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Abstract 

Quebec’s freight industry, a vital economic sector with over $150 billion in annual trade, accounts 

for approximately 10% of Canada’s greenhouse gas (GHG) emissions. To meet climate commitments under 

the Paris Agreement and Canada’s Net-Zero Emissions Accountability Act, transitioning from diesel-

powered trucks to Fuel Cell Electric Vehicles (FCEVs) is essential. Leveraging Quebec’s abundant 

hydroelectric energy, this project focuses on developing a software solution to optimize hydrogen refueling 

infrastructure for the freight sector. The software uses Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) and PROMETHEE to balance objectives such as cost minimization, environmental impact 

reduction, and equitable hydrogen distribution. It incorporates critical constraints, including land-use 

restrictions and regulations on Indigenous territories, to ensure social and environmental responsible 

planning. The tool features a user-friendly interface with geospatial visualizations and actionable 

recommendations, enabling stakeholders to design efficient hydrogen networks. The software outputs 

reliable networks with average total cost  of CAD 3 billion, a levelized cost of Hydrogen of 4 CAD/kg 

which is competitive with today’s diesel cost before governmental subsidies, no encroachment on natural 

parks, and minimal environmental impact. 
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1.  Introduction 

1.1. Background  

The freight industry in Quebec plays an essential role in the province's economy, facilitating over 

$150 billion in trade annually and enabling the exchange of goods with Canada’s primary economic partner, 

the United States (Mordor, Intelligence, 2024). However, this sector is also responsible for approximately 

10% of Canada’s national greenhouse gas (GHG) emissions, making it a significant contributor to climate 

change (Fan et al., 2022). Quebec, as part of Canada, is a signatory to the Paris Agreement, adopted in 

2015, committing to limit global temperature rise below 2°C. Building on this commitment, Canada enacted 

its own Net-Zero Emissions Accountability Act, legally binding the country to achieve carbon neutrality 

by 2050. Despite these motivations, the continued expansion of the freight industry threatens to reach these 

goals. Transitioning from diesel-powered trucks to sustainable alternatives is therefore essential, but this 

shift requires the lengthy development of an entire transportation ecosystem. This ecosystem includes not 

only new vehicles but also the supporting infrastructure, manufacturing, maintenance systems, and energy 

supply chains needed to sustain them. To meet its climate commitments, Quebec must act decisively and 

without delay. 

To decarbonize diesel vehicles, the primary technologies available today are Battery Electric Vehicles 

(BEV) and Fuel Cell Electric Vehicles (FCEV). FCEVs are powered by hydrogen gas. While BEVs are 

well-suited for smaller vehicles such as cars, MHDV often favor FCEV technology due to operational 

demands and the significant weight of batteries required for such vehicles. FCEVs are particularly 

advantageous for replacing heavy-duty internal combustion vehicles because of their high specific energy 

density and the energy efficiency of fuel cells (Çabukoglu, 2019). This allows FCEVs to offer faster 

charging times and greater autonomy compared to BEVs due to the compressed state of the hydrogen.  

In addition, local case-studies have shown that the production capacity of electrolyser does not vary greatly 

during cold winters. Similarly, the efficiency of FCEV does decrease with cold temperatures but in reduced 

proportion compared to lithium batteries (Ministry of Economy, Innovation and Energy, 2024). The cost of 

hydrogen, though currently high, is expected to decrease in the coming years with technological 

advancements and the increased scale of the hydrogen ecosystem, making FCEVs more competitive 

(Nieves Camacho et al., 2022). 

Interestingly, Quebec is exceptionally well positioned to become a renowned global leader in hydrogen 

production. The province has abundant water and clean electricity from hydroelectric sources, key 

components required to produce green hydrogen via electrolysis. While the technology itself is not novel, 

it remains largely unexplored for application in the freight sector in Quebec. While Quebec has 

acknowledged the importance of developing a hydrogen ecosystem, it has yet to provide the necessary 

roadmap or strategy to achieve this vision. Our solution addresses this problem by exploring how to 

optimally locate refueling stations and determine the production capacity each should support. This 

innovative approach could help Quebec deploy hydrogen infrastructure effectively, forecast future demand, 

and minimize impacts on the environment and natural resources. Additionally, our software would serve as 

a platform for stakeholders to collaboratively envision and develop the hydrogen ecosystem in a systemic 

and integrated manner. 
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1.2.  Project Scope 

This project addresses a core optimization problem: the strategic implementation of a hydrogen 

ecosystem in Quebec. Optimization, as defined in the literature, is a mathematical approach to identifying 

the best solution from a set of feasible alternatives to achieve specific objectives while satisfying constraints 

(Skormin, 2016). It is widely applied in infrastructure planning to maximize resource use, reduce costs, and 

align with sustainability goals (Li et al., 2011). 

An optimization problem is particularly relevant to our project as it involves balancing competing 

objectives—minimizing costs, reducing environmental impacts, and ensuring reliable hydrogen 

availability—within a framework of logistical, regulatory, and spatial constraints. The optimization process 

is crucial because it allows decision-makers to evaluate and prioritize trade-offs, ultimately identifying the 

most effective and sustainable solution. 

The purpose of optimization in this project is to provide actionable recommendations for hydrogen 

infrastructure development that maximize economic and environmental benefits. By systematically 

analyzing feasible configurations, the tool ensures efficient resource allocation, enabling stakeholders to 

make informed decisions aligned with strategic goals. 

Key features of the project include: 

1. Optimization Goals: The primary focus is solving the multi-objective optimization problem of 

hydrogen infrastructure planning. This involves maximizing resource efficiency, reducing carbon 

emissions from freight transportation, and ensuring economic feasibility. By leveraging genetic 

algorithms, the tool identifies configurations that achieve these goals while adhering to practical 

constraints (Zavadskas et al., 2019). 

2. Stakeholder Support: The tool is designed to assist policymakers, engineers, and planners in 

making data-driven decisions. By offering precise recommendations for station locations and 

configurations, it ensures that infrastructure development aligns with regional objectives and 

stakeholder priorities. 

3. Flexibility and Customization: The tool accommodates diverse input variables, including time 

horizons, zoning regulations, hydrogen demand forecasts, and truck autonomy. This flexibility 

allows users to explore multiple scenarios and customize outputs to specific needs, enhancing its 

relevance for varied applications. 

4. Innovative Techniques: The use of genetic algorithm is a cornerstone of this project. These 

algorithms efficiently navigate large solution spaces to identify optimal configurations, ensuring 

robust performance in solving complex, multi-objective optimization problems. Their ability to 

incorporate diverse constraints, such as zoning regulations (agriculture and Indigenous lands) and 

environmental impact, ensures practical and scalable solutions (Morcous & Lounis, 2005). 

The final output of this project is a user-friendly interface that integrates a visual map, economic metrics, 

and actionable insights. By combining advanced optimization methods with an intuitive design, the 
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platform empowers stakeholders to make informed, impactful decisions that drive the sustainable 

development of Quebec’s hydrogen infrastructure. 

1.3. Prior Work Summary 

The first part of our capstone provided a critical foundation for optimizing hydrogen infrastructure 

in Quebec’s freight transportation sector. It focused on the feasibility of hydrogen as a sustainable fuel 

alternative and identified key factors influencing the successful deployment of hydrogen refueling stations. 

