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Abstract 

The computer classification of musical audio can form the basis for 

systems that allow new ways of interacting with digital music collections. 

Existing music classification systems suffer, however, from inaccuracy as well as 

poor scalability. Feature selection is a machine-leaming tool that can potentially 

improve both accuracy and scalability of classification. Unfortunately, there is no 

consensus on which feature selection algorithms are most appropriate or on how 

to evaluate the effectiveness of feature selection. Based on relevant literature in 

music information retrieval (MIR) and machine leaming and on empirical testing, 

the thesis specifies an appropriate evaluation method for feature selection, 

employs this method to compare existing feature selection algorithms, and 

evaluates an appropriate feature selection algorithm on the problem of musical 

genre classification. The outcomes include an increased understanding of the 

potential for feature selection to benefit MIR and a new technique for optimizing 

one type of classification-based system. 

Sommaire 

La classification automatique de l'audio musical peut constituer la base de 

systèmes pouvant ouvrir la porte à de nouvelles façons d'interagir avec les 

collections de musique numérique. Les systèmes actuels n'ont pas l'extensibilité 

et la précision adaptées. La sélection des caractéristiques est un outil 

d'apprentissage automatique qui a le potentiel d'améliorer l'extensibilité et la 

précision de la classification. Malheureusement, il n'y a pas de consensus quant 

aux algorithmes les plus convenables ou quant à l'évaluation de l'efficacité de la 

sélection des caractéristiques. La thèse détermine une méthode appropriée 

d'évaluation pour la sélection des caractéristiques qui est basée sur la litérature en 

recherche d'information musicale (RIM), l'apprentissage automatique et des tests 

empiriques. Cette méthode est utilisée pour comparer les algorithmes qui existent, 

et pour évaluer un algorithme approprié pour le problème de la classification des 

genres de musique. Les résultats incluent une meilleure compréhension du 

potentiel de la sélection des caractéristiques pour la RIM et une façon nouvelle 

pour optimiser un type de système de classification. 
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1 INTRODUCTION 

1.10verview 

The computer classification of musical audio is an important task in music 

information retrieval. Classification is a standard machine-leaming task that 

typically involves predicting an output (for example, the name of an appropriate 

musical genre) from an input (for example, an audio file stored on a computer). 

Classification can form the basis for systems that allow us to interact with music 

collections in new ways; sorne recent projects employing classification involve 

instrument recognition, playlist generation, and music visualization. 

Unsurprisingly, music classification is a hard task. For one thing, 

classification uses several measurements ("features") of the audio signal to predict 

the output, but it is not obvious what measurements will be most relevant to 

complex musical concepts such as genre. For another, processing audio to obtain 

these measurements and running the classification itself can require vast amounts 

oftime and computer memory. Feature selection is an existing machine-leaming 

tool that could potentially address both of these problems, making music 

classification more accurate and more efficient. It works by selecting those 

available features that are most relevant to the classification problem; after feature 

selection has been applied, only the selected features need to be extracted from 

the audio signal, stored, and used in classification. 

The application of feature selection to a particular problem is, 

unfortunately, complicated by the fact that there is no consensus on which of the 

many existing feature selection algorithms are better, faster, or otherwise most 

appropriate. Furthermore, existing research on feature selection does not offer 

clear guidelines on how to evaluate whether one selection method is better than 

another, or even how to evaluate whether feature selection actually offers any 

improvement in classification accuracy. This the sis therefore investigates how one 

might prudently evaluate feature selection's ability to improve classification, 

chooses appropriate feature selection algorithms to apply to music classification, 
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and evaluates whether feature selection legitimately offers any benefits to music 

classification. 

In the following work, the classification of musical genre is used as an 

example music classification problem. Genre classification is a popular task, 

ground truth (that is, the "true" genre names as specified by the record label or 

distributor) is typically available, and genre classifiers can be ofpractical use, for 

example in systems for playlist generation and music collection visualization. 

Many of the conclusions regarding the efficacy of feature selection for genre 

classification also apply to other musical audio classification problems. 

1.2 Organization of the thesis 

Chapter 2 provides an explanation of classification as it is used in machine 

learning, an overview of the use of classification in music, and a discussion of 

feature selection as it has previously been used and evaluated. This background is 

used to motivate the empirical work in Chapters 4 through 6 that constitutes the 

bulk of this thesis, and Chapter 3 provides an overview of the software and other 

tools used to conduct that work. 

Chapter 4 discusses the problem of choosing an appropriate methodology 

for evaluating whether feature selection is effective for a particular problem. It 

reviews the relevant literature on evaluation strategies, and it presents new work 

to assess the behavior of several approaches to feature selection evaluation. 

Chapter 5 discusses the results of employing the evaluation methodology 

proposed in Chapter 4 to compare several feature selection algorithms on standard 

machine-learning datasets, with the goal of choosing selection algorithms 

appropriate for music classification. Chapter 6 discusses the results of applying 

feature selection to genre classification, using the evaluation methodology of 

Chapter 4, and it also elaborates on the potential benefits and shortcomings of 

feature selection for classification of genre and other musical problems. 

Chapter 7 augments the work on evaluating feature selection for genre 

classification with a discussion of a new approach to optimization that is derived 

from feature selection. It presents work showing that this new approach is 
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potentially more effective than traditional feature selection for improving a real, 

classification-based digital music management system. Chapter 8 concludes the 

thesis by reiterating the implications of this work for genre classification and 

related tasks in music information retrieval. 
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2 BACKGROUND 

This chapter begins with a general discussion of classification and an 

overview of specific terminology relating to classification as it is used throughout 

the remainder of this document. An overview of music classification follows, with 

a focus on audio genre classification, and it is accompanied by a discussion of 

particular challenges inherent to the task of audio classification. Feature selection 

is presented as a method that addresses sorne of these challenges, and wrapper 

methods for feature selection are explained along with an overview of several 

common wrapper algorithms. A brief explanation of how feature selection has 

been evaluated in sorne research is provided in the context of recent critiques of 

evaluation methods. Finally, in light of past work in classification and feature 

selection, a set of tasks is put forth that must be completed in order to reasonably 

assess whether and how feature selection might be useful to musical genre 

classification. 

2.1 Classification 

2.1.1 What is classification? 

Duda et aL (200 1, 1) describe pattern recognition as "the act of taking in 

raw data and making an action based on the 'category' of the pattern." 

Classification is a necessary component of pattern recognition systems, in which 

properties of data are used to determine an appropriate category for the data. A 

simple example of a classification problem is supplied by Witten and Frank 

(2005, 10): one might wish to examine properties ofweather such as the outlook 

(e.g., sunny), temperature, humidity, and wind conditions, and then make an 

appropriate assessment ofwhether it is a good day to go out and play. 

A computer pro gram for classifying the weather would take as an input 

each of the weather properties, or "features," and provide an output classification 

of "Play" or "Don't play" (Figure 1). Generally, the classifier will "leam" how to 

distinguish between good and bad days for going outside to play through a 



- 10-

training process, in which it is provided many example sets of weather features 

and the correct classification of "Play" or "Don't play." The goal of computer 

classification systems such as this is to "learn" about the relationship between the 

input features and the output classes, so that a classifier can be given new features 

(e.g., today's weather) and classify them appropriately. Integral to this goal is 

leaming to generalize weIl: even iftoday's exact weather conditions have never 

been seen before, the classifier should be able to make a reasonable classification. 

Computers can be used to perform classification tasks that are too complex 

or time-consuming for people to perform. Computer classification systems can 

also unearth new and interesting patterns in large quantities of data, as is 

performed in data rnining (Witten and Frank 2005). Cornrnon application areas for 

pattern recognition and classification currently include speech recognition, 

fingerprint identification, optical character recognition, and DNA sequence 

identification (Duda et al. 200 1, 1). 

Research into applying computers to pattern recognition tasks has been 

performed for several decades (see Duda and Hart 1973), and work developing 

and analyzing classification and pattern recognition systems continues to be 

performed today under the umbrella of machine learning. Examples of current 

research include constructing classification methods for which it is possible to 

statistically reason about bounds on generalization performance (e.g., SVM: see 

Cortes and Vapnik 1995), combining multiple classifiers to work together on a 

single problem (e.g., AdaBoost: see Freund and Schapire 1997), or irnproving the 

quality of results obtained by existing classification methods via optimization 

techniques such as feature selection (discussed below). 

Classifier Class label 

Feature vector ~ ~ 
1 "Sunny-, "25", "No wind"I---(j~ 

Figure 1: A classifier outputs a class label for every feature vector input. 
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2.1.2 Basic concepts 

ln order to understand existing or new work that deals with applying and 

evaluating classification methods, it is necessary to be familiar with sorne basic 

concepts related to machine learning and the evaluation of machine learning 

techniques. 1 present the following core concepts to aid the reader who lacks a 

background in machine leaming and to clarify the specific definitions of these 

concepts as 1 employ them in later sections: 

• Class: A class is a category leamed by a classifier. In the weather 

example above, the two possible classes are the labels "Play" and "Don't 

play." ln musical genre classification, classes might be the labels 

"Rock," "Pop," "Classical," etc. In classification problems discussed in 

this document, there are a finite number of discrete classes possible for 

any classification problem. 

• Instance: Witten and Frank (2005, 45) define an instance as "an 

individual, independent example of the concept to be leamed." ln the 

weather example, an instance is sorne moment in time (e.g., yesterday 

aftemoon) for which there is an appropriate class of "Play" or "Don't 

Play." ln musical genre classification, where one might wish to classify 

an MP3 file with an appropriate genre class label, an instance would be a 

representation of the contents of an MP3 file. 

• Feature: Each instance is represented by a set offeatures. In the weather 

classification problem, each weather property (outlook, temperature, 

etc.) is a feature. In musical genre classification, features might describe 

the instrumentation present, song length, pitch classes present, or lower­

level measurements of the audio signal (discussed below). Features can 

have nominal values (e.g., the outlook can be "sunny," "cloudy," etc.) or 

numeric values (e.g., the temperature might be 20 degrees, -10.34 

degrees, or another real value). The input to a classifier is a vector of 

features, x, for each instance, where x = (x\, X2, ••• , Xd) for d features. 

Features are also referred to as "attributes" or "variables" in sorne 

literature. 
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Supervised learning: Supervised leaming is a type of machine leaming 

wherein a leaming algorithm (e.g., a classifier) leams the relationship 

between the input features and output classes from a set of training data. 

This data must be labeUed with the true class values (e.g., for genre 

classification, the data might be labeUed with the "official" genre labels 

from the record company). The classifier is able to classify new 

instances only after this training stage. AU classification discussed in this 

thesis is supervised leaming. 

Training set: The training set is a subset of aU available labeUed 

instances, and it consists of the feature values and true class values for 

each of these instances. In the training stage of supervised leaming, the 

classifier leams to generalize about the relationship between input 

features and output classes using the training set instances only. 

• Testing set: The testing set is a subset of aU available labeUed instances, 

and it is used to test how weU the training stage has taught the classifier 

to generalize about the relationship between features and classes. 

TypicaUy, the testing set consists of aU the available labeUed instances 

that are not in the training set. 

• Test-set accuracy: The test-set accuracy is a widely-used measure of 

classifier performance. To test a classifier, the feature values for each 

instance from the testing set are input to the classifier, and the class label 

assigned to the instance by the classifier is compared to the known true 

class label. The test-set accuracy is defined as the percentage of 

classifier-assigned class labels that match the true class labels. It is 

important to use a testing set that is separate from the training set in 

order to obtain the most realistic assessment of classifier prediction 

performance, because the classification performance on instances used 

in the training stage is typicaUy not a good indicator of the performance 

one can expect on new instances (Witten and Frank 2005, 144-5). Other 

measures of the quality of leaming of a classifier exist, but classification 
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accuracy on new data is quite straightforward to compute and easy to 

understand. 

Stratification: Stratification refers to the practice of partitioning the 

available labelled data into training and testing sets in a manner that 

preserves class proportions. For example, if 80% of the instances in an 

entire datas et belong to Class A, and 20% of the instances belong to 

Class B, stratified training and test sets are created such that they are 

also comprised of 80% Class A and 20% Class B. Otherwise, if 

stratification is not used, instances are assigned to the testing and 

training sets using a random process that is blind to class values. This 

allows phenomena such as all instances from one class appearing in only 

the testing set; in this case, the classifier willlikely not perform well on 

instances from this class, and testing accuracy will drop (Witten and 

Frank 2005, 149). 

• Cross-validation: Cross validation (CV) involves splitting the dataset 

into several mutually exclusive segments of equal size, called folds. In 

n-fold CV, n folds are used. Figure 2 illustrates 3-fold CV, using the 

typical practice where one fold is used for the testing set and the rest are 

used for the training set for each iteration. The CV accuracy is the 

classification accuracy on the test fold averaged across all n iterations. 

Stratification may be used to preserve class proportions among the 

instances in each fold. Leave-one-out (LOO) CV is a special case of n­

fold CV where n is equal to the number of instances in the datas et. 

• Sampling: Sampling (or "repeated hold-out") is an alternative to CV in 

which repeated trials of training followed by testing are performed using 

independently chosen training and testing sets. The testing and training 

sets for a given trial are always mutually exclusive, but testing sets from 

different trials may have instances in common (unlike in cross­

validation). The size of the test set and the number of trials are not 

specified, whereas they are constrained with respect to n for cross­

validation. 
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Dataset with m instances 
1 1 1 

c: 1 2 3 
1 1 

+ m-1 m 
.2 - 3 fOlds, each with m/3 instances 
:e 4-
8!. [ 1 1 

t .. 
LI __ LI __ L-~-LI ~I L[ __ LI __ L-~-LI ~I 

1 2 m/3 1 2 ml3 1 2 ml3 

S 
Testîng 

1 ,=, ... 
co 

Training Training 
1 1 1 LI __ LI __ LI --=--=--=---L----.JI Iteration 1 

:2 
Training a; 

>. 1 1 1 
Training 

LI __ LI __ LI --"--'--=---L-_I Iteration 2 
m Training 
cS 1 1 1 

Training Testing 
LI _LI _LI --=--=--=---L----.JI Iteration 3 1 1 1 

Figure 2: 3-fold cross-validation. 

2.1.3 (71ass~ers 

There are many ways to approach the problem of "learning" how to 

classify new instances from training examples. For this reason, many 

classification algorithms exist. Aigorithms differ in the relationship of the 

numbers of instances and features to the time needed for training and testing, in 

the assumptions that they make regarding the distribution of the training 

instances, in their sensitivity to noise in the training instances, in the types of 

features (e.g., nominal or numeric) that they allow, and in many other ways. A 

few commonly used classifiers in music research include k-nearest-neighbor 

(Cover and Hart 1967), support vector machines (SVM) (Cortes and Vapnik 

1995), neural networks (Cowen and Sharp 1988), and decision trees (e.g., CART: 

see Breiman et al. 1984). The classification algorithms relevant to this work will 

be explained in greater depth in later sections, but further discussion of 

classification algorithms lies outside the scope of this the sis. Readers interested in 

leaming more about classifiers used in MIR are advised to consult resources by 

Duda et al. (2001) and Witten and Frank (2005). 

The "No Free Lunch" (NFL) theorems ofWolpert and Macready lay out 

theoreticallimitations on the ability to make claims regarding the relative 

performance of leaming algorithms. According to the NFL theorems, there is no 
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classifier or learning algorithm that is superior overall to any other. That is, "[i]f 

the goal is to obtain good generalization performance, there are no context­

independent or usage-independent reasons to favor one learning or classification 

method over another" (Duda et al. 2001,454; see also Wolpert 1995). The NFL 

theorems have interesting implications for feature selection as well, which are 

discussed in Chapter 4. In the context ofthis section, though, it is most important 

to note that a researcher desiring to build a classification system for a particular 

problem (e.g., classifying the genre for a collection of audio files, using sorne set 

of features representing the audio files) is faced with a choice among a variety of 

potentially viable classification algorithms. The choice of a particular algorithm 

can be informed by such factors as a precedent of successful application to similar 

problems, the fit of the time and space requirements of the algorithm to the 

numbers of features and instances of the data to be classified, and the number of 

algorithm parameters for which reasonable settings must be found. 

One classification algorithm used extensively in this thesis as well as in 

much other applied and theoretical work in machine leaming (e.g., Aha 1992; 

Alpaydin 1997; Wettschereck et al. 1997; Fujinaga 1998; Fujinaga et al. 1998; 

Fraser and Fujinaga 1999) is k-nearest-neighbor, or kNN. Russell and Norvig 

(2003) credit the origin of nearest-neighbor models to Fix and Hodges (1951) or 

earlier. kNN is one of a class of "instance-based leaming" methods, because it 

classifies instances "solely with respect to previously presented instances" and 

assumes that "similar instances will have similar classifications" (Aha 1992, 270). 

kNN is a "lazy leaming" algorithm, characterized by deferring processing of 

inputs (i.e., training data) until a new instance must be classified, utilizing the 

entire collection of stored training data in order to classify the new instance, and 

discarding the byproducts of all processing performed for classifying the new 

instance after classification is done (Aha 1997). 

In the training stage, a kNN classifier simply stores the feature values of 

each training instance as well as its class. A new instance is classified by 

assigning it the same class label as the majority of the k most similar training 

instances, where common values for k include 1, 5, and 10. The similarity 
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between two instances is commonly computed using the Euclidean distance 

between their representations in feature space (it is assumed that features have 

numeric values). That is, for d features, instances D and m will each be 

represented as feature vectors of length d, and the distance D between them will 

be computed as 

D(n,m) = (~;=l (ni - my)"2. 
The k nearest neighbors to instance D are those instances in the training set 

with the lowest distance to D. Figure 3 below illustrates the classification of a new 

point using k= 1 and k=3 for a simple classification problem with two features. 

0 0 o 0 OClass 1 

O~ ~O 
o Class2 

0 
(J) 0 (J) 0 

0 0 
(a) (b) 

Figure 3: A kNN classifier. In (a), k=l, and the new instance marked with a'?' is labelled 
Class 2. In (b), k=3, and the new instance is labeUed Class 1. 

The implementation of kNN used in this work classifies instances exactly 

as above, but using linear normalization of the feature values before classification 

is performed. That is, each instance D = (nI, n2, ... , nd) is mapped to DRew = 

(sCale(nl), scale(n2), ... scale(nd), where sCale(ni) maps ni to the range [0,1] by 

n. -min. 
scale(n) = 1 .', 

maxi-mlD j 

where mini is the minimum value of feature i and maXi is the maximum value of 

feature i over all training instances. This type of normalization is commonly used 

when the original features span different ranges ofvalues (Aha 1992). 

Benefits ofkNN include its simplicity, the fact that there are few explicit 

parameters to tune in the specification of the algorithm described above (in fact, 

there is only the value of k to set), and the fact that it often works well in practice 

(Russell and Norvig 2003, 735). Another benefit ofusing kNN for this study is 
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that the effects of feature selection and feature weighting are quite easy to 

understand, as discussed below. Furthermore, classification using kNN scales 

linearly in the number of features and in the number of instances, which makes it 

practical to use for repeated iterations of training and testing (such as in the 

context ofthis thesis). 

The design, analysis, and use of classification algorithms continues to be a 

lively area of study, and this thesis does not attempt to cover more than the very 

basic information necessary to understand the following work. Readers interested 

in leaming more about classification algorithms should refer to popular 

introductory texts such as Duda et al. (2001) and Hastie et al. (2001). 

2.2 Music classification 

The use of classification in music information retrieval (MIR) systems 

predates the first MIR conference in 200 1, and classification continues to pervade 

MIR research today. Classification has been used in systems for identifying the 

instruments present in an audio signal (Martin and Kim 1998; Fujinaga 1998), 

automatically transcribing audio signaIs to score representations (Poliner and Ellis 

2005), discriminating between speech and musical content (Casagrande et al. 

2005), and many other tasks. The classification of musical audio by genre is used 

as an example music classification problem for the work in this thesis, with the 

knowledge that many of the findings regarding the process and outcomes of 

applying feature selection are relevant to many other classification problems in 

MIR. 

2.2.1 Audio genre classification 

2.2.1.1 Previous work 

The content-based classification of musical audio by genre is one of the 

most popular applications of classification in MIR. Here, "content-based" refers 

to classification on the basis of the audio content alone, ignoring non-audio data 

such as annotated artist and album information. A great variety of approaches to 

classification, including many classifiers and feature sets, have been applied to the 
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genre classification problem, as the following section illustrates. Readers 

interested in learning more about these classifiers should consult any machine 

learning text (e.g., Duda et al. 2001). Section 2.2.2.2 provides further background 

on the choice of features for musical genre classification, but due to the wide 

variety of features employed, the reader is advised to consult the following works 

directly for more detailed information. 

The [IfSt content-based genre classification system was designed by 

Tzanetakis et al. (2001). The authors ca1culated features for audio from radio, 

compact disks, and the Internet. These features were used to train a classifier on 

broad musical genre categories ("Classical," "Country," etc.), specific classical 

music categories ("Orchestra," "Piano," etc.), and also categories of music versus 

speech. The features extracted from the audio included "musical surface features" 

related to texture, timbre, and instrumentation, "rhythm features" representing the 

rhythmic structure, and Mel-frequency cepstral coefficients (MFCCs), a feature 

popular in speech classification (Hunt et al. 1980). This work used a simple 

Bayesian classifier to approximate each genre class as a multidimensional 

Gaussian distribution in the feature space (see Duda et al. 2001). Tzanetakis and 

Cook (2002) later expanded on this study to compare results of different 

classifiers (including kNN) and to investigate the effects of adding a pitch-based 

set of features to those mentioned above. 

