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Abstract

Several investigations involving strongly interacting matter at high temperature and den-
sity are pursued. First concentrating on relativistic heavy ion collisions slightly below the
GeV/nucleon range, we perform studies of the equation of state (EOS) for nuclear matter.
The non-equilibrium aspects of such collisions are simulated by the Boltzmann-Uehling-
Uhlenbeck transport model with a momentum-dependent nuclear mean field. The EOS
effects on the collective flow observables and dielectron spectra have been systematically
and quantitatively examined by comparing with the experimental data gathered by the
DIOGENE. Streamer Chamber, Plastic Ball, EOS TPC, E848H and DLS collaborations.
The importance of the precise functional dependence of the nuclear mean field on the par-
ticle momentum, and the compressibility coefficient K of the nuclear matter are addressed.
Using a simple coalescence model, we show that a quantitative connection between the
composite flow and K can be established. In such nucleus-nucleus collisions, we also
consider and discuss lepton pair production mechanisms. These include nucleon-nucleon
bremsstrahlung, A decay, n decay, and pion-pion annihilation. We then turn to lepton pair
production in ultrarelativistic heavy ion collisions. We concentrate on pion-pion virtual
bremsstrahlung in the soft limit M <300 MeV, and we make a quantitative comparison of
various soft-photon-approximation(SPA) formulae with a full one-boson-exchange(OBE)

calculation.



Résumé

Nuus faisons plusieurs études concernant la matiéere en intéraction forte a des températures
et des densités élevées. Nous étudions tout d’abord I'équation d’état de la matiere
nucléaire. en considérant les collisions d’ions lourds aux énergies intermédiaires. Les as-
pects hors d’équilibre sont inclus dans un modéle de transport dit de Boltzmann-Uehling-
Uhlenbeck. Nous déterminons les effets de ’équation d’état sur les observables de flot
collectif en examinant des résultats d’expériences faites par les collaborations DIOGENE,
Streamer Chamber, Plastic Ball, EOS TPC et E848H. Nous établissons un lien quan-
titatif entre le flot des noyaux légers et le coefficient de compressibilité de la matiere
nucléaire. Nous abordons ensuite le phénomeéne de la production de paires de leptons et
nous comparons avec des résultats de l’expérience DLS, réalisée au Bevalac. Finalement
les collisions d’ions lourds aux énergies ultrarelativistes sont examinées. A ces énergies
nous nous intéressons aux mécanismes de production de paires de leptons de petite masse
invariante. Plus particulierement, les résuitats d’un calcul exact de bremmstrahlung pion-
pion dans un modele d’échange de bosons sont comparés a ceux obtenus dans plusieurs

tvpes d’'approximations dites des photons mous.
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Chapter 1

Introduction

It is fair to say that the field of heavy ion collisions is a flourishing area of contemporary
research in physics. In its higher energy extension, it straddles high energy and nuclear
physics. The main objectives there are to create higher energy densities than ever at-
tained in terrestrial accelerators before. In this pursuit, one will surely learn a great deal
avout the behavior of strongly interacting matter at high temperatures and densities.
Uitnnately, one will want to verify experimentally one of the most intriguing predictions
of QCD: the formation of a plasma of quarks and gluons, deconfined over macroscopic
portions of time and space. A vigorous experimental program is presently under way and

the theoretical interest, both direct and indirect, being generated is considerable [1, 2, 3].

Heavy ion collisions can roughly be divided in a few broad regions, depending on
the physics goals being pursued. The theoretical methodology and collision mechanism
also vary from one region to the other. In the so-called intermediate energy regime
(from =~ 100 MeV /nucleon to a few GeV/nucleon), one main axis of research consists of
the investigation of complex nuclear reaction dynamics. As one goes beyond the Fermi
energy in kinetic energy per projectile nucleon, the phase space accessible to nucleons
in microscopic two-body collisions opens up dramatically, owing to the disappearance of
Pauli blocking effects. This area thus offers the intriguing possibility of studying the
cumpetition and the individual effects of the nuclear mean field and two-body collisions.

In other words, the intermediate energy region stretches from a domain where mean



field dynamics dominate to a regime where microscopic nucleon-nucleon collisions play a
major role. One of the main goals of this line of research is an accurate determination
of the bulk properties of nuclear matter as characterized by the nuclear equation of state
(EOS). The EOS plays a crucial role in the dynamics of heavy ion collisions and also
has a major influence in the theory of supernoveae explosions and neutron star properties.
One realizes the many facets of the nuclear EOS, thumbing through the proceedings of
recent dedicated conferences [4]. Information on the EOS, as characterized generally by
*he coefficienr of compressibility for nuclear matter in its ground state, K, can also be
deduced from detailed Hartree-Fock plus RPA analyses of giant monopole resonances
e hnite nuclei 5. These lower energy experiments probe regions of excitation energy
adjacent to the nuclear ground state while intermediate energy heavy ion collisions will
create zones of high density and temperature. Consistency requires that the value of
the nuclear compressibility coefficient of equilibrium nuclear matter deduced from both
sets of experiments be compatible with one another. Happily, after a period of apparent
disagreement, this goal seems on the verge of being fulfilled. It now seems that the analysis
of giant monopole resonances and of heavy ion flow data can both accommodate a value

of K = 210 MeV [6, 7). We will elaborate in detail on this in the current thesis.

The extraction of the nuclear EOS from heavy ion flow data at the microscopic level is
normally based on the Boltzmann-Uehling-Uhlenbeck(BUU) transport equation [8}. This
one-body theory includes the effects of Fermi motion, the nuclear mean field, nucleon-
tacleon collisions and Pauli blocking, and has been quite successful in modeling the six
dimensional one-body phase space distribution and its time evolution. In the next chapter,
we will systematically establish a relationship between the so-called flow observables and
the nuclear EOS within this model. Note in passing that the BUU equation without its
hard collision component is often called Vlasov equation (8], and without the mean field,
Pauli blocking and Fermi motion is labeled the intranuclear cascade model [9]. As we
will see, the produced flow from BUU is not a simple matter of the sum of the Vlasov

contribution and the cascade contributions.




During nucleus-nucleus collisions, the initial longitudinal energy of the projectile nu-
cleus is converted into thermal and compression energy by the nucleon-nucleon collisions
and the nuclear mean field. The collided nuclei are compressed and heated. At the in-
termediate energy regime, the nuclear density may reach values of more than three times
equilibrium nuclear matter density. After the nuclear matter reaches the highest density
and temperature. it then expands and cools down. The energy is carried partly in the
nuclear How. and partly by the emission of secondary particles, such as pions, etas, direct
phiotons. dileptons. kaons etc.. These particles represent probes of the collision dynamics
and will carry important information about the compressed nuclear matter. A lot of effort
has been devoted to this subject in the past decade. A detailed description can be found
in several recent review papers (10, 11]. In this work, we will discuss the production of

dileptons, together with the creation of other particles, such as pions and etas.

Dileptons are pairs of particles interacting via the electromagnetic interaction: once
they are produced, they will not be affected much by final state interactions. Thus, they
can directly go from the produced point to the detector. This unique property ! implies
that by studying dileptons, we may be able to understand the history of the whole collision
prucess. especially in the earliest and hottest stages. The production rates are maximum

i the hot and dense phases.

[t is of high interest to try and understand theoretically the lepton spectra measured
by the DLS collaboration at energies around, and less than, 1 GeV/nucleon. This state-
ment is true for several reasons. First, a quantitative connection between the high density
EOS and the measured spectrum of produced electron-positron pairs is still lacking. Sec-
ond. a recent re-analysis of the dielectron spectrum produced in Ca + Ca collisions at 1
GeV/nucleon shows that the previously released data needs to be scaled upwards by a
factor of roughly 6 [12]. Finally, some previous calculations [13, 14, 15] have been able
to reproduce the old data, but some assumptions need to be clarified and the recent data

certainly needs to be considered. We feel that a careful study of the dielectron production

' Photons also have this property.



mechanisms, combined with our state-of-the-art BUU modeling can fill this gap. The first
iteration of such a calculation is presented in chapter 3. It is also extremely relevant for
the HADES experiment, in construction at the GSI. The motivation of the HADES ex-
periments is to understand possible in-medium modifications of vector meson properties
by measuring leptons. It may well be that nuclear collisions in the GSI energy range
represent an arena of choice for such manifestations, as relatively high baryon densities

can be attained while the dynamics are still within the realm of BUU approaches.

In the ultrarelativistic energy domain, a qualitative picture of lepton pair produc-
tion can be drawn as follows: for dilepton invariant mass M > mj/y, the spectrum is
dominated by Drell-Yan production [16], with a contribution from DD decays [17]. The
spectrum around M =1 GeV is dominated by the radiative and direct decays of p, w and
0. while two-body 18! and many-body reactions [19] will also have contributions in this
region. For the so-called soft dileptons [20], M < m,, the dominating sources are Dalitz
decay. and virtual bremsstrahlung from meson-meson reactions. If there is a phase tran-
sition from the hadron matter to quark matter, the quark interactions may contribute
to this region as well. On the final part of this work, we will focus on pion-pion virtual
bremsstrahlung in the soft dielectron limit M < 300 MeV. Note that the dynamics of

collisions at these energies is meson dominated.

[n hadron-hadron collisions, bremsstrahlung is usually calculated with the soft photon
approximation(SPA). In this limit, the radiation from the external legs of Feynman graphs
dominates the bremsstrahlung amplitude. At the energies we are interested in, we need
to study corrections to this approximation. Different formalisms have been developed to
study real situations [21]. As a fundamental physical rule, all the approximation formulae
shouid satisfy symmetry requirements such as gauge-invariance and Lorentz-covariance.
But for most formulae. it is not the case as pointed out by Lichard [21]. The basic Riickl
formula [22] violates these requirements. We have compared [23] different formalisms for
nucleon-nucleon bremsstrahlung. Our goal there is to investigate how good (or bad) the

often-used Riickl formalism is, when we compare it with an approach that is acceptable in



the appropriate limits and satisfies symmetry requirements. In the DLS energy regime, the
Riickl approach has been compared with one-boson-exchange(OBE) model calculations
for nucleon-nucleon reactions (24, 25, 26]. We will update this situation in chapter 3. In
chapter 4, based on an OBE model, we have done a full-T-matrix calculation for pion-
pion bremsstrahlung. The formalism will be clearly derived, and the assumptions and
approximations used to recover the SPA formulae we used in chapter 3 will be clearly
stated. The results of using different formulae will be compared. This is also relevant
for the CERES experiments at the CERN SPS: before claims can be made about the
modification of meson mass in the medium and the possible presence of the quark-gluon-
plasma(QGP), background calculations have to be performed carefully. In chapter 5, I

will make a simple summary. followed by appendices.



Chapter 2

Collective Flow And The Nuclear
Equation of State In Heavy-ion
Collisions

2.1 Introduction

In the framework of heavy ion collision physics in the 100 MeV /nucleon ~ 2 GeV /nucleon
energy regime and its relation to the nuclear equation of state, the measurement and the-
oretical interpretation of collective flow observables have been vital [27]. Among the
manv models suggested to describe theoretically heavy ion collisions at such energies, the
Boltzmann-Cehling-Uhlenbeck (BUU) approach has proven to be very successful (8]. In
BUU simulations, nucleons can suffer hard collisions and can also move on curved trajec-
tories, owing to interaction with the self-consistent nuclear mean field. The properties
of the mean field are crucial to such calculations and can also be directly related to the
nuclear equation of state. Some effort needs to be devoted to obtain realistic nuclear mean

fields that can be used in practice within such numerical approaches.

Early on in microscopic analyses, it appeared that the data on nuclear flow, as charac-
terized by transverse momentum plots [28, 29] and flow angle distributions [30] demanded
an equation of state with a high compressibility coefficient (K ~ 380 MeV) [31]. However,

it was later shown that if a reasonable momentum dependence was introduced in the



nuclear mean field. a lower compressibility would be favored in the interpretation of the
experimental data [32. 33, 34, 35]. Finally, it is clear that the momentum dependence
of the nuclear mean field is an unavoidable feature for a fundamental understanding of
nuclear matter properties {36] and for the successful interpretation of current heavy ion

data.

Additional properties of momentum dependent mean fields have also emerged in the
BUU analysis of heavy ion collisions. Different sets of momentum dependent parametriza-
tions sharing a common compressibility coefficient have been used. We will concentrate
on two of those. We label them GBD [32] and MDYT [37], in accordance with the articles
in which they have been introduced. Another momentum dependent potential used in
one-body numerical simulations is associated with the Gogny interaction [38]. The prop-
erties of the GBD and MDYI potentials are somewhat similar in the ground state, but
they will have different behaviors in actual dynamical situations [37, 39]. We shall discuss

this aspect in the present work.

We have analyzed the quantitative differences between GBD and MDYI type ap-
proaches. We also give our own opinion as to which parametrization should be used in
calculations where nonequilibrium effects can be important, as in intermediate energy
heavy ion collisions. We further explore the impact of our conclusions on the determina-
tion of the nuclear EOS, by comparing with current pseudo-nucleon heavy ion data. We
perform BUU calculations for symmetric and asymmetric projectile—target combinations,
at various colliding energies. We also comment on the quantitative importance of angular
momentum conservation as well as the Coulomb effects at the microscopic level in the

interpretation of nuclear transverse momentum data.

Following Ref. [40], we further address the azimuthal distributions [37, 41] for free
neutrons measured by the E848H collaboration [42, 43, 44] at the Bevalac. Calculations
done with the BUU model {8] have reported that the azimuthal anisotropy ratio [37] was
an observable sensitive to the value of K used in the theory. We will explore in this

work the issue of the sensitivity of this particular observable to the nuclear equation of



state. As the BUU is a one-body theory, we apply a simple phenomenological coalescence
prescription to differentiate free particles and composites. The complexity in theory of

the cluster formation will be also explored.

This chapter is organized in the following way. In the next section, we will give a
very simple description of the BUU model. Following a detailed presentation of nuclear
mean-fields used in the microscopic numerical calculations, section 4 is decidated to the
evaluation of transverse momentum generation from several different sources. We then
compare our results with experimental data for pseudo-nucleons in section 5. After in-
troducing the coalescence prescription in section 6, we compare the simulation results to
FS4sH free neutron data in section 7. We also wish to provide a quantitative connec-
tion between composite flow and the coefficient of compressibility for equilibrium nuclear
matter in the framework of the BUU model. This is presented in section 8. We finally

summarize.

2.2 The BUU microscopic Model

We study the dynamics of heavy ion collisions by use of the BUU transport equation:
. 2 - B -
51 T+ VD) Ve - Ve U PV (7.5, 8) = I[f] (2.1)

where f{r.p.t) is a semi-classical phase space density. In this approach, the particles
uecasionally collide and in between collisions, they are propagated by solving Hamilton's

cgilallols?

F = —VUF P
F = LG (2.2)

The U(F,p) will affect the behavior of the particles and needs to be evaluated self-
consistently. As mentioned previously, the one-body potential is phenomenological and

will depend on the nuclear density as well as on the particle momentum. The various



potentials. which may yield different nuclear matter equations of state, will be addressed

in detail in the next section.

The effect of the two body collisions can be handled by considering the average rate

of change of the occupancy f) at a given phase space point (r;.p;). It reads

o 44 p, , do(12 < 1'2) 2 - .
rf = [ 55t [ o a(lcm'ml LFifafifs - 1122 (2.3)

where a Pauli blocking factor f(r,p)=1-f(r,p) is included and v, is the relative speed of

the two colliding particles. The total elastic nucleon-nucleon cross section o(12 <> 1'2')

is parametrized in the following way:

55 [mb] for /s < 1.893GeV

35
20 [mb 1.893 < < 2.255
T 100(/z —1803) T 0 mbl for Vs <
——1—;—5—2 + 10pace.2in[mb for /s > 2.255GeV (2.4)
S — 4.

which is different from a previous parametrization ({8]. The modification is motivated to

improve the fit to data for kinetic energy over 1 GeV (see Fig. 3.8). For the inelastic total

Ccruss section. we use

| 20(y/5 — 2.015)2
in = > 2.015GeV 2.5
Tnn—nd = 0015 + (/5 — 20157 Vs 2 ¢ (25)

otherwise it is zero. And o™, is related to o' .. by detailed balance, as described
in the next chapter. In the collision term I[f], we include elastic collisions for NN—NN,
AA - AA.NA — NA, and the inelastic reactions of NA — NN, NN — NA. The ex-
tension to handle the pions explicitly will be presented in the next chapter. The dynamical

consequence on the collective flow of the pions will be also addressed there.

The BUU equation is solved numerically with a test-particle method. The initial
momentum distributions of the test particles are determined by a iocal-density approx-
imation. The dynamical evolution of the collisions is divided into time steps of length
03 fue oo Within each time step. the elastic or inelastic collisions between the test par-

ticles are simulated by Monte-Carlo. The collision probability between two particles is

9



proportional to the nucleon-nucleon cross section o,,. The density of final state is then

inspected for Pauli blocking.

A alternative way to solve the BUU equation is the Lattice-Hamiltonian method devel-
oped by Lenk and Pandharipande [45]. This method can conserve the total energy exactly
and currently is only used for momentum independent potentials. But with a2 momentum
dependent potential, this method requires the calculation of an average density pr at the
sites of a six-dimensional lattice. The computer memory and the CPU time will increase

drastically. For actual such simulations, this method currently is unpractical [46].

2.3 The Nuclear Equation of State(EOS)

As shown in appendix A, the nuclear potential is directly related to the nuclear equation of
state. Since full G-matrix calculations are still absent for such a potential, different forms
of phenomenological momentum dependent potentials are found in BUU applications.
Ciaie. Bertsch and Das Gupta employed a parametrization of the potential energy density

that can be written as [32]

2 po o+1 f§ 1-&-&“’—]2

Veep (p(7)) =

The corresponding mean field is obtained by taking a functional derivative with respect

to the single—particle occupation function; U = 'f,—‘;l,,—. One then obtains
o — et
T C ’ C
Ucep (p(T),P) = A(P(ﬁ) (ﬂ(‘l) +—/dsp f(-, 7) 2"’_—'—.‘0_2’
Po Po 1+ [u&] Po1 + [2;92]
A A
(2.7)

where p is the momentum of the particle, < p > is a local momentum average, and
f{r.p) is the phase space occupation density . This quantity is normalized such that the
nuclear density p(7) = [ d®p f(7.p). In cold nuclear matter, f(7,p) = (4/h%)8(pr — p)
and < p >= 0. In a collisional case. f(7,p) will deviate from its zero temperature value.
Thus

< poo JEREIED) _ [P f() (238)

[ d&p f(7,P) p(™)

10




will not in general be zero. There are five parameters to be determined in Uggp(p(7), D).
Previously [32], one of them was chosen arbitrarily: the momentum scale A = 400 MeV.
We require the following at the saturation density: (i) the effective mass m*/m is set to
0.7 at the Fermi surface, and (ii) the total energy per nucleon is adjusted to reproduce
the volume term of the semi—empirical mass formula, E/A = —16 MeV. We use gy =
0.163 fm~3 and thus obtain K = 215 MeV, for o = %. This exponent has a large influence

Ol I\

Some subsequent work by Welke et al. 37! used an improved functional

-ll-) ‘ﬂ B pd— F) C//d3 3 lfrﬁ‘)f(- -") (2.9)

¥ (p(r) =
MDY (P 9 20 O’-r-]. 55 [tir
which leads to the other form of the momentum dependent potential we shall consider:
T p(T ' P')
Usmpvi(p(7).p) = A (p(d)) (Q) /ds o2 (2.10)
Po Po 1+ [ ]

The five constants A, B, C, o, and A in Uyxpvi(p(7),p) were set by demanding that,
at saturation: E/A = —16 MeV, K = 215 MeV, the real part of the optical potential
Ulpp. p = 0) = —75 MeV and U(py, £ = 300 MeV) = 0. It then follows that
Ulpg. p — o) = 30.5 MeV and that the effective mass m*/m = 0.67, at the Fermi
surface. The agreement of Uypy; with the real part of the optical potential as extracted
from experiment is remarkable. at both low and high energies {47, 48]. To clarify the
arigins of these parametrizations. we state here that a Yukawa interaction would have
« mean held whose exchange term would be a momentum dependent expression of the
MDYT type. The GBD energy density can be obtained from its MDYI counterpart by
replacing p” in the denominator of the integrand of Eq. (2.9) by its average, < g’ >. The
momentum dependent term of the MDY mean field is attractive and important at low
momentum, but it weakens and disappears at very high momentum. Even though both
of the above parametrizations (GBD and MDYTI) can share the same compressibility K,
the quantities U(pg, p — o0) and the effective mass m* can be different. The value of
U(py, p — oc) has important consequences for the modeling of nuclear collisions at high

energies, as we shall see.

11



In this work, for the sake of consistency and for the purpose of a quantitative com-
parison, we reset the five constants in our GBD and our MDY potentials. The detailed
procedure of the parametrizations is presented in appendix A. For both parametrizations
we require that 0 = 12/11. E/A = =16 MeV, py = 0.15 fm=3, U(p,p = o) = 30.5 MeV,
and m*;m = 0.67. We then obtain K = 210 MeV, for both potentials. We call these the
new MDY (NMDYI) and new GBD (NGBD), respectively, to distinguish these new pa-
Latneler sets from the previous ones. We further note that both NGBD and NMDYI give
a similar excellent fit of the optical potential (defined at saturation density), a desirable

and important feature.

If one neglects the momentum dependent term, which means C=0, the mean field is
a function of the nuclear density p alone. This simple Skyrme parametrization has the

form (making the 7 dependence implicit):
P o
Ulp) =4 (£)+ B (£). (2.11)
Po Po

We may thus further define two additional parameter sets. The first is a Hard potential
(K = 373 MeV) and the second a Soft potential (K = 200 MeV). The parameters for
the GBD. MDYI. NGBD. NMDYI. and momentum independent Hard and Soft potentials
are summarized in Table 1, together with a hard MDYT potential(HM), which has K =
373 MeV. The parameters for the MDY interaction with K=100, 150 and 250 MeV are
also presented for completeness. Note that for all those potentials P(py, T = 0) = 0 and

E/A(po,T =0) = —16 MeV.

Fig. 2.1(a) shows the difference between the NGBD and NMDYT single—particle poten-
tials. Both those potentials produce the same bulk nuclear matter properties at equilib-
rium. We plot the potentials as a function of wave vector k, for densities ranging from 0.1
to 0.5 fm~3, in units of 0.1 fm~3. Both potentials have a somewhat similar momentum
dependence, but for higher densities the NGBD is more attractive at values of k¥ < kg and
notably more repulsive at £ > kg. We thus insist on the following important fact: even
though the two interactions have an identical high-momentum behavior for p = pg, the

similarity in their asymptotic values is not guaranteed for densities other than equilibrium

12



Tuble 2 1: We write here the parameters and characteristics of the single—particle poten-
ais we have introduced in the main text.

