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Abstract 

Compilation to bytecode paired with interpretation is often used as a technique 

to easily build prototypes for new programming languages. Sorne languages, includ­

ing Java, push this further and use the bytecode layer to isolate programs from the 

underlying platform. Current state-of-the-art commercial and research Java virtual 

machines implement advanced just-in-time and adaptive compilation techniques to 

deliver high-performance execution of Java bytecode. Yet, experimenting with new 

features such as adding new bytecodes or redesigning the type system can be a daunt­

ing task within these complex systems, when new features invalidate assumptions 

on which the internaI dynamic optimizing compiler depends. On the other hand, 

simpler existing Java bytecode interpreters, written purely in high-Ievel languages, 

deliver poor performance. The main motivation behind this thesis was to answer the 

question: How fast can a portable, easily modifiable Java bytecode interpreter be? In 

or der to address this question, we have designed and developed the Sable VM research 

framework, a portable interpreter-based Java virtual machine written in portable C. 

In this thesis we introduce innovative techniques for implementing an efficient, yet 

portable Java bytecode interpreter. These techniques address three areas: instruction 

dispatch, memory management, and synchronization. Specifically, we show how to 

implement an inline-threaded engine in the presence of lazy code preparation, without 

incurring a high synchronization penalty. We then introduce a logical partitioning of 

runtime system memory that simplifies memory management, and a related sparse 

interface virtual table design for fast interface-method invocation. We show how to 

efficiently compute space-efficient garbage collection maps for verifiable bytecode. We 

also present a bidirectional object layout that simplifies garbage collection. Finally, we 



introduce an improvement to thin locks, eliminating busy-wait in case of contention. 

Our experiments within the Sable VM framework show that inline-threading [PR98] 

Java delivers significant performance improvement over switch and direct-threading, 

that sparse interface tables cause no memory loss, and that our map computation 

algorithm delivers a very small number of distinct garbage collection maps. Our 

overall performance measurements show that, using our techniques, a portable inter­

preter can deliver competitive interpretation performance, and even surpass that of 

a less-portable state-of-the-art interpreter on some benchmarks. 
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Résumé 

La compilation en code-octet combinée avec l'interprétation est une technique sou­

vent utilisée pour bâtir des prototypes de nouveaux langages. Certains langages, dont 

Java, vont plus loin et utilisent la couche de code-octet pour isoler les programmes 

de la plate-forme sous-jacente. Les machines virtuelles de pointe récentes, pour Java, 

incluent des compilateurs juste-à-temps avancés et usent de techniques de compilation 

adaptables pour offrir une haute performance d'exécution du code-octet Java. Toute­

fois, l'expérimentation de nouvelles caractéristiques, telles l'ajout de nouveaux codes­

octets ou la modification du système de types, peut être une tâche colossale lorsque 

ces nouvelles caractéristiques invalident des hypothèses sur lesquelles le compilateur 

optimiseur interne dépend. D'autre part, les interpréteurs de code-octet Java plus 

simples existants, écrits avec des langages de haut niveau, offrent une faible perfor­

mance. La motivation principale de cette thèse est de répondre à la question: Jusqu'à 

quel point un interpréteur de code-octet portable et facilement modifiable peut-il être 

rapide? Pour répondre à cette question, nous avons conçu et développé Sable VM, une 

machine virtuelle de Java portable, basée sur un interpréteur et écrite en C portable. 

Dans cette thèse nous introduisons de nouvelles techniques pour implémenter 

un interpréteur de code-octet efficace et portable. Ces techniques couvrent trois 

sujets: l'envoi des instructions, la gestion de mémoire et la synchronisation. Plus 

spécifiquement, nous montrons comment implémenter un engin linéaire inclusif en 

prét-lence d'une préparation paresseut-le du code, sans payer un coût élevé de syn­

chronisation. Puis nous introduisons une division logique de la mémoire du système 

d'exécution qui simplifie la gestion de mémoire. Nous présentons une conception de 

table virtuelle d'interface clairsemée permettant une invocation rapide des méthodes. 
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Nous montrons comment calculer efficacement des cartes de ramassage de miettes peu 

spacieuses pour du code-octet vérifiable. Nous présentons également une disposition 

bidirectionnelle des objets qui simplifie le ramassage des miettes. Finalement, nous 

introduisons une amélioration aux verrous légers qui élimine l'attente active en cas 

de litige. 

Nos expérimentations au sein du cadre Sable VM montrent qu'une interprétation 

linéaire inclusive [PR98] de Java offre une amélioration significative de la performance 

par rapport à une interprétation linéaire aiguillée ou directe; que les tables d'interface 

clairsemées ne causent pas de pertes de mémoire et que notre calcul de cartes de ra­

massages de miettes livre un très petit nombre de cartes distinctes. Nos mesures 

globales de performance démontrent qu'un interpréteur portable utilisant nos tech­

niques peut fournir une performance compétitive, surpassant celle d'un interpréteur 

de pointe moins portable pour certains programmes témoins. 
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1.1 Introduction 

Chapter 1 

Introduction and Contributions 

1.1.1 The Java Virtual Machine 

Over the last few years, Java [GJSBOO] has rapidly become one of the most popular 

general purpose object-oriented programming languages. The Java language was 

designed, from the ground up, to provide platform independence and security. This 

is achieved by compiling Java programs into class files which include type information 

and platform independent bytecode instructions. On a specific platform, a runtime 

system (or virlual machine [LY99]) loads and links class files, then executes bytecode 

instructions. 

The idea of compiling a language to bytecode instructions and interpreting the 

result is not new; it is in fact a relatively common practice used in undergraduate 

compiler courses to limit the scope of term projects, and it is used in language research 

projects to rapidly prototype systems. Bytecode is also often used as a means to 

isolate compiled programs from the underlying platforms, as illustrated by the P­

CODE system for PASCAL [Wir71], and in CamI [Cam] implementations. The Java 

programming language pushed this a litt le further by specifying the bytecode language 

as a non-optional core component of the system. 

The virtual machine collaborates with a rich standard class library to provide key 
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1.1. Introduction 

services to Java programs, including threads and synchronization, automatic memory 

management (garbage collection), safety features (array bound checks, null pointer 

detection, code verification), reftection, dynamic class loading, and more. 

We should note that there exist static compilers that directly compile Java pro­

grams to machine code (e.g. [GCJ, Har, Tob]). Yet, the constraints of static and dy­

namic Java environments are quite different. Our research focuses solely on dynamic 

Java execution environments. 

1.1.2 The Quest for High Performance 

Early Java virtual machines were simple bytecode interpreters. Soon, the que st for 

performance led to the addition of Just-In-Time compilers (JIT) to virtual machines, 

an idea formerly developed for other object-oriented runtime systems like Smalltalk-

80 [DS84] and Self-91 [CUL89]. JITs range from the very naive, that use templates to 

replace each bytecode with a fixed sequence of native code instructions (early versions 

of Kaffe [Kaf] did this), to the very sophisticated that perform register allocation, 

instruction scheduling and other scalar optimizations (e.g. [ATCL +98,Kra98,SOT+00, 

YMP+99]). 

JITs face two major problems. First, they strive to generate good code in very 

little time, as compilation time is lost to the running application. Second, the code 

of compiled methods resides in memory; this increases the pressure on the memory 

manager and garbage collector. Recent virtual machines mostIy overcome these prob­

lems. The main trend is to use dynamic strategies to find hot execution paths, and 

only optimize these areas (e.g. [AAB+OO, CLSOO, Hot]). HotSpot [Hot, PVCOl], for 

example, is a mixed interpreter and compiler environment. It achieves high perfor­

mance by dynamically profiling interpreted code to identify hot spots, then compiling 

and optimizing them. Jikes RVM [AAB+OO, AAC+99], on the other hand, always 

compiles methods (llaively at first) , thell uses adaptive online feedback to recompile 

and optimize hot methods. These techniques are particularly suited to virtual ma­

chines executing long running programs in server environments. The optimizer can 

be relatively slow and consist of a full-ftedged optimizing compiler using intermediate 

2 



1.1. Introduction 

representations and performing costly aggressive optimizations, as compile time will 

be amortized on the long overall execution time. 

1.1.3 Portability 

While most Java programs enjoy platform independence, the underlying virtual ma­

chine that provides this independence is itself a program that must interact with low­

level system-specifie routines of the host platform. As we have seen in Section 1.1.2, 

current state-of-the-art virtual machines include sophisticated full-f!edged optimizing 

compilers. It is important to design such high-performance systems in a relatively 

portable way, as it would be impractical and too costly to completely rewrite such 

optimizing compilers for each platform to which the system is ported. 

It is thus interesting to note that both the HotSpot and the Jikes RVM virtual 

machines impIe ment their optimizing compilers in the Java programming language. In 

fact, the Jikes RVM virtual machine goes a step further and is completely implemented 

in Java, using a relatively complex mechanism to write a precomputed bootstrapping 

image to disk. 

But, this does not me an that the HotSpot and the Jikes RVM internaI optimizing 

compilers are then automatically platform independent: Even though these compil­

ers can theoretically run on any system that provides a Java virtual machine, the 

generated optimized code targets a specifie platform. So, these compilers are useless 

on a platform unless a compiler back-end is developed for that specifie platform. In 

the case of Jikes RVM, in particular, porting to a new platform requires the porter 

to learn about the executable file format of the target platform for generating the 

bootstrap image. 

So, in summary, even though the most complex parts of modern virtual machines 

are usually written in Java, porting to a new platform requires a significant develop­

ment effort. 

3 



1.2. Research Motivation and Objectives 

1.1.4 Java Virtual Machine Overview 

Before getting into the details of our research, we present a short overview of the 

internaI organization of a Java virtual machine. As illustrated in Figure 1.1, the 

main components of a Java virtual machine are: 

1. Class Loaders: Class loaders are used to dynamically load application and li­

brary classes from a variety of sources such as the local file system and the 

network. 

2. Native Interface1 : The native interface allows the virtual machine to call non­

Java routines in applications and class libraries. 

3. Execution Engine: The execution engine is the heart of the virtual machine. It 

executes bytecode instructions loaded through class loaders. There exist various 

types of execution engines such as interpreters and just-in-time compilers. 

4. Memory Manager: The memory manager provides a garbage collected heap for 

object instances and manages the memory used to store other internaI virtual 

machine data structures. 

5. Services: This component consists of a collection of sub-components providing 

the necessary internaI virtual machine support for standard class library features 

such as threads and refiection. 

1.2 Research Motivation and Objectives 

1.2.1 Research Framework 

Many academic research projects have limited resources. Sometimes, the human re­

sources dedicated to a project are limited to a single graduate student, or a very 

small team of researchers. The development effort required to experiment with sorne 

IThe lava Native Interface (lNI) is a standard for dynamically linking Java and non-Java code. 
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1.2. Research Motivation and Objectives 

Applications and Class Libraries 

Class Loaders Native Interface (JNI) 

Memory Manager 

Execution Engine Services 

Threads 

Figure 1.1: Java Virtual Machine Overview 

language extensions, in state-of-the-art adaptive Java virtual machine systems, might 

involve rewriting key parts of highly sophisticated code optimizers. Such develop­

ment effort can easily be out of reach of a small research team. Even using a simpler 

template-based just-in-time compiler might require more development work than a re­

search team would like to invest, due to the requirement of writing assembly language 

for each target platform. 

One of the main objectives of this research is the development of an openly avail­

able virtual machine suit able for performing research experiments with minimal de­

velopment efforts. In order to achieve this goal, this virtual machine must be easily 

extensible, allowing experiments with language modifications and extensions such as 

redefining the semantics of arrays, or adding new bytecode instructions for better sup­

porting functional languages. This research framework must also be easily portable 

to new platforms with minimal effort, to allow performing experiments on a variety 

of systems. 

Finally, the virtual machine must also deliver acceptable performance, so that 
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1.2. Research Motivation and Objectives 

experiments can be done running real-world applications, not only toy benchmarks. 

1.2.2 8ytecode Interpreter 

An interpreter-based virtual machine would seem to me et our portability and easy 

modification goals. Interpreters written in high-Ievel programming languages have 

the following advantages: 

• Understanding their internaI structure requires a very short learning curve. 

• They have easily modifiable source code. 

• It is usually possible to trace their internaI execution with a debugger. This 

helps with learning the system and modifying it. 

• High-Ievel languages help increase the portability to other systems, by hiding 

low-Ievel details such as the processor instruction set. 

The main drawback of interpreter-based systems is that they often deliver poor 

performance, due to high instruction dispatch overhead. 

Recently, a new technique has been introduced, called inlined-threading [PR98], 

that partly eliminates dispatch overhead for a subset of instructions. This technique 

has not been tested for Java before. As it looked promising in helping to achieve 

our acceptable performance goal, we decided to further investigate the use of this 

technique in the context of an interpreter-based Java virtual machine. 

1.2.3 Specifie Research Objectives 

The specific objectives of this research are to: 

• design and implement a portable and easily modifiable interpreter-based virtual 

machine, 

• evaluate the relative performance achievable by a portable interpreter imple­

menting modern and innovative techniques, 
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1.3. Contributions 

• research new memory management techniques, 

• research new techniques for improving the performance of Java virtual machines, 

regardless of their engine type (interpreter, just-in-time compiler, adaptive op­

timizing system), and 

• measure the performance of the proposed techniques. 

A less formaI objective is to keep the framework as simple as possible. As the 

development of a standards compliant Java virtual machine implementing the Java 

Native Interface (JNI) and the Invocation Interface requires a significant amount of 

work, it is important to keep a simple virtual machine design. For example, we have 

chosen to implement a simple semi-space copying collector, leaving the development 

of more advanced generational techniques to future interested users of the framework. 

1.3 Contributions 

In this section, we li st the contributions of this thesis. 

One contribution of this research is of a technical nature. It consists of the research 

framework itself. In the course of this research, we have developed the Sable VM [Sabb] 

research framework, a freely available, portable, flexible, and efficient interpreter­

based Java virtual machine. We think, that the relatively small source-code size 

of Sable VM (approximately 55,000 lines before macro expansions) and the clarity 

and sim pli city of its internaI design makes it an ideal tool for conducting small to 

moderately sized research projects on the Java virtual machine. 

Sable VM implements 2 kinds of object layout, 3 flavors of threaded interpretation, 

provides a choice of using or not using signaIs to detect sorne exceptions, has many 

embedded debugging features, and can be easily stepped through, at execution time, 

using a traditional debugger. 

Thus, the contributions of this thesis are: 

• The development and public release of the Sable VM research framework. 
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1.3. Contributions 

• The introduction of innovative techniques to allow inline-threaded interpreta­

tion of Java bytecode, without race conditions or high synchronization costs in a 

multi-threaded environment. Our experiments show that inline-threading Java 

bytecode offers significant speed improvement over that of traditional bytecode 

interpretation. 

• The introduction of a logical partitioning of runtime memory that simplifies 

memory management. This memory partitioning allows Sable VM to use a very 

simple semi-space copying collector to manage the Java heap, and to use very 

simple partition-specifie memory managers for the rest. 

• The introduction of a sparse interface method virtual table design that reduces 

the cost of interface method invocation to that of a normal virtual method 

call. Appropriate for adynamie loading environment, this design uses a sim­

ple, yet very effective strategy to recycle memory holes in the sparse tables. 

Our experimental results show that, on aIl tested benchmarks and applications, 

including an interface-intensive application, no memory loss resulted from the 

sparse design. 

• The introduction of a simple and fast algorithm to compute space-efficient 

garbage collection maps for verifiable bytecode. Our experimental results show 

that at most 74 distinct garbage collection maps of a total size of 1,776 bytes 

(less than 2Kb) were computed on tested benchmarks, with most benchmarks 

requiring between approximately 30 to 40 maps each. The biggest application, 

requiring 74 maps, had 39,653 garbage collection checkpoints. 

• The introduction of a bidirectional object layout that groups together aIl refer­

ence fields for simpler garbage collection tracing. 

• The introduction of an improvement to thin locks [BKMS98] that eliminates 

busy-wait in case of contention, without causing any overhead into the object 

layout. 
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1.4. Thesis Organization 

• One of our most significant experimental results, that counts as a contribu­

tion, is that a carefully designed, yet simple and portable Java bytecode inter­

preter can achieve competitive performance with a commercial state-of-the-art 

less-portable interpreter. More specifically, the inlined-threaded interpreter of 

Sable VM does deliver competitive performance to the official Java Development 

Kit 1.4.0 HotSpot client interpreter, being sometimes faster, sometimes slower. 

1.4 Thesis Organization 

The remainder of this thesis is structured as follows. 

In Chapter 2, we describe the problem of inline-threading Java in the presence 

of lazy preparation and multi-threading, and we introduce our preparation sequence 

technique to circumvent the problem and increase the length of inlined instruction im­

plementation sequences. In Chapter 3, we motivate and describe a logical partitioning 

of runtime memory among various partition-specifie memory managers. We explain 

how this partitioning simplifies memory management in Sable VM. In Chapter 4, we 

introduce a sparse interface virtual table design for fast interface-method invocation, 

taking advantage of a partition-specific memory manager to recycle memory ho les 

using a simple and fast algorithm. In Chapter 5, we discuss the traditional layout 

of objects in Java and introduce a bidirectional layout for simplifying garbage col­

lection tracing. In Chapter 6 we describe the difficulty of computing precise garbage 

collection maps in Java, then we introduce a simple and fast, yet effective algorithm 

for computing space-efficient garbage collection maps. In Chapter 7, we introduce an 

improvement to thin locks that eliminates busy-wait in case of contention. In Chapter 

8, we discuss how portability and extensibility are achieved in Sable VM. In Chapter 

9 we describe our experimentation setting, and present our overall performance mea­

surements, with comparisons to various other virtual machines. Finally, in Chapter 

10, we discuss possible future work and present our conclusions. 
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Chapter 2 

Fast Instruction Dispatch 

In this chapter we discuss the core instruction dispatch mechanism of Sable VM. 

In fact, the Sable VM framework offers a choice of 3 different fiavors of threaded inter­

pretation with distinct performance-portability tradeoffs1, but we will mainly focus 

on the fastest fiavor: inline-threading. 

In particular, we will introduce the necessary techniques to implement an efficient 

inline-threaded interpreter engine, in the presence of lazy code preparation and multi­

threading. 

This chapter is structured as follows. In Section 2.1 we discuss how Sable VM 

differs from pure bytecode interpreters by preparing and aligning bytecodes prior 

to execution. Then, in Section 2.2 we describe three existing instruction dispatch 

techniques and discuss their efficiency-portability tradeoffs. Next, in Section 2.3 we 

discuss the difficulty of applying threaded interpretation techniques in a Java inter­

preter without paying a high synchronization penalty, and introduce techniques to 

solve the problem and increase performance. In Section 2.4, we present our exp er­

imental results. In Section 2.5 we discuss related work. Finally, in Section 2.6, we 

present our conclusions. 

1 In Chapter 8, we will explain how Sable VM avoids source code duplication while permitting easy 
debugging of instructions, by implementing abstraction levels using the M4 macro processor. 
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2.1 Preparation: Reducing Work at Runtime 

2.1.1 Pure Bytecode Interpretation 

Simplicity is usually the main motive behind the usage of a bytecode instruction set 

by students and programming language researchers. Targeting stack-based bytecode 

instructions greatly simplifies compilation by eliminating the need for performing 

register allocation and isolating the compiler developer from low-Ievel system-specific 

implementation details such as object-code format. In addition, writing a pure byte­

code interpreter can often be done in a few hours of work (given a simple instruction 

set and a knowledgeable programmer). 

A typical bytecode interpreter loads a bytecode pro gram from disk using standard 

file operations, and stores instructions into an array. It then dispatches instructions 

using a simple loop-embedded switch statement, as shown in Figure 2.1. 

char code [CODES IZE] ; 
char *pc = code; 
int stack[STACKSIZE]; 
int *sp = stack; 

j* load bytecodes from file and store them in code!] *j 

j* dispatch instructions * j 
while(true) { 

switch(*pc++) { 
case ICoNST_1: *sp++ = 1; break; 
case ICoNST_2: *sp++ = 2; break; 
case IADD: --sp; sp[-1] += *sp; break; 

case END: exit(O); 
}} 

Figure 2.1: Pure Switch-Based Bytecode Interpreter 
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2.1.2 Precomputing and Aligning Data 

The Java class file format is relatively complex. It includes, among other things, a 

constant pool used to store the most complex operands of bytecode instructions such 

as strings and class names. Bytecode instructions refer to class pool entries using 

a one or two byte immediate operand representing an index into the constant pool. 

Yet, Java bytecode instructions have no alignment requirement2
. 

Modern processors usually have ward sized registers, and most of memory hierar­

chy hardware is optimized for accessing al~gned words (e.g.: single or multiple word 

cache entries, word aligned access to lower memory). Accessing byte-sized data often 

results in additional computation or hardware overhead for extracting the appropriate 

bits from the enclosing word. 

In order to simplify computation, and to reduce run-time overhead, Sable VM 

do es not directly interpret bytecode instructions. Instead, it precomputes an aligned 

code array with word elements. Said differently, Sable VM translates bytecodes into 

wordcodes. In the process, Sable VM performs several optimizations such as translat­

ing big-endian multi-byte values into platform-specific words, and eliminating sorne 

constant-pool indirect ions by inlining values into the code array. 

Translating bytecodes also involves making many small adjustments such as re­

computing relative branch targets. Sable VM takes this opportunity to precompute a 

variety of values such as absolute branch targets, to minimize run-time computation. 

Sable VM also makes the necessary adjustments to exception and line number tables. 

Finally, in or der to preserve portability to 32 and 64-bit big and little-endian 

systems, Sable VM does not assume any particular word size or byte ordering. It 

simply uses generic types such as (void *), and the _svrnt_word type (which is defined 

in a system-specifie header file). 

2Exception: The operands of the lookupswitch and the tableswitch instructions include padding 
to provide 32-bit aligned jump tables. 
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2.2 Dispatch Types 

In this section, we describe three dispatch mechanisms generally used for implement­

ing interpreters and discuss their efficiency-portability tradeoffs. The third mecha­

nism is relatively new, and has been introduced by Piumarta and Riccardi [PR98]. 

2.2.1 Switching 

As we have se en in Section 2.1, simple bytecode interpreters use a loop-embedded 

switch statement to dispatch instructions. 

This approach has sorne benefits: 

• It is very simple to implement. 

• It is a very portable approach, as it requires no platform or compiler-specific 

support. 

• It requires no special preparation of the bytecode array. 

But this approach has performance drawbacks. Dispatching instructions is very 

expensive. On every iteration, the dispatch loop fetches the next bytecode, looks 

up the associated implementation address in a table, then transfers control to that 

address. A typical compilation of the dispatch loop requires a minimum of 3 control 

transfer machine instructions per iteration: one to jump from the previous bytecode 

implementation to the head of the loop, one to test whether the bytecode is within 

the bounds of handled switch-case values, and one to transfer control to the selected 

case statement. On modern processors, control transfer is one of the main obstacles 

to performance [HP96], so this dispatch mechanism causes significant overhead. 

as: 

The main drawbacks of this switch-based bytecode dispatch can be summarized 

• High dispatch overhead. 

• Bytecodes are not aligned, causing additional computation or hardware over­

head. 
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2.2.2 Direct-Threading 

An effective technique to reduce dispatch overhead was popularized by the Forth 

programming language. This technique has the name of threaded code. Note that 

the word thread, in this context, has nothing to do with the concurrent programming 

technique (e.g. Java threads, POSIX threads). Among the traditional threaded code 

techniques, the most efficient is direct-threading [Ertj3. 

Direct-threading improves on switch-based dispatch by eliminating central dis­

patch. This works as follows. In the executable code stream, each bytecode is re­

placed by the address of its associated implementation. AIso, at the end of each 

bytecode implementation, the code required to dispatch the next opcode is added. 

