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Summary

The main exercise of this thesis is the formulation of a mathematical framework for
analyzing an existing industrial adaptive control algorithm labeled Model weighting
adaptive control (MWAC). The algorithm is then analyzed under this framework. The
exercise is complemented by a set of algorithmic additions aimed at solving questions
that so far had remained open (e.g. the treatment of undermodelling errors). Those
solutions, on the other hand build on results derived from the analysis.

A key result for analyzing the algorithm is that when an external excitation
is applied (in the form of a control task such as a setpoint change), the adaptive
controller behaves, in a short time that follows the application of the excitation, as
a linear equation whose parameters are completely known at design time. It follows
that during this short period, the input signal provided to the estimation subsystem
is at least partially known (except for disturbances) and that the estimation virtually
takes place in open loop. Using this information and assuming boundedness of the
disturbance signals, it is possible to bound the behaviour of the adaptive system at
an early stage.

With the MWAC algorithm, the plant model is formed by making a weighted
sum of a finite number of possible plant models. It is shown that, under adequate
conditions and in a time corresponding to the apparent plant delay, the plant model
will "jump” to a neighborhood of the true plant. The size of this neighborhood will
depend in part on how sharply the bad models are discriminated from the good mod-
els. On the other hand, disturbances will smooth the weight map towards a uniform



SUMMARY

distribution. The sharpness or smoothness of the weight map can be measured online
by computing the sum of the square root of all the weights in the set. The remarkable
property of this measure is that an upper bound on the distance between the true
plant and its model can be found which an affine function of the measure.

The effect of external disturbances such as measurement errors can be reduced
by an external excitation of sufficient magnitude. This is not true however of distur-
bances caused by undermodelling errors which are almost always present to a lesser
or greater degree. Two solutions are proposed to counteract this undesirable effect.
The first method consists in bandpass filtering the input/output data in such a way
that the frequency content of the data is consistent with data obtained from some
first order plus delay (FOPD) model. The second method adjusts the sampling pe-
riod online such that a compromise between satisfying the FOPD assumption and the

coarseness of the control is obtained.

iv



Résumé

L’exercice principal de cette thése consiste & formuler un cadre d’analyse mathématique
pour un algorithme adaptatif industriel appelé Commande adaptative par modéles
pondérés (MWAC, Pacronyme en anglais). L’algorithme est ensuite analysé & I'intérieur
de cadre. Des modifications & I’algorithme original sont ensuite proposées dans le but
de résoudre des questions qui, & ce jour, demeuraient sans réponse (tel le traitement
des erreurs de sous-modélisation). Par ailleurs, les modifications proposées découlent
des résultats obtenus a I’analyse.

Un des principaux résultats de cette analyse est 1’observation que dans une courte
période de temps suivant 'application d’une excitation externe, le controlleur adap-
tatif se comporte tel une équation linéaire dont tous les paramétres sont connus avant
la mise en marche du systéme. Il en découle que, pendant une courte période de
temps, le signal fourni a l'estimateur est partiellement connu (nonobstant les pertur-
bations) et que I’estimation du modele se déroule pratiquement en boucle ouverte.
En utilisant cette information et en supposant une borne sur 'amplitude des per-
turbations, il est possible d’obtenir une borne sur le comportement & court terme de
l’algorithme.

L’algorithme MWAC compose un modéle du procédé en faisant une somme pondérée
de modeles possibles. II est démontré que, sous des conditions adéquates et 4 'intérieur
d’'un temps correspondant au retard apparent du procédé, le modéle se déplace rapi-
dement vers I'intérieur d’un voisinage de la dynamique du véritable procédé. La taille

de ce voisinage dépend en partie de I'acuité avec laquelle le systéme peut trancher



RESUME
entre les mauvais et les bons modéles. A l'opposé, les perturbations tendent 4 uni-
formiser la répartition des poids associés aux modeéles. I.’acuité de la distribution
des poids peut étre mesurée en calculant la somme de la racine carrée des poids. La
propriété remarquable de cette mesure est qu'il est possible de trouver une borne
supérieure & la distance entre la dynamique du procédé et son modeéle qui est une
fonction affine de la mesure.

L'effet des perturbations externes telles les erreurs de mesure peut étre réduit
en utilisant une excitation externe de grandeur suffisante. Telle n’est pas le cas,
toutefois, pour ce qui est des erreurs causées par une sous-modélisation systématique
du procédé. Conséquemment, nous proposons deux méthodes afin de contrer cet effet
indésirable. La premiére méthode consiste & filtrer les données du procédé par un
filtre passe-bande de telle sorte que le contenu fréquentiel des données soit cohérent
avec celui d’'un modele de premier-ordre-avec-retard (POAR). La deuxiéme méthode
consiste 4 ajuster la période d’échantillonage afin d'obtenir un compromis acceptable

entre ’hypothése d'un systéme POAR et la précision de la commande.
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Claim of originality

This thesis provides a framework and an approach for analysing an existing indus-
trial adaptive control technique. Previous analyses of similar algorithms have been
restricted to the asymptotic behaviour of such algorithms. The features of the analysis
and the novelties introduced here are:

e It is focused on the short-term behaviour of the controller as opposed to an
asymptotic analysis.

e An equivalence is found (which is valid only in the early period following the ap-
plication of an external excitation) between the nonlinear, time-varying control
equation and a linear, time-invariant difference equation which is completely
known from prior knowledge and user-selected parameters.

e A central result is that, in a time that corresponds to the apparent time delay
of the plant, the plant model ”jumps” inside a neighborhood of the true plant.
Bounds on the size of this neighborhood are given.

e An outcome of the above is that the proximity of the model to the true plant
can be assessed online through a simple measure.

o Persistence of excitation conditions are not required and the only assump-
tion on signals is that the closed loop system is externally excited by signals
encountered under normal operation (e.g. a step setpoint change).

e Formulae are derived for helping a system designer select appropriate param-
eter values for a given problem.

e Two techniques are proposed for offseting the effects of undermodelling errors.
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NOTATION

SNR Signal-to-noise ratio
Tr [0,d]CZZ The interval of integers from 0
tod

In this thesis, the equation labels are located on the left-hand-side of the equations

and must be interpreted as follows:

(s.c.e)

where s is the section number, ¢ the chapter number and e the equation number.



CHAPTER 1

Introduction

In the manufacturing industries, a typical process has many inputs, many outputs. Its
outputs do not react linearly to input adjustments. It does not react quite exactly the
same way from one day to the next. The measurements (when available) of the desired
properties of the end product are often flawed by errors. Furthermore, the properties
of the raw material the process is fed are not completely known and they vary. Yet,
as has been known for a long time, a little feedback from the measurements to the
inputs performs minute miracles to bring order to this apparently chaotic business.

Many industrial processes nowadays perform poorly if at all without the benefits
of feedback control. By closing a loop on an incompletely or imprecisely described
process, the latter is coaxed into producing an end product with properties that are
closer to specifications than those properties obtained without the feedback loop.
More generally, feedback attenuates the majority of difficulties that stem from a lack
of process understanding.

Up to a limit.

If the model is too imprecise, then closing the loop on that process may in fact
deteriorates its performance. It may even become unstable. During the short history
of control technology, the necessary handling of model precision or model uncertainty

has launched the exploration of increasingly formal treatments.
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Halfway through this century, the desire for better feedback performance in the
face of an unknown or imprecise process model has spurred researchers to develop a
number of control approaches that went beyond the fixed calculation of input signals
from feedback error signals. The common thread of the approaches proposed in that
period was to add the ability to "learn” about the process from its measured reaction
to the computed inputs. Thus, in the 50s, was born the field of adaptive control
[2]. From its modest but courageous beginnings, this field exploded in the following
decades with the development of computer technology, theoretical achievements and
reports of industrial successes. The theoretical and practical aspects of modern adap-
tive control technology are too numerous to fit in this short introduction but those
issues that are pertinent to this thesis will be discussed shortly. For more details
the reader will be refered to the cited publications. The reader will also find in the
literature many excellent textbooks on the subject.

Although many of the general facts cited at the beginning about feedback control
have been known for a long time, it is only in the late 70s - early 80s that these
notions have been cast in a formal mathematical framework. The seminal work of
Zames [47) in this area has sparked a flurry of developments from many quarters.
These developments have evolved into a theory known under various names such
as H* or Robust control theory. The centerpiece of this theory consists in solving
the following problem: given that over all frequencies, the process and its model
deviate by no more than some quantity (or some bounding frequency function), what
linear time-invariant feedback control will simultaneously satisfy a given performance
specification and guarantee internal stability of the closed-loop system. Despite its
simple formulation, the above problem is difficult to solve and typically yields high-
order solutions. Approximate solutions exist however, and one of these solutions,
namely the internal model control approach has received wide acceptance from the
process industries {33).

Obviously, edaeptive controllers and robust controllers approach the problem of

dealing with uncertainty from vastly different angles. Fundamental research that
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would provide rules to determine when to favour one solution over the other is an
open research area [37]. In fact, even within classes of solutions, there really exists
no hard rule for choosing one particular solution and this decision depends largely
on the context and the designer’s experience and judgment. This implicitely involves
subjective evaluation criteria such as easiness and familiarity. In this thesis, we are
largely biased by the implementation issues and consider that if solutions A and B
solve a given problem but if solution A is easier to understand, easier to implement
and easier to maintain than solution B, then solution A is better. A closed-loop
restatement of Occam’s razor!.

From this standpoint, the robust control approach has an edge since its associated
difficulties are handled at the design stage only and, in the end, yields a linear, time-
invariant controller. Adaptive control, with its inherent nonlinear and time-varying
handling of the process, is more likely to require attention even after it is put in
operation.

With few exceptions, the congeniality aspect has been neglected by the general
adaptive control solutions proposed in the literature. There appear to be at least two
fundamental issues that are causing this: 1) The very general objectives of mainstream
adaptive control techniques and 2) the conflicting natures of identification and control.
The former is closely related to the issue of providing in a sufficiently general way an
adaptive controller with prior knowledge about the problem to be solved. The latter
has been known for a long time and has given way to dual control techniques [7]. For
an in-depth discussion of the above issues see [2] and references therein. It follows
that the implementation (and actually also the analysis) of most existing adaptive
control techniques cannot escape a certain level of complexity. One way around this
problem consists in building a software front-end which shelters the untrained user
from the adaptive controllers nitty-gritty implementation details (and possibly also
the controller from an untrained user) [3], [1], [2]. Such systems however are a far
cry from simple three-term controllers which still dominate the process industries.
mccam: A 13th century English scholastic philosopher known to have stated that "It is

vain to do with more what can be done with less”
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About prior knowledge, Astrom [2] notes that "For specific applications, it is
possible to make adaptive controllers that make effective use of prior knowledge”.
The adaptive control technique proposed by Gendron et al {19] makes an explicit use
of prior knowledge by surveying the general characteristics of the processes of a single
industry, namely the pulp and paper industry:

e Long time delays, non-minimum phase behaviours

e Open loop stable and well damped

e Nonlinear

e Subjected to random disturbances
Note that these process features are not the exclusive claims of pulping and papermak-
ing processes. The underlying assumption of that technique is that a large number of
pulp and paper processes can approximately be described by a first order plus delay
model. This representation has the advantage of only requiring three parameters to
be estimated by the designer. Furthermore, these parameters can be quickly esti-
mated from simple step response tests, a technique at least as old as the venerable
Ziegler-Nichols test ([4], pp 231-232). The only novelty here as far as the designer
is concerned is that of providing a possible range of uncertainty for the estimated
parameters instead of a single estimate.

Not surprisingly, the algorithm labelled "Model Weighting Adaptive Control”
(MWAC) has two of the expected functions of any adaptive controller: a fixed, model-
based control equation and an estimation component which adjusts the model from
input-output measurements. Thus, functionally, it does not differ from other methods
found within a generic class of adaptive solutions. However, by the direct approach it
takes towards adaptation, the method has some congenial virtues not found in most
other adaptive algorithms. One manifestation of this forthrightness is that the direct
translation of the complete set of equations into computer code is limited to a few
lines (= 20) in any modern programming language. Furthermore, it does not require

special supervisory functions. The complete method is later described in Chapter 2.

12
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The reference [19] also describes an application of the method to pulp brightness
control. Since then, the MWAC algorithm has been successfully applied by mill-
resident engineers to the control of white liquor causticizing [38], to the pH control
of cooking liquor [24] and effluents [15].

MWAC was born in industry. And because of its intuitive, direct approach to
adaptation, it was applied nearly immediately after its inception without further
examination or analysis. There is a need however for formally comprehending the
mechanisms and circumstances that make it work, to assess its limitations.There is
also a need for understanding how it relates to other adaptive control methods.

This is the subject of this thesis.

In what follows we propose a mathematical framework for analyzing the problem
and use this framework to gain insight into the salient features of the algorithm. It
happens that MWAC bears some characteristics which are similar to other adaptive
algorithms found in the literature. In the following section, we review some of these
algorithms, underline the similarities and compare the differences. We conjecture
that some of the results found in the later parts of the thesis directly apply to those
algorithms with similarities to MWAC.

Also, it is our objective (that will, from now, be unspoken) to leave the simplicity
of the original algorithm untouched by the mathematical treatment we will now attach
to it. We leave it to the reviewers and readers of this thesis to decide if we have

succeeded or not in that respect.

1. Adaptive control and multiple models

As mentioned earlier, adaptive control already has a rich history. Its history,
however is far from over. In fact, the very notion of what is implied by calling a
system adaptive has been reexamined ([35], [48)], [20] and [27]). The difficulty of
nailing down a universally acceptable definition seems to be caused by the separation
between the external manifestations of adaptive control and the internal mechanisms

that implement the adaptation [35]. As pointed out by Zames [48], one designer’s

13



1.1 ADAPTIVE CONTROL AND MULTIPLE MODELS

adaptive design may appear as a fixed nonlinear design to another. The most satis-
fying definition the author of this thesis has found is the one given by Zames [48]:
A nonadaptive controller is one designed on the basis of a priori infor-
mation, i.e., which is available at the outset. An adaptive controller
makes use of a posteriori information to achieve better performance
than could be obtained with a nonadaptive one.

We claim that under this definition, the algorithm presented in {19] (MWAC) is
truly adaptive. This will be further discussed once we have gone through the analysis
of the algorithm.

Regardless of the definition of adaptation, there exists a number of algorithms
in the literature that are recognized as being adaptive. One may constlt [5] or [35]
to get a description of an appreciable subset of such algorithms. Although many
features of any adaptive algorithm are shared by MWAC, we will now only look at
those which bear enough ressemblance to MWAC to justify comparisons.

To enable such comparisons, we begin by outlining the adaptation mechanism
used by MWAC. As mentioned earlier, the user provides the MWAC algorithm with
a range of possible values for the parameters of a first order plus delay system. These
intervals are then partitioned. A family F of models is then formed from the set of
first order plus delay models which pick their parameters from the Cartesian product
of the partitioned intervals. Let the members of F be the set of indexed first order
plus delay models {P;}. Next let e;(t) be the difference between the plant output and
the particular model P; of F. Consider the familiar weighted 2-norm

t

les@)li3a =D XN *e}(k) 0<A<1
k=0

as being a measure of the ability of P; to reproduce the true plant behaviour. The
parameter A exponentially discounts the contribution of old data to the norm . An

estimate of the plant model is then obtained by computing the sum
P=Y wt) P
i

14



1.1 ADAPTIVE CONTROL AND MULTIPLE MODELS

where

-1
b+ llest) 13
(1.1.1) wit) = ( 2"‘2 =
a1+ llea(®)i30)
where 4 is some small positive quantity inserted to prevent possible divisions by zero.
The online model P is then at every time step replaced in a model-based control

equation in the certainty equivalence fashion.

