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Abstract

Genome-Wide Association Studies (GWAS) are a popular tool in statistical

genomics that are used to identify genetic variants associated with various dis-

eases. However, their success has been limited, in part because they typically

do not incorporate interactions between variants to model target traits. Since

Deep neural networks have been successful across domains abundant with com-

plex signals, like speech, language, and vision, they are also popular candidates

for modelling interactions between genetic variants. However, their black-box

nature is a hindrance to their application for GWAS.

In this thesis, we present a pipeline to train and interpret feedforward neu-

ral networks to conduct a genome-wide association study (GWAS). We show

that trained deep neural networks can be interpreted using feature-importance

techniques to accurately distinguish and rank simulated causal genetic variants.

We improve its accuracy by extending the pipeline to the multi-task setting,

wherein we simultaneously model two related, simulated traits. We demon-

strate the accuracy, reliability, and scalability of our approach by identifying

most known Diabetes genetic risk factors found using a conventional GWAS on

the UK Biobank.
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Résumé

Les études d’association pangénomiques (GWAS) sont un outil statistique

important pour identifier des variations génétiques associées aux maladies. Cepen-

dant, leur succès est possiblement atténué par l’omission d’effets d’interaction

entre les variations génétiques et les phénotypes d’intérêt. Comme les réseaux

de neurones profonds se sont avérés efficaces dans plusieurs domaines riches

en signaux complexes, comme l’analyse de la parole, du langage et de la vi-

sion, ils sont des candidats intéressants pour modéliser les interactions entre

les variations génétiques. Cependant leur nature opaque (“black box”) est une

lacune importante pour leur utilisation dans le contexte des GWAS. Dans cette

thèse, nous présentons une méthode pour entraîner et interpréter des réseaux

de neurones à propagation vers l’avant dans le cadre de GWAS. Nous mon-

trons que les réseaux ainsi entrainés peuvent être interprétés en utilisant des

méthodes d’attribution de l’importance des variables pour distinguer et ordon-

ner des variations génétiques causales simulées. L’entraînement en mode multi-

tâche, où nous modélisons simultanément deux phénotypes reliés, a aussi permis

d’améliorer l’exactitude de notre méthode. Nous démontrons l’exactitude, la fi-

abilité et la performance de notre approche en identifiant à nouveau les facteurs

de risque génétique les plus connus pour le diabète dans la UK Biobank.
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1
Introduction

Beginning on October 1st, 1990, an international team of researchers led one of the

greatest feats of human exploration. They sought to sequence and map all genes

that make up a human being. This historic endeavour is called the Human Genome

Project ( “Initial sequencing and analysis of the human genome” 2001), and it for-

mally completed in April 2003, opening the first window into nature’s genetic manual

for a human being. The next challenge is to figure out how to read its contents,

understand how they work together to maintain our health, and more importantly

how they contribute to human disease. For a brief background on human genetics,

see Chapter 2.

A very common starting point is to observe naturally occuring biological differences

between people and correlate them to the corresponding differences in their genetic

makeup. After ruling out the correlations that could have occured due to chance, or

explained by non-genetic factors like age and gender, a final list of genetic markers can

be validated in controlled conditions in a lab. This is the goal of the Genome-Wide

Association Study (GWAS, Pearson 2008). It trains mathematical models to predict

the occurence of a target disease or measurement of a quantitative biological trait

over a large population of individuals, implicitly forcing the model to learn to focus

on parts of the genetic data that are relevant to explain the occurence of that trait.

GWAS are extremely common; as of 2019, 5687 GWAS across 3567 publications

1
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had been registered in the GWAS catalog (Buniello et al. 2019), including studies

of various diseases like Diabetes (Xue et al. 2018), Alzheimer’s (Jansen et al. 2019),

Coronary Artery Disease (CAD) (Deloukas et al. 2012), and continuous measurements

like LDL-cholesterol (Sandhu et al. 2008) and adult human height (Wood et al. 2014).

Despite their many successes, GWAS have failed to explain a large proportion of the

variability within various traits of the sample populations they are conducted on. This

is called the "missing heritability" problem (Eichler et al. 2010). Although there is no

clear consensus on the main cause, one of the prevailing views is that non-additive,

complex interactions between genetic variants might be “hiding” variants that would

be discoverable if this complexity were to be taken into account. Typical GWAS

models rely on a single genetic marker or linear combinations of genetic markers to

explain trait variation in the study population (see Chapter 2). Thus, GWAS are

limited to the identification of genetic variants with strong marginal effects, possibly

leaving out a large number of genetic effects due to genetic interactions or other

non-linear effects.

The overarching motivation of this thesis is to model and identify interactions

between genetic markers that are significantly associated with a target biological

trait. This thesis aims to incorporate Deep Neural Networks (Goodfellow, Bengio,

and Courville 2016) into a GWAS in order to model complex, non-linear interactions

between genetic markers. Deep Neural Networks are a powerful and flexibile mod-

elling technique in Machine Learning, that have been shown to model complex, high

dimensional data extremely well. They are at the center of a spate of remarkable

advances in automated speech processing (Graves, Mohamed, and G. E. Hinton 2013;

Bahdanau, Chorowski, et al. 2016), language generation (Bengio et al. 2000; Mikolov

et al. 2010; Devlin et al. 2019), image recognition (Krizhevsky, Sutskever, and G. E.

Hinton 2012; K. He et al. 2016), medical image segmentation (Ronneberger, Fischer,

and Brox 2015), and molecular biology (Senior et al. 2020) etc, that have occured

over the last decade or so.
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In order to use Deep neural networks for GWAS, we need to train them on ge-

nomic data to predict a trait and identify which genetic markers are important to

the model in making its predictions. Prediction on genomic data is challenging for

neural networks because genomic datasets do not have enough samples to help the

network distinguish patterns amongst the vast number of potential signals in each

sample (Nicholls et al. 2020). Furthermore, it is difficult to interpret and explain pre-

dictions of Deep neural networks. This limits our trust in our ability to extract novel

scientific insights from them. In fact, there is no established theory of the behaviour of

deep learning models, nor a systematic comparison of techniques that can be used to

interpret deep neural networks, especially in the context of genomic data. In contrast,

these aspects are extremely well understood for the statistical tools used by GWAS

today (see Section 2.1.3). Thus, before we can use Deep neural networks to identify

useful genetic interactions, we must investigate whether it is possible and practical to

interpret them to find genetic markers identified by a conventional GWAS. This helps

us clarify the aim of this work:

Aim Incorporate Deep Neural Networks into a GWAS pipeline that is accurate,

reliable, and as scalable as conventional GWAS on modern genomic datasets.

Objectives In order to achieve the achieve the aforementioned goal, it is necessary

to:

1. Investigate how we can interpret a Deep Neural Network to measure the impor-

tance of the input to the model’s predictions.

2. Devise a GWAS pipeline that trains and interprets Deep Neural Networks to

identify genetic markers that are important to the model’s predictions.

3. Compare its accuracy, reliability, and scalability to a conventional GWAS on a

large real-world genomic dataset.
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Outline We start with Sections 2.1.1 and 2.1.3 of Chapter 2, which give a brief

background on human genetics and how GWAS are most commonly conducted today,

including a brief discussion on how their results are interpreted. In Section 2.2,

we cover Feedforward Neural Networks and how they are used in Machine Learning

to predict a single target. In Section 2.3, we give a brief overview of the current

state of research in explainability and interpretability of black-box models, including

the motivations and goals of interpretability research. We then give a brief survey

of current interpretability techniques for deep learning models but focus more on

techniques that operate on trained models (post-hoc), as opposed to advances in deep

learning theory or techniques that operate before the model has been trained (ad-hoc).

As part of this survey, we introduce the concept of feature importance and discuss

some common scalable deep neural network feature importance techniques such as

Integrated Gradients, DeepLift, and GradInput (Sundararajan, Taly, and Yan 2017;

Shrikumar, Greenside, and Kundaje 2017; Shrikumar, Greenside, Shcherbina, et al.

2016).

Chapter 3 brings these topics together to formulate a pipeline that trains multi-

layered feedfoward neural networks and uses feature importance techniques to at-

tribute importance scores to each genetic marker in order to conduct a GWAS. We

present accuracy metrics that we can use to compare the different feature importance

techniques that we consider for the pipeline. We also discuss the qualities that would

be desirable for our pipeline to be “trustworthy” for a GWAS on real-world data,

and present aspects from the Machine Learning interpretability literature that cor-

respond to these qualities, namely, attribution Accuracy, Consistency, and Fidelity

(see Section 3.2.2 and Robnik-Šikonja and Bohanec 2018). This helps us devise a

methodology to evaluate, compare, and select between the various pipelines: con-

duct a GWAS using each pipeline on a simulated dataset with known causal genetic

markers, and test their performance along each aforementioned aspect. Finally in

this Chapter, we present positive results that demonstrate that most causal genetic



CHAPTER 1. INTRODUCTION 5

markers are not only identifiable but that their rankings based on their importance

to the model correlate with their rankings based on the magnitude of their effect on

the trait. We also observe and discuss some discrepancies between results for binary

and quantitative targets, which motivates our work on the multi-task version of our

pipeline in the next Chapter.

Since biological traits are often correlated and likely to share causal genetic factors

(Visscher, Wray, et al. 2017), we hypothesize that information from predicting one

target can improve prediction for another related target. Thus in Chapter 4, we

extend our pipeline to the multi-task setting wherein a single model is trained to

simultaneously predict a binary and a quantitative trait, both simulated to share a

proportion of their causal markers. The results from our experiments indicate that

compared to the scenario of predicting a single target trait (Chapter 3), multi-trait

prediction does increase the number and ranking accuracy of correctly identified causal

genetic markers of both traits. Finally in Chapter 5, we apply our methods from

Chapter 3 and 4 to genomic data from the UK Biobank and identify known genetic

risk factors for Diabetes and glycated hemoglobin measurements (HbA1c). Chapter 6

concludes this work with a discussion on the challenges of training artificial neural

networks to predict biological traits from genomic data, issues related to the simulated

setting used to compare different pipelines, and the robustness and reproducibility of

our main results.



2
Background

Beginning with a primer on human genetics, this chapter introduces the reader to

Genome-Wide Association Studies (GWAS), one of the most popular tools that ge-

neticists have for identifying and studying the link between human genetics and dis-

ease, as well as Deep Neural Networks (DNN), a powerful tool that can be trained to

spot patterns in data that are too complex for a human being.

2.1 Genome-Wide Association Studies

Every life form has traits that are passed down its generations. The set of traits that

result from the interaction of an organism’s genetic material and its environment is

called its phenotype, for example, visible traits like height, skin colour, eye colour,

and hair colour, and hidden traits like average heart beat and blood type etc. The

genetic material that is responsible for the organism’s development and function is

called its genotype. The genotype of every life form on earth consists of a special

molecule named DNA, which is short for dioxyribonucleic acid. Aptly named the

“the blueprint of life”, it affects the development, function, and inheritance of traits

between generations. Tracking changes in DNA within a population and relating these

changes to bodily functions and diseases, can help us understand how DNA works and

personalize treatments to an individual. This chapter introduces a popular tool that

6
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helps us do that, the Genome-Wide Association Study.

2.1.1 A primer on human genetics

The human body contains approximately 1013 cells (Bianconi et al. 2013). Each of

these cells contains a nucleus, where DNA is organized into 23 pairs of chromosomes.

DNA is made up of two long strands that wind around each other into a double helix.

These strands are a sequence of four nucleic acids: adenine (A), cytosine (C), guanine

(G) and thymine (T). If one strand contains adenine then the opposite strand will

always contain thymine, while cytosine always pairs with guanine.

Subsequences of DNA code for protein molecules, which are vital for practically

every process of a cell. These sequences are called genes and the set of all genes is

called the genome. The first map of the human genome was provided by the Human

Genome Project.

About 97% of the human genome is fixed across generations. The remaining

portion varies between individuals and potentially contributes to similarity of traits

between relatives. Thus it is possible to create a “reference genome” (Auton 2015)

and track genomic variation down generations, and within or across populations.

A physical location of a gene or DNA sequence is given by its locus. If there is

variation across genomes at a particular locus, then that region is referred to as a

variant, and its different versions are called alleles. Single nucleotide polymorphisms

(SNPs) are single base pair variants that are sufficiently common in a population

(at least 1% or more of the population). For example, Figure 2.1 shows both copies

of chromosome 2 at the same locus, in a population of 4 individuals, with a single

variant highlighted in yellow. Only individual 2 contains a different set of nucleotides

(both copies contain the pair C-G) compared to the rest of the population (one copy

contains C-G and the other T-A). Since this is 25% (> 1%) of the population, that

site can be called a SNP, and the two different versions of this SNP are its alleles.
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Figure 2.1: Both copies of chromosome 2 at the same locus, in a population of 4
individuals, with a single SNP highlighted in yellow. Courtesy: National Human
Genome Research Institute

SNPs are the most common form of genetic variation in humans. On average,

they occur once in every 1000 nucleotides, resulting in roughly 4 to 5 million SNPs

per individual. The allele most common in the population is called the major allele

and the second most common is called the minor allele. In Figure 2.1, the SNP has

two alleles, with the major allele belonging to individuals 1,3, and 4. The allele found

in the reference genome of the population is called the reference allele, and all other

alleles of that variant are called alternative alleles.

Depending on their location, SNPs may play a direct or indirect role in diseases.

Some SNPs are part of genes, while others are part of DNA between genes, which

might affect the degree to which a gene is ‘expressed‘. Identifying SNPs that correlate

with traits or diseases can help us gain insight into disease biology, identify individuals

with a higher risk of complex diseases, and identify possible drug targets.

2.1.2 What is a GWAS?

A Genome-Wide Association Study (GWAS) is an observational study that is con-

ducted with thousands of subjects to find genetic variants that are associated with a

trait (Marees et al. 2018). Typically, several traits (or phenotypes) and covariates of

www.genome.gov
www.genome.gov
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interest are measured, and upto a few million SNPs are genotyped.

Independently for each SNP, a linear model is trained to predict the target pheno-

type using the SNP and the covariates as input. This is typically done using a logistic

regression model for binary targets and linear regression for quantitive (continuous)

targets. The coefficient for the SNP term is tested for significance via a statistical

hypothesis test like the likelihood ratio test or the Wald’s test (B. Li and Babu 2019).

The most common approach to modelling SNPs is the additive model (Clarke et

al. 2011), in which the number of minor alleles are counted and included as input. For

example, assume that for a particular region of DNA, the minor allele is C (Cytosine)

and the major allele is A (Adenine). Then the 3 possible combinations at that loca-

tion are “AA”, “AC”, and “CC”. Since we count the number of minor alleles, these

combinations will be coded as 0, 1, and 2 respectively.

In the following section we will briefly describe the methods used to conduct a

typical GWAS in order to clarify the motivations behind this thesis.

2.1.3 The traditional GWAS pipeline

As mentioned in Section 2.1.2, for a typical GWAS today, hundreds of thousands to

millions of SNPs are genotyped alongwith measurements of several traits and rele-

vant covariates across thousands of subjects. For simplicity, let’s consider a single

quantitive outcome for N samples, denoted as yi for i ∈ 1 . . . N and additively mod-

elled genotype xij for SNP j ∈ 1 . . .M and sample i. As mentioned in Section 2.1.2,

quantitive phenotypes are analyzed using a linear regression model:

yi = xijβ
1
j + β0

j + εij, (2.1)

ε ∼ N (0,ΣM×M), (2.2)

where β0
j is the bias term for SNP j and ε are the residuals distributed normally

with zero mean and covariance ΣM×M . The true effect vector for each SNP j is β1
j ,
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with the null hypothesis being that β1
j = 0. The Wald’s test is used for significance

testing with the ratio β̂1
j

se(β̂1
j )

being the test statistic, β̂1
j being the estimated regression

coefficient for SNP j and se being the standard error, which is the square root of the

variance of the Maximum Likelihood Estimate (MLE) of β̂1
j (Fahrmeir et al. 2013,

Appendix B.4.4).

This gives a p-value, which is the probability of getting a statistic at least as

extreme as the computed test statistic assuming that the null hypothesis (β1
j = 0) is

true. If the p-value for SNP j is smaller than some threshold then the null hypothesis

can be rejected, and the association between the SNP and the phenotype is called

significant. If it is larger then the null hypothesis is considered to be true and the

alternative hypothesis is rejected. The probability threshold used to determine the

significance of a test is called its significance threshold and is typically denoted by α.

It is the probability of rejecting the null hypothesis assuming that it is true and is

typically set to 0.05. In the context of the GWAS pipeline described in this section,

the null hypothesis is rejected if the probability of the observed Wald’s test statistic

is less than α.

Multiple comparison correction Consider a sample with a million genotyped

SNPs (M = 106 in Equation 2.2). With α = 0.05, the likelihood of rejecting the null

hypothesis at least once is 1 − (1 − α)106 ≈ 100%. This implies that it is practically

certain to get a significant test statistic for any statistical analysis considering a large

group of independant tests. This is called the Multiple Comparisons’s problem (R. G.

Miller 1981). A common method to account for the number of independant tests is

by dividing α by the number of tests. This is called Bonferroni correction (Fahrmeir

et al. 2013, Page 471):

αcorr = α

N
, (2.3)
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where N is the number of statistical tests being conducted i.e. the number of SNPs

in the GWAS. For an initial significance level α = 0.05 and N = 106, the Bonferroni

“corrected” significance level (αcorr) is 5× 10−8. This cut off is commonly considered

as the “gold standard” significance threshold for evidence of association in a GWAS

(Clarke et al. 2011; Pe’er et al. 2008).