Since this work, there has been much other research on content-based 

genre classification, the goal of which is typically to increase classification 

accuracy by varying the classifier, the type offeatures use d, and/or the entity 

being classified (e.g., using instances representing individual audio frames, not 

whole songs, and combining frame-Ievel classifications to produce a single label 

per song). Xu et al. (2003) used a multi-Iayer approach to classification into four 

genres, using SVM classifiers. Features were quite similar to Tzanetakis' 

"musical surface features" and included MFCCs and linear predictive coding 

(LPC) coefficients. Li and Tzanetakis (2003) also investigated the use of SVM, as 

well as linear discriminant analysis (LDA; see Duda et al. 2001). This work also 
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further investigated the relative usefulness of the feature sets used in Tzanetakis' 

earlier work (Tzanetakis et al. 2001; Tzanetakis and Cook 2002). 

Li et al. (2003) explored the use of a new, wavelet-based feature called 

Daubechies Wavelet Coefficient Histograms (DWCHs), while also evaluating 

SVM, kNN, and Gaussian Mixture Model (GMM) classifiers. West and Cox 

(2004) demonstrated an approach for classifying spectral features using CART 

and LDA classifiers, where each song is represented as a "bag" of frames that are 

each classified individually. West and Cox's later work (2005) modified this 

model to classify not individual frames, but musical "events" corresponding 

roughly to note onsets. Bergstra et al. (forthcoming) also use a mid-Ievel 

representation (that is, between individual frames and entire songs) for 

classification, in a system employing AdaBoost and a large variety of features. 

In the last two years, several research groups (including many of those 

mentioned in the previous paragraphs) submitted their genre classification 

systems for large-scale evaluation on common datasets, so that meaningful 

comparisons could be drawn among the wide variety of systems proposed. These 

common datasets were also quite larger (on the order of several hundred or 

thousands of songs) than those used in most of the studies above, so these tasks 

better simulated real-world performance of the systems. In 2004, an Audio 

Description Contest was he Id in conjunction with the International Conference on 

Music Information Retrieval (ISMlR), and researchers from five organizations 

competed in the genre classification task. In 2005, the ISMlR 2004 contest was 

expanded into ten contest categories under the name "Ml REX" (Music 

Information Retrieval Evaluation eXchange) (Downie et al. 2005). The genre 

classification category was the most popular, receiving thirteen submissions. 

2.2.1.2 Performance of audio genre classification systems 

The performance of the systems in independent, published evaluations and 

in the genre classification contests suggests that machine learning of musical 

genre is feasible, but it is not a trivial problem. Tzanetakis' first system (2001) 

obtained 62% classification accuracy, evaluated using 10-fold CV on fifty music 
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files from ten genres. Published work since 2001 typically demonstrates 

classification rates higher than this, though not necessarily on the same dataset 

(and often using quite different numbers and types of genre classes). The highest 

recently reported accuracy rates tend to be around 80%; for example, Bergstra et 

al. (forthcoming) demonstrate 83% classification accuracy on Tzanetakis' dataset, 

and West and Lamere (forthcoming) demonstrate 83% accuracy on their own 6-

genre datas et. In MlREX 2005 (Downie), the best algorithms' raw classification 

accuracy scores were 69.5%on the Magnatune dataset (Magnatune 2006) and 

86.9% on the USPOP dataset (Ellis), both obtained by Bergstra et al. (2005) using 

a multi-resolution AdaBoost system similar to that described by Bergstra and 

others (forthcoming). 

These results appear especially good when compared to human ability to 

classify genre. While there are no human studies using data that allows direct 

comparison to the above studies or the MlREX contest results, one study showed 

that humans were able to correctly identify the genre for 70% of three-second 

samples selected from a group often genres (who se labels were known to the 

subjects) (Perrot and Gjerdigen 1999). 

The fact that automatic genre classification systems show better accuracy 

than human listeners, based on this study, does not imply that the classification 

abilities of current systems are sufficient. For one thing, humans employed in the 

manual annotation of genre, for example for use in systems such as Allmusic 

Guide (AlI Media Guide), are likely to be well-trained and achieve weIl over 70% 

classification accuracy. This type of labeling may be a more significant 

benchmark against which to compare automatic systems. 

In addition to accuracy, the scalability performance of genre classification 

systems is a pertinent factor in their usefulness. Scalability refers to the impact on 

time, space, and accuracy of a system when the number of songs and/or features 

increases. Genre classification systems must become more scalable if they are to 

be used to classify real-world datasets. For example, the MIREX 2005 genre 

contest datasets contained around 1000 songs each, and the winning algorithm ran 

for 6.5 hours to classify the songs in one datas et. In contrast, the iTunes database 
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currently has over two million songs, and a 60GB iPod alone can hold 15,000 

songs (Apple Computer Inc.). It is an open problem how to perform accurate 

genre classification on collections of this size while keeping time and space 

requirements feasible. 

2.2.1.3 Motivations for work in audio genre classification 

Audio genre classification is certainly an interesting toy problem for 

assessing the robustness of a given machine leaming algorithm to a novel 

application domain, or for demonstrating that features such as MFCCs are useful 

for describing musical data and might be successfully employed in a variety of 

MIR applications. However, there are other reasons for continuing to pursue 

better means of automatically classifying audio signaIs based on musical genre. 

McKay and Fujinaga (2006) argue that genre is a compelling means of 

categorizing music, and end users of music distribution and recommendation 

systems are likely to employ genre labels in browsing and searching for new 

music. Music distribution and recommendation systems that use classifiers to 

accurately and consistently label audio files by genre could potentially be much 

more efficient than those requiring human annotators for this task. Furthermore, 

McKay and Fujinaga argue that genre classification systems could be used to gain 

musicological insights; for example, tests using classifiers could show that 

particular musical features are sufficient to discriminate among certain genres. 

Another motivation behind work in genre classification is the close 

relationship between musical genre and the concept of musical similarity. Several 

projects in MIR deal with the task of automatically generating playlists of songs 

that sound the most similar to a query song (e.g., West and Lamere forthcoming; 

Logan 2002). The concept of musical similarity can also be used to create two- or 

three-dimensional visualizations of music collections, in which similar songs 

appear close to each other (e.g., West and Lamere forthcoming; Morchen et al. 

2005). Much work in musical similarity systems such as these incorporates the 

assumption that pieces of music that share a genre are more likely to be 

perceptually similar than pieces of music from different genres. This assumption 
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is reflected in evaluation practices for musical similarity systems; for example, 

one might evaluate a playlist generator based on how many songs in the generated 

playlists are of the same genre as the query songs (e.g., Logan 2002). In this 

approach, easy-to-obtain genre labels are used as a substitute for music similarity 

ground truth, because ground truth similarity data would require extensive user 

testing. Additionally, the assumption that genre is related to similarity can be used 

in building similarity systems: one might assume that a classifier that performs 

well at classifying genre has learned something relevant to music similarity and 

could be therefore be integrated into similarity calculations. West and Lamere 

(forthcoming) take this approach: they train a genre classifier using genre 

metadata, classify songs in a collection using this classifier, and use the outputs of 

classification as inputs to an inter-song similarity computation. (This system is 

described in greater detail in Chapter 7). 

2.2.2 Challenges in music classification 

Many characteristics of musical classification set it apart from 

classification of other media such as images and text. These characteristics 

present sorne unique challenges that must be addressed for music classification to 

be successful and feasible. The scarcity of musical data and the wide array of 

features that are available to use for music classification are two challenges that 

are particularly relevant to this thesis. 

2.2.2.1 Scarcity of data 

A significant challenge facing researchers in MIR is the difficulty of 

obtaining musical audio collections for training and evaluating classification 

systems. Building one's own collection by hand can be quite costly, both in terms 

oftime and money spent legitimately acquiring CDs or MP3s. However, the large 

size of music collections makes it infeasible to transfer entire collections online, 

and copyright protections impair the ability of researchers to share their 

collections with each other legally through any means. Using existing collections 

such as Magnatune (2006), which allows free use of its music for academic 

purposes, circumvents sorne of the above problems, while also allowing 
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researchers to compare their resu1ts on the same data. However, Magnatune on1y 

has a few thousand songs, and it contains a peculiar variety of music styles that is 

not representative of popular music in general. Furthermore, machine learning 

research suffers from overuse of the same datasets for a variety of reasons 

(Salzberg 1997). However, because genre classification accuracy has already been 

computed on the Magnatune data for many state-of-the-art classification systems 

in the context ofMIREX 2005, and because of the relative ease of obtaining the 

Magnatune collection, the Magnatune data was used in the genre classification 

experiments in this thesis. 

2.2.2.2 Choice of features 

A wide array of features has been used successfully in genre classification 

and other audio classification tasks. These features tend to be derived from simple 

time- or frequency-domain measurements of the audio signal and are often 

borrowed from audio features that perform well in speech classification, though 

features designed particularly for musical classification and analysis have also 

sometimes been used. Researchers building systems for musical genre 

classification must choose among these features, and they must also specify 

parameters regarding how these features will be computed (e.g., the size of 

analysis frames or the number ofMFCCs to extract). 

A thorough overview of many features used in musical genre classification 

appears in Bergstra et al. (forthcoming). Other features are outlined in 

Aucouturier and Pachet (2003). Examples of commonly-used features include 

spectral measurements such as fast-Fourier transform (FFT) coefficients, spectral 

centroid, spectral flux, and spectral rolloff(these last three features are used in 

Tzanetakis and Cook 2002 but have been employed in numerous other studies). 

Mel-frequency cepstral coefficients (MFCCs) are a feature originally used for 

speech classification (Hunt et al. 1980) that has been used in many of the above 

studies in genre classification, as well as in other types of audio classification. 

Time-domain measurements such as zero-crossing rate have also been used (e.g., 

Tzanetakis and Cook 2002). 
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Sorne studies have used features that attempt to describe properties of the 

audio signal that are particularly relevant for music. For example, Tzanetakis et al. 

(2001) and Tzanetakis and Cook (2002) construct beat histogram features that 

capture information about beat strength and the relationships between the 

periodicities present in music. Tzanetakis and Cook (2002) also employ pitch 

histograms, a feature that captures information about the pitch content of musical 

audio. West and Cox (2004, 2005) use an octave-scale spectral contrast feature 

that captures similar information as MFCCs but that is tailored for musical audio, 

created by Jiang et al. (2002). 

It is notable that no existing audio genre classification system employs 

many high-Ievel features explicitly related to instrumentation, dynamics, or 

metric, melodic, or harmonic structure, and most employ none at aH. McKay 

(2004) demonstrates that a genre classification system using such features can 

achieve very high classification rates (86% correct using nine genres). However, 

McKay's work deals with classification of music in symbolic format (i.e., MIDI), 

where such features are explicitly available or easily computed. While his work 

suggests that these types of features could be very beneficial to improving 

performance of audio genre classification systems, there do not exist reliable and 

efficient-to-compute means of obtaining these features from an audio signal. 

Research continues to be performed on systems for transcription (e.g., Poliner and 

Ellis 2005), meter detection (e.g., Eck and Casagrande 2005), and other types of 

analysis that could one day pro vide more meaningful features for genre 

classification systems, but the current state-of-the-art does not offer many viable 

tools for this purpose. 

Computation for aH commonly-used features involves first making 

decisions regarding parameters such as the size of the analysis frames, how many 

frames will be computed for each song, and where in the song frames will be 

computed. For multi-dimensional features, it must be decided how many of the 

available dimensions (e.g., how many MFCCs) will be extracted and used in 

classification. AdditionaHy, a non-trivial problem is how to construct feature 

vectors from the frame-level measurements. One might compute the average and 
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standard deviation for each value (e.g., each MFCC) over aH frames in a piece, 

thereby representing a piece by a feature vector composed of the global means 

and standard deviations. Or, one might model a piece as a "bag" of frames, each 

with an associated feature value (West and Cox 2004). Each frame of the training 

data could be used a training instance, and the class labels assigned to each frame 

of a testing song could then be combined to assign an overalliabei to that song. 

The challenge presented by the choice of features is ubiquitous: any work 

in music classification must begin by choosing a set of features a~d specifying 

how they will be computed from the audio files. The effect of the features used on 

classification accuracy is quite large; Li et al. (2003) found that the features 

employed in genre classification had an even greater influence over classification 

accuracy than did the choice of classifier. However, neither musical intuition nor 

the existing literature pre scribes an unequivocally "best" set of features to use for 

genre classification. It is hard to say, for example, whether a feature such as zero­

crossing rate will be at aIl related to musical genre. However, it is not advisable to 

attempt to extract and use all features that might be related to the classification 

task. For one thing, this can result in an explosion oftime and space necessary for 

extracting and storing features. More crucially, as discussed below, the inclusion 

of redundant, irrelevant, and simply more numerous features in a classification 

system is likely to degrade the quality of the classification results. 

2.3 Feature selection 

2.3.1 Overview 

Feature selection denotes a family of techniques that aim to improve the 

accuracy and practicality of classification systems. Feature selection algorithms 

select a subset of all available features that can be used in classification, such that 

classification using this subset can outperform classification using the entire 

available feature set in terms of classification accuracy and/or efficiency. Feature 

selection is only concemed with choosing a set of features from those available, 

not with constructing new features (Kohavi and John 1997). 
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2.3.1.1 Goals of feature selection 

The inclusion of irrelevant features has been shown to hurt classifier 

accuracy for a number of classification algorithms. For other algorithms, the 

presence of relevant but highly-correlated features can decrease accuracy (Kohavi 

and John 1997). This implies that the simple strategy of constructing a feature 

subset of each of the individually most predictive features is not necessarily 

appropriate. kNN is one classifier that is negatively affected by redundant, 

irrelevant, interacting, and noisy features (Wettschereck et al. 1997). Furthermore, 

the practice of using a large number of features for classification, regardless of 

their relevance or redundancy, presents problems in itself. The training and testing 

time required by classification algorithms may scale poorly as the number of 

features increases. The time to compute features and the storage space needed to 

store a dataset predictably increase with the number of features. More 

importantly, for any classification algorithm to be able to generalize well from the 

training data, the number of training instances must increase exponentially as the 

number offeatures grows linearly (Duda et al. 2001, 169-70). This is called the 

"curse of dimensionality," and it has several potentially damaging ramifications. 

First of all, it limits the number of features that can be practically employed in 

domains where there is little training data available, such as often occurs in music 

classification. Second, adding enough training data to counterbalance the addition 

of new features may have a very detrimental impact on the training and testing 

time of a classifier. 

Selecting a small, relevant, non-redundant set of features from all 

available features therefore has the potential to improve the classification 

accuracy, training and testing time, and storage space needed for a datas et. 

Selecting fewer features also significantly relaxes the demand for a large amount 

of training data. One is therefore presented with the problem of how to select 

among a potentially very large array of features, when it is unclear even to a 

domain expert which features are likely to be best for a given classification 

problem. Automatic feature selection algorithms present a tool for solving this 

problem. 
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2.3.1.2 Wrapper methods 

The family of feature selection methods examined in this thesis falls into 

the category of "wrapper" methods for feature subset selection, which are named 

thus because the feature subset selection algorithm "exists as a wrapper around 

the induction algorithm" (John et al. 1994). Wrapper methods are essentially 

search algorithms that search for a good subset of features, using an induction 

algorithm (i.e., a classifier) as a "black box" for evaluating the quality of 

candidate feature subsets (Kohavi and John 1997). This measure of quality is 

typicaHy computed as the n-fold CV accuracy of the classifier on the data, using 

only the specified subset of features and ignoring aH others in both the training 

and testing stages (John et al. 1994). Wrapper methods thus take into account the 

performance of a given classifier on a datas et, and their goal is to find an optimal 

feature subset for classifying the data with !ha! classifier. 

2.3.1.3 Related methods 

John et al. (1994) distinguish wrapper feature selection methods from 

those methods that select a feature subset without using classification to evaluate 

subsets. These methods, called "filter" methods, "attempt to assess the merits of 

the features from the data, ignoring the induction algorithm" (Kohavi and John 

1997). "Relief' is an example of a filter method; it works by determining the 

relevance of each available feature to the target concept (i.e., the class values to be 

leamed). It therefore selects aH features whose variations are highly predictive of 

the class label (Kohavi and John 1997; see Kira and RendeH1992 for a more 

detailed discussion of Relief). Other examples of filter methods include FOCUS 

(Almuallim and Dietterich 1991) and decision-tree-based selection (Cardie 1993). 

Filter methods offer the advantage over wrapper methods that there is no 

need to train and test a classifier hundreds or thousands of times to evaluate each 

candidate subset. However, certain filter methods still scale poorly (e.g., FOCUS 

requires an exhaustive search through aH possible feature subsets). Another 

possible benefit of filter methods is that they provide a "generic" selection of 

features suitable for any classifier (Guyon and Elisseeff 2003), which might be 
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desirable if one is interested in performing feature selection as a preprocessing 

step before comparing the performance of several classifiers on a problem. 

However, Kohavi and John (1997) have shown that classifier-independent reasons 

for favoring certain features over others (e.g., the relevance criterion used by 

Relief) do not necessarily lead to selecting subsets that perform optimally in 

practice. If one knows in advance that a particular classifier will be used for the 

problem, wrapper methods can yield superior performance by explicitly searching 

for a subset that performs optimally with the given classifier (Kohavi and John 

1997). 

Wrapper and filter methods for feature selection fall under the umbrella of 

a larger group of dimensionality reduction techniques. Feature selection reduces 

the dimensionality of the feature space by removing sorne of the available 

features. Other techniques reduce dimensionality by remapping the data into a 

lower-dimensional feature space. Principal components analysis (PCA) is one 

such technique, which works by choosing a new coordinate system for the feature 

space. The fIfst axis is placed in the direction of greatest variance, the second axis 

in the orthogonal direction of next greatest variance, and so on. Dimensionality 

reduction can be achieved by keeping only the fIfSt n dimensions (the n 

dimensions that capture the most variance) (Witten and Frank 2005). 

Dimensionality reduction methods can potentially offer the same benefits as 

feature selection, in that the features ultimately used in classification are "better" 

for the classification problem (e.g., less redundant), the classifier uses fewer 

features (and therefore fUllS faster and needs less training data to escape the curse 

of dimensionality), and the storage space needed for the data is smaller. Methods 

such as PCA can involve shorter computation time than feature selection, and 

their results are classifier-independent. However, because PCA remaps the data 

using a transformation on all of the original features, the time for feature 

extraction and the space needed to store the original features are not reduced. 

Additionally, PCA cannot produce results tailored to optimize classification for a 

given classifier. 
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Another method closely related to feature selection is feature weighting 

(Witten and Frank 2005,237-8). In feature weighting, each of the available 

features is assigned a weight proportionate to its "importance" to the 

classification. In a kNN classifier, this results in each dimension of the feature 

space being weighted by a real value in the distance computation. That is, each 

feature i receives a weight Wj, and the distance computation between feature 

vectors for instances ID and n becomes 

(Wettschereck et al. 1997). Figure 4 shows the effect offeature weighting on a 

kNN classifier. Wrapper feature weighting can be implemented similarly ta 

wrapper feature selection: each set of feature weights is evaluated by training and 

testing a classifier using those weights, and the performance of weight sets guides 

the search to new sets of weights. Wrapper feature selection can be viewed as a 

special case of feature weighting, in which the weights are constrained to the 

values 0 and 1. 
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Figure 4: Effect of feature weighting on kNN. In (a), if k=3, the unknown mstance will be 
labeUed Class 1. In (b), where feature x has been weighted by Wx > 1 and feature y has been 

weighted by wy < 1, the instance will be classified with Class 2. 

2.3.2 Existing wrapper methods 

When the number of available features is few, it may be feasible ta search 

exhaustively through the set of aIl possible feature subsets, evaluate each subset 

using a classifier, and pick the subset that results in the best classification 
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accuracy. However, the number of possible subsets is 2d for d available features, 

so exhaustive search quickly becomes impossible for many available features. 

One alternative is to sample s subsets randomly from the set of aH possible feature 

subsets and choose the best of aH these, where s is chosen such that a variety of 

subsets are evaluated while ensuring that the computation involved is feasible 

given the available time and resources. (This approach is referred to hereafter as 

"Monte Carlo" selection.) 

However, in practice, wrapper feature selection is usuaHy accomplished by 

using classification accuracy on given subsets to direct the search to new subsets. 

Different feature selection algorithms differ primarily in the algorithm used to 

perform this iterative search through the space of aH subsets. Aigorithms that are 

commonly used for wrapper feature selection include forward selection, backward 

selection, genetic algorithms, and random mutation hill climbing. This section 

briefly describes each ofthese methods. 

2.3.2.1 Forward selection 

Forward selection (or "sequential forward selection") is a heuristic, greedy 

(i.e., approximating a globaHy optimal de ci sion by a series of 10caHy optimal 

decisions) search method commonly used for feature selection (John et al. 1994; 

Reunanen 2003). In the first iteration offorward selection, there are dunique 

candidate subsets, each consisting of one of the d available features. In the second 

iteration of forward selection, each of the d-l candidate subsets consists of the 

best performing feature from the frrst iteration, plus one of the remaining features. 

