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Surnrnary

The main exercise of this thesis is the formulation of a mathematical framework for

analyzing an existing industrial adaptive control algorithm labeled Model weighting

adaptive control (MWAC). The algorithm is then analyzed under this framework. The

exercise is complemented by a set of algorithmic additions aimed at solving questions

that so far had remained open (e.g. the treatment of undermodel1ing errors). Those

solutions, on the other hand build on results derived from the analysis.

A key result for analyzing the algorithm is that when an external excitation

is applied (in the form of a control task sucb as a setpoint change), the adaptive

controller behaves, in a short time that follows the application of the excitation, as

a linear equation whose parameters are completely known at design time. It follows

that during this short period, the input signal provided to the estimation subsystem

is at least partially known (except for disturbances) and that the estimation virtually

takes place in open loop. Using this information and assuming boundedness of the

disturbance signaIs, it is possible ta baund the behaviaur of the adaptive system at

an early stage.

With the MWAC algorithm, the plant model is formed by making a weighted

sum of a finite number of possible plant models. It is shown that, under adequate

conditions and in a time corresponding to the apparent plant delay, the plant mode!

will "jump" to a neighborhood of the true plant. The size of this neighborhood will

depend in part on how sharply the bad models are discriminated from the good mod­

els. On the other hand, disturbances will smooth the weight map towards a uniform
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distribution. The sharpness or smoothness of the weight map can be measured online

by computing the sum of the square root of all the weights in the set. The remarkable

property of this measure is that an upper bound on the distance between the true

plant and its model can be found which an affine function of the measure.

The effect of external distnrbances sncb as measurement errors can be reduced

by an external excitation of sufficient magnitude. This is not true however of distur­

bances caused by undermodelling errors which are almost always present to a lesser

or greater degree. Two solutions are proposed to counteract this undesirable effect.

The first method consists in bandpass filtering the input/output data in sucb a way

that the frequency content of the data is consistent with data obtained from some

first arder plus delay (FOPD) mode!. The second method adjusts the sampling pe­

riod online sucb that a compromise between satisfying the FOPD assumption and the

coarseness of the control is obtained.

iv
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Résumé

L'exercice principal de cette thèse consiste à formuler un cadre d'analyse mathématique

pour un algorithme adaptatif industriel appelé Commande adaptative par modèles

pondérés (MWAC, l'acronyme en anglais). L'algorithme est ensuite analysé à l'intérieur

de cadre. Des modifications à l'algorithme original sont ensuite proposées dans le but

de résoudre des questions qui, à ce jour, demeuraient sans réponse (telle traitement

des erreurs de sous-modélisation). Par ailleurs, les modifications proposées découlent

des résultats obtenus à l'analyse.

Un des principaux résultats de cette analyse est l'observation que dans une courte

période de temps suivant l'application d'une excitation externe, le controlleur adap­

tatif se comporte tel une équation linéaire dont tous les paramètres sont connus avant

la mise en marche du système. TI en découle que, pendant une courte période de

temps, le signal foumi à l'estimateur est partiellement connu (nonobstant les pertur­

bations) et que l'estimation du modèle se déroule pratiquement en boucle ouverte.

En utilisant cette information et en supposant une borne sur l'amplitude des per­

turbations, il est possible d'obtenir une borne sur le comportement à court terme de

l'algorithme.

L'algorithme MWAC compose un modèle du procédé en faisant une somme pondérée

de modèles possibles. il est démontré que, sous des conditions adéquates et à l'intérieur

d'un temps correspondant au retard apparent du procédé, le modèle se déplace rapi­

dement vers l'intérieur d'un voisinage de la dynamique du véritable procédé. La taille

de ce voisinage dépend en partie de l'acuité avec laquelle le système peut trancher
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entre les mauvais et les bons modèles. A l'opposé, les perturbations tendent à uni­

formiser la répartition des poids associés aux modèles. L'acuité de la distribution

des poids peut être mesurée en calculant la somme de la racine carrée des poids. La

propriété remarquable de cette mesure est qu'il est possible de trouver une borne

supérieure à la distance entre la dynamique du procédé et son modèle qui est une

fonction affine de la mesure.

L'effet des perturbations externes telles les erreurs de mesure peut être réduit

en utilisant une excitation externe de grandeur suffisante. Telle n'est pas le cas,

toutefois, pour ce qui est des erreurs causées par une sous-modélisation systématique

du procédé. Conséquemment, nous proposons deux méthodes afin de contrer cet effet

indésirable. La première méthode consiste à filtrer les données du procédé par un

filtre passe-bande de telle sorte que le contenu fréquentiel des données soit cohérent

avec celui d'un modèle de premier-ordre-avec-retard (POAR). La deuxième méthode

consiste à ajuster la période d'échantillonage afin d'obtenir un compromis acceptable

entre l'hypothése d'un système POAR et la précision de la commande.

vi
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Clairn of originality

This thesis provides a framework and an approach for analysing an existing indus­

trial adaptive control technique. Previous analyses of similar algorithms have been

restricted to the asymptotic behaviour ofsucb algorithms. The features of the analysis

and the novelties introduced here are:

• It is focused on the short-term behaviour of the controlIer as opposed to an

asymptotic analysis.

• An equivalence is found (which is vaUd only in the early period following the ap­

plication of an extemal excitation) between the nonlinear, time-varying control

equation and a linear, time-invariant difference equation which is campletely

known from prior knowledge and user-selected parameters.

• A central result is that, in a time that corresponds ta the apparent time delay

of the plant, the plant model "jumps" inside a neighborhood of the true plant.

Bounds on the size of this neighborhood are gjven.

• An outcome of the above is that the proximity of the model to the true plant

can be assessed online through a simple measure.

• Persistence of excitation conditions are not required and the only assump­

tion on signals is that the closed loop system is extemally excited by signais

encountered under normal operation (e.g. a step setpoint change).

• Formulae are derived for he1ping a system designer select appropriate param­

eter values for a given problem.

• Two techniques are proposed for offseting the effects of undermodelling errors.
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CHAPTER 1

Introduction

In the manufacturing industries, a typical process has many inputs, manyoutputs. !ts

outputs do not react linearly ta input adjustments. It cloes not react quite exact1y the

same way from one clay ta the next. The measurements (when available) of the desired

properties of the end product are often :8awed byerrors. Furthermore, the properties

of the raw material the process is fed are not completely known and they vary. Yet,

as has been known for a long time, a little feedback from the measurements to the

inputs performs minute miracles ta bring arder to this apparent1y chaotic business.

Many industrial processes nowadays perfonn poorly if at all without the benefits

of feedback control. By closing a loop on an incompletely or imprecisely described

process, the latter is coaxed into producing an end procluct with properties that are

closer to specifications than those properties obtained without the feedhack loop.

More generally, feedhack attenuates the majority of clifficulties that stem from a lack

of process understanding.

Up to a lîmit.

fi the mode! is too imprecise, then closing the loop on that process may in fact

deteriorates its performance. It may even become unstahle. During the short history

of control technology, the necessary handling of mode! precision or model uncertainty

has launched the exploration of increasingly formal treatments.
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Halfway through this century, the desire for better feedback performance in the

face of an unknown or imprecise process mode! has spurred reRearchers to develop a

number of control approaches that went beyond the fixed calculatian of input signals

from feedhack error signaIs. The common thread of the approaches proposed in that

period was to add the ability to "learn" about the process from its measured reaction

to the computed inputs. Thus, in the 50s, was barn the field of adaptive control

[2]. From its modest but courageous beginnings, this field exploded in the following

decarles with the development of computer technology, theoretical achievements and

reports of industrial successes. The theoretica! and practical aspects of modem adap­

tive control technology are too numerous ta fit in this short introduction but those

issues that are pertinent ta this thesis will be discussed shortly. For more details

the reader will be refered ta the cited publications. The reader will also find in the

literature many excellent textbooks on the subject.

Although many of the general facts cited at the beginning about feedback control

have been known for a long time, it is only in the late 70s - early 80s that these

notions have been cast in a formal mathematical framework. The seminal work of

Zames [47] in this area has sparked a flurry of developments from many quarters.

These developments have evolved into a theory known under various names such

as HOC or Robust control theory. The centerpiece of this theory consists in solving

the following problem: given that over all frequencies, the process and its model

deviate by no more than sorne quantity (or sorne bounding frequency function), what

linear time-invariant feedback control will simultaneously satisfy a given performance

specification and guarantee internai stability of the closed-Ioop system. Despite its

simple formulation, the above problem is difficult ta solve and typically yields high­

arder solutions. Approximate solutions exist however, and one of these solutions,

namely the internaI model control approach has received wide acceptance from the

process industries [33].

Obviously, adaptive controllers and robust controllers approach the problem of

deaIing with uncertainty from vastly different angles. Fundamental research that

10
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would provide rules to determine when ta favour one solution over the other is an

open research area [37]. In fact, even within classes of solutions, there really exists

no hard rule for choosing one particular solution and this decision depends largely

on the context and the designer's experience and judgment. This implicitely involves

subjective evaluation criteria sucb as easiness and familiarity. In this thesis, we are

large1y biased by the implementation issues and consider that if solutions A and B

solve a given problem but if solution A is easier ta understand, easier to implement

and easier to maintain than solution B, then solution A is better. A closed-Ioop

restatement of Occam's razor1•

From this standpoint, the robust control approach has an edge since its associated

difficulties are handled at the design stage only and, in the end, yields a linear, time­

invariant controller. Adaptive control, with its inherent nonlinear and time-varying

handIing of the process, is more likely ta require attention even after it is put in

operation.

With few exceptions, the congeniality aspect has been neglected by the general

adaptive control solutions proposed in the literature. There appear to be at least two

fundamental issues that are causing this: 1) The very general objectives of mainstream

adaptive control techniques and 2) the conflicting natures of identification and control.

The former is closely related to the issue of providing in a sufticiently general way an

adaptive controller with prior knowledge about the problem to be solved. The latter

has been known for a long time and has given way ta dual control techniques [7]. For

an in-depth discussion of the above issues see [2J and references therein. It follows

that the implementation (and actually also the analysis) of most existing adaptive

control techniques cannot escape a certain level of complexity. One way around this

problem consists in building a software front-end which shelters the untrained user

from the adaptive controllers nitty-gritty implementation details (and possibly aIso

the control1er from an untrained user) [3], [1], [2]. Sucb systems however are a far

cry from simple three-term cantrollers which still dominate the process industries.

lWilliam oi Occam: A 13th century English scholastic philosopher known to have stated that "It is
vain to do with more what can be done with less"

11
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About prior knowiedge, Astrom [2] notes that "For specifie applications, it is

possible ta make adaptive controllers that make effective use of prior knowledge" .

The adaptive control technique proposed by Gendron et aI [19] makes an explicit use

of prior knowledge by surveying the general characteristics of the processes of a single

industry, namely the pulp and paper industry:

• Long time delays, non-minimum phase behaviours

• Open loop stable and weIl damped

• Nanlinear

• Subjected ta random disturbances

Note that these process features are not the exclusive cIaims of pulping and papermak­

ing processes. The underlying assumptian of that technique is that a large number of

pulp and paper processes can approximately be described by a first order plus delay

mode!. This representation has the advantage of only requiring three parameters to

be estimated by the designer. Furthermore, these parameters can be quickly esti­

mated from simple step response tests, a technique at least as old as the venerable

Ziegler-Nichois test ([4], pp 231-232). The only novelty here as far as the designer

is concerned is that of providing a possible range of uncertainty for the estimated

parameters instead of a single estimate.

Not surprisingly, the algorithm labelled "Madel Weighting Adaptive Control"

(MWAC) has two of the expected functions of any adaptive controUer: a fixed, model­

based control equation and an estimation component which adjusts the model from

input-output measurements. Thus, functionally, it does not differ from other methods

found within a generic class of adaptive solutions. However, by the direct approach it

takes towards adaptation, the method has sorne congeniaI virtues not found in most

other adaptive algorithms. One manifestation of this forthrightness is that the direct

translation of the complete set of equations into computer code is limited to a few

lines (~ 20) in any modem prograrnrning language. Furthermore, it cloes not require

special supervisory functions. The complete method is later described in Chapter 2.

12
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1.1 ADAPTIVE CONTROL AND MULTIPLE MODELS

The reference [19] aIso describes an application of the method ta pulp brightness

control. Since then, the MWAC algorithm has been successfully applied by mill­

resident engineers ta the control of white liquor causticizing [38], ta the pH control

of cooking liquor [24] and efHuents [15].

MWAC was bom in industry. And because of its intuitive, direct approach ta

adaptation, it was applied nearly immediately after its inception without further

examination or analysis. There is a need however for formally comprehencling the

mechanisms and circumstances that make it work, to assess its limitations.There is

aIso a need for understanding how it relates ta other adaptive control methods.

This is the subject of this thesis.

In what follows we propose a mathematica! framework for analyzing the problem

and use this framework ta gain insight into the sallent features of the algorithme 1t

happens that MWAC bears sorne characteristics which are similar ta other adaptive

algorithms found in the literature. In the following section, we review sorne of these

algorithms, underline the similarities and compare the differences. We conjecture "

that some of the resu1ts found in the later parts of the thesis directIy apply ta those

algorithms with similarities ta MWAC.

Also, it is our objective (that will, from now, be unspoken) to leave the simplicity

of the original algorithm untouched by the mathematical treatment we will now attach

ta it. We Ieave it ta the reviewers and readers of this thesis ta decide if we have

succeeded or not in that respect.

1. Adaptive control and multiple models

As mentioned earlier, adaptive control aIready has a rich history. 1ts history,

however is far from over. In fact, the very notion of what is implied by calling a

system adaptive has been reexamined ([35], [48], [20] and [27]). The difficulty of

nailing down a universally acceptable definition seems to be caused by the separation

between the external manifestations of adaptive control and the interna! mechanisms

that implement the adaptation [35]. As pointed out by Zames [48], one designer's

13
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adaptive design may appear as a fixed nonlinear design ta another. The mast satis­

fying definition the author of this thesis has found is the one given by Zames [48]:

A nonadaptive contraUer is one designed on the basis of a priori infor­

mation, Le., which is available at the outset. An adaptive control1er

makes use of a posteriori information to achieve better performance

than could be obtained with a nonadaptive one.

