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ABSTRACT 

The energy cascade process in turbulent flows is studied. Kolmogorov meilial range 

theories are critically reviewed (lnd the multifractal characterization IS d:scussed. MultiplicatIve 

cascade models are compared ta the ~nergy dissipation field (EDF) measured in the atmosphere. 

Landau's objecnon ta the 1941 Kolmogorov theory is extended to the predictions of stattstlcal 

fluid mechanics. The hypothesis .1v(Â.L) ~ Â.l/3 ôv(L) is rejectcd wlth a statistlcal test. -1 he 

moments <(logE(L)P>, wher~ E(L) denotes the EDF averaged over a volume of slze L, are 

shown to be gaussian. For the EDF: Convergence tests showed that the exponents 1(q) were 

not reliable for q < 0; the correlations obey «~x(o»P(~x+o( o)q> oc: 8y(p,q) but y does not 

al ways equal the value obtained with a multinomial measure; a privileged seale ratio r =:: 1/2 is 

suggested by the prefactor oscillatiorls of the correlation functIon. The implicatior..; t')f these 

results for the modelling of the EDF are discussed. 



RÉSUMÉ 

On étudie le processus de cascade d'énergie dans les écoulements turbulents. On propo,~ 

une revue critique des théories de l'illtervalle d'inenie de Kolmogorov et la ~ar;l\.:t~m.lt\()n 

multifractale est c.jscutée. Les processus multiplicatifs sont comparés au ch.unp de di~,lpatlOI1 

d' énergie (eDE) mesuré dans l'atmosphère. L'objection de Landau à la théo:ie the Knlllimofll\' 

(1941) est étendue aux predictIons de la mécamque statlstique des tluides. L 'hypnthl'\l' 

~v(À,L) ~ À,1/3 ~v(L) est rejetée avec un test statIstique. On montre que k.., mOl11l'l1h 

<(logE(L»P>, où E(L) est le CDE moyenné sur un volume de taille L, sont gal1:-.~iens. Pour IL-

CDE: Des tests de convergence ont montré que les exposants t(q) ne ~ont pas habh::-. pOlil 

q < 0; les corrélations satisfont «llx(Ù))P(llx+o(ù))q> oc ùY(P.q) mais y n'e,t pao.; tOllJollro.; égal 

à la valeur obtenue avec une mesure multmomlale; un rapport d'échelle privilégié r '" 1/2 ~,t 

suggéré par l'étude des oscillations du préfacteur de la fonction de corrélation. Le~ llnpllcatlon, 

de ces résultats pour la modélisation du CDE sont discutées. 
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CONTRIBUTIONS TO ORIGINAL KNOWLEDGE 

This thesis is an attempt to bridge the physical theories of turbulence wlth the fr~ll·tal 

characterizations. This connection was made to reach a better understanding of an I!sscntwl 

energy transfer mechanhm common to aIl turbulent flows: The energy cascade proc('~~ 

Another related goal was 10 develop new characterization methnJ~ for megular fl\~ld\ Wc 

chose to group our main contributions to these problems in two sections: Turbulence and 

fractals. 

TURBULENCE 

1) Landau's objection to the 1941 Kolmogorov theory: The possibillty of eXlend1l1g 

Landau 's objection to most of the predictions of statistical fluid mechamcs doc~ not appcar to 

have been emphasized previously (chapter 2). The principle of invariance wlIh rc~pcci 10 the 

composition of statistical su ben sembles may prov;de constraining guidelines In the con~tn«.:tioll 

of adequate statements in statistical fluid mechanics. 

2) Third Kolmogorov hypothesis: On the basis of the properties of multIplicatlve 

processes we proposed an altemate weaker form of the third Kolmogorov hypothesi'i Our 

hypothesis states that the moments 10g(e(L» can be obtained using the gaussJan approxlIllatlOIl 

(chapter 3), while the original third Kolmogorov hypothesls states that E(L) 1'> dl~tnhllted 

according to a lognormallaw. The u~e of the log normal law for the calculallon of «EO ,) )q> 

does not yield accurate predictions (Anseimet, 1984). By contrast, our hypothesl'> wa'i found 10 

be reasonably weIl supported by the data (section 7.3). Our study clarifies the Impheallon,> of 

the central limit theorem on the calculation of moments and also support'i the u'>c ot 

multipricative processes in the modelling of the energy cascade. 

3) Simple scaling of the velocity field: Our method for testing the simple ~ealing of 

6v(L) based on a X2 comparative test on normalized histograms obtained for dlffercnt 

xii 



r , 

separations L appears to be original. It allowed us to reject the null hypothesis of simple scaling 

without necessarily having an accurate estimation of high order moments (chapter 7). This test 

also resolved a controversy in turbulence theory about the breakdown of <1~v(L)lh> oc Lh/3 for 

high values of h. 

4) Correlations in multifractals: Our experimental verification on the energy di~sipation 

field of the relation betweer. the scaling exponents of «)lI(O)P()ll+n(Ù))Q> oc ùy(p,q) and 

«J.,lio»p+q> appears 10 be original. In particular, we found that y did not equal for all (p. q) 

the value corresponding to the random multinomial measure. These sealing exponents therefore 

allow to distÎnguish the energy dissipation field from single seale multiplicative processes. 

5) Spurious scaling: The lack of reliability of the mass exponents 't(q) (spurious scaling) in 

thé negative range does not seem to have been noticed previously. 

6) Spatially localized energy cascade: Our simultaneous observations of several spectral 

bands of the velocity field does not appear to have been used previously to support the existence 

of a spatially localized energy cascade (chapter 7). 

7) Physically distinguished scale ratios in the dissipation field: We presented a 

first attempt to discover privileged seale ratios by measuring the prefactor oscillations of the 

correlation functions Qq(L) in the energy dissipation field (8.2.4). The analysis of nq(L) 

revealed oscillating prefactors with fairly regular up and downs, but our estimation of the 

prefaetors was not accurate enough 10 establish periodicity. In the isotropie range (i.e. 

L ~ 3 m) the oscillations suggest a periodicity with a scale ratio r = 1/2; in the non-isotropie 

range (i.e. L > 3 m), they suggest a rough periodicity with r = 1/1.4. In any case the 

prefactors are not periodic over the whole scaling range, which means that the hypothesis of a 

smgle scale ratio does not hold. 
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FRACTALS 

1) Renormalization: The possibility of understanding the scaling propertlcs of self-"lll1ll.tr 

sets and seif-simllar measures, either deterministic or random, wnh a ul11que renol111ahllllion 

equation does not appear ta have been emphasized previously (chapter 4 and 5 and the appclHh \. 

4.1) and allows a simple and unified presentation. 

2) Non-concave multifractal spectrum: The possIbility of a non-concave f(a) glvmg 

rise ta a concave t(q) does not appear to have been noticed previously. ft implies that the trul: 

f(a) cannot be deduced from 't with a Legendre transforrn, unless fCa) is smooth and concave 

3) Canonical multiplicative processes: Our presentation of the canorllca1 randol11 

multinomial measure is simpler than the original presentation (Mandelbrot, 1(74) ln the 

divergent case our results suggest that the rneasure is composed of a mllltlfractal mea"lIlC plu.., li 

finite number of isolated and intense "spikes" that determme entirely high ortler moment... 

(chapter 5). 

4) Correlations in multifractals: Our derivation of the scaling exponents of the correlation 

generating function for separated self-similar measures using a renonnahzatJon cquatlon appear" 

to be original (section 5.5.2). The exact connectlon of <1l1(Ô)IlI+n(Ô» and <1l1(Ù)(IlI+n(O»2> 

with sIngle box moments does not appear to have been noriced prevlOusly (~ecl1()n 5 :;), and the 

existence of more general constraints satisfied by higher order order correlation ... 

«lli(8»P(IlI+n(8»Q> was never pointed out. We gave the first denvatlon of the correlal1OIl 

generating function for the farnily of single-scale random multinomial measures ('lCCtIOIl 5.5.4) 

Previous calculations involved only specIfic quasi-deterrnimstic examples of mea ... ure .... 

5) OsciHations in self-similar sets and measures involving a privilcgcd ~calc 

ratio: The sensitivity of the prefactor of NB(O) to the box-counting gnd does Ilot appcar to 

have been emphasized previously (chapter 4). The dISCUSSIOn of prefactor o ... c.:1l1allon., III thl: 
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generating function of multinomial measures appears to be original (chapter 5). Our defimtions 

of Cq(L) and nq(L) (chapter 8) are original and provide new "grid insensitive" methods for 

measuring pre factors or scaling exponents. The effect of the separation condition and of 

randomness on the periodic prefactor of Cq(L) and Qq(L) in smgle sc ale sets and measures does 

not appear to have been studied previously (sections 8.2.1, 8.2.2). We presented a flrst 

numerical experiment with the Novikov "pulse-in-pulse" model (section 8.2.3) that suggests 

thut the prefactor oscillations have a small amplitude (a few percent of the average prefactor). 
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Chapter 1 

INTRODUCTION 

Velll, vent, tout fi' est que vellt 

Breton sayll1g 

The existence of two sharply different types of flows, today called lamll1ar and turbulent. 

had already been noticed in the first half of r.ineteen century. However, the first theory of 

turbulence came only with the pioneering works of Osborne Reynolds (1883-1894). Reynolds 

first studied the conditions under which a laminar flow of fluid in a pipe becomes turbulent 

The characteristic property of any turbulent flow is the irregular ran<.!om vanal10ns of the 

velocity field (as weil that other fields) over wide ranges of spatial and temporal ~calc ... 

Reynolds discovered that pipe flows became turbulent, in contra st to lamll1ar wh teh Illlplle ... 

steady and smooth, for large enough fluid velocities in the pipe and he propo ... ed li gcncral 

criterion for the transition to turbulence based on the famous Reynolds nurnber SlIlce the ... e 

heroic times it has been recognized that the majority of flows encountercd ln naturc and 

technology are actually turbuient flows, while larninar flows occur only as rare cxœption<;. The 

vanous motions of air in the atmosphere, from slight breezes to general atmosphcnc circulation 

at planetary scales, the motions of water in rivers, lakes and oceans as weil that :he mOllon~ 01 

gases in interstellar nebulae are turbulent. 

Turbulence plays a fundamental role in various mechanisms such as the transfer of hcat and 

moisture by air masses, the spreading of admixtures in the air, the exchange of carbon dloxlde 

and oxygen between plants and animallife, the scat.enng of pollen and the ltghtcr ... eet]..,. the 

production of wind currents in the oceans etc ... Ali these processes are crucially Involvcd 1f1 the 

development of life on earth as weil that in pollutIon problems. Turbulence I~ thcrcforc ail 

around us and its study is consequently extremely important from the practlcal pOInt of vlew. 

Turbulence is also very interesting from a theoretical perspective of nonltnear IllCC ha 11It:a 1 
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systems with a very great number of degrees of freedom. lndeed, turbulent fields are descnbed 

by functions of a complex nature invo:ving a huge numh~,. of Fourier components. Such 

~y~tems demand a statistical descriptiorj that IS the object of statIstIcal fluid mechanics (Monm 

and Yaglom, 1975). The atmospilere is sometimes regarded as a unique laboratory for 

investigating the properties of these systems. 

ln numerical simulations of the atmosphere, the huge number of degrees of freedom 

characteristic of turbulence is one of the first difficulty encountered because computers are ~till 

very far from being able to process the necessary amount of data. As a simpltfymg modelltng 

hypothesis, it IS often argued that velocity variatIons on small spatIal or temporal seales cannat 

be considered as meteorologically significant, and that smoothed versIOns of the same fields 

should provide the relevant dynamical informatIon. Such arguments usually involve the 

hypothesis of a scale separation, made in the hope that small scale details do not play a 

dynamlcally significant role. In these approximations, known as parametnzation method~, 

small scale motIons are expressed in tenns of larger sea1e motions. Small scale~ are tn that 

5cn~e "slaved" by larger scales, and ad hoc pseudo viscosities must be introduced ta aVOld the 

accumulation of energy that would nonnally be absorbed by small sc ale diSSipation Ail 

interesting alternative to such slaving pnnclples is the hypothesis of self-slmllanty, plOposed by 

Mandelbrot (1983) in a general geometrieal context, and developed in atmosphenc phy~lCs by 

Sehertzer and Lovejoy (1985, 85, 87, 89). From this point of Vlew, there 15 no need to 

introduce a seale separation beeause the statistics at a given seale are assumed ta be related III 

sorne relatively simple way to sm aller or larger scales statisties. Small and large seale variability 

are regarded as part of a unique process, and the goal is to find effective ways to describe and 

characterize fields that are very irregular over a wide range of temporal and spatial seales, I.e. 

fractal fields. 

ln this thesis we ~hall focus on what may be the simplest state of a turbulent fluid: Inertial 

range fully developed turbulence. The main reasons for studying this type of flow are tw,)fold 
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Firstly the concept of "10':ally isotropie turbulence" mtroduced by Kolmogorov. 'ollppkl11l'llll'd 

with hypotheses about the energy cascade process inspired from the ideas of LewI~ RH.:hanl-.oll 

and Geoffrey Taylor, lead to accurate predicuons about the energy ~pectrum and had a prolollnd 

Impact on our understdndmg of turbulence. The succe.5S of these thennes 'iuggC\h Ihat thl'Il' 

may eXlst sorne universal state for high-Reynolds-number small scale turbulencl'. whll'h 1'0 ail 

attractive posslblhty. The work of Kolmogorov has served as a ha.,ls for mml \Ul1\l:quclll 

developments of the theOl)' of the local structure of turbulence. From the hroadcl pCI "pCl'IIVl' 01 

the statistical mechanics of systems WIth a large number of degrees of freedom. Kolmogorov 

dimenslOnal arguments have aiso been apphed to nonlinear sy~tcm'i olher lhan fllllll\ Wllh 

encouraging results (e.g BaneHo and \Varn, 1988) Secondly, the'ie theone" opelled the \Vay 

to an ensemble of phenomenological approaches 10 the modellJng of lurnulenœ, and Illon: 

precisely of the encrgy cascade process. This proces'i, by which the energy 1" carned from 

large to small scales, is of generai interest and is an essenual ingredlent of the dynamic" of ail 

turbulent flows. These phenomenological cascade models are perhaps the heglOlllng of a ne\'" 

stochastÏc approach 10 the modelling of turbulence, providmg an allCrnal1ve 10 olher avenue\, 

such as the direct numerical simulation of the NaVier-Stokes equal1on'i - \!l1I very hll11led hy Ihe 

capacities of today's computers - or the closure theory developed in parllcular by Rohell 

Kraichnan, which do not account for the characteristic intermittency of a turbulent tlow.,. 

The connection of cascade models with real fluids IS phenomenologlCal, anô the Ir cxaCI Ilnk 

with the dynamics remains rather vague at this stage. In thls thesl~ we ~hall .,tudy tllC\C model., 

and compare them with real turbulent flows. The empha~ls wIll thcrefore he on the acclIr.lCy of 

this descriptive approach to turbulence rllOdelling. It has been argucd by Mandclbrot Ihat Ihe 

development of an efficient description was a necessary and prelllmnary .,tep 10 Ihe prolC.,., 01 

making predictions. Indeed, how the elliplical trajectones of the planet., cOlild havc been 

predicted without the invention of ~û!~ulus? In this perspective, our goal 1., to hnng togctht:r 

inertial range turbulence th("Jry and the fractal description, which happcn~ to hc a natural 
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framework for turbulent fluids. We will try ta deterrnme which phenomenologlcal energy 

cascade models, among the growing list of possibiliues proposed In the hterature, are the ll10st 

relevant candidates to the moddling of turbulent tlows. More precisely, we would like to fInd 

to what extent the mulufractal characterization allows different models ta be dlstmglllshed, and 

eventually go beyond this characterizauon. 

On the theoretical side two preliminary steps were found to be essential to reach our goal. 

Firstly, a good understanding of the Kolmogorov inerual range theones was needed. A critical 

review of these theories with an emphasis on what appears to be the most sigmficant problem~ 

and controversies is therefore presented 10 chapters two and three. Secondly, a clear st:\tement 

of the fractal ideas was aiso needed. lndeed, the large number of pOSSible models consistent 

with a given scale symmetry demands a work of classification, as we!1 that the development of 

techniques allowing different classes 10 be distingUlshed, and therefore the fractal 

characterization methods are directly relevant. In thiS perspective, we propose In chapter 4 and 

5 an onginal turbulence-oriented synthesis of the concepts and methods appropnate for fractal 

sets and fractal measures respectively. This synthesis was mainly mO{lvated by the lack of 

systematlc reviews on fractal measures, and it covers a literature scattered over ~evenll field!', 

such as topology, non-linear dynamical systems, chaos theory, geophyslcs and tluid 

mechanics. 

Ultimately, the experimental verification of any hypothesis is necessary, especially when 

deahng with loosely specified phenomenological models that relate only qualitatively to the 

Navier-Stokes equations, by shanng sorne (seale) symmemes wnh them. On the experimental 

side, high frequency measurem.!nts of the ve!ocity field in the atmospheric surface layer were 

collected using a hot wire anemometer and an analog-to-digital converter installed on a personal 

computer. Chapter SIX first concentrates on preliminary analyses of this data by reproducmg 

well known results about inertial range turbulence. Previous scaling studies on the subJect are 

next criticlzed and sorne new original analyses related to correlations in multifractal are 
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presented, In chapter seven two aspects of inertial range turbulence theones, namcly ,Impie 

scaling and intenninency, are exammed wnh ongmal methods and a ne\\! te~t of the v.lllduy ll! 

multiplicative processes is proposed, based on the centrallimit theorem ln chaptel hCIght lHlt' 

the simple!lt family of cascade model, involvmg a ~ll1g1e ~cale ratio, 1\ compan:d \\'Ith tht' 

energy dissipation field, 
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The faculty of Graduate Studies and Research of McGill University requLn!s that the 

following text from the GUIDELINES CONCERNING THESIS PREPARATION be 

cited 10 full in the introductory sections of any thesis to WhlCh it applies. 
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Chapter II 

REVIEW OF THE KOLMOGOROV INERTIAL RANGE THEORIES 

AND THE ORIGIN OF CASCADE MODELS 

A major defect of the current theoretlcaJ study of turbulenre H thmlt .IC(J/lfiltC.\ !/Ieo 
at [east Iwo dlsconnected parts One part zncludes che successfull'henomenology pUI 
forth zn Kolmogorov 1941 (. J. And Ihe other part tnr/udes che dlffcrenlllli el/1Wl1II11I 
of hydrodynanucs, riue co Euler for nonvlscousj7U1ds. and co Navier (tlnd SIO~n) Jor 
Ylscousfluuis. These IWo parts remam unrelated If "exp/wned" and ulldt'nlood I/It'(111 

Itreduced to ba..qC equatlOns," lhe Kolmogorov theory IS not yet eXl'lmncd or unda.ltood 
And Kolmogorov has not helped solve the equatwns of j7U1d mOllon 

Benoit B. Mandclbrot (from The fractal geometry of nature) 

This thesis is mostly concerned with phenomenological approaches lnvolving statlSllCS, 

fractals and scaling, applied to the modelling of turbulent flows. In the field of stati~tical nuit! 

mechanics, scaling hypotheses and "fractal" ideas probably started with the Kolmogorov Incrllal 

ra"ge theories. We shaH therefore begin this dissertation with a entieal review of the,e theonè'> 

We emphasize sorne unresolved controverSles and try ta interpret them in the framework of the 

c1assical theories. This presentation relies in particular on Kolmogorov (1941 a, 1962), 

Kraichnan (1974), Monin & Yaglom (1975), Or~zag (1977), Fri~ch and SlIlem (197!O, 

Schertzer and Lovejoy (1984) and Frisch and Orszag (1990). 

2.1 REVIEW OF THE 1941 KOLMOGOROV HYPOTHESES 

The simplicity of the 1941 Kolmogorov theory (in short the K41 theory) and the accuracy of 

its most famous prediction, namely the k-5/3 energy spectrum, make this theory one of the mo,>t 

remarkable in the field of turbulence. As is often the case WIth dimcmional analy''!~, an 

important tool in this theory, the derivation of the result is easler than ilS IIlterpretatlon ln 

dynamical tenns. Even today, no fonnal analysis by means of perturbation thenry, the moment 

equation hierarchy, or renormalization techniques can seule whether a power "pectrllm of the 

fonn k-P is compatible with the Navier-Stokes equatÎuns (KraIchnan, 1974). Nevcrthelcss, the 
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success of Kolmogorov energy spectrum certainly supported the idea that scale invariance was 

an important pro pert y of turbulent flows. 

The K41 theory is concerned with the small scale behavior of incompressible fluids at high 

Reynolds number. By "small scale" we mean small with respect to the smallest rnacroscale Lo, 

dt'fmed by the geometry of the flow. ln the simplest case of a fluid contained in a CUblC box, Lü 

would he the size of the box. In more Il.:alistic situations, for example the velocity field in the 

atmosphere above a flat terrain, Lo would be the distance from the boundary if the thermal 

effects (Le. motion generated by the fluctuations of the air density) were negligible. The flllid 

c()n~idered is subject to sorne large seale forcing mechanism injecting in the flow a mean energy 

productiol; rat~ fo per unit mass. In a dynamical equilibrium, this energy production is balaneed 

by the mean energy dissipation rate per unit mass EO, so that EO = fo. 

The energy contained in the largest scales of the turbulent velocity field j s transfered, VIa 

non-linear interactions, into the smaller scales. For large sc ales the energy is transfered without 

losses. This statement can be justified by considering the spectral form of the Navier-Stokes 

eqllation. If the velocity field is expanded in Fourier series in eyclic boxes, i.e. 

V(X,t) = L v(k J) e1kJ.X, 
J 

the dissipation term -v a2v(x,t)/OXjOXj of the Navier-Stokes equation takes the spectral form 

TD = -v IlkIl2v(kj). TD is large only for large IIkll, i.e. for small scales, for which the viscolls 

forces become important and convert the kinetic energy into heat. The non-dissipative energy 

transfer from large to smaller seales. driven by non-linear interactions, is usually ealled the 

energy cascade process. It was first described by Richardson who envisioned a sequence of 

eddies of ail sizes in which smaller eddies "feed" on the energy of larger eddles. Simllar 

breakage processes \\-ere studied by Kolmogorov (1941b). 
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Kolmogorov argued that for high Reynolds number the srnall scales of the now shou Id have 

a universal structure, independent of the larger seale geometry of the flow. the details of the 

forcing and of the boundary conditions being "forgotten". More specifically the K-l \ tht:ol)' IS 

based on two hypotheses. The flrst supposes that the n-vanate probab!lity dl~tnblltions (lI the 

veloeity differenees ~v,(L) = v,(x+L) - VI(X) are universal isotropie functIons ~olely 01 the 

differenee vector L, the kinernatic viseosity v and EO, provided that IILlI = L is ~ll1all \\'lth 

respect to Lo. Using these pararneters a dissipation seule (or inner scale) 110 = v'/\ Co' 1/\ ciln 

be formed, usually interpreted as an estirnate of the smallest scale in the veloclly field. Thl\ 

leads immediately, by dimension al analysis, to 

(2. 1 . 1 ) 

where Fh is an unknown function. The second hypothesis states that the above n-variatt' 

distributions are independent of v if L lies in the inertial-range, i.e. if 110 « L «L(). Imlet:d 

for large enough scales the dissipation term defined above is small, and it beeornc ... plauslbk to 

assume that large seales statistics bec orne independent of v in the hmit v_O. The ~ccol1d 

hypothesis implies that the high-Reynolds-number expressIon of the velocity ~trllctllrc functlOn 

is 

(2 1 2) 

which is one form of the celebrated Kolmogorov law. 

These results can he stated in the specrral fonn. The characterislic wavenumbcr as~octatcd 

with the dissipation seale is kd = (Eo/v3)1/4 and marks the transition from the inertlal range 

ko < k < kd (ko = llLo, where Lo is the smallest rnacroscale) to the dissipation range 

k > kd. The energy spectrum ECk) is defined so that 

= l E(k) dk , 
o 
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where Vj' = Vi - <Vj>. Assuming that E(k) faIls off in the dissipation range rapidly enough 

with increasing k, (2.1.1) with h = 2 leads by Fourier transformation to the inertial range 

specrrum law 

(2.1. 3) 

where f(x) an unknown universal function (for more details on the energy spectrum see Monin 

and Yaglom (1975), section 12.1 and 21.4, volume 2). Alternatively, (2.1.3) can be obtained 

directly with dimensional analysis. The second hypothesis implies that the kd dependence 

disappears for k« kd, i.e. f(x) ~ C as x ~ 0, where C is a constant. In the inertial range, 

the energy spectrum then becomes 

E(k) = C E02/3 k-5/3 . (2.1.4) 

Kolmogorov theory does not predict the value of C, whieh can be determined experimentally 

(C "" 1.6). 

In Kraichnan's words the 1941 Kolmogorov theory, and especially the prediction (2.1.4), 

"has achieved an embarrassment of suecess". Since the first experiments of Grant, Stewart and 

Moilliet (1962), numerous other experiments in wind tunnels as weIl as in the atmosphere have 

shown that (2.1.2) is well obeyed Îor h = 2, that the energy spectrum in the dissipation range 

k> kd seales according to (2.1.3) and that (2.1.4) often holds over a range of scales wlder 

than expected a priori. Aetually, an approxima'e k-5/3 energy speetrum is often observed in 

flows for which the Reynolds number is too small for a distinct inertial range to exist and in 

conditions where substantial departUr~s from isotropy oeeur . 
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One might be tempted lO use the the same dimensional arguments with other fidds, 101 

exarnple the energy dissipation field 

E(X,t) = 1/2 v L (ê)u/ê)xJ+ê)u/ê)x\)2. 
1,] 

The tirst and second hypothesis applied to E(X,t) imply that the power spectrul1l of C( x,n ha~ 

the fonn FeCk) = C fo2 k- 1 in the low-k range. However this spectrum wa~ cxpclllncl\lally 

found to be proportional to k-s where s = 0.6 Csee for ex ample Pond and Stewart (1965)). 

This means that the dimensional argument of the K41 cannot be applied to E(X,t), probably 

because E(X,t) al ways depend~ on t:,e kinematic vlscosity. 

The K41 theory makes useful predictions for flows having a wlde range of ~cales. The 

necessity for a wide range of scales in fully-developed turbulence follows from the balance 

between dissipation and the driving force. The mean energy dissipation fate can he cxprcsscd 

in the form 

00 

EO -= 2v J k2 E(k) dk = v n, (2.1 5) 

where E(k) is the energy spectrum (Monin and Yaglo:n (1975), section 12.3) and n the 

enstrophy. In the Iimit Re~oo (or v~O) with €o finite, (2.1.5) irnplies that n~oO and therclofe 

the energy distribution rrust become broader In k-space if E(k) remams tïnite. 

Despite its success, the K41 theory was imrnediately criticized by Landau ln 1 <)44 hec 

Lendau and Lifchitz, 1989) on theoretical grounds, and was consequently modi l'iet! by 

Obukhov (1961) and Kolmogorov (1962). More recently, sorne expenrnental eVldence or the 

failure of the prediction (2.1.2) at large h was obtained by Anselmet (l9R4). Wc .... hall 110W 

discuss the physical arguments, rather delicate and often introduced 111 a cavalier mallncr, 

explaining the limitations of the K41 theory. 
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2.2 REEXAMINATION OF THE K41 THEORY AND THE MODIFIED 

SIMILARITY HYPOTHESES 

In the spint of the K41 theOl"y the small scales of the fluid velocity field are assumed to reach 

a statbucal equilibrium determined by the energy injected at larger scales. A given spatial 

region of the fluid is therefore expected ta adjust to an energy flux that is somehow local In real 

space. This concept of localness, linked to the energy cascade, was first pointed out by Landau 

as a basic objection to the K41 theory. Global universality seems untenable since the intenslty 

of the small scales Il any panicular region is clearly related to the intensity of the local external 

driving. Consequently it seems inescapable that the statistics of the small-scales depend on 

spatial and temporal variations of the driving, which are in essence non-univer~al. 

On the experimental side, it was noticed by Obukhov (1961) that the k-5/3 energy spectrum is 

observed locally in the atmosphere. He noticed that power spectra measured on long enough 

samples in the atmosphere do exhibit a k-5/3 energy spectrum, but that the pre factor wa'i 

changing significantly from a sample to the other. From the standpoint of the K41 theory, the 

vanations of the prefactor are due to changes in the local energy dissipatIon rate E]oCJ] (at thls 

stage Elocal can be thought to be an average obtained with a fmite sample). The validity of the 

k-5/3 energy spectrum for samples questions the universality of the constant C In (2.1.4), 

because in general «Elocal)213>:t «Elocal»2!3. This difficuIty arises from the faet that the law 

E(k) = C E0 2/3 k- 5/3 is not invariant wilh respect to the composition of statistical 

sub-ensembles. To ilIustrate this property, suppose that a set of samples is split tn two sub-sets 

according to the mean energy dissipation rate E obtained for each sample: A sample belongs to 

the first sub-ensemble if e > E. (E. is an arbitrary threshold) and belongs to the second 

sub-ensemble otherwise. It seems reasonable to expect the k-5/3 law to hold separately for each 

sub-ensemble, i.e. 

El (k) = C <E> 12/3 k-5/3 and E2(k) = C <E>22/3 k-5/3, 
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where <E>1 and <E>2 denote the mean energy dissipation rate for each sub-ensembk. If Pl and 

P2 denote the probabilities of belonging to each statistical sub-ensemble, then the energy 

spectrum of the complete ensemble is obtained by 

E(k) = Pl El (k) + P2 E2(k) 

= C [ PI <E> 1 2/3 + P2 <E>22/3 ] k-5/3 

'i= C <E>2/3 k-5/3, 

unless E has a special probability distribution. The k-5/3 law relates the average quanllty E(k) 10 

the 2/3th power of an average, which breaks the invariance with respect to thc compo~ltion of 

staustical sub-ensemble. A statistical statement that respect this invanance mll~t rcbte avel age 

quantities in a linear way, e.g. <A> = k <B>. It would therefore seem that Ihc k-5/3 law 

cannot hold in principle. 

Obukhov's observations and Landau's objectiofi suggested the possibilily of a local 

application of the Kolmogorov similarity hypotheses. Obukhov propo~ed to redelïne the 

statistical ensemble of the K41 theory. The basic ide a is to deflne a sub-enscl11hle of 1l0W\, 

contained in sorne imaginary sphere of diameter L, for WhlCh the volume-averaged energy 

dissip:nion ECL) is fixed. E(L) b regarded as an estimate of the "local" energy flux. The K41 

theory is then assumed to hold for this sub-ensemble, with EO replaced by E(L). 

This idea has been eriticized mostly beeause of the arbitranness of the chOlœ of c(L) a\ a 

candidate for a "local energy flux". Indeed, the dynamical quantlty respon~lble for the dynarnlc\ 

of the scales L is the spectral energy flux from seales L to smaller scale~. In general, Ihl\ 

spectral flux does not equal (L) (Kraichnan, 1974). Despite its arbltrannc~s, thl'i hypothe'>l'> 1\ 

still used nowadays to relate the energy dissipation field to the velocity flcld (An..,c1rnet (19X4). 

Schertzer and Lovejoy (1985), Meneveau and Sreemvasan (1990, 19H7b, 19H7c), Novlkov 

(1990)). The idea of studying the properties of a field as a function of the prorerlle~ of another 

13 



field, allowing the introduction of a conditional ensemble, is commonly used in the analysis of 

turbulent fields and is usually called conditional sampling (Antonia (1981), Raupach (1981), 

Shaw and Businger (1985». 

The idea of Obukhov lead Kolmogorov to propose a modified version of the K4l theory, 

based on the concept of local energy dissipation rate. The refined hypotheses are similar to the 

original hypotheses, except that they apply to a condition al ensemble. x and x+L are assumed 

to be contamed in a sphere of diameter L having a fixed value E for E(L). The flrst refined 

hypothesis naturally leads to the definition of a local dIssipation scale 11 = V 3/4 E·I/4. From 

dimensional analysis follows the expression of the conditional velocIty structure functIon: 

For L «Lo• < (tiV(L»h >1 e(L)=e = Fh(l1IL) (E L)h/3 . (2.2.1) 

Similarly, the second refined hypothesis states that the n-variate distributions of the velocity 

differences are independent of v when 11 « L « Lo, i.e. when the local dissipation seal\! i~ 

small enough. This implies that the moments given by equation (2.2.1) become independent of 

11 as 11 4 O. Therefore 

as 11 -. 0, < (~v(L»h >1 e(L)=e - Fh(O) (E L)h!3 . (2 2.2) 

These two hypothesis are assumed to be valid for a "pure regime", i.e. for the eonditional 

ensemble described above. A real fIow is a "mixed regime" where a range of values for f(L) 

exists. It follows that there is also a spectrum of local dissipation scales 11. If the global 

Reynolds number of the fIow is large enough, it becomes plausible ta assume that the condition 

11 « Lis always satisfied except for a few events weighted by a sruaU probabihty. Followmg 

,his argument, the unconditional ensemble average can he obtained by an ensemble average on 

the equation (2.2.2): 

< (L\v(L»h > = Fh(O) L h/3 < (E(L»h/3 >. (2.2.3) 
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" 
Notice that this equation is invariant with respect to the composition of st3ustical sub-el~"cmhk" 

because il relates linearly two averages. (2.2.3) is the modifled fonn of (2.1.1). taking IIlto 

account the Reynolds number dependence of the velocity field through «E(L))h> It connec\-.. 

the statistics of two random variables without specifying either of them. which IS a qualitall\'C 

difference between the modified and original theories. The modifled theory IS thcrdon! Illuch 

less predictive th an the K41 theory because «E(L))h> remams unknown. The rdll1cd (henry. 

and especially the prediction (2.2.3), are still regarded as controversial (Landau and Llfchll/. 

1989 (revised edItion), section 34). 

It is interesung to note that for h = 3 the prediction (2.2.3) of the moditied theory ylclds I~ 

«~v(L»3> oc foL (because <E(L» = Eo) and is therefore identical to the prediction of Ihe 

K41 theory. The order-3 velocity structure function is therefore msensiuve 10 rntenl1lltcncy. Il 

is also worth stressing that the exact expression of «L\v(L»)3> can be denved l'rom the 

Navier-Stokes equation. Assuming isotropy (landau and Llfchitz. 19R9. section 34), II l'an he 

shown that 

B (L) 4 L 6 dB2 3 =-5'€Q + V dL , (1.1.4) 

where Bo(L) = «~Vi(L»)n>. Assuming that EO remains finite as v-)O, (2.2.4) bCCOIllC., 

4 
B3(L) = - 5' EO L. (2.15) 

This is an important result since it is essentially exact for fully-developed isotropIe turhulence. 

A priori (2.2.5) might suggest that Bo(L) can he expressed for any n o .. ly in teml~ of L and l'l), 

in which case one falls back on the original K41 theory. However, in the light of Landau'., 

objection the universality of (2.2.5) is regardrd as an interesung but specIal propcrty of the 

order-3 moment of ~Vi(L), and moments of order h :;:. 3 are expected rn gencral 10 he 
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non-universal. Note that B3(L) depends linearly on EO and therefore the exact result (2.2.5) is 

invariant with respect to the composition of statistical sub-ensembJes. 