This is illustrated in Figure 2.2. 

/'" code "'/ 

void *code[J = { 
&&ICONST_2, &&ICONST_2, 
&&ICONST_1, &&IADD, 

} 
void **pc = code; 

/* dispatch first instruction * / 
goto **(pc++); 

/* implementations * / 
ICONST_1: *sp++ = 1; goto **(pc++); 
ICONST_2: *sp++ = 2; goto **(pc++); 
IADD: --sp; sp[-1J += *sp; goto **(pc++); 

Figure 2.2: Direct-Threaded Interpreter 

Execution proceeds as follows. The code array is initialized. Then the pc program 

counter variable is initialized, pointing to the first element of code. Then, dispatch 

proceeds by jumping to the address stored in *pc by executing the 1 goto ** Cpc++) ; 1 

instruction. The target instruction ICONST _2 is executed, then the next instruction is 

3 Inline-threading, which we discuss in Section 2.2.3, is a recent technique, and thus does not 
count as tradition al. 
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again dispatched by a single indirect jump \ goto ** Cpc++) ; \, and so on. This effec­

tively eliminates the table lookup and the central dispatch loop. A typical compilation 

of this code yields a single control transfer instruction per dispatch. 

Direct-threading requires preparation of the code array, as the storage size of 

an implementation address (sizeof C void *») is larger than that of the bytecode it 

replaces. 

Figure 2.2 uses the label-as-value GNU C extension, but direct-threading can also 

be implemented using a couple of macros containing inline assembly. 

Advantages of direct-threading: 

• It is relatively simple to implement. 

• It is directly supported by the widely ported the GNU C Compiler [Gcq, yet 

also implementable using other compilers. 

• It operates on aligned data. 

The drawbacks of this approach are: 

• Porting to a new platform or compiler might require a little system-specific 

assembly programming, if the target compiler is not the GNU C compiler. 

• It requires preparation of the code array, prior to executing the code, to convert 

bytecodes into wordcodes. 

2.2.3 Inline-Threading 

The last dispatch mechanism we survey is that of inline-threading [PR98]. This tech­

nique improves on direct-threading by eliminating dispatch overhead for instructions 

within a basic block [ASU86]. 

The general idea is to identify instruction sequences forming basic blocks, within 

the code array, then to dynamically create a new implementation for the whole se­

quence by sequentially copying the body of each implementation into a new buffer, 
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then copying the dispatch code at the end. Finally, a pointer to this sequence imple­

mentation is stored into the code array, replacing the original bytecode of the first 

instruction in the sequence. 

Figure 2.3 displays a simplified example of creation of an instruction sequence 

implementation. Figure 2.4 shows the resulting instruction sequence implementation. 

Note that Figure 2.4 is only an abstract source code representation of the actual 

inlined instruction sequence implementation. 

/* Instructions */ 

ICONST_1_START: *sp++ = 1; 
ICONST_1_END: goto **Cpc++); 

INEG_START: sp[-1] = -sp[-1]; 
INEG_END: goto **Cpc++); 

DISPATCH_START: goto **Cpc++); 
DISPATCH_END: ; 

/* Implement the sequence ICONST_1 INEG */ 

size_t iconst_size = C&&ICONST_1_END - &&ICONST_1_START); 
size_t ineg_size = C&&INEG_END - &&INEG_START); 
size_t dispatch_size = C&&DISPATCH_END - &&DISPATCH_START); 

void *buf = mallocCiconst_size + ineg_size + dispatch_size); 
void *current = buf; 

memcpyCcurrent, &&ICONST_START, iconst_size); 
current += iconst_size; 
memcpyCcurrent, &&INEG_START, ineg_size); 
current += ineg_size; 
memcpyCcurrent, &&DISPATCH_START, dispatch_size); 

/* No~, it is possible to execute the sequence using: */ 
goto **buf; 

Figure 2.3: Inlining a Sequence 

Inline-threading improves performance by reducing the overhead due to dispatch. 

This is specially effective for sequences of simple instructions such as ICONST _1 and 

IADD, which have a high dispatch-to-real-work ratio. 

In [PR98], Piumarta and Riccardi experimented with inline-threading on toy 
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ICONSL1 body: 
INEG body 
DISPATCH body: 

*sp++ = 1; 
sp[-1] = -sp[-1]; 
goto **(pc++); 

Figure 2.4: Inlined Instruction Sequence 

benchmarks using a simple bytecode language, and achieved, in one case, 70% of 

the speed of an equivalent optimized C program. Experiments within an Objective 

Caml bytecode interpreter showed significant speed improvement in sorne conditions 

(depending on benchmarks and platforms tested). 

Proeessor Specifie Coneerns 

Many modern processors have distinct data and instruction caches. On such systems, 

an inline assembly function is required in order to ensure that the instruction cache 

sees the dynamically created sequence implementations. This instruction is sim ply 

an architecture-specifie cache-flush machine instruction, which cannot be expressed 

in portable C. 

The problem is that newly created sequence implementations are written back by 

the processor to its data cache. This data needs to be written back to main memory 

before it can be seen by the instruction cache. So, by using this function, we prevent 

the disastrous execution of potentially random memory content. 

Limitations 

Unlike direct-threading, which applies uniformly to all instructions, inline-threading 

presents sorne limitations. Not all instructions can be inlined. These limitations are 

mainly caused by relative jumps. As inlined implementations are copied elsewhere 

III memory, the target of a relative jump within an implementation might become 

invalid. 

The following list of instructions cannot be inlined: 

• Instructions that contain C function calls, if the C compiler implements the caU 

as a relative displacement to the processor's program counter (PC). 
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• Any instruction that causes the C compiler to emit a hidden internaI function 

calI, if this calI is implemented as a relative displacement to the PC (e.g. this 

happens for long division, on the x86 platform using gcc). 

• Any instruction that contains a jump to other than an absolute target address, 

or a PC-relative one within the START and END labels of the instruction imple­

mentation. 

The most obscure is the third class of instructions. This happens, for example, 

on the x86 platform using gcc version 3.1 with optimization on (gcc -02) for any 

instruction that contains conditionals such as: if (condi t ion). It is an inconsistent 

behavior that only shows when using specific compiler options. For example, this 

limitation does not show for conditionals when using gcc -00 on the same platform4 . 

We discovered this third limitation in our experiments. The initial paper by 

Piumarta and Riccardi [PR98] did not identify this limitation5 nor the hidden calIs 

limitation. 

In summary, inlinability of an instruction implementation is dependent on the 

compiler, platform, and compiler-options used. Thus inline-threading requires a care­

fuI testing of each instruction, to discover whether it is inlinable or not, and under 

which conditions. 

Advantages and Drawbacks 

Advantages of inline-threading: 

• It completely eliminates dispatch overhead for alI but the last instruction of in­

lined sequences, and can yield significant performance improvement over direct­

threading. 

• It operates on aligned data. 

4Further investigation revealed that this problem is caused by reordering of basic blocks by the 
gcc 3.1 optimizer. 

50ur tests indicate that this limitation does not show in gcc 2.95, which they used for their 
experiments. 
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Drawbacks: 

• Preparation of the code array requires more work, including basic block identi­

fication. 

• It can require one memory cache related inline assembly function on sorne plat­

forms in addition to having all the requirements of direct-threading. 

• Inlined instruction sequence implementations cannot be traced normally using 

a debugger (other than at the machine-code level). 

• Porting to a new system or compiler requires careful testing of instructions to 

assess their inlinability. 

2.3 Inline-Threading Java 

In the previous section, we described the idea of inline-threading. To our knowledge, 

this technique has not been applied to Java interpreters before. In this section, we first 

explain the difficulty of applying inline-threading to Java bytecode, then introduce 

new techniques that make it possible. 

Even though sorne of the problems and new techniques discussed in this section 

also apply to switch and direct-threaded interpreters, we will only focus on inline­

threading to simplify the text. 

2.3.1 Conflict: Laziness and Multi-Threading 

Lazy Loading and Preparation 

In Java, classes are dynamically loaded. The Java Virtual Machine Specification 

[LY99] allows a virtual machine to eagerly or lazily load classes (or anything in bc­

tween). But this fiexibility does not extend to class initialization6
. Class initialization 

must oceur at specifie exeeution points, sueh as the first invocation of a static method 

6Class initialization consists of initializing static fields and executing static class initializers. 
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or the first access to a static field of a class. Lazily loading classes has many advan­

tages: it saves memory, reduces network traffic, and reduces startup overhead. 

As we have seen, inline-threading requires analyzing a bytecode array to determine 

basic blacks, allocating and preparing implementation sequences, and lastly preparing 

a code array. As this preparation is time and space consuming, it is advisable to only 

prepare methods that will actually be executed. This can be achieved through lazy 

method preparation. 

Performance Issue 

Lazy preparation (and loading), which aims at improving performance, can pose a 

performance problem within a multi-threaded7 environment. The problem is that, 

in order to prevent corruption of the internaI data structure of the virtual machine, 

concurrent preparation of the same method (or class) on distinct Java threads should 

not be allowed. 

The natural approach, for preventing concurrent preparation, is to use synchro­

nization primitives such as pthread mutexes8
. But, this approach can have a very high 

performance penalty; in a naive implementation, it adds synchronization overhead to 

every method call throughout a program's execution, which is clearly unacceptable, 

specially for multi-threaded Java applications. 

One-Word Replacement 

A clever trick to avoid synchronization on every method call is to put a pointer to a 

special preparation method in place of a pointer to the real method to be executed, in 

code arrays and virtual tables. The special preparation method uses synchronization 

primitives and performs preparation, if it hasn't been done yet, then finally stores a 

pointer to the real method into the calling code array or virtual table9 . 

7Note that multi-threading is a concurrent programming technique which is inherently supported 
in Java, whereas inline-threading is an instruction dispatch technique. 

8POSIX Threads mutual exclusive locks. 
9 As we will explain later, this replacement trick only works if there is a single word to change; if 

two or more words are changed, a race condition occurs in absence of explicit synchronization. 
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Broken Sequences 

In the case of inline-threading the laziness problem is amplified. An important perfor­

mance factor of inline-threading is the length of inlined instruction sequences. Longer 

sequences reduce the dispatch-to-real-work ratio and lead to improved performance. 

Lazy class initialization mandates that the first caU to a static method (or access to a 

static field) must cause initialization of a class. This implies (in a naive Java virtual 

machine implementation) that instructions such as GETSTATIC must use a conditional 

to test whether the target class must be initialized prior to performing the static field 

access. If initialization is required, a caU to the initialization function must be made. 

The conditional and the C function caU are, in light of the limitations identified in 

Section 2.2.3, potential reasons that can prevent inlining of the GETSTATIC instruc­

tion. 

What we would like, is to use the same replacement trick as discussed earlier, using 

two versions of the GETSTATIC instruction, as shown in Figure 2.5. But, unfortunately 

this does not completely solve our performance problem lO . 

Even though this technique eliminates synchronization overhead from most func­

tion caUs, it inhibits the removal of dispatch code in an instruction which has very 

litt le real work to do. In fact, the cost can be as high as the execution of two addition al 

dispatches. To me as ure this, we compare the cost two instruction inline-threaded in­

struction sequences that only differ in their respective use of ILOAD and GETSTATIC 

in the middle of the sequence. 

Broken Sequence Cost 

So, if we had the sequence of instructions ICONST2- ILOAD- IADD, we could build a 

single inlined sequence for these three instructions, adding a single dispatch at the 

end of this sequence. Cost: 3 x realwork + 1 x dispatch. 

If, instead, we had the sequence of instructions ICONST2-GETSTATIC-IADD, we 

would not be allowed to create a single inlined sequence for the three instructions. 

lONote that, for simplicity, Figure 2.5 implements the integer static field access instruction 
GETSTATIC_INT variant of GETSTATIC. 
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Synchromzed GETSTATIC 

/* Pseudo-code */ 

GETSTATIC_INIT: 

/* lazily load class */ 

/* conditional */ 
if Cmust_initialize) 
{ 

} 

1* function calI */ 
initialize_classC ... ); 

1* do the real work *1 
*sp++ = class.static_field; 

/* replace by fast version *1 
code[pc -1J = 

&&GETSTATIC_NO_INIT; 

1* dispatch */ 
goto **(pc++); 

Unsynchromzed GETSTATIC 

1* pseudo-code */ 

/* do the real work *1 
*sp++ = class.static_field; 

1* dispatch *1 
goto **Cpc++); 

Figure 2.5: GETSTATIC With and Without Initialization 
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This is because, in the prepared code array, we would need to put 3 distinct instruc­

tions: ICONST2, GETSTATICINIT, and IADD, where the middle instruction cannot be 

inlined. Even though the GETSTATIC_INIT will eventually be replaced by the more 

efficient GETSTATIC_NO_INIT, the performance cost will remain: 3 x realwork + 3 x 

dispatch. 

80, the overhead of a broken sequence can get as high as two additional dispatches. 

Two-Values Replacement 

In reality, the problem is even a little deeper. The pseudo-code of Figure 2.5 hides 

the fact that GETSTATIC_INIT needs to replace two values, in the code array: the 

instruction opcode and its operand. The ide a is that we want the address of the 

static variable as an operand (not an indirect pointer) to achieve maximum efficiency, 

as shown in Figure 2.6. But this pointer is unavailable at the time of preparation of 

the code array, as lazy class loading only takes place later, within the implementation 

of the GETSTATIC_INIT instruction. 

Fast InstructIOn Code Array 
/* Initially */ 

GETSTATIC NO INIT: ... 
- - [GETSTATIC_INIT] { [POINTER_TO_FIELD_INFO] int *pvalue = Cpc++)->pvalue; 

*sp++ = *pvalue; ... 
} 

/* After first execution */ 

/* dispatch */ ... 
[GETSTATIC_NO_INIT] goto **Cpc++); [POINTER_TO_FIELD] 
... 

Figure 2.6: Two-Values Replacement in Code Array 

Replacing two values without synchronization creates a race condition. Here is a 

short illustration of the problem. A first Java thread reads both initial values, does 

the instruction work, then replaces the first of the two values. At this exact point 

of time (before the second value is replaced), a second Java thread reads the two 

values (instruction and operand) from memory. The second Java thread will thus get 
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the fast instruction opcode and the old field info pointer. This can of course lead to 

random execution problems. 

2.3.2 Getting longer Inlined Sequences 

Before attacking the problem of two-values replacement, we introduce sorne techniques 

to eliminate non-inlinable features from instruction implementations. In other words, 

using these techniques, we can eliminate conditionals and function calls from the 

body of many instructions. This will increasing the number of inlinable instructions, 

leading to the computation of longer inlined sequences, in inline-threaded code. 

Type-Specifie Instructions 

The first technique is to split sorne bytecode instructions such as GETSTATIC into 

multiple type-specifie versions. In Java bytecode, there is a single GETSTATIC instruc­

tion to access static fields, yet there are eight primitive field types (boolean, byte, 

short, char, int, long, fioat, and double), and reference types. As reference types are 

created dynamicalIy, we consider all reference types as a single type: reference. We 

calI instructions such as GETSTATIC: overloaded instructions. 

When Sable VM prepares the code array of a method, it replaces every over­

loaded bytecode by the appropriate type-specifie versions such as GETSTATIC_INT 

and GETSTATIC_REFERENCE. 

Here is the list of the most important overloaded Java bytecode instructions: 

GETSTATIC, PUTSTATIC, GETFIELD, PUTFIELD, NEWARRAY, and ASTORE. Note that we 

have included ASTORE in this list as it can operate on both reference and address-type 

stack values. 

Stop-The-World or Not 

A Java virtual machine must provide a garbage collector (Ge). Sable VM implements 

a precise copying stop-the-world garbage collector. A commonly used technique to 

stop the world, is for each Java thread to regularly check a fiag. This fiag is raised 

whenever garbage collection is needed. 
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To ensure that no thread gets into an arbitrarily long loop without checking for 

GC requests, GC checks are usually inserted in backward branch instructions. These 

instructions are usually said to be garbage-colleciion safe. 

As Sable VM already has to analyze the code to detect basic blocks for inline­

threading, it also takes note of basic blocks which contain bytecode instructions that 

include compulsory GC checks. The following bytecode instructions have compul­

sory checks: NEW, NEWARRAY, ANEWARRAY, MULTIANEWARRAY, INVOKESTATIC, INVOKE­

VIRTUAL, INVOKESPECIAL, and INVOKEINTERFACE. Only backward branches to basic 

blocks which do not contain such instructions are considered GC check points. 

Our technique is thus to provide two implementations for branch instructions: one 

with GC check, and one without GC check. This allows us to get an inlinable version 

(with no GC check), as shown in Figure 2.7. 

GOTO_CHECK GOTO (No Check) 
GOTO_CHECK: 

/* Inlinable */ 
if (gc_requested) GOTO_START: 
{ 

... pc = (*pc)->addr; 
} 

GOTO_END: 
pc = (*pc) ->addr; 

/* dispatch */ 
/* dispatch */ goto **(pc++); 
goto **(pc++); 

Figure 2.7: Branch Instruction With and Without GC Check 

Note that a branch instruction determines the end of a basic block, and is thus 

always followed by a dispatch. Inlining a branch instruction helps eliminating the 

dispatch at the end of the previous instruction. 

A nice secondary side effect of only adding checks to a subset of backward branches 

is a reduction in the number of GC points, and possibly in the number of GC mapsll . 

llWe discuss garbage collection maps in Chapter 6. 
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Load, Link, and Initialize or Not 

As we have discussed in Section 2.3.1 and illustrated in Figure 2.5, instruction split­

ting can also be applied to instructions that can cause class loading, linking, and 

initialization on their first execution. These instructions includel2 : LDC_STRING, GET­

STATIC_*, PUTSTATIC_*, GETFIELD_*,PUTFIELD_*,CHECKCAST, INSTANCEOF, INVOKE­

STATIC, INVOKEVIRTUAL, INVOKESPECIAL, INVOKEINTERFACE, NEW, ANEWARRAY, and 

MULTIANEWARRA Y. 

Note that we have not yet addressed the two-values replacement problem that 

resuIts from this splitting. 

Using Signais 

An additional technique to increase the length of inlinable instruction sequences is to 

eliminate explicit checks for NULL values. 

This can be done in a portable manner using POSIX signaIs and ISO C long 

jumps. This NULL check technique is relatively weIl known, and in used in other 

virtual machines such as Kaffe [Kaf]. The idea is to setup a signal handler to trap 

segmentation fauIts, then to remove explicit NULL checks from the code. NULL 

pointers cause segmentation fauIts which are trapped by the signal handler, which in 

turns resumes normal execution using a siglongjmp 0 calI. 

The advantage of signal-based NULL checks is that, in absence of NULL pointers, 

a check costs 0 machine instructions. The drawback is that signaIs can be very 

expensive, as they seldom are the most optimized part of Operating Systems. 

In the context of an inline-threaded interpreter, signal-based NULL checks carry 

the additional advantage of eliminating a conditionaI. 

This is useful for instructions such as GETFIELD, as shown in Figure 2.8. 

120verloaded instructions are first split into type-specifie versions. 
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WIthout SIgnaIs 
GETFIELD_NO_INIT: 
{ 

} 

int *instance = 
(pc++)->instance; 

int offset = (pc++)->offset; 

if (instance == NULL) 
{ 

/* throw exception */ 

} 

*sp++ = instance [offsetJ ; 

/* dispatch */ 
goto **(pc++); 

WIth SignaIs 

/* inlinable! */ 
GETFIELD_NO_INIT_START: 
{ 

} 

int *instance = 
(pc++)->instance; 

int offset = (pc++)->offset; 

*sp++ = instance[offsetJ; 

/* dispatch */ 
goto **(pc++); 

Figure 2.8: Using SignaIs 

2.3.3 Preparation Sequences 

Problems and Incomplete Solution 

Our two most important problems left, at this point, are two-values replacement, and 

shorter sequences caused by the slow preparation versionI3 of instructions such as 

GETSTATIC, as explained in Section 2.3.l. 

Of course, there is a simple solution to two-values replacement that consists of 

using indirect ion in the fast version of instructions, as shown in Figure 2.9. Note how 

this implementation differs from Figure 2.6; in particular the additional fieldinfo 

indirection. This simple solutions cornes at a price, though: that of an additional 

indirection in a very simple instruction. Furthermore, this solution does not solve the 

shorter sequences problem. 

13We mean: the version which does aIl necessary first execution preparation work, such as class 
loading, linking and initialization. 
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Fast Instruction wIth Indirect IOn Gode Array 
/* Initially */ 

GETSTATIC_NO_INIT: ... 
{ [GETSTATIC_INIT] 

int *pvalue = [POINTER_TO_FIELD_INFO] 
(pc++)->fieldinfo->pvalue; ... 

*sp++ = *pvalue; 
} /* After first execution */ 

... 
/* dispatch */ [GETSTATIC_NO_INIT] 
goto **(pc++); [POINTER_TO_FIELD_INFOJ 

... 

Figure 2.9: Single-Value Replacement of GETSTATIC 

The Basic Idea 

Instead, we propose a solution that solves both problems. This solution consists of 

adding preparation sequences in the code array. 

The basic ide a of preparation sequences is to duplicate certain portions of the code 

array, leaving fast inlined-sequences in the main copy, and using slower, synchronized, 

non-inlined preparation version of instructions in the copy. Single-value replacement 

is then used to direct control flow appropriately. 

Single-Instruction Preparation Sequence 

Preparation sequences are best explained using a simple illustrative example. We con­

tinue with our simplified GETSTATIC example14 . We assume, for the moment, that the 

GETSTATIC is preceded and followed by non-inlinable instructions, in the code array. 

An appropriate instruction sequence would be MONITORENTER-GETSTATIC-MONITOR­

EXIT, as neither monitor instruction is inlinable. 

Figure 2.10 illustrates the initial content of a prepared code array containing the 

above 3-instructions sequence. The GETSTATIC preparation sequence appears at the 

end of the code array. 

The initial content of the code array is as follows. After the MONITORENTER, we 

14We assume the reader has noticed that in reality, our GETSTATIC example is implementing the 
type-specifie GETSTATIC-INT overloaded version. 
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(Jrlglnal ~ytecode 

MONITORENTER 
GETSTATIC 
INDEXBYTE1 
INDEXBYTE2 
MONITOREXIT 

ImtIaI Content ot Code Array 

[MONITORENTER]* 
OPCODE_1: [GOTO]* 

[@ SEQUENCE_1] 
OPERAND_1: [NULL_POINTER] 
NEXT _1 : [MONITOREXIT] * 

SEQUENCE_1: [GETSTATIC_INIT]* 
[POINTER_TO_FIELDINFO] 
[@ OPERAND_1] 
[REPLACE] * 
[GETSTATIC_NO_INIT] 
[@ OPCODE_1] 
[GOTO] * 
[@ NEXT_1] 

Opcodes followed by a * are instructions. 

Figure 2.10: Single GETSTATIC Preparation Sequence 

in sert a GOTO instruction followed by two operands: (a) the address of the GETSTATIC 

preparation sequence, and (b) an additional word (initially NULL) which will even­

tually hold a pointer to the static field. At the end of the code array, we add a 

preparation sequence, which consists of 3 instructions (identified by a *) along with 

their operands. 

Figure 2.11 shows the implementation of four instructions: GOTO, REPLACE, GET­

STATIC_INIT, and GETSTATIC_NO_INIT. Notice that in the preparation sequence, the 

GETSTATIC_NO_INIT opcode is used as an operand to the REPLACE instruction. 

We used labels (e.g. SEQUENCL1:) to represent the address of specifie opcodes. In 

the real code array, absolute addresses are stored in opcodes such as [@ SEQUENCL1]. 