Interpretation of results A significant result in a GWAS does not imply that

a SNP is causal for a phenotype. Proof of causation requires an understanding of

the biological mechanisms giving rise to the target phenotype and the role played by

different alleles of the candidate SNP in that mechanism.

Instead, it is quite likely that the identified SNP is correlated with the true causal

SNP. This non-random correlation between SNPs at different loci is termed Linkage

Disequilibrium (LD). In fact, a significant result in a GWAS that is true is most likely

to be due to LD, i.e. when a GWAS marks a SNP as significantly associated with

the target phenotype then that association is most likely indirect due to LD between

the associated and causal SNPs. In the case of a spurious association, it is likely that

the study has data quality issues in the form of sampling bias or because it has not

sufficiently controlled for its confounders.

In GWAS, a confounder is a covariate that modulates the association between

a SNP and a phenotype without being a consequence of the SNP. If a model does

not take into account the effects of the confounder then the estimate of the effect

parameter β̂1 is statistically biased or confounded. Common confounders in GWAS are

population stratification and admixture. The former refers to differences in frequencies

of the alleles of a SNP due to differences in ancestry whereas the latter is due to

different patterns of LD in populations consisting of individuals that have mixed

genetic ancestry (Clarke et al. 2011).

Confounding in GWAS is minimized via quality control of the samples used in

the analysis to minimize population stratification, directly adding common covariates
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like age and sex, and finally by including covariates constructed using dimension-

ality reduction techniques like Principal Components Analysis (PCA, Jolliffe 1986)

conducted on the matrix of genotypes of all the samples in the study.

2.2 Deep Neural Networks

An artificial Neural Network (ANN) is a flexible modelling technique in machine

learning that is loosely inspired by the structure and function of the brain (Goodfellow,

Bengio, and Courville 2016). The primary unit of computation in an ANN is an

artificial neuron that combines a linear and non-linear transformation of the input

signal (in that order). It first applies a linear mapping on an input vector x ∈ Rn to

predict a scalar ŷ ∈ R using the parameters θ ∈ Rn, followed by a non-linear function

g : R→ R:

ŷ = g(θTx) (2.4)

Artificial neural networks are constructed using several artificial neurons that are

organized into layers stacked on top of each other as shown in Figure 2.3. There

are several variations of these networks that arrange the neurons in different ways

to model different modalities of data. Figure 2.3 displays one of the most basic and

popular ways these units can be arranged. This arrangement is called a Feedforward

neural network because the information flows from the input to the output with no

feedbacks between layers (during prediction).

The number of units in a layer is its width, while the number of layers is called the

depth of a neural network. These two hyperparameters are key to its representational

power. The non-linear function used in each neuron is called the activation function.

Designing activation functions is a hot area of deep learning research but the most

popular is the ReLU (Nair and G. E. Hinton 2010; Xu et al. 2015). Networks that
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Activation
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Figure 2.2: This figure illustrates Equation 2.4 in more detail with the addition of the
bias term θ0

have many layers with a large number of neurons are called deep neural networks.

They have been shown to possess the ability to learn low dimensional representations

from high dimensional input data (Goodfellow, Bengio, and Courville 2016).

Input #1

Input #2

Input #3

Input #4

Categorical

First
hidden
layer

Second
hidden
layer

Input
layer

Output
layer

Figure 2.3: A feedforward neural network with one output head

A neural network is trained to learn a function f̂ to best approximate the true

function that maps some input x to output y. The quality of this approximation is

judged by a loss function L that compares the predictions made by the neural network

model to the true value in the dataset. Typically, the loss function is positive when

the model makes a mistake and 0 when it is correct. For example, the Binary Cross

Entropy function (BCE, Equation 2.5) is most commonly used for binary classification
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tasks, whereas the Mean Squared Error (MSE, Equation 2.6) is popular for regression.

Thus, one of the basic objectives of any machine learning model is to minimize the

loss function computed on the entire training set:

Lclass = −
∑
i

(yi log (ŷi) + (1− yi) log (1− ŷi)), (2.5)

&

Lregr =
∑
i

0.5 ∗ ‖yi − ŷi‖2
2 (2.6)

The loss function (L) is minimized via an optimization procedure called gradient

descent, which modifies the parameters of the neural network against the direction of

the gradient of the objective function with respect to the parameters. The gradient for

each weight is computed by the repeated application of the chain rule for derivatives,

starting from L and backwards to the parameters of the first layer. Along with clever

reuse of some intermediate computation, this procedure to calculate the gradients

for gradient descent is called backpropagation (Rumelhart, G. E. Hinton, and R. J.

Williams 1986b).

Popular synonyms for the loss function are the objective function, the cost func-

tion, and the error function (Goodfellow, Bengio, and Courville 2016). However,

sometimes the error in prediction is insufficient to fully specify the desired solution.

For example, a machine learning practitioner might prefer a model in which the com-

putation of the model’s output is easily traceable from the input to the output, in

which case each of the weight matrices of the model would have to be sparse. A

straightforward way to encourage the learning algorithm to arrive at more sparse so-

lutions for θ is to add the L1 norm of the weights as an additional penalty to the loss

function L (Goodfellow, Bengio, and Courville 2016):
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J = L+ λ
∑
i

|θi|, (2.7)

where higher values of λ can be used to put more pressure on the algorithm to sparsify

the weights and J is the modified loss function, also called the objective function to

distinguish it from the prediction loss L. The modification of L in order to specify

a preference for one solution over another is a form of Regularization, which is a key

concept in Machine Learning (Hastie, Tibshirani, and Friedman 2009). Equation 2.7 is

an example of parametric regularization via addition of a norm penalty Ω(θ) = ∑
i |θi|.

Another example of a norm penalty used for regularization is the L2 norm of the

weights: Ω(θ) = 1
2‖θ‖2

2 (Goodfellow, Bengio, and Courville 2016). Using the L2 norm

penalty for regularization encourages the weights of the network to be closer to the

origin (Goodfellow, Bengio, and Courville 2016). A generalized version of the final

objective function which contains a regularization penalty is given by Equation 2.8:

J = L+ λ · Ω(θ), (2.8)

where λ is a hyperparameter used to balance between the prediction error L and

the penalty Ω(θ). Finally, the optimal parameters of the model (θ̂) are obtained by

minimizing J as shown in Equation 2.9:

θ̂ = argminθJ (2.9)

The explosion in the use of deep learning techniques for machine prediction tasks

is due to their competitive performance at prediction in a wide variety of settings as

well as their ease of use. The extreme flexiblity that this approach provides and the

relative simplicity of the optimization procedure allows practitioners to easily train

architectures that are tailored to any input modality e.g. Recurrent Neural Networks
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(RNNs, Rumelhart, G. E. Hinton, and R. J. Williams 1986a) for sequential data, and

Convolutional Neural Networks (CNNs, LeCun et al. 1989) for image data. However,

their black box nature is a double edged sword; it makes it easier to adopt these

models for a variety of prediction tasks without worrying about how the model made

its predictions. Particularly, it is difficult to understand which aspects of the input

data were the most useful to the model’s predictions. The incredible speed at which

deep learning models are being adopted across various industries has led to renewed

interest in research on deep learning explainaibility. This topic is explored in the next

Section.

2.3 Interpretability of Deep neural

networks

Accurate prediction from massive amounts of data across various modalities is a very

attractive feature for any general-purpose prediction technique. But is it all that we

ask of systems that are slowly becoming pervasive in society? If an automatic diagnosis

system running using a DNN makes a recommendation that could be potentially

threatening to a patient’s life then the clinician using that system will take it into

account if and only if they trust its rationale. But what is the rationale behind the

prediction of a neural network? How can we verify it? How do we contextualize it for

the clinician? Furthermore, can the clinician trust it?

These are some of the most important questions that motivate a field of machine

learning research termed Explainable AI, or XAI (Gunning et al. 2019; Escalante

et al. 2018; Barredo Arrieta et al. 2020). The recent explosion in the deployment

and research of machine learning systems has given rise to a surge of interest in

the field. However, it is not immediately clear how to answer the questions in the

preceding paragraph because they are qualitative in nature. In fact, terms like trust
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and explanation (or rationale) can have varying definitions across the literature, which

makes it difficult to assess the claims of explainability techniques and compare them to

each other. A related and an equally nebulous and important term in the field of XAI

is interpretability. Research on making models more interpretable is motivated by

the desire to explain and possibly extrapolate model behaviour. Thus, explainability

may be viewed as a goal of interpretability research.

This section provides an overview of the motivations, goals and methods behind

interpretability research of machine prediction in order to help clarify the distinct

ideas that constitute the field. While a large number of existing reviews focus on

explanations of general AI techniques (Lipton 2018; T. Miller 2017; Adadi and Berrada

2018; Gilpin et al. 2019) we follow Fan, Xiong, and G. Wang 2020 to present a

taxonomy focussed on deep learning interpretability.

2.3.1 What do we want interpretable AI to do?

Interpretability refers to the extent to which a model’s behaviour can be summarized

at different abstraction levels. Unfortunately, the black-box nature of deep learning

models limits our ability to understand the decision making process behind a pre-

diction. Based on Lipton 2018 we summarize the real-world goals of interpretability

research:

Trust Works like B. Kim (2015a) and Ribeiro, Singh, and Guestrin (2016) suggest

that trust in a model cannot be built if the model is not interpretable. But the

notion of trust is ill-defined and highly contextual. If accurate prediction is all that

is required of an AI technique then its demonstration is sufficient for a model to be

deemed trustworthy. Alternatively, if the training and deploment environments differ

then trust requires demonstration of the robustness of the model’s predictions; even

so, for models that could directly impact lives automated crime forecasting systems

(Richardson, Schultz, and Crawford 2019), we would require that the model makes
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the right predictions for the right reasons. In fact, for groups that already face a

disproportionate risk of structural harm (Galtung 1969) the development of trust

requires transparency and accountability into the development of the entire model

development pipeline (Raji et al. 2020; D. R. Williams et al. 2010).

Causality Most of statistical learning theory that is in practical use today helps

algorithms learn statistical dependencies between observations that are useful for pre-

diction (Hastie, Tibshirani, and Friedman 2009). But a purely statistical relationship

is fickle and weaker than a cause-effect relationship. This phenomenon of a cause-

effect relationship between two quantities is called Causality, and it is much more

valuable and more difficult to obtain (Peters, Janzing, and Schlkopf 2017). A practi-

cal general-purpose prediction technique holds the promise to greatly accelerate the

rate at which scientific discoveries are made if researchers can rely on it to learn an ac-

curate model of the world. A mechanistic understanding of a model’s inner workings

will allow researchers to generate and test hypothesis about the natural world. Deep

neural networks model complex non-linear functions of their inputs using thousands

to billions of parameters (T. B. Brown et al. 2020; Kaplan et al. 2020), which makes

it challenging to decipher causal relationships between their inputs and outputs.

Robustness Traditional statistical prediction theory assumes that all data are sam-

pled independantly of each other from the same distribution (Hastie, Tibshirani, and

Friedman 2009). An important goal of interpreting a model is to judge and improve

its robustness in settings where this assumption breaks down. For example, the distri-

bution P (X) of the inputs X might change resulting in covariate shift (X. Chen et al.

2016), or the joint distribution P (X, Y ) of the inputs and targets Y might change

(Ben-Tal et al. 2013). A robust model is capable of handling these changes in the

sampling distribution of the data.
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Informativeness A common use of prediction systems is to give domain experts

more information before they make a decision. The user in such a scenario uses the

model to support their own decisions (B. Kim 2015b; Chouldechova 2017; Fiebrink

2011). For example, Caruana, Kangarloo, et al. (1999) show how to report cases

considered to be most similar to the one under investigation by an artificial neural

network trained to predict Pneumonia mortality. Case-based reasoning is emphasized

during medical training and practice suggesting that case-based explanations could

be even more useful for less mission-critical applications.

2.3.2 Interpretability methods

Broadly speaking, interpretability techniques should make the model’s inner workings

more transparent at different levels of its components. Some common approaches

provide a useful picture of how a trained model might be working via mathemtical

analysis of the collective behaviour of the trained weights, or by testing the sensitivity

of its outputs to its inputs, or indirectly by providing relevant examples that might be

similar to the sample in question. Others employ regularization to force the model to

learn a more interpretable representation, or explicitly design model architectures to

be more modular. We closely follow Fan, Xiong, and G. Wang (2020) and spot three

major themes: the theoretical study of the behaviour of neural networks, techniques

that seek to obtain more interpretable models by guiding their optimization or by

designing architectures that are inherently interpretable, and finally those that analyze

models that have already been trained. We borrow terminology from Fan, Xiong, and

G. Wang (2020) to name these categories as Theoretical Analysis, Ad-Hoc analysis,

and Post-Hoc analysis, respectively, presented as a taxonomy tree in Figure 2.4. We

briefly cover Theoretical and Ad-Hoc Analsysis first, before focussing on Post-Hoc

analysis.
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Figure 2.4: Taxonomy of interpretability techniques based on Fan, Xiong, and G.
Wang (2020)

Theoretical Analysis Theoretical advances in different facets of a model’s opti-

mization trajectory, the shape of the loss function, or in estimations of the generaliza-

tion ability of a model, can also aid interpretability. For example, Jacot, Gabriel, and

Hongler (2018) investigate feedforward neural networks with widths tending to infin-

ity (infinite-width limit) and show that NNs in this regime simplify to linear models

with a kernel calleed the Neural Tangent Kernel (NTK), making it easier to study

the trajectory of the loss function during gradient descent. This result was closely

followed by a slew of papers investigating kernel gradient descent for wide, overpa-

rameterized neural networks (number of parameters� number of training examples),

such as Du et al. (2019) who show that gradient descent on overparameterized NNs

perfectly optimizes a quadratic training loss or J. Lee et al. (2018), who show that

infinitely wide and deep feedforward networks exactly correspond to Gaussian Pro-

cesses (Rasmussen and C. K. I. Williams 2005) and devise a pipeline to compute
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their covariance function, allowing the computation of exact prediction uncertainties.

However, empirical results show that overparameterized neural networks still perform

better than infinitely wide networks (Arora et al. 2019), so there is still substantial

work remaining to fill in the gap between machine learning practice and theory.

Ad-hoc methods Ad-hoc methods construct models that are inherently inter-

pretable by enforcing biases via the training process or explicitly in the model ar-

chitecture. The goal of the former is to guide the optimization process to models that

generate interpretable representations, while the latter focusses on designing modular

architectures consisting of components with clearly defined roles that together make

up a larger prediction system. For example, Chorowski and Zurada (2015) impose a

non-negative constraint on the weights of a neural network and argue that it is more

interpretable since neurons can never cancel each other, making it easier to trace the

effects of input features to the final output. Other auxiliary objectives aim to guide

the optimization process to solutions that use sparse, or disentangled internal repre-

sentations. The former can make it easier to explicitly trace paths from a model’s

inputs to its outputs by zeroing redundant weights, while the latter makes it easier

to factor the representation into parts that are uniquely affected by changes in the

input (Locatello et al. 2019). Techniques under Model Renovation seek to obtain

more explicit explanations of the model’s decisions by extending or modifying model

architecture, e.g. Chu et al. (2018), who propose using piece-wise linear functions as

activation functions to help obtain closed-form solutions to a network’s predictions,

or works like H. Liu, Yin, and W. Y. Wang (2019) and Camburu et al. (2018), which

generate descriptions by augmenting the model DNN architecture with a language

model fine tuned together to provide natural language explanations of the model’s

decisions. The descriptions are simple and comprehensible but they rely on aug-

menting the training data with textual explanations to train the language model that

generates them.
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While ad-hoc methods change the model architecture or its optimization, Post-Hoc

Analysis methods are generally employed on trained models:

2.3.2.1 Model Inspection

Model inspection methods directly analyze the weights or layer activations of the neu-

ral network to find patterns of activations that are specific to a certain class of inputs.

For example, Zhou, Khosla, À. Lapedriza, et al. (2015) show that CNNs trained on

ImageNet learn object detection filters without being given any object-level train-

ing objective, or Y. Wang et al. (2018), who develop a technique named Distillation

Guided Routing (DGR) to find paths in the network (starting from the input nodes

to the output nodes) that are critical to preserve the model’s prediction performance,

called Critical Data Routing Paths (CDRPs). Another example is the Concept Acti-

vation Vector (CAV, B. Kim et al. 2018), which is defined as the vector orthogonal to

the hyperplane that linearly separates the activations of inputs containing a specific

feature/concept (e.g. animals with stripes) from the activations of inputs without that

concept (animals without stripes), at a particular neural network layer l. This allows

the user to associate a concept at the input level (e.g. stripes) with the vectors at each

layer of the network. Furthermore by slowly perturbing the activations at layer l in

the direction of the CAV, users can measure the sensitivity of the model’s predictions

to the input concept associated to the CAV.

2.3.2.2 Proxy / Surrogate

These methods construct a simpler and more interpretable model from the larger

deep network. The process of transferring the knowledge of one model (defined in

terms of its predictive behaviour) to another is called model distillation and was first

defined in G. Hinton, Vinyals, and Dean (2015), where a smaller DNN was trained to

mimic the behaviour of an ensemble of DNNs. Today, model distillation refers to a

whole host of techniques that construct proxies to approximate trained DNNs. The
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transferred knowledge can be from a subset of the input space, for example a subset

of training examples with similar features, or it can be more global in which case the

goal is to translate the entire model.

