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ABSTRACT

The energy cascade process in turbulent flows is studied. Kolmogorov ineitial range
theories are critically reviewed and the multifractal characterization 1s d:scussed. Multiplicative
cascade models are compared to the energy dissipation field (EDF) measured in the atmosphere.
Landau’s objection to the 1941 Kolmogorov theory is extended to the predictions of statistical
fluid mechanics. The hypothesis Av(AL) d A3 Av(L) is rejected with a statistical test. 't he
mcments <(loge(L))P>, where (L) denotes the EDF averaged over a volume of size L, are
shown to be gaussian. For the EDF: Convergence tests showed that the exponents 1(q) were
not reliable for q < 0; the correlations obey <(Hx(8))P(Hx+5(d))4> o< §Y(P.A) byt y does not
always equal the value obtained with a multinomial measure; a privileged scale ratior= 1/2 is
suggested by the prefactor oscillatious of the correlation function. The implication; of these

results for the modelling of the EDF are discussed.




RESUME

On étudie le processus de cascade d'énergie dans les écoulements turbulents. On propose
une revue critique des théories de I'intervalle d'inertie de Kolmogorov et la caractérsation
multifractale est discutée. Les processus multiplicatifs sont comparés au champ de dissipation
d’énergie (CDE) mesuré dans I'atmosphée. L’objection de Landau a la théorie the Kolnororoy
(1941) est étendue aux predictions de la mécanique statistique des fluides.  L’hypothose
Av(AL) a3 Av(L) est rejetée avec un test statistique.  On montre que les moments
<(loge(L))P>, ot €(L.) est le CDE moyenné sur un volume de taille L, sont gaussiens. Pour le
CDE: Des tests de convergence ont montré que les exposants t(q) ne sont pas tiables pour
q<0; les corrélations satisfont <(ux(8))P(Hx4+5(8))3> o< §YP-9) mais y n’est pas toujours égal
a la valeur obtenue avec une mesure multinomiale; un rapport d’échelle privilégié r = 1/2 e
suggéré par I’étude des oscillations du préfacteur de la fonction de corrélation. Les implications

de ces résultats pour la modélisation du CDE sont discutées.
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CONTRIBUTIONS TO ORIGINAL KNOWLEDGE

This thesis is an attempt to bridge the physical theories of turbulence with the fractal
characterizations. This connectior: was made to reach a better understanding of an essential
energy transfer mechanism common to all turbulent flows: The energy cascade process
Another related goal was to develop new characterization metheds for wrregular fields  We

chose to group our main contributions to these problems in two sections: Turbulence and

fractals.
TURBULENCE

1) Landau’s objection to the 1941 Kolmogorov theory: The possibility of extending
Landau’s objection to most of the predictions of statistical fluid mechanics does not appear to
have been emphasized previously (chapter 2). The principle of invariance with respect to the
composition of statistical subensembles may prov.de constraining guidelines 1n the construction

of adequate statements in statistical fluid mechanics.

2) Third Kolmogorov hypothesis: On the basis of the properties of muluplicative
processes we proposed an alternate weaker form of the third Kolmogorov hypothesis  Our
hypothesis states that the inoments log(e(L)) can be obtained using the gaussian approximation
(chapter 3), while the original third Kolmogorov hypothesis states that €(L) 15 distnbuted
according to a lognormal law. The use of the lognormal law for the calculation of <(e(l.,))4>
does not yield accurate predictions (Anseimet, 1984). By contrast, our hypothesis was found to
be reasonably well supported by the data (section 7.3). Our study clarifies the implications of
the central limit theorem on the calculation of moments and also supports the use of

multipiicative processes in the modelling of the energy cascade.

3) Simple scaling of the velocity field: Our method for testing the simple scaling of

Av(L) based on a xz comparative test on normalized histograms obtained for different

Xii




s =

separations L appears to be original. It allowed us to reject the null hypothesis of simple scaling
without necessarily having an accurate estimation of high order moments (chapter 7). This test
also resolved a controversy in turbulence theory about the breakdown of <IAv(L)P> o LN3 for

high values of h.

4) Correlations in multifractals: Our experimental verification on the energy dissipation
field of the relation between the scaling exponents of <(i,(8))P(1;+7(8))3> =< 3¥(P.q) and
<(M,(8))P+a> appears to be original. In particular, we found that ¥ did not equal for all (p, q)
the value corresponding to the random multinomial measure. These scaling exponents therefore

allow to disiinguish the energy dissipation field from single scale multiplicative processes.

5) Spurious scaling: The lack of reliability of the mass exponents t(q) (spurious scaling) in

the negative range does not seem to have been noticed previously.

6) Spatially localized energy cascade: Our simultaneous observations of several spectral
bands of the velocity field does not appear to have been used previously to support the existence

of a spatially localized energy cascade (chapter 7).

7) Physically distinguished scale ratios in the dissipation field: We presented a
first attempt to discover privileged scale ratios by measuring the prefactor oscillations of the
correlation functions €2q(L) in the energy dissipation field (8.2.4). The analysis of Qq(L)
revealed oscillating prefactors with fairly regular up and downs, but our estimation of the
prefactors was not accurate enough to establish periodicity. In the isotropic range (i.e.
L < 3 m) the oscillations suggest a periodicity with a scale ratio r = 1/2; in the non-isotropic
range (i.e. L >3 m), they suggest a rough periodicity with r = 1/1.4. In any case the
prefactors are not periodic over the whole scaling range, which means that the hypothesis of a

single scale ratio does not hold.
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FRACTALS

1) Renormalization: The possibility of understanding the scaling properues of self-similar
sets and self-similar measures, either deterministic or random, with a unique renormalization
equation does not appear to have been emphasized previously (chapter 4 and 5 and the appendis

4.1) and allows a simple and unified presentation.

2) Non-concave multifractal spectrum: The possibility of a non-concave (o) giving
rise to a concave 1(q) does not appear to have been noticed previously. It implies that the true

f(a) cannot be deduced from T with a Legendre transform, unless f(a) is smooth and concave

3) Canonical multiplicative processes: Our presentation of the canonical random
multinomial measure is simpler than the original presentation (Mandelbrot, 1974) In the
divergent case our results suggest that the measure is composed of a multifractal measure plus a
finite number of isolated and intense “spikes” that determine entirely high order moments

(chapter 35).

4) Correlations in multifractals: Our derivation of the scaling exponents of the correlation

generating function for separated self-similar measures using a renormahzation equation appears

to be original (section 5.5.2). The exact connection of <L (8)iL,4n(8)> and <p,(8)(Hy4n(8))2>
with single box moments does not appear to have been noticed previously (section 5 5), and the
existence of more general constraints satisfied by higher order order correlations

<(Li(8))P(ML14+n(8))9> was never pointed out. We gave the first denvation of the correlation
generating function for the family of single-scale random multinomial measures (section 5.5.4)

Previous calculations involved only specific quasi-deterministic examples of measures.

5) Oscillations in self-similar sets and measures involving a privileged scale

ratio: The sensitivity of the prefactor of Ng(d) to the box-counting grid does not appear to

have been emphasized previously (chapter 4). The discussion of prefactor oscillations in the
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generating function of multinomial measures appears to be original (chapter 5). Our defimitions

of C4(L) and Qq(L) (chapter 8) are original and provide new “grid insensitive” methods for

measuring prefactors or scaling exponents. The effect of the separation condition and of

randomness on the periodic prefactor of Cq(L) and Qq(L) in single scale sets and measures does
not appear to have been studied previously (sections 8.2.1, 8.2.2). We presented a first
numerical experiment with the Novikov “pulse-in-pulse” model (section 8.2.3) that suggests

that the prefactor oscillations have a small amplitude (a few percent of the average prefactor).
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Chapter 1
INTRODUCTION

Vent, vent, tout n’ est que vent

Breton saying

The existence of two sharply different types of flows, today called laminar and turbulent,
had already been noticed in the first half of nineteen century. However, the first theory of
turbulence came only with the pioneering works of Osborne Reynolds (1883-1894). Reynolds
first studied the conditions under which a laminar flow of fluid in a pipe becomes turbulent
The characteristic property of any turbulent flow is the irregular random variations of the
velocity field (as well that other fields) over wide ranges of spatial and temporal scales
Reynolds discovered that pipe flows became turbulent, in contrast to lamunar which wimphes
steady and smooth, for large enough fluid velocities in the pipe and he proposed a general
criterion for the transition to turbulence based on the famous Reynolds number  Since these
heroic times it has been recognized that the majority of flows encountered 1in nature and
technology are actually turbuient flows, while laminar flows occur only as rare exceptions. The
various motions of air in the atmosphere, from slight breezes to general atmospheric circulation
at planetary scales, the motions of water in rivers, lakes and oceans as well that the motons of

gases in interstellar nebulae are turbulent.

Turbulence plays a fundamental role in various mechanisms such as the transfer of heat and
moisture by air masses, the spreading of admixtures in the air, the exchange of carbon dioxide
and oxygen between plants and animal life, the scat.ering of pollen and the lighter sceds, the
production of wind currents in the oceans etc... All these processes are crucially involved in the
development of life on earth as well that in pollution problems. Turbulence 1s therefore all
around us and its study is consequently extremely important from the practical point of view.

Turbulence is also very interesting from a theoretical perspective of nonhinear mechanical




systems with a very great number of degrees of freedom. Indeed, turbulent fields are descnbed
by functions of a complex nature invo!ving a huge numher of Fourier components. Such
systems demand a statistical description that 1s the object of statistical fluid mechanics (Monin
and Yaglom, 1975). The atmospiere is sometimes regarded as a unique laboratory for

investigating the properties of these systems.

In numerical simulations of the atmosphere, the huge number of degrees of freedom
characteristic of turbulence is one of the first difficulty encountered because computers are still
very far from being able to process the necessary amount of data. As a simplifying modelling
hypothesis, it 1s often argued that velocity variations on small spaual or temporal scales cannot
be considered as meteorologically significant, and that smoothed versions of the same fields
should provide the relevant dynamical information. Such arguments usually involve the
hypothesis of a scale separation, made in the hope that small scale details do not play a
dynamically significant role. In these approximations, known as parametrization methods,
small scale motions are expressed in terms of larger scale motions. Small scales are in that
sense “slaved” by larger scales, and ad hoc pseudo viscosities must be introduced to avoid the
accumulation of energy that would normally be absorbed by small scale dissipation  An
interesting alternative to such slaving principles is the hypothesis of self-similanty, pioposed by
Mandelbrot (1983) in a general geometrical context, and developed in atmospheric physics by
Schertzer and Lovejoy (1985, 85, 87, 89). From this point of view, there 1s no need to
introduce a scale separation because the statistics at a given scale are assumed to be related in
some relatively simple way to smaller or larger scales statistics. Small and large scale variability
are regarded as part of a unique process, and the goal is to find effective ways to describe and
characterize fields that are very irregular over a wide range of temporal and spaual scales, 1.e.

fractal fields.

In this thesis we shall focus on what may be the simplest state of a turbulent fluid: Inertial
range fully developed turbulence. The main reasons for studying this type of flow are twofold
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Firstly the concept of “lezally isotropic turbulence™ introduced by Kolmogorov, supplemented
with hypotheses about the energy cascade process inspired from the ideas of Lewis Richardson
and Geoffrey Taylor, lead to accurate predictions about the energy spectrum and had a protound
impact on our understanding of turbulence. The success of these theories suggests that there
may exist some universal state for high-Reynolds-number small scale turbulence, which 1s an
attractive possibility. The work of Kolmogorov has served as a basis for most subsequent
developments of the theory of the local structure of turbulence. From the broader perspective of
the statistical mechanics of systems with a large number of degrees of freedom, Kolmogorov
dimensional arguments have also been applied to nonlinear systems other than fluids with
encouraging results (e.g Bartello and Warn, 1988) Secondly, these theories opened the way
to an ensemble of phenomenological approaches to the modelling of turbulence, and more
precisely of the energy cascade process. This process, by which the energy 15 carried trom
large to small scales, is of general interest and is an essential ingredient of the dynamics of all
turbulent flows. These phenomenological cascade models are perhaps the beginning of a new
stochastic approach to the modelling of turbulence, providing an alternative to other avenues,
such as the direct numerical simulation of the Navier-Stokes equations - stll very himuted by the
capacities of today’s computers - or the closure theory developed in parucular by Robert

Kraichnan, which do not account for the characteristic intermittency of a turbulent flows.

The connection of cascade models with real fluids 1s phenomenological, and their exact link
with the dynamics remains rather vague at this stage. In this thesis we shall study these models
and compare them with real turbulent flows. The emphasis will therefore be on the accuracy ol
this descriptive approach to turbulence modelling. It has been argued by Mandelbrot that the
development of an efficient description was a necessary and preliminary step to the process of
making predictions. Indeed, how the elliptical trajectonies of the planets could have heen
predicted without the invention of calculus? In this perspective, our goal 1s to bring together

inertial range turbulence theory and the fractal description, which happens to be a natural




framework for turbulent fluids. We will try to determine which phenomenological energy
cascade models, among the growing list of possibilities proposed in the literature, are the most
relevant candidates to the modelling of turbulent flows. More precisely, we would like to find
to what extent the multfractal characterization allows different models to be distinguished, and

eventually go beyond this characterization.

On the theoretical side two preliminary steps were found to be essential to reach our goal.
Firstly, a good understanding of the Kolmogorov inertial range theories was needed. A critical
review of these theories with an emphasis on what appears to be the most significant problems
and controversies is therefore presented 1n chapters two and three. Secondly, a clear statement
of the fractal ideas was also needed. Indeed, the large number of possible models consistent
with a given scale symmetry demands a work of classification, as well that the development of
techniques allowing different classes to be distinguished, and therefore the fractal
characterization methods are directly relevant. In this perspective, we propose 1n chapter 4 iand
5 an onginal turbulence-oriented synthesis of the concepts and methods appropriate for fractal
sets and fractal measures respectively. This synthesis was mainly mouvated by the lack of
systematic reviews on fractal measures, and it covers a literature scattered over several fields,
such as topology, non-linear dynamical systems, chaos theory, geophysics and fluid

mechanics.

Ultimately, the experimental verification of any hypothesis is necessary, especially when
dealing with loosely specified phenomenological models that relate only qualitatively to the
Navier-Stokes equations, by shanng some (scale) symmetries with them. On the experimental
side, high frequency measurements of the velocity field in the atmospheric surface layer were
collected using a hot wire anemometer and an analog-to-digital converter installed on a personal
computer. Chapter six first concentrates on preliminary analyses of this data by reproducing
well known results about inertial range turbulence. Previous scaling studies on the subject are
next criticized and some new original analyses related to correlations in multifractal are
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presented. In chapter seven two aspects of inertial range turbulence theones, namely wumple
scaling and intermittency, are examined with onginal methods and a new test of the vahdity ot
multiplicative processes is proposed, based on the central limit theorem  In chapter height one
the simplest family of cascade model, involving a single scale ratio, 1v compared with the

energy dissipation field.
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Chapter II

REVIEW OF THE KOLMOGOROYV INERTIAL RANGE THEORIES
AND THE ORIGIN OF CASCADE MODELS

A major defect of the current theoretcal study of turbulence is that it separates m
at least two disconnected parts One part includes the successful phenomenology put
Sforthan Kolmogorov 1941 (. ). And the other part includes the differential equations
of hydrodynamucs, due to Euler for nonviscous fluids, and to Navier (and Stokes) for
viscous fluids. These two parts remain unrelated If “explained” and understood mean
“reduced to basic equations,” the Kolmogorov theory 1s not yet explained or understood
And Kolmogorov has not helped solve the equations of fluid motion

Benoit B. Mandelbrot (from The fractal geometry of nature)

This thesis is mostly concerned with phenomenological approaches involving statisucs,
fractals and scaling, applied to the modelling of turbulent flows. In the field of statistical fluid
mechanics, scaling hypotheses and "fractal” ideas probably started with the Kolmogorov nertial
range theories. We shall therefore begin this dissertation with a critical review of the ¢ theories
We emphasize some unresolved controversies and try to interpret them in the framework of the
classical theories. This presentation relies in particular on Kolmogorov (1941a, 1962),
Kraichnan (1974), Monin & Yaglom (1975), Orszag (1977), Frisch and Sulem (1978),
Schertzer and Lovejoy (1984) and Frisch and Orszag (1990).

2.1 REVIEW OF THE 1941 KOLMOGOROV HYPOTHESES

The simplicity of the 1941 Kolmogorov theory (in short the K41 theory) and the accuracy of
its most famous prediction, namely the k57 energy spectrum, make this theory one of the most
remarkable in the field of turbulence. As is often the case with dimensional analysis, an
important tool in this theory, the derivation of the result is easter than its interpretation in
dynamical terms. Even today, no formal analysis by means of perturbation theory, the moment
equation hierarchy, or renormalization techniques can settle whether a power spectrum of the

form kP is compatible with the Navier-Stokes equaticns (Kraichnan, 1974). Nevertheless, the
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success of Kolmogorov energy spectrum certainly supported the idea that scale invariance was

an important property of turbulent flows.

The K41 theory is concerned with the small scale behavior of incompressible fluids at high
Reynolds number. By "small scale” we mean small with respect to the smallest imacroscale Ly,
defined by the geometry of the flow. In the simplest case of a fluid contained in a cubic box, Lo
would be the size of the box. In more rcalistic situations, for example the velocity field in the
atmosphere above a flat terrain, Lo would be the distance from the boundary if the thermal
effects (i.e. motion generated by the fluctuations of the air density) were negligible. The fluid
considered is subject to some large scale forcing mechanism injecting in the flow a mean energy
production rat< fg per unit mass. In a dynamical equilibrium, this energy production is balanced

by the mean energy dissipation rate per unit mass €, so that € = fo.

The energy contained in the largest scales of the turbulent velocity ficld is transfered, via
non-linear interactions, into the smaller scales. For large scales the energy is transfered without
losses. This statement can be justified by considering the spectral form of the Navier-Stokes

equation. If the velocity field is expanded in Fourier series in cyclic boxes, i.e.

v(X,t) = zv(kJ) kX,
)

the dissipation term -v 02v(x,t)/0x;ox; of the Navier-Stokes equation takes the spectral form
Tp=-v llkllzv(kj). Tp is large only for large Ilkll, i.e. for small scales, for which the viscous
forces become important and convert the kinetic energy into heat. The non-dissipative energy
transfer from large to smaller scales, driven by non-linear interactions, is usually called the
energy cascade process. It was first described by Richardson who envisioned a sequence of
eddies of all sizes in which smaller eddies "feed" on the energy of larger eddies. Similar

breakage processes were studied by Kolmogorov (1941b).




Kolmogorov argued that for high Reynolds number the small scales of the flow should have
a universal structure, independent of the larger scale geometry of the flow, the details of the
forcing and of the boundary conditions being "forgotten”. More specifically the K41 theory s
based on two hypotheses. The first supposes that the n-vanate probabulity distributions ot the

velocity differences Avy(L) = v\(x+L) - v|(x) are universal isotropic functions solely ot the

difference vector L, the kinematic viscosity v and €g, provided that IILIl = L is small with
respect to L. Using these parameters a dissipation scale (or inner scale) ng = v gg-Y4 can
be formed, usually interpreted as an estimate of the smallest scale in the velocity field. This

leads immediately, by dimensional analysis, to

<lAv(L)h> = F(Mo/L) (eogL)h3, L << Ly, (2.1.1)
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where Fy, is an unknown function. The second hypothesis states that the above n-variate
distributions are independent of v if L lies in the inertial-range, i.e. if g << L << L,. Indeed

for large enough scales the dissipation term defined above is small, and it becomes plausible to
assume that large scales statistics become independent of v in the limit v — (). The second
hypothesis implies that the high-Reynolds-number expression of the velocity structure function
is

<lAv(L)ih > = F,(0) (ggL)M3 , no << L << L,, (212
which is one form of the celebrated Kolmogorov law.

These results can be stated in the speccral form. The characteristic wavenumber associated
with the dissipation scale is kq = (€0/v3)!/4 and marks the transition from the inertial range
ko < k < kq (ko = 1/Lg, where L is the smallest macroscale) to the dissipation range

k > kq. The energy spectrum E(k) is defined so that

vl Aad
<V| > _
R 0[ E(k) dk ,




where vi' = vj - <vj>. Assuming that E(k) falls off in the dissipation range rapidly enough
with increasing k, (2.1.1) with h =2 leads by Fourier transformation to the inertial range

spectrum law
E(k) = £92/3 k583 f(k/kyq), (2.1.3)

where f(x) an unknown universal function (for more details on the energy spectrum see Monin
and Yaglom (1975), section 12.1 and 21.4, volume 2). Alternatively, (2.1.3) can be obtained
directly with dimensional analysis. The second hypothesis implies that the kg dependence
disappears for k << ky, i.e. f(x) - Cas x - 0, where C is a constant. In the inertial range,

the energy spectrum then becomes
Ek)=C g2 k38, (2.1.4)

Kolmogorov theory does not predict the value of C, which can be determined experimentally

(C = 1.6).

In Kraichnan's words the 1941 Kolmogorov theory, and especially the prediction (2.1.4),
“"has achieved an embarrassment of success". Since the first experiments of Grant, Stewart and
Moilliet (1962), numerous other experiments in wind tunnels as well as in the atmosphere have
shown that (2.1.2) is well obeyed for h = 2, that the energy spectrum in the dissipation range
k > kg scales according to (2.1.3) and that (2.1.4) often holds over a range of scales wider
than expected a priori. Actually, an approxima‘e k~3/3 energy spectrum is often observed in
flows for which the Reynolds number is too small for a distinct inertial range to exist and in

conditions where substantial departurzs from isotropy occur.
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One might be tempted 0 use the the same dimensional arguments with other fields, to

example the energy dissipation field

e(x,t) =172V 2 (0u,/ox;+0u,/0x,)2,
1)

The first and second hypothesis applied to €(x,t) imply that the power spectrum of £(x.t) has
the form Fe(k) = C €92 k-1 in the low-k range. However this spectrum was expetimentally
found to be proportional to k'S where s = 0.6 (see for example Pond and Stewart (1963)).
This means that the dimensional argument of the K41 cannot be applied to €(x.t), probably

because €(x,t) always depends on the kinematic viscosity.

The K41 theory makes useful predictions for flows having a wide range of scales. The
necessity for a wide range of scales in fully-developed turbulence follows from the balance
between dissipation and the driving force. The mean energy dissipation rate can be expressed

in the form

(-]

eo=2vjk2E(k)dk = v Q, (2.1 5)

where E(k) is the energy spectrum (Monin and Yaglom (1975), section 12.3) and €2 the
enstrophy. In the limit Ra—w (or v—0) with € finite, (2.1.5) implies that Q- and therefore

the energy distribution mrust become broader in k-space if E(k) remains finite.

Despite its success, the K41 theory was immediately criticized by Landau m 1944 (see
Landau and Lifchitz, 1989) on theoretical grounds, and was consequently modified by
Obukhov (1961) and Kolmogorov (1962). More r=cently, some experimental evidence of the
failure of the prediction (2.1.2) at large h was obtained by Anselmet (1984). We shall now
discuss the physical arguments, rather delicate and often introduced 1n a cavalier manner,

explaining the limitations of the K41 theory.
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2.2 REEXAMINATION OF THE K41 THEORY AND THE MODIFIED
SIMILARITY HYPOTHESES

In the spint of the K41 theory the small scales of the fluid velocity field are assumed to reach
a statistical equilibrium determined by the energy injected at larger scales. A given spatial
region of the fluid is therefore expected to adjust to an energy flux that is somehow local 1n real
space. This concept of localness, linked to the energy cascade, was first pointed out by Landau
as a basic objection to the K41 theory. Global universality seems untenable since the intensity
of the small scales .. any particular region is clearly related to the intensity of the local external
driving. Consequently it seems inescapable that the statistics of the small-scales depend on

spatial and temporal variations of the driving, which are in essence non-universal.

On the experimental side, it was noticed by Obukhov (1961) that the k-3/3 energy spectrum is
observed locally in the atmosphere. He noticed that power spectra measured on long enough
samples in the atmosphere do exhibit a k-3/3 energy spectrum, but that the prefactor was
changing significantly from a sample to the other. From the standpoint of the K41 theory, the
vanations of the prefactor are due to changes in the local energy dissipation rate €),c, (at this
Stage €)5ca1 Can be thought to be an average obtained with a finite sample). The validity of the
k-3/3 energy spectrum for samples questions the universality of the constant C 1n (2.1.4),
because in general <(Ejoca)?>> # (<€joca>)??. This difficulty arises from the fact that the law
E(k) = C €2/ k-5/3 is not invariant with respect to the composition of statistical
sub-ensembles. To illustrate this property, suppose that a set of samples is split in two sub-sets
according to the mean energy dissipation rate € obtained for each sample: A sample belongs to
the first sub-ensemble if € > €. (€. is an arbitrary threshold) and belongs to the second
sub-ensemble otherwise. It seems reasonable to expect the k-3/3 law to hold separately for each

sub-ensemble, i.e.

Ei(k) = C <e>,2B k58 and Ey(k) = C <€>92/3 k-5/3,
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where <e>; and <€>; denote the mean energy dissipation rate for each sub-ensemble. If py and

p2 denote the probabilities of belonging to each statistical sub-ensemble, then the energy

spectrum of the complete ensemble is obtained by

Ek) = p1 Ei(k) + p2 Ex(k)
= C[ p; <e>12B + py <e>,2R ] k58

z C<e>2B k583,

unless € has a special probability distribution. The k-3/3 law relates the average quantity E(k) to
the 2/3th power of an average, which breaks the invariance with respect to the composition of
statistical sub-ensemble. A statistical statement that respect this invanance must relate average

quantities in a linear way, e.g. <A> =k <B>. It would therefore seem that the k53 law

cannot hold in principle.

Obukhov's observations and Landau's objectionn suggested the possibility of a local
application of the Kolmogorov similarity hypotheses. QObukhov proposed to redefine the
statistical ensemble of the K41 theory. The basic idea is to define a sub-ensemble of tlows,
contained in some imaginary sphere of diameter L, for which the volume-averaged encrgy
dissipation e(L) is fixed. €(L) is regarded as an estimate of the "local” energy flux. The K41

theory is then assumed to hold for this sub-ensemble, with &g replaced by g(1.).

This idea has been criticized mostly because of the arbitrariness of the choice of €(1.) as a

candidate for a "local energy flux". Indeed, the dynamical quantity responsible for the dynamics
of the scales L is the spectral energy flux from scales L to smaller scales. In general, this

spectral flux does not equal €(L) (Kraichnan, 1974). Despite its arbitrariness, this hypothesis 1s
still used nowadays to relate the energy dissipation field to the velocity field (Ansclmet (1984),
Schertzer and Lovejoy (1985), Meneveau and Sreenivasan (1990, 1987b, 1987¢), Novikov

(1990)). The idea of studying the properties of a field as a function of the propertics of another

13




o

field, allowing the introduction of a conditional ensemble, is commonly used in the analysis of
turbulent fields and is usually called conditional sampling (Antonia (1981), Raupach (1981),
Shaw and Businger (1985)).

The idea of Obukhov lead Kolmogorov to propose a modified version of the K41 theory,
based on the concept of local energy dissipation rate. The refined hypotheses are similar to the
original hypotheses, except that they apply to a conditional ensemble. x and x+L are assumed
to be contained in a sphere of diameter L having a fixed value & for e(L). The first refined
hypothesis naturally leads to the definition of a local dissipation scale n =v 34 g-1/4. From

dimensional analysis follows the expression of the conditional velocity structure function:
ForL <<L,, <(Av(L)P>lgry=e = F(Mm/L) (€ L)h/3, (2.2.1)

Similarly, the second refined hypothesis states that the n-variate distributions of the velocity

differences are independent of v when 1 << L << L, i.e. when the local dissipation scale is

small enough. This implies that the moments given by equation (2.2.1) become independent of

N asn - 0. Therefore

asn — 0, < (Av(L)h > g(L)=¢ ~ Fp(0) (e L)h3 . (

1%}
9
2
~

These two hypothesis are assumed to be valid for a "pure regime", i.e. for the conditional
ensemble described above. A real flow is a "mixed regime" where a range of values for €(L)

exists. It follows that there is also a spectrum of local dissipation scales n. If the global

Reynolds number of the flow is large enough, it becomes plausible to assume that the condiuon

N << L is always satisfied except for a few events weighted by a small probability. Following
vhis argument, the unconditional ensemble average can be obtained by an ensemble average on

the equation (2.2.2):

< (Av(L)h > = F(0) LM < e(L)"? >. (2.2.3)
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Notice that this equation is invariant with respect to the composition of statstical sub-ernsembles
because it relates linearly two averages. (2.2.3) is the modified form of (2.1.2), taking into
account the Reynolds number dependence of the velocity field through <@EL)M> 1t connects
the statistics of two random variables without specifying either of them, which 15 a qualitative
difference between the modified and original theories. The modified theory 1s therefore much

less predictive than the K41 theory because <(£(L))h> remains unknown. The retined theory,

and especially the prediction (2.2.3), are still regarded as controversial (Landau and Lifchuy,

1989 (revised edition), section 34).

It is interesting to note that for h = 3 the prediction (2.2.3) of the modified theory yields 1s

<(Av(L))3> < goL (because <e(L)> = gg) and is therefore identical to the prediction of the
K41 theory. The order-3 velocity structure function is therefore insensitive to intermuttency. It
is also worth stressing that the exact expression of <(Av(L))3> can be derived from the

Navier-Stokes equation. Assuming isotropy (landau and Lifchitz, 1989, section 34), it can be

shown that

B3(L) = % gl + 6v%%2, (2.2.4)

where Bp(L) = <(Avj(L))»>. Assuming that € remains finite as v-0, (2.2.4) becomes

B3(L) = -% goL. (2.25)

This is an important result since it is essentially exact for fully-developed isotropic turbulence.

A priori (2.2.5) might suggest that Bp(L) can be expressed for any n o..ly in terms of L and €,
in which case one falls back on the original K41 theory. However, in the light of Landau’s
objection the universality of (2.2.5) is regarded as an interesting but special property of the

order-3 moment of Avj(L), and moments of order h # 3 are expected 1n gencral to be
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non-universal. Note that B3(L) depends linearly on gy and therefore the exact result (2.2.3) is

invariant with respect to the composition of statistical sub-ensembles.

It is interesting to look back at the K41 theory from the point of view of the refined theory

The prediction (2.2.3) would be consistent with (2.1.2) if the condition
<(e(L)'> = gt (2.2.6)

was satisfied for L >>n. In general (2.2.6) is not satisfied, although <€(L)> = gg always
holds for a spatially homogeneous field. Nevertheless (2.2.6) could still be satisfied if the
variations of (L) were restricted to the dissipation range only, i.e. if ¢(L) = ¢y when L > 1.
However the variability of the energy dissipation field and in particular its intermittency, which
produce sequences of “dead” or “live” regions of size L > 1, is not compatible with this

behavior. In the perspective of the refined theory, the K41 theory fails because €(L) varies

significantly when L lies in the inertial range.

The intermittency of the energy dissipation field (Batchelor and Townsend (1949), Sandborn
(1959), Kuo and Corrsin (1971)) was discovered by looking at the high-passed filtered velocity
field (figure 2.1). The resulting signal exhibits a sequence of active regions separated by
inactive gaps where the velocity is almost vanishing. The bulk of the dissipation takes place in
the intense regions, where the velocity derivatives are large. It was observed that the mean size
of the active regions decreased as the Reynolds number increased. As a phenomenological
observation, intermittency implies that the bulk of the dissipation in a fully-developed turbulent
fluid occurs in a small volume-fraction of the whole space, and that this fraction decreases with
increasing Reynolds number. We will return to these high-passed filtered velocity fields in an

experimental study (chapter 7).
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Figure 2.1: A velocity signal measured with a hot wire anemometer in a [5x150 ¢m
boundary layer channel was filtered, so that the traces shown are within a narrow frequency
band around the frequency noted. The small scale turbulence appears to be contained 1n quite

sharply defined lumps or bursts. (c) and (d) refer to samples at different locations (from
Sandborn, 1959).
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From a more fundamental point of view the existence of small scale intermittency reveals that
the “gustiness” of a turbulent flow, observed in various conditions, is not always the effect of
some large scale irregular forcing. It seems to be a natural property of the flow at large
Reynolds number. Numerical experiments with one-dimensional truncated versions of the
Navier-Stokes equation, involving a large number of degrees of freedom and sharing invariants
with the three-dimensional Navier-Stokes equations, have becn shown to exhibit intermittency

(Bartello and Warn, 1988).

