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Abstract

The phase sensitivity of the Josephson effect makes it a powerful tool to probe
superconductors with unusual properties. In this thesis, we study three different setups
that highlight the usefulness of the Josephson effect to find experimental signatures of
unconventional and topological superconductivity. The first studied setup consist of
a tunnel junction between an s-wave and an unconventional s± superconductor. The
second studied setup is a topological version of a Josephson junction ring coupled to a
quantum dot. The third and final setup is a topological Josephson junction in the presence
of phase fluctuations caused by charging effects. While this thesis comprises of studies
of different materials, the results from the three projects presented here exhibit: a) how
the Josephson tunneling can be used to probe superconductors with unusual properties
and b) the need for theoretical models of Josephson tunneling that account for variations
and fluctuations of the superconducting order parameter.
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Résumé

La sensibilité de phase de l’effet Josephson en fait un outil puissant pour étudier
les supraconducteurs aux propriétés anormales. Dans cette thèse, nous étudions trois
contextes qui mettent en valeur les bienfaits de l’utilisation de l’effet Josephson pour
détecter la signature expérimentale d’une supraconductivité non conventionnelle et
topologique. La première situation étudiée correspond à une jonction en tunnel entre un
supraconducteur de symétrie s-wave et un supraconducteur non conventionnel de symétrie
s±. La deuxième situation étudiée est une version topologique d’un anneau de jonctions
Josephson couplée à une boîte quantique. La troisième et dernière situation représente
une jonction Josephson topologique en présence de fluctuations de phase causées par
des effets de charge. Cette thèse regroupe l’étude de matériaux différents, mais les
résultats présentés démontrent tous que a) l’effet tunnel Josephson peut être utilisé pour
étudier des supraconducteurs aux propriétés anormales et b) qu’il est nécessaire de créer
des modèles théoriques de l’effet tunnel Josephson qui puissent prendre en compte les
variations et fluctuations du paramètre d’ordre supraconducteur.
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Introduction

The Josephson effect refers to the ability to conduct current across a tunnel barrier

between two superconductors without the need for a voltage. This super-current is,

instead, driven by a difference in the phase of the macroscopic wave-function between

the two superconductors. As a macroscopic quantum phenomena, the Josephson effect

has a variety of applications. Due to its phase sensitivity, the shape of the current/phase

difference relation can often provide useful clues to the microscopic behavior of the

superconductors. This thesis discusses how the Josephson effect is modified by the

properties of unconventional and topological superconductors and how it can used as

an experimental probe for these types of superconductors. This chapter provides a

brief introduction to the Josephson effect (Sec. 1.1 ) and the two kinds of materials

that motivate the following chapters: the unconventional iron-based superconductors

(Sec. 1.2) and topological superconductors (Sec. 1.3).

1
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1.1 Josephson effect

To begin our discussion of the Josephson effect, we will derive this effect from a simple

microscopic model of tunneling between two identical s-wave superconductors. We

describe this using a Hamiltonian H = H1 +H2 + T . H1 and H2 are BCS mean field

Hamiltonians describing the superconductors and are given by the following expressions:

H1 =
∑
kσ

ξkc
†
kσckσ − |Δ|eiφ1

∑
k

c†k↑c
†
−k↓ − |Δ|e−iφ1

∑
k

c−k↓ck↑

H2 =
∑
kσ

ξkd
†
kσdkσ − |Δ|eiφ2

∑
k

d†k↑d
†
−k↓ − |Δ|e−iφ2

∑
k

d−k↓dk↑,
(1.1.1)

where the fermionic operators c†kσ and d†kσ create a particle with momentum k and spin

σ in the first and second superconductor, respectively, and φ1 and φ2 are the supercon-

ducting phases. The tunneling part of the Hamiltonian between the two superconductors

could be generally described by

T =
∑
k,q,σ

(tk,qc
†
kσdpσ + t∗k,qd

†
qσckσ). (1.1.2)

To keep the derivation simple, we assume tk,q ≈ t with t real.

The ground-state and excitations of the BCS Hamiltonians H1 and H2 can be obtained

by diagonalizing the Hamiltonians using Bogoliubov transformations. The resulting

ground-state, e.g. for H1, can be written as

|φ1〉BCS =
∏
k

(|uk|+ |vk|eiφ1c†k↑c
†
−k↓) |0〉 , (1.1.3)

where |uk|2+ |vk|2 = 1 and |uk|2 = (Ek+ ξk)/(2Ek) and Ek =
√
ξ2k + |Δ|2. The BCS

ground-state contains only paired momentum, and it does not have a well defined particle
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number.

For the purpose of this derivation we will also need to understand the excitations of a

BCS superconductor. The excited eigenstates of the BCS Hamiltonian contain unpaired

electrons with well defined spin and momentum. The energy cost of breaking the pairing

between k and −k is Ek. For example, an excited state containing three spin up electrons

can written as ∏
p �=k,k′,k′′

(up + vpc
†
p↑c

†
−p↓)c

†
k↑c

†
k′↑c

†
k′′↑ |0〉 (1.1.4)

and has an energy Ek+Ek′ +Ek′′ above the ground-state. Crucially, Ek ≥ Δ so as long

as the superconducting pairing is present, there will be a gap between the ground-state

and the excitations.

In the absence of tunneling between the two superconductors, i.e. for H = H1 +H2,

the ground-state of the system is given by

|φ1, φ2〉 =
∏
k

(|uk|+ |vk|eiφ2d†k↑d
†
−k↓)

∏
q

(|uq|+ |vq|eiφ1c†q↑c
†
−q↓) |0〉 . (1.1.5)

Our derivation of the Josephson effect will focus on the effect that the tunneling Hamilto-

nian T has on this ground-state. Considering T as a perturbation, the modification of T

to the original ground-state energy of |φ1, φ2〉 up to second order is given by

E(φ1, φ2) = Egs + 〈φ1, φ2|T |φ1, φ2〉+
∑
λ

|〈λ|T |φ1, φ2〉|2
Egs − Eλ

, (1.1.6)

where |λ〉 are the excited eigenstates of the H1 +H2 system and Eλ the energy of such

states. The action of the tunneling T on the ground-state is to create an unpaired particle

in each superconductor. This means that the first order in T contribution cancels. In

addition, T conserves spin, so the only excited states that contribute to the second order
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expansion are of the form:

|k ↑ φ1,−q ↓ φ2〉 =
∏
q′ �=q

(|uq′ |+ eiφ2 |vq′ |d†q′↑d
†
−q′↓)×

∏
k �=k′

(|uk|+ eiφ1 |vk′ |c†k′↑c
†
−q′↓)d

†
−q↓c

†
k↑ |0〉

|−k ↓ φ1,q ↑ φ2〉 =
∏
q′ �=q

(|uq′ |+ eiφ2 |vq′ |d†q′↑d
†
−q′↓)×

∏
k �=k′

(|uk|+ eiφ1 |vk′ |c†k′↑c
†
−q′↓)d

†
q↑c

†
−k↓ |0〉 .

(1.1.7)

The energies of these excited states are Egs + Ek + Eq.

In terms of the above states the action of T on the ground-state |φ1, φ2〉 is described

by

T |φ1, φ2〉 = −t
∑
k,q

(|uk||vq|eiφ2 + |uq||vk|eiφ1) |k ↑ φ1,−q ↓ φ2〉

+t
∑
k,q

(|uq||vk|eiφ1 + |uk||vq|eiφ2) |−k ↓ φ1,q ↑ φ2〉 .
(1.1.8)

This results in an energy shift that depends on the phase difference between the two

superconductors:

E(φ1, φ2) = −4t2 cos(φ2 − φ1)
∑
k,q

|uk||vk||uq||vq|
Ek + Eq

+ C. (1.1.9)

In the above equation, C is a constant which we will disregard as it arises from second

order tunneling processes that do not transfer charge from one superconductor to the

other.

Defining θ as the phase difference between the two superconductors θ = φ2 − φ1,
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and taking EJ = 4t2
∑

k,q
|uk||vk||uq||vq|

Ek+Eq
the above result can written in a simple form

E(θ) = −EJ cos(θ). (1.1.10)

E(θ) is known as the Josephson energy and EJ as the Josephson coupling. The energy of

the junction will then be minimized when the two superconductors have the same phase.

The BCS ground-state energy is independent of the phase of the superconducting

order parameter. Hence, for two superconductors we can consider a space of super-

conducting ground-states span by all possible order parameter phases. In the absence

of tunneling, all such states are degenerate. Following the above results, the junction

Hamiltonian H = H1 +H2 + T in such space can be approximated by:

H ≈ −EJ

∑
φ1,φ2

cos(φ2 − φ1) |φ1, φ2〉 〈φ1, φ2| = −EJ cos(φ̂2 − φ̂1). (1.1.11)

So far, we have established that when a tunneling junction exists between two

superconductors there is an energy cost if the phase of the order parameter changes

across the junction. We will now obtain the tunneling current across the junction. The

current through the junction would be given by the rate of charge transferred from

superconductor 1 to 2 which can be calculated as the change in the number of pairs times

the charge of the pairs, i.e.

I = (−2e) 〈φ1, φ2| d
dt
N̂2 |φ1, φ2〉 = (−2e)i

�
〈φ1, φ2| [N̂2, H] |φ1, φ2〉 , (1.1.12)

where N̂2 =
∑

kσ d
†
kσdkσ and e is the electron charge. We proceed to calculate the

commutator [N̂2, H]. We start by noting that although for a well-defined superconducting

phase the corresponding BCS ground-state does not have a well defined number of

particles, it is possible to obtain states with well-defined particle number from them.
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For instance, a combination of BCS ground-states with N pairs, or 2N particles, can be

obtained through:

|N〉 = 1

2π

∫ 2π

0

dφe−iφN |φ〉 . (1.1.13)

Hence, in the space of BCS ground-states, there is a canonical commutation relation

between the number of pairs and the superconducting phase:

[φ̂, N̂ ] = i. (1.1.14)

Using this relation it is straightforward to calculate [N̂2, H], which leads to

I =
2e

�
EJ sin(φ2 − φ1) =

2e

�

dE(θ)

dθ
= Ic sin(θ) (1.1.15)

where Ic = 2eEJ/� is known as the critical current, and E(θ) is the Josephson energy

given in Eq. (1.1.10).

Hence, current may flow between two superconductors without a need for a voltage

to drive such current. The maximum amount of current occurs when the phase difference

between the superconductors is π/2 and it is Ic. That is the maximum current that can

be driven between the two superconductors without dissipation, hence the name critical

current.

A voltage V between the two superconductors can be modeled by adding a difference

in chemical potential into our effective model:

H = −EJ cos(φ̂2 − φ̂1) + μ2(2N̂2) + μ1(2N̂1), (1.1.16)
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with μ2 − μ1 = eV . This leads to the following phase difference evolution:

d

dt
θ̂ =

i

�
[φ̂2 − φ̂1, H] =

2eV

�
. (1.1.17)

In the presence of a DC voltage, the current obtained from Eqs. (1.1.15) and (1.1.17) is

an AC current. This phenomenon is known as the AC Josephson effect. If the voltage

between the superconductors is large enough to break a pair, i.e. eV > 2Δ, a DC

quasi-particle current will also be present [1].

We have derived the Josephson effect using a simplified tunnel barrier between two

conventional s-wave superconductors. In realistic situations, there can be important

modifications from this simplified version of the Josephson effect. For instance, when

the transparency of the contact increases, higher order terms in perturbation theory

become important. This leads to the presence of higher harmonics in the current vs phase

difference relation of Eq. 1.1.15. Also due to higher order effects, a DC quasi-particle

current appears in the presence of a voltage V even for eV < 2Δ. [2] The type of

barrier, temperature effects and the characteristics of the superconductors can also lead

to important deviations from the sinusoidal behavior of Eq. 1.1.15. [3] The following

Chapters consider deviations from this behavior arising due to an unconventional pairing

symmetry or due to exotic bound states close to the junction that result from a non-trivial

topology.

Before moving on to discuss some applications of the Josephson effect, a few remarks

about the description of the Josephson effect are in order. The Josephson effect and

superconductivity in general can be described following a microscopic BCS theory. In

this derivation, Eqs. (1.1.10) and (1.1.14) were obtained from the microscopic BCS

ground-state. However for many of its applications the equations describing the behavior

of the macroscopic collective variables (the superconducting phase and number) are
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φ1

I I

Φ

φ2

Figure 1.1: A DC-SQUID consist of a superconducting loop interrupted by two Josephson
junctions. The dependence of the critical current of the SQUID on the magnetic flux threading
the loop makes the SQUID a sensitivity magnetometer.

sufficient to describe the system. [4, 5] That was the procedure we used in this derivation

to obtain Eqs. (1.1.15) and (1.1.17). In this thesis, Chapter 2 will favor a microscopic

description of the Josephson effect while Chapters 3 and 4 favor a macroscopic one.

1.1.1 Applications of the Josephson effect

In this section, we discuss some applications of the Josephson effect. This list of

applications is by no means exhaustive. We focus on examples of applications that

illustrate the usefulness of the Josephson effect and that bear some relation to the themes

that will be discussed in the rest of this thesis.

Superconducting Interference Devices (SQUID)

Superconducting Interference Devices (SQUIDs) are examples of powerful devices

that takes advantage of the Josephson effect. For simplicity, here we will only discuss
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DC-SQUIDs. As shown in Fig. 1.1, a DC-SQUID consists of a superconducting loop

interrupted by two Josephson junctions. The loops is threaded by some flux Φ, the phase

difference across the junctions are φ1 and φ2 and I is the current through the loop, as

signaled in Fig. 1.1. We will now show how the critical current of a DC-SQUID depends

on the magnetic flux through the loop. Since the macroscopic wave-function of the

superconductors needs to be single valued, we have the following relation for the phases

φ1 and φ2:

φ1 + φ2 + 2π
Φ

Φ0

= 2πm, (1.1.18)

with m an integer and Φ0 = h/(2e) is the superconducting flux quantum. In the above

equation, 2π Φ
Φ0

corresponds to the contribution to the superconducting phase from the

magnetic flux [1]. Then the current across the SQUID I is given by:

I = I1 + I2 = Ic sin(φ1) + Ic sin(−φ2) = 2Ic cos

(
πΦ

Φ0

)
sin(δφ) (1.1.19)

with δφ = φ1 +
πΦ
Φ0

= −φ2 − πΦ
Φ0

the gauge invariant phase difference. The maximum

current flowing through the loop is then 2Ic cos
(

πΦ
Φ0

)
. This makes SQUIDs very sensitive

magnetometers with a wide arrange of applications. For instance, in condensed matter

physics SQUIDs can be used to map the magnetic structure of a material [6–9]. In

addition, the current vs. δφ relation from Eq. (1.1.19) can also be thought of as a junction

with a tunable parameter. This construction of a tunable junction is widely used for

superconducting qubits, in which case the SQUID is normally refered to as a split

junction. An extensive discussion of SQUIDs and their applications can be found in

Ref. [10].
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Josephson effect as a probe for d-wave pairing symmetry

A useful example of the applications of the Josephson effect as a probe for unconven-

tional superconductors comes from the identification of the d-wave pairing symmetry

of the cuprates superconductors [11, 12]. In a d-wave superconductor, the phase of the

order parameter exhibits shifts of π that depends on the momentum direction. Due to this

internal π shift, junction structures with certain geometries show spontaneous magnetiza-

tion of half quantum flux. Examples of structures in which this has been measured are

corner SQUIDs [13], corner junctions [14] between s and d-wave superconductors and

tri-crystal junctions between three d-wave superconductors [15]. These experiments took

advantage of the phase sensitivity of the Josephson effect to provide an unambiguous

identification of the d-wave pairing symmetry in cuprate superconductors.

Superconducting qubits: the Cooper pair box

Josephson junctions are a crucial ingredient for the three main kinds of superconducting

qubits: flux qubits, charge qubits and phase qubits. [16, 17] For example, a Cooper pair

box [18, 19] consists of a tiny superconducting island coupled to a superconducting

reservoir using a Josephson junction. The island is small enough that the cost of adding

a pair to the island EC is much greater than the thermal energy. The Hamiltonian of the

island becomes:

H = EC(N̂ − ng)
2 + EJ cos θ̂, (1.1.20)

where the phase difference θ̂ and the number of pairs in the island N̂ follow the usual

commutation relation. The charge offset ng can be tuned using a gate voltage. For

EC � EJ and ng = n+ 1/2 with n integer, the states with well defined number of pairs

|n〉 and |n+ 1〉 form a two level system. The superposition of these Cooper pairs states

was shown experimentally twenty years ago. [18]
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1.2 Iron-based superconductors

Discovered in the last decade [20, 21], the iron-based superconductors (FeSC) have

high superconducting transition temperatures (Tc) [22, 23] and a rich phase diagram.

It was soon realized that their high Tc could not be accounted for by the conventional

electron-phonon coupling of BCS theory. [24] The common feature in all FeSC is a

corrugated layer Fe-As(Se) layer in which the Fe ions form a square lattice with As(Se)

atoms located above or below the center of each face. The typical electronic structure of

the FeSC consist of a Fermi surface made of two electron band and two hole bands. [25]

However there are notable exceptions to this typical electronic structure [26, 27], mainly

the absence of hole bands in the Fermi surface of some iron selenides. Overall, the

FeSC are characterized by their multi-band nature, a bad metal normal state and a strong

coupling between their magnetic, structural and electronic degrees of freedom. [28, 29]

The superconducting phase appears in close proximity to an anti-ferromagnetic order, a

structural transition and a nematic order. Because of these intertwined phases and degrees

of freedom it is hard to pin down the origin of superconductivity in these materials, but

most results point towards it being driven by anti-ferromagnetic fluctuations. This

picture results in a pairing symmetry often refered to as s±, in which the order parameter

changes sign between the electron-like and hole-like part of the Fermi surface. [30, 31]

The dependence of the sign change on the amplitude of momentum, rather that in its

direction makes it challenging to detect this pairing symmetry experimentally. Chapter 2

of this thesis focuses on studying a tunnel junction between a superconductor with s±

pairing symmetry and a conventional s superconductor.
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1.3 Topological superconductors

Since Chapters 3 and 4 of this thesis deal with Josephson tunneling in topological super-

conductors, we give a brief introduction to topological superconductors and Majorana

modes in this section assuming no prior knowledge of topology in condensed matter.

The section is organized as follows. In Sec. 1.3.1, we introduce some of the properties

of topological superconductors through an overview of a toy model for a topological

superconductor known as the Kitaev chain. Later, in Sec. 1.3.2, we discuss the effects

of topological superconductivity in the Josephson effect. The final two subsections

are devoted to motivate the interest in topological superconductivity by: discussing

the non-Abelian statistics of Majorana modes and its possible applications in Quantum

Computation (Sec. 1.3.3) and introducing an experimentally realizable model of a 1D

topological superconductor (Sec. 1.3.4).

1.3.1 Kitaev chain

The Kitaev chain is a simple model of a 1D spinless p-wave superconductor introduced

by A. Kitaev in Ref. [32]. As the discussion in A. Kitaev’s original work assumes

no prior knowledge of topology, we will follow it closely. We consider a chain of L

fermionic sites, labeled by j = 1, ..., L. Associated with the j-site of the chain, we have

the fermion annihilation operator cj which removes a particle from this site. Because of

their fermionic nature, these operators follow the commutation relations:

{cj, cm} = 0, {cj, c†m} = δj,m (1.3.1)
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In terms of the above operators, the Hamiltonian of the Kitaev chain can be written as:

H =
L∑

j=1

[
−μ

(
c†jcj − 1/2

)
− wc†jcj+1 − wc†j+1cj +Δcjcj+1 +Δ∗c†j+1c

†
j

]
, (1.3.2)

where Δ = |Δ|eiφ is the superconducting pairing, w, the nearest-neighbor hopping

amplitude and μ, the chemical potential.

Alternatively, the chain can be described in terms of 2L Majorana operators defined

by

cj =
e−iφ/2

2
(γ2j−1 + iγ2j)

c†j =
eiφ/2

2
(γ2j−1 − iγ2j) .

(1.3.3)

These operators are called Majorana operators in honor of the fermions theorized by E.

Majorana [33] as they follow:

γj = γ†
j , {γj, γm} = 2δj,m. (1.3.4)

Note that the above relations result exclusively from the definition of the operators (1.3.3)

and the fermion commutation relations (1.3.1). Furthermore, the occupation of each site

can be easily described using the Majorana operators through its parity:

Pj = (−1)c
†
jcj = 1− 2c†jcj = −iγ2j−1γ2j. (1.3.5)

Hence, for a state |Ψ〉 the fermion site j is occupied if −iγ2j−1γ2j |Ψ〉 = |Ψ〉 and

empty if −iγ2j−1γ2j |Ψ〉 = − |Ψ〉. In terms of the Majorana operators, the Kitaev chain
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Hamiltonian is

H =
i

2

L∑
j=1

[−μγ2j−1γ2j + (|Δ|+ w)γ2jγ2j+1 + (|Δ| − w)γ2j−1γ2j+2] . (1.3.6)

The properties of the model are best illustrated by considering two special cases.

First, we consider the trivial case with μ < 0, |Δ| = w = 0. The Hamiltonian of the

system becomes:

H = − iμ

2

L∑
j=1

γ2j−1γ2j. (1.3.7)

The ground-state of such system would be given by a state |Ψ〉 such that −iγ2j−1γ2j |Ψ〉 =
|Ψ〉. In terms of the fermionic sites, this corresponds to all sites being empty (see

Eq. 1.3.5) which is consistent with what we expect by setting μ < 0, |Δ| = w = 0 in

Eq. 1.3.2. We can also think of the ground-state of this system as a state in which all

of the Majorana operators are paired. Regardless of which description we use for the

system, the ground-state of the chain for this choice of parameters is unique.

The ground-state properties of the second special case we will consider, μ = 0 and

w = |Δ|, are remarkably different. For this choice of parameters, the Hamiltonian

becomes

H = i
L∑

j=1

|Δ|γ2jγ2j+1. (1.3.8)

The Majorana operators at the edges of the chain, i.e. γ1 and γ2L, do not appear in

the Hamiltonian. Hence, we can think of this system as having unpaired Majoranas at

its edges. Since γ1 and γ2L are unpaired by the Hamiltonian, there are two possible

ground-states |Ψ±〉 such that

− iγ2jγ2j+1 |Ψ±〉 = |Ψ±〉 for j = 1, ..., L− 1 and − iγ1γ2L |Ψ±〉 = ± |Ψ±〉 . (1.3.9)
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We can further argue that these two ground-states are orthogonal by noting that these

states differ by their fermionic parity:

L∏
j=1

Pj |Ψ±〉 =
L∏

j=1

(−iγ2j−1γ2j) |Ψ±〉 = −iγ1

L−1∏
j=1

(−iγ2jγ2j+1)γ2L |Ψ±〉

= −iγ1γ2L

L−1∏
j=1

(−iγ2jγ2j+1) |Ψ±〉 = ± |Ψ±〉 .
(1.3.10)

Unlike the previous case, the ground-state for this choice of parameters is doubly degen-

erate. Furthermore, the two different ground-states of the system can be distinguished

by the occupancy of a fermionic mode d = (γ1 + iγ2L)/2 which is split between two

different sites.