The algorithm continues such that each iteration evaluates the best subset from the 

last iteration with each of the yet-unselected features added to it individually. The 

last iteration (the dth iteration) consists of one "subset" containing aH of the 

available features. In each iteration, the algorithm remembers the subset with the 

best classification accuracy, and at termination, the chosen subset is the one with 

the highest accuracy. The chosen subset may therefore have anywhere from 1 to d 

features. Forward selection always visits d(d+1)/2 feature subsets, so its running 

time is fixed for a given dataset. 
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Several variants of forward selection have also been proposed, such as 

"sequential forward floating selection" (Pudil et al. 1994). Sorne literature (e.g., 

Pudil et al. 1994; Kudo and Sklansky 2000) has suggested that sequential forward 

floating selection is more effective than forward selection, but Reunanen (2003) 

refutes this claim based on criticisms of the evaluation method used in this 

literature (see Sections 2.3.3, 4.3.1, and 5.1.1). 

2.3.2.2 Backward elimination 

Backward elimination is a greedy algorithm quite similar to forward 

selection (John et al. 1994). In the first iteration, the set of all available features is 

evaluated. In the second iteration, d unique candidate subsets are evaluated, each 

consisting of all but one of the d available features. In the third iteration, each of 

the d-l candidate subsets consists of the best performing subset from the second 

iteration, minus one of the remaining features. Each subsequent iteration removes 

one feature, until the dth (last) iteration consists of one subset, which contains a 

single feature. As in forward selection, the feature subset chosen by the algorithm 

in the end is that which resulted in the highest classification accuracy observed 

over the entire search. 

Backward elimination has the same runtime performance as forward 

selection. There is no clear agreement on whether forward selection or backward 

elimination is generally more appropriate (Guyon and Elisseeff 2003). 

2.3.2.3 Random mutation hill climbing 

Random mutation hill climbing (RMHC) is a stochastic hill-climbing 

algorithm outlined by Forrest and Mitchell (1993) and used for feature selection 

by Skalak (1994). RMHC begins by randomly generating a feature subset, where 

each of the d available features is randomly chosen to be included or excluded 

from the subset. This subset is then evaluated, and it is called the "Best 

Evaluated" subset. In the next iteration, one feature is chosen at random from the 

d available features. Ifthis feature is included in the "best evaluated" subset, a 

new subset is created that is identical to "Best Evaluated" except that this feature 

is excluded. Similarly, ifthis chosen feature is excluded from "Best Evaluated," 
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the new subset is created to be identical to "Best Evaluated" except that this 

feature is included. The new subset is evaluated, and if it perfonns better than 

"Best Evaluated," then this new subset becomes "Best Evaluated." The algorithm 

continues in this manner, mutating the "Best Evaluated" subset by one randomly­

selected feature in each iteration, until a predetennined number of iterations have 

completed. 

RMHC always visits n subsets over n iterations, and n can be set to be any 

value. This means that the time needed to fUll RMHC can be adjusted for a given 

dataset and resource pool. However, one drawback of RMHC is that, unlike 

forward selection and backward elimination, multiple subsets cannot be evaluated 

in parallel. Each subset must be evaluated before it is known what the next subset 

to be evaluated will be. In forward selection and backward elimination, on the 

other hand, each iteration consists of several independent subsets, each of which 

can be evaluated in paralle1 given the appropriate hardware. As a result, given the 

capability to perfonn parallel computations, RMHC is able to evaluate fewer 

subsets in a given amount of time. 

2.3.2.4 Genetic algorithms 

Genetic algorithms (GAs) are another stochastic method used for feature 

selection. GAs mimic evolutionary processes to arrive at solutions to optimization 

problems for which maxima are hard to find detenninistically. GAs have been 

employed in a variety ofproblems since their conception in 1975 (Holland). 

Each potential problem solution is represented in a GA as a chromosome, 

typically consisting of a vector ofbinary or real values, called genes. A GA 

begins by randomly initializing a population of many chromosomes. Each of these 

chromosomes is evaluated to assess the quality of the solution it represents, and 

this quality is stored as the fitness value of the chromosome. The next stage of the 

GA involves evolving the population by combining parent chromosomes to 

produce children chromosomes, in a process called "crossover" (Figure 5). 

Typically, the evolution process favors chromosomes with higher fitness values, 

so that they are more likely to be chosen to produce offspring via crossover. 
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Generally, crossover between two chromosomes consists ofrandomly choosing a 

locus, or index into the parent vectors; the children are produced by swapping the 

parent chromosome portions on either side of this locus. During the crossover 

process, there is a predetermined probability of mutation occurring, wherein one 

or more genes of the chi Id chromosome are changed to random values. After a 

new generation of child chromosomes has been created, these children become 

the new population, and the fitness of each child is evaluated. The process of 

evolution continues until sorne convergence criterion is met, such as the fitness of 

the fittest individual not improving for several consecutive generations. Figure 6 

illustrates a typical GA. 

Parent 2 

(n11~I~tn~rqI~Ig) 

Figure 5: The crossover process, using chromosomes of9 binary values and a locus between 
the fourth and firth genes. 

Startwith 
Random Population 

Figure 6: A typical genetic algorithm. 

In GA feature selection, each chromosome represents a feature subset 

(Siedlecki and Sklansky 1989). A feature set is represented as a chromosome of d 

binary-valued genes, each denoting the inclusion or exclusion of a feature from 

the subset. The fitness of a chromosome is the classification accuracy obtained by 

training and testing a classifier using the indicated feature subset, just as in other 
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wrapper feature selection methods. By modifying this approach slightly and 

aUowing chromosomes to be vectors of real values, GAs can be used for feature 

weighting. In this case, each of the d values indicates the weight of the associated 

feature in the feature set. Punch et al. (1993) demonstrated that using GAs for 

selection and then applying GAs for weighting yielded bettèr results than 

performing selection alone. 

GAs differ strikingly from the above search methods in that there are 

many parameters that must be set. There exist several established methods for 

using the fitness of individual chromosomes in a population to influence which 

chromosomes will produce children via crossover, and one ofthese methods must 

be chosen. The mutation rate and initial population size must be set. Each of these 

values has implications for the running time and quality of final solution, but there 

is no "correct" setting of these parameters, and there is no exact way to reason 

about tradeoffs between runtime and solution quality. 

GAs are very easy to implement in paraUe1. Portions of each generation 

can undergo fitness evaluation on separate processors; this is caUed "master-slave 

paraUelism" by Canm-Paz (2000) and "micrograined paraUelism" by Punch et al. 

(1993). AdditionaUy, there exist many interesting ways of expanding on the 

evolutionary metaphor by evolving isolated or semi-isolated subpopulations and 

managing migration among these "islands" (Canm-Paz 2000); the potential for 

such techniques to improve upon performance of simpler GAs for feature 

selection has been as of yet unexplored. 

2.3.3 Evaluating wrapper feature selection methods 

There exist many papers that purport to demonstrate that wrapper methods 

for feature selection are likely to improve accuracy for a particular problem or a 

variety ofproblems (e.g., Siedlecki and Sklansky 1989; Skalak 1994; Kohavi and 

John 1997). This seems to be a reasonable claim; after aU, many classifiers are 

weakened by the presence of irrelevant or redundant features. Indeed, aU these 

papers demonstrate that the feature selection method(s) employed found subsets 

of the available features whose classification accuracy (measured using test-set or 
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cross-validation accuracy) outperformed classification using aIl features, using the 

same evaluation measure. Similar findings have been reported for feature 

weighting (Punch et al. 1993). Additionally, at least one study has shown that 

certain methods are able to find the optimally- or near-optimally-performing 

feature subsets in much less time than is required for exhaustive search (Siedlecki 

and Sklansky 1989). 

There also exist many papers that compare a small or large set of feature 

selection algorithms against each other, to make daims that one method or 

another is more appropriate for a particular problem or set of problems (e.g., 

Kudo and Sklansky 2000; Pudil et al. 1994). In sorne ofthis work, the efficacy of 

one algorithm ("A") is compared to another algorithm ("B") by comparing the 

cross-validation accuracy of the feature subset selected by "A" with that of the 

feature subset selected by "B." It seems reasonable to make at least casual (non­

statistically-rigorous) daims that "A" is somehow "better" than "B" if it 

repeatedly and consistently chooses feature subsets that have higher cross­

validation accuracy scores. The work by Pudil et al. (1994), for example, uses this 

method to "show" that sequential forward floating selection is favorable to 

forward selection. 

However, recent work calls this approach to evaluating feature selection­

and by extension the many studies employing this evaluation approach-into 

question. Reunanen in particular (2003,2004) has noted fundamental problems 

with certain work using the above methodologies. He observes that, when 

comparing algorithms, it is insufficient to point to the fact that one algorithm finds 

feature subsets with higher cross-validation accuracy than another algorithm, even 

if it finds them consistently. The big problem is that such algorithms may not 

consistently find subsets that result in better performance on unseen data; in fact, 

the performance on unseen data could be worse. Similarly, Reunanen (2004) later 

observes that, when evaluating whether feature selection is an effective tool, it is 

insufficient to point to the fact that an algorithm fmds feature subsets with higher 

cross-validation accuracy than is obtained using aIl features, even if it finds them 
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consistently. Again, such subsets may lead to decreased performance on unseen 

data, relative to using all features. 

The problem of evaluating approaches to assessing feature selection is a 

tricky one. There is no canonical means of"properly" evaluating feature selection, 

though several researchers have presented their own approaches in varying 

degrees of detail. Relevant work on this issue, its implications, and further work 

toward defining an approach to evaluating feature selection are discussed in 

greater depth in Chapter 4. 

The above problems imply that the findings of published work employing 

problematic evaluation methodology, or work where not enough details regarding 

evaluation methodology are supplied to deduce whether it fans into the traps 

described by Reunanen, cannot necessarily be trusted. The CUITent body of 

literature on feature selection does not present clear answers to what feature 

selection methods might be best to use for a problem such as music classification, 

how to evaluate feature selection's efficacy for a problem, or whether it is even 

likely to be beneficial. 

2.3.4 Use of feature selection in music research 

Feature selection has not been widely used in music classification systems. 

Many researchers have recognized the limited usefulness of intuition in reasoning 

about which features are most useful for a particular classification problem, and 

several of the genre classification studies above have addressed the question of 

feature quality by comparing classification accuracy using several manually­

selected sets of features. For example, Tzanetakis and Cook (2002) trained and 

tested the classifier using only pitch histogram features, only beat histogram 

features, only timbraI-texturaI features, only MFCCs, and all features together. 

Their results allow one to draw conclusions regarding the relative importance of 

these feature groups (e.g., MFCCs alone allow much better performance than the 

pitch histogram alone) and demonstrate that combining all features generally 

results in classification accuracy that is as good as or better than that obtained 

using any single group. Studies such as this, however, are not adequate for 
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detennining which individual features are most use fui for classification, or for 

finding a feature subset that allows optimal classification accuracy. 

Essid et al. (2004) employed a filter feature selection method, "Inertia 

Ratio Maximization using Feature Space Projection" (IRMFSP) to select features 

for a musical instrument identification task. They compared several methods of 

applying IRMFSP for the purposes of pair-wise instrument classification, which 

allowed different features to be selected for use in discriminating between each 

possible pair of instruments. That is, one classifier could use one feature set to 

choose between "Piano" and "Bassoon" and another classifier could use another 

feature set to choose between "Bassoon" and "Oboe." Classification accuracy was 

computed for each instrument, and accuracy varied between 55% and 95% for 

most instruments. 

Fujinaga (1998) employed GAs for feature selection and weighting in an 

instrument recognition task. GA selection found an optimal subset of just seven of 

the original 352 features. When GA weighting was perfonned using these seven 

features, the system was able to classify instruments with accuracy similar to 

human listeners (50%). 

Fiebrink et al. (2005) investigated the application of GAs for feature 

selection for a variety of timbre recognition problems, including beat-box 

identification and snare-hit identification. They found that GAs were indeed able 

to find feature subsets that resulted in higher cross-validation accuracy than using 

all available features. 

However, both Fujinaga (1998) and Fiebrink et al. (2005) used the 

evaluation methodology of Kudo and Sklansky (2000), which has been criticized 

by Reunanen (2004) as likely to overestimate the benefits of feature selection. To 

date, there has been no research in MIR that carefully investigates whether feature 

selection can address sorne of the challenges of music classification, using an 

evaluation methodology that is not susceptible to such criticisms. 
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2.4 N ecessary work 

Many features might be used as inputs to music classification systems. 

However, the space needed to store features, and the time needed to extract 

features, train a classifier, and use a classifier to classify new instances all grow as 

the number of features used increases. Additionally, classification accuracy can be 

impaired by the presence of noisy, irrelevant, or redundant features. Furthermore, 

the number of training instances needed to train a classifier capable of 

generalizing grows exponentially with the number of features present. However, it 

is not at aH intuitive which low-Ievel features are most suitable for classification 

problems such as musical genre. Therefore, there appears to be great potential for 

feature selection to improve genre classification accuracy. 

Recent findings suggest, however, that it is not clear that existing literature 

promoting sorne feature selection methods over others can be trusted, due to a 

prevalence of poor evaluation methodology. Nor is it clear that one can believe 

that feature selection is as likely to improve classification accuracy in practice as 

has been suggested, for the same reason. Unfortunately, while key problems in 

previously employed methodologies for assessing feature selection's efficacy 

have been exposed, the literature does not offer a comprehensive, well-reasoned 

alternative approach to evaluation. 

In order to most effectively assess whether feature selection is a useful 

tool for musical classification, it is [rrst necessary to specify a good method for 

evaluating feature selection. Then, it is desirable to employ this method to 

compare a set offeature selection algorithms in a reasonable way, and choose one 

or more methods to apply to a music classification problem, such as musical 

genre. Only then is it possible to assess the efficacy of these methods on musical 

genre and come to meaningful conclusions regarding how and whether feature 

selection might be used to improve music classification. The next several chapters 

ofthis thesis describe the work that was performed to accomplish each ofthese 

steps. 
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3 TOOLS 

3.1 Introduction 

The work in Chapters 4 through 6 involves empirical testing that requires 

a substantial software infrastructure, involving components for feature extraction, 

classification, distributed computing, and feature selection. Sorne of the software 

components used are existing (mostly open-source) third-party software, and 

others (including the global infrastructure facilitating collaboration between 

different components) were written specifically for this project. This chapter 

presents the software tools used in this thesis, for the purposes of clarifying how 

the tests in the next three chapters were performed and of delimiting what is 

original work and what is the work of others. 

The tests in this thesis also involved the use of several datasets from a 

public repository, and this chapter concludes with a mention of the additional 

work performed to facilitate the selection of appropriate datasets from the 

repository. 

3.2 Feature extraction 

jAudio (McEnnis et al. 2005) was used to extract features from the audio 

files. jAudio is an open-source feature extractor written in Java that was designed 

specifically for use in MIR. It includes a collection of many standard features that 

have been previously used by MIR researchers for audio classification and other 

tasks .. Only standard, built-in features were used, without modification, in the 

classification experiments performed in this thesis (see Chapter 6 for a description 

of the se features). 

3.3 Classification 

Weka (Witten and Frank 2005) is an open-source, Java workbench that 

includes a collection of many standard machine leaming and data mining 

algorithms. The kNN classifier that is used as the primary classifier in this thesis 
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is implemented with the Weka!Bk classifier, and the C4.5 decision tree classifier 

that is used occasionally is implemented with the Weka 148 classifier. Default 

implementations and parameter settings for both classifiers are used throughout 

this thesis, unless otherwise indicated. 

3.4 Distributed computing 

Because of the large number of classification evaluations required for 

many of the feature selection tests used in this thesis, the Data-to-Knowledge 

(D2K) Toolkit (Automated Learning Group) was used to distribute these 

computations over a number of machines whenever possible. D2K is an 

environment for paraUe1 and distributed data mining deve10ped by the National 

Center for Supercomputing Applications, and it has been used previously with a 

music-specifie toolkit (called M2K, not used in this the sis) as the platform for the 

MlREX 2005 evaluations (Downie et al. 2005). 

A D2K program (or "itinerary") is built from a set of interconnected, 

independent components, called "modules." Each module performs a self­

contained computational pro gram, and it may input objects from other modules 

and output objects to other modules. A user designs an itinerary using a graphical 

interface to choose modules and then connect their inputs and outputs together. 

Each module may also have parameters (called "properties") that the user can 

specify in the itinerary or at runtime. When an itinerary is run, modules without 

inputs execute immediately, and modules with inputs execute as soon as aH their 

desired input objects have been supplied by previously executed modules. 

A simple itinerary for evaluating a Weka Naïve Bayes classifier using 

D2K appears in Figure 7. This itinerary is included as an ex ample in the D2K 

distribution. The Input File Name module has one property, allowing the 

specification of the name of the file containing the dataset (stored in Weka ARFF 

format). It outputs the name of the file, which is input to the WEKA_ReadARFF 

module. This module reads in the data and passes it to the 

WEKA _ CVClassifierEvaluator. The WEKA _ NaiveBayesModelProducer produces 

a Weka Naïve Bayes classifier object, and it passes this object to the 



- 41 -

WEKA _ CVClassifierEvaluator module. This module allows the specification of 

the number of CV folds as a property, and it evaluates the Naïve Bayes classifier 

on the datas et using the specified number of CV folds. (The evaluation results are 

printed out to the screen when the itinerary executes.) 

, , Î 

:~}_c~,aU}~l_~]=g". r 
Inp", Fil, Nam, WEKA.ReadAAFF '. aa..} - WEKA.CVClas,"'Mô""',.", 

WEKA..NaiveBayesM odelProduc er 

Figure 7: A simple D2K itinerary for evaluating a Naïve Bayes classifier. 

D2K is written in Java, allowing cross-platform compatibility. While D2K 

is not open-source, it is possible to develop new D2K modules in Java and 

integrate them into the D2K environment. Several new modules were written for 

the tests in this thesis. 

D2K allows simple control over paralle1 and distributed execution, in that 

each module may be specified to run on one or many of the available processors. 

Additionally, reentrant modules have the property that they may be run on several 

processors simultaneously. Reentrant modules are therefore appropriate for 

evaluating many different feature subsets simultaneously, as is possible in 

selection algorithms such as GAs or forward selection in which a large number of 

subsets are evaluated independently during each iteration of the algorithm. In 

practice, communication overhead between processors was low compared to the 

computation time needed to evaluate feature subsets, so the computation time 

decreased nearly linear1y with the number of processors used. Figure 8 illustrates 

this speed-up for performing GA selection on an example datas et. 

3.5 Genetic algorithms 

An existing generic GA implementation, JGAP (Rotstan and Meffert), was 

modified for use as a feature selection algorithm for the tests in this thesis. JGAP 
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is an open-source GA package written in Java. It provides a high degree of 

flexibility in specifying how fitness is calculated for a chromosome; here, each 

chromosome was evaluated by using CV to evaluate a Weka classifier wrapped in 

a D2K module, and the CV accuracy was assigned to be the fitness for the 

chromosome. JGAP also aUows acceptable degrees of control over the initial 

population size, mutation rate, selection mechanism, and other GA behaviors. 

GA Selection Time for Breast Cancer Using D2K 
for Parallel Computation 

2.S r·······-··········---.. ····-·-···· 
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E 
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0.5 . ----------------------------------------------------------- ____________________________ -;; ___ --!':--~-------J 
- II • 

o ----.-~---",..,-=-.::-7.,~-:J!t.::-:r:-::.~-~~--------.-----.---.--~ 
GA GA GA GA GA GA 

Pop=10 Pop=20 Pop=50 Pop=100 Pop=200 Pop=500 

1 Processor 
• II • 3 Processors 

Figure 8: For GA selection and a large initial population, using D2K to increase the number 
ofprocessors from 1 to 3 improves speed by nearly a factor of3. 

3.6 Other feature selection algorithms 

Other feature selection algorithms were implemented from scratch in Java. 

AU feature selection algorithms, inc1uding GAs, were designed to extend an 

abstract feature selection c1ass, aUowing each feature selection algorithm to be 

managed using a uniform set of methods. 

3.7 OveraU system 

A software system was constructed to integrate aU the above components, 

allowing complete tests of feature selection to be run with a single command (or 

with a one-line sheU script). AU parameters of the feature selection evaluation are 

specifiable at run-time, inc1uding: 

• Location of the dataset 
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Location and names of the output files generated 

Location of the D2K itinerary to use for evaluating feature subsets 

How to split the data into outer training and testing sets (i.e., the relative 

size of these sets, and whether to use stratification; see Chapter 4 for 

further information) 

• How to perform repeated testing (i.e., whether to perform outer CV, and if 

• 

so, the number of folds, or whether to perform repeated sampling, and if 

SO, the number ofiterations) 

How to evaluate each feature subset on the training data (i.e., the number 

of inner CV folds, and whether to use stratification; see Chapter 4 for 

more information) 

• The feature selection method and its parameters 

Figure 9 shows the high-Ievel integration of the feature selection algorithm 

and D2K. Figure 10 shows the actual D2K itinerary used in this system. 

