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Abstract

Marine stratiform clouds are a challenging target for spaceborne radars due to their

proximity to Earth’s surface, limited vertical extent, and low radar reflectivity. The joint

European Space Agency-Japanese Aerospace Exploration Agency (ESA-JAXA) Earth

Clouds, Aerosol, and Radiation Explorer (EarthCARE) mission is scheduled for launch

in 2018 and features the first spaceborne Cloud Profiling Radar (CPR) with Doppler

capability. In this work, the performance of the CPR in detecting these clouds, their

boundaries, and their drizzle droplet velocities is evaluated. Observations from the At-

mospheric Radiation Measurement (ARM) Mobile Facility at the Azores and the Marine

ARM GPCI Investigation of Clouds are used as input to a CPR simulator. The exten-

sive ground-based observations are treated as the truth and compared to the simulated

EarthCARE CPR observations. The impact of the surface echo return, radar sensitiv-

ity, and range resolution are discussed, and post-processing techniques such as a feature

mask algorithm, range resolution inversion, and matched filters for Doppler velocity are

presented and tested. The EC-CPR detected cloud fraction is found to range from ap-

proximately 70–80 % that of ground-based W-band radars, depending on the along-track

integration and configuration of the feature mask algorithm. The range resolution of the

EC-CPR introduces an average reflectivity bias of +1 dB and cloud top overestimation

bias of 100 m (equal to the range sampling rate of the CPR), but these may be signifi-

cantly reduced (to 0.1 dB and 35 m respectively) by the application of a range resolution

inversion technique. The analysis indicates a CPR velocity uncertainty of approximately

0.5 m s−1 is achievable with either a 5 km along-track integration or a combination of
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matched filtering and along-track integration to 1 km of the CPR Doppler velocity field.
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Résumé

Les nuages stratiformes marins sont une cible difficile pour les radars spatiaux en raison de

leur proximité de la surface de la Terre, de leur étendue verticale limitée et de leur faible

réflectivité. La mission “Earth Clouds, Aerosol et Radiation Explorer” (EarthCARE),

une colaboration entre les agences spatiales européenne et japonaise (ESA-JAXA), est

prévue pour 2018 et propose de mettre en orbite le premier profileur de nuages radar

(CPR) avec capacité Doppler. On évalue la performance du CPR dans la détection de

ces nuages, leurs limites et leurs vitesses de gouttelettes de bruine. Les observations de la

Atmospheric Radiation Measurement (ARM) Mobile Facility sur les Açores et la Marine

ARM GPCI Investigation of Clouds sont utilisés comme entrée à un simulateur de CPR.

Les vastes observations au sol sont traités comme la vérité et comparées aux observations

EarthCARE CPR simulées. L’impact du retour de l’écho de surface, la sensibilité du

radar, et la résolution en portée sont discutées, et les techniques de post-traitement tels

qu’un algorithme de masquage d’entités, l’inversion de la plage de résolution, et des

filtres associés à la vitesse Doppler sont présentés et testés. La fraction de nuage détectée

par le EC-CPR est d’environ 70–80 % de celui des radars W-band au sol, les résultats

dépendent de l’intégration along-track et la configuration de l’algorithme de masquage

d’entités. La résolution de portée de la EC-CPR introduit un biais de réflectivité moyenne

de +1 dB et un biais dans l’estimation du haut des nuages de +100 m (égale à la fréquence

d’échantillonnage de portée du CPR), mais ceux-ci peuvent être considérablement réduits

(0.1 dB et 30 m respectivement) par l’application d’une technique d’inversion de résolution

de portée. L’analyse indique qu’on peut atteindre un incertitude de environ 0.5 m s−1
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pour la vitesse CPR avec soit une intégration along-track de 5 km ou une combinaison de

filtres associés à la vitesse Doppler et une intégration de 1 km du champ de vitesse CPR

Doppler.
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Chapter 1

Introduction

Marine stratiform clouds play a critical role in Earth’s radiation budget and hydrological

cycle, and therefore in climate and climate change. Their influence on Earth’s climate

can be attributed to their vast horizontal coverage, their ability to strongly reflect in-

coming shortwave radiation (Hartmann et al., 1992), and their regulating effect on the

marine boundary layer structure through drizzle and turbulence production (Stevens

et al., 2003). Evaluation of marine stratus representation in climate models requires

large-scale, long-term observational datasets. Such observations are challenging to con-

duct from ground-based platforms. Therefore, spaceborne instruments, which offer global

coverage, are key for monitoring the properties of marine clouds.

Earth Clouds, Aerosol, and Radiation Explorer (EarthCARE) is a joint European Space

Agency (ESA) and Japanese Aerospace Exploration Agency (JAXA) satellite due to

launch in 2018 that will carry a cloud profiling radar (CPR), a high-spectral-resolution

lidar (ATLID), a broadband radiometer (BBR), and a multi-spectral imager (MSI) (Illing-

worth et al., 2015). Both independently and synergistically, these instruments will provide

profiles of clouds, precipitation, and aerosol properties and top-of-atmosphere radiative

fluxes and heating rates. EarthCARE may be considered the successor to the National

Aeronautics and Space Administration (NASA) Afternoon Train, or A Train, a forma-
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tion of Earth-observing satellites that carry a mix of active and passive remote sensing

instruments. Among these are the Cloud Profiling Radar aboard CloudSat (Stephens

et al., 2008) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard

CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations; Winker

et al., 2009), which have, since their launches in 2006, provided extensive climatologies

of marine boundary layer clouds, e.g., Leon et al. (2008).

The 94 GHz EarthCARE CPR (EC-CPR) will feature several improvements over the

CloudSat CPR (CS-CPR), including being the first spaceborne atmospheric radar with

Doppler capabilities. This will allow it to provide information on not only cloud extent

and structure but also vertical motions within clouds and precipitation. In addition to its

Doppler capability, the EC-CPR employs a higher along-range sampling rate (100 m) and

sensitivity (−35 dBZ) than the CS-CPR (240 m and −30 dBZ respectively; Tanelli et al.,

2008), with the enhanced sensitivity of the EC-CPR primarily due to its lower flying

altitude and larger antenna. A detailed comparison of the technical parameters of the

two CPRs is given in Table 1.1. Despite these improvements, however, observations from

spaceborne radars remain challenging. For instance, both the EC-CPR and CS-CPR use

pulse lengths of 1000 m, compared to below 100 m for typical ground-based radars (e.g.,

Widener and Mead, 2004). A longer pulse length allows a greater maximum emitted

pulse power, necessary for spaceborne radars to achieve reasonable signal-to-noise ratios

(SNRs), but also reduces the range resolution, which is dictated by pulse length and

receiver bandwidth. Uttal and Kropfli (2001) investigated the effect long pulse lengths

(450 m) in the context of spaceborne radar observations by artificially reducing the ver-

tical resolution of ground-based radar data and found that this introduced an average

reflectivity bias of +4 dB. Vertical smoothing of CPR profiles also hampers the accurate

definition of cloud boundaries; this is a particular problem for observations of marine

stratiform clouds, which are thin (typically less than 500 m, the vertical resolution of the

EC-CPR; Wood, 2012) and therefore susceptible to proportionally large errors in cloud
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boundary estimates.

Parameter EC-CPR CS-CPR

Frequency (GHz) 94 94
Altitude (km) 393 (mean) 705-732

Antenna diameter (m) 2.5 1.85
Pulse length (µs) 3.33 3.33

Range resolution (6 dB) (m) 500 480
Vertical sampling rate (m) 100 240

Along-track sampling rate (m) 500 1100
Antenna beamwidth (deg) 0.095 0.12

PRF (kHz) 6.1-7.5 3.7-4.3
Sensitivity (dBZ) -35 -30

Table 1.1: Technical characteristics of the EarthCARE and CloudSat Cloud Profiling
Radars.

