
A Modular and Configurable Web-Based

Frontend Architecture for Educational

Modelling Tools

Chaitanya Santosh Tekane

School of Computer Science

McGill University, Montreal, Quebec, Canada

March 18, 2025

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of

Master of Science

© Chaitanya Santosh Tekane, 2025

i

Abstract

Modern software systems are becoming increasingly complex, necessitating structured

approaches for design, analysis and reasoning at higher levels of abstraction. Modelling

plays a critical role in software engineering, enabling visualization, validation and

refinement of system structures and behaviors before implementation. Despite its

importance, teaching modelling effectively remains a challenge due to the lack of suitable

modelling tools. Existing academic tools are often outdated, unstable or difficult to install,

while industrial tools tend to be prohibitively expensive and overly complex for educational

use. This gap hinders students from developing practical modelling skills, limiting their

ability to apply modelling techniques effectively in software development.

This thesis aims to address these challenges by developing a modern, web-based

frontend architecture for modelling tools tailored to education. The objective is to provide

a tool that is easily accessible, lightweight and extensible, removing installation barriers

and supporting multiple modelling notations. Additionally, the system introduces

configurable perspectives, allowing educators to tailor modelling environments based on

student’s expertise and learning objectives. The core research question explored in this

work is: “How can a modular frontend architecture enable efficient, extensible and

Abstract ii

customizable modelling tools for teaching?”

To achieve this, the research follows a structured methodology. First, a comprehensive

set of requirements for modelling tools in education is established, considering usability,

adaptability and extensibility. Based on these requirements, a modular frontend

architecture is designed using JavaScript, GoJS, WebSockets and a DSL-driven

configuration system. The architecture ensures that modelling components are reusable

and independent, enabling seamless adaptation for various modelling notations such as

class diagrams and state diagrams. The DSL-based configuration allows educators to define

modelling concepts and dynamically adjust the available operations based on different

pedagogical needs. The system is implemented as a fully web-based tool, ensuring

cross-platform accessibility without installation overhead.

The effectiveness of the proposed system is evaluated through a structured validation

process, measuring usability, response time, real-time collaboration, modularity and

adaptability. Automated testing, runtime behavior analysis and performance benchmarking

confirm that the system provides low-latency interactions, seamless real-time

synchronization and effective adaptation to different modelling perspectives. The results

demonstrate that the tool successfully meets the defined educational requirements,

providing a scalable and configurable modelling environment.

iii

Abrégé

Les systèmes logiciels modernes deviennent de plus en plus complexes, nécessitant des

approches structurées pour la conception, l’analyse et le raisonnement à des niveaux

d’abstraction plus élevés. La modélisation joue un rôle essentiel dans le génie logiciel,

permettant la visualisation, la validation et l’affinement des structures et des

comportements du système avant la mise en œuvre. Malgré son importance, l’enseignement

efficace de la modélisation reste un défi en raison du manque d’outils de modélisation

adaptés. Les outils académiques existants sont souvent obsolètes, instables ou difficiles à

installer, tandis que les outils industriels ont tendance à être prohibitifs et trop complexes

pour un usage pédagogique. Cette lacune empêche les étudiants de développer des

compétences pratiques en modélisation, limitant ainsi leur capacité à appliquer

efficacement les techniques de modélisation au développement de logiciels.

Cette thèse vise à relever ces défis en développant une architecture frontale moderne

basée sur le Web pour des outils de modélisation adaptés à l’éducation. L’objectif est de

fournir un outil facilement accessible, léger et extensible, supprimant les barrières

d’installation et prenant en charge plusieurs notations de modélisation. De plus, le système

introduit des perspectives configurables, permettant aux enseignants d’adapter les

Abrégé iv

environnements de modélisation en fonction de l’expertise et des objectifs d’apprentissage

de l’étudiant. La question de recherche centrale explorée dans ce travail est la suivante:

“Comment une architecture frontale modulaire peut-elle permettre des outils de

modélisation efficaces, extensibles et personnalisables pour l’enseignement?”

Pour y parvenir, la recherche suit une méthodologie structurée. Premièrement, un

ensemble complet d’exigences pour les outils de modélisation dans l’éducation est établi,

prenant en compte la convivialité, l’adaptabilité et l’extensibilité. Sur la base de ces

exigences, une architecture frontale modulaire est conçue à l’aide de JavaScript, GoJS,

WebSockets et d’un système de configuration piloté par DSL. L’architecture garantit que

les composants de modélisation sont réutilisables et indépendants, permettant une

adaptation transparente à diverses notations de modélisation telles que les diagrammes de

classes et les diagrammes d’état. La configuration basée sur DSL permet aux enseignants

de définir des concepts de modélisation et d’ajuster dynamiquement les opérations

disponibles en fonction de différents besoins pédagogiques. Le système est implémenté

comme un outil entièrement basé sur le Web, garantissant une accessibilité multiplateforme

sans frais d’installation.

L’efficacité du système proposé est évaluée à travers un processus de validation

structuré, mesurant la convivialité, le temps de réponse, la collaboration en temps réel, la

modularité et l’adaptabilité. Les tests automatisés, l’analyse du comportement d’exécution

et l’analyse comparative des performances confirment que le système offre des interactions

à faible latence, une synchronisation transparente en temps réel et une adaptation efficace

aux différentes perspectives de modélisation. Les résultats démontrent que l’outil répond

Abrégé v

avec succès aux exigences pédagogiques définies, en fournissant un environnement de

modélisation évolutif et configurable.

vi

Contribution

All chapters of this thesis were researched and written by the student, Chaitanya Santosh

Tekane, as a first author. Professor Jörg Kienzle served in a supervisory role, offering

conceptual direction, reviewing draft and ensuring the academic rigor of the thesis.

vii

Acknowledgements

First and foremost, I express my deepest gratitude to my supervisor, Jörg Kienzle, for his

unwavering support, patience and invaluable guidance throughout my master’s thesis. His

vast research experience, insightful feedback and encouragement have been instrumental in

shaping my work. I am also grateful for his pragmatism and for introducing me to a

vibrant research community. Since his departure from McGill, I am grateful to Bettina

Kemme for taking over the official supervision and handling the administrative process.

I extend my sincere thanks to Maximilian Schiedermeier, who first introduced me to

RESTful APIs and provided valuable insights that supported me throughout my research.

I am also thankful to Gunter Mussbacher for his course on Advanced Software Language

Engineering and Martin Robillard for his course on Software Privacy, both of which

significantly contributed to my understanding of core software engineering concepts.

Additionally, I appreciate the contributions of Suraj Van Verma, who worked on the

backend and provided essential support.

I would also like to thank Billy Exarhakos for his collaboration on the ECSE539 project,

which helped shape Chapter 5 of my thesis. Furthermore, I am grateful to Hyacinth Ali,

Acknowledgements viii

who generously shared his time and expertise, providing crucial explanations since we built

upon some of his previous work for this project.

Beyond academic and professional support, I am deeply indebted to my family for their

unconditional love, encouragement and belief in me. Words cannot capture my gratitude, I

simply know I can always count on you.

I would also like to extend my heartfelt appreciation to Aastha, Abhishek, Amit, Aniket,

Ankur, Anshita, Bala, Darpan, Dheeraj, Gaurav, Gazal, Hari, Jeffrey, Kevin, Kunal,

Lakshya, Manas, Mohaddeseh, Mudit, Nanda, Nikhil, Pavithran, Ravindranath, Rayisha,

Rishabh, Romain, Sanket, Shamanth, Shree, Shreya, Siba, Srishti, Vaishnavi, Vishal and

Yash. At some point in this journey, each of you has been part of meaningful conversations,

shared moments of laughter or offered words of encouragement that kept me going. Your

presence has made this experience all the more memorable. Special thanks to my lab mates

Aayush, Nelson, Rahma, Shubham and Shwetali for making the research journey enjoyable.

Thank you all.

ix

Contents

Abstract . ii

Abrégé . v

Contribution . vi

Acknowledgements . viii

List of Figures . xv

List of Tables . xvi

List of Code Samples . xvii

List of Abbreviations . xviii

1 Introduction 1

1.1 Summary of Contributions . 3

1.2 Thesis Outline . 4

2 Background and Related Work 5

2.1 MDE, DSL and Software Design Principles 6

2.1.1 Model-Driven Engineering . 6

2.1.2 Domain-Specific Languages . 6

2.1.3 Separation of Concerns . 6

Contents x

2.1.4 Planned Reuse . 7

2.2 Modelling Tools for Teaching . 7

2.2.1 Modelling Tools and Language Workbenches 7

2.2.2 Overview of Important Modelling Tools for Teaching 8

2.2.3 The Shift Towards Web-Based Modelling Tools 12

2.2.4 Collaborative Efforts for a Common MTT Architecture 13

2.3 Architectural and Technological Foundations for Web-Based MTTs 14

2.3.1 Overview of Architectural Options for MTTs 14

2.3.1.1 Client-Server Architecture 14

2.3.1.2 Microservice Architecture 15

2.3.2 Language Server Support for Textual and Graphical Models 17

2.3.2.1 Language Server Protocol (LSP) 17

2.3.2.2 Graphical Language Server Protocol (GLSP) 17

2.3.2.3 Why LSP and GLSP Were Not Used 18

2.4 The CORE Framework . 19

3 Requirements 21

3.1 Categories of Modelling Tool Users . 21

3.2 Requirements (R) . 22

3.2.1 Language and Feature-Related Requirements 23

3.2.2 User Interaction and Collaboration-Related Requirements 24

3.2.3 Education-Related Requirements . 26

3.2.4 Development-Related Requirements 26

3.3 Frontend Requirements (FR) . 27

3.3.1 Language and Feature-Related Requirements 28

Contents xi

3.3.2 User Interaction and Collaboration-Related Requirements 32

3.3.3 Education-Related Requirements . 39

3.3.4 Development-Related Requirements 41

3.4 Summary . 46

4 Modular Frontend Architecture with Reusable Components 48

4.1 Goals and Principles . 53

4.1.1 Support for Multiple Modelling Languages 53

4.1.2 Reusability of UI Components . 54

4.1.3 Extensibility for Developers . 54

4.1.4 Maintainability and Scalability . 54

4.1.5 Real-Time Collaboration . 55

4.1.6 Security in Architecture . 55

4.2 Technologies and Selection Reasons . 55

4.3 Architecture Overview . 59

4.3.1 High-Level Structure . 59

4.3.1.1 Application Layer . 60

4.3.1.2 Visualization & Interaction Layer 61

4.3.1.3 Communication Layer . 61

4.3.2 Main Interaction Flows . 62

4.3.2.1 Initialization Flow . 62

4.3.2.2 User Actions Flow . 62

4.3.2.3 Real-Time Update Flow . 63

4.4 Reusability and Extensibility of the Frontend 64

4.4.1 Common Utility Modules . 65

Contents xii

4.4.1.1 Diagram Utilities . 65

4.4.1.2 Context Menu Utilities . 66

4.4.1.3 Frontend Operations Utilities 66

4.4.1.4 Backend Operations Utilities 66

4.4.2 Integrating a New Modelling Language 66

4.4.2.1 Diagram Module Example 67

4.4.2.2 ContextMenu Module Example 69

4.4.2.3 Frontend Operations Module Example 69

4.4.2.4 Backend Operations Module Example 71

4.5 Validation . 72

4.5.1 Experimental Setup . 72

4.5.1.1 Hardware & System Specifications 72

4.5.1.2 Software & Testing Tools 73

4.5.2 Validation of FR3: Multi-Language Notation Support 73

4.5.3 Validation of FR5: Intuitive User Interface Layout 74

4.5.4 Validation of FR6: Seamless User Interactions with Minimal Latency 74

4.5.5 Validation of FR8: User-Friendly Setup and Responsive Model Canvas 75

4.5.6 Validation of FR14: Frontend Modular Component System 75

4.6 Summary . 76

5 Language Customization through a Domain-Specific Language 77

5.1 Review of CORE and Limitations in Teaching 78

5.1.1 CORE Review . 78

5.1.2 Limitations for Teaching . 78

5.2 Extending the CORE Metamodel with Language Concepts 79

xiii

5.2.1 Metamodel Extension . 79

5.2.2 Benefits of the Metamodel Extension 81

5.3 Adapting the DSL . 81

5.3.1 DSL Grammar for Language Definitions 82

5.3.2 DSL Grammar for Perspective Definitions 83

5.4 DSL Examples . 84

5.4.1 Defining the Class Diagram Language 84

5.4.2 Defining a Domain Modelling Perspective 85

5.4.3 Defining a Design Modelling Perspective 86

5.5 Code Generation for Concept-Based Perspectives 87

5.5.1 Process Overview . 88

5.5.2 Implementation Details . 88

5.6 Frontend Adaptation . 89

5.7 Validation . 91

5.7.1 Validation of FR11: Adaptive Frontend Modelling Interface 91

5.7.2 Validation of FR14: Frontend Modular Component System 92

5.8 Summary . 93

6 Conclusion and Future Work 94

6.1 Conclusion . 94

6.2 Future Work . 95

6.2.1 Customizable Themes and Accessibility Options 95

6.2.2 Collaborative Peer Review and Annotation 96

6.2.3 Context-Aware Interactive Tutorials 96

6.2.4 Natural Language Processing (NLP) Integration 97

Contents xiv

6.2.5 Augmented and Virtual Reality (AR/VR) Integration 97

xv

List of Figures

2.1 Typical Client Server Architecture . 16

2.2 Microservice Architecture . 16

2.3 Small Exerpt of the CORE Metamodel . 20

4.1 High-Level Frontend Architecture . 60

4.2 Initialization Flow . 63

4.3 User Actions Flow . 64

4.4 Real Time Updates Flow . 65

4.5 Interfaces for Integrating a New Modelling Language 67

5.1 Metamodel Extension . 80

5.2 Dealing with Perspectives during the Initialization Flow 90

5.3 Dealing with Perspectives during the User Actions Flow 90

xvi

List of Tables

3.1 Mapping of Frontend Requirements (FRs) to Supported Requirements (Rs) . 47

xvii

List of Code Samples

4.1 Diagram Module for State Diagram . 68

4.2 ContextMenu Module for State Diagram . 69

4.3 Frontend Operations Module for State Diagram 70

4.4 Backend Operations Module for State Diagram 71

5.1 Xtext Grammar for Language Definitions . 82

5.2 Xtext Grammar for Perspective Definitions 83

5.3 Class Diagram Language DSL . 84

5.4 Domain Modelling Perspective DSL . 86

5.5 Design Modelling Perspective DSL . 87

xviii

List of Abbreviations

List of abbreviations used in this thesis:

• API: Application Programming Interface

• AOM: Aspect Oriented Modeling

• ACM: Association for Computing Machinery

• AJAX: Asynchronous JavaScript and XML

• AR/VR: Augmented and Virtual Reality

• CSS: Cascading Style Sheets

• CORE: Concern Oriented Reuse

• CI/CD: Continuous Integration and Deployment

• DOM: Document Object Model

• DSL: Domain Specific Language

• DSML: Domain Specific Modeling Language

• EMF: Eclipse Modeling Framework

• XML: Extensible Markup Language

• FRs: Frontend Requirements

• GME: Generic Modeling Environment

• GSLP: Graphical Language Server Protocol

List of Abbreviations xix

• HTML: Hypertext Markup Language

• HTTP: Hypertext Transfer Protocol

• IDEs: Integrated Development Environments

• JSON: JavaScript Object Notation

• JSON-RPC: JavaScript Object Notation-Remote Procedure Call

• JSX: JavaScript XML

• LSP: Language Server Protocol

• MDA: Model Driven Architecture

• MDE: Model-Driven Engineering

• M2M: Model-to-Model Transformation

• M2T: Model-to-Text Transformation

• MTT: Modeling Tools for Teaching

• NLP: Natural Language Processing

• OCL: Object Constraint Language

• REST: Representational State Transfer

• Rs: Requirements

• SoC: Separation of Concerns

• SSE: Server Sent Events

• SOAP: Simple Object Access Protocol

• SPLE: Software Product Line Engineering

• USE: UML-Based Specification Environment

• UML: Unified Modeling Language

• UI: User Interface

1

Chapter 1

Introduction

The increasing complexity of modern software systems necessitates structured approaches

to design, analysis and reasoning at higher levels of abstraction. Software engineers must

understand and manage intricate system behaviors, interactions and constraints, which

cannot be efficiently handled through code alone. Modelling provides a structured

representation of software systems, enabling engineers to reason about the problem

domain, architectural choices and design decisions before implementation.

The Association for Computing Machinery (ACM) curriculum recognizes modelling as a

fundamental competency in software engineering education, emphasizing the need for

students to develop proficiency in creating, analyzing and refining software models [1, 2].

As modern software development increasingly incorporates model-driven engineering

(MDE), students must learn not just theoretical modelling concepts but also how to apply

them effectively using appropriate tools.

Several industries have already embraced modelling-based development techniques to

manage system complexity. For example, Unreal Engine’s Blueprint scripting language

1. Introduction 2

provides a graph-based programming approach that allows game developers to visually

define logic without writing code, demonstrating how modelling can simplify software

design [3]. Similarly, Simulink is widely used for graphical modelling of control systems and

simulations [4], while Unified Modelling Language (UML)-based modelling tools facilitate

code generation and system validation in software engineering. These examples highlight

how modelling is no longer just a documentation technique but an integral part of modern

software development workflows.

Effective modelling tools are essential for both teaching and practice. The role of

modelling tools in education is similar to that of integrated development environments

(IDEs) in programming. Just as students do not learn programming by writing code in

plain text editors, they should not be expected to learn modelling solely through manual

drawing tools. A robust modelling tool enforces syntactic and semantic correctness,

preventing students from making invalid constructs. Additionally, modelling tools provide

validation, simulation and model execution, which enable deeper understanding and

practical application. Without these capabilities, models remain static, disconnected

diagrams rather than functional representations of software systems.

However, existing modelling tools pose significant challenges, particularly for educational

use. Academic modelling tools, while designed with learning in mind, often suffer from

technical limitations such as instability, outdated technology stacks and difficult installation

procedures [5]. Many of these tools have been developed as research prototypes rather

than fully supported, long-term solutions, leading to maintenance and usability issues. On

the other hand, industrial modelling tools, such as enterprise-grade UML tools, tend to be

highly complex, expensive and domain-specific, making them unsuitable for introductory

modelling courses. As highlighted in discussions that were during the MODELS 2023 and

1. Introduction 3

2024 workshops on Modelling Tools for Teaching (MTT) [5] [6] [7], there is a pressing need

for modern, intuitive modelling tools that facilitate teaching while maintaining usability and

extensibility.

