1	Mind for mass transit: Commuters' assessment of public transport as a				
2	"reasonable" option				
3					
4					
5					
6					
7					
8					
0					
10					
11					
11	Iamas DaWaasa				
12	School of Urban Planning				
13	MaCill University				
14	Suite 400, 815 Shorthrasha St. W				
15	Suite 400, 815 Sherbrooke St. W.				
10	Montreal, Quebec, H3A 0C2 Canada				
1/	Email: James.deweese(<i>a</i>)mail.mcgiii.ca				
10	Abread El Canaida				
19	Annieu El-Geneiuy School of Linhon Dianning				
20	School of Orban Planning McCill University				
21	Suite 400, 815 Sherbracka St. W				
22	Suite 400, 815 Sherbrooke St. W.				
23	Tal \cdot 514 202 4052				
24	$E_{0.1}$ 514 209 8276				
25	Fax. 514-590-0570 E-mail: abmed algonaidy@magill.co				
20	E-man. anned.ergenerdy@mcgm.ca				
21					
20	Word Count: 5.651 ± 6 tables (250 words each) $= 7.151$				
29	word Count. $5,051 \pm 0$ tables (250 words each) = 7,151				
31					
32	Δμα 1 2019				
32	Aug. 1, 2019				
34					
35					
36					
37					
38					
30	For Citation Please use: DeWeese I & El Geneidy A (2020) Mind for mass transit: Commutars'				
40	assessment of public transport as a "reasonable" ontion presented at the Transportation Research Board				
41	99 th Annual Meeting.				
42					
43					
44					
45					
46					

1 2 ABSTRACT 3

4 Retaining and increasing public transport ridership is a centerpiece of many strategies to 5 address both the climate crisis and public health challenges. Understanding how and why 6 commuters choose or reject public transport as a viable option or actual mode is, thus, central to 7 policymakers' efforts. This study makes use of a detailed travel-behavior survey conducted at 8 McGill University in Montreal, Quebec, to answer two key questions: (1) What factors influence 9 travelers' perception of public transport as a reasonable commuting option? and (2) From among 10 those travelers that do consider public transport to be reasonable, what factors influence their final decision to use it. One important finding is that there is sometimes a disconnect between the factors 11 12 that influence a person's initial assessment of reasonableness and subsequent mode choice. For 13 example, car owners were paradoxically more likely to consider public transport a reasonable 14 option but significantly less likely to use it. More generally, another important finding of this study is that there may be a sizeable contingent of travelers who consider public transport to be a 15 16 reasonable or viable option but nonetheless decline to use it. It may prove easier to convert these 17 travelers to public transport, making it important for policymakers to understand their motivations. 18 Ultimately, public transport agencies may be able to use this type of information to develop 19 policies better targeted as bolstering ridership. 20

Keywords: mode choice, mode reasonableness, mode viability, sustainable transportation,
 public transportation

1

1. INTRODUCTION

Even as cities around the world seek opportunities to shift travelers from single-occupancy vehicles to more sustainable modes (1), public transport ridership has recently declined in most North American regions (2; 3). This is especially true for buses. To reverse this trend, and help cities chart a course toward greenhouse gas reductions and more livable urban environments, transport agencies must find new ways to both retain and expand ridership.

7 Customer satisfaction is undoubtedly central to this effort because it affects both retention 8 and loyalty and recommendations to would-be riders (1; 4-7). Although many agencies attribute 9 ridership declines to everything from a slowing economy, to falling gas prices, to the presence of 10 ride-hailing services (8), longitudinal studies controlling for these factors have found that annual vehicle revenue kilometers are the central internal factor (9). In other words, service cuts, including 11 12 more limited frequency or canceling routes, can be linked to the overall declines in ridership at the 13 system level. The decline in service frequency leads to increases in waiting time, the most critical 14 element in satisfaction with bus service (7).

15 Many researchers have begun to explore the range of factors that can influence a public 16 transport user's satisfaction (4), and much more work remains to be done in this vein. At the same 17 time, however, scholars and policymakers must fix their attention on transport-service, 18 neighborhood, and individual attributes that affect travelers' mode-choice at even earlier stages of 19 the process. That is to say, before travelers can even consider whether they are satisfied with public 20 transport, they must first determine if it is a "reasonable" or viable option at all for them to use.

21 Much of the research on mode-choice and attracting new public transport riders necessarily 22 relies on census commuting data or origin-destination surveys, which frequently capture detailed sociodemographic information that can be paired with actual mode-choice decisions to infer 23 24 viability and reasonableness (10; 11). It is far rarer that researchers are able to peek under the 25 hood to understand the psychological and other factors that shape individuals' perception of the 26 public transport system as a reasonable or viable option and that shape an individuals' eventual 27 decision to use it. The gap in understanding is especially relevant for policymakers who seek to 28 design public transport systems that can compete with private automobiles for ridership. For these 29 policymakers, it is important to understand distinctions between, for example, a person who 30 considers public transport to be a reasonable travel option and one who doesn't and between a 31 person who considers public transport a reasonable option and actually uses it and one who 32 nevertheless opts for a car instead.