A further effect of the EC-CPR range resolution is that surface clutter - strong reflections

of radar waves by the ground - extends into range gates up to 1 km above the ground.

These surface echo signals can be several orders of magnitude stronger than hydrometeor

signals, often causing observations of low-lying and low reflectivity marine strati to be

obscured or biased. Furthermore, precipitation-free marine strati typically have reflec-

tivities close to or below the sensitivity of the EC-CPR, such that many of these clouds

will go undetected even without the presence of surface clutter.

Spaceborne Doppler velocity measurements are affected by these and other factors. At

low SNRs (relative to the single-pulse noise of the EC-CPR, approximately −21.5 dBZ),

random noise-induced errors will dominate velocity estimates. In addition, the satellite’s

motion of 7 kms−1 combined with the EC-CPR antenna’s beamwidth will both broaden

the observed Doppler spectra and, in the case of non-uniform beam filling (NUBF), intro-

duce biases that can reach several metres per second (Tanelli et al., 2002; Schutgens, 2008;

Kollias et al., 2014). Biases of similar magnitudes are produced by mispointing of the

CPR antenna away from the nadir direction by even a few µrad (Battaglia and Kollias,
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2015). Together, these effects restrict the quality of the CPR reflectivity and Doppler

estimates. However, post-processing methods have the potential to mitigate these errors.

For example, increased along-track integration can reduce random noise-induced uncer-

tainties; reference targets with known velocities, such as the surface, allow correction

for antenna mispointing; and NUBF errors can be corrected for with knowledge of the

along-track reflectivity gradient.

The aims of this thesis are twofold. First, to quantify, in terms of biases and uncer-

tainties, how well the EC-CPR captures i) marine stratiform cloud morphology (i.e.,

reflectivity, cloud fraction, and cloud boundaries), and ii) drizzle Doppler velocities. Sec-

ond, to identify and evaluate post-processing techniques that can reduce these errors –

specifically, to apply a constrained linear inversion process, similar to those described in

Schutgens and Donovan (2004) and Galati et al. (1996), to EC-CPR reflectivity profiles

in order to achieve an increased vertical resolution, and to use matched filtering, following

Sy et al. (2014), to reduce random noise in the EC-CPR Doppler velocity.

In order to address these issues, ground-based radar observations from two deployments

of the US Department of Energy Atmospheric Radiation Measurement (ARM) program

(Stokes and Schwartz, 1994) in marine stratus cloud regimes are used as input to an EC-

CPR simulator. This outputs synthetic EC-CPR observations of the same scene, which

can then be compared with the “true” ground-based data for a quantitative evaluation

of the EC-CPR measurements.

The remainder of this thesis is structured as follows: details of the ground-based radar

data and the simulator are presented in Chapter Two. This includes a description of the

feature mask algorithm used to initially process the EC-CPR data. In Chapter Three,

the simulated results are presented and evaluated with respect to the simulator input

data. The effect of the surface echo, the horizontal sampling rate, and the configuration
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of the feature mask algorithm are discussed. The range resolution inversion and Doppler

velocity matched filtering techniques are presented and evaluated in Chapter Four. A

summary of the thesis is provided in Chapter Five.

5



Chapter 2

Background

2.1 Ground-based data

Observations from two recent deployments of the ARM Mobile Facility (AMF; Mather

and Voyles, 2013) are used as input to the EC-CPR simulator. The first is the AMF-1

deployment at Graciosa Island, Azores (GRW; Rémillard et al., 2012; Wood et al., 2015).

The second is the AMF-2 Marine ARM GPCI Investigation of Clouds (MAGIC), in which

observations were carried out aboard the cargo ship Horizon Spirit during several trips

between Los Angeles, California, and Honolulu, Hawaii (Zhou et al., 2015). In both de-

ployments, a vertically pointing 95 GHz (W-band) ARM Cloud Radar (WACR (Widener

and Mead, 2004) at GRW and the marine WACR (M-WACR) in MAGIC) was deployed

alongside several other instruments (e.g., ceilometer, microwave radiometer). The W-

band radars provide estimates of radar reflectivity factor, mean reflectivity-weighted

Doppler velocity, and spectrum width. The WACR and M-WACR use integration times

of 2 s and 0.2 s and vertical sampling rates of 43 m and 21 m respectively. Both radars

have sensitivities of -40 dBZ at 2 km.

While several days of observations from the two deployments are used to produce statis-

tics of the marine stratus scenes, two example cases, one from each AMF deployment,
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are presented in detail. The GRW case was observed on 29th November 2009 and the

MAGIC case on 30th July 2013. Figure 2.1 displays the fields of reflectivity factor and

Doppler velocity for the two scenes. Both contain drizzle-free and drizzling regions, with

cloud thicknesses varying correspondingly from a few hundred metres (cloud only) to over

a kilometre (cloud and drizzle), the latter often extending into the lowest 1 km above the

surface. Reflectivity values vary from approximately 10 dBZ within strong drizzle patches

to around -40 dBZ near cloud boundaries. Velocities are generally small, ranging from

close to zero within clouds to magnitudes of 1–2 ms−1 in drizzle.

7



Figure 2.1: Time-height ARM radar observations of reflectivity factor and Doppler ve-
locity for two AMF deployments in marine stratus regimes: (a, b) 29 November 2009
(GRW); and (c, d) 30 July 2013 (MAGIC). Upward (downward) vertical velocities are
assumed positive (negative).
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2.2 Simulator

The EC-CPR simulator used in this study, described in detail in Kollias et al. (2014),

produces EC-CPR observations from ground-based and/or airborne radar data. The

cloud scenes are first converted from a time-height to an along-track-height field using

local wind speed soundings averaged over the cloud layer. The simulator then applies

the effects of measurement by the EC-CPR, such as radar receiver noise, the horizontal

and vertical resolutions, spectrum broadening due to satellite motion, along-track inte-

gration, and Doppler moment estimation that emulates the real-time on-board processing

of EC-CPR signals. In Kollias et al. (2014), the focus was on high-level ice clouds and

thus simulation of the surface return was not included. However, the surface echo is an

important feature that restricts the detection of low-level clouds by spaceborne radars

(Tanelli et al., 2008); therefore, for this study, the surface echo is introduced in the sim-

ulator and is described here.

The profile of the surface echo is determined by the normalised backscatter cross section

of the Earth’s surface and the combined effect of the radar’s range-weighting function

and receiver bandwidth. In the case of the CS-CPR, the average clear-sky surface return

over ocean can be deduced from the CloudSat 2B-GEOPROF reflectivity product. For

the EC-CPR, which uses a similar pulse length (and range-weighting function) to the

CS-CPR, a best approximation of the clear-sky surface return is produced by convolv-

ing the estimated point response function of the EC-CPR with the surface backscatter.