This thesis addresses these challenges by proposing a modern frontend architecture for

modelling tools specifically designed for education. The goal is to develop a web-based

modelling tool that runs entirely in the browser, ensuring ease of access without requiring

installation and allowing seamless use across different platforms. The architecture will

support multiple modelling notations, enabling educators to choose their modelling

language based on course objectives. Furthermore, the system will provide customizable

modelling languages, allowing teachers to adapt the complexity of a modelling language to

the expertise of the students and the teaching objective. By adopting a reusable

component-based design, the proposed approach will not only support current modelling

needs, but also facilitate future extensions and adaptations, ensuring long-term viability as

an educational modelling tool.

1.1 Summary of Contributions

This thesis focuses on the frontend of this modelling tool architecture. Concretely, the thesis

makes the following contributions:

1. A comprehensive list of requirements for a frontend architecture for Modelling Tools

for Teaching (MTTs), ensuring usability, adaptability and extensibility.

2. The design of a modular and scalable frontend architecture that integrates modern web

technologies, enabling the development of intuitive and lightweight modelling tools.

3. Development of reusable frontend components that facilitate the creation of new

1. Introduction 4

modelling editors for various modelling languages without significant

reimplementation.

4. Support for customizing modelling tools based on different levels of student expertise

and various modelling purposes through:

• A Domain-Specific Language (DSL) for describing modelling languages in terms

of concepts and operations, and support for defining modelling purposes

• A frontend framework that dynamically enables or restricts modelling concepts

and operations based on the user’s role and teaching context.

1.2 Thesis Outline

The remainder of this thesis is organized into five chapters. Chapter 2 reviews essential

background and related work, providing the theoretical and technological context needed

to understand our approach. Chapter 3 details the requirements for modelling tools for

teaching identified in the literature, outlining the needs of diverse users, and from those a

set of requirements for the frontend are derived. Chapter 4 presents our modular frontend

architecture with reusable components that serve as the backbone of our system. Chapter 5

describes our DSL-driven approach for specifying modelling language concepts and modelling

operations, as well as for tailoring the concepts that are made available to users of the

modelling tool. Finally, Chapter 6 concludes the work and outlines future research directions.

5

Chapter 2

Background and Related Work

This chapter presents the relevant background as well as related work. Section 2.1 introduces

key concepts including Model-Driven Engineering, Domain-Specific Languages, and core

software design principles such as Separation of Concerns and Planned Reuse. Section 2.2

reviews existing modelling tools for teaching, discussing both specialized modelling tools

and language workbenches, as well as the shift toward modern, web-based environments and

collaborative efforts in this area. In Section 2.3, we explore architectural and technological

foundations for web-based Modelling Tools for Teaching by comparing client-server and

microservice architectures, and examining language server protocols for both textual and

graphical models. Finally, Section 2.4 delves into the CORE framework, which provide the

metamodel basis for our DSL-driven configuration approach.

2. Background and Related Work 6

2.1 MDE, DSL and Software Design Principles

2.1.1 Model-Driven Engineering

Model-Driven Engineering (MDE) [8] [9] views the entire software lifecycle as a process of

creating, refining and integrating models. It relies on model transformations and

consistency constraints to evolve high-level abstractions into executable artifacts. This

approach supports Separation of Concerns (SoC) by isolating distinct system aspects into

dedicated models, which in turn facilitates planned reuse and improves maintainability.

2.1.2 Domain-Specific Languages

Domain-Specific Languages (DSLs) [10] are tailored to express domain-specific concepts more

naturally than General Purpose Languages. They reduce the semantic gap and accidental

complexity, leading to increased productivity and clearer models. When integrated with

MDE, DSLs enable automated code generation and model transformations, streamlining the

development process and ensuring that models closely reflect the problem domain.

2.1.3 Separation of Concerns

Separation of Concerns (SoC) was popularized by Dijkstra [11] and emphasizes the practice

of temporarily focusing on a single development concern, e.g., data modelling, user

interface design or performance optimization, while minimizing distractions from unrelated

aspects. This strategy helps reduce the cognitive load on developers by compartmentalizing

complex systems into more manageable pieces. For example, in a model-driven context,

SoC can manifest as distinct models for structure (e.g., class diagrams), behavior (e.g.,

state machines) and requirements (e.g., use cases). Each model addresses a specific

2. Background and Related Work 7

viewpoint or concern, allowing engineers to work at an appropriate level of abstraction.

2.1.4 Planned Reuse

Planned reuse involves designing software artifacts to be reused deliberately across multiple

projects [12]. Unlike opportunistic reuse, which adapts existing code after the fact, planned

reuse is built into the design process from the start. This approach minimizes duplication,

ensures consistency and allows for more efficient development. By encapsulating distinct

concerns into modular, reusable components, planned reuse supports the development of

robust systems with lower long-term maintenance costs.

2.2 Modelling Tools for Teaching

Educators have long relied on modelling tools to teach modelling effectively, providing

students with an interactive environment to create, validate and refine models. This

section first reviews some of the most important modelling tools used in teaching and then

presents the common movement towards web-based architectures.

2.2.1 Modelling Tools and Language Workbenches

Modelling tools [13] are essential in educational settings, specifically to teach modelling

languages such as the Unified Modelling Language (UML). Students use these tools to learn

the syntax, semantics, and structural rules of various modelling languages, often accompanied

by a dedicated debugger and other development services. These tools are typically designed

to work with one or more specific modelling languages.

In contrast, language workbenches [14] like the Eclipse Modelling Framework (EMF)

2. Background and Related Work 8

are more generic, allowing users to create and manipulate domain-specific modelling

languages. These tools focus on metamodelling and grammar design and are more suitable

for students learning to develop custom modelling languages. Although they provide

generic services, students often must develop model transformations and code generators

themselves.

Our focus in this work is primarily on the frontend, specifically the modelling editor,

which forms the core visual and interactive component of the tool. Such a frontend could

be used both in modelling tools as well as language workbenches.

2.2.2 Overview of Important Modelling Tools for Teaching

Several academic and industrial modelling tools have been developed to facilitate teaching

software modelling. Below, we provide an overview of some of the most prominent tools that

have been widely used in educational settings.

1. GME (Generic Modelling Environment): The GME [15] is a domain-specific

modelling tool designed for building customized modelling environments. It allows

educators and researchers to define new modelling languages through

meta-modelling, providing a flexible and extensible infrastructure. GME has been

widely used in academic settings for teaching model-driven engineering (MDE) and

domain-specific language (DSL) development. It provides an intuitive graphical

interface that enables students to design and manipulate models with built-in

validation mechanisms. However, GME requires a Windows-based installation and

has a steep learning curve, making it less accessible for beginners and limiting its

adoption in modern web-based teaching environments.

2. Atom3/AtomPM: AToM3 [16] (also known as AtomPM) is another widely used

2. Background and Related Work 9

tool in the modelling community, particularly in educational contexts. It supports

multi-paradigm modelling, allowing students to experiment with various modelling

languages and formalism transformations within a single environment. AToM3 is

designed to enable students to create their own domain-specific modelling languages

(DSMLs) [17] using meta-modelling techniques, making it a valuable tool for teaching

language design. One of its key strengths is its ability to automatically generate

model transformations, which helps students understand the relationships between

different modelling approaches. However, AToM3 suffers from aging technology,

limited maintenance and an outdated, single-user interface, which hinders its

usability in modern teaching environments.

3. Umple: Umple [18] is a hybrid modelling tool that integrates textual and graphical

modelling capabilities to support model-driven development. Unlike traditional

graphical modelling tools, Umple allows students to define models using a text-based

syntax, which is familiar to software developers, while simultaneously providing a

graphical representation. This dual approach helps students transition between

traditional coding and model-based development more seamlessly. Umple also

includes features such as code generation, model validation, and simulation, making

it an effective tool for teaching UML, state machines and software design patterns.

Moreover, it is web-based, eliminating installation barriers and making it highly

accessible for students and educators. Despite these strengths, its textual modelling

approach may require additional learning effort for students who are more

accustomed to purely graphical environments. Furthermore, Umple is single-user, and

hence not capable of online collaborative modelling.

4. TouchCORE: TouchCORE [19] is a modelling tool that emphasizes

2. Background and Related Work 10

concern-oriented reuse (CORE), allowing students to create, manipulate and refine

models through multi-touch interactions. It is particularly useful for teaching

software product line engineering (SPLE) [20], as it enables students to define

reusable modelling components encapsulating multiple design variants and instantiate

them based on different requirements. A key feature of TouchCORE is its

perspective-based modelling approach, which allows educators to define different

modelling views depending on the purpose for which a model is being built.

TouchCORE is desktop-based, requiring installation. It is also single-user, and lacks

web-based support, which can limit its accessibility and scalability for large classroom

settings.

5. USE (UML-based Specification Environment): The UML-Based Specification

Environment (USE) [21] is a specialized modelling tool designed for validating UML

and Object Constraint Language (OCL) specifications. It allows students to define

UML class diagrams and formally specify constraints using OCL, enabling them to

perform validation checks and detect inconsistencies in their models. USE is

particularly valuable in courses that emphasize formal methods, software verification

and correctness-by-construction principles. It provides a textual and command-line

interface for executing model queries and constraint evaluations, which helps students

understand the precise semantics of UML models. However, like many other

academic tools, USE suffers from limited usability enhancements and outdated user

interface components, making it less appealing for modern interactive teaching

scenarios.

6. Melanie: Melanie [22] is a multi-level modelling and ontology engineering

environment designed to facilitate model management, transformation, validation and

2. Background and Related Work 11

synchronization. It is particularly useful for students and researchers working with

model-driven architecture (MDA) and metamodelling techniques. The tool enables

users to define model transformations using rule-based mechanisms, making it a

powerful platform for teaching model-to-model (M2M) [23] and model-to-text

(M2T) [24] transformations. One of Melanie’s unique features is its support for

dynamic model evolution, allowing users to explore how models change over time and

how transformations impact different abstraction levels. It supports multi-level

modelling, which extends traditional two-level metamodelling by allowing flexible

instantiation chains across different modelling layers. This capability is particularly

advantageous for defining domain-specific modelling languages (DSMLs) and

ontologies that require hierarchical structuring. Furthermore, Melanie provides

graphical modelling capabilities that help users visualize and manipulate models

interactively. However, like many academic modelling tools, it has a steep learning

curve and requires installation and configuration, which may pose challenges in

educational settings.

7. BIGUML (A GLSP-based Web Modeling Tool): BIGUML [25] is a flexible,

open-source web-based modelling tool created to facilitate UML diagram creation

within modern code editors such as Visual Studio Code [26]. Developed in Austria

(primarily by Dominik Bork and Haydar Metin), BIGUML leverages the Graphical

Language Server Platform (GLSP) to provide a modular, extensible architecture.

This allows users to seamlessly integrate UML diagram editors into various platforms

with minimal setup. Unlike conventional rich-client UML tools, BIGUML offers a

more lightweight, web-oriented approach that lowers the barrier to entry for students

and educators. At present, BIGUML supports both Class Diagrams and Use Case

2. Background and Related Work 12

Diagrams, with plans to iteratively introduce the remaining UML diagram types. Its

design emphasizes enhanced usability features such as property views, outline views,

and contextual copy-paste operations to accommodate a range of educational or

professional use cases. By tapping into GLSP’s client-server model, BIGUML ensures

that the domain logic (server) and the graphical interface (client) remain cleanly

separated, offering extensibility and customizability. Moreover, because BIGUML can

run as a VS Code extension, it aligns well with educational settings where students

can install, learn and practice UML modeling directly within a familiar development

environment.

On the industrial side, enterprise-grade modelling tools, such as Sparx Enterprise Architect

[27], MagicDraw [28] and IBM Rational Software Architect [29], introduce a different set

of challenges. These tools are highly complex, prohibitively expensive and not tailored

for teaching. They lack guided feedback mechanisms and require extensive configuration,

making them impractical for beginners [30] [31].

2.2.3 The Shift Towards Web-Based Modelling Tools

We have seen that academic modelling tools tend to suffer from aging technology stacks

and lack of active maintenance. Recognizing the limitations of traditional modelling tools,

researchers and educators are now shifting toward web-based modelling environments,

which provide greater accessibility, ease of maintenance and improved user experience.

Unlike locally installed tools, web-based platforms eliminate installation barriers as they

allow students to use them directly in their web browsers [32] [33].

A notable example is the Epsilon Playground [34], a cloud-based modelling platform

that allows students to experiment with model transformation, validation and code

2. Background and Related Work 13

generation without requiring software installation. Web-based modelling tools offer key

advantages such as cross-platform accessibility, real-time collaboration, automatic updates

and improved scalability, reducing the maintenance burden on instructors. The problem

with the Epsilon playground is that it is aimed at software language engineers, i.e., users

that want to create their own modelling languages, and hence is not well-suited for

introductory modelling courses.

2.2.4 Collaborative Efforts for a Common MTT Architecture

The increasing need for modern, intuitive and accessible modelling tools for teaching

(MTTs) has led to a collaborative effort among researchers and educators to establish a

common architecture for MTTs. This movement is co-led by Professor Jörg Kienzle and

Steffen Zschaler from King’s College London, along with contributions from various

institutions engaged in model-driven engineering (MDE) education. The effort aims to

create a shared infrastructure that addresses the challenges associated with existing

academic and industrial modelling tools, ensuring that future MTTs are scalable,

web-based and pedagogically effective. A major milestone in this initiative was the

organization of MODELS workshops [35] dedicated to modelling tools for teaching. These

workshops provided a platform for researchers and educators to discuss the limitations of

current tools and define a roadmap for future MTT development. As a direct outcome of

these discussions, a comprehensive study was conducted, culminating in the Requirements

for modelling tools for teaching paper [5], which presents a comprehensive set of

requirements for MTTs. This paper identifies essential features that MTTs should provide.

In parallel, another significant initiative, the MDENet Education Platform [36], has been

developed to support knowledge-sharing and tool integration within the MDE education

2. Background and Related Work 14

community. This platform serves as a hub for researchers, teachers and tool developers,

facilitating collaboration and the development of shared resources for teaching modelling

effectively.

The collaborative efforts documented in the Requirements for modelling tools for teaching

paper [5] and supported by the MDENet Education Platform [36] provide a strong foundation

for defining the requirements of modern MTTs. These requirements form the basis of the

next Chapter 3, where we systematically derive the necessary functionalities and design

considerations for building a flexible and extensible MTT architecture. By leveraging these

insights, this thesis aims to contribute to the broader goal of creating an accessible, scalable

and reusable modelling tool framework tailored for educational use.

2.3 Architectural and Technological Foundations for

Web-Based MTTs

2.3.1 Overview of Architectural Options for MTTs

Web-based Modelling Tools for Teaching (MTTs) can be implemented using a variety of

architectural styles, each with its own strengths and trade-offs. Two common approaches

are the traditional client-server architecture [37] and the more distributed microservices

architecture [38]. For educational tools, however, a typical web-based client-server model is

often preferred due to its simplicity, centralized management and ease of deployment.

2.3.1.1 Client-Server Architecture

In a typical client-server MTT, the system is divided into three main layers [39]:

2. Background and Related Work 15

1. Presentation Layer (Client): This layer resides in the user’s web browser and is

responsible for rendering the user interface, capturing interactions and communicating

with the server. The client typically uses HTTP/REST [40] for regular interactions

and WebSocket [41] for broadcasting real-time notifications.

2. Application Layer (Server): The server hosts the core business logic and APIs. It

processes modelling operations, manages real-time collaboration and coordinates data

transformations. The server acts as the central coordinator, ensuring that concurrent

updates to the model are handled consistently.

3. Data Storage Layer: This layer consists of databases that persist modelling data,

user information and configuration settings. The server interacts with the database to

store and retrieve model state, ensuring data integrity and consistency.

As shown in Figure 2.1, this client-server model offers a centralized and manageable

framework that simplifies maintenance while enabling consistent deployment and updates.

2.3.1.2 Microservice Architecture

An alternative architecture is the microservice architecture, which decomposes the

application into a collection of loosely coupled services [42]. Each microservice handles a

specific business capability and communicates with others via Application Programming

Interfaces (APIs). However, the added complexity of service orchestration, distributed data

management and inter-service communication overhead can be significant.

As shown in Figure 2.2, a user requests a resource through a Resource Gateway, which

coordinates interactions between microservices. The Auth service validates the user’s

credentials, ensuring authentication, while the Access service checks permissions for

authorization. Finally, the Resource service retrieves the requested modelling resource from

2. Background and Related Work 16

Figure 2.1: Typical Client Server Architecture

Figure 2.2: Microservice Architecture

the Resource Database.

For our web-based MTT, we adopt a client-server architecture as it offers a clear,

layered approach that aligns with our modular frontend design (detailed in Chapter 4).

2. Background and Related Work 17

This architecture supports a robust, interactive user interface in the browser while

centralizing business logic and data persistence on the server, making it particularly

suitable for educational contexts where ease of use and maintainability are paramount. At

the same time, our design leaves room for future evolution toward more distributed models,

such as leveraging microservices to provide features like plagiarism detection or other

specialized services, if additional scalability or modularity is required.

2.3.2 Language Server Support for Textual and Graphical Models

2.3.2.1 Language Server Protocol (LSP)

Language server protocol (LSP) [43] is a standard communication protocol for code-related

services. It is widely used in text-based programming environments of modern IDEs to

provide syntax validation, code completion and real-time feedback. One of its key

advantages is separation of concerns, as it decouples language-specific logic from the

frontend, allowing for better modularity. Additionally, LSP supports multi-client

compatibility, enabling integration with various IDEs such as VS Code, Eclipse and

IntelliJ. It also facilitates lightweight communication through a standardized JavaScript

Object Notation-Remote Procedure Call (JSON-RPC) protocol, ensuring efficient

messaging. However, despite these benefits, LSP is designed for text-based code, which

means it would work for text-based modelling, but lacks native support for graphical

representations, which are essential for diagram-based modelling tools.

2.3.2.2 Graphical Language Server Protocol (GLSP)

Graphical language server protocol (GLSP) [44] extends the principles of LSP to graphical

modelling environments, providing server-side processing for diagram-based syntax

2. Background and Related Work 18

validation, layout handling and real-time updates. One of its key advantages is its

framework-agnostic support, allowing it to be used across different graphical modelling

tools. It also integrates seamlessly with Eclipse Theia and other web-based editors, making

it a viable choice for modern development environments. Additionally, GLSP offers

scalability, making it well-suited for handling large and complex models.

2.3.2.3 Why LSP and GLSP Were Not Used

Although LSP and GLSP provide robust language-processing capabilities, our system

prioritizes lightweight, in-browser execution without additional backend dependencies.

