

National Library of Canada

Bibliothèque nationale du Canada

Direction des acquisitions et

des services bibliographiques

Acquisitions and Bibliographic Services Branch

NOTICE

395 Wellington Street Ottawa, Ontario K1A 0N4 395, rue Wellington Ottawa (Ontario) K1A 0N4

Your the - Votice reference

Ourble Notre reference

#### AVIS

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments. La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

# Canadä

## COMBINED CONVECTIVE AND INFRARED DRYING OF A CAPILLARY POROUS BODY

by

## JEAN-MICHEL PARROUFFE

A Thesis Submitted to the Faculty of Graduate Studies and Research in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy

> Department of Chemical Engineering McGill University Montreal

> > © June 1992

> > > .

ζ.



National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Weilington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your for - Vote reference

Curtiel Note reference

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque Canada nationale du de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-80269-3

#### ABSTRACT

•

7 1 1

This research has resulted in the design and development of an experimental facility to study the combined convective infrared (I.R.) drying process of a capillary porous material (glass beads) in high temperature flow conditions.

The necessity to decrease the heat transfer coefficient for the effect of high mass transfer flux (when convection is combined with I.R. heating) has been demonstrated. Further, the analogy between the transfer of heat and mass expressed in terms of average heat and mass transfer coefficient ratios has been verified to apply when the surface is not contaminated. Experiments have also showned that there is a link between the evaporation temperature and crust formation at the evaporating surface. Moreover, an increase in the heat transfer coefficient was observed when the surface reaches the boiling point and is higher than that of the flowing air. Lastly, it was observed that the critical moisture content is independent of the convective drying parameters, sample thickness and the overall incident heat flux.

A drying front model is also presented and tested with the experimental results in convection drying and for the combined process. The drying time, the bottom temperature evolution, the surface temperature evolution up to the critical point and the overall shape of the drying rate curve were well reproduced by the model. Simulations have also showned that the effect of the diffusion mass flux on the heat and mass transfer coefficients leads to a decrease of the evaporation rate by a maximum of 8 % for both the purely convective and combined processes.

#### RÉSUMÉ

ż

Į

Cette recherche a permis la conception et le développement d'un montage expérimental afin d'étudier le séchage mixte infra-rouge et convection haute température d'un matériau poreux capillaire (billes de verre).

La nécessité de diminuer le coefficient de transfert de chaleur à cause de l'effet d'un transfert de masse élevé (lors du séchage mixte) a été démontrée. De plus, II a été vérifié que la similitude entre les transferts de chaleur et de masse exprimée en terme de rapport de coefficients de transferts moyens s'applique lorsque la surface du matériau n'est pas contaminée. Les résultats expérimentaux ont aussi montré qu'un lien existait entre la température d'évaporation et la formation d'une croûte à la surface. Une augmentation du coefficient de transfert de chaleur à été observée lorsque la température de surface atteint le point d'ébullition et est supérieure à la température de l'écoulement. Enfin, il a été observé que la teneur en eau critique est indépendante des paramètres de séchage convectif, de l'épaisseur et du flux de chaleur radiatif incident.

Un modèle à front a été présenté et testé avec les résultats expérimentaux en séchage convectif et mixte. Les temps de séchage, l'évolution de la température au fond de l'échantillon, l'évolution de la température à la surface jusqu'à la teneur en eau critique ainsi que la forme générale de la courbe de vitesse de séchage ont été assez bien reproduits. Les simulations ont aussi montré que l'effet sur les coefficients de transfert de chaleur et de masse du flux de diffusion à la surface conduisent à une décroissance maximale de la vitesse de séchage de 8 % pour les séchages convectif et mixte.

#### ACKNOWLEDGEMENTS

4

Ţ

I would like to express my sincere appreciation and gratitude to my thesis advisors, Dr. A. S. Mujumdar and Dr. M Dostie (LTEE) for their invaluable guidance, constructive advice as well as continuous encouragement. Their patience, scientific rigor, skill and willingness to devote long hours of their time to my questions have been greatly appreciated.

A special word of thank to Marléne Tremblay for formatting this thesis, to LTEE technicians and machine shops staff as well as Alain Poulin, Martin Bédard and Gaétan St. Louis for their help in constructing the equipment

The financial support of this work by Hydro-Québec through its research laboratories IREQ and LTEE is gratefully acknowledged.

Last, but not least, I would like to thank Karine for her love, patience understanding and continuous moral support.

## TABLE OF CONTENTS

٠

.

I

iv

| <b>、</b>   | 3.2.3 Consolidated glass bead test sample preparation                                                            | 27             |
|------------|------------------------------------------------------------------------------------------------------------------|----------------|
|            | 3.2.4 Wetting apparatus and procedure                                                                            | 32             |
| 3.3<br>3.4 | 3.2.5 Sample holder<br>Operating parameters<br>Data acquisition and treatment                                    | 34<br>36<br>36 |
|            | 3.4.1 Data recording: hardware and procedure                                                                     | 36             |
|            | 3.4.2 Drying experiments                                                                                         | 38             |
|            | 3.4.3 Smoothing of drying curve                                                                                  | 39             |
| 3.5<br>3.6 | 3.4.4 Determination of the critical moisture content<br>Experimental reproducibility<br>Experimental uncertainty | 42<br>44<br>47 |
| CHAPTE     | R IV - CONVECTIVE DRYING EXPERIMENTS                                                                             | 49             |
| 4.1        | Introduction                                                                                                     | 49             |
| 4.2        | Convective heat transfer coefficients in convection drying                                                       | 49             |
| 4.3        | Test of the analogy between the heat and mass transfer in convection drying                                      | 56             |
|            | 4.3.1 Comparison with theoretical and previous experimental                                                      |                |
|            | results                                                                                                          | 64             |
|            | 4.3.2 Sensitivity study                                                                                          | 66             |
| 4.4        | Critical moisture content in convective drying                                                                   | 71             |
| 4.5        | Conclusions                                                                                                      | 75             |
| CHAPTE     | R V - COMBINED CONVECTIVE AND INFRARED DRYING                                                                    |                |
| EXPERIN    |                                                                                                                  | 77             |
| 5.1        | Introduction                                                                                                     | 77             |
| 5.2        | Overall incident radiative heat flux                                                                             | 77             |
|            | 5.2.1 Overall incident radiative heat flux in free convection-I.R.                                               |                |
|            | evaporation experiments                                                                                          | 79             |

. .

|     | 5.2.2 Incident I.R. source and test section wall radiative heat |   |
|-----|-----------------------------------------------------------------|---|
|     | fluxes in free convection-I.R. evaporation experiments          | , |
| 5.3 | Test sample surface absorptivity under I.R. heat flux           | ţ |
| 5.4 | Convective heat transfer coefficients in combined convection-   |   |
|     | I.R. drying97                                                   | • |
|     | 5.4.1 Overall incident radiative heat flux in combined          |   |
|     | convection-I.R. drying experiments97                            | 7 |
|     | 5.4.2 Convective heat transfer coefficients108                  | 3 |
|     | 5.4.3 Discussion of results110                                  | ) |
| 5.5 | Test of the analogy between the heat and mass transfer in       |   |
|     | combined convection-I.R. drying120                              | 3 |
| 5.6 | Critical moisture content in combined convective and radiative  |   |
|     | drying13                                                        | 7 |
| 5.7 | Conclusions14                                                   | 4 |

I

I

## CHAPTER VI - COMBINED CONVECTIVE AND INFRARED DRYING

| MODELL | ING                                                             | 146 |
|--------|-----------------------------------------------------------------|-----|
| 6.1    | Introduction                                                    | 146 |
| 6.2    | Hypotheses                                                      | 149 |
| 6.3    | Mass conservation equations                                     | 151 |
| 6.4    | Energy conservation equation                                    | 155 |
| 6.5    | Drying front parameters for simulations                         | 161 |
| 6.6    | Convective drying simulations                                   | 163 |
|        | 6.6.1 Experimental drying curve: correction for geometrical     |     |
|        | effects                                                         | 165 |
|        | 6.6.2 The surface temperature measurement bias in convective    | •   |
|        | drying                                                          | 169 |
|        | 6.6.3 The drying front position correction effect in convective |     |
|        | drying                                                          | 173 |
|        | 6.6.4 The transfer coefficient corrections and the drying front |     |
|        | model results in convective drying                              | 176 |

| 6.6.5 Comparison between the convective drying runs and the                      |
|----------------------------------------------------------------------------------|
| drying front model182                                                            |
| 6.7 Combined convective and I.R. drying simulations                              |
| 6.7.1 The surface temperature measurement bias in the                            |
| combined convective-I.R. drying process                                          |
| 6.7.2 The drying front position correction effect in the combined                |
| convective-I.R. drying process                                                   |
| 6.7.3 The transfer coefficients correction and the drying front                  |
| model results in the combined convective-I.R. drying                             |
| process195                                                                       |
| 6.7.4 Comparison between experimental combined convective-                       |
| I.R. drying data and the drying front model predictions                          |
|                                                                                  |
| CHAPTER VIL, CONCLUSIONS 209                                                     |
| 7.1 Summary                                                                      |
| 7.2 Contributions to knowledge                                                   |
| 7.3 Recommendations for future work212                                           |
| REFERENCES                                                                       |
| APPENDIX 1: THE EXPERIMENTAL SET-UP ACCESSORIES OR<br>EQUIPMENTS                 |
| APPENDIX 2: THE SPATIAL LOCATION OF THE MEASURING POINTS<br>WITH RESPECT TO Oxyz |
| APPENDIX 3: MEASUREMENT DEVICES AND/OR SENSORS                                   |

.

•

1, 1

| APPENDIX 4: THE THERMOPHYSICAL PROPERTIES OF WATER, WATER VAPOR, AIR AND THE GLASS BEADS                                                       | 229 |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| APPENDIX 5: THE RADIATIVE HEAT EXCHANGE IN THE TEST<br>SECTION: THE HYPOTHESES, SURFACES, SYSTEM OF EQUATIONS<br>AND SOLUTION                  | 233 |
| APPENDIX 6: EMISSIVITY MEASUREMENT                                                                                                             | 238 |
| APPENDIX 7: HEAT TRANSFER COEFFICIENT CORRELATION                                                                                              | 244 |
| APPENDIX 8: EVALUATION OF THE HEAT TRANSFER LOSS OR GAIN<br>DURING THE FREE CONVECTION-I.R. WATER EVAPORATION<br>EXPERIMENTS                   | 247 |
| APPENDIX 9: EVALUATION OF THE MAXIMAL FRACTION OF THE<br>EMITTED I.R. HEAT FLUX ABSORBED BY THE AIR LAYER BETWEEN<br>THE SOURCE AND THE SAMPLE | 257 |
| APPENDIX 10: CORRECTION TO THE EXPERIMENTAL DRYING CURVE<br>OF A TRUNCATED CONE TO OBTAIN THE CORRESPONDING DRYING<br>CURVE FOR A CYLINDER     | 253 |
| APPENDIX 11: THE HEAT AND MASS TRANSFER ANALOGY                                                                                                | 257 |

## LIST OF FIGURES

•

Ţ

| <u>Figure</u> | Caption                                            | <u>Page</u>    |
|---------------|----------------------------------------------------|----------------|
| 3.1           | Oven schematic                                     | 19             |
| 3.2           | Photograph of the oven and the test section        | 20             |
| 3.3a          | Test section: bottom view                          | 21             |
| 3.3b          | Test section: cross sectional view                 | 21             |
| 3.3c          | Test section: top view                             | 22             |
| 3.4a          | Container mold: top view                           | 26             |
| 3.4b          | Container mold: cross sectional view               | 26             |
| 3.5           | Photograph of a random glass beads sample          | 28             |
| 3.6           | Photograph of beads from a sintered sample         | 28             |
| 3.7           | Schematic of the wetting apparatus                 | 33             |
| 3.8           | The sample and sample holder: cross sectional view | 35             |
| 3.9           | Schematic of the data acquisition system           |                |
| 3.10a         | The typical drying rate curve N <sub>v</sub> vs. X | <sup>A</sup> ú |
| 3.10b         | The typical m vs. t curve                          | 40             |

| 3.11 | The determination of $X_c$ on the $T_s$ vs. X curve                                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------------|
| 4.1a | A typical transfer coefficient ratio distribution at $T_{\infty}^{*}$ = 80 °C68                                                |
| 4.1b | A typical transfer coefficient ratio distribution at $T_{\infty}^{*}$ = 130 °C68                                               |
| 4.2  | A typical transfer coefficient ratio distribution at $T_{\infty}^{*}$ = 180 °C69                                               |
| 4.3  | The critical point curve from the convective drying results                                                                    |
| 5.1  | A typical q <sub>is</sub> vs. t curve from the heat flux meter after insertion in<br>the blackbody cavity opening              |
| 5.2a | Temperature evolution within the water layer during an evaporation experiment (T <sub>w</sub> vs. t for 2 heating elements on) |
| 5.2b | Temperature evolution within the water layer during an evaporation experiment (T <sub>w</sub> vs. t for 8 heating elements on) |
| 5.3a | The overall incident radiative heat flux from evaporation experiments (q <sub>is</sub> vs. t for 2 and 4 heating elements on)  |
| 5.3b | The overall incident radiative heat flux from evaporation experiments (q <sub>is</sub> vs. t for 6 and 8 heating elements on)  |
| 5.4a | Correlation of the overall incident radiative heat flux (q <sub>is</sub> vs. t for 2<br>and 4 heating elements on)             |
| 5.4b | Correlation of the overall incident radiative heat flux (q <sub>is</sub> vs. t for 6<br>and 8 heating elements on)             |

•

I

х

| 5.5a | The sample surface temperature as a function of the overall incident heat flux from free convection-I.R. drying runs (T <sub>s</sub> * vs. q <sub>is</sub> *)              |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.5b | The sample surface temperature as a function of the overall incident heat flux from forced convection I.R. drying runs (T <sub>s</sub> *vs. q <sub>is</sub> *)             |
| 5.6a | Characteristic power input curves from the combined convective and I.R. drying runs (P <sub>i</sub> vs. t for 2 heating elements on)                                       |
| 5.6b | Characteristic power input curves from the combined convective and I.R. drying runs (P <sub>i</sub> vs. t for 8 heating elements on)                                       |
| 5.7a | A typical scaled-up fraction of characteristic power input curves<br>from the combined convective and I.R. drying runs (P <sub>i</sub> vs. t for 2<br>heating elements on) |
| 5.7b | A typical scaled-up fraction of characteristic power input curves<br>from the combined convective and I.R. drying runs (P <sub>i</sub> vs. t for 8<br>heating elements on) |
| 5.8a | The radiative heat transfer rate within the test section as a function of the convective heat transfer coefficient $(Q_R^* vs. h_{cc}^*)$                                  |
| 5.8b | The convective heat transfer rate within the test section as a function of the convective heat transfer coefficient $(Q_c^* vs. h_{cc}^*)$                                 |
| 5.9a | The convective heat transfer rate within the test section as a function of the power input for 2 heating elements $(Q_c^{\bullet} vs. P_i^{\bullet})$ 106                  |

•

•

xi

| 5.9b  | The convective heat transfer rate within the test section as a function of the power input for 8 heating elements $(Q_c^* vs. P_i^*)$ 106                                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.10a | Photograph of sample No. X after completion of the experimental schedule: overall view of the surface                                                                      |
| 5.10b | Photograph of sample No. XII after completion of the experimental schedule: overall view of the surface                                                                    |
| 5.11a | Photograph of sample No. X after completion of the experimental schedule: a typical fraction of the surface magnified (X40)                                                |
| 5.11b | Photograph of sample No. XII after completion of the experimental schedule: a typical fraction of the surface magnified (X40)116                                           |
| 5.12a | The drying rate as a function of the overall incident heat flux from free convection-I.R. drying runs (Nv vs. qis)                                                         |
| 5.12b | The drying rate as a function of the overall incident heat flux from forced convection I.R. drying runs (Nv <sup>*</sup> vs. q <sub>is</sub> <sup>*</sup> )119             |
| 5.13a | The heat transfer coefficient correction factor as a function of the overall incident heat flux from forced convection I.R. drying runs $(\theta_h \text{ vs. } q_{is}^*)$ |
| 5.13b | The mass transfer coefficient correction factor as a function of the overall incident heat flux from forced convection I.R. drying runs $(\theta_{K} vs. q_{is}^{*})$      |
| 5.14a | Hanna's correction factor as a function of the overall incident heat flux from forced convection I.R. drying runs (H <sub>c</sub> vs. q <sub>is</sub> )                    |

.

٠

I

5.16b A frequency distribution for 
$$\left(\frac{Nu_{BL}}{Sh_{yBL}}\frac{Sc}{Pr}\right)^{2}$$
 from the combined

convective and I.R. drying runs......133

- 6.1a The funicular and pendular drying regimes......150

| 6.1b | The elementary control volume150                                                                     |
|------|------------------------------------------------------------------------------------------------------|
| 6.1c | The control volume grid150                                                                           |
| 6.2a | The drying curve for run no. co4166                                                                  |
| 6.2b | The drying rate curve for run no. co4166                                                             |
| 6.3  | The surface and bottom temperatures for run no. co4                                                  |
| 6.4  | The isotherms within the dried sample close to the surface thermocouple for run no. co9171           |
| 6.5  | The 5.5 mm sample: cross sectional view174                                                           |
| 6.6a | The drying curve for run no. co7: test of the drying front position correction                       |
| 6.6b | The surface and bottom temperatures for run no. co7: test of the drying front position correction177 |
| 6.7a | The drying rate curve for run no. co7: test of the drying front position correction                  |
| 6.7b | The drying rate curve for run no. re6: test of the drying front position correction                  |
| 6.8a | The drying curve for run no. re6: test of the drying front position correction                       |
| 6.8b | The surface and bottom temperatures for run no. re6: test of the drying front position correction    |

•

₹ 1 xiv

| 6.9a           | The drying curve for run no. co11: test of the transfer coefficient correction procedure (B.L.T.)                             |
|----------------|-------------------------------------------------------------------------------------------------------------------------------|
| 6.9b           | The surface and bottom temperatures for run no. co11: test of the transfer coefficient correction procedure (B.L.T.)          |
| 6.10a          | The drying rate curve for run no. co11: test of the transfer coefficient correction procedure (B.L.T.)                        |
| 6.10b          | The drying rate curve for run no. re18181                                                                                     |
| 6.11a          | The drying curve for run no. re18183                                                                                          |
| 6.1 <b>1</b> b | The surface and bottom temperatures for run no. re18                                                                          |
| 6.12a          | The drying curve for run no. co8184                                                                                           |
| 6.12b          | The surface and bottom temperatures for run no. co8                                                                           |
| 6.13a          | The drying rate curve for run no. co8185                                                                                      |
| 6.13b          | The drying rate curve for run no. re21185                                                                                     |
| 6.14a          | The drying curve for run no. re21186                                                                                          |
| 6.14b          | The surface and bottom temperatures for run no. re21                                                                          |
| 6.15           | An evaluation of the experimental surface temperature<br>measurement bias for the combined convective and I.R. drying<br>runs |

. .

ľ

xv

| 6.16a | The drying curve for run no. ir1: test of the drying front position correction                                       |
|-------|----------------------------------------------------------------------------------------------------------------------|
| 6.16b | The surface and botton temperatures for run no. ir1: test of the drying iront position correction                    |
| 6.17a | The drying rate curve for run no. ir1: test of the drying front position correction                                  |
| 6.17b | The drying rate curve for run no. ir4: test of the drying front position correction                                  |
| 6.18a | The drying curve for run no. ir4: test of the drying front position correction                                       |
| 6.18b | The surface and bottom temperatures for run no. ir4: test of the drying front position correction                    |
| 6.19a | The drying curve for run no. ir15: test of the transfer coefficient correction procedure (B.L.T.)                    |
| 6.19b | The surface and bottom temperatures for run no. ir15: test of the transfer coefficient correction procedure (B.L.T.) |
| 6.20a | The drying rate curve for run no. ir15: test of the transfer coefficient correction procedure (B.L.T.)               |
| 6.20b | The drying rate curve for run no. ir12197                                                                            |
| 6.21a | The drying curve for run no.ir12199                                                                                  |
| 6.21b | The surface and bottom temperatures for run no. ir12                                                                 |

.

I

| 6.22a | The drying curve for run no. ir2200                                                                                                                                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.22b | The surface and bottom temperatures for run no. ir2                                                                                                                  |
| 6.23a | The drying rate curve for run no. ir2201                                                                                                                             |
| 6.23b | The drying rate curve for run no. i85h201                                                                                                                            |
| 6.24a | The drying curve for run no. i85h202                                                                                                                                 |
| 6.24b | The surface and bottom temperatures for run no. i85h                                                                                                                 |
| 6.25a | The drying curve for run no. i38h: The transition to the boiling point temperature at low radiative heat flux $(q_{is}^{+} = 7920 \text{ W/m}^2)$ 203                |
| 6.25b | The surface and bottom temperatures for run no. i38h: The transition to the boiling point temperature at low radiative heat flux $(q_{is} = 7920 \text{ W/m}^2)$ 203 |
| 6.26a | The drying rate curve for run no. i38h: The transition to the boiling point temperature at low radiative heat flux $(q_{is} = 7920 \text{ W/m}^2)$ 204               |
| 6.26b | The drying rate curve for run no. i76h: The transition to the boiling point temperature at high radiative heat flux $(q_{is} = 22020 \text{ W/m}^2)$ 204             |
| 6.27a | The drying curve for run no. i76h: The transition to the boiling point temperature at high radiative heat flux $(q_{is} = 22020 \text{ W/m}^2)$                      |
|       |                                                                                                                                                                      |

.

. .

| 6.27b | The surface and bottom temperatures for run no. i76h: The transition to the boiling point temperature at high radiative heat flux $(q_{is} = 22020 \text{ W/m}^2)$ 2 | 205 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A5.1a | Test section: bottom view2                                                                                                                                           | 234 |
| A5.1b | Test section: cross sectional view2                                                                                                                                  | 234 |
| A5.1c | Test section: top view2                                                                                                                                              | 235 |
| A6.1  | The emissivity measurement set-up                                                                                                                                    | 239 |
| A6.2a | The emissivity of the test section walls: Et                                                                                                                         | 241 |
| A6.2b | The emissivity of the stainless steel shield: E <sub>sc</sub>                                                                                                        | 241 |
| A6.3  | The emissivity of the glass beads sample: E <sub>s</sub>                                                                                                             | 243 |
| A7.1  | The Nu vs. Re curve: experiments and correlation (A7.2)                                                                                                              | 246 |
| A8.1  | The heat transfer rates on the vessel side                                                                                                                           | 248 |

## LIST OF TABLES

•

| <u>[able</u> | Title                                                                                                     | <u>Page</u> |
|--------------|-----------------------------------------------------------------------------------------------------------|-------------|
| 3.1          | Glass beads bed characteristics                                                                           | 31          |
| 3.2          | Summary of the reproducibility study: $N_v^{\bullet}$ , $t_o$ , $t_c$ and $X_c$                           | 45          |
| 3.3          | Maximum experimental uncertainty for dependent and independent variables                                  | 48          |
| <b>.</b> 1   | Heat transfer coefficients from the convective drying runs                                                | 54          |
| .2a          | The transfer coefficient ratios from the convective drying runs                                           | 62          |
| .2b          | The transfer coefficient ratios from the convective drying runs                                           | 63          |
| .3           | Sensitivity study of the transfer coefficient ratios from the convective drying runs                      | 70          |
| .4           | Critical moisture content in convection drying                                                            | 72          |
| 5.1a         | The incident I.R. source and test section walls radiative heat fluxes estimated from the evaporation runs | 89          |
| 5.1b         | The incident I.R. source and test section walls radiative heat fluxes estimated from the evaporation runs | 90          |
| 5.2          | Evaluation of the sample equivalent hemispherical total emissivity under I.R. heat flux                   | ,<br>95     |
| 5.1a<br>5.1b | Sensitivity study of the transfer coefficient ratios from the convective drying runs                      | ······      |

| 5.3a  | The incident I.R. source and test section radiative wall heat fluxes from combined convective and I.R. drying runs                                                                                                        |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.3b  | The incident I.R. source and test section radiative wall heat fluxes from combined convective and I.R. drying runs                                                                                                        |
| 5.4a  | Heat transfer coefficients from the combined convective and I.R. drying runs                                                                                                                                              |
| 5.4b  | Heat transfer coefficients from the combined convective and I.R. drying runs                                                                                                                                              |
| 5.5   | Comparison of $(K_{yBL})_{varp}$ and $h_{cBL}$ after (combined convective-<br>I.R. drying runs) and before (convective runs): the effect of crust<br>formation on sample No. XII and XIII from convective drying runs<br> |
| 5.6   | Test on the prediction of the heat transfer coefficient with the boundary layer theory from the combined convective and I.R. drying runs                                                                                  |
| 5.7   | The transfer coefficient ratios from the combined convective and I.R. drying runs (raw data)128                                                                                                                           |
| 5.8   | The transfer coefficient ratios from the combined convective and I.R. drying runs (T <sub>s</sub> <sup>*</sup> corrected)129                                                                                              |
| 5.9   | The transfer coefficient ratios from the combined convective and I.R. drying runs and the correction procedures                                                                                                           |
| 5.10a | Critical moisture content from the combined convective and I.R.<br>drying runs                                                                                                                                            |

•

| 5.10b | Critical moisture content from the combined convective and I.R. drying runs                                                                                             | .140 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 6.1   | Measured and simulated surface temperatures for convective drying: evaluation of the experimental bias at the end of drying                                             | .172 |
| 6.2   | Measured and simulated drying times, bottom and surface<br>temperatures at the end of drying with and without drying front<br>correction for convective drying          | 175  |
| 6.3   | Measured and simulated drying times and bottom temperatures at<br>the end of drying with and without drying front correction for<br>combined convective and I.R. drying | 191  |

. .

ſ

xxi

## NOMENCLATURE

•

7 5

| Symbo             | <u>Meaning</u>                                                     | <u>Unit</u>        |
|-------------------|--------------------------------------------------------------------|--------------------|
| a <sub>f</sub>    | External surface of the control volume                             | m²                 |
| a <sub>ki</sub>   | Interface area between k and i phase                               | m <sup>2</sup>     |
| A <sub>CO2</sub>  | Mean total absorptivity of CO <sub>2</sub>                         | -                  |
| Aq                | Mean total absorptivity of the gas layer                           | -                  |
| A <sub>H2O</sub>  | Mean total absorptivity of H <sub>2</sub> O                        | -                  |
| A <sub>s</sub>    | Sample surface area                                                | m <sup>2</sup>     |
| A <sub>t</sub>    | Overall test section area                                          | m <sup>2</sup>     |
| Aw                | Pyrex dish evaporation area                                        | m²                 |
| b                 | Sample height                                                      | m                  |
| B <sub>h</sub>    | Energy flux ratio                                                  | -                  |
| B <sub>K</sub>    | Driving force used at high mass flux and molar flux ratio          | -                  |
| с <sub>д</sub>    | Total molar concentration of the gaseous mixture                   | mol/m <sup>3</sup> |
| cor               | Parameter equal to 1 when the drying front correction is applied   |                    |
|                   | (otherwise 0)                                                      | -                  |
| с <sub>ра</sub>   | Air specific heat                                                  | J/kgK              |
| c <sub>pb</sub>   | Glass beads or Pyrex specific heat                                 | J/kgK              |
| c <sub>pg</sub>   | Gaseous mixture specific heat                                      | J/kgK              |
| c <sub>pv</sub>   | Water vapor specific heat                                          | J/kgK              |
| c <sub>pw</sub>   | Water specific heat                                                | J/kgK              |
| d                 | Particle diameter                                                  | m                  |
| D                 | Sample diameter                                                    | m                  |
| D <sub>va</sub>   | Binary diffusivity of vapor in air                                 | m <sup>2</sup> /s  |
| Dε                | Effective diffusion coefficient of vapor in the porous matrix      | m²/s               |
| е                 | distance separating the bottom and upper plate                     | m                  |
| Ea                | Total hemispherical emissivity of the aluminium foil               | -                  |
| E <sub>cy</sub>   | Total hemispherical emissivity of the cylindrical radiative screen | -                  |
| E. <sub>CO2</sub> | Emissivity of carbon dioxide                                       | -                  |
| E <sub>H2O</sub>  | Emissivity of water vapor                                          | -                  |
| Enp               | Total hemispherical emissivity of the 3M Nextel black paint        | -                  |
| Es                | Total hemispherical emissivity of the sample surface               | -                  |
| E <sub>sc</sub>   | Total hemispherical emissivity of the planar radiative screen      | -                  |

.

| E,               | Total hemispherical emissivity of the test section wall          | -                    |
|------------------|------------------------------------------------------------------|----------------------|
| É,               | Total hemispherical emissivity of water                          | -                    |
| E <sub>4</sub>   | Equivalent total hemispherical emissivity of surface 4           | -                    |
| ·                | (the I.R. source aperture)                                       |                      |
| f                | Diffusion resistance factor                                      | -                    |
| F <sub>ii</sub>  | Shape factor                                                     | -                    |
| h,               | Overall heat transfer coefficient                                | W/m <sup>2</sup> K   |
| h <sub>c</sub>   | Forced or free convection heat transfer coefficient              | W/m²K                |
| h <sub>cBL</sub> | Heat transfer coefficient corrected with the Boundary            |                      |
|                  | Layer theory                                                     | W/m <sup>2</sup> K   |
| h <sub>cc</sub>  | Forced convection heat transfer coefficient predicted            |                      |
|                  | from the experimentally obtained correlation for low             |                      |
|                  | mass flux (Appendix 7)                                           | W/m <sup>2</sup> K   |
| h <sub>cp</sub>  | Forced convection heat transfer coefficient predicted from       | _                    |
|                  | h <sub>cc</sub> and the boundary layer theory (B.L.T.)           | W/m <sup>2</sup> K   |
| h <sub>k</sub>   | k phase enthalpy                                                 | J/kg                 |
| h <sub>v</sub>   | Vapor enthalpy                                                   | J/kg                 |
| H <sub>c</sub>   | Hanna's correction factor                                        | -                    |
| Ĵ                | Flux term                                                        | W/m <sup>2</sup>     |
| k                | Apparent thermal conductivity of wet bed                         | W/mK                 |
| k <sub>a</sub>   | Thermal conductivity of dry air                                  | W/mK                 |
| k <sub>d</sub>   | Thermal conductivity of dry glass beads bed                      | W/mK                 |
| k <sub>dif</sub> | Thermal conductivity due to the transfer of latent heat by vapor |                      |
|                  | movement under the influence of a temperature gradient           | W/mK                 |
| k <sub>dw</sub>  | Thermal conductivity of the solid and liquid phase               | W/mK                 |
| k <sub>g</sub>   | Thermal conductivity of the gaseous phase                        | W/mK                 |
| k <sub>v</sub>   | Thermal conductivity of vapor                                    | W/mK                 |
| k <sub>T</sub>   | Trymer 9501 thermal conductivity                                 | W/mK                 |
| К <sub>у</sub>   | Mass transfer coefficient based on mole fraction                 | mol/m <sup>2</sup> s |
| К <sub>уВL</sub> | Mass transfer coefficient based on mole fraction                 |                      |
|                  | corrected with the B.L. theory                                   | mol/m <sup>2</sup> s |
| Κ <sub>ρ</sub>   | Mass transfar coefficient based on density                       | m/s                  |
| Κ <sub>ρΒL</sub> | Mass transfer coefficient based on density                       |                      |
|                  | corrected with the Boundary Layer theory                         | m/s                  |
| Le               | Lewis number, Sc/Pr                                              | -                    |
| L <sub>e</sub>   | Mean beam length                                                 | m                    |

4

ſ

| •           |    |
|-------------|----|
| ~ * * * * * |    |
| ***         | 11 |
| ~~!         | v  |
|             | •  |
|             |    |

| Li                      | Distance on the sample or sample holder                           | m                   |
|-------------------------|-------------------------------------------------------------------|---------------------|
| m                       | Samp: and sample holder mass                                      | kg                  |
| m <sub>b</sub>          | Glass beads bed or pyrex dish mass                                | kg                  |
| mi                      | i <sup>th</sup> recorded mass value                               | kg                  |
| m <sub>k,i</sub>        | k phase mass flux at the control volume boundary                  | kg/m <sup>2</sup> s |
| mw                      | Total amount of water within the sample or pyrex dish at time t   | kg                  |
| М                       | Average molecular weight of water                                 | kg/mol              |
| Mw                      | Molecular weight of water                                         | kg/mol              |
| n                       | Number of phases or degree of freedom                             | -                   |
| N                       | Total number of recorded data m                                   | -                   |
| Nu                      | Nusselt number                                                    | -                   |
| N <sub>v</sub>          | Drying rate                                                       | kg/m²s              |
| PCO2                    | Partial pressure of CO <sub>2</sub>                               | N/m <sup>2</sup>    |
| P <sub>H2O</sub>        | Partial pressure of H <sub>2</sub> O                              | N/m <sup>2</sup>    |
| p <sub>v</sub>          | Partial vapor pressure                                            | N/m <sup>2</sup>    |
| Pi                      | Power input                                                       | W                   |
| Pr                      | Prandtl number,                                                   | -                   |
| P_                      | Test section pressure                                             | N/m <sup>2</sup>    |
| q <sub>ab</sub>         | Net absorbed heat flux on the surface in combined convective      |                     |
|                         | and I.R. drying                                                   | W/m <sup>2</sup>    |
| q <sub>ac</sub>         | Accumulation heat flux                                            | W/m <sup>2</sup>    |
| q <sub>c</sub>          | Convective heat flux                                              | W/m <sup>2</sup>    |
| q <sub>is</sub>         | Overall incident radiative heat flux on the sample surface        | W/m <sup>2</sup>    |
| q <sub>its</sub>        | Incident heat flux from test section wall on the sample           |                     |
|                         | or water                                                          | W/m <sup>2</sup>    |
| ā.                      | Conduction heat flux for the k phase                              | W/m <sup>2</sup>    |
| G <sub>ain</sub>        | Incident heat flux from I.R. source on the sample or water        | W/m <sup>2</sup>    |
| ⊐sır<br>Q <sub>te</sub> | Net radiative flux between the test section walls and the sample  | W/m <sup>2</sup>    |
| , is<br>O               | Bate of heat transfer at the sample surface                       | w                   |
| Q                       | Rate of heat accumulation inside the sample                       | W                   |
| -ac<br>Qo               | Rate of convective heat transfer from surface 2 and 3             | w                   |
| <br>Q:                  | Rate of heat input to surface i or output of surface i            | w                   |
|                         | Rate of radiative heat transfer from surface 2 and 3              | w                   |
| -н<br>Q.,               | Rate of energy transport by the water vapor at the sample surface | e w                 |
| -v<br>r                 | Correlation coefficient                                           | -                   |
| 1                       |                                                                   |                     |

**₹** 

| r,               | Radius                                                    | m                   |
|------------------|-----------------------------------------------------------|---------------------|
| r                | Reproducibility parameter                                 | -                   |
| R<br>R           | Perfect gas constant<br>Convective resistance coefficient | J/molK<br>m/s       |
| R <sub>D1</sub>  | Surface diffusion resistance coefficient                  | m²s/kg              |
| R <sub>D2</sub>  | Diffusion resistance coefficient through the dried layer  | m <sup>2</sup> s/kg |
| Re               | Reynolds number                                           | -                   |
| S                | Average or local bed saturation                           | -                   |
| Sc               | Schmidt number                                            | -                   |
| S <sub>c</sub>   | Average bed saturation at critical point                  | -                   |
| Sh               | Sherwood number                                           | -                   |
| Sm               | Smoothing spline function                                 | kg                  |
| Ss               | Surface saturation                                        | -                   |
| S <sub>ir</sub>  | Irreducible saturation                                    | -                   |
| t                | Student't test variable                                   | -                   |
| t                | Time                                                      | S                   |
| t <sub>c</sub>   | Critical time                                             | S                   |
| t <sub>av</sub>  | Time in the middle of the P.C.D.R.P.                      | S                   |
| to               | Overall drying time                                       | S                   |
| t <sub>1</sub>   | Time at the start of the P.C.D.R.P.                       | S                   |
| t <sub>2</sub>   | Time at the end of the P.C.D.R.P.                         | S                   |
| T <sub>amb</sub> | Ambiant or room temperature                               | K                   |
| т <sub>ь</sub>   | Sample bottom temperature                                 | K                   |
| Т <sub>d</sub>   | Air dew point temperature                                 | К                   |
| T <sub>f</sub>   | Drying front temperature                                  | K                   |
| Т <sub>h</sub>   | Heat flux transducer temperature                          | K                   |
| Т <sub>рі</sub>  | Test section bottom plate temperatures                    | К                   |
| Т <sub>s</sub>   | Sample surface temperature                                | К                   |
| T <sub>sir</sub> | Heating elements temperature                              | K                   |
| Τ <sub>t</sub>   | Average test section wall temperature                     | К                   |
| T <sub>ti</sub>  | Local test section wall temperatures                      | K                   |
| Tw               | Water or evaporation temperature                          | К                   |
| T <sub>win</sub> | Initial water temperature for evaporation experiments     | К                   |
| T <sub>2</sub>   | Average temperature of surface 2 (defined in Appendix 5)  | К                   |
| Тз               | Average temperature of surface 3 (defined in Appendix 5)  | к                   |

xxv

**\*** 1

| T <sub>4</sub>            | Equivalent radiative temperature of surface 4 (defined in Appendix | 5) K                           |
|---------------------------|--------------------------------------------------------------------|--------------------------------|
| T∞                        | Test section airflow temperature                                   | К                              |
| T <sub>∞i</sub>           | Local test section airflow temperatures                            | К                              |
| v                         | Overall volume of the control volume                               | m <sup>3</sup>                 |
| V <sub>∞</sub>            | Test section air velocity                                          | m/s                            |
| V <sub>cy</sub>           | Equivalent cylinder bed volume                                     | m <sup>3</sup>                 |
| $\overline{V}_{\kappa i}$ | ki interface velocity                                              | m/s                            |
| $\overline{V}_t$          | Control volume speed                                               | m/s                            |
| V <sub>i</sub>            | Parameter to be tested for reproducibility                         | -                              |
| V <sub>t</sub>            | Overall sample volume                                              | m <sup>3</sup>                 |
| V <sub>v</sub>            | Volume fraction of water vapor                                     | m <sup>3</sup> /m <sup>3</sup> |
| У <sub>vs</sub>           | Water vapor mole fraction at the sample surface                    | -                              |
| У <sub>vf</sub>           | Water vapor mole fraction at the front                             | -                              |
| y <sub>v∞</sub>           | Water vapor mole fraction within the test section flow             | -                              |
| x <sub>cv</sub>           | Control volume boundary position with respect to the surface       | m                              |
| x <sub>f</sub>            | Corrected drying front position                                    | kg/kg                          |
| x <sub>f</sub>            | Drying front position from the surface                             | kg/kg                          |
| Х                         | Moisture content (dry basis)                                       | kg/kg                          |
| X <sub>c</sub>            | Critical moisture content (dry basis)                              | kg/kg                          |
| X <sub>cs</sub>           | Critical moisture content at the surface (dry basis)               | kg/kg                          |
| X <sub>in</sub>           | Initial moisture content (dry basis)                               | kg/kg                          |
| Xw                        | Uniform moisture content in the wet zone(dry basis)                | kg/kg                          |

# Greek Symbols

٠

| α               | Angle                                                                                  | 0                  |
|-----------------|----------------------------------------------------------------------------------------|--------------------|
| α <sub>k</sub>  | Volume fraction of the k phase                                                         | m³/m³              |
| β <sub>k</sub>  | Part of the surface a <sub>f</sub> occupied by k phase at the i <sup>th</sup> boundary | m²/m²              |
| δ <sub>ki</sub> | Kronecker delta                                                                        | -                  |
| δχ              | Width of the control volume                                                            | m                  |
| ∆h <sub>i</sub> | Heat transfer coefficient difference                                                   | W/m <sup>2</sup> K |
| ΔH <sub>v</sub> | Heat of evaporation of water                                                           | J/kg               |
| Δt              | Time step                                                                              | S                  |
| ∆T <sub>i</sub> | Temperature difference                                                                 | К                  |
| Δx <sub>i</sub> | Control volume node spacing or distance                                                | m                  |

|       | ٠ | ٠ |
|-------|---|---|
| ~~~   | н |   |
| X X Y | L | L |
|       |   |   |

| Δρ               | Density difference                                     | kg/m <sup>3</sup>                |
|------------------|--------------------------------------------------------|----------------------------------|
| 3                | Glass beads bed porosity                               | m <sup>3</sup> /m <sup>3</sup>   |
| θ <sub>h</sub>   | Correction factor for the heat transfer coefficient    | -                                |
| θĸ               | Correction factor for the mass transfer coefficient    | -                                |
| κ                | Permeability                                           | m <sup>2</sup>                   |
| λ <sub>max</sub> | Wavelength at which the emissive power is maximum      | m                                |
|                  | for a given temperature                                |                                  |
| $\mu_a$          | Dynamic viscosity of air                               | kg/ms                            |
| μ <sub>g</sub>   | Dynamic viscosity of the gaseous mixture               | kg/ms                            |
| μ <sub>g</sub>   | Dynamic viscosity of vapor                             | kg/ms                            |
| Рь               | Bulk glass density                                     | kg/m <sup>3</sup>                |
| Ρd               | Glass beads bed density                                | kg/m <sup>3</sup>                |
| ρ <sub>g</sub>   | Gaseous mixture density                                | kg/m <sup>3</sup>                |
| Pvs              | Water vapor density at the sample surface              | kg/m <sup>3</sup>                |
| ρ <sub>v∞</sub>  | Water vapor density within the test section flow       | kg/m <sup>3</sup>                |
| φ <sub>k</sub>   | Volumic source in the k phase of $\Psi_{\mathbf{k}}$   | Ψ <sub>k</sub> /m <sup>3</sup> s |
| φ <sub>h</sub>   | Rate factor for the heat transfer transfer coefficient | W/m <sup>2</sup> K <sup>4</sup>  |
| ¢κ               | Rate factor for the mass transfer coefficient          | W/m²K⁴                           |
| σ                | Stefan-Boltzman constant                               | W/m <sup>2</sup> K <sup>4</sup>  |
| σ <sub>m</sub>   | Smoothing parameter                                    | -                                |
| ω <sub>i</sub>   | Weight of the data                                     | g                                |
| ω                | Water vapor mass fraction                              | -                                |
| Ψ <sub>k</sub>   | k phase function                                       | -                                |

.

# Subscripts

| а   | Air                                      |
|-----|------------------------------------------|
| ac  | Accumulation                             |
| amb | Ambiant                                  |
| av  | Average                                  |
| b   | Beads, bottom or glass                   |
| BL  | Corrected with the Boundary Layer Theory |
| с   | Critical or convection                   |
| су  | Cylinder                                 |
| со  | Cone                                     |

~

| d    | Dew point or dry                                            |
|------|-------------------------------------------------------------|
| е    | Experiment                                                  |
| f    | Final, film or at front location                            |
| g    | Air-vapor mixture                                           |
| 'n   | Heat transfer coefficient                                   |
| i    | thermocouple location; input                                |
| in   | Initial condition                                           |
| ir   | Irreducible                                                 |
| is   | Incident on the sample surface                              |
| its  | Incident on the sample surface from the test section walls  |
| k    | k phase                                                     |
| к    | Mass transfer coefficient                                   |
| m    | Mass; smoothing                                             |
| np   | 3M Nextel paint characteristic                              |
| 0    | Overall                                                     |
| р    | Evaluated at constant pressure; plate or predicted          |
| v    | Vapor                                                       |
| S    | Surface                                                     |
| SC   | Screen                                                      |
| sir  | From or characteristic of the infrared source               |
| t    | Test section                                                |
| ts   | Exchanged between test section and the sample               |
| varp | Quantity evaluated taking into account variation in density |
| w    | Water, evaporation or wet zone                              |
| У    | Mole fraction driving force                                 |
| 1    | Relative to surface 1                                       |
| 2    | Relative to surface 2 or surface average                    |
| 2D   | Evaluated with Flux2D                                       |
| 3    | Relative to surface 3 or volume average                     |
| 4    | Relative to surface 4                                       |
| ρ    | Concentration driving force                                 |
| 8    | Test section flow parameter                                 |
| Supe | rscripts                                                    |

<sup>1</sup> Evaluated at t+Δt

٠

- 0 Evaluated at t
- Average during the Pseudo Constant Drying Rate Period (P.C.D.R.P.)
- Corrected front position
- Vector

=

.

Tensor

## **CHAPTER 1 - INTRODUCTION**

#### 1.1 BACKGROUND

۰.

Conventional convective drying processes being energy intensive and relatively slow, other techniques are being more intensively studied to minimize or offset these limitations. One may cite the following methods for drying of web-like or panel shaped materials:

- a) Impingement drying;
- b) Through drying (for permeable materials);
- c) Superheated steam drying;
- d) Radio-frequency drying;
- e) Infrared (I.R.) drying.

Among these, the use of I.R. heating has significant advantages for industrial drying applications (Orfeuil, 1987):

- a) Direct transfer of heat to the product;
- b) Low thermal inertia of the I.R. heat source;
- c) High heat flux intensity (up to 60 kW/m<sup>2</sup>);
- d) Choice of the emitter wavelength to match the product absorption characteristics;
- e) Accurate local application of the heat flux only where needed;
- f) Heating homogeneity due to radiation penetration (small thickness);
- g) Ease of combination with other heating modes (convection, conduction).

With electrical I.R. heat sources, these qualities translate into practical applications with the following advantages:

a) Improved productivity;

.

Ţ

- b) Reduction in overall furnace dimension;
- c) Improvement in product quality;
- d) Low investment cost;
- e) Flexible and fast process control;
- f) Energy efficient process;
- g) Simpler fabrication;
- h) Minimum maintenance requirements;
- i) No contamination of the product or pollution by heat source.

The following examples of I.R. heating applications in dehydration or partial drying have been presented by Orfeuil (1987):

- a) Paper, cardboard and textiles;
- b) Insulating boards, acoustic panels and gypsum board;
- c) Ceramics;
- d) Casting moulds and cores;
- e) Water paints and inks;
- f) Tobacco leaves;
- g) Plastic grains;
- h) Pharmaceutical products;
- i) Fish and vegetable products.

Despite their numerous applications, the design of a combined convective-I.R. drying oven still relies largely on experiments very often obtained with free convection-I.R. heating (no forced flow present) or with a full scale oven (Dostie et al., 1988). Such procedures do not allow one to account fully for the effect of coupling convection to I.R. heating or to study the specificity of this process. Thus there is need for the development of reliable procedures and

experimental facilities that will produce data of sufficient accuracy to obtain the necessary information (drying curves and temperature evolution) of the combined radiation/convection process at high gas temperatures and radiative heat fluxes.

To date the use of drying models (Puiggali, 1987; Bories, 1988) has been mainly confined to evaluate the effects of key heat (accumulation, convection, conduction) and mass transfer (capillarity, diffusion, gravity, sorption, convection) phenomena in relation to the material type (non-hygroscopic capillary porous materials, hygroscopic capillary porous materials, colloidal medium) and heating modes (convection, conduction, radiation or volumetric heating). Drying models have typically been attempted for a limited number of drying conditions. Most drying models necessitate a detailed knowledge of transport properties as well as intensive use of computer time. The following quotation from Franzen et al. (1987) underscores the limitations of the present drying models and model testing:

"The present theoretical development is ahead of the experimental testing of theories". "No model has been proven to be generally applicable. Ideally, a model should have a broad range of applications".

A model recently developed by Dostie (1991) is believed to be applicable over a wide range of drying conditions but remains to be tested extensively.

## 1.2 OBJECTIVES OF THE PRESENT STUDY

The objectives of this study were:

- a) To build a reliable experimental facility to study the high temperature combined convective-I.R. drying process;
- b) To evaluate the effect of I.R. heating on the convective heat and mass transfer coefficients;

- c) To determine the influence of combined convective and I.R. drying parameters on the critical moisture content of a model material;
- d) To test the applicability of a drying front model for the case of convective as well as combined convective-I.R. drying of a capillary porous medium (soda lime glass beads; 90-105 μm diameter range).

#### 1.3 OUTLINE OF THE THESIS

Ĺ

Ţ

Chapter II reviews works that have appeared in the published literature on experimental I.R. drying pointing out key results already obtained. Comments on one of the most widely accepted drying model and a summary of the arguments which favored the choice of a drying front model are also presented.

Chapter III describes the experimental apparatus designed and built, the procedures followed to carry out the experimental phase as well as testing of the reproducibility and uncertainty in the experimental results obtained.

Chapter IV presents an analysis of the convective drying experiments with respect to the heat and mass transfer analogy as expressed by the values taken by heat and mass transfer coefficient ratios, the high mass transfer rate effect on the transfer coefficients and the critical moisture content.

Chapter V presents a discussion of the combined convective-I.R. drying experiments with respect to the heat and mass transfer analogy, the high mass transfer rates effect on the transfer coefficients and the critical moisture content.

Chapter VI gives a brief description of the model used to simulate the I.R. drying process. The drying front model and the numerical solution technique are presented in detail. Finally, model predictions are compared with experimental drying data and discussed.

Chapter VII, includes the key conclusions of this work, contributions to prior knowledge and recommendations for future work.
### CHAPTER II - LITERATURE REVIEW

### 2.1 PRIOR EXPERIMENTAL STUDIES ON I.R. DRYING

Yagi et al. (1957) presented one of the most extensive experimental study of combined convective-I.R. (infrared lamps) drying of capillary porous and colloidal media (river and standard sand, iron beads, wood powder and porcelain clay,  $d=9-740 \ \mu m$ ,  $b=7-61 \ mm$ ,  $T_{\infty} \sim 8-33 \ ^{\circ}C$ ,  $v_{\infty} \sim 1.1-1.3 \ m/s$ ,  $q_{is} = 5110-10450 \ W/m^2$ ). Here d is the particle diameter, b the bed thickness,  $T_{\infty} \sim$  the flow temperature,  $v_{\infty} \sim$  the flow velocity and  $q_{is} \sim$  the overall incident radiative heat flux. The following conclusions can be drawn from their research:

- a) The critical moisture content X<sub>c</sub> (kg/kg dry basis) is constant (thus independent of drying parameters) as long as d > 100  $\mu$ m. When d < 100  $\mu$ m, X<sub>c</sub> increases as d decreases (Figure 5.18). X<sub>c</sub> is independent of q<sub>is</sub><sup>\*</sup>;
- b) The drying rate N<sub>v</sub><sup>\*</sup> during the constant drying rate period appears, on the average, to decrease with a decrease in d which might be linked to variation in emissivity (Shimizu et al., 1990). A significant constant drying rate period was reported (q<sub>is</sub><sup>\*</sup> = 10450 W/m<sup>2</sup>); however, as d is decreased the constant drying rate period shortens. N<sub>v</sub><sup>\*</sup> increased as q<sub>is</sub><sup>\*</sup> increased;
- c) The average evaporation temperature during the constant rate period  $T_w^{*}$  increases as  $q_{is}^{*}$  is increased and is virtually independent of the material thickness. For the porcelain clay sample (colloidal medium),  $T_w^{*}$  was found to equal the boiling point temperature;
- d) The temperature evolution with time shows that the surface temperature  $(T_s)$  level-off rapidly after the beginning of I.R application and increases slowly up to the critical moisture content when it rises suddenly. Then, it is observed that the temperature reached, at a specific depth, just before the arrival of the front increases with depth up to a point (located between 10 mm and 20 mm) where it does not

. 7

change with increasing penetration of the front within the material; at this point the temperature distribution within the wet zone stays quite uniform while it varies almost linearly in the dried zone. The temperature gradients within the material prior to the drying front penetration are quite significant and diminish as X approaches  $X_c$ ;

e) The stabilized (for depth higher than 10 to 20 mm) drying front temperature T<sub>f</sub> increases as q<sub>is</sub> is increased.

The book by Ginzburg (1969) summarized the early Russian works in the field of I.R. drying and baking of mainly food products. Numerous data on the radiative properties (reflectivity, absorptivity and transmissivity) of various products are presented as well as I.R. (infrared lamp, tubular quartz radiators, resistance elements, ceramic heaters) drying data such as:

i.

ſ

- a) Steady and transient temperature distributions for dough-bread, macaroni dough, wheat grain layers, sunflower seeds (thick layers), rape and onions seeds, sesame kernel, tea, orange, lemon, meat and fish;
- b) I.R. drying curves for malt, wheat grain layers, sunflower seeds (thick layers), rape and onion seeds, sesame kernels, apples, carrots, green bearis, turnips, green peas, cabbage, potatoes, macaroni, calcium tartrate, meat and fish;
- c) Drying rate curves for sand, macaroni dough, malt, sunflower seeds (thick layers) and bread;
- d) Moisture content distributions under I.R. drying for sand and clay.

These data give a qualitatively good picture of the process but are, in most cases, only weakly supported by accurate specification of all experimental conditions and procedures. Furthermore, no extensive and detailed data are provided to study the interaction between convection and I.R. heating as applied to the drying process.

Interested in the internal transfer phenomena that occur during the drying process, Min and Emmons (1972) presented results from free convection-I.R. (quartz infrared lamp) drying experiments (alumina powder, b = 54 mm,  $T_{amb} = 20 \ ^{\circ}C$ ,  $q_{is} = 6270 \ W/m^2$ ) where the temperature, moisture and pressure distribution measurements have shown that:

- a) The temperature vs. time curves essentially confirm the observations that were made by Yagi et al. (1957);
- b) The moisture measurements made from an evaluation of a.c. conductance between two electrodes inserted in the test material show that the front arrival creates (a) a sharp drop in conductance coinciding with the break in the corresponding temperature vs. time curve (b) the moisture density increases due to condensation (evaporation-condensation phenomenon) prior to the arrival of the front;
- c) The pressure peak location corresponds to the front location and its maximal recorded intensity was 70 Pa above atmospheric.

Seki et al. (1977) provided data on free convection-I.R. (infrared lamp) drying of thick beds (glass beads, d= 360-1500  $\mu$ m, b= 100 mm, T<sub>∞</sub><sup>•</sup> = T<sub>amb</sub>, q<sub>is</sub><sup>•</sup> = 760-8820 W/m<sup>2</sup>). They observed that:

- a) For  $q_{is}^* \ge 4640 \text{ W/m}^2$ ,  $T_f$  reaches the boiling point and stays there up to the end of drying. For  $q_{is}^* < 4640 \text{ W/m}^2$ ,  $T_f$  increases with increase in the drying front progression;
- b) For d = 360  $\mu$ m, a constant drying rate period exists during which T<sub>s</sub> increases slowly. However as q<sub>is</sub><sup>\*</sup> is increased, the constant drying rate period duration shortens and the rate of drift of T<sub>s</sub> as a function of time during the constant drying rate period increases. For d = 970  $\mu$ m, no constant drying rate period can be observed whatever the value of q<sub>is</sub><sup>\*</sup>;

à

c)  $X_c$  always increases with increase in  $q_{is}$  (constant d, Figure 5.18) but its sensitivity to  $q_{is}$  is higher for small d (d = 360  $\mu$ m).  $X_c$  values are much higher than corresponding values for thinner beds;

1

Ţ

d) The saturation distribution curves (d = 360  $\mu$ m), evaluated by slicing the bed at the critical point, displays a rather steep transition between the lower part of the bed (S ~ 1) and the upper part of the bed (surface saturation ~ 0.1) for  $q_{is}^* \ge 4640 \text{ W/m}^2$ . Moisture distributions of bed constituted of different diameter glass beads (d= 360, 970 or 1500  $\mu$ m) show that, for the same  $q_{is}^*$  (8820 W/m<sup>2</sup>) capillary forces drain more water from the lower bed zone toward the surface as smaller particles are used (at the critical point). Thus, steeper moisture content transitions are found as d is increased. Beyond the critical point, the evolution with time of the moisture content distribution evolution with time shows a smoother transition between the front (S<sub>f</sub> = 0) and bottom bed saturations (d = 360  $\mu$ m,  $q_{is}^* = 760-8820 \text{ W/m}^2$ ).

Nishimura et al. (1983) provided data on the forced convection-I.R. (infrared lamp) drying of thin layers (PVA aqueous solution, b= 100-400  $\mu$ m, T<sub>∞</sub><sup>•</sup> = 20 °C, v<sub>∞</sub><sup>•</sup> ~ 2.5 m/s, absolute humidity = 0.011 kg H<sub>2</sub>O/kg air, q<sub>is</sub><sup>•</sup> = 4.65 kW/m<sup>2</sup>). Parameters varied were the initial water content and initial layer thickness b<sub>in</sub>. Their experiments showed that:

- a) An increase of b<sub>in</sub> increases the level of T<sub>w</sub><sup>\*</sup> and diminishes the drying rate. An increase of the initial water content lowers T<sub>w</sub><sup>\*</sup> slightly. T<sub>w</sub><sup>\*</sup> has a tendency to fall slightly at the end of the surface evaporation controlling period;
- b) The final dried film temperature increases with increase of the dried film thickness (which increases as the initial water content is decreased or the initial thickness increased);
- c) During the surface evaporation controlling period, the drying rate decreases with decrease in water content and the drying rate curves do not display any constant drying rate period. The maximal drying

rate increases as b<sub>in</sub> increases while it is not affected by variations in initial water content;

 d) The critical water content increases with a decrease in the initial water content.

Hasatani et al. (1983) studied the forced convection-I.R. (infrared lamp; radiation temperature  $T_{sir} \sim 2177 \text{ °C}$ ) drying of thick layers of wet silica sand, a slurry of activated sludge and a water suspension of graphite particles (d = 5  $\mu$ m. b = 20 mm,  $T_{\infty}^{*}$  = 30-80 °C,  $v_{\infty}^{*} \sim 1.1$  m/s, absolute humidity = 0.006-0.012 kg H<sub>2</sub>O/kg air,  $q_{is}^{*}$  = 290-1400 W/m<sup>2</sup>). Parameters varied were the suspension concentration (kg/m<sup>3</sup>), the material and  $q_{is}^{*}$ :

٩.

Ĩ

- a) A constant drying rate period was reported to exist for all three materials in the range of q<sub>is</sub>\* studied;
- b) For the graphite suspension, during the constant rate period, the concentration (0.0 to 3.44 kg/m<sup>3</sup>) had no effect on the drying rate. During the preheating period, the drying rate is slightly decreased as the concentration is decreased;
- c) For the silica sand layer, the drying rate during the constant drying rate period goes up nonlinearly as  $q_{is}^{*}$  and  $T_{\infty}^{*}$  increase.

With the same experimental equipment, Hasatani et al. (1988) compared various materials (Yallourn coal, silica sand and A2-brick) with same d dried under similar conditions (d = 320  $\mu$ m, b = 20 mm, T<sub>∞</sub><sup>\*</sup> = 27-72 °C, v<sub>∞</sub><sup>\*</sup> ~ 0.5 m/s, absolute humidity = 0.005-0.007 kg H<sub>2</sub>O/kg air, q<sub>is</sub><sup>\*</sup> = 0-1080 W/m<sup>2</sup>):

- a) The drying rate during the falling rate period is almost unchanged (as compared to the one observed with convection) by the addition of radiation (q<sub>is</sub><sup>\*</sup> = 662 W/m<sup>2</sup>) for silica sand and brick. However, it is enhanced for the case of coal;
- b) Temperature distributions were similar to the ones presented by Yagi et al. (1957) except for the fact that no temperature gradients were

reported for the case of a silica sand layer during the preheating and constant drying rate period  $(q_{is} = 662 \text{ W/m}^2)$ .

Dostie et al. (1988) presented drying curves and drying times for convective and combined convective-I.R. drying (ceramic panel with corrugated heating strips;  $T_{sir} = 815 \text{ °C}$ ) of sheathing panels made of wood products and acoustic tiles containing mineral materials and cellulose. The experiments were carried out in a pilot dryer where air flow was either perp. indicular or parallel to the panel (b = 12.7-15.9 mm,  $T_{\infty}^{*} = 160-180 \text{ °C}$ ,  $q_{is}^{*} = 14.0-16.1 \text{ kW/m}^2$ ). The key results of their experiments are:

- a) The drying time can be reduced by a factor two with intermittent I.R. heating as compared to convective heating alone. Infrared drying times are 25 % less than the best drying time achieved by convection only in the pilot oven;
- b) The use of intermittent I.R. heating allows control of the product surface temperature. This is in agreement with the many experimental results presented by Ginzburg (1969).

Shimizu et al. (1990) studied the effects of  $q_{is}^*$  from far infrared (FIR;  $\sim 2 \le \lambda \le 12 \mu m$ ; mullite cylinder) and near infrared radiative heaters (NIR;  $\sim 1.5 \le \lambda \le 5 \mu m$ ; quartz cylinder) as well as the effects of the dry material surface emissivity (E<sub>s</sub>) and d on N<sub>v</sub><sup>\*</sup> and T<sub>w</sub><sup>\*</sup> in the constant drying rate period of free convection-I.R. drying (alumina, silver and stainless steel powders, d = 38-250  $\mu m$ , b = 14.5 mm, T<sub>w</sub><sup>\*</sup> ~ 8-33 °C, v<sub>w</sub><sup>\*</sup> ~ 1.1-1.3 m/s, q<sub>is</sub><sup>\*</sup> = 1070-5890 W/m<sup>2</sup>). They found that:

- a) N<sub>v</sub><sup>\*</sup> increases linearly with q<sub>is</sub><sup>\*</sup> (FIR);
- b)  $N_v^*$  increases when  $E_s$  increases (FIR); this increase is higher at higher  $q_{is}^*$ . However, the  $N_v^*$  increase is not proportional to the  $E_s$  increase probably as a result of the water being at the surface level.  $T_w^*$  behaves similar to  $N_v^*$ ;

- c) N<sub>v</sub><sup>\*</sup> increases with particle size (in agreement with results of Yagi et al.(1957)) and this increase is higher at high q<sub>is</sub><sup>\*</sup> (FIR);
- d) For beds of alumina and silver particle, it was observed that N<sub>v</sub><sup>\*</sup> is higher, for same q<sub>is</sub><sup>\*</sup>, when radiation comes from an FIR heater rather than from an NIR heater as a result of a lower absorptivity for the wavelength range of the NIR heater.

Recently, Navarri (1990, 1991) summarized preliminary results on the forced convection-I.R. drying of a capillary porous medium. The results (Navarri, 1990) concern the case of a quarry sand layer dried with an FIR ( $T_{sir} \sim 827 \,^{\circ}$ C) heater (d = 250-400  $\mu$ m, b = 7 mm,  $T_{sir} \sim 30-90 \,^{\circ}$ C,  $v_{sir} \sim 2.2 \,^{\circ}$ m/s,  $q_{is} = 10640 \,^{\circ}$ W/m<sup>2</sup>). Three results were reported for  $T_{sir} \approx q_{is} = 10640 \,^{\circ}$ C and 90 °C from which it can be observed that:

- a) The critical moisture content  $X_c$  (range ~ 0.047-0.059) is almost independent of (variations in the order of ± 20 % corresponds probably to the reproducibility of such a measurement)  $T_{\infty}$  variations;
- b) The constant drying rate period (on the drying rate curve) shortens as T<sub>∞</sub><sup>\*</sup> is increased; however, strictly speaking, no "plateau" was observed; as expected N<sub>v</sub><sup>\*</sup> increases as T<sub>∞</sub><sup>\*</sup> is increased;
- c)  $T_w^*$  (range ~ 65-68 °C) is not significantly affected by increase in  $T_w^*$ .