Landau’s objection can also be raised for most of the predictions of statistical fluid
mechanics. Consider for example the law of the logarithmic boundary layer describing how the
mean velocity u along an infinite flat surface changes as a function of the vertical distance z:

d<u(z)> .
——g(zi = =, z2>38 2.2.7)

Kz

where us = \/-‘E)/_p ,T0=- P <u’w’>, d =V/u« and X is the von Karman constant. This
follows from the Reynolds equations assuming a zero vertical pressure gradient (p is the fluid
density, u” and w’ are the velocity fluctuations parallel and normal to the surface respectively.
see Monin and Yaglom (1975), section 5.1 for more details). (2.2.7) 1s a universality statement
typical of statistical fluid mechanics: One assumes that an average quantity - here d<u(z)>/dz -
can be expressed only in terms of a few mean characteristics of the flow, here the friction
velocity us. As for the k-3/3 spectral law, (2.2.7) is not invanant under the composition of
statistical sub-ensembles because u« is the square root of an average. We therefore conclude that
this law cannot hold in principle, even if it provides a valuable approximation for flows that are
not too intermittent. This could explain the scatter of the measurements of the von Karman

constant, which is not universal from this standpoint.

More generally, the above considerations suggest that global universality might never hold

and that a more complete specification of the statistical ensemble may be essential. It is
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emphasized that this lack of global universality does not prevent some specific statstics, ¢ ¢
B3(L) = - 4/5 oL, to be expressed only in terms of a few mean characteristics of the tlow
(here €9). By contrast with the statistical mechanics of systems in equilibrium, where various
statistical ensembles are defined (e.g. microcanonical, canonical etc... ), one must recognize
that in the context of statistical fluid mechanics the nature of the ensembles 1y poorly
understood. The possibility of extending Landau’s objection to most of the predictions ot

statistical fluid mechanics does not appear to have been emphasized previously.
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2.3 CONTROVERSY ABOUT THE BREAKDOWN OF THE Kd41 THEORY
FOR HIGH ORDER MOMENTS OF AV(L)

Despite the experimental validation of (2.1.3) and (2.1.4), measurements of the higher order
moments (e.g. Anselmet, 1984) have shown that the law (2.1.2) breaks down forh>4. Ash
increases the structure function keeps its power law benavior but the exponent is less than the
predicted h/3. Hence, these analyses suggest that the correct law 1s of the form
<AV (L)M> o LW where {(h) 15 a non-linear function such that {(h) =h/3 for h <4 and
C(h) < h/3 for h >4 (figure 2.2). This result is consistent with a failure of the first
Kolmogorov hypothesis, as argued by Landau. In order to explain the non-linear scaling of the

velocity structure functions, two main interpretations have been proposed.

We shall first examine the point of view of Frisch (1983) who obtained the result
<IAv,(L)"> o LM3 in the following alternate way. Since the forcing is confined to large scales
and the dissipation is confined to small scales when the Reynolds number is large, it can be

argued that intermediate scales (i.e. 1 << L << Ly) evolve according to Euler’s equation

which is invariant under the stretching transformation
X AX, Vv =A%y, t- Al%, (2.3.1)

i.e., if v(x,t) is a solution so is A"*v(Ax,A1"%). Consider the velocity structure functions
By(L) = <(Avi(L))»>, where Av, (L) = v,(x+L) - v,(x) and v; is the component of v along

L. If the turbulence is homogeneous and isotropic then By, depends only on L.
If it is also invariant under stretching, then forall A
aviLy & Ao Av(AL) (2.3.2)

o d 1] s s sy . . . "
where “ =" denotes an equality in probability distribution and o is an unknown parameter. It
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Figure 2.2 : The function {(h) as measured by Anselmet (1984). The non-linearity becomes

clear for h > 4. The straight line is the prediction of the K41 theory, i.e. {(h) =h/3.




follows from (2.3.2) that

Bn(L) = A-0n By(AL), (2.3.3)
which on setting A = 1/L becomes

Bn(L) = ¢y Lbn (2.3.4)

where {n = na and the ¢y are constants. Since the exponents at all orders are determined by a
single parameter o, the scaling is said to be simple. The scaling exponent a is a kind of
irregularity index for the velocity field. For L <<, the field is smooth and Taylor’s series
arguments 1mply Au,(L) ~ L (neglecting points where the derivative vanishes) and o = 1. If
a < 1 for L >>n, then the velocity field is irregular on these scales. An ordinary function is
said to sausfy Holder condition with Holder exponent B at xg if If(x) - f(xg)l < K Ix - <oiB for
all x 1in some neighborhood of xq for some K. « is a kind of statisucal Holder exponent for the

velocity field.

Self-similanty implies simple scaling but does not fix the exponent o. Bounds on o can be
obtained by noting that the Fourier transform of By implies E(k) = ck-20-1 for
ko << k << kgq if it is assumed that E is negligible outside the range. Since kg—= as Re—w,
then 2a+1 > 1 for finite energy and 2a+1 <3 for infinite enstrophy (see (2.1.5)), 1.e
0 <a = 1. The slope of the energy spectrum (in log-log coordinates) therefore ties between
-1 and -3. On the other hand, using the exact result (2.2.5) together with (2.3.4) leads directly
to o« = 1/3. By contrast with the K41 theory, it is emphasized that we do not need in this
argument to give a privileged role to €g in the velocity statistics to obtain the simple scaling
(2.3.4) with a = 1/3. The only assumption required is that £p remains finite in the imit v-0.
Hence this symmetry argument yields the simple scaling (2.3.4) without specifying the c,'s,

which may then remain non-universal. From this standpoint Frisch interprets the measured
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non-linearity of {(h) at large h as a breaking of the formal scaling svmmetry of the Euler’s

equation in real flows.

Once the K41 theory is abandoned, a "Pandora’s box" of possibilities 1s opened (Kraichnan,
1974). For example, one might try adding a dependence on some outer scale L.g in the first
Kolmogorov hypothess, i.e. <IAv,(L)"> = f(gg,L.h,v,Ly). This outer scale makes room for
a possible influence of the large scales on the small scales. Unfortunately, mn this case
dimensional analysis no longer reveals the analytical form of the velocity structure functions o1
of the energy spectrum, and there is no basis in the hypothesis for concluding that these should
be power laws, as observed. In other words, we are left with a non-predictive theory Frisch
and Parisi (Appendix of Frisch, 1983) assumed that 1Av(L)l obeyed a multiscaling law, 1 ¢. o
scaling law with a non-linear {(h). They also introduced the notion of a mulufractal spectrum 10

explain multiscaling. We shall come back in chapter five on this multifractal hypothesis.

On the other hand, Schertzer and Lovejoy (1984) suggested that the stmple scaling
Av(AL) a3 Av(L) holds (“g” denotes the equality in probability distribution), 1 ¢.
<IAvi(L)I"> = ¢, LM3, but that high order moments are spoiled by the statistical problem of
divergence of moments. This interpretation 1s consistent with the possibility of an unbroken
scale symmetry in a non-universal context. More precisely, they argued that for h large enough
<lAv,(L)I"> diverges in the limit of infinite Reynolds number, which introduces a "spurtous”
scaling of <IAv,(L)"> for h large enough, i.e. a scaling with {(h) # h/3. If we try using then
hypothesis together with the K41 theory (for simplicity), where the velocity structure function

is given by <lAv,(L)ib> = (ggL)"3 F,(n¢/L), their statement becomes

tant ,if 1 <h< o
As x-0, Fy(x) - {Cons a i : v
oo s lf h > av.

where a, = 5. From this point of view, the failure of simple scaling does not come from the

direct influence of an outer scale L, but rather from the inner scale . From the more general
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standpoint of the refined theory, the prediction (2.2.3) could make room simultaneously for
outer and inner scales dependence, which could jointly contribute to break simple scaling
Resolving experimentally all these questions unambiguously is a difficult task. In chapter 7,

we will return in an experimental study to some aspects of this controversy.
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2.4 MODELLING OF THE ENERGY DISSIPATION FIELD

The refined theory remains incomplete because the velocity structure tunction cannot bhe

predicted with (2.3.3) unless <(g(L))M> is given. The need to predict the value ot <(e(L.)'> as
well that the search of a better understanding of the energy cascade process mouvated
researchers to invent several phenomenological models of the energy dissipation tield  In this
section three of these models are presented, starting with multiplicative processes.  In these
models the concept of self-similarity, implicit to the Richardson's phenomenology and the
Kolmogorov theories, is used in different and non-equivalent ways. This diversity retlects the

still controversial nature of the energy cascade process.
2.4.1 Multiplicative processes

According to (2.2.3), another obvious way of predicting multiscaling for <lAv,(8)I"> 18 10
assume that <(e(8))"> scales non-linearly with 3. This is one of the basic properties of

multplicative processes. In the early Yaglom's model (1966), we consuder a set of cubie eddies

of sizes L, = Lo/A» imbedded in each otner and located on a regular gnd The encigy
dissipation €(L,41) averaged over the volume of an eddy (i.e a cube) of size L ,j 15 assumed to
be a random fraction of the energy dissipation averaged over the volume of the Luger
embedding eddy of size L, = A L.y (A >1). In other terms (L)) = W (1)), where W
1s a random multiplicative factor (see figure 2.3 and 2.4). The tactors W are assumed to be
statistically independent of each other at different scales and identically distributed  The choice

of a scale invariant multiplicative factor W is the expression, in this model, of the concept of

self-similarity. €(L,) takes the form
e(Ly) = W Wy ... Wy g, (24.1)

where € is the mean energy dissipation rate. In this model, the condition of conservauon
<g(L,)> = g¢ implies that the random factors satisfy <W>=1. More generally a discrete
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breaking down into 2 daughter eddies. The flux of kinetic energy to smaller scales is divided
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Kolmogorov scale, 1 (from Meneveau and Sree«.ivasan, 1987a).
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Meneveau and Sreenivasan, 1987a)




sequence of random variables { Xy} such that Xp4+1 = Wy Xy, where the multiplicative factors
Wy, are independent random variables identically distributed, will be called a mudtiplicanve

process. The independence of the W’s in (2.4.1) leads to
< E(Ly)P > = <WP>n gP = (Ly/Lo) KP) ggp, K(p) = logy<Wp>. (2.4 2)

< €(L,)P > therefore depends on an outer scale L. This simple model has the virtue of
producing a variance that increases with decreasing L,, consistent with the measurements. It

also predicts through (2.3.3) a power law dependence of the velocity structure function, i.e.
< (AV(L)h > o« L3 WLy KO3 t(h) = h/3 - K(h/3). (2.4.3)

The combination of the refined theory and of multiplicative processes therefore leads to
mulnscaling for <(Av(L))">, as observed by Anselmet er al. (1984). This model also produces
an wrregular field €(x) in qualitative agreement with the observations of intermittency  Different
kinds of multiplicative processes have been introduced by other authors, in particular
Mandelbrot (1974) and Schertzer and Lovejoy (1987). Some of these models will be

reexamined in chapter 5.

As pointed out by Kraichnan (1974), Yaglom’s model is only one among a large class of
scale invariant splitting models that can invented in the spirit of the Richardson’s
phenomenology. Kraichnan also claims that the eddy mitosis picture is made implausible by the
physics of vortex stretching, which involves the stretching of thin vortex tubes rather than cubic
eddies. Nevertheless, turbulent flows do have scaling properties and cascade models provide
simple ways or generating fields with such properties. Various aspects of scaling fields can
therefore be investigated through cascade models, and comparisons can be made with real
geophysical fields. There is no need for the intermediate fields obtained during the construction

of a multiplicative process to have a physical interpretation. It should also be noted that these
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models can produce fields having different geometries because the scaling exponents Kh) do

not characterize completely £(x).
24.2 The Frisch-Sulem-Nelkin p-model.

The B-model (Frisch, Sulem and Nelkin (1978)) is a simple conceptual model of
intermittency. In the following it will be called the F.S.N. B-model in order to avoid contusion
with the 3-model discussed by Schertzer and Lovejoy (1985). The F.S.N. B-madel 15 directly
based on the "gusty" appearance of the high-passed velocity field, as observed by various
experimenters. Frequency bands [kq, kn+1] are defined, where ky = 1/Ly and Ly, = Ly/20
If E(k) denotes the three dimensional energy spectrum, the energy E, in the nt! band 1s defined
by

kn+1

En = [E(k)dk . (244

kn

The velocity field in the nt band is assumed to exhibit patches of acuvity of size Ly, filling a

fraction By of the space. A velocity scale vy is defined by
En = Bn Vn2 . (2.45)

vn is interpreted to be a velocity difference over a distance Ly in an active region. The tume
needed for an eddy of size Ly to transfer its energy to smaller scales eddies 15 the turn-over

time, defined by
th = Ln/Vn (24 6)

The energy flux from band to band is assumed to be constant and is therefore equal 1o the mean

energy dissipation rate €p, from which follows that
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Replacing (2.4.5) and (2.4 6) in (2.4.7) leads to

Vn = Bn']/3 (egLn)1/3 . (2.4.8)

The bursts of band n+1 are assumed to be nested in the larger scale bursts of band n in a
self-similar way, so that By, = B, where B is a real parameter. P can be expressed n terms of
the fractal dimension d of the support of the active regions : B = 2-C, where C =3-d (we

will return in more details to the concept of dimension in chapter 4). Using L.y = Lo/20 yields

Bn = (Lp/Lo)C and (2.4.8) then becomes

vn = (EoLn)'” (Ln/Lo) P (2.4.9)
Velocity structure functions are then given by

<vp> = By volt = (BoLn)3 (Ly/Lo)CO1-3) (2.4.10)

and therefore

¢(h) = 31(1-C)h + C,

i.e. {(h) is linear in h. (2.4.10) is a modified form of the Kolmogorov law <(Av(L))h> e L3
that takes into account the clustering of the dissipation field on a set of dimension d The power

spectrum is obtained by replacing (2.4.9) in (2.4.5), which yields
En = (eoln)?? (Luo/Lo)C7

and consequently

En

Etkn) = g = Lo En = €03 ko33 (k/ko) /3 (2.4.11)

This model therefore predicts a correction to the k-3/3 spectrum due to intermittency, i.e. the

scaling exponent slightly exceeds 5/3 by C/3. There also exists a random version of this model
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(Benzi et al., 1984), where the fraction of space occupied by active eddies in the n'h band 15 not
fixed to B, but rather takes the form B;...8, where the B,'s are independent random variables

with the same probability density. This random model leads in general to a nonlinear exponent

Ch).
2.4.3 The Novikov "pulse-in-pulse” model

The Novikov (1966, 1990) model is based on the assumption that the energy disstpauon
field has a geometrically self-similar structure of nested "pulse-in-pulse” pattern. The energy
dissipation field is constructed by centering pulse functions on each point of a set constructed s
follows. Consider a system of random points xi, distributed by a Poisson law with mean
density 6. We connect with each of the points xk; a system of points Xk, =y + Ap Oy
(I=1, ..., m), where Ok, are mutually independent random variables with the same
probability distribution. This process is then repeated for each point according 1o the 1teration
rule

Xkgyp = Xkg + AsOkg (1=1,.., m), (2412

where Ag =A1 BS-1 and 0 < p <mp < 1. The geometrical similitude of this set 15 expressed

in having the same number m and distribution law of the variables 8| for the same scale

reduction coefficient B. We next define the stationary random function €q(x), consisting of a

sequence of pulse functions Ig(x) centered on the points xg:

gs(x) = <e> ol (mp)l-s f Is(x—f—') Es(x') dx' (2.4 13)
S

where

@s(x)

Z s(x - xks)! <§S(X)> = OmS-l
ks

o = OAp, IIS(O) de = 1, <e4(x)> = <€>.
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The function g4(x) is interpreted as the energy dissipation field in a fully turbulent flow, and the

limit s—ee corresponds to the limit of infinite Reynolds number.

Novikov showed that the power spectrum of gg(x) is of the form k-1+H ¢(log(k)), where
0 <p <1 and ¢ is a periodic function with period equal to Inp (1 = log(mP)/logB) The
period of the prefactor ¢ reveals the scale reduction coefficient of the set supporting €(x).
Results reported by several experimenters (Monin and Yaglom, 1974, section 25.3) are
consistent with a power spectrum of the form k-, 0 <s < 1. Note that the power spectrum
of the field generated by a discrete scale cascade model with a finite number of cascade steps 1s
also proportional to k-3, with 0 <s <1 (Monin and Yaglom, 1974, section 25.3). We shall

return in chapter 8 to the Novikov model in a numerical study.
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Chapter III

THE THIRD KOLMOGOROV HYPOTHESIS REVISITED

At present there 1s not enough solid knowledge about the
Navwier-Stokes equation to say with assurance that Kolmogorov's wea of
multiple random cascade steps is qualitatively correct () Even if the
underlying idea of a mulustage breakdown 1s correct, Kolmogorov's
first and third hypothests of 1962 do not necessarily follow

Robert H. Kraichnan (1974)

The modified Kolmogorov similarity hypotheses, by relating <(Av,(L))h> to <(e(L))h>,
shifted the emphasis from velocity structure functions to the energy dissipation field. The third
hypothesis is a statistical statement about the probability distribution of €(L) that gives a central
role to lognormal distributions. This hypothesis differs qualitatively from the others, which are
essentially scaling hypothesis. In geophysics the importance of these distributions has often
been overestimated, and some misconceptions still persist in the field of trbulence. We

propose in this chapter a critical review of the third Kolmogorov hypothesis.
3.1 THE THIRD KOLMOGOROV HYPOTHESIS OF LOGNORMALITY

Kolmogorov formulated a third hypothesis, according to which the volume-averaged energy
dissipation rate €(L) is distributed according to a lognormal distribution (a random vanable V 15
said to be lognormal with parameters i and ¢ if logV = N(i,62), where N(1,02) denotes a
Gaussian random variable of mean W and variance ¢2). This is assumed to hold for
high-Reynolds-number flows when L lies in the inertial range. From a fundamental point of
view, the third hypothesis is a priori interesting because it suggests the existence of umversal
probability distributions governing the dissipation field at small scale. In view of its theoretical
importance, we shall examine the question of universality in the context of discrete

multiplicative processes.
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A plausible origin for the third hypothesis is found in the properties of the multiplicative
processes associated with the eddy mitosis picture proposed by Richardson, as well that in the
breakage processes studied earlier by Kolmogorov (1941b). For a multiplicative process
Xn= Wy ... W,, the central limit theorem can be applied to
Zpn = logXy =logW, + ... + logW,. Provided that the mean u = <logW> and the

variance 62 = <(logW)2> - u2 exist, then for every fixed

logXn: 0l L gy Fu@®) (3.1.1)
noc

Prob{

as n—es, where Fy(B) denotes the cumulative probability distribution of N(0,1). Equivalently,
logXp, tends as n— to a Gaussian random variable N(np,no2); in addition, X, tends as n—e to
the log-normal law V;, = logN(np,n6?2) (convergence of the integral probability distributions in

both cases). Approximate log-normality therefore always holds for multiplicative processes.

It is not clear whether Kolmogorov meant the log-normal law to be exactly true, or simply
approximate in the sense given above. A companion paper of Obukhov (1962) suggests the
latter view. In any case the log-normality assumption has been taken literally by the
experimenters (e.g. Anselmet, 1984), who used 1t in particular to compute <(e(L)"> and
deduce with (2.4.3) the scaling exponents of < (Av(L))? >, which in turn can be measured. We
emphasize that the distinction between exact and approximate log-normality is crucial if one tries
to estimate the moments. It is shown below that these are, in general, very far from the actual
moments. Let us consider the order-q moments of the multiplicative process X,. Using the

independence of the multiplicative factors, we get
<(Xp%> =<Wa>" = exp{nlog<Wi>), (3.1.2)

It follows that X does not approach a universal random variable as n — oo, because <X,

and consequently the probability distribution of Xj, is entirely determined by the non-universal
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function <WA>, On the other hand, X, approaches as n—e a log-normal random variable

V,, = logN(np,nc2), and the g-order moments of V,, have the exact form
<Vi®> = exp(ngq (u+ c?q) ) (3.1 3)
(3.1.2) and (3.1.3) are in general different even as n—o, unless the multiplicative factor W s

exactly log-normal with W =1ogN(it,62). It is emphasized that (3.1.2) and (3 1.3) do not

converge to each other as n—e, Indeed, their ratio

<Xp> 1
i exp{ n [ log<Wa> - q(u+5 o*q)])

either diverges or goes to zero as n—e. This difficulty with the log-normal approximation was
noticed by Novikov (1970, 1990 and earlier references therein), Mandelbrot (1972, 1974),
Kraichnan (1974).

3.2 WHY IS THE LOG-NORMAL APPROXIMATION UNTENABLE FOR
MOMENTS CALCULATIONS ?

Consider the random variable
Sn=Y1 + Y2+ ..+ Yy (3.2.hH

where the Yj are identically distributed and independent random variables with <Y> = () and
62 = Var{Y) <. If Y satisfies a few additional constraints (see Appendix 3 1), Khinchin

(1949) shows that for n large the probability density Gy(s) of Sy, is of the form

Gn(s) = ga(s) + OG) (3.2.2)

where

gn(s) = exp(- —3 },
\/—nn o 2no
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i.e. gn(s) is the probability density of a Gaussian random variable N(0,n62). (3.2.2) holds
under more restrictive conditions than the central limit theorem quoted in section 3.1, that
requires only <Y2> to be finite. This form of the central limit theorem focuses on the
probabulity density and shows explicitly that the Gaussian approximation holds only around the
maximum of Gy(s) in general. The error term is at most equal to C/n, where C 1s a constant,
but can also vanish in the special case of exactly Gaussian increments Y,. The error term is
small for (C/n)/gn(s) << 1 which implies

Is << vYnlogn . (3.2.3)
6]

The width of the range of validity of the Gaussian approximation therefore increases with

increasing n.

According to the Gaussian approximation, for q even

oo

2 §2
—— exp(qlogs - ——2] ds
\/21tn c 2no

= (q-D!! Yno)y (3.2.4)

<(N(0,n62))4> =

while <(N(0,n62))4 > vanishes for q odd. The main contribution of this integral comes from
the range of values of x around the maximum of exp{qlogs - s2/(2n62)}, which occurs in

s = 0 Y ng. The order-q moment is therefore expected to be accurate provided that (3.2.3)

holds, i.e. if Vnq << 'nlogn which implies
q << logn. (3.2.5

Consequently the order-q moments of Sp obtained from the central limit theorem are not

accurate if q 2 logn. Conversely, <Spd> is accurate as long that n >> eq.
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Next consider the central limit theorem applied to multiplicative processes. A multiplicative

process Xp can always be associated to Sy, with the change of variable

Y1 .. -Yn

Xn = exp(Sp) = ¢ c e (3206

The multiplicative factors are W; = e¥t. We can try to estimate <XpU> using the Gaussian

approximation for Sy, or equivalently using a log-normal distribution for X, This estumate s

]
g«

+oo
<an>=<(es‘")q>=————1 exp{sq - } ds = exp(1/2 1103q3} (327
2 2n02
\j n g

As previously this moment will be accurate if the maximum of the function
exp{sq - s2/(2n62)} lies in the interval (3.2.3). This maximum occurs at s = nG2q, and

(3.2.3) yields n6q << Ynlogn which implies

q<<-1- l_qgg. (328
G n

Since that log(n)/n — 0 as n — o, on!* the moments of order q = () are accurately esumated

Higher order moments depend on the distribution outside of the range of applicability of the

central limit theorem (figure 3.1).

In summary, the width of the range of validity of the Gaussian approximation tor Sy,
increases like Vnlogn while the main contributions to the moments of S, and exp(Sp) come
from s =06 Ynq and s =no2q respectively. For n large enough, <Sp4> can always be
calculated from the Gaussian approximation whereas none of the moments of <|exp(Sp)[U> are
accurate (except for the trivial case q = 0). Our explanation of this fact appears to be original

and clarifies certain issues.
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Figure 3.1: The density gq(s), with n=10 and 0=1, is plotted on the left side. The arrow
indicates the range where gn(s) is expected to give a good approximation of the true distribution
of Sp. On the right side is plotted gn(s) ¢2S (normalized units were used in both cases). The
arrow shows the range making the main contribution to <(eS“)2>. Both ranges do not even

overlap and therefore gn(s) cannot be used to estimate <(cS“)2> (see text).
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What looked at first like a paradox is explained by the peculiar kind of convergence of the
probability distribution of Sp to a Gaussian law. Although the integral (or cumulative)
probability distributions of Sy and X, approach the integral distributions of a gaussian and a
log-normal law respectively (Novikov, 1990), the probability density of S, 18 appronimately
Gaussian only around its maximum but remains in general non-Gaussian elsewhere (i property
consistent with the name "central limit theorem”). In that sense, the convergence ot the
probability density is not uniform. This lack of normality away from the maximum of Gy(s)
has been known for a while (Novikov, 1990) and our explanation makes explicit its etfect on

the moments of S; and X,,.

The implications of this discussion are important for seversi upplications (economucs,
biology, particles decay, turbulence) where the use of log-normal distributions 1s justitied by
the existence of underlying multiplicative processes (Aitchison and Brown, 1976). In this
context lognormal distributions are usually regarded as genenc and various calculations,
including moments, are made using an exactly lognormal probability density. We have shown

that in general this choice is not justified.

The failure of the log-normal approximation for the estimation of <Xp4> rises the problem
of finding a better approximation for the probability density of X,. This approximate density
should converge to the actual density and provide accurate estimates of <Xu4> mn the it
n - . In the next section, we shall present a general method to compute probability
distributions from the moments of a non-negative random variable Applied to muluphcauve
processes, this method will lead us to the general form of their probabihity distnbutions. While
these distributions will be shown to be approximately log-normal around their maximum, they

will produce valid estimates of the moments.
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3.3 PROBABILITY DISTRIBUTIONS OF MULTIPLICATIVE PROCESSES
IN THE LARGE N LIMIT

3.3.1 A general method to obtain the probability density from the moments
of a non-negative random variable

It was shown that the mements of X, are easily obtained by making use of the independence
of the vanables W (see (2.4.2)). It would therefore be convenient to have a systematic way to
derive from <Xp4> an expression for the probability density of X;,. Integral transforms can be
used for that purpose, an interesting possibility that was noticed in particular by Fourcade and
Tremblay (1987). For a random variable 0 £ X <1, they show (using the change of vanable
Y = -log(X)) that the moments <X9> are related to the probability density p(x) of X by
<X4> = L{p(e-X)e-x}, where |. denotes the Laplace transform. p(x) can therefore be obtained

through the inverse transform of <Xd>.

We generalize the method of Fourcade and Tremblay to any non-negative random vanable by
making use of the Mellin transform. The Mellin transform F*(z) of a function F(x) are related

by (see appendix 3.2 for a statement of the theorem)

o0 c+ioo
F'(z) = ijl'l F(x)dx and F(x) = —1~ JX'Z F*(z) dz. (3.2.1)
2mi C-Joo

It is obviously in a form related to the complex moments of order z - 1 of some non-negative
random variable having F(x) as a probability density. It was shown in chapter 2 that

multiplicative processes yield moments of the form
<Xpd> = enK@) | (3.2.2)

where K(q) = log<Wa>. Using (3.2.1) a general expression for the probability density pp(x)

of Xy, is obtained:
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| C+ioo
Pn(x) = o IX'Z enK(z) dz. (3.2.3)

Tl c-jeo o
We shall also consider the probability density ya(ct) of the variable oy = log(Xy)/n, which can
be obtained from (3.2.3) with the corresponding change of variable:

C+loo

n
Tn(®t) = — Jen(K(l) -0Z) dz (324
i C-loo

Asymptotic expansions of these integrals in the limit n—eo can be obtained with the steepest
descent method, but the integral (3.2.4) is more suitable because the prefactor of the exponential
15 not singular. In the next section the steepest descent method will be applied to (3 2.4) and

asymptotic expressions of Yn(x) and pp(x) in the limit n—see will be obtained

Remark: In general, the integer moments do not determine the distribution (see Carleman’s
criterion in Feller, 1966). For example, Orszag (1970) showed that the lognormal distribution
is not uniquely determined by its integer moments. We conclude that in general one must use

integral transforms to solve the moment inversion problem.

3.3.2 Asymptotic expansions of the probability densities of X, and
logX,/n for n large.

Equation (3.2.4) is in a form immediately suitable for the steepest descent method to be
applied. This method applies to integrals in the complex plane of the form
In) = Jf(z) end(?) dz. (3.2.5)

and yields an asymptotic expression of I(n) in the large n limit (see Bender and Orszag (197K),

or Wong (1989)). Assuming that f(z) varies slowly with respect to (), that ¢ possesses a
single stationary point zg such that ¢'(zg) =0, and provided that ¢"(zg) # (), 1(n) takes as

n — oo the asymptotic form
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2n Al(zp)

I(n) = "0 oy €52 { flzg) + =% + O(%)} (3.2.6)

where we use the factor e™2 if ¢"(zg) > 0 and the factor e-i%/2 if ¢"(zg) < 0. The term

A(zp)/n is a higher order correction.

Using (3.2.6) with the integral (3.2.4), the stationary point is defined by K'(zg(a)) = .
zp(o) is unique because the function K(q), defined by (3.2.2), is corvex (a theorem in
probability theory (Feller, 1966) states that log<Xp9> is a convex function of g, 1.e.
K"(g) 2 (). Note that for cascade processes the condition <W> =1 imphes that K(1) =0,
and trivially K(0) = 0, therefore K posseses a unique minimum in the interval ]0,1[. For n

large, the expansion (3.2.6) yields

ca— N i@, AlZo(@) 1 2
Ya(0) \ERK,, ey & 1T - 00 ) (3.2.7)
where

flar) = o zp(a) - K(zo(o)) = maxp{ah - K(h)} (3.2.8)

f(a) is the Legendre transform of K(h) (Arnold, 1974), denoted by f(ax) = L{K(h)}. The

Legendre transform satisfies L2 = 1 and consequently
K(h) = maxq{ h a -f(a) }. (3.2.9)

f(a) characterizes the probability density of the multiplicative process. It follows from the

definition (3.2.8) that
f'(a) = 1/K"[zo(a0)] 20, (3.2.10)

and the unique minimum of f occurs in o+ = K'(0) where f(a+) = - K(0) = 0. Using

(3.2.10), (3.2.7) becomes

Yo(e) = '\, "———f;:ta) ¢l () 4 A2 ol (3.2.11)
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a form that depends only on f(a). Since that py(x) = To ” ), for n large we also get

P(x) = + A /ﬂ%@/—"—) -n f(log(x)/n) (1+A(Z"('°’>(‘)/")) o) (3212
mn

The only "universal" features in the expression of yn() are the exponential dependence on n
and the Vn prefactor. For a multiplicative process Xp, (3.2.11) and (3.2.12) will be shown to

be effective asymptotic expansions of the probability densities of log(Xp)/n and Ny

respectively.

By contrast with the log-normal approximation, the correct moments of X, are recovered if
the approximation (3.2.12) is used. The following expression of <Xp4> 15 obtmined flom

(3.2.11):

<Xpd> = <> = 4 ’ 2£- J‘\! f" (o) en(ag - f(o)) 4 .
b

For n large Laplace's method can be used to obtain an asymptotic expansion of this integral (see
Bender and Orszag, 1978). The main contribution comes from the value of o that maximizes

aq - f(a), i.e. from ap(q) defined by f(ag(q) ) =q. Therefore

<X > ~ \[f'(ao(q)) en maxg{oq - f(a)) —_—
V ‘J n f"((l()((l))

= efMaxg{aq- (@) = en K(h),
which is indeed the exact form of <X;9>.

