
Fault-Tolerant Edge Computing in JAMScript

Rossen Vladimirov

School of Computer Science
McGill University
Montreal, Canada

August 2021

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Science.

© 2021 Rossen Vladimirov

i

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Muthucumaru
Maheswaran, for his invaluable guidance, advice, and insights. His deep knowledge and
passion for the field of the Internet of Things were instrumental to the success of my research.
Without his continuous support, patience, and encouragement, this thesis would not have
been possible. I would also like to thank the members of the Advanced Networking Research
Lab at McGill University for their contributions to JAMScript.

ii

Abstract

The Internet of Things (IoT) experiences rapid growth in various industries such as health-
care, automotive, manufacturing, and retail. IoT devices generate large volumes of data but
lack processing capabilities. In the Cloud of Things (CoT) computing model, the devices
are connected to cloud computing systems in data centers which provide these capabilities.
Edge computing brings high-powered computing resources closer to the devices to reduce the
latency of access. Specialized software frameworks address the challenges of edge environ-
ments such as device mobility, disconnections, and network latency variability. JAMScript
is a polyglot programming language and middleware for developing edge-oriented IoT ap-
plications. It combines C and JavaScript allowing a single program to execute on device,
edge, and cloud nodes. JAMScript implements efficient inter-node communication, auto-
matic data propagation, and the ability to run distributed computations. In this thesis, we
introduce application zones which group together computing nodes in physical proximity
executing the same JAMScript program. Application zones enable performing synchronized
distributed computations, generating shared data at the edge, and recovering from edge
server failures. We present supercalls which enhance synchronous controller-to-worker com-
putations in JAMScript. A supercall is a collective distributed computation in a zone which
synchronizes computation execution and data generation across the participating devices.
Supercalls have a built-in fault tolerance mechanism with automatic re-execution. We en-
rich the data management capabilities of JAMScript with private and shared data generated
at the edge. Private data is based on data from a single device, while shared data is based on
data from multiple devices participating in a supercall. We incorporate application zones,
supercalls, and private and shared data in a robust fault tolerance mechanism for recovering
from edge server failures. We demonstrate the new features in an application for distributed
multiple-target tracking which efficiently and accurately tracks objects moving in a physical
space. We collect performance results from a simulation with real flight data in scenarios
with and without edge server failures. The experiments show that the overhead of the fault
tolerance scheme is small and the runtime recovers quickly from edge server failures.

iii

Abrégé

L’Internet des Objets (IdO) connaît une croissance rapide dans divers secteurs tels que la
santé, l’automobile, la fabrication et le commerce de détail. Les appareils IdO produisent de
grandes quantités de données mais manquent de capacités de traitement. Dans le modèle
de l’informatique en nuage, les appareils sont connectés à des systèmes informatiques dans
des centres de données qui fournissent ces capacités. L’informatique en périphérie rapproche
les ressources informatiques des appareils IdO pour réduire les temps d’accès. Des logiciels
spécialisés répondent aux défis de l’informatique en périphérie tels que la mobilité des ap-
pareils, les déconnexions et la variabilité de la latence du réseau. JAMScript est un langage
de programmation polyglotte et un intergiciel pour le développement d’applications IdO. Il
combine C et JavaScript permettant à un seul programme de s’exécuter sur les appareils
IdO, les nœuds de périphérie et de nuage. JAMScript met en œuvre une communication
inter-nœuds efficace, la propagation automatique des données et la possibilité de réaliser des
calculs distribués. Dans cette thèse, nous introduisons les zones d’application qui regroupent
des nœuds de calcul à proximité physique exécutant le même programme JAMScript. Les
zones d’application permettent d’effectuer des calculs distribués et synchronisés, de générer
des données partagées et de récupérer des pannes de serveur de périphérie. Nous présentons
les supercalls qui améliorent les calculs synchrones contrôleur-travailleur dans JAMScript.
Un supercall est un calcul distribué dans une zone qui synchronise l’exécution du calcul et la
génération de données entre les appareils participants. Les supercalls ont un mécanisme inté-
gré de tolérance aux pannes avec ré-exécution automatique. Nous enrichissons les capacités
de gestion des données de JAMScript avec des données privées et partagées qui sont générées
en périphérie du réseau. Les données privées se basent sur les données d’un seul appareil,
tandis que les données partagées se basent sur les données de plusieurs appareils participant
à un supercall. Nous incorporons les zones d’application, les supercalls et les données privées
et partagées dans un mécanisme robuste de tolérance aux pannes de serveur de périphérie.
Nous montrons les nouvelles fonctionnalités dans une application distribuée pour le suivi de
cibles mobiles qui suit efficacement et précisément les objets se déplaçant dans un espace
physique. Nous collectons des résultats de performance à partir d’une simulation avec des
données de vol réelles dans des scénarios avec et sans pannes de serveur de périphérie. Les
expériences montrent que la surcharge associée au mécanisme de tolérance aux pannes est
faible et que l’environnement d’exécution récupère rapidement après une panne de serveur
de périphérie.

iv

Contents

1 Introduction 1

1.1 Edge Computing . 1

1.2 The JAMScript Programming Language . 2

1.3 Thesis Contributions . 4

1.4 Thesis Organization . 5

2 Background Information 7

2.1 Controller-Worker Model for Edge Computing 7

2.2 JAMScript Language Overview . 11

2.2.1 Worker Activities . 12

2.2.2 Controller Activities . 14

2.2.3 Data Flows . 16

2.2.4 Conditional Execution . 20

3 System Architecture 21

3.1 Motivating Scenarios and Design Requirements 21

3.1.1 Device-Specific and Shared Data . 22

3.1.2 Synchronized Distributed Computations 22

3.1.3 Application Zones . 23

3.1.4 Fault Tolerance Requirements . 24

3.1.5 JAMScript Concepts and Features 27

Contents v

3.2 Application Zones . 28

3.2.1 Zone Overview . 28

3.2.2 Zone Definition . 29

3.3 Zone Edge Servers . 31

3.3.1 Primary Edge Server . 32

3.3.2 Backup Edge Server . 33

3.3.3 Edge Server Selection Policies . 33

4 Supercalls 35

4.1 Supercall Overview . 36

4.2 Supercall Definition . 38

4.3 Bulk Synchronous Parallel versus Supercalls 39

4.4 Programming with Supercalls . 42

4.5 Supercall Implementation . 44

4.5.1 Supercall Log . 46

4.5.2 Log Record Types . 48

4.5.3 Log Record Sequences . 48

5 Fault Tolerance 50

5.1 Node Failures . 51

5.1.1 Primary Edge Server Failure . 51

5.1.2 Backup Edge Server Failure . 53

5.1.3 Non-Primary/Non-Backup Edge Server Failure 54

5.1.4 Edge Server Restart . 54

5.1.5 Device Failure . 55

5.1.6 Device Restart . 56

5.2 Network Failures . 56

Contents vi

5.2.1 Temporary Network Failure . 56

5.2.2 Intermittent Network Failure . 57

6 Private and Shared Data 58

6.1 Private Data . 59

6.1.1 Programming with Private Data . 60

6.1.2 Example Application . 60

6.2 Shared Data . 64

6.2.1 Programming with Shared Data . 65

6.2.2 Example Application . 65

6.3 Data Reliability Guarantees . 69

6.4 Shared Data and Machine Learning . 71

7 Distributed Multiple-Target Tracking Application 73

7.1 Design Requirements and Architecture . 73

7.2 Implementation . 76

7.3 Simulation with Flight Data . 82

7.4 Experimental Results . 84

8 Related Work 87

8.1 Apache Hama . 87

8.2 Client-Edge-Server for Stateful Network Applications 89

8.3 Resilience of Stateful IoT Applications . 91

8.4 EdgeCons . 93

8.5 Griffin . 95

9 Conclusions and Future Work 98

References 101

vii

List of Figures

2.1 Device deployment . 8

2.2 Edge deployment . 8

2.3 Cloud deployment . 9

2.4 Function calls and data flows . 10

3.1 Area partitioning . 29

3.2 Edge machines and processes . 31

3.3 Zone edge servers . 32

4.1 Synchronous J2C activity in JAMScript . 36

4.2 Bulk synchronous parallel model . 40

4.3 Supercall model . 40

4.4 Supercall execution . 46

4.5 Centralized versus distributed supercall log 47

5.1 Device reconnection after primary edge server failure 52

5.2 Supercall re-execution after primary edge server failure 53

6.1 Private data generation with two devices . 59

6.2 Recording the moving average of wind speeds 61

6.3 Shared data generation with two devices . 64

List of Figures viii

6.4 Recording the average temperature in the smart home 66

6.5 Private data generation inside a supercall . 71

7.1 Sample deployment of the DMTT application 75

7.2 Building the model of tracked targets in the DMTT application 76

7.3 Flight tracking simulation . 84

7.4 Comparison of execution times of supercalls and J2C sync activities 85

7.5 Variation of supercall execution times in the DMTT application 86

ix

List of Tables

2.1 Initiation and execution of controller activities 14

2.2 Data flow scenarios . 17

3.1 Mapping of design requirements to JAMScript concepts and features 27

3.2 Example edge server ranking produced by an edge server selection policy . . 34

4.1 Supercall log record types . 48

4.2 Record sequence for supercall execution without failure 49

4.3 Record sequence for supercall execution with device failure 49

4.4 Record sequence for supercall execution with primary edge server failure . . 49

5.1 Computation layer failures . 51

x

Listings

2.1 Conditional execution based on the controller level 11

2.2 Synchronous worker activity definition (C file) 13

2.3 Synchronous worker activity invocation at the controller (JavaScript file) . . 13

2.4 Asynchronous worker activity definition (C file) 13

2.5 Asynchronous worker activity invocation at the controller (JavaScript file) . 14

2.6 Synchronous controller activity definition (JavaScript file) 15

2.7 Synchronous controller activity invocation at the worker (C file) 15

2.8 Asynchronous controller activity definition (JavaScript file) 16

2.9 Asynchronous controller activity invocation at the worker (C file) 16

2.10 Reading from a logger . 18

2.11 Writing to a logger from a controller . 18

2.12 Writing to a logger from a worker . 18

2.13 Writing to a broadcaster . 19

2.14 Reading from a broadcaster from a controller 19

2.15 Reading from a broadcaster from a worker 19

2.16 Defining and using a conditional . 20

4.1 Edge server program with controller function and supercall invocation 43

4.2 Device program containing the worker function of the supercall 44

6.1 Recording the moving average of wind speeds 62

Listings xi

6.2 Calculating the moving average of wind speeds 63

6.3 Recording the average temperature at the edge server 67

6.4 Temperature reading collection at the devices 68

6.5 Calculating the average temperature from the device readings 69

7.1 Model update at the edge server . 77

7.2 Target collection at the devices . 78

7.3 Target identification at the devices . 79

7.4 Building the model from the targets collected by the devices 81

1

Chapter 1

Introduction

1.1 Edge Computing

The Internet of Things (IoT) [1] consists of smart devices which exchange data with com-

puting systems over the Internet. IoT experiences rapid growth in various industries such

as healthcare [2, 3], automotive [4], manufacturing [5], and retail [6]. The IoT ecosystem

is heterogeneous and includes a wide range of devices and applications [7]. For example,

smart cities leverage IoT technologies for monitoring air and water quality [8, 9] and use

the insights to provide more efficient management of resources. Homes are equipped with

smart thermostats [10] and security systems [11, 12] to ensure the comfort and safety of the

occupants. Networks formed of moving vehicles and roadside units open many possibilities

for autonomous vehicles [13].

The Cloud of Things (CoT) computing model [14] brings together cloud computing [15]

and IoT. Today many devices with constrained computing resources are connected to the

Internet. Typically IoT devices generate large volumes of data at high rates [16] but lack

reliable long-term storage and sufficient processing capabilities. The devices are connected

to cloud computing systems which provide these capabilities. In cloud computing, the com-

1 Introduction 2

puting resources for data processing are located in data centers [17]. The resource capacities

adjust automatically according to the demands of the devices [18].

The high latency of the connection between a device and computing resource on the

cloud poses a major challenge [19] and may make cloud computing unsuitable for latency-

sensitive applications such as real-time gaming, augmented reality, and real-time streaming

[20]. To overcome this, edge computing [21] introduces the edge as an intermediary between

the devices and the cloud. The role of the edge is to bring high-powered computing resources

closer to the devices to reduce the latency of access.

Reliability is an important concern for distributed applications [22]. IoT applications run

on cloud, edge, and device nodes. Device and edge nodes may fail and rejoin the system after

restarting. A node may temporarily lose network connectivity. The latency of a network link

may vary. Node and network failures may cause the loss of computational state at one or

more nodes and lead to the failure of a collective distributed computation in progress. Due

to the unique characteristics of edge environments, innovative reliability and fault tolerance

solutions designed specifically for edge computing are being developed [23, 24, 25].

1.2 The JAMScript Programming Language

JAMScript [26] is a polyglot programming language and middleware for developing edge-

oriented IoT applications. A JAMScript program runs on a hierarchy of device, edge, and

cloud nodes. A component of the JAMScript program runs on each node. In a typical sce-

nario with all three types of nodes present, the hierarchical structure of JAMScript program

components can be viewed as a tree rooted at a cloud node with leaves corresponding to

device nodes.

JAMScript combines the C [27] and JavaScript [28] programming languages allowing

developers to write a single program executing on different types of nodes. The C language

1 Introduction 3

is used for programming devices, while the JavaScript language is used for programming

device, edge, and cloud nodes. Combining C and JavaScript achieves two of the main goals

of JAMScript. The first goal is high performance and efficient use of computing resources. C

has a proven track record in embedded systems programming [29, 30] because it is fast and

memory-efficient [31]. The introduction of Node.js [32] has made JavaScript a top contender

for writing high-performance server applications [33, 34]. The second goal of combining C

and JavaScript is creating a language that is easy to learn and use. Most developers working

in the IoT area are familiar with one or both of C and JavaScript [35] which facilitates the

adoption of JAMScript.

JAMScript implements efficient inter-node communication by introducing activities which

are a form of remote method invocation (RMI) [36]. Activities are invoked up or down the

tree. An activity is initiated at one node and executes at one or more nodes at different levels

of the hierarchy. Different types of activities are used for synchronous and asynchronous invo-

cations of remote functions. The JAMScript runtime automatically handles implementation

details such as resolving network addresses and exchanging messages between nodes.

JAMScript introduces loggers and broadcasters for exchanging data between nodes with-

out making function calls. Data can be sent upward or downward to one or more nodes in

the node hierarchy. Loggers are used for propagating data to parent nodes, while broad-

casters are used for propagating data to child nodes. The data propagation is performed

automatically by the JAMScript runtime.

JAMScript is designed for high performance and scalability. The inter-node data ex-

change implementation allows large amounts of data to be transferred concurrently between

different nodes. The JAMScript runtime efficiently manages the execution of a JAMScript

program on a large number of nodes. An important feature of JAMScript is its ability to or-

chestrate and synchronize the execution of a distributed computation on many devices. The

synchronization ensures that the data collected from the devices is time-aligned. The syn-

1 Introduction 4

chronization also ensures that the devices perform an action on their physical environment

at the same time.

JAMScript is specifically designed for addressing many of the challenges of edge en-

vironments such as network latency variability and disconnections. The network latency

may change due to device mobility when the distance between device and edge changes. The

JAMScript runtime addresses this by resending messages and waiting for acknowledgements.

By design, a JAMScript program is deployed in such a way that a disconnected node or sub-

tree can continue operating autonomously. This is achieved by ensuring that a component

of the JAMScript program which acts as a controller runs on every node. The controller

continues to manage the computations when the node is disconnected.

1.3 Thesis Contributions

The main contributions of the thesis are the following:

• We introduce application zones which group together computing nodes in physical

proximity executing the same JAMScript program. The partitioning of the physical

space into zones enables performing synchronized distributed computations, generating

shared data at the edge, and dealing with edge server failures. We describe the roles of

the primary and backup edge servers in a zone in recovering from edge server failures.

• We present the design and implementation of supercalls which enhance synchronous

controller-to-worker computations in JAMScript. A supercall is a collective distributed

computation in a zone which runs on the primary edge server and devices. It syn-

chronizes computation execution and data generation across the participating devices.

Supercalls have a built-in fault tolerance mechanism for recovering from edge server

failures with automatic re-execution.

1 Introduction 5

• We enrich the data management capabilities of JAMScript with private and shared

data generated at the edge from device data. Private data is based on data from a

single device, while shared data is based on data from multiple devices participating

in a computing context during a supercall. We explain the differences between private

and shared data and the reliability guarantees for each one.

• We incorporate application zones, supercalls, and private and shared data in the design

and implementation of a robust fault tolerance mechanism in JAMScript for recovering

from edge server failures. We discuss node and network failures and techniques for

system recovery in different failure scenarios.

• We showcase application zones, supercall programming, shared data, and the fault

tolerance implementation in an application for distributed multiple-target tracking

which efficiently and accurately tracks objects moving in a physical space.

• We run a simulation with real flight data and measure the performance of the supercall

implementation in various scenarios with and without edge server failures. The exper-

imental results show that the JAMScript runtime recovers quickly from edge server

failures and the overhead of the implemented fault tolerance scheme is very small.

1.4 Thesis Organization

Chapter 2 provides background information on the controller-worker model and JAMScript

language and middleware. Chapter 3 discusses motivating scenarios from edge computing

applications, defines the system architecture requirements, and introduces application zones.

Chapter 4 covers the design and implementation of JAMScript supercalls and programming

with supercalls. Chapter 5 discusses node and network failures and techniques for system

recovery in different failure scenarios. Chapter 6 focuses on private and shared data and

1 Introduction 6

explains the data reliability guarantees. Chapter 7 describes the distributed multiple-target

tracking application and analyzes the experimental results from a simulation with flight

data. Chapter 8 presents related research in edge computing and performs a comparative

analysis. Chapter 9 concludes the thesis with a discussion of future research for extending

the presented work.

7

Chapter 2

Background Information

2.1 Controller-Worker Model for Edge Computing

A JAMScript program executes on two types of computing nodes: controller and worker.

Both controllers and workers can perform computations. Controllers also manage workers

and subordinate controllers. Each controller and worker runs as a separate process. Con-

trollers and workers can run on the same or different machines connected by a network.

JAMScript supports different deployment configurations on a single or multiple machines.

Workers run on a wide range of devices like autonomous vehicles, smart appliances, and

stations for monitoring air quality. Typically, devices generate data at high rates but lack

reliable storage and processing capabilities. These capabilities are provided by controllers in

data centers, roadside units of vehicular networks, and base stations of 5G networks.

In a device deployment, one or more workers are connected to a device controller. Typ-

ically, the device controller and workers run on the same machine (device). A device de-

ployment can also be a multi-node configuration with a local area network (e.g., Wi-Fi)

connecting the workers to the device controller. In this configuration, if the connection to

the single controller fails, the worker cannot continue operating.

2 Background Information 8

device controller

worker

Figure 2.1: Device deployment.