It is interesting to look back at the K41 theory from the point of view of the refined thenry 

The prediction (2.2.3) wou Id be consistent with (2.1.2) if the condition 

(2.2.6) 

was satisfied for L »Tl. In general (2.2.6) is not satisfled, although «(L» ::: EO always 

holds for a spatially homogeneous field. Nevertheless (2.2.6) could still be satisfied if the 

variations of E(L) were restricted to the dissipation range only, i.e. if cCL) == Eo when L> Tl. 

However the variability of the energy dissipation field and in particular its intermiuency, which 

produce sequences of "dead" or "live" regions of size L > Tl, is not compatible with thls 

behavior. In the perspective of the refined theory, the K41 theory fails because (L) varies 

significantly when L lies in the inertial range. 

The intermittency of the energy dissipation field (Batchelor and Townsend (1949), Sandborn 

(1959), Kuo and Corrsin (1971) was discovered by looking at the high-passed filtered velocIty 

field (figure 2.1). The resulting signal exhibits a sequence of active reglOns separated by 

inactive gaps where the velocity is almost vamshing. The bulk of the dissipation takes place 10 

the Intense regions, where the velocity derivatives are large. It was observed tha! the mean ~Ize 

of the active regions decreased as the Reynolds number increased. As a phenomenologleal 

observation, intennittency implies that the bulk of the dissipation in a fully-developed turbulent 

fluid occurs in a small volume-fraction of the whole space, and that this fraction decrea~es wlth 

increasing Reynolds number. We will return to these high-passed filtered velocity fields in an 

experimental study (chapter 7). 
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Figure 2.1: A velocity signal measured with a hot wire anemometer in a 15x 150 <':111 

boundary layer channel was filtered, so that the traces shown are within a narrow frequcncy 

band around the frequency noted. The small scale turbulence appears to be contained ln qlllt~' 

sharply defined lumps or bursts. (c) and (d) refer to samples at dlfferent locatlon~ (from 

Sandborn, 1959). 
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From a more fundamental point of view the existence of small scale intennittency reveals that 

the "gustiness" of a turbulent fIow, observed in various conditions, is not alway~ the effect of 

<;ome large scale megular forcing. It seems to be a natural property of the flow at large 

Reynolds number. Numerical experiments wlth one-dimension al truncated ver~lOns of the 

;\Javier-Stokes equauon, involving a large number of degrees of freedom and shanng Invariant!\ 

wlth the three-dimensional Navier-Stokes equations, have bet:n shown to exhibit intermittency 

(Banello and Warn, 1988). 

Landau 's objection can also be raised for most of the predictions of <;tatistical tluld 

mechamcs. Consider for example the law of the logarithmic boundary layer descnbing how the 

mean velocity u along an infinite fiat sutfac~ changes as a funcrion of the vertIcal distance z: 

d<u(z» u. 
dz = KZ 

z »8 (2.2.7) 

where u. = "'>/ 'to/p , 'to = - P <u'w'>, 8 = v/u. and K is the von Karman constant. ThiS 

follows from the Reynolds equations assuming a zero vertical pressure gradient (p i~ the flmd 

density, u' and w' are the velocity fluctuations parallel and nonnal to the surface respectIvely, 

M:!e Monin and Yaglom (1975), section 5.1 for more detaIls). (2.2.7) IS a llnlver.wli(v .\tatemelll 

typical of statistical fluid mec.:hanics: One assumes that an average quantity - here d<lI(z»/dz -

can be expressed only in terms of a few mean characteristics of the flow, here the frictIon 

velocity u •. As for the k-5/3 spectral law, (2.2.7) is not invanant under the composItIOn of 

statistical sub-ensembles because u. is the square roOl of an average. We therefore conc1l1de that 

this law cannot hold in principle, even if it provides a valuable approximation for flows thm are 

not too intennittent. This could explain the scatter of the measurements of the von Karman 

constant, which is not universal from this standpoint. 

More generally, the above considerations suggest that global universality might never hold 

and that a more complete specification of the statistical ensemble may be essential. It i~ 
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....... 

emphasized that this lack of global universality does not prevent some specltie ~t:lIl ... tll·". e g 

B3(L) = - 4/5 €oL, to be expressed only in tenns of a few mean charactemtlc~ 01 the tlo\\' 

(here €o). By contrast with the statlstical mechamcs of systems in eqlllhbriut1l. where vanou ... 

statistical ensembles are defmed Ce.g. microcanomcal, canol1ical etc ... ), one mll~t recognl/l' 

that in the context of statistical fluid mechamcs the nature of the en~emhk ... 1 ... poorl) 

understood. The posslbility of extending Landau's objection to mo~t of the prediction ... 01 

statistical fluid mechanics does Ilot appear to have been emphasized previollsly . 
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2.3 CONTROVERSY ABOUT THE BREAKDOWN OF THE K41 THEORY 

FOR HIGH ORDER MOMENTS OF ~ V(L) 

Despite the expenmental validation of (2.1.3) and (2.1.4), measurements of the higher order 

moments (e.g. A nselmet, 1984) have shown that the law (2.1.2) breaks down for h > 4. As h 

Increases the structure function keeps its power law behavior but the exponent is less than the 

predlcted h/3. Hence, these analyses suggest that the correct law IS of the farm 

<1~vl(L)lh> oc LÇ(h), where Ç(h) 15 a nan-linear function such that Ç(h):::: h/3 for h ~ 4 and 

Ç(h) < h/3 for h > 4 (figure 2.2). This result is consistent with a failure of the fir!o>t 

Kolmogorov hypothesis, as argued by Landau. In order to explain the non-linear scaling of the 

veIocity ~tructure functions, two main interpretations have been proposed. 

We shall flrst examine the point of view of Frisch (1983) who obtained the result 

<1~vl(L)lh> oc Lh/3 in the following alternate way. Since the forcing is confined to large scales 

and the diSSipation is confined to sm ail scales when the Reynolds number is large, it can be 

argued that mterrnediate sc ales (i.e. 11 « L« Lü) evolve according to Euler's equatlOn 

which is invariant under the stretching transformation 

(2.3.1) 

i.e., if v(x,t) is a solution so is À. -av(À-x,Â. 1-u t). Consider the velocity structure functions 

Bn(L) = «~Vi(L))n>, where ~v,(L) = v,(x+L) - v,(x) and Vi is the component of v along 

L. If the turbulence is homogeneous and isotropie then Bn depends only on L. 

If it is also invariant under stretching, then for aIl Â. 

(2.3.2) 

where .. ,g "denotes an equality in probability distribution and a. is an unknown parameter. It 
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Figure 2.2: The function Ç(h) as measured by Anselmet (1984). The non-linearity become\ 

clear for h > 4. The straight line is the prediction of the K41 theory, i.e. Ç(h) = h/3. 



follows frorn (2.3.2) that 

(2.3.3) 

which on setting À. = IlL becûmes 

(2.3.4) 

where Sn = na and the Cn are constants. Since the exponellts at aIl orders are detennined by a 

single pararneter a, the scaling is said to be simple. The scaling exponent a is a kind of 

irregularity index for the velocity field. For L« Tl, the field is smooth and Taylor's series 

arguments Imply L\u.(L) - L (neglecting points where the derivative vanishes) and a = 1. If 

a. < 1 for L »11, then the velocity field is irregular on the se scales. An ordmary functlOn IS 

sa id to sausfy Ho/der condition with Holder exponent (3 at xo if If(x) - f(xO)1 $ K lx - ,~oIP for 

aIl x In sorne neighborhood of xo for sorne K. a is a kind of statisncal Holder exponent for the 

velocity field. 

Self-similanty implies simple scaling but does not fix the exponent a. Bounds on a can be 

obtained by noting that the Fourier transform of B2 implies E(k) = ck- 2a - 1 for 

kO « k « kd if il is assumed that E is negligible outside the range. Since kd~oo as Rc~oo, 

then 2a+ 1 > l for finite energy and 2a+ 1 $ 3 for infinite enstrophy (see (2.1.5», I.e 

o < a $ 1. The slope of the energy spectrum (in log-log coordinates) therefore lies between 

-1 and -3. On the other hand, using the exact result (2.2.5) together with (2.3.4) leads directly 

to a = 1/3. By contrast with the K41 theory, it is ernphasized that we do not need in this 

argument to give a privileged raIe to EO in the velocity statistics ta obtain the simple scaling 

(2.3.4) \Vith a = 1/3. The only assumption required is that tO remains finite in the !inllt v~O. 

Hence tlus symmetry argument yields the sImple scaling (2.3.4) without :,peClf)'ltlg the cn's. 

wlzic'h may t}zen remain non-universal. From this standpoint Frisch interprets the measured 
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non-Iinearity of Ç(h) at large h as a breaking of the formai scaling symmctf}' of the F.ule'.\ 

equation in real flows. 

Once the K41 theory is abandoned, a "Pandora's box" of possibilities IS opcned (Kraichnan. 

1974). For example, one might try adding a dependence on sorne outer scale Ln III the rlr"t 

Kolmogorov hypothesls, Le. <1~v.(L)lh> = f(Eo,L,h,v,Lo). Thi" outer ~cale rnakL''o roOIl1 for 

a possible influence of the large scales on the smalt scales. Unfortunatdy. tn thls (<l'oC 

dimensional analysis no longer reveals the analytical form of the ve10city structure rUllctlOll\ 01 

of the energy spectrum, and there is no basis in the hypothesis for concluding that the~c ~h()tlld 

be power laws, as observed. In other words, we are left with a non-predictive lhenry Fn~ch 

and Parisi (Appendix of Frisch, 1983) assumed that l~v(L)1 obeyed a multiscallIlg law, 1 e. a 

scaling law with a non-linear ~(h). They also introduced the notIon of a ll1ultlfractal 'opcctrulll I() 

t'xplam multiscaling. We shaH come back in chapter five on this multifract:t1 hypotllL'"is. 

On the other hand, Schertzer and Lovejoy (1984) suggested that the "'Imple 'ocaltng. 

L\v(AL) ~ AI/3 ~v(L) holds ("~,, denotes the equality in probabtlity dl~tnhlltlOll), 1 C. 

<1L\vj(L)ln> = cn Ln/3, but that high order moments are spoiled by the ~tatl\t1cal prohlelll 01 

divergence of moments. This mterpretation IS consistent with the pos~lblhty of an II/lhro/..l'II 

scale symmetry in a non-universal context. More precisely, they argued that for h large cnough 

<1L\Vl(L)lh> diverges in the limit of infinite Reynolds number, which tntrodllœ~ il ' .... pllrtOll'>" 

scaling of <1L\v.(L)lh> for h large enough, Le. a scaling with Ç(h) '1- h/3. If wc try lI~ll1g thell 

hypothesis together with the K41 theory (for simplieity), where the veloclty ..,tructllre fllnctl011 

is given by <1L\v,(L)lh> = (EoL)h!3 Fh(no!L), their statement becomes 

{
constant, if 1 < h < av 

As x~O, Fh(x) ~ 
00 , if h > av. 

where av"" 5. From this point of view, the failure of Simple scaltng doe~ not COOl\! l'rom th\! 

direct influence of an outer seale Lo, but rather from the inner seale 110. From the more gcncral 
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( standpoint of the refined theory, the prediction (2.2.3) could make room simultaneously for 

outer and inner scales dependence, which could jointly contribute to break simple scaling 

Resolving experimentally aIl these questions unambiguously is a difficult task. In chapter 7, 

we will retum in an experimental study to sorne aspects of this controversy. 
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2.4 MODELLING OF THE ENERGY DISSIPATION FIELD 

The refined theory remains incomplete because the velocity structure function C;lnnot hL' 

predicted with (2.3.3) unless «E(L))h> is given. The need ta predict the value of «E(L))h> lI:-' 

well that the search of a better understanding of the energy cascade prncess motivalt'lI 

researchers ta invent several phenomenologlcal models of the energy ths~ipatl()n fIeld III 1111:-' 

"ection three of these models are presented, starting wllh multiplIcative proce~\e~. In Ihe',e 

models the concept of self-similarity, Implicit to the Richardson's phenomenology and Ihl' 

Kolmogorov theories, is used in different and non-equivalent ways. This diver~lty retlect'i Ihe 

still controversial nature of the energy cascade process. 

2.4.1 Multiplicative processes 

Aceording ta (2.2.3), another obvious way of predicting multlscaling for <1L\vl(Ô)lh> 1\ to 

assume that «E(O»h> seales non-linearly with O. This is one of the ha~lc propertit\ of 

multtplieative processes. In the early Yaglom's model (1966), we consKier a ~et 01 CU hic eddlc\ 

of sizes Ln = Lo/À.n imbedded in each otner and located on a regular gml The CIIClgy 

dissipation E(Ln+l) averaged over the volume of an eddy (i.e a cube) of size Ln-t t 1\ a""ulllcd 10 

be a random fraction of the energy dissipation averaged over the volume 01 the lalgt.:r 

embedding eddy of size Ln = À Ln+l (À> 1). In other term" E(Lntl ) = W r(\'n), Wht.:lt.: W 

IS a random multiplicative factor (see figure 2.3 and 2.4). The factor~ W are a""umed 10 h<: 

statistically independent of each other at different scales and identically dlstnbuted The dHlH.:C 

of a seale invariant multiplicative factor W is the expression, in this model, of the concepl or 
self-slmilarity. E(Ln) takes the form 

(2 4.) 

where EO is the mean energy dissipation rate. In this model, the condition of COn\erVilllOI1 

<E(Ln» = Eo implies that the random factors satisfy <W> = 1. More generally li dl\crete 
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Figure. 2.3: One dimensional version of a cascade model of eddies, each mother eddy 

breaking down into 2 daughter eddies. The flux of kinetic energy to smaller sc ales is di'Jided 

into different fractions Pl and P2. This cascade terminates when the eddies are of the size of the 

Kolmogorov scale, TI (from Meneveau and Srec!".lvasan, 1987a). 
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Figure 2.4: Different stages during the construction of the cascade model proposed in figure 

2.3 (1 st stage in a, 5th stage in b and 12th stage in c), and an experimental signal of E in d (l'rom 

Meneveau and Sreenivasan, 1987a) 



'iequence of random variables {Xn} such that Xn+l = Wn X n, where the multiplicative factors 

W n are mdependent random variables identically distributed, will be called a multiplicatll.:e 

process. The independence of the W's in (2.4.1) leads to 

(2.4 2) 

< e(Ln)P > therefore depends on an outer scale Lo. This simple model has the vlrtue of 

producing a variance that increases with decreasing Ln, consistent with the measurements. It 

also predicts through (2.3.3) a power law dependence of the velocity structure function, i.e. 

< (ôv(L»h > oc L h/3 (L/LorK(h/3), Ç(h) = h/3 - K(h/3). (2.4.3) 

The combination of the refined theory and of multiplicative processes therefore leads to 

mulu!.caling for «ôv(L»h>, as observed by Anselmet et al. (1984). ThIS model also produces 

an trregular field tex) in qualitative agreement with the observations of intermittency Different 

kJn(b of multtphcative processes have been introduced by other authors, in partlcular 

Mandelbrot (1974) and Schertzer and Lovejoy (1987). Some of these models will be 

reexamined in chapter 5. 

As pointed out by Kraichnan (1974), Yaglom's model is only one among a large class of 

seale invariant splitting models that can invented in the spirit of the Rlchardson's 

phenomenology. Kraichnan also daims that the eddy oùtosis picture is made implausible by the 

physics of vortex stretching, which involves the stretching of thm vortex tubes rather than cubie 

edoles. Nevertheless, turbulent flows do have scaling properties and cascade model~ provlde 

simple ways or generating fields with such properties. Various aspects of scaling fields ean 

therefore be investigated through cascade models, and comparisons can be made wuh real 

geophysical fields. There is no need for the intermediate fields obtained dunng the construction 

of a multiplicative process to have a physical interpretation. It should also be noted that these 
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models can produce fields having different geometries because the scaling expol1l:nts K(h) do 

not characterize completely E(X). 

2.4.2 The Frisch-Sulem-Nelkin ~-model. 

The ~-model (Frisch, Sulem and Nelkin (1978)) is a simple conceptual l1lodd or 

intermittency. In the following it will be called the F.S.N. ~-modelll1 order ID avoid confu\lon 

with the ~-model discussed by Schertzer and Lovejoy (1985). The F.S.N. 13-model I~ dll"l'L'tly 

ba~ied on the "gusty" appearance of the high-passed veloclty field, as observed hy vanou\ 

experimenters. Frequency bands [kn, kn+ll are defined, where kn = IILn ami Ln = Lo/2 11 

If E(k) denotes the three dimensional energy spectrum, the energy En in the nth hand I~ ddÏnl:d 

by 

kn+l 

En = f E(k) dk (2 4 4) 
kn 

The velocity field in the nth band is assumed to exhibit patches of actlvity of size LII ftlltng a 

fraction ~n of the space. A velocity scale Vn is defined by 

(2.4 5) 

vn is interpreted to be a velocity difference over a distance Ln in an active reglol1. l'hl: 11tl1~ 

needed for an eddy of size Ln to transfer its energy to smaller seules eddies l' the lltrtl-ov('r 

lime, defined by 

tn = Ln IVn (2 4 6) 

The energy flux from band to band is assumed to be constant and is therefore equal to the l11~aJl 

energy dissipation rate €O, from which follows that 

(2.4 7) 
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Replacing (2.4.5) and (2.4 6) in (2.4.7) leads to 

(2.4.8) 

The bursts of band n+ 1 are assumed to be nested in the larger scale bursts of band n In a 

seif-simllar way, so that ~n = ~n, where ~ is a real parameter. ~ can be expressed 111 terms of 

the fractal dimension d of the support of the active regions : ~ = 2-C, where C = 3 - d (we 

will return in more details to the concept of dimension in chapter 4). Using Ln = Lo!2n ylelds 

~n = (LnILo)C and (2.4.8) then becomes 

(2.4.9) 

Velocity structure functions are then given by 

(1.4.10) 

and therefore 

Ç(h) = t (l-C) h + C, 

i.e. Ç(h) is linear in h. (2.4.10) is a modified forrn of the Kolmogorov law «6v(L»h> oc Lh/3 

that takes into account the clustering of the dissipation field on a set of dimension d The power 

spectrum is obtained by replacing (2.4.9) in (2.4.5), WhlCh yields 

and consequently 

(2.4.11 ) 

This model therefore predicts a cOlTection to the k-5/3 spectrum due to intennittency, i.e. the 

scaling exponent slightly exceeds 5/3 by C/3. There also exists a random version of this model 
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(Benzi et al., 1984), where the fraction of space occupied by active eddies in the n1h band IS not 

fixed to ~n, but rather takes the fonn ~l ... ~n where the ~I'S are independent random vanabk~ 

with the same probability density. This random modelleads in gencral to a nonhncar cxponent 

Ç(h). 

2.4.3 The Novikov "pulse-in-pulse" model 

The Novikov (1966, 1990) model is based on the assumption that the encrgy dl""lpatlOn 

field has a geometrically self-similar structure of nested "pulse-in-pulse" pattern. The energy 

dissipation field is constructed by centering pulse funcrions on each point of a "ct (on'tructcd a~ 

follows. Consider a system of random pomts xkl distributed by a POisson law \Vith rncan 

densityo. We connect with each of the pomts Xkl a system of points Xk2::: Xkl + À-\ ekll 

(1= l, ... , m), where Skil are mutually mdependent random vanabk~ with the \,\llle 

probability distribution. This process is then repeated for each point accorùing to the Itera110n 

rule 

(24 12) 

where "'s = "'1 ~s-l and 0 < ~ < m~ < 1. The geometrical similitude of thls ~ct 1" cxprc~!\cd 
in having the same number m and distribution law of the variables Sk~1 for the \l"lle \cale 

reduction coefficient~. We next define the stationary random function E~(X), con\I~l1ng of li 

sequence of pulse functions Is(x) centered on the points Xks: 

where 

Es(X) = <E> (l.I (m~)l-s Is(---) ~s(x') dx' f x x' 

Â.s 

~s(X) = L ô(x - Xks)' <~s(x» = oms-! 
kg 

a. = OÂ.l, J Is(S) dS = l, <Es(X» = <E>. 
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The function Es(X) is interpreted as the energy dissipation field in a fully turbulent flow, and the 

limit s~oo corresponds to the limit of infinite Reynolds number. 

Novikov showed that the power spectrum of Es (x) is of the form k-I+J.1 <1>(log(k», where 

o < 1.1 < land <1> is a periodic function with period equal to Inl3 (1.1 = 10g(mP)JlogP) The 

period of the prefactor <1> reveals the sc ale reduction coefficient of the set supporting E,,(X). 

Results reported by several experimenters (Monin and Yaglom, 1974, section 25.3) are 

consistent with a power spectrum of the form k-s, 0 < s < 1. Note that the power spectrum 

of the field generated by a discrete scale cascade model with a finite number of cascade steps IS 

also proportlOnal to k-", with 0 < s < 1 (Monin and Yaglom, 1974, section 25.3). We shall 

retum in chapter 8 to the Novikov model in a numerical study. 
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Chapter III 

THE THIRD KOLMOGOROV HYPOTHESIS REVISITED 

At present there IS not enough solzd knowled;:e ahout tht' 
Navier-Stokes equallOn to say wuh assurance thm Kolmogorov' S Ideel o} 
multiple random cascade sleps is quaillallvely corrert ( ) Ew'n If Ihe 
underlymg idea of a multlstage breakdown IS correct, K(lI/ll{J~orov'.\ 

first and thzrd hypolhesis of 1962 do nol neces.wm/y jo/lIm' 

Robert H, Kralchnan (\',)74) 

The modified Kolmogorov similarity hypotheses, by relating «d.v,(L»h> to «c(L)h>. 

shifted the emphasis from velocity structure functions to the energy dissipation tield, The thm! 

hypothesis is a statistical statement about the probability distribution of E(L) thal glves a \.:CntI al 

role to lognormal distributions, This hypothesis differs qualitatively from the others. wlllch are 

essentially scaling hypothesis, In geophysics the imponance of these distnblltlon~ !las often 

been overestimated, and sorne misconceptions still persist in the field of turbulence. Wc 

propose in this chapter a critical review of the third Kolmogorov hyp()thesl~, 

3.1 THE THIRD KOLMOGOROV HYPOTHESIS OF LOGNORMALITY 

Kolmogorov formulated a third hypothesis. according to which the volume-avcraged energy 

dissipation rate E(L) is distributed according to a log normal distribution (a random vanable V 1'> 

said to be log normal with parameters ~ and Ci if 10gV = N(~,(j2), where N(Il.a2 ) denote,> a 

Gaussian random variable of mean ~ and variance ( 2), This i~ a~~urncd to holt! for 

high-Reynolds-number flows when L lies in the inertial range. From a fundamental pOlllt 01 

view. the third hypothesis is a priori interesting because it suggests the existence of ulllvcr,>al 

probability distributions governing the dissipation field at small scalr, In view of its theoreucal 

importance, we shall examine the question of universality ln the context of dl\crete 

multiplicative processes. 
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A plausible origin for the third hypothesis is found in the properties of the multiplicative 

processes associated with the eddy mitosis picture proposed by Richardson, as weil that in the 

breakage processes studied earlier by Kolmogorov (1941 b). For a multiplicatIve process 

X n = W 1 •. , W n, the ce ntral limit theorem can be applied to 

Zn = 10gX n = logW 1 + ... + logW n' Provided that the mean }..l = <logW> and the 

variance 0'2 = <(logW)2> - }..l2 exist, then for every fixed 13 

(3.1.1) 

as n4OO , where FN(~) denotes the cumulative probability distribution of N(O, 1). Equivalently, 

10gXn tends as n~ to a Gaussian random variable N(nll,ncr2); in addition, Xn tends as n-tOO to 

the log-normallaw V n = logN(n~,ncr2) (convergence of the integral probabllity distributions in 

both cases). Approximate log-noliIlality therefore always holds for multiplicative processes. 

It is not clear whether Kolmogorov meant the log-normal law to be exactly true, or slmply 

approxima te in the sense given above. A companion paper of Obukhov (1962) suggests the 

latter view. In any case the log-normality assumption has been taken hterally by the 

experimenters (e.g. Anselmet, 1984), who used 11 in particular to compute «ê(L»h> and 

deduce wnh (2.4.3) the scaling exponents of < (~v(L»h >, which in tum can be measured. We 

emphasize that the distinction between exact and approximate log-nonn al it y is crucial if one tries 

to estimate the moments. It is shown below that these are, in general, very far from the actual 

moments. Let us consider the order-q moments of the multiplicative process Xn. Using the 

independence of the multiplicative factors, we get 

(3.1.2) 

Ir follows that Xn does not approach a universal random variable as n -) 00, because <Xn'l> 

and consequently the probability distribution of Xn is entirely determined by the non-universa! 
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function <wq>. On the other hand, Xn approaches as n-)o:> a log-nolïT'al random vanabk 

Vn = logN(n~.ncr2), and the q-order moments of Vn have the exact fonn 

(J.I 3) 

(3.1.2) and (3.1.3) are in general different even as n-)oo, unless the multiplicative factor W l~ 

exactly log-nonnal with W = logN(Il,cr2). It is emphaslzed that (3.1.2) and (3 1.3) do not 

converge to each other as n~. lndeed, their ratio 

eaher diverges or goes to zero as n-)oo. This difficulty with the log-nonnal approxllllation \Va, 

noticed by Novikov (1970, 1990 and earlier references therein), Mandelbrot (1972, 1974), 

Kraichnan (1974). 

3.2 WHY IS THE LOG-NORMAL APPROXIMATION UNTENAnLE FOR 

MOMENTS CALCULATIONS ? 

Consider the random variable 

Sn = y 1 + Y 2 + ... + y n, 0.2.1) 

where the Yi are identically distributed and indt:pendent random vanables with <y> = () .I1ll1 

cr2 = Var{Y} < 00. If Y satisfies a few additional constraints (sec Appemhx 3 1), Klllnchin 

(1949) shows that for n large the probability density Gn(s) of Sn is of the rOml 

(3.2.2) 

where 
1 s2 

gn(s) = _ r:- exp{ - --2 }, 
'J 21tn cr 2ncr 
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i.e. gn(s) is the probability density of a Gaussian random variable N(O,n02). (3.2.2) holds 

under more restrictive conditions than the central limit theorem quoted in section 3.1, that 

reqll1res only <y2> to be finite. This fonn of the central limn theorem focuses on the 

probabllity density and shows explicitly that the Gaussian approximation holds only arollnd the 

maximum of Gn(s) in general. The error tenn is at most equal to C/n, where C 1S a constant, 

but can also vanish in the special case of exactly Gaussian increments YI' The error term is 

SlllUll for (C/n)/gn(s) « 1 which implies 

Isl «..j n logn . 
o 

(3.2.3) 

The width of the range of validity of the Gaussian approximation therefore Increases with 

Increasing n. 

According to the Gaussian approximation, for q even 

00 

«N(O,"a2)Q> = ~ f exp (qlogs - s2 2) ds 
21tn cr 2no 

o 

= (q-l)!!(-fr1o)q 0.2.4 ) 

while «N(O,ncr2»Q> vanishes for q odd. The main contribution of this integral cornes From 

the range of values of x around the maximum of exp{ qlogs - s2/(2n02»), wh1ch occurs in 

s = cr ..j nq. The order-q moment is therefore expected to be accurate provided that (3.2.3) 

holds, i.e. if..rnq « ..j nlogn which implies 

q « log n. (3.2.5) 

Consequently the order-q moments of Sn obtained from the central limit theorern are not 

accurate if q ~ logn. Conversely, <Snq> is accurate as long that n »eq. 
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Next consider the centrallimit theorem applied to multiplicative processcs. A tnllluplic:luvl' 

process Xn can always he associated to Sn with the change of variable 

The multiplicative factors are Wj = e YI. We can try to estimate <XnlJ> lIslng the Gall~\lall 

approximation for Sn, or equivalently using a log-normal distribution for Xn. Thi~ C"lIl1latc 1" 

+00 

<Xnq > ~ < (én)q > = ~ f exp {sq - ~2 2} ds = exp{ 1/2 ncr2q2j 
21tn 0' 2ncr 

-00 

As previously this moment will be accurate if the maximum of the fllllCtlOIl 

exp {sq - s2/{2n0'2)} lies in the interval (3.2.3). This maximum occurs at '\ = ncr 2q, and 

(3.2.3) yields nO'q « ..Jnlogn which implies 

1 ~IOgn q « - . 
0' n 

Smce that log(n)/n ~ 0 as n ~ 00, on1' the moments of order q "" 0 are accuratcly e..,lllllatcd 

Higher order moments depend on the distribution outside of the range of applicahlll!y of the 

centrallimit theorem (figure 3.1). 

In summary, the width of the range of validlly of the Gaus'-.Ian approxllnatlOI1 lor Sn 

increases like ..Jnlogn white the main contributIons ta the moments of Sn and cxp(Sn) corne 

from s = a ..J nq and s = n0'2q respectively. For n large enough, <SnlJ> can alway" he 

calculated from the Gaussian approximation whereas none of the moment,> of <!exr(Sn)!\1> are 

accurate (except for the trivial case q = 0). Our explanatlon of thls fact appear~ to he OrIgInal 

and clarifies certain issues. 
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Figure 3.1: The density gn(s), with n= 10 and <1= l, is plotted on the left side. The arrow 

indicates the range where gn(s) is expected to give a good approximation of the true distnbutIon 

of Sn. On the right side is plotted gn(s) e2s (nonnalized units were used in both cases). The 

arrow shows the range making the main contribution to «eSn)2>. Both ranges do not even 

overlap and therefore gn(s) cannot be used to estimate «én)2> (see text) . 
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What looked at first like a paradox is explained by the pecuhar kmd of converg~l1ct' nf thl' 

probability distribution of Sn to a Gaussian law. Although the integral (or cutllulatl\'c) 

probability distributions of Sn and Xn applOach the integral dlstnhutlons of a gau""lan .\llli a 

log-nonnallaw respectively (Novikov, 1990), the probabliity denslly of Sn 1" applO~lInatl'ly 

Gaussian only around its maximum but remains ln general non-Gau~~lan ~bewhcn: (a pr,lpClty 

consistent with the name "central limit theorem"). ln that sense, the convcr~cl1Cc nt thl' 

probability density is not unifonn. :his lack of normality away from the l11a~ill111111 of ('n(") 

has been known for a while (Novikov, 1990) and our explanation makes exphclI Il'' dfccl 011 

the moments of Sn and Xn. 

The implications of this discussion are important for sevewl applical10ns (CC0I101l1IC". 

biology, particles decay, turbulence) where the use of log-normal distribution" 1" ju:-.t1fied hy 

the existence of underlying multiplicative processes (Aitchlson and Brown, 19i6i. 1 n tlm 

context log normal distributions are usually regarded as genenc and various calculatlOll'" 

including moments, are made using an exactly lognonnal probability denslly. Wc have ... howlI 

that in general this choice is not justified. 

The failure of the log-normal approximation for the estimation of <Xnl(> r:mc ... the prohkm 

of finding a better approximation for the probability density of Xn. Thb approxllllate demity 

should converge ta the actual density and provide accurate e~l1mates of <Xnll> ln the III1lIt 

n ~ 00. In the next section, we shaH present a general method to compute plOhahllity 

distributions from the moments of a non-negative random vanable Applied te> Illllillplicatlve 

processes, this method willlead us to the general fonn of thelr probablhty dJ ... tnbutlon .... \Vhlk 

these distributions will be shawn to he approximately log-normal around their maXlllll1lll, they 

will produce valid estimates of the moments. 
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3.3 PROBABILITY DISTRIBUTIONS OF MULTIPLICATIVE PROCESSES 

IN THE LARGE N LIMIT 

3.3.1 A general method to oblain the probability density from the moments 

of a non-negative random variable 

Il was shown that the m0ments of Xn are easily obtained by making use of the Independence 

of the vanables W (see (2.4.2». It would therefore be convement to have a systematic way 10 

derive from <Xnq> an expression for the probability density of Xn. Integral transforms can be 

uscd for thut purpose, an interesting possibility that was noticed in particular by Fourcade and 

Tremblay (1987). For a random variable 0 5: X 5: l, they show (u~ing the change of vanable 

y = -log(X» that the moments <Xq> are related 10 the probabllity density p(x) of X by 

<Xli> = Lf p(e-X)e-x), where L denotes the Laplace transfonn. p(x) can therefore be ohtained 

through the inverse transform of <xq>. 

We generalize the method of Fourcade and Tremblay to any non-negative random vanable by 

making use of the Mellin transfonn. The Mellin transforrn F*(z) of a function F(x) are related 

by (see appendix 3.2 for a statement of the theorem) 

00 

F*(z) = J xz-l F(x) dx and F(x) 

c+ioo 

- 1 J x- Z F*(z) dz. 
21ti C-lOO 

(3.2.1) 

It is obviously in a fOlm related to the complex moments of order z - 1 of sorne non-negative 

random variable having F(x) as a probability density. It was shown in chapter 1 that 

multiplicative processes yield moments of the fonn 

(3.2.2) 

where K(q) = Iog<Wq>. Using (3.2.1) a general expression for the probability density Pn(x) 

of Xn is obtained: 
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c+ioo 

Pn(X) - J x-z enK(z) dz. 
21ti C-IOO 

t.~.2.J) 

We shaH also consider the probability density Yn(a) of the variable an = log{Xn)/n, which ~al1 

be obtained from (3.2.3) with the corresponding change of variable: 

C+loo 

Yn(a) n J en(K(l) - az) dz 
21ti C-IOO 

Asymptotic expansions of these integrals in the limit n~oo can be obtaincd wllh the "tcepc"t 

descent method, but the integral (3.2.4) is more suitable because the prefactor of the exponentlal 

IS not singular. In the next section the steepest descent method Will be applicd to (3 2.4) and 

asymptotic expressions of Yn(x) and Pn(x) in the hmit n~oo will be obtamcd 

Remark: In general. the mteger moments do not determine the dlstnbutIon «;ee Carl~!ll;\I1'" 

criterion in Feller, 1966). For example, Orszag (1970) showed that the lognormal di~trIhlltlon 

is not uniquely deterrnined by its integer moments. We conc\ude that in general one Illu"t 1I"L' 

integral rransforms to solve the moment inversion problem. 

3.3.2 Asymptotic expansions of the probability densities of Xn and 

logXn/n for n large. 

Equation (3.2.4) is in a form immediately suitable for the steepest de~cent rnethod to hL' 

applied. This method applies to integrals in the complex plane of the l'onn 

I(n) = J fez) en~(z) dz. 0.2.5) 

.md yields an asymptotic expression of I(n) in the large n limit (see Bender and Orvag (1 I)7X), 

or Wong (1989». Assuming that fez) varies slowly with respect to enc»(t), that <1> p().,,,e,,~e~ li 

single stationary point zo such that <\l'(ZO) = 0, and provided that <1>"(zo) 'F 0, [(Il) take~ a" 

n ~ 00 the asymptotic fonn 
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I(n) = en4l<zo) ~ 2n e±i7t/2 ( f(ZO) + A(zo) + oc!) } 
nf'(lo) n n (3.2.6) 

where we use the factor e lTC/ 2 if CP"(zo) > 0 and the factor e- i1t/ 2 if CP"(ZO) < n. The terll1 

A(zo)!n is a higher arder correction. 

Using (3.2.6) with the integral (3_2.4), the stationary point is defined by K'(z()(a» = a. 

zo(a) is unIque because the function K(q), defined by (3.2.2), is cOI~vex (a theorem ln 

probability theory (Feller, 1966) states that log<Xnq> is a convex function of q, I.e. 

