the service

Ievel.

1. The algorithm for Broker secs service level is shawn in Figure 5.6.

Queue information

Broker

Length Priee

% 4XS A4

% 3XS A3

% ~s Al
Priority

• 'té XS Al

Multùevel Assured Service Queue.
4 sub-levels. Al. A2. :\3. M

~
get information

from hast

Ü

invoke agent

,~

get response
from the agent

\~

send result back
to host

Figure 5.6 Broker sets the service level

2. The algorithm for the Agent asks for the service level is shawn in Figure 5.7.

•
82



get A2 service
level

get A4 service
level

N

N
y

get A3 servi:e
Jevd

Figure 5.7 Agent asks for service level

• Agent

~k for Assured
Service Jevei

Priee

4XS A4 N
Best-effort

3XS AJ Service
Priority

2XS Kl

XS Al

get Al size.
N

~tultilevel ~sured Service Queue. OK?
4 sub-1evels. Al. A2. AJ. M

Y N getA2
priee. OIC?

• get Alservice
1evel

N
get A2 sile.

OK'?

N Y

•
83



• The service level can he set by the above (Wo algorithms. After the service level is

established, the cesult is sent back ta the Host. When the Host receives the result, it sends

the packets to the ISP. The ISP puts the packets in the queue. The packets will he

delivered by the router later.

5.4.5 Implementation of Token-based Assured Service

The implementation of Token-~ased Assured Service is based on this Agent-Broker

architecture as well, as presented in Figure 5.2.

The hosts send Agents ta the ISP on their behalf to negotiate with the Broker for tokens

(bandwidth amount).

The hosts must hold sorne tokens before entering the network, and these tokens should he

• at least somewhat more than their minimum bandwidth requests. Ail hasts are eager ta

get more tokens, because more tokens means more bandwidth, sa that the QoS will he

easy ta meel. But.. the bandwidth is always limited, and it is not free. Sa, the requestar

will submit an initial request (preferred tokens) which is a bit more than its minimum

request.. and then modify the request according to the change of the token priee. The

taken priee is dYnamic, because it can bath avoid the greedy requestors and invoke the

idIe requestors.

If there are more token requested than the available takens, the token priee will tise until

the requested and available tokens are balanced (equilibrium point is reached). If the

requested takens are less than the available takens, the taken priee will falI until aIl

available tokens are saId out or aImast sold out.

A) Scenario or Negotiating Tokens

Four hasts (Host 1, Hast 2, Host 3, Host 4) send four Agents (Agent 1, Agent 2, Agent 3,

• Agent 4) ta the ISP to ask for their preferred tokens. The preferred takens are more than

84



• their minimum requested tokens. The ISP's boundary router receives the requests from

four Agents, and invokes the Broker to negotiate with the Agents.

The Broker states an initial token price and collects all requests of the Agents; then it

compares the number of total requested tokens with the number of available tokens, and

states a new token priee. If the total available tokens are much more than the requested

tokens, the token price is lowered; otherwise, it is increased.

•

•

Mter the Broker states a new token price, ail Agents can get the new price information,

and compare it with the previous token price. The Agent will increase its request if price

is lowered, or viee versa. The Broker then eollects requests from Agents again. If new

requested tokens are still fewer than the available tokens, the Broker reduces the token

priee again, encouraging the agents ta buy more tokens, until all available tokens are

sold. If the new requested tokens are more than the available takens, the Sroker rises the

token priee. If the token priee is higher than the Host's maximum acceptable priee, the

Agent has ta quit (asks for zero token); otherwise, the Agent reduees its token request as

long as the request does not go lower than its minimum request. Then the Agent applies

for tokens again. If the request is aeeepted by the Broker, the Agent returns to its Host

with the result: if not, it renegotiates. If the Agent's minimum token request cannot be

satisfied, the Agent has to quit this round of negotiation. This Agent can wail for the next

round of negotiation. when it can probably get low-priced tokens.

D) Algorithms for negotiating tokens

There are twa algorithms for negotiating tokens: (1) Agent asks for tokens, (2) Booker

assigns tokens.

1. The algorithm UAgent asks for tokens'9 is shown in Figure 5.8.

85



•
Agent

get atoken
priee

y

N
ask for 0

token

•

y

ask for i% more
tokens( according to

condition);
i=TRJATN

N

ask for i% Jess
tokens( according to

condition):
i=TRlATN

ask for the same
tokens as previous

time

•

'-- ~ Retum the resuIt

back to broker

TR: total request
ATN: aV3Ùable tolœn numbers

Figure 5.8 Agent asks for tokens (bandwidth amount)

86



• The key idea of the algorithm of the Agent asking for tokens is described as follows.

Based on the dynamic token price~ the Agent tries ta apply for as many takens as

possible. There are two ways ta do that:

a) When the taken priee is going dawn~ increase the token requests.

b) When the token priee is going up, reduce the token request, until it reaches the

minimum token request. In that case, the Agent can give up this round of negotiation,

and wait for next round to get the appropriate token price and number of tokens.

2. The algorithm "Broker assigns tokens" is shawn in Figure 5.9.

The key idea of the algorithm of the Broker assigning all available tokens to Agents is as

follows.

• The Beoker tries to sell all its available tokens by dynamic token pricing, which means

that all available bandwidth will be used~ sa that the highest possible rate of bandwidth

utilization is achieved.

After the Broker assigns the available tokens to all Agents, the Broker signals the router

for service. The Agents send baek the final negotiation results ta the Hosts, and the Hasts

cao send their packets ta the ISP.