Perhaps the most popular technique in this category is Local Interpretable Model-

agnostic Explanations (LIME, Ribeiro, Singh, and Guestrin 2016). In order to explain

a model’s prediction for a specific sample, LIME uses inherently interpretable models

such as decision trees or linear regression to approximate the outputs of the target

model in a small neighborhood of the sample. The proxy model ingests an inter-

pretable version of the data, for example a binary input to indicate the presence or

absence of specific words. The main disadvantage of local proxy models is that they

usually make simplistic assumptions to find inputs that are used to train the proxy

and it is unclear how they perform in regions that do not satisfy that assumption.

This may result in explanations that break down for complex unstructured datasets

such as text and images, where finding similar inputs that differ only by the presence

or absence of specific concepts can be difficult. Another drawback is the instability in

their explanations to minor perturbations in the input: Alvarez-Melis and Jaakkola

(2018) show that feature importance values generated by LIME for the features in a

two dimensional dataset vary widely for a two layer NN, within a small neighborhood

of the input space.

2.3.2.3 Explaining by Case

Case-based explanations employ case-based reasoning (Kolodner 1992) which involves

associating the case being investigated with previously seen examples that are better

understood. This can involve finding individual examples from the dataset or a com-

position of existing samples that are most similar to the sample being investigated.

Two samples can be compared for similarity via a similarity metric applied on their

corresponding hidden representations in the neural network. Samples can also be com-

pared to “prototypes” (Bien and Tibshirani 2011), which are typically a composition
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of samples that best summarize the characteristics of the samples in the entire dataset.

Although not a post-hoc analysis method, a notable prototype based technique is the

Prototypical Part Network (ProtoPNet, C. Chen et al. 2019), which dissects images

into prototypical parts before classifying the image. On the other hand, Wallace,

Feng, and Boyd-Graber 2018 use Deep K-nearest-neighbours (DKNN, Papernot and

McDaniel 2018) to construct a model uncertainty metric called conformity-leave-one-

out, which measures the drop in the proportion of training examples that are similar

to the test example after it has been perturbed.

2.3.2.4 Saliency

This subcategory includes many popular methods that compute a form of feature im-

portance score for each input and are typically visualized via a saliency map. Saliency

maps are especially popular in interpreting predictions of image classification models.

Typically, the importance (or saliency) of each feature is overlayed on the original im-

age to present and compare the relative importance of each feature. Therefore, these

techniques are also called Feature Attribution or Feature Importance techniques.

Feature attribution methods attempt to quantify the relevance of a feature to a

model’s prediction. A simple, direct way is to train different models for each com-

bination of input while comparing the model performance for each combination of

inputs. This involves training a different model for each combination and can be used

to compute the marginal relevance of an input to the output. This is a form of a

perturbation-based post-hoc interpretabilty method. Obviously, this is a very time

consuming process, especially for models with a large number of parameters. Alter-

natively, gradient based methods compute the sensitivity of a trained model to its

inputs. If a model is highly sensitive to changes in an input, then that input is likely

to be a key component in the model’s internal decision making process. A key benefit

of such methods is that only a single model needs to be trained and interpreted.

An attribution, A, is a credit assignment on each individual input feature xi of a
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Figure 2.5: A heatmap obtained by Sturmfels, S. Lundberg, and S.-I. Lee 2020 to
visualize pixel-wise importance scores generated by running integrated gradients on
the Inception V4 (Szegedy, Ioffe, and Vanhoucke 2016) image classification network,
trained on ImageNet (J. Deng et al. 2009)

single sample input x (e.g. each pixel in an image, or each character or word in text,

or each SNP in GWAS) that measures how sensitive the model’s prediction y is to

changes in xi. It is often presented as a heatmap overlaid on the original data (saliency

map). The attribution heatmap visually indicates which aspects of a particular data

example have the greatest influence on the model’s prediction of the target y. For

example, Figure 2.5 contrasts an attribution heatmap to the original image (in the

validation set) for a popular image classification model named Inception V4 (Szegedy,

Ioffe, and Vanhoucke 2016) trained on ImageNet (J. Deng et al. 2009).

More concretely, let xn denote an M dimensional input feature vector of the n’th

input to a feedforward neural network f with L hidden layers, with a corresponding

output being f(xn). Let the reference (or baseline) input and output be denoted by

x and f (x) respectively. We define ∆x = x − x and ∆f = f (x) − f (x) to be the

difference with reference input and output values respectively. The attribution vector

An is an M × 1 dimensional sample-specific credit-assignment for each individual

feature of the input xn, providing a quantitative measure of the importance of each

feature to the output f (xn). The importance of a feature can simply be the sensitivity

of f to x at xn:
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An = ∇f (x) |xn ,

but some methods compute a modified form of the equation above or define impor-

tance with respect to the reference inputs and outputs x and f(x). We now describe

and compare such sample-specific feature attribution methods. Note that for the

remainder of this Section, we will carry forward the notations used for attribution

scores A, the function being interpreted f , and the input x of a single sample n with

dimensions M × 1 but drop the sample indexing subscript n for convenience.

GradInput, Input × Gradients (IXG) (Shrikumar, Greenside, Shcherbina, et

al. 2016) Given the deep network f and input x, the attributions are calculated as

the element-wise product of x and the gradient of f calculated at x:

A = x�∇f (x) (2.10)

DeepLIFT (Shrikumar, Greenside, and Kundaje 2017) DeepLIFT decomposes the

difference in the output prediction of a neural network and a reference output by

propagating activation differences layer by layer via a modified backpropagation rule.

The attribution score of each feature indicates the degree to which that feature helped

change the model’s output from a reference output to the observed output. It assigns

a score C∆xm∆f for the input x s.t.

∆f =
M∑
m=1

C∆xm∆f , (2.11)

where C∆xm∆f can be thought of as a weight assigned to the input xm in proportion

to its contribution to the difference ∆f . Shrikumar, Greenside, and Kundaje (2017)

provide multiple rules like the Linear, Rescale, or Reveal-Cancel rules to compute

C∆xm∆f . We follow Ancona et al. (2018) and only cover the Rescale rule due to its
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connections with ε-LRP, which we cover later. We use alj to denote the output value

of the j’th input neuron of layer l, and wlij to be the parameter that weighs the output

value of the i’th neuron in layer l into the j’th neuron in layer l + 1. This weighted

activation value, wlijalj, will be denoted by zlij. The contribution score of the neuron

i in layer l, denoted by C∆al
i∆f

, is calculated using Equation 2.12 below:

C∆al
i∆f

=


f(x)− f (x) , if l = L

∑
k

zl
ik−zl

ik∑
i′ z

l
i′k−

∑
i′ z

l
i′k
C∆al+1

k
∆f , otherwise

(2.12)

and finally, Axm is equal to the contribution score C∆xm∆f , which can be computed

using Equation 2.12 by treating xm as a0
m, i.e. C∆xm∆f = C∆a0

m∆f .

LRP (Bach et al. 2015) Layer Relevance Propogation (LRP) propagates the rele-

vance of a neuron’s output starting from the output layer in which the relevance is

set to the output of the target neuron. Let rli denote the relevance of the neuron i in

layer l of the network. Then LRP starts by setting rL to be the output of the neuron

at the output layer L. rL is redistributed to the previous layers via the propagation

rule defined in Equation 2.13, where zlji is the weighted activation of the neuron i in

layer l onto the neuron j in the next layer l+ 1, bl+1
j is the bias term of neuron j, and

ε is a small scalar added to the denominator to avoid numerical instabilities.

rli =


f(x), if l = L

∑
k

zl
ik∑

i′ (z
l
i′k+bl+1

j )+ε·sign(
∑

i′ (z
l
i′k+bl+1

j ))r
l+1
k , otherwise,

(2.13)

with the attribution score Am of input feature xm being the relevance value r0
m,

computed using Equation 2.13. Ancona et al. (2018) show that if f (0) = 0, with

no additive biases (blj ∀j and l), and x = 0, then the contribution and relevance

scores produced using Equations 2.12 and 2.13 respectively, are the same. Further-
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more, Shrikumar, Greenside, Shcherbina, et al. 2016 show that absent the ε term in

Equation 2.13, LRP and GradInput produce the same attribution scores.

Integrated Gradients (Sundararajan, Taly, and Yan 2017) This technique com-

putes the path integral of the partial derivative of the output with respect to an input

feature along the line segment joining a reference value to a sample in the dataset.

Given the deep network f , input x, and baseline input x, the attribution score Am of

feature xm is:

Am = (xm − xm)
∫ 1

α=0

∂f(x+ α(x− x))
∂xm

dα, (2.14)

where α is associated with the path from x to x, and is smoothly distributed in range

[0, 1]. The R.H.S of Equation 2.14 accumulates the sensitivities of f to changes in

feature xm as the input is varied along the straight line connecting x and x. Therefore,

it is the line integral of the gradient of the model w.r.t the input features, along the

straight line path between x and x. Intuitively, xm should have increasing relevance

if gradients are large between a baseline point x and x along the m’th dimension.

CAM and GradCAM (Zhou, Khosla, A. Lapedriza, et al. 2016 and Selvaraju

et al. 2017) A class activation map (CAM) indicates the regions in an input image

used by a CNN for classification. Zhou, Khosla, A. Lapedriza, et al. 2016 uses a

global average pooling layer on the activation map of the final convolutional layer to

generate attributions for a specific class. GradCAM ( Selvaraju et al. 2017) extends

the CAM method by using the gradients of the network output with respect to the

last convolutional layer to achieve the class activation map. It should be noted that

these methods are specific to CNNs.

Deconvolution (Zeiler and Fergus 2014) This is a feature visualization technique

for CNNs that reverses the convolution operations via separate deconvolution layers.
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The technique reconstructs patterns at each convolution layer that caused the highest

activation in the model.

In this Chapter, we briefly described the structure and role of DNA in human

biology and disease, and introduced genetic variants called SNPs, which could be

useful for the localization of genetic causes of various traits and diseases. Subsequently,

we introduced the Genome-Wide Association study and covered the basics of the

statistical analysis pipeline of a conventional GWAS. We then introduced Artificial

Neural Networks, a flexible and popular machine learning modelling framework that

we can leverage to learn to spot and utilize complex patterns from large amounts of

data. We introduced gradient descent as the optimization framework that is used to

train most neural networks, as well as Regularization with its most popular examples.

We discussed the disadvantages of the black box nature of Deep Learning, particularly

the difficulty of comprehending the patterns used by deep learing models to make

predictions. This led us to explore the topics of Interpretability and Explainability in

Artificial Intelligence. After describing the relatively ambiguous nature of the topics,

we listed some practical goals of interpretability research. Finally, we proceeded to

summarize an extensive taxonomy of interpretability techniques for deep learning

models, mostly focussing on feature importance techniques that can be applied on a

trained model, since they do not require training multiple models and can be used

to compare the relative importance of a feature to the model’s predictions. We now

have a powerful technique at hand to model complex relationships between data as

well as the tools to interpret the relationships that are learnt. We attempt to do so

on genetic data in subsequent chapters.



3
Phenotype prediction and interpretation

using Deep Neural Networks

Conventional GWAS fail to model interactions between SNPs, nor do they consider

non-linear signals between genetic variants to model the target trait. Indeed, GWAS

are limited to the identification of genetic variants with strong marginal effects, pos-

sibly leaving out a large number of genetic effects governed by SNP-SNP interactions

or other non-linear effects. Since deep networks are known to be able to model ar-

bitrarily complicated non-linear functions of their inputs (Goodfellow, Bengio, and

Courville 2016), they are well suited to model more complex interactions between

SNPs. However, we still need to decipher the maze of a neural network’s weights

to find inputs that are helping the network make its predictions. Therefore, in this

chapter, we present a pipeline to conduct a GWAS using Deep Neural Networks and

validate it on simulated data to show that it is effective at distinguishing known causal

SNPs.

3.1 Related Work

While DNNs have been previously applied to analyze GWAS datasets ( Libbrecht and

Noble 2015; Ching et al. 2018), most of them have been applied to risk prediction,

wherein the model predicts a risk score based on the genotype. For example, Montaez

30
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et al. (2018) use deep models to improve classification of polygenic obesity, but the

model uses SNPs from loci that were obtained from a prior association analysis. In

contrast, Waldmann (2018) use 1 layer NNs in order to be able to average the model’s

weights and directly calculate the regression coefficient for each SNP. Using 1 layer

NNs is equivalent to conducting the GWAS conducting logistic regression and fails to

model complex non-linear interactions between the SNPs.

Romagnoni et al. (2019) present a thorough comparison of approaches relying on

three different classes of models: logistic regression, gradient boosting decision trees

(GBT; Hastie, Tibshirani, and Friedman 2009), and deep neural networks, in terms

of their prediction ability and SNP association identification on a Crohn’s Disease

dataset. In order to interpret DNNs, they used permutation feature importance, a

model-agnostic approach that involves breaking the relationship between a single fea-

ture and the target, and then measuring the decrease in the model’s performance.

This is especially useful for opaque models like DNNs but in modern GWAS datasets,

this will involve separately permuting millions of SNPs, making this approach com-

putationally expensive. Tran and Blei (2018) conduct maximum-likelihood-ratio tests

for every input SNP by comparing the predictive performance of a neural network

trained on all input SNPs against a very similar neural network trained on all but the

target SNP. However, this approach does not scale to datasets with a large number of

SNPs since the number of neural network models trained scales linearly in the number

of SNPs, which could be in order of hundreds of thousands to millions.

Evidently, the key challenge is the absence of methods that can determine whether

features used by a model are novel biomarkers or spurious correlations.
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3.2 Filtering and ordering causal

SNPs

Let’s consider a typical, probabilistic setup used to model genotype populations. Sup-

pose that there are N samples, each with M measured SNPs. As described in Sec-

tion 2.1.2, SNP i in sample j is denoted by xij ∈ 0, 1, 2 ∀ i ∈ 1, 2, . . . ,M and

j ∈ 1, 2, . . . , N . Collectively, the SNPs for all samples are denoted by XN×M , which is

called the genotype matrix of the sample population. As mentioned in Section 2.1.2,

the genotype of every population is affected by the different ancestries of the sam-

ples in a GWAS, reflected by attributes such as their race and ethnic origin. This

results in a complex hidden structure in the base frequencies of the alleles of each

SNP. Since this structure is unobserved, we shall denote it by the latent variable zj

for sample j. Let the base allele frequency for SNP i, denoted by πi, be a function of

zj ∀ j ∈ 1 . . . N , that is SNP i has different base allele frequencies πi (zj) corresponding

to each population sample j. By clustering the values of z, we will model a sample

population which stratifies into different population substructures, each with their

own genetic ancestries. Additionally, we model admixture by varying the proportion

to which an individual sample j belongs to each cluster. We collect the frequencies

of different SNPs across the sample population into the matrix π, with πij being the

individual-specific allele frequency of SNP i conditioned on the ancestry of sample j.

We will denote the quantitative trait by yj ∀ j ∈ 1, 2, . . . , N , which we will col-

lectively denote by YN×1. As mentioned in Section 2.1.2, a common assumption of

most GWAS is that the trait under study is a linear function of the genotype and

various other covariates like ancestry and sex etc (Clarke et al. 2011). Thus, we will

assume that this trait is a linear function of the genotype matrix X with a genetic

effect vector βM×1, and non-genetic factors that we will collectively denote by λN×1

(Equation 3.1).
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Y = βX + λ+ ε, (3.1)

where ε is random noise. In order for population structure to be a confounder, we

allow λ and ε to be a function of z.

In order for a deep learning model to be a useful prediction tool in GWAS, we

need to design a pipeline that accurately predicts Y from X, but more importantly,

accurately estimates β. But as we reviewed in Section 2.3.2, the field of Explainable

AI currently lacks a unified and comprehensive picture of the importance of a NN’s

features to its predictions. Nevertheless, the past few years has seen the development

of different feature importance techniques (Section 2.3.2) that generate importance

scores for a model’s features to try to quantify their importance to a model’s predic-

tions.

These scores can be used to rank SNPs and localize regions of high importance to

the model. Moreover, as mentioned in 2.1.2, GWAS summary scores are used to nar-

row the loci that harbour SNPs with non-zero effects on the target phenotype, which

suggests that it might be possible to relax the initial goal of accurately estimating β

to simply ranking genomic regions by the effect size of their constituent SNPs.

More precisely, what is the correlation between the rank of SNPs, ordered by their

true effect size (β), and the feature importances generated by feature importance

techniques? If the rank correlation is consistently high, then a GWAS pipeline based

on prediction using deep networks can be used to localize SNPs that are associated

with the target phenotype by ranking them according to their feature importances.

3.2.1 Algorithm

In this thesis, we present Algorithm 1, a pipeline for GWAS that uses deep learning

models for prediction and ranks input SNPs by a summary of importance scores that

are generated using some of the feature importance techniques that we covered in
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Section 2.3. We now describe the algorithm, including our choice of feature importance

techniques, in more detail:

Consider a dataset D of N samples (individuals) with M SNPs each (XN×M),

and their corresponding covariates ZN×1 and target phenotypes YN×1, that has been

split into three separate subsets Dtrain,Dvalid,Dtest : Da ∩ Db = ∅ ∀ Da, Db ∈

{Dtrain,Dvalid,Dtest} and Dtrain ∪ Dvalid ∪ Dtest = D. We first optimize multi-layer

feedforward neural networks on Dtrain.