Clearly the functional form (3.2.11) is not Gaussian while (3.2.12) 15 not a log-normal
probability density. However, it can be checked that ya(@) is approximately Gaussian about the
value & = a«, which is the point where yy(a) is maximum for n large. This 15 done by
expanding f(o) in Taylor series (2 terms) about o = ., which yields a mean p = <logW>
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and a variance 62 =n Var(logW}). In the neighborhood of o = a.. the probability density of

pn(x) is therefore approximately lognormal, as expected.
3.3.3 Implications for the third Kolmogorov hypothesis

From the standpoint of breakage processes, the third Kolmogorov hypothesis holds in the
sense that pp(x) is approximately lognormal around its maximum as n—e, but in general pp(x)
converges uniformly to a probability density that is not log-normal (see (3.2.12)). The above

discussion also implies that the use of an exactly log-normal distribution for the calculation of

<(£(8))"> finds no support in breakage processes.

A weaker version of the third hypothesis, avoiding this problem of approximate
lognormality, could be based on the moments of the volume-averaged energy dissipation rate
£(8). For example one could assume that

log<(e(d))a>

~ - K(h
logd ®

as §—0), where K is an unknown function. Equivalently, the third hypothesis could be based
log(e(d)) e

on the probability density p(¥,8) of ¥(3) = -
logd

logp(y,9)

C
logs §7)

as & — 0, where C(y) is an unknown function. K and C are then related by
K(h) = maxy(yh- C(Y)} <=> C(y) = maxp{hy-K(h)} (3.3.1)

High Reynolds number turbulence could make room for universal functions K(h) and C(y), but
their analytical form cannot be derived in the context of Yaglom's type discrete multiplicative
processes only. This weaker version of the third hypothesis basically states that moments and

distributions scale and that the exponents are related by a Legendre transform. This form of the
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third hypothesis is also the essential part of the multifractal formalism, in which Cy) is often

interpreted as a codimension. We shall retum to this interpretation 1n chapter 5.

Another weaker version of the third hypothesis is to assume that the moments of log(e(d)
can be determined from the gaussian approximation, as suggested by the above considerations

We will return to this second form of the 34 hypothesis in an experimental study in chapter 7

45




P

Chapter IV
FRACTAL SETS: CONCEPTS, METHODS
AND GENERAL RESULTS

Turbulence in fluids raises a variety of interesting and practically important problems of
geometry, which have not, so far, received the full attention they deserve 1he geometry of
stochastic processes (much influenced, through N. Wiener, by Perrin’s (1913) work on
Brownian motion and G. I. Taylor's early papers on turbulence) has grasped fully the peculiar
and “pathological’ shapes of randomly generated lines, and ewther borrowed or developed
analytic and geometric tools to describe this kind of wrregularity  But geometry (in contrast to
analysis) has hardly at all been applied to the specific random surfaces of turbulence s
Sfailure 1s parucularly surprising because wrbulent shapes are readily visuaiized and therefore
almost cry owt for proper geometrical description

Benoit B. Mandelbrot (1975)

In this chapter, we provide a comprehensive and turbulence-oriented synthesis of the
characterization methods appropriate for fractal sets. In section 4.1 an introduction to the
concepts of fractal field and fractal set is given and their use in the context of geophysics is
motivated. Section 4.2 deals with the concept of fractal dimension and a fairly complete
treatment of self-similar sets is presented. Efforts have been made to insert both self-similar
sets and self-similar measures (introduced later in chapter 5) in a common mathematical

framework based on scale renormalization.

4.1 VARIABILITY IN GEOPHYSICS - THE CONCEPT OF FRACTAL

4.1.1 Fractal fields

In geophysics one often encounters fields that involve structure over a wide range of spatial
and temporal scales. Rain fields, for example, exhibit spatial structure over roughly nine orders
of magnitude (about 1 mm for the raindrop diameter to 1000 km in the horizontal). The same
complexity is observed in the velocity field in the planetary boundary layer: At low altitudes a
temporal sampling rate as high as 20 kHz may be necessary if a smooth picture of the turbulent
velocity signal is to be obtained. Figure 4.1 provides a sequential zoom in one such velocity

signal and illustrates the intrinsic irregularity of a turbulent field.
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Figure 4.1 : Zoom in one velocity signal measured in the atmospheric surface layer with a
hot-film anemometer. In the next 3 pages are found six figures that exhibit graphs of the
longitudinal velocity plotted as a function of time. The same string of data is shown
successively in the ranges 0 - 20 sec, 0 - 10 sec, 0 - 5 sec, 0 - 2.5 sec, O -Isec and 0 - 0.5 sec.
The approach of the Kolmogorov inner scale beyond which the signal is smooth can be telt

clearly in the last screens.
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In practice however, geophysical measurements rarely resolve the natural hormogencity scales
(or inner scales ) beyond which the field is smcoth. Remotely sensed data, ¢ g. radar
reflectivity or satellite pictures are the result of an averaging over volumes, areas or intervals

much larger than the natural homogeneity scales. This resolution himut introduces unavoidable

biases in the measurements. Indeed, the statistical properties of measured fields are in
general resolution-dependent. There is therefore a need for some scheme that would allow

representations ot the field at ditferent resolutions to be related 1n some way

A field that is irregular and textured over several orders of magnitude of spatial or temporal
scales appears to be fractal , i.e. a continued zoom always keeps revealing new structure and
irregularities. If the range of irregulanty scales 1s wide enough, some properties of the ticld at
resolutions L >> 1 (1 is the inner scale ) may be independent or only weakly sensitive to 1
In such cases 1t becomes convenient to ignore the inner scale. This 1s the content of the second
hypothesis of the Kolmogorov 1941 theory, for which <[Av(L)]*> = C (eL.)*/3 15 argued to
become independ.nt of 11 if L >> 1 (see chapter 2). Another example 1s given by Brownian
motion: The position x(t) of a parnticle in Brownian motion satisfies <{x(1+7)-x(1)})?> = C 11l

T >> tg, where tg is the mean free time.

From this perspective certain fields may be regarded and modeled as fractal fields, 1 ¢ ficlds
that never become smooth under magnification. The term smoot11s used here in the sense of
differentiable: A "smooth" curve can be locally approximated oy a straight ine, while a smooth
surface can be locally represented by a planie. By contrast, a fractal field 15 descnibed by non
differentiable functions. A fractal model ot a geophysical field therefore shares some properuies
with the actual field in the appropniate range of scales buti more irregular at small scales It
also simpler because of the lack of an inner scale. An analogy with singular functions can he
made: The Dirac distribution is singular and yet simpler to manipulate than the regular functions

which it is used to approximate.
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Our definition of fractal field 1s more general than other more common definitions (e g
self-similarity, a special case examined in the next section), so general in fact that a wade famuly
of geophysical fields appears to be fractal. The titles of the two books The fractal geometry of
Nuture (Mandelbrot, 1983) and Fractals everywhere (Barnsley, 1988) testify to the apparent
ubiquity of fractals. Fractal fields are especially suitable for the description of rain fields, cloud
fields, wind fields and various other geophysical fields. The scaling models currently used in

the study of turbulence usually involve fractal fields.

Once the fractal character of a geophysical field has been recognized, the next step is to try to
classify these fields and to develop tests allowing different classes to be distinguished. We
hope this process will lead us to determine more precisely to which class actual flows actually
belong. Fractal fields and fractal sets are closely related and an understanding of both 1s
required for our study of turbulent flows. We shall now expose briefly the concept of fractal

set.
4.1.2 Fractal sets and self-similar fractals

Even though various tentative definitions of fractal sets have been proposed, they still have
not received a ngorous mathematical definition (Mandelbrot (1983), pp. 361). Avoiding at this
point more technical definitions, we shall only say that fractal sets are non-euclidian sets. They
are not straight lines, circles or triangles, nor are they cones or smooth surfaces, and they
cannot be approximated by pieces of such sets. Fractal sets are irregular and their characteristic
property is to have structure on all scales. Such sets arise naturally in geophysics; shapes like
coastlines, mountains and v=getation are often viewed as fractal sets. Since the graph of a

fract | field is a fractal set, there 1s an intimate link between fractal fields and fracial sets

The simplest fractal sets are those which posses symmetry. In that spirit, Mandelbrot (1983)

introduces the notion of self-simular sets as the simplest examples of fractal sets. Self-similar




sets are to fractal geometry what straight lines and points are to euclidian geometry A simple
and often quoted example is the von Koch curve, obtained recursively by replacing each linear
segment by four new segments that are shorter than the mother segment by a factor 1/3,
beginning with the unit interval (figure 4 2). Being wrregular on all scales, the hmiting set 1
clearly fractal ( the himiting set obtained after an infinite number of 1terations can be shown to
exist and to be closed and bounded (see Barnsley 1988)) This 1s an example of an exactlv self-
similar set. Indeed, each segment of this curve is an identical copy of the whole curve scaled
down by a factor 1/3 (along with a rotation and a translaton). The von Koch construction can
be generalized to M-piece fractal curves by replacing each hinear scgment by M new segments

that are shorter than the mother segment by a factor r at each stage

More generally if a set can be broken down 1n a sequence of disjoint or "just-touching”
copies of itself scaled down by various different ratios, the set will be said 1o be multiscale self-
similar. Exact self-similarity is then a special case of muluscale self-similanty with a single
scaling ratio. If different length scales are used for each segment 1n the construction of the

M-piece von Koch curve, a muluscale self-similar von Koch curve 1s obtained

[t is worth stressing that self-similanty and fractality are treated here as distinet and
independent concepts. For example, the interval [0,1] 1s obviously exactly selt-similar (e
composed of a union of scaled-down copies of 1tself) but 1s not fractal. In general, fractal sets
need not be self-similar. By contrast, some authors have proposed a definttion based on

self-similarity (e.g. see Feder (1988), p.11 or Devaney (19%6), p.37).
A fractal is a set which 1s self-similar under magnification.

This statement, as well that our definition of fractal set avoid the problem of the mathematical
characterization of fractal sets. Nevertheless, most authors retain the intuitive idea of structure

on all scales.
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Figure 4.2 : Three examples of von Koch curve (from Peitgen 1988). In each case the
number of sub-segments N and the ratio r is given, as well as the corresponding similanty
dimension. The first example (on top) is the von Koch curve (or snowflake). The other curves

are examples of generalized von Koch curves.




The reasons for emphasizing self-similarity and scaling in this thesis are threefold Firstly,
symptoms of scaling have been observed in turbulent flows (e g. Anselmet (1984), Meneveau
and Sreenivasan (1987bc)) and in the atmosphere with remotely sensed data, such as radar
reflecuvities and satellite pictures (Schertzer and Lovejoy (1987, 1989)) Secondly, the scaling
assumption can be argued to be a "first-order” simplhification of the problem of fractal ticlds
modelling. As discussed by Mandelbrot (1983, p. 19), ** One must rather marvel that these
first approximations are so strikingly reasonable . Such an a priort simplifying modelling
hypothesis should therefore be considered first. A similar point of view 1s defended by
Schertzer and Lovejoy (1989), who claim that the ** (scale) symmetry assumption 1s not only
the simplest but also the only assumption acceptable 1n the absence of more information or
knowledge . Thirdly, it can be argued that a physical process involving no characteristic scale
is likely to exhibit scaling. This is what happens for example in the Kolmogorov 1941 theory,
where the velocity statistics becomes independent of viscosity and outer scales 1n the linut of
infinite Reynolds number. In a wider context, scaling may also be obtained over other scale

ranges in the atmosphere where other mechanisms rule the dynamics.

Very few general results are available on the topic of non self-similar fractals. One of the
goal of the research in this area is to discover some kind of “multiscale fractal transform” that
would go beyond the Fourier transform, currently the basis of almost all the techmques in

signal analysis.
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4.2 FRACTAL DIMENSIONS AS IRREGULARITY INDICES FOR SETS

4.2.1 Is there a general definition of fractal dimension ?

Fractal dimensions are irregularity indices for sets. Various different definitions of
dimension exist, each being sensitive to various aspects of the "wiggliness” or "fatness" of the
set. One of the goals of fractal geometry is to give a precise and objective mathematical
meaning to the often ambiguous, although sometimes poetic, qualifiers used to describe
complex textures. Dimensions are numbers that allow the comparison of different fractal sets
and indicate their capacity to fill space. They do not provide by any means a complete
characterization of a set. In contrast with topological dimension, the definition of fractal

dimension always involves the notion of a metric, i.e. of distance (Mandelbrot, 1983).

The term dimension is sometimes used fairly loosely 1n the literature, usually in the vague
sense of a scaling exponent d in some power law expression. In this thesis, we shall require

that in order for a quantty d to qualify as a fractal dimension, it should

1)  apply to sets.

ii)  be a real number that satisfies 0 < d < D, where D is the topological dimension of the
Euclidian space IRD in which the set is imbedded.

iii) reduce to the topological dimension for simple Euclidian sets (points, lines, planes,
volumes, circles, triangles etc...).

iv) satisfy d(S) <d(S)if S'> S

Tricot (1973) also proposed the condition
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v) For any countable and possibly infinite union of sets S,

d(US)) = sup, { d(S) },

1

where the sup denotes the supremum, i.e. least upper bound, of all the dimensions of the

individual sets.
4.2,2 Similarity dimension for exactly self-similar sets

Similarity dimension arises naturally in the context of exactly self-similar fractal sets, such as
the M-piece von Koch curve introduced above and is probably the simplest example of a fractal
dimension. The similarity dimension can be introduced using an analogy with the topological
dimension: In one dimension, a unit interval can be split into M = 1/r subintervals of lengthrr,
in two dimensions, a unit square splits into M = (1/r)2 subsquares of size r; 1n 3 dimensions,
a unit cube splits into M = (1/r)3 subcubes of size r. Similarly, the M-piece von Koch curve
splits up into M 1dentical smaller von Koch curves of size r. One may define by extenston the

similarity dimension to be the exponent dg such that M = (1/nds je.

log M 5

Similarity dimension is in general non-integer and can be regarded as a natural generalization of
the topological dimension for exactly self-similar sets. For simple euclidian sets dg reduces to

the topological dimension.

Another important example of an exactly self-similar set is the triadic Cantor set obtained by
repeatedly removing middle third open intervals beginning with [0,1], as illustrated in figure

4.3. The similarity dimension of this set is

_log 2
ds = Tog 3 = 06309 .
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Figure 4.3 : Two examples of Cantor sets. The first one (on top) is the classical tnadic
Cantor set, formed by removing open middle thirds of intervals recursively. The second case 15
an example of multiscale Cantor set. At each step of construction, only closed segments scaled

down by ratios 1/4 and 1/2 survive.




The M-piece Cantor set can be defined by analogy with the M-piece von Koch curves: At each
iteration the surviving intervals of size L are replaced by M disjoint inervals of size rl.. The
similarity dimension is then given by (4.2.1). If the surviving disjoint intervals are chosen to
have different length r,L, a muluscale self-simular set called the mulnscale Cantor set is

obtained.

These sets can be directly generalized to higher dimensions by replacing the mniual unu

interval by a square or a cube, which does not affect the definition of dg. Notice that dg 15 not
sensitive to the orientations of sub-segments in the M-piece von Koch curve, nor 1o the position
or the surviving sub-segments at each stage of construction of the M-piece Cantor set. Many

different fractal sets therefore share the same similanty dimension, a clear indication that they

are only partially charactenzed by ds.

It should be noted that the splitting factor M and the scale ratio r of an exactly self-simular set
are not uniquely determined by dg since sets with parameters (M,r) and (M",17) have the same

dimension. This issue will be reexamined in section 4 2.3.2.

dg is not defined for general sets since these cannot be split up into M copies. More tlexible

definitions are therefore needed to characterize sets.
4.2.3 Box dimension and self-similar sets

4.2.3.1 Definition and properties

The box dimension, sometimes called capacity dimension (Farmer, 1983) and more
frequently fractal dimension, is one of the parameters most frequently used to charactenze
fractal sets arising 1n geophysics. Since the box dimension is not more “fractal” than any other,
we will use the term box-dimension. It can be measured easily from data, which probably

explains its popularity among experimenters. It is defined for a wider class of sets than the
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similarity dimension. Given a set S imbedded in a D-dimenzional eucliidian space, the box-

dimension of S is defined by

_ lim log Np(8)
9B = 5,0 Tog(1/5) (4.2.2)

where Ng(8) is the nunimum number of D-dimensional balls (or cubes) of diameter § needed to
cover S. The box dimension (when it exists) determines the amount of information needed to
locate the set within an accuracy §, i.e. we need only specify the location of Ng(8) balls. For a
fixed value of 8, Ng(8) increases if dg increases. In that sense dg(S1) > dg(S2) implies that

the set Sy is "fatter” than the set S7.

For simple euclidian sets the box dimensic 1 obviously equals the topological dimension. By
contrast, dg takes in general non-integer values for fractal sets and can exceed the topologica’
diinension. More generally the box-dimension can be verified to have all the properties of
fractal dimension mentioned in section 4.2.1, except for (v) which holds only for finite
collections of sets. For that reason, Tricot (1973) argues that the box dimension is not a
dimension and proposes instead the name densité logarithmique (i.e. “logarithmic density™).

For the box-dimension, the property (v) reduces to

dg(US,) = sup; {dp(Si) }, (4.2.3)

where n is finite. Denoting by Np(S,8) the minimum number of boxes of size 8 needed to
cover a set S, (4.2.3) is derived from the inequality

n n
sup; NB(S)) < Np( US,, 8) <Y Np(5,3),

1=1 1=1

which follows from the possible overlap between the sets S, (inequality on the right side), as
well that property (iv) (left inequality). That (4.2.3) holds only for finite collection of sets is
clearly illustrated by the example of rationals. Although each rational number has dg = 0, their
collection in the unit interval [0,1] has box-dimension umity. Indeed rationals are dense in the
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real numbers, which means that any real number can be approached arbitrarily closely by a
rational. If follows that every box (1.e. interval) used to cover the unit interval is filled (1.
contains at least one rational) and consequently dg = 1. Actually, the box-dimension
characterizes the closure of a set, i.e the set plus its hmit points (the closure of a set S is also
the smallest closed subset of IR" containing S). Indeed, 1t 1s not possible to cover a set with
closed balls without covering also all the limit points of the sets, i.e its closure (Tricot (1973).
Falconer (1990)). It follows for example that both rational and irrational numbers have

box-dimension unity.

The definition of dg presupposes the covering of the set with balls. In a numencal
experiment, however, it is convenient to cover the set with a regular grid of cubes. This

method, often called box-counting, gives the same value of dimension as the optimal collection

of cubes. Indeed if Ng’(8) denotes the number of grid cubes containing points then since each

cube of the minimal cover is covered by at most 3D cubes on the gnid,
NB(®) < N’g(d) < 3D Ng(d).

Taking logs then shows that (4.2.2) continues to hold with Np replaced by N'g(8). The box-
dimension 1s also independent of the shape of the balls used for the covering. More generally,
one can show that the box dimension 1s invariant under metric equivalence. An open ball of
radius R centered about a point x being defined by p(x) < R, a different but equivalent choice
of the metric p deforms and stretches the ball by finite amounts with no breaking (see Barnsley
(1988) for a more detailed presentation of metric equivalence). The invanance of dy under
metric equivalence also implies that a set can be stretched arbitrarily by finite amounts, while
keeping the box-counting grid fixed, without changing dg. In that sense the box-dimension 15 a

“robust™ parameter for sets.

It should be noted that sets can be constructed for which dg does not exist. In such cases,
the notion of lim may be replaced by the twin notions of im sup and lim inf, leading 1n general
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to two different dimensions respectively called upper and lower box (or entropy) dimensions

(Mandelbrot, 1983).
4.2.3.2 Exactly self-similar sets

This section focuses on the calculation of dg for exactly self-similar sets with splitting factor

M and scale ratior. We show that
Ng(8) = 89S P(logs), (4.2.4)

where P is a periodic function of period log(1/r). The possibility of prefactor oscillations in the

context of turbulence is discussed and the sensitivity of P to the box-counting grid is examined.

Let Ng(S;9) denote the minimum number of boxes needed to cover a set S. Suppose that §

splits into M identical copies S;. If the sets §, are positively separated , 1.e. Sj and §; are

separated by finite distances d(S,,S,) for each (i,j), and if § < min{d(S,,S,)} then
Ng(S§;d) = M Ng(§,;0) (4.2.5)

because there is no overlap between the coverings of the §,’s. S, being a scaled down copy of

S with scale ratior,
NB(S;;8) = Np(S;0/r)
and (4.2.5) then becomes
Ng(8) = M Ng(8/r), (4.2.6)

which is a linear functional equation for Ng(8) (the argument S was dropped for simplicity).
Denoting Ng(8) = §4S P(logd), where P will be called the prefactor, and replacing in (4.2.6)

yields

P(logd) = P(logd + log(1/r)), (4.2.7)
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which implies that P is a periodic function of period log(1/r). Note that P is also disconttnuous

since Ng(8) is. The general solution of (4 2.6) is therefore given by (4.2 4). Note that while
dp alone does not determine uniquely M and r (see section 4.2.2), they are determmed given
both dp and the penod. This method for measuring the parameters M and r of an exactly self-

similar set does not appear to have been proposed previously.

Iterating (4.2.6) yields the equivalent equation
Na(n 8) = A "9 Np@), (4.2.8)

where Ay =1 (n=0,1, 2, ..). (4.2.8) is the property satisfied by any homogencous
function when the parameter A, varies continuously in some range, but here Ay 1s restricted to a
discrete set of values. In that sense (4.2.8) can be regarded as a discrete scaling principle. The

possibility of oscillations of the prefactor is related to the intrinsic discreteness oi the

self-similarity. The effect of this discreteness is "felt" by Ng(8) when the ratios §/8q are not
integer powers of r. Conversely the prefactor oscillations are ot visible if Ng(9) is examined
only at scales &, =" 8g, where dq is arbitrary. The existence of oscillations 1s worth
examining in experimental measurements to investigate the possibility of discrete scale ratios
geophysical contexts. Similar oscillations were noticed by Mandelbrot (1983, p. 123) in the

context of the geometrical characterization of clusters.

A natural continuous extension of the discrete scaling principle (4.2.8) is
F(A 8) = L HF(5) (4.2.9)

where A varies continuously in some interval and H is fixed. For a fixed A the solution of
(4.2.9) is Fy(8) = 8H Py (logd), where Py(x) = Py(x+log(A)), but this solution holds for
each A hence the prefactor must be a constant. The continuous extension of (4.2.8) theiefore

spoils, in general, the oscillatory behavior of the prefactor. Equations of the type (4 2.9) are
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known to apply to various quantities in physics: According to the K41 theory the velocity

structure functions in fully developed turbulence satisfy

<lAv(AL)Ih> = Ah/3 <|Av(L)Ih>; (4.2.10)

the root mean square displacement AX(t) of a particle in Brownian motion during a time t

satisfies A (At) = A1/2 AX(1); similar laws appear to hold for rainfall rate increments over a
ume lag T (Lovejoy, 1985) and radar reflectivities averaged over volumes of size L (Schertzer
and Lovejoy, 1987). In the context of turbulence, assuming that (4.2.10) holds for a fixed A,
Smith 2r al. (1986) have suggested that the general solution could be
<IAv(L)Ih> = LN Pp(log8), where Py(x) 1s periodic in x. From this point of view the period
of the function P becomes a fundamental parameter of turbulent flows. It is emphasized that the
K41 theory predicts a constant prefactor and does not make room for oscillations
Nevertheless, oscillations of the prefactor have been observed for h > 12 by Anselmet et a/
(1984). If these oscillations are not statistical artefacts, their existence contradicts both the K4t

theory and the continuous scaling principle (4.2.10). We will return to this question 1n chapter

8.

If Ng(d) is obtained witi .. « x-counting grid, it is emphasized that (4.2.6) does not hold
because the S;’s are not it 1« .l aligned in the same way with respect to the grid, so that
(4.2 5) is not necessarily satistied. In special cases, the symmetry of the set and a proper
choice of the grid position can allow (4.2.5) to be satisfied exactly. This is wi-.¢ happens for
example with the triadic Cantor set if a gnd line splits the set exactly in the muddle. The
behavior of the prefactor can be illustrated with the triadic Cantor set: Since Ng(1) =1 and

NpB(d) =2 when 1/3 €38 < 1, the prefactor Ng(8)89B is given by

P(0) = 1 and P(logd) = 2edB logd for 1/3<8 < 1.
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The prefactor has discontinuities at the scales 8, =" (n =0, 1, 2, ...). lt1s mteresting to

compare this with a numerically calculated prefactor using box-counting ona gnd. An M-piece
Cantor set is represented by a string of biary digits indicating the surviving intervals by a 1 and
the deleted ones by a 0. Using this convention, the triadic Cantor set (101) and the 3-piece
Cantor set (1101) were considered, using 12 and 10 iterations respectively  The smallest
construction scale was defined to be 1 The first line of the box-counting grid was positioned
on the left edge of the sets and therefore the symmetry of the set (101) was not explotted  The
results were plotted in figure 4.4 and 4.5.  P(x) 1s not pertodic for several reasons. Firstly, the
renormalization equation (4 2.6) no longer holds on a box-counting gnd so the measured
prefactor is at best approximate. For the set (1101), two of the subsets S are not separated and
therefore (4.2.6) holds only approximately even if a grnid was not used. Secondly, at the
smallest scales the set 1s not fractal and therefore self-similanty is spotled. Despite the noise
contaminating P(x), the periodicity of the disconiinutties appears clearly in both cases  For the
set (101) large peaks occur at scales Ly = 37 wiile for the set (1101) they occur at L = 40,

which is consistent with (4.2.7).

This numenical experiment demonstrates that the prefactor functions of Ng(d) and N'i(8)
(obtained with box-counting) can be very different. In general the prefactor of N'g(d) will not
be periodic partly because of the lack of separation of the S;’s and partly because the grid will
not be aligned 1n the same way for each S;. This appears to be the first discussion of oscillating
prefactors and grid effects in the context of box-counting. A better method tor measuring

periodic prefactors will be examined in chapter 8.
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4.2.3.3 Multiscale self-simifar sets

Muluscale self-similarity is the most natural generalization of exact self-similarity. This scale
symmetry has been used successfully, in particular, in the modelling of self-similar measures
associated with non-linear dynamical systems (see chapter 5). A priori, they appear to be
relevant candidates in the modelling of fractal fields. In this section we focus on the calculation

of their box-dimension.

A muluscale self-similar set S can be broken into M disjoint copies Si scaled down by
different ratios rq, ..., rm- Self-similarity directly leads to the renormalization equation
M
Ng(d) = NB(6/r) , (4.2.11)

1=1

that holds exactly if the sets S, are positively separated and 8 < min d(S;,S)). Define dg to be

the real root of

M
Yord =1, (4.2.12)
1=1

dp 1s unique because the function f(t) = X ri! satisfies f(t) <0 while f(0) =M >1 and

lim_ f=0. Denoting Ng(d) = §-do P(8), where P(d) is the prefactor, and replacing in

(4.2.11) yields the prefactor equation

M
P@) = X 9P/ . (4.2.13)

1=1

The general solution of (4.2.13) is a linear combination of elementary solutions of the form &9,
with d complex, and is derived in the appendix 4.1. Two cases must distinguished for the

general solution of (4.2.11):
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(i) Generic case : The general solution is
NB(®) = 8% {cg + R(S) ) (4.2.14)

where

R®) = Y, c(n) & 9RM exp(-i di(n) logd)

and dr(n) <0 for all values of n. It follows that R(§) — 0 as & — 0 and therefore the
prefactor is constant in the limit 8 - 0. If dg(n) = O for some values of n the oscillations

could survive over finite ranges of scale because of the slow damping rate.

(ii) Special case: The values of ry are of the form

=M, j=12, ., M (4.2.15)
The general solution becomes

Ng(d) = 5% { P(log8) + R(5) } (4.2.16)
where P(x) = P(x + log(1/rg)) and R(8)-0 as 8-50.

In both cases, it 1s clear that dg = dy. The box dimension of a multiscale self-simular set s
therefore always given by the real root of (4.2.12). (4.2.12) can be regarded a generalized
definition of the stmilarity dimension for multiscale self-similar sets because 1t reduces to
(4.2.1) in the special case of equal ratios. By contrast with exactly self-simular sets, the
prefactor function does not determine the scale rauos r,. In the generic case the oscillatory
behavior of P(d) is spoiled by the introduction of incommensurate scale ratios and P(8) 1s
constant in the limit 0. In the special case of commensurate scale ratios, however, a periodic
prefactor 1s recovered in the limit § - 0. The period determines ry (see 4 2.15) which 15 an

upper bound for the ratios r,.

As for exactly self-similar sets, dg does not determine uniquely the splitting factor M and the

ratios r,. For example, squaring (4.2.12) yields

PPN (rlrj)d = 1,
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which shows that a multiscale self-similar set with splitting factor M2 and scale ratios rr,
(1, j=1, .., M) has the same box-dimension. The same argument can be made by raising

(4.2.12) to any integer power.
4.2.4 Hausdorff dimension and self-similar sets
4.2.4.1 Definition and properties

Hausdorff dimension is discussed in this thesis because of its relevance to the multifractal
spectrum of a self-similar measure, introduced in chapter 5, which nowadays plays an
important role 1n the modelling of turbulent fields. By contrast with the box-dimension, the
Hausdorff dimension dy exists for all sets. While dg does not distinguish a set from its closure
(e.g. dp(rationals) = dg(irrationals)), dy does. Hausdorff dimension is also a metric concept.
To define 1t, we consider a covering of a set S with sets U, of variable diameters §,. Recall that
the diameter & of a set U s defined by 8 = sup{d(x,y): x, ye U}, where d(x,y) is the
Euclidian metric. If 0 < §, £ 9 for each i, {U,} 1s called a 8-cover of S. Given a 6-cover of

S. define the outer measure

Hdg(S) = inf { D84}, (4.2.17)

where the infimum (i.e. greatest lower bound) extends over all possible d-covers of S (a brief

recap on the notions of measure and outer measure is given in section 5.1). Hds(S) is a

decreasing function of & because the class of permissible covers of S is reduced as & decreases,

and therefore HdB(S) increases. Now define the d-dimensional Hausdorff outer-measure by

HY4(S) = lim HY(S) . (42.18)
3-0
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H4(S) exists since Hds(S) increases as d decreases, but may be (and usually 1s) zero or infinte.

Since X8,d is a decreasing function of d for a fixed cover, the infimum Hdﬁ(S) 18 also a

decreasing function of d. Furthermore, a similar reasoning implies that it d > t then

Hdy(S) < 84t Hy(S)

Letting d—-0 we see that if HY(S) < oo, then Hd(S) =0 for d >t. Also, if HY(S) = oo then
HY(S) = oo for t <d. Hence there exists a critical value dy, called the Hausdortf dimension,
above which H4(S) = 0 and below which H4(S) = oo, This divergence rule may be regarded
as a generalization of the statement "the length of a surface 1s infinite, its volume 1s zeto".
HA4H(S), called the Hausdorff outer measure of S, may be either 0, o, or a finite positive

number. dy and dp are related in general by

0<dy <dg £ D, (4.2°19)

which follows from the inequality Ng(§;S) = Hd(S).

HdS(S) can equivalently be defined in terms of d-covers of S by restricted classes of sets,

e.g. convex, open or closed sets, and dy remains unchanged (Falconer, 1985). Hausdortf
dimension shares all properties of a fractal dimension (see section 4 2.1). In particular, the

property (v) follows directly from the fact that H4(S) 15 an outer measure. Indeed

supp H4(Sp) < HAUSY) < Y HA(Sy),

which implies that dy(US,) = supy du(Sp). It follows in particular that the Hausdorft
dimension of any countable subset of IRD is zero, since dy = 0 for each individual point. For

example, the Hausdorff dimension of rationals is zero.