K"(q) ~ 0). Note that for cascade processes the condition <W> = 1 imphes that K( 1) = n, 

and trivially K(O) = 0, therefore K posseses a unique minimum in the interval 10,1 r. For n 

large, the expansion (3.2.6) yields 

Yn(a) = __ n_ e" nf(a) (1 + A(zo(a» + 0(1) } 
21tK"(zo(a» n n 

(3.2.7) 

where 

f(a) = a zo(a) - K(zo(a» = maxh{a h - K(h)} (3.2_8) 

f(a) is the Legendre transform of K(h) (Arnold, 1974), denoted by f(a) = L(K(h)}. The 

Legendre transform satisfies L2 = 1 and consequently 

K(h) = maxa( ha" f(a) J. (3.2.9) 

f(a) characterizes the probability density of the multiplicative process. It follows from the 

definition (3.2.8) that 

f'(a) = l/K"[zo(a)] ~ 0, (3.2.10) 

and the unique minimum of f occurs in a. = K'(O) where f(a.) = "K(O) = O. Using 

(3.2.10), (3.2.7) becomes 

Yn(a) = .... ~"nf(a) ( 1 + A(zo(a» + 0(-n1) }, 
-" ~ t n 

(3.2.11) 
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h f · Yn(a) 
a form t at depends only on (a). Smce that Pn(x) = --. for n large wc also uct nx ~ 

1 
Pn(x) = x 

f"(Iog(x)/n) e.n f(log(x)/n) ( 1 + A(zO(tog(x)/n)) + O(l) ) 
27tn n n 

The only "universal" features in the expression of Yn(a) are the exponenual dependence 011 Il 

and the {ri prefactor. For a multiplicative process Xn. (3.2.11) and (3.2.12) WIll he ~h()WI1 tu 

be effective asymptotic expansions of the probability densities of log(X n )/n and Xn 

respecti vel y. 

By contrast with the log-normal approximation, the correct moment~ of Xn arc recovcred If 

the approximation (3.2.l2) is used. The following expression of <Xnl!> IS ohtall1ed flom 

(3.2.11 ): 

For n large Laplace's method can be used to obtain an asymptotic expansIon of thl'> Illtl'gral ('>1:1: 

Bender and Orszag, 1978). The mam contribution cornes From the value of Ct that ma.xlllllle ... 

aq - f(a), i.e. From ao(q) defined by f(ao(q) ) = q. Therefore 

2rr 

n f"(ao(q) 

= en Maxa{aq - f(a») = en K(h), 

which is indeed the exact fonn of <Xnq>. 

Clearly the functional fonn (3.2.11) is not Gaussian while 0.2.12) 1<; Ilot a log-normal 

probability densIty. However, it can be checked that Yn(a) is approxtnlatcly Gall'>'>lan ahollt tht: 

value a = a., which is the point where Yn(a) is maximum for n large. Thl'> 1.., donc hy 

expanding f(a) in Taylor series (2 terms) about a = a., which ylelds a mcall ~ = <logW> 
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and a variance 0 2 = n Var(logW}. In the neighborhood of <X = <X. the probability density of 

Pn(x) is therefore approxlmately lognonnal, as expected. 

3.3.3 Implications for the third Kolmogorov hypothesis 

From the standpoint of breakage processes, the third Kolmogorov hypothesis holds in the 

sense that Pn(x) is approximately log normal around its maximum as n-)oo, but in general Pn(x) 

converges uniformly to a probability den~ity that is not log-normal (see (3.2.12)). The above 

di~cussion also implies that the use of an exactly log-normal distribution for the calculatlon of 

«E(O»h> finds no suppon in breakage processes. 

A weaker version of the third hypothesis, avoiding this problem of approxlmate 

lognonnality, cou Id he based on the moments of the volume-averaged energy dissipation rate 

E(O). For example one could assume that 

log«E(O»q> _ _ K(h) 

logo 

as 0-)0, where K is an unknown function. Equivalently, the third hypothesis eould be ba~ed 

h b b·· d . (1: f 1: log(E(O» on t e pro a Ihty ensny p y,v) 0 -y(v) = - , I.e. 
logo 

logp(y,B) 

10gB 
- C(y) 

as & --. 0, where C(y) is an unknown function. K and C are then related by 

K(h) = maxy{ yh - C(y)} <=> C(y) = maxh {hy - K(h) } (3.3.1) 

High Reynolds number turbulence cou Id make room for universal functions K(h) and C(y), but 

their analytical form cannot he derived in the context of Yaglom's type discrete multiplicative 

processes only. This weaker version of the third hypothesis basically states that moments and 

distributions seale and that the exponents are related by a Legendre transform. This form of the 
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third hypothesis is also the essential part of the mu/rifracra/ f()rmalism. in which C(y) is orten 

interpreted as a codimension. We shaH return to this interpretation 10 chapter S. 

Another weaker version of the third hypothesis is to assume that the moments of log(fll))) 

can be detennined from the gaussian approximation, as suggesled by the above wn ... llkrallon ... 

We will return to this second form of the 3rd hypothesis in an experimental study in chapll:r 7 
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Chapter IV 

FRACTAL SETS: CONCEPTS, METHODS 

AND GENERAL RESUL TS 

Turbulence ln fluids ratses a varlet y of Interesting and practlca/ly Important problem ~ of 
geomelry. which have nOl. so far. received the full allentlOn they deserve 7 he ge(JlIletry of 
slOchaSlic processes (mueh Influeneed. through N. Wiener. by Pemn' s (1913) ;\()rk on 
Brownian motion and G.I. Taylor' s early papers on turbulence) has graspedfully Ihe peclllwr 
and Itpath%glcal' shapes of randomly generated Imes. and ellher borrowed or developed 
analYlic and geomelrlc /Ools /0 desenbe thls kznd of 1 rregu lanty But geomctrv (In COnlrml to 
ana/ysis) has hardly at u/l been applwd 10 the speCifie random surfaces of IlIrhulence 1 hl~ 
fatlure IS parllcu/ar/y surprIS/fig because turbulent shapes are readlly VISIWil::l'd and lherefore 
almast cry oU/for proper geometrlcal descnpuon 

Benoit B. ~hndclbrOl (1975) 

ln this chapter, we provide a comprehensive and turbulence-oriented synthesls of the 

characterization methods appropriate for fractal sets. In section 4.1 an introdllction to the 

concepts of fractal field and fractal set is given and their use in the context of geophyslcs is 

motivated. Section 4.2 deals with the concept of fractal dimenSIOn and a f.mly complete 

treatment of self-similar sets is presented. Efforts have been made to insert both ~elf-slmilar 

sets and self-similar measures (introduced later in chapter 5) in a common mathematIcal 

framework based on se ale renorrnalization. 

-'.1 V ARIABILITY IN GEOPHYSICS • THE CONCEPT OF FRACTAL 

-'.1.1 Fractal fields 

ln geophysics one often encounters fields that involve structure over a wide range of spatIal 

and temporal scales. Rain fields, for example, exhibit spatial structure over roughly mne orders 

of magnitude (about 1 mm for the raindrop diameter to 1000 km in the horizontal). The same 

complexity is observed in the velocity field in the planetary boundary layer: At low altitl1de~ a 

temporal sampling rate as high as 20 kHz may be necessary if a smooth picture of the turbulent 

velocity signal is 10 be obtained. Figure 4.1 provides a sequential zoom in one slIch velocity 

signal and illustrates the intrinsic irregularity of a turbulent field. 
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Figure 4.1 : Zoom in one velocity signal measured in the atmospheric surface layer with a 

hot-film anemometer. In the next 3 pages are found six figures that exhibit graphs of the 

longitudinal velocity plotted as a function of time. The same string of data is shown 

successively in the ranges 0 - 20 sec, 0 - 10 sec, 0 - 5 sec, 0 - 2.5 sec, 0 -lsee and 0 - 0.5 !>cc. 

The approach of the Kolmogorov inner se ale beyond which the signal is smooth can be t'ch 

clearly in the last screens. 
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In practice however, geophysical measurements rarely resolve the natural homogt'Ili'lfy .H·(z/C.' 

(or inner scales ) beyond whlch the field is sm~'oth. Remotdy ~ensed data. e g. radar 

retlectivity or satellite pictures are the result of an averagmg over voillme~, areas or 1I1terval .. 

much larger than the natural homogenelty scale~. This resolution I1r111t IIltrodllC\:'> unavOldahk 

biases in the measurements. Indeed, the statlstlcal propertles of mea~lln:d flt:ld ... an: ln 

general resolution-dependent. There is therefore a nced for some ~chemc that wou Id allow 

representations of the field at different resolutlOns to be related ln ~ome way 

A field that is megular and textured over several orders of magl1ltllde of spall.ll or temporal 

scales appears to be fractal, i.e. a continued zoom al way~ keeps revealing new ~trllclllre and 

irregularities. If the range of irregulanty scales IS wide enollgh, ~ome propertles of the tidd al 

res01utlons L » Tl ( Tl is the inner sc ale ) may be independent or only weakly ~ell"'ltIve to Il 

In such cases lt becomes convenient ta Ignore the lIlner ~cale. ThiS I~ the con~ellt of Ihe ~ccol1d 

hypothesls of the Kolmogorov 1941 theory, for whlch <[ ~v( L) 12> = C (cL)2J' ,'> argued ln 

become indepenl1'.:nt of Il if L » 11 (see chapter 2). Another example rs glven hy Brownwl1 

motion: The position x(t) ofa particle ln Brownian motion ~ati~fies <!X(tH)-X(t>j2> = (' t Il 

't » to, where to is the mean free time. 

From this perspective certain fields may be regarded and modeled as fractal jidd,> , 1 c tïeld" 

that never become smooth under magnification. The term o;moot 1 ,'> u,>ed here ln the ,>cn,>\! (lI 

differentiable: A "smooth" curve can be locally approxlmated oy a marght lllle, whde il -,!11oolh 

surface can be locally represented by a plar,e. By contra~t, a fractal field 1" de ... cnhed hy 11011 

differentiable functions. A fractal model of a geophy~lcal field therefore ... hare~ ... ome propertle" 

with the aetual field m the appropnate range of seales but i more irrcgular at ... mal! ... cale ... Il 1" 

also slmpler because of the lack of an mner scale. An analogy wnh ~Inglilar func!t<m ... can he 

made: The Drrac distribution is singular and yet ~Impler 10 mampulate than the reg1l1ar fllllctlon ... 

which it is used to approximate. 
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Our definition of fractal field IS more general than other more common definitions (e g 

~elf-~lInJlanty, a special case examined in the next section), so general in fact that a wlde famlly 

of geophy~lcal fields appears to be fractal. The tIlles of the two books The fractal geometry of 

Nature (Mandelbrot, 1983) and Fractals everywhere (Barnsley, 1988) testify to the apparent 

ublqulty of fractals. Fractal fields are especmlly suitable for the description of ram fields, cloud 

fIelds, wmd fields and vanous other geophyslcal fields. The scahng models Cllrrently lIsed in 

the study of turbulence uSlially mvolve fractal fields. 

Once the fractal character of a geophysical field has been recogmzed, the next step is 10 try to 

c1assify these fields and to develop tests allowing different classes to be distinguished. We 

hope this process willlead us to determine more precisely to which class actual flows actually 

belong. hactal fields and fractal sets are closely related and an understandmg of both IS 

required for our study of turbulent fIows. We shaH now expose briefly the concept of fractal 

set. 

4.1.2 Fractal sets and self-similar fractals 

Even though variou'\ tentative definitions of fractal sets have been proposed, they sull have 

not received a ngorous mathematical definition (Mandelbrot (1983), pp. 361). Avoiding at thlS 

point more techmcal definitions, we shall only say that fractal sets are non-euclidian sets. They 

are not straight Imes, circles or triangles, nor are they cones or smooth surfaces, and they 

cannat he approximated by pieces of such sets. Fractal sets are irregular and their charactenstic 

property is to have structure on ail scales. Such sets arise naturally in geophysics; shapes like 

coastlines, mountains and v"'getation are often viewed as fractal sets. Since the graph of a 

frac' 1 tield is a fractal set, there IS an tntimate hnk between fractal fields and fractal set.:. 

The simple st fractal sets are those which posses symmetry. In that spirit, Mandelbrot (1983) 

introduces the notion of self-simllar sets as the simplest examples of fractal sets. Self-simllar 
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sets are to fractal geometry what straight lines and points are ta euclidian geollletry A sllllpk 

and often quoted example is the von Koch curve, obtalned reclIr~lvely by rcplaclllg each hncar 

segment by four new segments that are ~horter than the mother segment by a factor 1/3. 

beginnmg with the unit interval (figure -l2). Semg IITcglllar on ail ~caks, the IlI111tll1g ~ct 1\ 

c1early fractal ( the hmiung set obtamed after an infinlte numhcr of Iteratlons can he \hoWIl tll 

exist and to be closed and bounded (see Barnsley 19XX)) TlllS IS an example of alll'\tlcll\' .It'll· 

similar set. Indeed, each ~egment of this clirve is an Identlcal copy of the whok curvc \caled 

down by a factor 1/3 (along with a rotation and a translation). The von Koch con\tructlon can 

be generalized to M-pieee fractal ellrves by replaclIlg each hnear \cgmcnt hy M new ~egmcllb 

that are shoner th an the mother segment by a factor r at each ~tage 

More generally if a set ean be broken down m a ~eqllence of dl~J0l!H or "Ju,t-toudllng" 

copies of itself scaled down by variOliS dlfferent ratlo~, the set will be sald to be multi.\cale .\('lj­

similar. Exact self-simllarity is then a special case of multlseale self-sir11llanty with a \lnglc 

scaling ratio. If dlfferent length seales are used for each ~egmcnt III the con~tructlon 01 the 

M-plece von Koch curve, a muluscale self-similar von Koch curve I~ ohtall1cd 

It is worth stressing that self-slmIlanty and fraetalIty are trcatcd here a, dl\l1l1ct and 

independent concepts. For example, the mterval (0, II IS obv\Ou~ly exactly ~el hU11Ilar (! e 

composed of a union of scaled-down copies of Itself) but IS not fractal. In general, fractal ,et\ 

need not be self-similar. By contrast, sorne authors have propo .... cd a dcfllluion ha,ed on 

self-similarity (e.g. see Feder (1988), p.l1 or Devaney (19:-16), p.37). 

A fractal is a set whleh 15 se1f-slmllar under maglllfication. 

This statement, as weil that our definition of fractal set aVOld the problem of the mathcmatlcal 

charaeterization of fractal sets. Nevenheless, most authors retam the intuItive idea of ~tructllrc 

on ail seales. 

53 



( 

( 

( 

reploced by 

-~.I\,--.... 
N=4, r= 1/3, 
0=109(4)/ 109(3)=1.26 ... 

N=8, r=1/4, 
0=109(8)/log( 4 )=1.5 

N=9, r=1/3, 
0=log(9) /Iog (3 )=2 

1 
1 

r--~ 

-

Figure 4.2 : Three examples of von Koch curve (from Peitgen 1988). In each case the 

number of sub-segments N and the ratio r is given, as weIl as the corresponding similanty 

dimension. The first example (on top) is the von Koch curve (or snowflake). The other curve~ 

are examples of generalized von Koch curves. 



The reasons for emphasizmg self-similarity and scahng in this thesls are threefold Flrstly, 

symptoms of scaling have been observed in turbulent flows (e g. Anselmet (19~.t), Menewau 

and Sreenivasan (l987bc)) and in the atmosphere wlth remotc1y 'ienseù data, such a~ radar 

reflecuvities anù satelhte plctures (Schertzer and LoveJoy (1987, 19~9)) Secondly, the 'icaltng 

assumption can be argued ta be a "first-order" simphfication of the prohlcm of fractal tlcld" 

rnodelling. As diseussed by Mandelbrot (1983, p. 19), .• One must rather marve\ Ihal Ihl'"e 

first approximations are so stnkmgly reasonable n. Sueh an a pnorl SlTllplifylllg l110delltng 

hypothesis should therefore be eonsidered first. A similar pOint of view l~ defcnded hy 

Schertzer and LoveJoy (1989), who claim that the" (seale) syrnmctry assumpllon l~ not only 

the sirnplest but also the only assurnption acceptable ln the absence of more information or 

knowledge n. Thlrdly, it ean be argued that a physical proce~s Involving no characteri~lIc ~calt.: 

is likely ta exhiba scaling. This is what happens for example in the Kolmogorov 1941 thcory, 

where the velocity statisties bec ornes independent of vi~cosity and outer ~cale~ 111 the 111111t of 

infinite Reynolds number. In a wider context, scahng may also be obtained over other ~calc 

ranges in the atrnosphere where other mechanisms rule the dynarnlc~. 

Very few general results are available on the tapie of non ~elf-~Imilar fractal'i. Onc of Ihe 

goal of the research in this area is to discover sorne kind of "multi~cale fractal tran~f()ml" that 

would go beyond the Fourier transform, currently the basis of almost all the lechnlquc" 111 

signal analysis. 
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4.2 FRACTAL DIMENSIONS AS IRREGULARITY INDICES FOR SETS 

4.2.1 Is there a general definition of fractal dimension? 

Fractal dimenSions are irregularity indices for sets. Various different definitions of 

dimension exist, each bemg sensitive to various aspects of the "wiggliness" or "fatness" of the 

set. One of the goals of fractal geometry is to give a precIse and objectIve mathematical 

meaning to the ofren ambiguous, although sometimes poetic, qualifiers used to descnbe 

complex textures. Dimensions are numbers that allow the comparison of different fractal sets 

and indicate their capaCIty to fill space. They do not provide by any means a complete 

characterizatlon of a set. In contrast wnh topologicai dimenslOn, the definition of fractal 

dimension always in volves the notion of a metric, i.e. of distance (Mandelbrot, 1983). 

The tenu dimension is sometimes used fairly loosely 10 the literature, usually in the vague 

sense of a scaling exponent d in sorne power law expression. In this thesis, we shall require 

that in order for a quantIty d to qualify as a fractal dimension, it should 

i) apply to sets. 

ii) be a real number that satisfies 0 =:; d $ D, where D is the ropological dimension of the 

Euclidian space IRD in which the set is imbedded. 

iii) reduce to the topological dimension for simple Euclidian sets (points, Hnes, planes, 

volumes, circles, triangles etc ... ). 

iv) satisfy deS) =:; deS') if S' :::> S 

Tricot (1973) also proposed the condition 
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v) For any countable and possibly infinite union of sets SI 

where the sup denotes the supremum, i.e. least upper bound, of ail the dimenslon~ of the 

individual sets. 

4.2.2 Similarity dimension for exactly self·similar sets 

Similarity dlmension arises naturally in the context of exactly self-similar fractal ~cts. sllch a~ 

the M-piece von Koch curve introduced above and is probably the simplest example of a fractal 

dimension. The similarity dimension can be introduced us mg an analogy with the topnloglcal 

dimension: In one dimension, a unit interval can be split into M = l/r slIb1l1tervals of lcngth r. 

in two dimensions, a unit square splits into M = (l/r)2 sllbsquares of ~ize r; 111 3 dlmen!'llon!'l. 

a unit cube splits into M = (l/r)3 subcubes of size r. Sinlliarly. the M-plcce von Koch Cllrvc 

splits up into M Idenucal smaller von Koch clIrves of size r. One may delïne by exten!'llon the 

similarity dimension to be the exponent ds such that M = (l/r)ds. i e. 

d - log M 
S - log(l/r) (4.2.1) 

Similarity dimension is in general non-integer and can be regarded as a natural generalizal1o!1 of 

the topological dimension for exactly self-similar sets. For slmpk euchdian \ets ds redllcc\ tn 

the topological dimension. 

Another important example of an exactly self-similar set is the triadlc Cantor set obtained by 

repeatedly removing middle third open intervals beginning with 10.11, as Illu!'Itrated 111 ligure 

4.3. The similarity dimenSion of this set is 

l~ 
dS = 1 3 == 0.6309 og 

57 



•• Il Il 
1111 III 

-1 • 
Il Il 
Il Il 

•• Il Il 
IIU IIH 

•• Il Il 
Il III 

• • 1 •• 1 
Il un 

-•• Il .1 
Il III 

•• .1 •• 
Il 1111 

. -Il 1. 
III Il Il 

Figure 4.3: Two examples of Cantor sets. The first one (on top) is the classical tnadlC 

Cantor set, formed by removing open middle thirds of intervals recursively. The second case l!l 

an example of multiscale Cantor set. At each step of construction, only closed segments scaled 

down by ratios 1/4 and 1(2 survive. 



The M-piece Cantor sel can be defined by analogy with the M-piece von Koch curvc~: At each 

iteration the surviving intervals of size Lare replaced by M disjoint inlcrvals of Sile rL. The 

similarity dimension is then given by (4.2.1). If the surviving disjoint mtervals are cho~en to 

have different length rlL, a muluscale self-simllar set called the nwltlscale Cantor .\ct is 

obtained. 

These sets can be directly generalized to higher dimensions by replacing the lIlillal Ulllt 

interval by a square or a cube, which does not affect the definition of ds. Notice that ds 1" not 

sensitive to the orientations of sub-segments ln the M-plece von Koch curve, nor to the pO~1l10ll 

or the surviving sub-segments at each stage of construction of the M-piece Cantor ~ct. Many 

different fractal sets therefore share the same slmtlanty dimension, a cIear inJicallon that they 

are only partially charactenzed by dS' 

It should be noted that the splittingfactor M and the scale ralio r of an exactly ~elf-~ul1llar "et 

are not uniquely detennmed by ds since sets wi.th parameters (M.r) and (M'l,l n) have the "aille 

dimension. This issue will be reexamined in section 4 2.3.2. 

dS is not defined for general sets since these cannot be split up imo M copies. More tlexlhlc 

definitions are therefore needed to characterize sets. 

4.2.3 Box dimension and self·similar sets 

4.2.3.1 Definition and properties 

The box dimension, sometimes called capacity dimenSIOn (Farmer, 19H3) and more 

frequently fractal dimension, is one of the parameters mo~t frequently ll~CJ to charactcn/c 

fractal sets arising ln geophysics. Sin ce the box dimension is not more "fractal" than any other, 

we will use the term box-dimension. It can be measured easily from data. whlch probahly 

explains its populanty among experimenters. It is defined for a wlder cIa~~ of "ct" than the 
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similarity dimension. Given a set S imbedded in a D-dimen3ional eucliùian spaee, the box­

dimension of S is defined by 

d _ lim log NB(O) 
B - ô-)O 10g(I/ô) (4.2.2) 

where NB(O) is the r.l~mmum number of D-dlmensional balls (or cubes) of diameter 0 needed to 

c<)ver S. The box dimension (when it exists) determines the amount of information needed to 

locate the set within an aeeuracy Ô, i.e. we need only specify the location of NB(Ô) balls. for a 

fixed value of 0, NB(Ô) inereases If dB mcreases. In that sense dB(S\) > dB(S2) implies that 

the set SI is "fatter" th an the set S2. 

For simple euclidian sets the box dimensic 1 obviously equals the topologie al dimension. By 

contrast, dB takes in general non-tnteger values for fractal sets and can exceed the topologlca1 

dimension. More generally the box-dimension can be verified ta have ail the properties of 

fractal dimension mentioned in section 4.2.1, except for (v) which ho Ids only for fimte 

collections of sets. For that reason, Tricot (1973) argues that the box dimension is not a 

dimension and proposes instead the name denszré logarithmique (i.e. "logarithmie density"). 

For the box-dimension, the property (v) reduces to 

(4.2.3) 

where n is finite. Denoting by NB(S,Ô) the minimum number of boxes of size Ô needed to 

cover a set S, (4.2.3) is derived from the inequality 

n n 

SUPt NB(S.) ~ NB( US" ô) ~ l NB(S .. Ô), 
,= 1 ,= 1 

which follows trom the possible overlap between the sets 5) (inequality on the right side), as 

weIl that property (iv) (left inequality). That (4.2.3) holds only for finite collection of sets is 

clearly illustrated by the example of rationals. Although each rational number has dB = 0, their 

collection in the unit mterval [0, Il has box-dimension umty. Indeed rationals are dense in the 

60 



real numbers, which means that any real number can be approached arbitrarilv closelv bv a . .. 
rational. If follows that every box (l.e. interval) used to coyer the unit interval i" lïlled tu: 

contains at least one rational) and consequently dB = 1. Actually, the bo"\-dltl1en~ion 

characterizes the closure of a set, i.e the set plus il'; lHnit points (the dosure of a ~et S i~ abo 

the smallest closed subset of IRn contulI1l11g S). Indeed, il IS not pos~lble to ~()\'el a ..,ct wllh 

closed balls without covenng aiso all the limit points of the sets, i.e its closure (rncot ( \973). 

Falconer (1990». It fo11ows for example that both rational and irrational numbci ~ havc 

box-dimension unity. 

The definiuon of dB presupposes the covering of the set wah balls. In a numenca\ 

experiment, however, it is convenient to coyer the set with a reglt/ar grill of cuhes. Tlm 

method, often called box-counting, gives the sa me value of dimensIOn as the opllmal collection 

of cubes. Indeed if NB '(Ô) denotes the number of grid cubes contall1111g points then SIllCC each 

cube of the mimmal coyer is covered by at most 3D cubes on the gnd. 

Taking logs then shows that (4.2.2) contll1ues to hold wilh NB replaced by N'B(Ù). The box-

dimension 1S also independent of the shape of the balls u~ed for the covering. More generally, 

one can show that the box dimension 1S lI1variant under metnc equlvalcncc. An open hall or 

radius R centered about a pomt x bell1g defll1ed by p(x) < R, a dlffercnt hut equlvalent cholCl: 

of the metric p deforms and stretches the baIl by fmlte amount~ wlth no hreakll1g hee Barn:-.ley 

(1988) for a more detailed presentation of metnc eql1lvalence). The invanance of dn under 

metric equivalence also implies that a set can be ~tretched arbllrarily hy l'mite amount~, whlle 

keeping the box-counting grid fixed, without changll1g dB. In that ~en<;e the box-dllllen'>I<Hl 1'> a 

"robust" parameter for sets. 

It should be noted that sets can be constructed for which dB does not exi..,t. In ~uch ca..,e..,. 

the notion of lim may be replaced by the twin notions of hm sup and lim mf, lcadlllg In general 
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ta two different dimensions respectively ca lIed upper and lower box (or entropy) dimensions 

(Mandelbrot, 1983). 

4.2.3.2 Exactly self·similar sets 

This section focuses on the calculation of dB for exanly self-similar sets with splitting factor 

M and scale ratio r. We show that 

N B(cS) = cS·ds P(logcS), (4.2.4) 

w here P is a periùdic function of period loge 1/r). The possibility of prefactor oscillatiorls in the 

context of turbulence is discussed and the sensitivity of P to the box-counting grid is exammed. 

Let NB(S;cS) denote the minimum number of boxes needed to coyer a set S. Suppose that S 

splits into M identical copies Si. If the sets SI are positively separated, 1.e. Si and SJ are 

separated by finite distances d(StoSJ) for each (i,j), and if cS < min (d(S"SJ)} then 

(4.2.5) 

because there is no overlap between the coverings of the SI'S. SI being a scaled down copy of 

S with seale ratio r, 

and (4.2.5) then becomes 

(4.2.6) 

which is a linear functional equation for NB(ô) (the argument S was dropped for simplicity). 

Denoting NB(cS) = ô·dS P(logcS), where P will be called the pre/actar, and replacing in (4.2.6) 

yields 

P(logcS) = P(logcS + 10gO/r», (4.2.7) 
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which implies that P is a periodic function of period loge l/r). Note th ut P is also dlsÇ()ntlnllOll~ 

since NB(O) is. The general solution of (42.6) is therefore given by (4.24). N('te that whlle 

dB alone does not detennine uniquely M and r (see section 4.2.2), they are uetenmned glven 

both dB and the penod. This method for measuring the parameters M and r of an exactly ~df­

similar set does not appear to have been proposed prevlously. 

Iterating (4.2.6) yields the equivalent equation 

NBO"n 0) = An -dS NB(O), (4.2.X) 

where An = rn (n = 0, 1, 2, ... ). (4.2.8) is the property satisfied by any hot11()gcneoll~ 

function when the parameter An varies continuously in sorne range, but here "'n IS restncted to a 

discrete set of values. In that sense (4.2.8) can be regarded as a discrete scaltng prlncip/e. The 

possibility of oscillations of the prefactor is related te the Intrinslc uiscreteness oî the 

self-similarity. The effect of thls discreteness is "felt" by NB(O) when the ratios i'lI80 are not 

integer powers of r. Conversely the prefactor OSCillations are r.ot Vl';ible If NB(O) i'i examllled 

only at scales On = rn 00, where 00 is arbitrary. The existence of OSCillations I~ worth 

examining in experimental measurements to investigate the possibihty of discrctc scale ral1O~ ln 

geophysical contexts. Similar osclliations were noticed by Mandelbrot (19H3, p. 123) in the 

context of the geometrical characterization of clusters. 

A natural continuous extension of the discrete scaling principle (4.2.8) is 

F(Â. 5) = A H F(8) (4.2.9) 

where A varies continuously in sorne interval and H is fixed. For a flxed A the ~olul1on of 

(4.2.9) is FÂ,(O) = OH PÂ,(logo), where PÀ.(x) = PÀ.(X+log(A», but this ~olutIon hold.., for 

each A hence the prefactor must be a constant. The continuous extension of (4.2.H) tht..cforc 

spoils, in general, the oscillatery behavior of the prefactor. Equation'i of the type (42.9) arc 
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known to apply to various quantities in physics: According to the K41 theory the velocity 

~tructure functIons in fully developed turbulence satisfy 

(4.2.10) 

the root mean square dlsplacement ~X(t) of a particle in Browman motion during a time t 

satisfies .1;«Àt) = ).)/2 .1X(t); similar laws appear to hold for ratnfall rate increments over a 

lIme lag T (LoveJoy, 1985) and radar reflectiviues averaged over volumes of size L (Schertzer 

and Lovcjoy, 1987). In the context of turbulence, assumtng that (4.2.10) holds for a flxed À., 

Smith ~l al. (1986) have suggested that the general solutlOn could be 

<ILlv(L)lh> = Lh!: Ph(logÛ), where Ph(X) 15 periodlc in x. From this point of Vlew the period 

of the function P becomes a fundamental parameter of turbulent flows. It is emphaslzed that the 

K41 theory predicts a constant prefactor and does not make room for oscillauons 

Nevertheless, oscillations of the prefactor have been ùbserved for h > 12 by Anselmet et al 

(1984). If these osclllatlOns are not 5tatistlcal artefacts, thelr existence contradicts lxnh the K-+ 1 

theory and the continllous scaling principle (4.2.10). We will return to thlS question 10 chapter 

8. 

If Ns(ô) is obtained witll ~ I( x-counting grid, it is emphaslzrd that (4.2.6) does not ho/li 

becau!>e the SI'S are not ÏI: .·'lt .1 aligned in the same way \Vith respect to the gnd, 50 that 

(4.2 5) is not necessanly satlslÏc::J. In special cases, the symmetry of the set and a proper 

choice of the grid position can allow (4.2.5) to be sausfied exactly. This is wr...( happens for 

example with the triadic Cantor set If a gnd hne spins the set exactly ln the mlddle. The 

behavior of the prefactor can b~ illustrated with the tnadic Cantor set: Since NB( 1) = 1 and 

NB(Ô) = 2 when 1/3 ~ Ô < 1, the prefactor NB(Ô)ôdB is given by 

P(O) = 1 and P(logO) = 2 edB logo for 1/3 ~ Ô < 1. 
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The prefactor has discontinuities at the scales on = rn (n = 0,1, 2, ... ). lt IS Illtere~t1ng 10 

compare this with a numerically caiculated prefactor using boX-COllntlllg on a gnd. An M-plccc 

Cantor set is represented by a string of bmary digits indicating the ~lIrvivll1g \I1le~al" by a 1 and 

the deleted ones by a O. Using this convention, the triadlc Cantor ~et (101) .\Ild the ')-plece 

Cantor set (1101) were consldered, usmg 12 and 10 lIera~lOm re~pecl1\'ely The ~mallc~t 

construction seale was deftned to be 1 The flr5t ltne of the ~ox-countl!1g grid W;\:-. po~ltl()ned 

on the left edge of the sets and therefore the symmetry of the ~et (101) was not e \plOlted The 

results were plotted in figure 4.4 and 4.5. P(x) 15 not penodlc for ~eventl rea,,()n~. Flrstly, the 

renormalizauon equatIon (42.6) no longer holds on a box-collntmg grill ..,0 the mea"lIred 

prefactor is at best approxlmate. For the set (1101), two of the sllb:-.ets Sj are not ~eparatell and 

therefore (4.2.6) holds only approximately even If a gnd was not lI~ed. Secondly. at the 

smallest scales the set IS not fr.lctal and therefore self-~inlllanty i~ ~pOllcd, De~pite the nOl..,e 

contaminating P(x), the periodicity of the discontll1l1lties appears c1early in both ca"e.., For the 

set (101) large peaks occllr at scales Ln = 311 wlllie for the set (110 1) they occlIr at Ln = -ln, 

which is consistent with (4.2.7). 

Thl~ numencal experiment demon~trates that the prefactor flJncl10ns of NR(Ù) and N'I\(ù) 

(obtall1ed v.ith bOX-COllnt1l1g) can be very dlfferent. In general the pre factor of N'n(b) will not 

be penodlc panly because of the lack of ~eparation of the S j' sand partly becau~e the gnll will 

not be aligned 111 the same way for each Sj. Thl~ appears to be the fir~t dl~cus<;lon of o,>clllatll1g 

prefactors and grid effects 111 the context of box-eountll1g. A better method tor I11c,l..,unng 

periodic prefactors WIll be examined in chapter 8. 
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Cantor 101 (n-12) 

10000~------------~~----~------~-------r------~ 

}J"(L1L'a 
B 

9000+-------+-------r----r~~~~-++------+------~ 

8000 ~---+--

4000+---~~+-~~~~~~~--1~~~~~~~~~~~ 

1 ~ 0 100 1000 10000 100000 1000000 

L 

Figure 4.4: Prefactor of NB(Ô) for the Cantor set (101). Periodic discontir:uities at scales 3n 

are clearly apparent. 



Cantor 1101 (n=10) 

120000 .....--~-,-.---r----~----r---r----r----, 

N'(L)Lde 
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110000+------+------+-----~------~----~----~r_-----1 
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Figure 4.5: Prefactor of NB(Ô) forthe Cantor set (110 1). Periodlc dl~COnt1nUItH!'i oœur at 

scales 4n, 



.... 2.3.3 Multiscale self·similar sets 

Mulw.cale !>elf-similarity is the most natural generalizatlOn of exact self-similarity. This scale 

,yrnmetry ha~ been used successfully, in particular, in the modelling of seif-simllar measures 

a!'l~()ciated wlth non-lmear dynamlcal systems (see chapter 5). A priori, they appear to be 

relevant candIdates In the modelling of fractal fields. In this section we focus on the calculatlon 

of thcir box-dimension. 