Algorithm 1: Our GWAS pipeline that uses feedfoward neural networks to
predict a single trait and feature importance methods to attribute a global
importance score to each SNP
Input: A dataset D = (X, Y, Z) of N samples with M SNPs each, consisting

of the genotype matrix X, phenotypes Y , and covariates Z.
Feedforward Neural Network fθ : <M ×<K → <, a feature
importance method Attribute(), objective function J = J cat if Y is
categorical and J cont if it is continuous, and a validation metric
h : <N ×<N → <

Result: Optimized neural network model fθ̂ and an attribution vector
R̂M×1 = (rj) s.t. rj ≥ 0 ∀ j

1 begin
2 Split the dataset tuple (X, Y, Z) into training

Dtrain = (Xtrain, Ytrain, Ztrain), valid Dvalid = (Xvalid, Yvalid, Zvalid), and
test Dtest = (Xtest, Ytest, Ztest)

3 for t← 1 to T do
4 Optimize f using gradient descent on J , calculated on the training

dataset Dtrain, to yield fθt

5 if h(Yvalid, fθt(Xvalid, Zvalid)) ≤ h(Yvalid, fθt−1(Xvalid, Zvalid)) then
6 fθ̂ ← fθt−1

7 break
8 else
9 fθ̂ ← fθt

10 end
11 end
12 R ← Attribute(fθ̂, (Xtest, Ztest), [. . .])
13 R̂← mean(|R|)
14 return fθ̂, R̂

15 end
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Step 1: Train a feedforward model We train a feedforward model to output a

prediction ŷn given input SNPs Xi ∈ Dtrain, using typical loss functions like the Mean

Squared Error (Equation 2.6) for regression or Binary Cross Entropy (Equation 2.5)

for classification. This is repeated for all elements of Dtrain and the resulting model is

then evaluated on the validation data Dvalid using the metric h. For classification, h

can be the mean conditional log likelihood of the phenotypes in the validation set given

their corresponding genotypes, under the trained model, which is equivalent to Lcat

in Equation 3.2. For regression, a popular choice for h is Explained Variance (EV=

1 − V ar(y−ŷ)
V ar(y) ), which is the proportion of the variance in the target phenotypes that

is explained by the variance in the residuals. We halt training as soon as this metric

starts decreasing between consecutive rounds of the subroutine Train in Algorithm 1,

or if we’ve exhausted our computing budget.

Since we expect a sparse subset of the input SNPs to be causal, we can force the

models to pick a handful of SNPs by adding an L1-penalty (Equation 2.7) to the first

layer weights. This modifies the final objective function of training a model for cate-

gorical traits to J cat in Equation 3.2 and quantitative traits to J cont in Equation 3.4.

We denote the first layer weights using θ1 for both objectives. The final optimized

model is denoted by fθ̂.

Lcat(X, y; θ) = 1
N

N∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)), (3.2)

J cat(X, y; θ) = Lcat(X, y) + λ|θ1|, (3.3)

&

Lcont(X, y; θ) = 1
2

N∑
i=1

(yi − ŷi)2 (3.4)

J cont(X, y; θ) = Lcont(X, y) + λ|θ1| (3.5)
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Step 2: Attribution We now compute importance scores for each SNP j in each

sample i contained in the test dataset Dtest using feature importance techniques de-

scribed in Section 2.3.2. As mentioned previously, we cannot use CAM, GradCAM,

and Deconvolution since our model does not contain any convolution layers, and al-

though LRP is applicable, Shrikumar, Greenside, and Kundaje (2017) show that it is

equivalent to GradInput without the ε term in Equation 2.13, while being unstable

relative to the other techniques. This means that we are left with a choice between

3 techniques, namely GradInput (IXG), DeepLIFT (DL), and Integrated Gradients

(IG).

The Attribution subroutine in Algorithm 1 describes the general pipeline of the

procedure of generating an aggregated importance score R = rj for each SNP j ∈

1 . . .M . Since our three candidate attribution techniques (GradInput, DeepLIFT, and

Integrated Gradients) all require slightly different hyperparameters, we describe them

here so that they may be appropriately used in Algorithm 2. While GradInput simply

needs a genotype sample xi used to make a prediction, DeepLIFT and Integrated

Gradients also require reference inputs x and z to compute y. In addition, Integrated

Gradients needs t, the number of steps taken to reach the sample xi from x along the

line segment connecting those two points.

In order to improve robustness of the final importance scores of all SNPs, we

recommend averaging R over multiple random seeds, essentially running Algorithm 1

multiple times with a different random initialization of the model weights and dataset

splits.

Our pipeline is still incomplete since we haven’t picked the feature importance

method. Moreover, we need to specify the baseline inputs for both DeepLIFT and

Integrated Gradients (x and z) and the parameter t for Integrated Gradients, in

Algorithm 2. They are specified as part of the experiments used to evaluate our

pipeline. We first list and describe the criteria used to evaluate it.
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Algorithm 2: Computing attributions for every SNP in a set of inputs. The
square brackets on Line 4 indicate optional arguments that are to be included
if DeepLIFT or Integrated Gradients are used.
Input: A dataset D = (X, Y, Z) of N samples with M SNPs each, consisting

of the genotype matrix XN×M , phenotypes YN×1, and covariates
ZN×K , where K is the dimension of the covariates. Feedforward
Neural Network fθ : <M ×<K → <, a reference input genotype x and
reference input covariates z, and an integer parameter t ∈ Z : t ≥ 5

Result: A matrix AN×(M+K)

1 Attribute(f , (X,Z), (x, z), t):
2 n← 0, A← −→0 N×(M+K)
3 for each row xi of X do
4 Ai ← attr(fθ̂, (xi, zi), [(x, z), t])
5 end
6 return A

3.2.2 Evaluation

As mentioned before, the pipeline needs to be accurate at identifying the causal SNPs

if the model is using them to make accurate predictions. If we known how many

there are, we can simply count the number of causal SNPs present at the top after

ranking the SNPs. For example, we could compute the number of causal SNPs that

are included in a set of SNPs ranked at the top when ordered by their summarized

importance scores (i.e. top-K accuracy for each causal SNP where K is the number of

causal SNPs). However, this ignores how the model ranks causal SNPs between each

other as well as the ranks of any causal SNPs that are outside the top K SNPs. This

leads us to consider rank correlation metrics like the Kendall Tau (Kendall 1938). But

the Kendall Tau does not give more weight to mistakes in ranking more important

items (causal SNPs with larger β). In order to compute rank correlations that take

into account β, we also report the Weighted Kendall Tau rank correlation (Vigna

2015), which is a generalization of the Kendall Tau that is designed to deal with ties

and weigh differences in rankings according to a weight for each rank. This allows us to

increase the penalty of incorrectly ranking causal SNPs with larger effects, giving us a

more precise measure of a pipeline’s ranking accuracy. Thus, we report three different
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metrics for each attribution method: the Top-K accuracy (Top-K) with K being the

number of causal SNPs, the Kendall-Tau rank correlation (τ) after ranking the causal

SNPs by their causal coefficient β and the attribution scores, and the corresponding

Weighted Kendall Tau (τβ) to penalize mistakes in ranking causal SNPs with higher

values of β.

With a set of accuracy metrics in hand, we now describe the qualities that we

believe an attribution method should possess to make it ideal for use in Algorithm 1,

as well as how we are going to measure them:

Accuracy The pipeline needs to be accurate at identifying the causal SNPs if the

model is using the causal SNPs to make accurate predictions. If a model is right for

the right reasons (Doshi-Velez and B. Kim 2017) then the pipeline needs to be able

to show that. This is a necessary condition for the pipeline to be useful at all.

Consistency The accuracy of the pipeline should be consistently high for accurate

models. We measure this by measuring the mean and standard deviation of the

pipeline’s accuracy over the top 10% performing models.

Fidelity Robnik-Šikonja and Bohanec (2018) define Fidelity as how well explana-

tions reflect the behaviour of the model. If the model is right for the right reasons

then the accuracy of the pipeline should positively correlate with the model’s pefor-

mance. We capture fidelity by measuring the correlation between model performance

and each attribution accuracy metric, for all trained models.

We now proceed to describe the generation procedure for the datasets used to

train and evaluate our pipeline, and subsequently the experiments used to conduct

the evaluation.
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3.3 Experiments

We’d like to run experiments in order to evaluate how accurate our GWAS pipeline is

at identifying and ranking known causal SNPs (Accuracy), as well how to investigate

how the pipeline’s accuracy is affected by the predictive performance of the underlying

model. The latter goal requires assessment of the pipeline’s attribution accuracy when

the underlying model’s prediction performance is high (Consistency) as well as when

it is low (Fidelity). In order to judge any of these qualities of the pipeline, as well

as to compare the different attribution methods, we’ll need to know the ground-

truth causes. Thus, it makes sense to perform experiments on simulated data. We

first describe the procedure used to generate the datasets used for our experiments,

before moving on to the details of the experiments with the pipeline. We generate 4

datasets of 10,000 individuals with 10,000 SNPs, including 10 causal SNPs, for both

a categorical and a continuous trait.

3.3.1 Simulation

As mentioned earlier, in order to be able to assess our pipeline quantitatively, we

need to be able to simulate the genotype matrix, the population level confounders,

and most importantly the ground-truth causal effects of the SNPs. Esssentially, In

this section, we describe the procedures used to generate the aforementioned data and

design the classification and regression tasks.

We follow Hao, Song, and Storey (2016) to simulate genotypes with a population

structure that is reflected by a sample’s spatial position in the population. The

genotype matrix XN×M is simulated by sampling from a Binomial of a matrix of

allele frequencies π.

xij ∼ Binomial(2, πij),where π is a matrix of allele frequencies (3.6)



CHAPTER 3. PHENOTYPE PREDICTION AND INTERPRETATION USING
DEEP NEURAL NETWORKS 40

As depicted in Equation 3.7, π is constructed from the product of matrices ΓM×P

and SP×N , where the former maps the structure of the sample population to the allele

frequencies of each SNP, the latter represents the position of each sample in the pop-

ulation (the population structure), and P determines the number of subpopulations

or clusters that the samples can be clustered into. We set P = 3, with the last row

fixed to 1. This means that the first 2 rows of S will determine the position of each

sample on a unit square. The constants 0.9 and 0.05 (Equation 3.7) were picked so

that πij ∈ 0.05 . . . 0.95.

π = ΓS,

Γmk ∼ 0.9× Uniform(0, 0.5), k ∈ 1, 2,

Γm3 = 0.05,

Skn ∼ Beta(a, a), k ∈ 1, 2,

S3n = 1

(3.7)

As shown in Equation 3.8, binary traits are sampled from Bernoulli distributions

with parameters that are a linear function of a random effect vector, the SNPs, and

the spatial position of each sample.

εn ∼ Normal(0, σ2
n),

yn ∼ Bernoulli(
M∑
m=1

βmxmn + λn + εn),
(3.8)

with βm defined as below:

βm ∼


N (0, 0.5), if m ∈ mcausal

0, if m /∈ mcausal,
(3.9)

where mcausal is the list of causal indices. For both prediction tasks, we set mcausal =

2000, 2200, 2400, . . . , 3800, which evenly spreads the causal SNPs in the middle of the
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first half of the genotype and sets the effect parameter for non-causal SNPs to zero.

We simulate quantitative (or continuous) traits using the linear logit function from

Equation 3.8, as described in Equation 3.10 below:

εn ∼ Normal(0, σ2
n),

yn =
M∑
m=1

βcontm xmn + λn + εn

(3.10)

As per Hao, Song, and Storey (2016), we simulate λn and σn as follows:

1. Assign each sample j to a partition obtained by running K-mean clustering on

the columns of the sample frequency matrix S, with K = 3. Let the partitions

be denoted by S1, S2, and S3

2. λj = k for all j ∈ Sk

3. Draw γ2
1 , γ

2
2 , γ

2
3 ∼ InverseGamma(3, 1) and set σ2

j = γ2
k, ∀j ∈ Sk.

The confounding of the causal effect is controlled by the B parameter a in Equa-

tion 3.7, which controls the sparsity of the sample population. If a = 1, the samples

are placed uniformly within a unit square. As a gets smaller, the samples separate into

clusters more easily. In order to address the confounding, we compute and provide

the top 3 principal components of the genotype matrix as input to the classifier.

3.3.2 Training, Attribution, and Ranking

Training and Model Selection We run experiments over the space of hyper pa-

rameters listed in Table 3.1, with L1 regularization hyperparameter λ ∈ {0.01, 0.1, 1, 10}.

This results in 9 different model architecures, with 4 different configurations of the

L1-penalty, each of which was trained on each spatial configuration of the datasets,

over 5 seeds, for both classification and regression tasks. We train each model on
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50% of the samples, early stop on 25% of the samples, and validate the model archi-

tectures using the remaining 25%. The different dataset settings were characterized

by the values of the spatial parameter a ∈ {0.01, 0.1, 0.5, 1}. All the classification

datasets have an average case-control ratio of 0.3.

As mentioned in Step 1 of Section 3.2.1, we force the models to pick a handful of

SNPs by adding an L1-penalty to the first layer weights. We use J cat as the objective

function for the classification task, and J cont for the regression task. The metric h

used to select models is the validation set likelihood ΠiP (yi|xi; θ̂) for classification,

and validation set EV for regression. For each combination of spatial configuration a,

architecture, and λ, we select models with the highest average value of h.

Table 3.1: Width of the 2-layer feedforward NNs trained on the simulated single-task
data

Number of hidden units in layer

Layer # First {32,64,128}
Second {128,256,512}

Attribution We then apply the attribution method to the predictions of the trained

model on the test set to compute attribution scores for each input SNP of each test

sample. These scores are summarized by averaging their absolute value. For DeepLift

and Integrated Gradients, the reference input is set to be the mean genotype of all

samples. We min-max scale the attribution scores to [0, 1], in order to be able

to compare and combine scores for the same input across experiments of a spatial

configuration.

Ranking As mentioned in Subsection 3.2.2, we compute 3 different metrics; the

number of causal SNPs in the top K highest ranked SNPs (Top-K), with K being

the number of causal SNPs, the kendall tau rank correlation for the causal SNPs (τ),

and the weighted kendall tau rank correlation for the rankings of the causal SNPs

(τβ). Since we know that we have simulated 10 causal SNPs, we select 10 SNPs with
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the highest attribution score and count the number of causal SNAPS in that set to

compute Top-K. The rank correlations are computed between a ranking computed

on the causal coefficient β and a ranking computed on the summarized attribution

scores.

The Weighted Kendall Tau rank correlation metric gives a weight to each rank

and combined the weights for every pair of ranks being compared. For example, if the

weight of ranks i and j (i < j) is wi and wj respectively, then the mistake of ranking j

above i is weighted by combining wi and wj. Thus, we need to decide what wr should

be for each rank r, as well as how different weights are to be combined. We follow

suggestions made by Vigna (2015), and set the weight for rank r to 1
r+1 and combine

rank weights by adding.

3.4 Results

We report negative control results as the attribution and model accuracy for untrained

models on the classification dataset, in Table 7.1 of the Appendix. As expected, the

untrained models on the classification dataset have zero model accuracy and the

corresponding attribution tasks report zero causal SNPs.

We now report accuracy and consistency results for classification and regression

separately, in that order. Finally, we report results for the correlation between model

and attribution performance, together for both tasks. Higher values are better for all

reported attribution and model performance metrics.

3.4.1 Accuracy and Consistency

Table 3.2 lists the target likelihood, PR AUC, and ROC AUC, on the test set for the

best performing model on each of the four datasets. The PR and ROC AUCs are

above 0.85 for all models while the likelihood is at least 75%.
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Table 3.2: Model performance and architecture of the best model on the classification
tasks

a Architecture λ ΠiP (yi|xi; θ̂) PR AUC ROC AUC
0.01 [64,512] 0.1 0.77 0.87 0.94
0.10 [64,512] 0.1 0.79 0.88 0.94
0.50 [64,512] 0.1 0.84 0.91 0.97
1.00 [64,512] 0.1 0.80 0.90 0.95

Table 3.3 lists the attribution metrics discussed in Section 3.2.2 for the models

in Table 3.2. All models identify at least half of the causal SNPs (Top-K≥ 5) while

consistently ranking most causal SNPs correctly (τ ≥ 0.78 for at least one attribution

method per a). GradInput (IXG) clearly performs worse in terms of ranking the SNPs

and if the causal coefficient β for each causal SNP is taken into account (τβ), then its

performance is even worse. This implies that although GradInput is able to filter in

as many causal SNPs as DeepLIFT (DL) and Integrated Gradients (IG), it is unable

to rank them correctly.

Table 3.3: Model performance of the best model and corresponding attribution accu-
racy on the classification tasks

Top-K τ τβ

a ΠiP (yi|xi; θ̂) DL IG IXG DL IG IXG DL IG IXG
0.01 0.77 5.33 5.33 5.0 0.87 0.84 0.67 0.90 0.89 0.73
0.10 0.79 6.00 6.00 6.0 0.90 0.90 0.75 0.96 0.96 0.67
0.50 0.84 9.00 9.00 9.0 0.90 0.90 0.70 0.93 0.92 0.70
1.00 0.80 6.33 6.00 6.0 0.76 0.78 0.66 0.79 0.81 0.70

Tables 3.4 and 7.2 (in Appendix 7.1) list the mean and standard deviation in the

test set likelihood and attribution accuracy computed over the top 10% models. We

notice that the mean attribution performance is lower than the best model, suggesting

that the pipeline’s accuracy improves for models with better predictive performance.