In an edge deployment, one or more device controllers are connected to an edge controller

using a wide area network (e.g., a cellular network). In this configuration, computationally

intensive tasks can be performed at the edge server instead of the devices which often lack

processing capabilities. Each worker is connected to both the edge and device controllers.

When the network connecting a worker to the edge controller is unavailable, the worker is

still connected to its device controller and can continue operating.

edge controller

device controller

worker

Figure 2.2: Edge deployment.

In a cloud deployment, one or more edge controllers are connected to a cloud controller.

One of the main use cases for configurations with multiple edge controllers is dealing with

device mobility. Devices attach to the nearest edge controller as they move. In a cloud

2 Background Information 9

deployment, each worker is connected to three controllers: device, edge, and cloud. This

ensures that the worker maintains functionality in case of network disruptions.

cloud controller

edge controller

device controller

worker

Figure 2.3: Cloud deployment.

The controller-worker model implementation in JAMScript supports function calls and

data flows between controllers and workers as well as controllers and parent or subordinate

controllers. No interactions are allowed between workers or controllers at the same level.

An edge controller cannot initiate the execution of a function on another edge controller. A

worker cannot run a function on another worker.

Each node can make two types of function calls: self and remote. During a self call,

a node invokes a function which executes at the same node. During a remote call, a node

invokes a function which executes at another node. In JAMScript, remote calls can be either

upward or downward. An upward function call is performed from a worker to a controller

or from a controller to a parent controller. A downward call is made from a controller to a

worker or from a controller to a subordinate controller. Function calls can be synchronous

(blocking) or asynchronous (non-blocking). Synchronous calls block the execution of the

2 Background Information 10

program at the call site until the function completes. Asynchronous calls do not block the

program’s execution.

In a typical scenario, workers are data producers. For example, a worker can be equipped

with a temperature sensor and can capture temperature readings periodically. Workers can

also be consumers of data. For instance, a worker in an autonomous vehicle can receive a

command to turn or stop. Controllers consume and transform data from workers. Controllers

can also send data to workers and subordinate controllers.

JAMScript provides facilities for upward and downward data exchanges without the

need to make function calls. The runtime automatically propagates data written to a logger

(upward stream) from a worker or controller to the controllers of all of its ancestor nodes.

Similarly, the runtime automatically propagates data written to a broadcaster (downward

stream) from a controller to its subordinate controllers and workers.

da
ta

 b
ro

ad
ca

st
in

g
data logging

do
w

nw
ar

d
ca

ll upw
ard call

controller

worker

self call

self call

Figure 2.4: Function calls and data flows.

2 Background Information 11

2.2 JAMScript Language Overview

JAMScript is a polyglot programming language which combines C and JavaScript. The C

language is used for programming worker nodes, while the JavaScript language is used for

programming controller nodes. Worker nodes typically run on embedded devices for which C

is a natural choice due to its compact size and high execution speed. JavaScript running in a

Node.js environment on controller nodes is suitable for developing high-performance server

applications that can handle many connections and large volumes of data.

The worker and controller code are separated into two source files: C and JavaScript.

The C file contains the worker code and the JavaScript file contains the controller code. In

the JavaScript file, the developer can specify the controller level (device, edge, or cloud) at

which different parts of code run. The jsys global variable stores read-only properties of the

controller node such as its type (level). There can be different branches of execution based

on the value of the jsys.type property as shown in Listing 2.1.

Listing 2.1: Conditional execution based on the controller level.

1 switch (jsys.type) {

2 case 'cloud ':

3 // cloud controller code

4 f1();

5 break;
6 case 'fog':

7 // edge controller code

8 f2();

9 break;
10 case 'device ':

11 // device controller code

12 f3();

13 break;
14 }

2 Background Information 12

JAMScript implements inter-node communication by introducing activities which are a

form of remote method invocation. An activity is initiated at one node and executes at one

or more nodes at different levels. Activities allow a worker to execute a function on one or

more controllers, a controller to execute a function on one or more workers, or a controller

at one level to execute a function on one or more controllers at other levels. A worker

cannot initiate the execution of a function on another worker. A controller cannot initiate

the execution of a function on another controller at the same level.

The developer must select the appropriate type for each activity by considering where it

should be initiated (e.g., edge controller) and where it should execute (e.g., worker). The

developer does not need to know the addresses of the nodes or to manage connections. This

is performed automatically by the JAMScript runtime.

2.2.1 Worker Activities

Worker activities are initiated from a controller and execute on all workers in the subtree

rooted at that controller. When initiated from the cloud controller, a worker activity runs

on all worker nodes. When initiated from an edge controller, a worker activity runs only on

the workers connected to that edge controller. When initiated from a device controller, a

worker activity runs only on the workers connected to that device controller.

Worker activities are also called J2C activities and are defined in the C source file. There

are two kinds of worker activities: synchronous and asynchronous. Similarly to regular

functions, synchronous and asynchronous activities differ in whether they can return a value

and whether they block the execution of the controller program until the activity completes.

2 Background Information 13

Synchronous

A synchronous worker activity blocks the execution of the program at the call site until

the activity completes. The result of the activity is an array of values returned from the

participating workers. The worker activity is defined with a regular C function preceded by

the jsync keyword. It takes an arbitrary number of parameters and must declare a return

type. The body of the activity contains regular C code.

Listing 2.2: Synchronous worker activity definition (C file).

1 jsync int my_j2c_sync_activity(int d, char* s) {

2 printf("d=%d, s=%s\n", d, s);

3 return d * 2;

4 }

Listing 2.3: Synchronous worker activity invocation at the controller (JavaScript file).

1 if (jsys.type === "fog") { // edge level

2 var v = my_j2c_sync_activity (123, "abc");

3 console.log(v.device); // array of worker values

4 }

Asynchronous

An asynchronous worker activity does not block the execution of the program at the call

site. The participating workers do not return a value to the controller. The worker activity

is defined with a regular C function preceded by the jasync keyword. It takes an arbitrary

number of parameters and must not declare a return type. The body of the activity contains

regular C code.

Listing 2.4: Asynchronous worker activity definition (C file).

1 jasync my_j2c_async_activity(int d, char* s) {

2 printf("d=%d, s=%s\n", d, s);

3 }

2 Background Information 14

Listing 2.5: Asynchronous worker activity invocation at the controller (JavaScript file).

1 if (jsys.type === "fog") { // edge level

2 my_j2c_async_activity (123, "abc");

3 }

2.2.2 Controller Activities

In JAMScript, controller activities are defined in the JavaScript source file. There are two

kinds of controller activities: synchronous and asynchronous. Similarly to regular func-

tions, synchronous and asynchronous activities differ in whether they can return a value and

whether they block the execution of the program until the activity completes.

Controller activities are initiated from a worker or controller and execute on one or more

controllers. Controller activities initiated from workers are called C2J activities. Controller

activities initiated from controllers are called J2J activities.

When initiated from a worker, a controller activity runs on a subset of all controllers to

which that worker is connected. Depending on the deployment, the worker may be connected

to up to three controllers: device, edge, and cloud. The set of controllers on which the activity

runs depends on whether the activity is synchronous or asynchronous. When initiated from

a controller, a controller activity runs on that controller as well as on all adjacent controllers.

Table 2.1: Initiation and execution of controller activities.

Type Initiated From Executes On
Device Controllers Edge Controllers Cloud Controller

sync worker highest available ancestor

async worker co-located parent yes

sync/async device controller self parent no

sync/async edge controller children self yes

sync/async cloud controller none all yes

2 Background Information 15

Synchronous

A synchronous controller activity blocks the execution of the program at the call site until the

activity completes. When initiated from a worker, the result of the activity is a single value

returned from the controller on which the activity runs. When initiated from a controller,

the result of the activity is a collection of values returned from the controllers on which the

activity runs as described in Table 2.1.

The controller activity is defined with a regular JavaScript function preceded by the jsync

keyword. It takes an arbitrary number of parameters. The body of the activity contains

regular JavaScript code.

Listing 2.6: Synchronous controller activity definition (JavaScript file).

1 jsync function my_c2j_sync_activity(d, s) {

2 console.log("d=" + d + ", s=" + s);

3 return d * 2;

4 }

Listing 2.7: Synchronous controller activity invocation at the worker (C file).

1 int my_c2j_sync_activity(int d, char* s); // C prototype

2

3 void execute () {

4 int v = my_c2j_sync_activity (123, "abc");

5 printf("v=%d\n", v);

6 }

Asynchronous

An asynchronous controller activity does not block the execution of the program at the

call site. The controllers on which the activity runs do not return a value to the caller.

The controller activity is defined with a regular JavaScript function preceded by the jasync

2 Background Information 16

keyword. It takes an arbitrary number of parameters. The body of the activity contains

regular JavaScript code.

Listing 2.8: Asynchronous controller activity definition (JavaScript file).

1 jasync function my_c2j_async_activity(d, s) {

2 console.log("d=" + d + ", s=" + s);

3 }

Listing 2.9: Asynchronous controller activity invocation at the worker (C file).

1 void my_c2j_async_activity(int d, char* s); // C prototype

2

3 void execute () {

4 my_c2j_async_activity (123, "abc");

5 }

2.2.3 Data Flows

In addition to activities, JAMScript introduces loggers and broadcasters for inter-node data

exchange without making function calls. Loggers are used for propagating data to parent

nodes, while broadcasters are used for propagating data to child nodes. A data store (Redis

[37]) is co-located with each controller.

When a value is written to a logger, it is stored in the data store co-located with that node

and the data stores of its ancestors along the path to the root. When a value is written to a

broadcaster, it is stored in the data store co-located with that node and the data stores of all

nodes in the subtree rooted at that node. The data propagation is performed automatically

by the JAMScript runtime. The different scenarios are described in Table 2.2.

2 Background Information 17

Table 2.2: Data flow scenarios.

Written From Stored At
Device Data Stores Edge Data Stores Cloud Data Store

logger
device self parent yes
edge none self yes
cloud none none yes

broadcaster
device self none no
edge children self no
cloud all all yes

Loggers

Loggers are used for sending data from a node to its ancestors. In a typical scenario, a device

with a sensor periodically writes a measurement to a logger which propagates it to the edge

and cloud for processing. A logger is defined in the JavaScript file using the jdata construct

and the logger keyword. Both controllers and workers can write to a logger. Nodes at

different levels can write to the same logger. Only controllers can read from a logger.

Data saved to a logger from each controller or worker is stored in a separate data stream.

A data stream contains a sequence of values with timestamps. JAMScript supports different

types for the values stored in a data stream (e.g., int, float, char*). Values can only

be appended to a data stream and can never be removed. The data stream API provides

methods for determining the number of values in a data stream, retrieving all values with

or without timestamps, retrieving the last N (constant) values and all values logged within

a specified time period.

A controller reads values from a logger by iterating over the data streams of all child

controllers and workers as shown in Listing 2.10. A controller writes a value to a logger by

calling the log method of the stream returned from the logger’s getMyDataStream method as

2 Background Information 18

shown in Listing 2.11. A worker writes a value to a logger by assigning a value to the logger

variable as shown in Listing 2.12.

Listing 2.10: Reading from a logger.

1 jdata {

2 int x as logger;
3 }

4

5 function read_from_logger () {

6 var num_streams = x.size ();

7 for (var i = 0; i < num_streams; i++) {

8 var stream = x[i];

9 var value = stream.lastValue ();

10 console.log(value);

11 }

12 }

Listing 2.11: Writing to a logger from a controller.

1 function write_to_logger_from_controller () {

2 var my_stream = x.getMyDataStream ();

3 my_stream.log (123);

4 }

Listing 2.12: Writing to a logger from a worker.

1 void write_to_logger_from_worker () {

2 x = 123;

3 }

Broadcasters

Broadcasters are used for sending data from a node to all nodes in the subtree rooted at

that node. A broadcaster is defined in the JavaScript file using the jdata construct and

the broadcaster keyword. Only controllers can write to a broadcaster. Nodes at different

2 Background Information 19

levels can write to the same broadcaster. Both controllers and workers can read from a

broadcaster.

A broadcaster contains a single value at a time. JAMScript supports different types for

the value stored in a broadcaster (e.g., int, float, char*). The broadcaster API provides

the getLastValue method for retrieving the most recent broadcaster value.

A controller writes a value to a broadcaster by calling the broadcast method as shown

in Listing 2.13. A controller reads a value from a broadcaster by calling the getLastValue

method as shown in Listing 2.14. A worker reads a value from a broadcaster by assigning

the broadcaster variable to another variable as shown in Listing 2.15.

Listing 2.13: Writing to a broadcaster.

1 jdata {

2 int x as broadcaster;
3 }

4

5 function write_to_broadcaster () {

6 x.broadcast (123);

7 }

Listing 2.14: Reading from a broadcaster from a controller.

1 function read_from_broadcaster_from_controller () {

2 var value = x.getLastValue ();

3 console.log(value);

4 }

Listing 2.15: Reading from a broadcaster from a worker.

1 void read_from_broadcaster_from_worker () {

2 int temp;

3 temp = x;

4 printf("x=%d\n", temp);

5 }

2 Background Information 20

2.2.4 Conditional Execution

In JAMScript, conditionals are used for limiting the set of nodes on which an activity exe-

cutes. In a typical scenario, the set of nodes is filtered based on node type (device, edge, or

cloud). For example, an asynchronous C2J activity is called from a worker and executes on

its co-located device controller, parent edge controller, and cloud controller. A conditional

can be used to limit its execution to the parent edge controller or cloud controller or both.

A conditional is defined in the JavaScript source file using the jcond construct as shown

in Listing 2.16. A conditional is applied to an activity by adding its name in curly brackets

after the jsync or jasync keyword. Conditionals can be used with both controller and

worker activities. Conditionals are evaluated at runtime on all nodes which are candidates

for executing the activity.

Listing 2.16: Defining and using a conditional.

1 jcond {

2 deviceOnly: jsys.type == "device";

3 edgeOnly: jsys.type == "fog";

4 cloudOnly: jsys.type == "cloud";

5 }

6

7 jasync {edgeOnly} function my_c2j_async_activity(d, s) {

8 console.log("d=" + d + ", s=" + s);

9 }

21

Chapter 3

System Architecture

3.1 Motivating Scenarios and Design Requirements

We present motivating scenarios from edge computing which illustrate the need for device-

specific and shared data, synchronized distributed computations, application zones, and a

robust fault tolerance mechanism. We discuss two edge computing applications: a drone

fleet controller and an augmented reality game.

The first application controls a fleet of drones from an edge server on the ground. Each

drone captures a video feed which is sent back to the edge server, augmented with annota-

tions, and streamed to viewers. The edge server periodically collects information from each

drone about its location, altitude, and speed. It also receives data from devices with sensors

measuring wind speed and direction. The edge server uses the data collected from the drones

and wind sensors to make decisions for issuing navigation commands to the drone formation

(e.g., turn, speed up, land).

The second application is an augmented reality game hosted at multiple edge servers.

Players interact with both the physical and virtual world as well as with each other as either

3 System Architecture 22

teammates or opponents. Players control virtual avatars and can improve their armor,

acquire equipment, go on expeditions, and take part in battles.

3.1.1 Device-Specific and Shared Data

Typically, edge applications transfer data from devices to edge servers for processing and may

then send the results back to the devices. The data at an edge server can be either specific

to a device or associated with a common computing context shared between many devices.

Collecting device-specific data at the edge server is a classic use case of edge computing [38].

An example of device-specific data is video captured from a drone and sent to an edge

server for analysis and processing (e.g., adding annotations) before being streamed to viewers.

Temperature readings from a thermostat in a smart home are another example of device-

specific data. The edge server can also transform the data collected from each device. For

example, it may calculate an average of temperature readings from the thermostat over a

period of time. Based on the device data, the edge server can issue a command to the

thermostat to adjust the temperature in the home.

An example of shared data associated with a computing context common to many devices

involves the augmented reality game application. The edge server maintains a shared state

consisting of information about the locations and actions of the players as well as character-

istics of the physical and virtual world surrounding them. The shared state is created using

data provided by many devices and is used to process the actions of the players interacting

with the environment.

3.1.2 Synchronized Distributed Computations

Synchronization of distributed computations across many devices is a major challenge for

edge computing applications [39]. In the drone fleet controller application, the drones are

3 System Architecture 23

connected to the same edge server. The edge server processes the data collected from the

drones and wind sensors to build and maintain a shared state used for making navigation

decisions. For the shared state to be accurate, it needs to be built from device data which is

both recent and time-aligned. This means that the computations which run on each drone

and send back to the edge server information about its location, altitude, and speed must

be synchronized. The execution of a command sent from the edge server to the devices

must be synchronized to ensure that all drones in the fleet interact with the physical world

simultaneously (e.g., turn, speed up). The system must also be able to execute in parallel

computations at the edge server and devices. The edge server computation builds a map

with the locations of all drones in the fleet.

3.1.3 Application Zones

Device mobility is an important consideration for many edge applications [40, 41]. In the

augmented reality game application, the devices move when the players move. A device can

disconnect from one edge server and connect to another one with lower network latency.

Different sets of devices can be connected to different edge servers.

Shared data described in Section 3.1.1 and synchronized distributed computations de-

scribed in Section 3.1.2 operate with a common computing context. Such a context is

associated with a group of edge servers and devices which are typically near each other.

Grouping edge servers and devices can be achieved by partitioning the physical space into

zones. The partitioning can be different for each application. An application zone groups

edge servers and devices in physical proximity running the same application.

Zone constituents change dynamically. Devices can fail or move between application

zones. New devices can join a zone. For example, in an online game players join and leave

the battlefield as the game progresses. Edge servers can also fail and restart.

3 System Architecture 24

In the augmented reality game application, when the players operating the devices in-

teract with each other and the environment, a shared state must be updated periodically at

the edge server. The easiest way to maintain a shared state is by having all devices in the

zone connected to the same edge server. One server in the zone can be designated as main

or primary. When the primary server fails, a backup server takes over. Application zones

with designated primary and backup edge servers play a vital role in the design of a fault

tolerance mechanism which satisfies the requirements outlined in Section 3.1.4.

When devices move between application zones, device-specific and shared data are af-

fected in different ways. In the augmented reality game application, when a player moves

between zones, their gear must be unaffected. This means that the private data associated

with a device must be transferred seamlessly between zones. Since shared data is associated

with a zone, there is no need to transfer shared data between zones.

3.1.4 Fault Tolerance Requirements

Fault tolerance is a major concern for distributed applications especially in cloud and edge

environments [42, 43, 44]. An edge application must be resilient against device and edge

server failures, network disconnections, and network latency variability. The main goals of

fault-tolerant implementations are fast recovery from failures with minimal service interrup-

tions and low processing overhead.

Impact of Recovery on the System

A well-designed fault tolerance scheme must recover quickly in case of failures with minimal

disruptions to the system. For example, if an edge server in the augmented reality game

application fails, another one must take over as soon as possible. Players connected to

the failed edge server must not experience any downtime and ideally should not be aware

3 System Architecture 25

of the failure. All players should be able to continue playing almost immediately with the

location and features of their characters unaffected by the failure. In the drone fleet controller

application, if an edge server failure occurs when the drone formation is in flight, another

edge server in the zone must take control. The flight must not be interrupted and the drones

must not be left unattended.