This initial research laid the groundwork for Design 3, transitioning the focus from theoretical analysis to 

practical implementation and advanced optimization. 

One of the primary accomplishments of Design 2 was the detailed exploration of hydrogen as a clean energy 

source, emphasizing its advantages for medium and heavy-duty vehicles. The project highlighted 

hydrogen's potential to decarbonize freight transportation, leveraging Quebec’s abundant renewable energy 

resources for green hydrogen production. Early feasibility studies examined essential factors for hydrogen 

infrastructure planning, including truck autonomy, grid connectivity, zoning laws, water availability, and 

production capacities. These parameters informed the design of an optimization framework tailored to real-

world challenges. 

The preliminary work evaluated various optimization methodologies using a Pugh chart to address the 

complexity of hydrogen station placement. This tool compared Reinforcement Learning, Mixed Integer 

Linear Programming (MILP), and Genetic Algorithms (GA) against criteria such as multi-objective 

optimization, adaptability, constraint handling, and convergence rates. The analysis revealed that genetic 

algorithms were the ideal solution to the problem. GAs excelled in balancing economic, environmental, and 

logistical objectives while efficiently handling complex constraints like restricted areas and resource 

availability. Their ability to converge quickly and avoid suboptimal solutions further reinforced their 

suitability. 

NSGA-II (Non-dominated Sorting Genetic Algorithm II) is a popular multi-objective optimization 

algorithm widely used for solving problems involving conflicting objectives. It employs a fast non-

dominated sorting approach to classify solutions into different Pareto fronts and uses a crowding distance 

mechanism to maintain solution diversity. By balancing convergence towards the optimal Pareto front and 

diversity among solutions, NSGA-II is highly effective in identifying a set of trade-off solutions, enabling 

decision-makers to choose the best compromise. This algorithm is computationally efficient and robust, 

making it a preferred choice for applications in engineering, economics, and environmental management 

(Deb et al., 2002). 

Pugh Chart Evaluation: 

The evaluation highlighted key differences among the methodologies: 

● Reinforcement Learning demonstrated low effectiveness in handling constraints and multi-

objective problems, making it less suitable for the task (Pardalos & Resende, 2002). 

● MILP showed moderate performance but lacked the capability of handling the linear aspect of the 

complex relationships between the chosen parameters. 
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● NSGA-II outperformed both alternatives by delivering high performance across all evaluation 

criteria, making them the optimal choice for solving the multicriteria problem (Deb et al., 2002). 

Table 1: Pugh Chart 

Criteria / Objectives Reinforcement 

Learning 

Mixed Integer Linear 

programming (MILP) 

NSGA-II 

Multi-Objective 

Optimization 

Limited ability to 

handle multiple 

objectives effectively. 

Moderately capable but 

struggles with complex 

interdependencies. 

Highly effective in 

managing trade-offs 

between multiple 

objectives. 

 

Handling Constraints 

Poor constraint 

management, leading to 

infeasible solutions in 

complex scenarios. 

Moderate at handling 

linear constraints but 

limited in addressing 

non-linear aspects. 

Excellent at 

incorporating complex 

constraints, including 

non-linear relationships. 

Adaptability 

Rigid; requires 

significant 

reconfiguration for new 

problem setups. 

Limited flexibility; 

primarily suited for 

specific types of 

optimization problems. 

Highly adaptable; can 

address diverse 

problems with minimal 

modifications. 

Convergence rate 

Slow, requires 

extensive training to 

achieve reasonable 

results. 

Moderate; performs 

well on smaller 

problems but slows 

with increased 

complexity. 

Fast; consistently 

converges to solutions 

efficiently even in large 

solution spaces. 

Avoiding suboptimal 

solutions 

Frequently trapped in 

local optima, failing to 

explore broader 

solution spaces. 

Susceptible to 

suboptimal solutions 

due to its deterministic 

nature. 

Effective in avoiding 

local optima through its 

stochastic and 

exploratory 

mechanisms. 

 

The insights and methodologies developed in Design 2 have been instrumental in shaping the objectives of 

our implementation in Design 3. By identifying the strengths of Genetic Algorithms in solving our 

multicriteria problem, and understanding the constraints of real-world implementation, this presented 

approach focuses on refining the optimization framework and transitioning from a theoretical model to a 

practical decision-support tool. 
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2. Analysis and Methods 

Our design project required extensive data collection, specifically geospatial quantitative and 

temporal. In this section, we discuss the different types of data we have collected, their sources and our 

preprocessing methods to simplify the subsequent steps.  

 Truck data collection: The first step of the data collection process was to acquire data for truck 

traffic throughout Quebec. This data was crucial for forecasting the hydrogen truck population using a 

model we developed and for modeling hydrogen demand from trucks, which is essential for our 

optimization problem. We downloaded traffic data obtained from Données Québec - in the form of 

shapefiles which we processed using ArcGIS Pro. This polyline layer comprises a myriad of segments 

representing the Quebec road network. These files provide a detailed map of Quebec's road network, 

segmented into numerous polylines. Each segment, varying in length, is identified by its "ide_sectn_" field 

and includes comprehensive traffic information from 2012-2022. From this large quantity of data, we 

focused on three attributes: "annee_1," representing data from 2022, "val_djme_1," the summer average 

daily traffic count for all vehicles in 2022, and "val_cam_1," the percentage of truck traffic per segment. 

We created a new attribute, "DJME2022_T," by calculating the product of the latter two fields to derive the 

Summer Daily Average Truck Traffic Count (SDATTC) for each road segment. 

We opted to use the summer average rather than winter or yearly averages because it reflects the peak traffic 

period. This choice, while leading to an overestimation of traffic for nine months of the year, ensures our 

network is equipped for the highest demand season. We acknowledge this approach results in excess 

hydrogen production during off-peak months. However, we prefer this scenario as surplus hydrogen can be 

sold to neighboring industries, whereas a shortage would be more problematic. 

 

Figure 1: ArcGIS table, truck data 

Using the “Select by Attribute” function, we strictly kept the segments with truck traffic and deleted those 

who didn’t. Since some road segments do not have any trucks passing on them, this operation resulted in 

gaps in the road network as illustrated below:  
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Figure 2: ArcGIS, road network 

To overcome this issue, we manually interpolated the DATTC data to fill geospatial quantitative gaps in 

the dataset excluding secondary roads while favoring the main truck transportation axis described by 

Gouvernement du Quebec. Our approach ensured that the truck density (SDATTC per meter of road) 

remained consistent across segments of varying lengths. This method was designed to preserve a realistic 

representation of truck flux throughout the network, ensuring that the interpolation accurately reflected the 

spatial distribution and flow dynamics of trucks on the road system. Discontinued segments were connected 

manually using the “trace” function in ArcGIS Pro following the roads while the interpolated SDATTC 

field was mentally estimated. We recognize this method presents its own set of limitations, but without 

available data and under time constraints we chose to proceed this way. The following map illustrates the 

“Adjusted Truck Passes 2022” layer obtained from “Quebec Traffic Data 2022” after undergoing the above 

mentioned operations: 

Figure 3: ArcGIS complete road network 

 

Agricultural Land: This polygon layer was obtained from the CPTAQ’s website. We used the “Select by 

Attribute” function to filter, isolate and conserve agricultural zones. It’s worth noting that agricultural land 

only represents 5% of the province’s territory by area. It is crucial to preserve these parcels of land that 
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contribute an important service: feeding the population. This underlines how crucial this consideration is 

for the optimized and integrated placement of hydrogen stations.  