33 Our aim in this paper is to help facilitate this understanding by explicitly addressing 34 perceived reasonableness or viability while controlling for socio-demographic, self-selection and 35 home-location characteristics. Within that context, our goal is two-fold: first, to understand the factors most strongly correlated with the perception of public transport as a reasonable option for 36 37 commuting to work or school and, second, to explore the factors that tip the balance from merely 38 finding public transport reasonable to actually using it. To accomplish this, our study applies 39 multilevel statistical modeling to detailed travel and attitudinal data obtained from the 2017/18 40 McGill University Travel Survey. The McGill Travel Survey is a semi-annual survey that collected 41 travel behavior from 4,859 students, faculty and staff using various modes to commute to school or work. Among other things, the survey explicitly asked respondents to assess whether various 42 43 modes constituted a "reasonable" option for their commute. The survey also asked all commuters 44 to report the details of their most recent trip, including trip satisfaction, and a range of home selection, socioeconomic, and demographic questions, allowing us to explore the relationship 45 46 between these variables, perceptions of reasonableness, and actual trip outcomes.

2. LITERATURE REVIEW

3 There is ample evidence that shifting people to more sustainable modes of transport is 4 essential both the environment and individual health and well-being. Transport, for example, 5 constitutes a large and growing portion of the greenhouse gas emissions (GHGs) driving the 6 human-caused climate crisis (12; 13). Meanwhile, important social and physical benefits accrue 7 from adopting sustainable modes of transport. Daily commutes impact life satisfaction and social 8 well-being (14-16). A clear positive relationship exists between satisfaction with commute and 9 feeling that the commute contributes to greater life satisfaction among all mode users (16). This 10 relation is much stronger among walkers, cyclists, and some public transport users compared with drivers. Indeed, research has shown that those who walk, cycle, and use public transport tend to 11 12 be impacted more positively when it comes to their punctuality and energy at work (17) and less 13 likely to be stressed (18), and experience higher satisfaction with their commute (19; 20) compared 14 to drivers.

15 Helping shift travelers to more sustainable modes of transport requires a deep 16 understanding of the factors that influence mode choice. As such, public transport mode choice has been heavily studied in the literature (21; 22) with clear factors impacting it such as population 17 18 density (23), accessibility (24; 25), income (26), service characteristics (27), and built environment 19 and land use (28). This is, of course, in addition to attitudes and behavior (29; 30). These studies 20 relied on the revealed preferences of travelers through an analysis of actual travel behavior. Mode 21 choice researchers frequently use census commute-related questions and/or O-D surveys to paint 22 detailed though-after-the-fact portraits of travelers' existing choices. Researchers glean invaluable 23 insights from these studies, but they rarely have the opportunity to directly explore the rationale 24 behind these choices through more detailed questions. That is to say, researchers are often confined 25 to analyses of travelers' existing behavior (21; 22). Few studies, if any, have offered the 26 opportunity to analyze people who may be on the cusp of using public transport but do not use it.

27 At the individual level, mode choice is a two-step process. The first step is to assemble a 28 range of reasonable potential modes for the trip. This reasonable set of modes can be identified 29 based on a self-evaluation of time, cost, and benefits associated with the use of such modes. For 30 example, a person traveling to do a grocery shopping for a family of five will have a different set 31 of reasonable modes compared to a single person selecting a mode to go to work. After defining the set of reasonable modes, a decision is made to select the preferred mode based on the same set 32 33 of constraints (time, cost, and benefits) and personal preferences. It is largely as this stage, which 34 expected satisfaction plays its greatest role (Figure 1).

- 35
- 36

37 38

39 Figure 1: Mode choice process

40

41 Our study focuses on the first step in this mode-selection process: the individual and 42 external determinants of a reasonable mode. Our literature review did not readily reveal any studies 3. DATA AND METHODOLOGY

that have directly addressed this question from precisely this perspective. Our goal is therefore to incorporate the idea of a reasonable mode in the mode choice process to help public transport agencies target efforts to attract ridership.

4 5 6 7

Data

8 We relied on data obtained from the 2017/18 McGill University Travel Survey. All McGill 9 staff and faculty and a random sample of one third of the student population received e-mail 10 invitations to complete the survey online. Various prizes were offered to encourage participation. Invitees received a single reminder email two weeks after receiving the initial invitation. To obtain 11 12 a representative sample under various weather conditions, participants were invited in two waves: 13 one in fall 2017 and another in winter 2018. Over the course of both seasons, 16,930 invitations went out. We received 4,859 responses, representing a 33.4% response rate, which is comparable 14 15 to previous research (11; 18; 19).