We daim that under this definition, the algorithm present~d in [19] (MWAC) is

truly adaptive. This will he further discussed once we have gane through the analysis

of the algorithm.

Regardless of the definition of adaptation, there exists a number of algorithms

in the literature that are recognized as heing adaptive. One may consu!t [5] or [85]

ta get a description of an appreciable subset of sncb algorithms. Although many

features of any adaptive algorithm are shared by MWAC, we will now only look at

those which bear enough ressemblance to MWAC to justify comparisons.

To enable such comparisons, we begin by outlining the adaptation mechanism

used by MWAC. As mentioned earlier, the user provides the MWAC algorithm with

a range of possible values for the parameters of a first arder plus delay system. These

interva1s are then partitioned. A family J= of models is then formed from the set of

first order plus delay models which pick their parameters from the Cartesian product

of the partitioned intervals. Let the members of :F be the set of indexed first order

plus delay models {.F'ï}. Next let ei(t) be the difference between the plant output and

the particular model Pi of F. Consider the familiar weighted 2-norm

t

1I~(t)II~,À = E,\t-ke~(k) 0 < ,\ < 1
#:=0

as being a measure of the ability of Pi ta reproduce the true plant behaviour. The

parameter'\ exponentially discounts the contribution of old data ta the norm . An

estimate of the plant model is then obtained by computing the sum

ft = EWi(t) Pi
i

14
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• where

(1.1.1)
-Ct) _ (JI. + 1I~(t) 1I~,>.)-1

W, - 1
En (p, + lIen(t) II~,>.)-

•

•

where J.t is sorne smaIi positive quantity inserted to prevent possible divisions by zero.

The online model P is then at every time step replaced in a model-based control

equation in the certainty equivalence fashion.

Multiple models and LQG control. Using, as a starting point, a bounded

family of plant models to represent the uncertainty about the exact behaviour of

a plant is not new. In 1965, Magill [30] published an article on state estimation

where it was assumed that the plant belonged to a finite set of possible state space

representations. This idea was later extended and thoroughly analyzed by Lainiotis

and a complete account of this work can be found in [25], [26] and references therein.

The basic idea of this line of work derives frOID the Linear-Quadratic-Gaussian(LQG)

estimation theory. Consider the state space system

x(t + 1) - Aix(t) + BiU(t) + w(t)

y(t) - Cix(t) +v(t)

where w(t) and v(t) are Gaussian, zero-mean, independent sequences with covariance

W and V respectively. The optimal estimator of the state given the past measure­

ments is computed by the Kalman fi1ter [12], i.e.,

x(t + lit) - Aix(tlt - 1) + Bï'U(t) +K(t) (y(t) - Cix(tlt - 1»

K(t) - (AiP(t)Af +W) Cr (Ci(AiP(t)Af +V)Cr +W)-1

pet + 1) - CI - K(t)Ci) (AiP(t)Af + W)

Now consider the innovations zet) = y(t) -Cix(tlt-l). The sequence of innovations is

orthogonal and since the system is assumed Gaussian, then the conditiona1 probability

15
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density function of z(t) is aIso Gaussian and given by

(1.1.2)

where Di(t) =CiP(t)cr + V is the covariance matrix of the innovations.

On the control side, the LQG controller which salves

minE {~r(n)Q1X(n)+ uT(n)Q2u(n) }

for the above system is computed from

(1.1.3)

where

u(t) = -Li(t) x(tlt -1)

•
(1.1.4)

and where Si(t) salves another Riccati equation.

Multiple model adaptive control (MMAC). Now suppose that the triplet

ai = (Ai, Bi ,Ci) actually belongs ta a finite number N of possible values. Then

the adaptation is based on the a posteriori probabilities of the ai's. Let Y t ~

{y(O), y(I), •.. ,y(t)} be the set of past measurements. Then from Bayes' rule, we

have, as in [30]

We combine the above with

(1.1.5)

•
Now if the true plant were given by the triplet ai, then p[Ytlail could be recursively

computed from (1.1.2) and (1.1.5).

16
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Alternatively, we could, as [25], go directly to a recursive form by taking out only

the eifect of the last measurement, Le.

At this point, the developers of this technique make the following two approxi­

mations:

• They introduce N Kalman filters (one for each triplet) and assume that p[ytla.]

can be computed from (1.1.2) and (1.1.5) for aIl triplets in the set (although

this is true for at most one triplet) .

• For lack ofmore knowledge about the probabilities p[ai], a uniform distribution

is assumed, Le. prad = lIN i = l,··· ,N.

It follows that the pdf of ai based on the past t +1 measurements is the product

of the of previous conditional pdf's of the innovations or, more correctly, the pseudo­

innovations [25]. Hence

•

(1.1.6)

(1.1.7)

-
E:=l rri=o Pkn )(.zn(k))

rri=o IDi(k)I- 1
/

2 exp[-! Ei=o zf(k)Di1(k)Zi(k)]

(1.1.8)

•

In the scalar case, (1.1.7) reduces to

[œW 1= IIi1(t) exp [-t Ei=o zl(k)/Di(k)]
PIt E:=l II;l(t) exp [-î Ei=o z~(k)/Dn(k)]

where

t

IIiCt) =IIDi1
/
2(k)

k=O

The MMAC architecture then consists of generating N separate optimal control

signals 'Ui(t) i = 1,··· ,N, Le. each one being aptimally tuned for the carrespanding

state-space system in the set. The actual input applied ta the process is then obtained

17
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by tying the individual inputs through the conditional pdf's, Le.

N

u(t) = LP[aiIYt] Ui(t)
i=l

From (1.1.3) and (1.1.4), this means that the MMAC controller is summarized by the

equation

(1.1.9)
N

u(t) = - L P[ai IYtl (BrSi(t)Bi + Q2) -1 BrSi(t)x(tlt - 1)
i=l

•

•

It seems that the most important application area ofMMAC has been the control

ofmilitary aircrafts ([6], [17], [42], [31]) but it has found applications in other con­

texts as weIl ([32], [9], [34]). The article by Athans and coworkers [6] contain many

useful comments on implementation issues. In particular, sorne processing is applied

to the pdf's prior ta their utilization: their value is not allowed ta go below some

value in arder for the estimator not ta "freeze" into same state and they are low-pass

filtered ta prevent osci1lating estimates (which may occur under sorne conditions) to

affect the feedback control.

An analysis of the asymptotic properties of MMAC systems can be found in [23],

[44] and [16]. These studies are actually concerned with the almost sure convergence

of one pdf ta 1. The analysis of [22) mentions stability problems associated with

MMAC and tries ta analyze this problem from a deterministic viewpoint.

Obviously, the pdf's of MWAC play a raIe sunilar ta the weights of MWAC. The

above equation shows however a structural difference between the two algorithms.

MMAC uses the pdf's a posteriori i.e. arter the optimal input signals have been

computed to synthesize a single input signal while MWAC uses the weights a priori

ta compose a single plant model from which the cantroller is synthesized and the

plant input computed. Due ta the nonlinear operations involved in these controller

constructions, there is no reason to believe that, in general, the MMAC and MWAC

approaches are equivalent despite the similarities.

18
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The exponential function in (1.1.8) stems only from the Gaussian assumption on

the perturbations. Ifwe reliquinsh this assumption, the exponential function can aIso

be simply seen as a nonlinear function used to enforce the required discrimination

between the "bad" and "good" models of the set. The approximation

leads to

(1.1.10)

•

•

The above approximation allows further comparisons with the MWAC weight assign­

ment law (1.1.1). It shows that the time weighting multiplier )..t-k of the weighted

2-norm used by MWAC is replaced in MMAC by the weight

which does in fact accomplish a scaling of the instantaneous deviations (zl(k)) using

the variance Di(k) of the pseudo innovations. Furthermore, the offset ni(t), sinee it is

a long-term, converging statistics associated to the triplet ai, ean he seen as a mean

of associating a default distribution of the weights (or pdf's) based on the estimated

statistics instead of the uniform default offset JI. provided by MWAC.

J ump parameter systems adaptive control. An interesting extension of

the above problem is when the plant actually "jumps" randomly between the triplets

ai- If the jumps are Markovian and the transition probabilities

P[a(t) =œila(t -1) =ai] = tPii

are known, this additional information improves the estimation of the conditiona1

pdf's.
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This problem has been thoroughly investigated in the context of continuous time

by [13], [14] and references therein and in the context of discrete time by [45]. In

continuous time, the formal solution to estimating the conditional pdf's is derived

from the Wonham filter [46] and is given in the form of two stochastic differential

equations.

The issue of interest however is not sa much the estimation aspect but rather how

the control signal is generated from the pdf's. In [14], the structure of computation

is the same as MWAC in the sense that the pdf's are used a priori, i.e. first a

composite plant model is fonned from the pdf's and this composite model is then

used ta synthesize the controller and compute the input signal. In [14], the solution

is derived in continuous time and it is assumed that we have full state information.

If we transpose the results of [14] ta the discrete time context we have used sa far,

first we get

•
N

Â = L: p[a(t) = a:ilYt] Ai
i=l

and the control is obtained from

N

ÊJ =L: p[a:(t) = a:ilYt] Bi
i=l

(1.1.11) u(t) = - (ÊTS(t)Ê +Q2) -1 ÊTS(t)x(t)

•

where Set) is the solution to a Riccati equation whose parameters are Â and ÊJ. The

reader is invited to compare (1.1.11) with (1.1.9).

On the other hand, the structure of computation in [45] is of the a priori form

and can thus be considered an application of MMAC to the jump-Markov problem.

Outline of the thesis. MWAC borrows concepts from the above classes of

solutions. We conjecture that some of the resu1ts found here may aIso apply to those

solutions as weIl.

In what fol1ows, we first review the design principles behind MWAC as they

were presented in earlier work [19]. In that same chapter, we aIso introduce a slight

modification to the existing algorithm. This modification is introduced to simp1ify the
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analysis of the algorithm. This analysis is carried out in the latter part of Chapter 3.

At the beginning of that same chapter, we define the framework within which the

analysis takes place. Chapters 4 and 5 propose modifications to the original algorithm

to enhance its performance. This is followed by a final discussion in the concluding

chapter.
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CHAPTER 2

Model Weighting EstiDlation

In this chapter, we discuss the general concept of model weighting estimation. Before

we review the on line algorithm described in [19], we introduce an off line model

weighting estimation algorithm that will serve as a basis for discussing the features

of the on line version. At the end of the present chapter, we introduce a modification

ta the original algorithm that will greatly facilitate the analysis of Chapter 3 while

preserving the key features of the original algorithme

1. Prior Knowledge

Madel weighting estimation, as described in [19], addresses the problem of con­

trolling plants with a stable first arder plus delay representation, Le.

ge-D6

Po(s) = 1
+TS

where the gain (g), delay (D) and time constant (r) are known only up to a certain

degree of precision which is given by uncertainty interva1s

(1.2.2) 9 E [~g]

(1.2.3) D E [Q,D]

(1.2.4) T E (Lr]

•
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Obviously, the mode! 1.2.1, because of its low arder, has sorne shortcomings.

However, the dynamics of many industrial processes are often dominated by a rep­

resentation of the form 1.2.1. Processes involving mixing, heat transfer, plug fiow,

materia! transport or simple endothermic chemical reactions often fall in this cate­

gory. In general, the model weighting adaptive control algorithm is implemented on

a plant that belongs ta the general family of plant models

(1.2.5) 'P 6 {P(s)IIP(jw)1 :5IPo(jw)I·11 + Im(jw)l}

(1.2.6)

•

where 1+ lm (s) is a multiplicative term whose magnitude overbounds the uncertainty

we assume knowing about the membeIS of 'P. Equations (1.2.1) to (1.2.5) represents

the prior knowledge about the plant. Under the most realistic conditions, this un­

certainty stems from a) the parametric uncertainty (1.2.2, 1.2.3 and 1.2.4) and b)

undermodelling erroIS. In the synthesis of the control algorithm, we will ignore b)

but later, we will thoroughly investigate the effect of undermodelling and its influence

on the choice of tuning parameters.

The exposition and analysis of the algorithm is performed in discrete time. The

discrete time version of (1.2.1) is given by

p(Z-l) = (1 - am) - (a - Qm)z-l z-d-l
9 1- az-1

where

Q -Tir- e

d
. D- mt-

T
D

m - d+1--
T

and T is the sampling period. Altematively, (1.2.6) may be written

(1.2.7)

• 23
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where

A(Z-1) _

8 -

1-œ
1- œz-1

1-œm

1-œ

•

A family of plant modela. We now make two simplifying design choices: 1)

we assume that the modeling errors are dominated by gain and delay uncertainty and

pick a value 'T in the interval [L r] as an estimate of the dominant time constant of

the plant; 2) we overbound the discretized delay interval (1.2.3) by integer multiples

of the sampling period and include in the interva! ail the integers between its bounds

given by

D - D
d = inf = and d = sup ­
- dE~T dE~T

The errors introduced by these two choices are particular cases of undermodelling

errors and will be discussed later. These choices lead ta the simplified mode! (From

(1.2.6))

(1.2.8)

•

Let D A [4, ëlj c 1L and Ld = card (D) and let G be a partition of [~, g] with

e1ements gi which pick their index from [1, ... , Lg ] C 1L where Lg = card (G) and

g1 =l and gL, =9

REMARK 1.1. We assume that the sign of the gain of the plant never changes,

i.e. sgn (g)= sgn(g). This avoids the potentially troublesome situation of having

9 =0.
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FIGURE 2.1. Bounds on frequency response. The graph shows the surfaces
spanned by F at individual frequencies•

The mode! (1.2.8) together with the uncertainty intervals form a family :F of

possible models, i.e.

:F t:. {g 1~::-1Z-d-l 19 E G x d E D }

The elements of:F are labeled Pi; (q-l) and they pick their indices from i E [1, ... ,Lg]

and j E [1,'" ,Ld] respectively. Figure 2.1 show the Nyquist plot of :F and indicate

the surface spanned by :F at individual frequencies.

Following [19}, the controller selects the plant model frOID the convex hull of r,
i.e.

(1.2.10)

Co(.1=) 6. {Pm(z-l) =EEwiiPii(Z-l)IPii E :FjO < Wij < 1;EEwii = 1}
i i i j
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2.2 OFF LINE MODEL WEIGHTING ESTIMATION

Renee the mode! has the fOIm

1-a E .p. (Z-l) = . r.z- J - l
m 1- az-1 J

j

with some constraints on the parameters 'Yj. It is interesting to notice that the above

model in fact encompasses a richer set of plants than the original first-order-plus-de!ay

description. This property however, will not be examined in this work.