Indigenous Land: This polygon layer was obtained from Donnees Quebec’s open dataset - b. It describes 

the repartition of indigenous reserves across the province giving us valuable information for the 

optimization.  

Natural Parks: This polygon layer was obtained from Donnees Quebec’s open dataset - c. Both indigenous 

and agricultural land layers were left as is since they had all the necessary information from the bat and 

thus didn’t require any preprocessing.  

Plotting all of the above mentioned data in ArcGIS yields the following map:  

Figure 4: ArcGIS, land types (Agricultural, Protected Natural Land, Indigenous Land) 

 

Now that we were able to compile all the required geospatial data, we needed to ensure it was efficiently 

readable by the optimization code, which we chose to write in Python using Visual Code Studio. Therefore, 

we’ve pre-processed it as follows: we chose to discretize our truck data into uniform 20 km segments for 

several key reasons. First, this reorganization standardizes segments of varying lengths into consistent units, 

simplifying the dataset and ensuring uniformity for analysis. Second, it facilitates the optimization process 

by providing evenly spaced midpoints for each segment, allowing the software to create nodes upon which 

the optimization process is based upon and subsequently the recommendations for station placement. This 

uniform segmentation enhances the software’s capacity to handle data and perform calculations with greater 

precision. Lastly, discretization enables the integration of geospatial data into our analysis. By adjusting 

the SDATTC for each new segment, we could implement an intersection code to evaluate overlaps with 

indigenous territories, agricultural lands, and natural parks. For each category, the code assigns a binary 

value (1 for overlap, 0 for no overlap), creating an intersection field for every segment and facilitating 

optimization by incorporating environmental and social constraints directly into the process. 

H2 Truck Forecast: To design an optimized hydrogen ecosystem, it was crucial to forecast the population 

of H2-compatible trucks on Quebec roads and in turn predict H2 demand along the network. To do this, we 

referred to regulatory strategies surrounding low-carbon trucks taking place at both provincial and federal 

level. Namely, the Plan for Clean On-Road Transportation (PCORT) schedules the removal of diesel trucks 

from the new vehicle market from 2040 onwards. We modeled the H2 truck population as a percentage of 
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total 2022 truck population – which we’ve used as a baseline year throughout the project – assuming 3 

distinct phases as follows:  

- From 2022 to 2040: To reflect the approaching new regulation, we assume that the H2 truck 

population follows an exponential growth with a yearly increase of 1.6% x year/2040 as suggested 

by McKinsey (2024). 

- From 2040 to 2047: H2 truck population follows a steep 12% yearly increase to reflect the adoption 

of the PCORT. This increase of H2 vehicle sale is due to the progressive decommissioning of diesel 

trucks. 

- From 2047 to 2100: H2 truck population follows a steady 2% yearly increase indefinitely. At this 

stage, all diesel trucks have been decommissioned.  

It’s important to note we did not model the progressive decommissioning of H2 trucks which would 

describe a stabilization of the H2 truck population eventually. We chose to omit this detail for the sake of 

simplicity.  

 

Figure 5: H2-compatible truck population versus time as modeled by our team 

From this forecast, we’re able to express the H2 truck population as a multiple of the 2022 truck population 

– which serves as the basis for all traffic calculations. We’ve stored these multiplying factors and their 

corresponding year in an array. This enabled us to simulate the H2 truck traffic, and in turn the H2 demand, 

for each year from 2022-2100 in the entire province.  

2.1. Life Cycle Assessment (LCA) Framework 

 

Goal and Scope 

 

 A critical component of our platform was to illustrate to our users that the hydrogen network 

proposed by our algorithm can drastically reduce GHG emissions associated to the freight industry.  

To do so, we conducted a Life Cycle Assessment (LCA) of both the diesel and hydrogen ecosystems. The 

goal of our LCA is to compare the impact of hydrogen and diesel station as well as hydrogen and diesel 
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vehicles. The scope of our analysis is a well-to-wheel assessment which includes both the fuel cycle and 

the use phase. Steps within these categories include extracting the fuel source, production/refinement, 

distribution, storage in car tank, and finally the use phase. The following figure highlights the different 

steps included within our LCA analysis. 

  
Figure 6: LCA System Boundaries 

 

The functionnal unit chosen for comparison between the two fuel sources is kWh. Assuming both vehicles 

have similar motor efficiency, a fixed amount of kWh will propel both vehicles the same distance. 

  

Our analysis focuses on two key impact categories that are highly relevant to both fuel cycles. The first is 

Greenhouse Gas (GHG) emissions, which is critical for stakeholders striving to achieve net-zero emissions 

goals. The second, often less emphasized in North America, is Land Use. We assessed the land area 

occupied by each fuel cycle, measured in square kilometers (km²). By calculating land use intensity—the 

amount km^2 required to produce one MWh—we provide a basis for comparing the two fuel cycles. This 

metric is essential for optimizing land use, enabling us to produce more energy with a smaller environmental 

footprint. 

 

Life Cycle Inventory 

 

Once the goal, scope, and functional unit were defined, we began the data-gathering process. Most 

of the information related to hydrogen was readily available in scientific literature. However, for specific 

data points that were challenging to locate, we received valuable input from Sebastien Comazzi, an engineer 

at the Ministry of Economy, Innovation, and Energy. For instance, while information on hydrogen 

electrolyzers was scarce, he provided critical guidance on the spatial requirements for on-site hydrogen 

production facilities. According to his recommendations, a plant producing 1,000 kg of hydrogen per day 

would require approximately 1,000 m², while a plant with a capacity of 4,000 kg/day would need up to 

10,000 m². In addition, the Ministry of the Environment and the Fight Against Climate Change in Quebec 

previously conducted a life cycle assessment of the hydrogen cycle. According to their report, the 

production of 1 kg of hydrogen is associated with 0.075 kg of CO₂ emissions (Cassanaz, S., et al., 2022). 

We then found that 1kg of hydrogen contained 33.33 kWh. Therefore: 

 

0.075𝑘𝑔𝐶𝑜2𝑒𝑞

33.33𝑘𝑊ℎ
= 0.00225 𝑘𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ 
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On the other hand, information regarding the diesel fuel cycle within Quebec was less readily available. To 

accurately assess land use, we traced the origin of the diesel fuel consumed in Quebec. Approximately 95% 

of this fuel is sourced from Alberta, specifically the Athabasca oil sands. The oil sands are initially 

processed into crude oil before being transported via pipelines to the Island of Montreal for further 

refinement. Once refined into diesel, the fuel is distributed to refueling stations. 

To ensure precision in our analysis, we focused on oil provided by Suncor, as detailed data about their 

operations was the most accessible. Using ArcGIS, we identified that approximately 1,823.354 km² of land 

is utilized for oil recovery, as illustrated in the following screenshot. 