The next step is to argue that the properties at these two special cases are not a result

of fine tuning the parameters, but rather they are representative of two phases of the chain

with different topology. To do this, we first assume periodic boundary conditions, i.e.

c1 = cL+1, to transform our system from a real space description to a momentum space

description:

Hp =
∑

0<k<π

(
c†k c−k

)⎛
⎜⎝ −2w cos k − μ −2iΔ∗ sin k

2iΔsin k 2w cos k + μ

⎞
⎟⎠
⎛
⎜⎝ ck

c−k

⎞
⎟⎠

+ (−2w − μ)c†0c0 + (2w − μ)c†πcπ.

(1.3.11)

In the above equation, the momentum space operators are given by ck =
∑

j e
ikjcj/

√
L,

and, for simplicity, we have assumed that the number of sites in the chain L is even. The

ground-state parity of Hp depends only on whether the k = 0, π modes are occupied as

all other k values are paired, so it will be given by the sign of μ2 − 4w2.

If instead we transform the system to momentum space assuming anti-periodic
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boundary conditions, i.e. c1 = −cL+1, the Hamiltonian becomes

Hap =
∑

0<k<π

(
c†k c−k

)⎛
⎜⎝ −2w cos k − μ −2iΔ∗ sin k

2iΔsin k 2w cos k + μ

⎞
⎟⎠
⎛
⎜⎝ ck

c−k

⎞
⎟⎠ . (1.3.12)

In this case, the ground-state parity is always even as 0 and π are no longer allowed

momentum values. Then, the ground-state parity of the system changes between the

periodic and anti-periodic boundary conditions if |μ| < 2|w|. This conclusion does not

rest on the assumption that L is even. In the odd L case, 0 is an allowed momenta for

periodic boundary conditions while π is allowed for anti-periodic boundary conditions.

For L � 1, we expect the bulk of the chain to be independent of the chosen boundary

conditions. Yet, we find that for |μ| < 2|w|, the bulk states found from periodic and

anti-periodic boundary conditions have different parities. This apparent contradiction

could be solved by the existence of a boundary state similar to the one formed by the

unpaired Majorana operators for μ = 0 and w = |Δ|.
We can put the above speculation on a somewhat firmer footing by noting that we can

deform the periodic boundary Hamiltonian to the anti-periodic boundary Hamiltonian.

For instance, if we take

H(t) = H − t(wc†Lc1 + wc†1cL −ΔcLc1 −Δ∗c†1c
†
L). (1.3.13)

with H given by Eq. (1.3.2), we have H(1) = Hp, H(0) = H and H(−1) = Hap. If

|μ| < 2|w|, the ground-state parity is different for t = −1 to t = 1, so the ground-

state must be degenerate at some point of the trajectory. Otherwise, we could invoke

adiabaticity to argue that the ground-state parity cannot change throughout the trajectory

if we follow it slow enough. This is because the ground-state parity is a topological

invariant. A topological invariant cannot change under a continuous transformation of
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Figure 1.2: Energy gap between the ground-state and the first excited state for the Hamiltonian
of Eq. (1.3.13) for a chain of 80 sites with w = Δ = 1 and different values of μ. For t =
−1, 0,+1, this system corresponds to a Kitaev chain with anti-periodic, open and periodic
boundary conditions, respectively. Since the Hamiltonian of Eq. (1.3.13) continuously interpolates
between periodic and anti-periodic boundary conditions, in the topological phase (μ < 2), the
gap must close at some point of the trajectory. For μ = 1.9 (purple line) finite size effects shift
the gap closing from t = 0. In the non-topological phase (μ > 2), the gap does not need to close
throughout the trajectory as the ground-state parity does not change between the end points of the
trajectory.

the Hamiltonian unless the gap (the energy difference between the 1st excited state and

the ground-state) closes. This gap closing is shown in Fig. 1.2. For L � 1, or for the

special choice μ = 0 and w = |Δ|, the gap closes at t = 0. Otherwise, finite size effects

move the gap closure and the open chain shows a small gap which is proportional to

e−L. [32]

Note that the existence of these boundary modes can be revealed by looking at the

behavior of the bulk of the chain only. In the continuum limit, the ground-state parity of

the chain would be

P = sign(μ2 − 4w2), (1.3.14)

as we have established that the only unpaired momenta are 0 and π. At the end of the

chain, the parity is that of the trivial vacuum +1. Hence, if P = −1, the difference

in the parity at the bulk of the chain and the vacuum guarantees the appearance of the
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boundary modes. This is commonly referred to as the bulk-boundary correspondence.

In this case in particular, it was sufficient to look at the behavior of the system at the k

values of 0 and π. This is because the symmetries of the chain constrain the k-values

in which the topological invariant, in this case the parity can change. The Kitaev chain

with |μ| < 2|w| is a 1D topological superconductor which is an example of a Symmetry

Protected Topological Phase (SPT). [34–36]

1.3.2 4π periodic Josephson effect

Majoranas modes have striking consequences for Josephson tunneling between topo-

logical superconductors. In our discussion of the Josephson effect, we saw that pairs

of electrons can tunnel between two superconductors without the need for a voltage.

We will see now that for topological superconductors, the Majorana end modes allow

for single particle tunneling with the same coherent properties as the Josephson pair

tunneling. This phenomenon is known as the 4π Josephson effect. [32, 37–42]

For simplicity, we will illustrate this phenomenon by considering tunneling between

two Kitaev chains, with superconducting phases φ1 and φ2, at the topological special

point (w = |Δ|, μ = 0) joined by a weak link. The Hamiltonian of the system is

H = H1 +H2 + T with H1 = i
∑L−1

j=1 |Δ1|γ2jγ2j+1, H2 = i
∑L−1

j=L+1 |Δ2|γ2jγ2j+1 and

T = −λc†LcL+1 − λc†L+1cL. The tunneling part of the Hamiltonian can be rewritten in

terms of the Majorana operators:

T =
λ

2
cos

(
θ

2

)
(iγ2Lγ2L+1 − iγ2L−1γ2L+2)

− λ

2
sin

(
θ

2

)
(iγ2L+1γ2L−1 + iγ2L+2γ2L),

(1.3.15)

where θ = φ2 − φ1 is the phase difference in the order parameter of the superconductors.

The operators γ2L and γ2L−1 do not take the chains out of the H1 + H2 ground-state
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manifold. Then taking T as a perturbation, to first order we obtain

T ≈ λ

2
cos

(
θ

2

)
iγ2Lγ2L+1. (1.3.16)

The other terms from Eq. (1.3.15) do not contribute to the first order expansion of T as

their action on one of the H1 + H2 ground-states does not overlap with any H1 + H2

ground-state. In terms of the fermion operators, the above result is given by

T ≈ −λ

2
cos

(
θ

2

)(
e−

iφ2
2

+
iφ1
2 c†L+1cL + e−

iφ1
2

+
iφ2
2 c†LcL+1

+ e
iφ2
2

+
iφ1
2 cL+1cL + e−

iφ1
2

− iφ2
2 c†Lc

†
L+1

)
.

(1.3.17)

Eq. (1.3.16) describes the 4π Josephson effect. It is generally interpreted as the

unpaired Majorana at the edges of the junction hybridizing to form a bound-state whose

energy is 4π periodic with respect to the phase difference between the superconductors.

If we assume that the occupation of the bound-state does not change, then the resulting

energy and current between the superconductors are 4π periodic instead of 2π periodic.

The 4π periodicity and the fact that Eq. (1.3.16) was obtained to first order in perturbation

theory indicate that 4π Josephson effect is a single particle tunneling process.

We obtained Eq. 1.3.16 for a very idealized system. However, we can note that

our main assumptions were 1) that the action of the Majorana operators γ2L and γ2L−1

do not take the superconductors out of their ground-state and 2) that the creation of a

particle at the edge of the superconductors overlaps with these Majorana operators, e.g.

c†L = eiφ1/2(−iγ2L/2 + ...). The 4π Josephson effect then relies only on the existence of

Majorana modes localized at the edges of the superconductors.

From what we have seen so far, Josephson tunneling can be used to probe Majorana

modes experimentally. We will now discuss some potential caveats. The first is that the
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tunneling current is only 4π periodic if the occupation of the bound-state formed by the

Majoranas is conserved. [38] In realistic settings, there might be quasi-particles present

that can tunnel into the bound-state. Because of this, most proposals for detection of

Majoranas rely on the AC version of the 4π Josephson effect, where the rate at which the

superconducting phase changes can be made faster than the rate at which quasi-particles

can tunnel into the bound-state or the change in the bound-state occupation can be

detected in the noise current. Also, in our idealized system the 4π Josephson effect is

the main component in the tunneling current. While this is true as long as localized

Majorana modes are present in a conducting channel, in a realistic system there might be

more conducting channels present. Thus, the 4π terms may only be a small part of the

overall tunneling current. The final caveat that we will mention is that the 4π Josephson

effect can be mimicked in non-topological junctions by Landau-Zener tunneling through

Andreev bound-states. [37, 43, 44]. Note that in this case, the 4π periodicity arises when

the junction bound-state occupation is not conserved.

1.3.3 Majorana modes and quantum computation

Although topological superconductors are interesting materials in their own right, part of

the motivation for creating topological superconductors resides in their potential use for

quantum computation. [32, 45, 46] Quantum computation using Majorana modes follows

many of the original ideas of topological quantum computation. [47] Quantum infor-

mation is stored in topologically degenerated states, which can be manipulated through

braiding operations. For instance information stored in the delocalized state formed

by the two Majoranas at the edges of the chain is protected from local perturbations.

Furthermore, Majorana modes are non-Abelian anyons, i.e. exchanges of Majorana

modes are non-trivial operations which in general do not commute [48], allowing the
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state to be manipulated. Although the ideas behind topological quantum computation

have been around for a long time, progress has been hindered by the difficulty of realizing

topological states of matter. As we will see in the next subsection, recent experimental

progress has made the possibility of realizing topological superconductors seem tangible.

There are two main problems faced by quantum computation using Majorana modes.

The first is that information stored in Majorana modes can be destroyed by quasi-particle

poisoning. The second is that the universal quantum computation cannot be achieved

using only braiding operations. However there are different strategies that can be used to

solve these caveats (see Ref. [49] for a recent proposal).

1.3.4 Majorana modes in proximitized structures

The Kitaev chain is clearly a theoretical construction as it assumes the existence of

unrealistic spinless fermions. Considering a spinful version of the Kitaev chain would

lead to two copies of the chain (one for spin up and one for spin down) which would

result in two Majorana modes at each of the edges. The Majoranas at each edge would

couple resulting in two fermion modes localized at each edge, rather than one delocalized

fermion mode. Realistic realizations of Majorana modes need to find a way around

the spin degeneracy, not to mention that most common superconductors are singlet,

mainly s-wave, superconductors. Nonetheless, it is possible to realize an effective

continuum version of the Kitaev chain in proximitized semi-conducting wires [40, 41],

sometimes referred to as Majorana wires. The prescription followed by these proposals

consists of: 1) using strong spin-orbit coupling to break the spin degeneracy, 2) inducing

superconductivity through proximity effect and 3) using a Zeeman field to open up a gap.

The proposals in Refs. [40] and [41] are by no means the only, or the first, realistic

proposals to obtain Majorana modes. Majorana modes are also expected to appear the
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following proximitized structures: chains of magnetic atoms deposited on the surface

of superconductors [50, 51], the interface of a topological insulator with a supercon-

ductor [52], semiconducting thin films proximitized by an s-wave superconductor and a

ferromagnetic insulator [53] and quantum wells with Rashba and Dresselhaus spin-orbit

coupling proximitized by an s-wave superconductor under an applied magnetic field [54].

In addition, Majorana modes can also occur in other types of structures such as vortices

of p + ip superconductors and the ν = 5/2 fractional quantum Hall state. However,

proximitized structures, particularly Majorana wires, have seen considerable experimen-

tal progress in recent years. Presently, there is encouraging experimental evidence that

Majorana modes can be physically realized. [55–64]

1.4 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 starts with a microscopic

calculation of the energy/phase difference relation of a tunnel junction between an

s± superconductor and an s-wave superconductor. After discussing the energy/phase

difference relation of a single junction, Chapter 2 also explores how to probe the different

found types of energy/phase difference relations using a magnetic flux threaded loop.

Chapter 3 moves away from microscopic calculations, and focuses on probing the

manifestations of the 4π periodic Josephson effect on a ring made of N topological

superconductors. The topological superconductors of the system studied in Chapter 3

interact through tunneling and through electrostatic repulsion. We also study the effects

of coupling the ring to a quantum dot as a way for breaking the parity of the ring in a

controlled manner. Finally, in Chapter 4, we focus on studying the effects of charging

induced phase fluctuations in a single topological junction.

This thesis is written as a manuscript-based thesis. Chapters 2, 3 and 4 can be read
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independently and they each include their own introduction and conclusion. To make

this thesis a cohesive work, there is a preface at the beginning of each chapter.
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Preface to Chapter 2

In this first manuscript, we study Josephson tunneling between a conventional (single

band s-wave) and an unconventional (two band s±) superconductor. We use a micro-

scopic tight-binding model of the junction in which the order parameter close to the

junction is determined using self-consistent mean-field theory. Since in the s± super-

conductor the order parameter has different signs in each of the two Fermi surfaces,

the system will be frustrated if both of the Fermi surfaces interact comparably with

the s superconductor. We find that if the s-s± junction is highly frustrated allowing

the order parameter to be self-consistently determined has important consequences on

the junction behavior. Particularly, one of types of energy/phase relation found for this

system, the “double-minimum" junction, can only be found when spatial variations of the

order parameter are considered. The results presented in this chapter show that Josephson

tunneling can be used as a probe of unconventional superconductivity and highlight the

need of theoretical models of Josephson tunneling that take into account variations in the

superconducting order parameter.
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Abstract

The properties of Josephson tunneling between a single band s-wave superconductor and

a two band s± superconductor are studied, in relation to recent experiments involving

iron-based superconductors. We study both a single junction and a loop consisting of

two junctions. In both cases, the relative phase between the order parameters of the

two superconductors is tuned and the energy of the system is calculated. In a single

junction, we find four types of behaviors characterized by the location of minima in the

energy/phase relations. These phases include a newly found double minimum junction

which appears only when the order parameters are treated self-consistently. We analyze

the loop geometry setup in light of our results for a single junction, where the phase

difference in the junctions is controlled by a threaded flux. We find four types of

energy/flux relations. These include states for which the energy is minimized when the

threaded flux is an integer or half integer number of flux quanta, a time reversal broken

state and a meta-stable state.
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2.1 Introduction

The experimental determination of the pairing symmetry of an unconventional supercon-

ductor is an important tool for narrowing down the microscopic theories which suggest

different origins for superconductivity in the system. Shortly after the discovery of the

iron-based superconductors (FeSCs)[1, 2], spin fluctuations were proposed as the pairing

mechanism in this family. This mechanism results in a novel pairing symmetry, called

s±[3, 4]. The s± order parameter is finite on both the hole and electron Fermi pockets

but changes sign between the Brillouin zone Γ point, where the hole pockets are, and

the M point, where the electron pockets reside. Although most evidence point towards

spin fluctuations as the pairing mechanism, superconductivity on FeSCs could also arise

from orbital fluctuations, in which case, the order parameter on electron and hole pockets

would have the same phase[3, 4]. It is therefore crucial to pin down the possible sign

difference between the two types of pockets. The sign difference has proven challenging

to detect[5–12], and despite experimental evidence in favor of s±[13–16], the pairing

symmetry of FeSCs has not been unequivocally determined.

One important tool for detecting the order parameter structure is the Josephson

effect, due to its sensitivity to the order parameter phase difference across the junction.

The Josephson effect played a key role in determining the d-wave nature of the order

parameter of the high Tc cuprate superconductors[17, 18]. There, the phase of the

order parameter is tied to the crystallographic direction and one can engineer a π corner

junction by piecing together samples in different orientations. In contrast, identifying a

sign change in the case of the iron based superconductors is more challenging. This is

because the sign change is expected between Fermi pockets at low momenta (at the Γ

point) and Fermi pockets at high momenta (at the M point). Therefore, a rotation of the

physical lattice does not result in a sign change.
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In iron based superconductors (FeSCs), some evidence in favor of s± order parameter

symmetry was provided by a loop-flux experiment by Chen et al.[16]. The setup consisted

of a niobium fork making two contacts with a sample of NdFeAsO0.88F0.12. This amounts

to a loop made of a conventional s-wave superconductor which is connected in two points

to an FeSC sample. This loop was subjected to a pulse of magnetic flux after which the

flux in the loop was measured over time. Flux jumps of integer and half integer units of

the superconducting flux quantum were observed. As explained in Ref. [19], this can be

interpreted as a meta-stable 1/2-flux loop, possible in the case of s±-s-wave loop.

The problem of a junction between an s-wave superconductor and an s±-superconductor

was considered by several authors previously[12, 19–34]. Those include different ap-

proaches such as the Ginzburg-Landau (GL) formalism[19, 25, 34], calculating Joseph-

son current from Andreev levels[24], or through Usadel quasiclassical equation[28–30],

among others.

The literature points at two possible types of contacts: (i) the s-wave superconductor

couples predominantly to either the electron or hole pockets or (ii) the couplings between

the s-wave and the electron and hole pockets are comparable leading to Josephson

frustration. One type of proposals to experimentally determine the s± symmetry rely

on the ability to produce different types of contacts in which the s-wave predominantly

couples to one type of pocket or another[24, 28, 35–38]. Other experimental proposals

assume comparable coupling to both pockets and conclude that the Josephson frustration

can lead to a time reversal symmetry breaking phase (TRB) in a loop setup[19, 22,

25–27].

It has been argued[12, 22, 24], and will be argued in this work, that higher order

harmonics in the Josephson current, which are often neglected, for instance within the

Ginzburg-Landau[19, 25, 34] and the Usadel quasiclassical equation[28–30, 39] ap-

proaches, become very important in this scenario. At low temperatures, this is especially



35 CHAPTER 2. SELF-CONSISTENCY IN A S±-S JUNCTION

crucial in the case of comparable coupling between the s-wave superconductor and the

hole/electron pockets.

In the current paper we work with a microscopic model on a lattice in an s±-s-wave

junction setup. While our model is similar to that investigated by previous authors[12,

20, 21] our treatment is different as we solve the Bogoliubov deGennes equations self-

consistently. The self-consistently causes the order parameters of the superconductors on

both sides of the junction to be a function of the distance from the junction, both their

amplitude and phase. This helps the system relieve some of its Josephson frustration and

leads to important differences from the non self-consistent treatment. Namely, we find

that a double minimum structure in the energy/phase difference relation is obtained only

when the Bogoliubov-deGennes equations are solved self-consistently.

In the next section, we present our model and method for a single s±-s-wave junction

(section 2.2.1). The results are presented in section 2.2.2 and discussed in section 2.2.3.

Section 2.3 discusses the combination of two s±-s junctions into a loop and its possible

states.

2.2 s±-s junction

2.2.1 The model

We study the Josephson junction depicted in Fig. 2.1 within a tight-binding formalism.

In this arrangement, we consider both superconductors to be two dimensional, and the

tunneling between them is planar and directed along the (1 0) direction. For simplicity,

the lattice constant of both superconductors is taken to be equal and will be set to 1 for

the remainder of this paper. In order to provide a better understanding of our model, we

first write the Hamiltonian for each superconductor separately without tunneling between
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Figure 2.1: Illustration of the planar junction studied in this work showing the different hopping
parameters. The s± superconductor (left) has two orbitals per site and the s superconductor
(right) one.

them.

s± Superconductor

For the s± superconductor, we use a minimal two orbital model[40] in which the two

orbitals correspond to the 3dxz and 3dyz iron orbitals illustrated by red/blue lobes in

Fig. 2.1. In this model, there are four different types of hopping: t1 is the amplitude of

nearest neighbor intra-orbital hopping in the direction in which the orbitals maximally

overlap, t2 is the nearest neighbor intra-orbital hopping amplitude in the direction

in which the orbitals minimally overlap, t3 is the next-nearest neighbor intra-orbital

hopping amplitude, and t4 is the next-nearest neighbor inter-orbital hopping. We add

Cooper pairing with s± symmetry in the form of an intra-orbital pairing[21, 41] with

the momentum structure cos kx cos ky. We define the operators d†x,k,σ and d†y,k,σ which

create an electron in the dxz, dyz orbital with momentum k and spin σ. Using these
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operators we write the Hamiltonian Hs± in the form Hs± =
∑

k Ψ
† (k)A (k)Ψ (k),

where Ψ† (k) =
(
d†x,k,↑, dx,−k,↓, d

†
y,k,↑, dy,−k,↓

)
, and

A (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

εx (k) Δx (k) εxy (k) 0

Δ∗
x (k) −εx (k) 0 −εxy (k)

εxy (k) 0 εy (k) Δy (k)

0 −εxy (k) Δ∗
y (k) −εy (k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.2.1)

εx (k) = −2t1 cos kx − 2t2 cos ky − 4t3 cos kx cos ky − μ

εy (k) = −2t2 cos kx − 2t1 cos ky − 4t3 cos kx cos ky − μ

εxy (k) = −4t4 sin kx sin ky

Δx,y (k) = Δx,y cos kx cos ky

(2.2.2)

where μ is the chemical potential, Δx,y is the pairing amplitude and εi are the Fourier

transforms of the hoping amplitudes.

Close to the junction we expect the order parameter of both superconductors to

become dependent on position. A mean-field Hamiltonian cannot account for the effects

of this order parameter modification, therefore it is necessary to write down interaction

terms which lead to superconductivity in our system. The position dependence of the

order parameter is then determined self-consistently.

We consider the s± order parameter to arise from a J1−J2 nearest neighbors and next

nearest neighbors anti-ferrromagnetic Heisenberg interaction. The mean-field decoupling

of this interaction leads to four possible pairing symmetries. The dominant pairing

symmetry for this model is s± in the relevant region of parameters[41]. For simplicity,

we only consider the terms of the interaction that lead to an intra-orbital s± pairing.
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Hence we write the interaction term as:

∑
k,k′,q,α

V (k,k′,q) d†α,k,↑d
†
α,−k+q,↓dα,−k′+q,↓dα,k′,↑ (2.2.3)

where

V (k,k′,q) = −8J2
N

cos
(
kx − qx

2

)
cos

(
ky − qy

2

)
×

cos
(
k′
x −

qx
2

)
cos

(
k′
y −

qy
2

)
,

(2.2.4)

and α = x, y here and throughout the paper. This interaction is decoupled as:

∑
k,q,α

Δα(q)f (k,q) d†α,k,↑d
†
α,−k+q,↓ + h.c. (2.2.5)

with the structure factor

f (k,q) = cos
(
kx − qx

2

)
cos

(
ky − qy

2

)
, (2.2.6)

and

Δα(q) = −8J2
N

∑
k′

f (k′,q) 〈dα,−k′+q,↓dα,k′,↑〉 . (2.2.7)

In a system with translation invariance, the ground state corresponds to zero momentum

pairing, i.e. Δα(q) = Δαδq,0 resulting in the mean field Hamiltonian, Eq. (2.2.1).