Model A B o C A mx /m U(py,o0) K
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

Soft -351.3 300 7/6 0 1 —51.3 200
Hard —120.5 69.2 2 0 1 —51.3 373
GBD —-144.9 203.3 7/6 ~75 400 0.7 —-1.34 215
MDYI -110.44 140.9 1.24 —-64.95 415.7 0.67 30.5 215
NGBD  -2275 347.7 12/11 -103.9 4954 0.67 30.5 210
NMDYI -322 352.5 12/11 -62.75 417 0.67 30.5 210
HM -9.0 39.5 2.27 —62.75 417 0.67 30.5 373
MDYI1 66.13 —-35.78 0.404 —64.95 4175 0.67 30.5 100
MDYI2 1466 —116.21 0.769 —64.95 4175 0.67 30.5 150
MDYI3  —-52.62 83.11 1.451 —64.95 417.5 0.67 30.5 250

uuclear matter density. The influence on the collective observables will be discussed in
‘e tollowing sections. As an additional comparison. we also show the momentum depen-
dence of the GBD and NGBD parametrizations in Fig. 2.1(b). The two parametrizations
vield almost identical compressibilities (c.f. Table 1), but the high momentum NGBD
is much more repulsive owing mainly to its asymptotic optical potential: U(p,p — o0).
Also, comparing with Wiringa's microscopic calculations [49] one realizes that NMDYI
is very close in behavior to that of the UV14 + UVII interaction, over a wide range of
momenta and densities. On the other hand, the high momentum part of NGBD reaches
values closer to that of the UV14 + TNI potential. The potentials described by Wiringa
are known to provide a good description of light nuclei ( they also can reproduce nucleon-
nucleon scattering and few-body data) and bulk nuclear matter properties and have a

nuclear compressibility K=210 MeV consistent with nuclear breathing mode analyses.

2.4 Transverse Momentum

One important technique proposed to quantify the flow of nuclear matter is the trans-

verse momentum analysis [28]. The basic idea involves estimating the orientation of the
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Foowre 21 a4 A comparison of the momentum dependent NMDYI and NGBD poten-
tials. adjusted to produce identical bulk properties in cold nuclear matter. The abscissa
shows the wave number. Starting from the bottom, the different curves are for densities
0f0.1.0.2,0.3, 0.4 and 0.5 fm~3. (b): the same as in (a), but with the GBD and NGBD
potentials.

reaction plane for each event by using the beam direction and the constructed vector
0= Y. w(y,)p,_. where p,_ is the transverse momentum of the vth outgoing particle,
w, =1fory, >0and w, = —1if y, < 0. Here y is the rapidity. Within each rapidity bin,

the average transverse momentum < P;(y,,) > in this estimated reaction plane is then

defined as -
< P;(yu) >= quTvlv Qu = z wupu_'- (212)
lQUl pEY

The autocorrelations are removed by calculating @, individually for each particle without
including that particle{u # v). Since this estimated reaction plane is not the true reaction
plane. the in-plane average transverse momentum < P,(y,) > is obtained by correcting
the measured value of the < P,(y,) > for dispersion [29] . In our theoretical calculations,
the reaction plane is always known as the plane formed by the impact parameter (x-
direction) and the beam direction (z-direction). This analysis method has also been used
to clarify the transverse momentum generating features of different nuclear mean fields in

the BUU approach to nucleus—nucleus dynamics. In the framework of such studies it has
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been shown that under certain circumstances, a soft momentum dependent potential can
produce about the same transverse momentum as that of a hard momentum independent-
interaction {32. 33]. In order to further highlight the behavior in a dynamical situation of
the Hard. GBD. NGBD and NMDY!I potentials, we plot in Fig. 2.2(a) the time evolution of
the average rransverse momentum for a symmetric Nb + Nb collision at projectile kinetic
cnergy k- 40U MeV  nucleon at an impact parameter b = 2.1 fm. A sizeable difference
in the saturated transverse momentum is observed. The hard momentum independent
potential follows the behavior of the soft momentum dependent one quite closely, at this
impact parameter. The asymptotic values of their average transverse momentum are only

4 MeV/c apart. We comment on the behavior of the momentum dependent interactions

below.
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Figure 2.2: (a): Average in plane transverse momentum per nucleon versus time for
BUU calculations: (b) Average in plane transverse momentum per nucleon versus time
for Vlasov calculations; of Nb + Nb at 400 MeV /nucleon, at an impact parameter b =
2.1 fm. The results are for the Hard, GBD, NGBD and NMDYT potentials.

By setting the collision term in the BUU equation to zero, one can study the Vlasov
behavior of the Hard, GBD NGBD and NMDYI potentials. From Fig. 2.2(b) one realizes
that the momentum dependent single particle potentials alone can generate large trans-
verse momenta. whereas the Hard potential can only yield very small transverse momenta.
Comparing Figs. 2.2(a) and 2.2(b), we can further deduce another important fact: the

st lard two-hady collisions is quite different, depending on whether the nuclear mean
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field is momentum dependent or not. Comparing the Hard and NMDYT potentials, the
fraction of the net average transverse momentum generated by adding the collision term
tu the Vlasov equation is = 100 % and =~ 42 %. respectively. However, it is important to
vt ont that the rransverse momentum is generated by the nuclear mean field and the

nard two budy collisions in a highly non-linear fashion. From Fig. 2.3, the pure cascade

70 v r —
Nb+Nb at 400Mev/A(b=2.1%m)

4
60 'ra INC
r

X

<P > (MeV/c)

-0 - . " i
g S 0 15 2C 25 30 35 40 45

fm/c)

Figure 2.3: Average in plane transverse momentum per nucleon versus time for Cascade
calculations of Nh = Nb collisions at 400 MeV /nucleon. at an impact parameter b = 2.1

an

simulation results, Figs. 2.2(a) and 2.2(b), one can readily deduce this important argu-
ment. Fig. 2.2(b) also tells us that, even though the GBD and NGBD potentials have the
same functional dependence on momentum and almost identical compressibilities, they
produce net transverse momenta that are very different from each other. As discussed in
the above section, this result can be understood simply in terms of the different asymp-
totic values of the respective one-body potentials. Continuing our interpretation of the
results in Fig. 2.2(b), we find the following interesting fact: the NGBD and NMDYT po-
tentials produce average transverse momenta in the Vlasov model that differ by =~ 10
MeV/c. Both these parametrizations share the same U(pg,o0) and K. As mentioned
previously. fitting the static nuclear matter properties and optical potential is not enough

- predicr unarmbiguously the consequences of the different interactions in nonequilibrium

situations. [t is also likely that realistic cases will also carry the added complication that
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generally, < > # 0 in the GBD formulation of the one-body potential.

Fig. 2.4 shows the average in—plane transverse momentum, calculated in the BUU
model, as a function of centre of mass rapidity. From this figure (a), it is also clear that
NGBD is more repulsive than NMDYI. we also plot the results with the GBD and MDYI
potentials in Fig. 2.4(b), and the GBD and NGBD results in Fig. 2.4(c). It shows that
the GBD and MDYT potentials produce almost exactly the same results. The NGBD
potential produces larger transverse momenta than the GBD potential. This feature has

alreadv appeared in both Figs. 2.2(a) and 2.2(b).

Anothier aspect we need to address here. is the importance of Coulomb effects. When
the nuclel are large, such effects could play a large role in the heavy ion dynamics. To settle
this issue, we solve the Poisson equation on a grid, using fast relaxation methods [50].
The results of our dynamic calculations, with and without the Coulomb interaction, are
displayed in Fig. 2.5. One can see that the effect on transverse momentum, in the energy
region relevant to our studies is not very important. Nevertheless, these factors need to

be consistently taken into account. We do so in our calculations.

2.5 Comparison With Pseudo-nucleon Flow Data

2.5.1 Ar+Pb Data

[ this section and the following. we compare BUU calculations with experimental data.
We wili first concentrate on values of the flow parameter F' and transverse momentum
distributions, as measured in asymmetric heavy ion reactions by the DIOGENE collab-
oration [51] and by the Riverside/GSI/LBL Streamer chamber group [52]. The flow

parameter F' is defined as

F= [Elﬁdz/_mi] , (2.13)
y Y=¥o

Here < P, > is the average value of the transverse momentum projection on the reaction

plane and y, is the rapidity at the intercept: < P, >|,,= 0. Since the experimental

17



125 ~——r— r T
100 o NGBD N _
a NMDY! a . 3
s @ SR o
0) s0 M 3
~ .
3 B t E
2 o}-—-—-—-—-—--—-—;
A, -2 B $ 3
n - 3
v -50 E— 'Y : —
7SR . e 3
Er o, . 3
-00 & 3
b 3
28 = 3
-6 -0.4 -G.2 0.0 0.2 C.+ 0.6

Y:.m,
125:rﬁfGéD.,,,..ﬁ1,”r...,‘ﬁ,:
- -] 3
0o E 873
F & MDYl (b) b 3
75 - - 3
) E a 3
~ 50 E
% 25 E o -E'
3 0 p— »- m = — = —a - — - — - — -—;
oo :
v -s0 E . E
£ [ E
-TSE 5 e E
-0 £°* E
__1255AA;...l‘Lki_L..lk.,lt,_L:
~-06 -04  -02 0.0 0.2 0.4 0.6

YCH
125 pr—r————r— ——— ——r—r—
oo & °NGBD R
.E s GBD (e) g & *3
75 = 2 a 3
4 3
N * E
t -
g rF 2 E
A : T T T T T T T T
A" -25 & 8 3
v -50 E s 3
-75 . a (] 3
-0 E* ° ° 3
-125 ? PRI BT S AT S ST S NS S S A_LE
-06 -04 -02 0.0 0.2 0.4 0.6

Yeu

Figure 2.4: Average in plane transverse momentum distributions versus centre of mass
rapidity for Nb + Nb for b = 2.1 fm and beam energy 400 MeV /nucleon. The results are
(a) for the NGBD and NMDYT; (b) for the GBD and MDYT; (c) for the GBD and NGBD

interactions.
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Figure 2.5: The average in-plane transverse momentum in the forward direction as a
function of the kinetic energy for "Au +!%7 Au collisions at impact parameter b=4.8
fm with NMDYT potential. The square and circle symbols represent with and without
Coulomb effect. respectively.

~rhoence cuts influence the observables. corresponding restrictions have to be applied to

the theoretical calculations in order to compare with measured values.

We first turn to measurements by the DIOGENE collaboration. There, the laboratory

polar angle of the particles is limited to
20° <4 <132°. (2.14)
The transverse momentum P, of the particles have to satisfy
P,/m >0.36 + 0.72y ify<0 (2.15)

P./m > 0.36 — 0.8y ify>0. (2.16)

The measurements of rapidity distribution for “pseudo-protons” !, around g are plotted
i Fig 26 ra) for Ar — Pb at 400 MeV /nucleon at an impact parameter b=4.5 fm. Well-
snown geometrical arguments are used to estimate the impact parameter [53]. The data
shows a linear rapidity dependence of < P, >, in the interval [0, 1]. The flow parameter

F is obtained by fitting the data to a straight line in the appropriate interval, as shown

! All protons, whether free or bound in clusters, are included.
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on Fig. 2.6. The BUU calculations were performed with 120 parallel events to minimize
numerical fluctuations, and with free space nucleon-nucleon scattering cross sections. We
note in passing that since the two-body collisions contribute more to the transverse flow
with a momentum independent potential than with a momentum dependent potential as
discussed previously, this observable is not expected to be greatly sensitive to reasonable
variations in the in-medium cross sections. To illustrate this point, compare Fig. 2.2(a)

with Fig. 2.2(b).

—O_f:.in”
P °
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Fioiire 26 Average in plane transverse momentum (divided by the proton mass) as a
tunction of rapidity in the Ar ~ Pb reactions at 400 MeV per projectile nucleon at an
ilupact parameter b=4.5 fm. The solid and dashed lines represent linear fits through
data[51] and calculation, respectively.

Our results also show that the transverse momentum < P, > depends linearly on the
rapidity around < P; >=0 with both NGBD and NMDYT potentials. Fig. 2.6 clearly
shows this. The fit to the experimental data is quite good with both interactions. To
increase data sensitivity to the model parameters, the extracted values of the flow pa-
rameter, F', are plotted as a function of the impact parameters b in Fig. 2.7, together
with the relevant data. We see that the overall agreement is quite remarkable with the

NMDYT potential whereas the NGBD potential gives a larger values than the experimen-
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tal measurements. The momentum independent potential fails completely to reproduce
the data. We show the important point that the asymmetric system can nicely separate
out interactions of a similar compressibility but with a different momentum dependence.
The results associated with the hard and soft interactions of the MDY]I type do not differ

much in this plot.
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Figure 2.7: Impact parameter dependence of the flow parameter F' for Ar+Pb reactions
at 400 AMeV. The results of BUU calculations with different single particle potentials,
Hard. NGBD. NMDYT and HM. are compared with the data of Ref. [51]. Error bars in
the theory reflect statistical errors and are only given for one set of calculations.

Now we turn to rapidity distributions as measured by the Streamer Chamber. The
resait~ of the analvsis are presented in terms of the mean in-plane transverse momentum
tur pseudo-protons as a function of normalized rapidity in Ar + Pb central collisions at
400 and 800 MeV /nucleon, respectively. Fig. 2.8 shows the calculation results of rapidity
distributions with the NMDYT and NGBD potentials at 400 MeV /nucleon in comparison
with the data. The behavior differs slightly from the common S shape [29] due to the
asymmetry in collision geometry. It also differs from the linear DIOGENE data as the
two detectors have widely different acceptances. In the calculation, the maximum impact
parameter was evaluated within a geometrical clean cut model. Our calculations with
the NMDYT potential reproduce the data very well. A considerably larger transverse
momentum transfer was generated by the NGBD potential. In Fig. 2.9 we compare the

results obtained with the two potentials with data obtained with the same projectile-
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target combination, at 800 MeV/nucleon. We reach similar conclusions as in the 400

MeV/nucleon case.
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Figure 2.8: Average in plane transverse momentum as a function of normalized rapidity
in central Ar + Pb collisions at 400 MeV per projectile nucleon. The data of Ref. [52] are
compared with BUU calculations with the NMDYT and NGBD potentials. Errors bars in
the theory reflect statistical errors only and are given for one set of calculations.
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Figure 2.9: Same caption as in Fig. 2.8 but with incident kinetic energy 800 MeV /nucleon.

Fig. 2.10 presents the excitation function of the average in—plane transverse momentum
in Ar + Pb collisions. The average transverse momentum per nucleon is evaluated from
protons with rapidities in the c.m. system greater than 0.1, 0.15, 0.2 and 0.3 for beam
energies 400, 800, 1200 and 1800 MeV /nucleon, respectively. The average BUU transverse
momentum with the NGBD and hard MDYI(HM) potentials are much larger than the
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data. The only good fit is provided by the NMDYT potential. There, the agreement is

striking at all energies. Again, a hard momentum independent potential is completely

ruled out by this data.
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Figure 2.10: We plot the excitation function of the average transverse momentum per
nucleon in the reaction plane for the forward centre of mass hemisphere as a function
of beam energy for Ar+Pb reactions. The data of Ref. [52] are compared with the BUU
calculations with the Hard. HM. NGBD and NMDYT potentials. Errors bars in the theory
reflect statistical errors only and are given for one set of calculations.

Summarizing this section so far, we reproduce both the DIOGENE and the Streamer
Chamber measurements quite well in terms of BUU microscopic simulations with the
MDYI type momentum dependent potential, with a compressibility K = 210 MeV. A
GBD type momentum dependent potential with the same K value is not so successful
and a momentum independent interaction fails completely. The flow data for asymmetric
systems is quite efficient in separating interactions that are momentum dependent from

those that are momentum independent, even though their compressibility coefficient are

the same.
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2.5.2 Au+Au Data

EOS Flow Parameter F

We now turn to a set of data on symmetric systems {54, as measured by the EOS TPC
Collaboration. Such data are of high quality, virtually free of experimental biases. The
EOS Time Projection Chamber, with its simple and seamless acceptance, good particle
identification and high statistics, was designed to overcome the limitations of the previous
generation of 47 detectors. The Plastic Ball detector, even though having provided a sem-
inal contribution to the field. had a complex acceptance that was not so easily simulated.
[ he Streamer Chamber was somewhat limited by its particle identification capabilities.
In the EOS TPC measurements we shall consider, all nuclear fragments species up to
‘He are included. The multiplicity trigger was set in order to select an interval centered
about the value where the flow has its maximum. This multiplicity interval corresponds
to baryon multiplicities 0.6 M™>* < M < 0.9M™2  M™2** is a value near the upper
limit of the multiplicity spectrum where the height of the distribution has fallen to half
its plateau value. In our BUU calculations, we have adjusted our impact parameter limits
to reproduce the multiplicity cuts, in a geometrical clean—cut model. The integration was
then carried out by sampling impact parameter values between those two limits. The
data are in-plane transverse momentum measurements as a function of rapidity. The
flow parameter F can then be evaluated. Fig. 2.11 shows the TPC data, together with
our calculared results. Measurements were made for Au + Au at beam energies 250, 400,
6uU. 300 and 1200 MeV/nucleon. We display results of calculations with a soft (NMDYT)
and a stiff (HM) momentum dependent potential. Calculations done with the NMDYI
interaction reproduce the data exactly. Both the data and the results display that this
flow parameter F from Au + Au symmetric systems is energy independent. It would be
very interesting to see at higher energies, such as the AGS, if such a feature is still there.
Since the HM potential produces much larger results, it shows that these symmetric EOS
data have much larger sensitivity to the nuclear compressibility than the asymmetric Ar

+ Pb data.
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Figure 2.11: We plot the excitation function of the flow parameter F', where F is defined
in the main text. The solid squares refer to Au + Au data as measured by the EOS TPC
Collaboration [54], the circles are calculations done within the BUU approach, with a soft
and stiff compressibility coefficient. The numerical uncertainties in the calculations are
less than 10%. as previously.

Therefore. the different characters of the DIOGENE asymmetric data and the EOS
~vinmerric data implv rhat the asvmmetric svstems may be used to appreciate the im-
portance of the momentum dependence of the nuclear interaction. For the study of the
nuclear compressibility, one needs to focus on symmetric systems. However, it is also very
important to point out that at low energies, e.g. Ekin < 150 MeV, the flow parameter F
derived from the symmetric systems may not discriminate between a soft (NMDYTI) and

hard(HM) nuclear equation of state, as displayed by Fig. 2.12. As at such low energies,

the fragment contamination complicates the situation.

Angular Momentum Conservation

Au + Au is a reasonably large system and it might be that there exists effects that
could safely be neglected for smaller nuclei at lower energies that are important here. It
was brought up recently that an improvement in the angular momentum conservation in
the microscopic models could perhaps lead to a re-evaluation of the role played by the

nuclear mean field in generating transverse momentum in heavy ion collisions [55]. The
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Figure 2.12: The flow parameter F " = F - (Yseam)em as a function of kinetic energy for
NMDYI and HM potentials. The flow values are extracted from Au + Au collisions at
the impact parameter b=4.8 fm with the rapidity coverage (Y/Yseam)em from -0.4 to 0.4.
The flow parameter F is defined in the text.

quantitative importance of conservation laws in microscopic models of heavy ion collisions
has been investigated before '56. 57!. In the case at hand, the only difference might come
froin the tact that we are dealing here with very heavy systems at high energies. Thus the
respective role playved by two-body scattering and mean field effects might be modified.
We have considered two independent algorithms. In the first approach, whenever two—
body scattering occurred at the microscopic level we made sure that the direction of the
reaction plane was unchanged in the centre of mass of the colliding nucleons. The other
algorithm made sure that angular momentum was conserved ezactly. The latter algorithm

can however only be practically applied in a cascade calculation. This does not affect our

general conclusion.

Fig. 2.13(a) displays the effects of reaction plane conservation on the results of BUU
calculations. for Au + Au collisions at 1 GeV/nucleon. The impact parameter range
and kinematical cuts were adjusted to match those of the TPC. Fig. 2.13(b) shows the
consequences of reaction plane and exact angular momentum conservation on cascade
simulations of the same nuclear reaction. The imposition of exact angular momentum
conservation increases the flow parameter by roughly 23% in cascade simulations. We can

also see that the dominant effect in angular momentum conservation comes from keeping
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the direction of the reaction plane constant in individual two—body collisions. In the BUU
calculations, reaction plane constraints raise the flow by only 8%. The net effect on the
transverse momentum can readily be appreciated in those two figures. Basically, the effect

on BUU calculations is considerably smaller than in cascade approaches.
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Figure 2.13: We plot the transverse momentum generated in Au + Au collisions at 1
GeV/nucleon against rapidity in the centre of mass. We investigate the consequences of
(a) imposing a reaction plane (RP) on each two-body collision in the BUU model with the
NMDYI momentum dependent potential and (b) reaction plane (RP) and exact angular
momentum conservation (AMC) in a cascade approach.

Fig. 2.14 displays the actual collision numbers between nucleons during the dynamical
process with each time step 6t = 0.3 fm/c. From this figure, it is also clear that the effec-
tive nucleon-nucleon collisions are decreased by the imposition of the angular momentum

conservation. This decrease is much more on the cascade simulations than in the BUU
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approaches with the NMDYI momentum dependent potential.

30 —

8uu !

;
- Qo
< s SUU-RP
‘A a . ¢
-~ a NC ‘
= s, ¢ * NC~AMC -
- - .
e »
- L‘ -
E PR -
= L]
_ AW
= - »y
~ e \‘Q\ 3
~— <

w

0 5 0 S8 20 25 30 35 40
T (fm/c)

Figure 2.14: The effective number of nucleon-nucleon collisions within each time step
¢ = 0.3 fm/c during a Au + Au reaction at 1.0 GeV/nucleon and impact parameter
b=4.8 fm. The consequences of the imposition of angular momentum constraints on the
cascade simulations and BUU model with the NMDYI momentum dependent potential
are shown.