A muluscale self·similar set Scan be broken into M disjoint copies Si scaled down by 

different ratios fI, ... , rM. Self-similarity directly leads to the renormalization equation 

M 

Ns(o) = L Ns(o/rl ) , (4.2.11) 
1=1 

that holds exactly if the sets S. are positively separated and Ô < min d(S;,S,I)' Define do to be 

the real root of 

(4.2.12) 

do 15 unique because the function f(t) = L fil satisfies f(t) < 0 while f(O) = M > 1 and 

lim"" f =: O. Denoting NB(O) == o-do PCC), where P(c) is the pre fac tor, and replacing in 

(4.2.11) yields the piefactor equation 

M 

P(o) = L r 1
do P(c/ri) . (4.2.13) 

1=1 

The general solution of (4.2.13) is a linear combination of elementary solutions of the form o-d, 

with d complex, and is derived in the appendix 4.1. Two cases must distinguished for the 

general solution of (4.2.11): 
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(i) Generjc case: The general solution is 

Ns(ô) = Ô-do {CO + R(ô) } 

where 

R(ô) = l c(n) Ô -dR(n) exp( -i d,en) logo) 
n 

(4.2.14) 

and dR(n) < 0 for ail values of n. It follows that R(o) ~ 0 as 0 -) 0 and thereforc the 

prefactor is constant in the lima 0 ~ O. If dR(n) ,., 0 for some values of n the m.cillalion~ 

eould survive over finite ranges of seale because of the slow damping rate. 

(ii) Special case: The values of rJ are of the fonn 

rj = ro nJ, j = 1, 2, ... , M. 

The general solution becomes 

NB(O) = ù-do ( P(logo) + R(o) 1 

where P(x) = P(x + log( lIro» and R(o)~O as Ô~O. 

(4.2.15) 

(4.2.16) 

In both cases, it IS clear that dB = do. The box dimension of a multl,>calc ~clf-sIl11l1ar ,>et ,'> 

therefore always given by the real root of (4.2.12). (4.2.12) can be rcgarded a gcncralllcd 

definition of the slmtlarity dimension for multiseale seif-simllar ~et~ becau,>e Il rcducc,> tn 

(4.2.1) in the special case of equal ratios. By contrast with exactly ~elf-'>lmdar ,>et'i. the 

prefactor function does not detenmne the scale ratios fi' In the generic ca~e the o~clliatory 

behavior of P(o) is spoiled by the introduction of lncommen\Urale .\cale ralLO.\ and P(O) I~ 

constant in the limit 0-)0. In the special case of commensurate ~cale ratios, however, .\ penodlc 

prefactor IS recovered in the limlt 0 ~ O. The period detenntnes ro hec 42.15) whlCh ,'> an 

upper bound for the ratios ri' 

As for exactly self-similar sets, dB does not determine uniquely the ~plitting factor M and the 

ratio') rJ' For example, squaring (4.2.12) yields 
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whlch shows that a multiscale self-similar set with splitting factor M2 and scale ratios rlrJ 

(l, j = l, ... , M) has the same box-dimension. The same argument can be made by raising 

(4.2.12) to any Integer power. 

4.2.4 Hausdorff dimension and self-similar sets 

4.2.4.1 Definition and properties 

Hausdorff dimension is discussed in this thesis because of its relevance ta the multifractal 

spectrum of a ~elf-slmilar measure, introduced in chapter 5, which nowadays plays an 

Important role In the modelhng of turbulent fields. By contrast wlth the box-dimension, the 

Hausdorff dimension dH eXlsts for aIl sets. WhIle dB does nct distinguish a set from its cJosure 

(e.g. dB(rationals) = dB(irratlonals», dH does. Hausdorff dImensIOn is also a metnc concept. 

To define H, we conslder a covering of a set S with sets VI of variable diameters 81, Recall that 

the dlameter Ô of a set VIS defined by Ô = sup{d(x,y): x, ye Ul. where d(x,y) is the 

Euchdlan metnc. If 0 < 81 ~ Ô for each i, {U I } IS called a Ô-caver of S. Glven a Ô-coyer of 

S, defme the outer measure 

(4.2.17) 

where the infimum (Le. greatest lower bound) extends over aH possible ô-covers of S (a bnef 

recap on the notions of measure and outer measure is given in section 5.1). Hdô(S) is a 

decreasing funcuon of Ô because the class of permissible covers of S is reduced as 8 decreases, 

and therefore Hdo(S) increases. Now define the d-dimensional Hausdorff outer-measure by 

Hd(S) = hm Hdô(S) 

0-)0 
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Hd(S) exists since HdS(S) increases as ù decreases. but may be (and usually IS) zero or lIlfllllte. 

Since IOld is a decreasing function of d for a fixed caver. the infirnum Wls(S) IS also a 

deereasing funetton of d. Furthermore, a similar reasoning implies that if d > t then 

Letting O~O we see that if HI(S) < 00, then Hd(S) = 0 for d > t. Aiso. if I1l1(S) = 00 then 

HI(S) = 00 for t < d. Hence there exists a critieal value dH, called the Hausdorff dUlletl.\;oll. 

above which Hd(S) = 0 and below which Hd(S) = 00. This di vergence rule may he regardl'ù 

as a generalization of the statement "the length of a surface IS infinite. its volume IS mo". 

HdH(S), caIled the Hausdorff outer measure of S, may be either 0, 00, or a finue positive 

number. dH and dB are related in general by 

(4.2 19) 

which follows from the inequality NB(Ù;S) ;;:: Hdô(S)' 

HdS(S) can eqUivalently be defined in temlS of o-covers of S by restrlcted c1a~~e~ of ~Cb, 

e.g. convex, open or closed sets, and dH remains unchanged (Falconer, 19X5). IlausdOl 1 f 

dimension shares aIl properties of a fractal dImension (see seCllon 42.1). !n parttcular, the 

property (v) foIlows direcùy from the fact that Hd(S) IS an outer mea~ure. (nùeed 

SUPn Hd(Sn) ~ Hd(USJ) S; L Hd(Sn), 
n 

which implies that dH(U Sn) = sUPn dH(Sn). lt follows in particular that the Hau~d()rI t 

dimension of any countable subset of IRD is zero, slnce dH = 0 for each Individllal point. For 

examplc, the Hausdorff dimension of rationals is zero. 

The Hausdorff outer-measure can be turned into a measure if one restrict ollr<;elve~ to Borel 

sets, i.e. finite or countable unions or mtersections of 0Fn and closed ~cts. Any ~et that can I)C 
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conmucted using a sequence of countable unions or intersections staning with the open sets or 

closed sets will certainly be Borel (Falconer, 1990). Multiscale Cantor sets and Koch curves 

are therefore Borel. 

Il IS worth mentioning that the original definition of fractal sets, introduced by Mandelbrot, 

was based on the concept of Hausdorff dimension: 

UA fractal is by definition a set for which the Hausdorff dimension dH 

strictly exceeds the topological dimension dT", 

This definition was found to be problematic for various reasons, in panicular because of the fact 

that it excludes fractal St!S for which dH and dT are equal. According ta Mandelbrot, the basic 

purpose of this definition was to distinguish fractal sets from simple euclidian sets for WhlCh 

dH = dT' In any case, it certainly defines a class of sets that are irregular at ail scales, I.e. a 

class of fractal sets. 

In general the practical estimation of dH is difficult. Its defimuon is rarely (never?) used as 

the ba~is of experimental procedures for the determination of fractal dimensions of physlcal selS 

(Barnsley, 1988). However. we shall see an example in chapter 5 where a measure. posslbly 

relevant to turbulence modelling, glves rise to sets for which dH can be obtained indlrectly 

through measunble scaling exponents. This fact glves sorne physical credit to the nonon of 

Hausdorff dimension, which may seem a little exotic at first. 
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4.2.4.2 Self·similar sets. 

In this section we compute the Hausdorff dimension of self-similar sets by taking advantage 

of the scaling symmetry. The limitations of this approach, due to the possibly vanishlng value 

of the Hausdorff outer measure, are highhghted. 

Consider a set S that can be broken into M Identical disjoint copIes S, seulet! down hy a 

common ratio r, i.e. an exactly self-similar set. If the SI are posltively scparatcd and 

8 < min l •J d(St>SJ)' the lack of overlap implies 

M 
Hda(S) = l Hda(S\). (4.2.20) 

1=1 

Scaling and self-slmilarity implies mat 

(4.2.21) 

and therefore (4.2.20) becomes 

(4.2.22) 

As previously for NB(Ô), the general solution of (4.2.22) takes the form 

(4.2.23 ) 

where dS = logM/log(1/r) and Pd(X) = Pd(x+log( 1/r)). A periodic pre factor, already 

encountered in the analysis of box-counting, is again obtained. In the case of a ~cparalcd 

multiscale self-similar set, (4.2.22) becomes 

M 
Hd1)(S) = l fid Hd1)/ri(S), (4.2.24) 

1=1 
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which is fonnally identical to the equauon (4.2.13) for the prefactor of NB(Ô) in the case of a 

multiscale self-similar set. In the gcneric case of non-commensurate seale ratios ri the solution 

of (4.2.24) is therefore 

(4.2.25) 

where Rd(8) ~ 0 as Ô -t 0 and dS is the real root of the characteristic equation (4.2.12). 

If the prefactors Pd (in (4.2.23» or co(d) (in (4.2.25» are non-zero for aIl values of d, it is 

cIear from (4.2.23) and (4.2.25) that Hd 5(S) vanishes in the limit 8 ~ 0 for d > ds and 

diverges for ct < ds, and therefore dH = dS. The possibility dH ~ ds IS is clearly illustrated 

by the example of rational numbers in the unit interval. The set of rationais is exactly seIf­

slmilar ( the sum of two rationals is rational and the product of two raHonals IS aiso rational. It 

follows that a unit interval of ration aIs can split into M identicai subintervais of slze r = l/M, 

each being a copy of the interval scaied down hy a factor r). The similarity dimension is 

therefore l, while dH = 0 since the ration ais fCml a countable set. Note (hat if we assume that 

(4 2.26) 

then (4.2.23) and (4.2.25) imply that dH = ds. Borel sets satisfying (4.2.26) are called S-jets, 

and muitiscaie Cantor sets and von Koch eurves are examples of such sets (Falconer (1990) 

section 2.2) 

The more general case of non-separated but "just touching" self-similar sets, such as the von 

Koch curve where the subsets share IWO common points at their edges, can he treated by 

focusing on Borel sets (see Falconer (1990) and Hutchison (1981) for more details on the 

separation condition). In this case Hd is a measure and the property Hd(US.) = L Hq(SI) can 

be llsed together with (4.2.21) and (4.2.26) to dedllce that dH = ds. Roughly speaking, s-sets 

that are "sufficlently separated" satisfy dH = ds. 
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4.2.5 Comparison between box and Hausdorff dimension 

For the M-piece Cantor set or the M-piece von Koch curve the similarity dimension I~ 

defined by dS = logM!log( 1/r). For such sets, it was shown that 

ds = dB = dH 

For the multiscale Cantor set or the multiscale von Koch curve, the similarity dimension b 
M 

defined by L rl
dS = 1. For these four sets the above equality holds, whlch IS haslcally a 

1=1 

consequence of self-similarity for s-sets. 

Consider the set of numbers S = {1,1/2,l/3,l/4, .... }. This is a f1lst ex ample of \lon 

self-similar set and ds is therefore undefined. For this set dH = 0 because S is countablc. The 

Hausdorff measure is HO(S) = 00 because the Hau~dorff measure of each pomt 15 0° = l, and 

there is an infinite number of points. The box dimension of Scan be obti1l1letl wuh the 

following argument. If 0 = lin, we need one box per point except when the dl~tance bctwcen 

consecutive points IS smaller than O. The distance brtwcen consecutive points l/k and 1/(k+l) 

exceeds 8 when l/k - l/(k+ 1) > lin => k(k+ 1) < n. For n large, th • .., implie.., 

approximately k < {Ii. We Will therefore need about {ïi boxes to cover the 1l1tcrvalll/1ïi,11 

The remaining interval [O,l/{ïij can be covered by l/{n 1 (l/n)= {11 boxes. The total number 

of boxes of size On == lin needed to caver S is thereforc N(n) = -rn + ~n == 2 ~n. I/t'net; 

N(on) = 2 on- l /2 and dB = 1/2. As for the case of rationals, the origln of the dlffcrcnce 

between dB and dH lS the countability of S. 

4.2.6 Multinomial sets 

Rationals satisfy ds = 1, dB = 1 while their countability implies dH = O. ft 1.., worth 

stressing that dB and dH can also differ for sets that are net countable as will he ..,hown in the 

next example. The multmomial sets maya priori seem a little exotlc to the rcader, hut thcy Will 
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be shown in chapter 5 to arise naturally in the study of a self-similar measure th[1t might play a 

role in the modelling of turbulent fields. Each number in the unit interval 1=[0,1] has a base M 

expansion 

00 

x = '" E' .l ~ IW' 
j = 1 

where the E,'S are integers O. 1.2, ... , M-l. This is also wrillen alternately as x = E\E2 .... 

Note that if Xn represents the n-term expansion of x then XE [Xn.Xn+ l/Mn J. i.e. there is a 1-1 

relation between the n-tenn expansions and the intervals of length l!Mn. Let l' he the collection 

of rcals with a well-defined frequency of occurrence of integers 10 the base M expansion and let 

1;,r(x), r == 0, 1, 2, ...• M-I he the frequency of occurrence of r. These frequencies satisfy to 
M·I 

o ~ Sr $; 1 and L Sr = 1. According to Eggleston (1949). the multinomial sets 
r=O 

Z(!;O •...• ÇM-I) = { XE l' : ~r(x) = ~r. r = 0, ...• M-I } 

have Hausdorff dimension 

M-I 

dH(Z) = - L Sr 10gM Sr . 
r=O 

(4.2.27) 

Since any open interval contains reals with any desired frequencies Ç,r. Z is dense in the interval 

and consequently has box dimension unity. Z is non-compact and its closure is the unit interval 

1. The box and Hausdorff dimensions are consequently distinct. 

Z is also an exactly self-similar set. On one hand ç,r(x+Yn) = ç,r(x) because only a finite 

number of digits in the base M expansion IS affected by the addition of the truncated expansion 

Yn· ln addition, for any integer n Sr(x/Mn) = ç,r(x) because the division only shIfts the digits in 

the expansion of x. which does not affect Sr. It [ollows from these translational and scaling 

mvarümce that the multinonual set can split into Mn identical pieces. copies of the original scaled 
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down by a factor l!Mn. The result ds = dB '" dH is apparently a consequence of the control 

of the prefactor on the Hausdorff dimension (see section 4.2.4.2). 

(4.2.27) can be made plausible by considering the set of aB x wuh a particular frcqucncy of 

occurrence for each integer (0, ... , M-l) in the n-term expansion, i.e. by consldcring tl;: 

sequence of sets 

where Rn(çr) denotes the rational of the fonn pin closest to Çr' For flxcd Çr, Sn con tains 

n! 
Nn = (nço)! '" (nçM-!)! 

intervals of length l!Mn, Since logn! = n logn - n + 1/2 logn + 0(1) according to Stirling\; 

formula, we get 

1 M-! 1 
In(Nn) = n logn - n + 2logn - L (nçk log(nçk) - nçk+ 110g(n~ .. )} + O( 1 ) 

k=v -

M·! 
= n L ~k logçk 

k=O 

(M-l) 
-2- logn + 0(1) 

and since On = I/Mn then 

Nn = C On - DI 10gMOn 1 - (M.!)/2, 

where Dis given by (4.2.27). It is emphasized that D charactenze~ the cnure ~equcnce of !'Ieh 

and is not the box dImension of any of the individual sets. Smce this sequence of "Ch 

approaches Z as n ~ 00, it is not necessarily surprising that D is IS the Hau~dorff dirncn~lOn 01 

z. 
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Chapter V 

MUL TIFRACT AL MEASURES 

IN GEOPHYSICS 

Les cascades dansœenllà-bas 
comme de blancs chevauxfougueux, 
La crinière plcme d'é('ume el d' arcs-en-dei 

Mais, palatras, au bord du précIpIce 
Les voilà lombés sur leurs Jambes de devant 
Cassées, oh, blanches Jambes. 

Et ils som morts au pIed du rocher. 
Désormais dans leurs yeux étemts 
Se reflète le ciel, glacé 

Les cascades, Isma'il Kadarc 

Multifractal measures have been used to describe many geophysical fields, slich as radar 

reflectivity field~ generated by showers, cloud fields (Schertzer and Lovejoy, 1984,35, 87,89) 

and the energy dissipati(\n field in turbulent flows (Yaglom (1966), Mandelbrot (1974), 

Sreenivasan et al. (1988), Meneveau et al. (1987a-b-c, 1990a-b), Novikov (1990), Schertzer 

and Lovejoy (1984, 85, 87, 89». Such rneasures also model the invariant probabiltty measlire 

of sorne non-iinear dynamical systems in the chaotic regime (Hentschei and Procaccia ( 1983), 

I-talsey et al. (1986». In addition, a forrnalism sirnilar to the rnultifractal formulation has hccn 

proposed to explain the scaling of the velocity field in fully developed turbulence (appendlx of 

Frisch and Parisi, 1983). The multifracta~ d~s~ription appears to he a possible junction point 

for the fields of turbulence, non-linear dynamics and statistical mechanics. In this chaptcr wc 

propose a turbulence-oriented çresentatton of the concept of rnultifractal measure. 

We stan with the notion of measure and discuss its relevance to rf" rtote sensing and 

turbulence measurements where resolution limits and averaging are ubiquitous. Next cornes a 

study of the multinomial measure, an example that has been used in various applications and 

that leads naturally to the general properties attached 10 the concept of J1iultifractal measlirc. 
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Œven the subtleties inherent to tl'tif field, as weil that the frequent misconceptions that they still 

generate, we give 8 fairly detailed treatment. The originality of this presentation is the use of ~ 

fonnalism that allows both sets and measures (either deterministic or random) to be treated in a 

same unified framework based on seale renonnalization. In the context of measures, our study 

of prefactor oscillations is unusual and relatively new. Our considerations about correlations in 

multifractal a150 involve several original elements. The goal of this chapter 1S to propose a 

classification of cascade models and to detennine 10 what exlent the multifraclal characlerizatlOn 

allows different cascade models to be distingu!shed. 

5.1 BASIC CONSIDERATIONS 

Any positive integrable scalar field p(x), e.g. the mass density at point x can be used to 

eonstruct a measure. The mass Il(S) contained in a volume S, 

J.L(S) = f p(x) dv, 
xeS 

is a simple example of measure. Generally speaking a measure Il associates a non-negative 

number j.1.(S) to subsets S contained in the embedding space IRn (the subscts S fonn a family F 

called a sigma-field, i.e. F is closed under complementation and lInder eountable unions). Il 

satisfies J.L(0) = 0 for the empty set and 

(5.1.1) 

for every countable sequence of disjoint subsets of F. It follows that ~ is an increasing set 

function, i.e. 

S' ::::> S => J,1(S) ~ Il(S') • (5.1.2) 

Outer measures, used for ex ample in the definition of the Hausdorff dimension (see chapter 4), 

are essentially measures with the property 5.1.1 weakened to subadditivity. The measures 
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examined in this section are probability measures which means that if S is the suppon of~. thcn 

J.1(S) = 1 (the support of a measure is the union of ail the open sets G SUC:1 that J.l(G) ~ ()). 

The use of measures rather th an densities to de~cribe geophysical fields is motlvalcd by the 

limited resolution and the intrinsic irregulruity of measured fields. The denslty funclion cannot 

be detennined unless the natural inner sc ale of the field is resolved. which is rardy the C.\SC. 

Measurements rather provide averages over intervals. areas or volumes whlch can ilc naturally 

interpreted us measures (if they are non-negative). These averages provide what wc call a 

coarse-grained description of the measure. The idealized fractal fields used to model irregular 

fields, such as the energy dissipation rate in turbulent flows <.10 not have weil defined densuies. 

i.e their densities are singular. This is one of the characteristic properties of l1lulllfractal 

measures, which are consequently described in terms of the scaling propenies of coarse-grained 

quantities. 

5.2 AN EXACTL y SELF·SIMILAR MEASURE: THE 

MULTINOMIAL MEASURE 

5.2.1 Definition 

Let the unit interval [0,1] be divided into M pieces of equaI sizes. eadi being 1I1,signcd a 

measure Wh i=O, ... , M-I, where 2,Wi = 1. Suppose next that the process IS repcutctl by 

dividing each interval into M subintervals and assigning the jth subinterval of the Ilh lIIterval a 

measure WjWj. After n steps the construction process generates Mn subintervals of ~ize 

ôn = l/Mn, of the form InCi) = [Xi, Xi + on] where Xi = iOn. i = 0, ... , Mn - 1. The 

nurnber of intervals InO) with measure woko ... WM_l kM.1, where ko + '" + kM_1 = n, IS 

N(kO .... , kM-J) = k' kM ' Q. '.' -}. 

n! 

which is the coefficient of xoko ... XM -1 kM-l in the multinomial expansion of 

(XQ + ... + XM-Ü". The measure derives its narne from this property. 
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The multinomial measure is ohtained when the construction process is repeated ad infinilllm. 

Jf aIl the weights Wj are non-zero the support of the measure is S = [0,1 J. If only Me weights 

are non-zero the measure is supported by an Me-piece Cantor set. Notice that the process 

conserves exactly the total measure at each stage in the sense that if In(i) has a given measure 

after n construction steps, the subsequent steps will not change this measure. A cascade 

process with these properties of conservation was called microcanc nical or conservative by 

Mandelbrot (1974). 

This measure is exact/y self-similar in the following sense. Consider one of the In(i) and 

assume that the measure of any subinterval of In(i) has been normalized by /lI In(i)} (the 

nonnalized measure IJ.'{I) ofany subinterval 1 of In(i) is defined by J..l'(I} = ~(l}/J..l{In(i)}). 

ft appears that IJ.' is a scaled down copy of the original measure supported by the shorter 

interval In(i). Roughly speaking, properly normalizej pieces of this probability measure are 

scaled down copies of the original measure. This characteristic property is the basis of the 

renonnalization equations that will be used to analyze this measure. An ill ustrarion of the 

binomial measure (M=2), obtained with the weights w}=O.3 and w2=O.7, is given in flgure 

5.1. 

5.2.2 Pointwise scaling and singularities 

In this section the multinomial measure is shown to be singulllr in the sense that its density 

does not exist everywhere. For a regular measure in a D-dimensional space, the measure J..lx(Ô) 

of a bail centered about a point x is propofÙonal ta BD in the limit Ô~O and the average density, 

defined by Px(ô) = ~x(B)/ÔD, converges for each x as ô~O. By contrast for a singular 

measure there are points for which Px(Ô) diverges as ô~O. For the multinomial measure, we 

will show that the divergence is due to a Loca: scaling property, i.e. J..l.x(Ô) - Ba.(x) as B~O, 

where in general a(x) '# D. 
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Figure 5.1: A picture of the binomial measure, coarse-grained at the scale 1/2 12, obtawed 

with the weights Wl =0.3 and W2=O.7. As will be shown later. these weights reproduce 
L 

accurately the scaling propenies of j«()V/dX)2dX, where v(x) is the longitudinal veloclty ln a 

fully turbulent flow. Random generalizations of the binomial measure will be shown lO provlde 

more realistic models of (dv/()x)2. 
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The set of values Il (In(i)}, i = 0, ... , M-l, provides a possible coarse-grained description 

of the multinomial measure. Using the notation of section 4.2.6, where Xn represents the n 

term base-M expansion of x and In(x) = Lxn, Xn + on], 

where k\(x) IS the number of times the digit i occurs in the n tenn expansion of x. Denoting by 

~r.n(x) the frac lion krln of r's in the first n terms of the base M expansion of x, this can be 

rewri tten in the fonn 

Using On = l/Mn leads to 

M-I 
Il{In(x») = On Un(x) where an(x) = - L ~r.n(x) logMw,. 

r=O 

If the fractions çr(x) exist (i.e. XE l', see section 4.2.6) then çr.n(x) ~ çr(x) as n ~ 00 and 

(ln(x) ~ a(x), where 

M-I 
a(x) = - L çr(x) 10gMwl' (5.2.1 ) 

r=O 

The measure therefore seales at x and a(x) is called the pointwise scaling exponent of Il at x. In 

the special case M = 2, a(x) takes the form 

By contrast with a regular measure for which a.(x) = 0 for ail x, the multinomial measure has 

a continuous speetrum of poimwise scaling exponents. 

Generally speaking, given any measure Il defined on a D-dimensional euclidian space the 

pointwise scaling exponent a(x) at point x is 
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a(x) 
lim 

= ô -+ 0 
log Il(B ô(x» 

log 0 ~5.2 2) 

if it exists, where Bô(x) denote a D-dimensional baIl of radius ô centered about '(. Notice rhat 

n(x) is non-negative since Il is an increasing set function (property (5.1.2)). POlntwise ~caling 

exponents have also been called pointwlse dimensions (Farrner, 1983), c1l1~ICr di!11~n-'l()n, 

(Feder, 1988) or singularity strengths ( Halsey et al., 1986). For the mulunollnal mea-,ure. the 

average probabihty density defined above becornes 

p(x,o) = ô a(x) - D, 

and therefore p(x,ô) ~ 0 if a(x) > D and diverges if 0 $ n(x) < D. The t11ultinollllal 

measure is therefore singular on the set (XE l': 0 $ n(x) < D}. Notice that Ihc~c 

singularities are not Dirac distributions because they carry a zero rneasure: Indeed a(x) > () 

therefore Il(BI5(x)} ~ 0 as ô-t O. 

T:1e multinomial measure gives rise in general to a contlnuous range of pOIi1tWI~C ~caltng 

exponents (if the welghts w) are different). By contrast sorne singular mea ... ur~-, arc 

characterized by a single pointwise scaling exponent, i.e. a(x) IS constant evcrywhcrc on Ihc 

suppon. These measures are sometimes caIledfraclally homogeneolls (a term IIltroouceu by 

Mandelbrot) and are among the slmplest singular measures. A ~imple example (lI Iractally 

homogeneous measure is the special case of the multinomial measure obtai.led whcn ail the Mc 

non-zero weights are equal to w = l!Me (figure 5.2). If Mc = M = 1/r the mca ... urf.! i ... 

uniform and regular and a(x) = 1 for aIl x. If Mc < llr the support S of the mea ... ure I~ the 

Me-piece Cantor set and (5.2.1) yields a(x) = dS everywhere on S. 
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Figure S.2: Triadic Cantor measure. Stacting with a unit mass spread uniforrnly on the unit 

interval, the mass is split in two and unifonnly distributed on two subintervals of length 1/3. 

The same proc~ss is then repeated iteratively on each subinterval. The height of the bars in the 

nth stage is proponional to the average density. The pointwise scaling exponent on the suppon 

is (l = log2/1og3 and equals the box dimension of the suppon. 



5.2.3 Generating function and mass exponents 

Singular measures are uSllally charactenzed by the scahng propertles of coarse-gratned 

quantities such as the generating function. Consider a rneasure ~ defined on a D-dunen\IOnal 

euclidian space and a coyer of the support S of ~ with cubes (or balls) of 'I17e" Il ~11(.s) 

denotes the probability measure of the ph cube, the generating funcuon Xq(ô) l~ deflllt:d lor any 

real number q by 

Xq(8) = inf L (lli(8»q 
i 

(5 2.3) 

where the infimum extends over aIl the possible covers of S. The introduction of the mfllnutl1 

is usually neglected in the literature, but is necessary for Xq(ô) to be umquely dcfll1cd ln 

practice Xq(o) is estirnated by using a regular box-counting gnd. Xq(o) decrea~e" monotonIcally 

with increasing q. Indeed for a glven covering L(lli(O)]q decreases if q mcrt,>a~es and \0 does 

the infimurn. 

We shaH now show that the exact self-similarity of the multinomial measure (~ee section 

5.2.1) leads to a renormalization equation for Xq(o). Denoting by Xq(o;S) the gencnlung 

function of a measure supported by a set S, then 

M 

Xq(8;S) = L Xq(5;St) 
i=l 

where the sets Si are the scaled down supports of the M weighted copies of the measure Il. 1\, 

for fractal sets with NB(Ô), this equality holds exactly if the SJ are positively separated and 

Ô < min [d(Sj, SJ)}' The measure defined on SJ is a scaled down copy of the whole mea~lIrc, 

but rnultiplied by Wj, which implies 
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Consequently 

M 

Xq(Ô;S) = (L w1q) Xq(ô/r;S) 
1=1 

(5.2.4) 

(5.2.4) is fonnally identical to the renormalization equation (4.2.6) for NB (Ô) in the case of an 

exactly self-similar set. The general solution is therefore 

(5.2.5) 

where 

t(q) = - !og(1/r) (5.2.6) 

and Pq(x) = Pq(x+!og(1/r». The generating funetion therefore se ales with Ô and a periodie 

prefactor is obtained, revealing the seale ratio of the measure. t(q) is called the order-q mas,') 

exponenr of the measure. 

For more general measures t(q) is defined by the limit 

t(q) = lim 
ô~o 

log Xg(ô) 

logô 
(5.2.7) 

Il is emphasized (hat t(q) is al ways a concave function of q, i.e. t"(q) s:; ° (more details on 

the properties of t will be given in section 5.2.6.1). MeasurcS for which t(q) exists and is 

finite for any real q will he called scaling measures. So far, the multifractaJ formalism has been 

applied mostly to sealing measures, or to measures for whkh Xl6) seales in sorne limlted range 

of exponents q (Fourcade and Tremblay, 1987). The mass exponents are related to the 

"generalized dimensions" D(q) of Hentschel and Procaecia (1983) by t(q) = D(q) (q-l). The 

finiteness of t(q) implies that Xq(ô) - Pq(Ô) ôt(q) as ô ~ 0, where Pq(Ô) satisftes 

10g(Pq(Ô»/log(ô) ~ 0 as ô ~ O. It is emphasized that in general the prefactor Pq(ô) is 

sensitive ta the box-counting grid used in the estimation of Xq(ô). This problem has already 
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been encountered in the estimation of the prefactor of Ns(ô) for exactly self-.;inlllar set.; ThL' 

originality of the above treatment lies in the exact renonnalization equatlons ùcn\'eù from a 

general statement of exact self-simllru-ity for measures, as weIl that ln prefactor consideration" 

for the generatlng ~unction. 

5.2.4 The density of singularities and the multifractal spectrum 

Another equivalent way of characterizing the measur.: is to examine the frcquenl'Y 

distribution of the values of /l(O) as a function of Ô. Define the Sltlgli[llriry ,\trcl/grll a(ô) of a 

box of measure Il(ô) by 

/l(O) = 0 a(ô). (S.2.X) 

It is ernphasized that a(ô) is distinct From the pOlntwise scalmg exponent a(x) stnce a(o} I!\ 

defined for finite values of 5, while a(x) is defined at point x, Derme the 1111111her of boxe" of 

size Ô and measure 8Œ
(Ô) with a < a(ô) < a + da as n(8,a)ùa, where n(o,a) 1" calkLl the 

de.'1sity ofsingularities. n(o,a) charactenzes the ',requency dl~tnbutlon of 11(0) ln gencral, lor 

any measure, the generating function and the density of singularities are rclated by 

Xq(Ô) = f n(ô,a) Ô o.q da. 
o 

(5.2.9) can be rewritten in the fonn 

00 

Xq(ô) = f n(8,a) e-sa da, 
o 

(5 2 9) 

where s = - q logo> 0 for q > 0 and 0 < 1. Xq(o) is therefore the Laplace tran<;form of 

n(ô,a). The inverse transfonn yields, after the change of variable s = -q logo, 

n(o,a) = l1og81 
21ti 

y-ioo 

J o-etq Xq(ô) dq 
y-loo 
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( 

Using the pair (5.2.9)-(5.2.10), Xq(o) and n(8,a.) can be obtained directly from each othet, and 

in that sense bath characterizations are equivalent. 

For the multinomial measure or any self-similar measure, (5.2.10) and (5.2.5) lead to 

l1ogol YJ'
IOO 

( ) n(8,a) = --. o-aq + 't q Pq(logô) dq. 
2m y_l'><> 

(5.2.11) 

(5.2.11) also holds for any scaling measure but Pq is not periodic in general. It is emphasized 

that Xq(ô) scales exactly with 0 (within an oscillating prefactor). while n(o,a) is a continuous 

superposition of scaling tenns. Nevertheless, asymptotic scaling for n(o,a) is recovered in the 

limit 0 ~ O. Indeed, as Ô ~ 0 the value of q that maximizes -aq + 1:(q) makes the mam 

contribution to the integral and the saddle point method (see Wong (1989) or Bender and 

Orszag (1978» yields the asymptotic expression 

n(Ô,a) _l1ogÔI i 8max{-aQ+t(q)} P (logO) 
" . qO .. m 

21t 

1-r"(qo)!ogÔI 

where qo(a) is defined implicitly by 't'(qo(a» = a. Using 

maXq (-aq + -r(q) 1 = -minq (aq - 1:(q) 1 

and denoting 

f(a) = minq (aq - -r(q) 1 <=> 1:(q) = minq (aq - f( a)}, 

n(ô,a) takes the final asymptotic form 

n(O,a) - o-f(a) Pqo(logO) 
If'(et)logôl 

21t 
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where the identity 't"(qo(a» = 1/f"(a), which follows from the defini~ion (5.2.12), was used. 

(see section 5.2.6 for more details). According to (5.2. 13aj, the de~.:ndence of n05, a) on S 

as 8 -. 0 is mainly ruled by the function f(a), usually called the mu/tifraceal ~pectrum of the 

measure, for reasons that will be exposed in the next section. As seen from (5 2.12), f(a) IS 

the Lt..;endre transform of 't. The interpretation of the twin relaLions (5.2.12) IS the followmg. 

As 5 -.0 the generating function, and consequently the mass exponents 1(q), are umqueiy 

determined by the values of the coarse-grained measure equal to oUo(q), W'here c.:o(q) IS defll1cd 

implicitly by f(<XQ(q» ~ q. The contribution of lhe other values of the measure IS negliglble ln 

the limit 0 -+ O. 