Furthermore, the self-consistent solution in the translational invariant system gives

Δx = Δy, which corresponds to electron-electron and hole-hole pairing with opposite

signs.
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s-wave Superconductor

The s-wave superconductor is modeled using one orbital per site, nearest neighbors

hopping t0, and momentum independent pairing Δ0. The operator c†σk creates an electron

with momentum k and spin σ on the s-wave superconductor side. The system is described

by Hs =
∑

k Φ
†
kBkΦk, where Φ†

k =

(
c†k,↑ c−k,↓

)
,

Bk =

⎛
⎜⎝ ε0 (k)− μ0 Δ0

Δ∗
0 −ε0 (k) + μ0

⎞
⎟⎠ , (2.2.8)

ε0 (k) = −2t0 (cos (kx) + cos (ky)), μ0 is the chemical potential, and Δ0 the pairing

amplitude.

To account for superconductivity in the s-wave side of the system, we use an attractive

Hubbard-U term:

− U

N

∑
k,k′,α

c†k,↑c
†
−k+q,↓c−k′+q,↓ck′,↑, (2.2.9)

with U > 0. In a translation-invariant system, the mean-field decoupling of this interac-

tion leads to the Hamiltonian Hs mentioned above and the self-consistency equation:

Δ0 = −U

N

∑
k

〈c−k,↓ck,↑〉 . (2.2.10)

Junction

The model of the s±-s junction considered in this work consists of the two superconduc-

tors previously described connected through a tunneling contact along the (1 0) direction.

We consider N1 lattice sites in the x-direction in the s± superconductor and N2 in the s-

wave superconductor. The contact breaks the translation symmetry along the x-direction,

but since the y-direction is still periodic, the momentum ky is well defined. The natural
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description of the system is in terms of the operator d†α,ky ,σ(n) which create an electron

whose momentum component in the y-direction is ky, on a site with x-coordinate index

n, with spin σ in the α orbital, and c†ky ,σ(n) which creates an electron whose momentum

component in the y-direction is ky, on a site with x-coordinate n, with spin σ in the

s-wave superconductor. In order to write the Hamiltonian, we define the vectors

d†α,σ(ky) =
(

d†α,ky ,σ(1) ... d†α,ky ,σ(N1)

)
, and

c†σ(ky) =
(

c†ky ,σ(N1 + 1) ... c†ky ,σ(N1 +N2)

) (2.2.11)

which contain all the possible creation operators for a given ky, spin and orbital. Com-

bining them into Nambu vectors

Ψ†
s±(ky) =

(
d†x,↑(ky) d†y,↑(ky) dTx,↓(−ky) dTy,↓(−ky)

)

Ψ†
s(ky) =

(
c†↑(ky) cT↓ (−ky)

)
,

(2.2.12)

allows us to write the Hamiltonian in the following compact form:

H =
∑
ky

Ψ†(ky)

⎛
⎜⎝ Hs±(ky) T

T † Hs(ky)

⎞
⎟⎠Ψ(ky) + C, (2.2.13)

where C is defined below and

Ψ†(ky) =
(

Ψ†
s±(ky) Ψ†

s(ky)

)
.
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The matrices Hs±(ky) and Hs(ky) are given by the following BCS form:

Hs±(s)(ky) =

⎛
⎜⎝ Ks±(s)(ky) Δs±(s)(ky)

Δs±(s)(ky)
† −Ks±(s)(−ky)

∗

⎞
⎟⎠ (2.2.14)

For the s-wave part of the Hamiltonian Hs(ky), Ks(ky) and Δs(ky), are N2 × N2

matrices given by:

(Δs(ky))m,n =Δs(N1 + n)δm,n

(Ks(ky))m,n =− (2t0 cos(ky) + μ0) δm,n

− t0 (δm,n+1 + δm,n−1) .

(2.2.15)

For the s± part of the Hamiltonian the matrices Ks±(ky) and Δs±(s)(ky) can be

further decomposed as:

Ks±(ky) =

⎛
⎜⎝ Kx(ky) Kxy(ky)

Kxy(ky) Ky(ky)

⎞
⎟⎠ , (2.2.16)

and

Δs±(ky) =

⎛
⎜⎝ Δx(ky) 0

0 Δy(ky)

⎞
⎟⎠ , (2.2.17)
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where the above sub-blocks are the following N1 ×N1 matrices:

(Kx(ky))m,n =− (2t2 cos(ky) + μ) δm,n

− (t1 + 2t3 cos(ky)) (δm,n+1 + δm,n−1)

(Ky(ky))m,n =− (2t1 cos(ky) + μ) δm,n

− (t2 + 2t3 cos(ky)) (δm,n+1 + δm,n−1)

(Kxy(ky))m,n =− 2it4 sin(ky) (δm,n+1 − δm,n−1)

(Δα(ky))m,n =Δα(n+ 1, n) cos(ky)δm,n+1

+Δα(n− 1, n) cos(ky)δm,n−1

(2.2.18)

The matrix T describes the tunneling contact between the two superconductors. As

shown in Figure 2.1, we consider hopping an electron in the 3dxz (3dyz) orbital of the

last site of the s± superconductor to the first site of the s-wave superconductor with an

amplitude wx (wy). Hence, T is given by:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Tx 0

Ty 0

0 −Tx

0 −Ty

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.2.19)

with,

(Tα)m,n = −wαδm,N1δn,1 (2.2.20)

here Tx and Ty are N1 ×N2 matrices.
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Finally C in Eq. (2.2.13) is equal to:

C =
Ny

2J2

N1−1∑
α,n=1

|Δα(n, n+ 1)|2 − Ny

U

N1+N2∑
n=N1+1

|Δ0(n)|2 (2.2.21)

Since superconductivity arises from the spin interaction terms given in Eqs. 2.2.3-

2.2.4,2.2.9, the following self-consistency equations should be satisfied:

Δα(n, n+ 1) =− 2J2
Ny

∑
ky

cos ky
(
gα,ky (n+ 1, n)

+gα,ky (n, n+ 1)
)

Δs(n) = − U

Ny

∑
ky

〈
c−ky ,↓(n)cky ,↑(n)

〉
,

(2.2.22)

with gα,ky (m,n) =
〈
dα,−ky ,↓(m)dα,ky ,↑(n)

〉
.

We study how the energy of the system and the current depend on the phase difference

between the two superconductors. In an infinite system, this can be modeled by fixing

the order parameter at ±∞ and imposing a phase difference between the two ends. The

self-consistency equations of our lattice model are complicated and must be solved

numerically, on a finite lattice. Therefore, we model the composite system by dividing

each superconductor into a bulk part and a junction. In the bulk of the s± superconductor,

we set Δx(n, n + 1) = Δy(n, n + 1) = Δ±, where Δ± is real, positive and equal

to the pairing amplitude that is obtained self-consistently in a translation invariant

system, ignoring the contact. In the bulk part of the s-wave superconductor, Δ0(n) =

|Δ0|eiφ, with |Δ0| self-consistently determined in the absence of the interface. φ is the

phase difference between the s-wave order parameter away from the contact and the s±

order parameter away from the contact on the other side. In the part near the junction,

Δx(n, n+ 1), Δy(n, n+ 1) and Δ0(n) are determined by the self-consistency equations,

Eq. (2.2.22). Once the order parameters of the system are determined self-consistently,
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the energy of the system can be found. The current across the contact can be obtained

from the energy dependence on the phase difference as I (φ) = 2e
�

dE
dφ

. For simplicity, we

ignore the small phase gradient in the bulk in situations where a supercurrent is flowing

through the junction.

2.2.2 Results

Self-consistent Non self-consistent

(a) (b)

(c) (d)

Figure 2.2: LEFT: Examples of energy vs. phase behavior calculated self-consistently for (a)
a 0-Junction and (c) a Double Minimum Junction. RIGHT: Panels (b) and (d) show the energy
vs. phase behavior obtained from non self-consistent calculations for the same parameters used in
(a) and (c), respectively.
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We have performed junction simulations on a 20 by 20 lattice for each of the s-

wave and the s± superconductors, allowing the order parameters of the system to be

determined self-consistently on up to 5 lattice sites from the contact. In order to elucidate

the effects of the self-consistent determination of the order parameter, we also perform

non-self-consistent energy and current calculations in which the order parameters are

fixed.

All of the energy relations found in our model are 2π periodic and inversion sym-

metric (E(φ) = E(−φ)). We therefore present the energy-phase relation in the [0, π]

interval. For the studied parameter space, we find four types of junctions: a) 0-junctions

where the energy is minimized when the phase difference between the order parameter of

the s-wave superconductor and the hole pockets is 0 (corresponding to a phase difference

of π between the s-wave and the electron pockets), b) π-junctions, where the energy

is minimized for phase difference π, c) φ-junctions, see Fig. 2.2a, where the energy is

minimized for a phase value φ, with 0 < φ < π and d) double minimum junctions, see

Fig. 2.2c, which present two minima in the [0, π] interval, a local minimum at 0 and

a global minimum at 0 < φ ≤ π. In the following text we use the term π-junction in

the sense that the junction energy is minimized for a phase difference of π between the

s-wave and the s±-wave order parameter of the hole pockets, as described above.

Phase diagram

Our model contains parameters that characterize the properties of both superconductors

and the contact between them. In order to study some representative phase diagrams

we fix the bulk properties of the s± superconductor, and focus on varying the properties

of the contact and the s-wave superconductor. Following Ref. [40] we set: t1 = −|t1|,
t2 = 1.3|t1| and t3 = t4 = −0.85|t1|. For this choice of parameters, half filling

corresponds to μ = 1.54|t1|. Since doping is a common way to tune the superconducting
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(a) (b)

Figure 2.3: Value of the phase difference that minimizes the energy of an s-s± junction at zero
temperature for μ0 = −1.3 when (a) the order parameter is solved self-consistently for both
superconductors close to the contact, and (b) the order parameter is constant on both sides. The
areas marked by blue symbols represent a state with a double minimum energy/phase relation,
where the global minimum is at 0 < φ ≤ π while the local minimum is at 0 phase difference. All
the parameters are given in units of |t1|. The green circle corresponds to the parameters used in
Fig. 2.2(a) and Fig. 2.2(b), and the red triangle to those of Fig. 2.2(c) and Fig. 2.2(d).

phase in FeSCs, we choose to work away from half-filling and set μ = 1.805|t1|.
This value of μ corresponds to a doping of 0.18 electrons per Fe site. Following the

measurements from Refs. [42, 43] and the estimates for |t1| found in Ref. [44], we set

the bulk pairing amplitudes Δx(n, n+ 1) = Δy(n, n+ 1) = 0.08|t1|. In the subsequent

text we work in units such that |t1| = 1. On the s-wave superconductor, we fix t0 = |t1|
to get a similar band width on the two sides of the junction. The other parameters of the

s-wave superconductor, i.e. the chemical potential μ0 and the bulk pairing amplitude

Δ0, as well as the contact parameters are varied. Sample phase diagrams are shown in

Fig. 2.3, 2.4 and 2.5.

Fig. 2.3 demonstrates the importance of treating the order parameter close to the

junction self consistently. The phase of junctions with a double minimum in the energy-

phase relation only appears when the model is treated self consistently. We also find that

the phase boundaries between the π-junction, 0-junction and the φ-junction are shifted in



47 CHAPTER 2. SELF-CONSISTENCY IN A S±-S JUNCTION

the self-consistent treatment as compared with the non-self-consistent one.

Observing the energy/phase relations, E(φ) we see that the location of the global

minimum changes continuously as the model parameters are varied. If we start in a

phase where the minimum is at φ = 0 and change the parameters the minimum changes

continuously until it reaches π. Hence, the φ-junction is always between the 0-junction

and the π-junction. When the tunneling parameters of the contact wx, wy are small, the

transition between the 0- and π-junction is very sharp and the φ-junction phase occupies

only a narrow sliver in parameter space. As the tunneling amplitudes are increased, the

φ-junction takes up a larger portion of parameter space.

The parameter μ0, the chemical potential of the s-wave superconductor has a dramatic

effect on the phase diagram. We can relate this to the overlap between the hole and

electron pockets with the Fermi surface underlying the s-wave superconductor. This

relation is further demonstrated in Fig. 2.4, where we slice the phase diagram along

the line wx = wy and a constant order parameter Δ0. In all panels of Fig. 2.4 there

is a critical value of the chemical potential, μ0 such that for μ0 > μc > 0, the energy

of the junction is minimized when the phase difference is π and for μ0 < μc, small

changes in μ0 can lead to transitions from 0 to π minimum. This striking behavior with

respect to the chemical potential, μ0, is also found when the order parameter is not solved

self-consistently.

We can also observe in Fig. 2.4 that for some values of μ0 and Δ0, transitions from

0 to π minimum can be driven by increasing the tunneling wx = wy. These transitions

become more rare with increasing Δ0.

The final insight that can be gained from Fig. 2.4 is that the double minimum behavior

becomes more common as we increase Δ0, as well as the tunneling strength wx = wy.

The role of the tunneling parameters wx and wy is further explored in Fig. 2.5. The

phase diagrams at zero temperature for Δ0 = 0.04 and three different values of the
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(a) Δ0 = 0.06 (b) Δ0 = 0.08( ) 0

(c)

Figure 2.4: The panels (a) and (b) show the phase diagram by plotting the phase difference
which minimizes the junction energy in color as a function of the tunneling amplitudes, wx = wy

and the chemical potential of the s-wave superconductor, μ0. White regions correspond to a
phase difference of 0 between the s-wave superconductor and the electron pocket order parameter
while black color corresponds to a phase difference of π. The gray areas represent intermediate
phase difference values and the blue symbols indicate areas with a double minimum energy/phase
relation. Panel (c) is a schematic plot of the phase diagram. In the black areas the energy of the
system is minimized by a phase difference of π, while in the gray area there is a close competition
between the 0, φ and π junction phases. In the area marked by blue there is a possibility of finding
an additional minimum at 0 phase difference.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: LEFT: The phase difference of the energy minimum as a function of wx and wy

for (a) Δ0 = 0.04, μ0 = 3.6 and U = 2.33, (c) Δ0 = 0.04, μ0 = −3.6 and U = 2.33 and (e)
Δ0 = 0.04, μ0 = −1.3 and U = 1.45. The areas marked by blue symbols represent a state with
a double minimum energy/phase relation. RIGHT: Fermi surface of the two superconductors in
the extended Brillouin zone centered around the Γ point for (b) μ0 = 3.6, (d) μ0 = −3.6 and
(f) μ0 = −1.3. For the s± superconductor, the hole pockets marked by straight lines, and the
electron pockets with dashed lines. The red/blue coloring indicates the portions of the Fermi
surface whose main contribution comes from the dxz/dyz orbital. The Fermi surface of the s-wave
system is shown with a solid black line. The shading marks the values of ky for which there are
s-wave Fermi surface states. Note that since the system is only invariant to translation in the
y-direction ky is the only relevant momentum. All the parameters are given in units of |t1|.



2.2. S±-S JUNCTION 50

chemical potential of the s-wave side, μ0 = 3.6, μ0 = −3.6, and μ0 = −1.3, are

shown in Fig. 2.5a, Fig. 2.5c and Fig. 2.5e, respectively. The orbital composition of the

Fermi surface for the s± superconductor together with the Fermi surface of the s-wave

superconductor is shown in Fig. 2.5b for μ0 = 3.6, in Fig. 2.5d for μ0 = −3.6 and in

Fig. 2.5f for μ0 = −1.3. The contact preserves the momentum in the y-direction, hence

fixing the value of μ0 will select the values of ky for which Cooper pairs can tunnel

through the contact. For μ0 = 3.6, as shown in Fig. 2.5a, a transition from an energy

minimum at π to an energy minimum at 0 is driven by increasing the ratio wy/wx. It

can be seen in Fig. 2.5b that for this value of μ0 the pairs from the electron pockets that

tunnel through the contact come from the dxz orbital while the pairs that tunnel from the

hole pockets come mostly from the dyz orbital. The role of the parameters wx and wy for

μ0 = −3.6 in Fig. 2.5c is the opposite of the one in Fig. 2.5a, an energy minimum at 0 is

obtained when the ratio wy/wx is sufficiently small. The orbital composition of the pairs

tunneling from the s± superconductor to the s superconductor for μ0 = −3.6 is shown

in Fig. 2.5c. In this case, the electron-like pairs tunneling through the contact come from

the dyz, while the pairs coming from the hole pockets are evenly composed of dxz and

dyz electrons.

For a large s-wave Fermi surface, the role of the parameters wx and wy is more

difficult to understand. According to Fig. 2.5f, the electron-like pairs tunneling through

the contact mainly come from the dyz orbital, while the hole-like pairs are evenly

composed of dxz and dyz electrons. Nonetheless, in Fig. 2.5e a 0-junction phase is

found for large enough wy, which cannot solely be explained by looking at the orbital

composition of the s± superconductor. The close competition between electron- and

hole-like pairs for a large s-wave Fermi surface is also evident in Fig. 2.5e by the wide

area of φ-junction phase and the appearance of the double-minimum phase for large

enough wy.
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Order parameter form

Since the s± order parameter is defined on the lattice links we define an on-site order

parameter in the s± superconductor for the purpose of visualization:

Δα(n) =
1

2
(Δα(n, n+ 1) + Δα(n+ 1, n)) . (2.2.23)

In Fig. 2.6 we look at the various order parameters as a function of their position

with respect to the contact. We set the parameters of the system to the double minimum

regime and plot the amplitudes in Fig. 2.6a and Fig. 2.6c, and the order parameter phase

in Fig. 2.6b and Fig. 2.6d for two phase difference values, 0 and π/4. The amplitudes

of the various order parameters of the system for 0 and π/4 phase difference, shown

in Fig. 2.6a and Fig. 2.6c respectively, presents only small differences. The variation

of the phase of the order parameters from the bulk phase difference is imperceptible in

Fig. 2.6b and small in Fig. 2.6d. Despite having only small quantitative differences in the

shape of the self-consistent solution for different phases, determining the order parameter

self-consistently has important consequences for this choice of parameters, as it leads to

the double minimum phase.

In the different panels of Fig. 2.6 we observe the presence of sharp oscillations.

This kind of oscillations has been previously found in microscopic models of s-wave

superconductors close to an insulating boundary and has been attributed to Friedel-like

oscillations[45–47]. The period of the oscillations seen here is dependent on the chemical

potential as expected.

In order to further explore the relation between the self-consistent determination

of the order parameter and the double minimum phase, it is necessary to quantify the

dependence of Δx and Δy on the phase difference φ. To do this, we define the following
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(a) φ = 0 (b) φ = 0

(c) φ = π/4 (d) φ = π/4

Figure 2.6: LEFT: Amplitude (in units of |t1|) of the order parameters of the system for two
values of the phase difference (a) φ = 0 and (c) φ = π/4. RIGHT: Phase of the order parameters
of the system for (b) φ = 0 and (d) φ = π/4. The set of parameters used corresponds to the red
triangle in Fig. 2.3.
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functions:

gx = |Δx(N1, φ = π)−Δx(N1, φ = 0)|

gy = |Δy(N1, φ = π)−Δy(N1, φ = 0)| .
(2.2.24)

The behavior of gx and gy for two different cuts of parameters around the double minimum

phase is shown in Fig. 2.7. In both Fig. 2.7a and Fig. 2.7b, gy is maximized in the double

minimum regime, indicating that Δy has a greater dependence on the phase difference φ

in the double minimum regime. On the other hand, the value of gx in Figs. 2.7a and 2.7b

is an order of magnitude smaller than that of gy, signaling a much lower dependence

of Δx with φ, and it increases slowly with increasing wx = wy and Δ0. The stronger

dependence of Δy (compared to Δx) with φ is consistent with the greater role that wy

(compared to wx) has in driving the transition to the double minimum regime exhibited

in Fig. 2.5e. The critical current of a Josephson junction increases when increasing the

order parameter of the superconductors and the tunneling through the interface. Hence,

the energy cost of the Josephson frustration is higher when wx, wy or Δ0 increase,

leading the to a stronger dependence of the order parameter on the phase difference as a

mechanism to relieve this frustration. Accordingly, the double minimum state is more

likely to appear when wx, wy or Δ0 are large.

2.2.3 Discussion

The problem of Josephson tunneling between an s± superconductor and a single band

s-wave superconductor has been considered previously using different approaches. These

previous studies point at two possible scenarios: (i) the s-wave superconductor couples

predominantly to either the electron or hole pockets or (ii) the couplings between the

s-wave and the electron and hole pockets are comparable leading to Josephson frustration.
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(a) (b)

Figure 2.7: Values of gx and gy (in units of |t1|) for the parameters given by the (a) horizontal
and (b) vertical cuts marked with red on Fig. 2.3. The quantities gx and gy, defined in Eqn. 2.2.24,
measure the dependence of Δx and Δy with respect to the phase difference between the two
superconductors.

The momentum space structure of the order parameter in our model is Δα cos(kx) cos(ky),

hence in the hole pockets the order parameter phase is the same phase as Δα while in

the electron pockets the order parameter phase is shifted by π. Hence, we can interpret

the 0-junction as a scenario in which the s-wave is interacting primarily with the hole

pockets, the π-junction as one where the s-wave is interacting primarily with the electron

pockets, and the other two cases (φ-junction and a double minimum junction) as resulting

from competing interaction of the s-wave with electron an hole pockets.

In the current study, we find that the global minimum is at a phase difference of π,

i.e. when the phase of the s-wave order parameter is equal to that of the electron-like

pairs, for a large portion of the parameter space. This is consistent with the fact that we

are working with an electron doped s± sample. Hence, the s± superconductor has more

pairs that come from electron pocket states rather than from hole pocket states. Upon

tuning of model parameters, the preferred phase difference may shift to 0. In both these

cases the system minimizes its energy by matching the order parameter phase of the

s-wave superconductor with either the hole or electron pockets. This tendency is strongly
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dependent on the overlap between Fermi surface states on both sides of the Junction.

Figure 2.5 shows the orbital composition of different parts of the s± Fermi surface, at two

different chemical potentials on the s-wave side and with varying tunneling amplitudes.

It should be noted that while the hole pockets are composed of both the x and y orbitals,

each electron pocket is dominated by one orbital. Moreover, since the contact conserves

momentum only in the y-direction, the chemical potential of the s-wave part selects

which parts of the s± Fermi surface participates in the tunneling. Depending on the

value of μ0, the electron-like and hole-like pairs involved in the tunneling process have a

different orbital composition. Thus, the ratio of wy/wx at which the junction switches

from the 0-junction to the π-junction phase depends on the value of μ0 and the geometry

of the junction.

Our phase diagrams suggest that a transition between a 0-junction and a π-junction

does not occur directly. Instead, an intermediate φ-junction or double minimum phase

appears (see Fig. 2.2a and 2.2c). Despite being a regime commonly found in theoretical

models, there is no consensus on the mechanism behind these junction states. While

Ref. [22] stresses that the extent of the φ-junction is related to the second Josephson

harmonic, this phase is also obtained within a Ginzburg-Landau mechanism which only

considers first order terms in the Josephson coupling. In this case, the mechanism that

leads to the φ/double minimum phase is the possibility of twisting the relative phase

between the hole-like and electron-like pairs.

In this work, we developed a model that considers both higher order Josephson terms

and a self-consistently determined order parameter. Our results suggest that the higher

order Josephson harmonics play a more important role in the realization of the φ state.