 
 

Figure 7: Area covered for oil sands recovery by Suncor Energy 

The next logical step was to trace the pipelines transporting crude oil from the Athabasca oil sands to the 

Montreal refinery located in Côte-Saint-Léonard. Using Canada’s open data on pipelines and mapping the 

routes in ArcGIS, we calculated that the total area covered by these pipelines amounted to 490 km². Lastly, 

we delineated the boundaries of Suncor’s installations in Montreal, as well as the nearest truck refueling 

stations. The combined land area for these two sections was determined to be 1.33 km². In total the total 

area covered for all diesel related infrastructure was 2,314.46 km² (Government of Alberta, (2018), Suncor 

Energy, (2024), Canada Energy Regulator, (2023)). 

The carbon intensity of diesel is widely documented in various scientific databases. Based on our analysis 

and online sources, the Well-to-Tank phase (fuel cycle) emits 0.072 kg CO₂ eq per kWh, while the Tank-

to-Wheel phase accounts for 0.256 kg CO₂ eq per kWh (Bieker, G. 2021). Combining these, the total life 

cycle emissions of diesel amount to 0.328 kg CO₂ eq per kWh. 

Life Cycle Inventory Analysis 

 With the data collected, the next step was to adapt it for both systems to enable a meaningful 

comparison. The land use intensity of both types of refueling stations was then calculated. For hydrogen 

stations, the analysis focused on a facility with a maximum land use of 10,000 m², capable of producing 

4,000 kg of hydrogen per day. In line with standard practices in energy-related fields, a lifetime value of 25 

years was assumed for the calculations: 



 11 

𝐿𝑎𝑛𝑑 𝑈𝑠𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  

10 000 𝑚2

106

4000(𝑘𝑔𝐻2/𝑑𝑎𝑦) × 365.25(𝑑𝑎𝑦𝑠/𝑦𝑒𝑎𝑟) × 25(𝑦𝑒𝑎𝑟𝑠) × 0.03333(𝑀𝑊ℎ/𝑘𝑔𝐻2)
  

= 8.21 × 10−9𝑘𝑚2/𝑀𝑊ℎ 

Similarly, for diesel, it was necessary to determine the daily production at each stage of the production 

cycle, extend these figures to an annual basis, and calculate the land use over a 25-year lifetime. The total 

lifecycle land intensity, encompassing the four stages—recovery, pipeline transport, refinery, and refueling 

station—was calculated to be 0.0000415 km²/MWh. 

Interpretation 

 The results obtained in this LCA can be illustrated in the following table: 

Table 2: LCA results 

 Hydrogen Diesel 

kgCO2eq/kWh 0.00225 0.328 

Land Use Intensity 

(km^2/MWh) 

8.21 x 10⁻⁹ 41,500.00 x 10⁻⁹ 

 

This LCA demonstrates that hydrogen-powered freight trucks offer substantial environmental benefits 

compared to diesel. With lifecycle emissions of 0.00225 kg CO₂ eq/kWh, hydrogen reduces emissions by 

over 99% compared to diesel’s 0.328 kg CO₂ eq/kWh. Additionally, hydrogen infrastructure uses 

significantly less land, with a land use intensity of 8.21 × 10⁻⁹ km²/MWh versus 41,500 × 10⁻⁹ km²/MWh 

for diesel. 

To further emphasize hydrogen’s potential in creating a more sustainable freight industry, the total 

emissions avoided by transitioning to zero-emissions vehicles was calculated. Assuming a 2% annual 

growth rate, this transition could potentially prevent up to 24.8 trillion metric tons of CO₂ equivalent 

emissions by 2050.  

2.2. LCC Framework 

The Life Cycle Cost (LCC) analysis evaluates the total costs associated with establishing and 

operating hydrogen refueling stations over their entire lifespan. This includes initial investments, recurring 

operational expenses, and maintenance costs, all projected using realistic economic assumptions. The 

analysis provides a comprehensive financial framework for assessing the long-term feasibility of hydrogen 

infrastructure in Quebec. 
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The Capital Expenditures (CAPEX) represent the upfront costs required to construct a hydrogen refueling 

station. These expenses include essential components like electrolyzers, compressors, hydrogen storage 

systems, dispensing units, and site preparation. The CAPEX is determined using the formula: 

𝐶𝐴𝑃𝐸𝑋 (𝑖𝑛 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝐶𝐴𝐷)  =   2.453333 +  0.003011111. 𝑥 

Here, 𝑥 refers to the station’s daily hydrogen production capacity in kilograms. This linear formula ensures 

that larger stations with higher capacities incur proportionally greater costs. For example, a station capable 

of producing 1,000 kilograms of hydrogen daily would have a CAPEX of approximately 5.46 million CAD 

(ASME, 2021). This approach ensures scalability and precise budgeting for projects of varying sizes. 

To make CAPEX manageable, it is annualized using a capital recovery factor. This factor spreads the initial 

investment over the station's 20-year operational lifespan, using a discount rate of 7% to account for the 

time value of money. The formula for annualized CAPEX is: 

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝐴𝑃𝐸𝑋 =  𝐶𝐴𝑃𝐸𝑋 .
𝑖. (1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
  

where 𝑖 is the discount rate and 𝑛 is the project lifespan (Hydrogen Strategy for Canada, 2021). 

The Operational Expenditures (OPEX) are categorized into fixed and variable costs. Fixed OPEX accounts 

for recurring expenses like system monitoring, routine inspections, and administrative overhead. These 

costs are modeled as 5% of CAPEX annually. For instance, a station with a CAPEX of 5.46 million CAD 

would incur a fixed OPEX of approximately 273,000 CAD per year (Hydrogen Council, 2020). 

Variable OPEX depends on the station’s hydrogen production volume and includes energy consumption, 

water usage, and consumables. Energy is the most significant expense, with hydrogen production requiring 

50 kWh per kilogram at a cost of 0.07 CAD/kWh, amounting to 3.5 CAD per kilogram. Water consumption 

costs an additional 0.0135 CAD per kilogram, while labor and other consumables contribute 0.05 CAD per 

kilogram. The total variable OPEX is calculated as: 

𝑂𝑃𝐸𝑋 (𝑣𝑎𝑟)  = 𝑥. 365. (3.5 + 0.0135 + 0.05) 

For a station producing 1,000 kilograms of hydrogen daily, the variable OPEX would total approximately 

1.3 million CAD annually (Eberle et al., 2022). 

The effective production capacity is critical for determining the cost per kilogram of hydrogen. It accounts 

for operational parameters, including the maximum power demand of the electrolyzer, its efficiency, and 

the station's utilization rate. The power required for production is estimated at 50 kWh per kilogram of 

hydrogen, adjusted by an electrolyzer efficiency (K) typically between 80% and 95% (IEA, 2021). The 

capacity factor (CF), typically 85% to 95%, reflects the station’s actual operational time, and the annual 

operational hours (T) are set at 8,760, assuming continuous operation. 

The Levelized Cost of Hydrogen (LCOH) integrates CAPEX, OPEX, and production capacity into a single 

metric representing the cost of producing one kilogram of hydrogen over the station’s lifecycle. The LCOH 

is calculated as: 
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𝐿𝐶𝑂𝐻 =
𝐶𝐴𝑃𝐸𝑋 .

𝑖 (1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
 +  𝑂𝑃𝐸𝑋 (𝑓𝑖𝑥𝑒𝑑)  +  𝑂𝑃𝐸𝑋 (𝑣𝑎𝑟)

𝑝 (𝑒𝑙𝑒𝑐. 𝑚𝑎𝑥)
𝐾

 ×  𝐶𝐹 ×  𝑇
   

𝐿𝐶𝑂𝐻 =
2.453333 +  0.003011111. 𝑥 .