2. Off Line Model Weighting Estimation

We seek the minimizer Pm (belonging to Co(.r)) of the objective function

J = IIP - Pmll~ = 2~ l" IP(e-;W) - Pm(e-;WWclw

Since Pm E Co(.r), it satisfies

Pm(e-jW
) = EE Wij~j(e-jW)

i j

and 0 <Wij < 1 and Ei EjWij =1.

Ta simplify notation, we reorganize the indexing of .r to use a single index running

from 1 to N (= Ld X Lg ), the total number of models in r. Renee, we may write Pm

as

Pm(e-jW
) =E wiPi(e-iw) =wTPF

i

where W and PF are column vectors containing the weights and the models frequency

response respectively. Let 1T be the N-dimensional vector 1T = [11 ... 1]. We may

write the mode! error as

Let the inner product < .,. > be

26



•
2.2 OFF LINE MODEL WEIGHTING ESTIMATION

The objective function can thus be written

(2.2.2)

where

J - < P-Pm,P -Pm>

112
1l"- wT 27r 0 (Pl- P:;:) (Pl- p:;:)Tdw W

- wTEW

E=

•

SNI SN2 SNN

The entries of E are given by

A 112
1l"Sik = - (P - Pi) . (P - Pk) dw

27r 0

The optimal set of weights is given by the following theorem.

THEOREM 2.1. The weight vector W· minimizing the objective function J ­

W'TEW subject to the constraint wTl = 1 is given by

(2.2.3)

and the minimum value of J is given by

(2.2.4)

•

PROOF. Using the Lagrange multiplier A, we form

Taking the gradient of H with respect to W and setting ta zero we get

VwH=2EW+Al=O
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• from which we get

(2.2.5)

Replacing in wT1 = 1 yields

A -1W=--E 1
2

(2.2.6)

•

•

Using (2.2.5) yie1ds the result for W·, Le.

and the minimum value for J is then

o

Note that if E were diagonal, the optimal policy for the choice of an individual

weigth Wi would simply be

• 1/Sii
w·==-~-

1 L,/t;l/Skk

There exists a standard result of statistics equivalent to the above when one estimates

sorne quantity using the weighted sum of N independent noisy channels [21], [28].

A suboptimal policy. Ta limit computation and data storage requirements

Gendron et al [19] suggested for on Une model weighting adaptation to only consider

the diagonal elements of the errar norm matrix. It is interesting to compute how such

a paliey would deteriorate the performance of the off line modeL Let E he WIitten

E =ED +1II:
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where E D is a diagonal matrix with its diagonal equal to the diagonal of E and liE

contains the non-diagonal elements of E. The suboptimal weighting poliey is then

(2.2.7)

and the corresponding value of the objective function is given by the following the~

rem.

THEDREM 2.2 (Suboptimal policy). The value of the objective function JD cor­

responding ta the suboptimal policy (2.2.7) is given by

(2.2.8)

•

•

PROOF. We have

IT E-1EE-1l
JD = WDEWD = (1:Ejj11)2

but E =ED + LIE and thus

JD - (IT Ei)l l)-l + (lTEi)11)-2 .IT Ei)lvEE;ll

_ Jcgt + (Jri t
) 2R

o

The value J'rit is the optimal value the objective function would take if E were

truly diagonal (i.e. =ED)'

3. Online Model Weighting Estimation

We DOW describe the adaptive controller based on onIine model weighting adap­

tation as introduced in [19]. Figure 2.2 shows the structure of the adaptive control

system. The plant model is estimated online and the estimated mode! modifies the

controller settings. Thus the structure is that of an indirect adaptive contraller. We
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n

ys + u
\- C"ntrolle,. Plant

",.1 -
.'

• ->

~ Plant Model +--4.Estimator

!I
" ~.~

y.

FIGURE 2.2. Structure of the a.claptive controller. The structure is that of
an indirect certainty equiva1ence controller.

•
adopt a certainty equivalence policy by which the controller bears a pre-established

structure and desired performance but whose parameters are a function of the un­

known mode! parameters which are replaced at every samplinginstant by their current

estimates.

We return to the two-indexing system where the model gains are drawn frOID G

and the delays from D. Let gi and dj be the members of G and D respectively. The

plant model is then written

(3.2.1)

L g L rl

Pm(Z-L) = EEWijPij (Z-l)
i=l ;=1

Lg Lri.
~" l-a -d.-1- L..J L..J Wi;gi 1 -1 z 'J
. 1 . l - az$= J=

Ld
1 - a "" -dj-L

- 1- az-L L...i 'YjZ
;=1

where

30

The steady-state gain of the mode! is therefore 'Y = E~~l 'Yi.

•
(3.2.2)

Lg

'Yi =EWiigi
i=l



(3.2.3)

(3.2.4)

•

•

•

2.3 ONLINE MODEL WEIGHTING ESTIMATION

Controller synthesis. We make use of the simple pole-placement controller

synthesis proposed in [19]. The desired closed-Ioop system is specified to be

(1 p) -L Ltl

R(Z-l) = 1=fJz~l '2)"fi!'Y)Z-d;
;=L

where f3 is the desired closed-Ioop pole and the only performance-related tuning pa­

rameter. The open-Ioop zeros of the plant model are carried over to the closed-Ioop

in order to avoid cancelling zeros outside the unit circle. Using Equations 3.2.1 and

3.2.3, the controller equation is given by

1- (3 1- az-1

C(Z-l) - ~--:----:--~-:--~~--:-----:--:~~
- 'Y(1 - a) 1 - (3z-L - (1- (3) E;('Yj/'Y)z-dj-l

As mentioned earlier, the control1er parameters are functions of the unknown

quantities 'Yi and 'Y (which are direct functions of Wii)' Following the certainty equiv­

alence policy, the unknown quantities are estimated online and the estimated values

are inserted at every sampling instant in the design (Equation 3.2.4). In what fol­

Iows, it is explained how the modei weighting adaptive method approaches the on

line estimation of wii.

Parameter estimation. In the off line case, the discrepancy between the

dynamics of the plant and the dynamics of a model Pi; was measured as the 2-norm

112
'1r

(Tii = 21r 0 IP - Piil2dw

Assuming no disturbance, the computation of (Tii amounts ta driving P and Pi; by

a common input, a pulse of unit amplitude, measuring the deviation fi; between the

plant output and the model output and computing the 2-norm of eij, Le.

co

(Tij = lIeijll~ = L efj(k)
k=O

In the on line case, we proceed similarly but replace the input signal by the signal

generated by the controller and replace the 2-norm of the error signal by the truncated
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2-nonn

t

Uij(t) = Ileij(t)lItÀ = E Àt-keij(k)
k=O

Following [19], the estimation scheme simply consists of setting the weight of a

model to the inverse of Uij(t) and normalizing

(3.2.5) Wij(t) = L: l/Uj(t) ( )
l,m 1 Ulm t

Note the similarity between (3.2.5) and (2.2.6) (Reminder: (2.2.6) uses the one­

index convention while (3.2.5) uses the two-index convention).

The coefficient .À is a scalar bounded by 0 < ,,\ < 1 which puts more or less

emphasis on the more recent data. !ts role is entirely similar to that played by the

"forgetting factor" in conventional recursive least squares estimation ([21], [41]).

REMARK 3.1. It is possible, as suggested by [19], to use a slightly more general

weight assignment law, i. e.

Wij(t) = l/lIe;j(t)II~.~
nUI

with the normalizing coefficient

nUI =E E l/lIe'm(t)II:,À
l m

where parameter if> may be used to increase the discrimination between the members

of F. In the following analysis, we will under most circumstances investigate the

case if> = 2 but in most cases, the generalization to other values of t/J will require little

modifications and will be commented wherever appropriate.

Data filtering. In the on line case, the error ei; is a function of the plant/model

mismatch P - Pif but also of any disturbance showing up on the output of P. It May

thus he desirable to filter the input/output data priar to using it for madel estima­

tion. In particular, if a de offset is present, we want the data filter ta remove this
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component. Renee we will deal with filtered versions of the ila data, i.e.

(3.2.6)

yF(t) = F(q-l )y(t)

uF(t) = F(q-l)U(t)

•

•

where, to remove de offsets, the linear filter F(q-l) has a zero at q = 1 . The mode!

error signal is

The filter is of the forro

Obviously, the filter plays an important raIe in shaping the input signal driving the

estimator. Unless otherwise specified, the filter we will use when analyzing the algcr

rithm will simply be the first difference operator, i.e. F'(q-l) = 1.

4. Division by Zero

A division by zero oeeurs in Equation 3.2.5 if one or more error norms are exactly

equal ta zero. This may occur, in particular, if one member of Fis an exact match

ta the true plant and there is no noise in the system. In [19], it was suggested to add

a small positive offset ta all error norms to ensure that aIl divisions remain bounded.

This approach was found to be adequate in practice. Here we extend this idea further

by allowing aIl models whose errar signal is no greater than the disturbanee level of

the plant to he considered as yielding zercrlevel errar norms.

Let 'T/t he the norm of the error signal of a model that would be a perfeet match

ta the plant. Then, before eomputing the weights, the errar nonns are modified as

follows:

(4.2.1)
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(4.2.3)
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where 1 is the indicator function, Le.

{

1 if condition A is satisfied
IA=

o if not

In [19], J.t was sorne arbitrarily small positive quantity. Instead of carrying small

J.L quantities, we chose instead ta assign ta Wij(t), the limit of (3.2.5) as J.L tends ta

zero, Le.

... (t) l' 1/aii(t)wii = un
1'-0 Ll,m l/alm(t)

Appendix B gives a simple computer algorithm that can implement the above

two steps (Equations 4.2.1 and 4.2.2). We leave it ta a subsequent chapter ta discuss

the merits of actually using (4.2.2) on !ine instead of the straight offseting proposed

in [19]. However, the analysis of the aIgorithm is greatly simplified by (4.2.1) and

(4.2.2). The above two..step procedure is illustrated by the model initializatioD.

lnitialization. Suppose the algorithm is initialized at t =o. The error nonns

prior ta startup are Uii(t) = 0 'Vi, j and t < o. Then for an arbitrary TJt > 0, we have

Â () lim 1/J.L 1 1 f:J. - r 0w·· t = = =- = w·· Lor t <
'3 10'-0 ~Lg ""Là 1/"- Lg • Ld N '3

LJI=l LJm=l r-

for aIl i E [1, Lg] C 7.l and all j E [1, Ldl C 2Z. The corresponding 'Yi parameters are

(4.2.4)
Lg ~Lg

Â (t) E - LJi=l Yi f:J. - ~ t 0'V. = w· .g. = = 'V. lor <
13 13' L L 11

i=l d 9

(4.2.5)

•

and the initial steady state gain is

Lrl ~L, L ""Lg

let) =E;Yi = LJi=l Yi· d = L..-i=l Yi =;y for t < 0
;=1 LgLd Lg

In the sequel, the "tilded" variables refer ta the above initial values.
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•
FIGURE 2.3. Step response of systems Pl (black) and P2 (dashed).

5. Examples

To help clarify the ideas discussed in this chapter and set the stage for the analysis

to fol1ow, we give a few examples of online model weighting adaptive control. Consider

the two continuous-time systems:

(s - 1)(8 - 2)2
P2(S) = -1.23 (s + 1)4(S + 2)2

•

Although they appear structurally quite different, a plot of their step response (Fig­

ure 2.3 show that these two systems have" similar" behaviors. In fact the first could

he interpreted as a first-order-plus-delay approximation to the high-order system (P2).

We want ta change the output of those systems byone unit by feedhack con­

trol using only approximate knowledge of the system. If we make use of the mode!

weighting adaptive technique described in the previous section and select the tuning

parameters shawn in Table 2.1, we get , as expected very different results.
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1 Symboll

TABLE 2.1. Table of tunmg parameters for the examples.

Sampling period T 1
Partitioned gain set G [0.5 0.75 1.0 1.25 1.5]
Partitioned delay set D (1 2 3 ... 10]
Assumed open loop time constant T 2
Closed loop pole (3 0.5
Forgetting factor À 0.95
Data filter F(q-l) l_q-l

Disturbance detection threshold T/t 0
.

1 Parameter•

•

•

Figure 2.4 shows the behavior of bath systems under c10sed Joop. In the case of

Pl, the respanse is quite close to what would be expected from a controller designed

with complete knowledge of the system. 1t gives a smooth respanse with a slight

overshoot caused by an initial underestimation of the true plant gain. In the case

of P2, the response indicates a narrower stability margin of the closed loop system

Obviously, this is caused by the additional poles and right-half-plane zeroes of P2

whose effect cannat be replicated by any member of F.

Ifwe examine the behavior of the estimated model parameters over the simulation

length, we notice that in the case of Pl (Figure 2.5) the gains 'Yi associated to each

delay (Equation 3.2.2) are initially uniformly distributed. As the plant input changes

with no visible response from the plant output, the first parameters 'YI, 'Y2, n. are

sequentially set ta zero. When the plant final1y responds, then the distribution of

the 'Y's quickly changes to a sharp peak for the model with the correct delay and the

model gain is approximately that of the true plant.

On the other hand, for the plant P2(S) controlled with the sarne adaptive feedback

controller, the response, albeit stable is not as good as that of PICS). The adapted

gains 'Yi behave initially as with Pl (see Figure 2.6). However, after approximately

4-5 samples, the bulle of the response has taken place and the estimator has processed

most of the information available for deciding what Modeles) is(are) more accurate.

The result is expectedly less decisive as it is with Pl(s) as the final distribution of the
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FIGURE 2.4. Response of the closed loop systems for the plant a) P1(s) and
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the output.
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FIGURE 2.5. Adaptation of the gains 'Yi over the simulation period for plant Pl •
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FIGURE 2.6. Adaptation of the gains r; over the simulation period for plant P2.

gains is maximum for a delay of 5 sampling intervals and smoathly decays on bath

sides of the peak.

Summary

In this section, we have reviewed the basic ideas behind MWAC. The examples

have shawn that:

(i) The algorithm can lock itse1f very rapidly on an appropriate mode!.