This can be demonstrated by comparing the results of a self-consistent order parameter

determination with the non-self consistent solutions. In the non-self-consistent case, the

hole and electron pocket order parameters are given by the form of Eq. 2.2.2. Unlike in
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the self-consistent treatment, their amplitudes are related and their phase difference is

always π. Comparing the two cases we see that the main difference is the appearance

of the double minimum phase (Fig. 2.3). A secondary effect is a slight shift in the

boundaries of the φ-junction state in the phase diagram. We therefore conclude that the

main reason for the appearance of the φ-junction is the inclusion of higher harmonics in

the Josephson tunneling. This is also supported by the fact that the tendency to develop a

φ-junction is increased when the tunneling amplitude across the junction is increased.

To make this point clearer, let us look into the first two terms in the Josephson

coupling. It has been pointed out in Ref. [24] that if the coupling between the hole-like

pairs and the s-wave superconductor is similar to the coupling between the electron-like

pairs and the s-wave superconductor, the first order terms on the Josephson energy tend to

cancel each other, increasing the importance of the next order terms. This can be shown

by writing the Josephson energy of the junction as E = Eh + Ee, where Eh(e) is the

Josephson energy associated to the coupling between the s-wave and the hole(electron)

pockets. Then we have:

Eh(e) = E
(1)
e(h) cos

(
φh(e)

)
+ E

(2)
h(e) cos

(
2φh(e)

)
+ ..., (2.2.25)

where φh(e) is the phase difference between the s-wave and the hole(electron) pairs.

Since φe = φh + π, the energy of the contact is then

E =
(
E

(1)
h − E(1)

e

)
cos (φh)+(

E
(2)
h + E(2)

e

)
cos (2φh) + ...

(2.2.26)

Hence, when E
(1)
h ≈ E

(1)
e , the first Josephson harmonic cancels, and the second order

term cannot be neglected.



57 CHAPTER 2. SELF-CONSISTENCY IN A S±-S JUNCTION

Several theoretical models of an s±-s junction can exhibit 0-junction, π-junction, or

φ-junction behavior[12, 20–34]. On the other hand, a double minimum behavior has

only been previously found in Ref. [19] within a Ginzburg-Landau formalism. There are

important differences between our results and those of Ref. [19], namely, in the location

of the two minima. The double minimum phase found in Ref. [19] is characterized by

one global minimum at 0 phase difference across the junction and a local minimum at π

phase difference. In our microscopic model, the ‘double minimum’ junction behavior

also occurs when there is a global minimum at some phase φ �= 0, π and a local minimum

at 0 phase difference.

It is interesting to note the differences and similarities between this work and the

phenomenological Ginzburg-Landau treatment of Ref. [19]. While the two models

describe an interface between a single order parameter superconductor and a double

order parameter superconductor the details are quite different. Most importantly, in the

Ginzburg-Landau model the order parameters are defined on each band and are only

coupled through their amplitudes (in a way that ensures their opposite sign is favored in

the bulk). In our microscopic model, the order parameter is defined on the orbitals and

due to inter-orbital hopping, the two bands are gapped. As a result, in the current work

we can not easily control the gap magnitude on each band, nor can we directly control

the effective coupling between the order parameters on the two bands. We should also

note that while the Ginzburg-Landau model does not explicitly contain terms of higher

harmonic Josephson tunneling, our model does. These differences make the comparison

between the models difficult. However, we can speculate that the differences mentioned

above are responsible for the different states found in the two models.

Overall, we find that for competing coupling between the electron and hole pockets

and the s-wave it is important to consider higher order processes, such as higher order

Josephson harmonics and the effect of the contact on the order parameters of the system.
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At low tunneling strength, the contact phase diagram is dominated by the 0 -junction

and π-junction phases. When the tunneling strength is increased higher order processes

cause the TRB phase to widen and the double minimum phase appears.

2.3 Flux threaded s±-s Loop

We now proceed to use the formalism developed for studying an s±-s junction to treat

the experimentally relevant problem of a flux threaded s±-s loop. The system we study

consists of bending the s±-s junction along the x-direction and adding another planar

contact to form a loop. Each of the contacts forming the loop is characterized by two

tunneling parameters: w(1(2))
α , which describe the amplitude of tunneling an electron from

the α orbital in the s± superconductor to an adjacent site in the s-wave superconductor

across contact 1(2).

After the addition of the second contact, the Hamiltonian for the s±-s junction can

still be described by Eq. (2.2.13) if we modify Tα as:

(Tα)m,n = −w(1)
α δm,N1δn,1 − w(2)

α δm,1δn,N2 (2.3.1)

where the sites in the s± side of the loop are enumerated 1..N1 and the sites on the

s-wave side are enumerated 1..N2. The self-consistency equations remain those given in

Eq. (2.2.22).

Next, we proceed by threading the loop with a magnetic flux Φ. As shown in the

Appendix, the flux dependence can be transferred to the contact by performing a gauge

transformation. With the addition of magnetic flux the tunneling matrices become:

(Tα)m,n = −w(1)
α ei

φ1
2 δm,N1δn,1 − w(2)

α ei
φ2
2 δm,1δn,N2 (2.3.2)
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Here, φ1

2
is the phase an electron acquires through a clockwise hopping across the

tunneling contact 1 and φ2

2
the phase acquired by an anti-clockwise hopping across the

contact 2. These two phases will fully account for the effect of the magnetic flux as long

as φ1 and φ2 obey:

φ1 − φ2 =
2πΦ

Φ0

, (2.3.3)

where Φ0 =
hc
2e

is the superconducting flux quantum.

For long loops, N1, N2 � 1 the two junctions essentially decouple. The behavior

of the order parameters near one contact is uninfluenced by the presence of the other

contact and the energy cost of the two contacts is a simple sum. Moreover, by making

an additional gauge transformation, the phase acquired by hopping between the two

superconductors, φ1(2)

2
, can be translated into a phase difference φ1(2) between the two

superconductor order parameters. Hence, the ground state energy of the loop is given by:

E (Φ) = min
φ1−φ2=

2πΦ
Φ0

(E1 (φ1) + E2 (φ2)) , (2.3.4)

where E1(2)(φ1(2)) is the energy of a single s±-s junction where the phase difference

between the superconductors is φ1(2) with contact parameters w(1(2))
α .

If we denote the phase difference that minimizes the energy of junction 1(2) by

φmin
1 (φmin

2 ) then the values of flux that minimize E(Φ) are given by ±Φ0

2π
(φmin

1 + φmin
2 ),

±Φ0

2π
(φmin

1 − φmin
2 ). This allows us to deduce the energy of the flux threaded loop as a

function of the flux.

We find four types of behavior of the energy vs. flux curve, shown in Fig. 2.8: 1)

Integer-flux-loop with energy minima at integer flux quantum values, 2) 1/2-flux-loop

with energy minima at half integer flux quantum values, 3) Time reversal broken loop

(TRB) with energy minima at fractional values of flux quantum and 4) Meta-stable, with
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(a) 0-loop (b) π-loop

(c) TRB (d) TRB’

(e) Metastable (f) Metastable’

Figure 2.8: Energy vs flux examples. In panels (a)-(e), the s-wave superconductor parameters
are Δ0 = 0.04, μ0 = −1.3 and U = 1.446, while the junction parameters are: (a) w(1)

x =

w
(1)
y = 0.146, w(2)

x = 0.31, and w
(2)
y = 0.092, (b) w(1)

x = w
(1)
y = w

(2)
x = 0.146 and w

(2)
y = 0.8,

(c) w
(1)
x = w

(1)
y = w

(2)
x = 0.146 and w

(2)
y = 0.364, (d) w(1)

x = w
(1)
y = 0.31 and w

(2)
x =

w
(2)
y = 0.637, and (e) w(1)

x = w
(2)
x = 0.5 and w

(1)
y = w

(2)
y = 0.528. In panel (f), Δ0 = 0.02,

μ0 = 0.3438, U = 0.9341, w(1)
x = w

(1)
y = 0.6638, and w

(2)
x = w

(2)
y = 0.6910.
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two types of energy minima. While the first three cases have been found by several

authors[22, 24–28, 35–38], the possibility of an energy/flux relation with minima of

different depth has not been seen in a microscopic theory before.

The case where the energy of the loop is minimized for integer values of flux quantum

occurs whenever the energy of both of the contacts is minimized at a phase difference of

0 or π.

The energy of the loop is minimized for half-integer flux quantum values when

the energy/phase relation one of the contacts has a minimum at 0 and the other has

a minimum at π. Our analysis shows that it is possible to find this behavior without

changing the bulk parameters of the superconductors if the tunneling parameters across

each of the two contacts are different.

If the energy of one of the contacts is minimized for a phase difference 0 < φ < π,

then the energy of the loop will be minimized for values of magnetic flux which are

neither integer flux quantum nor half integer flux quantum. This causes supercurrent

to flow in the loop and therefore the phase is named ‘time reversal breaking’. The

energy-flux relation shown in Fig. 2.8c results from having one of the contacts in the

φ-junction phase, while the other is in the 0(π)-junction phase. On the other hand, if the

energy of both contacts is minimized for a phase difference 0 < φ < π we obtain four

degenerate minima: ±Φ0

2π
(φmin

1 + φmin
2 ), ±Φ0

2π
(φmin

1 − φmin
2 ). An example of this type

of energy vs flux relation is shown in Fig. 2.8d. For a significant portion of the φ-junction

phase, the value of the minimum is close to π/2. If this is the case for the two junctions

forming the loop, we will find two energy minima close to integer flux quantum and two

energy minima close to half integer flux quantum.

An energy/flux relation with minima of different depth such that one is a global

minimum and the other is a (meta-stable) local minimum can occur when the loop is

formed by two contacts that have a double minimum. As can be seen in Figure 2.8e, the
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energy/flux relation exhibits the four degenerate minima of Fig. 2.8d and two additional

local minima. If one of the contacts is in a double minimum phase while the other is not,

the resulting energy-flux behavior will be that of Fig. 2.8c or of Fig. 2.8d. In other words,

in order to detect signatures of the double minimum regime in the energy-flux relation,

both contacts must be in this regime. Therefore to obtain a loop with minima of different

depth, it is necessary to have a) a large tunneling amplitude across the two contacts and

b) a large pairing amplitude in the s-wave superconductor.

The local minima in the meta-stable relations found in this work are shallow (see

Fig. 2.8e and Fig. 2.8f) and hence they would be very hard to detect experimentally.

However, we find that these minima are considerably deeper for loops with large induc-

tance. The ground state energy of a loop threaded by a total flux Φ and with inductance

L is given by[48]:

E (Φ) = min
φ1−φ2=

2πΦ
Φ0

(∑
i=1,2

(
Ei (φi) +

L

4
I2i (φi)

))
(2.3.5)

where for simplicity we have considered an equal inductance in both arms of the loop. In

Fig. 2.9, we show how the energy vs flux relations of Fig. 2.8e and Fig. 2.8f are modified

for different values of the screening parameter βL = L(I0,1+I0,2)

Φ0
, where I0,1 and I0,2 are

the critical currents of the two junctions. As can be seen in Fig. 2.9, increasing the

inductance of the loop has the effect of deepening the local energy minima.

2.4 Conclusions

We studied the Josephson tunneling between an s± superconductor and a single band

s-wave superconductor within a microscopic formalism in which the order parameters

of both superconductor are determined using self-consistent Bogoliubov-deGennes
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(a) Metastable (b) Metastable’

Figure 2.9: Effects of inductance in the Metastable and Metastable’ energy vs flux relations.

equations. We find four possible junction behaviors, characterized by their energy/phase

difference relation. The possible states are: (i) 0-junction where the energy minimum

is at zero phase difference, (ii) π-junction where the energy minimum occurs at π, (iii)

φ-junction where 0 < φ < π, and (iv) a double minimum junctions where there are two

minima, one of them global and the other local.

We find that allowing the order parameter to change its amplitude and phase self-

consistently close to the junction has some important effects on the resultant phase

diagram. Most notable - it is essential for the appearance of a new state, namely the

double minimum junction.

We also use our results to study the energy of a flux threaded s±-s loop. We find

that the loop can have different types of unconventional energy/flux behavior such as,

1/2-flux-loop, TRB and metastable.
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2.A Magnetic flux

In this Appendix we explain how the magnetic flux is added to our microscopic model.

For non-zero magnetic flux, we select a gauge in which the magnetic potential is parallel

to the angular direction, i.e. A = Ax̂. The magnetic flux enclosed by the loop Φ, must

be equal to
∮

A · dl. This yields A = Φ
N1+N2

x̂, since the diameter of the circle is equal to

the number of sites in the x-direction times the lattice constant (N1 +N2) a and we have

set a = 1. The hopping terms in the Hamiltonian are modified with the introduction of

the magnetic potential according to Peierls substitution.

t → t exp

(
− ie

�c

∫ r

r′
A · dl

)
(2.A.1)

For nearest neighbor hopping around the loop this leads to t → te−iφ with φ given

by:

φ =
π

N1 +N2

(
Φ

Φ0

)
(2.A.2)

where Φ0 =
hc
2e

is the superconducting flux quantum. The system can still be described

by equation (2.2.13) with the appropriate modification of the matrices Ks± , Ks, Tx and

Ty which become dependent on the phase φ.

In order to simplify the Hamiltonian we use the transformation cky ,σ(n) → ei
φ1
2
−inφcky ,σ(n),

dα,ky ,σ(n) → e−inφdα,ky ,σ(n), which accordingly modifies the self consistent order

parameters defined by Eq. (2.2.22) as Δ0 (n) → eiφ1−2inφΔ0 (n) , Δα (n, n+ 1) →
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e−i(2n+1)φΔα (n, n+ 1).

It is easy to see that under this transformation the flux dependence is transferred to

the contacts. This can be seen in the transformed Hamiltonian with the definitions in

Eq. (2.2.13) as Ks± and Ks loose their dependence and the pairing matrices Δs± and Δs

are invariant while the Tα matrices are now given by:

(Tα)m,n = −w(1)
α ei

φ1
2 δm,N1δn,1 − w(2)

α ei
φ2
2 δm,1δn,N2 (2.A.3)

where φ1 and φ2 are solutions of

φ1 − φ2 =
2πΦ

Φ0

(2.A.4)

2.B Numerical Methods

2.B.1 Finding the relation between the superconducting coupling

constants and the bulk pairing amplitudes

In this work, we set the bulk pairing amplitudes Δx(n, n+1) = Δy(n, n+1) = 0.081. In

a translationally invariant system, this corresponds to the Hamiltonian given by equations

(2.2.1) and (2.2.2) with Δx = Δy = 0.162. The value of J2 is then set such that the

solution of the self-consistency equation (2.2.7) for q = 0 is Δx = Δy = 0.162. The

self-consistent equation (2.2.7) can be solved numerically, iterating from an initial guess.

In a 100×100 lattice, the coupling J2 = 0.624 leads to the desired value of the bulk s±

pairing amplitude. The iteration loop was stopped when the difference between the input

and the calculated order parameters was less than 1× 10−5.

The bulk pairing amplitude Δ0 corresponding to given values of μ0 and U can be
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(a) (b)

Figure 2.10: Values of the superconducting coupling U used in (a) Fig. 2.3 and (b) Fig. 2.4.

calculated by solving the self-consistency equation (2.2.10). This was done iterating

equation (2.2.10) in a 100×100 lattice with periodic boundary conditions until the input

and the calculated order parameters was less than 1 × 10−5. To obtain the value of

U corresponding to given values of μ0 and Δ0, we used a numerical solver to solve

the equation Δ0(μ0, U)−Δ0 = 0 with the function Δ0(μ0, U) defined as the (numeri-

cal)solution of the self-consistency equation. The values of U obtained for Figures 2.3

and 2.4 are shown in Fig. 2.10, some finite size effects can be appreciated in the solution

for Δ0 = 0.02.

2.B.2 Self-consistent solution of the BdG equations - calculating the

order parameter magnitude close to the junction

The self-consistency equations 2.2.22 were solved in the vicinity of the interface, using

the bulk values of the order parameters, i.e Δx(n, n+ 1) = Δy(n, n+ 1) = 0.081 and

Δ0(n) = |Δ0|eiφ, as a starting point of the iteration loop. The iteration loop is stopped

when the difference in the order parameters obtained in two consecutive iterations is
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less than 1× 10−6. We consider periodic boundary conditions on the y-direction and a

20× 20 lattice for each superconductor.

When changing the momentum resolution in the direction along the junction cross

section (ky) we find some sensitivity of our results to the resolution. However, the main

findings are not altered. In the phase diagram the nature of the different phases is not

sensitive to the ky resolution but the phase boundaries may shift slightly.

2.B.3 Energy/flux curves

The energy/flux relation for the array in Sec. 2.3 can be easily found from the en-

ergy/phase profile of the two interfaces following Eqn. 2.3.4. The energy/ phase relation

is found by solving the order parameter self-consistently and the energy using exact

diagonalization for 41 evenly spaced values of the phase difference between 0 and 2π.

Afterwards, we can define the energy/phase relations E1(2)(φ) for any value of φ using

cubic Hermite spline interpolation. Finally, the energy vs flux curve is given by:

E (Φ) = min
0≤φ≤2π

E1

(
φ+

2πΦ

Φ0

)
+ E2 (φ) , (2.B.1)

Since the value of φ is bounded and the minima of E1

(
φ+ 2πΦ

Φ0

)
+ E2 (φ) are very

sharp for the metastable cases, the most practical way to do the minimization is by brute

force, i.e. by directly evaluating the function for a grid of points in the [0, 2π] interval.

The curves is Fig. 2.8 were obtained using a grid of 1000 points.
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Preface to Chapter 3

In the previous chapter we studied how unusual energy/phase difference relations can

arise in tunnel junctions between a conventional s-wave superconductor and an unconven-

tional s± superconductor. In this chapter we study another kind of unsual energy/phase

different relation: the 4π Josephson effect between two topological superconductors.

In the previous chapter, the main focus was on obtaining the energy/phase difference

relation from the microscopic behavior. Then in Sec. 2.3, the effects of the energy/phase

difference of a junction were probed by considering the behavior of a flux threaded

loop. This chapter follows a similar direction to Sec. 2.3–we study the consequences an

energy/phase difference relation, which has been previously justified in the literature,

in an specific setup. The setup considered is a flux threaded ring made of a series of

topological superconductors.
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Abstract

Unequivocal signatures of Majorana zero energy modes in condensed matter systems

and manipulation of the associated electron parity states are highly sought after for

fundamental reasons as well as for the prospect of topological quantum computing. In

this paper, we demonstrate that a ring of Josephson coupled topological superconducting

islands threaded by magnetic flux and attached to a quantum dot acts as an excellent

parity-controlled probe of Majorana mode physics. As a function of flux threading

through the ring, standard Josephson coupling yields a Φ0 = h/(2e) periodic features

corresponding to 2π phase difference periodicity. In contrast, Majorana mode assisted

tunneling provides additional features with 2Φ0 (4π phase difference) periodicity, asso-

ciated with single electron processes. We find that increasing the number of islands in

the ring enhances the visibility of the desired 4π periodic components in the groundstate

energy. Moreover as a unique characterization tool, tuning the occupation energy of the

quantum dot allows controlled groundstate parity changes in the ring, enabling a toggling

between Φ0 and 2Φ0 periodicity.
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3.1 Introduction

Majorana zero modes (MZM) have captivated condensed matter theorists and experimen-

talists alike of late [1–4] from the fundamental perspective as well as for their potential

application in topological quantum computation [5–7]. Progress toward the realization

of MZM has been made by several theoretical proposals [8–11] as well as experimental

work [12–21]. While most experiments involving topological superconductors present

zero bias conductance peaks as evidence for the existence of MZM [12–16, 18, 20],

this alone can not serve as proof for their existence [22–35]. Another manifestation

of the existence of MZM is the presence of 4π periodic components in the Josephson

current between two topological superconductors [5, 8, 9, 36–39]. Despite encouraging

experimental evidence [19–21], interpreting the presence of 4π periodic tunneling as an

unequivocal sign of MZM remains problematic for three main reasons. The first is that the

4π periodicity can only be observed when the time scale over which the phase difference

in the junction changes is smaller than the time scale for quasi-particle poisoning [37].

The second problem is that the 4π periodic components in the Josephson current are

generally accompanied by other, possibly much larger, 2π periodic components. Finally,

the presence of 4π periodic components can be caused by Andreev bound states rather

than MZM [36, 40, 41].

Our proposal to address these problems is to study the signatures of 4π periodic

tunneling due to MZM in Josephson junction ring-quantum dot hybrid architectures. As

will be shown, the setup we propose in this paper controls quasiparticle tunneling by

tuning the capacitance of the superconducting islands and suppresses the 2π periodic

Josephson contribution by connecting a number of junctions in a ring. While single

particle tunneling through bound states in the junctions can only be eliminated by

producing very clean junctions, our setup is able to distinguish their contribution from
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Figure 3.1: The setup consists of a ring made of N topologically superconducting islands
(blue rectangles) coupled to a quantum dot (red circle) and threaded by magnetic flux Φ. The
islands present Majorana modes (stars) at their edges leading to single particle tunneling in
addition to the usual Josephson tunneling. Electrostatic effects in the ring are modeled by self
and nearest-neighbor capacitances, C0 and C, respectively.

Majorana assisted tunneling by connecting with a quantum dot.

Here, we combine two promising MZM settings to obtain a powerful and controlled

means of MZM detection - Josephson junction arrays and quantum dot geometries.

Josephson junction arrays provide a rich playground for studying the interplay between

superconductivity and electrostatic repulsion [42]. These are appealing experimental

systems since the relevant energy scales are relatively easy to tune, especially in one

dimension [43–46]. Understanding such interplay in networks of multiply-connected

1D topological superconductors is particularly important, as it is a key ingredient in

proposals to detect and manipulate MZM [47–53]. Another approach to detect and

control MZM is by coupling to quantum dots and enabling single-electron hopping [18,

54–62]. Our setup builds on previous work to integrate 1D Josephson junction arrays

made of topological superonconductors and quantum dots into a single architecture.
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Majorana nanowires[8, 9] provide the most natural path to physically assemble the setup

studied on this work. Although more technically challenging, another possible path for

physical realization could be through assembling chains of magnetic atoms on the surface

of superconductors[11, 63].

The setup we study is shown in Fig. 3.1. It consists of a topological Josephson

junction ring (TJJ ring) formed by N topological superconducting islands threaded by

magnetic flux and coupled to a quantum dot. Our key results are summarized in Fig. 3.2.

Assuming the absence of quasiparticle poisoning, the net parity of the ring (odd or even

number of electrons) PTJJ is conserved when it is decoupled from the quantum dot.

Without phase fluctuations its low energy spectrum as a function of flux is a collection of

parabolas centered around integer flux quanta. These parabolas corresponds to different

angular momentum states for which the winding of the superconducting phase across the

TJJ ring is a multiple of 2π. The contours are essentially the same as those obtained for

non-topological rings with one crucial difference. When PTJJ = 1(−1), only parabolas

which are centered around odd(even) integer flux quanta are possible. This is shown

for PTJJ = 1 in Fig. 3.2a. Once phase fluctuations, induced by the charging energy,

are included, quantum phase slips occur, creating avoided crossings in the spectrum as

shown in Fig. 3.2b. While in the non-topological rings phase slips create a Φ0 periodic

spectrum, the spectrum of the TJJ ring in the presence of phase slips is 2Φ0 periodic.