2.6 BUU Model + Coalescence Prescription

\lore than ten vears of calculation with the BUU transport model [58] have left no doubt
on the complexity of nucleus-nucleus reactions at intermediate energy and on the need for
a complete transport approach. As shown in the previous sections, the model has been
quite successful in reproducing single particle flow patterns and transverse momentum
distributions. However, the BUU equation is the representation of a one-body theory.
It vields the time evolution of the average one-body density and consequently it is not
well suited to describe aspects of nuclear reactions that deal with significant dynamical
branching or fluctuations. Nuclear multifragmentaticn is a good example of this class of
phenomena. A significant amount of theoretical activity has been devoted to incorporate
the effects of fluctuations in the transport approaches. An attempt to extend the standard
BUU in this direction was made recently [59]. Also, in an approach similar to the theory of

hvdrodyvnamic fluctuations. a Boltzmann-Langevin equation for the evolution of the one-
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body density was used [60]. A formalism for addressing stochastic one-body dynamics
within the framework of transport theory was devised [61]. The above three techniques
have been critically compared in a recent publication [62]. With the exception of the
first approach, these scenarios are still not amenable to calculations that can directly be
compared with experimental results. Some recent important developments involve the use
of quantum many-body theory to derive transport equations with bound-state production

and absorption {63, 64]. The work along these lines seems extremely promising.

Driven by the need to interpret the available experimental data in a plausible fashion,
uther more phenomenological avenues have been followed in the extraction of composite
contributions from transport theorv results. One simple and intuitively appealing ap-
proach relies on the idea of coalescence. This concept was introduced already long ago
05 . The original formulation for heavy ion collisions was devised around the thermody-
namic model. Put simply, the picture stipulates that if two or more nucleons are close
enough together in phase space when the momentum space configuration of the reacting

system ceases to change, they will emerge as a self-bound cluster.

In performing theoretical analyses of intermediate energy heavy ion data and com-
paring the results of complete BUU calculations with measurements of single nucleon
observables, the need to subtract the “spurious” (in this context) cluster contribution
from the full simulation results has also arisen. Some early experimental measurements
have concentrated on this independent cluster component. For example, the Plastic Ball
group has observed relativelv large triton yields in nuclear reactions at intermediate and
high energies (66;. A coalescence prescription to study the transverse flow of intermediate
mass fragments with a relativistic BUU model has been used previously and has been
shown tu provide a good description of the data {67]. At energies below and around 100
MeV /nucleon, a six-dimensional coalescence model has also been used to filter the results
of VUU simulations and to very successfully compare with experimental results [68]. At
such energies, the composite to free nucleon ratio is larger than at the energies we will

consider here.
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It is important to remember that a cluster is really an entity correlated in six-
dimensional phase space. However, in view of the fact that our BUU approach contains
a binding mean field interaction, we shall adopt a somewhat simpler viewpoint. It is
well know from transport theory calculations that the transverse momentum generation
in heavy ion reactions begins quite early in the history of the reaction and then stops.
The amount of transverse momentum generated has then saturated and the momentum
space distributions are approximately stable. Our idea is to apply a coalescence crite-
rion in coordinate space only. at this point. Typical BUU calculations consist of several
nucleus-nucleus collision events performed in parallel to enhance statistics and to pro-
vide a smouoth initial state density profile in coordinate and momentum space [8)2. The
approach is then the following: within a given BUU event, a nucleon will be considered
“free” only if no other nucleons are found within a certain critical three-dimensional dis-
tance. d.. Otherwise, it will be considered a component of a bound cluster. We justify
restricting our analysis to coordinate space by the fact that, owing to the dynamical na-
ture of the problem and to single particle propagation in the self-consistent mean field,
particles nearby in coordinate space but far apart in momentum space will separate after
a certain time. There are two parameters to our scenario: the time at which the coa-
lescence model is applied, t., and the critical distance parameter, d.. We choose t. as
the time when the transverse momentum generation just starts to saturate. The value of
the critical distance d, is left as a free parameter and adjusted to experimental data (see
next section!. This coalescence picture is verified quantitatively in a more sophisticate
approach. bv spanning the momenta of the nucleons temporarily assigned to a cluster and
by rejecting those for which it was kinematically impossible to belong to a common Fermi
sphere. This last criterion brings modifications of the straight coordinate space picture at
the level of less than 1%. We do recognize that the above simple criterion for clustering
is approximate, nevertheless, it is verified to be quantitatively sound and it does provide

a basis for adequate phenomenology.

?An alternate viewpoint is that each “physical” nucleon is represented by a number of “test nucleons”
equal to the number of BUU events.
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2.7 Comparisons With E848H Free-neutron Data
2.7.1 Double-differential Cross sections

Since the full one-body BUU theorv considers all the nucleons whether free or bound in
e ciitsters. to sitnulate the E848H free neutron data, the coalescence picture described
in the above section has been applied to differentiate the free nucleons and the composite
fragments. The value of the critical coalescence parameter d, is determined such that the
BUU simulation results with the NMDYI] momentum dependent potential would repro-
duce the double-differential cross section data for emitted neutrons. As before, the impact
parameter range is determined by a geometric model. This critical distance was found to
be 3.3. 3.0, 3.2 and 2.7 fm for the kinetic energies of 150, 250, 400 and 650 MeV /nucleon,
respectively for Au + Au systems. And for La + La and Nb + Nb systems at 400
MeV /nucleon, d. was chosen to be 2.8 fm, and for La + La at 250 MeV /nucleon, d. = 3.0
fm. The double differential cross sections in the rapidity bin 0.7 < @ = (Y/Yieam)em < 1.2
tor Au — Au collisions at beam energies of 150, 250, 400 and 650 MeV /nucleon are shown
in Fig. 2.15. whereas Fig. 2.16 are for La - La and Nb + Nb collisions at beam energy
ot MeV nucleon and La -~ La collisions at 250 MeV /nucleon. As displayed in both
Fig. 2.15 and Fig. 2.16. this single coalescence fitting parameter reproduced well the
double-differential cross section data of free neutrons for different systems and energies in
both magnitude and polar angle dependence. At smaller angles the agreement worsens

because of evaporation neutrons.

2.7.2 Triple-differential Cross sections

By restricting the BUU calculations to free neutrons with the specified NMDYI mo-
mentum dependent soft potential, the triple differential cross sections are compared with
the experimental data. There are no additional free parameters in this calculations.
Fig. 2.17 shows the tripie-differential cross sections for Au + Au systems in the rapidity

-

bin 0.7< « < 1.2 region at polar angles § = 15° and 8 = 21°, with kinetic energies
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Figure 2.15: The polar angle dependence of the double-differential cross sections for free
neutrons emitted with rapidities 0.7< @ = (Y/ Yieam)em < 1.2 in Au-Au collisions at 150,
250. 400, and 650 MeV/nucleon. The open circles represent the experimental data, the
filled symbols represent the results from the BUU theory: filled triangles represent all the
nucleons whether free or bound in the clusters and filled circles represent free neutrons.
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Figure 2.16: Double-differential cross sections for free neutrons emitted with rapidities
0.7< @ = (Y/Yseam)em < 1.2 in La-La collisions at 400 and 250 MeV /nucleon, and Nb-
Nb collisions at 400 MeV /nucleon. The open circles represents the experimental data,
the filled symbols represent the simulation results from the BUU theory: filled triangles
represent all the nucleons whether free or bound in the clusters and filled circles represent
free neutrons.
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250. 400 and 650 MeV/nucleon, respectively. Fig. 2.18 displays the triple-differential
cross sections for Au + Au at 400 MeV/nucleon, in three different rapidity bin regions:
0.7<a<1202<a<0.7 and —1.0 < a < —0.2. The polar angles are § = 18° and
g = 24°, respectively. In both figures, the open symbols represent the BUU simulation
results. the filled circles represent the measured data with correction to the true reaction
plane (zero dispersion A¢gg = 0) . Since the BUU calculation results are always extracted
in the real reaction plane, it is important that the measured data should be corrected to
zero dispersions in order to make meaningful comparison between the theory and the data.
In fact, Fig. 2.17 displays the energy dependence of the triple-differential cross sections,
as all the graphs shown in Fig. 2.17 are in the same rapidity region and also for the same
svmmetric Au ~ Au system. We can see the values of the triple-differential cross sections
increase with the kinetic energy. Fig. 2.18 displays the different rapidity regions. In the
forward rapidity regions. both the simulation results and the data tend to peak at ¢ = 0°
and fall off at @ = 180°. Whereas in the backward regions, the triple-differential cross
section distributions peak at 180°. These features agree with our understanding of the
nuclear flow properties. In general, the simulation results reproduce the measured data
well, including both the shapes and values. For Au + Au at 150 MeV/nucleon and other
polar angles at 250, 400 and 650 MeV /nucleon, one can refer to Ref. [42] to see how well

the complete data are reproduced by the theory.

The calculated triple-differential cross sections for free neutrons are shown in Fig. 2.19
for La + La and Nb + Nb systems in the most forward rapidity region 0.7 < o < 1.2 and
backward rapidity region —1.0 < o < —0.2 at 400 MeV/nucleon. In the rapidity region
0.2 < a < 0.7. the triple-differential cross sections from the three different systems Au-Au,
La-La and Nb-Nb are shown in Fig. 2.20 at 400 MeV /nucleon, and also 250 MeV /nucleon
for La-La system. The polar angle 6 is around 20° for all the systems in this figure. From
these two figures, we again see that the BUU calculations agree remarkably well with the

measured data.
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Figure 2.17: Triple-differential cross sections for the emission of free neutrons in the
projectile-like rapidities (0.7 < @ = (Y/Yseam)em < 1.2) at polar angles § = 15°, and 21°,
from Au-Au collisions at 250, 400, and 650 MeV /nucleon. Closed circles represent the
measured data and the open circles represent the theoretical results(see the text).
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Figure 2.18: Triple-differential cross sections for the emission of free neutrons in three
different rapidity regions (0.7 < o = (Y/Yseam)em < 1.2, 02 < « < 0.7, and -1.0 <
a < —0.2) at polar angles 6 = 182, and 24°, from Au-Au collisions at 400 MeV /nucleon.
Closed circles represent the measured data and the open circles represent the theoretical
results.
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Figure 2.19: Triple-differential cross sections for the emission of free neutrons in the
projectile-like rapidities (0.7 < @ = (Y/Yseam)em < 1.2) and backward rapidities (—1.0 <
a < —0.2) at polar angles 8 = 16°, and 72°, respectively, from La-La and Nb-Nb collisions
at 400 MeV/nucleon. Closed circles represent the measured data and the open circles
represent the theoretical results.
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2.7.3 Maximum Azimuthal Anisotropy Ratio

[f we integrate over the polar angle 6 of the triple-differential cross sections, we will get an-
other observable. the so-called azimuthal distributions %. Those azimuthal distributions
are measured event-byv-event with respect to the reaction plane which can be estimated
experimentally. There is always some error associated with the reaction plane determi-
nation [69]. As emphasized previously, the dispersion effect has to be corrected for in
order to be able to compare with the simulation results. The sensitivity of such azimuthal
distributions to the nuclear equation of state was examined by Welke et al. [37]. The

maximum global azimuthal anisotropy ratio can be defined as

= lo=0e
35 le=180°

Welke et al. have shown that the maximum azimuthal anisotropy ratio for all test nucleons
in a chosen rapidity range, R, was sensitive to the value of the compressibility coefficient
for equilibrium nuclear matter used in the theory [37]. Here we concentrate on free
neutrons. The character of the composite fragments will be addressed in the following
section. A maximum azimuthal anisotropy ratio can also be defined at each polar angle,

in a given rapidity range:
r(6) = 20 Ole=oc (2.18)
o3(8, 9)|s=180°

where

o3(8, ) = d®c/d(cos 8)d(¢ ~ dr)dy . (2.19)

The variables defined above can be determined in the experiments in the following
way. For each polar angle, the cross section measured in the experiment are fitted with
the function o3(8, ¢ —dr) = a(8)+b () cos(¢— ¢r), where @ is the determined azimuthal
angle of the reaction plane, and b'(§) = b(f)e~(2¢r)*/2 i5 the correction for the finite rms
dispersion A@gr, which was obtained for each event. For positive rapidity particles, the
triple-differential cross sections peak at (¢ — ¢r) = 0° and deplete at (¢ — ¢g) = £180°,
as seen in figures 2.17. 2.18, 2.19 and 2.20. The maximum azimuthal anisotropy for

positive rapidity neutrons becomes r(8) = [a(6) + b(6)]/[a(8) — b(0)].
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The BUU calculations of the polar-angle dependence of the maximum azimuthal
anisotropy ratio r(6) for free neutrons emitted from Nb-Nb, La-La and Au-Au colli-
sions at 400 MeV /nucleon are shown in Fig. 2.21 for (byaz/2R) = 0.5. In this figure, the
BUU calculations with K=380, 210 and 150 MeV are done for free neutrons. Fig. 2.22
shows the BUU calculations of the polar-angle dependence of the maximum azimuthal
anisotropy ratio 7(8) from La-La collisions at 400 and 250 MeV /nucleon for three different
values of the nuclear compressibility coefficient K=380, 210 and 150 MeV. Consistent with
the experimental data (see Ref. [44]), the BUU results in these two figures (Fig. 2.21 and
2.22) show very little sensitivity to the system mass and also the beam energy. The BUU
calculations of the polar-angle dependence of the maximum azimuthal anisotropy ratio
r(#) for free neutrons emitted in La-La and Nb-Nb collisions at 400 MeV /nucleon and
La-La collisions at 250 MeV /nucleon are compared with the data in Fig. 2.23. As we can
see from this figure, the polar-angle dependence of the maximum azimuthal anisotropy
ratio r(8) is unfortunately insensitive to the nuclear compressibility coefficient K of the

nuclear equation of state.

2.7.4 Average In-plane Transverse-Momentum

The calculated average in-plane transverse momentum < P, > of the free neutrons can
be obtained by following the method of section 2.4 . Fig. 2.24 shows the average in-
plane transverse momentum of free neutrons from Au-Au collisions versus the normalized
neutron rapidity @ = (Y/Yjeam)cm for the beam energies of 150, 250 and 400 MeV, re-
spectively. The curves show the BUU calculation results with the momentum dependent
NMDYI potential K=210 MeV and the symbols represent the measured data. From this
figure, we can see that the BUU results agree well with the measured data. If we fit the
data of this figure in the middle rapidity region (up to a = 0.5), the flow parameter F' 3
are plotted in Fig. 2.25. The open squares are the flow F' of neutrons for the three bom-

barding energies; the circles are the results for the same three energies for protons plus

3Note F' can be connected with the flow F defined in Eq.(2.13) by F' = F x Yg™
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Figure 2.21: The polar-angle-dependent maximum azimuthal anisotropy ratio r(8) of free
neutrons as a function of the polar angle 8 for Nb-Nb, La-La and Au-Au collisions at 400
MeV /nucleon from BUU calculations with MDYT type potential: K=150, 210, and 380

MeV, respectively.
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Figure 2.22: The polar-angle-dependent maximum azimuthal anisotropy ratio r(8) of
free neutrons as a function of the polar angle 8 for La-La at 400 MeV /nucleon and 250
MeV /nucleon from BUU calculations with MDYT type potential: K=150, 210, and 380

MeV, respectively.
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Figure 2.23: The polar-angle-dependent maximum azimuthal anisotropy ratio r(f) of
free neutrons as a function of the polar angle  for La-La at 400 MeV /nucleon and 250
MeV/nucleon, and Nb-Nb collisions at 400 MeV /nucleon. The filled squares represent
the measured data and the open symbols represent BUU calculations with MDYT type
potential: K=150, 210, and 380 MeV, respectively.
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Figure 2.24: Average in-plane transverse momentum of free neutrons as a function of
the rapidity (@ = (Y/Yieam)em) for 150, 250 and 400 MeV/nucleon Au-Au collisions.

Symbols represent the measured data and lines represent the BUU calculations with
NMDYT potential: K=210 MeV.
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Figure 2.25: Flow of free neutrons (open squares) and protons plus bound nucleons(open

circles) from Au-Au collisions against the beam energy. The filled squares represent the
BUU calculations with NMDYT potential: K=210 MeV.
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bound nucleons from the Plastic Ball Group [29]. The BUU calculations (solid squares)
agree within uncertainties with the experimental data. We also calculated the average of
< P./P, >, where P, is the transverse momentum of neutrons. The average < P,/P, >
is plotted as a function of the neutron rapidity in Fig. 2.26 for Au-Au system. One can
see again that the BUU calculations agree with the experimental data for the average
< P /P, >.

08
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<P./P1>

-02

-0.4
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Neutron Rapidity in cm., Y/Y, = a

Figure 2.26: Normalized average < Px/P; > of free neutrons as a function of the rapidity
(@ = (Y/Yseam)eae) for 150, 250 and 400 MeV /nucleon Au-Au collisions. Symbols repre-
sent the measured data and lines represent the BUU calculations with NMDYT potential:
K=210 MeV.

For the two smaller systems La-La and Nb-Nb, the average in-plane transverse mo-
mentum distributions versus the normalized rapidity a for free neutrons are presented in
Fig. 2.27 at 400 MeV /nucleon and also for La-La collisions at 250 MeV /nucleon. The
filled symbols represent the experimental data, the open symbols represent the BUU cal-
culations with the NMDYI potential (K=210 MeV). The experimental cuts are cautiously
applied in the BUU simulations. Again, the BUU calculations generally agree with the
experimental data within their uncertainties, especially in the mid-rapidity regions which

gives the information about the flow parameter F'.

Let us summarize this section. By restricting the analysis to free neutrons, our BUU
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Figure 2.27: Average in-plane transverse momentum for free neutrons from La-La colli-
sions at 400 and 250 MeV /nucleon, and Nb-Nb collisions at 400 MeV /nucleon as a function
of the normalized rapidity of the neutrons in the centre-of -mass system. The filled sym-
bols represent the measured data and open symbols represent the BUU calculations with
NMDYT potential: K=210 MeV.
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calculations with the NMDYT potential (K=210 MeV) plus the simple coalescence pre-
scription generally agree very well with the E848H measured double- and triple-differential
cross sections, except for smallest polar angles where the BUU cannot treat the neutron
evaporation. Note that the prescription for calculating free neutrons is in fact approx-
imate and may need improvement for low beam energies. It is in fact well known that
the composite “contamination” in the BUU grows as the bombarding energy is lowered.
Our BUU calculations can reproduce the experimental results of the in-plane transverse
momentum < P, > for free neutrons. Both the experimental data and the BUU calcula-
tion results show that the polar-angle-dependent maximum azimuthal anisotropy r(8) is
insensitive to the system mass and the bombarding energy. The BUU calcuiations reveal
that the r(#) data for free neutrons are insensitive also to the nuclear compressibility

coefficient K of the nuclear equation of state.

2.8 Fragment Azimuthal Distributions

As the sophistication in detection techniques increased, the separate measurement of the
flow of nuclear clusters has revealed that “clusters go with the flow” [70] i.e. the amount
of directed flow. as characterized by the in-plane transverse momentum per nucleon, was
found tu wmcrease with fragment mass. This feature had in fact been predicted rather
early [71]. Other calculations capable of producing nuclear fragments also contained the
feature that flow effects should be stronger, the heavier the fragment {72, 73, 74, 75]. Here

we will focus on the azimuthal distributions of the fragments.

As we have shown in the above section the azimuthal anisotropy ratio r(8) of the
free neutrons is insensitive to the compressibility K of the nuclear equation of state.
However, calculations by Welke et al. [37] have reported that this azimuthal anisotropy
ratio was an observable sensitive to the value of K used in the theory. The insensitivity was
confirmed by a recent analysis of neutron azimuthal anisotropy [76]. To reconcile these

two apparently contradictory analyses, we concentrate here on the case of semicentral
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collisions of Au-Au at 400 MeV /nucleon. The impact parameter range we shall integrate
over is 0 < b < 6.2 fm, and the critical distance in the coalescence approach was set at
d. = 3.2 fm. These conditions were determined in the investigation of E848H free neutron

data in the above section.

The calculations were done with our momentum dependent MDYT type potential. The
five parameters A,B,C, A and o used here will correspond to the nuclear compressibility
coefficient K=100, 150, 210 and 380 MeV (see table 2.1). Fig. 2.28(a) shows the maximum
azimuthal anisotropy ratio r(€) of free nucleons plotted against laboratory polar angle
for near-central Au + Au collisions at 400 A MeV. For now, we restrict our analysis to the
rapidity region 0.7 < (Y/Yheam)em. < 1.2 (40, 42, 43]. The statistical uncertainties in the
calculation will be slightly larger near the edges of the populated region. As clearly shown
in a previous section, these results further confirm that the free nucleon azimuthal data are
essentially insensitive to variations in the nuclear EOS. In Fig. 2.28(b), we show r(8) vs. 8
for all BUU nucleon test particles. A much clearer sensitivity to the nuclear compressibility
K can now be seen over most of the covered polar angle range. We may now subtract
the free nucleons identified with our coalescence prescription to obtain a signal due to all
the clusters averaged-over in the one-body BUU. This is show in Fig. 2.28(c). Clearly,
the highest values of the azimuthal anisotropy ratio are reached with the clusters only. A
strong variation with K is also observed. This is a quite important piece of information, as
it verifies that the maximum azimuthal anisotropy of composite fragments as a technique
to probe the nuclear EOS is really effective. As a further quantitative scrutiny, in Fig.
2.29 we plot the polar angle integrated azimuthal distributions for free nucleons and
clusters, using the procedure described above. Both distributions peak at ¢ = 0°. The
azimuthal differential cross sections for composites are considerable larger than those for
free nucleons for small azimuthal angles ¢ and become comparable at large ¢, which shows
that much higher partition of the clusters are emitted to small ¢ region compared to the
free nucleons. The width of the composite distribution is also significantly smaller. Thus,

our calculations are entirely consistent with the experimental observation that fragment
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Figure 2.28: (a) We plot the azimuthal anisotropy ratio for free nucleons at a given polar
angle, as a function of 6, . The different symbols correspond to different values of the
compressibility coefficient of equilibrium nuclear matter, in units of MeV. The reaction
under scrutiny is 7 Au + '97Au at 400 MeV /nucleon. The multiplicity cut corresponds to
semi-central collisions. The statistical uncertainties are of the order of 10% in the middle
of the populated area in polar angle and roughly 20% at the edges. (b) Same caption as
(a). except that all BUU test particles are involved. (c) Same caption as (a), except that
all free nucleons have been subtracted from the full set of BUU test particles.
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flow is more correlated with the reaction plane than that of single particles [77]. These
distribution differences between the free nucleons and clusters implicate that clusters may
be subjected to less random thermal motion, thus could carry more information about
the nuclear compression. which is directly related to the nuclear EOS. We will come back
to discuss this point later. The azimuthal distributions for all the test particles can be

produced by summing up these two components: the free nucleons and the clusters.