•
87



• Broker

i++;
get request from. agent[ï}

N

y

TR=TR+request[il

•

Rise price:
price=pri:e*TRIATN

y

N

N

y

5 ignal agents
token-request

f"m.ished

End

Reduce priee:
price=pri:e-TRIATN

•
Ta: total request
ATN: availablc token ntunbc:rs

Figure 5.9 Broker assigns all available tokens to agents

88



•

•

•

s.s Simulation

The simulation program has been written in Java.

The Agent is an application program, which can he sent from local hast to the server

(ISP) by FrF protocol. The simulation source code is given in the Appendix.. The source

code includes two parts, part one is for service level negotiation; part two is for

bandwidth negotiation..

89



•

•

•

Chapter 6 Conclusion and Future Work

The Internet is used on a very large scaie nowadays. QoS introduction in the Internet

becomes necessary to support different service requirements. DiffServ is the first step of

QoS implementation in the Internet

We have focused on the [Wo-bit DiffServ architecture in the Internet, because two-bit

architecture has the outstanding advantage of being easy to implement. In the foreseeable

future, it will possibly be used widely in the Internet. The current two-bit architecture has

sorne drawbacks. We present sorne ways ta improve them, such as Multilevel Assured

Service9 the Marking algorithm, the Token-based Assured Service, the Agent-Broker

Algorithm, Canstraint-based Routing and load balancing, etc. Using these methods, we

can get a higher scalable service quality and higher network resource utilization. These

improvements can make the two-bit architecture more efficient than it is right DOW. We

believe that with our improvements, the [Wo-bit DiffServ architecture will have a stronger

capacity to support different QoS requirements.

Future research should be conducted to extend our work in arder to support multiple ISP

environments, multicast communications, and both sender and receiver-based charging

schemes in the two-bit DiffServ architecture.

90



•

•

•

References

1. A. Tanenbaum, Computer Networks, Third edition.

2. P. Ferguson and G. Huston, Qualiry ofService, John Wiley & Sons, 1998

3. K. Nichais, V. Jacobson and L. Zhang, A Two-bit Differentiated Services Architecture

for cize Internee, Internet Draft, Nov. 1999.

4. JJ. Bae and T.Suda, Survey ofTraffic Control Protocols in ATM Nenvorks,

December 1990
5. Kevin Lai, Mary Baker, kleasuring Bandwidth, Dept. of computer Science, Stanfard

University.

6. T. Ndousse and L. Rester, ppp Extensions for IP/PPP-HDLC over SONET·SDHI

WDM, Proceedings of the 16th International Conference on Communications,

June, 1999
7. A. Campbell, AQuality ofService Architecture. PhD. thesis, January 1996.

8. ISO, QoS-Methods and Mechanism, International Standards Organization. 1998

9. V. Jacobson, Congestion Avoidance and Control, ACM, 1988

10. Timothy Kwok, ATM: The new paradigm for Internet, Intranet, and Residential

Broadband Services and Applications, Prentice Hall PrR, New Jersey 07458

1L Zbigniew Oziang, AnI Nerwork Resource Management, McGraw-HiIl

12. Sally Floyd and Kevin fall, Router Mechanisms to Support End-to-End Congestion

Control, Lawrence Berkeley National Lab, Feb. 15,1997

13. Jeffrey K. MacKie-Masan, Hal R. Varian, Pricing the Interner, University of

Michigan, February 1994

14. Zygmunt Haas.,Adaptive Admission Congestion Control, AT&T Bell Lab.

15. Jean Walrand, Pravin Varaiya, High-Performance Communication Nenvorks., ~lorgan

Kaufmann Publishers, Inc.

16. Raj Iain.. Congestion Control and Traffic lvlanagement in ATM Nerworks: Recent

Advances and A Survey, Dept. afCIS, The Ohio Stace University., Aug.13,1996.

17. Dominique Gaiti and Guy Pujolie, Perfonnance Management issues in ATM

Nenvorks: Traffic and Congestion Control, IEEFJACM Transaction on Networking,

91



•

•

•

Vo1.4, No.2, April 1996.

18. Jose Duato, Sudhakar Yalamanchili, Lionel Ni, lnterconnection Networks an

engineering approach, IEEE Computer Society, Los Alamitos, California

19. A. Parekh, AGenerialized Processor Sharing Approach ta Flow Control in

Integrated Services Nerworks, PhD. thesis, MIT, Feb. 1992

20. K. Ramakrishnan, and R. Jain, A Binary Feedback Schemefor Congestion Avoidance

in Computer Nerworks, ACM Transaction on Computer Systems, Vol.S, No.2, 1990

21. Sudhir S. Doot, Traffic Descriptor Mapping and Traffic controlfor Frame Relay

Over ATM Nenvork, IEEFJACM Transaction on Networking, Vo1.6, No.l, Feb. 1998.

22. L Petersen, B. Davie, Computer Nerworks - A Systems Approach, Morgan

Kaufmann Publishers, San Francisco, CA; 1996.

23. S. Radhakrishnan, S.V. Radghavan, a. Agrawala, Design & Performance Study ofa

Flexible Traffic Shaperfor High Speed Nerworks, Feb.1997

24. Edward W. Knightly and Jingyu Qiu, Measurement·Based Admission control Wilh

Aggregate Traffic Enve/opes. ECE Department, Riee University.

25. S. Doran, RED Experience and Differentiated Queuing. In NANOG Meeting, June 98

26. S. Floyd, Tep and Explicit Congestion Notification, Computer Communication

Review, October 1994.

27. H. Liu, Traffic Shaping for Congestion Control in High Speed ATM Nerworks, Dept.

of CS, University of Saskatchewan, August 1992.

28. K. Baia, 1. Cidon and K. Sohraby, Congestion control for High Speed Packet .

Switched Networks~ June 1990.