Here is how execution proceeds. On the first execution of this portion of the code, 

the MONITORENTER instruction is executed. Then, the GOTO instruction is executed, 

reading its destination in the following word. The destination is the SEQUENCL1 

label, or more accurately, the GETSTATIC_INIT opcode, at the head of the preparation 

sequence. 
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GETSTATIC_INIT: 
{ 

} 

fieldinfo_t *fieldinfo = 
(pc++)->fieldinfo; 

int **destination = 
(pc++)->ppint; 

pthread_mutex_lock( ... ); 

/* lazily load and initialize 
class, and resolve field 
if not already done */ 

/* store field information 
in code array */ 

*destination = 
fieldinfo->pvalue; 

/* do the real work */ 
*sp++ = *(fieldinfo->pvalue); 

/* dispatch */ 
goto **(pc++); 

GoTo 

GoTo: 

{ 

} 

void *address = 
(pc++)->address; 

pc = address; 

/* dispatch */ 
goto **(pc++); 

GETSTATICJNo_INIT 

/* skip address */ 
pc++; 

{ 

} 

int *pvalue = 
(pc++)->pvalue; 

/* do the real work */ 
*sp++ = *pvalue; 

/* dispatch */ 
goto **(pc++); 

REPLACE 
REPLACE: 

{ 

} 

void *instruction = 
(pc++)->instruction; 

void **destination = 
(pc++)->ppvoid; 

*destination = 
instruction; 

/* dispatch */ 
goto **(pc++); 

Figure 2.11: Instruction Implementations 
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The GETSTATIC_INIT instruction then reads two operands: (a) a pointer to the 

field information structure, and (b) a destination pointer for storing a pointer to the 

resolved static field. It then proceeds normally, loading and initializing the class, 

and resolving the field, if it hasn't yet been done15 . Then, it stores the address of 

the resolved field in the destination location. Notice that, in the present case, this 

means that the pointer-to-field will overwrite the NULL value at label OPERAND_1. 

Finally, it executes the real work portion of the instruction, and dispatches to the 

next instruction. 

The next instruction is a special one, called REPLACE, which sim ply stores the 

value of its first operand into the address pointed-to by its second operand. In this 

particular case, a pointer to the GETSTATIC_NO_INIT instruction will be stored at label 

OPCODL1, overwriting the former GOTO instruction pointer. This constitutes, in fact, 

our single-value replacement. 

The next instruction is simply a GOTO used to exit the preparation sequence. It 

jumps to the instruction following the original GETSTATIC bytecode, which in our 

specifie case is the MONITOREXIT instruction. 

Future executions of the same portion of the code array will see a GETSTA­

TIC_ND_INIT instruction (at label DPCDDL1), instead of a GDTD to the preparation 

sequence. Two-values replacement is avoided by leaving the GOTO operand address in 

place. Notice how the implementation of GETSTATIC_ND_INIT in Figure 2.10 differs 

from the implementation in Figure 2.6, by an additional pc++ to skip the address 

operand. 

Sorne Explanations 

Our single-instruction preparation sequence has avoided two-values replacement by 

using an extra word to permanently store a preparation sequence address operand, 

even though this address is useless after initial execution. 

This approach adds sorne overhead in the fast version of the overloaded instruction; 

that of a program-counter increment, to skip the preparation sequence address. One 

15Each field is only resolved once, yet there can be many GETSTATIC instructions accessing this 
field. The same holds for class loading and initialization. 
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could easily question whether this gains any performance improvement over that of 

using an indirect ion as in Figure 2.9. This will be answered by looking at longer 

preparation sequences. 

The strangest looking thing is the usage of 3 distinct instructions in the prepa­

ration sequence. Why not use a single instruction with more operands? Again, the 

answer lies in the implementation of longer preparation sequences. 

Full Preparation Sequences 

We now proceed with the full implementation of preparation sequences. Our objective 

is two fold: (a) we want to avoid two-values replacement, and (b) we want to build 

longer inlined instruction sequences for our inlined-threaded interpreter, for reducing 

dispatch overhead as much as possible. 

To demonstrate our technique, we use the three instruction sequence: ICON­

ST2-GETSTATIC-ILOAD. 

Figure 2.12 shows the initial state of the code array. The content of the dynam­

ically constructed ICONST2-GETSTATIC-ILOAD inlined instruction sequence, as weIl 

as sorne related instruction implementations are shown in Figure 2.13. Finally, the 

content of the code array after first execution is shown in Figure 2.14. 

This works similarly to the single-instruction preparation sequence, with two 

major differences: (a) the jump to the preparation sequence initially replaces the 

l CONST _2 instruction, instead of the GETSTA TI C instruction, and (b) the REPLACE in­

struction stores a pointer to an inlined instruction sequence, overwriting the GOTO 

instruction. 

Here is how execution proceeds in detail. On the first execution of this portion of 

the code, the GOTO instruction is executed. Its destination is the ICONSL2 opcode, 

at the head of the preparation sequence. 

Next, the ICONST_2 instruction is executed. Next, the GETSTATIC_INIT instruc­

tion reads two operands: (a) a pointer to the field information structure, and (b) a 

destination pointer for storing a pointer to the resolved static field. It then proceeds 

normally, loading and initializing the class, and resolving the field, if it hasn't yet 
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Ungmal .l:1ytecode 

ICONST_2 
GETSTATIC 
INDEXBYTEl 
INDEXBYTE2 
ILOAD 
INDEX 

lmtIal Content ot Code Array 

OPCODE_l: [GOTO]* 
[@ SEQUENCE_l] 

OPERAND_l: [NULL_POINTER] 
[INDEX] 

NEXL1: 

SEQUENCE_l: [ICONST_2]* 
[GETSTATIC_INIT]* 
[POINTER_TO_FIELDINFO] 
[@ OPERAND_l] 
[REPLACE] * 
[ICONST2-GETSTATIC-ILOAD] 
[@ OPCODE_l] 
[ILOAD] * 
[INDEX] 
[GOTO] * 
[@ NEXL1] 

Opcodes followed by a * are instructions. 

Figure 2.12: Full Preparation Sequence 

ICONST2-GETSTATIC-ILOAD Inlined InstructIOn Sequence 
SKIP body pc++; 
ICONST_2 body *sp++ = 2; 
GETSTATIC_NO_INIT body: {int *pvalue = (pc++)->pvalue; 

*sp++ = *pvalue;} 
ILOAD body {int index = (pc++)->index; 

*sp++ = locals[index];} 
DISPATCH body goto **(pc++); 

SKIP 

SKIP_START: 

*pc++; 

SKIP_END: 

/* dispatch */ 
goto **(pc++); 

GETSTATICJNO_INIT 
GETSTATIC_NO_INIT_START: 
{ 

} 

int *pvalue = (pc++)->pvalue; 
*sp++ = *pvalue; 

/* dispatch */ 
goto **(pc++); 

Figure 2.13: Inlined Instruction Sequence 
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OPCODE_l: [ICONST2-GETSTATIC-ILOAD]* 
[@ SEQUENCE_l] (skipped) 

OPERAND_l: [POINTER_TO_FIELD] (for GETSTATIC) 
[INDEX] (for ILOAD) 

NEXL1: 

SEQUENCE_l: [ICONST_2]* 
[GETSTATIC_INIT]* 
[POINTER_TO_FIELDINFO] 
[@ OPERAND_l] 
[REPLACE] * 
[ICONST2-GETSTATIC-ILOAD] 
[@ OPCODE_l] 
[ILOAD] * 
[INDEX] 
[GOTO] * 
[@ NEXL1] 

Opcodes followed by a * are instructions. 

Figure 2.14: Code Array After First Execution 

been done. Then, it stores the address of the resolved field in the destination loca­

tion. Finally, it executes the real work portion of the instruction, and dispatches to 

the next instruction. 

The next instruction is a REPLACE, which simply stores a pointer to the dynami­

cally inlined instruction sequence ICONST2-GETSTATIC-ILOAD at label OPCODL1, over­

writing the former GOTO instruction, and performing a single-value replacement. 

Next, the ILOAD instruction is executed. Finally, the tail GOTO exits the preparation 

sequence. 

Future executions of the same portion of the code array will see the ICONST2-GET­

STATIC- ILOAD instruction sequence (at label OPCODL1), as shown in Figure 2.14. 

Notice that the inlined implemeniaiion of GETSTATIC_NO_INIT in Figure 2.13 does 

not add any overhead to the fast implementation shown in Figure 2.6. 

Thus, we have achieved our goals. In particular, we have succeeded at inlining an 

instruction sequence, even though it had a complex two-modes (preparation / fast) 
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instruction in the middle, while avoiding two-values replacement. AlI of this with 

minimum overhead in post-fi.rst execution of the code array. 

Detailed Preparation Procedure 

Preparation of a code array, in anticipation of inline-threading, proceeds as follows: 

1. Instructions are divided in three groups: inlinable, two-modes-inlinable (such 

as GETSTATIC), and non-inlinable. 

2. Basic blocks (determined by control-fiow and non-inlinable instructions) are 

identified. 

3. Basic blocks of inlinable instructions, without two-modes-inlinable instructions, 

are inlined as explained in Section 2.3. 

4. Every basic block containing two-modes-inlinable instructions causes the gen­

eration of an additional preparation sequence at the end of the code array, and 

the construction of a related inlined instruction sequence. 

The construction of a preparation sequence proceeds as follows: 

1. Instructions are copied sequentially into the preparation sequence . 

• Inlinable instructions and their operands are simply copied as-is. 

• The preparation version of two-modes-inlinable instructions is copied into 

the preparation sequence, along with the destination address for resolved 

operands. 

2. A REPLACE instruction with appropriate operands is inserted just after the last 

two-modes-inlinable instruction. 

3. A final GOTO instruction with appropriate operand is added at the end of the 

preparation sequence. 
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The motivation for ad ding the replace instruction just after the the last two­

modes-inlinable instruction, is that it is the earliest safe place to do so. Replacing 

sooner could cause the execution (on another Java thread) of the fast version of an 

upcoming two-modes instruction before it is actually prepared. Replacing later can 

also be a problem, specially if sorne upcoming inlinable instruction is a conditional 

(or unconditional) branch instruction. This is because, if the branch is taken, then 

single-value replacement will not take place, forcing the next execution to take the 

slow path 16. 

The construction of an inlined instruction sequence containing two-modes-inlinable 

instructions proceeds as follows: 

1. The body of the SKIP instruction is copied at the beginning of the sequence 

implementation. 

2. Then, all instruction bodies are sequentially copied. 

3. Finally, the body ofthe DISPATCH instruction is co pied at the end of the sequence 

implementation. 

Note that a single preparation sequence can contain multiple two-modes instruc­

tions. Yet, on the fast execution path, there is a single program-counter increment 

(i.e. SKIP body) per inlined instruction sequence. 

Adjusting Exception and Une Number Tables 

Implementing preparation sequences involves many little details related to computa­

tion of absolute addresses. We will only discuss briefiy of the trickiest issue, that of 

exception handling within preparation sequences. 

Java class files include exception tables which determine the fiow of control when 

exceptions are thrown. Each entry in an exception table specifies: (a) an instruction 

16Multiple executions of the same preparation sequence is allowed, but suffers from high dispatch 
overhead. It can happen in the normal operation of the inline-threaded interpreter as the result of 
an exception thrown before single-value replacement, while executing a preparation sequence. 
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range using a st art and end offset in the bytecode array, (b) a catch reference type 

(or any), and (c) an exception handler address (an offset in the bytecode array). 

When an exception happens, the exception table of the currently executing method 

is searched sequentially for a matching entry. Order does matter, as there might be 

more than one mat ching entry in the table, yet the first one must be chosen. If a 

mat ching entry is found, execution resumes at the specified exception handler address. 

If none is found, the current stack frame is popped, and the process is repeated 

recursively. 

The consequence is that, in the presence of preparation sequences, exception tables 

require sorne additional preparation work. An entry in the exception table might 

specify a range of instructions which contains two-modes instructions. As preparation 

sequences are added to the end of the code array, we have modified the structure of an 

exception table entry to include two ranges: one range in the lower part of the code 

array, and one range in the preparation part of the code array. To pro cess exceptions, 

the modified exception table is sim ply searched sequentially for a matching entry, as 

usual, with the difference that the program counter must be within one of the two 

ranges for an entry to match. 

An identical modification is applied to li ne number table entries, which are used 

to report li ne numbers in exception stack traces. 

2.4 Experimental Results 

We have implemented 3 Ravors of threaded interpretation in the Sable VM framework: 

switch-threading, direct-threading and inline-threading. Switch-threading differs from 

simple switch-based bytecode interpretation in that it is applied on a prepared code 

array of word-size elements. An of the techniques introduced in this chapter are in use 

within the inline-threaded interpreter engine. Sorne of the techniques are also in use 

within the switch-threaded and direct-threaded engines, including single-instruction 

preparation sequences, to avoid the problem of two-values replacement. 

The test environment and choice of benchmarks is discussed in Chapter 9. In 
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summary, we have performed our experiments on a Pentium IV based workstation, 

running SPECjvm98 benchmarks and two object-oriented applications: Soot version 

1.2.317 and SabieCC version 2.17.318 . 

2.4.1 Inlined Instruction Sequences Characteristics 

Table 2.1 shows a first set of measurements. The main objective of these measure­

ments was to quantify the proportion of inlinable instructions, within bytecode arrays, 

and to measure the average length of inlined sequences. 

1 benehmark Il methods 1 instr. (be) 1 seq. inl. instr. 1 ins./s. 
compress 411 41 16,886 30,901 4,238 12,263 73% 2.9 

db 461 40 18,283 34,255 4,804 13,083 72% 2.7 
jack 689 49 33,695 62,791 9,095 23,678 70% 2.6 
javac 1,238 38 47,484 (101,027 12,169 33,415 70% 2.7 
jess 892 31 27,220 52,985 7,331 19,025 70% 2.6 

mpegaudio 581 81 47,145 76,509 II,449 34,405 73% 3.0 
mtrt 588 38 22,628 42,037 5,896 15,833 70% 2.7 

raytrace 583 39 22,531 41,863 5,876 15,758 70% 2.7 
soot 3,475 30 104,781 (223,557 29,259 67,030 64% 2.3 

sablecc 1,701 29 49,923 93,335 13,602 32,723 66% 2.4 

Table 2.1: Inlined Sequences (1) 

Our measurements were made only on methods that were actually executed. As 

Sable VM prepares methods lazily (on first execution of a method), we coHected our 

measurements at runtime, just after the preparation of methods. Thus the shown 

numbers are preparation time numbers. 

Columns of Table 2.1 contain respectively: (a) the name of the executed bench­

mark, (b) the number of prepared methods, and the average number of instructions 

per method in parentheses, (c) the total number of instructions of prepared meth­

ods, and the total number of bytecodes of these instructions in parentheses, (d) the 

total number of inlined sequences of aH prepared methods, (e) the total number of 

17http://www.sable.mcgill.ca/soot/ 
18http://www.sablecc.org/ 

38 



2.4. Experimental Results 

inlined instructions, and the percent age of inlined instructions over the total number 

of instructions, and (f) the average number of instruction per inlined sequence. 

Note that the number of instructions and bytecodes are different quantities; a sin­

gle instruction can consist of multiple bytecodes representing the instruction opcode 

and operands. 

In our measurements, the average length of inlined instruction sequences lies be­

tween 2.3 and 3.0. The ratio of inlined instructions is between 66% and 73% of aIl 

instructions. 

Table 2.2 shows additional characteristics of inlined sequences. The main objective 

of these measurements was to quant if y the memory requirement for storing inlined 

sequences, and identify the longest sequence in terms of number of instructions and 

inlined implementation size. 

1 benchmark Il seq. distinct seq. 1 max.ins.!s. 1 max.size!s. 
compress 4,238 850 156K 41 1,686 

db 4,804 900 155K 22 999 
jack 9,095 1,174 213K 22 1,090 
javac 12,169 2,200 426K 25 999 
jess 7,331 1,312 234K 22 999 

mpegaudio 11,449 1,293 251K 85 3,469 
mtrt 5,896 1,175 198K 32 1,362 

raytrace 5,876 1,165 196K 32 1362 
soot 29,259 2,906 574K 54 2,076 

sablecc 13,602 1,484 277K 22 999 

Table 2.2: Inlined Sequences (2) 

Columns of Table 2.2 contain respectively: (a) the name of the executed bench­

mark, (b) the total number of inlined instruction sequences of aIl prepared methods, 

(c) the number of distinct inlined instruction sequences, (d) the highest number of 

instructions within a single inlined sequence, and (e) the biggest implementation size 

(in bytes) of a single inlined sequence. 

Sable VM saves space by allocating a single copy for each distinct inlined instruc­

tion sequence. This proves very effective, specially for bigger benchmarks. For the 

Soot benchmark, in particular, Sable VM does not use additional storage space for 

39 



2.4. Experimental Results 

over 90% of inlined instruction sequences. The total size of genuine inlined instruc­

tion sequences is 574K. If we divide this st orage size by the total number of inlined 

instructions (67,030), found in Table 2.1, we find that, on average, less than 9 bytes 

of implementation code is required per instruction in the Soot benchmark. 

2.4.2 Performance Measurements 

We have performed execution time measurements with Sable VM (within the test 

environment described in Chapter 9), to measure the efficiency of inline-threading 

Java, using our techniques. 

In a first set of experiments, we have measured the relative performance of the 

switch-threaded, direct-threaded and inline-threaded engines. Results are shown in 

Table 2.3. To do these experiments, three separate versions of Sable VM were com­

piled with identical configuration options, except for the interpreter engine type. In 

particular, the usage of signaIs to trap NULL pointer exceptions was turned on in an 

three versions. 

benchmark sWltch-threaded direct-threaded mlme-threaded 
(sec.) (sec.) (sec.) 

compress 317.72 281.78 1.13 131.64 2.41 2.14 
db 132.15 119.17 1.11 87.64 1.51 1.36 

jack 45.65 46.78 0.98 38.16 1.20 1.23 
javac 110.10 105.24 1.05 89.37 1.23 1.17 
Jess 74.79 68.12 1.10 53.57 1.40 1.27 

mpegaudio 285.77 242.90 1.18 136.97 2.09 1.77 
mtrt 142.87 115.34 1.24 100.39 1.42 1.15 

raytrace 166.19 134.06 1.24 113.55 1.46 1.18 
soot 676.06 641.96 1.05 548.13 1.23 1.17 

sablecc 40.12 36.95 1.09 26.09 1.54 1.41 

Table 2.3: Inline-Threading Performance Measurements (1) 

Columns of Table 2.3 contain respectively: (a) the name of the executed bench­

mar k, (b) the execution time in seconds using the switch-threaded engine, (c) the 

execution time in seconds using the direct-threaded engine, and the speedup over the 

switch-threaded engine in parentheses, and (d) the execution time in seconds using 
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the inline-threaded engine, and the speedup over both switch-threaded and direct­

threaded engines respectively in parentheses. 

The Inline-threaded engine does deliver significant performance improvement. It 

achieves a speedup of up to 2.41 over the switch-threaded engine. The smallest 

measured speedup, over the fastest of the two other engines on a benchmark, is 1.15 

on the mtrt benchmark, where it also delivers a speedup of 1.42 over the slower engine. 

It is important to note that the switch-threaded engine already has some advan­

tages over a pure switch-based bytecode interpreter. It benefits from word alignment 

and other performance improving features of the Sable VM framework. 80, it is likely 

that the performance gains of inline-threading over pure bytecode interpretation are 

even bigger than those measured against switch-threading. In Chapter 9, we mea­

sure the relative performance of Sable VM against a naively implemented bytecode 

interpreter. 

ln a second set of tests, we measured the speed of the inlined-threaded engine when 

using signal-based NULL pointer detection and when using explicit NULL checks. 

Results are shown in Table 2.4. 

Jess 
mpegau 10 

mtrt 
raytrace 

soot 
sa ecc 

Table 2.4: Inline-Threading Performance Measurements (2) 

Columns of Table 2.4 contain respectively: (a) the name of the executed bench­

mark, (b) the execution time in seconds using the inline-threaded engine and explicit 

NULL checks, (c) the execution time in seconds using the inline-threaded engine and 

signal based NULL pointer detection, and (d) the speedup achieved by signal-based 
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detection over explicit checks. 

Note that using signal-based checks can help eliminate up to two dispatches within 

an instruction sequence, by making an instruction inlinable. The drawback is that 

signaIs are costly, so if NULL pointer exceptions effectively happen, the performance 

of an application can be negatively affected. 

Our performance measurements show that using signal-based detection can yield 

significant speedup (up to 1.26 on compress) , but can also reduce performance (a 

penalty of 4% on mtrt and raytrace). 

2.5 Related Work 

The most closely related work to the work of this chapter is the work of 1. Piumarta 

and F. Riccardi in [PR98]. We have already discussed the inline-threading technique 

introduced in this paper in Section 2.3. Our work builds on top of this work, by 

introducing techniques to de al with multi-threaded execution environments, and inline 

two-modes instructions. 

Inline-threading, in turn, is the result of combining the Forth-like threaded inter­

pretation technique [Ert] (which we have already discussed in Section 2.2.2) with the 

ide a of template-based dynamic compilation [APC+96, NHCL98]. The main advan­

tage of inline-threading over that of template based compilation is its simplicity and 

portability. 

A related system for dynamic code generation is that of vcode, introduced by D. 

Engler [Eng96]. The vcode system is an architecture-neutral runtime assembler. It 

can be used for implementing just-in-time compilers. It is in our future plans to 

experiment with vcode for constructing an architecture-neutral just-in-time compiler 

for Sable VM, offering an additional choice of performance-portability tradeoff. 

Other closely related work is that of dynamic patching. The problem of poten­

tial high cost synchronization costs for concurrent modification of executed code is 

also faced by dynamically adaptive Java systems. In [CLSOO], M. Cerniac et al. de­

scribe a technique for dynamic inline patching (a similar technique is also described 
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III [IKY+OO]). The main idea is to store a self-jump (a jump instruction to itself) 

in the executable code stream before proceeding with further modifications of the 

executable code. This causes any concurrent thread executing the same instruction 

to spin-wait for the completion of the modification operation. 

Our technique of using explicit synchronization in preparation sequences and single 

value replacement has the marked advantage of causing no spin-wait. Spinning can 

have, in sorne cases, a highly undesirable side effect, that of almost dead-Iocking the 

system when the spinning thread has much higher priority than the code patching 

thread. This is because, while it is spinning, the high priority thread does not make 

any progress in code execution and, depending on the thread scheduling policy of 

the host operating system, might be preventing the patching thread from making 

noticeable progress. 

2.6 Conclusions 

In this chapter we have explained the difficulty of using the inline-threaded interpre­

tation technique in a Java interpreter. Then, we introduced new techniques that not 

only make it possible, but also effective. At the heart of our techniques is the idea 

of preparation sequences, which when combined with other techniques, help increase 

the length of inlined instruction sequences and thus reduce dispatch overhead. 

We then presented our experimental results, showing that an inline-threaded in­

terpreter engine, implementing our techniques, achieves significant performance im­

provements over that of switch-threaded and direct-threaded engines. 
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Chapter 3 

Logical Partitioning of Memory 

Memory management is a central issue in the design of a Java virtual machine. 

Many of the runtime services provided by the virtual machine have memory man­

agement related requirements: garbage-collected heap, Java stacks, dynamic class 

loading, dynamic linking, JN! native references, structures for dynamic dispatch (e.g. 

virtual tables), etc. 

In this chapter we discuss the organization of memory in the Sable VM runtime 

environment. In particular, we introduce a logical partitioning of the runtime system 

memory which allows the design of simple and flexible, yet effective, partition-specific 

memory managers. 