Variability of the surface return due to heterogeneous surface conditions, attenuation of

the radar signal through the atmosphere, and changes in satellite altitude, which moves

the surface’s position within the range gate it intersects, have not been included in the

EC-CPR simulator. This therefore constitutes a best-case scenario, where the only varia-

tion in the surface return is due to finite-sampling errors of the radar. A reduced surface

echo EC-CPR profile is also considered, in which the surface clutter has been removed
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above 500 m, in order to isolate the effect of the surface return. The three profiles are

plotted in Figure 2.2. At height, the profiles approach their respective noise floors. In the

EC-CPR simulator, the mean Doppler velocity of the surface is assumed zero (valid under

the condition that antenna mispointing has been sufficiently corrected for) and a narrow

spectrum width (0.5 ms−1) assigned, as the main contributor to Doppler spectral broad-

ening is introduced later in the simulator. When concurrent (within the lowest 1 km), the

WACR and surface clutter moments are combined to produce the total observed radar

moments.
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Figure 2.2: Average clear-sky surface return profiles for the CloudSat and EarthCARE
CPRs, including a reduced surface case for EarthCARE in which the clutter has been
completely suppressed above 500 m.

The simulator outputs estimates of reflectivity factor, mean Doppler velocity, and spec-

trum width based on pulse pair processing (Doviak and Zrnic, 1993) every 20–25 m of

along-track displacement of the EC-CPR. These estimates are subsequently integrated

horizontally to 500 m to reduce the impact of the receiver noise and satellite motion.

Additional integration up to 10 km is performed in order to evaluate the quality of the
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measurements. The simulated Doppler velocities are corrected for NUBF according to

the along-track reflectivity gradient method (Kollias et al., 2014).

2.3 Processing

Since this study is concerned with the detection of weak targets often embedded in the

surface clutter, it is necessary to introduce the feature mask (FM) detection algorithm

that is similar to that proposed for the EC-CPR. The FM algorithm takes as input the raw

simulated EC-CPR signals described in 2.2 and indicates resolution volumes that contain

radar signal returns that are statistically significantly higher than the background signal

(receiver noise, atmospheric noise, and surface clutter).

The first step in the FM is the calculation of the mean and standard deviation of the noise

in echo-free (i.e., surface clutter- and cloud-free) returns within each EC-CPR profile.

The mean noise power in each profile is estimated using a variant of the Hildebrand and

Sekhon (1974) method for noise estimation in Doppler spectra. In the original method, a

coloured Doppler spectrum has a power threshold applied to it. Any frequency band in

which the power is above this threshold is removed from the spectrum and a white noise

test is applied. If the spectrum is not white, the threshold is lowered and the process

repeated until the conditions for white noise are satisfied. Here, rather than a Doppler

spectrum, a “range gate spectrum” is formed for each vertical profile, with each range

gate considered equivalent to a frequency band within a Doppler spectrum. Initially con-

sidering all range gates, the test, shown in Equation 2.1, is applied.

n

n∑
i=1

P (i)2 − 2

(
n∑
i=1

P (i)

)2


< 0, White noise

> 0, Coloured noise

(2.1)

P (i) is the power of the ith range gate, with i = 1 referring to the range gate with the
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lowest signal power, and i = n the range gate with the highest. Initially, n = N , where

N is the total number of range gates in the profile. If the condition for white noise is not

met (i.e., Equation 2.1 is greater than zero), then n is set to N − 1, removing the range

gate with the greatest reflectivity from the spectrum. This process is repeated until the

condition for white noise is achieved. From the remaining spectrum, the mean power is

computed, which is exactly the mean power of every individual pulse making up the pro-

file. From the assumption of white noise, the standard deviation of the single-pulse noise

is equal to this. Horizontal averaging reduces the standard deviation of the noise power to

σM =
σ√
M

(2.2)

σM is the standard deviation after averaging M pulses, and σ is the standard deviation

of the single pulse noise. Therefore, in each vertical profile, the standard deviation of the

noise is estimated as the mean noise in that profile divided by the square root of the num-

ber of pulses per horizontal estimate. At a 1 km integration, this reduces the standard

deviation of the noise to approximately -36 dBZ. The mean noise plus one, two, or three

standard deviations (hereafter referred to as 1–3σ) is used as a dynamic threshold for

hydrometeor detection in subsequent processing. Range gates in which the signal power

is higher than the threshold are classified as significant and the rest as non-significant

returns. The mean noise is then subtracted from the reflectivity profile. Extensive sen-

sitivity tests that illustrate the effects of the choice of the threshold value are shown in

Chapter 3.

Surface clutter identification is the next step in the FM algorithm. Given the strength

of the surface return relative to the background noise, range gates in approximately the

lowest 1 km will be uniformly marked as significant in the previous step. In CloudSat

data, surface clutter identification is performed by comparing the observed profile to a
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reference clear-sky profile. If the observed return power is above the 99th percentile of

surface returns at that height, the signal at that range gate is classified as significant and

the surface component of the signal is subtracted (Marchand et al., 2008; Tanelli et al.,

2008). Here, a similar method is used, with average surface returns produced from clear-

sky regions within each case. In each profile, if the signal power in a range gate is greater

than the mean surface signal at that level plus three standard deviations, the volume is

classified as significant; otherwise, the volume is marked as non-significant. The average

surface profile is then subtracted.

Finally, a two-dimensional (along-track and along-range) filter is applied, similar to that

used for CloudSat data (Marchand et al., 2008). This runs a box, sized 3 by 3 resolution

volumes, over the entire field (e.g., Clothiaux et al., 1995; Uttal et al., 1993). At each

point, if more than half-plus-one of the surrounding volumes are classed as significant

in the previous mask, then the central point is also marked as significant. If fewer than

this are significant, the central point is classed as non-significant. This filter is applied

iteratively twice with the aim of reducing both false negatives and false positives. Any

volumes with a negative power are marked as non-significant. The mask is produced at

horizontal sampling rates of 500 m, 1 km, 5 km, and 10 km.
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Chapter 3

Initial EC-CPR results

Simulated EC-CPR reflectivity fields of the two example scenes (Fig. 2.1) are depicted

in Figure 3.1. Displayed in each column is the raw EC-CPR reflectivity field (prior to

application of the FM algorithm), followed by the reflectivity after noise subtraction

and surface clutter reduction, and finally the EC-CPR results after applying the FM

algorithm. The results in Figure 3.1 are produced using a 1 km horizontal integration and

a 3σ significant detection threshold. In both the GRW and MAGIC input reflectivity

fields (Fig. 2.1), there are many drizzle-free regions, characterised by relatively low

reflectivities and thicknesses of only a few hundred metres. The signals here are generally

close to or below the level of the noise and therefore are often undetected in the masked

EC-CPR result. Increasing the along-track integration (e.g., to 5–10 km) reduces the

effective noise level, making many of these weak cloud signals detectable. Alternatively,

the signal threshold for detection in the FM algorithm may be lowered while maintaining

the integration length. The effects of these two methods are discussed in 3.1.

Surface clutter is seen in Figure 3.1 as the horizontal banding in the lowest 1 km of the

non-masked reflectivity fields. Even after surface clutter reduction (Fig. 3.1c, 3.1d),

below 700–800 m, the surface echo is stronger than the majority of the hydrometeor

returns by several dB. Subsequently, at these heights, the extraction of meteorological
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Figure 3.1: (a, b): Simulated EC-CPR reflectivity field of GRW and MAGIC example
cases respectively at 1 km along-track integration prior to noise subtraction; (c, d): Sim-
ulated EC-CPR reflectivity after receiver noise subtraction and surface clutter reduction;
(e, f): EC-CPR results after applying feature mask algorithm (using a 3σ significant
detection threshold).

signals is challenging. The impact of the surface echo is explored further in section 3.1.

3.1 Impact of sampling rate, significant detection thresh-

old, and surface echo

From the two AMF deployments, approximately 250 hours of observations of marine

stratiform clouds are combined to produce statistics of the marine strati cloud prop-

erties. How well the EC-CPR reproduces these, and how this depends on integration

length and the threshold for detection in the FM algorithm, is evaluated. Average cloud
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fraction is calculated using the ground-based WACR and M-WACR and the EC-CPR.