The Hausdorff outer-measure can be turned into a measure if one restrict ourselves to Borel

sets, i.e. finite or countable unions or intersections of open and closed sets. Any set that can he
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constructed using a sequence of countable unions or intersections starting with the open sets or
closed sets will certainly be Borel (Falconer, 1990). Multiscale Cantor sets and Koch curves

are therefore Borel.

[t 1s worth mentioning that the original definition of fractal sets, introduced by Mandelbrot,

was based on the concept of Hausdorff dimension:

“A fractal is by definition a set for which the Hausdorff dimension dy

strictly exceeds the topological dimension d”.

This definition was found to be problematic for various reasons, in particular because of the fact

that it excludes fractal sets for which dyy and dr are equal. According to Mandelbrot, the basic

purpose of this definition was to distinguish fractal sets from simple euclidian sets for which

dy =dt. In any case, it certainly defines a class of sets that are irregular at all scales, 1.e. a

class of fractal sets,

In general the practical estimation of dy is difficult. Its definition is rarely (never?) used as
the basis of experimental procedures for the determination of fractal dimensions of physical sets
(Barnsley, 1988). However, we shall see an example in chapter 5 where a measure, possibly
relevant to turbulence modelling, gives rise to sets for which dy can be obtained indirectly
through measurable scaling exponents. This fact gives some physical credit to the notion of

Hausdorff dimension, which may seem a little exotic at first.
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4.2.4.2 Self-similar sets.

In this section we compute the Hausdorff dimension of self-similar sets by taking advantage

of the scaling symmetry. The limitations of this approach, dus to the possibly vanishing value

of the Hausdorff outer measure, are highlighted.

Consider a set S that can be broken into M 1dentical disjoint copies S, scaled down by a

common ratio r, i.e. an exactly self-similar set. If the S, are posnively separated and

d < min,; d(S,,S)), the lack of overlap implies
M
Hlg(S) = Y HI Sy, (4.2.20)
1=1
Scaling and self-similarity implies that
Hdy(S) = @ Hd; (8), (4.2.21)
and therefore (4.2.20) becomes

Hdy(S) = M rd Hd;, (S). (4.2.22)

—a

As previously for Ng(8), the general solution of (4.2.22) takes the form

Hdy(S) = 39-d5 Py(logd), (4.2.23)

where ds = logM/log(1/r) and Py(x) = Pg(x+log(1/r)). A periodic prefactor, already
encountered in the analysis of box-counting, is again obtained. In the case of a separated

multiscale self-similar set, (4.2.22) becomes

M
HY ) = ¥ nid HdG, (S), (4.2.24)
1=1
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which is formally identical to the equation (4.2.13) for the prefactor of Ng(d) in the case of a

multiscale self-similar set. In the generic case of non-commensurate scale ratios r; the solution

of (4.2.24) is therefore

Hdg(S) = 8 49s {co(d) + Ry(d) ) (4.2.25)
where Ry(8) — 0 as 8 — 0 and dg is the real root of the characteristic equation (4.2.12).

If the prefactors Pg (in (4.2.23)) or co(d) (in (4.2.25)) are non-zero for all values of d, it is
clear from (4.2.23) and (4.2.25) that HdS(S) vanishes in the limit & - 0 for d >dg and
diverges for d < ds, and therefore dy = ds. The possibility dy < ds 1s is clearly illustrated
by the example of rational numbers in the unit interval. The set of rationals is exactly self-
stmilar ( the sum of two rationals is rational and the product of two rationals 1s also rational. It
follows that a unit interval of rationals can split into M identical subintervals of size r = /M,
each being a copy of the interval scaled down by a factor r). The similarity dimension is

therefore 1, while dy = O since the rationals fcrm a countable set. Note that if we assume that
0 < HH(S) < oo, (4 2.26)

then (4.2.23) and (4.2.25) imply that dy = ds. Borel sets satisfying (4.2.26) are called s-sets,
and multiscale Cantor sets and von Koch curves are examples of such sets (Falconer (1990)

section 2.2)

The more general case of non-separated but “just touching” self-similar sets, such as the von
Koch curve where the subsets share two common points at their edges, can be treated by
focusing on Borel sets (see Falconer (1990) and Hutchison (1981) for more details on the
separation condition). In this case Hd is a measure and the property H4(US,) = 3. H4(S,) can
be used together with (4.2.21) and (4.2.26) 1o deduce that dy =ds. Roughly speaking, s-sets

that are “sufficiently separated” satisfy dy = ds.
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4.2.5 Comparison between box and Hausdorff dimension

For the M-piece Cantor set or the M-piece von Koch curve the similarity dimension 1s

defined by ds = logM/log(1/r). For such sets, it was shown that
ds = dg = dy

For the multiscale Cantor set or the multiscale von Koch curve, the similarity dimension is

M
defined by Z rdS = 1. For these four sets the above equality holds, which 1s basically a

1=1

consequence of self-similarity for s-sets.

Consider the set of numbers S = (1,1/2,1/3,1/4, ....}. This is a fust example of non
self-similar set and dg is therefore undefined. For this set dy = 0 because S is countable. The
Hausdorff measure is HO(S) = e because the Hausdorff measure of each point 1§ 8 =1, and
there is an infinite number of points. The box dimension of S can be obtained with the
following argument. If 8= 1/n, we need one box per point except when the distance between
consecutive points 1s smaller than 8. The distance between consecutive points 1/k and 1/(k+1)
exceeds & when 1/k- 1/(k+1)>1/n =>k(k+1) <n. For n large, this implies
approximately k < +/n. We will therefore need about vn boxes to cover the interval | 1/4/n,1]
The remaining interval [0,1/7/n] can be covered by 1/Vn/ (1/n)= ¥n boxes. The total number
of boxes of size 8y = 1/n needed to cover S is therefore N(n) =vn + vn = 2v¥n. Hence
N(8q) =2 8,°1/2 and dg = 1/2. As for the case of rationals, the origin of the difference

between dp and dy 1s the countability of S.
4.2.6 Multinomial sets

Rationals satisfy dg =1, dp =1 while their countability implies dy = (). It 15 worth
stressing that dg and dy can also differ for sets that are not countable as will be shown in the

next example. The multinomial sets may a priori seem a little exotic to the reader, but they will
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be shown in chapter 5 to arise naturally in the study of a self-similar measure that might play a
role in the modelling of turbulent fields. Each number in the unit interval I=[0,1] has a base M

expansion

o
_ 1
X = E\Ml,
i=1

where the g,'s are integers 0, 1, 2, ..., M-1. This is also written alternately as x =g €;....
Note that if x, represents the n-term expansion of x then xe [xp,xp+1/MP], i.e. there is a 1-1
relation between the n-term expansions and the intervals of length 1/M". Let I' be the collection
of reals with a well-defined frequency of occurrence of integers 1n the base M expansion and let

Er(x), r=0,1,2, ..., M-1 be the frequency of occurrence of r. These frequencies satisfy to

M-1
0<t <1 and Y& =1. According to Eggleston (1949), the multinomial sets
r=0

ZEo, .y EM) = { xel "1 Ei(X) =8, T =0, ..., M-1}
have Hausdorff dimension

M-1
dy(Zz) = - Zg, logy &r - (4.2.27)
l‘=0

Since any open interval contains reals with any desired frequencies &;, Z is dense in the interval
and consequently has box dimension unity. Z is non-compact and its closure is the unit interval

I. The box and Hausdorff dimensions are consequently distinct.

Z is also an exactly self-similar set. On one hand &(x+y,) = r(x) because only a finite
number of digits in the base M expansion s affected by the additicn of the truncated expansion
yn- Inaddition, for any integer n &,(x/M") = £.(x) because the division only shifts the digits in
the expansion of x, which does not affect &;. It {ollows from these translational and scaling

invariance that the multinonal set can split into M™ identical pieces, copies of the original scaled
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down by a factor 1/M". The result ds = dg # dy is apparently a consequence of the control

of the prefactor on the Hausdorff dimension (see section 4.2.4.2).

(4.2.27) can be made plausible by considering the set of all x with a particular frequency of
occurrence for each integer {0, ..., M-1} in the n-term expansion, i.c. by considering thy

sequence of sets
Zn(éO» aeny éM-l) = { Xe I' : ér(xn) = Rn(&t)’ r= 0’ veey M-l ]!
where R, (&) denotes the rational of the form p/n closest to &,. For fixed &, S, contains

N. = n!
"7 (ngo)! ... (nEm.1)!

intervals of length 1/M". Since logn! =n logn - n + 1/2 logn + O(1) according to Stirling's

formula, we get
1 M-l 1
In(N,) =nlogn-n+ 5 logn - 3 {n&y log(n&y) - ngx+ 5 log(ng)} + O(1)
k=u il

M-1 -
= - nkﬁu‘bl‘,klogék - (le) logn + O(1)

and since 8, = 1/M" then
Nn=C 8 D1l logys,! - M2,

where D is given by (4.2.27). Itis emphasized that D characterizes the entire sequence of sets
and is not the box dimension of any of the individual sets. Since this sequence of sets

approaches Z as n — o, it is not necessarily surprising that D is 1s the Hausdorff dimension of

Z.
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Chapter V

MULTIFRACTAL MEASURES
IN GEOPHYSICS

Les cascades dansaient la-bas
comme de blancs chevaux fougueux,
La criniére pleine d'écume et d arcs-en-ciel

Mais, patatras, au bord du précipice
Les voild tombés sur leurs jambes de devant
Cassées, oh, blanches jambes.

Et ils sont morts au pred du rocher.
Désormais dans leurs yeux éteints
Se refléte le ciel, glacé

Les cascades, lsmail Kadare

Multifractal measures have been used to describe many geophysical fields, such as radar
reflectivity fields generated by showers, cloud fields (Schertzer and Lovejoy, 1984, 35, 87, 89)
and the energy dissipation field in turbulent flows (Yaglom (1966), Mandelbrot (1974),
Sreenivasan ez al. (1988), Meneveau er al. (1987a-b-c, 1990a-b), Novikov (1990), Schertzer
and Lovejoy (1984, 85, 87, 89)). Such measures also model the invariant probability measure
of some non-iinear dynamical systems in the chaotic regime (Hentschel and Procaccia (1983),
Halsey et al. (1986)). In addition, a formalism similar to the multifractal formulation has been
proposed to explain the scaling of the velocity field in fully developed turbulence (appendix of
Frisch and Parisi, 1983). The multifracta! description appears to be a possible junction point
for the fields of turbulence, non-linear dynamics and statistical mechanics. In this chapter we

propose a turbulence-oriented presentation of the concept of multifractal measure.

We start with the notion of measure and discuss its relevance to r~ rote sensing and
turbulence measurements where resolution limits and averaging are ubiquitous. Next comes 4
study of the multinomial measure, an example that has been used in various applications and

that leads naturally to the general properties attached to the concept of multifractal measure.
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Given the subtleties inherent to this field, as well that the frequent misconceptions that they still
generate, we give 2 fairly detailed treatment. The originality of this presentation is the use of a
formalism that allows both sets and measures (either deterministic or random) to be treated in a
same unified framework based on scale renormalization. In the context of measures, our study
of prefactor oscillations is unusual and relatively new. Qurconsiderations about correlations in
multifractal also involve several original elements. The goal of this chapter 1s to propose a
classification of cascade models and to determine to what extent the multifractal characterization

allows different cascade models to be distinguished.

5.1 BASIC CONSIDERATIONS

Any positive integrable scalar field p(x), e.g. the mass density at point x can be used to

construct a measure. The mass u(S) contained ina volume$§,

W) = fpl)adv,
xe S

is a simple example of measure. Generally speaking a measure | associates a non-negative
number p(S) to subsets S contained in the embedding space IR? (the subscts S form a family F
called a sigma-field, i.e. F is closed under complementation and under countable unions). u

satisfies () = 0 for the empty set and

BCUS) = 2 K(S)) (5.1.1)

j=! Fl

for every countable sequence of disjoint subsets of F. It follows that Lt is an increasing set

function, i.e.
S8 => u@l) £ u@) . (5.1.2)

Outer measures, used for example in the definition of the Hausdorff dimension (see chapter 4),

are essentially measures with the property 5.1.1 weakened to subadditivity. The measures
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examined in this section are probability measures which means thatif S is the support of , then

p(S) = 1 (the support of 2 measure is the union of all the open sets G such that u(G) = 0).

The use of measures rather than densities to describe geophy sical fields is motivated by the
limited resolution and the intrinsic irregularity of measured fields. The density function cannot
be determined unless the natural inner scale of the field is resolved, which is rarely the case.
Measurements rather provide averages over intervals, areas or volumes which can ve naturally
interpreted as measures (if they are non-negative). These averages provide what we call a
coarse-grained description of the measure. The idealized fractal fields used to model irregular
fields, such as the energy dissipation rate in turbulent flows do not have well defined densities,
i.e their densities are singular. This is one of the characteristic properties of mulufractal

measures, which are consequently described in terms of the scaling properties of coarse-grained

quantities.

S§.2 AN EXACTLY SELF-SIMILAR MEASURE: THE
MULTINOMIAL MEASURE

5.2.1 Definition

Let the unit interval [0,1] be divided into M pieces of equal sizes, each being assigned a
measure w,, i=0, ..., M-1, where 2 w;=1. Suppose next that the process 1s repeated by
dividing each interval into M subintervals and assigning the j! subinterval of the 1" interval a
measure w;w;. After n steps the construction process generates M™ subintervals of size
Sn = 1/Mn, of the form I,(i) = [xj, xj + 8,] where xj=1 8, i=0, .., M -1, The

number of intervals Iy(i) with measure woko wM_,kM-l, where kg + ... +kpMm.1 =0, 18

n!
N(ko, ... kM-1) = o Tt

which is the coefficient of xoko xM_lkM-l in the multinomial expansion of

(xg + ... + xM.1)". The measure derives its name from this property.
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The multinomial measure is obtained when the construction process is repeated ad infinitum.
If all the weights w; are non-zero the support of the measure is § = [0,1]. If only M, weights
are non-zero the measure is supported by an M_-piece Cantor set. Notice that the process
conserves exactly the total measure at each stage in the sense that if I(i) has a given measure
after n construction steps, the subsequent steps will not change this measure. A cascade
process with these properties of conservation was called microcanc aical or conservative by

Mandelbrot (1974).

This measure is exactly self-similar in the following sense. Consider one of the I(i) and
assume that the measure of any subinterval of I (i) has been normalized by p{I,(i)} (the
normalized measure p'{1} of any subinterval I of I,(i) is defined by p'(I} = p{l}/u{I3)}).
It appears that p' is a scaled down copy of the original measure supported by the shorter
interval Ip(i). Roughly speaking, properly normalized pieces of this probability measure are
scaled down copies of the original measure. This characteristic property is the basis of the
renormalization equations that will be used to analyze this measure. An illustration of the
binomial measure (M=2), obtained with the weights w1=0.3 and w»=0.7, is given in figure

5.1.
5.2.2 Pointwise scaling and singularities

In this section the multinomial measure is shown to be singular in the sense that its density
does not exist everywhere. For a regular measure in a D-diimensional space, the measure 11,(8)
of a ball centered about a point x is proportional to 8P in the limit -0 and the average density,
defined by px(8) = ux(8)/8D, converges for each x as §—0. By contrast for a singular
measure there are points for which py(8) diverges as 8—0. For the multinomial measure, we
will show that the divergence is due to a loca.' scaling property,i.e. ny(8) ~ 3%*) as §-0,

where in general o(x) # D.
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Figure 5.1: A picture of the binomial measure, coarse-grained at the scale 1/212, obtained

with the weights w1=0.3 and w2=0.7. As will be shown later, these weights reproduce
L

accurately the scaling properties of J(avlax)2dx, where v(x) is the longitudinal velocity in a

fully turbulent flow. Random generalizations of the binomial measure will be shown to provide

more realistic models of (9v/0x)2.




The set of values u{In(1)}, i =0, ..., M-1, provides a possible coarse-grained description

of the multinomial measure. Using the notation of section 4.2.6, where xn represents the n

term base-M expansion of x and Ij(x) = [ xp, Xpn + dnl,
w{In(x)} = woko(X) . wykM-1(X) | (Tk(x)=n)

where k,(x) 1s the number of times the digit i occurs in the n term expansion of x. Denoting by

Ern(x) the fraciion k;/n of r's in the first n terms of the base M expansion of x, this can be

rewritten in the form
R{1a(x)) = (w5000 . wiSM-1.aCO)
Using &, = 1/M" leads to
M-1
W{In()) =8 %®) where o) = - 3 &rn(x) logyw,.
=0

If the fractions &.(x) exist (i.e. xel', see section 4.2.6) then & n(x) — &(x) as n — « and

an(x) = a(x), where

M-1
alx) = - z Er(x) logy wi. (5.2.1)
r=0

The measure therefore scales at x and «(x) is called the pointwise scaling exponent of i at x. In

the special case M = 2, a(x) takes the form
a(x) = - { &o(x) logy(wo) + (1-Eo(x)) logyy(1-wo) }.

By contrast with a regular measure for which ou(x) = D for all x, the multinomial measure has

a continuous spectrum of pointwise scaling exponents.

Generally speaking, given any measure  defined on a D-dimensional euclidian space the

pointwise scaling exponent a(x) at point x is
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lim log p(Bg(x))
ax) = 500 g (5.2 2)
if it exists, where Bg(x) denote a D-dimensional ball of radius § centered about <. Notice that
o(x) is non-negative since (L is an increasing set function (property (5.1.2)). Pointwise scaling
exponents have also been called pointwise dimensions (Farmer, 1983), cluster dimensions
(Feder, 1988) or singularity strengths ( Halsey et al., 1986). For the multnonual measure, the

average probability density defined above becomes
p(x,8) = 840D,

and therefore p(x,8) - 0 if a(x) >D and diverges if 0 < a(x) < D. The multinonual

measure is therefore singular on the set {xeI': 0 £ a(x) < D}. Notice that these

singularities are not Dirac distributions because they carry a zero measure: Indeed a(x) >0

therefore [1{Bg(x)} - 0asd— 0.

Tae multinomial measure gives rise in general to a continuous range of pointwise scaling
exponents (if the weights w; are different). By contrast some singular meuasures are
characterized by a single pointwise scaling exponent, i.e. ot(x) 1s constant everywhere on the
support. These measures are sometimes called fractally homogeneous (a term introduced by
Mandelbrot) and are among the simplest singular measures. A simple example of fractally
homogeneous measure is the special case of the multinomial measure obtained when all the M,
non-zero weights are equal to w = 1/M. (figure 5.2). If M¢c =M = I/r the measure is
uniform and regular and a(x) =1 for all x. If M; < 1/r the support S of the measure 1s the

Me-piece Cantor set and (5.2.1) yields a(x) = ds everywhere on S.
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Figure 5.2: Triadic Cantor measure. Starting with a unit mass spread uniformly on the unit
interval, the mass is split in two and uniformly distributed on two subintervals of length 1/3.
The same process is then repeated iteratively on each subinterval. The height of the bars in the

n'h stage is proportional to the average density. The pointwise scaling exponent on the support
is a = log2/log3 and equals the box dimension of the support.




e

5.2.3 Generating function and mass exponents

Singular measures are usvally charactenzed by the scaling properties of coarse-graned
quantities such as the generating function. Consider a measure y defined on a D-dimensional
euclidian space and a cover of the support S of pu with cubes (or balls) of size § 1t {(,(8)
denotes the probability measure of the i% cube, the generating function Xy (8) 1 defined tor any

real number q by

Xg®) = inf X, (1i(8))? (52.3)
i

where the infimum extends over all the possible covers of S. The introduction of the infimum

is usually neglected in the literature, but is necessary for X8 to be umquely defined In
practice xq(S) is estimated by using a regular box-counting gnd. xq(&) decreases monotonically

with increasing q. Indeed for a given covering Y [11i(8)14 decreases if g increases and so does

the infimum.

We shall now show that the exact self-similarity of the multinomial measure (see section

5.2.1) leads to a renormalization equation for xq(a). Denoting by xq(S;S) the gencraung

function of a measure supported by a set S, then

M
X(&:S) = X Xg(8:S)
i=1

where the sets S; are the scaled down supports of the M weighted copies of the measure f. As
for fractal sets with Np(d), this equality holds exactly if the S, are positively separated and
8 < min(d(S;, S))}. The measure defined on S, is a scaled down copy of the whole measure,

but multiplied by wj, which implies

Xq(S;Si) = wji xq(élr;S).
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Consequently

M
Xq(&:S) = (Izzlwﬂ) Xq(&/r:S) (5.2.4)

(5.2.4) is formally identical to the renormalization equation (4.2.6) for Ng(3) in the case of an

exactly self-similar set. The general solution is therefore

1q(® = 8@ Py(logd) (5.2.5)
where
M
logz w4
1=1
(q) = - “Tog(1/) (5.2.6)

and Pq(x) = Pg(x+log(1/r)). The generating function therefore scales with 8 and a periodic
prefactor is obtained, revealing the scale ratio of the measure. 1(q) is called the order-q mass

exponent of the measure.

For more general measures 1(q) is defined by the limit

log (5
() = lim log xq®) (5.2.7)
5§50  logd

It is emphasized that t(q) is always a concave function of q, i.e. T°(q) <0 (more details on
the properties of T will be given in section 5.2.6.1). Measurcs for which 1(q) exists and is
finite for any real q will be called scaling measures. So far, the multifractal formalism has been
applied mostly to scaling measures, or to measures for which xq( 3) scales in some limited range
of exponents q (Fourcade and Tremblay, 1987). The mass exponents are related to the
"generalized dimensions" D(q) of Hentschel and Procaccia (1983) by 1(q) = D(q) (g-1). The
finiteness of T(q) implies that xq(S) ~ Pq(8) St(q) as 8 —» 0, where P (3) satisfies
log(Pq(8))/log(3) —» 0 as & —» 0. It is emphasized that in general the prefactor Pq(8) is

sensitive to the box-counting grid used in the estimation of xq(a). This problem has already
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been encountered in the estimation of the prefactor of Ng(d) for exactly self-simular sets  The
originality of the above treatment lies in the exact renormalization equatons derived trom

general statement of exact self-similarity for measures, as well that 1in prefactor considerations

for the generating function.
5.2.4 The density of singularities and the multifractal spectrum

Another equivalent way of characterizing the measure is to examine the frequency
distribution of the values of 1(8) as a function of 8. Define the singularity strength a(8) of a

box of measure p(d) by
nEd) = §%®. (5.2.8)

It is emphasized that a() is distinct from the pointwise scaling exponent a(x) since a(d) 15
defined for finite values of 9, while o(x) is defined at point x. Define the number of boxes of
size & and measure 8*® with a < o(d) < a + dae as n(d,a)da, where n(d,a) 15 called the
dexsity of singularities. n(d,00) charactenzes the ‘requency distribution of i(8) In general, tor

any measure, the generating function and the density of singularities are related by

oo

A8 = Jn(S,a) § %9 do. (52 9)
0

(5.2.9) can be rewritten in the form

-]

9 = Jn@,a)e’%da,
Xq(® 0fn( o) e do

where s=-qlogd>0forq>0and d<1. xq(é) is therefore the Laplace transform of

n(d,o). The inverse transform yields, after the change of variable s = -q logd,

Yio
llog$!

G = o8 [ 599 () dg (5.2.10)
My
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Using the pair (5.2.9)-(5.2.10), xq(8) and n(d,o) can be obtained directly from each other, and

in that sense both characterizations are equivalent.
For the multinomial measure or any self-similar measure, (5.2.10) and (5.2.5) lead to

Yetoo

Y1

d,a) =
n(o.e) 2mi

(5.2.11) also holds for any scaling measure but Pg is not periodic in general. [tis emphasized

that xq(«S) scales exactly with § (within an oscillating prefactor), while n(8,a) is a continuous
superposition of scaling terms. Nevertheless, asymptotic scaling for n(d,ct) is recovered in the
limit § — 0. Indeed, as & — 0 the value of q that maximizes -aq + 1(q) makes the main
contribution to the integral and the saddle point method (see Wong (1989) or Bender and

Orszag (1978)) yields the asymptotic expression

08,0 ~ ll(})i_l& i smax{-0q+1(@)} Pgg(logd) ";T(J_T;Igg:g!
il qO

where qp(a) is defined implicitly by 1'(qo(e)) = o.. Using
maxq{-aq + T(q)] = - ming {0q - 1(q)}
and denoting
f(a) = ming {0g - T(q)} <=> t(q) = ming {aq- fla)}, (5.2.12)

n(d,x) takes the final asymptotic form

n@,o) ~ 5 Pqq(l0gd) l_f_'(a_z)_lo_g_ﬁ_l , (5.2.13a)
\j T
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where the identity t"(qo(@)) = 1/f"(a), which follows from the definizion (5.2.12), was used.
(see section 5.2.6 for more details). According to (5.2.13a), the degendence of n(d, &) on &
as 8 — 0 is mainly ruled by the function f(a), usually called the multifractal spectrum of the
measure, for reasons that will be exposed in the next section. As seen from (5 2.12), f(a) 1s
the Le sendre transform of 1. The interpretation of the twin relations (5.2.12) 1s the following,
As § - 0 the generating function, and consequently the mass exponents t(q), are umqueiy
determined by the values of the coarse-grained measure equal to BO‘O(q), where cy(q) 18 defined
implicitly by £’(0p(q)) = . The contribution of ihe other values of the measure 15 negligible 1n

the limit § — 0.

The above derivation of the density of singularities, based on the Laplace transform, is more
deductive than the standard presentation (Halsey et al. (1986), Hentschel and Procaccia
(1983)). Indeed, the approach presented in the literature is to show that a density of
singularities of the form &-f(®), where f is assumed to be concave (i.e. f’(a) S0), 1s
consistent with a generating function of the form 8%(@) when Laplace’s method (see Wong

(1989) or Bender and Orszag (1978)) is applied to the inragral 5.2.9 in the limit § - O:

o0

%q(®) = OJ'p(a) §0q - ) ~ gMinalaq-fle) _ gu(@ (52.13b)

as § - 0. By contrast, the general transforms (5.2.9)-(5.2.10) allow to deduce the density of
singularities n(d,cc) directly from the generating function. One advantage of this presentation 15
that the concavity of f(e) does not need to be assumed, it is derived: As long that 1(q) 1s a
smooth function, the concavity of f follows from the concavity of 1 via (5.2.12) because the
Legendre transform conserves concavity. This inversion method, originally developed for
probability densities by Fourcade and Tremblay (1987), was applied here to the generating

function 1n a deterministic context.
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It is emphasized that the Legendre transform (5.2.13b) can take different forms. Suppose
for example that « is restricted to a finite interval Df = [oe_,0t4] and that f is finite at the
boundaries of Dy. In this case the minimum of agq - f(a) is not necessarily inside Dy. Indeed,
the equation f’(a) = q does not have a solution in Dg for all q if f’(a) is not infinite at the
boundaries of Dg. If f'(a) is finite everywhere in D¢ the minimum occurs inside Dy if
qe[q-, q+] where q. = f’(ety) and q4 =f’(a.). For qe [q., q4+] the minimum occurs at one

of the endpoints of Ds. The Legendre transform of f therefore takes two different forms:

(i) qe [q., q+] : f'(a) = q has a solution in D¢ and therefore
Q) = oo(q)q - foo(q)), where £ (0g(q)) = q. (5.2.13¢c)
(ii) g2 [q., 9+]): f'(a) = q does not have a solution in Df when g€ [q., q4]. If @ > O the
mininiam of aq - f(or) is in . while for q <0 it is in a4. It follows that
(q) = o.q - f(o) for g>q.

and (5.2.13d)
Q) = a.q - f(oy) for q<q.,

i.e. T1s exactly linear when q¢[q., g4+]. In the case where f’(at) is infinite at the boundaries of
Dy, while f remains finite, t can be shown to be asymptotically linear in the large Ig! limit. In

this case we obtain a behavior similar to the multinomial measure, i.e.

Q) ~ g q - f(oeg) as g Lo,

This result about the asymptotic behavior of 1 as Igl—oo is derived in the appendix 5.1 and

appears to be original.
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5.2.5 Interpretation of the nultifractal spectrum

In this section, it is shown that for the multinomial measure f(a) has a geometrical
interpretation in terms of the Hausdorff dimension of sets supporting the measure. This

interpretation is the basis of the terminology *‘multifractal measure”. Our treatment is based on

Mandelbrot (1988). The pointwise scaling exponents a(x) (section 5.2.2) allow a natural
decomposition of the support of the measure in terms of the o-singular sets
S(a) = {x: a(x) = o}, defined by a fixed value of the singularity strength. Each S(a) 15
formed of a union of multinomial sets Z(Eg, ..., &M.1) (see section 4.2.6) of Hausdortf

dimension

duy(Z) = - X & logm(&p.

r=0

Indeed ou(x), given by (5.2.1), can also be regarded as a function az(&p, ..., Em.1) of the

fractions &;, and therefore a given singularity strength is associated with sets of various

Hausdorff dimensions. More precisely

S(a) = U ZEo, ..., EM-1)- (5.2.14)
aZ(éOs--'ng-l) =

As 8 - 0, n(d,a) should be mainly determined by the subset Z(g, ..., §m.1) of S(a) having

the largest Hausdorff dimension dy_,, (), i.e. by the “fattest™ subset denoted by Z,.

dHmax(®) can be obtaired by maximizing the dimension function dy(&, ..., §m.1) given by
(4.2.27) with respect to the & subject to the constraints g1 = £&, -1 =0 and
g2 = az(&0, ..., EM-1) - @ = 0. Maximizing dy - Q g1 + P g2, where Q and P are two
Lagrange multipliers, leads to §, = e-1 M -P w;Q. The first constraint then yields

Q
U MPIuQe1 - g = T
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The second constraint gives

2 wiQlogy(wi) _ aTQ) . ) '
Swid =—5q Where T(Q)= - logy(Zw; ), (5.2.15)

a = -

which determines imp!icitly the multiplier Q(ct). The maximum Hausdorff dimension be.omes

wiQ wQ . IwQ(Qlogy(wi) - logy(Ew Q) T
deax(a) = - z f“:/TQ lOgM( Z“‘/lQ ) = - ZWlQ = QE -T.

dyymax (@) is therefore the Legendre transform of T(Q), i.e.

dHmax(®) = ming { 2 Q- Q) } (5.2.16)
It is noticed that t(q) = T(q), where T is given by (5.2.15). [t follows that
dgmax(®) = f(o) . (5.2.17)

The multifractal spectrum therefore reveals the Hausdorff dimension of the Z¢ sets of the
multinomial measure. The result (5.2.17) is based on Eggleston theorem about the Hausdorff
dimension of the multtnomial sets on the interval [0,1]. It is emphasized that in general
(5.2.17) does not hold for any scaling measure. In the analysis of turbulent fields a test of this
assumption would require a direct measurement of the dimensions of these sets. It is stressed
that each Zy is 2 multinomial set and consequently is dense on the unit interval. Their box
dimension is therefore 1 for any a. If some weights vanish the support S of the measure is the
Mc-piece Cantor set, where M, is the number of non-vanishing weights, Zy is replaced by

ZoNS and f(o)lmax = dg(S) = du(S).

In the special case of fractal homogeneity (i.e. equal weights w;) the mass exponents reduce
to 1(q) = ds(g-1). f(e) is defined only for the values of o for which 1'(q) = o has a
solution, i.e. for g = ds where f(otp) = ds. This homogeneous measure, characterized by a

single dimension dg, is sometimes called monofractal by opposition to multifractal.
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5.2.6 Properties of the functions t(q) and f(x)

For any scaling measure, T and its Legendre transform f(a) have a few general propertics

that will now be derived and illustrated with the multinomial measure. t(q) and f(a) were

plotted in figure 5.3 and 5.4, summarizing the main results of the next two sub-sections.
5.2.6.1 Mass exponents

The properties of T(q) are inherited from the properties of T(q,8) = log(xq(a))/logé because
q) = lim8 0 T(q,8). The main properties of 1(q) are:
—

i) 1q) > 0forq>1,1(q)<0forq<1, 1(1) = O,
(ii) ©' 20,

(iii) t"(q) <0,

(iv) 1(0) = -dp(S).