The above derivation of the density of singularities, based on the Laplace transform, is more 

deductive than tht.! standard presentation (Halsey et al. (1986), Hentschel and Procaccia 

(1983». Indeed, the approach presented in the literature is to show that a det1slty of 

singularities of the form 8-f(a), whcre fis assumed to be concave (i.e. l'"(a) ~ 0), IS 

consistent with a generating function of the form 8't(Q) when Laplace's method (~ee W0l1 6 

(1989) or Bender and Orszag (1978» is applied to the int~graI5.2.9 in the limit 8 ~ 0: 

00 

Xq(Ô) = J p(a) saq - f(a) - Smina{aq - f(a») = ô't(q) (52.l3b) 

as ô -. O. By conttast, the general transforms (5.2.9)-(5.2.10) allow to deduce the denslty of 

singularities n(8,o.) direcùy from the generating function. One advantage of thl~ presentation 15 

that the concavity of f(a.) does not need to be assumed, it is derived: As long that 1(q) \<; a 

smooth function, the concavity of f follows from the concavity of't via (5.2.12) becau~e the 

Legendre transform conserves concavity. This inversion method, originally dcveloped for 

probability densities by Fourcade and Tremblay (1987), was applied here to the gencratmg 

function 10 a detenninisnc context. 
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It is emphasized that the Legendre transform (5.2.13b) can take different fonns. Suppose 

for exampJe that a is restrÏcted to a flnite intervaJ Dr = [a.,a+] and that fis finite at the 

boundaries of Of. In this case the minimum of aq . f(a) is not necessarily in~ide Dr. Indeed, 

the equation f' (a) = q does not have a solution in Dr for ~ll q if f'(a) is not infinite at the 

boundaries of Dr. If f' (a) is finite everywhere in De the minimum occurs inside Dr if 

qe fq., q+] where q. == f'(a+) and q+ = f'(a.). For q~ [q., q+] the minimum occurs at one 

of the endpoints of Dr. The Legendre transform of f therefore takes two different fonns: 

(i) qe [q .• q+]: f'(a) = q has a solution in Dr and therefore 

t(q) = CXo(q)q· f(CXo(q», where f'(<XQ(q» = q. (5.2.13c) 

(ii) qE [q., q+l: f'(a) = q does not have a solution in De when qE [q., q+]. If q > 0 the 

mininjJ:n of aq . f(a) is in (l. while for q < 0 it is in (l+. It follows that 

1:(q) = n. q . f(a.) for q> q+ 
and (5.2.13d) 

i.e. t is exactly linear when q~ [q., q+l. In the case where f'(a) is infinite at the boundaries of 

Dr, while f remains flnite, 1: can he shown to he asymptotically linear in the large Iqllimit. In 

thi!' case we obtain a hehavior similar to the multinomial measure, Le. 

t(q) - a; q • f(a;) as q ~ ± 00, 

This result about the asymptotic hehavior of t as Iql-+oo is derived in the appendix 5.1 and 

appears to he original. 
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S.2.5 Interpretation of the multifractal spectrum 

ln this section. it is shown that for the mullinomial measure f(a) has a geometrical 

interpretation in terms of the Hausdorff dlmension of sets supporting the measure. Tlus 

interpretaüon is the basis of the tenninology "multifrlctal measure". Our trealment is based on 

Mandelbrot (1988). The pointwise scaling exponents a(x) (section 5.2.2) allow il natural 

decomposition of the support of the measure in terms of the a-singular ~el~ 

S(a) = (x: a(x) = a}, defined by a fixed value of the singularity strength. Each S(u) 15 

formed of a union of multinomial sets Z(SO, .... SM.l) (see section 4.2.6) of Hausdortf 

dimension 

Indeed a(x), given by (5.2.1), can also be regarded as a function a.z(ço, ... , ~M.l) of the 

fractions ;i, and therefore a given singularity strength is associated with sets of variolls 

Hausdorff dimensions. More precisely 

S(a.) = (5.2.14) 

As Ô ~ 0, n(ô,a) should he mainly detennined by the subset Z(;O, .... ;M.!) of Sen) havlllg 

the largest Hausdorff dimension dHmax(a), i.e. by the "fattest" subset denoted hy Zo.. 

dHmax(a) can he obtained by maximizing the dimension function dH(;o .... , ~M-!) given by 

(4.2.27) with respect to the ;i subject to the constraints gl = LSI - 1 = 0 and 

g2 = az(;o, ... , ~M-l) - a = O. Maximizing dH - Q gl + P g2. where Q and P are ~w() 

Lagrange multipliers, leads to Çl = e-1 M·P WjQ. The first constraint then yiclds 
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The second constraint gives 

(5.2.15) 

which determines imp!icitly the multiplier Q(a). The maximum Hausdorff dimension beLJmes 

dHmax(ex) is therefore the Legendre transform of T(Q), Le. 

dHmax(a) = minQ { Cl Q - 't(Q) } (5.2.16) 

It is noticed that t(q) = T(q), where T is given by (5.2.15). It follows that 

(5.2.17) 

The multifractal spectrum therefore reveals the Hausdorff dimension of the Zex sets of the 

multinomial measure. The: result (5.2.17) is based on Eggleston theorem about the Hausdorff 

dimension of the multlllomiai sets on the interval [0,1]. lt is emphasized that in general 

(5.2.17) does not ho Id for any scaling measure. In the analysis of turbulent fields a test of this 

assumption would require a direct measurement of the dimensions of these sets. It is stressed 

that each Za. is a multinornial set and consequently is dense on the unit interval. Their box 

dimension is therefore 1 for any Cl. If sorne weights vanish the support S of the measure is the 

Mc-piece Cantor set, where Me is the number of non-vanishing weights, Za. is replaced by 

Zar1S and f(a)lmax = dB(S) = dH(S). 

In the special case of fractal homogeneity (Le. equal weights Wj) the mass exponents reduce 

to t(q) = ds(q-l). f(a) is defined only for the values of a for which 't'(q) = a has a 

solution, i.e. for ao = dS where f(ao) -= dS. This homogeneous measure, char~cterized by a 

single dimension dS, is sometimes called monofraclal by opposition to multifractal. 
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5.2.6 Properties of the functions t(q) and f(a) 

For any scaling measure, t and ils Legendre transfonn f(a) have a few g~neral properties 

that will now be derived and illuslrated with the multinomial measure. t(q) and f(a.) wen: 

plotted in figure 5.3 and 5.4, summarizing the main results of the next two sub-sectlons. 

5.2.6.1 Mass exponents 

The properties of t(q) are inherited from the properties of T(q,ô) = log(Xq(ô»)/log5 because 

t(q) = lim T(q,Ô). The main properties of t(q) are: 
~~O 

(i) t(q) > 0 for q> 1, t(q) < 0 for q < 1, "C(1) = 0, 

(ii) t' ~ 0, 

(iii) t"(q) ~ 0, 

(iv) t(O) = -dB(S). 

Ci) follows from XI(Ô) = 1, that ho Ids for a probabili'.y measure, and i)Xq(Ô)/dq S; O. (il) 

follows from 

where Xq(ô) > J and dXq(Ô)/aq ~ O. (Hi) is the result of a classical theorem of probabtlily 

theory (Feller, 1966). For the property (iv), t(O) :: -dB(S) follows from Xo«;) = Nn(o), 

where S is the support of the measure. 

Consider for example the function t(q) for the multinomial measure. If w_ and w+ denote 

the minimum and maximum values of the weights Wi while n. ~ 1 and n+ ~ 1 are the number 

of weights respectively equal ta w. and w+, then from (5.2.6) 

log(n+ w+q) log(n. w.q) 
t(q) - . ÎogO/r) as q -4 +00 and t(q) - - log(l/r) as q ~ -00 

94 



( 

( . 

and t(q) is seen to have linear asymptotes with slopes -log(w±)/log(1/r) as q -4 ±oo 

respectively. 

5.2.6.2 Multifractal spectrum 

We shaH assume here that t' exists and is strictly positive (t' > 0) for a11 q. The definition 

(5.2.12) then leads to 

f(a) = a qo(a) - t(qo(a» (5.2.18) 

where 

t'(qo(a» = a. (5.2.19) 

ft follows from (5.2.19) that the domain of definition of fis Of = [t'(oo), 't'(-oo)] ;: [a., a+] 

(the coneavity of t implies that t'(oo) ~ t'(-oo». It is emphasized that two regions of the f(a) 

eurve ean be distinguished: The range a < D (0 is the topological dimension of the 

embedding space) characterizes the singularities of the measure (Il(Ô)/ÔD :': Ôo.-D4 00 as Ô4Ü) 

while the range a ~ D corresponds to non-singular behavior (Il(Ô)/ÔLt50 as Ô~O). The 

assumption t' > ° implies that (5.2.19) has a unique solution qo(a) for each ae Dr, and qo(a) 

varies in IR when a varies in Of. The main properties of the multifractal speetrum can be 

derived from the above two equations: 

(i) ["(a) S 0, 

(ii) f has a unique maximum at a. = t'CO) and f(a.) = dB(S), 

(iii) f(a) Sa, 

(iv) f(a'1-) = Hm ± q 't'(q) - t(q), 
q-+ 00 

(v) lim
llt 

r = ;. 00, 

Differentiating (5.2.18) twice yields f"(a) =qO'(a) and differentiating (5.2.19) yields 

qO'(a) = l/t"(qo(a», therefore f"(a) = 1!'t"(qo(a» and t lt S 0 implies (i). Therefore f 

has a unique maximum in a = a. where f'(a.) = qo(a ... ) = 0, and (ii) follows from (5.2.18) 
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and t(O) = -dB(S). The third property follows from Young's inequality: For any 

(a, q) e Of x IR, a q - t(q) ~ f(ex.) which follows from the definition of f. But t(lÜ ~ 0 

for q ~ 1 hence for any q ~ 1 and a E Of we have a q - f(a) ~ O. and (iii) then follows 

from q ~ 1. (iv) follows directly from (5.2.18), (5.2.19) and qo(a.) E IR while (v) follow~ 

from f'(a) = qO(a). 

Sorne Of (hese results will now he illustrated with the rnultinomial measure. The boundancs 

of Dr are given by 

_ log(w+) _ log(w _) 
a_ - - log(1/r) and a+ - - log(l/r) 

and (ii) implies 

1 ~ log(wj) 
a. = - Me .4.J log(1/r) 

wi'~O 

logMe 
and f( a.) = loge lIr) 

where Me 1S the number of non-zero weights Wj. With (5.2.6) , (iv) leads to 

log(n~) 
f( a±) = loge lIr) ~ 0 

and therefore f(a) ~ 0 everywhere. 
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Figure 5.3: The function t(q) for a deterministic scaling measure. For the multinomlal 

measure 
_ IosMe 

dB(S) - log( l/r)' 

cx. = ·log(w+)/log(l!r). 

f(cx.) = 10g(n+)/log(l!r), 

cx+ = ·log(w.)/log( l/r), 

f(cx+) = log(n.)/log( lIr) 

where w± are the maximum and minimum values of the weights Wh Me is the number of 

non-zero weights, n+ and n. the number of weights equal respectively to w+ and W., and r the 

sc ale ratio of the cascade. 
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Figure 5.4: The function f(a) for a deter1"unistJc scaling measure. For the multin0l11lai 

measure, 

See figure 5.3 for the values of the other pararnerers. 



5.2.7 Non-concave multifractal spectrum 

So far, we have defined scaling measures by the scaling behavior of th~iJ -generating 

function. Altemately, scaling measures can be defined directly via the scaling behavior of their 

density of singularities. In this case we emphasize that f(a) is not necessari/y concave. For 

example, the sum of two scaling measures with concave multifractal spectra f1 (a) and f2(a) 

yields a total density of singularity n(ô) - ô-ft(a)+ ô-f2(a) if the supports of the two measures 

are separated (the prefactors of each density of singularity are not written for simplicity). In the 

limit ô-.+O we get n(ô) - ô-f(a) where f(a) = max {fI (a),f2(a) J, which is not a concave 

function in general (see figure 5.4b). In this case the generating function is 

Xq(Ô) = Ô't1(Q) + ô't2(Q) - Ôlnm ('t1(q). n(q)} as ô~O and therefore 't(q) = min {'tj (q), 't2(q)}. 

Even if f(a) is not concave .he corresponding t(q) remains concave (t 1S a/ways concave) but 

exhibits in general discontinuities in its derivative at the intersection points of t j and t2 (see 

figure 5.4b). 

In this example we chose tl and 't2 so that they cross only in q = 1 and f'(a) is infinite at 

the boundaries of the domain of definifons of fi and f2. This intersection point defines two 

critical values of Cl, namely Cll = t' 1(1) and Cl2 = t'2(1). Since f(a) = qt'(q) - t(q) where 

t' (q) = Cl and f' (q) = Cl, using q .= 1 yields 

{

al = 't'l(l), (12 = t'2(1) 

f'(Cll) = f'(Cl2) = 1 

f(Cll) = ClI. f(a2) = 0.2. 

(5.2.20) 

The non-concave part of f(a), in the range al ~ (l ~ a2, does not contribute to the generating 

function 10 the limit Ô-+O. Indeed, we will now show that the following truncated density of 

singularities (see figure 5.4b) 

n(ô,Cl) = Ô-f1 (0.) [1 - 6(0. - al)] + 8-f2(a) 6(a - 0.2> (5.2.21) 
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yields the correct Xq(Ô) as ô~O (6 is the Heaviside function: e(x) = 1 for x ~ 1 and 

e(x) = 0 elsewhere). The first term of (5.2.21) on the right hand side makes the followlIll! 

contribution to Xq(Ô): 
al 

Il(Ô) = J ôaq-fl(a) da. 
-co 

If q> fI' (al) = 1 the minimum of aq - fI (a) lies in the range a < al. while for q < 1 Jt 

is in al. Hel.ce. using (5.2.13c&d) yields 

11(Ô) - ôtt(q) e(q - 1) + ôalq - ft(a) (1 - e(q - 1» 

as Ô~O. A similar result 12(ô) is obtained from the second tenn of (5.2.21). Addmg l, and 11, 

using (5.2.20) and factorizing yields 

Xq(Ô) - [otl(q) + ôt '2(I)(q - 1)] e(q - 1) + [ot2(q) + ot'\{l)(q - 1)\ (l - eCq - 1 ). 

But we see from figure 5.4b that 

{
1: l (q) < 1:2'(1)(Q - 1) for q > 1 

1: 2 (q) < 1: 1 ' (l )( q - 1 ) for q < 1 

and therefore 

Xq(Ô) - ôti(q) 6(q - 1) + Ôt2(q) (1 - 6(q - 1», 

which is the exact asymptotic form of Xq(ô) as ô~O. 

We conclude that different f(a) spectra can share the same mass exponent function 't(q). Le. 

t does not define uniquely the multifractal spectrum. The relatiC'n 1:(q)-f(a) is one-to-onc when 

1:(q) is smooth, i.e. differentiable everywhere, which is the case studled by most authors. The 

possibility of a non-concave f(a) for scaling measures does not appear to have been nouccd 

previously. 
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Figure 5.4b: Top: The two multifractal spectra fi and f2 of the measures J..I.I and J..I.2 are 
plotted on the sa me graph. The darker curve f(a,) = max{fl(a), f2(a)} is the resulting 

spectrum for the total measure J..I. = ~ 1 + J..L2 when the supports of J..I.l and J..I.2 are separated. 
The hatched area indicates the pan of f(a) that connibutes effectively to the generating function 
in the Iimit 8-+0. The non-convex part of f, between al and a,2, does not contribute to Xq(Ô) 
as ô-+O. Bonom: The two mass exponent functions 'tl and 't2 of J.Ll and J..L2 are plotted on the 
same graph. The darker curve is the resulting spectrUm 't(q) for the total measure. t(q) is 
concave but is not differentiable in q = 1. 



5.3 Multiscale self·similar measures 

5.3.1 Definition 

A natural generalization of exact self-simllanty for measures is multiscale self-,wmlanty, 

where the pieces generated at each construction step are allowed to have different ~Ize~. SUl.:h 

measures have been used in partlcular by Hentschel and Procaccta (19R3) a~ a modcl of the 

invariant probability measure assoclated with a non-hnear chaotH: ùynamICal 'Iy'ltcm ln tlm 

context, the measure is defined through the motion of a point in space: Glwn for exampk a 

discrete-time orbit (xd, i=l, 2, ... where Xi E IRD, the space IS divlded in cube, of sm: Ô and 

the probabllity measure of a given cube is defmed to be the fraction of tlme ~pcnt by :-:1 1Il the 

cube. They showed that rnultiscale self-slrnilarity was flexible enough to accollnt for the 'IcallJ1g 

properties of the generating funcuon for sorne dynamical systems. 

For a multiscale self-similar measure the support S IS composed of M ÙI'l,OInt Wpll'~ SI 

scaled down by different ratios rt, r2, ... , rM. By definitlon, the nomlaltzed mea ... ure delll\ed 

on each SI (see section 5.2.1) is self-similar to the full measure. For example, the mll/tl.lca!" 

Cantor measure (figure 5.5) 15 constructed by replacing a unit cube of probabtlity Illea'lure 1 hy 

M disjoint subcubes of sizes fi ~ ... ~ rM ~ 1 and measures W l, . , W~l, the to~al mea'>lIn: 

being conserved. This process is then repeated ad infinitum on each subcube: Each cube 01 '>Ile 

li and measure mi is replaced by M subcubes of sizes rI I, ~ .. :5 fM Il and rnca~Ufe,> 

Wl ml' ... , WM ml' The special case of equal scale ratios corre"iponds 10 the exactly 

self-similar multinomial measure. 

A multiscale self-similar measure also gives rise to a spectrum of pOIntwI,>e ,>cahng 

exponents, which can be shown by considering an expansion adapted to thl\) model' The 

position of a point of the support of this measure can be detemlined by the ~equellce ni n2 

where ni is the label of the set SI chosen al level i of con~trucuon. One may c()n~idcr the ,>et of 
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Figure S.S: A two scale Cantor measure with rt=O.25, r2=OA, wl=O.6, W2=OA. The height 

of the bars at the nth stage is proportion al to the average density PI=I-1i/Ôi, where }li is the 

measure of the segment of length Bi. 



points l' for whi~h the fractions nj/n converge as n -) 00. For ully pOll1t in l' the POlI1I\\'I"L' 

scaling exponcnt exists and takes the same form than the one obtained for the multlllomlal 

measure. 

5.3.2 Generating function, mass exponents and multifractal spectrum 

The generating function satisfies the renOlmalization equation 

M 

Xq(5) = L Wlq Xq(5!I t), 
i=l 

(5.3.1 ) 

a direct generalization of (5.2.4). Let us define 'to(q) to be the real root of 

M 
L Wjq r. -"t(q) = 1. (5.3.2) 
1=1 

'to(q) exists and l.s unique because a'to(q)/oq > 0, which can be checked by dlffcrentiating 

(5.3.2) and using the constraints 0 < Wl < 1 and 0 < rt < 1. Suhstitlltlllg 

Xq(Ô) = Ô"to(q) Pq(Ô) in (5.3.1) leads to the prefactor equation 

M 

Pq(Ô) = L Wlq r(to(q) Pq(Ô/fi), (5.~.3) 

i=l 

whieh is in a fonn identieal to the pre factor equation of NB(8) in the case of a multiscalc 

self-similar set. U sing the results of the appendix 4.1, the generic sol utiol1 of (5.3. 1 ) becomc'i 

Xq(o) = Ô 'to(q) { CO + Rq(Ô) }, (5.3.4 ) 

where Rq(Ô) ~ 0 as Ô ~ 0, and therefore the prefactor of Xq(Ô) is constant In the hmit ô~() 

The mass exponents of a multiscale self-similar measure IS therefore 'tO(q), the rcal mot of 

(5.3.2). The introduction of incommensurate seale ratios r. is found to ~pOlI the penodlc 

oscillations of the prefactor of the generating function, as for NB(Ô) with muluscale ~elf-~imllar 
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sets. The density of singularities is obtained from Xq(S) with the transfonn (5.2.10) and the 

saddIe point method implies that f(a) is the Legendre transfonn of 'tO(q). This treatment has the 

originality of showing clearly the analogies between the renonnalization equations satisfied by 

NB(Ô) and Xq(ô) for multiscale self-similar sets and measures respectively. 

105 



5.4 GENERALIZATION TO RANDOM MEASURES 

5.4.1 Generating function and multifractal spectrum 

Randomness is an essential ingredient of turbulent fields in general, and of the encrgy 

cascade process in particular. In this section we generalize the concepts of generating function 

and multifractal spectrum to random measlIres in a way that allows the renollnalizal1on 

arguments to be extended directly to random self-similar measlIres. Consider a statlstl\:al 

ensemble of measures sharing the same support of topological dimension D (c.g. li hne 

segment). We define the generating function X: q(&) of this random measure by 

(5.4. 1 ) 

where Xq(&) is computed on each realization. It follows from (5.4.1) that 

(5.4.2) 

if the random measure is spatially homogeneous. Pursuing the analogy with dctcrministic 

measures, the generalized mass exponents 't*(q) are defined by 

't*(q) = Ihn log(X* q(5»/log5. 
ô.-.o 

Using (5.4.2) yields 

t*(q) = - D + Hm 
8.-.0 

log «j.l(ô»q> 

logô 

(5.4.3) 

(5.4.4) 

A random measure for which 't*(q) exists and IS finite for ail q will he called a random .\calill)t 

measure. The singularity strength (l(&) is now a random variable pararnetrized by 0, dcftncd 

implicitly by 

(5.4.5) 
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If g(a,S) denotes the probability density of a(ô) , then the generalized density of singularities is 

(5.4.6) 

As in the detenninistic case, 'X: q(S) and n·(S,a) are related by the pair of integral transfonns 

(5.2.9) and (5.2.10). In the limit Ô ~ 0, it follows from the saddle point method that 

where log(P"'(~,(l»/log~ ~ 0, and where the generalized multifractal spectrum is given by 

(5.4.7) 

i.e. f*(a) is the Legendre transfonn of 't*(q). The general properties of 't* and r (section 

5.2.6) remain unchanged except for a fewexceptions: Firstly, the constraint 't*"(q) ~ 0 does 

not prevent t from being negative for q large enough; secondly, f"(a) no longer needs to be 

positive. Indeed the Legendre transform of a function satisfying t" ~ 0 is not, in general, 

positive definite. Fourcade and Tremblay (1987) claimed that a negative range for f*(o.) 

appears to he possible only in the context of random measures. 

Remark 1: The scaling of a random measure is sometimes studied (ManJelbrot (1974), 

Schertzer and Lovejoy (1985» in terms of an average density p(S) = /l(Ô)/ô D and the 

singularity strength 'Y is given by p(Ô) = Ô"Y. Scaling exponents are then defined by 

K(q) = - lim 
&~O 

log« p( a) )q> 

logS 

and the density of singularity takes the form n(S, y) = ôC(y) where 

C(y) = maxq ()q - K(q) } 

It follows from (5.4.8a) that 't"'(q) and K(q) are related by 
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t*(q) = D (q - 1) - K(q). (5.4.9a) 

yand the function C(y) are related to a and f(a) by 

y = D - a and C(y) = D - f(a), t5.4l)h) 

which follows from (5.4.8b). C(y) is then called the codimension funcrÎo/1. (5..tXa-b) art: 

essentially the definitions used in section 3.3.3 for the energy dis~ipation field ln one of our 

formulations of the 3rd Kolmogorov hypothesis. 

Remark 2: The idea of using scaling probability densities to obtain multiscaling moments ha~ 

been used in turbulence by Frisch and Pari si (appendix of Frisch 1983) to expia," the nor;lincar 

scali'1g exponents of the velocity structure functions «.1v(L»h> for h ~ 4, as obscrvcd by 

Anselmet et al. (1984). They suggested that the probability density of n. defined lInpllcllly hy 

~v(L) = La, was of the forro p(a) LC(a). It follows that 

«Av(L»h> = J p(a) Lah - C(a) da - LÇ(h) 

as L~O, where Ç(h) = mina{ ah - C(a)}. It should be nmed that neither 8v(L) nor IAv(l.)1 

define a measure. In this context a is interpreted as a kind of statistical Holder cxponcn! for (he 

velocity field (see chapter 2 for a discussion of Holder exponent). The gcomctncal 

interpretation of C(a) remains unclear. 
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5.4.2 The random multinomial measure (microcanonical case) 

In this section the concept of self-similaritj' is extended to random measures, and we show 

how the previous renormalization equations for the generating function can he generalized to the 

stochastic case. The possibiIity of a negative r(a) for random measures is examined. We stan 

with a simple example: The random multinomial measure. The difference between the 

deterministic and the random multinomial measure is that the weights used in the construction 

are not rigidly fixed, theyare random variables Wj. The variables Wj at different stages of 

construction are assumed to be independent. The total weight of a segment (or a square or a 

cube ... ) is exactly conserved in the construction, i.e. 

M 
~ Wi = l, (5.4.10) 
i=l 

which implies that the variables Wi at a same stage of construction are correlated. Random 

cascade processes with this property of conservation were called microcanonical or conservative 

by Mandelbrot (1974). The constraint (5.4.10) implies Wi S; 1 and <W> = I/M. A 

realization of a random binomial measure is given in figure 5.6. 

The renonnalization argument used in the deterministic case can be generalized to this 

random measure. The support S of a realization of the random measure splits into M subsets Sj 

that are statistically self-sunilar to S. but scaled down by a factor r. For the generating function, 

the statistical self-similarity of the measure is expressed by 

(5.4.11) 

where "~,, denotes the equality in probability distribution, and where Wi and Xq(Ô;S) are 

statistically independent. If the sets Sj are separated and if Ô < min d(Sj,Sj), then 

M 

Xq(Ô;S) = L Xq(8;Si), (5.4.12) 
i=l 
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Figure 5.6: A random binomial measure with Wl = 0.3 and W2 = 0.7, coarse-gramed al 

scale 1/212• At each cascade step the location (left or right) of the weights is chosen randomly 

with equal probability. 
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Using (5.4.11), it follows from (5.4.12) that 

(5.4.13) 

where the variables Xq(a/r;S)lj are independent and identir:ally distributed. A statistical 

averaging on (5.4.13) yields (the argument S is dropped for simplicity) 

(5.4.14) 

The general solution of (5.4.14) is 

'V.q(~) = ~.'T"(q) Pq(logl:) h .() d 10g<WI> 
1\. un ~ U were 't q =- s- logCl/r) (5.4.15) 

with ds = log(M)/log(l/r) and Pq(logÔ+logO/r» = Pq(logÔ). Periodic oscillations of the 

prefactor are therefore also obtained in the stochastic case. The renormaIization equation 

(5.4.14) can he directly generalized to the case of a multiscale random measure. Sorne specifie 

values of 't·Cq) are 

't*(Q) = - dS - 10g(1 - PO) and 't.(l) = 1 - dS, 
log(1/r) 

where PO = Prob{W = O}. The unique maximum of r occurs in 

... 1 logW ~ ... loge 1-PO) 
a. = 't '(0) = - 1-PO < log(1/r) > and l (a.) = - 't CO) = dS + log(lli-) 

ln this model the weights Wj are random but their positions are constrained by a ngiè grid. 

In a more general model these positions could he chosen randomly at each cascade st,~p, thu\ 

removing the artificial "grid-effect". As long that the randomly positioned daughter 

subsegments remain contained in their mother segment, the renormalization equation (5.4.14) 

still holds and consequently the prefactor may still oscillate. Therefore the oscillations are not 
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necessarily produced by the rigidity of the splitting grid, but are rather due to the existence of 

privileged scale ratios. 

It will now be shown that r'(ex) can be negative for the random multinomial measure. 

Assume for ex ample that W has a discrete and bounded probability distribution, with w. and W t 

denoting the minimum and maximum values of W. t*(q) becomes 

m 

'C*(q) = - dS - log{L, P1W1
q }/log(1/r), 

1= 1 

where Pi = Prob{W = w.}. Ifp+ and p_ denote the probabilities corresponding to w+ and w_ 

respectively, then 

"C*(q) - -log(p+w ... q)!log(1/r) as q -Hoa and "C*(q) - - 10g(p.w.q)/10g(1/r) as q ~ -00. 

The limit values of f, obtained with the limits (iv) (section 5.2.6.2), are 

f*(<x+) = dS + 10g(pJ/log(1/r) and f'*(<x_) = dS + log(p+)/log( 1 Ir) (5.4.16) 

and are therefor~ negative if p. or p+ < (l/r)dS respectivcly. Notice that negative dimen'il<lIl'\ 

corresponds 10 decaying singularity strengths: Indeed the number of values of Cl(O) wllh 

ex < a(o) < a+dex is proportional to ô-f"(a) (within a logarithmic correction) and thcrcfore 

goes to zero as Ô-.O when [*(a) < O. It also follows that r'(u) cannot be intcrpreted as li 

Hausdorff dimension in the negative range since fractal dimensions are always po~ltlve. Thl~ 

example illustrates the faet that f*(a) does not have in g.!neral an interpretation in tcrms of 

dimension . 
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5.4.3 The random multinomial measure (canonical case) 

In addition to the possible emergence of a negative range for r(a), randomness also brings 

the possibility of divergent generating functions and unusual hehaviors of the mass exponents, 

e.g. "C.(q) < 0 for q > O. This can he illustrated with the canonical random multinomial 

measure, obtained from the previous model by replacing the constraint of exact conservation 

(5.4.10) by a condition of conservation on the average: 

M 
< I. W i > = 1 => < W > = 1/M. 

1=1 
(5.4.17) 

By contrast with the previous model, the weights are independent of each other at a given level 

of construction. In addition, they are no longer constrained by W1 S; 1, i= l, ... , M, whkh 

makes room for larger values of the multiplicative factors W1• The weaker constraint (5.4.17) 

of conservation on the average implies that the total measure of a realization obtained after an 

infinite number of cascade steps is no longer unit y, but is rather a random variable. Hence the 

canonical process does not generate a probability measure. The renormalization equation 

(5.4.14) and its solution (5.4.15) still hold. However a complication arises from the 

non-conservation of the measure: The measure JlnO» obtained after n steps of construction 15 

affected in general by the cascade steps arising at scales smaller th an B. and one must worry 

about the convergence of «J.!n(ô))q> as n~. When large tail probability densities are lIsed for 

W, we shaH now see that the periodic prefactor of '1.: q(Ôr!) in (5.4.15) may diverge for sorne q 

in the limit n~. 

For reasons of symmetry. the initial measure given to [0,1] at the beginning of the 

construction will he made random and equal to W (this shght departure from Mandelbrot's 

convention (1974), where the initial rneasure is unit y, brings significant simplifications later 

on). Denoting by J.l(Ôn) the meaSl1re of an interval of size bn = rn, it is seen that 
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(5.4.18) 

where Il(ÔO) is the order-q moment of the total measure generated by the fully construcled 

cascade process (figure 5.7 for a graphical explanation of (5.4.18)). In the microcanomcal 

case, the exact conservation of the measure implies trivially that Il(Ôo) = 1. ln the canonical 

model, hov/ever, two alternatives arise: 

(ii) «Il(ÔO»\l> diverges when q > qc ~ 1. 

In the flTst case, «Il(ÔO»q> becomes independent of the construction inner scale Tl as 11 40 (or 

equivalently of the number of cascade steps n) and the scaling of the generating function lS nOl 

affected by the factor «J,L(ÔO»q>. In the second case however, «Il(ôo»q> keeps a strong 

dependence on 11 as 11.-+0. This dependence changes the scaling of X· q(ôn ) and rcslllts ln the 

divergence of «Jl(ÔO»q>. 

This phenomenon of divergence of moments, first examined by Mandelbrot (1974), ansc~ 

when the field is very intermittent. Cascade steps at large scale allow the determlnatlon of the 

low order moments of J,L(Ô), while high order moments - representative of rare nlletuatlon~ . 

are essentially determined by cascade steps arising at scales srnaller than Ô. The origin of the 

divergence can he briefly explained as follows. If J,Ln denotes the measure obtamcd after n stcp' 

of construction then Iln(ÔO) is the total measure of the field construeted down 10 seale on The 

multiplicative structure of the field implies 

d M 
Iln+l(ÔO) = W L Iln,i(ÔO) with llo(Oo) = W and n = 0, 1,2 ... (5.4.19) 

1=1 

where ",g" denotes an equality in probability distribution, and where Iln,.(Oo) and 
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Hence 

d 
j.1(~) = Wo W 1 j.1(ÔO) 

Wz 

---- ...... --- -- -- --...... , ......... . 

This pan of the cascade 
process builds a measure 
equal in probability 
distribution to the total 
measure 1J.(80). 

where .. ~. denotes the equality in probability distribution and where the randorn variables Wo. 

W 1 and fJ,(ÔO) are independent. Raising to the power q and averaging yields 

a special case of the general result (5.4.18), 

Figure 5.7: Graphical explanation of the relation (5.4.18) in the special case of a 1-0 cascade 

with splitting factor M = 2. 
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W are independent statistically (see figure 5.8 for a graphical explanation of (5 ~.19) 1. lbmg 

<W> = 1/M (see (5.4.17», (5.4.19) implies that 

i.e. the random series (~n(ÔO)} is a martingale. A recurrence relation for «).ln(8n))ll> Lin ht' 

derived from (5.4.19) by raising both sicies to an integer power q and averaging' 

M 

«lln+l(ÔO»q> = <WOo> <( L Iln,i(Ôo) }q> . (5.4.2m 
1=1 

In the special case q = 2, (5.4.20) becomes (making use of the independence of the Iln.I«()(I)) 

generally, Mandelbrot conjectured that divergence happens for q > 1 if and only Il 

(:; -1 21 ) 

which defines a divergence range q > qc > 1, where qc is defined by <Wql> = I/M Thl\ 

result was proved rigorously by Kahane and Peyrière (1976). U:-.ing (5.4 9) and (54 15). 

(5.4.21) is equivalent to 

or K(q) > D (q - 1), (54.22 ) 

When W has a discrete probability distribution, it was shown that 't.(q) > () for li :> 1 and 

therefore divergence of moments does not occur. For more general unbollmkd (lI"tnhlllloll\ 

however, (5.4.22) may be satisfied in the range q > 'le, wherc lit. > 1 1" dt:! 111\:<1 Il\' 

't*(qC> = O . 
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One cascade steps (n = l, 81 = 1/2) 

Wo 

=> Total measure :: J.ll (00) 

Two cascade steps (n = 2, &2 = (112)2) 

W 

Wo Wo' 

{ 
Wi,l WI,2 WI,l' W1,2' --. --- -- ---

=:> Total measure == J.l2(OO) 

where 111.1(&0) and 111.2(00) are independent and identically distributed. This a special case of 

the general relation (5.4.19). 

Figure 5.8: A graphical explanation of the recurrence relation (5.4.19) in the special case of a 

one dimensicnal cascade with splitting factor M = 2. 



In the divergent case it is interesüng to examine the asymptotic expression of «/-ln(OW1> 111 

the limit of large but finite n. As seen from (5.4.20), for an integer q > qc 

as n~oo, where k(q) is a constant. With rn = 11/Ô and (5.4.15). where Tl is the inner 

construction scale of the cascade process, this beccmes 

(5.4.24) 

't*(q) < 0 for q > qc and therefore «/-ln(Ôo))q>~oo as 11~0 as expected. (5.4.18) finally kalis 

to 

{

q < qe, «/-l(ô»q> - ô't*(q)+D «Il(Oo»q> 

q > qe. «Il(ô»q> - k(q) Ô't*(q)+D (Tl/Ô)'t*(q) = k(q) ÔD 11 t "(q) 

as ,,~O. In terms of the average density p(Ô) = Il(Ô)/ÔD, (5.4.25) becomes 

{

q < qe. «p(ô»q> - ô't*(q) - D(q-l)«Il(Ôo»q> 

q> qe. «p(Ô»q> - k(q) Ô-D(q-l) Tl't*(q) 

as ,,~O. For the generating function, (5.4.2) implies 

{

q < qe, X* q(Ô) - Ô't*(q) «Il(ôo»q> 

q> qe, X*q(Ô) - k(q) 11't*(Q) 

(5.4.25 ) 

(5.4 26) 

(5.4.27) 

as ,,~O. We conclu de that divergence of moments leads 10 a breakdown of the ~calJng 

dependence ofX*q(Ô) on Ô. i.e. the effective mass exponent (~r*) vani.\IIesfor /arRe enouRh li 

As will be shown in chapter 6 thIS behavior is not observed for the energy dl<"slpallon field in 

fluids. (5.4.27) suggests that the limit measure is composed of a multifractal mca<.,ure - that 

determines low order moments - plus a finite set of isolated intense splkes that dctermine 

entirely high ordrr moments. lndeed, if the spikes are isolated then varying Ô does not change 
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Jl(Ô) and therefore X· q(8) remains constant, as shown by (5.4.27). The possibility of 

decomposing a divergent measure in two pans does not appear to have been emphasized 

previously. 