This chapter is structured as follows. In Section 3.1, we motivate logical memory 

partitioning as a technique for simplifying the internaI organization of a Java virtual 

machine. In Section 3.2, we introduce our partitioning of the Java runtime memory, 

and discuss the related partition-specifie memory managers. In Section 3.3 we discuss 

related work, and finally in Section 3.4 we present our conclusions. 
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3.1 Simplifying Memory Management 

3.1.1 The Priee of Flexibility 

One of the key features that must be provided by a Java virtual machine is a garbage­

collected heap for object instances. Yet, memory management in the virtual machine 

is much broader than simply providing an object heap; the virtual machine must also 

explicitly or implicitly manage memory for local and global JNI references, invocation 

and native interface data structures, class and array information data structures, fat 

locks, inlined instruction implementations (for inlined-threading) or compiled code 

(for just-in-time compilation), virtual tables, stacks and many other features. 

Among the objectives of the Sable VM framework is to be easily modifiable and flex­

ible, allowing the research on memory management techniques. It is thus important 

that Sable VM be compatible with various garbage collection algorithms, including 

precise, mostly-accurate, and conservative moving and non-moving algorithms. Such 

flexibility cornes at a price. 

Single Garbage-Collected Heap 

A memory organization that would intuitively seem simple is to allocate all (or most) 

memory in the garbage-collected heap. But, many allocated memory sections have 

special requirements. For example, virtual tables cannot be allocated in a movable 

heap, unless pinning1 is supported by the garbage collector or a complex code patching 

process is applied every time a virtual table is moved. But either alternative adds com­

plexity to the virtual machine. Similarly, allocating stack frames on the heap could 

increase the pressure on the garbage collector by causing frequent collections, unless 

sorne special care is taken to minimize the pressure (e.g. generational collection or 

special treatment for stack frame allocation). In summary, a single garbage-collected 

heap cornes at the cost of increased complexity of the virtual machine. 

1 A pinned memory object is left in place by a moving garbage collector. 
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Using manoe () and free () 

Another relatively intuitive memory organization is to manage a separate garbage­

collected heap for object instances, and allocate all other memory using the manoe () 

C library function. This organization has the advantage of permitting the implemen­

tation of various garbage collection algorithms including the simplest ones such as 

copying collection without pinning. But such organization can be expensive in both 

space and time. On the space front, the cost is that every allocated memory block 

returned by manoe () requires sorne overhead memory space for storing the block 

size (and possibly additional information) in anticipation of future free 0 calls. As 

many allocated blocks are very small (e.g. JNI references are a few words long, and 

sorne class information related memory blocks can be as short as a single word), this 

overhead could be significant. On the time front, the costs are that manoe 0 and 

free 0 calls cause global synchronization2 , and that free 0 calls can get very ex­

pensive when many small blocks are freed successively and incremental aggregation 

of freed memory takes place to fight memory fragmentation. 

Reducing Complexity and Costs 

As we have seen, maintaining a separate garbage-collected heap for object instances 

and using malloe 0 and free 0 for the rest increases flexibility without ad ding no­

ticeable complexity to the virtual machine architecture. The main problem related 

to that approach is the C library overhead when managing small memory blocks. 

malloe 0 and free 0 were designed as general purpose memory allocation func­

tions. By studying the typical memory usage of various virtual machine features, we 

discover patterns in memory usage. For example, a Java stack always allocates and 

frees its top frame. Stack frames are never accessed by other threads (except possibly 

by a garbage collection thread). It thus seems wasteful to pay the overhead of a 

general purpose memory manager for allocating and freeing stack frames. A similar 

analysis can be done of other features. 

2Note that the virtual machine must he linked with the multi-threaded version of the C lihrary 
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Therefore, our solution for reducing overhead without increasing system complex­

ity is to partition the Java runtime memory according to usage patterns, and to design 

simple partition-specifie memory managers that take advantage of usage patterns to 

minimize over head. 

3.2 Logical Memory Partitions 

We have studied the memory usage behavior of the different virtual machine features, 

and identified distinct allocation and release patterns. These patterns offer a natural 

partitioning of the runtime memory that we present in this section. 

We first draw a clear distinction between physical and logical partitions, then we 

introduce each identified partition and discuss its management strategy within the 

Sable VM framework. 

3.2.1 Physical and Logical Partitions 

We define a physical partition as a single contiguous segment of virtual memory man­

aged by a single memory manager. In contrast, we define a logical partition as the 

subset of virtual memory which is managed by a single memory manager. Memory 

in the subset need not be contiguous. 

Figure 3.1 illustrates the difference between physical and logical partitions. In the 

left side of the figure, we see a partitioning of virtual memory into physical partitions, 

each of which is contiguous. In the right si de of the figure, we see the physical layout 

of a logical partitioning of the same memory. On this side, each logical partition is 

not necessarily contiguous. For example, the single Stack logical partition is divided 

into three distinct memory segments. 

Managing logical partitions, instead of physical ones, is very convenient. It allows 

for dynamically creating and deleting partitions, and for growing and shrinking them 

without worrying about low-level memory layout details. For increasing the portabil­

ity of the virtual machine, the standard malloe 0 and free 0 library functions are 

used as low-level primitives by memory managers for allocating and releasing aligned 

47 



3.2. Logical Memory Partitions 

Native References 

Stack Stack 

Class Loading Data 

... Other Partitions ... 

Native References Native References 

Garbage Collected Heap 

... Other Partitions ... Class Loading Data 

Stack 

... Other Partitions ... 
Class Loading Data 

Class Loading Data 

Garbage Collected Heap 

Garbage Collected Heap 
... Other Partitions ... 

Stack 

Physical Partitions Logical Partitions 

Figure 3.1: Layout of Physical and Logical Partitions 
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memory blocks3 . 

3.2.2 Thread-Specific Memory 

Thread-specific memory consists of all memory specifically allocated by the virtual 

machine for the internaI management of each Java thread. 

This memory consists primarily of Java stacks, JNI local reference frames, and 

internaI structures storing thread-specific data like stack information, JNI virtual 

table, and exception status. 

This memory exhibits precise allocation and release patterns. Thread-specific 

structures have a lifetime similar to their related thread. So, this memory can be 

allocated and freed (or recycled) at the time of respective creation and death of the 

underlying thread. Stacks do not conceptually suffer from fragmentation, as they 

grow and shrink on one si de only. This property is shared by JNI local reference 

frames. 

SableVM Implementation 

Sable VM allocates thread structures on thread creation but does not release them at 

thread death. Instead, it manages a free list to recycle this memory on future thread 

creation. 

Java stack memory is managed differently. For each thread, an initial stack is 

allocated (using malloe ()) at the time the thread is created. Then this stack is 

expanded (using realloe ()) as required by the computation. Sable VM never shrinks 

the size of a Java stack. It simply frees it on thread death. Initial allocation size and 

growth are controlled through runtime parameters. A maximum stack size can be 

optionally specified; by default a stack is allowed to grow until memory exhaustion. 

Note that all Java stack frame information, in Sable VM, is stored relatively (e.g. 

offset to previousjnext frame, instead of direct address), which enables stacks to be 

moved. 

3The ANSljISO C standard states that malloc 0 must return aligned memory [SAI+ 90]. 
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The advantage of a stack whose maximum size can only grow, is simpler stack 

memory management at method calI boundaries. It also simplifies the virtual ma­

chine usage, as the user needs not specify a maximum stack size, which can be difficult 

to do for each thread of a multi-threaded application. There's no need to manage the 

potential fragmentation of non-movable stacks. It would be possible to allocate Java 

stack frames on the shared garbage-collected Java heap but this would put unneces­

sary additional pressure on the garbage collector, and it would not take advantage of 

the highly regular allocation and release behavior of this memory. 

Sorne Measurernents 

In order to determine compile-time default values for initial stack size and increment, 

we have measured the maximum stack depth reached while executing each of the 

benchmarks identified in Section 2.4. 

Table 3.1 shows our measurements. The deepest measured stack depth is 9612 

bytes, which is surprisingly small. 

benchmark Il max. Java stack depth 1 

y tes 
y tes 
y tes 

Javac y tes 
Jess y tes 

mpegau 10 y tes 
mtrt y tes 

raytrace y tes 
soot y tes 

sa ecc y tes 

Table 3.1: Stack Depth 

As the stack size is highly application (and input data) specific, we have cho­

sen to set both compile-time default initial size and increment to 64Kb. Of course, 

these values can be overridden using command-line options. Sable VMs stack-related 

command-line options are: 

• -p sablevrn. stack. size. rnin=SIZE : Minimum size in bytes. 
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• -p sablevrn. stack. size. max=SIZE : Maximum size in bytes . 

• -p sablevm. stack. size. increment=SIZE : Maximum increment size in bytes. 

For example, to set the stack increment size to 32Kb, we would write the following 

command: 

Isablevm -p sablevrn.stack.increment=32768 HelloWorldl 

3.2.3 Class-Loader-Specific Memory 

Class-loader-specific memory consists of all memory specifically allocated by the vir­

tuaI machine for the internaI management of each class loader. 

This memory consists primarily of the internaI data structures used to store class 

loaders (except the related java. lang. ClassLoader instances, which are stored in 

the garbage-collected heap), classes and methods, and related information. This 

includes method bodies in their various forms like bytecode, direct threaded code, 

inlined threaded code, and compiled code (in the presence of a JIT). It also includes 

virtual tables for dynamic method dispatch. 

This memory exhibits precise allocation and release patterns. It is allocated at 

class-Ioading time, and at various preparation, verification, and resolution execution 

points. The behavior of this memory differs significantly from other memory in that 

once it is allocated, it must stay at a fixed location, and it is unlikely to be released 

soon. The Java virtual machine specification allows for potential unloading of all 

classes of a class loader as a group, if no direct or indirect references to the class 

loader, its classes, and related object instances remain. In such a case, and only if a 

virtual machine supports class unloading, all memory used by a class loader and its 

classes can be released at once. 

Isolating the management of this memory is a distinctive feature of the Sable VM 

framework. 

SableVM Implementation 

Sable VM manages this memory on a class loader basis. In other words, each class 
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loader has its own related memory manager. 

A class-loader memory manager uses malloe () to allocate chunks of memory, and 

provides its own allocator for distributing sm aller memory fragments. This has many 

advantages. 

It allows for the allocation of many small memory blocks without the usual cost 

of memory space overhead, discussed in Section 3.1.1. AIso, memory chunks can be 

freed on class unloading without regard for internaI sub-allocation, thus significantly 

reducing the number of free 0 calls and the related memory aggregation penalty. 

It also allows class parsing and decoding in one pass without memory overhead, 

by allocating many small memory blocks. This is usually not possible, as it is not 

possible to estimate the memory requirement for storing internaI class information 

before the end of the first pass. The usual alternatives (in absence of a class-Ioader 

specifie memory manager) are to either paya memory overhead for allocating small 

blocks using malloe 0, or do 2 passes over the class file; one pass to compute memory 

requirements, and the second to extract the information and store it in the allocated 

memory. But even then, the second alternative does not solve the problem of many 

small allocations which are required to store threaded or compiled code, and other 

linking information computed lazily throughout execution. 

Finally, and importantly, it allows for irregular memory management strategies: 

it makes it possible to return sub-areas of an allocated block to the allocator, if these 

areas are known not to be used. We take advantage of this to allocate sparse interface 

method lookup tables without losing memory4. 

A default chunk size and increment, as well as an optional maximum class-Ioader 

memory size, can be specified on the command-liné. The compile-time default chunk 

size and increment have both been arbitmrily set to 1Mb. Note that many applications 

only use two class loaders: the special bootstrap class loader6 and the application (or 

system) class loader7 . For running programs using many user-defined class loaders, 

4This will be explained in Chapter 4. 
5The options are: -p sablevrn. classloader. heap. size. [min 1 max 1 increment] =SIZE 
BThe bootstrap class loader is used to load standard library classes such as java .lang. * and 

java.io.*. 
7The application class loader is used to load classes found on the classpath. 
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users are encouraged to set default values appropriately. 

3.2.4 Shared Memory 

Shared memory consists of remaining memory which is explicitly managed by the 

virtual machine8 . 

This memory consists primarily of the object instance heap (which is garbage 

collected), global JNI references, and global virtual machine information structures. 

The allocation and release behavior of this memory exhibits no specifie pattern, 

as it is highly application dependent. 

This memory is potentially allocated and modified by different threads while ex­

ecuting methods of classes loaded by various class loaders. 

SableVM Implementation 

Sable VM manages the object instance heap separately from other memory. This 

provides maximum flexibility for testing various garbage collection algorithms. In 

the current version of Sable VM, a precise bare-bones copying garbage collector (with 

no pinning nor generations) is provided. Chapter 6 will discuss the algorithm to 

compute the necessary maps for precise garbage collection. The parameters of the 

copying collector provided by Sable VM can be controlled using command-line options. 

In particular, minimum and maximum heap size, and increment can be specified. 

If no maximum is specified, Sable VM will potentially grow the heap until memory 

exhaustion. Sable VM does also shrink the heap. !ts algorithm for determining heap 

size aims to keep the heap 1/3 full (as suggested in [JL96]). 

Most of the remaining memory is simply managed using malloe () and free () 

calls. Exceptions to this include global JN! references (and similar small structures) 

which have a special memory manager. This manager allocates big memory blocks, 

divides them into small JNI reference structures, and manages free lists to avoid 

free () memory aggregation overhead. 

8This exclu des memory which is not explicitly managed by the virtual machine. 
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3.2.5 System Memory 

System memory is the remaining memory, on which we have essentially no control. 

It consists of the memory used for virtual machine code (i.e. the executable itself), 

native stacks, ANSI/ISO C's heap manager, and dynamically-linked native libraries, 

as weIl as any other uncontrollable memory. 

SableVM Implementation 

As Sable VM is written in portable C, it has no control on the management of this 

memory. Assembly and system specifie virtual machines can (and should probably) 

manage this memory explicitly, in which case it could be classified among the previ­

ously identified partitions. For example, dynamically-linked native libraries would be 

classified as class-Ioader specific memory. 

The only attempt to control this memory is the following. Sable VM manages its 

own Java stacks (one per thread), and it does not use a C function caU to implement 

Java method calls. Thus, it makes a minimal use of the native C stack. Recursive C 

function caUs are only possible through native JNI caIls9 . 

3.3 Related Work 

The traditional single-threaded runtime memory organization for procedural lan­

guages (C, Pascal, etc.) is as follows. Executable code and constant data segments 

are laid out consecutively at lower memory addresses. The remaining space is divided 

between the heap, growing bottom up, and the stack, growing top down, with free 

space in the middle [ASU86]. For multi-threaded applications, multiple stacks are 

required (one per thread). POSIX threads creation parameters include an optional 

stack size and assume otherwise an implementation specific default size [NBF96]. A 

typical implementation places stacks sequentially (top down) reserving enough space 

9 A native JNI method is aUowed to invoke the virtual machine interpreter which may in turn 
caU back the JNI native method. 
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for each stack, and optionally guarding against overfiow using a protected page (for 

causing a segmentation fault in case of stack overfiow). 

The most naive virtual machines, like Kaffe [Kaf] , implement the simplest ap­

proach to memory management in C by using malloc () for all allocation, and using 

a conservative garbage collector for freeing memory. This approach severely limits 

potential experimentation with garbage collection techniques. Kaffe provides no sup­

port for precise collection, and also assumes that objects cannot be moved throughout 

their life time. This latest assumption allows Kaffe to save sorne object st orage by 

using object addresses as hashcode. 

Other more elaborate virtual machines, such as Jikes RVM which entirely is writ­

ten in Java, use a single heap to manage all memory [AAC+99], except system memory 

used to store the precomputed boot image. This approach would seem attractive, at 

first sight, but it has sorne drawbacks. Firstly, sorne memory areas, such as JIT 

compiled code, cannot be moved in memory, forcing the garbage collector to either 

be non-moving or to support pinning. Secondly, this approach does not allow for 

irregular memory management where a single allocated block is not contiguous (like 

Sable VM's sparse interface tables). Finally, even if a memory block is pinned within 

a generational heap, it rnight still cause sorne addition al work at garbage collection 

tirne. This is unlike Sable VM's class-loader specifie rnernory which is never traced at 

garbage collection time, regardless of what garbage collection algorithrn is used. 

3.4 Conclusions 

In this chapter we have identified logical memory partitions exhibiting distinct allo­

cation and release behavior. We have discussed each partition and explained how the 

Sable VM frarnework manages mernory within it. 

We have in particular identified a class-loader specifie rnernory partition. This 

memory may not be rnoved, and it is either never freed or freed all at once on class­

loader destruction. We have explained how Sable VM takes advantage of this to sub­

allocate small mernory blocks without space overhead. We have briefiy rnentioned 
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that Sable VM also permits irregular allocation strategies within this partition for 

sparse interface virtual tables. Using a specifie memory management strategy for 

class-loader specifie memory is a distinctive feature of the Sable VM framework. 

U sing partition-specifie memory managers allows Sable VM to be extremely flexible 

(it is compatible with various garbage collection algorithms, ranging from the simplest 

to the most complex ones). These managers minimize overhead even though they use 

relatively simple operational strategies. 
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Chapter 4 

Sparse Interface Virtual Tables 

In this chapter we introduce a sparse virtual table design that eliminates the over­

head of interface method invocation over that of normal virtual method invocation. 

This design takes advantage of class-loader specifie memory management l to recycle 

holes in the virtual table using a very simple, yet effective, algorithm. Our exp er­

imental results show a 100% recycle rate for sparse virtual table holes, even in the 

most interface intensive applications tested. 

This chapter is organized as follows. In Section 4.1, we discuss the traditional 

organization of virtual tables in Java virtual machines, and discuss related perfor­

mance problems. In Section 4.2, we introduce our sparse virtual table organization. 

In Section 4.3, we present our experimental results. In Section 4.4 we discuss related 

work. Finally, in Section 4.5, we present our conclusions. 

4.1 Traditional Virtual Table Organization 

One of the distinctive features of object-oriented programming languages, relative to 

procedural programming languages, is virtual function calls (or polymorphie calls). 

Efficiently implementing polymorphie calls has been a very active research field. In 

[DriOl], K. Driesen surveys most of the implementation techniques that have been 

proposed and used in various object-oriented programming languages. 

lSee Chapter 3. 
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In this section, we present the traditional (and intuitive) organization of virtual 

tables for implementing both virtual and interface method calls in Java. In the context 

of this thesis, virtual method caUs and interface method caUs correspond respectively 

to the INVOKEVIRTUAL and INVOKEINTERFACE Java bytecode instructions. 

4.1.1 Virtual Tables for Single Inheritance 

Java is a statically typed language (Le. aIl variables have compile-time types), but 

its classes are dynamically loaded and linked at execution time. Luckily, the Java 

virtual machine specification imposes constraints on loaded classes (and bytecode) to 

ensure proper runtime behavior. 

Java supports single inheritance of classes. This enables the efficient implementa­

tion of viriual function calls using virtual method tables (or simply: virtual tables). 

The virtual table of a class is an array of pointers to methods. Each virtual table 

entry points either to the implementation of a method declared in the class itself or 

to the implementation of an inherited method that has not been overridden. 

The virtual table of a class C is constructed as follows. First, the virtual table 

of the parent class P is built2
, if it hasn't already been built3 . Then, each virtual 

method of class C is assigned a unique offset into the virtual table. Each virtual 

method of C that overrides a virtual method of P or any ancestor of P is assigned 

the same offset as the overridden method. AlI other virtual methods are assigned an 

increasing offset starting at the maximum offset of inherited methods plus one. The 

highest offset determines the size of the virtual table. The virtual table of C is filled 

as follows. First it is initialized with the content of the virtual table of its parent P. 

Then, for each method of C, a pointer to its implementation is written in the virtual 

table at the method's offset. 

Figure 4.1 illustrates the final result. Class Parent declares two methods a () and 

b 0, which are assigned offsets 1 and 2 respectively. Class Child declares method 

aO which overrides method aO of class Parent, and method cO which is assigned 

2Unless C is java.lang.Object. 
3The rules for dynamic Ioading and Iinking in Java are reIativeIy complex. A class can be Ioaded, 

yet not necessariIy Iinked. See [LY99] for details. 
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offset 3. 

Class Parent Class Child extends Parent 
1 { void aO { ... } l{ void aO { ... } -----
2 void bO { .. . 3 void cO { .. . 

2 I-----+------i 
1 L-____ ----' 

ParentVTBL Child VTBL 

Parent obj = new ChildO; 
obj.aO; ---------------' 
obj.bO; ---------------1 

Figure 4.1: Single Inheritance Virtual Table (VTBL) 

Virtual tables en able virtual method invocation in constant time, requiring a single 

indirection. Virtual method invocation proceeds as follows. The offset of the called 

method is used to retrieve the method implementation pointer from the virtual table. 

The pointer is then dereferenced and the target method executed. In Figure 4.1, the 

declaring type of variable ob j is used to determine the method offset (a ( ) = 1, b ( ) 

= 2), but the actual method lookup is do ne using the virtual table of the instance 

type (which is Child). It is thus important that the offset remains the same for 

overridden methods (such as a ( ) ). 

4.1.2 Virtual Tables for Interfaces 

Java supports multiple inheritance of interfaces. The virtual table organization de­

scribed in section 4.1.1 does not work for multiple-inheritance. The problem is that 

two distinct interfaces might assign conf:licting offsets to method signatures, so when 
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a class implements both interfaces, it can't determine a unique offset for its methods. 

This is illustrated in Figure 4.2. Method aO is assigned offset 1 in interface Father 

and method bOis assigned offset 1 in interface Mother. 80, the system can't decide 

whether to put a pointer to the implementation of a 0 or bOat offset 1 in the virtual 

table. 

Figure 4.2 also illustrates the usual solution to this problem. The idea is to 

reserve the normal virlual table for implementing virtual function calls only, and to 

build interface virtual tables for implementing interface method calls. A single class 

can have many interface virtual tables; one per directly or indirectly implemented 

interface. Interface method invocation proceeds as follows. First, the list of interface 

virtual tables is searched to find the appropriate interface virtual table, then an 

interface-specific method offset is used to lookup the implementation pointer in that 

table. For example, in Figure 4.2, to invoke method b () of interface Mother on an 

instance of class Child, the li st of IVTBL pointers attached to the normal virtual 

table of class Child is searched. Then, the Mother-specific offset of method b () , 

which is 1, is used to lookup the implementation address of b 0 . 

Many approaches are possible for representing the Est of interface virtual tables 

of a class. One possibility is to use a plain linked li st as was done in early versions 

of the Kaffe virtual machine. A superior approach is to build an array of pointers 

to interface virtual tables at a negative offset of the normal virtual table of a class 

as was done in Figure 4.2, then to use an efficient search technique (binary search / 

hashing) to find the appropriate interface virtual table. 

Performance Issues 

There are two performance issues related to using a list of interface virtual tables. The 

first and most important issue is that using this technique, the cost of interface method 

lookup is not constant. The cost of an interface method lookup grows with the number 

of directly and indirectly implemented interfaces of a class. The second problem is 

that the co st for searching for an appropriate IVTBL represents an overhead for 

interface method calls over normal virtual calls which do not need to perform any 
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interface Father 
1 {aO; 

class Child implements Father, Mother interface Mother 
1 { void bO; ~_~ { void aO { ... } _ - _ , 

2 bO;} 

3f----\---I------l 

21----\-_----l 

Father f---~--l 
Mother 

~IL-C-hi-ld-"V""'T----' 

L ~~~(~~ Ob~ = new ChildO; 
obJ.bO; 

; } void bO { ... } -, '. 

[:'V~~/')' 

~ 
l~}~_, 

Child-Father 
IVTBL 

Child-Mother 
IVTBL 

Figure 4.2: Interface Virtual Tables (IVTBL) 

search to find a virtual table. 