𝑖 (1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
 +  0.05 (𝐶𝐴𝑃𝐸𝑋) +  𝑥 . 365. (3.5 + 0.0135 + 0.05)

𝑥 . 50
𝐾  ×  𝐶𝐹 ×  8760

   

This formula ensures that both fixed and variable costs are appropriately distributed across the station’s 

total hydrogen output. For example, a station operating at high capacity and efficiency would achieve a 

lower LCOH, demonstrating improved cost efficiency. 

The LCC analysis provides a detailed understanding of the economic trade-offs involved in hydrogen 

refueling station operations. By integrating realistic economic assumptions, such as the discount rate, 

operational lifespan, and capacity factors, the model enables stakeholders to optimize station design and 

operations. 

2.3. Objective Functions and Constraints 

Multi-objective optimization seeks to optimize multiple conflicting objectives while satisfying 

certain constraints. Unlike single-objective optimization, which minimizes or maximizes a single objective, 

multi-objective optimization produces a set of solutions, each representing a trade-off among the objectives. 

These solutions, collectively known as the Pareto front, balance different priorities without one solution 

dominating another. This approach is indispensable in engineering and complex industrial design, where 

conflicting goals and real-world restrictions must be carefully balanced (Rao & Waghmare, 2014). 

2.3.1. The Unit Hydrogen Station (UHS) 

At the core of our optimization framework is the Unit Hydrogen Station (UHS), a modular 

functional unit designed to quantify hydrogen refueling station capacity. Each UHS is defined with a 

production capacity of 1,000 kg/day, providing a standardized measure for station output. This modularity 

allows the optimization algorithm to assign an appropriate number of UHS units to each segment, reflecting 

local demand requirements. Additionally, each UHS is associated with an area footprint, environmental 

impact, and capital and operational costs, as detailed in Sections 2.2 and 2.3. 

2.3.2. Objective Functions 

Objective functions are critical in guiding the optimization process, defining the goals that the algorithm 

strives to achieve. Unlike single-objective approaches, multi-objective optimization produces a set of 

Pareto-optimal solutions, where no solution is strictly superior in all objectives (Coello, 2006). For this 

study, the algorithm minimizes three primary objectives: 

Environmental Cost 

This objective evaluates the environmental impact of hydrogen station placements. It is calculated as the 

sum of the carbon dioxide equivalent (CO2e) emissions for each UHS installed, using the methodology 
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outlined in Section 2.2. This ensures that the optimization promotes environmentally sustainable network 

designs. 

Economic Cost 

Economic cost encompasses both capital expenditure (CAPEX) and operational expenditure (OPEX), 

evaluated as discounted annuities over the project’s 25-year lifecycle. CAPEX includes the installation 

costs of UHS units, while OPEX accounts for recurring expenses such as maintenance and hydrogen 

production. Detailed cost formulas are provided in Section 2.3. 

Demand Mismatch 

This objective quantifies the discrepancy between hydrogen supply and demand across the network. Each 

road segment has a defined hydrogen demand, adjusted based on projected growth rates. The supply is 

distributed from stations, decreasing with distance as governed by a supply distribution function. The 

mismatch is computed as the sum of absolute differences between supply and demand for all segments, 

emphasizing the importance of an equitable supply network. 

2.3.3. Constraints 

Constraints ensure that the algorithm generates practical and implementable solutions, aligning 

with the geospatial and regulatory context of Quebec. These constraints are divided into hard and soft 

constraints: 

Hard Constraints 

Maximum Distance Between Stations: To ensure refueling availability, the distance between consecutive 

stations is limited by the autonomy of trucks operating in the network. This autonomy is divided by a 

safety factor of three and further adjusted to account for the length of discretized segments. Any violation 

adds to a penalty count, discouraging solutions that fail to meet this requirement. 

Area Restrictions: Stations are prohibited on protected lands such as natural parks or indigenous 

territories. The algorithm imposes a penalty for placing stations on such lands, ensuring compliance with 

legal and environmental restrictions. This logic is implemented in the optimization code. 

restricted_land_penalty = np.sum(genome * 

segment_gdf['land_type'].isin(['Natural Park'])) 

Soft Constraints 

Water Resources: Hydrogen production via electrolysis requires significant water resources, which vary 

geographically. The availability of water along highways is incorporated as a constraint to prioritize feasible 

station placements. 

Agricultural Land: Protecting agricultural land is vital for Quebec’s economic sustainability. A penalty 

function quantifies the economic loss of placing stations on agricultural land, calculated as $30/m² of land 

utilized.  
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This value is derived from several key components: 

1. Land Acquisition Costs: Based on Statistics Canada data, the average cost of agricultural land in 

Quebec is $1/m², reflecting its base market value (Statistics Canada). 

2. Zoning and Legal Fees: Converting agricultural land for industrial use incurs zoning and legal 

costs, which average $0.5/m² according to Quebec's Ministry of Municipal Affairs and Housing 

(MAMH). 

3. Environmental Impact Assessments (EIA): Mandatory for hydrogen projects, EIA costs 

average $4/m², as reported by the Quebec Ministry of Environment and WSP Global. 

4. Infrastructure Development Costs: Basic infrastructure, including utilities and site preparation, 

incurs a cost of $18/m², based on estimates from the Institute of Civil Construction (ICC). 

5. Hydrogen-Specific Infrastructure Costs: Specialized requirements for hydrogen stations, such 

as storage tanks and safety systems, add an average of $7.5/m², according to the Hydrogen 

Council and Clean Energy Canada. 

This penalty is added to the economic cost objective, discouraging solutions that compromise agricultural 

areas. 

Penalty_agri= 30×Total Agricultural Area (m2) 

3. Stakeholders Framework for Collaboration 

 

 As the main goal of our capstone project is to provide the base ground for collaboration at the 

government/industry level, we wanted to ensure our software was relevant to these stakeholders. During 

the first weeks of this semester, we reached out to key players in three different fields of the hydrogen 

ecosystem.  

 

We first contacted Sebastien Comazzi, an engineer working in the “Bureau du développement de 

l’hydrogène vert et des bioénergies” within the Ministry of Economy, Innovation and Energy. This 

partnership with the ministry allowed us to gather critical feedback to improve our project and implement 

features that were most relevant to the government. A really interesting comment we had from discussions 

with Sebastien is his recommendations to implement additional demand location, on top of the truck energy 

demand, to allow for additional industry to use hydrogen as there primary energy source of for various 

chemical transformations. This is particularly interesting because Quebec highlights the benefits hydrogen 

could have in the multiple sectors and by implementing this feature we greatly enhance the scope of our 

project. Additionally we wanted to understand Quebec’s plan to implement hydrogen and we were told that 

our approach was unique and could have significant impact on how decision-makings processes occur at 

the ministry level.  