The deviation in Top-K attribution accuracy is higher as a percentage of their cor-

responding mean in Table 3.4, which might be because the metric relies on a hard

cutoff, resulting in a less smooth distribution.
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Table 3.4: Model performance and attribution accuracy, averaged over the top 10%
models on the classification tasks.

Top-K τ τβ

a ΠiP (yi|xi; θ̂) DL IG IXG DL IG IXG DL IG IXG
0.01 0.69 4.77 4.77 4.60 0.70 0.70 0.59 0.81 0.82 0.69
0.10 0.69 5.30 5.33 5.23 0.79 0.80 0.70 0.87 0.87 0.67
0.50 0.74 7.67 7.67 7.50 0.83 0.83 0.68 0.87 0.87 0.69
1.00 0.69 5.57 5.53 5.33 0.68 0.69 0.62 0.71 0.72 0.67

Table 3.5 shows the explained variance reported by the best model on each of

the regression tasks, along with their attribution accuracy metrics. We observe that

Top-K accuracy is much better than during classification while the ranking metrics

Top-K and τβ are lower across the board. This implies that more causal SNPs were

filtered out but they were not correctly ranked. A potential reason for this could be

that most β coefficients for the causal SNPs in the categorical datasets were mostly

negative, resulting in the number of cases (y = 1) being at most a third of the number

of controls (y = 0) in the dataset. As mentioned in Section 3.3.1, this was by design

to improve resemblance with real-world GWAS datasets. In order to improve the

predictive performance of the model on each classification dataset, the cases were

oversampled over the controls, which would have forced the models to rely on the

SNPs with positive causal coefficients potentially at the cost of a fraction of the

causal SNPs with negative coefficients.

Table 3.5: Model performance of the best models and corresponding attribution ac-
curacy on the regression tasks

Top-K τ τβ

a EV DL IG IXG DL IG IXG DL IG IXG
0.01 0.79 9.0 9.0 9.0 0.87 0.85 0.61 0.84 0.82 0.63
0.10 0.75 9.0 9.0 9.0 0.81 0.84 0.76 0.79 0.81 0.74
0.50 0.69 7.0 7.0 7.0 0.44 0.44 0.53 0.49 0.50 0.55
1.00 0.68 9.0 9.0 10.0 0.81 0.78 0.67 0.75 0.72 0.63

Table 3.6 lists the mean EV and attribution metrics computed over the top 10%



CHAPTER 3. PHENOTYPE PREDICTION AND INTERPRETATION USING
DEEP NEURAL NETWORKS 46

models for the regression task, and Table 7.3 (in Appenfix 7.1) lists the corresponding

standard deviation. We notice that the Top-K accuracy is very stable since there is

almost no deviation across the models and almost all values are identical to Table 3.5.

Likewise, the ranking metrics Top-K and τβ are also very similar to the best model.

This suggests that model performance is not correlated with the ranks of the causal

SNPs. We investigate this while testing for Fidelity in the next Section.

Table 3.6: Model performance and attribution accuracy, averaged over the top 10%
models on the regression tasks.

Top-K τ τβ

a EV DL IG IXG DL IG IXG DL IG IXG
0.01 0.75 9.0 9.0 9.00 0.78 0.77 0.58 0.76 0.76 0.60
0.10 0.70 9.0 9.0 9.00 0.81 0.82 0.73 0.79 0.80 0.66
0.50 0.64 7.0 7.0 7.00 0.52 0.52 0.51 0.54 0.55 0.51
1.00 0.64 9.0 9.0 9.93 0.82 0.81 0.63 0.77 0.77 0.60

3.4.2 Fidelity

As mentioned in Section 3.3, if an attribution method is true to a model’s perfor-

mance, then its attribution performance should directly correlate with its prediction

performance. In Table 3.7, we report the Pearson correlation between the performance

metrics of all trained models and their corresponding attribution accuracy metrics,

averaged over all datasets, for each attribution method. We find that in the classifi-

cation task, correlation for DeepLIFT and Integrated Gradients is consistent for all

datasets, whereas for GradInput, the correlation between model performance and the

ranking metrics is much lower with larger standard deviation.

In contrast, the correlation between EV and any attribution accuracy metric is

much lower across the board for the regression task. In fact, there is almost zero

correlation between model performance and the ranking metrics for Integrated Gra-

dients and DeepLIFT, and slightly negative correlation for GradInput. This partially
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validates the low mean rank correlation in Table 3.6 and low standard deviation in

Table 7.3.

Table 3.7: Mean Spearman correlation and standard deviation between the test set
model performance and attribution accuracy. Test likelihood (ΠiP (yi|xi; θ̂)) was used
as the performance metric for classification tasks, and EV for the regression tasks.

Task Method Top-K τ τβ

Classification
DL 0.75 ± 0.10 0.75 ± 0.06 0.73 ± 0.04
IG 0.74 ± 0.10 0.75 ± 0.05 0.72 ± 0.02
IXG 0.72 ± 0.13 0.56 ± 0.14 0.35 ± 0.28

Regression
DL 0.65 ± 0.40 -0.03 ± 0.41 -0.09 ± 0.31
IG 0.88 ± 0.02 -0.05 ± 0.40 -0.09 ± 0.30
IXG 0.62 ± 0.44 -0.26 ± 0.31 -0.27 ± 0.33

3.5 Conclusion

The most common approach to discover SNP to phenotype associations is to test sin-

gle SNPs at a time. Furthermore, common approaches try to capture any interaction

use linear models; completely ignoring any complex (non-linear) interactions between

them. Deep learning models have been successful in a wide variety of domains, es-

pecially with complex unstructured data. Although they have been frequently used

for disease risk score prediction from genotype, their use and success as a scientific

discovery tool in GWAS has been limited thus far. One of the key reasons for that is

the lack of understanding and consensus on explaining neural network model predic-

tions. In particular, there are no established methods that can help identify whether

the features used by a model are novel biomarkers for a phenotype or simple spurious

correlations. This would require a measure of importance of a feature to a model’s

predictions as well as a measure of its significance. Additionally, there has been no

empirical study to assess the strengths and weaknesses of prevailing deep learning

feature importance techniques in the context of GWAS.
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In this chapter, we designed a pipeline to conduct a GWAS using deep learning

for phenotype prediction and gradient based feature importance methods to construct

summarized importance scores of the input SNPs. We considered three pipelines that

are all distinguished by the feature importance method used; DeepLIFT, GradInput,

and Integrated Gradients. We conducted a series of tests to evaluate the capabilities

of each pipeline in terms of the number of correctly identified known causal SNPs

and their rankings on simulated datasets that were constructed with known ground

truth causal coefficients. The accuracy and ranking metrics reported for the best

models in Section 3.4.1 clearly show that all 3 pipelines can capture the effects of

at least half of all causal SNPs and arrange almost all of them in correct order if

the phenotype is categorical. In contrast, the proposed pipelines correctly identify

almost all causal SNPs in the regression task albeit with low rank correlation with

their causal coefficients.

We also show that the pipeline is robust to changes in model architecture as evi-

denced by the low variance in attribution performance of each pipeline. Considered

together, these results show that at least on a simulated GWAS dataset, known causal

SNPs can be clearly distinguished from non-causal SNPs by the proposed pipelines.

Based on the fact that pipelines using DeepLIFT and Integrated Gradients perform

similarly and often better than GradInput on the classification task, we can con-

clude that following experiments should employ Algorithm 1 with the DeepLIFT or

Integrated Gradients attribution methods.

The relatively low Top-K accuracy for attribution on classification tasks and the

low rank correlation metrics (τ and τβ) for attribution on regression tasks do point

to some deficiencies in our pipeline. These issues can be exacerbated in real world

GWAS datasets that can have far more SNPs with many more peaks of significant

association. Furthermore, the case-control imbalance can be much larger in real-world

datasets making optimizing the model much harder. This lack of a predictive signal

can be tackled by either oversampling data from the minority category, penalizing
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mistakes made for cases more heavily, or adding auxiliary prediction tasks for related

targets. We explore the latter in the form of multi-task prediction and the application

of our pipeline to real-world data in subsequent Chapters.



4
Multi-task prediction and attribution with

Deep Neural Networks

Genetic association studies often test multiple traits. Their analysis typically consists

of testing each trait individually and then integrating the evidence for association

for a particular SNP across traits (Galesloot et al. 2014). However, this approach is

inconsistent with biology (Chavali et al. 2010), wherein the same SNP(s) can impact

multiple related traits, as well as ignoring any potential in improving predictive power

contained in predicting related traits together. Joint prediction of the target disorder

with related phenotypes can act as a domain specific regularization that can help

generalization. Predicting multiple related targets is a form of multi-task learning that

exploits the commonalities or differences between related tasks in order to improve

performance at each individual task (Caruana 1993). Multi-task learning can improve

generalization at each prediction task by providing a domain specific inductive bias

during training. Multi-tasking can also aid interpretability of the final model by

narrowing the set of potential solutions that the model converges to. In this Chapter,

we explore whether it is possible to extend our pipeline from Chapter 3 to leverage

information between related traits in order to improve performance on each trait.

50
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4.1 Related Work

The standard approach in genetic association studies is to analyze a single trait. This

ignores the opportunity to integrate phenotypic information of related traits. It is well

known that the genetic architecture of complex disorders involves common variants

with small effect sizes (Visscher, M. A. Brown, et al. 2012), necessitating studies with

large samples sizes in order to increase the power to detect said variants. The vast

majority of common genetic variants for most traits have a markedly lower effect than

1% (Visscher, M. A. Brown, et al. 2012). Interestingly, many GWAS have highlighted

loci that affect multiple traits, which potentially increases the evidence for pleiotropy

in human disease (Solovieff et al. 2013). Pleitropy is the phenomenon of the same

variant affecting multiple traits either directly (biological pleiotropy) or via another

trait (mediated pleiotropy).

The joint analysis of multiple phenotypes has recently become popular for im-

proving statistical power to detect novel associations. Solovieff et al. (2013) provide a

detailed summary of techniques that analyze multiple phenotypes and broady classify

them into two groups: multivariate techniques that directly model the association

between a single SNP and multiple traits in a single cohort and univariate techniques

that analyze the test statistics of multiple genotype-phenotype tests (single SNP and

single trait). Most multivariate techniques require that the all target phenotypes

are measured on each individual, which might increase the scope of the study, thus

complicating its approval. This makes them less feasible for studies of rare diseases.

However, if information for all phenotypes is available then these techniques have the

advantage of being able to investigate the correlations between the phenotypes in ad-

dition to testing associations between them and each variant. For example, Ferreira

and Purcell (2008) use canonical correlation analysis (CCA, Hotelling 1936) to find a

linear combination of SNPs and another of phenotypes such that the cross-correlation

between the two combinations is maximized. However, CCA assumes that the geno-
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types be normally distributed, and may result in a higher false positive error rate if

this assumption is violated. MultiPhen, developed in O’Reilly et al. (2012), performs

logistic regression to predict the genotype at a single SNP from multiple phenotypes,

thus finding a linear combination of phenotypes that are associated with each SNP.

Another method, MANOVA (Warne 2014), which is the multivariate generalization

to the Analysis of Variance (ANOVA), is equivalent to this procedure when the de-

pendant variable (the genotype) is normally distributed. However, both CCA and

MANOVA have an increased false-positive error rate when this assumption is vio-

lated. All 3 approaches model linear combinations of the phenotypes and test a single

SNP at a time.

Univariate techniques combine results from multiple, single-phenotype and single-

variant tests to identify variants that are associated with multiple phenotypes. Al-

though the single-phenotype tests may can be conducted from the same sample of

phenotypes, the key advantage of this category of techniques is their potential to sys-

tematically examine results from several GWAS (Panagiotou et al. 2013) in order to

improve power to detect smaller genetic effects without the need to share individual-

level data. Several techniques have been proposed to pool associations across multiple

single-trait GWAS to test for presence of associations between the genotype and mul-

tiple traits (Bhattacharjee et al. 2012; Sluis, Posthuma, and Dolan 2013; Bolormaa

et al. 2014; Zhu et al. 2015; Turley et al. 2018).

For a systematic comparison of some of the multi-trait GWAS methods mentioned

above, we refer readers to Porter and O’Reilly (2017), who conduct a comprehensive

evaluation of multi-trait GWAS methods, including methods that use sample-specific

phenotype data (Ferreira and Purcell 2008; O’Reilly et al. 2012 and MANOVA) as

well as those that inspect summary statistics of individual single-trait single-SNP

GWAS (Sluis, Posthuma, and Dolan 2013; Zhu et al. 2015).

The subfield of machine learning called multi-task learning provides an interest-

ing and potentially useful approach to developing techniques for multi-trait GWAS.
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Multi-trait prediction is a natural application area for single-input multi-output mul-

titask learning (Thung and Wee 2018), if multiple targets (correlated biological traits)

are predicted from a single input (single genetic population). The key idea behind

multi-task learning is being able to leverage information between the tasks to improve

performance at each task. This has been used across various application areas like

computer vision (Girshick 2015), speech processing (L. Deng, G. Hinton, and Kings-

bury 2013), and natural language processing (Collobert and Weston 2008). It has

also been widely applied in the fields of bioinformatics and clinical informatics. In

fact, one of earliest applications of multitask learning was in Caruana, Baluja, and

Mitchell (1995) wherein results of related clinical tests were used as targets to im-

prove prediction of a subset of tests that could be used to automate and improve risk

assessment of pneumonia patients. Mordelet and Vert (2011) devised ProDiGe to pri-

oritize causal gene candidates of related diseases by formulating a multi-task variant

of the PU learning problem (learning from positive and unlabelled examples, X.-L.

Li and B. Liu 2005). They use a pairwise correlation matrix produced from Driel

et al. (2006) to as a kernel to define a similarity measure between phenotypes, and

the inner product of gene feature vectors to define a kernel for genes. Causal gene

candidates are picked based on their association to known causal genes of similar phe-

notypes. Y. Li et al. (2016) formulate survival time prediction (predicting whether

an event of interest occurs at a given instant) as a multitask prediction problem by

converting the original task into a series of related binary classification tasks. The

primary motivation being to learn a shared representation that can be leveraged to

improve prediction at each classification task. They demonstrate the competitiveness

of their method against single-task formulations on several gene expression cancer

survival benchmark datasets. Puniyani, S. Kim, and Xing (2010) propose multiple

trait prediction and association from separate populations in order to detect variants

with relatively weak effects, overall improving the power of the association analysis

compared to traditional single-trait GWAS. Perhaps most similar to the work in this
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chapter is the work in D. He, Kuhn, and Parida (2016), which demonstrates that mul-

tiple output regression (Breiman and Friedman 1997) increases prediction accuracy

of related genetic traits compared to single-trait regression. All of the above methods

model their targets using linear models. As far as we know, there has been no study

on interpreting deep neural networks trained via multi-trait prediction from genetic

data in order to detect potentially causal variants.

4.2 Multi-task prediction of simulated

traits

In the previous chapter, we predicted categorical and continuous traits separately,

with no relation between the two traits. We observed a tradeoff between the Top-

Kaccuracy and both rank correlation metrics τ and τβ, with the latter two being

higher for the regression task and the former for the classification task. Can we

improve the ranking of causal SNPs in a regression task if we simultaneously predict

related binary traits? Can we improve the Top-Kaccuracy of a classification task if

we simultaneously predict a related quantitative trait? This chapter explores whether

we can use the feature importance methods tested in Chapter 3 to identify shared

causal SNPs with homogeneous effects on related traits.

Genotype and trait model with shared causal SNPs More concretely, let’s

consider the same probabilistic genotype model for a population of N samples with

M SNPs from Section 3.2, with the genotype matrix denoted by XN×M . We will

denote the binary trait by ycatj ∀ j ∈ {1, 2, . . . , N} and the quantitative trait by

ycontj ∀ j ∈ {1, 2, . . . , N}, with both traits collectively denoted by Y cat
N×1 and Y cont

N×1

respectively. As mentioned previously, we will assume that both traits are a linear

function of the genotype matrix X.
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In order for the traits to be related, we will assume that they have been measured

from the same population (i.e. they are generated from the same genotype matrix X)

and that a portion of the true causal SNPs are common to both traits, with shared

effects. More precisely, if vectors βcatM×1 and βcontM×1 hold the effects of each SNP on the

binary and quantitative phenotype respectively (i.e. they are effect vectors of each

phenotype), then the assumption of shared causes with homogeneous effects implies

that there exists a non-empty set of SNP indicesM = {j | βcatj = βcontj }.

Multi-task prediction and attribution In contrast to Chapter 3, we cannot use

two separate models if we are to leverage information shared between the two traits.

In order for our prediction model to leverage information shared between both traits,

we will need to train a model that shares parameters for the two prediction tasks. For

the 2-layer networks considered in the pipeline in Chapter 3, we can easily modify the

model used for the single prediction task by using two output layers instead of one as

depicted in the figure below:

SNP #1

SNP #2

SNP #3

SNP #4

Categorical

Continuous

Hidden
layer

Input
layer

Output
layer

Figure 4.1: A feedforward neural network with two output heads that has shared
input and shared hidden layers.