Other results (Navarri, 1991) were obtained with sea sand dried using convection and an NIR ( $T_{sir} \sim 1927 \,^{\circ}$ C) heater (d = 200-250 µm, b = 5 mm,  $T_{\infty}^{*} \sim 20$ -28 °C,  $v_{\infty}^{*} \sim 2.1$ -6.0 m/s, relative humidity = 30 to 50 %,  $q_{is}^{*}$  = 10.0-18.5 kW/m<sup>2</sup>). Seven results were reported in terms of the drying rate curves which show that:

a) The critical moisture content  $X_c$  (range ~ 0.036-0.050) is almost constant as  $q_{is}^*$  is increased ( $q_{is}^* = 10.0, 13.0, 15.0$  and

{

18.5 kW/m<sup>2</sup>) and is close to a value of 0.04 reported for convective drying at low temperature ( $T_{\infty}^{\circ} \sim 30 \ ^{\circ}C$ );

- b) The constant drying rate period (on the drying rate curve) seems to shorten as q<sub>is</sub><sup>\*</sup> is increased; the "plateau" is more pronounced as compared to the one from previous results with higher T<sub>∞</sub><sup>\*</sup> (Navarri, 1990). As expected N<sub>v</sub><sup>\*</sup> increases almost proportionally with q<sub>is</sub><sup>\*</sup>;
- c) T<sub>w</sub><sup>\*</sup> increases as q<sub>is</sub><sup>\*</sup> is increased and is the highest when free convection is used;
- d) The analogy between the transfer of heat and mass expressed in terms of the convective heat and mass transfer coefficients ratios (Bird et al., 1960) has been partially validated since the convective heat transfer coefficient was assumed to be correctly evaluated from a correlation developed for convective conditions for which there is no evaporation or incident radiative heat flux. Furthermore, the film theory was implicitly assumed to be applicable to account for the high mass transfer rate effect on the mass transfer coefficient for the case of combined convective-I.R. drying.

In summary, prior experimental results clearly show that:

- a) No detailed drying data have been presented at the high temperature levels characteristic of many industrial processes (Dostie et al., 1988);
- b) The behavior of the convective heat and mass transfer coefficients during combined high temperature convective-I.R. drying has not been studied in depth.

## 2.2 MODELLING OF DRYING

v

Key references pertinent to modelling of drying have recently been discussed extensively by Chen (1986), Chiang (1987), Franzen et al. (1987), Moyne (1987), Perré (1987) and Bories (1988), to name a few. Furthermore, additional information can be found in the books by Krischer (1956), Luikov (1966) and

Keey (1972, 1978). So a brief review of only the most significant theoretical developments is given here.

Historically, the drying models can be grouped according to the internal moisture transport phenomena, viz.

- a) Liquid movement due to capillary forces;
- b) Vapor diffusion due to a partial pressure gradient (molecular diffusion) or a thermal gradient;
- c) Vapor effusion (Knudsen flow);
- d) Sorbed vapor diffusion;

1

i

- e) Liquid or vapor flow induced by a total pressure gradient;
- f) Liquid movement due to gravity.

Earlier attempts to model the drying process assumed a single dominant mechanism for moisture transfer following traditional chemical engineering approach to modelling by confining attention only to the rate-controlling (or the slowest) process when several processes occur concurrently.

The first theory put forward to explain experimental drying rates and moisture distributions was the liquid diffusion theory (Lewis, 1921; Sherwood, 1929) where the influence of heat transfer was neglected. The main mechanism of moisture transfer was postulated to be liquid water diffusion through the porous skeleton. Fick's law was used to write the moisture transfer equation, either with a constant diffusion coefficient or with a variable coefficient as a function of the moisture content. The liquid diffusion theory was applied with some success to the cases of wood in the hygroscopic regime and clay (Sherwood and Comings, 1933).

In the thirties questions (Comings and Sherwood, 1934; Sherwood, 1937) were raised about the validity of the liquid diffusion theory. It was pointed out that unrealistic moisture distribution was predicted for materials such as sand (Ceaglske and Hougen, 1937). On the other hand, the capillary flow theory,

developed following major contributions by soil scientists (e.g. Buckingham, 1907; Gardner; 1920) provided a significant improvement in predicting adequately these distributions during the constant drying rate period (Ceaglske and Hougen, 1937).

None of these theories is fully satisfactory for all materials (Perré, 1987). It was then necessary to account for additional moisture transfer mechanisms and the coupling with heat transfer within the material. Significant contributions to this development were made by Philip and De Vries (1957), Krischer (1963) and Luikov (1966). The porous medium being assumed equivalent to a continuum and in local thermodynamic equilibrium, the energy and mass conservation equations presented contains gradients of key driving forces: volumetric moisture content and temperature. Luikov (1966) added to these two equations the gaseous phase conservation equation which incorporates the contribution of the total pressure gradient (also included in the mass conservation equations).

The resulting system of 3 coupled non-linear differential equations was solved numerically (finite differences or finite elements) by many researchers and their results were found in qualitative agreement with earlier experimental observations (Harmathy, 1969; Berger and Pei, 1973; Huang, 1979, Eckert and Faghri, 1980; Dinulescu and Eckert, 1980). Meanwhile, the original set of equations was rationally founded by Whitaker (1977) using an approach in which the macroscopic balance equations are obtained by averaging, balance and transfer microscopic equations, over a representative volume (Bories, 1988). Detailed reviews of this most widely accepted model today have been presented by Perré (1987), Bories (1988), Illic and Turner (1989), Rogers and Kaviany (1991) and Kaviany (1991). It accounts, in its most general form, for all important moisture transport mechanisms already mentioned.

It is mainly since the beginning of the eighties that a systematic quantitative comparison between this model prediction and experimental results has been undertaken. In general, relatively good quantitative agreement has been found under several drying conditions e.g. convective or conduction drying of:

- a) Sand and sandstone (Crausse, 1983; Wei, 1984; Hadley; 1986);
- b) Concrete (Dayan and Glueckler, 1982; Moyne, 1987);
- c) Wood (Schajer et al., 1984; Plumb et al., 1985; Michel et al., 1987);
- d) Porous ceramic (Schajer et al., 1984);
- e) Tobacco sheet (Kobari et al., 1985);

i.

í

f) Wool bobbin, brick and corn kernel (Chen, 1986).

Despite these successful applications, major drawbacks still preclude wide engineering use of such a model. Indeed, too many internal transport heat and mass transfer coefficient have to be independently evaluated (Crausse, 1983) and in most cases the computing time to obtain a solution to the linearized system of equations is still significantly high (Rogers and Kaviany, 1991).

For many materials internal temperatures alone can be used as an accurate index for their potential damage (Ginzburg, 1969; Dostie et al., 1988). Hence, from a practical point of view, it is often of interest to predict the effect on the drying curve and the temperature evolution of combined convective-I.R. drying parameters such as:

- a) The external flow temperature, humidity and velocity, and;
- b) The incident overall radiative heat flux.

A model with a minimum number of parameters characterizing the internal heat and mass transfer would possibly allow the use of the information obtained from a limited drying experimental study in order to calibrate some of these parameters (Dostie, 1991). It is not in the objectives of this study to measure the moisture content and pressure distributions within the material thus it will not be quantitatively possible to test the prediction of these distributions as influenced by the process parameters (b,  $T_{\infty}$ ,  $v_{\infty}$ ,  $T_d$ ,  $q_{is}$ ). The following well known experimental observations favor the use of a drying front model to perform the above mentioned goals:

.

٣

- a) The drying rate during the constant drying rate period is close to the drying rate observable for free liquid surface evaporation and depends mainly on the external drying conditions (Keey, 1972). Thus the drying rate prediction during that period should be relatively easy to realize knowing the surface heat and mass transfer coefficients, the surface emissivity, the overall incident radiative heat flux and the thermal transport characteristics of the material;
- b) As the critical moisture content sensitivity to drying process parameters changes appears to be low, it should constitute an adequate determination of the falling rate period starting point;
- c) Numerous experimental determinations (Ceaglske and Hougen, 1937; Nissan et al., 1959; Peck et al., 1977, Chiang 1987) of moisture distributions have demonstrated beyond doubt the existence of a drying receding front within various materials (sand, wool, brick, apple) during most of the falling rate period. Furthermore, it has often been observed that a significant temperature rise occurs simultaneously as the drying front location coincides with the position of the thermocouple; the "sharpness" of the moisture transition between the dried and wet zone is, in general, higher for a capillary non-hygroscopic porous medium;
- d) The drying front recession seems to be the key factor for the drying rate fall and results in dominant heat and mass transfer resistances between the internal evaporating zone and the external flow.

The drying front model (Dostie, 1991) presented in chapter VII represents an extended version of one of the simplified models (receding plane model) discussed by Keey (1978). Chapter VII examines the drying models that have been previously used to simulate the free (no forced flow present) or forced convection-I.R. drying process.

# CHAPTER III - EXPERIMENTAL APPARATUS AND PROCEDURES

# 3.1 INTRODUCTION

4

ſ

This chapter describes the experimental set-up (oven, test section, glass beads samples and sample holder), the operating parameters, the data acquisition procedure as well as experimental reproducibility and uncertainty in measured data.

## 3.2 EXPERIMENTAL APPARATUS

The experimental apparatus designed and built for this research was proven to produce reliable data and allow control of the following primary variables:

- a) Air temperature  $T_{\infty}$ , velocity  $v_{\infty}$ , pressure  $P_{\infty}$  and air dew point temperature  $T_d$ ;
- b) Infrared heat source temperature T<sub>sir</sub>, power input P<sub>i</sub>.

The air dew point temperature could be stabilized close to ambient values (through air renewal) during an experiment but it was not controlled to a preselected value (range: -10.6 °C to +17.9 °C). The following variables were also recorded in each experiment:

- c) Mass m (sample and sample holder) and internal temperatures (surface  $T_s$  and bottom  $T_b$ );
- d) Test section wall temperatures  $T_{ti}$  (i = 1,6);
- e) Test section air temperatures  $T_{\infty i}$  (i = 1,5);
- f) Test section bottom plate temperatures  $T_{pi}$  (i = 1,4).

### 3.2.1 OVEN TEST SECTION

A convective batch oven (Figure 3.1) was modified to include a thermally insulated test section, a bottom cavity as well as an I.R. heat source located in the upper cavity. A front door (see photograph in Figure 3.2) facilitated access to these various parts as well as the sample positioning at the beginning of each experiment. A detailed summary of the experimental accessories and assembly, their relevant technical and geometrical specifications as well as equipment manufacturers is given in Appendix 1.

The oven (Figure 3.1) consisted of a heating section with resistive elements, a squirrel cage fan driven by a D C motor and ducts of rectangular cross section. Figure 3.3 (a,b,c) is a scaled down drawing of the test section showing the spatial locations of all the measuring points<sup>1</sup>. The test section was made of steel walls (610 X 500 X 100 mm) covered with a low emissivity ( $E_t = 0.28$ ) aluminized silicone paint (FEROX -1203). A removable front panel (610 X 100 mm) was made for easy access to instrumentation and for visual inspection when introducing test samples. At the entrance of the test section a pressure equalization chamber (55 X 500 X 100 mm) followed by an assembly of perforated grids and meshes (flow mixer) reduced the inlet flow turbulence scale and improved the velocity profile uniformity. A top wall aperture (160 X 143 mm) located downstream allowed I.R. radiation to reach the sample. This aperture could be closed using a polished ( $E_{sc} = 0.13$ ) stainless steel plate (1.6 mm thick) translating on guiding rails by means of a pneumatic cylinder. A second polished stainless steel radiative screen (0.4 mm thick), separated by a 5 mm gap from the first, was screwed onto it. Both plates were convectively cooled by the flow. As the cross-sectional area of the radiative screens were much lower than 5 % of the test section cross-sectional area, no correction for flow restriction was applied to  $v_{\infty}$  (Smolsky and Sergeyev, 1962).

<sup>&</sup>lt;sup>1</sup> The exact location (mm) in the test section of the measuring points with respect to Oxyz (Figure 3.3) can be found in Appendix 2



Figure 3.1 Oven schematic

ſ





۰<u>،</u>





(C)

Figure 3.3c Test section: top view

The I.R. source was made of 8 low thermal inertia mesh heating elements. These corrugated resistive elements could be connected two at a time to give four levels of I.R. heat fluxes at the same reference temperature ( $T_{sir} = 850$  °C). This temperature was measured with a thermocouple spot-welded to one of the central heating elements and was controlled using a manual variable transformer; a wattmeter recorded the I.R. source power input ( $P_i$ ). A detailed summary of the instrumentation and sensors used as well as their manufacturers and technical specifications is given in Appendix 3. The heating elements were stapled onto a low heat capacity ceramic (Armstrong, Ceramaguard) inserted in a metallic frame. The frame was fixed on the largest base of a truncated pyramid made of polished stainless steel plates (type 304). After insertion of an asbestos lining (4 mm thick), the pyramid's smallest base was screwed to a plate that was cut on the test section upper plate. The external insulation of the pyramid was made of an Al<sub>2</sub>O<sub>3</sub> moldable felt (Cotronics Corp, No. 372).

A plate was cut and drilled (95.3 mm ø) on the test section bottom wall to receive the sample. On the back of this plate a set of three uniform flux silicone heaters were bonded (with a fine layer of silicone rubber epoxy) close to the hole so as to act as a guard against conductive heat losses to the bottom cavity. Both sides of the plate were covered with a low emissivity aluminium foil (final assembled thickness ~ 1.6 mm). Upstream of the plate an additional silicone heater decreased the first set load. For heater (bottom plate) temperature control and record, 3 thermocouples ( $T_{pi}$  (i = 2,4)) were located in grooves machined in the plate. A similarly positioned thermocouple ( $T_{p1}$ ) was used to measure the upstream heater temperature. Temperature control to 1 °C of the two sets of heaters was accomplished with two temperature controllers using the temperatures ( $T_{p1}$ , $T_{p2}$ ) from the largest heaters (Figure 3.3).

Thermocouples located on the upper wall and one side ( $T_{ti}$  (i = 1,6)) of the test section recorded the wall temperatures. They were screwed on after being soldered on to a brass ring. The same type of bare bead thermocouples were used to measure temperatures close to the flow mixer exit ( $T_{\infty i}$  (i = 1,2)).

A solid state controller allowed adjustment of the flow velocity through control of the variable speed D.C. motor. An anemometer (self-heated platinum resistance temperature detector type) was used to measure the flow velocity ( $v_{\infty}$ ). A thermocouple located at middle test section height and protected from I.R. radiation (source or walls) by two polished stainless steel concentric tubes 145 mm long, 15 mm and 25.4 mm inside diameters (0.5 mm tube thickness) respectively, recorded the air temperature  $(T_{\infty})$ . Its value could be adjusted to within 1 °C using the oven controller. The dimensions and surface characteristics of the cylindrical radiative ( $E_{cy} \sim 0.13$ ) screens were defined according to a study by Pépin (1989) which demonstrated that with such shields, it was possible to get the air temperature with a temperature differential  $(\Delta T = IT_{read} T_{real}I)$  lower than 3 °C although the external environment could radiate like a blackbody at 1000 K. In the present design we should expect much lower  $\Delta T$  because only half side of the external cylinder sees a fraction of the radiating surface at 1123 K. Three additional air temperatures ( $T_{\infty i}$  (i = 3,5)) were measured with stainless steel sheathed thermocouples located close to the sample surface (Figure 3.3) to verify that the incident flow was at  $T_{\infty}$ .

A squirrel cage fan blew air in the back of the bottom cavity. The instrumentation was protected from direct air impingement with a stainless steel plate diffusing air on the cavity side. Two supplementary apertures were drilled close to the front door on the bottom cavity for air exhaust and wiring. An additional opening was machined in line with the lower test section hole, allowing an extensible rod to go through the bottom of the oven. It was used to measure the mass (m) of the sample holder and sample with a balance located directly under the oven. In order to protect it against mechanical shock and vibrations, the balance was placed on a two layer assembly; each layer was made of concrete blocks and a sheet of high density polyurethane foam. A 19 mm ø bent tube connected the test section and the sample hole.

A variable speed squirrel cage fan supplied air to the back of the I.R. heat source to cool its electrical connections. Air from the test section was evacuated with a fan connected to a ventilation duct. A constant humidity flow was obtained with control on the air renewal rate through use of a shutter on the fan inlet. The air

.

dew point temperature ( $T_d$ ) was measured with a condensation dew point hygrometer (Appendix 3) sampling the airflow downstream of the sample. Since preliminary experiments demonstrated that the pressure differential (pressure differential meter, Appendix 3) between the test section and the environment was lower than 0.03 mm Hg for the range of temperatures and velocities investigated, the static test section pressure ( $P_{\infty}$ ) was measured with a mercury barometer (0.1 mm Hg resolution) located outside the test section.

### 3.2.2 CONTAINER FOR TEST SAMPLES

ĩ

In order to reduce as much as possible potential two-dimensional heat transfer effects on the sample, a low thermal conductivity (0.14 W/mK) Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> ceramic (Cotronics Corp., Rescor 740) was chosen as the material for the sample containers. The design of the necessary stainless steel mold was dictated by three conflicting considerations:

- a) The thickness of the container rim had to be the thinnest possible to decrease the convective and radiative heat transfer coming from the test section and the I R. heat source;
- b) The internal geometry had to approximate as closely as feasible a cylinder to avoid geometrical influence on the drying front progression;
- c) The insulation (wall) thickness had to be sufficient to minimize heat losses to surroundings.

Figure 3.4 gives the final design which was found to meet the above criteria adequately.

The following is a detailed description of the molding procedure employed to form the ceramic container. The ceramic was mixed to proper consistency according to the manufacturer's advice. The mixture was then poured in the bottom mold previously covered with a fine layer of a mold release lubricant (Cotronics Corp., 101MR). It was submitted to vertical vibration in order to



(a)



0)

.

Figure 3.4a Container mold: top view b Container mold: cross sectional view

eliminate air bubbles. The top mold was carefully inserted into the bottom mold and the assembly was put on a hydraulic press where a force of 10 tons was applied for 4 hours. The container was left within the mold to agglomerate overnight. After removal of the excess ceramic within the vents, 4 pressure screws were tightened slowly and alternatively to detach the top mold. Finally, insertion of the bottom mold in a convective oven at 110 °C for 2 minutes promoted a slight shrinkage of the consolidated container which can then be easily removed from the mold.

Various sample thicknesses (5 to 20 mm) were obtained by partially filling the container with the wet ceramic before drying (one day at room temperature and one night at 110 °C). Once dried, firing the container at 950 °C for 1 hour improved the container strength and the resulting shrinkage provided the final container diameter.

The final waterproofing step is detailed in the next section since it is linked to sample preparation.

## 3.2.3 CONSOLIDATED GLASS BEAD TEST SAMPLE PREPARATION

Ĩ

Sieves (U.S.A. series equivalent No. 80, 100, 120, 140, 170) were used to screen manually small quantities (100 ml) of spherical shape soda lime glass beads (AG 140/270) with a sphericity 1 according to the manufacturer (Potters Industries Inc.). This was carried twice to keep only beads in the 90-105  $\mu$ m diameter range. Following a procedure put forward by Wong et al. (1984) to obtain "clean" glass beads, the beads were washed with a hydrochloric acid solution (0.22 g/ml) and carefully rinsed several times with deionized water. After drying, they were screened once more. A photograph (Figure 3.5) of a random sample of the glass beads shows the narrow diameter range achieved. The glass bead dimensions (average d= 0.099 mm  $\emptyset$ ; 0.003 standard deviation) were inspected with a dial calliper of 0.001 mm resolution.



Figure 3.5 Photograph of a random glass beads sample



Figure 3.6 Photograph of beads from a sintered sample

The ceramic containers were sanded with a fine grade abrasive paper in order to obtain a precise sample height (b). It was then filled with glass beads, covered with a rigid circular plate (95 mm Ø) and centered on top of a vertically levelled vibrating apparatus (Ray Foster Dental Equipment). This shaking process has been used often to produce dense packings without creating large scale heterogeneities (Guyon et al., 1987). Before starting the vibrations at 60 Hz, a 1 kilogram weight was placed on the top plate. During compaction (30 minutes) small amounts of glass particles were added to keep the surface level.

ļ

ł

Consolidation of the glass beads was achieved in a high temperature oven fitted with spiral heaters on two sides. The container filled with glass beads (on a plate) was located centrally on a metallic tripod in the oven cavity. As suggested by van Brakel and Heertjes (1974) to avoid differential shrinkage, it was shielded against direct radiation from heaters with a stainless steel bowl (120 mm ø and 80 mm height). The consolidation cycle consisted of 6 hours of ramp heating to 650 °C (Van Brakel and Heertjes (1974), Charlaix et al. (1987), Guyon et al. (1987), Hulin et al. (1987)), followed by a two hour soak and final cooling to room temperature following oven shut-off. This specific sintering methodology was followed because visual observations of beads from the sintered sample with a microscope (Figure 3.6) showed that the beads retained their identity (Guyon et al. (1987)) after this procedure. This is critical if only minor perturbation of the transport properties is acceptable. Furthermore, it appeared that the slab had acceptable mechanical strength which is essential to obtain reproducible results in multiple drying experiments.

A calliper of 0.05 mm resolution was used to measure the slab thickness and diameter. The measurements were taken twice on four opposite locations around the bed diameter. The final reported results were averaged values.

A balance (0.01 g resolution) was used to evaluate the bone-dry and wetted weight of the test slab. A measurement of the immersed slab weight (together with the Archimedean principle) allowed us to compute the slab porosity according to ASTM standard test method (C20-87). For each slab, three measurements of each weight were taken and averaged. The glass density ( $p_b$ ) on the average was 2497 kg/m<sup>3</sup> (in agreement with the value for bulk glass) with

a measurement dispersion of  $\pm 0.23$  %. A summary of the final bed characteristics is given in Table 3.1. Here b and D are the bed thickness and diameter respectively,  $\varepsilon$  is the bed porosity,  $p_d$  the dry density of the bed,  $V_t$  the bed overall volume and  $V_{cy}$  the equivalent cylinder bed volume (as discussed in section 6.6.1). The porosity range (0.368-0.383) of the samples is well within the applicable limiting porosity ranges established experimentally for random packing of equal spheres: close, 0.359-0.375; poured, 0.375-0.391 (Haughey and Beveridge, 1969). Although the shaking process used was described by van Brakel and Heertjes (1974) to produce inhomogeneities (~ 2 %) in porosity distribution with height for thick beds (70 mm), an observation of the reported porosity distributions allows us to expect better results because only a fraction of this total porosity variation can occur across a thickness under 20 mm.

After the completion of the above measurements, both the test slab and container bottom plate were carefully machined to produce a groove for the location of two 0.5 mm outside diameter stainless steel sheathed thermocouples. The bottom of the slab was drilled along the axis to insert the surface thermocouple.

All thermocouples used to measure sample temperatures  $T_s$  or  $T_b$  and flow temperatures  $T_{\infty i}$  have been previously calibrated (to ± 0.5 °C) in a stirred liquid bath according to ASTM standard test method E220.

The small clearance between the slab side and the container internal diameter (result of the sintering process) as well as the radial porosity variation at the wall (Rydgway and Tarbuck (1966)) were eliminated through use of a technique suggested by van Brakel and Heertjes (1974). First, five layers of a high temperature (480 °C) silicone moisture sealer (Cotronics Corp., Duralco 1529) were necessary to waterproof the container and fill partially the clearance. Each of these layers was individually dried sequentially for two hours at room temperature, 121 °C and 177 °C. Then, the slab and thermocouples were glued to the container with a high temperature (400 °C) resistant epoxy (Theramic engineering Inc., No. 550). The mass of the absorbed water by the sample slab and the final sample were compared for each sample; it was ascertained that for all samples the former is greater than the latter by less than 0.1 g.

| IADLL V.I | TA | BL | Ë | 3.1 |
|-----------|----|----|---|-----|
|-----------|----|----|---|-----|

| Sample<br>No. | b<br>(mm) | D<br>(mm) | ε     | Ρ <sub>d</sub><br>(kg/m <sup>3</sup> ) | V <sub>t</sub><br>(cm <sup>3</sup> ) | V <sub>cy</sub><br>(cm <sup>3</sup> ) |
|---------------|-----------|-----------|-------|----------------------------------------|--------------------------------------|---------------------------------------|
| VI            | 20.0      | 89.4      | 0.372 | 1567                                   | 118.84                               | 125.54                                |
| IX            | 5.5       | 89.0      | 0.383 | 1537                                   | 31.02                                | 34.22                                 |
| ×             | 10.3      | 89.4      | 0.373 | 1565                                   | 60.22                                | 64.66                                 |
| XI            | 10.3      | 88.7      | 0.382 | 1544                                   | 60.22                                | 63.65                                 |
| XII           | 19.9      | 88.8      | 0.368 | 1580                                   | 117.56                               | 123.24                                |
| XIII          | 20.0      | 89.0      | 0.370 | 1575                                   | 118.55                               | 124.42                                |

# GLASS BEAD BED CHARACTERISTICS

i,

The last step was to cement a low emissivity aluminium foil on the rim of the container to decrease the absorbed radiative heat transfer coming from the cavity and I.R. source. Note that throughout this thesis the terms "consolidated glass bead sample" and "sample" are used interchangeably.

## 3.2.4 WETTING APPARATUS AND PROCEDURE

7

The schematic in Figure 3.7 gives an overview of the wetting apparatus. A high vacuum pump (W1, Sargent Welch model 1405) was connected through tygon tubing to a vacuum bell. A water trap protected the pump from liquid water intrusion. A shield against water vapour was insured by a desiccant drying column (Hammond Drierite Comp.). The bell was linked to a water deionized bag with a manual valve (V1) which performed water admission or vacuum connection. Another valve (V2) provided the means for isolating the network from atmospheric pressure. A similar apparatus was also used by Shibata et al. (1990). The following describes the sample wetting procedure in a stepwise manner:

- a) Introduce the sample fitted with thermocouples on a tray into the vacuum bell and close valve V2 (V1 is open);
- b) Energize the vacuum pump W1 to reach 10 mm Hg pressure;
- c) Slowly close V1 to admit water until the sample surface is covered with a thin water layer; then open V1;
- d) Wait 1/2 hour at 10 mm Hg pressure; then slowly open V2.

The same consolidated glass bead slab was wet according to this technique and to the much more time-consuming boiling technique put forward in the ASTM standard test method C20-87; it was found (within experimental uncertainty on mass measurement), that the amount of absorbed water were the same in both cases. Wong et al. (1984) and Guyon et al.(1987) advocated the use of the vacuum method to fill (or wet) a consolidated glass bead slab when the porosity had to be measured as described in section 3.2.3. It is inferred in the present



•

Ţ

- W1: High vacuum pump W2: Dessicant drying column W3: Water trap
- W4: Vacuum bell
- W5: Water (deionized) bag

study, as Wong et al. (1984) did, that the small spread in the measured grain density (here 2497 kg/m<sup>3</sup>  $\pm$  0.23 %), suggest that there is essentially no occluded volumes in the samples (less than 0.5 % if they exist), i.e., the pore space is completely connected and can be fully saturated by the water.

### 3.2.5 SAMPLE HOLDER

While in many drying studies the whole sample is immersed within the flow of heated air giving rise to one dimensional drying through symmetric boundary conditions and use of a large sample, mounting the sample flush with the wall calls for careful experimental treatment as noted earlier by Crausse (1983), Prat (1986a), Moyne (1987), Perrin and Foures (1991). As a result, preliminary experiments were carried out and established that the final sample (Figure 3.8) was still significantly sensitive to two-dimensional heat transfer effects. Hence, thermocouples were inserted within the initial sample holder ("passive" insulation) to evaluate the magnitude of the conductive heat transfer through the bottom and side walls of the sample; for  $T_{\infty} \sim 180$  °C, temperatures higher than 100 °C were recorded within the insulation located below the sample while  $T_s$  and  $T_b$  were still in the 45-55 °C range. Heat was coming from the upper side of the sample holder. Despite attempts to use different types of insulating materials (glasswool, ceramic board, polyurethane foam) the "passive" insulation concept failed to appreciably lower this transfer.

To minimize the conductive heat loss contribution, an "active" insulation (Figure 3.8) was devised consisting of a stainless steel bowl (A) fitted with a layer (B) of low thermal conductivity (0.02 W/mK) polyisocyanurate cellular plastic (Dow Chemical Corp., Trymer 9501). Inside a second "active" shield was a cylindrical aluminium fin (C) connected to two sealed container (D) acting as heat sinks. A tubular Trymer piece (E) insulated the internal diameter surface of the fin. This tube was held in place with an aluminium ring fin (F) glued on the cylindrical fin extremity. A Trymer plate (G) insulated the sample bottom. A clearance of about 1 mm existed between the sample sides and the ring fin to avoid excessive heat transfer. The top of the sample holder was insulated with a ceramic board (H) protected from radiative heat transfer by an aluminium foil (I).

Н

С

D







- F: Ring fin
- G: Bottom insulation
- H: Insulating ring
- I: Reflective foil
- J: Sample container
- K: Glass beads bed
- L: Thermocouples



- ॐ

ż

The sample holder and the containers were put in a freezer at - 25 °C for two hours in order to accumulate enough thermal inertia for the whole duration of the experiment. As the length of the experiment shortened (in case of I.R. drying), only the largest heat sink was used. At the start of an experiment, the wetted sample was placed on top of the holder with the ceramic board around it. After insertion in the oven, heat coming from all directions was conducted down the cylindrical fin to the ice in the container. One dimensional drying conditions were maintained during the drying experiments as a result of thawing of ice and/or water heating taking place in the sealed containers (see section 3.5 for a quantitative evaluation).

### 3.3 OPERATING PARAMETERS

The scope of this research was limited to the following operating parameters:

| a) | Air temperature: $T_{\infty}$                                                        | 80 - 180 °C                  |
|----|--------------------------------------------------------------------------------------|------------------------------|
| b) | Flow velocity (in test section): $v_{\scriptscriptstyle \!\infty\!\!\!\!\infty\!\!}$ | 2.1 - 6.2 m/s                |
| c) | Air dew point temperature: T <sub>d</sub>                                            | - 10.6 °C - +17.9 °C         |
| d) | Sample thickness: b                                                                  | 5 - 20 mm                    |
| e) | Incident heat flux: q <sub>is</sub>                                                  | 6.8 - 22.0 kW/m <sup>2</sup> |
|    | on the sample surface                                                                |                              |

### 3.4 DATA ACQUISITION AND TREATMENT

. **T** .

٠.

### 3.4.1 DATA RECORDING: HARDWARE AND PROCEDURE

Data acquisition was realized through a 3852 Hewlett-Packard data logger connected to a 360 Hewlett-Packard central unit where all data were stored. They could be transferred to a SUN 3/60 microcomputer for data analysis. Other hardware elements and links for data recording and experiment control are represented in Figure 3.9 which is self explanatory.



Figure 3.9 Schematic of the data acquisition system

Ť

A basic software called "CIR" was developed for the 360 unit by INTEK Inc. (Montreal, Canada) for managing all the operations related to graphic display, variable selection, recording times, file management and control of the relay for the sliding plate.

All measuring points were read at various rates depending upon their variation with time so that file sizes could be kept minimal while important surface temperature changes due to intermittent I.R. heating (I.H.) could still be tracked with acceptable accuracy. Measuring points to be recorded at the same time were grouped as follows:

Set no. 1: 
$$T_{\infty}$$
,  $v_{\infty}$ ,  $P_{\infty}$ ,  $T_d$ ,  $T_{ti}$  (i=1,6),  $T_{\infty i}$  (i=1,5) and  $T_{pi}$  (i = 1,4)  
Set no. 2: m  
Set no. 3:  $T_s$  and  $T_b$ 

The time interval between the data readings was varied according to the total expected drying time to give the best sampling feasible. The mass was recorded separately because a maximum of about 290 data points could be treated with the smoothing technique discussed in section 3.4.3.

### 3.4.2 DRYING EXPERIMENTS

A typical drying experiment started with obtaining a bone dry sample placed in a convection oven at 110 °C for 1 hour. The sample was then cooled to room temperature in a desiccant-filled bell, weighed and wetted according to the wetting procedure described in section 3.2.4. While this was done, the oven flow parameters ( $T_{\infty}$ ,  $v_{\infty}$ ) were stabilized to their specific set-point values. For the I.R. drying experiments, the source was also heated a few minutes before initiating data recording (aperture plate closed). The wetted sample was weighed and assembled in the sample holder, then the oven front door was opened to connect the thermocouples and to adjust the sample in the test section cavity. The oven door was closed, data recording started and the aperture plate opened in case of I.R. drying. The variable transformer was manually controlled in order to obt...in a constant  $T_{sir}$  (850 °C) of the I.R. source during the experiments.

#### 3.4.3 SMOOTHING OF DRYING CURVE

As illustrated in Figure 3.10a, the typical drying rate curve (derivated from raw data in Figure 3.10b) is "noisy" for experiments with forced convection alone. Similar curves ( $N_v$  vs. X) representative of I.R. drying results with free convection (no forced flow present) are presented in Figure 3.10a and b. From a comparison of these two types of curves it can be inferred that the observed "noise" is uncorrelated to signal recording but that this is a consequence of the combined influence of the balance-sample length together with the aerodynamic friction on the sample top surface and the sample holder sides. A secondary contribution to this "noise" was probably due to mechanical vibration of the oven transmitted to the balance base.

The m vs. t curve (forced convection) in Figure 3.10b was "smoothed" so that a computation of the first order derivative of the fitted function could give a continuous representation of the drying rate curve. An adequate method to smooth the drying curve was to use an algorithm specifically designed by Reinsch (1967) to produce a  $C^2$  cubic spline approximation to noisy data. The smoothing spline  $S_m$  is the unique  $C^2$  function which minimizes:

$$\int_{0}^{t} S_{m}^{*}(t)^{2} dt \qquad (3.1)$$

subject to the constraint:

-

$$\sum_{i=1}^{N} \left| \frac{S_{m}(t_{i}) - m_{i}}{\omega_{i}} \right|^{2} \le \sigma_{m}$$
(3.2)

where  $\omega_i$  is the weight of each data point (i) and  $\sigma_m$  the smoothing parameter. According to Reinsch (1967),  $\omega_i$  should be an estimate of the standard deviation of m. An average value for  $\omega_i$  (0.19) was calculated from the values used in the smoothing of all the experimental results: the standard deviation was 0.05.



Figure 3.10a The typical drying rate curve  $\,N_{\!v}$  vs. X



Figure 3.10b The typical m vs. t curve
$\sigma_m$  was selected within the suggested interval by Reinsch (1967) viz.

$$N - \sqrt{N} \le \sigma_{m} \le N + \sqrt{N} \tag{3.3}$$

After trial an error on the smoothing of about 10 drying curves, a good value for  $\sigma_m$  was found to equal N, the total number of recorded data from the start of an experiment to the time when a bone dry sample state is reached. The sample was considered to have reached this state when the rate of change of the bottom temperature increased anddenly. The cubic spline approximation ( $\omega_i = 0.13$ ,  $\sigma_m = 270$ ) is superimposed on the raw m vs t curve in Figure 3.10b providing a typical representation of the closeness between both results. The correlation coefficient r (Holman 1984) in this case is 0.9999 while the average correlation coefficient computed for all curves obtained in this study had an average value of 0.9994 with a standard deviation of only 0.0003. Figure 3.10a shows the drying rate curve for the raw and cubic spline approximation. Similarly shaped drying rate curves for experimental convective drying of glass beads bed have already been reported by van Brakel (1980), Cunningham and Kelly (1980), and Moyne (1987) and for free convection-I.R. drying of thick glass beads bed by Seki et al. (1977).

A 1% percent relative standard deviation (McCormick and Roach, 1987) of the  $N_v$  value was chosen as a criterion to select the portion of the smoothed drying rate curve necessary for the computation of the average mass flux ( $N_v^{-}$ ). It appeared from all the experimental results that this region of the drying rate curve was characterized by relatively small internal temperature variations usually associated with the so called "pseudo constant drying rate period" (P.C.D.R.P.; van Brakel, 1980).  $N_v^{-}$  was used in the energy and mass balances discussed in chapter IV and V to compute the convective heat transfer coefficient  $h_c^{-}$ , the mass transfer coefficient  $K_p^{-}$  (or  $K_y^{-}$ ) and the sample total hemispherical emissivity  $E_s^{-}$ . The mass prevailing during the P.C.D.R.P.. Note that throughout this thesis the terms "average mass flux computed during the P.C.D.R.P." and "average mass flux" are used interchangeably.

1

#### 3.4.4 DETERMINATION OF THE CRITICAL MOISTURE CONTENT

Since there is no sharp discontinuity in rate observable on the drying rate curve (Figure 3.10a), it was found to be in most cases very difficult to determine graphically the critical moisture content X<sub>c</sub> (averaged value across b) as defined in the classical theory of drying (Keey, 1972). According to Keey (1972), for a non-hygroscopic capillary porous material the critical point should occur when the moisture content at the exposed surface is zero. However, experimental determination of the moisture distribution, with various techniques: gravimetric method (Ceaglske and Hougen, 1937; Corben and Newitt, 1955); gamma ray absorption (Cunringham and Kelly, 1980, Van Brakel, 1980) and nuclear magnetic resonance imaging (Maneval et al., 1991), have shown beyond doubt that the surface moisture content (defined as an average value on a unit surface area) is not zero at the occurrence of the critical moisture content (first critical moisture content). On the other hand, a rapid increase in surface temperature can be experimentally associated (Ceaglske and Hougen, 1937) with a surface saturation Ss reaching the irreducible saturation Sir which correspond to the start of the pendular state at the bed surface (second critical moisture content). The concept of a critical moisture content based on  $S_s = S_{ir}$  at the surface has been tested successfully by Schadler and Kast (1987) to determine, without previous drying experiment, the magnitude of Xc. Their experimental results confirm that the surface temperature increase rapidly at this point. Endo et al. (1977) as well as Chen and Pei (1989) pointed out (from experimental results in convective drying) that the "knee point" on the drying rate curve was always close to a deflection on the surface temperature curve from which the surface temperature Thus, in this study the critical moisture content was begin to increase. determined graphically on the T<sub>s</sub> vs. X curve as show in Figure 3.11. The critical moisture content obtained by such procedure is likely to represent the average moisture content at which a drying front is appearing at the material surface (Chiang, 1987; Rogers and Kaviany, 1991).



Figure 3.11 The determination of  $X_c$  on the  $T_s$  vs. X curve

ſ

#### 3.5 EXPERIMENTAL REPRODUCIBILITY

The same set of experimental parameters ( $T_{\infty} \sim 180 \, ^{\circ}$ C,  $v_{\infty} \sim 6 \, m/s$ ) suspected to generate the strongest two dimensional effects was chosen as representative of the experiments. A preparatory study was undertaken to quantify the experimental reproducibility, to verify if drying of the samples was actually one-dimensional, to check possible differences ensuing from the use of different samples with same or different thicknesses, and the impact of the thermocouples on the mass measurement.

According to Table 3.2, the variables studied were  $N_v^*$ ,  $t_o$  the overall drying time, the critical time  $t_c$  and  $X_c$ . The reproducibility intervals presented here constitute conservative estimates because  $T_d^*$  was not the same for all experiments. The reproducibility level of a variable V was evaluated through computation of  $r_v$  defined by (Hasan, 1988):

$$r_{v} = \left| \frac{100^{*} Max(V_{1} - V_{2})}{V^{*}} \right|$$
(3.4)

Where V<sup>\*</sup> is the average value computed from results of a set of replicate experiments with one or more samples. Taking into account the maximum  $\Delta V$  ( $\Delta N_v^*$ ,  $\Delta t_o$ ) observed, the  $N_v^*$  and  $t_o$  measurements with the same sample are reproducible within  $\pm 7$ % (column ten, Table 3.2) and  $\pm 5$ % (column twelve, Table 3.2) respectively. The X<sub>c</sub> measurement was found reproducible within  $\pm 19$ % (column sixteen, Table 3.2). Although  $i_c$  values are reproducible within  $\pm 12$ % (column fourteen, Table 3.2), the reproducibility level of X<sub>c</sub> can be explained with the fact that as X goes to zero, small errors ( $\pm 0.4$  g) on the mass determination increases the relative uncertainty in the X determination. Yagi et al. (1957) presented X<sub>c</sub> values in combined convective and I.R. drying with a reproducibility level of  $\pm 26$ % and  $\pm 7$ % for N<sub>v</sub><sup>\*</sup>. From Schadler and Kast (1989) experimental data in convective drying at very low velocity (v<sub>∞</sub><sup>\*</sup> ~ 0.25 m/s) the reproducibility level of X<sub>c</sub> can be evaluated to be  $\pm 13$ %.

# TABLE 3.2

# SUMMARY OF THE REPRODUCIBILITY STUDY: N, to , tc and Xc

| Run  | Sa.    | Ь    | T.    | v     | P_*            | T <sup>4</sup> | T.   | N,       | Nvav                         | t <sub>o</sub> | t <sub>oav</sub> | t <sub>c</sub> | t <sub>cav</sub> | X <sub>c</sub> | X <sub>cav</sub> | Num                          |
|------|--------|------|-------|-------|----------------|----------------|------|----------|------------------------------|----------------|------------------|----------------|------------------|----------------|------------------|------------------------------|
|      |        |      |       |       | ~              | Ŭ              | 3    | ,        | r <sub>Nv</sub>              |                | r <sub>to</sub>  |                | r <sub>tc</sub>  |                | r <sub>Xc</sub>  | r <sub>Nv</sub>              |
|      |        |      |       |       | L              |                |      |          |                              |                |                  | <u> </u>       |                  | · · ·          | ·                |                              |
| Nb.  | Nb.    | (mm) | (°C)  | (m/s) | (kPa)          | (°C)           | (°C) | (kg/m²s) | (kg/m <sup>2</sup> s)<br>(%) | (s)            | (s)<br>(%)       | (s)            | (s)<br>(%)       | (kg/kg)        | (kg/kg)<br>(%)   | (kg/m <sup>2</sup> s)<br>(%) |
| re12 | K      | 5.5  | 180.6 | 5.9   | 100.25         | 6.6            | 44.6 | 2.20e-03 | 2.21e-03                     | 1320           | 1328             | 912            | 901              | 2.08e-02       | 2.24e-02         | Sa. No.                      |
| re21 | X      | 5.5  | 180.1 | 6.2   | 98.15          | 4.6            | 46.1 | 2.23e-03 | 1                            | 1335           | 1                | 890            | 2                | 2.41e-02       | 14               | IX, XII, XIII                |
| re7  | X      | 10.3 | 180.3 | 6.0   | 101.06         | 3.1            | 45.3 | 2.14e-03 |                              | 2520           |                  | 1718           |                  | 2.62e-02       |                  |                              |
| re14 | Х      | 10.3 | 180.3 | 6.1   | 99.91          | 7.5            | 47.0 | 2.03e-03 | 2.07e-03                     | 2490           | 2473             | 1718           | 1714             | 2.49e-02       | 2.52e-02         | 2.21e-03                     |
| re25 | X      | 10.3 | 179.8 | 6.2   | 98.15          | 4.4            | 48.3 | 2.11e-03 | 7                            | 2420           | 4                | 1664           | 5                | 2.56e-02       | 8                | 4                            |
| re27 | X      | 10.3 | 1/9.8 | 6.3   | 98.17          | 3.4            | 50.0 | 1.99e-03 |                              | 2460           |                  | 1756           |                  | 2.43e-02       |                  |                              |
| re10 | X      | 10.3 | 180.3 | 6.1   | 100.87         | 3.8            | 46.2 | 2.35e-03 | 0.0000                       | 2310           | 0000             | 1604           | 4004             | 2.40e-02       |                  | Sa. No.                      |
| re16 | X      | 10.3 | 180.3 | 6.1   | 99.78          | 1.1            | 45.7 | 2.358-03 | 2.368-03                     | 2340           | 2368             | 1557           | 1634             | 2.596-02       | 2.366-02         | IX, X, VI,                   |
| rez4 | N<br>N | 10.3 | 179.8 | 0.3   | 98.15          | 4.7            | 48.4 | 2.300-03 | 2                            | 2440           | 5                | 1756           | 12               | 2.140-02       | 19               | XII, XIII                    |
| rezo |        | 10.3 | 179.9 | 0.3   | 90.15          | 4.0            | 47.0 | 2.396-03 |                              | 2300           |                  | 1750           |                  | 2.000-02       |                  | 0.15- 00                     |
| reı  | VI     | 20.0 | 180.3 | 0.1   | 101.82         | 4.5            | NO   | 2.238-03 |                              | 4020           |                  | nd             |                  |                |                  | 2.15e-03                     |
| re3  | VI     | 20.0 | 180.2 | 6.1   | 101.67         | 6.0            | Nd   | 2.08e-03 | 2.15e-03                     | 4680           | 4635             | na             | nd               | nd             | nd               | 12                           |
| re4  | VI     | 20.0 | 180.3 | 6.1   | 101.52         | 5.8            | Nd   | 2.16e-03 | 7                            | 4620           | 1                | nd             | nd               | nd             | nd               | Sa. No.                      |
| re5  | VI     | 20.0 | 180.3 | 6.1   | <u>1</u> 01.46 | 6.7            | Nd   | 2.13e-03 |                              | 4620           |                  | nd             | nd               | nd             | nd               | VI, XII, XIII                |
| re6  | X      | 19.9 | 180.3 | 6.1   | 101.11         | 2.2            | 46.6 | 2.25e-03 | 2.23e-03                     | 4631           | 4705             | 3020           | 3040             | 2.41e-02       | 2.59e-02         |                              |
| re13 | XI     | 19.9 | 180.4 | 6.1   | 100.13         | 7.8            | 45.6 | 2.21e-03 |                              | 4779           | 3                | 3060           |                  | 2.78e-02       | 15               | 2.18e-03                     |
| re9  | XII    | 20.0 | 180.2 | 6.2   | 100.90         | 3.4            | 46.6 | 2.24e-03 | 2.20e-03                     | 4995           | 4995             | 2899           | 2967             | 3.30e-02       | 3.21e-02         | 8                            |
| re15 | XII    | 20.0 | 180.3 | 6.2   | 99.78          | 8.3            | 49.5 | 2.17e-03 | 3                            | 4995           | 0                | 3034           | 5                | 3.11e-02       | 6                |                              |

nd: Not determined

+·\*\*

Two remarks must be made when comparing results from samples No. IX, XII and XIII (last column, Table 3.2). First, the  $N_v^*$  values for sample No. IX, XII and XIII are approximately equal (within ± 4 %) although samples No. XII and XIII are 4 times thicker than No.IX. Second, it should be noted that for most of the convective and all I.R. drying results presented in chapter VI,  $T_b$  is always lower than  $T_s$  despite the relatively high thickness-to-diameter ratio (1/5) of the 20 mm samples. These results strongly suggest that, at a macroscopic level, one-dimensional drying conditions prevail within the samples. Further, the average  $N_v^*$  value for the 10 mm samples is within ± 6 % of the average values obtained for the 5 and 20 mm samples. This does not contradict the conclusion about the one-dimensionality of the drying process but does exemplify the magnitude of the sample to sample  $N_v^*$  reproducibility which was within ± 12 % (last column, Table 3.2) for all samples except XI. The systematic higher flux observed for sample No. XI could not be explained simply and stresses the fact that drying data might be affected by a "sample bias" (van Brakel, 1980).

A comparison of  $N_v^*$  values found within  $\pm 8$  % for samples No. VI (without thermocouples), XII and XIII (last column, Table 3.2) confirms the validity of the values obtained for sample No. XII and XIII. It also shows that the thermocouples do not change  $N_v^*$  significantly because the observed differences are of the same order as  $N_v^*$  reproducibility for the same sample ( $\pm 7$  %).

Average values of  $T_{\infty}^{*}$  and  $v_{\infty}^{*}$  between experiments were found to be reproducible within  $\pm 0.7$  K and  $\pm 0.3$  m/s respectively.

The I.R. heat flux uniformity was inspected on the sample surface at five locations (center, 25 mm from center and 45°, 135°, 225°, 315° orientation from  $v_{\infty}$  direction) using a water-cooled heat flux transducer, 12 mm ø for the measurement area, model 64-2-18-K from Medtherm Corporation. The oven was not heated during these experiments in order to lower the convective contribution to the recorded heat flux; the air temperature ranged from 30 °C (2 elements) to 60 °C (8 elements). The measurements at the center were carried out 3 times , for 3 velocities and 4 heat fluxes (2 to 8 elements) so that the reproducibility of the measurement technique could be assessed.

intervals of the I.R. heat flux for a given transducer location and  $v_{\infty}^{*}$  (3 measurements), were found to be  $\pm 1 \%$ ,  $\pm 2 \%$ ,  $\pm 4 \%$  and  $\pm 7 \%$  for 2, 4, 6 and 8 elements respectively. For the same  $v_{\infty}$ , heat fluxes recorded at the five positions were within  $\pm 5 \%$ ,  $\pm 9 \%$ ,  $\pm 7 \%$  and  $\pm 13 \%$  for 2, 4, 6 and 8 elements respectively. As a result it is conservatively estimated that the heat flux non-uniformity on the sample surface was always within  $\pm 7 \%$ .

#### 3.6 EXPERIMENTAL UNCERTAINTY

I.

ž

Moffat (1988) has recently summarized a single-sample uncertainty analysis, based on the root-sum-square method (Kline and McClintock (1953)) to describe the uncertainties in experimental results. This procedure, the experimental results and the instrument accuracy ratings obtained from technical specifications (Appendix 3) were used to calculate the maximum experimental uncertainties for the important independent and dependent variables tabulated in Table 3.3. In this thesis, the reported value is the best estimate for the result, and, with 95 % confidence, the true value is believed to lie within  $\pm X$  of that value.

The uncertainties on  $T_{\infty}$ ,  $v_{\infty}$ ,  $T_d$ ,  $T_{sir}$  and  $T_{pi}$  were calculated through observation of their behavior (variable error contributions) during the P.C.D.R.P. of all experiments.  $T_{ti}$  results are given for the convective runs (CO.) and combined convection and I.R. runs (CO.+I.R.). A discussion about the consequences of  $T_{ti}$ variation (nonuniformity) upon the computation of  $h_c^*$  and  $q_{is}^*$  can be found in chapter IV and V. The calibration of the thermocouples used to measure  $T_s$  and  $T_b$  gives us an uncertainty of about  $\pm 0.5$  K. However, perturbations generated by possible thermocouple localization errors and local variation of the porosity linked to the dry and wet patches surface phenomena or hole drilling, increase the uncertainty of the measurement Furthermore, in case of I.R. heating there is always the possibility of I.R. penetration below the surface level. Thus, the uncertainty reported for  $T_s$  and  $T_b$  in Table 3.3 should constitute a conservative estimate. Reported values for  $h_c^*$ ,  $K_p^*$  were computed taking into account all these uncertainties. The maximal uncertainty on the transfer coefficient ratios evaluated in chapter IV is  $\pm 19$ % based on results from Table 3.3.

### TABLE 3.3

•

\*

# MAXIMUM EXPERIMENTAL UNCERTAINTY FOR DEPENDENT AND INDEPENDENT VARIABLES

| <u>Variables</u>                                          | <u>Maximum Experimental</u><br><u>Uncertainty</u> |
|-----------------------------------------------------------|---------------------------------------------------|
| Particle diameter, d                                      | ±0.002 mm                                         |
| Sample diameter, D                                        | ±0.5 mm                                           |
| Sample thickness, b                                       | ±0.2 mm                                           |
| Porosity, ɛ                                               | ±0.001                                            |
| Air temperatures, $T_{\infty}$ and $T_{\infty i}$ (i=3,5) | ±1.0 K                                            |
| Airflow velocity, $v_{\infty}$                            | ±0.27 m/s                                         |
| Pressure, P <sub>20</sub>                                 | ±25 N/m <sup>2</sup>                              |
| Airflow dew-point temperature,T <sub>d</sub>              | ±0.5 K                                            |
| I.R. source temperature, T <sub>sir</sub>                 | ±5 K                                              |
| I.R. incident heat flux, q <sub>is</sub>                  | ±4%                                               |
| Sample temperature, T <sub>s</sub>                        | ±1 K (CO.)                                        |
| Sample temperature, T <sub>b</sub>                        | ±1 K (CO.)                                        |
| Bottom plate temperature T <sub>pi</sub> (i=1,4)          | ±1 K                                              |
| Wall temperatures, T <sub>ti</sub> (i=1,6)                | ±2 K (CO.)                                        |
|                                                           | ±8 K (CO. + I.R.)                                 |
| Convective heat transfer coefficient, hc*                 | ±7% (CO.)                                         |
| Convective mass transfer coefficient, Kp*                 | ±6% (CO.)                                         |
| Sample initial moisture content, Xin                      | ±4%                                               |

### CHAPTER IV - CONVECTIVE DRYING EXPERIMENTS

### 4.1 INTRODUCTION

The objectives of the convective drying experiments are the following:

- a) To verify if the heat and mass transfer analogy (Bird et al., 1960) is applicable to the case of drying a partially saturated surface within the parameter ranges investigated;
- b) To determine the critical moisture content ;
- c) To generate drying data for comparison with I.R. drying results and simulations with the drying front model.

### 4.2 CONVECTIVE HEAT TRANSFER COEFFICIENTS IN CONVECTION DRYING

The heat and mass transfer coefficients are evaluated from the measured temperatures and the drying rate curve. However, the following assumptions were necessary to evaluate all terms in the energy balance equation applicable to the sample:

- a) The heat and mass transfer coefficients are averaged over the sample evaporation surface and during the pseudo constant drying rate period (P.C.D.R.P) defined by the time interval [t<sub>1</sub>,t<sub>2</sub>];
- b) The side and bottom surfaces of the sample are assumed to be adiabatic. The water and glass bead specific heat are constant;
- c) Temperature gradients within the sample are negligible during the P.C.D.R.P.. The surface temperature T<sub>s</sub> is considered to be representative of the sample temperature.

1

The most significant physical phenomena contributing to local variations (on the surface) of the heat and mass transfer coefficients are the development of the thermal and concentration boundary layers from the leading edge of the sample (Kays and Crawford, 1980; Basilico and Martin, 1984; Prat, 1986 b; Moynes, 1987; Perrin and Darroles, 1988). The average transfer coefficient approach was preferred as a result of experimental difficulties associated with local measurements of the drying rate N<sub>v</sub> as well as T<sub>s</sub> and the surface moisture content X<sub>s</sub> (Prat, 1991). In section 3.5, it was verified that the drying was essentially one-dimensional, at least on a macroscopic level, thus providing a justification for the second assumption. The third assumption is reasonable for two reasons. First, the temperature difference between the surface and the bottom computed during the P.C.D.R.P. for all convective results was always less than 6 °C. Second, the error generated by such approximation is felt mainly in the sensible heat term in the energy balance equation which represents at most 5 % of the heat of evaporation (Chiang, 1987).

The energy balance for the sample can be written:

$$\mathbf{Q} - \mathbf{Q}_{\mathbf{v}} = \mathbf{Q}_{\mathbf{ac}} \tag{4.1}$$

where Q is the rate of heat transfer from the drying air stream to the surface of the sample, W;  $Q_v$  is the rate of energy transport by the water vapor, W;  $Q_{ac}$  is the rate of heat accumulation inside the sample, W. Q may be expressed as:

$$Q = hA_s(T_- - T_s)$$
(4.2)

where h is the overall (convective-radiative) heat transfer coefficient, W/m<sup>2</sup>K;  $A_s$  the sample surface area, m<sup>2</sup> and  $T_{\infty}$  the air temperature, K.  $Q_v$  may be expressed as:

$$Q_{v} = -\frac{dm_{w}}{dt}h_{v}$$
(4.3)

where the first term of the right-hand side is the instantaneous evaporation rate, kg/s;  $h_v$  the vapor enthalpy, J/kg. A detailed summary of all the physical properties of the air, water (vapor or liquid) and the glass beads is given in Appendix 4. The rate of heat accumulation is:

$$Q_{ac} = \frac{d((m_{w}c_{pw} + m_{b}c_{pb})T_{s})}{dt}$$
(4.4)

where  $m_w$  and  $m_b$  (Table 3.1) are the water and glass bead mass respectively, kg;  $c_{pw}$  and  $c_{pb}$  are the water and glass specific heat respectively, J/kgK. After some algebraic manipulation and integration over the time interval  $[t_1, t_2]$ , the final expression for the average overal! heat transfer coefficient h<sup>\*</sup> during the P.C.D.R.P. is:

$$h^{*} = \frac{1}{(t_{2} - t_{1})} \left[ \int_{t_{1}}^{t_{2}} \left( -\frac{1}{A_{s}} \left( \frac{dm_{w}}{dt} \right) \Delta H_{v} \right) dt + \int_{t_{1}}^{t_{2}} \left( \frac{(m_{w}c_{pw} + m_{b}c_{pb})}{A_{s}} \frac{dT_{s}}{dt} \right) dt \right] / \left( T_{-}^{*} - T_{s}^{*} \right)$$
(4.5)

Here the first term is the heat of evaporation which can be approximated by multiplying the average mass flux  $(N_v)$  and the average heat of evaporation of water  $(\Delta H_v)$  calculated at the average surface temperature  $(T_s)$  during the P.C.D.R.P.. Superscript indicates that this quantity was averaged from the recorded data during the P.C.D.R.P.. The second term was evaluated using the trapezoid rule for numerical integration and is referred to as an average accumulation heat flux  $q_{ac}$ , W/m<sup>2</sup>.

The average convective heat transfer coefficient  $h_c^*$  ( $h^*$  decreases as a result of radiation effect from the test section walls) was derived from a modified form of equation 4.5 viz.

$$h_{c}^{*} = \frac{1}{(t_{2} - t_{1})} \left[ \int_{t_{1}}^{t_{2}} \left( -\frac{1}{A_{s}} \left( \frac{dm_{w}}{dt} \right) \Delta H_{v} \right) dt + \int_{t_{1}}^{t_{2}} \left( \frac{\left( m_{w} c_{pw} + m_{b} c_{pb} \right)}{A_{s}} \left( \frac{dT_{s}}{dt} \right) \right) dt - \int_{t_{1}}^{t_{2}} q_{is} dt \right] / \left( T_{w}^{*} - T_{s}^{*} \right)$$

$$(4.6)$$

ť

where  $q_{ts}$  is the net radiative heat flux exchanged between the test section walls and the sample. Since the measured  $T_s$  and  $T_{ti}$  values are almost constant during the P.C.D.R.P.,  $q_{ts}$  may be replaced by its average value  $q_{ts}$  computed from the theory of radiation exchange in an enclosure of diffuse-gray surfaces (Siegel and Howell, 1981) and average temperatures (test section surfaces and sample surface). So as to attenuate the effects of potential wall temperature and emissivity non-uniformity and in agreement with the discussion presented in section 5.3, 4 surfaces (sample (1), 2, 3 and planar radiative screen (4)) were chosen to represent the enclosure. Throughout this research the word emissivity refers to the total hemispherical emissivity unless otherwise stated. Appendix 5 summarizes the hypotheses, geometrical location and identification of the surfaces, the shape factors, the equations as well as the solution technique.

The theory of radiation exchange in an enclosure of diffuse-gray surfaces was applied for four reasons:

- a) Siegel and Howell (1981) have presented measured data for the hemispherical normal spectral reflectivity of an aluminized silicone paint. Within the range 1-25 μm, it was almost independent of wavelength. Thus the test section walls can be considered to be gray;
- b) Schonhorst and Viskanta (1968) tested the appropriateness of the various analytical techniques to compute the radiant exchange between diffuse, specular and diffuse-specular surfaces. They found that regardless of the presence of specular surfaces, the diffuse surface analysis agreed best with experimental results. Siegel and Howell (1981) emphasized that within enclosures, the directional effects due to the presence of specular surfaces may be small because of the many reflections taking place between the surfaces;
- c) The surface area of possibly specular surfaces (stainless steel plate and aluminium foil) are small as compared to the aluminized painted area (ratio 8.5 10<sup>-2</sup> and 3.8 10<sup>-2</sup> respectively);

7

d) The spectral distribution of the infrared radiation within the test section is relatively concentrated in the long wavelength infrared range (6.4  $\mu$ m <  $\lambda_{max}$  < 9.3  $\mu$ m) because the temperatures of the various surfaces within the cavity do not differ significantly from each other (40-180 °C maximum range).

The test section surface emissivity  $E_t$  (0.28), the planar radiative screen emissivity  $E_{sc}$  (0.13) and the sample surface emissivity  $E_s$  (0.95) were measured using an infrared pyrometer as described in Appendix 3, according to the procedure presented in Appendix 6.

÷

ſ

The method of solution of the linear system of 4 equations with 4 unknowns  $(Q_j; Appendix 5)$  was reliable since  $q_{ts}$  was equal to 0 when all surfaces temperature were taken to be identical. Furthermore,  $q_{ts}$  was also derived through use of the well known result for two gray surfaces which see each other and nothing else (Holman, 1981):

$$\dot{q_{ts}} = \frac{\sigma(T_{t}^{*4} - T_{s}^{*4})}{\frac{1}{E_{s}} + \frac{A_{s}}{A_{t}} \left(\frac{1}{E_{t}} - 1\right)}$$
(4.7)

where  $A_t$  is the overall test section area (including the radiative screen area),  $\sigma$  the Stefan-Boltzman constant and  $T_t^*$  is the average test section wall temperature taken equal to  $T_{\infty}^*$ . A comparison of  $q_{ts}^*$  determined with each procedure generated differences lower than 2.8 % (based on average  $q_{ts}^*$ ) in all cases. These differences can be explained by the increase in accuracy (Siegel and Howell, 1981) which result from increasing the number of areas describing the enclosure. Since the present differences are already low, one can expect to gain very little through use of additional surfaces.

The experimental parameters (run name, sample number, b,  $T_{\infty}^{*}$ ,  $v_{\infty}^{*}$ ,  $P_{\infty}^{*}$ ,  $T_{d}^{*}$ ) characterizing each convective run as well as  $T_{s}^{*}$ ,  $T_{2}^{*}$ ,  $T_{3}^{*}$ ,  $N_{v}^{*}$ ,  $q_{ac}^{*}$ ,  $q_{ts}^{*}$ ,  $h^{*}$ ,  $h_{c}^{*}$  and S are reported in Table 4.1.