Automatic Failure Recovery

The failure recovery process must be triggered automatically by the runtime environment

when a failure is detected. In the augmented reality game application, the recovery must be

transparent to the players who should not need to perform any specific actions to recover

from an edge server failure. If a distributed computation is in progress when the failure

occurs, the runtime must automatically re-execute the computation as part of the recovery

process. In the augmented reality game application, if an edge server initiated action to

teleport all connected players to another virtual location is in progress when a failure occurs,

it must be re-executed. In the drone fleet controller application, if collection of drone flight

data is in progress when the edge server fails, a backup edge server must re-execute the

computation to ensure that the shared state reflects the most up-to-date information about

the drones’ locations, altitudes, and speeds.

Fault Tolerance Processing Overhead

The overhead of the fault tolerance scheme must be very small during normal operation.

Low latency is crucial for both of the edge computing applications we have discussed. In

the augmented reality game scenario, players interact with the physical and virtual world

and the system must be very responsive for a truly immersive experience. In the drone fleet

controller application, the data about a drone’s location, altitude, and speed must reach

the edge server with minimal delay when requested. This ensures that the edge server has

3 System Architecture 26

an accurate view of the drone formation’s flight parameters at any time and can make the

right decisions based on up-to-date information. A command sent from the edge server to

the drones must also be executed quickly before the drones’ flight parameters have changed

significantly.

Application-Specific Control of the Fault Tolerance Scope

A fault tolerance scheme mitigates the effects of failures on an application but incurs pro-

cessing costs related to data replication and re-execution of failed computations. Reducing

these costs is essential. It can be achieved by providing reliability guarantees only for the

computations which need them. For example, a command to the drone fleet to land must

be re-executed if there is a failure. On the other hand, a computation which periodically

calculates a moving average of temperature readings might not need to be re-executed after

a failure. The framework must provide the tools for application-specific control of the fault

tolerance scope by the application developer.

Data Reliability Guarantees

The fault tolerance mechanism must ensure minimal or no data loss in case of failures

with clearly defined reliability guarantees for different types of data. To ensure continuity,

the shared state from the failed edge server must be available at a backup edge server. For

example, restoring the flight history for the drone formation is crucial if a failure occurs while

the fleet is in the air. To achieve this, the system may employ different data replication

schemes involving multiple edge servers in the zone. Data replication requires additional

processing. While some data must be preserved and restored after a failure, it may be

acceptable to lose non-essential data in order to reduce replication costs. The application

generates different types of data when different reliability guarantees are needed.

3 System Architecture 27

3.1.5 JAMScript Concepts and Features

Table 3.1 lists the new JAMScript concepts and features that we have implemented to address

the design requirements. The new features build on and extend JAMScript’s controller-

worker architecture outlined in Section 2.1.

Table 3.1: Mapping of design requirements to JAMScript concepts and features.

Design Requirement JAMScript Concept/Feature
data at the edge specific to one device private data
data associated with a common computing
context shared between many devices

shared data generated during a supercall
from data from participating devices

synchronized distributed computations supercalls with a fault tolerance mechanism
for recovering from edge server failures

partitioning of the physical space into zones application zones with many edge servers
and devices in each zone

quick recovery from edge server failures
with minimal disruptions to the system

- primary and backup edge servers in a zone
- the backup server takes over the execution
of computations when the primary one fails

automatic failure recovery automatic re-execution of a supercall in
progress when a failure occurs

low processing overhead of the fault toler-
ance scheme during normal operation

less than 1.9% processing overhead of the
fault tolerance implementation

application-specific control of the fault tol-
erance scope

supercalls are used for implementing com-
putations with reliability requirements

minimal or no data loss in case of edge
server failures

- shared data is always available (either re-
covered or regenerated)
- private data might be recovered partially

data reliability guarantees - shared data from completed supercalls is
available at the backup edge server
- shared and private data from a supercall
in progress are regenerated during the re-
execution of the supercall after a failure
- private data generated after the last com-
pleted supercall might be lost and is not
regenerated

3 System Architecture 28

Application zones are defined in Section 3.2. The primary and backup edge servers

introduced in Section 3.3 are an integral part of the fault tolerance mechanism described in

Chapter 5. The supercall implementation detailed in Chapter 4 adds new functionality to

synchronous controller-to-worker activities in JAMScript and offers automatic re-execution

in case of a primary edge server failure. The low processing overhead of the fault tolerance

scheme is confirmed by the experimental results in Section 7.4. Private and shared data,

their relationship with supercalls, and their reliability guarantees are explained in Chapter 6.

3.2 Application Zones

3.2.1 Zone Overview

A JAMScript application is typically deployed in a physical space which is partitioned into

areas (e.g., road segments). Areas are defined per application and do not change while the

application is running. Different applications may partition the space differently. There are

one or more edge servers in each area. Some edge servers can move between areas (e.g., an

edge server on a bus). The size of an area is such that the edge servers in the area have the

capacity to handle the expected number of devices. Since each device occupies some physical

space, the number of devices in an area is not infinite and can be estimated.

A zone is a grouping of nodes in physical proximity executing the same JAMScript

program/application. Nodes belonging to the same zone must execute the same application

but need not run on the same physical machine. Nodes which run on the same machine but

execute different JAMScript programs belong to different zones.

Each zone is associated with an area. Typically, nodes in a zone are physically located

inside or close to that area. For an edge node, the zone to which it belongs is configured

on start-up. For a device node, the zone to which it belongs is determined by its physical

3 System Architecture 29

coordinates and current supercall. (Supercalls are described in Chapter 4.) If a device node

is not participating in a supercall, it belongs to the zone whose area contains the device’s

coordinates. If a device node is participating in a supercall, it belongs to the zone in which

that supercall is running.

At any given time, each node executes a single JAMScript application and belongs to a

single zone. The set of nodes in a zone changes dynamically as edge and device nodes start

or fail. An edge node joins a zone on start-up and leaves the zone only if it fails. An edge

node’s zone does not change while it is running. A device node may join or leave a zone due

to mobility. However, while a device participates in a supercall, its zone does not change

even if it moves to another area.

app1
zone1

edge server processes

area 1

device 1 device 2 device 3 device 4

app1
zone1

edge server 1

road segment 1 road segment 2

app1
zone2

app1
zone2

device 5 device 6 device 7

area 2

machine 1 machine 2 machine 3 machine 4

edge server 2 edge server 3 edge server 4

Figure 3.1: Area partitioning.

3.2.2 Zone Definition

For a given application and instant in time, a zone Zi is defined as the set of nodes satisfying

the zone membership function zi, i.e. Zi = {node : zi(node) = 1}. The output of the

3 System Architecture 30

function is 1 (true) if the node belongs to the zone and 0 (false) otherwise. Here a node

is considered as a tuple of properties (xCoord, yCoord, nodeType, zoneConfig, inSupercall,

zoneSupercall). The area associated with zone Zi is denoted by Ai. The zone membership

function is defined as follows:

zi(node) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 nodeType = edge ∧ zoneConfig = i

0 nodeType = edge ∧ zoneConfig ̸= i

1 nodeType = device ∧ inSupercall = 0 ∧ (xCoord, yCoord) ∈ Ai

0 nodeType = device ∧ inSupercall = 0 ∧ (xCoord, yCoord) /∈ Ai

1 nodeType = device ∧ inSupercall = 1 ∧ zoneSupercall = i

0 nodeType = device ∧ inSupercall = 1 ∧ zoneSupercall ̸= i

The xCoord and yCoord properties refer to the physical two-dimensional coordinates of

the node. The nodeType property indicates whether the node is an edge server or device. For

an edge node, zoneConfig specifies the zone configured on start-up. For a device node, the

inSupercall property indicates whether the device is currently participating in a supercall,

and if so, zoneSupercall specifies the zone associated with the supercall.

Each edge server process logically belongs to a single (application, zone) pair regardless

of the physical location of its host machine. Typically the host machine is physically located

inside or close to the area associated with the zone. An edge server process is started with

command-line arguments indicating the (application, zone) pair to which it belongs. It is

made aware of the other edge server processes in its zone through the JAMScript runtime’s

node discovery mechanism. In the following sections, the term edge server refers to an edge

server process.

3 System Architecture 31

(app1, zone1)
role: primary

(app1, zone2)
role: backup

(app2, zone1)
role: none

edge server 1

edge server 2 edge server 3

(app1, zone1)
role: backup

(app1, zone2)
role: none

(app2, zone1)
role: primary

edge server 4

edge server 5 edge server 6

edge machine edge server process

machine 1 machine 2

Figure 3.2: Edge machines and processes.

3.3 Zone Edge Servers

Each zone contains one or more edge servers. One of them is designated as primary and

another one – as backup. The primary edge server performs computations originating from

device nodes and intended to run on an edge node. To save computing resources, these

computations are executed only on the primary edge server. The backup takes over when

the primary fails. The primary and backup edge servers are chosen using an edge server

selection policy which takes into account characteristics (e.g., CPU load, available memory,

network latency) of the machines on which the edge servers are running. Each edge server is

aware of all other edge servers in the same zone and is notified when the primary or backup

edge server changes.

Each edge server in the zone can be either a primary edge server, backup edge server,

or edge server with no special role assigned. During the course of the JAMScript program’s

execution, the selected primary and backup edge servers may change at specific execution

points due to edge server failures.

3 System Architecture 32

Each device in the zone is made aware of the selected primary and backup edge servers.

At any given time, all devices in the zone are connected to the primary edge server. The data

that the devices generate using JAMScript’s logger construct is propagated by the runtime

only to the primary edge server. When the primary edge server changes, all devices connect

to the new primary edge server.

f1 f2 f3

d1 d2 d3

ac
tiv

itie
s a

nd
 da

ta

primary edge server backup edge serverother edge server

failover

devices in the zone

Figure 3.3: Zone edge servers.

3.3.1 Primary Edge Server

At any given time, a single edge server called the primary edge server serves an (application,

zone) pair. All devices belonging to the same (application, zone) pair are connected to the

primary edge server. The primary edge server performs the zone’s computations and stores

the zone’s data. It sends and receives requests for remote function invocations (activities)

and data to and from the devices. It also transforms the data generated by the devices.

3 System Architecture 33

The computations performed by the primary edge server are not executed by other edge

servers in the zone. Since redundant computations are avoided, the edge resources available

to all applications and zones are maximized. To avoid having a single point of failure, the

other edge servers in the zone participate in the fault tolerance mechanism employed when

the primary edge server fails. The primary edge server is chosen according to the edge server

selection policy during application start-up. A new primary edge server is also chosen in

case of primary edge server failure.

3.3.2 Backup Edge Server

In addition to having a primary edge server, each (application, zone) pair has a backup edge

server. The purpose of the backup edge server is to take over execution when the primary

edge server fails. The primary and backup edge servers run on different machines to ensure

that their failures are independent.

If there is only one edge server in the zone, it becomes primary and there is no backup.

If there are two edge servers in the zone, the edge server which has started first becomes

primary and the other one becomes backup. The remaining edge servers have no special

role assigned. Each edge server is notified about the edge servers selected as primary and

backup. When the primary edge server fails, the backup edge server is selected as the new

primary. A new backup is chosen using the edge server selection policy.

3.3.3 Edge Server Selection Policies

The goal of the edge server selection policy is to assist in selecting primary and backup edge

servers while aiming for optimal resource utilization. The edge server selection policy ranks

active edge servers while taking into account factors like machine load, latency, and band-

width. Each edge server is aware of all active edge servers in the zone through the JAMScript

3 System Architecture 34

runtime’s node discovery mechanism. Each edge server periodically sends a message to the

other edge servers in the zone to share information about its resource utilization.

The edge server selection policy is used when selecting primary and backup edge servers

in different scenarios. A new primary is chosen during application bootstrapping. A new

backup is selected during application bootstrapping, when the primary fails and the backup

takes over as primary, and when the backup fails.

The edge server selection policy is configured before the application starts and does not

change during the application’s execution. There are three policies. The first policy is based

on a machine learning (ML) model which is constantly updated and available on each edge

server. The second policy generates a ranking based on a load function calculation with

different weights for machine load, latency, bandwidth, etc. The third policy ranks all active

edge servers in a random order and is used as a baseline.

Table 3.2: Example edge server ranking produced by an edge server selection policy.

rank edge server id load (%) latency (ms) bandwidth (Mbps)
1 edge2 12 2 370
2 edge3 10 5 320
3 edge1 28 13 260
4 edge4 65 7 290

35

Chapter 4

Supercalls

In vehicular networks, it is often desirable to perform a computation simultaneously on

a collection of devices. For example, a roadside unit (controller) may want to inform all

vehicles (workers) of the presence of an obstacle on a road segment. A tower (controller)

may want to synchronize all drones (workers) so that they fly in a formation. The group of

drones flying together must start executing a turn command at exactly the same time.

One motivation for defining zones in JAMScript is the execution of collective synchronized

computations. A zone groups together nearby edge servers and devices running the same

application. A supercall represents a collective computation in the zone which requires

execution synchronization and fault tolerance.

The supercall synchronizes computation execution and data generation across the device

nodes in a zone. A typical scenario involves a computation initiated at an edge node and

executed at multiple device nodes (e.g., J2C sync activity in JAMScript). The execution of

the computation at the devices must be synchronized (i.e. start at the same time). The data

generated at the devices is time-aligned and propagated to the edge where it is transformed.

The supercall allows the edge server to identify the data generated from devices executing

the same computation at the same time.

4 Supercalls 36

C

J

J

C

J

C

J

jsync int my_func(int d, char* s) {

 return d * 2;
 printf("d=%d, s=%s\n", d, s);

}

var v = my_func(128, "abc"); // blocking
console.log(v.device); // array of results

Edge Server Program:

Device Program:

device 1 device 2 device 3

primary edge server

Figure 4.1: Synchronous J2C activity in JAMScript.

4.1 Supercall Overview

A supercall is a sequence of executions of a distributed synchronized computation on a set of

nodes (primary edge server and devices) producing a result which includes data collected from

device nodes as well as data generated at a primary edge node. Performing the computation

involves running a distributed function with a list of arguments. The function and arguments

are the same for each computation execution.

Each supercall consists of one or more computation executions. The first execution is

called the initial execution. The remaining executions are re-executions. If the initial execu-

tion succeeds, there are no re-executions. All executions but the last one are unsuccessful.

The last execution succeeds and produces the result.

4 Supercalls 37

Each execution runs on a primary edge node and a set of device nodes. The set of devices

participating in an execution is a subset of all devices in the zone at a particular moment.

A device node in the zone may choose not to participate in the computation and thus will

not be a part of the execution.

Each computation execution may run on a different set of nodes. This is due to the

following reasons. During the program’s execution, different edge nodes might be selected

as a primary edge server. Device nodes join and leave the zone due to device mobility. Each

device node can only be a part of a single computation execution at a time but may belong

to many different ones as the program’s execution progresses.

When a computation succeeds, the associated supercall ends. The primary and backup

edge servers remain unchanged for the initial execution of the next supercall. New primary

and backup edge servers are selected in case of edge server failures.

A supercall may have various preconditions. For example, a supercall may require a

minimum number or proportion of devices to confirm participation in order to proceed with

the computation. If the supercall’s preconditions are satisfied, the primary edge server runs

the controller side of the computation. The devices which have confirmed participation run

the worker side of the computation. The primary edge server collects the results from the

devices. If the supercall’s preconditions are not satisfied, no computations are performed

and the supercall returns an error. The supercall also returns an error if a device which has

confirmed participation fails.

Supercalls allow the developer to control the scope of fault tolerance in the JAMScript ap-

plication. A computation which requires execution synchronization among the participating

devices and fault tolerance is implemented with a supercall. It is automatically re-executed

after an edge server failure. A computation which requires only execution synchronization

without reliability guarantees is implemented with a synchronous controller-to-worker activ-

ity to avoid the overhead of the supercall fault tolerance scheme.

4 Supercalls 38

4.2 Supercall Definition

A supercall ci is defined as a triple (ui, ei, ri) where ui is a computation, ei are executions

of the computation, and ri is the result of the computation. The computation ui is a pair

(pi, ai) where pi is a distributed function and ai are its arguments. The executions ei are

represented by a tuple (ei,0, ei,1, . . . , ei,k). If there is no primary edge server failure, there is

only one execution. If there is a primary edge server failure, there are two or more executions.

All executions except the last one are unsuccessful. Only the last execution succeeds. The

result ri is a pair (si, gi) where si are the results collected from the devices and gi is the data

generated at the primary edge server during the last execution.

Each execution ei,j of computation ui of supercall ci is represented by a pair (fi,j, di,j)

where fi,j is the zone edge server pair and di,j is the set of devices participating in the

execution. The primary and backup edge servers are denoted by fP
i,j and fS

i,j respectively.

The runtime provides the following guarantees between executions. The primary fP
i,j+1 of

the next execution is the backup fS
i,j of the previous execution. The backup fS

i,j+1 of the next

execution is chosen using the edge server selection policy. For execution ei,0, the device set

di,0 is a subset of all devices in the zone. For execution ei,j+1, the device set di,j+1 is a subset

of the device set di,j of the previous execution. The notation is summarized as follows:

ci⏞⏟⏟⏞
supercall

= (ui⏞⏟⏟⏞
computation

, ei⏞⏟⏟⏞
executions

, ri⏞⏟⏟⏞
result

)

ui⏞⏟⏟⏞
computation

= (pi⏞⏟⏟⏞
function

, ai⏞⏟⏟⏞
arguments

)

ei⏞⏟⏟⏞
executions

= (ei,0, ei,1, . . . , ei,k−1⏞ ⏟⏟ ⏞
unsuccessful executions

, ei,k⏞⏟⏟⏞
successful execution

)

ri⏞⏟⏟⏞
result

= (si⏞⏟⏟⏞
results from devices

, gi⏞⏟⏟⏞
data generated at primary edge server

)

4 Supercalls 39

ei,j⏞⏟⏟⏞
execution

= (fi,j⏞⏟⏟⏞
zone edge servers

, di,j⏞⏟⏟⏞
set of devices

)

fi,j⏞⏟⏟⏞
zone edge servers

= (fP
i,j⏞⏟⏟⏞

primary edge server

, fS
i,j⏞⏟⏟⏞

backup edge server

)

fP
i,j+1 = fS

i,j

di,0 ⊆ all devices in the zone

di,j+1 ⊆ di,j

4.3 Bulk Synchronous Parallel versus Supercalls

The bulk synchronous parallel (BSP) model [45] is a bridging model for parallel computa-

tions. Bridging models are used for designing algorithms and making reliable predictions

about their performance. The BSP model consists of the following components: nodes (pro-

cessors) that can perform local computations, a network that allows the nodes to exchanges

messages, and a mechanism for synchronizing all nodes.