The overall system includes backup, restart, and logging functionality. The 

final version of the system consists of24 Java classes (over 7500 lines ofcode). 

This includes the additions to JGAP for implementing fitness evaluation using 

D2K, as well as the new D2K modules. The overall system can be used for future 

work applying feature selection to any dataset encoded in Weka ARFF format. 

Read evaluation results trom file (after 1st iteration) 

l 
[ FeaNte Selection Algorithm 

J Generate feature subset(s) for nex! Iteration 

Write subset{s) to file 

1 
1 L 
1 D2K ltinerary 

Read subset(s) from 

1 

1 
r\Je, evaluate subset(s), 

and write 10 file 
1 \. 

Figure 9: Integration ofD2K into the ove rail system for feature selection evaluation. 
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Figure 10: D2K itinerary used for evaluating feature subsets. The EvaluateJeature_subset 
module is reentrant. 

3.8 Datasets 

Several popular non-musical datasets from the UCI Repository (Newman 

et al. 1998) were used for the work in this thesis. The UCI Repository contains 

over 120 datasets with varying numbers of instances, features, and classes, created 

from a variety of domains. These datasets appear in other work in feature 

selection (e.g., Kohavi et al. 1997; Reunanen 2003,2004; Skalak 1994; 

Wettschereck et al. 1997), and they are available for anyone to use for the purpose 

of comparing results. Additionally, they are a convenient resource when multiple 

tests must be run using a variety of datasets, such as is the case for the work in 

Chapters 4 and 5. 

In order to make sense of the wide variety of datasets available in the UCI 

Repository, and to facilitate the selection of appropriate datasets for use in the 

tests in this thesis, a table summarizing aH datasets in the repository was created l
. 

The table includes relevant properties such as the number of instances, the number 

of features, the number of classes, the type of class (e.g., nominal or numeric), 

whether any instances are missing class labels, whether any instances are missing 

feature values, the number of each type of feature (i.e., nominal, binary, or 

numeric), and the number of instances in the majority class. The table also 

provides the source of the data, a text description of the dataset, and additional 

1 This table appears online at http://www.music.mcgill.ca/-rebecca/thesis/UCI_table.htm. 
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notes about the dataset. This table offers an easier way to browse and search the 

repository than the DCI description webpage2
• In addition to serving as a resource 

for dataset selection in this thesis, this table may bene fit others doing work that 

involves the use of DCI datasets. 

2 The UeI description page appears online at http://www.ics.uci.eduJ-mlearn!MLSummary.html. 
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4 CHOOSING A PRINCIPLED EVALUATION 

METHOD FOR FEATURE SELECTION 

4.10verview 

Reunanen's work (2003, 2004) suggests that wrapper feature selection 

methods have not always been properly evaluated in prior work. One can 

therefore not necessarily trust existing work claiming that feature selection is a 

generaUy use fuI tool for improving classification accuracy (see Reunanen 2004) 

or work showing that one feature selection method is more likely than another to 

result in higher classification accuracy (see Reunanen 2003). 

Alongside his exposition of potential flaws in methodologies that have 

often been used to evaluate feature selection, Reunanen has explicated several 

characteristics ofwhat he believes to be a better methodology. However, one is 

confronted with the task of setting many outstanding parameters of the 

experimental design if one wishes to measure the relative performance of different 

algorithms for a particular domain, or if one wishes to assess whether feature 

selection is beneficial at aIl. Unfortunately, neither Reunanen nor any other 

researcher has laid out clear guidelines that are specific, comprehensive, and well­

reasoned enough to form a sufficient foundation for someone wishing to perform 

feature selection evaluation in a way that the choices of aU such parameters are 

weU-understood to be methodologicaUy sound. 

This chapter examines relevant literature regarding model selection, 

feature selection, and evaluation methods. It identifies problematic gaps in the 

literature and describes attempts to address those gaps with new, original 

empirical testing. Then, based on this testing and the literature, it proposes a 

judicious method of evaluation for feature selection for employment in this 

project and in other projects in music and machine learning. 
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4.2 Goals 

An evaluation offeature selection (such as is performed in this thesis) 

might address two distinct questions: First, is feature selection a useful tool for 

improving classification accuracy on a particular problem? A more specific 

formulation of this question is, does feature selection algorithm A improve 

classification accuracy on dataset X? Second, what are the relative performance 

characteristics of various feature selection algorithms that one might employ? A 

more specific formulation of this question is, what are the relative performance 

characteristics of algorithms A, B, and C, as they might be applied to 

classification of dataset X? In answering these questions, one might be interested 

in both efficacy and speed characteristics of various feature selection algorithms. 

Additionally, because one is usually more concemed with the ability of the final 

model to generalize well than with its ability to classify only known (training) 

data well, assessment of efficacy involves examining performance measures 

related to "out-of-sample performance prediction" or "generalization prediction" 

(Guyon and Elisseeff 2003, 1173). 

The goal of this section is to outline a reasonably good evaluation 

methodology that will allow one to answer the questions above. A principled 

methodology will allow one to make sound judgments about an algorithm's 

performance, and it will steer one away from the trap of overestimating the 

performance of an algorithm due to overfitting (see below). Without such a 

principled methodology, any experiments one performs to evaluate different 

feature selection methods to apply to the genre classification problem are of 

questionable helpfulness, and experiments one performs to examine feature 

selection's efficacy on the genre classification problem are of questionable worth. 

Specific priorities one should consider in choosing an evaluation methodology 

include: 

• Speed: One must be able to perform evaluations in a reasonable amount of 

time. 

• Consistency: The outcomes of comparison experiments should be 

consistent; for example, if a comparison is repeated with different data 
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drawn from the same distribution, the results of the experiment should not 

change appreciably. Otherwise, multiple experiments must be performed 

to gain an insight into the general relative performance of competing 

algorithms. 

Accuracy: Evaluation experiments should rate "good" algorithms well and 

"bad" algorithms poorly, or in the case of experiments comparing 

algorithms, it should rate "better" algorithms better than "worse" 

algorithms? The machine leaming literature employs the terms bias and 

variance rather than accuracy and consistency, respectively (Duda et al. 

2001,465-71). A good evaluation methodology that minimizes variance 

and bias will be both consistent and accurate. However, as Kohavi (1995) 

has discussed, when one is interested in making meaningful comparisons, 

low variance is more critical than low bias. 

Understandability: One would like the outcomes of the evaluations to be 

understandable to others in machine learning. The outcomes should be 

easy to replicate and easy to compare with other results. 

Applicability: The evaluation method should be applicable to a broad 

range of datasets and algorithms (e.g., not only two-class problems or 

wrapper-based selection methods). 

It must be made clear that the goals of the following work do not include 

making the claim that one feature selection method is always (or even generally) 

superior to another, nor searching for an evaluation methodology that would allow 

one to make such a claim. Wolpert and Macready (1997) have laid out a set of "no 

free lunch" (NFL) theorems for optimization holding that " ... for any algorithm, 

3 1 surround "good" and "bad" with quotation marks because one can reasonably argue that the 

evaluation experiment itself is the best objective indicator of an algorithm's performance, or that 

no algorithm is inherently superior to any other (see Wolpert and Macready 1997). However, it is 

trivial to assign arbitrary scores to algorithms in a way that is consistent but use\ess in informing 

one oftheir likely future performances; this would undoubtedly be a poor evaluation methodology. 

Conversely, 1 am most concemed that the evaluation outcomes are relevant to the real performance 

of these algorithms on similar data. 
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any elevated performance over one class of problems is offset by performance 

over another c1ass;" that is to say, there is no algorithm that is better overall than 

any other method (Wolpert and Macready 1997; Duda et al. 2001). Chapters 4 and 

5 here concem themselves with evaluating whether feature selection can be a 

beneficial tool, and if so, which algorithms are likely to work well in practice 

(considering both accuracy and implementation issues). Chapter 6 explores the 

use of feature selection on improving accuracy for a specifie 1eaming approach to 

a specifie domain, that of classifying musical genre with a given set of available 

features using a particular set of c1assifiers. The NFL theorems do not necessarily 

preclude the ability to generalize about the performance of various algorithms 

within a constrained scope, where one has prior knowledge about the nature of the 

data and classification task. Furthermore, the applicability of the se theorems to the 

set of prob1ems one actually encounters as a machine leaming practitioner is not 

known; for example, Salzberg writes, "experimental science is concemed with 

data that occurs in the real world, and it is not clear that these theoretical 

limitations [i.e., the NFL theorems] are relevant" (Salzberg 1997,326). 

4.3 Evaluation in the literature 

4.3.1 Approaches employing cross-validation performance for evaluation 

and comparison 

Sorne evaluations of the efficacy of wrapper methods for feature selection 

in the literature are quite straightforward. Kudo and Sklansky (2000), for 

example, evaluate several wrapper feature selection a1gorithms. In their study, 

each feature selection algorithm evaluates feature subsets using leave-one-out 

cross-validation (LOO CV). They assess the relative quality of the algorithms by 

comparing the LOO CV score of each algorithm's chosen feature subset. 

CV is an established and popular method for evaluating classification 

accuracy in a way that addresses the generalization of the classifier to new data 

(as opposed to considering only accuracy on the training data, which does not 

address generalization ability). However, researchers have recently noted that 

repeatedly applying CV to the same dataset, like Kudo and Sklansky do, is a 
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misuse ofthis tool. Moore and Lee (1994) write, " ... a naïve intensive use of 

cross validation, perhaps over many thousands of models, may produce a 

deceptively good 10west-errOf model, in a manner similar to overfitting of data." 

Furthermore, Jensen and Cohen (2000) describe the phenomenon of 

oversearching as being closely related to overfitting, and this concept is relevant 

to wrapper selection: one effect of searching among many feature subsets is that, 

even if they are all equally good, the probability that the best feature subset found 

will have considerably better CV performance increases simply with the number 

of candidate feature subsets evaluated. U sing CV performance to compare an 

algorithm that asses ses many feature subsets (such as sequential forward floating 

selection, e.g. in Pudil et al. 1994) to an algorithm that evaluates fewer subsets 

(such as forward selection) will therefore automatically favor the algorithm that 

visits more subsets in its search even ifthose subsets are not ofhigher quality (this 

is also discussed in Reunanen 2003). According to Reunanen, validating with a 

test set that is not shown to the feature selection algorithm during the search for a 

good or optimal feature subset is a much better way to evaluate whether one 

algorithm is actually outperforming another (Reunanen 2003) or that feature 

selection is indeed increasing accuracy at all (Reunanen 2004). 

4.3.2 Reunanen 's evaluation methodology 

Reunanen (2003, 2004) demonstrates the use of an evaluation 

methodology that employs such a test set to validate the performance of feature 

selection algorithms: he creates a stratified testing set and training set (which is 

referred to in this thesis as the "outer testing" and "outer training" sets for reasons 

explained below), runs the wrapper-based selection algorithm on the outer 

training set, then evaluates the final model using the outer test set. The feature 

selection algorithm searches for a subset with optimal LOO CV performance on 

this outer training set, in the same manner as in Kudo and Sklansky; the feature 

set chosen by the algorithm in the end is the feature set that results in the highest 

LOO CV accuracy of a classifier using the given features. To evaluate an 

algorithm' s performance, the classifier is trained on the outer training set, using 
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the selected features, and the accuracy with which it classifies the previously 

unseen data in the outer testing set is recorded. To determine whether feature 

selection has improved accuracy, one can compare this accuracy to the accuracy 

of a classifier trained on the outer training set, using all features to classify the 

outer testing set. To compare different feature selection algorithms, one can 

compare the classification accuracy obtained on the outer testing set by c1assifiers 

using the feature subsets chosen by the different algorithms. 

4.3.3 Loughrey and Cunningham 's evaluation methodology 

Loughrey and Cunningham (2004) use a similar evaluation methodology 

that involves nested CV. Like Reunanen, they show the feature selection 

algorithm only a portion of the available data, then evaluate the performance of 

the algorithm by c1assifying the held-out portion of the data using the selected 

feature subset. Unlike Reunanen, they repeat this process multiple times, using a 

CV approach to split the entire datas et into "outer" folds and iteratively use each 

fold as the outer testing set. They refer to this level of CV as the "outer" CV, and 

they refer to the CV used by the feature selection algorithm on the training data to 

guide the search for good feature subsets as the "inner" CV. 

Reunanen's and Loughrey and Cunningham's methods address the 

fundamental problem of evaluating generalization using very similar approaches. 

Loughrey and Cunningham's method has an advantage over Reunanen's in that it 

involves computing several scores (specifically, one score per outer fold) for a 

given selection method and datas et, rather than just one overall score. One might 

be interested in considering the variance among these scores to gain an intuition 

for a method's reliability. However, the rigorous use ofbasic statistical analysis 

tools (such as standard deviation) is inappropriate, because the processes 

producing the scores are highly interdependent due to the repeated reuse of the 

same instances (see Sa1zberg 1997, 326). Reunanen's method has an advantage in 

that the feature selection algorithm, which can be quite computationally intensive, 

must run only once. 
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4.3.4 Other approaches to evaluation 

Comparing the outer testing set classification accuracy of the best models 

found by selection algorithms is a straightforward way of evaluating whether one 

feature selection algorithm is working better than another, or whether feature 

selection is helpful for a particular problem, but other evaluation approaches do 

exist. In particular, more complex methods have been proposed for statistically 

rigorous comparisons oflearning algorithms. For example, McNemar's test and a 

binomial relative of this test are quite powerful tools for comparing two 

algorithms, and they allow statistical interpretations of the results (Salzberg 

1997). Other statistically motivated comparison methods have been proposed by 

Dietterich (1998), Nadeau and Bengio (2003), and Cohen and Jensen (1997). One 

might be tempted to use simpler statistical tests (e.g., t-test) to make inferences 

about the output "observations" of multiple classifier evaluations, for example, 

partitioning the data several times and observing the resulting outer testing set 

accuracy, However, it must be underscored that this approach is inappropriate. 

The main problem inhibiting the use of simpler tests is that multiple iterations of 

classifier evaluations are not at aH independent, due to the fact that the classified 

instances are drawn from the same dataset (Salzberg 1997). 

In this thesis, it was decided to use outer testing set classification accuracy 

rather than one of the other methods for the following reasons: Test set 

performance is easy to understand, simple to compute, and allows direct 

comparison to many of the existing papers about feature selection. Many of the 

statistically rigorous evaluation methods are only applicable to comparisons of 

two algorithms to each other (e.g., McNemar's test), not to comparing a group of 

algorithms. These tests tend to be more complex to implement and do not 

facilitate direct comparison with published results for feature selection algorithms. 

While stringent statistical methods would be necessary for making strong claims 

about a particular feature selection algorithm, the work in this thesis does not aim 

to do such a thing. The transparency and straightforwardness of testing set 

classification accuracy aligns satisfactorily with the goal of gaining an increased 
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general understanding of the benefits and costs one might incur in applying 

various feature selection algorithms to music classification. 

4.4 Defining a specifie evaluation methodology 

There are many free "parameters" that must be set to completely specify 

an evaluation methodology like Reunanen's or Loughrey and Cunningham's. For 

example, should one use outer folds (like Loughrey and Cunningham), repeated 

sampling to create outer "sets" instead of outer folds, or just a single sampling to 

create a outer testing and training set (like Reunanen)? If outer CV is used, should 

stratification be performed, and how many folds should be used? If not, what 

should be the size of the outer training and testing sets sampled, and how many 

times should sampling be performed? If CV within the outer training set is used to 

guide the search of the wrapper-based selection algorithm, as is typical in all the 

feature selection literature, how many folds should be used? Should stratification 

be employed? Furthermore, additional considerations involve the choice of 

classifier to use for the wrapper selection, its parameters (e.g., the value of k for 

kNN), and the dataset(s) used in the evaluation. 

Decisions regarding the setting of all these parameters are not wholly 

specified in any single paper on feature selection or evaluation in machine 

leaming, and where decisions are specified, they are often not defended (e.g., 

Loughrey and Cunningham use ten folds for both the outer and inner CV, but they 

do not explain their decision to do so). However, these decisions must be made 

somehow if one is to implement and use an evaluation methodology. Ideally, such 

decisions should be backed up by a combination of theoretical and experimental 

validation in the existing literature, a precedent ofuse by machine-Ieaming 

experts (ideally accompanied by an explanation oftheir choices), and careful 

reasoning. If the former are insufficient grounds for making a decision, empirical 

evaluation may lend insight into the relative value of feasible options. This section 

addresses these issues for each of the free parameters in tum. 
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4.4.1 Size oftesting and training sets 

There is no literature that specifically addresses how data should best be 

partitioned into outer training and testing sets, or outer folds, for the purposes of 

evaluating feature selection. Leaming curves are a general tool in machine 

leaming, used for examining the testing accuracy of a classifier as the number of 

training examples increases, and they provide sorne insight into this problem. An 

example of a leaming curve appears in Figure Il. Typically, the testing 

performance increases with the nùmber of training examples in an asymptotic 

way; after a certain training set size (say, s instances), the increased performance 

on the testing data obtained via adding more training instances willlikely be 

negligible. This implies that, before this point, the classifier has not seen enough 

training data to leam the given problem weIl, so an outer partition of the data for 

feature selection evaluation should allot enough data to the outer training set so 

that at least s instances are used for training the classifier. This also implies that 

increasing the outer training set size ta be much greater than s will have negligible 

impact on the accuracy of the classifier (but it will increase the time needed ta run 

feature selection, and it will deplete the outer testing set of its instances, since the 

training and testing sets are mutually exclusive). In short, the outer partition of the 

data is an important consideration, and the optimal partitioning scheme may be 

dataset-dependent. 

In practice, many outer partitioning approaches have been used. Kohavi, 

Langley, and Yun (1997) examine leaming curves for each dataset and specify the 

ratio of outer testing-to-training instances individually. Typically, training sets are 

small, with the ratio of the number of instances in the testing set to instances in 

the training set ranging from 30: 1 ta 3: 1. Reunanen's outer partitioning scheme is 

also somewhat dataset-dependent, and he also maintains larger outer testing sets 

than training sets. His rationale for the partitioning of a given dataset is not based 

on learning curves, but on practicality: "to make sure that the training sets do not 

get prohibitively large in those cases where the dataset has lots of samples." 

Partition ratios range from 1: 1 for small sets to 9: 1 for large sets. Wettschereck et 

al. (1997) use ratios that seem neither consistent nor convenient (e.g., 150:350, 



- 55 -

1000:200, 1040: 1040), but they do not provide rationale for these choices. 

Loughrey and Cunningham (2004) consistently use outer lO-fold CV where the 

training set is larger (that is, a 1:9 testing-to-training size ratio). 
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Figure Il: Example of learning curves. This diagram shows curves for two related 
classification algorithms, on a typical dataset from VeI, from Perlich et al. 2003. The x-axis 

denotes the training set size, and the y-axis denotes the test-set accuracy. 

4.4.2 Outer CV or sampling 

Related to the paucity of literature addressing appropriate sizes of outer 

partitions, there is also a lack of discussion surrounding whether CV or sampling 

is more appropriate for the outer partitioning scheme. Kohavi (1997) and 

Reunanen (2003, 2004) both use a single sampling into an outer training and an 

outer testing set. Reunanen' s 2003 study explicitly uses stratification. In this 

paper, he also notes that CV is a viable choice for the outer partitioning scheme. 

Loughrey uses 10-fold CV without any remarks regarding this choice. 

Wettschereck performs sampling, repeated 25 times "to reduce statistical 

variation" (1997). However, as discussed in Salzberg (1997), such repeated tests 

cannot easily be used to make daims of significance, because the "trials" are 

highly dependent. 

Because a variety of outer partition methods and outer partition sizes have 

precedent in the literature, and because of the lack of an authoritative 
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recommendation in favor of a particular technique, it was decided that empirical 

investigation of several outer partition methods might lend insight into what are 

the most sensible choices. 

4.4.3 Inner CV 

There is more theoretical discussion on the use of CV to compare 

"models," and this discussion is directly applicable to wrapper feature selection 

methods. In wrapper selection, each candidate feature subset paired with the base 

classifier can be considered a model, and wrapper selection typically evaluates 

competing models using the classification accuracy assessed via CV. 

According to Goutte (1997), the number offolds used in CV is generally 

irrelevant, as long as more than two folds are used. However, Kohavi (1995) 

explicitly discusses feature selection as a model selection problem, a perspective 

shared by other researchers (e.g., Moore and Lee 1994), and he discusses the 

finding that the bias and variance of CV both change according to the number of 

folds used. He notes that, when one is comparing many competing models, the 

variance of the evaluation method is of much greater concem than its bias. That is 

to say, it is better to use an evaluation method that evaluates consistently (say, 

always underestimates the true performance of every model by 10%, give or take 

.1 %) than a method that evaluates accurately but inconsistently (say, tends to 

neither overestimate nor underestimate performance on average, but might 

overestimate or underestimate by lü% for any given model). According to 

Kohavi, lü-fold CV tends to have a very low variance, so it is a good choice for 

model comparisons of the sort performed in wrapper feature selection methods. 

Additionally, he found that stratification resulted in superior bias and variance 

characteristics, and so recommended its use. 