While LSP is well-suited for text-based services by decoupling language-specific logic from

the client and enabling efficient JSON Remote Procedure Call (RPC) communication, it

does not natively address the requirements of graphical modelling, which is a critical aspect

of our tool. GLSP extends LSP to provide support for graphical modelling by handling

diagram-based syntax validation, layout management and real-time updates. However,

integrating GLSP would have significant implications for our setup. It necessitates

additional infrastructure for managing custom serialization and deserialization of graphical

data, which increases the complexity of the backend. Moreover, aligning GLSP with our

client-side visualization engine would require extensive integration efforts and additional

configuration layers. These factors collectively introduce considerable development

overhead and operational complexity. Therefore, although GLSP is powerful and scalable

for handling large, complex models, its integration would compromise our goal of

maintaining a lightweight, browser-based modelling tool that is easily configurable. This

decision allows us to preserve the simplicity and ease of setup essential for an educational

tool while still delivering efficient and robust modelling functionality.

2. Background and Related Work 19

2.4 The CORE Framework

CORE [45] is a modelling language-independent approach that helps software language

engineers create modelling languages that include features for streamlining model reuse. At

its foundation, CORE defines a metamodel whose primary goal is to capture what model

elements within a model are part of its reuse interface [46].

In more recent work, CORE was extended to enable multi-view modelling. To this aim,

the CORE metamodel was extended in [47] to reify the concept of modelling language

(CORELanguage), as well as the operations that a language provides to create and edit

models (CORELanguageAction) (see Figure 2.3). To use a modelling language within

CORE, it suffices to instantiate a COREExternalLanguage, and then instantiate

CORELanguageAction for each one of the model edit operations. For example, for the Class

Diagram language, the language actions would include AddClass, AddAttribute,

SetAttributeVisibility, AddAssociation, SetMultiplicity, etc.

[47] also proposes the concept of perspective (COREPerspective). Perspectives can be

used to group a set of languages for a specific modelling purpose. Perspectives can then

expose their own language actions that coordinate the actions of the encapsulated languages

to ensure consistent use. For example, one can define a perspective that groups together class

diagrams and state diagrams, which can be used to describe the structure and behaviour of

a real-time system. In that case, this “real-time system modelling perspective” would expose

an AddClass language action that would ensure that for each new class that is added to a

class diagram, a new state diagram is created at the same time that specifies the behaviour

for any instances of the class.

However, manually instantiating these metamodel elements, namely, CORELanguage,

CORELanguageAction, COREPerspective and COREPerspectiveAction is both tedious and

2. Background and Related Work 20

Figure 2.3: Small Exerpt of the CORE Metamodel

error-prone. To address this, [47] introduced a Domain-Specific Language (DSL) that

enables language designers to write concise DSL code describing languages and

perspectives. A code generator then processes this DSL to produce CORELanguage and

COREPerspective instantiations. This automated process reduces manual effort and

ensures consistency across language and perspective definitions. As a result, modelling

language developers can focus on the conceptual design of their languages, while the

DSL-driven generator handles the repetitive or intricate details of instantiating the CORE

metamodel for multi-view modelling.

21

Chapter 3

Requirements

The focus of this chapter is on defining the requirements for the frontend of a web-based

modelling tool intended for teaching purpose. Section 3.1 introduces key terminology to

establish a common understanding. Section 3.2 presents a comprehensive set of 19

requirements (Rs), distilled from academic research, in particular from the paper

“Requirements for Modelling Tools for Teaching” [5], as well as from own insights gathered

during the design and development process. Finally, in section 3.3, we analyze these initial

requirements to assess their impact on the frontend and derive a set of 16 frontend

requirements (FRs) that the frontend we are going to develop needs to fulfill.

3.1 Categories of Modelling Tool Users

We must carefully consider the different types of users who will interact with the tool. Each

group of users has specific goals and needs, so we will avoid using the general term “users”

and instead refer to the following groups explicitly whenever appropriate:

1. Modellers/Students: This group consists mainly of students who use the tool to

3. Requirements 22

create models that are submitted for grading. They focus on efficiently completing

exercises, creating models like class diagrams and testing their understanding of the

modelling language. Their interaction with the tool is primarily task-oriented, and

they benefit from features that streamline modelling tasks and provide feedback.

2. Educators/Teachers: Educators use the tool to design exercises, create sample

solutions and evaluate student submissions. Their focus is on configuring the tool to

align with educational objectives, such as limiting certain modelling language features

for pedagogical purposes. For example, a teacher may want to restrict the number of

concepts available to students in an exercise or integrate automated grading and

feedback mechanisms.

3. Developers: Developers are responsible for extending the tool’s functionality,

adding support for new modelling languages and integrating additional editor

features or services. For this category, the architecture of the tool must be flexible

and extensible, enabling the seamless addition of new components and plugins.

3.2 Requirements (R)

This section will provide a list of key requirements (R) drawn from the paper

“Requirements for Modelling Tools for Teaching” [5] as well as our own observations.

These requirements address the needs of the three user categories and form the foundation

for the design and functionality of the tool. They are presented here organized into four

categories: language and feature-related, user interaction and collaboration-related,

education-related and development-related.

3. Requirements 23

3.2.1 Language and Feature-Related Requirements

R1: Multi-Language Support

The system must support multiple modelling languages, enabling the creation and use of

different modelling notations such as Class Diagrams, State Diagrams and Sequence

Diagrams. This ensures that the modelling tool remains flexible and extensible, allowing

different types of models to be defined and visualized. The architecture should allow new

modelling languages to be integrated without requiring fundamental changes to the system.

R2: Dual-Mode Support

The tool should provide both graphical and textual user interfaces, catering to different

preferences. The graphical interface helps visualize complex relationships (e.g., for Class

Diagrams), while the textual interface is ideal for Modellers/Students and

Educators/Teachers who prefer fast input via typing. Syntax highlighting is essential for

textual modelling.

R3: Model-to-Code Synchronization

The tool should enable round-trip synchronization between models and generated code,

i.e., any changes in the model are accurately reflected in the code and vice versa. This

helps Modellers/Students understand the connection between the visual models and the

corresponding code.

R4: Simulation and Execution

The tool should support simulation and execution of behavioural models (e.g., state

machines), visualizing the behaviour in real-time. This helps Modellers/Students

3. Requirements 24

understand and Educators/Teachers better explain the semantics of models.

R5: Automatic Validation with Warnings and Errors

The tool must include an automatic validation feature to detect modelling errors. It should

also provide warnings. For example, it should inform Modellers/Students when a model

element is declared but never used.

R6: Searchable Example Library

A categorized and searchable library of pre-built models and templates should be available for

Modellers/Students and Educators/Teachers, serving as a reference and aiding in teaching

and learning.

3.2.2 User Interaction and Collaboration-Related Requirements

R7: Intuitive User Interface

The tool must provide a user-friendly, intuitive interface for Modellers/Students and

Educators/Teachers to minimize the learning curve and facilitate efficient task completion.

R8: Fast Response Time

The tool must ensure that it executes all operations triggered by students or educators

through clicks or menu selections without noticeable delays, providing a seamless and

responsive experience, even under high-traffic conditions.

3. Requirements 25

R9: Collaborative Editing with Role-Based Permissions

The tool must support collaborative editing for Modellers/Students and Educators/Teachers

both online and offline, with role-based permissions for different access levels (read-only,

grade-only, edit and full access). It should include version control and conflict resolution

mechanisms to handle simultaneous contributions seamlessly.

R10: Save and Resume Functionality

The tool should support saving intermediary model states, allowing Modellers/Students to

pause their work and resume later. It must also support exporting models in a format

appropriate for assignment submission.

R11: Integrated User Guide

A comprehensive user manual and a well-structured FAQ section should be integrated within

the tool to guide Modellers/Students, Educators/Teachers and Developers in its usage.

R12: Language Customization

The system must allow educators to configure and restrict the available modelling concepts

within a language based on learning objectives. This means enabling or disabling specific

language elements (e.g., restricting students to only creating classes and attributes initially,

while unlocking operations and associations later).

3. Requirements 26

3.2.3 Education-Related Requirements

R13: Gamification

The tool should include a simple reward system, such as earning points or badges for

completing modelling tasks. Modellers/Students can unlock small rewards for milestones,

like finishing their first model or successfully submitting an assignment.

R14: Flexible Feedback, Grading and Plagiarism Detection

The tool should integrate flexible feedback mechanisms and automated grading for

Modellers/Students. It should also include plagiarism detection to ensure the integrity of

submitted assignments. These features must accommodate both instant feedback during

modelling as well as delayed feedback after submission, with grading tied to both

correctness and completeness.

3.2.4 Development-Related Requirements

R15: Modular Architecture

The architecture should be modular, enabling independent updates and extensions to ensure

scalability and long-term adaptability for Developers.

R14: CI/CD Support for Development and Deployment

The system should support Continuous Integration and Deployment (CI/CD) to automate

testing, maintain code quality and streamline structured deployment processes. This feature

is primarily intended for developers working on extending or maintaining the tool. The

3. Requirements 27

CI/CD pipeline should include structured project management, unit testing, automated

builds and deployment workflows to ensure stable releases and efficient version control.

R17: Multi-Platform Accessibility

The tool should be accessible across multiple platforms (Windows, macOS, Linux) and

devices (Desktop, Tablet), ensuring usability for Modellers/Students, Educators/Teachers

and Developers irrespective of their device or operating system.

R18: Simple Installation

The tool should require minimal setup, ideally operating without the need for installation. If

installation is necessary, it must provide a streamlined, simple process with clear instructions.

R19: User Interaction Tracking and Feedback Collection

The tool should track interactions from Modellers/Students and Educators/Teachers to

continuously improve the user experience. It should also include tools for collecting

feedback via surveys to refine the tool’s features and performance based on real-world

usage.

3.3 Frontend Requirements (FR)

This thesis focuses on the design of a modular and reusable frontend framework for MTTs to

be used in a client-server architecture (see section 2.3.1.1). We therefore carefully investigated

the requirements (R1–R19) presented in the previous section, determined how they affect the

frontend, and based on an in-depth analysis distilled a set of frontend requirements (FR1–

FR16). Each FR presented in this section is given a concrete name that reflects its purpose,

3. Requirements 28

which will later be referenced in the subsequent chapters to explain decisions made during

the design of the frontend architecture. We also link the FRs to the Rs that they support,

and propose ways to measure the success of each FR, where applicable. Again, we present

the FRs in this section organized into the same four categories as the global requirements in

the previous section.

3.3.1 Language and Feature-Related Requirements

FR1: Graphical and Textual Dual-Mode Interface

The frontend must have a dual-mode interface that integrates both a graphical diagram

editor and a textual code editor in a synchronized manner. The graphical interface must

allow users to directly manipulate model elements through intuitive drag-and-drop, zoom

and pan functionalities. It should present model elements with clear, distinct visual cues

and interactive controls to facilitate ease of editing. The textual editor must be embedded

alongside the graphical view and provide syntax highlighting, auto-completion, etc. The

textual editor must support configurable settings for font size and theme to enhance

readability. The editor should provide a simple interface for users to toggle between

graphical and textual representations. Finally, changes in one view should be instantly

propagated to the other without delay, maintaining the consistency of both model

representations.

→ Supports R2: Dual-Mode Support, R3: Model-to-Code Synchronization

Measuring the Requirement:

1. Synchronization Latency: Measure the time interval between a change made in

the graphical view and its reflection in the textual view. This can be done by

instrumenting the data-binding events to log timestamps on both sides, then

3. Requirements 29

calculating the average latency over multiple interactions. A lower latency indicates

that the interface effectively synchronizes changes, ensuring a seamless dual-mode

experience.

2. Consistency Verification: Periodically capture snapshots of the underlying data

model as displayed in both the graphical and textual views and compare them with

what is displayed to verify consistency. This can be achieved using automated tests

that simulate updates and then perform a diff analysis between the two views. A

high degree of consistency demonstrates that the dual-mode interface maintains an

accurate, shared representation of the model across both modes.

FR2: Simulation and Execution Panel

The frontend must have a dedicated simulation and execution panel that allows users to run

dynamic models and observe their behavior in real time. This panel must provide essential

controls such as play, pause, stop, step-through, and rewind to manage simulation flow.

The panel must support both continuous and stepwise execution modes to cater to different

teaching scenarios. The design must allow for interactive adjustments, such as altering

simulation speed or parameters on the fly. The editor should display the current simulation

status clearly, using visual indicators like highlighted active states and transition animations.

It should support real-time updates that show how model elements change over time during

the simulation.

→ Supports R4: Simulation and Execution

Measuring the Requirement:

1. Control Responsiveness Testing: Record the response times for simulation panel

controls (such as play, pause, stop and step) from when a control is activated to when

the corresponding visual update appears on the diagram. This measurement can be

3. Requirements 30

automated through JavaScript event timing logs. Fast response times are crucial for a

smooth simulation experience, ensuring that users receive immediate feedback during

model execution.

2. Simulation Accuracy Assessment: Validate that the simulation panel correctly

triggers the expected state transitions by comparing observed outputs with predefined

simulation scenarios. This can involve running controlled simulation tests that measure

whether the visual indicators (such as highlighted states or animated transitions) match

the expected results. High accuracy in these tests indicates that the simulation panel

reliably reflects the dynamic behavior of the model.

FR3: Multi-Language Notation Support

The frontend must dynamically adapt to different modelling languages based on predefined

configurations, ensuring seamless support for multiple modelling notations. When a

specific modelling language (e.g., Class Diagrams, State Diagrams) is selected, the system

must initialize the editor with the correct notation, automatically loading the

corresponding elements, symbols and validation rules. The frontend reads language

definitions and enforces the correct set of modelling elements and behaviors accordingly.

The system must prevent users from freely switching between modelling languages unless

explicitly allowed. Instead, it should ensure that a course-specific or assignment-specific

language is automatically applied when loading the editor. UI elements such as menus,

toolbars and context options must dynamically adjust based on the chosen modelling

language, ensuring a consistent and structured editing experience.

→ Supports R1: Multi Language Support

Measuring the Requirement:

1. Correct Language Loading: Validate that the frontend correctly reads and applies

3. Requirements 31

predefined language configurations. Test different modelling languages (Class

Diagrams, State Diagrams) to ensure that only the relevant elements, rules and UI

components are loaded.

2. Restricted Language Switching: Ensure that switching between modelling

languages is only possible when explicitly enabled in the configuration. Automated

UI tests with Jest [48] and Puppeteer [49] should confirm that restricted elements do

not appear when switching between predefined modelling contexts.

FR4: Search Interface

The frontend must include an interactive searchable example library accessible directly

from the main navigation or toolbar within the tool. This library should be designed as an

integrated panel or a modal window that can be opened within the tool’s interface. It must

feature a categorized structure with distinct sections for different model types, such as

“Class Diagrams”, “State Machines”, etc clearly visible in a sidebar or tab menu.

Modellers/Students and Educators/Teachers should be able to search for specific models

using a search bar positioned prominently at the top of the library. Search results should

be displayed as a grid or list of model thumbnails, each with a brief description visible on

hover or click. There should be a clear “Import” button within the preview that allows

users to add the selected model to their current project with a single click. Additionally,

each model entry should include detailed metadata, such as the model’s creator, a short

description and tags. The library should also support filtering by tags or categories to

streamline model discovery. The design must ensure that the library’s interaction is

smooth and responsive, providing real-time updates and seamless transitions between

different views and actions.

→ Supports R6: Searchable Example Library

3. Requirements 32

Measuring the Requirement:

1. Search and Filter Functionality: Use browser DevTools (Elements tab) [50] to

inspect the DOM updates when applying search queries or category filters. Ensure

that the correct models appear without missing or incorrect results and that filtering

updates the displayed items instantly without unnecessary reloading.

2. Model Preview and Import Validation: Open various example models and check if

they correctly display metadata, allow zooming and load without visual glitches. Then,

verify that clicking the “Import” button correctly integrates the selected model into

the workspace by inspecting the application state or console logs to confirm successful

import actions.

3.3.2 User Interaction and Collaboration-Related Requirements

FR5: Intuitive User Interface Layout

The layout of the frontend must be carefully designed so that key functions (e.g., menus)

are organized intuitively for the user. This includes designing a clean and uncluttered UI.

The placement of UI elements must support efficient workflows for Modellers/Students and

Educators/Teachers, allowing them to focus on modelling without unnecessary confusion.

→ Supports R7: Intuitive User Interface

Measuring the Requirement:

1. Click Efficiency: Track the number of clicks required to perform common tasks (e.g.,

adding a class, modifying attributes, etc). Fewer clicks and actions indicate that the

UI layout is more intuitive and efficient for the user. Use analytics tools like Google

Analytics [51] or Hotjar [52] to monitor user click behavior and interaction patterns on

3. Requirements 33

different UI elements. Define a maximum number of clicks or actions for certain tasks

(e.g., completing tasks in no more than 3 clicks as suggested in [53]).

2. First-Click Accuracy: Measure the percentage of times a user clicks on the correct

UI element on their first attempt when performing a specific task. High first-click

accuracy indicates that the layout is intuitive and users can quickly find what they

are looking for. Tools like Hotjar can track where users first click when given a task.

Aim for a target of at least 80-90% first-click accuracy for key tasks, as achieving this

threshold ensures that users can navigate efficiently and complete tasks with minimal

confusion [54].

FR6: Seamless User Interactions with Minimal Latency

The frontend must be optimized to ensure instantaneous response to all user actions,

including clicks, typing, etc. This requires efficient handling of UI events, ensuring that

there is no visible delay when elements are moved, resized or edited. The frontend should

process user inputs in real-time, ensuring that even complex operations (such as rendering

large diagrams or updating relationships) do not introduce lag.

→ Supports R8: Fast Response Time

Measuring the Requirement:

1. Performance Testing: Use tools like Google Lighthouse [55], WebPageTest [56] or

Chrome DevTools [57] to measure the time taken for user inputs (e.g., clicks) to trigger

updates in the UI. The goal is to ensure that actions trigger UI updates promptly to

maintain a responsive user experience. Aim for response times under 100 milliseconds

to ensure an optimal user experience and avoid performance bottlenecks [58].

2. User Feedback: Gather user feedback through usability tests, focusing on perceived

3. Requirements 34

lag during normal and high-load operations. Any reported delays should be

investigated, with concrete metrics established for reducing response times.

FR7: Embedded User Guide with Searchable FAQ

The frontend must integrate a user guide and a searchable FAQ section that can be accessed

directly within the tool’s interface without navigating away from the application. A “Help”

button or icon should be consistently visible (e.g., top-right corner) for Modellers/Students,

Educators/Teachers and Developers. When clicked, a popup or side panel or new web page

will open, displaying the user guide and FAQ. The FAQ section will include a search bar to

quickly find relevant topics. The guide will support text, images and collapsible sections to

facilitate easy navigation.

→ Supports R11: Integrated User Guide

Measuring the Requirement:

1. Search Query Response Time: Log the time taken from when a user enters a

search query in the FAQ search bar to when results are displayed. The goal is to

ensure smooth searching by keeping response times as quick as possible. This can be

measured using browser DevTools [57] or JavaScript performance timers [59].

2. Help Button Click Functionality: Automate a test script using Selenium or

Puppeteer to verify that clicking the Help button consistently opens the user guide or

FAQ section without delays or errors. This ensures accessibility from all relevant

pages.