Our presentation of canonical cascade processes is simpler than the original Mandelbrot 

(1974) exposition because of our different convention about the measure given to the initial unit 

interval. In particular the recurrence relation (5.4.19) is simpler than Mande1brot's equivalent 

equation, which involves M different weights Wj instead of a single one. Notice that for q 

integer (5.4.20) can be developed and averaged using a multinomial expansion, which leads to a 

non-Iinear system of cquations for the moments «~n(8o»Q>. For example, in the special case 

M = 2 we obtain 

yQ(n+l) = <Wq> t (~) yk(n) yq-k(n), q = 2, 3, ... 
k=O 

where yq(n):: «Jl.n(80)q>. A numerical iteration of this system allows an acclirate and 

computationally efficient determination of «Jl.n(Ôo»q>. We present this possibility as an 

attractive complement to the computationally expensive Monte-Carlo methods sometimes lIsed 10 

study canonical multiplicative cascades (Lavallée, 1990). It should be noticed that this system 

can also he used to check the validity of the asymptotic form (5.4.23). 
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5.5 CORRELATIONS IN SCALING MEASURES 

5.5.1 Brier review 

The complete characterization of a random field f(x) requires in general the specification of 

the n-point probability distribl.tions of (f(XI), ... , f(xn)} for all values of (X), .. , xn) and for 

all n (Monm and Yaglom, 1975). So far, the scaling properties of a measure have becn 

characterized by the scaling exponents of the generating function or of <[~(o)lq> for random 

measures. Since Il(ô) involves several points of the field generating the mea~l1re, the mas~ 

exponents con tain sorne information about the n-point probability distributions, but the extent to 

which t(q) (or equivalently f(a» characterizes the field still remains undear. In this section wc 

review briefly previous work on related questions (Cates and Deutsch (1987), Siebc~ma and 

Pietronero (1988), Meneveau and Chhabra (1990). Lee and Halsey (1990)). 

In order to go beyond the multifractal characterization Cates and Deutsch (1987) propo:-.cd \0 

consider several boxes simultaneously in order ta take into account the correlations bctwccn 

their measures. The simplest choice is to eonsider pairs of boxes. Deno\1I1g by Ilx(T» the 

measure of a box of size 11 centered about a point x, and by r a lag vector, they defmcd the 

correlation function 

(5.5.1 ) 

For single seale isotropie random muitinomiai measures the independence of the multiplicative 

factors allows the decomposition 

where r = Irl. Using the usuai multiscaling «llx(11)lllx(r»P> = k(p) (11/r)'t(p)+D yicld .. 

Cll(p, q; r) = k(p) k(q) Cr(p, q; r) (11/r)t(p)+D (11/r)t(q)+D, (5.5.2) 
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where Cr(p, q; r) = < (llx(r»P(Ilx+r(r»q >. So far, the main issue discussed in the literature 

has been the calculation of Cr(p, q; r) for simple models. The first attempt was made by Cales 

and Deutsch who simply made the approximation Ilx(r) "" Ilx+r(r). Using 

«Il,,(r»P> = k(p) (rlLo)'t(P)+D, where 1..0 is the outer scale of the multiplicative process, they 

consequently obtained 

CrCP, q; r) = k(p+q) (rlLo)'t(P+q)+D, (5.5.3) 

Replacing (5.5.3) in (5.5.2) yields 

<:.n(p, q; r) = k(p) k(q) k(p+q) (TlILo)'t(p+q)+D ('I1/r)'t(P)+'t(q)·'t(p+q)+D, (5.5.4) 

that implies that the scaling of the correlation function is entirely deterrnined by the scaling of 

single boxes, i.e. by the function t. From now on we shaH refer 10 (5.5.3) as the Cates and 

Deutsch scaling (in short, CD-scaling). 

Later on Siebesma and Pietronero (1988) showed on a special case of deterrninistic 3-weight 

multinomial measure that the assumption J.L,,(r) "" Ilx+f(r) was untenable but that the correct 

scaling exponent t(p+q) + D of Cr(p, q; r) was nevertheless obtained using this assumption. 

Finally Meneveau and Chhabra (1990) and Lee and Halsey (1990) showed that sorne 

combinations of p and q can ernphasize the difference between ~,,(r) and ~x+r(r) and 

consequently break the CD scaling in sorne regions of the (p,q) plane. We will return in section 

5.5.4 on the CD-scaling breakdown. 

S.S.2 Extended CD-scaling for separated self·similar measures 

In this section our goal is to show that an extended fonn of CD scaling can be denved 

rigorously for any deterrninistic or random separared self-sioùlar mcasure using renonnalization 

arguments. The more general case of a non-separated random self-similar measure will be 
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examined in section 5.5.4 with a specifie ex ample. For detenninistic measures we define the 

correlation generating function 

4>p,Q(a,r) = inf L [llxj(B)]Pllxj+r(B)]q, 
i 

(5.5.5) 

where the infimum is taken over all the covers of the support of the measure by boxes of size a. 

We restrict ourselves to the special case where r = na, i.e. r is related to the coarse-gruining 

resolution a. For one dimensional measures, this restricted correlation generating function i~ 

approximated by 

Cl>(n)p,q(B) = ~p,q(B,nB) = L [lli(B)]Plli+n(B)]q, 
j 

(5,5.6) 

where lli05) and lli+n(Ù) are the measures of two boxes separated by a distance nÔ. Our c!um:e 

r = na is motivated by the fact that (J>(n)p,q(a) is a natural scale invariatll quantit)' for 

self-similor measures. This property allows to use renormalization equauons in a sImple and 

naturai way. Note that the quantity Cr<p, q; r) defined above for random measure~ correspond!'! 

to the special case n = 1. i.e. <(J>(1)p,q(B» = (Lo/B)D Cô(p, q; a). 

Consider a deterministic multiscale self-similar measure, with support S = SI U ... U SM. 

where the sets Sj are self-similar to S. Following the steps of section 5.2.3, and aS~lIm1l1g that 

nB < min d(Si,Sj), the self-similarity of the measure leads to the renomlalization eqllatio/1 

<!>(n)p,q(B) = L wl+q <!>(n)p,q(a/rJ) 

j 

and the trial solution al yields the characteristic equation 

Therefore 

<!>(n)p,q(a) = at(n,p,q) (c + R(a)) 
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where R(ô)--+O as Ô-+O and 

t(n.p,q) = t(p+q). (5.5.7) 

(5.5.7) generalizes the CD scaling that corresponds to the special case n = 1. We emphasize 

that (5.5.7) holds for ail (n, P. q), i.e. the possibility of CD scaling breakdown noted by 

Meneveau and Chhabra for space fi11ing measures does not oceur for separated self-similar 

measures. 

Suppose now that the weights Wj are random but that the seale ratios rj are fixed. The 

self-similarity of the measure then implit;:s 

cJ>(n)p,q(8) ~ L Wjp+q cJ>(n)p,q(ô/rj)lj. (5.5.8) 
J 

where Il ~ " denotes the equality in probability distribution, and where the random variables 

<!>(n)p,q(ô!rj)lj are independent of the Wj. An ensemble average on (5.5.8) yields 

<<!>(n)p,q(Ô» = <Wp+q> 2, <cJ>(n)p,q(8/rj» 
j 

and the trial solution ôt leads to the characteristic equation 

M 
1 = <Wp+q> 2, rr1(n,p,q). 

J=1 
(5.5.9) 

which defines t(n,p,q) implicitly. On the other hand the renonnaliza~ion equation for Xq(Ô) with 

the same random measure is 

M 

<Xq(Ô» = <Wq> L <Xq(ô/rj», 
i 

which leads to the characteristic equation 

M 
= <Wq> L rf't(q)· 

j=l 
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Comparing (5.5.9) and (5.5.10) leads again to (5.5.7) and therefore the extended CD sculing 

also holds for all (n,p,q) in the random separated case. This result appears to be original. 

5.5.3 Constraints on correlations due to single-box scaling 

We now retum to the more general problem of determining to what extent the only 

assumption of single box scaling, Le. 

<[~(Ô)]q> = c(q) 8'((Q), y(q) = t(q) + D, (5.5.11) 

restricts the scaling of «Jli(B»P(Jli+n(B»q>, where Jli(B) and Jli+n(B) are the measures of b{)xe~ 

separated by a distance nB. Consider a one dimensional scaling measure. An interval of size 28 

and measure ~(2ô) can always he split in two adjacent and disjoint intervals of sizc Ô and 

measures III (8) and 1.12(B) and therefore 

Jl(2B) = Jll(Ô) + Jl2(B). (5.5.12) 

Squaring (5.5.11) and averaging gives 

if the measure is spatially homogeneous. (5.5.11) then yields 

(5.5.12a) 

where Cl = c(2) (2"(2)-1 - 1). <JlI (Ô)J.l2(Ô» is therefore entirely determined by (5.5.11) 

Similarly, raising (5.5.12) ID the pL:wer 3 and averaging yields 

Raising (5.5.12) to the powers 4 and 5 and averaging yields 

6 «~1(B)1!2(8»2> + 8 «IlI(Ô»31l2(Ô» oc 8'«4) 
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l 
Hence for powers greater than 3 we fmd that the splitting procedure and the single box scaling 

(5.5.11) no longer detennines uniquely the quantities «J.1i(Ô»P(J.1J+l(Ô»Q> but rather 

detennines linear combinations of them. 

Altematively we may divide an interval of length 3ô in three subintervals of length Ô so that 

(5.5.13) 

Squaring and averaging (5.5.13) then yields 

and using (5.5.11) and (5.5.12a) leads to 

(5.5.l3a) 

Raising (5.5.13) to the power 3, averaging and using (5.5.11), (5.5.l2a) and (5.5.12b) implies 

(5.5.13b) 

Raising (5.5.13) to higher powers leads to relations of the type (5.5.12c) that do not determine 

directly the correlations. More generally an interval could be split into n subinterval and the 

same method implies 

(5.5.14) 

for n = 1, 2, 3, .... 

In conclusion, our splitting procedure implies that low order integer correlations are forced 

to satisfy the constraint (5.5.7), while higher order correlations obey weaker constraints of the 

type (5.5.l2c) which are consistent but not necessarily equivalent to (5.5.7). These weaker 
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constraints might therefore make room for different scaling behaviors (Le. non CD-scaling) of 

the correlations «lli(8»P(lli+l (S))q>. An ex ample of this behavior will he given in the next 

section. 

5.5.4 Correlations in random microcanonical multinomial measures 

The calculation of «IlÎ(8»P(~1+ 1 (S»q> is more delicate for non-separated self-sirnilar 

measures. Sorne exact results have been obtained for a deterministic slIlgle scale and 

three-weight measure (Siebesma and Pietronero, 1988) and for a single scale measure lI~ing 

two weights, restricted to two values, with random positions (Lee and Halsey (1990) and 

Meneveau and Chhabra (1990». In this section we give an exact I-D ca1clllation of the 

correlations for a more general family of random single-seale microcanonJcal 1ll1lltinol1lwI 

measures, using M weights having arbitrary probability distributions. 

The scale ratio of this multiplicative process is r = l/M. There are Mn disjolllt Intclvalo; of 

size 8n = rn and the order-l correlation generating function is 

Mn_l 

<!>(l )p,q(Ôn) :: L [~l( Sn)]P[~l+ 1 (Sn) ]q. 
i=l 

We can write 

Mn M-I 
<!>(1)p,q(8n+I) = L L [lli(8n)Wi,j]P[~i(8n)WI,j+dq 

Î=l J= l 
Mn-l 

+ L [J.lI(Sn)WdP[~I+I(Ôn)WI+Jlq, 
1=1 

(55.15) 

(S.5.1() 

where Wi and WHI denote random weights belonging to different and adjacent Illothel cddlc\ 

of size 80, while W1,j and W1,J+l denote adjacent welghts belonging 10 the ~ame Ilh mothcr cdlly 

of size Ôn (see figure 5.9 for a graphical explanation of (5.5.16». WJ and WJ +) ,Ire thcn:forc 

independent random variables while W1,J and W1.J+! are correlated by the rnJ<:rocanonlca) 
M 

constraint L Wi.J = 1 for all i. Taking an ensemble average on (5.5.16) yleld~ 
J=1 
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where Xq(Ô n) is the order-q generating function of the measure given by 

<Xq(~n» = (M<wq»n in this case (see (5.4.14) section 5.4.2). Introducing the simplifying 

notation ~n == <C1>(l)p,q(~+l»' the above equation reduces to 

where 

and 

~n+l = b ciln + A en, 

{

b = <WP> <wq> 
A = (M-I) <WPi.JWqi,j+l> 
c = M <Wp+q> 

M-I 

q,1 = < LWP,Wq'+l> = (M-I) <WPi.jWQi.J+l> = A. 
i=l 

The general solution of (5.5.17a) using the initial condition ~1 = A is 

cn - bn 
~n = A c _ b ' 

(5.5.17a) 

(5.5.17b) 

(5.5.18) 

where 5n = rn. If c > b then ~n - k en as n ..... oo (or equivalently 5n ..... 0) and therefore CD 

scaling is recovered (k = A/(c - b». However if c < b then ciln - - k bn and another 

scaling exponent is obtained. Expressed in tenns of ~, we get 

(5.5.19) 

where 

( ) = {t(p+q) if c > b, i.e. CD-scaling 
'YD p,q t(p)+t(q)+2 if c < b, i.e. non CD-scaling . 

This ex ample shows that CD-scaling is not necessarily obeyed for all (p, q), a general result 

that was already suggested by the argument of section 5.5.3. 
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Figure 5.9: Graphical explanation of the relation (5.5.16) in the special case M = 3. The 

brackets'--y--J indicates the pairs of intervals of size Ôn+ 1 involved in the first summatlon of 

(5.5.16), while the brackets '" indicates the pairs involved in the second summatlon. 
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The conditions c > band c < b define two regions of the (p, q) plane. The frontier 

between these regions is defined by e = d, which implies (using (5.5.17b)) that 

< W p> <wq> = M <Wp+q>. Using <wq> = M -'t(q)-l, which follows from 

(5.4.15) with dS = l, yields 

't(p+q) - 't(q) - 't(q) - 2 = 0, (5.5.20) 

which is the equation of the frontier between the two scaling domains. For a measure with a 

t(q) similar the field (iJu/ax)2 as measured in locally isotropie turbulence, e.g. the binomial 

measure with weights WI =0.3 and W2 = 0.7, these domains are illustrated 111 figure 5.10. 

We emphasize that ihis is the first derivation of <<!>(l)p,q(Ôn» for general random multwomial 

mensures and that our derivation of the recurrence relation (5.5.17a) appears to be simpler than 

previous derivations, involving "tedious counting and algebra" (Lee and Halsey, 1990). We 

also stress that our argument does not seem to be directly generalizable to multiscale scahng 

measures. 

lt should be noted that the multinomial measure is not spatially homogeneolls. Although 

«Il.(Ôn»q> is independent of the position i of the interval, the correlations «lll(O»P(lll-t-l (0) )lb 

depend on i because they "remember" the tree structure of the cascade proce~s. lt follow~ that 

< (j .. lj (o»P()..l1+ 1 (ô»q> cannot be dedueed directly from <cI>(1)p,q(Ôn», which rather glve~ the 

ensemble average of a spatial average since <<I>(1)p,q(Ôn» = (Lo/Ô) «(~l(Ô»)P(~l+I(O))q>S>, 

where < ... >s denotes a spatial average and LO is the outer seale. 

Remark: The quantities <WP1.jWQ1.j+l> defllled in (5.5.17b) can be obtained lIlo.Jng the 

microcanonical constraint. For example, in the simple ease M = 2 the microcanonlcal 

constraint implies that W2 = 1 - Wl and therefore <WPi.jWql.j+l> = < WP (1 - W)Q > 
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Figure 5.10: Illustration of the two scaling domains of multmomial measures wllh .t t(q) 

similar to real turbulent flows. (1) denotes the CD-scaling region while (II) denote:. the non 

CD-scaling region and the dashed lines separate the two regions. 
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s.s.s Implications for data analysis 

In the absence of more information about the general connection between the scaling 

exponents of «J.l.i(B»p(J.l.i+l(B)q> and «J.l.i(B»P>, we will regard the two scaling domains of 

figure 5.10, as weil that the corresponding scaling exponents YD(p, q), as characteristic of 

single scale multinomial measures sharing their t(q) function with the energy dissipation field in 

real turbulent flows. From tbis standpoint, the verification on real data of these scaling regimes 

provides a new way of testing multiplicative cascade models. In chapter 6 the first experimental 

study of these scaling regimes will be presented. Sorne tests of the extended CD-scaling 

(5.5.7) will also he performed. 
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5.6 GENERAL CONSIDERATIONS ABOUT THE COMPARISON OF 
CASCADE MODELS WITH REAL TURBULENT FIELDS 

A priori, one may think that the measures studied so far are too aflificial to be considercd a" 

realistic rnodels for any geophysical field. Cascade models look like toy models Jnspired from 

sorne rather c10udy phenomenology. For sorne simple non-linear dynamical syst~m~, e.g 

quadratk rnaps (Halsey et al., 1986) it is known theoretically that the invariant probabihty 

measurc: can be described by a multiscale Cantor rneasure. By contrast, in turbulence one mll~t 

recognize that the discrete splitting of eddies characteristic of cascade models has not Ml fal 

received a rigorous basis and that little is known about the hmitations of these fllodeb. 

Nevertheles!:, these simplistic models reproduce many of the scaling propemes of real mcasure" 

and in faet, it can be surprisingly difficult to develop test!. allowing thc!\c 1l10dcl~ to he 

distinguished from natural fields. Comparing real natural fleld~ wlth cascade rnodcb 1" an 

exercise that deve10ps our ability to describe more accurately turbulent tlows A~ argucd hy 

Mandelbrot, the limitations of our skills to predict the behavlOr of turbulenl nuid~ may he 

mainly due to our inability to produce efficient and intuitive mathematical dc\cnrtlon~ ni 

irregular fields. 

Sorne of the singular measures introduced in this chapter may be appropriatc c,lI~didatcs for 

the modelling of the energy cascade process. Various generahzatlons of dl!o>cretc !'>cak ca~cade 

models are possible (see for example Kraichnan, 1974), and lt becoflles qUH.:kly confu"ing 10 

make a choice in this jungle of modeb. One of our goals is 10 try to narrow down li huit: the 

spectrum of aH the a priori possible rnodels of the energy diSSIpation fIeld. We !'>hall thcrclOlc 

propose a tentative classification of random cascade model~. A fm.t dichotomy i ... provldcd hy 

the alternative between microcanonical and canonical models, i.e. betwcen exact c()n~ervation 01 

the energy flux and conservation on the average. More refmed dichotomIe!'> involve the dctaIl\ 

of the model. From the simple st to the most general, the followmg modeb are example~ of 
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possible alternatives (recall that M denotes the number of daughter eddies generated by a mother 

eddy, rJ a scale ratio, and Wj a random weight): 

1) Single scale models: The scale ratio r is fixed. 

• M fixed, Wj random (= multinomial measures) 

• M random, Wj fixed 

• M random, Wj random 

2) Multiscale models: Several scale ratios rj are used, which may he fixed or random. 

- M fixed, Wj tixed 

- M fixed, Wj random 

- M random, Wj fixed 

- M random, WJ random. 

Ali these models generate non-uniform singular measures, and further generalizations are 

possible when the positions of the daughter eddies are made random, as long that they remain 

disjoint and contained in their mother eddy. In addition, Schenzer and Lovejoy (1987) have 

shown that multiscaling measures could also b,' constructed without using any discrete scherne 

(this is the notion of continuolls cascades). With a liule imagination, the above list could be 

made much longer. 

The mass exponents t(q) only provide a panial characterization of a scaling measure. 

Unfonunately, these exponents are usually not constraining enough to allow different cascade 

models to he distinguished. If one considers for example the scaling of the rneasure associated 

10 the field «()u/àx)2 in a fully turbulent flow, il tums out (Meneveau and Sreenivasan, 1987a) 

that the simplest detenninistic two-weights binomial measure can reproduce the t(q) rneasured 

in turbulent flows with a good aCClJracy. Using a more complex model, involving for example 

a larger number of weights or else several differem scale ratios, introduces more parameters and 

therefore leads to an even better fit to the measured t(q). t(q) is therefore rather insensiuve 10 

the various alternatives of cascade models presented above, a difficulty that was noticed in 
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particular by Chhabra et al. (1989). From a more fundamental point of view, Feigenbaum 

(1987) showed that different scaling measures can share an identical function t and in that sense 

the characterization of a measure by t is degenerate. Let us illustrate this pos~ibllity by 

following Feigenbaum example. Consider a detemlinistic multiplicative measure with r:: 1/2 

where four weights Wl, W2, W3 and W4 are used (see figure 5.11 for the construction rule). 

We shaH consider the two measures of figure 5.11 simultaneously and denote thetr generatlng 

functions by X1q(8) {starting the construction with w} and W2) and X2qOi) (startmg with W3 and 

W4). Writing a renonnaIization equation for each of these measures yields 

{

X1q(8) = wlq x1q(ô/r) + 

X2q(Ô) = W3q X lq(8/r) + 

w2q x2q(ô/r) 

W4Q x2q(ô/r) 
(5.6.1 ) 

which is a linear system of renorrnalization equations. Introducing the arr,,)' 

X(n) = (x1q(rn), x2q(rn», the system (5.6.1) can be rewrilten in the l'mm 

X(n+l) = M X(n), where 

(5.6.2) 

The general solution of (5.6.1) is of the form 

(5.6.3) 

where Â+ and Â. are the eigenvalues of M (Â+ > Â.) and (V +. V.) the corrcspondtng 

eigenvectors (a and b are constants). As n~oo (5.6.3) yields XI(n) - k )_+n where k t~ a 

constant. Using 8n = rn this aIso implies that X}q(Ô) - ô"C(q) as ô~O where 

(5.6.4) 

It is seen from (5.6.4) that different measures sharing the same product W2W3 wllll.hare the 

sa me t(q). 
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Characterizations going beyond the usual t(q)-f(a.) functions are therefore needed. The 

study of correlations in multifractals is an alternative that will he investigated in chapter 6. A 

second alternative is the possibility of periodic prefactors. Such oscillations reveal the 

underlying scale ratio of the cascade. Their observation in turbulent flows would therefore 

support the use of single sc ale multinomial measure~ in the modelling of the energy di ssipation 

field (Novikov, 1990, Smith et al., 1986). This issue will he examined in chapter 8. Another 

testing method of multiplicative processes could he based on the central limit theorem. As 

argued in chapter 3, our weaker fonnulation of the third hypothesis suggests that the moment~ 

of log(E(5» can be estimated using the gaussian approximation. This possibihty will be 

examined in chapter 7. 
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measures . 
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Chapter VI 

PRELIMINARY DATA ANALYSIS 

AND SCALING STUDIES 

Less is known about the fine scale of turbulence-for example, the scale of 
} mm in the atmosphere-than about the structure of atomic nue/ei. Lack of 
bas,c knowledge about turbulence is holdzng back progress in f,elds as d,verse 
as cosmology, meteorology, aeronautics and biomechanics. Underslandmg the 
hierarchicfJl/y organized complexity of turbulence may weil pro vide a paradlgm 
for understandzng a variely of problems allhe fromiers of physics research 

Uri el Fnsch and Steven A. Orszag (1990) 

Our purpose being to compare cascade models to the energy dissipation field in real turbulent 

tluids, we chose to collect data sets in the atmospheric surface layer at a height of four meters 

with a hot wire anemometer. Relatively wide scaling ranges can be obtained easlly in the 

atmosphere and at this height only a large wind tunnel could provide similar scaling ranges. 

Wide scaling ranges are useful to measure scaling exponents but the y also bring other 

difficuIties. For example, it becomes difficult to distinguish non-slationarity from scaling 

effects which are responsible for correlations over large distances. This problem is unavoidable 

for measurements in flows at high Reynolds number and scaling ranges comparable 10 the 

sample size can be obtained. 

ln order to convince ourselves that we were dealing with an appropriate data ~et, we 

reproduced in this chapter sorne key classical analysis. These include the k- 5/ 3 energy 

spectrum, the power spectrum of (av/ax)2, velocity structure functions and the generating 

function associated to the field (dv/àx)2. Our results are compared with the results of other 

experimenters. In the case of the generating function, we clarify the interpretatlon of ~ome 

earlier work on the subject. We also present the flrst results about the scaling of the correlatIon 

generating function for the energy dissipation field. 
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6.1 DATA ACQUISITION 

We consider measurements of the air speed on a windy day above a fiat and open grass field 

in the spring lime (in the direction of the mean wind. the closest trees were at least 500 meters 

away on both sides). A pole was used to support a hot film probe at a height of about 4 meters, 

and the longitudinal compone nt of the velocity was measured (i.e. in the direction of the mean 

wind). The mean velocity at the hot-wÏfe location during the data acquisition was about 8 mis. 

A T.S.I. anemometer (model 1054) was used with a hot film probe of length 1.5 mm and 

diameter 0.15 mm. The typical upper frequency response of this probe in air 1S 250 kHz, while 

the anemometer itself is limited to an upper frequency of 10 kHz (this limit is t'ssentially due to 

the frequercy response of the ampli fiers involved in the linearization circuit). The analog output 

of the anemometer was digitized at 20 kHz, without using any analog filtering, with a 12 bit 

digital-to-analog converter and stored on the hard disk of an A.T. personal computer. A 5 

minute sample was recorded. i.e. 6xl()6 points. Everywhere in the following chapter lime 

intervals have been converted into spatial lags using the frozen turbulence hypothesis, i.e. 

Ôx = U ~t, where U is the mean wind speed. Using this conversion, the data set is 2.4 km 

long and one point every 0.4 mm was recorded. We shaH see that the electronic noise added to 

the velocity signal reduces this maximum resolution to about 1/3 cm. 

The Reynolds number based on the mean flow at a 4 meters height is 

U L 8x4 Nt. 
Re = vair = 1.5xlO-S = 2.13 x lU". 

The turbulent (or local) Reynolds number is defined here by 

R (L) = <~u(L)]2>1J2 L = lx4 = 2 67 105 
e Vair 1.5x 10-5 . x 

lor L = 4 meters (it will be shown in section 6.3 that <ôu(L)]2>l/2 = 1 mis in the horizontal 

direction). It is recognized in the literature that inenial range behaviors and k-513 energy spectra 
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are observable when Re typically exceeds 104. Our Reynolds number is therefore about 200 

times larger than this lower limit. In order to study larger scales more aecurately, a longer 30 

minute sample was also recorded in the same conditions immediately after the 5 minutes 

sample, but with a 300 Hz sampling frequency. 

6.2 SPECTRA AND PREPROCESSING 

6.2.1 Energy and dissipation spectra 

The whole sample was split in about 180 disjoint slices of 13 meters. The energy spectrum 

of each sliee was obtained with a F.F.T. and these spectra were averaged. The resulting energy 

spectrum is plotted on a log-log sc ale in figure 6.1. An almost perfeet power law i~ obtained in 

the range [0.1 m, 13m]. The slope measured in this range with a logarithmic linear regression is 

1.73, i.e. about 4% larger than the 5/3"" 1.67 predicted by the K41 theory. This slight excess 

is consistent with the theories aecounting for the effect of interminency on the energy spectrum. 

A clear dissipation range is observed in the range [lOcm,lcm]. The noise floor is reached for 

seales smaller than 0.5 cm, which corresponds approximately to a 2 kHz frequency. The 

energy spectrum of the longer 30 minutes sample is plotted in figure 6.2. A line of slope -5/3 is 

given for referenee. A departure from k·5/3 OCCUTS for scales larger lhan 10 meters. The larger 

variability of E(k) is due to a smaller amount of averaging for mis sample. It is also noticed that 

the variability of E(k) increases with k. This suggests a breakdown of the K41 theory that 

rather implies «E(k»2> - «E(k» )2>1/2 oc k-5/3, i.e. thatleads to a deereasing variabihty as 

k increases. 

Before doing any funher analysis with the data, frequencies higher than 2 kHz were 

digitally filtered out. For illustration, a sample of the unfiltered signal is displayed next 10 the 

filtered signal in figure 6.3. and a picture of the filtered velocity field over a wider range of 

scales is given in figure 6.4. The fIltration is absolutely crucial for the estimation of the 
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derivative du/dX, as weIl that for the scaling properties of the field (dU/dx)2. The dissipation 

spectrum Ed(f), defined so that 

00 

«dU/dx)2> = f Ed(f) df, 
o 

where f = k/21t, is useful to determine the accuracy of our estimate of «du/ë)x)2>. Note that 

Ed(f) = (2 E(f), where E(f) is the velocity energy spectrum. Ed(f) was displayed in figure 65 

in the area-preserving representation Ed(f)f versus log(f) (Sinee that Ed(f)df = Ed(t)f d(in(f)). 

the area under the graph Ed(f)df versus log(f) is proponional to «dU/dX)2». The bulk of the 

contribution to «dU/dX)2> cornes from seales smaller than 1 meter, and in the inertial range 

Ed(f) - f2 [-5/3 = fl/3. The bell-shaped curve is spoiled by nOIse for seales srnaller (han 1 

cm. Assuming an exponential decay of the energy spectrum in the unresolvcd pal ( of the 

dissipation range, one concludes that an error of at most 10% is made on «dU/()x)2>. und 

consequently also for each value of du/dX. 
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Figure 6.1: Energy spectrum of the velocity field. obtained by averaging the speetra of 180 

samples of 13 meters. The exponent of the power law (straight line fitted with a hnear 

regression) is -1.73. i.e. about 4% larger than the 5/3 predicted by the K41 theory. Nouee that 

this slight positive correction to the exponent 5/3 is consistent with the intennitteney correctIon 

due to intennittency predicted in particular by the J3-model. The noise floor is reached for scale~ 

smaller than 1/2 cm. The dissipation range stans for scales smaller than 1/0.2 0= 5 cm. The 

beginning of the dissipation range typically occurs around about 60 times the kolmogorov 

dissipation scale 1'\. therefore" = 1 mm. 
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Figure 6.2: Energy spectrum of the velocity field obtained with the longer 1/2 hour ~ample 
This longer sample allows to resolve more accurately larger scales. It is seen that a slow but 

clear departure from the k-S/3 spectrum (the straight line) occurs for scales larger than 10 
meters. 
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Figure 6.3: A picture of the raw velocity signal (the cloud of dots) together with the filtered 

signal (the solid line). 
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Figure 6.5: Dissipation spectrum obtained with the unfiltered velocity signal. The area under 

this curve is proportional to <{dU/dx)2>. The main contribution to «dU/é)x)2> cornes from 

seales smaller than 1 me ter. For f> 0.8 cm- l the spectrum is ruined by the noise. The fall-off 

being exponential in the dissipaùon range, at least 50% of the value of «du/dX)2> is being 

resolved. We therefore expect the relative error on each value of (du/é)x)2 to be smaller than 

50%. 



6.2.2 Power spectrum of (du/ùx)2 

The field (dU/dX)2, obtained by differentiating the filtered velocity signal (lIs!ng 'fillltt: 

differences to approximate the derivative), is displayed in figure 6.6. A zoom on the fir~t 

100 cm ofthe figure 6.6 is given in figure 6.7. The singular nature of this measure is stnking. 

and the intuitive resemblance of this field to an aruficial dIscrete scale cascade mode) is oh\'ioll~. 

The power spectrum of (du/ùx)2, obtained by averaging 180 spectra, is displayed in figure 6.H. 

An approximate power law is obtained for scales larger than 1 cm The sI ope of the str:lIght 

line drawn in figure 6.8 is -0.7. Results reported by other experimenters (Molun and Yaglolll 

(1974), section 25.3) yield an exponent lying in the range [0.5,0,71. which IS c()n~istcnt wllh 

this result. Note that the power spectrum of the field gcnerated by a dlscrcte ~cale ca~cilùl' 

mode) with a finite number of cascade steps is aiso proportion al lO k'\ whell' 0 < ~ < 1 

(Mon in and Yaglom (1974), section 25.3). 
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Figure 6.6: A picture of the field (duldX)2 obtained by finite differences on the filtered 

velocity field. The singular nature of the dissipation field is striking. Regions of high intensny 

corresponds to regions of high vonicity in the fluid. The concentration of the reglons of hlgh 

vonicity on a sparse set is due to the stretching of vonex tubes characteristic of fully developed 
turbulence. 
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Figure 6.7: A zoom on the frrst meter of figure 6.6 . 
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Figure 6.8: The power spectrum of (ou/ox)2 is plausibly approximated by a power law with 

an exponent s ... -0.7 (straight solid Hne), which is consistent with the results of earlier 

experimenters, who got -0.7 S s S -0.5. 



• 6.3 VELOCITY STRUCTURE FUNCTIONS 

In arder ta check the 2/3 law, the velocity structure function 

was plotted in figure 6.9. According to the K41 theory, D2(L) - LI/3. Besides." k-5/
, 

energy 

spectrum implies, by Fourier transfonnation, that D2(L) - U/3 holds. A short !oIcaling range 

appears to occur between 10 cm and 2 m. In that range a linear regression yl\~kb a ~Iopc of 

0.34, very close ta the predicted 1/3. 

A priori one may be surprised to get such a shon scaling range for D2(L), whcll' allllt' !'.:lllle 

lime a k-S/3 energy is obtained over a wider range of scales. Results of othcr cxpcruncllIcr" III 

comparable conditions have been similar (see for example Van Atta and Chen, \l)7(»' For \m\ 

altitudes in the surface layer « 20 m), the scaling range i~ ~hort "nd D2( L) hCl'Olllc", ljUI\.:\..I y 

smaller than the predicted LI/3 at large scales; two decade~ of scaltng range caJ1 hl' ohtilllH:tI Il 

the altitude exceeds 30 meters. The best verificallons of the K41 Iheory have alway~ hccll 

obtained with energy spectra. In general, the connection between the power ~pl'Clrllll1 and 1 hl..' 

autocorrelation function imphes that D2(L) and the energy spectrum E(k) arc relaled by (Monltl 

and Yaglom (1975) section 13.1) 

(D2(L»2 = 2 J sin2(kL/2) E(k) dk. 
o 

(6 3.\ ) 

Given that E(k) decays rapidly like k-S/3, the main contribution to D2(L) come" frol11lhc lu,,1 

interval where sin(kl/2) = l, i.e. from the wave number satJ!>fymg kL/2 = rr./2 U~lllg 

k = 2n/À this corresponds ta scales Â. = 2L. A range of scale~ around 2L thcrcfore makc Ihe 

main contribution to D2(L). A breakdown of the k- 5/3 energy !\pectrum for Î. > \ () Ill, il' 
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l observed in figure 6.2, might therefore correspond to a breakdown of the scaling of D2(L) at 

scales smaller th an 10 meters. 

The indication of the length of the isotropie inenial range from a one dimensional lime series 

remains an open question. In our case the k-5/3 energy spectrum holds perfel:tly for 

10 cm < À < 10 m, and remains relatively close to k-5/3 at larger scales. Van Ana and Park, 

1971) also observed, at comparable altitudes, a good k-S/3 over wide range of scales. At a 4 

meters altitude large scales cannot be isotropie and therefore the energy spectrum is not a 

sensitive indicator of the scale at which isotropy breaks down. Van Alta and Park (1971), 

observing a sharp change in behavior of «~v(L»3> at a scale comparable to the altllude, have 

suggested that this structure function may he a more sensitive indicator of isotropy. In general 

however the scaling of the order h structure function breaks down gradually at large seales. 