(ii) Despite the resemblance between their step responses, the closed-loop perfor­

mance of two systems using MWAC with identical tuning parameters can be

significantly different.

In the following chapter, we theoretically investigate the algorithm and show that

these observations are completely predictable from the theory.
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CHAPTER 3

Model Estimation Using MWAC

1. The Approach

In this chapter, we analyze the model estimation properties of MWAC. The pur­

pose of model estimation is ta acquire information in order ta refine the plant-related

information which may be readily available prior ta initiating the estimation alg~

rithIn. The principal virtue of prior knowledge is to limit the search space and possibly

increase the efficiency of the search algorithme

As was described in the previous chapter, the MWAC estimator does assume sorne

prior knowledge about the plant's general behaviour. For instance, it is assumed that

the true plant belongs ta some neighborhood of the set of proposed models and that

aIl its pales are within the unit drcle. The members of this set F are all first arder

plus delay models. AlI members of :F are similar except for their gain and delay which

are chosen ta cover a range of possible plant gains and delays. The construction of the

boundaries of F (the gain and delay intervals and the dominant time constant) May

possibly have been determined by prior experimentation with the plant. As stated in

Chapter 2, the partitioned family:F embodies the prior knowledge (The partitioning

is introduced only for making the estimation computations feasible) and the search

space is the canvex hull of .r, Ca(r). The members of Ca(r) have the z-domain
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forro:

(1.3.1)
Lg Let

Pm (Z-1 ) =L L WijPij(Z-l)
i=l j=1

•

•

where the models Pij stem from the partition of the gain and delay intervals. As

described in Chapter 2, the weights Wij are modified online so that Pm is made to

ressemble P in sorne sense. We introduce the ''frozen time" model

p:n (Z-I) =LEWi;(t)Pij(Z-l)
i ;

where Wij(t) is the time-varying adjustable weight associated to model Pi;. We use

the term ''frozen time" model ta mean the frequeney response the model would take

on if its time-varying parameters were frozen from the current instant t ta infinity.

Ta judge the resemblance of p:n with P, we need sorne measure of plant/model

discrepaney, written d(P, P:n). This willlikely be sorne frequeney domain norm sucb

as

d(P, P~) - IIP - P~lIp

d(P, P~) - IIF(P - P~) IIp

where p will either be 2 or 00 and where F is some linear filter. Because of its

dependenee on P:n, d(P, p~J is also a frozen time functian.

Ta make the earlier statement about the purpose of model estimation more pre­

cise, we say that the refinement of the plant model consists of shrinking the initial

uncertainty d(P, p~) through the acquisition and transformation of plant-related in­

formation which cornes in the forro of input/output data.

The analysis of parameter estimation algorithms generally foeuses on the asymp­

totic behaviour of the estimates and related variables ([12], [29], [21]). This approach

is natura! sinee there exists a wealth of results on convergence for both determinis­

tie and stochastic frameworks. The issue of the quality of the input/output data
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is an inescapable offshoot of convergence analysis. In short, it is desirable that the

data provided ta the estimation scheme is information-rich in the sense that the ap­

plication of the algorithm ta this data will provide effective shrinking of the model

uncertainty. When the estimation is done using sorne form of recursive least-squares

algorithm, it is customary ([21], [35]) to require the plant input/output data ta be

persistently exciting (PE) such that, as the number of data points grows ta infinity,

the parameter error consistently shrinks ta zero (in the deterministic case). In the

stechastic case, this condition causes the parameter errer to converge ta zero almost

surely, (i.e. except on a set of measure-zero sample paths) and almost everywhere (i.e.

on all of the parameter space with the exception of a set ofmeasure zero) ([43), [36]).

The persistent excitation condition translates into special requirements on the shape

of the manipulable signaIs that are extemal to the adaptive loop. In practice, these

requirements may consists of adding a PRBS signal ta the plant input or making sure

that the external signals have a minimum number of spectral lines [11]. It is known

[10] that for sorne common adaptive control schemes, one cannot do witheut the PE

requirement.

In practice, the signals which are external te the control loop May not fulfill

the PE condition. For instance, setpoint or laad step changes provide a burst of

information about the plant dynamics in the moments that follow the appearance of

the change but as saon as the transient disappears into the plant noise, plant/model

dynamic mismatches become unobservable.

We set out in this work to examine the model tracking properties ofMWAC when

the excitation signaIs are limited ta the ones that are likely ta be found when the

MWAC algorithm is put into application (commonly step setpoint and/or clisturbance

signals). As mentioned earlier, sncb signaIs provide plant information for only short

bursts. In this context, the behaviour of the parameter estimates as t -7 00 is of aux­

iliary interest since the detenninant amount of mode! error shrinking is accomplished

in a short interval following the application of the external excitation. Sa instead
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of the asymptotie analysis, we will foeus the analysis of the aIgorithm described in

Chapter 2 on its behaviour over finite intervals.

We have seen that when the system is initialized, the initial or "default" controller

is computed from the sum of all models of F uniformly weighted. If we excite the

system (by changing the setpoint for instance) but the plant does not respond, or,

produces an output indistinguishable from the noise for some portion of time following

the application of the excitation, this data provides some information on the delay

but none on the plant gain and thus a1lows only partial discrimination between the

members of F. An interesting and crucial consequence of this is that during this

finite portion of time the control1er modifies its settings in such a way that there

exists a known linear, time-invariant transfer function that repraduces exactly the

input/output behaviour of the nonlinear, time-varying controller, a behaviour later

dubbed locallinear invariance. It folIows that this linear transfer function shapes the

exogenous signais into the signaIs fed ta the estimation subsystem at least for sorne

short period. Knowing the properties of the exogenous signals, it is thus possible

to bound the information provided to the estimator and compute a bound on the

modeling error of the estimated model.

The analysis presented in this chapter consists of determining how this bound

varies as a function of the user-selected parameters and the a priori assumptions on

the noise and the unmodeled dynamics.

1.1. The user-selected parameters. The user-selected parameters derive in

part from the prior knowledge about the plant, Le. the upper and lower bounds on the

plant gain and delay and the dominant open-loop time constant. The user also chooses

the sampling period T (the delay uncertainty interval is partitioned accordingly) and

the partition of the gain intervat• We will assume, for now, a uniform partition of the

gain interval, i.e.

(1.3.2) 9z = fl + (l - l)ag with l = 1, ... ,Lg Lg > 1

where /:"'g (Ll (g - g)f(Lg -1)) is the partitionîng resolu.tîon.
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The choice of the overbounding signal1Jt in (4.2.1) should refiect the fact that if

the amplitude of a mode! error signal is indistinguishable from the noise level, this

mode! should be prejudiced as being a good candidate for the plant modeL

A sensible value of À in the error norm Ileij(t)lIt.\ must also be selected. The

value of À is bounded by (0,1]. A small value rapidly discounts old data while a value

close ta 1 sustains the influence of old data on the current estimates. The parameter

). here plays a role simiIar to the forgetting factor found in recursive-Ieast-squares

algorithms. Renee we keep this designation in the rest of the document.

Finally, the user must select the desired performance of the closed-Ioop system.

Using the pole-placement algorithm described in Chapter 2, this boBs down to choos­

ing the closed-Ioop pole {3 in Equation 3.2.3.

REMARK 1.1. From Equations 4.2.9 and 4.2.4, ;Yj and tare functions of v.ser­

selected parameters.

REMARK 1.2. As briefly mentioned in Chapter 2 (page 92), it is also possible to

select the value of an extra parameter, the discrimination parameter if> to base the

estimation on a power of Ileij(t) 112•.\ different than 2.

1.2. Assumptions on the plant, plant uncertainty and noise. 1t is

important to hear in mind that in this analysis, the plant is LT1 and thus that it

is fixed but unknown. A consequence of this is that, once the mode! estimator has

perceived that the mode! is close enough to the true plant, it may freeze its parameters.

From that instant on, the whole closed-Ioop system is then aIso LTI. We ereet the

above statement to the

ASSUMPTION 1.1 (LTI plant). The true plant is stable, linear, time..invariant

and strictly proper.

The above then means that the plant adroits a representation of the fonn

•
(1.3.3)

00

Yp(t) =LP(k)u(t - k)
k=1

43



•
3.1 THE APPROACH

where u and yp are the plant input and output signaIs respectively. The sequence p(k)

is the discrete impulse response of the plant. The latter thus adroits the z-domain

representation

(1.3.4)
(Xl

p(Z-l) = Ep(k)z-k
k=l

•

•

with a bounded frequency response on z = e/w ,w E [0,27["].

1.3. Apparent plant delay. Delay-like behaviours in chemical processes

appear because of at least four different causes: 1) true transport delay, 2) finite, high­

order dynamics and 3) distributed-parameter systems and 4)right-half plane zeroes.

The first is found for instance on a paper machine where new fibers are added at the

wet-end of the machine ta increase the basis weight of the sheet of paper. The new

fibers have to travel aIl the way from the wet-end ta the dry-end of the paper machine

before their additional weight may be sensed by the basis weight gauge. The second

cause is more common. For example, if a stream goes through a series of mixing tank,

a sudden change in the composition of the stream entering the first tank will show up

in the stream leaving the last tank only arter a time interval which depends on the flow

and the tank volumes. The third situation occurs in continuous-feed reactors (e.g.

bleaching tower) whose dynamics can be described by partial differential equations.

The solution to these equations typically yield non-rational functions of the Laplace

variable s and have phase responses which vary with the reactor dimensions. FinaIly,

right-half plane zeroes cause a process output ta initially move in a direction opposite

to its final response thus "delaying" the plant response. This property of right-half

plane zeroes is in fact at the center of the Padé approximation of time delays.

We thus need sorne practical definition of the" true plant delay" which reconci1es

all possible plant delay incarnations. Bélanger [8] (p. 122) suggests a definition based

on the step response of the plant. There the plant delay is defined ta be the time

required for the step response to reach 50% of its final value. This is a simple and

intuitive definition of the plant delay. The specifie percentage is actually arbitrary and
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we may rewrite this definition using an arbitrary percentage r .. which then becomes

another user-selected parameter. We could forma1ly write

t

d ~ IDt" for which Is(t)1 = LP(k) < ra holds
k=O

We cauld also generalize the above by introducing an exponential weight, i.e.

t

d ~ mF for which LA-kp(k) < r" holds
k=O

It will tum out that the analysis carried out in this chapter williargely be set in

the frequency domain. It will therefore be convenient ta adopt a frequency-domain

definition of the apparent plant delay which is less intuitive but is close1y connected

ta the above definitions.

Truncation operator. Equation 1.3.4 may be interpreted as the frequency

response of the plant based on a complete knowledge of its impulse response. Since

we assume that we do not know precisely the impulse reponse of the plant but that

we progressively improve our knawledge, we will often encounter partial frequency

responses based on a truncated impulse response, we denote this partial frequency

response as

(1.3.5)
t

[P(Z-l)]t ~ LP(k)z-k
k=l

•

Any norm functional applied ta this partial frequency response will he denoted

In particular, we note that there is a close connection between the oo-norm of the

partial frequency response and the definition of the apparent delay. More precisely

THEOREM 1.1.

t

\[P(e-;W)]tIOOtÀ < ra ==> 1LA-kp(k)1 < r,
k=O
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PROOF. We have

t

I[P(e-;W)]tlooIÀ = sup 2:p(k)À-k e-;kw
CIl k=l

By definition, the oo-norm is greater or equal ta the magnitude af the frequency

response at any frequency. It is true in particular at w = o. It fallows that

r" > 1[P(e-;W)]tIOOtÀ

t

> 2: À- kp(k)
k=O

0

This Ieads ta the following definition of the apparent plant delay.

DEFINITION 1.1 (Apparent plant delay). The apparent time delay d ofa transfer

function P is the time required for the oo-norm of the truncated transfer function [Ph

ta be greater than a given fraction r" 1 î. e.

d 6 mF for which I[P]tl oo•À < r, holds

The following proposition provides usefuI results on the norms of the partial

frequency responses.

PROPOSITION 1.1. Let Q(z-t) = Qt(z-l) Q2(z-1) where Q, Ql and Q2 admit a

Laurent series expansion. Then we have

•

where tl > t , t2 > t and B(t, À) is the fixed function

B(t, À) = ~ r21t
11 - (d

S
(À)t+ll d9

21r Jo 1 - e1S/ À

PROOF. Given in Appendix. o
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Disturbance. The actual measured output is the noise-corrupted signal

y(t) =Yp(t) +net)

where n(t) is a disturbance which belongs to a c1ass of signals that we now charac­

terize. A standard way to characterize noise in a deterministic framework consists in

assuming that the value of net) is uniformly bounded, Le.

ASSUMPTION 1.2 (Noise assumption 1).

(1.3.6) In(t) 1 < ân 'ri t E [0,00)

•

•

The above noise assumption is simple and convenient but often leads to overly

pessimistic results. For instance, applying the input/output data filter F(q-l) ­

1 - q-l (Eq. 3.2.6) to y(t) yields

The signal used for estimation is thus corrupted by a noise signal of twice the original

magnitude, Le.

The above bound is uniformly satisfied with equality sign only when the noise signal

jumps back and forth between plus and minus ân at every time intervaL This is

highly unrealistic. Furthermore, the above noise formulation does not permit the

treatment of the disturbance signal as a source ofplant/model mismatch information

and restricts the role of n(t) ta that of a nuisance. We also consider the less general

but very useful class of noise signal

ASSUMPTION 1.3 (Noise assumption 2).

(1.3.7)

where 0 < r n < 1.
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The above class of noise includes perturbations caused by non-zero initial condi­

tions. It also includes particular forms of noise that simultaneously corrupt the output

and provide valuable input/output information. For instance,(1.3.7) cau accomodate

step disturbances of magnitude en by letting Tn -+ O.

2. Framework and definitions

In this section, we establish the framework for analyzing the MWAC algorithme

We first assume that the controUer is set in operation at some time ta. Assume that

prior to ta, the plant input was moving about sorne steady operating point u· and

write the input signal as the deviations frOID u·, Le.