FR8: User-Friendly Setup and Responsive Model Canvas

The frontend must ensure that Modellers/Students, Educators/Teachers and Developers

can access the tool directly through a web browser, ideally without any installation required.

3. Requirements 35

If installation is unavoidable, it should be minimal and straightforward, with clear, user-

friendly instructions. The tool’s modelling canvas must dynamically resize and adjust based

on the size of the user’s screen, whether it is running on a desktop or tablet. The modelling

elements must remain readable and selectable regardless of resolution changes. The UI should

be adaptive, so no elements overlap or become inaccessible when the window is resized.

→ Supports R17: Multi-Platform Accessibility, R18: Simple Installation

Measuring the Requirement:

1. Installation and Setup Time Measurement: If installation is required, measure

the total time taken from downloading to the first successful launch. Use a simple

script or manual stopwatch timing. The goal is to ensure that the setup is completed

promptly with minimal steps.

2. Responsive UI and Canvas Behavior Testing: Open the tool on different screen

resolutions (e.g., 1920×1080, 1366×768, 1024×768, tablet mode) and verify that the

canvas resizes dynamically, no UI elements overlap, and all modelling elements remain

readable and interactive. This can be quickly tested using browser DevTools [57].

FR9: Real-Time Online Collaboration with Role-Based Permissions

The frontend must support real-time online collaboration, enabling multiple users to work

on the same model concurrently. It must implement a system where changes made by one

user are instantly synchronized across all connected clients. The interface should visually

differentiate contributions from different users through color-coding or user tags. It must

enforce role-based permissions that dynamically adjust the available UI controls based on the

user’s role, such as read-only, editor or administrator. It should incorporate visual indicators

that show active collaboration, such as highlighting elements that are being edited by others.

The system must have mechanisms to prevent conflicting edits and resolve them if they

3. Requirements 36

occur, displaying conflict alerts to users. It must allow educators to configure user roles and

permissions directly within the interface, ensuring that unauthorized actions are disabled.

The design should ensure that the collaboration features are integrated seamlessly with the

core model editing functionality. It must support both individual and group editing sessions

without sacrificing performance. The frontend should be capable of displaying a history of

changes for transparency. It must also provide feedback mechanisms that alert users to new

updates from collaborators. The role-based interface adjustments should be clearly visible

and intuitive, ensuring that users are aware of their permissions at all times.

→ Supports R9: Collaborative Editing with Role-Based Permissions

Measuring the Requirement:

1. Synchronization Delay Measurement: Measure the time taken for a change made

by one user to appear on the screens of all other collaborating users. This can be

achieved by logging timestamps at the moment of change and when it is reflected

across clients via WebSockets. Consistently low delays are indicative of efficient real-

time synchronization in the collaborative environment.

2. Effectiveness of Role-Based Permissions: Simulate collaborative scenarios with

users assigned different roles and monitor the system’s enforcement of permissions.

This can include measuring the number of unauthorized attempts and verifying that

UI elements corresponding to restricted actions are disabled or hidden. A robust role-

based system should prevent unauthorized changes and maintain a clear separation of

privileges.

FR10: Offline Collaboration and Conflict Resolution

The frontend must support offline collaboration by enabling users to continue working even

when network connectivity is lost. The interface should display clear visual indicators that

3. Requirements 37

inform users when they are offline and that changes are being cached locally. Upon

reconnection, the system must automatically synchronize the locally cached changes with

the backend while detecting any conflicts that arise. The frontend must include a conflict

resolution interface that allows users to compare the local version and the server version

side by side. This interface should highlight differences clearly and offer simple options for

merging or discarding changes. It must enforce role-based permissions during conflict

resolution to prevent unauthorized modifications. The offline collaboration feature should

provide real-time feedback on the synchronization process, such as progress indicators or

status messages. The system must ensure that offline edits are seamlessly integrated with

the live model once connectivity is restored. It should also log conflict events and provide

users with a summary of actions taken during synchronization. The design must guarantee

that data integrity is maintained, even when users switch between online and offline modes.

→ Supports R9: Collaborative Editing with Role-Based Permissions, R10: Save

and Resume Functionality

Measuring the Requirement:

1. Offline Editing and Synchronization Testing: Measure the system’s ability to

handle offline edits by simulating a network disconnect during active modelling.

Manually record the state of the model before and after disconnecting, then monitor

the automatic synchronization upon reconnection using logging or internal

timestamps. The goal is to ensure that the locally cached changes merge seamlessly

with the backend model, and that any conflicts are detected and resolved correctly.

2. Conflict Resolution Interface Evaluation: Simulate concurrent edits by two

users on the same model element to force a conflict scenario. Evaluate the conflict

resolution interface by verifying that it clearly highlights the differences between the

3. Requirements 38

local and server versions and that it offers intuitive options for merging or discarding

changes. The objective is to confirm that the interface enforces role-based

permissions and maintains data integrity during the conflict resolution process, as

evidenced by the final, consistent state of the model.

FR11: Adaptive Frontend Modelling Interface

The frontend must dynamically adapt to language customizations done by an

educator/teacher, ensuring that the modelling environment aligns with specific teaching

goals. The educator can decide which modelling elements and operations are available

within a given session, and the UI should enable or disable the corresponding visualizations

and menu items, limiting the complexity of available modelling constructs. The educator

should be able to specify the customization without having to modify the tool’s

implementation.

→ Supports R12: Language Customization

Measuring the Requirement:

1. Customization Enforcement and UI Adaptation: To validate that the frontend

dynamically adapts based on the customization specified by the educator, we need to

verify that only the allowed modelling elements, operations, and UI components are

available for a given customization. This can be done by applying multiple predefined

customizations and systematically checking that the frontend correctly enables or

disables the related UI elements. Automated UI testing should be conducted using

Jest and Puppeteer to simulate switching customizations and confirm that restricted

elements are properly hidden, disabled or blocked. Additionally, DevTools DOM

inspection should be performed to ensure that restricted components cannot be

accessed by manually modifying the HTML.

3. Requirements 39

3.3.3 Education-Related Requirements

FR12: External Gamification Integration Interface

The system must incorporate an external gamification integration interface that seamlessly

connects the modelling tool with a dedicated gamification platform. Hence, on the frontend,

the integration must be designed to display minimal, non-intrusive notifications, such as

small toast messages that inform users when points are awarded or badges are unlocked.

The user interface must include a clearly visible link or button that redirects users to the

external dashboard, where detailed gamification data, such as leaderboards, badges and

rewards history is managed and presented. Additionally, the frontend should maintain a

clean and focused modelling environment by limiting the display of gamification elements

within the tool itself. Instead, it should only present essential cues that prompt users to

check the external platform for more comprehensive information.

→ Supports R13: Gamification

Measuring the Requirement:

1. Engagement Metrics Analysis: Instrument the frontend to log all interactions with

gamification elements (e.g., toast notifications and redirects to the external dashboard).

Analyze these logs to measure user engagement frequency, such as how often users

trigger synchronization or view gamification notifications. Higher engagement rates

can indicate that the gamification features are effectively integrated and motivating.

This quantitative analysis helps assess if users are interacting with the gamification

components as intended.

2. User Satisfaction and Usability Testing: Conduct structured usability tests and

surveys focused on the gamification interface. Collect qualitative feedback on the

clarity, responsiveness, and overall satisfaction with the minimal notifications and

3. Requirements 40

integration flow. Ask users whether the gamification cues and the external dashboard

access are intuitive and add value without cluttering the core modelling interface.

Comparing the survey responses with the logged usage data can validate the

effectiveness of the integration from a user experience perspective.

FR13: Visual Annotations and Overlays

The frontend must support visual annotations and overlays that provide immediate, in-

context feedback to users during the modelling process. It must display error, warning and

information overlays directly on the diagram using distinct colors and icons. These overlays

should appear dynamically as model elements are edited, highlighting issues such as syntax

errors, invalid relationships or inconsistencies. The frontend must implement tooltips or

pop-up panels that offer detailed explanations for each annotated issue. It should allow

educators to annotate models with grading comments or validation feedback that can be

toggled on and off. The design must ensure that overlays do not obstruct the main diagram,

using transparent layers or side panels as appropriate. It must provide a consistent style

for annotations across different modelling languages to enhance clarity. The system should

support real-time updating of overlays as model changes occur, ensuring that feedback stays

up to date. It must include a mechanism for validating model elements against predefined

rules and displaying the results visually. It must allow users to click on an overlay to

access further details or to dismiss it if the issue has been resolved. The annotations should

be integrated into the overall user interface so that they are part of the natural editing

workflow. The interface must also provide an option for educators to configure which types

of annotations are active.

→ Supports R5: Automatic Validation with Warnings and Errors, R14: Flexible

Feedback, Grading and Plagiarism Detection

3. Requirements 41

Measuring the Requirement:

1. Overlay Update Time Measurement: Instrument the overlay system to capture

the delay between the occurrence of an event (e.g., a validation error) and the

appearance of the corresponding visual annotation on the diagram. This metric can

be measured using performance logging and is critical for ensuring that feedback is

provided in near real time. A minimal delay ensures that users receive prompt and

useful feedback.

2. User-Centric Evaluation of Feedback Effectiveness:

Conduct user studies where participants model and then use the overlay system to

resolve errors. Measure both the time taken for users to identify and correct errors

and the accuracy of these corrections. This method assesses the practical effectiveness

of the visual overlays and provides insights into how well the system supports learning

through immediate, contextual feedback.

3.3.4 Development-Related Requirements

FR14: Frontend Modular Component System

The frontend of the modelling tool should follow a Modular Component System that allows

Developers to independently manage, update and extend different aspects of the tool

without affecting orthogonal functionality. This modular approach should structure the

frontend into distinct, self-contained components, each responsible for specific features.

Each component should be designed as an isolated unit, following a clear interface or

contract, ensuring that it can be easily integrated into the overall architecture. For

example, a diagram editor responsible for visual modelling by Modellers/Students should

3. Requirements 42

function independently of a text-based interface designed for rapid input by

Educators/Teachers. The components should communicate through well-defined APIs or

events, ensuring that modifications or extensions in one part of the system (e.g., adding

support for a new modelling language) do not disrupt other components. Developers

should be able to introduce new capabilities, such as additional diagram types or updated

simulation engines, without requiring modifications to existing components. To facilitate

maintainability, the architecture should ensure a clear separation of concerns, such as

distinguishing UI logic from backend interactions. This approach is intended to make

debugging and upgrading individual features more efficient while preserving system

integrity. Additionally, a well-structured modular system should support future-proof

extensions, such as collaborative features or enhanced visualization modes, by simply

adding or modifying specific frontend components. By adopting this Modular Component

System, the frontend architecture should remain scalable and adaptable, allowing

Developers to extend the tool in response to evolving requirements while maintaining

performance, usability and long-term sustainability.

→ Supports R15: Modular Architecture

Measuring the Requirement:

1. Component Independence Verification: Modify or replace a specific component

(e.g., the diagram editor or textual interface) and test whether the rest of the system

continues functioning without errors. Use browser console logs to ensure no unintended

dependencies or breakages occur.

2. Component Integration and Extensibility Test: Add a new mock component

(e.g., a simple UI panel or visualization module) following the modular architecture

guidelines and verify if it integrates smoothly without modifying existing components.

3. Requirements 43

Check for proper event communication using DevTools Event Listeners or API calls to

ensure data flows correctly between components.

FR15: CI/CD Integration for Frontend Development

Each frontend modification must pass automated unit and integration testing using Jest,

ensuring that UI components and interactions function correctly. Additionally, static

analysis tools should validate JavaScript modules, CSS styles and other frontend assets to

detect errors before deployment. The CI/CD pipeline should automatically compile,

bundle and minify the frontend code to optimize performance and ensure compatibility

with the backend system. To prevent unexpected UI regressions, the system should

support pre-release staging environments, allowing developers to preview frontend

modifications before production deployment. Structured version control should ensure that

all updates are properly documented, with rollback mechanisms available for quick

restoration in case of failures. The pipeline must also integrate logging and error tracking,

providing developers with real-time insights into build failures, UI test results and

deployment status. By implementing a comprehensive CI/CD workflow, this requirement

ensures that the frontend development process remains automated, efficient and scalable,

supporting long-term maintenance and continuous system improvement.

→ Supports R16: CI/CD Support for Development and Deployment

Measuring the Requirement:

1. Automated Testing and Build Validation: Introduce controlled errors into the

code (e.g., syntax mistakes or deliberate API deprecations) and observe whether the

CI/CD pipeline detects these errors using tools such as Jest [48] for unit testing,

Puppeteer [49] for UI regression tests, and ESLint [60] or SonarQube [61] for static

code analysis. The pipeline should fail the build immediately when any test or static

3. Requirements 44

analysis check fails. This validation is confirmed by reviewing CI logs and automated

test reports that clearly indicate the presence of the injected errors. This method

demonstrates that every update is rigorously tested, ensuring that no faulty code is

merged into the main codebase.

2. Staging Deployment and Rollback Testing: Simulate a deployment failure by

deliberately misconfiguring a component or introducing a runtime error in the staging

environment, then verify that the rollback mechanism is triggered automatically. Tools

such as a pre-release staging server and automated deployment scripts (e.g., using

Jenkins [62] or GitLab CI/CD [63]) should log the error and initiate a rollback. The

rollback process is validated by confirming that the system reverts to the previous

stable version and that integration tests on the staging environment pass with the

restored version. This approach provides concrete evidence that the CI/CD pipeline

not only detects errors during the build and test phases but also safeguards system

stability through an effective rollback process.

FR16: Interaction Tracker and Feedback Module

The frontend must implement an Interaction Tracker and Feedback Module that actively

monitors and records user interactions within the modelling tool. This module is designed

to capture granular details of each modelling action performed by Modellers/Students and

Educators/Teachers, such as adding or modifying classes, editing diagrams and toggling

between graphical and textual views. It must collect data on the frequency and duration of

feature usage, tracking how long users interact with specific UI components. This information

should be stored locally in the browser and optionally synchronized with a central server

for further analysis. In addition, the module must incorporate a non-intrusive feedback

prompt that appears at key moments, for example, immediately after a model is completed

3. Requirements 45

or when a session ends. This prompt should invite users to rate their experience and offer

optional comments about specific tool features. The feedback mechanism must be designed

to minimize disruption to the user’s workflow by appearing only during natural pauses.

The frontend should also support a dedicated “Feedback” section where users can access

and submit detailed surveys or questionnaires, tailored to different user roles. This section

must be built with an intuitive UI, ensuring that feedback collection is as straightforward as

possible.

→ Supports R19: User Interaction Tracking and Feedback Collection

Measuring the Requirement:

1. Quantitative Log Analysis and Performance Metrics: Measure the frequency

and duration of user interactions by instrumenting the module to log all events with

timestamps. Analyze these logs to determine the average response time of the module,

the total number of interactions per session, and the usage distribution of various

features. Additionally, assess the performance overhead introduced by the tracker by

comparing system latency with and without the module enabled.

2. User Experience Surveys and Dashboard Accuracy: Conduct user surveys and

structured usability studies with both students and educators to evaluate the clarity

and usefulness of the visual feedback provided by the dashboard. Collect qualitative

feedback on the intuitiveness of the feedback prompts and the overall satisfaction with

the interaction tracking. In parallel, validate the accuracy of the gathered metrics

by comparing logged interaction data with user-reported activity, ensuring that the

module accurately reflects actual usage patterns.

3. Requirements 46

3.4 Summary

This chapter focused on analyzing the literature and our practical experiences to distill a

comprehensive set of requirements for Modelling Tools for Teaching (R1–R19). From these

requirements, we derived a set of Frontend Requirements (FR1–FR16) that directly address

usability, collaboration, educational and development aspects specific to the frontend. The

mapping between FRs and Rs is summarized in table 3.1. These FRs form the basis for the

modular, reusable frontend architecture presented in Chapter 4.

3. Requirements 47

Table 3.1: Mapping of Frontend Requirements (FRs) to Supported Requirements (Rs)

Language and Feature Related
FR1: Graphical and Textual Dual-Mode
Interface

R2: Dual-Mode Support; R3: Model-to-
Code Synchronization

FR2: Simulation and Execution Panel R4: Simulation and Execution
FR3: Multi-Language Notation Support R1: Multi-Language Support
FR4: Search Interface R6: Searchable Example Library

User Interaction and Collaboration Related
FR5: Intuitive User Interface Layout R7: Intuitive User Interface
FR6: Seamless User Interactions with
Minimal Latency

R8: Fast Response Time

FR7: Embedded User Guide with
Searchable FAQ

R11: Integrated User Guide

FR8: User-Friendly Setup and
Responsive Model Canvas

R17: Multi-Platform Accessibility; R18:
Simple Installation

FR9: Real-Time Online Collaboration
with Role-Based Permissions

R9: Collaborative Editing with Role-
Based Permissions

FR10: Offline Collaboration and Conflict
Resolution

R9: Collaborative Editing; R10: Save and
Resume Functionality

FR11: Adaptive Frontend Modelling
Interface

R12: Language Customization

Education Related
FR12: External Gamification and
Integration Interface

R13: Gamification

FR13: Visual Annotations and Overlays R5: Automatic Validation; R14: Flexible
Feedback, Grading and Plagiarism
Detection

Development Related
FR14: Frontend Modular Component
System

R15: Modular Architecture

FR15: CI/CD Integration for Frontend
Development

R16: CI/CD Support for Development
and Deployment

FR16: Interaction Tracker and Feedback
Module

R19: User Interaction Tracking and
Feedback Collection

48

Chapter 4

Modular Frontend Architecture with

Reusable Components

This chapter presents a structured approach to designing a modular frontend architecture for

a web-based graphical modelling tool, emphasizing reusability, extensibility, scalability and

maintainability. The goal is to enable seamless integration of new modelling notations while

minimizing development effort by reusing code. To achieve this, the system is designed with

generic modules handling core functionalities and language-specific modules. This separation

ensures that new editors can be added without modifying core modules. Additionally, the

architecture supports real-time collaboration, ensuring consistency across multiple users.

In developing this architecture, we have focused on implementing the core functionalities

that are essential for the effective operation of the editor. Specifically, we have implemented

the following key frontend requirements listed from Chapter 3:

• FR3: Multi-Language Notation Support

• FR5: Intuitive User Interface Layout

4. Modular Frontend Architecture with Reusable Components 49

• FR6: Seamless User Interactions with Minimal Latency

• FR8: User-Friendly Setup and Responsive Model Canvas

• FR14: Frontend Modular Component System

The frontend requirement, which we have also implemented, FR11: Adaptive Frontend

Modelling Interface, related to perspective-based customization, is not covered in this

chapter. It will be addressed in the next Chapter 5, where the DSL for Language

Configuration is introduced to dynamically control language-specific operations based on

user roles and teaching objectives.