The width of the scaling range is aIso observed to shrink as h increases. 

Higher order structure functions <1~v(L)lh> were measured for h = 1, 2, ... 18. The 

nonnaIized quantities 

were plotted in figure 6.10 and 6.11. For 1 $ h $ 6 a fairly good power law is obtained 

between 10 and 100 cm (the first 4 points on the graph), and ~(h) was measured ln that range 

The power law is especially good when h=3 and Ç(3) = 1.01, a good agreement wlth the exact 

result Ç(3) = 1 for isotropie flows (see chapler 2). For 7 < h < 18, a plausible but limited 

power law is obtained between 20 cm and 150 cm (from the second to the fIfth pomt), and that 

range was used to measure ~(h) with a Hnear regression. The resultmg function Ç(h) was 

plotted in figure 6.12, together with the results of Anselmet et al. (1984, results (·f jet 

turbulence in table 2 for the highest Reynolds number). The straight line is the pr~chctlon of the 

K41 theory. Both results agree well for h S 4 and are fairly consistent for h > 4. Our Ç(h) 

stans showing a significant depanure from the K41 prediction for h ~ 5. Beyond this limit 
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~(h) becomes more or less linear, with a slope of about 0.2. This interesting result will be 

examined in more deutUs in the next chapter. 
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Figure 6.9: Second order velocity structure function D2(L) = [«L\v(L»2» 1/2. The ~olid 
Hne lS a power law with exponent 0.34, in good agreement with the 1/3 predicted by the K41 

theOl-y. Notice that the shon scaling range extends from 10 cm to 2 m . 
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Figure 6.10: Velocity structure functions Dh(L) = <1~v(L)lh> l/h for h= 1, 2, ,10, from 
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2 m. Il is especially good for the third order structure function, a result consistent wlth the tact 
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<1~v(L)13> ,.. L for h = 3. 
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from bottom to top respectiveJy. The scaling exponents were measured by fitung a power 

through the points 2 to 5 (counted from Jeft to nght), where the 'icaling is fairly good. ft IS 

emphasized that the estimation errors are Jarger on high order moments. 
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Figure 6.12: A comparison between the Ç(h) measured by Anselmet et al. (square~) and our 

measurements (stars). The agreement is peneet for h $ 4 and fair al larger h. Nouce that un 

our measurements Ç(h) appears to be straight at large h. This straight hne IS accurately fmed by 

Ç(h) = O.195h + 0.548. The solid line is the prediction of the Kolmogorov 194 J theory. 1 e 

Ç(h) = h/3. 
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6.4 GENERATING FUNCTION OF (duldX)2 

The sample was split in 24 disjoint slices of 100 meters. The generating functions Xq(B) 

were computed on each sUce and averaged. The nonnalized quantities 

Zq(B) = «Xq(B»)l/(Q-l) - B D(q). where D(q) = t(q)/(q-l). (6.4.1 ) 

were considered for q=-10.5.-9.5 •...• 10.5. Zq(q) is displayed for q = -10 in figure 6.13. A 

good scaling is obtained between 10 cm and 100 meters. This behavior is representative of the 

range -10.5 < q < 1.5. Zq(q) is displayed for q = 3.5 and 10.5 in figure~ 6.14 and 6.15 

respectively. Their behavior is representative of the range q ~ 2.5: Zq(Ô) is a little ilTegular 

but a power law remains a plausible representation ot the data. since Z ,(ô) does not exhibit a 

constant curvature. The D(q)'s were measured with a linear regression in the range 

10 cm < ô < 100 m. and the mass exponents were obtained with (6.4.1). t(q), plotted in 

figure 6.16, exhibits two linear asymptotes in the limits Iq1400 , exactly Hke the multinomial 

measure (see section 5.2.6). 

We shaH next study the convergence of t(q) as a function of the sample size. The quanmy 

Zq(Ô) was calculated successively with 1/8, 1/4. 1/2 and the totality of the sample. In each case 

the resulting 't(q) was plotted in figure 6.16. For q > O. 't(q) appears to be weIl defined. This 

convergence suggests that a(ô) has a lower bound Cl_ where fis finite (see section 5.2.4). By 

contrast. for q < -1 the function t(q) changes with the sample size but remams linear 

asymptotically. The asymptotic slope decreases with increasing sam pIe size, which means that 

the mass exponents in the range q < -1 are less reliable. We say that the scaling is s{JuriOllJ 

when the exponents have not converged. This appears to be the first evidence of spunous 

scaling for the energy dissipation field. Spurious scaling effects have been described and 

illustrated with numerical experiments by Lavallée el al. (1990). 
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The t(q) obtained by Meneveau and Sreenivasan (l987a) were fairly accuralely fnlcd by a 

microcanonical binomial measure with weights 0.7 and 0.3. For a binomial meaSlIre, '(lq) ha~ 

linear asymptotes at infinity with slopes 

10g(w_) t'o q > 0 and s. = _ log(w+) t'or q < O. 
s+ = - log2 11 r log2 l' 

For our data, the asymptotes obtained with the whole sample are aecllrately fitted hy 

t(q) - 0.482 q - 0.048 for q~oo and t(q) - 1.42 q - 0.0375 for l!-4' oo . 

Using the values 0.482 and 1.42 for s_ and s+ respectively, (6.4.4) yields 

W_ = 0.716 and w+ = 0.374, 

which is close to the Meneveau and Sreenivasan results. Notice that w. + w+ = 1.09, I.e Ihe 

microcanonical constraint LWI = 1 is a1most respected. The function 

t(q) = -log2{ (0.716)Q + (0.374)Q} 

was also plotted in figure 6.16 and obviously gives an excellent fit 10 the data. 

It is emphasized that our method for measuring t(q) IS different, and more ~IJllrlc, than the 

method previously used by Meneveau and Sreenivasan (1987b, 1987c) ln their allaly"'),,,, 

different realizations of the field were treated hke delerrnim<,l1c mea<,urc-; and the '(q) \Vere 

measured on each sarnple. They discarded sorne samples becau~e of the lack of ... cahng Other 

samples did seale but produced dlfferent D(q) curves, and they cho~e to average the D(qJ\ tu 

get the final result. Averagmg the D(q)'s IS equlvalent to averagmg log(Xq(Ù)) Thl\ averaglllg 

is not consistent with the properties of random scaling mea\iure~ becau ... e ;:q(8) 1\ the "'l'ak 

invariant quantity, not log(Xq(Ô». By contrast, we averaged ~q(Ô) over a ~ampk a ... lar~l: a\ 

possible because the field CdU/dX)2 was regarded as a random field ln prehmlllary analy~c\ we 
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noticed that relatively small samples did exhibit sorne scaling with apparently random values of 

D(q). Our larger data set (5 minutes of recording, in comparison with 30 seconds for 

Meneveau and Sreenivasan, for similar air flows) allowed to show that this problem dlsappears 

for large enough samples for which t(q) becomes well defined (at least for q > Ol). Actllally, 

for our data set the minimum sample size needed to get a reasor.able convergence of the 't(q)'s 

was about 30 seconds, which may explain the difficulties encountered by Meneveau and 

Sreenivasan since their maximum sample size was also 30 seconds. For large enough samples 

a good scaling is observed and the variations of D(q) as measured on small samples are more 

simply interpreted as natulal randomness. 
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Figure 6.13: A plot of the normalized generating function Zq(é5) = (X· q(Ô») 1/(4-1) _ Ù 1)14
1
, 

where D(q) = t(q)/(q-l), for q = -JO. The scaling is good up to scales of J 00 mcter.., and 

may even extend to larger scales. Huge scahng ranges have also been observed by Meneveau 

and Sreenivasan (l987b,1987c). This behavior is repr,!sentative of the range -10.5 < 4 < 1 .5 
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Figure 6.14: A plot of the nonnalized generaung function Zq(Ô) for q = 3.5. Although a 

Imle irregular, Zq(Ô) is weIl described by a power law. Indeed Zq(Ô) does not have a constant 

l:urvature but ramer wiggles around a power law. This behavior is representative of the range 

4 ~ 2.5. Agam. the scaling range is very large wllh respect to the ~.eight of the probe from the 

ground (about 4 meters). 
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Figure 6.16: Mass exponents measured from the data. 3 curves are displayed: The fli'St one 

(squares) ~as obtained by averaging Zq(L) on the whole sample. The second curve (clrcles) 

was obtained by averaging on 1/2 or 1/4 of the sample (the same result was obtained), and the 

last curve (triangles) was obtained with 1/8 of the sample. The stars are points on the funcdon 

t(q) = - log2(O.71M + O.358Q), which fits the data very weil. For q> 0 the ma~s 

exponents converge rapidly. By contrast, for q < a the exponents 1(q) increase when Zq(L) I~ 

averaged over a larger sample. This phenomenon occurs for q < -1.5 and theretore the ma~s 

exponents in mat range do not appear to be reliable. 



6.S CORRELATION GENERATING FUNCTION OF (au/dx)2 

Let us now consider the correlation generating function of this measure Comlùer tht' 

quantity 

where <!>(l)q,q(Ô) = L [llî(Ô)~J+l(Ô)]q. This is a special case of the correlation gcncratlllg 

funetion <!>(n)p,q(Ô) (section 5.5) where p = q and n = 1, I.e. adjacent boxe~. For l11ultlnonll,11 

measures CL'-sealing holds on the Hne p = q (see figure 6.22), I.e 

W q(ô) - Ô D(q), where D(q) = 't(q)/(q-l). (6.4.6) 

The fael that Wq(Ô) and Zq(Ô) seale with the same exponent lS regardcd a" li characlcn"tl~ 

property of multinomial measures (see section 5.5.5) The quantJtlc" <1>( 1 )q.q(O) wal' COIllIHlI~d 

on eaeh 100 meters subsarnple and were then averaged over aIl the ,uo,ampk" ln ohtalll Wq(Ù) 

For q < 0, a good scaling (similar to figure 6.13) wa!o. obtained For q > O. Wq(O) aJ...o ~cale, 

over the whole range of seales but again Irregular departures from a power law arc vl~lhk 

(figure 6.17). The scaling exponents t(q) obtallled with the whole ~ampk \Vith Zq( Ô) 

(single-box generating function) and Wq(O) (double-box general1ng fllnctlOn) wen: plo!lcd 011 

the same graph in figure 6.18. The agreement is good. The largc~l dlffen:nce\ (al mmt lor7r ) 

are obtained for q > 0 and are explained by the error mduced by the o\clliallng POWl'1 law, 

Within these small errors we conclude that the correlauon con~traInI (5.5.7) l, weil oheycd for 

n = 1, l.e. for adjacent boxes. 

In order to see if the conStraipl (5.5.7) was sausfied for n > 1 the quantlllc\ <11 4(0» and 

<[JlI(O)JlI+nô(Ô)]q/2> where plotted on normahzed ~cales for n = I. 2, 3 and 4 wlIh li flXCO 

For a !>eparated multinomial measure we expect the~e quantltie\ to ~ca)c lIkc Ô1:lq)+D. hgure 

6.19 displays the resUlts obtained with q:: 2. Notice that in thl!o. ca\c the cOn'llraint (55.7) 1'> 
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nece~sarily satisfied because il is implied by single box scaling (see (5.5.l2a), section 5.5.3), 

and therefore we expect to get <~j(a)~I+nS(a» oc a't(2)+ l for all n, where -r(2) ::::: 0.79. The 

variations of the measured exponent are small and the agreement with (5.5.12a) is therefore 

good, as expected. Figure 6.20 displays the results ohtained with q = -2. According to 

section 5.5.3 this case does not satisfy (5.5.7) trivially. The agreement is good and even better 

than in the above trivial case where the agreement should in principle be perfect. Slmilar results 

were obtained in the range -5 < q < -1. Figure 6.21 displays the results obtained with 

q ::: 5. The scaling is not as good than in the previous cases. The prefactor i;regularities 

imply relatively large errors on the fitted exponents. Within these errors the agreement \Vith 

(5.5.7) remains plausible. Similar results were obtained in the range 3 $ q < 5 but the 

scaling was found to he a liule better. 

ln order to see if the energy dissipation field exhibits a scaling transition comparable to 

non-separated multinomial measures (see s~ction 5.5.4), we chose to examine the scaling of 

«~I«)p(l-ll+l(a))q> along the line q = -2p (see figure 6.22). It should be recalled that, 

according ta (5.5.19), the scaling expected for such measures is 

(6.4.7) 

where 

{
t(p+q)+ 1 ~CD-scaling jomain) 

A(p,q) = t(p)+'t(q)+3 (non CD-scaling domain) . 

For p < 2 along the hne q = - 2p the multinomial model obeys CD-scaling, whlle for p > 2 a 

scaling transition ruled by (6.4.7) occurs. In figure 6.23 we plotted on the same graph 

«~j(a»p(JlI+l(S))-2p> and «~I(a»-p> for p ~ 1/2.,1,3/2,2,5/2, as obtained from the 

dissipation field. In the CD-scaling domain these quantities are expected to scaJe wIth the sarne 

exponent. It is notlced that the two-box products are power laws at large ~cale only whIle the 

single box moments seale over the whole range. For q < 2 the exponents A(p,-2p) and 

t(-p)+ 1 are about equal, i.e. CD-scaling is weIl obeyed. However, for q ~ 2 the exponents 
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A(p,-2p) and t(-p)+ 1 stan to exhibit significant differences and therefort' a scaling tranllition 

occurs. In order to see if the scaling transition was consistent with (6.4.7), we plotted on thl' 

same graph (figure 6.24) the exponents A(p,-2p), t(-p)+ 1 and the prediction (6.4.7) for non 

CD-scaling. i.e. t(p)+t(-2p)+3. Taking the estimation errors ioto account, we conclude that a 

scaling transition is indeed taking place but that the exponents A(p,-2p) are differenl frol11 

t(p)+t( -2p)+ 3, which is the predictioll of the multinomial f!"'fldel. 

These results are interesting for at least three reasons: Firstly, CD-scaling is weil obeyed on 

the Hne p = q which is consistent with the multinomial model; secondly, the scahng tmnsillon 

predicted in the model actually occurs in the dissipation field; thirdly, the exponcnt\ A(p,q) do 

not match the exponents of the model in the non CD-scaling dC'm,1I11 (and mayhr al\ll 

elsewhere), which allows to distinguish the energy dissipation field from ~lI1gk ... cak c" ... cade' 

From a more general viewpoint, this suggests that the functlOns A(p,q) deflllcd above may not 

be everywhere related in a simple manner to t(q), in whlCh case they wou Id provlde li morl' 

complete description of a scaling field that goes beyond the multifractal charactcrmltlOn The 

faHure of the single scale multinomial model t-J account for the scallng of corrc\atloll\ Imght 

suggest that more general models, such as multiscale cascade~, rnay be more adclIuatc for the 

energy cascade process. 

Remark: It is noticed (figure 6.17) that the prefacter of W q(O) appears to be pcnodl<: 111 logo 

This is observed for aIl q > 3, and three minimums oecur at scale~ approxlmately cqual 10 

1.3 cm, 82 cm and 5240 cm. The ratlos 82/1.3 and 5240/R2 are 63 and 64 re\pecltvd~, 

~, ch suggest that the scale ratio r '" 64 plays a special role O~clllal1on~ of that \o-.lnd have 

been regularly observed In rneasurements of high order velocity ~tructure fUIlLl1on ... lfl turbulent 

flows (e.g. Van Atta and Park (1971), Anselmet et al (l9R4), wnh a pennd con'>l,>tcnt wuh a 

seale ratio of about 60. The temptation is to interpret them a~ log-penodlc O\cJllatlon,> 

analogous, in sorne sense, to che prcfactor oscillations of NB(O) for exactly !>clf-~Imdar <,ct ... 

However, a more convincing result wou Id require the observatiOn of more than two pcriod~, 
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which is a problem when the scale ratio is so large. It also remains to be shown that these 

oscillations are not statistical artefacts. On the other hand, the field (dU/dX)2 is necessarily 

anisotropic at these scales (because of the 4 meters altitude) and the effect of anisotropy is 

poorly understood. The origin of these oscillations therefore remains unclear. A more detailed 

investigation of prefactor oscillations in the context of self-similar sets and measures will be 

proposed in chapter 8. 
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Chapter VII 

EXPERIMENTAL INVESTIGATIONS OF 
SOME TURBULENCE THEORIES 

Le vent ramassa, le tourbillon dispersa 

Turc saying 

In this chapter three different aspects of turbulence theory are examined. In the first part 

7.1, the cause of the breakdown of the Kolmogorov scaling lav. «~v(L))h> oc Lh/3 at large h 

is examined. In the second part 7.2, a simple and possibly new experirnental evidence of the 

existence of a spatially localized energy cascade is given and the idea of a fractal velocity field 

formed of "bursts nested into bursls" is shown to he supported. In the third part 7.3, we 

investigate the validity of the alternate (and weaker) fonn of the third hypothesis proposed in 

section 3.3.3. 

7.1 TESTING SIMPLE SCALING IN THE VELOCITY FIELD 

Let us focus on the implications of the 1941 Kolmogorov theory on the probability 

distribution of l~v(L)1. The prediction <1l1v(L)lh> oc Lh/3 leads 10 

(7.1) 

If (7.1) holds for aIl h then 

l~v(ÂL)1 J! ')..,tI/3IL\v(L)I, (7.2) 

where tt~ .. denotes the equality in probability distribution. (7.2) implies that the cumulative 

probability distribution of l~v(L)1 has the fonn 

Prob( l.1v(L)1 > u} = ~(u/u ... (L», (7.3) 
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where <1> is an unknown function and u.(L) = LH with H = 1/3. The K41 theory suggests the 

dimensional nonnalization u.(L) = <eoL)If3, but in the following we shaH only make use of the 

proportionalityassumption u.(L) oc LI/3. (7.2) also implies that the probabllity density PL(X) 

of làv(L)1 takes the form 

PL(X) = Pl (xlLH) L-H (7.4) 

where Pl is an unknown iunction. 

In order to see to what extent simple scaling is obeyed by the veiocity field, the probability 

distributions (7.3) of làv(L)1 for L = 10,20, 40 and 80 cm, obtained from the whole data ~CI, 

were plotted in ;ïgure 7.1. Such plots were used in particular by Lovejoy (1985) and Lovej<'y 

and Schenzer (1986) to show simple scaling in the rain field, the temperalUre field and the 

velocity field. In this representation, the simple scaling (7.3) implies that the horilOl1tal 

spacings between these curves are equal at any height. lndeed if Un+1 and Un denOlc the valllc~ 

of dv at a fixed probability l~vel for scales Land ÂL respectively, then <l>eu/LH) IS con~tant If 

Un+1 = Â,H Un, i.e. if )og(Un+l) - log(un) = H logÀ. This conditIOn IS re~pectcd f,lIrly 

accurately. The spacing between these curves can be used to deduce the scaling exponcnt H. 

Indeed, these curves cross a horizontal line at values dVI (1= 1, ... , 4) ~lIch thal 

H = 10g(dv1+1/dvj)/log(2). Looking for example at the probability level 5x 10.3, Il is rounl! thal 

dVl = 98.94, dV2 = 123.94, dV3 = 155.26, dV4 = 194.48 (in cm/~ec). USlng the~e 

values and the above formula yie1ds H::::: 0.325, in gooô agreement with the Kolmogorov 1/3. 

A more direct way of emphasizing simple scaling is to plot Proh ( lL\veL)1 > u 1 vcr~lI'> 

u/u.(L), as suggested by (7.3). In this representation the distribution~ obtained wlth difrercnl 

lags L should fall on top of each other if simple scaling holds. Th1~ wa~ donc In figure 7.2 and 

the superposition of the various curves is convincing. Notice the dlfferencc~ ln the lai'" arc 

larger than elsewhere on the distribution. In this log-log rcpresentation an a~ymplOtical1y 
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hyperbolic distribution would exhibit linear tails. One rather observe a constant curvature on 

each of these curves. The hypothesis of Schertzer and Lovejoy (see chapter 2) is therefore not 

strongly supponed. 

The simple scaling of the probabHity densities can also be examined by first constructing 

histograms of the values of l~v(L)1 using bins with width .1.vj(L) = .1.Vl* l Ji for each L. The 

bins of these histograms faIl on top of each other when the velocity differences are nonnalized 

by LH, providing normalized histograms suit able for statistical tests. Average probabili ty 

densities PL(X) are next calculated for each bin. If pdx)LH is plotted versus x/LH the curves 

obtained for different values of L should he superposed if simple scaling holds, as implied by 

(7.4). This was done in figure 7.3. A fairly good agreement is obtained. The relative 

difference between the different nonnalized densities is about 25% around 30 cm2/3/sec and 

reaches 100% in the tail. The error associated with the simple scaling approximation is 

therefore worse in the tails. 

The differences between the normalized :üstograms were examined using a X2 statistical test. 

The statistics used to test the null hypothesis that [Wo histograms come from the same 

probability distribution is 
Nbins 

2 _ ~(NtU)-N2(j»2 
X - ~ Nt(i) + N2(i) , 

j=l 

where Nbins is the number of bins in the histograms and Ni(j) denotes the number of counts in 

the jlh bin of the jth histogram (Press et al., 1986, section 13.5). An equal number of velocity 

differences dV(L) was sampled for each lag L. X2 is then expected to be distributed as a X2 

random variable with v = Nnbms - 1 ctegrees of freedom. Using this test the differences 

between the various pairs of histograms were found to be statistically significant: Typically, we 

obtained x2tv := 200 which leads to ProblX2/V ~ 200j ::= 0 and therefore the null hypothesb 

is strongly rejected. The reject Îs strong because our sample contains a relatively large number 
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of points, namely 735000. It follows that the frequencies estimated in each hin are fairly 

accurate and consequently the small differences observed around 20 cm2{3/sec in figure 7.3 are 

significant, and in faet more significant statistically than the larger errors in the extreme tails 

where the bins are less populated and the frequencies consequently less accurate. It is 

interesting to see that the main contribution to the statistical error cornes from events having a 

3% probability of occurrence, Le. from the tails of the distributions (Figure 7.4). 

We conclude that simple scaling is rejected on a strict statistical basis. Simple scaling 15 

nevertheless satisfied sufficiently accurately for low values of IAv(L)1 to yield 

<1l\v(L)lh> oc Lh/3 for h < 5, but the differences between the tails of the probability densities 

are sufficiently large to break the linear behavior of Ç(h). We emphasize that our use of a '1..2 

test on suitably normalized histograms to check the validity of simple scaling appears to be 

origlllal. One advantage of this procedure for testing simple scaling over the venfication of 

Ç(h) = hH is that <1l\v(L)lh> does not need to be measured accurately for high values of h. 

Our results essentially support one of the conclusions of Anselmet et al. (1984), Le. the velocity 

field does not satisfy simple scaling. The Frisch hypothesis of broken stretching symmetry in 

turbulent flows is therefore supponed by these results, while the alternate hypothesis of simple 

sealing appea.:s to be invalid. This study therefore resolves the contr0versy stated in chapter 2. 
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7.2 EVIDENCE SUPPORTING A SPATIALLY LOCALIZED ENERGY 

CASCADE 

The self-slmtlar nature of a turbulent velocity field is often pictured USll1g the idea of "bursts 

nestcd into bursts". This geometrical assumptlon of seif-simllanty IS ImplIcil to the 

phenomenology of the energy cascade in Kolmogorov theories, and explicit In sorne 

quantitatIve models of intermittency, such as the Fnsch-Sulem-Nelkm fj-rnodel (10 short 

F.S.N. ~-model) or the Novikov "pulse-in-pulse" model (section 2.4 3) Apparentl)', no direct 

ex perimental evidence of the existence of structures inside of structures has been glven 

(Kadanoff, 1990). Our aim 10 this section is to try ta see qualitatively 10 what extent thl~ fractal 

Idea i5 supported by the observations 

In early measurements of high-passed velocity signais, such as those of Sandborn (1959). 

intermmency was observed In frequency bands corresponding to the inertlal range. lt seenl''1 

that the study of spatial correlatIons between these bands, that would reveal to what extent ~mall 

scale energy bursts "grow" on nearby larger scales energy bursts, was neglected We therefon: 

propose here to conslder several bands slmultaneously. In the spint of the F.S N l3-model, a 

senes of digital fllters keepIng only the scales ln the intervals [LO, Lü/21, [Lo/2. Lo/4J, ... 

[Lo/2n, Lol2n+l] was applied ta the velocity field. and aIl these flltered SIgnais were plotted on 

top of each other in figure 7.5 and 7.6, using nor.nalized umts. Our procedure somewhat 

differs from the F.S.N. j3-model, where three dimensional frequency bands are consldered. 

because we are restricted to one dlmensional samples A large 105 meter sample wa~ u-,ed in 

fIgure 7.5 in order to give a broad Vlew of the mtermittency m the inertlal range ln order 10 

focus on the dissipation range mtermittency, a shorter 28 meter~ sample wa~ con~ldered in 

figure 7.6. 

In bath figures the characteristIc intermittent behavior of the filteled signalls recogmzed 

The intermittency exists both in the inenial range (10 cm to 10 m) and the dl~slpation range 

(l cm to 10 cm). The activity pockets in each band are not "dead" or "alive", as assumed In 
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the F.S.N ~-model, but are rather weak or intense, which is due to the n:latiwl y large \\ Idth ... l,t 

the bands. lndeed il i!J usually observed that the mtermittency of the fIltereù ~Igllal IlllTl:a-.l" 

(e.g. higher kurtOSIS) if thl! filtration bandwldth decreases The poekets of aem Il) are m.lIall~ 

at the same location in eaeh band. Sorne (rare) exceplIons can be found, where the ener~y III 

the small scales is small, ev en though larger scales at the same spatial 10call011 exhlhlf hur:-.I\ \lt 

activi ty. The hypothesis of bursts of energy at VaTIOUS scales neslcd mto caeh othl'r I~ t hl:rct Oll' 

essentially conflrmed. The faet that the signaIs 10 diffcrent band~ are ~Irongl\' wrrclall:d l' 

consistent with a cascade that occurs locally in real space, as postulated 111 the 1 %~ 

Kolmogorov-Obukhov refined slmilarity theory. Wc don't regard thc~e correlatlOll" a" 

especially surprising, precisely because we expect a laJ'ge seale encrgy bur~1 to "contammale" ail 

the scale; of the velocity field through the cascade process Nevertheles~, Ihl ... may he the IrN 

attempt of a direct experimental verification of the self-!>imllar struclure {lf IllIemlllll'l1l'y 

These observations support a qualitatIve cascade phenomenology, hut unfortunatdy they d\l 

not lead unambiguously ta more quantitative models The F.S.N l3-rnodel 1:-' an atlempl ln 

derive sorne quantitative results, e.g. the correctIon to the k-5/: energy spectrum, but lt rcmalll\ 

too close to the erude obseIVations to lead much beyond a purely ljualllaUvc de ... cnptlol1 
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Figure 7.5: This graphs shows the velocity field digitally filtered in 10 different wavelengths 

bands, namely [52m, l05m], [26m, 52m), [13m, 26m), ... , [lOcm, 20ctn] (from bottom to 

top). The frrst 7 bands, starting from the top, corresponds te wavelengths smaller th an 13 

meters and are therefore related to the inertial range. The bursts of activity are strongly 

correlated from band te band. which is consistent with Landau's id'!a of an energy cascade that 

occurs lc)Cally in real space. 
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Figure 7.6: This graphs shows the velocity field digitally filtered in 10 differenr wavclength~ 

bands, namely [6.6m, 13m], [3.3m, 6.6m], (1.6m, D.8m], ... , [5cm,lOcmj, 12em Sem!. 

[lem, 2cm] (from bottom to top). The fust 3 bands, starting from the top, correspond) to 

wavelengths smaller than 10 cm and are therefore related to the diSSIpation range. The ot:lcr 

bands are in the inenial range. Intermittency is clearly viSIble ln the dissipation range as weil 

that in the inertial range. 
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7.3 TEST OF A WEAKER FORM OF THE THIRD KOLMOGOROV 
HVPOTHESIS 

In section 3.3.3 it was argued on the basis of the propenies of m 1Jltiplicative processes that 

the moments of 10g(e(L» may be calculated using the gaussian approximation even if the 

lognormal approximation was untenable for fhe calculation of the moments of E(L). In this 

section we shaH try to verify this hypothesis with the energy dissipation field (recall that e(L) 

denotes the energy dissipation rate field averaged over a length sc ale L). 

The moments of a centered gaussian N (0,02) are given by 

<NCJ> = (q-l)!! cr<J (7.3.1) 

for q even. It follows that 

(7.3.2) 

for q even. Introducing the centered quantity V(L) = lOgE(L) - <logE(L» we define the ratio 

<V(L)<i> 
R(L,q) = <V(L)2>q/2 (7.3.3) 

If our new form of the third hypothesis is valid the ratio R(L,q)IRO(q) should be unit y for 

q :: 2, 4, 6, ... and for L small enough. This ratio was plotted in figure 7.7 as a function of q 

for each L. The agreement with R(L,q)lRo(q) = 1 is really good for L < 2 rneters since the 

error does not exceed 15% for q ~ 10. A random scatter around the gaussian value 1S 

observed. We regard this result as a reasonable evidence for support of multiplicative 

processes. It also provides indirect suppon for the hypothesis of finite variance reqUlred for the 
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cenrrallimit theorem ta apply. It seems that the validity of the gaussian approximation for the 

calculation of the moments of log(e(L)) was never emphasized and verified experimentally 

before this study. 
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Chapter VIII 

COMPARING THE ENERGY DISSIPATION FIELD WITH 
SINGLE SCALE CASCADE MODELS: SEARCH FOR A 

PRIVILEGED SCALE RATIO 

De loin. la montagne paraît lisse; de près. elle est rugueuse 

Indian s<lymg 

In this chapter we shaH consider sorne of the simplest cascade models, namely those 

involving a single scale ratio, and focus 011 their characteristic properties. ln a siudy of 

detenninistic single scale Cantor sets, Smith et al. (1986) pointed out that a unIque scale lalio 

gives rise to periodic oscillations of the prefactor of the correlation function C(L) (10 be dcflllcd 

below) and that the period reveals the scale ratio. On this basis and by using a fractal model of 

turbulence they c1aimed that oscillations may also be observed for velocity structure fUllclion ... 

measured in natural flows. For single-scale measures, we have shown in chapter 5 that tht: 

generating function exhibits a periodic prefactor. The same observation was made by Novlkov 

(1990) using a slightly different approach to the modelling of the energy dissipallon flcld, C.!,! 

the "pulse-in-pulse" model (:;ection 2.4.3), where the energy dissIpation field ha ... li powcr 

spectrum ùf the form k- 1+1l ~(log(k» (0 < 1.1 < 1), where <1> is periodlc with a periml 

detennined a sc ale ratio. As shown in chapter 4 and 5 such periodic prefactors arbe in ~lI1gle 

scale renormalization equations. They are therefore expected for multiscaling ~y~tem ... havlIlg a 

physically distinguished scale ratio. If prefactor oscillations could be observed 111 natural now,", 

their period would reveal a privileged scale ratio characteristic of turbulence. 

Our first goal in this chapter is to detennine whcther such prefactor o~cillal1on\ aClually eXI ... t 

in random models. lndeed the existence of such oscillations is only suggested by pCrJOCllclty 

statements of the type f(x.) = f(x+T) which might iJossibly me an that f 1\ simply con~tant 

These prefactors have not been calculated either analytically or numerically in random model ... 
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(Novikov, 1990) and it is interesting to study the effect of randomness. If oscillations exist the 

second step is to see if they are sufficiently wide in amplitude to be easily observable. The last 

step will he to see if similar oscillations can be obtained in real turbulent flows. 

It should be recalled that for exactly self-similar sets the periodicity of the prefaetor of Ns(o) 

is usuaîly spoiled by the use of a box-counting grid (section 4.2.3.2), and therefore another 

method is needed to measure pre factors for sets. Various defmitions of the correlation functlon 

have been proposed in the context of dynamical systems. In section 8.1 we extend these 

definitions for arbitrary sets and measures. Thesr. new quantities have the advantage of 

allowing an accurate estimation of periodic prefactors. In section 8.2 these methods are firsl 

tested on anificial random sets and measures and next applied to the energy dissipation field a'i 

rneasured in the atmospheric surface layer. A first numerkal attempt to obtain the penodic 

spectral prefactor of the Novikov "pulse in pulse" model is made in specifie cases 

8.1 MEASURING PERIODIC PREFACTORS FOR SETS AND MEASURES 

8.1 ,1 Correlation functions for sets 

Given a sequence of points (Xi> i = 1, ... , N), usually generated by a dynamical ~ystem, 

the correlationfunction (Grassberger and Procaccia, 1983) is defined by 

N 
C(o) = lim N-2 L Ni(Ô) , 

N~- j=l 
(8.1.1) 

where Nj(o) denotes the number of points inside a bail B(o,xj) of diameter 0 eentered about XI' 

ln this context the ratio Nj(o)/N, interpreted to be the fraction of time spent by the point in 

B(o,xj), is expected to be finite in the limit N~oo. C(O) is the average of these time fractions 

and is also finite. The correlation dimension v of the infinite sequence (xd is defined by 

v = lim 
ô~o 

10g{C(o) } 

logo 
(8.1.2) 
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1 Note that C(B) is defined for infinite sequences but is not necessarily defined for selS. Indeed. 

giJen a set a role is required to enumerate the points and CCL) depends on this rule. 

A natural way of "making points" with a set is to coarse-grain it by box-l'ounling at 

resolution e. The correlationfunction is then given by 

C(o,e) = 
1 NB(e) 

(N (» 2 .L Ni(~,e) , 
Be 1=1 

where Nj(o,e) is the number of filled boxes of size e (e « B) inside a ball of diaml'tcr Ù 

centered on the ith filled box, and NB(e) is the total number of boxes of size E necdl'd 10 l'Ovel 

the set. In general 0 S C(B,E) S 1 because 0 S; NJ(B,E} S NB(E) for any i For ~ol11e ~CI'. 

the limit C(B)= lim 0 C(B,E) ~ 0 may exist and be non-zero. Conslder for cxampk a e-4 

homogeneous fractal, i.e. a set S such that any non-empty subset S. satJSfle~ dB(S,) = dn(S) 

(in other words. the box dimension of any piece of the set is the saille). For ~ul'h il ~cl 

Nj(Ô,E) - (e/BrdB as E-40 and since NB(e) - e-dB it follows that N.(O,E)/N u(c) - i')dB a" 

E-40 and therefore 

The definition (8.1.1) was used by Smith et al. (1986) for sets containing a fmite numbel nI' 

points. Our expression (8.l.3), which applies to any ~ct, appears to be original. 