This is a consequence of parity conservation forbidding the existence of either the even

or the odd parabolas. Upon coupling to the quantum dot, the TJJ ring can violate parity

conservation by accepting or donating an electron to the dot, thus hybridizing the odd and

even parity sectors and tuning the periodicity of the ring from 2Φ0 to Φ0. The associated

energy spectrum as a function of flux, measurable via persistent current, then takes on

a characteristic form depending on quantum dot parameters, as shown in Figs. 3.2c

and 3.2d.
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As we show in what follows, several features of this architecture together yield

distinct advantages in isolating MZM physics. In contrast to a single topological junction,

in the TJJ ring the effects of the 2Φ0 periodic tunneling are amplified by increasing the

number of islands, N . Due to the charging energy of the islands, E0 = e2/(2C0), and the

occupation energy of the dot, ED, there is an energy shift ΔE between the even and odd

parity spectrum of the ring. The characteristic dependence of the energy spectrum on

ΔE rules out the possibility of this effect being caused by Andreev boundstates. A large

value of the self-charging energy E0 helps suppress quasi-particle poisoning arising from

undesired electron and hole excitations. The dot’s affinity to accept or donate an electron

is easily controlled via applying a gate voltage and altering ED. Tuning ΔE in this setup

allows toggling between the two different TJJ ring parity sectors and thus pinpointing

the effect of MZM via the associated tuning of the periodicity of the ring between 2Φ0

and Φ0.

3.2 Topological Josephson junction (TJJ) ring

To analyze the scenario in detail, let us begin by considering the TJJ ring in Fig. 3.1

uncoupled to the quantum dot. Each of the N islands in the ring is characterized by a

superconducting order parameter phase φn and a charge Qn. The islands’ topological

nature leads to two Majorana modes, γl
n and γr

n, localized around the left and the right

edge of the nth island. Neighboring islands interact through tunneling and electrostatic

repulsion. To lowest order in the interaction, only tunneling processes that keep the su-

perconductors in their ground state contribute. These correspond to Josephson tunneling

of pairs and Majorana assisted single electron tunneling. The tunneling as well as the
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capacitance of the islands make up the TJJ ring Hamiltonian:

HTJJ = HJ +HM +HC

HJ = −
∑
n

EJ cos(φn+1 − φn + δΦ)

HM =
∑
n

EM

(
c†ncn −

1

2

)
cos

(
φn+1 − φn + δΦ

2

)

HC =
1

2

∑
n,m

QnC
−1
nmQm,

(3.2.1)

where φn+1 − φn + δΦ corresponds to the gauge invariant phase difference between the

islands, with δΦ = 2πΦ/(NΦ0). HJ describes the Josephson tunneling, with amplitude

EJ . HM describes the tunneling enabled by MZM with the energy scale EM and

fermionic operators cn = (γr
n + iγl

n+1)/2. HC describes the electrostatic repulsion with

the capacitance Cnm = (C0 + 2C)δn,m − C (δn+1,m + δn−1,m), where C0 is the self

capacitance and C is the neighboring capacitance. The TJJ ring has four relevant energy

scales: EJ , EM , and the charging energies EC = e2/(2C) and E0 = e2/(2C0). We

assume that the dominant energy scale is either EM or EJ , and that EC � E0 [42]. In

this case, the TJJ ring is described by almost well defined superconducting condensate

phases with small fluctuations controlled by EC .

For EC = 0, the Hamiltonian of the system becomes Hcl
TJJ = HJ+HM+E0

Q2

N
, with

Q =
∑

n Qn. The superconducting phases become well-defined classical variables [64,

65]. Moreover the eigenstates of Hcl
TJJ must have well defined occupations of the

fermionic modes cn. Since the occupation of the cn fermions is defined modulo 2 [66, 67],

a given phase configuration corresponds to two distinct eigenstates of Hcl
ring distinguished

by their fermionic parity PTJJ = (−1)Q 1. As shown in 3.A, this leads to the following

1To simplify the notation we measure the charge Q in units of the electron charge e.
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condition on the phases:

∑
n

θn = 2πm with

⎧⎪⎨
⎪⎩

m even if PTJJ = −1

m odd if PTJJ = 1
, (3.2.2)

where θn = φn+1 − φn + 2πc†ncn mod 4π. The energy of a configuration of phase

differences θ = (θ1, ..., θN) can be written as E (θ) = −∑
n V (θn + δΦ), where V (θ)

is the single junction potential V (θ) = −EJ cos θ − EM

2
cos θ

2
.

(a) HTJJ , PTJJ = 1, EC = 0 (b) HTJJ , PTJJ = 1, EC > 0

(c) H , EC = 0 (d) H , EC > 0

Figure 3.2: Schematic of our results for ‘long’ TJJ rings. In this case, the 2Φ0 periodic terms
become dominant. (a) Without phase fluctuations, the lowest energy bands of the even parity TJJ
ring (PTJJ = 1) consist of parabolas centered around odd multiples of Φ0, each corresponding
to a different winding of the superconducting phase across the TJJ ring. (b) Phase fluctuations
in the TJJ ring create avoided crossings making the spectrum 2Φ0 periodic. The corresponding
spectrum for the odd parity TJJ ring (PTJJ = −1) is that of panels (a) and (b) with a Φ0 shift in
the flux. (c) Once the TJJ ring is coupled to the dot, the energy spectrum includes states with
PTJJ = 1 (solid lines) and states with PTJJ = −1 (dashed lines). Due to charging costs, the
energies of states with PTJJ = −1 and PTJJ = 1 are offset by ΔE. (d) Phase fluctuations lead
to avoided crossings. The groundstate energy behavior depends on how ΔE compares to the
bandwidth of the PTJJ = 1 sector W .

The TJJ ring has a translational symmetry, i.e. the system is unchanged by circular

shifts of the islands. Because of this, we expect configurations with uniform phase
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differences, i.e. θn = θ, to have the lowest energy. While this is true when EJ = 0,

for non zero EJ the competition between 2π and 4π periodic tunneling may favor non

uniform phase configurations. Nonetheless, we find that uniform phase configurations

minimize the energy whenever

NEJ

(
1− cos

2π

N

)
+

NEM

2

(
1− cos

π

N

)
< EM . (3.2.3)

For N � 6 this condition becomes

NEM

π2
> 2EJ +

EM

4
. (3.2.4)

As a result of the presence of 2π periodic tunneling TJJ rings exhibit local minima at

even (odd) Φ0 for PTJJ = 1(−1) if condition (3.2.3) is not met. Increasing N reduces

the role of the 2π periodic components in the lowest energy bands. For the remainder of

this work, we refer to the TJJ ring as ‘long’ if the condition (3.2.3) is met and as ‘short’

if it is not.

Since a TJJ ring with all equal junctions is a highly idealized situation, it is worth

discussing how disorder in the couplings may affect the reduction of the role of 2π

periodic components with increasing number of islands N . For N � 6 and relatively

small disorder the condition (3.2.3) becomes

N∑
n=1

1

EJn +
EMn

8

>
2π2

min (EMn)
, (3.2.5)

where EJn and EMn are the Josephson and Majorana couplings for the nth junction,

respectively. The above condition reduces to (3.2.4) for even couplings. If we assume the

couplings EJn and EMn to be uniformly distribution on the intervals (EJ −σJ , EJ +σJ)
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and (EM − σM , EM + σM), taking the average of (3.2.5) results in

N

π2

(
EM − σM

N − 1

N + 1

)
> 2EJ +

EM

4
. (3.2.6)

We conclude that some disorder in the EJn couplings is not likely to affect our results.

On the other hand, a large spread of EMn couplings increases the likelihood of finding

local minima on the TJJ ground-state energy. Despite this, the left hand size of (3.2.6)

grows with N as long as σM < EM . Thus we conclude that the enhancement of the 4π

periodic effects with increasing N is stable to small disorder in the couplings.

In the following, we focus on long TJJ rings. Taking into account the constraint,

Eq. (3.2.2), the possible constant phase configurations are given by θ = 2πm/N , where

m is an odd(even) integer if PTJJ = 1(−1). We label these configurations by |m〉 and

their energy by εm = NV (2π(m + Φ/Φ0)/N). These different states correspond to

different angular momentum values and can be distinguished by their persistent currents.

The low-energy part of the spectrum of the states |m〉 for PTJJ = 1 is shown in Fig. 3.2a.

For N � 6 these states are essentially parabolas centered around −mΦ0.

For EC > 0, the main types of phase fluctuations for the TJJ ring are plasmons and

phase slips. Plasmons are harmonic fluctuations around the |m〉 states. They add a zero

point motion energy to εm. We find that plasmons in the TJJ behave similarly to plasmons

in non-topological JJ rings with the plasma frequency: �ωp =
√
8EJEC + EMEC , as

opposed to the non-topological frequency �ωp =
√
8EJEC . Phase slips lead to quantum

tunneling between the |m〉 states [64], causing the avoided crossings in Fig. 3.2b. For

instance, the states |m〉 and |m+ 2〉 are connected trough 4π phase slips. Since HTJJ

conserves PTJJ phase slips occur only in multiples of 4π, i.e. in long TJJ rings 2π phase

slips are suppressed, as in topological superconducting wires [5, 68].
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3.3 TJJ ring-quantum dot architecture

To control the parity of the TJJ ring, we couple the ring to a quantum dot, enabling

electrons to tunnel between the TJJ and dot (together referred to as TJJ+D). In the

simplest case of a single electronic level available to the dot, its Hamiltonian takes the

form HD = ED(d
†d − 1

2
), where d and d† annihilate and create an electron in the dot.

We consider a setup where electron tunneling from the quantum dot is into MZM modes

on TJJ islands 1 and N with amplitudes w1 and wN , respectively. The Hamiltonian of

the system is then H = Hring +HD +Hint, with the interaction between the TJJ ring

and the dot given by:

Hint =
wNe

− iφN
2

2
iγr

Nd
† +

w1e
− iφ1

2

2
γl
1d

† + h.c. (3.3.1)

Assuming that no magnetic flux is enclosed by the loop formed between the dot and the

two islands, the phase difference between w1 and wN is δΦ
2

. The total parity is conserved

in the TJJ+D system while it is not in the TJJ ring portion.

To proceed with the TJJ+D analysis, we denote by |θ, Q;nd〉 a state of the system

where 1) the TJJ has well defined phase differences θ and well defined total charge Q

and 2) the charge in the dot is nd. Hint induces a 2π shift in the Nth junction when

moving a particle from the TJJ to the dot. Thus, it connects the states |θ, Q; 0〉 and

|θ − 2π�eN , Q− 1; 1〉, where θ − 2π�eN = (θ1, ..., θN−1, θN − 2π). When EC = 0, both

|θ, Q; 0〉 and |θ − 2π�eN , Q− 1; 1〉 are eigenstates of HTJJ +HD. As shown in 3.C, H

is then diagonalized by superpositions of the form

α± |θ, Q; 0〉+ β± |θ − 2π�eN , Q− 1; 1〉 (3.3.2)
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with the following energies:

E±(θ) =
N−1∑
n=1

V (θn + δΦ) + V± (θN + δΦ) , (3.3.3a)

with,

V±(θ) = −EJ cos θ ±
√(

EM

2
cos

θ

2
+

ΔE

2

)2

+ wθ,

wθ =
|wN |2 + |w1|2

4
+

|wN | |w1|
2

cos
θ

2
, and

ΔE = ED − E0 (2Q− 1) /N.

(3.3.3b)

The offset, ΔE, originates from the charging costs of the dot and the TJJ ring.

The TJJ+D groundstate energy, ε, is obtained minimizing E−(θ). The interaction

breaks the translational symmetry of the TJJ ring making the values of θ that minimize

E−(θ) flux dependent. Fortunately, the TJJ+D groundstate is well approximated by

flux independent states which we label |ψm〉. The states |ψm〉 are obtained when taking

Eq. 3.3.2 and choosing the phase configuration of the first term to be uniform with

each junction having a phase difference 2πm/N and the appropriate charge on the

dot. Furthermore, |ψm〉 is dominated by its component with constant phase differences

in the TJJ ring, with the phase difference and occupation of the dot which match the

overall parity and flux threaded. The energies of the states |ψm〉, εm, shown in Fig. 3.2c,

are essentially parabolas centered around even and odd multiples of Φ0, offset by ΔE.

The greatest deviation between the energies εm and ε is at half-integer flux values for

small numbers of islands. Comparing the energies εm with ε obtained numerically for

N = 2 and Φ = Φ0/2, we find that ε and the lowest εm differ by less than 0.05EM

for |w1|, |wN | < EM/2. Increasing the number of islands to N = 3 reduces such

difference to less than 0.001EM . The εm are then good approximations to ε as long as
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|w1|, |wN | � EM . Further details are given in 3.E.

(a) (b) (c)

Figure 3.3: The energy and current profile of the TJJ+D system in different regions of energy
offset ΔE relative to the band width W . The different behavior provides a signature of the
Majorana assisted tunneling. (a) The energy offset ΔE compares to the bandwidth of the
even/odd sector, W . (b) The dependence of the groundstate energy on the magnetic flux for
the TJJ+D system for the different regions in (a). (c) The flux dependence of the persistent
current (solid blue) and the average occupation of the quantum dot (dashed red). Figures (b)
and (c) show numerical results for N = 2, EJ = 0, EM = 1, Q = 100, E0 = 0.001 = 10EC ,
w1 = wN = 0.1 and (top to bottom) ΔE = 1.1, ΔE = 0.25, ΔE = 0, ΔE = −0.25 and
ΔE = −1.1.

Turning on EC leads to avoided crossings where the energies of the states |ψm〉 cross.

The states |ψm〉 and |ψm±1〉 are now connected by 2π phase slips enabled by breaking

the parity of the TJJ ring through the interaction with the dot. The behavior of the energy

and that of the persistent current is then determined by where and whether the states

|ψm〉 and |ψm±1〉 cross. This depends on how the energy offset between the even and the

odd |ψm〉 states, ΔE, compares to the bandwidth of the even (or odd) |ψm〉 states, W .

To provide a more accurate analysis, we perform numerical simulations for small island

numbers. These were done through exact diagonalization of the TJJ+D Hamiltonian
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limiting the charge on each island to some maximum charge Q. Examples of the different

types of behavior of the energy and the persistent current obtained numerically are shown

in Fig. 3.3b and in Fig. 3.3c, respectively. The corresponding groundstate occupation of

the dot (red line in Fig. 3.3c) is also shown. The rapid changes in the dot groundstate

occupation could be measured as peaks in the conductance as suggested by Ref. [60] in

a similar setting. For |ΔE| > W (regions I and IV in Fig. 3.3), the first energy crossing

occurs between states |ψm〉 and |ψm±2〉. In this case, the energy has global minima at

either even or odd multiples of Φ0. On the other hand, for |ΔE| < W (regions II and

III in Fig. 3.3), the first energy crossing occurs between states |ψm〉 and |ψm±1〉, leading

to both local and global energy minima.

The results shown in Fig. 3.3 describe the qualitative behavior of the TJJ+D archi-

tecture when the TJJ ring is long. For short TJJ rings, the competition between 2π and

4π periodic tunneling leads to local minima in the energy-flux relation even when PTJJ

is conserved. In this case, the energy of the TJJ+D system in the regions I and IV of

Fig. 3.3 would still present local minima, reducing the visibility of the transition between

the two parity sectors.

The ability to tune between 2Φ0 and Φ0 periodicity through controlling the occupation

energy of the dot allows our setup to rule out other explanations of 2Φ0 periodicity. For

instance, 2Φ0 periodicity may arise in small metallic or semi-conducting systems [69–71].

If such were the case, the 2Φ0 periodicity would be unchanged by the occupation energy

of the dot. If the 2Φ0 periodicity was caused Andreev bound-states, the contact with a dot

having small occupation energy would aid rather than suppress the 2Φ0 periodicity [41].
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3.4 Conclusions

The proposed Josephson ring-quantum dot hybrid architecture can be realized in Joseph-

son junction rings with Majorana nanowires [8, 9] or with chains of magnetic atoms

deposited on the surface of superconductors [11, 63]. Additionally, the TJJ ring can be

understood as a coarse grained model of a 1D topological superconductor. Since the

TJJ ring accounts for phase fluctuations, it could be used to shed some light into the

effects of phase fluctuations, and number conservation, in topological superconductors.

Crucially, the combination of 4π periodic tunneling and the ability to manipulate the

parity of the TJJ ring using the quantum dot as a knob cannot be explained through

trivial Andreev bound states. Quasi-particle poisoning and 2π periodic tunneling may

obscure the MZM signature. These effects can be prevented increasing the self-charging

energy of the superconducting islands and increasing the number of superconducting

islands, respectively. Thus, while the Josephson junction-quantum dot hybrid architecture

proposed in this paper cannot in itself enable the braiding MZMs, it can provide a solid

signature of their existence. Future work would involve connecting the principles and

geometry proposed here with the current scope of device capabilities in experiment.
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3.A Proof of Eqn. 3.2.2

Due to the topological nature of each the island, for any constant phase configuration

with 0 ≤ φn < 2π there are two superconducting ground states that can be distinguished

by their fermionic parity. These groundstates will be labeled as |φnP〉. The action of the

operators γl
n and γr

n on the states |φnP〉 is

γl
∣∣φn±

〉
=
∣∣φn∓

〉
iγr

∣∣φn±
〉
= ∓ ∣∣φn∓

〉
.

(3.A.1)

The Majorana operators associated with the superconducting island n are given by

γl
n =

∫
x∈n

dx
(
e−

iφ
2 f l

n(x)ψ
†(x) + e

iφ
2 f l

n(x)
∗
ψ(x)

)

γr
n =

∫
x∈n

dx
(
ie−

iφ
2 f r

n(x)ψ
†(x)− ie

iφ
2 f r

n(x)
∗ψ(x)

)
,

(3.A.2)

with f
l(r)
n (x) a function localized around the left (right) edge of the n island and ψ(x)

the field operator. Under the gauge transformation φn → φn + 2π 2, the operators γl(r)
n

pick up a minus sign resulting in cn → −c†n and cn−1 → c†n−1. This implies that the

occupation of the cn fermions is defined modulo 2 and care must be taken to avoid

over-counting the states in the Hilbert space [66].

Following Ref. [72] we define the following N − 1 independent variables

θn = φn+1 − φn + 2πc†ncn mod 4π, (3.A.3)

for n = 1, ..., N − 1, which are invariant under φn → φn + 2π. Writing HJ and HM in

2Note that the gauge transformation φn → φn + 2π, which is a change in how we are looking at the
system, differs from changing the phase φn by 2π adiabatically, which is a physical change in the system.
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terms of the θns results in

HM = −
N−1∑
n=1

EM

2
cos

(
θn + δΦ

2

)

− EM

2
cos

(
−∑N−1

n=1 θn − 2π
∑N

n=1 c
†
ncn + δΦ

2

)

HJ = −
N−1∑
n=1

EJ cos (θn + δΦ)

− EJ cos

(
−

N−1∑
n=1

θn + δΦ

)
,

(3.A.4)

The operators θn defined by Eqn. (3.A.3) are not enough to determine the state of the

TJJ since the variables φ1 and the (−1)
∑N

n=1 c
†
ncn are independent of them. To address

this we define the θ0 as

e
iθ0
2 = γl

1e
iφ1
2 . (3.A.5)

Under the above definition θ0 remains invariant when φ1 → φ1 + 2π, and we have

[θn, θk] = 0 for all n, k = 0, ..., N −1. The operator θ0 obeys the following commutation

relation with the total charge Q =
∑

n Qn:

[
Q, e

iθ0
2

]
= e

iθ0
2 . (3.A.6)

The fact that θ0 does not appear in HM and HJ indicates that both HM and HJ conserve

the total charge Q of the TJJ. Additionally for n = 1, ..., N − 1 we also have

[
θn
2
, Q

]
= 0 and

[
θn
2
, Qk

]
= i (δn+1,k − δn,k) , (3.A.7)

hence it is possible to describe the state of the TJJ using either the states |θ0, θ1, ..., θN−1〉
or the states |Q, θ1, ..., θN−1〉. In the following we will use the later since [HTJJ , Q] = 0.
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To make the TJJ ring translational symmetry evident, it is convenient to rewrite HM

and HJ in terms of N constrained phase differences. This results in

HM =−
∑ EM

2
cos

(
θn + δΦ

2

)

HJ =−
∑
n

EJ cos (θn + δΦ) ,
(3.A.8)

with the constraint

∑
n

θn =

⎧⎪⎨
⎪⎩

4πm if (−1)
∑

n c†ncn = 1

2π(2m+ 1) if (−1)
∑

n c†ncn = −1
. (3.A.9)

It is also possible to relate (−1)
∑

n c†ncn to Q by noting that (−1)Qn = iγr
nγ

l
n and

(−1)c
†
ncn = iγl

n+1γ
r
n. The relation between (−1)

∑
n c†ncn and Q is then

(−1)
∑

n c†ncn =
1∏

n=N

iγl
n+1γ

r
n = γl

1

(
2∏

n=N

iγr
nγ

l
n

)
iγr

1

=−
1∏

n=N

iγr
nγ

l
n = −(−1)Q.

(3.A.10)

Combining Eqns. (3.A.9) and (3.A.10) leads to Eqn. (3.2.2).

We will use |θ〉Q to denote the state with charge Q and phase differences given by

θ = (θ1, ..., θN).
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3.B Quantifying the decrease of the 2π periodic

tunneling contribution and its stability against

junction disorder

In the main text, we showed that local minima in the ground-state energy vs flux relation

of the TJJ can be removed by increasing the number of islands in the TJJ. Since the local

minima arise due to the contribution of 2π periodic tunneling, we used this fact to argue

that increasing N reduces the role of 2π periodic terms. In this appendix, we provide an

additional way to quantify such decrease and use it to study the stability of this effect

with respect to disorder.

The energy of the TJJ ring E(Φ) can be written as a Fourier series:

E(Φ) =
∞∑
n=0

En cos(πnΦ). (3.B.1)

Using such decomposition, we can quantify the role of 2π periodic terms on the energy

as

r =

∑∞
n=1 |E2n|2∑∞
n=1 |En|2 . (3.B.2)

If only Φ0 periodic terms are present in the energy vs flux relation, i.e. EM → 0, then

r = 1.

Fig. 3.4a shows r as a function of the number of junctions in the ring for different

rations of EJ with respect EM . The results where obtained minimizing the classical

energy vs. flux relation of the TJJ ring numerically. As expected, r = 1 when EM = 0.

On the contrary, Φ0 periodic components do not fully disappear when the Cooper pair

tunneling is absent, i.e. EJ = 0. This is due to shape of the ground-state energy

dependence on the flux for EC = 0, which is non-sinusoidal (see Fig. 3.2a). Nonetheless,
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r provides a measure for the effects of the 2π periodicity on the ground-state energy.

For EM = EJ (blue squares) r decreases with N at first, r starts increasing after it goes

below the value of r(EJ = 0) (gray up triangles) and then it continues to approach

this value. This result agrees with our claim that the groundstate-energy dispersion for

‘long’ TJJ rings resembles that of rings with no 2π periodic tunneling, i.e. EJ = 0. The

r dependence on N for EM = 0.1EJ (down red triangles) and EM = 0.5EJ (yellow

diamonds) seem to follow a similar trend, but the range of N in Fig. 3.4a is not large

enough to appreciate the full behavior.