A BSP program is divided into supersteps. As shown in Figure 4.2, each superstep

has three phases: computation, communication, and barrier synchronization. During the

computation phase, each node performs operations on local data as well as data generated

during previous supersteps. During the communication phase, each node sends and receives

messages to and from other nodes. The barrier synchronization phase ensures that all nodes

have sent and received their intended messages before starting the next superstep. The

execution time of a superstep is determined by the execution time of the computation and

communication phases of the slowest node.

A BSP program is a sequence of supersteps. In contrast, a JAMScript program consists

of supercalls and othercalls as illustrated in Figure 4.3. BSP supersteps cannot overlap. Su-

4 Supercalls 40

percalls are also non-overlapping and two supercalls cannot execute concurrently. However,

in JAMScript other computations called othercalls can run while a supercall is in progress

as well as between supercalls.

worker 1 worker 2 worker 3 worker 4

co
m

pu
ta

tio
n

co
m

pu
ta

tio
n

co
m

pu
ta

tio
n

co
m

pu
ta

tio
n

superstep
completed

superstep
started

barrier

communication

Figure 4.2: Bulk synchronous parallel model.

controller worker 1 worker 2 worker 3

co
nt

ro
lle

r f
un

ct
io

n

w
or

ke
r f

un
ct

io
n

w
or

ke
r f

un
ct

io
n

w
or

ke
r f

un
ct

io
n

supercall
completed

supercall
started

start

result

othercalls

Figure 4.3: Supercall model.

4 Supercalls 41

In the BSP model, all nodes performing superstep computations are of the same type.

In contrast, JAMScript differentiates between controller nodes (edge servers) and worker

nodes (devices). A supercall is initiated at an edge server and triggers computations at both

the edge server (controller function) and the devices (worker function). Local computations

during a superstep are performed in parallel on all nodes. Similarly, the worker function

executes on all devices at the same time and runs concurrently with the controller function

executing on the edge server.

In BSP, each superstep begins with a local computation phase followed by a communica-

tion phase. Local computations cannot use data generated at other nodes during the same

superstep. In contrast, while a JAMScript supercall is executing, computations and data

exchanges happen simultaneously using mechanisms like loggers and broadcasters. Data

generated at the devices during a supercall can be used during the same supercall in the

controller function running at the edge server.

The BSP model ensures that the local computations performed during a particular su-

perstep can access the data from all previous supersteps. The start of a superstep can be

delayed until the data from the previous one is available. In JAMScript, each supercall also

has access to the data generated by all previously executed supercalls. A supercall cannot

start until the data layer has finished replicating the data to the backup edge server.

The barrier synchronization performed at the end of a superstep is similar to the mecha-

nism which determines when a JAMScript supercall completes. In BSP, when a node reaches

the barrier, it waits for all other nodes to also reach the barrier. In a similar fashion, a su-

percall completes when the edge server and all devices have finished their computations.

Another difference between supersteps and supercalls is that, unlike a BSP superstep which

always executes, a supercall runs only if its preconditions (e.g., quorum of participating

devices) are satisfied.

4 Supercalls 42

4.4 Programming with Supercalls

In JAMScript, the programmer launches a supercall by calling a special J2C sync activity

(jsync_ctx activity) from the edge level. The jsync_ctx activity consists of two functions:

a worker function and a controller function. The worker function runs on all devices that

agree to participate in the supercall. Similarly to a regular J2C sync activity, all devices

start executing the worker function at the same time. The controller function runs on the

primary edge server. The other edge servers in the zone do not perform any computation.

When the supercall completes, the primary edge server shares the result of the supercall

with the other edge servers in the zone.

The worker and controller functions run in parallel and can call local and remote functions

synchronously or asynchronously. The worker function can call a function executing at the

edge level (e.g., C2J sync/async activity) and send data to the edge using JAMScript’s logger

construct. The controller function can call a function executing at the device level (e.g.,

J2C async activity) and send data to the devices using JAMScript’s broadcaster construct.

Calls to synchronous activities (e.g., J2C sync activity) from the controller function are not

allowed. JAMScript does not support nested synchronization.

The jsync_ctx activity returns a JavaScript promise. The promise is settled in two cases:

(a) when both the worker and controller functions complete at all nodes participating in the

supercall; (b) if the computation cannot be started or there is an error during its execution.

In case (a), the promise is fulfilled and the result is an array containing the values returned

by the worker function running on the devices. The controller function does not return a

value. In case (b), the promise is rejected and the error contains an error message. An error

is generated if the supercall’s preconditions are not met (e.g., there are not enough workers

to reach a quorum) or devices fail during the computation (see Section 5.1.5).

4 Supercalls 43

Listing 4.1 shows an example of an edge server program. The condition in the if state-

ment on line 1 ensures that the supercall is launched from the edge level. The supercall

is launched by calling the my_func function on line 5 after a delay of 10 seconds (line 17).

The my_func function can have an arbitrary number of parameters as needed. The callback

argument supplied last is the controller function defined on lines 21–23. The context pa-

rameter of the callback function on line 21 represents the computing context created by

the supercall. Its value is automatically supplied by the JAMScript runtime. On line 7, the

program handles the two possible outcomes of the supercall (success and failure) by calling

the then method of the returned promise.

Listing 4.1: Edge server program with controller function and supercall invocation.

1 if (jsys.type === "fog") {

2 // run only at the edge level

3 setTimeout (() => {

4 // launch a supercall

5 var c = my_func (128, "abc", callback);

6 // handle the two possible outcomes

7 c.then(

8 res => {

9 // res is an array of device results

10 console.log(res);

11 },

12 err => {

13 // err is an error message

14 console.log(err);

15 }

16);

17 }, 10000);

18 }

19

20 // controller function

21 function callback(context) {

22 console.log("context:", context);

23 }

4 Supercalls 44

Listing 4.2 shows the corresponding device program. The device program contains the

definition of the worker function on lines 4–7. All devices participating in the supercall start

executing it at the same time. The values for parameters d and s on line 4 are determined at

the primary edge server (line 5 of Listing 4.1) and are propagated by the JAMScript runtime

to the devices. In this example, each device returns the value 128 × 2 = 256 (line 6). As a

result, the res array on line 10 of Listing 4.1 contains the value 256 repeated as many times

as there are devices participating in the supercall.

Listing 4.2: Device program containing the worker function of the supercall.

1 #include <stdio.h>

2

3 // worker function

4 jsync_ctx int my_func(int d, char* s) {

5 printf("d=%d, s=%s\n", d, s);

6 return d * 2;

7 }

8

9 int main(int argc , char* argv []) {

10 return 0;

11 }

4.5 Supercall Implementation

All edge servers execute the server program but only the primary edge server executes su-

percalls. When the primary edge server reaches a supercall statement, it starts executing

the supercall. All non-primary edge servers wait while the primary edge server executes the

supercall. When the primary edge server finishes executing the supercall, it shares the result

with the other edge servers in the zone. The execution of the program then continues at all

edge servers in the zone.

4 Supercalls 45

Before executing the supercall, the primary edge server first queries all devices in the

zone to determine the participants of the supercall by sending an EXEC message. A device

confirms or rejects its participation by replying with an acknowledgment (ACK) or negative

acknowledgment (NAK). The primary edge server determines whether a quorum has been

reached by comparing the number of ACKs with the number of NAKs it has received from

the devices. The execution of the supercall proceeds if and only if the proportion of ACKs is

greater than a specified threshold and the other supercall preconditions are satisfied.

The primary edge server then waits for all participants to become ready to start com-

puting. A device which has confirmed participation by sending an ACK message indicates its

readiness to begin the computation by sending a READY message. A participating device may

not be ready to start computing if it is currently performing another computation. When

all participating devices are ready, the primary edge server sends a START message to begin

executing the worker function. The primary edge server also begins executing the controller

function. When a device finishes executing the worker function, it sends the result back to

the primary edge server. When the primary edge server has finished executing the controller

function and has collected results from all participants, the supercall completes. The pri-

mary edge server shares the result of the supercall (array of device results) with the other

edge servers in the zone through the supercall log described in the next section.

Data generated at device nodes and propagated by the JAMScript runtime to the primary

edge server during a supercall is replicated by the underlying data layer to the backup edge

server. Two copies of the data generated at the primary edge server during the current and

previous supercalls are always kept: one at the primary edge server and another one at the

backup edge server. This is necessary to ensure supercall recovery in case of primary or

backup edge server failure.

4 Supercalls 46

Primary Edge Server Device

send execution request (EXEC)

send vote (ACK or NAK)

start collecting votes
⋮

⋮

done collecting votes

if ACKs/(ACKs+NAKs) >= thr
then proceed with execution
else abort

start collecting results
⋮

⋮

done collecting results

if voted ACK to execution request
then execute worker function

write results to supercall log
and return to application

send start command (START)

send result (RES)execute controller function

if voted ACK to execution request
then indicate readiness
to begin computing

send "ready to compute" (READY)

collect READYs
until READYs == ACKs

confirm (ACK) or reject (NAK)
participation in supercall

Figure 4.4: Supercall execution.

4.5.1 Supercall Log

All edge servers in a zone exchange information about the zone edge servers (primary and

backup) as well as results of supercall execution through a supercall log. Only the primary

edge server writes records to the log. All other edge servers in the zone read from the log.

The log is persistent and accessible upon server restart.

The zone edge servers are selected on start-up and in case of primary or backup edge

server failure. When the primary edge server fails, the backup becomes primary. When

the backup edge server fails, the primary selects a new backup according to the edge server

selection policy. When the primary or backup edge server changes, the primary writes a

log record with the new edge server pair. All non-primary edge servers in the zone retrieve

4 Supercalls 47

the new edge server pair from the log record. An edge server learns about being selected as

backup through this mechanism.

Upon reaching a supercall statement in the program, all non-primary edge servers wait

for the primary edge server to execute the supercall and share the result. When the primary

edge server finishes executing the supercall, it writes a log record with the result. All non-

primary edge servers read the result of the supercall from the supercall log and continue the

execution of the program.

The supercall log can be either centralized or distributed. In a centralized implementa-

tion, the supercall log uses a data store located at the cloud (e.g., Redis). All edge servers

must be connected to the cloud at all times. The read/write speed depends on the latency

of accessing the cloud. In a distributed implementation, the supercall log is replicated at

each edge server using a consensus algorithm (e.g., Paxos, Raft). The cloud is neither nec-

essary nor involved. The read/write speed depends on the number of messages exchanged

for consensus and the network bandwidth.

primary edge server backup edge server

cloud

other edge server

rea
d

cloud

write write

read write/read read

read

w
rit

e

re
ad

other edge server primary edge server backup edge server

Figure 4.5: Centralized versus distributed supercall log.

4 Supercalls 48

4.5.2 Log Record Types

The supercall log consists of a sequence of records. Records can only be appended to the

log. Records cannot be removed or updated. Each record has different fields. Some fields

are common to all records and others are relevant only to records of a specific type.

The following fields are common to all records: record type, supercall id, primary edge

server, and backup edge server. The supercall id is a unique id associated with the current

supercall (jsync_ctx activity). The primary and backup edge servers are the zone edge

servers that are currently selected.

There are three record types: START, RECONFIG, and DONE. In addition to the fields that

are common to all records, the DONE record has two extra fields: result and error. The result

field contains an array with the results collected from the devices after a successful execution

of the jsync_ctx activity. The error field contains an error message if the activity has failed.

Table 4.1: Supercall log record types.

record type supercall id primary edge server backup edge server result error
START

√ √ √

RECONFIG
√ √ √

DONE
√ √ √ √ √

4.5.3 Log Record Sequences

The primary edge server writes a START record when the system is ready to start executing

the next supercall or re-executing the current supercall after recovering from a failure. A

RECONFIG record is written whenever the zone edge server pair changes after a primary or

backup edge server failure. The primary edge server writes a DONE record with the results

from the devices after finishing the execution of the jsync_ctx activity.

4 Supercalls 49

If there is no primary edge server failure during supercall execution, two records are

added to the supercall log: START and DONE. If the jsync_ctx activity has succeeded, the

result field of the DONE record contains the results collected from the devices and the error

field is empty (see Table 4.2). If the jsync_ctx activity has failed, the result field of the DONE

record is empty and the error field contains the error message (see Table 4.3).

Table 4.2: Record sequence for supercall execution without failure.

record type supercall id primary backup result error
START 1 edge1 edge2
DONE 1 edge1 edge2 [v1, v2, . . . , vn]

Table 4.3: Record sequence for supercall execution with device failure.

record type supercall id primary backup result error
START 2 edge1 edge2
DONE 2 edge1 edge2 "timeout"

If there is a primary edge server failure during supercall execution, four records are added

to the supercall log: START, RECONFIG, START, and DONE (see Table 4.4). The RECONFIG record

stores the new zone edge server pair. The second START record is written by the new primary

edge server when the system has recovered from the failure and is ready to start re-executing

the supercall.

Table 4.4: Record sequence for supercall execution with primary edge server failure.

record type supercall id primary backup result error
START 3 edge1 edge2

RECONFIG 3 edge2 edge3
START 3 edge2 edge3
DONE 3 edge2 edge3 [v1, v2, . . . , vn]

50

Chapter 5

Fault Tolerance

Running a JAMScript program involves computation and data layers. The computation layer

consists of synchronous and asynchronous activities. The data layer implements loggers and

broadcasters for data exchange between nodes at different levels (device, edge, and cloud). In

this discussion, we describe the fault tolerance mechanism associated with the computation

layer. Data layer failures are handled with a separate fault tolerance mechanism. Failures

in the computation layer include node and network failures as shown in Table 5.1.

Node failures refer to fail-stop (non-Byzantine) edge server and device process failures

which may be caused by failing hardware or software. An edge server process may stop

running for various reasons even though the machine on which it is deployed might still be

running. We distinguish between permanent and temporary node failures. If a node is not

restarted after failing, the failure is treated as permanent. If a node fails and is restarted

after a short period of time, the failure is temporary.

Network failures can be temporary or intermittent. Temporary network failures make

the network unavailable for a relatively long period of time. In such cases, a device node is

unable to connect to any edge node in the zone. Intermittent network failures last for a very

5 Fault Tolerance 51

short period of time and cause a device node to temporarily lose connectivity to the primary

edge server.

The JAMScript runtime performs various actions when recovering from computation layer

failures. These actions may include selecting a new primary or backup edge server, devices

connecting to a new primary edge server, and re-execution of a computation in progress

(if there is any). The recovery actions depend on the type of failure, the type and role of

the failed node, as well as the execution context at the time of failure. For example, the

actions to recover from a primary edge server failure differ from the actions to recover from a

backup edge server failure. Device failures are handled differently than edge server failures.

The re-execution of a computation is necessary only if there was a computation in progress

when the failure occurred.

Table 5.1: Computation layer failures.

Component Failure Type Description

Node
Permanent Node is not restarted after failing
Temporary Node is restarted after failing and recovers

Network
Temporary Network is unavailable for a significant period of time
Intermittent Network is unavailable for a very short period of time

5.1 Node Failures

5.1.1 Primary Edge Server Failure

When the backup edge server detects that the primary edge server is down, it immediately

selects itself as primary. It then chooses a new backup among all active edge servers in the

zone according to the edge server selection policy. The new primary edge server informs all

5 Fault Tolerance 52

edge servers in the zone about the new edge server pair by writing a RECONFIG record in the

supercall log.

When a device detects that the primary edge server is down, it connects to the backup

edge server which becomes the new primary of the zone. If a device is unable to connect to

the backup, it connects to the nearest edge server in the zone. The device retrieves from the

nearest edge server information about the new edge server pair. It then connects to the new

primary edge server.

C

J

J

C

J

C

J

failover

device 1 device 2 device 3

primary edge server backup edge server

J

Figure 5.1: Device reconnection after primary edge server failure.

If there is a supercall in progress, the new primary edge server re-executes the supercall.

Devices which have joined the zone after the initial execution do not participate in the re-

execution. Only devices which were part of the supercall during the initial execution may

participate in the re-execution. A device may choose not to participate even if it has been

part of the initial execution. Before starting the re-execution, the new primary edge server

5 Fault Tolerance 53

queries all devices. A device confirms or rejects its participation in the re-execution. During

the re-execution of the supercall, the new primary edge server re-runs the controller function

and the devices re-run the worker function. The result of the supercall is the result of the

re-execution.

Backup Edge Server Device

detect primary edge server
failure during supercall

become new primary
and select new backup

write new edge server pair
to supercall log

if participated in initial execution
then vote on supercall re-execution

send re-execution request (REXEC)

send vote (ACK or NAK)

start collecting votes
⋮

⋮

done collecting votes

if ACKs/(ACKs+NAKs) >= thr
then proceed with re-execution
else abort

start collecting results
⋮

⋮

done collecting results

if voted ACK to re-execution request
then execute worker function

write results to supercall log
and return to application

send start command (START)

send result (RES)execute controller function

if voted ACK to re-execution request
then indicate readiness
to begin computing

send "ready to compute" (READY)

collect READYs
until READYs == ACKs

Figure 5.2: Supercall re-execution after primary edge server failure.

5.1.2 Backup Edge Server Failure

When the primary edge server is not currently executing a supercall and detects that the

backup edge server is down, the primary immediately chooses another backup according to

the edge server selection policy. It writes a RECONFIG record with the new edge server pair

5 Fault Tolerance 54

to the supercall log. All other edge servers in the zone learn about the newly chosen backup

by reading the RECONFIG record.

When the primary edge server is executing a supercall and detects that the backup edge

server is down, the primary does not take any action until the supercall completes. When

the supercall ends, the primary edge server remains as primary for the next supercall and

selects a new backup. The new edge server pair is part of the DONE record written to the

supercall log at the end of the current supercall.

5.1.3 Non-Primary/Non-Backup Edge Server Failure

When an edge server stops running, each edge server in the zone is notified through the

JAMScript runtime’s node discovery mechanism. No action is taken or necessary when an

edge server which is neither primary nor backup goes down. Each edge server updates its

set of active edge servers. When a primary needs to select a new backup, the set of currently

active edge servers is used as an input to the edge server selection policy.

5.1.4 Edge Server Restart

Upon restarting, a failed edge server has no special role assigned (i.e. it is neither primary

nor backup). On start-up, it retrieves the current edge server pair from the supercall log

common to all edge servers in the zone. The edge server starts executing the JAMScript

program from the beginning. When a previously executed supercall is encountered, its result

is read from the supercall log. The result of a completed supercall is always available in the

supercall log regardless of whether the execution of the corresponding jsync_ctx activity has

succeeded or failed. When the program’s execution reaches a supercall in progress, it waits

for the result to appear in the supercall log. The result is written to the supercall log by the

primary edge server.

5 Fault Tolerance 55

5.1.5 Device Failure

The effect of a device failure on the system depends on whether the device is part of a

supercall when the failure occurs. When a device which is not currently participating in a

supercall stops running, the failure does not affect the program’s execution on the primary

edge server. When a device which is currently participating in a supercall fails, the device

failure may cause supercall failure. Whether the supercall succeeds or fails depends on the

timing of the failure with respect to the sequence of messages exchanged between the primary

edge server and the devices during supercall execution.