Multiple models and LQG control. Using, as a starting point, a bounded
family of plant models to represent the uncertainty about the exact behaviour of
a plant is not new. In 1965, Magill {30] published an article on state estimation
where it was assumed that the plant belonged to a finite set of possible state space
representations. This idea was later extended and thoroughly analyzed by Lainiotis
and a complete account of this work can be found in [25], [26] and references therein.
The basic idea of this line of work derives from the Linear-Quadratic-Gaussian(LQG)

estimation theory. Consider the state space system
x(t + 1) = A,-x(t) + B,-u(t) + ’UJ(t)

y(t) Cix(t) +v(t)

where w(t) and v(t) are Gaussian, zero-mean, independent sequences with covariance
W and V respectively. The optimal estimator of the state given the past measure-
ments is computed by the Kalman filter [12], i.e.,
X(t+1]t) = Ax(tlt — 1)+ Bu(t) + K(t)(y(t) — Cik(t|t - 1))
K(t) = (APM)AT+W)CT (C(APQAT +V)CT + W)™

Pt+1) = (I-KQ@)G)(APR)AT +W)

Now consider the innovations z(t) = y(t) ~C;%(t|{t—1). The sequence of innovations is

orthogonal and since the system is assurned Gaussian, then the conditional probability

15



1.1 ADAPTIVE CONTROL AND MULTIPLE MODELS

density function of z(t) is also Gaussian and given by

(1.1.9) pea(2(8) = m expl~327 (D7 (9)=(1)]

where D;(t) = C;P(t)CT +V is the covariance matrix of the innovations.
On the control side, the LQG controller which solves

min £ {f; < (m)Qux(n) + uT(n)Qzu(n)}

n=0

for the above system is computed from

(1.1.3) u(t) = —L;(t) (¢t — 1)
where
(1.1.4) Li(t) = (BT Si(t)B: + Q2) ™' BT Si(t)

and where S;(t) solves another Riccati equation.

Multiple model adaptive control (MMAC). Now suppose that the triplet
o; = (4; , B; ,C;) actually belongs to a finite number N of possible values. Then
the adaptation is based on the a posteriori probabilities of the «;’s. Let Y, =
{y(0),y(1),---,y(t)} be the set of past measurements. Then from Bayes’ rule, we

have, as in [30]

v = _ PlYelailp[os]
PloiYe] YN p[Y:|an]plon)

We combine the above with

(1.1.5) P[Ye|ai] = ply(t)[Ye-1; o] p[¥e-1]a]

Now if the true plant were given by the triplet a;, then p[Y:|c;] could be recursively
computed from (1.1.2) and (1.1.5).

16



1.1 ADAPTIVE CONTROL AND MULTIPLE MODELS

Alternatively, we could, as [25], go directly to a recursive form by taking out only
the effect of the last measurement, i.e.
Ply(f)|as; Yei]

Tonet PU(8)len; Yeor] plan|Yiei]
At this point, the developers of this technique make the following two approxi-

(1.1.6)  plas|Ys] = plasly(t) ; Yei] = plos|Yi-1)

mations:

e They introduce N Kalman filters (one for each triplet) and assume that p[Y;|oy]
can be computed from (1.1.2) and (1.1.5) for all triplets in the set (although
this is true for at most one triplet).

e For lack of more knowledge about the probabilities p[e;], a uniform distribution
is assumed, ie. pley] =1/Ni=1,.-- ,N.

It follows that the pdf of o; based on the past ¢ + 1 measurements is the product
of the of previous conditional pdf’s of the innovations or, more correctly, the pseudo-

innovations [25]. Hence

H:::ﬂ Pg) (zs (k ))
1Y =
Pl = o e )
[Tio | Di(k)|"/* expl—3 i 2 (k) D' (K)zi(k)]
SN Lo IDa(R) 2 exp[—L iy 22 (K) D () 2a ()]

In the scalar case, (1.1.7) reduces to

I (t) exp [~ Yotoo 28 (K)/Di(k)]
211:;1 H;'L.l (t) exp [_';- E;::O Z%(k)/Dn(k)]

(1.1.7)

(1.1.8) pleilYy] =
where
IL(t) = 1'[ D% (k)
k=0

The MMAC architecture then consists of generating N separate optimal control
signals u;(t) 1=1,---, N, i.e. each one being optimally tuned for the corresponding

state-space system in the set. The actual input applied to the process is then obtained

17



1.1 ADAPTIVE CONTROL AND MULTIPLE MODELS

by tying the individual inputs through the conditional pdf’s, i.e.

N
u(t) =) plo]Ye] uilt)

i=1
From (1.1.3) and (1.1.4), this means that the MMAC controller is summarized by the

equation

N
(1.1.9) u(t) = — Z plai[Y.] (BT S:(£)B; + @,) -t BTS;(t)%(t|t — 1)

i=1

It seems that the most important application area of MMAC has been the control
of military aircrafts ([6], [17], (42], [31]) but it has found applications in other con-
texts as well ([32], [9], [34]). The article by Athans and coworkers [6] contain many
useful comments on implementation issues. In particular, some processing is applied
to the pdf’s prior to their utilization: their value is not allowed to go below some
value in order for the estimator not to ”freeze” into some state and they are low-pass
filtered to prevent oscillating estimates (which may occur under some conditions) to
affect the feedback control.

An analysis of the asymptotic properties of MMAC systems can be found in [23],
[44] and [16]. These studies are actually concerned with the almost sure convergence
of one pdf to 1. The analysis of [22] mentions stability problems associated with
MMAC and tries to analyze this problem from a deterministic viewpoint.

Obviously, the pdf’s of MWAC play a role similar to the weights of MWAC. The
above equation shows however a structural difference between the two algorithms.
MMAC uses the pdf's a posteriori i.e. after the optimal input signals have been
computed to synthesize a single input signal while MWAC uses the weights a prior:
to compose a single plant model from which the controller is synthesized and the
plant input computed. Due to the nonlinear operations involved in these controller
constructions, there is no reason to believe that, in general, the MMAC and MWAC
approaches are equivalent despite the similarities.

18



1.1 ADAPTIVE CONTROL AND MULTIPLE MODELS

The exponential function in (1.1.8) stems only from the Gaussian assumption on
the perturbations. If we reliquinsh this assumption, the exponential function can also
be simply seen as a nonlinear function used to enforce the required discrimination

between the "bad” and ”good” models of the set. The approximation

et 1
T l+rz
leads to
-1
IL; (¢
(1) + Shoos2®) 250
(1.1.10) plos]Yy] =

Lo (1) + Sheo 0 o385 )

The above approximation allows further comparisons with the MWAC weight assign-
ment law (1.1.1). It shows that the time weighting multiplier A** of the weighted
2-norm used by MWAC is replaced in MMAC by the weight

I1;(t)

2D;(k)
which does in fact accomplish a scaling of the instantaneous deviations (z2(k)) using
the variance D;(k) of the pseudo innovations. Furthermore, the offset IT;(t), since it is
a long-term, converging statistics associated to the triplet o;, can be seen as a mean
of associating a default distribution of the weights (or pdf’s) based on the estimated
statistics instead of the uniform default offset i provided by MWAC.

Jump parameter systems adaptive control. An interesting extension of
the above problem is when the plant actually ”jumps” randomly between the triplets

o;. If the jumps are Markovian and the transition probabilities
Pla(t) = asla(t — 1) = o5] = ¢y

are known, this additional information improves the estimation of the conditional
pdf’s.
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1.1 ADAPTIVE CONTROL AND MULTIPLE MODELS

This problem has been thoroughly investigated in the context of continuous time
by [13], [14] and references therein and in the context of discrete time by [45]. In
continuous time, the formal solution to estimating the conditional pdf’s is derived
from the Wonham filter [46] and is given in the form of two stochastic differential
equations.

The issue of interest however is not so much the estimation aspect but rather how
the control signal is generated from the pdf’s. In [14], the structure of computation
is the same as MWAC in the sense that the pdf’s are used a priori, i.e. first a
composite plant model is formed from the pdf’s and this composite model is then
used to synthesize the controller and compute the input signal. In [14], the solution
is derived in continuous time and it is assumed that we have full state information.
If we transpose the results of [14] to the discrete time context we have used so far,
first we get

A=) "plat)=alY] 4 B= Zp[a(t) = o4|Y:] B

i=1 =1

and the control is obtained from
A n o .
(1.1.11) ult) = — (BTS(t)B + Q;.) BTS()x(t)

where S(t) is the solution to a Riccati equation whose parameters are A and B. The
reader is invited to compare (1.1.11) with (1.1.9).
On the other hand, the structure of computation in [45] is of the a priori form

and can thus be considered an application of MMAC to the jump-Markov problem.

Outline of the thesis. @~ MWAC borrows concepts from the above classes of
solutions. We conjecture that some of the results found here may also apply to those
solutions as well.

In what follows, we first review the design principles behind MWAC as they
were presented in earlier work [19]. In that same chapter, we also introduce a slight
modification to the existing algorithm. This modification is introduced to simplify the
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1.1 ADAPTIVE CONTROL AND MULTIPLE MODELS

analysis of the algorithm. This analysis is carried out in the latter part of Chapter 3.
At the beginning of that same chapter, we define the framework within which the
analysis takes place. Chapters 4 and 5 propose modifications to the original algorithm
to enhance its performance. This is followed by a final discussion in the concluding
chapter.
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CHAPTER 2

Model Weighting Estimation

In this chapter, we discuss the general concept of model weighting estimation. Before
we review the on line algorithm described in [19], we introduce an off line model
weighting estimation algorithm that will serve as a basis for discussing the features
of the on line version. At the end of the present chapter, we introduce a modification
to the original algorithm that will greatly facilitate the analysis of Chapter 3 while

preserving the key features of the original algorithm.

1. Prior Knowledge

Model weighting estimation, as described in [19], addresses the problem of con-

trolling plants with a stable first order plus delay representation, i.e.

~Ds

_ g¢
(1.2.1) Pofs) = 1=

where the gain (g), delay (D) and time constant (7) are known only up to a certain
degree of precision which is given by uncertainty intervals

(1.2.2) 9 € g3

(1.2.3) D € [D,D

(1.2.4) r € [r,7]



2.1 PRIOR KNOWLEDGE

Obviously, the model 1.2.1, because of its low order, has some shortcomings.
However, the dynamics of many industrial processes are often dominated by a rep-
resentation of the form 1.2.1. Processes involving mixing, heat transfer, plug flow,
material transport or simple endothermic chemical reactions often fall in this cate-
gory. In general, the model weighting adaptive control algorithm is implemented on
a plant that belongs to the general family of plant models

(1.2.5) P £ (P(s)] |P(jw)] < |Po(iw)| - |1 + lm(j) [}

where 1+41,(s) is a multiplicative term whose magnitude overbounds the uncertainty
we assume knowing about the members of P. Equations (1.2.1) to (1.2.5) represents
the prior knowledge about the plant. Under the most realistic conditions, this un-
certainty stems from a) the parametric uncertainty (1.2.2, 1.2.3 and 1.2.4) and b)
undermodelling errors. In the synthesis of the control algorithm, we will ignore b)
but later, we will thoroughly investigate the effect of undermodelling and its influence
on the choice of tuning parameters.

The exposition and analysis of the algorithm is performed in discrete time. The

discrete time version of (1.2.1) is given by

ay_  (1=aM) —(e—a™)zt .,
(1.2.6) P(z"') =g e z
where
a = e T
.. D
D

m = d +1~ T
and T is the sampling period. Alternatively, (1.2.6) may be written

(1.2.7) P(z7') = gA(z™") (0279 + (1 — 6)2797?)
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2.1 PRIOR KNOWLEDGE

where
l-a
-1 —_
Alz™) = 1-qz!
1—-ao™
6 = l—o

A family of plant models. We now make two simplifying design choices: 1)
we assume that the modeling errors are dominated by gain and delay uncertainty and
pick a value 7 in the interval [, 7] as an estimate of the dominant time constant of
the plant; 2) we overbound the discretized delay interval (1.2.3) by integer multiples
of the sampling period and include in the interval all the integers between its bounds

given by

D - D
4= 7 4 d=gp7

The errors introduced by these two choices are particular cases of undermodelling
errors and will be discussed later. These choices lead to the simplified model (From
(1.2.6))

l—~a
-1y - d-1
(1.2.8) P(z )—gl T2

Let D = [d,d] C Z and Ly = card (D) and let G be a partition of [g, 7] with
elements g; which pick their index from (1, ---, L,] C ZZ where L, = card (G) and
g1=g and g, =7

REMARK 1.1. We assume that the sign of the gain of the plant never changes,

i.e. sgn (9)= sgn(g). This avoids the potentially troublesome situation of having
g=0.
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2.1 PRIOR KNOWLEDGE

Imaginary

FIGURE 2.1. Bounds on frequency response. The graph shows the surfaces
spanned by F at individual frequencies.

The model (1.2.8) together with the uncertainty intervals form a family F of
possible models, i.e.

& l—a _4
(1.2.9) F= {gl =

The elements of F are labeled P;;(g™') and they pick their indices from i € [1,- - - , L,]
and j € [1,---, Lg] respectively. Figure 2.1 show the Nyquist plot of F and indicate

gerdeD}

the surface spanned by F at individual frequencies.
Following [19], the controller selects the plant model from the convex hull of F,
ie.
(1.2.10)
Co(F) £ {Pn(z!) = zzwﬁ&i(z—l)lﬂ'j EF0Sw; LY ) wy=1}
J LI |

i
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2.2 OFF LINE MODEL WEIGHTING ESTIMATION

Hence the model has the form
J

with some constraints on the parameters «y;. It is interesting to notice that the above
model in fact encompasses a richer set of plants than the original first-order-plus-delay

description. This property however, will not be examined in this work.

2. Off Line Model Weighting Estimation

We seek the minimizer P,, (belonging to Co(F)) of the objective function
1 2% . .
@21)  I=IP-Pali=g [ 1PE) = Pale )P
0
Since P,, € Co(F), it satisfies

Pu(e™) =) wiPy(e™™)
i j
and 0 Sw.'j S 1 and Eizjw,-j =1.
To simplify notation, we reorganize the indexing of F to use a single index running

from 1 to N (= Ly x L), the total number of models in F. Hence, we may write P,

as
Pn(e™) =Y wiP(e?)=WTPz
where W and Py are column vectors containing the weights and the models frequency

response respectively. Let 17 be the N-dimensional vector 1T =[11 ... 1]. We may

write the model error as
P — P, = WT(P1 — Pr)
Let the inner product < -, > be
< A(e™), B(e™) >& %r- 02" A(e™)B" (e~ dw
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2.2 OFF LINE MODEL WEIGHTING ESTIMATION
The objective function can thus be written
J = < P-PFP,P-P, >
=W 02"(191 — Py) (PT=Fp)Tdw W

(2.2.2) = WiTw
where
[ St Si2 " Swv -
= Sa1 S22 -t SN
i SN1 SN2 ' SNN ]

The entries of ¥ are given by
1 2w —
S,‘k—é-2—- (P—P,)(P—Pk)dw
T Jo

The optimal set of weights is given by the following theorem.

THEOREM 2.1. The weight vector W* minimizing the objective function J =
WTEW subject to the constraint WT1 =1 is given by

(2.2.3) wr=@1Tz )tz
and the minimum value of J is given by
(2.2.4) J = (17z 1)
PROOF. Using the Lagrange multiplier A, we form
H=WTSW +A(WT1 -1)
Taking the gradient of H with respect to W and setting to zero we get
VwH=2EW +A1=0
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2.2 OFF LINE MODEL WEIGHTING ESTIMATION

from which we get

(2.2.5) W= -%'241
Replacing in WT1 =1 yields
_% — (ITE-II)_l

Using (2.2.5) yields the result for W*, i.e.
w*=@1Tz 1) 'z
and the minimum value for J is then

J* = (W')TZW* = (ITE-II)-I

Note that if ¥ were diagonal, the optimal policy for the choice of an individual
weigth w; would simply be

1/8,’,’
2.2.6 W= =t
( ) i zk 1/skk

There exists a standard result of statistics equivalent to the above when one estimates

some quantity using the weighted sum of N independent noisy channels [21], [28].