### TABLE 4.1

·\* 4

# HEAT TRANSFER COEFFICIENTS FROM THE CONVECTIVE DRYING RUNS

| Run         | Sa. | b    | T <sub>∞</sub> • | v*    | P <sub>∞</sub> * | тď   | T <sub>s</sub> | T <sub>2</sub> • | T <sub>3</sub> | N <sub>v</sub> *      | q <sub>ac</sub> | q <sub>ac</sub> ⁵% | q <sub>ts</sub> .   | q <sub>ts</sub> *% | h                    | h <sub>c</sub>       | S         |
|-------------|-----|------|------------------|-------|------------------|------|----------------|------------------|----------------|-----------------------|-----------------|--------------------|---------------------|--------------------|----------------------|----------------------|-----------|
| No.         | No. | (mm) | (°C)             | (m/s) | (kPa)            | (°C) | (°C)           | (°C)             | (°C)           | (kg/m <sup>2</sup> s) | (W/m²)          | (%)                | (W/m <sup>2</sup> ) | (%)                | (W/m <sup>2</sup> K) | (W/m <sup>2</sup> K) | (.)       |
| <u> </u>    | X   | 10.3 | 79.9             | 20    | 99.37            | 3.0  | 30.6           | 77               | 73             | 0.55e-03              | 10              | 0.7                | 330                 | 24.9               | 27.1                 | 20.4                 | 0.68-0.28 |
| ro18        | x l | 19.9 | 79.8             | 2.0   | 99.43            | 2.4  | 30.6           | 77               | 73             | 0.58e-03              | 30              | 1.9                | 330                 | 23.6               | 29.0                 | 22.2                 | 0.82-0.39 |
| co15        | ίx. | 5.5  | 80.2             | 4.5   | 99.53            | 3.0  | 29.3           | 79               | 76             | 0.83e-03              | 20              | 0.9                | 350                 | 17.4               | 40.0                 | 33.1                 | 0.64-0.36 |
| c04         | x   | 10.3 | 80.5             | 4.5   | 99.46            | 5.2  | 32.9           | 79               | 77             | 0.79e-03              | 20              | 0.8                | 340                 | 17.7               | 40.3                 | 33.3                 | 0.61-0.27 |
| co3         | xī  | 19.9 | 80.6             | 4.5   | 99.46            | 5.2  | 33.2           | 79               | 77             | 0.85e-03              | 40              | 1.8                | 340                 | 16.3               | 44.0                 | 36.9                 | 0.73-0.39 |
| <u>co7</u>  | X   | 10.3 | 130.6            | 2.2   | 99.59            | 3.9  | 40.5           | 124              | 114            | 0.97e-03              | 20              | 0.9                | 760                 | 32.6               | 26.1                 | 17.7                 | 0.61-0.28 |
| 007         | X   | 19.9 | 130.7            | 2.2   | 99.49            | 3.4  | 43.0           | 124              | 113            | 0.96e-03              | 40              | 1.6                | 740                 | 32.1               | 26.8                 | 18.3                 | 0.68-0.26 |
| 600         | N   | 5.5  | 130.4            | 5.0   | 99.54            | 1.5  | 39.8           | 127              | 121            | 1.42e-03              | 60              | 1.7                | 810                 | 23.6               | 38.4                 | 29.5                 | 0.66-0.35 |
| co12        | X   | 10.3 | 130.5            | 4.9   | 99.63            | -1.8 | 42.2           | 127              | 121            | 1.35e-03              | 60              | 1.7                | 800                 | 24.6               | 37.3                 | 28.3                 | 0.60-0.27 |
| co8         | x   | 19.9 | 130.4            | 5.0   | 99.58            | 1.6  | 43.3           | 127              | 121            | 1.32e-03_             | 100             | 3.0                | 800                 | 24.9               | 37.4                 | 28.4                 | 0.71-0.31 |
| <u>co11</u> | X   | 10.3 | 180.5            | 2.6   | 98.79            | 2.1  | 48.6           | 169              | 153            | 1.50e-03              | 50              | 1.4                | 1370                | 38.2               | 27.5                 | 17.2                 | 0.50-0.24 |
| co10        | xi  | 19.9 | 180.6            | 2.6   | 99.30            | 1.2  | 51.8           | 169              | 153            | 1.47e-03              | 70              | 1.9                | 1350                | 38.7               | 27.6                 | 17.1                 | 0.52-0.22 |
| re12        | R   | 5.5  | 180.5            | 5.9   | 100.25           | 6.6  | 44.6           | 173              | 163            | 2.20e-03              | 80              | 1.5                | 1480                | 28.2               | 39.3                 | 28.4                 | 0.62-0.34 |
| re21        | Σ   | 5.5  | 180.0            | 6.2   | 98.15            | 4.6  | 46.1           | 173              | 163            | 2.23e-03              | 80              | 1.6                | 1470                | 27.6               | 40.4                 | 29.4                 | 0.63-0.37 |
| re7         | x   | 10.3 | 180.3            | 6.0   | 101.06           | 3.1  | 45.3           | 174              | 164            | 2.14e-03              | 100             | 2.0                | 1490                | 29.1               | 38.7                 | 27.6                 | 0.53-0.42 |
| re14        | x   | 10.3 | 180.3            | 6.1   | 99.91            | 7.5  | 47.0           | 174              | 164            | 2.03e-03              | 120             | 2.4                | 1480                | 30.5               | 37.3                 | 26.1                 | 0.60-0.29 |
| re25        | x   | 10.3 | 179.8            | 5.3   | 98.15            | 4.4  | 48.3           | 174              | 164            | 2.11e-03              | 130             | 2.6                | 1470                | 29.1               | 39.3                 | 28.2                 | 0.60-0.32 |
| re27        | x   | 10.3 | 179.8            | 6.3   | 98.17            | 3.4  | 50.0           | 174              | 165            | 1.99e-03              | 120             | 2.5                | 1460                | 30.7               | 37.4                 | 26.2                 | 0.63-0.24 |
| re10        | x   | 10.3 | 180.3            | 6.1   | 100.87           | 3.8  | 46.2           | 174              | 164            | 2.35e-03              | 110             | 2.0                | 1490                | 26.5               | 42.7                 | 31.6                 | 0.59-0.35 |
| re16        | x   | 10.3 | 180.3            | 6.1   | 99.78            | 7.1  | 45.7           | 174              | 164            | 2.35e-03              | 80              | 1.5                | 1490                | 26.5               | 42.5                 | 31.4                 | 0.51-0.27 |
| re24        | X   | 10.3 | 179.8            | 6.3   | 98.15            | 4.7  | 48.4           | 174              | 164            | 2.36e-03              | 100             | 1.7                | 1470                | 26.1               | 43.6                 | 32.4                 | 0.46-0.24 |
| re26        | X   | 10.3 | 179.9            | 6.3   | 98.15            | 4.0  | 47.0           | 174              | 1€∔            | 2.39e-03              | 140             | 2.4                | 1480                | 25.8               | 44.0                 | 32.9                 | 0.69-0.25 |
| re6         | X   | 19.9 | 180.4            | 6.1   | 101.11           | 2.2  | 46.6           | 174              | 135            | 2.25e-03              | 210             | 3.9                | 1480                | 27.5               | 41./                 | 30.7                 | 0.64-0.37 |
| re13        | X   | 19.9 | 180.3            | 6.1   | 100.13           | 7.8  | 45.6           | 174              | 165            | 2.21e-03              | 180             | 3.4                | 1500                | 28.3               | 40.5                 | 29.4                 | 0.64-0.36 |
| re9         | XI  | 20.0 | 180.3            | 6.2   | 100.90           | 3.4  | 46.6           | 174              | 165            | 2.24e-03              | 220             | 4.0                | 1490                | 27.8               | 41./                 | 30.5                 | 0.75-0.32 |
| re15        | XI  | 20.0 | 180.3            | 6.2   | 99.78            | 8.3  | 49.5           | 174              | 165            | 2.17e-03              | 220             | 4.3                | 1470                | 28.5               | 41.2                 | 30.0                 | 0.09-0.32 |

Ľ,

,

 $T_2^{\bullet}$  and  $T_3^{\bullet}$  were computed by averaging the recorded temperature from the thermocouples located on their surfaces ( $T_{t1}^{\bullet}$ ,  $T_{t3}^{\bullet}$ ,  $T_{t6}^{\bullet}$ : 2;  $T_{t2}^{\bullet}$ ,  $T_{t4}^{\bullet}$ ,  $T_{t5}^{\bullet}$ : 3). The radiative screen temperature was taken equal to  $T_{\infty}^{\bullet}$ . Values reported in the S column represent the average bed saturation at the start ( $t_1$ ) and end ( $t_2$ ) of the P.C.D.R.P.. In Table 4.1,  $q_{ac}^{\bullet}$ % and  $q_{ts}^{\bullet}$ % express in percent the ratio of  $q_{ac}^{\bullet}$  and  $q_{ts}^{\bullet}$  to the heat of evaporation ( $N_v^{\bullet*}\Delta H_v^{\bullet}$ ).

.

1

It can be observed that  $q_{ac}$  \*% ranges from 0.7 % (80 °C, 10.3 mm) to 4.3 % (180 °C, 20.0 mm). It increases as  $T_{\infty}$  and  $v_{\infty}$  increases.  $q_{ac}$  \*% is almost the same for 5.5 and 10.3 mm samples while it is about 1.5 to 3 times higher for a 20 mm than for a 10.3 mm sample.

For the same  $v_{\infty}$  and  $T_{\infty}$ , all computed  $q_{ts}$  differ by less than 5 %. This is a consequence of the good reproducibility of all the recorded surface temperature values  $(T_{\infty}, T_{s}, T_{2}$  and  $T_{3}$  in Table 4.1). However, at the same  $T_{\infty}$ ,  $q_{ts}$ increases on the average by 3 % (80 °C), 6 % (130 °C) and 8 % (180 °C) when the velocity is approximately doubled. These small variations are easy to explain as the wall temperatures increase with  $v_{\infty}$  through the increased rate of convective heat transfer to the walls which are not perfectly adiabatic. qts\*% ranges between 16 % to 39 % and is a relatively strong function of velocity since it decreases on the average by 34 % (80 °C), 28 % (130 °C) and 31 % (180 °C) when the velocity is doubled. A velocity rise, increases the magnitude of the convective heat transfer and thus decreases the relative contribution of radiation. These results undoubtedly show that the radiative heat flux from the walls contributes significantly to the mass flux in a small scale apparatus where the ratio (A<sub>s</sub>/A<sub>t</sub>) is very small (~9.1\*10<sup>-3</sup>).  $q_{ts}^*$ % was also identified to range from 30 % at  $v_{\infty}$  = 18.6 m/s to 50 % at  $v_{\infty}$  = 6.2 m/s by Basilico and Martin (1984) in an experimental study of superheated steam drying of wood at high temperature  $(T_{\infty}^{*} = 150-190 \text{ °C}, v_{\infty}^{*} = 6-19 \text{ m/s}).$ 

Chiang (1987) presented experimental h values in the range (14.6-35.8 W/m<sup>2</sup>K) from drying experiments in a square duct (20 mm x 20 mm) with  $T_{\infty}^{*}$  in the interval [75-85 °C], similar  $v_{\infty}^{*}$  (1.4-5.6 m/s) and a small surface size sample (49X20 mm). In Table 4.1, a comparable h range may be found (26.1-44.0 W/m<sup>2</sup>K) for  $T_{\infty}^{*}$  = 80 °C. Though  $A_s/A_t$  are approximately the same in both

studies, at  $(T_{\infty} \sim 85 \circ C, v_{\infty} \sim 4.6 \text{ m/s})$ , h was 35.8 W/m<sup>2</sup>K in Chiang 's study while here it is found to be between 40.0 and 44.0 W/m<sup>2</sup>K. This can be explained by the fact that the test section flow, in the present study, is not fully developed at the sample location which results in higher local h values (Kays and Crawford, 1980). Furthermore, the turbulence intensity is likely to be higher due to the presence of the flow mixer. The usual behavior of h increasing with increase in  $v_{\infty}$  can be observed in Table 4.1 (column sixteen).

 $h_c^*$  (column seventeen, Table 4.1) is lower by 17.5 % to 46.9 % as compared to  $h^*$ . The actual experimental range of  $h_c^*$  (17.1-36.9 W/m<sup>2</sup>K) is well within the range (11.6-116.0 W/m<sup>2</sup>K), taken as representative by Bird et al. (1960), for forced convection of gases. However, it is on the low side of this range because the flow velocities in this work are low and the flow direction is parallel to the surface.

# 4.3 TEST OF THE ANALOGY BETWEEN THE HEAT AND MASS TRANSFER IN CONVECTION DRYING

The concept of analogy between momentum, heat and mass transfer was first put forward by Chilton and Colburn (1934). Since then, theoretical considerations as well as most experimental studies have confirmed this concept. However, questions have been raised recently (Pilitsis, 1986; Prat, 1986b; Perrin and Darolles, 1988; Rogers and Kaviany, 1990; Prat, 1991) about the applicability of such a concept to the case of prediction of the effective or average transfer coefficients in drying when the surface is not fully wetted. It is also becoming common to find drying studies (Plumb et al., 1985; Kaviany and Mittal, 1987; Chen and Pei, 1989) where the heat and mass transfer coefficients are taken to vary as a function of the surface moisture content. Since only limited experimental data have been presented to substantiate these conclusions in the drying literature, it is of interest to test the analogy based on a significant number of experimental determination of the average (over the surface area and during the P.C.D.R.P.) heat and mass transfer coefficients over a wide operating range.

In most cases convective drying can be considered to be a low mass flux process; thus two average mass transfer coefficients were computed from the experimental results. One is the classical mass transfer coefficient  $K_{p}^{*}$  (m/s) defined in the following way from the mass flux  $N_{v}^{*}$ :

$$N_{v}^{*} = K_{\rho}^{*} (\rho_{vs}^{*} - \rho_{v-}^{*})$$
(4.8)

where  $\rho_{vs}^{*}$  and  $\rho_{v\infty}^{*}$  are the water vapor density at the sample surface and within the test section flow respectively, kg/m<sup>3</sup>.  $\rho_{vs}^{*}$  was computed from  $T_{s}^{*}$  through use of the saturation pressure (Appendix 5) and perfect gas law and  $\rho_{v\infty}^{*}$  from  $T_{d}^{*}$ . The usual definition (Nienow et al., 1969; Bird et al.,1960) of the mass transfer coefficient K<sub>v</sub><sup>\*</sup> (mol/m<sup>2</sup>s) at high mass flux is:

$$N_{v}^{*} = K_{y}^{*}M_{w} \left(\frac{\dot{y}_{vs}^{*} - \dot{y}_{v-}^{*}}{1 - \dot{y}_{vs}^{*}}\right)$$
(4.9)

where  $y_{vs}^{*}$  and  $y_{v\infty}^{*}$  are the water vapor mole fraction at the sample surface and within the test section flow respectively and  $M_w$  is the molecular weight of water, kg/mol. In equation 4.9 the driving force (written  $B_K$  later on) expresses the ratio of the molar flux by bulk flow to the flux by molecular transport at the interface (Bird et al., 1960) upon the assumption of diffusion through a stagnant film (the molar flux of air is 0 at the interface). Both mass transfer coefficients ( $K_p^{*}$ ,  $K_y^{*}$ ) were used to calculate the following transfer coefficient ratios (Bird et al., 1960; Incropera and De Witt, 1985):

ľ

$$\left(\frac{Nu}{Sh_{\rho}}\frac{Sc}{Pr}\right)^{*} = \frac{h_{c}^{*}}{K_{\rho}^{*}(\rho_{g}c_{pg})_{t}^{*}}$$
(4.10)

$$\left(\frac{\mathrm{Nu}}{\mathrm{Sh}_{y}}\frac{\mathrm{Sc}}{\mathrm{Pr}}\right)^{*} = \frac{\mathrm{h}_{c}^{*}(c_{g})_{t}^{*}}{\mathrm{K}_{y}^{*}(\rho_{g}c_{pg})_{t}^{*}}$$
(4.11)

where Nu<sup>\*</sup> is the Nusselt number (evaluated with  $h_c^*$ ), Sh<sup>\*</sup> the Sherwood number (evaluated with  $K_p^*$  or  $K_y^*$ ),  $\rho_g$  the gaseous mixture density, kg/m<sup>3</sup>;  $c_{pg}$  the specific heat of the gaseous mixture at constant pressure, J/kgK;  $c_g$  is the total molar concentration, mol/m<sup>3</sup>. The f subscript means that the quantity is evaluated at the mean film temperature and composition. Sc<sup>\*</sup> is the Schmidt number defined as:

$$Sc' = \left(\frac{\mu_g}{\rho_g D_{va}}\right)_1$$
(4.12)

where  $\mu_g$  (kg/ms) is the dynamic viscosity of the gaseous mixture and  $D_{va}$  (m<sup>2</sup>/s) the binary diffusivity of vapor in air. Pr<sup>\*</sup> is the Prandtl number written as:

$$\mathsf{Pr}^{*} = \left(\frac{\mu_{\mathsf{g}} \mathsf{C}_{\mathsf{pg}}}{\mathsf{k}_{\mathsf{g}}}\right)_{\mathsf{f}}^{*} \tag{4.13}$$

where  $\boldsymbol{k}_g$  is the thermal conductivity of the gaseous mixture, (W/mK).

It was also decided to test the usual mass transfer correction procedures (boundary layer theory, film theory, penetration theory), summarized by Bird et al. (1960), using  $K_p^*$  and  $K_y^*$ . The corrected (with the boundary layer theory) mass transfer coefficient,  $K_{pBL}^*$  and  $K_{yBL}^*$  were defined by:

$$K_{\rho BL}^{*} = \frac{K_{\rho}^{*}}{\theta_{\kappa}}$$
(4.14)

$$K_{yBL}^{*} = \frac{K_{y}^{*}}{\theta_{\kappa}}$$
(4.15)

where the correction factor for the mass transfer coefficient  $\theta_K$  was conveniently correlated (polynomial regression) as a function of  $B_K$  and the correction procedures from curves presented by Bird et al. (1960):

.....

Boundary layer theory:

if  $0.1 < (1 + B_{\rm K}) < 10.0$ 

$$\ln(\theta_{\kappa}) = 9.9944 \ 10^{\cdot 3} - 0.7738 \ln(1 + B_{\kappa}) - 5.5954 \ 10^{\cdot 2} \ln(1 + B_{\kappa})^{2}$$
(4.16)

Film theory:

if 0.1 <  $(1 + B_{\rm K})$  < 10.0  $\ln(\theta_{\rm K}) = -1.7146 \ 10^{-3} - 0.50775 \ \ln(1 + B_{\rm K}) - 4.0239 \ 10^{-2} \ \left(\ln(1 + B_{\rm K})\right)^2 \ (4.17)$ 

Penetration theory:

if 
$$0.1 < (1 + B_{\rm K}) < 10.0$$
  

$$\ln(\theta_{\rm K}) = 4.3753 \ 10^{-3} - 0.64831^* \ln(1 + B_{\rm K}) - 3.4881 \ 10^{-2} * \left(\ln(1 + B_{\rm K})\right)^2 \ (4.18)$$

The corresponding correlation coefficients r were 1.00 and 59 points were used for each of the correlations. Although, it is not strictly correct to apply any of the correction procedures to  $K_p^{*}$ , this attempt was made to verify if, from an engineering point of view, we can still obtain a good prodiction of the effect of high mass transfer rate on  $K_p$ . Equations 4.14 and 4.15 may include an additional correction factor because the theories put forward to account for high mass transfer rate effect assumed constant physical properties. It is possible to correct the mass transfer coefficient unaffected by the evaporating rate for the effect of density variation between the evaporating surface and the external flow. For gases, no correction for variation of viscosity or diffusivity is necessary because these quantities are relatively insensitive to concentration (Nienow, 1967). Hanna (1962) has put forward an approximate method which relies on the following correction factor:

$$H_{c} = \frac{\left(K_{BL}^{*}\right)_{arp}}{\left(K_{BL}^{*}\right)_{constp}} = \frac{\ln\left(\frac{M_{s}^{*}}{M_{\star}^{*}}\right)}{\left(\frac{M_{s}^{*}}{M_{\star}^{*}} - 1\right)}$$
(4.19)

Here,  $(K_{BL}^{*})_{constp}$  is either  $K_{pBL}^{*}$  or  $K_{yBL}^{*}$  already defined. M<sup>\*</sup> is the gas mixture average molecular weight (mol/m<sup>3</sup>) evaluated at the surface (<sub>s</sub>) or for the flow conditions (<sub>w</sub>). H<sub>c</sub> is Hanna's correction factor. Mendelson and Yerazunis (1965) and Loughlin et al. (1985) tested successfully the appropriateness of this relation to account for the effects of density variations (evaporation at the stagnant point of a cylinder, liquid droplet evaporation). A similar correction for the heat transfer coefficient which take into account the effect of density variation could not be found in the literature.

The heat transfer coefficient  $h_c^*$  was also corrected to yield  $h_{cBL}^*$  (the heat transfer coefficient when no mass transfer is present):

$$\dot{h_{cBL}} = \frac{\dot{h_c}}{\theta_h}$$
(4.20)

where the correction factor for the heat transfer coefficient  $\theta_h$  was correlated as a function of the correction procedure (the correlation is the same as the one for  $\theta_K$ ) and  $B_h$ , which is the ratio of energy flux by bulk flow to the flux by molecular transport at the interface, may be written:

$$B_{h} = \frac{N_{v}(c_{pv})_{s}}{h_{c}}$$
(4.21)

where  $c_{pv}$  is the vapor specific heat (J/kgK). Again the ratios already defined in equations 4.10 and 4.11 were computed with  $h_{cBL}^{*}$ , ( $K_{pBL}^{*}$ )<sub>varp</sub> and ( $K_{yBL}^{*}$ )<sub>varp</sub>:

$$\left(\frac{Nu_{BL}}{Sh_{\rho BL}}\frac{Sc}{Pr}\right)^{T} = \frac{h_{cBL}^{T}}{\left(K_{\rho BL}^{T}\right)_{varp}\left(\rho_{g}c_{pg}\right)_{t}^{T}}$$
(4.22)

$$\left(\frac{Nu_{BL}}{Sh_{yBL}}\frac{Sc}{Pr}\right)^{T} = \frac{h_{cBL}(c_{g})_{t}^{T}}{\left(K_{yBL}^{T}\right)_{varp}\left(\rho_{g}c_{pg}\right)_{t}^{T}}$$
(4.23)

The experimental parameters (run name, sample number, b,  $T_{\infty}^{*}$ ,  $v_{\infty}^{*}$ ,  $P_{\infty}^{*}$ ,  $T_{d}^{*}$ ) characterizing each convective run as well as  $h_{c}^{*}$ ,  $h_{cBL}^{*}$ ,  $\theta_{h}$ ,  $\theta_{K}$ ,  $H_{c}$ ,  $K_{\rho}^{*}$ , 4.10,  $(K_{\rho BL}^{*})_{varp}$ , 4.22,  $K_{y}^{*}$ , 4.11,  $(K_{yBL}^{*})_{varp}$ , 4.23 and  $(Sc/Pr)_{f}^{*(2/3)}$  are reported in Tables 4.2a and b.

4

ſ

The magnitude of the correction applied to the heat transfer coefficient  $h_c^{+}$  to get  $h_{cBL}^{+}$  is characterized by the correction factor  $\theta_h$  (Table 4.2a) almost constant for a specific temperature i.e. the average  $\theta_h$  are 0.97 ± 0.01 (80 °C), 0.94 ± 0.01 (130 °C) and 0.91 ± 0.01 (180 °C). These results are comparable to correction factors in the order of 0.97 to 0.93 ( $T_{\infty}^{+}$  = 150-190 °C,  $v_{\infty}^{+}$  = 6.2-18.6 m/s) presented by Basilico and Martin (1984).  $\theta_h$  does not appear to depend significantly on  $v_{\infty}^{+}$ .

For the mass transfer coefficient  $K_p^*$  and  $K_y^*$ , the correction is slightly lower because the correction factors are greater; the average  $\theta_K$  (Table 4.2a) are 0.98  $\pm$  0.01 (80 °C), 0.95  $\pm$  0.01 (130 °C) and 0.93  $\pm$  0.01 (180 °C). Again,  $\theta_K$  is not a function of  $v_{\infty}^*$ .

 $H_c$  (Table 4.2a) was found to be in the range 1.01 (80 °C) to 1.03 (180 °C); It increase slightly with  $(T_{\infty}^{*} - T_{s}^{*})$  and is not a function of  $v_{os}^{*}$  or  $T_{d}^{*}$ . Thus the increase of the mass transfer coefficient as a result of density variation is low in the case of convective drying over the operating range investigated.

The means of the right-hand side of equations 4.10, 4.11, 4.22 and 4.23 computed from all experimental results reported in Tables 4.2 are 1.01, 0.93, 1.01 and 0.93 respectively, while their standard deviation are 0.12, 0.13, 0.11 and 0.12 respectively (last row, Table 4.2a and b). The order of magnitude of the scatter quantified by these results is not unusual when the heat and mass transfer coefficients are determined simultaneously (Heertjes and Ringens, 1956; Obot and Trabold, 1992).

### TABLE 4.2a

•

· •

# THE TRANSFER COEFFICIENT RATIOS FROM THE CONVECTIVE DRYING RUNS

| Run<br>No. | Sa.<br>No. | b    | T∞    | v <sub>∞</sub> * | ₽ <sub>∞</sub> ๋ | тď   | h <sub>c</sub>             | h <sub>cBL</sub>     | θ <sub>h</sub> | θ <sub>K</sub> | H <sub>c</sub> | κ <sub>ρ</sub> | $\left(\frac{Nu}{Sh_{p}}\frac{Pr}{Sc}\right)^{2}$ | $\left(K^{*}_{\rhoBL}\right)_{var\rho}$ | $\left(\frac{Nu_{BL}}{Sh_{PBL}}\frac{Pr}{Sc}\right)$ |
|------------|------------|------|-------|------------------|------------------|------|----------------------------|----------------------|----------------|----------------|----------------|----------------|---------------------------------------------------|-----------------------------------------|------------------------------------------------------|
| (.)        | (.)        | (mm) | (°C)  | (m/s)            | (kPa)            | (°C) | (W/m፞፞፞፞፞፞፞፞፞፞ (W/m፞፞፞፞፞፞፞ | (W/m <sup>2</sup> K) | (4.1           | 16)            | (4.19)         | (m/s)          | (4.10)                                            | (m/s)                                   | (4.22)                                               |
| co2        | X          | 10.3 | 79.9  | 2.0              | 99.37            | 3.0  | 20.4                       | 21.0                 | 0.97           | 0.98           | 1.01           | 2.05e-02       | 0.93                                              | 2.10e-02                                | 0.94                                                 |
| re18       | Xil        | 19.9 | 79.8  | 2.0              | 99.43            | 2.4  | 22.2                       | 22.8                 | 0.97           | 0.98           | 1.01           | 2.14e-02       | 0.97                                              | 2.20e-02                                | 0.97                                                 |
| co15       | K          | 5.5  | 80.2  | 4.5              | 99.53            | 3.0  | 33.1                       | 34.0                 | 0.97           | 0.98           | 1.01           | 3.39e-02       | 0.91                                              | 3.47e-02                                | 0.91                                                 |
| co4        | X          | 10.3 | 80.5  | 4.5              | 99.46            | 5.2  | 33.3                       | 34.1                 | 0.98           | 0.98           | 1.01           | 2.62e-02       | 1.19                                              | 2.70e-02                                | 1.18                                                 |
| _co3       | XII        | 19.9 | 80.6  | 4.5              | 99.46            | 5.2  | 36.9                       | 37.8                 | 0.98           | 0.98           | 1.01           | 2.78e-02       | 1.25                                              | 2.87e-02                                | 1.24                                                 |
| co7        | X          | 10.3 | 130.6 | 2.2              | <u>99.59</u>     | 3.9  | 17.7                       | 18.9                 | 0.94           | 0.96           | 1.01           | 2.02e-02       | 0.89                                              | 2.14e-02                                | 0.89                                                 |
| co6        | XOL        | 19.9 | 130.7 | 2.2              | 59.49            | 3.4  | 18.3                       | 19.5                 | 0.94           | 0.95           | 1.02           | 1.75e-02       | 1.07                                              | 1.87e-02                                | 1.06                                                 |
| co9        | K          | 5.5  | 130.4 | 5.0              | 99.54            | 1.5  | 29.5                       | 31.3                 | 0.94           | 0.96           | 1.01           | 3.03e-02       | 0.99                                              | 3.21e-02                                | 0.99                                                 |
| co12       | X          | 10.3 | 130.5 | 4.9              | 99.63            | -1.8 | 28.3                       | 29.9                 | 0 94           | 0.95           | 1.02           | 2.49e-02       | 1.15                                              | 2.67e-02                                | 1.14                                                 |
| <u>co8</u> | NI.        | 19.9 | 130.4 | 5.0              | 99.58            | 1.6  | 28.4                       | 30.0                 | 0.95           | 0.95           | 1.02           | 2.34e-02       | 1.23                                              | 2.51e-02                                | 1.21                                                 |
| co11       | X          | 10.3 | 180.5 | 2.6              | 98.79            | 2.1  | 17.2                       | 19.1                 | 0.90           | 0.92           | 1.02           | 2.03e-02       | 0.93                                              | 2.24e-02                                | 0.94                                                 |
| co10       | XI         | 19.9 | 180.6 | 2.6              | 99.30            | 1.2  | 17.1                       | 19.0                 | 0.90           | 0.91           | 1.03           | 1.69e-02       | 1.11                                              | 1.91e-02                                | 1.09                                                 |
| re12       | K          | 5.5  | 180.5 | 5. <del>9</del>  | 100.25           | 6.6  | 28.4                       | 31.2                 | 0.91           | 0.94           | 1.02           | 3.70e-02       | 0.83                                              | 3.99e-02                                | 0.85                                                 |
| re21       | x          | 5.5  | 180.0 | 6.2              | 98.15            | 4.6  | 29.4                       | 32.3                 | 0.91           | 0.93           | 1.02           | 3.43e-02       | 0.95                                              | 3.74e-02                                | 0.95                                                 |
| re7        | X          | 10.3 | 180.3 | 6.0              | 101.06           | 3.1  | 27.6                       | 30.4                 | 0.91           | 0.94           | 1.02           | 3.42e-02       | 0.87                                              | 3.70e-02                                | 0.88                                                 |
| re14       | X          | 10.3 | 180.3 | 6.1              | 99.91            | 7.5  | 26.1                       | 28.8                 | 0.91           | 0.93           | 1.02           | 3.03e-02       | 0.93                                              | 3.31e-02                                | 0.94                                                 |
| re25       | X          | 10.3 | 179.8 | 6.3              | 98.15            | 4.4  | 28.2                       | 30.9                 | 0.91           | 0.92           | 1.02           | 2.93e-02       | 1.06                                              | 3.23e-02                                | 1.06                                                 |
| re27       | X          | 10.3 | 179.8 | 6.3              | 98.17            | 3.4  | 26.2                       | 28.7                 | 0.91           | 0.92           | 1.02           | 2.526-02       | 1.15                                              | 2.816-02                                | 1.13                                                 |
| re10       | X          | 10.3 | 180.3 | 6.1              | 100.87           | 3.8  | 31.6                       | 34.6                 | 0.91           | 0.94           | 1.02           | 3.596-02       | 0.94                                              | 3.910-02                                | 0.95                                                 |
| re16       | X          | 10.3 | 180.3 | 6.1              | 99.78            | 7.1  | 31.4                       | 34.4                 | 0.91           | 0.94           | 1.02           | 3.756-02       | 0.91                                              | 4.070-02                                | 0.92                                                 |
| re24       | X          | 10.3 | 179.8 | 6.3              | 98.15            | 4.7  | 32.4                       | 35.5                 | 0.91           | 0.92           | 1.02           | 3.240-02       | 1.10                                              | 3.588-02                                | 1.09                                                 |
| re26       | X          | 10.3 | 179.9 | 6.3              | 98.15            | 4.0  | 32.9                       | 36.0                 | 0.91           | 0.93           | 1.02           | 3.52e-02       | 1.03                                              | 3.866-02                                | 1.03                                                 |
| re6        | XI         | 19.9 | 180.4 | 6.1              | 101.11           | 2.2  | 30.7                       | 33.6                 | 0.91           | 0.93           | 1.02           | 3.358-02       | 0.98                                              | 3.000-02                                | 0.96                                                 |
| re13       | XII        | 19.9 | 180.3 | 6.1              | 100.13           | 7.8  | 29.4                       | 32.3                 | 0.91           | 0.94           | 1.02           | 3.558-02       | 0.90                                              | 3.850-02                                | 0.91                                                 |
| re9        |            | 20.0 | 180.3 | 6.2              | 100.90           | 3.4  | 30.5                       | 33.4                 | 0.91           | 0.93           | 1.02           | 3.358-02       | 0.98                                              | 3.000-02                                | 0.90                                                 |
| re15       | XIII       | 20.0 | 180.3 | 6.2              | 99.78            | 8.3  | 30.0                       | 32.8                 | 0.91           | 0.92           | 1.02           | 2.878-02       |                                                   | 3.100-02                                | 1.16                                                 |
|            |            |      |       |                  |                  |      |                            |                      |                |                | Ĺ              | Average        | 1.01                                              |                                         | 1.01                                                 |
|            |            |      |       |                  |                  |      |                            |                      |                |                |                | Stdev          | 0.12                                              |                                         | 0.11                                                 |

### TABLE 4.2b

### THE TRANSFER COEFFICIENT RATIOS FROM THE CONVECTIVE DRYING RUNS

| Run<br>No.  | Sa.<br>No.         | b          | Τ <sub>∞</sub> * | v <sub>∞</sub> * | P      | T <sub>d</sub> | h <sub>c</sub> *     | h <sub>cBL</sub>     | к <sub>у</sub> •        | $\left(\frac{Nu}{Sh_{y}}\frac{Sc}{Pr}\right)$ | $\left(K^{\bullet}_{yBL}\right)_{varp}$ | $\left( \frac{Nu_{BL}}{Sh_{yBL}} \frac{Sc}{Pr} \right)$ | $\left(\frac{Sc}{Pr}\right)^{\frac{2}{3}}$ | $\left(\frac{Nu_{BL}}{Sh_{yBL}}\frac{Sc}{Pr}\right)_{av}$ |
|-------------|--------------------|------------|------------------|------------------|--------|----------------|----------------------|----------------------|-------------------------|-----------------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|
| (.)         | (.)                | (mm)       | (°C)             | (m/s)            | (kPa)  | (°C)           | (W/m <sup>2</sup> K) | (W/m <sup>2</sup> K) | (mole/m <sup>2</sup> s) | (4.11)                                        | (mole/m <sup>2</sup> s)                 | (4.23)                                                  | (4.24)                                     | (.)<br>Av., Std.                                          |
| co2         | X                  | 10.3       | 79.9             | 2.0              | 99.37  | 3.0            | 20.4                 | 21.0                 | 0.79                    | 0.88                                          | 0.81                                    | 0.88                                                    | 0.85                                       | 80 °C                                                     |
| re18        | XII                | 19.9       | 79.8             | 2.0              | 99.43  | 2.4            | 22.2                 | 22.8                 | 0.83                    | 0.92                                          | 0 35                                    | 0.92                                                    | 0.85                                       |                                                           |
| co15        | R                  | 5.5        | 80.2             | 4.5              | 99.53  | 3.0            | 33.1                 | 34.0                 | 1.33                    | 0.85                                          | 1.36                                    | 0.85                                                    | 0.85                                       | 0.99                                                      |
| co4         | X                  | 10.3       | 80.5             | 4.5              | 99.46  | 5.2            | 33.3                 | 34.1                 | 1.00                    | 1.13                                          | 1.03                                    | 1.12                                                    | 0.85                                       | 0.15                                                      |
| <u>_co3</u> | <u>X</u> II        | 19.9       | 80.6             | 4.5              | 99.46  | 5.2            | 36.9                 | 37.8                 | 1.06                    | 1.19                                          | 1.09                                    | 1.18                                                    | 0.85                                       | 100.00                                                    |
| co7         | Х                  | 10.3       | 130.6            | 2.2              | 99.59  | 3.9            | 17.7                 | 18.9                 | 0.73                    | 0.82                                          | 0.78                                    | 0.82                                                    | 0.82                                       | 130 °C                                                    |
| C06         | XII                | 19.9       | 130.7            | 2.2              | 99.49  | 3.4            | 18.3                 | 19.5                 | 0.02                    | 1.00                                          | 0.00                                    | 0.01                                                    | 0.02                                       | 0.00                                                      |
| co9         | X                  | 5.5        | 130.4            | 5.0              | 99.54  | 1.5            | 29.5                 | 20.0                 | 0.88                    | 1.00                                          | 1.10                                    | 1.07                                                    | 0.62                                       | 0.55                                                      |
| CO12        | X                  | 10.3       | 130.5            | 4.9              | 99.03  | *1.0<br>1 C    | 20.3                 | 29.9                 | 0.00                    | 1.03                                          | 0.84                                    | 1.07                                                    | 0.02                                       | 0.10                                                      |
| <u>C08</u>  |                    | 19.9       | 130.4            | 5.0              | 99.00  | 1.0            | \$7.0                | 10.1                 | 0.67                    | 0.86                                          | 0.00                                    | 0.86                                                    | 0.00                                       | 180 %                                                     |
| C011        | X                  | 10.3       | 180.5            | 2.6              | 98.79  | 2.1            | 17.2                 | 19.1                 | 0.07                    | 1.05                                          | 0.75                                    | 1.04                                                    | 0.75                                       |                                                           |
| CO10        | X1                 | 19.9       | 100.0            | 2.0              | 100.25 | 6.6            | 28.4                 | 31.2                 | 1.32                    | 0.73                                          | 1 42                                    | 0.74                                                    | 0.00                                       | 0.90                                                      |
| reiz        |                    | 5.5<br>5 E | 100.0            | 0.5<br>6 0       | 08 15  | 0.0            | 20.4                 | 32.3                 | 1 17                    | 0.85                                          | 1.27                                    | 0.85                                                    | 0.79                                       | 0.10                                                      |
| 1021        | Ŷ                  | 10.3       | 180.0            | 6.0              | 101 06 | 31             | 27.6                 | 30.4                 | 1.21                    | 0.77                                          | 1.31                                    | 0.78                                                    | 0.80                                       |                                                           |
| 107         | $\hat{\mathbf{v}}$ | 10.0       | 100.0            | 0.0<br>C 1       | 00 01  | 7.5            | 26.1                 | 28.8                 | 1.05                    | 0.84                                          | 1.15                                    | 0.85                                                    | 0.79                                       | 5.5 mm                                                    |
| re14        | $\hat{\mathbf{v}}$ | 10.3       | 170.0            | 63               | 99.91  | ΛΔ             | 28.2                 | 30.9                 | 0.97                    | 0.97                                          | 1.07                                    | 0.97                                                    | 0.79                                       | 0.84                                                      |
| 1025        | Ŷ                  | 10.3       | 179.0            | 6.3              | 98 17  | 34             | 26.2                 | 28.7                 | 0.82                    | 1.07                                          | 0.92                                    | 1.05                                                    | 0.79                                       | 0.07                                                      |
| 1627        | ŝ                  | 10.0       | 100.2            | 6.1              | 100.87 | 3.9            | 31.6                 | 34.6                 | 1.26                    | 0.85                                          | 1.37                                    | 0.85                                                    | 0.79                                       | 10.3mm                                                    |
| rolf        | N N                | 10.3       | 180.3            | 61               | 99 78  | 7 1            | 31.4                 | 34.4                 | 1.32                    | 0.80                                          | 1.43                                    | 0.81                                                    | 0.79                                       |                                                           |
| ro24        | X N                | 10.3       | 179.8            | 6.3              | 98 15  | 47             | 32.4                 | 35.5                 | 1.08                    | 1.01                                          | 1.19                                    | 1.00                                                    | 0.79                                       | 0.92                                                      |
| re26        | X                  | 10.3       | 179.9            | 6.3              | 98.15  | 4.0            | 32.9                 | 36.0                 | 1.18                    | 0.94                                          | 1.30                                    | 0.93                                                    | 0.79                                       | 0.11                                                      |
| 1020        |                    | 10.0       | 190 /            | 6.1              | 101 11 | 22             | 30.7                 | 33.6                 | 1.17                    | 0.88                                          | 1.28                                    | 0.89                                                    | 0.79                                       | 19.9 mm                                                   |
| 100         |                    | 19.5       | 180.3            | 61               | 100.13 | 7.8            | 29.4                 | 32.3                 | 1.25                    | 0.79                                          | 1.36                                    | 0.80                                                    | 0.79                                       |                                                           |
| roQ         | XI                 | 20.0       | 180.3            | 6.2              | 100.90 | 3.4            | 30 5                 | 33.4                 | 1.17                    | 0.88                                          | 1.28                                    | 0.88                                                    | 0.79                                       | 0.99 చ                                                    |
| re15        | XII                | 20.0       | 180.3            | 6.2              | 99.78  | 8.3            | 30.0                 | 32.8                 | 0.96                    | 1.05                                          | 1.07                                    | 1.03                                                    | 0.79                                       | 0.13                                                      |
|             |                    |            |                  |                  |        |                | <u> </u>             |                      | Average                 | 0.93                                          |                                         | 0.93                                                    | 0.81                                       |                                                           |
|             |                    |            |                  |                  |        |                |                      |                      | Stdev                   | 0.13                                          |                                         | 0.12                                                    | 0.02                                       |                                                           |

Since the computed means are unchanged by the correction procedure (boundary layer theory), it can be concluded that the intensity of the surface diffusion mass flux does not change significantly the heat and mass transfer analogy in convective drying. This was expected since both transfer coefficients were simultaneously increased approximately by the same amount (between 3 % to 10 %).

#### 4.3.1 COMPARISON WITH THEORETICAL AND PREVIOUS EXPERIMENTAL RESULTS

If one compares the average values obtained for 4.22 and 4.23 (Table 4.2a and b), the trend resulting from the use of the driving force  $B_K$ , instead of  $\Delta \rho$ , is to obtain a verification of the analogy (see the value of 4.24 ((Sc/Pr)<sub>f</sub><sup>\*(2/3)</sup>) in Table 4.2b) written for the case of laminar flow over an isothermal flat plate without mass transfer (Bird et al., 1960):

$$\frac{\dot{\mathbf{h}_{cBL}}(\mathbf{c}_{g})_{1}}{\mathbf{K}_{yBL}(\boldsymbol{\rho}_{g}\mathbf{c}_{pg})_{1}} = \left(\frac{\mathbf{Sc}}{\mathbf{Pr}}\right)_{1}^{2}$$
(4.24)

Bird et al. (1960) did use  $B_K$  in their definition of the mass transfer flux because usually  $K_p^*$  shows a more complicated dependence on concentration level and mass transfer rate than does  $K_y^*$ . Writing 4.24 relies on the assumption that the analogy could be written in terms of the surface average coefficient, a practice commonly adopted in the heat and mass transfer literature.

It is common (Heertjes and Ringens, 1956; Ben Nasrallah et Arnaud 1986; Marseille et al., 1991) to advocate the use of an exponent between (1/2) and (2/3) for the right-hand side of equation 4.24. If one uses 1/2 as the exponent, then in the range of the present experimental results,  $Le_{f}^{*(1/2)}$  (Lewis number, Le=Sc/Pr) lies between 0.88 and 0.84 (80 °C and 180 °C respectively; average 0.85), whereas with 2/3, it ranges between 0.85 and 0.79 (80 °C and 180 °C respectively; average 0.81). So the range of accepted value for the transfer coefficient ratio (0.80-0.89) is close to the one found experimentally in the present study for 4.23 (0.74-1.18, Table 4.2 b). For the case of turbulent flow, it is common in heat and mass transfer studies (Eckert and Drake, 1972; Perré, 1987), to assign the value 1 to the right-hand side of equation 4.10, even if the laminar Le deviates from 1 In the present research, the mean of the transfer coefficient ratio in equation 4.10 is 1.01 (last row, Table 4.2a) and agrees very well with such practice.

Hertjees and Ringens (1956) have determined experimentally ( $T_{\infty}^{*} = 47.8 \, {}^{\circ}C$ ,  $v_{\infty}^{*} = 2.0-4.2 \, \text{m/s}$ )  $h_c^{*}$  and  $K_{\rho}^{*}$  for water evaporation from a porous earthenware (surface size: 100X50 mm; b = 20 mm); from their results the right-hand side of 4.10 can be evaluated to be 1.04 (range 0.83 to 1.28, 9 determinations) with a standard deviation of 0.13. Smolsky and Sergeyev (1962) correlated Nu<sup>\*</sup> and Sh\_{\rho}^{\*} from carefully controlled liquid evaporation experiment ( $T_{\infty}^{*} = 45-150 \, {}^{\circ}C$ ,  $v_{\infty}^{*} = 3-15 \, \text{m/s}$ ) in turbulent flow (surface size: 100 X 176 mm); computing the left-hand side of 4.10 from their correlations gives 0.91. Such values for Nu<sup>\*</sup> and Sh\_{\rho}^{\*} were confirmed recently by Adrie et al. (1988) for the case of water evaporation ( $T_{\infty}^{*}$  = room temperature,  $v_{\infty}^{*} = 0.2$ -6.0 m/s) from circular discs (90 mm ø) made of filter paper.

The present results (range 0.74-1.25; average 1.01 or 0.93) for the transfer coefficient ratios expressed in terms of  $K_p^+$  or  $K_y^+$  do fit very well within the range (0.83-1.28; average between 0.82 to 1.04) defined by all the above mentioned results. Some of the referred experimental results have been obtained with similar surface area sample, time and surface average heat and mass transfer coefficient and fully wetted surfaces whereas in the present case the surface was unsaturated.

Preliminary air temperature measurements  $(T_{\infty}, T_{\infty i}$  (i = 1,5); Figure 3.3) with dried samples when the guard heaters set-points  $(T_{pi}$  (i = 1,2)) were chosen to equal  $T_{\infty}$  did show that the thermal gradients were lower than 1 °C from the mid test section level to the test section bottom. Thus the air flow temperature profiles (from z = 0 to 50 mm) incident at the sample leading edge can be considered to be uniform (the temperature profile is fully developed). Hence even if the flow in the test section is not fully developed at the sample location, it is probably the simultaneous development of the thermal and concentration boundary layer from the sample leading edge that leads us to a verification of the analogy between

the transfer of heat and mass (Moyne, 1987). For the specific non-hygroscopic capillary porous media (d = 90-105  $\mu$ m) used in this study, the analogy between the transfer of heat and mass occurs for S<sub>s</sub> value between approximately 0.7 to 0.2 since the reported values of S (last column, Table 4.1) are within the range (0.8-0.6 to 0.4-0.2). Cunningham and Kelly (1980), have shown from experimentally observed moisture content distribution (for b < 20 mm) that during the P.C.D.R.P. the moisture content is quite uniform throughout the bed thickness; the surface and average moisture content do not differ significantly.

A correlation (Appendix 7) of the heat transfer coefficient  $(h_{cBL}^{*})$  for comparison in chapter V was developed from the data presented in Table 4.2a. This was necessary since the flow within the test section at the sample location is not fully developed while the flow mixer create a flow with unknown turbulence characteristics. This preciuded the use of the correlations published in the literature.

#### 4.3.2 SENSITIVITY STUDY

ł

Ĩ

The average of the right-hand side of 4.23 was computed at constant  $T_{\infty}^{*}$  (last column, Table 4.2b), it was 0.99 (80 °C, 5 evaluations), 0.99 (130 °C, 5 evaluations) and 0.90 (180 °C, 16 evaluations) while their standard deviations were 0.15, 0.13 and 0.10 respectively. Such a decreasing trend for the average may be partially explained by the fact that the theoretical transfer coefficient ratio  $(Le)_{f}^{*}(2/3)$  (Table 4.2b) is also decreasing a function of  $T_{\infty}^{*}$  (0.85 average at 80 °C, 0.79 average at 180 °C).

Similar calculations of the mean were carried out at constant b (last column, Table 4.2b); the average values were found to be 0.84 (5.5 mm, 4 evaluations), 0.92 (10.3 mm, 13 evaluations) and 0.99 (20 mm, 9 evaluations) while their standard deviations were 0.07, 0.11 and 0.13 respectively. Typical distributions of the transfer coefficient ratios from the experimental results (4.23, column 13, Table 4.2b) at constant temperature are given in Figure 4.1a and b for  $T_{\infty}^{*} = 80 \ ^{\circ}C$  and  $T_{\infty}^{*} = 130 \ ^{\circ}C$  respectively. In Figure 4.2, similar data are given for  $T_{\infty}^{*} = 180 \ ^{\circ}C$ . A slight effect of b can be observed to exist but it cannot be quantified exactly because few experiments were carried out with the 5.5 mm

sample at each temperature. The overall means (last column, Table 4.2b) for the 10.3 mm (13 experiments) and 19.9 mm (9 experiments) sample are close enough to show that the sample thickness did not affect strongly the transfer coefficient ratios. This is also verified for the mean computed at constant b given in Figure 4.1a and b as well as in Figure 4.2.

A few questions still remain to be answered about the effect of various parameters ( $E_s$ ,  $E_t$ ,  $E_{sc}$ ,  $T_2^{\bullet}$ ,  $T_3^{\bullet}$ ) on the computed transfer coefficient ratios. A sensitivity analysis was carried due to possible uncertainties on the measured emissivities and of existing differences in recorded wall temperatures. A comparison with results from the film theory as well as penetration theory is also summarized in Table 4.3.

The adopted strategy was to modify each parameter, one at a time, and to calculate the average transfer coefficient ratios. The ranges of  $E_s$  values recorded from the emissivity measurement (Appendix 6) were: 1.00-0.95, wet sample surface; 0.91, dry sample surface. Then  $E_s$  was chosen as 1.00 (third row, Table 4.3) and 0.91 (second row, Table 4.3). The predicted transfer coefficient ratios for each evaluation were systematically lower (from 0.02 to 0.04) for  $E_s$  equal to 1.00 in comparison to the one obtained with  $E_s$  equal to 0.91. All these results were within  $\pm$  0.02 of the values obtained with  $E_s$  equal to 0.95 (first row, Table 4.3). This is also the case for the average values reported in Table 4.3.

The range of  $E_{sc}$  measured was (0.11-0.14) but a conservative estimate of an upper boundary for  $E_{sc}$  can be taken to be 0.28 (Incropera and De Witt, 1985; Sala, 1986). The average and each values of the transfer coefficient ratio were invariant (or differ by less than 0.02) whether  $E_{sc}$  is 0.28 (fourth row, Table 4.3) or 0.13 (first row, Table 4.3). Calculations have shown that the same conclusion can be drawn when  $E_t$  was 0.6 (five row, Table 4.3) instead of 0.28 (first row, Table 4.3). O.6 was selected for  $E_t$  because Siegel and Howell (1981) presented such values for a similar aluminized silicone paint.

۲



Figure 4.1a A typical transfer coefficient ratio distribution at  $T_{\perp} = 80 \text{ °C}$ 



Figure 4.1b A typical transfer coefficient ratio distribution at  $T_{\perp} = 130 \text{ °C}$ 

•



.

7

Figure 4.2 A typical transfer coefficient ratio distribution at  $T_{\perp} = 180 \text{ °C}$ 

### TABLE 4.3

# SENSITIVITY STUDY OF THE TRANSFER COEFFICIENT RATIOS

į,

1

| Simulation parameters                                                              | $\left(\frac{Nu}{Sh_{p}}\frac{Sc}{Pr}\right)_{av}$ | $\left(\frac{Nu_{BL}}{Sh_{\rho BL}}\frac{Sc}{Pr}\right)_{av}$ | $\left(\frac{Nu}{Sh_y}\frac{Sc}{Pr}\right)_{av}$ | $\left(\frac{\mathrm{Nu}_{\mathrm{BL}}}{\mathrm{Sh}_{\mathrm{yBL}}}\frac{\mathrm{Sc}}{\mathrm{Pr}}\right)_{\mathrm{av}}$ |
|------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| •                                                                                  | (4.10)                                             | (4.22)                                                        | (4.11)                                           | (4.23)                                                                                                                   |
|                                                                                    | Stdev.                                             | Stdev.                                                        | Stdev.                                           | Stdev.                                                                                                                   |
| $E_s = 0.95, E_{sc} = 0.13, E_t = 0.28$<br>$T_2 = Average(T_{t1}, T_{t3}, T_{t6})$ | 1.01                                               | 1.01                                                          | 0.93                                             | 0.93                                                                                                                     |
| Boundary Layer Theory                                                              | 0.12                                               | 0.11                                                          | 0.13                                             | 0.12                                                                                                                     |
| E <sub>s</sub> = 0.91                                                              | 1.03                                               | 1.03                                                          | 0.95                                             | 0.95                                                                                                                     |
| E <sub>s</sub> = 1.00                                                              | 1.00                                               | 1.00                                                          | 0.92                                             | 0.92                                                                                                                     |
| E <sub>sc</sub> ≖ 0.28                                                             | 1.01                                               | 1.01                                                          | 0.93                                             | 0.93                                                                                                                     |
| E <sub>t</sub> = 0.60                                                              | 1.01                                               | 1.01                                                          | 0.93                                             | 0.93                                                                                                                     |
| $T_2 = Max(T_{t1}, T_{t3}, T_{t6})$                                                | 1.00                                               | 1.00                                                          | 0.92                                             | 0.92                                                                                                                     |
| $T_2 = Min(T_{t1}, T_{t3}, T_{t6})$                                                | 1.03                                               | 1.03                                                          | 0.95                                             | 0.94                                                                                                                     |
| T <sub>3</sub> *= Max(T <sub>t2</sub> , T <sub>t4</sub> , T <sub>t5</sub> )        | 1.01                                               | 1.01                                                          | 0.93                                             | 0.93                                                                                                                     |
| $T_3 = Min(T_{t2}, T_{t4}, T_{t5})$                                                | 1.02                                               | 1.01                                                          | 0.94                                             | 0.93                                                                                                                     |
| Film Theory                                                                        | 1.01                                               | 1.01                                                          | 0.93                                             | 0.93                                                                                                                     |
| Penetration Theory                                                                 | 1.01                                               | 1.01                                                          | 0.93                                             | 0.93                                                                                                                     |

# FROM THE CONVECTIVE DRYING RUNS

Maximal temperature differences recorded on surfaces 2 and 3 were always lower than 17 °C and 6 °C respectively. It is possible to bound the temperatures of surface 2 or 3 using the maximum or minimum recorded temperature on each surface. In the case of surface 2, the transfer coefficient ratio was systematically lower (in between 0.02 and 0.04) when using the maximum temperature (six row, Table 4.3) instead of the minimum temperature (seven row, Table 4.3). In the case of surface 3, the transfer coefficient ratios were identical when using the maximum temperature (eight row, Table 4.3) instead of the minimum temperature (ninth row, Table 4.3). The average values of the transfer coefficient ratio using various definition of  $T_2^{\circ}$  or  $T_3^{\circ}$  are within ±0.02 of the reported average values in the first row.

A comparison of the evaluation of the transfer coefficient ratio for each run with the boundary layer (first row, Table 4.3), film (ten row, Table 4.3) or penetration (eleven row, Table 4.3) theories have shown that the differences were less than 0.01. This reflects on the average transfer coefficient ratios which were found to be the same. This result was expected since the  $\theta_h$  and  $\theta_K$  for all correction procedures do not show marked differences in the range of values encompassed by  $B_h$  (0.023 <  $B_h$  < 0.089) and  $B_K$  (0.034 <  $B_K$  < 0.148).

The standard deviation of the results given in the first row was unaffected by any of the above mentioned parameter variations.

### 4.4 CRITICAL MOISTURE CONTENT IN CONVECTIVE DRYING

The critical moisture content  $X_c$ , defined according to the procedure described in section 3.4.3, is presented in Table 4.4 where various average  $X_c$  values were computed (equivalent average critical saturation  $S_c$  are also given). The overall average (last row, Table 4.4) is 0.025 ( $S_c = 0.101$ ) and is comparable to the average computed (last two columns, Table 4.4) with samples having identical thickness b (0.025, 5.5 mm; 0.024, 10.3 mm; 0.024, 20 mm). It may be noted that these averages are all very similar, especially if one accounts for their standard deviation (0.004, overall; 0.005, 5.5 mm; 0.002, 10.3 mm; 0.005, 20 mm).

### TABLE 4.4

### CRITICAL MOISTURE CONTENT IN CONVECTION DRYING

| Run  | Sa.  | b    | <b>T</b> <u></u> <u></u> <u></u> | v <sub>∞</sub> • | P∞     | T <sub>d</sub> ' | T <sub>s</sub> * | q <sub>ts</sub> | Nv       | X <sub>c</sub> | S <sub>c</sub> | X <sub>cav</sub> | S <sub>cav</sub> |
|------|------|------|----------------------------------|------------------|--------|------------------|------------------|-----------------|----------|----------------|----------------|------------------|------------------|
| INO. | INO. |      |                                  |                  |        |                  |                  |                 |          |                |                | Stdev            | Stdev            |
| (.)  | (.)  | (mm) | (°C)                             | (m/s)            | (kPa)  | (°C)             | (°C)             | (W/m²)          | (kg/m²s) | (kg/kg)        | (.)            | (kg/kg)          | (.)              |
| co2  | X    | 10.3 | 79.9                             | 2.0              | 99.37  | 3.0              | 30.6             | 330             | 0.55e-03 | 0.027          | 0.113          | 80 °C            |                  |
| re18 | XI   | 19.9 | 79.8                             | 2.0              | 99.43  | 2.4              | 30.6             | 330             | 0.58e-03 | 0.022          | 0.095          |                  |                  |
| co15 | ĸ    | 5.5  | 80.2                             | 4.5              | 99.53  | 3.0              | 29.3             | 350             | 0.83e-03 | 0.031          | 0.126          | 0.025            | 0.105            |
| co4  | X    | 10.3 | 80.5                             | 4.5              | 99.46  | 5.2              | 32.9             | 340             | 0.79e-03 | 0.025          | 0.106          | 0.004            | 0.015            |
| _co3 | X    | 19.9 | 80.6                             | 4.5              | 99.46  | 5.2              | 33.2             | 340             | 0.85e-03 | 0.020          | 0.087          |                  |                  |
| co7  | X    | 10.3 | 130.6                            | 2.2              | 99.59  | 3.9              | 40.5             | 760             | 0.97e-03 | 0.019          | 0.079          | 130 °C           |                  |
| co6  | XII  | 19.9 | 130.7                            | 2.2              | 99.49  | 3.4              | 43.0             | 740             | 0.96e-03 | 0.022          | 0.096          |                  |                  |
| co9  | R    | 5.5  | 130.4                            | 5.0              | 99.54  | 1.5              | 39.8             | 810             | 1.42e-03 | 0.022          | 0.089          | 0.021            | 0.088            |
| co12 | Х    | 10.3 | 130.5                            | 4.9              | 99.63  | -1.8             | 42.2             | 800             | 1.35e-03 | 0.022          | 0.093          | 0.002            | 0.007            |
| C08  | X    | 19.9 | 130.4                            | 5.0              | 99.58  | 1.6              | 43.3             | 800             | 1.32e-03 | 0.019          | 0.082          |                  |                  |
| co11 | X    | 10.3 | 180.5                            | 2.6              | 98.79  | 2.1              | 48.6             | 1370            | 1.50e-03 | 0.021          | 0.090          | 180 °C           |                  |
| co10 | XII  | 19.9 | 180.6                            | 2.6              | 99.30  | 1.2              | 51.8             | 1350            | 1.47e-03 | 0.019          | 0.081          |                  |                  |
| re12 | X    | 5.5  | 180.5                            | 5. <del>9</del>  | 100.25 | 6.6              | 44.6             | 1480            | 2.20e-03 | 0.021          | 0.084          | 0.025            | 0.104            |
| re21 | X    | 5.5  | 180.0                            | 6.2              | 98.15  | 4.6              | 46.1             | 1470            | 2.23e-03 | 0.024          | 0.099          | 0.004            | 0.017            |
| re7  | Х    | 10.3 | 180.3                            | 6.0              | 101.06 | 3.1              | 45.3             | 1490            | 2.14e-03 | 0.026          | 0.112          |                  |                  |
| re14 | X    | 10.3 | 180.3                            | 6.1              | 99.91  | 7.5              | 47.0             | 1480            | 2.03e-03 | 0.025          | 0.106          | 5.5 mm           |                  |
| re25 | x    | 10.3 | 179.8                            | 6.3              | 98.15  | 4.4              | 48.3             | 1470            | 2.11e-03 | 0.026          | 0.108          | 0.025            | 0.100            |
| re27 | X    | 10.3 | 179.8                            | 6.3              | 98.17  | 3.4              | 50.0             | 1460            | 1.99e-03 | 0.024          | 0.100          | 0.005            | 0.019            |
| re10 | х    | 10.3 | 180.3                            | 6.1              | 100.87 | 3.8              | 46.2             | 1490            | 2.35e-03 | 0.024          | 0.097          | <u>10.3 mm</u>   |                  |
| re16 | X    | 10.3 | 180.3                            | 6.1              | 99.78  | 7.1              | 45.7             | 1490            | 2.35e-03 | 0.026          | 0.110          |                  |                  |
| re24 | X    | 10.3 | 179.8                            | 6.3              | 98.15  | 4.7              | 48.4             | 1470            | 2.36e-03 | 0.021          | 0.086          | 0.024            | 0.099            |
| re26 | Х    | 10.3 | 179.9                            | 6.3              | 98.15  | 4.0              | 47.0             | 1480            | 2.39e-03 | 0.023          | 0.093          | 0.002            | 0.011            |
| re6  | XII  | 19.9 | 180.4                            | 6.1              | 101.11 | 2.2              | 46.6             | 1480            | 2.25e-03 | 0.024          | 0.104          | <u>19.9 mm</u>   |                  |
| re13 | XI   | 19.9 | 180.3                            | 6.1              | 100.13 | 7.8              | 45.6             | 1500            | 2.21e-03 | 0.028          | 0.120          |                  |                  |
| re9  | XII  | 20.0 | 180.3                            | 6.2              | 100.90 | 3.4              | 46.6             | 1490            | 2.24e-03 | 0.033          | 0.140          | 0.024            | 0.104            |
| re15 | XII  | 20.0 | 180.3                            | 6.2              | 99.78  | 8.3              | 49.5             | 1470            | 2.17e-03 | 0.031          | 0.133          | 0.005            | 0.022            |
|      |      |      |                                  |                  |        |                  |                  |                 | Average  | 0.025          | _0.101         |                  |                  |
|      |      |      |                                  |                  |        |                  |                  |                 | Stdev    | 0.004          | 0.016          |                  |                  |

11

1

The mean for same  $T_{\infty}^{\bullet}$  (last two column, Table 4.3), gives: 0.025 (80 °C), 0.021 (130 °C), 0.025 (180 °C) with similar data scatter (0.004, 80 °C; 0.002, 130 °C; 0.004, 180 °C).

A plot of X<sub>c</sub> vs. b, T<sub>∞</sub>, v<sub>∞</sub>, T<sub>d</sub>, T<sub>s</sub>, N<sub>v</sub>, and q<sub>ts</sub> did not show any significant relation between X<sub>c</sub> and any of these parameters. A linear increase of X<sub>c</sub> with N<sub>v</sub> has been identified by Wisniak et al. (1967) in convection drying when d= 44 µm (b = 20 mm, T<sub>∞</sub> = 45-77 °C, v<sub>∞</sub> = 2.5-5.0 m/s) however they also found that X<sub>c</sub> was independent of N<sub>v</sub> when d = 357 µm (b = 60 mm, T<sub>∞</sub> = 38-74 °C, v<sub>∞</sub> = 2.5-7.5 m/s). Thus the possible dependency of X<sub>c</sub> on N<sub>v</sub> might depend on d or b.

The  $(X_c/X_{in})$  vs.  $(N_v^*b)$  critical point curve (Keey, 1972) is often used to relate  $X_c$  to the drying parameters (b,  $T_{\infty}^*$ ,  $v_{\infty}^*$ ,  $T_d^*$ ) and is given in Figure 4.3 ( $X_{in}$  is the initial moisture content).  $(X_c/X_{in})$  does not appear to be a function of  $(N_v^*b)$  although a ten-fold increase of  $(N_v^*b)$  occurs in Figure 4.3. Such behavior has already been reported for  $(N_v^*b)$  values lower than 0.04 kg/mh according to a critical point curve (clay brick, b= 10-30 mm, three-fold change in drying rate) presented by Krischer (1963).

The drying rate curves presented by Morgan and Yerazunis (1967) for convective drying of a glass bead bed (d= 88-105  $\mu$ m, b = 12.7 mm, T<sub>∞</sub><sup>\*</sup> = 66 °C, v<sub>∞</sub><sup>\*</sup> = 8.3 m/s) display S<sub>c</sub> values in the range 0.2-0.3. Cunningham and Kelly (1980) have found the same range using 112  $\mu$ m ø glass beads (b = 45 mm, T<sub>∞</sub><sup>\*</sup> = 34 - 77 °C). Moyne (1987) reported drying rate curves obtained with 100  $\mu$ m ø glass beads (2 mm ≤ h ≤ 16 mm, T<sub>∞</sub><sup>\*</sup> = 60 °C), S<sub>c</sub> can be evaluated to be between 0.22 and 0.28. Two remarks may be made; first a fourfold increase in bed thickness does not change X<sub>c</sub> significantly as determined in these studies; the present results are in perfect agreement with this finding (for a similar b range). Second the present average value of S<sub>c</sub> (0.101) is lower than the values in the above reported range; this was expected since from the drying rate curve, X<sub>c</sub> is usually defined as the average moisture content at the start of the (first) falling rate period whereas in the present study X<sub>c</sub> should be considered as an evaluation of the starting point of the (second falling rate period) receding front period (Maneval et al., 1991).

I



Figure 4.3 The critical point curve from the convective drying results

-

An experimentally determined curve relating the drying front position ( $x_f$ ; from the surface) and the average bed saturation ( $x_f$  vs. S) was presented by Morgan and Yerazunis (1967). They concluded that a significant rise in  $x_f$  does not occur until S is in the range from 0.08 to 0.17; the present S range (0.079- 0.142) is in close agreement with such a finding.