 

Our second stakeholders interviewed is Pierre Deprez. He is a former employee of the city of Montreal and 

worked in the urban planning department. His expertise was particularly important when we took into 

account zoning laws and understanding the current vision of Montreal and Quebec when managing its 

territory’s development. He told us that agricultural lands were extremely important to the eyes of the 

province and that we should establish a heavy penalty function if the algorithm wanted to implement a 

station on these lands. 
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In our correspondances, he also mentions that addressing the placement of hydrogen stations on constrained 

lands, such as agricultural, rural, or protected natural areas, involves complex processes. Government-led 

initiatives require collaboration with the Ministère de l'Énergie et des Ressources Naturelles, the Ministère 

des Affaires Municipales et de l'Habitation, the Ministère de l’Environnement, de la Lutte Contre les 

Changements Climatiques, de la Faune et des Parcs, MELCCFP, and the Commission de Protection du 

Territoire Agricole du Québec, CPTAQ, for zoning changes. Alongside local consultations that may extend 

timelines. For private enterprises, challenges include navigating municipal regulations, securing zoning 

approvals, consulting landowners, and addressing water infrastructure needs, such as servitudes for 

connecting water sources and evaluating agricultural impacts. While this topic extends beyond the scope of 

our project, it provides a valuable starting point for stakeholders to reflect on future policy and planning 

discussions. 

 

Finally, we wanted to gain insight from a hydrogen promoter who plans the implementation of hydrogen 

on site electrolyser. Friedrich Dehem-Lemelin, from Hydrolux was the right person to talk to. We believe 

our software would be of the most use to this stakeholder due to the fact that it allows for rapid profitability 

calculations for each station while minizing environmental impact which can improve the credibility and 

reputation of the company. Friedrich’s main point of interest was to highlight the points were electricity 

was available and readily accessible. He finds that his main challenge was to place stations where sufficient 

electric power was available. As explained previously in section 2.1, we had trouble finding data for the 

electric grid in Quebec. We made sure our lines on ArcGIS matched as precisely as possible the actual 

distribution of powerlines to have the most realistic electricity distribution. 

 

In conclusion, our collaboration with key stakeholders ensured our project was practical, relevant, and 

tailored to the needs of Quebec’s hydrogen ecosystem. Feedback from government, urban planning, and 

industry experts helped refine our software, enhancing its ability to account for industrial hydrogen demand, 

respect zoning laws, and address electricity accessibility. These insights strengthened the functionality and 

usability of our tool, making it a valuable resource for decision-making at the government and industry 

levels. By incorporating these considerations, we believe our project lays a solid foundation for advancing 

hydrogen infrastructure in Quebec. 

4. Prototyping 

4.1. NSGAII Algorithm Process 

The optimization process begins with the implementation of the NSGA-II, a widely used multi-

objective optimization algorithm. NSGA-II evolves a population of candidate solutions through selection, 

crossover, and mutation. It introduces key mechanisms, such as non-dominated sorting and crowding 

distance, to ensure diversity and convergence toward optimal solutions. The algorithm produces a Pareto-

optimal set of solutions, where each solution represents a trade-off between conflicting objectives, ensuring 

no solution in the set is strictly better than another in all objectives. The Pareto front, a graphical 

representation of these trade-offs, depicts the boundary of optimal solutions in the objective space (Deb et 

al., 2002).  
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The implementation begins with defining the problem-specific parameters and input data, including the 

road network represented as a geospatial DataFrame (segment_gdf) represented in Figure 5, the year of 

implementation, and the hydrogen production capacity per UHS. The road network data includes attributes 

such as truck traffic, land type along the segment, and hydrogen demand. The demand is adjusted using 

coefficients derived from projected growth rates for the specified year. 

Figure 8: Dataframe of discretized road segments with attributes 

The algorithm generates an initial population of candidate solutions using a combination of Latin 

Hypercube Sampling (LHS) and heuristic-based initialization strategies. Latin Hypercube Sampling 

ensures a diverse initial population by dividing the parameter space into equal intervals and sampling within 

these intervals to cover the entire range of possible values uniformly. In this implementation, LHS is applied 

to the number of segments, scaled to the maximum allowable number of hydrogen station units (UHS) per 

segment, and cast to integer values. Approximately 70% of the initial population is derived from this 

method to ensure broad exploration of the solution space. 

The heuristic-based initialization complements this diversity by seeding specific configurations based on 

predefined rules. While not explicitly used in this setup, potential strategies could include prioritizing high-

traffic segments (e.g., using sorted indices of truck traffic data) or maintaining uniform station spacing (e.g., 

placing stations at regular intervals across segments). A random sampling of UHS values is also employed 

for additional diversity in about 30% of the population, ensuring a mix of structured and exploratory 

solutions. This tailored approach balances systematic coverage of the search space with targeted exploration 

of promising configurations. 

Each candidate solution is evaluated using a fitness function that calculates the values of the three 

objectives. The demand mismatch is calculated as the absolute difference between adjusted demand and a 

computed supply vector. The supply vector is derived from the genome (candidate solution) using a 

weighted distribution model, where hydrogen supply diminishes with distance from the station as described 

earlier.  

Once the fitness values are assigned to the initial population, the NSGA-II algorithm progresses with the 

non-dominated sorting step. This process categorizes candidate solutions into hierarchical Pareto fronts. 

Each solution is compared with every other solution to determine whether it dominates or is dominated 

based on two criteria: (1) objective comparisons, where a solution is considered better if it performs equally 

well or better in all objectives and strictly better in at least one, and (2) constraint satisfaction, where 
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solutions with fewer total constraint violations (e.g., penalties for restricted land use or station density) are 

favored. Solutions with no dominators are assigned to the first Pareto front, while subsequent fronts are 

iteratively determined by removing dominated solutions. 

The algorithm then calculates the crowding distance for each solution within the Pareto fronts to maintain 

population diversity. Crowding distance measures how "crowded" a solution is by computing the distance 

between neighbouring solutions in the objective space. Solutions at the boundaries of the front are assigned 

an infinite distance to ensure their preservation. For solutions within the same front, those with higher 

crowding distances are prioritized during selection. 

In the selection phase, a new population is formed by combining solutions from the current generation's 

Pareto fronts, starting with the first front and proceeding sequentially until the population size limit is 

reached. When a front's inclusion exceeds the limit, solutions within the front are ranked by their crowding 

distance, and the top solutions are selected to complete the population. 

The next step involves generating offspring through crossover and mutation operations: 

Crossover: Two parent solutions are randomly selected from the current population. With a probability of 

0.8, a crossover point is chosen, and the genome segments from the two parents are exchanged to produce 

two offspring. This promotes recombination of high-performing traits. 

Mutation: Each offspring genome undergoes mutation with a probability of 0.15. A random position in the 

genome is selected, and its value is replaced with a random integer within the allowable range of hydrogen 

station units (UHS). This introduces genetic diversity and enables the exploration of new solutions. 

The newly generated offspring are evaluated using the same fitness function as the initial population, and 

their fitness values are used to perform non-dominated sorting and crowding distance calculation in the 

subsequent generation. The algorithm iterates through multiple generations, refining the population to 

approach the Pareto-optimal set of solutions. 

Throughout the optimization, the algorithm enforces constraints, such as penalties for placing stations on 

restricted lands or exceeding acceptable station density thresholds, by incorporating these penalties into the 

fitness evaluation. This ensures that infeasible solutions are deprioritized in the selection process. 

The process continues for a predefined number of generations or until convergence criteria are met, yielding 

a final population that represents a diverse set of Pareto-optimal solutions. 