29. R.Braden, L. Zhang, S. Berson, S. Herzog and S. Jamin, Resource ReSerVation

Protocol (RSVP) RFC 2205, September 1997.

30. Cisco Billing Architecture White Paper, Cîsco Systems, Ine. 1998

31. Mohsen Guizani and Ammar Rayes, Designing ATM Switching Nerworks, McGraw

-Hill

32. Ivy Hsu and Jean WalrancLAdmission Control/orATM Nerworks, Minneapolis,

Minnesota, March 1994

33. L Zhang, Virtual Goele: A new Traffic Control Algorithm for Packet-Switched

Nerworks, ACMTransactions on ComputerSysteIDS, Vol. 9, No. 2, May 1991

92



•

•

•

34. Arthur W. Berger, Ward Whitt. Effective Bandwidth with Priorities. IEEFJACM

Transaction on Networking, Vo1.6, No.4. August L998.

35. Alfonso Fuggetta. Gian Pietro Picco. Giovanni Vigna. Understanding Code Mobiliry,

IEEE Transactions on Software Engineering, Vol 24, 1998

36. EroL Gelenbe, Xiowen Mang, Raif Onvural, Bandwidtll Allocation and caU Admission

control in High-Speed Nerworks, IEEE Communication Magazine, May 1997.

37. CA*net Il Differentiated Services, Bandwidth Broar System Specification, British

Columbia Institute of Technology, Technology Centre, Group for Advanced

Infonnation Technology, October, 1998

38. Mobile Agents White Paper, http://www.genmagic.comltechnology/techwhitepaper.

Html, General Magic, Inc., 1997

39. Tony White. Bernard Pagurek, Andrzej BieszczacL Nenvork Modeling for

Management Applications Using Intelligent Mobile Agents, Carleton Unversity, 1999

40. Steward Snell, Jtec PtYLimitecL Dynamic Bandwidth Management Using ATM, 1999

41. D. Tennenhouse, D. Wetherall, Towards an Acn've NerworkArchitecture. April 1996

42. Cisco Access VPN white paper, Cîsco Systems, Inc. 1998

43. S. Blake. D. Black. M. Carlson, E. Davies, Z. Wang, and W. Weiss, An Architecture

for Differentiated Services, RFC 2475, Dec. 1998.

44. Braden, R.• Clark, O. and Shenker, S., lntegrated Services in the Internet

Architecture: an overview. Internet RfC 1633, Jun. 1994

45. J. Wroclawski~ Specification ofthe Controlled-Load Network Element Service~

RFC 2211, Sept. 1997

46. T. Li, CPE based VPNs using MPLS, Internet draft <draft-li-MPLS-vpn-OO.txt>,

Oct. 1998

47. R. Braden, L. Zhang, S. Berson, S. Herzog and S. Jamin, Resource ReSerVation

Protocol (RSVP) -Version 1 Functional Specification, RfC 2205, Sept. 1997

48. P. Vaananen and R. Ravikanth, Frameworkfor Traffic Management in MPLS

Nerworks, Internet draft<draft-vaananen-mpls-tm-framework-OO.txt>, Mar. 1998

49. Y.Bernet et al.• A Frameworkfor Differentiated Services. Internet draft <draft-ietf

diffserv-framework-OO.txt>, May 1998

50. K. Nichais, S. Blake. F. Baker and D. Blac~ Definition ofthe Differentiared

93



•

•

•

Services Field (DS Field) in the 1Pv4 and lPv6 Headers, RFC 2474, Dec. 1998.

5L K. Nichols et al., Differentiated Services OperationaI Model and Definitions,

Internet draft <draft-nichols-dsopdef-OO.txt>, Feb. 1998

52. Kimberly C. Claffy, Internet Traffic Characterization, University of California, San

Diego, 1994

53. Silvano Gai, Internenvorking IPv6 with Cisco RoUlers, McGraw-Hill

54. D. Clark and J. Wroclawski, An Approach to Service Allocation in the Internet,

Internet draft <draft-cIark--different-svc-alloc-OO.txt>, JuL 1997

55. B. Braden et al., Recommendation on Queue Management and Congestion

Avoidance in the Internet. RFC 2309, Apr. 1998

56. V. Jacobson, Differentiated Services Architecture, talk in the IntServ WG at the

Munich IETF, August, 1997

57. Y.Bernet et al., A Frameworkfor use ofRSVP with DiffServ Nerworks, Internet

draft <draft-ietf-diffserv-rsvp-OO.txt>, JUD. 1998

58. R. Guerin, S. Kamat, A. Orda, T. Przygienda, and D. Williams, QoS Routing

Mechanisms and OSPF extensions. Internet draft <draft-guerin-QoS-routing-ospf

03.txt>, Jan. 1998

59. Q. Ma, QoS Routing in the Integrated Services nenvorles, Ph.D. thesis, CMU-CS

98-138, Jan. 1998

60. E. Crawley, R. Naïr, B. Jajagopalan and H. Sandic~ A FrameworkforQoS-based

Routing in the Internet. RFC 2386, Aug. 1998

61. Z. Wang and J. Crowcroft, Quality o/Service Routingfor Supporring Multimedia

Applications. IEEE JSAC, Sept. 1996

62. C. Villamizar and T. Li, IS-IS Optimized Multipath (lS-lS OMP), Internet draft

<draft-viIIamizar-isis-omp-OO.txt>, Oct. 1998

63.1. Moy, OSPF Version 2, RFC 2178, Apr. 1998

64. E. Horowitz and S. Sahni, Fundamentals o/Computer Algorithms, Computer Science

Press~ Pitman Inc., 1987

65. S. Baase, Computer Algorithms: Introduction to Design and Analysis, Addison

Wesley Publishing Company, 1987

66. Z. Wang, Routing and Congestion Control in Datagram Networkst PhD. thesist

94



• Dept. of CS., University Col1ege London, Jan. 1992

67. Z. Wang, User-skare differentiation (USD) scalable bandwidth allocation for

differentiated services, May 1998, Internet Draft.