In other words, we feed a single, shared representation to two output heads by

sharing all parameters until the output layer. We can also reduce the information

shared between the two tasks by reducing the number of shared parameters by only
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sharing the weights of the input layer like in Figure 4.2 below:

SNP #1

SNP #2

SNP #3

SNP #4

SNP #5

SNP #6

Categorical

Continuous

Hidden
layer

Input
layer

Output
layer

Figure 4.2: A feedforward neural network with two output heads that has shared
input layers but separate hidden layers

Both architectures will learn to predict two traits simultaneously but the latter

has the advantage of using more parameters specific to each prediction task, which

could result in better attribution performance. We empirically compare their analysis

in Section 4.3 but first we proceed to describe the training and attribution steps of

the multitask pipeline.

In order to train the model to predict both targets, we must formulate an objective

function that includes the prediction losses for both tasks. We simply add both loss

functions together after weighing them using parameters λ1 and λ2, which gives us

the flexbility to give importance to one task over the other. This gives us the equation

below:

Lmult = λ1Lcat + λ2Lcont, (4.1)
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but as before, we assume that a sparse subset of the input SNPs will be causal, and so

we add the L1 norm of the first layer to give Equation 4.2 as the objective function:

Jmult = Lmult + λ|θ1| (4.2)

We run the attribution routine from Algorithm 2 (Chapter 3) on each output

head of the model to get an attribution score that has been averaged over all samples

in the test set. This gives us a pair of summarized attribution scores (one for each

phenotype), that is also averaged over multiple seeds to improve robustness of the

final results. This gives us Algorithm 3 which specifies a pipeline for GWAS using

deep feedforward models that are trained to simultaneously predict a categorical and

continuous trait. Since the final objective function Jmult, shares objectives of both

the classification and regression tasks, it can get tricky to find the right validation

metric h that suits both.

Evaluation Since we’ve explored the consistency and fidelity of our pipeline already

in Chapter 3, we will evaluate the multitask pipeline by the accuracy of its attributions

using the same metrics used in Chapter 3: Top-K, τ , and τβ.

4.3 Experiments

We first describe the procedure used to generate the datasets used for our experiments.

We then address the question of model validation and selection for our multi-trait

prediction model.

4.3.1 Data

We generate 4 datasets of 10,000 individuals with 10,000 SNPs, including 10 causal

SNPs, for both a categorical and a continuous trait. 5 of the 10 causal SNPs are
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Algorithm 3: Our GWAS pipeline that uses feedfoward neural networks
to predict two traits and feature importance methods to attribute a global
importance score to each SNP for both traits
Input: A dataset D = (X, Y, Z) of N samples with M SNPs each, consisting

of the genotype matrix X, phenotypes Y cat and Y cont, concatenated
to form YN×2, and covariates Z. Feedforward Neural Network
fθ : <M ×<K → <× 2, a feature importance method Attribute(),
objective function Jmult and a validation metric
h : <N×2 ×<N×2 → <

Result: Optimized neural network model fθ̂ and an attribution matrix
R̂M×2 = (rij) s.t. rij ≥ 0 ∀ i, j

1 begin
2 Split the dataset tuple (X, Y, Z) into training

Dtrain = (Xtrain, Ytrain, Ztrain), valid Dvalid = (Xvalid, Yvalid, Zvalid), and
test Dtest = (Xtest, Ytest, Ztest)

3 for t← 1 to T do
4 Optimize f using gradient descent on Jmult, calculated on the training

dataset Dtrain, to yield fθt

5 if h(Yvalid, fθt(Xvalid, Zvalid)) ≤ h(Yvalid, fθt−1(Xvalid, Zvalid)) then
6 fθ̂ ← fθt−1

7 break
8 else
9 fθ̂ ← fθt

10 end
11 end
12 R ← Attribute(fθ̂, (Xtest, Ztest), [. . .])
13 R̂← mean(|R|)
14 return fθ̂, R̂

15 end

shared between the two traits, with their corresponding causal effects.

We synthesize a multi-task dataset by generating a categorical and a continuous

trait with a portion of the causal SNPs and their corresponding causal effects shared

between the two traits. Let mcat denote the set of indices corresponding to the SNPs

that are uniquely causal for the binary trait, let mcont denote the set of indices of the

SNPs that are uniquely causal for the continuous trait, and let mshared be the set of

indices for the shared causal SNPs. Therefore, the total number of causal SNPs for

the binary trait is mcat + mshared and for the quantitative trait it is mcont + mshared.



CHAPTER 4. MULTI-TASK PREDICTION AND ATTRIBUTION WITH DEEP
NEURAL NETWORKS 59

The larger the cardinality of the set mshared, the greater number of shared causal

SNPs. For a genotype matrix with M SNPs, we define the 3 vectors βcatM,1, β
cont

M,1 , and

βsharedM,1 as follows:

β̄catm ∼


N (0, 0.5), if m ∈ mcat

0, if m /∈ mcat

(4.3)

β̄contm ∼


N (0, 0.5), if m ∈ mcont

0, if m /∈ mcont

(4.4)

βsharedm ∼


N (0, 0.5), if m ∈ mshared

0, if m /∈ mshared

(4.5)

The final effect vector for each trait is constructed as follows:

βcat = βshared + β̄cat (4.6)

βcont = βshared + β̄cont (4.7)

The traits are simulated exactly as described in Section 3.3.1 but with effect

vectors obtained from Equation 4.6. We set mcat = 2000, 2400, 2800, 3200, 3600,

mcont = 4500, 4900, 5300, 5700, 6100, and mshared = 0, 300, 600, 900, 1200, thus evenly

separating elements of each causal set while mantaining a clear boundary between

each set. Thus, we have a total of 10 causal SNPs per trait, with the first 5 causal

SNPs being shared. The different dataset settings are characterized by the values

of the spatial parameter a ∈ {0.01, 0.1, 0.5, 1}. Finally, all the classification datasets

have an average case-control ratio of 0.3.

4.3.2 Model architecture

In order to be able to compare model prediction performance from the single-task

experiments and multi-task experiments in this Section, we train 2-layer feedforward



CHAPTER 4. MULTI-TASK PREDICTION AND ATTRIBUTION WITH DEEP
NEURAL NETWORKS 60

NNs with the same combinations of hidden units as the models used in Table 3.1.

However, since the models are being trained simultaneously on two related tasks, we

also train and test larger 3-layer NNs with the first, second, and third layers having

512, 256, and 128 hidden units, respectively. The widths and depths of each model

are listed in Table 4.1. We also train models that only share the input layer weights

as depicted in Figure 4.2. The details and rationale behind the experiments using this

architecture are explained in Section 4.4.2.

Table 4.1: Width of the 2-layer and 3-layer feedforward NNs trained on the simulated
multitask data

Layer # Number of hidden units in layer

2-layer networks First {32,64,128}
Second {128,256,512}

3-layer networks
First {512}
Second {256}
Third {64}

4.3.3 Training, Model selection, and Ranking

Similar to Section 3.3.2, each model was trained on each spatial configuration of the

datasets, over 5 seeds, for both classification and regression tasks. We train each

model on 50% of the samples, early stop on 25% of the samples, and validate the

model architectures using the remaining 25%.

We consider the same set of values for λ as in Table 3.1. This resulted in experi-

ments with (3 ∗ 3 + 1) ∗ 4 = 40 different models. All models share all weights, except

the output layer weights, for both prediction tasks, as depicted in Figure 4.1. We use

Jmult as the objective function for training and experiment with different combina-

tions of λ1 and λ2. The different values of λ, λ1, and λ2 are listed in Table 4.2. Models

are early-stopped as soon as the value of Jmult starts decreasing on the validation set.
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Table 4.2: Values of the l1 regularization coefficient λ and the multi-task loss function
hyperparameters λ1 & λ2 for the architectures listed in Table 4.1

λ (λ1,λ2)
{0.01,0.1,1,10} (1,1), (1,0.1), (0.1,1)

Model Selection Depending on the values of λ1 and λ2, we use different metrics

h to select the best models. For example, for models trained on Jmult with λ1 > λ2,

we use the validation set likelihood ΠiP (yi|xi; θ̂), whereas when λ2 > λ1, we use

validation set EV, and finally when λ1 = λ2, we use ΠiP (yi|xi; θ̂) + EV , computed

on the validation set. For each experiment we select models with the highest average

value of h.

Ranking As in Subsection 3.2.2, we compute 3 different metrics; the number of

causal SNPs in the top K highest ranked SNPs (Top-K), with K = 10, the kendall

tau rank correlation for the causal SNPs (τ), and the weighted kendall tau rank

correlation for the rankings of the causal SNPs (τβ). We select 10 SNPs with the

highest attribution score and count the number of causal SNPs in that set to compute

Top-K. The rank correlations are computed between a ranking computed on the

causal coefficient β and a ranking computed on the summarized attribution scores.

4.4 Results

We first report model performance and corresponding attribution accuracy of the top

performing models on each dataset trained on both classification and regression tasks,

while giving more importance to one over the other (λ1 > λ2 and vise-versa). Finally,

we investigate the scenario where both prediction tasks are given equal importance

(λ1 = λ2 = 1) at the end of Section 4.4.1 as well as all of Section 4.4.2. All reported

results are on the test split of the dataset, and higher values are better for all reported

attribution and model performance metrics.
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4.4.1 Predictions using shared hidden layers

Table 4.3 lists the attribution metrics discussed in Section 3.2.2 for the top performing

2-layer NNs selected from Table 4.1, with more importance given to the binary trait

over the quantitative trait (λ1 > λ2). At least half of the causal SNPs are always

identified (Top-K≥ 7 for at least one attribution method) while consistently ranking

most causal SNPs correctly (τ ≥ 0.70 for at least one attribution method per a).

Compared to Table 3.3, Top-Kperformance has mostly improved for DL and IG,

while decreasing for IXG. Rather surprisingly, IXG seems to rank on par or better

than DL and IG for tasks on datasets with a ∈ 0.01, 0.1, 0.5. Furthermore, for DL and

IG, values of both τ and τβ have worsened, suggesting that predicting quantitative

traits has had a detrimental effect to ranking of the causal SNPs as we first observed

in Section 3.4.

Table 4.3: Prediction performance of the best 2-layer model and corresponding at-
tribution accuracy on the classification tasks with λ1 = 1 and λ2 = 0.1 in loss equa-
tion 4.1

Top-K τ τβ

a ΠiP (yi|xi; θ̂) DL IG IXG DL IG IXG DL IG IXG
0.01 0.80 7.0 7.0 7.0 0.82 0.78 0.87 0.73 0.67 0.92
0.10 0.77 7.0 7.0 4.0 0.78 0.78 0.73 0.79 0.79 0.80
0.50 0.80 7.0 7.0 7.0 0.82 0.82 0.73 0.88 0.88 0.85
1.00 0.79 8.0 8.0 7.0 0.70 0.70 0.47 0.50 0.50 0.24

Table 4.4 lists the attribution metrics discussed in Section 3.2.2 for the top per-

forming 2-layer NNs selected from Table 4.1, with more importance given to the

quantitative trait over the binary trait (λ2 > λ1). All models identify at least 70%

of the causal SNPs (Top-K≥ 7 for all attribution methods), while consistently rank-

ing most causal SNPs correctly (τ ≥ 0.78 for at least one attribution method per

a). Compared to Table 3.5, Top-Kperformance has slightly reduced for all attribu-

tion methods. However, the consistency in both rank correlation metrics has vastly

improved across datasets, for all attribution methods. This is consistent with our
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findings about the difference in performance on the single-task classification and re-

gression tasks in Chapter 3; the added classification task has vastly improved the

rankings of the causal SNPs but only slightly decreased the overall Top-Kaccuracy.

Table 4.4: Prediction performance of the best 2-layer NN and corresponding attribu-
tion accuracy on the regression tasks with λ2 = 1 and λ1 = 0.1 in loss equation 4.1

Top-K τ τβ

a EV DL IG IXG DL IG IXG DL IG IXG
0.01 0.79 7.0 7.0 7.0 0.96 0.96 0.78 0.94 0.94 0.75
0.10 0.78 7.0 7.0 7.0 0.91 0.91 0.78 0.92 0.92 0.74
0.50 0.71 9.0 9.0 9.0 0.96 0.96 0.73 0.98 0.98 0.86
1.00 0.76 8.0 8.0 8.0 0.78 0.78 0.69 0.82 0.82 0.62

Table 4.5 lists the attribution metrics obtained from applying the top performing

2-layer NNs selected from Table 4.1, with both traits given equal importance (λ2 =

λ1 = 1). In the interest of brevity, we present results using only IG and present the

results for DL and IXG in Tables 7.4 and 7.5 of Section 7.2 of the Appendix. We

observe that the attribution accuracy and correlation performance for the quantitative

trait are drastically better than for the binary trait. In fact, attribution performance

on the binary trait has drastically deteriorated, while on the quantitative trait it has

remained similar to and at times even slightly better than in Table 4.4. This seems

to suggest that attribution accuracy on the quantitative trait is far more robust than

on the binary trait in the multi-task setting.

Table 4.5: Attribution performance of the best 2-layer model using IG for both traits
(binary on the left and quantitative on the right), with λ2 = 1 and λ1 = 1 in loss
equation 4.1

Top-K τ τβ

4.0, 7.0 0.60, 0.96 0.65, 0.94
5.0, 7.0 0.60, 0.91 0.67, 0.92
5.0, 9.0 0.07, 0.96 0.11, 0.98
4.0, 8.0 0.47, 0.78 0.56, 0.82

In order to investigate the low attribution performance on the binary task, we plot
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the mean attribution scores for the binary trait computed from applying IG to the

models in Figure 4.3. These scores are for models trained on the dataset with a = 0.5

since the difference in the rank correlation metrics between the two traits is the largest

for this dataset setting. The issue is immediately noticable; some of the causal SNPs

of the quantitative trait have high attribution scores with respect to the binary trait.

In other words, there is considerable “leakage” found in the attribution scores from

the quantitative trait to the binary trait, decreasing the pipeline’s performance on

the binary trait in the multitask setting. This is expected since both output heads

are sensitive to a common set of parameters. However, it is rather surprising that the

leakage is only one-way: from the regression task to the classification task. A possible

cause of this issue could be that given equal weights to the two prediction tasks, the

model may find it easier to improve on the regression task to help optimize the overall

objective. The focus on the regression task may have lead to the model’s predictions

of the binary trait becoming more sensitive to some SNPs that are exclusively causal

to the quantitative trait. We attempt to ameliorate this issue in the next section.

4.4.2 Leakage of identified hits between traits

The output layers of the models used so far share all input and hidden layer weights

(Figure 4.1). As presented earlier, this can lead to some signals leaking from one trait

to the other (Figure 4.3). In this section, we present attribution performance results

of multitask pipelines using models with the architecture from Figure 4.2. By sharing

only the input layer weights, these models are forced to share the minimum set of

weights for the two tasks. This should help improve attribution accuracy since there

are more parameters available exclusively for either task.

Table 4.6 shows the attribution accuracies after applying IG on 2-layer models

(with the aforementioned architecture) trained on both traits. Pipelines using models

with this architecture have better attribution performance for the binary task as



CHAPTER 4. MULTI-TASK PREDICTION AND ATTRIBUTION WITH DEEP
NEURAL NETWORKS 65

0.0e+00 2.0e+03 4.0e+03 6.0e+03 8.0e+03 1.0e+04
SNP Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n(
ab

s)
sc

or
es

0.0e+00 2.0e+03 4.0e+03 6.0e+03 8.0e+03 1.0e+04
SNP Index

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n(
ab

s)
sc

or
es

Figure 4.3: Mean absolute Integrated Gradients scores for the top performing model
with architecture from Figure 4.1, with λ1 = λ2 = 1, and trained on both a categori-
cal(left) and continuous (right) target with dataset a = 0.5, averaged across seeds

evidenced by the increase in Top-Kaccuracy and the drastically better rank correlation

metrics for most dataset settings.

Table 4.6: Attribution performance of the best 2-layer model using the architecture
in 4.2, using IG for both traits (binary on the left and quantitative on the right), with
λ2 = 1 and λ1 = 1 in loss equation 4.1

a Top-K τ τβ

0.01 5.0, 7.0 0.60, 0.91 0.66, 0.92
0.10 6.0, 7.0 0.91, 0.91 0.96, 0.92
0.50 7.0, 9.0 0.69, 1.00 0.78, 1.00
1.00 6.0, 8.0 0.64, 0.64 0.66, 0.58

The scatter plot in Figure 4.2 shows that the leakage has certainly reduced but

has not been completely eliminated. The SNP with the highest attribution score is

now a correct causal hit for the binary trait but leakage from the regression task for
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Figure 4.4: Mean absolute Integrated Gradients scores for the top performing model
with architecture from Figure 4.2, with λ1 = λ2 = 1, and trained on both a categorical
(left) and continuous (right) target with dataset a = 0.5, averaged across seeds

at least three SNPs is still present.

Since we cannot reduce the sharing of parameters between traits any further, we

now train models with increased depth and perform the same comparison. Table 4.7

compares the attribution accuracies for classification between 3-layer models with

all hidden layers shared (left) and with only the input layer weights shared (right).

For brevity, we present results using IG but these results hold for DL and IXG as

well. As expected, pipelines using models with only the input weights shared have

better attribution accuracy (all three metrics are equal or higher). Furthermore, as

expected, these pipelines have better performance compared to the two layer models

in Table 4.6.