16 For our analysis, we focused on the subset of data for those people who reported traveling 17 to McGill University's main campus in downtown Montreal, Quebec (n=4,257). Relatively few 18 respondents traveled to other McGill locations and they were therefore excluded from our analysis. 19 Distance and potential travel time were hypothesized to play an important role in commuters' 20 perceptions of the reasonableness of different modes. We therefore excluded all records for which 21 we were unable to geolocate a home address. From the geolocated data set, we then excluded 22 highly infrequent typical modes of travel, including motorcycle, scooter and taxi trips. Within this 23 retained data set, only 16 people described their sex as "other," a number too small to retain as a 24 separate category for purposes of analysis, leaving us with 2,758 records. Within the regression 25 models described below, we further omitted any observations for which we did not have a complete 26 set of responses for each of the included variables. Our primary question of interest asked 27 participants to assess whether particular modes represented "reasonable" commuting options for 28 them. Participants were asked to agree or disagree with each of the following statements:

WALKING is a reasonable option for me to commute to McGill:

CYCLING is a reasonable option for me to commute to McGill;

DRIVING is a reasonable option to commute for me to McGill

- 29
- 30 31
- 32
- $\frac{32}{22}$

33

34

35 The responses to this question served as the basis for the dependent variable within our first model: whether commuters perceived public transport as a reasonable option for their 36 37 commutes. A second question asked survey respondents to identify the main mode for their most 38 recent trip to McGill University. The survey defined "main mode" as the mode that occupied the 39 largest amount of respondents' time during the commute. For purposes of our analysis, these responses represented respondents' "actual" mode choice, serving as the dependent variable for 40 41 our second regression model. Survey participants were also asked to rate the importance of various factors in their home-selection process using a five-option scale: "very unimportant," to "very 42 43 important." The factors included, among other things, the importance of public transport and 44 bicycling infrastructure and of social, and traffic safety. For this analysis, we converted these survey responses into binary variables. Responses of "very unimportant," "somewhat 45 46 unimportant," and "neutral," were reclassified as "unimportant;" the remainder were reclassified

PUBLIC TRANSPORT is a reasonable option for me to commute to McGill;

as "important." We relied on Google's Distance Matrix API to compute travel distances and
 projected times by various modes for each of the survey respondents.

3

4 Modeling

5 For our modeling, we adopted a multi-step process. First, we sought to determine which 6 factors influenced survey respondents' perception of the reasonableness of public transport as a 7 commuting option. To answer this question, we constructed a logistic regression model with the 8 dichotomous outcome variable "transit is a reasonable option for my commute" and various 9 individual, home-selection and neighborhood characteristics as explanatory variables. The 10 variables are identified in Table 1.

11

12 Table 1 Variables retained for analysis of transit reasonableness and mode use

Variables	Moo	del	Source	
	Reasonableness Actual Mode			
		Use		
Individual variables				
Age	*	*	McGill Travel Survey	
			2017/2018	
Children 16 years or younger	*	*	McGill Travel Survey	
			2017/2018	
Sex (male =1)	*	*	McGill Travel Survey	
			2017/2018	
Own a car	*	*	McGill Travel Survey	
			2017/2018	
Home-location variables				
Road-network distance (km)	*	*	Google	
Road-network distance squared (km)			Google	
Home-selection variables (important				
= 1)				
Being near to McGill	*	*	McGill Travel Survey	
			2017/2018	
Being near to amenities			McGill Travel Survey	
			2017/2018	
Being near to public transportation	*	*	McGill Travel Survey	
			2017/2018	
Being near to bicycle infrastructure		*	McGill Travel Survey	
			2017/2018	
Social safety/low crime		*	McGill Travel Survey	
			2017/2018	
Traffic safety		*	McGill Travel Survey	
			2017/2018	
Being in a place where one doesn't		*	McGill Travel Survey	
have to drive			2017/2018	
Typical mode for commuting	*			

13

We tested numerous variables, including transit-to-car travel time ratios, the type of neighborhood where respondents were raised (urban, suburban, rural) and university status, among others. They were not statistically significant or were too closely correlated with other variables in the model and had to be removed to avoid multi-collinearity. In the second step, we sought to identify the factors that influenced whether the subset of commuters who considered public transport to be reasonable actually used it. We did not include typical commuting mode as an explanatory variable for this model because it could introduce unwarranted bias where the vast majority of survey respondents reported using the same modes for their typical commutes and for their last trip to campus.

6 For both questions, we experimented with multiple modeling algorithms. To reduce spatial 7 estimation bias, we tested two multilevel modeling approaches to nest respondents within 8 neighborhoods, as represented by census tracts from the 2016 Canadian Census. One approach 9 used a penalized quasi-likelihood method from the MASS package of the R statistical 10 programming language; the other used an adaptive Gaussian Hermite quadrature method (QUAD) from R's LME4 package. The approaches yielded similar results in terms of statistical significance 11 12 and direction. We retained the results of the QUAD function for analysis because some literature 13 suggests it may yield less biased results when dealing with small numbers of observations within 14 clusters or for binary response variables as we have here (31). We also examined a traditional generalized linear model with no random effects and attempted to account spatial bias by removing 15 16 entirely people who walked or rode a bicycle as they were tightly clustered in areas directly adjacent to campus. This model yielded similar results and was excluded from the paper. 17

18 Finally, we examined a subset of survey respondents who indicated they considered both 19 driving and public transport to be reasonable options for their commute. This group of so-called 20 "swing" commuters could conceivably be swayed to adopt one mode or the other more easily given 21 their positive assessment of both. For officials concerned with bolstering sustainable transport, 22 these swing commuters may represent an important point of focus to avoid defections among existing public transport users and to attract current drivers. In keeping with the primary policy 23 24 aim of this paper-to identify options to convert drivers to more sustainable modes- we 25 considered only driving and public transport, rather than active modes such as cycling or walking. 26 Though it is conceivable that drivers might be converted to walking or biking, we hypothesize that 27 the conversion from driving to public transport might be easier and more likely given the spatial 28 distribution of responses. To analyze the mode choice determinants, we applied a binary logistic 29 regression with actual public transport use as the dependent variable. In this case, too few 30 observations were available to conduct a meaningful multi-level analysis. We therefore fit a 31 generalized linear model without random effects.