If a device fails before confirming its participation in the supercall, it does not take part

in the execution of the supercall. When the primary edge server checks whether a quorum

has been reached, the device is not considered in the total count of devices. Therefore, the

device failure has no effect on whether the supercall succeeds or fails.

If a device fails after confirming its participation in the supercall but before indicating

it is ready to start computing, the primary edge server fails the supercall. In order for

a supercall computation to start, all devices which have acknowledged participation must

report being ready to start computing. Due to the device failure, no device executes the

computation associated with the supercall. The supercall completes unsuccessfully without

a result.

If a device fails after indicating it is ready to start computing but before returning a

result to the primary edge server, the primary edge server sends a message to all devices

to start computing (assuming a quorum has been reached). The other devices execute the

computation associated with the supercall. Due to the device failure, the primary edge

server cannot collect results from all participants which have confirmed being ready to start

executing the computation. The supercall completes unsuccessfully without a result.

5 Fault Tolerance 56

If a device fails after returning a result to the primary edge server, the supercall completes

successfully (assuming results were collected from all participants). The result from the

device is part of the result of the supercall. In this case, the device failure has no effect on

whether the supercall succeeds or fails.

5.1.6 Device Restart

When a device restarts after a failure, it connects to the nearest edge server in the zone. The

device retrieves from it the current edge server pair. After connecting to the primary edge

server, the device starts executing the JAMScript program. As described in Section 5.1.5,

the device failure before the restart may or may not have caused a supercall failure. There is

no supercall failure if there was no supercall in progress when the failure occurred. There is

also no supercall failure if the device failed before confirming its participation in a supercall

or after returning a result. In case of supercall failure due to device failure, there is no

re-execution after the device restarts.

5.2 Network Failures

The effect of a network failure on the system depends on whether the failure is temporary

or intermittent. A failure is temporary when the network is unavailable for a relatively long

period of time. A failure is intermittent when the network is unavailable for a very short

period of time.

5.2.1 Temporary Network Failure

The primary edge server cannot distinguish between a device node failure and a network

failure at a device. The behavior of the primary edge server is the same in both cases

5 Fault Tolerance 57

as described in Section 5.1.5. The device receives a notification about the network failure

from the JAMScript runtime’s node discovery mechanism. The device does not attempt to

connect to any edge server until the network connection is restored. If the device is currently

executing a computation as part of a supercall, it may or may not complete the execution

(depending on the program). The device then operates autonomously driven by its local

controller. When the network connection is restored, the device connects to the nearest edge

server in the zone and retrieves the current edge server pair. After connecting to the primary

edge server, the device can participate in another supercall.

5.2.2 Intermittent Network Failure

The JAMScript runtime’s node discovery mechanism does not notify the device of the net-

work failure. The failure is handled by the underlying protocol used for communicating

between the device and the primary edge server. Messages which are not received are re-

transmitted at specified intervals up to a maximum number of retries. Since the network

failure lasts for a very short period of time, eventually the message delivery succeeds.

58

Chapter 6

Private and Shared Data

Devices at the edge of the network can generate a large volume of data. However, they

typically have limited storage and computing resources. Instead of processing the data

locally, devices push the data to the edge and cloud. In JAMScript, this is achieved by

writing the device data to a logger. The runtime automatically propagates the logger data

to the edge and cloud. The data generated at a device is also called raw or original data.

The raw data arriving at the edge can then be transformed into derived data.

In JAMScript, there are two kinds of derived data generated at the edge from device

data: private data and shared data. Private data is based on data from a single device

and is relevant only to that device. Such data can be produced when a device offloads a

computation to the edge. Shared data is based on data from multiple devices and is relevant

to that collection of devices. Shared data is generated when devices participate in a collective

computation. JAMScript provides facilities for creating both private and shared data.

6 Private and Shared Data 59

6.1 Private Data

Private data is generated at the primary edge server based only on data from one device. For

example, a device may initiate a computation (e.g., C2J sync activity) that executes at the

edge level and transforms the device data (e.g., by calculating a running average). Private

data is specific to a device and other devices cannot access it. Private data is not associated

with a supercall. It can be generated both inside and outside of a supercall. The private

data for each device is always available at the primary edge server. When a new primary

edge server in the zone is selected, JAMScript’s data layer ensures that the new primary

edge server has the private data for all devices.

J

C

d1

d11

J d2

C Cd21 d22

J= f1 , , ,

d1 d11 d21 d22d2
jdata {

}
float x as logger;

streams of logger x

= f2

private1 private2

streams of logger x

primary edge server

device 1 device 2

Figure 6.1: Private data generation with two devices.

Figure 6.1 shows private data generation with two devices. At device 1, logger x has two

data streams: one for the J component (d1) and another one for the C component (d11). At

device 2, logger x has three data streams: one for the J component (d2) and two for the C

components (d21 and d22). At the edge server, logger x has all of the device streams plus

6 Private and Shared Data 60

two private streams (private1 and private2), one for each connected device. The functions

f1 and f2 represent transformations which produce private streams from the device streams.

6.1.1 Programming with Private Data

To generate private data in JAMScript, the programmer calls the getPrivateStream method

of a logger at the edge level. The getPrivateStream method can be called either from the

supercall controller function or from an activity initiated from a device and executing at the

edge server (e.g., C2J sync or async activity). The way private data is generated (inside

or outside of a supercall) determines the data guarantees provided by the runtime in case

of primary edge server failure. The guarantees with regards to private data in different

scenarios are discussed in Section 6.3.

Data is written to the private stream by calling its log method. The log method has

one required parameter which is the transformation function and zero or more optional pa-

rameters which are passed as arguments to the transformation function. The transformation

function takes one required parameter (device_streams) and zero or more optional parame-

ters if needed for the computation. The value for the device_streams parameter is supplied

by the runtime and contains the raw data streams of the device (C and J components). The

transformation function must return a value which is written to the private stream.

6.1.2 Example Application

To illustrate the use of private data in JAMScript, we develop a program which builds a

historical record of the 10-value moving average of wind speeds at a geographic location.

The program runs on a device equipped with a wind speed sensor. The program running

at the edge server periodically receives the wind speed reading from the device, calculates

the moving average of wind speeds and writes it to the private stream associated with the

6 Private and Shared Data 61

device. The historical record of the moving average of wind speeds stored in the private

stream can then be visualized and analyzed.

record_avg_wind_speed measure_wind_speed
wind_speed

process_wind_speed

wind_speeds logger

device (C side)

edge server

moving average
of wind speeds

process_wind_speed

C2J

Figure 6.2: Recording the moving average of wind speeds.

Figure 6.2 illustrates the relationships between the main functions involved in building

a historical record of the 10-value moving average of wind speeds at a geographic location.

The record_avg_wind_speed function runs on the device and triggers the calculation of a

new moving average value. It first obtains a wind speed reading from the device’s sensor

by calling the measure_wind_speed function. The new reading is written to the wind_speeds

6 Private and Shared Data 62

logger. The record_avg_wind_speed function then launches the process_wind_speed C2J

activity which executes on the edge server. The process_wind_speed function extracts the

10 most recent values from the wind_speeds logger and calculates a new moving average

value of wind speeds.

Listing 6.1 shows a fragment of the device program responsible for building the historical

record of the moving average of wind speeds. It runs on the C component of the device.

The while loop on line 3 ensures that a new moving average value is calculated and stored

periodically. The current wind speed reading is retrieved from the sensor by calling the

measure_wind_speed function on line 5. On line 7, the new wind speed value is written to the

wind_speeds logger. The device triggers the calculation of the moving average at the edge

server by launching the process_wind_speed C2J activity on line 9. The process_wind_speed

function is called from the device but executes at the edge server. Finally, after a pause of

5 seconds (line 11) the process repeats.

Listing 6.1: Recording the moving average of wind speeds.

1 // called on device program start -up

2 jasync record_avg_wind_speed () {

3 while (1) {

4 // measure the current wind speed

5 float wind_speed = measure_wind_speed ();

6 // write to the wind_speeds logger defined on the J side

7 wind_speeds = wind_speed;

8 // use wind speed reading to calculate moving average

9 process_wind_speed(deviceId);

10 // wait 5 seconds before the next measurement

11 jsleep (5000);

12 }

13 }

Listing 6.2 shows the implementation of the process_wind_speed C2J activity which

obtains the wind speed reading from the device and calculates the moving average. The

6 Private and Shared Data 63

process_wind_speed function first waits 500 ms to receive logger data from the device (line

12). It then retrieves the private stream associated with the wind_speeds logger and the

device and stores it in the private_stream variable (line 15). The dev_streams variable on

line 16 contains the streams from the J and C components of the device. The stream from the

J component is empty. Lines 17–19 retrieve the stream corresponding to the C component.

Lines 20–22 extract the last 10 values from the stream and calculate the average. Finally,

the average wind speed returned on line 23 is stored in the private stream by calling the log

method on line 16.

Listing 6.2: Calculating the moving average of wind speeds.

1 jdata {

2 // logger used by device to send wind speed to edge server

3 float wind_speeds as logger;
4 }

5

6 jcond {

7 fogOnly: jsys.type == "fog";

8 }

9

10 jasync {fogOnly} function process_wind_speed(deviceId) {

11 // wait for edge server to receive logger data from device

12 jsys.sleep (500);

13

14 // compute moving average and write it to the private stream

15 var private_stream = wind_speeds.getPrivateStream(deviceId);

16 private_stream.log(dev_streams => {

17 var dev_stream = dev_streams.find(

18 stream => stream.lastValue () !== null
19);

20 var values = dev_stream.n_values (10);

21 var sum = values.reduce ((total , val) => total + val , 0);

22 var average = sum / values.length;

23 return average;

24 });

25 }

6 Private and Shared Data 64

6.2 Shared Data

Shared data is generated at the primary edge server based only on data from devices par-

ticipating in a supercall. For example, the primary edge server may initiate a computation

(e.g., jsync_ctx activity) that generates data at the devices and then transforms it at the

edge level (e.g., by calculating the average temperature from multiple sensors). The supercall

ensures that the device data arriving at the edge is time-aligned. Shared data is relevant to

all devices participating in the supercall and is accessible by all of them. JAMScript’s data

layer guarantees that the shared data generated during the current and previous supercalls

is always available at the primary edge server in the zone.

J

C

d1

d11

J d2

C Cd21 d22

J , , ,

d1 d11 d21 d22d2
jdata {

}
float x as logger;

streams of logger x

= f

shared

primary edge server

device 1 device 2

,

Figure 6.3: Shared data generation with two devices.

Figure 6.3 shows shared data generation from two devices participating in a supercall.

At device 1, logger x has two data streams: one for the J component (d1) and another one

for the C component (d11). At device 2, logger x has three data streams: one for the J

component (d2) and two for the C components (d21 and d22). At the edge server, logger x

6 Private and Shared Data 65

has all of the device streams plus one shared stream (shared) for the supercall. The function

f represents a transformation which produces a shared stream from the device streams.

6.2.1 Programming with Shared Data

To generate shared data in JAMScript, the programmer calls the getSharedStream method

of a logger at the edge level. This method can be called either from the supercall controller

function or from an activity initiated from a device and executing at the edge server (e.g., C2J

sync or async activity). Calling getSharedStream from a C2J activity allows devices to read

shared data generated during the current and previous supercalls. When getSharedStream

is called from the supercall controller function, the shared stream it returns is both readable

and writable. When getSharedStream is called from an activity initiated from a device and

executing at the edge server, the shared stream is read-only.

Data is written to the shared stream by calling its log method. The log method has

one required parameter which is the transformation function and zero or more optional pa-

rameters which are passed as arguments to the transformation function. The transformation

function takes one required parameter (device_streams) and zero or more optional parame-

ters if needed for the computation. The value for the device_streams parameter is supplied

by the runtime and contains the raw data streams of all devices participating in the supercall.

The transformation function must return a value which is written to the shared stream.

6.2.2 Example Application

To illustrate how shared data can be used in JAMScript, we create a program which builds a

historical record of the average temperature in a smart home. The program runs on several

devices which are equipped with temperature sensors and are deployed in different rooms.

The program running at the edge server periodically collects temperature readings from the

6 Private and Shared Data 66

devices, calculates the average temperature in the house and writes it to a shared stream.

The historical record of the average temperature in the house stored in the shared stream

can then be visualized and analyzed.

collect_temps
(supercall)

process_temps
(controller function)

collect_temps
(worker function) measure_temp

temp

record_avg_temp

temps logger

device (C side)

edge server

average temp

Figure 6.4: Recording the average temperature in the smart home.

Figure 6.4 illustrates the relationships between the main functions involved in building

a historical record of the average temperature in the smart home. The record_avg_temp

6 Private and Shared Data 67

function is called initially on edge server program start-up and runs periodically. It launches

the collect_temps supercall with process_temps as a controller function. The supercall

triggers the execution of the collect_temps worker function on the C side of each device.

The worker function calls the measure_temp function which obtains the current temperature

from the device’s sensor. The temperature reading is then written to the temps logger. The

process_temps controller function executing on the edge server collects temperature readings

from all devices and calculates the average temperature.

Listing 6.3 shows a fragment of the edge server program responsible for adding a new

entry to the historical record of the average temperature. A supercall is launched by calling

the collect_temps function on line 4. The supercall invocation triggers the execution of

a function with the same name (worker function) at the devices. The last argument of

collect_temps is the controller function process_temps defined in Listing 6.5. It executes on

the edge server and runs concurrently with the collect_temps worker function. On line 6,

the program handles the two possible outcomes of the supercall (success or failure) by calling

the then method of the returned promise. In both cases, another supercall is launched after

a delay of 500 ms to record a new average temperature (lines 10 and 15).

Listing 6.3: Recording the average temperature at the edge server.

1 // initially called on edge server program start -up

2 function record_avg_temp () {

3 // launch a supercall

4 var c = collect_temps(jsys.id, process_temps);

5 // handle the two possible outcomes

6 c.then(

7 res => {

8 // res is an array of device results

9 console.log(res);

10 setTimeout(record_avg_temp , 500);

11 },

12 err => {

13 // err is an error message

6 Private and Shared Data 68

14 console.log(err);

15 setTimeout(record_avg_temp , 500);

16 }

17);

18 }

Listing 6.4 shows the C side code of the device program which contains the definition of

the worker function of the supercall. All devices participating in the supercall start executing

it at the same time. The call to the measure_temp function on line 4 obtains the current

temperature from the device’s sensor. The temperature reading is written to the temps

logger on line 6. The JAMScript runtime automatically propagates the logger data to the

edge server.

Listing 6.4: Temperature reading collection at the devices.

1 // runs when the supercall is launched at the edge server

2 jsync_ctx int collect_temps(char* id) {

3 // measure the current temperature

4 float temp = measure_temp ();

5 // write to the temps logger defined on the J side

6 temps = temp;

7 return 0;

8 }

Listing 6.5 shows the implementation of the process_temps controller function which

collects temperature readings from the devices and calculates the average temperature. First,

the controller function waits 500 ms to receive data from the devices (line 10). It then

retrieves the shared stream associated with the temps logger and the supercall in progress

and stores it in the shared_stream variable (line 13). The value for the context parameter

of the getSharedStream method is automatically provided by the JAMScript runtime. The

dev_streams variable on line 14 is a collection of the temps logger’s data streams from all

devices participating in the supercall. Lines 15–17 retrieve the last value from each device

6 Private and Shared Data 69

stream and calculate the average. Finally, the average temperature returned on line 18 is

stored in the shared stream by calling the log method on line 14.

Listing 6.5: Calculating the average temperature from the device readings.

1 jdata {

2 // logger used by devices to send temps to the edge server

3 float temps as logger;
4 }

5

6 // supercall controller function (edge server computation)

7 // collect temps from devices and calculate average temp

8 function process_temps(context) {

9 // wait for edge server to receive logger data from devices

10 jsys.sleep (500);

11

12 // compute average temp and write it to the shared stream

13 var shared_stream = temps.getSharedStream(context);

14 shared_stream.log(dev_streams => {

15 var values = dev_streams.map(stream => stream.lastValue ());

16 var sum = values.reduce ((total , val) => total + val , 0);

17 var average = sum / values.length;

18 return average;

19 });

20 }

6.3 Data Reliability Guarantees

A JAMScript program stores data by writing to loggers and broadcasters. Each edge server

has a separate data store. The data generated by the program and stored using loggers

and broadcasters is persisted in the data store of the primary edge server. The data layer

asynchronously replicates the data to the backup edge server. Typically, two copies of the

data are available: one in the data store of the primary and another one in the data store

of the backup. Since the replication is asynchronous, if the primary edge server fails before

6 Private and Shared Data 70

a data value is replicated to the backup edge server, the data value is lost. To provide data

guarantees in a system with asynchronous replication, supercalls are used as checkpoints.

A supercall can start executing only when the replication of the data generated during the

previous supercalls has completed in which case two copies of the data are available.

The JAMScript runtime provides various data reliability guarantees in case of primary

edge server failure. The data guarantees depend on whether the data is generated inside or

outside of a supercall. Shared data is always generated inside a supercall because it can be

created only from the supercall controller function.

Private data created from the supercall controller function is generated inside a supercall.

Private data whose creation is triggered from the supercall worker function is also generated

inside a supercall. In this scenario, the supercall worker function launches a C2J sync activity

executing at the edge server which creates the private data. Private data created in all other

cases is generated outside of a supercall.

Figure 6.5 illustrates the two scenarios for private data generation inside a supercall.

Launching the generate supercall triggers the execution of the create_data_ctrl controller

function which generates some private data. The supercall worker function generate calls

the C2J sync activity create_data_c2j which runs at the edge server and also generates some

private data.

In case of primary edge server failure, shared data generated from the last N (constant)

completed supercalls is recovered from the backup edge server. Private data generated from

and between the last N completed supercalls is also recovered from the backup edge server.

Shared and private data created from a supercall in progress are regenerated during the re-

execution of the supercall. If there is no supercall in progress, private data generated after

the end of the last supercall may be lost and cannot be regenerated.

6 Private and Shared Data 71

create_data_c2j generate
(supercall)

create_data_ctrl
(controller function)

generate
(worker function)

private data

device (C side)

edge server

C2J sync

Figure 6.5: Private data generation inside a supercall.

6.4 Shared Data and Machine Learning

The data generated at the edge can be used to produce insights and make predictions using

machine learning tools and techniques. To use the generated data as input to machine learn-

ing algorithms, it must be stored in a suitable format. Typically, machine learning algorithms

operate on feature vectors of fixed size. JAMScript’s supercalls and shared streams provide

facilities for storing data as feature vectors in a convenient way. Since different devices may

participate in each supercall, the developer needs to take extra care to ensure that feature

vectors have a fixed size and correct order of values.

6 Private and Shared Data 72

We consider a JAMScript program with supercalls. In the supercall worker function,

each device writes a value to a logger. In the supercall controller function, the edge server

first waits for the runtime to propagate the values from the devices to the edge server. The

edge server then reads the last value from the device stream of each participating device

and builds a feature vector which is saved to the shared stream. To ensure a consistent

order of values in the feature vector, the device streams are processed in ascending order of

device id. To ensure that the feature vector has a fixed size, null values are set in positions

corresponding to devices which do not participate in the supercall.