Cunningham and Kelly (1980) displayed on the  $S_s$  vs. S curve, the experimentally determined fact that S is almost constant while  $S_s$  goes from  $S_{ir}$  (0.10) to zero. In terms of heat transfer, since  $T_s$  is usually almost constant as long as water is locally present, more heat is available to be used as sensible heat as  $S_s$  goes to zero thus  $T_s$  must rise rapidly. Such results suggest that determining the start ( $S_s=0$ ) of the receding front period from a surface temperature measurement is adequate. This is also emphasized by the relatively small spread of  $S_c$  found in this research (relatively to  $X_{in}$ ).

### 4.5 CONCLUSIONS

Based on the results presented, the following conclusions can be drawn regarding the convective drying process of a capillary porous body (glass beads, d= 90-105  $\mu$ m). In the parameter range investigated (b = 5.5-20 mm, T<sub>w</sub><sup>\*</sup> ~ 80-180 °C, v<sub>w</sub><sup>\*</sup> ~ 2.0-6.3 m/s, T<sub>d</sub><sup>\*</sup> ~ -1.8 - +7.8 °C):

- (a) The analogy between the heat and mass transfer coefficients has been verified to apply during the pseudo constant drying rate period when the sample surface is unsaturated ( $0.2 < S_s < 0.7$ ). This conclusion applies (within experimental uncertainty) whether the transfer coefficients have been corrected or not to account for the effect of the diffusion mass flux and\or density variation. It was also found that:
  - (i) According to the laminar boundary layer theory correction procedure, unaffected (no mass flux) heat and mass transfer coefficients should be 3 % to 10 % higher than the values

determined experimentally. However, based on the experimental results obtained, it was not possible to determine:

- 1. The exact magnitude of the heat and mass transfer coefficients decrease due to the diffusion mass flux at the surface
- The most appropriate correction procedure to account for the effect of the surface diffusion mass flux on the transfer coefficients.
- (ii) According to the Hanna's correction factor (1962) used to evaluate the effect of density variation between the surface and the flow, unaffected mass transfer coefficients should be 1 % to 3 % lower than the ones predicted with the boundary layer theory for experimentally measured surface temperature ranging from 29 °C to 52 °C. The magnitude of such correction suggests that this effect can be disregarded in convective drying.
- (iii) The very good agreement between the results found and the previous theoretical and experimental findings on the analogy between the transfer of heat and mass (expressed in terms of average heat and mass transfer coefficients ratios) indicates that the experimental test facility built for this research provides a reliable evaluation of the heat and mass transfer coefficients in convective drying.
- (b) The determination of the critical moisture content based on the  $T_s^*$  vs. X curve was found to be adequate. It was observed, within experimental uncertainty, that the critical moisture content is independent of the convective drying parameters ( $T_{\infty}^*$ ,  $v_{\infty}^*$ ,  $T_d^*$ ) and sample thickness (b = 5.5,10.3 and 20 mm).

i
## CHAPTER V - COMBINED CONVECTIVE AND INFRARED DRYING EXPERIMENTS

#### 5.1 INTRODUCTION

The objectives of the combined convective and infrared drying experiments are the following:

- a) To verify if the heat and mass transfer analogy<sup>2</sup> (expressed by the values of the heat and mass transfer coefficient ratics) is applicable to the case of I.R. drying a partially saturated surface within the parameter range investigated;
- b) To determine the critical moisture content in i.R. drying;
- c) To generate combined convective and I.R. drying data for comparison with simulations from the drying front model.

#### 5.2 OVERALL INCIDENT RADIATIVE HEAT FLUX

Attempts to measure the overall incident radiative heat flux qis (which includes the radiative contributions from the test section walls) using a heat flux transducerwere unsuccessful. Thus the water cooled heat flux meter (from Medtherm Corp.; Appendix 3) was calibrated, using a blackbody radiator according to ASTM standard test method E511-73. Vition inserted in the blackbody radiator opening, the sensor reading was found to use to a peak value and then decrease significantly (up to 12 %) with time (Figure 5.1). It was also observed that the sensor was very sensitive to lateral heat flux perturbations (conductive or convective) as can be deduced from the heat flux meter Figure 5.1. evolution represented temperature  $(T_h)$ in -

<sup>&</sup>lt;sup>2</sup>See appendix 11 for a discussion concerning the theoretical applicability of the heat and mass transfer analogy in the combined process



Figure 5.1 A typical q<sub>is</sub> vs. t curve from the heat flux meter after insertion in the blackbody cavity opening

The conduction heat flux on the meter lateral side was suspected to create the problem as the clearance sensor-opening was very low (~ 1 mm). Baines (1970) advised that such gradient sensor be mounted on a good heat sink to avoid such problems. It is not easy to implement a technical solution within the frame of the calibration procedure. Hence, the incident heat flux and its possible time variations were not measured with this type of heat flux meter for the following reasons:

- a) The reading of the sensor during the calibration is time dependent;
- b) The sensor reading does not stabilize to a fixed value during the calibration procedure (the signal drift still exists after 20 min);
- c) It is not known if the sensor reading under different intensity of lateral heat flux perturbation will be the same for same incident heat flux.
- 5.2.1 OVERALL INCIDENT RADIATIVE HEAT FLUX IN FREE CONVECTION-I.R. EVAPORATION EXPERIMENTS

A set of I.R. evaporation experiments was undertaken to evaluate  $q_{is}$  (W/m<sup>2</sup>) with no forced convection present within the test section. Within the frame of this research, such experiments are (for convenience) referred as free convection-I.R. evaporation experiments although no significant convection currents are expected to exist within the test section since the thermal stratification of the air layers between the I.R. heater and the lower test section plate is stable (T<sub>sir</sub> >> T<sub>pi</sub>). This type of measurement procedure for q<sub>is</sub> was also used by Seki et al. (1977) and Shimizu et al. (1990).

The experiments were carried within the test section (with the front panel closed); the fan connected to the ventilation duct (Figure 3.1) was turned off but a slight air evacuation (from the depression created by the central ventilating system) generated  $v_{\infty}$  lower than 0.1 m/s. In order to "trap" all incident radiation, the vessel (Appendix 8) was made of a Pyrex dish (88.5 mm inside ø, 93.5 mm outside ø, internal height 21.5 mm), covered on the outside and on the rim with an aluminium foil ( $E_a \sim 0.06$ ; Incropera, 1985) and painted on the inside with 3M Nextel black paint. This paint was considered to insure that the surface is diffuse (Birkebak, 1972; Enoch, 1984) and a very good absorber ( $E_{np} = 0.955$ ; Enoch, 1984). A Type K stainless steel sheathed thermocouple (0.5 mm ø) was inserted and glued in a hole on the vessel side to measure the water temperature. The position of the measuring bead was at the vessel center, 3 mm from the bottom.

The following assumptions were made to evaluate all the terms in the energy balance equation applicable to the water and vessel:

- a) The air-water interface recession effect is neglected;
- b) The side and bottom surfaces of the vessel are assumed to be adiabatic;
- c) The measured temperature is assumed to be representative of the bed and vessel temperature;
- d) An average free convection heat transfer coefficient is applicable at the vessel surface to evaluate the convective heat transfer loss.

The minimum water thickness found at the end of all experiments was 9 mm (12 mm of height uncovered by water). According to data on the monochromatic absorption coefficient of water (Siegel and Howell, 1981), when  $\lambda \ge 2 \mu m$ , the water layer in the vessel can be considered to be optically thick (optical thickness >> 1). It means that the major fraction (~ 89 %) of the heat flux (corresponding to wavelength of a blackbody at  $T_s = 850 \,^{\circ}\text{C}$ ;  $\lambda_{max} = 2.58 \,\mu\text{m}$ ) transmitted through the surface will be absorbed before reaching the bottom of the water layer. Of the remaining 11 % impinging on the 3M Nextel black paint less than about 0.5 % of the originally transmitted heat flux (through the surface water layer) will go back through the water layer and will be refracted as well as reflected at the water-air interface.

A conservative estimate of the side and bottom surface heat loss ( $\pm 5 \% 2$  elements;  $\pm 2 \% 4$ , 6 and 8 elements; % given with respect to  $q_{is}$ ) was realized through use of the one dimensional conduction heat flux relations (Appendix 8) for planar as well as cylindrical surfaces (Holman, 1981); a radiative energy balance on the dish rim was also taken into account.  $q_{is}$  determined with the energy balance equation 5.3 was increased (or decreased) by only half of these contributions. Since the water layer interface position was not followed during the completion of all experiments, it was not possible to evaluate the size of the uncovered internal side of the vessel, thus the energy lost (radiation or convection) through this area.

Two of the experiments were carried out to quantify the temperature evolutions 3, 9 and 15 mm from the dish bottom as a function of time for 2 and 8 elements. Two additional thermocouples (type K stainless steel sheathed thermocouple, 0.5 mm ø) were inserted from within the test section. In Figure 5.2a and b, the thermocouple readings show the water-air interface reaching 15 mm but not 9 mm before the end of an experiment.

í



Figure 5.2a Temperature evolution within the water layer during an evaporation experiment ( $T_w$  vs. t for 2 heating elements on)



Figure 5.2b Temperature evolution within the water layer during an evaporation experiment (T<sub>w</sub> vs. t for 8 heating elements on)

When the thermocouple located at position 1 is uncovered by the water, its reading starts to oscillate because it is submitted to the radiative heat flux close to the evaporation interface. After an initial transient period, it may be noted, that the rates of temperature variation as a function of time are almost the same throughout the water thickness. This suggests that the rate of heat accumulation can be accurately computed through use of the rate of temperature variation as a function of time derivated from the temperature measurement at 3 mm from the vessel bottom.

à

1

The energy balance for the vessel is still given by equation 4.1. However, Q, the heat transfer by radiation and convection, can now be written (Siegel and Howell, 1981):

$$Q = (E_w q_{ls} - E_w \sigma T_w^4 + h_c (T_3 - T_w)) A_w$$
(5.1)

where  $E_w$  is the emissivity of water;  $T_w$  is the water temperature, K;  $h_c$  is the free convection heat transfer coefficient, W/m<sup>2</sup>K and  $A_w$  the pyrex dish evaporation area (m<sup>2</sup>).  $h_c$  could be evaluated with the assumption that the heat transfer phenomenon within the test section is one of free convection ( $v_{\infty} < 0.1 \text{ m/s}$ ) in an enclosed space where the upper plate is at a higher temperature than the lower plate (Holman, 1981). The average temperature  $T_3$  of surface 3 (Appendix 5) was the arithmetic mean of  $T_{t2}$ ,  $T_{t4}$  and  $T_{t5}$ .  $h_c$  could not be corrected because the results from the theories to account for high mass transfer rates effect were developed when a velocity profile does exist within the region of interest.  $h_c$  was expressed as (Holman, 1981):

$$h_{c} = \frac{k_{a}}{\Theta}$$
(5.2)

where  $k_a$  is the test section air thermal conductivity, W/mK; e (0.1 m) is the distance separating the upper and bottom plates, m. The evaluation of the convective term is based on the assumption that the conduction heat transfer is between surface 3 and the sample; this should constitute an upper bound for the conduction heat transfer because the temperatures reached by surface 3 as a result of heat transfer to the upper test section plate (Figure 3.3) by conduction

through the stainless steel plate (from the pyramid sides) should be higher than the temperature of the air layer at the upper plate level in front of the source. The latter temperature results almost exclusively from heat transfer by conduction through air since the absorption of radiant energy by the air layer is negligible (Appendix 9). Furthermore, the recorded temperature at the mid test section level (close to the pipe for  $T_d$  measurement and shielded with an aluminium foil) did show temperatures close to  $T_w$ .

Equations 4.3 and 4.4 are the expressions for  $Q_v$  and  $Q_{ac}$ . Now,  $m_b$  (kg) and  $c_{pb}$  (J/kgK) should be considered has the vessel mass (54.38 g) and Pyrex (835 J/kgK; Incropera, 1985) specific heat respectively.  $q_{is}$  may be written as:

$$q_{is} = \frac{1}{E_{w}} \left[ -\frac{1}{A_{w}} \frac{dm_{w}}{dt} \Delta H_{v} + \frac{1}{A_{w}} \left( m_{w} c_{pw} + m_{b} c_{pb} \right) \frac{dT_{w}}{dt} - h_{c} (T_{3} - T_{w}) \right] + \sigma T_{w}^{4}$$
(5.3)

 $E_w$  was taken to be 0.96 because the water layer can be considered deep as a result of its high monochromatic absorptivity within the wavelength range of the incident radiation (~ 97 % incident energy in the 1-15 µm range), the black coating ( $E_{np} = 0.955$ ) of the vessel (side and bottom) and the thickness of the water layer. Siegel and Howell (1981) gave the normal-total emissivity as 0.96 for water in the temperature range 273-373 K. Shimizu et al (1990) use 0.96 as representative of the hemispherical total emissivity of water when the maximum emissive power of the incident radiation is in between 2.5 to 6 µm and Sala (1986) presented the range 0.95-0.96 (273-373 K) for the hemispherical total emissivity of a 0.1 mm thick water layer.

Each term in equation 5.3 was evaluated according to the procedure defined in sections 3.4.3 and 4.2, from the raw experimental results every 100 s. A typical plot of  $q_{is}$  as a function of time is shown in Figure 5.3 (a,b) for the four heat flux levels used;  $T_{win}$  defines the initial temperature of the water layer. At the beginning of each experiment,  $q_{is}$  values are not presented because the rates of temperature variation were widely different throughout the water layer (Figure 5.2a and b). The duration of experiments with 2, 4, 6 and 8 heating elements on were different and chosen to encompass the whole duration of the experiments

.

in free convection-I.R. drying of samples (20 mm) using the same number of heating elements.

Experiments for each of the four heat fluxes were conducted using a different hot water temperature (~ 60 °C vs. ~20 °C) at the start. The results in Figure 5.3 show a decrease of the evaluated  $q_{is}$  in the order of only 4 % (2 heating elements), 2 % (4 heating elements), 0 % (6 heating elements) and 4 % (8 heating elements) when using hot water instead of cold water. Thus it is possible to infer that the lack of accuracy on the evaluation of the heat loss by conduction (on the lateral side), convection and radiation (for both, free water surface and lateral uncovered side) has only a small influence on the determination of  $q_{is}$ .

In Figure 5.4, at each time step an average value (from all evaluations in Figure 5.3) of  $q_{is}$  was computed and correlated through linear regression. The correlation coefficients were 0.950 (2 heating elements), 0.885 (4 heating elements), 0.941 (6 heating elements) and 0.871 (8 heating elements). These correlations are applicable from t=0 to the time when the last measurement was reported in Figure 5.3. All  $q_{is}$  from the initial experiments in Figure 5.3 were within ± 4 % (2 and 6 heating elements), ± 6 % (4 heating elements) and ± 7 % (8 heating elements) of the values predicted by the correlations.

It may be noted that the slope (kW/m<sup>2</sup>s) of the  $q_{is}$  vs. t curve increases with increase in the heat flux level (0.210 10<sup>-3</sup>, 2 heating elements; 0.545 10<sup>-3</sup>, 4 heating elements; 1.009 10<sup>-3</sup>, 6 heating elements.and 1.417 10<sup>-3</sup>, 8 heating elements). This is due to the peculiar geometry of the radiative source where activating extra heating elements (symmetrically with respect to the test section symmetry axis) send a greater proportion of energy toward the pyramid internal walls which heat up faster and thus contribute more rapidly (and to a greater extent) to  $q_{is}$ .

Ĩ



Figure 5.3a The overall incident radiative heat flux from evaporation experiments (q<sub>is</sub> vs. t for 2 and 4 heating elements on)



Figure 5.3b The overall incident radiative heat flux from evaporation experiments (qis vs. t for 6 and 8 heating elements on)

I



Figure 5.4a Correlation of the overall incident radiative heat flux (q<sub>ia</sub> vs. t for 2 and 4 heating elements on)



Figure 5.4b Correlation of the overall incident radiative heat flux (q<sub>is</sub> vs. t for 6 and 8 heating elements on)

1

That the slope does not increase proportionally with the number of elements results from the the fact that  $P_i$  (at constant  $T_{sir}$ ) does not increase proportionally with the number of elements activated (~1320 W, 2 elements; ~ 2220 W, 4 elements; ~ 2860 W, 6 elements; ~ 3330 W, 8 elements). This latter cause is also linked to the already mentioned position effect of the heating elements.

# 5.2.2 INCIDENT I.R. SOURCE AND TEST SECTION WALL RADIATIVE HEAT FLUXES IN FREE CONVECTION-I.R. EVAPORATION EXPERIMENTS

The overall incident radiative heat flux q<sub>is</sub> can be written:

$$\mathbf{q}_{\mathbf{ks}} = \mathbf{q}_{\mathbf{sk}} + \mathbf{q}_{\mathbf{Rs}} \tag{5.4}$$

 $q_{sir}$  (the radiative contribution of the I.R. source) and  $q_{its}$  (the radiative contribution of the test section walls) were deduced from the application of the theory of radiation exchange in an enclosure of diffuse-gray surfaces (section 4.2, Appendix 5). Surface 4 is now a radiating surface with a temperature  $T_4$ adjusted so that  $q_{is}$  calculated and measured are identical. The applicability of this concept relies on the assumption that the behavior of the I.R. source cavity can be approximated by using an equivalent flat plate radiating at a lower temperature ( $T_4$ ).  $E_4$  the equivalent total hemispherical emissivity of the aperture was taken to be 0.92 for the following reasons:

- a) The I.R. source manufacturer (Glenro Inc) reported a value of 0.92 for the hemispherical total emissivity of the corrugated heating elements (oxidized hastelloy);
- b) As a result of the pyramid geometry most of the radiant energy emitted or reflected by the stainless steel pyramid side is directed toward the emitting surface thus increasing its effective emissivity; the ratio of the aperture area (0.023 m<sup>2</sup>) to the internal area of the truncated pyramid (0.437 m<sup>2</sup>) being 5.3 10<sup>-2</sup>, the pyramid cavity has a tendency to behave like a blackbody (in terms of emission or absorption of incident energy);

- c) The emissivity of the back-heaters ceramic material is known to be high (0.8-0.95) at high temperature (Wade and Slemp, 1962); according to the manufacturer (Armstrong), clay is one of the major components (together with mineral wool fiber) of the back heaters ceramic and has an emissivity of about 0.86 (Eckert and Drake, 1972; Sala, 1986).
- d) Within the framework of this study, it is the constancy of the value used for  $E_4$  more than an exact evaluation which is important because it determines  $T_4$  level subject to the criterion that the calculated and measured  $q_{is}$  values are identical.

The system of equations (Appendix 5) was solved for selected time intervals  $[t_1, t_2]$  corresponding to the P.C.D.R.P. for the free convection-I.R. drying of the samples (b = 5.5, 10.3 and 19.9 mm). In Table 5.1 (a, b), the run identification name and the number of activated elements,  $[t_1, t_2]$ ,  $P_{\infty}$ ,  $T_d$ ,  $T_w$ ,  $T_2$ ,  $T_3$ ,  $T_4$ ,  $q_{is}$ ,  $q_{sir}$ ,  $q_{its}$  and  $P_i$  are presented.  $q_{its}$ % is the ratio of  $q_{its}$  to  $q_{sir}$  expressed in %.  $q_{sir}$  (dr.) and  $q_{its}$  (dr.) are an estimation of the relative increase of  $q_{sir}$  and  $q_{its}$ , calculated from the difference between the heat fluxes applicable to the last and first time intervals and divided by the time average value of  $q_{is}$ .  $P_i^*$  (dr.) is an evaluation of the relative decrease of  $P_i^*$  computed from the difference between  $P_i^*$  applicable to the last and first time intervals and first time interval and divided by the average value of  $P_i^*$ .

The reproducibility (same time interval) of the computed  $T_2^*$  and  $T_3^*$  (sixth and seventh columns in Table 5.1a and b respectively) is ± 8 °C and ± 10 °C respectively.

It is remarkable that the identified values of  $T_4^{\bullet}$  (eighth column in Table 5.1a and b) for same time interval and number of elements always differ by less than 2 °C.  $q_{its}^{\bullet}$  (eleventh column in Table 5.1a and b) is reproducible within less than 3.6 % (2 heating elements), 1.6 % (4 heating elements), 1.9 % (6 heating elements) and 2.4 % (8 heating elements) from a comparison for same [ $t_1, t_2$ ] and different runs.

ſ

#### TABLE 5.1a

#### THE INCIDENT I.R. SOURCE AND TEST SECTION WALLS RADIATIVE

#### HEAT FLUXES ESTIMATED FROM THE EVAPORATION RUNS

| Run<br>Nb. El. | [t <sub>1</sub> ,t <sub>2</sub> ] | P <sub>∞</sub> • | T <sub>d</sub> | Т <sub>w</sub> • | T <sub>2</sub> * | Т3    | T <sub>4</sub> | q <sub>is</sub>     | q <sub>sir</sub>    | q <sub>its</sub>    | q <sub>its</sub> % | q <sub>sir</sub><br>(dr.) | q <sub>its</sub><br>(dr.) | P <sub>i</sub> | Pi <sup>*</sup><br>(dr.) |
|----------------|-----------------------------------|------------------|----------------|------------------|------------------|-------|----------------|---------------------|---------------------|---------------------|--------------------|---------------------------|---------------------------|----------------|--------------------------|
| (.)            | (S)                               | (kPa)            | (° C)          | (° C)            | (° C)            | (° C) | (° C)          | (W/m <sup>2</sup> ) | (W/m <sup>2</sup> ) | (W/m <sup>2</sup> ) | (%)                | (%)                       | (%)                       | (W)            | (%)                      |
| ev6e           | 900-1100                          | 100.90           | 10.4           | 43.6             | 55               | 102   | 452            | 6650                | 5650                | 1000                | 17.7               |                           |                           | 1341           | 1                        |
| 2              | 1300-1800                         |                  | 10.4           | 53.5             | 67               | 123   | 453            | 6770                | 5690                | 1080                | 19.0               |                           |                           | 1317           |                          |
|                | 2700-3700                         |                  | 10.4           | 68.1             | 89               | 154   | 458            | 7110                | <del>5</del> 860    | 1250                | 21.3               |                           |                           | 1299           |                          |
|                | 3000-3900                         |                  | 10.4           | 69.2             | 91               | 156   | 459            | 7160                | 5890                | 1270                | 21.6               | 3.6                       | 4.0                       | 1297           | -3.3                     |
| ev9e           | 900-1100                          | 102.50           | -5.6           | 42.9             | 57               | i96   | 451            | 6650                | 5640                | 1010                | 17.9               |                           | -                         | 1339           |                          |
| 2              | 1300-1800                         |                  | -5.3           | 52.7             | 68               | 126   | 452            | 6760                | 5680                | 1080                | 19.0               |                           |                           | 1318           | i i                      |
|                | 2700-3700                         |                  | -4.7           | 67.5             | 90               | 154   | 458            | 7110                | 5850                | 1260                | 21.4               |                           |                           | 1305           |                          |
|                | 3000-3900                         |                  | -4.5           | 68.8             | 92               | 156   | 459            | 7160                | 5890                | 1270                | 21.6               | 3.6                       | 3.8                       | 1304           | -2.6                     |
| e14e           | 900-1100                          | 101.84           | 4.9            | 65.5             | 48               | 98    | 452            | 6650                | 5680                | 970                 | 17.1               |                           |                           | 1347           |                          |
| 2              | 1300-1800                         |                  | 4.6            | 61.8             | 60               | 119   | 454            | 6760                | 5720                | 1040                | 18.2               |                           |                           | 1325           |                          |
|                | 2700-3700                         |                  | 4.5            | 69.6             | 84               | 150   | 459            | 7110                | 5890                | 1220                | 20.7               |                           |                           | 1309           |                          |
|                | 3000-3900                         |                  | 4.6            | 70.4             | 86               | 153   | 460            | 7160                | 5920                | 1240                | 20.9               | 3.6                       | 4.0                       | 1310           | -2.8                     |
| ev7e           | 800-1100                          | 100.38           | 12.7           | 51.6             | 70               | 154   | 571            | 12000               | 10400               | 1600                | 15.4               |                           |                           | 2245           |                          |
| 4              | 1500-2000                         |                  | 13.1           | 70.0             | 101              | 199   | 574            | 12440               | 10560               | 1880                | 17.9               | 1.4                       | 2.2                       | 2172           | -3.3                     |
| e10e           | 800-1100                          | 101.99           | 1.4            | 67.3             | 73               | 161   | 570            | 12000               | 10360               | 1640                | 15.4               |                           |                           | 2203           |                          |
| 4              | 1500-2000                         |                  | 1.9            | 76.3             | 102              | 202   | 574            | 12440               | 10540               | 1900                | 18.1               | 1.4                       | 2.2                       | 2161           | -1.9                     |

Nb. El.: number of heating elements activated

H 14

۶

#### TABLE 5.1b

#### THE INCIDENT I.R. SOURCE AND TEST SECTION WALLS RADIATIVE

## HEAT FLUXES ESTIMATED FROM THE EVAPORATION RUNS

| Run<br>Nb. El. | [ï <sub>1</sub> ,t <sub>2</sub> ] | P         | Τď    | Τw    | T <sub>2</sub> * | T <sub>3</sub> | T <sub>4</sub> | q <sub>is</sub>     | q <sub>sir</sub>    | q <sub>its</sub>    | q <sub>its</sub> % | q <sub>sir</sub><br>(dr.) | Q <sub>its</sub><br>(dr.) | Pi   | P <sub>i</sub><br>(dr.) |
|----------------|-----------------------------------|-----------|-------|-------|------------------|----------------|----------------|---------------------|---------------------|---------------------|--------------------|---------------------------|---------------------------|------|-------------------------|
| (.)            | (s)                               | (kPa)     | (° C) | (° C) | (° C)            | (° C)          | (° C)          | (W/m <sup>2</sup> ) | (W/m <sup>2</sup> ) | (W/m <sup>2</sup> ) | (%)                | (%)                       | (%)                       | (W)  | (%)                     |
| ev8e           | 600-800                           | 100.35    | 12.9  | 49.9  | 92 '             | 197            | 648            | 17000               | 14740               | 2260                | 15.6               |                           |                           | 2930 |                         |
| 6              | 1100-1300                         | L′        | 13.5  | 69.3  | 117              | 236            | 652            | 17550               | 15010               | 2540                | 17.3               | 1.5                       | 1.7                       | 2840 | -3.1                    |
| e11e           | 600-800                           | 101.90    | 1.5   | 52.3  | 87               | 187            | 649            | 17000               | 14790               | 2210                | 14.9               |                           |                           | 2969 |                         |
| 6              | 1100-1300                         | $\square$ | 1.8   | 80.8  | 117              | 233            | 652            | 17550               | 15020               | 2530                | 17.3               | 1.4                       | 1.8                       | 2870 | -3.4                    |
| ev5e           | 200-300                           | 100.95    | 11.4  | 30.7  | 79               | 194            | 692            | 20220               | 17740               | 2480                | 14.1               |                           |                           | 3566 |                         |
| 8              | 300-500                           | '         | 11.9  | 66.4  | 92               | 215            | 693            | 20440               | 17820               | 2620                | 14.6               |                           | i                         | 3482 |                         |
|                | 700-1000                          | ['        | 13.0  | 63.9  | 122              | 258            | 697            | 21080               | 18110               | 2970                | 16.6               | 1.8                       | 2.3                       | 3329 | -6.9                    |
| e12e           | 200-300                           | 101.70    | 0.0   | 67.9  | 76               | 188            | 692            | 20220               | 17760               | 2440                | 13.5               |                           |                           | 3555 |                         |
| 8              | 300-500                           | 1 !       | 0.5   | 70.7  | <u> </u> 89      | 209            | 693            | 20440               | 17850               | 2590                | 14.0               |                           |                           | 3475 |                         |
| !              | 700-1000                          | L'        | 1.5   | 80.0  | 121              | 253            | 697            | 21070               | 18130               | 2940                | 16.3               | 1.8                       | 2.3                       | 3341 | -6.2                    |
| e13e           | 200-300                           | 102.24    | 0.4   | 76.2  | 78               | 181            | 693            | 20230               | 17790               | 2440                | 13.5               |                           |                           | 3599 |                         |
| 8              | 300-500                           | { !       | 1.2   | 66.4  | 85               | 203            | 694            | 20430               | 17880               | 2550                | 14.0               |                           | 1                         | 3502 |                         |
|                | 700-1000                          | !         | 2.2   | 77.4  | 118              | 249            | 697            | 21070               | 18170               | 2900                | 15.9               | 1.8                       | 2.3                       | 3332 | -7.7                    |

Nb. El.: number of heating elements activated

-- ,

 $q_{its}$  % (twelfth column in Table 5.1a and b) is a function of time which increase from about 17.6 % to 21.4 % for 2 elements, 15.4 % to 18.0 % for 4 elements, 14.9 % to 17.1 % for 6 elements and 13.7 % to 16.3 % for 8 elements. The magnitude of these results indicates that the radiative contribution of the test section walls by emission or reflection to  $q_{is}$  is significant and decreases only slightly as more heating elements are used.

 $q_{sir}^{*}(dr.)$  (thirteenth column in Table 5.1a and b) establishes that, for the period considered, the average intensity of  $q_{sir}^{*}$  increases by about 3.6 % (2 heating elements), 1.4 % (4 heating elements), 1.5 % (6 heating elements) and 1.8 % (8 heating elements).  $q_{its}^{*}$ %(d:.) (fourteenth column in Table 5.1a and b) reveal that the average intensity of  $q_{its}^{*}$  is increased by about 3.9 % (2 heating elements), 2.2 % (4 heating elements), 1.8 % (6 heating elements) and 2.3 % (8 heating elements). The trend of both heat fluxes is to increase at approximately the same rate (for same number of elements). It can be concluded that the overall increase of  $q_{is}^{*}$  (Figure 5.4) is due mainly to  $q_{sir}^{*}$  increase

For the same time interval  $[t_1, t_2]$ ,  $P_i^*$  (fifteenth column in Table 5.1a and b) was found reproducible within less than 1.0 % (2 heating elements), 1.9 % (4 heating elements), 1.3 % (6 heating elements) and 1.2 % (8 heating elements). The average  $P_i^*$  ( $P_i^*$ (dr.); last column of Table 5.1a and b) decrease, for the period considered, as a function of time is 2.9 % (2 heating elements), 2.6 % (4 heating elements), 3.3 % (6 heating elements) and 6.9 % (8 heating elements). Since  $T_{sir}$  is kept constant (by controlling  $P_i$ ) and  $P_i$  is observed to decrease (Table 5.1, Figure 5.6), it can be deduced that the temperature increase of the ceramic and stainless stand pyramid walls must be sufficient to generate an increase in  $q_{sir}^*$  and  $q_{its}^*$ .

Maximal temperature differences recorded on surface number 2 (Appendix 5) were always less than 38 °C (2 elements), 48 °C (4 elements), 51 °C (6 elements) and 53 °C (8 elements). For surface 3, it was always lower than 29 °C (2 elements), 56 °C (4 elements), 70 °C (6 elements) and 82 °C (8 elements). It was decided to test the sensitivity of the evaluation of  $T_4$  to an appropriate determination of  $T_2$  and  $T_3$ . If one selects, as representative of

surface 2, the maximum recorded temperature to estimate  $T_4^*$  and compares those values to the one obtained when choosing the minimum temperature,  $T_4^*$  is decreased between 2 to 5 °C (2 elements), between 2 to 5 °C (4 elements), between 3 to 4 °C (6 elements) and between 2 to 4 °C (8 elements). The range given for the changes in  $T_4^*$  represents the minimal and maximal temperature differences that were computed (from run to run,same  $[t_1, t_2]$  and number of elements). Such decrease of  $T_4^*$  generates a maximal increase of 13 % for  $q_{its}^*$ and a maximum decrease of 1 % for  $q_{sir}^*$  (with respect to their average value).

For surface 3, the estimation was carried out with the maximal temperature  $(T_{t2})$  and a minimum temperature computed as the average of  $T_{t1}$ ,  $T_{t3}$ ,  $T_{t4}$  and  $T_{t5}$ .  $T_{t1}$  and  $T_{t3}$  being around surface 3 insure that this temperature is the lowest possible average temperature representative of surface 3. In such a case,  $T_4$  decreases in the order of 2-3 °C (2 elements), 3-4 °C (4 elements), 3-4 °C (6 elements) and 3-5 °C (8 elements). Such decrease of  $T_4$  create a maximal increase of 12 % for  $q_{its}$  and a maximum decrease of 1 % for  $q_{sir}$ .

In the present study,  $T_2^*$  is calculated as the average of  $T_{t1}^*$ ,  $T_{t3}^*$  and  $T_{t6}^*$ ; this method of determination constrain  $T_2^*$  to be close to  $T_{t1}^*$  and  $T_{t3}^*$  (the highest temperatures on surface 3). As the radiative heat transfer depends on the fourth power of temperature, the use of a temperature closer to the highest on the surface should give us a better approximation of  $T_4^*$  and  $q_{its}^*$ . Furthermore,  $T_{t1}^*$  and  $T_{t3}^*$  characterize the surface temperature of the fraction of surface 2 (upper test section plate) which has the highest shape factor with respect to the sample surface (1). For surface 3, since  $T_{t2}^*$  is measured close to  $T_{t4}^*$  and  $T_{t5}^*$  which are more representative of surface 3 because their location is almost halfway in between the aperture and the external boundaries of surface 3.

These remarks and the evaluation given in the preceding paragraph suggest that an accurate determination of  $T_4^{*}$  has been carried out with maximal variation in the order of ± 5 °C which creates an uncertainty in the assessment of  $q_{its}^{*}$  in the order of ± 12 % and of  $q_{sir}^{*}$  in the order of ±1%. Taking into account data from Tables 5.3 ( $q_{its}^{*}$ %), the resulting maximal  $q_{is}^{*}$  uncertainty is in the order of ± 4 %.

ſ

During the combined convection-I.R. drying runs the temperature differences on surface 2 and 3 recorded were equal or lower than the one used for the above computations. Thus the same uncertainty level are applicable to the combined convective-I.R. drying runs.

#### 5.3 TEST SAMPLE SURFACE ABSORPTIVITY UNDER I.R. HEAT FLUX

Before deducing experimentally the heat and mass transfer coefficients applicable in combined convective-I.R. drying, it is essential to know the hemispherical total absorptivity of the sample surface under the I.R. heat flux.

In section 4.2 the sample emissivity  $E_s$  was taken as 0.95 in the wavelength range 8-14 µm (wavelength range of the pyrometer). Since the incident radiation coming from the cavity walls is for the major fraction in the same range (80 °C,  $\lambda_{max} = 8.21 \ \mu\text{m}$ ; 180 °C,  $\lambda_{max} = 6.39 \ \mu\text{m}$ ) it was justified to use this value of  $E_s$  as representative of the emission and absorption characteristics of the sample surface. However, in the present case the wavelength range of the incident radiation is shifted toward much shorter wavelengths (850 °C,  $\lambda_{max} = 2.58 \ \mu\text{m}$ ); it is no longer possible to assimilate the measured emissivity and the absorptivity of the surface under I.R. radiation. A complete characterization of the absorptivity as a function of wavelength would necessitate to quantify (under the gray surface behavior assumption) the spectral emittance with an environmental chamber-spectrophotometer as described by Birkebak (1972) or Navarri (1991). Consequently, it was decided to determine an overall equivalent emissivity (under the assumption of diffuse gray surface behavior) through use of equation 4.1, modified as in the previous section and integrated over  $[t_1, t_2]$ :

$$E_{s}^{*} = \frac{1}{\left(q_{is}^{*} - \sigma T_{s}^{*4}\right)} \left\{ \frac{1}{\left(t_{2} - t_{1}\right)} \left[ \int_{t_{1}}^{t_{2}} \left( -\frac{1}{A_{s}} \frac{dm_{w}}{dt} \Delta H_{v} \right) dt + \int_{t_{1}}^{t_{2}} \frac{1}{A_{s}} \left(m_{w} c_{pw} + m_{b} c_{pb} \right) \frac{dT_{s}}{dt} dt \right] - h_{c}^{*} (T_{3}^{*} - T_{s}^{*}) \right\}$$
(5.5)

As a result of the good reproducibility obtained in terms of temperature and heat flux levels for the free convection experiments (section 5.2.2),  $q_{is}$  may be computed from the correlation in Figure 5.4 and the time in the middle of the P.C.D.R.P (defined from the time interva:  $[t_1,t_2]$ ). Hence, free convection-I.R. drying experiments (no forced flow present) with various sample and thickness were carried out under similar conditions as the ones used in section 5.2.1.

.

{

In Table 5.2, the run identification name and the number of activated elements,  $[t_1, t_2]$ , the sample number, b,  $P_{\infty}^{*}$ ,  $T_d^{*}$ ,  $T_s^{*}$ ,  $T_3^{*}$ ,  $N_v^{*}$ ,  $q_{ac}^{*}$ ,  $q_c^{*}$ ,  $q_{is}^{*}$  and  $E_s^{*}$  are presented.  $q_{ac}^{*}$  is the second term in the right-hand side of equation 5.5.  $q_c^{*}$  is the average convection heat flux during the P.C.D.R.P. identified as the last term of the right-hand side of equation 5.3.

 $T_s$  (eighth column, Table 5.2) reaches the boiling point for the 19.9 mm sample (why the measured value is slightly higher than 100 °C will be discussed in section 5.5). This phenomenon occurs as a result of the formation of an additional mass transfer resistance at the sample surface level as explained in section 5.4.3. At this point the mass flux is no more diffusion controlled; bulk flow of the vapor occurs at the surface because the surface vapor pressure is higher than  $P_{\infty}$ .

For the 5.5 and 10.3 mm samples,  $T_s^*$  did not reach the boiling point temperature whatever the value of  $q_{is}^*$  applied although  $T_s^*$  was always higher for the 10.3 mm than for the 5.5 mm sample (eight column Table 5.2).  $T_s^*$  recorded for the 5.5 and 10.3 mm thick samples are increasing functions of the heat flux as shown in Figure 5.5a where a linear correlation of  $T_s^*$  as a function of  $q_{is}^*$  can be drawn (r=0.983) for the 10.3 mm sample. Data ( $T_s^*$  = 92 °C) from Navarri (1991) for free convection-I.R.drying (sea sand, d = 200-250  $\mu$ m, b = 7 mm,  $q_{is}^*$  = 18.5 kW/m<sup>2</sup> (Near Infrared Radiation)) is in good agreement with the present value range.

Comparing data from the different time intervals corresponding to the P.C.D.R.P. of the 5.5 mm and 19.9 mm samples,  $N_v^*$  (tenth column, Table 5.2) was found to increase by about 6 % (2 elements), 17 % (4 elements), 18 % (6 elements) and 9 % (8 elements). This is a consequence of the observed increase of  $q_{is}^*$  as a

#### TABLE 5.2

# EVALUATION OF THE SAMPLE EQUIVALENT HEMISPHERICAL TOTAL

| Run  | Nb. El. | [t1,t2]            | Sa.    | Ь             | P.,            |      | T.            | T <sub>2</sub> * | N,,*                  | q <sub>ac</sub>     | q,                  | q <sub>is</sub> *   | E    |
|------|---------|--------------------|--------|---------------|----------------|------|---------------|------------------|-----------------------|---------------------|---------------------|---------------------|------|
| No.  | (.)     | (S)                | No.    | (mm)          | (kPa)          | (°C) | ،<br>(°C)     | (°C)             | (kg/m <sup>2</sup> s) | (W/m <sup>2</sup> ) | (W/m <sup>2</sup> ) | (W/m <sup>2</sup> ) | (.)  |
| ir24 | 2       | 900-1100           | R      | 5.5           | 102.56         | -3.2 | 75.4          | 99               | 2.06e-03              | 30                  | 10                  | 6650                | 0.82 |
| i79h | 2       | 1300-1800          | x      | 10.3          | 99.69          | 19.3 | 84.5          | 125              | 2.08e-03              | 120                 | _20                 | 6760                | 0.84 |
| i72h | 2       | 3000-3900          | N<br>N | 19.9          | 100.39         | 17.6 | 10 <u>1.6</u> | 161              | 2.13e-03              | 0                   | 30                  | 7160                | 0.79 |
| í73h | 2       | 270 <u>0-</u> 3700 | XII    | 19.9          | 100.39         | 15.0 | 101.6         | 161              | 2.18e-03              | 0                   | 30                  | 7110                | 0.82 |
| ir22 | 4       | 800-1100           | x      | 10.3          | 102.10         | 2.8  | 90.8          | 149              | 3.64e-03              | 240                 | 30                  | 12030               | 0.77 |
| i81h | 4       | 1500-2000          | XI     | <u> 19.9</u>  | <u>102.16</u>  | 1.8  | 102.1         | 205              | 4.34e-03              | 20                  | 60                  | 12440               | 0.86 |
| ir23 | 6       | 600-800            | x      | 10 <u>.</u> 3 | 102.10         | 3.2  | 94 <u>.6</u>  | <u>16</u> 7      | 4.98e-03              | 460                 | 40                  | 17030               | 0.73 |
| i82h | 6       | 1100-1300          | XI     | 19.9          | 102.63         | 2.2  | 10 <u>2.1</u> | 222              | 5.97e-03              | 50                  | 70                  | 17550               | 0.82 |
| ir25 | 8       | 200-300            | R      | 5.5           | <u>10</u> 2.55 | -3.6 | 9 <u>2.6</u>  | 192              | 6.44e-03              | 370                 | 50                  | 20240               | 0.78 |
| i80h | 8       | 300-500            | x      | 10.3          | 99.69          | 19.2 | 96 <u>.0</u>  | 243              | 6.43e-03              | 730                 | 80                  | 20460               | 0.79 |
| i74h | 8       | 700-1000           | XI     | 19.9          | 100.78         | 14.3 | 101.7         | 271              | 6.88e-03              | 320                 | 100                 | 21070               | 0.79 |
| i75h | 8       | 800-1000           | XI     | 19.9          | 100.83         | 13.5 | 101.6         | 263              | 7.07e-03              | 360                 | 90                  | 21120               | 0.81 |
|      |         |                    |        |               |                |      |               |                  |                       |                     |                     | Average             | 0.80 |

#### EMISSIVITY UNDER I.R. HEAT FLUX

Nb. El.: number of heating elements activated

. .

0.03

Stdev.

F - -









i

function of time (section 5.3) and the mass flux reproducibility with different samples (section 3.5).

The computed value of  $q_c^*$  (twelfth column, Table 5.2) and  $q_{ac}^*$  (eleventh column, Table 5.2) are always less than 0.5 % and 3.6 % of  $q_{is}^*$ , respectively.

The average value of  $E_s^{*}$  (last row, Table 5.2) is 0.8 with a standard deviation of 0.03. Except for two values (runs i81h and ir23) the determined values are well grouped around the mean. The mean of  $E_s^{*}$  (for same number of elements) has a slight tendency to decrease with increase in the heat flux level; however the scatter in the results does not allow us to present it as a final conclusion.

# 5.4 CONVECTIVE HEAT TRANSFER COEFFICIENTS IN COMBINED CONVECTION-I.R. DRYING

The wall temperatures in forced and free convection experiments were different, thus it was necessary to evaluate  $q_{is}$  for each of the combined convective and I.R. drying experiments. In order to apply the theory of radiation exchange in an enclosure of diffuse-gray surfaces, one must know  $T_4$ . An alternative would be to know  $q_{sir}$ .

# 5.4.1 OVERALL INCIDENT RADIATIVE HEAT FLUX IN COMBINED CONVECTION-I.R. DRYING EXPERIMENTS

In Figure 5.6 (a, b) are displayed characteristics  $P_i$  vs. t curves for 2 heating elements (a) and 8 heating elements (b) from representative experimental conditions: convection with  $T_{\infty}^* \sim 80 \,^{\circ}$ C,  $v_{\infty}^* = 2.1-4.5 \,\text{m/s}$ ;  $T_{\infty}^* \sim 180 \,^{\circ}$ C,  $v_{\infty}^* = 2.6-6.2 \,\text{m/s}$  and in free convection (no forced flow present). Despite widely different convective conditions within the test section, the differences existing between the recorded  $P_i$  at any specific time, are always less than 7 % (2 elements) and 12 % (8 elements). An increase of  $P_i$  occurs, in most cases, when  $T_{\infty}^*$  is decreased or  $v_{\infty}^*$  is increased (other conditions being constant); this is exemplified in Figure 5.7a and b where the differences (less than 6 % (2 elements) and 10 % (8 elements)) between the  $P_i$  curves are scaled-up (and taken from representative time intervals).



Figure 5.6a Characteristic power input curves from the combined convective and LR. drying runs (P, vs. t for 2 heating elements on)



Figure 5.6b Characteristic power input curves from the combined convective and IR. drying runs (Pi vs. t for 8 heating elements on)

٤.



Figure 5.7a A typical scaled-up fraction of characteristic power input curves from the combined convective and LR. drying runs (P, vs. t for 2 heating elements on)



Figure 5.7b A typical scaled-up fraction of characteristic power input curves from the combined convective and LR. drying runs (P, vs. t for 8 heating elements on)

The following classification in terms of input power (ranked from the highest to the lowest) of the curves taken from Figure 5.6a and b shows the links existing between  $P_i$  and  $T_{\infty}^{*}$  or  $v_{\infty}^{*}$ :

2 elements

| 1: T <sub>∞</sub> ~ 80 °C,    | v <u></u>        | Ξ | 4.5 m/s, run no. i64h |
|-------------------------------|------------------|---|-----------------------|
| 2:                            | v•               | = | 2.1 m/s, run no. i62h |
| 3: T <sub>∞</sub> * ~ 180 °C, | v <sub>∞</sub> * | = | 6.2 m/s, run no. i50h |
| 4: Free convection            | ) <b>,</b>       |   | run no. i72h          |
| 5: T ~ 180 °C,                | v*               | = | 2.6 m/s, run no. i38h |

The differences between 4 and 5 are very small (in the order of 1 to 2 % of P<sub>i</sub>).

8 elements

í

| 1: T <sub>∞</sub> <sup>*</sup> ~ 85 °C, v <sub>o</sub> | . =        | 4.5 m/s, run no. i71h |
|--------------------------------------------------------|------------|-----------------------|
| 2: v                                                   |            | 2.1 m/s, run no. i57h |
| 3: T <sub>∞</sub> * ~ 180 °C, v <sub>∞</sub>           | , =        | 6.1 m/s, run no. i78h |
| 4: v <sub>a</sub>                                      | <b>.</b> = | 2.6 m/s, run no. i76h |
| 5: Free convection,                                    |            | run no. i74h          |

The differences between 2 and 3 are very low (in the order of 1 to 2 % of P<sub>i</sub>).

The spikes present in these curves (Figure 5.6 an 5.7) were generated because  $P_i$  was manually controlled to keep  $T_{sir}$  constant throughout the experiments. These  $P_i$  variations, in the order of 1 to 2 % (nominal value), produced maximal changes of  $T_{sir}$  in the order of ± 5 °C but their effects on  $q_{is}$  was negligible because it was corrected rapidly. As a first approximation it is justified to assume that the  $T_4$ \* values determined in section 5.2.2 are not affected strongly by the forced convection conditions within the test section since the instantaneous  $P_i$ 

values do not differ strongly and seems to be correlated with an increase of the convective heat transfer with the test section walls (when  $v_{\infty}^{*}$  is increased or  $T_{\infty}^{*}$  is decreased). Consequently,  $T_4$  was correlated as a function of time from the values identified in Table 5.1. The following expressions were found:

2 elements:

$$T_4 = 448.4 + 3.140 \ 10^{\cdot 3} * t$$
 (5.6)

4 elements:

$$T_4 = 566.3 + 4.375 \ 10^3 * t$$
 (5.7)

6 elements:

$$T_4 = 643.6 + 7.000 \ 10^{-3} * t$$
 (5.8)

8 elements:

$$T_4 = 690.3 + 7.864 \ 10^{-3} * t$$
 (5.9)

The correlation coefficient r for these relations were 0.99 (2 heating elements) and 1.00 (4 heating elements, 6 heating elements and 8 heating elements).

The theory of radiation exchange in an enclosure of diffuse-gray surfaces (Appendix 5) was applied with these correlations for  $T_4$  and the data recorded from each run. In Table 5.3, the sample number, b, the run identification name, the time in the middle of the P.C.D.R.P.  $t_{av}$ , the number of activated elements,  $T_{\infty}^{*}$ ,  $v_{\infty}^{*}$ ,  $P_{\infty}^{*}$ ,  $T_d^{*}$ ,  $T_s^{*}$ ,  $T_2^{*}$ ,  $T_3^{*}$ ,  $T_4^{*}$ ,  $q_{is}^{*}$ ,  $q_{sir}^{*}$  and  $q_{its}^{*}$  are given.  $q_{its}^{*}$ % is the ratio of  $q_{its}^{*}$  to  $q_{sir}^{*}$  expressed in %.

The analysis summarized by the results in Table 5.3 gives us the opportunity to evaluate the radiative  $(Q_R^*)$  and convective  $(Q_C^*)$  overall heat transfer rate from surfaces 2 and 3.  $Q_R^*$  is the sum of the radiative heat transfer rates from surface 2 and surface 3 (Appendix 5):

$$Q_{R}^{*} = Q_{2}^{*} + Q_{3}^{*}$$
 (5.10)

In Figure 5.8a is displayed  $Q_{R}^{*}$  (for 2 and 8 elements, b=10.3 and 19.9 mm) as a function of  $h_{cc}^{*}$ , the convective heat transfer coefficient predicted with equation A7.2 (Appendix 7),  $v_{\infty}^{*}$  and the temperatures (air and surfaces). It can be noted that:

- a) Q<sub>R</sub><sup>\*</sup> values for 8 elements are about 3.2 to 3.6 times higher than for 2 elements;
- b)  $Q_{R}^{*}$  does not change significantly with increasing  $h_{cc}^{*}$  (or  $v_{\infty}^{*}$ );
- c)  $Q_R^{\bullet}$  is increased between 11 % to 14 % (2 heating elements) and 4 % to 5 % (8 heating elements) when  $T_{\infty}^{\bullet}$  is increased from 80 °C to 180 °C;
- d) Q<sub>R</sub><sup>•</sup> increase slightly as a function of time (t<sub>av</sub>; Table 5.3) since its value is higher for a 19.9 mm than for a 10.3 mm sample.

 $Q_{C}^{*}$  is the sum of the convective heat transfer rates from surface 2 and 3:

$$Q_{C}^{*} = h_{cc}^{*} (T_{2}^{*} - T_{\infty}^{*}) + h_{cc}^{*} (T_{3}^{*} - T_{\infty}^{*})$$
(5.11)

In Figure 5.8b is sketched Q<sub>C</sub> as a function of h<sub>cc</sub>. It is observed that:

- a) The equality between Q<sub>C</sub><sup>\*</sup> and Q<sub>R</sub><sup>\*</sup> is not always respected due to local variations of h<sub>cc</sub> and T<sub>ti</sub> and the imperfect insulation of the test section;
- b) Q<sub>C</sub><sup>\*</sup> values for 8 elements are about 0.3 to 8.0 time higher than for 2 elements.
- c)  $Q_{C}^{*}$  increase significantly between 15 % and 89 % for 8 elements with increasing  $h_{cc}^{*}$  (or  $v_{w}^{*}$ );
- d)  $Q_{C}^{\bullet}$  increase significantly between 38 % and 86 % for 2 elements with increasing  $h_{cc}^{\bullet}$  (or  $v_{\infty}^{\bullet}$ ) except for the cases with  $T_{\infty}^{\bullet} \sim 80 \ ^{\circ}C$ where there is no increase or a 38 % decrease ( $T_{\infty}^{\bullet} \sim 80 \ ^{\circ}C$ , b = 19.9 mm);

į

#### TABLE 5.3a

## THE INCIDENT I.R. SOURCE AND TEST SECTION RADIATIVE WALL HEAT FLUXES

#### FROM COMBINED CONVECTIVE AND I.R. DRYING RUNS

| Sa. | b    | Run  | t <sub>av</sub> | Nb. El. | T <sub>∞</sub> * | v <u></u> * | ₽ <sub>∞</sub> * | Тď    | T <sub>s</sub> * | T <sub>2</sub> | Тз    | T <sub>4</sub> | q <sub>is</sub>     | q <sub>sir</sub>    | q <sub>its</sub>    | q <sub>its</sub> % |
|-----|------|------|-----------------|---------|------------------|-------------|------------------|-------|------------------|----------------|-------|----------------|---------------------|---------------------|---------------------|--------------------|
| No. | (mm) | No.  | (S)             | (.)     | (° C)            | (m/s)       | (kPa)            | (° C) | (° C)            | (° C)          | (° C) | (° C)          | (W/m <sup>2</sup> ) | (W/m <sup>2</sup> ) | (W/m <sup>2</sup> ) | %                  |
|     |      | ir17 | 1170            | 2       | 79.2             | 2.0         | 100.10           | 8.3   | 56.0             | 83             | 110   | 452            | 6810                | 5670                | 1140                | 20.0               |
|     |      | ir18 | 210             | 8       | 86.1             | 2.0         | 99.98            | 12.2  | 76.0             | 96             | 184   | 692            | 20340               | 17750               | 2590                | 14.6               |
| K   | 5.5  | i85h | 210             | 8       | 145.0            | 3.5         | 101.98           | -4.0  | 82.8             | 146            | 210   | 692            | 20740               | 17770               | 2900                | 16.7               |
|     |      | 183h | 200             | 8       | 141.7            | 5.2         | 101.19           | -10.6 | 82.7             | 146            | 222   | 692            | 20770               | 17760               | 2980                | 16.9               |
|     |      | ir2  | 770             | 4       | 81.1             | 2.1         | 98.78            | 5.2   | 73.3             | 96             | 151   | 570            | 12110               | 10350               | 1760                | 16.9               |
|     |      | ir3  | 550             | 6       | 83.1             | 2.1         | 98.73            | 6.4   | 78.2             | 99             | 166   | 648            | 16980               | 14730               | 2250                | 15.3               |
|     |      | ir1  | 1360            | 2       | 80.0             | 2.1         | 98.97            | 3.9   | 60.3             | 93             | 135   | 452            | 6930                | 5700                | 1230                | 21.6               |
|     |      | ir5  | 1270            | 2       | 79.9             | 2.1         | 99.51            | 12.3  | 64.2             | 90             | 128   | 452            | 6890                | 5690                | 1200                | 21.1               |
|     |      | ir7  | 1210            | 2       | 79.8             | 3.2         | 99.93            | 6.7   | 62.7             | 89             | 123   | 452            | 6860                | 5680                | 1180                | 20.8               |
|     |      | ir9  | 1120            | 2       | 79.8             | 4.5         | 99.86            | 7.8   | 60.7             | 87             | 119   | 452            | 6840                | 5670                | 1170                | 20.6               |
| Х   | 10.3 | ir4  | 450             | 8       | 86.7             | 2.1         | 98.74            | 4.4   | 85.3             | 102            | 181   | 694            | 20520               | 17900               | 2620                | 14.7               |
|     |      | ir6  | 450             | 8       | 85.6             | 2.1         | 99.50            | 13.9  | 80.8             | 101            | 177   | 694            | 20510               | 17900               | 2610                | 14.6               |
|     |      | ir8  | 440             | 8       | 83.0             | 3.3         | 100.06           | 7.1   | 83.1             | 100            | 176   | 694            | 20490               | 17890               | 2600                | 14.6               |
|     |      | ir10 | 460             | 8       | 83.7             | 4.5         | 99.87            | 9.2   | 82.3             | 101            | 178   | 694            | 20510               | 17900               | 2610                | 14.6               |
|     |      | ir11 | 860             | 2       | 180.0            | 2.6         | 100.81           | 2.9   | 73.3             | 180            | 199   | 451            | 7660                | 5680                | 1980                | 34.8               |
|     |      | ir13 | 810             | 2       | 180.0            | 4.3         | 100.79           | 2.5   | 72.4             | 182            | 209   | 451            | 7710                | 5680                | 2030                | 35.7               |
|     |      | ir15 | 720             | 2       | 179.8            | 6.1         | 100.79           | 4.1   | 71.8             | 180            | 202   | 451            | 7660                | 5670                | 1990                | 35.0               |
|     |      | ir12 | 310             | 8       | 183.3            | 2.6         | 100.79           | 5.1   | 85.2             | 188            | 259   | 693            | 21370               | 17850               | 3520                | 19.7               |
|     |      | ir14 | 300             | 8       | 181.1            | 4.3         | 100.81           | 1.9   | 84.4             | 190            | 258   | 693            | 21370               | 17840               | 3530                | 19.7               |
|     |      | ir16 | 310             | 8       | 180.1            | 6.1         | 100.79           | 5.8   | 84.4             | 190            | 259   | 693            | 21380               | 17850               | 3530                | 19.8               |

Nb. El.: number of heating elements activated

1) A

.

#### TABLE 5.3b

# THE INCIDENT I.R. SOURCE AND TEST SECTION RADIATIVE WALL HEAT FLUXES

# FROM COMBINED CONVECTIVE AND I.R. DRYING RUNS

| Sa. | b    | Run  | tav  | Nb. El. | Τ*    | v*    | P*                 | Тď               | T <sub>s</sub> *  | T <sub>2</sub> * | T <sub>3</sub> | T <sub>4</sub> | q <sub>is</sub>     | q <sub>sir</sub>    | q <sub>its</sub>    | q <sub>its</sub> % |
|-----|------|------|------|---------|-------|-------|--------------------|------------------|-------------------|------------------|----------------|----------------|---------------------|---------------------|---------------------|--------------------|
| No. | (mm) | No.  | (S)  | (.)     | (° C) | (m/s) | (kPa)              | (° C)            | (° C)             | (° C)            | (° C)          | (° C)          | (W/m <sup>2</sup> ) | (W/m <sup>2</sup> ) | (W/m <sup>2</sup> ) | %                  |
|     |      | i62h | 4090 | 2       | 80.3  | 2.1   | 99.79              | 17.9             | 100.8             | 96               | 145            | 461            | 7260                | 5970                | 1290                | 21.7               |
|     |      | i63h | 4010 | 2       | 81.3  | 2.1   | 99.67              | 17.1             | 100. <del>9</del> | 98               | 146            | 461            | 7270                | 5960                | 1310                | 21.9               |
|     |      | i64ħ | 4490 | 2       | 81.2  | 4.5   | 99.57              | 16. <del>9</del> | 100.6             | 88               | 123            | 462            | 7220                | 6000                | 1220                | 20.3               |
|     |      | i57h | 970  | 8       | 85.3  | 2.1   | 99.69              | 16.2             | 101.7             | 119              | 231            | 698            | 21130               | 18220               | 2910                | 15.9               |
|     |      | i58h | 980  | 8       | 84.2  | 2.1   | 99.79              | 16.2             | 101.8             | 116              | 226            | 698            | 21100               | 18230               | 2870                | 15.8               |
|     |      | i56h | 990  | 8       | 84.2  | 2.6   | 99.71              | 16.5             | 101.7             | 115              | 220            | 698            | 21080               | 18230               | 2850                | 15.6               |
|     |      | i55h | 1000 | 8       | 84.1  | 3.4   | 99.78              | 15.9             | 101.5             | 111              | 205            | 698            | 21010               | 18230               | 2780                | 15.2               |
|     |      | i68h | 1040 | 8       | 82.9  | 4.5   | 99.99              | 14.1             | 101.6             | 106              | 198            | 699            | 20990               | 18260               | 2730                | 15.0               |
|     |      | i69h | 1050 | 8       | 84.1  | 4.5   | 99.99              | 13.7             | 101.6             | 107              | 198            | 699            | 21000               | 18260               | 2740                | 15.0               |
|     |      | i70h | 1010 | 8       | 84.9  | 4.5   | 100.06             | 13.7             | 101.7             | 109              | 200            | 698            | 20990               | 18240               | 2750                | 15.1               |
| X   | 19.9 | i71h | 980  | 8       | 85.6  | 4.5   | 100.18             | 14.0             | 101.6             | 110              | 203            | 698            | 20980               | 18220               | 2760                | 15.2               |
|     |      | i38h | 2000 | 2       | 180.3 | 2.6   | 99.99              | 11.8             | 101.2             | 186              | 221            | 454            | 7920                | 5800                | 2120                | 36.5               |
|     |      | i45h | 1790 | 2       | 180.2 | 6.2   | 99.71              | 14.7             | 100.5             | 184              | 215            | 454            | 7860                | 5780                | 2080                | 36.0               |
|     |      | i49h | 1810 | 2       | 180.2 | 6.2   | 98. <del>9</del> 0 | 14.0             | 100.4             | 185              | 216            | 454            | 7870                | 5780                | 2090                | 36.2               |
|     |      | i50h | 1860 | 2       | 180.3 | 6.2   | 99.11              | 12.0             | 100.5             | 185              | 216            | 454            | 7880                | 5780                | 2100                | 36.2               |
|     |      | i76h | 700  | 8       | 179.9 | 2.6   | 100.63             | 8.7              | 101.1             | 204              | 306            | 696            | 22020               | 18100               | 3920                | 21.7               |
|     |      | i77h | 700  | 8       | 179.9 | 2.6   | 100.61             | 9.7              | 101.1             | 208              | 315            | 696            | 22110               | 18100               | 4010                | 22.1               |
|     |      | i52h | 720  | 8       | 180.3 | 6.2   | 99.51              | 6.6              | 100.9             | 198              | 280            | 696            | 21830               | 18100               | 3730                | 20.6               |
|     |      | i78h | 630  | 8       | 179.7 | 6.1   | 100.31             | 12.1             | 101.5             | 196              | 276            | 696            | 21770               | 18080               | 3690                | 20.4               |

Nb. El.: number of heating elements activated

. .

e---









÷







Figure 5.9b The convective heat transfer rate within the test section as a function of the power input for 8 heating elements on  $(Q_c^* vs. P_i^*)$ 

1

e)  $Q_{C}^{*}$  is increased between 0 % to 170 % (2 heating elements) and 16 % to 65 % (8 heating elements) when  $T_{\infty}^{*}$  is decreased from 180 °C to 80 °C.

In -igure 5.9a and b are presented  $Q_{C}^{*}$  as a function of  $P_{i}^{*}$  for 2 and 8 elements respectively. It can be noted that an increase of  $P_{i}^{*}$  in the range 1 % to 3 % (2 elements) and 3 % to 6 % (8 elements) occurs when  $v_{\infty}^{*}$  (given close to the data points) is increased from its minimum to its maximum value. It is also possible to observe that an increase of  $P_{i}^{*}$  in the range 0 % to 4 % (2 elements) and 3 % to 4 % (8 elements) do occur when  $T_{\infty}^{*}$  is decreased from 180 °C to 80 °C (same velocity). Runs in Figure 5.6 and 5.7 are indicated in Figure 5.9; it can be observed that we obtain a similar classification in term of the highest  $P_{i}$ .

Considering the uncertainty level on the temperature measurement and the possible local variations within the test section of  $h_{cc}$ , all these results demonstrate that:

- a) Q<sub>R</sub><sup>\*</sup> is practically time independent and only slightly affected by the convective heat transfer (only through T<sub>∞</sub><sup>\*</sup>). Thus it is not responsible for the P<sub>i</sub> differences that were observed in Figures 5.6 and 5.7.
- b) In most cases  $Q_{C}^{*}$  behaves exactly like  $P_{i}^{*}$ ; it increases when  $T_{\infty}^{*}$  is decreased or  $v_{\infty}^{*}$  is increased. Furthermore, the  $P_{i}^{*}$  increase can be for a significant fraction explained quantitatively by the variations in  $T_{\infty}^{*}$  or  $v_{\infty}^{*}$ .