The ground-based radars observed an average cloud fraction of 88 %. The EC-CPR value

varies significantly by integration length (ranging from 500 m to 10 km) and significant

detection threshold. Using a 1 km integration, the detected cloud fraction is 60 % or 70 %

with 3σ and 1σ thresholds respectively. For a 10 km integration and 3σ threshold, the

value is 73 %. However, increasing the integration length or lowering the significant de-

tection threshold increases the risk of false detections. Employing a 1 km integration and

3σ detection threshold, the number of false detections (defined as profiles in which cloud

is detected by the EC-CPR but not the WACR, with the data of both radars sampled

to the EC-CPR initial 500 m along-track rate) is virtually zero, while at a 10 km integra-

tion, false detections account for approximately 3 % of all cloud-containing profiles. In

simulations where surface clutter is removed above 500 m, the detected cloud fractions

are 63 %, 74 %, and 77 % for 1 km, 3σ; 1 km, 1σ; and 10 km, 3σ configurations, with this

improvement due to profiles in which clouds are located entirely within the surface clutter.

These results confirm that an increase in integration length or a decrease in detection

threshold result in increased detected cloud fraction. This increase comes almost entirely

from thin clouds that have reflectivities close to that of the background noise. This is il-

lustrated in Figure 3.2, which shows contoured-frequency-by-altitude-diagrams (CFADs)

of WACR reflectivity (Fig.3.2a, 3.2c) and the proportion of true signals that are unde-

tected by the EC-CPR as a function of height and significant detection threshold for the

two scenes (Fig. 3.2b, 3.2d). Overlaid on Figure 3.2a and 3.2c are minimum detectable

signal thresholds of the EC-CPR for the 1 km, 1σ and 1 km, 3σ configurations and the

reduced-surface clutter simulation. Cloud and drizzle regimes are distinguishable in the

CFAD and it can be seen that cloud base and cloud top are often below the EC-CPR

sensitivity while drizzle is consistently above this (excepting range gates affected by the

surface echo, where only the reduced surface profile is below the majority of WACR

signals). Missed detections are generally higher for the 3σ threshold than the 1σ thresh-
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old as is expected due to the lower sensitivity of the former, though both show similar

features: missed detections approach 100 % in the lowest 700 m where surface clutter

dominates and are minimal in range gates below cloud base where only drizzle is present.

In the MAGIC scene (Fig 3.2d), a peak in missed detections occurs in range gates where

drizzle-free volumes are common at approximately 1.3 km. While these results suggest

a lower threshold for detection is preferable, the choice of detection threshold and in-

tegration length also impact the accuracy of EC-CPR cloud boundary and reflectivity

estimates. This is illustrated in Figures 3.3 and 3.4.

Figure 3.2: Contoured-frequency-by-altitude-diagrams (CFADs) of WACR reflectivity
factor for (a) GRW and (c) MAGIC example cases shown in Figure 2.1a and 2.1c. The
expected EC-CPR sensitivity for 1σ and 3σ detection thresholds at a 1 km integration are
shown, including the reduced-surface case sensitivity. The fraction of WACR detections
that are not captured by the EC-CPR as a function of height and significant detection
threshold for the (b) GRW and (d) MAGIC cases is also shown.
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Figure 3.3: Average cloud thickness distributions measured by WACR and EC-CPR
for a) GRW non-drizzling; b) GRW drizzling; c) MAGIC non-drizzling; and d) MAGIC
drizzling profiles.

Figure 3.3 displays distributions of cloud thickness measured by the ground-based radars

and the EC-CPR in the GRW and MAGIC campaigns, separated into drizzling and

non-drizzling profiles (the presence of drizzle within a profile is determined with a height-

dependent reflectivity threshold following Wang and Geerts, 2003). For comparison pur-

poses, the WACR and EC-CPR data has been sampled to the same 500 m along-track

grid. The EC-CPR distributions are produced using 1σ and 3σ thresholds at a 1 km

integration and a 3σ threshold at a 10 km integration (the reduced surface clutter distri-

bution uses a 1 km integration and 3σ threshold). The ground-based radar drizzle-free

distributions (Fig. 3.3a, 3.3c) are centered around thicknesses of approximately 500 m,

with a significant number of profiles having thicknesses less than this. The EC-CPR,
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in all configurations, under-represents these clouds due to a combination of stretching

by the EC-CPR range resolution and low reflectivity, thin clouds not being detected.

Average cloud thicknesses are generally lower in the 1 km, 3σ distributions due to the

lower sensitivity that often masks the cloud boundaries, especially in the relatively low

reflectivities at cloud base.

The drizzling distributions are broader, particularly for the GRW campaign (Fig. 3.3b)

where thicknesses reach almost 2 km, compared to below 1.5 km for MAGIC (Fig. 3.3d).

Here, the best fit to the WACR data is achieved by the reduced-surface simulation data,

with all other distributions biased toward lower thickness values. This indicates that the

surface clutter obscures cloud base in drizzling profiles (as is seen in Figures 3.1 and 3.2),

leading to an over-representation of relatively thin drizzling clouds. In both drizzling and

non-drizzling clouds, the accuracy of the EC-CPR-derived cloud top height is calculated

(with the WACR cloud top averaged to 500 m along-track, the initial sampling rate of

the EC-CPR, and the EC-CPR data oversampled to this rate). As with cloud fraction,

this depends upon the value of the FM detection threshold. Using a 1 km along-track

integration and 3σ threshold, the root-mean-square-error (RMSE) is 91 m and the mean

bias is +58 m (an overestimation by the EC-CPR). Using the same integration length and

a 1σ threshold, the values are 128 m and 106 m respectively, i.e., when a 1σ threshold

is in use, the cloud top overestimation bias is comparable in magnitude to the range

sampling rate of the EC-CPR (100 m).

Distributions of reflectivity factor are shown in Figure 3.4, separated between GRW and

MAGIC campaigns in drizzling and non-drizzling resolution volumes. In drizzling vol-

umes where SNR is large, the choice of significant detection threshold has no effect on

the distribution and the 1 km, 1σ and 1 km, 3σ distributions are the same. In volumes

containing drizzle (Fig. 3.4b, 3.4d), reflectivities peak at approximately -10 dBZ in the

ground-based radar distributions, and this is well matched by the EC-CPR in all config-
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Figure 3.4: Average reflectivity distributions measured by WACR and EC-CPR for a)
GRW non-drizzling; b) GRW drizzling; c) MAGIC non-drizzling; and d) MAGIC drizzling
resolution volumes.

urations. The total number of volumes shown is lower for the EC-CPR, excepting the

reduced-surface cases, due to surface clutter effects on the detection of drizzle. In non-

drizzling volumes (Fig. 3.4a, 3.4c), the location of the peak reflectivity (around -20 dBZ)

is again reproduced by the EC-CPR, however greater reflectivities (-10 dBZ and above)

are over-represented in the EC-CPR distributions. This is an effect of the EC-CPR res-

olution, both along-track and along-range, which introduces strong drizzle signals into

cloud-only volumes. At lower reflectivities, the effect of an increased integration or lower

significant detection threshold on the EC-CPR sensitivity can be seen, which allows more

low-reflectivity features to be captured relative to the 1 km, 3σ configuration. However,

the ground-based radar distributions contain reflectivity values of -40 dBZ and below,
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which the EC-CPR fails to reproduce in any configuration tested here.