32

33 **RESULTS**

34 Summary statistics

35 The average age of the retained study group was 37 years old, with respondents' ages ranging from 19 to 79, as show in Table 2. The population skewed female, with only about 40% 36 of respondents identifying as male. Less than half of households reported owning a car or having 37 38 children 16 or younger at home. On average, commuters live just over 9 kilometers from McGill's 39 Downtown campus. When selecting their homes, well over 70% indicated that being near public 40 transportation and amenities and in neighborhoods safe from crime were important factors. Over half indicated that being near McGill, not having to drive at home and traffic safety were important 41 factors. A little less than 30% of respondents said being near bicycling infrastructure was 42 43 important.

- 44
- 45

1 Table 2 Summary statistics for commuters to McGill's downtown campus and for whom 2 home locations were available.

Statistic	Ν	Mean	St. Dev.	Min	Max
Individual variables					
Age	2,758	37.5	14.428	19	79
Gender (male =1)	2,758	0.396	0.489	0	1
Children 16 years or younger in household	2,738	0.404	0.798	0	7
Own a car (yes $= 1$)	2,758	0.475	0.499	0	1
Home-location variables					
Road-network distance (km)	2,758	9.278	9.777	0	70.657
Road-network distance squared (km)	2,758	181.64	373.603	0	4992.412
Home-selection variables (important					
= 1)					
Being near to McGill	2,758	0.558	0.497	0	1
Being near to amenities	2,741	0.826	0.379	0	1
Being near to public transportation	2,750	0.83	0.376	0	1
Being near to bicycle infrastructure	2,749	0.291	0.454	0	1
Social safety/low crime	2,745	0.724	0.447	0	1
Traffic safety	2,742	0.529	0.499	0	1
Being in a place where one doesn't have to drive	2,754	0.622	0.485	0	1
Transit-related variables					
Transit is a reasonable option for commute to McGill (yes =1)	2,747	0.851	0.356	0	1
Public transit was main mode for last commute to McGill (yes = 1)#	2,758	0.605	0.489	0	1

includes bus, metro and commuter train

3

Among those commuters who described transit as a reasonable option for their trip to McGill University's downtown campus, about 70% actually took transit during their most recent trip, as shown in Table 3. Another 13% walked and 8% rode bikes. Despite describing transit as a reasonable option, 207 nevertheless drove or carpooled. This subset of individuals—those who consider transit a reasonable option but nevertheless drive—may be of particular interest to policymakers given the seeming potential to convert them to more sustainable modes of commuting.

11

	Transit is	a Reasonable	Transit is Not a Reasonable	
	Option		Option	
Main Mode Actually Used				
Walk	303	13%	244	60%
Bicycle	180	8%	27	7%
Bus	536	23%	7	2%
Metro	828	35%	4	1%
Commuter train (RTM)	284	12%	5	1%
Carpool (car passenger)	43	2%	9	2%
Drive (car driver)	164	7%	113	28%
McGill intercampus shuttle#	4#	0%	0#	0%
Other#	5#	0%	1#	0%
Motorcycle or scooter#	2#	0%	0#	0%
Taxi#	8#	0%	0#	0%
Total	2357	100%	410	100%

Table 3 Reasonableness of Public Transit by Main Mode Actually Used

excluded from regression models. Also excludes people for whom the main mode was unknown.

3

4 A vanishingly small number of commuters reported using public transport as their main 5 mode despite considering it unreasonable. Only about 4% of people who disagreed that transit was 6 a reasonable option, rode the bus, metro or commuter rail. This suggests that a negative assessment 7 of the reasonableness of a mode may, in fact, serve as a good indicator of actual mode choice. 8 Within the group that did not consider public transport reasonable, 60% walked and 7% biked. For 9 these respondents, it seems likely that the commute distance to campus was too short to be 10 considered suitable for transit. The spatial distribution of those individuals who rejected transit as 11 a reasonable option supports this hypothesis for a large number of respondents. As we observe in 12 Figure 2, many people who did not consider transit reasonable cluster in a student-heavy area 13 immediately adjacent to McGill's downtown campus.

The remainder of those respondents who disagreed that transit was a reasonable option, however, are broadly dispersed throughout the greater Montreal area (Figure 2). Indeed, they are largely collocated with those who considered transit a reasonable option, suggesting that the perception of transit as a reasonable option may derive in large measure from idiosyncratic, personal considerations beyond neighborhood-level characteristics, such as access to transit.