68. Trillium Digital Systems, Ine. Comparison of IP-over-SONET and IP-over-ATM

Technologies, November, 1997

69. Controlling TCpnp Bandwidth, The PacketerTechnical Forum, November 1998

70. The New Paradigm for Differenriared Service Levels in Internet,

http://www.supranets.eoml

71. Cisco IDS Software Qualiry of Service Solutions, White Paper, Cisco Systems, Ine.

1998

72. E. Rosen, A. Viswanathan and R.Callon, Multi-Protocol Label Switching

Architecture, Internet draft<draft-ietf-mpls-arch-O l.oct>, Mar. 1998

73. Wu-chang Feng, lmproving Internet Congestion Control and Queue Management

Algoritluns, University of Michigan, 1999

74. S. Shenker, C. Partridge and R. Guerin, Specification ofGuaranteed Qualiry of

• Service, RfC 2212, Sept. 1997

75. Shivkumar Kalyanaramen, Re: Edge-ro-edge Flow control draft: draft-shivkuma-ecn

diffserv-Ol.txt, ECN archive message 00013

76. Ivy Hsu and Jean Walrand, Dynamic Bandwidth Allocation for ATM Switches.

Feb.5, 1995

77. Edward W. Knightly, Enforceable Quality ofService Guaranteesfor Busrsry Traffic

Streams, ECE Department, Riee University.

78. Raffaele Balla, Franco Davoli and Mario Marchese, Bandwidth Allocation and

Admission in ATM Nenvorks with Service Separaion. IEEE Communication

Magazine. May 1997

79. S. Keshav, Congestion Control in Computer Networks, PhD. thesis, U. ofCalifomia,

Berkeley, August 1991

80. S. Ohta and K. Sato, Dynamic bandwidth control ofthe vinual path in an

asynchronous trans/er mode nerwork, IEEE Trans. Commun. 40, 7, 1239-1247, 1992

•
9S



•

•

•

APPENDIX

A. Source Code for Service Level Negotiation

There are three programs in this package: agent. java, myserver. java,

and myclient. java. They work cooperatively ta perform Service Levei

Negotiation.

Agent.java plays the raIe of an Agent. It is stored at the Host side

initially. When request cornes, myclient.java will send this program as

an Agent ta the server. At the server s ide, agent. java compares user

requests (maximum price and maximum queue length) with information in

the server database and decides which service levei to choose. There is

one class in this program -- class -agent-, whose algorithm is given in

Chapter S, page 83.

Myclient.java runs on the Host side. It collects information from the

user, sets up FTP connection wi th the server, sends Agent ta the

server, and then reads responses fram the server. There are three

classes in this program: class -myclient-, perfarming most of the tasks

as a client; class -readLineThread-, reading responses from the server;

class -DataConn-, transferring file using FTP.

Myserver. java resides at the server side as a service provider. It

invakes the Agent and sends the result baek to the Host. Class

-myserver- is the only class in this program.

To be simplified, we use file queue.txt instead of a real database to

store price and queue length information. Service provider should

modify this file on a regular basis so that the up-to-date network

states are reflected in this file. The numbers in the file represent,

respectively, the priee for Al service, the queue length of Al, the

price for A2 service, the queue length of A2, the price for AJ service,

the queue length of AJ, the priee for A4 service and the queue length

of A4.

96



•

•

A.l agent. java

1*
* @agent. java
* @author: Suqiao Li
• @date: June, 1999
* function: this program aets as an agent whieh negotiates with the

braker
about service level

*
*1

import java.ia.*;
import java.lang.*:
import java.util.-;

public elass agent {

public statie DataInputStream input:null;

public statie void maint Strinq(} args} throws IOExeeption
{ int i, j:

DataInputStream input=null;
String priee:"";
String length="ft;
int priee_i=O; Il priee for service level
int length_i=O:11 oceupied length of queue
int arg-priee=O;11 maximum priee the hast want ta pay
int arg_lengeh;11 maximum queue lengeh the hose can aceepe

StrinqTakenizer tok~~=new StringTokenizer(args(O});
arg-priee = Integer.parseInt(token.nextTok~~(»;

token=new StringTokenizer{args(l});
arg_length = Integer.parseInt(token.n~Token(»;

input : new DataInputStream{
new FileInputStream{new File("queue.txc"»);

priee = input.readLine():/lget Al priee
while{price.compareTo("EOFIt) ~= 0)

•

{ token=new StringTakenizer{priee);
priee_i = Integer.parseInt(token.nextToken(»;

if(priee_i«arg-priee»/I if Al priee is acceptable
( length=input. readLine () ;

token=new StringTokenizer(length);
length_i = Integer.parseInt(token.nextToken(»;
if(length_i«arg_length)}I/ if Al length is acceptable
{ System.out.println(" Al. Queue .};

Il return result: Al service level
break;

}

else
( price=input.readLine();/lget A2 priee

token=new StringTokenizer(priee);
priee_i = Inteqer.parseInt(token.nextToken(»;

97



•

•

•

if(price_i«arg-price})llif A2 priee is acceptable
( length=input.readLine() ;

token=new StringTokenizer(length):
length_i = Integer.parseInt(token.nextToken(»;
if(length_i«arg_length»11 if A2 length is acceptable
{ System.out.println(- A2 Queue -);

Il retuen result: Al service level
break;