A suboptimal policy. To limit computation and data storage requirements
Gendron et al [19] suggested for on line model weighting adaptation to only consider
the diagonal elements of the error norm matrix. It is interesting to compute how such

a policy would deteriorate the performance of the off line model. Let ¥ be written
L=2XYp+us
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2.3 ONLINE MODEL WEIGHTING ESTIMATION

where ¥p is a diagonal matrix with its diagonal equal to the diagonal of ¥ and vg
contains the non-diagonal elements of . The suboptimal weighting policy is then

(2.2.7) Wp = (175l tzp1

and the corresponding value of the objective function is given by the following theo-

rem.

THEOREM 2.2 (Suboptimal policy). The value of the objective function Jp cor-
responding to the suboptimal policy (2.2.7) is given by

(2.2.8) Jp =JF + (JT)R
where JF* = (17S5'1)~! and R = 172 vy 1.
PROOF. We have

17Tz

JD = WDZWD = -_(ITEB_‘I)T

but ¥ = £p + vx and thus
Jp = (ATZp'n)h+ (1Tl 1T e

J5 +(JB)'R

I

O

The value JZ* is the optimal value the objective function would take if £ were
truly diagonal (i.e. = Xp).

3. Online Model Weighting Estimation

We now describe the adaptive controller based on online model weighting adap-
tation as introduced in [19]. Figure 2.2 shows the structure of the adaptive control
system. The plant model is estimated online and the estimated model modifies the

controller settings. Thus the structure is that of an indirect adaptive controller. We
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2.3 ONLINE MODEL WEIGHTING ESTIMATION

n

u y
————)C?———>‘ Controller —

Plant Mode!
Estimator

we
+

FIGURE 2.2. Structure of the adaptive controller. The structure is that of
an indirect certainty equivalence controller.

adopt a certainty equivalence policy by which the controller bears a pre-established
structure and desired performance but whose parameters are a function of the un-
known model parameters which are replaced at every sampling instant by their current
estimates.

We return to the two-indexing system where the model gains are drawn from G
and the delays from D. Let g; and d; be the members of G and D respectively. The

plant model is then written

Ly Ly Ly Ly
-1) 2—di-1
Palr) = S0 YR = 35w
i=l j=1 =1 j=1
Lg
l-c —dj—1
= —— . ¢
(3.2.1) T ot 2. 17
Jj=1
where
Lg
(3.2.2) v = Z‘wij!]i

i=1

The steady-state gain of the model is therefore v = E < Ve
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2.3 ONLINE MODEL WEIGHTING ESTIMATION

Controller synthesis. = We make use of the simple pole-placement controller
synthesis proposed in [19]. The desired closed-loop system is specified to be

Ly

(32.3) R(z"") = Cnd) > (w/mzY

—_ -1
1 ﬁz j=1

where f is the desired closed-loop pole and the only performance-related tuning pa-
rameter. The open-loop zeros of the plant model are carried over to the closed-loop
in order to avoid cancelling zeros outside the unit circle. Using Equations 3.2.1 and

3.2.3, the controller equation is given by

. 1-8 1—-az!
(3.2.4) Clz™) = Y1 —-a)l -zt = (1-8) 3;(vi/7)z"%!

As mentioned earlier, the controller parameters are functions of the unknown
quantities v; and -y (which are direct functions of w;;). Following the certainty equiv-
alence policy, the unknown quantities are estimated online and the estimated values
are inserted at every sampling instant in the design (Equation 3.2.4). In what fol-
lows, it is explained how the model weighting adaptive method approaches the on

line estimation of w;;.

Parameter estimation. In the off line case, the discrepancy between the

dynamics of the plant and the dynamics of a model P;; was measured as the 2-norm
1 2r 2
Jﬁ:ﬁfo |P = Py dw

Assuming no disturbance, the computation of o;; amounts to driving P and P;; by
a common input, a pulse of unit amplitude, measuring the deviation e;; between the

plant output and the model output and computing the 2-norm of e;;, i.e.
e o]
aij = lleglls = D _ ek;(k)
k=0

In the on line case, we proceed similarly but replace the input signal by the signal
generated by the controller and replace the 2-norm of the error signal by the truncated
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2.3 ONLINE MODEL WEIGHTING ESTIMATION

2-norm
¢
ai; (t) = lles(E)122 = g NFei;(k)

Following [19], the estimation scheme simply consists of setting the weight of a

model to the inverse of ¢;;(t) and normalizing
. 1/o;(t

(3.2.5) Wi;(t) = —Zz, "{ T ;Ul:r)n B

Note the similarity between (3.2.5) and (2.2.6) (Reminder: (2.2.6) uses the one-
index convention while (3.2.5) uses the two-index convention).

The coefficient A is a scalar bounded by 0 < A < 1 which puts more or less
emphasis on the more recent data. Its role is entirely similar to that played by the

“forgetting factor” in conventional recursive least squares estimation ([21], [41]).

REMARK 3.1. It is possible, as suggested by [19)], to use a slightly more general
weight assignment law, i.e.

_ Yl
Ny

wi;(t)

with the normalizing coefficient

ne =33 1lem®)lE,
I m

where parameter ¢ may be used to increase the discrimination between the members
of F. In the following analysis, we will under most circumstances investigate the
case ¢ = 2 but in most cases, the generalization to other values of ¢ will require little

modifications and will be commented wherever appropriate.

Data filtering.  In the on line case, the error e;; is a function of the plant/model
mismatch P — F;; but also of any disturbance showing up on the output of P. It may
thus be desirable to filter the input/output data prior to using it for model estima-

tion. In particular, if a dc offset is present, we want the data filter to remove this
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component. Hence we will deal with filtered versions of the i/o data, i.e.

¥ (1) = F(g™)y(2)

(3.2.6) uf(t) = F(g")u(t)

where, to remove dc offsets, the linear filter F(g~!) has a zero at ¢ =1 . The model

error signal is
e:;(t) = F(g7")(w(t) — Py(a~")u(t)) = y*(t) = Py(g™")u" (2)
The filter is of the form
F(g)=F'(g7") - 1-¢"

Obviously, the filter plays an important role in shaping the input signal driving the
estimator. Unless otherwise specified, the filter we will use when analyzing the algo-

rithm will simply be the first difference operator, i.e. F'(g™!) =1.

4. Division by Zero

A division by zero occurs in Equation 3.2.5 if one or more error norms are exactly
equal to zero. This may occur, in particular, if one member of ¥ is an exact match
to the true plant and there is no noise in the system. In [19], it was suggested to add
a small positive offset to all error norms to ensure that all divisions remain bounded.
This approach was found to be adequate in practice. Here we extend this idea further
by allowing all models whose error signal is no greater than the disturbance level of
the plant to be considered as yielding zero-level error norms.

Let 7, be the norm of the error signal of a model that would be a perfect match
to the plant. Then, before computing the weights, the error norms are modified as

follows:
(4.2.1) 0i5(t) = 04i(t)Io;pom + 2
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where I is the indicator function, i.e.

[ 1 if condition A is satisfied
A —3
0 ifnot

In [19], u was some arbitrarily small positive quantity. Instead of carrying small
¢ quantities, we chose instead to assign to w;;(t), the limit of (3.2.5) as y tends to

zZero, 1.e.

1/0;(t)
#—'0 EZ l/dzm(t)

Appendix B gives a simple computer algorithm that can implement the above

(4.2.2) @i (t) =

two steps (Equations 4.2.1 and 4.2.2). We leave it to a subsequent chapter to discuss
the merits of actually using (4.2.2) on line instead of the straight offseting proposed
in [19]. However, the analysis of the algorithm is greatly simplified by (4.2.1) and
(4.2.2). The above two-step procedure is illustrated by the model initialization.

Initialization. Suppose the algorithm is initialized at ¢ = 0. The error norms

prior to startup are o;;(t) =0 V%, and ¢ < 0. Then for an arbitrary . > 0, we have

1/u 1 1 a
i “_'0 21—1 :I;f=1 p Le-La N

Wi fort <0
for all i € [1,L,) C ZZ and all j € [1, Ly] C ZZ. The corresponding +y; parameters are

(4.2.4) 4i(t) = Zw,,g, 2‘=1 %8 5 fort<0

i=1

and the initial steady state gain is

(4.2.5) ¥(t) E'y Tt g Lo = T =4 fort <0
7T LyLy L,

j=1

In the sequel, the “tilded” variables refer to the above initial values.
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FIGURE 2.3. Step response of systems P, (black) and P; (dashed).

5. Examples

To help clarify the ideas discussed in this chapter and set the stage for the analysis
to follow, we give a few examples of online model weighting adaptive control. Consider

the two continuous-time systems:

—5s g — g —9)2
Als) =12 22 +1 Bifs) = -1.23 ((s + 11))"((3 +22))2

Although they appear structurally quite different, a plot of their step response (Fig-
ure 2.3 show that these two systems have ”similar” behaviors. In fact the first could
be interpreted as a first-order-plus-delay approximation to the high-order system (P;).

We want to change the output of those systems by one unit by feedback con-
trol using only approximate knowledge of the system. If we make use of the model
weighting adaptive technique described in the previous section and select the tuning

parameters shown in Table 2.1, we get , as expected very different results.
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[ Parameter Symbol | Value |
Sampling period T 1
Partitioned gain set G (0.5 0.75 1.0 1.25 1.5]
Partitioned delay set D 123 ..-10Q]
Assumed open loop time constant T 2
Closed loop pole B 0.5
Forgetting factor A 0.95
Data filter F(g™Y) 1—g!
Disturbance detection threshold M 0

“TABLE 2.1. Table of tuning parameters for the examples.

Figure 2.4 shows the behavior of both systems under closed loop. In the case of
Py, the response is quite close to what would be expected from a controller designed
with complete knowledge of the system. It gives a smooth response with a slight
overshoot caused by an initial underestimation of the true plant gain. In the case
of P,, the response indicates a narrower stability margin of the closed loop system
Obviously, this is caused by the additional poles and right-half-plane zeroes of P,
whose effect cannot be replicated by any member of F.

If we examine the behavior of the estimated model parameters over the simulation
length, we notice that in the case of P, (Figure 2.5) the gains v; associated to each
delay (Equation 3.2.2) are initially uniformly distributed. As the plant input changes
with no visible response from the plant output, the first parameters v, 7,, ... are
sequentially set to zero. When the plant finally responds, then the distribution of
the 7’s quickly changes to a sharp peak for the model with the correct delay and the
model gain is approximately that of the true plant.

On the other hand, for the plant P;(s) controlled with the same adaptive feedback
controller, the response, albeit stable is not as good as that of P;(s). The adapted
gains 4; behave initially as with P, (see Figure 2.6). However, after approximately
4-5 samples, the bulk of the response has taken place and the estimator has processed
most of the information available for deciding what model(s) is(are) more accurate.
The result is expectedly less decisive as it is with P;(s) as the final distribution of the
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1.5 T —T T T T 3 T T
1 J
0.5F _
0 A
- 0'5 1 1 1 L L 1 1 1
0 10 20 30 40 50 60 70 80 90
Time(sec)
1.5 T ] T 3 ¥ T T -1
1 4
05F .
0 .
- 0.5 1 1 A 1 - L 1 1
10 20 3o 40 50 60 70 80 90
Time(sec}

FIGURE 2.4. Response of the closed loop systems for the plant a) P;(s) and
b) Py(s). The stepwise curve is the plant input and the continuous curve,
the output.
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FIGURE 2.5. Adaptation of the gains ; over the simulation period for plant P;.
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SUMMARY

03, oo T .

Gains
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FIGURE 2.6. Adaptation of the gains y; over the simulation period for plant P,.

gains is maximum for a delay of 5 sampling intervals and smoothly decays on both
sides of the peak.

Summary

In this section, we have reviewed the basic ideas behind MWAC. The examples
have shown that:

(i) The algorithm can lock itself very rapidly on an appropriate model.

(ii) Despite the resemblance between their step responses, the closed-loop perfor-
mance of two systems using MWAC with identical tuning parameters can be
significantly different.

In the following chapter, we theoretically investigate the algorithm and show that

these observations are completely predictable from the theory.
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CHAPTER 3

Model Estimation Using MWAC

1. The Approach

In this chapter, we analyze the model estimation properties of MWAC. The pur-
pose of model estimation is to acquire information in order to refine the plant-related
information which may be readily available prior to initiating the estimation algo-
rithm. The principal virtue of prior knowledge is to limit the search space and possibly
increase the efficiency of the search algorithm.

As was described in the previous chapter, the MWAC estimator does assume some
prior knowledge about the plant’s general behaviour. For instance, it is assumed that
the true plant belongs to some neighborhood of the set of proposed models and that
all its poles are within the unit circle. The members of this set F are all first order
plus delay models. All members of F are similar except for their gain and delay which
are chosen to cover a range of possible plant gains and delays. The construction of the
boundaries of F (the gain and delay intervals and the dominant time constant) may
possibly have been determined by prior experimentation with the plant. As stated in
Chapter 2, the partitioned family F embodies the prior knowledge (The partitioning
is introduced only for making the estimation computations feasible) and the search
space is the convex hull of F, Co(¥). The members of Co(F) have the z-domain
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form:

Ly Lg

(1.3.1) Pp(z™") =) ) wiPy(z™")

i=l j=1
where the models F;; stem from the partition of the gain and delay intervals. As
described in Chapter 2, the weights w;; are modified online so that P, is made to

ressemble P in some sense. We introduce the “frozen time” model
PL(z™") =) y(t)Piy(z™")
i g

where ;;(t) is the time-varying adjustable weight associated to model F;;. We use
the term “frozen time” model to mean the frequency response the model would take
on if its time-varying parameters were frozen from the current instant ¢ to infinity.
To judge the resemblance of Pf, with P, we need some measure of plant/model
discrepancy, written (P, Is,f,) This will likely be some frequency domain norm such

as

§(P,Pn) = [P =Pyl

§(P,Py) = |IF(P - Fp)lly

where p will either be 2 or oo and where F' is some linear filter. Because of its
dependence on f’,‘;, d(P, Pt) is also a frozen time function.

To make the earlier statement about the purpose of model estimation more pre-
cise, we say that the refinement of the plant model consists of shrinking the initial
uncertainty §(P, 15,‘,’,) through the acquisition and transformation of plant-related in-
formation which comes in the form of input/output data.

The analysis of parameter estimation algorithms generally focuses on the asymp-
totic behaviour of the estimates and related variables ([12], (29], [21]). This approach
is natural since there exists a wealth of results on convergence for both determinis-

tic and stochastic frameworks. The issue of the quality of the input/output data
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3.1 THE APPROACH

is an inescapable offshoot of convergence analysis. In short, it is desirable that the
data provided to the estimation scheme is information-rich in the sense that the ap-
plication of the algorithm to this data will provide effective shrinking of the model
uncertainty. When the estimation is done using some form of recursive least-squares
algorithm, it is customary ([21], [35]) to require the plant input/output data to be
persistently exciting (PE) such that, as the number of data points grows to infinity,
the parameter error consistently shrinks to zero (in the deterministic case). In the
stochastic case, this condition causes the parameter error to converge to zero almost
surely, (i.e. except on a set of measure-zero sample paths) and almost everywhere (i.e.
on all of the parameter space with the exception of a set of measure zero)([43], [36]).
The persistent excitation condition translates into special requirements on the shape
of the manipulable signals that are ezternal to the adaptive loop. In practice, these
requirements may consists of adding a PRBS signal to the plant input or making sure
that the external signals have a minimum number of spectral lines [11]. It is known
[10] that for some common adaptive control schemes, one cannot do without the PE
requirement.