The plant output is then given by

0;)

y(t) = Ep(k)u(t - k) +n(t)
k=l

to oc

- Ep(k)u(t - k) + E p(k)u(t - k) + net)
le=l le=to+l

to oc 00

- Ep(k)6u (t - k) +u· Ep(k) + E p(k)5u (t - k) + net)
le=L le=l le=to+l

Let y* =u· E~=lP(k). We then have

(2.3.1)
ta 0;)

6l/Ct) =y(t) - y. =Ep(k)6u (t - k) + E p(k)6u Ct - k) +n(t)
le=l k=to+l

...""---v....----'"
initial conditions

•
The initial conditions term in the above equation is decaying with t and can thus be

assimilated to a disturbance term compatible with Assumption 1.3 for some dn and
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Finally, recalling the property of the data filter F(l) = 0 (page 33) we note that

u* and y* have no bearing on parameter estimation. Rence we may consider, with no

loss of generality, that u· = y. =0 (and thus u(t) =6u (t) and y(t) = tSlI (t)).

The above discussion leads to the fol1owing assumption:

ASSUMPTION 2.1 (Rest conditions). When the adaptive controller is set into op­

eration at t = ta, the system has been at rest for sorne tîme, i. e.

u(t) = 0 for t < ta

•

•

Locallinear invariance. The introduction of the adaptive control1er is made

to coincide with the application at t = ta of an external excitation: a step setpoint

change of magnitude Yll. We know that for some time fol1owing the application of

this excitation, the plant output is Hsmall" (in a sense made precise later) because of

the presence of a time delay (reaI or apparent) in the plant dynamics. Let d be this

apparent time delay.

We show later that for the time interval [ta, ta +dl, the actual adaptation of the

control1er parameters causes the output of the nonlinear, time-varYing contra11er ta

coincide exactly with the output computed from a linear invariant difference equation

driven by the same input signal as the cantroUer. Furthermore, the parameters of the

difference equation are known a priori. We now give a formai definition of what we

mean by locallinear invariance (LLI).

DEFINITION 2.1 (Locallinear invariance). An operator H(u(t» is said to be 10­

cally linear invariant over a finite time interval if during this interval, its output may

be replicated exactly by the solution of an invariant linear difference equation driven

by the same input.

REMARK 2.1. Obviously, the above concept is somewhat related to the input sig­

nal. In the present work, we restrict ourselves ta step-like signaIs and do not seek

Jurtker generalization of the LLI concept. We conjecture that this idea can he made

to encompass a larger, more general class of signaIs but leave this for future work.
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To distinguish the input/output behaviour of a LLI operator from its associated

LTI operator, we will write them as

where ris the time interval when H(-) and HT are equivalent and q-l is the usuaI

shift operator.

More definitions. We close this section by giving a few definitions that will

he handy in the sequel. First note that ta may be arbitrarily selected. For simplicity

and convenience, we select ta = O. It was mentioned earlier that in the time interval

[0, dj, the controller is LLI. A consequence of that is that it is easy to obtain the

(noise-corrupted) shape of the plant input signal for this time segment. This input

serves as the initial excitation to the estimation subsystem. We thus label the above

time interval, the initial excitation interval, Le.

67ï = [0, dj

It will be convenient to partition :F into subsets with equal time delays, Le.

Ffi: 6 {Pi; E F 1 Yi E G, di = k} and UFfi: = :F
fi:eD

Obviously if d E [çl, ël), then there is one such subset (call it rd) which is of special

interest. The remaining modeIs of F can be regrouped in subsets of models with delay

Iower than the true delay (F) and models with delay higher than the true delay (~.

More precisely
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The index sets of the above subsets of :F are written I:F" and are interpreted

3. Analysis of MWAC

3.1. Basic relations. Consider the diagram in Figure 3.1. The diagram

shows the dynamic companents used ta generate the error signal associated ta a

particular member of:F. AlI blacks are LTI dynamic systems except for the contraller

black ë which is nonlinear and time-varying.

However, assume that for the finite time interval Tj, é is LLI, Le. its input/output

behaviour is exactly replicated by F;t (q-l). Renee

And we may write

F1i(q-l)
u(t) - u (y (t) net)) for t E 7r

- 1+ F;t(q-l)P(q-l) !I -

and (dropping the q-l argument for concision)

eij(t) - F(P - Pij)U(t) + Fn(t)

(3.3.1) - (P - Pij)F~ . l'Ii. (y;(t) - nF(t)) +nF(t) for t E 1Ï
1 + FuI P

Equation 3.3.1 reveals that the error signals are the sum of two components: 1) an

"observer' of the plant/madel mismatch driven by the exogenous input signals and

2) a disturbanee signal which is common ta all models. We can then relate the errar

norm to the various components of the system via the theorem

THEOREM 3.1. Provided that Assumptions 1.1-2.1 are satisfied then for sorne

t > d, there exist coefficients Kx, KF and Kn such that
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n

y

FIGURE 3.1. Flow diagram of the blocks involved in computing the error signal.

where G = PF~ is the LLIloop gain, Gij = PijF~ and where KF, Kx and K n are

common to aIl error signaIs and are bounded by

1
KF

1
< <

1 + 1[G}tlooIÀ - - l-I[G}tlooIÀ

IYsl + IKnl :5 Kx :5 IY,,1 + IKnl

IKnl:5 Kn <IKnl

where

PROOF. Proof in appendix. o

•

For future reference, we will use IKFI and IKxl to denote above upper bounds. Sîm­

ilarly, we will use 1K FI and 1Kx 1 for the lower bounds.

There is a corollary to the above theorem that will be useful in demonstrating

the LLI property of the controller.

COROLLARY 3.1. Provided that Assumptions 1.1-8.1 are satisfied then we may

also write the norm of the error signal as
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where K~K~ and K~ have the same bounds as K F , K x and Knin Theorem 9.1.