For example, we consider a configuration with four devices. For simplicity, we assume

that each device has only one raw data stream. During a supercall, each device writes a

value to logger x. The edge server creates a feature vector using these values and writes it

to the shared stream associated with logger x and the supercall in progress.

All four devices participate in the first supercall. The supercall controller function reads

four values from the device streams ordered by device id: v11, v21, v31, and v41. It then writes

the feature vector (v11, v21, v31, v41) to the shared stream.

Devices 1 and 3 participate in the second supercall. The supercall controller function

reads two values from the device streams ordered by device id: v12 and v32. It then writes

the feature vector (v12, null, v32, null) to the shared stream. The null values correspond to

devices 2 and 4 which do not participate in the second supercall.

Devices 1, 2, and 4 participate in the third supercall. The supercall controller function

reads three values from the device streams ordered by device id: v13, v23, and v43. It then

writes the feature vector (v13, v23, null, v43) to the shared stream. The null value corresponds

to device 3 which does not participate in the third supercall.

73

Chapter 7

Distributed Multiple-Target Tracking

Application

Multiple-target tracking has numerous military and civilian applications in areas such as air

defense systems, air traffic control, and drones management. Typically, the monitored area

is large and several radar stations are deployed. Multiple targets may be present in the area

at any moment. A target might be detected by more than one radar. A distributed target

tracking algorithm processes the information collected at the stations and generates a unified

view of all tracked objects. The main implementation challenges are reliability, achieving

high accuracy, and synchronizing the data collected by the different radars. Edge computing

and JAMScript’s supercalls are well suited for meeting these challenges.

7.1 Design Requirements and Architecture

We build a distributed multiple-target tracking (DMTT) application which efficiently and

accurately tracks objects moving in a physical space. The application runs on several edge

servers and devices. One of the edge servers is designated as primary and another one –

7 Distributed Multiple-Target Tracking Application 74

as backup. The backup edge server takes over processing when the primary one fails. All

devices are connected to the primary edge server. The devices are deployed in the physical

space. Each device has a radar which covers a circular area with a particular radius. The

areas covered by different devices may overlap.

The edge server builds and maintains a model with information about all moving objects

known to the system. Each object in the model has a unique id, coordinates, and velocity

vector. The edge server periodically updates the model with information collected from the

devices. The model is saved in a persistent data store. The updated model is also periodically

broadcasted to the devices.

Devices perform tracking and identification functions. Each device uses the model re-

ceived from the server as well as data about objects detected by its radar to identify and

match these objects to the ones in the model. Objects which have just entered the physical

space monitored by the devices are not yet part of the model and are labelled as unknown.

Each device sends to the edge server the ids, coordinates, and velocities of the objects it

is tracking. In order to achieve high tracking accuracy independent of the frequency of model

updates from the server, each device maintains a local copy of the model and periodically

updates the coordinates and velocities of the objects in it based on its radar data.

Due to the fact that the areas covered by different devices overlap, one object might be

tracked by multiple devices. This may cause information about the same object to be sent

to the server from different devices. The edge server resolves duplicate information. It also

assigns ids to all unknown objects and adds them to the model.

The model maintained and updated at the edge server represents synchronized shared

state. Synchronized shared state is built at the edge server from data generated at multiple

devices at the same point in time. The age of the shared state is determined by the oldest

information from any device used to build it. In order for the tracking system to be accurate,

the model must have the minimum possible age. The accuracy of the tracking system

7 Distributed Multiple-Target Tracking Application 75

increases as the age of the model decreases. In the application, the model is built based on

tracking information generated simultaneously at the devices.

Another important requirement is support for fault-tolerant computing at the edge. In

case of edge server failure, the system must provide a mechanism for automatically generating

a new version of the model with the most up-to-date tracking information from the devices.

JAMScript’s supercall construct satisfies these requirements. It supports shared data and

synchronized distributed computations and implements a robust fault tolerance scheme.

Figure 7.1 illustrates a sample deployment with a primary edge server, a backup edge

server, and three devices. The areas monitored by the radars of the devices overlap. Device 0

is detecting objects A and B. Device 1 is detecting objects B, C, and D. Device 2 is detecting

objects D and E. Objects B and D are each tracked by two devices. The model built at the

primary edge server contains five objects: A, B, C, D, and E.

radar area

primary edge server backup edge server

radar area radar area

dev0 dev1 dev2

ob
jec

ts
A, B objects D, E

ob
je

ct
s

B,
 C

, D

m
odel

mod
el

m
odel

A

B

C

D

E

Figure 7.1: Sample deployment of the DMTT application.

7 Distributed Multiple-Target Tracking Application 76

7.2 Implementation

The implementation uses supercalls to perform synchronized distributed computations for

collecting the targets detected by each device’s radar. Devices send the targets to the edge

server using a logger. The edge server broadcasts the model asynchronously to the devices.

collect_targets
(supercall)

process_targets
(controller function)

collect_targets
(worker function) identify_targets

targs

pull_targets

C side J side

update_model

targets logger

device

edge server

model

Figure 7.2: Building the model of tracked targets in the DMTT application.

7 Distributed Multiple-Target Tracking Application 77

Figure 7.2 illustrates the relationships between the main functions involved in build-

ing the model of tracked targets. The update_model function is called initially on edge

server program start-up and runs periodically. It launches the collect_targets supercall

with process_targets as a controller function. The supercall triggers the execution of the

collect_targets worker function on the C side of each device. The worker function launches

the pull_targets C2J sync activity which is called from the C side but executes on the J

side. The pull_targets function calls identify_targets which runs on the J side of the

device and matches objects detected by the device’s radar to targets in the model. The

pull_targets function returns the retrieved targets to the worker function on the C side of

the device which writes them to the targets logger. The process_targets controller function

executing on the edge server collects targets from all devices and rebuilds the model.

Listing 7.1 shows a fragment of the edge server program responsible for updating the

model. A supercall is launched by calling the collect_targets function on line 4. The

supercall invocation triggers the execution of a function with the same name (worker func-

tion) at the devices. The last argument of collect_targets is the controller function

process_targets defined in Listing 7.4. It executes on the edge server and runs concur-

rently with the collect_targets worker function. On line 6, the program handles the two

possible outcomes of the supercall (success or failure) by calling the then method of the

returned promise. In both cases, another supercall is launched after a delay of 500 ms to

refresh the model (lines 10 and 15).

Listing 7.1: Model update at the edge server.

1 // initially called on edge server program start -up

2 function update_model () {

3 // launch a supercall

4 var c = collect_targets(jsys.id, process_targets);

5 // handle the two possible outcomes

6 c.then(

7 res => {

7 Distributed Multiple-Target Tracking Application 78

8 // res is an array of device results

9 console.log(res);

10 setTimeout(update_model , 500);

11 },

12 err => {

13 // err is an error message

14 console.log(err);

15 setTimeout(update_model , 500);

16 }

17);

18 }

Listing 7.2 shows the C side code of the device program which contains the definition of

the worker function of the supercall. All devices participating in the supercall start executing

it at the same time. The call to the pull_targets function on line 4 triggers the generation of

up-to-date tracking information at each device. The pull_targets function is a synchronous

C2J activity that executes on the J side of the device and calls the identify_targets function

defined in Listing 7.3. The newly generated tracking information is written to the targets

logger on line 6. The JAMScript runtime automatically propagates the logger data to the

edge server.

Listing 7.2: Target collection at the devices.

1 // runs when the supercall is launched at the edge server

2 jsync_ctx int collect_targets(char* id) {

3 // generate up-to-date tracking information

4 char* targs = pull_targets ();

5 // write to the targets logger defined on the J side

6 targets = targs;

7 free(targs);

8 return 0;

9 }

Listing 7.3 shows the J side code of the device program which performs tracking and

identification. The identify_targets function runs periodically as well as on demand when

7 Distributed Multiple-Target Tracking Application 79

called by the pull_targets function (line 4 of Listing 7.2). On line 7, the device obtains the

list of objects detected by its radar. It then tries to match each detected object to a target

in the local model (line 8). The identify_target function called on line 11 examines the

coordinates and velocity of each target in the model looking for a match. If the condition of

the if statement on line 12 is true, the object has been matched to a target in the model.

The coordinates of that target are updated (line 14) and its velocity is recalculated based on

its current and previous location (lines 16–18). Finally the local model is updated on line 22.

In the list of targets returned on line 23, each target has an id (or ’UNKNOWN’), coordinates,

and velocity (optional).

Listing 7.3: Target identification at the devices.

1 // match objects detected by device radar to targets in model

2 // runs periodically as well as on demand during supercall

3 function identify_targets () {

4 // list of targets tracked by device

5 var targets = [];

6 // objects detected by device radar

7 var radar_data = get_radar_data ();

8 radar_data.forEach(object => {

9 // match object to target in model

10 // based on location and velocity

11 var target = identify_target(object.coords);

12 if (target.id !== 'UNKNOWN ') {

13 // update target coordinates

14 target.coords = object.coords;

15 // calculate velocity

16 var dx = object.coords.x - target.coords.x;

17 var dy = object.coords.y - target.coords.y;

18 target.velocity = {x: dx, y: dy};

19 }

20 targets.push(target);

21 });

22 update_local_model(targets);

23 return targets;

24 }

7 Distributed Multiple-Target Tracking Application 80

Listing 7.4 shows the implementation of the process_targets controller function which

collects targets from the devices and rebuilds the model. First, the controller function waits

500 ms to receive data from the devices (line 10). It then retrieves the shared stream associ-

ated with the targets logger and the supercall in progress and stores it in the shared_stream

variable (line 12). The value for the context parameter of the getSharedStream method is

automatically provided by the JAMScript runtime. The device_streams variable on line

13 is a collection of the targets logger’s data streams from all devices participating in the

supercall. The model variable on line 14 contains the model being built by the controller

function.

The forEach function call on line 17 iterates over all device streams and the device_stream

arrow function parameter represents one data stream from one device. The last value in the

device_stream represents the targets collected by the device during the current supercall.

These targets are retrieved and stored in the device_targets variable on line 19. The forEach

function call on line 21 iterates over all device targets and adds each one to the model. The

collection of targets stored in the model variable may contain multiple instances of the same

target tracked by different devices. The call to the filter_targets function on line 26

removes the duplicate instances from the model. Lines 29–33 assign identifiers to targets

which were previously unknown to the system and appear for the first time in the model.

The call to the push_model function on line 36 broadcasts the newly built model to the

devices using an asynchronous othercall. An othercall (visualize_model) is also used for

visualizing the model (line 39). JAMScript’s othercalls are suitable for broadcasting the

model to the devices as well as for visualizing it because these operations do not require

the fault tolerance and synchronization associated with supercalls. Each device periodically

updates its local copy of the model based on its radar data and always has an up-to-date view

of the area covered by its radar. The model received from the edge server provides additional

information about objects in areas covered by other devices. This additional information is

7 Distributed Multiple-Target Tracking Application 81

not critical for the operation of the device and it is acceptable for the device to occasionally

not receive it. Synchronization is also not required when applying the model from the edge

server at each device. Devices can update their local copies of the model at slightly different

times. The visualization of the model does not affect the functioning of the system.

Finally, the newly built model returned on line 43 is stored in the shared data stream

associated with the targets logger and the supercall in progress by calling the log method

on line 13. This saves the model to the persistent data store. The shared data stream

containing all models is automatically replicated to the data store of the backup edge server

by the underlying data layer. This functionality is essential for a successful recovery in case

of a primary edge server failure.

Listing 7.4: Building the model from the targets collected by the devices.

1 jdata {

2 // logger used by devices to send targets to the edge server

3 char* targets as logger;
4 }

5

6 // supercall controller function (edge server computation)

7 // collect targets from devices and rebuild model

8 function process_targets(context) {

9 // wait for edge server to receive logger data from devices

10 jsys.sleep (500);

11

12 var shared_stream = targets.getSharedStream(context);

13 shared_stream.log(device_streams => {

14 var model = [];

15

16 // collect targets from all devices

17 device_streams.forEach(device_stream => {

18 // collect targets from one device

19 var device_targets = device_stream.lastValue ();

20 // add device targets to model

21 device_targets.forEach(target => model.push(target));

22 });

23

7 Distributed Multiple-Target Tracking Application 82

24 // remove multiple instances of the same target

25 // tracked by different devices

26 model = filter_targets(model);

27

28 // assign ids to unknown targets

29 model.forEach(target => {

30 if (target.id === 'UNKNOWN ') {

31 target.id = make_id ();

32 }

33 });

34

35 // broadcast model to devices (asynchronous othercall)

36 push_model(model);

37

38 // visualize model (asynchronous othercall)

39 visualize_model(model);

40

41 // save model to persistent data store

42 // by writing it to the shared stream

43 return model;

44 });

45 }

7.3 Simulation with Flight Data

The multiple-target tracking application implemented with JAMScript supercalls runs in a

distributed deployment of multiple edge servers and tracking stations (devices). One possible

configuration for testing the application is a network of Raspberry Pi base stations emulating

a distributed drone tracking system. Here we present results from testing the application

using a flight simulation. We create a distributed system which consists of processes running

on the same machine. Each process is either an edge server or device process.

In the simulation, there are three devices deployed at the same latitude but different

longitudes 200 km apart. Each device covers a circular area with a radius of 125 km. The

areas covered by the first and second device as well as the second and third device overlap.

7 Distributed Multiple-Target Tracking Application 83

In the simulation, one device is deployed at an airport, another device is located 200 km to

the west and the third device – 200 km to the east.

In place of radar data, the simulation uses real flight data provided by flightradar24.com.

The flight data is in a comma-separated values (CSV) format. Each record is comprised of

the following fields: Timestamp, UTC, Callsign, Position, Altitude, Speed, Direction. The

distributed multiple-target tracking application uses the Timestamp, Position and Altitude

fields. The Position field contains latitude and longitude coordinates separated by a comma.

The flight data used in the experiments covers departures and arrivals at the airport in

Frankfurt, Germany in December 2020. The departures include flights to London (LH900),

Prague (LH1392) and Zurich (LH1186). The arrivals include flights from Paris (AF1018),

Munich (LH93) and Dresden (LH215). Typically flight data is reported at time intervals

between 20 and 90 seconds.

The visualization component of the application displays the trajectories of all tracked

flights as they progress over time. A model is presented as a set of points where each point

corresponds to a plane location at a particular point in time. Each model is a snapshot

in time of the positions of all tracked flights. The visualization is comprised of all models

(snapshots) generated since application start-up.

Figure 7.3 presents the trajectories of all tracked flights up to a particular point in time.

The blue, brown, and red trajectories correspond to flights departing from the Frankfurt

airport. The orange, green, and purple trajectories represent arriving flights. Device 0 is

detecting two planes (LH900 and AF1018). Device 1 is detecting three planes (LH1186,

LH215, and LH93). Device 2 is detecting two planes (LH93 and LH1392). The plane for

flight LH93 is being tracked by both Device 1 and Device 2 at this particular moment due

to the overlapping areas monitored by the devices.

7 Distributed Multiple-Target Tracking Application 84

Figure 7.3: Flight tracking simulation.

7.4 Experimental Results

We have measured the performance of the JAMScript supercall implementation in various

scenarios with and without edge server failures. Device failures are not simulated because

they cause the supercall to complete with an error message and do not trigger a re-execution.

To discount application-specific overhead, the performance test application involves an edge

server computation which takes 500 ms and a no-op device computation. We run the tests

on a laptop with 32 GB of RAM and an Intel Core i7-7820HQ CPU running Ubuntu Linux

18.04. All edge servers share the same persistent data store (Redis 4.0.9).

The recovery time in case of edge server failure during a supercall is defined as the time

elapsed between the moment the primary edge server fails and the moment the backup edge

server attempts re-execution of the failed supercall. In our tests, the recovery time averaged

25 ms with standard deviation 1.9 ms over 30 test runs. The short recovery time shows the

ability of the JAMScript runtime to recover quickly from edge server failures with minimal

disruption to the system.

7 Distributed Multiple-Target Tracking Application 85

Average execution time (ms)

0 100 200 300 400 500 600 700

supercall with failure

supercall

J2C synchronous activity

Figure 7.4: Comparison of execution times of supercalls and J2C sync activities.

The supercall implementation in JAMScript is based on the implementation of the J2C

sync activity. Compared to a J2C sync activity, a supercall provides the ability to run

simultaneously computations at the edge server and devices. A supercall also implements

a fault tolerance mechanism for recovering from edge server failures with automatic re-

execution. The additional functionality of supercalls is provided with a small performance

overhead. The average execution time of a supercall over 30 test runs is 511.2 ms with

standard deviation 1.6 ms (middle bar of Figure 7.4). A supercall is only 1.9% slower than a

J2C sync activity which has an average execution time of 501.7 ms with standard deviation

0.7 ms over 30 test runs (top bar of Figure 7.4).

We also compare the supercall execution time without failures and the supercall execution

time when there is a primary edge server failure and re-execution after recovery. The failure

is triggered programmatically at the start of the controller function. The average execution

time without failure is 511.2 ms with standard deviation 1.6 ms over 30 test runs (middle

bar of Figure 7.4). 500 ms of the execution time are spent in the edge server computation

(application dependent). The JAMScript runtime processing takes only about 10 ms.

The average execution time when there is a failure is 595.1 ms with standard deviation

14.7 ms over 30 test runs (bottom bar of Figure 7.4). The execution time with failure

consists of the following components: 35 ms runtime processing during the initial execution;

7 Distributed Multiple-Target Tracking Application 86

25 ms recovery time; 500 ms edge server computation during the re-execution (application

dependent); 35 ms runtime processing during the re-execution. The time to recover from

failure during a supercall and successfully re-execute the supercall is 16% larger than the

execution time without failure.

Figure 7.5 shows the execution times of the first 30 supercalls during one run of the

distributed multiple-target tracking application with programmatically simulated failures

during supercalls 10 and 20. The performance results are similar to the ones obtained with

the performance test application.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Supercall number

E
xe

cu
tio

n
tim

e
(m

s)

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Figure 7.5: Variation of supercall execution times in the DMTT application.

87

Chapter 8

Related Work

8.1 Apache Hama

Apache Hama [46] is a framework for distributed parallel computing which implements the

bulk synchronous parallel (BSP) programming model. It uses the Hadoop Distributed File

System (HDFS). In Hama, a program is a sequence of supersteps with barrier synchroniza-

tion between them. Each superstep consists of three phases: local computation using local

data values, global communication for inter-process exchange of locally computed data, and

barrier synchronization to ensure that all actions in the superstep complete.

Hama’s architecture follows the master-slave model and consists of three components:

BSP master, Groom server (slave component), and synchronization component. The BSP

master schedules jobs and assigns tasks to the Groom servers. Each Groom server runs one or

more BSP tasks assigned by the BSP master. The synchronization component (ZooKeeper)

executes on the same node as the BSP master and provides efficient barrier synchronization

for the BSP tasks.