In practice, the signals which are external to the control loop may not fulfill
the PE condition. For instance, setpoint or load step changes provide a burst of
information about the plant dynamics in the moments that follow the appearance of
the change but as soon as the transient disappears into the plant noise, plant/model
dynamic mismatches become unobservable.

We set out in this work to examine the model tracking properties of MWAC when
the excitation signals are limited to the ones that are likely to be found when the
MWAGC algorithm is put into application (commonly step setpoint and/or disturbance
signals). As mentioned earlier, such signals provide plant information for only short
bursts. In this context, the behaviour of the parameter estimates as ¢ — oo is of aux-
iliary interest since the determinant amount of model error shrinking is accomplished

in a short interval following the application of the external excitation. So instead
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of the asymptotic analysis, we will focus the analysis of the algorithm described in
Chapter 2 on its behaviour over finite intervals.

We have seen that when the system is initialized, the initial or " default” controller
is computed from the sum of all models of F uniformly weighted. If we excite the
system (by changing the setpoint for instance) but the plant does not respond, or,
produces an output indistinguishable from the noise for some portion of time following
the application of the excitation, this data provides some information on the delay
but none on the plant gain and thus allows only partial discrimination between the
members of . An interesting and crucial consequence of this is that during this
finite portion of time the controller modifies its settings in such a way that there
exists a known linear, time-invariant transfer function that reproduces exactly the
input/output behaviour of the nonlinear, time-varying controller, a behaviour later
dubbed local linear invariance. It follows that this linear transfer function shapes the
exogenous signals into the signals fed to the estimation subsystem at least for some
short period. Knowing the properties of the exogenous signals, it is thus possible
to bound the information provided to the estimator and compute a bound on the
modeling error of the estimated model.

The analysis presented in this chapter consists of determining how this bound
varies as a function of the user-selected parameters and the a priori assumptions on

the noise and the unmodeled dynamics.

1.1. The user-selected parameters. The user-selected parameters derive in
part from the prior knowledge about the plant, i.e. the upper and lower bounds on the
plant gain and delay and the dominant open-loop time constant. The user also chooses
the sampling period T (the delay uncertainty interval is partitioned accordingly) and
the partition of the gain interval. We will assume, for now, a uniform partition of the

gain interval, i.e.

where Ag (é (7 — 9)/(Lg — 1)) is the partitioning resolution.
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The choice of the overbounding signal 7; in (4.2.1) should reflect the fact that if
the amplitude of a model error signal is indistinguishable from the noise level, this
model should be prejudiced as being a good candidate for the plant model.

A sensible value of ) in the error norm ||eg;(t)|| , must also be selected. The
value of A is bounded by (0, 1]. A small value rapidly discounts old data while a value
close to 1 sustains the influence of old data on the current estimates. The parameter
A here plays a role similar to the forgetting factor found in recursive-least-squares
algorithms. Hence we keep this designation in the rest of the document.

Finally, the user must select the desired performance of the closed-loop system.
Using the pole-placement algorithm described in Chapter 2, this boils down to choos-
ing the closed-loop pole # in Equation 3.2.3.

REMARK 1.1. From Eguations 4.2.8 and 4.2.4, 4; and ¥ are functions of user-

selected parameters.

REMARK 1.2. As briefly mentioned in Chapter 2 (page 32), it is also possible to
select the value of an ezira parameter, the discrimination parameter ¢ to base the

estimation on a power of ||e;;(t)||2,x different than 2.

1.2, Assumptions on the plant, plant uncertainty and noise. It is
important to bear in mind that in this analysis, the plant is LTI and thus that it
is fixed but unknown. A consequence of this is that, once the model estimator has
perceived that the model is close enough to the true plant, it may freeze its parameters.
From that instant on, the whole closed-loop system is then also LTI. We erect the

above statement to the

AssuMPTION 1.1 (LTI plant). The true plant is stable, linear, time-invariant

and strictly proper.

The above then means that the plant admits a representation of the form

(133) wt) =3 p(k)ult — &)

=1

43



3.1 THE APPROACH

where u and y, are the plant input and output signals respectively. The sequence p(k)
is the discrete impulse response of the plant. The latter thus admits the z-domain

representation
o

(1.3.4) P(z") =Y p(k)z*
k=1

with a bounded frequency response on z = & ,w € [0, 2x].

1.3. Apparent plant delay.  Delay-like behaviours in chemical processes
appear because of at least four different causes: 1) true transport delay, 2) finite, high-
order dynamics and 3) distributed-parameter systems and 4)right-half plane zeroes.
The first is found for instance on a paper machine where new fibers are added at the
wet-end of the machine to increase the basis weight of the sheet of paper. The new
fibers have to travel all the way from the wet-end to the dry-end of the paper machine
before their additional weight may be sensed by the basis weight gauge. The second
cause is more common. For example, if a stream goes through a series of mixing tank,
a sudden change in the composition of the stream entering the first tank will show up
in the stream leaving the last tank only after a time interval which depends on the flow
and the tank volumes. The third situation occurs in continuous-feed reactors (e.g.
bleaching tower) whose dynamics can be described by partial differential equations.
The solution to these equations typically yield non-rational functions of the Laplace
variable s and have phase responses which vary with the reactor dimensions. Finally,
right-half plane zeroes cause a process output to initially move in a direction opposite
to its final response thus "delaying” the plant response. This property of right-half
plane zeroes is in fact at the center of the Padé approximation of time delays.

We thus need some practical definition of the ”true plant delay” which reconciles
all possible plant delay incarnations. Bélanger (8] (p. 122) suggests a definition based
on the step response of the plant. There the plant delay is defined to be the time
required for the step response to reach 50% of its final value. This is a simple and
intuitive definition of the plant delay. The specific percentage is actually arbitrary and
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we may rewrite this definition using an arbitrary percentage r, which then becomes

another user-selected parameter. We could formally write

> p(k)

ds max for which |s(t)| =
k=0

< r, holds

We could also generalize the above by introducing an exponential weight, i.e.

> Akp(k)

k=0

ds max for which < r, holds

It will turn out that the analysis carried out in this chapter will largely be set in
the frequency domain. It will therefore be convenient to adopt a frequency-domain
definition of the apparent plant delay which is less intuitive but is closely connected
to the above definitions.

Truncation operator. Equation 1.3.4 may be interpreted as the frequency
response of the plant based on a complete knowledge of its impulse response. Since
we assume that we do not know precisely the impulse reponse of the plant but that
we progressively improve our knowledge, we will often encounter partial frequency
responses based on a truncated impulse response, we denote this partial frequency

response as
(1.3.5) [P(z"1)], Z p(k)z"
Any norm functional applied to this partial frequency response will be denoted

P (e‘ju)]tlpv\

In particular, we note that there is a close connection between the co-norm of the

partial frequency response and the definition of the apparent delay. More precisely
THEOREM 1.1.

[P(e™)]eloon S T => IZA‘ p(k)| <
k=0
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PRrRoOOF. We have

t
S p(k)x-te ke

P (e—jw)]tloo,a\ = sup
Y k=1

By definition, the oo-norm is greater or equal to the magnitude of the frequency

response at any frequency. It is true in particular at w = 0. It follows that
I, 2 |[P(e7)]loon

> A p(k)

k=0

>

This leads to the following definition of the apparent plant delay.

DEFINITION 1.1 (Apparent plant delay). The apparent time delay d of a transfer
function P is the time required for the oo-norm of the truncated transfer function [P);

to be greater than a given fraction r,, i.e.
d S max for which |[Pl |, < =, holds
The following proposition provides useful results on the norms of the partial

frequency responses.

PROPOSITION 1.1. Let Q(z7!) = Q1(27!) Q2(27!) where @, Q1 and Q; admit a

Laurent series ezpansion. Then we have

[[Q]clco,z\ < I[Qllh Iool[Qﬁlt,|ooB(t: /\)

where t) > t, t, > t and B(t, \) is the fized function
1 [2]1— (e/A)
B(5)) = 5 fo

T—ei/n | %
PRrROOF. Given in Appendix. O
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3.1 THE APPROACH
Disturbance. The actual measured output is the noise-corrupted signal
y(8) = yp(t) +n(t)

where n(t) is a disturbance which belongs to a class of signals that we now charac-
terize. A standard way to characterize noise in a deterministic framework consists in

assuming that the value of n(t) is uniformly bounded, i.e.
AssuMPTION 1.2 (Noise assumption 1).
(1.3.6) In(t)] <6, V1t e [0,00)

The above noise assumption is simple and convenient but often leads to overly
pessimistic results. For instance, applying the input/output data filter F(g~!) =
1—gq! (Eq. 3.2.6) to y(t) yields

y"(t) =y, (t) +nF(t)

The signal used for estimation is thus corrupted by a noise signal of twice the original

magnitude, i.e.
Inf ()| < 26,

The above bound is uniformly satisfied with equality sign only when the noise signal
jumps back and forth between plus and minus 4, at every time interval. This is
highly unrealistic. Furthermore, the above noise formulation does not permit the
treatment of the disturbance signal as a source of plant/model mismatch information
and restricts the role of n(t) to that of a nuisance. We also consider the less general

but very useful class of noise signal

AssuMPTION 1.3 (Noise assumption 2).
(1.3.7) 0" ()] < durk
where 0 < rp < 1.
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The above class of noise includes perturbations caused by non-zero initial condi-
tions. It also includes particular forms of noise that simultaneously corrupt the output
and provide valuable input/output information. For instance,(1.3.7) can accomodate

step disturbances of magnitude 4, by letting r, — 0.

2. Framework and definitions

In this section, we establish the framework for analyzing the MWAC algorithm.
We first assume that the controller is set in operation at some time #;. Assume that
prior to fp, the plant input was moving about some steady operating point »* and

write the input signal as the deviations from u*, i.e.
u(t) = u’ +8(2)

The plant output is then given by

y() = Y _p(ku(t - k) +n(t)
k=1

= SpEut—k+ Y p(kut - k) +n(t)
k=1

k=to+1

= Zo: p(k)out —k) +u" ) _p(k) + D p(k)du(t — k) +n()
k=1

k=1 k=to+1

Let y* =u") ;o p(k). We then have

to ]
(231) &GO =y®) -y =D _pk).(t—k) + D pk)du(t —k)+n(t)
k=1 f:to-{-l |,

initial conditions
The initial conditions term in the above equation is decaying with ¢ and can thus be
assimilated to a disturbance term compatible with Assumption 1.3 for some é,, and

Tn.
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Finally, recalling the property of the data filter F/(1) = 0 (page 33) we note that
u* and y* have no bearing on parameter estimation. Hence we may consider, with no
loss of generality, that «* = y* = 0 (and thus u(t) = 8,(t) and y(t) = 6,(¢)).

The above discussion leads to the following assumption:

AssuMPTION 2.1 (Rest conditions). When the adaptive controller is set into op-

eration at t = ty, the system has been at rest for some time, i.e.
u(t) =0 fort<tg

Local linear invariance. The introduction of the adaptive controller is made
to coincide with the application at £ = ¢, of an external excitation: a step setpoint
change of magnitude y,. We know that for some time following the application of
this excitation, the plant output is “small” (in a sense made precise later) because of
the presence of a time delay (real or apparent) in the plant dynamics. Let d be this
apparent time delay.

We show later that for the time interval [tg, % + d], the actual adaptation of the
controller parameters causes the output of the nonlinear, time-varying controller to
coincide exactly with the output computed from a linear invariant difference equation
driven by the same input signal as the controller. Furthermore, the parameters of the
difference equation are known a priori. We now give a formal definition of what we

mean by local linear invariance (LLI).

DEFINITION 2.1 (Local linear invariance). An operator H(u(t)) is said to be lo-
cally linear invariant over a finite time tnterval if during this interval, its output may
be replicated ezactly by the solution of an invariant linear difference equation driven

by the same input.

REMARK 2.1. Obviously, the above concept is somewhat related to the input sig-
nal. In the present work, we restrict ourselves to step-like signals and do not seek
further generalization of the LLI concept. We conjecture that this idea can be made

to encompass a larger, more general class of signals but leave this for future work.
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To distinguish the input/output behaviour of a LLI operator from its associated

LTI operator, we will write them as
y(t) = H(u(t)) = H" (¢7")u(t)

where 7 is the time interval when H(-) and H7 are equivalent and ¢~ is the usual

shift operator.

More definitions. We close this section by giving a few definitions that will
be handy in the sequel. First note that {; may be arbitrarily selected. For simplicity
and convenience, we select ¢y = 0. It was mentioned earlier that in the time interval
[0,d], the controller is LLI. A consequence of that is that it is easy to obtain the
(noise-corrupted) shape of the plant input signal for this time segment. This input
serves as the initial excitation to the estimation subsystem. We thus label the above

time interval, the initial excitation interval, i.e.
7120,
It will be convenient to partition JF into subsets with equal time delays, i.e.
Fl{PjeF|geGd=ktand |JR=7F
keD

Obviously if d € [d, d], then there is one such subset (call it F;) which is of special
interest. The remaining models of F can be regrouped in subsets of models with delay
lower than the true delay (X) and models with delay higher than the true delay (F).

More precisely

Eéu}-k

k<d

FEURA

k>d
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The index sets of the above subsets of F are written I, and are interpreted
(’i,]) € Ir, = P,'_-,' € F

3. Analysis of MWAC

3.1. Basic relations. Consider the diagram in Figure 3.1. The diagram
shows the dynamic components used to generate the error signal associated to a
particular member of . All blocks are LTI dynamic systems except for the controller
block € which is nonlinear and time-varying.

However, assume that for the finite time interval 77, € is LLI, i.e. its input/output

behaviour is exactly replicated by FX(g~"). Hence

u(t) = Fi(g™") (u:(t) — v(t))
And we may write

__ R o ]
u(t) = 1+ FZI (@)P(g ") (ys(2) (t)) forteT:

and (dropping the ¢~! argument for concision)

ei(t) = F(P— Fy)u(t) + Fn(t)
1

— . . T O ————————
631) = (P-P)FT

(s ®) —nF@) +nf() forteTr

Equation 3.3.1 reveals that the error signals are the sum of two components: 1) an
“observer” of the plant/model mismatch driven by the exogenous input signals and
2) a disturbance signal which is common to all models. We can then relate the error

norm to the various components of the system via the theorem

THEOREM 3.1. Provided that Assumptions 1.1-2.1 are satisfied then for some
t > d, there ezist coefficients Kx, Kr and K, such that

lesi(®)llza = [[(G = Gij)liloor Kr Kx + Kn
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FIGURE 3.1. Flow diagram of the blocks involved in computing the error signal.

where G = PFZ" is the LLI loop gain, G;; = P,-jFZ" and where Kr, Kx and K, are
common to all error signals and are bounded by

1 1
—_———— Kr <
1+ {[Gliloon )

I

- 1 - I[G]tlwa'\
lysl + IKnI S KX S lysl + IKnl

K. < K. <K

where

A+l — (r2)t+1

Rl = - |l =6n\/ —

PRrOOF. Proof in appendix. O

For future reference, we will use |[Kr| and |Kx| to denote above upper bounds. Sim-

ilarly, we will use |[Kp| and |Kx| for the lower bounds.

There is a corollary to the above theorem that will be useful in demonstrating
the LLI property of the controller.

COROLLARY 3.1. Provided that Assumptions 1.1-2.1 are satisfied then we may

also write the norm of the error signal as

lesz(®)llza = |[Gisleleor Kr Kx +[Glelon Kr Kx + Kn
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where KiK' and K, have the same bounds as Kr, Kx and K,in Theorem 8.1.

PROOF. The proof parallels the proof of Theorem 3.1 where G and G;; are treated
separately. a

3.2. Local linear invariance of the controller. In the previous section,
we have derived equations to represent the effects of the exogenous input and the
disturbances on the error norms. These calculations were based on the assumption
that in some finite portion of time following the application of the exogenous input,
the controller mimicked a known linear invariant system (a behaviour dubbed local,
linear invariance - LLI). In this section we find a sufficient condition that validates
this assumption.