(i) follows from %,(8) = 1, that holds for a probabiliny measure, and axq(S)/aq <0. (i)

follows from

(8
aT/aq = 2a®%

where X(8) > J and axq(S)/aq <0. (iii) is the result of a classical theorem of probabulity
theory (Feller, 1966). For the property (iv), T(0) = -dg(S) follows from y,(8) = Ng(9),

where S is the support of the measure.

Consider for example the function t(q) for the multinomial measure. If w. and w, denote
the minimum and maximum values of the weights w; while n. 2 1 and n; 2 1 are the number

of weights respectively equal to w. and wy, then from (5.2.6)

1 q | .wd
‘t(q)“ggl-(é]gz—l—\/g—)asq-»w and T(Q)'"-‘Q‘lg(',(‘g(l“;’r’)‘lasq“"”
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and t(q) is seen to have linear asymptotes with slopes -log(w+)/log(l/r) as q — oo

respectively.
5.2.6.2 Multifractal spectrum

We shall assume here that 1’ exists and is strictly positive (1’ > 0) for ali q. The definition

(5.2.12) then leads to

f(a) = o qo(@) - Hqo(a)) (5.2.18)
where
T’(qo(a)) =o. (5.2.19)

It follows from (5.2.19) that the domain of definition of f is D¢ = [1’(e0), T’(-20)] = [at., 4]
(the concavity of T implies that T’ (o) £ T’(-e0)). It is emphasized that two regions of the f(o)
curve can be distinguished: The range a <D (D is the topological dimension of the
embedding space) characterizes the singularities of the measure ((8)/8P == §¢-D 00 as §0)
while the range o0 2 D corresponds to non-singular behavior (1(8)/8V'<0 as §—0). The
assumption 17’ > 0 implies that (5.2.19) has a unique solution qqg(ct) for each ae Dy, and qg(o)
varies in IR when @ varies in Df. The main properties of the multifractal spectrum can be

derived from the above two equations;

M (o) €0,
(ii)  f has a unique maximum at o+ = 1°(0) and f(cs) = dp(S),
(i) f(a) £ a,

(iv) f(a;) = lim a

e 1T@- @),

Differentiating (5.2.18) twice yields f’’(a) = qp’(a) and differentiating (5.2.19) yields
qo’ (o) = 1/1"’(qo(ax)), therefore £*’(a) = 1/27°(qp(x)) and t” <0 implies (i). Therefore f
has a unique maximum in o = a« where f’(ots) = qg(os) = 0, and (it) follows from (5.2.18)
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and t{0) = -dg(S). The third property follows from Young's inequality: For anv
(o, q) € Dex IR, o q-1(q) 2 f(o) which follows from the definition of f. But P20
for 921 hence for any q2 1 and o € Df we have o q-f(a) 20, and (iii) then follows
fromq 2> 1. (iv) follows directly from (5.2.18), (5.2.19) and qo(@) € IR while (v) follows
from f’(a) = gp(r).

Some of these results will now be illustrated with the multinomial measure. The boundaries

of Drare given by

_ log(wy) _ log(w.)
.= Togily and oy =- Tog(1/r)

and (ii) implies

log(w) _ logM,
-5 Z log(y  2nd flow) = 157

where Mg is the number of non-zero weights wj. With (5.2.6), (iv) leads to

log(n:,_)

fos) = Tog(i/n 2 ©

and therefore f(a) 2 0 everywhere.
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Figure 5.3: The function t(q) for a deterministic scaling measure. For the multinomial

measure
lo
dB(S) = lOg( ey
o. = -log(ws)log(1/r), o4 = -log(w.)/log(1/r),

f(o.) = log(n4)/1og(1/r), f(oe+) = log(n.)/log(1/r)
where wz are the maximum and minimum values of the weights wj, Mg is the number of
non-zero weights, ny and n. the number of weights equal respectively to w4 and w., and r the
scale ratio of the cascade.
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Figure 5.4: The function f(ct) for a determunistc scaling measure. For the multinomial
measure,

1
e =- wagog(wl)/log(l/r).

See figure 5.3 for the values of the other parameters.




»

5.2.7 Non-concave multifractal spectrum

So far, we have defined scaling measures by the scaling behavior of thei: generating
function. Alternately, scaling measures can be defined directly via the scaling behavior of their
density of singularities. In this case we emphasize that f(at) is not necessarily concave. For
example, the sum of two scaling measures with concave multifractal spectra fi(o) and fo(at)
yields a total density of singularity n(8) ~ 8-f1(@)+ §-f2() if the supports of the two measures
are separated (the prefactors of each density of singularity are not written for simplicity). In the
limit §—0 we get n(8) ~ §-(®) where f(a) = max{fj(a),f2(a)}, which is not a concave
function in general (see figure 5.4b). In this case the generating function is
%q(d) = 371(@) + §72(@) ~ gmin(r1(a). T1(Q)} as -0 and therefore 1(q) = min{T1(q), 12(q)}.
Even if f(a) is not concave .he corresponding t(q) remains concave (T 1s always concave) but
exhibits in general discontinuities in its derivative at the intersection points of T and 1 (see

figure 5.4b).

In this example we chose 17 and 13 so that they cross only in g =1 and f’(a) is infinite at
the boundaries of the domain of definit'ons of f| and f3. This intersection point defines two
critical values of &, namely o) = 1°1(1) and a3 = t°2(1). Since f(a) = qt’(q) - T7(q) where
1'(qQ) = a and f’(q) = a, using q = 1 yields

ay =1’ 1(1), o = 1'2(1)

f'(ay) =f"(ap) = 1 (5.2.20)
f(ay) = ay, f(aa) = as.

The non-concave part of f(ot), in the range o} £ o < g, does not contribute to the generating
function 1n the limit 3—0. Indeed, we will now show that the following truncated density of

singularities (see figure 5.4b)

n(d,a) = &M@ [1 -6(a-a))] + 52 (a - 0p) (5.2.21)
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yields the correct y4(8) as —0 (8 is the Heaviside function: 8(x) =1 for x =1 and
8(x) = 0 elsewhere). The first term of (5.2.21) on the right hand side makes the following

contribution to Y():
aq

0@ = [ 8aafi@ dg.

-0

If > f1'(ap) =1 the minimum of aq - fi(a) lies in the range o < o1, while for q< 1 1t

isin o;. Heuce, using (5.2.13c&d) yields
11(3) ~ 871D (g - 1) + 8491 (1.6(q- 1))

as 0. A similar result [2(8) is obtained from the second term of (5.2.21). Adding 1 and 11,

using (5.2.20) and factorizing yields
Xq(®) ~ [871(@) + 3T20@- D) O(q- 1) + [8%(QD) + §71DE- D] (1 - 6(q - 1).

But we see from figure 5.4b that
{n(q) <12'(1)Xq - 1) for g > 1
T2(qQ) < T1’(1)(q - 1)forq«1
and therefore

Xq(®) ~ 1@ 6(q- 1) + 372D (1-6(q- 1)),
which is the exact asymptotic form of xq(8) as d—0.

We conclude that different f(ot) spectra can share the same mass exponent function 1(q), i.e.
t does not define uniquely the multifractal spectrum. The relaticn 1(q)-f(@) is one-to-one when
1(q) is smooth, i.e. differentiable everywhere, which is the case studied by most authors. The
possibility of a non-concave f(a) for scaling measures does not appear to have been noticed

previously.
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Figure S.4b: Top: The two multifractal spectra f] and f; of the measures 1 and y; are
plotted on the same graph. The darker curve f(a) = max{fi(a), f2(a)} is the resulting
spectrum for the total measure y = i1 + W2 when the supports of {1} and p7 are separated.
The hatched area indicates the part of f(ax) that contributes effectively to the generating function
in the limit 3—0. The non-convex part of f, between oy and o, does not contribute to Xq(8)
as 8—0. Bottom: The two mass exponent functions t; and 13 of pj and p are plotted on the

same graph. The darker curve is the resulting spectrum t(q) for the total measure. 1(q) is
concave but is not differentiable inq = 1.




5.3 Multiscale self-similar measures

§5.3.1 Definition

A natural generalization of exact self-similanty for measures is mudtiscale self-similarity,
where the pieces generated at each construction step are allowed to have different sizes. Such
measures have been used in particular by Hentschel and Procaccia (1983) as a model of the
invariant probability measure associated with a non-hinear chaonce dynamical system  In this
context, the measure is defined through the motion of a point in space: Given for example a
discrete-time orbit {x;}, i=1, 2, ... where x; e IR, the space 1s divided in cubes of size § and
the probability measure of a given cube is defined to be the fraction of time spent by x, n the
cube. They showed that multiscale self-similarity was flexible enough to account for the scaling

properties of the generating function for some dynamical systems.

For a multiscale self-similar measure the support S 1s composed of M disjoint copies S,
scaled down by different ratios ry, rp, ..., rM. By definition, the normalized measure detined
on each §, (see section 5.2.1) is self-similar to the full measure. For example, the multiscale
Cantor measure (figure 5.5) 1s constructed by replacing a unit cube of probability measure | by
M disjoint subcubes of sizes r1 < ... £ £ 1 and measures wy, ., wag, the total measure
being conserved. This process is then repeated ad infinitum on each subcube: Each cube of size
l; and measure mj is replaced by M subcubes of sizes rj |, < .. Srpm |, and measures

wi my, ..., wy m;. The special case of equal scale ratios corresponds to the exactly

self-similar multinomial measure.

A multiscale self-similar measure also gives rise to a spectrum of pointwise scaling
exponents, which can be shown by considering an expansion adapted to this model- The
position of a point of the support of this measure can be determined by the sequence ning

where n, is the label of the set S, chosen at level i of construction. One may consider the set of
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Figure 5.5: A two scale Cantor measure with r1=0.25, ry=0.4, w1=0.6, w2=0.4. The height
of the bars at the nth stage is proportional to the average density p,=p;/dj, where y; is the

measure of the segment of length §;.




points I' for which the fractions nj/n converge as n — . For any pomnt in I' the pointwise

scaling exponent exists and takes the same form than the one obtained for the multinomual

measure.
5.3.2 Generating function, mass exponents and multifractal spectrum

The generating function satisfies the renoimalization equation

M
2@ = 2, wid x (8, (5.3.1)
i=1

a direct generalization of (5.2.4). Let us define 1o(q) to be the real root of

M
Y wig M@ = 1, (5.3.2)
1=1

10(q) exists and is unique because dtp(q)/9q > 0, which can be checked by differentiating

(5.3.2) and using the constraints O<w; <1 and O<r < 1. Substituting

Xq(8) = 8%0(@ Py(8) in (5.3.1) leads to the prefactor equation

M
Po®) = Y, wid 1y 0@ Py(d/ry), (5.3.3)
i=1
which is in a form identical to the prefactor equation of Ng(8) in the case of a multiscale
self-similar set. Using the results of the appendix 4.1, the generic solution of (5.3.1) becomes
2@ = § 0@ [ ¢o + Rq(3) }, (5.3.4)

where Rq(8) — 0 as & — 0, and therefore the prefactor of xq(3) is constant in the limit -0
The mass exponents of a multiscale self-similar measure 1s therefore 1g(q), the real root of

(5.3.2). The introduction of incommensurate scale ratios r, is found to spoil the periodic

oscillations of the prefactor of the generating function, as for Ng(0) with muluscale self-similar
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sets. The density of singularities is obtained from xq(S) with the transform (5.2.10) and the
saddle point method implies that f(cot) is the Legendre transform of 1p(q). This treatment has the

originality of showing clearly the analogies between the renormalization equations satisfied by

Ng(d) and xq(S) for multiscale self-similar sets and measures respectively.
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5.4 GENERALIZATION TO RANDOM MEASURES
5.4.1 Generating function and multifractal spectrum

Randomness is an essential ingredient of turbulent fields in general, and of the energy
cascade process in particular. In this section we generalize the concepts of generating function
and multifractal spectrum to random measures in a way that allows the renormalization
arguments to be extended directly to random self-similar measures. Consider a statstcal

ensemble of measures sharing the same support of topological dimension D (¢.g. a lhine

segment). We define the generating function x‘q(s) of this random measure by

Xq(8) = < X (3) > (5.4.1)
where xq(S) is computed on each rzalization. [t follows from (5.4.1) that

2® = 82 < (e > (5.4.2)

if the random measure is spatially homogeneous. Pursuing the analogy with deterministic

measures, the generalized mass exponents t*(q) are defined by

1*(q) = lim8 0log()(‘q(S))llogZS. (5.4.3)

Using (5.4.2) yields

log <(n(8))4>

T = -D + lim
() 50 logd

(5.4.4)

A random measure for which t*(q) exists and 1s finite for all q will be called a random scaling
measure. The singularity strength o(3) is now a random variable parametrized by 6, defined

implicitly by

w@E) = §%9 (5.4.5)
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If g(ct,3) denotes the probability density of a(8), then the generalized density of singularities is
n*3,0) = 3D g(a,d) (5.4.6)

As in the deterministic case, x‘q(s) and n*(8,) are related by the pair of integral transforms

(5.2.9) and (5.2.10). In the limit 6 — 0, it follows from the saddle point method that
n*(8,0) ~ P*(,a) 8- (),

where log(P*(5,0))/10gs — 0, and where the generalized multifractal spectrum is given by
f*(a) = ming{oq - T*(q)), (5.4.7)

i.e. f*(at) is the Legendre transform of 1*(q). The general properties of T” and f* (section
5.2.6) remain unchanged except for a few exceptions: Firstly, the constraint t*°°(q) <0 does
not prevent T from being negative for q large enough; secondly, f*(a) no longer needs to be
positive. Indeed the Legendre transform of a function satisfying t’’ <0 is not, in general,
positive definite. Fourcade and Tremblay (1987) claimed that a negative range for " (o)

appears to be possible only in the context of random measures.

Remark 1: The scaling of a random measure is sometimes studied (Mandelbrot (1974),
Schertzer and Lovejoy (1985)) in terms of an average density p(8) = u(86)/8P and the

singularity strength 7y is given by p(8) = 87. Scaling exponents are then defined by

. log<(p(8))a>
= -1 —_— 4.,
K(q) 1m8 Lo logd (5.4.8a)
and the density of singularity takes the form n(3, ) = §C(¥) where
Cy) = maxq{yq - K(q) ) (5.4.8b)

It follows from (5.4.8a) that 1*(q) and K(q) are related by
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t(q) = D(@g-1) - K(g). (5.4.90
Y and the function C(Y) are related to a and f(at) by
y=D-a ad C(y) =D - f(a), (5.4 9

which follows from (5.4.8b). C(Yy) is then called the codimension function. (5.48a-b) are
essentially the definitions used in section 3.3.3 for the energy dissipation field 1 one of our

formulations of the 3% Kolmogorov hypothesis.

Remark 2: The idea of using scaling probability densities to obtain multiscaling moments has
been used in turbulence by Frisch and Parisi (appendix of Frisch 1983) to explain the norlincar
scaling exponents of the velocity structure functions <(Av(L))'> for h 24, as observed by
Anselmet et al. (1984). They suggested that the probability density of o, defined unplicitly by
Av(L) = L@, was of the form p(a) LC@), 1t follows that

<AL = [ p(a) Lon - C@) da ~ LEM)

as L—0, where {(h) = ming{ah - C(at)}. It should be noted that neither Av(L) nor IAv(L.)!

define a measure. In this context o is interpreted as a kind of statistical Holder exponent for the

velocity field (see chapter 2 for a discussion of Holder exponent). The geometnical

interpretation of C(cov) remains unclear.
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5.4.2 The random multinomial measure (microcanonical case)

In this section the concept of self-similarity is extended to random measures, and we show
how the previous renormalization equations for the generating function can be generalized to the
stochastic case. The possibility of a negative f*(cx) for random measures is examined. We start
with a simple example: The random multinomial measure. The difference between the
deterministic and the random multinomial measure is that the weights used in the construction
are not rigidly fixed, they are random variables W;. The variables W; at different stages of
construction are assumed to be independent. The total weight of a segment (or a square or a

cube...) is exactly conserved in the construction, i.e.

M
TW; =1, (5.4.10)

i=1

which implies that the variables W at a same stage of construction are correlated. Random
cascade processes with this property of conservaiion were called microcanonical or conservative
by Mandelbrot (1974). The constraint (5.4.10) implies W; <1 and <W>=1/M. A

realization of a random binomial measure is given in figure 5.6.

The renormalization argument used in the deterministic case can be generalized to this
random measure. The support S of a realization of the random measure splits into M subsets §;
that are statistically self-similar to S, but scaled down by a factor r. For the generating function,

the statistical self-similarity of the measure is expressed by
Xq:S1) € Wid xq@3/r:8), (5.4.11)

where " 4. denotes the equality in probability distribution, and where Wj and 4(8;S) are

statistically independent. If the sets S; are separated and if 8 < min d(S;,S;), then

M
29 = X, xq(8:S0), (5.4.12)
i=l
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Figure 5.6: A random binomial measure with wq = 0.3 and wp = 0.7, coarse-grained at
scale 1/212, At each cascade step the location (left or right) of the weights is chosen randomly

with equal probability.




Using (5.4.11), it follows from (5.4.12) that

M
Xq(6;S) g Z Wid xq(8/r;S)li, (5.4.13)
1=1

where the variables xq(S/r;S)Ii are independent and identi-ally distributed. A statistical

averaging on (5.4.13) yields (the argument S is dropped for simplicity)
X"q(8) = M <Wa% x*((5/). (5.4.14)

The general solution of (5.4.14) is

*o(5) = 57 @ - - de - logsW>
X qn) = &, Py(logd) where 1*(q)=-ds Tog(1/0) " (5.4.15)
with ds = log(M)/log(1/r) and Pq(logd+log(1/r)) = Pq(logd). Periodic oscillations of the
prefactor are therefore also obtained in the stochastic case. The renormalization equation
(5.4.14) can be directly generalized to the case of a multiscale random measure. Some specific
values of t*(q) are

log(1 - po

1*(0) = - ds - log(l/r)) and 1°(1) = 1 -dg,

where po = Prob{W =0}. The unique maximum of f* occurs in

L JogW  hd o) = - 7°0) = dg + 28U-P0)

o = T(0) = - T-p0 <log(1/r) log(1/r)

In this model the weights W; are random but their positions are constrained by a rigid grid.
In a more general model these positions could be chosen randomly at each cascade step, thus
removing the artificial “grid-effect”. As long that the randomly positioned daughter
subsegments remain contained in their mother segment, the renormalization equation (5.4.14)

still holds and consequently the prefactor may still oscillate. Therefore the oscillations are not
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necessarily produced by the rigidity of the splitting grid, but are rather due to the existence of

privileged scale ratios.

It will now be shown that f*(at) can be negative for the random multinomial measure.

Assume for example that W has a discrete and bounded probability distribution, with w. and w,

denoting the minimum and maximum values of W. 1*(q) becomes

t*(q) = -ds - 1og{2 pw,d Jlog(1/n),

1=1

where p; = Prob{W = w,}. If p; and p. denote the probabilities corresponding to w4 and w.

respectively, then
1*(q) ~ - log(psw.3)/log(1/r) as q -+~ and 1*(q) ~ - log(p.w.Y/log(1/r) as q — -os.
The limit values of f, obtained with the limits (iv) (section 5.2.6.2), are

f*(o,) = ds + log(p.)log(1/r) and f*(a_) =dg + log(p.)/log(1/r) (5.4.16)

and are thereforc negative if p. or p,. < (1/r)4s respectively. Notice that negative dimensions
corresponds to decaying singularity strengths: Indeed the number of values of a(d) with
a < 0(3) < a+da is proportional to 8- (@) (within a logarithmic correction) and therefore
goes to zero as 6—0 when f*(a) < 0. It also follows that £*(a) cannot be interpreted as a
Hausdorff dimension in the negative range since fractal dimensions are always positive. This
example illustrates the fact that £*(ct) does not have in gzneral an interpretation in terms of

dimension.
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5.4.3 The random multinomial measure (canonical case)

In addition to the possible emergence of a negative range for f*(c), randomness also brings
the possibility of divergent generating functions and unusual behaviors of the mass exponents,
e.g. 1°(q) <0 for q>0. This can be illustrated with the canonical random multinomial
measure, obtained from the previous model by replacing the constraint of exact conservation

(5.4.10) by a condition of conservation on the average:

<
]

W; >=1=<W>=1/M. (5.4.17)

It M

1

By contrast with the previous model, the weights are independent of each other at a given level
of construction. In addition, they are no longer constrained by W, < 1, i=1, ..., M, which
makes room for larger values of the multiplicative factors W,. The weaker constraint (5.4.17)
of conservation on the average implies that the total measure of a realization obtained after an
infinite number of cascade steps is no longer unity, but is rather a random variable. Hence the
canonical process does not generate a probability measure. The renormalization equation
(5.4.14) and its solution (5.4.15) still hold. However a complication arises from the
non-conservation of the measure: The measure py(0) obtained after n steps of construction 1s
affected in general by the cascade steps arising at scales smaller than 8, and one must worry
about the convergence of <(lup(8))9> as n-»~. When large tail probability densities are used for
W, we shall now see that the periodic prefactor of x*(8;) in (5.4.15) may diverge for some q

in the limit n—eo,

For reasons of symmetry, the initial measure given to [0,1] at the beginning of the
construction will be made random and equal to W (this slight departure from Mandelbrot's

convention (1974), where the initial measure is unity, brings significant simplifications later

on). Denoting by p(8) the measuvre of an interval of size §_ =17, it is seen that
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< (UG > = <Wash <(u@o)e> = 87 P +P<(u(dpna>, (5.4.18)

where 1(80p) is the order-q moment of the total measure generated by the fully constructed
cascade process (figure 5.7 for a graphical explanation of (5.4.18)). In the microcanonical
case, the exact conservation of the measure implies trivially that u(dp) = 1. In the canonical

maodel, hov/ever, two alternatives arise;

(i) <(u(dg))3> is finite for all q,

(ii) <(u(dg))1> diverges whenq>qc 2 1.

In the first case, <(u(8p))3> becomes independent of the construction inner scale 1} as N—0 (or
equivalently of the number of cascade steps n) and the scaling of the generating function 1s not
affected bv the factor <(u(8g))9>. In the second case however, <(U(8p))4> keeps a strong
dependence on 1 as 1-0. This dependence changes the scaling of x*(85) and results 1n the

divergence of <(11(8¢))3>.

This phenomenon of divergence of moments, first examined by Mandelbrot (1974), arises
when the field is very intermittent. Cascade steps at large scale allow the determination of the
low order moments of 1L(8), while high order moments - representative of rare fluctuations -
are essentially determined by cascade steps arising at scales smaller than 8. The origin of the
divergence can be briefly explained as follows. If p, denotes the measure obtained after n steps
of construction then py(8p) is the total measure of the field constructed down to scale 8, The
multiplicative structure of the field implies

M
e1@0) 2 WY pni0) with poB)=W and n=0,1,2..  (54.19)

1=1

“

where d« denotes an equality in probability distribution, and where g (dy) and
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— This part of the cascade
- e - process builds a measure
. equal in probability
e distribution to the total

measure 1(8p).
Hence
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where ud denotes the equality in probability distribution and where the random variables Wy,

W1 and u(d) are independent. Raising to the power q and averaging yields
<(u(B2)9> = <W>2 <(u(30))?>,

a special case of the general result (5.4.18).

Figure 5.7: Graphical explanation of the relation (5.4.18) in the special case of a 1-D cascade

with splitting factor M = 2.




W are independent statistically (see figure 5.8 for a graphical explanation of (5 4.19)). Using

<W> = 1/M (see (5.4.17)), (5.4.19) implies that
<Hn+1(80)> = <Pn(80)> = <p0(80)> = 1/M,

i.e. the random series {[1n(8g)] is a martingale. A recurrence relation for <(Up(Sp) > can be

derived from (5.4.19) by raising both sides to an integer power q and averaging’
M
<(ns1(Bo))I> = <Wh <[ 3 uni(80) )% . (5.4.20)
1=1
In the special case q =2, (5.4.20) becomes (making use of the independence of the py (&)
<(Hps1@0))®> = <WB (M <(upBp))2> + 1 - 1/M2})

and therefore <(pp(59))2> diverges as n—eo if <WIM > 1 <=> <W3> > I/M. More

generally, Mandelbrot conjectured that divergence happens for ¢ > 1 if and only uf

<Wi > UM, (5420

which defines a divergence range q > qc > 1, where q is defined by <Wit> = I/M This
result was proved rigorously by Kahane and Peyriere (1976). Using (5.4 9) and (54 15),

(5.4.21) is equivalent to
t*(q) <0 or K(q > D(g-1), (5422,

When W has a discrete probability distribution, it was shown that t*(q) >0 for ¢ > 1 and
therefore divergence of moments does not occur. For more general unbounded distnbunions

however, (5.4.22) may be satisfied in the range q>qc¢, where g, > 1 15 defined by

T°(qe) = 0.
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( One cascade steps (n = 1, §; = 1/2)

=>  Total measure = p(8p)

Two cascade steps (n = 2, 8, = (1/2)2)

w

Wo Wo?

A

d 4
}“‘1{‘,) = Wit Wiz Wi Wiy = ”1‘6;’

( =>  Total measure = py(8p)
W {11,180) + 11 ,2(80))

where ) 1(8y) and H1,2(8p) are independent and identically distributed. This a special case of

the general relation (5.4.19).

Figure 5.8: A graphical explanation of the recurrence relation (5.4.19) in the special case of a

one dimensicnal cascade with splitting factor M = 2.




In the divergent case it is interesting to examine the asymptotic expression of <(uy(6))4> 1n

the limit of large but finite n. As seen from (5.4.20), for an integer q > q¢
<(Hn(Bp))> ~ k(q) M<Wa>)n (5.4.23)

as n—e, where k(q) is a constant. With 1" =1/8 and (5.4.15), where 1 is the inner

construction scale of the cascade process, this becomes
<(1a(B0)3> ~ k(g) (/3. (5.4.24)

1*(q) <0 for q > qc and therefore <(15(8g))4>— as N0 as expected. (5.4.18) finally leads

to
{q < qe, <(1(8))9> ~ 8T (@+D <(u(8))9>

q > qc, <(1(3))9> ~ k(q) 7" (D+D (n/§)T*(®) = k(q) 6P n*" (@)

as N-0. In terms of the average density p(d) = 1(8)/8P, (5.4.25) becomes

q < e, <(p(8))a> ~ 8@ - D@Dy (8p))a>
(5.4 26)

q> qc, <(p(8))9> ~ k(q) §-P@-1) (@)

as N—0. For the generating function, (5.4.2) implies

{q < ey X1q(8) ~ 8T°@) <(u(Sp))a>
(5.4.27)

q> qe, £*q(8) ~ k(g) nT™@)

as N—-0. We conclude that divergence of moments leads to a breakdown of the scaling
dependence of *4(8) on , i.e. the effective mass exponent (#1*) vanishes for large enough q
As will be shown in chapter 6 this behavior is not observed for the energy dissipauon field in
fluids. (5.4.27) suggests that the limit measure is composed of a multifractal measure - that
determines low order moments - plus a finite set of isolated intense spikes that determine
entirely high order moments. Indeed, if the spikes are isolated then varying & does not change
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u(d) and therefore %°q(8) remains constant, as shown by (5.4.27). The possibility of
decomposing a divergent measure in two parts does not appear to have been emphasized

previously.

Our presentation of canonical cascade processes is simpler than the original Mandelbrot
(1974) exposition because of our different convention about the measure given to the initial unit
interval. In particular the recurrence relation (5.4.19) is simpler than Mandelbrot's equivalent
equation, which involves M different weights W; instead of a single one. Notice that for g
integer (5.4.20) can be developed and averaged using a multinomial expansion, which leads to a

non-linear system of equations for the moments <(1n(8¢))3>. For example, in the special case

M =2 we obtain

Yam+1) = <Wa> i (g) Ykm) Yakmy, g = 2,3, ...
k=0

where Y9(n) = <(Un(d0)9>. A numerical iteration of this system allows an accurate and
computationally efficient determination of <(up(d9))2>. We present this possibility as an
attractive complement to the computationally expensive Monte-Carlo methods sometimes used to
study canonical multiplicative cascades (Lavallée, 1990). It should be noticed that this system

can also be used to check the validity of the asymptotic form (5.4.23).
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§.5 CORRELATIONS IN SCALING MEASURES
5.5.1 Brief review

The complete characterization of a random field f(x) requires in general the specification of
the n-point probability distribuvions of {f(x1), ..., f(xp)} for all values of (x, .., x;) and for
all n (Monmn and Yaglom, 1975). So far, the scaling properties of a measure have been
characterized by the scaling exponents of the generating function or of <[u(8)}4> for random
measures. Since n(d) involves several points of the field generating the measure, the mass

exponents contain some information about the n-point probability distributions, but the extent to

which 1(q) (or equivalently f(c)) characterizes the field still remains unclear. In this section we
review briefly previous work on related questions (Cates and Deutsch (1987), Siebesma and

Pietronero (1988), Meneveau and Chhabra (1990), Lee and Halsey (1990)).

In order to go beyond the multifractal characterization Cates and Deutsch (1987) proposed to
consider several boxes simultaneously in order to take into account the correlations between
their measures. The simplest choice is to consider pairs of boxes. Denoting by py(n) the
measure of a box of size N centered about a point x, and by r a lag vector, they defined the

correlation function
Cr(p, s 1) = < (Ux(M)P (Lx4r(M))4 >. (5.5.1)

For single scale isotropic random multinomial measures the independence of the multiplicative

factors allows the decomposition
Chap. g 1) = <(Ux(DIP (Hxer (M)A > <(Ux(MYHx(P)IP> <(Hx o r(Mitxar(r))d>,
where r =Irl. Using the usual multiscaling <(uyx(N)/ix(r))P> = k(p) M/)*P)+D yields
Cq(p, a; 1) = k(p) k(q) C(p, q; r) (/r)¥®PHD (1y/r)n@)+D, (5.5.2)
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where Ci(p, q; 1) = < (MUx(1))P(Lx+r(r))d >. So far, the main issue discussed in the literature

has been the calculation of C(p, q; r) for simple models. The first attempt was made by Cates
and Deutsch who simply made the approximation Mx(r) = px4p(r). Using

<(Ux(r))P> = k(p) (1/Lg)*®1D, where Ly is the outer scale of the multiplicative process, they

consequently obtained
CHp, q; 1) = k(p+q) (r/Lo)*P+a)+D, (5.5.3)
Replacing (5.5.3) in (5.5.2) yields

Cn(p, ;1) = k(p) k(q) k(p+q) (/Lo)"®+*D*D ()t @HU@-TP+a+D (5.5 4)

that implies that the scaling of the correlation function is entirely determined by the scaling of

single boxes, i.e. by the function 1. From now on we shall refer to (5.5.3) as the Cates and

Deutsch scaling (in short, CD-scaling).

Later on Siebesma and Pietronero (1988) showed on a special case of deterministic 3-weight
multinomial measure that the assumption px(r) = py,r(r) was untenable but that the correct
scaling exponent t(p+q) + D of C,(p, q; r) was nevertheless obtained using this assumption.
Finally Meneveau and Chhabra (1990) and Lee and Halsey (1990) showed that some
combinations of p and q can emphasize the difference between px(r) and pyyp(r) and
consequently break the CD scaling in some regions of the (p,q) plane. We will return in section

5.5.4 on the CD-scaling breakdown.
§.5.2 Extended CD-scaling for separated self-similar measures

In this section our goal is to show that an extended form of CD scaling can be derived
rigorously for any deterministic or random separated self-similar measure using renormalization

arguments. The more general case of a non-separated random self-similar measure will be
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examined in section 5.5.4 with a specific example. For deterministic measures we define the

correlation generating function

OpaB.r) = inf Y, [y;(B)Phx;r(8)19, (55.5)

where the infimum is taken over all the covers of the support of the measure by boxes of size 8.
We restrict ourselves to the special case where r = nd, i.e. r is related to the coarse-graining
resolution 8. For one dimensional measures, this restricted correlation generating function iy

approximated by

DO @) = Opg(Bind) = 3 [Wi(®)IPHisn(B)]S, (5.5.6)

where 11;(3) and W;4n(D) are the measures of two boxes separated by a distance n8. Our choice
r =nd is motivated by the fact that M), 1(8) is a natural scale invariant quantity for
self-similar measures. This property allows to use renormalization equations in a simple and

natural way. Note that the quantity C(p, g; r) defined above for random measures corresponds

to the special case n = 1, i.e. <®(1) 4(8)> = (Lo/P Cs(p, q; 9).