Figure 3.4b shows the behavior of r with respect to N for EJ = EM = 1 and different

values of disorder. To obtain this figure, we calculated the average of r considering

that the Josephson and Majorana couplings of the islands uniformly distributed on

(EJ −σJ , EJ +σJ) and (EM −σM , EM +σM), respectively. In Fig. 3.4b we see that the

qualitative behavior of r is unchanged by disorder in Josephson and Majorana couplings.

We also find that for N up to 10, disorder in the Majorana hybridization energy, increases

r. This is in agreement with the effects of disorder stated in the main text: the role of

2π periodic contributions is relatively insensitive to disorder in the Josephson couplings,

on the other hand disorder on the Majorana hybridization energy increases the role of

2π periodic contributions overall. The fact that the role of 2π periodic contributions

is decreased by increasing the number of islands N , is insensitive to relatively small

disorder on both types of tunneling.

3.C Proof of Eqn. 3.3.3

Here we obtain the energies of the TJJ+D system for EC = 0, described by Hcl
TJJ +

HD +Hint. We start by writing Hint in terms of the operators defined in the previous
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(a) (b)

Figure 3.4: (a) Strength of the 2π periodic contribution to the ground-state energy as a function
of N for different rations of EJ/EM . (b) Average strength of the 2π periodic contribution to the
ground-state energy as a function of N for EJ = EM = 1 and different amounts of disorder.

section:

Hint =
wNe

− iφN
2

2
iγr

Nd
† +

w1e
− iφ1

2

2
γl
1d

† + h.c.

=

[
−wN

2
e

i
2

N−1∑
n=1

θn
(−1)Q +

w1

2

]
e

−iθ0
2 d†

+ h.c..

(3.C.1)

From the above equation we obtain that Hint connects the states |Q, θ1, ..., θN−1〉 and

d† |Q− 1, θ1, ..., θN−1〉 as follows:

Hint |Q, θ1, ..., θN−1〉 = −td† |Q− 1, θ1, ..., θN−1〉

Hintd
† |Q− 1, θ1, ..., θN−1〉 = −t∗ |Q, θ1, ..., θN−1〉

with t =
1

2

(
wNe

i
2

∑N−1
n=1 θn(−1)Q + w1

)
.

(3.C.2)
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Alternatively, we can write

Hint |θ〉Q = -
[wN

2
e

−iθN
2 +

w1

2

]
d† |θ − 2π�eN〉Q−1

Hintd
† |θ − 2π�eN〉Q−1 = -

[
w∗

N

2
e

iθN
2 +

w∗
1

2

]
|θ〉Q .

(3.C.3)

The states |θ〉Q and d† |θ − 2π�eN〉Q−1 are eigenstates of Hring +Hd with

(HTJJ +HD) |θ〉Q =

[
E(θ) +

E0Q
2

N
− ED

2

]
|θ〉Q

(HTJJ +HD)d
† |θ − 2π�eN〉Q−1 = [E(θ − 2π�eN)

+
ED

2
+

E0(Q− 1)2

N

]
d† |θ − 2π�eN〉Q−1

(3.C.4)

where E (θ) = −∑
n V (θn + δΦ), V (θ) = −EJ cos θ − EM

2
cos θ

2
.

Then H = HTJJ + HD + HC is diagonalized by states of the form α± |θ〉Q +

β±d† |θ − 2π�eN〉Q−1 with energies E± (θ) given by Eqns. (5) and (6) of the main text.

3.D Numerical Simulations.

In order to simulate the system numerically, it is convenient to describe the system in

terms of charges rather than phases. For simplicity, we will focus on the case N = 2.

We want to find out the action of H = HC +HJ +HM +HD +Hint on a state with

well defined charges on the islands and the dot, i.e., |Q1, Q2, d〉. States with well defined
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charge are eigenstates of HC and HD:

(HC+HD) |Q1, Q2, 0〉 =(
e2

2

2∑
n,m=1

QnC
−1
nmQm − ED

2

)
|Q1, Q2, 0〉

(HC+HD) |Q1, Q2, 1〉 =(
e2

2

2∑
n,m=1

QnC
−1
nmQm +

ED

2

)
|Q1, Q2, 1〉 .

(3.D.1)

Now we proceed to find the effect of the HJ , HM and Hint on the constant charge

states. In order to do this, we first note that for the nth superconducting island the

constant charge state |Qn〉 can be constructed in terms of the states |φnP〉:

|Qn〉 = 1

2π

∫ 2π

0

dφeiφn
Qn
2 |φP〉 , with P = (−1)Qn . (3.D.2)

Using Equations 3.A.1 and 3.D.2 we can obtain the effect of the operators e±
iφn
2 γ

r(l)
n

on a state of the island n with well defined charge:

e±
iφn
2 γl

n |Qn〉 = |Qn ± 1〉

e±
iφn
2 iγr

n |Qn〉 =− (−1)Qn |Qn ± 1〉 .
(3.D.3)

Hence, we can write the states |Q1, Q2, d〉 as follows:

|Q1, Q2, d〉 =
(
e

iφ1
2 γl

1

)Q1
(
e

iφ2
2 γl

2

)Q2

(d†)d |0〉 (3.D.4)

Using the above definition we find the action of HM , HJ and Hint on the states
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|Q1, Q2, d〉:

HM |Q1, Q2, d〉 = EM

4
×[(

(−1)Q1+Q2e−
iδΦ
2 − e

iδΦ
2

)
|Q1 − 1, Q2 + 1, d〉+(

(−1)Q1+Q2e
iδΦ
2 − e−

iδΦ
2

)
|Q1 + 1, Q2 − 1, d〉

]
,

(3.D.5)

HJ |Q1, Q2, d〉 = −EJ cos δΦ |Q1 − 2, Q2 + 2, d〉

−EJ cos δΦ |Q1 + 2, Q2 − 2, d〉 ,
(3.D.6)

and

Hint |Q1, Q2, 0〉 = −|w2|
2

e
iδΦ
4 |Q1, Q2 − 1, 1〉+

(−1)Q1+Q2
|w1|
2

e−
iδΦ
4 |Q1 − 1, Q2, 1〉

Hint |Q1, Q2, 1〉 = −|w2|
2

e
iδΦ
4 |Q1, Q2 + 1, 0〉+

(−1)Q1+Q2
|w1|
2

e−
iδΦ
4 |Q1 + 1, Q2, 0〉 .

(3.D.7)

Since Q1 + Q2 + nd = Q is conserved by the Hamiltonian, we can write the

Hamiltonian for a given Q sector:

H =
1∑

d,d′=0

Q−d,Q−d′∑
Q1,Q′

1=0

H
Q′

1,d
′

Q1,d
×

|Q1, Q1 −Q− d, d〉 〈Q′
1, Q

′
1 −Q− d′, d′|

(3.D.8)

where HQ′
1,d

′
Q1,d

is the matrix element between the states |Q1, Q1 −Q− d, d〉 and |Q′
1, Q

′
1 −Q− d′, d′〉

and can be obtained from Eqns. (3.D.1), (3.D.5), (3.D.5) and (3.D.7). The numeric

results shown in the main text were obtained from the above Hamiltonian using exact

diagonalization.
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The above description can be readily extended to an arbitrary number of islands N ,

as the action of H on a state |Q1, ..., QN , d〉 can be found by considering

|Q1, ..., QN , d〉 =
(
e

iφ1
2 γl

1

)Q1

...
(
e

iφN
2 γl

N

)QN ×

(d†)d |0〉 .
(3.D.9)

3.E TJJ+D ground-state energy approximation.

(a) (b)

Figure 3.5: The ground-state energy of the TJJ+D, ε (solid lines), and εm with m = −1 (dashed
lines) at Φ = Φ0/2 are shown for EJ , EC = 0 and N = 2 in panel (a), and N = 3 in panel (b).

In the main text it was argued that the TJJ+D groundstate energy ε was well approxi-

mated by the energies εm of flux independent states |ψm〉. It was also argued that such

approximation works best a) close to integer flux quantum and b) when we increase

the number of islands. Here we provide some details to support such arguments. First,

we note that the reason the approximation of ε ≈ min(εm) works best close to integer

flux quantum is that the state |ψm〉 corresponds to the ground-state of the system when

Φ = −mΦ0.

On the other hand, the approximation improves when N increases since when the

flux can be distributed in more junctions the ground-state configurations for different flux
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values are separated by smaller phase differences. Fig. 3.5 shows how the considerable

improvement in the approximation obtain by increasing N from N = 2 to N = 3. The

ground-state energy ε in Fig. 3.5 was obtained minimizing E−(θ) with respect the phase

differences vector θ numerically.
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Preface to Chapter 4

This final chapter takes one of the main ingredients of the systems discussed in Chapter 3–

a topological Josephson junction–and focuses on obtaining effective models to describe

this system. We find that the commonly made assumption that phase slips only occur in

multiples of 4π in topological junctions is not always valid. We also find an appropriate

description of the system when this is the case. Our results have important consequences

for the dissipative phase transition expected in the system, which are discussed. Similarly

to Chapter 3, this chapter translates many of the concepts often used to describe Josephson

junction and Josephson junction arrays to a topological context.
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Abstract

Current state of the art devices to detect and manipulate Majoranas commonly consist

of networks of Majorana wires and tunnel junctions. In this work, we study a key

ingredient of these networks – a topological Josephson junction in the presence of

charging energy. The phase dependent tunneling term contains both 4π and 2π periodic

terms corresponding to single and pair particle tunneling. The single particle tunneling is

allowed due to the Majorana modes in the edges of the junction while the pair tunneling

is the usual Josephson tunneling. For small values of the charging energy, the low

energy physics of conventional Josephson junctions is described by 2π phase slips. In a

topological junction, it is usually expected that only 4π phase slips are possible while 2π

phase slips are suppressed. However, we find that if the ratio between the strengths of

the Majorana assisted tunneling and the Josephson tunneling is small – as is likely to be

the case for many setups – 2π phase slips occur and may even dominate. We provide an

effective descriptions of the system in terms of 2π and 4π phase slips valid for all values

of the ratio between the strengths of the 4π and the 2π periodic tunneling. Finally, we

discuss the implications of our results on the dissipative phase transitions expected in

such a system.
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4.1 Introduction

In recent years, there has been a lot of scientic effort to understand, realize and manipulate

topological states in condensed matter.[1, 2] Particularly, Majorana wires [3, 4], in which

strong spin-orbit coupling, superconductivity and a Zeeman gap give rise to a non-trivial

topology causing Majorana modes at the edges of the wires, have gathered much attention.

Interest in Majorana wires is motivated by the possibility of using the non-Abelian

nature of Majorana modes for quantum computation schemes [5, 6] and is sustained by

encouraging experimental results [7–15]. Hence, networks of Majorana wires have been

proposed as tools to manipulate Majorana modes with quantum information purposes [16–

21] or to create more exotic matter [22, 23]. In this work, we study a phenomenon

commonly relevant to this type of networks, charge induced quantum fluctuations in

topological Josephson junctions.

In Josephson junctions, charging effects induce quantum fluctuations, mainly in

the form macroscopic tunneling processes.[24, 25] In a non-topological Josephson

junction, the tunneling processes are known as phase slips and are essentially 2π jumps

in the phase difference between the superconductors. The delocalization of the phase

induced by these fluctuations can be prevented with dissipation. As a result, Josephson

junctions present a dissipative phase transition [26, 27]. In a tunnel junction made of two

topological superconductors, i.e. a topological Josephson junction, there are Majorana

modes at both edges of the junction. The presence of these modes leads to coherent

single particle tunneling between the superconductors, commonly referred to as the

4π periodic Josephson effect. [3, 4, 6, 28–31] The change of periodicity in the overall

tunneling current, suppresses 2π phase slips in topological Josephson junctions. [32]

Both the 2π phase slip suppression [32–34], and its effects on the dissipative phase

transition [34] have been proposed as a probe for topological superconductivity. Most
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studies of 2π phase slip suppression focus on having a sufficiently strong single particle

tunneling. [32–34] This is despite the fact that the single particle tunneling may be a small

component of the overall tunneling current, as is the case for 3D topological insulator

based Josephson junctions [35, 36]. As a result, there are currently no studies which

describe the 2π phase slip suppression throughout the transition from a non-topological

to a topological junction.

In this work, we develop a theory for the effect of charging induced quantum fluctua-

tions in the low energy spectrum of a topological Josephson junction, valid for any value

of the ratio between the strengths of the single particle and the Cooper pair tunneling.

Our results show that a description of the low energy physics of the topological junction

in terms of 4π phase slips may be insufficient if the strength of the 4π periodic tunneling

is small. In the presence of both 2π and 4π periodic components of the tunneling current,

the potential energy of the junction as a function of the phase difference between the

superconductors, θ, may have one or two minima in [0, 4π) (see Figs. 4.1b and 4.1c). If

only one minimum exists, the description in terms of 4π phase slips works as long as

the phase fluctuations are small. In the presence of two minima, this description may

break down even for small phase fluctuations if they are relatively large compared to the

strength of the 4π periodic tunneling. In this case, a description of the junction in terms

of coupled 2π phase slips is more appropriate. This is shown schematically in Fig. 4.1a

where EJ and EM correspond to the energy scale of the 2π and 4π periodic tunneling,

respectively, and EC to the strength of the phase fluctuations. The junction potential has

only one minimum for EM > 8EJ and two otherwise.

This paper is organized as follows. In Sec. 4.2, we give a small review of the effects

of charging induced phase fluctuations in Josephson junctions. This is followed by

a qualitative discussion of the effects of phase fluctuations for different regimes of a

topological Josephson junction in Sec. 4.3. The main results of this work are stated
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in Sec. 4.4 where we introduce effective models to describe the low-energy physics of

topological Josephson junctions. In Sec. 4.5 we discuss the implications of our results on

the dissipative phase transition. Finally, our conclusions are stated in Sec. 4.6.

4.2 Review of the effects of quantum phase slips in

Josephson junctions

We begin with a quick review of the effects of small phase fluctuations in the spectrum

of a (non-topological) Josephson junction. The junction consists of a weak link between

two superconductors with capacitance C described by the Hamiltonian

Ĥ = EC (n̂− ng)
2 − EJ cos θ̂, (4.2.1)

where EJ is the Josephson energy associated with the tunneling of Cooper pairs between

the two superconductors, EC = e2/(2C), the charging energy of the weak link and ng the

offset charge. The operator n̂ measures the charge excess and the operator θ̂, measures

the phase difference between the superconductors. To simplify the comparison with the

following sections, we measure n̂ (and ng) in units of the electron charge e, rather than

in the more conventional units of 2e. This means that the operators n̂ and θ̂ follow the

commutation relation [θ̂, n̂] = 2i. Several examples of superconducting circuits, such

as the ones used in the Cooper pair box [37, 38], quantronium [39] and transmon [40]

qubits, can be mapped to Eq. (4.2.1). In these circuits, ng is tuned using gate voltages,

while the ratio of EJ and EC is tuned either using split junctions or adding additional

capacitances (see e.g. Ref. [41]).

In the basis of phase eigenstates, the wave-function Ψ(θ) = 〈θ|Ψ〉 describing the
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(a)

(b) EM/(8EJ) > 1 (c) EM/(8EJ) < 1

Figure 4.1: Depending on the relative strength between the single-particle (set by EM ) and the
pair tunneling (set by EJ ) the potential of the topological Josephson junction may be minimized
when: (b) the phase difference across the junction is an integer multiple of 4π only, or (c) the
phase difference across the junction is any integer multiple of 2π. In (c) the minima at odd
2π are local minima. (a) In (c), the strength of phase fluctuations (set by EC) decides whether
oscillations around the local minima contribute to the ground-state (Coupled 2π QPS) or not (4π
QPS).
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Josephson junction follows the equation

[
EC

(
−2i

d

dθ
− ng

)2

− EJ cos θ

]
Ψ(θ) = EΨ(θ) (4.2.2a)

with the boundary condition

Ψ(θ + 2π) = Ψ(θ). (4.2.2b)

The dependence of the system on the offset charge ng can be transferred from the

Schrödinger’s equation to the boundary condition via the transformation n̂ → n̂ + ng,

i.e. Ψ(θ) → eingθ/2Ψ(θ) and

[
EC

(
−2i

d

dθ

)2

− EJ cos θ

]
Ψ(θ) = EΨ(θ) (4.2.3a)

Ψ(θ + 2π) = eiπngΨ(θ). (4.2.3b)

The above equations can be solved using Mathieu functions. Nonetheless, expansions

for different parameter regimes have been developed to provide more intuition. Since

we are interested in studying phase fluctuations, we focus on the parameter region with

EC � EJ . This corresponds to the regime of interest of transmon qubits [40].

When EC � EJ the potential energy −EJ cos θ dominates the energy of the system.

Around the potential energy minima, i.e. 2πn with integer n, equation (4.2.3a) can be

mapped onto an harmonic oscillator with frequency �ω =
√
8EJEC . The low energy

levels of the Josephson junction therefore correspond to harmonic oscillator levels. Deep

inside the potential well, these harmonic oscillations do not depend on the boundary

conditions given by (4.2.3b). To find the junction dependence on ng, we need to account

for quantum tunneling between the different potential minima.

Denoting the amplitude for quantum tunneling between the mth harmonic oscillator
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level of one of the potential minima and its nearest neighbors by νm, it is possible to

write an effective tight-binding Hamiltonian for the junction:

Ĥ =
∞∑

m=0

∑
j

[
εmΨ

†
m(j)Ψm(j)

−νmΨ
†
m(j + 1)Ψm(j) + H. c.

] (4.2.4)

Here Ψ†
m(j) is the creation operator for mth level of an harmonic oscillator around 2πj,

and εm = �ω(m+ 1/2) the energy of the a level. The tight-binding Hamiltonian (4.2.4)

is diagonalized using the operators Ψm(k) =
∑

j e
−ikjΨm(j):

Ĥ =
∑
m

∑
k

(εm − 2νm cos k)Ψm(k)
†Ψm(k). (4.2.5)

Comparing with (4.2.3b) leads to the identification k = πng, which allows us to conclude

that for EC � EJ the dispersion of the mth level of the junction will be given by

Em(ng) = εm − 2νm cos (πng) , (4.2.6)

which holds when νm � �ω.

The tunneling amplitudes νm can be calculated using semi-classical methods. Here

we briefly outline the calculation for ν0 using the dilute instanton gas approximation in

the path integral imaginary time formalism (see e.g. Ref. [42]). In this formalism, the

amplitude to propagate from 0 to 2π during an imaginary time interval of length 2L is

written as a weighted sum over all the paths that start at 0 at time τ = −L and finish at

2π at τ = L:

(0,−L|2π, L) =
∫

[Dθ]e−
1
�

∫ L
−L L(θ(τ))dτ , (4.2.7)
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where

L (θ) =
�
2 (∂τθ)

2

16EC

+ EJ (1− cos θ) , (4.2.8)

commonly known as the sine-Gordon Lagrangian, is the Lagrangian of the Josephson

junction modeled by (4.2.1).

For L → ∞, it is possible to find a “classical” solution, i.e. a path that extremizes the

action S =
∫ Ldτ with θ(−∞) = 0 and θ(∞) = 2π. This path is known as a 2π-kink

or instanton, and it is given by θcl2π (τ) = 4 arctan
(
eω(τ−τ0)

)
where ω coincides with

the frequency for harmonic oscillations around 2πj. Conversely, the model also has a

classical solution with θ(−∞) = 2π and θ(∞) = 0 known as an anti-kink. In the dilute

instanton gas approximation, the path integration of Eq. (4.2.7) is done over combinations

of kinks and anti-kinks and Gaussian fluctuations around them. Furthermore, it is

assumed that the kinks and anti-kinks are separated enough (in imaginary time) that the

interactions between them are negligible. This yields the result

ν0 =
√
2(�ω)3/(πEC)e

−�ω/EC , (4.2.9)

where �
2ω/EC = �

√
8EJ/EC is to the action of a 2π kink.

To test the validity of (4.2.9) we ask whether the gas of kinks and anti-kinks is in fact

dilute. This can be done by comparing the width of the kinks, 2/ω, with the expected

average separation among them, �/ν0. The gas is dilute, and Eq. (4.2.9) is self-consistent,

as long as ν0 � �ω/2.

This formalism can be extended to calculate the ng-dependence of higher levels

through the use of periodic instantons (see e.g. Ref. [43]). The decision to focus on ν0

was made for the sake of simplicity.
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4.3 Phase fluctuations in a topological Josephson

junction

To study the effects of small phase fluctuations in a topological Josephson junction,

we consider a simple model of a Josephson junction with capacitance C made of two

topological superconductors. Since the two superconductors coupled by the junction are

topological, each of them presents a Majorana mode which is close to the the junction.

We denote these by γ1 and γ2, and ignore the other two Majorana modes which are far

from the junction. The coupling of these Majorana modes adds a 4π periodic term to the

tunneling current [3, 4, 6, 28–31]. The topological junction can then be modeled by the

following Hamiltonian:

Ĥ = EC (n̂− ng)
2 − EJ cos θ̂ − iγ1γ2

EM

2
cos

θ̂

2
(4.3.1)

with iγ1γ2 the parity of the fermionic mode caused by the hybridization of the Majorana

modes on both sides of the junction. When the local parity is conserved, this fermionic

mode can be integrated out and we can substitute iγ1γ2 by either one of its two eigenval-

ues ±1. From now on, we assume iγ1γ2 = +1. As long as the local parity is conserved,

our results do not rest on this assumption.

As in the previous section, after a charge translation the wave-function in phase basis

follows an ng independent Schrödinger’s equation

[
EC

(
−2i

d

dθ

)2

− EJ cos θ − EM

2
cos

θ

2

]
Ψ = EΨ (4.3.2a)

and a boundary condition

Ψ(θ + 4π) = ei2πngΨ(θ). (4.3.2b)
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where all the dependence on ng is encoded.

For small EC , the potential energy of the junction dominates. The low energy levels

of the junction consist of linear combinations of harmonic oscillator levels at the different

potential minima, as in the previous section. However in the topological Josephson

junction, the competition between the pair and single particle tunneling creates two

different regimes depending whether the junction potential has a single minimum or a

two minima for 0 ≤ θ < 4π.

When EM/(8EJ) > 1, the junction potential has a single minimum in the [0, 4π)

interval. Hence, the potential is minimized when θ = 4πm with m an integer, and all the

minima are degenerate. The frequency of harmonic oscillations around these minima,

obtained by expading Eq. (4.3.2a) around these values, is �ω =
√
8EJEC + EMEC .

This is exemplified in Fig. 4.2a where the first few harmonic oscillator levels and the

ground-state wave-function amplitude are shown for EM = 2 = 10EJ and EC = 0.001.

The junction potential and the tunneling processes between the degenerate levels are

also shown in Fig. 4.2a. As EC increases, the spacing between the levels and tunneling

amplitude increases and the harmonic wave-functions widen, as shown in Fig. 4.2b for

EM = 2 = 10EJ and EC = 0.1. However, the tunneling processes that give rise to the

ng dispersion remain unchanged by the increase of EC . In this regime, the topological

junction behaves qualitatively similar to the non-topological junction from the previous

section with half the ng periodicity and 4π phase slips taking the role of 2π phase slips.

On the other hand, if EM/(8EJ) < 1, the junction potential has two minima in

the [0, 4π) interval. Hence, the potential has two kinds of minima with two different

frequencies for harmonic oscillations around them: θ = 4πm with frequency �ω+ =
√
8EJEC + EMEC , and θ = 4πm + 2π with frequency �ω− =

√
8EJEC − EMEC .