19

Figure 2 Spatial distribution of responses to survey question regarding reasonableness of public transit as a commuting option

Regressions

Whether Transit Is Reasonable or not

Among the factors that relate to the perception of public transport as a reasonable option, typical mode choice demonstrated one of the strongest influences, as shown in

9 Table 4. As expected, respondents' typical use of public transport was closely correlated with the perception of it as reasonable. Relative to walkers, people who typically commuted by public transport had 18 to 56 higher odds of describing public transport as a reasonable option, when all other variables are held constant at their mean. Interestingly the results underscore the notion that commuters make a clear distinction between satisfaction with a mode and its reasonableness, suggesting their assessment of the two rely on different characteristics. In an earlier study relying on similar data, St. Louis et al. (19) found that trip satisfaction was generally highest among commuter train riders and lower for bus and metro riders. Here, however, we find that bus and metro ridership correspond to a higher relative likelihood of perceiving public 18 transport as a "reasonable" commuting option than commuter train use. If riders' satisfaction and 19 their assessment of the overall reasonableness of a mode relied on the same service attributes, one 20 would expect the relative odds to be ordered similarly. Here, the metro's apparent influence suggests that commuters' perception of reasonableness may be more heavily influenced by 21 22 service-related characteristics, such as frequency, opening hours and cost, than by other attributes, 23 such as comfort.

1 Those who picked homes with access to public transport in mind were also far more likely 2 to consider public transport a reasonable option. The odds of considering public transport to be 3 reasonable were nearly 380% higher, all else being equal.

4

5 Table 4 Multi-Level Logistic Regressions for Public Transport Reasonableness and

6 Subsequent Transit Mode Choice Among Those Who Consider It Reasonable.

	Transit is a l Comm	Reasonable Option to nute to McGill	Transit is a Reasonable Option and Was Main Mode for Last Trip to McGill		
Predictors	Odds	CI	Odds	CI	
	Ratios	-	Ratios	-	
Individual variables	0.005	0.0024 1.00/7	0.000	0.0027 1.0015	
Age	0.995	0.9834 - 1.006 /	0.9926	0.9837 - 1.0015	
Children 16 years or younger	1.0824	0.8817 - 1.3288	0.8589	0.7476 - 0.9869	
$\underline{Sex (male = 1)}$	1.1579	0.8707 - 1.5398	0.5635	0.4518 - 0.7027	
Own a car	1.4250 *	0.9355 - 2.1705	0.5743 ***	0.4378 - 0.7532	
Home-location variables			ala da ala		
Road-network distance (km)	0.9776 *	0.9557 - 1.0001	1.2501 ***	1.1964 - 1.3061	
Road-network distance squared (km)			0.9964 ***	0.9954 - 0.9973	
<i>Home-selection variables</i> (important = 1)					
Being near to McGill	0.802	0.5484 - 1.1728	0.6194 ***	0.4809 - 0.7979	
Being near to amenities	0.8625	0.5849 - 1.2720	0.5280 ***	0.3663 - 0.7611	
Being near to public transportation	3.7966 ***	2.7639 - 5.2152	5.8295 ***	3.8581 - 8.8084	
Being near to bicycle infrastructure			0.5903 ***	0.4658 - 0.7481	
Social safety/low crime			0.7767 *	0.5753 - 1.0487	
Traffic safety			0.8102	0.6211 - 1.0567	
Being in a place where one doesn't have to			1.5126 ***	1.1482 - 1.9927	
drive					
<i>Typical mode for commuting</i> (reference = Walk)					
Bicycle	2.5394 ***	1.5840 - 4.0711			
Bus	23.2064 ***	10.1162 - 53.2349			
Metro	56.7107 ***	19.9642 - 161.0942			
Commuter train (RTM)	18.6099 ***	7.0235 - 49.3100			
Carpool (car passenger)	1.6373	0.6119 - 4.3811			
Drive (car driver)	0.4936 **	0.2807 - 0.8680			
(Intercept)	1.5624	0.8259 - 2.9557	0.985	0.5553 - 1.7473	
Random effects					
σ^2	3.29		3.29		
τ_{00}	0.56 стир		0.53 CTUID		
ICC	0.14		0.14		
N	640 ctuid		613 ctuid		
Observations	2700		2270		
Marginal R2 / Conditional R2	0.505 /		0.278 /		
C	0.576		0.377		
			* p<0.1 ** p	<0.05 *** p<0.01	

7 8

8 Car ownership was surprisingly correlated with much higher odds of considering public 9 transport to be reasonable. This seeming contradiction might potentially be explained by the spatial

10 distribution of car ownership and rich transit service. Among the factors that were negatively

associated with perceiving public transport as a reasonable option, driving unsurprisingly stands 1 2 out. When an automobile represented the typical commuting mode, the odds of a respondent 3 considering public transport a reasonable option were more than 50% lower, all other variables 4 held constant. Multiple explanations are possible: On the one hand, drivers might simply lack 5 awareness of the public transport system, making them less likely to consider it reasonable. On the 6 other, they may choose to drive precisely because they consider public transport unreasonable. 7 Considered in combination with the fact that car ownership correlates with higher odds of finding 8 public transport reasonable, the latter seems more likely. As distance increases, the odds of 9 commuters considering public transport reasonable also decline. Each addition kilometer of 10 distance, as measured on the road network, corresponds to a little more than a 2% decline in the 11 odds of finding public transport reasonable, all else being equal.