}
else

price=input.readLine{);llget A3 price
token=new StrinqTokenizer(priee);
price_i ~ Integer.parseInt(eoken.nextToken{»;
if(price_i«arq-price»11 if A3 priee is aecepeable
( length~inpue.readLine{) ;
token~new StringTokenizer(lengeh);
length_i ~ Ineeger.parseIne(eoken.nextToken{»);
if(lengeh_i«arg_lengch»)if A3 length is acceptable
( System.oue.println(- A3 Queue -);

Il return result: A3 service level
break;

}
else
( priee~inpue.readLine();11 gee A4 priee

token=new StringTokenizer(priee);
price_i = Ineeger.parseInt(token.nextToka~()};

if(priee_i«arg-priee)} Il if A4 price is
acceptable

( System.out.prineln(- A4 Queue .);
Il return result: A4 service level

break;
}

else
( System.out.println(- A3 Queue .);

Il return result: A3 service level
break;

}

}
else
( Syscem.out.println{- Al Queue -);
Il return result: A2 service level

break;

}
else
( System.out.println{- Al Queue -);

1/ return result: Al service level
break;

}
}
else
( System.out.println{-Best-effort Service-li

Il return result: Best-effort service level
break;

98



•

•

•

}//while
input.close{);

I/main

}//class agent

99



• A.2 myserver. java

/*
t @myserver.java
t @author: Suqiao Li
.. @date: June, 1999
* function: this program is a server which acts as broker to negotiate

with
t

*..
agent about which service level to allocate.

•

•

import java.io.*;
import java.lang.*;
import java.net.*;
import java.util.*;

public class myserver
( private static Socket incoming;

public static void main(String[] args) throws IOException
{ String response="";I/ response from the agent

String str="e";
String[] arqument=new String(4}; Il arguments sent to the agent

try
( ServerSocket s=new ServerSocket(8001);

incoming=s.accept();
}

catch(Exception el{};
fI set up server socket, listen ta request fram hast

try
{ DacaInputStream sin= new

DataInputStream{incoming.getInputStream(»;
PrintStream sout= new PrintStream(incaminq.getOutputStream(»;
str=sin.readLine();

}
catch (~~ception e)
{System.aut.println(e);}
System.out.println("Read information fram client ... ");
argument(O}="java";
argument(l]="aqenc";
argument[2}=str.substring(O, (scr.indexof(";"»); llmaximum priee
argumenc[3}=str.substring(str.lastIndexof(·;")+1); Il maximum

length

BufferedReader in= new BufferedReader(new InputStreamReader(
Runtime.getRuntime() .exec(argument).getInputStream(»);

System.aut.println("Invoke agenc.class ... ·);
Il invoke agent

try

100



•

•

•

{ DatalnputStream sin= new
DataInputStream(incaming.getlnputStream(});

PrintStream saut= new PrintStream(incaming.getQutputStream(»;
while «respanse= in.readLine()} != null)

Il get response from agent

sout.princln("Result of negotiation: "+response};
Il send back results to hast

System.out.println("Send back result ... ·);
incoming.close();

Il close the neqociation with agent
}
catch(Exception e)
( System.out.println(e);}

in.close();
}llmain

l//class myserver

101



•

•

•

A.3 ~client.java

/",

", @myclient.java
• @author: Suqiaa Li
• @date: June, 1999
", function: this program runs on the hast side. Read in the user's
requests,
• and send agent ta negotiate with the broker about the
service

level.

import java.ia."';
import java.net.*;
import java.lang.-;
impart java.util.-;

public class myclient extends Thread
{ public static void main(String[} args) thraws IOException

( Socket sackee = null;
PrineWriter out = null;
BufferedReader in : null;
BufferedReader In : new BufferedReader(new

!nputStre~~eader(System.in»;

String str,strl,str2,str3;
String fromServer: .11;

OataInputStream din= null;
DataOutputStream dout= null;
BufferedInputStream fin: null;
BufferedOutputStream fout= null;

Il
Il collect requests from user
If

Syscem.out.println{-What is the maximun price you want to pay?:-};
strl = In.readLine();
Syscem.out.println{ ItWhat is che maximun queue length can you

accept'?:-};
scr2 = In.readLine(};

String response;
Sacket controlsocket = null;
ServerSocket datasocket= null;
BufferedReader contralin= null;
PrintWriter controlout= null;

Il
Il connect to server
Il

try (

102



•

•

•

controlsocket= new SocketC-5USO-, 21);
controlio= new BufferedReader(new

InputStreamReaderCcontrolsocket.getInputStream(»);
controlout= new PrintWriter(controlsocket.getOutpucStream(»;

Il build up control connections for FTP transmition
}
catch (OnknownHostException ue) ( Syscem.err.println(ue);

System.exit(l); }

new readLineThread(controlin).start();
Il recrieve greeting message from FTP server

controlout.println(-USER sqli-);
controlout.flush();
new readLineThread(controlin).start();
Il login process

controlout.println(-PASS ••••••• );
controlout.flush();
new readLineThread(controlin) .start();
Il login process

controlout.println(-PORT 132,206,51,48,10,53·);
controlout.flush();
new readLineThread(controlin).start();
Il send port number to server for active mode cor_~ection

controlout.println(-cNd li/server-);
controlout.flush() ;
new readLineThread(controlin) .start();
Il change direccory to where server resides

try {

Il
Il Initiate Data Connection
Il active mode, use ServerSocket class
Il

datasocket= new ServerSocket(2613};
new DataConn(datasocket, filename).start();

controlout.println(·TYPE r-);
controlout.flush() ;
new readLineThread(controlin) .start();
11 change to Binary mode

Il
Il Send FTP commands through Conerol Connection
Il

try ( sleep(5);} catch(Interrupt:edExcept:ion le) {;}
concrolout.println(·STOR agent.class·);
conerolout.flush();