In addition to the effects discussed in the previous paragraph, changing EC may also

change the tunneling processes that contribute to each energy level. This is shown in
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(a) EC = 0.001 (b) EC = 0.1

(c) EC = 0.001 (d) EC = 0.1

Figure 4.2: Phase fluctuations in the single-minimum and double-minimum regimes of a
topological Josephson junction. The first harmonic levels (blue lines) and the junction potential
(green line)are shown for a junction with EM = 2 = 10EJ and (a) EC = 0.001 and (b)
EC = 0.1, and a junction with EJ = 1 = 50EM and (c) EC = 0.001 and (d) EC = 0.1.
The ground-state wave-functions, whose amplitudes are shown in grey, correspond to linear
superpositions of harmonic oscillations around the potential minima. The tunneling processes that
give rise to the ng dispersion of each level are shown in red. In the double-minimum regime ((c)
and (d)), increasing EC can change which are the dominant tunneling processes. The ground-state
wave-function in (d) shows an additional (small) peak around 2π.
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Figs. 4.2c and 4.2d. The ground-state wave-function in Fig. 4.2c is peaked around 0 and

4π, whereas the ground-state wave-function in Fig. 4.2d shows additional contributions

from oscillations around 2π.

4.4 Effective models

As discussed in the previous section, the tunneling processes which contribute to each

energy level in the topological Josephson junction depend on the system parameters.

In this section, we will discuss two different effective models for the junction ground-

state: one in which only oscillations between 4πm minima contribute and one in which

oscillations around all 2πm minima contribute to the ground-state. We calculate the

effective tunneling parameters of each model and discuss the their regions of validity.

4.4.1 4π QPS model

We can write an effective Hamiltonian for the ground-state of the junction as a combina-

tion of harmonic oscillations around 4πn plus tunneling between such minima:

Ĥ =
∑
n

(
�ω

2
Ψ†

2nΨ2n − ν4πΨ
†
2n+2Ψ2n + H. c.

)
, (4.4.1)

where ω the frequency of harmonic oscillations around the minima at 4πn and is given

by �ω =
√
8EJEC + EMEC . Accounting for the boundary condition (4.3.2b) results in

the following ground-state energy dispersion

Egs(ng) =
�ω

2
− 2ν4π cos (2πng) . (4.4.2)
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This model gives an effective description of the system in the single-minimum regime

and in the double-minimum regime for small enough EC (see Fig. 4.2).

The tunneling amplitude ν4π can be calculated following the procedure outlined in

Sec. 4.2. The imaginary time Lagrangian of the topological junction,

L (θ) =
�
2(∂τθ)

2

16EC

+EJ (1−cos θ) +
EM

2

(
1−cos

θ

2

)
, (4.4.3)

is known as the double sine-Gordon Lagrangian and its semi-classical dynamics have

been widely studied.[44] Interestingly, the 4π kink in the DSG model can be written as a

sum over two 2π SG kinks

θcl4π = 4arctan eω(τ−τ0)−R + 4 arctan eω(τ−τ0)+R (4.4.4a)

separated by an imaginary time interval 2R/ω where R is fixed by the ratio of EM and

8EJ :

R = arccosh

(√
1 +

8EJ

EM

)
. (4.4.4b)

When EM → 0, the separation between the two 2π kinks diverges (R → ∞) meaning

that the 4π kinks effectively decouple into two separate 2π kinks as the DSG Lagrangian

reduces to the SG Lagrangian.

Using the dilute instanton gas approximation, as before, we find

ν4π =

√
8(�ω)5

πEME2
C

exp

(
− �ω

EC

× f

(
EM

8EJ

))
(4.4.5a)

where

f (x) = 2 +
2x√
1 + x

coth−1
(√

1 + x
)

(4.4.5b)

is an increasing function with f(0) = 2 and f(∞) = 4. With the appropriate modifi-
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cations, this result is in agreement with the result found by Ref. [45] in the context of

statistical mechanics. A more detailed account of how Eq. (4.4.5) is obtained is shown in

Appendix 4.A.1.

When EM → 0, ν4π presents a square root divergence, i.e. ν4π ∼ 1/
√
EM . This

divergence has different physical interpretations. First, it is indicative of a resonance in

tunneling [46] when EM → 0. In our context, it is a sign that the validity of the model

breaks down in this limit. In terms of the semi-classical formalism, the divergence arises

because one of the eigenvalues of the operator for quadratic fluctuations around the 4π

kink turns into a zero mode when EM → 0. The physical origin of this zero mode is the

restoration of the 2π translation symmetry; i.e. the the two 2π kinks decouple in this

limit.

The presence of this emergent zero mode for EM → 0 diminishes the range of the

validity of the calculated expression for ν4π. This can be seen by noting that the dilute

instanton gas approximation breaks down when EM → 0: the width of the 4π kinks

(2 + 2R)/ω diverges as − logEM whereas the average separation between the kinks

�/ν4π goes to zero as
√
EM . The assumption that the width of the 4π kinks is much

smaller than the average separation between the kinks fails for EM → 0. We address this

problem in the next subsection.

Emergent translational mode correction

One approach to increase the accuracy of the calculation is to account for a higher order

of fluctuations in the direction of the emergent zero mode. [47, 48] Since the emergent

zero mode is related to the decoupling of the two kinks, this is (roughly) equivalent to

letting the distance between the two kinks fluctuate around its equilibrium value, 2R/ω.
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The result of Ref. [48] can be written in terms of R as:

ν4π =
4F (R) (�ω)2

πEC

I
(
R, �ω

EC

)
(4.4.6a)

where F (R) is a numerical factor bounded by
√
2/5 ≤ F (R) ≤ 1 and given by

F (R) =

√
cosh 2R−R tanhR− 3R cothR + 2

sinhR
√

2− 8R2csch22R
; (4.4.6b)

and

I (R,α) =

∫ ∞

0

dr

√
1− 4r2csch2(2r)e−αSR(r) (4.4.6c)

with

SR(r) =1 +
tanh2 R

tanh2 r
+ 2r×(

1

sinh 2r
+

coth r

cosh2 R
− tanh2 R coth r

2 sinh2 r

)
.

(4.4.6d)

In the above expressions, 2r/ω corresponds to the fluctuating distance between the two

kinks and SR(r) is an r-dependent effective action. SR(r) is minimized at r = R and

behaves linearly for r � 5, with a slope that decreases with increasing R. For more

details on how this expression is obtained, we refer the reader to Appendix 4.A.2 and

Ref. [48].

To the best of our knowledge, a closed form expression for I (R,α) does not exist.

Nonetheless, we can find approximate expressions for I (R,α) for small and large R.

For small R, the greatest contribution to I (R,α) comes from the r values around R. A

saddle point approximation of the integral I (R,α) results in

I (R,α) ≈
√

π

2α

coshR

F (R)
e−αSR(R). (4.4.7)
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This is a good approximation to I (R,α) if e2R � 16α (see Appendix 4.A.2). Substitut-

ing this in (4.4.6a) gives the expression for ν4π obtained without including corrections

due to the emergent translational mode, i.e. Eq. (4.4.5). Hence, Eq. (4.4.5) is valid

when EM/(8EJ) � EC/(4�ω).

When R is large, the integral is dominated by the linear large r behavior of SR(r). In

Appendix 4.B.2, we find that for 16α2 � e2R

I (R,α) ≈ cosh2(R)e−α(tanh2(R)+1)

2α
. (4.4.8)

This leads to ν4π ≈ ν lr
4π with

ν lr
4π =

f2

(
EM

8EJ

)
(�ω)3

πECEM

exp

[
− �ω

EC

× f1

(
EM

8EJ

)]
(4.4.9)

when EM/(8EJ) � 0.25E2
C/(�ω)

2. In the above equation, f1(x) and f2(x) are order 1

numerical factors which decrease with x; their exact form can be found in Appendix 4.B.2.

Note that according to the above calculations ν4π diverges for EM → 0 as 1/EM .

4.4.2 Coupled 2π QPS model

If the junction parameters are such that there are additional (local) minima at 2πm with

m odd and oscillations around those minima contribute to the ground-state (see e.g.

Fig. 4.2d), we can describe it by the following effective Hamiltonian:

Ĥ =
∑
n

(
εnΨ

†
nΨn − ν2πΨ

†
n+1Ψn − ν2πΨ

†
nΨn+1

)
, (4.4.10)
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where ν2π corresponds to tunneling amplitude between potential minima separated by

2π and the energies εn are given by:

ε2n =εe =
�ω+

2

ε2n+1 =εo = EM +
�ω−
2

�ω± =
√

8EJEC ± EMEC .

(4.4.11)

The dispersion of (4.4.10) is

E±(ng) =
1

2
(εo + εe)

± 1

2

√
(εo − εe)2 + 8ν2

2π(1 + cos(2πng)).

(4.4.12)

The hopping ν2π can be calculated using the formula proposed by Ref. [49] for the

tunneling through an asymmetric potential. Without loss of generality, we can focus on

calculating the amplitude for tunneling between 0 and 2π. The minimum at 0 and the

minimum at 2π are separated by a barrier which is largest at θmax. Following Ref. [49] we

define two potentials symmetric around θmax, VL(θ) and VR(θ), such that VL(θ) (VR(θ))

is equal to the junction potential for 0 < θ < θmax (θmax < θ < 2π). Then ν2π can be

written as:

ν2π = A
√
νLνR, (4.4.13)

where νs, s = L,R, is the probability for tunneling from 0 to 2π through the potential Vs

and

A =
1

2

[(
Vmax − εe
Vmax − εo

)1/4

+

(
Vmax − εo
Vmax − εe

)1/4
]1/2

, (4.4.14)

with Vmax = V (θmax). The above expression for ν2π clearly breaks down when εo >

Vmax; at that point the zero point motion of the shallow minimum becomes larger than

the potential barrier. The approximations leading to the above expression for ν2π start
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failing before this point.

For our model of a topological Josephson junction, θmax and Vmax are given by:

θmax =4 arctan (ω+/ω−)

Vmax =2EJ (EM/(8EJ) + 1)2 .

(4.4.15)

And the θmax-symmetric potentials VL and VR are well approximated by

VL(θ) ≈ EJ

(
1 +

EM

8EJ

)2(
1− cos

(
πθ

θmax

))

VR(θ) ≈ EM+

EJ

(
1− EM

8EJ

)2(
1− cos

(
π(θ − 2π)

θmax − 2π

))
,

(4.4.16)

which leads to the following tunneling amplitudes:

νs =
4√
Psπ

(
8E3

sEC

)1/4
e
−Ps

√
8Es
EC (4.4.17)

with PL = θmax/π = 2 − PR, EL = EJ(1 + EM/(8EJ))
2 and ER = EJ(1 −

EM/(8EJ))
2. Ps and Es are, respectively, the period and amplitude of the potential Vs

for s = L,R.

For EM → 0 the dispersion (4.4.12) becomes

E±(ng) → �ω

2
± |2ν0 cos (πng)| . (4.4.18)

This is the expected result for the EM → 0 limit, as it corresponds to the breaking of the

symmetry between the minima at even and odd multiples of 2π “folding" the ng-Brillouin

zone.
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Figure 4.3: Comparison of ν2
2π/|εo − εe| (solid line) and ν lr

4π (dashed line) for EJ = 1.
The ν2

2π/|εo − εe| lines stop when the potential barrier is smaller than the zero point
motion energy for oscillations around the shallow minima εo.
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We also note that for ν2π � |εo − εe| the lowest of the two bands becomes

E−(ng) ≈ εe − 2ν2
2π

|εo − εe| −
2ν2

2π

|εo − εe| cos(2πng). (4.4.19)

This dispersion would be equivalent to the dispersion found for the 4π phase slip model

(4.4.2) if ν2
2π/|εo − εe| → ν4π. As shown in Fig. 4.3, we find that ν2

2π/|εo − εe| ≈ ν lr
4π.

This allows us to interpret ν lr
4π as arising from coupled but not confined 2π phase slips.

4.4.3 Validity of the effective models

The image that emerges from the results in this section and the previous energetic

considerations is as follows. Given a junction with fixed EM and EJ values, it is always

possible to find EC small enough such that the junction is well described by 4π QPS.

On the other hand, given EC we can always find a EM small enough so 2π QPS are

still present in the system. The range of EC values in which the junction can be fully

described by 4π QPS processes shrinks to 0 when EM → 0. To further clarify the range

of parameters in which each picture is valid, we compare the different effective models

for the topological Josephson junction with numerical result.

The spectrum of Eq. (4.3.1) is obtained numerically by truncating the Hilbert space

in number basis, where the Hamiltonian becomes

H =
∞∑

n=−∞

[
EC (n− ng)

2 |n〉 〈n| − EM

4
(|n〉 〈n+ 1|

+ |n〉 〈n− 1|)− EJ

2
(|n〉 〈n+ 2|+ |n〉 〈n− 2|)] .

(4.4.20)

The numerical results shown in this paper are obtained by taking the sum in the above

equation from −N to N with N = 104.

Comparisons between Egs(ng) for the topological Josephson junction predicted by
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(a) EC = 0.005 (b) EC = 0.01

(c) EC = 0.02. (d) EC = 0.05.

Figure 4.4: Comparison between the effective models and numerical results. The numerically
obtained value for Egs(1/2)− Egs(0) (solid black line) is plotted along with its expected value
from the effective models from Eqs. (4.4.1) (solid red line) and (4.4.10) (blue dashed-dotted line)
as a function of EM/(8EJ) with 8EJ + EM = 1 and different EC values. The approximate
expressions found for the tunneling amplitude in Eq. 4.4.6 are also compared in this figure (dotted
gray line and dashed purple line).
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the effective models discussed previously and numerical results are shown in Fig. 4.4.

The comparisons are done by plotting the difference Egs(1/2)− Egs(0) as a function of

EM/(8EJ) for different values of EC . In Fig. 4.4 we fixed 8EJ +EM = 1 so �ω is kept

constant throughout each plot; this is done to show the entire range of EM/(8EJ) in the

same plot. As expected, when EM/(8EJ) → 0 the numerical results (solid black line)

agree with the 2π QPS description (dotted-dashed blue line) provided by the tight-binding

Hamiltonian (4.4.10). While for larger values of EM/(8EJ) the 4π QPS description, i.e.

that of (4.4.1), is closer to the numerical results. In addition, increasing EC reduces the

range of EM/(8EJ) in which the 4π QPS description is valid. For instance, in Fig. 4.4a

the numerical results agree with the 4π QPS description for all the values EM/(8EJ) in

the plot. While in Fig. 4.4b, this only occurs for EM/(8EJ) ∈ (10−4, 1) and; in Fig. 4.4c

and Fig. 4.4d for EM/(8EJ) ∈ (10−2, 1) and EM/(8EJ) ∈ (0.1, 1), respectively.

Fig. 4.4 also shows the results of the 4π QPS description of the junction using the two

approximations found for ν4π: the small EM approximation given by Eq. (4.4.9) (purple

dashed lines) and the large EM approximation of Eq. (4.4.5) (gray dotted lines). Finally,

Fig. 4.4 shows that as EC increases the QPS descriptions of the topological Josephson

junction become less accurate. This is expected, as all the expressions for the tunneling

amplitudes are obtained using the dilute instanton gas approximation which relies on

EC � �ω and thus becomes less accurate as EC increases.

We can use the numerical results to figure out the range of parameters in which

each picture is more appropriate. This is shown in Fig. 4.1a. As it was discussed

previously, close to the boundary between the coupled 2π QPS and the 4π QPS regions,

both descriptions give similar results.
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4.5 Discussion

It is interesting to discuss the implications of our results in the dissipative transition

that is expected in this system. [26, 27, 34] This transition was previously studied in

Ref. [34], where it was found that the presence of 4π periodic tunneling would reduce

the ohmic dissipation needed to restore superconductivity by a factor of 4. However, the

results of Ref. [34] assumed that the topological junction could always be described by

4π QPS. In this work, we find that this is not necessarily the case. Consider a junction

with fixed EJ and EC , when EM = 0 the junction is described by 2π QPS, turning on

EM leads to an increasing coupling of this 2π QPS until they become confined into pairs.

Following the critical dissipation throughout this same path would lead to a continuous

decrease in it until it reaches 1/4 of the original value at the point where the 2π QPS

are fully suppressed. We also find that the critical dissipation needed to stabilize the

superconductivity in our model of a topological Josephson junction is dependent on EC .

An important caveat about using the dissipative phase transition as a mechanism for

detecting Majorana modes is that the dissipation induced by quasi-particle tunneling

also reduces the critical resistance of non-topological Josephson junctions by a factor

of 4. Furthermore, the effects of dissipation induced by quasi-particle tunneling in

non-topological Josephson junctions are dependent on the ratio between the Josephson

coupling and the charging energy. [27] This is because both the 4π periodic tunneling

induced by Majoranas and the quasi-particle tunneling are single particle tunneling pro-

cesses that break the same symmetry (the 2π periodicity of a non-topological Josephson

junction), albeit the difference in coherence. A more careful analysis of dissipation in

the topological Josephson junction is required to find whether there are signatures in the

dissipative transition that would allow distinguishing between the 4π periodic tunneling

induced by Majoranas and the quasi-particle tunneling.
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The difference in the effects of 4π periodic vs. quasi-particle tunneling in the

dissipative transition is unclear. However, the effects on the charge offset dispersion are

clearly different. While both kinds of single particle tunneling turn the system from 2e

periodic to e periodic, the 4π periodic tunneling opens up a gap (see Eq. 4.4.12), while

the quasi-particle tunneling does not [27]. This could be a potential probe to distinguish

between the two kinds of single-particle tunneling.

Finally, another important issue to consider is the effect of quasi-particle poising in

this system. Since instanton techniques tend to be useful to describe systems coupled to

external environments [50], the formalism used in this work could be useful to study the

effects of quasi-particle poising.

4.6 Conclusions

We studied the effects of phase fluctuations induced by charging effects in a simple

model of a topological Josephson junction. Our model considers both single particle

tunneling and pair tunneling, which are, respectively, 4π and 2π periodic with respect

to the superconducting phase difference across the junction. We found that when the

single particle tunneling is a small component of the total tunneling current there are

two possible ways to describe the ground-state of the junction: 1) in terms of 4π QPS

or 2) in terms of coupled 2π QPS. We found the tunneling amplitudes for both effective

descriptions and compared them to numerical results to determine the range of parameter

in which each description is appropriate.

In addition, we discussed the possible implications that our results have for the

dissipative phase transition expected in this system. As was previously found by Ref. [34],

when the ground-state of the junction is described by 4π QPS we expect the critical

resistance needed to make the junction superconducting to be 4 times smaller than the
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critical resistance needed to make a non-topological junction superconducting. In the

regime where tunneling processes between minima separated by 2π are still present

in the system we expect the critical transition to be somewhere between these two

critical values. Given that increasing the charging energy of the junction may change

the tunneling processes present in the system, our results also point towards a charging

energy dependence of the critical resistance for the dissipative transition.

Several questions regarding the dissipative transition, particularly in relation to

quasi-particle tunneling, remain unanswered. In the future, we will use the formalism

developed in this work to obtain a quantitative description of this transition. It would be

also interesting to figure out the relation between the results presented in this work and

the dominant charging energy limit.
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4.A Path Integral Calculations

4.A.1 4π phase slip amplitude

The calculation of the tunneling amplitude between the different potential minima can be

performed using standard semi-classical methods. Despite this, we include the calculation

here in detail for completeness, largely following Ref. [42].
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We begin by calculating the amplitude to propagate from 0 to 4π in an imaginary

time interval 2L. This is given by the following path integral:

(0,−L|4π, L) =
∫

[Dθ]e−
1
�

∫ L
−L L(θ(τ))dτ , (4.A.1)

where L(τ) is the Double sine-Gordon (DSG) Lagrangian given by Eq. (4.4.3), which

can be rewritten as,

L (θ) = M

(
(∂τθ)

2

2
+ V (θ)

)
(4.A.2)

with

V (θ)=ω2

[
tanh2R (1−cosθ)+ 4sech2R

(
1−cos

θ

2

)]
(4.A.3)

and

M = �
2/(8EC)

ω =
√
EC (8EJ + EM)/�

cosh (R) =
√
(8EJ + EM)/EM .

(4.A.4)

We expect the leading contribution to the path integral to be from paths of the form

θ (τ) = θcl (τ) + χ(τ) (4.A.5)

where θcl (τ) is the path that minimizes the action starting at 0 for τ = −L and ending at

4π for τ = L, and χ(±L) = 0. This means θcl (τ) fulfills the following equation:

dV

dθ

(
θcl (τ)

)
=

d2θcl

dτ 2
. (4.A.6)
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In the limit L → ∞, θcl (τ) is given by

θcl = 4arctan[eω(τ−τ0)+R] + 4 arctan[eω(τ−τ0)−R]. (4.A.7)

Up to second order in χ(τ) the Lagrangian for paths of the form (4.A.5) is

L (θ) =L (
θcl
)
+

M

2
(∂τχ)

2 +
M

2

d2V

dθ2
(
θcl
)
χ2

+M∂τ (χ∂τθ
cl).

(4.A.8)

This allows us to split the path integral in Eq. (4.A.1) into two parts:

(0,−L|4π, L) ≈ F exp

(
−Scl

�

)
(4.A.9)

with Scl the action of the instanton,

Scl =

∫ L

−L

dτL (
θcl
)

(4.A.10)

and F contains the sum over Gaussian fluctuations around such instanton. F can be

written as

F =

∫
[Dχ] exp

(
−M

2�

∫ L

−L

dτχDχ

)
, (4.A.11)

with D is the following differential operator:

D = − d2

dτ 2
+

d2V

dθ2
(
θcl (τ)

)
. (4.A.12)

The path integral in Eq. (4.A.11) can be solved expanding χ in terms of the eigen-
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functions of the operator D, i.e. taking

χ (τ) =
∑
n

χnyn (τ) (4.A.13)

with

Dyn (τ) = λnyn. (4.A.14)

This leads to

F = N
∏
n

∫ ∞

−∞

dχn√
2π�/M

e−
Mλnχ2

n
2� (4.A.15)

with N a normalization constant. However, the above expression in not well defined

since the operator D contains a zero mode, λ0, which leads to a divergence in F . The

time τ0 at which the kink solution is centered is arbitrary which leads to D∂τθ
cl = 0; i.e.

the zero mode is a consequence of the time-translational invariance of the system. To deal

with this divergence, we use the Fadeev-Popov method to transform the χ0 integration to

a τ0 integration.

The Fadeev-Popov method consists of inserting

1 =

∫
dτ0

∣∣∣∣∂χ0

∂τ0
(χ0 = 0)

∣∣∣∣ δ(χ0), (4.A.16)

into the expression for F given by Eq. 4.A.15:

F =N
∞∏
n=1

∫ ∞

−∞

dχn√
2π�/M

e−
Mλnχ2

n
2� ×

∫
dτ0

∣∣∣∣∂χ0

∂τ0
(χ0 = 0)

∣∣∣∣
∫

dχ0√
2π�/M

δ(χ0)

=N
∞∏
n=1

∫ ∞

−∞

dχn√
2π�/M

e−
Mλnχ2

n
2� ×

∫
dτ0√
2π�/M

∣∣∣∣∂χ0

∂τ0
(χ0 = 0)

∣∣∣∣ .