Consider a deterministic multiscale self-similar measure, with support S = §,U...USy,
where the sets §; are self-similar to S. Following the steps of section 5.2.3, and assuming tha

nd <min d(S;,S;), the self-similarity of the measure leads to the renormalization equation

DMy 4(8) = Z WP DMy, o (8/r)
j

and the trial solution &! yields the characteristic equation
il -
2 wptdrt = 1,
)

Therefore

d)(n)p’q(a) = Sl(nvpvq) (C + R(a))
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where R(8)—0 as -0 and
t(n,p,q) = T(p+q). (5.5.7)

(5.5.7) generalizes the CD scaling that corresponds to the special case n = 1. We emphasize
that (5.5.7) holds for all (n, p, q), i.e. the possibility of CD scaling breakdown noted by
Meneveau and Chhabra for space filling measures does not occur for separated self-similar

measures.

Suppose now that the weights W; are random but that the scale ratios rj are fixed. The

self-similarity of the measure then implics
o8 2 wipra o, (8/r)) (5.5.8)
pAa J | U ANl I i
)

where " =" denotes the equality in probability distribution, and where the random variables

d>(“)p,q(5/rj)lj are independent of the Wj. An ensemble average on (5.5.8) yields

@My 4B)> = <WPHED> ) <)y ((8/r)>
J

and the trial solution &! leads to the characteristic equation

M
I = <WPa> Y inpa), (5.5.9)
)=

which defines t(n,p,q) implicitly. On the other hand the renormalizaion equation for Xq(0) with

the same random measure is

M
<xq(B)> = <Wa> z <Yq(d/rj)>,

which leads to the characteristic equation

M
1= <Wa> Y 10, (5.5.10)
=1
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Comparing (5.5.9) and (5.5.10) leads again to (5.5.7) and therefore the extended CD scaling

also holds for all (n,p,q) in the random separated case. This result appears to be original.
5.5.3 Constraints on correlations due to single-box scaling

We now return to the more general problem of determining to what extent the only

assumption of single box scaling, i.e.
<[r(3)]19> = c(q) 1D, ¥(q@) = () + D, (5.5.11)

restricts the scaling of <(li(8))P(1i+n(D))a>, where W;(8) and pj,n(d) are the measures of boxes
separated by a distance nd. Consider a one dimensional scaling measure. An interval of size 28
and measure p(20) can always be split in two adjacent and disjoint intervals of size 8 and

measures p11(d) and p2(d) and therefore

H(28) = u1(8) + ua(d). (5.5.12)
Squaring (5.5.11) and averaging gives

<H1@M2®)> = 12 <(u(28))?> - <(u(8))?>
if the measure is spatially homogeneous. (5.5.11) then yields

< 1(Hr(®)> = ¢; &Y, (5.5.124)

where ¢; = c(2) Q¥(2)-1-1). <y (8)K2(8)> is therefore entirely determined by (5.5.11)

Similarly, raising (5.5.12) to the puiwer 3 and averaging yields
<(R1@N2(B)> = 1/6 <(u(28))3> - 1/3 <(u(8))3> = &Y (5.5.12h)
Raising (5.5.12) to the powers 4 and 5 and averaging yields

6 <(1BH2(B)2> + 8 <(u1(3))3p2(d)> = &4 (5.5.12¢)
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10 <(1(B)(H2(B))4> + 20 <(11(8))3(M2(8))2> = SV5).

Hence for powers greater than 3 we find that the splitting procedure and the single box scaling

(5.5.11) no longer determines uniquely the quantities <(1i(8))P(K;41(3))9> but rather

determines linear combinations of them.
Alternatively we may divide an interval of length 33 in three subintervals of length 3 so that
H(38) = u1(8) + u2(8) + M3(d). (5.5.13)
Squaring and averaging (5.5.13) then yields
<p(38)> = 3 <p2(d)> + 4 <u1B)H2®> + 2 <u1B)p3(d)>
and using (5.5.11) and (5.5.12a) leads to
<p1(SH3B)> < SY2). (5.5.13a)
Raising (5.5.13) to the power 3, averaging and using (5.5.11), (5.5.12a) and (5.5.12b) implies
<p1(B)U3(8)2> « §Y3) (5.5.13b)

Raising (5.5.13) to higher powers leads to relations of the type (5.5.12c) that do not determine
directly the correlations. More generally an interval could be split into n subinterval and the

same method implies
<Hi(O)Mi+n(®)> = Y2 and <pi(B)(Hi+n(8))2> « &Y(3) (5.5.14)
forn=1, 2, 3, ...

In conclusion, our splitting procedure implies that low order integer correlations are forced
to satisfy the constraint (5.5.7), while higher order correlations obey weaker constraints of the

type (5.5.12c) which are consistent but not necessarily equivalent to (5.5.7). These weaker
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constraints might therefore make room for different scaling behaviors (i.e. non CD-scaling) of
the correlations <(Wi(8))P(1i4+1(8))2>. An example of this behavior will be given in the next

section.
5.5.4 Correlations in random microcanonical multinomial measures

The calculation of <(ij(8))P(1,+1(8))3> is more delicate for non-separated self-simil
measures. Some exact results have been obtained for a deterministic single scale and
three-weignt measure (Siebesma and Pietronero, 1988) and for a single scale measure using
two weights, restricted to two values, with random positions (Lee and Halsey (1990) and
Meneveau and Chhabra (1990)). In this section we give an exact 1-D calculation of the
correlations for a more general family of random single-scale microcanonical multinomial

measures, using M weights having arbitrary probability distributions.

The scale ratio of this multiplicative process is r = 1/M. There are M" disjoint intervals of

size 8, = 1M and the order-1 correlation generating function is

Mm.1
DMy o(Bn) = ;[Hl(an)]p[llwl(sn)]q. (55.15)
We can write
Mmn M-1
DM 4B = 21 ¥ (G Wi IP[HiBn) W, j+1 14
1= J:l
M.
+ (L)W IP[,+1(Bn) W, 4114, (5.5.16)

1=1
where W; and W, denote random weights belonging to different and adjacent mother eddies
of size &p, while W, ; and W, ;.1 denote adjacent weights belonging to the same 1 mother eddy
of size &y (see figure 5.9 for a graphical explanation of (5.5.16)). W, and W,,; are therefore

independent random variables while W, and W, ,; are correlated by the microcanonical

M
constraint 3 W;; =1 forall i. Taking an ensemble average on (5.5.16) yields
J=1
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<D 4(Br41)> = <WP><WE> <)y o(8p)> + (M-1) <WP; WG 5,,> <Xp+q(On)>,

where %q(8n) is the order-q generating function of the measure given by
<Xq(Bn)> = (M<W>)M in this case (see (5.4.14) section 5.4.2). Introducing the simplifying

notation ¢, = < 1)p'q(5n+1)>, the above equation reduces to

On+1 = b 0y + A CP, (5.5.17a)
where
b = <WP> <W4>
A = (M-1) <WP; ,W¢G; ..1> (5.5.17b)
c =M <Wr+a>
and

M-1
01 = < X WPWG, > = (M-1) <WP; ;WG 41> = A,

i=1
The general solution of (5.5.17a) using the initial condition ¢ = A is
cn - bn
On = A—-—‘c -y (5.5.18)
where 8, =M. If ¢ >b then ¢, ~ k ¢ as n—« (or equivalently 8,-0) and therefore CD
scaling is recovered (k = A/(c - b)). However if ¢ <b then ¢, ~ - k b® and another

scaling exponent is obtained. Expressed in terms of 8, we get

<@ o(8)> ~ PPD 55§50, (5.5.19)
where
t(p+q) ifc > b,i.e. CD-scalin
©(p)+t(q)+2 if c < b, i.e. non CD-scaling

This example shows that CD-scaling is not necessarily obeyed for all (p, q), a general result

that was already suggested by the argument of section 5.5.3.
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Figure §.9: Graphical explanation of the relation (5.5.16) in the special case M = 3. The

brackets \=—~— indicates the pairs of intervals of size 8;.1 involved in the first summation of

(5.5.16), while the brackets #™\ indicates the pairs involved in the second summanon.
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The conditions ¢ > b and ¢ < b define two regions of the (p, q) plane. The frontier
between these regions is defined by ¢ =d, which implies (using (5.5.17b)) that
<WP> <Wia> = M <Wp+a>. Using <W4> = M-%a)-1 which follows from

(5.4.15) with dg =1, yields
w(p+q) - t(q) - Hq) - 2 = 0, (5.5.20)

which is the equation of the frontier between the two scaling domains. For a measure with a

1(q) similar the field (du/dx)2 as measured in locally isotropic turbulence, e.g. the binomial
measure with weights w; =0.3 and wp = 0.7, these domains are illustrated n figure 5.10.
We emphasize that ihis is the first derivation of <®{1), 4(8,)> for general random multinomial
measures and that our derivation of the recurrence relation (5.5.17a) appears to be simpler than
previous derivations, involving “tedious counting and algebra” (Lee and Halsey, 1990). We
also stress that our argument does not seem to be directly generalizable to multiscale scaling

measures.

It should be noted that the multinomial measure is not spatially homogeneous. Although

<(uy(dp))9> is independent of the position i of the interval, the correlations <(11,(8))P(4t,,1(8))4>
depend on i because they “remember” the tree structure of the cascade process. It follows that
<(1i(d))P(n,4+1(8))3> cannot be deduced directly from <®W)y, 4(8p)>, which rather gives the
ensemble average of a spatial average since <®(p, 0(8n)> = (Lo/8) <<(1,(8)IP(W,41(3))4>5>,

where <...>s denotes a spatial average and Ly is the outer scale.

Remark: The quantities <WP, W4, ;.;> defined in (5.5.17b) can be obtained using the
microcanonical constraint. For example, in the simple case M =2 the microcanonical

constraint implies that W7 = 1 - W and therefore <WP{iW4, 1> =< WP (] -W)4>
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Figure 5.10: Tllustration of the two scaling domains of mulunomial measures with a t(q)

similar to real turbulent flows. (I) denotes the CD-scaling region while (II) denotes the non

CD-scaling region and the dashed lines separate the two regions.




f 2SR

» ;3'%‘

5.5.5 Implications for data analysis

In the absence of more information about the general connection between the scaling
exponents of <(W;(d))P(K;+1(8))3> and <(u;(8))P>, we will regard the two scaling domains of
figure 5.10, as well that the corresponding scaling exponents Yp(p, q), as characteristic of
single scale multinomial measures sharing their 7(q) function with the energy dissipation field in
real turbulent flows. From this standpoint, the verification on real data of these scaling regimes
provides a new way of testing multiplicative cascade models. In chapter 6 the first experimental
study of these scaling regimes will be presented. Some tests of the extended CD-scaling

(5.5.7) will also be performed.
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5.6 GENERAL CONSIDERATIONS ABOUT THE COMPARISON OF
CASCADE MODELS WITH REAL TURBULENT FIELDS

A priori, one may think that the measures studied so far are 100 arficial 10 be considered as
realistic models for any geophysical field. Cascade models look like toy models inspired from
some rather cloudy phenomenology. For some simple non-linear dynamical systems, ¢.p
quadratic maps (Halsey er al., 1986) it is known theoretically that the invariant probabihty
measure can be described by a multiscale Cantor measure. By contrast, in turbulence one must
recognize that the discrete splitting of eddies characteristic of cascade models has not so fis
received a rigorous basis and that little is known about the hmitations of these models.
Nevertheless, these simplistic models reproduce many of the scaling properties of real measures
and in fact, it can be surprisingly difficult to develop tests allowing these models to be
distinguished from natural fields. Comparing real natural fields with cascade models s an
exercise that develops our ability to describe more accurately turbulent flows As argued by
Mandelbrot, the limitations of our skills to predict the behavior of turbulent fluids may be

mainly due to our inability to produce efficient and intuitive mathematical descriptions ot

irregular fields.

Some of the singular measures introduced in this chapter may be appropriate candidates for
the modelling of the energy cascade process. Various generahizations of discrete scale cascade
models are possible (see for example Kraichnan, 1974), and 1t becomes quickly confusing to
make a choice in this jungle of models. One of our goals is to try to narrow down a htle the
spectrum of all the a priori possible models of the energy dissipation field. We shall therefore
propose a tentative classification of random cascade models. A first dichotomy is provided by
the alternative between microcanonical and canonical models, i.e. between exact conservation of
the energy flux and conservation on the average. More refined dichotomies involve the details

of the model. From the simplest to the most general, the following models are examples of
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possible alternatives (recall that M denotes the number of daughter eddies generated by a mother

eddy, r; a scale ratio, and Wj a random weight):

1) Single scale models: The scale ratio r is fixed.
- M fixed, Wj random (= multinomial measures)
- M random, W; fixed
- M random, Wj random

2) Multiscale models: Several scale ratios rj are used, which may be fixed or random.
- M fixed, Wi fixed
- M fixed, Wjrandom
- M random, W; fixed
- M random, W, random.

All these models generate non-uniform singular measures, and further generalizations are
possible when the positions of the daughter eddies are made random, as long that they remain
disjoint and contained in their mother eddy. In addition, Schertzer and Lovejoy (1987) have
shown that multiscaling measures could also b constructed without using any discrete scheme
(this is the notion of continuous cascades). With a little imagination, the above list could be

made much longer.

The mass exponents 1(q) only provide a partial characterization of a scaling measure.
Unfortunately, these exponents are usually not constraining enough to allow different cascade
models to be distinguished. If one considers for example the scaling of the measure associated

to the field (0u/0x)? in a fully turbulent flow, it turns out (Meneveau and Sreenivasan, 1987a)

that the simplest deterministic two-weights binomial measure can reproduce the 1(q) measured
in turbulent flows with a good accuracy. Using a more complex model, involving for example

a larger number of weights or else several different scale ratios, introduces more parameters and

therefore leads to an even better fit to the measured 1(q). 7(q) is therefore rather insensitive to

the various alternatives of cascade models presented above, a difficulty that was noticed in
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particular by Chhabra er al. (1989). From a more fundamental point of view, Feigenbaum
(1987) showed that different scaling measures can share an identical function 1 and in that sense
the characterization of a measure by T is degenerate. Let us illustrate this possibility by
following Feigenbaum example. Consider a deterministic multiplicative measure with r = 1/2
where four weights wi, wa, w3 and w4 are used (see figure 5.11 for the construction rule).
We shall consider the two measures of figure 5.11 simultaneously and denote their generating

functions by 314(8) (starting the construction with wy and w9) and x24(8) (starung with w3 and

w4). Writing a renormalization equation for each of these measures yields

{xlq(a)

X2q(®) = w3 x1q(d/1) + w4l x2q(3/r)

wil x14(8/r) + wad x24(3/r) S
D0,

which is a linear system of renormalization equations. Introducing the array

X (n) = (x1q(rn), x2¢q(r™)), the system (5.6.1) can be rewritten in the form

X(n+1) =M X(n), where

_ (w19 w2t )
- (W3q W4Q) (5.6.2)

The general solution of (5.6.1) is of the form
X(n) =aA, VvV, + b ANV, (5.6.3)

where A, and A. are the eigenvalues of M (A, > A.) and (V,, V.) the corresponding
eigenvectors (a and b are constants). As noe (5.6.3) yields Xj(n) ~ k 2,n where k 15 a

constant. Using 8, = 1" this also implies that 314(8) ~ 8% as -0 where

wid+wgd  widwad
UD = - Tog(tp) 4 M@ = TSR 4 S (w32 (5.6.4)

It is seen from (5.6.4) that different measures sharing the same product waw3 will share the

same T(q).
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Characterizations going beyond the usual t(q)-f(a) functions are therefore needed. The
study of correlations in multifractals is an alternative that will be investigated in chapter 6. A
second alternative is the possibility of periodic prefactors. Such oscillations reveal the
underlying scale ratio of the cascade. Their observation in turbulent flows would therefore
support the use of single scale multinomial measures in the modelling of the energy dissipation
field (Novikov, 1990, Smith er al., 1986). This issue will be examined in chapter 8. Another
testing method of multiplicative processes could be based on the central limit theorem. As
argued in chapter 3, our weaker formulation of the third hypothesis suggests that the moments
of log(e(d)) can be estimated using the gaussian approximation. This possibility will be

examined in chapter 7.
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Figure 5.11: Two examples of deterministic measures constructed with r = 1/2 using four

different weights in the construction. The weights satisfy wi+wa=1 and wi+wg=1 The

above trees show in which order the multiplicative factors are chosen in the construction of the

measures,
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Chapter VI

PRELIMINARY DATA ANALYSIS
AND SCALING STUDIES

Less is known about the fine scale of turbulence—for example, the scale of
1 mm in the atmosphere—than about the structure of atomic nuclei. Lack of
basic knowledge about wrbulence is holding back progress in fields as diverse
as cosmology, meteorology, aeronautics and biomechanics. Understanding the
hierarchically organized complexity of urbulence may well provide a paradigm
for undersianding a variety of problems at the frontiers of physics research

Uriel Frisch and Steven A. Orszag (1990)

Our purpose being to compare cascade models to the energy dissipation field in real turbulent
fluids, we chose to collect data sets in the atmospheric surface layer at a height of four meters
with a hot wire anemometer. Relatively wide scaling ranges can be obtained easily in the
atmosphere and at this height only a large wind tunnel could provide similar scaling ranges.
Wide scaling ranges are useful to measure scaling exponents but they also bring other
difficulties. For example, it becomes difficult to distinguish non-stationarity from scaling
effects which are responsible for correlations over large distances. This problem is unavoidable
for measurements in flows at high Reynolds number and scaling ranges comparable to the

sample size can be obtained.

In order to convince ourselves that we were dealing with an appropriate data set, we
reproduced in this chapter some key classical analysis. These include the k-5/3 energy
spectrum, the power spectrum of (9v/9x)2, velocity structure functions and the generating
function associated to the field (dv/dx)2. Our results are compared with the results of other
experimenters. In the case of the generating function, we clarify the interpretation of some
earlier work on the subject. We also present the first results about the scaling of the correlation

generating function for the energy dissipation field.
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6.1 DATA ACQUISITION

We consider measurements of the air speed on a windy day above a flat and open grass field
in the spring time (in the direction of the mean wind, the closest trees were at least 500 meters
away on both sides). A pole was used to support a hot film probe at a height of about 4 meters,
and the longitudinal component of the velocity was measured (i.e. in the direction of the mean
wind). The mean velocity at the hot-wire location during the data acquisition was about 8 m/s.
A T.S.I. anemometer (model 1054) was used with a hot film probe of length 1.5 mm and
diameter 0.15 mm. The typical upper frequency response of this probe in air is 250 kHz, while
the anemometer itself is limited to an upper frequency of 10 kHz (this limit is essentially due to
the frequercy response of the amplifiers involved in the linearization circuit). The analog output
of the anemometer was digitized at 20 kHz, without using any analog filtering, with a 12 bit
digital-to-analog converter and stored on the hard disk of an A.T. personal computer. A 5
minute sample was recorded, i.e. 6x106 points. Everywhere in the following chapter time
intervals have been converted into spatial lags using the frozen turbulence hypothesis, i.e.
Ax =U At, where U is the mean wind speed. Using this conversion, the data set is 2.4 km
long and one point every 0.4 mm was recorded. We shall see that the electronic noise added to

the velocity signal reduces this maximum resolution to about 1/3 cm.

The Reynolds number based on the mean flow at a 4 meters height is

- UL - 8x4
Vair 1.5x10-5

Re = 2.13 x 106.

The wrbulent (or Iocal)‘ Reynolds number is defined here by

= =2.67 x 105

Re(l) = Vair ~ 1.5x10°5

<Au(L)]>12 L 1x4

for L = 4 meters (it will be shown in section 6.3 that <Au(L)]2>1/2 = | m/s in the horizontal

direction). It is recognized in the literature that inertial range behaviors and k-5 energy spectra
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are observable when Re typically exceeds 104. Our Reynolds number is therefore about 200
times larger than this lower limit. In order to study larger scales more accurately, a longer 30
minute sample was also recorded in the same conditions immediately after the 5 minutes

sample, but with a 300 Hz sampling frequency.

6.2 SPECTRA AND PREPROCESSING

6.2.1 Energy and dissipation spectra

The whole sample was split in about 180 disjoint slices of 13 meters. The energy spectrum
of each slice was obtained with a F.F.T. and these spectra were averaged. The resulting energy
spectrum is plotted on a log-log scale in figure 6.1. An almost perfect power law is obtained in
the range [0.1m,13m]. The slope measured in this range with a logarithmic linear regression is
1.73, i.e. about 4% larger than the 5/3 = 1.67 predicted by the K41 theory. This slight excess
is consistent with the theories accounting for the effect of intermittency on the energy spectrum.
A clear dissipation range is observed in the range [10cm,1cm). The noise floor is reached for
scales smaller than 0.5 cm, which corresponds approximately to a 2 kHz frequency. The
energy spectrum of the longer 30 minutes sample is plotted in figure 6.2. A line of slope -5/3 is
given for reference. A departure from k-5/3 occurs for scales larger than 10 meters. The larger
variability of E(k) is due to a smaller amount of averaging for this sample. It is also noticed that
the variability of E(k) increases with k. This suggests a breakdown of the K41 theory that
rather implies <(E(k))2> - (<E(k)>)2>1/2 « k-5/3, i.e. that leads to a decreasing variability as

k increases.

Before doing any further analysis with the data, frequencies higher than 2 kHz were
digitally filtered out. For illustration, a sample of the unfiltered signal is displayed next to the
filtered signal in figure 6.3, and a picture of the filtered velocity field over a wider range of

scales is given in figure 6.4. The filtration is absolutely crucial for the esumation of the
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derivative du/ox, as well that for the scaling properties of the field (Ju/dx)2. The dissipation

spectrum E(f), defined so that

<(@u/ox)2> = [ Eq(f) df,
0

where f = k/2m, is useful to determine the accuracy of our estimate of <(du/dx)2>. Note that
Eq(f) = f2 E(f), where E(f) is the velocity energy spectrum. Eq(f) was displayed in figure 6 5
in the area-preserving representation E4(f)f versus log(f) (Since that Eq(f)df = Eq()f d(in(f)),
the area under the graph Eq(f)df versus log(f) is proportional to <(du/0x)2>). The bulk of the
contribution to <(9u/9x)2> comes from scales smaller than 1 meter, and in the inertial range
Eq(f) ~ f2 £-5/3 = f1/3. The bell-shaped curve is spoiled by noise for scales smaller than |
cm. Assuming an exponential decay of the energy spectrum in the unresolved pait of the
dissipation range, one concludes that an error of at most 10% is made on <(Ju/dx)>>, and

consequently also for each value of du/ox.
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Figure 6.1: Energy spectrum of the velocity field, obtained by averaging the spectra of 180
samples of 13 meters. The exponent of the power law (straight line fitted with a hinear
regression) is -1.73, i.e. about 4% larger than the 5/3 predicted by the K41 theory. Notice that
this slight positive correction to the exponent 5/3 is consistent with the intermittency correction
due to intermittency predicted in particular by the B-model. The noise floor is reached for scales
smaller than 1/2 cm. The dissipation range starts for scales smaller than 1/0.2 =5 cm. The

beginning of the dissipation range typically occurs around about 60 times the kolmogorov
dissipation scale n, therefore n = 1 mm.
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Figure 6.2: Energy spectrum of the velocity field obtained with the longer 1/2 hour sample
This longer sample allows to resolve more accurately larger scales. It is seen that a slow but
clear departure from the k-5/3 spectrum (the straight line) occurs for scales larger than 10
meters.
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Figure 6.3: A picture of the raw velocity signal (the cloud of dots) together with the filtered

signal (the solid line).
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Figure 6.4: A larger scale view of the filtered velocity signal, showing clearly the abrupt
velocity changes characteristic of the motion in the inertial range. In the context of the 194}
Kolmogorov theory, this function 15 not differentiable because Av(L) ~ LV3 and therefore

Av(LYL ~ L-213 diverges as L—0.
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Figure 6.5: Dissipation spectrum obtained with the unfiltered velocity signal. The area under
this curve is proportional to <(du/dx)2>. The main contribution to <(du/dx)2> comes from
scales smaller than 1 meter. For f > 0.8 cm"! the spectrum is ruined by the noise. The fall-off
being exponential in the dissipation range, at least 50% of the value of <(du/ox)2> is being
resolved. We therefore expect the relative error on each value of (du/dx)? to be smaller than
50%.
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6.2.2 Power spectrum of (Ju/ox)?

The field (0u/ox)2, obtained by differentiating the filtered velocity signal (using finte
differences to approximate the derivative), is displayed in figure 6.6. A zoom on the first
100 cm of the figure 6.6 is given in figure 6.7. The singular nature of this measure is striking,
and the intuitive resemblance of this field to an artificial discrete scale cascade model is obvious.
The power spectrum of (Qu/dx)?, obtained by averaging 180 spectra, is displayed in figure 6.8
An approximate power law is obtained for scales larger than 1 cm  The slope of the stright
line drawn in figure 6.8 is -0.7. Results reported by other experimenters (Monin and Yaglom
(1974), section 25.3) yield an exponent lying in the range [0.5,0.7], which 1s consistent with
this result. Note that the power spectrum of the field generated by a discrete scale cascade
model with a finite number of cascade steps is also proportional to k-5, whete 0 <5 < |

(Monin and Yaglom (1974), section 25.3).
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Figure 6.6: A picture of the field (du/dx)2 obtained by finite differences on the filtered
velocity field. The singular nature of the dissipation field is striking. Regions of high intensity
corresponds to regions of high vorticity in the fluid. The concentration of the regions of high

vorticity on a sparse set is due to the stretching of vortex tubes characteristic of fully developed
turbulence.
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Figure 6.7: A zoom on the first meter of figure 6.6.
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Figure 6.8: The power spectrum of (du/ox)? is plausibly approximated by a power law with

an exponent s = -0.7 (straight solid line),

experimenters, who got -0.7 <'s < -0.5.

which is consistent with the results of earlier




6.3 VELOCITY STRUCTURE FUNCTIONS
In order to check the 2/3 law, the velocity structure function
Da(L) = <(Av(L)Z>12

was plotted in figure 6.9. According to the K41 theory, Da(L) ~ L1/3. Besides, a k-¥3 energy
spectrum implies, by Fourier transformation, that Da(L) ~ L1/3 holds. A short scaling range
appears to occur between 10 cm and 2 m. In that range a linear regression yields a slope of

0.34, very close to the predicted 1/3.

A priori one may be surprised to get such a short scaling range for Da(L), where at the same
time a k-5/3 energy is obtained over a wider range of scales. Results of other experimenters in
comparable conditions have been similar (see for example Van Atta and Chen, 1970) For low
altitudes in the surface layer (< 20 m), the scaling range is short and D2(L.) becomes quickly
smaller than the predicted L!/3 at large scales; two decades of scaling range can be obtined
the altitude exceeds 30 meters. The best verifications of the K41 theory have always been
obtained with energy spectra. In general, the connection between the power spectrum and the

autocorrelation function implies that D2(L) and the energy spectrum E(k) are related by (Monin

and Yaglom (1975) section 13.1)
D2L)? = 2 [sin2(kL/2) E(K) dk. (6 3.1)
(]

Given that E(k) decays rapidly like k-5/3, the main contribution to Do(L) comes from the first
interval where sin(kl/2) = 1, i.e. from the wave number satsfying kL/2 =m/2 Using
k = 2m/A this corresponds to scales A = 2L. A range of scales around 2L therefore make the

main contribution to D3(L). A breakdown of the k-5/3 energy spectrum for & > 10 m, as
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observed in figure 6.2, might therefore correspond to a breakdown of the scaling of D2(L) at

scales smaller than 10 meters.

The indication of the length of the isotropic inertial range from a one dimensional time series
remains an open question. In our case the k-3/3 energy spectrum holds perfectly for
10 cm < A < 10 m, and remains relatively close to k-3/3 at larger scales. Van Atta and Park,
1971) also observed, at comparable altitudes, a good k-3/3 over wide range of scales. Ata 4
meters altitude large scales cannot be isotropic and therefore the energy spectrum is not a
sensitive indicator of the scale at which isotropy breaks down. Van Atta and Park (1971),
observing a sharp change in behavior of <(Av(L))3> at a scale comparable to the alutude, have
suggested that this structure function may be a more sensitive indicator of isotropy. In general
however the scaling of the order h structure function breaks down gradually at large scales.

The width of the scaling range is also observed to shrink as h increases.

Higher order structure functions <IAv(L)IP> were measured for h =1, 2, ... 18. The

normalized quantities
Dp(L) = <lAv(Lyh>ih ~ [ LW/

were plotted in figure 6.10 and 6.11. For 1 <h <6 a fairly good power law is obtained
between 10 and 100 cm (the first 4 points on the graph), and {(h) was measured 1n that range
The power law is especially good when h=3 and {(3) = 1.01, a good agreement with the exact
result £(3) =1 for isotropic flows (see chapter 2). For 7 < h < 18, a plausible but limited
power law is obtained between 20 cm and 150 cm (from the second to the fifth point), and that
range was used to measure {(h) with a linear regression. The resulung function {(h) was
plotted in figure 6.12, together with the results of Anselmet er al. (1984, results cf jet
turbulence in table 2 for the highest Reynolds number). The straight line is the prediction of the
K41 theory. Both results agree well for h <4 and are fairly consistent for h >4, Our {(h)
starts showing a significant departure from the K41 prediction for h 2 5. Beyond this limit
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{(h) becomes more or less linear, with a slope of about 0.2. This interesting result will be

examined in more details in the next chapter.
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Figure 6.9: Second order velocity structure function Da(L) = [<(Av(L))2>} 2. The solid

line 1s a power law with exponent 0.34, in good agreement with the 1/2 predicied by the K41
theory. Notice that the short scaling range extends from 10 cm to 2 m.
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Figure 6.10: Velocity structure functions Dp(L) = <IAv(L)IP>1/M for h=1,2, , 10, from
bottom to top respectively. The scaling is fairly good for the first 4 points, between 10 ¢m and
2 m. Itis especially good for the third order structure function, a result consistent with the tact

that both the original and the refined similarity theories make the same prediction
<IAv(L)!3> ~ L for h=3.
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Figure 6.11: Velocity structure functions Dp(L) = <iAv(L)Ih>1/b for h=11, 12, ..., 18,
from bottom to top respectively. The scaling exponents were measured by fitting a power
through the points 2 to S (counted from left to right), where the scaling is fairly good. It s
emphasized that the estimation errors are larger on high order moments.
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Figure 6.12: A comparison between the {(h) measured by Anselmet et al. (squares) and our
measurements (stars). The agreement is perfect for h < 4 and fair at larger h. Nouce that on
our measurements {(h) appears to be straight at large h. This straight line 1s accurately fited by
C(h) =0.195h +0.548. The solid line is the prediction of the Kolmogorov 1941 theory, 1 e
§(h) = h/3.
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6.4 GENERATING FUNCTION OF (Ju/ox)2

The sample was split in 24 disjoint slices of 100 meters. The generating functions %q(3)

were computed on each slice and averaged. The normalized quantities
Zq®) = (<xg®>"@D ~ D@, where D(q) = HqN(g-1), (6.4.1)

were considered for g=-10.5,-9.5, ..., 10.5. Z4(q) is displayed for q =-10 in figure 6.13. A
good scaling is obtained between 10 cm and 100 meters. This behavior is representative of the
range -10.5<q< 1.5.  Zg(q) is displayed for q = 3.5 and 10.5 in figures 6.14 and 6.15
respectively. Their behavior is representative of the range q 2 2.5: Zg(d) is a little irregular
but a power law remains a plausible representation of the data, since Z .(3) does not exhibit a
constant curvature. The D(q)'s were measured with a linear regression in the range
10 cm < 8 < 100 m, and the mass exponents were obtained with (6.4.1). t(q), plotted in
figure 6.16, exhibits two linear asymptotes in the limits Igl—e, exactly like the multinomial

measure (see section 5.2.6).