4.2. PROMETHEE-Based Decision Analysis 

Choosing the optimal network from the last population is a task that requires taking all the fitness 

functions and constraints into consideration. This is why using a Multicriteria Decision Analysis method is 

suitable for our problem. After the NSGA-II process, the final population is evaluated using the Preference 

Ranking Organization Method for Enrichment Evaluation (PROMETHEE). PROMETHEE integrates 

decision-makers' preferences by assigning weights to each objective and calculating net preference flows 

for each solution. The preference function evaluates the relative performance of solutions based on the 

objectives and the specified criterion type (minimization or maximization). The best solution is selected as 
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reference, and additional inputs at the bottom. The central, largest section of the GUI was allocated to a 

graphical visual representation. Initially, we intended to populate it with an interactive map but due to 

limitations, we opted for a graph of supply versus demand along the road network (see figure 10). Finally, 

the bottom section hosts a table of outputs where key metrics are displayed. Second, regarding backend 

compatibility, we wanted to ensure the GUI would be able to read and display the results of the optimization 

algorithm in a quick and computationally efficient manner. For this reason, we picked Tkinter, a Python 

library intended to design GUI for Python backends. This enabled us to write the GUI code in the same file 

as the optimization code, ensuring computational efficiency. Further, by having both front-end and back-

end code in the same file and language, we significantly eased the development process and ensured that 

adjustments could be made swiftly and effectively. 

 

4.3.2. User Input Identification   

 

In developing our optimization tool, we meticulously selected parameters that give users control 

over crucial aspects of network optimization. The "Year of Development" parameter allows users to project 

truck population dynamics into the future (as discussed in section 2.1) , choosing a specific year for which 

the hydrogen fueling network will be optimal. This is vital as it reflects the anticipated growth in hydrogen 

truck usage over time. For “Truck Autonomy” (Range in km), we considered the evolving technology of 

hydrogen trucks, which are expected to have increasing ranges as development progresses. To ensure safety 

and practicality, we set the maximum distance between stations at one-third of a truck's range, providing a 

safety net in case a truck misses up to two stations. This parameter can be adjusted by users, allowing 

flexibility in network planning. The "Minimize Implementation on Agricultural Land" parameter addresses 

the limited availability of arable land in Quebec, approximately 5%, giving policymakers the option to 

minimize station implementation on such lands. Lastly, the "Minimize Implementation on Indigenous 

Land" parameter offers stakeholders the discretion to factor in or exclude these lands from development 

plans, ensuring sensitive handling of cultural and environmental concerns. Each parameter is designed to 

adapt to different user needs and evolving scenarios, making the tool robust and flexible. 

 

4.3.3. Output Metric Identification  

 

Further, we needed to provide our users with some key metrics to evaluate the feasibility of such 

infrastructure at a quick glance. These metrics needed to be easy to read, interpret and widely used in 

multiple industries. For this reason, we identified the following five key metrics to output to our users: 

“Daily H2 Production (in kg/day)”, “LCOH (in $/kg H2)”,  “Daily Demand Mismatch (in kg H2)”,  

“Network Life Cycle Cost (in $)” and “Lifetime Avoided CO2 Emissions (in Mt CO2 e)”. Daily H2 

Production was calculated by summing up the production of all UHS in the network, informing users of the 

total hydrogen supply they can expect from the network. LCOH indicates the life cycle cost of each 

kilogram of H2 in dollars, enabling stakeholders to evaluate the cost-effectiveness of an optimized H2 

network and the price competitiveness compared to diesel. This was calculated using the formula in 

Appendix E. Daily Demand Mismatch highlights gaps between supply and demand in kilograms, guiding 

necessary network adjustments and informing users of where they occur on the network. This was 

calculated by subtracting the demand by the supply for each segment along the network. Network Life 

Cycle Cost offers a comprehensive view of the financial implications of such a project over its entire useful 

lifetime and was calculated using the formulas in Appendix E. Lastly, Lifetime Avoided CO2 Emissions 
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quantifies the environmental benefits of switching from diesel-powered trucks to H2-powered trucks. This 

was estimated by calculating the global warming potential difference between H2 and diesel for all the 

trucks in the network assuming all diesel trucks have been replaced by H2 trucks. All of these metrics are 

crucial for stakeholders assessing the feasibility of a hydrogen ecosystem for freight trucks. Details on how 

they were calculated can be found in Appendix E. 

 

 

Figure 10: User interface and associated graphs 

4.3.4. Interactive Map 

 

To offer adequate visual representation of the network, we opted for Folium, a Python library which 

enabled us to generate an interactive map. The resulting map can be seen in Figure 10, we’ve represented 

the truck network as blue segments, the recommended hydrogen refuelling stations as red dots, as well as 

all of the spatial constraints (indigenous land in purple, natural parks in green and agricultural land in 

yellow). The interactive map is intuitive –  as it follows the same format as widespread cartographic tools 

available on most devices – which allows users to navigate the province and identify the location of stations 

as well as their production which is proportional to the size of the dot.  

 

 
Figure 11: Output map with ideal station location and size  
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Furthermore, we’ve programmed pop-ups to appear as the user hovers over a specific station, giving key 

information to the user such as daily H2 production in kg and life cycle cost of each station as well as the 

daily emissions reductions at each station (see Figure 11). The latter was calculated by comparing the global 

warming potential (GWP) differences between hydrogen and diesel, relative to the station’s daily hydrogen 

production. We’ve intentionally limited the displayed indicators to these three key metrics to maintain 

clarity and prevent information overload for the user. This design choice ensures that users receive the most 

relevant data without compromising the interface’s usability. 

 

Figure 12: Map focus on UHS 

5. Testing and Optimization  

5.1. Testing and Optimization 

Once the initial implementation of the NSGA-II algorithm was developed, several key challenges 

needed to be addressed to enhance its performance and effectiveness. These challenges included improving 

runtime, increasing the convergence rate, refining the selection process for the last population, and avoiding 

entrapment in local optima. Systematic modifications were introduced to tackle these issues. 

5.2. Reducing Runtime 

One significant bottleneck in the algorithm's runtime was the repetitive computation of hydrogen 

supply distributions for each genome across generations. To address this, a supply matrix was developed. 

This matrix precomputes the impact of each segment on every other segment, allowing the supply vector 

(the hydrogen availability on each segment) to be calculated efficiently by multiplying the matrix with the 

genome vector. This innovation significantly reduced runtime, as it eliminated the need to recalculate 

segment relationships for every network configuration in each generation. By leveraging this matrix, the 

algorithm achieved a substantial reduction in computational overhead, making the genetic operations more 

efficient. 
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5.3. Improving Convergence Rate 

The initial version of the algorithm used purely random initialization for the first population. While 

this approach ensured diversity, it often led to slow convergence. The randomly generated networks 

frequently placed hydrogen stations on nearly all segments, requiring repeated mutations and crossovers 

over many generations to evolve networks with a reasonable number of stations. To address this, diverse 

initialization methods were introduced: 

● Latin Hypercube Sampling (LHS): 50% 

● Randomized Heuristic Initialization: 20% 

● Mixed Randomization: 30% 

Additionally, tuning the mutation and crossover probabilities played a crucial role in improving 

convergence. After experimenting with various configurations, an optimal mutation probability of 10% and 

a crossover probability of 80% were identified. These values struck a balance between exploration 

(introducing new solutions) and exploitation (refining existing solutions), accelerating convergence without 

compromising solution quality. 