PROOF. The proof parallels the proof of Theorem 3.1 where G and Gij are treated

~~~ 0

3.2. Local linear invariance of the controller. In the previous section,

we have derived equations ta represent the effects of the exagenous input and the

clisturbances on the error nonns. These calculations were based on the assumption

that in sorne finite portion of time fallowing the application of the exogenous input,

the control1er mimicked a known linear invariant system (a behaviour dubbed local,

linear invariance - LLI). In this section we find a sufficient condition that validates

this assumption.

The first step of this demonstration consists of showing that the members of :F

are going to be sequentially excited and their associated weights be sequentially set

to zero. Sequentially meaning, mst the members of Fdl' then the members of rd2

and 50 on until t = d+1 where d is the apparent tirne delay that we formally defined

in Definition LI.

The proof relies on the exogenous signals ta provide sufficient information to

discriminate inappropriate models. The term "inappropriate" is meant to qualify

those models whose error signal rises above a disturbance level which is recognized

as being uninformative.

Providing sufficient information formally means that we need to have a sufficient

signal ta noise ratio SNR. We may define the SNR in terms of the ratio of the nonns

of the exogenous and noise signals, Le.

SNR=I~:1
LEMMA 3.1. Let

•
(3.3.2)

r, -- --
1Jt = 1 _ ra IKxl + IKnl
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and

6 2(1 +r,,)
SNR = sup sup ~~:----.;..-

-- tE[4,d] PijE:F 1[GijltloclÀ - 2r"

Then SNR > SNR implies

Wn(t) = 0

Wi2(t) = 0

for V dj < d.

PROOF. From Corrolary 3.1, we have

for t E [dt, d]

for t E [d2, d]

for t E [dj, dl

•

•

The first term on the right-hand-side of the above is the one that must make Gij

stand above the noise level. The second term is the initial response of the loop

transfer function which is deemed to be smali (according to the definition of the

apparent delay) and which is lumped with the additive noise.

To guarantee that lIeij(t)1I2,À rises above the noise levei we then must have

After a few manipulations, this require.TJlent translates into

SNR= IK'x1 > 2 6. SNR
K~ IK;"I (I[Gijlt loc,>. - 21 [G]tloo,>.) --

Let

sup sup sup SNR
PijE:F KF tE[sl,d]
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Setting the noise level threshold ta

T]e - supsup sup I[G]eIOOtÀ IK~IIK~I + IK~I
K~ K~ tE[4,d]

r", -- --
- 1 _ r" IKxl + IKnl

implies that if SNR > SNR, it fallaws that far t E [di + 1, dj, Ilei;(t)1I2tÀ > TJt for

YI Pi; E ut~!!Fr. and al1 athers are set ta J1. (Equation 4.2.1). Hence for t < d and

VPi; E u~:~Ji

- 0

and for VPi; E uf=t Fr.

Wij(t) = lim 1/J.L
1-'-0 E{ltm)EI t-l l/(Ulm (t) + J.l.) + E(I,m)EI il 1/J.L

Ut=t.T'1 U'=tT,

1-
L9(d-t+l)

o

The above result is central to the proof of

THEOREM 3.2. If T]t is given by (9.9.2), SNR > SNR and if Assumption 2.1 is

satisfied, i.e.

(3.3.3) u(t) = a for t < 0

•
then the adaptive controller constructed by modifying on line the parameters of Equa­

tion 9.2...(. with the certainty equivalence principle is LLI over [0, dl.
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PROOF. First we write the adaptive cantraUer in its time-varying form

(3.3.4)

u(t) = .y(t~(~~ a) (e(t) - ae(t -1)) + (3u(t - 1) + (1- (3)t (~(~n u(t - d; -1)

Up until t =4, Uij(t) = P. far \:fPij E :F and thus Wij(t) = liN = Wij, 'Yj(t) =:Yj and

'Y(t) = t, i.e. all parameters keep their initial values.

Using condition (3.3.3), it is clear that for t E [0, dl

(3.3.5)
l-f3

u(t) = t(l _ a) (e(t) - ae(t -1)) + {3u(t - 1)

At t = 4+ 1 = dl + 1, u(t) =F 0 but from Lemma 3.1, we have wu(t) = 0 for

\1 Pi; E :FI and Wij(t) = l/Lg(d, -!D for Y Pij E Ur=d2 11. This implies that

'Y;(t) = {01 1 if j = 1
L

g
d=4EiYi for all others

• and

'Y(t)
Lrl Ld -1 1- E 'Y;(t) =0 + d _ d L Egi
j=l - 9 i

1 ~ _
- -L...tgi =,

L g •,

•

Replacing in (3.3.4), we see that u(t) remains equal ta (3.3.5).

At t =fI+ 2 = d2 + 1, we have from Lemma 3.1 that Wi;(t) = 0 for all models in

Ut~dl :FI and Wij(t) = 1/Lg(d - 4. - 1) for all models in U~=d3:Ft. It foUows that at

t = 4. + 2, we have

)
{

0 if j = 1 or 2
t-Ct =

J ig 'il-~-I Ei Yi for aIl others
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and

Lcl Ld - 2 1
;y(t) - ~;Yi(t) =0+0+ L ~gi

j=1 d - 4- 1 9 i

1 '" _- -LJgi ="1Lg •
s

Replacing in (3.3.4) shows that u(t) remains equal ta (3.3.5).

Repeating the above argument up to t =d proves the result. o

•

•

3.3. Characterization of model adequacy. A definition of the adequaey of

a plant mode! is hound ta he attached to sorne norm applied ta the difference between

the dynamics of the model and that of the actual plant. The actual choice May be

dictated by the end use of the mode!. In this case, the end use is the design of a

feedhack controller. Renee we may decide that a model is adequate if the closed-Ioop

system that it yields meet sorne performance specifications.

In this context, the sensitivity function of the closed-Ioop system is an appealing

mathematical device ta study: its a direct measure of disturbance rejection eapability

and it provides an indication of the relative stability of the closed loop system. It

thus simultaneausly provides an indicator of bath performance and rabustness of the

closed-Ioop system.

Recall from Section 3 that the closed-Ioop specification (i.e. the transfer function

between the setpoint and the output) is given by

R( -1) = (1 - (3)z-1 ~( .f ) -di
Z 1 _ (3Z-1 LJ 'Y, 'Y Z

j=1

Note that the specification is a function of the model. Rence we write the frozen­

time specification Rt(Z-l) as
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The controller is synthesized by

from which it follows that the "frozen-time" sensitivity function is given by

st(Z-l) - (1 Rt(Z-l)) 1
- - 1 +Rt(z-l) «P(Z-l) - P~(Z-l)/~(Z-l))

Noting that Rt =FuAÎ'tft and p:n =At, we can further simplify the above to

1
st(Z-l) = (1- Rt(Z-l)) 1 + (tft(t)) (G(Z-l) _ G~(Z-l))

From which may obtain the bound

In the abave equation, S5 is the frozen time sensitivity fonction af the closed-loop

system if the made! is a perfect match to the true plant, Le. G = G~. Equation 3.3.8

aIsa provides a connection between the sensitivity af the closed-Ioap system and

a measure of the plant/plant model discrepancy. Furthermore this discrepancy is

expressed directly in terms of the norm used in Thearem 3.l.

We DOW need to answer the following questions:

Ci) How does the model error narm I[G - G:nltloo,À relate ta the errar norm of the

individual members of F, i.e. I[G - Gii]tloo,À?

(ii) ls it possible ta determine on-Une how much shrinking of the model errar norm

is being accomplished?

A partial answer is pIovided by the fallowing theorem which establishes a cannectian

between the madel errar nann and the errar norm af the individual members of F.

•

(3.3.7)

(3.3.8)

I[stltloo < I[S~ltloo· l-I-r/.y(t)1 ~[G - G~ltloo

~ I[S~ltloo· l-I-r/.y(t)II[G - ~~]tloo'À ·B(t,.À-1)

(From Proposition 1.1)
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THEOREM 3.3.

where

W(t) =L VWij(t)
i,j

and

Kn
p=

KxKF

PROOF. First we make use of the convexity of the norm operator to bound 1[G ­

atm] t 100,;\, i.e.

• (3.3.9)

iJ

< L Wij(t)I[G - Gij]tloo,;\ (Jensen's Inequality)
iJ

(3.3.10)

•

From Theorem 3.1, we may write

Wij(t) = mG - Gijltloc.~KFKx + Kn )-2
nu,

where nw is the normalizing factor

nw =L (I[G - Gij]tloo,;\KFKx + Kn)-2
iJ

We rearrange (3.3.10) into

I[
G _ G--] 1 = (Wij(t) nw )-1/2 - K n

$] tOC,). KxK
F

and replace in (3.3.9) to get

"A ()I[G G] 1 (nw )-1/2~ ... ()1/2 K n
L.J Wij t - ij t oc,;\ = K K L.J Wij t - K K
y X F Y x F
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Let W(t) D.. EiJ wij2 and replace the definition of nw in the above. This leads ta

~Wij(t) I[G - Gij]t/oo,À ­
iJ

where p = K n / K x K F •

W(t)

KxKFVEiJ(I[G - Gij]tloo,ÀKxKF +Kn )-2

W(t)
--;::========== - p
V~iJ(I[G - Gij]t/oo,À + p)-2

o

•

•

The above theorem is a central result of this thesis. We can further simplify it

through

COROLLARY 3.2.

I[G - G:nltloo,À < W(t)~+ (W(t) -l)p

where W and pare defined as in Theorem 9.9 and

PROOF. It follows immediately from Theorem 3.3 that

W(t)
I[G - G:nltloo,À < - p

vEiJe/[G - Gi;]t/oo,À + p)-2

< W(t)I[G - G*ltloo,À + (W(t) -l)p

where G* =Fu· P* and p. is an arbitrary member of:F. Select P* sucb. that

o

Theorem 3.3 and its corollary provides the following cInes:

• The variable W(t) is a measure of the "discrimination" between the individual

members of 1=. For instance, when one and only one mode! in :F reproduces

exactly the plant output, its weight is equai te 1, aIl other weights are equai ta
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zero and W(t) = 1. At the other end of the scale, when no particular member

of :F provides a significantly better approximation of the true plant and aIl

weights are approximately equal to l/N then W(t) ~ VN.
• If W(t) can be made as close as possible to 1 by proper selection of the con­

troller parameters, then [Glt is no further away from Gm than it is from the

nearest member of:F and the effect of noise (as embodied by p in Theorem 3.3)

becomes negligible.

To rephrase item 1 above, if one considers the set of weights wii as a two..

dimensional "map", then W(t) is a measure of the sharpness or fiatness of this map.

We now determine how this measure varies with the user-selected parameters.

4. Tracking the model properties

As we have seen in the previous section, it is important in order to establish

bounds for tracking the performance of the adaptation mechanism to resort to the

infinite norm of frequency functions. We thus round it useful to express the mode!

error norm lIeij(t) 112,.\ in terms of the infinite norm of the difference between the

transfer function of the true plant and the associated member of :F (Theorem 3.1).

To study the effect of the user-se1ected parameters, we will find it useful to express

Ilfii(t)1I2,.\ in terms of the 2-norm of P - Pi; (with frequency weighting Fu). For this

we need a result provided by a theorem similar to Theorem 3.1.

THEOREM 4.1. Provided that Assumptions 1.1-2.1 are satisfied then, for some

t > d there exist coefficients kx,KF and K n such that

where KF and K n are bounded as in Theorem 9.1 and kx is bounded by

•
1 1

- 6, 1 - (rnlv'X)t+l < le < 1 1+ 8 1- (rn/VX)t+l
Y, n l-rn /..JX - x_ Y, n l-rn/-IÀ

PROOF. Proof in Appendix. o
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Next we see that the effect of undermodeling, Le. the effect caused by using a

e!ementary law arder mode! (or a set of sucb models) and the effect of the additive

noise is essentially the same: a fiattening af the weight map that would be computed

in a disturbance-free setting.

4.1. The eiFects of undermodelling and additive noise. We start by

defining and quantifying what we mean by nndermodelling in order ta suit the re­

quirements of our analysis. Let

g '" { Go = 90 1 ~~:-l z-d-lj 90 E m}
and pick sorne Go E g.

It follows that we can bonnd the error norm the following way

Ileij(t) 1121À - 1[G - Gijltl2tÀKFkx + K n from Theorem 4.1

• - I[G - Go + Go - Gij]tI2,ÀKpkx +K n

< (I[G - Golt l2,À + 1[Go - GijltI2,À)KFkx + K n

< (I[G - Golt l2+ 1[Go - GijltI2,À)KFkx +K n since À < 1

< (IIG - ~1I2 + I[Go- GijleI2,À)KFkx + K n

since1[ . ltl2 is monotone increasing with respect to t

We conclude that there exists a coefficient KGo bounded by IIG - Goll2 sncb that

and we may write the weight estimates as

•
(4.3.1)
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The above form of the weight estimates is very convenient for evaluating the

effects of disturbances on the adaptation mechanism. Let

be the combined effect of neglected dynamics and additive noise. From (4.3.1), we

see that the weight estimates are a function of two agents with opposite aims: one

discriminating agent which discriminates between the members of F according ta

the noon I[Gâ - Gij]tI2,À and one uniformizing agent, the offset KD which steers

the weights towards a uniform distribution. The following theorem makes this more

explicit.

THEOREM 4.2. If 1[Gê - Gij]tI 2 ,À #- a VPij E F, then

•
(4.3.2)

•

where

'ÛJ~.(t) = l/I[Gà - Glm]tl~'À
CJ nO

w

n~ =LL I[G~ - Gij]tl~i
1 m

1
œ,j=---==

1+ PDV'ÛJ?j(t)

PD=KD·~
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Then we have

PDKD=--
~

Replacing in (4.3.1), we get

- EIEm (VWfj(t)/l+PDJwfm(t)f

Multiplying the numerator and the denominator of the above by (1 + PD/...{ii)2 and

perfonning a few manipulations produces the result. 0

The coefficient PD in the above theorem is a measure of the relative importance of the

disturbance level with respect ta discrimination provided by the set of errar nonns.

The set of weights wf; is the weight distribution when no form of disturbance is

present in the system. Theorem 4.2 establishes a canvex link between VWPj(t) and

N-1/ 2 simultaneously for ail pairs (i,j) of gains and delays through the coefficients

ai;. This c1early shows that unmodeled dynamics and noise are "flattening" the

noise-free weights wpj • 1t is not difficult ta see that

(4.3.3)

•
Although a convex sum links V'ÛJf;Ct) ta l/...{ii, the relation betwe~ the weights

Wij(t) and the noise-free weights w~;(t) for an arbitrary noise level PD remain a com­

plex function of PD. We May approximate the relation however by looking at the
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asymptotic behaviour of the coefficients O!ij, i.e.

when PD « (wfj(t))-1/2

when PD » (wfj(t))-1/2

•

•

and the breakpoint occurs approximately when PDVW?j(t) = 1 or

1
PD =---===

V1ÎJ~j(t)

It follows that the largest weight is the one which is mast affected by noise, then

the second largest and sa on, while the naise-free weights which are close to zero

require a large noise level for their associated aij coefficient be affected.

Finaily we conclude that ta completely describe the behaviour of the adaptive

algorithm, it is sufficient ta investigate the transfer function error nanns I[Go-Gij]tI2,À

since they play the dual role of establishing the disturbance-free weighting of the

models and determining the abilitity of the model set to resist the Battening effect

of the disturbances.

4.2. The base Une weights distribution. From the previous section, we

know that the final forro of the plant mode! and thus of the closed-loop system is

completely determined by the set of time-varying nonns 1[Go - Gii]tl 2,À and the noise

level as expressed by PD' From the former we may calculate the "base Une" weights

distribution wfj(t) and the interplay between wfj(t) and PD Battens the base line

distribution. The exact value of PD is unknown but from the assumptions about the

noise leve1s and the true plant dynamics, we may compute an upper bound on PD

and thus evaluate "worst-case" scenarios about the final weights distribution. On the

other hand, the nonns 1[Go -Gii]tI 2,À are entirely function ofuser-selected parameters.

ln the following section, we examine the effect of these parameters on the base line

weights distribution.

We have seen in a previous section that in the instants following the application

of the setpoint, the controller is LLI up to the time instant d. The plant input signal
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u(t) for this time instant is then the solution to this LLI closed-Ioop system. This

was the basis for computing the error norm bounds in Theorems 3.1 and 4.1. By

causality, this input signal is aIso the one driving the plant and the models for the

instants immediately following the time delay d, i.e. for t = d + 1, d + 2,···. The

system thus entera a short, finite phase where the plant and model sets are driven in

virtual open loop. For this phase we may, reca11ing that

G* = FuR· = go 1 - {3 z-d-l
o 0;y 1 - {3z- L

compute I[Gô- Gii]tl 2,À for three specific subsets of F, i.e. for those models with too

short delays (i.e. Ej, too large delays (Le. F) and Fd.

For t > d, the error nonns are given by (details given in Appendix C)

•
(4.3.4)

[

2 t-d Àd-dj - «(32)d-dj

Bi À À _ (32

Àt-d (f.l2)t-d]
+ (go - gi/3d

-
dj

)
2

À-_ p2

for p'.. E :F" -

(4.3.5)

•

From these equations, we could compute the weights distribution at t = d+ 1, t =

d+2,··· for any combination ofparametervalues. These weights however, would tum

out to he a fairly complicated function of all these parameters. We prefer to simplify

the above expressions so that the raIe of individual parameters is more transparent.

In particular, we are interested the effect of the gain partitioning resolution ag.
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First, we introduce an assumption constraining the true steady state plant gain

and "true" plant delay ta be within the limits of the a priori intervais.

ASSUMPTION 4.1 (True plant gain and delay). We assume that

and

dED

Note that sinee 90 is not necessarily a member of the partitioned gain interval G,

we do not know a priori how far it is frOID any member of G. Let cS· be the minimum

distance from 90 to any member of G, Le.

~* A . 1 * 1u = mIn go - Yi
g,EG

From Assumption 4.1, we know that there exists a member of G sucb that

(4.3.7) d* < I::t.g
- 2

and another member of G adjacent ta the former such that

(4.3.8) Ig* - g1:1 = /lg - cS*

•

Next, notice that (4.3.4), (4.3.5) and (4.3.7) are all decaying functions of time

unless .À or {3 are greater than 1 (Assume they never are). It is thus important ta

discriminate between the members of J= early after t = d has e1apsed when the above