12

13 Whether Transit is Actually Used

14 We next sought to identify the factors that influence whether commuters who already 15 consider public transport to be a reasonable option actually use it. The results of this analysis 16 highlight some interesting contradictions. First, a clear disconnect appears to exist between men's assessment of public transport's reasonableness and their actual travel behavior. Men were not 17 18 significantly more or less likely to consider public transport a reasonable option. Yet among the 19 subset of commuters who affirmatively stated that public transport was a reasonable option for 20 them, being a man was associated with nearly 45% lower odds of actually using it, all other 21 variables held constant. A similar pattern emerges when considering the responses of car 22 ownership. Though car owners were, in fact, significantly more likely to consider public transport a reasonable option for their commutes, car ownership was associated with more than 40% lower 23 24 odds of actually using public transport.

25 Having children also appears to represent a significant drag on the odds of taking public 26 transport, even after describing public transport as a reasonable option. Though the influence of having children was not statistically significant in terms of commuters' perceptions of public 27 28 transport reasonableness, having children at least one child under 17 was associated with nearly 29 15% lower odds of actually using public transport, all else being equal. Numerous explanations 30 may exist to directly or indirectly explain this result: First, parents may feel compelled to drive 31 because they need to transport children as part of their daily commute. Second, parents may need 32 to transport children outside of their regular commute, making car ownership more likely and, in 33 turn, decreasing the odds of using public transport.

34 Not all findings revealed contradictions between perception and actual travel behavior 35 among those who considered public transport reasonable. For example, among those who prioritized being near public transport or not having to drive when selecting their homes, the odds 36 37 of actually using public transport were significantly higher, all other variables held constant. 38 Relatedly, those who prioritized being close to McGill or bicycle infrastructure, had lower odds of 39 using public transport, likely because they walked or rode a bicycle. These findings suggest that 40 people's stated preferences and locational decisions regarding transport modes are good indicators 41 of actual travel behavior.

Preoccupation with social safety and crime were associated with lower odds of public transport ridership on the subset of people who said that public transportation was a reasonable option. When survey respondents ranked these considerations as important factors in selecting their home location, the odds of taking transit dropped more than 22%, all other variables being equal. This, too, may point the way to rider-retention and -growth policy options aimed at boosting
 the public's general sense of safety within the public transport system.

Finally, among those who consider public transport a reasonable option, the further someone's home, the more likely they are to use public transport, at least to a point. For many people located in close proximity to campus, public transit may be a reasonable option, but walking or biking may represent an even more reasonable one.

8 Swing Commuters

9 A significant portion of commuters consider both transport and driving to be reasonable 10 options. See Table 5. Of the respondents, 621-more than 22%--simultaneously indicated that both public transport and driving were reasonable possibilities for their commute. Among them, 11 12 194 currently use cars as either drivers or passengers for their main mode. These represent potential 13 swing commuters who may be at least marginally more susceptible to being shifted to other, more sustainable modes since they already consider public transport a reasonable option. On the other 14 15 hand, 382 of these swing commuters currently use public transport as their main mode and could 16 potentially be driven to opt for less sustainable modes if conditions were to deteriorate.

17

Table 5 Summary of survey respondents by their current main mode and perception of the reasonableness of public transport or driving

	Reasonable Option for Commute to McGill			
Public TransportICurrent main mode& Driving		Driving Only Public Transport Only		Neither
Walk	32	8	271	236
Bicycle	13	3	167	24
Bus	125	2	407	5
Metro	189	0	632	4
Commuter train (RTM)	68	0	215	5
Drive (car driver)	156	109	7	4
Carpool (car passenger)	38	8	5	1
Total	621	130	1704	279

20

21 Both subgroups of potential swing commuters should be of interest to policymakers as they 22 seek to retain or boost public transport ridership. Our regression results for this subgroup suggest 23 that many of the same factors play into their mode choice as do among the larger group of survey respondents. Having a car is associated with an even more profound impact, as is having children 24 25 in the household and preoccupation with crime. Among the subset of swing commuters, having a 26 car was associated with more than 60% lower odds of taking public transport, all else being equal. 27 Having a child in the household cut the odds nearly 25%, all other variables held constant. When 28 concerns regarding social and safety were considered important for home selection, the odds of 29 using public transport were almost 50% lower, all things being equal.

There are, however, a few notable exceptions when considering the swing commuter subgroup alone. For example, age becomes statistically significant, corresponding to decreasing odds of public transport use. Each additional year in age corresponded to an approximately 1.8% decrease in the odds of taking public transport.