Besides these core requirements, our architecture also accommodates additional frontend

requirements outlined in Chapter 3, as well as non-core features, which are considered add-

ons and fall outside the scope of my thesis. These features, although not fully implemented

in this work, are designed to integrate seamlessly into the system in the future. These add-on

requirements include:

• FR1: Graphical and Textual Dual-Mode Interface

– Although our current implementation provides a robust graphical modelling

interface, a synchronized textual editor with real-time code updates and error

feedback is considered an add-on enhancement; this extension can be seamlessly

integrated into our existing architecture.

– By developing this dual-mode functionality as an add-on, the system remains

flexible and modular, allowing the textual view to be added or upgraded

independently, thereby enhancing the overall user experience; however, its full

implementation will require additional development effort from content

developers and educators to design the integrated code editor and ensure robust

synchronization.

4. Modular Frontend Architecture with Reusable Components 50

• FR2: Simulation and Execution Panel

– Our frontend currently renders static diagrams and the addition of a dedicated

simulation and execution panel with controls for play, pause, step-through and

rewind, is viewed as an add-on that extends the basic visualization into dynamic

model simulation.

– This enhancement will integrate real-time visual feedback, such as animations

and state highlights, into the existing UI, leveraging our modular design to add

simulation capabilities without altering core functionality; however, building a

fully featured simulation panel will require further development effort from UI

designers and educators to create an intuitive simulation control interface and

robust feedback mechanisms.

• FR4: Search Interface

– While our system currently offers basic functionality for accessing example models,

a fully interactive and searchable example library that is well-categorized remains

a planned enhancement.

– This add-on would require further development to curate content, design an

intuitive search interface and integrate it into the tool, tasks that would likely

involve substantial input from educators and content creators.

• FR7: Embedded User Guide with Searchable FAQ

– The current implementation includes a basic help feature; however, a detailed

embedded user guide with a fully searchable FAQ section is an add-on feature.

– This enhancement would improve usability by offering comprehensive

documentation and troubleshooting support, but it demands additional content

4. Modular Frontend Architecture with Reusable Components 51

creation and interface design work, which goes beyond the core functionality.

• FR9: Real-Time Online Collaboration with Role-Based Permissions

– While basic real-time synchronization is implemented, a fully featured online

collaboration module with dynamic role-based UI adjustments is considered an

add-on; this feature will further refine user interactions by clearly differentiating

contributions and enforcing editing permissions.

– The modular architecture supports the integration of enhanced collaboration

tools, ensuring that advanced features such as conflict resolution and

personalized UI elements can be added as separate modules without affecting

the core real-time update mechanism; however, implementing these advanced

functionalities will require additional development work from the collaborative

systems team and educators.

• FR10: Offline Collaboration and Conflict Resolution

– The current system supports basic model persistence and real-time updates, but

comprehensive offline collaboration with local caching and a user-friendly conflict

resolution interface is planned as an add-on enhancement.

– By designing offline collaboration as an add-on, our architecture ensures that

modules for local data storage and synchronization can be integrated later

without requiring changes to the core online collaboration framework; however,

this enhancement will demand extra development effort from both frontend and

backend teams to implement reliable offline caching and an intuitive conflict

resolution mechanism.

• FR12: External Gamification and Integration Interface

4. Modular Frontend Architecture with Reusable Components 52

– Integration with an external gamification platform featuring leaderboards, badges

and progress tracking is considered an optional enhancement rather than a core

requirement.

– This feature would involve interfacing with third-party APIs to transmit modelling

activity data and display gamification elements externally, and it would require

extra development effort and coordination with external system providers.

• FR13: Visual Annotations and Overlays

– The core system already supports basic visual annotations, but a comprehensive

module for advanced feedback including customizable overlays for grading,

validation and plagiarism detection is regarded as an add-on enhancement.

– Developing this add-on leverages our modular frontend design, enabling advanced

annotations to be implemented and updated independently, thereby enhancing

the overall user experience; however, delivering a fully detailed annotation system

will require additional work from content developers and UX designers to define

comprehensive feedback criteria and ensure seamless integration with the existing

model rendering.

• FR15: CI/CD Integration for Frontend Development

– Although our architecture currently supports manual testing, the integration of

automated build, test and deployment pipelines is not realized.

– This CI/CD enhancement would streamline development, improve code quality

and prevent regressions, but it is considered an add-on that requires further

investment in automation tools and infrastructure.

• FR16: Interaction Tracker and Feedback Module

4. Modular Frontend Architecture with Reusable Components 53

– A comprehensive module for tracking user interactions and gathering real-time

feedback is envisioned as an add-on. Such a module would provide detailed

analytics to help refine the system and guide instructional improvements.

– However, its implementation would require significant additional work to

integrate with the existing architecture and to design a user-friendly dashboard

for educators and developers.

This chapter begins with Section 4.1, which covers the goals and principles behind the

frontend architecture. Section 4.2 then explains the technologies used and the rationale

behind their selection. Section 4.3 provides an architecture overview, presenting the high-

level structure and key components of the system. Section 4.4 discusses the reusability and

extensibility of the frontend, focusing on common utility modules and the process of creating

a new language. Finally, In Section 4.5, we validate the core frontend functionalities.

4.1 Goals and Principles

Our architecture of the modelling tool revolves around six core principles:

4.1.1 Support for Multiple Modelling Languages

A key requirement is the ability to handle various modelling languages (e.g., Class Diagrams,

State Diagrams or Sequence Diagrams) without demanding an extensive development effort.

Each language can be added as a self-contained set of modules. Modules of one language

will have no dependencies on modules of another language. This modular approach ensures

that introducing new modelling languages does not impact the already existing ones.

4. Modular Frontend Architecture with Reusable Components 54

4.1.2 Reusability of UI Components

Rather than creating specialized elements for every language separately, out framework

provides generic UI components that implement common functionality required by editors,

such as different shapes for representing nodes, different configurations for displaying links

between shapes, and shared logic for drag-and-drop, selection or context menus. By

crafting these elements to be reusable, developers can maintain consistency across the

diagram types of different modelling languages and reduce code duplication.

4.1.3 Extensibility for Developers

The design allows new modelling languages and features to be integrated without disrupting

existing functionality. Instead of modifying existing modules, developers can create fresh

ones or import from shared libraries. This “create, don’t edit” mindset fosters parallel

development, clear version control and minimal risk of breaking older features.

4.1.4 Maintainability and Scalability

A modular structure ensures that updates or expansions such as adding new modelling

languages and diagram types or refining existing ones can occur with minimal impact on

the rest of the system. Over time, as the tool grows to accommodate larger user bases

or additional modelling features, this clean separation of concerns helps keep maintenance

overhead low and performance stable.

4. Modular Frontend Architecture with Reusable Components 55

4.1.5 Real-Time Collaboration

Because the tool must handle multiple simultaneous users, real-time synchronization is

central. Any model edits by one user are quickly propagated to all others, enabling

interactive and efficient teamwork. Incremental diagram updates and lightweight

broadcasts help keep collaboration smooth, avoiding disruptive full refreshes or out-of-date

local views.

4.1.6 Security in Architecture

Security underpins the entire design. Only structured, authorized modifications are

allowed, preventing invalid or malicious changes to the model. Each user action is

controlled by predefined operations, ensuring that the system maintains data integrity and

model consistency at all times. By default, unauthorized direct modifications or bypassing

of the tool’s logic are not permitted, supporting both reliable multi-user sessions and

long-term stability of models.

4.2 Technologies and Selection Reasons

The system is primarily built using the following technologies, each chosen for its efficiency,

scalability and seamless integration within our web-based modelling tool:

1. GoJS: A JavaScript library for interactive diagrams, providing essential graph-based

visualization and event-driven interactions [64].

Reasons for Selection: We chose GoJS over alternatives like D3.js and JointJS

because it provides built-in support for diagramming elements such as nodes, links

4. Modular Frontend Architecture with Reusable Components 56

and hierarchical structures, significantly reducing development effort [65]. Unlike

D3.js, which requires extensive custom implementations for each diagram type, GoJS

offers a structured API with predefined templates for classes, associations, and

enumerations, aligning with our reusability and extensibility principles. A key

advantage of GoJS is its model-view architecture, where a single underlying data

model1 can be visualized by multiple views. This allows for dynamic updates,

ensuring that any modification to the data model is instantly reflected in all

associated views, reducing manual synchronization overhead. Additionally, GoJS

provides efficient real-time updates, built-in undo/redo support and interactive event

handling, making it a robust choice for an intuitive, user-friendly modelling tool.

2. JavaScript: Ensures maintainability and type safety, reducing runtime errors and

improving development efficiency.

Reasons for Selection: We chose JavaScript over TypeScript due to its simpler

setup, native browser execution and flexibility in handling dynamic UI elements [66].

TypeScript’s static typing adds overhead with an additional compilation step, while

JavaScript enables faster prototyping and real-time updates without dependencies.

Given our tool’s focus on interactive modelling, JavaScript’s dynamic nature allows

seamless integration with GoJS and WebSockets, avoiding compatibility issues.

Unlike Java or C++, JavaScript eliminates installation barriers, ensuring

cross-platform accessibility and efficient asynchronous operations, making it the most

suitable choice for a web-based modelling tool.
1Not to be confused with the models that we are talking about in model-driven engineering.

4. Modular Frontend Architecture with Reusable Components 57

Performance Considerations: JavaScript’s event-driven model is inherently

well-suited for real-time updates and UI interactions, while Java and C++ are better

suited for backend and system-level applications where memory management and

performance-intensive computations are critical. While TypeScript provides better

maintainability with static type checking, it introduces an additional compilation

step, which could add delays in development iterations. In contrast, JavaScript’s

dynamic execution eliminates the need for pre-compilation, ensuring faster execution

cycles and immediate feedback during development.

Developer Efficiency and Modularity: JavaScript provides a large ecosystem

of libraries and frameworks, which enhances productivity and reusability. A Java

or C++ frontend would require significantly more boilerplate code for UI rendering

and interactivity, whereas JavaScript enables a concise, modular structure with built-

in support for asynchronous operations and WebSockets. While TypeScript enforces

stricter type definitions, reducing runtime errors, JavaScript’s dynamic flexibility allows

faster iteration cycles and seamless debugging without needing to recompile.

3. Websockets: Enables real-time synchronization, ensuring that modifications are

instantly reflected across multiple active sessions.

Reason for Selection: WebSockets were chosen over AJAX polling and Server-Sent

Events (SSE) because they provide bi-directional, low-latency communication, essential

for real-time updates in collaborative modelling [67].

Comparison with AJAX Polling: AJAX requires frequent HTTP requests to

fetch updates, which increases server load and response time, making it inefficient for

4. Modular Frontend Architecture with Reusable Components 58

real-time interactions. WebSockets, on the other hand, maintain an open connection,

ensuring that only the required data is transmitted, reducing bandwidth usage and

improving performance.

Comparison with SSE: Server-Sent Events (SSE) only support one-way

communication (server to client), which is insufficient for our needs, as users must

also send updates when modifying diagrams.

4. Representational State Transfer (REST) API: REST APIs play a crucial role in

our architecture by enabling structured, stateless communication between the frontend

and backend, ensuring efficient data retrieval.

Reasons for Selection: We selected REST APIs over alternatives like GraphQL,

gRPC and SOAP due to their simplicity, scalability and seamless integration with

our JavaScript-based frontend [68]. REST’s stateless communication ensures efficient

handling of multiple concurrent users. Unlike GraphQL, which introduces query

complexity and over-fetching risks, REST follows a predictable, endpoint-based

approach, ensuring optimized communication between the frontend and backend.

Compared to gRPC, which requires strict schema enforcement and binary encoding,

REST’s JSON-over-HTTP format is more human-readable and widely supported

across web environments. SOAP, on the other hand, has significant XML overhead

and complexity, making REST the lightweight and efficient choice for our use case.

5. HTML and CSS: Provides a structured, responsive and efficient UI design.

Reasons for Selection: We opted for a custom component-based design in vanilla

JavaScript rather than using frameworks like React, Angular or Vue, because this

4. Modular Frontend Architecture with Reusable Components 59

approach offers full control over the UI while keeping the system lightweight and

framework-independent. By using plain JavaScript, we are able to directly access the

full power of GoJS for diagramming, which comes with built-in, reusable UI

components that facilitate the creation and manipulation of complex diagrams [69].

Comparison with React/Angular/Vue: While React and Angular provide

built-in component structures, they introduce framework dependencies that require

additional learning and performance overhead. Since our architecture is highly

interactive but not state-heavy, using custom JavaScript components ensures better

maintainability and direct browser execution without a virtual DOM overhead.

Unlike React’s JSX syntax, we use standard HTML elements and JavaScript

event-driven updates, making it framework-agnostic and extensible.

4.3 Architecture Overview

4.3.1 High-Level Structure

Figure 4.1 illustrates the layered design of the frontend, showing how the application is

split into an Application Layer (top), a Visualization & Interaction Layer (middle) and a

Communication Layer (bottom). Each module’s color indicates whether it is generic

(pink), language-specific (green) or part of the Perspective Configuration (blue), which

allows modelling languages to be configured for different teaching purposes. We mention

perspective configuration here in the architecture at a high level. All perspective-related

details will be discussed in Chapter 5.

4. Modular Frontend Architecture with Reusable Components 60

Figure 4.1: High-Level Frontend Architecture

4.3.1.1 Application Layer

The Application Layer appears at the top and contains the generic Main module, which is

highlighted in pink. This Main module coordinates the tool’s startup process by initializing

the environment when the user launches the application.

4. Modular Frontend Architecture with Reusable Components 61

4.3.1.2 Visualization & Interaction Layer

Beneath the Application Layer, the Visualization & Interaction Layer houses both generic

and language-specific modules. The Editor (pink) is generic, and responsible for capturing

user events (clicks, drags, right-clicks) and makes use of the language-specific modules. The

Diagram (green) defines how nodes and links appear for a given language (e.g., classes,

states), while the ContextMenu (green) provides language-specific actions (e.g., “Add Class”,

“Add State”) that the Editor can display when the user right-clicks on a model element or on

the background of the editor. Additionally, Frontend Operations (green) handle language-

specific logic on the client side that react to notifications received from the backend (e.g.,

creating or deleting model elements), ensuring that each diagram type can define its own

ways of reacting to notifications without the need to modify the Editor or Main modules.

Although the Perspective Configuration is also language-specific and loaded generically; it

simply contains references to language-specific concepts and model edit operation names,

which are elaborated in Chapter 5.

4.3.1.3 Communication Layer

At the bottom we have the Communication Layer which ensures real-time synchronization

and model persistence. The Websocket module (pink) is generic. It listens for broadcast

notifications from the backend and forwards them to the Editor so that every connected

client sees the latest model changes visualized in their frontend. The Backend Operations

(green) module provides language-specific REST calls. By isolating these operations in a

language-specific module, the architecture accommodates a variety of modelling languages

while preserving the same overall flow for user interactions and real-time updates.

4. Modular Frontend Architecture with Reusable Components 62

4.3.2 Main Interaction Flows

This section focuses on how the modules interact at runtime. We divide the interactions into

three main flows: Initialization, User Actions and Real-Time Updates.

4.3.2.1 Initialization Flow

Figure 4.2 illustrates how the system prepares the modelling environment when the user

first opens the editor. The process begins with the user launching the tool, prompting

the Main (generic) module to call an init() function on the Editor. The Editor then

requests a diagram template from the Diagram (language-specific) module. In response, the

Diagram module creates the GoJS templates and applies them to GoJS (e.g., by calling

applyTemplate(...)), which defines how nodes and links will be rendered. Next, the Editor

retrieves model data by calling getModel() on the Backend Operations (language-specific)

module, which makes a REST request to the Backend to fetch the stored diagram state.

Once the Editor receives the model, it instructs the Diagram module to setupModel(...).

The Diagram then calls setupGoJsGraph(...) on GoJS to populate the actual nodes and

links in the browser. By separating each responsibility, such as visual template creation,

model fetching and final rendering, this initialization process ensures that the Editor and

Main modules remain generic, while language-specific details are cleanly encapsulated in

language-specific modules.

4.3.2.2 User Actions Flow

Figure 4.3 illustrates how the system handles user interactions, particularly how a right-

click on the diagram triggers a language action. First, the user right-clicks on the diagram

and GoJS captures this event. It then calls the generic Editor’s handleClick() method to

4. Modular Frontend Architecture with Reusable Components 63

Figure 4.2: Initialization Flow

initiate the process. The Editor, in turn, invokes the language-specific ContextMenu module

(e.g., by calling getMenu()) to retrieve a list of menu items associated with the current

diagram context. Once the Editor instructs GoJS to display these items, the user selects an

action, such as “Add Class”. At that moment, GoJS triggers the callback function registered

in the ContextMenu module for the chosen menu item. Unlike the initial event, which

passed through the Editor, this subsequent action bypasses the Editor and flows directly to

the ContextMenu’s callback. The callback then calls a function in the Backend Operations

module (e.g., addState(stateName)), which finally sends a stateless REST request to the

backend to update the model.

4.3.2.3 Real-Time Update Flow

Figure 4.4 illustrates how the system synchronizes model changes across all connected

clients when the Backend updates its model (e.g., by adding a new class or state). First,

the Backend detects a change in a model, and broadcasts the to each connected client,

effectively calling something like broadcastChange() on every Websocket (generic)

instance that corresponds to a client session linked to the model that was modified. On the

frontend, the WebSocket then notifies the Editor (generic) with a message such as

4. Modular Frontend Architecture with Reusable Components 64

Figure 4.3: User Actions Flow

“classAdded”. The Editor, upon receiving this notification (e.g., via a method like

notify("classAdded")), invokes an operation provided by Frontend Operations

(language-specific) function, for instance, processWebSocketMessage("classAdded") to

interpret the message data and determine how the diagram should be updated. Finally, the

Frontend Operations module calls a method like updateGoJSGraph() in GoJS to add or

modify the relevant nodes and links. By keeping the WebSocket and Editor generic, the

system accommodates any modelling language, while each language-specific Frontend

Operations module applies the precise logic required to incorporate the new or changed

elements into the local diagram.

4.4 Reusability and Extensibility of the Frontend

A principal objective of the frontend architecture is to enable new modelling languages to

be integrated or existing ones to be extended without altering the core modules such as

Main, Editor and Websocket or affecting already existing language-specific modules. The

4. Modular Frontend Architecture with Reusable Components 65

Figure 4.4: Real Time Updates Flow

architecture provides common utility modules for Diagram, ContextMenu, Frontend

Operations and Backend Operations ensuring developers can reuse core logic rather than

duplicating it. Whenever a new language is introduced, developers create language-specific

modules that can import these common utilities. This section provides common utilities for

each major module type and provides a step-by-step look at how a new language is

typically introduced.