4.2 Sparse Interface Virtual Tables 

In this section, we introduce a sparse interface virtual table layout that completely 

eliminates the usual overhead of interface method lookup over virtual method lookup. 

The ide a of maintaining multiple interface virtual tables in case of multiple inheri­

tance is reminiscent of C++ implementations [ES90]. But, Java's multiple inheritance 

has a major semantic difference: it only applies to interfaces which may only declare 

method signatures without providing an implementation. Furthermore, if a Java class 

implements two distinct interfaces which declare the same method signature, this class 

satisfies both interfaces by providing a single implementation of this method. (Unlike 

Java, C++ allows the inheritance of distinct implementations of the same method 

signature) . 

We take advantage of this important difference to rethink the data structure 
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needed for efficient interface method lookup. Our ideas are based on previous work on 

efficient method lookup in dynamically typed 00 languages using of selector-indexed 

dispatch tables [Cox87, Dri93, VH94]. 

4.2.1 Basic Implementation 

We assign a globally unique increasing index4 to each method signature declared in 

an interface. A method signature declared in multiple interfaces is assigned a single 

index. When the virtual table of a class is created, we also create an interface virtual 

table that grows down from the normal virtual table. This interface virtual table has a 

size equal to the highest index of aIl methods declared in the direct and indirect super 

interfaces of the class. For every declared super interface method, the entry at its 

index is filled with the address of its implementation. The execution of invokeinterface 

can then proceed similarly and at the exact same cost as an invokevirtual instruction. 

The only difference is that interface method offsets are negative, while virtual method 

offsets are positive. 

In the proposed organization, the interface virtual table is a sparse array of method 

pointers (unlike the normal virtual table which is dense). As more interfaces are 

loaded, with new interface method signatures (throughout program execution), the 

amount of free space in interface virtual tables grows. In fact, the total size of aIl 

interface tables is 0 (i x m), where i is the total number of interfaces, and m is the 

total number of distinct interface method signatures. Most of this space is empty, and 

could thus represent a significant loss of memory. 

4.2.2 Filling the Holes 

The traditional approach has been to use table compression techniques to reduce 

the amount of lost free space [Dri93, VH94]. These techniques work well within 

a statically compiled environment. However, they are poorly adapted to dynamic 

class loading environments like the Java virtual machine, as such techniques require 

4In reality, we use a decreasing index, starting at at -1, to allow direct indexing in the interface 
virtual table. 
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dynamic reorganization of interface virtual tables when new classes and interfaces are 

loaded [DriOl]. 

Our approach differs. Instead of compressing interface virtual tables, we simply 

take advantage of our class loader memory manager to return the free space to the 

memory manager. The freed memory is then used to store an kinds of class loader 

related memory. In other words, we sim ply recycle the free space of sparse interface 

virtual tables within the class loader. The organization of sparse interface virtual 

tables is illustrated in Figure 4.3. 

Increasing 
memory 

addresses 

VTBl P1r 

Increasing 
memory 

addresses 

Method Ptr 

Method Ptr 

Method Ptr 

Method Ptr +2 
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Figure 4.3: Sparse Interface Virtual Table Layout 
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4.2. Sparse Interface Virtual Tables 

Class Loader Memory Manager Internais 

The internaI design of a class loader memory manager is very simple. This memory 

manager keeps a constant size array of pointers to free memory blocks (called: free 

army). In SableVM, a free array has only 16 entries5 . 

If it wasn't for sparse interface tables, a class loader memory manager would only 

need an allocO function; it would not need a freeO function6 . Usually, a single 

pointer is used to manage free space as memory is allocated as a huge block using 

malloe 0 then redistributed incrementally. 

But, because of sparse interface tables, a free 0 function is added which simply 

puts pointers to returned blocks into the free army. No memory aggregation takes 

place as holes in an interface virtual table cannot be neighboring other freed memory. 

If the free array overfiows, the pointer to the smallest block is evicted7 . alloe 0 

always takes memory from the smallest, large enough block in the free array. 

Our experimental results will show later that this rather simple strategy is quite 

effective. 

4.2.3 Guarding Against Pathological Cases 

As interface usage in most Java programs ranges from very low to moderate, we 

could argue that it is unlikely that the free space returned by interface virtual tables 

will grow faster than the rate at which it is recycled. However, in order to handle 

pathological cases, we also provide a very simple technique, which incurs no runtime 

overhead, to limit the maximal growth of interface virtual tables8 . To limit this 

growth to N entries, we stop allocating new interface method indices as soon as 

index N is assigned to an interface method signature. Then, new interface method 

signatures are encoded using traditional techniques. The trick to make this possible 

is to use different opcodes to encode interface calls9 , based on whether the invoked 

5This is a compile-time, easily modifiable constant. 
6See Chapter 3 for explanations. 
7The algorithm can be modified to use a linked li st instead of an array to avoid memory loss. 
8This is not currently implemented in Sable VM. 
9See Chapter 2 for instruction encoding techniques. 
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method signature has been assigned an index or not. The traditional technique used 

to handle overfiow can safely ignore aIl interface methods which have already been 

assigned an index. 

4.3 Experimental Results 

We have experimented with our usual set of benchmarks lO to measure the effectiveness 

of the proposed algorithm for recycling holes in the sparse virtual tables. Our results 

are shown in Table 4.1. 

benchmark lnter- clas- byte- sparse lvt holes loss 
faces ses code (bytes) (bytes) (bytes) 

compress 16 134 30,901 2,552 1,848 72% 0 
db 17 130 34,255 2,984 2,212 74'10 0 

jack 17 178 62,791 4,436 3,608 81'10 0 
javac 21 269 101,027 3,696 2,844 77% 0 
Jess 20 270 52,985 30,340 28,504 94'10 0 

mpegaudio 24 167 76,509 5,296 4,504 85% 0 
mtrt 18 155 42,037 3,400 2,520 74'10 0 

raytrace 18 154 41,863 3,400 2,520 74% 0 
soot 190 794 223,557 211,912 193,328 91% 0 

sablecc 24 374 93,335 129,340 112,840 87% 0 

Table 4.1: Sparse Interface Virtual Tables 

Columns of Table 4.1 contain respectively: (a) the name of the executed bench­

mark, (b) the number of loaded interfaces, (c) the number of loaded classes, (d) the 

total number of prepared bytecodes, (e) the total size of aIl sparse interface virtual 

tables in bytes, (f) the total size of free memory in sparse tables in bytes and as a 

percentage value of the total size of sparse interface tables, and finally (g) the total 

number of unrecycled memory bytes in sparse table holes. 

4.3.1 Discussion 

A few noteworthy results are: 

lOSee Chapter 9 for details. 
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• Not a single byte of sparse table holes was lost . 

• Sparse tables contain much free space: between 72% to 91% on average, in 

tested benchmarks. 

Our most interface intensive benchmark is Soot which loaded 190 interfaces (this is 

much higher than the average number of interfaces loaded by usual Java applications). 

!ts total sparse interface st orage space is around 207Kb, and is sm aller than the size 

of prepared bytecodes. The size of prepared bytecodes is shown as an indicator of the 

total requirement in class loader related memory. In a virtual machine, class loader 

memory also includes threaded-code or just-in-time compiled code, as well as various 

data structures to store information about classes, interfaces, arrays, methods and 

fields. For example, Table 2.2 (of Chapter 2) shows that the memory requirement 

for storing the inlined code sequences of the Soot benchmark is 574K, more than 3 

times the total size of interface table holes. So, it seems this application could afford 

loading yet more interfaces and classes, and keep filling the holes without difficulty. 

Of course, there could be sorne pathological cases, but they are unlikely to happen 

in human written code. This is because Java interfaces are of limited use; they do 

not provide an implementation for the method they declare. The use of interfaces 

is thus usually limited to those cases when single inheritance does not fulfill the 

designer's needs. This is the case with libraries like the Java Collection Framework 

(java. util. *). 

One should also take into consideration that the size of a sparse interface table 

of a class is determined by the highest method index of an interface implemented 

by that class. Assuming a total of 1000 distinct interface method signatures were 

declared in all interfaces of an application, then the virtual machine is likely to fin 

an holes, as long as this class (or the next loaded class) requires more than 4Kb ll of 

memory for storing compiled code and other information. As virtual table preparation 

happens early in the class linking pro cess , before lazy method preparation, there is 

ample opportunity to recycle the memory of holes. We estimate that as long as no 

11 A little more than sizeof (void *) x 1000. 
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more than a few thousands distinct interface method signatures are declared in an 

application, recycling of hole memory won't be a problem. 

4.4 Related Work 

As we have said earlier, in [DriOl], K. Driesen surveys most of the implementation 

techniques that have been proposed and used for efficiently implementing polymorphie 

calls in various object-oriented programming languages. In this section we will discuss 

sorne of the closest work to our sparse interface virtual tables. 

4.4.1 Selector Table Indexing 

This technique is the simple st way of implementing dynamic method lookup, and is 

the basis of our sparse interface tables. It consists of constructing a two-dimensional 

table indexed by class and method signature. Both classes and method signatures are 

represented by unique, consecutive class or method signature codes. Unfortunately, 

the resulting dispatch tables is very large (0 (class x signatures)), and very sparse. 

Our sparse interface tables breaks this table into disjoint rows. Each row is as 

short as its highest non-null entry. Yet, we measured between 72% to 94% free space. 

Because of its enormous cost in memory, this technique is not used in real systems. 

4.4.2 Row Displacement Compression 

Row displacement compression is a technique used to minimize the loss of free space in 

selector table indexing two-dimensional dispatch tables. The idea, originally developed 

for compressing parsing tables in table-driven parsers [ASU86], is to break the two 

dimension al array into rows, then to fit rows into a one-dimensional array, so that 

non-empty entries overlap with empty ones. 

In fact, slicing the two dimensional array can be done either on a class basis or on 

method signature basis. Chapter 4 of [DriOl] discusses why method-signature-based 

slicing yields significantly better compression than class-based slicing. 
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The biggest problem of this technique, in the context of Java, is that it is poorly 

adapted to dynamic loading environments. Implementing method-signature-based 

slicing, to obtain better compression, is particularly challenging in the presence of 

dynamic loading. It can require a complete reorganization of the compressed one­

dimensional table when a new interface is loaded that causes a confiict (e.g. two 

non-empty entries overlap). 

Our approach sidesteps compression by sim ply recycling memory for storing other 

things, and our experimental measurements show that there is an ample amount of 

other data to store in the holes of sparse interface tables. Yet, our approach only works 

weIl because it is limited to encoding interface method dispatch tables (thus a limited 

number of interfaces and method signatures). On the other hand, row displacement 

compression is much more appropriate for statically compiled, dynamically typed 00 

languages. 

4.4.3 Interface Method Table Hashing 

In [ACFG01] B. Alpern et al. propose an efficient interface method invocation for 

Java. Their idea is to associate a fixed-size interface method table with each class, then 

to use hashing to associate method signatures with interface method table entries. 

Hashing collisions are handled using custom-generated confiict resolution stubs. 

Their measurements show that this technique cause little overhead for interface 

method calls over normal virtual method calls. Yet, there is sorne overhead. Our 

sparse tables completely eliminate this overhead, and are simpler to implement. Fur­

thermore, our technique does not necessitate dynamically generating machine lan­

guage encoded stubs. 

Yet, we believe this technique would be best used in conjunction with our sparse 

interface tables, to handle overfiow in pathological cases (when a very high number 

of distinct interface method signatures are declared). 
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4.5 Conclusions 

In this chapter we introduced a sparse interface virtual table design that completely 

eliminates the overhead of interface method invocation over normal virtual method 

invocation. We proposed a simple algorithm that takes advantage of a partition­

specifie memory manager to recycle holes in the sparse tables. 

Our experimental results show that this simple technique is highly effective. In 

an measured benchmarks, including in the interface-intensive Boot application, no 

memory loss resulted from using sparse tables. 
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Chapter 5 

8idirectional Object Layout 

The Java heap is by definition a garbage-collected area. A Java programmer has 

no control on the deallocation of an object. Garbage collectors can be divided into 

two major classes: tracing and non-tracing collectors. Non-tracing collectors (mainly 

reference counting) cannot reclaim cyclic data structures, are a poor fit for concurrent 

programming models, and have a high reference count maintenance overhead. For 

this reason, Java virtual machine designers usually opt for a tracing collector. 

There exist many tracing collectors [JL96]. The simplest models are mark-and­

sweep, copying and mark-compact. The common point to aIl tracing collectors (in­

cluding advanced generational, conservative and incremental techniques) is that they 

must trace a subset of the heap, starting from a root set, looking for reachable ob­

jects. Tracing is often one of the most expensive steps of garbage collection [JL96]. 

For every root, the garbage collector (gc) looks up the type of the object to find the 

offset of its reference fields, then it recursively visits the objects referenced by these 

fields. 

In this chapter we introduce a new bidirectional object layout that groups aIl 

reference fields to allow simple and efficient gc tracing. 

This chapter is structured as follows. In Section 5.1, we discuss the traditional 

layout for object instances. In Section 5.2, we introduce our bidirectional object 

layout. In Section 5.3, we present our experimental results. In Section 5.4 we discuss 

related work. Finally, in Section 5.5, we present our conclusions. 
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5.1 Traditional Layout 

To provide efficient field access, it is de sir able to place fields at a constant offset 

from the object header, regardless of inheritance. This is easily achieved in Java 

as instance fields can only be declared in classes (not in interfaces), and classes are 

restricted to single inheritance. Fields are usually laid out consecutively after the 

object header, starting with super class fields then subclass fields, as shown in Figure 

5.1. When tracing such an object, the garbage collector must access the object's class 

information to discover the offset of its reference fields, then access the superclass 

information to obtain the offset of its reference fields, and so on. As this process must 

be repeated for each traced object, it is quite expensive. 

There are two improvements that are usually applied to this naive representation. 

First, reference fields can be grouped together in the layout of each inherited class. 

Secondly, each class can store an array of offsets and counts of reference fields for 

itself and all its super classes. This is shown in Figure 5.2. The number of memory 

accesses needed to trace an object, in this case, is n (the number of references) + 
3 (virtual table pointer, ref offsets pointer, array size) + 2 * array size (each array 

element has two values: base offset and reference number). Two nested loops (and 

loop variables) are required: one to traverse the array, and one for each array element 

(accessing the related number of references). 

5.2 Bidirectional Object Layout 

We propose a new object layout that further reduces the number of memory accesses 

required to trace an object. Our solution is to group all reference fields consecutively. 

To maintain the constant offset property, we simply grow objects in both directions, 

placing non-reference fields after the object header, and reference fields in front of it. 

Figure 5.3 illustrates the layout of object instances. In the object instance layout, 

the instance starting point is possibly a reference field. The instance grows both ways 

from the object header, which is located in the middle of the instance. References are 

placed before the header, and other fields are placed after it. Figure 5.4 illustrates the 
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layout of array instances. Array elements are placed in front or after the array instance 

header, depending on whether the element type is a reference or a non-reference type, 

respectively. 

The object header contains two words (three for arrays). The first is a lock word 

and the second is a virtual table pointer. We use a few low-order bits of the lock 

word to encode the following information: 

• We set the last (lowest or der ) bit to one, to differentiate the lock word from 

the preceding reference fields (which are pointers to aligned objects, thus have 

their last bit set to zero). 

• We use another bit to encode whether the instance is an object or an array. 

• If it is an array, we use 4 bits to encode its element type (boolean, byte, short, 

char, int, long, float, double, or reference). 

• If it is an object, we use a few bits to encode (1) the number of reference 

fields and (2) the number of non-reference field words of the object, (or special 

overflow values, if the object is too big). 

We also use two words in the virtual table to encode the number of reference-field 

and non-reference-field words of the object if the object is too big to encode this 

information in the header. 

5.2.1 Tracing Objects 

At this point, we must distinguish the two ways in which an object instance can 

be reached by a tracing collector. The first way is through an object reference that 

points to the object header (which is in the middle of the object). The second way 

is through its starting point, in the sweep phase of a mark-and-sweep gc, or in the 

tospace scanning of a copying gc. In both cases, our bidirectional layout allows the 

implementation of simple and elegant tracing algorithms. 

In the first case, the gc accesses the lock word to get the number of references 

n (one shift, one mask). If n is the overflow value (big object), then n is retrieved 
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from the virtual table. Finally, the gc simply traces n references in front of the object 

header. 

In the second case, the object instance is reached from its starting point in memory, 

which might be either a reference field or the object header (if there are no reference 

fields in this instance). At this point, the gc must find out whether the initial word 

is a reference or a lock word. But, this is easy to find. The gc simply needs to check 

the state of the last bit of the word. If it is one, then the word is a lock word. If it is 

zero, then the word is a reference. 

80, for example, a copying collector, while scanning the tospace needs only read 

words consecutively, checking the last bit. When set to zero, the discovered reference 

is traced, when set to 1, the number of non-reference field words (encoded in the lock 

word itself, or in the virtual table on overfiow) is used to find the starting point of 

the next instance. 

In summary, using our bidirectionallayout, a gc only accesses the following mem­

ory locations while tracing: reference fields and lock word, for aIl instances (objects 

and arrays), and at most three additional accesses for objects with many fields (virtual 

table pointer and two words in the virtual table itself). 

5.3 Experimental Results 

We have experimented with our usual set of benchmarks1 to measure the effectiveness 

of the proposed layout. Our results are shown in Table 5.1. 

Columns of Table 5.1 contain respectively: (a) the name of the executed bench­

mark, (b) the total garbage collection time using the traditional object layout, (c) 

the total garbage collection time using the bidirectional object layout, (d) the total 

execution time using the traditional object layout, and (e) the total execution time 

using the bidirectional object layout. 

lSee Chapter 9 for details. 
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benchmark gc (trad.) gc ~bidir.) total (trad~~ total (bidir.) 
(sec.) (sec.) (sec. (sec.) 

compress 0.238 0.238 1.00 129.58 131.64 0.98 
db 0.472 0.479 0.99 89.91 87.64 1.03 

jack 0.115 0.115 1.00 39.50 38.16 1.04 
javac 2.845 2.875 0.99 89.45 89.37 1.00 
jess 0.273 0.276 0.99 54.57 53.57 1.02 

mpegaudio 0.000 0.000 (- 135.86 136.97 0.99 
mtrt 1.027 1.029 1.00 97.52 100.39 0.97 

raytrace 0.679 0.683 0.99 113.38 113.55 1.00 
soot 19.943 20.021 1.00 552.04 548.13 1.01 

sablecc 0.172 0.173 0.99 26.12 26.09 1.00 

Table 5.1: Garbage Collection Time 

5.3.1 Discussion 

Our results show that garbage collection time is not significantly affected by the object 

layout, for the tested benchmarks. Yet, object layout seems to have a bigger impact 

on the overall running time of applications. In the db, jack, and mtrt benchmarks we 

see a difference of 3% or a little more. In absolute value, the difference of execution 

time is much bigger than the difference in garbage collection time. 

This is probably caused by the indirect effect of the reversed layout reference 

arrays. Effectively, reference arrays grow down from the object header. It is thus 

quite possible that the change of access or der of array elements has sorne effect on 

the data cache. 

5.4 Related Work 

We now mention sorne previous related work. The ide a of using a bidirectional object 

layout (without grouping references) has been investigated [Mye95,PW90] as a means 

to provide efficient access to instance data and dispatch information in languages sup­

porting multiple inheritance (most specifically C++). In [Bar88], Bartlett proposed 

a garbage collector which required grouping pointers at the he ad of structures; this 

was not achieved using bidirectional structures, though. 
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5.5 Conclusions 

In this chapter we introduced a bidirectional object layout which groups reference 

fields at the start of object instances. Such a layout simplifies garbage collection 

tracing. 

Our experimental results show that using a bidirectional object layout causes no 

significant change to the execution time of garbage collection, yet it can sometime 

affect the overall benchmark execution time, probably due its impact on cache be­

havior. 

This experiment illustrates the simplicity of implementing and testing various 

research data structures in Sable VM. 
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Chapter 6 

Space-Efficient Garbage Collection Maps 

The Java virtual machine specification has a feature that makes computing type­

precise root sets difficult for type-precise garbage collection; it allows local variables 

to have subroutine-call-sequence-specific types. Existing algorithms for computing 

garbage collection maps of local variables and operand stack locations are relatively 

complex, full-blown data-fiow analyses, and the resulting maps are relatively spacious 

(10% to 20% of code size) [ADM98, SLC99]. In this chapter we introduce a simple 

algorithm that computes space-efficient stack and local variable maps for type-precise 

garbage collection. 

This algorithm is best suited for simple or small Java virtual machines, as it 

reduces (a) the complexity of map computation, and (b) map st orage space. 

On the other hand, this algorithm does not perform a live-variable analysis for 

reducing unreclaimed garbage, and it can add a litt le runtime overhead to sorne 

method calls. 

This chapter is organized as follows. In Section 6.1, we discuss the difficulty of 

computing type-precise garbage collection maps in Java. In Section 6.2, we introduce 

our algorithm. In Section 6.3, we present our experimental results. In Section 6.4 we 

discuss related work. Finally, in Section 6.5, we present our conclusions. 
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6.1 Type-Precise Garbage Collection Maps 

The objective of garbage collection is to reclaim space consumed by objects that will 

not be used again. Precisely computing the set of objects that will be reused, at a 

certain point of program execution, is an undecidable problem, as program execution 

fiow can depend on external data entry. Garbage collection algorithms compute, 

instead, the set of objects which are reachable from a root set, and recycle memory 

used by unreachable objects. 

There are two main approaches to computing root sets. One approach is to com­

pute a precise root set which includes aIl local and global reference variables. The 

second approach, called conservative, treats aIl local and global variables (regardless 

of their type) as potential roots. 

Whether precise or conservative garbage collection is best suited for an envi­

ronment or an application is still debated among researchers. The objective of the 

Sable VM framework is to permit as much experimentation as possible. In that goal, 

it needs to support both types of garbage collection. 

Supporting conservative garbage collection is simple. The only requirement is 

not to hide pointers to objects in memory using arithmetic operations (e.g. xor). A 

conservative garbage collector analyzes the content of an ambiguously typed variable 

to detect whether the stored value looks like a valid object reference. If it does, the 

garbage collector assumes it likely is a reference and acts accordingly. A conservative 

garbage collector can potentially retain more garbage, but practice has showed this 

not to be significant [BW88]. The sim pli city of providing an ambiguous root set makes 

it possible to easily plug a general-purpose conservative collector into a system. 

Supporting precise collection, on the other hand, proves to be more difficult, as a 

type-precise root set should be provided to the garbage collector. Usually, as is the 

case in the Sable VM framework, precise garbage collection is only allowed to happen 

at predetermined execution points. At these gc locations, a map (usually encoded as 

a bit array) is provided to the garbage collector to distinguish between reference and 

non-reference variables. 
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6.1.1 The Gosling Property 

As Java classes are dynamically loaded and can originate from an untrusted source, 

the Java virtual machine specification includes a bytecode verifier and states the rules 

for ensuring that no executed bytecode program cause memory corruption or other 

harm to the virtual machine. 

Java bytecode is stack-based. For example, the 1 a = b + c; 1 Java statement is 

typically compiled to 1 iload_1 ; iload_2 ; iadd ; istore_O 1. 

The Java virtual machine imposes strict constraints on bytecode. In particular, the 

Gosling property states that, using a simple data-flow analysis, it should be verifiable 

that the stack size of a bytecode instruction is constant and that the type of each 

local variable and stack location is appropriate, regardless of the path taken to reach 

that instruction. A more precise definition of all virtual machine constraints is given 

in the Java virtual machine specification [LY99]. 

But, unfortunately, the Java designers allowed for one exception to the Gosling 

property. 