‘0

1
4

4

“ree Nucleans

8 - J
= v
A & 4
=S "
o 8
N 1
= -
s ‘r
2 L -1
r {a)
o v . N L I
C 26 40 60 80 W0 120 WO 160 180
¢ (ceg)
20 - : 1
Clustars j
:
6 - -;
- “+
R 3
< :

da
(3
|

Laaas

o
O franegreens

20 40 60 80 100 1120 140 160 1180

¢ (deq)

Figure 2.29: (a) The azimuthal distributions of free nucleons with respect to the reaction
plane are plotted for Au-Au collisions at 400 MeV /nucleon with the BUU theory. The
calculations shown correspond to three different values of K. The units of K are MeV.
The curves were drawn to guide the eye. (b) Same caption as (a) but for clusters.

We now calculate the maximum global anisotropy ratio R, subject to the same kine-
matical rapidity and spectator cuts as before. We plot R against the coefficient of com-
pressibility for equilibrium nuclear matter, K, in Fig. 2.30. Each point in this figure

represents a set of impact parameter integrated BUU calculations. The power and sim-
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plicity of this plot is immediately apparent: an experiment measures one value of R,
given a well defined set of kinematical constraints. This would appear on this plot as an
horizontal line. The intercept of this line with the appropriate theoretical curve would
then directly yield a value of K. The free nucleons do not constitute a very sensitive ob-
servable, as we can see: the steeper the curve, the more accurate is the deduced value
of K. All the test nucleons analyzed together are somewhat sensitive to the value of K,
but the clusters alone are much more sensitive. As in the past one-body theories such as
the BUU have compared with “pseudo-nucleons” obtained from folding all the measured
particles (free nucleons and composites) together [78, 79|, an analogous procedure can be
followed to produce a value of R to be interpreted with the top curve in our Fig. 2.30.
The values of R obtained here with the full BUU test particle ensemble are comparable
in magnitude with those of the original study of Welke et al.[37], done with a different

system at a slightly different bombarding energy.
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Figure 2.30: We plot the maximum global azimuthal anisotropy ratio R as defined in the
tmain text, as a function of the compressibility coefficient for equilibrium nuclear matter
for Au-Au collisions at 400 MeV /nucleon with the BUU theory. The kinematical cuts are
such that particles with rapidity Y such that 0.7 < (Y/Ybeam)em. < 1.2 were accepted.
The curves were drawn to guide the eye.

As mentioned above, the usefulness of the azimuthal anisotropy ratio depends largely

on an accurate determination of the event reaction plane. A method which circumvents
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this difficulty is based or the azimuthal pair correlation function [41]:

Cly) = Serl¥) (2.20)

Puncor(w) ’

where v is the smaller azimuthal angle between the transverse momenta of two particles.
P...(v) is the v distribution for observed pairs from the same event, and Py, (%) is the
¢ distribution for pairs from mixed events. Following Ref. [37], let us assume that the

azimuthal cross section has the form

do

W = a[l + A COS(¢ - (pR)] (221)

where ¢p is the azimuthal angle of the reaction plane. If this parametrization is exact,

C(w) can be written as
1
Cy)=1+ 5/\2 cos(?) . (2.22)
The maximum global azimuthal anisotropy ratio defined earlier can be expressed as

%lqﬁ:m _ 1+ A
da — .
E|¢=‘3°° 1-A

R = (2.23)

Thus. measuring the azimuthal pair correlation function can immediately provide us with
the anisotropy ratio. R. without the ambiguities associated with event-by-event reac-
tioti plane determination. We can easily verify the validity of Eq. 2.21 as an accurate
parametrization in the case at hand. Since the issue of statistics is quite important here,
we shall slightly shift our rapidity window. We shall choose 0.4 < (Y/Ybeam)em < 0.8
as a sufficiently populated region with a reasonable sensitivity to the nuclear EOS, other
kinematical constraints being the same. We study the same reaction as before, with the
same reaction parameters. Fig. 2.31(a) is a plot of the azimuthal cross section for all test
particles. calculated with three different equations of state: K = 100, 210, and 380 MeV.
The curves represent a fit with the parametrization of Eq.(2.21). Fig. 2.31(b) represents
the same exercise repeated for clusters as defined through our coalescence prescription. In
both cases the accuracy of the cosine assumption is remarkable. We plot on Figs. 2.32(a)
and 2.32(b) the azimuthal pair correlation function as calculated numerically, together

with the parametrization, Eq.(2.22). The value of A used are the same ones obtained by
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Figure 2.31: (a) The azimuthal distributions of free nucleons with respect to the reaction
plane are plotted. The calculations were repeated from three different values of K. The
units of K are MeV. The rapidity window has been shifted to 0.4 < (Y/Yieam)em. < 0.8.
The curves are not drawn through the data as a guide but represent a fit with Eq.( 2.21).
(b) Same caption as (a) but for clusters.
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fitting the results in Fig. 2.31. Again, the agreement between the analytic formulae and
the numerical results is excellent. We can now easily plot the azimuthal anisotropy ratio
as a function of compressibility as before. See Fig. 2.33. The results are very similar to
thuse obtained with the rapidity window 0.7 < (Y/Ybeam)em. < 1.2, but with somewhat
smaller numerical values. In cases where the cosine form is not appropriate or when the
reaction plane is simply not measured, one can define a slightly modified definition of a
global azimuthal anisotropy ratio:

C(y =0°)
R = ————. 2.24
C(y = 180°) (2:24)
In the theory. this quantity has the same desirable behavior with respect to variations of
the nuclear matter compressibility coefficient as R as seen in Fig. 2.34. It can then also

be useful in comparisons of experimental results with theoretical calculations.
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Figure 2.33: We plot the maximum global azimuthal anisotropy ratio as defined in the
main text, as a function of the compressibility coefficient for equilibrium nuclear matter
for Au-Au collisions at 400 MeV /nucleon with the BUU theory. The kinematical cuts are
such that particles with rapidity Y such that 0.4 < (Y/Ybeam)em. < 0.8 were accepted.
The curves were drawn to guide the eye.

Since the maximum azimuthal anisotropy ratio R in Eq.(2.23) depends only on the
constant A, to see the feature of fragment mass dependence in the BUU theory, in

Fig. 2.35(a). we have plotted A as a function of the normalized centre of mass rapidity
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Figure 2.34: We plot the modified global azimuthal anisotropy ratio as defined in the
main text. as a function of the compressibility coefficient for equilibrium nuclear matter
for Au-Au collisions at 400 MeV /nucleon with the BUU theory. The kinematical cuts are
such that particles with rapidity Y such that 0.4 < (Y/Yheam)em. < 0.8 were accepted.
The spectator cut as defined in the main text was also implemented. The curves were
drawn to guide the eye.

Yim = (Y/Yseam)em for the fragment mass A < 2, A < 4 and all possible sizes, respec-
tively. Bear in mind, the BUU is one-body theory. Fig. 2.35(a) shows that the value of
A is slightly fragment mass dependent. The displayed features are in fact consistent with

the measured data [80]. For the light fragments, the BUU simulation results can really

match the data as shown in Fig. 2.35(b).

The reasons for the maximum anisotropy ratio of clusters being more sensitive to the
nuclear EOS may be complicated. But. a simple interpretation might assume that clusters
suffer less thermal motion. thus being more affected by the compression energy. To probe
the thermal aspect of the dynamical evolution, we make use of the quadrupole tensor in
momentum space. The diagonal component of this quadrupole moment at the freeze-out
time ¢ is

Q. = [ Gkt 2 = B A1) (2.25)
For a completely thermalized system, Q,,=0. For two noninteracting Fermi sphere , which

approximately form the initial state of two colliding nucleus, Q.. can be calculated [81]:

Q.. = 4AP?, where P, is the projectile momentum in the c.m. frame, A is the nuclear
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mass number. The smaller the moment, the closer the system is to a thermal one. During
the nucleus-nucleus collision processes, this quadrupole moment will have its largest value
at the beginning, then decrease and to a smaller value at the so-called freeze-out time.
We have calculated the average quadrupole moment per particle at freeze-out time. The
values are 0.035 (GeV/c)? for free nucleons, 0.109 (GeV/c)? for test nucleons, and 0.135

(GeV/c)? for the clusters. It clearly shows that clusters suffer much less thermal random

motion.

2.9 Summary

We have used the Boltzmann-Uehling-Uhlenbeck equation to describe the dynamics of
nucleus-nucleus collisions. Concentrating on the momentum dependent features of the
one-body self-consistent nuclear mean field, we have seen that the precise functional de-
pendence on momentum of the interaction was important. Taking two phenomenological
potentials with the exact same characteristics at saturation density and zero temperature
(NGBD and NMDYTI), we have shown that their behavior in situations removed from
equilibrium could be quite different. From a purely theoretical point of view we believe
that approaches based on MDYT type interactions are on a firmer basis. In GBD like
approaches, the quantity < p > was put in by hand to enforce the Galilean invariance of
the potential. MDYT has Galilean invariance from the start and furthermore, the fact that
it can be identified with the Fourier transform of a Yukawa potential is pleasing. Both
interactions have the virtue of being relatively simple to handle (MDYI is however trick-
ier to implement numerically). Again, in equilibrium or close to equilibrium situations it

should make little difference which is used.

By performing calculations to address data on symmetric and asymmetric systems
at high energies, one can indeed assess the importance of the density—dependent and
momentum dependent terms in the nuclear equation of state, separately. In pursuing this

point, we have for the first time compared DIOGENE and EOS TPC data with BUU
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results. We find that all the data we have considered in this work can be reproduced with
a momentum dependent interaction with a nuclear compressibility coefficient of K = 210
MeV. Also. we have verified again the importance of angular momentum conservation on
the generation of transverse momentum in high energy heavy ion collisions. Relaxing the
conservation law leads to a slight variation in the flow parameter in BUU collisions. This
change should be considered in high precision fits of the experimental data as it should
undoubtedly lead to lower values of x? [82]. This does not however alter the general

conclusions reached in this work.

Furthermore, by using a simple coalescence prescription to restrict the analysis to
free neutrons, we have simulated the E848H collaboration measurements. The BUU
calculations of the triple-differential cross sections and in-plane transverse momenta for
free neutrons agree generally with the data. Comparisons with the data reveals that the
maximum azimuthal anisotropy ratio r(8) of free neutrons is insensitive to the nuclear
compressibility K of EOS. This is a quite important piece of information, as a previ-
ously full one-body calculation of r(#) exhibited considerable structure and sensitivity to
K 76 . We have provided an explanation for such an apparent discrepancy. This involved
emphasizing the role played by the nuclear composite fragments and their participation
in the collective nuclear flow. We have found behaviors in qualitative agreement with
earlier calculations with different models (75| and with existing experimental data [83].
Because of the large sensitivity of the composite low to the nuclear EOS, we further es-
tablished a quantitative connection between the composite flow and K. It is clear that our
approach to clustering in heavy ion reactions is simple but we believe that more sophis-
ticated scenarios should reach similar physical conclusions. Our aim is to extract some
physics content in an admittedly phenomenological fashion, not to provide a rigorous and
complete theory of cluster production. However, the theoretical problems associated with
a complete time-dependent theory of composite formation are being addressed. We be-
lieve that therein lies the key to a more complete understanding of the nuclear dynamics

involved in heavy ion collisions. In this respect, it is quite stimulating that very high
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quality data is becoming available.

Finally. it is worth pointing out that after more than a decade of careful experimental
investigations and theoretical progress. a consistent picture of the behavior of nuclear
matter at high temperatures and densities is emerging. Perhaps the crudest way of char-
acterizing the nuclear equation of state is by its compressibility coefficient and this value
is now stabilizing to some number around 210 MeV. The fact that low and high energy
heavy ion experiments seem to require compatible values of K is satisfying. The fact that
high quality, bias-free, exclusive experimental data is now available and will continue to

be generated in the immediate future will set even more stringent tests for the models.
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Chapter 3

Dilepton Production in
Nucleus-nucleus Collisions

3.1 Introduction

Dileptons and photons are possibly the best carriers of information from the hot and
compressed nuclear matter produced in the early stages of heavy ion collisions [84].
As introduced in chapter 1, in principle, those electromagnetically interacting parti-
cles can leave the hadronic environment from which they are created without signifi-
cant disturbances, offering thus a relatively clean probe of the nuclear collision dynamics.
In heavy ion collisions at incident energies of 1-5 GeV/nucleon, where the Lawrence
Berkelev Lahoratory Dilepton Spectrometer(DLS) has already taken dielectron measure-
ments (85|, the most important sources of e"e~ pairs seem to be the Dalitz and radia-
tive decays: mainly from n mesons and A’s, pion-pion annihilations, and nucleon-nucleon
bremsstrahlung [13, 14, 15, 86]. Measurements of lepton pair production in single nucleon-
nucleon reactions have also been performed in the GeV energy regime. In those, the
measured pd/pp dielectron yield ratios display a clear beam energy as well as a clear
invariant mass dependence [87]. This suggests that the dominant mechanism for dilepton
production may be changing as the beam energy per nucleon increases from 1 to 5 GeV. In
particular, one should pay attention to the opening of inelastic channels. The latter have

been shown to play an important role for dielectron production in nucleon-nucleon colli-
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sions at 4.9 GeV [86]. To eventually understand quantitatively and completely the relative
role of all these contributions and their excitation function in the complex environment of
nucleus-nucleus collisions, it is vital to calculate the lepton pair production cross section
for individual processes as accurately as possible and to simulate the nucleus-nucleus col-
lision dynamics with a successful model. The aim of this work is thus to re-analyze the
main dielectron sources and compare the BUU simulation results to measurement made

at 1 GeV/nucleon kinetic energy.

The previous BUU calculations [13, 14, 15] for dielectron yields in nucleus-nucleus col-
lisions used a simple Skyrme momentum-independent potential. As displayed in Chapter
2, the momentum-dependence of the nuclear potential is essential to interpret the collec-
tive side-flow phenomenology. Stimulated by the re-analyzed DLS Ca + Ca dielectron
spectrum data at 1.05 GeV/nucleon [12], we will also analyze, for the first time, the effect

of nuclear EOS on the dielectron pair production.

We extend our approach to explicitly include pion degrees of freedom and also to
consider the A — 7.V, 7N — A processes in conjunction with processes already described
previously. This method then reproduces the measured pion yields with high accuracy [88].

Instead of conventional detailed balance, the opa—nn is related to gpnona by [63]

1 ™P}
8 7 Onn—naA

fﬁ—ﬂlN ém'_mlFA(ml )pr

my-+mMy 21

(3.1)

o'nA—mn(\/s) =

with the actual mass of the A, m? = E?—p?, E and p are the c.m. energy and momentum
of delta in the initial or final state channel. p; and p; are the c.m. momenta in the NN

channel and NA channel, respectively. And the delta mass distribution is

4m2 FA
F = A : .
20 = G T2 )T+ mATh (32)
For the A width. ['y. we take [63]
2 3 [32 212
Ta = gf_AmN_PL 8 + Pa (33)
34r m2 m | B% + p?

with f3/4m = 0.37,8 = 300 MeV/c, and p, pa are the pion three-momenta in the rest

frame of the A with mass m and mj, respectively. The cross section for A formation in
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N interaction is determined such that
T
ONr—A = ?%’FA—PN‘KFA(m)’ (3-4)

where g, is the spin degeneracy of the A resonance, and p is the c.m. momentum in
©N channel. The isospin components of the A are followed explicitly in the numerical
calculation. In addition to the nucleons and delta resonances, the propagated particles

include free pions, which follow the classical Hamilton equations.

We have checked the effect of explicitly including free pions on the collective baryon
How Calculations were done with two different algorithms: including free pions or not.
The NMDYI momentum dependent potential with nuclear compressibility K=210 MeV
was used. The results show that the differences between results with the two algorithms

are within the numerical fluctuations.

This chapter is organized as follows. In the following section, we will discuss the
microscopic calculation method for the nucleon-nucleon bremsstrahlung. Comparisons
with previous approaches will also be made. Then in section 3, the treatment of Dalitz
A decay and 7 decay will be presented in detail. The n meson production in heavy
ion collisions will also be studied. Following the presentation of pion-pion annihilation
and bremsstrahlung (section 4), in section 5 we discuss the nuclear EOS effects on the
dileptons and compare the calculated dilepton production results with the experimental

data. Finally. we give some concluding remarks.

3.2 Nucleon-nucleon Bremsstrahlung

Several different calculations for electron-positron pair emission through nucleon-nucleon
bremsstrahlung have been performed for reactions at, and slightly above, 1 GeV. Some
of the more sophisticated approaches used relativistic one-boson exchange (OBE) La-
grangians, with the coupling to the electromagnetic field done by minimal substitution
24, 25, 26]. These approaches are thus entirely Lorentz-covariant and are also gauge-

invariant in the electromagnetic sector. Note that the OBE dilepton calculations can be
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made gauge-invariant even when form factors at the strong interactions vertices are used
24,. Such approaches have all the transformation properties that are required of a com-
plete theory but they are not completely satisfactory in two respects. First, they are very
cumbersome. If several meson fields are involved, the number of Feynman graphs to be
evaluated proliferates rapidly and the difficulty of the calculations increases accordingly.
The coupling constants in the OBE model are fitted such that the total nucleon-nucleon
cross sections are reproduced as closely as possible. This exercise thus has to be repeated
for each colliding system. Second, even if two different OBE calculations with two slightly
different set of ingredients (meson fields, form factors and coupling constants) can do a
good job of generating total nucleon-nucleon cross sections that are in agreement with
experimental measurements, generally they will then have different predictions for the
ditferential cross sections. As we shall see below, there is a way of writing the very low
invariant mass dilepton production cross section in nucleon-nucleon collisions such that it
clearly depends on the differential elastic cross section of the colliding partners. This fact
thus imposes very stringent requirements on the OBE models as far as their ability to
predict lepton pair production yields is concerned. Because of the above considerations,
several calculations pertaining to the bremsstrahlung generation of low invariant mass
lepton pairs in nucleon-nucleon collisions have used a soft photon approximation [90]. A
lot of the recent calculations of dielectron production in nucleon-nucleon collisions that
have used the soft photon approximation as their starting point a formula suggested by

Riickl [22]:

Sp.dp. 22 M2 \“ Bq

This equation links the cross section for production of dileptons via virtual photon

dﬁ eTe” dS Y
B.E =2 I ( ") . (3.5)
q=p++p-

bremsstrahlung to the bremsstrahlung cross section for real photons. In the above, p. is
the three-momentum of the electron or positron, E. is the energy, M2 = (p, +p-)%is
the dilepton invariant mass squared, q is the photon momentum and w is its energy. The

fine structure constant appears as o.

The derivation of soft photon formulae in the context of bremsstrahlung emission of
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lepton pairs has recently been re-analyzed [21]. It was shown that Riickl’s formula was not
properly Lorentz-covariant and did not contain the relationship betweer dilepton cross
section and virtual photon cross section that is required by gauge invariance [92]. We will
derive some leading-order and next-to-leading order formule for dilepton emission from

nucleon-nucleon bremsstrahlung in this work.

Consider the reaction

pL+p2— Dy +p,+eTe (3.6)

where p;.p,.p, and p, represent the four-momenta of the initial and final state nucleons,
respectively. The schematic Feynman diagrams for the contributions to the emission of a

virtual photon are shown in Fig.3.0. The circle represents the strong interaction.

In the limit of soft photons, real or virtual, the radiation from the strong interaction
blob (Fig.3.0(d)) and seagull graphs (Fig.3.0(c)) is a sub-leading contribution {91]. The
leading-order contributions of lepton pair emission, which are represented by Fig.3.0(a)
and (b), should be added coherently. Note in passing that there have been arguments
that bremsstrahlung from np reactions should be significantly more important than that
from pp. These were based on the fact that, nonrelativistically, the first non-vanishing
multipole contribution for pp appears at the quadrupole level, whereas for np it is at
the dipole stage. It has however been recently shown that such arguments do not hold
for relativistic collisions [86]. In fact, the dilepton yields from these two processes are

comparable at 4.9 GeV [86]. We also will discuss pp contributions in this work.

Using the Feynman rules of spinor electrodynamics [90], we can immediately write

down the contribution to the matrix element M, from Fig.3.0(a),

My = u(p2. 52)T,T(py, 53)Sr(p1 — py — )Py, 51)
v-{pr—q)+m
Fu’ (pl — Q)2 _m2? 7“u(p1731)(eQ1L#) (37)
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Fig.3.0: The lepton pairs emission from the nucleon-nucleon collisions.
(a) From the incoming nucleons; (b) From the outgoing nucleons;
(c) From the contact terms: (d) From the internal strong interaction blob.

where g represents the four momentum of the dilepton, and Sg(p; — p, — ¢) represents
the strong interaction appearing as a circle in Fig.3.0(a). ' represents a hadronic vertex,
L, represents the lepton part. Note that {v#,4*} = 2¢#* and (v - ;1 — m)u(p1,s:1) = 0,

we then obtain

[y - —q)+m
v By ) 2 ]’Y"U(Pl,sl)-—-u(Phﬁ
2m-q9—g

20 — (v - @)
) 5 (3.8)
2p-q—gq
Anticipating the soft photon limit, we assume that the hadronic part of the total matrix
element is unaffected by the fact that one of its legs is slightly off-shell. And we further
just keep the leading-order of four-momentum q in the current part. Then, Eq. (3.7) can

be re-written as

M = Mo(pr, 2,7y, Po) ST (~eQu) Ly (3.9)

We have written the on-shell matrix element for elastic nucleon-nucleon scattering as My,

Mo (p1, P2, Py D) = (P2, $2)L 0 T(py, 52)Sr(p1 — p1)T(Ry, s1) i ulpr, 1) (3.10)

Summing the amplitudes of all the relevant Feynman diagrams represented by Fig.3.0

(a) and (b), we label it as M, and further squaring it and also summing over the spins of
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the final-state leptons, we obtain

ST IMP = dna|Mo? JHIYL,, . (3.11)
S8
In the above. ' ’
P‘ll P‘zl ’ Pl“ ’ Pz“
JH = -Q - + Q= + Q= (3.12)
'pL g Q2pz-q 'pi-q “’ph-gq

i~ the hadron electromagnetic current. and the lepton tensor is

8T

wo _
L= = M4

(2 (p-#p-* + p_*p.*) — M?g*) . (3.13)

The Q’s and p’s represent charges and four-momenta for the particles, and ¢* = (p;+p-)*.

Note that J¥g, = 0, as a consequence of electromagnetic gauge invariance.