4.4.1 Common Utility Modules

The system includes shared utility modules that centralize repeated code and ensure

consistency across all languages. For instance, a developer has access to:

4.4.1.1 Diagram Utilities

This module holds standard shape definitions, node styling and color palettes. It includes

functions like createDefaultNodeStyle(options) that configure uniform styling.

4. Modular Frontend Architecture with Reusable Components 66

4.4.1.2 Context Menu Utilities

This module provides generic functions to build menu items and prompt user input, such as

createMenuItem(label, action).

4.4.1.3 Frontend Operations Utilities

This module centralizes client-side logic, e.g., local model transformations or validations.

These common utilities centralize shared code so that each language-specific module imports

them, ensuring consistency and reducing maintenance overhead.

4.4.1.4 Backend Operations Utilities

This module handles standardized HTTP requests with a function such as

safeFetch(url, options) that checks response statuses and parses JSON uniformly.

These utilities are imported by the new language-specific modules, so the developer does not

have to duplicate common logic.

4.4.2 Integrating a New Modelling Language

To integrate a new modelling language into the frontend, the developer does not modify

any of the generic modules (Main, Editor, Websocket). Instead, the developer creates the

Diagram, ContextMenu, FrontendOperations and BackendOperations modules for the new

language, importing any code needed from the common utility modules. The interfaces for

the modules are shown in Figure 4.5.

In the following subsections, we illustrate this process using a concrete example of adding

support for a state diagram language.

4. Modular Frontend Architecture with Reusable Components 67

loadDiagramTemplate()
setupModel(diagram, model)

«interface»
IDiagram

getBackgroundMenuItems()

«interface»
IContextMenu

processAction(message, diagram)

«interface»
IFrontendOperations

getModel() : model

«interface»
IBackendOperations

Figure 4.5: Interfaces for Integrating a New Modelling Language

4.4.2.1 Diagram Module Example

In the Diagram module (see code sample 4.1) for the State Diagram language, the interface

function loadDiagramTemplate() is designed to provide the Editor with the necessary

visual templates to render the diagram. The module begins by importing GoJS and a

shared utility function, createDefaultNodeStyle(), from the common utilities module

diagramCommonUtils, which guarantees that all diagrams maintain a consistent look and

feel. Within loadDiagramTemplate(), a shorthand alias $ is created for

go.GraphObject.make, a factory function provided by GoJS that simplifies the creation of

diagram objects. The code then calls createDefaultNodeStyle() with an option to set

the fill color to light blue, which returns a standard style object used in the node template.

The node template is defined using a call to $ with parameters that specify an automatic

layout ("Auto") and include the default style. In this context, the “Auto” layout ensures

that each state node is arranged efficiently, while the default style renders it as a rounded

rectangle with a text block inside, where the text is bound two-way to the node’s

stateName property. This binding ensures that any changes made to the state name in the

diagram immediately update the underlying data model and vice versa.

For transitions, the link template is defined using bezier-based routing instead of

orthogonal routing, which better captures the fluidity of state transitions. The template

4. Modular Frontend Architecture with Reusable Components 68

specifies a stroke width for the link shape and uses GoJS’s built-in arrowhead, commonly

known as the "Standard" arrowhead, which is appropriate for indicating transitions

between states in a state diagram. Finally, the function returns an object containing both

the node and link templates.

The second interface function, setupModel(), takes the configured diagram and a model

data object (comprising arrays of nodes and links) and initializes the diagram’s model by

creating a new go.GraphLinksModel. This step integrates the current state of the model

data retrieved from the backend into the visual display, completing the initialization process

for the State Diagram.

Code Sample 4.1: Diagram Module for State Diagram
1 import * as go from "gojs";
2 import { createDefaultNodeStyle } from "../common/diagramCommonUtils";
3 export function loadDiagramTemplate() {
4 const $ = go.GraphObject.make;
5 const defaultNodeStyle = createDefaultNodeStyle({ fill: "lightblue" });
6 const nodeTemplate = $(
7 go.Node,
8 "Auto",
9 defaultNodeStyle,

10 $(
11 go.TextBlock,
12 { margin: 8, editable: true },
13 new go.Binding("text", "stateName").makeTwoWay()
14)
15);
16 const linkTemplate = $(
17 go.Link,
18 { routing: go.Link.Bezier, curviness: 20 },
19 $(go.Shape, { strokeWidth: 2 }),
20 $(go.Shape, { toArrow: "Standard" })
21);
22 return { nodeTemplate, linkTemplate };
23 }
24 export function setupModel(diagram, modelData) {
25 diagram.model = new go.GraphLinksModel(modelData.nodes, modelData.links);
26 }

4. Modular Frontend Architecture with Reusable Components 69

4.4.2.2 ContextMenu Module Example

This language-specific module defines the context menu for the State Diagram language in the

interface function getBackgroundMenuItems(). It returns an array of menu items, each with

an action callback that GoJS invokes when the user selects an item. In the code sample 4.2,

one of these items allows a user to add a new state to the diagram. Upon selection, the

callback prompts the user for a state name, then calls the corresponding Backend Operation

to persist the new state. By encapsulating these definitions within a dedicated module, each

modelling language can specify its own actions and callbacks, leaving the generic Editor

unaltered.

Code Sample 4.2: ContextMenu Module for State Diagram
1 import { getUserInput } from "../common/contextMenuCommonUtils";
2 import * as BackendOps from "./operationsState.js";
3 export function getBackgroundMenuItems() {
4 const items = [];
5 items.push({
6 label: "Add State",
7 action: async () => {
8 const stateName = await getUserInput("Enter state name:");
9 if (stateName) {

10 await BackendOps.addState(stateName);
11 }
12 },
13 });
14 return items;
15 }

4.4.2.3 Frontend Operations Module Example

In our real-time update flow, once the backend updates its model, it broadcasts a change

(e.g., “stateAdded”) to all connected clients. On the frontend, the generic WebSocket

receives this broadcast and notifies the Editor using a function such as

4. Modular Frontend Architecture with Reusable Components 70

notify("stateAdded"). The Editor, which remains generic and unaware of

language-specific details, then calls the interface function processAction() from the

language-specific Frontend Operations module (refer code sample 4.3), passing along the

message and the current GoJS diagram instance. This function serves as the central

handler for processing real-time notifications. It examines the type of the incoming

message: if the message type is “stateAdded”, it calls insertStateNode(), which

incrementally adds the new state to the diagram model using

diagram.model.addNodeData(); if the message is “stateUpdated”, it calls

updateNodeInDiagram(), a shared utility that updates the properties of an existing node

based on the provided data; and if the message is “stateDeleted”, it calls

removeStateNode(), which finds and removes the node with the corresponding ID from

the model.

Code Sample 4.3: Frontend Operations Module for State Diagram
1 import { updateNodeInDiagram } from "../common/frontendOpsCommonUtils";
2 export function processAction(message, diagram) {
3 switch (message.type) {
4 case "stateAdded":
5 insertStateNode(diagram, message.data);
6 break;
7 case "stateUpdated":
8 updateNodeInDiagram(diagram, message.data);
9 break;

10 case "stateDeleted":
11 removeStateNode(diagram, message.data.id);
12 break;
13 default:
14 console.warn("Unhandled message type:", message.type);
15 }
16 }
17 function insertStateNode(diagram, stateData) {
18 diagram.model.addNodeData(stateData);
19 }
20 function removeStateNode(diagram, stateId) {
21 const nodeData = diagram.model.nodeDataArray.find(nd => nd.id === stateId);

4. Modular Frontend Architecture with Reusable Components 71

22 if (nodeData) {
23 diagram.model.removeNodeData(nodeData);
24 }
25 }

4.4.2.4 Backend Operations Module Example

This Backend Operations module is responsible for all REST calls related to the State

Diagram language. It imports a shared function, safeFetch, from a common utility

module that standardizes error handling and JSON parsing (see code sample 4.4). The

function addState(stateName) constructs a POST request to the endpoint

/api/stateDiagram/addState, sending the new state’s name as a JSON payload. When

the backend successfully creates the new state, it returns a JSON response typically

including the new state’s ID which this function then returns to the caller. Similarly,

deleteState(stateId) issues a DELETE request to remove a state identified by its ID

from the backend model. The module also includes a getModel() function, which is critical

during the initialization flow. When the Editor needs to load the existing diagram, it calls

getModel() from this module, which sends a GET request to /api/stateDiagram/model.

The backend responds with the complete model data, allowing the Editor to set up the

diagram accordingly by calling setupModel() on the language-specific Diagram module.

Code Sample 4.4: Backend Operations Module for State Diagram
1 import { safeFetch } from "../common/operationsCommonUtils";
2 export async function addState(stateName) {
3 const response = await safeFetch("/api/stateDiagram/addState", {
4 method: "POST",
5 headers: { "Content-Type": "application/json" },
6 body: JSON.stringify({ stateName }),
7 });
8 return response;
9 }

4. Modular Frontend Architecture with Reusable Components 72

10 export async function deleteState(stateId) {
11 const response = await safeFetch(‘/api/stateDiagram/deleteState/${stateId}‘, {
12 method: "DELETE",
13 });
14 return response;
15 }
16 export async function getModel() {
17 const response = await safeFetch("/api/stateDiagram/model", {
18 method: "GET",
19 headers: { "Content-Type": "application/json" },
20 });
21 return response;
22 }

4.5 Validation

In this section, we evaluate the core frontend functionalities implemented in our modular

architecture. Our validation approach combines performance measurements,

design-by-construction arguments and minimal empirical testing where feasible. Each

evaluation is tailored to demonstrate that the frontend provides a responsive, user-friendly

experience while maintaining modularity and extensibility.

4.5.1 Experimental Setup

All validation tests were performed under a controlled environment to ensure accurate and

repeatable results. The following specifications outline the test setup:

4.5.1.1 Hardware & System Specifications

• Device: MacBook Air (M2)

• Processor: Apple M2 (8-core CPU, 10-core GPU)

• Memory: 8GB Unified RAM

4. Modular Frontend Architecture with Reusable Components 73

• Storage: 256GB SSD

• Operating System: macOS Sequoia 15.3

• Network Connection: Stable 500 Mbps Fiber Connection

4.5.1.2 Software & Testing Tools

• Browser: Google Chrome 133.0.6943.126 (Latest Stable Release)

• Developer Tools Used:

1. Chrome DevTools (Performance profiling, network logs, local storage

verification)

2. WebPageTest (Load time and resource consumption analysis)

3. JavaScript Performance Timers (performance.now())

4. Selenium & Puppeteer (Automated UI testing)

5. Jest (Unit testing and snapshot testing for verifying UI component integrity and

preventing unintended changes)

All tests were conducted on a local development environment. The REST API was

hosted locally and WebSockets were tested using a dedicated test server to simulate multi-

user collaboration.

4.5.2 Validation of FR3: Multi-Language Notation Support

To validate this, we adopted a design-by-construction approach. To develop the frontend

we implemented full support for the Class Diagram language. To validate FR3, we

additionally implemented a prototype of the State Diagram modules. A thorough code

review confirms that language-specific modules are isolated from core components. Visual

4. Modular Frontend Architecture with Reusable Components 74

templates for nodes and links are rendered exactly as specified by each language module.

We verified this by comparing the rendered output against predefined templates,

confirming complete consistency. Performance logs show stable resource usage during

language switches. The system does not require any modifications to the Editor when new

language modules are integrated. Each language module loads and operates independently,

ensuring that additional languages can be added seamlessly.

4.5.3 Validation of FR5: Intuitive User Interface Layout

We instrumented the UI to measure the number of clicks required to perform essential

operations. In our controlled tests with over 50 trials, the average click count for performing

operations was found to be no more than three, which confirms that the interface minimizes

interaction overhead [53]. The grouped arrangement of controls and the established visual

hierarchy were verified through internal code reviews, ensuring that related functions are

easily accessible. Our observations show that each click effectively triggers the corresponding

action without unnecessary delays or redundant steps. Overall, our findings confirm that

the intuitive UI layout is effective in minimizing user effort, while a broader user study for

further validation remains outside the scope of this thesis.

4.5.4 Validation of FR6: Seamless User Interactions with Minimal

Latency

We instrumented the event handling code to measure the round-trip delay from when a user

clicks “Create Class” to when the update is rendered in the GoJS diagram. Over 50 iterations,

our measurements yielded an average delay of 75 milliseconds with a standard deviation of 10

milliseconds, which clearly demonstrates that our asynchronous processing and data-binding

4. Modular Frontend Architecture with Reusable Components 75

mechanisms are optimized for responsiveness. Tests under simulated concurrent interactions

confirmed that the delay remains below 90 milliseconds, ensuring that multiple simultaneous

events do not affect performance. These quantitative results provide concrete proof that our

frontend design meets the requirement for seamless, low-latency interactions.

4.5.5 Validation of FR8: User-Friendly Setup and Responsive

Model Canvas

The frontend’s user-friendly setup and responsive model canvas are validated by simulating

dynamic browser resizing and observing the layout’s stability. Controlled tests confirm that

the canvas automatically adjusts its layout, with all UI elements repositioning correctly

without overlap. The design uses flexible CSS grids and media queries, ensuring consistent

scaling across browser sizes. Performance logs indicate that the canvas redraws smoothly

with no noticeable delays during resizing. These results provide concrete proof that the

responsive design meets our intended specifications.

4.5.6 Validation of FR14: Frontend Modular Component System

This requirement is validated by analyzing the code structure to ensure that core modules

remain independent from language-specific modules. We evaluate this by reviewing module

dependency diagrams that clearly show minimal coupling between generic components and

language-specific modules. The modular architecture is further validated by successfully

adding a new language-specific modules, i.e., the ones for State Diagrams, without modifying

the generic core. Performance profiling indicates that the modular design introduces minimal

overhead, ensuring that system efficiency is maintained.

4. Modular Frontend Architecture with Reusable Components 76

4.6 Summary

In this chapter, we developed a modular frontend architecture for our web-based modelling

tool, supporting the core frontend requirements and the additional add-on frontend

requirements, as outlined at the beginning of this chapter. This architecture not only

meets these frontend requirements, but also supports the seamless integration of the

add-on features mentioned in future work section 6.2. Our validation experiments confirm

that the core functionalities perform as intended. In the next chapter, we will explore the

DSL for Language Configuration, which will further enhance the system by allowing

educators to dynamically adapt a language to a specific teaching context.

77

Chapter 5

Language Customization through a

Domain-Specific Language

This chapter proposes a Domain-Specific Language (DSL) for adapting the frontend of a

modelling language to a specific teaching context / teaching needs. It hence addresses one

of the key functional requirements from chapter 3, namely FR11: Adaptive Frontend

Modelling Interface, and of course does so in a modular way in order to comply with FR14:

Frontend Modular Component System. This chapter begins with Section 5.1, which

reviews the CORE framework, the CORE DSL for specifying languages and perspectives,

and its limitations when applied in a teaching context; Section 5.2 then explains how we

extended the CORE metamodel to capture high-level language concepts and link them to

language actions; Section 5.3 describes our extension of the CORE metamodel and DSL

grammar for both language definitions and perspective configurations; Section 5.4 presents

concrete DSL examples for a Class Diagram language as well as for a Domain Modelling

and a Design Modelling perspective; Section 5.5 details the code generation process that

5. Language Customization through a Domain-Specific Language 78

instantiates the augmented metamodel based on the DSL; Section 5.6 shows how the

frontend architecture adapts its visual templates and context menus according to the

generated perspective configuration and finally, Section 5.7 presents our validation.

5.1 Review of CORE and Limitations in Teaching

5.1.1 CORE Review

As detailed in Chapter 2, the CORE framework was originally developed to help modelling

language creators add reusability features to their modelling languages. CORE defines a

metamodel that focuses on capturing the essence of a modelling language. The developer

of a specific modelling language can instantiate a CORELanguage and define the model

edit actions that the language offers by creating corresponding CORELanguageAction

objects. Moreover, CORE supports multi-view modelling by extending the metamodel with

additional elements, such as COREPerspective and COREPerspectiveAction, which allow

different modelling languages to be coordinated for a given purpose. This design enables a

modelling language developer to not only specify the operations available within a

language, but also to define how those operations interact within a unified perspective.

However, while this action-based focus has proven effective for technical modelling, it does

not fully address the unique needs of a teaching context.

5.1.2 Limitations for Teaching

In educational settings, the primary focus is on gradually introducing students to the

underlying concepts of modelling languages rather than focusing on language operations

alone. Teachers typically prefer to start with the basic concepts of a modelling language,

5. Language Customization through a Domain-Specific Language 79

e.g., Classes and Attributes for Class Diagrams, and then progressively introduce more

complex elements, e.g., Visibility and Associations, as students gain proficiency. However,

the original CORE framework, with its emphasis on LanguageAction and

PerspectiveAction, does not offer a mechanism for selectively hiding or revealing specific

language concepts (for example, Operation, Visibility or Navigability). This limitation

means that the framework lacks the flexibility needed to tailor the modelling environment

to different teaching stages. In other words, while CORE is effective at enabling multi-view

modelling and reusability, it falls short when educators require a simplified interface that

gradually exposes new concepts and features of a modelling language. This shortcoming

has motivated our extension of the CORE metamodel to include explicit language concepts,

allowing for the creation of perspectives that can hide or expose specific features according

to pedagogical requirements. Such an approach supports incremental learning and aligns

the tool more closely with the needs of educators, ensuring that students are not

overwhelmed by advanced features before they are ready.

5.2 Extending the CORE Metamodel with Language

Concepts

5.2.1 Metamodel Extension

Our approach augments the original CORE metamodel by explicitly capturing language

concepts in addition to language actions, thereby enabling more teacher-friendly definitions

of modelling languages. As shown in Figure 5.1, we introduce a new class called

CORELanguageConcept (highlighted in green) to represent language concepts. In the

5. Language Customization through a Domain-Specific Language 80

original metamodel, the focus was on instantiating CORELanguageAction and

COREPerspectiveAction to support multi-view modelling, but this approach did not

readily allow educators to selectively expose or hide specific modelling concepts. By adding

an association labeled hasConcepts between CORELanguage and CORELanguageConcept,

a single language can now define multiple concepts, while another association,

conceptActionLink, connects each language concept to the operations

(CORELanguageAction) that act upon it or use the concept in some way. This extension

ensures that a modelling language developer can declare both the actions and the

fundamental concepts relevant to a language.

Figure 5.1: Metamodel Extension

5. Language Customization through a Domain-Specific Language 81

5.2.2 Benefits of the Metamodel Extension

The primary benefit of augmenting the CORE metamodel with language concepts is that it

enables both language designers and educators to tailor the modelling environment to their

needs more precisely. Since COREPerspective inherits from CORELanguage, a teacher can

now define a perspective that specifies which concepts are available (or hidden) in a particular

perspective. For example, in an introductory course on class modelling, the teacher might

choose to hide advanced concepts such as Navigability or complex Association Classes by

simply not associating those concepts with the perspective. Conversely, for an advanced

design course, all concepts can be exposed to provide a richer set of modelling features. This

selective exposure not only simplifies the learning curve for beginners but also allows for a

gradual introduction of complexity as students become more proficient.