As with cloud top height, the average deviation between the EC-CPR and WACR reflec-

tivity factor values is calculated (in logarithmic units). At a 1 km horizontal integration

and 3σ threshold, the bias is +2.1 dB (an overestimate by the EC-CPR) and the RMSE

is 5.9 dB. Using a 1σ threshold at the same along-track integration, these values are

2.0 dB, and 5.9 dB. The primary source of these errors, which are calculated by oversam-

pling the EC-CPR data to the WACR grid, are the range and along-track resolution of

the EC-CPR, which introduce strong drizzle signals into the surrounding low-reflectivity

cloud, with biases of more than 10 dB often present in the uppermost portions of driz-

zling clouds. After averaging the WACR data along-track to the EC-CPR horizontal

resolution (including both along-track integration and antenna pattern effects), the aver-

age EC-CPR bias is 1.3 dB (1σ threshold), which is attributable to the range resolution

and some small noise and surface clutter residuals (the introduction of a net bias due to

averaging is explained by the fact that the logarithm of a linear average is always greater

than the average of the logarithms).

3.2 Drizzle Doppler velocity

Simulated EC-CPR velocities for a region within the GRW example case are shown in

Figure 3.5 at 1 km and 5 km integration lengths. The EC-CPR velocities are signifi-

cantly affected by random noise, particularly at short integration lengths. Because of

this, velocities within regions where SNR is low do not reproduce the true velocity field

well. Integrating the data to 5 km reduces much of the noise-induced variance, better

representing the average velocities, however, in doing so, this also removes much of the

variability observed in the WACR velocity field.

Figure 3.6 shows CFADs of the velocity fields of the two example scenes as measured by
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the WACR and the EC-CPR at 1 km and 5 km integrations. In both cases, the WACR

data (Fig. 3.6a and 3.6b) show similar relations of velocity with height. At cloud top,

velocities tend toward zero. As altitude decreases, the mean velocity decreases to around

-1 m s−1 at 500 m where drizzle dominates. The mean WACR velocities as a function of

height are overlaid on the EC-CPR CFADs, showing that the EC-CPR tends to overesti-

mate the magnitude of the mean velocity. This is a result of the observed velocity being

a reflectivity-weighted average of the velocities within each CPR volume; it is therefore

biased towards velocities corresponding to higher reflectivities, which typically are larger

in magnitude. In the lowest 1 km, the surface echo, with its stationary velocity and strong

reflectivity, biases the reflectivity-weighted velocity towards zero, reducing the usefulness

of EC-CPR velocity estimation for weak targets in the lowest 1 km. The 5 km integration

distribution is much narrower than that of the 1 km integration, consistent with what is

seen in Figure 3.5.

The average EC-CPR velocity error across all cases is calculated by averaging the WACR

data to the 500 m along-track initial sampling rate of the EC-CPR and oversampling

the EC-CPR data to the same rate. In keeping with the effects observed in Figures

3.5 and 3.6, volumes within the lowest 1 km or where SNR is less than one are ignored

for this calculation. At 1 km and 5 km integrations, the EC-CPR RMSE is 0.97 m s−1

and 0.49 m s−1 respectively (prior to correcting for NUBF, these values are 1.37 m s−1

and 0.59 m s−1). Given the velocity magnitudes seen in Fig. 3.6 of close to 1 m s−1, this

suggests a minimum along-track integration of 5 km is necessary to reduce the EC-CPR

velocity uncertainty to reasonable levels. These errors are produced from simulations us-

ing a PRF of 7.0 kHz, a mid-range value within the EC-CPR 6.1–7.5 kHz operating range.

At a PRF of 6.5 kHz, the NUBF-corrected RMSEs are 1.22 m s−1 and 0.59 m s−1 at 1 km

and 5 km integrations. At the maximum PRF of 7.5 kHz, these errors are 0.82 m s−1 and

0.48 m s−1. The uncertainty produced using a 5 km integration is only slightly improved

by increasing the PRF from 7.0 kHz to 7.5 kHz, potentially due to the EC-CPR aver-
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aging of the true velocity field, through the range resolution, horizontal resolution, and

along-track integration, which introduces a lower limit to the uncertainty in the EC-CPR

velocity that depends on the variability within the true cloud scene. Changes in PRF

were found to have negligible impact on cloud detection and cloud boundary estimation.
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Figure 3.5: Along-track-height velocity fields of GRW case. a) WACR-measured velocity;
simulated EC-CPR velocity at b) 1 km integration, and c) 5 km integration.
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Figure 3.6: (a, b): Contoured-frequency-by-altitude-diagrams (CFADs) of WACR-
measured Doppler velocity from (a) GRW and (b) MAGIC example cases shown in Figure
2.1b and 2.1d; (c, d): CFADs of EC-CPR synthetic Doppler velocities from (c) GRW and
(d) MAGIC at 1 km integration and (e, d): CFADs of EC-CPR synthetic Doppler veloc-
ities from (e) GRW and (f) MAGIC at 5 km integration. Solid and dotted black lines
depict mean and standard deviation of the velocity as a function of height. Mean WACR
velocities are reproduced as red lines in the EC-CPR CFADs.

25



Chapter 4

Post-processing algorithms

4.1 Range resolution deconvolution

In Chapter Three, it was seen that the EC-CPR measurements of reflectivity factor (ob-

tained with a 1 km integration and a 1σ detection threshold) contained an average bias of

2.0 dB and a RMSE of 5.9 dB when compared with the input WACR reflectivities. While

these errors can be partially attributed to the residuals of the noise and surface clutter,

they are primarily a result of the averaging effects of the EC-CPR resolution, both in

range and along-track. The radar’s range resolution also causes an overestimation bias in

cloud top of approximately 100 m when using a 1σ significant detection threshold. How-

ever, due to the range oversampling in use by the EC-CPR (sampling every 100 m within

the 500 m range resolution), it is possible to retrieve an improved-resolution reflectivity

profile in which these errors are reduced. Here, a technique to achieve this via a con-

strained linear inversion, or deconvolution, of the EC-CPR range resolution is presented

and tested on the simulated data introduced in Chapter 2 and evaluated in Chapter 3.

The effect of the EC-CPR range resolution on the observed profile of reflectivity may

be expressed mathematically as a convolution of the true profile of reflectivity Ztrue (in

linear units) with the range weighting function G(r) of the EC-CPR. For the EC-CPR,
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the range weighting function is assumed to be a Gaussian with a full-width-half-maximum

of 500 m (and is modelled as such in the EC-CPR simulator described in Chapter Two).

ZCPR(r) =

∫ r+∆r

r−∆r

G(r′ − r)Ztrue(r′)dr′ (4.1)

In Equation 4.1, ZCPR(r) and Ztrue are the EC-CPR-observed and true reflectivity at a

range r from the radar. G(r′−r) is the normalised range weighting function at a displace-

ment r′ − r from r and 2∆r is the width of G (i.e., 500 m). Negating the effects of the

satellite motion, the equivalent equation for the observed EC-CPR (reflectivity-weighted)

Doppler velocity may be obtained by including the true profile of Doppler velocity in the

integral in Equation 4.1 and dividing the integral by ZCPR.

Equation 4.1 describes the continuous, analytical form of the observed profile of reflectiv-

ity as a function of range. In reality, however, the EC-CPR samples the reflectivity at a

discrete rate (100 m). The retrieved high-resolution profile of reflectivity will be limited

to this same sampling rate. The observed profile of reflectivity is therefore approximated

in Equation 4.2 as a discrete convolution of the range weighting function and the true

profile of reflectivity, both sampled at the EC-CPR range sampling rate.