103



•

•

•

new readLineThread(controlin).start();
Iltransmit the agent(agent.class) to the server

try { sleep(SOOO)i} catch(InterruptedException ie) {;}
Il wait for the transmission to complete
}

catch(IOException ie) {System.err.println(ie}; }

try
( socket = new Socket(-5USU-, 8001):

IICreate a socket which can communicate with porc B001(the server
port number}

out = new PrintWriter(socket.getOUtputStream(), crue);
in = new BufferedReader(new

InputStreamReader(socket.getInputStream(»);
}
catch (IOException e)
( System.out.println(e);

System.exit(l);

out.println{strl+-;-+str2):
Il Send ta the server

System.out.println(- Waitinq for result ... ·);
while «str=in.readLine(» !=null)
(

System.out.println(str);
Il Print out the response from the server

out.close():
in. close () :
In.close{);
socket.close():
controlout.close():
contralin.clase():
controlsocket.close();

Il Close the sacket
}

}

Il
Il class readLineThread is the thread which reads responses fram server
Il
class readLineThread extends Thread
( BufferedReader in= null;

public readLineThread(BufferedReader inn)
( super(-Read Line Thread-);

this. in= inn;
}

Il constructor

104



•

•

•

public void rune)
{ String fromserver= •• ;

try
( while «fromServer= in.readLine(» != null)

System.out.println(fromserver);
}

catch (IOException iel (System.exit(l);}
}

}//class readLineTread

Il
1/ class DataConn is the thread which sends files to server via FTP
1/
class DataCo~~ extends Thread
( ServerSocket socket;

Socket datasocket;
int type;
String file, target;
boolean client;

public DataConn(ServerSocket s, String f)
(

super(~Oata Connection");
this.socket= s;
this.file= f;
chis.client= false;

}

Il constructor

public void rune)
(

DataInputStream din= null;
DataOUtputStream dout: null;
BufferedInputStream fin= null;
SuffereàOutputStream fout= null;
int data= -1;

cry
(

datasocket= socket.accept();

dout= new DataOutputStream(datasocket.getOutputStream(»;
fin= new BufferedInputStream(new FileInputStream(file»;

while «data= fin.read(» >= Cl
dout.write(data);

fin.close{) ;
dout.close(};

datasocket.close();
socket..close();

}

catch (FileNotFoundException fnfe)
{

105



•

•

•

}
}

System.out.println(··** File not found. Try correct file name.-);
return;

}
catch (IOException ie) (System.err.println(ie); }



•

•

•

A.4 queue.txt (simplified database of priees and occupation
percents for different levels)

100
50
200
30
300
20
400
10
EOF

107



•

•

•

B. Source Code for Bandwidth RegotiatioD

There are seven programs in this package: agentl. java, agent2. java,

agent3.java, myserver.java, myclientl.java, mycliene2.java, and

myclient3.java. They work cooperatively ta perform Bandwidth

Negotiation. The lase three of these programs represent three different

hasts, while the first three are the three Agents sent by these Hasts.

Since there is no essential difference between these Hasts and Agents,

we list only one pair of them here.

Agentl.java plays the raIe of an Agent. !t is stored at the Host side

initially. When a request cornes, myclientl.java will send this program

as an Agent ta the server. At the server side, agentl. java gets the

token price from the Broker and modifies its request according ta that

new price. The negotiation between Agent and Broker may last several

rounds before a final consensus i5 reached. There is one class in this

program -- class -agent-, 'Ilhose algorithm is described in Chapter 5,

page 86.

Myclientl.java r~s on the hast side. It collects information from the

user, sets up the FTP connection wi th the 5erver, sends the Agent ta

the server, and then reads responses from the server. There are three

classes in this program: class -myclientl-, performinq mose of the

tasks as a client; class -readLL~eThread·, readinq responses fr~m the

server; class -DataConn-, transferrinq file using FTP.

Myserver. java resides at che server side as a service proviàer. It

collects requests from aIL the Agents and modifies token priee

according ta the ratio of total requests ta available token number. The

negotiation process continues until that ratio converges ta 1. Class

-myserver- is the only class in this program. The algorithm for this

class is given in Chapter S, page 88 .

108



• B.l agentl.java

1*
* @agentl.java
w @author: Suqiao Li
* @date: June, 1999
* function: this program acts as an agent which negotiates with the

broker
*
*

about how many tokens to buy.

•

•

import java.io.*;
import java.lang. w ;

import java.ucil.*;

public class agent1 (

publie stacic DataInputStream input=null;

publie static void main( String(l args) throws IOException
( inc i, j;

int org-price;
Il Original token priee from the broker
int priee;
Il New token priee farm the broker
int max-price;
Il Maximum priee whieh the host wanc to pay
int pre_hw;
1/ Preferred bandwidth of the host
int min_bw;
Il Minimum bandwidth of the host
int quit_bd=O;
Il The request redueed to 0 when coken priee exeeeds the maximum

priee
int cache;

Il
Il collect information from the broker
Il
StringTokenizer token=new SerinqTokenizer(args(O!);
max-priee = Integer.parseInt(token.nextToken(»;
token=new StrinqTokenizer(args[l});
pre_bw = Integer.parseInt(token.nextToken(»;
token=new StrinqTokenizer(args[2});
min_hw = Integer.parselnt(token.nextToken(»;
token=new StringTokenizer(args[3});
orq-price = Integer.parseInt(token.nextToken(»;
token=new StringTokenizer(args[4});
priee = Integer.parseInt(token.nextToken(»;



•

•

•

if (price>max-price)
Il if token price qreater than the maximœm acceptable price

{ System.out.println(Integer.toString(quit_bd»i
Il ask for 0 token ( quit this round negotiation)