In a numerical experiment. where an e-grid is used to coarse-grain the set, e(O,f) dcpl'nd~ 

on the position of the grid. By contrast with NB(Ô), where a different gnd i~ lJ~ed for cadI Ù. 

no o-grid is involved in the calculation of C(O,E). As we shall see, thi~ irnprovcment allow., tu 

recover a convincingly periodic prefactor for exactly self-similar sel<,. 
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8.1.2 Calculation of C(Ô,E) for exactly self-similar sets 

Consider an exactly self-similar set S where the copies Sj are positively separated, and 

denote by C(Ô,E;S) the correlation function associated to S. The Sj are identical, hence if 

Ô < min d(Sj,SJ) then 

M NB(E;Sj) 
C(Ô E'S) = -~- ~ Nk(~,E) 

, , [NB(E;S)]2 k~l 
(8.1.4) 

where the sum runs over aU the boxes covering one of the Sj- (8.104) can be rewritten in the 

fonn 

(8.1.5) 

For an exactly self-similar set with ratio r, NB(E;S) = M NB(E;Sj) and self-similarity implies 

C(Ô, E; Sj) = C(blr, E/r; S), 

therefore (8.1.5) becomes 

CCli, E; S) = M-I C(li/r, E/r; S), (8.1.6) 

which becomes 

CCli) = M-I C(li/r), (8.1. 7) 

'lS E40 if t ~e limit exists. Consequently 

CCli) = Ô dS POogli), (8.1.8) 

where POogli) = POogô+log(l/r». Numerical experiments performed by Smith et al. (1986) 

have demonstrated the existence of oscillations for P with M-piece Cantor sets. This periodicity 

is very clear in comparison with the results obtained in chapter 4 with box-counting. The 
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details of these oscillations can be used to characterize the properties of the set other th an tht' 

dimension. For ex ample sets sharing the same dimension, such as the Cantor sets (101) and 

(101010001), can he distinguished by comparing their prefactors. 

For illustration, a numerical experiment was performed on the triadic Cantor set ( 1 () 1). 10 

cascade steps were done and C(L) was plotted in figure 8.1. The slope of the line i" 

dS = log2/log3, and regular oscillations are visible. At smaU scales. the set is not sc1f-~lInilar 

and therefore the periodicity is spoiled (the smallee:, lIe is defined to be unit y). ln figure g.2. 

the prefactor P(Ô) = ô-dS C(Ô) is plotted versu.:. . 1;;0. The minimum of the penodlc func\lon 

occurs approximately at sc ales 100, 1oox3 ..... loox3n, which reveals that the sphtting factor 

of the set is r = 1/3. A zoom on P(L) is given in figure 8.3. 
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Figure 8.1: C (L) for the triadie Cantor set (101). The slope of the line is log2/log3, the 

dimension of the set. Periodic oscillations are visible, except al small scales, where 

self-similarity is spoüed by the finite ioner scale. 
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Figure 8.2: Prefactor P (L) = S-dS C (L) for the ttiadic Cantor set (101). The minimum of 

the periodic function occurs approximalely al scales 100. 3xl00 .... , 3"xloo, which indicate~ 
that the scale ratio of the set is r = 1/3 
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Figure 8.3: Zoom on the function P(L) of the Cantor set (101) (i.e. zoom on figure 8.2). 
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Figure 8.4: Zoom on the function ?4(L) of the Cantor set (101). The set wa~ (:omtructed 

with 10 cascade steps 



8.1.3 Generalization of the correlation function for sets and measures 

We propose here a generalization of the correlation function (8.1.3) that leads to a more 

complete characterization of the set. We define the order-q correlationfuncrion by 

NS(t) 

l '" q [N ()]q+1 ~ [Nj(Ô,E)] , 
BE J=I 

(8.1.9) Cq(O,E) = 

normalized so that 0 S; Cq(O,E) S;; l. For exactly self-similar sets, the renormalizatlon 

argument of section 8.1.2 leads 10 

Cq(O) = M-q Cq(o/r), (8.1.10) 

and therefore 

where Pq(logO) = Pq{logo+log(l/r». The order-q correlation function therefore leads to a 

continuous famlly of periodic prefactors Pq, instead of a single one. In figure 8.4 the prefactor 

P4(L) obtamed numerically with the Cantor set 101 constructed with 10 cascade steps is plotted. 

Obviously P4(L) ~ PI(L) and therefore higher order pre factors reveal addition al informatlOn 

about the set. 

As already mentioned above, the prefactor of the generating function Xq(O) is also spoiled by 

the use of a box-counting grid. For separated and self-similar measures, the measurement of 

the pcnodic prefactor therefore requires a new too1. Wc propose here a natural generalization of 

(~.1 9) for measures. Define the order-q correlatlOnfurlcrion of a mea.'lllre f.1 by 

!'2q(O,E) 
1 =--

NB(E) 

NS(E) 

L [lli(o,E»)q, 
1=1 

(8.1.11) 

200 



where NB(e) is the number of boxes of size e needed to cover the support of IJ and IJI(O,E) is the 

measure of a ball of radius 0> e centered about the ith filled box of size E Qq(O,E) satisflcs 

o ~ !lq(ô,e) S 1 because 0 ~ 1J1(ô,e) ~ 1. For a separated exactly self-slmllar measurc 

supported by S = US j, where the S/s are scaled down copies of S, the correlation functlon 

satisfies 
1 M 

nq(ô,e;S) = M L !lq(ô,e;SJ)' 
J=1 

(H.1.12) 

where nq(ô,e;S) denotes the correlation function restricted to a support S. The self-similarity 01 

the measure implies 

(H.I.U) 

where r is the s<.:ale ratio of the measure and Wj the weight corresponding ta SJ' Replacing. 

(8.1.13) in (8.1.12) yields the renormalization equation 

(8.1.14) 

For sorne measures the limit !lq(Ô;S) = lim 0 !lq(Ô,E;S) may exisl and be non-zero. In that 
E~ 

case (8.1.14) becomes (the argument S is dropped for simphclty) 

nu 15) 

and yields 

nq(Ô) =- o't(q) + ds Pq(logÔ) OU 16) 

where dS = logM/log(1/r), t(q) is the usual mass exponent function of J.l and 

Pq(x) = Pq(x+log(l/r». This "grid insensitive" method, that allows both the ma~., exponcnh 

and the prefactor to he measured accurately as long that 0 » e, appears to be ongina!. 
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8.2 STUDY OF PREF ACTOR OSCILLATIONS IN SINGLE SCALE 
CANTOR SETS, SINGLE SCALE MEASURES AND TURBULENCE 

8.2.1 Effect of the separation condition on the oscillations 

In section 8.1.2 it was shown that the renonnalization equation satisfied by the correlation 

function C(L) for an exactly self-similar !>~ts S holds exactly only when the subsets Sj 

composing Sare separated. In the case of non-separated Sj's, the renormalization equation 

Cq(L) = M-q Cq(L/r) may still hold asymptotically in the limit ô-+O if the Sj's do not overlap 

too tnuch. We shaH now examine the prefactor of a non-separated Cantor set. It is noted that 

the numerical experiments of Smith et al. (1986) involved C'nly separated Cantor sets. 

The correlation function C(L) for the sets 1101 and 1110 were obtained numerically using 

eight cascade steps in the construction, and the prefactors were plotted in figure 8.5 (in this 

chapter, the size Lof each set was defined to he 1). The Cantor set 1110 is separated, because 

the set 1110 equals the set 110110110000, which is formed of three separated subsets. 

However the set 1101 is not separated, since the set 1101 equals the set 110111010000 1101, 

which is again fonned of three non-separated subsets. The separated 3-piece Cantor set Il 10 

exhibits a very regular periodic prefactor. By contrast, the non-separated set 1101 exhibits a 

less regular prefactor. Oscillations are visible but the periodicity is broken at large scales. At 

small scales the prefactor appears to become periodic asymptotically. The function C(L) 

obmined with the set 1101 was plotted in figure 8.6. It is emphasized that in this representation 

the oscillations are almost imperceptible. Only a large magnification of the prefactor aHows 10 

discover oscillations in this apparently straight line. 

Wc condude that when the separation condition is not satisfied the periodicity of the 

prefactor is spoiled at large seales and therefore the scale interval where oscillations cou Id be 

observed shrinks. This may be the first illustration of the effect on the prefactor of the laek of 

separation of the Sj'S for exaetly self-similar sets. 
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Figure 8.5: Prefactors of the sets 1110 (top) and 1101 (below). The set 1101 is not 

separated and periodicity is broken at large scales. 
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Figure 8.6: C(L) for the Cantor set 1101. The ratio of the amplitude of the oscillation to the 

mean prefactor is about 1% and the oscillation is almost invisible. 



.' 8.2.2 Effect of randomness on the oscillations 

Besides the separation condition, another factor may contribute to ruin the oscillations of the 

prefactor: Randomness. A realistic model of the energy dissipation field must involve 

randomness. Consider for example a random M-piece Cantor set, I.e. an M-piece Cantor ~ct 

where the positions of the pieces are chosen randomly at each cascade step. For such sels the 

renonnalization equation for Cq(L) becomes 

d 
Cq(L) = M-q Cq(L/r), 

where .. ,g .. denotes an equality in probability distribution. It follows that 

<Cq(L» = M-q <Cq(L/r» 

and therefore 

<Cq(L» = L dSq P q(logL), 

(8.2.1 ) 

(8.2.2) 

(H.2.3) 

where Pq(x) = Pq(x+log(1/r)) (the usual restrictions in connection with the separation condition 

also apply to this probabilistic case). A similar argument can be made about the renonnalizalloll 

of the correlation function for measures, which is obtained by averaging (8.1.15): 

(H.2.4 ) 

where t*(q) = -ds • Iog<Wq>/log(1/r) and Pq{x) :: Pq(x+log(1/r». A periodic prefaclor j .. 

therefore also obtained for averaged correlation funetions, either for ~et~ or measllre~. For li 

random Cantor set, the prefactor of Cq(L) may oscillate for a given realizatlon. The problem i .. 

to determine wh ether these oscillations remain "in phase" for different rcalIzation .. , in whlCh 

case the oscillations may survive the averagmg of several realizations, or If the o,>cillat1oJ)\ an: 

out of phase and therefore produce a constant prefactor once averagcd. 
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We shaH now consider three examples. Let us tirst consider a separated random Cantor set, 

where the sequences lOlO and 0101 are chosen ralidomly with equal probability at each 

construction step. For an)' realization, the two subsets composing the whole set are separated, 

and therefore the renorrnalization equation (8.2.2) holds exactly. The prefactors Pl(L) obtained 

with two different realizations were plotted in figure 8.7 (the sets were constructed using 8 

cascade steps). For each realization the pre factor oscillates periodically, and the oscillations are 

in phase. It follows that <C(L» also has an oscillating prefactor. Oscillations are observed in 

each realizatiofi because these sets remain fairly regular, despite their randomness. 

The second ex ample is a triadic Cantor set where the sequences lOI, 110 and 011 are chosen 

randomly with probabilities 0.8. 0.1 and 0.1 respectively. A larger weight has been given to 

the set 101 in order to enhance oscillations. The prefactors computed on two realizations of this 

set have been plotted in figure 8.8. 7 cascade steps have been used in the construction of the 

sets. Although irregular, the pre factors of both realizations oscillate approximately in phase, 

and therefore the prefactor of <C(L» should also oscillate. In figure 8.9 the prefactor of 

<C(L», obtained by averaging 200 such realisations, is displayed. A periodic oscillation is 

obtained and the faH-off at large scale is due to the fact that most realizations are formed of 

non-separated subsets. 

In a third example we considered the triadic Cantor set where the sequences lOI, 110 and 

011 are chosen with equal probability, which makes the set more irregular. In figure 8.10 the 

pre factors of three realizations (7 cascade steps) are plotted. No obvious period;·jty is visible. 

ln order to àetermine if the prefactor of <C(L» oscillates 1000 such realizations were averaged. 

The prefactor of <C(L» did not exhibit periodicity and the irregularities of the prefactor were 

found to be very small (the ratio of their amplitude to the mean pre factor was about 2%). In 

order to see if the prefactor oscillations could be enhanced for higher order correlation 

functions, the prefactors OfCl(L), Cs(L) and ClO(L) were obtained for a realization and plotted 
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together in figure 8.11. This graph cleaTly suggests that the amplitude of the prefaclOr 

oscillations are enhanced by raising the order of the correlation function. ln figure 8.12 the 

prefactor PlO(L) obtained by averaging 250 realizations of ClO(L) is displayed. An oscillation 

with a period corresponding to a scale ratio 1/3 is clearly visible. The periodiclIy is altcred by 

statistical errors and by the effect of the lack of separation. 

We conclude that the oscillations of the pre factor of <Cq(L» can be difficult to observe in 

random self-similar sets. High values of q help emphasizing the oscillations but <1 lot of 

averaging is often required to obtain a reasonable evidence for penodic behavior. It seems that 

the oscillations are never completely destroyed by randomness. Nevertheless il would appear 

that more "irregular" sets produce oscillations smaller in amplitude and consequently more 

difficult to observe. 1 he se conclusions were also found to apply to the correlution functioll 

defined for measures, as verified with numerical experiments on deterministic and randol11 

single scale multinomial measures (see figure 8.13) 
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8.2.3 Numerical experiment with the Novikov "pulse-in-pulse" model 

In this section we examine a numerical experiment perfmmed wllh the Novikov 

"pulse-în-pulse" model (section 2.4.3). This is an attempt ta determine 10 what extent Ihe 

oscillations of the power spectrum are easily observable. The constrUCllon of the mode! 

involves a Poi~son process goveming the large scale structure of the dissipatIon fIeld and li 

cascade process detennining its fractal self-slmilar structure. In order to focus on the scaling 

range of the power spectrum we constructed a model that did not illvoive the POl~S()n proL'e~~ 

ingredient. Starting with a point centered at x = 0 the fractal set determlllmg the energy 

dissipation function Es(X) was directly constructed around this point The pulse shape was 

chosen to be I(x) = a/(1t(x2+a2 Y). e was chosen ta be uniformly distnbuted between -1/2 and 

1/2 with m = 2, ~ = 1/3 and /...} = 1. lt follows that the spectrum ha~ the l'orm 

E(k) = k-Y P(logk) where y == log2/log3 ~ 0.6309 and POogk) = P(logk+log( 113». l'hl' 

exponent 'Y is therefore comparable with the 'Y measured in turbulent flows thatlles bl'twl'cn 0.5 

and 0.7. Eight cascade steps were performed in the construction of the mode\. For I1ll1!\tfa\lon 

two realizations of this model with a = 1/2 and a = 1/6 are given in flgure~ 8.14 and 8.15 

respecti vel y . 

ES(X) was sampled with a resolutlOn high enough for the power ~pectrllm to exllI bit li 

begmning of fall-off at high frequencies. The prefactor E(k) kY of a typical power !\pcctnllll 

obtained from a smgle realization with a = 1/6 is shown In fIgure H.16 U~I/lg Ih\.: ~al1l\.: 

vertical scale the prefactors obtained by averaging 10 and 500 reahzatlons are !'Ihown ln fIgure 

8.17. A tiny oscillation is perceptible and a zoom reveals a rough periodlcity wilh p =oc 1/3 

consistent with the theoretical prediction. The prefactor oscillation therefore eXI:-,I., in tlm 

model, Le. the prefactor is not constant. The ratIO of the amplItude of the ()~cIllati()n 10 the 

mean prefactor is about 20% WhlCh means that an accuracy on the ~pectrum of at Jea\t S''!', 1\ 

required to observe the oscillation. In our results wlth atmospheric data (fIgure 6J~) the mmc 

215 



( 

( 

( 

level on Ee(k) (the power spectrum of (àu/dx)2) was at least 50% and was therefore too large to 

observe such a small 'lsciUation. 
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Figure 8.14: A realization of the Novikov model as defined in the tcxt obtatned wlth 
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8.2.4 Experimental results with the energy dissipation field 

The measure associated with the field (du/ax)2 was shown in chapter 6 to have scaling 

properties for scales larger titan 10 cm. We are comparing this measure with a cascade process, 

and therefore the inner scale of this hypothetical process should be 10 cm. A graph of the 

values of the IT'easures of 10 cm intervals is displayed in figure 8.18. Obviously ail the 

intervals have a non-zero measure, and therefore the suppon of the energy dissipation field 1S 

the whole Hne. The function Cq(L) therefore takes a trivial value. A non-trivial set cou Id be 

obtained for ex ample by focusing on threshoid sets, Le. sets composed of the union of aH the 

10 cm intervals having a non-negligible measure. However, for a space-filling multinol1ual 

measure the sets obtained with this truncation are not Cantor sets in generaI. ln order to apply 

directly the methods introduced above to detect prefactor oscillations, it is therefore more 

suitable to study the measure with the correlation function Oq(L). 

It has been emphasized previously that the prefactor oscillations can be very tiny. One must 

therefore worry about the accuracy of the "wiggles" obtained from a power law before giving 

them any credit. In figure 8.19 the correlation function Q2(L) obtained with a coarsc-graining 

scale of 10 cm is dlsplayed. The results obtained by averaging on the whole samplc, and then 

on the first and second halves, are given. The differences between these curves show that 

Q2(L) has not converged yet. However, the scaling exponents are almost identical (wlIhlll 1 %) 

and therefore there may be sorne hope that the prefactor oscillations can be delecled. )n order 10 

see if any systemath.. variations occur in the prefactors, we extracted a prefactor functlon from 

each half-sarnple, as weIl that from the whole sample, with the folJowing procedure. Flr~lly, 

the scaling exponent y defined by [<Qq(L»] l/q - LY was obtained using a hnear regre!-,!-,lOn; 

secondly, a prefactor function Pq(L) = [<Qq(L»]l/q L-Y was calculated and normalized hy 

Pq(Lmin), where Lmin is the smallest scale of the scaling range. 
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The results obtained for q = 2 and q = -1 are shown in figure 8.20. In both cases 

systematic oscillations are visible. Indeed, the prefactors obtained with different samples (i.e. 

the first and second halves) have their up and downs at the same scales. We therefore conclude 

that these oscillations are not statistical artefacts, even if they are not very accurate. The 

prefactors are not measured accurately enough to establish periodicity. Nevertheless, they have 

their up and downs fairly regularly. A clear change in behavior occurs between the ranges 

L S 3 m and L > 3 m, which is not necessarily surprising since the altitude is about 4 

meters. In the range L S 3 m, two large oscillations suggest a periodicity corresponding to 

r ". 1/2. In the range L> 3 m, at least four oscillations (smaller in amplitude and penod) 

occur with an approximate periodicity corresponding to r = 1/1.5. The change in behavior 

between the two ranges of scale implies that the prefactor cannot be periodic over the whole 

scaling range. It should be noted that for larger values of Iql we found that the estimation errors 

on the prefactors, as judged from the variations between the first and second half-sample, were 

too large for i::onclusive results to be obtained. 
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8.2.S Conclusions about prefactor oscillations 

We found that periodic prefactor oscillations of scaIing quantities usually exist in random 

single-scale models, Le. the periodic prefactors are rarely constant. For correlation functions 

these oscillations may be difficult to observe because of their smaU amplitude, and it is usually 

necessary to focus on high order correll\tion functions to enhance them. The analysis of nq(L) 

on the energy dissipation field revealed systematic prefactor oscillations, with fair!): regular up 

and downs, but the accuraey of the prefaetors was not sufficient to establish periodicity. The 

oscillations were found to be consistent with r"" 1/2 in the isotropie range (I.e. L ~ 3 m), 

and consistent with r::::: Ili.5 in the non-isotropie range (i.e. L> 3 m). The prefactors do 

not appear to be periodie over the whole sealing range. We emphasize that the existence of a 

privileged scale ratio le!lds in general to prefactor oscillations but that the converse may not 

al ways be true. In other words, the prefactor oscillations of nq(L) might have a different 

origin, especially in the non-isotropie range. 

The numerieal experiment with the Novikov pulse-in-pulse model showed that small power 

spectrum oscillations did exist in this model but that an accuraey of at least 5% on the spectrum 

was needed to observe them (in the specifie cases examined). Our measurements of the power 

spectrum of (dU/dX)2 in the atmosphere, involving a 50% statistical error, were not aecurate 

enough for such a small oscillation to be detected. 
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CONCLUSION 

Pour obtenir des résultats valables Ilfaut d'abord choIsir correClemt'!lI .W1fl 

objectif, et savoir se contenter d'une descriptIOn Incomplète de ln ",'IUre. 

Hubert Reeves (from Malicorne, réflexIOns d'u/I 
observateur de la nature) 

1) Cascade models and the energy dissipation field 

We shaH first reexamine the findings listed in the section Contributions co (}ri~i"al 

knowledge from the viewpoint of one of the questions originally posed in the introduction' Can 

we distinguish the energy dissipation field (EDF), as measured with a hot wire <lnClllolllctcr 111 

the atmospheric surface layer, from multiplicative cascade processes? Let liS review the l'Ive 

different analyses we made to check the validity of these various models: 

i) Single-box scaling: One of the simplest property of multiplicative proœssr<; i'i the 

scaling behavior of the moments of the measure «Il(Ô»q> oc Ô't(q)+D. This property had 

already been found to he weB supported for one-dimensional averages of (duldX)2 by Menevc:lu 

and Sreenivasan. Our data also exhibits a convincing scahng behavior and wc obtained 

approximately the same function t(q) (section 6.4). The stability of the exponent!. for dlffercnt 

flows is consistent with the Kolmogorov hypothesis of universality for !.mall scale tllrblllcm:c III 

the limit of infinite Reynolds number. We emphasize that for q > 0 the scahng of «Il(Ù»lI> i ... 

good but nevertheless the prefactor «Il(Ô»q> o-'t(q)-D exhibas Hregular m,CIllatlOn'l Il l!-. 

interesting to note that the scaling range extends over scales mUlh larger than the ra nge over 

which isotropy might hold. 

ii) Two-box scaling: A calculation of correlations in single !lcale mulupiicative proce ... ~e ... 

showed that the quantities «Il(O))p+q> and «IlI(o»P(1l1+1(Ô»q>. where Il.(Ô) and 111+1(8) 

(lenote the average energy dissipation in boxes separated by a distance O. should both ~cale with 

identical exponents A(p. q) for wide domains of the (p, q) plane (i.e. the "CD-~c:aIIng" 
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region). The analysis of the EDF showed that for p = q (in the CD-scaling region) this 

propeny was weIl satisfied, which supports multiplicative processes. In the non CD-scaling 

domain a scaling transition occurs for single scale multinomial models. A similar transition was 

observed in the EDF but in this region the sealing exponents A(p, q) were found to be 

significantly different from the exponents predicted by the model. This result is interesting for 

at least two reasons: Firstly, the scaling transition predicted in the model actually oceurs in the 

EDF; secondly, for sorne (p, q) the exponents A(p, q) allow to distinguish the EDF from 

single scale cascades. 

iii) Central limit theorem: In chapter three we showed that another way of testing finite 

variance multiplicative processes was to check that the moments of log(e(ô», where e(ô) is the 

field Cé)uJdx)2 line-averaged over a scale 8. could be obtained from the gaussian approximation. 

This was reasonably supported by the data (section 7.3), thus providing indirect support for the 

hypothesis of fmite variance required for the ceutrallimit theorem to apply, although the infinite 

variance cases were not considered. 

iv) Pre factor analysis: We tried in chapter 8 to detennine whether the hypothesis of a 

privileged scale ratio in the EDF could find support in the data. Such privileged scale ratios are 

obtained for example in cascade processes where each eddy splits iJ'\ l fixed number of eddies 

of the same size. For such models the existence of periodic preiactor oscillations in either 

power spectrum (section 2.4.3) or generating functions (section S.4) can be used ta reveal the 

underlying scale ratio. PI'efactors were found to be sensitive to the box-counting grid in both 

sets and measures. Hence the usual methods involving grids used to obtain the box-dimension 

or the mass exponents cannot always he used to estimate prefactors. We consequently 

deve10ped new "grid insensitive" methods to measure prefactors accurately in either sets or 

measures (section 8.1). These methods were tested numerically on artificial sets and measures 

(sections 8.2.1-2-3). The analysis of Oq(L) on the energy dissipation field revealed oscillating 

prefaetors \Vith fairly regular up and downs, but our estimation of the prefactors was not 
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aeeurate enough to establish periodieity. In the isotropie range (i.e. L ~ 3 m) the oscillations 

suggest a periodicity with r = 1/2; in the non-isotropie range (Le. L > 3 m), they suggt>st li 

rough periodieity with r = 1/1.4. In any case, the prefaetors arc not periodie over the whole 

sealing range. We emphasize that the existence of a privileged seale ratio leads in general to 

prefactor oscillations, either for correlation functions or spectra, but that the converse ma)' not 

always be true. In other words, the prefactor oscillations of Oq(L) might have another ongin, 

especially in the non-isotropie range. 

v) Divergent versus non .. divergent cascades: Random multiplicative processes can be 

grouped in two classes called mierocanonieal and canonieal (section 5.4). As pointed out by 

Mandelbrot (1974), eanonical models make room for measures with divergent moments 

<~q(a», and we showed in section 5.4.3 that divergence of moments leads to an effeetively 

vanishing mass exponent 't(q) for large q. This behavior was not observed in the EDF for 

-10 S q S 10. Indeed 't(q) rather ex hi bits an asymptotically linear 't(q) for large Iql. This 

suggests that divergent cascade processes are not relevant to the modelIing of the EDF, although 

we eould not eliminate the possibility of the divergence of sufficiently high order moments. 

The main disagreements between single-scale multinomial models and the real EDF were on 

one hand the sealing exponents A(p, q) of the correlations «~i(O»P(~I+ 1 (O»tJ> ln the non 

CD-scaling domain, and on the other hand the prefactor oscillations of 0q(L) (hat are not 

periodic over the whole scaling range. The other analyses give support to multiplicative 

processes, whieh is an interesting results in itself. The failure of the single seale mulunomml 

model to account for the scaling of correlations for sorne (p, q) suggests that more gencral 

models, maybe multiscale cascade process\:s, may be more adequate for the energy ca~cade 

process. It should be noticed that this failure is consistent with the laek of penodlcity of the 

pre factor of Oq(L) over the whole scaling range, that also rejects the hypothesis of a SIngle scale 

ratio. TIle double-box scaling exponents A(p,q) may not always be related in a simple manner 

to 't(q), in which case they would provide a more complete description of a scaling field. di) 
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and v) suggest that the 1-0 multiplicative process that best fits the EDF, as measured on a line 

with a hot wire anemometer, should have multiplicative factors Vi with finite <(logW)2>, and 

be non-divergent (i.e. t(q) > 0 for q > 1) if canonical. Besides the actual fonn of the mass 

exponents t(q), that were measured in chapter 6, these are the main informations obtained about 

the EDF. 

2) Kolmogorov inertial range theories 

We shaH now come back on our main conclusions about some questions raised by the 

Kolmogorov theorie,,). Landau'scriticismofthe original 1941 Kolmogorov theory, in essence, 

is that the k-5/3 law is not invariant with respect to the composition of statistical subensembles. 

The K41 theory could escape this problem only if th: ~olume-averaged EDF E(Ô) was constant 

for Ô ~ Tt, where Tt is the dissipation scale, which is found experimentally not to be the case. 

Il follows that the K41 theory, although making remarkably accurate predictior..s for the energy 

spectrUm, is in principle invalid. This problem lead Kolmogorov and Obukhov to develop a 

refined theory, rather questionable actually, on whi~h we shaH not further comment here. We 

made an interesting observation in connection with the general relevance of Landau' s idea: 

Most statements made in statistical fluid mechanics, such as the law of the logarithmic boundary 

layer that describcs the mean velocity profile over an infinite fiat surface, are found not to be 

invariant with respect to the composition of statistical subensembles. Il follows that Landau' s 

objection equally applies to these statements, that should therefore be regarded as only 

approximate. This fact does not appear to have b~en noticed previously since many of these 

laws, e.g. the law of the logarithmic boundary layer (Monin and Yaglom, 1975), are presented 

as exact implications of the Reynolds equations. It follows that the universal constants involved 

in these statements. such as the von Karman constant, are not univcarsal, which might explain 

the scatter of the estimations of this constant as made by various experimenters. 
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1 The Kolmogorov original theory predicts that the structure functions take the form 

«âv(L»h> = c(h) (EOL)h/3. where c(h) is a universal function of h. According to Landau this 

result cannot be rigorously correct. However. Frise'. argued that if the fonnal stretching 

symmetry of the Euler cquation is obeyed by the velocity field in a statistical sense, the simple 

scaling «~v(L»h> oc Lh/3 should be obtained without necessarily having universal prefactors 

involving EO. This argument is interesting bec au se the lack of umversality of the prefactors 

does not allow the Landau's objection to::> apply. Hence the possibility of simple scaling remains 

and one must then explain why high order moments actually yield «L\v(L»h> oc LC(h), where 

~(h) ~ h/3 for h > 4. This has been the object of a controversy. On one hand, Frisch simply 

interpreted the non-lineari~y of Ç(h) as an evidence for the breakdown of the stretching 

symmetry in turbulent fluids. On the other hand. Schertzer and Lovejoy argueJ that even if 

simple scaling was sttictly obeyed for the probability distributions of L\v(L), the linearity of the 

exponents ~(h) measured on a sample could be broken if L\v(L) had divergent moments for 

h > 5. From this point of view the non-linearity of ~(h) is regarded as a statistical bias thal 

does not disprove the validity of simple scaling. 

In order to determine which of these two alternatives was correct, we examined the 

probability distributions of the velocity differences ~v(L). Firstly, the probability di~tnbuuons 

were not found to be convincingly hyperbolic. More imponantly however, a stausucal test 

made on suitahly scllled histograms showed that simple scaling, apparently fairly weil ~ati~fied 

as judged by simp~e graphs, did not ho Id on a strict statistical basis. We also obselved that 

simple scaling .• as increasingly broken for large values of L\v(L), WhlCh explaIn~ the 

non-linearity 0' Ç(h) for h large. By contrast with previous tests of simple scaling (Amelmet, 

1984), based on the linearily of Ç(h) for high order structure functions and posslbly bla~ed by 

divergence (Jf moments, our method does not require an accurate estimation of the moments and 

remaim: vaUd ev en if L\v(L) has divergent moments. We conclude that simple scaltng is 

231 



{ 

--- ---------------------

definitely broken in the statistical sense but that it is obeyed sufficiently accurately for relatively 

small values of &v(L) to yield accurate scaling predictions for low order moments. 

A slight improvement on previous fonnulations of the third Kolmogorov hypothesis was 

also made by suggesting that the moments of loge(8} should be possible to obtain using the 

gaussian approximation. This conjecture was found to be reasonably supported by the data, 

which also suppons indirecùy the concept of multiplicative process, as mentioned above. We 

emphasize that this is a weaker version of the third Kolmogorov hypothesis, since it does not 

allow the calculation of the moments of e(8). 
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APPENDIX 3.1 : CENTRAL LIMIT THEOREM (BY KHINCHIN) 

Consider the random variable 

where the Yi are identically distributed and independent random variables such that .::Y1> = O. 

Let u(y) denote by the probability density of Y and define F(t) = Je,tYu(y)dy the characteri),tic 

function. Khinchin results (section 3.2) about the probability density 1n(s) of Sn holds if Y 

s,'nsfies the following conditions: 

1 - u(y) possess continuous derivatives and there exists a positive constant A sllch that 

J lu'(y)1 dy < A, 

2 - < yp > < 00, p = 2, 3, ... , 5, 

3 - there exists positive constants a and b such that for Itl < a, IF(I)I:> b, 

4 - for each interval [ct. C2] (CtC2 > 0) there exists a number p(c t.C2) < 1 sllch that for 

any te [Cl, C2] we have IF(t)1 < p(C},cÛ. 
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APPENDIX 3.2 : THE MELLIN TRANSFORM THEO REM 

Suppose that r(z) is a function of the complex variable z = cr + i't which is regular in the 

strip S = { s : a < cr < b } and that for any arbitrary small positive number v, t(z) tends 

to zero unifonnly as l'tl~oo in the strip a + Tl S cr S b - Tl. Then the integral 

+00 

J f·(o + i't) dt 
_00 

is absolutely convergent for each value of Cf in the interval la, br, and if for positive real values 

of x and a fixed CE la, b[ we define 

f(x) 

then, in the strip S, 

c+ioo 

= _1_ J x·z f·(z) dz 
27ti C-tao 

00 

f"'(z) = J xz-} f(x) dx 

t(z) is called the Mellin transfonn of f(x) (from Sneddon, 1972). 
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APPENDIX 4.1: SOLUTION OF THE MULTISCALE RENORMALIZATION 
EQUATION 

Consider the linear equation 

M 

P(ô) = L Wi P( ô/ri) 
i=l 

where fi < 1 for aIl i and 

M 
L Wi = 1. 
i=l 

( 1 ) 

(2) 

The general solution of (1) is a linear combination of elementary solutions of the form ô· lI• wHh 

d complex. The trial solution ô-d replaced in (1) leads to the characteristic equation 

d = 0 is a real root of (3). The complex roots of (3), denoted by d = dR + i dl. are ~olll\lon.., 

of the system 

M 

l wJ rJdR COS (dl logrj) = 1 
j=l 
M 

l wJ rJdR sin(d] logrj) = 0 
J=1 

(4a) 

(4h) 

The complex roots with dR '" 0 are complex conjugate pairs which can be ~een from (4a) ln 

satisfy dR < O. There are other complex roots with dR = 0 only if dl logrJ = 2nn] lm ail J. 

which implies that the ratios are of the form 

fJ = ro nj, j = 1, 2, ... , M, (5a) 
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where ro is a constant. In this case the imaginary parts are the solutions of dl 10grJ = 21tmj 

that holds for all j, which implies with (Sa) that mj = nnj, and therefore 

21tn 
dr(n) = 10grO ' nEZ. (5b) 

Two cases must therefore be distinguished for the general solution: 

(i) a:enerjc case: The rj are not integer powers of sorne common ration ro. Then the 

general solution is 

P(B) = co + R(B) (6) 

where 

R(B) = L c(n) B .dR(n) exp( -i dI(n) 10gB) 
n 

and dR(n) < 0 for ail values of n. It follows that R(B) -+ 0 as B -+ 0 and rherefore P(B) b 

constant in the lirnit B -+ O. If dR(n) == 0 for sorne values of n the oscillations could survive 

over finite ranges of scale because of the slow darnping rate. 

(ii) special case: The values of rj are of the fonn (5a) and the irnaginary parts of the complex 

roots with dR = 0 are given by (5b). The general solution becornes 

P(B) = F(logB) + R(B) , (7) 

where F(x) = F(x + log(l/ro». 
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APPENDIX 5.1: ASYMPTOTIC LINEARITY OF 't(q) FOR FINITE f(a) 

For a scaling measure with finite f(a) spe(:trum (a E Df = [n .. cx+]) 

t(q) ,.. a~ q - f(cx=f.) as q ~ ± 00. 

This result can be derived as follows: On one hand f(a) ~ K = min{f(a.),f(a+)1 for a\l 

a e Dr; Young's inequality nq - t(q) ~ f(a) (which follows from the definition of f) then 

implies that aq - t(q) ~ K for aH (a,q) e Of x IR. On the other hand the concavity t" ~ 0 

implies that t'(q)::1! t'(oo) = a .. Therefore 

a. q • t(q) ~ K and à/aq ( a. q - t(q) 1 ~ o. 

i.e. the function a. q • t(q) is monotonely decreasing and bounded from below. Ilencc there 

must be a number ~ ~ K such that 

lim a. q • t(q) = ~, Le. "C(q)'" n. q - a+ as q -) 00 

q-)oo 

Using f(a) = t'(qo(n»qo(a) . t(qo(n», where t'(qo(n» = a which follows from (5.2.12) 

(see section 5.2.6.2 for more details), and replacing 't by its asymptotic form t(q) ,.. ex. li . <1+ 

yields ~ = f(a.) in the limit qO(a)~oo. Similarly it can be shown that there i~ an a. ? 0 ~lIch 

that t(q) ,.. a+ q . a. as q ~ .00, where a. = f(a+). 
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