ZCPR[n] ≈
dn∑

m=−dn

G[m]Ztrue[m+ n] (4.2)

In Equation 4.2, ZCPR[n] and Ztrue[n] are the observed and true reflectivities at the nth

range gate and G is the discrete approximation of the range weighting function with a

range-gate-width of 2dn + 1 (for the EC-CPR, dn = 2 range gates). Equation 4.2 may

be equivalently expressed as a matrix-vector equation, as in Equation 4.3.

ZCPR ≈ A Ztrue (4.3)
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Here, ZCPR,Ztrue ∈ RN are vectors representing the profiles of the observed and true

reflectivity respectively, each consisting of N range gates, and A ∈ RN×N is the matrix

representation of the discrete approximation of the range weighting function, in which

each row is constructed of G from Equation 4.2 centred on the diagonal element. If the

two sides of Equation 4.3 were exactly equal, the profile of true reflectivity could be re-

trieved by left-multiplying both sides by A−1, the inverse of A. In practice, however,

ZCPR contains small errors arising from noise and the finite sampling approximation that

may be considered an additional term on the right hand side of Equation 4.3. These

errors are amplified when multiplied by the inverse of A, producing large errors in the

retrieved reflectivity profile Ztrue that typically manifest as high-frequency oscillations

about zero – for reflectivity, which is a measurement of backscattered power, these are

non-physical. This is a well-documented issue in remote sensing that may be mitigated

by applying a constrained linear inversion technique (Phillips, 1962; Twomey, 1977). A

brief description of the constrained linear inversion method is now given.

For an equation of the form b = A x in which x is to be solved for and in which

there is some noise in b such that a left-multiplication of A−1 is inappropriate, a level

of acceptable error in the residual, ‖b−A x′‖, is defined, where x′ is some approximate

solution. Then, from the family of solutions that produce an error less than or equal

to this acceptable value, the solution that minimises some other constraint condition is

chosen. The constraint condition is chosen according to prior knowledge of the form the

true solution should take, e.g., a smooth solution can be obtained by minimising the

magnitude of the second differences of x′ .

The application of a constrained linear inversion to oversampled radar data in order

to improve the resolution is not new to this thesis. Schutgens and Donovan (2004) tested

the technique, as here, on simulated EC-CPR data as a means of mitigating the effect of
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the EC-CPR’s long pulse length while in Galati et al. (1996) the method was applied to

scanning radar data with a focus on increasing the vertical resolution. However, the form

of the constraint and how the level of acceptable error in the solution is set varies be-

tween approaches. Here, in constraining the retrieved reflectivity profile to be reasonably

physical (i.e., no negative values and relatively smooth), we take advantage of the fact

that the original observed profile, ZCPR, already fulfils these criteria. Therefore, from

the family of solutions with an acceptable error, we choose the solution that minimises

the departure from the observed profile. This is one of two possible constraints proposed

in Schutgens and Donovan (2004) (the second being to minimise the deviation of the

retrieved profile from a zero reflectivity profile), however, in this work, the difference

between the retrieved and observed profile is calculated as the sum of the relative, rather

than absolute, differences between the two profiles at each range gate. This distinction

is necessary due to the orders of magnitude variability of the reflectivity within a profile;

if only the absolute differences between the profiles are considered, the total deviation is

dominated by high-reflectivity range gates and the inversion method performs poorly at

low-reflectivity range gates, which are under-constrained. Applying this constraint, the

high-resolution reflectivity profile, Z′true, is obtained from Equation 4.4 (Twomey, 1977).

Z′true = (AT A + γJ)−1(AT ZCPR + γ ZCPR) (4.4)

AT is the transpose of matrix A (which, given A is symmetric, is exactly equal to A),

J ∈ RN×N with Jii = (ZCPR,i)
−2 and Jij = 0, i 6= j, and γ is a real scalar that dictates

how closely the solution Z′true is forced toward ZCPR. γ is also directly related to the level

of error in the residual, ‖ZCPR−A Z′true‖, and therefore, by choosing an acceptable error

level, the appropriate value of γ can be computed. Alternatively, defining an acceptable

error threshold may be bypassed by using some other criteria to independently set γ. It

is found that suitable values of γ vary from approximately 10−7 in low-reflectivity, cloud-
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only profiles to 10−2 or larger in drizzling profiles. Using a value of γ too large or too

small results in either over-constraining the retrieved profile, in which case it will almost

exactly match the observed profile, or under-constraining the profile, leaving oscillations

(and negative values) in the solution; therefore, it is necessary to tailor γ according to

the conditions in each profile. The steps used to apply the constrained inversion and set

γ are as follows.

Within each profile, ZCPR is formed of the masked reflectivity profile of a single cloud

layer plus dn (i.e., two) hydrometeor-free range gates above and below, with the reflec-

tivity in these range gates set to a very low but non-zero value. The matrices A and J

are produced, γ is given some initial, small value (e.g., 10−7), and the first estimate of

the profile Z′true is computed. If this contains any negative values, γ is increased (here,

by a factor of 1.25) and the solution recalculated. This process is repeated until the

retrieved profile contains no negative reflectivities (in practise, very small negative values

in Z′true may occur due to rounding errors and so are allowed; these are set to zero prior

to the next step). The magnitude of the retrieved profile is, in general, lower than that

of the original observed profile, particularly for large values of γ. This is an effect of the

inversion method, rather than the range resolution of the EC-CPR, which is an averaging

that should conserve total power. Therefore, the magnitude of the retrieved profile Z′true

is normalised to that of ZCPR by Equation 4.5. Finally, any range gates with reflectivity

below the previously-estimated standard deviation of the noise in that profile are assigned

reflectivities of zero.

Z′true = Z′true

∑
i Z
′
true,i∑

i ZCPR,i

(4.5)

The range resolution deconvolution is not applied in cloud layers in which the cloud

base is below 1 km or the thickness of the layer is less than the range resolution (five
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range gates) as these conditions imply a significant error in Equation 4.3 due to surface

clutter or noise respectively. Large errors in Equation 4.3, in contrast with the relatively

small errors considered previously, generally cause solutions with physical characteristics

to have large residual errors. This is equivalent to a large value of γ being necessary

for a reasonably well constrained solution, which implies that the retrieved solution will

be essentially equal to the observed solution, i.e., the application of the deconvolution

algorithm will, at best, leave the reflectivity profile unchanged and, at worst, produce a

non-physical solution.

4.1.1 Results

The deconvolution method is applied to the simulated EC-CPR data set described in

Chapters Two and Three. Across all simulated EC-CPR cloud scenes, in cloud layers

where the conditions for the application of the method were met (i.e., cloud layer of

at least five range gates and cloud base above 1 km), the average reflectivity bias was

reduced from 1.5 dB to 0.8 dB and the RMSE was reduced from 5.3 dB to 4.8 dB. The

remaining bias and uncertainty are attributable to a combination of the residual range

resolution errors and errors due to the horizontal averaging. If the effect of the latter is

removed by averaging the WACR data along-track to the EC-CPR horizontal resolution

(including both the antenna pattern and along-track integration), the bias and RMSE

are reduced from 1.2 dB and 4.8 dB to 0.1 dB and 4.1 dB respectively by applying the

deconvolution. The remaining bias and uncertainty are a mix of residuals of the method

and errors due to surface clutter and noise. In EC-CPR-derived cloud top, in cloud layers

where the deconvolution was applied, the average overestimation bias of 125 m (using a

1σ significant detection threshold) was reduced to 35 m and the RMSE was reduced from

140 m to 60 m. Examples of the results for two profiles, one cloud-only and one drizzling,

are shown in Figure 4.1, which compares the input WACR profiles, the observed EC-

CPR profiles, and the deconvolved EC-CPR profiles. The improvement achieved in the
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deconvolved profile can be seen in the location and magnitude of the reflectivity peaks

and the derived cloud boundaries which more closely match those of the WACR profiles.