norms are at their peak. Let t =d+1 be the time instant at which we evaluate the
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baseline distribution and let S~(t) be the sum of the weights of the members of rd'

L:(I,m)EIF.I I[Go- G'm]d+ll~i
SO(d+ 1) = ~

2:(I,m)EI:Ftl I[Go- Glm]d+ll~l + E(I,m)E1:F\T:Ftl 1[Go - Glm]d+ll~~

(
LCI,m)ET:F\I:Ftl I[Gô- Glm]d+ll~i)-l

- 1+ • ~
E(l,m)E1:Ftl I[Go - G,mld+112,À

(
1 E(l,m)EI, ![Go- Glmld+ll~i + E(I,m)Ely 1[Go - Glm]d+ll~l)-l

(4.3.9) - + L(l,m)E1:Fd I[Gê - G'mld+1I2,~

Replacing (4.3.4), (4.3.5) and (4.3.7 in the above, and doing some simplifications,

we come ta the result of

THEOREM 4.3. If Assumption 4.1 îs true, then

[]

--1
l l + l l 1-Àtl-§. + d-d

SO(d + 1) > (1 + tlG2 Lg 2" i: ~:.\cl=i 1-"\ 7)
d (Lg -1)2 8

where tlG =9 - p-

PROOF. We begin by noting that Equation 4.3.4 is dominated by the first term

within the brackets. Thus it is a1ways possible ta write

(
1- (3) 2 )..d-dj - (f32)d-dj

1[Go - Gii]tl~'À > T g;>..t-d >.. _ {32 for Pi; E :F
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It follows that the SUIn over :F of the inverted error norms at t = d+1 is bounded by

L: I[G~ - Gi;]d+ll;,i <
(i,j)ET~

(4.3.10) ( 'Y) 2 Lg [1 1 ] 1 1 - Àd-4
< 1 - {3 2 9-2 + 92 Ad-si 1 - A

where the last inequality is made possible through Jensen's inequality ([39], p. 128).

Using (4.3.7) and (4.3.8), we may bound the sum over [Fil by

•
( 'Y) 2 L

g 1 (;Y) 2 ( 1 1)
1 - {3 tt (gô - gi)2 > 1 - {3 W)2 + (.6.g - 6*)2

Taking the derivative of the above bound and setting to zero shows that the bound

is at a minimum when 5* = ilg/2. Hence

(4.3.11) for di = d

Finally, we have, over :F

o

L: I[Go- Gi;]d+LI;J
(iJ)ETy

(4.3.12)

(
;Y) 2 Lg _

- 1 - {3 (gÔ)2 (d - d)

> (--.L) 2 Lg (d _ d)
1 - {3 9-2

Replacing (4.3.10), (4.3.11) and (4.3.12) in (4.3.9) yields the result.

•
It foIlows from Theorem 4.3 that we may set the weights of the modela with

innapropriate delays arbitrarily close ta zero by choosing a fine enough resolution of
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SUMMARY

the gain interval, Le.

Summary

In this chapter, we have established that in the first instants that follow the

application of an external excitation, if the signal-to-noise ratio is sufficiently high,

the nonlinear controller behaves equivalently to a known linear invariant system (see

Lemma 3.1 and Theorem 3.2). This result has the following implication: the signal

which is fed to the estimator is (at least) partially known and this information can

be used to track an upper bound on the performance of the adjusted model (see

Theorem 3.3 and Corollary 3.2).

Finally we showed how the performance upper bound is influenced by the choice

of the tuning parameters, the signal-tû-noise ratio and the amount of undennodeling

(Le. the approximation of a possibly high arder plant by a first order plus delay

moclel) (Theorems 4.2 and 4.3).
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CHAPTER 4

Implementation of MWAC

Model weighting adaptive controllers have already been implemented in a number of

industrial applications [19], [38], [24]. These implementations reproduce the algo­

rithm given in [19]. In this chapter, we discuss two implementation issues of MWAC

that stem from the analysis of previous chapters and lead to an improved algorithme

1. The initial invariance of the controller

In Chapter 2, we introduced a modification to the algorithm presented in [19].

This modification worked in two step: 1) Set the models with errOI norms lower

than sorne threshold be assigned a common "floating" value Ji. and compute the

weight assignment law 2) When all possible cancellations of the common J.L have

been performed, let Ji. ~ o.
The purpose of this modification was to ensure that the weights of the models

with delay lower than the actual plant delay are sequentially set exactly ta zero.

The consequence is that the input/output behaviour of the nonlinear, time-varying

controller is exactly that of a known LTI fllter over a short period of time (and only

over this period of time) following the application of the external excitation. As we

saw in Chapter 3 the modification contributed significantly in simplifying the analysis

of the adaptive system.
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y

•

•

FIGURE 4.1. Modified fiow diagram of the blocks involved in computing the
error signal.

With the original algorithm, it has been observed experimenta1ly that the weights

of the models with the sma1lest delays are indeed set close to zero (as opposed ta

exactly equal to zero) when an external signal of sufficient magnitude excites the

system (see examples of Chapter 2).

80, although it is possible to write an algorithmic procedure for implementing

online the JL-modification of Chapter 2, it is worth questioning how significantly the

extra code and additional computing time would contribute ta the pefonnance of

the actual online algorithm. Furthermore, we may wonder if a deviation from the

assumed behaviour of the controller necessitates a different analysis than what was

proposed in Chapter 3.

We therefore examine what is the net effect of the controller operator being only

close ta the LLI filter F~(q-l). Consider the diagram of Figure 4.1. This is just a

modified version of the diagram of Figure 3.l.

In the diagram, the extra branch ~Fu (.) is a bounded operator acting on the

control error. This operator makes up the difference between the control operator
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ë(·) and F~(q-l). If aIl other variables are defined as before, we then have the

following result.

PROPOSITION 1.1. The control error eij(t) a8sociated to a model Pij of1= is given

by

where

n'Ct) = net) - ~v(t)

• and

~v(t) =
p-p,..

'1 ~ Ct)-l-+-F-='Ij---P'-" u
u '1

•

L\u(t) = L\Fu(Yd(t) - y(t))

PROOF. From Figure 4.1, we have

(Yd(t) - (Pu(t) +net))) F;; + L\Fu(Yd(t) - y(t)) =u(t)

!rom which we get

Now sinee
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we then have

Let

It follows that

av(t) =
p-p,..

13 a (t)
-l-+-F"=Tr~P'-.. u

u 13

•

~j(t) =

Letting n'(t) = n(t) - av(t) yields the result. o

•

Hence the net effect of aFu (.) =F 0 for the initial time interval Ti is exactly

the same as the effect of having additional noise and then may he treated as such

by the analysis of Chapter 3. We therefore conjecture that for external excitations

of magnitude worthy of consideration, the conclusions of Chapter 3 are equivalent

whether or not the Il-modification is implemented.

This brings us to the second issue of this chapter. We will now see that the above

conjecture is further relevant if we introduce a mechanism for locking the mode!

parameters when an adequate model has been found.

2. Locking the estimates

In earlier versions of MWAC ([18],[19]), no attempt was made to lock the param­

eters at any time and the weights were allowed to drift back to a uniform distribution
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when the information provided by the extemal signals disapeared. Renee if a set­

point change excited the system, the model used for feedback was based on whatever

signal-tO-lloise ratio this change provided.

From Theorem 3.3 and its corrollary, we leamed that there is a direct eonnection

between the Hatness of the weight map and the proximity of the model to the true

plant. A large signal-tO-noise ratio sharpens the map of model weights while a low

signal-tO-noise ratio Hattens it. We also saw that a meaningiul figure of the map

Hatness is given by Li; ..;Wi; (t) which is easily ealculated online. This suggests a

mechanism for locking the parameter estimates based on this measure.

Consider the diagram in Figure 4.2. The model estimator uses the input/output

data from the plant and the weight map is computed as before. At every sampling

instant, the current map fiatness W(t) is computed, i.e.

W(t) = L VWi;(t)
i;

and eompared ta the smallest W sa far. Formally, define the later as

t

W(t) = inf W(k) = 1\ W(k)
kE{O,t) k=O

Hence at every sampling instant, we produce the following logic variable,

IW(t)<W(t-l)

and test this variable ta see if it is desirable ta update the mode! or note

1 {UPdate model and let

W(t) =W(t)

o Do nothing

The value of W(t) is bounded by 1 and m. The upper bound corresponds to

the case where input/output data does not yield enough information to discriminate

between any member of :F and is therefore also the initial value of W(t). As the
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FIGURE 4.2. Additionallogic to lock the model parameters.

c1osed-Ioop system cames out a number of control assignments, setpoint changes,

rejection of disturbance ofvarying signal-to-noise ratios, W(t) will be steered towards

1 with similarly varying success. If the actual plant is LTI, then the above logic

guarantees that the current model was updated when the signal-to-noise ratio was

richest in information. The c1osed-Ioop system hence becomes "piecewise-LTI", Le.

it is invariant between two instants when the information supplied ta the estimator

was deemed rich enough to trigger an update of the mode!. In between these instants,

control tasles carrying poor information are then treated with a model obtained under

better conditions.

The above logie however requires absolutely that the plant be LTI since it causes

W(t) ta be a monotonie decreasing function and if the plant dynamics change, the

model may be locked ta an innapropriate value with no possibility for the new values

of W(t) to trigger an update of the model.

We may remove this problem by, at every step, allow the value ofW(t) ta "leak"

towards the case where any previons information-rich data is simply ignored, Le. ...;N.

76



•

•

•

4.2 LOCKING THE ESTIMATES

Mathematically, we can write the update operation of W(t)

W(t) = À1eak X(t) + (1- À,eak)VN

where

X(t) = { W(t - 1) if W(t) > W(t - 1)
W(t) ifW(t) < W(t - 1)

where

Àleak = e- T /1iCGk

and where l1eak is a user-selected time constant. Large values of l1eak are chosen when

the true plant dynamics change slowly while short values of l1eak are chosen when the

true plant dynamics may vary rapidly.

In this chapter we introduced a mechanism for locking the model parameters.

This mechanism is one of the two novelties added ta the existing MWAC algorithm

from this thesis. In the following chapter, we introduce the second addition which

simultaneously deals with the uncertainty on the dominant time constant of the plant

and undermodelling errors.
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Treatm.ent of underlllodelling errors

In this chapter, we introduce two alternative methods for treating the problem of

imprecise knowledge of the dominant time constant and undermodelling errors. It

was shawn in Chapter 3 that the distance between the model and the true plant

is directIy related to the fiatness of the weight map. A sharp peak indicates close

proximity to the true plant while a soft peak does not guarantee any proximity.

On the other hand, we know that a sharp peak is achieved if 1) the signal-ta-noise

ratio is high and 2) the true plant belongs or is close to a member of:F. The first

requirement depends on the control tasks that the closed-Ioop system is offered. In

the previons chapter, we introduced a modeI-locking mechanism that ensures that the

current mode! was obtained under the best conditions encountered sa far. The second

requirement is generally satisfied only over a certain bandwidth. Real industrial

processes are typically high-order systems while the members of :F are simple first

arder plus delay systems. The two methods proposed in this chapter rely on making

the estimator believe that it is reading data from a first arder plus delay plant.

1. Filtering the data

We expect the estimation algorithm ta be applied ta processes with high-order

dynamics and possibly with no true delay except for the apparent delay caused by

the cambined effects of a number of unaccounted-far pales and zeros. If we consider
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FIGURE 5.1. Nyquist plot of example plant. For three different frequencies,
a set of fust-order plus delay modela are shawn. The "*,, ,"x" and "+"
indicate the FOPDs at three different frequencies. The circles are the value
of P2 at those frequencies .

a plant with such dynamics as a frequency function, the deviation from the idealized

first-order-plus-delay (FOPD) plant may be interpreted as an inconsistency of its

behaviour over the frequency scale. For instance the actua! plant P might behave

approximately as the FOPD plant pel) over the frequency range F(l), as the FOPD

plant p(2) over the frequency range F(2) and as the FOPD plant p(3) over F(3) where

F{l) #: F(2) =F F{a) and so on. We could say that the plant dynamics are inconsistent

with the FOPD model if pel) =F p(2) =F p(3). This is illustrated in Figure 5.1 for the

plant

•

(8 -1)(8 - 2)2
P2(8) = -1.23 (8 +1)4(8 +2)2

which was used in the examples of Chapter 2. In this case, the plant behaves very

closely ta the same FOPD model up to the cross-over frequency. This is no longer

true however at high frequencies. Now recall, that the filter applied to the data so
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far is

Le. a first-difference operator which emphasises the high frequency range where the

mode! is inconsistent with respect to any FOPD approximation.

The first method thus consists of reducing the frequency window through which

the estimator reads the data sucb the the true plant is consistent with some FOPD

mode!.

1.1. Designing the iilter. We seek ta design a bandpass ffiter with a -6db

pass band Pw centered on some frequency wo. The fiIter should fulfill sorne basic

requirements:

• The pass band should be in a frequency range within the bandwidth of the

true process. At design time, we can make use of the prescribed dominant

plant time constant". to estimate the bandwidth of the plant as Wb = 1/"..

• The central frequency Wo of the filter should be not tao far from the cross-over

frequency of the plant sinee good closed-Ioop behaviour is typically associated

ta good modeling of this critical frequency area. We could specify Wo by letting

it be sorne fraction Ta (0 < ro < 1) of the bandwidth of the plant, i.e. Wo =TOWb

• The width of the pass-band should be specified by as few parameters as possible

50 as Dot burden the user with tao many selectable parameters.

• It should satisfy our original requirement, Le. F(l) == O.

The continuous-time filter

- 8(1.5.1) Jr(8) == 2
8

2 + 2ÇWo8 +Wo

satisfies all of the above requirements. It has a single peak

IIF (jw)lIoo = 2~WO
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which occurs at w = wo. Given that Wo is selected from the estimated bandwidth of

the plant, its -6db pass-band is a linear function of ( only, Le.

Using the bilinear transformation

2 1- z-t
s= Tl +z-t

we form the discrete time equivalent of (1.5.1)

F( -1) 1 1 - z-2
Z = ao 1 +atz- l + œ2z- 2

where

2 Tw~
ao - T +2(wo + -2-

al - (2Tw~-~)/ao

a2 = G-2(wo + T;~) tao

Example 1 revisited (First method). In the examples of Chapter 2, the

adaptive closed-Ioop control of plant P2 (s) was shown to be significantly closer to

instability than the adaptive closed-Iaop control of plant Pt (s) (which was a true

FOPD plant) although the step response of these plants are arguably sunilar. We

now repeat the simulation with all parameters being the same as in Table 2.1 with

the exception of the data fi1ter which we specify next.

The estimated dominant time constant is 2 secs (see Table 2.1). From this we

evaluate the eut-off frequency ta he

Wc = 1/2 [rad/sec]

We set the central frequency of the fi1ter to he ro x Wc where we set ro = 0.5. Hence

•
Wo =1/4 [rad/sec]
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FIGURE 5.2. Bode plot of P2(S) and IF(s)l.

Finally, we set the damping coefficient' to he equal ta 0.1 which corresponds to

a pass-hand of

1
Pw =2 v'3 4" 0.1 =0.0866 [rad/sec]

•

Figure 5.2 shows the location of the fllter pass-band with respect to the phase and

gain of P2(S).

Besicles the modified input/output fllter, we also include in the followingexample,

the modification introduced in Chapter 4 for locking the estimates. The simulation

run is shown in Figure 5.3. The closed-Ioop system experiences a series of setpoint

changes. As before, there is a short" learning phase" transient at the beginning but it

is smoother than the original transient. Following this learning phase, the closed-loop

system sett1es quickly to its final forro as shown by the W(t) indicator.

The plot of the ;Yi parameters as a function of time (Figure 5.4) shows that

with the modified data filter, the estimation sub-system considerably increases its

segregation of the members of r.
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FIGURE 5.3. Top figure: Input and output signals. Bottom figure: Variable
W(t) used for locking the parameter estima.tes.

2. Adjustment of the sampling period

A sampled high-order dynamic system appears ta be of high arder only if it is

sampled quickly enough. In fact, if the sampling period is long enough, a stable,

high order plant appears at the sampling instants as a pure delay with a gain. On

the other hand, too long a sampling period limits the control to coarse closed-Ioop

performance. We seek a compromise sampling period that will make the deviations

from a pure first-order-plus-de!ay system small enough to have negligible influence on