We shall next study the convergence of 1(q) as a function of the sample size. The quanuty
Zq(d) was calculated successively with 1/8, 1/4, 1/2 and the totality of the sample. In each case
the resulting t(q) was plotted in figure 6.16. For q > 0, 1(q) appears to be well defined. This
convergence suggests that a(8) has a lower bound o.. where f is finite (see section 5.2.4). By
contrast, for q <-1 the function 1(q) changes with the sample size but remains linear
asymptotically. The asymptotic slope decreases with increasing sample size, which means that
the mass exponents in the range q < -1 are less reliable. We say that the scaling is spurious
when the exponents have not converged. This appears to be the first evidence of spunious
scaling for the energy dissipation field. Spurious scaling effects have been described and

illustrated with numerical experiments by Lavallée et al. (1990).
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The 1(q) obtained by Meneveau and Sreenivasan (1987a) were fairly accurately fitted by a
microcanonical binomial measure with weights 0.7 and 0.3. For a binomial measure, 1(q) has

linear asymptotes at infinity with slopes

Sy = log2 ) forq < 0. (6.4 1)

For our data, the asymptotes obtained with the whole sample are accurately fitted by
1(q) ~ 0.482q-0.048 forg—e and 1(q) ~ 1.42 q-0.0375 for —-co.
Using the values 0.482 and 1.42 for s. and s, respectively, (6.4.4) yields
w. = 0716 and w4 = 0.374,

which is close to the Meneveau and Sreenivasan results. Notice that w_ + wy = 1.09, 1.e the

microcanonical constraint Xw; = 1 is almost respected. The function
t(qQ) = -loga{ (0.716)4 + (0.374)4 }
was also plotted in figure 6.16 and obviously gives an excellent fit to the data.

It is emphasized that our method for measuring t(q) 1s different, and more stmple, than the
method previously used by Meneveau and Sreenivasan (1987b, 1987¢) In their analysis,
different realizations of the field were treated like determinisuic measures and the () were
measured on each sample. They discarded some samples because of the lack of scaling  Other
samples did scale but produced different D(q) curves, and they chose to average the D(g)'s to
get the final result. Averaging the D(q)'s 1s equivalent to averaging log(xy(8)) This averaging
is not consistent with the properties of random scaling measures because 7¢(8) 15 the scale
invariant quantity, not log(xq(8)) . By contrast, we averaged u4(8) over a sumple as large as

possible because the field (Qu/0x)? was regarded as a random field In preliminary analyses we
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noticed that relatively small samples did exhibit some scaling with apparently random values of
D(q). Our larger data set (5 minutes of recording, in comparison with 30 seconds for
Meneveau and Sreenivasan, for similar air flows) allowed to show that this problem disappears
for large enough samples for which 1(q) becomes well defined (at least for q > 0!). Actually,
for our data set the minimum sample size needed to get a reasonable convergence of the 1(q)'s
was about 30 seconds, which may explain the difficulties encountered by Meneveau and
Sreenivasan since their maximum sample size was also 30 seconds. For large enough samples
a good scaling is observed and the variations of D(q) as measured on small samples are more

simply interpreted as natu:al randomness.
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Figure 6.13: A plot of the normalized generating function Z4(8) = (x‘q(é))”(q'” ~ & Dy,
where D(g) = 1qQ)/(q-1), for q=-10. The scaling is good up to scales of 10M) meters and
may even extend to larger scales. Huge scaling ranges have also been observed by Meneveau
and Sreenivasan (1987b,1987c). This behavior is representative of the range -10.5 < g<its
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Figure 6.14: A plot of the normalized generaung function Zg(8) for q = 3.5. Although a
httle irregular, Zq(B) is well described by a power law. Indeed 248) does not have a constant
curvature but rather wiggles around a power law. This behavior is representative of the range
g 2 2.5. Agan, the scaling range is very large with respect to the eight of the probe from the
ground (about 4 meters).
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- oscillation around the power law increases as q increases.

=10.5 The amplitude of the




=g

k

6

5

4

23

O-J

n

— 2]
R

- 16 IS O I O 0 U A O O A
_{ —g -7 -5 -3 24 { 3 85 7 9 11

g

Figure 6.16: Mass exponents measured from the data. 3 curves are displayed: The fist one

(squares) was obtained by averaging Zy(L) on the whole sample. The second curve (circles)
was obtained by averaging on 1/2 or 1/4 of the sample (the same result was obtained), and the
last curve (triangles) was obtained with 1/8 of the sample. The stars are points on the func.on
T(q) = - log2(0.7169 + 0.3584), which fits the data very well. For q > 0 the mass
exponents converge rapidly. By contrast, for q <0 the exponents 1(q) increase when Zg(L) s
averaged over a larger sample. This phenomenon occurs for q <-1.5 and theretore the mass
exponents in that range do not appear to be reliable,




6.5 CORRELATION GENERATING FUNCTION OF (0u/0x)2

Let us now consider the correlation generating function of this measure  Consider the

quantity
Wq@) = (<@g qn (8>, (6.4.5)

where <b<1)q'q(6) = ¥ [1i(®K41(8)19. This is a special case of the correlation generating
function (D(ﬂ)p'q(S) (section 5.5) where p=q and n = 1, 1.e. adjacent boxes. For multnomual

measures CL-scaling holds on the line p = q (see figure 6.22), 1.¢
Wq(0) ~ 8 D@, whereD(q) = 1(q)/(q-1). (6.4.6)

The fact that Wq(8) and Zq(ﬁ) scale with the same exponent 1s regarded as a characternistic
property of multinomial measures (see section 5.5.5) The quantities (), ((8) were computed
on each 100 meters subsample and were then averaged over all the subsamples to obtam W(d)
For q <0, a good scaling (similar to figure 6.13) was obtained For ¢ > 0. W(3) alvo scales
over the whole range of scales but again irregular departures from a power law are visible
(figure 6.17). The scaling exponents t(q) obtained with the whole sample with '/,(,(8)
(single-box generating function) and Wq(5) (double-box generating function) were plotted on
the same graph in figure 6.18. The agreement is good. The largest differences (at most 10% )
are obtained for q > 0 and are explained by the error induced by the oscillating power laws
Within these small errors we conclude that the correlation constraint (5.5.7) 1s well obeyed for

n =1, 1.e. for adjacent boxes.

In order to see if the consuwraint (5.5.7) was sausfied for n > 1 the quanuues <p4(8)> and
<[M1(8)H;+n§(8)]92> where plotted on normalized scales for n = 1, 2, 3 and 4 with | hixed
For a separated multinomial measure we expect these quantities to scale Itke 39+, Figure

6.19 displays the resuits obtained with g = 2. Notice that in this case the constraint (55.7) 15
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necessarily satisfied because it is implied by single box scaling (see (5.5.12a), section 5.5.3),
and therefore we expect to get <pi(8)i,4+n5(8)> = 812)+1 for all n, where 1(2) = 0.79. The
variations of the measured exponent are small and the agreement with (5.5.12a) is therefore
good, as expected. Figure 6.20 displays the results obtained with g=-2. According to
section 5.5.3 this case does not satisfy (5.5.7) trivially. The agreement is good and even better
than in the above trivial case where the agreement should in principle be perfect. Similar results
were obtained in the range -5 <q<-1. Figure 6.21 displays the results obtained with
g =5. The scaling is not as good than in the previous cases. The prefactor irregularities
imply relatively large errors on the fitted exponents. Within these errors the agreement with
(5.5.7) remains plausible. Similar results were obtained in the range 3 <q<5 but the

scaling was found to be a little better.

In order to see if the energy dissipation field exhibits a scaling transition comparable to
non-separated multinomial measures (see section 5.5.4), we chose to examine the scaling of

<(y(8))P(H,4+1(8))2> along the line q = - 2p (see figure 6.22). It should be recalled that,

according to (5.5.19), the scaling expected for such measures is

<((ENPU (B> ~ §4PY a5 550, (6.4.7)
where
A(.Q) = {T(p+q)+1 {CD-scaling 1omain)
Pa 1(p)+1(q)+3 (non CD-scaling domain) -

For p <2 along the line q = - 2p the multinomial model obeys CD-scaling, while for p>2 a
scaling transition ruled by (6.4.7) occurs. In figure 6.23 we plotted on the same graph
<(Ri(B)P(H,+1(8))-2P> and <(u,(8))-P> for p = 1/Z, 1, 3/2, 2, 5/2, as obtained from the
dissipation fietd. In the CD-scaling domain these quantities are expectad to scale with the same
exponent. It is noticed that the two-box products are power laws at large scale only while the
single box moments scale over the whole range. For q <2 the exponents A(p,-2p) and
1(-p)+1 are about equal, i.e. CD-scaling is well obeyed. However, for g = 2 the exponents
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A(p,-2p) and t(-p)+1 start to exhibit significant differences and therefore a scaling transition
occurs. In order to see if the scaling transition was consistent with (6.4.7), we plotted on the
same graph (figure 6.24) the exponents A(p,-2p), T(-p)+1 and the prediction (6.4.7) for non
CD-scaling, i.e. 1(p)+1t(-2p)+3. Taking the estimation errors into account, we conclude that a

scaling transition is indeed taking place but that the exponents A(p,-2p) are different from

t(p)+1(-2p)+3, which is the prediction of the multinomial mndel.

These results are interesting for at least three reasons: Firstly, CD-scaling is well obeyed on
the line p = q which is consistent with the multinomial model; secondly, the scaling transinon
predicted in the model actually occurs in the dissipation field; thirdly, the exponents A(py) do
not match the exponents of the model in the non CD-scaling demain (and maybe also
elsewhere), which allows to distinguish the energy dissipation field from single scale cascades
From a more general viewpoint, this suggests that the functions A(p,q) defined above may not
be everywhere related in a simple manner to 1(q), in which case they would provide a more
complete description of a scaling field that goes beyond the multifractal charactenization The
failure of the single scale multinomial model to account for the scaling of correlations nught
suggest that more general models, such as multiscale cascades, may be more adequate for the

energy cascade process.

Remark: It is noticed (figure 6.17) that the prefactor of Wq(8) appears to be periodic in logd
This is observed for all q >3, and three minimums occur at scales approximately equal to
1.3cm, 82 cm and 5240 cm. The ratios 82/1.3 and 5240/82 are 63 and 64 respectively,
w. ch suggest that the scale ratio r = 64 plays a special role  Oscillatons of that kind have
been regularly observed in measurements of high order velocity structure functions in turbulent
flows (e.g. Van Atta and Park (1971), Anselmet er al (1984)), with a pertod consistent with a
scale ratio of about 60. The temptation is to interpret them as log-periodic oscillanons
analogous, in some sense, to the prefactor oscillations of Ng(d) for exactly self-similar sets
However, a more convincing result would require the observation of more than two periods,
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which is a problem when the scale ratio is so large. It also remains to be shown that these
oscillations are not statistical artefacts. On the other hand, the field (du/dx)?2 is necessarily
anisotropic at these scales (because of the 4 meters altitude) and the effect of anisotropy is
poorly understood. The origin of these oscillations therefore remains unclear. A more detailed
investigation of prefactor oscillations in the context of self-similar sets and measures will be

proposed in chapter 8.
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Figure 6.17: Wq(8) versus § on a log-log scale, for g =4.5. The curve oscillates

periodically around a power law. This behavior is representative of Q>0 The amphitude of

the oscillations is observed to increase with q.
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functions are identical. As proved in section 5.5, these exponents are equal for random

microcaconical multiscale measures.
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normalized scales for n=1, 2, 3 and 4 For any scaling measure we expect all these

quantities to scale like 89(2)+D, where 1(2) = 079 The exponents obtained by fiting power
laws to these curves are (after subtracung 1) 0.80, 0.83, 0 85, 0 86 (x005) forn=1,2,3, 4

respectively. The agreement is therefore good, as expected forq = 2
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The exponent fitted using linear regressions do not vary by more than 1%. The agreement

between the scaling €xponents is therefore good.
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multinomial measures with mass exponents similar to the energy dissipation field (the dashed

lines separate the two regions). The correlations <('4j(3))P(Hi+1(9))3> were examined along the
g’ lines p = q, that lies in region 1, and along the line q = -2p, that crosses both regions.

173




—_ —_—
o O
N

10 ~°
107

i(LOM Ti+1(L)> and <

o
4

10 ~®
10 ~'°

¢ MP

10‘—” { I T { LA R LR RARL L
10 10 10° 10 *
L (cm)
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similar exponents at large scale for p < 2, which 1s consistent with the CD-scaling of the
multinomial model in this region. Significant differences between the scaling exponents are
visible for p 22, which means that a scaling transition is taking place This 1s also
qualitatively consistent with the multinomial model.
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scaling transition takes place for p22. Taking the error bars into account, 1t is seen that
significant differences between t(p)+t(-2p)+3 and A(p,-2p) occur forp=3 S andp =4
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Chapter VII

EXPERIMENTAL INVESTIGATIONS OF
SOME TURBULENCE THEORIES

Le vent ramassa, le tourbillon dispersa

Turc saying

In this chapter three different aspects of turbulence theory are examined. In the first part
7.1, the cause of the breakdown of the Kolmogorov scaling law <(Av(L))"> « L1/3 gt large h
is examined. In the second part 7.2, a simple and possibly new experimental evidence of the
existence of a spatially localized energy cascade is given and the idea of a fractal velocity field
formed of “bursts nested into bursis” is shown to be supported. In the third part 7.3, we
investigate the validity of the alternate (and weaker) form of the third hypothesis proposed in

section 3.3.3.
7.1 TESTING SIMPLE SCALING IN THE VELOCITY FIELD

Let us focus on the implications of the 1941 Kolmogorov theory on the probability

distribution of IAv(L)l. The prediction <IAv(L)I> « Lh/3 leads to

<AVQAL)I> = A3 <Av(L)Ib>, (7.1)
If (7.1) holds for all h then

lAvOL) & A3 1av(L)), (12)

ngn

where denotes the equality in probability distribution. (7.2) implies that the cumulative

probability distribution of IAv(L) has the form

Prob{ IAv(L) >u } = ¢(u/u.(L)), (7.3)
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where ¢ is an unknown function and u,(L) = LH with H=1/3. The K41 theory suggests the
dimensional normalization u,(L) = (ggL)!3, but in the following we shall only make use of the
proportionality assumption u,(L) e« L1, (7.2) also implies that the probability density pp(x)

of IAv(L)! takes the form
pL(X) = pr(x/LH) L-H (7.4
where p1 is an unknown function.

In order to see to what extent simple scaling is obeyed by the veiocity field, the probability
distributions (7.3) of IAv(IL)! for L = 10, 20, 40 and 80 cm, obtained from the whole data set,
were plotted in Jigure 7.1. Such plots were used in particular by Lovejoy (1985) and Lovejoy
and Schertzer (1986) to show simple scaling in the rain field, the temperatre field and the
velocity field. In this representation, the simple scaling (7.3) implies that the horizontal
spacings between these curves are equal at any height. Indeed if uye1 and u, denote the values
of dv at a fixed probability 1zvel for scales L and AL respectively, then ¢(u/LH) 1s constant 1f
up+1 = AH uy, i.e. if log(up+1) - 1og(uy) = Hlogh. This condition 1s respected farrly
accurately. The spacing between these curves can be used to deduce the scaling exponent H.
Indeed, these curves cross a horizontal line at values dv, (1=1, ..., 4) such that
H = log(dv,,1/dv;))/log(2). Looking for example at the probability level Sx10-3, 1t is found that
dv; =98.94, dvy =123.94, dv; = 155.26, dvq= 19448 (in cm/sec). Using these

values and the above formula yields H = 0.325, in good agreement with the Kolmogorov 1/3.

A more direct way of emnphasizing simple scaling is to plot Prob{ IAv(L)l > u | versus

u/u,(L), as suggested by (7.3). In this representation the distributions obtained with different

lags L should fall on top of each other if simple scaling holds. This was done i figure 7.2 and
the superposition of the various curves is convincing. Notice the differences in the tails are

larger than elsewhere on the distribution. In this log-log representation an asymptotically
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hyperbolic distribution would exhibit linear tails. One rather observe a constant curvature on
each of these curves. The hypothesis of Schertzer and Lovejoy (see chapter 2) is therefore not

strongly supported.

The simple scaling of the probabiiity densities can also be examined by first constructing
histograms of the values of IAv(L)! using bins with width Avj(L) = Av,” LH foreach L. The
bins of these histograms fall on top of each other when the velocity differences are normalized
by LH, providing normalized histograms suitable for statistical tests. Average probability
densities py_(x) are next calculated for each bin. If pp.(x)LH is plotted versus x/LH the curves
obtained for different values of L should be superposed if simple scaling holds, as implied by
(7.4). This was done in figure 7.3. A fairly good agreement is obtained. The relative
difference between the different normalized densities is about 25% around 30 cm?2/3/sec and
reaches 100% in the tail. The error associated with the simple scaling approximation is

therefore worse in the tails,

The differences between the normalized listograms were examined using a %2 statistical test.
The statistics used to test the null hypothesis that two histograms come from the same

probability distribution is
Nbins
2= Y Q) -Nag)?
- Ni() + N2G)
J:

where Npins is the number of bins in the histograms and Nj(j) denotes the number of counts in
the jlh bin of the ith histogram (Press er al., 1986, section 13.5). An equal number of velocity
differences Av(L) was sampled for each lag L. %2 is then expected to be distributed as a %2
random variable with v = Nppps - 1 degrees of freedom. Using this test the differences
between the various pairs of histograms were found to be statistically significant: Typically, we
obtained x2/v =200 which leads to Prob{y2/v = 200} = O and therefore the null hypothesis

is strongly rejected. The reject is strong because our sample contains a relatively large number
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of points, namely 735000. It follows that the frequencies estimated in each bin are fairly
accurate and consequently the small differences observed around 20 cm?2/3/sec in figure 7.3 are
significant, and in fact more significant statistically than the larger errors in the extreme tails
where the bins are less populated and the frequencies consequently less accurate. It is
interesting to see that the main contribution to the statistical error comes from events having a

3% probability of occurrence, i.e. from the tails of the distributions (Figure 7.4).

We conclude that simple scaling is rejected on a strict statistical basis. Simple scaling 1s
nevertheless satisfied sufficiently accurately for low values of IAv(L)l to yield
<lAv(L)h> « L3 for h < 5, but the differences between the tails of the probability densities
are sufficiently large to break the linear behavior of {(h). We emphasize that our use of a 2
test on suitably normalized histograms to check the validity of simple scaling appears to be
original. One advantage of this procedure for testing simple scaling over the venfication of
{(h) =hH is that <lAv(L)Ib> does not need to be measured accurately for high values of h.
Our results essentially support one of the conclusions of Anselmet et al. (1984), i.e. the velocity
field does not satisfy simple scaling. The Frisch hypothesis of broken stretching symmetry in
turbulent flows is therefore supported by these results, while the alternate hypothesis of simple

scaling appeaus to be invalid. This study therefore resolves the contreversy stated in chapter 2.
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7.2 EVIDENCE SUPPORTING A SPATIALLY LOCALIZED ENERGY
CASCADE

The self-similar nature of a turbulent velocity field is often pictured using the idea of “bursts
nested into bursts”., This geometrical assumption of self-similarity 1s implicit to the
phenomenology of the energy cascade in Kolmogorov theories, and explicit in some
quantitative models of intermittency, such as the Frisch-Sulem-Nelkin 3-model (in short
F.S.N. B-model) or the Novikov “pulse-in-pulse” model (section 2.4 3) Apparently, no direct
experimental evidence of the existence of structures inside of structures has been given
(Kadanoff, 1990). Our aim 1n this section is to try to see qualitatively to what extent this fractal

1dea is supported by the observations

In early measurements of high-passed velocity signals, such as those of Sandborn (1959),
intermittency was observed 1n frequency bands corresponding to the inertial range. [t seems
that the study of spatial correlations between these bands, that would reveal to what extent small
scale energy bursts “grow” on nearby larger scales energy bursts, was neglected We therefore
propose here to consider several bands simultaneously. In the spint of the F.S N B-model, a
senies of digital filters keeping only the scales 1n the intervals {Lg, Lo/2], [Lo/2, Lo/4). ..,
[L/20, Lo/27*1] was applied to the velocity field, and all these filtered signals were plotted on
top of each other in figure 7.5 and 7.6, using normalized units. Our procedure somewhat
differs from the F.S.N. B-model, where three dimensional frequency bands are considered,
bec:use we are restricted to one dimensional samples A large 105 meter sample was used in
figure 7.5 in order to give a broad view of the intermittency 1n the inertial range In order 1o
focus on the dissipation range intermittency, a shorter 28 meters sample was considered in

figure 7.6.

In both figures the characteristic intermittent behavior of the filtered signal 1s recognized
The intermittency exists both in the inertial range (10 cm to 10 m) and the dissipation range
(1 cmto 10 cm). The activity pockets in each band are not ““dead” or “alive”, as assumed 1n
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the F.S.N B-model, but are rather weak or intense, which is due to the relativelv large widths ot
the bands. Indeed it is usually observed that the intermittency of the filtered signal increases
(e.g. higher kurtosis) if the filtration bandwidth decreases The pockets of acunvity are usually
at the same location in each band. Some (rare) exceptions can be found, where the encrgy in
the small scales is small, even though larger scales at the same spatial location exhibit bursts ol
activity. The hypothesis of bursts of energy at various scales nested 1nto each other 1s theretore
essentially confirmed. The fact that the signals in different bands are strongly correlated 18
consistent with a cascade that occurs locally in real space, as postulated i the 1962
Kolmogorov-Obukhov refined similarity theory. We don’t regard these correlanons as
especially surprising, precisely because we expect a large scale energy burst to ““contaminate™ all
the scale; of the velocity field through the cascade process Nevertheless, this may be the first

attempt of a direct experimental venfication of the self-similar structure of intermuttency

These observations support a qualitative cascade phenomenology, but unfortunately they do
not lead unambiguously to more quantitative models The F.S.N B-model 1s an attempt to
derive some quantitative results, e.g. the correction to the k-5 energy spectrum, but it remans

too close to the crude observations to lead much beyond a purely qualnative descripuon




W

A

(@Y
'R U ST O N T T TR N N WA T TN VS N U SO I O VA A T W N O

filtered velocity (normalized units)
oo

lllTrTlTrrlrIIlTTTfllfrIIrTlll’llTIIITIT]rFTYIllrl|1T

Q 2000 4000 6000 8000 10000

Figure 7.5: This graphs shows the velocity field digitally filtered in 10 different wavelengths
bands, namely [52m, 105m}, [26m, 52m], [13m, 26m)], ..., [10cm, 20cm] (from bottom to
top). The first 7 bands, starting from the top, corresponds to wavelengths smaller than 13
meters and are therefore related to the inertial range. The bursts of activity are strongly

correlated from band to band, which is consistent with Landau's id=a of an energy cascade that
occurs locally in real space.
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Figure 7.6: This graphs shows the velocity field digitally filtered in 10 different wavelengths
bands, namely [6.6m, 13m], (3.3m, 6.6m], {1.6m, 0.8m], ..., [Scm,10cm], [2cm Scm),
[1cm, 2cm] (from bottom to top). The first 3 bands, starting from the top, corresponds to
wavelengths smaller than 10 cm and are therefore related to the dissipation range. The other

bands are in the inertial range. Intermittency is clearly visible in the dissipation range as well
that in the inertial range.
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7.3 TEST OF A WEAKER FORM OF THE THIRD KOLMOGOROYV
HYPOTHESIS

In section 3.3.3 it was argued on the basis of the properties of multiplicative processes that
the moments of log(e(L)) may be calculated using the gaussian approximation even if the
lognormal approximation was untenable for the calculation of the moments of e(L.). In this

section we shall try to verify this hypothesis with the energy dissipation field (recall that €(L)

denotes the energy dissipation rate field averaged over a length scale L).
The moments of a centered gaussian N(0,02) are given by
<N&> = (q-1)!! ot (7.3.1)

for q even. It follows that
<NI>
- a2 _ _ (q-]) N 3.2
Ro(q) NL? g-nH" (7.3.2)

for q even. Introducing the centered quantity V(L) = loge(L) - <loge(L)> we define the ratio

<V(L)%>

R(L,g) = m .

(7.3.3)

If our new form of the third hypothesis is valid the ratio R(L,q)/Rg(q) should be unity for
q=2,4,6,..and for L small enough. This ratio was plotted in figure 7.7 as a function of q
for each L. The agreement with R(L,q)/Ro(q) = 1 is really good for L <2 meters since the
error does not exceed 15% for q £10. A random scatter around the gaussian value 1s
observed. We regard this result as a reasonable evidence for support of multiplicative

processes. It also provides indirect support for the hypothesis of finite variance required for the
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central limit theorem to apply. It seems that the validity of the gaussian approximation for the
calculation of the moments of log(e(L)) was never emphasized and verified experimentally

before this study.
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Chapter VIII

COMPARING THE ENERGY DISSIPATION FIELD WITH
SINGLE SCALE CASCADE MODELS: SEARCH FOR A
PRIVILEGED SCALE RATIO

De loin, la montagne parait lisse; de prés, elle est rugucuse

Indian saying

In this chapter we shall consider some of the simplest cascade models, namely those
involving a single scale ratio, and focus on their characteristic properties. In a study of
deterministic single scale Cantor sets, Smith er 2/, (1986) pointed out that a unique scale ratio
gives rise to periodic oscillations of the prefactor of the correlation function C(L) (1o be defined
below) and that the period reveals the scale ratio. On this basis and by using a fractal modcl of
turbulerce they claimed that oscillations may also be observed for velocity structure functions
measured in natural flows. For single-scale measures, we have shown in chapter $ that the
generating function exhibits a periodic prefactor. The same observation was made by Novikov
(1990) using a slightly different approach to the modelling of the energy dissipation ficld, e.g
the “pulse-in-pulse” model (section 2.4.3), where the energy dissipation field has a power
spectrum of the form k-1+H ¢(log(k)) (0 < p < 1), where ¢ is periodic with a period
determined a scale ratio. As shown in chapter 4 and 5 such periodic prefactors arise in single
scale renormalization equations. They are therefore expected for multiscaling systems having a
physically distinguished scale ratio. If prefactor oscillations could be observed 1n natural flows

their period would reveal a privileged scale ratio characteristic of turbulence.

Our first goal in this chapter is to determine whether such prefactor oscillations actually exist
in random models. Indeed the existence of such oscillations is only suggested by perioaicity
staternents of the type f(x) = f(x+T) which might possibly mean that f 15 simply constant
These prefactors have not been calculated either analytically or numerically in random models
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(Novikov, 1990) and it is interesting to study the effect of randomness. If oscillations exist the
second step is to see if they are sufficiently wide in amplitude to be easily observable. The last

step will be to see if similar oscillations can be obtained in real turbulent flows.

It should be recalled that for exactly self-similar sets the periodicity of the prefactor of Ng(d)
is usuaily spoiled by the use of a box-counting grid (section 4.2.3.2), and therefore another
method is needed to measure prefactors for sets. Various definitions of the correlation function
have been proposed in the context of dynamical systems. In section 8.1 we extend these
definitions for arbitrary sets and measures. These new quantities have the advantage of
allowing an accurate estimation of periodic prefactors. In section 8.2 these methods are first
tested on artificial random sets and measures and next applied to the energy dissipation field as
measured in the atmospheric surface layer. A first numerical attempt to obtain the periodic

spectral prefactor of the Novikov “pulse in pulse” model is made in specific cases
8.1 MEASURING PERIODIC PREFACTORS FOR SETS AND MEASURES
8.11 Correlation functions for sets

Given a sequence of points {x;,i= 1, ..., N}, usually generated by a dynamical system,

the correlation function (Grassberger and Procaccia, 1983) is defined by
N,
C@) = lim N-2 £‘1 Ni(3) , (8.1.1)

where N;(8) denotes the number of points inside a ball B(3,x;) of diameter 8 centered about x,.
In this context the ratio Ni(8)/N, interpreted to be the fraction of time spent by the point in
B(8,xj), is expected to be finite in the limit Noe. C(J) is the average of these time fractions
and is also finite. The correlation dimension v of the infinite sequence {x,} is defined by

log{C())
-0  logd

v = lim (8.1.2)
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Note that C(d) is defined for infinite sequences but is not necessarily defined for sets. Indeed,

given a set a rule is required to enumerate the points and C(L) depends on this rule.

A natural way of "making points” with a set is to coarse-grain it by box-counting at

resolution €. The correlation function is then given by

Np(e)

Cle) = —-= ZN,(S £), (8.1.3)

(N (8))

where Nj(8,e) is the number of filled boxes of size € (€ << &) inside a ball of diamecter &
centered on the ith filled box, and Ng(g) is the total number of boxes of size € needed to cover
the set. In general 0 < C(8,€) €1 because 0 < N,(d,e) < Ng(g) for anyi For some sets,
the limit C(6)= lima_%0 C(d.€) 2 0 may exist and be non-zero. Consider for example a
homogeneous fractal, i.e. a set S such that any non-empty subset S, satsfies dp(S,) = dp(8)
(in other words, the box dimension of any piece of the set is the same). For such a set
Ni(8,e) ~ (e/8) B as -0 and since Np(e) ~ €I it follows that Ny(8,6)/Ng(e) ~ 8B as

£-0 and therefore
C®,e) ~ 8B as £-0.

The definition (8.1.1) was used by Smith ez al. (1986) for sets containing a finite number of

points. Our expression (8.1.3), which applies to any sct, appears to be original.

In a numerical experiment, where an e-grid is used to coarse-grain the set, C(8,¢) depends
on the position of the grid. By contrast with Ng(8), where a different grid is used for cach 8,
no d-grid is involved in the calculation of C(3,€). As we shall see, this improvement allows 1o

recover a convincingly periodic prefactor for exactly seif-similar sets.
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8.1.2 Calculation of C(3,e) for exactly self-simiiar sets

Consider an exactly self-similar set S where the copies S; are positively separated, and

denote by C(3,¢;S) the correlation function associated to S. The §; are identical, hence if
& < min d(§;,S5,) then

C(d,6;8 M NB(ZE;S{% (d (8.1.4)
( ,e, ) - [NB(&,S)]Z ot k ,E) oA

where the sum runs over all the boxes covering one of the Sj. (8.1.4) can be rewritten in the
form
CES) = M [I‘I—[i(ﬁ;-Sj)]2 C(5,&:5)). (8.1.5)
NB(g;S)
For an exactly self-similar set with ratio r, Ng(g;S) = M Np(€;S;) and self-similarity implies
C(3, & §j) = C(dfr, €/r; S),
therefore (8.1.5) becomes
C@®, & S) = M1 C/r, e/ S), (8.1.6)
which becomes
C(d) = M-1 C@/Mm), (8.1.7)
1s €0 if the limit exists. Consequently

C@3) = §95 P(logd), (8.1.8)

where P(logd) = P(logd+log(1/r)). Numerical experiments performed by Smith ez al. (1986)
have demonstrated the existence of oscillations for P with M-piece Cantor sets. This periodicity

is very clear in comparison with the results obtained in chapter 4 with box-counting. The
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details of these oscillations can be used to characterize the properties of the set other than the
dimension. For example sets sharing the same dimension, such as the Cantor sets (101) and

(101010001), can be distinguished by comparing their prefactors.