When  $T_{\infty}^{*}$  is decreased, the thermal gradient between the inside of the pyramid and the upper cavity (Figure 3.3) is increased (also the conductive heat losses). Thus  $P_i$  must be increased to keep  $T_{sir}$  constant (for same number of elements). When  $v_{\infty}^{*}$  is increased, the air renewal rate within the upper cavity is increased (also the convective heat losses on the outside of the pyramid) thus  $P_i$  must be increased to keep  $T_{sir}$  constant. This qualitative evaluation does show that the fraction of the  $P_i$  increase that was not explained by higher convective losses within the test section are likely to be due to higher conductive heat transfer loss through the pyramid's walls, I.R. source ceramic and frame. These arguments constitute *a posteriori* justification of the assumption of  $T_4$  being the same function for all the I.R. drying runs in free or forced convection.

The reproducibility of the data in Table 5.3 (at constant  $T_{\infty}^{*}$  and number of elements) of the determination of  $q_{is}^{*}$  and  $q_{its}^{*}$  (2 and 8 elements) was ±1.5 % and ±7.2 % respectively. It should be noted that  $q_{its}^{*}$ % does not appear to be a function of  $v_{\infty}^{*}$  (the same behavior was found for  $Q_{R}^{*}$ ). On the other hand, it decreases when the number of elements is increased or  $T_{\infty}^{*}$  decreased. Same results were found in Figure 5.8a.  $q_{its}^{*}$ % is between 14.6 % to 36.5 %. At  $T_{\infty}^{*} \sim 80$  °C or 180 °C (8 elements),  $q_{its}^{*}$ % are in the same range (15 % to 22 %) as the one obtained for all the free convection-I.R. evaporation experiments (Table 5.1); at  $T_{\infty}^{*} \sim 180$  °C and 2 heating elements,  $q_{its}^{*}$ % in Table 5.3 are much higher (35 % to 37 %). All  $q_{its}^{*}$ % when the same conditions are used (Table 5.3) differ by less than 1.6 %.

#### 5.4.2 CONVECTIVE HEAT TRANSFER COEFFICIENTS

Ĩ

From equation 5.3 and the above evaluation of  $q_{is}^*$ , the average experimental convective heat transfer coefficient  $h_c^*$  corrected for radiation from the cavity walls and I.R. heat source during the P.C.D.R.P. (S values between 0.5 to 0.2; Table 5.9) is:

$$h_{c}^{*} = \frac{1}{\left(T_{w}^{*} - T_{s}^{*}\right)} \left\{ \frac{1}{\left(t_{2} - t_{1}\right)} \left[ \int_{t_{1}}^{t_{3}} \left( -\frac{1}{A_{s}} \frac{dm_{w}}{dt} \Delta H_{v} \right) dt + \int_{t_{1}}^{s} \frac{1}{A_{s}} \left( m_{w} c_{pw} + m_{b} c_{pb} \right) \frac{dT_{s}}{dt} dt \right] - E_{s}^{*} \left( q_{1s}^{*} - \sigma T_{s}^{*4} \right) \right\}$$
(5.12)

The convective heat transfer coefficients  $h_{cc}^*$  could be predicted from the correlation developed in Appendix 7 for the flow variables  $(T_{\infty}^*, v_{\infty}^*, T_d^*)$  and  $T_s^*$  given in Table 5.3.

Moreover,  $h_{cc}^{*}$  was corrected for high mass transfer rate effects to yield the predicted heat transfer coefficient  $h_{cp}^{*}$  (it is the heat transfer coefficient diminished as a result of the measured evaporation rate) according to:

$$h_{op}^{*} = h_{oc}^{*} * \theta_{h}$$
 (5.13)

However, the relation which gives  $\theta_h$  is expressed in terms of the rate factor  $\phi_h$  as (Bird et al., 1960):

$$\phi_{\rm h} = \frac{N_{\rm v}^{\rm *} \left( c_{\rm pv} \right)_{\rm s}^{\rm *}}{h_{\rm rc}^{\rm *}} \tag{5.14}$$

 $\theta_h$  (Bird et al. (1960)) was correlated as a function of  $\phi_h$  (polynomial regression):

Boundary layer theory:

if  $-1.0 < \phi_h < 1.0$ 

$$\theta_{\rm h} = 1.0008 - 0.76844 * \phi_{\rm h} + 4.07 \; 10^{-2} * \phi_{\rm h}^{-2} \tag{5.15}$$

Film theory:

if 
$$-1.0 < \phi_{h} < 1.0$$

$$\theta_{\rm h} = 1.0005 - 0.49974 * \phi_{\rm h} + 8.2279 \; 10^{-2} * \phi_{\rm h}^{-2}$$
 (5.16)

Penetration theory:

if 
$$-1.0 < \phi_{\rm h} < 1.0$$

$$\theta_{\rm h} = 0.99875 - 0.62973^* \phi_{\rm h} + 8.5464 \ 10^{-2}^* \phi_{\rm h}^{-2} \tag{5.17}$$

The correlation coefficient r for these expressions was 1.00. In Table 5.4, the sample number, b, the run identification name, the number of activated elements,  $T_{\infty}^{*}$ ,  $v_{\infty}^{*}$ ,  $P_{\infty}^{*}$ ,  $T_{d}^{*}$ ,  $T_{s}^{*}$ ,  $q_{is}^{*}$ ,  $N_{v}^{*}$ ,  $q_{ac}^{*}$ ,  $q_{ac}^{*}$ ,  $h_{c}^{*}$ ,  $h_{cp}^{*}$ ,  $h_{cc}^{*}$  and  $\theta_{h}$  are given. The computed  $\theta_{h}$  values were obtained using equations 5.14 and 5.15.

#### 5.4.3 DISCUSSION OF RESULTS

í

A close look at Table 5.4 (a and b) allows us to make the following observations. When the drying rate gets close to a constant value (P.C.D.R.P.), the surface evaporation temperature  $T_s^*$  (eight column) when b = 19.9 mm reaches the boiling point whatever the external drying conditions  $(T_{\infty}^*, v_{\infty}^*, T_d^*, q_{is}^*)$ . Moreover, for b  $\leq$  10.3 mm it is obvious that whatever  $T_{\infty}^*, v_{\infty}^*, T_d^*$  and  $q_{is}^*, T_s^*$  does not reach the boiling point temperature. A similar behavior was previously observed in section 5.3 for the free convection-I.R. drying experiments. This phenomenon necessitates a careful explanation.

The relevant experimental phase was carried out through completion of the following experimental schedule:

- a) Convective drying runs with b= 5.5, 10.3 and 19.9 mm;
- b) Combined convective-I.R. drying runs for the 10.3 mm sample;
- c) Combined convective-I.R. drying runs for the 19.9 mm sample;
- d) Combined convective-I.R. drying runs for the 5.5 mm sample and free convection-I.R drying runs.

Up to step 3, the recorded  $T_s^*$  and  $N_v^*$  were reproducible and comparable for fixed external conditions. However, after a few combined convective and I.R.  $(T_{\infty}^* \sim 80\text{-}180 \,^{\circ}\text{C}, v_{\infty}^* \sim 2.1\text{-}6.2 \text{ m/s}, q_{is}^* \sim 7260\text{-}21080 \text{ W/m}^2)$  drying runs (6 for b = 19.9 mm (No. XII) and 3 for b = 20 mm (No. XIII)) for which it was observed that the  $T_s^*$  and  $N_v^*$  were similar to the ones already found for the 10.3 mm sample (No. X). It appeared, as additional runs were carried out for same heating conditions  $(T_{\infty}^*, v_{\infty}^*, q_{is}^*)$ , that the recorded  $T_s^*$  were getting progressively higher than for the initial observations.

#### TABLE 5.4a

#### HEAT TRANSFER COEFFICIENTS FROM THE COMBINED

## CONVECTIVE AND I.R. DRYING RUNS

| Sa. No. | Run  | Nb. | T <sub>∞</sub> * | v <sub>∞</sub> * | P*     | Td    | T <sub>s</sub> | q <sub>is</sub>     | Nv                    | q <sub>ac</sub>     | q <sub>ac</sub> *% | h <sub>c</sub>       | h <sub>cp</sub>      | h <sub>cc</sub>      | θ <sub>h</sub> |
|---------|------|-----|------------------|------------------|--------|-------|----------------|---------------------|-----------------------|---------------------|--------------------|----------------------|----------------------|----------------------|----------------|
| b (mm)  | No.  | El. | (° C)            | (m/s)            | (kPa)  | (° C) | (° C)          | (W/m <sup>2</sup> ) | (kg/m <sup>2</sup> s) | (W/m <sup>2</sup> ) | %                  | (W/m <sup>2</sup> K) | (W/m <sup>2</sup> K) | (W/m <sup>2</sup> K) | (.)            |
|         | ir17 | 2   | 79.2             | 2.0              | 100.10 | 8.3   | 56.0           | 6810                | 2.25e-03              | 110                 | 2.0                | 22                   | 20                   | 23                   | 0.86           |
| ĸ       | ir18 | 8   | 86.1             | 2.0              | 99.98  | 12.2  | 76.0           | 20340               | 6.63e-03              | 500                 | 3.2                | 27                   | 14                   | 24                   | 0.60           |
| 5.5     | i85h | 8   | 145.0            | 3.5              | 101.98 | -4.0  | 82.8           | 20740               | 6.82e-03              | 510                 | 3.2                | 5                    | 18                   | 29                   | 0.65           |
|         | 183h |     | 141.7            | 5.2              | 101.19 | -10.6 | 82.7           | 20770               | 7.06e-03              | 550                 | 3.4                | 15                   | 26                   | 37                   | 0.72           |
|         | ir2  | 4   | 81.1             | 2.1              | 98.78  | 5.2   | 73.3           | 12110               | 3.88e-03              | 300                 | 3.3                | -                    | 19                   | 25                   | 0.77           |
|         | ir3  | 6   | 83.1             | 2.1              | 98.73  | 6.4   | 78.2           | 16980               | 5.14e-03              | 550                 | 4.6                | -                    | 17                   | 25                   | 0.70           |
|         | ir1  | 2   | 80.0             | 2.1              | 98.97  | 3.9   | 60.3           | 6930                | 2.25e-03              | 110                 | 2.2                | 22                   | 20                   | 24                   | 0.86           |
|         | ir5  | 2   | 79. <del>9</del> | 2.1              | 99.51  | 12.3  | 64.2           | 68 <del>9</del> 0   | 2.29e-03              | 130                 | 2.3                | 36                   | 21                   | 24                   | 0.86           |
|         | ir7  | 2   | 79.8             | 3.2              | 99.93  | 6.7   | 62.7           | 6860                | 2.28e-03              | 140                 | 2.6                | 35                   | 29                   | 32                   | 0.90           |
|         | ir9  | _2  | 79.8             | 4.5              | 99.86  | 7.8   | 60.7           | 6840                | 2.29e-03              | 170                 | 3.1                | 34                   | 35                   | 39                   | 0.91           |
| Χ.      | ir4  | 8   | 86.7             | 2.1              | 98.74  | 4.4   | 85.3           | 20520               | 6.16e-03              | 850                 | 6.0                | -                    | 16                   | 25                   | 0.64           |
| 10.3    | ir6  | 8   | 85.6             | 2.1              | 99.50  | 13.9  | 80.8           | 20510               | 6.01e-03              | 760                 | 5.4                | -                    | 16                   | 25                   | 0.65           |
|         | ir8  | 8   | 83.0             | 3.3              | 100.06 | 7.1   | 83.1           | 20490               | 6.15e-03              | 790                 | 5.6                | -                    | 25                   | 34                   | 0.73           |
|         | ir10 | 8   | 83.7             | 4.5              | 99.87  | 9.2   | 82.3           | 20510               | 5.82e-03              | 750                 | 5.6                | -                    | 32                   | 41                   | 0.79           |
|         | iri1 | 2   | 180.0            | 2.6              | 100.81 | 2.9   | 73.3           | 7660                | 3.34e-03              | 270                 | 3.5                | 24                   | 16                   | 20                   | 0.76           |
|         | ir13 | 2   | 180.0            | 4.3              | 100.79 | 2.5   | 72.4           | 7710                | 3.67e-03              | 270                 | 3.1                | 31                   | 22                   | 28                   | 0.81           |
|         | ir15 | 2   | 179.8            | 6.1              | 100.79 | 4.1   | 71.8           | 7660                | 3.66e-03              | 290                 | 3.4                | 31                   | 29                   | 35                   | 0.85           |
|         | ir12 | 8   | 183.3            | 2.6              | 100.79 | 5.1   | 85.2           | 21370               | 7.24e-03              | 1180                | 7.1                | 15                   | 10                   | 21                   | 0.49           |
|         | irt4 | 8   | 181.1            | 4.3              | 100.81 | 1.9   | 84.4           | 21370               | 7.37e-03              | 1260                | 7.4                | 19                   | 18                   | 29                   | 0.62           |
|         | ir16 | 8   | 180.1            | 6.1              | 100.79 | 5.8   | 84.4           | 21380               | 7.32e-03              | 1110                | 6.6                | 16                   | 25                   | 36                   | 0.70           |

Nb. El.: number of heating elements activated

• •

.

#### TABLE 5.4b

## HEAT TRANSFER COEFFICIENTS FROM THE COMBINED

## CONVECTIVE AND I.R. DRYING RUNS

| Sa. No. | Run  | Nb. | <b>T</b> <sub>∞</sub> * | v <sub>∞</sub> * | <b>₽</b> <u></u> ,  | Τď    | Т <sub>s</sub> * | q <sub>is</sub>     | Nv                    | q <sub>ac</sub>     | q <sub>ac</sub> % | h <sub>c</sub>       | h <sub>cp</sub>      | h <sub>cc</sub>      | θ <sub>h</sub> |
|---------|------|-----|-------------------------|------------------|---------------------|-------|------------------|---------------------|-----------------------|---------------------|-------------------|----------------------|----------------------|----------------------|----------------|
| b (mm)  | No.  | EI. | (° C)                   | (m/s)            | (kPa)               | (° C) | (° C)            | (W/m <sup>2</sup> ) | (kg/m <sup>2</sup> s) | (W/m <sup>2</sup> ) | %                 | (W/m <sup>2</sup> K) | (W/m <sup>2</sup> K) | (W/m <sup>2</sup> K) | (.)            |
|         | i62h | 2   | 80.3                    | 2.1              | 99.79               | 17.9  | 100.8            | 7260                | 1.75e-03              | 0                   | 0.0               | 48                   | 24                   | 27                   | 0.91           |
|         | i63h | 2   | 81.3                    | 2.1              | 99.67               | 17.1  | 100.9            | 7270                | 1.80e-03              | 0                   | 0.0               | 45                   | 24                   | 27                   | 0.90           |
|         | i64ħ | 2   | 81.2                    | 4.5              | 99.57               | 16.9  | 100.6            | 7220                | 1.49e-03              | 0                   | 0.0               | 79                   | 42                   | 44                   | 0.95           |
|         | i57h | 8   | 85.3                    | 2.1              | 99.69               | 16.2  | 101.7            | 21130               | 6.60e-03              | 510                 | 3.4               | 39                   | 17                   | 27                   | 0.63           |
|         | i58h | 8   | 84.2                    | 2.1              | 99.7 <del>9</del>   | 16.2  | 101.8            | 21100               | 6.53e-03              | 470                 | 3.2               | 46                   | 17                   | 27                   | 0.64           |
|         | i56h | 8   | 84.2                    | 2.6              | 99.71               | 16.5  | 101.7            | 21080               | 6.37e-03              | 440                 | 3.1               | 68                   | 21                   | 31                   | 0.69           |
|         | i55h | 8   | 84.1                    | 3.4              | 99.78               | 15.9  | 101.5            | 21010               | 6.26e-03              | 550                 | 3.9               | 73                   | 27                   | 37                   | 0.75           |
| ł       | i68h | 8   | 82.9                    | 4.5              | 99.99               | 14.1  | 101.6            | 20990               | 6.23e-03              | 230                 | 1.6               | 88                   | 34                   | 44                   | 0.79           |
|         | i69h | 8   | 84.1                    | 4.5              | 99.99               | 13.7  | 101.6            | 21000               | 6.24e-03              | 310                 | 2.2               | 89                   | 34                   | 44                   | 0.79           |
| X       | i70h | 8   | 84.9                    | 4.5              | 100. <del>0</del> S | 13.7  | 101.7            | 20990               | 6.34e-03              | 290                 | 2.0               | 80                   | 34                   | 43                   | 0.79           |
| 19.9    | i71h | 8   | 85.6                    | 4.5              | 100.18              | 14.0  | 101.6            | 20980               | 6.33e-03              | 330                 | 2.3               | 82                   | 34                   | 43                   | 0.79           |
|         | i38h | 2   | 180.3                   | 2.6              | 99.99               | 11.8  | 101.2            | 7920                | 3.13e-03              | 220                 | 3.1               | 23                   | 18                   | 22                   | 0.79           |
|         | i45h | 2   | 180.2                   | 6.2              | 99.71               | 14.7  | 100.5            | 7860                | 3.55e-03              | 110                 | 1.3               | 34                   | 33                   | 38                   | 0.86           |
|         | i49h | 2   | 180.2                   | 6.2              | 98.90               | 14.0  | 100.4            | 7870                | 3.36e-03              | 160                 | 2.2               | 29                   | 33                   | 38                   | 0.87           |
|         | i50ħ | 2   | 180.3                   | 6.2              | 99.11               | 12.0  | 100.5            | 7880                | 3.57e-03              | 70                  | 0. <del>9</del>   | 34                   | 33                   | 38                   | 0.86           |
|         | i76h | 8   | 179.9                   | 2.6              | 100.63              | 8.7   | 101.1            | 22020               | 7.79e-03              | 990                 | 5.6               | 23                   | 11                   | 22                   | 0.48           |
|         | i77h | 8   | 179.9                   | 2.6              | 100.61              | 9.7   | 101.1            | 22110               | 7.70e-03              | 1010                | 5.8               | 20                   | 11                   | 22                   | 0.48           |
|         | i52h | 8   | 180.3                   | 6.2              | 99.51               | 6.6   | 100.9            | 21830               | 7.64e-03              | 1510                | 8.7               | 27                   | 27                   | 38                   | 0.70           |
|         | i78h | 8   | 179.7                   | 6.1              | 100.31              | 12.1  | 101.5            | 21770               | 7.98e-03              | 940                 | 5.2               | 31                   | 26                   | 38                   | 0.69           |

Nb. El.: number of heating elements activated

p-- .
During the period of these experiments (within 3 days), four convective drying runs ( $T_{\infty}$  ~ 180 °C,  $v_{\infty}$  ~ 2.6 and 6.1 m/s and  $T_{d}$  ~ 13.6-16.3 °C) showed a similar increase of Ts\* (68 °C, 72 °C, 78 °C and 86 °C) in convection drying which confirmed the existence of this phenomenon. As these temperatures are significantly higher than the ones presented in section 4.2 for similar conditions  $(T_s^* \sim 45-51 \text{ °C})$ , it can be concluded that an additional mass transfer resistance was probably being built close to the sample surface (crust formation). This is quantified in Table 5.5 where an evaluation of the mass transfer coefficient (K<sub>vBL</sub><sup>\*</sup>)<sub>varo</sub> (from the experimental N<sub>v</sub><sup>\*</sup>, application of the boundary layer theory and density variation corrections) is compared with the one presented in section 4.3 (Table 4.2). For sample no. XIII, the ratio of these mass transfer coefficients evolves from 2.4 (run no. i37h) to 5.2 (run no. i46h). As Ts for sample no. XII during the combined convective-I.R. drying runs was already stabilized to the boiling point temperature when run no. i47h was realized, it is likely that the value reached is also stabilized (it is about 6.2 time lower than its initial value).  $h_{cBL}$  is also computed in Table 5.5 and show similar values as the one from Table 4.2. This underlines the point that a much higher mass transfer resistance exists at the surface which has no major influence on the heat transfer resistance.

In Figure 5.10a, a photograph of sample no. X surface can be compared to sample no. XII surface (Figure 5.10b). It is observed that the surface of no. XII displays brown and darker areas than the surface of no. X which means that it was "contaminated". Also in Figure 5.11a and b, a typical fraction of these surfaces are magnified (X 40) which shows that the pores of sample no. XII surface (Figure 5.11b) are obstructed whereas for sample X this does not seems to be the case (Figure 5.11a). However, as the total amount of water absorbed by sample no. XII was not different during the convective and combined convective-I.R. drying experiments, the additional mass transfer resistance is not likely to affect the internal moisture transport as it is mainly a surface phenomenon. Since only distilled-ion free water (conductivity: 5.6 10<sup>-8</sup> mho/cm) was used throughout, it is probably due to an improper glue mixture which did not resist fully to the very high temperature and stresses to which it was submitted under repeated wetting and drying with I.R. heating (overheating).

٠

#### TABLE 5.5

ŝ,

Ĩ

# COMPARISON OF (K<sub>yBL</sub>')<sub>VARp</sub> AND h<sub>cBL</sub>\* AFTER (COMBINED CONVECTIVE-I.R. DRYING RUNS) AND BEFORE (CONVECTIVE RUNS): THE EFFECT OF CRUST FORMATION ON SAMPLE NO, XII AND XIII FROM CONVECTIVE DRYING RUNS

| Run<br>No. | Sa.<br>No. | b    | T <sub>∞</sub> • | v <sub>∞</sub> • | P*     | т <sub>d</sub> • | Τ <sub>s</sub> | Nv*                   | After<br>(K <sub>vBL</sub> *) <sub>varo</sub> | Before<br>(K <sub>vBL</sub> *) <sub>varo</sub> | After<br>h <sub>cBL</sub> | Before<br>h <sub>cBL</sub> * |
|------------|------------|------|------------------|------------------|--------|------------------|----------------|-----------------------|-----------------------------------------------|------------------------------------------------|---------------------------|------------------------------|
| (.)        | (.)        | (mm) | (°C)             | (m/s)            | (kPa)  | (°Ĉ)             | (°C)           | (kg/m <sup>2</sup> s) | (mole/m <sup>2</sup> s)                       | (mole/m <sup>2</sup> s)                        | (W/m²K)                   | (W/m <sup>2</sup> K)         |
| i37h       | XIII       | 20.0 | 180.5            | 2.6              | 100.05 | 13.6             | 68             | 1.31e-03              | 0.26                                          | 0.62                                           | 18                        | 19                           |
| i42h       | XIII       | 20.0 | 180.3            | 6.1              | 99.73  | 14.2             | 72             | 1.53e-03              | 0.25                                          | 1.18                                           | 24                        | 33                           |
| i46h       | XIII       | 20.0 | 180.6            | 2.6              | 99.41  | 16.0             | 78             | 9.93e-04              | 0.12                                          | 0.62                                           | 13                        | 19                           |
| i47h       | XII        | 19.9 | 180.5            | 2.6              | 99.13  | 16.3             | 86             | 1.18e-03              | 0.10                                          | 0.62                                           | 19                        | 19                           |



Figure 5.10 a Photograph of sample No. X after completion of the experimental schedule: overall view of the surface



Figure 5.10b Photograph of sample No. XII after completion of the experimental schedule: overall view of the surface



\* - \*

1

1

Figure 5.1 la Photograph of sample No. X after completion of the experimental schedule: a typical fraction of the surface magnified (X 40)



Figure 5.1 lb Photograph of sample No. XII after completion of the experimental schedule: a typical fraction of the surface magnified (X 40)

The reported results for the combined convective-I.R. drying runs performed with sample no. XII (19.9 mm) are the ones for which the  $T_s^*$  values stabilized to a value close to 100 °C for all  $q_{is}^*$  used and  $N_v^*$  was observed to be reproducible. These data were analyzed since:

- a) It probably corresponds to data ( $T_s^* \sim 100 \,^{\circ}\text{C}$ ) for a very low permeability porous medium or colloidal material such as porcelain clay (d < 43  $\mu$ m, b = 28-31 mm,  $T_{\infty}^* = 8 \,^{\circ}\text{C}$ ,  $v_{\infty}^* = 1.3 \,\text{m/s}$ ,  $q_{is}^* = 9260 \,\text{W/m}^2$ ,  $T_s^* = 100 \,^{\circ}\text{C}$ ) as reported by Yagi et al. (1957);
- b) It characterizes extreme conditions in terms of mass transfer rate and presents a good test for the applicability of the correction procedures.

As can be seen from the 10.3 mm sample data (T<sup>\*</sup> ~ 80 ° C, v<sup>\*</sup> ~ 2.1 m/s,  $T_d^* \sim 3.9-6.4$  ° C), when  $q_{is}^*$  is increased in the range 6.9, 12.1, 17.0 and 20.5 kW/m<sup>2</sup>; Ts\* increases in the range 60, 73, 78 and 85 ° C respectively (Figure 5.5b). A very good linear correlation (r=0.983) between  $T_s^*$  and  $q_{is}^*$  is displayed in Figure 5.5b for  $T_{\infty}$  ~ 80°C. Yagi et al. (1957) have found  $T_{s}$  in the range 46-69 °C for various granular porous media (river and standard sand, d = 9-740  $\mu$ m, b = 7-61 mm, T<sub>w</sub> ~ 8-33 ° C, v<sub>w</sub> ~ 1.1-1.3 m/s, q<sub>is</sub> = 5110-10450 W/m<sup>2</sup>). Their results for d=88  $\mu m$  and 130  $\mu m$  and the one provided by Navarri (1990, 1991) for silica sand (quarry sand or sea sand, d = 250-400 or 200-250  $\mu$ m, b = 5 or 7 mm, T<sub>w</sub><sup>\*</sup> ~ 30-90 °C, v<sub>w</sub><sup>\*</sup> ~ 2.1-6.0 m/s, q<sub>is</sub><sup>\*</sup> = 10.0 and 18.5 kW/m<sup>2</sup> (N.I.R.)) are also sketched in the same figure; they confirm the temperature level found in the present study. Hasatani et al. (1983, 1988) studying the case of silica sand layers (d = 320  $\mu$ m, b = 20 mm, T<sub>w</sub><sup>+</sup> = 30-80 °C,  $v_{\infty}$  ~ 0.60-1.1 m/s and  $q_{is}$  = 290-1400 W/m<sup>2</sup>) observed T<sub>s</sub> in the range 32-34 °C. This is probably a result of the low qis values used during their experiments which were comparable in magnitude to the radiative heat fluxes from the test section walls found in the convective drying experiments summarized in Table 4.1.

In Table 5.4a, for  $T_{\infty} \sim 80 \circ C$ ,  $v_{\infty} \sim 2.1 \text{ m/s}$  and  $q_{is} \sim 6.9 \text{ kW/m}^2$ , an increase of 8 °C of  $T_d \circ (3.9 \circ C \text{ vs. } 12.3 \circ C)$  produces a  $T_s \circ \text{ increase}$  of about 4 °C whereas for  $T_{\infty} \sim 86 \circ C$ ,  $v_{\infty} \sim 2.1 \text{ m/s}$  and  $q_{is} \sim 20.5 \text{ kW/m}^2$ , an increase of

9 °C of  $T_d^*$  (4.4 °C vs. 13.9 °C) produce a  $T_s^*$  decrease of about 4 °C. Thus, it seems that there is no systematic effect of  $T_d^*$  on  $T_s^*$ .

1

1

No apparent effect of  $v_{\infty}^{*}$  on  $T_{s}^{*}$  level can be identified with certainty in Table 5.4a. If it exists, it might be a very low decrease (~ 1 °C when the velocity is doubled). At low  $q_{is}^{*}$  (6.9-7.9 kW/m<sup>2</sup>) a significant increase in surface temperature (~ 10 °C) occur when  $T_{\infty}^{*}$  is increased from 80 °C to 180 °C. However, at high  $q_{is}^{*}$  (20.5-21.4 kW/m<sup>2</sup>) the same increase of  $T_{\infty}^{*}$  do not promote any meaningful effect on  $T_{s}^{*}$  (Figure 5.5b).

It is interesting to note that  $T_s^*$  values reached in free convection-I.R. drying (Figure 5.5a) are higher than the ones in forced convection-I.R. drying (Figure 5.5b). In forced convection conditions, the diffusion path (for the water vapor molecules) through the boundary layer is smaller. This result in a lower diffusion resistance.which, for similar mass flux, necessitates a lower surface concentration and thus a lower surface temperature.

It can be concluded that for b = 10.3 mm,  $T_s^*$  during the P.C.D.R.P. is only an increasing function of  $q_{is}^*$  while it is also an increasing function of  $T_{\infty}^*$  at low  $q_{is}^*(6.9-7.9 \text{ kW/m}^2)$ .

 $T_s$  reached for the 5.5 mm sample  $(T_{\infty} \sim 80 \circ C, v_{\infty} \sim 2.0 \text{ m/s}, T_d \sim 8.3-12.2 \circ C)$  is about 4 °C to 9 °C (Figure 5.5b) lower than for the 10.3 mm sample (56 °C vs. 60-64 °C; 76 °C vs. 81-85 °C) under almost the same incident heat fluxes ( $q_{is} \sim 6.8-20.3 \text{ kW/m}^2$ ). A portion of this difference is probably due to the effect of the thermocouple on the surface temperature measurement as discussed in section 6.6.2 and 6.7.1.

In Figure 5.12a and b, a representation of  $N_v^*$  as a function of  $q_{is}^*$  is displayed for free (no forced flow present) and forced convection I.R. drying respectively (b = 19.9 mm). In forced convection (Figure 5.12b),  $N_v^*$  is relatively more sensitive to  $v_{\infty}^*$  changes at low  $q_{is}^*$  values because the spread of the data (a measure of the effect of  $v_{\infty}^*$ ) is about the same at low and high heat flux.







Figure 5.12b The drying rate as a function of the overall incident heat flux from forced convection LR. drying runs  $(N_v vs. q_w)$ 

Since N<sub>v</sub><sup>\*</sup> and q<sub>is</sub><sup>\*</sup> were obtained independently (forced and free convection-I.R. experiments respectively), the relatively small spread of the data (at constant  $T_{\infty}^*$ ) emphasize the fact that the experimental procedure to obtain  $q_{is}^*$  and  $E_s^*$  is accurate.

- 4

í

 $q_{ac}$  \*% (twelfth column, Table 5.4a and b) range from 0.0 % ( $T_{\infty}$  \* 80 °C,  $q_{is}$  \* 7.3 kW/m<sup>2</sup>, b = 19.9 mm) to 8.7 % ( $T_{\infty}$  \* 180 °C,  $q_{is}$  \* 21.8 kW/m<sup>2</sup>, b = 19.9 mm). At constant  $T_{\infty}$ , when  $q_{is}$  increases from about 7 kW/m<sup>2</sup> to 21 kW/m<sup>2</sup>,  $q_{ac}$  \*% increases between 2 to 4 %. At almost constant  $q_{is}$ , increasing  $T_{\infty}$  by 100 °C creates approximately a 1 % increase of  $q_{ac}$  \*%.  $q_{ac}$  \*% is a very weak function of  $v_{\infty}$  (changes are less than 1 % when  $v_{\infty}$  is doubled).

 $h_c^*$  (thirteenth column, Table 5.4a and b) could not be celebrated accurately when  $q_{is}^* \ge 12.1 \text{ kW/m}^2$  (b = 10.3 mm,  $T_{\infty}^* \sim 80 \text{ °C}$ ) because when the denominator ( $T_{\infty}^* - T_s^*$ ) of the left-hand side in equation 5.12 is too low (-0.1  $\le T_{\infty}^* - T_s^* \le 7.8 \text{ °C}$ ),  $h_c^*$  is more sensitive to errors which occur in the determination of the drying rate, heat of accumulation, sample total hemispherical emissivity or incident heat flux.

When  $T_s > T_{\infty}$  (b = 19.9 mm,  $T_{\infty} \sim 80$  °C), it is remarkable to observe that  $h_c$  (thirteenth column, Table 5.4b) is about twice  $h_{cp}$  (fourteenth column, Table 5.4b). This heat transfer coefficient increase is contrary to what can be predicted with the correction procedures (boundary layer, film or penetration theories) presented in section 4.3. A decrease should be expected like in evaporation from a heated wall (Bird et al. 1960; Kast, 1984). This phenomenon results in higher than expected convective heat losses and lower  $N_v$ . It may be noted that:

- a) At constant  $q_{is}^{*}$ , for same  $v_{\infty}^{*}$  (2.1 m/s or 4.5 m/s) the maximum scatter on these  $h_{c}^{*}$  data is relatively low ,~ 17 %);
- b) At constant  $v_{\infty}$ , for different  $q_{is}$  (7.3 kW/m<sup>2</sup> vs. 21.1 kW/m<sup>2</sup>) a comparison of determined  $h_c$  values show differences less than 20 %;

- c) The usual behavior of  $h_c^*$  increasing function of  $v_{\infty}^*$  increasing is shown by these data; for both heat fluxes (7.3 kW/m<sup>2</sup> and 21.1 kW/m<sup>2</sup>) multiplying the velocity by 2.1 gives a  $h_c^*$  multiplied by a factor between 1.7 and 2.0. In chapter IV, the experimentally determined  $h_c^*$  was similarly observed to be multiplied by 1.5 when the velocity is multiplied by about 2.3;
- d) The determination of h<sub>c</sub> (Table 5.4b) was reproduced 4 times for same drying conditions (b=19.9 mm, T<sub>w</sub> ~ 84 °C, v<sub>w</sub> = 4.5 m/s, T<sub>d</sub> ~ 14 °C, q<sub>is</sub> ~ 21.1 kW/m<sup>2</sup>), the resulting h<sub>c</sub> was reproducible within ±11 %. Moreover, T<sub>s</sub> was found reproducible within ±0.1 °C.

When  $T_s^* < T_{\infty}^*$  (b = 5.5 or 10.3 mm; b = 19.9 mm and  $T_{\infty}^* \sim 180$  °C) the range of  $h_c^*$  (5-36 W/m<sup>2</sup>K) is comparable to the range of  $h_{cc}^*$  (21-44 W/m<sup>2</sup>K; fifteenth column, Table 5.4a and b). This means that I.R. heating (medium-to-long wavelength range) does not change the order of magnitude of the convective heat transfer coefficient ( $T_s^* < T_{\infty}^*$ ). In most reported cases in Table 5.4, an increase of  $h_c^*$  results from a  $v_{\infty}^*$  increase although the scatter in the results does mask partly this effect.

For convection-I.R. drying, the range of  $\theta_h$  (0.48-0.95; last column, Table 5.4a and b) extends to lower  $\theta_h$  values as compared to the one found in convection drying (0.94-0.98). The overall behavior of  $\theta_h$  is a decrease with an increase in  $q_{is}^*$  (Figure 5.13a). In Table 5.4,  $\theta_h$  increases by up to 0.15 as  $T_{\infty}^*$  is decreased by 100 °C (at constant  $q_{is}^*$ ; Figure 5.13a).  $\theta_h$  is increased when  $v_{\infty}^*$  is increased (by as much as 0.2 when  $v_{\infty}^*$  is doubled). The range of  $\theta_h$  predicted by the boundary layer theory implies a significant decrease (5 % to 52 %) of the heat transfer coefficient in the case of combined convective-I.R. drying over the operating range investigated.

In order to verify (when  $T_s^* < T_{\infty}^*$ ) if the boundary layer correction could be applied successfully to  $h_{cc}^*$  to predict the convective heat transfer coefficient  $h_{cp}^*$  corrected for high mass transfer rate effect, the differences  $h_c^* - h_{cp}^*$  ( $\Delta h_1$ ) and  $h_c^* - h_{cc}^*$  ( $\Delta h_2$ ) were computed (n = 22 cases; Table 5.6).



Figure 5.13a The heat transfer coefficient correction factor as a function of the overall incident heat flux from forced convection LR. drying runs ( $\theta_h$  vs.  $q_{is}$ )



Figure 5.13b The mass transfer coefficient correction factor as a function of the overall incident heat flux from forced convection IR. drying runs ( $\theta_{k}$  vs.  $q_{is}^{*}$ )

1.1

#### TABLE 5.6

.

#### TEST ON THE PREDICTION OF THE HEAT TRANSFER COEFFICIENT WITH THE BOUNDARY

|                                       | _            |     | AYER .           | <u>THEOR</u> | Y_FRO            | <u>A THE</u> |                | <u>BINED (</u>      | <u>CONVEC</u>   | <u>TIVE AN</u>  | <u>D_I.R. D</u> | RYING           | RUNS            |                 |
|---------------------------------------|--------------|-----|------------------|--------------|------------------|--------------|----------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Sa. No.                               | Run          | Nb. | T*               | v <u></u> ,* | ₽ <sub>∞</sub> * | Td           | T <sub>s</sub> | q <sub>is</sub>     | ∆h <sub>1</sub> | ∆h <sub>2</sub> | Δh <sub>1</sub> | ∆h <sub>2</sub> | Δh <sub>1</sub> | Δh <sub>2</sub> |
| b (mm)                                | No.          | El. | (° C)            | (m/s)        | (kPa)            | (° C)        | (° C)          | (W/m <sup>2</sup> ) | 2 and 8         | 2 and 8         | 2               | 2               | 8               | 8               |
| 1                                     | ir17         | 2   | 79.2             | 2.0          | 100.10           | 8.3          | 56.0           | 6810                | 2               | -2              | 2               | -2              |                 | 1               |
| ĸ                                     | ir18         | 8   | 86.1             | 2.0          | 99.98            | 12.2         | 76.0           | 20340               | 12              | 2               |                 |                 | 12              | 2               |
| 5.5                                   | i85h         | 8   | 145.0            | 3.5          | 101.98           | -4.0         | 82.8           | 20740               | -13             | -23             |                 |                 | -13             | -23             |
|                                       | i83h         | 8   | 141.7            | 5.2          | 101.19           | -10.6        | 82.7           | 20770               | -11             | -22             |                 |                 | -11             | -22             |
|                                       | ir1          | 2   | 80.0             | 2.1          | 98.97            | 3.9          | 60.3           | 6930                | 1               | -2              | 1               | -2              | [               |                 |
|                                       | ir5          | 2   | 79. <del>9</del> | 2.1          | 99.51            | 12.3         | 64.2           | 6890                | 15              | 12              | 15              | 12              |                 |                 |
|                                       | ir7          | 2   | 79.8             | 3.2          | 99.93            | 6.7          | 62.7           | 6860                | 6               | 3               | 6               | 3               |                 | 1               |
|                                       | ir9          | 2   | 79.8             | 4.5          | 99.86            | 7.8          | 60.7           | 6840                | -2              | -5              | -2              | -5              |                 |                 |
| X                                     | ir11         | 2   | 180.0            | 2.6          | 100.81           | 2.9          | 73.3           | 7660                | 8               | 4               | 8               | 4               |                 |                 |
| 10.3                                  | ir13         | 2   | 180.0            | 4.3          | 100.79           | 2.5          | 72.4           | 7710                | 8               | 3               | 8               | 3               |                 |                 |
|                                       | ir15         | 2   | 179.8            | 6.1          | 100.79           | 4.1          | 71.8           | 7660                | 1               | -4              | 1               | -4              |                 |                 |
|                                       | ir12         | 8   | 183.3            | 2.6          | 100.79           | 5.1          | 85.2           | 21370               | 4               | -6<br>10        |                 |                 | 4               | -6              |
|                                       | 1114<br>1116 | 8   | 181.1            | 4.3          | 100.81           | 1.9<br>E 9   | 84.4           | 21370               | -0              | -10             |                 |                 | -0              | -10             |
| · · · · · · · · · · · · · · · · · · · | 1110         |     | 100.1            | 0.1          | 100.79           | 5.0          | 04.4           | 21300               | -5              | -20             |                 |                 |                 | -20             |
|                                       | 138N         | 2   | 180.3            | 2.6          | 99.99            | 11.8         | 101.2          | 7920                | 5<br>1          |                 | 5               | -4              |                 |                 |
|                                       | 1430<br>1405 | 2   | 180.2            | 0.2<br>6.2   | 99.71            | 14.7         | 100.5          | 7000<br>7870        | ۱<br>-4         | _0              | .4              | -4<br>.9        |                 |                 |
| х                                     | i50h         | 2   | 180.2            | 62           | 99.50            | 12.0         | 100.4          | 7880                | 1               | -4              | 1               | -4              |                 |                 |
| 10.0                                  | 176h         |     | 170.0            | 2.6          | 100.63           | 87           | 101.1          | 22020               | 12              | 1               |                 |                 | 12              | 1               |
| 13.5                                  | i77h         | 8   | 179.9            | 2.6          | 100.61           | 9.7          | 101.1          | 22110               | 9               | -3              |                 |                 | 9               | -3              |
|                                       | i52h         | 8   | 180.3            | 6.2          | 99.51            | 6.6          | 100.9          | 21830               | 0               | -11             | 1               |                 | 0               | -11             |
|                                       | i78h         | 8   | 179.7            | 6.1          | 100.31           | 12.1         | 101.5          | 21770               | 4               | -8              |                 |                 | 4               | -8              |
|                                       |              |     |                  | <u></u>      | <u></u> _        |              |                | ∆h <sub>mi</sub>    | 2.5             | -4.8            | 3.7             | -0.6            | 1.0             | -9.9            |
|                                       |              |     |                  |              |                  |              |                | Stdev.              | 7.3             | 8.6             | 5.2             | 5.5             | 9.4             | 9.1             |

• •

 $\Delta h_1$  mean value ( $\Delta h_{m1}$ ) was 2.5 (standard deviation  $\sigma_1 = 7.3$ ) and  $\Delta h_2$  mean value ( $\Delta h_{m2}$ ) was -4.8 (standard deviation  $\sigma_2 = 8.6$ ). Assuming a normal distribution (Bragg, 1974) for  $\Delta h_1$  and  $\Delta h_2$ , a student's *t* test (Audet et al., 1986) was carried out to check if these mean values were significantly different from 0. The formula for *t* is given by (Audet et al., 1986):

$$t = \frac{\Delta h_{mi} - 0}{\sigma_i / \sqrt{n}}$$
(5.18)

where  $\Delta h_{mi}$  is the mean to be tested ( $\Delta h_{m1}$  or  $\Delta h_{m2}$ ), 0 is the assumed average of the whole population,  $\sigma_i$  the standard deviation computed from the evaluation of  $\Delta h_1$  or  $\Delta h_2$  and (n-1) is the test number of degrees of freedom for the test. With 21 as the degree of freedom, a "student's *t*" value of 1.72 for a probability P = 0.05 is found (Audet et al., 1986). The "*t*" values from equation 5.18 were 1.6 for  $\Delta h_1$  and -2.6 for  $\Delta h_2$ . Then, it can be concluded that within a 95 % confidence limit interval,  $\Delta h_{m1}$  does not differ significantly from 0 whereas  $\Delta h_{m2}$ differs significantly from 0.

In Table 5.6 are also provided the  $\Delta h_{m1}$  and  $\Delta h_{m2}$  values for low (6.8-7.9 kW/m<sup>2</sup>; 2 heating elements) and high (20.3-22.1 kW/m<sup>2</sup>; 8 heating elements) heat flux data. The student's *t* test was applied to each of these categories.

For the low heat flux data, the degrees of freedom is 11 and a "student's *t*" value of 1.80 for a probability P = 0.05 is found (Audet et al., 1986). The "*t*" values from equation 5.18 were 2.5 for  $\Delta h_1$  and -0.4 for  $\Delta h_2$ . Then, it can be concluded that within a 95 % confidence limit interval,  $\Delta h_{m2}$  does not differ significantly from 0 whereas  $\Delta h_{m1}$  differs significantly from 0.

For the high heat flux data, the degrees of freedom is 9 and a "student's *t* " value of 1.83 for a probability P = 0.05 is found (Audet et al., 1986). The "*t* " values from equation 5.18 were 0.3 for  $\Delta h_1$  and -3.2 for  $\Delta h_2$ . Then, it can be concluded that within a 95 % confidence limit interval,  $\Delta h_{m1}$  does not differ significantly from 0 whereas  $\Delta h_{m2}$  differs significantly from 0 when 8 elements are used.

ĩ

Since the correction procedures were developed under the assumption that vapor diffusion occurs at the interface it is interesting to verify if, when  $T_s^*$  is equal to the boiling point temperature and  $T_s^* < T_{\infty}^*$ , their predictions are still valid. A test can be carried with the values obtained for b = 19.9 mm and  $T_{\infty}^* \sim 180$  °C.

When  $T_s$  is equal to the boiling point temperature (b = 19.9 mm and  $T_{\infty}$  ~ 180 °C; Table 5.4b), with 7 degrees of freedom a "student's *t*" value of 2.00 for a probability P = 0.05 is found (Audet et al., 1986). The "*t*" values from equation 5.18 were 1.7 for  $\Delta h_1$  and -2.9 for  $\Delta h_2$ . Then, it can be concluded that within a 95 % confidence limit interval,  $\Delta h_{m1}$  does not differ significantly from 0 whereas  $\Delta h_{m2}$  differs significantly from 0 when  $T_s$  is equal to the boiling point temperature and  $T_s$  <  $T_{\infty}$ . The boundary layer theory can be applied to predict the convective heat transfer coefficient when the surface temperature reaches the boiling temperature and  $T_s$  <  $T_{\infty}$ . Yagi et al (1957) have presented results for a colloidal medium (porcelain clay, d < 43  $\mu$ m, b = b = 28-31 mm,  $T_{\infty}$  = 8 °C,  $v_{\infty}$  = 1.3 m/s,  $q_{is}$  = 9260 W/m<sup>2</sup>) for which  $T_s$  reach the boiling point temperature and  $N_v$  is half its value obtained for non-hygroscopic porous media under similar conditions. This might be a consequence of a low  $E_s$  and/or an increase of  $h_c$  as observed in the present study.

At low  $q_{is}^{*}$  scatter in the results does not allow us to make a definitive test about the appropriateness of the boundary layer theory to account for the effect of high mass transfer rate on the heat transfer coefficient. In such cases, the magnitude of the expected correction being low (between 5 % and 21 %) relatively small differences between  $h_c^{*}$ ,  $h_{cp}^{*}$  and  $h_{cc}^{*}$  are apparent in Table 5.4. When the corrections for high mass transfer rate effect (highest  $N_v^{*}$ ) on the heat transfer coefficient are the highest (between 21 % and 52 %), the boundary layer theory appears to be well suited to account for these effects. Hence, it is possible to infer that the magnitude of the high mass transfer rate effect appearing in combined convection-I.R. drying ( $T_s^{*} < T_{\infty}^{*}$ ) on the heat transfer coefficient is quantitatively well predicted by the laminar boundary layer theory (Bird et al, 1960). A test on the film as well as penetration theories to predict  $h_c^{*}$  did show that they were also acceptable.

# 5.5 TEST OF THE ANALOGY BETWEEN THE HEAT AND MASS TRANSFER IN COMBINED CONVECTION-I.R. DRYING

The mass transfer coefficients  $K_0^*$  and  $K_v^*$  were computed with equation 4.8 and 4.9 as well as corrected with equations 4.14, 4.15 and 4.19 to give (KpBL)varp and (KyBL<sup>\*</sup>)varp. Ky<sup>\*</sup> could not be computed when Ts<sup>\*</sup> is near the boiling point temperature because yvs is close to unity thus BK (section 4.3) increases to very large values (positive or negative) where the various correction procedures become meaningless. In terms of the physical phenomena, this is usually associated with a boundary layers separation at the surface (Greiner and Winter, 1978). The experimentally determined hc can be corrected (equation 4.20) for high mass transfer rate effect and  $h_{cBL}$  was obtained. Here  $\theta_h$  was obtained with equation 4.21 (for B<sub>b</sub>) and the correlation 4.16 from the boundary layer theory results. Then all the transfer coefficient ratios described in section 4.3 (4.10, 4.11, 4.22, 4.23) are computed for the 5.5 mm and 10.3 mm samples. The missing  $h_{cBL}^{*}$  (to compute ratios 4.22 and 4.23) values (due to too small ( $T_{\infty}^{*}T_{s}^{*}$ ); section 5.4.3) were replaced by h<sub>cc</sub>\* (6 cases) since it has been demonstrated in the previous section that the experimental convective correlation (Appendix7) and the boundary layer theory could be used to predict the heat transfer coefficient corrected for high mass transfer rate effect. The ratios 4.10 and 4.11 were evaluated with  $h_c^*$  or  $h_{cp}^*$  (6 cases) respectively.

In Table 5.7, the sample number, b, the run identification name, the number of activated elements,  $T_{\infty}$ ,  $v_{\infty}$ ,  $P_{\infty}$ ,  $T_d$ ,  $T_s$ ,  $q_{is}$ ,  $h_{cBL}$  or  $h_{cc}$ ,  $K_p$ ,  $(K_{pBL})_{varp}$ , 4.22,  $K_y$ ,  $(K_{yBL})_{varp}$ , 4.23,  $\theta_K$  and  $H_c$  are given. This Table is given as a reference for comparison with Table 5.8, were the same variables are presented when  $T_s$  is corrected. Indeed, an important observation concerns the fact that  $T_s$  values reported in Table 5.4b (also in Table 5.2 for b = 19.9 mm) are greater than 100 °C, the boiling point temperature at atmospheric pressure. Furthermore, the level reached by  $T_s$  is a function of the number of activated heating elements (2 elements average  $T_s$ : 100.7 °C, 8 elements average  $T_s$ : 101.5 °C;  $T_s$  standard deviation: 0.3 °C). Since the thermocouples used for  $T_s$  measurements have been calibrated to 0.5 °C, it is possible to ascribe the I.R. heat flux penetration below the surface as being responsible for the observed systematically too high  $T_s$  values. It can be assumed that the same phenomena do occur for the case of

¥

the 5.5 and 10.3 mm sample since the making of all samples was the same. Then,  $T_s$  can be decreased (0.7 °C 2 elements, 1.0 °C 4 elements, 1.3 °C 6 elements, 1.5 °C 8 elements) and all variables in Table 5.7 can be computed again (Table 5.8).

When  $\bar{r}_s < 100 \,^{\circ}\text{C}$ ,  $\theta_K$  (Table 5.8) is in the range 0.52 to 0.89.  $\theta_K$  appears to be a decreasing function of  $q_{is}$  (Figure 5.13b).  $\theta_K$  is decreased when  $T_{\infty}$  is increased (up to 0.15 at low  $q_{is}$  and 0.05 at high  $q_{is}$ ). The effects of  $v_{\infty}$  on  $\theta_K$  are low (usually < 0.03). The range for  $\theta_K$  predicted by the boundary layer theory implies a significant decrease (11 % to 48 %) of the mass transfer coefficient for the case of combined convective and I.R. drying over the operating range investigated.

 $H_c$  (Table 5.8) ranges from 1.03 to 1.12. It seems to increase with  $q_{is}$  (Figure 5.14a).  $H_c$  is slightly increased when  $T_{\infty}$  is increased (by about 0.03 at low  $q_{is}$  and almost invariant at high  $q_{is}$ ). The effects of  $v_{\infty}$  on  $\theta_K$  are low (usually < 0.02). The range for  $H_c$  implies an increase between 3 % to 12 % of the mass transfer coefficient in case of combined convective and 1.R. drying over the operating range investigated.

The transfer coefficient ratios mean (20 cases) of 4.22 and 4.23 computed from all experimental results reported in Table 5.8 are 0.97 and 1.46 while their standard deviation are 0.42 and 0.44 respectively. The increase of the scatter in the transfer coefficient ratios (as compared to the one found for the convective results) is mainly due to the additional uncertainty brought into equation 5.12 by the experimental determination of the radiative heat transfer characteristics:  $E_s^*$  and  $q_{is}^*$ . Only 2 ( $T_{\infty}^* \sim 80$  °C,  $v_{\infty}^* \sim 2.1$  m/s,  $q_{is}^* \sim 6.9$  or 20.5 kW/m<sup>2</sup>) of the 20 cases were carried under similar conditions and their transfer coefficient ratio do show a similar scatter as the whole of the data. The mean of 4.22 and 4.23 (Table 5.7) were 1.00 and 1.56 while their standard deviation is slightly increased (0.45 and 0.46 respectively) before the  $T_s^*$  correction was made, so it is possible to say that the transfer coefficient ratios are quite sensitive to small  $T_s^*$  variations (0.7 °C to 1.5 °C).

I

#### TABLE 5.7

## THE TRANSFER COEFFICIENT RATIOS FROM THE COMBINED

#### CONVECTIVE AND I.R. DRYING RUNS (RAW DATA)

| Sa.<br>No.  | Run<br>No.   | Nb<br>El. | T <sub>∞</sub> •  | v <sub>∞</sub> • | P*     | т <sub>d</sub> * | T <sub>s</sub> * | q <sub>is</sub> | h <sub>cBL</sub><br>(h <sub>cc</sub> ) | К <sub>р</sub> •      | $\left(K^{*}_{PBL}\right)_{varp}$ | $\left(\frac{Nu_{BL}}{Sb},\frac{Sc}{Br}\right)$ | Кy     | $\left(K^{\bullet}_{yBL}\right)_{varp}$ | $\left(\frac{Nu_{BL}}{Sb}, \frac{Sc}{Br}\right)$ | θ <sub>K</sub> | H <sub>c</sub>  |
|-------------|--------------|-----------|-------------------|------------------|--------|------------------|------------------|-----------------|----------------------------------------|-----------------------|-----------------------------------|-------------------------------------------------|--------|-----------------------------------------|--------------------------------------------------|----------------|-----------------|
| b           | (.)          | (.)       | (° C)             | (m               | (kPa)  | (° C)            | (° C)            | (W/             | (W/                                    | (m/s)                 | (m/s)                             | (4.22)                                          | (mole/ | (mole/                                  | (311 <sub>yBL</sub> F1)<br>(4.23)                | (.)            | $\overline{()}$ |
| <u>(mm)</u> |              |           |                   | <i>i</i> s)      |        |                  |                  | m²)             | m <sup>2</sup> K)                      |                       |                                   |                                                 | m²s)   | m²s)                                    |                                                  |                |                 |
|             | ir17         | 2         | 79.2              | 2.0              | 100.10 | 8.3              | 56.0             | 6810            | 25                                     | 2.20e-02              | 2.57e-02                          | 0.92                                            | 0.68   | 0.79                                    | 1.06                                             | 0.88           | 1.03            |
| K           | ir18         | 8         | 86.1              | 2.0              | 99.98  | 12.2             | 76.0             | 20340           | 36                                     | 2.75e-02              | 4.41e-02                          | 0.79                                            | 0.57   | 0.91                                    | 1.30                                             | 0.68           | 1.08            |
| 5.5         | i85h         | 8         | 145.0             | 3.5              | 101.98 | -4.0             | 82.8             | 20740           | 15                                     | 2.13e-02              | 4.25e-02                          | 0.36                                            | 0.35   | 0.70                                    | 0.69                                             | 0.56           | 1.11            |
|             | i83h         | 8         | 141.7             | 5.2              | 101.19 | -10.6            | 82.7             | 20770           | 25                                     | 2.21e-02              | 4.43e-02                          | 0.58                                            | 0.36   | 0.72                                    | 1.12                                             | 0.55           | 1.11            |
|             | ir2          | 4         | 81.1              | 2.1              | 98.78  | 5.2              | 73.3             | 12110           | (25)                                   | 1.77 <del>0</del> -02 | 2.68e-02                          | 0.90                                            | 0.39   | 0.59                                    | 1.40                                             | 0.71           | 1.07            |
|             | ir3          | 6         | 83.1              | 2.1              | 98.73  | 6.4              | 78.2             | 16980           | (25)                                   | 1.94e-02              | 3.35e-02                          | 0.73                                            | 0.36   | 0.63                                    | 1.31                                             | 0.63           | 1.09            |
|             | īrt          | 2         | 80.0              | 2.1              | 98.97  | 3.9              | 60.3             | 6930            | 25                                     | 1.78e-02              | 2.18e-02                          | 1.11                                            | 0.51   | 0.62                                    | 1.35                                             | 0.85           | 1.04            |
|             | ir5          | 2         | 7 <del>9</del> .9 | 2.1              | 99.51  | 12.3             | 64.2             | 6890            | 39                                     | 1.57e-02              | 2.00e-02                          | 1.89                                            | 0.42   | 0.54                                    | 2.43                                             | 0.82           | 1.05            |
|             | ir7          | 2         | 79.8              | 3.2              | 99.93  | 6.7              | 62.7             | 6860            | 38                                     | 1.64e-02              | 2.05e-02                          | 1.77                                            | 0.45   | 0.57                                    | 2.22                                             | 0.83           | 1.04            |
|             | ir9          | 2         | 79.8              | 4.5              | 99.86  | 7.8              | 60.7             | 6840            | 37                                     | i.80e-02              | 2.21e-02                          | 1.59                                            | 0.52   | 0.63                                    | 1.94                                             | 0.85           | 1.04            |
| X           | , <b>ir4</b> | 8         | 86.7              | 2.1              | 98.74  | 4.4              | 85.3             | 20520           | (25)                                   | 1.77e-02              | 4.12e-02                          | 0.61                                            | 0.24   | 0.56                                    | 1.48                                             | 0.49           | 1.13            |
| 10.3        | ir6          | 8         | 85.6              | 2.1              | 99.50  | 13.9             | 80.8             | 20510           | (25)                                   | 2.03e-02              | 3.87e-02                          | 0.63                                            | 0.36   | 0.67                                    | 1.24                                             | 0.59           | 1.10            |
|             | ir8          | 8         | 83.0              | 3.3              | 100.06 | 7.1              | 83.1             | 20490           | (34)                                   | 1.928-02              | 3.946-02                          | 0.83                                            | 0.30   | 0.62                                    | 1.79                                             | 0.54           | 1.12            |
|             | iriu         | 8         | 83.7              | 4.5              | 99.87  | 9.2              | 82.3             | 20510           | (41)                                   | 1.888-02              | 3.738-02                          | 1.07                                            | 0.31   | 0.0                                     | 2.21                                             | 0.56           | 1.11            |
|             | <b>ir11</b>  | 2         | 180.0             | 2.6              | 100.81 | 2.9              | 73.3             | 7660            | 29                                     | 1.510-02              | 2.278-02                          | 1.37                                            | 0.34   | 0.51                                    | 1.83                                             | 0.72           | 1.07            |
|             | ir13<br>Jack | 2         | 180.0             | 4.3              | 100.79 | 2.5              | /2.4             | 7/10            | 36                                     | 1.728-02              | 2.548-02                          | 1.52                                            | 0.40   | 0.59                                    | 1.99                                             | 0.73           | 1.07            |
|             | 1115         | 2         | 1/9.8             | 6.1              | 100.79 | 4.1              | 71.8             | 7660            | 30                                     | 1.768-02              | 2.568-02                          | 1.52                                            | 0.41   | 0.00                                    | 1.96                                             | 0.74           | 1.07            |
|             | ir12         | 8         | 183.3             | 2.6              | 100.79 | 5.1              | 85.2             | 21370           | 25                                     | 2.086-02              | 4.698-02                          | 0.58                                            | 0.30   | 0.57                                    | 1.20                                             | 0.50           | 1.13            |
|             | 1174<br>1-16 | 8         | 181.1             | 4.3              | 100.81 | 1.9<br>5.9       | 04.4<br>94.4     | 21370           | 29                                     | 2.108-02              | 4.728-02                          | 0.67                                            | 0.33   | 6.70                                    | 1.34                                             | 0.52           | 1.12            |
| <u>_</u>    | 1110         | 0         | 100.1             | 0.1              | 100.79 | 5.0              | 04.4             | 21300           | <u></u>                                | 2.176-02              | 4.000-02                          | 1.00                                            | 0.02   |                                         | 1.20                                             | 9.52           |                 |
|             |              |           |                   |                  |        |                  |                  |                 |                                        |                       | Average                           | 1.00                                            |        |                                         | 1.35                                             |                | 12:             |
|             |              |           |                   |                  |        |                  |                  |                 |                                        |                       | Staev.                            | 0.45                                            |        | 1                                       | U.46                                             | i i            | 8               |

Nb. El.: number of heating elements activated

#### TABLE 5.8

•

-----

## THE TRANSFER COEFFICIENT RATIOS FROM THE COMBINED

### CONVECTIVE AND I.R. DRYING RUNS (T. CORRECTED)

|            |               |            |                  |                  |        |               |                   |                         | haine and the second |                       |                                   |                                                      |                             |                                                  | بمستعدية مستعدي                                      |                  |                |
|------------|---------------|------------|------------------|------------------|--------|---------------|-------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|------------------------------------------------------|-----------------------------|--------------------------------------------------|------------------------------------------------------|------------------|----------------|
| Sa.<br>No. | Run<br>No.    | Nb.<br>El. | T <sub>∞</sub> * | v <sub>∞</sub> • | ₽_∞*   | Td            | T <sub>s</sub> *  | q <sub>is</sub>         | h <sub>cBL</sub><br>(h <sub>cc</sub> )                                                                          | К <sub>р</sub> *      | $\left(K^{*}_{PBL}\right)_{varp}$ | $\left(\frac{Nu_{BL}}{Sh_{pBL}}\frac{Sc}{Pr}\right)$ | Кy                          | (K <sup>•</sup> <sub>yBL</sub> ) <sub>varp</sub> | $\left(\frac{Nu_{BL}}{Sh_{yBL}}\frac{Sc}{Pr}\right)$ | θĸ               | H <sub>c</sub> |
| b<br>(mm)  | (.)           | (.)        | (° C)            | (m<br>/s)        | (kPa)  | (° C)         | (° C)             | (W/<br>m <sup>2</sup> ) | (W/<br>m <sup>2</sup> K)                                                                                        | (m/s)                 | (m/s)                             | (4.22)                                               | (mole/<br>m <sup>2</sup> s) | (mole/<br>m <sup>2</sup> s)                      | (4.23)                                               | (.)              | (.)            |
|            | ir17          | 2          | 79.2             | 20               | 100.10 | 83            | 55.3              | 6810                    | 24                                                                                                              | 2 28e-02              | 2 64e-02                          | 0.87                                                 | 0.70                        | 0.82                                             | 1 00                                                 | 0.89             | 1.03           |
| ~          | irt0          | -          | 96.1             | 2.0              | 00.09  | 12.2          | 74.5              | 20240                   | 24                                                                                                              | 2.020.02              | 4.500.02                          | 0.70                                                 | 0.00                        | 0.02                                             | 1.00                                                 | 0.00             | 1.00           |
|            | 1055          |            | 00.1             | 2.0              | 33.30  | 12.2          | 74.5              | 20340                   | 34                                                                                                              | 2.920-02              | 4.008-02                          | 0.72                                                 | 0.03                        | 0.97                                             | 0.05                                                 | 0.70             | 1.00           |
| 5.5        | 18211<br>1836 | 8          | 145.0            | 3.5              | 101.98 | -4.0<br>-10 6 | 81.3              | 20740                   | 15                                                                                                              | 2.258-02<br>2.33e-02  | 4.240-02<br>4 410-02              | 0.36                                                 | 0.40                        | 0.75                                             | 0.65                                                 | 0.59             | 1.31           |
|            | 10011         |            | 04.4             | 0.2              | 00.70  | 10.0          | 70.0              | 20110                   |                                                                                                                 | 4.04- 00              | 9.70-00                           | 0.50                                                 | 0.41                        | 0.11                                             | 1.00                                                 | 0.00             | 1.07           |
|            | 112           | 4          | 81.1             | 2.1              | 98.78  | 5.2           | 72.3              | 12110                   | (25)                                                                                                            | 1.846-02              | 2.738-02                          | 0.88                                                 | 0.41                        | 0.61                                             | 1.33                                                 | 0.72             | 1.07           |
|            | ir3           | 6          | 83.1             | 2.1              | 98.73  | 6.4           | 76.9              | 16980                   | (25)                                                                                                            | 2.04e-02              | 3.39e-02                          | 0.72                                                 | 0.40                        | 0.66                                             | 1.24                                                 | 0.65             | 1.09           |
|            | irt           | 2          | 80.0             | 2.1              | 98.97  | 3.9           | 59.6              | 6930                    | 24                                                                                                              | 1.84e-02              | 2.23e-02                          | 1.05                                                 | 0.53                        | 0.64                                             | 1.26                                                 | 0.86             | 1.04           |
|            | ir5           | 2          | 79.9             | 2.1              | 99.51  | 12.3          | 63.5              | 6890                    | 37                                                                                                              | 1.62e-02              | 2.04e-02                          | 1.77                                                 | 0.44                        | 0.56                                             | 2.25                                                 | 0.83             | 1.04           |
|            | ir7           | 2          | 79.8             | 3.2              | 99.93  | 6.7           | 62.0              | 6860                    | 36                                                                                                              | 1.69e-02              | 2.10e-02                          | 1.66                                                 | 0.47                        | 0.59                                             | 2.07                                                 | 0.84             | 1.04           |
|            | ir9           | 2          | 79.8             | 4.5              | 99.86  | 7.8           | 60.0              | 6840                    | 35                                                                                                              | 1.86 <del>e</del> -02 | 2.26e-02                          | 1.50                                                 | 0.54                        | 0.65                                             | 1.82                                                 | 0.86             | 1.04           |
| X          | ir4           | 8          | 86.7             | 2.1              | 98.74  | 4.4           | 83.8              | 20520                   | (25)                                                                                                            | 1.87e-02              | 4.03e-02                          | 0.62                                                 | 0.27                        | 0.59                                             | 1.39                                                 | 0.52             | 1.12           |
| 19.3       | ir6           | 8          | 85.6             | 2.1              | 99.50  | 13.9          | 7 <del>9</del> .3 | 20510                   | (25)                                                                                                            | 2.20e-02              | 3.89e-02                          | 0.63                                                 | 0.40                        | 0.71                                             | 1.16                                                 | 0.62             | 1.10           |
|            | ir8           | 8          | 83.0             | 3.3              | 100.06 | 7.1           | 81.6              | 20490                   | (34)                                                                                                            | 2.03e-02              | 3.92e-02                          | 0.83                                                 | 0.34                        | 0.66                                             | 1.68                                                 | 0.57             | 1.11           |
|            | ir10          | 8          | 83.7             | 4.5              | 99.87  | 9.2           | 80.8              | 20510                   | (41)                                                                                                            | 1.99e-02              | 3.72e-02                          | 1.06                                                 | 0.35                        | 0.65                                             | 2.07                                                 | 0.5 <del>9</del> | 1.10           |
|            | ir11          | 2          | 180.0            | 2.6              | 100.81 | 2.9           | 72.6              | 7660                    | 28                                                                                                              | 1.56e-02              | 2.30e-02                          | 1.34                                                 | 0.36                        | 0.53                                             | 1.77                                                 | 0.72             | 1.07           |
|            | ir13          | 2          | 180.0            | 4.3              | 100.79 | 2.5           | 71.7              | 7710                    | 35                                                                                                              | 1.77e-02              | 2.57e-02                          | 1.49                                                 | 0.42                        | 0.61                                             | 1.92                                                 | 0.74             | 1.07           |
|            | ir15          | 2          | 179.8            | 6.1              | 100.79 | 4.1           | 7 <u>1.1</u>      | 7660                    | 36                                                                                                              | 1.81e-02              | 2.60e-02                          | 1.49                                                 | 0.43                        | 0.62                                             | 1.89                                                 | 0.74             | 1.07           |
|            | ir12          | 8          | 183.3            | 2.6              | 100.79 | 5.1           | 83.7              | 21370                   | 25                                                                                                              | 2.20e-02              | 4.60e-02                          | 0.59                                                 | 0.34                        | 0.71                                             | 1.13                                                 | 0.53             | 1.12           |
|            | irt4          | 8          | 181.1            | 4.3              | 100.81 | 1.9           | 82.9              | 21370                   | 29                                                                                                              | 2.30e-02              | 4.66e-02                          | 0.68                                                 | 0.37                        | 0.75                                             | 1.26                                                 | 0.55             | 1.11           |
|            | ir16          | 8          | 180.1            | 6.1              | 100.79 | 5.8           | 82.9              | 21380                   | 26                                                                                                              | 2.29e-02              | 4.63e-02                          | 0.62                                                 | 0.37                        | 0.75                                             | 1.15                                                 | 0.55             | 1.11           |
|            |               |            |                  |                  |        |               |                   |                         |                                                                                                                 |                       | Average                           | 0.97                                                 |                             |                                                  | 1.46                                                 |                  | 129            |
|            |               |            |                  |                  |        |               |                   |                         |                                                                                                                 |                       | Stdev.                            | 0.42                                                 |                             | [                                                | 0.44                                                 |                  | 0              |







Figure 5.14b The ratio of experimental mass transfer coefficients from IR.drying to unaffected mass transfer coefficient from convective drying as a function of the predicted mass transfer coefficient ratio ( $\theta_{Ke}$  vs.  $\theta_{Kp}$ )

Ĩ

It is interesting to note that the transfer coefficient ratio 4.22 is about three times less sensitive to  $T_s^*$  variations than is the transfer coefficient ratio 4.23.