After performing the appropriate contractions and relativistic kinematic calculations,
we may write the differential cross section for e¥e~ pair production with invariant mass

M and energy qq as (please refer to the next chapter for the detailed derivation):

o 2ol A (6 MY o)
dM? 372 M? Ium a3 Ry(s)

where Ra(s) is the two particle phase space integral (93] and

dgo (3.14)

Ry(s2) _ Mi(s2) 5

= 3.15
Rg(s) )\%(s) S2 ( )
with 55 = s + M? — 2\/5qp in the c.m. p, + p, frame, the kinematic function
Az, y,2) =22 + 4% + 22 — 2(zy + T2 + y2) (3.16)
and the weighted cross section
? do
= _ ab—rcd 2 2
3(s) = /dt 2d (e JIP). (3.17)

—(2—4m2)

here € is the polarization of the emitted real or virtual photon.

In the evaluation of the original Feynman diagrams, we have neglected the four-
momentum ¢ of the virtual photon in the phase-space § function in order to obtain the

on-shell elastic nucleon-nucleon cross section. Because of this approximation, we include
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94 the ratio of two-body phase space [93| Ry (s, m?, m?)/Ra(s, m?, m?) to restore energy
conservation. This correction restores energy-momentum conservation and thus has a
significant effect on dilepton distributions. The ratio constructed from Eq. (3.14) with
and without the phase space correction factor drops monotonically to zero in the limit of

maximum invariant mass. Handling the phase-space properly is quite important.

By summing up the coherent superposition, the squared modulus of the polarization

dotted into the current, Eq. (3.12), for equal-mass two-body scattering (m; = my = m)

reads [91]
gle-J? = —(Q1+Q3+Q7+Q7)
F v §—2m? s+ Vs — 4m?
- 2AQuQs + Q)) In (‘f 2)
s(s — 4m?) Vs —Vs—4am
: , s—2m® +¢ Vs+t+Vs+t—4m?
-2(Q:1Q, -~ Q2Q)) ln( )
1 ' \/(s—t-4m2)(s+t) Vs+it—Vs+t—4m?

+2(Q1Q) + Q2Q) (3.18)

2m? — ¢ In (\/4m2 —t+ \/?t)
Vit —am2)  \VAm? —t — /=t

where ¢ is the four-momentum transfer and s > 4m?, —(s — 4m?) < t < 0. Suppose the
momentum transfer is small relative to the mass in the problem (specifically,|t| < 4m?) ,

a good approximation to the electromagnetic factor for p-n scattering is:

, 2 [ —t
qg |€ . J!ab—ocd >~ 3 (m—%’) (3.19)

then the weighted cross section reduces to

2 /0 —t \ do¥!
5a(8) = = — o dt 3.20
5als) 3 /_(s—mfv) (mfv) dt (3:20)

Furthermore, if the differential cross section is symmetric about 8., = 90° ,or equivalentl
y q y

don,/dt is a symmetric function of u and ¢, then we get:

S

2

el (3.21)

. 4
0,(3) = gaﬁln(

where o€, is the total elastic nucleon-nucleon collision cross section. We comment imme-

diately on the reality of this approximation.
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Figure 3.1: The comparisons between the parametrization for the n-p differential elastic
cross section and the experimental data at kinetic energy Ey;, (from top to bottom): 0.21,
0.414, 0.65, 1.028, 1.25, 1.741, 2.252, 2.752, 3.25, 4.25, 5.252 GeV. The Scaling factor for
Exn=0.21 GeV is 2x10%, for Eki,=0.414 is 4x10% and 0.65 GeV is 4x107, else is from 1
to 107 starting from the bottom in steps of 10.

Several previous n-p bremsstrahlung calculations use the symmetric weighted cross-
section d,(s) {13, 14]. At kinetic energy less than 1 GeV, this should be a good approxi-
mation. as for np elastic collisions. do/dt is nearly symmetric for such low energy. But at
higher energies. the observed distributions are not symmetric about 8., = 90° but rather
develop a stronger forward peak. This asymmetry increases with the scattering energy
and can suppress the np bremsstrahlung contribution to dilepton production by a factor
of 4 at 4.9 GeV [86, 89]. We choose to parametrize the n-p and p-p elastic differential
cross sections with functional forms that can fit the experimental data up to energies of

6 GeV with the necessary accuracy. Please refer to Fig. 3.1 and Fig. 3.2 to see how good

the fit is. The experimental data are taken from Ref. [95] and Ref. [96].

In Fig. 3.3, the comparison between the momentum transfer weighted cross sections
d4(5) and o,(s) for n-p scattering, and Eq. (3.17) with Eq. (3.18) leading to &(s) for both
n-p and p-p collisions against the invariant energy of the system is plotted. We view this
comparison as a test for the effects of small t approximation and the symmetric approxima-

. . - . . el . l - . .
tion for n-p differential elastic cross section d%l. The forward peak in the %‘1 distribution
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Figure 3.2: The comparisons between the parametrization for the p-p differential elastic
cross section and the experimental data at kinetic energy Ei;, (from the top to the
bottom): 0.21, 0.414, 0.65, 1.0, 1.27, 1.73, 2.21, 3.17, 4.149, 5.135, 6.124 GeV. The
scaling factor if from 1 to 10'° from bottom to top in steps of 10.

leads to a smaller weighted cross-section than that from the symmetric parametrization,
for kinetic energies larger than 1 GeV, where the asymmetric parametrization is effective.
In the low energy region up to 1.2 GeV , the weighted cross section for p-p is negligibly
small compared with that for n-p. But it becomes comparable in high energies. At kinetic

energy more than 1 GeV. it is thus imperative to have an accurate parametrization for

the elastic nucleon-nucleon differential cross section do/dt over a relevant range in ¢.

In all of the above comparisons, we have consistently set ¢ = 0 in the 4-dimensional
phase space delta function. We now avoid making this approximation and investigate
the consequences (full phase space approach). The many-body Lorentz-invariant phase
space can be expressed in terms of Mandelstam-type invariants (93], or in this case one
can perform the integrals directly. We leave the detailed derivation of the procedure for
the next chapter and we simply write down the result

do®™e” a? 1 r(-J)donm

= S(S - 4m2)M2 |q_1 dt

dM? 2473 dydg? d¢dE,, (3.22)

where y is the dilepton rapidity, F, is one of the nucleon energy in the final state, g, and

o are the dilepton transverse momentum and azimuthal angle, respectively. The electron
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Figure 3.3: Comparisons of the momentum transfer weighted cross sections (see the text)
for n-p and p-p . respectively. as a function of invariant energy. The solid line refers
to the n-p symmetric parametrization ,, the dot-dashed line is for n-p unsymmetric
parametrization &, (small ¢t approximation), and the dashed line and the dotted line give
the exact results for & with Eq.(3.17) and Eq.(3.18) for n-p and p-p scattering.

mass g has been set to . = 0.

Note that Mq(p1, pa, Py, Py) depends on the virtual photon four-momentum gq at the
zerot order, and J*# at the order -1. Now we evaluate the next-to-leading order. Suppose
M, in Eq. (3.10) is slightly off-shell, then the first-order derivative AM of M, should be
a function of ¢ at the order 1. Let AJ represent the correction of the current J# to order

0. Rewrite the matrix M in the following form,

M = (Mg + AM)(J + AT)
~ MoJ* + MAJ* + AMJIH (3.23)

where
; B (- B

gt AL el
AJ“:QL(—L-%-Q';(—L-i-Ql - Qs -
2p1-q 2p;-q

2p1-q T 2p2-q
and AM can be obtained by writing

oM,

. — a

(3.25)

However, the amplitude expressed in Eq. (3.23) is not gauge-invariant. Gauge-invariance

is restored by the contribution from the contact term (seagull graphs represented by
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Fig.3.0(c)), which can be obtained by the minimal electromagnetic substitution p¢ —
p® — eQg®* then take the first derivative of the expansion for Mg(p¢ — eQ;g*"),

Gt = ¥ —eQ. 220 (3.26)
apiu

Putting all the contributions together. Eq. (3.11) can be rewritten up to next-to-

leading order in ¢ as follows

> M = 4maHML,, (3.27)

8.8

where

H* = [(Mo+ AM)(J + AJ)* + CE (Mo + AM)(J + AJ)” +C¥]
x MEJEJY + Mo [JH(MAJTY + AMJIY +C¥) + (MoAJ* + AMJI* + C¥)J”]

1 QiQ;  B|M,f?
~ IMg2J*TY + = 1 Di
’ 2 XJ: (pi-a)pj-q) 8pf *°
x [p(g"¢ - 9"°¢%) + P} (g*°¢ — 9*¢°)) (3.28)
To simplifv the formula. we have used the convention Q;- = —(; for the incoming nucleons

and Q, = Q, for the outgoing nucleons.

The differential cross section for dielectron emission up to next-to-leading order now

reads

dot™e” % 1 1 dopn Q:Q.
s = Vs G 0

0J
doan
x ((pi - 985 — (i - 2j)d°)) aT;é—)]dydqiqudE; (3:29)

On Fig. 3.4 we display three different curves for the case of p-n scattering, at energies
of 0.5, 1.0 and 2.0 GeV. We compare calculations done with Eq. (3.14), calculations done
with Eq. (3.22) and Eq. (3.29). The three approaches display general behaviors that are
similar. But there are some effects that can be seen from this figure. At each energy, the
difference between the solid line and the dotted line is the subleading-order contribution.

At low energy and low invariant dilepton mass M, this effect is really small. The largest
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contribution occurs at high invariant mass M and high energies. Since the subleading
formula is not appropriately defined there, we should not take the large subleading effect
at high M too quantitatively. This only serves as an indication. Comparisons between
the solid line and the dot-dashed line at each energy display the effect of approximating
the phase space. The largest deviations are at low kinetic energies and low M. Recall

that the “soft photon limit” is not really properly defined by M — 0.

(&)

do/dM (jeb/GeV)

e 2.2 C4 C.g 2.8 )

M (GeV)

Figure 3.4: We plot the differential cross section for production of lepton pairs of invariant
M in the case of p-n collisions at kinetic energies of 0.5, 1.0 and 2.0 GeV (bottom to top
curves, respectively). The solid lines represent calculations done with Eq. (3.22), full
phase space; the dotted lines represent the calculation results with Eq. (3.29), next to
leading order; and the dot-dashed lines are done using Eq. (3.14), soft approximation.
The scaling factor is 1 at 0.5 GeV, 10 at 1.0 GeV and 100 at 2 GeV.

Another useful comparison is the relative radiative intensities from pp and np scat-
tering. As mentioned above, pp bremsstrahlung has often been neglected because of a
classical multipole argument. We examine the relative importance of proton-proton and
neutron-proton bremsstrahlung here, with the full phase space approach (Eq. (3.22)).
The relative intensities depend on kinetic energy as shown in Fig. 3.5 which presents
the ratio Rz(%)pp/ (%)np as a function of invariant mass at different kinetic energies.
Proton-proton bremsstrahlung becomes more and more important as the kinetic energy

increases.
We also calculated the angular distribution of the bremsstrahlung dileptons. Angular
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Figure 3.5: The ratio of dilepton production cross section in pp and np reactions,
Rz(ﬁ)w/(%)np, as a function of invariant mass M at kinetic energies 1.0, 2.0, 3.0
and 4.9 GeV, from bottom to top.

anisotropies have recently been put forward as a means of distinguishing between compet-

ing lepton pairs production sources [97. 98]. This argument has power only if the angular

distributions of those sources can reliably be calculated.

Owing to collision dvnamics, the polarization of the virtual photon eventually con-
verting into a lepton pair may be such that, in the rest frame of the dilepton, the single
lepton distribution may not be isotropic [23]. This is the essence of the idea. Following
Ref. {97], we write the differential cross section for emission of a lepton pair of invariant
mass M, with a lepton coming out at a polar angle 6 in the rest frame of the lepton pair

as
do

dM?d cos@

This enables us to write the polar anisotropy coefficient, B, as

S(M,8) = = A(1 + Bcos®6) (3.30)

B— S(;M,&:O)

= -1 .
S(M, 8 = 90°) (3.31)

Since the full phase space is obviously crucial to the proper kinematics, we use methods

which will be discussed in detail in the next chapter. Here, we simply give the results.
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In Fig. 3.6, we plot the coefficient B as a function of invariant mass M, with the
leading- and next-to-leading-order formalism, for the kinetic energies 0.5 and 1 GeV.
The next-to-leading contribution has shifted the curves upwards a little bit. For further
results at higher energies, please refer to Ref. [23]. There, we have shown that the angular
anisotropy of the lepton spectrum depends on the details of the calculations. We thus do
not include such calculations in the BUU simulations for nucleus-nucleus collisions, for

the moment. There are presently no data for this quantity.

Figure 3.6: We plot the polar anisotropy coefficient, as defined in the text, against lep-
ton pair invariant mass M in the case of p-n collisions at kinetic energies of 0.5, 1.0
GeV/nucleon. The dotted curves represent calculations done with leading order, the solid
curves represent the calculation results to subleading order.

Finallv. we get the differential lepton pair yields in nucleus-nucleus collisions at a given

impact parameter. b :
dNe ¢ (b) do®™® 1

S b a9
dM? p_g;_p dM? onn P (3.32)
where o is the total nucleon-nucleon cross section and
1 . o
W, = o= [ 4O - £(7\ 3, D][L - £(7, 55 ) (3.33)

is the effect of Pauli Blocking of the final state phase space, ¥ and t give the space time
coordinates of each collision, p; and p, are the final momenta of the collided nucleons,

and f is the phase space occupation density as in chapter 2.
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The dilepton differential cross sections from the nucleus-nucleus collisions thus can be

obtained by integrating over the impact parameter

d‘Za.e‘c' ) dﬁNe"’e'(b)
o =] F g (3:34)

3.3 Dalitz-Decay

The main processes of Dalitz decay of hadrons which contribute to the dielectron produc-
tion considered here are A and n-meson decays. The Dalitz decay of 7° is neglected due

to the low invariant mass of the produced dileptons.

The contributions of the A and n-meson decay to the dielectron yields in heavy ion
collisions can be considered as a two-step process in which at first the A or n-meson is

formed in the inelastic N-N reactions and then decays into a dielectron pair.

3.3.1 A Dalitz Decay

For the derivation of the A — V~ amplitude. we start from the interaction Lagrangian [102]
L =eA*W5l,, ¥y (3.35)
where I3, is

Tou = Gi(¢®)Th, + G2(d*)T5, + Ga(d*)Th,
= Gu(®)THL + Ge(d®)T5, + Ge(d))Tg, (3.36)
which includes the contributions from magnetic dipole G (q?)T4L, electric quadrupole

Ge(¢*)T5,, and Coulomb quadrupole interactions G¢(¢?)T'§,. Gi(g?) is a corresponding

formfactor. The '}, I3, and I}, have the form

Ty, = (287 —a-7984)7s
I3, = (98Ps —q-P9su)¥s
T3, = (289 — 4°98u)7s (3.37)
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where p = 3(pa +~ pn), ¢ = pa — pn. The pa,py and q represent the four momenta of
delta, nucleon and virtual photon, respectively. Thus, ¢> = M2, pA = m, pi = m%. We

further just keep the dominant magnetic dipole term and use

LY = f - Bg, (3.38)
with
_ 1 2 | 1 3 .
Eg, = —mAFBu + FB# s EF-”#'
3 1 my + ma
= Gu(a®)[-= .
f w(@)-5 ey oy e el (3.39)

The differential probability of the A decay into dileptons with invariant mass M reads

dz_; Q

—_ ! 2
dM? ~ 3nM? B,(ma)R(ma, M") (3.40)
where
[o(ma,0) 2 To(ma, M?)
B.(m . R(ma,M?) = Doma M) 3.41
7( A) [‘,,(mA) ( a ) Fo(ma,O) ( )

Fo(ma, M?) is the total decay width of A into a virtual photon ( please refer to Appendix

B for the derivation), and the total width of A to a pion-nucleon pair is ['z(ma ).

The function R(ma, M?) can be written as

maM? + 5magd — 3myM? — 3goM? — 3mygé - 3¢}
9o (5ma — 3mu — 3qq)

R(mA, .‘1/[2) =

(mA + mN)2 2 A(mir m?\h M2) % GM(Mz) (3 42)
(ma + my)? — M? A(m%,m%;,0) G u(0) '
with
mi ~ M? — m? . mi —m%
= — . = ——:-—- 3.
o 9ma | L (3.43)

In the vector dominance model (VMD) [99], the delta decay would proceed through
A — Np® —» Nv. The formulas obtained in Eq.( B.9) and Eq.(3.42) thus need to be
multiplied by a VMD form factor |F,(M)|?, which is defined as [100]

m4
F (M)? = £ :
| Fx (M) (7 =) + miTs (3.44)
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with m, = 0.775GeV, m, = 0.761GeV and [, = 0.118 GeV.

As an alternate procedure, we directly use the interaction Lagrangian [101]

. goN = v
Lona = zEN:_—‘;‘nA—\IfZT(B‘,p,. — 0upu )Y ¥s¥N + h.c. (3.45)

where 7 is the isospin transition matrix, my is the nucleon mass, and the coupling
constant g,y is from Ref. {101]. And we further apply vector dominance to calculate
the width of delta photonic decay in the same fashion as developed above. The obtained
diferential probability of delta decay into a dilepton pair with invariant mass M for delta
mass of 113, 1.23. 1.33. 1.43. 1.53 GeV (dotted line) are compared to the results with
Eq.(3.40) (solid line) after having added the VMD form factor, in Fig. 3.7. While this
figure shows that the difference between the two approaches is small, it in fact illustrates a
very important point: the magnetic dipole term in Lagrangian Eq.(3.35) is the dominant
contribution to the delta photonic decay. The neglected contributions from the quadrupole
interactions Gg(¢*)I'}, and Gg(¢?)['§, are in fact of higher order [102]. Note that only

A~ and A can decay into dilepton pair due to charge conservation.
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Figure 3.7: The differential probability (Eq.(3.40)) of delta-decay into a lepton pair with
invariant mass M for the different delta masses. From the left to right, the curves are
for ma=1.13, 1.23, 1.33, 1.43, 1.53 GeV, respectively. Please refer to the text for more
details.

In principle, the delta decay contribution to the dilepton pair production should be

summed up coherently with the nucleon-nucleon bremsstrahlung amplitudes, as the delta
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is produced from nucleon-nucleon inelastic scattering. Its decay into virtual photon is
indistinguishable from the bremsstrahlung contributions. A recent one-meson-exchange
model calculation considered such interference [104]. Their results show that the inter-
ference is insignificant at kinetic energy Ey;, = 1 GeV/nucleon, which is the energy we
are nterested in'. Therefore. we believe that the coherent effects from the delta Dalitz
decay and bremsstrahlung is negligible at 1 GeV/nucleon, even though a complete study

to clear up such an issue is necessary and goes beyond the scope of this work.

3.3.2 1 Production and Dalitz Decay

In our BUU approach, the n-mesons mainly come from two classes of elementary processes.

The first is
NN — .'VDI'T), NA — NNn, (346)

where N is a nucleon.

pp (total)

£ 3" &7 - w=- -a- -3

pp (elastic)

Py rrning

—_—
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- ::‘ —:
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Figure 3.8: Comparisons of the elementary cross sections for n and =° production and
the experimental data from proton-proton reactions. The elastic and the total p-p cross
sections against the projectile proton energy are also shown. The data are from Ref. [106)
for pp — ppn and pp — ppn?, and Ref. [108] for elastic p-p cross sections.

!The delta radiative decay will dominate the virtual bremsstrahlung at this energy.
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In Fig. 3.8 . we show the measured cross section for the process pp — ppn [106] and
the total cross section of nucleon-nucleon collisions as a function of the projectile nucleon
kinetic energy. It’s very easy to see that the cross section of this process is very small
compared with the total nucleon- nucleon cross section. The other class of processes

involves pions,
N — Nn (3.47)

where the free pions are produced by the delta decay during the dynamical evolution
of the nucleus-nucleus collision. Fig. 3.9 shows that the cross section for this process is
also much smaller than the total cross section of 7N scattering. Thus, we treat n-meson
production in nucleus-nucleus collisions perturbatively. In this method, the probability of
producing np-mesons is calculated without taking their energy out of the nucleus-nucleus
simulation. This is different from the treatment of pion production, where the processes
of A decaying into pion and nucleon, and pion fusion with a nucleon into a A are treated
explicitly with energy and momentum conservation in the simulation, since pions are

produced at a much larger rate (see also Fig. 3.8).

For baryon-baryon collisions, we treat the process NN—NN7 as a reaction of two
particles into three particles. There are four variables to describe the phase space. The
momentum value of 77-meson can be set by Monte-Carlo method after the maximum pos-
sible value of n-meson momentum is determined with exact kinematics. We parametrize

the total cross section for 7-meson production process as [107]

- < = AW — /o)
pp—ppn(V/S) = B (/5= S5 (mb), (3.48)

where A=0.17 mb GeV, B=0.253 GeV?, /s is the total available energy and the threshold
energy /Sq = 2my+my, = 2.424 GeV. The comparisons of this with the experimental data
is made in Fig. 3.8, where the fit to the experimental data is quite reasonable. According
to OBE calculations, the cross section for pn — pn7 is considerably larger than that for
pp — ppn. The calculated value of the ratio between the cross section of pn — pnn and

pp — ppn is approximately 3.5 near the threshold and this ratio will decreases to around
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Figure 3.9: Comparisons of the parametrizations of ¥~p — nn cross sections and the
experimental data taken from Ref. [113]. The dotted curve is the parametrization used
in Ref. [112]. The solid curve is what we used. The total #~p experimental cross sections
against the pion kinetic energy are also shown, which are from Ref. [115].

2.0 with increasing energy /3. The first measured results also support this [110]. We use
a cross section for np — npn that is three times larger than for pp, and Gnnanng = Tpp—ippn-
All the other cross sections are given by the corresponding nucleon-nucleon cross sections

at the same invariant energy with the appropriate spin average. For pion-nucleon reaction,

the n-meson production cross section can be parametrized like

Ox-pam(V38) = 13.07(V5 — /30)*5%*® (mb) for /35 < /5 < 1.562GeV

o.s(\-/.s_L—‘m)“52 (mb) for 1562GeV < /5. (3.49)

where /3¢ = m,,+m, = 1.486 GeV is the threshold energy. The energy dependence of the
cross section of the process #"p — nn with the function of Eq. (3.49) is compared with
the experimental data [113] in Fig. 3.9. We calculate the n-meson production directly
with this process.