Hama is a versatile framework suitable for use in different application domains like graph

processing, streaming, and machine learning. Many frameworks for processing big data are

8 Related Work 88

designed for handling data-intensive tasks. Hama instead focuses on computation-intensive

tasks.

One of the advantages of Hama is support for inter-process communication. Unlike

Hadoop where direct communication between Map and Reduce tasks is not allowed, Hama

allows BSP tasks to directly exchange messages. This avoids the I/O cost of using the

distributed file system for indirect communication.

In addition to HDFS, Hama can integrate with any distributed file system. It also

provides support for general-purpose computing on graphics processing units (GPGPU).

One of the main limitations of Hama is the BSP master being a single point of failure.

Comparative Analysis

JAMScript’s supercalls are similar to Apache Hama’s supersteps from the BSP programming

model. Both perform computations running in parallel on a set of workers. In Hama’s

master-slave model, computations execute on Groom servers coordinated by a BSP master.

In JAMScript’s controller-worker architecture, computations run on both the primary edge

server (controller) and the device nodes (workers) connected to it. Unlike Apache Hama’s

BSP tasks which can exchange messages, in JAMScript the device nodes (workers) can

communicate only with the primary edge server and not with each other.

In Apache Hama, the synchronization is managed by a dedicated synchronization com-

ponent. In JAMScript, the primary edge server performs the synchronization functions. In

Apache Hama’s BSP model, barrier synchronization is performed at the end of each super-

step. When a process reaches the barrier, it waits until all other processes have reached it.

Similarly, a JAMScript supercall ends only when both the primary edge server (controller)

and all device nodes (workers) have finished their computations. Similarly to a synchroniza-

tion barrier, upon reaching a supercall during program execution, non-primary edge servers

wait until the primary edge server executes the supercall and returns a result.

8 Related Work 89

8.2 Client-Edge-Server for Stateful Network Applications

Many cloud computing applications perform computations at the edge instead of the cloud

or client. Doing computations at the edge instead of the cloud decreases the response latency.

Performing computations at the edge instead of the client lessens the computational resource

requirements on the client.

The Client-Edge-Server for Stateful Network Applications (CESSNA) [47] framework and

runtime environment aims to solve the challenges of dealing with edge failures and client

mobility while maintaining state at the edge. The edge keeps state for each client-server

session. The session state consists of messages and data exchanged between client and edge

and between edge and server. The framework provides strong state consistency guarantees

in case of edge failures. After a failure, the new edge responds to the client/server with the

same messages that would have been returned by the original edge if it had not failed.

To integrate with CESSNA, the edge application code must use a special API to commu-

nicate with the client/server and perform non-deterministic operations. The edge framework

implementing the API maintains a log which records the order in which messages are pro-

cessed as well as information about non-deterministic events. To recover the session state at

another edge, the runtime replays the log.

The log could get very large and slow down recovery. To reduce the log size, snapshots

capturing the state of the edge application are created at regular time intervals. CESSNA

provides two implementations for generating snapshots. Container isolation uses Docker

checkpointing with a Python API to perform checkpoints. Software isolation uses custom

checkpointing with a Rust API to perform checkpoints and read/write state.

The framework provides two recovery modes: local and remote. In the local recovery

mode, snapshots are stored locally and the failed and new edge runtimes share fast storage.

In the remote recovery mode, snapshots are stored locally as well as on another node (e.g.,

8 Related Work 90

client, server, another edge) from which the new edge fetches the snapshot. A limitation of

the current design is the lack of support for handling multiple clients per session in an edge

application.

Comparative Analysis

Both CESSNA and JAMScript aim to solve the challenges of developing stateful edge appli-

cations which tolerate edge failures and client mobility. In CESSNA, the edge state is asso-

ciated with a single client-server session. The framework provides strong state consistency

guarantees in case of edge server failures. In JAMScript, the edge state can be associated

with either a single device (private data) or multiple devices (shared data). Shared data

is constructed at the edge during a supercall, while private data can also be constructed

outside of a supercall. Data generated inside a supercall is regenerated in case of edge server

failures. The regenerated data might differ from the data that would have been generated

without failures but it reflects changes in the physical world on which it is based.

CESSNA and JAMScript manage fault tolerance at a different granularity level. CESSNA

aims to make edge failures transparent to the client, while JAMScript involves the devices

in the recovery process. To achieve fault tolerance, CESSNA performs logging and check-

pointing. The log records information about messages exchanged between client, edge and

cloud as well as non-deterministic events. In case of edge server failure, the log is replayed

at the new edge server. To reduce the log size, checkpoints capturing the state of the edge

application are created at regular time intervals. In JAMScript, fault tolerance is achieved

at the supercall level. The application developer must put critical code inside a supercall. If

the primary edge server fails during a supercall, the backup edge server takes over as primary

and re-executes the supercall. Both the new primary edge server and devices re-execute their

computations.

8 Related Work 91

8.3 Resilience of Stateful IoT Applications

Designing fault-tolerant systems for edge computing applications is challenging due to the

dynamic nature of the edge environment, the heterogeneity of the computing entities, and

the interaction with the physical world. Computing entities may join or leave the system

at any time due to mobility or failure. Applications run on a wide range of hardware with

different processing and storage capabilities. Devices often interact with the physical world

and in many cases must perform actions at specific times and locations.

The authors of [48] propose a fault-tolerant system for stateful edge applications which

considers dynamicity, heterogeneity, and interactions with the physical world. To assist in

failure recovery, the state of the application is saved at specific execution points. The system

monitors both the network and computing entities for failures. When a failure occurs, the

system is reconfigured and the saved application state is used during recovery. The recovery

process takes into account the validity of actions in the physical world. Actions that are no

longer consistent with the physical world are ignored.

The failure management protocol involves a number of global and distributed entities.

The main global entities are the Global Manager and Application Lifecycle Manager. The

Global Manager has a bird’s-eye view of the network and computing entities. It tracks failed

entities and manages the recovery process. The Application Lifecycle Manager is responsible

for deploying application components. The main distributed entities are Fog Agents and

Software Element Loggers. Fog Agents monitor the system for failures. Software Element

Loggers are used for saving the state of the application.

The failure management protocol implements three strategies for saving application state:

checkpointing, message log, and function call record. The strategy used by a computing

entity (edge server, device) depends on its properties (local storage, communication model).

Strategies can also be combined. For message log and function call record, Software Element

8 Related Work 92

Loggers intercept messages and function calls and log them before passing them to the

application. When a new checkpoint is created successfully, the previous state (checkpoints,

message logs, function call records) for that computing entity is deleted. Each event occurring

in the physical world is annotated with a validity timer. The timer indicates the period of

time during which the event is consistent with the physical world.

Fog Agents are deployed at the edge to monitor both the network and computing entities.

They send status updates to the Global Manager. Each agent has a local backup agent that

replaces it in case of failure. Edge servers are monitored using a heartbeat mechanism. To

monitor devices, agents can either observe application messages sent by the devices or send

them ping requests. The former is suitable for devices that communicate regularly with the

edge. It is the preferred method as it does not affect the device or network.

The actions to recover from a failure depend on the type of the entity, the associated state

saving strategy, and whether the entity interacts with the physical world. The appropriate

actions are determined by the Global Manager. The failed entity is replaced with another

one (if possible) by the Application Lifecycle Manager. If a checkpoint exists, it is used to

initialize the state of the entity. The message log and function call record are used to replay

messages and function calls recorded after the last checkpoint. Events with expired validity

timers are not replayed because they are no longer consistent with the physical world.

Comparative Analysis

The fault tolerance mechanism proposed by the authors handles both edge server and device

failures, while the one in JAMScript is designed only for the edge. The two systems also

differ in the granularity of fault tolerance. The proposed approach is fine-grained. It records

function invocations and messages exchanged between nodes. In contrast, JAMScript’s fault

tolerance mechanism is coarse-grained. It records supercalls and their results. By selectively

placing code inside supercalls, the cost of providing application reliability is minimized.

8 Related Work 93

8.4 EdgeCons

In modern edge computing applications, large numbers of devices are connected to the edge.

The devices generate events at high rates which need to be ordered. Ordering the events at

the cloud introduces additional latency which affects the user experience. The events can

instead be ordered at the edge. One possible approach involves running a consensus protocol

among the edge servers.

The EdgeCons [49] consensus protocol aims to achieve fast event ordering for delay-

sensitive applications deployed on the edge. It employs a fixed set of edge servers and runs

a sequence of Paxos instances among them. The leadership of the Paxos instances changes

dynamically based on the history of previous runs of the consensus protocol. Unlike Paxos

which does not guarantee making progress in case of failures, EdgeCons guarantees making

progress by periodically using the cloud. It is assumed that the cloud never fails and the

edge is always connected to it.

The consensus process in EdgeCons is organized into epochs. Each epoch consists of a

fixed number of Paxos instances. The first phase (leader election) of the Paxos algorithm is

skipped because the leader for each instance is known in advance. This speeds up reaching

consensus as there are fewer communication rounds. The assignment of leaders for the next

epoch is a result of a deterministic process performed independently by each edge server at

the end of the current epoch.

The consensus protocol assigns leadership based on the history of previous runs. A Paxos

instance is effective if and only if a majority of edge servers agree on the proposed value. The

system tracks the number of effective instances for each edge server. The number of instances

assigned to an edge server is proportional to the number of effective instances recorded for

that server. The assigned Paxos instances are evenly spaced within the epoch.

8 Related Work 94

In order to ensure progress, EdgeCons periodically involves the cloud which is assumed

to be always running and reachable. In addition to Paxos instances, each epoch has quasi-

Paxos instances at predetermined points which give control to the cloud for event ordering.

If an edge server is unable to get its proposed value accepted by the system after several

attempts, it sends the value to the cloud. The values are ordered at the cloud by time of

arrival. During a quasi-Paxos instance, the cloud sends to the edge servers the ordered list of

values collected since the last quasi-Paxos instance. The edge servers are required to accept

these values.

The authors of EdgeCons discuss two limitations of the current design. The first limita-

tion is related to the leadership assignment algorithm which gives more shares to edge servers

with a large number of effective Paxos instances in the recent past. If an edge server has

network problems for a period of time and then recovers, it may take a while to receive the

same proportion of shares as before the failure. The second limitation is the fixed number

of quasi-Paxos instances in each epoch. If there is a spike in the edge workload, a larger

number of quasi-Paxos instances might be needed temporarily to make fast progress.

Comparative Analysis

EdgeCons runs a Paxos-based consensus protocol among the edge servers to achieve fast

ordering of edge events. JAMScript uses a supercall log to record supercall lifecycle events,

execution results, and changes in the selection of edge servers in the zone. The supercall

log is accessed by all edge nodes. A distributed implementation of the supercall log requires

running a consensus protocol like Paxos among the edge servers. This adds communication

overhead but does not require a permanent connection from the edge to the cloud. Instead,

JAMScript implements a centralized supercall log assuming that the cloud is always reachable

from the edge. There are no concurrent updates to the log because only the primary edge

server in the zone writes to it. All other edge servers only read from it.

8 Related Work 95

8.5 Griffin

In edge computing, large amounts of data are generated at devices connected to edge servers

which collect and process the data. The edge servers run distributed collaborative applica-

tions like autonomous driving, augmented reality gaming, machine learning, environmental

sensing, and many others. A typical requirement for such applications is the generation

of results in real time with minimal delays. This requirement combined with the dynamic

nature and heterogeneity of the edge environment present unique implementation challenges.

A key feature of all collaborative applications at the edge is the efficient sharing of state

among the edge clients. Typically multiple clients contribute to and process some shared

data in order to achieve a common goal. Data sharing can be implemented in two ways: with

an external shared storage service or using an application framework. The first approach is

preferred because it provides the ability to use well-known RESTful design patterns. Its main

advantage is decoupling computations from state management. It is easier to implement fault

tolerance in a stateless application framework.

The authors of [50] identify three main properties of the edge computing environment

which affect the requirements for a shared storage service: distribution, heterogeneity, and

dynamicity. Edge servers run at different geographic locations without a centralized server

for hosting the storage service. Each edge server might have different storage capacity and

network bandwidth. The edge environment can often change due to mobility or failures.

The distributed collaborative applications running at the edge have different requirements

with regards to data types, consistency, and performance. In an edge machine learning

application, the shared state consists of the model parameters updated by multiple workers.

In a real-time massively multiplayer online game, players interact with each other in a shared

virtual world. In this case, the implementation must ensure low latency and bandwidth use

8 Related Work 96

for the best gaming experience. In an autonomous driving application, data sharing between

cars can help predict traffic and avoid road obstacles.

The authors formulate several key requirements for a shared storage system. The ab-

stractions and APIs requirement focuses on the supported data types (text, images, and

videos) and data access semantics with the key-value interface being the most popular. The

data locality requirement deals with reducing latency and efficient use of network bandwidth.

Other requirements address the need to support edge servers with different hardware as well

devices like cars and phones which are expected to change their location frequently. An

important requirement is the ability to recover from node failures and operate with lim-

ited network connectivity. The shared storage service must also scale to a large number of

edge servers, clients, and stored objects. A robust monitoring infrastructure must provide

capabilities for detecting failures and node mobility.

The authors present a design for Griffin, a shared storage service for the edge, which

satisfies the above requirements. Griffin is a hierarchical distributed storage service with

multiple layers. A data storage daemon runs on every edge node. Resource allocation is

centralized on the cloud where decisions about data creation and storage location are made.

The actual read and write operations are performed by the client. Clients bootstrap using a

service address in the cloud known in advance. Each data item is tagged with a space-time

label to support data locality. Griffin utilizes data replicas for dealing with failures.

Griffin provides support for multiple consistency models. The consistency model is not

determined during application development. Developers specify declaratively expected la-

tencies and desired consistency models. At runtime the system picks the optimal model for

every data access. The main challenge is predicting latencies and loads in the edge environ-

ment. Griffin uses graph-based optimization to make decisions about data placement and

replication. Griffin saves the status of the system in a graph. The vertices represent edge

sites and are annotated with resource utilization. The links represent connections between

8 Related Work 97

edge sites and are annotated with network latency and bandwidth. A monitoring system

collects system statistics used by the optimization engine to build the graph.

Comparative Analysis

Griffin is a shared storage service for the edge with a hierarchical distributed architecture.

A data storage daemon runs on every edge node. Decisions about where the data is created

and stored are made on the cloud using graph-based optimization which takes into account

resource utilization, network latency and bandwidth. In JAMScript, each device and edge

node has a dedicated data store. The cloud is not involved in data storage decisions about

other nodes. Data generated at the devices is automatically propagated by the JAMScript

runtime to the primary edge server in the zone as well as to the cloud. Similarly, data

generated at any edge server is propagated to the cloud.

Griffin deals with failures by placing data replicas at strategic locations. In JAMScript,

data generated at device nodes and propagated by the runtime to the primary edge server

during a supercall is replicated by the underlying data layer to the backup edge server. To

ensure supercall recovery in case of primary or backup edge server failure, two copies of the

data generated at the primary edge server during the current and previous supercalls are

always kept.

JAMScript distinguishes between private and shared data. Private data is generated at

the primary edge server based only on data from one device. Private data is not associated

with a supercall. Shared data is generated at the primary edge server based only on data

from devices participating in a supercall. The supercall ensures that the device data arriving

at the edge server is time-aligned.

98

Chapter 9

Conclusions and Future Work

The Internet of Things (IoT) has experienced explosive growth in recent years. In the Cloud

of Things (CoT) computing model, cloud computing systems provide the data processing ca-

pabilities which the IoT devices lack. Edge computing brings powerful computing resources

closer to the devices to reduce the latency of access. Specialized software frameworks have

been developed to address the challenges of edge environments such as device mobility,

disconnections, and network latency variability. The JAMScript language and middleware

offer a unique platform for developing edge-oriented IoT applications. JAMScript imple-

ments efficient inter-node communication through synchronous and asynchronous activities,

automatic data propagation with loggers and broadcasters, and the ability to execute a

distributed computation on many devices.

In this thesis, we introduced application zones for grouping together computing nodes

in physical proximity executing the same JAMScript program. We explained how the par-

titioning of the physical space into zones enables performing synchronized distributed com-

putations, generating shared data at the edge, and dealing with edge server failures. We

discussed the roles of the primary and backup edge servers in a zone in recovering from edge

server failures. We presented the design and implementation of supercalls which enhance the

9 Conclusions and Future Work 99

functionality of synchronous controller-to-worker activities in JAMScript. We demonstrated

the use of supercall programming for performing collective distributed computations in a

zone and explained how the automatic re-execution after failure works. We introduced pri-

vate and shared data and compared their reliability guarantees. We incorporated application

zones, supercalls, and private and shared data in a comprehensive fault tolerance scheme for

recovering from edge server failures. We discussed node and network failures and system

recovery in different scenarios. As a proof of concept, we built an application for distributed

multiple-target tracking. We reviewed the implementation and analyzed the experimental

results from a simulation with flight data. The experiments showed that the JAMScript

runtime recovers quickly from edge server failures and the overhead of the implemented fault

tolerance scheme is very small.

As part of future work, the JAMScript runtime will employ network-aware scheduling to

optimize the supercall execution order. In the current implementation, the order in which

supercalls run is determined at compile time. Supercalls are executed in the order that they

appear in the program and according to the rules for chaining JavaScript promises. Cur-

rently, a supercall computation starts only if a quorum of devices confirms participation.

Additional types of preconditions for supercall execution could be added. For example, a

supercall could run only if a subset of devices from another supercall confirms participa-

tion. A supercall might also require the network latency to be below a specified thresh-

old. The JAMScript runtime will use the supercall dependency graph and preconditions to

make scheduling decisions. When independent supercalls are submitted to the runtime, the

network-aware scheduler will examine the preconditions of each one along with the network

conditions and try to execute first the supercall that is most likely to succeed.

Another area of future work is addressing the challenges of device mobility between

application zones. In the current implementation, the zone to which a device belongs is

determined on device start-up. The runtime will be enhanced to detect when a device

9 Conclusions and Future Work 100

crosses zone boundaries. When a device enters a new zone, it will connect to the primary

edge server of the new zone. Shared data associated with the old zone will not be available

in the new zone. The device will have access to previously generated private data.

Another future research problem is studying the performance of the supercall implemen-

tation in a variety of edge computing applications and scenarios. The goal is to improve

the performance of the supercall implementation and deploy the JAMScript prototype in

latency-sensitive environments such as high-speed vehicular networks, augmented reality,

and real-time gaming.