• 7

ማ - የ The intensity of the correction procedures (in Table 5.8) on the transfer coefficient ratios (4.10 and 4.11) can be visualized through use of frequency graphs. 0.2 width intervals are defined and all transfer coefficient ratios falling within that interval are given the same average values (x value) while the total number of case that have the same x value are recorded (y value). For example, all values (y value) within the interval 0.4-0.6 are taken to have the value 0.5 (x value), all values within the interval 0.6-0.8 are taken to have the value 0.7, etc. In Figure 5.15a and b are represented the transfer coefficient ratios 4.10 and 4.22 respectively while in Figure 5.16a and b are represented the transfer coefficient ratios 4.11 and 4.23 respectively. It can be observed that:

- a) The scatter of the data is significantly reduced (0.42 vs.0.52 and 0.44 vs. 0.64) by using the boundary layer theory and density variation procedures to correct the heat and mass transfer coefficients;
- b) The average transfer coefficient ratio is shifted toward lower values (0.97 vs.1.16 and 1.46 vs. 1.77).

A bimodality effect seems to exist according to data in Figure 5.15 and 5.16. From the results in Table 5.8, the mean of 4.23 for 2 and 8 elements can be calculated, we find 1.75 (standard deviation 0.42) and 1.27 (standard deviation 0.38) respectively. Heat losses in percent evaluated for 2 elements in section 5.2.1 are about twice the one found for 4, 6 or 8 elements thus the uncertainty in the determination of  $q_{is}$  is likely to be higher in that case. If for instance  $q_{is}$  is underestimated by only 2 % (real heat losses being higher than estimated as a result of radiative loss from the vessel internal side) for 2 elements than the means of 4.23 for 2 elements and all cases (2 elements and 8 elements) are now 1.54 (standard deviation 0.41) and 1.38 (standard deviation 0.39) respectively (instead of 1.75 (0.42) and 1.46 (0.44)). This could explain partially the discrepancies observed between the results at high and low  $q_{is}$  values.





I

#### TABLE 5.9

# THE TRANSFER COEFFICIENT JATIOS FROM THE COMBINED CONVECTIVE AND I.R. DEVING RUNS AND THE CORRECTION PROCEDURES

| Simulation parameters                                                                                                                                                     | $\left(\frac{Nu}{Sh_p}\frac{Sc}{Pr}\right)_{av}$ | $\left(\frac{Nu_{BL}}{Sh_{pBL}}\frac{Sc}{Pr}\right)_{av}$ | $\left(\frac{Nu}{Sh_y}\frac{Sc}{Pr}\right)_{av}$ | $\left(\frac{Nu_{BL}}{Sh_{yBL}}\frac{Sc}{Pr}\right)_{av}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|
|                                                                                                                                                                           | (4.10)                                           | (4.22)                                                    | (4.11)                                           | (4.23)                                                    |
|                                                                                                                                                                           | Stdev.                                           | Stdev.                                                    | Stdev.                                           | Stdev.                                                    |
| $E_{s}^{*} = 0.80, E_{4} = 0.92, E_{t} = 0.28$<br>$T_{2}^{*} = Average(T_{t1}, T_{t3}, T_{t6})$<br>$T_{3}^{*} = Average(T_{t2}, T_{t4}, T_{t5})$<br>Boundary Layer Theory | 1.16<br>0.52                                     | 0.97<br>0.42                                              | 1.77<br>0.64                                     | 1.46<br>0.44                                              |
| Film Theory                                                                                                                                                               | 1.20<br>0.51                                     | 0.93<br>0.43                                              | 1.84<br>0.68                                     | 1.39<br>0.47                                              |
| Penetration Theory                                                                                                                                                        | 1.19<br>0.51                                     | 0.95<br>0.43                                              | 1.82<br>0.66                                     | 1.43<br>0.46                                              |

ĩ

A quantitative evaluation of both correction procedures (boundary layer theory, density variations) may now be made. The mean of 4.23 (Table 5.8) when the transfer coefficients are uncorrected is 1.77 (standard deviation 0.64). When the boundary layer theory correction is applied a mean value of 4.23 (without density correction) is found to be 1.58 (standard deviation 0.45). This represents an 11 % decrease (1.58 vo. 1.77) while the data standard deviation is decreased by about 35 % (0.48 vs. 0.71). Once Hanna's correction factor is applied the mean 1.58 with standard deviation 0.45 gives 1.46 (the mean presented in Table 5.8) with a standard deviation of 0.44; this represents a decrease of 8 % and 2 % respectively in the result.

Table 5.9 presents a comparison of the mean transfer coefficient ratios obtained from the various correction procedures (boundary layer, film and penetration theories). It appears from these results (especially on 4.23) that the magnitude of the correction provided by the film theory seems to better predict the high mass transfer rate effect in combined convective-I.R. drying. The small differences between the transfer coefficients ratios (4.10, 4.11) computed with uncorrected transfer coefficients result from the use of  $h_{cp}^{-1}$  instead of  $h_c^{-1}$  that could not be evaluated for six runs. For the transfer coefficient ratio 4.22, all correction procedures seem to offer an acceptable correction of the transfer coefficients.

Three additional explanations can be put forward to explain the differences still existing between the mean transfer coefficients ratio 1.46 (equation 4.23; Table 5.8; Table 5.8) and its value in convection drying (0.93; Table 4.2b):

a) The laminar boundary layer theory might not model adequately the high mass transfer rate effect in case of turbulent flow; according to the transfer coefficient ratios computed with the film and penetration theory, it seems that the correction to the transfer coefficients should be lower. Kast (1982) underlined the point that for a turbulent boundary layer no specific correction other than empirical have been developed. The relation between  $\theta_h$  and  $\phi_h$  derived from heat transfer experimental results (transpiration cooling) and presented by Eckert and Drake (1972) as well as Kast (1982) shows that  $\theta_h$  should

A quantitative evaluation of both correction procedures (boundary layer theory, density variations) may now be made. The mean of 4.23 (Table 5.8) when the transfer coefficients are uncorrected is 1.77 (standard deviation 0.64). When the boundary layer theory correction is applied a mean value of 4.23 (without density correction) is found to be 1.58 (standard deviation 0.45). This represents an 11 % decrease (1.58 vs. 1.77) while the data standard deviation is decreased by about 35 % (0.48 vs. 0.71). Once Hanna's correction factor is applied the mean 1.58 with standard deviation 0.45 gives 1.46 (the mean presented in Table 5.8) with a standard deviation of 0.44; this represents a decrease of 8 % and 2 % respectively in the result.

ĺ.

Table 5.9 presents a comparison of the mean transfer coefficient ratios obtained from the various correction procedures (boundary layer, film and penetration theories). It appears from these results (especially on 4.23) that the magnitude of the correction provided by the film theory seems to better predict the high mass transfer rate effect in combined convective-I.R. drying. The small differences between the transfer coefficients ratios (4.10, 4.11) computed with uncorrected transfer coefficients result from the use of  $h_{cp}^{-*}$  instead of  $h_c^{-*}$  that could not be evaluated for six runs. For the transfer coefficient ratio 4.22, all correction procedures seem to offer an acceptable correction of the transfer coefficients.

Three additional explanations can be put forward to explain the differences still existing between the mean transfer coefficients ratio 1.46 (equation 4.23; Table 5.8; Table 5.8) and its value in convection drying (0.93; Table 4.2b):

a) The laminar boundary layer theory might not model adequately the high mass transfer rate effect in case of turbulent flow; according to the transfer coefficient ratios computed with the film and penetration theory, it seems that the correction to the transfer coefficients should be lower. Kast (1982) underlined the point that for a turbulent boundary layer no specific correction other than empirical have been developed. The relation between  $\theta_h$  and  $\phi_h$  derived from heat transfer experimental results (transpiration cooling) and presented by Eckert and Drake (1972) as well as Kast (1982) shows that  $\theta_h$  should

be greater than the one derived from the film theory for the case of turbulent flow;

b) The heat transfer coefficient could not be corrected for the effect of density variation because at the present time such correction has not been found.

In Figure 5.14b is shown the ratio of the experimental  $\theta_{Ke}$  (ratio of  $K_y^*$  (Table 5.8) to  $(K_y^*)_{varp}$  (Table 4.2b; b= 5.5 and 10.3 mm)) to the predicted  $\theta_{Kp}$  (ratio of  $\theta_K$  to  $H_c$ ). The following remarks may be made:

- a) The order of magnitude of the mass transfer coefficient correction is correctly evaluated;
- b) The experimental  $K_y^*$  appears to be lower than could be predicted with  $(K_v^*)_{varo}$ ,  $\theta_K$  and  $H_c$ ;
- c) As  $q_{is}^{*}$  increases the agreement between the theoretical prediction and the experimental observations is better whatever  $T_{\infty}^{*}$ ;
- d) For the 5.5 mm sample the agreement is fairly good.

An additional comments can be made on  $T_s^*$  for the 10.3 mm sample:

a) Though  $T_s^*$  of sample no. X seems to be comparable to  $T_s^*$  found in previous studies (Figure 5.5b), the experimental results of Yagi et al. (1957) indicates that the evaporation temperature should be independent of b while it has been found in section 5.4.3 that  $T_s^*$  for b= 5.5 mm is less than  $T_s^*$  for b= 10.3 mm.

These observations suggest that the surface of the 10.3 mm sample was probably contaminated but to a lesser effend than the one of the 19.9 mm sample since the evaporation temperatures are much lower for b= 10.3 mm than for b= 19.9 mm. If one uses  $(K_y^{*})_{varp}$  deduced from the convective runs (Table 4.2 b; b= 5.5 and 10.3 mm) and  $h_{cBL}^{*}$  from the I.R drying runs, the average (14 runs, Table 5.8) transfer coefficient ratio 4.23 gives 1.07 (standard deviation: 0.26); this is close to its value in convection (0.93; standard

deviation: 0.12). This emphasizes the fact that the deviation in I.R. drying of 4.23 from its value in convection drying is probably caused by surface contamination which was shown (Table 5.5), in the case of the 19.9 mm sample, to decrease  $K_v^*$ . Thus it can be concluded that:

i,

3

- a) The heat and mass transfer analogy is not exactly verified if the mass transfer coefficient is reduced as a result of crust formation;
- b) When the mass transfer resistance is mainly determined by the external boundary layer (as is the case for the 5.5 mm cample which was used only 8 times during the experimental phase and submitted to much lower thermal stresses), the heat and mass transfer analogy appears to be verified quite well in the combined convective-I.R. drying process.

Arai et al. (1979 a and b) have experimentally demonstrated in the case of natural convection heat and mass transfer from a horizontal upward facing plane surface heated by radiation  $(q_{is}^* \sim 290 \text{ W/m}^2 \text{ to } 1740 \text{ W/m}^2)$  that the analogy between the transfer of heat and mass is valid at low  $q_{is}^*$  although the heat and mass transfer coefficient were not corrected for the effect of high mass transfer rate. The present results extends such conclusions to the case of forced convection I.R. drying for much higher radiative and convective heat flux levels.

## 5.6 CRITICAL MOISTURE CONTENT IN COMBINED CONVECTIVE AND RADIATIVE DRYING

The critical moisture content  $X_c$ , defined according to the procedure described in section 3.4.4, is presented in Table 5.10 where various average  $X_c$  were computed (equivalent average critical saturation  $S_c$  are also given). The overall average is 0.021 ( $S_c = 0.089$ ; Table 5.10b) and is comparable to the average computed with only samples with same thickness b (0.025, 5.5 mm; 0.019, 10.3 mm; 0.022, 19.9 mm). It can be noted that these averages are all very similar, especially if one accounts for their standard deviation (0.006, overall; 0.004, 5.5 mm; 0.005, 10.3 mm; 0.006, 19.9 mm). It is interesting to observe that even though the surface mass transfer characteristics of sample no. XII were changed

(section 5.4.3) for these experiments (as compared to the case of the convective experiments), its average  $X_c$  and standard deviation remain almost unchanged (this is also true for sample no. X). Averaging for same  $T_{\infty}^{*}$ , gives: 0.021 (80 °C) and 0.021 (180 °C) again the point scatter (0.004, 80 °C; 0.007, 180 °C).are comparable. Averaging for same  $q_{is}^{*}$ , gives: 0.017 (2 elements) and 0.024 (8 elements) with similar standard deviations (0.006, 2 elements; 0.004, 8 elements). The average critical moisture content of the free convection-I.R. drying experiments presented in Table 5.2 is 0.018 with a standard deviation of 0.007; again these results are not significantly different from the one found when convection is present.

A plot of  $X_c$  vs. b,  $T_{\infty}^*$ ,  $v_{\infty}^*$ ,  $T_d^*$ ,  $T_s^*$ ,  $N_v^*$ , and  $q_{is}^*$  did not show any significant relation between  $X_c$  and any of these parameters. The  $(X_c/X_{in})$  vs  $(N_v^*b)$  critical point curve (Keey, 1972) was used to compare the results found in convection drying and in combined convection I.R. drying (Figure 5.17).  $(X_c/X_{in})$  does not appear to be a strong function of  $(N_v^*b)$  although a thirty five-fold increase of  $(N_v^*b)$  occurs in Figure 5.17.

Yagi et al. (1957) have presented a curve of  $S_c$  for river and standard sand as a function of the particle diameter d (Figure 5.18) which clearly shows (b= 20-40 mm,  $T_{\infty}^{*} = 9.34 \,^{\circ}C$ ,  $v_{\infty}^{*} = 1.14-1.34$  m/s and  $q_{is}^{*} = 5110-10450$  W/m<sup>2</sup>), that  $S_c$  (defined from the drying rate curve) is not a function of these parameters. The two curves drawn in Figure 5.18 correspond to  $S_{c1}$  the first and  $S_{c2}$  the second critical point as defined by Keey (1972). Yagi et al. (1957) have found that  $S_{c1}$  and  $S_{c2}$  were the same as long as d is greater than 100  $\mu$ m. It is possible to observe that for d = 100  $\mu$ m, Yagi et al. (1957) report  $S_c$  between 0.20 and 0.35, this is in almost exactly the range that researchers (Morgan and Yerazunis, 1967; Cunningham and Kelly, 1980; Moyne, 1987) in the field of convective drying at low mass flux have reported for same d. Although  $S_c$  (between 0.042 to 0.125) in the present study (Figure 5.18) are in a lower range (the reason is explained in section 4.4), the range for which  $S_c$  can be considered to be independent of b,  $T_{\infty}^{*}$ ,  $v_{\infty}^{*}$  and  $q_{is}^{*}$  has been extended.

#### TABLE 5.10a

#### CRITICAL MOISTURE CONTENT FROM THE COMBINED

CONVECTIVE AND I.R. DRYING RUNS

| Sa.<br>No     | Run  | Nb.<br>Fl | T <sub>∞</sub> • | v <sub>∞</sub> • | P∞     | тď    | T <sub>s</sub> * | q <sub>is</sub>     | Nv       | S         | X <sub>c</sub> | S <sub>c</sub> | X <sub>cav</sub> | S <sub>cav</sub> |
|---------------|------|-----------|------------------|------------------|--------|-------|------------------|---------------------|----------|-----------|----------------|----------------|------------------|------------------|
|               |      |           |                  |                  |        |       |                  |                     |          |           |                |                | <u>Stdev</u>     | Stdev            |
| <u>b (mm)</u> | (.)  | (.)       | (° C)            | (m/s)            | (kPa)  | (° C) | (° C)            | (W/m <sup>2</sup> ) | (kg/m²s) | (.)       | (kg/kg)        | (.)            | (kg/kg)          | (.)              |
|               | ir17 | 2         | 79.2             | 2.0              | 100.10 | 8.3   | 56.0             | 6810                | 2.25e-03 | 0.55-0.29 | 0.020          | 0.086          | 5.5 n            | າເກ              |
| x             | ir18 | 8         | 86.1             | 2.0              | 99.98  | 12.2  | 76.0             | 20340               | 6.63e-03 | 0.54-0.32 | 0.026          | 0.111          |                  |                  |
| 5.5           | i85h | 8         | 145.0            | 3.5              | 101.98 | -4.0  | 82.8             | 20650               | 6.82e-03 | 0.51-0.27 | 0.028          | 0.113          | 0.025            | 0.105            |
|               | i83h | 8         | 141.7            | 5.2              | 101.19 | -10.6 | 82.7             | 20740               | 7.06e-03 | 0.56-0.29 | 0.027          | 0.108          | 0.004            | 0.013            |
|               | ir2  | 4         | 81.1             | 2.1              | 98.78  | 5.2   | 73.3             | 12110               | 3.88e-03 | 0.45-0.24 | 0.022          | 0.093          | 10.3 r           | ກຫ               |
|               | ir3  | 6         | 83.1             | 2.1              | 98.73  | 6.4   | 78.2             | 16980               | 5.14e-03 | 0.46-0.26 | 0.024          | 0.100          | 0.019            | 0.081            |
|               | irt  | 2         | 80.0             | 2.1              | 98.97  | 3.9   | 60.3             | 6930                | 2.25e-03 | 0.43-0.20 | 0.021          | 0.090          | 0.005            | 0.020            |
|               | ir5  | 2         | 79.9             | 2.1              | 99.51  | 12.3  | 64.2             | 6890                | 2.29e-03 | 0.48-0.24 | 0.020          | 0.084          | 80 °             | С                |
| :             | ir7  | 2         | 79.8             | 3.2              | 99.93  | 6.7   | 62.7             | 6860                | 2.28e-03 | 0.51-0.21 | 0.017          | 0.072          | 0.021            | 0.090            |
|               | ir9  | 2         | 79.8             | 4.5              | 99.86  | 7.8   | 60.7             | 6840                | 2.29e-03 | 0.57-0.28 | 0.024          | 0.101          | 0.004            | 0.018            |
| Х             | ir4  | 8         | 86.7             | 2.1              | 98.74  | 4.4   | 85.3             | 20520               | 6.16e-03 | 0.48-0.26 | 0.025          | 0.105          | 180 '            | ,<br>Č           |
| 10.3          | ir6  | 8         | 85.6             | 2.1              | 99.50  | 13.9  | 80.8             | 20510               | 6.01e-03 | 0.53-0.25 | 0.018          | 0.076          | 0.021            | 0.092            |
|               | ir8  | 8         | 83.0             | 3.3              | 100.06 | 7.1   | 83.1             | 20490               | 6.15e-03 | 0.48-0.25 | 0.020          | 0.084          | 0.007            | 0.032            |
|               | ir10 | 8         | 83.7             | 4.5              | 99.87  | 9.2   | 82.3             | 20510               | 5.82e-03 | 0.44-0.23 | 0.025          | 0.105          | 2 Elem           | ents             |
|               | ir11 | 2         | 180.0            | 2.6              | 100.81 | 2.9   | 73.3             | 7630                | 3.34e-03 | 0.47-0.23 | 0.011          | 0.047          | 0.017            | 0.075            |
|               | ir13 | 2         | 180.0            | 4.3              | 100.79 | 2.5   | 72.4             | 7950                | 3.67e-03 | 0.42-0.24 | 0.010          | 0.042          | 0.006            | 0.027            |
|               | ir15 | 2         | 179.8            | 6.1              | 100.79 | 4.1   | 71.8             | 7660                | 3.66e-03 | 0.49-0.25 | 0.011          | 0.047          | 8 Elem           | ents             |
|               | ir12 | 8         | 183.3            | 2.6              | 100.79 | 5.1   | 85.2             | 21370               | 7.24e-03 | 0.58-0.33 | 0.020          | 0.086          |                  |                  |
|               | ir14 | 8         | 181.1            | 4.3              | 100.81 | 1.9   | 84.4             | 21370               | 7.37e-03 | 0.66-0.26 | 0.021          | 0.091          | 0.024            | 0.098            |
|               | ir16 | 8         | 180.1            | 6.1              | 100.79 | 5.8   | 84.4             | 21380               | 7.32e-03 | 0.56-0.30 | 0.019          | 0.080          | 0.004            | 0.017            |

Nb. El.: number of heating elements activated

pin .

#### TABLE 5.10b

# CRITICAL MOISTURE CONTENT FROM THE COMBINED

| -      | I     |     |                   | 1 .         | t i               |                |         |                     |                       |           |                   |       | _                |                  |
|--------|-------|-----|-------------------|-------------|-------------------|----------------|---------|---------------------|-----------------------|-----------|-------------------|-------|------------------|------------------|
| Sa.    | Hun   | ND. | T_                | V           | P                 | T <sub>d</sub> | $ T_s $ | q <sub>is</sub>     | N <sub>v</sub>        | S         | X <sub>c</sub>    | Sc    | X <sub>cav</sub> | S <sub>cav</sub> |
| No.    | NO.   | EI. |                   |             |                   | _              |         |                     |                       |           |                   |       | Stdev            | Stdev            |
| b (mm) | (.)   | (.) | (° C)             | (m/s)       | (kPa)             | (° C)          | (° C)   | (W/m <sup>2</sup> ) | (kg/m <sup>2</sup> s) | (.)       | (kg/kg)           | (.)   | (kg/kg)          | (.)              |
|        | i62h  | 2   | 80.3              | 2.1         | 99.79             | 17.9           | 100.8   | 7260                | 1.75e-03              | 0.33-0.15 | 0.011             | 0.049 | 19.9 г           | nm               |
|        | i63h  | 2   | 81.3              | 2.1         | 99.67             | 17.1           | 100.9   | 7270                | 1.80e-03              | 0.29-0.12 | 0.011             | 0.048 | 0.022            | 0.092            |
|        | i64h  | 2   | 81.2              | 4.5         | 99.57             | 16.9           | 100.6   | 7220                | 1.49e-03              | 0.29-0.14 | 0.015             | 0.065 | 0.006            | 0.026            |
|        | i57h  | 8   | 85.3              | 2.1         | 99.69             | 16.2           | 101.7   | 21130               | 6.60e-03              | 0.41-0.23 | 0.022             | 0.094 | 5.5, 10.3 a      | nd 19.9          |
|        | 158h  | 8   | 84.2              | 2.1         | 99.79             | 16.2           | 101.8   | 21100               | 6.53e-03              | 0.42-0.24 | 0.021             | 0.091 | 0.021            | 0.089            |
|        | i56h  | 8   | 84.2              | 2.6         | 99.71             | 16.5           | 101.7   | 21080               | 6.37e-03              | 0.41-0.24 | 0.022             | 0.095 | 0.006            | 0.024            |
|        | i55h  | 8   | 84.1              | 3.4         | 99.78             | 15.9           | 101.5   | 21010               | 6.26e-03              | 0.41-0.24 | 0.024             | 0.104 |                  |                  |
|        | i68h  | 8   | 82.9              | 4.5         | 99.9 <del>9</del> | 14.1           | 101.6   | 20990               | 6.23e-03              | 0.39-0.21 | 0.026             | 0.111 |                  |                  |
|        | i69h  | 8   | 84.1              | 4.5         | 99.99             | 13.7           | 101.6   | 21000               | 6.24e-03              | 0.42-0.24 | 0.023             | 0.099 |                  |                  |
| XII    | 170'n | 8   | 84.9              | 4.5         | 100.06            | 13.7           | 101.7   | 20990               | 6.34e-03              | 0.41-0.22 | 0.021             | 0.091 | 1                |                  |
| 19.9   | 174h  | 8   | 85.6              | 4.5         | 100.18            | 14.0           | 101.6   | 20980               | 6.33e-03              | 0.42-0.24 | 0.025             | 0.107 |                  |                  |
|        | i38h  | 2   | 180.3             | 2.6         | 99.99             | 11.8           | 101.2   | 7920                | 3.13e-03              | 0.40-0.20 | n.029             | 0.125 |                  |                  |
|        | i45h  | 2   | 180.2             | 6.2         | 99.71             | 14.7           | 100.5   | 7860                | 3.55e-03              | 0.44-0.20 | 0.021             | 0.091 |                  |                  |
|        | i49h  | 2   | 180.2             | 6.2         | 98.90             | 14.0           | 100.4   | 7870                | 3.36e-03              | 0.52-0.19 | 0.020             | 0.085 |                  |                  |
|        | i50h  | 2   | 180.3             | <u> 8.2</u> | 99.11             | 12.0           | 100.5   | 7880                | 3.57e-03              | 0.41-0.24 | 0.018             | 0.078 |                  |                  |
|        | i76h  | 8   | 179.9             | 2.6         | 100.63            | 8.7            | 101.1   | 22020               | 7.79e-03              | 0.49-0.27 | 0.030             | 0.128 |                  |                  |
|        | i77h  | 8   | 179. <del>9</del> | 2.6         | 100.61            | 9.7            | 101.1   | 22110               | 7.70e-03              | 0.49-0.27 | 0.030             | 0.129 |                  |                  |
|        | i52h  | 8   | 180.3             | 6.2         | 99.51             | 6.6            | 100.9   | 21830               | 7.64e-03              | 0.47-0.27 | 0.02 <del>6</del> | 0.111 |                  |                  |
| 1      | i78h  | 8   | 179.7             | 6.1         | 100.31            | 12.1           | 101.5   | 21770               | 7.98e-03              | 0.50-0.29 | 0.033             | 0.142 |                  |                  |

CONVECTIVE AND I.R. DRYING RUNS

Nb. El.: number of heating elements activated

ы **ў** 

.



Figure 5.17 The critical point curve from the convective and combined convective LR. drying runs

.



Figure 5.18 The critical saturation from convective, I.R. and combined convective LR. drying runs from various studies

.\*

Evaluating  $X_c$  on the  $T_s^*$  vs. X curve does not appear to add extra scatter to the determination of  $X_c$  as compared to scatter that is present in the Yagi et al. (1957) results.

In Figure 5.18, it can be observed that the surface critical moisture content  $X_{cs}$  in free convection-I.R. drying (Seki et al., 1977) are only slightly higher than  $X_c$  in the present results. Since the decrease of the drying rate (a surface phenomena) is always linked to a critical value for the surface moisture content which is likely to be mainly a function of d, this equality might result from the fact that in the present study  $X_{cs}$  is more or less equivalent to X. Seki et al. (1977) have shown however that the average  $S_c$  for their thick bed (b = 100 mm) was an increasing function of  $q_{is}^*$  (Figure 5.18). In the present study, the values for  $S_c$  (between 0.042 to 0.125) are in a lower range than theirs because:

- a) In their study, b is much higher which results in highly non uniform moisture distribution within the material (such distributions have been presented by Seki et al.(1977)); comparable non-uniformity have not been observed to occur for b = 20 mm (see Cunningham and Kelly.(1980));
- b) The determination of  $S_c$  is based on the drying rate curves in Seki et al. (1977) results.

Hasatani et al. (1988) studying the case of a silica sand layer at low  $q_{is}$  (d = 320  $\mu$ m, b = 20 mm,  $T_{\infty}$  = 50-72 °C,  $v_{\infty}$  ~ 0.60 m/s and  $q_{is}$  = 660-1080 W/m<sup>2</sup>) have found, S<sub>c</sub> (between 0.12 to 0.21; Figure 5.18) to be linearly correlated with N<sub>v</sub> (between 0.20 10<sup>-3</sup> to 0.46 10<sup>-3</sup> kg/m<sup>2</sup>s). Such behavior is uncommon for low (N<sub>v</sub> \*b) values (0.033 kg/mh) according to a critical point curve (clay brick, b = 10-30 mm, three-fold change in drying rate) presented by Krischer (1963) where it can be observed that for (N<sub>v</sub> \*b) lower than 0.04 kg/mh the critical point is not a function of N<sub>v</sub>.

#### 5.7 CONCLUSIONS

According to the results presented, the following conclusions can be drawn regarding the combined convective and I.R. drying process of a capillary porous body (glass beads, d = 90-105  $\mu$ m). In the parameter range investigated (b = 5.5-19.9 mm, T<sub>∞</sub> ~ 80-180 °C, v<sub>∞</sub> = 2.0-6.2 m/s, T<sub>d</sub> = -10.6-+17.9 °C, q<sub>is</sub> = 6810-22020 W/m<sup>2</sup>):

- (a) It was observed that the evaporation temperature of a 19.9 mm sample can reach the boiling point whatever set of external drying conditions  $(T_{\infty}, v_{\infty}, T_{d}, q_{is})$  are used when an additional surface mass transfer resistance exists due to crust formation.
- (b) A significant increase (up to 100 %) of the convective heat transfer coefficient was observed when  $T_s^*$  reached the boiling point temperature (b = 19.9 mm) and is higher than  $T_{\infty}^*$ . This effect decreases the drying rate and leads to a lower efficiency of the I.R. heating process.
- (c) A decrease in the heat transfer coefficient was observed for the combined convective and I.R. drying process. It was also found that:
  - (i) The necessity to take into account the effect of high mass transfer flux on the heat transfer coefficient (when convection is combined with I.R. heating) has been demonstrated. Using the laminar boundary layer theory, corrected heat transfer coefficients should be 5 % to 52 % lower than heat transfer coefficients applicable when there is no mass flux. However, based on the experimental results obtained, it was not possible to determine the most appropriate correction procedure to account for the effect of the surface diffusion mass flux on the heat and mass transfer coefficients.

(ii) According to the Hanna's correction factor (1962) used to evaluate the effect of density variation between the surface and the flow, unaffected mass transfer coefficients should be 3 % to 13 % lower than the one predicted with the boundary layer theory for experimentally measured surface temperature ranging from 56 °C to 85 °C. From a practical point of view, the magnitude of such correction suggests that this effect is negligible in combined convective-I.R. drying.

4

ł

- (c) From the experimental results obtained, the following observations were found to characterize the analogy between the heat and mass transfer coefficients (expressed in terms of average heat and mass transfer coefficients ratios) when the sample surface is unsaturated  $(0.2 < S_s < 0.5)$ :
  - (i) When the mass transfer resistance is mainly determined by the external boundary layer, the heat and mass transfer analogy appears to be verified quite well. This results is in agreement with applicable theoretical results in case of a laminar boundary layer (Appendix 11).
  - (ii) The heat and mass transfer analogy is not exactly verified if the equivalent mass transfer coefficient is reduced as a result of crust formation.
- (d) It was observed, within experimental uncertainty, that the critical moisture content is independent of the convective drying parameters  $(T_{\infty}, v_{\infty}, T_{d})$ , sample thickness (b = 5.5,10.3 and 19.9 mm), overall incident heat flux ( $q_{is} = 6810-22020 \text{ W/m}^2$ ) and surface contamination.

## CHAPTER VI - COMBINED CONVECTIVE AND INFRARED DRYING MODELLING

#### 6.1 INTRODUCTION

Up to date there have been very few attempts to use and/or build a model for predicting the combined convective-I.R. drying of capillary porous media. Nost of these works have been conducted by researchers working in the range of low to medium heat fluxes ( $q_{is}^* < 8800 \text{ W/m}^2$ ,  $T_{\infty}^* < 80 \text{ °C}$ ). Basically two types of models have been developed to study the free (no forced flow present) and forced convection-I.R. drying:

- a) Complete model (Whitaker, 1977) with the simultaneous solution of the moisture content, temperature and pressure distributions in wet and dried regions separated by a front (Min and Emmons, 1972; Seki et al., 1977);
- b) Reduced model (energy conservation equation) calibrated with experimental drying rate (Hasatani et al., 1983; Hasatani et al., 1988).

Min and Emmons (1972) solved a simplified version of the model originally presented by Philip and De Vries (1957), Krischer (1963) and Luikov (1966) though the gaseous phase continuity equation was included. The assumptions of ihe existence of a front at the surface (at the start) and no liquid moisture movement decreased the amount of necessary experimental internal heat and mass transfer coefficients. The numerical solution of the system of 3 coupled non-linear differential equations (in each zone) was carried through use of an explicit finite difference discretization while the various derivatives at the front were expressed in the manner suggested by Murray and Landis (1959) for a fixed spatial network. A qualitatively good agreement can be observed for the T vs. t, P vs. t as well as pressure and temperature distributions for the free convection-I.R. drying experiments (alumina powder, b= 54 mm,  $T_{\infty}^{*} = 20 \, {}^{\circ}C$ ,  $q_{is}^{*} = 6270 \, W/m^2$ ) though some differences are greater than the uncertainty in

experimental results. The hypothesis limit the model applicability to low moisture content materials or to predict the receding front period.

1

Though Seki et al. (1977) did not consider the gaseous phase conservation equation, they extended the application of the previous model to include the constant drying rate period of free convection-I.R. drying (glass beads, d = 360-970  $\mu$ m, T<sub>w</sub><sup>\*</sup> = 20 °C, q<sub>is</sub><sup>\*</sup> = 750-8800 W/m<sup>2</sup>) of an initially saturated (S<sub>in</sub> = 1) thick bed (b = 0.1 m). Gravity and capillary pressure were used as driving forces for the liquid flux in the wet zone. Energy as well as mass conservation equations at the front link the system of equations in the wet and dry zones. No details were provided with respect to the numerical solution technique used and how the front was followed. The assumption of  $S_s = 0$  when the front start to recede was found to generate smaller values for the average Sc than the one identified from the experimental drying rate curves. Simulations were found to predict more extensive constant drying rate period than observed experimentally while the overall behavior of drying rate curves is very well predicted. Considering the accuracy of the slicing technique to evaluate the moisture distribution, a qualitatively good prediction of the moisture distribution was performed. Only a few drying curves and temperatures distributions were reproduced, probably within experimental uncertainty.

The comparison reported by Min and Emmons (1972) and Seki et al. (1977) underlined the fact that a quantitative prediction of the moisture and pressure distribution with a complete model is impeded by:

- a) The uncertainty associated with the distribution measurement techniques;
- b) The uncertainty on the experimental or theoretical determination of the internal heat and mass transfer coefficients (Bories, 1968).

Hasatani et al. (1983) used a simpler model which include only an energy balance equation to evaluate the temperature distribution during the preheating and constant drying rate period of a wet silica sand, a slurry of activated sludge and a water suspension of graphite particles (d = 5  $\mu$ m, b = 20 mm, T<sub>w</sub><sup>\*</sup> = 30-
80 °C,  $v_{\infty} \sim 1.1$  m/s,  $q_{is} = 290-1400$  W/m<sup>2</sup>). In the first version,  $q_{is}$  was absorbed on the surface (opaque drying model) and in the second  $q_{is}$ absorption was throughout the wetted layer (semitransparent drying model). It was found that the opaque version of the model was adequate in predicting the drying rate and surface temperature rise when the suspension concentration is greater than 2 kg/m<sup>3</sup>. This model was extended (Hasatani et al., 1988) to predict the first falling rate and receding front periods for coal, silica sand and brick (d= 320 µm, b = 20 mm,  $T_{\infty} = 27.72$  °C,  $v_{\infty} \sim 0.5$  m/s,  $q_{is} = 0.1080$  W/m<sup>2</sup>). During the first falling rate period the drying rate had to be computed from the drying rate during the constant drying rate period and an experimentally determined function of X dependent on the specific material dried. The predicted receding front period necessitated the knowledge of the front position which was taken to be a function of X calibrated from each experimental result. Nevertheless, a good prediction of the T vs. t and X vs. t curves was obtained although the question of experimental uncertainty remains opened.

Recently, Dostie (1991) developed a drying front model which can predict the drying rate without using the information from the whole drying rate curve. In comparison, the complete model of Seki et al.(1977) necessitate the knowledge (thus the determination) of the following physical properties of the material:

- a) The gas and liquid relative permeability as a function of S;
- b) The capillary pressure as a function of S;
- c) The diffusion coefficient as a function of S.

Their determination requires difficult and time-consuming experiments and the availability of special equipments. Another drawback of such models is the high computing time needed to perform a run.

The purpose of this chapter is to evaluate the predictive capability of the drying front model (Dostie, 1991) for the case of high temperature convection drying (d = 90-105  $\mu$ m, b = 5-20 mm, T<sub>∞</sub><sup>\*</sup> = 80-180 °C, q<sub>is</sub><sup>\*</sup> ~ 330-1500 W/m<sup>2</sup>) and combined high temperature convection-I.R. drying (d = 90-105  $\mu$ m, b = 5-

20 mm,  $T_{\infty}^{*}$  = 80-180 °C,  $v_{\infty}^{*}$  = 2.0-6.3 m/s,  $q_{is}^{*}$  = 6810-22020 W/m<sup>2</sup>) of a capillary porous media (glass beads).

### 6.2 HYPOTHESES

1

The idea behind the development of this model (Dostie, 1991) was to use a minimum of physical properties to be evaluated. A description of this model is now summarized starting from the following hypotheses regarding the external boundary conditions:

- a) No detailed computation of the external flow is carried out (heat and mass transfer coefficient from correlation or experimental results will be used);
- b) The overall incident radiative heat flux q<sub>is</sub> is absorbed at the surface (opaque model);
- c) The model is one dimensional and applied to the planar geometry with asymmetrical boundary conditions (drying at the surface and the bottom is adiabatic and impervious).

Additional hypotheses concern the heat and mass transfer processes within the material:

- a) It is postulated that two drying regimes exist (Keey, 1972); the funicular regime when only a wet zone exists and a pendular regime when wet and dry zones coexist (Figure 6.1a);
- b) The transition between the two regimes occurs at an average critical moisture content X<sub>c</sub> when a drying front starts to recede within the material;
- c) The moisture content distribution is always uniform within the wet zone;
- d) The model is restricted to non-hygroscopic material;



Surface evaporation

Drying front evaporation

Figure 6.1a The funicular and pendular drying regimes



Figure 6.1b The elementary control volume



Figure 6.1c The control volume grid

- e) The sensible heat increase of the vapour or air going through the dry zone is negligible;
- f) Mass transfer at the drying front consists of diffusive and convective components;
- g) The front position is corrected through a unique function (material and experiment independent) in order to evaluate the heat and mass transfer resistance throughout the dry region;
- h) The porous matrix does not shrink;
- i) Gravity effects are neglected.

### 6.3 MASS CONSERVATION EQUATIONS

:

í

The adopted sign rule is that fluxes leaving the wet zone are considered negative. At the front (Figure 6.1a) a mass conservation equation on the water gives:

$$N_{v} = \frac{1}{A_{s}} \frac{dm_{w}}{dt}$$
(6.1)

where the right-hand side is the water mass evaporation rate per unit area  $(kg/m^2s)$  and N<sub>v</sub> is the front vapor flux  $(kg/m^2s)$ . N<sub>v</sub> is the sum of a diffusive and a convective contribution, it can be approximated as:

$$N_{v} = \frac{\frac{y_{vs} - y_{vl}}{1 - \left(\frac{y_{vl} + y_{vs}}{2}\right)}}{R_{D2}} + \frac{P_{-} - P_{vl}}{R_{C}}$$
(6.2)

where  $y_v$  is the vapor mole fraction (variable with f or  $_{\infty}$  as subscripts are evaluated at the front or in the external flow respectively),  $P_{\infty}$  the flow gas pressure and  $p_{vf}$  the vapor pressure at the front. The first term represents the vapor diffusion flux between the front and the surface as approximated by Fick's first law (Bird et al., 1960) applied to the diffusion in the porous dried layer

(with an effective diffusion coefficient). The second term results from the application of Darcy's law (Kaviany, 1991) for the vapor evaporating at the front with the assumption that the surface pressure is  $P_{\infty}$ . Min and Emmons (1972) have already identified the molecular diffusion of the gaseous component and the pressure driven convective flow as the principal mechanisms of mass transfer in case of a drying front formulation from their experimental results where the pressure distribution was measured.  $R_{D2}$  is the diffusion resistance coefficient of the vapor through the dried layer (m<sup>2</sup>s/kg):

$$\mathsf{R}_{\mathsf{D2}} = \frac{\mathsf{x}_{\mathsf{f}}}{\mathsf{M}_{\mathsf{v}} * \left(\mathsf{c}_{\mathsf{g}} * \mathsf{D}_{\varepsilon}\right)_{\mathsf{av}}} \tag{6.3}$$

where  $x_f$  is the corrected front position to evaluate the mass transfer resistance (m),  $M_v$  is the vapor molecular weight (kg/mole),  $c_g$  the total molar concentration (mole/m<sup>3</sup>) and  $D_{\epsilon}$  the effective diffusion coefficient (m<sup>2</sup>/s); their product is evaluated at the average conditions between the surface and front. The convective resistance coefficient  $R_c$  (m/s) is:

$$\mathbf{R}_{c} = \frac{\mathbf{x}_{t}}{\kappa} \left(\frac{\mu_{v}}{\rho_{v}}\right)_{av} \quad \text{if } \mathbf{p}_{vt} > \mathbf{P}_{-} \tag{6.4}$$

 $R_c = \infty$  if  $p_{vf} \leq P_{-}$ 

where  $\mu_v$  and  $\rho_v$  are the vapor viscosity and density respectively evaluated as an average between the front and surface conditions;  $\kappa$  is the dry region permeability (m<sup>2</sup>). Another expression for the surface mass flux is equation 4.9 expressed as:

$$N_{v} = \frac{\frac{y_{v-} - y_{v_{3}}}{1 - y_{v_{3}}}}{R_{D1}}$$
(6.5)

where  $R_{D1}$  is the surface diffusion resistance coefficient of the vapor through the boundary layer (m<sup>2</sup>s/kg):

£

1

$$R_{D1} = \frac{1}{M_{v} * K_{y}}$$
(6.6)

 $K_y$  is the mass transfer coefficient (mole/m<sup>2</sup>s). When vapor diffusion is the main moisture transfer mechanism through the dried and boundary layers, equations 6.2 and 6.5 are equal and  $y_{vs}$  is the solution of the following equation:

$$\left( \mathsf{R}_{\mathsf{D1}} + \frac{\mathsf{R}_{\mathsf{D2}}}{2} \right)^* y_{\mathsf{vs}}^2 - \left[ \mathsf{R}_{\mathsf{D1}}^* (1 + y_{\mathsf{vt}}) + \mathsf{R}_{\mathsf{D2}}^* \left( 1 + \frac{y_{\mathsf{vu}} - y_{\mathsf{vt}}}{2} \right) \right]^* y_{\mathsf{vs}} + \mathsf{R}_{\mathsf{D1}}^* y_{\mathsf{vt}} + \mathsf{R}_{\mathsf{D2}}^* y_{\mathsf{vu}}^* \left( 1 - \frac{y_{\mathsf{vt}}}{2} \right) = 0$$
(6.5)

The drying rate can be expressed in terms of the wet zone moisture content  $(X_w)$  variation:

$$\frac{1}{A_s}\frac{dm_w}{dt} = \frac{d}{dt}[\rho_d X_w (b - x_t)]$$
(6.6)

where  $\rho_d$  is the dry material density and b the slab thickness. Expanding equation 6.6 yields:

$$\frac{1}{A_{a}}\frac{dm_{w}}{dt} = \rho_{d}(b - x_{f})\frac{dX_{w}}{dt} - (\rho_{d}X_{w})\frac{dx_{f}}{dt}$$
(6.7)

During the pendular regime,  $X_w$  is the same as X (average moisture content) and is greater than  $X_c$ , the front does not leave the surface ( $x_f = 0$ ):

$$\frac{dx_{f}}{dt} = 0 \quad \text{if} \quad \frac{1}{b} \int_{0}^{b} X_{w} dx > X_{c}$$
 (6.8)

As a result of combining equation 6.7 and 6.1 we have:

$$\frac{\mathrm{d}X_{w}}{\mathrm{d}t} = \frac{N_{v}}{\rho_{d}b} \tag{6.9}$$

During the funicular regime, the wet region moisture content  $X_w$  is uniform and does not change with time:

$$\frac{dX_{w}}{dt} = 0 \quad \text{if} \quad \frac{1}{b} \int_{0}^{b} X_{w} dx < X_{c}$$
 (6.10)

The derivative of the front position is then evaluated from equation 6.7 and 6.1:

$$\frac{\mathrm{d}\mathbf{x}_{i}}{\mathrm{d}t} = -\frac{N_{v}}{\rho_{d}X_{w}} \tag{6.11}$$

The assumption of a step shape for the moisture content distribution is not exact and results in a high rate of recession of the drying front within the material which gives a stronger attenuation of the drying rate than that observed experimentally (Schadler and Kast, 1987). It the front, the capillary liquid movement constrains the drying front spread. Experiments have shown that a more gradual transition of moisture content between the dry and wet regions occurs and increases the size of the wet region. Hence, it is necessary to correct the moisture distribution to evaluate the heat and mass transfer resistance throughout the dry zone. Schadler and Kast (1987) proposed a correction to modify  $x_f$  which was tested successfully in convective drying of cylinder and sphere at low temperatures (d= 10-400  $\mu$ m, D ~ 20 mm, T<sub>w</sub><sup>•</sup> = 30-70 °C, v<sub>w</sub><sup>•</sup> ~ 0.23 m/s). This empirical correction to  $x_f$  gives  $x_f^t$  as:

$$x'_{t} = x_{t} \left[ 1 - \frac{X}{X_{c}} \frac{(b - x_{t})}{b} \right]$$
 (6.12)

The appropriateness of such a correction will be tested for the case of high temperature convective drying and for combined convective-I.R. drying.

Equation 6.9 and 6.11 are first order differential equations which can be solved by the Runge-Kutta method as described in Appendix 10 once the temperatures at the front (and/or surface) are known from the solution of the energy conservation equation.

### 6.4 ENERGY CONSERVATION EQUATION

i,

1 - 4

The solution of the temperature field in the presence of a drying front necessitates the use of a variable grid (with a constant number of nodes in the dry and wet zones). In order to take into account the effect of the grid displacement on the solution, it is necessary to derive the energy conservation equation with a moving control volume. Dostie (1992) has presented such a derivation which is summarized here.

Consider the control volume (Figure 6.1b) limited by surface  $a_f$  which is moving at speed  $\overline{V}_r$ . Assume that it contains n phases separated by interfaces  $a_{ki}$  moving at speed  $\overline{V}_{ki}$ . The variation of a quantity  $\psi_k$  characterizing the k phase is given as:

$$\frac{d}{dt} \int_{v_{k}} \rho_{k} \psi_{k} dv = - \int_{a_{k}} \rho_{k} \psi_{k} (\overline{V}_{k} - \overline{V}_{l}) \cdot \overline{n}_{l} da - \sum_{\substack{i=1 \ i=k}}^{n} \int_{a_{ik}} \rho_{k} \psi_{k} (\overline{V}_{k} - \overline{V}_{kl}) \cdot \overline{n}_{kl} da$$

$$- \int_{a_{k}} \overline{n}_{l} \cdot \overline{J} da - \sum_{\substack{i=1 \ i=k}}^{n} \int_{a_{ik}} \overline{n}_{kl} \cdot \overline{J} da$$

$$+ \int_{v_{k}} \phi_{k} dv$$
(6.13)

where  $\rho_k$  is the k phase density;  $v_k$  the k phase volume;  $\overline{V}_k$  the k phase velocity;  $\overline{n}$  the normal to the surface;  $\overline{J}$  the flux term and  $\phi_k$  the volumic source of  $\psi_k$ . The intrinsic phase average (Whitaker, 1977) of a quantity f is, by definition:

$$\langle f \rangle_3 = \frac{1}{v_k} \int_{v_k} f dv$$
 (6.14)

Equation 6.13 can now be written:

.....

$$\frac{d}{dt} v_{k} \langle \rho_{k} \psi_{k} \rangle_{3} = - \int_{a_{k}} \rho_{k} \psi_{k} (\overline{V}_{k} - \overline{V}_{l}) \cdot \overline{n}_{l} da - \sum_{i=1}^{n} \int_{a_{w}} \rho_{k} \psi_{k} (\overline{V}_{k} - \overline{V}_{w}) \cdot \overline{n}_{w} da$$

$$- \int_{a_{k}} \overline{n}_{l} \cdot \overline{J} da - \sum_{i=1}^{n} \int_{a_{w}} \overline{n}_{w} \cdot \overline{J} da + \int_{v_{k}} \phi_{k} dv \qquad (6.15)$$

A special case of this equation is for  $\psi_k = h_k$ , the enthalpy. In this case, if kinetic energies, compressional as well as viscous dissipation are neglected,  $\overline{J}$  is the heat flux  $\overline{q}_k$ :

$$\overline{\mathbf{q}}_{\mathbf{k}} = -\mathbf{k}_{\mathbf{k}} \nabla \mathbf{T}_{\mathbf{k}} \tag{6.16}$$

where  $k_k$  is the k phase thermal conductivity,  $T_k$  its temperature and  $\phi_k$  the volumic rate of enthalpy generation. The energy conservation equation becomes:

$$\frac{d}{dt} v_{k} \langle \rho_{k} h_{k} \rangle_{3} = - \int_{a_{k}} \rho_{k} h_{k} (\overline{V}_{k} - \overline{V}_{r}) \cdot \overline{n}_{r} da - \sum_{i=1}^{n} \int_{a_{k}} \rho_{k} h_{k} (\overline{V}_{k} - \overline{V}_{k}) \cdot \overline{n}_{k} da 
+ \int_{a_{k}} k_{k} \overline{\nabla} T_{k} \cdot \overline{n}_{r} da + \sum_{i=1}^{n} \int_{a_{k}} k_{k} \overline{\nabla} T_{k} \cdot \overline{n}_{k} da + \int_{v_{k}} \phi_{k} dv$$
(6.17)

The summation of equation 6.17 for all phases eliminates the interfacial transfer terms within the control volume and provides an equation valid for the mixture:

$$\begin{split} \sum_{k=1}^{n} \frac{d}{dt} v \alpha_{k} \langle \rho_{k} h_{k} \rangle_{3} &= -\sum_{k=1}^{n} \int_{a_{k}} \rho_{k} h_{k} (\overline{V}_{k} - \overline{V}_{f}) \cdot \overline{n}_{t} \, da + \sum_{k=1}^{n} \int_{a_{k}} K_{k} \overline{\nabla} T_{k} \cdot \overline{n}_{t} \, da \\ &+ \sum_{k=1}^{n} \int_{V_{k}} \phi_{k} \, dv \end{split}$$
(6.18)

where  $\alpha_k$  is the volume fraction occupied by the k phase and v the overall volume. According to the nomenclature defined in Figure 6.1c, the spatial discretization of 6.18 for the sketched control volume is:

$$\begin{aligned} \frac{d}{dt} & \left[ \left( \mathbf{x}_{cv,i} - \mathbf{x}_{cv,i-1} \right) \sum_{k=1}^{n} \alpha_{k} \langle \rho_{k} h_{k} \rangle_{3} \right] &= \\ & \sum_{k=1}^{n} \left[ - \left( \beta_{k,i} \langle \rho_{k} h_{k} (V_{k} - V_{r}) \rangle_{2,i} - \beta_{k,i-1} \langle \rho_{k} h_{k} (V_{k} - V_{r}) \rangle_{2,i-1} \right) \\ & + \beta_{k,i} \langle k_{k} \frac{\partial T_{k}}{\partial x} \rangle_{2,i} - \beta_{k,i-1} \langle k_{k} \frac{\partial T_{k}}{\partial x} \rangle_{2,i-1} \\ & + \langle \phi_{k} \rangle_{3} \left( \mathbf{x}_{cv,i} - \mathbf{x}_{cv,i-1} \right) \right] \end{aligned}$$
(6.19)

where  $\langle \rangle_{2,l}$  is the control volume average on surface i.  $\beta_{k,l}$  is the part of the surface  $a_f$  occupied by k phase at the i<sup>th</sup> boundary. The following hypothesis is made to simplify the evaluation of the volumic and surface averages in equation 6.19:

$$\langle \mathbf{f}, \mathbf{f}_2 \rangle_{\mathbf{x}} = \langle \mathbf{f}_1 \rangle_{\mathbf{x}} \langle \mathbf{f}_2 \rangle_{\mathbf{x}}$$
 (6.20)

This hypothesis has no theoretical justification but was used successfully in multiphase flow studies (Delhaye et al., 1981). Equation 6.19 becomes:

$$\begin{aligned} \frac{d}{dt} & \left[ \left( \mathbf{x}_{cv,i} - \mathbf{x}_{cv,i-1} \right) \sum_{k=1}^{n} \alpha_{k} \langle \rho_{k} \rangle_{3,i} \langle h_{k} \rangle_{3,i} \right] &= \\ & \sum_{k=1}^{n} \left[ - \left( \beta_{k,i} \langle \rho_{k} \rangle_{2,i} \langle h_{k} \rangle_{2,i} \left( \langle V_{k} \rangle_{2,i} - \langle V_{t} \rangle_{2,i} \right) \right) \right. \\ & \left. - \beta_{k,i-1} \langle \rho_{k} \rangle_{2,i-1} \langle h_{k} \rangle_{2,i-1} \left( \langle V_{k} \rangle_{2,i-1} - \langle V_{i} \rangle_{2,i-1} \right) \right) \right. \\ & \left. + \beta_{k,i} \left\langle k_{k} \frac{\partial T_{k}}{\partial x} \right\rangle_{2,i} - \beta_{k,i-1} \left\langle k_{k} \frac{\partial T_{k}}{\partial x} \right\rangle_{2,i-1} \right. \end{aligned}$$

$$(6.21)$$

$$& + \left. \langle \phi_{k} \rangle_{3,i} \left( \mathbf{x}_{cv,i} - \mathbf{x}_{cv,i-1} \right) \right] \end{aligned}$$

Ť

For an isotropic medium:

\*

7

$$\alpha_{k} = \beta_{k} \tag{6.22}$$

The mass fluxes at the control volume boundaries can be written:

$$m_{k,l} = \alpha_{k} \langle \rho_{k} \rangle_{2,l} \langle V_{k} \rangle_{2,l}$$

$$m_{tk,l} = \alpha_{k} \langle \rho_{k} \rangle_{2,l} \langle V_{l} \rangle_{2,l}$$
(6.23)

If local thermal equilibrium is assumed between the phases, an approximation to the heat flux in the case of a three phase system (porous matrix, a liquid and its vapor in a gaseous mixture) can be written using an apparent thermal conductivity which includes the effect of evaporation-condensation at the pore level (Azizi et al., 1988):

$$\sum_{k=1}^{n} \alpha_{k,i} \left\langle k_{k} \frac{\partial T_{k}}{\partial x} \right\rangle_{2,i} = \left\langle k \right\rangle_{2,i} \left\langle \frac{\partial}{\partial x} \left\langle T \right\rangle_{3} \right\rangle_{2,i}$$
(6.24)

.

The enthalpy conservation equation is now:

$$\frac{d}{dt} \left[ \left( x_{cv,i} - x_{cv,i-1} \right) \sum_{k=1}^{n} \alpha_{k} \left\langle \rho_{k} \right\rangle_{3,i} \left\langle h_{k} \right\rangle_{3,i} \right] = \sum_{k=1}^{n} \left[ -\left( \left( m_{k,i} - m_{ik,i} \right) \left\langle h_{k} \right\rangle_{2,i} \right) + \left( \left( m_{k,i-1} - m_{ik,i-1} \right) \left\langle h_{k} \right\rangle_{2,i-1} \right) + \left\langle \phi_{k} \right\rangle_{3,i} \left( x_{cv,i} - x_{cv,i-1} \right) \right] + \left\langle k \right\rangle_{2,i} \frac{\left( \left\langle T \right\rangle_{3,i+1} - \left\langle T \right\rangle_{3,i} \right)}{\Delta x_{i}} - \left\langle k \right\rangle_{2,i-1} \frac{\left( \left\langle T \right\rangle_{3,i} - \left\langle T \right\rangle_{3,i-1} \right)}{\Delta x_{i-1}} \right)}{\Delta x_{i-1}}$$
(6.25)

If  $\Phi_{M}$  the volumic source in the k phase of enthalpy is zero, using a fully implicit discretization scheme the time integration of 6.25 provides the final linearized version of equation 6.18:

$$\begin{split} \left(\frac{\delta x_{i}}{\Delta t}\sum_{k=1}^{n}\alpha_{k}\left\langle\rho_{k}\right\rangle_{3,i}\left\langleh_{k}\right\rangle_{3,i}\right)^{1} &-\left(\frac{\delta x_{i}}{\Delta t}\sum_{k=1}^{n}\alpha_{k}\left\langle\rho_{k}\right\rangle_{3,i}\left\langleh_{k}\right\rangle_{3,i}\right)^{0} &=\sum_{k=1}^{n}\left[-\left(\left(m_{k,i}-m_{ik,i}\right)\left\langle h_{k}\right\rangle_{2,i}\right)^{1}\right) \\ &+\left(\left(m_{k,i-1}-m_{ik,i-1}\right)\left\langle h_{k}\right\rangle_{2,i-1}\right)^{1}\right] \\ &+\left(\left\langle k\right\rangle_{2,i}\frac{\left(\left\langle T\right\rangle_{3,i+1}-\left\langle T\right\rangle_{3,i}\right)}{\Delta x_{i}}\right)^{1} - \left(\left\langle k\right\rangle_{2,i-1}\frac{\left(\left\langle T\right\rangle_{3,i}-\left\langle T\right\rangle_{3,i-1}\right)}{\Delta x_{i-1}}\right)^{1}\right) \end{split}$$
(6.26)

In this equation  $\Delta t$  is the time step, superscript <sup>1</sup> indicates that this quantity is evaluated at time t+ $\Delta t$  while superscript <sup>0</sup> indicates that this quantity is evaluated at time t.

Eleven nodes uniformly distributed in each zone (21 total number) were found  $n_{\text{E}}$  essary to obtain a grid independent solution for the temperature distribution in the range of thickness considered (b < 20 mm). One node is always located at the front which is moving at a velocity defined by equation 6.11. Half control volumes are located close to the surface (node 1) and the symetry line (node 21); a grid point is positionned at each of these locations. From equation 6.18 the discretized equation at the surface can be written:

$$\begin{split} \left(\frac{\delta x_{1}}{\Delta t}\sum_{k=1}^{n}\alpha_{k}\left\langle\rho_{k}\right\rangle_{3,1}\left\langleh_{k}\right\rangle_{3,1}\right)^{1} &-\left(\frac{\delta x_{1}}{\Delta t}\sum_{k=1}^{n}\alpha_{k}\left\langle\rho_{k}\right\rangle_{3,1}\left\langleh_{k}\right\rangle_{3,1}\right)^{0} = \\ &\sum_{k=1}^{n}\left[-\left(\left(m_{k,1}-m_{nk,1}\right)\left\langle h_{k}\right\rangle_{2,1}\right)\right]^{1} \\ &+\left(\left\langle k\right\rangle_{2,1}\frac{\left(\left\langle T\right\rangle_{3,2}-\left\langle T\right\rangle_{3,1}\right)}{\Delta x_{1}}\right)^{1} \\ &+h_{c}^{*}\left(T_{w}^{*}-\left\langle T\right\rangle_{3,1}\right)^{1}-E_{s}\left(\sigma\left\langle T\right\rangle_{3,1}^{4}-q_{is}^{*}\right)^{1} \end{split}$$
(6.27)

1

I,

For the insulated side:

$$\left( \frac{\delta x_{21}}{\Delta t} \sum_{k=1}^{n} \alpha_{k} \left\langle \rho_{k} \right\rangle_{3,21} \left\langle h_{k} \right\rangle_{3,21} \right)^{1} - \left( \frac{\delta x_{21}}{\Delta t} \sum_{k=1}^{n} \alpha_{k} \left\langle \rho_{k} \right\rangle_{3,21} \left\langle h_{k} \right\rangle_{3,21} \right)^{0} = \sum_{k=1}^{n} \left[ + \left( \left( m_{k,20} - m_{1k,20} \right) \left\langle h_{k} \right\rangle_{2,20} \right)^{1} \right] - \left( \left\langle k \right\rangle_{2,20} \frac{\left( \left\langle T \right\rangle_{3,21} - \left\langle T \right\rangle_{3,20} \right)}{\Delta x_{20}} \right)^{1} \right)$$

$$(6.28)$$

Equations 6.26 to 6.28 represent a tridiagonal system of equations which can be solved in terms of the mixture enthalpy defined as:

$$\langle h \rangle_{3,i} = \sum_{k=1}^{n} \alpha_{k} \langle \rho_{k} \rangle_{3,i} \langle h_{k} \rangle_{3,i} = \langle c_{p} \rangle_{3,i} \langle T \rangle_{3,i}$$
(6.29)

through use of the Thomas algorithm or the Tridiagonal Matrix Algorithm (TDMA). Details of the solution procedure can be found in Patankar (1980). The steps that must be followed at each time step are summarized below:

- a) Compute a first estimate of X or  $x_f$  derivatives (equations 6.9 or 6.11) to evaluate a first estimate of X or  $x_f$  (first step of a RK22 algorithm);
- b) Evaluate the enthalpy field through solution of the system of equations 6.26 to 6.28;
- c) Calculate a final estimate of X or x<sub>f</sub> derivatives (average of the first and present estimate) to obtain the final value of X or x<sub>f</sub> at t+∆t (second step of RK22);
- d) Get the enthalpy field (and temperatures) at t+ $\Delta t$  using the value of X or  $x_f$  obtained in c)
- e) Proceed to a) for the next time step.