The first step of this demonstration consists of showing that the members of F
are going to be sequentially excited and their associated weights be sequentially set
to zero. Sequentially meaning, first the members of F;, then the members of Fy,
and so on until ¢ = d+ 1 where d is the apparent time delay that we formally defined
in Definition 1.1.

The proof relies on the exogenous signals to provide sufficient information to
discriminate inappropriate models. The term “inappropriate” is meant to qualify
those models whose error signal rises above a disturbance level which is recognized
as being uninformative.

Providing sufficient information formally means that we need to have a sufficient
signal to noise ratio SNR. We may define the SNR in terms of the ratio of the norms

of the exogenous and noise signals, i.e.

Kyx
NR=|—17—
S e
LEMMA 3.1. Let
r
(3.3.2) = 1 Kx| + Ky
—rs

53



3.3 ANALYSIS OF MWAC

and
SNR £ sup sup 20+r,)
= teldd PyeF |[Gijliloop — 21,
Then SNR > SNR implies
wy(t) =0 for te€[dy,d]
Wp(t) =0 for t € [dy,d]
'tﬁ,'j(t) = 0 for te [dj, d]
forVd; <d.

Proor. From Corrolary 3.1, we have
les;@)llan 2 GislloonKx K7l = [GlelooaKx Kr| — | Kxl

The first term on the right-hand-side of the above is the one that must make G;;
stand above the noise level. The second term is the initial response of the loop
transfer function which is deemed to be small (according to the definition of the
apparent delay) and which is lumped with the additive noise.

To guarantee that [|e;;(t)(|2,x rises above the noise level we then must have
[Gisltloor |KFK%| > 2(|[Gleloon| Kr K| + | Kyl

After a few manipulations, this requirement translates into

Ky

2 A
K =8

SRR | R TGalen 20w

Let

)
2,
o
[

sup sup sup SNR
P;;eF Kr teldd]

= sup sup 2(1 +r,)
Pierteldd) |[Gisleloor — 25

II
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Setting the noise level threshold to

" = S;.flps;{lp sup [GCliloo K| |Kx| + | K|
/] (] E

= K K,
TRl + TR

implies that if SNR. > SNR, it follows that for ¢ € [d; + 1,d], ||es;(t)]|l2x > 7 for
VFP; € U?id.ﬁ and all others are set to u (Equation 4.2.1). Hence for ¢ < d and
VP; € Uy

) _ 1/(03(t) + )
Wy;(t) = lim >
7 u—0 Z("m)eruf:jﬂ 1/(alm(t) + “) + Z(l,m)efug 7 1/“'
=0
and for V P;; € U?:t'ﬁ
_ 1/p
(1) = lim
¥ ) p—0 Z("m)eruf:&r, l/(alm(t) + “) + Z(l’m)EIU?_tf: l/!—‘
_ 1
T Lyd-t+1)

The above result is central to the proof of

THEOREM 3.2. If n, is given by (3.9.2), SNR > SNR and if Assumption 2.1 is

satisfied, i.e.
(3.3.3) u(t)=0 fort<0

then the adaptive controller constructed by modifying on line the parameters of Equa-

tion 3.2.4 with the certainty equivalence principle is LLI over [0, d).
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3.3 ANALYSIS OF MWAC

Proor. First we write the adaptive controller in its time-varying form

(3.3.4)
_lﬂe )t Bult — ”“"r,(t)u__
ut) = L elt) et 1) + ult = 1) + (1 - ﬂ)g(v(t)) (6 d; — 1)

Up until ¢ = d, O’gj(t) =y for VP; € F and thus ’(D,‘j(t) =1/N =, ’7_,'('6) =%; and
4(t) = 7, i.e. all parameters keep their initial values.
Using condition (3.3.3), it is clear that for t € [0,d]

(3.3.5) u(t) = )(e( ) — ae(t — 1)) + Bu(t — 1)

7(1 -
Att=d+1 =d; +1, u(t) # 0 but from Lemma 3.1, we have () = 0 for
VP, € F, and w;;(t) =1/L,(d—d) for VP; € U_‘le F;. This implies that

. 0 ifj=1
%@={

319—;_1_—4 >-;9; for all others

and

o4 Li—11
) = D At =0+Z2—=> g
d—'.C_iLg i

=t
1 -
= L_g Z:gi =7
Replacing in (3.3.4), we see that u(t) remains equal to (3.3.5).
At t =d+2 =dy + 1, we have from Lemma 3.1 that 4;;(t) = 0 for all models in
LJ,_‘,l Fi and w;;(t) = 1/Ly(d — d — 1) for all models in U,_d F. It follows that at
t=d+ 2, we have

. 0 ifj=1or2
Yit)=9 , |
Z;m Zi gi for all others
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3.3 ANALYSIS OF MWAC

and

Ly
¥ = Y 4 t)-0+0+_ — - 1L Zg,

j=1

1 _

= L_Zgi='7
9

Replacing in (3.3.4) shows that u(t) remains equal to (3.3.5).
Repeating the above argument up to ¢t = d proves the result. a

3.3. Characterization of model adequacy. A definition of the adequacy of
a plant model is bound to be attached to some norm applied to the difference between
the dynamics of the model and that of the actual plant. The actual choice may be
dictated by the end use of the model. In this case, the end use is the design of a
feedback controller. Hence we may decide that a model is adequate if the closed-loop
system that it yields meet some performance specifications.

In this context, the sensitivity function of the closed-loop system is an appealing
mathematical device to study: its a direct measure of disturbance rejection capability
and it provides an indication of the relative stability of the closed loop system. It
thus simultaneously provides an indicator of both performance and robustness of the
closed-loop system.

Recall from Section 3 that the closed-loop specification (i.e. the transfer function

between the setpoint and the output) is given by

-1 La

R = 82PE ﬁ S e T

j=1
Note that the specification is a function of the model. Hence we write the frozen-
time specification R*(z71) as

Ly

R = $205 S /a0
N s J=1 B
B(z1)

fe(z=1)/4(8)
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3.3 ANALYSIS OF MWAC

The controller is synthesized by

Ri(z"Y) 1
-’ Po)

Ci(z!) =

from which it follows that the ”frozen-time” sensitivity function is given by

1
1+ R z~!) ((P(271) — PE(z7)/PE(271))

Stz7') = (1 - Ri(z™Y))

Noting that R = F,Al'3/4 and P!, = Al', we can further simplify the above to

1
1+ (7/7®) (G(z™') — GL(271))

(3.3.6) Sz = (1- Ri(z™))

From which may obtain the bound

(3.3.7) 1580 < I[SS]tloo'1_|7/¢(t)|T[G—G;]tlm

. 1
(3.3.8) < |[Saleloo - 1-17/3@)] [G = Gtl,leon - B{t, A1)

(From Proposition 1.1)

In the above equation, S§ is the frozen time sensitivity function of the closed-loop
system if the model is a perfect match to the true plant, i.e. G = Gt,. Equation 3.3.8
also provides a connection between the sensitivity of the closed-loop system and
a measure of the plant/plant model discrepancy. Furthermore this discrepancy is
expressed directly in terms of the norm used in Theorem 3.1.

We now need to answer the following questions:

(i) How does the model error norm |[G — G}, ;|00 Telate to the error norm of the

individual members of F, ie. |[G — Gjj],lo0n?
(ii) Is it possible to determine on-line how much shrinking of the model error norm
is being accomplished?
A partial answer is provided by the following theorem which establishes a connection

between the model error norm and the error norm of the individual members of F.
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3.3 ANALYSIS OF MWAC

THEOREM 3.3.
Wt
G~ Ghldoos S~ D,
Zij (G - Gij]tloo,a\ +p)
where
W(t) = Z \/?f),'j(t)
)
and
P= RxKr

PROOF. First we make use of the convexity of the norm operator to bound |[G —

Gtm]tloo,A: ie.
|[G - Gﬁn]tioo,)\ = I[Zmij(t)(G - Gij)]tloo,A
1Y)
(3.3.9) < Zu‘),-_,-(t)[[G - Gijlilo,n  (Jensen’s Inequality)
4
From Theorem 3.1, we may write

-2
(3.3.10) aii(t) = 18 -letlm.;fjpffx+f<n)

where 7, is the normalizing factor
nw =) (G = GiillarKrKx + Kz)~*
i
We rearrange (3.3.10) into

I OL D e
|[G Gu]tloo,A - KxKr

and replace in (3.3.9) to get

- (u) M~ i _Kn
> 65 ()G — Gilyloonr = > () -
i KX KF K xK F
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3.3 ANALYSIS OF MWAC

Let W(t) = i zD,}j/ ? and replace the definition of n,, in the above. This leads to

D Wi(t) K,
ij G- G,'j tloop = — _
‘Z'jw ol e KxKry /32 (G ~ Gijliloop Kx Kr + Ky) 2 KxKr
. WO .
\/ZJ(][G = Gijlloo + p) 2
where p = K,,/Kx Kr. 0

The above theorem is a central result of this thesis. We can further simplify it
through

COROLLARY 3.2.
G — Ghliloor S W(t)z+ (W() — 1)p

where W and p are defined as in Theorem 3.8 and

A
Z-_‘

i%f”Fu(P — Pij)lloon

PROOF. It follows immediately from Theorem 3.3 that

Wi(t
6~ Gl € ———ee 8 _______,

251G = Giglyleop + £)2
< WOIG = Clileon + (W(E) — 1)p

where G* = F, - P* and P* is an arbitrary member of F. Select P* such that

2 2[G = Gloopr S |[G = Gijlloon Y Py € F

Theorem 3.3 and its corollary provides the following clues:
e The variable W(2) is a measure of the "discrimination” between the individual
members of . For instance, when one and only one model in F reproduces

exactly the plant output, its weight is equal to 1, all other weights are equal to
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3.4 TRACKING THE MODEL PROPERTIES

zero and W(t) = 1. At the other end of the scale, when no particular member
of F provides a significantly better approximation of the true plant and all
weights are approximately equal to 1/N then W(t) ~ v/N.

e If W(?) can be made as close as possible to 1 by proper selection of the con-
troller parameters, then [G]; is no further away from Gy, than it is from the
nearest member of F and the effect of noise (as embodied by p in Theorem 3.3)
becomes negligible.

To rephrase item 1 above, if one considers the set of weights ;; as a two-

dimensional "map”, then W (¢) is a measure of the sharpness or flatness of this map.

We now determine how this measure varies with the user-selected parameters.

4. Tracking the model properties

As we have seen in the previous section, it is important in order to establish
bounds for tracking the performance of the adaptation mechanism to resort to the
infinite norm of frequency functions. We thus found it useful to express the model
error norm ||e;;(t)||2,2 in terms of the infinite norm of the difference between the
transfer function of the true plant and the associated member of F (Theorem 3.1).
To study the effect of the user-selected parameters, we will find it useful to express
llei;(t)il2,x in terms of the 2-norm of P — P; (with frequency weighting Fy,). For this

we need a result provided by a theorem similar to Theorem 3.1.

THEOREM 4.1. Provided that Assumptions 1.1-2.1 are satisfied then, for some
t > d there ezist coefficients kx,Kr and K,, such that

leij(t)llaa = (G = Gij)lel2r KF kx + Kn

where Kr and K,, are bounded as in Theorem 3.1 and kx is bounded by

1 — (rn/VA)HH! 1= (ra/VA)EH!
1- Tn/\/)\- 1- Tn/\/x

PROOF. Proof in Appendix. O

‘yal —0n <kx < |ys| + 6
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3.4 TRACKING THE MODEL PROPERTIES

Next we see that the effect of undermodeling, i.e. the effect caused by using a
elementary low order model (or a set of such models) and the effect of the additive
noise is essentially the same: a flattening of the weight map that would be computed

in a disturbance-free setting.

4.1. The effects of undermodelling and additive noise. = We start by
defining and quantifying what we mean by undermodelling in order to suit the re-

quirements of our analysis. Let

A 1-8  _4
g:{Go:go-i—:EzTIz d-1

and pick some Gj € G.

go GIR}

It follows that we can bound the error norm the following way

|[G — Gijl,lepKFkx + Ky from Theorem 4.1

lles; () l]2,a

|G — G + G§ — GijlilanKrkx + Kn

< (l[G = Glilaa +|[Gh — Gijlel2n) KFkx + Kn
< (|[G - Ggllz + [[Gy — Gijlyl22)Krkx + Kn since A< 1
< (IG - Gilla + l[Gh = Gijlil2n) Krkx + Ky

since|[ - ],|2 is monotone increasing with respect to ¢
We conclude that there exists a coefficient K¢, bounded by ||G — G§||2 such that
lesiB)llza = ([[G — Gisliloa + K6o) Krkx + Kn

and we may write the weight estimates as
-1
o ue,,a)nz.a)
2lh) = (ZZ (s

- (G} — Gijlelan + Koo + (Krkx) 'Kz \*\
s - (ZZ ( [G: Gl:;]ghA + Kg, + (Krkx)~ lKn) )
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3.4 TRACKING THE MODEL PROPERTIES

The above form of the weight estimates is very convenient for evaluating the

effects of disturbances on the adaptation mechanism. Let
oy -1
Kp = KGo + (kax) K,

be the combined effect of neglected dynamics and additive noise. From (4.3.1), we
see that the weight estimates are a function of two agents with opposite aims: one
discriminating agent which discriminates between the members of F according to
the norm |[G§ — Gijl,l2,» and one uniformizing agent, the offset Kp which steers
the weights towards a uniform distribution. The following theorem makes this more

explicit.

THEOREM 4.2. If|[G] — Gijl;|2p0 #0 VP; € F, then

0 )L
432) Bt = (aij y/ 2558 + (1 u)VF) i
1 S (cim VB + (1 aim) )
where

- 1/ I[Ga - Glm]t g,,\
o

wl;(t)

ny =Y |IGs = Gullz3
{ m

1

1+ ppy/3;(t)
po =Kp - /nd

PROOF. Let pim = (KpKx) ' Ky /|[G§ — Gim}y|2,x and

b= i
14

m
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3.4 TRACKING THE MODEL PROPERTIES

Then we have

Replacing in (4.3.1), we get

wi(t) = ( (G5 = Gijliloa +pD/\/;‘LT) -1
: ’ — Gim)yl2p + o0/ /8,
= (\/m-l Go t]]t|2A +pD)2 -
\/TTu_l[G Glm]zlz,\ + pp

= ( ( lJ(t) 1/2+PD>2) B

B (0}, (£)) =12 + pp
(/35@/1+ poyfa8)

S (/8501 + por/TE)

Multiplying the numerator and the denominator of the above by (1 + pp/v/N)? and

performing a few manipulations produces the result. O

The coefficient pp in the above theorem is a measure of the relative importance of the
disturbance level with respect to discrimination provided by the set of error norms.
The set of weights w is the weight distribution when no form of disturbance is
present in the system. Theorem 4.2 establishes a convex link between ,/%;(t) and
N-1/2 simultaneously for all pairs (3, 7) of gains and delays through the coefficients
a;j. This clearly shows that unmodeled dynamics and noise are “flattening” the
noise-free weights . It is not difficult to see that

(39 it =

PD—C

Although a convex sum links , /%% (t) to 1/ v/N, the relation between the weights
;;(t) and the noise-free weights %J;(t) for an arbitrary noise level pp remain a com-

plex function of pp. We may approximate the relation however by looking at the
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3.4 TRACKING THE MODEL PROPERTIES
asymptotic behaviour of the coefficients oy, i.e.

1 when pp < (@;(¢)) 772
U e when oo > (@(0)
and the breakpoint occurs approximately when pp\/zf% =1or
1

Po—m

It follows that the largest weight is the one which is most affected by noise, then

the second largest and so on, while the noise-free weights which are close to zero
require a large noise level for their associated a;; coefficient be affected.