While these results are promising, the overall effectiveness of the method is limited by

its applicability. The specified conditions for the application of the deconvolution algo-

rithm are met in only 25 % of the profiles considered here. Many drizzle-free clouds are

precluded due to their observed thickness being less than 500 m, while drizzling profiles

commonly extend into the lowest 1 km where surface clutter is present. The application

of the inversion technique in this data set is therefore typically limited to lightly-drizzling

clouds only. However, in higher level, thicker clouds such as cirrus and precipitating

systems, the conditions for application should be met far more often.
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Figure 4.1: Profiles of WACR, EC-CPR, and deconvolved EC-CPR reflectivity in a)
cloud and b) drizzle. Note that surface clutter has not been included in these EC-CPR
simulations.
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4.2 Matched filtering of Doppler velocities

Previously, a 1 km along-track integration of the EC-CPR Doppler velocity was found to

produce an uncertainty of approximately 1 m s−1, comparable to the magnitudes of the

Doppler velocities in drizzle. This error is primarily due to frequently occurring low SNR

conditions and signal decorrelation due to the satellite motion. By integrating the data

to 5 km along-track, the error is reduced to 0.5 m s−1. However, in doing so, the resolu-

tion of the data is decreased and small scale variations in the true velocity field are lost;

this effect is seen in Figure 3.6, in which the 5 km integration EC-CPR distributions are

significantly narrower than those of the WACR data. Therefore, a method of achieving

uncertainties similar to those of a 5 km integration while preserving a higher along-track

resolution is desirable.

In Sy et al. (2014), the application of matched filters to simulated EC-CPR Doppler

velocity measurements was found to achieve uncertainties of less than 0.5 m s−1 while

maintaining the initial 500 m along-track integration of the EC-CPR. Here, the method

is recreated with minor changes and applied to the simulated EC-CPR scenes described

in Chapter Two as a verification of its performance in marine stratiform clouds.

In general, a matched filter is one that maximises the SNR for a signal contaminated

by noise, typically requiring prior knowledge of the form of the true signal. For radar

Doppler velocity measurements, this produces a reduction in random noise-induced er-

rors. In the approach described in Sy et al. (2014), the EC-CPR scene is first split into

along-track sections of 100 km in which the filter is matched and applied separately. The

discrete spatial Fourier transform of the lag-one pulse pair correlation is produced at each

level within the section and multiplied by the matched filter. The filter, a function of

spatial frequency and defined in Equation 4.6, increases signal strength at frequencies

where true signals are present and suppresses the signal at frequencies where noise dom-
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inates, thereby increasing the SNR. The inverse discrete Fourier transform of the altered

spectrum is performed to retrieve the lag-one pulse pair correlation and the Doppler ve-

locity is estimated via pulse-pair processing (Doviak and Zrnic, 1993). This process is

illustrated for one level in an along-track section in Figure 4.2.

L(f) =
1

1 + |αf |β
(4.6)

The filter, L(f), is a function of spatial frequency f and defined by two variable pa-

rameters, α and β. For a 100 km along-track section sampled every 500 m, the spatial

frequency f ranges from -1 km−1 to +1 km−1 in increments of 0.01 km−1. By choosing

appropriate values of α and β, which are varied in the ranges 0.01–100 km and 0.5–3

respectively, the filter is matched to the true signal. However, this requires the form

of the true signal, i.e., the true velocity field, to be known, which is generally not the

case. Therefore, filter optimisation criteria that depend only on the pre- and post-filter

velocity fields and knowledge of the form of the noise are necessary. Several optimisation

procedures that adhere to this restriction were proposed in Sy et al. (2014). Here, the

Constrained Residue Variance Minimising, or RV, filter, which achieved the lowest veloc-

ity errors in Sy et al. (2014), is recreated and tested on the simulated EC-CPR data.

The RV filter uses the difference between the pre- and post-filter velocity fields as a

proxy for the difference between the true and post-filter velocity fields. By minimising

the former, which is always available, the latter is assumed to be minimised. However, the

equivalency between the two differences is only true for certain filter shapes, and therefore

the range of possible filter shapes (i.e., combinations of α and β) must be constrained.

The filter constraint method, described in detail in Sy et al. (2014), requires comparing

the cumulative density function (CDF) of the difference between the pre- and post-filter

velocity fields with a reference CDF of the difference between a set simulated EC-CPR ve-
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locities, again before and after filtering. For a given filter shape, if the difference between

the two normalised CDFs exceeds a threshold value at any point, this indicates that the

difference between the pre- and post-filter velocity fields is not directly related to the dif-

ference between the post-filter and true velocity fields and this combination of α and β is

excluded. Of the filter shapes for which these two quantities are directly related, the filter

that minimises the difference between pre- and post-filter velocity fields is selected as the

best-matched filter. A limitation to the RV method is that, for the constraint threshold

condition to be reliable, a reasonably smooth CDF is required, i.e., a large set of EC-CPR

data points (with SNR > 1) are necessary. If there are relatively few appropriate data

points in an along-track section, the pre- versus post-filter velocity CDF is coarse and, in

general, there are large differences between the two CDFs such that all filter shapes are

excluded. In sections where this is the case, an alternative filter optimisation method,

new to this work, is used. This method, hereafter referred to as an error optimisation

(EO) filter, is also tested as a standalone optimisation approach for comparison purposes.

In the EO method, the filter shape remains unconstrained (i.e., any combination of α and

β is allowed), and a minimisation criteria (different to that of the RV filter optimisation)

is used. By not applying any constraint threshold, the method can be reliably applied

even when relatively few data points are available. In this approach, in each along-track

section, the SNR distribution of the EC-CPR data is estimated from the reflectivity field

(considering only volumes with SNR greater than 0 dB). The aim is to then estimate

the distribution of the random noise errors that should occur for this SNR distribution,

i.e., to estimate the probability density function (PDF) of VPP −VTRUE where VPP is the

pulse-pair derived EC-CPR velocity field and VTRUE is the true velocity. The filter that

produces the PDF of VPP − VF , where VF is the filtered velocity, that best matches this

is then chosen. To estimate the true error PDF, a large number of EC-CPR velocities are

simulated from a known velocity (0 ms−1 is chosen for simplicity), following the method

in Kollias et al. (2014). This is done for each value of SNR (binned in 1 dB increments)
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within the SNR distribution of the along-track section. The velocity error PDFs at each

SNR are normalised and summed, weighted by the true SNR distribution of the observed

data, producing an estimate of the true error PDF of the EC-CPR velocity field. The fil-

ter shape that produces the pre- versus post-filter velocity distribution that most closely

matches the true error distribution (in a root-mean-square-difference sense) is chosen as

the best-matched filter and used to to produce the best-estimate filtered velocity field.

4.2.1 Results

Matched filters are applied to the simulated EC-CPR cloud scenes described and evalu-

ated in Chapters Two and Three. In addition to the RV and EO filters, best-matched

filters are produced by comparing the filtered velocity to the true velocity field (averaged

along-track to 500 m) and selecting the filter that produces the lowest RMSE. This pro-

vides the upper limit to the uncertainty reduction achievable through these filters and

allows evaluation of the performance of the RV and EO methods of filter matching.