Other literature underscores the idea that, while LOO CV might intuitively 

seem to be the best choice for evaluating feature subsets, since it is the most 

"involved" or "rigorous" form of CV, other methods may be more appropriate 

(see Guyon and Elisseeff2003; Breiman and Spector 1992; Salzberg 1997). In 

general, there seems to be consensus that LOO is a suboptimal choice, and that 
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lü-foid CV is reasonabie. Salzberg notes, however, that more foids might be more 

appropriate when the dataset is very smaU, so that more examples are present in 

the training set (one can think: of this practice as ensuring that asymptote is 

reached in the Iearning curve, as discussed above). For a similar reason, when 10-

fold CV is used for model selection, it is assumed that the training set will be 

larger than the testing set, and this practice was employed in aU the papers 

examined in this section. 

Given the existing body of literature on this topic, and the general 

agreement among researchers that 10-fold CV with stratification is appropriate for 

modei selection, no further exploration ofthis parameter seemed necessary. 

4.4.4 Classifiers 

There is no literature specifically addressing what classifiers might be best 

to use for feature selection evaluation. However, it makes sense to avoid using 

classification algorithms that perform their own explicit or implicit feature 

selection. Because wrapper-based selection involves many iterations of training 

and testing a classifier, particularly if inner CV is used, speed of training and 

testing is a primary concem. Furthermore, it makes sense to employ the same type 

of classifier in the evaluation of feature selection methods as will be ultimately 

used for the music genre classification problem. This avoids the need to make the 

assumption that the relative efficacy of various wrapper-based feature selection 

methods is unchanged by the classifier employed. 

In the literature, kNN classifiers are a popular choice for evaluating 

feature selection methods (e.g., they are used in Reunanen 2003, 2004; Kohavi et 

al. 1997; Wettschereck et al. 1997). The effect of feature selection with kNN is 

conceptually simple: removing a feature removes a dimension of the nearest­

neighbor space in which the distance between instances is calculated. Training 

time is negligible, and testing time is manageable for the sort of datasets used in 

this work (including the musical genre dataset). k=1 (a INN classifier) was used 

for the evaluations, because it is a choice that has precedent in the literature (e.g., 
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Reunanen 2003,2004), and there is no conclusive evidence that other values of k 

are, in general, better choices. 

4.4.5 Datasets 

The question of which datasets one should use to evaluate feature selection 

is not an easy one. The NFL theorems imply that applying a feature selection 

method, using a given classifier with a given parameter set, may give quite 

different results on different datasets. However, if one wishes to learn more about 

feature selection methods, there are a few properties of datasets that will make 

such an investigation easier. 

4.4.5.1 Number of instances 

The number of instances has a large impact on the time it takes to run 

wrapper feature selection, because it effects the time to train and/or test mûst 

classifiers (including kNN). The datasets used should be ofmanageable size in 

order to practically run tests. 

Number of features: The number of features also impacts the time needed 

to train and test a classifier (including kNN), and it can also explicitly influence 

the time to mn sorne feature selection methods (such as forward selection, which 

performs O(cf) feature subset evaluations for a dataset with d features). 

Practicality therefore places an upper limit on the number of features of datasets 

used in these tests. However, it makes sense to test using datasets with different 

numbers of features, within this constraint, because it is reasonable that the 

number of features could influence the performance of a feature selection 

algorithm. 

4.4.5.2 Relationship between number of instances and number offeatures 

The "curse of dimensionality" refers to the need for an exponentially 

increasing number of training instances as the number of features grows linearly 

(Duda et al. 200 1, 169-70), if classification is to be feasible. Therefore, datasets 

with varying ratios between the number of instances and number of features 

should be included. 
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4.4.5.3 Prior use in the literature 

If a datas et has been previously used in the literature to make claims about 

feature selection' s efficacy or about the relative quality of feature selection 

methods, any results one obtains using this dataset can be compared to published 

results. 

4.4.5.4 Potential for feature selection to improve generalization accuracy 

Holding an a priori belief of whether feature selection will be effective, 

when one is perfonning tests regarding feature selection's efficacy, seems an odd 

idea at first. However, for a given evaluation methodology, such as the 

hierarchical partitioning scheme described above, it is possible to determine 

whether feature selection has much (or any) chance of finding a better feature 

subset than the set of an available features. For several UeI sets where it was 

feasible to exhaustively visit an feature subsets, each subset was evaluated with a 

classifier using the hierarchical outer/inner partitioning scheme described above. 

For each outer partition (i.e., each outer fold), the CV accuracy on the outer 

training set and classification accuracy on the outer testing set were recorded. 

These values were plotted (Figure 12), and the perfonnance of the classifier for 

the cases when an features were used was noted. For datasets where the outer 

training CV accuracy, which is used by any wrapper method to guide its search 

through the set of feature subsets, is highly predictive of the outer testing 

classification accuracy, and where there exist feature subsets whose outer test set 

performance exceeds that using the entire available feature set, feature selection 

should be able to improve classification accuracy. For other datasets, feature 

selection will probably not improve classification accuracy. 

These plots were created using several variations of the partitioning 

scheme, including outer sampling and CV, using different numbers of folds for 

outer and inner CV, and varying the use of stratification; notably, these changes 

did not greatly impact the results. Additionally, similar plots were created for 

datasets with too many features to exhaustively evaluate an feature subsets, by 

randomly generating a predetennined number (e.g., 100) feature subsets. The use 
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of such plots for reasoning about feature selection's potential to improve 

classification accuracy is discussed in greater detail in Chapter 5. 
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Figure 12: Plots of LOO CV accuracy on the outer training set versus classification accuracy 
on the outer testing set, for the UCI datasets used in the tests ofthis chapter. Each plot shows 

results for 5 separate partitions. The set of ail available features is marked with a black 
square, for each partition. The other 2d_2 subsets are marked with grey diamonds. See 

Chapter 5 for more information. 

4.5 Empirical evaluation of methodology parameters 

4.5.1 Datasets, selection algorithms, and classifiers 

Table 1 describes the datasets employed in the testing ofthis chapter. Each 

is from the DCI Repository (Newman et al. 1998; see Chapter 3). These datasets 

are all quite small to facilitate repeated testing, they employa variety of numbers 

of features and a variety of ratios of the number of instances to the number of 

features, and most have been used in a variety of papers about classification and 

feature selection (e.g., Reunanen 2003,2004; Kohavi et al. 1997). For one set 

(Glass), it is likely that feature selection will succeed in improving classification 

accuracy; for one set (Iris), it is unlikely that feature selection will succeed 

because of the aIready high performance using the entire feature set; for two sets 
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(Breast Cancer and Sonar) it is unlikely that feature selection will succeed 

because of the lack of correlation between outer training and testing accuracy, but 

for one ofthese (Sonar) exhaustive search is infeasible, so one cannot know for 

certain that a better subset does not exist. The plots of Figure 12 illustrate the 

basis for these claims. 

a e : T bl 1 UCI d atasets use ID t e tests ID t IS capter. d· h . h· h 
Dataset # Instances # Features # Classes Improvement expected? 
Glass 214 9 7 Yes 
Breast Cancer 286 9 2 No 
Sonar 208 60 2 No (?) 
Iris 150 4 3 No 

The feature selection algorithms employed in these tests included forward 

selection, backward selection, random mutation hill climbing (RMHC), and 

Monte Carlo selection. RMHC and Monte Carlo selection were both run twice, 

once evaluating ten feature subsets, and once evaluating fifty. As discussed in 

Chapter 2, forward selection, backward selection, and RMHC have been 

discussed in the literature on feature selection. Monte Carlo selection serves here 

as a "sub-optimal" feature selection method (one would assume it would perform 

worse than the other, "real" selection methods). None ofthese selection methods 

have parameters that must be set (unlike genetic algorithms (GA), a popular 

selection method that was excluded from these tests for this reason). 

A INN classifier was used for all feature selection algorithms. The J48 

classifier (Witten and Frank 2005) was also evaluated using all features to serve 

as a comparison to 1 NN without selection, with the assumption that relative 

performance of the various split types would be similar across both classifiers. J48 

is an implementation of a standard decision tree classifier, C4.5. Decision trees 

classify by iteratively partitioning the instances into subsets until each subset is 

assigned a single class value, where the decision to assign an instance to a 

particular subset is made one the basis of its feature values; they are therefore 

quite conceptually different from nearest-neighbor classifiers. 
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4.5.2 Tests performed 

4.5.2.1 First tests: Method ofpartitioning into outer training and testing sets 

The outer partition of the data was initiaUy performed with 9: 1, 1: 1, and 

1 :9 ratios of testing set size to training set size. These ratios were chosen based on 

their previous use in the literature, and because n= lOis a common choice for n­

fold CV. The initial tests involved both CV and independent sampling for each 

partition ratio. For sampling, the same number of trials were performed as for the 

CV tests with the same ratio; for example, for the 1:9 split with sampling, the data 

was partitioned ten times into outer testing and training sets. AU tests (both CV 

and sampling) used stratification to maintain identical class proportions between 

the outer training and testing sets and folds. Feature selection search methods used 

lü-fold CV of the outer training set with stratification to assess subset quality. 

Figures 13 through 15 show the results ofthis testing. The outer test set 

classification accuracy of the feature subset selected by each method was 

compared across aU trials for a dataset; the standard deviation of these 

performance values was averaged over aU algorithms and charted in Figure 13. 

The 1: 1 ratio of outer testing set size to outer training set size tended to display 

the lowest standard deviation among trials for aU datasets, for both CV and 

sampling. The 9: 1 ratio tended to have the next lowest standard deviation, with 

1:9 performing the worst. This suggests that 1: 1 and 9: 1 have lower variance, and 

might be preferred for comparing feature selection algorithms, for much the same 

reasons as Kohavi recommends using 10-fold CV for model comparison within a 

wrapper feature selection algorithm. Large differences in standard deviation were 

not apparent between CV and sampling for any split ratio. 

Figure 14 shows the correlation between the outer training set CV 

accuracy and the outer testing set classification accuracy, using the feature subset 

selected by an algorithm. This was computed by calculating this correlation value 

for aU trials of each algorithm on each dataset, then averaging this value over aU 

algorithms and then additionaUy over aU datasets. There is sorne variation in 

correlation values for different datasets, but in general the 9: 1 ratio tends to result 
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Effect of outer partition strategy on standard deviation of testing 
performance, averaged over ail algorithms for each dataset 
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Figure 13: Effect of the outer partition strategy on the standard deviation of outer testing 
classification accuracy, averaged over aU selection algorithms (top) and averaged also over 

aU datasets (bottom). 

in a positive correlation, while l: 1 and 1:9 tend to result in negative or negligible 

correlations. That is, running feature selection on a smaller outer training set 

tended to result in the chosen best feature subset having outer training set 

performance that was more predictive of outer testing set performance than 

running feature selection on a larger outer training set. This is a somewhat 

surprising resu1t; it seems more intuitive that showing the feature selection 

algorithm more training data would enable it to find feature subsets that were 

better fit to the data set. 
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Effect of outer partition strategy on correlation between outer training 
and outer testing performance, averaged over ail algorithms for each 

dataset 
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Figure 14: Effect of the outer partition strategy on the correlation between training and 
testing performance, averaged over ail selection algorithms (top) and averaged also over ail 

datasets (bottom). 

Figure 15 shows the absolute improvement in classification accuracy over 

the no-selection INN mode l, averaged over aU feature selection algorithms. Glass 

was the only dataset for which feature selection was predicted to result in an 

improvement in accuracy, and this improvement is se en using al: 1 outer partition 

ratio with outer CV, al: 1 outer partition ratio with outer random sampling, and 

1:9 outer partition ratio with outer CV. The use of a 9: 1 ratio and sampling 

actuaUy gives results contrary to expectation for aU datasets. 

Given that these results do not conc1usively show that one outer partition 

method consistently leads to results that have low variance and good 

predictability, the tests were repeated using 1:4 and 4: 1 outer testing-to-training 
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Improvement in testlng ac;curacy using selection, averaged over ail 
algorithms 
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Figure 15: Absolute improvement in accuracy from feature selection, averaged over ail 
algorithms. 

size ratios. The standard deviation and average aeeuraey values for the 1:4 ratio 

were between the values for 1: 1 and 1: 9, and the standard deviâtion and aeeuraey 

values for 4: 1 were between 1: 1 and 9: 1. This is unsurprising, but these tests 

yielded no further insight into what outer partition size ratio might be best. 

Based on the above, 1: 1 is perhaps the most defensible ehoiee of outer 

partition size ratio. It has the lowest variability of performance, and it allows 

aeeurate assessment offeature seleetion's effieaey for all datasets. However, 1:1 

is not always feasible to use for larger sets, as indieated by Figure 16 showing the 

polynomial inerease in overall evaluation time as the number of instances in a 

dataset grows. For larger datasets, 4: 1 or 9: 1 seem to be defensible ehoices; the 

strange behavior displayed in mispredieting feature selection's efficaey might not 

be a problem for larger datasets, where the learning curve is more likely to have 

reached asymptote for the number of points in an inner training set eomprised of 

9% of the available data (that is, the inner training folds of the outer training set 

using a 9: 1 ratio and 10-fold inner CV). The decision to use larger outer testing 

sets for larger datasets is refleeted in the work of Reunanen (2003, 2004) and 

Kohavi et al. (1997) as well. There is eertainly room for further work on this topie 

to better elucidate the trends seen in Figures 13 through 15. 
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Effect of training set size on evaluation time, using LOO CV and 
lNN classifier 
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Figure 16: Training time and the number of instances, using a INN classifier. Evaluation 
time increases polynomially when inner n-fold or LOO CV is used to evaluate feature 

subsets. 

4.5.2.2 Second tests: Stratification 

Further tests were performed to investigate the effects of stratification in 

the outer partitioning of the data, given that it was unknown whether maintaining 

c1ass proportions between the outer training and testing sets would consistently 

affect evaluation results, or the time needed to perform evaluations. U sing the 1: 1 

ratio of outer testing-to-training set size deemed reasonable by the first set of 

tests, average accuracy and standard deviation were ca1culated for the same set of 

feature selection algorithms and datasets, with and without outer stratification. 

The results appear in Figures 17 through 20. Figure 17 c1early shows that the 

effect of stratification on absolute accuracy is negligible. Figure 18 shows that the 

standard deviation may be affected by the use of stratification, but the effects of 

stratification differ according to the feature selection algorithm used. Figure 19 

shows that this is the case even when analysis is restricted to the datasets of Iris 

and Glass, where the higher degree of correlation between outer training CV and 

outer testing accuracy demonstrated in Figure 12 suggest that feature selection 

might behave more predictably. Initial analysis of the impact of stratification on 

running time for these small datasets showed it to have minimal influence, and 

Figure 20 shows that this is also the case for much larger datasets. That is, 

stratification does not appreciably increase computation time in practice. The 

influence of stratification on running time is particularly small in comparison to 



- 67-

the influence of the choice offeature selection algorithm and size of the dataset, 

as discussed in Chapters 5 and 6. 

Therefore, these tests do not give conclusive evidence in favor of or 

against the use of stratification in the outer partition, at least for the 1: 1 partition 

size ratio. Given that not using stratification to perform the outer split could 

potentially give rise to an outer training set whose class proportions are very 

unrepresentative of the dataset as a who le, one might reason that the variance 

would generally be higher without stratification than with it. Furthermore, the use 

of stratification could result in more optimistic estimates of performance of 

feature selection on the test set, because the training set has identical class 

proportions; however, this optimism will be present for aH algorithms being 

evaluated (including the no-selection case). Using reasoning similar to Kohavi's, 

one might conclude that it is better to have lower variance when comparing 

models (including both comparing multiple selection algorithms, as weH as 

comparing no selection with selection) than to have a more honest assessment of 

performance. For these reasons, and because no ill effects of stratification were 

consistently observed in the testing, further evaluation employs stratification in 

constructing the outer partitions. 
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Effect of outer stratification on generallzatlon accuracy, averaged over 
ail algorlthms 
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Figure 17: Absolute outer test set accuracy, averaged over ail trials and algorithms, with and 
without stratification for the outer set partition. 

Effect of stratification on standard deviation of testing performance, 
averaged over ail datasets, uslng a 1:1 partition ratio and sampllng 

Selection algorlthm 
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Figure 18: Standard deviation of outer test set accuracy, computed over ail trials for an 
algorithm, averaged over ail algorithms and datasets, with and wi~hout outer stratification. 
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Effect of stratification on standard deviation of testlng performance, 
averaged over ail Glass and Iris only, uslng a 1:1 partition ratio and 

sampling 

'0 ~ 
c f 0.06 -.,------------------------------------------.----------------------------------, o al ::1 i .5 8 0.05 +-------------------------------~~----------~ 
- 1il al 0.04-> GI C -8 .. oS! 0.03 
'a ~ .. 002 .... 5 . 
Il ::II;: 001 i 0 üi . 

~ .; 0 
u 

CJ No stratification 

• Stratification 

Figure 19: Standard deviation, computed as in Figure 18, for Iris and Glass only. 
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Figure 20: Stratification does not have an appreciable effect on running time. 
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4.6 Summary of recommendations 

Following the discussion above, the following methodology is 

recommended for evaluation of feature selection methods: 

• 

• 

Evaluate all feature selection methods by examining the classification 

accuracy of a classifier trained on the data shown to the selection 

algorithm (i.e., an outer training set), using the selected feature subset, 

evaluated on data unseen by the selection algorithm (i.e., an outer testing 

set). 

For small datasets, construct the outer testing and outer training sets using 

repeated sampling into two sets of equal size (i.e., al: 1 size ratio), where 

stratification enforces identical class proportions in the two sets. 

• For larger datasets, construct the outer testing and outer training sets using 

repeated sampling into sets with a testing-to-training size ratio of 4: 1 for 

medium sets and 9: 1 for large sets, as determined by practical time 

constraints. Employ stratification to ensure identical class proportions in 

both cases. 

• Employ lü-fold CV with stratification to guide the feature selection search 

within the outer training set. 

• Compare selection algorithms by comparing the classification accuracy of 

the outer testing set using the best feature subset found by each algorithm. 

This methodology is shown in pseudo code below: 

O. N ~ number of outer partitions (2 for small sets, 5 for medium sets, and 10 for large sets, as 
determined by practical time constraints) 
1. Repeat N times: 

1.1 Divide complete dataset D into N partitions, Dl ... DN, where the size of each 
partition, ID i l, is • 

approximately IDIIN, using stratification to preserve c1ass proportions in ail partitions. 
1.2 Define DOuterTest i ~ D - Di (That is, the outer testing set is the instances not in 

partition D j) 
1.3 Delme DOuterTrain i ~ Di 
1.4 Divide DOuterTrain i into ten folds, DOuterTrain i.l to DOuterTrain i,IO, where the size 
ofeach 

fold is approximately IDOuterTrain i 1/10, using stratification. 
1.5 Run the feature selection algorithm. Inside the algorithm, score each candidate feature 
subset 
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according to its IO-fold CV accuracy using the folds DOuterTrain i,l to 
DOuterTrain j,10. 

1.6. AccuracYi ~ classifier accuracy when trained on DOuterTrain j using the subset 
retumed by 

the feature selection algorithm, and evaluated on DOuterTest j. 
2. OverallAccuracy ~ average of ail Accuracy j , for i from 1 to N. 

Using the above methodology, one can compare average test set 

performance on subsets found by competing feature selection algorithms to 

choose which one performs better. Alternatively, one can compare average test set 

performance of the subset found by a feature selection algorithm to test set 

performance using the same classifier and aIl available features to assess whether 

feature selection is effective in improving accuracy for a particular dataset. 
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5 EXAMINING FEATURE SELECTION 

ALGORITHMS 

5.1 Will feature selection ever work? 

5.1.1 Questions raised by Reunanen 

Reunanen (2004) states that the ability of feature selection to improve 

classification accuracy has been greatly overstated in testing that uses poor 

evaluation methodology. Furthermore, his own tests suggest that feature selection 

offers no benefit to classification accuracy of new data for many standard 

datasets; in many cases, feature selection can select a feature subset that actually 

leads to worse classification accuracy for new data. 

Analysis of forward selection and sequential forward floating selection 

(SFFS) in an earlier paper (Reunanen 2003) foreshadows this finding: for a given 

datas et, Reunanen records the feature subsets visited by the feature selection 

algorithm throughout its search. He plots the estimated "quality" of each subset 

used by the search algorithm, as measured by the leave-one-out cross-validation 

(LOO CV) accuracy on the outer training set, versus the actual classification 

accuracy on the outer testing set. Figure 21 shows these values for each feature 

subset of size 10 evaluated by forward selection and SFFS. Wrapper selection 

methods assume a correlation between these two values: they operate by 

searching for the subset with the best CV accuracy. Their success therefore relies 

on the fact that a feature subset that allows better CV performance on the data 

used to guide the selection (i.e., the outer training data) will correspondingly lead 

to better classification accuracy on unseen data. However, Figure 21 shows that 

this is not the case: CV accuracy on the outer training set is in fact quite a poor 

predictor of performance on the outer testing set, even though Reunanen has used 

stratification to maximize s!milarity between the training and testing sets. The 

impact of tbis phenomenon on the overall performance of feature selection is 

apparent in Figure 22, which shows the outer training LOO CV accuracy and 
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outer testing accuracy for the best subset of each size visited by the two 

algorithms. There is little correlation between the se values for either algorithm. It 

is not clear that picking the subset with the best LOO CV accuracy will result in 

the best generalization performance. 
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Figure 21: This plot from Reunanen 2003 shows the LOO ev performance on the outer 
training set ("Estimated accuracy") versus the classification accuracy on the outer testing set 

("Accuracy for new data") for ail feature subsets ofsize 10 evaluated by forward selection 
(marked with 'x') and SFFS (marked with '0'), on the UeI Sonar dataset. 
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Figure 22: This plot from Reunanen 2003 shows the LOO ev performance on the outer 
training set and the classification accuracy on the outer testing set for the best feature 

("variable") subset of each size evaluated by forward selection (SFS) and SFFS on the UeI 
Sonar dataset. 
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In the 2003 paper, Reunanen draws the conclusion that employing 

algorithms such as SFFS that search intensively for subsets with higher CV 

accuracy is an inefficient use of time, since finding a subset with marginally 

higher CV accuracy often does not offer any benefit in increased classification 

performance on new data. In the 2004 paper, while stopping short of claiming that 

feature selection will never be effective, he observes that this phenomenon can 

undermine entirely the ability of wrapper selection methods to find subsets that 

result in a substantial or consistent increase in classification accuracy over the 

case in which aIl features are used. 