5.4. Avoiding Local Optima 

During testing, it was observed that networks initialized with a high percentage of stations on high-

density segments often resulted in local optima. For instance, these networks consistently converged to 

solutions with stations concentrated in regions like Montreal and Quebec, neglecting other potential 

placements. To counter this, the initialization strategy was modified to include a mix of 70% LHS-based 

solutions and 30% random solutions. This approach retained the benefits of systematic sampling while 

introducing sufficient randomness to escape local optima. As a result, the algorithm achieved both improved 

convergence rates and better exploration of the solution space. 

5.5. Performance Analysis and Sensitivity Testing 

To determine the optimal parameters for population size and the number of generations, a 

sensitivity analysis was conducted. Various configurations were tested, revealing that the algorithm 

performed best with a population size of 200 individuals and 1,000 generations. This configuration provided 

a good balance between computational cost and the ability to explore the solution space thoroughly. The 

sensitivity analysis underscored the importance of these parameters in shaping the efficiency and 

effectiveness of the algorithm. After finetuning with general settings, the software outputs networks with 

total cost around CAD 3 billion, a levelized cost of Hydrogen of 4$/kg which is competitive with today’s 

diesel cost before governmental subsidies. 

6. Discussion 

6.1. Algorithm Effectiveness 

The hydrogen optimization tool has proven to be a robust and effective solution for tackling the 

complexities of hydrogen infrastructure planning. By utilizing Genetic Algorithms (GA), the tool identifies 

optimal station locations and sizes while ensuring system-wide reliability in meeting hydrogen demand. 
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The network layouts produced by the tool showcase how hydrogen availability is strategically maintained 

across key transportation corridors, ensuring robust supply chain support. 

Critical outputs, including the Levelized Cost of Hydrogen (LCOH), daily hydrogen production, and 

demand fulfillment metrics, allow stakeholders to assess the economic feasibility and operational efficiency 

of the proposed network. The interactive drag-and-drop feature empowers users to modify station 

placements, with real-time recalculations providing immediate feedback. This flexibility enables 

stakeholders to test various configurations and ensure the network meets both their strategic objectives and 

specific regional requirements. 

Environmental metrics, such as avoided emissions measured in metric tonnes of CO2 equivalent, highlight 

the tool’s contribution to sustainability. By offering a clear comparison between hydrogen-based 

transportation and traditional diesel systems, the tool supports informed decision-making aligned with 

environmental goals. 

Additionally, the tool integrates user preferences in addressing sensitive areas such as agricultural lands or 

indigenous communities. This approach promotes a collaborative decision-making process that involves 

stakeholders early in the planning stages, fostering engagement and ensuring alignment with local priorities. 

6.2. Limitations 

The limitations of the hydrogen optimization framework are not unique to this tool but reflect 

broader challenges in the field of infrastructure planning. One such challenge is the dependency on high-

quality, comprehensive datasets, such as detailed traffic patterns, hydrogen demand projections, and grid 

energy availability. Ensuring data accuracy and accessibility is a general concern across similar 

optimization models and infrastructure projects. 

Another general limitation lies in the computational demands of Genetic Algorithms. While GA is highly 

effective for multi-objective optimization, its processing times can increase significantly with larger 

datasets or more complex constraints. However, advancements in computational power and algorithmic 

efficiency are continually addressing this issue across the industry. 

The dynamic nature of stakeholder needs and localized challenges presents another area for refinement. For 

example, while the tool effectively integrates user choices regarding station placement on agricultural lands 

or near Indigenous communities, further stakeholder engagement could enhance the planning process. 

Involving local authorities and communities early in the decision-making cycle ensures that the network 

respects social and cultural sensitivities while fostering trust and cooperation. This inclusion represents an 

opportunity for deeper collaboration rather than a limitation of the tool itself. 

6.3. Future Considerations 

Future enhancements to the hydrogen optimization tool hold great potential to address these general 

challenges and further increase its utility. Integrating real-time data streams, such as live traffic flows and 

seasonal demand variations, will improve accuracy and adaptability, ensuring the tool remains responsive 

to changing conditions. 
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The seamless inclusion of existing and newly operational hydrogen production sites into the optimization 

process will continue to enhance efficiency. This will ensure that production resources are fully utilized 

while avoiding overproduction and unnecessary infrastructure costs. 

Expanding the tool’s features to include flexible modeling of station capacities, the addition of renewable 

energy sources, and broader environmental metrics would support more comprehensive planning. 

Exploring the conversion of existing gas stations into hydrogen refueling stations offers another promising 

avenue for faster network deployment and reduced costs. 

Dynamic economic modeling that incorporates fluctuating energy prices, advancements in hydrogen 

production technology, and evolving carbon credit policies will ensure the tool stays relevant in a rapidly 

changing market. These refinements will make the platform even more robust and aligned with long-term 

goals, such as achieving net-zero emissions targets. 

By addressing these opportunities, the hydrogen optimization tool can remain a cutting-edge solution, 

driving sustainable and efficient transportation networks that align with regional and global energy 

transitions. It empowers stakeholders with actionable insights and flexible solutions, paving the way for the 

widespread adoption of hydrogen infrastructure. 

7. Conclusion 

The transition from diesel-powered freight transportation to a hydrogen-powered ecosystem is an 

essential step for Quebec to meet its ambitious climate commitments under the Paris Agreement and the 

Net-Zero Emissions Accountability Act. By leveraging Quebec’s abundant hydroelectric resources and 

applying advanced computational methods, this project developed a robust software tool for optimizing the 

hydrogen refueling infrastructure for the province’s freight sector. This software integrates cutting-edge 

techniques, such as the Non-dominated Sorting Genetic Algorithm II (NSGA-II), to balance economic 

costs, environmental impact, and hydrogen supply-demand distribution. With its user-friendly interface and 

interactive geospatial mapping features, the tool empowers policymakers, engineers, and industry 

stakeholders to make informed decisions. Key considerations, such as land-use restrictions, Indigenous 

territories, and agricultural preservation, have been integrated into the optimization process to ensure 

socially and environmentally responsible planning. The tool’s ability to forecast hydrogen demand, 

recommend optimal station placements, and provide actionable insights demonstrates its value as a 

decision-making platform. By addressing critical challenges in freight decarbonization, such as 

infrastructure placement, lifecycle cost analysis, and stakeholder collaboration, this project lays the 

foundation for the widespread adoption of hydrogen in Quebec’s freight industry. While limitations, such 

as data dependency and computational demands, highlight areas for refinement, future enhancements can 

address these challenges. Integrating real-time data, expanding environmental metrics, and adapting to 

dynamic economic scenarios will ensure the tool’s continued relevance and effectiveness. This project not 

only advances Quebec’s hydrogen ecosystem but also establishes a replicable framework for sustainable 

transportation planning worldwide. By aligning innovation with environmental and social priorities, the 

optimization tool contributes to building a cleaner, more sustainable future for the freight industry and 

beyond.  
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10. Appendix 1: Life Cycle Costing Analysis 

1. LCC flowchart 
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2. CAPEX Breakdown 

 

3. OPEX Breakdown 
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4. Detailed explanation of each component in the LCOH2 

 

 
 

 

 