6.1.2 A Notable Exception: Subroutines 

Java bytecode includes two special instructions: jsr and ret, that were mainly intro­

duced for implementing the finally construct of the Java programming language. 

The jsr instruction jumps to an address (specified as operand), and pushes a return 

address value on the operand stack. The ret instruction jumps to the address found 

in the local variable specified as operand. The code included within the target of a 

j sr instruction and its ret statement is usually called a subroutine1. 

To allow for the asymmetrical treatment of the return address, other bytecode 

instructions are allowed to swap and duplicate address values on the operand stack, 

and the astore instruction is allowed to pop a return address and store it into a local 

variable, so that it can later be used as operand to a ret instruction. 

The rules for bytecode verification contain an explicit exception to the Gosling 

1 Unlike real subroutines, this code uses the same local variables and operand stack as the calling 
method. No Java stack frame is pushed or popped on execution of j sr and ret instructions. 
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property, allowing a local variable to hold a call sequence specific type within a sub­

routine, as long as this variable is neither read or written within the said subroutine. 

This highly complicates the computation and storage of stack maps, as whether 

a local variable stores a reference value or not is dependent on the execution path 

to reach an instruction. To further complicate the problem, no traces are le ft on 

the operand stack or in local variables that clearly determine the j sr call sequence 

that lead to the execution of an instruction. So, a simple bit array encoding is not 

sufficient for local variable gc maps, within subroutines. 

6.2 A Simple, yet Efficient Aigorithm 

The problem that we faced, when designing Sable VM was that in order to precisely 

compute gc maps, we would have to encode a complete data fiow analysis. As gc 

maps are even required for code loaded using the bootstrap class loader, this data fiow 

analysis would have to be written in C, the implementation language of our virtual 

machine. Furthermore, simple bit array gc maps would not have been sufficient. 

The complexity of existing algorithms for computing precise gc maps motivated 

our research for a simpler algorithm. 

6.2.1 The Basic Idea 

While bytecode verification is an important part of a commercial virtual machine, it 

is not necessarily as important within a research framework. Yet, existing algorithms 

to compute precise gc maps do most of the verification work. 

An Important Assumption 

In order to simplify the algorithm, we decided to make the reasonable assumption that 

the code for which we would compute gc maps would be verifiable. In other words, if 

verification was applied to this code, it would succeed. We say that it is a reasonable 

assumption, as code loaded by the bootstrap class loader is usually shipped with a 

virtual machine, and can thus be pre-verified. Other code, loaded through system 
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and user class loaders written in Java, can be analyzed at link time by a verifier also 

written in Java2. 

Splitting locals 

Given the verifiable code assumption, we can devise a relatively simple algorithm 

which takes advantage of the type precision of most Java bytecode instructions to 

determine the type of local variables and stack locations. 

In or der to eliminate the path-specific property of local variable types, we identify 

aIl local variables which are used to store both reference and non-reference values. 

Then we split each of the identified local variables into two local variables: one which 

only stores reference values, and one which only stores non-reference values. The 

proposed splitting can cause an increase in the number of local variables of a method, 

but it greatly simplifies the computation of gc maps. 

Single locals Map 

One of the most important consequences of the splitting of local variables is that, 

after splitting, a single local-variable gc map is required per Java method. 

This can potentially save much memory, as otherwise, a local variable gc map 

would be required at every gc check point". 

A si de effect of using a single local map per method is that sorne reference lo­

cal variables will need to be initialized to null on method entry. This is because 

the garbage collector would not know otherwise that the content of an uninitialized 

reference local variable is garbage. 

2Linking of code loaded by the bootstrap class loader cannot easily depend on executing other 
Java code (chicken-egg problem). 

3Some virtual machines do a lazy computation of gc maps in an attempt to reduce storage 
space [SLC99]. 
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Grouping References 

The storage of local variable gc maps can be further reduced by grouping all non­

parameter local variables4 . Doing so allows for encoding the map in two parts: a bit 

array for formaI parameter local variables, and a single integer value indicating the 

number of non-parameter reference local variables. 

Reducing the size of the bit array makes it more likely that other methods will use 

an identical bit array. This is useful to reduce memory consumption, when memoizing 

bit maps, as we explain later. 

AIso, having a single number for non-parameter locals simplifies the initialization 

of reference local variables. Parameter variables need not be initialized (they already 

hold a value provided by the caller), so a simple loop can be used to initialize the 

remaining non-parameter reference to null on method entry. 

Operand Stack Maps 

We also need to compute operand stack gc maps. One such map must be computed 

for every gc check point!'. 

Luckily, many operand stack maps are small. For example, the operand stack is 

usually empty on branch instructions. AIso, the bit array needs to be only as big as 

the highest index of a reference value on the stack. 

Having a small (or an empty) bit array increases the opportunities for sharing 

stack maps across different locations. 

Memoization 

As the reader might have guessed by now, we maintain, in Sable VM, a central repos­

itory of bit array gc maps. This repository is implemented as a splay treé, ordered 

by size and bit content. 

4The formaI parameters of a methods are mapped as the first local variables of a method frame. 
5Backward branch instructions, method calls, and allocation instructions. 
6 A splay tree is a binary tree with caching property: the last accessed node is always made root 

of the tree. The amortized cost for n tree operations is O(nlogn). 
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Example 

Figure 6.1 illustrates the splitting and reordering of local variables. In this example, 

we assume there are no method parameters. First, the algorithm analyses locals usage. 

Then it splits locals which are used to store both reference and non-reference values. 

Then it reorders locals, assigning lowest numbers to reference variables. Finally, the 

bytecode is rewritten to use the newly assigned local variable numbers. Note how 

local 0 becomes local 1, and local 1 becomes locals 0 and 2. 

Original Bytecode 

ICONSLMl 
ISTORE_O 
ACONST_NULL 
ASTORE_l 
ILOAD_O 
ISTORE_l 

Locals Usage 

Local 0: non-ref::::;.. no splitting. 

Local 1: ref and non-ref::::;.. must be split. 

Locals Splitting and Reordering 

Local 0: non-ref= 1 

Local 1: ref = 0, non-ref = 2 

New Bytecode 

ICONST_Ml 
ISTORE_l 
ACONST_NULL 
ASTORE_O 
ILOAD_l 
ISTORE_2 

Figure 6.1: Locals Splitting and Reordering 
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6.2.2 What is a Subroutine? 

N ow that we have exposed our main ideas, and before we give a detailed algorithm 

description, we need to discuss the subroutine problem. 

The Java language specification motivates the existence of the j sr and ret in­

structions by explaining their use for implementing the 1 try { ... } finally { ... } 1 

Java construct. 

But, the verification rules governing the use of j sr and ret are stated in terms of 

bytecode instructions, not in term of Java programming language constructs. 

So, in the context of bytecode (which is not necessarily generated by a Java 

compiler), the concept of subroutine becomes more difficult to grasp. In fact, the 

wording used in the Java language specification is ambiguous. 

This is best explained using sorne examples. Figure 6.2 illustrates a case where, 

in the course of a data-flow analysis, two j sr instructions to the same target are seen, 

without a ret instruction between them (in the control flow). The problem is that 

the Java virtual machine states that subroutines may not be recursively called. Yet, 

this example passes verification successfully (using the reference virtual machine by 

Sun Microsystems). 

cv ~~: Ll) 

Ll: ... ~ 
ifeq L3.....:;> 

L2:athrow 
L3: ... 

ret 
Ci) L4 : j sr Ll ....... --+--I 

Exception 

Second JSR 
toLl 
without RET 
in between! 

From Ll to L3 handler is L 

Figure 6.2: Seemingly Recursive Subroutine 

By analyzing this example further, we discover that a subroutine may be exited 
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through exceptional control fiow, such as the explicit athrow instruction, in our ex­

ample. But, the problem remains: how can the data-fiow analyzer determine whether 

a subroutine is exited or not, when taking an exceptional control fiow? 

In order to investigate this question, we have modified our example a little. We 

replaced the second jsr instruction by a return instruction (which ends a method). 

The result is illustrated in Figure 6.3. 

Ambiguous Subroutine 

jsr Ll 

Ll: ... 
ifeq L3 

L2:athrow 
L3: ... 

ret 
L4 : return ............. 1----1 ......... 

Exception Table 

Is this 
statement 
part of the 
subroutine? 

From Ll to L3 handler is L4 

Figure 6.3: Ambiguous Subroutine 

This segment of code is legal and it is again accepted by the reference virtual 

machine verifier. In this example, the return instruction could as weIl be within the 

subroutine (return may be called from within a subroutine), or it could be outside 

the subroutine. In either case, the verification constraints would be met. 80, from a 

pure bytecode point of view, the boundaries of subroutines are ambiguous! 

We should note that it is possible to write valid Java programs that generate code 

which is similar to our examples, using loops and nested try-finally and try-catch 

constructs. 

So, to avoid pitfaIls, we shall avoid using the ambiguous concept of subroutines 

when describing our algorithm7 . 

7In order to prevent recursion, a data-flow analyzer can sim ply invalidate aIl copies of the target 
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6.2.3 Aigorithm Description 

We now give a precise description of our simple algorithm to compute gc maps. We 

remind the reader of the requirement that analyzed bytecode must be verifiable in 

order for our algorithm to work. 

Data Structures 

Our algorithm consists, in fact, of a simplified data-fiow analysis, where each state­

ment is only analyzed once. This data-fiow analysis simulates the execution of byte­

code instructions on an abstract method frame. The abstract method frame has an 

operand stack and local variables that can only ho Id integer values. Integer values 

stored in local variables and stack locations have the following meaning: 

• -2: non-reference value 

• -1: reference value 

• 0 or more: start offset of a subroutine 

One important difference between the abstract interpretation do ne by our data­

fiow analyzer and real execution is the treatment of the j sr instruction. The real 

instruction pushes the address of the return address on the stack. Our data-fiow 

analyzer pushes the subroutine start offset on the stack, instead. 

In addition, a global structure using a few bits of st orage for each local variable 

is required. It records whether a local variable has been used to store reference, 

one-word-non-reference, and/or two-words-non-reference8 values. 

Another structure stores instruction specific data. For example, it records whether 

the stack operand to an astore instruction is a reference value or a return address. 

Of course, as we said earlier, bit array gc maps are memoized using a global splay 

tree. 

return address, stored in local variables and on the operand stack, when executing a ret instruction. 
8The operand stack must also handle 64-bit long and double values. 
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Data Flow Analysis 

A simple work-list algorithm is used. InitiaIly, the first bytecode instruction of the 

analyzed method is pushed into the work-list. On each iteration, an instruction is 

retrieved from the work-list, its execution simulated within the abstract environment, 

then the instruction is marked as done. Then, aIl successor instructions (determined 

by regular and exceptional control fiow) which are not done nor already in the work­

list, are added to the work-list. The algorithm execution continues until the work-list 

is empty. 

This algorithm only analyzes each statement once. This is sufficient, as the verifi­

ability of analyzed bytecode ensures that the stack layout we compute the first time 

an instruction is se en is valid and would be the same regardless of execution path. 

The abstract interpretation applied to the 200 bytecode instructions is fairly in­

tuitive, except for the j sr and ret instructions which we will discuss in more details 

later. This interpretation consists of pushing or popping integer values on or off the 

stack, and updating appropriately the global local variable bits and the instruction 

specifie data. Figure 6.4 shows the pseudo code of the abstract interpretation for a 

few bytecode instructions. 

We will not describe in details how to analyze each of the 200 bytecode instruc­

tions. Instead, we invite the reader to look at our implementation which can be found 

in the file src/libsablevm/prepare_code. c of Sable VM [SabbJ. 

The only special treatment is the handling of j sr and ret instructions. The idea 

is that in order to put the instruction following a j sr on the work-list, the operand 

stack layout (and size) ofthe related ret instruction must be known. As the data-fiow 

analyzer might not yet know whether there is a related ret instruction or not, j sr 

simulation proceeds as follows: 

1. The j sr target address (or more precisely: offset) is pushed onto the abstract 

operand stack. 

2. If the target instruction has a related ret instruction on record, the operand 

stack of this related instruction is used in conjunction with the current local 
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#define NON_REF (-2) 
#define REF (-1) 

case ACONST_NULL or NEW 
{ 

} 

/* push a reference on stack */ 
stack[stack_size++] = REF; 

case ISTORE_3 or FSTORE_3 
{ 

stack_size--; 
} 

case LSTORE_3 or DSTORE_3 
{ 

} 

local_bits [3] .used_as_64bit true; 
stack_size -= 2; 

case ASTORE_3 
{ 

} 

if (stack[--stack_size] >= 0) 
{ 

} 

/* there's a jsr offset on the stack */ 
local_bits [3] .used_as_nonref = true; 
instruction->operand_is_jsr_offset = true; 

/* save the jsr offset in the appropriate local */ 
locals[3] = stack[stack_size]; 

else 
{ 

} 

/* there's a reference on the stack */ 
local_bits [3] .used_as_ref = true; 

case IADD, ISUB, FADD, FSUB, MONITORENTER, 
MONITOREXIT, or POP 

{ 

} 

/* one 32-bit value popped */ 
stack_size--; 

Figure 6.4: Abstract Interpretation of Sorne Bytecode Instructions 
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variable layout as an environment9 for adding the instruction following the j sr 

on the work-list. 

3. If the target instruction doesn't have a related ret instruction on record, the 

instruction following the j sr is added to a pending-list in the target instruction 

record. 

Simulation of the ret instruction proceeds as follows: 

1. The address of the related j sr target is retrieved from the specified local vari­

able. 

2. This ret instruction lS recorded as related to the jsr target instruction on 

record. 

3. All instructions on the related j sr target pending-list are added to the work-list, 

with an appropriate environment. 

Operand Stack Maps 

Operand stack gc maps are computed at each gc check point as the related instruction 

is processed. 

In or der to simplify garbage collection, pointers to the opemnd stack gc maps are 

always stored in the code armylO at 1 pc - 11, where pc is the program counter value 

seen by the garbage collector. 

Locals Splitting and Reordering 

Once the data-flow analysis is finished, local variables are split according to their us­

age. Non-parameter local variables are reordered after splitting so that all reference 

10ca18 are first and contiguous. Finally, bytecode instructions are updated appropri­

ately, and local variable gc map information is stored in the method structures. 

9This simulates the exception to the Gosling property. 
lOSee Chapter 2. 
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6.3 Experimental Results 

We performed two sets of experiments. The first set of experiments measured the 

total storage size for computed gc maps. The second set of experiments measured the 

increase in number of local variables caused by variable splitting. We have performed 

our experiments with our usual set of benchmarksll . 

6.3.1 Storage Size 

The st orage size of a single garbage collection map is composed of splay tree related 

fields and a bit array. There are 5 splay tree related fields per map: parent, left, and 

right pointers, bit array length, and bit array pointer. This takes a total of 20 bytes 

of st orage overhead per gc map on the Linux/x86 platform. Our measurements are 

shown in Table 6.1. 

maps maps Size 

raytrace 
soot 

sa ecc 

Table 6.1: GC Maps Storage Size 

Columns of Table 6.1 contain respectively: (a) the name of the executed bench­

mark, (b) the total number of garbage collection maps for prepared methods, (c) the 

total storage size (including overhead) for aIl garbage collection maps, (d) the total 

number of garbage collection check points in prepared methods, (f) the number of 

prepared methods, and (f) the total st orage size related to gc maps. 

11 See Chapter 9 for details. 
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The total size includes the size of gc maps, the size of a per check-point 32-bit 

pointer, and the size of a per method 32-bit integer. 

Discussion 

We were very pleasantly surprised by the small number of distinct garbage collection 

maps. Even in the biggest benchmark, Soot, which contains near 40,000 check points, 

a total of only 74 distinct maps are computed. The total st orage space for these maps 

is less than 2Kb, most of which is memoization data structure overhead. 

The following factors helped in reducing the number of distinct garbage collection 

maps. First, we do not compute check point specific maps for local variables, only 

method-specific maps. AIso, local variable bit arrays are limited to formaI parameters 

of methods; aIl non-parameter locals are grouped and a single integer is needed to 

map them. 

Even the total storage size numbers are quite low. Most of this space is used to 

store a pointer to the gc map at 1 pc - 11. For our biggest benchmark, the total 

storage size is only 170Kb. 

Given the small number of distinct gc maps, the total storage cou Id be dramat­

ically reduced by using, at check points, a single byte of st orage instead of a full 

pointer, indexing into a global table of gc maps (allowing for up to 255 maps + one 

value for overfiow). The per method integer could also be stored using fewer bytes. 

Yet, we do not think any of this necessary, given the small total size of storage and 

the complexity of storing single bytes in aligned code arrays. 

6.3.2 Number of local Variables 

In our second set of experiments, we measured the increase in the number of local 

variables. Our first results were unexpected; they indicated a reduction in the number 

of local variables, for many benchmarks. Suspecting a discrepancy in our code, we 

verified our code, but it seemed sound. This prompted us to investigate the problem. 

We quickly discovered the cause of the reduction in number of local variables: our 

algorithm gets rid of dead local variables. 
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In other words, sorne of the Java compilers used to compile the bytecode of our 

benchmarks and class libraries do emit bytecode which does not use all the local 

variables indicated by the max_locals value of the code attribute of methods. We used 

the Jikes [Jik] compiler for compiling the class libraries and the Soot and SableCC 

benchmarks. We do not know which compiler was used to compile the SPECjvm98 

benchmarks. 

So, we decided to also measure the increase in the number of live local variables. 

Our results are shown in Table 6.2. 

1 benchmark Il bytecode locals 1 Încrease 1 live locals 1 Încrease 
compress 1,092 -7 -0.6'10 1,056 29 2.71§ 

db 1,260 -9 -0.7% 1,212 39 3.2% 
jack 1,771 -6 -0.3% 1,703 62 3.6% 
javac 4,040 44 (1.1'10 3,750 334 8.91§ 
jess 2,225 2 (0.1% 2,063 164 7.9% 

mpegaudio 1,663 -11 -0.7% 1,606 46 2.8'10 
mtrt 1,648 -12 -0.7% 1,593 43 2.7% 

raytrace 1,636 -12 -0.7% 1,582 42 2.7% 
soot 8,517 60 (0.7% 7,663 914 (11.9% 

sablecc 3,711 18 (0.5% 3,303 426 ( 12.9-'ZQ 

Table 6.2: Local Variable Count 

Columns of Table 6.2 contain respectively: (a) the name of the executed bench­

mark, (b) the total number of local variables of prepared methods (before splitting), 

(c) the increase in local variables after splitting, expressed in absolute value and 

percentage, (d) the total number of live local variables of prepared methods (be­

fore splitting), and (c) the increase in live local variables after splitting, expressed in 

absolute value and percentage. 

Discussion 

While we think that Java compilers should be fixed not to generate dead local vari­

ables, a virtual machine must nonetheless execute verifiable bytecode generated by 

any compiler. 

We expected an increase in the number of local variables, due to splitting. The 
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raw result values (including de ad variables) did not indicate a significant increase or 

reduction in the total number of variables. 

We think that measurements on live variables are better indicators of the side 

effects of our proposed algorithm, as most modern virtual machines include just-in­

time compilers or adaptive optimizers that most likely ignore dead local variables. 

So, when we measure the effect of splitting on live local variables, we notice a 

more significant increase in the number of local variables, as expected. In the bigger 

benchmarks, the increase reaches up to 13%. 

The noticeable increase in number of local variables could be an important factor 

to consider before adopting our algorithm in a high-performance system, as more 

local variables could le ad to higher register pressure. Furthermore, developers of 

high-performance systems likely have the resources to impIe ment more complex gc 

map computation algorithms. 

6.4 Related Work 

There has been much research do ne on various technique for garbage collection. In 

[JL96], R. Jones and R. Lins review most of the literature on the subject. In this 

section, we simply review related work specifically on computing gc maps in the Java 

virtual machine. 

In [ADM98], O. Agesen et al. introduced a data fiow analysis over a reduced type 

lattice to compute stack maps and record local variable usage confiicts in subroutines. 

Their technique records precise confiict information: 

• ref-uninit: The local variable holds a reference value in sorne call sequence, and 

is uninitialized on another. 

• ref-nonref The local variable holds a reference in sorne call sequence, and a 

non-reference value on another. 

• ref-nonref-uninit: The local variable ho Ids a reference in sorne call sequence, a 

non-reference value on another, and is uninitialized on another. 
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Using this information, their technique then splits only those local variables involved 

in ref-nonref and ref-nonref-uninit conflicts. AIso, the bytecode is modified to add 

null initialization to local variables involved in ref-uninit and ref-nonref-uninit con­

flicts. In the paper, O. Agesen et al. do not explicitly address the details of handling 

long and double types. 

This technique is more precise than the technique introduced in this chapter as 

it minimizes the number of split local variables, and only initializes a subset of non­

parameter reference local variables. But, on the other hand, this technique is more 

complex to implement, as it requires a full data-flow analysis, and it potentially 

requires more st orage space for stack maps. Unfortunately, the paper does not report 

the total st orage size related to stack maps. They did say that they do not corn press 

(or memoize) stack maps. 

Another interesting result of this paper, is that adding liveness analysis has no 

significant impact on the size of reachable objects in heap for most benchmarks. 

The only exception to this was in a benchmark specifically constructed to challenge 

garbage collectors. 

In [SLC99], Stichnoth et al. introduce a technique to support garbage collection 

at every instruction, instead of at specific garbage collection check points. Their 

technique requires a full data flow analysis. They use an original technique to deal 

with the j sr fret problem. Instead of splitting variables and rewriting the bytecode, 

they use a gc-time recursive recovery technique to deduce the type (and liveness) of 

variables. Their rationale for supporting garbage collection at every instruction is 

that it reduces latency in multi-threaded applications (yet they have not reported 

any timings to support this conjecture), and a simpler design for the virtual machine. 

We dispute both of these reasons, in the context of their technique. 

We think that the latency of reaching a gc check point is negligible, as long as a 

checkpoint is present in every loop iteration. In [ADM98], O. Agesen computed that 

there is a gc check point every 7.9 bytecodes on average. 

We also think that the difficulty of computing the type of variables at garbage 

collection time outweighs, by far, the difficuity of specializing back-branches in code 

arrays. The constant-time (per branch instruction) overhead of specializing branches 
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is paid only once, at method preparation time, while the overhead of type recovery 

(linear worst case, in the size of method) must be paid at every garbage collection. 

This paper also proposes a rather complex encoding of gc maps to compress them. 

This compression uses Huffman encoding to store the delta of each instruction, and 

uses sequential bit streams to store gc maps, so that no bit is wasted. AlI this encoding 

increases the complexity of garbage collection, as bit streams must be decoded for 

each inspected method frame on the Java stack. 

Interestingly, the paper reports absolute values for the size of compressed gc maps. 

Specifically, it reports a total size of 22,920 bytes for the compress benchmark (com­

pared to 22,352 in Sable VM) and 93,385 bytes for the javac benchmark (compared to 

68,448 bytes in Sable VM). It should be noted that Sable VMs gc maps are accessed 

in constant time using a pointer at 1 pc - 11 which accounts for most of the total 

st orage space. The st orage size for gc maps alone, in Sable VM, is less than 2Kb for 

the javac benchmark. In contrast, using Stichnoth's technique, retrieving a gc map 

is a complex, non-constant-time operation. 

6.5 Conclusions 

In this chapter we have introduced a simple and effective technique to compute space­

efficient gc maps. By assuming that it is fed verifiable bytecode, the algorithm per­

forms a simple analysis of bytecode to compute stack maps and split local variables 

according to their usage. St orage space is reduced by reordering local variables in 

methods, and using a single local variable map per method. 

This technique is best suited to simpler virtual machines, and might not be appro­

priate for more complex high-performance virtual machines, unless additional analysis 

is do ne to reduce initialization overhead and local variable splitting (using an analysis 

similar to [ADM98]). 