101

References

[1] M. H. Miraz, M. Ali, P. S. Excell, and R. Picking, “A review on Internet of Things (IoT),
Internet of Everything (IoE) and Internet of Nano Things (IoNT),” in Proceedings
of the 6th International Conference on Internet Technologies and Applications (ITA),
2015, pp. 219–224. [Online]. Available: https://doi.org/10.1109/ITechA.2015.7317398

[2] Z. N. Aghdam, A. M. Rahmani, and M. Hosseinzadeh, “The role of the Internet
of Things in healthcare: Future trends and challenges,” Computer Methods
and Programs in Biomedicine, vol. 199, p. 105903, 2021. [Online]. Available:
https://doi.org/10.1016/j.cmpb.2020.105903

[3] F. Sadoughi, A. Behmanesh, and N. Sayfouri, “Internet of Things in medicine: A
systematic mapping study,” Journal of Biomedical Informatics, vol. 103, p. 103383,
2020. [Online]. Available: https://doi.org/10.1016/j.jbi.2020.103383

[4] I. B. Aris, R. K. Z. Sahbusdin, and A. F. M. Amin, “Impacts of IoT and big data to
automotive industry,” in Proceedings of the 10th Asian Control Conference (ASCC),
2015, pp. 1–5. [Online]. Available: https://doi.org/10.1109/ASCC.2015.7244878

[5] C. Yang, W. Shen, and X. Wang, “Applications of Internet of Things in manufacturing,”
in Proceedings of the 20th IEEE International Conference on Computer Supported
Cooperative Work in Design (CSCWD), 2016, pp. 670–675. [Online]. Available:
https://doi.org/10.1109/CSCWD.2016.7566069

[6] D. Hicks, K. Mannix, H. M. Bowles, and B. J. Gao, “SmartMart: IoT-
based in-store mapping for mobile devices,” in Proceedings of the 9th IEEE
International Conference on Collaborative Computing: Networking, Applications

https://doi.org/10.1109/ITechA.2015.7317398
https://doi.org/10.1016/j.cmpb.2020.105903
https://doi.org/10.1016/j.jbi.2020.103383
https://doi.org/10.1109/ASCC.2015.7244878
https://doi.org/10.1109/CSCWD.2016.7566069

References 102

and Worksharing (CollaborateCom), 2013, pp. 616–621. [Online]. Available: https:
//doi.org/10.4108/icst.collaboratecom.2013.254116

[7] T. Qiu, N. Chen, K. Li, M. Atiquzzaman, and W. Zhao, “How can heterogeneous
Internet of Things build our future: A survey,” IEEE Communications Surveys
and Tutorials, vol. 20, no. 3, pp. 2011–2027, 2018. [Online]. Available: https:
//doi.org/10.1109/COMST.2018.2803740

[8] H. N. Saha, S. Auddy, A. Chatterjee, S. Pal, S. Pandey, R. Singh, R. Singh,
P. Sharan, S. Banerjee, D. Ghosh, and A. Maity, “Pollution control using Internet
of Things (IoT),” in Proceedings of the 8th Annual Industrial Automation and
Electromechanical Engineering Conference (IEMECON), 2017, pp. 65–68. [Online].
Available: https://doi.org/10.1109/IEMECON.2017.8079563

[9] M. S. U. Chowdury, T. B. Emran, S. Ghosh, A. Pathak, M. M. Alam, N. Absar,
K. Andersson, and M. S. Hossain, “IoT based real-time river water quality monitoring
system,” Procedia Computer Science, vol. 155, pp. 161–168, 2019. [Online]. Available:
https://doi.org/10.1016/j.procs.2019.08.025

[10] L. Özgür, V. K. Akram, M. Challenger, and O. Dağdeviren, “An IoT based
smart thermostat,” in Proceedings of the 5th International Conference on Electrical
and Electronic Engineering (ICEEE), 2018, pp. 252–256. [Online]. Available:
https://doi.org/10.1109/ICEEE2.2018.8391341

[11] K. Sehgal and R. Singh, “IoT based smart wireless home security systems,” in
Proceedings of the 3rd International Conference on Electronics, Communication
and Aerospace Technology (ICECA), 2019, pp. 323–326. [Online]. Available:
https://doi.org/10.1109/ICECA.2019.8821885

[12] R. K. Kodali, V. Jain, S. Bose, and L. Boppana, “IoT based smart security and home
automation system,” in Proceedings of the 2nd International Conference on Computing,
Communication and Automation (ICCCA), 2016, pp. 1286–1289. [Online]. Available:
https://doi.org/10.1109/CCAA.2016.7813916

https://doi.org/10.4108/icst.collaboratecom.2013.254116
https://doi.org/10.4108/icst.collaboratecom.2013.254116
https://doi.org/10.1109/COMST.2018.2803740
https://doi.org/10.1109/COMST.2018.2803740
https://doi.org/10.1109/IEMECON.2017.8079563
https://doi.org/10.1016/j.procs.2019.08.025
https://doi.org/10.1109/ICEEE2.2018.8391341
https://doi.org/10.1109/ICECA.2019.8821885
https://doi.org/10.1109/CCAA.2016.7813916

References 103

[13] M. Martínez-Díaz and F. Soriguera, “Autonomous vehicles: Theoretical and practical
challenges,” Transportation Research Procedia, vol. 33, pp. 275–282, 2018. [Online].
Available: https://doi.org/10.1016/j.trpro.2018.10.103

[14] M. Aazam, I. Khan, A. A. Alsaffar, and E.-N. Huh, “Cloud of Things: Integrating
Internet of Things and cloud computing and the issues involved,” in Proceedings of
the 11th International Bhurban Conference on Applied Sciences Technology (IBCAST),
2014, pp. 414–419. [Online]. Available: https://doi.org/10.1109/IBCAST.2014.6778179

[15] S. Patidar, D. Rane, and P. Jain, “A survey paper on cloud computing,” in
Proceedings of the 2nd International Conference on Advanced Computing and
Communication Technologies (ACCT), 2012, pp. 394–398. [Online]. Available:
https://doi.org/10.1109/ACCT.2012.15

[16] S. Khare and M. Totaro, “Big data in IoT,” in Proceedings of the 10th International
Conference on Computing, Communication and Networking Technologies (ICCCNT),
2019, pp. 1–7. [Online]. Available: https://doi.org/10.1109/ICCCNT45670.2019.
8944495

[17] R. Birke, L. Y. Chen, and E. Smirni, “Data centers in the cloud: A large
scale performance study,” in Proceedings of the 5th IEEE International Conference
on Cloud Computing (IEEE Cloud), 2012, pp. 336–343. [Online]. Available:
https://doi.org/10.1109/CLOUD.2012.87

[18] M. Caballer, C. de Alfonso, F. Alvarruiz, and G. Moltó, “EC3: Elastic Cloud
Computing Cluster,” Journal of Computer and System Sciences, vol. 79, no. 8, pp.
1341–1351, 2013. [Online]. Available: https://doi.org/10.1016/j.jcss.2013.06.005

[19] D. A. Popescu, N. Zilberman, and A. W. Moore, “Characterizing the impact of
network latency on cloud-based applications’ performance,” University of Cambridge,
Computer Laboratory, Tech. Rep. UCAM-CL-TR-914, 2017. [Online]. Available:
https://doi.org/10.17863/CAM.17588

[20] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,” in
Proceedings of the 3rd IEEE Workshop on Hot Topics in Web Systems and Technologies

https://doi.org/10.1016/j.trpro.2018.10.103
https://doi.org/10.1109/IBCAST.2014.6778179
https://doi.org/10.1109/ACCT.2012.15
https://doi.org/10.1109/ICCCNT45670.2019.8944495
https://doi.org/10.1109/ICCCNT45670.2019.8944495
https://doi.org/10.1109/CLOUD.2012.87
https://doi.org/10.1016/j.jcss.2013.06.005
https://doi.org/10.17863/CAM.17588

References 104

(HotWeb), 2015, pp. 73–78. [Online]. Available: https://doi.org/10.1109/HotWeb.2015.
22

[21] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey on the
edge computing for the Internet of Things,” IEEE Access, vol. 6, pp. 6900–6919, 2018.
[Online]. Available: https://doi.org/10.1109/ACCESS.2017.2778504

[22] W. Ahmed and Y. W. Wu, “A survey on reliability in distributed systems,” Journal of
Computer and System Sciences, vol. 79, no. 8, pp. 1243–1255, 2013. [Online]. Available:
https://doi.org/10.1016/j.jcss.2013.02.006

[23] J. Grover and R. M. Garimella, “Reliable and fault-tolerant IoT-edge architecture,” in
Proceedings of the 17th IEEE Conference on Sensors (IEEE Sensors), 2018, pp. 1–4.
[Online]. Available: https://doi.org/10.1109/ICSENS.2018.8589624

[24] A. Javed, J. Robert, K. Heljanko, and K. Främling, “IoTEF: A federated edge-cloud
architecture for fault-tolerant IoT applications,” Journal of Grid Computing, vol. 18,
no. 1, pp. 57–80, 2020. [Online]. Available: https://doi.org/10.1007/s10723-019-09498-8

[25] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Towards fault tolerant fog computing for
IoT-based smart city applications,” in Proceedings of the 9th IEEE Annual Computing
and Communication Workshop and Conference (CCWC), 2019, pp. 0752–0757. [Online].
Available: https://doi.org/10.1109/CCWC.2019.8666447

[26] R. Wenger, X. Zhu, J. Krishnamurthy, and M. Maheswaran, “A programming language
and system for heterogeneous Cloud of Things,” in Proceedings of the 2nd IEEE
International Conference on Collaboration and Internet Computing (CIC), 2016, pp.
169–177. [Online]. Available: https://doi.org/10.1109/CIC.2016.033

[27] B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd ed. Prentice
Hall Professional Technical Reference, 1988.

[28] D. Flanagan, JavaScript: The Definitive Guide, 6th ed. O’Reilly Media, Inc., 2011.

[29] M. Barr, Programming Embedded Systems in C and C++, 1st ed. O’Reilly & Associates,
Inc., 1998.

https://doi.org/10.1109/HotWeb.2015.22
https://doi.org/10.1109/HotWeb.2015.22
https://doi.org/10.1109/ACCESS.2017.2778504
https://doi.org/10.1016/j.jcss.2013.02.006
https://doi.org/10.1109/ICSENS.2018.8589624
https://doi.org/10.1007/s10723-019-09498-8
https://doi.org/10.1109/CCWC.2019.8666447
https://doi.org/10.1109/CIC.2016.033

References 105

[30] M. Barr and A. Massa, Programming Embedded Systems: With C and GNU Develop-
ment Tools, 2nd ed. O’Reilly Media, Inc., 2006.

[31] L. Prechelt, “An empirical comparison of seven programming languages,” Computer,
vol. 33, no. 10, pp. 23–29, 2000. [Online]. Available: https://doi.org/10.1109/2.876288

[32] M. Cantelon, M. Harter, T. J. Holowaychuk, and N. Rajlich, Node.js in Action, 1st ed.
Manning Publications Co., 2013.

[33] K. Lei, Y. Ma, and Z. Tan, “Performance comparison and evaluation of web
development technologies in PHP, Python, and Node.js,” in Proceedings of the 17th
IEEE International Conference on Computational Science and Engineering (CSE),
2014, pp. 661–668. [Online]. Available: https://doi.org/10.1109/CSE.2014.142

[34] L. P. Chitra and R. Satapathy, “Performance comparison and evaluation of
Node.js and traditional web server (IIS),” in Proceedings of the 2017 International
Conference on Algorithms, Methodology, Models and Applications in Emerging
Technologies (ICAMMAET), 2017, pp. 1–4. [Online]. Available: https://doi.org/10.
1109/ICAMMAET.2017.8186633

[35] L. Ben Arfa Rabai, B. Cohen, and A. Mili, “Programming language use in US academia
and industry,” Informatics in Education, vol. 14, no. 2, pp. 143–160, 2015. [Online].
Available: https://doi.org/10.15388/infedu.2015.09

[36] W. Grosso, Java RMI, 1st ed. O’Reilly & Associates, Inc., 2001.

[37] J. L. Carlson, Redis in Action, 1st ed. Manning Publications Co., 2013.

[38] M. Satyanarayanan, R. Schuster, M. Ebling, G. Fettweis, H. Flinck, K. Joshi,
and K. Sabnani, “An open ecosystem for mobile-cloud convergence,” IEEE
Communications Magazine, vol. 53, no. 3, pp. 63–70, 2015. [Online]. Available:
https://doi.org/10.1109/MCOM.2015.7060484

[39] R. Olaniyan and M. Maheswaran, “Synchronous scheduling algorithms for edge
coordinated Internet of Things,” in Proceedings of the 2nd IEEE International
Conference on Fog and Edge Computing (ICFEC), 2018, pp. 1–10. [Online]. Available:
https://doi.org/10.1109/CFEC.2018.8358725

https://doi.org/10.1109/2.876288
https://doi.org/10.1109/CSE.2014.142
https://doi.org/10.1109/ICAMMAET.2017.8186633
https://doi.org/10.1109/ICAMMAET.2017.8186633
https://doi.org/10.15388/infedu.2015.09
https://doi.org/10.1109/MCOM.2015.7060484
https://doi.org/10.1109/CFEC.2018.8358725

References 106

[40] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017. [Online]. Available:
https://doi.org/10.1109/COMST.2017.2745201

[41] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and
computation offloading,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp.
1628–1656, 2017. [Online]. Available: https://doi.org/10.1109/COMST.2017.2682318

[42] S. M. A. Ataallah, S. M. Nassar, and E. E. Hemayed, “Fault tolerance in
cloud computing – survey,” in Proceedings of the 11th International Computer
Engineering Conference (ICENCO), 2015, pp. 241–245. [Online]. Available: https:
//doi.org/10.1109/ICENCO.2015.7416355

[43] A. Ganesh, M. Sandhya, and S. Shankar, “A study on fault tolerance
methods in cloud computing,” in Proceedings of the 4th IEEE International
Advance Computing Conference (IACC), 2014, pp. 844–849. [Online]. Available:
https://doi.org/10.1109/IAdCC.2014.6779432

[44] A. Javed, A. Malhi, and K. Främling, “Edge computing-based fault-tolerant framework:
A case study on vehicular networks,” in Proceedings of the 16th International Wireless
Communications and Mobile Computing Conference (IWCMC), 2020, pp. 1541–1548.
[Online]. Available: https://doi.org/10.1109/IWCMC48107.2020.9148269

[45] L. G. Valiant, “A bridging model for parallel computation,” Communications
of the ACM, vol. 33, no. 8, pp. 103–111, 1990. [Online]. Available: https:
//doi.org/10.1145/79173.79181

[46] K. Siddique, Z. Akhtar, E. J. Yoon, Y.-S. Jeong, D. Dasgupta, and Y. Kim,
“Apache Hama: An emerging bulk synchronous parallel computing framework for big
data applications,” IEEE Access, vol. 4, pp. 8879–8887, 2016. [Online]. Available:
https://doi.org/10.1109/ACCESS.2016.2631549

[47] Y. Harchol, A. Mushtaq, J. McCauley, A. Panda, and S. Shenker, “CESSNA:
Resilient edge-computing,” in Proceedings of the 2nd Workshop on Mobile

https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/ICENCO.2015.7416355
https://doi.org/10.1109/ICENCO.2015.7416355
https://doi.org/10.1109/IAdCC.2014.6779432
https://doi.org/10.1109/IWCMC48107.2020.9148269
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1109/ACCESS.2016.2631549

References 107

Edge Communications (MECOMM), 2018, pp. 1–6. [Online]. Available: https:
//doi.org/10.1145/3229556.3229558

[48] U. Ozeer, X. Etchevers, L. Letondeur, F.-G. Ottogalli, G. Salaün, and J.-M.
Vincent, “Resilience of stateful IoT applications in a dynamic fog environment,”
in Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services (MobiQuitous), 2018, pp. 332–341.
[Online]. Available: https://doi.org/10.1145/3286978.3287007

[49] Z. Hao, S. Yi, and Q. Li, “EdgeCons: Achieving efficient consensus in
edge computing networks,” in Proceedings of the 1st USENIX Workshop on
Hot Topics in Edge Computing (HotEdge), 2018. [Online]. Available: https:
//www.usenix.org/conference/hotedge18/presentation/hao

[50] A. Trivedi, L. Wang, H. Bal, and A. Iosup, “Sharing and caring of data at the
edge,” in Proceedings of the 3rd USENIX Workshop on Hot Topics in Edge Computing
(HotEdge), 2020. [Online]. Available: https://www.usenix.org/conference/hotedge20/
presentation/trivedi

https://doi.org/10.1145/3229556.3229558
https://doi.org/10.1145/3229556.3229558
https://doi.org/10.1145/3286978.3287007
https://www.usenix.org/conference/hotedge18/presentation/hao
https://www.usenix.org/conference/hotedge18/presentation/hao
https://www.usenix.org/conference/hotedge20/presentation/trivedi
https://www.usenix.org/conference/hotedge20/presentation/trivedi

	1 Introduction
	1.1 Edge Computing
	1.2 The JAMScript Programming Language
	1.3 Thesis Contributions
	1.4 Thesis Organization

	2 Background Information
	2.1 Controller-Worker Model for Edge Computing
	2.2 JAMScript Language Overview
	2.2.1 Worker Activities
	2.2.2 Controller Activities
	2.2.3 Data Flows
	2.2.4 Conditional Execution

	3 System Architecture
	3.1 Motivating Scenarios and Design Requirements
	3.1.1 Device-Specific and Shared Data
	3.1.2 Synchronized Distributed Computations
	3.1.3 Application Zones
	3.1.4 Fault Tolerance Requirements
	3.1.5 JAMScript Concepts and Features

	3.2 Application Zones
	3.2.1 Zone Overview
	3.2.2 Zone Definition

	3.3 Zone Edge Servers
	3.3.1 Primary Edge Server
	3.3.2 Backup Edge Server
	3.3.3 Edge Server Selection Policies

	4 Supercalls
	4.1 Supercall Overview
	4.2 Supercall Definition
	4.3 Bulk Synchronous Parallel versus Supercalls
	4.4 Programming with Supercalls
	4.5 Supercall Implementation
	4.5.1 Supercall Log
	4.5.2 Log Record Types
	4.5.3 Log Record Sequences

	5 Fault Tolerance
	5.1 Node Failures
	5.1.1 Primary Edge Server Failure
	5.1.2 Backup Edge Server Failure
	5.1.3 Non-Primary/Non-Backup Edge Server Failure
	5.1.4 Edge Server Restart
	5.1.5 Device Failure
	5.1.6 Device Restart

	5.2 Network Failures
	5.2.1 Temporary Network Failure
	5.2.2 Intermittent Network Failure

	6 Private and Shared Data
	6.1 Private Data
	6.1.1 Programming with Private Data
	6.1.2 Example Application

	6.2 Shared Data
	6.2.1 Programming with Shared Data
	6.2.2 Example Application

	6.3 Data Reliability Guarantees
	6.4 Shared Data and Machine Learning

	7 Distributed Multiple-Target Tracking Application
	7.1 Design Requirements and Architecture
	7.2 Implementation
	7.3 Simulation with Flight Data
	7.4 Experimental Results

	8 Related Work
	8.1 Apache Hama
	8.2 Client-Edge-Server for Stateful Network Applications
	8.3 Resilience of Stateful IoT Applications
	8.4 EdgeCons
	8.5 Griffin

	9 Conclusions and Future Work
	References