The differential probability of 7-meson Dalitz decay into dielectron with invariant mass

M is given by [116]
dw _4a_ 1, M2, .

81



where the form factor

F(M) = (3.51)

T_ M2
1- Al

with A,=0.77 GeV, and B,=0.39 is an experimental branching ratio.

3.4 Pion-Pion Annihilation and Bremsstrahlung
3.4.1 Pion-Pion Annihilation

The =~ n~ annihilation proceeds through the p meson which decays into a virtual massive

photon by vector dominance. A standard expression for this annihilation cross section is:

2 2
otle L (M) = im a (1- ‘;’/I";

3 M2 )ian’(M)'z (352)

where Fri M) % is the form factor as defined in Eq.(3.44).

The probability of dilepton production from this process is calculated with the ratio
between the pion annihilation cross section given by Eq.( 3.52) and the total pion-pion
cross section for which we approximately use the pion-pion elastic cross section which is

parametrized in the following way [118]:

(a) For /s < 0.6GeV the chiral model expression is used:

(3.53)

Oals) = §F—:ms s" 2

21 1 [ 5m2 7m‘,‘,]
—~ +
with the pion decay constant F,=0.098 GeV.

(b) At a collision energy near the p mass, 0.6< /s < 1.5 GeV, the largest contribution

to w7 scattering amplitude is due to resonance formation. Therefore

4 -4 232
ou(s) = Joux (s — my)

= (3.54)
48ms (s — m2)? + m2I2

where the coupling constant gz = 6, m, = 0.775 GeV, and I', = 0.155 GeV.

(c) For large collision energy /s > 1.5 GeV, o.; becomes energy independent g = 5

mb.
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3.4.2 Pion-Pion Bremsstrahlung

As another possible source for the dilepton production, pion-pion radiation can be handled

in the same way as nucleon-nucleon bremsstrahlung in the section 3.2. The momentum

0

transfer weighted cross section for #™n%, 7~ n° and n*n~ processes (the cross section of

the other isospin channels are relatively small) then are

s 1

4
5 - 1)[5 +

O'(S) = EGKW(S)(

1
5f(s)] (3.55)

2
4m?

with

3
fls) = s _s—4mi m? 2/s N Vs
2(s — 4m2) 2s s [s — 4m2
[s — 4m? (o — 4m2
s—4m"'}1n (ﬁ+ 5 4m,,) . (3.56)
Vs Vs — /s — 4m2

Calculations for such w7 bremsstrahlung processes will be discussed in detail in the next

chapter. There, we perform a calculation using o and p meson exchange to model the

strong interaction.

The comparisons of the differential dilepton cross sections at invariant mass M from
pion-pion bremsstrahlung at different pion kinetic energies are made in Fig. 3.10. In
the region of low invariant mass M of dileptons, this differential cross section is large
compared to n-p bremsstrahlung in Fig. 3.4 for a single collision event. But the number
of N-N collisions is much larger than that of pion-pion collisions in the heavy ion reaction.
These two effects will go against each other, it’s still possible that the contribution of the
pion-pion bremsstrahlung is important relative to n-p radiation. The dynamical results
will be discussed in the next section. The pion-nucleon bremsstrahlung is neglected as
its contribution has been shown negligible in comparison with the n-p source [13, 14].
The cross section for 7#*7~ annihilation is also plotted in Fig. 3.10, which will mainly

contribute to large invariant mass dilepton yields.
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Figure 3.10: The differential cross sections of pion-pion bremsstrahlung at the pion kinetic
energies: 0.5 GeV (dashed-dotted line), 1.0 GeV (dotted line), 4 GeV (solid line), against
the lepton pair invariant mass M. The solid curve marked ¢* ™ is for the pion-pion
annihilation cross section.

3.5 Dynamical Results

The BUU equation is solved with the test particle method, and the dynamical evolution is
divided into time steps as described in chapter 2. The number of the parallel events used
was 200 and the time step 0.3 fm/c. Since both the neutron-proton and proton-proton
bremsstrahlung will not affect the final state of two collided particles much due to the
small probability. we treat the dielectron production from the nucleon-nucleon radiation
perturbatively like the n — meson production described in section 3.3.2. The Dalitz decay
of delta is also calculated perturbatively, because the duration of the dynamical evolution
ot nucleus-nucleus collision is less than 30 fm/c in the energy range of our interest, which
is small compared with the half-life of delta decay into a virtual photon. Furthermore,
the delta can decay into pion and nucleon, the half-life of this process is much shorter
than its photonic decay. In our treatment, the deltas are produced not only from the
nucleon-nucleon collisions but also from the pion-nucleon fusions. The total probability
of dielectron production is calculated by adding the contributions from neutron-proton,

proton-proton, pion-pion bremsstrahlung, the Dalitz decay of delta and n-meson, and
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finally the 7~ 7~ annihilation. The real dilepton production cross section is then obtained

by dividing by the number of simulations and integrating over the impact parameter.

- Ca~Ca at L05 GeV :
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Figure 3.11: The dielectron invariant mass spectra for reactions Ca + Ca, impact pa-
rameter b=1.2 fm at kinetic energy 1.05 GeV/nucleon with solid lines: NMDYI (K=210
MeV), long-dashed lines: hard MDYI (K=380 MeV), dotted lines: Hard (K=380 MeV,
momentum independent). dashed lines: Soft (K=210 MeV, momentum independent) po-
tentials.

As a first calculation, we test the nuclear EOS effects on the dielectron spectra for the
reactions Ca + Ca at an impact parameter b=1.2 fm at kinetic energy 1.05 GeV/nucleon.
The results are shown in Fig. 3.11. The calculations were done with the soft (K=210 MeV),
hard (K=380 MeV) momentum independent potentials, and NMDYI (K=210 MeV}, hard
MDYI (K=380 MeV) momentum dependent potentials (see chapter 2 for the details
of these interactions). To clearly display the nuclear EOS effects, the relative ratio of
the dielectron spectra are also plotted (see Fig. 3.12). One can see that the dielectron
spectrum is sensitive to the momentum dependent features and to the variation in the
nuclear compressibility K. The momentum dependent mechanism decreases the dielectron
spectrum nearly by a factor of 2, while the variation of K from 210 to 380 MeV generates
differences exceeding 30%. owing to the complex collision dynamics. As we will see later,
the dielectron spectrum reveals that the n-meson Dalitz decay is the dominant source
at low invariant masses and pion-pion annihilation is a very important one for the high

invariant mass range. The EOS effects on the 7-meson and pion total cross sections for Ca
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Figure 3.12: The ratio of the dielectron invariant mass spectra for the reaction Ca +
Ca. at impact parameter b=1.2 fm and for kinetic energy 1.05 GeV/nucleon. Long-
dashed line: HM (hard MDYI, K=380 MeV), dotted line: Hard (K=380 MeV, momentum
independent), dashed line: Soft (K=210 MeV, momentum independent). The common
denominator in these ratios is the result with the NMDYT potential (K=210 MeV), (solid

line).

— Ca system at 1.05 GeV/nucleon, b=1.2 fm are recorded in table 3.1, which shows that
the 17 yields are somewhat sensitive to the EOS, while the pions are less sensitive [117]. Our
calculation shows that the contribution to the n yield from 7-nucleon sources dominates
over the nucleon-nucleon channels, the sensitivity of the n-meson to the nuclear EOS may
be understood from the feature of m-nucleon cross sections: a little energy change could
lead ro large cross section variations. The 7-meson decay contribution to the dielectron
spectra depends on the n total numbers. Thus it is very important to reproduce the
experimental measurement of this quantity. We have calculated the impact parameter
dependence of the 5 yield for Ca + Ca at 1.05 GeV/nucleon with the NMDYT potential
and this is displayed in Fig. 3.13. Note a scaling factor of 300 is applied in order to
directly compare with the experimental data. The recent measurement of *300 yields
23.5+9.5 for central collisions [114]. Fig. 3.13 shows that our results with NMDYI
potential are within the error bar of the measurement, especially after considering the

necessary integration over the central region in order to directly compare with the data.
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Table 3.1: The n and = total yields from Ca + Ca collisions at impact parameter b=1.2
fm. Exin = 1.05GeV /nucleon. with four different potentials: Hard, Soft, NMDYI and HM.

The n vields are multiplied by 300.

-

TPotential | n I « [« ™ |

Soft 1 53.28 | 11.18 | 3.76 | 3.68 | 3.74
' Hard  38.08 | 10.42 | 3.47 | 3.49 | 3.46
I NMDYI | 31.31 | 9.98 | 3.36 | 3.34 | 3.28
(  HM 2485, 8.85 |2.97]2.92 | 2.95

i

The momentum independent potentials produce larger n cross section than the NMDYI
potential which has been shown to be able to reproduce the n-meson cross section data

well. Recall that NMDYT also gives much better baryon flow results.
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Figure 3.13: The impact parameter dependence of the n-meson yields for Ca + Ca colli-
sions at 1.05 GeV /nucleon.

To get a better understanding of the collision dynamics, the dynamical evolution of
the n, 7 and A from NMDYI potential are plotted in Fig. 3.14 for Ca + Ca at 1.05
GeV/nucleon, b=1.2 fm, together with the central density of the system. Note that the
n-meson yields are completely generated in the compression stage. As both the 7-meson
and 7 are stabilized at freeze-out time, another useful comparison is the n/7° ratio. For
Ar + Ca reaction at 1.0 GeV/nucleon, the TAPS measurement of 100*n/7% combined

with a thermal model {109] gives the result 1.9 £+ 1.2 with the full phase space. The BUU
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calculations for this ratio is 3.2 with NMDYT potential, which is slightly higher than the
measurement 109:. Our calculations also display that this ratio is not very much sensitive

to the impact parameter, which is a desired feature that the absolute n yields fail to have.
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Figure 3.14: The dynamical evolution of various quantities in Ca + Ca collisions at 1.05
GeV 'nucleon. b=1.2 fm. Dotted line: central density in units of gy, dashed line: pions,
solid line: 7-mesons(50*n), dash-dotted line: A.

Now we are at the stage of comparing our calculation results with the DLS experi-
mental data. The simulation results must be filtered by the DLS acceptance in order to

directly compare to the measurements.

In Fig. 3.15, we compare the BUU calculation results to the new re-analyzed pre-
liminary DLS data for Ca + Ca collision at 1.05 GeV/nucleon. The contributions from
different sources are also displayed. The acceptance filter version we used is version 2.0 2.
One can see that the BUU reproduces the spectrum in the mass region 0.2 < M < 0.5
GeV reasonably well. and the dominant source for this region is the n Dalitz decay. As
emphasized above, the contribution of the 7-meson decay to the dielectron spectra only
depends on the n-meson number and on the experimental acceptance, thus a measured
n-meson number could be used to normalize the absolute dielectron cross section in this

region. In the high mass region where the pion-pion annihilation is very important, the

?The experimental filter relevant to this experiment has not yet been released. However, it should be
similar to the version 2.0, except at very low invariant masses [12].
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Figure 3.15: Dielectron invariant mass spectra for Ca + Ca collisions at 1.05
GeV/nucleon. The contributions from different sources are given by short-dashed-
line: mm bremsstrahlung; dashed-line: p-p bremsstrahlung; short-dashed-dotted-line: n-p
bremsstrahlung: long-dashed-line: A decay; dashed-dotted-line: 77~ annihilation; long-
dashed-dotted-line: 1 decay; and the solid-line: sum of all the sources. The symbols are
the preliminary experimental data from DLS [12]. The dotted-line is the sum of all the
sources, where the VDM form factor is not included for delta Dalitz decay.
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simulation results are within the experimental error bar. Note in this region, the statis-
tics are quite low. The large difference in the very low mass region M =~ 0.2 GeV can
be attributed to the fact that we neglected the very rich #n° Dalitz decay and very im-
portantly. the experimental filter in that region is different from the version 2.0 [12]. In
the intermediate mass region, vector dominance improves the fit, but the calculation is
still slightly under the data. A next generation calculation should explicitly include the
7-N channel and also consider coherent effects with the delta Dalitz decay. From this
figure. one can see that the bremsstrahlung contributions play a minor role. The n7
and proton-proton bremsstrahlung channels have much smaller contributions than the

neutron-proton channel.

With respect to our results. there are still important issues. The intermediate dielec-
tron invariant mass region reflects the in-medium Dalitz decay of the A and 77 annihi-
lation. There are genuine in-medium processes. While the difference between the data
and the calculation in this region may be an indicator of in-medium effects, such a con-
clusion can only be drawn after we have understood the dielectron sources in this region
completely. An improved precision measurement of the 1 production total cross section
or the n/n® ratio will be very useful. The simulations about particle multiplicity distri-
butions and kinematics to determine the impact parameter range of the measured data
from the DLS is also important, as our calculations display that the dielectron spectrum
is somewhat dependent on the impact parameters. The next generation of calculation
should also include the n absorption mechanism. In OBE model, this could proceed via
N(1535) dynamics. This effect has to be explored cautiously. Its importance is presently

somewhat of an open question {15, 111].

3.6 Summary

We have used the Boltzmann-Uehling-Uhlenbeck model to describe the dynamics of

nucleus-nucleus collisions. Our BUU can reproduce the pion yields and the numerical cal-

90



4

culation of dilepton production is carried out in a two-step process for all the sources. For
nucleon-nucleon bremsstrahlung, we include the exact real photon electromagnetic current
and the asymmetric parametrization for the n-p elastic differential cross section. Using
these. we find smaller results than when using the small ¢ approximation (Eq.( 3.20)) and
using the symmetric parametrization for the n-p differential cross section. The proton-
proton and pion-pion bremsstrahlungs are unimportant at the energy of our calculations,
but they are expected to play a more important role at higher energies. As the 7 cross
section is small, we treat the n production perturbatively. Our results show that the n-
meson decay dominates the dilepton spectra with the invariant mass from 0.2 to 0.5 GeV.
A next generation calculation will use non-perturbative methods. In the mid-invariant
mass region 0.5 < M < 0.7 GeV, the delta Dalitz decay is the dominant source. The 77
annihilation determines the dielectron spectra shape at the high invariant mass. Further
measurements of 7 production, and the determination of the impact parameter range for
the Ca — Ca dielectron data at 1.05 GeV/nucleon will be very helpful. The facts that
the HADES experiment is under the way at GSI and that the DLS is still improving their

data analysis make this field promising.

91



Chapter 4

The Formalism For Bremsstrahlung:
A Simple Test Case

4.1 Introduction

Testing theoretical models [26, 104, 105, 99, 119, 120, 123, 121] and approximations [21,
22, 23, 91, 122, 100, 124| has been a very important aspect of studying hadron-hadron
bremsstrahlung processes, especially those processes containing significant resonance or
exchange effects. In this chapter, with #*7~ bremsstrahlung as a case study, we con-
sider the p,o meson exchange interactions to evaluate the effects of various approximate

formulae for bremsstrahlung.

The plan of this chapter is as follows. In the following two sections, we present the
7 7n~ — 7w~ r" elastic scattering amplitude and w77~ bremsstrahlung amplitude using o
and p interactions. Then we will derive the general virtual-photon bremsstrahlung cross
section in two-body scattering. In section 5 and 6, we will discuss explicitly different soft-
photon approximations. The formalism for exact virtual-photon amplitude calculations
and the numerical results for different approximations are presented in section 7. In
section 8, we discuss the anisotropy of virtual-photon emission. Then, we calculate the
dilepton rates and yields. The dilepton yields are obtained by integrating the rates over
the time or temperature evolution of the colliding nuclei within a Bjorken picture [126].

The results are presented in section 9. The final section is a simple summary.
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4.2 771~ — 7wt~ Matrix Element

For charged pions interacting with a neutral p-meson, the Lagrangian is [123]

1 1 1 L1
C= 5,»D,,¢>|2 - §mf,|<1>12 = JPwP + Emf,p“p“ (4.1)

where & is the complex charged pion field, p,, = 8,0, — 0,p, is the p field strength and
D, = 0, — ig,p, is the covariant derivative. Note that this Lagrangian is just like scalar

electromagnetism but with a massive photon m,. Then, the m — p interaction will be
L = ,(8040,8" ~ 0,8p"") (4.2)
For mo dynamics, we use [125]
LY = g,00,d - 0*P (4.3)
Putting these two components together, we obtain the effective interaction Lagrangian
£ =g,(9p,0,8° — 8,9p,9") + g,08, - 3*® (4.4)

With the Lagrangian Eq. (4.4) . we can get the amplitude M, for the "7~ — n*xn~
(p + p2 — Py + p,) elastic scattering. There are two terms M, and M, in the matrix

element M,

M,y = M1 + M,. (4.5)
For the s-channel, we include the imaginary part explicitly in the propagator,

2
—_ gP _ m Ty
My = s —m2+ impl"p[(pl p2)" gu(py — P2)"]

2 ! [
95(p1 - p2)(p; - Do)
4.
N s —m2 +im,[, (46)

We can rewrite Eq. (4.6) with Mandelstam variables

2 —t 2(s — 9m2)2
M=%t (s = 2ms) (4.7)

—m2 +1 —m2 +1
s—-m2+im,l', s —mi+im,[,

For the t-channel. we include a monopole form factor [91]

2 2 2 2
m; —m m2 —m
—£T ho(t) = ———F

holt) = m2 —t

2 _ b)
m5 t
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Figure 4.1: Total elastic 7”7~ cross section as compared with experimental data from
Refs. 127! and i128] . The symbols represent the data, whereas the solid line is for the
model calculation results.

to suppress high momentum transfers, then

252
g h (t) ! Y’
M, = _—tp £ 2[_(172 'f'pz)pg;w(Pl +P1) ]
_mp

g2h(t)

L (py - 1) (P2 o) (4.9)

or with Mandelstam variables

B — u) | gErE(E)(em — o)
t — m2 t—m2

M2=

(4.10)

The invariant energy is s = (p; + p2)?, the four momentum transfer is t = (p, — p,)?,
and u = 4m2 — s — t. The parameters have been adjusted to roughly fit the total #+7~
cross section up to /s = 1.0 GeV with g, = 6.25, m, = 0.775 GeV , [',=0.155 GeV,
go = 3.55,m, = 0.525 GeV and ', = 0.1 GeV (see Fig. 4.1). The differential cross

section distribution with such parameters is also plotted. This is shown in Fig. 4.2.

4.3 77n~ Bremsstrahlung Amplitudes

For the reaction (p; + p, — pll + plz +q)
T4+ on +71 +ete” (4.11)
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Figure 4.2: The 777~ differential elastic cross section distributions at the system invariant
energies 0.4 (dotted line), 0.6 (solid line), and 0.8 (dashed-dotted line) GeV, respectively.
only the Feynman diagrams where the virtual photon is attached to one of the external
legs and the “seagull”’ terms contribute to the invariant matrix element M as shown
in Fig.4.0. There are eight Feynman graphs to be added coherently from the external
legs for each t-channel (Fig.4.0(a)) and each s-channel (Fig.4.0(b)). The total number
of the “seagull” graphs represented by Fig.4.0(c) are also eight. In our case, we do not
cunsider Fevnman diagrams in which a virtual photon is radiated from internal lines as

the propagator is neutral.

With the aid of the Feynman rules of pseudoscalar electrodynamics [129], we can write

the radiation matrix element

M=eK L (4.12)

after summing up the contributions of all the individual Feynman graphs. There L,

represents the lepton part

e
Lﬂ = M_Qﬁ(p—vs—)7uv(p+’ 5+) (4‘13)
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Fig.4.0: The lepton pairs emission from the #*7~ — 7% 7~ reactions

and the hadron-electric current inciudes two parts
K* = K{ + K} (4.14)

where K} is the contribution from the external legs

(2p1 — q)* (2p2 — @)*
Ki = ‘_QITI—M2 -Q T2_2p p—ye
(2p1 +q)* e (20 + @)

+ QT 12 py - q+ M? @ 22p, - q + M2 (4.15)

with the definitions

2h2(k )
no= kz———g(pl +P1 — 9)(P2 + po)
_ gp _ _ l; . ]
k2 _ m2 + imprp (pl D2 q)(pl p2)
2h2 k2 ) , , ,
- k2 — (Pl Py — Py - q)(p2 - Py)
ga ] )
+ k2 - m2 + im,T, (p1 - P2 — P2 - q)(Py - P2)
212012
g,h, (k1)
L = s+ +r =)
p
9

- ; (pr —p2 + Q)(P; -P'z)

2 _ 2
ki —m2 +im,l,
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gah,(kz)
L 9ohalky)

o (m p1)(P2 P, — P2 Q)
A ga' . _ . U . !
Tkz-mf;-kim,l",(pl p2 —p1-q)(py - P2)
212712
: g hy(k3)
I, = k_—2 (P1+P1'*'Q)(P2 +P2)
p
kg—m2+imprp(p‘ Py~ q)(p1 — p2)
g2h2 (k2 : ,
- —kz )(m P+ p1-9)(P2 - Ps)
gc
+ +
k —m2 + im,T, (p1 - Pz)(P1 P2 Pz q)
2p2(1.2
: g ho(k7)
T, = k‘;" =(p1 + 1) (2 + Py + q)
p
P
. p _ ’ _ ! _
kg—m2+impl"p(p1 p2)(py — P2 — q)
2h2 k2
‘*'__“kz o )(Pl P1)(P2 P2 +p2-q)
- g"

k32—m§-+-zm,,l“c,(p1 p2)(py P2 T P1 Q)

(4.16)

The Q's represent the particle charges with Q, = Qll,Qz = Q;, and ¢ = p. + p-. The

variables ks are defined as k; = p; — p'l.