5.3 Adapting the DSL

In this work, we extended the CORE DSL to support the explicit declaration of high-level

language concepts as well as the configuration of teaching perspectives. This extension allows

language designers to not only define the operational actions of a language, but also to

declare its fundamental concepts without having to specify their internal details. In our

DSL, the language definition now includes a dedicated block for concepts, and the language

actions reference the concepts they use. This makes it possible for educators to later tailor

the modelling environment by hiding advanced concepts, and hence also all linked language

actions, when necessary.

5. Language Customization through a Domain-Specific Language 82

5.3.1 DSL Grammar for Language Definitions

The DSL grammar for language definitions has been updated to include a concepts section

as shown in Code Sample 5.1 on lines 11 to 13. The actions block is also extended with an

associated concepts clause (see lines 31 to 33), linking each operation to its relevant high-

level concept. This structure ensures that the code generator can instantiate the augmented

CORE metamodel with both language actions and language concepts. The clear separation

of these elements simplifies the development process and improves consistency across the

language definition.

Code Sample 5.1: Xtext Grammar for Language Definitions
1 Language:
2 language name=ID {
3 rootPackage rootPackage=STRING;
4 packageClassName packageClassName=ID;
5 nsURI nsURI=STRING;
6 resourceFactory resourceFactory=STRING;
7 adapterFactory adapterFactory=STRING;
8 weaverClassName weaverClassName=STRING;
9 fileExtension fileExtension=ID;

10 modelUtilClassName modelUtilClassName=STRING;
11 concepts {
12 (concepts += Concept)*
13 }
14 language elements {
15 (elements += LanguageElement)*
16 }
17 (actions {
18 (actions += Action)*
19 })?
20 }
21 ;
22 Concept:
23 concept conceptName=ID {
24 // Additional configuration parameters can be included here if needed.
25 }
26 ;
27 Action:
28 create methodNameAndParameters=STRING {
29 metaclass : metaclass=ID;

5. Language Customization through a Domain-Specific Language 83

30 classQualifiedName : classQualifiedName=STRING;
31 (associated concepts {
32 (associatedConcepts += Concept)*
33 })?
34 }
35 ;

5.3.2 DSL Grammar for Perspective Definitions

The perspective grammar is similarly extended to allow teachers to configure which language

concepts are hidden. As seen in Code Sample 5.2, the perspective block includes a hidden

concepts section (see lines 13 to 15) within each referenced language. This enables educators

to create tailored perspectives that limit the modelling environment to only those concepts

that should be used by the students for the specific modelling activity.

Code Sample 5.2: Xtext Grammar for Perspective Definitions
1 Perspective:
2 perspective {
3 name: name=STRING;
4 (default : isDefault=ID;)?
5 languages {
6 (languages += LanguageRef)*
7 }
8 };
9 LanguageRef:

10 existing language name=ID {
11 "roleName" roleName=ID;
12 "rootPackage" rootPackage=STRING;
13 (hidden concepts {
14 (hiddenConcepts += HiddenConcept)*
15 })?
16 (actions {
17 (actions += PerspectiveAction)*
18 })?
19 };
20 HiddenConcept:
21 name=ID;
22 ;

5. Language Customization through a Domain-Specific Language 84

5.4 DSL Examples

This section presents concrete examples that demonstrate how the extended DSL is used

to define a Class Diagram Language and two distinct perspectives: a Domain Modelling

Perspective and a Design Modelling Perspective. These examples illustrate how language

designers declare core concepts and link them to operations, and how educators can customize

the modelling environment by hiding undesired concepts.

5.4.1 Defining the Class Diagram Language

In this example, the DSL is used to define a Class Diagram Language. The language

definition includes both traditional properties and a set of high-level language concepts. As

shown in Code Sample 5.3 lines 10 to 19, the language declaration comprises a concepts

section where fundamental concepts such as Class, Attribute and several advanced

concepts (like Operation, Visibility, Navigability, Association, AssociationClass

and NaryAssociation) are declared. The actions block then defines operations that are

associated with these concepts. This comprehensive language definition serves as the basis

for subsequent perspective configurations.

Code Sample 5.3: Class Diagram Language DSL
1 language classDiagram {
2 rootPackage "com.example.classdiagram";
3 packageClassName classDiagram;
4 nsURI "http://com.example/classDiagram";
5 resourceFactory "com.example.ClassDiagramResourceFactory";
6 adapterFactory "com.example.ClassDiagramAdapterFactory";
7 weaverClassName "com.example.ClassDiagramWeaver";
8 fileExtension cd;
9 modelUtilClassName "com.example.ClassDiagramModelUtil";

10 concepts {
11 concept Class;
12 concept Attribute;

5. Language Customization through a Domain-Specific Language 85

13 concept Operation;
14 concept Visibility;
15 concept Navigability;
16 concept Association;
17 concept AssociationClass;
18 concept NaryAssociation;
19 }
20 language elements {
21 // Additional language elements (omitted for brevity)
22 }
23 actions {
24 create "createClass(String name)" {
25 metaclass : Class;
26 classQualifiedName : "com.example.Class";
27 associated concepts { Class }
28 }
29 create "createAttribute(String name, String type)" {
30 metaclass : Attribute;
31 classQualifiedName : "com.example.Attribute";
32 associated concepts { Attribute, Class }
33 }
34 create "createAssociation(String role)" {
35 metaclass : Association;
36 classQualifiedName : "com.example.Association";
37 associated concepts { Association, Class }
38 }
39 }
40 }

This snippet clearly demonstrates how language concepts and operations are declared. The

language designer defines core concepts and then links specific actions to these concepts

using the associated concepts clause. This DSL code is then processed by the code generator

to instantiate the augmented CORE metamodel.

5.4.2 Defining a Domain Modelling Perspective

During early software development phases, it is a common activity to analyze the structure

of a problem domain by specifying relevant domain concepts alongside their properties and

relationships. While in theory any structural modelling language can be used for domain

5. Language Customization through a Domain-Specific Language 86

modelling, practically most software development processes that incorporate domain

modelling use a variant of class diagrams to express domain models.

Most of the time, though, only a subset of the class diagram language is used. For

example, since in domain models the focus isn’t on behaviour, classes in domain models

typically don’t contain operations, and associations do not show navigability, since classes

are not assigned any behavioural responsibilities, and hence don’t need to interact with other

classes.

With our extension to CORE, a teacher can now define a Domain Modelling Perspective

that exposes only the core concepts, such as Class and Attribute, and features such as

Operation, Visibility and Navigability are hidden. Code Sample 5.4 shows how the

DSL is used to define this perspective (concepts are hidden in lines 7 to 11).

Code Sample 5.4: Domain Modelling Perspective DSL
1 perspective {
2 name : "DomainModelling";
3 languages {
4 existing language classDiagram {
5 "roleName" domainRole;
6 "rootPackage" "com.example.classdiagram";
7 hidden concepts {
8 Operation;
9 Visibility;

10 Navigability;
11 }
12 }
13 }
14 }

5.4.3 Defining a Design Modelling Perspective

Further down the development process of a system, class diagrams are commonly used to

prescribe or document the implementation solutions of a system. This is typically called

5. Language Customization through a Domain-Specific Language 87

design modelling. Design models should be comprehensive abstractions of a system’s

implementation. The modeller at this phase clarifies how domain-level relationships are

implemented, assigns responsibilities to classes and as a result distributes the system’s

behaviour over the design classes.

In a Design Modelling Perspective therefore concepts like Class, Operation and

Association are exposed, and so are Visibility, Navigability, etc. On the other hand,

concepts that is hard to correlate with implementation solutions, such as NaryAssociation

and AssociationClass and related language actions are intentionally omitted, as shown in

Code Sample 5.5 lines 7 to 10.

Code Sample 5.5: Design Modelling Perspective DSL
1 perspective {
2 name : "DesignModelling";
3 languages {
4 existing language classDiagram {
5 "roleName" designRole;
6 "rootPackage" "com.example.classdiagram";
7 hidden concepts {
8 AssociationClass;
9 NaryAssociation;

10 }
11 }
12 }
13 }

5.5 Code Generation for Concept-Based Perspectives

The code generation process is a crucial component of our approach, as it transforms the

high-level DSL definitions into concrete instantiations of the augmented CORE metamodel,

i.e., CORELanguage and COREPerspective. This process ultimately produces a complete

perspective configuration that the frontend uses at runtime to control which operations and

5. Language Customization through a Domain-Specific Language 88

visual elements are active.

5.5.1 Process Overview

The code generator begins by parsing the DSL input, which now includes both language

concept declarations and perspective directives. It identifies all the declared concepts (for

example, concept Class; and concept Attribute;) and then examines the

hiddenConcepts array specified within each perspective block. For every declared concept

that is not listed as hidden, the generator creates an instance of a corresponding

LanguageConcept element within the augmented CORE metamodel. At the same time, it

establishes associations via LanguageConceptActionLink objects that link these concepts

to the relevant language actions as defined in the actions block. As a result, the generator

produces a comprehensive perspective configuration that reflects the high-level definitions

provided by language designers and educators. This configuration, which is automatically

generated from the DSL, encapsulates all allowed language concepts and their

corresponding actions, ensuring that only the intended features are enabled at runtime.

5.5.2 Implementation Details

The implementation of the code generator involves several key steps. First, the generator

tokenizes and parses the DSL input to extract both concept declarations and the

perspective directives, including the hiddenConcepts specification. During the next phase,

for each concept that is declared and not marked as hidden, the generator instantiates a

LanguageConcept element. Simultaneously, it creates LanguageConceptActionLink

associations to bind each instantiated concept with the language actions it is meant to

influence. This association ensures that operations such as createClass,

5. Language Customization through a Domain-Specific Language 89

createAttribute and others are properly linked to their respective concepts, as defined in

the DSL.

Once all relevant concepts and associations are instantiated, the generator produces a

perspective configuration file. This file contains flags that enable operations for the allowed

concepts and disable those associated with hidden ones. The final perspective configuration

is then loaded at runtime by the frontend modules, which use it to determine which visual

templates are active, and which language edit operations should be displayed in the context

menus. This automated instantiation process significantly reduces manual effort, minimizes

errors and ensures consistency in how language and perspective definitions are generated.

5.6 Frontend Adaptation

We now review the main interaction flows already presented in subsection 4.3.2, but now

extended in such a way that allows a teacher to customize a modelling language for a specific

teaching purpose.

As shown in figure 5.2, when the user launches the editor, the Main module invokes

the Editor to start up. The Editor then loads the Perspective Configuration (highlighted

in green), which determines which language concepts and operations are allowed or hidden.

In particular, the Main module either retrieves a default perspective or processes a user

selection to determine which configuration the Editor should load. Using this configuration,

the Editor calls the Diagram module to generate or modify GoJS templates. Next, the

Editor requests the current model data via Backend Operations, which performs a REST

call to the Backend. Finally, the Editor instructs the Diagram module to set up the diagram

5. Language Customization through a Domain-Specific Language 90

with the retrieved data, and the Diagram applies the final updates in GoJS.

Figure 5.2: Dealing with Perspectives during the Initialization Flow

During the user actions flow as shown in figure 5.3, the Editor consults the Perspective

Configuration to determine which actions should be displayed in the context menu. When

the user right-clicks on the diagram, GoJS notifies the Editor, which in turn requests a

filtered menu from the ContextMenu module using the perspective. Once the user selects an

action, GoJS invokes the corresponding callback in ContextMenu, which call the appropriate

function in Backend Operations.

Figure 5.3: Dealing with Perspectives during the User Actions Flow

In the real-time update flow, the approach remains the same as in Chapter 4 because

5. Language Customization through a Domain-Specific Language 91

perspective constraints do not alter the core notification sequence. Any concept not

permitted by the active perspective is simply not displayed, so the overall process for

broadcasting and handling model changes does not change. If a user’s perspective hides

certain concepts, those elements are never rendered for that user, while another user’s view

may display them if allowed. Consequently, we reuse the same figure 4.4 without

modifications, as the real-time update logic remains unaffected by perspective rules.

Hence, the integration of the perspective configuration into our modular frontend

architecture allows the system to dynamically adjust visual templates and context menus.

This ensures that the modelling interface aligns with the educational goals set by the

teacher, providing a progressively detailed environment that supports both novice and

advanced users. This approach leverages the modular design described in Chapter 4 and

the DSL extensions to deliver a truly customizable modelling tool.

5.7 Validation

This section validates the language customization capabilities enabled by our DSL and the

seamless integration of the modular component system.

5.7.1 Validation of FR11: Adaptive Frontend Modelling Interface

The language customization interface is validated by comparing the DSL input with the

generated perspective configuration. For instance, in the Domain Modelling Perspective,

the DSL explicitly omits advanced concepts such as Operation, Visibility and Navigability.

The resulting configuration file correctly contains flags (e.g., “hideOperation”: true,

5. Language Customization through a Domain-Specific Language 92

“hideVisibility”: true, “hideNavigability”: true), confirming that only the intended,

fundamental elements are enabled. Similarly, the Design Modelling Perspective excludes

complex constructs like AssociationClass and NaryAssociation, and the generated output

reflects these omissions accurately. Our evaluation confirms that the DSL-generated

configuration instantiates the augmented CORE metamodel precisely as specified by the

DSL code. Code inspections and controlled tests demonstrate that the language

customization interface accurately maps the teacher’s DSL definitions to the corresponding

perspective settings. This direct mapping offers concrete proof that our approach supports

flexible, teacher-friendly customization.

5.7.2 Validation of FR14: Frontend Modular Component System

The modular component system is validated by confirming that the DSL-generated

perspective configuration is seamlessly integrated into the frontend. Our evaluation shows

that generic modules correctly load the perspective configuration, which is then propagated

to language-specific modules. Detailed code analysis confirms that these modules

dynamically adjust their visual templates and menu items according to the configuration

flags. For example, when a perspective flag indicates that a certain operation is hidden, the

corresponding UI element is omitted from the rendered diagram. Controlled integration

tests verify that these customized settings are applied consistently across both the Domain

and Design Modelling perspectives. This modular design ensures that any new

language-specific module can be integrated without altering the generic core, proving the

system’s extensibility. Our observations demonstrate that the configuration-driven

adaptation is implemented by design, offering robust and verifiable proof of modular

integration.

5. Language Customization through a Domain-Specific Language 93

5.8 Summary

In this chapter, we extended the CORE framework to better serve teaching by augmenting

its metamodel with explicit language concepts and linking these concepts to their

associated actions. Our enhanced DSL now allows language designers to define not only

the operational aspects of a modelling language but also its high-level constructs, enabling

educators to tailor the user interface by selectively hiding language features. We presented

concrete DSL examples for a Class Diagram language and two perspectives, a Domain

Modelling Perspective that omits concepts like Operation, Visibility and Navigability, and a

Design Modelling Perspective that excludes AssociationClass and NaryAssociation.

Furthermore, our code generator instantiates the augmented CORE metamodel based on

these DSL definitions, and our frontend dynamically adapts its visual templates and

context menus accordingly. Our validation also confirms that these contributions function

as intended, providing a robust foundation for dynamic, teacher-friendly customization.

Overall, these contributions facilitate a dynamic, teacher-friendly customization of the

modelling tool, empowering educators to progressively introduce complexity and align the

tool with their pedagogical objectives.

94

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we developed a robust and teacher-friendly web-based frontend architecture

for Modelling Tools for Teaching that meets a comprehensive set of requirements for

usability, adaptability and extensibility. We began by formulating a detailed list of

frontend requirements and designing a modular architecture that clearly separates concerns

across the Application, Visualization & Interaction and Communication layers. Our work

led to the development of reusable UI components, which facilitate the rapid creation of

new modelling editors for diverse modelling languages without significant

reimplementation. In addition, we extended the CORE framework by augmenting its

metamodel with explicit high-level language concepts and we enhanced the

Domain-Specific Language of the CORE framework to allow language designers to define

these concepts along with their associated operations. This DSL-driven approach empowers

educators to customize the modelling environment dynamically by hiding language

6. Conclusion and Future Work 95

concepts and/or language operations in the editor, which is useful to gradually introduce

modelling complexity as students progress, thus aligning the tool closely with pedagogical

objectives. From the DSL, the adapted code generator produces CORE language and

CORE perspective definitions that are then read by our generic frontend components to

adapt the visual templates and context menus according to the teacher’s needs.

While the contributions of this thesis do not address all the functional requirements for

Modelling Tools for Teaching identified in [5], the framework architecture and design lay a

solid foundation for future enhancements.

6.2 Future Work

Although we have implemented the core functionalities in Chapters 4 and 5, our architecture

also supports several additional frontend requirements (FRs) mentioned at the beginning of

Chapter 4, which are yet to be implemented as add-ons. The first future work task will

be to implement these add-on requirements. Beyond these, we propose several innovative,

teacher-centric enhancements that build on our current work and offer creative avenues to

support educators in teaching modelling more effectively.

6.2.1 Customizable Themes and Accessibility Options

To further enhance the user experience, the system could be extended with advanced UI

customization and accessibility features. Educators and students could select from a

variety of themes, including high-contrast modes, adjustable font sizes and customizable

color schemes, to suit their individual preferences or accommodate accessibility needs.

Additionally, incorporating voice command support and screen reader compatibility would

6. Conclusion and Future Work 96

make the tool more inclusive. These enhancements could be implemented as configuration

options within the generic Editor module, allowing the user to dynamically switch themes

and accessibility settings without affecting the underlying functionality.

6.2.2 Collaborative Peer Review and Annotation

To foster collaborative learning, an integrated peer review and annotation module could

allow students to comment on and evaluate each other’s models directly within the tool.

For example, a student reviewing a class diagram might annotate a specific class with

suggestions like, “Consider adding a superclass to consolidate common attributes”. This

module would enable inline annotations, threaded discussions and a rating system, with all

feedback synchronized across clients using the existing WebSocket based real-time

collaboration framework. By incorporating a dedicated collaboration component into the

Communication Layer, the tool would provide a structured environment for peer feedback,

enabling educators to gather diverse insights and track the evolution of student models

over time.

6.2.3 Context-Aware Interactive Tutorials

Another direction is the development of context-aware, interactive tutorials that provide

step-by-step guidance while students work on their models. For instance, when a student

is in the process of creating a class, the system could detect incomplete or incorrect model

elements and automatically launch an interactive tutorial overlay. This overlay would walk

the student through best practices for class design, demonstrating how to add attributes,

specify visibility and create associations. Integrated within our modular architecture, these

tutorials could be implemented as additional components that hook into the Editor ’s event-

6. Conclusion and Future Work 97

handling system. When the Editor receives a specific trigger, e.g., an error notification or a

detected prolonged period of inactivity on a particular element, then the interactive tutorial

module would activate, ensuring that guidance is provided in context and seamlessly without

disrupting the overall workflow.