This is confirmed by Figure 4.5, which shows attribution scores obtained from

using IG on the classification task of a 3-layer model trained on both tasks on the
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Table 4.7: Attribution performance using IG on the best 3-layer model with both
shared and unshared hidden layer (left and right below respectively) architectures for
the binary trait, with λ2 = 1 and λ1 = 1 in loss equation 4.1

a Top-K τ τβ

0.01 6.0, 6.0 0.60, 0.69 0.70, 0.71
0.10 6.0, 7.0 0.47, 0.96 0.59, 0.98
0.50 6.0, 7.0 0.64, 0.96 0.69, 0.98
1.00 6.0, 8.0 0.60, 0.78 0.59, 0.65

dataset with a = 0.5. After switching from the architecture in Figure 4.1 (left subplot)

to the one in Figure 4.2, the leakage is completely eliminated.
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Figure 4.5: Mean absolute IG scores from binary trait attribution by the best 3-layer
models with both shared and unshared hidden layer architectures (left and right above
respectively), with λ2 = 1 and λ1 = 1 in loss equation 4.1. The models were trained
on the dataset with a = 0.5.
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4.5 Conclusion

In this chapter, we hypothesized that interpretation of models that jointly predict

multiple related traits can help increse the number of identified causal SNPs. We show

that in a simulated setting, interpretation of deep neural networks trained on multiple

related phenotypes can increase the number of causal SNPs that are identified for each

individual phenotype as compared to training and attribution of a single phenotype at

a time (Chapter 3). We modified the pipeline in Chapter 3 for the joint prediction of

a simulated binary and quantitative trait by training a single model that uses shared

hidden and input layer weights to predict both traits simultaneously. We conducted

a series of experiments to test the attribution accuracy of three pipelines that are

all distinguished by the feature importance method used; DeepLIFT, GradInput, and

Integrated Gradients. Therefore, we train several two-layer models that are trained to

predict a binary and quantitative trait that share a portion of their causal SNPs. We

show that the Top-Kaccuracy can be improved for causal SNPs of the binary trait if

the classification task is prioritized over the regression task, while it slightly decreases

for the quantitative task if the regression task is given more importance. However, in

both scenarios, the ability of each pipeline to correctly rank the causal SNPs vastly

improved compared to the single-task case.

We also show that the attribution accuracy for the quantitative trait remains

unchanged if we weigh prediction losses for each trait equally, on the other hand it is

significantly reduced for the binary trait. We identify the source of this issue as some

leakage in sensitivities of the causal SNPs of the quantitative trait to the binary trait

due to the presence of too many shared weights from the hidden layers of the models.

We ameliorate this issue by reducing the shared parameters to only the input layer

and see an improvement in attribution performance on the classification task. We

show that by using more powerful models we can almost eliminate this issue.

Overall, we showed that deep neural networks can be trained and interpreted in
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simulated multi-task settings to identify and correctly rank the majority of causal

SNPs for two traits that share half of their causal SNPs and corresponding causal

effects (i.e. homogenous effects of shared causal SNPs). But multi-trait GWAS studies

deal with scores of related traits simultaneously, with more complex relationships

between the traits and the SNPs. For example, some SNPs may be causal for only a

subset of the investigated traits, or traits may share a few causal SNPs but not the

corresponding causal effects (heterogeneous effects). These scenarios are significantly

more complex than the one we’ve investigated in this Chapter, and can exacerbate the

leakage issue we identified in Section 4.4. We leave this for further work and proceed

to applying pipelines from both Chapters 3 and 4 to a real-world dataset in the next

Chapter.



5
Applications to the UK Biobank

We’ve spent the previous chapters analyzing the accuracy and robustness of GWAS

pipelines that interpret Neural Networks trained on simulated datasets containing a

small number of causal SNPs. In this Chapter, we will test these techniques on a

large, real-world genomics dataset, namely the UK Biobank (Sudlow et al. 2015), a

large population cohort including more than 500,000 genotyped participants.1.

The UK Biobank is widely used for genomic research, with over 2000 researchers

already having access to its data (Manolio 2018). It contains a variety of phenotypic

information available over hundreds of thousands of participants who have been ex-

tensively genotyped, allowing us to test the pipelines that we’ve developed so far on

various clinically relevant traits, on a practically significant scale. This makes the UK

Biobank a challenging and practical benchmark for the pipelines that we’ve proposed

in Chapters 3 and 4.

5.1 Related Work

The UK Biobank contains a rich variety of phenotypic measurements on each par-

ticipant, all of whom are aged 40 to 69, which is when complex chronic diseases are

likely to manifest (Manolio 2018). This gives researchers ample opportunities to dis-
1This research has been conducted using the UK Biobank Resource under Application Number

20168.

70
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cover novel genetic associations. It has enabled several genetic association studies

and meta-analysis studies spanning an expansive range of diseases such as Coronary

Artery Disease (CAD, Harst and Verweij 2018), Type-2 Diabetes (Xue et al. 2018),

Osteoporosis (Morris et al. 2019), or neurological diseases such as Parkinson’s disease

(Blauwendraat, Nalls, and Singleton 2020), Alzheimer’s disease (Marioni et al. 2018),

or Depression (D. M. Howard et al. 2019), as well as several other genetic, molecu-

lar, and physiological biomarkers (Elliott et al. 2018; Sinnott-Armstrong, Tanigawa,

et al. 2021; Sinnott-Armstrong, Naqvi, et al. 2021) that can help decipher biological

mechnisms behind complex traits and diseases. Furthermore, the large sample size

and dense genotyping in the UK Biobank matches the scale of many recent genetic

association studies that investigate common traits and complex diseases (Ahlqvist

et al. 2015; Yengo et al. 2018; Tam et al. 2019; Pulit et al. 2019).

However, the application of machine learning techniques to the UK Biobank data

has been limited. A notable category is using machine learning methods to improve

phenotype prediction performance. For example, Oster et al. (2020) compare the de-

tection of atrial fibrillation (AF) using UK Biobank electrocardiogram (ECG) data,

done automatically by a combination of classical machine learning (Support Vector

Machines) and deep learning models versus manually by experts. They find that the

agreement between the proposed approach and another expert is similar to the inter-

observer agreement between two experts, leading them to conclude that automated

detection of AF in large datasets similar to the UK Biobank is possible. Schulz et al.

(2020) investigate whether complex non-linear machine learning models (such as deep

learning models) can use brain imaging data in the UK Biobank to improve the classi-

fication of individuals into their respect subgroups of age and gender. Finally, Bellot,

Campos, and Pérez-Enciso (2018) compared deep MLPs and CNNs against Bayesian

linear regression on the prediction of five phenotypes: height, bone heel mineral den-

sity, body mass index, systolic blood pressure, and waist–hip ratio, on a sample set of

100,000 individuals and 500,000 SNPs from the UK Biobank. They found that CNNs



CHAPTER 5. APPLICATIONS TO THE UK BIOBANK 72

were competitive to the linear models but did not outperform them by a wide margin.

Slightly distinct but related is the work of Alaa et al. (2019), who investigate the

use of machine learning algorithms for cardiovascular (CVD) risk prediction. They

trained an ensemble of statistical and machine learning algorithms (ranging from lo-

gistic regression to deep neural networks) using Bayesian optimization to prioritize

and select algorithms that are optimal for CVD risk prediction and find that it out-

performed established methods at risk prediction for relevant subpopulations such as

individuals with a history of Diabetes.

Finally, we were unable to find published work that uses deep learning techniques

on the UK Biobank genomics data for SNP-trait association.

5.2 Predicting Diabetes and HbA1c

using the UK Biobank

In order to test the scalability and robustness of our approach on large real-world

genetic datasets, we apply the pipelines from Chapters 3 and 4 to predict traits ob-

tained from the UK Biobank (Section 5.2). The importance scores obtained from the

pipelines are then compared to results obtained from a conventional GWAS conducted

on the same traits.

In this Section, we first present and justify the selection of Diabetes and HbA1c

as the target traits from the UK Biobank. We then briefly discuss the results of

a conventional GWAS targetting both traits, separately. Finally, we describe the

procedure used to collect and process the genotype and phenotype data before it is

used as input for the experiments in this Chapter.

Type 2 Diabetes (T2D) is a common chronic health condition that is amongst the

top 10 causes of death globally (Forouzanfar et al. 2016). Its presence is associated

with increased cause-specific mortality with causes such as infections, cardiovascular
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disease, stroke, chronic kidney disease, chronic liver disease, and cancer (Yang et

al. 2019; Policardo et al. 2014). Diabetes has the second largest net negative effect

on reducing health adjusted life expectancy at birth (HALE0, C. Chen et al. 2019).

According to the International Diabetes Federation, 451 million people worldwide were

living with diabetes in 2017, with the number expected to rise to 700 million by 2045

(N. Cho et al. 2018). It is primarily caused by a failure in the body’s normal response

to insulin or by insufficient production of insulin by the body’s cells (Taylor 2013).

Genome-Wide Association studies helped discover an initial list of T2D-associated

loci (e.g. the genes PPARG and TCF7L2, Altshuler et al. 2000; Grant et al. 2006).

However, the etiology of this disease remains largely unknown and subclassification

could improve patient management (Udler et al. 2018).

The level of HbA1c, also known as glycated haemoglobin, is an important risk

factor for Diabetes. It is made when glucose (sugar) sticks to the body’s red blood

cells. Increase in HbA1c increases the likelihood of developing Diabetes related com-

plications. In fact, it is commonly used as a test to diagnose Diabetes (Sarnowski

et al. 2019). Thus, its clinical relevance and relationship to Diabetes makes HbA1c a

potential quantitative target for analysis in this Chapter. Furthermore, if we observe

the scatter plot of the signals obtained from a conventional GWAS conducted on both

Diabetes (left) and HbA1c (right) on the data in the UK Biobank2 (Figure 5.1), we

find that these traits share at least three signals, with the presence of strong signals

unique to each trait. Therefore, selecting Diabetes and HbA1c , allows us to stay

close to the settings that we investigated on simulated data in previous chapters: in

Chapter 3, we evaluated our pipeline on individual classification and regression tasks,

while in Chapter 4, we evaluated our pipeline after training the model simultaneously

on a pair of classification and regression tasks with shared causal SNPs.

We now describe how we build two datasets for the phenotypes Diabetes and

HbA1c :
2the preparation and preprocessing of the data is described later in this section
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Figure 5.1: Scatter plot of the negative p-values from a conventional GWAS conducted
on Diabetes (left) and HbA1c (right)

Filtering individuals We consider the imputed genotypes, where we filter out

individuals with more than 2% missing genotypes, in addition to individuals with

sexual chromosome aneuploidies or with genetically inferred sex different from the

self-reported sex. We then select a subset of the cohort of European ancestry to

avoid population stratification (i.e. confounding bias due to ethnicity) by using the

UK Biobank provided principal components and keeping individuals near the cluster

of individuals self-reporting as of white British ancestry. To avoid including related

individuals, we randomly select one individual from pairs with a kinship coefficient

above 0.0884 (corresponding to a 2nd degree relationship). This results in the selection

of N = 413, 173 individuals (samples).

Filtering variants After selecting individuals, we filter genetic variants to be used

as features. Starting from all variants on chromosome 10, we filter out variants with

minor allele frequency under 1%, variants with a call rate (Reed et al. 2015) under

99% and set genotypes with a probability under 90% to missing. This results in the

selection of M = 336, 814 variants (SNPs) per individual.

Phenotype extraction The Diabetes phenotype is defined based on a combination

of hospitalization codes and the self-reported verbal interview data. Specifically, we
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code as cases any participant with data coding for Diabetes (field #20002, coded as

1220) as cases, or with the ‘249’ or ‘250’ ICD9 codes, or E10, E11, E12, E13, or E14

ICD10 codes as the primary or secondary reason for hospitalization. The remaining

individuals are used as controls. This results in a dataset with 24,717 diabetes cases

and 388,456 controls.

The HbA1c phenotype (field #30750) is extracted for 395,042 participants. If

multiple measurements are available for an individual, the arithmetic mean is used.

The values are also log-transformed to ensure an approximately normal distribution

as typical in continuous trait GWAS.

5.3 Experiments

We run two sets of experiments, one to predict Diabetes and HbA1c in the traditional

single-task setting (Chapter 3), wherein a single target is predicted, and another in

the multi-task setting (Chapter 4), wherein the two traits are predicted together.

Training We always partition the data into 80% for training, 5% for early stopping

and validation, and report test metrics on the final 15%. Since repeat our experiments

on 5 seeds, we use 5 different partitions of the data. We perform grid-search over the

set of model architectures listed in Table 5.1, and with the L1-regularization penalty

λ ∈ {0.1, 1, 10}. The same architectures are used for both single-task and multi-task

settings. For the multi-task setting, we use the model with unshared hidden weights

as depicted in Figure 4.2. As for the values of λ1 and λ2 in the multi-task setting,

we train a set of models with (λ1, λ2) = (1, 0.1) and another with (λ1, λ2) = (0.1, 1).

All experiments are repeated with 5 seeds. This results in 9 different architecures,

times 3 different values of λ, 2 phenotypes, and finally 2 + 1 different settings (1 for

single-task and 2 for multi-task), bringing the total number of experiments to 108 *

5 (seeds) = 540.



CHAPTER 5. APPLICATIONS TO THE UK BIOBANK 76

Table 5.1: Widths of the 2-layer feedforward NNs trained for either classification,
regression, or both.

Number of hidden units in layer

Layer # First {32,64,128}
Second {128,256,512}

As we mentioned earlier in Step 1 of Section 3.2.1, we force the models to pick

a handful of SNPs by adding an L1-penalty to the first layer weights. We use J cat

as the objective function for the Diabetes prediction task, and J cont for the HbA1c

prediction task.

Model selection After training, we select model architectures based on h, which

is set as the validation set likelihood ΠiP (yi|xi; θ̂) for Diabetes classification, and

validation set EV for regression. Model performance is compared on the average

value of h over 5 seeds. For both single-task and multi-task settings, we select models

with the highest average value of h.

Attribution Similar to the procedure in Section 3.3.2, we compute the attribution

values of the selected models on the test set. Due to computational constraints of IG,

and the instability of IXG, we compute attributions using DL (see Section 3.5). We use

the mean genotype over all samples as the reference input for DL, and then compute

the mean of the absolute value of the test set attribution scores (see Algorithm 1 or 3).

Evaluation We evaluate the proposed approach by comparing with GWAS analyses

adjusted for age (field #21022), sex (field #31), and the first 10 ethnicity principal

components as provided by the UK Biobank. We compare the negative p-values

obtained from this GWAS against the mean absolute value of the test set attribution

scores computed using DL.
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5.4 Results

We first describe the Single-task attribution and model performance results for both

traits before moving on to the Multi-task setting.

5.4.1 Single-task

Table 5.2 and 5.3 report the architectures of the best performing models on the Single-

task prediction of Diabetes and HbA1c respectively. Although the likelihood of the

target trait on the test set is 76%, the PR AUC is extremely low, likely owing to the

high imbalance in cases vs controls (20 times more controls versus cases). Curiously,

as observed in Table 5.3, a similar disconnect between the test prediction error (MSE,

Equation 3.4) and EV is observed for the HbA1c prediction task. Here, both the

test set MSE and EV are very low. Figure 5.3 compares the histogram of true and

predicted values of HbA1c on the test set for this model. The figure shows that

the model makes predictions around the mean value accurately but quickly fails to

generalize outside of this region.

Table 5.2: Model performance and architecture of the best model on the Diabetes
classification task.

Architecture λ ΠiP (yi|xi; θ̂) PR AUC ROC AUC
64,128 0.1 0.76 0.127 0.598

Table 5.3: Model performance and architecture of the best model on the HbA1c
regression task.

Architecture λ MSE EV

64,128 0.1 0.020 0.056
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Figure 5.2: Miami plot of a conventional GWAS against the mean absolute DeepLIFT
scores on Diabetes (left) and HbA1c (right). The best performing Diabates model had
64 by 128 hidden units, and the best HbA1C model had 64 by 128 units. The L1
regularization parameter λ was 0.1 for both models. The attribution scores were
averaged over scores from the 5 seeds for each selected model.

Despite this, the Miami plot in Figure 5.2 shows that for both traits, the pattern of

signal obtained via our pipeline closely matches the pattern obtained by a conventional

GWAS. For example, the topmost peaks in both halves of both Miami plots occur at

the same index. In fact, for Diabetes, all significant peaks can be matched with the

peaks obtained via the summarized attribution scores. For HbA1c , it appears that

the 3 smaller peaks at indices 50000, 100000, and at 260000 are missing. This is in

contrast to our findings about the attribution accuracy of the single-task pipeline on

the regression task from Chapter 3. However, in this case, the prediction performance

of the model is quite low.
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Figure 5.3: A histogram of the predictions made by the best HbA1c model (light blue)
from Table 5.3 on the test set and overlayed on the histogram of the true output values
(dark green)

5.4.2 Multitask

Tables 5.4 and 5.5 report the architectures of the best performing models on the

Multi-task prediction of Diabetes (with λ1 = 1 and λ2 = 0.1) and HbA1c (with

λ1 = 0.1 and λ2 = 1) respectively. The model performance on both tasks is very

similar to the single-task case, with the likelihood of Diabetes on the test set being

80%, and the test set mean prediction error of HbA1c being the same at 0.020. The

PR, ROC AUC, or EV prediction metrics have not changed either. Thus, in contrast

to the improvement that we observed going from the Single-task to the Multi-task

case for simulated datasets, we do not see a benefit in prediction performance here.