\*

In order to accept a solution at  $t+\Delta t$ , relative variations between t and  $t+\Delta t$  of temperature at various locations (surface, front) or average moisture content are

also used to control the size of  $\Delta t$ . Under-relaxation (Patankar, 1980) of the predicted mass transfer coefficient (equation 6.37, 5.15 and 4.15) was necessary in order to avoid the numerical instabilities related to  $\theta_K$  rate of change with  $\phi_K$  at high mass flux.

The numerical coding of this problem was realized recently by Dostie (1992) who also presented additional details on the numerical solution methodology. All the reported simulations have been carried out with a Hewlett-Packard workstation Apollo Series 700 and each took less than 10 seconds (real time) to be completed.

### 6.5 DRYING FRONT PARAMETERS FOR SIMULATIONS

Most of the thermophysical properties describing the water vapor, air and the glass beads are reported in Appendix 4. Table 3.1 summarizes the values of b,  $\varepsilon$  and  $\rho_d$ . The bed surface emissivity (E<sub>s</sub>) was measured to be 0.95 in convection drying and 0.80 in combined convective-I.R. drying; the test section wall emissivity (E<sub>t</sub>) was 0.28 (Appendix 6) while the sample-to-test section area ratio (A<sub>s</sub>/A<sub>t</sub>) was 9.1 \* 10<sup>-3</sup>. The critical moisture content (X<sub>c</sub>) values were taken from Table 4.4 (convection drying) and Table 5.9 (combined convection-I.R. drying).

The dry permeability  $\kappa$  was evaluated from a relation given by Kaviany (1991) for packed beds of spherical particles with a narrow range of distribution in size:

$$\kappa = \frac{\varepsilon^{5.5}}{5.6} d^2 \tag{6.30}$$

The apparent local bed thermal conductivity (W/mK) was computed as (Azizi et al., 1988):

$$\mathbf{k} = \mathbf{k}_{dw} + f \mathbf{k}_{dw} \tag{6.31}$$

which incorporates the transfer of latent heat by vapor movement under the influence of a temperature gradient  $(k_{dif})$  and where f is the diffusion

-

resistance factor.  $k_{dw}$  is the thermal conductivity of the solid and liquid phase and was correlated from  $k_{dw}$  vs. S curves at low temperatures (~ 5 - 20 °C) presented by Azizi et al. (1988):

Ļ

Ĩ

$$k_{dw} = k_d + S^* (3.947 - 16.980^* S + 34.666^* S^2 - 30.716^* S^3 + 10.112^* S^4)$$
 (6.32)

Here,  $k_d$  the dry bed thermal conductivity, was linearly correlated to local T (°C) from the experimental results presented by Azizi et al.(1988) since the bed surface temperature can reach up to 300 °C in the combined process:

$$k_d = 0.183 + 8.33 \times 10^{-4} \times T$$
 (6.33)

For T = 20 °C, 0.2 is the value predicted by equation 6.33 which is close to the measured value (0.174) reported in Appendix 4.  $k_{dif}$  is written as (Moyne, 1987; Azizi et al., 1988):

$$k_{at} = \frac{D_{va}}{R^*T} * \frac{dp_v}{dT} * \Delta H_v * \frac{M_a * M_v}{M_a}$$
(6.34)

*f* could be correlated as a function of S (0.00 to 1.00) from experimental results reported by Azizi et al.(1988) for a glass bead bed ( $\varepsilon$ = 0.40):

$$f = 13.31^{\circ} \text{S} \cdot 61.80^{\circ} \text{S}^{2} + 121.93^{\circ} \text{S}^{3} - 111.20^{\circ} \text{S}^{4} + 37.76^{\circ} \text{S}^{5} \qquad (6.35)$$

The effective mass diffusivity value has been discussed recently by Kaviany (1991) who presented a comparison of an expression derived by Neale and Nader (1973) (for the case of packed beds of impermeable spheres) and experimental results within the porosity range of interest in the present study. Since the agreement was excellent, the effective diffusion coefficient  $D_{\epsilon}$  was taken to be:

$$D_{z} = \frac{2 \epsilon}{3 - \epsilon} D_{va}$$
(6.36)

The convective and radiative heat and mass transfer external parameters  $T_{\infty}^{*}$ ,  $T_{d}^{*}$ ,  $h^{*}$  ( $h_{c}^{*}$ ,  $h_{cp}^{*}$  or  $h_{cBL}^{*}$ ),  $K_{y}^{*}$  ( $K_{yBL}^{*}$ ) and/or  $q_{is}^{*}$  were obtained from the Tables presented in Chapters IV and V. The heat and mass transfer coefficients were corrected when the effect of the high mass transfer rate had to be evaluated. However, in order to avoid the numerical instabilities related to the use of  $B_{K}$  when  $y_{vs}$  get close to 1, 5.13 and 5.14 (correlation 5.15) were used to correct the heat transfer coefficient (with  $h_{cBL}^{*}$  instead of  $h_{cc}^{*}$ ) while according to Bird et al. (1960),  $\phi_{K}$  can be written:

$$\phi_{k} = \frac{N_{v}}{K_{yBL}}$$
(6.37)

The mass transfer coefficient can then be corrected with 4.15 and 6.37 (correlation 5.15).

For the convective simulations (when  $h_c$  or  $h_{cBL}$  were used) the net radiative heat flux  $q_{ts}$  exchanged between the environment (test section) and the material surface was evaluated (equation 4.7) in the model with an imposed equivalent test section temperature  $T_t$  (Table 6.2) computed so that  $q_{ts}$  is the same as the one in Table 4.1 (during the P.C.D.R.P.).

When the drying front position is corrected this is indicated by the parameter cor taken to be 1 whereas when it is 0,  $x_f = x_f$  in the simulations.

### 6.6 CONVECTIVE DRYING SIMULATIONS

Few quantitative comparisons between the prediction of drying front models and experimental convective drying results have been reported in the literature.

The second falling rate period was modeled by Szentgyörgyi et al. (1980) with a drying front model where the moisture distribution was assumed to have a step shape (equilibrium moisture content in the dry zone, critical moisture content in the wet zone). An energy balance equation was used in the dry and the wet zone. The drying front progression was responsible for the evaporation rate (from an energy balance at the front). Using an approximate solution for the front

position as a function of time, the temperature distribution as well as drying rate were predicted fairly well for drying of a gypsum-pearlite board (b = 30 mm,  $T_{\infty}^{*} = 81 \text{ °C}$ ,  $v_{\infty}^{*} = 1.96 \text{ m/s}$ ).

According to Schadler and Kast (1987), capillary moisture movement is the key transport phenomenon during the constant rate period. The moisture content distribution can thus be obtained and when Ss is equal to the irreducible saturation Sir, the moisture distribution is averaged across the material thickness and the drying front is assumed to start receding (constant moisture content in the wet zone, 0 in the dry zone). This results in a priori determination of X<sub>c</sub>. During the constant drying rate period the material temperature is assumed to be uniform and determined as the wet bulb temperature while in the receding front period, temperature gradients exists only in the dry zone. Analytical expressions are presented for the front and surface temperature in the receding front period when the main moisture transport through the dry layer is assumed to be a diffusive one. An excellent prediction of the drying rate curve as well as surface temperature vs. X was obtained for samples made of non-hydroscopic crushed glass (d = 10-350  $\mu$ m, cylinder D = 23 mm, T<sub>w</sub><sup>•</sup> = 30-70 °C, v<sub>w</sub><sup>•</sup> = 0.21-0.35 m/s) and ceramic filterstones (d = 400  $\mu$ m, sphere D = 20 mm, T<sub>∞</sub><sup>•</sup> = 30 °C,  $v_{m}^{*} = 0.22$  m/s). The samples were wetted with various liquid such as water, benzene, n-hexane, methanol and tetrachloromethane.

Chen and Pei (1989) considered the existence of a wet and a sorption region. Liquid transfer by capillarity and vapor diffusion were the moisture transport mechanisms in the wet zone while bound water movement and vapor diffusion were dominant in the sorption zone. The heat and mass transfer conservation equations in the wet and sorption zones were linked through heat and mass balance at the front where the moisture content was assumed to equal the maximum sorptive moisture ( $X_{ms}$ ) content. The dry-wet zone front starts to recede when  $X_s = X_{ms}$  and its velocity was determined by the magnitude of the liquid flux toward the front. The experimental  $X_c$  was an input to the model and  $h_c$  as well  $K_p$  were assumed to be functions of X,  $X_c$  and  $X_{ms}$  in the first falling rate period. The finite element method with Galerkin formulation and a continuous mesh deformation (to concentrate points close to the front) was used to solve numerically the system of equations.

curves as well as temperature and moisture distributions were obtained for the convective drying of wool (cylinder D = 73.6 mm,  $T_{\infty}^{*} = 78.5 \text{ °C}$ ,  $v_{\infty}^{*} = 5.3 \text{ m/s}$ ), brick (slab b = 50 mm,  $T_{\infty}^{*} = 80.0 \text{ °C}$ ,  $v_{\infty}^{*} = 5.0 \text{ m/s}$ ) and corn kernels (sphere D = 8.2 mm,  $T_{\infty}^{*} = 21.0-71.0 \text{ °C}$ ,  $v_{\infty}^{*} = 2.33 \text{ m/s}$ ).

Rogers and Kaviany (1991) used basically the same type of model as Chen and Pei (simplified for non-hygroscopic material) but with the addition of the gas pressure equation. However they did not use experimentally determined value of  $X_c$ ; instead they assumed that this point was reached when  $S_s = S_{ir}$ . The implicit finite difference control volume technique was used to discretize the system of equations while an adaptative technique allowed concentrations of nodes near the front. Their evaluation of  $t_c$  compared favorably with the one from convective drying of a bed of glass beads (d = 100  $\mu$ m, b = 25.4 mm,  $T_{\infty}^* = 55.0$  °C,  $h_c^* = 18.3$  W/m<sup>2</sup>K). For a short period of time after the drying front starts receding, the drying rate curve and the temperature distributions within the material agreed well with the experimental results. However, their computation was not completed because the computing time was to excessive. Up to  $t_c$ , the S and T distributions show only small gradients throughout the glass beads bed.

All these works show that the applicability of the drying front model has been validated for only a limited range of experimental conditions (b,  $T_{\infty}^{*}$ ,  $v_{\infty}^{*}$ ,  $T_{d}^{*}$ ).

#### 6.6.1 EXPERIMENTAL DRYING CURVE: CORRECTION FOR GEOMETRICAL EFFECTS

A comparison between the experimental (Run no. co4, sample data) and simulated drying curves  $(h_c^*, K_y^*, cor = 1, T_t^*)$  is presented in Figures 6.2a and b for the drying rate curve. Major experimental parameters are indicated within the figures as well as the expected error bars on the experimental drying curve. It is observed that although N<sub>v</sub> (Figure 6.2b) is always (except at the very beginning) higher for the simulations than the experiment, the X vs. t curve in Figure 6.2a seems to show that the experimental N<sub>v</sub> is higher than its simulated counterpart. Furthermore, during the P.C.D.R.P. a step (~ 0.003 to 0.015) in X separate the experimental and simulated X.

 $\mathbf{T}$ 

÷



Figure 6.2a The drying curve for run no. co4



Figure 6.2b The drying rate curve for run no. co4

Í



Figure 6.3 The surface and bottom temperatures for run no. co4

Such behavior results from differences in geometry; the sample is slightly conical (3° angle in Figures 3.4 and 3.8) while the simulated case correspond to an equivalent cylinder of thickness b with same surface area, cut into an infinite plane (one-dimensional drying). As one can see from Table 3.1, the cylinder volume  $V_{cy}$  (computed with b and D) is greater than  $V_t$  (the real measured sample overall volume). Thus for the same initial moisture content  $X_{in}$ , the initial mass of water  $m_{win}$  (per unit area) is higher in the simulation (for same b); similar  $N_v$  values (Figure 6.2b) result in the same amount of water evaporated at time t but  $m_w$  left is higher in the simulation which result in greater X, in agreement with results in Figure 6.2a.

The experimental drying curve was modified to represent the case of a cylinder with same b. Based on the assumption that the drying rate curve of a cylinder or a truncated cone are the same (valid for one-dimensional drying), the development of the necessary correction procedure is presented in Appendix 10.

In Figure 6.2a is displayed the modified drying curve (cylinder data) together with the results of simulation. The curves are in good agreement and the higher drying rates observable in Figure 6.2b for the numerical computation translate, as expected, into higher dX/dt (than the experiment) in Figure 6.2a. It is important to note that the higher drying rate in the simulation is a consequence of using the heat and mass transfer coefficients identified with N<sub>v</sub> close to the highest experimental mass flux in Figure 6.2b. The experimental and predicted overall drying time t<sub>o</sub> in Figure 6.2a differ by less than 7 %.

Although the measured (for a conical geometry) and predicted (for an equivalent cylindrical geometry) T vs. t curves are not strictly identical, they can be compared for the following reasons:

Ĩ

a) For t < t<sub>c</sub>, the difference in heat transfer between the two cases lay with the increase in the accumulated heat in the case of the cylinder since there is more water and material to heat. However, during most of that period, evaporation is the dominant heat transfer phenomenon which defines the temperature level within the material as underlined by the very good agreement on  $T_s^*$  (Figure 6.3). Although  $t_c$  deduced from the experimental T vs. t curve is likely to be slightly underestimated when compared to the one derived from the simulations,  $X_c$  are the same for both conical and cylindrical geometries;

b) For  $t > t_c$ , the drying front recession is faster for the reported experimental results because the front surface area decreases with increase in  $x_f$ . Thus the reported  $T_b$  within the material are expected to be slightly higher than their equivalent for the cylinder at same t.

Since the "experimental"  $t_0$  is smaller (by less than 4 %) the T vs. t curves in Figure 6.3 as compared to the ones deduced from the drying curve (for a cylinder) in Figure 6.2a, it is likely that the reported temperatures constitute a very good evaluation of temperature that could be measured if a perfect cylinder had been used in the experiments.

Figure 6.3, shows the evolution of  $T_s$  and  $T_b$  evolutions (Run no. co4). It may be observed that  $T_s^*$  is well reproduced (33.1 °C vs. 32.9 °C), the critical time  $t_c$  values are close (differences are less than 5 %) and the  $T_b$  evolution and level do not differ significantly since the observed differences are within the experimental uncertainty of the  $T_b$  measurement for most of the time. At the beginning of drying, the predicted  $T_s$  and  $T_b$  might be higher than measured due to a too high apparent local bed thermal conductivity used in the simulations (equation 6.34).

### 6.6.2 THE SURFACE TEMPERATURE MEASUREMENT BIAS IN CONVECTIVE DRYING

In Figure 6.3, a larger gradient exists between the surface and the bottom temperatures of the sample as predicted by the model in the receding front period. The lower measured gradient is a consequence of the surface thermocouple acting as a fin located between the sample bottom and surface. The magnitude of this effect can be quantified through evaluation of the two-dimensional temperature field close to the thermocouple at the end of drying with a commercial software FLUX2D under the following assumptions:

- a) The problem is axisymetric and the geometry as defined in Figure 6.4;
- b) The measured T<sub>be</sub> is the bottom boundary condition and convection is applied at the surface through h<sup>\*</sup> and T<sub>w</sub><sup>\*</sup>; the sides are adiabatic;
- c) The steady-state solution of the two dimensional temperature field is representative of the temperatures within the sample at the end of drying.

In Figure 6.4 are displayed the typical isotherm distortions which result from the thermocouple conducting heat from the surface to the bottom because of its much higher thermal conductivity (stainless steel ~ 17 W/mK vs. glass beads~ 0.26 W/mK). In Table 6.1 are reported the run identification number, the sample number, b,  $T_{\infty}$ , h<sup>\*</sup>,  $T_{be}$ ,  $T_{b1}$ ,  $T_{se}$ ,  $T_{c2D}$ ,  $T_{s1}$  and  $T_{s2D}$ . T<sub>be</sub>,  $T_{se}$ ,  $T_{c2D}$ ,  $T_{s2D}$ ,  $T_{b1}$  and  $T_{s1}$  are the measured sample bottom and surface temperatures at the end of drying, the thermocouple and surface temperature predicted with FLUX2D and the bottom as well as surface temperature predicted with the drying front model (at the end of drying, (h<sup>\*</sup>, K<sub>y</sub><sup>\*</sup>, cor= 1)) respectively. It is observed that:

- a)  $T_{be}$  and  $T_{b1}$  are close except for b = 5.5 mm;
- b)  $T_{se}$  and  $T_{c2D}$  are in good agreement, when the additional unknown thermal contact resistance between the thermocouple surface and the beads not included in the simulations with FLUX2D ( $T_{se} \leq T_{c2D}$ ) as well as the uncertainty on the thermocouple measuring point location are taken into account;
- c)  $T_{s2D}$  and  $T_{s1}$  are in very good agreement since  $T_{s1}$  is determined when the material is such that X < 2.5 10<sup>-4</sup> while  $T_{s2D}$  corresponds to a steady-state solution.



10 Å

Figure 6.4 The isotherms within the dried sample close to the surface thermocouple for run no. co9



. .

### TABLE 6.1

.

## MEASURED AND SIMULATED SURFACE TEMPERATURES FOR CONVECTIVE DEVING:

## EVALUATION OF THE EXPERIMENTAL BIAS AT THE END OF DRYING

| Run        | Sa.        | ъ             | Т_,   | h    | T <sub>be</sub> | T <sub>b1</sub> | T <sub>se</sub> | T <sub>c2D</sub> | <sup>7</sup> s1 | T <sub>s2D</sub> |
|------------|------------|---------------|-------|------|-----------------|-----------------|-----------------|------------------|-----------------|------------------|
| No.        | No.        |               |       |      |                 |                 |                 |                  |                 |                  |
| (.)        | (.)        | (mm)          | (°C)  | (W/  | (°C)            | (°C)            | (°C)            | (°C)             | (°C)            | (°C)             |
|            | Ĺ          |               |       | m²K) |                 |                 |                 |                  |                 |                  |
| co2        | x          | 10.3          | 79.9  | 27.1 | 52              | 55              | 60              | 63               | 68              | 67               |
| re18       |            | 19.9          | 79.8  | 29.0 | 57              | 58              | €7              | 69               | 73              | 73               |
| co15       | IX         | 5.5           | 80.2  | 40.0 | 50              | 54              | 57              | 58               | 66              | 64               |
| c04        | ×          | 10.3          | 80.5  | 40.3 | 58              | 57              | 67              | 68               | 71              | 72               |
| co3        | XII        | 1 <u>9.</u> 9 | 80.6  | 44.0 | 60              | 59              | 71              | 71               | 75              | 76               |
| c07        | x          | 10.3          | 130.6 | 26.1 | 67              | 66              | 89              | 91               | 95              | 99               |
| c06        |            | 19.9          | 130.7 | 26.8 | 72              | 71              | 97              | 103              | 108             | 111              |
| c09        | IX         | 5.5           | 130.4 | 38.4 | 63              | 65              | 81              | 81               | 91              | 93               |
| co12       | x          | 10.3          | 130.5 | 37.3 | 69              | 69              | 89              | 96               | 103             | 105              |
| <u>co8</u> | XII        | 19.9          | 130.4 | 37.4 | 73              | 71              | 101             | 108              | 112             | 115              |
| co11       | x          | 10.3          | 180.5 | 27.5 | 76              | 73              | 104             | 117              | 121             | 123              |
| co10       |            | 19.9          | 180.6 | 27.6 | 82              | 76              | 125             | 138              | 139             | 148              |
| re21       | IX         | 5.5           | 180.0 | 40.4 | 66              | 72              | 89              | 98               | 115             | 119              |
| re25       | X          | 10.3          | 179.8 | 39.3 | 78              | 77              | 108             | 125              | 132             | 140              |
| re6        | <u>XII</u> | 19.9          | 180.4 | 41.7 | 82              | 80              | 133             | 146              | 150             | 156              |

ſ

The phenomenon analyzed here is likely to be active as soon as temperature gradients exist within the bed (not during the P.C.D.R.P.) and the time dependent temperature differences appearing between  $T_{se}$  and  $T_{s1}$  are believed to be due to it; as was demonstrated at the end of drying.

For b = 10.3 or 19.9 mm, the measured  $T_b$  are not affected by such a problem because the bottom thermocouple wire is parallel to the isotherms within the sample and in good thermal contact with the bed bottom for a distance of about 45 mm. For b = 5.5 mm ( $T_{be} < T_{b1}$ ), as the thermocouple wire was inserted within the low thermal conductivity foam (Figure 6.5) and goes through a region close to the cooled sample holder fin, the recorded  $T_b$  is lower than it should be.

It can be concluded that the drying front model ( $h^*$ ,  $K_y^*$ , cor = 1) predicts very well T<sub>b</sub> and T<sub>s</sub> at the end of drying for most of the convective runs.

### 6.6.3 THE DRYING FRONT POSITION CORRECTION EFFECT IN CONVECTIVE DRYING

The effect of the correction to the drying front position has been quantified in Table 6.2 where the run identification number,  $T_{\infty}^{*}$ ,  $T_{t}^{*}$ ,  $t_{oe}$ ,  $t_{o1}$ ,  $\Delta t_{o1}$ %,  $t_{o0}$ ,  $\Delta t_{o0}$ %,  $T_{be}$ ,  $T_{b1}$ ,  $T_{b0}$ ,  $T_{s1}$ ,  $T_{s0}$  and  $T_{s2D}$  are reported.  $t_{oe}$ ,  $t_{o1}$  and  $t_{o0}$  are the experimental and predicted overall drying times with the drying front model ( $h_c^{*}$ ,  $K_y^{*}$ ,  $T_t^{*}$ ) when cor=1 or 0 respectively.  $\Delta t_{o1}$ % and  $\Delta t_{o0}$ % are the differences between  $t_{o1}$  and  $t_{oe}$  as well as  $t_{o0}$  and  $t_{oe}$  divided by their average values and expressed in percent. The  $T_b$  and  $T_s$  temperatures are taken from data at the end of drying from the experiments and when cor = 1 or 0 while  $T_{s2D}$  has been defined in the preceding section. These data show that:

- a) The average differences between the experimental and predicted t<sub>o</sub> are 4.1 % (cor = 1, standard deviation = 4.1 %) and 1.5 % (cor = 0, standard deviation = 5.8 %). Thus on the average t<sub>o</sub> is slightly underpredicted when the drying front correction is applied whereas it is slightly overestimated when it is not;
- b) T<sub>be</sub> appears to be well predicted with or without the drying front correction;



Scale 1:1

A: Stainless steel bowl B: External insulation

B: External insulatio

C: Cylindrical fin

D: Sealed containers (heat sink)

E: Internal insulation

F: Ring fin

- G: Bottom insulation
- H: Insulating ring
- I: Reflective foil
- J: Sample container
- K: Glass beads bed
- L: Thermocouples

Glass beads



Water

Cellular plastic

Ceramic

f

Figure 6.5 The 5.5 mm sample: cross sectional view

### TABLE 6.2

.

Ŧ

.

# MEASURED AND SIMULATED DRYING TIMES. BOTTOM AND SURFACE TEMPERATURES AT THE END OF DRYING WITH AND WITHOUT DRYING FRONT CORRECTION FOR CONVECTIVE DRYING

| Run        | Τ*    | т <mark>*</mark> | t <sub>oe</sub> | t <sub>o1</sub> | ∆t <sub>o1</sub> % | t <sub>o0</sub> | ∆t <sub>o0</sub> % | T <sub>be</sub> | T <sub>b1</sub> | T <sub>b0</sub> | T <sub>s1</sub> | T <sub>so</sub> | T <sub>s2D</sub> |
|------------|-------|------------------|-----------------|-----------------|--------------------|-----------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|
| No.        | ļ     | İ                |                 |                 |                    |                 |                    |                 |                 |                 |                 |                 |                  |
| (.)        | (°C)  | (°C)             | min.            | min.            | (.)                | min.            | _(.)               | (°C)            | (°C)            | (°C)            | (°C)            | (°C)            | (°C)             |
| co2        | 79.9  | 76               | 158.6           | 144.2           | -9.1               | 153.4           | -3.3               | 52              | 55              | 56              | 68              | 68              | 67               |
| re18       | 79.8  | 76               | 272.5           | 283.9           | 4.2                | 311.0           | 13.2               | 57              | 57              | 59              | 72              | 73              | 73               |
| co15       | 80.2  | 77               | 54.6            | 50.3            | -7.9               | 53.3            | -2.4               | 50              | 54              | 55              | 66              | 67              | 64               |
| co4        | 80.5  | 78               | 112.6           | 104.8           | -6.9               | 112.8           | 0.2                | 58              | 57              | 58              | 71              | 72              | 72               |
| <u>co3</u> | 80.6  | 78               | 205.0           | 205.1           | 0.0                | 227.9           | 10.6               | 60              | 59              | 60              | 75              | 76              | 76               |
| co7        | 130.6 | 121              | 83.3            | 78.5            | -5.8               | 81.3            | -2.4               | 67              | 66              | 69              | 96              | 98              | 99               |
| C06        | 130.7 | 121              | 163.0           | 164.7           | 1.0                | 174.8           | 7.0                | 72              | 71              | 74              | 107             | 109             | 111              |
| Cn9        | 130.4 | 124              | 32.3            | 28.6            | -11.5              | 29.5            | -9.1               | 63              | 65              | 68              | 92              | 95              | 93               |
| co12       | 130.5 | 125              | 60.0            | 58.9            | -1.8               | 61.7            | 2.8                | 69              | 69              | 72              | 103             | 105             | 105              |
| <u>co8</u> | 130.4 | 125              | 127.1           | 121.9           | -4.1               | 130.5           | 2.6                | 73              | 71              | 74              | 112             | 114             | 115              |
| co11       | 180.5 | 164              | 54.5            | 51.7            | -5.1               | 53.4            | -2.0               | 76              | 74              | 77              | 122             | 126             | 123              |
| co10       | 180.6 | 165              | 112.1           | 108.7           | -3.0               | 114.0           | 1.7                | 82              | 76              | 80              | 139             | 142             | 148              |
| re21       | 180.0 | 169              | 19.0            | 18.5            | -6.1               | 19.0            | -3.6               | 66              | 72              | 76              | 116             | 120             | 119              |
| re25       | 179.8 | 170              | 39.4            | 38.4            | -2.5               | 40.4            | 2.5                | 78              | 77              | 80              | 133             | 136             | 140              |
| re6        | 180.4 | 170              | 77.8            | 75.5            | -3.0               | 81.3            | 4.4                | 82              | 80              | 83              | 150             | 153             | 156              |
|            |       |                  |                 | Av.             | -4.1               |                 | 1.5                |                 |                 |                 |                 |                 |                  |
|            |       |                  |                 | Stdev.          | 4.1                |                 | 5.8                |                 |                 |                 |                 |                 |                  |

c) The differences between  $T_{s1}$ ,  $T_{s0}$  and  $T_{s2D}$  are low considering the temperature level reached.

Figures 6.6 (6.7a) and 6.8 (6.7b) present a comparison between the experimental results (Run no. co7 and re6 respectively) and simulations with and without drying front correction  $(h_c^*, K_y^*, cor= 0 \text{ or } 1, T_t^*)$  for the X vs. t, T vs. t and N<sub>v</sub> vs. X curves, respectively. The X vs. t curves (Figures 6.6a and 6.8a) are well reproduced (within the experimental uncertainties of the experimental results) while the overall behavior of the T vs.t curves (Figures 6.6b and 6.8b) is followed accurately (not T<sub>s</sub> after the critical point) with differences greater than experimental uncertainty at the beginning of drying. On the N<sub>v</sub> vs. X curves (Figures 6.7a and b), the simulation with no drying front position correction (cor = 0) predicts a more abrupt fall of N<sub>v</sub> as compared to the one with drying front position correction (cor = 1) which qualitatively suggests, when compared to the experimental results, that the correction of the drying front position to evaluate the mass transfer resistance is valid. In addition, for most of the receding front period, the predicted T<sub>b</sub> is slightly closer to the experimentally measured T<sub>b</sub> when cor = 1.

## 6.6.4 THE TRANSFER COEFFICIENT CORRECTIONS AND THE DRYING FRONT MODEL RESULTS IN CONVECTIVE DRYING

The effect of the heat and mass transfer coefficient correction procedure (boundary layer theory) can be quantified by reference to a typical simulation (Run no. co11,  $(h_{cBL}^{*}, K_{yBL}^{*}, cor = 1, T_{t}^{*})$ ) for which, according to section 4.3,  $\theta_{h}$  (0.90) and  $\theta_{K}$  (0.92) are among the lowest (as evaluated during the P.C.D.R.P.) and the transfer coefficients were modified as a function of the instantaneous value of N<sub>v</sub>. A reference simulation was also carried out with  $h_{cBL}^{*}$  and  $K_{yBL}^{*}$  held constant. Figures 6.9a and b present X vs. t and T vs. t curves (experiments and simulations) while Figure 6.10a displays the N<sub>v</sub> vs. X curve.







Figure 6.6b The surface and bottom temperatures for run no. co7: test of the drying front position correction

÷.



Figure 6.7a The drying rate curve for run no. co7: test of the drying front position correction



Figure 6.7b The drying rate curve for run no. re6: test of the drying front position correction

1



Figure 6.8a The drying curve for run no. re6: test of the drying front position correction



Figure 6.8b The surface and bottom temperatures for run no. re6: test of the drying front position correction

•.



1

.í





Figure 6.9b The surface and bottom temperatures for run no. co11: test of the transfer coefficient correction procedure (B.L.T.)

180



Figure 6.10a The drying rate curve for run no. co11: test of the transfer coefficient correction procedure (B.L.T.)



Figure 6.10b The drying rate curve for run no. re18

It is observed that:

L

4

- a) The use of constant heat and mass transfer coefficients (h<sub>cBL</sub><sup>+</sup>, K<sub>yBL</sub><sup>+</sup>)
   valid under low mass flux condition- leads to a higher drying rate (8 %) and a shorter drying time (6 %) as compared to the simulated results when the coefficients are variable;
- b) The variation of the transfer coefficients as predicted by the boundary layer theory provides a better prediction of the experimental drying curve (within experimental uncertainty);
- c) Since  $X_c$  is reached earlier when the transfer coefficients are constant the  $T_s$  and  $T_b$  rise earlier than the experimental ones or when the transfer coefficients vary. As the transfer coefficient ratios 4.10 and 4.22 are the same,  $T_s^*$  is unchanged for both simulations.

This result suggests that the heat and mass transfer coefficients determined under low mass flux conditions (or from heat transfer correlations) should be corrected for the effect of the diffusion mass flux when air temperatures as high as 180 °C are considered. It is important to note that in the range of  $\theta_{\rm K}$  and  $\theta_{\rm h}$ reached in case of convective drying, the application of the boundary layer, penetration or film theories gives the same correction (within 1 to 2 %) of the transfer coefficient. Thus, in case of convective drying, the mass transfer rate reduction can be taken into account by using the result of any of these correction procedures.

## 6.6.5 COMPARISON BETWEEN THE CONVECTIVE DRYING RUNS AND THE DRYING FRONT MODEL

Results of the X vs. t, T vs. t and N<sub>v</sub> vs. X curves from simulations ( $h_c^*$ ,  $K_{y^*}$ , cor = 1,  $T_t^*$ ) for experiments no. re18, co8 and re21 are displayed in Figures 6.11 (6.10b), 6.12 (6.13a) and 6.14 (6.13b) respectively. These runs were chosen to cover the spectrum of parameters for which no detailed data have been presented previously.



Figure 6.11a The drying curve for run no. re18



Figure 6.11b The surface and bottom temperatures for run no. re18

•


Figure 6.12a The drying curve for run no. co8



Figure 6.12b The surface and bottom temperatures for run no. co8

.



Figure 6.13a The drying rate curve for run no. co8



Figure 6.13b The drying rate curve for run no. re21



Figure 6.14a The drying curve for run no. re21



Figure 6.14b The surface and bottom temperatures for run no. re21

i

All the experimental  $N_v$  vs. X curves presented show no extensive constant drying rate period in agreement with the doubts raised by Keey (1972) and van Brakel (1980) about the systematic representation of "strict" constant drying rate periods even for the case of a capillary porous medium. In Figures 6.11b and 6.12b,  $T_s$  is slightly lower than  $T_b$  at the end of the P.C.D.R.P.; this indicates that two-dimensional heat transfer effects affect at least partially the shape of the drying rate curve. Since during the experiments, the data acquisition was not started as soon as the sample was introduced in the test section and as the surface temperature is underestimated when temperature gradients are present, the experimental drying rate is higher than the simulated one at the beginning of drying.

The comparison of the experimental results from runs no. re18, co4, co7 co8, co11, re21 and re6 with the drying front model (Dostie, 1991) predictions demonstrate its ability (in the parameter range investigated) to evaluate satisfactorily:

a) The drying curve (X vs. t) and to;

- b) The T<sub>b</sub> vs. t curve and T<sub>s</sub> level at the end of drying. The experimental bias on the T<sub>s</sub> measurement did not allowed us to verify directly the drying front prediction of the T<sub>s</sub> vs. t curve when  $X < X_c$ ;
- c) The overall behavior of N<sub>v</sub> on the drying rate curve is rather well reproduced.

### 6.7 COMBINED CONVECTIVE AND I.R. DRYING SIMULATIONS

6.7.1 THE SURFACE TEMPERATURE MEASUREMENT BIAS IN THE COMBINED CONVECTIVE-I.R. DRYING PROCESS

In order to quantify the effect of the surface thermocouple on the  $T_s$  measurement in case of combined convective-I.R. drying, the same study as in 6.6.2 was carried out. However, here the already defined temperatures are presented as a function of the absorbed ( $q_{ab}$ ) heat flux at the surface. In FLUX2D,  $q_{ab}$  was specified through variation of h<sup>\*</sup> and  $T_{\infty}^*$  while for  $T_{be}$ ,  $T_{b1}$ ,  $T_{se}$ ,  $T_{s1}$ , it was evaluated from an energy balance at the surface with  $T_{s1}$  as the surface temperature.

Figure 6.15 displays  $T_{be}$ ,  $T_{b1}$ ,  $T_{se}$ ,  $T_{s1}$ ,  $T_{c2D}$  and  $T_{s2D}$ . It is observed that:

- a) T<sub>be</sub> and T<sub>b1</sub> are close for the 5.5 and 10.3 mm samples;
- b)  $T_{se}$  and  $T_{s1}$  increase almost linearly with  $q_{ab}$ . The same phenomenon occurs for  $T_{s2D}$  and  $T_{c2D}$ ;
- c) For a given  $q_{ab}$ , the difference between  $T_{se}$  and  $T_{s1}$  is comparable to the difference between  $T_{s2D}$  and  $T_{c2D}$  especially if one account for the unknown additional thermal contact resistance between the thermocouple and the beads as well as the uncertainty on the exact location of the thermocouple measuring point;
- d) T<sub>s2D</sub> is greater than T<sub>s1</sub> which is not the solution, at the surface, of the steady state two dimensional temperature field (within the sample) since the rate of variation of T<sub>s1</sub> as a function of time is probably too high (see T vs. t curves).

Although temperature gradients exist during the P.C.D.R.P. of the combined convective-I.R. drying runs, the much higher bed thermal conductivity (k ~ 1.2-1.6 W/mK) and lower temperature gradients ( $T_{se}$ - $T_{be}$ ~ 20 °C) do limit the fin effect (between 2 to 4 °C) on the  $T_s$  measurement. A significant fraction of the difference between  $T_{se}$  and  $T_{s1}$  might also be due to possible variations of  $E_s$  with the surface moisture content. Such effect on  $E_s$  has been quantified by Navarri (1991) for sea sand (d = 200-250 µm);  $E_s$  was 0.77, from an energy balance during the constant drying rate period while it was 0.65, from an energy balance with dry sand on a controlled heat sink.

It can be concluded that the drying front model  $(h_c^*, K_y^*, cor = 1, q_{is}^*)$  predicts  $T_b$  quite well at the end of drying for most of the combined convective and I.R. drying runs.



Figure 6.15 An evaluation of the experimental surface temperature measurement bias for the combined convective and IR. drying runs

I

# 6.7.2 THE DRYING FRONT POSITION CORRECTION EFFECT IN THE COMBINED CONVECTIVE-I.R. DRYING PROCESS

The effect of the correction to the drying front position for the combined convective-I.R. drying runs is quantified in Table 6.3 where the run identification number,  $T_{\infty}^{*}$ ,  $q_{is}^{*}$ ,  $t_{oe}$ ,  $t_{o1}$ ,  $\Delta t_{o1}$ %,  $t_{o0}$ ,  $\Delta t_{o0}$ %,  $T_{be}$ ,  $T_{b1}$ ,  $T_{b0}$ ,  $T_{s1}$  and  $T_{s0}$  are reported.  $t_{oe}$ ,  $t_{o1}$  and  $t_{o0}$  are the experimental and predicted overall drying times with the drying front model ( $h_c^{*}$ ,  $K_y^{*}$ ,  $q_{is}^{*}$ ) when cor= 1 or 0 respectively. These data show that:

- a) The average differences between the experimental and predicted  $t_o$  are 2.9 % (cor = 1, standard deviation= 3.6 %) and 0.3 % (cor = 0, standard deviation = 3.9 %); thus on the average  $t_o$  is slightly underpredicted when the drying front correction is applied; the prediction is closer without correction;
- b)  $T_{be}$  is, for most cases, closer to  $T_{b0}$  than to  $T_{b1}$  ( $T_{b1} \leq T_{b0} \leq T_{be}$ ). This suggests that the diffusion resistance of the dried layer is adequately taken into account when no drying front correction is applied;
- c) The differences between  $T_{s1}$  and  $T_{s0}$  are low considering the temperature level reached.

While  $t_o$  is predicted equally well when cor is equal to 1 or 0, the improved prediction of  $T_b$  at the end of drying suggests that it might not be justified to apply the drying front position correction to evaluate the mass transfer resistance. Figures 6.16 (6.17a) and 6.18 (6.17b) present comparison between the experimental results (Run no. ir1 and ir4 respectively) and simulations with and without drying front correction ( $h_c^*$  or  $h_{cp}^*$ ,  $K_y^*$ , cor = 0 or 1,  $q_{is}^*$ ) for the X vs. t, T vs. t and  $N_v$  vs. X. The simulated X vs. t curves (Figures 6.16a and 6.18a) are within  $\pm 4$  % (with respect to X<sub>in</sub>) of the experimental one.

#### TABLE 6.3

.

...

# MEASURED AND SIMULATED DRYING TIMES AND BOTTOM TEMPERATURES AT THE END OF DRYING WITH AND WITHOUT DRYING FRONT CORRECTION FOR COMBINED CONVECTIVE AND I.R. DRYING

| Run         | Τ_∞*     | q <sub>is</sub> | t <sub>oe</sub> | t <sub>o1</sub> | ∆t <sub>o1</sub> % | t <sub>o0</sub> | ∆t <sub>o0</sub> % | T <sub>be</sub> | T <sub>b1</sub> | т <sub>ь0</sub> | T <sub>s1</sub> | T <sub>so</sub> |
|-------------|----------|-----------------|-----------------|-----------------|--------------------|-----------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| No.         | <u> </u> |                 |                 |                 |                    |                 |                    |                 |                 |                 |                 |                 |
| (.)         | (°C)     | (°C)            | min.            | min.            | (.)                | min.            | (.)                | (°C)            | (°C)            | (°C)            | (°C)            | (°C)            |
| ir17        | 79.2     | 6810            | 20.3            | 18.4            | -9.8               | 18.8            | -8.1               | 81              | 74              | 78              | 124             | 129             |
| ir18        | 86.1     | 20340           | 7.7             | 6.9             | -11.0              | 7.1             | -8.6               | 97              | 86              | 91              | 213             | 221             |
| i85h        | 145.0    | 20740           | 6.7             | 6.6             | -1.5               | 6.7             | 0.0                | 8 <del>9</del>  | 89              | 93              | 238             | 253             |
| <u>i83h</u> | 141.7    | 20770           | 6.7             | 6.7             | 0.0                | 6.9             | 2.9                | <u>9</u> 1      | 88              | 93              | 232             | 242             |
| ir2         | 81.1     | 12110           | 22.4            | 22.1            | -1.3               | 22.8            | 1.8                | 91              | 85              | 89              | 203             | 210             |
| ir3         | 83.1     | 16980           | 17.0            | 16.3            | -4.2               | 16.8            | -1.2               | 92              | 88              | 93              | 247             | 256             |
| ir1         | 80.0     | 6930            | 35.5            | 36.0            | 1.4                | 37.2            | 4.6                | 80              | 79              | 83              | 149             | 153             |
| ir5         | 79.9     | 6890            | 36.2            | 36.1            | -0.3               | 36.7            | 1.4                | 83              | 78              | 80              | 138             | 141             |
| ir7         | 79.8     | 6860            | 35.5            | 35.5            | 0.0                | 36.7            | 3.3                | 82              | 76              | 80              | 137             | 141             |
| ir9         | 79.8     | 6840            | 36.7            | 36.9            | 0.5                | 38.4            | 4.5                | 82              | 79              | 82              | 140             | 143             |
| ir4         | 86.7     | 20520           | 14.0            | 13.6            | -2.9               | 14.1            | 0.7                | 95              | 89              | 94              | 276             | 286             |
| ir6         | 85.6     | 20510           | 14.7            | 13.3            | -10.0              | 13.8            | -6.6               | 94              | 86              | 91              | 270             | 281             |
| ir8         | 83.0     | 20490           | 13.7            | 13.6            | -0.7               | 14.0            | 2.2                | 93              | 87              | 92              | 258             | 267             |
| ir10        | 83.7     | 20510           | 14.0            | 13.7            | -2.2               | 14.3            | 2.1                | 93              | 88              | 93              | 252             | 259             |
| ir11        | 180.0    | 7660            | 24.7            | 24.0            | -2.9               | 24.6            | -0.4               | 87              | 77              | 83              | 175             | 182             |
| ir13        | 180.0    | 7710            | 22.9            | 21.8            | -4.9               | 22.4            | -2.3               | 87              | 76              | 82              | 175             | 182             |
| ir15        | 179.8    | 7660            | 22.4            | 21.7            | -3.2               | 22.8            | 1.8                | 88              | 77              | 83              | 176             | 183             |
| ir12        | 183.3    | 21370           | 11.8            | 11.8            | 0.0                | 12.3            | 4.1                | 94              | 87              | 93              | 292             | 303             |
| ir14        | 181.1    | 21370           | 11.6            | 11.6            | 0.0                | 12.0            | 3.4                | 96              | 88              | 93              | 290             | 300             |
| ir16        | 180.1    | 21380           | 12.1            | 11.6            | -4.2               | 12.1            | 0.0                | 98              | 87              | 92              | 290             | 301             |
|             |          |                 |                 | Av.             | -2.9               |                 | 0.3                |                 |                 |                 |                 |                 |
|             |          |                 |                 | Stdev.          | 3.6                |                 | 3.9                |                 |                 |                 |                 |                 |







Figure 6.16b The surface and bottom temperatures for run no. ir1: test of the front position correction

Ĩ

Į.



Figure 6.17a The drying rate curve for run no. ir1: test of the front position correction



Figure 6.17b The drying rate curve for run no. ir4: test of the front position correction



Figure 6.18a The drying curve for run no. ir4: test of the front position correction



Figure 6.18b The surface and bottom temperatures for run no. ir4: test of the front position correction

Ĩ

For t < t<sub>c</sub>, the simulated T<sub>s</sub> and T<sub>b</sub> vs. t curves are higher than the experimental ones though the difference decreases as t get closer to t<sub>c</sub>. For T<sub>s</sub>, a fraction of this difference is due to the bias discussed in 6.7.2 and 5.8.2. For t > t<sub>c</sub>, T<sub>se</sub> is biased while simulated T<sub>b</sub> are higher than T<sub>be</sub> by a maximum of 6 °C.

The simulation with no drying front position correction (cor = 0) predict a more abrupt fall of  $N_v$  (Figures 6.17a and b), as compared to the one with drying front position correction (cor = 1). The highest rate (~ 4 %) observed with the numerical results (Run no. ir4) is a mainly a consequence of using  $h_{cp}^{-1}$  determined with  $h_{cc}^{-1}$  and the boundary layer theory. However, both simulations (cor = 0 or 1) approximate quite well the overall behavior of the N<sub>v</sub> vs. X curve.

# 6.7.3 THE TRANSFER COEFFICIENTS CORRECTION AND THE DRYING FRONT MODEL RESULTS IN THE COMBINED CONVECTIVE-I.R. DRYING PROCESS

An upper bound on the effect of the transfer coefficient correction procedure on the combined process is provided by run no. ir15 for which the convective heat transfer represents about 40 % of the overall heat transfer to the sample during the P.C.D.R.P..

Figures 6.19 (a,b) and 6.20a show a comparison between the experimental results (Run no. ir15) and simulations with and without correction of the transfer coefficient ( $h_{cBL}^{+}$ ,  $K_{yBL}^{+}$ , cor= 1,  $q_{is}^{+}$ ) for X vs. t, T vs. t and  $N_v$  vs. X, respectively. It is observed that the drying curve (Figure 6.19a) is predicted within experimental uncertainty when the transfer coefficient are varied; this is linked to a more accurate prediction of the T<sub>s</sub> (Figure 6.19b) level during the P.C.D.R.P. (when  $K_{yBL}^{+}$  is not corrected,  $T_s^{+}$  is smaller by 4 °C). When  $h_{cBL}^{+}$  and  $K_{yBL}^{+}$  are kept constant, X<sub>c</sub> is reached earlier which leads to a predicted t<sub>o</sub>, 15 % lower than the experimental one (as compared to 3 % lower when  $h_{cBL}^{+}$  and  $K_{yBL}^{+}$  are varied). The reduction of the mass transfer rate as a result of the surface diffusion mass flux represents (within the parameter range investigated) 8 % of the experimental one (Figure 6.20a) during the P.C.D.R.P. in the combined convective-I.R. drying process.

•



Figure 6.19a The drying curve for run no. ir15: test of the transfer coefficient correction procedure (B.L.T.)



Figure 6.19b The surface and bottom temperatures for run no. ir15: test of the transfer coefficient correction procedure (B.L.T.)

ſ

.



Figure 6.20a The drying rate curve for run no. ir15: test of the transfer coefficient correction procedure (B.L.T.)



Figure 6.20b The drying rate curve for run no. ir12

# 6.7.4 COMPARISON BETWEEN EXPERIMENTAL COMBINED CONVECTIVE-I.R. DRYING DATA AND THE DRYING FRONT MODEL PREDICTIONS

÷.

1

Results for X vs. t, T vs. t and N<sub>v</sub> vs. X curves from simulations ( $h_c$  or  $h_{cp}$ , K<sub>y</sub>, cor = 1,  $q_{is}$ ) for run no. ir12, ir2 and i85h are drawn in Figure 6.21 (6.20b), 6.22 (6.23a) and 6.24 (6.23b) respectively. These runs were chosen to cover the spectrum of parameters for which no detailed data have been previously presented.

Run no. ir12 is a typical case of the highest mass flux recorded. In Figure 6.21a, the differences appearing on the X vs. t curve result from a lower simulated  $N_v$  from X<sub>in</sub> to 0.2 as observed in Figure 6.20b. However, simulated results stays within the experimental uncertainty on the drying curve. The t<sub>c</sub> time lag (7 %) in Figure 6.21b has the same origin.

Run no. ir2 represents an intermediate heat flux case  $(q_{is} = 12110 \text{ W/m}^2)$  for which it was not possible to evaluate  $h_c^*$  ( $h_{cp}^*$  was used). The agreement in Figures 6.22 and 6.23a between the simulations and experimental results is comparable to the one found for the other simulated cases and suggests (see also simulation for run no. ir4) that it is possible to use correlated heat transfer coefficient ( $h_{cc}^*$ ) corrected for high mass transfer rate effect ( $h_{cp}^*$ ).

Run no. i85h was carried out with a 5.5 mm sample. The drying rate curve (Figure 6.23b) is similar in shape to the one already presented in Figure 6.13b for the 5.5 mm sample. The drying curve is closely reproduced within less than 4 %.

Results for the X vs. t, T vs. t and N<sub>v</sub> vs. X curves from simulations ( $h_{cBL}$ , K<sub>yBL</sub>, cor = 1,  $q_{is}$  = 7920 or 22020 W/m<sup>2</sup>) for experiments no. i38h and i76h (b = 19.9 mm) are drawn in Figures 6.25 (6.26a) and 6.27 (6.26b) respectively. Since in the experiments the surface temperature was controlled to within ± 5 °C approximately at 140 °C (Run no. i38h) and 180 °C (Run no. i76h) using the sliding plate (Figure 3.3a), in the simulation  $q_{is}$  was 0 or  $q_{is}$  so that the



Figure 6.21a The drying curve for run no. ir12



Figure 6.21b The surface and bottom temperatures for run no. ir12

÷



Figure 6.22a The drying curve for run no. ir2



Figure 6.22b The surface and bottom temperatures for run no. ir2

ŝ



Figure 6.23a The drying rate curve for run no. ir2



Figure 6.23b The drying rate curve for run no. i85h



Figure 6.24a The drying curve for run no. i85h













Figure 6.26a The drying rate curve for run no. i38h: The transition to the boiling point temperature at low radiative heat flux ( $q_{is} = 7920 \text{ W}/\text{m}^2$ )



Figure 6.26b The drying rate curve for run no. i76h: The transition to the boiling point temperature at high radiative heat flux ( $q_{is}^* = 22020 \text{ W} / \text{m}^2$ )

đ,

Ą









surface temperatures were 180 °C and 220 °C (within  $\pm 5$  °C) respectively. These higher temperatures were used as they represent more closely the real temperatures existing at the surface when the measured (biased) temperature was chosen for the control during the experiments.

1

ſ

 $h_{cBL}^{*}$  (29 W/m<sup>2</sup>K) was obtained from the experimental  $h_{c}^{*}$  (23 W/m<sup>2</sup>K, Table 5.4b) corrected with the boundary layer theory while  $K_{yBL}^{*}$  (0.09 mole/m<sup>2</sup>s) is given in Table 5.5 for sample No. XII ( $K_{yBL}^{*} = 0.10$  mole/m<sup>2</sup>s when  $H_{c}$  is taken into account). Constant and variable  $h_{cBL}^{*}$  and  $K_{yBL}^{*}$  were used in the computation of results presented in these figures.

When the transfer coefficients are kept constant,  $T_s^*$  stabilizes to a value lower than the boiling point (89 °C,  $q_{is}^* = 7920 \text{ W/m}^2$ ; 94 °C,  $q_{is}^* = 22020 \text{ W/m}^2$ ). These values are comparable to  $T_s^*$  found for run no. i79h (b = 10.3 mm,  $T_s^* \sim 85$  °C,  $q_{is}^* = 6760 \text{ W/m}^2$ ) and run no. i80h (b = 10.3 mm,  $T_s^* \sim 96$  °C,  $q_{is}^* = 20460 \text{ W/m}^2$ ) in free convection-I.R. drying (Table 5.2) for which it is possible to identify  $K_y^*$  to be of the same order as  $K_{yBL}^*$ : 0.09 (Run no. i79h) and 0.05 (Run no. i80h).

When the transfer coefficients are varied according to the boundary layer theory predictions, the initially small value of  $K_{yBL}^{*}$  and its lowering lead to an increase of  $T_s^{*}$  up to the boiling point temperature. At this point, in the model bulk flow of vapor at the surface is possible since a convective term is included in equation 6.2. The good quantitative agreement in terms of drying curve and the good qualitative prediction of  $T_s$  and  $T_b$  evolution with time, at low and high heat fluxes in Figures 6.25 to 6.27 between the experimental and numerical results with variable heat and mass transfer coefficients suggest that the reduction of the mass transfer coefficient constitute an appropriate explanation to clarify why the observed  $T_s$  reach the boiling point temperature in case a small equivalent mass transfer coefficient can be identified to link the internal (within the material) and external mass transport.

### 6.8 CONCLUSIONS

Comparison between the convective as well as combined convective-I.R. drying results and simulations with the drying front model have shown that the following parameters are quite well reproduced by the model presented:

- (a) The drying curve and drying time.
- (b) The bottom temperature evolution with time.
- (c) The surface temperature evolution up to the critical point and the surface temperature at the end of drying (convection).
- (d) The overall shape of the drying rate curve.

Results from the simulations have also demonstrated that:

- (e) The experimentally measured surface temperature during the receding front period was lower than expected due to a bias generated by the surface thermocouple.
- (f) As a result of experimental uncertainties (on the X vs. t and T vs.t curves) and the low average critical moisture content.( $X_c \sim 0.024$ ), it is not possible to decide if a correction of the drying front position to evaluate the mass transfer resistance within the materials is appropriate. However, better qualitative agreement was found for the N<sub>v</sub> vs. X curve when the drying front empirical correction is used in the receding front period.

(g) Within the parameter range investigated, the effect of the diffusion mass flux on the heat and mass transfer coefficients leads to a decrease of the evaporation rate by a maximum of 8 % for both the purely convective and combined processes.

1

1

(h) The mass transfer coefficient decrease as a result of the high mass transfer flux effect at the surface level was evaluated as a plausible explanation to clarify why the evaporation temperature of the surface contaminated 19.9 mm sample (chapter V) reach the boiling point.

Finally, it can be concluded that the proposed drying front model (Dostie; 1991, 1992) is a very efficient tool to predict the key features of the drying process (convective and combined convective-I.R.) within the parameter range investigated (glass beads, d=90-105  $\mu$ m, b= 5.5-19.9 mm, T<sub>∞</sub><sup>+</sup> ~ 80-180 °C, v<sub>∞</sub><sup>+</sup> = 2.0-5.2 m/s, T<sub>d</sub><sup>+</sup> = -10.6-+17.9 °C, with or without q<sub>is</sub><sup>+</sup> = 6810-22020 W/m<sup>2</sup>).

#### **CHAPTER VII - CONCLUSIONS**

#### 7.1 SUMMARY

..

This research has resulted in the design and development of an experimental facility to study the combined convective-I.R. drying process.

First, the convective drying of a capillary porous material (glass beads, d= 90-105  $\mu$ m) was studied in high temperature flow conditions (b = 5.5-20 mm,  $T_{\infty}^{*} \sim 80-180 \ ^{\circ}C$ ,  $v_{\infty}^{*} \sim 2.0-6.3 \ ^{\circ}m/s$ ,  $T_{d}^{*} \sim -1.8 - +7.8 \ ^{\circ}C$ ). The experimental results were found to be in good agreement with the classical results for analogy between the transfer of heat and mass expressed in terms of average heat and mass transfer coefficient ratios (Bird et al., 1960). This conclusion was found to apply (within experimental uncertainty) whether the transfer coefficients are corrected or not to account for the effect of the surface diffusion mass flux and\or density variation. It was also observed that the critical moisture content is independent of the convective drying parameters and sample thickness.

Second, combined convective-I.R drying of a capillary porous material (glass beads,  $d = 90-105 \mu m$ ) was examined experimentally (b = 5.5-19.9 mm,  $T_{m}^{*} \sim 80-180^{\circ}C, v_{m}^{*} = 2.0-6.2 \text{ m/s}, T_{d}^{*} = -10.6 - +17.9 \circ C, q_{is}^{*} = 6810 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 - 10.6 -$ 22020 W/m<sup>2</sup>). It was observed that there is a link between the evaporation temperature and crust formation on the surface. An increase in the heat transfer coefficient was observed to occur when the surface reaches the boiling point and is higher than that of the flowing air. The necessity to take into account the effect of high mass transfer flux on the heat transfer coefficient (when convection is combined with I.R. heating) has been demonstrated. Further, the analogy between the transfer of heat and mass (expressed in terms of average heat and mass transfer coefficient ratios) was found to be verified quite well when the mass transfer resistance is mainly determined by the external boundary layer whereas it is not when the mass transfer coefficient is reduced as a result of crust Lastly, It was observed that the critical moisture content is formation. independent of the convective drying parameters, sample thickness ,the overall incident heat flux and surface contamination.

Third, a drying front model developed by Dostie (1991, 1992) was discussed and tested. Comparison, within the whole experimental range, between the drying front model predictions and the experimental results of this study in convection drying and for the combined process have shown that the drying time, the bottom temperature evolution, the surface temperature evolution up to the critical point and the overall shape of the drying rate curve were quite well reproduced by the model. Simulations have also shown that, within experimental range, the effect of the diffusion mass flux on the heat and mass transfer coefficients leads to a decrease of the evaporation rate by a maximum of 8 % for both the purely convective and combined processes. The mass transfer coefficient reduction was evaluated as a plausible explanation to clarify why the evaporation temperature of a surface contaminated 19.9 mm sample (chapter V) reaches the boiling point temperature.

# 7.2 CONTRIBUTIONS TO KNOWLEDGE

The following are the original contributions of this thesis:

- a) In the combined high temperature convective-I.R drying process, the heat and mass transfer analogy (as expressed in terms of heat and mass transfer coefficients ratios) was found to be verified when the mass transfer resistance is mainly determined by the external boundary layer whereas it is not when the mass transfer coefficient is diminished as a result of crust formation.
- b) A convective heat transfer coefficient increase has been experimentally demonstrated to exist when the surface temperature has reached the boiling point and the gas temperature is lower than the surface temperature. This effect decreases the drying rate and leads to a lower efficiency of the I.R. heating process.
- c) The necessity to take into account the effect of high mass transfer flux on the heat transfer coefficient (when convection is combined with I.R. heating) has been demonstrated.
- d) The critical moisture content is the same for both the convective drying and the combined high temperature convective-I.R. drying processes.
- e) It was demonstrated that the combined convective-I.R. drying process of a non-hygroscopic material proved to be well predicted with a drying front model.

#### 7.3 RECOMMENDATIONS FOR FUTURE WORK

- a) Develop a reliable calibration and on-line measurement procedure to evaluate the incident I.R. heat flux under combined convective-I.R. heating.
- a) Develop an efficient surface temperature measurement technique not sensitive to the I.R. heat flux (over the whole useful wavelength range).
- c) Further experimentation should be carried out to determine the detailed temperature field within the test sample for closer comparison with predictions of the drying front model or other drying models.
- d) Carried out an experimental study of the phenomenon related to the observed increase of the convective heat transfer coefficient.
- e) Study experimentally continuous and intermittent combined convective-I.R. drying of hygroscopic and/or semi-transparent materials.
- f) Evaluate the appropriateness of the drying front correction for the cases of materials with much higher critical moisture contents and/or much lower thermal conductivity ( $k_d \sim 0.03$  W/mK). For example, very fine sand (d < 50 µm) or acoustic tiles (Dostie et al., 1988).
- g) Extend the applicability of the drying front model for hygroscopic materials and other combined heating modes (microwave, high-frequency).
- b) Verify the applicability of the high mass transfer rate correction procedures and analogy to the case of combined convective and microwave or high-frequency drying.

#### REFERENCES

...

- ----

Adrie, F., Jacobs, G. and Welgraven, D., 1988. A simple model to calculate the Sherwood and Nusselt number for discs of various shape, Int. J. Heat Mass Transfer, Vol. 31, No. 1, pp. 119-127.

American Society of Heating Refrigerating and Air-Conditioning Engineers Inc., 1977. <u>Ashrae Handkook 1977 Fundamentals</u>, New-York.

Arai, N., Takahashi, S., Hasatani, M. and Sugyama, S., 1979 a. Simultaneous heat and mass transfer on the surface of an optically thick semitransparent liquid heated by a radiant heat source, Heat Transfer Japanase Res., Vol. 8, pp. 1-9.

Arai, N., Takahashi, S. and Sugyama, S., 1979 b. Natural-convection heat and mass transfer from a horizontal upward-facing plane surface to air -experimental study on a plane surface heated by radiation, Heat Transfer Japanase Res., Vol. 8, pp. 94-101.

Audet, D., Boucher, C. Caumartin A. and Skeene, C., 1986. <u>Probabilités et</u> <u>statistiques</u>, Gaëtan Morin éditeur, Chicoutimi.

Azizi, S., Moyne, C. and Degiovanni, A., 1988. Approche expérimentale et théorique de la conductivité thermique des milieux poreux humides, Int. J. Heat Mass Transfer, Vol. 31, No. 11, pp. 2305-2317.

Baines, D. J., 1970. A comparative theoretical evaluation of five commonly used types of unsteady heat flux sensor, report HSA 27, Australian Defence Scientific Service, Weapons Research establishment.

Basilico, C. and Martin, M., 1983. Approche expérimentale des mécanismes de transfert au cours du séchage à haute température d'un bois résineux, Int. J. Heat Mass Transfer, Vol. 27, No. 5, pp. 657-668.

Bédard, N., 1985. Présentation d'un programme caractérisant l'échange radiatif à l'intérieur d'une enceinte, Rapport interne IREQ 8RT-3454-G, Varennes, Québec, Canada.

: i

ſ

Ben Nasrallah, S. and Arnaud, G., 1986. Séchage d'un milieu poreux contenant une faible teneur en eau, Int. J. Heat Mass Transfer, Vol. 29, No. 9, pp. 1443-1449.

Berger, D. and Pei, D.C.T., 1973. Drying of hygroscopic capillary porous solids- A theoretical approach, Int. J. Heat Mass Transfer, Vol. 16, pp. 293-302.

Bird, R. B. and Stewart, W. E. and Lightfoot, E. N., 1960. *<u>Transport Phenomena</u>*, John Wiley & Sons, New-York.

Birkebak, R. C., 1972. A technique for measuring spectral emittance, The Review of Scientific Instruments, Vol. 43, No. 37, pp. 1027-1030.

Bories, S., 1988. Recent advances in modelisation of coupled heat and mass transfer in capillary-porous bodies, Drying'89, A. S. Mujumdar Ed., Hemisphere Pub. Corp., pp. KL.47-KL.61.

Bragg, G. M., 1974. *Principles of experimentation and Measurement*, Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Buckingham, E. A., 1907. Studies on the movement of soil moisture, U. S. Dept. Agr. Bull., No. 38.

Ceaglske, N. H. and Hougen, O. A., 1937. The drying of granular solids, Trans. A.I.Ch.E., Vol. 30, pp. 283-314.

Charlaix, E., Hulin, J. P. and Plona, T. J., 1987. Experimental study of tracer dispersion in sintered glass porous materials of variable compaction, Phys. Fluids, Vol. 30, No. 6, pp. 1690-1698.

Chen, P., 1986. Mathematical modelling of drying and freezing processes in food industry, Ph.D. Thesis, Department of Chemical Engineering, University of Waterloo.

Chen, P. and Pei, D. C.T., 1989. A mathematical model of drying processes, Int. J. Heat Mass Transfer, Vol. 32, No. 2, pp. 297-310.

Chiang, W. C., 1987. Analysis of temperature and moisture profiles during apple drying, Ph.D. Thesis, Department of Chemical Engineering, Washington State University.

Chilton, T. H. and Colburn, A. P., 1934. Mass transfer (absorption) Coefficients, Ind. Eng. Chem., Vol. 26, No. 11, pp. 1183-1187.