5.1.2 Creation ofnew plots 

If CV performance on the outer training data is in fact such a poor 

predictor of generalization performance, this bodes po orly for wrapper selection. 

However, Reunanen has only plotted the performance of subsets visited by 

specific search algorithms; it is possible that a correlation between training CV 

performance and testing performance over aU potential feature subsets is obscured 

when examining only the subsets visited by forward selection and SFFS. 

Additionally, the high variance of LOO CV (Kohavi 1995) could contribute to 

decreasing correlation between these values. U sing an evaluation method with 

lower variance, such as lO-fold CV, might improve these results. 

To further investigate whether properties of subsets visited by forward 

selection and SFFS or the use of LOO CV explain the lack of correlation, several 

new tests were performed. In these tests, all possible feature subsets were 

evaluated using both 10-fold CV on the outer training set and classification 

accuracy on the outer testing set. Because the number of possible subsets is 2d for 

d features, it was only feasible to perform this testing on datasets where the 

number offeatures was small (fewer than 10). Datasets with varying numbers of 

classes and instances that met this criterion were chosen from the ueI Repository 

(Newman et aL 1998) for use in these tests. 
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The datasets were split into outer training and outer testing sets according 

to the methodology chosen in Chapter 4. That is, stratification was used to split 

the datasets, and al: 1 outer testing-to-training size ratio was used for aH sets. 10-

fold CV with stratification was performed on the outer training set, and this score 

was compared to the classification accuracy on the outer testing set. A kNN 

classifier, using one nearest neighbor (k=1) with normalization was used. This is 

the same classifier used by Reunanen (2003; 2004). Figure 23 shows results for 

many of the datasets examined. 
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Figure 23: Plots of lO-fold CV accuracy on the outer training set versus classification 
accuracy on the outer testing set, for several standard UCI datasets, for exhaustive 

evaluation of ail feature subsets. The number of features, instances, and classes are indicated 
next to the dataset name, and the correlation c between training and testing accuracy is 

indicated beneath. The set of ail available features is marked with a black square. The other 
subsets are marked with grey diamonds. 
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5.1.3 Analysis ofplots 

The above plots demonstrate several phenomena that have strong 

implications for wrapper feature selection. First of aH, sorne plots do show an 

apparent correlation between the outer training CV performance and the testing 

performance. The plots for Diabetes, Glass, Tic-Tac-Toe, and Wisconsin Breast 

Cancer, for example, faU into this category. For these datasets, it is likely that a 

feature selection method that selects a feature subset with good CV accuracy will 

aHow good classification accuracy on new data. However, for many of these 

datasets, the classifier performance without selection is already optimal or nearly 

optimal in terms of classification accuracy on the outer testing set, implying that 

removing features is unlikely to increase classification accuracy. 

Other plots show very little correlation between the subset quality se en by 

the algorithm and the generalization performance for the subsets. The plots for 

Breast Cancer and Contraceptive Method Choice faH into this category. Even a 

perfect feature selection algorithm that always found the subset with optimal outer 

training CV accuracy would be unlikely to increase classification accuracy for 

new data. 

It is alarming that performance on one portion of the dataset may not be at 

aH predictive of performance on another portion of the dataset, even when 

stratification has been performed to preserve maximal class similarity between the 

two portions. Similar experiments were performed for varying values of k, for 

LOO CV on the outer training set, for a 1:4 testing-to-training size ratio, for 

different random partitions of the datasets into outer training and testing sets, and 

for a J48 decision tree classifier (see Witten and Frank 2005). None of the se 

modifications changed whether a dataset displayed correlation between the CV­

estimated accuracy and accuracy on new data. Analysis of the number of training 

instances, the number of features, and the number of classes reveals that neither 

these characteristics nor simple relationships between them are predictive of this 

phenomenon. For example, Breast Cancer and Glass both have 9 features and 

similar numbers of instances (286 and 214, respectively), and Glass has 7 classes 

(making this a "harder" problem than Breast Cancer, with 2 classes), but Glass 
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shows a high correlation while Breast Cancer does not. Analysis of why sorne 

datasets display high correlation between CV accuracy and classification accuracy 

of new data and others do not is a very interesting problern, and one that would 

further elucidate whether and why feature selection is likely to work for a 

particular dataset. However, such analysis lies outside the scope ofthis thesis. 

5.1.4 Examining correlation/or larger datasets 

The ability to draw rneaningful conclusions frorn the above plots is lirnited 

by the fact that the datasets analyzed above were chosen specifically because they 

have few features. It is not so interesting to perform autornatic feature selection on 

these datasets: as discussed in Chapter 2, feature selection offers the most 

appreciable benefits for problerns where rnany features are available. 

Therefore, tests sirnilar to those above were performed on datasets with 

greater nurnbers of features. Instead of searching exhaustively through the set of 

aU feature subsets, 500 subsets were randornly generated for evaluation. As 

above, the datasets were partitioned into outer testing and training sets of equal 

size using stratification. The plots in Figures 24a and 24b show the 10-fold CV 

accuracy on the outer training set plotted against the classification accuracy on the 

outer testing set. 

These plots show sirnilar behaviors to those in Figure 23. For sorne 

datasets, such as Audiology and Vote, there is a clear correlation between outer 

training CV accuracy and outer testing classification accuracy. Here, the set of aU 

available features is not usuaUy optimal, so feature selection seerns to have a good 

chance of irnproving performance. For other datasets, such as Ionosphere and 

Spectf, there is no clear correlation between outer training CV accuracy and outer 

testing accuracy. Interestingly, the Sonar datas et used by Reunanen (2003) to 

compare forward selection and SFFS is among this group. This suggests that the 

problernatic behavior exhibited in Figure 21 and Figure 22 rnay not be an artifact 

of these selection algorithms, but rather a problern with the Sonar dataset that 

would impair the success of any wrapper selection algorithm working to select 

features. 
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Figure 24a: Plots of 10-fold CV accuracy on the outer trammg set versus classification 
accuracy on the outer testing set, for several standard UCI datasets, for 500 randomly 

selected feature subsets. The number of features, instances, and classes are indicated next to 
the dataset name, and the correlation c between training and testing accuracy is indicated 

beneath. The set of ail available features is marked with a black square, and the other 
subsets are marked with grey diamonds. 
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Figure 24b: Plots similar to 24a, for addition al datasets. 

5.2 Evaluating the performance of algorithms 

The above results indicate that, at least for sorne of the datasets with 

greater numbers of features, there is a chance that a wrapper feature selection 

algorithm will select an optimal feature subset that leads to increased 

classification accuracy on new data. However, these results do not clearly imply 

that one feature selection method will outperform another, in general or for one of 

these datasets in particular. On one hand, the correlation between training 

performance and testing performance is often not so strong that there is a great 

increase (or any increase) in outer testing set performance when comparing the 

subsets with the absolute best and the top 10- or 20-best outer training CV scores. 

More intense search methods, such as SFFS or GAs, may select a feature subset 

with better training CV performance than a less intense method, but at no real 

added beneflt when classifying new data in practice. The greater time required by 

the se algorithms to perform the feature subset search is therefore wasted. On the 

other hand, there may be sorne property of a given selection algorithm that makes 
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it more likely to find the feature subsets that allow the best generalization 

performance. For example, backward elimination investigates many subsets with 

a great number of features, and forward selection visits many subsets with fewer 

features. If most of the well-performing subsets have nearly all features included, 

backward elimination might be a better choice. 

Tests were done on several datasets (listed in Table 2) for which the above 

evaluation of 500 random subsets indicated that feature selection could potentially 

improve accuracy. Several feature selection methods were chosen for 

investigation. The methods include a "Monte Carlo" random search, forward 

selection, backward elimination, RMHC, and GAs. These methods vary quite 

widely in terms of implementation complexity and resource requirements, with 

Monte Carlo and RMHC being quite simple and fast, forward selection and 

backward elimination requiring simple implementations but a moderate amount of 

time to fUll, and GAs requiring an elaborate implementation and a long time to 

mn. 

F or Monte Carlo search, 100 feature subsets were randomly generated and 

evaluated using CV performance on the outer training set. The best of these was 

chosen as the optimal feature subset. The performance of this algorithm serves as 

a baseline against which to compare the "real" search methods. Very good 

performance of subsets selected by this algorithm would indicate that any expense 

of implementing a "real" feature selection algorithm is wasteful. 

RMHC was set to terminate after 100 subsets were evaluated. Initial tests 

suggested that training CV accuracy of the selected subset did not appreciably 

improve after 100 iterations. In fact, in the tests below, RMHC converged to the 

selected subset by the 85th generation or earlier in 17 of the 25 trials. 

Sorne parameters of the GA were fixed: for example, weighted roulette 

selection (a selection method built into JGAP) was used for selecting 

chromosomes for crossover based on their fitness values, and the GA was judged 

to have converged when no improvement in the fitness of the fittest chromosome 

occurred over five generations. The tuning of mutation rate and population size 

was explicitly performed. Tuning used datasets for which feature selection was 
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somewhat likely or very likely to improve accuracy, based on the correlation plots 

generated above (Audiology, Glass, and Iris), as weH a version ofIris with two 

random features added (for which it was assumed that selection would be 

beneficial). For each ofthese datasets, population sizes of20, 50, and 80 were 

used in combination with mutation rates of .05, .1, .167, .2, and .25. A kNN 

classifier was used in aH tests, with k= 1. AH trials were repeated five times, each 

time with a new split of the data into outer training and testing sets. 

For each combination of dataset, population size, and mutation rate, the 

foHowing values were recorded: total number of chromosome evaluations before 

convergence, final outer training CV accuracy of the selected subset, and final 

testing accuracy of the selected subset. There were a wide variety of these values 

between trials, making it impossible to declare a c1early optimal combination of 

these parameters. However, in general, a mutation rate of .167 seemed to result in 

good final testing accuracy for populations ofboth 50 and 80 chromosomes. 

There seemed to be a slight increase in testing accuracy for 80 chromosomes, but 

the number of evaluations was nearly prohibitively high. Therefore, in the interest 

of the GA converging in a reasonable amount of time, a population of 50 and a 

mutation rate of .167 were chosen for subsequent tests in this section. 

5.3 Results 

Each selection method was fUll five times on each dataset using different random 

partitions of the data, using the evaluation guidelines established in Chapter 4. 

The partitions for each one of the five trials were the same across algorithms for a 

given dataset; that is, the outer training set for the first trial of forward selection 

for Credit was identical to the outer training set for the fIfst trial ofbackward 

elimination for Credit, and so on. The results appear in Table 2. Figure 25 

illustrates the se results graphicaHy, showing the average change in generalization 

performance using the feature subset selected by each algorithm for each dataset, 

averaged over the five trials. A positive change indicates that feature selection 

improved generalization performance on average. The standard deviation across 

trials is also indicated for the purposes of illustrating the variation due to different 
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executions of partitioning the data; this should not be interpreted as a 

conventional standard deviation rneasured across independent trials of the 

classifier, because the dataset rernains the sarne. 

Table 2: Average outer lO-fold CV accuracy (CV), outer testing accuracy (T), and number of 
evaluations (#), for each dataset and feature selection method. 

Dataset Monte Forward Backward RMHC GA None 
Carlo (100 eval.) 

(100 eval.) 
CV T CV T # CV T # CV T CV T # CV 

Credit 94.0 76.8 94.7 79.2 121 94.4 79.4 121 85.4 82.1 94.1 77.4 1766 79.4 
Derma- 98.1 92.1 99.6 88.9 596 99.7 94.2 596 96.2 93.0 98.9 87.9 1143 92.8 
tolo~ 

Hypo- 99.3 91.8 99.4 92.8 436 99.4 93.1 596 98.2 97.6 99.3 93.4 1355 91.1 
thyroid 
Primary 68.0 40.1 74.9 39.9 154 80.4 40.5 154 43.8 38.7 66.0 39.5 1627 37.4 
Tumor 
Vote 98.5 93.0 98.1 93.8 137 98.9 92.3 137 96.1 94.5 98.0 92.9 1241 92.7 
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Figure 25: The average absolute change in percentage of outer testing set instances classified 
correctly, using the feature subset selected by various algorithms, as compared to 

classification accuracy without feature selection. Results are for five trials for each 
combination of dataset and selection algorithm. Error bars show standard deviation across 

the five trials. 

These results show clearly that no wrapper feature selection rnethod 

performs well on all--or even rnost--ofthese datasets. On average, feature 

selection offers no benefits for the Credit, Dermatology, or Prirnary Turnor 

datasets. On average, feature selection does tend to increase performance on the 

Hypothyroid and Vote datasets, but the variation across trials is quite large. Only 
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GA on Hypothyroid and RMHC on Hypothyroid and Vote outperform the no­

selection case by more than one standard deviation. 

Figure 26 shows the average change in CV performance on the outer 

training set compared to the CV performance without selection, for each 

algorithm and dataset. It is apparent from contrasting Figure 25 and Figure 26 that 

using only the improvement in cross-validation accuracy on the outer training set 

overestimates the efficacy of feature selection, in accordance with the findings of 

Reunanen (2004). For aIl datasets, aIl feature selection methods have found 

feature subsets that outperform the no-selection case by more than one standard 

deviation, and often the improvement is quite larger. However, Figure 25 makes 

clear that the ability ofwrapper feature selection search algorithms to consistently 

find weIl-performing feature sets does not translate into an ability to improve 

performance on new data, in these cases. 

Effect of Selection Algorlthm on CV Performance by Dataset 
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Figure 26: The average absolute change in outer training CV accuracy, using the feature 
subset selected by various algorithms, as compared to outer training CV accuracy without 

feature selection. Results are for the same trials as Figure 25. 

It is not clear from these results whether any particular feature selection 

method is to be favored over the others, based on the generalization performance 

using the chosen feature set. Table 3 shows the change in outer training CV 

accuracy and the change in outer testing classification accuracy for each 

algorithm, averaged across results on aIl datasets. AlI algorithms but RMHC led 
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to a decrease in generalization performance on average. Very computationally 

intense search methods such as GAs may be ruled out for problems such as these; 

the high cost of running the algorithm is quite unlikely to be worth the small 

potential for improvement. Interestingly, RMHC has selected the feature subsets 

with the best generalization performance, when compared to the other algorithms, 

though it resulted in the least gain in outer training CV performance (even less 

than randomly evaluating the same number of feature subsets using Monte Carlo 

selection). RMHC also displayed the lowest variation in performance among 

trials, though as stated above, this variation was still quite high in comparison to 

the achieved performance gains. 

Table 3: Change in CV accuracy on the outer training set (ÔCV) and change in classification 
accuracy on the outer testing set (ÔT) for each algorithm, compared to using aU available 

fi t d U d t ea ures, avera2e across a a asets. 
Al20rithm ÔCV ôT 
Backward Elimination +15.9 ± 2.4 -0.1 ± 3.2 
Forward Selection +14.6±2.1 -1.1 ± 2.3 
GA +12.6 ± 1.9 -1.8±3.1 
Monte Carlo +12.9 ± 2.3 -1.2 ± 3.3 
RMHC +5.2 ± 1.9 +1.2 ± 2.2 

5.4 Implications of this work 

This chapter has shown that feature selection is often ineffective at 

improving classification accuracy on commonly used datasets, either because 

there is poor correlation between the measure of subset quality used by the 

selection algorithm and the actual quality of that subset in classifying new data, or 

because generalization accuracy is already near-optimal when an features are 

used. However, these findings are insufficient grounds for concluding that feature 

selection is unlikely to be useful for music classification, particularly because it is 

possible that many of the sets in the DCI Repository have features that experts 

have picked as relevant, or are from domains where acquisition of many features 

is too costly (e.g., medical records where there are practicallimits on how much 

data can be acquired from a patient). This is quite different from audio 

classification problems, in which arbitrarily many features may be acquired and 

expert knowledge may be less helpful in determining which are most relevant. 
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This chapter has also presented empirical evidence supporting Reunanen' s 

(2003) claim that less intense search methods may perform just as well as or 

better than more involved search methods for feature selection. This observation 

was shown to hold for those datasets where plots of CV accuracy on the outer 

training set against classification accuracy on a held-out outer testing set showed 

wrapper feature selection to have a reasonable chance of improving performance. 

The additional cost of running GAs, for example, is not worthwhile when 

analyzed against performance of simpler methods. 

The work in this chapter also suggests that scatter plots, such as shown in 

Figures 23 and 24, may be useful as a tool for understanding the behavior of 

wrapper feature selection for a given problem. Much further study would be 

necessary to discem why there is such low correlation between outer training set 

CV accuracy and outer testing classification accuracy for certain datasets. 

However, it is clear from such plots that feature selection is unlikely to work for 

certain problems, where the estimated quality of feature subsets that it uses to 

guide its search is not predictive of generalization quality. 
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6 FEATURE SELECTION FOR THE GENRE 

PROBLEM 

6.1 Introduction 

The results in Chapter 5 indicate that wrapper feature selection is not 

guaranteed to find a feature subset that results in better classification accuracy on 

new data than classification using all available features. However, many of the 

classification problems used in the experimentation in Chapter 5 and in other 

papers on feature selection are different from musical genre classification: in 

musical genre classification, an arbitrarily large number of features may be 

extracted from the audio data, and domain knowledge is not necessarily helpful in 

choosing which features are best for classification. It therefore remains an 

interesting problem to discover whether feature selection may offer benefits to 

musical genre classification. In this chapter, feature selection is fUll on a musical 

dataset that has been commonly used for genre classification, and the results are 

compared to classification without feature selection and classification with an 

alternative dimensionality reduction technique. 

6.2 Testing setup 

For the following tests, a kNN classifier with k=1 was used. As discussed 

previously, kNN offers the benefits ofbeing a commonly used, well-understood 

classifier, and it has been applied to music classification successfully in the past 

(e.g., Fujinaga 1998). The performance ofkNN is sufficiently fast to use it in 

repeated training and testing cycles, such as occurs in wrapper feature selection. 

Furthermore, many studies on feature selection employ kNN (e.g., Reunanen 

2003,2004; Wettschereck 1997; Kohavi et al. 1997). k=1 was chosen because this 

is a common choice (e.g., Reunanen 2003, 2004; Kohavi et al. 1997). While there 

is no standard "best" value of k, it is possible that other values of k would result in 

more accurate classification of the genre dataset, and a value could be chosen for 
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the outer training data before app1ying feature selection. However, the goal of 

these tests was to evaluate the effects of feature selection rather than specify a 

complete optimal classification strategy. 

It is also possible that another classifier, for example a support vector 

machine (SVM), would perform equally well as or better than kNN on this 

dataset. However, most other classifiers (including SVM) have more parameters 

than kNN that must be set, and they can be much slower to train and test. The 

search for a good classifier for musical genre is an interesting problem that is 

outside the scope of this thesis; one benefit of investigating wrapper selection is 

that many of the results ofthis work can bé applied to musical genre classification 

using any classifier. 

The data used in these tests cornes from the Magnatune collection 

(Magnatune 2006). As discussed in Chapter 2, this collection has been previously 

used for genre classification, and there are published results for severa1 algorithms 

on a subset of the dataset. These tests used the entire Magnatune collection 

available in January 2006, which included 5285 songs from 23 genres, 

summarized in Table 4 below. Each song in the collection is encoded in MP3 

format, in stereo, with a sample rate of 44.1 kHz and a bit rate of 128 kbps. The 

songs were down-sampled to 16 kHz before extracting features. 

Table 4: Distributi f 'M on 0 songs III t datab agna une b ase, IY Renre. 
Genre # SonRs Genre # SonRs Genre # Songs 
Electronic 658 Metal 68 Ambient 148 
Classical 2185 Pop 54 Trip-Hop 7 
Rock 594 Other 24 Hard Rock 52 
Celtie 41 Funk 15 Retro 14 
Ethnie 691 Punk 101 Trance 9 
Jazz 75 Techno 10 Folk 71 
Blues 120 Aeid 9 Punk Rock 37 
NewA~e 273 Industrial 29 

The feature set extracted from the collection is summarized in Table 5 

be1ow. Fourteen standard audio features are used, and three ofthese (MFCC, 

LPC, and Method of Moments) have multiple dimensions, resulting in 39 distinct 

features being measured frame-by-frame. The average and standard deviation of 
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each of these values is calculated over an 1024-sample windows in each song, 

resulting in a single MP3 being represented by 78 real values. These time- and 

frequency-domain features range from simple (e.g., Zero Crossings) to complex 

(e.g., LPC) and include features that are easily interpretable musically (e.g., 

Strength of Strongest Beat) as well as features whose relationship to the musical 

signal is less transparent (e.g., Zero Crossings). The feature extraction took two 

days for a1l5285 songs, and the stored features required 43 MB. 