Table 6: Transit mode choice results for "swing commuters", those who consider both driving and public transport reasonable options

	Transit is a Reasonable Option and Was Main Mode for Last Trip to McGill		
Predictors	Odds Ratios	CI	
Individual variables			
Age	0.9817 **	0.9670 - 0.9965	
Children 16 years or younger	0.7522 ***	0.6097 - 0.9280	
Sex (male =1)	0.8324	0.5681 - 1.2196	
Own a car	0.3881 ***	0.2319 - 0.6494	
Home-location variables			
Road-network distance (km)	1.1367 ***	1.0757 - 1.2012	
Road-network distance squared (km)	0.9983 ***	0.9973 - 0.9994	
<i>Home-selection variables</i> (important = 1)			
Being near to McGill	0.715	0.4680 - 1.0923	
Being near to amenities	0.5842 *	0.3314 - 1.0298	
Being near to public transportation	5.6624 ***	3.0720 - 10.4372	
Being near to bicycle infrastructure	0.6293 **	0.3990 - 0.9925	
Social safety/low crime	0.5028 **	0.2683 - 0.9423	
Traffic safety	0.7045	0.4432 - 1.1199	
Being in a place where one doesn't have to	1.9156 ***	1.2110 - 3.0303	
drive			
(Intercept)	2.1965 *	0.8669 - 5.5657	
Observations	603	Observations	
Tjur's R ²	0.21		
	* p<0.1 **	<i>p</i> <0.05 *** <i>p</i> <0.01	

4 5

6

CONCLUSIONS

7 Shifting travelers to more sustainable modes, such as public transport, remains a vitally 8 important, though challenging, environmental and public health objective. This study sought to 9 identify some of the determinants that shape commuters' perceptions regarding the reasonableness 10 or viability of public transport as a mode choice. This initial determination is an essential first step 11 in the mode-choice process. This study further attempted to determine which of those factors might 12 help nudge those commuters who consider public transport to be a viable option to actually use it. 13 Among the most important factors we identified are car ownership, which has a strong negative 14 correlation with actually using public transport. The presence of children in a household is also 15 negatively associated with public transport mode choice, suggesting a range of potential policy responses. Finally, there are clear gender differences in mode choice. No statistically significant 16 17 difference exists between men and women when it comes to identifying public transport as 18 reasonable. Nevertheless, men in the study had far lower odds of actually using it, suggesting that 19 efforts to boost public transport ridership may need to specifically target men.

Perhaps most importantly, this study highlights the fact that many people may consider public transit to be a reasonable or viable option but nevertheless fail to use it. In theory, a better understanding of their specific concerns and motivations might make them easier targets to convert to public transport. By the same token, the study also reveals that there may be many public transport users who also consider driving to be a reasonable commuting option. These riders may be at greater risk of defection to less sustainable modes. This foray into the analysis of reasonability or viability represents a limited first step, but points the way to further research. In particular, future research may focus target "swing" commuters more specifically. Future surveys may also directly inquire into the barriers that impede travelers from making the leap to public transport.

6 7 ACKNOWLEDGMENTS

8 The authors wish to thank the entire McGill community for participating in the McGill 9 Travel Survey. Thanks also to Boer Cui for her extensive work on wrangling and cleaning the 10 survey results and for designing some of the figures accompanying this paper. Finally, thanks to 11 Guillaume Barreau for securing the Google time and distance calculations.

12

13 AUTHOR CONTRIBUTIONS

14 The authors confirm contribution to the paper as follows: study conception and design:

15 DeWeese & El-Geneidy; data collection: DeWeese & El-Geneidy; analysis and interpretation of 16 results: DeWeese & El-Geneidy; draft manuscript preparation DeWeese & El-Geneidy. All

17 authors reviewed the results and approved the final version of the manuscript.

18

REFERENCES

[1] Diab, E., M. Badami, and A. El-Geneidy. Bus transit service reliability and improvement strategies: Integrating the perspectives of passengers and transit agencies in North America. *Transport Reviews*, Vol. 35, No. 3, 2015, pp. 292-328.

[2] Manville, M., B. Taylor, and E. Blumenberg. Falling transit ridership: California and Southern California.In, Southern California Association of Governments, California, 2018. pp. 1-83.

[3] Graehler, M., R. Mucci, and G. Erhardt. Understanding the recent transit ridership decline in major US cities: Service cuts or emerging modes? Presented at 98th Annual Meeting of the Transportation Research Board, Washington, D.C., 2019.

[4] van Lierop, D., and E.-G. A. Enjoying loyalty: The relationship between service quality, customer satisfaction, and behavioral intentions in public transit. *Research in Transportation Economics*,, Vol. 59, 2016, pp. 50-59.

[5] Li, L., Y. Bai, Z. Song, A. Chen, and B. Wu. Public transportation competitiveness analysis based on current passenger loyalty. *Transport Research Part A: Policy and Practice*, Vol. 113, 2018, pp. 213-226.

[6] Diab, E., D. van Lierop, and E.-G. A. Recommending transit: Disentangling users' willingness to recommend transit and their intended continued use. *Travel Behaviour and Society*, Vol. 6, 2017, pp. 1-9.

[7] Taylor, S. Waiting for service: The relationship between delays and evaluations of service. *Journal of Marketing Research*, Vol. 58, No. 2, 1994, pp. 56-69.

[8] Curry, B. Where have all the transit riders gone? In The Globe and Mail, Toronto, 2016.

[9] Boisjoly, G., E. Grisé, M. Maguire, M. Veillette, R. Deboosere, E. Berrebi, and A. El-Geneidy. Invest in the ride: A 14 year longitudinal analysis of the determinants of public transport ridership in 25 North American cities. *Transport Research Part A: Policy and Practice*, Vol. 116, 2018, pp. 434-445.