}
else
( cache=pre_bw*org-price/price;

Il change request according to the change of the price
if (cache>nUn_bw)

11 if the new request is qreater than the minimum
( pre_bw=cachei

System.out.println(Integer.toString(pre_bw»;
Il send the new request to the broker

}

else System.out.println(Integer.toString(pre_bw»;
Il maintain the original request

}

llmain

}llclass agent

110



•

•

•

8.2 ~8erver.iava

1-
* @myserver.java
* @author: Suqiao Li
* @date: June, 1999
* function: this program is a server which acts as broker to negotiate

with
three di f ferent agents about how many tokens to buy.

import java.ia.*;
import java.lang.*;
import java.net.*;
import java.util.*;
impore java.lang.Inteqer.*;

public class myserver
( private static Socket[I incoming=new Socket(4];

public seatic void main(String[] args) throws IOException
( String response=--; Il the response from the agents

String clienti=--;
String str=··, cache=··;
String[] [] arqument=new String[4] [7];
fi arguments sent from the broker ta the agents
int tr=O;
IITotal Request
inc atn=100;
IIAvailable Token Number
int price=10;
Il Price for one coken ( initially S10)
intel request={O,Q,Q,O};
Il Requests fram each cliene
intel port={Q,SOOl,a002,a003};
/IPort number for agents to access server
StringTokenizer token;
ServerSockee[] s=new ServerSocket[4};
Il serversocket for differenc ports

Il
/1 get initial information: preferred bandwidth, minimum bandwidth

and
Il maximum price from ehree agents. Put chese information L~to

different
Il arrays.
Il
far(ine i=1; i<4; i++)
{ try

( s[il=new ServerSocket{port[i]);
incaminq[iI=s[iI.accept();

}

catch(Exception e){};
try

UI



•

•

•

{ DataInputStream sin= new
DatalnputStream{incoming[i] .getlnputStream(»:

PrintStream sout= new
PrintStream(incoming[i).getOUtputStream(»:

str=sin.readLine();
}

catch (Exception e)
(System.out.println(e);}
System.out.printlnC-Read information from client -Ti);
cache=str.substring(O, (str.indexaf(-;-»);

ifCcache.endsWith(-Clientl-»
Il if the information is sene by hostl

( argument[l] [O]=-java-:
argument(l] [l]=-agentl-:
argument [1] [2]=str.substringCO, (str.indexQfC-C-») ;

argument [1] [3]=str.substringCCstr.indexOfC-:-)+1),str.lastIndexDfC-;-»

argument (11 [4]=str.substring(str.lastlndexOfC-;-)+1):
argument[l] (S]=Integer.toString(price);

}
else if(cache.endsWith{-Clienc2-»

Il if the information is sent by host2

argument(2] [O]=-java-:
argument [2] [l]=-agent2-;
argument [2] [2]=str.substring(O, Cstr.indeXOf{-CN)}};

argument [2] [3]=str.substring{(str.indexDfC-;-)+1),str.lastlndexQf(-;-»

argument [2] [4]=str.substringCstr.lastIndexofC-;-)+1);
arqument[2] [S]=Integer.toStringCprice);

}
else

1/ if the information is sent by hast3
( argument [3] [O}=-java-;

argument [3] [1]=-agent3-;

argument[3][2]=str.substrinqCO,Cstr.indexofC-C-»)i

argument [3] (3]=str.substrinq(Cstr.indexOfC-;-}+1),str.lastlndexofC-;-»

argument[3} [4]=str.substringCstr.lastIndexQfC-i-)+1};
argument[3} [S}=Inteqer.toString(price);

}
}I/for

1/
Il sum up total initial requests
Il
farCint i=1;i<4;i++)
{ token=new StringTokenizer(argument[i] [3]);

request(iI =Integer.parseInt(token.nextToken(»;
tr=tr+request[i);

112



•

•

•

Il
Il Negotiation process going on until tr/atn converges to 1
Il

while«(float) (tr/atn)<O.9) 11«float) (tr/atn»l»
{ argument [1] [5]=Integer.toString(price);

argument [2] [S]=Integer.toString(price);
argument [3] [5]=Integer.toString(price};

Il argumente] [5] is the price of last round

price=price*tr/atn;
Il change price according to the ratio of tr/atn

argument [1] [6]=Integer.toString(price);
argument [2] [6]=Integer.toString(price);
argument [3] [6]=Integer.toString(price);

Il argument[] [6] is the price of this round

tr=O;

1/
Il invoke all che agents again, and collect new requests fram them
Il

for(int i=l; i<4;i++)
( BufferedReader in= new BufferedReader(new InputStreamReadert

Runtime.getRuntime().exec(argument[i).getlnputStream(»);
IISystem.out.println(·Invoke agent.class ... ·):
t~

( OataInputStream sin= new
DataInpucStream(incoming(i).getInputStream(»:

PrintStream sout= new
PrintStream(incoming[i).getOutputStream(»;

response=in.readLine():
}
catch(Exception e)

( System.out.println(e):}

token=new StringTokenizer{response);
request[i] = Integer.parseInC(token.nextToken(»;
tr=tr+request[i]:
in.close():

III while

Il
Il return the results to hosts.
Il
for(int i=1:i<4;i++)
{t~

{ OataInputStream sin= new
DatalnputStream(incaming[i].getInputStream(»;

PrintStream sout: new
PrintStream(incoming[i}.getOUtputStream(»:

113



•

•

•

ff while CCresponse= in.readLineC» != null)

sout.printlnC·Result of negotiation: .);
sout.println{- Token number: -+ request[i))i
sout.println(- Priee: ·+price);
System.out.printlnC·Send back result ... ·);
incoming[i}.close();