For illustration, a numerical experiment was performed on the triadic Cantor set (101). 10
cascade steps were done and C(L) was plotted in figure 8.1. The slope of the line is
ds = log2/log3, and regular oscillations are visible. At small scales, the set is not self-similar
and therefore the periodicity is spoiled (the smallec: 1le is defined to be unity). In figure 8.2,
the prefactor P() = 598 C(8) is plotted versu: . ;58. The minimum of the periodic function
occurs approximately at scales 100, 100x3, ..., 100x3%, which reveals that the sphuing factor

of the setisr = 1/3. A zoom on P(L) is given in figure 8.3.
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Figure 8.1: C (L) for the triadic Cantor set (101). The slope of the line is log2/log3, the
dimension of the set. Periodic oscillations are visible, except at small scales, where

self-similarity is spoiled by the finite inner scale.
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8.1.3 Generalization of the correlation function for sets and measures

We propose here a generalization of the correlation function (8.1.3) that leads to a more

complete characterization of the set. We define the order-q correlation function by
Npg(e)

P TCIAE (8.1.9)

1
CQ(B,E) = [NB(E)]q+] =1

normalized so that 0 <Cq(d,6) £ 1. For exactly self-similar sets, the renormalization

argument of section 8.1.2 leads to

Cy(8) = M4 Cq(d/r), (8.1.10)
and therefore

Cq(®) = 859 Py(logd),

where Pg(logd) = Pq{logd+log(1/r)). The order-q correlation function therefore leads to a
continuous family of periodic prefactors Pg, instead of a single one. In figure 8.4 the prefactor
P4(L) obtained numerically with the Cantor set 101 constructed with 10 cascade steps is plotted.
Obviously P4(L) # Py(L) and therefore higher order prefactors reveal additional information

about the set.

As already mentioned above, the prefactor of the generating function Xq(d) is also spoiled by
the use of a box-counting grid. For separated and self-similar measures, the measurement of
the perodic prefactor therefore requires a new tool. We propose here a natural generalization of

(8.19) for measures. Define the order-q correlation function of a measure | by

NR(e)

1
d.€) = —— [1i(d,6)14, 8.1.11
QQ NB(E) ; Hi ( )
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where Ng(€) is the number of boxes of size € needed to cover the support of it and u,(8,€) is the
measure of a ball of radius § > £ centered about the ith filled box of size € Qq(8.€) satisties
0<Qq(3,e) <1 because 0<,(8,e)<1. For a separated exactly self-simular measure

supported by S = US;, where the S;’s are scaled down copies of S, the correlation function

satisfies

M=

QqB.E9) = 37 2, UGSy, (8.1.12)

U}
—

J

where Qq(S,e;S) denotes the correlation function restricted to a support S. The self-similarity of

the measure implies
Qq(8,6;5) = wyl Qq(d/r,e/r;8), (8.1.13)

where r is the scale ratio of the measure and wj the weight corresponding to S;. Replacing

(8.1.13) in (8.1.12) yields the renormalization equation

M
Q8.8 = 3 [l QqBherS). (8.1.14)
J=1

For some measures the limit Qq(S;S) = 1ime—->0 Q4q(3,&;S) may exist and be non-zero. In that

case (8.1.14) becomes (the argument S is dropped for simplicity)

M
Q®) = 3 [}’ijq] Qqy(8/r) (8.1 15)
J:
and yields
Qq®) = 8"V*9s p(logd) (8.1 16)

where ds = logM/log(l/r), 1(q) is the usual mass exponent function of p and

Py(x) = Pq(x+log(1/r)). This “grid insensitive” method, that allows both the mass expanents

and the prefactor to be measured accurately as long that & >> €, appears to be oniginal.
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8.2 STUDY OF PREFACTOR OSCILLATIONS IN SINGLE SCALE
CANTOR SETS, SINGLE SCALE MEASURES AND TURBULENCE

8.2.1 Effect of the separation condition on the oscillations

In section 8.1.2 it was shown that the renormalization equation satisfied by the correlation
function C(L) for an exactly self-similar sets S holds exactly only when the subsets §;
composing S are separated. In the case of non-separated Sj's, the renormalization equation
Cq(L) = M-9 C¢(L/r) may still hold asymptotically in the limit 00 if the S;’s do not overlap
too much. We shal! now examine the prefactor of a non-separated Cantor set. It is noted that

the numerical experiments of Smith ez al. (1986) involved cnly separated Cantor sets.

The correlation function C(L) for the sets 1101 and 1110 were obtained numerically using
eight cascade steps in the construction, and the prefactors were plotied in figure 8.5 (in this
chapter, the size L of each set was defined to be 1). The Cantor set 1110 is separated, because
the set 1110 equals the set 110110110000, which is formed of three separated subsets.
However the set 1101 is not separated, since the set 1101 equals the set 1101110100001101,
which is again formed of three non-separated subsets. The separated 3-piece Cantor set 1110
exhibits a very regular periodic prefactor. By contrast, the non-separated set 1101 exhibits a
less regular prefactor. Oscillations are visible but the periodicity is broken at large scales. At
small scales the prefactor appears to become periodic asymptotically. The function C(L)
obtained with the set 1101 was plotted in figure 8.6. It is emphasized that in this representation
the oscillations are almost imperceptible. Only a large magnification of the prefactor allows to

discover oscillations in this apparently straight line.

We conclude that when the separation condition is not satisfied the periodicity of the
prefactor is spoiled at large scales and therefore the scale interval where oscillations could be
observed shrinks. This may be the first illustration of the effect on the prefactor of the lack of
separation of the S;’s for exactly self-similar sets.
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Figure 8.5: Prefactors of the sets 1110 (top) and 1101 (below). The set 1107 s not
separated and periodicity is broken at large scales.
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Figure 8.6: C(L) for the Cantor set 1101. The ratio of the amplitude of the oscillation to the

mean prefactor is about 7% and the oscillation is almost invisible.




8.2.2 Effect of randomness on the oscillations

Besides the separation condition, another factor may contribute to ruin the oscillations of the
prefactor: Randomness. A realistic model of the energy dissipation field must involve
randomness. Consider for example a random M-piece Cantor set, 1.e. an M-piece Cantor sct
where the positions of the pieces are chosen randomly at each cascade step. For such sets the

renormalization equation for Cq(L) becomes

CqL) £ M9 CylL/), (82.1)
where v denotes an equality in probability distribution. It follows that

<Cq)> = M1 <an./r)> (8.2.2)
and therefore

<C4L)> = LI Pg(logL), (8.2.3)

where Pg(x) = Pg(x+log(1/r)) (the usual restrictions in connection with the separation condition
also apply to this probabilistic case). A similar argument can be made about the renormalization

of the correlation function for measures, which is obtained by averaging (8.1.15):
<Qy(B)> = <Wi> <Qqd/D> => <Qq(®)> =8 VS p (l0gs), (8.2.4)

where 1*(q) = -ds - log<Wa>/log(1/r) and Pg(x) = Pq(x+log(1/r)). A periodic prefactor is
therefore also obtained for averaged correlation functions, either for sets or measures. For a
random Cantor set, the prefactor of Cq(L) may oscillate for a given realization. The problem is
to determine whether these oscillations remain "in phase” for different realizations, in which
case the oscillations may survive the averaging of several realizations, or 1f the oscillanons are

out of phase and therefore produce a constant prefactor once averaged.
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We shall now consider three examples. Let us first consider a separated random Cantor set,
where the sequences 1010 and 0101 are chosen raidomly with equal probability at each
construction step. For any realization, the two subsets composing the whole set are separated,
and therefore the renormalization equation (8.2.2) holds exactly. The prefactors P(L) obtained
with two different realizations were plotted in figure 8.7 (the sets were constructed using 8
cascade steps). For each realization the prefactor oscillates periodically, and the oscillations are
in phase. It follows that <C(L)> also has an oscillating prefactor . Oscillations are observed in

each realizatior because these sets remain fairly regular, despite their randomness.

The second example is a triadic Cantor set where the sequences 101, 110 and 011 are chosen
randomly with probabilities 0.8, 0.1 and 0.1 respectively. A larger weight has been given to
the set 101 in order to enhance oscillations. The prefactors computed on two realizations of this
set have been plotted in figure 8.8. 7 cascade steps have been used in the construction of the
sets. Although irregular, the prefactors of both realizations oscillate approximately in phase,
and therefore the prefactor of <C(L)> should also oscillate. In figure 8.9 the prefactor of
<C(L)>, obtained by averaging 200 such realisations, is displayed. A periodic oscillation is
obtained and the fall-off at large scale is due to the fact that most realizations are formed of

non-separated subsets.

In a third example we considered the triadic Cantor set where the sequences 101, 110 and
011 are chosen with equal probability, which makes the set more irregular. In figure 8.10 the
prefactors of three realizations (7 cascade steps) are plotted. No obvious period.iity is visible.
In order to determine if the prefactor of <C(L)> oscillates 1000 such realizations were averaged.
The prefactor of <C(L)> did not exhibit periodicity and the irregularities of the prefactor were
found to be very small (the ratio of their amplitude to the mean prefactor was about 2%). In
order to see if the prefactor oscillations could be enhanced for higher order correlation

functions, the prefactors of Cj(L), Cs(L) and Cjo(L) were obtained for a realization and plotted
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together in figure 8.11. This graph clearly suggests that the amplitude of the prefactor
oscillations are enhanced by raising the order of the correlation function. In figure 8.12 the
prefactor Pjo(L) obtained by averaging 250 realizations of Cyo(L) is displayed. An oscillanion
with a period corresponding to a scale ratio 1/3 is clearly visible. The periodicity is altered by

statistical errors and by the effect of the lack of separation.

We conclude that the oscillations of the prefactor of <Cq(L)> can be difficult to observe in
random self-similar sets. High values of q help emphasizing the oscillations but a lot of
averaging is often required to obtain a reasonable evidence for periadic behavior. It seems that
the oscillations are never completely destroyed by randomness. Nevertheless it would appear
that more “irregular” sets produce oscillations smaller in arnplitude and consequently more
difficult to observe. These conclusions were also found to apply to the correlation function
defined for measures, as verified with numerical experiments on deterministic and random

single scale multinomial measures (see figure 8.13)
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Figure 8.9: Prefactor of <C(L)> averaged over 200 realizations of the random Cantor set

where the sequences 101, 110 and 011 are chosen randomly with probabilities 0.8, 0.1 and 0.1
respectively.




1

[

T |

A ]
- v\/"\ )
' - N -~
'\, Y
a N
A4 1
- \
\
- v
1
0.8 - \

)
-1 )
i \
1
\
- -
- “ 'I
i by
06 T T T T T T 1] T T N N G S B
0.01 0.1 1
L

Figure 8.10: Prefactors of 3 realizations of the random Cantor set where the sequences 101,

110 and 011 are chosen 1andomly with equal probabilities.




&
.

ikt g

oy

1,5,10 (bottom to top)

4.~
i 4
c
o -
o —
~—

..{

Pamn)
o -
—~
C -~
o -WM\/\

O 1B 1 1FIIII] 1 ] 1 []lll!‘ § 1 T!IHF]

. | -2 -1
10 10 10 1

L
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8.2.3 Numerical experiment with the Novikov “pulse-in-pulse” model

In this section we examine a numerical experiment performed with the Novikov
“pulse-in-pulse” model (section 2.4.3). This is an attempt to determine to what extent the
oscillations of the power spectrum are easily observable. The construction of the model
involves a Poisson process governing the large scale structure of the dissipation field and a
cascade process determining its fractal self-similar structure. In order to focus on the scaling
range of the power spectrum we constructed a model that did not involve the Poisson process
ingredient. Starting with a point centered at x =0 the fractal set determining the energy
dissipation function g¢(x) was directly constructed around this point The pulse shape was
chosen to be 1(x) = a/(n(x2+a2)). 8 was chosen to be uniformly distributed between -1/2 and
1/2 with m=2, B =1/3 and A; =1. 1t follows that the spectrum has the form
E(k) = k*Y P(logk) where y=log2/log3 = 0.6309 and P(logk) = P(logk+log(1/3)). The
exponent v is therefore comparable with the Y measured in turbulent flows that hes between 0.5
and 0.7. Eight cascade steps were performed in the construction of the model. For illustration
two realizations of this model with a = 1/2 and a = 1/6 are given in figures 8.14 and &.15

respectively.

£5(x) was sampled with a resolution high enough for the power spectrum to exhibit a
beginning of fall-off at high frequencies. The prefactor E(k) kY of a typical power spectrum
obtained from a single realization with a = 1/6 is shown in figure .16 Using the same
vertical scale the prefactors obtained by averaging 10 and 500 reahzatons are shown i figure
8.17. A tiny oscillation is perceptible and a zoom reveals a rough periodicity with § = 1/3
consistent with the theoretical prediction. The prefactor oscillation therefore exists in this
model, i.e. the prefactor is not constant. The ratio of the amplitude of the osctllation to the
mean prefactor is about 20% which means that an accuracy on the spectrum of at least 5% 15

required to observe the oscillation. In our results with atmospheric data (figure 6.8) the noise
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level on Eg(k) (the power spectrum of (du/dx)2) was at least 50% and was therefore too large to

observe such a small nscillation.
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8.2.4 Experimental results with the energy dissipation field

The measure associated with the field (du/dx)2 was shown in chapter 6 to have scaling
properties for scales larger than 10 cm. We are comparing this measure with a cascade process,
and therefore the inner scale of this hypothetical process should be 10 cm. A graph of the
values of the measures of 10 cm intervals is displayed in figure 8.18. Obviously all the
intervals have a non-zero measure, and therefore the support of the energy dissipation field 1s
the whole line. The function Cqy(L) therefore takes a trivial value. A non-trivial set could be
obtained for example by focusing on threshoid sets, i.e. sets composed of the union of all the
10 cm intervals having a non-negligible measure. However, for a space-filling multinomial
measure the sets obtained with this truncation are not Cantor sets in general. In order to apply
directly the methods introduced above to detect prefactor oscillations, it is therefore more

suitable to study the measure with the correlation function Qq(L).

It has been emphasized previously that the prefactor oscillations can be very tiny. One must
therefore worry about the accuracy of the “wiggles” obtained from a power law before giving
them any credit. In figure 8.19 the correlation function Q9(L) obtained with a coarse-graining
scale of 10 cm is displayed. The results obtained by averaging on the whole sample, and then
on the first and second halves, are given. The differences between these curves show that
Q5(L) has not converged yet. However, the scaling exponents are almost identical (within 1%)
and therefore there may be some hope that the prefactor oscillations can be detected. In order to
see if any systemati. variations occur in the prefactors, we extracted a prefactor function from
each half-sample, as well that from the whole sample, with the following procedure. Firstly,
the scaling exponent y defined by [<€q(L)>] 1/4 ~ LY was obtained using a linear regression;
secondly, a prefactor function Pq(L) = [<Qq(L)>]1/q L-Y was calculated and normalized by

Pg(Lmin), where L, is the smallest scale of the scaling range.
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The results obtained for q =2 and q =-1 are shown in figure 8.20. In both cases
systematic oscillations are visible. Indeed, the prefactors obtained with different samples (i.e.
the first and second halves) have their up and downs at the same scales. We therefore conclude
that these oscillations are not statistical artefacts, even if they are not very accurate. The
prefactors are not measured accurately enough to establish periodicity. Nevertheless, they have
their up and downs fairly regularly. A clear change in behavior occurs between the ranges
L £3m and L >3 m, which is not necessarily surprising since the altitude is about 4
meters. In the range L €3 m, two large oscillations suggest a periodicity corresponding to
r=1/2. In the range L > 3 m, at least four oscillations (smaller in amplitude and period)
occur with an approximate periodicity corresponding to r = 1/1.5. The change in behavior
between the two ranges of scale implies that the prefactor cannot be periodic over the whole
scaling range. It should be noted that for larger values of Iq! we found that the estimation errors
on the prefactors, as judged from the variations between the first and second half-sample, were

too large for conclusive results to be obtained.
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linear regressions are almost the same (less than 1% of difference).
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Figure 8.20: Prefactor functions of q(L) (see text for the definition) obtained with q = 2
(top) and q = -1 (bottom). The solid line corresponds to an averaging over the whole sample,
while the dashed curves are related to the averaging on the first and second halves of the
sample. Systematic oscillations are visible. Prefactors obtained with different saraples (i e. the
first and second halves) have their up and downs at the same scales. These oscillations are
therefore real, even if they are not very accurate. Their periodicity is not striking but they have
their up and downs fairly regularly. A clear change in behavior occurs between the ranges
L <3 m and L >3 m, which is not necessarily surprising since the altitude is about 4
meters. In the range L < 3 m, two large oscillations occur with a periodicity corresponding to
r=1/2. In the range L > 3 m, at least four oscillations (smaller in amplitude and perniod)
occur with a periodicity corresponding tor = 1/1.4.
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8.2.5 Conclusions about prefactor oscillations

We found that periodic prefactor oscillations of scaling quantities usually exist in random
single-scale models, i.c. the periodic prefactors are rarely constant. For correlation functions
these oscillations may be difficult to observe because of their small amplitude, and it is usually
necessary to focus on high order correlation functions to enhance them. The analysis of Qq(L)
on the energy dissipation field revealed systematic prefactor oscillations, with fairly regular up
and downs, but the accuracy of the prefactors was not sufficient to establish periodicity. The
oscillations were found to be consistent with r = 1/2 in the isotropic range (1.e. L £3 m),
and consistent with r= 1/1.5 in the non-isotropic range (i.e. L > 3 m). The prefactors do
not appear to be periodic over the whole scaling range. We emphasize that the existence of a
privileged scale ratio leads in general to prefactor oscillations but that the converse may not
always be true. In other words, the prefactor oscillations of Q4(L) might have a different

origin, especially in the non-isotropic range.

The numerical experiment with the Novikov pulse-in-pulse model showed that small power
spectrum oscillations did exist in this model but that an accuracy of at least 5% on the spectrum
was needed to observe them (in the specific cases examined). Our measurements of the power
spectrum of (du/0x)?2 in the atmosphere, involving a 50% statistical error, were not accurate

enough for such a small oscillation to be detected.
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Pour obtenir des résultats valables 1l faut d'abord choisir correctement son
obyectif, et savoir se contenter d'une description incompléte de la nature,

Hubert Reeves (from Malicorne, réflexions d'un
observateur de la nature)

1) Cascade models and the energy dissipation field

We shall first reexamine the findings listed in the section Contributions to original
knowledge from the viewpoint of one of the questions originally posed in the introduction® Can
we distinguish the energy dissipation field (EDF), as measured with a hot wire anecmometer in
the atmospheric surface laycr, from multiplicative cascade processes ? Let us review the five

different analyses we made to check the validity of these various models:

i) Single-box scaling: One of the simplest property of multiplicative processes is the
scaling behavior of the moments of the measure <(u(8))d> e« SMW+D, This property had
already been found to be well supported for one-dimensional averages of (Ju/dx)2 by Meneveau
and Sreenivasan. Our data also exhibits a convincing scaling behavior and we obtained
approximately the same function t(q) (section 6.4). The stability of the exponents for different
flows is consistent with the Kolmogorov hypothesis of universality for small scale turbulence in
the limit of infinite Reynolds number. We emphasize that for ¢ > O the scaling of <(u(3))4> is
good but nevertheless the prefactor <(u(8))4> 84D exhibuts irregular osaillanons It s

interesting to note that the scaling range extends over scales much larger than the range over

which isotropy might hold.

ii) Two-box scaling: A calculation of correlations in single scale multipiicative processes
showed that the quantities <(L(3))P*4> and <(11,(8))P(U,+1(8))4>, where 1,(3) and W,41(0)
denote the average energy dissipation in boxes separated by a distance 8, should both scale with

identical exponents A(p, q) for wide domains of the (p, q) plane (i.e. the “CD-scaling”
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region). The analysis of the EDF showed that for p =q (in the CD-scaling region) this
property was well satisfied, which supports multiplicative processes. In the non CD-scaling
domain a scaling transition occurs for single scale multinomial models. A similar transition was
observed in the EDF but in this region the scaling exponents A(p, q) were found to be
significantly different from the exponents predicted by the model. This result is interesting for
at least two reasons: Firstly, the scaling transition predicted in the model actually occurs in the
EDF; secondly, for some (p, q) the exponents A(p, q) allow to distinguish the EDF from

single scale cascades.

iii) Central limit theorem: In chapter three we showed that another way of testing finite
variance multiplicative processes was to check that the moments of log(e(d)), where €(3) is the
field (3u/0x)2 line-averaged over a scale 8, could be obtained from the gaussian approximation.
This was reasonably supported by the data (section 7.3), thus providing indirect support for the
hypothesis of finite variance required for the central limit theorem to apply, although the infinite

variance cases were not considered.

iv) Prefactor analysis: We tried in chapter 8 to determine whether the hypothesis of a
privileged scale ratio in the ED¥F could find support in the data. Such privileged scale ratios are
obtained for example in cascade processes where each eddy splits in 2 fixed number of eddies
of the same size. For such models the existence of periodic prefactor oscillations in either
power spectrum (section 2.4.3) or generating functions (section 5.4) can be used to reveal the
underlying scale ratio. Prefactors were found to be sensitive to the box-counting grid in both
sets and measures. Hence the usual methods involving grids used to obtain the box-dimension
or the mass exponents cannot always be used to estimate prefactors. We consequently
developed new “grid insensitive” methods to measure prefactors accurately in either sets or
measures (section 8.1). These methods were tested numerically on artificial sets and measures
(sections 8.2.1-2-3). The analysis of §4(L) on the energy dissipation field revealed oscillating
prefactors with fairly regular up and downs, but our estimation of the prefactors was not
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accurate enough to establish periodicity. In the isotropic range (i.e. L < 3 m) the oscillations

suggest a periodicity with r=1/2; in the non-isotropic range (i.e. L > 3 m), they suggest a
rough periodicity with r = 1/1.4. In any case, the prefactors arc not periodic over the whole
scaling range. We emphasize that the existence of a privileged scale ratio leads in general to
prefactor oscillations, either for correlation functions or spectra, but that the converse may not
always be true. In other words, the prefactor oscillations of Q4(L) might have another onigin,

especially in the non-isotropic range.

v) Divergent versus non-divergent cascades: Random multiplicative processes can be
grouped in two classes called microcanonical and canonical (section 5.4). As pointed out by
Mandelbrot (1974), canonical models make room for measures with divergent moments
<p9(6)>, and we showed in section 5.4.3 that divergence of moments leads to an effectively
vanishing mass exponent t(q) for large q. This behavior was not observed in the EDF for
-10€q < 10. Indeed t(q) rather exhibits an asymptotically linear t(q) for large Iql. This
suggests that divergent cascade processes are not relevant to the modelling of the EDF, alchough

we could not eliminate the possibility of the divergence of sufficiently high order moments.

The main disagreements between single-scale multinomial models and the real EDF were on
one hand the scaling exponents A(p, q) of the correlations <(pj(8))P(i,4+1(8))4> tn the non
CD-scaling domain, and on the other hand the prefactor oscillations of €24(L) that are not
periodic over the whole scaling range. The other analyses give support to multiplicative
processes, which is an interesting results in itself. The failure of the single scale multinomial
model to account for the scaling of correlations for some (p, q) suggests that more general
models, maybe multiscale cascade processes, may be more adequate for the energy cascade
process. It should be noticed that this failure is consistent with the lack of periodicity of the
prefactor of Qq(L) over the whole scaling range, that also rejects the hypothesis of a single scale
ratio. The double-box scaling exponents A(p,q) may not always be related in a simple manner
to 7(q), in which case they would provide a more complete description of a scaling field. 1ii)
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and v) suggest that the 1-D multiplicative process that best fits the EDF, as measured on a line
with a hot wire anemometer, should have multiplicative factors W with finite <(logW)2>, and
be non-divergent (i.e. 1(q) > 0 for q > 1) if canonical. Besides the actual form of the mass
exponents 1(q), that were measured in chapter 6, these are the main informations obtained about

the EDF.
2) Kolmogorov inertial range theories

We shall now come back on our main conclusions about some questions raised by the
Kolmogorov theorie.. Landau’s criticism of the original 1941 Kolmogorov theory, in essence,
is that the k-3/3 law is not invariant with respect to the composition of statistical subensembles.
The K41 theory could escape this problem only if thz volume-averaged EDF €(5) was constant
for 8 21, where 1 is the dissipation scale, which is found experimentally not to be the case.
It follows that the K41 theory, although making remarkably accurate predictiors for the energy
spectrum, is in principle invalid. This problem lead Kolmogorov and Obukhov to develop a
refined theory, rather questionable actually, on which we shall not further comment here. We
made an interesting observation in connection with the general relevance of Landau’s idea:
Most statements made in statistical fluid mechanics, such as the law of the logarithmic boundary
layer that describes the mean velocity profile over an infinite flat surface, are found not to be
invariant with respect to the composition of statistical subensembles. It follows that Landau’s
objection equally applies to these statements, that should therefore be regarded as only
approximate. This fact does not appear to have been noticed previously since many of these
laws, e.g. the law of the logarithmic boundary layer (Monin and Yaglom, 1975), are presented
as exact implications of the Reynolds equations. It follows that the universal constants involved
in these statements, such as the von Karman constant, are not universal, which might explain

the scatter of the estimations of this constant as made by various experimenters.
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The Kolmogorov original theory predicts that the structure functions take the form
<(Av(L)M> = c(h) (eqL)V3, where c(h) is a universal function of h. According to Landau this
result cannot be rigorously correct. However, Frisc'. argued that if the formal stretching
symmetry of the Euler equation is obeyed by the velocity field in a statistical sense, the simple
scaling <(Av(L))h> o< L3 should be obtained without necessarily having universal prefactors
involving €p. This argument is interesting because the lack of universality of the prefactors
does not allow the Landau’s objection to apply. Hence the possibility of simple scaling remains
and one must then explain why high order moments actually yield <(Av(L))M> « L&), where
£(h) #h/3 for h>4. This has been the object of a controversy. On one hand, Frisch simply
interpreted the non-linearity of {(h) as an evidence for the breakdown of the stretching
symmetry in turbulent fluids. On the other hand, Schertzer and Lovejoy argued that even if
simple scaling was strictly obeyed for the probability distributions of Av(L), the linearity of the
exponents {(h) measured on a sample could be broken if Av(L) had divergent moments for
h > 5. From this point of view the non-linearity of {(h) is regarded as a statistical bias that

does not disprove the validity of simple scaling.

In order to determine which of these two alternatives was correct, we examined the
probability distributions of the velocity differences Av(L). Firstly, the probability distributions
were not found to be convincingly hyperbolic. More importantly however, a staustical test
made on suitably scaled histograms showed that simple scaling, apparently fairly well satisfied
as judged by simpie graphs, did not hold on a strict statistical basis. We also observed that
simple scaling '.as increasingly broken for large values of Av(L), which explains the
non-linearity o' {(h) for h large. By contrast with previous tests of simple scaling (Anselmet,
1984), based on the linearity of {(h) for high order structure functions and possibly biased by
divergence of moments, our tmethod does not require an accurate estimation of the moments and

remains valid even if Av(L) has divergent moments. We conclude that simple scaling is
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definitely broken in the statistical sense but that it is obeyed sufficiently accurately for relatively

small values of Av(L.) to yield accurate scaling predictions for low order moments.

A slight improvement on previous formulations of the third Kolmogorov hypothesis was
also made by suggesting that the moments of loge(8) should be possible to obtain using the
gaussian approximation. This conjecture was found to be reasonably supported by the data,
which also supports indirectly the concept of multiplicative process, as mentioned above. We
emphasize that this is a weaker version of the third Kolmogorov hypothesis, since it does not

allow the calculation of the moments of &(3).
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APPENDIX 31 : CENTRAL LIMIT THEOREM (BY KHINCHIN)
Consider the random variable
Sn = Yl + ...+ Yn

where the Y;j are identically distributed and independent random variables such that <Y> = 0.
Let u(y) denote by the probability density of Y and define F(t) = Ie“Yu(y)dy the characteristic

function. Khinchin results (section 3.2) about the probability density Y(s) of Sy holds if Y
setisfies the following conditions:

1 - u(y) possess continuous derivatives and there exists a positive constant A such that

funidy < A,
2- <YP> <o, p=2,3, ..,5,

3 - there exists positive constants a and b such that for Itl <a, 1F(t) > b,
4 - for each interval [cy, c2] (c1c2 > 0) there exists a number p(cy,c2) < 1 such that for

any te [cj, c2] we have IF(t)l < p(c).c).
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APPENDIX 3.2 : THE MELLIN TRANSFORM THEOREM

Suppose that £*(z) is a function of the complex variable z = ¢ + it which is regular in the
strip S = { s : a <0 <b ) and that for any arbitrary small positive number v, f*(z) tends
to zero uniformly as |tl»« in the stripa + M <0< b -n. Then the integral

“+o00
[f'@ + ity de

-0

is absolutely convergent for each value of & in the interval Ja, b[, and if for positive real values

of x and a fixed ce Ja, b[ we define

1 CHioo
fx) =— |x2zf*2)dz
) 21 C-I‘L (

then, in the strip S,

o0

f*(z) = sz'l f(x) dx .

f*(z) is called the Mellin transform of f(x) (from Sneddon, 1972).
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APPENDIX 4.1: SOLUTION OF THE MULTISCALE RENORMALIZATION
EQUATION

Consider the linear equation

M
P@) = ., wi P(8/m) (1)
i=1

where rj <1 for all i and
M
(2)

wi = 1.
i=l

The general solution of (1) is a linear combination of elementary solutions of the form &, with

d complex. The trial solution 8- replaced in (1) leads to the characteristic equation

M
Zw;r‘d = 1. 3
i=1

d =0 is areal root of (3). The complex roots of (3), denoted by d = dg + i dj, are solutions

of the system

M
Y w, 9% cos(d; logr;) (4a)

j=1

M
Y w, rdR sin(d logrj)
=1

il
—

(4h)

]
[l

The complex roots with dr # 0 are complex conjugate pairs which can be seen from (4a) 10

satisfy dg <0. There are other complex roots with dg =0 only if dj logr) = 2znn; for all ),

which implies that the ratios are of the form

=M, j=1,2,., M, (5a)
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where rg is a constant. In this case the imaginary parts are the solutions of dj logr; = 2rm;

that holds for all j, which implies with (5a) that mj = nnj, and therefore

di(n) = ,he Z. (5b)

logro
Two cases must therefore be distinguished for the general solution:

(i) generic case : The rj are not integer powers of some common ration rg. Then the

general solution is

P®) = cp + R©®) (6)

where

R(5)

Y c(n) & “4R(M exp(-i di(n) logd)

and dr(n) <O for all values of n. It follows that R(8) — 0 as & — 0 and therefore P(3) is
constant in the limit 8 » 0. If dg(n) = 0 for some values of n the oscillations could survive

over finite ranges of scale because of the slow damping rate.

(ii) special case: The values of rj are of the form (5a) and the imaginary parts of the complex

roots with dg = 0 are given by (5b). The general solution becomes

P(3) = F(logd) + R3), 7)

where F(x) = F(x + log(1/rg)).
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APPENDIX 5.1: ASYMPTOTIC LINEARITY OF 1t(q) FOR FINITE f(a)

For a scaling measure with finite f(a) spectrum (o € D¢ = [, oty ])

(q) ~ oz q - f(ag) as qotoeo,

This result can be derived as follows: On one hand f(a) 2 K = min{f(a.),f(a4 )} for all
o€ Df; Young’s inequality aq - T(q) 2 f(a) (which follows from the definition of f) then
implies that aq - 1(q) = K for all (a,q) € Dfx IR. On the other hand the concavity 1" <0

implies that 1°(q) 21’(ee) = .. Therefore
a.q - 1(q) 2 K and d/dq{a.q - t(q)} <0,

i.e. the function o. q - T(q) is monotonely decreasing and bounded from below. llence there

must be a number a; 2 K such that

limq_)w a.q-1q) = a;, e Q) ~a.q-a4 as Q- oo

Using f(o) = T’ (qo(a))qo(a) - T(qo(ca)), where T’(qp(a)) = a which follows from (5.2.12)
(see section 5.2.6.2 for more details), and replacing t by its asymptotic form T(q) ~ o. - a4
yields a = f(c.) in the limit qo(ot)—e. Similarly it can be shown that there 1s an a. 2 () such

that 1(q) ~ ¢4 q - a. as q — -eo, where a. = f(ay4).
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