Finally we conclude that to completely describe the behaviour of the adaptive
algorithm, it is sufficient to investigate the transfer function error norms |[Gj—Gij), (2.
since they play the dual role of establishing the disturbance-free weighting of the
models and determining the abilitity of the model set to resist the flattening effect

of the disturbances.

4.2. The base line weights distribution.  From the previous section, we
know that the final form of the plant model and thus of the closed-loop system is
completely determined by the set of time-varying norms |[G§ — G;j],|2,» and the noise
level as expressed by pp. From the former we may calculate the "base line” weights
distribution %{;(t) and the interplay between w(;(t) and pp flattens the base line
distribution. The exact value of pp is unknown but from the assumptions about the
noise levels and the true plant dynamics, we may compute an upper bound on pp
and thus evaluate ” worst-case” scenarios about the final weights distribution. On the
other hand, the norms |[G§—Gi;j],|2,» are entirely function of user-selected parameters.
In the following section, we examine the effect of these parameters on the base line
weights distribution.

We have seen in a previous section that in the instants following the application

of the setpoint, the controller is LLI up to the time instant d. The plant input signal
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3.4 TRACKING THE MODEL PROPERTIES

u(t) for this time instant is then the solution to this LLI closed-loop system. This
was the basis for computing the error norm bounds in Theorems 3.1 and 4.1. By
causality, this input signal is also the one driving the plant and the models for the
instants immediately following the time delay d, i.e. fort =d+1,d+2,.--. The
system thus enters a short, finite phase where the plant and model sets are driven in
virtual open loop. For this phase we may, recalling that
Gy = F.P} = ———1 - ‘ﬂf_lz*d-l
compute |[G§ — Gijl,|2,\ for three specific subsets of F, i.e. for those models with too
short delays (i.e. F), too large delays (i.e. ) and Fy.
For ¢t > d, the error norms are given by (details given in Appendix C)

_a\2 d—d; _ (Q2\d-d;

= ey
(4.3.4) + (6~ ab d-dj)zAt_dA— (gi)‘-‘]
for Rj € f_
. ,\t-d (ﬁ’l)t—d
(4.3.5) I[GO - Gij]tlg,k = ( ’7 ) ; N — ﬂ2 for Pij € }-d
—d_(g2\t-d .
_'ré') (@) 21\“_(2 i -1 bt ift <dj
. _ dj-d d;—d
(4.3.6) |[G}—Gyll2, = (_ﬁ) [(g )2 xt-di A A_‘f) ;4

t=d; ra2y\t—d; .
+ (g58%74 — @B | gt > g

for Pij e F

From these equations, we could compute the weights distribution at t =d+1,t =
d+2, - -+ for any combination of parameter values. These weights however, would turn
out to be a fairly complicated function of all these parameters. We prefer to simplify
the above expressions so that the role of individual parameters is more transparent.

In particular, we are interested the effect of the gain partitioning resolution Ag.
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3.4 TRACKING THE MODEL PROPERTIES

. First, we introduce an assumption constraining the true steady state plant gain

and "true” plant delay to be within the limits of the a priori intervals.

AsSUMPTION 4.1 (True plant gain and delay). We assume that
9% € [g,7]
and

deD

. Note that since g7 is not necessarily a member of the partitioned gain interval G,
we do not know a priori how far it is from any member of G. Let 6* be the minimum

distance from g§ to any member of G, i.e.
« DL
6" = min |g5 - gil

From Assumption 4.1, we know that there exists a member of G such that

(4.3.7) =

and another member of G adjacent to the former such that
(4.3.8) 9" — gkl = Ag— ¢

Next, notice that (4.3.4), (4.3.5) and (4.3.7) are all decaying functions of time
unless A or B are greater than 1 (Assume they never are). It is thus important to
discriminate between the members of F early after ¢ = d has elapsed when the above
norms are at their peak. Let ¢t = d + 1 be the time instant at which we evaluate the

o o7



3.4 TRACKING THE MODEL PROPERTIES

baseline distribution and let S3() be the sum of the weights of the members of F.

Z(l,m)efyd G5 = Gimlara |z

S 0 (d + 1) = * - * N
Z(Lm)Efrd |[G0 - Grm}d-i-llz,,z\ + Z(l,m)e!;\f;-d [[Go - Glm]d_H 23\
. —2y -1
_ 1+ Z(l,m)ery\rfd I[Go - Glm]d—i—l 2,§
2 amietz, [Gs — Gimlay za
. - . - -1
( 43 9) _ 1+ Z(l,m)eté |[G0 - Glm]d-{-l [2,§ + Z(z,m)er-; I[Go - Glm]d+1lz,§
Z(l,m)erfd I[GE - Glm]d+1 2-3\

Replacing (4.3.4), (4.3.5) and (4.3.7 in the above, and doing some simplifications,

we come to the result of

THEOREM 4.3. If Assumption 4.1 is true, then

11 1] 1 1-x-d  d-q\ '

sty T 7

SUd+1)> [1+ac2 Lo 22[’- ’]" L
(Lg —1) 8

where AG=7—g

PROOF. We begin by noting that Equation 4.3.4 is dominated by the first term
within the brackets. Thus it is always possible to write

. 1= B\ ,., A4 — (§2)d~4;
(63 - Galha > (52) =l ey e £
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It follows that the sum over F of the inverted error norms at ¢ = d+1 is bounded by

2
. - ¥ 11 A—p?
z G5 - Gij]d+1|2,§ < <—1 — ﬁ) Z E;_z‘j\‘ Md-df _ (52)d-d;

GJd)elg Gig)elx
_ ( )2 i d-1 A — ﬂ2
& f & -
2
'-Y 2 Lg d-1 1- ﬁ //\
= ( ) g 9; dz \d—d; 1 ﬂz / A)d—di
<1
~ 2 d-d
¥ VLl 1y 1 1=
(4.3.10) < (1—ﬂ) 3 [_g_" -i-_572 SCEr Y

where the last inequality is made possible through Jensen'’s inequality ([39], p. 128).
Using (4.3.7) and (4.3.8), we may bound the sum over Ir, by

( )zi(go (1jﬁ)2 ((63)2 " <Agia*)2)

=1

Taking the derivative of the above bound and setting to zero shows that the bound

is at a minimum when §* = Ag/2. Hence

, ~ gl 8
(4.3.11) > l(Gs - Gislap a3 > (1_——,5) Agf lordi=d

i=1

Finally, we have, over F

Y G~ Gilap s = (%) (!]Lag)z(&'-—d)

(id)efr
~ 0\ 2
T Vg
(4.3.12) > (1 _ﬁ) 7 (- d)
Replacing (4.3.10), (4.3.11) and (4.3.12) in (4.3.9) yields the result. O

It follows from Theorem 4.3 that we may set the weights of the models with

innapropriate delays arbitrarily close to zero by choosing a fine enough resolution of
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SUMMARY
the gain interval, i.e.
: 0 -
L},lgzl:o Sad+1)=1

Summary

In this chapter, we have established that in the first instants that follow the
application of an external excitation, if the signal-to-noise ratio is sufficiently high,
the nonlinear controller behaves equivalently to a known linear invariant system (see
Lemma 3.1 and Theorem 3.2). This result has the following implication: the signal
which is fed to the estimator is (at least) partially known and this information can
be used to track an upper bound on the performance of the adjusted model (see
Theorem 3.3 and Corollary 3.2).

Finally we showed how the performance upper bound is influenced by the choice
of the tuning parameters, the signal-to-noise ratio and the amount of undermodeling
(i.e. the approximation of a possibly high order plant by a first order plus delay
model) (Theorems 4.2 and 4.3).
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CHAPTER 4

Implementation of MWAC

Model weighting adaptive controllers have already been implemented in a number of
industrial applications [19], [38], [24]. These implementations reproduce the algo-
rithm given in [19]. In this chapter, we discuss two implementation issues of MWAC

that stem from the analysis of previous chapters and lead to an improved algorithm.

1. The initial invariance of the controller

In Chapter 2, we introduced a modification to the algorithm presented in [19].
This modification worked in two step: 1) Set the models with error norms lower
than some threshold be assigned a common "floating” value y and compute the
weight assignment law 2) When all possible cancellations of the common p have
been performed, let z — 0.

The purpose of this modification was to ensure that the weights of the models
with delay lower than the actual plant delay are sequentially set exactly to zero.
The consequence is that the input/output behaviour of the nonlinear, time-varying
controller is exactly that of a known LTI filter over a short period of time (and only
over this period of time) following the application of the external excitation. As we
saw in Chapter 3 the modification contributed significantly in simplifying the analysis

of the adaptive system.



4.1 THE INITIAL INVARIANCE OF THE CONTROLLER

Ya

y

|‘AF..(')—-1 ‘1
Fi @ PG I; =

»P.(g7" ) —>

v ¢t

-0

F(g™)

‘e

FIGURE 4.1. Modified flow diagram of the blocks involved in computing the
error signal.

With the original algorithm, it has been observed experimentally that the weights
of the models with the smallest delays are indeed set close to zero (as opposed to
ezactly equal to zero) when an external signal of sufficient magnitude excites the
system (see examples of Chapter 2).

So, although it is possible to write an algorithmic procedure for implementing
online the y-modification of Chapter 2, it is worth questioning how significantly the
extra code and additional computing time would contribute to the peformance of
the actual online algorithm. Furthermore, we may wonder if a deviation from the
assumed behaviour of the controller necessitates a different analysis than what was
proposed in Chapter 3.

We therefore examine what is the net effect of the controller operator being only
close to the LLI filter F7(g!). Consider the diagram of Figure 4.1. This is just a
modified version of the diagram of Figure 3.1.

In the diagram, the extra branch AF,(-) is 2 bounded operator acting on the

control error. This operator makes up the difference between the control operator
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4.1 THE INITIAL INVARIANCE OF THE CONTROLLER

C(-) and FTr(g='). If all other variables are defined as before, we then have the
following result.

PROPOSITION 1.1. The control error e;;(t) associated to a model Py; of F is given

by
Ti(p _ p.
eit) = =P E () - ()7 (1) + ()7 )
where
n'(t) = n(t) — Av(t)
Av(t) = —E—%Au(t)
and

Au(t) = AFy(ya(t) — y(t)

ProOF. From Figure 4.1, we have

(va(t) = (Pu(t) +n(t))) Fif + AFu(ya(t) — y(t)) = u(t)

from which we get

Tr
e ) = () + s AR — )

= it = n() +

u(t)

Au(t
1+Fhip u(t)

Now since
eii(t) = (P — Py)u’ (8) +nF (2)
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we then have

Fi(P-Py), p F P-PF;  p F
eij(t) = W(w (t) —n"(2) + KF—&#AU (t) +n" (t)
Fi'(P - PB;), ¢ P ( P-P; . g )1+FT’P~
= 2 WP _nF) - [ ———AuF () | ——2 2 P (2
L+ Fop (ya (8) —n" () 1+ FU P u () I+ Fhp +n(¢)
u u ] u
Let
P-P;
Av(t) = ———r2-Au(t
(t) 1+F,'{’P.-jAu()
It follows that
FZ[(P_Rj) F F 1+FIP; F
eii(t) = TFZ,}?—(W (t) —n" () -?F'E—,I?A” (t) +n"(t)
F7'(P—Py), p F Fa' (P — Py) F F
= W(w (t) =n"(2)) + (_:FZT - 1) Av7(t) +n7 (2)
Fi (P - Py)
= —l'm-,—}',’—(yf (1) — nf(2) + AT (2)) — AvF(8) + ()
Letting n'(t) = n(t) — Av(t) yields the result. 0

Hence the net effect of AF,(:) # 0 for the initial time interval 7; is exactly
the same as the effect of having additional noise and then may be treated as such
by the analysis of Chapter 3. We therefore conjecture that for external excitations
of magnitude worthy of consideration, the conclusions of Chapter 3 are equivalent
whether or not the p-modification is implemented.

This brings us to the second issue of this chapter. We will now see that the above
conjecture is further relevant if we introduce a mechanism for locking the model

parameters when an adequate model has been found.

2. Locking the estimates

In earlier versions of MWAC ([18],(19]), no attempt was made to lock the param-
eters at any time and the weights were allowed to drift back to a uniform distribution
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42 LOCKING THE ESTIMATES

when the information provided by the external signals disapeared. Hence if a set-
point change excited the system, the model used for feedback was based on whatever
signal-to-noise ratio this change provided.

From Theorem 3.3 and its corrollary, we learned that there is a direct connection
between the flatness of the weight map and the proximity of the model to the true
plant. A large signal-to-noise ratio sharpens the map of model weights while a low
signal-to-noise ratio flattens it. We also saw that a meaningful figure of the map
flatness is given by . /Wij(t) which is easily calculated online. This suggests a
mechanism for locking the parameter estimates based on this measure.

Consider the diagram in Figure 4.2. The model estimator uses the input/output
data from the plant and the weight map is computed as before. At every sampling

instant, the current map flatness W(t) is computed, i.e.

W(t) = Z V@i (2)

and compared to the smallest W so far. Formally, define the later as

W(t) = inf W(k)= k/=\0 Wi(k)

Hence at every sampling instant, we produce the following logic variable,
IW(t)<3V_(t—1)
and test this variable to see if it is desirable to update the model or not.

Update model and let
if Iw<w(-1) = W(t) = W(t)
0 Do nothing

The value of W(t) is bounded by 1 and +/N. The upper bound corresponds to
the case where input/output data does not yield enough information to discriminate

between any member of F and is therefore also the initial value of W(t). As the
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FIGURE 4.2. Additional logic to lock the model parameters.

closed-loop system carries out a number of control assignments, setpoint changes,
rejection of disturbance of varying signal-to-noise ratios, W(t) will be steered towards
1 with similarly varying success. If the actual plant is LTI, then the above logic
guarantees that the current model was updated when the signal-to-noise ratio was
richest in information. The closed-loop system hence becomes ”piecewise-LTI”, i.e.
it is invariant between two instants when the information supplied to the estimator
was deemed rich enough to trigger an update of the model. In between these instants,
control tasks carrying poor information are then treated with a model obtained under
better conditions.

The above logic however requires absolutely that the plant be LTI since it causes
W(t) to be a monotonic decreasing function and if the plant dynamics change, the
model may be locked to an innapropriate value with no possibility for the new values
of W(t) to trigger an update of the model.

We may remove this problem by, at every step, allow the value of W (%) to "leak”

towards the case where any previous information-rich data is simply ignored, i.e. vV N.
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4.2 LOCKING THE ESTIMATES

Mathematically, we can write the update operation of W ()
.‘E(t) = Aeak X(t) + (1 - /\,,.,k)\/ﬁ

where

X(t) = W(t—-1) fW()>W(t-1)
= W(t) if W(t) < W(t-1)

where

/\lcak — e—T/Tleok

and where Tjeq is a user-selected time constant. Large values of Tjqr are chosen when
the true plant dynamics change slowly while short values of 7., are chosen when the
true plant dynamics may vary rapidly.

In this chapter we introduced a mechanism for locking the model parameters.
This mechanism is one of the two novelties added to the existing MWAC algorithm
from this thesis. In the following chapter, we introduce the second addition which
simultaneously deals with the uncertainty on the dominant time constant of the plant

and undermodelling errors.
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CHAPTER 5

Treatment of undermodelling errors

In this chapter, we introduce two alternative methods for treating the problem of
imprecise knowledge of the dominant time constant and undermodelling errors. It
was shown in Chapter 3 that the distance between the model and the true plant
is directly related to the flatness of the weight map. A sharp peak indicates close
proximity to the true plant while a soft peak does not guarantee any proximity.
On the other hand, we know that a sharp peak is achieved if 1) the signal-to-noise
ratio is high and 2) the true plant belongs or is close to a member of F. The first
requirement depends on the control tasks that the closed-loop system is offered. In
the previous chapter, we introduced a model-locking mechanism that ensures that the
current model was obtained under the best conditions encountered so far. The second
requirement is generally satisfied only over a certain bandwidth. Real industrial
processes are typically high-order systems while the members of F are simple first
order plus delay systems. The two methods proposed in this chapter rely on making
the estimator believe that it is reading data from a first order plus delay plant.