Our experimental results show that the number of distinct gc maps computed by 

our algorithm is very low. In our biggest benchmark, which has near 40,000 check 

points and 3,475 methods, only 74 distinct bit maps were necessary. 
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Chapter 7 

Spin-Lock-Free Thin Locks 

The Java virtual machine, in collaboration with the standard libraries, provides 

a multi-threaded execution environment to Java programs. Synchronization between 

threads is provided through recursive mutual-exclusive locks (called monitors in the 

Java virtual machine specification [LY99]). The bytecode instruction set specifically 

includes the MONITORENTER and MONITOREXIT instructions which respec­

tively acquire and release a lock. AIso, methods can be declared synchronized, causing 

the virtual machine to automatically acquire a lock on method entry and release it on 

method exit. Locks are associated with object instances; more precisely, every object 

instance has its own lock which can be acquired and released by running threads. 

Most of the Java standard library classes and methods are thread-safe. In other 

words, these classes and methods make an extensive use of synchronization to protect 

internaI data in multi-threaded programs. 

To fully implement the semantics of the recursive locks of Java, a naive imple­

mentation would include a POSIX mutex, a POSIX condition variable and an integer 

recursion count into every object instance. This would add at least three words to ev­

ery object instance. To significantly reduce this overhead, early Java virtual machine 

implementations used a global hash table to store lazily-created locks. On every lock 

and unlock operation, the global hash table is accessed to retrieve the lock associ­

ated with the object instance under synchronization. To preserve the integrity of the 

hash table, a globallock must be acquired and released on every access. This global 
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synchronization causes significant execution overhead. 

To improve the efficiency of the lock and unlock operations, various approaches 

were developed, such as the use of thread-Iocal lock caches to reduce the number 

of costly global synchronization operations. In 1998, a very elegant algorithm was 

introduced by D. Bacon (and then improved by T. Onodera), to eliminate the need 

for a global hash table. !ts main idea is to add a bimodallock word in every object 

instance. The two modes of a lock are: thin and fat. In the thin mode, no additional 

st orage is required for the lock. In the fat mode, the lock word contains the address 

of a full lock structure (mutex, condition variable and recursion count) 1. The state 

of the lock word is indicated by its most significant bit; when this bit is set, the lock 

word is in the fat mode. 

In this chapter we introduce an improvement to Onodera's bimodal field locking al­

gorithm [OK99], which is a modified version of Bacon's thin lock algorithm [BKMS98] 

without busy-wait transitions from thin to fat mode. 

This chapter is structured as follows. In Section 7.1 we discuss the related work, 

namely Bacon and Onodera's algorithms. In Section 7.2, we introduce our improve­

ments to eliminate Bacon's algorithm busy-wait without adding storage overhead to 

object instances as do es Onodera's solution. Finally, in Section 7.3, we present our 

conclusions. 

7.1 Thin Locks 

7.1.1 Bacon Aigorithm 

Bacon's thin lock algorithm can be summarized as follows. Each object instance has 

a one word lock in its header2
. To acquire the lock of an object, a thread uses the 

compare-and-swap atomic operation to compare the current lock value to zero, and 

replace it with its thread identifier. If the lock value isn't zero, this means that either 

1 More precisely, the lock word includes the index in sorne data structure of the full lock, as not 
enough bits are available in the lock word to store an address. 

2This is a simplified explanation of the algorithm. In reality, only 24 bits of that word are used 
for locking on 32 bit systems. 8 bits remain free for other uses. Refer to [BKMS98] for details. 
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the lock is already inflated, in which case a normal locking procedure is applied, or 

the lock is thin and is already acquired by sorne thread. In the latter case, if the 

owning thread is the current one, a nesting count (in the lock word) is increased. 

If the owning thread is not the current one, then there is contention, and Bacon's 

version of the algorithm busy-waits, spinning until it acquires the lock. When the 

lock is finally acquired, it is inflated3
. Unlocking non-inflated locks is simple. On 

each unlock operation, the nesting count is decreased. When it reaches 0, the lock 

word is replaced by zero, releasing the lock. 

The advantages of this algorithm are that a single atomic operation is needed 

to acquire a thin lock in absence of contention, and more importantly, no atomic 

operation is required to unlock an object4 . 

Performance Improvements 

Due to the thread-safe nature of the Java libraries, even single-threaded Java ap­

plications may spend a significant portion of their execution time performing useless 

synchronization. In [BKMS98], Bacon measured that replacing a normal heavy-weight 

implementation of Java monitors by thin-Iocks yields a median speedup of 1.22 and a 

maximum speedup of 1. 7 on a set of real programs, which is a significant performance 

improvement. 

7.1.2 Onodera's Proposed Improvement 

Onodera proposed a technique to eliminate the busy wait in case of contention on 

a thin lock, using a single additional bit in each object instance. The role of this 

contention bit is to indicate that sorne other thread is waiting to acquire the current 

thin lock. Onodera's algorithm differs from the Bacon's algorithm at two points. 

First, when a thread fails to acquire a thin lock (because of contention), it acquires a 

fat monitor for the object, sets the contention bit, checks that the thin lock was not 

3The lock is inflated so that future contention on the same lock won't cause busy wait. 
4Unlike Agesen's meta-lock algorithm [ADG+99] which requires an atomic operation for unlocking 

objects. 
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released, then puts itself in a waiting state. Second, when a thin lock is released (e.g. 

lock word is replaced by zero), the releasing thread checks the contention bit. If it is 

set, it infiates the lock, and notifies aIl waiting threads5 . 

An Expensive Bit 

The overhead of Onodera's algorithm over Bacon's is the contention bit test on un­

locking, a fairly simple operation, and the one bit per object instance. This bit has 

the following restriction: it must not reside within the lock word. This is a problem. 

It is important to keep the per-object space overhead as low as possible, as Java 

programs tend to allocate many small objects. It is now common practice to use 2 

word headers in object instances; one word for the virtual pointer, and the second for 

the lock and other information. The contention bit cannot reside in either of these 

two words (putting this bit in the virtual table pointer word would add execution 

overhead to method invocation, field access, and any other operations dereferencing 

this pointer). As objects need to be aligned on a word multiple for the atomic 

operation to work, this one bit overhead might weIl translate into a whole word 

overhead for small objects. Furthermore, it is likely that the placement of this bit 

will be highly type dependent, which complicates the unlocking test. 

7.2 Eliminating Busy-Wait Without Inflating Objects 

Our solution to the expensive bit problem is to put the contention bit in the thread 

structure, instead of in the object instance. This simple modification has the advan­

tage of eliminating the per-object overhead while maintaining the key properties of 

the algorithm, namely, fast thin lock acquisition with a single atomic operation, fast 

thin lock unlocking without atomic operations, and no busy-wait in case of contention. 

To achieve the desired result, we modify Onodera's algorithm as follows. In 

Sable VM, each thread has a related data structure containing various information, 

5This is a simplified description. Please refer to the original paper [OK99] for details. 
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like stack information and exception status. In this structure, we add (a) the con­

tention bit, (b) a contention lock6 , and (c) a linked list of (waiting thread, ob ject) 

tuples. Then we modify the lock and unlock operation as described in the following 

two subsections. 

7.2.1 Modifications to the Lock Operation 

The lock operation is only modified in the case of contention on a thin lock. 

When a thread Xt fails to acquire a thin lock on object Zo due to contention (be­

cause thread Yt already owns the thin lock) , then (1) thread Xt acquires the contention 

lock of the owning thread (Yt), and (2) sets the contention bit of thread Yt, then (3) 

checks that the lock of object Zo is still thin and owned by thread Yt. If the check 

fails, (4a) the contention bit is restored to its initial value, the contention lock is 

released and the lock operation is repeated. If the check succeeds, (4b) the tuple (Xt, 

zo) is added to the linked li st of thread Yt, then thread Xt is put in the waiting state, 

releasing the contention lock of thread Yt. Later, when thread Xt wakes up (because 

it was signaIled), it repeats the lock operation7
. 

7.2.2 Modifications to the Unlock Operation 

The unlock operation is modified to check the contention bit of the currently exe­

cuting thread. This check is only done when a lock is actually released (as locks are 

recursive) , after releasing the lock. 

When the lock of object bo is released by thread Yt, and if the contention bit of 

thread Yt is set, then (1) thread Yt acquires its own contention lock, and (2) iterates 

over aIl the elements of its tuple linked list. For each tuple (Xt, zo), if (zo = bo), 

thread Xt is simply signalled. If (zo -=1 bo), the lock of object Zo is inflated8 (if it is 

6The contention lock is a simple non-recursive mutex. 
7 After releasing the contention lock of thread Yt that was automatically re-acquired on wake-up 

due to POSIX thread semantics. 
8Notice that thread Yt necessarily owns the lock of object zo, as only one lock (the lock of bo) 

has been released by thread Yt since it last cleared its contention bit and emptied its tuple list. 
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thin) , then thread Xt is signalled. Finally, (3) thread Yt empties its tuple linked list, 

clears its contention bit, and releases its contention lock. 

7.2.3 Explanations 

Our technique is best explained using an example of two threads Tl and T2 executing 

the pro gram segments in Figure 7.1. We assume that Tl has succeeded at acquiring 

the thin lock of both 01 and 02 (and still owns them) and that T2 tries to acquire 

the lock of 01. As it is already owned by Tl, there is contention9 . 

Thread 1 (Tl) Thread 2 (T2) 
... 
synchronized (01) 
{ 

synchronized (02) ... 
{ 1* execution point *1 

synchronized (01) ... { 1* execution point *1 } ... 
} ... 

} 
... 

Figure 7.1: Contention Example 

The goal of our algorithm is to avoid busy-wait in such a situation. Our strategy 

is to try to put T2 to sleep while making sure it will be awaked by the thread owning 

01 when either 01 is unlocked or it is inflated. 

To avoid any possible deadlock on thread contention locks, our algorithm was 

designed so that a thread never acquires more than a single thread contention lock 

at any time. 

Going to Sleep Safely 

We want to put T2 to sleep on the contention lock of the current owning thread of 01, 

which is Tl. This will be safe if we can guarantee that Tl will effectively awake T2 

9To simplify the text, we will say 01 instead of the lock of 01. 
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when releasing or infiating 01. To make sure this happens, T2 acquires the contention 

lock of Tl and sets its contention bit, then it verifies that Tl still owns 01. If Tl does 

effectively still own 01, then we are assured that it will see a raised contention bit 

when it later unlocks or infiates 01, thus T2 can safely go to sleep on the contention 

lock of Tl. If Tl is not the owner anymore, T2 undoes all modifications and repeats 

the pro cess with the new owning thread of 01. 

One could argue that T2 could end up chasing other threads, but this will only 

happen if the scheduling priority of T2 was low enough to let the other threads have 

enough time to acquire 01, do their work and release 01 before T2 has time to set the 

contention bit and check the thin lock. If this is the case, then the priority of T2 is 

low enough as not to starve the system. 

Awaking Other Threads 

The second part of our algorithm consists of awaking other threads when a lock is 

released or infiated. 

Our design goal is to keep the unlocking code as simple as possible, to minimize 

overhead in the frequently executed unlock operation. 

When a thread Tl releases a lock 02, it checks its own thread contention bit. 

If it is unset, Tl resumes normal execution, as no other thread is sleeping on its 

contention lock. If it is set, Tl acquires its own contention lock, then (a) awakes 

all other threads waiting on 02 and (2) infiates all other locks under contention and 

currently owned by Tl (such as 01 in our example), and awakes all threads waiting 

on these locks. Finally, Tl resets its contention bit and releases the contention lock 

and resumes normal execution. 

Why not awake a single thread waiting on 02, instead of all of them 7 Because, 

in or der for our algorithm to work, the other waiting threads must sleep on the 

contention lock of the thread owning 02. As these threads are currently sleeping on 

the contention lock of Tl, and Tl is not the owner of 02 anymore, they must be 

awaked so that they can go to sleep on the contention lock of the new owner of 02. 

Why infiate other locks than 027 Because, if Tl did not infiate them, it would 
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have to keep its contention bit raised, causing higher overhead to aIl unlock operations 

on Tl as long as contention exists on a thin lock owned by Tl. 

Note that Tl owns its contention lock at the time it resets its contention bit. This 

ensures that no other thread will modify it concurrently. 

7.3 Conclusions 

The technique introduced in this chapter aims to solve a specifie problem in an oth­

erwise elegant existing technique for efficiently locking and unlocking objects in a 

Java virtual machine. The technique might seem relatively simple, yet it has a sig­

nificant impact on a virtual machine robustness in multi-threaded environments, by 

preventing spin-Iocking on contention. An earlier solution had been proposed, but 

it came at a high cost in object st orage space, potentially adding a complete word 

to object instances. Our solution elegantly avoids object instance inflation by using 

thread-specific st orage for contention-related data structures. 
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Chapter 8 

Portability and Extensibility 

In this chapter we discuss the various technical aspects of the Sable VM framework. 

In particular, we discuss the issues related to portability and extensibility of Sable VM. 

8.1 Portability of SableVM 

In or der to write a highly portable virtual machine, we had to be very careful in 

our usage of the ISO C language. In particular, we avoided an language features 

with implementation-defined, undefined or unspecified behavior [SAI+90]. But unfor­

tunately, efficiently implementing sorne Java features do require using a few system 

dependent features. 

We discuss how we isolated an system specifie features, then discuss sorne required 

architecture-Ievel features and state sorne limitations of the current implementation. 

8.1.1 System-Specifie Files 

An system-specifie code is isolated in three specifie files of Sable VM. These files are: 

src/libsablevm/include/jni_system_specific.h 

src/libsablevm/system.h 

src/libsablevm/system.c 
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They contain the definitions for size-specific integer and floating-point types, as 

well as functions to retrieve and set platform-specific header bits (lock-word) of object 

instances. They also contain the only two inline assembly functions described later in 

this chapter. Porting Sable VM to a new platform consists mainly of modifying these 

three files. 

Porting to Alpha Platform 

It only took Grzegorz B. Prokopski, a new Sable VM user, less than 24 hours, and 

less than 50 lines of commented code to port the framework to the 64 bit Alpha 

architecture1 . The unified dit! is shown in Appendix B. This is quite impressive for 

an efficient virtual machine. In fact, most of the work, which consisted of defining the 

appropriate typedef dec1arations for Alpha-specific types, took only a few minutes. 

Most of the remaining time was spent in a discussion between Mr. Prokopski and 

the author, to explain the need for an assembly-written compare-and-swap atomic 

operation, and in waiting for answers on the debian-alpha mailing-list [Deb]. 

Other Ports 

Based on feed-back from users, Sable VM is also known to run on the FreeBSD jx86, 

Debianjia64 (Intel's new Itanium processor), DebianjPowerPC, and Debianj ARM 

platforms. The Power PC processor, in particular, has a different byte ordering than 

the Intel x86 processor. AlI of these ports were do ne by Sable VM users. In all cases, 

the dit! is short, and it took only a few ho urs to make the port. 

8.1.2 Architecture-Level Features 

The main challenge in porting Sable VM is that it requires two architecture-specifie 

instructions, on modern processors, which are not expressible in the C language. 

IHe did not implement the ifiush assembly function required for the inline-threaded engine; but 
the direct-threaded and switch-threaded engines worked well within 24 hours of his first attempt at 
porting the system. 
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Compare-And-Swap 

The first required architecture-specifie instruction is a compare-and-swap operation, 

which is sometimes provided as-is by the processor, or must be constructed as a 

sequence of processor-specific machine instructions. 

This operation is necessary for the operation of thin locks. This instruction is 

implemented in the system. c file, and must be adapted for every new platform. 

IFlush 

Another architecture-specifie instruction is required for getting inline-threading to 

work on processors with distinct instruction and data caches. This ifiush instruction, 

described in Section 2.2.3 is unnecessary otherwise (i.e. no inline-threading, or unified 

cache). 

As usual, this function is also implemented in the system. c file. 

8.1.3 Limitations of the Current Implementation 

We should mention a limitation of our current implementation related to multi­

processor systems. Correctly and efficiently implementing the Java semantics on mod­

ern multi-processors systems requires the usage of architecture-specifie cache-related 

instructions. This is because modern multi-processor systems implement various weak 

memory models. An investigation of this problem revealed that there are few sim­

ilarities between the various architectures. For example, various architectures have 

different semantics for memory barriers. We thus decided to postpone the research 

on this issue to future work. 

8.2 Extensibility 

One of the important goals of our work was to develop an easily modifiable framework. 

Yet supporting various interpreter engines and implementing nearly identical features 

can lead to code growth and duplication. 
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To avoid this, many systems use C macros. Unfortunately, the C preprocessor 

has many limitations, such as macros cannot generate new macros. Also, while using 

complex macros is an effective technique to reduce code growth and duplication (good 

for maintenance), it has the marked disadvantage that reading complex macro code 

is difficult, and the syntax for multi-line macros is inelegant. 

A more unfortunate consequence of using complex macros is the loss of clear 

debuggable code, which can be traced through using a debugger, querying for variable 

values, etc. 

For this reason2 , we decided to use the GNU m4 [M4] general purpose macro 

processor. 

8.2.1 Abstraction levels Using m4 

We developed a set of use fuI m4 macros. Using the macros, we only need to provide 

a single implementation for a bytecode. The macro processor do es all the work of 

generating multiple versions of this code into separate files. 

To compile Sable VM, a Makefile first invokes the m4 processor and then invokes 

the C compiler on the generated code. 

Interestingly, we were able to define m4 macros which look like legitimate C code 

to a C indenter program. So, by giving the extension . m4. c to macro files, we are 

able to fool text editors to think that the code is actually C code, and thus get C 

syntax coloring during development. Another advantage is that we can also apply the 

GNU indent program on this source code to get a uniform indentation style across 

the application. 

For the sample bytecode instruction implementation shown in Figure 8.1, the m4 
processor automatically generates many implementations of this code, one of which 

is shown in Figure 8.2. 

Notice how the generated source code is commented, and appropriate for reading 

and debugging. 

2 After suffering from the difficulty to debug complex C macros in an early implementation of 
SableVM ... 
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ACONST_NULL 

stack[stack_size++] .reference = NULL; 

Figure 8.1: Source Code 

ACONST_NULL 

case SVM_INSTRUCTION_ACONST_NULL: 
{ 

env->vm->instructions[instr] .param_count = 0; 

/* implementation address */ 
env->vm->instructions[instr] .code.implementation = &&START_ACONST_NULL; 
env->vm->instructions[instr] . inlined_code. implementation 

&&INLINED_START_ACONST_NULL; 

/* code size */ 
env->vm->instructions[instr] .inlined_size 

«char *) &&END_ACONST_NULL) - «char *) &&INLINED_START_ACONST_NULL); 

/* can the implementation be relocated? */ 
env->vm->instructions[instr] .flag = SVM_INTRP_FLAG_INLINEABLE; 

break; 

START_ACONST_NULL: 
#ifndef NDEBUG 

#endif 

if (env->vm->verbose_instructions) 
{ 

} 

_svmf_printf (env, stdout, 
"[verbose instructions: executing <D\%p ACONST_NULL]\n", 
(void *) (pc - 1»; 

INLINED_START_ACONST_NULL: 
/* instruction body */ 

stack[stack_size++] .reference 

END_ACONST_NULL: 
1* dispatch *1 
goto *«pc++)->implementation); 

} 

NULL; 

Figure 8.2: Generated Code 
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8.2.2 Debugging SableVM 

One interesting aspect of the Sable VM framework is that the execution of the virtual 

machine can be easily traced using a debugger. The usage of m4 for the generation 

of commented source code does really help providing a very accessible, easy to learn 

system, as new users need not understand the m4 code; they can simply look through 

the commented generated code, and trace it using a debugger. 

Figure 8.3 shows a debugging session within the DDD debugger [DDD]. The 

IADD bytecode instruction body is being executed within the switch-threaded engine 

of Sable VM. Notice how the debugger displays the operand stack content on the right 

part of the figure, and the value of C local variables valuel, value2, and stack_size 

on the left part. In the bottom part, we see that line 4165 is about to be executed. 

1~~-~~~_S!:~~S~~~~:~:;~~~~~~i ~n v~; a~!~~~ f~~~04d2 bD 

~""'iI,..-!~;':~ =~~=~=~~~~~u~f~~e1i}n~~~1;~c~~g04fOco 

4158 
4159 /* ; n:struction body 1f/ 
4160 
4161 
4162 
4163 j i nt val uel = stack [stack_si ze - 2]. j i nt; 

4167 
4168 

ji nt val ue2 = stack [--stack_si ze] . j; nt i 
stack [stack_si ze - 1]. ji nt = val uel + val ue2 i 

4169 1* di spatch *f 

float = 2.53726101 
reference = Ox4022627c 
addr = Ox4022627c 
ptr = Ox4022627c 
ali " ••. 

jint = 7 
jfloat = 9.809089250-45 
reference = Ox7 
addr = Ox7 

= Ox7 

Figure 8.3: Debugging Session 

Such a precise and clear trace of the execution of a bytecode instruction is not 
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available to developers working with compiler-based Java virtual machines. 

8.3 Conclusions 

We have designed Sable VM to be portable. As the implementation of sorne features 

are intrinsicaIly platform dependent, we have isolated aIl the platform-specific source 

code in weIl identified source files. 

In order to ensure easy maintenance and extensibility, we have used the GNU m4 
macro processor to generate commented code, avoiding source code duplication. We 

have, in fact, developed a set of elegant m4 macros which can be conveniently hidden 

in otherwise legitimate looking C code. 

We do think that the architecture of Sable VM achieves our goals of portability 

and extensibility. 
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Chapter 9 

Overall Performance Measurements 

In this chapter we present our overall performance measurements, comparing the 

running times of various benchmarks on Sable VM and other virtual machines. The 

test platform, the virtual machines and the benchmarks discussed in this chapter were 

also used for performing experiments in preceding chapters. 

This chapter is structured as follows. In Section 9.1, we describe the platform 

used in our tests. In Section 9.2, we discuss our choice of comparative Java virtual 

machines. In Section 9.3, we discuss our choice of benchmarks. In Section 9.4, we 

present our experimental results. FinaIly, in Section 9.5, we present our conclusions. 

9.1 Test Platform 

We have performed aIl our experiments on a single 1.5GHz Pentium 4 based system, 

with 1.5 Gb of RAM, 256 Kb of cache memory, and a 7,200 RPM hard disk, running 

DebianjGnu Linux with kernel version 2.4.18. AlI daemon pro cesses were turned off 

during the tests. 

An execution time measurements are based on (system + user) time returned 

by the GNU time command, and are the average execution time of 3 runs of each 

program. 
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9.2 Virtual Machines 

In this chapter we compare the performance of Sable VM to other virtual machines. We 

have chosen two sets of virtual machines to compare with: interpreters and compiler 

systems. 

9.2.1 Interpreters 

Kaffe Interpreter 

We have chosen to compare the performance of Sable VM with that of the interpreter 

of Kaffe virtual machine (version 1.0.7), as it is one of the most popular open-source 

virtual machines. 

The Kaffe interpreter is a naive Java bytecode interpreter. The designers of Kaffe 

did not try to optimize its performance. They devoted most of their time building an 

efficient just-in-time compiler. The Kaffe virtual machine does not support precise 

garbage collection; instead, it relies on the Boehm-Weiser conservative collector for 

C. 

JDK 1.4.0 Interpreter 

We have also chosen to compare Sable VM with a state-of-the-art interpreter. To do 

so, we selected the HotSpot Client VM interpreter included within the JDK 1.4.0 for 

Linux (build 1.4.0-b92). 

This interpreter has to be relatively efficient, as it is used by the mixed mode high­

performance HotSpot engine. It benefits from all the highly sophisticated HotSpot 

framework features, including efficient heap allocators and generational collection. 