Table 5: Features extracted from the Magnatune collection for the genre classification 
problem, with the number of dimensions and the description supplied by jAudio (McEnnis et 

al. 2005). 
Feature # Description 
Spectral Centroid 1 The center of mass of the power spectrum. 
Spectral Rolloff 1 The fraction of bins in the power spectrum at which 85% of the power 
Point is at lower frequencies. This is a measure of the right-skewedness of 

the power spectrum. 
Spectral Flux 1 A measure of the amount of spectral change in a signal. Found by 

calculating the change in the magnitude spectrum from frame to frame. 
Compactness 1 A measure of the noisiness ofa signal. Found by comparing the 

components of a window's magnitude spectrum with the magnitude 
spectrum ofits neighboring windows. 

Spectral 1 The standard deviation of the magnitude spectrum. 
Variability 
RMS 1 A measure of the power of a signal. 
Fraction of low 1 The fraction of the last 100 windows that have an RMS less than the 
energy windows mean RMS of the last 100 windows. This can indicate how much of a 

signal is quiet relative to the rest of the signal. 
Zero Crossings 1 The number of times the waveform changes sign. An indication of 

frequency as weil as noisiness. 
Strongest Beat 1 The strongest beat in a signal, in beats per minute, found by finding the 

strongest bin in the beat histogram. 
Beat Sum 1 The sum of ail entries in the beat histogram. This is a good measure of 

the importance of regular beats in a signal. 
Strength of 1 How strong the strongest beat in the beat histogram is compared to 
Strongest Beat other potential beats. 
MFCC 13 Mel-frequency cepstral coefficients. 
LPC 10 Linear prediction coefficients calculated using autocorrelation and 

Levinson-Durbin recursion. 
Method of 5 Statistical method of moments of the magnitude spectrum. 
Moments 

In the tests ofChapter 5, RMHC was the best-performing feature selection 

algorithm for the given classification problems. Additionally, it was found to 

converge to a reasonable solution quite quickly (usually in fewer than 100 

iterations) for a variety ofproblems. Therefore, RMHC was chosen to apply to the 
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musical genre classification problem, and 100 iterations were used, as in Chapter 

5. Forward selection was also applied in order to compare with RMHC. The 

number of iterations of forward selection is fixed for a given number of features, 

and forward selection evaluates far more than 100 candidate feature sets for the 

given dataset (with 78 features). Therefore, ifforward selection were to 

outperform RMHC, it could suggest that RMHC would need more iterations to 

converge to an acceptably good subset for this problem. On the other hand, if 

RMHC were to outperform forward selection, it would underscore the capability 

of very simple and fast feature selection algorithms to outperform more 

complicated approaches. 

Both feature selection algorithms were evaluated according to the 

evaluation methodology laid out in Chapter 4. Because of the large size of the 

dataset, it was split into an outer testing and an outer training set with a 9: 1 

testing-to-training size ratio. The split used stratification to maintain class 

proportions. Each algorithm chose a feature subset using lO-fold cv with 

stratification on the outer training set, and the performance of the finally chosen 

subset was evaluated by training the kNN on the outer training set and then 

examining the classification accuracy on the outer testing set. The data was 

partitioned into outer training and testing sets five times, and each algorithm was 

run and evaluated once for each pair of outer training and outer testing set. Again, 

it should be noted that repeating this procedure merely illustrates the amount of 

variation in results on these datasets that is attributable to the particular 

partitioning of the dataset. The five repetitions should not be treated as "trials" 

from which to infer about the "expected" behavior of the algorithms, because the 

same dataset is used across repetitions. 

6.3 Results of evaluating feature selection 

6.3.1 Results using methodology ofChapter 4 

Table 6 displays the results of feature selection for the Magnatune dataset 

for the evaluation discussed above. Both RMHC and forward selection were able 
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to consistently find feature subsets that resulted in better generalization accuracy 

than using aIl 78 extracted features. 

Table 6: ResuIts of feature selection, for Cive trials, using kNN for genre classification of the 
Magnatune collection. For each selection method, the table shows the percentage CV 

accuracy on the outer training data using the chosen subset, the classification accuracy on 
the outer testing data using the chosen subset, the number of subsets evaluated by the 

selection algorithm during its search, the time to run the selection algorithm for each trial, 
and the number of features in the chosen subset . 

Selection CV % on Outer Outer Testing % # Time # Features 
Method Training Accuracy Evaluations (min.) Selected 
None 52.3 ± 1.5 54.4 ± 1.3 - - 78 
RMHC 62.8 ± 3.5 61.6 ± 2.0 100 7.4 41.8 ± 2.9 
Forward 97.1 ± .3 59.0 ± l.l 3082 217.6 28.8 ± 9.5 

RMHC was able to complete its 100 iterations in fewer than 10 minutes 

for each of the five trials. In most of the trials, the algorithm stably converged on 

its finally chosen subset weIl before the 100th iteration, with the algorithm 

converging to the finally chosen subset in 60.8 iterations on average. Figure 27 

shows the CV accuracy of the best subset found in each iteration, averaged across 

aIl trials; from this plot, it appears that 100 iterations is indeed a reasonable 

number. 

Convergence of RMHC 
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Figure 27: The average outer training CV accuracy by iteration for RMHC. 

Forward selection took approximately 30 times longer to run than RMHC 

and did not produce better generalization performance. This is interesting given 

forward selection's ability to consistently find a feature subset with much higher 
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CV perfonnance on the outer training data. These results suggest that it is possible 

to find feature subsets whose high CV perfonnance does not correspond to high 

generalization accuracy, a phenomenon that was observed for many datasets in 

Chapter 5. Evaluation of CV accuracy on the outer training set and classification 

accuracy on the outer testing set for 1000 randomly generated feature subsets 

shows that the correlation between these values is rather poor (0.11). Figure 28 

pro vides of a plot of the observed perfonnance, along with marks indicating the 

perfonnance with no selection, with forward selection, and with RMHC. Like 

most of the UCI datasets used in Chapter 5, it seems that the poor correlation of 

CV perfonnance and generalization accuracy for this dataset leaves nothing to be 

gained in exchange for the additional expense of perfonning more intensive 

searches for feature subsets. 
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Figure 28: Outer training CV accuracy and outer testing classification accuracy for 1000 
randomly chosen feature subsets. The performance using aU features, the features chosen by 

forward selection, and the features chosen by RMHC are also indicated. 

6.3.2 McNemar's test 

Salzberg (1997) suggests the use of the binomial test or McNemar's test 

(Everitt 1977) to evaluate one classification method against another in a more 

statistically meaningful way than a simple comparison of classification accuracy. 

Because such tests compare only two algorithms to each other, they were not used 

in previous comparisons of multiple feature selection algorithms. However, here it 

is possible to evaluate whether RMHC and forward selection significantly 
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improve classification accuracy for the outer testing set, compared to using no 

feature selection. 

McNemar's test uses the X2 distribution to test for significance oftwo 

algorithms (e.g., a kNN with aIl features and a kNN with a reduced feature set 

selected by RMHC) having the same accuracy. The statistic is computed by the 

foIlowing equation (Salzberg 1997): 

x2 = (Is- 11- 1)2 

s+ 1 

Here, sand f are computed by enumerating aIl the instances in the outer testing set 

and taIlying the number of instances where one algorithm classifies the instance 

correctly and one algorithm classifies the instance incorrectly. sis the number of 

these cases in which the first algorithm is correct, andfis the number in which the 

second algorithm is correct. (Note that the resulting numeric value is not affected 

by which algorithm is chosen for sand which for f) 

Because this test compares single trials of each algorithm, the results of 

the first trial above were used to compute the McNemar's test statistic for RMHC 

and no selection, RMHC and forward selection, and forward selection and no 

selection. In aIl three cases, McNemar's test shows the differences between the 

algorithms to be significant atp < .01. 

6.4 Further analysis 

These results imply that feature selection can improve classification 

accuracy for genre classification. However, further analysis compared the gain in 

accuracy possible with feature selection to the gain in accuracy possible with 

another dimensionality reduction technique. Principal components analysis (PCA) 

is a technique for transforming the coordinate system of the feature space of a 

dataset, such that each new feature is expressed as a linear combination of the 

original features, and it can be used for dimensionality reduction (Witten and 

Frank: 2005, 306-9). The fIfst axis of the new feature space is placed to 

correspond to the direction of maximal variance in the data, and the next axis is 
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placed in the next orthogonal direction with the most variance, and so on. After 

the variance along remaining dimensions drops below sorne predetermined 

threshold, the remaining dimensions can be discarded. This results in a reduction 

in dimensionality of the new feature space, compared to the original feature space. 

While PCA is perhaps less intuitive and less straightforward to implement than 

many wrapper feature selection methods, it is easy to apply in practice. It is built 

into Weka, and it can run in a fraction of the time of wrapper feature selection. 

Testing of PCA used the same five partitions of the dataset as the feature 

selection tests above. PCA was applied using the outer training data to perform 

the dimensionality reduction. The resulting remapping into the new feature space 

was then applied to the outer testing data. The lü-fold CV accuracy on the 

(dimensionally reduced) outer training data and the classification accuracy of the 

(dimensionally reduced) outer testing data (after training on the outer training 

data) were then recorded. Table 7 shows that applying PCA in this manner boosts 

generalization accuracy to a similar degree as RMHC, but with less variability in 

accuracy and in a fraction of the runtime. Additionally, PCA results in a greater 

reduction of dimensionality (to 32.8 features on average, as compared to 41.8) and 

displays less variability in the number of features than RMHC. 

Table 7: Results of dimensionality reduction using PCA, for five trials, using kNN on genre 
classification of the Magnatune collection, for comparison with feature selection results in 

Table 6 
Dimensionality %CVon % Testing # Time # Features 

Reduction Outer Accuracy Evaluations (min.) Selected 
Method Training 

PCA 59.7 ± 1.5 62.0 ± 0.5 - 0.3 32.8 ±.4 

6.5 Discussion of the benefits and drawbacks of feature selection 

6.5.1 Accuracy 

The above results suggest that feature selection can potentially improve 

generalization accuracy for genre classification. Using RMHC, an increase of 

about seven percent in classification accuracy is possible for this datas et and 

feature set. However, PCA is an alternative method that requires no special 

infrastructure to run, that does not require any tuning of parameters, and that takes 



- 95 -

a fraction of the time of any wrapper feature selection method studied in this 

the sis. This suggests that, if an increase in classification accuracy on new data is 

the sole goal, wrapper feature selection should not be considered as the only or 

best means of improving performance. 

Using feature selection (or PCA), the genre classification method 

presented here compares modestly with the results of the most recent genre 

classification contest, MIREX 2005 (Downie et al. 2005). The classification 

results here cannot be directly compared to MlREX, which used only a subset of 

the Magnatune collection. Additionally, the training set used in MIREX was 

substantially larger than the training set used in this work (1005 songs, as 

compared to 529), which could account in part for higher relative generalization 

ability of algorithms fUn on the contest dataset. N evertheless, the classification 

method here outperforms four of the thirteen MIREX contestants when 

considering raw classification accuracy. The performance of the two best MlREX 

algorithms (69.5% and 68.7% accuracy) still may be beyond the reach ofkNN 

using these features, regardless of the feature selection or dimensionality 

reduction algorithm employed. However, it seems reasonable that employing 

more sophisticated features and modeling techniques like those used by the 

winning algorithms (e.g., aggregating feature measurements at an intermediate 

time scale of several seconds rather than only computing the average and standard 

deviation of feature values over the entire song; see Bergstra et al. 2005) could be 

combined with feature selection to achieve even more competitive performance. 

6.5.2 Time and space 

6.5.2.1 Classification time 

Feature selection does offer clear benefits for classification time. To 

classify a new instance, a kNN classifier first calculates the distance between the 

new instance and aIl training instances in the feature space. The time for this 

distance calculation increases linearly with the number of features present. The 

classification is also influenced by the number of instances in the training set (the 

closest k instances must be chosen after the distance is calculated). However, 
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Table 8 shows that for a fixed training set size, reducing the number of features 

does appreciably decrease classification time. This table was created by 

c1assifying 5000 instances using a training set of size 5000, then extrapolating to 

the expected time needed to classify 15,000 songs (the size ofa 60GB iPod) and 

2,000,000 songs (the size of the iTunes database). Using feature selection or 

another type of dimensionality reduction can therefore make it more practical to 

classify a greater number of songs or to increase the size of the training set. 

Table 8: Estimated classification time by dataset size and number of features, for a training 
set of size 5000, usi~ a Dua12.7GHz PowerPC G5 with 4GB RAM. 

Algorithm # Features Minutes to classify Hours to classify 
15,000 songs 2,000,000 sones 

None 78 16.3 36.1 
RMHC 42 9.2 20.5 
PCA 33 7.3 16.1 
Forward Selection 29 6.4 14.2 

6.5.2.2 Feature extraction time and feature storage space 

Feature selection can also lead to reduced feature extraction time and 

storage space. PCA offers a reduction in storage space, but not in feature 

extraction time, because the same number of original features need to be 

calculated before the instances are remapped into the lower-dimensional feature 

space. Table 9 shows the approximate relationship between the number of 

features and the feature extraction time and feature storage space. Because of the 

variation in extraction time between different types of features, the feature 

extraction time in practice will vary according to the types of features selected. 

Most of the time spent by jAudio to extract features is in fact spent on decoding 

the MP3 files, a step that takes the same amount oftime regardless of the number 

of features extracted. (AIso, it is likely that large collections such as iTunes 

already have decoded versions of an songs, so this step is not necessary.) 

Therefore, to highlight the difference feature selection can make, Table 9 shows 

only the time saved. 
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Table 9: Estimated extraction time savings and absolute storage space by dataset size and 
number of features. Extraction time is based on the sa me PowerPC as Table 8 and assumes 

that the removed features take the same time to compute, on average, as the features that are 
kept. It is also assumed that the song lengths are equal, on average, to the songs in the 

Maenatune dataset. 
Algorithm # 15,000 sones 2,000,000 sones 

Features Hours saved to Space to store Days saved to Space to store 
extract features features extract features features 

None 78 0 62.6MB 0 8.2GB 
RMHC 42 7.11 48.4 MB 39.5 6.3 GB 
PCA 33 0 44.8MB 0 5.8GB 
Forward 29 9.67 43.2 MB 53.7 5.6GB 
Selection 

6.5.2.3 Cost ofperforming selection 

The reduction in feature extraction time and classification time should be 

considered in relation to the cost of the time needed to run feature selection. As 

discussed in Chapter 5, the time to run feature selection is highly dependent on the 

selection algorithm. GAs, for example, may require several thousand feature 

subset evaluations before convergence. However, the work in this thesis has 

shown very simple methods for feature selection to work more effectively than 

more intensive methods, and RMHC offers good performance with just 100 

evaluations. U sing a kNN classifier and a training set of the size used in the 

experiments in this chapter (529 songs), feature selection can run in under 10 

minutes. Even for an outer training set of 5000 songs, feature selection using 100 

iterations of RMHC can run in a few hours. The cost of performing feature 

selection is therefore generally outweighed by the potential savings in feature 

extraction and classification time for datasets of even 15,000 songs. Of course, 

feature selection' s cost would vary if a different classifier were used. 

Additionally, PCA takes very little time to perform while offering a similar 

reduction in classification time as feature selection. 

6.5.3 Other benefits 

Feature selection can lend insights into the relationship between audio 

features and musical categories (such as genre labels). Ifa subset offeatures leads 

to very good generalization performance, this suggests that these features are 

highly informative of the class to be leamed. (One cannot draw the inverse 
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conclusion, that an excluded feature is irrelevant, because such a feature may be 

redundant with a feature included in the chosen subset.) McKay and Fujinaga 

(2005) used their finding that features relating to instrumentation are highly 

beneficial in genre classification of MIDI to motivate discussion of the 

relationship of timbre and instrumentation to genre. One could similarly explore 

the features selected for discriminating among particular genres for audio 

classification; for example, if MFCCs are consistently included in feature subsets 

that lead to good genre classification of new songs, this suggests that the timbraI 

information captured in this feature is relevant to human genre labels. 
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7 A NEW, RELATED APPROACH TO 
OPTIMIZATION OF A CLASSIFICATION-BASED 

MUSIC MANAGEMENT SYSTEM 

7.1 Introduction 

This chapter describes work perfonned at Sun Microsystems during a 

three-month research intemship working on the Search Inside the Music (SITM) 

project. An initial goal of the intemship was to apply feature selection to improve 

the accuracy of the geme classifier driving the SITM music collection 

visualization and playlist generation system. Preliminary work revealed that 

feature selection and other classification optimization techniques were able to 

improve classification accuracy, but higher classification accuracy did not 

necessarily translate into subjectively better perfonnance of the overall system. 

Subsequent work focused on the development of a new optimization technique 

that works similarly to wrapper feature selection, that aims to maximize an 

objective evaluation function while searching through dimension subsets, but that 

operates on a "similarity space" instead of a feature space. Experimentation 

revealed that this approach can potentially improve subjective perfonnance, and 

do so in a manner that scales well with collection size. 

7.2 The original system 

The architecture of the original SITM system appears in F!gure 29. This 

system is discussed in detail in West and Lamere (forthcoming); only an overview 

of its functionality appears here, as the author did not contribute to design or 

implementation of the original system. The frrst component of this system is a 

feature extractor that extracts audio features from a collection of songs stored as 

MP3 files. A classifier is then trained to perfonn either geme or artist 

classification using sorne subset of these songs. Then, the trained classifier 

classifies all songs in the collection. 
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Figure 29: The original SITM system for music collection visualization and playlist 
generation. 

The classifier component differs slightly from classifiers discussed thus far 

in this thesis, in that the output of classifying a new song n is not a single class 

label, but a vector of degrees of support s (n) = (d/ n ),d2(n), ••• ,d?») oflength C, the 

number of available class labels. For example, if the classifier is trained to learn 

genre from a training set containing the genres "Rock," "Jazz," and "Classical," 

then the output of the classifier will be a vector s (n) = (dR~lk,d/;;,dc~';2sical)' where 

dR~"lk' for example, indicates the support for the class "Rock." Each vector 

element is interpretable as the relative support for the claim that the classified 

song belongs to the corresponding genre. For example, a reasonable classifier 

output for ajazzlrock fusion piece might look like (1.3, 1.1, .20). (In West and 

Lamere's original system, the degrees of support are constrained to sum to 1, so 

they are interpretable as probabilities ofmembership in each genre.) 

One may use the C degrees of support for each song as coordinates 

mapping the song to a point in a C-dimensional space S=TIR c, where each 

dimension corresponds to a class label of the training set (such as "Rock"). Based 

on the assumption that similar-sounding songs will be near each other in this 

space, and different-sounding songs will be further from each other, one can 
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compute dissimilarity between two songs n and m using a distance metric in this 

C-dimensional "similarity space": 

D(n,m) = Is (n) -s (m)1 = ~Id/n) - d/mf . 
i-\ 

This objective measure of musical dissimilarity can then be used to 

generate playlists of the kmost similar (least dissimilar) songs to a selected song, 

by finding the k nearest neighbors in the similarity space. Multidimensional 

scaling (KruskaI1964) can be used to project the similarity space onto two or 

three dimensions, for the purposes of displaying a two- or three-dimensional 

visualization of the music collection in which similar songs appear close together 

(one such visualization appears in Figure 30). A user can interact with the 

collection via this visualization by clicking on a point to play the corresponding 

song. 

Note that this use of MDS is fundamentally different from other common 

uses in other fields, such as psychology. For example, the algorithm's positioning 

of dimensional axes is ultimately meaningless beyond the extent that it facilitates 

visualization of the data. Other techniques could be used to project the data into a 

visualization space, but the author of this thesis was not involved in the 

construction of the original system and the choice to use this particular technique; 

therefore a discussion of other candidate techniques is not relevant here. 

., 
, . :.~ , ~ 

Blues 
Classical' 

Jazz • 
Rock, 

Figure 30: A visualization produced by the original SITM system using a CART genre 
classifier with 64.7% accuracy, for four Magnatune genres. 
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West and Lamere's system is not the first system to use objective, 

distance-based measures of similarity in this way. Logan and Salomon (2001), for 

example, compute similarity between two songs by applying a distance metric to 

clustered MFCC features. Aucouturier and Pachet (2002) model MFCC features 

as a mixture of Gaussians and compute the similarity by applying a distance 

metric between the Gaussians. Both groups of researchers use these similarity 

measures to create playlists of similar songs. According to West and Lamere, a 

drawback of previous approaches is that computing distance metrics between 

representations of songs' features results in timbrally alike (but otherwise very 

different) songs being identified erroneously as similar. For example, a classical 

lute piece is timbrally similar to an acoustic guitar rock song, but listeners would 

likely not identify such pieces as similar overall because of the stark difference in 

genre. West and Lamere claim that the classifier component of their system, 

which can be trained to discriminate between genres, can circumvent this type of 

problem and therefore produce playlists and visualizations based on a more 

natural concept of similarity. 