The contribution from the seagull diagrams can be written as

2h2(k2) 2g° . ]
K3 kz—p(p2 + p2)¥ Qz = :-zmpI‘ (p1 — p2)*
g2h? (k2
A gp _ h’ (k ) ‘\u
QI k2 _ m2 + imprp (p2 pl) Q2 k ( P +p1)
212 2
gshz (k3 .
- kz—()[(pl + 1) - ql(p2 - p2)
—Q273 %o [(p1 p2) - 4)(py - p2)
k2 —m2 -+-zmcr 12
' ga, ' '
-@Q, k2 —m2 + im, T, (2 ~ p1) - 4l(p1 - P2)
2h2 k2
szz o{ )[(pz+p2) -q)(p1 - 1)

k2=pg—p'2. k3 = py + pa, k4=P'1+P'2-

(4.17)

For now. by squaring the invariant amplitude M, and summing over the spin of the

97



lepton pairs. we obtain

3 IMP? = draK*K"L,, (4.18)

3,8

After summation over the e™e™ spins, the lepton tensor is equal to
= > L. M4 e (4ua — Ll — M?g,) (4.19)
where {, = p. — p_ is the relative dilepton momentum. Then, the invariant amplitude
can be expressed as
. _ 2rla 2 2 2 72
> IMPE =2 (g K)? - (- K) — M2K?) (4.20)

$.8_

4.4 Derivation of the cross section

We can directly write the differentiai cross section for e™e~ pair production

E E dﬁo.c’e' _ 1 Z
T T dBp_d3p.  16E,E,lvy —vzl(27r)6

IM[*

2 454 ! ! dap,l dsp; 4 21
()6t (o +p2 =2~ P~ ) oy Gy, 42V

Recall the general formula from relativistic kinematics

d8ccTe” 1 4#2 dbocTe”
27 _-h1-EEE T .
D, AV T M2 By dip. (422)

where p is the electron mass, gg = E. + E_, and df), is the solid angle for positron

momentum in the dilepton rest frame. Note in that frame, the integral

l-K)? T K
J i a0, = - RIS IS (4.23)

We finallv obtain the differential cross section for lepton pair radiation with invariant

mass M and energy g as

dioe™e” 1 o? 1 2u? 4
90 N3, Ry it “2) 1- uz
dM?3d q 4E1E2*V1 - V2| 1273 M M M
q- K 2 ' '
x /[(—A—lg—)— — K*|(27)*6* (pr+p2 — P, — P, — 4)
d¢*p,  dp,

(4.24)

* (2n)%2E, (27)°2E,
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4.5 Soft-photon Approximation(SPA)

[f we suppose that the non-radiative matrix element will not change when a virtual photon
is radiated from the incoming or outgoing charged particles, it means that the dilepton

momentum q in Eq. (4.16) can be neglected (approximation I), then we get
T,.=To=T, =T, = M, (4.25)

I'his approximation. in fact, neglects all the contributions from the Feynman diagrams
in which a virtual photon radiates from the internal lines and contact terins, and is the
basis of most soft photon approximations. Approximation I is also known as the on-shell

approach. The hadron-electric current K} in this case can be written as

Kt = MyJ* (4.26)
with the four-vector electric current
(2p — @) (2p2 ~ q)*
B - _ —

d Nopqo it~ Vo, g

(2o +@* | (2Pt
; —_ 4 _ 4.27
TQ‘2p1-q+M2 Q22pz~q+M2 (£27)

Taking charge conservation (J - ¢ = 0) into account, we can immediately rewrite the

differential cross section from Eq. (4.24) as

dioee” 1 a® 1 2u? 42
D ArRBe x Y LGyl R ey
dM?d3q 4E \Eyjvy — vo| 4875 M M M
’ ’ d3p' d3p’
—J? 254 —p —ph —qg) —21Z2 22
x [PMPE (bt p2 =y —ra—0) G 5 (428)

4.5.1 Ruckl Approach

Now we further neglect the lepton pair four-momentum q in the argument of the four-
dimensional § function in Eq. (4.28) (approximation II). Because of this approximation,

the energy-momentum conservation will be violated. To restore the energy conservation,
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. L . ; . . . Rz(u,mz,mz)
we will include a two-body Lorentz invariant phase space ratio factor m, where s
r xl
15 the invariant energy available for all the final state particles and s, = s+ M 2 _ 2q0+/s

in the center of mass of p; + p, frame. This ratio factor originates from

C d“p d*p. Ra(s2, mi, m3)
64 | B N 1 2 — ] 1 2
/ (pr+p2—p, — Py — 2E1 2E2 Ry(s,m?, m3)

N
x 84(py +p2 — P1 — P 25‘255,(42@
1

and will reduce the dilepton production accordingly with the increase of eTe™ pair in-
variant mass M as mentioned in Chapter 3. Recall that the two-body elastic differential
cross section

1
4E, Es|vy — vy

d®p, d®p.
20, 1454 _ 1 2
|M0| (27T) ] (pl + D2 pl p2)2E (21!')3 2E (27[') (4'30)

1212 _
do =

The Lorentz-covariant differential cross section from Eq. (4.28) then reads

ot o 1 ‘)u;z “1 4“2 /(— 2)d012_'12 Rz(szym'i”mg)

- ~ 1 - £ dt 4.31
md.U"’d‘ " 129 \«["( M2y M2 dt Ry(s,m2,m3) (431)

We note that if the electron mass is set x=0, the formula Eq. (4.31) is the same as

the expression used by Haglin, Gale, and Emel’yanov [91], except for a numerical factor

2 originally omitted from Riickl’s formula {22]. However, the electric current J* in this

approach is exact for the case of interest, whereas in theirs the current for real photon

emission

n
JE = —Q, 41 S YL S +Q p2 (4.32)
D1 q P2-q P1‘ °q

was used for soft virtual photons. In general, the current J¥ Eq. (4.27) contains at least

the subleading order in g . whereas the current of Eq. (4.32) is in the leading order. A

quantitative comparison will pin down the effect of different levels of approximation.

After integrating over the 3-momentum space of the eve™ pair from Eq. (4.31), we
can finally express the differential cross section as

do’” ot 1(1_+_2u2 4u
dM? T 3x2 M2 M2 M?
12—1'2

/qu M s(s_::z;( J2)—“Ujrdtd% (4.33)
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The two-body phase space ratio factor has been put as

Ra(s2,m3, m}) (s2 — 4mi)
2052, My, My s(s2 — 4m;
= . 4.34
Ra(s,m?, m3) \l S2(s — 4my) (4.34)

In principle. the elastic differential cross section do'2~! ? /dt can be parametrized from
measured experimental data. Here we rely on the model calculation to make use of the

vn-shell matrix element Mg in Eq. (4.5) for consistency. The result is

do,l?—il'ZI _ ;MO[Z
dt 167s(s — 4m2)

(4.35)

In Fig. 4.3. we plot the dilepton differential cross section do®™®” /dM as a function of
e”e” pair invariant mass M with the virtual photon current Eq. (4.27) and the exact real
photon current Eq. (4.32). Since the solid and dotted curves are obtained under the same
approximations, this comparison clearly shows the effect of using virtual photon current
and real photon current. Our results do not substantiate a recent general argument [21]
that the virtual photon current may make significant differences in dilepton production.

From here on. we use the virtual current Eq. (4.27).

Summarizing, we have presented the SPA approach along the lines introduced by

Riickl. We shall refer the above approximation as “Riickl’s approach”.

4.5.2 The Complete Phase-space Approach

Because of approximation II inherent to SPA, one can not calculate the current term
(—J?) precisely. To calculate the kinematics exactly (p, + p2 = p; + p, + ¢), we need to
keep the argument g in Dirac ¢ function as in Eq. (4.28). Write one of the final state
particle integral d®p, /2E, in the explicitly invariant form
Lo _ [t d(a72 - m2)o s (4:36)
2F] *
where (p°) is the step function, and note that in the center of mass 142 frame

pl=m2 + s+ M? +2E,qq — 2|pyl|4) cos 8,0 — 2V/5(E; + qo), (4.37)
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Figure 4.3: The Lorentz covariant global dilepton differential cross section against the
lepton pair invariant mass M for 777~ collisions. The solid lines are for real current
approximations, the dotted lines are for virtual current approaches at system invariant
energies 0.45, 0.6 and 0.8 GeV, respectively.

the final state integrals can be rewritten as
. d®p, d3p; 1,01
4 1 2 _ ,
[5 (Pl +P2—py— P2 — Q) EQ—E; = 4/ de2dC°59pzqd¢
24+ 2F,q0 — 2 2
) (cosH , S M+ 2B Vs(E, +q°)) (4.38)
2|p,||4]

Using the fact that d3q/qy = |qldgod cos Bplqdd)', and further integrating over the free

variable o . we obtain

o e [T e e
= - 2 2
PRVE TR »12 Am3) / =
s+ M?+ 2E2q0 —2/s(E, + qo))
2ipalld]
x dqod E,d cos 8, ,d cos 8, (00 (4.39)

12-1'2’

X8 (cos Bp;q —

The integral range of the variables dgy and dF, can be determined from the § function

condition
s+ M2+ 2E2q«: — 2\/3(E; + qo)

2lpalq]
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Up to this stage, we have used the invariant matrix My(Eq. (4.5)) expressed by the
invariant variables s and t: K*(s.t) (Eq. (4.7)), or by w and ¢: K*(u,t) (Eq. (4.10)) !, to
calculate the dilepton production differential cross section as a function of the eTe™ pair
invariant mass M under the complete phase-space approach. In this method, the current
terin J7 s evaluated exactly (refer to Appendix C) and the effective four-momentum

transfer t is determined strictly by the kinematics p, + p; = p'1 + p’, +q.

4.6 Sub-leading order approximation

In this section, we will only consider the K*(s,t) scheme for the leading order amplitude.

To the subleading order, we can expand

oM
Mo(pi — ¢) = Mo — qaa—ao
o OM
Mo(p; + q) = Mo + ¢° e ° (4.41)

However. this procedure breaks gauge invariance. To restore gauge invariance, we should
include the seagull graphs contribution up to the same order as mentioned previously.

The seagull terms to this order can be written as

=— . 4.42
MO € Z Q 3pt“ ( )

Thus, the hadron-electric current reads
K* = Mol + 50,5 o (”‘ ~ g*) (4.43)

"q
Now, substituting K'* into Eq. (4.24) and using the same procedure as in the leading
order approximation, we get the differential cross section in dilepton invariant mass M

up to the subleading order

do®¢ a? 1 (1+ 2u? ! 442 1
dM? 12 x 167 M2 M2) M2 s(s — 4m2)

‘We refer them as K*“(s,t) scheme and K*(u,t) scheme. Note that the difference between these
schemes is relevant only in the case of approximation I.
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« [ (( ~PIME 43 - O~ p,)qﬂla"‘:;')

=1 j=1
2 -
5 (cose | _ s+ M+ 2B - 2/5(E, +q0))
Paq ;
2|p.|ldl
x dgodE,d cos 8,,,d cos 0, 400 (4.44)
Note for simplicity, we have used the convention Q;- = —Q); for the incoming hadrons,

Q'J = @, for the outcoming hadrons, and p'1 = p3. P, = P4 in Eq. (4.44).

To express the subleading term in term of scalar products p; - pj, we write
I M,i? _ dIMy|? ds N aiM(,Fg

= . 4.45
%, 35 o ot om (4.45)

Since we expand the M, in powers of the dilepton energy q, and only keep the first
derivative, the above subleading formula will be effective only for the case that the maxi-

mum energy of the dilepton is much less than the energies of the particles in the system.

4.7 Exact Results

For an exact calculation, we make use of the hadron-electric current K* in Eq. (4.15).

Since gauge invariance is an important issue here, a gauge-invariance check leads to

K¢ = —QiTy — QuTs + Q\T) + Q,T, = —qu. K% (4.46)

[t shows that ¢,A* = 0. the sum of the amplitudes K# presented in Eq. (4.15) is

gauge invariant. Then we have

do® ¢ 2 2u° 42 1
? = = 1+ “2) 1- “2
M M? | [s(s — 4m2)

dM? 12 x 167 M2
X / [~ (KT + 2K, - K; + K3)|dgod Ed cos 6,,qd cos 6 d

s+ M? + 2Ejqo — 2/5(E) + qo))
2|p1q]

x4 (cos 00— (4.47)

The square of the invariant matrix element K? just involves the combinations of the

ten scalar products and known relative constants (see Appendix C).
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Figure 4.4: The comparison between the exact dilepton differential cross section calcula-
tion and the leading-order approximations (often used Low-scheme: K*(s,t)) for n*n~
collisions at the system invariant energies 0.32, 0.36, 0.6 and 0.8 GeV. At the two smallest
energies 0.32 and 0.36 GeV, the subleading-order contributions are also presented. The
solid lines are the exact calculations (Eq. (4.47)), the dotted lines are the K*(s,t) scheme
leading-order results. While the dashed-dotted lines represent the calculation results up
to the subleading-order with the K*(s.t) scheme.

The results for the calculation of the dilepton differential cross section with Eq. (4.15)
are presented in Fig. 1.4. and compared with the results of the K*(s,t) scheme for
v/5=0.32. 0.36. 0.60 and 0.80 GeV, respectively. At /5=0.32 and 0.36 GeV, we also
plot the SPA K*{s,t) results up to the subleading-order. It shows that the traditional
SPA K*(s,t) approach overestimates the exact results. This overestimation may suggest
the size of off-shell contributions to the dilepton production cross section. At 1/5=0.6 and
0.8 GeV, we do not include the subleading-order contributions, since at large energies our
expansion technique will cease to be valid. The results up to the subleading-order match
the exact results with a reasonable accuracy in energies where they have been calculated.
In the low energy limit, when /s of a system is not too large, our results suggest that

the soft-photon approximation formula are appropriate.

In Fig. 4.5. we present the comparison the different soft-photon approaches and the

exact calculation for energies {/s=0.32. 0.4 and 0.6 GeV. From this figure, (i) the effect of
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Figure 4.5: The comparison between the exact dilepton differential cross sections in 777~
collisions and the three-different soft-photon approaches (see the text), for invariant en-
ergies of 0.32, 0.40 and 0.60 GeV, respectively. The solid lines represent the exact cal-
culation: the dashed-dotted lines and the long-dashed-dotted lines are for K¥(s,t) and
K*(u.t) schemes. respectively. Finally, the dotted lines represent the Riickl approach (see
the text) with virtual current.

the SPA approximation II can be appreciated by comparing the “Riickl approach” results
and those with the K*(s,t), as the “Riickl approach” uses both approximation I and II,
and the complete phase-space approach only uses approximation I. Although the virtual
current is used for both cases, there are differences between the two approaches. (ii) we
can see the effects of using K*(s,t) scheme and the corresponding K#(u,t) scheme. There
are some differences between these two approaches to the soft-photon approximation. (iii)
At low energies, e.g. /s = 0.32 GeV, all the SPA approaches can give reasonable dilepton

cross section, comparing to the exact results.
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4.8 Anisotropy of Dilepton Emission

From Eq. (4.20), Eq. (4.21) and Eq. (4.22), we obtain

dSgeTe” . 4#/ (l K K?)
PP, 4E1E2[v1 —v2|327r"' M2V

d°p.
a4 _ P 2
(27T) 0 (pl + P2 p]. p2 ) (271')32E1 (27[')32E2 (448)

Write dQ2™ = dcos§d¢, and integrating over d*q and d¢, Eq. (4.48) can be simplified

as
dosc  a® 4 1 1 L/[ (- K)? _ K7
Ddeoss 162y Mz \/s(s — 4m2) M?2n M2
) 2 ’ _ 2 ’
<5 (cos 6, - s+ M?*+ 2E2q: VS(E, + qo))
: 2|p,liq]
x dgodE,d cos 8y, ,d cos 0, (dbdn (4.49)

In the rest frame of the lepton pair, the gauge invariance condition ¢g¥K, = 0 leads to

(1-K)?=20p, -K)?+2(p_- -K)? (4.50)

Define an unit vector p. in the dilepton rest frame(“i j k" frame, refer to Fig. (4.6))
p. = cos Ok’ + sinfsin ¢j’ + sin 6 cos ¢7 (4.51)

where ¢ is the angle between the unit vectors ¢ and p...

Now i the center of mass p; + pz frame of the two colliding pions, we choose the

coordinate system( “ijk” frame) such that

g=k,
P1 = cos Op, ok + sin B, 7 = — P2,

fp = cOS O, & +sin B, ,sin $17 + sin B, 4 COS P11

By = —(By +4) (4.52)
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e

Figure 4.6: The coordinate relation of the dilepton rest frame (i’j'k’) and the center of
mass two colliding pions frame (ijk). p. is the positron momentum in i’j’k’ frame, p; is
the initial pion momentum, p, is one of the final pion momentum in the ijk frame.

Then the i’ j k™" frame is coincident with the “ijk” frame (see Fig. (4.6)).

As all the variables should obviously be evaluated in the same frame, here we choose
i the py ~ pa centre of mass frame. Note that the vector p, up to now is in the dilepton
rest frame. we need to perform Lorentz transformation, which is between two frames of

reference moving with the momentum ¢ along the k direction.

In the dilepton rest frame, the dilepton has energy M, and E, = E_ =M/2, |p3| =

p. = \/%3 — 42 In the c.m. of py +p; frame,|pi| =p2| =p= /i —m2, By =E;, =E =

%;,and the dilepton has energy qq, then
vryi=-1
M ¥

—

After performing the Lorentz transformation, we have in the pion-pion c.m. frame(p; +
5, = 0)

M : . .
p- = —[(v8 + ycos )k + sin fsin ¢j + sin 8 cos ¢1]

M
E_= ?(1 +BCOSQ)

108



p. = %[(7[3 — ycos@)k — sinfsin #j — sinf cos qﬁ]
E_= %(1 — Bcosb) (4.54)

The electron mass has been set p = 0. Therefore, all the scalar products (p; - p;), (pi-P+),
and (p; - p_) implied by Eq. (4.50) can be expressed in term of the integrating variables

of Eq. (4.49). Write
dZO.e"‘c_
S= dM?2dcosé’ (4.55)

\We are finally able to calculate the anisotropy parameter B, which is defined as

_ S(M.8=0)
B= S(M.6 = 90°) L (4.56)

Fig. 4.7 presents the so-called anisotropy parameter B against the invariant mass M
of the lepton pairs at the system effective energy /s=0.35, 0.6 and 0.8 GeV, respectively.
The solid lines represent our exact result while the dotted lines are for SPA K*(s, t) results.
At /5=0.35 GeV, we also show the SPA results up to subleading-order. The contribution
of the subleading-order slightly reduce the parameter B from the SPA leading order. At
small invariant mass M of the lepton pairs, the exact results are very different from those
in the SPA approach. Once the effective energy becomes high, the anisotropy coefficient

B stays at around zero for large M of dileptons.

4.9 Dilepton Rates and Yields

We now seek a simple framework for the application of the method developed up to
now. Since we know that ultrarelativistic heavy ion collisions are meson-dominated, we
concentrate on that area. Bear in mind that the following calculations are done for
comparison purposes mostly and we do not attempt to model any data.- Rather, we have

looked for a somewhat idealized and simple environment.

In ultrarelativistic nuclear collisions, the dilepton emission may serve as a very im-

portant probe for the QCD phase transition [2]. The low invariant mass(M < 0.5 GeV)
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Figure 4.7: The polar anisotropy coefficient, as defined in the text, against the lepton
pair invariant mass M for invariant energies of #*7~ system 0.36, 0.6 and 0.8 GeV,
respectively. The solid lines represent the exact calculations; the dotted lines are for the
K'*#(s.t) scheme soft-photon leading-order approximations. At invariant energy 0.36 GeV,
the dashed-dot line is the result up to subleading-order with the K*(s,t) scheme.

dilepton spectrum mayv be sensitive to the quark and the pion dispersion relations in
the high-temperature medium '1311. The virtual bremsstrahlung in pion-pion and quark-
quark collisions should also contribute to the spectrum in this mass range. Such rates
have been evaluated by Haglin et al [91] with a SPA approach. We use kinetic theory for
the processes p; + p; = p'1 + p'z +e7e:

te~

Ny © / / d*p di”? —H(E'1+Ez)da
= G112

d*zdM? (2m)3 (2m)3 Mz (4:57)

where v, = @E 8= ,%T, and gy = (2s; + 1)(2s2 + 1) is the spin degeneracy.
ete—

Any modification of ¥~ will change the reaction rates m Integrating over the

e
TdMT

momenta in Eq. (4.57),

(2), (4.58)

dNg, € g12/ & A(Z*T?, ml,mg)'i (z)dae“_
d*zdM? ~ 167% Jopn B dMe?

where : = ’T—; Zmun = (my + ma + M)/T. and k, is a modified Bessel function.

Now we further evaluate the dilepton yields from two different scenarios of collision

dynamics based on Bjorken’s relativistic hydrodynamic model [126]. At first, we assume
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that the collisions lead to the formation of a thermalized QGP at initial time ¢;, and the
initial temperature 7T;. Before time ¢;, a very complicated initial stage might be simulated
by the Parton Cascade model [132, 133, 134]. Then QGP expands and the temperature
decreases until a critical temperature T.. At T., QGP enters a mixed phase. We are
assuming a first order phase transition. After the QGP is converted into hadronic matter,
the hadron matter will cool down and reach a temperature Ty to freeze out. Another
scenario is no QGP formation and the hadronic matter expands and cools, going from an

initial temperature T, to freeze-out temperature Ty.

Note d*r = wR:dytdt . and T(t) = T,(to/t)3 based on hydrodynamic model [126], the

dilepton yields can be directly written for the second scenario as

dNETe

4.59
dydM? (4.59)

T. dT dN°"¢"

SmRATY 1, T7 dizdM?

For the first scenario, there is a mixed phase contribution [130]. The dilepton yields
from pion processes can be calculated as

dNE™e

JydT (4.60)

T. dT dN¢"¢" =R% T; dNeTe”
_ 2 642 il AT11642 -1
= SR /T, ezt T 2 7)) 5~ Vg

Here r is ratio of number of degrees of freedom in QGP to hadron phase(r ~ 12). Note

that here we do not calculate yields from the quark phase. We simply seek to compare

the effect of different approximations to the pion rate, in a simple dynamical model.

ln Fig. 4.3(a). we present the lepton pair rates from pion virtual bremsstrahlung at
temperature T=200 MeV under three different approaches. While this figure illustrates
that the SPA method is a good approximation for the dilepton rate’s calculations, we
add that rates should perhaps not be used to test the bremsstrahlung formalism, as the
integration over a range of temperatures may change cohensions based on rates. After
integrating the time evolution in the Bjorken’s model, the resulting invariant-mass spectra
through virtual bremsstrahlung are plotted in Fig. 4.8(b). From this figure, it is clear
that the SPA is finally a reasonable approach. Note if we assume that there is no phase

transition, the initial temperature has to be set unreasonably high (360 MeV), in order
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to reproduce the yield with a QGP phase transition and initial temperature T=200 MeV.
From a purely theoretical point of view, this tells us that the mixed phase has significant

contribution to the dilepton spectra.

4.10 Summary

With a One-Boson-Exchange model for #~ 7~ interactions, we have presented results of
various soft-photon approximations and also of exact calculations. Our case study shows
that at relative small energy system, the SPA amplitudes K¥(s,t) or K¥#(u,t), can be
used to evaluate the differential cross section for dilepton emission. The subleading-
order formula should only be applied for small energy (compared with the energies of the
particles in the system) lepton pair production. This formula should improve the precision
of the calculations over the leading SPA approach. For hadron-hadron bremsstrahlung,
the advantage of using SPA amplitudes can be easily seen. Such amplitudes depend only
on the corresponding elastic amplitude and electromagnetic constants of the participating

particles.