1. Filtering the data

We expect the estimation algorithm to be applied to processes with high-order
dynamics and possibly with no true delay except for the apparent delay caused by

the combined effects of a number of unaccounted-for poles and zeros. If we consider
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FIGURE 5.1. Nyquist plot of example plant. For three different frequencies,
a set of first-order plus delay models are shown. The "*" "x” and "+”
indicate the FOPDs at three different frequencies. The circles are the value
of P, at those frequencies.

a plant with such dynamics as a frequency function, the deviation from the idealized
first-order-plus-delay (FOPD) plant may be interpreted as an inconsistency of its
behaviour over the frequency scale. For instance the actual plant P might behave
approximately as the FOPD plant P(!) over the frequency range F(, as the FOPD
plant P® over the frequency range F(? and as the FOPD plant P® over F®) where
F) # F® £ FO) and so on. We could say that the plant dynamics are inconsistent
with the FOPD model if P®) # P®) £ P®), This is illustrated in Figure 5.1 for the
plant

(s—1)(s—2)%

(s+1)*(s+2)?

which was used in the examples of Chapter 2. In this case, the plant behaves very
closely to the same FOPD model up to the cross-over frequency. This is no longer

true however at high frequencies. Now recall, that the filter applied to the data so

Pz (8) =-1.23
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far is
Flg)=1-¢"

i.e. a first-difference operator which emphasises the high frequency range where the
model is inconsistent with respect to any FOPD approximation.

The first method thus consists of reducing the frequency window through which
the estimator reads the data such the the true plant is consistent with some FOPD

model.

1.1. Designing the filter. @ We seek to design a bandpass filter with a -6db
pass band p, centered on some frequency wy. The filter should fulfill some basic

requirements:

e The pass band should be in a frequency range within the bandwidth of the
true process. At design time, we can make use of the prescribed dominant
plant time constant T to estimate the bandwidth of the plant as wy = 1/7.

e The central frequency wq of the filter should be not too far from the cross-over
frequency of the plant since good closed-loop behaviour is typically associated
to good modeling of this critical frequency area. We could specify wg by letting
it be some fraction ry (0 < ry < 1) of the bandwidth of the plant, i.e. wy = row;

e The width of the pass-band should be specified by as few parameters as possible
so as not burden the user with too many selectable parameters.

e It should satisfy our original requirement, i.e. F(1) =0.

The continuous-time filter

s

(1.5.1) Fs) = 5% 4+ 2(wos + w}

satisfies all of the above requirements. It has a single peak

1
| F(jw)llee = T
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which occurs at w = wy. Given that wy is selected from the estimated bandwidth of

the plant, its -6db pass-band is a linear function of ¢ only, i.e.
Pu= 2\/5‘-”0(

Using the bilinear transformation

21—z

S=T1+2"1

we form the discrete time equivalent of (1.5.1)

1 1-2z2
1.5.2 F(z?lYy=—
( ) (z ) ool + ozl + 022"2
where
2 Tw?
o = T + 2Cwo + TN
o = (2Tw?- 2 /o
2
@ = (% — 9Cwp + %) /i

Example 1 revisited (First method). In the examples of Chapter 2, the
adaptive closed-loop control of plant P,(s) was shown to be significantly closer to
instability than the adaptive closed-loop control of plant P,(s) (which was a true
FOPD plant) although the step response of these plants are arguably similar. We
now repeat the simulation with all parameters being the same as in Table 2.1 with
the exception of the data filter which we specify next.

The estimated dominant time constant is 2 secs (see Table 2.1). From this we

evaluate the cut-off frequency to be
we=1/2 [rad/sec]
We set the central frequency of the filter to be ry X w, where we set o = 0.5. Hence

wo=1/4 [rad/sec]
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FIGURE 5.2. Bode plot of Py(s) and |F(s)|.

Finally, we set the damping coefficient ¢ to be equal to 0.1 which corresponds to

a pass-band of
po=2v3 % 0.1=0.0866 [rad/sec]

Figure 5.2 shows the location of the filter pass-band with respect to the phase and
gain of P(s).

Besides the modified input/output filter, we also include in the following example,
the modification introduced in Chapter 4 for locking the estimates. The simulation
run is shown in Figure 5.3. The closed-loop system experiences a series of setpoint
changes. As before, there is a short ”learning phase” transient at the beginning but it
is smoother than the original transient. Following this learning phase, the closed-loop
system settles quickly to its final form as shown by the W (¢} indicator.

The plot of the 4; parameters as a function of time (Figure 5.4) shows that
with the modified data filter, the estimation sub-system considerably increases its

segregation of the members of F.
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FIGURE 5.3. Top figure: Input and output signals. Bottom figure: Variable
W(t) used for locking the parameter estimates.

2. Adjustment of the sampling period

A sampled high-order dynamic system appears to be of high order only if it is
sampled quickly enough. In fact, if the sampling period is long enough, a stable,
high order plant appears at the sampling instants as a pure delay with a gain. On
the other hand, too long a sampling period limits the control to coarse closed-loop
performance. We seek a compromise sampling period that will make the deviations
from a pure first-order-plus-delay system small enough to have negligible influence on
model precision but without making the control too coarse.

We readily have an online indicator W (¢) of the proximity of the model to the true
plant. We can make use of that information to adjust the size of the sampling period
until we reach a pre-specified target W, just as a regular feedback loop. This loop

differs from a conventional feedback loop in many ways however: since the fluctuations
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FIGURE 5.4. Parameters ; as a function of time.

of W (%) are triggered by the occurence and size of the external excitations (over which
we assume to have no prior knowledge), the adjustment of the sampling period should
be implemented on an occasional basis when, for instance, it is detected that fresh
data has caused W(t) to decrease. On the other hand, if the adaptive system is
not sufficiently excited for some time, W(t) may remain constant over this period
but when an important external excitation occurs, it produces many rapid decreases
of W(t). Thus to make a sensible use of W(t) as a feedback variable, we need to
consider the following:
e When W(t) has decreased, we wait for some pre-determined amount of time
Tw before implementing the adjustment of the sampling period. If W(t) de-
creases before Ty has elapsed, we reset the timer and wait for Ty to elapse
again. This ensures that we have secured a new, stable value of W (t) before
implementing the sampling period adjustment.
e The partition of the gain interval is independent of the adjustment of the
sampling period but W(t) is computed from the weight of every member of
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5.2 ADJUSTMENT OF THE SAMPLING PERIOD

F. To make W(t) independent of the gain partition, we can first compute the
total weight associated to the individual delays in [d, d], i.e.

= Y W)
(.9)€l 7,

then compute the modified W(t), W'(2) as
d
W'(t) = Z VA
k=d
and the modified indicator W'(z)

t
! - ! _ ?
W(e) = inf W(k) = k/=\0 W'(k)

Say that with the above modifications implemented that the occurences of the sam-
pling period adjustments are indexed with the superscript (n) n = 1,--. ,, then the

adjustment we choose is of the integral-type, i.e.:
T+ = 7 4 pr (W, — ﬂ(n))

Example 1 revisited (Second method). We repeat the example of Chap-
ter 2 but applying the online adjustment of the sampling period. Apart from this
modification and the modification for locking the parameter estimates (see Chap-
ter 4) , the simulation data is the same as that of Chapter 2. We need two additional

parameter values for Tw and kr. In the following simulation, these were set to be
Tw =20 [secs] kr=1

During this simulation, we let the adaptive system experience a series of exoge-
nous excitations in the form of setpoint changes. The continuous-time plots of the

input/output signals are shown in Figure 5.5.
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FIGURE 5.5. Continuous-time plots of the input/output signals. Adaptive
control of the plant P, with sampling period adjustments.

The initial performance of the feedback system is similar to the original behaviour
of Chapter 2 but after a few setpoint changes, the control performance is much im-
proved. Figure 5.6) shows a blown-up version of the simulation run for the initial time
segment and the final time segment to emphasize the changes made to the sampling
period. We observe that in the final segment, the minimum-phase behaviour of the
plant is invisible at the sampling instants.

Finally, Figure 5.7 shows the variables of the sampling period adjustment feedback
system. The controlled variable W'(t) asymptotically reaches its target value 1.2
while the sampling period increases from its initial value of 1 sec to a value just over

4 secs by the end of the simulation run.

3. Merits and inconveniences of the proposed methods

In this chapter, we presented two methods to render the unmodeled deviations
from the ideal first-order-plus-delay representation less visible to the estimation sub-

system. The first method uses a passband filter whose bandwidth may be reduced

86



5.3 MERITS AND INCONVENIENCES OF THE PROPOSED METHODS

Output
o
wn

1.5 T 1.5
1 1t

. 0.5

o 0

-0.5 -0.5 -
] 50 100 150 200 800 850 900 950 1000
Time Time
2 2
151 1.5
! 1
E- 0.5} 0.5
£ °
o (/]
-0.5 -0.5
- 10 50 100 150 200 -800 850 900 950 1000
Time Time

FIGURE 5.6. Blow-up of the initial (0 < ¢ < 200) and final (800 < t < 1000)
time segments.

,kff_/d |
e
Y, ]

[ 200 400 é00 800 1000
Tims (sec)

FIGURE 5.7. Feedback adjustment of the sampling period during the simulation.
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by the user when it is felt that undermodeling errors may be important. The second
method progressively increases the sampling period until the effects of the undermod-
eling errors are reduced to manageable proportions.

The first method has the advantage of simplicity since it involves no extra feed-
back loop and since most parameters may be determined from the original data
supplied by the user. The second method adds an extra feedback loop and requires
the determination of new tuning constants but is likely to be less sensitive to errors
induced by mis-estimating the dominant time constant of the plant.

It is difficult at this point to make a firm statement on which particular method
is best for an industrial implementation. Simulation under realistic conditions or
industrial experience may provide some answers but we leave this question open for

the time being.
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CHAPTER 6

Conclusions

Pilot-plant and industrial applications of the MWAC technique have revealed that
the algorithm can detect very rapidly what model in the set is most appropriate for
the current circumstances when a control task such as a setpoint change is requested
from the closed loop system. This observation is consistent with the theory developed
in Chapter 3. Theorem 3.3 says that in a finite time following the occurence of an
external excitation, the model used to compute the control finds itself in a neigbor-
hood of the true plant. The size of this neighborhood depends on two factors: 1)
the resolution of the partition of F and 2) the signal-to-noise ratio. The first fac-
tor promotes the sharpness of noise-free, base line weight distribution. The sharper
this distribution is, the tighter the neigborhood to the true plant is. Moreover, the
sharper the distribution, the more resistance it offers to the uniformizing effects of
disturbances (Theorem 4.2). On the other hand, a high signal-to-noise ratio also de-
feats the uniformizing effect of those disturbances which are external to the plant (i.e.
input disturbances, measurement errors). Finally, Theorem 4.3 says that the sharp-
ness of the distribution will peak in a time approximately equal to the apparent time
delay of the true plant. The bounds computed in Theorems 3.3, 4.2 and 4.3 allows
the designer to estimate an adequate partitioning resolution for a given application.

Furthermore, this jumping mode of convergence is a feature of MWAC (and
related algorithms - see Introduction) that significantly differs from adaptive methods
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based on recursive least-squares methods or gradient-like methods ([5], [21]). The
latter are essentially integrators which accumulate the input/output information and
will assymptotically make the effect of the disturbances vanish. This difference in
convergence mode might serve as a basis for selecting an adaptive control method for
a given application. For instance, the choice would depend on how the information
is generated: by sudden, infrequent bursts or on a continuous basis.

In Chapter 3, we have limited the form of external excitation to that of step
changes on the setpoint. It might be argued that this limits the general applicability
of the results of Chapter 3. However, the tracking of setpoint step changes (along
with rejection of step disturbances) is one of the most important industrial control
tasks and one by which the performance of controllers is traditionaly assessed. Hence
its relevance. On the other hand, it is straightforward to replace the step functions
used in Chapter 3 by more general signals as long as they preserve the initial LLI

behaviour of the controller. We leave this task for future work.

1. Future research

As mentioned earlier, a high signal-to-noise ratio alleviates in part the effect of
input or output disturbances. It does nothing however for plant disturbances that
stem from approximating a (possibly) high-order plant with a first order plus delay
model. We proposed two methods in Chapter 5 to circumvent this problem: 1) by
filtering the data with a bandpass filter whose bandwidth depends on the importance
of the undermodelling effects and 2) by progressively adjusting the sampling period so
that a compromise is achieved between satisfying the first order plus delay requirement
and the achievable closed loop speed of response. This was combined with a scheme
for locking the parameter estimates when it is detected that these estimates have been
obtained under good conditions (Chapter 4). These additions improve the behaviour
of the MWAC algorithm but they also open the door to further investigation and
experimentation. For example, the method for locking the estimates introduced in
Chapter 4 effectively breaks up the time scale in a countably infinite number of
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segments for which the plant dynamics may be assumed to be piecewise or locally
linear, time-invariant. This view could give way to a general definition of a class of
time-varying plant dynamics.

Along these lines, it would also be desirable to formally redo the analysis with
random disturbances using the wealth of existing techniques for analyzing such sig-
nals. The present work really was concerned by the finite time approximation of
the true plant. In a more general, long term convergence analysis, the asymptotic
properties of the statistics of random signals make them an asset to the analysis.

In the present work (and all previous) on MWAC, the plant has been limited to
a single input/single output process with stable poles. The case when the plant has
a pole at z = 1 or outside the unit circle should now be investigated.

Another natural extension of this work also is to examine its implementation on
multi input/multi output (MIMO) plants. The application of adaptive techniques to
MIMO plants is always a delicate affair just from the point of view of identifiability.
We believe however that MWAC offers some advantages over other techniques. For in-
stance, it is reasonable to think that for a typical MIMO system, not all input/output
relations require the same degree of adaptation. By increasing or decreasing the range
of uncertainty of the parameters, the MWAC controller automatically modulates the
amount of adaptation applied to each individual relation in the system.

There is no fundamental reason to believe also that the algorithm should behave
differently when the controller structure is different from the simple pole-placement
algorithm used in this work. This, however, should be verified.
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APPENDIX A

Supplemental proofs

This appendix contains proofs of intermediate results found in the main text. These
are:

e Proposition 1.1

e Theorem 3.1

e Theorem 4.1
Proposition 1.1 Let Q(z7') = Qi(z7!) Q2(z"!) where Q, @, and Q> admit a

Laurent series expansion. Then we have

()
|[@lloor < 1@, ool (Q2];, | B(E: A)
(i)
|(@leloo < [[@1]y, loonl[Q2]s, looaB(E: A7)

where t, 2> t, t2 > t and B(t, \) is the fized function

1 [*|1— (/)
B(t’/\)_ﬁ?/; 1—eif/)

df
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PROOF. Obviously we have

[Qle = [@i] [Qalea),

where t; > ¢ and t, > . It follows that

t
QL = 3 ak)VA "emivk
k=0
where
2%
(0.A.1) ak) = 5= [ Qi [Qale™ds
0
Hence

QU = [ o [ 1@ulul@ilaeds VA et

k=0

1 27 t N _
= = 0 [Ql]t;[Qz]eaZ;(/\ 1/25(8 ))de'

1— (/\—I/Zej(G—w))Hl
1 — (A-12gi-w))

27
< @i, leo |[Q2]t,|w‘21;/0

The above integral computes the average value of its integrand over the unit circle.
Since the integrand is periodic and w only shifts the integrated function, the average
is independent of w and result 1) follows. If one evaluates g(k) over a circle of radius
A # 1 instead of (0.A.1), then result 2) is proved using an argument which parallels
that of result 1) mutatis mutandis. |

Before proving Theorem 3.1, we need preliminary results provided by the following
lemmas, the first of which is just a version of Parseval’s theorem slightly modified for

truncated series.
LEmMMA 0.1. If

Y= yk)z*

k=0

93



APPENDIX A. SUPPLEMENTAL PROOFS

then

,\t 2r

s = 57 [ (Gl
PROOF. We evaluate [Y]; on the circle z = Ve, i.e.
. ~k s
V(2= yk)VA ek
k=0
and its conjugate
. k 13
Yl = Y ukvA e
k=0
It follows that
t ot
- - —I\1s (k) _iotpe—
YL = E Y E =YD sky@vA et
k=0 =0

Integrating the above over [0, 27] and multiplying by A*/27 yields the desired sum.