(4.A.17)
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The Jacobian
∣∣∣∂χ0

∂τ0
(χ0 = 0)

∣∣∣ can be found rewriting the path θ so that fluctuations in the

direction of the zero mode are traded for an explicit τ0 dependence:

θ(τ) =θcl (τ − τ0) +
∞∑
n=1

χnyn (τ − τ0) . (4.A.18)

Comparing the above expression for the path with that of Eq. (4.A.5) leads to

χ0 =f(τ0) +
∞∑

m=1

ξmrn(τ0) (4.A.19)

with

f(τ0)=

∫
dτ
(
θcl(τ−τ0)−θcl(τ)

)
y0 (τ)

rm(τ0)=

∫
dτym (τ−τ0) y0 (τ) .

(4.A.20)

Furthermore, we note that the constraint χ0 = 0 corresponds to τ0 = 0 so we obtain:

∣∣∣∣∂χ0

∂τ0
(χ0=0)

∣∣∣∣ =
∣∣∣∣∣f ′(0) +

∞∑
m=1

ξmr
′
m(0)

∣∣∣∣∣ (4.A.21)

We know ∂τθ
cl ∝ y0 (τ) since D∂τθ

cl = 0. The proportionality constant can be

found using the following expression:

∫ ∞

−∞
dτ(∂τθ

cl)2 =
Scl

M
, (4.A.22)

which stems from the fact that θcl(τ) minimizes the action (Eq. (4.A.6)). We use this to

find f ′(0):

f ′(0) =−
∫

dτ∂τθ
cl(τ) y0(τ) =−

√
Scl

M
. (4.A.23)
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The appropriate boundaries of integration for τ0 are −L and L since τ takes values

in the interval (−L,L). We then obtain

F =N
∞∏
n=1

∫ ∞

−∞

dχn√
2π�/M

e−
Mλnχ2

n
2� ×

∫ L

−L

dτ0√
2π�/M

(√
Scl

M
−

∞∑
m=1

ξmr
′
m(0)

)

=N 2L

√
Scl

2π�

1√∏′
n λn

(4.A.24)

where
∏′

n indicates the product over the eigenvalues taking out the zero eigenvalue.

The normalization constant can be conveniently expressed in terms of the sum over

harmonic fluctuations around 0 or 4π. If we define

F0 =

∫
[Dχ] exp

(
−M

2�

∫ L

−L

dτχD0χ

)
(4.A.25)

with

D0 = − d2

dτ 2
+ ω2. (4.A.26)

The normalization constant N can be written as

N = F0

√∏
n

λ0
n, (4.A.27)

where λ0
n are the eigenvalues of the differential operator D0. F0, the fluctuation contri-

bution to the imaginary time harmonic oscillator propagator, is readily available in the

literature (see e.g. Ref. [42]). For L → ∞ its leading contribution is

F0 =

√
Mω

π�
e−ωL. (4.A.28)



4.A. PATH INTEGRAL CALCULATIONS 140

Our expression for F currently includes a ratio between the products of eigenvalues

of the operators D0 and D:

F = 2LF0

√
Scl

2π�

√∏
n λ

0
n∏′

n λn

, (4.A.29)

which can be evaluated using the Gelfand-Yaglom formula. Following Ref. [42] we have

∏
n λ

0
n∏′

n λn

=
2Mωη2

Scl
, (4.A.30)

where η is defined by the asymptotic behavior of the classical solution:

∂τθ
cl → ηe−ω|τ | for τ → ±∞. (4.A.31)

To the leading order the amplitude to propagate from 0 to 4π in an imaginary time

interval 2L is then:

(0,−L|4π, L) ≈ 2LF0η

√
Mω

π�
e−

Scl

� . (4.A.32)

However, the leading order contribution is not enough to obtain the level splitting. It is

possible to obtain a more precise expression for the amplitude using the dilute instanton

gas approximation.

Under the dilute instanton gas approximation, we sum over paths consisting of

combinations of kinks and anti-kinks and quadratic fluctuations around them, i.e.

θ(τ) =
2N∑
n=0

νnθ
cl (τ − τn) + χ(τ) (4.A.33)

where νn = ±1 (+ for kinks and − for anti-kinks) and
∑

n νn = 1. The approximation

consist of considering that the centers of the kinks and anti-kinks, i.e. τn are sufficiently
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spread out to make kink-kink interactions negligible. The obtained result is

(0,−L|4π, L) =
∑
n

F0

(
2Lη

√
Mω
π�

e−
Scl

�

)
2n+1

(2n+ 1)!

= F0 sinh

(
2Lη

√
Mω

π�
e−

Scl

�

)
.

(4.A.34)

The spectral representation of the amplitude (4.A.1) is

(0,−L|4π, L) =
∑
n

ψn(0)ψn(4π)e
−2LEn/�. (4.A.35)

Considering two groundstate levels of harmonic oscillators with frequency ω and mass

M , one centered around 0 and other around 4π, which can tunnel to each other with

amplitude ν, we have

ψ1(θ) =
1√
2
(ψ0(θ) + ψ4π(θ)) E1 =

�ω

2
− ν

ψ2(θ) =
1√
2
(ψ0(θ)− ψ4π(θ)) E2 =

�ω

2
+ ν.

(4.A.36)

In the above expression ψ0(θ) and ψ4π(θ) are the groundstate wavefunctions of harmonic

oscillators centered around 0 and 4π, respectively, e.g.

ψ0(θ) =

(
Mω

π�

)1/4

e−
Mωθ2

2� . (4.A.37)

The amplitude (4.A.1) for such system would then be

(0,−L|4π, L) =
√

Mω

π�
e−Lω sinh (2Lν/�) . (4.A.38)
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Comparing expressions (4.A.34) and (4.A.38) allows us to conclude

ν = �η

√
Mω

π�
exp

(
−Scl

�

)
. (4.A.39)

For the kink in equation (4.A.7) we have:

Scl =16Mω (1 + 2R csch 2R)

η =8ω coshR.

(4.A.40)

Substituting the values of M , ω and R from Eq. (4.A.4) we obtain

ν4π =

√
8(�ω)5

πEME2
C

exp

(
− �ω

EC

× f

(
EM

8EJ

))
(4.A.41)

with

f (x) = 2 +
2x√
1 + x

coth−1
(√

1 + x
)
. (4.A.42)

4.A.2 Emergent translational mode correction for the 4π phase slip

amplitude.

Here, we follow the procedure outlined in Ref. [48] to introduce corrections to the

previously found expression for ν4π. This section then follows the work done in Ref. [48]

closely. We include the calculation here for clarity as the work in Ref. [48] was done in the

context of classical statistical mechanics. We also note that Ref. [48] claims, incorrectly,

that this procedure leads to a non-divergent expression. Here, we find otherwise.

When EM → 0, the expression for ν found in 4.A.1 diverges. This occurs because

one of the eigenmodes of the operator D, which we will call λ1 approaches 0 when

EM → 0. Physically, the two 2π kinks decouple turning the distance between the two
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2π kinks 2R into another translation mode. We must then have

y1(τ) → ∂R(θ
cl) when EM → 0 (4.A.43)

This means that we can deal with the effects of the emergent translational mode by

writing the path as

θ(τ) =θcl(τ) +
∞∑
n=0

χnyn (τ)

=σ (τ − τ0, r) +
∞∑
n=2

χnyn (τ − τ0)

(4.A.44)

with

σ(τ, r) = 4 arctan[eωτ+r] + 4 arctan[eωτ−r]. (4.A.45)

For R = r we recover the classical solution, i.e. σ(τ, R) = θcl(τ) . We should note that

Eq. 4.A.44, and thefore the rest this appendix, relies on y1 ≈ ∂R(θ
cl). This is a valid

assumption when R > 1.25.[47, 48]

Up to second order in χ =
∑∞

n=2 χnyn (τ − τ0) = 0 the Lagrangian for the above

path is given by:

L (σ, χ)

M
=
(∂τσ+∂τχ)

2

2
+V0(σ) +χV1(σ) + χ2V2(σ), (4.A.46)

where V0(σ) = V (σ) is the potential of σ given by Eq. (4.A.3) and

V1(σ) =
ω2

cosh2(R)

(
sinh2(R) sin σ + 2 sin

σ

2

)

V2(σ) =
ω2

cosh2(R)

(
1

2
sinh2(R) cosσ +

1

2
cos

σ

2

)
.

(4.A.47)
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The action of this path can be written as

S(σ, χ) = S0(r) + S1(σ, χ) (4.A.48)

with S0(r) and S1(σ, χ) given by:

S0(r) =M

∫
dτ

(
1

2
(∂τσ)

2 + V0(σ)

)

=8Mω

(
1 +

tanh2 R

tanh2 r
+

2r

sinh 2r
+

+
2r coth r

cosh2 R
− r tanh2 R coth r

sinh2 r

)

S1(σ, χ) =M

∫
dτ (−∂τσ + V1(σ))χ

+M

∫
dτ

(
1

2
(∂τχ)

2 + V2(σ)χ
2

)
.

(4.A.49)

Using the Fadeev-Popov method to transform from the coordinates χ0 and χ1 to τ0

and r leads to

(0,−L|4π, L) =N
∫ ∫

dτ0dr

2π�/M

∣∣∣∣∂χ0∂χ1

∂τ0∂r

∣∣∣∣
∣∣∣∣
χ0,χ1=0

∞∏
n=2

∫
dχn√
2π�/M

e−S0(r)/�−S1(σ,χ)/�

(4.A.50)

Following Ref. [48], we make the approximations:

∣∣∣∣∂χ0∂χ1

∂τ0∂r

∣∣∣∣
∣∣∣∣
χ0,χ1=0

≈
√∫

dτ(∂τσ)2 ×
∫

dτ(∂rσ)2

∫ ∞∏
n=2

dχn√
2π�/M

e−S1(σ,χ)/� ≈ 1√∏′′
n λn

(4.A.51)

where the λns are the eigenmodes of the operator D from the Eq. 4.A.12, and the product∏′′
n skips the 0 eigenmode and λ1.
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Under these approximations, we can write

(0,−L|4π, L) =F ′K2L (4.A.52)

with,

F ′ =
N√∏′′
n λn

= F0

√∏
n λ

0
n∏′′

n λn

= F0η

√
2Mω

Scl

√
λ1 (4.A.53)

and

K =

∫ Lω

0

dr
M
√∫

dτ(∂τσ)2 ×
∫
dτ(∂rσ)2

2π�

e−S0(r)/�

∫ L− r
ω

−L+ r
ω

dτ0
2L

.

(4.A.54)

Using the following result from Ref. [47]:

√∫
dτ(∂τσ)2×

∫
dτ(∂rσ)2 =

16
√
1−4r2csch22r.

(4.A.55)

and performing the τ0 integration gives

K=

∫ Lω

0

dr
16M(ωL−r)

√
1−4r2csch22r

2π�ωL
e

−S0(r)
� . (4.A.56)

It is possible to calculate λ1 by noting that calculating K using a quadratic approxi-

mation on ρ = r −R gives

K0 =

√
Scl

2π�

1√
λ1

e−
Scl

� (4.A.57)
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Expanding S0(r) up to second order in ρ leads to

S0(ρ) =Scl + 2Mωρ2csch3Rsech3R×

(4 sinh 2R− 4R + sinh 4R− 8R cosh 2R)

(4.A.58)

We then find

K0 =

∫ ∞

−∞
dρ

M16
√
1− 4R2csch22R

2π�
e−

S0(ρ)
�

=

√
M

�ωπ
g(R)e−

Scl

�

(4.A.59)

with

g(R) =
sinh 2R

√
2− 8R2csch22R√

cosh 2R−R tanhR− 3R cothR + 2
(4.A.60)

Note that the factor (1− r
L
) from Eq. (4.A.56) goes to 1 in the Eq. (4.A.59) as we are

taking the L → ∞ limit. The vanishing eigenvalue λ1 is then

√
λ1 =

√
Scl

2π�

e−
Scl

�

K0

=

√
Sclω

2M

1

g(R)
, (4.A.61)

which leads to

(0,−L|4π, L) = 2LF0
ηω

g(R)
K (4.A.62)

Using the dilute instanton gas approximation (see previous section), this result leads

to the tunneling amplitude

ν4π = �
ηω

g(R)
K =

8�ω2 coshR

g(R)
K. (4.A.63)
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Taking L to infinity results in

K =
8M

π�
I
(
R, �ω

EC

)
=

�

πEC

I
(
R, �ω

EC

)
, (4.A.64)

with I(R,α) defined by Eq. (4.4.6c). Our final expression for ν is

ν =
8(�ω)2 coshR

g(R)πEC

I
(
R, �ω

EC

)
. (4.A.65)

which corresponds to the expression in the main text (Eq. 4.4.6) since F (R) =

2 coshR/g(R).

4.B Approximate expressions for I (R,α)

4.B.1 Validity of the harmonic approximation

Taking r = R + y/
√

αS ′′
R(R) we can write the saddle point expansion of I (R,α) as

I (R,α) ≈
∫ ∞

−∞

dy
√
1− 4R2csch22Re−αSR(R)√

αS ′′
R(R)

× e−y2/2

(
1 +

∞∑
n=1

pn(y, R)

(αS ′′
R(R))n/2

)

=e−αSR(R)

√
2π(1− 4R2csch22R)

αS ′′
R(R)

×
(
1 +

∞∑
n=1

Cn(R)

(αS ′′
R(R))n

)
.

(4.B.1)

In the above equation the pn(y, R) are odd/even polynomials in y when n is even/odd,

and the Cn(R) are functions of R which can be expressed in terms of derivatives of

SR(r) and
√
1− 4r2csch22r evaluated at r = R.
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The expression for I (R,α) in Eq. (4.4.7) corresponds to the first term in the above

saddle point expansion; therefore, it is a valid approximation if 1/(αS ′′
R(R)) � 1. The

function 1/S ′′
R(R) diverges for R → 0 and for R → ∞ making the approximation for

both small and large R. However, since Eq. 4.4.6 was obtained to address the large R

divergence, we only need to find the upper R limit for the validity of expression (4.4.7).

Since
1

αS ′′
R(R)

=
e2R

16α
+O(R), (4.B.2)

Eq. (4.4.7) is valid when e2R � 16α. This condition makes the tunneling expression of

Eq. 4.4.5 valid for EM/(8EJ) � EC/(4�ω)

4.B.2 Large R limit

To find an approximate expression for I (R,α) in the large R limit, we note that SR(r)

grows linearly with r for large r. Furthermore, the slope of the large r linear behavior

as R increases. This means that, when R is large, the largest contribution to I (R,α)

will come from the large r linear behavior. We start by writing the following large r

expansions:

SR(r) = 1 + tanh2 R + 2r sech2 R

+ 4e−2r
(
2rsech2R + tanh2 R

)
+O(e−4r)√

1− 4r2csch22r = 1 +O(e−4r)

(4.B.3)
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This means we can expand I (R,α) as

I (R,α) =

∫ ∞

0

dre−α(1+tanh2 R+2r sech2 R) (1−

α4e−2r
(
2rsech2R + tanh2 R

)
+O(e−4r)

)
= I0 (R,α) + I1 (R,α) + ...

(4.B.4)

where

I0 (R,α) =
cosh2 Re−α(tanh2 R+1)

2α
(4.B.5)

corresponds to the approximation to I (R,α) cited in Eq. (4.4.8) and I1 (R,α) is a lead-

ing order correction which we calculate to determine the range of validity of Eq. (4.4.8).

Performing the r interaction gives

I1(R,α) =
−2α(α tanh2Rsech2R+1)e−α tanh2R−α(

αsech2R+1
)2 , (4.B.6)

and we obtain:
I1(R,α)

I0(R,α)
∼ 16α2e−2R ∼ 4α2 EM

8EJ

. (4.B.7)

The approximation is valid when 16α2e−2R � 1. For R given by Eq. (4.4.4b) and

α = �ω/EC this is equivalent to EM/(8EJ) � 0.25E2
C/(�ω)

2.

For I (R,α) ≈ I0 (R,α) we obtain

ν4π =
f2

(
EM

8EJ

)
(�ω)3

πECEM

exp

[
− �ω

EC

× f1

(
EM

8EJ

)]
(4.B.8)
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with

f1(x) =
2 + x

1 + x

f2(x) =

⎡
⎣ 6(x+ 1)

x√
x+1

log
(√

x+1+1√
x

)
+ 1

+
2

x√
x+1

log
(√

x+1+1√
x

)
− 1

⎤
⎦
1/2

.

(4.B.9)

4.C Decoupling of 4π phase slips.

As it has been previously noted, the expression for ν4π in Eq. (4.4.9) diverges when

EM → 0. In this appendix, we will show that it is possible to recover the decoupling

of the 4π phase slips into two 2π phase slips from Eq. (4.A.63). This is achieved by

changing the order in which the limits EM → 0 and L → 0 are taken.

Expanding F ′ and K around x = EM/(8EJ) = 0 leads to

F ′ = F0ω
2
(
4 + x

(
3− 2 log

(x
4

))
+O(x2)

)

K =
4LMωe−

16Mω
�

π�

−
16x

(
2LM2ω2(2Lω − 3)e−

16Mω
�

)
3 (π�2)

+O (
x2
)

(4.C.1)

Then, when EM → 0,

(0,−L|4π, L) → F0
8(2L)2Mω3e−

16Mω
�

π�
(4.C.2)

The tunneling amplitude between 0 and 2π in a non-topological Josephson junction can



151 CHAPTER 4. PHASE SLIPS IN TOPOLOGICAL JUNCTIONS

be written as

ν2π = 4ω

√
�Mω

π
e−

8Mω
� . (4.C.3)

This leads to

(0,−L|4π, L) → F0
(2L)2

2

(ν2π
�

)2

(4.C.4)

which is the expected result for propagating between 0 to 4π through two uncoupled 2π

phase slips. The 1
2

factor arises from time ordering the phase slips, i.e.

∫ L

−L

dτ1

∫ L

τ1

dτ2 =
(2L)2

2
. (4.C.5)
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5

Conclusions

5.1 Summary of results

This thesis studied Josephson junctions with unusual energy/phase difference relations,

which arose from unconventional pairing symmetries (Chapter 2) or from topological su-

perconductivity (Chapters 3 and 4). This work dealt with how such unusual energy/phase

difference relations arise and how they can be probed via Josephson junction loops and

architectures. Our work also translated many of the available concepts of conventional

arrays of Josephson junctions to a topological context.

Chapter 2 of this work focused on deriving the energy/phase difference relation rela-

tion from a microscopic model. The model studied consisted of a tunnel junction between

an s± superconductor and a single band s-wave superconductor. A key ingredient of

this model was that it considered variations of the order parameter close to the junction.

This was done using a self-consistent Bogoliubov-deGennes formalism. We found four

different types of their energy/phase difference relation: (i) 0-junction, (ii) π-junction,

(iii) φ-junction, and (iv) a double minimum junction. The main result of this work is

that when the system was close to frustration, i.e. when the s superconductor interacted

157
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comparably with both parts of the s± Fermi surface, allowing the order parameter to vary

close to the junction had striking consequences in the energy/phase difference relation of

the junction. Particularly, the double minimum junction behavior only appeared when

variations in the order parameter were accounted for. Although the focus of Chapter 2

was mainly on the derivation of the energy/phase difference relation, we also studied

how to probe these relations by flux threading an s±-s loop. In such case, the visibility of

the effects of double-minimum junctions improved for loops with large inductance. This

work highlights the role of the Josephson effect as a probe of unconventional pairing

symmetries. It also speaks to the importance of using and developing microscopic models

that take into account order parameter variations, particularly in systems with Josephson

frustration.

Chapter 3 moved away from microscopic derivations of the energy/phase difference

relation and focused on how this relation can be probed. To do this, we constructed a

topological version of Josephson junction rings consisting of a flux threaded loop of N

identical topological superconductors. We modeled the tunneling between the supercon-

ductors to include both pairs (conventional Josephson effect), and single particles (4π

periodic Josephson effect) enabled by the topological nature of the superconductors. We

showed that the visibility of the single particle tunneling can be increased by increasing

the number of superconductors in the loop. This visibility enhancement is relatively

insensitive to disorder in the couplings between the junctions. In addition, we studied a

Josephson ring-quantum dot hybrid architecture in which the topological Josephson junc-

tion ring is tunnel coupled to a quantum dot. In this hybrid system, tuning the occupation

energy of the quantum dot enables changes in its flux periodicity. Such tunneling cannot

be explained through trivial Andreev bound-states. In addition, quasi-particle poisoning

can be prevented in this system via increasing the energy cost of adding particles to

the superconductors. Thus, the studied Josephson ring-quantum dot hybrid architecture
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addresses most of the caveats that prevent the identification of the 4π periodic tunneling.

Finally, in Chapter 4, we focused on studying small charging energy effects in a

single topological junction. As in Chapter 3, the junction was modeled considering

only the behavior of the macroscopic degrees of freedom – the superconducting phase

and the particle number. Also as in Chapter 3, the model of the junction considered

both single particle and pair tunneling. We found two possible effective models for the

ground-state of the junction though identifying which macroscopic quantum tunneling

processes contribute to its charge offset dispersion. We also calculated the effective

tunneling amplitudes and discussed the parameter regimes in which each model is valid.

The main result of this work is that if the single particle tunneling is a small component

of the total current increasing the charging energy may change which macroscopic

quantum tunneling processes contribute to the charge offset dispersion. This signals a

likely charging energy dependence of the critical resistance for the dissipative transition

expected in this system.

5.2 Future directions

This thesis presented three studies that exhibit 1) the Josephson effect as a probe for

unconventional/topological superconductivity and 2) the importance of considering

fluctuations and variations of the order parameter in such settings. Here, we will discuss

some possible extensions of our work.

A main caveat of the work presented in Chapter 2 is that while it presents microcospic

evidence of a phase originally predicted through a phenomenological Ginzburg-Landau

theory (the double minimum junction), it fails to provide experimental ways to find

such behavior. This is because the main microscopic controls to tune into this phase

are the tunneling amplitude between the s superconductor and each of the s± bands and
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the strength of the superconducting pairing. Tuning these parameters in an experiment

seems highly unrealistic. However, in iron-based superconductors pressure can be used

to tune the ration between strength of the superconducting pairing and the bandwidth. It

might then be worth considering whether pressure can be used as parameter to tune this

behavior experimentally.

An interesting direction based on the results from Chapter 3 would be to modify

the topological Josephson junction with the aim of making it a realistic model of a 1D

topological superconductor. This could improve our understanding of the effects of phase

fluctuations in 1D topological superconductors. Additionally, it would be interesting to

study the behavior of the systems in Chapters 3 and 4 in the dominant charging energy

limit.

The results of Chapter 4 highlight the importance to extend current studies of the

dissipative transition on topological Josephson junction. Furthermore, the instanton

formalism used in this Chapter is well suited to study dissipative effects such as quasi-

particle poisoning. Hence, it would be interesting to study extended models of the

junction studied in Chapter 4 that include ohmic dissipation, dissipation due to quasi-

particle tunneling through the junction and/or quasi-particle poisoning. Finally, it would

be interesting to see if the results of Chapter 4 can be used to assess the viability of some

of the proposed schemes that use tunnel junctions to manipulate Majoranas.