However, the Miami plot in Figure 5.4 shows that again for both traits, the pattern
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of signals closely match their conventional GWAS counterparts. There are a few

changes compared to the pattern in Figure 5.2: for Diabetes, the signal close to index

250000 is missing, while for HbA1c , the signal near index 125000 is slightly more

prominent. Additionally, there seems to be a signal at approximately index 100,000

in the right half of the Miami plot of Figure 5.4 that is missing in the corresponding

half of Figure 5.1. This is probably spurious. The presence of spurious peaks and

the absence of known peaks can potentailly be fixed by taking the intersection (to

reduce the false positive rate of loci captured by conventional GWAS) or union (to

increase true positive rate of loci captured by conventional GWAS) of the peaks of

top performing models.

Table 5.4: Model performance and architecture of the best multitask model trained
with λ1 = 1 and λ2 = 0.1 on the Diabetes prediction task

Architecture λ ΠiP (yi|xi; θ̂) PR AUC ROC AUC
64,128 0.1 0.80 0.115 0.596

Table 5.5: Model performance and architecture of the best multitask model trained
with λ1 = 0.1 and λ2 = 1 on the HbA1c prediction task

Architecture λ MSE EV

32,128 0.1 0.020 0.059
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Figure 5.4: Miami plot of a conventional GWAS against the mean absolute DeepLIFT
scores on Diabetes (left) and HbA1c (right). The best performing Diabates model had
64 by 128 hidden units, and the best HbA1C model had 32 by 128 units. The L1
regularization parameter λ was 0.1 for both models. The attribution scores were
averaged over scores from the 5 seeds for each selected model.

5.5 Conclusion

In this chapter, we sought to compare the single-task and multi-task GWAS pipelines

from Chapters 3 and 4 on the large genetic dataset contained in the UK Biobank.

We ran experiments to predict Diabetes and HbA1c in both single and multi-task

settings, and compared feature importances computed using DeepLIFT against the

negative p-values of a conventional GWAS conducted on the same dataset.

In the single-task setting, we found that the prediction performance in each set-

ting was very low, especially in terms of PR AUC for Diabetes prediction, and EV for

HbA1c . Probably as a result, the prediction performance in the multi-task setting
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did not improve much at all. Despite this, we found that the best performing model

for Diabetes prediction has attribution scores that closely align with all of the major

peaks obtained from conventional GWAS. In contrast, for HbA1c, the two topmost

peaks were clearly identifiable but a few minor peaks were not. For Diabetes, we

found that one out of the three smaller peaks identified in the single-task setting dis-

appeared in the multi-task setting. Furthermore, there was no clear increase in the

number of GWAS significant loci that were identified for HbA1c. This is in contrast to

the improvement in results observed in the simulated multi-task setting (Chapter 4)

over the single-task setting (Chapter 3). However, given the low prediction perfor-

mance of all models trained on real-world data, it is difficult to compare the utility

of the multi-task setting to the single-task setting. Regardless of their comparative

performance, our results clearly show that the models were looking at the right loci for

their predictions. Furthermore, their results can be combined by either taking their

union to help increase coverage or by taking their intersection, which should reduce

the chance for false positives. This leads us to conclude that deep learning models

trained on large, real-world genomic datasets can be interpreted to confirm known

genomic signals but more work needs to be done in improving their prediction accu-

racy. Thus, future work on the interpretability of deep models for large-scale GWAS

should rely on models with high prediction performance before different techniques

are analyzed.

Key points to consider when designing a machine learning pipeline for this purpose

are the difference in dimensions of the input features compared to the output, the im-

balance between cases and controls, and the long range interactions between features

that may be crucial to identify SNP-SNP interactions that could improve prediction

accuracy. In this chapter, we considered the first two by incorporating an L1 penalty

term to encourage sparsity and oversampling the cases over the controls. However

our choice of architecture does not take into account long-range interactions between

inputs. This can be better modelled by self-attention based architectures such as



CHAPTER 5. APPLICATIONS TO THE UK BIOBANK 83

Transformers (Vaswani et al. 2017) which have recently become immensely popular

for Natural Language Processing (NLP) tasks such as text generation or machine

translation, where performance relies on the ability of the model to model long-range

interactions.



6
Conclusion

The most common approach to discover SNP to phenotype associations is to model

phenotypes using a single SNP at a time. Furthermore, common approaches that try

to capture any interaction use linear models and thus completely ignore any complex

(non-linear) interactions between them. Modelling these interactions may aid the dis-

covery of variants that are indirectly causal for a disease or trait. With the broader

goal of using Deep Neural Networks to model such interactions in mind, this thesis

focussed on incorporating Deep Neural Networks into a GWAS pipeline that is accu-

rate, reliable, and as scalable as conventional GWAS on modern genomic datasets. In

this Chapter, we’ll first discuss how we’ve addressed the objectives that we listed in

the Introduction (Chapter 1), including the conclusions that we can reasonably make

with regards to each objective. We then summarize the key findings and contributions

of this study. Finally, we note key limitations and topics for future work.

Our first objective (Objective 1) was to investigate how we could interpret a neural

network to measure the importance of its inputs. We started by covering related

literature on the interpretability of deep neural networks, and found that feature-

importance techniques could be used to assess the relative importance of different

parts of the input, to a trained model’s predictions. In Chapter 3, we proposed a

pipeline that applies and interprets deep feedforward models to calculate importance

scores for each input SNP. We found that on a simulated dataset, if a model can

84
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accurately predict the target trait, our approach correctly identifies and ranks at least

half of all causal SNPs. Thus, importance scores generated by gradient-based feature

importance techniques applied on deep neural networks can be used to accurately

identify and rank causal SNPs in order of their known causal coefficients on simulated

datasets. Thus, in Chapter 3, we accomplished our first objective by showing that

we could accurately and reliably assess the relative importance of input SNPs to

a model’s prediction by using certain feature importance techniques that could be

applied directly to a trained model.

In Chapters 3 and 4, we also accomplished our second objective (Objective 2),

which was to devise a GWAS pipeline that incorporated Deep Neural Networks.

Our investigation of feature importance techniques used to interpret deep models

for GWAS went hand in hand with the design of our pipeline in Algorithm 1. We

proposed a methodology to quantitatively evaluate deep network based pipelines for

GWAS on a simulated dataset, which allowed us to compare different versions of

the proposed pipeline. We concluded that pipelines using Integrated Gradients and

DeepLIFT should be preferred over GradInput since their results were more consistent

for both classification and regression tasks, over a wide range of prediction models.

Furthermore, in Chapter 4, we modified our pipeline to Algorithm 3, which uses

multi-task learning on related traits to improve coverage and ranking of known causal

SNPs. We showed that by favouring classification over regression, we could improve

the number of correctly identified causal SNPs of the binary trait, or by favouring

regression over classification we could improve the ranking accuracy for the causal

SNPs of the quantitative trait.

Our final objective (Objective 3) was to compare our pipline’s accuracy, reliability

and scalability to a real-world GWAS. In Chapter 5, we applied our pipelines from

Chapters 3 and 4 to a large and complex genomic dataset, the genomic data in the UK

Biobank. We predicted two related and clinically important traits, the chronic disease

Type-2 Diabetes and the quantitative trait HbA1c. Since we didn’t know the true
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causal effects of variants on traits in the real-world, we first conducted an association

study using linear models in order to have a few “true” SNP-trait associations to

compare to. We then applied the pipelines developed in Chapters 3 and 4 on the

same dataset and showed that the most significant peaks found using the conventional

analysis are clearly distinguishable using our pipelines as well. In order to ensure the

robustness of our results, all experiments were repeated over five differrent seeds and

averaged to produce the final result. Although we did see some reduction in coverage

while using the multi-task pipeline, it was hard to conclude about its utility relative

to the single-task pipeline due to the low prediction performance of our models on

both Diabetes and HbA1c prediction. We concluded that our pipelines can be relied

upon to clearly distinguish most important genomic signals of a target trait from a

large genomic dataset. Furthermore, we could improve coverage by taking the union

of the single and multi-task pipelines if they consistently showed different signals.

6.1 Summary of contributions

Overall, this thesis conducted the first empirical analysis of the strengths and weak-

nesses of prevailing deep learning feature importance techniques in the context of

GWAS. We proposed a GWAS pipeline using these techniques on deep feedforward

neural networks, and demonstrated its applicability to modern single-trait GWAS,

and multi-trait GWAS. We showed that on simulated data, multi-task learning could

improve the identification accuracy and ranking of causal SNPs compared to the

single-task setting. However, we also found that the importance scores generated

from gradient-based techniques are prone to leakage but this leakage can be miti-

gated by reducing the number of layers that are shared between the tasks and by

using deeper models. Finally, our approach is potentially faster and computationally

lighter since only a single model needs to be trained and analyzed per trait, and in the

multi-task setting, it can model several related traits together, which is biologically
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more realistic for multi-trait analysis, while also being faster since only one model

needs to be interpreted for each trait in the study.

6.2 Limitations

While we’re excited by the possibility of applying deep neural networks at scale for

GWAS, some limitations would still need to be addressed for our approach to be

practical:

Model prediction performance Although this work focusses mainly on model

interpretability, the low model performance on each task of Chapter 5 is an important

limitation of our study. Trust in the model’s predictions is necessary to build trust

in our approach. After all, the model has to be “right” for practictioners to use it for

scientific discovery. The low prediction accuracy of the model on the UK Biobank data

exhibits the challenges of training deep models on large, unbalanced datasets. These

include the class imbalance between cases and controls, the difference in dimensions of

the single-dimensional output trait and the several thousand dimensional input SNPs,

as well as the relatively few number of samples compared to the dimensionality of the

input. There are several techniques that could be useful at tackling some of these

challenges. We cover them as part of the Future Work section since some approaches

might be particularly effective when combined with recently novel methods of model

training (e.g. self-supervised representation learning).

Simulation data for pipeline benchmarking This study adopted a model-based

probabilistic genotype and phenotype simulation procedure from Hao, Song, and

Storey 2016, without a focus on modelling realistic patterns of Linkage Disequlib-

rium found in real-world genomic datasets. This can be solved by resampling based

approaches (Wright et al. 2007; Su, Marchini, and Donnelly 2011), where samples
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of genotypes from real-world biobanks are combined to generate the samples of a

simulation study, all the while retaining the original LD patterns.

Scaling multi-trait prediction using multi-task learning Multi-trait GWAS

studies deal with scores of related traits simultaneously, with more complex relation-

ships between the traits and the SNPs. This could exacerbate the leakage issue we

identified in Chapter 4.

Additionally, our simulations of the binary and quantitative phenotypes in the

multi-task setting also assume a homogenous effect of the shared causal SNPs for

both traits. For e.g. it is possible for the variants of a portion of the shared causal

SNPs to increase the likelihood of the binary trait, while having the opposite effect

on the quantitative trait. This effect heterogeneity could also be purely in terms of

the effect magnitude (Porter and O’Reilly 2017). Future analysis of the multi-task

pipeline should explore performance across a variety of genetic architectures, including

varying the number of shared SNPs and adding effect heterogeneity, or adding indirect

effects by simulating a trait as a function of another trait.

True genome-wide Although our results certainly show that our approach is scal-

able to sizes comparable to modern genomic biobanks like the UK Biobank, they

are not truly genome-wide because the variants included in the study are all from

Chromosome 10. This reduced the number of variants that could be incorporated in

our real-world experiments. However, our approach can be easily scaled to variants

from multiple chromosomes by training a separate copy of the same model on each

chromosome. This parallelizes our procedure across each chromosome.

Group sparsity prior We added an L1 penalty to the first layer to encourage

sparsity and force the model to pick a subset of the SNPs. However, since the L1

penalty is applied without grouping together the weights of a given SNP, it will likely

fail to force all input weights of a non-causal SNP to 0. This means that the model will
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use all the SNPs to some degree. This group specific sparsity penalty can be applied

using the group lasso (Yuan and Lin 2006), with a group for each SNP containing the

set of weights connecting all hidden units to a single SNP.

6.3 Future Directions

Our results motivate lots of interesting directions for future study:

Perturbation-based interpretability techniques We focussed mostly on post-

hoc, gradient-based feature importance techniques to interpret deep neural networks.

We did not include perturbation based interpretability techniques due to the compu-

tational cost of perturbing such a large number of inputs (S. M. Lundberg and S.-I.

Lee 2017). But theoretically, such techniques should be more accurate since they force

the model to make predictions without a certain input. However, care needs to be in

making sure that the perturbations remain inside the distribution of inputs that the

model has been trained on. The only way to be sure of this is to retrain the model

on the dataset with the target feature removed from each input (Hooker et al. 2019).

Novel architectures for prediction The field of natural language processing has

given rise to architectures that are good at contending with interactions between el-

ements spanning several words or sentences. Most popular today are Transformers

(Vaswani et al. 2017), which have proven to be particularly effective at Natural Lan-

guage Processing (NLP) tasks like text generation or machine translation. Compared

to purely Feedforward models, Transformer based architectures are inherently better

suited for prediction tasks that take genetic sequences as input.

Furthermore, a key component of the Transformer-based model architectures is at-

tention (Vaswani et al. 2017; Bahdanau, K. Cho, and Bengio 2015), while allows the

model to learn how to route information from various parts of the input to make pre-
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dictions. Incorporating self-attention could help in modelling long range interactions

that are particularly predictive of the target.

Pre-training and self-supervision Performance of many NLP tasks have been

shown to be improved by pre-training the model (Dai and Le 2015; Devlin et al. 2019;

J. Howard and Ruder 2018). Pre-training via self-supervised representation learning,

wherein the objective is to reproduce parts of a genetic sequence given other parts,

could be effective at learning representations that are distinctive of the combinations of

variants that comprise them. A classifier might have an easier time making predictions

from a representation that is more distinctive of the set of variants that produced it.

Evaluating causal SNPs While the true causal SNPs are not known in a real-

world GWAS, our approach can be used to reduce the set of SNPs that need to be

tested using a conventional GWAS as well as to generate hypothesis of combinations

of SNPs that are causal together. These combinations can be tested using a joint

linear model.
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Appendix

7.1 Single Task Prediction

Table 7.1: Negative controls: Model performance and attribution accuracy of un-
trained models on the classification tasks

Top-K τ τβ

a ΠiP (yi|xi; θ̂) DL IG IXG DL IG IXG DL IG IXG
0.01 0.00 0.00 0.00 0.00 0.01 0.01 -0.02 0.00 0.01 -0.03
0.10 0.00 0.00 0.00 0.00 0.10 0.10 0.16 0.12 0.12 0.16
0.50 0.00 0.00 0.00 0.00 -0.20 -0.21 -0.13 -0.21 -0.22 -0.14
1.00 0.00 0.00 0.00 0.00 -0.27 -0.28 -0.38 -0.20 -0.21 -0.27

Table 7.2: Standard deviation in model performance and attribution accuracy of the
top 10% models on the classification datasets.

Top-K τ τβ

a ΠiP (yi|xi; θ̂) DL IG IXG DL IG IXG DL IG IXG
0.01 0.06 0.80 0.80 0.95 0.16 0.16 0.10 0.11 0.11 0.07
0.10 0.06 0.88 0.89 1.05 0.12 0.12 0.07 0.10 0.09 0.06
0.50 0.07 1.39 1.39 1.52 0.11 0.12 0.07 0.10 0.11 0.07
1.00 0.08 1.19 1.17 1.13 0.11 0.11 0.09 0.09 0.09 0.07
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Table 7.3: Standard deviation in model performance and attribution accuracy of the
top 10% models on the regression datasets.

Top-K τ τβ

a EV DL IG IXG DL IG IXG DL IG IXG
0.01 0.028 0.0 0.0 0.000 0.073 0.078 0.054 0.064 0.066 0.038
0.10 0.031 0.0 0.0 0.000 0.018 0.013 0.042 0.017 0.006 0.099
0.50 0.038 0.0 0.0 0.000 0.055 0.053 0.026 0.032 0.025 0.083
1.00 0.033 0.0 0.0 0.149 0.024 0.023 0.028 0.104 0.040 0.023

7.2 Multi-task Prediction

Table 7.4: Attribution performance of the best 2-layer model using DeepLIFT for
both traits (binary on the left and quantitative on the right), with λ2 = 1 and λ1 = 1
in loss equation 4.1

a Top-K τ τβ

0.01 4.0, 7.0 0.60, 0.96 0.65, 0.94
0.10 5.0, 7.0 0.60, 0.91 0.67, 0.92
0.50 5.0, 9.0 0.07, 0.96 0.11, 0.98
1.00 4.0, 8.0 0.47, 0.73 0.56, 0.77

Table 7.5: Attribution performance of the best 2-layer model using GradInput for
both traits (binary on the left and quantitative on the right), with λ2 = 1 and λ1 = 1
in loss equation 4.1

a Top-K τ τβ

0.01 5.0, 7.0 0.56, 0.82 0.63, 0.80
0.10 5.0, 7.0 0.60, 0.78 0.68, 0.74
0.50 5.0, 9.0 0.11, 0.73 0.20, 0.86
1.00 4.0, 8.0 0.47, 0.69 0.56, 0.62
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