}
catch(Exception e)
{ System.out.println(e)i}

}

lI/main
}llclass myserver

114



•

•

•

B.3 ~client.iava

1"
.. @myclient1.java
.. @author: Suqiao Li
.. @date: June, 1999
.. function: this program runs at the hast side. lt reads information
from user" and send out agent to negotiate with broker ...

import java.io.";
import java.net.*;
import java.lang.*;
import java.util.*;

public class myclient1 ~~tends Thread
public static void main(Strinq(} args) throws IOException
( Socket socket = null;

PrintWriter out = null;
BufferedReader in = null;
BufferedReader In = new BufferedReader(new

InputStreamReader(System.in»;
String str,str1,str2,str3;
String fromServer= --;

DatalnputStream din= null;
DataOutputStream dout= null;
BufferedInputStream fin= null;
BufferedOutputStream fout= null;

Il
Il Collect information from hosts
/1
System.out.println{~Whatis the maximun priee you want to pay?:·);
strl = In.readLine();
Syscem.out.println(-What is the preferred bandwidth do yeu

want?:-);
str2 = In.readLine();
System.out.println{ -What is the minimun bandwidth ean you

aeeept?:·);
str3=In.readLine();

String response;
Secket controlsoeket = null;
ServerSoeket datasocket= null;
BufferedReader controlin= null;
PrintWriter controleut= null:

Il
Il conneet ta server
Il

115



•

•

•

try {
controlsocket= new Socket(-PEACH·, 21);
controlin= new BufferedReader(new

InputStreamReader(controlsocket.getInputStream(»);
controlout= new PrintWriter(controlsocket.getOUtputStream(»;

Il build up control connections for FTP transmition
}

catch (UnknownHostException ue) ( System.err.println(ue);
System.exit(1); }

new readLineThread(controlin) .stare(};
Il retrieve greeting messages from FTP server

controlout.println(·USER sqli-);
controlout.flush();
new readLineThread{controlin) .start{);

Il login process

controlout.println(·PASS * ••••• -};
controlout.flush();
new readLineThread(controlin) .start{);

Il loqin process

controlout.println{·PORT 132,206,51,47,10,53-);
controlout.flush();
new readLineThread{controlin) .start{);

Il send port number to server for active mode connection

controlout.println(-cwd li/bw/server-);
controlout.flush();
new readLineThread(concrolin) .start();

Il change directory ta where server resides

try (

String filename=-agentl.class-;

Il
Il Initiate Data Connection
Il active mode. use ServerSocket class
Il

datasocket= new ServerSocket(2613);
new DataConn(datasocket, filename) .start();

controlout.printlnC-TYPE I-);
controlout.flush();
new readLineThread{controlin}.start();

11 change to Binary mode

Il
/ 1 Send FTP commands through Control Connection
Il

116



•

•

•

try ( sleep(S);}
catch(InterruptedException ie) (;}
controlout.println(·STOR aqentl.class·);
controlout.flush();
new readLineThread(controlin).starc();

Il transmit the agent(agentl.class) ta the server

try { sleep(SOOO);}
catch(InterruptedException ie) {;}

llltry
catch(IOException ie)

{System.err.printlnCie);

t~

{ socket = new SocketC·PEACH-, SOOl};
Il Create a socket which can communicate with port SOOlC server port

number)

out = new PrintWriter(socket.qetOUtputStream{), true);
in = new BufferedReader{new

InputStreamReaderCsocket.qetInputStream(»);
}
catch (IOException e)
( System.out.println(e):

System. exit (1) :

strl=strl.concat(·Clientl-);
Il mark the string for identification

System.out.printlnC-strl= ·+strl);
System.out.printlnC- send out: ·+scrl+-:-+scr2+-;-+scr3);
out.println(strl+-:·+str2+-;-+str3);

Il Send to the server
Syscem.out.println(- Waiting for result ... ·);
while «str=in.readLine(» t=null)

Il Print out the response from the server
(

System.out.println(str);

out.close();
in.close();
In.closeC);
socket.closeC);
controlout.close();
controlin.close();
controlsocket.close(};

Il Close the socket
}

}

Il
/1 class readLineThread is the thread which reads responses fram server
/1

117



•

•

•

class readLineThread extends Thread
(

BufferedReader in= null;

public readLineThread(BufferedReader inn)
(

super(·Read Line Thread-);
this . in= inn;

}

Il constructor

public void rune)
{

String fromServer= •• ;
try
(

while «fromServer= in.readLine() ~= null) (
System.out.println(fromServer);

}

catch (IOException ie) (System.exit(l);}
}

}llclass readLineTread

Il
Il class DataConn is the thread which transfers file using FTP
Il

class DataConn extends Thread
{

ServerSocket socket;
Socket datasocket;
int type;
String file, targec;
boolean client;

public DataConn(ServerSocket s, String f)
(

super(-Data Connection-);
this.sockec= s;
chis.file= f;
this.client= faIse;

}

1/ constructor

public void rune)
(

DataInputStream din= null;
DataOutputStream dout= null;
BufferedInputStream. fin= null;
BufferedOutputStream fout= null;
ine data= -1;

try
{

dacasocket= socket.accept();

118



•

•

•

dout= new DataOUtputStream(datasocket.getOUtputStream();
fin= new BufferedInputStream(new FileInputStream{file});

while «data= fin.read(» >= D}
dout.write(data);

fin. close () ;
dout.close() ;

datasocket.close(};
socket.close{);

}

catch (FileNotFoundException fnfe)
(

System.out.println{-*** File not found. Try correct file name
again.·) ;

return;
}

catch (IOException ie)
(System.err.println(ie);

}
}

119