Prior to any filtering, the average EC-CPR Doppler velocity RMSE at a 500 m inte-

gration and PRF of 7.0 kHz (for SNR>0 dB and range gates above 1 km) is 1.66 m s−1

(1.79 m s−1 and 1.54 m s−1 at PRFs of 6.5 kHz and 7.5 kHz respectively). Using the true

velocity field to match the filters, this is reduced to 0.43 m s−1 ( 0.46 m s−1; 0.42 m s−1).

The RV and EO filters produce similar average errors of 0.61 m s−1 (0.63 m s−1; 0.66 m s−1)

and 0.62 m s−1 (0.65 m s−1; 0.66 m s−1) respectively. As the RV filters are only replaced by

the EO filters in along-track sections with relatively few data points, these regions to not

contribute significantly to the average RV filter velocity error and so the two optimisation

methods are comparable in performance.

The best-matched filters perform significantly better in terms of error reduction than
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the RV and EO methods due to the fact that the EC-CPR velocity field includes not

only random noise-induced errors, which the RV and EO filters aim to suppress, but also

NUBF residuals and vertical averaging errors caused by the EC-CPR range resolution.

These other sources of error, particularly NUBF residuals, may be reduced through ex-

tended horizontal averaging. The best-matched filters, determined by all errors in the

EC-CPR velocity field, are therefore typically comparable to lengthy along-track inte-

grations, which reduce the total error but also remove much of the true variability of

the velocity field. The RV and EO methods, however, are designed only to reduce the

random noise-induced errors and are unaffected by the presence of other sources of un-

certainty. These optimisation methods therefore do not achieve the error reduction of

the best-matched filters but tend to better preserve the horizontal resolution of the EC-

CPR velocity field and thus may be preferable to the best-matched filters despite the

associated increase in uncertainty. This is illustrated in Figure 4.3, which compares the

EO and best-matched filtered velocity fields, as well as the WACR and EC-CPR 500 m

integration velocity fields.

The presence of multiple sources of error in the EC-CPR velocity field also provides a pos-

sible explanation for the increase in the filtered velocity errors when the PRF is increased

from 7.0 kHz to 7.5 kHz. The RV and EO methods of filter matching rely on the simplify-

ing assumption that random noise is the only error source in the EC-CPR velocity field.

When other error sources are negligible, this assumption is approximately valid and the

filter performs well. However, as other sources of error become proportionally larger (i.e.,

when PRF is increased and the random noise errors decrease), this assumption breaks

down and the filter matching method is less appropriate. This would also explain the

relatively small increase in uncertainty when decreasing the PRF from 7.0 kHz to 6.5 kHz

(compared to the equivalent change in error of the 5 km integration, non-filtered velocity

field - from 0.49 m s−1 to 0.59 m s−1), as the changes in filter optimisation and random

noise partially cancel out.
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The uncertainties achieved through matched filtering here are slightly worse than those re-

ported in Sy et al. (2014) (0.5 m s−1 at the EC-CPR 500 m sampling rate). In that work, a

range of cloud types were considered, such as cumulus and cirrus clouds, snowstorms, and

stratiform rain, as opposed to marine stratocumuli in this study; this impacts the SNR

distribution of the scenes and the sources of error and therefore the performance of the

filters. By integrating the RV and EO filtered velocity fields along-track to 1 km, the er-

ror is reduced to 0.53 m s−1 (0.57 m s−1; 0.52 m s−1) and 0.53 m s−1 (0.58 m s−1; 0.53 m s−1)

respectively, comparable to that achieved with a standard 5 km along-track integration

of the non-filtered velocity field.
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Figure 4.2: Process of matched filtering of EC-CPR Doppler velocities. a) The real and
imaginary parts of the initial lag-one pulse pair correlation as a function of along-track
position. b) The discrete Fourier transform of the lag-one correlation and the filter as
functions of spatial frequency. c) The real and imaginary components of the lag-one pulse
pair correlation after filtering.
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Figure 4.3: Along-track-height velocity fields of a) WACR; b) EC-CPR 500 m integra-
tion; c) EC-CPR 500 m integration after EO matched filtering; and d) EC-CPR 500 m
integration after best-matched filtering. Only regions of SNR>1 are shown in EC-CPR
fields.
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Chapter 5

Conclusion

The critical role of marine stratiform clouds on the climate makes them an important

target for the EarthCARE Cloud Profiling Radar after its launch in 2018. Accurate mea-

surements of radar reflectivity and cloud boundaries will improve our understanding of

the macroscopic structure of these clouds, while high quality Doppler velocity measure-

ments will help us to identify and retrieve drizzle properties. However, radar receiver

noise, the proximity of these clouds to the surface, and the coarse radar resolution will

limit the quality of the EC-CPR measurements. In this thesis, ground-based radar data

of marine stratocumulus cloud scenes are used as input to an EC-CPR simulator and the

ability of the EC-CPR to detect marine stratocumulus clouds, retrieve their boundaries

and measure their Doppler velocities is evaluated. A range resolution inversion technique

and matched filtering of Doppler velocities are tested as possible methodologies of reduc-

ing EC-CPR measurement errors.

Along-track integration and the choice of threshold for detection in the FM algorithm are

found to significantly impact the EC-CPR results in detected cloud fraction and bound-

aries. Increasing along-track integration or lowering the detection threshold results in an

increase in sensitivity and therefore detected cloud fraction, however the former reduces

the EC-CPR’s ability to resolve small-scale features and the reflectivity accuracy, and
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the latter degrades cloud boundary accuracy. For example, a detection threshold of 1σ

produces an uncertainty in cloud top height of approximately 130 m and an overestima-

tion bias of 100 m, equal to the EC-CPR range sampling rate, while a threshold of 3σ

produces values of 90 m and 60 m respectively. Reflectivity uncertainties are largely un-

affected by the choice of FM detection threshold, with an average EC-CPR bias of +2 dB

(at a 1 km integration) relative to the ground-based radar data. The bias is caused by the

EC-CPR resolution, both along-range and along-track, which introduces strong drizzle

signals into low reflectivity cloud regions. By applying a constrained linear inversion,

or deconvolution, to the EC-CPR range resolution, the vertical resolution is increased,

reducing the cloud top bias to 35 m while maintaining the 1σ detection threshold and

almost entirely removing the reflectivity bias caused by the range resolution; if horizontal

averaging effects on the bias are accounted for, the deconvolution reduces the average

bias from 1.2 dB to 0.1 dB in profiles where it is applied. The conditions for application

of the deconvolution are met in approximately one quarter of all marine stratiform cloud

profiles in this data set.

The surface clutter masks hydrometeor signals within the lowest 700–800 m, biasing es-

timates of cloud base height and therefore cloud thickness. Furthermore, the surface’s

stationary velocity biases velocity estimates within the lowest 1 km towards zero, reduc-

ing the usefulness of velocities within these range gates.

Horizontal integration of 5 km is found to be necessary to reduce the average EC-CPR

Doppler velocity error to approximately 0.5 m s−1, while integration of 1 km produces

errors of close to 1 m s−1. These errors are not negligible when compared with average ve-

locity magnitudes of 1 m s−1 within drizzling clouds. Alternatively, by applying matched

filters to the EC-CPR Doppler velocity field, uncertainties of approximately 0.6 m s−1

are achievable while preserving the initial EC-CPR along-track integration of 500 m, or

0.5 m ss−1 by integrating the filtered velocity to 1 km along-track. The results shown in
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this thesis will substantially improve the development of the formal ESA L2a EC-CPR

products.
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