We may extend our approach to other charged pion contributions, for example, to
7" 7~ and m~ 7~ collisions. When the exchange mesons have charge (e.g. 7%, or w07~
collisions). internal radiation will also contribute to the exact amplitudes. Also a more

precise evaluation is possible by considering the f-meson exchange [135], for example.

Starting from our dielectron rates, we have evaluated yields based on Bjorken’s hy-
drodynamical model. We show that the soft-photon-approximation (SPA) is in fact not

a bad approach to such calculations.
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Figure 4.8: (a) The dielectron rates from pion virtual bremsstrahlung at temperature
T=200 MeV under (i) solid line: the exact calculations, (ii) dotted line: only using
approximation I (see text), called K¥(s,t) scheme, (iii) using both approximation I and
II, or called Riickl approach. (b)The dielectron yields from pion virtual bremsstrahlung.
The bottom three lines are under the same three different approaches as in (a) with
T,=200 MeV. Ty = 140 MeV without QGP formation. The upper two lines are (i) solid
line: T, = 200 MeV. T, = 160 MeV, Ty = 140 MeV with QGP formation, (ii) dotted line:
T, = 360 MeV. Ty = 140 MeV without QGP formation.
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Conclusion

We have used the Boltzmann-Uehling-Uhlenbeck equation to simulate nucleus-nucleus
collision dvnamics at the intermediate energy regime. The transverse flow has been shown
dependent on the nonlinear combinations of nucleon-nucleon cascade collisions and nuclear
mean field. Concentrating on the momentum—dependent features of the one-body self-
consistent nuclear mean field, we have seen that the precise functional dependence on
momentum of the interaction was important. Taking two phenomenological potentials
with the exact same characteristics at saturation density and zero temperature (NGBD
and NMDYT), we have shown that their behavior in situations removed from equilibrium
could be quite different. The relative importance of Coulomb potential has been shown
dependent on the projectile kinetic energy as well as impact parameter. We have also
verified the importance of angular momentum conservation on the generation of transverse
momentum in high energy heavy ion collisions. Relaxing the conservation law lead to a

very slight variation in the flow parameter in BUU collisions.

By performing calculations to address data on symmetric and asymmetric systems
at intermediate energies, we have shown that one can indeed assess the importance of
the density—dependent and momentum—dependent terms in the nuclear equation of state,
separately. We have, for the first time in a comparative study, considered Streamer Cham-
ber, Plastic Ball, DIOGENE, EOS TPC and E848H flow data and BUU calculations. We
find that all the flow data we have considered in this work can be reproduced with a
momentum—-dependent-Yukawa interaction with a nuclear compressibility coefficient of K

= 210 MeV, which is consistent with the analysis of giant monopole resonance. As BUU
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being a one-body theory, we have applied a simple coalescence prescription to restrict the
analysis to free neutrons for simulating the E848H measurements. Comparison with the
data reveals that the free neutron symmetric system data is insensitive to the nuclear
compressibility K of the EOS. This is an important piece of information, as the previous
calculations of flow in the collision of symmetric systems exhibit considerable structure
and sensitivity to K. We have provided an explanation for such an apparent discrepancy.
This involved emphasizing the role played by the nuclear composite fragments and their
participation in the collective nuclear flow. Because of the large sensitivity of the com-
posite flow to the nuclear EOS, we have shown that a quantitative connection between
the composite flow and the K can be established. The tests of BUU accuracy provided
by the simultaneous comparison to double and triple differential cross sections and flow

data is completely unprecedented.

Then we turned to dielectron production at Bevalac energies. We have analyzed the
production mechanisms in nucleus-nucleus collisions. These include delta and eta Dalitz
decay. nucleon-nucleon bremsstrahlung, and pion-pion annihilation and bremsstrahlung.
We have included the exact real-photon electromagnetic current and considered the effect
of an asymmetric parametrization for p-n elastic differential cross section and found that
these two aspects have significant effects on the dielectron yields. The relative importance
of p-p and n-p bremsstrahlung has been shown dependent on the kinetic energy and
p-p bremsstrahlung becomes more and more important as the energy increases. This
invalidates the classic multipole argument at high energies. We have also calculated the
angular distribution of the bremsstrahlung dielectrons. The angular anisotropy of the
dielectron spectrum has been shown dependent on the details of the calculations. Thus
some caution must be taken before such observable can be put forward as a means of
distinguishing between competing lepton pair production sources. We have also examined
the nuclear EOS effects on the dielectron spectrum. Comparing to the re-analyzed DLS
(Ca—Ca dielectron data at 1.05 GeV/nucleon, we have shown that this data can also

accommodate a nuclear compressibility K=210MeV with momentum dependent feature.
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Our calcularion shows that the n-meson Dalitz decav dominates the dilepton spectra for
the invariant masses 0.2 < M < 0.5GeV. A precise measurement of eta production
could be used to normalize the dielectron spectrum in this invariant mass region. In
the intermediate mass region, the delta Dalitz decay defines the spectrum shape, and
vector dominance improves the fit. The bremsstrahlung contributions are insignificant at
such energy and the pion-pion annihilation determines the shape of the spectrum at high

invariant masses.

Finally, based on one-boson-exchange model, we have done a full T-matrix calculation
of pion-pion bremsstrahlung. The formalism has been clearly developed, and the assump-
tions and approximations used to recover the soft-photon approximation(SPA) formulae
in the literature have also been clearly stated. The calculation results are compared to
each other. We have shown that the SPA approach is in fact not a bad approxima-
tion tor evaluating the bremsstrahlung contributions to the dilepton rate and yields in

ultra-relativistic heavy ion collisions.
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Appendix A

Nuclear Mean Field Potentials

In this appendix, we show how to adjust various sets of parameters for three different
potentials used in the text. We assume that there exists a Hamiltonian giving the energy

of the system in term of the phase space distribution f(7,p)
2
_ 3 D ~ 13 3
H_/d f{/——sz(r,ﬁjdﬁ]+/dr'V[f] (A.1)

here [ ﬁ (F,5)d®p = Ekin(p) is the kinetic energy density, and V[f] is the potential

energy density.

Consider the single particle potential U(p, o), where p is the nuclear matter density
p = [d*pf(F.p). and a represents the other quantities on which the potential may depend.
As stressed by Bertsch and Das Gupta (8], U(p, @) is not the same as V[f], but they are
related

Vip,o) = [ UG, a)dp (A.2)

The total energy density is then
o2 p)
Eg(p, =/ ——dp + , .
PEs(pa) = | = =dp +V(p,) (A.3)

where p(p) is the Fermi momentum corresponding to the density p of particles in the sys-
tem, Eg is the binding energy per particle of nuclear matter, at the equilibrium conditions

for the ground state, which has the empirical value Eg = —16 MeV.

117



Now we follow the well-known procedure to calculate the pressure P of nuclear matter.

[f we hold the number of particles N fixed in the system, the thermodynamics gives

dEg

= — A4

P(p,a) = == (A9)

where v is the volume of the system.
With the fact that & = digl’- = —p*§, we can rewrite
,dEg
P(p.a) = p*—— A
(p.a) = p 2 (A.5)

At equilibrium, the pressure should vanish. Another equivalent way is to use the pressure

tensor(also called the momentum current) as defined in the Appendix E of Ref. (8]

M, = [ @2~ G 7. + ([ SFUSE D) - VIS] (A6)

This expression does not assume equilibrium, and thus is general. But in equilibrium,
the appendix of Ref. {34] has demonstrated that II;; = 4;;P. The disappearance of the

pressure then is equivalent to the momentum current vanishing.

Another very important quantity of nuclear matter is the nuclear compressibility co-

efficient K, which is defined as

9k oIl
K===3 = AT
p Z 9p (A1

where k is the bulk modulus. The derivative here is taken under adiabatic conditions.

A.1 Momentum-independent Potential

The single-particle potential has the form
Up) = A(£) + B(£)” (A.8)
Po Po

and

A p2 B pa+1
V) =50t o1 =

(A.9)
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With the Fermi momentum pg(p) = (%p)é, Eq. (A.3), Eq (A.5) and Eq. (A.7) yield

3 Ap B
7 1om " 2 po O +1p] ( )

pF ' Ap2 Bo pc.7+1

_PE, 2P Al

P’ i o i i (A1)
2 (4

K =92 . 42 . sl (A.12)
3m Po Po

The parameters (A.B.o) of the potential should be chosen to satisfy ({)Eg = —16 MeV,
(ii) P=0 and (iii) a specified value K, e.g. K=210 MeV, at the saturation density py, say

po = 0.15fm 3. This system of equations can be solved analytically.

A.2 GBD Momentum-dependent Potential

With the single-particle potential

Ulp.p) = A( f}?) ( ) /43’ _,_<_>]2

. C p

-7 A.13
Tﬂol—e— [P——L-‘f3]2 ( )
and the putential energy density
, Ap*(F B pY(rF C' T f(7, __f(rp)
2 po o+1 pf ‘<3]
Eq. (A.3) leads to
2 A B p° C ' D
N S e Ly (A.15)
10m 2py o+1p§ po 1+[g;—K@]

For static nuclear matter , the average value of § is zero, < § >= 0. The integral thus

Proay  fOP) AR PR
/odp?:[—:,":—;]—z-—iip(w)[j\ tan 1(A)] (A.16)

Where f(7,p) is a zero temperature Fermi distribution

(7.5 = =O(pr - 7) (A.17)



The factor “4” is the spin-isospin degeneracy, h is Planck’s constant, and ©(z) is the

normal step function. The total energy Eg can be written as

Ep = JE %% + %1% + 30%(%)3[”—1{’- —wan () (Ag)
Note
We readily obtain the pressure P from Eq. (A.5) and Eq. (A.18)
p-Pe, AP Bo o7 o 1 (A.20)

= _.+ _ ,
sm’ " 200 o+l g | pol+ (EE)

and the nuclear compressibility coefficient K from Eq. (A.7) and Eq. (A.20)

2 (-4
. PF p p P 1
K = 9—~+~A—~+Bo—=+20————
3m Po Po po 1 + (BE)?
_2€p _p_F_)ﬂ__l_ (A.21)

After applying the integral Eq. (A.16), the single-particle potential Eq. (A.13) for

static nuclear matter at T=0 turns out to be

p p p 1
Ul(p, = A(=)+B(—)"+C—
(0. ) (Po) (Po) Pol+%
P A 3,DF -1/PF
+3C—(—)’ (= —tan" " (— A.22
2y C3) (A.22)
Now we evaluate the nuclear effective mass m*
m= 1
—_—=—— (A.23)
m 1+ ry v§'U
\With the identities
o_ 1 _%ro 1 Or _ lpr (A.24)
Op 1+ (BE)? dp Opr 1+ (B dp 3p’ )
Eq. (A.23) can be thus simplified,
m* 1
- — . (A.25)
m 1 - 2C'p&°'l\'§__'ﬁ—_(1+(_];\£)z)2
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A.3 MDYI Momentum-dependent Potential

Substituting this type of single-particle potential

(-‘)) ( ) 3 ! (7 p
Ulp(r = A d’p A 26
((F). ) = ( p Pa Po/ [ ] ( )
which feads to the potential energy density
) A p2(F) B oY 3. 13 ,f(r p)f (T, p")
% = — + , A27
(p(ﬂ 2 po o+1 0 /fd d p_ﬂ] ( )

into Eq. (A.3), we readily obtain

3P%' Ap 3. 3. f(7 D) f(T, 5’)
Eg=-2r 2P 2
B 10m+2pg+a+1po //d ap = 2] (A.28)

Using the Fermi distribution Eq. (A.17), the integral

—/ 2 2
/p”/” &pd® :frﬁ)f(rpz) _ pA[___itanq?iF_'_ A2
[u:] Py'8  2pF A 16p%

(iA_2+ LA+ B8 (a29)

64 p}
and
/pF &y f(f'ip"i) - A [pp T AP (prpe)+ AT 2r
0 1+ [2”?\&] 27 2pA (p—pr)2+A2 A
— 2(tan™! p_'t\f}i — tan™! I—)-:jf—F)] (A.30)

With Eq. (A.5) and Eq. (A.28), the pressure can be expressed as
Pr AP Bo g1 /[ds & ,frﬁ')f(rp)

e P 4 52
,f T IT)f(T“ﬁ")
Tcad— /d3 &p e (A.31)
Note
(7, p)f (7, p") Pr o f(7\P)
= [ @pL DB A.32
dp /_/ [e:\e’_]z ) p1+[%z]2 (A.32)
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we finally obtain

p% Ap_2+ Bo p"*‘1_+_3Cp2A2 1A2

P = —“p+—- 1+ -—
5m” 2p  o+1 g5 4 POPF[ 6 %
1AZ  1AY 4p% 4 1A? 1

~— +-—)n(l+—F)+ (s + 75 A.33

The nuclear compressibility coefficient K can be calculated from Eq. (A.7) and Eq. (A.31)

, P P 3 3,f(7‘ P)f(7.p")
K =9 ——~-+—A Bcr— Cc— d’pd’p
3m Po Pg " Po dp2 / [EE]2
.2
= 9lPE 4P . Bo"—+c”] (A.34)
| 3m Po iR P

By performing the integral Eq (A.30). we are able to express the single-particle po--

tential for the static nuclear matter here

o5 = A(2D) 1 (H0) I o N ks Mg, ptoef i

Po 2 po Py 2pA (p—pr)? + A2
2pF -1P+PF 1P —PF
- . A.35
+ — 2(tan A tan N )] ( )
Then,
~ 3CA  p (2 20+ A% 4pF+A?
ViU =5 [— o L ] . (A.36)
PEpo A 2p%
Now, we can immediately write out the effective mass m*
mr _ ! (A.37)

2 2p%+A? | 4pL+A?
m e rn [ e
PO Pg

2p7 A?

As in the GBD potential. there are five parameters (A, B,C,o0,A) in this MDYI
potential. To set these five parameters in both GBD and MDYI potentials, respec-
tivelv, we need to define five equations, which should come from the empirical nuclear
matter properties at the ground state. The two equations (:)Eg = —16 MeV, (ii)
P=0 at the saturation density po (e.g. 0.15fm=3) are essential conditions. Another

three equations can be chosen by specifying three quantities from U(pq, p), Z* and K.

We could choose U(pg,0) = —75MeV, U(pg, 2- = 300 MeV)=0, and K=200 MeV; or
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2 = 0.67, U(pg, o0) = 30.5 MeV and K=200 MeV. These conditions stem from static
nuclear matter properties and from features of the nuclear optical potential. Then we
have five non-linear equations for the five parameters. This system of equations can be

solved numerically with Newton-Raphson method (136, 137], for example.
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Appendix B

Derivation of A Dalitz Decay Width

Now we evaluate the A Dalitz decay width for A — N~. Write A,, ¥y, and ¥, as the

usual expansions of Dirac spinors and creation/annihilation operators

d’q eu(q, M) €s(g:A) s
A, = / B —req,, + L2 e %)
g ,\;1 (21r)§[ V2o LV 7 o
U d’ pN ipN-T —ipN-T
N = z j 'u'(qu 0’)8 pro' + U(pN U) bp~a]

o=t}

e
bW
Il

d3 (DA -T —ipA'T
> (2:)"% (48 (pa, €)€P2 by ¢ + VP (pa, €)e P57 ]

a3
”A T (Pa, €72 e + T (pa )27, (B.1)

L3
@
Il
- [~]
\

Thus. the amplitude for the process A — N~ can be expressed as

A = <Aj- inzl"/N>

f u 7e)
= - e*(q, A7 (pa, E)Eg u(pn, o) . (B.2
¢ 5hg (0. VP (pa. ) Eauuox ) )
One needs to average over the spins of the incoming particles and sum over the spins of

the particles in the final state. We then obtain

T =y A

3.;‘27152 1
T 1(2r)72q [Z €(g, Me* (g, '\)ZU(PN, J&(pN, o)
YE;v Y u? (PA,E)U (Pa, &) Eayl (B.3)
¢
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Note the sum over the polarizations of the virtual-photon vectors and Dirac spinors

yTym7

Y e N (g A) = g+ T
A q
my + -

> ulpy.o)@lpy.0) = _N_QE_prﬁﬁ.

0:%
and with the Rarita-Schwinger formalism for the spin % particles [103]

2mA 3mA

Z ua(pAs E)ﬂﬂ(pA,f) =
3=

»iw
=

P N pay? — wa")
3 SmA ’

we use Mathematica to simplify Eq.(B.3) to be

— 1 f2? 1 16m
T 4(27)°2E,, 2qo2ma 3
+ 3goM? + 3myqg; — 5mag + 3q3)

:’A(—mAM:; + 3mNM2

The differential width takes the following form:
dT(A = N~) = (27)7A 6% (pa — pnv — @)d’prd’q

using the identities:

d®p

S5 = [Pt - mewd);

Ro(?,mimd) = [ dpid'mas(el - ms(e} - m3)5*(p — ;1 — p2)

nAi(s, m}, md)

and Ra(s,m? m?) = 55 ,

(B-4)

(B.6)

(B.7)

(B.8)

we finally get the the total width [y of A into a virtual photon with invariant mass M as

1
47

R?(msz m?\rw M2)

2mA

Fﬂ(mﬁv Mz) = 2‘42

where R, is the two-particle phase space integral.
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Appendix C

Electromagnetic Current (—.J?)

For the virtual photon current J of Eq. (4.27), we evaluate the (—J?). Define

= 21d _ pildl . g
B = 6.'£ = —=—, n=— C1
Qo E; qo Ifﬂ ( )
Then
pi- g = Eigo(1 - i - ) (C.2)

Since p? = m?. with the aid of the virtual photon current conservation J#g, = 0, a formal

exercise will lead to

. Q- ) gami- M
E1q0(1-31 i — 2;’;[120)2 E3@}(1— B -7l — 22;2;,)2
2(m? - Mi) Q7 (m? — ‘Ai—z)
El (1 -3, - n"'%z—)z E2g3(1 - B; - "—2;}::0)2

201Q2(1 - 25 - 51+ 5o)
@l =37 - o)1= 8-+ )

2Q1Q'1(1 + “f:‘,‘—; - ﬁz éi)

q%(l—ﬁl-ﬁ—m)(l 5,7+ )
2Q1Q,(1 + oy m - By)
@1 -6 -7 2,5“,0)(1 By -7+ 2o
. 2Q:Q1(1 + g5 Bz B1)
@1 = Bo 7 — ) (1= B A+ 20)
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2Q,Q,(1 + 1E.E X ﬂz)

2 — 2
qg(l—az.n—zgq )( — By -7+ M)

2Q,Q,(1 - Fr - 51 5)

- h (C.3)

2 _ 1] = _ ~t = M?
qgd(l = 3, -7 E’qo)(l 3, n+2E;qo)

-+

We can see that no terms in Eq. (C.3) are directly proportional to 1/q since those terms

are canceled exactly due to the charge conservation.

Since the elastic differential cross section do'?~! 2 /dt only depends on the momentum
transfer ¢, for simplicity, we take an angular average for the squared current (—J2), in

Riuckl’s approach. Recall the two parameter Feynman integral

1. /U : dz (C.4)

ab laz +b(1 — 2)]2’
in our case,
Flz.g) = qu 1-z n)l(l )
- /d/ ™ (1 [ziﬁ(l—z)]f
_o, [z-g—xz—\/ﬁ][f 7-y* - VR (C5)
2VR [ g-22+ VR|E -7- 24-\/_]
with the scalar
R=(1-%-9*-(1-2)(1-9), (C.6)
then we obtain
LB ql{ - 3@+ Qz)T—M)i + X(Q7 + Q; )—(—T“f)zl
—202Q,Q,(2 - ”TIZ - 4m”)F(ﬁuﬂ2)
—2A2Q,Q,(2 - MTz - 4m’2’)F(B1,B2)
~2Ah(@iQ, + QQQ;)‘”" 6.
22 0(@Q1Q, + Q2Q1)4m b iwz — 2 (51,ﬁ2)} (C.7)
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To make the formula more compact, we have introduced the variables

1 1 M?
AL = [ 2 Az = T 7= 1-—- (C.8)
~ Vsao + Vaqo %

The 3s are related to the dilepton invariant mass M, energy qo and the above definitions

through
5= %=~ ), g = 7 = (1 - )
5.5=-n0-) 37— - iy
-3 =-3-3 = Ayl - dms + %) (C.9)

Suppuse we set M = 0. the formulas from Eq. (C.7) recovers Eq. (3.18), which is for the

squared real photon current.

For the complete phase space approach, we can rewrite the current squared term (—J?)

Eq. (C.3) in term of ten scalar products p; - p;, which is

Q2(4m2 — M?)  Q3(4mi — M?)
T (2p-q— M2)?2 (2p;-q— M?)?
QZ(4m? — M?)  QF(4ml — M?)
(2P -q+ M2 (2p; - q + M?)?
2Q1Q2(4p: - p2 — M?) 2Q:Q,(4p1 - py + M?)
(2p1-q — M?)(2p2-q — M?) ~ (2p1-q — M?)(2p, - ¢ + M?)
201Q5(4p1 Py + M?)  2Q2Q1(4p2-pi + M?)
(2p1-q ~ M?)(2p, - q+ M?)  (2p2-q— M?)(2p, - ¢ + M?)
2Q2Q5(4ps - py + M?) 2Q,Q>(4p; - p, — M?)

- 1 - 1 7 C-]-O
(2p2 - @ — M?)(2p, - ¢ + M?) (2P1'Q+M2)(2P2’Q+M2)( )

-J?

-+

In the center of mass 142 frame, the ten scalar products p; - p; can be expressed in

term of the integral variables in Eq. (4.39). Suppose that the magnitude of the initial
particle momenta |pi| = |p2] = p = {/s/4 — m2, and the energy Ey = E; = E = /3/2,

then
D1 - p2 = E? +p?,
p1-qg = Eqo — p|q) cosb,,q,
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P
D1
b,
b

D2

-q=2Eq - p1q.

-py = 2EE, — p, - py,

Dy =m%+P1'P2—P1

’

’Q=P1'Q+P2'q_P;

'

"D =P1'P2+m§—l’2

’ 1 s . . .
- py = EEy ~ plp,|(cos bp, 4 cos Gp;q + sinfp, 4 sin Gp;q sin ¢),

¢ = Eyq0 — |Pajldlcost,

“Pa—P1°q

Dy =P1-Pa+D2-Dy— My —Dy-q

.q— M?

Py —D2-4q
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