Collignan, A. 1990, personal communication.

19 12Comings, E.W. and Sherwood, T. K., 1934. The drying of solids -VII Moisture movement by capillarity in drying granular materials, Ind. Chem. Eng., Vol. 26, No. 10, pp. 1096-1097.

Corben, R. W. and Newitt, M. C., 1955. The mechanism of the drying of solids Part VI: The drying characteristics of porous granular material, Trans. Instn Chem. Engrs, Vol. 33, pp. 52-63.

Crausse, P., 1983. Etude fondamentale des transferts couplés de chaleur et d'humidité en milieu poreux non saturé. Thèse d'État, Institut National Polytechnique de Toulouse, Toulouse.

Cunningham, R. M. and Kelly, J. J., 1980. Moisture concentration profiles in drying packed beds, Drying'82, A. S. Mujumdar Ed., Hemisphere Pub. Corp., pp. 178-189.

Dayan, A. and Gluekler, E. L., 1982. Heat and mass transfer within an intensely heated concrete slab, Int. J. Heat Mass Transfer, Vol. 25, No. 10, pp . 1469-1476.

Delhaye, J. M., 1981. <u>Thermohydraulics of two-phase systems for industrial design</u> <u>and nuclear engineering</u>, McGraw-Hill Series in Thermal and Fluids Engineering, New-York.

De Vriendt, A. B., 1984. <u>La transmission de la chaleur: Volume 2 Introduction au</u> rayonnement thermique, Gaëtan Morin Ed., Chicoutimi, Québec, Canada.

Dinulescu, H. A. and Eckert , E. R. G., 1980. Analysis of the one dimensional moisture migration caused by temperature gradients in porous medium, Int. J. Heat Mass Transfer, Vol. 23, pp. 1069-1077.

Dostie, M., 1991. SELECT 2.3: Description du logiciel et état de développement, Rapport intorne LTEE-90-1-011-71, Shawinigan, Québec, Canada.

Dostie, M., 1992. SELECT 3.0: Description du logiciel et état de développement, Rapport interne LTEE-92, Shawinigan, Québec, Canada.

Eckert, E. R. G. and Drake, R. M., 1972. <u>Analysis of Heat and Mass Transfer</u>, McGraw-Hill Series in Mechanical Engineering, New-York.

Eckeri , E. R. G. and Faghri, M., 1980. A general analysis of moisture migration caused by temperature differences in an unsaturated porous medium, Int. J. Heat Mass Transfer, Vol. 22, pp . 1613-1623.

Endo, A, Shishido, I., Suzuki, M. and Ohtani, S., 1977. Estimation of critical moisture content, A.I.Ch. E. Symposium Series, Vol. 73, No. 163, pp. 57-62.

Enoch, I. E., 1984. Combined heat transfer inside fibrous material with external short wavelength radiation, Ph.D. Thesis, Department of Mechanical Engineering, University of Kentucky.

Franzen, K., Liang, H., Litchfield, B., Murakami, E., Nichols, C., Waananen, K., Miles, G. and Okos, M., 1987. Design and control of energy efficient drying processes with specific reference to foods: Volume 1 -Literature Review, Report No. DOE/ID/12608-2(Vol.1), Purdue University, West Lafayette, Indiana.

Gardner, W., 1920. The movement of moisture in soil by capillarity, Soil Sci., Vol. 7, pp. 313-317.

Greiner, M. and Winter, E. R. F., 1978. Forced flow evaporation at high mass transfer rates, Ger. Chem. Eng., Vol. 1, pp. 352-360.

Guyon, E., Oger, L. and Plona, T. J., 1987. Transport properties in sintered porous media composed of two particles sizes, J. Phys. D: Appl. Phys., Vol. 20, pp. 1637-1644.

Hadley, G. R., 1984. Numerical modelling of the drying of porous material, Proc. fourth Int. Drying Symp., Kyoto, Japan, pp.151-158.

Hanna, O T., 1962. Isothermal diffusion with a variable density, A.I.Ch.E. J., Vol. 8, No. 2, pp. 278-279.

Harmathy, T. Z., 1969. Simultaneous moisture and heat transfer in porous systems with particular reference to drying, I. & E. C. Fund., Vol. 8, No. 1, pp. 92-103.

Hasan, M., 1988. Cyclic phase change: Energy storage and recovery, Ph.D. Thesis, Chemical Engineering Department, McGill University, Montréal.

Hasatani, M., Arai, N., Itaya, Y. and Onoda, N., 1983. Drying of optically semitransparent materials by combined radiative-convective heating, Drying Technology, Vol. 1, No. 2, pp. 193-214.

Hasatani, M., Itaya, Y. and Miura, K., 1988. Hybrid drying of granular materials by combined radiative and convective heating, Drying Technology, Vol. 6, No. 1, pp. 43-67.

Haughey, D. P. and Beveridge, G. S. G., 1969. Structural properties of packed beds- A review, Can. J. Chem. Eng., Vol. 47, pp. 130-140.

7

Heertjes, P. M. and Ringens, W. P., 1956. The  $J_H$  and  $J_D$  factor of air use for drying, Chem. Eng. Sci., Vol. 5, pp. 226-231.

Holman, J. P., 1981. *Heat Transfer*, McGraw-Hill Book Comp., New-York.

4

Í

Holman, J. P., 1984. *Experimental Methods for Engineers*, McGraw-Hill Book Comp., New-York.

Huang, C. L. D., 1979. Multi phase moisture transfer in porous media subjected to temperature gradient, Int. J. Heat Mass Transfer, Vol. 22, pp. 1295-1307.

Hulin, J. P., Charlaix, E., Plona, T. J., Oger, L. and Guyon, E., 1988. Tracer dispersion in sintered glass beads with a bidisperse size distribution, A.I.Ch.E. J., Vol. 30, No. 4, pp. 610-617.

Illic, M. and Turner, I. W., 1989. Convective drying of a consolidated slab of wet porous material, Int. J. Heat Mass Transfer, Vol. 32, pp. 2351-2362.

Incropera E. P. and DeWitt, D. P., 1985. *Fundamentals of Heat and Mass Transfer*, John Wiley & Sons, New-York.

Kast, W., 1982. Coefficients for the combined heat and momentum transfer in laminar and turbulent boundary layers, Proc. 7 th. Int. Heat Tranf. Conf., Munich, Germany, Vol. 3, pp. 263-268.

Kast, W., 1984. Variation of heat and mass transfer coefficients for simultaneous heat and mass transfer, Int. Chem. Eng., Vol. 24, No. 8, pp. 23-28.

Kaviany, M. and Mittal, M., 1987. Funicular state in drying of a porous slab, Int. J. Heat Mass Transfer, Vol. 30, No. 7, pp. 1407-1418.

Kaviany, M., 1991. *Principles of Heat Transfer in Porous Media*, Springer-Verlag, New-York.

Kays, W. M. and Crawford, M. E., 1980. <u>Convective Heat and Mass Transfer</u>, McGraw-Hill Series in Mechanical Engineering, New-York.

Keey, R. B., 1972. *Drying Principles and Practice*, Pergamon Press, New-York.

Keey, R. B., 1978. Introduction to industrial drying operations, Pergamon Press, New-York.

Kline, S. J. and McClintock, F. A., 1953. Describing uncertainties in singlesample experiment, Mechanical Engineering, pp. 3-8.

Kobari, M., Shimizu, Y. and Endo, M., 1985. Contact drying of fibrous sheet material, Ind. Eng. Chem. Process Des. Dev., Vol. 24, pp. 188-194.

Krischer, O., 1963. *Die Wissenschaftlichen Grundlagen der Trocknungstechnik*, Vol. 1, 2nd. ed., Springer-Verlag, Berlin/Göttingen/Heidelberg.

Lewis, W. K., 1921. The rate of drying of solids materials, J. Ind. Eng. Chem., Vol. 13, No. 5, pp. 427-438.

Loughlin, K. F., Hadley-Coates, L. and Halhouli, K., 1985. High mass flux evaporation, Chem. Eng. Sci., Vol. 40, No. 7, pp. 1263-1272.

Luikov, A. V., 1966. *Heat and mass transfer in capillary porous bodies*, First Edition, Pergamon Press.

Maneval, J. E., McCarthy, M. J. and Whitaker, S., 1991. Studies of the drying process by NMR imaging, Drying'91, A. S. Mujumdar Ed., Hemisphere Pub. Corp.

Marseille, T. J., Schliesing J. S., Bell, D. M. and Johnson, B. M., 1991. Extending cooling tower thermal performance prediction using a liquid-side film resistance model, Heat Transfer Engineering, Vol. 12, No. 3, pp. 19-30.
Mendelson, H. and Yerazunis, S., 1965. Mass transfer at high mass fluxes: Part I Evaporation at the stagnation point of a cylinder, A.I.Ch.E. J., Vol. 11, No. 5, pp. 834-840.

į.

1

McCormick, D. and Roach, A., 1980. <u>Measurement. Statitics and Computation</u>, Chapman N. B. Ed., John Wiley & Sons, New-York.

Min, K. and Emmons, H. 1972, The drying of porous media, Proc. Heat Transfer and Fluid Mech. Inst., Northridge, California, pp 1-18.

Moffat, R. J., 1988. Describing the uncertainties in experimental results, Experimental Thermal and Fluids Science, Vol. 1, pp. 3-17.

Morgan, R. P. and Yerazunis, S., 1967. Heat and mass transfer during liquid evaporation from porous materials, Chem. Eng. Prog. Symp. Ser., Vol. 63, No. 79, pp. 1-13.

Moyne, C., 1987. Transferts couplés chaleur masse lors du séchage: prise en compte du mouvement de la phase gazeuse. Thèse d'état, Institut National Polytechnique de Lorraine, Nancy.

Murray, W. D. and Landis, F., 1959. Numerical and machine solution of transient heat conduction problems involving melting or freezing, Trans. A.S.M.E., J. Heat Transfer, Vol. 81C, No. 2, pp. 106-112.

Navarri, P., 1990. Étude du séchage mixte par infra-rouge et convection, Rapport interne CETIAT NTV 90 074, Villeurbanne, France.

Navarri, P., 1991. Étude du séchage mixte par infra-rouge et convection d'un produit granulaire non hygroscopique, Rapport interne CETIAT NTV 901 116, Villeurbanne, France.

Neale, G. H. and Nader, W. K., 1973. Prediction of transport processes within porous media: diffusive flow processes within homogeneous swarm of spherical particles, A.I.Ch.E. J., Vol. 19, pp. 112-119.

Nienow, A. W., 1967. Transfer processes with a high mass flux, Brit. Chem. Eng., Vol. 12, No. 11, pp. 1737-1743.

Nienow, A. W., Unahabhokha R. and Mullin, J. W., 1969. The mass transfer driving force for high mass flux, Chem. Eng. Sci., Vol. 24, pp. 1655-1660.

Nissan, A. H., Kaye, W. G.and Bell, J. R., 1959. Mechanism of drying thick porous bodies during the falling rate period. A.I.Ch.E. J., Vol. 5, P. 103-110.

Obot, N. T. and Traboid, T. A., 1992. On the rate balance between impingement water evaporation and heat transfer, Int. Comm. Heat Mass Transfer, Vol. 19, No. 1, pp. 51-58.

Orfeuil, M., 1987. *Electric Process Heating: Technologies / Equipment / Applications*. Battelle Press, Columbus, Richland.

Patankar, S. V., 1980. <u>Numerical Heat Transfer and Fluid Flow.</u> Series in Computational Methods in Mechanics and Thermal Sciences, McGraw-Hill Book Comp., New-York.

Peck, R. E., Vyas, K. C. and Toei, R., 1977. Capillary theory applied to drying, A.I.Ch.E. Symp. Ser., Vol. 73, No. 163, pp. 63-70.

Pépin, T., 1989. Développement d'une sonde mesurant la température de l'air sous un fort rayonnement: évaluation théorique de ladite sonde, Rapport interne LTEE, Shawinigan, Québec, Canada.

Perré, P., 1987. Le séchage convectif de bois résineux: choix, validation et utilisation d'un modèle. Thèse de docteur de l'Université Paris VII, Paris.

Perrin, B. and Darolles, D., 1988. Couplage entre transferts de chaleur et de masse à la surface de matériaux poreux utilisés en génie çivil, Rev. Gén. Therm. Fr., No. 323, pp. 585-590.

I

Perrin, B. and Foures, J. C., 1991. Détermination expérimentale du coefficient d'échange de masse en écoulement turbulent: prévision de la cinétique de séchage, Rev. Gén. Therm. Fr., No. 349, pp. 39-45.

ł,

ſ

Philip, J. R. and De Vries, D. A., 1957. Moisture movement in porous material under temperature gradient, Trans. Am. Geo. Union, Vol. 38, No. 2, pp. 222-232.

Pilitsis, S., 1986. A computational analysis of heat and mass transfer during the drying of granular porous media. M.Sc., Chemical Engineering Department, University of California, Davis.

Plumb, O. A., Spolek, G. E. and Olmstead, B. A., 1985. Heat and mass transfer in wood during drying, Int. J. Heat Mass Transfer, Vol. 28, pp. 1669-1678.

Prat, M., 1986 a. Analysis of experiments of moisture migration caused by temperature differences in unsaturated porous medium by means of twodimensional numerical simulation, Int. J. Heat Mass Transfer, Vol. 29, No. 7, pp. 1033-1039.

Prat, M., 1986 b. Heat and mass transfer predetermination between a drying material and an external flow, Drying'86, A. S. Mujumdar Ed., Hemisphere Pub. Corp., pp. 105-111.

Prat, M., 1991. 2D Modelling of drying of porous media: influence of edge effects at the interface, Drying technology, Vol. 9, No. 5, pp. 1181-1208.

Fuiggali, J. R., 1987. Séchage de produits naturels: du processus au procédé, Doctorat d'État, Université de Bordeaux I.

Reinsch, C. H., 1967. Smoothing by spline function, Numerische Mathematik, Vol. 10, pp. 177-183.

Ridgway, K. and Tarbuck, K. J., 1968. Voidage fluctuations in randomly-packed beds of spheres adjacent to a containing wall, Chem. Eng. Sci., Vol. 23, pp. 1147-1155.

Rogers, J. A. and Kaviany, M., 1990. Variation of heat and mass transfer coefficients during drying of granular beds, J. Heat Transfer, Trans. A.S.M.E., Vol. 112, , No. 3, pp. 668-674.

Rogers, J. A. and Kaviany, M., 1991. Funicular and evaporation front regimes in drying of ceramic beds, Int. J. Heat Mass Transfer, to appear (ref. Kaviany M., 1991).

Sala, A., 1986. <u>Radiant Properties of Materials: tables of radiant values for black</u> <u>body and real materials</u>, Physical Sciences Data 21, Elsevier, New-York.

Schadler, N. and Kast, W., 1987. A complete model of the drying curve for porous bodies - experimental and theoretical studies, Int. J. Heat Mass Transfer, Vol. 30, No. 10, pp. 2031-2044.

Schajer, G. S., Stanish, M. A. and Kayihan, F., 1984. A computationally efficient fundamental approach to drying hygroscopic and non-hygroscopic porous material, Trans. A.S.M.E., 84-WA-HT-13.

Schornhorst, J. R. and Viskanta, R., 1968. An experimental examination of the validity of the commonly used methods of radiant heat transfer analysis, J. Heat Transfer, Vol. 90, No. 4, pp. 429-436.

Seki, N., Fukusako S. and Tanaka, M., 1977. Drying phenomena of a horizontal wetted porous layer under high heat flux, Bulletin of the J.S.M.E., Vol. 20, No. 149, pp. 1484-1491.

Sherwood, T. K., 1929. The drying of solids -I, J. Ind. Chem. Eng., Vol. 21, No. 1, pp. 12-16.

Sherwood, T. K., 1937. The air drying of solids, Trans. A.I.Ch.E., Vol. 32, pp. 150-168.

Į

Sherwood, T. K. and Comings, E.W., 1933. The drying of solids -V Mechanism of drying of clays, J. Ind. Chem. Eng., Vol. 25, No. 3, pp. 311-316.

1

ţ

Shimizu, M., Hashimoto A., Hirota K., Honda T. and Watanabe, M., 1990. Infrared radiation drying of granular materials in constant rate period, CHISA 10th International Congress of Chemical Engineering, Praha, Czechoslovakia, august 26-31 1990, paper No. F6.3.

Siegel, R. and Howell, J. R., 1981. *Thermal Radiation Heat Transfer*. McGraw-Hill Series in Thermal and Fluids Engineering, New-York.

Smolsky, B. M. and Sergeyev, G. T., 1962. Heat and mass transfer with liquid evaporation, Int. J. Heat Mass Transfer, Vol. 5, pp. 1011-1021. Szentgyörgyi, S., Molnar, K. and Ôrvös, M., 1980. Modelling and calculation of the drying process of capillary porous materials, Drying'80, A. S. Mujumdar Ed., Hemisphere Pub. Corp, pp. 29-35.

Toei, R., Hayashi, S., Hasegawa, J., Kai, T. and Tanaka, S., 1964. The mechanism of drying of a bed of granular and powdered materials during the second falling rate period, Kagaku Kogaku (Chemical Engineering, Japan), Vol. 28, No. 6, pp. 458-467.

Van Brakel, J. and Heertjes, P. M., 1974. Homogeneous particle packings and porous masses. Some experimental techniques, Powder Technology, Vol. 9, pp. 263-271.

Van Brakel, J., 1980. Mass transfer in convective drying, Advances in Drying, A. S. Mujumdar Ed., Hemisphere Pub. Corp, Vol. 1, pp. 217-267.

Van Wylen, G. J., Sonntag, R. E. and Desrochers, P., 1981. *Thermodynamique Appliquée*, 2<sup>e</sup> édition, Édition du Renouveau Pédagogique, Montréal, Canada.

Wade, R. W. and Wayne S. S., 1962. Measurement of total emittance of several refractory oxides, cermets, and ceramics for temperatures from 600 °F to 2000 °F, NASA Technical Note D-998.

Weast, R. C., Astle, M. J. and Beyer, W. H., 1989. <u>CRC Handbook of Chemistry and</u> <u>Physics</u>, 69<sup>th</sup> Edition, CRC Press Inc., Boca Raton, Florida.

..

I

Webb, R. L., 1990. Standard romenclature for mass transfer processes, Int. Comm. Heat Mass Transfer, Vol. 17, pp. 529-535.

Wei, C. K., 1984. Heat and mass transfer in porous media in convective heating and/or microwave heating. Ph.D. Thesis, University of Minnesota, Montréal.

Whitaker, S., 1977. Simultaneous heat, mass and momentum transfer in porous media: a theory of drying, Advances in Heat Transfer, Academic Press, New-York, Vol. 13, pp. 119-205.

Wisniak, J., Fertilio, A. and Freed C., 1967. Critical moisture of sand and its properties, British Chem. Eng., Vol. 12, pp. 1590-1592.

Wong, P. Z., Koplik, J. and Tomanic, J. P., 1984. Conductivity and permeability of rocks, Phys. Rev. B, Vol. 30, No. 11, pp. 6606-6614.

Yagi, S., Kunii, D., Okada S. and Toyabe, R., 1957. Studies on the infrared drying of powdery and granular solids in falling rate period, Kagaku Kogaku, Vol. 21, No. 8, pp. 486-491.

## APPENDIX 1 THE EXPERIMENTAL SET-UP ACCESSORIES OR EQUIPMENTS

| USE WITHIN THE EXPERIMENTAL<br>Facility                                                                         | ACCESSORY OR<br>EQUIPMENT                | BRAND                                                                                                                                                                                                                                                                  | MODEL NO. OR<br>DENOMINATION                                  | TECHNICAL SPECIFICATIONS                                                                                                                                               |  |  |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| To provide a mechanical support and a thermally stable environment                                              | Batch oven                               | Рутафа                                                                                                                                                                                                                                                                 | BT 242436 HCE                                                 | 9 tubular type heaters, $T_{max} = 400 \text{ °C}$ , P = 18 kW., U = 600 V,<br>Rockwool insulation thickness = 150 mm, Vol.= 337824 cm <sup>3</sup>                    |  |  |
| To allow selection and control of the air temperature                                                           | Oven Temperature<br>controller           | Barber Colman Comp.                                                                                                                                                                                                                                                    | BC-560                                                        | PID controller with on-off capability                                                                                                                                  |  |  |
| To supply the oven airflow                                                                                      | Oven fan                                 | Pyradia                                                                                                                                                                                                                                                                | na                                                            | Squirrel cage, ø = 312 mm, output = 1700 cfm                                                                                                                           |  |  |
| To supply the necessary oven fan rpm.                                                                           | DC motor                                 | Leroy Somer                                                                                                                                                                                                                                                            | FE-65FJ5V                                                     | max. rpm =1750, P = 1750 W, U = 180 V                                                                                                                                  |  |  |
| To allow selection and control the<br>stability of the DC motor rpm.                                            | Solid state DC motor<br>speed controller | Leroy Somer                                                                                                                                                                                                                                                            | LStronics                                                     | Load and line regulation = 1 % and 0.5 % respectively                                                                                                                  |  |  |
| To cool the bottom cavity                                                                                       | Fan                                      | Dayton Electric Mfg.                                                                                                                                                                                                                                                   | 2C915A                                                        | Squirrel cage type with output limited by a shutter, P = 125 W                                                                                                         |  |  |
| To cool the I.R. source and to renew air in the oven                                                            | Fan                                      | Electrohome                                                                                                                                                                                                                                                            | EB-4                                                          | Squirrel cage type with variable speed, P = 96 W                                                                                                                       |  |  |
| To renew air in the oven                                                                                        | Fan                                      | Reznor Venter                                                                                                                                                                                                                                                          | LV-301                                                        | Squirrel cage type, admission limited by a snutter, P = 161 W                                                                                                          |  |  |
| To supply the I.R. heat flux                                                                                    | 1.R. source                              | Glenro Inc.                                                                                                                                                                                                                                                            | Radplane Heater<br>Series 80                                  | P = 4.3 kW, U = 240V, size = 457 X 356 mm                                                                                                                              |  |  |
| To allow the choice of the I.R. source temperature                                                              | Manual variable<br>transformer           | The Superior Electric Co.                                                                                                                                                                                                                                              | 11560D0-2S                                                    | U range = 0-280 V, P = 14 kW                                                                                                                                           |  |  |
| To guard against air heat losses to the<br>bottom cavity upstream of the sample                                 | Flexible heaters                         | Watkow Corp.                                                                                                                                                                                                                                                           | Silicone rubber<br>rectangles,<br>etched-foil<br>construction | 1 (300 W; 152 X 126 mm) + 1 (150 W; 128 X 77 mm) + 2 (50 W;<br>125 X 25 mm), Thickness = 0.5 mm                                                                        |  |  |
| To maintain the lower test section wall<br>temperature close to the sample                                      | Temperature controller                   | Partlow Corp.                                                                                                                                                                                                                                                          | MIC 2000                                                      | PID controller with on-off capability                                                                                                                                  |  |  |
| To allow selection and control of the<br>lower test section wall temperature on<br>the bottom of the flow mixer | Temperative controller                   | RKC Inst. Inc.                                                                                                                                                                                                                                                         | REX-C10                                                       | Auto-tune PID controller with on-off capability                                                                                                                        |  |  |
| To Reduce the inlet flow subulence scale and to improve the velocity uniformity                                 | Flow mixer                               | Perforated grids assembly with 2 sets of plates. Each set has 3 plates with 33 %, 40 % and 51 % open area with 5 mm gap in between. 3 wire mesh of 100 mesh with 40 S.W.G wire. A 5 mm gap in between wire mesh was left. Size = $60 \times 500 \times 100 \text{ mm}$ |                                                               |                                                                                                                                                                        |  |  |
| To compact the glass beads bed                                                                                  | Vertical vibrator                        | Ray Foster Dental<br>Equipment                                                                                                                                                                                                                                         | 34                                                            | U =115 V, f = 60 Hz                                                                                                                                                    |  |  |
| To consolidate the glass beads bed                                                                              | High temperature batch<br>oven           | Pyradia                                                                                                                                                                                                                                                                | F6P141418SVF                                                  | 12 spiral type heaters, $T_{max} = 1260 \text{ °C}$ , $P = 10 \text{ kW}$ ., $U = 600 \text{ V}$ , Ceramic insulation thickness = 200 mm, Vol. = 66938 cm <sup>3</sup> |  |  |

226

## **APPENDIX 2**

..

# THE SPATIAL LOCATION OF THE MEASURING POINTS WITH RESPECT TO Oxyz

| Measuring       | ×     | У    | z    |
|-----------------|-------|------|------|
| point           | (mm)  | (mm) | (mm) |
| Τ               | 120   | 0    | 50   |
| V <sub>∞</sub>  | -125  | -190 | 50   |
| Т <sub>d</sub>  | 0     | -60  | 40   |
| T               | - 3 0 | -125 | 295  |
| T <sub>t1</sub> | 0     | 205  | 100  |
| T <sub>t2</sub> | 80    | 0    | 100  |
| T <sub>t3</sub> | 165   | 0    | 100  |
| T <sub>t4</sub> | 0     | -125 | 100  |
| T <sub>t5</sub> | - 8 5 | -125 | 100  |
| T <sub>t6</sub> | -250  | 0    | 50   |
| Τ <sub>∞1</sub> | 0     | 205  | 50   |
| T2              | 00    | 205  | 0    |
| T <sub>~3</sub> | 0     | 60   | 3    |
| T <sub>∞4</sub> | 0     | 0    | 15   |
| T <sub>~5</sub> | 0     | 0    | 50   |
| T <sub>p1</sub> | 0     | 223  | 1    |
| T <sub>p2</sub> | 0     | 50   | - 1  |
| T <sub>p3</sub> | - 50  | 0    | - 1  |
| T <sub>p4</sub> | 50    | 0    | - 1  |

See Figures 3.3 or A5.1 for Oxyz location.

..**•**.

## APPENDIX 3 MEASUREMENT DEVICES AND/OR SENSORS

. . . . . . .

| VARIABLES                                     | MEASURING APPARATUS<br>AND/OR SENSORS | BRAND                               | MODEL                                                                       | Range                                | ACCURACY                           | RESOLUTION        | REPEATABILITY          | RESPONSE<br>TIME OR RATE |
|-----------------------------------------------|---------------------------------------|-------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|------------------------------------|-------------------|------------------------|--------------------------|
| т <sub>d</sub>                                | Condensation dew<br>point hygrometer  | Coneral Eastern<br>Ir drument Corp. | 1211 sensor<br>1100DP indicator unit<br>1220 thermostated<br>NEMA enclosure | - 40 °C -<br>+ 80 °C                 | ± 0.3 °C                           | 0.1 °C            | na                     | 2 °C/s                   |
| V                                             | Air velocity meter                    | Sierra Instruments                  | 615 MHTV                                                                    | 0 - 6 m/s                            | ± 0.24 m/s                         | 0.01 m/s          | ± 0.012 m/s            | 0.01 s                   |
| P.,                                           | Mercury barometer                     | Fisher Scientific<br>Instrument     | National Weather<br>Service Type<br>02-380                                  | 647-805<br>mm                        | 0.2 mm                             | 0.1 mm            | na                     | na                       |
| m                                             | Balance                               | Mettler Instrumente<br>AG           | PM 4000                                                                     | 0 - 4100 g                           | ± 0.02 g                           | 0.01 g            | ± 0.01 g               | 2 s                      |
| Pi                                            | Wattmeter                             | Westinghouse                        | VP4-846                                                                     | 0 - 5 kW                             | <u>±</u> 0.6%                      | 1 W               | na                     | 0.4 s                    |
| T <sub>∞</sub> , T <sub>∞i</sub><br>(i = 3,5) | Thermocouple                          | Отеда                               | 30 gage type J or K,<br>Kapton insulation                                   | 0 °C -<br>+ 316 °C                   | ± 0.5 °C                           | 0.01 °C           | па                     | ~ 3 s                    |
| T <sub>sir</sub> ,T <sub>pi</sub><br>(i =1,4) | Thermocouple                          | Omega                               | 30 gage type K, glass<br>braid insulation                                   | - 73 °C -<br>+ 482 °C                | <u>±</u> 1.1 °C                    | 0.01 °C           | па                     | <3s                      |
| T <sub>s</sub><br>T <sub>b</sub>              | Thermocouple                          | Thermo-kinetics                     | 0.5 mm ø type K, MgO<br>insulation and stainless<br>steel sheats            | - 200 °C -<br>+ 927 °C               | ± 0.5 °C                           | 0.01 °C           | na                     | <2s                      |
| T <sub>ti</sub> , T <sub>∞i</sub><br>(i =1,2) | Thermocouple                          | Omega                               | 24 gage type K,<br>Kapton insulation                                        | 0 °C -<br>+ 16 °C                    | ± 1.1 ℃                            | 0.01 °C           | na                     | ~6s                      |
| q <sub>is</sub>                               | Heat Flux Transducer                  | Medtherm Corp.                      | 64-2-18-K<br>Schmidt-Boelter                                                | 0 to 23<br>kW/m <sup>2</sup>         | ±3%                                | 1 W               | ± 0.5 %                | 0.29 s                   |
| E                                             | Infrared Pyrometer                    | Raytek, Inc.                        | Raynger II R2LT<br>8 to 14 µm<br>spectral range                             | -30 ℃-<br>1400 ℃                     | ± 1 % reading<br>(T)               | 1 °C<br>0.01 in E | ± 0.5 %<br>reading (T) | 0.25 s                   |
| ۵P                                            | Differential Pressure<br>meter        | AIR LTD.                            | MP 20-2A                                                                    | 0 <u>+</u> 20<br>in.H <sub>2</sub> O | $\pm$ 1.5 % reading ( $\Delta P$ ) | na                | na                     | na                       |

228

1 m. .

## THE THERMOPHYSICAL PROPERTIES OF WATER, WATER VAPOR, AIR AND THE GLASS BEADS

The water vapor thermal conductivity (W/mK) was reported by Chiang (1987):

(T; K)

...

\*

$$k_{v} = 10^{3} * [7.33746 \ 10^{-6} - 1.01321 \ 10^{-8} * T + 1.80034 \ 10^{-10} * T^{2} - 9.09792 \ 10^{-14} * T^{3}]$$
(A4.1)

The air thermal conductivity (W/mK) was correlated by Irvine and Liley (1984):

$$\begin{split} 250 \ \mathsf{K} &\leq \ \mathsf{T} < \ 1050 \ \mathsf{K} \\ \mathsf{k}_{a} &= \ -2.276501 \ 10^{\cdot 3} + 12598485 \ 10^{\cdot 4} * \ \mathsf{T} - 14815235 \ 10^{\cdot 7} * \ \mathsf{T}^{2} \\ &\quad +173550646 \ 10^{\cdot 10} * \ \mathsf{T}^{3} - 1.066657 \ 10^{\cdot 13} \\ &\quad * \ \mathsf{T}^{4} + 2.47663035 \ 10^{\cdot 17} * \ \mathsf{T}^{5} \end{split} \tag{A4.2}$$

The thermal conductivity (W/mK) of the gas mixture can be evaluated from the relation given by Chiang (1987):

$$k_{g} = \frac{y_{v}k_{v}(M_{v})^{\frac{1}{3}} + y_{a}k_{a}(M_{a})^{\frac{1}{3}}}{y_{v}(M_{v})^{\frac{1}{3}} + y_{a}(M_{a})^{\frac{1}{3}}}$$
(A4.3)

.

The vapor specific heat (J/kgK) has been given by Van Wylen et al. (1981):

300 K < T < 3500 K $\theta = \frac{\text{T}}{100}$ 

I

230

$$c_{pv} = 143.05 - 183.54 * \theta^{0.25} + 82.751 * \theta^{0.5} - 3.6989 * \theta$$
 (A4.4)

The air specific heat (J/kgK) was correlated by Irvine and Liley (1984):

$$250 \text{ K} \leq \text{T} < 2000 \text{ K}$$

$$c_{pa} = 10^{3} \left[ 1.03409 - 0.2848870 \ 10^{\cdot 3} \text{ T} + 0.7816818 \ 10^{\cdot 6} \text{ T}^{2} \right]$$

$$-0.4970786 \ 10^{\cdot 9} \text{ T}^{3} + 0.1077024 \ 10^{\cdot 12} \text{ T}^{4} \right]$$
(A4.5)

The heat capacity (J/kgK) of the moist air mixture can be computed from a formula reported by Eckert and Drake (1972):

$$C_{pg} = \omega_v C_{pv} + (1 - \omega_v) C_{pa}$$
(A4.6)

where  $\omega_v$  is the mass fraction of water vapor.

The liquid water specific heat (J/kgK) was taken to be a constant (Incropera, 1984) because the variation with T were lower than 0.5 % in the range (273.15 K - 373.15 K):

$$c_{pw} = 4180$$
 (A4.7)

The vapor viscosity (kg/ms) is given as (Chiang, 1987):

(T; K)

Ţ

$$\mu_{v} = -3.189 \ 10^{-6} + 4.145 \ 10^{-8} * T - 8.272 \ 10^{-13} * T^{2}$$
(A4.8)

The air viscosity (kg/ms) was calculated from (Irvine and Liley, 1984):

 $250 \text{ K} \le \text{T} < 600 \text{ K}$ 

$$\mu_{a} = 10^{-6} \left[ -0.98601 + 9.080125 \ 10^{-2} \text{ T} - 117635 \text{ C}75 \ 10^{-4} \text{ T}^{2} + 1.2349703 \ 10^{-7} \text{ T}^{3} - 5.7971299 \ 10^{-11} \text{ T}^{4} \right]$$
(A4.9)

The viscosity (kg/ms) of a low-pressure moist air mixture may be simply calculated from the component viscosities (Chiang, 1987):

$$\mu_{g} = \frac{y_{v}\mu_{v}M_{v}^{\frac{1}{2}} + (1 - y_{v})\mu_{a}M_{a}^{\frac{1}{2}}}{y_{v}M_{v}^{\frac{1}{2}} + (1 - y_{v})M_{a}^{\frac{1}{2}}}$$
(A4.10)

The latent heat of evaporation (J/kg) was evaluated with (Irvine and Liley, 1984):

 $\Delta H_{v} = 2.5009 \ 10^{6} * \left[ 0.779221^{*} T^{\frac{1}{3}} + 4.62668^{*} T^{\frac{5}{6}} - 1.07931^{*} T^{\frac{7}{6}} - 3.87446^{*} T + 2.94553^{*} T^{2} - 8.06395^{*} T^{3} + 11.5633^{*} T^{4} - 6.02884^{*} T^{5} \right]$ (A4.11)

The vapor saturation pressure (Pa) was computed with (ASHRAE, 1977):

 $273.15 \text{ K} \leq \text{T} \leq 647.3 \text{ K}$ 

 $\theta = 0.65 - 0.01^{*} (T - 273.15)$ 

and 173.15 K < T < 273.15 K

$$\theta = \frac{273.16}{T}$$

I

273.15 K ≤ T ≤ 647.3 K

$$\log_{10}(p_v) = 101325 * \begin{bmatrix} -9.096936 * (\theta - 1) - 3.56654 * \log_{10}(\theta) \\ +0.876817 * \left(1 - \frac{1}{\theta}\right) - 2.2195983 \end{bmatrix}$$
(A4.13)

The vapor diffusion coefficient in air  $(m^2/s)$  was deduced from the relation given by Bird et al. (1960) for the mass diffusivity of a binary system at low pressure:

(T; K)

4

í

$$D_{va} = \frac{0.000004455 * T^{2.334}}{P_{a}}$$
(A4.14)

The consolidated glass beads bed thermal conductivity (W/m<sup>2</sup>K) has been measured by Collignan (1990) for the dry bed at ambient temperature (d = 90-105  $\mu$ m,  $\epsilon$  = 0.37, T<sub>amb</sub>= 21 °C):

$$k_d = 0.174 \pm 4 \%$$
 (A4.15)

This value is close to the one for non consolidated beds (0.2 W/mK;  $\varepsilon = 0.40$ ,  $T_{amb} = 20$  °C) reported by Azizi et al. (1988) and by (0.167 W/mK; d = 485 $\mu$ m,  $\varepsilon = 0.36$ ) Pilitsis (1986). The specific heat (J/kgK) of the glass beads is (Collignan, 1990):

$$c_{pb} = 893 \pm 7 \%$$
 (A4.16)

A similar value (920 J/kg) has been measured by Azizi et al. (1988) for glass beads.

### **APPENDIX 5**

## THE RADIATIVE HEAT EXCHANGE IN THE TEST SECTION: THE HYPOTRESES, SURFACES, SYSTEM OF EQUATIONS AND SOLUTION

### A HYPOTHESES

.

The application of the theory of radiation exchange in an enclosure of diffuse gray surfaces (Siegel and Howell, 1981) is subject to the following restrictions (over each surface area):

- a) The temperature is uniform;
- b) The directional and spectral emissivity, absorptivity and reflectivity are independent of wavelength and direction;
- c) All energy is emitted and reflected diffusely;
- d) The incident and hence reflected energy flux is uniform over each individual area.

### B SURFACES LOCATION, SIZE AND SHAPE FACTORS

The locations of the 4 surfaces used to evaluate the radiative heat exchange within the test section are displayed in Figure A5.1. The surfaces number are the following:

a) Surface number 1 is the sample;



Ą





.

٠.

Figure A5.1c Test section: top view

- b) Surface number 2 is composed of:
  - i) The test section side surfaces (front panel, rear panel, flow mixer exit, test section flow exit);
  - ii) The test section bottom plate;
  - iii) The test section upper plate without the aperture for I.R. heating and surface 3 (drawn in Figure A5.1).
- c) Surface number 3 is located on the upper test section plate; it is symmetrically positioned with respect to the I.R. aperture and corresponds to a plate that was cut on the upper test section plate. The limiting line located in between  $T_{t2}$  and  $T_{t3}$  does cross the  $T_{t2}$ - $T_{t3}$  line in the middle; the thermocouple  $T_{t4}$  is located midway between the downstream I.R. aperture side and the downstream line which delimits surface 3;
- d) Surface 4 is the I.R. source aperture.

The actual surface areas of the four surfaces are:

 $A_1 = 0.0062 \text{ m}^2$   $A_2 = 0.6009 \text{ m}^2$   $A_3 = 0.0580 \text{ m}^2$  $A_4 = 0.0229 \text{ m}^2$ 

The shape factors were computed with FACTIJ (Bédard, 1985) a software using a line integration algorithm. The accuracy of the shape factor determination was ascertained by Bédard (1985) for 31 simple cases for which an analytical solution exists (Siegel and Howell, 1981). Making use of the reciprocity relations and the sum rule (Incropera, 1985), only  $F_{14}$  (0.3894) and  $F_{1(3+4)}$  (0.6935) had to be computed. The following values were found for the necessary shape factors:

$$F_{11} = 0.0000$$
,  $F_{12} = 0.3065$ ,  $F_{13} = 0.3041$ ,  $F_{14} = 0.3894$   
 $F_{21} = 0.0032$ ,  $F_{22} = 0.8693$ ,  $F_{23} = 0.0934$ ,  $F_{24} = 0.0341$ 

Ę

$$F_{31} = 0.0325, F_{32} = 0.9675, F_{33} = 0.0000, F_{34} = 0.0000$$
  
 $F_{41} = 0.1054, F_{42} = 0.8946, F_{43} = 0.0000, F_{44} = 0.0000$ 

#### C THE SYSTEM OF EQUATIONS AND SOLUTION TECHNIQUE

Given the surface temperature the system of equation to be solved has been summarized by Siegel and Howell (1981) as follows for the k <sup>th</sup> equation (k=1,4):

$$\sum_{j=1}^{4} \left( \frac{\delta_{kj}}{E_j} - F_{kj} \frac{1 - E_j}{E_j} \right)^* \frac{Q_j}{A_j} = \sum_{j=1}^{4} \left( \delta_{kj} - F_{kj} \right)^* \sigma^* T_j^4$$
(A5.1)

where  $\delta_{ki}$  is the Krc ecker delta defined as:

$$\delta_{kj} = \begin{cases} 1 & \text{when } k=j \\ 0 & \text{when } k\neq j \end{cases}$$
(A5.2)

Q<sub>i</sub> is the rate (W) of heat input to the surface or output of the surface j. The righthand side of equation A5.1 can be computed for each surface when their surface temperature is known (here measured or evaluated). Each factor of Q<sub>i</sub> on the lefthand side, can be evaluated and assembled in a matrix which can be inverted. The solution of the resulting system of linear equation is obtained simply by multiplying the inverted matrix and the left-hand side vector.

Finally the relation which link Q1 to qis (the overall incident radiative heat flux on the sample surface) is the following (Siegel and Howell, 1981):

$$Q_{1} = A_{s} * E_{s} * (\sigma T_{s}^{4} - q_{ts}^{*})$$
(A5.3)

For the convective heating results, we have:

$$\mathbf{q}_{\mathbf{ts}}^{\star} = \frac{\mathbf{C}_{1}}{\mathbf{A}_{s}} \tag{A5.4}$$

237

17. .

٠

### **APPENDIX 6**

### EMISSIVITY MEASUREMENT

#### A METALLIC SURFACE EMISSIVITY MEASUREMENT

ſ

The measurements were different for the metallic surfaces and the sample. As shown in Figure A6.1 the metallic surface was put in good contact with a heating plate with controllable surface temperature. For the test section plate a type K (30 gage) thermocouple was spot-welded in the center of the plate. For the stainless steel plate, a type K (butt bonded junction, 0.005" thickness) Omega co1 thermocouple was glued in the plate center. The instrumentation and heated plate were within a large room at ambient temperature (~ 21 °C).

The infrared pyrometer was located 1 m above the sample and the measurement area was about 33 mm ø located in the metal plate center.

Before the final measurements could be made the metal plate was heated to the highest temperature for which a measurement was realized. It was left for a two hour period at this temperature. Such initial step was mandatory since it was observed that the emissivity measurement was not reproducible if the surface was not previously "aged". This step is quite commonly performed (Wade and Slemp, 1962) when measurements of emissivity are carried-out. Furthermore, such an "aged" surface corresponds more closely to the state of the metallic surfaces within the test section.



Figure A6.1 The emissivity measurement set-up

.

I

The procedure followed to take the reported measurement is:

3

1

- a) Adjust the plate controller to the needed plate temperature;
- b) Wait for a stable temperature reading with the surface thermocouple;
- c) Adjust the emissivity of the infrared pyrometer so that the pyrometer temperature reading and the thermocouple reading are the same;
- d) Record the emissivity and temperature.

This procedure was repeated for consistency at the same temperature and the results are presented in Figure A6.2a for the aluminized silicone paint on steel background and in Figure A6.2b for the polished stainless steel plate. The reproducibility of the measurement was evaluated to be within  $\pm$  0.01 in both cases. Furthermore, it can be observed that all the data are within  $\pm$  0.03 and  $\pm$  0.02 of the reported emissivity for the aluminized paint (E<sub>t</sub> = 0.28) and the stainless steel plate (E<sub>sc</sub> = 0.13) respectively. The emissivity increase slightly with temperature; this is the usual behavior of most metallic surfaces (Siegel and Howell, 1981). For the aluminized silicone paint it increase by 0.05 when the temperature goes from 50 °C to 270 °C. For the stainless steel plate, the emissivity increase by 0.04 when the temperature goes from 80 °C to 180 °C.

Values for the emissivity of an aluminized silicone paint has been reported by Siegel and Howell (1981) to vary in a range from 0.20 to 0.60 within which all the present value were measured. Sala (1986) reported a value between 0.10 and 0.15 for the same temperature range for stainless steel type 304.

## B THE SAMPLE EMISSIVITY MEASUREMENT

The sample emissivity measurements were carried with a wet and a dry surface. The sample was introduced in a batch oven close to an aperture on the oven ceiling through which the sample surface could be focused with the pyrometer.



Figure A6.2a The emissivity of the test section walls: E,



Figure A6.2b The emissivity of the stainless steel shield:  $E_{sc}$ 

 The results are displayed in Figure A6.3. When the sample surface is wet it was not possible to observe any temperature reading difference (thermocouple vs. pyrometer) as the emissivity varied in between 0.95 and 1.0. When the sample surface is dried, the sample surface emissivity is 0.91 within  $\pm$  0.01. E<sub>s</sub> was taken to equal 0.95 because:

- a) The sample surface is likely to be wet during the P.C.D.R.P.;
- b) Water emissivity is 0.96;
- c) It is likely that such a measurement is affected by the presence of the oven and the walls of the aperture since a portion of the reflected energy by the sample does contribute to increase the sample surface emissivity.

Nevertheless the magnitude of the latter effect cannot be evaluated with certainty.

.



Figure A6.3 The emissivity of the glass bead sample:  ${\rm E}_{\rm s}$ 

•

#### **APPENDIX 7**

## HEAT TRANSFER COEFFICIENT CORRELATION

An expression for the Nusselt number applicable to evaluate the convective heat transfer coefficient  $(h_{cBL})$  in this study was developed to account for the the effect of the significant temperature gradient existing between the sample surface and the test section flow. Kays and Crawford (1980) suggest that temperature variation effects be taken into account through the use of a temperature ratio. The Nusselt number was evaluated according to:

$$Nu^{*} = \left(\frac{h_{cBL} * D}{k_{g}}\right)^{*}$$
(A7.1)

where the thermal conductivity  $k_g$  was evaluated with the test section temperature  $T_{\infty}^{*}$  and D, the sample diameter is given in Table 3.1. The following expression was found to give the highest correlation coefficient (0.96) with the experimental results:

$$Nu^{*} = 0.27 * Fe^{*0.622} * \left(\frac{T_{s}^{*}}{T_{s}^{*}}\right)^{112}$$
 (A7.2)

where  $T_s^*$  is the sample surface temperature (K),  $T_{\infty}^*$  the air temperature in the test section (K).

The Reynolds number is written as :

.

Ť

$$\mathsf{Re}^{*} = \left(\frac{\rho_{g} \mathsf{v}_{-} \mathsf{D}}{\mu_{g}}\right)^{*} \tag{A7.3}$$

 $\rho_g$  and  $\mu_g$  are the test section air density and viscosity evaluated at  $T_{\infty}^*$ ,  $v_{\infty}$  is the test section flow velocity. In Figure A7.1 a comparison of the experimental

Nusselt number computed with  $h_{cBL}^{*}$  (convective results, Table 4.2) and the expression A7.2 is presented. For most of the 26 convective cases represented the agreement is good. Quantitatively, the heat transfer coefficients deduced from equations A7.1 to A7.3 always differ by less than 12 % when compared to  $h_{cBL}^{*}$  given in Table 4.2. Unaffected heat transfer coefficients computed with the film or penetration theory are within 2 % to 3 % of unaffected heat transfer coefficient ( $h_{cBL}^{*}$ ) reported in Table 4.2.

The exponent of the Reynolds number in the present expression A7.2 is bounded by the exponents (Incropera and DeWitt, 1985) used for the case of laminar flow over a flat plate and turbulent flow over a flat plate (0.5 (lam.) < 0.622 < 0.8(turb.)). The same is true for the constant in equation A7.2 (0.037 (turb.) < 0.270 < 0.664 (lam.)).

Equation A7.2 is representative only of the experimental results found with the specific apparatus developed in this study and should be used only to predict heat transfer coefficients applicable in this equipment as long as the mass transfer rates are low (as is the case for the convective drying runs presented in Table 4.1) or for surfaces in the test section when there is no mass transfer.



4

i

Figure A7.1 The Nu vs. Re curve: experiments and correlation (A7.2)

#### **APPENDIX 8**

## EVALUATION OF THE HEAT TRANSFER LOSS OR GAIN DURING THE FREE CONVECTION-I.R. WATER EVAPORATION EXPERIMENTS

#### **A Hypotheses**

...

.

۰.•

An evaluation of the heat losses or gain from the vessel side could be made under the following assumptions:

- a) The heat fluxes are one-dimensional;
- b) The cylindrical fin temperature (Figure A8.1) stays at room temperature;
- c) The vessel temperature is the same as the water temperature  $(T_w)$ ;
- d) The heat exchanged by convection on the vessel rim is negligible.

The heat loss by radiation and convection as the water recedes on the vessel internal side was not evaluated due to the unknown location of the water level as a function of time.

#### **B** HEAT TRANSFER RATE EVALUATIONS

Figure A8.1 displays the various heat transfer rates computed to account for the heat losses or gain on the vessel sides. The following relations were used (Holman, 1981):

$$Q_1 = k_T * \frac{\Delta T_1}{\Delta x_1} * S_1 = 0.02 * \frac{(T_w - 20)}{55 \cdot 10^{-3}} * \frac{\pi * (93.5 \cdot 10^{-3})^2}{4}$$
(A8.1)





Figure A8.1 The heat transfer rates on the vergel side

Parties.

÷

$$Q_{2} = \frac{2^{*} \pi^{*} k_{T}^{*} L_{2}^{*} \Delta T_{2}}{Ln\left(\frac{r_{3}}{r_{1}}\right)} = \frac{2^{*} \pi^{*} 0.02^{*} 10^{-2} * (T_{w} - 20)}{Ln\left(\frac{6.3}{4.7} \frac{10^{-2}}{10^{-2}}\right)}$$
(A8.2)

$$Q_{3} = \frac{2 * \pi * k_{a} * L_{3} * \Delta T_{3}}{Ln\left(\frac{r_{2}}{r_{1}}\right)} = \frac{2 * \pi * 0.026 * 5 \ 10^{-3} * (T_{w} - 20)}{Ln\left(\frac{4.8 \ 10^{-2}}{4.7 \ 10^{-2}}\right)}$$
(A8.3)

$$Q_{4} = \frac{2 * \pi * k_{a} * L_{4} * \Delta T_{4}}{Ln\left(\frac{r_{2}}{r_{1}}\right)} = \frac{2 * \pi * 0.026 * 6.5 \ 10^{-3} * (T_{w} - T_{pav})}{Ln\left(\frac{4.8 \ 10^{-2}}{4.7 \ 10^{-2}}\right)}$$
(A8.4)

$$Q_{5} = -E_{a} (q_{is}^{*} - \sigma^{*} (T_{w} + 273.15)^{4})^{*} S_{5}$$

$$= -0.06 (q_{is}^{*} - 5.67 \cdot 10^{-8} \cdot (T_{w} + 273.15)^{4})$$

$$+ \frac{\pi ((93.5 \cdot 10^{-3})^{2} - (88.5 \cdot 10^{-3})^{2})}{4}$$
(A8.5)

In these expressions the distances were taken from the vessel size and the sample holder dimensions represented in Figure A8.1.  $T_{pav}$  is the average bottom plate temperature close to the vessel upper side calculated as the average of  $T_{p2}$ ,  $T_{p3}$  and  $T_{p4}$  (Figure 3.3).  $k_T$  is the Trymer 9501 thermal conductivity as given by the manufacturer (Dow Chemical Corp.) and  $k_a$  is the air thermal conductivity at 30 °C. Heat losses are affected by a plus sign in these relations.

A first evaluation of q<sub>is</sub><sup>\*</sup> was made without taking into account the lateral heat losses and then equations A8.1 to A8.5 were used to correct this evaluation.

#### **APPENDIX 9**

Į,

×

## EVALUATION OF THE MAXIMAL FRACTION OF THE EMITTED I.R. HEAT FLUX ABSORBED BY THE AIR LAYER BETWEEN THE SOURCE AND THE SAMPLE

## A INFLUENCE OF CO2 ON THE MEAN TOTAL ABSORPTIVITY OF THE GAS IN THE TEST SECTION

The mean beam length (De Vriendt, 1984) can be approximated by the one defined for the case of two parallel planes. The first plane is the test section bottom cavity and the second plane is the I.R. source emitting surface (the distance between the surfaces is 0.3 m). Thus the computation of the mean beam length gives (De Vriendt, 1984):

$$L_{e} = 2*0.3 = 0.6 m$$
 (A9.1)

The  $CO_2$  partial pressure of dry air at atmospheric pressure is given by Weast et al. (1989):

$$p_{CO2} = 33.4 Pa = 0.00033 atm$$
 (A9.2)

The emitting surface temperature is  $T_{sir}$  (850 °C) and the mean gas temperature is taken to be the average between the I.R. source temperature and the sample surface temperature:

$$T_{g} = (T_{sir} + T_{s}^{*})/2$$
 (A9.3)

Data to evaluate  $T_g$  are taken from run i79h (section 5.4, Table 5.2) because it corresponds to the highest dew point conditions (highest vapor concentration in air) encountered in all experimental runs ( $T_d^* = 19.3 \text{ °C}$  and  $T_s^* = 84 \text{ °C}$ ). As a result the gas temperature is:

$$T_{g} = 467.7 \ ^{\circ}C = 740.9 \ K$$
 (A9.4)

The parameter to be evaluated to obtain the emissivity of  $CO_2$  ( $E_{CO_2}$ ) is (De Vriendt, 1984):

$$p_{CO2}^{*}L_{\theta}^{*}T_{sir}/T_{g} = 0.00033 *0.6*1123.15/740.9 = 0.003$$
 (A9.5)

This value and the diagram (De Vriendt, 1984) which link  $\rm T_{sir}$  and  $\rm E_{CO2}$  gives  $\rm E_{CO2}$ :

Then the mean total absorptivity of CO<sub>2</sub> is (De Vriendt, 1984):

$$A_{CO2} = (T_g/T_{sir})^{0.45*}E_{CO2} = 0.007$$
 (A9.7)

## B INFLUENCE OF H<sub>2</sub>O ON THE MEAN TOTAL ABSORPTIVITY OF THE GAS IN THE TEST SECTION

 $L_{\rm e},\,T_{\rm sir}$  ,  $T_{\rm g}$  are the same as in section A.

.

 The H<sub>2</sub>O partial pressure ( $T_d = 19.3 \text{ °C}$ ) of air in the test section is (Appendix 4):

$$P_{H2O} = 2250 Pa = 0.0222 atm$$
 (A9.10)

The parameter to be evaluated to compute the emissivity of water vapor  $E_{H2O}$  in the gas layer is (De Vriendt, 1984):

$$p_{H2O}^{*}L_{e}^{*}T_{sir}/T_{a} = 0.0222 * 0.6*1123.15/740.95 = 0.020$$
 (A9.11)

This value and the diagram (De Vriendt, 1984) which link  $T_{sir}$  and  $E_{H2O}$  gives  $E_{H2O}$ :

$$E_{H2O} \approx 0.038$$
 (A9.12)

Then the mean total absorptivity of H<sub>2</sub>O is (De Vriendt, 1984):

$$A_{H2O} = (T_g/T_{sir})^{0.45*}E_{H2O} = 0.032$$
 (A9.13)

#### C THE MEAN TOTAL ABSORPTIVITY OF THE GAS IN THE TEST SECTION

 $CO_2$  and  $H_2O$  are the only gaseous species to participate to the absorption of I.R. radiation (De Vriendt, 1984), other species such as nonpolar gas (N<sub>2</sub>, O<sub>2</sub>) do not interact significantly with I.R. radiation. The absorptivity of the gaseous mixture is (De Vriendt, 1984):

$$A_{a} = A_{CO2} + A_{H2O} - \Delta A = 0.007 + 0.032 - 0.000 = 0.039$$
 (A9.14)

 $\Delta A$  is an absorptivity correction which result from the overlapping of the absorbing band of each gaseous species.

It can be concluded that for all runs less than 4% of the emitted heat flux is absorbed before reaching the bottom cavity of the test section. Furthermore, it can be noted that there is no systematic bias on the reported values of  $q_{is}$  in Figure 5.2 which might result from a difference in absorption although important variation of  $T_d^*$  do occur for runs with same number of heating elements. (~ 10 °C in  $T_d^*$  differences). Since the computation of  $q_{is}$  (equation 5.3) did not take into account such absorption effect, if it was important, it should reflect in data presented in Figure 5.2.

## **APPENDIX 10**

## CORRECTION TO THE EXPERIMENTAL DRYING CURVE OF A TRUNCATED CONE TO OBTAIN THE CORRESPONDING DRYING CURVE FOR A CYLINDER

## A HYPOTHESES AND PROCEDURE

If one assumes that the drying rate curves for a cylinder and a truncated cone are the same the cylinder moisture content vs. t curves is obtained as follows:

- a) Obtain an expression for the cylinder moisture content;
- b) Mass flux correction to obtain the corresponding cylinder drying rate:
  - (i). Evaluation of the drying front position;
  - (ii). Correction of the cone drying rate as a result of the evaporation surface reduction;
  - (iii). Correction of the drying rate to account for the effect of the additional diffusion resistance for the cylinder;
  - (iv). Evaluation of the drying rate vs. moisture content curve for the cylinder;
- c) Computation of the moisture content evolution for the cylinder.

### B COMPUTATION OF THE DRYING CURVE

When  $X > X_c$  (critical moisture content):

\*

Evaporation is considered as a surface phenomenon and the evaporation rate of a cone at a specific moisture content is the same as the one for a cylinder. Then the development according to the steps already defined is the following:

a) The moisture contents are the same for the cylinder (X<sub>cy</sub>) and the truncated cone (X<sub>co</sub>) for the same drying rate:

$$X_{cy} = X_{co} \tag{A10.1}$$

- b) There is no correction applicable:
  - (i) The drying front is at the surface (x<sub>f</sub> drying front position from the surface):

$$x_{f} = 0$$
 (A10.2)

- (ii) No correction;
- (iii) No correction;
- (iv) The drying rate of the cylinder ( $N_{vcy}$ ) and the truncated cone ( $N_{vco}$ ) are the same:

$$N_{vcv} = N_{vco}$$
(A10.3)

When  $X < X_c$ :

If one assumes that the moisture content distribution is uniform in the wet zone. The development according to the steps already defined is the following:

a) The expression for the cylinder moisture content is:

$$X_{cy} = \left(i \cdot \frac{x_{f}}{b}\right)^{*} X_{c}$$
 (A10.4)

(i) The cone moisture content is:

$$X_{\infty} = \frac{V_{w}}{V_{\infty}} * X_{c}$$
(A10.5)

1

where  $V_w^{"}$  is the volume of the wet zone and  $V_{co}$  the overall truncated cone volume.  $V_{co}$  is:

$$V_{\infty} = \frac{\pi^* b}{3} \left( R_1^2 + R_2^2 + R_1^* R_2 \right)$$
 (A10.6)

where  $R_1$  is the evaporation surface radius (Table 3.1) and  $R_2$  is the truncated cone bottom radius.  $V_{w}$  is:

$$V_{w} = V_{co} - \frac{\pi^{*} x_{i}}{3} * \left( R_{1}^{2} + R_{i}^{2} + R_{1}^{*} R_{i} \right)$$
(A10.7)

where  $R_f$  is the evaporation front surface radius.  $R_f$  is:

.

ı.

$$\mathbf{R}_{t} = \mathbf{R}_{1} - \mathbf{x}_{t} * tg(\alpha) \tag{A10.8}$$

where  $\alpha$  is the cone angle (3°). A similar expression is valid for R<sub>2</sub> with b instead of x<sub>f</sub>.

The final expression (deduced from A10.5 to A 10.8) which links  $x_f$  to the other variables is:

$$(tg(\alpha))^{2} * x_{1}^{3} - 3 * tg(\alpha) * R_{1} * x_{1}^{2} + 3 * R_{1}^{2} * x_{1}$$
  
+ b \* (R\_{1}^{2} + R\_{2}^{2} + R\_{1} \* R\_{2}) \*  $\left(\frac{X_{\infty}}{X_{c}} - 1\right) = 0$  (A10.9)

 (ii) The correction of the truncated cone drying rate for the effect of a re <sup>1</sup>uced evaporation surface gives (equality of mass transfer rate):

$$N_{vey} = \frac{R_1^2}{(R_1 - x_1 * tg(\alpha))^2} * N_{veo}$$
(A10.10)

(iii) The correction of the cylinder drying rate for the effect of increase diffusion resistance is approximated by A10.10
corrected by a factor corresponding to an evaporation surface area reduction:

$$N_{vcy} = \frac{R_1^2}{(R_1 - x_1 * tg(\alpha))^2} * \frac{(R_1 - x_1 * tg(\alpha/2))^2}{R_1^2} * N_{vco}$$
(A10.11)

(vi) Equations A10.4 and A10.11 define the drying rate curve during the falling rate period of the cylinder.

Step (c) is the same whatever X. The expression for the derivative of the cylinder moisture content is:

$$\frac{dX_{cy}}{dt} = -\frac{N_{vcy}}{V_{cy} * \rho_{d}} * A_{cy} = -\frac{N_{vcy}}{b * \rho_{d}}$$
(A10.12)

Where  $V_{cy}$  and  $A_{cy}$  are the cylinder volume and drying surface respectively.

The computation starts from equation A10.12 for which the Runge-Kutta method (RK22) was used to obtain a numerical solution. A first evaluation  $(X_{cy})_1$  of  $X_{cy}$  (t + dt) is made with  $(N_{vcy})_1$  evaluated from the drying rate curve and  $X_{cy}$  (t):

$$\left(X_{cy}\right)_{1} = X_{cy}(t) + \left(\frac{N_{vcy}}{b^{*}\rho_{d}}\right)_{1}^{*} dt \qquad (A10.13)$$

Then  $(X_{cy})_1$  is used to obtain an approximation to the drying rate  $(N_{vcy})_2$ . Finally, the expression of  $X_{cy}$ (t+ot) is:

$$X_{cy}(t+dt) = X_{cy}(t) + \frac{\left[\left(\frac{N_{vcy}}{b^* \rho_d}\right)_1 + \left(\frac{N_{vcy}}{b^* \rho_d}\right)_2\right]}{2} + dt$$
(A10.14)

The procedure is continued until X<sub>cv</sub> is 0.

đ

## APPENDIX 11

## THE HEAT AND MASS TRANSFER ANALOGY

Within the frame of the laminar boundary layer theory (boundary layer approximations) and taking into account the following approximations (Bird et al., 1960):

- a) Constant physical properties
- b) A small mass transfer rate at the interface
- c) No chemical reactions in the fluid
- d) No viscous dissipation in the fluid

....

•

- e) No emission or absorption of radiant energy in the fluid
- f) No pressure diffusion, thermal diffusion or forced diffusion at the interface

It can be shown theoretically (Bird et al., 1960; Incropera and DeWitt, 1985) that the dimensionless heat, mass and momentum conservation equations describing the state of the fluid within the boundary layer as well as the applicable boundary conditions (constant temperature, concentration and velocity at the wall) are similar<sup>1</sup>. In such a case, the existence of the analogy between the transfer of heat and mass has a strong theoretical basis and the solution of equations yields classical expressions for the heat and mass transfer coefficient ratio (expression 4.24).

For a laminar flow, the high mass transfer rate effect on the boundary layers can theoretically be taken into account through use of the laminar boundary layer theory (Bird et al., 1960). Its practical result is a theoretical evaluation of the heat and mass transfer coefficient change due to the high mass transfer rate.

<sup>&</sup>lt;sup>1</sup>According to Incropera and DeWitt (1985), processes are said to be analogous if they are governed by dimensionless equations of the same form.

Although the flow within the test section is turbulent and the theoretical development (analogy of the transfer) has been derived for a laminar boundary layer, experimental observations (Hertjees and Ringens,1956; Smolsky and Sergeyev, 1962; Eckert and Drake, 1970; Bird et al., 1960) have already confirmed that the analogy between the transfer of heat and mass appears to exist in case of a turbulent flow. In such a case the boundary layer theory results can be used, as a first approximation, to account for the high mass transfer rate effect.

\$

4 - 4 The use of I.R. heating superimposed on a laminar flow does not bring anything new as compared to the case of a laminar flow alone as long as (e) is true. With respect to the flow, the wall boundary condition is still one of a given surface temperature and not one of heat flux since I.R. heating is only a way to heat to a given  $T_s$ . As a result, the theoretical developments which lead to a statement of the analogy between the transfer of heat and mass as well as the boundary layer theory are still applicable in laminar flow-I.R. drying.

In turbulent flow-I.R. drying, the heat and mass transfer analogy and the laminar boundary layer theory should be applicable although no strong theoretical foundations exists to support this view (without I.R. heating the same was true).