2\t i _
@l = 57 [ 1Y G eren &

a

We now express the 2-norm of y when y is the output of a linear system P driven

by an input u.

LEMMA 0.2. If
Y(z7') = P(z")U(z™")
then a)
ly@l2a < |[PL1zx 1[T]]50
and b)

ly@lza < |[Plleon U5
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ProoOF. From Lemma 0.1, we have

WA= 5o [ 10 e o < 5 [ PG [0 do

Applying Holder’s inequality ([40], p.63 with p = 1 and ¢ = co) to the above yields
both results. 0

We are now ready to prove Theorem 3.1.
Theorem 3.1 Provided that Assumptions 1.1-2.1 are satisfied then, for any t there
exist coefficients Kx,Kr and K,, such that

llei; (Blzp = |[(G = Gij)]iloor Kr Kx + En

where G = PF, is the LLI loop gain, Gij = P;;F,, and where Kr, Kx and K, are

common to all error signals and are bounded by

1 1
—— < Kp —r—
I+l = 77 = 1= ][Cllon

!

t4l - (p2)t+1 41 _ (p2)t+l
e e
A~-T2 A—r?

At+HL — TrZ‘ t+1 ,\t+1 — 1.'21 -1
lys"\t - Jn\/:—()_— < KX S lyal/\t + ﬁn\/—_()_‘

— 2 = _ 2
A=-ri A—rT2

ProOF. Consider the equation

(0.A.2) ei;(t) = (G — Gy) - (5 (£) —nF () - +nF(t)

1+G
where y'(¢) is an impulse of magnitude y, and n”(t) is a noise signal satisfying
Assumption 1.3. If X(z7!) is the z-transform of y” () — n(t) then from Lemma 0.2
b), we have

I(G - Gi3) (w5 (1) = 2T (@)ll2a S 1[G = Giililoon - [[Xel2n
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and
[X] = Z(y (k) —nF (B))VA e~k

which, using the assumptions, leads to

YA = 07 @)llzp < XDl S w: X+ [InF ()20

The 2-norm of n¥ is bounded by

S @R < 23 () A

k=0 k=0

- t 1’2 k

- &2 (%)
k=0
b+l _ (231
— 6:"\ (rn)
A—rl

which establishes the bounds for Kx and K, the additive noise term.

The bound on K is obtained by noting that (1 + G)~! is obtained by having G

within a unity-feedback loop and then using the Small gain Theorem. 0

From Lemma 0.2 we see that there is a companion theorem to Theorem 3.1.
Theorem 4.1 Provided that Assumptions 1.1-2.1 are satisfied then, for any t there
ezist coefficients kx,Kr and K, such that

llesis (E)ll2a = (G — Gij)llex KrF kx + Ky

where Kr and K, are bounded as in Theorem 3.1 and kx is bounded by

L (/YR L= (ra VA

—fg———————————<kx < + 4,
'ysl l—Tn/\/X X |ya| n l—Tn/\/X

PRroOOF. The proof is exactly similar to that of Theorem 3.1 except that we use
result a) of Lemma 0.2 instead of result b). a
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Pseudo computer code for implementing

p-modification

In this chapter, we give a pseudo computer code listing for implementing the limit
function of Equation 4.2.2.

’ This pseudo code implements the mu modification

’ The subroutine expects a vector s{) of dimension N to be

' the vector to which the limit must ba applied.

' The subroutine returns the modified values of s() in the same
! vector.

: The vectors s_modified() and previcus_s() are local, intermediate

4 variables.

m = 1.0-E-10

for j={ to N
it 8(j) < threskold then
me_flag(j) = TRUE ’Check those values which must be
else ‘replaced by mu
mu_2lag(j) = FALSE
end if
next j

epsilon = 1.0E-20;
Hax=-1.0E+30



APPENDIX B. PSEUDO COMPUTER CODE FOR IMPLEMENTING x-MODIFICATION

vhile (convergence > epsilon)

for j=1 to N
if mu_flag(j) = TRUE ' Modify only those below
s_modified(j)=umu ' the threshold
olse
s_moditied(j)=a(j)+mu
end if

sum=sum+s_modified(j)

next j
for j=1 to N
s_modified(j)=s_modified(j)/sum
buffersabs(s_modified(j)-previous_s(j)) ’ Compare with previous
it (buffer>Max) then Max=buffer ' Look for marimum variation
previous_s(j) = s_modified(j) ' Stors for next iteration
next j
convergence = Max ! Convergence test is based on maximum variation over vector s
musmu/10 ! Reduce mu
end vhile
for j=1 to N
8(j)=s_modified(]) ' Stors back modified vactor s()

next j
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APPENDIX C

Detailed calculations for Theorem 4.3

This appendix gives the details for Equations 4.3.4, 4.3.5 and 4.3.7 which are subse-
quently used in the proof of Theorem 4.3. The following calculations compute the
norm of the difference between transfer functions of the form
. __ ga_ 1- :B -d—-1
%= (7) T— g1
and
_ (% _1-8 4.
6= (%) =

The impulse response coefficients of the above transfer functions are given by

(k) = 0 for k<d
’ go* 1ZEBE-41 fork>d

bty = 4 for k < d;
7 GiEEpE-4=t for k> d;

respectively.



APPENDIX C. DETAILED CALCULATIONS FOR THEOREM 4.3

ForF; € F

t

IG5 — Giglelop = D dNFRE(R)+ Y A (h5(k) — hyj(k))?

k=0 |, k=d+1
PART A PART B
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d
> AFRE(R) =
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2

—
™

d
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=)
ﬁ)2 g2At E Ad=k(g2)k—di=1
)
)

~2t|

1

~2tl

k=d;+1
2 d-d;—1
—d —d;~ 1~k a2
gixd Y ATk (g
k=0

2 g Az—d’\d_d” - (ﬁ2)d—dj

[

—B

]

]
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d
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APPENDIX C. DETAILED CALCULATIONS FOR THEOREM 4.3

1— ,3 2 t
Gy - Giililza = (——.-—) (95— gi)® D k(8%
k=d+1
,6 2 t—d-1
) (o —gi)2 Z /\t—d—l—k(ﬁZ)k

k=0

2

1

-anl |

2 t—d _ (q2\t—d
= (ﬁ) (g(‘; - gi)ZA A _(gg)

2

There are two cases to consider in this section: ¢t < d; and t > d;.

t<d;

- 2 t
G5 — Gisllax = (%ﬁ) (g0)? Z Atk (g2yk=d-1
=d+1
1-— 2 t~d—-1
- (58) @'y ary
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For P;j € F4

F

101
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PART A.
1—8\2 . d; ~ 1— 2 dj—d-1
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1—- 6)2 - Xij—d _ (ﬂ2)dj—d
= (== (g)\%
¥ A—-p?
PART B.
2 t
(l = ﬁ) Z p Ll (gaﬂk—d-l - giﬁk—d,-—l)z —_
k=d;+1

-8\ ¢
(_;?__) (gaﬁdj-d - gi)2 z ,\t—k(ﬁz)k—dj-l
k=d;+1
1— ﬂ 2 t
= (T) (gaﬂd,-—d _ .9:')2 Z /\t-d_,--l—k(ﬁ2)k
k=0

1— 2 t—d; _ ([2\t—d;
= (‘_ﬂ) (gaﬁ""“‘—gf)"\ /\_(gz)

=21

102



REFERENCES

[1]

[2]

3]

[4]

[5]

(7]

[8]

K. E. Arzen, An architecture for ezpert system based feedback control, Auto-
matica 25 (1989), no. 6, 813-827.

K. J. Astrom, Adaptive control around 1960, IEEE Control Systems magazine
16 (1996), no. 3, 44-49.

K. J. Astrom, J. J. Anton, and K. E. Arzen, Ezpert control, Automatica 22
(1986), no. 3, 277-286.

K. J. Astrom and B. Wittenmark, Computer controlled systems - theory and
design, 2 ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

K.J. Astrom and B. Wittenmark, Adaptive control, Addison-Wesley, Reading,
Mass., 1989.

M. Athans, D. Castanon, K.-P. Dunn, C. S. Greene, W. H. Lee, N. R. Sandell
Jr., and A. S. Willsky, The stochastic control of the f-8c aircraft using a multi-
ple model adaptive control (MMAC) method- part i: Equilibrium flight, IEEE
Transactions on Automatic Control AC-22 (1977), no. 5, 768-780.

Y. Bar-Shalom and E. Tse, Dual effect, certainty equivalence and separation
in stochastic control, IEEE Transactions on automatic control AC-19 (1974),
494-500.

P. R. Bélanger, Control engineering: A modern approach, Saunders College
Publishing, 1995.



[9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

[18]

REFERENCES

B. W. Bequette, H. Kaufman, R. J. Roy, and C. Yu, Recent advances in the
control of drug delivery systems, AIChE 1992 Annual Meeting (345 East 47th
Street, New York,NY 10017), AIChE, AIChE, November 1992.

R. R. Bitmead, Persistence of ezcitation conditions and the convergence of
adaptive schemes, IEEE Transactions on information theory IT-30 (1984),
no. 2, 183-191.

S. Boyd and S. S. Sastry, Necessary and sufficient conditions for parameter
convergence in adaptive control, Automatica 22 (1986), 629-639.

P. E. Caines, Linear stochastic systems, John Wiley and sons, 1988.

P. E. Caines and H. F. Chen, Optimal adaptive LQG control for systems with
finite state process parameters, IEEE Transactions on automatic control AC-
30 (1985), no. 2, 185-189.

P. E. Caines and J.-F. Zhang, Adaptive control for jump parameter systems
via non-linear filtering, Preprints of the 31st IEEE CDC conference, IEEE,
IEEE, December 1992.

M. Champagne, Personal commaunication, 1996.

S. Dasgupta and L.C. Westphal, Convergence of partitioned adaptive filters for
systems with unknown biases, IEEE Transactions on automatic control AC-28
(1983), no. 5, 614-615.

J. R. Elliott, NASA’s advanced control law program for the f-8 digital fly-by-
wire atrcraft, [EEE Transactions on Automatic Control AC-22 (1977), no. 5,
753-757.

S. Gendron, A. P. Holko, and M. Amjad, Simple adaptive digital dead-time
compensators for low-order SISO processes, Ninth IFAC symposium on system
identification and parameter estimation, IFAC, IFAC, 1991, pp. 1012-1024.

104



[19]

[20]

[21]

[22]

[23]

[24]

[25)

[26]

[27)

[28]

[29]

[30]

REFERENCES

S. Gendron, M. Perrier, J. Barrette, M. Amjad, A. Holko, and N. Legault,
Deterministic adaptive control of SISO processes using model weighting adap-
tation, International journal of control 58 (1993), no. 5, 1105-1123.

G. C. Goodwin, Can we identify adaptive control?, Proceedings of the 1991
ECC, ECC, July 1991, pp. 1714-1725.

G. C. Goodwin and K. S. Sin, Adaptive filtering, prediction and control,
Prentice-Hall Inc, 1984.

C. S. Greene and A. S. Willsky, An analysis of the multiple model adaptive
control algorithm, Proceedings of the 19th CDC conference, IEEE, IEEE, De-
cember 1980, pp. 1142-1145.

R. M. Hawkes and J. B. Moore, Performance bounds for adaptive estimation,
Proceedings of IEEE 64 (1976), no. 8, 1143-1150.

R. Kuhne, Personal communication, 1993.

D. G. Lainiotis, Partitioning: A unifying framework for adaptive systems, i:
Estimation, Proceedings of the IEEE 64 (1976), no. 8, 1126-1143.

, Partitioning: A unifying framework for adaptive systems, it: Control,
Proceedings of the IEEE 64 (1976), no. 8, 1182-1198.

L. Lin, Fast identification for robust adaptive control - a metric complezity
approach, Ph.D. thesis, McGill University, 1993.

L. Ljung, System identification: Theory for the user, Information and system
sciences, Prentice-Hall Inc, Englewood Cliffs, New Jersey, 1987.

L. Ljung and T. Soderstrom, Theory and practice of recursive identification,
The MIT Press, 1983.

D. T. Magill, Adaptive optimal estimation of sampled stochastic processes,
IEEE Transactions on Automatic Control AC-10 (1965), no. 4, 434-439.

105



[31]

[32]

[33]

[34]

[35]

[36]

[37)

[38]
[39]
[40)

[41]

[42]

REFERENCES

P. S. Maybeck and D. L. Pogoda, Multiple-model adaptive controller for the
STOL f-15 with sensor/actuator failures, Proceedings of the 28th CDC con-
ference, IEEE, IEEE, December 1989, pp. 1566-1572.

R. L. Moose, H. F. VanLandingham, and P. E. Zwicke, Digital set point control
of nonlinear stochastic systems, IEEE Transactions on Industrial Electronics
and Control Instrumentation IECI-25 (1978), no. 1, 39-45.

M. Morari and E. Zafiriou, Robust process control, Prentice Hall, 1989.

R. Murray-Smith and T. A. Johansen, Multiple model approaches to modelling
and control, Taylor and Francis, 1997.

K. S. Narendra and A. M. Annaswamy, Stable adaptive systems, Prentice-Hall
Inc, 1989.

K. Nassiri-Toussi and W. Ren, On the convergence of least squares estimates
in white noise, IEEE Transactions on automatic control 39 (1994), no. 2,
364-368.

J. Owen, Performance optimization of highly uncertain systems in H infinity,
Ph.D. thesis, McGill University, 1992.

M. Pudlas, Personal communication, 1997.
L. Rade and B. Westergren, Beta mathematics handbook, CRC Press, 1990.
W. Rudin, Real and complez analysis, McGraw-Hill Inc., 1987.

S. L. Shah and W. R. Cluett, Recursive least squares based estimation schemes
for self-tuning control, Canadian journal of chemical engineering 69 (1991),
no. 1, 89-96.

G. Stein, G. L. Hartmann, and R. C. Hendrick, Adaptive control laws for F-
8 flight test, IEEE Transactions on Automatic control AC-22 (1977), no. 5,
758-762.

106



[43]

[44]

(4]

[46]

[47)

48]

REFERENCES

J. Sternby, On consistency of the method of least squares using martingale
theory, IEEE Transactions on automatic control AC-22 (1977), no. 3, 346-
352.

J. K. Tugnait, Convergence analysis of partitioned adaptive estimators under
continuous parameter uncertainty, IEEE Transactions on automatic control

AC-25 (1980), no. 3, 569-572.
K. Watanabe and S. G. Tzafestas, Multiple-model adaptive control for jump-

linear stochastic systems, International journal of control 50 (1989), no. 5,

1603-1617.

W. M. Wonham, Some applications of stochastic differential equations to opti-
mal non-linear filtering, SIAM Journal of Control and optimization 2 (1965),
no. 3, 347-369.

G. Zames, Feedback and optimal sensitivity: model reference transformations,
maultiplicative seminorms and approzimated inverses, IEEE Transactions on
Automatic control AC-26 (1981), no. 2, 301-320.

G. Zames and L. Y. Wang, What is an adaptive learning system?, Proceedings
of the CDC Conference, IEEE, December 1990, pp. 2861-2864.

107