[10] Legrain, A., R. Buliung, and A. El-Geneidy. Who, what, when, and where: Revisiting the influences of transit mode share. *Transportation Research Record*, No. 2537, 2015, pp. 42-51.

[11] Whalen, K., A. Páeza, and J. Carrasco. Mode Choice of university students commuting to school and the role of active travel. *Journal of Transport Geography*, Vol. 31, 2013, pp. 132-142. [12] Tayarani, M., A. Poorfakhraei, R. Nadafianshahamabadi, and G. Rowangould. Can regional transportation and land-use planning achieve deep reductions in GHG emissions from vehicles? *Transportation Research Part D: Transport and Environment*, Vol. 63, 2018, pp. 222-235.

[13] U.S. Environmental Protection Agency. *Inventory of U.S. Greenhouse Gas Emissions and Sinks*, Washington, D.C. <u>https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-</u>emissions-and-sinks.

[14] De Vos, J. Analysing the effect of trip satisfaction on satisfaction with the leisure activity at the destination of the trip, in relationship with life satisfaction. *Transportation*, Vol. 46, No. 3, 2019.

[15] Ettema, D., T. Gärling, L. Eriksson, M. Friman, L. Olsson, and S. Fujii. Satisfaction with travel and subjective well-being: Development and test of a measurement tool. *Transportation Research Part F: Traffic Psychology and Behaviour*, Vol. 14, No. 3, 2011, pp. 167-175.

[16] Fordham, L., D. van Lierop, and A. El-Geneidy. Can't get no satisfaction: Examining the influence of commuting on overall life satisfaction. In *Quality of Life and Daily Travel*, Springer Cham, 2018. pp. 157-181.

[17] Loong, C., D. van Lierop, and A. El-Geneidy. On time and ready to go: An analysis of commuters' punctuality and energy levels at work or school. *Transportation Research Part F: Traffic Psychology and Behaviour*, Vol. 45, 2017, pp. 1-13.

[18] Legrain, A., N. Eluru, and A. El-Geneidy. Am stressed, must travel: The relationship between mode choice and commuting stress. *Transportation Research Part F: Traffic Psychology and Behaviour*, Vol. 34, 2015, pp. 141-151.

[19] St-Louis, E., K. Manaugh, D. van Lierop, and A. El-Geneidy. The happy commuter: A comparison of commuter satisfaction across modes. *Transportation Research, Part F: Traffic Psychology and Behaviour*, Vol. 26, 2014, pp. 160–170.

[20] Smith, O. Commute well-being differences by mode: Evidence from Portland, Oregon, USA. *Journal of Transport and Health*, Vol. 4, 2017, pp. 246-254.

[21] Zhou, J. Sustainable commute in a car-dominant city: Factors affecting alternative mode choices among university students. *Transportation research part A: policy and practice*, Vol. 46, No. 7, 2012, pp. 1013-1029.

[22] Cervero, R., and R. Gorham. Commuting in transit versus automobile neighborhoods. *Journal of the American Planning Association*, 2009.

[23] Foth, N., K. Manaugh, and A. El-Geneidy. Determinants of mode share over time: How a changing transport system affects transit use in Toronto, Canada. *Transportation Research Record*, No. 2417, 2014, pp. 67–77.

[24] Levinson, D. Accessibility and the journey to work. *Journal of Transport Geography*, Vol. 6, No. 1, 1998, pp. 11-21.

[25] Boisjoly, G., and A. El-Geneidy. Daily fluctuations in transit and job availability: A comparative assessment of time-sensitive accessibility measures. *Journal of Transport Geography*, Vol. 52, 2016, pp. 73-81.

[26] Legrain, A., R. Buliung, and A. El-Geneidy. Travelling fair: Targeting equitable transit by understanding job location, sectorial concentration, and transit use among low-wage workers. *Journal of Transport Geography*, Vol. 53, 2016, pp. 1-11.

[27] Bhat, C. Accommodating variations in responsiveness to level-of-service measures in travel mode choice modeling. *Transportation research part A: policy and practice,* Vol. 32, No. 7, 1998, pp. 495-507.

[28] Cervero, R. Built environments and mode choice: Toward a normative framework. *Transportation Research Part D: Transport and Environment*, Vol. 7, No. 4, 2002, pp. 265-284.

[29] J., V., T. Heldt, and P. Johansson. The effects of attitudes and personality traits on mode choice. *Transportation research part A: policy and practice*, Vol. 40, No. 6, 2006, pp. 507-525.

[30] Prillwitz, J., and S. Barr. Moving towards sustainability? Mobility styles, attitudes and individual travel behaviour. *Journal of Transport Geography*, Vol. 19, No. 6, 2011, pp. 1590-1600.

[31] Benedetti, A., R. Platt, and J. Atherton. Generalized Linear Mixed Models for Binary Data: Are Matching Results from Penalized Quasi-Likelihood and Numerical Integration Less Biased? *PLoS ONE*, Vol. 9, No. 1, 2014, p. e84601.