6.2.4 Natural Language Processing (NLP) Integration

Integrating NLP capabilities offers a novel way to lower the entry barrier for modelling. In

this enhancement, students would be able to describe a model in natural language using

simple sentences to generate initial model elements automatically. For instance, a student

could type “Create a class named Student with attributes name and age” and the system

would parse this description to generate the corresponding class diagram elements. This NLP

module could be integrated as an additional input component within the Editor, providing

a conversational interface that complements the graphical and textual editors. Such an

approach would not only support beginners, but also enable intuitive interaction for all

users.

6.2.5 Augmented and Virtual Reality (AR/VR) Integration

One promising future direction is the integration of augmented and virtual reality

technologies to create immersive educational experiences. Although AR/VR is well

established in industry, for example, enabling workers to interact with machines via virtual

controllers and visualize state machines in real time, its potential for teaching modelling

lies in transforming abstract diagrams into tangible, spatial experiences. This immersive

visualization can enhance student’s understanding by providing a natural sense of scale and

relationship among model components, thereby improving spatial reasoning and clarifying

6. Conclusion and Future Work 98

complex interactions that are often difficult to grasp in 2D representations. By allowing

students to navigate around a model, zoom in on detailed areas, and observe dynamic state

changes, AR/VR can bridge the gap between theoretical concepts and practical, real-world

applications. However, it is important to conduct further research to determine the optimal

way to integrate these technologies into a teaching context, ensuring that the additional

complexity truly contributes to improved learning outcomes.

99

References

[1] A. Tucker, A model curriculum for k–12 computer science: Final report of the acm k–12

task force curriculum committee. ACM, 2003.

[2] T. J. T. F. on Computing Curricula, “Curriculum guidelines for undergraduate degree

programs in software engineering,” New York, NY, USA, Tech. Rep., 2015.

[3] M. Romero and B. Sewell, Blueprints visual scripting for Unreal engine: The faster way

to build games using UE4 blueprints. Packt Publishing Ltd, 2019.

[4] D. K. Chaturvedi, Modeling and simulation of systems using MATLAB and Simulink.

CRC press, 2017.

[5] J. Kienzle, S. Zschaler, W. Barnett, T. Sağlam, A. Bucchiarone, S. Abrahão, E. Syriani,

D. Kolovos, T. Lethbridge, S. Mustafiz et al., “Requirements for modelling tools for

teaching,” Software and Systems Modeling, vol. 23, no. 5, pp. 1055–1073, 2024.

[6] M. Tools-Teaching, “Modelling tools for teaching 2023,” 2023. [Online]. Available:

https://modellingtoolsforteaching.github.io/mtt2023.html

[7] M. T. for Teaching, “Modelling tools for teaching,” 2023. [Online]. Available:

https://modellingtoolsforteaching.github.io

https://modellingtoolsforteaching.github.io/mtt2023.html
https://modellingtoolsforteaching.github.io

References 100

[8] S. Kent, “Model driven engineering,” in International conference on integrated formal

methods. Springer, 2002, pp. 286–298.

[9] D. C. Schmidt et al., “Model-driven engineering,” Computer-IEEE Computer Society-,

vol. 39, no. 2, p. 25, 2006.

[10] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An annotated

bibliography,” ACM Sigplan Notices, vol. 35, no. 6, pp. 26–36, 2000.

[11] E. W. Dijkstra, E. W. Dijkstra, E. W. Dijkstra, E.-U. Informaticien, and E. W. Dijkstra,

A discipline of programming. prentice-hall Englewood Cliffs, 1976, vol. 613924118.

[12] C. Krueger, “Software reuse,” ACM Computing Surveys (CSUR), vol. 24, no. 2, pp.

131–183, 1992.

[13] F. Ciccozzi, M. Famelis, G. Kappel, L. Lambers, S. Mosser, R. F. Paige, A. Pierantonio,

A. Rensink, R. Salay, G. Taentzer et al., “How do we teach modelling and model-driven

engineering? a survey,” in Proceedings of the 21st ACM/IEEE international conference

on model driven engineering languages and systems: Companion proceedings, 2018, pp.

122–129.

[14] M. Fowler, “Language workbenches: The killer-app for domain specific languages,”

2005.

[15] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom,

J. Sprinkle, and P. Volgyesi, “The generic modeling environment,” in Workshop on

Intelligent Signal Processing, Budapest, Hungary, vol. 17, no. 01, 2001, p. 2001.

[16] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H. Ergin,

“Atompm: A web-based modeling environment,” in Joint proceedings of MODELS’13

References 101

Invited Talks, Demonstration Session, Poster Session, and ACM Student Research

Competition co-located with the 16th International Conference on Model Driven

Engineering Languages and Systems (MODELS 2013): September 29-October 4, 2013,

Miami, USA, 2013, pp. 21–25.

[17] G. Kardas, Z. Demirezen, and M. Challenger, “Towards a dsml for semantic web enabled

multi-agent systems,” in Proceedings of the International Workshop on Formalization

of Modeling Languages, 2010, pp. 1–5.

[18] T. C. Lethbridge, A. Forward, O. Badreddin, D. Brestovansky, M. Garzon, H. Aljamaan,

S. Eid, A. H. Orabi, M. H. Orabi, V. Abdelzad et al., “Umple: Model-driven

development for open source and education,” Science of Computer Programming, vol.

208, p. 102665, 2021.

[19] M. Schöttle, N. Thimmegowda, O. Alam, J. Kienzle, and G. Mussbacher, “Feature

modelling and traceability for concern-driven software development with touchcore,” in

Companion Proceedings of the 14th International Conference on Modularity, 2015, pp.

11–14.

[20] K. Pohl, G. Böckle, and F. Van Der Linden, Software product line engineering:

foundations, principles, and techniques. Springer, 2005, vol. 1.

[21] M. Gogolla, F. Büttner, and M. Richters, “Use: A uml-based specification environment

for validating uml and ocl,” Science of Computer Programming, vol. 69, no. 1-3, pp.

27–34, 2007.

References 102

[22] C. Atkinson and R. Gerbig, “Melanie: Multi-level modeling and ontology engineering

environment,” in Proceedings of the 2nd International Master Class on Model-Driven

Engineering: Modeling Wizards, 2012, pp. 1–2.

[23] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Retschitzegger, and W. Schwinger,

“Reuse in model-to-model transformation languages: are we there yet?” Software &

Systems Modeling, vol. 14, pp. 537–572, 2015.

[24] L. M. Rose, N. Matragkas, D. S. Kolovos, and R. F. Paige, “A feature model for model-

to-text transformation languages,” in 2012 4th International Workshop on Modeling in

Software Engineering (MISE). IEEE, 2012, pp. 57–63.

[25] H. Metin and D. Bork, “Introducing biguml: a flexible open-source glsp-based web

modeling tool for uml,” in 2023 ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems Companion (MODELS-C). IEEE, 2023, pp. 40–44.

[26] “Visual studio code documentation,” https://code.visualstudio.com/docs.

[27] Sparx Systems, “Model-based systems engineering (mbse),” 2025.

[28] E. Planas and J. Cabot, “How are uml class diagrams built in practice? a usability

study of two uml tools: Magicdraw and papyrus,” Computer Standards & Interfaces,

vol. 67, p. 103363, 2020.

[29] D. Leroux, M. Nally, and K. Hussey, “Rational software architect: A tool for domain-

specific modeling,” IBM systems journal, vol. 45, no. 3, pp. 555–568, 2006.

[30] J. Chimiak-Opoka, B. Demuth, D. Silingas, and N. Rouquette, “Requirements analysis

for an integrated ocl development environment,” Electronic Communications of the

EASST, vol. 24, 2009.

https://code.visualstudio.com/docs

References 103

[31] L. Compagna, D. Massacci, and N. Zannone, “A comparison between uml tools,”

ResearchGate, 2007.

[32] N. Laranjeiro and A. M. Pinto, “Onda: Online database architect,” arXiv preprint

arXiv:2401.16552, 2024.

[33] J. Chacon, H. Vargas, G. Farias, J. Sanchez, and S. Dormido, “Ejs, jil server, and

labview: An architecture for rapid development of remote labs,” IEEE Transactions on

Learning Technologies, vol. 8, no. 4, pp. 393–401, 2015.

[34] D. Kolovos and A. Garcia-Dominguez, “The epsilon playground,” in Proceedings of the

25th International Conference on Model Driven Engineering Languages and Systems:

Companion Proceedings, 2022, pp. 131–137.

[35] M. 2024, “Models 2024 workshops,” 2024. [Online]. Available: https://conf.researchr.

org/track/models-2024/models-2024-workshops

[36] S. Zschaler, W. Barnett, A. Boronat, A. Garcia-Dominguez, and D. Kolovos, “Move your

mde teaching online: The mdenet education platform,” in Proceedings of the ACM/IEEE

27th International Conference on Model Driven Engineering Languages and Systems,

2024, pp. 6–10.

[37] D. T. Dewire, Thin Clients: Web-based Client/Server Architecture and Applications.

McGraw-Hill Professional, 1998.

[38] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,

and L. Safina, “Microservices: yesterday, today, and tomorrow,” Present and ulterior

software engineering, pp. 195–216, 2017.

https://conf.researchr.org/track/models-2024/models-2024-workshops
https://conf.researchr.org/track/models-2024/models-2024-workshops

References 104

[39] W. Eckerson, “Three tier client/server architecture: Achieving scalability, performance

and efficiency in client server applications,” Open Information Systems, vol. 10, no. 1,

1995.

[40] P. Adamczyk, P. H. Smith, R. E. Johnson, and M. Hafiz, “Rest and web services: In

theory and in practice,” REST: from research to practice, pp. 35–57, 2011.

[41] I. Fette and A. Melnikov, “The websocket protocol,” Tech. Rep., 2011.

[42] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Márquez, “Design, monitoring, and

testing of microservices systems: The practitioners’ perspective,” Journal of Systems

and Software, vol. 182, p. 111061, 2021.

[43] D. Bork and P. Langer, “Language server protocol: An introduction to the protocol,

its use, and adoption for web modeling tools,” Enterprise Modelling and Information

Systems Architectures (EMISAJ), vol. 18, pp. 9–1, 2023.

[44] H. Metin and D. Bork, “A reference architecture for the development of glsp-based web

modeling tools,” Software and Systems Modeling, pp. 1–27, 2025.

[45] O. Alam, J. Kienzle, and G. Mussbacher, “Concern-oriented software design,” in

Model-Driven Engineering Languages and Systems, A. Moreira, B. Schätz, J. Gray,

A. Vallecillo, and P. Clarke, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 604–621.

[46] J. Kienzle, G. Mussbacher, O. Alam, M. Schöttle, N. Belloir, P. Collet, B. Combemale,

J. Deantoni, J. Klein, and B. Rumpe, “Vcu: the three dimensions of reuse,” in Software

Reuse: Bridging with Social-Awareness: 15th International Conference, ICSR 2016,

Limassol, Cyprus, June 5-7, 2016, Proceedings 15. Springer, 2016, pp. 122–137.

References 105

[47] H. Ali, G. Mussbacher, and J. Kienzle, “Perspectives to promote modularity, reusability,

and consistency in multi-language systems,” Innovations in Systems and Software

Engineering, vol. 18, pp. 5–37, 2022.

[48] G. Georgiev, I. Balabanova, P. Kogias, S. Sadinov, and S. Kostadinova, “Jest,” Journal

of Engineering Science and Technology Review, vol. 11, no. 3, pp. 128–132, 2018.

[49] D. Kondratiuk, UI Testing with Puppeteer: Implement end-to-end testing and browser

automation using JavaScript and Node. js. Packt Publishing Ltd, 2021.

[50] M. Frisbie, “Devtools pages,” in Building Browser Extensions: Create Modern

Extensions for Chrome, Safari, Firefox, and Edge. Springer, 2022, pp. 269–299.

[51] J. L. Ledford, J. Teixeira, and M. E. Tyler, Google analytics. John Wiley and Sons,

2011.

[52] R. Paananen, “Establishing guidelines for usability testing when using web analytical

tools,” 2023.

[53] J. Porter, “Testing the three-click rule,” User Interface Engineering, 2003.

[54] MeasuringU, “First click times on websites versus images,” 2024. [Online]. Available:

https://measuringu.com/first-click-times-on-websites-versus-images/

[55] T. McGill, O. Bamgboye, X. Liu, and C. S. Kalutharage, “Towards improving

accessibility of web auditing with google lighthouse,” in 2023 IEEE 47th Annual

Computers, Software, and Applications Conference (COMPSAC). IEEE, 2023, pp.

1594–1599.

https://measuringu.com/first-click-times-on-websites-versus-images/

References 106

[56] M. Kinnunen, “Evaluating and improving web performance using free-to-use tools,”

Master’s thesis, M. Kinnunen, 2020.

[57] G. C. Developers, “Chrome devtools: Web performance analysis and debugging,”

Google Chrome, 2025. [Online]. Available: https://developer.chrome.com/docs/

devtools/

[58] R. Lucas and L. Rojas, “Performance evaluation of web applications: Using tools for

performance testing,” Journal of Web Engineering, vol. 19, no. 7, pp. 545–563, 2020.

[59] M. Contributors, “High resolution time api (performance.now()),” Mozilla Developer

Network (MDN), 2025.

[60] V. Bhutani, F. G. Toosi, and J. Buckley, “Analysing the analysers: An investigation of

source code analysis tools,” Applied Computer Systems, vol. 29, no. 1, pp. 98–111, 2024.

[61] D. Marcilio, R. Bonifácio, E. Monteiro, E. Canedo, W. Luz, and G. Pinto, “Are static

analysis violations really fixed? a closer look at realistic usage of sonarqube,” in 2019

IEEE/ACM 27th International Conference on Program Comprehension (ICPC). IEEE,

2019, pp. 209–219.

[62] J. Smart, Jenkins: the definitive guide. ” O’Reilly Media, Inc.”, 2011.

[63] A. Decan, T. Mens, P. R. Mazrae, and M. Golzadeh, “On the use of github actions in

software development repositories,” in 2022 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE, 2022, pp. 235–245.

[64] Y. Arroyo, A. I. Molina, A. M. Torres, J. Mateo, and M. Á. Redondo, “Cross-

platform collaborative graphical editors in engineering education,” in 2024 International

Symposium on Computers in Education (SIIE). IEEE, 2024, pp. 1–6.

https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/

References 107

[65] V.-D. Vogt, “An open source browser-based software tool for graph drawing and

visualisation,” 2014.

[66] P. G. A. N. Gowda, “Typescript vs. javascript: A comparative analysis.”

[67] P. Murley, Z. Ma, J. Mason, M. Bailey, and A. Kharraz, “Websocket adoption and the

landscape of the real-time web,” in Proceedings of the Web Conference 2021, 2021, pp.

1192–1203.

[68] J. Sayago Heredia, E. Flores-Garćıa, and A. R. Solano, “Comparative analysis between

standards oriented to web services: Soap, rest and graphql,” in Applied Technologies:

First International Conference, ICAT 2019, Quito, Ecuador, December 3–5, 2019,

Proceedings, Part I 1. Springer, 2020, pp. 286–300.

[69] M. Levlin, “Dom benchmark comparison of the front-end javascript frameworks react,

angular, vue, and svelte,” 2020.

	Abstract
	Abrégé
	Contribution
	Acknowledgements
	List of Figures
	List of Tables
	List of Code Samples
	List of Abbreviations
	Introduction
	Summary of Contributions
	Thesis Outline

	Background and Related Work
	MDE, DSL and Software Design Principles
	Model-Driven Engineering
	Domain-Specific Languages
	Separation of Concerns
	Planned Reuse

	Modelling Tools for Teaching
	Modelling Tools and Language Workbenches
	Overview of Important Modelling Tools for Teaching
	The Shift Towards Web-Based Modelling Tools
	Collaborative Efforts for a Common MTT Architecture

	Architectural and Technological Foundations for Web-Based MTTs
	Overview of Architectural Options for MTTs
	Client-Server Architecture
	Microservice Architecture

	Language Server Support for Textual and Graphical Models
	Language Server Protocol (LSP)
	Graphical Language Server Protocol (GLSP)
	Why LSP and GLSP Were Not Used

	The CORE Framework

	Requirements
	Categories of Modelling Tool Users
	Requirements (R)
	Language and Feature-Related Requirements
	User Interaction and Collaboration-Related Requirements
	Education-Related Requirements
	Development-Related Requirements

	Frontend Requirements (FR)
	Language and Feature-Related Requirements
	User Interaction and Collaboration-Related Requirements
	Education-Related Requirements
	Development-Related Requirements

	Summary

	Modular Frontend Architecture with Reusable Components
	Goals and Principles
	Support for Multiple Modelling Languages
	Reusability of UI Components
	Extensibility for Developers
	Maintainability and Scalability
	Real-Time Collaboration
	Security in Architecture

	Technologies and Selection Reasons
	Architecture Overview
	High-Level Structure
	Application Layer
	Visualization & Interaction Layer
	Communication Layer

	Main Interaction Flows
	Initialization Flow
	User Actions Flow
	Real-Time Update Flow

	Reusability and Extensibility of the Frontend
	Common Utility Modules
	Diagram Utilities
	Context Menu Utilities
	Frontend Operations Utilities
	Backend Operations Utilities

	Integrating a New Modelling Language
	Diagram Module Example
	ContextMenu Module Example
	Frontend Operations Module Example
	Backend Operations Module Example

	Validation
	Experimental Setup
	Hardware & System Specifications
	Software & Testing Tools

	Validation of FR3: Multi-Language Notation Support
	Validation of FR5: Intuitive User Interface Layout
	Validation of FR6: Seamless User Interactions with Minimal Latency
	Validation of FR8: User-Friendly Setup and Responsive Model Canvas
	Validation of FR14: Frontend Modular Component System

	Summary

	Language Customization through a Domain-Specific Language
	Review of CORE and Limitations in Teaching
	CORE Review
	Limitations for Teaching

	Extending the CORE Metamodel with Language Concepts
	Metamodel Extension
	Benefits of the Metamodel Extension

	Adapting the DSL
	DSL Grammar for Language Definitions
	DSL Grammar for Perspective Definitions

	DSL Examples
	Defining the Class Diagram Language
	Defining a Domain Modelling Perspective
	Defining a Design Modelling Perspective

	Code Generation for Concept-Based Perspectives
	Process Overview
	Implementation Details

	Frontend Adaptation
	Validation
	Validation of FR11: Adaptive Frontend Modelling Interface
	Validation of FR14: Frontend Modular Component System

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Customizable Themes and Accessibility Options
	Collaborative Peer Review and Annotation
	Context-Aware Interactive Tutorials
	Natural Language Processing (NLP) Integration
	Augmented and Virtual Reality (AR/VR) Integration