The interpreter is known to be partly coded in assembly language1. 

Note: To select the interpreter engine, we used the 1 java -Xint 1 commando 

1 We cannot assert of this daim, as we have not signed a non-disclosure agreement to get access 
to the source code of the system. 
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9.2.2 Compiler Systems 

Jikes RVM (Baseline, Semi-Space) 

We selected the most basic configuration of the Jikes RVM (version 2.1.1 for Linux), 

so that we could compare the performance of Sable VMs inline-threaded engine to 

that of a simple just-in-time compiler, using a similar semi-space copying garbage 

collector. 

Open Intel Platform 

We also compares Sable VM with Intel's ORP version 1.0.9, pre-packaged for Debian. 

We selected ORP as it is another open-source virtual machine using the GNU Class­

path class library. ORP uses a JIT engine, and is written in C++. 

Kaffe (JIT3) 

We also compared SableVMwith the most efficient Kaffe (version 1.0.7) just-in-time 

compiler engine, to be fair after comparing Sable VM to its slow interpreter engine. 

JDK 1.4.0 (Mixed-Mode) 

Finally, we compared the performance of Sable VM to that of the Client HotSpot VM 

(build 1.4.0-b92), in mixed mode execution. This virtual machine is a state-of-the-art 

system, aiming at achieving the highest performance in a client environment. 

9.3 8enchmarks 

We have selected the SPECjvm98 [SPE] benchmarks, as they are widely used for 

collecting experimental measurements in research papers on Java virtual machines. 

We should note that none of the results shown in this thesis represent official SPEC 

performance measurements, as we have not followed the official run rules of the SPEC 

committee. We have run unmodified SPECjvm98 programs, but we used custom 

wrapper scripts to collect the various measurements. 
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We have also chosen two benchmarks developed by the Sable Research Group 

of McGill University, Soot 1.2.3 [Soo] and SableCC 2.17.3 [Saba], for their highly 

object-oriented design, and their use of Java interfaces. 

Soot is a bytecode analysis and optimization framework. In our test, we gave the 

javac SPECjvm98 benchmark classes as input to Soot2 . 

SableCC is a compiler generator (or compiler compiler) that generates DFA-based 

lexers, LALR(l) table-based parsers, and a complete set of Java classes (source code) 

for building and traversing abstract syntax trees. In our tests, we gave SableCC the 

grammar of Simple (} as input4 . 

9.4 Results 

We now present our overall comparative performance measurements. For these tests 

we used a version of Sable VM with an inline-threaded engine, signal-based null checks, 

bidirectional layout, and precise semi-space copying collector. AlI running times are 

expressed in seconds, and are the average CPU time (i.e. user+system time) ofthree 

runs of the benchmarks. For every virtual machine, other than Sable VM, we also 

show the speedup achieved by Sable VM over the measured virtual machine between 

parentheses. 

Our first set of experiments compared Sable VM to other interpreters, namely the 

Kaffe interpreter version 1.0.7 and the JDK 1.4.0 HotSpot Client VM interpreter. 

Results are shown in Table 9.1. 

Our second set of experiments compared Sable VM to compiler-based virtual ma­

chines, namely the Jikes RVM (baseline, semi-space), Intel's ORP virtual machine, 

Kaffe's JIT3 engine, and JDK 1.4.0 HotSpot Client VM (mixed-mode). Results are 

shown in Table 9.2. 

2Command: java soot. Main -d newClasses --app -W spee. benehmarks. -.213_javae .Main 
3This grammar can be found On the SableCC web site, along with other grammars. 
4Command: java org. sableee. sableee. SableCC simplee. sableee 
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Kafte JUK 
benchmark SableVM interpreter interpreter 

(sec.) (sec. ) (sec.) 
compress 131.64 1048.35 7.96 175.87 1.34 

db 87.64 364.87 4.16 82.82 0.95 
jack 38.16 307.70 8.06 30.46 0.80 
javac 89.37 405.75 4.54 49.94 0.56 
jess 53.57 297.94 5.56 39.25 0.73 

mpegaudio 136.97 677.88 4.95 141.19 1.03 
mtrt 100.39 351.08 3.50 46.67 0.46 

raytrace 113.55 382.97 3.37 45.28 0.40 
soot 548.13 failed (- 390.68 0.71 

sablecc 26.09 failed (- 26.64 1.02 

Table 9.1: Comparative Performance: Sable VM vs. Interpreters 

Jikes Kane JUK 
benchmark SVM RVM ORP JIT3 1.4.0 

(sec.) (sec.) (sec.) (sec. ) (sec.) 
compress 131.64 43.77 0.33 15.22 0.12 18.24 0.14 19.47 0.15 

db 87.64 48.88 0.56 27.88 0.32 41.90 0.48 28.86 0.33 
jack 38.16 24.08 0.63 7.01 0.18 50.92 1.33 6.78 0.18 
javac 89.37 36.00 0.40 failed (- 46.67 0.52 15.25 0.17 
jess 53.57 29.67 0.55 6.74 0.13 38.56 0.72 6.61 0.12 

mpegaudio 136.97 34.94 0.26 6.84 0.05 32.82 0.24 10.60 0.08 
mtrt 100.39 20.00 0.20 6.73 0.07 32.93 0.33 5.33 0.05 

raytrace 113.55 18.90 0.17 5.85 0.05 31.69 0.28 4.51 0.04 
soot 548.13 483.02 0.88 failed (- failed (- 68.97 0.13 

sablecc 26.09 19.78 0.75 failed (- failed (- 6.58 0.25 

Table 9.2: Comparative Performance: Sable VM vs. Compilers 
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9.4.1 Discussion 

First, we should stress that comparing different virtual machines on total execution 

time is not always very accurate, as the running time of Java applications is often de­

pendent on the efficiency of standard class library code. It would be nearly impossible 

to abstract library execution running time out of the total execution time. So, one 

must be very careful before drawing conclusions from execution time measurements. 

Results in Table 9.1 show that Sable VM is significantly faster than a naively 

implemented bytecode interpreter. It achieves a speedup ranging from 3.37 to 8.06 

over Kaffe's interpreter engine. 

Also, results in Table 9.1 show that Sable VM achieves comparable performance 

with a state-of-the-art Java interpreter (JDK 1.4.0), by getting a speedup ranging 

from 0.40 to 1.34. This is quite an achievement for a relatively simple and highly 

portable virtual machine, with a very basic non-generational copying garbage collec­

tor, which does not do any fancy optimizations for exception handling, multi-threaded 

heap allocation, and other features. 

Of course results in Table 9.2 remind us that Sable VMs engine is clearly an in­

terpreter, not a compiler. For the raytrace benchmark, Sable VM is more than 25 

times slower than the JDK HotSpot VM Client (mixed-mode). Yet, when compared 

with a relatively naive just-in-time compiler engine, such as the Jikes RVM's baseline 

compiler, Sable VM achieves a decent comparative performance. On the Saat bench­

marks, it achieves 88% of the performance of Jikes RVM (baseline), and on Sable CC, 

it achieves 75% of Jikes RVM (baseline). 

Also, Sable VM performs relatively well (considering it is an interpreter) against 

the Kaffe JIT3 engine. In fact, it outperforms it by 33% on the jack benchmark. We 

have not identified, at this point, the reason for the bad performance of Kaffe on this 

specifie benchmark. We do not think it is normal for an interpreter to outperform 

a compiler-based virtual machine unless compile-time overhead (and code storage 

space) justifies it, which is not the case here (as indicated by the running times of 

other compiler-based virtual machines). 

For many benchmarks, Sable VM achieves more than a third of the performance 
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of a naive JIT (Jikes RVM). It also achieves 33% or more of the performance Kaffe's 

most efficient JIT for a majority of benchmarks. Given the huge difference in the 

complexity of compiler-based systems and a highly-portable interpreter, we think 

that the performance of Sable VM offers an attractive (portability and simplicity)­

performance tradeoff for doing research within the Java virtual machine. 

9.5 Conclusions 

Our experimental results show that Sable VM largely outperforms a naive Java byte­

code interpreters, and offers comparative performance to a state-of-the-art interpreter 

used within a modern mixed-mode adaptive system. 

The performance of Sable VM is largely inferior to that of modern adaptive sys­

tems, but it is not too far from the performance of a naive just-in-time compiler 

on sorne large benchmarks. Overall, Sable VM offers, in our view, a very attractive 

(portability and simplicity)-performance tradeoff. 
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Chapter 10 

Future Work and Conclusions 

In this last chapter we discuss future work on Sable VM and present our overall 

conclusions. This chapter is structured as follows. In Section 10.1, we discuss various 

future research avenues, and in Section 10.2, we present the overall conclusions of this 

thesis. 

10.1 Future Work 

10.1.1 SableVM in the Field 

The first part of our future work has already started. It consists of releasing Sable VM 

publicly, gathering feedback from the research community, and establishing new re­

search and development collaborations. 

We hope to further develop the already started collaboration between the Sable VM 

and the GNU Classpath projects for building stable and robust Java virtual machine 

and libraries. 

We also seek to attract other research projects to merge their work within the 

Sable VM framework, when possible, to reduce duplication of effort. We think that 

our work on building a robust Java virtual machine research infrastructure can benefit 

them, and free them to concentrate their development efforts only on their specialized 

parts. 
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We also hope to attract graduate students to work specifically on improving parts 

of Sable VM by implementing existing and innovative techniques. For example, the 

current heap allocator of Sable VM is rather naive, and uses a global lock on every 

object instance allocation. Improving Sable VMs allocator is a suit able project for 

early graduate courses, covering garbage collection and memory management. 

10.1.2 Profiling Memory Usage 

A longer term project is to build a complete memory profiling framework, in Sable VM, 

as a tool for both researchers and Java developers to better understand memory usage 

in Java programs. 

10.1.3 Investigate Compilation to V-CODE 

Our experimental results have shown, without any doubt, that Sable VMs interpreter 

engine does indeed perform as an efficient interpreter, but that it is often much slower 

than just-in-time and adaptive engines. 

Even though achieving the absolute highest performance is not the main goal of 

our research, we would like to investigate the performance we could achieve by adding 

a retargetable compiler engine, based on V-CODE [Eng96]. This would provide a new 

level of performance-portability tradeoff to users of the Sable VM framework. 

10.2 Conclusions 

In this thesis, we have introduced the Sable VM research framework. The objective 

of our research was to design and implement a portable and easily modifiable virtual 

machine that could be used for research on various aspects of Java bytecode execution. 

We also wanted to evaluate the performance achievable by such a portable system. 

More specifically, in this thesis we introduced a preparation sequence technique to 

allow the efficient implementation of an inline-threaded interpreter engine in a multi­

threaded environment. Then we introduced a logical partitioning of the runtime 
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10.2. Conclusions 

memory of a Java virtual machine that greatly simplifies memory management, and 

opens interesting opportunities for further optimizations. One such optimization, that 

we also introduced, is the implementation of sparse interface virtual tables, without 

memory loss. Our technique takes advantage of the class-loader specifie memory 

manager to recycle the memory holes in the sparse tables. We also introduced a 

simple technique for computing space-efficient maps for precise (or type-accurate) 

garbage collection. Then we introduced a bidirectionallayout that simplifies garbage 

collection tracing, and we introduced a technique to eliminate spin locking from thin 

locks. 

Our experimental results showed that inline-threading Java code yields signifi­

cant performance improvement over both traditional switch based interpretation and 

direct-threaded interpretation. They also showed that our simple technique for recy­

ding sparse interface table holes is highly effective, resulting in no memory loss across 

all our tests. Our results showed that our technique for computing gc maps builds 

very few distinct bit maps, only 74 maps for near 40,000 gc check points (approxi­

mately 1 bit map per 535 check points). This algorithm, though, causes an increase 

of up to 13% in the number of live local variables due to splitting. Our measurements 

showed that the object layout has no significant impact on garbage collection time, 

but can sometimes affect total execution time of benchmarks positively or negatively. 

FinallY' our overall comparative performance measurements showed that a highly­

portable, simple-to-modify virtual machine implementing the techniques proposed in 

this thesis can achieve comparable performance to a state-of-the-art interpreter-based 

virtual machine, and is significantly faster than a naively implemented Java bytecode 

interpreter. They also revealed that, while such an interpreter greatly under-performs 

high-performance adaptive systems, it still offers an acceptable performance relative 

to naive just-in-time compilers. 

The portability of Sable VM was demonstrated by the simplicity of porting it to 

other platforms. In particular, porting Sable VM to the Debianj Alpha system took 

less than 24 hours and less than 50 lines of code. 
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Appendix A 

A Mini SableVM User Guide 

This appendix lists a minimal set of commands to get Sable VM up and running. 

A.1 Getting and Compiling SableVM 

Sable VM can be downloaded from [Sabb]. The full distribution consists of three 

compressed tar archives: 

• sablevrn-x. y . z . tar . gzl: This file contains the source code of the Sable VM 

virtual machine. 

• sablevrn-class-library-x. y. z. tar. gz: This file contains the source code of 

the Java class libraries developed by the GNU Classpath project, slightly mod­

ified for Sable VM. 

• sablevrn-nati ve-library-x. y. z. tar. gz: This file contains source code of the 

native C implementations of native class library methods, developed by the 

GNU Classpath project. 

Here are the steps to compile and install Sable VM: 

1. Download the three files of the distribution. 

lX. y . z stands for the version number. 
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A.2. Customizing Sable VM 

2. Vncompress the sablevm-x. y . z. tar . gz file. 

3. Read the README file. 

4. Follow instructions in the INSTALL file. 

A.2 Customizing SableVM 

The procedure, for customizing and recompiling the Sable VM virtual machine (not 

its class libraries) is the standard GNV procedure: 

$ cd sablevm-x.y.z 
$ ./configure --help 
. .. 1* many options shown *1 
$ ./configure [options] 
$ make clean 
$ make 
$ make install 

Here are the Sable VM specifie configuration options: 

--enable-debugging-features 
Add compiler and runtime checks 

--disable-signals-for-exceptions 

--with-gc=TYPE 
--with-obj-layout=TYPE 
--with-threading=TYPE 

Do not use signaIs to detect sorne exceptions 
(NuIIPointerException, ArithmeticException, etc.) 
Use given garbage collector (none,copying) 
Use given object layout (bidirectional,traditional) 
Use given interpreter threading flavor 
(inlined,direct,switch) 

A.2.1 Advanced Customization 

Within the conf igure . ac file, there are two options which can be enabled by un­

commenting the appropriate line2 . 

dnl *** uncomment if you want to insert a magic value in every object instance for debugging *** 
dnl AC_DEFINE(MAGIC,l,put "SableVM" in every instance) 

dnl *** uncomment ta print sorne statistics on VM exit *** 
dnl AC_DEFINE(STATISTICS,l,print statistics on VM exit) 

2The line-comment delimiter is: dnl. 
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A.3. Running SableVM 

The first option is very helpful for debugging garbage collectors, as it causes 

Sable VM to in sert a magic value in every object instance header, and to check that 

this value is not corrupted at key points, such as when a reference is pushed on the 

operand stack, or when garbage collection is done. 

The second option adds various counters in Sable VM and causes it to write a set 

of statistics to the standard output at the end of its execution. 

A.3 Running SableVM 

As long as the Sable VM executable is located in one of the directories on the PATH, 

it can be started by sim ply typing: 

$ sablevm --help 
Usage: sablevm [OPTION] ... 

-c, --classpath=IPATH" 
CLASSNAME [ARGUMENT] ... 

set class path 
-p, --property=INAME=VALUE" set system property 
-v, --verbose 
-q, --quiet 
-s, --verbose-class 
-S, --no-verbose-class 
-g, --verbose-gc 
-G, --no-verbose-gc 
-j, --verbose-jni 
-J, --no-verbose-jni 
-y, --copyright 
-Y, --no-copyright 
-L, --license 
-V, --version 

Help options: 
-?, --help 
--usage 

$ sablevm HelloWorld 
Hello world! 

enable all verbose options 
disable aIl verbose options 
enable verbose class loading 
disable verbose class loading 
enable verbose garbage collection 
disable verbose garbage collection 
enable verbose JNI 
disable verbose JNI 
display copyright 
do not display copyright 
display license information and exit 
display version information and exit 

Show this help message 
Display brief usage message 

$ sablevm --classpath=hello2.jar HelloWorld2 
Hello again, world! 
$ 

By default, Sable VM searches for application classes in the package directory tree 

rooted at the current user direct ory. The --classpath option can be used to explicitly 

specify a set of directories and *. jar archives to be searched. This parameter does 

not affect the search and loading of bootstrap classes. 
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A.3. Running SableVM 

A.3.1 Advanced Command-Line Options 

Advanced command-line options can be specified through the --property option. 

System properties are used to specify the various parameters of internaI Sable VM 

modules, such as the garbage collector. The Iist of recognized system properties vary 

depending on the features compiled into Sable VM. 

The current li st of supported system properties is: 

sablevm.boot.class.path: 
bootstrap class lookup direct ory 

sablevm.boot.library.path: 
bootstrap native library lookup direct ory 

sablevm.stack.size.min 
sablevm.stack.size.max 
sablevm.stack.size.increment: 

stack parameters 

sablevm.classloader.heap.size.min 
sablevm.classloader.heap.size.max 
sablevm.classloader.heap.size.increment: 

class loader memory parameters 

sablevm.heap.size: 
maximum heap size 

sablevm.heap.size.min 
sablevm.heap.size.max 
sablevm.heap.size.increment: 

heap parameters 

#if !defined(NDEBUG) 

sablevm.verbose.methods 
sablevm.verbose.instructions: 

verbose execution trace 

#endif 

Example: 

sablevm --property="sablevm.verbose.methods=true" HelloWorld 

Additional system properties can be easiIy created using m4 macros in the file 

src/libsablevm/vm_args.m4.c. 
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Appendix B 

Alpha Port Diffs 

This appendix lists the unified diffs 1 diff -u lof the Sable VM port to the Debian 

GNV /Linux operating system on the Alpha processor. 

B.1 j ni_system _specifie. h 
--- src/libsablevm/include/jni_system_specific.h 
+++ src/libsablevm/include/jni_system_specific.h 
@@ -8,15 +8,17 @@ 

+ 

u = unsigned intger, s = signed integer, f = 
8,16,32,64 = 8 bits, 16 bits, ... 
So, "u8" me ans an 8 bits unsigned integer. */ 

+/* alpha and i386 are identical here */ 
+ 
-#if <defined < __ i386 __ ) && defined < __ GNUC __ )) 

6 Aug 2002 10:27:22 -0000 
15 Aug 2002 04:48:53 -0000 

float, d = double 

+#if «defined < __ alpha __ ) Il defined < __ i386 __ )) && defined < __ GNUC __ )) 

#define JNICALL 
#define JNIEXPORT 

B.2 system.h 
--- src/libsablevm/system.h 
+++ src/libsablevm/system.h 
@@ -48,7 +48,7 @@ 

*/ 

6 Aug 2002 10:27:22 -0000 
15 Aug 2002 04:48:53 -0000 

-#if <defined < __ i386 __ ) && defined < __ GNUC __ )) 

1.3 
1.4 

+#if «defined < __ alpha __ ) Il defined < __ i386 __ )) && defined < __ GNUC __ )) 

/* "inline" is now an official keyword since the latest C standard (1999). 
So, it is a reasonable assumption to expect a target compiler to 

@@ -63,19 +63,36 @@ 

* * l guess that on most architectures, an "unsigned int" is a "word". 
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B.3. system.c 

+ 
+#if defined < __ i386) 
+ 
typedef _svmt_u32 _svmt_word; 

#define SVM_WORD_SIZE 4 
#define SVM_WORD_BIT_COUNT 32 

1* size in bytes *1 
1* size in bits *1 

-1* FFI specifie types *1 
-#define ffi_type_float32 ffi_type_float 
-#define ffi_type_float64 ffi_type_double 

1* see comments at the head of this file *1 
#define SVM_ALIGNMENT 4 
#define SVM_ALIGNMENT_POWER 2 1* 2 SVM_ALIGNMENT_POWER 
#define SVM_PAGE_SIZE 4096 

+ 
+#elif defined < __ alpha __ ) 
+ 
+typedef _svmt_u64 _svmt_word; 
+ 
+#define SVM_WORD_SIZE 8 
+#define SVM_WORD_BIT_COUNT 64 

1* size in bytes *1 
1* size in bits *1 

+ 
+1* see comments at the head of this file *1 
+#define SVM_ALIGNMENT 8 
+#define SVM_ALIGNMENT_POWER 3 1* 2 SVM_ALIGNMENT_POWER 
+#define SVM_PAGE_SIZE 8192 
+ 
+#endif 
+ 
+1* FFI specific types *1 
+#define ffi_type_float32 ffi_type_float 
+#define ffi_type_float64 ffi_type_double 

1* Does "»" behaves as a "signed" or "unsigned" shift when 
applied to a signed argument? l personally think that the C 

B.3 system.c 
--- src/libsablevm/system.c 6 Aug 2002 10:27:22 -0000 1.3 
+++ src/libsablevm/system.c 15 Aug 2002 05:17:13 -0000 1.5 
@@ -5,7 +5,33 @@ 

* modification of SableVM. * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1 

-#if <defined < __ i386 __ ) && defined < __ GNUC __ » 
+#if «defined < __ alpha __ ) Il defined < __ i386 __ » && defined < __ GNUC __ » 

1* 

@@ -33,19 +59,45 @@ 
_svmh_compare_and_swap <volatile _svmt_word *pword, _svmt_word old_value, 

_svmt_word new_value) 
{ 

+ 1* Yes, some inline assembly source code ... Unfortunately, this 
+ cannot be expressed in C. *1 
+ 
+#if defined < __ i386 __ ) 

1* On the ia32, cmpxchgl has a side effect. When swapping fails, 
the following variable contains the value that is currently in 
*pword <presumably different from old_value). */ 

_svmt_word current_value; 
_svmt_u8 result; 

1* Yes, sorne inline assembly source code ... Unfortunately, this 
cannot be expressed in C. *1 

+1* *INDENT-OFF* *1 
__ asm ____ volatile __ <"lock\n\t" 
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B.3. system.c 

+/* *INDENT-ON* */ 
+#endif 
+ 

"cmpxchgl %3, %l\n\t" 
IIsete %0" 
: "=q" (result), "=m" (*pword), "=a" (current_value) 
:"r" (new_value), "m" (*pword), "a" (old_value) 
: "memory") ; 

+#if (defined ( __ alpha __ » 
+ register _svmt_word result, tmp; 
+ 
+/* *INDENT-OFF* */ 
+ asm ____ volatile__ (" 1 : 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

2: 

mb\n\t" 
ldq_l 
cmpeq 
beq 
mov 
stq_c 
beq 
mb\n\t" 
br 
br 

'3: nop" 

%1,%4\n\t" 
%1,%5,%O\n\t" 
%O,3f\n\t" /* 
%3,%1\n\t" 
%1,%4\n\t" 
%1,2f\n\t" 

3f\n\t" 
1b\n\t" 

/* make sure */ 
/* load *pword into tmp (reg,<= mem) */ 
/* result = (*pword == tmp) */ 

nothing to do if they differ(O) - jump away */ 
/* copy tmp<=new so that we don't lose it */ 
/* *pword = new_value (reg,=> mem) */ 
/* store could fail! (%1 overwritten!) */ 
/* make sure */ 
/* were done */ 
/* goto "again" */ + 

+ 
+ : "=&;r" (result), "=&;r" (tmp), "=m" (*pword) 
+ 
+/* *INDENT-ON* */ 
+#endif 

: "r" (new_value), "m" (*pword), "r" (old_ value» ; 

return result ? JNI_TRUE JNI]ALSE; 
} 
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