mode! precision but without making the control tao coarse.

We readily have an online indicatorW(t) of the proximity of the model to the true

plant. We can make use of that information to adjust the size of the sampling period

until we reach a pre-specified target W $fi just as a regular feedback loop. This loop

differs from a conventiona! feedback Joop in many ways however: since the fluctuations
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FIGURE 5.4. Parameters 'Yi as a function of time.

ofW(t) are triggered by the occurence and size of the external excitations (over which

we assume to have no prior knowledge), the adjustment of the sampling period should

be implemented on an occasional basis when, for instance, it is detected that fresh

data has caused W(t) to decrease. On the other hand, if the adaptive system is

not sufficiently excited for sorne time, W(t) May remain constant over this period

but when an important external excitation occurs, it produces Many rapid decreases

of W(t). Thus to make a sensible use of W(t) as a feedback variable, we need to

consider the following:

• When W(t) has decreased, we wait for sorne pre-determined amount of time

Tw before implementing the adjustment of the sampling period. If W(t) de­

creases before Tw has elapsed, we reset the timer and wait for Tw to elapse

again. This ensures that we have secured a new, stable ralue of W(t) before

implementing the sampling period adjustment.

• The partition of the gain interval is independent of the adjustment of the

sampling period but W(t) is computed from the weight of every member of
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F. Ta make W(t) independent of the gain partition, we can first compute the

total weight associated to the individual delays in [4, dl, Le.

W/c = ~ Wij(t)
(i,j)ET:rk

then compute the modified W(t), W'(t) as

il

W'(t) =~ .;;;;;
k=4

and the modified indicator W'(t)

t

W'(t) = inf W'(k) = /\ W'(k)
/cE(O,t) k=O

Say that with the above modifications implemented that the occurences of the sam­

pling period adjustments are indexed with the superscript (n) n = 1,··· " then the

adjustment we choose is of the integral-type, Le.:

Example 1 revisited (Second method). We repeat the example of Chap­

ter 2 but applYing the online adjustment of the sampling period. Apart from this

modification and the modification for locking the parameter estimates (see Chap­

ter 4) , the simulation data is the same as that of Chapter 2. We need two additional

parameter values for Tw and kT. In the following simulation, these were set to be

Tw = 20 [secs]

•

During this simulation, we let the adaptive system experience a series of exoge­

nous excitations in the forro of setpoint changes. The continuous-time plots of the

input/output signals are shawn in Figure 5.5.
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FIGURE 5.5. Continuous-time plots of the input/output signala. Adaptive
control of the plant P2 with sampling period adjustments.

The initial performance of the feedhack system is similar to the original behaviour

of Chapter 2 but after a few setpoint changes, the control performance is much im­

proved. Figure 5.6) shows a blown-up version of the simulation run for the initial time

segment and the final time segment to emphasize the changes made ta the sampling

period. We observe that in the final segment, the minimum-phase behaviour of the

plant is invisible at the sampling instants.

Finally, Figure 5.7 shows the variables of the sampling period adjustment feedback

system. The controlled variable W'(t) asymptotically reaches its target value 1.2

while the sampling period increases from its initial value of 1 sec to a value just over

4 secs by the end of the simulation run.

3. Merits and inconveniences of the proposed methods

In this chapter, we presented two methods to render the unmodeled deviations

from the ideal mst-order-plus-delay representation less visible to the estimation sub­

system. The first method uses a passband fllter whose bandwidth may be reduced
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FIGURE 5.6. Blow-up of the initial (0 S t S 200) and final (800 S t S 1000)
time segments.
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FIGURE 5.7. Feedback adjustment of the sampling period during the simulation.
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5.3 ~RlTS AND INCONVENIENCES OF THE PROPOSED :METROnS

by the user when it is felt that undermodeling errors may be important. The second

method progressively increases the sampling period until the effects of the undermod­

eling errors are reduced ta manageable proportions.

The first method has the advantage of simplicity sinee it involves no extra feed­

back loop and since most parameters may he determined from the original data

supplied by the user. The second method adds an extra feedback loop and requires

the determination of new tuning constants but is likely ta be less sensitive ta errors

induced by mis-estimating the dominant time constant of the plant.

1t is difficult at this point to make a firm statement on which particular method

is best for an industrial implementation. Simulation under realistic conditions or

industrial experience may provide some answers but we leave this question open for

the time being.
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CHAPTER 6

Conclusions

Pilot-plant and industrial applications of the MWAC technique have revealed that

the algorithm can detect very rapidly what model in the set is most appropriate for

the current circumstances when a control task sucb as a setpoint change is requested

from the closed loop system. This observation is consistent with the theory developed

in Chapter 3. Theorem 3.3 says that in a finite time following the occurence of an

external excitation, the model used ta compute the control finds itself in a neigbor­

hood of the true plant. The size of this neighborhood depends on two factors: 1)

the resolution of the partition of :F and 2) the signal-to-noise ratio. The first fac­

tor promotes the sharpness of noise-free, base Une weight distribution. The sharper

this distribution is, the tighter the neigborhood ta the true plant is. Moreover, the

sharper the distribution, the more resistance it offers to the uniformizing effects of

disturbances (Theorem 4.2). On the other hand, a high signal-to-noise ratio aIso de­

feats the unifonnizing effect of those disturbances which are extemal to the plant (Le.

input disturbances, measurement errors). Finally, Theorem 4.3 says that the sharp­

ness of the distribution will peak in a time approximately equal ta the apparent time

delay of the true plant. The bounds computed in Theorems 3.3, 4.2 and 4.3 allows

the designer ta estimate an adequate partitioning resolution for a given application.

Furthermore, this jumping mode of convergence is a feature of MWAC (and

related aIgorithms - see Introduction) that significantly differs from adaptive methods
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6.1 FUTURE RESEARCH

based on recursive least-squares methods or gradient-like methods ([5], [21]). The

latter are essentially integrators which accumulate the input!output information and

will assymptotically make the effect of the disturbances vanish. This difference in

convergence mode might serve as a basis for selecting an adaptive control method for

a given application. For instance, the choice would depend on how the information

is generated: by sudden, infrequent bursts or on a continuous basis.

In Chapter 3, we have limited the form of external excitation to that of step

changes on the setpoint. It might be argued that this limits the general applicability

of the results of Chapter 3. However, the tracking of setpoint step changes (along

with rejection of step disturbances) is one of the Most important industrial control

tasks and one by which the performance of controllers is traditionaly assessed. Hence

its relevance. On the other hand, it is straightforward to replace the step functions

used in Chapter 3 by more general signaIs as long as they preserve the initial LLI

behaviour of the controller. We leave this task for future work.

1. Future research

As mentioned earlier, a high signal-to-noise ratio alleviates in part the effect of

input or output disturbances. It does nothing however for plant disturbances that

stem from approximating a (possibly) high-order plant with a first order plus delay

mode!. We proposed two methods in Chapter 5 to circumvent this problem: 1) by

filtering the data with a bandpass filter whose bandwidth depends on the importance

of the undermodelling eifects and 2) by progressively adjusting the sampling period sa

that a compromise is achieved between satisfying the first order plus delay requirement

and the achievable closed loop speed of response. This was combined with a scheme

for locking the parameter estimates when it is detected that these estimates have been

obtained under good conditions (Chapter 4). These additions improve the behaviour

of the MWAC algorithm but they aIso open the door ta further investigation and

experimentation. For example, the method for locking the estimates introduced in

Chapter 4 eifective1y breaks up the time scale in a countably infinite number of
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6.1 FUTURE RESEARCH

segments far which the plant dynamics may be assumed ta be piecewise or lacally

linear, time-invariant. This view could give way ta a general definition of a class of

time-varying plant dynamics.

Along these lines, it would aIso be desirable to formally reda the analysis with

random disturbances using the weaIth of existing techniques for analyzing such sig­

nais. The present work really was concemed by the finite tiroe approximation of

the true plant. In a more general, long term convergence analysis, the asymptotic

properties of the statistics of random signals make them an asset ta the ana!ysis.

ln the present work (and all previous) on MWAC, the plant bas been limited to

a single input/single output process with stable pales. The case when the plant has

a pole at z = 1 or autside the unit circ1e should now be investigated.

Another natura! extension of this work also is to examine its implementation on

multi input/multi output (MIMO) plants. The application of adaptive techniques to

MIMO plants is always a delicate affair just from the point of view of identifiability.

We believe however that MWAC offers same advantages over other techniques. For in­

stance, it is reasonable ta think that for a typical MIMO system, not aU input/output

relations require the same degree of adaptation. By increasing or decreasing the range

of uncertainty of the parameters, the MWAC controner autamatically modulates the

amount of adaptation applied ta each individual relation in the system.

There is no fundamental reason ta believe alsa that the algorithm should behave

differently when the controller structure is different from the simple pole-placement

aIgorithm used in this work. This, however, should be verified.
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APPENDIX A

Supplelllental proofs

This appendix contains proofs of intermediate results found in the main texte These

are:

• Proposition 1.1

• Theorem 3.1

• Theorem 4.1

Proposition 1.1 Let Q(Z-l) = QICZ-1) Q2(Z-1) where Q, QI and Q2 admit a

Laurent series expansion. Then we have

(i)

Cii)

where t 1 > t, t2 ~ t and B(t, À) is the fi:ced function

B(t À) = ~ r21r Il -(&9!À)t+ll dO
, 211" Jo 1 - e3(J / À
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PROOF. Obviously we have

where t l > t and t2 > t. It follows that

t

I[Q]tl = L q(k)v>:ke-jwk

k=O

where

(O.A.1)

Hence

•
I[Q]tl

•

The above integral computes the average value of its integrand over the unit clrcle.

Since the integrand is periodic and W only shifts the integrated function, the average

is independent of w and result 1) follows. If one evaluates q(k) over a circie of radius

À #: 1 instead of (O.A.1), then result 2) is proved using an argument which parallels

that of result 1) mutatis mutandis. 0

Before proving Theorem 3.1, we need pre1iminary results provided by the following

lemmas, the first of which is just a version of Parseval's theorem slightly mocIified for

truncated series.

LEMMA 0.1. If

t

[Y(Z-l )]t = LY(k)z-k
k=O
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then

PROOF. We evaluate [Y}t on the circle z = JXeJw, Le.

[Y(Z-l)}t = LY(k)v>:ke-jwk

k=O

and its conjugate

[Y(Z-l)]; = LY(k)V>:"e!w1c
k=O

It follows that

t t

I[Y(z-1)}tI 2 =[Y(z-l)}t [Y(Z-l)}: = LLy(k)y(l)v>:(1c+l)e-;W(1c-l)
k=O l=O

Integrating the above over [0, 21r] and multiplying by )..t/21r yields the desired sumo

)..t r21r
lIy(t)lIb = 211" Jo 1[y(z-l)]tl:=vx,,;w dw

o

We now express the 2-norm of y when y is the output of a linear system P driven

by an input u.

LEMMA 0.2. If

then a)

andb)
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PROOF. From Lemma 0.1, we have

)..t 127r
)..t 121r

lIy(t)II~.>. = 211" 0 1[y(z-l)]tl:=v'Xeiu dw < 211" 0 I[P(z-l)ltI2 I[U(z-%12
dw

Applying Hôlder's inequality ([40], p.63 with p = 1 and q =00) to the above yields

bath results. 0

We are now ready ta prave Theorem 3.l.

Theorem 3.1 Provided that Assumptions 1.1-2.1 are satisfied then, for any t there

exist coefficients Kx ,KF and Kn such that

where G = PFu is the LLI loop gain, G i; = Pi;Fu and where KF, Kx and K n are

common ta ail error signais and are bounded by

1
KF

1
< <• 1 + I[G]tloc1À - - 1 -1[G]tIOCtÀ

-5n
)..t+l _ (r~)t+l <

Kn $ 5n
Àt+l _ (r~)t+l

À-r2 - À-r2
n n

ly"l)..t - 5n
Àt+l _ (r~)t+l <

Kx $ly"IÀt + 5n
Àt+l _ (r~)t+l

À-r2 - À-r2
n n

PROOF. Consider the equation

(0.A.2)

•

where y;(t) is an impulse of magnitude y" and nF(t) is a noise signal satisfying

Assumption 1.3. If X(Z-l) is the z-transform of y;(t) - nF(t) then from Lemma 0.2

b), we have
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and

t

[X]t = L:(y;(k) - nF (k))5A:e-jwA:

A:=O

which, using the assumptions, leads to

The 2-norm of nF is bounded by

which establishes the bounds for Kx and KnJ the additive noise term.

The bound on K F is obtained by noting that (1 +G)-L is obtained by having G

within a unity-feedback loop and then using the Smal1 gain Theorem. 0

From Lemma 0.2 we see that there is a companion theorem to Theorem 3.l.

Theorem 4.1 Provided that Assumptions 1.1-~.1 are satisfied then, for any t there

exist coefficients kx,KF and K n suck that

where KF and Kn are bounded as in Theorem 9.1 and /ex is bounded by

PROOF. The proof is exactly similar to that of Theorem 3.1 except that we use

result a) of Lemma 0.2 instead of result b). 0
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Pseudo computer code for irnplernenting

Jl,-rnodification

In this chapter, we give a pseudo computer code listing for implementing the limit

function of Equation 4.2.2.

Thil pseudo cod. implllllnti th. mu lIaclification

Th••ubroutine explct. a victor .C) of dimension N ta b.

th. victor to vhich thl limit must bl applild.

Th. .ubroutin. returna th. moclUied ValUI. of .0 in th. .ame

vector.

The nctara l.JDadi:fildO and previau._.O ar. local, intermll1ilLte

variable••

mu a 1.0-E-l0

far j a l ta If

U ICj) < thrtlha14 the

mu..flagej) • nUE •Chect tho.. valu.. vhich must be

el.e 'replacld br mu

lIlU_flag(j) • FALSE

04 U

ep.ilon a 1.0E-20.

Jfua-1.0E+30



APPENDIX B. PSEUDO COMPUTER CODE FOR IMPLEMENTING J'-MODIFICATION

• vhile Cconvergence > epsilon)

for j a l to Il

if lII11_flag(j) - T1UE

l-D1odifiedCj)-mu

el..

• Kodify only tho.. belov

• the thre.hold

enci ~

s~lum+s_modifiedCj)

neZ't j

for j a l ta N

bu1fera abIC.JDodifiedCj)-previous_I(j» • Compare vith previous

if (buffer>Ku) then Ku-buffer • Look for JDUimuJIl variation

previous_ICj) • sJDodified(j) • Storl for DI%t itlration

•

•

neZ't j

convergence • Ku

amamu/l0

end vhile

for j a l to Il

sCj)·IJDodified(j)

Dln j

• Convergence tl.t is ba.ed on ma%imum variation over victor s

, aeduce lIlU

, Store ba~ moWild vector IC)
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Detailed calculations for Theorem. 4.3

This appendix gives the details for Equations 4.3.4, 4.3.5 and 4.3.7 which are subse­

quently used in the proof of Theorem 4.3. The following calculations compute the

norm of the difference between transfer functions of the form

G* = (90) 1 - {3 z-d-l
o ;y 1 - {3z-1

and

G.. = (9i) 1 - f3 -dj-l
'1 ;y 1 _ f3z-1 z

The impulse response coefficients of the above transfer functions are given by

hô(k) = { 0 for k < d
90 * 1;//3k-d-l for k > d

{

0 for k < dj
hi;(k) =

9i1;/ /3k-dj-l for k > d;

respectively.
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For p'.. E Fl' _

t

I[Go- Gijlt I2,.\ =L dÀt-kh~j(k) + L Àt-k(ho(k) - hïj(k))2
k=O k=d+l
" '" -ri '--"' ~.., --""

PART A PART B

d

L Àt-k(hà(k) - hij (k))2 -
k=d+l

•

•

PARTA.

d

L Àt-kh;j(k)
k=dj+l

PART B.

_ (1 -:. (3) 2 gr t )..t-k(IJ2)k-d;-1

'Y k=dj+l

_ (1-:. (3)2 gr)..t-d t )..d-k(fJ2)k-d;-1

'Y k=dj+l

2 d-dj-l_ (1 -:. (3) 9;Àt - d L ,\d-dj -l-k({32)k
'Y k=O

(
1 - (3) 2 2 t_d,\d-dj - ({32)d-dj

- T 9i À À-({3)2

(
1 -= (3) 2 t )..t-k(g~fJk-d-l _ giti'-dr1 j2

'Y k=d+l

_ (1-:. f3) 2 (g~ _ gifJd-d;)2 t )..t-k((32)k-d-l
'Y k=d+l

_ (1-:. (3)2(g~ _ gifJd-d;)2tfl )..t-d-l-k(fJ2)k

'Y k=O

(
1- f3) 2 ( .. a.d_dj)2Àt-d - ({32)t-d

- T 90 - 9ifJ À - {32
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•

•

There are two cases ta cansider in this section: t :5 dj and t > dj •

t < dj _

t > dj _
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