7.3 Initial optimization experiments 

The focus of the intemship was to improve on the subjective quality of 

playlists and visualizations generated by the existing system outlined above. An 

initial goal was to investigate ways to improve the classification accuracy of the 

classifier component of the original SITM system described above, based on the 

assumption that improving classification accuracy would likely improve the 

quality of the playlists and visualizations. One variant of the original SITM 

system employed a Fisher's Linear Discriminant Analysis (LDA) classifier, which 

classified a subset of the Magnatune collection with 49.6% accuracy, and another 

variant employed a Classification and Regression Tree (CART) classifier, which 

obtained 64.7% accuracy. Results of the MIREX 2005 genre contest (Downie) 

suggested that higher accuracy was possible. 

Initial optimization experiments involved varying the type of features, 

varying the size of the training set, experimenting with different classification 
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algorithms and different classifier parameters, and applying feature selection and 

PCA for various combinations of feature sets and classifiers. This experimentation 

was perfonned using the Autonomous Classification Engine (McKay et al. 2005). 

Table 10 provides an overview of the classification accuracy scores resulting from 

a few of the se experiments. 

Table 10: 10-fold CV accuracy for genre classification of a subset of the Magnatune 
co Il t' bt' d' . 't' 1 t' .. . ec Ion, 0 ame m ml la opllmlZatIon expenments. 

Classifier Classifier Configuration Dimensionality 10-fold 
Reduction CV 

kNN k=1, Euclidean distance metric None 70.2 
kNN k=1, Mahalanobis distance metric None 19.6 

(see Duda et al. 2001) 
SVM linear kemeI None 67.3 
SVM polynomial kemel, p=3 None 71.9 
Naïve Bayes Gaussian None 57.3 
kNN k= 1, Euclidean distance metric Feature selection 73.2 
SVM linear kemeI Feature selection 63.6 
SVM polynomial kemel, p=3 Feature Selection 69.8 
kNN k= 1, Euclidean distance metric PCA 66.9 
SVM linear kemel PCA 68.1 
SVM polynomial kemel,p=3 PCA 66.9 
CART None 64.7 
LDA None 49.6 

In general, other results were consistent with those in Table 10, in that 

feature selection and PCA offered benefits for sorne classifiers and classifier 

configurations, and not for others. kNN and SVM classifiers typically perfonned 

well with certain parameters; for example, the Euclidean distance metric for kNN 

and the polynomial kerne1 with an exponent between 2 and 6 for SVM 

consistently led to high classification accuracy. Other classifiers (e.g., neural 

networks and decision trees) either tended to have lower classification accuracy or 

take so long to train and test that they were not practical for repeated experiments. 

Varying the types of features and training set size did impact classification 

accuracy to a degree, but discussion of these experiments lies outside the scope of 

this thesis. 

Results of these initial experiments indicated that several approaches to 

improving the accuracy of the original classifier component were effective. 

However, surprisingly, subjective evaluation of the visualizations and playlists 
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created from the similarity spaces produced by the "optimized" classifier 

component revealed that they were typically not superior to those produced by the 

original system using the LDA and CART classifiers. 

For example, one classifier that had very high accuracy was an SVM with 

a polynomial kernel (polynomial degree 3). This classifier obtained 71.9% 

accuracy, but the visualizations generated from the similarity space created by this 

classifier were consistently po or (see Figure 31). The SVM was so accurate at 

identifying the genre of each piece in the collection that it typically assigned a 

very high degree of support for the correct genre and negligible degrees of support 

to all other genres. This resulted in pieces from a genre being very tightly 

clustered together, both in the similarity space and in the two-dimensional MDS 

projection of the similarity space. 

a. :?j (; 
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Figure 31: A visualization produced by a modified system using an SVM genre classifier 
with 71.9% accuracy, for four Magnatune genres. 

One negative effect of this clustering is that there is no organization within 

genres. In the similarity space generated by the original CART classifier, similar 

pieces within a genre tend to cluster together; for example, many classical 

orchestral pieces may inhabit one part of the similarity space, and many classical 

vocal pieces may inhabit another part of the similarity space (though both remain 

a part of a larger cluster of classical music). It is reasonable that, in classifying a 

classical vocal piece, for example, the CART classifier may output moderate 

degrees of support for vocal-heavy genres such as folk, pulling these pieces 
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toward a different area of the similarity space than non-vocal classical music. In 

contrast, for most classical pieces, the SVM classifier assigns equaHy low degrees 

of support for aH non-classical genres. The resulting lack of organization prohibits 

the visualization from being use fuI for browsing within a genre. 

Another negative effect of this clustering is that there is no organization 

between genres. In the similarity space generated by the original CART classifier, 

the jazz pieces tend to be closer to both the blues and rock pieces than to the 

classical pieces, and this relationship is also apparent in the two-dimensional 

visualization of Figure 30. However, there is no such order in the SVM-produced 

similarity space, nor in the visualization ofthis space; the pieces ofa given genre 

tend to be equaHy far in the similarity space from the pieces of aH other genres. 

This is explainable by the fact that for a jazz piece, for example, the CART 

classifier tends to output a high degree of support for jazz, moderate degrees of 

support for rock and blues, and a low degree of support for classical. The SVM 

classifier outputs only a high degree of support for jazz, and aH other degrees of 

support are minimal. The SVM visualization is less informative and useful than 

the CART visualization, because it is incapable of suggesting meaningful 

relationships between genres. 

The tight clustering in the SVM-produced similarity space also negatively 

impacts playlist generation. Due to the highly accurate nature of the classifier, 

playlists produced from this space tend to be uniform in genre. However, pieces 

on these playlists are not necessarily similar otherwise, due to the lack of 

organization within genre clusters. Table Il shows an example playlist generated 

from the CART similarity space, and Table 12 shows an example playlist 

generated from the SVM similarity space using the same query song. The CART 

playlist is somewhat cohesive in style and instrumentation, but the SVM playlist 

is cohesive only in terms of genre. 

Applying feature selection and PCA tended not to dramaticaHy change the 

subjective quality of the visualizations and playlists generated from a similarity 

space created by a given classifier. Changing the classifier (e.g., kNN versus 

SVM) or classification problem (e.g., artist versus genre) used to pro duce the 
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similarity space tended to have more striking effects on the subjective nature of 

the playlists and visualizations. 

T able 11: Playlist produced using a similarity space created by CART (64.7% accuracy). 
# Track Artist Style 
1 Vivaldi: Laudate Dominum, La Serenissima Virtuoso Baroque violin 

RV 600 (Track 12) sonatas 
2 Uccellini: La Tarantola Altri Stromenti lin century Baroque ensemble 
3 Mozart: Oboe Quartet in F American Baroque Baroque and Classical chamber 

after K496 / III. Alle~retto music 
4 Vivaldi: Laudate Dominum, La Serenissima Virtuoso Baroque violin 

RV 600 (Track 9) sonatas 
5 Vivaldi: Concerto in F, RV La Serenissima Virtuoso Baroque violin 

292/ 1. Allegro - adagio - sonatas 
allegro - adagio 

6 Vivaldi: Concerto No. 4 in g American Baroque Baroque and Classical chamber 
minor, RV297 music 

7 Vivaldi: Concerto in F, RV La Serenissima Virtuoso Baroque violin 
292 / II. Allegro sonatas 

8 Mozart: Oboe Quartet in F American Baroque Baroque and Classical chamber 
after K496 / II. Andante mUSIC 

9 Osward: Gavotta Da Camera Celtic Renaissance/Baroque 
ensemble 

10 J.S. Bach: BWV 1041 / II. Lara St. John Baroque violin concerto 
Andante 

Table 12: Playlist produced using a similari~space created by SVMJ71.9% accuracy). 
# Track Artist Style 
1 Vivaldi: Laudate Dominum, La Serenissima Virtuoso Baroque violin sonatas 

RV 600 (Track 12) 
2 J.S. Bach: Concerto in G Op. 7 Sonnerie Baroque chamber music 

No. 6 
3 Diletsky: Came into the church Kyiv Chamber Chants of the Ukrainian 

Choir Orthodox Church 
4 Chambonnieres: Suite in g Hanneke van Baroque harpsichord 

minor Proosdij 
5 Vivaldi: Laudate Dominum, La Serenissima Virtuoso Baroque violin sonatas 

RV 600 (Track 5) 
6 Crecquillon: Bakfark un gay Jacob Heringman Renaissance lute 

bergier 
7 Milan: Pavana (no.1) Jacob Heringman Renaissance lute 
8 Chambonnieres: Suite in C Hanneke van Baroque harpsichord 

major Proosdij 
9 Corelli: Trio Sonata Op. 2 No. Brook Street Band Baroque ensemble 

1 
10 Milan: Fantasia 26 Jacob Heringman Renaissance songs 

and Catherine King 

Ultimately, however, a thorough comparison of over sixty similarity 

spaces produced using different methods revealed that the classification accuracy 
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was not at aH predictive of the subjective quality of playlists and visualizations. It 

was therefore decided not to seek further improvement of classifier accuracy via 

feature seleCtion, classifier tuning, or other means. 

7.4 Experiments with a new, related optimization technique 

As discussed in previous chapters, wrapper feature selection methods are 

essentially search methods that use the quality of feature subsets, as determined 

by a "black-box" evaluator, to guide the search to better subsets. The ability of 

feature selection algorithms to ultimately select subsets that have very good 

performance as measured by this evaluator (that is, subsets with very good CV 

performance on the outer training set) is undisputed by the literature and by the 

testing performed in this thesis. Rather, the primary problems with feature 

selection are that the CV performance on the outer training set may not be highly 

predictive of generalization accuracy obtained using the feature set (as discussed 

in Chapters 5 and 6), and that higher classification accuracy may not lead to better 

playlists or visualizations in the context of a real system such as in the SITM 

project. 

A new technique for optimizing the SITM system was therefore created to 

harness the effective search capability ofwrapper feature selection algorithms in a 

way that seemed likely to have an appreciable impact on the subjective quality of 

the SITM playlists and visualizations. Instead of applying feature selection to 

reduce the dimensionality of the feature space used by the classifier, a feature­

selection-like algorithm was applied to reduce the dimensionality of the similarity 

space used for playlist generation and visualization. Considering the resemblance 

of the similarity space to the feature space of a kNN classifier (e.g., playlists of 

size k are created from the k nearest neighbors in the similarity space), applying 

dimensionality reduction to optimize the similarity space seemed to be a sensible 

pursuit. Such a technique necessitated that the black-box dimension subset 

evaluator consist not of the CV classifier evaluator used for feature selection, but 

of an evaluator capable of assigning subjective1y-relevant scores to subsets of 

similarity space dimensions. 
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7.4.1 Objective evaluation metricfor similarity spaces 

The creation of an objective evaluation metric for similarity spaces (or for 

similarity-based playlists or visualizations) is not a trivial problem, given that 

there is no available ground truth denoting the "true" similarity between pairs of 

songs. Obtaining values to serve as such a ground truth would require extensive 

testing with human users, and such testing would involve a host of practical 

problems (e.g., many subjects would be needed to feasibly obtain similarity scores 

for all pairs ofpieces in a collection) as well as theoretical issues (e.g., it may not 

be reasonable to assume that similarity can be measured as a listener- and context­

independent property). 

Previous work on similarity-based systems (e.g., Logan and Salomon 

2001; Pampalk et al. 2003; Aucouturier and Pachet 2002) has often used genre, 

artist, or album metadata as a substitute for similarity ground truth, based on the 

assumption that songs from the same genre (or artist, or album) are more likely to 

be similar from songs from different genres (or artists, or albums). Based on this 

work (particularly on the metric used in Pampalk et al. 2003), the following 

evaluation metrics for similarity spaces were defined: 

avgGenreDistance 
genreS core = --=--------­

avgTotalDistance 

. avgArtistDistance 
artlstScore=--=---------------­

avgTotalDistance 

avgAlburnDistance 
alburnScore=--=--------------­

avgTotalDistance 

avgGenreDistance and avgTotalDistance are defined below, where N 

is the number of songs in the collection, and D(i,}) is the distance-based 

dissimilarity metric defined above. avgArtistDistance, and 

avgAlburnDistance are defined similarly to avgGenreDistance. 

N N 

avgGenreDistance = -l-~~G(i,j)D(i,j) 
M ;-1 j-1 

G(i,j) = 1 • {
l, Genre" = Genre ," 

0, otherwlse 
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N N 

M= ~~G(i,j) 
i-I j=1 

avgTotalDistance= 1 iiD(i,j). 
N(N + 1)/2 i=1 j=1 

While the above measures make intuitive sense, they aU have the 

drawback of highly rating similarity spaces in which aU songs from a single genre 

are very tightly clustered, such as the similarity space produced by the SVM 

discussed above. To provide sorne measure of the intra-genre organization 

apparent in subjectively better spaces, such as the CART-produced space, the 

following measure was also defined: 

. . avgArtistDistance 
artlstGenreRatlO=------------------

avgGenreDistance 

This measure produces better scores for similarity spaces where artists are 

more tightly clustered than genres, which is indicative of a degree of organization 

within each genre cluster. 

1t was observed that several of the existing similarity spaces performed 

reasonably weIl on the above metrics but still produced subjectively bad playlists 

containing songs from very different genres or artists than the query song. 

Therefore, two additional metrics were defined. genre%N was defined as the 

percentage of the N nearest neighbors to a query song that share its genre, using 

each song in the collection as a query and taking the average. artist%N was 

defined analogously. N=20 was used in the evaluation of the similarity spaces, 

because twenty songs seems like a reasonable length for a playlist, but other 

values could certainly be used. 

AU of the above metrics were computed for the sixty-some similarity 

spaces generated in the initial optimization experiments described above. 

Comparison of these scores with subjective performance of the playlists and 

visualizations produced from these spaces revealed that, in general, the best 

spaces performed well on all of these measures, and the worst spaces performed 

poorly on one or more of these measures. However, the relationship between 
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these metrics and the subjective performance was sufficiently complex that no 

simple combination of metrics was highly predictive of subjective performance. 

Therefore, a search was undertaken for a combination of metrics was merely able 

to score the five best existing similarity spaces very well, the five worst similarity 

spaces very poody, and the other similarity spaces somewhere in between. The 

similarity space evaluation function F that uses the combination that best satisfies 

these criteria appears below: 

F(space) = .012 (.7 x genre%202 + .3xartist%202
) 

- .25(genreScore3 + artistScore3 

+ albumScore3 + artistGenreRatio3
) + 1 

When applied to new similarity spaces, generated by classification algorithms not 

used to create any of the similarity spaces employed in the tuning of F, this 

function was generally not predictive of subjective performance. 

That such a complex expression is necessary to even crudely approximate 

subjective quality, and that it still fails to apply well to new models, is not 

surprising. The individual metrics combined in this expression are quite coarse, 

and they no doubt fail to describe many meaningful dimensions of visualization 

and playlist quality. The design of a general measure ofplaylist or visualization 

quality would benefit much MIR research (for exarnple, it could be used in 

MlREX to objectively compare similarity-based systems produced by different 

researchers), but it is too complex a task for this work. The following work using 

F proceeded with the assumption that, so long as it was used only as an evaluator 

for similarity space dimension selection, it needed to be only roughly applicable 

to the similarity spaces already constructed and to spaces very similar to these 

spaces (i.e., these spaces with dimensions removed). 

7.4.2 Applying dimension selection to similarity spaces 

Because offorward selection's ability to find feature subsets with very 

high evaluation scores (measured by CV performance on the outer training data), 

and because of its simplicity of implementation, it was used as the algorithm to 

search for similarity space subsets with the best evaluation scores (measured by 
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F). The first set of experiments applied forward selection to two of the best 

similarity spaces to examine whether forward selection was in fact able to find a 

subset of dimensions with a higher value of F than the original spaces with aIl 

dimensions, and whether these lower-dimensional spaces were indeed 

subjectively superior. The two similarity spaces used were the space CART­

Genre, created by applying the original CART classifier to a subset of Magnatune 

including songs from 10 genres, and the space CART-Genre-Artist-Combo, 

created by combining the dimensions of CART -Genre with the dimensions of the 

similarity space created by training a CART classifier to classify artists on a 

subset of Magnatune with 74 artists. 

Table 13 shows the resuIts of these experiments. Forward selection on 

CART-Genre was able to find a dimension subset with a slightly higher score than 

the original similarity space. Subjectively, this space was quite similar to the 

original space. Forward selection on CART-Genre-Artist-Combo was able to find 

a dimension subset with a much higher score (higher than any of the previously­

created similarity spaces) and many fewer dimensions than the original space. 

Because of the ability of PCA to improve classification accuracy to a 

degree similar to that possible with feature selection, and because of its speed of 

application, further experiments applied PCA to the same two original similarity 

spaces. PCA was indeed able to considerably reduce the number of dimensions of 

the similarity space, and it was also able to increase the score of the CART­

Genre-Artist-Combo space, though not to the same degree as forward selection. 

There was a marked improvement in the visualization quality when PCA was 

applied to the previously 84-dimensional CART-Genre-Artist-Combo space, 

perhaps because of the decreased load on the MDS algorithm used for projecting 

the space onto two dimensions. 
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Table 13: Results of applying forward selection and PCA to two of the original similarity 
spaces. 

Model # Dimensions F evaluation 
score 

CART-Genre 10 1.23 
fwdSel-CART -Genre 9 1.24 
PCA-CART-Genre 8 1.22 
CART -Genre-Artist -Combo 84 1.00 
fwdSel-CART -Genre-Artist-Combo 27 1.28 
PCA-CART-Genre-Artist-COMBO 15 1.20 

The above tests demonstrate that both forward selection and PCA can 

potentially improve the subjective quality of similarity spaces while reducing the 

number of dimensions needed to represent the space. If forward selection or PCA 

is applied to a similarity space containing all songs in a collection, there is no 

analog to the concem for generalization ability that has presented such problems 

for wrapper feature selection application and evaluation. That is, if no new songs 

are to be added after dimensionality reduction is applied, it is Ïrrelevant whether 

the dimensionality reduction algorithm has produced a dimension subset that 

harms playlist and visualization quality when new songs are added. 

However, it would be convenient if dimensionality reduction could be 

applied to a similarity space containing only a subset of songs from the collection. 

For forward selection, this would speed up the evaluation of each subset 

(calculation of genreS core, artistScore, and albumScore scale 

polynomially with the collection size) and therefore allow the algorithm to run in 

less time. Additionally, it would be convenient ifforward selection or PCA did 

not have to be rerun each time new music was added to a collection. For these 

reasons, further testing examined the effects of adding new data to the similarity 

spaces after applying forward selection and PCA. 

Table 14 shows the results of applying forward selection and PCA to a 

similarity space containing only a subset of the collection. The similarity space 

used was produced by a kNN classifier, where k=20. In Test 1, the classifier was 

trained on 50% of the songs in the collection (selected so that each genre of the 

collection was proportionate1y represented). The degrees of support for these 

songs were output to create a similarity space, which was then evaluated using F. 
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In Test 2, the classifier trained in Test 1 was used to output degrees of support for 

the other 50% of the songs in the collection; the degrees of support were added to 

the similarity space including the fIfst 50% of the songs, and this space was 

evaluated. The evaluation ofthis space shows that adding new songs (songs not 

used to train the classifier) to the similarity space decreases the quality of the 

space, according to F. 

In Test 3, forward selection was applied to the similarity space containing 

only 50% of the songs (the space created by Test 1), then the rest of the songs 

were added to the space. In Test 4, forward selection was applied to the similarity 

space containing all songs (the space created by Test 2). Tests 3 and 4 

demonstrate that forward selection is capable of improving the similarity space 

produced by this classifier (the scores of the new spaces of 1.07 and 1.08 are 

somewhat better than the score of 1.03). Also, the scores for Tests 3 and 4 are 

similar to each other, implying that applying forward selection on a space 

containing a subset of the collection has effects similar to applying forward 

selection on a space containing the whole collection. Subjective evaluation of the 

playlists and visualizations generated from the similarity spaces produced by 

Tests 3 and 4 revealed them to be indistinguishable in terms of quality. 

Furthermore, applying forward selection to a space containing a subset of the 

collection allows selection to run in significantly less time than is required for 

applying selection to a space containing the entire collection. 

Table 14: Effect of applying forward selection and PCA on a subset of the collection rather 
th an the whole collection 

Test Method Selection Score 

1 
2 
3 

4 
5 

6 

Time 
Similarity space created by classifying 50% of songs - 1.09 
Similarity space of Test 1, with other 50% ofsongs added - 1.03 
Forward selection applied to similarity space produced in Test 1, then other 1.01 hours 1.07 
50% of songs added 
Forward selection applied to similarity space produced in Test 2 3.75 hours 1.08 
PCA applied to similarity space produced in Test 1, then other 50% of songs - .94 
added 
PCA app1ied to similarity space produced in Test 2 - .93 

Tests 5 and 6 demonstrate that applying PCA to the similarity space output 

by this classifier is not beneficial. However, as is the case with forward selection, 
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the quality of the space is not much influenced by whether PCA is applied to a 

space containing a subset of the collection or the entire collection. 

In summary, the above testing implies that dimensionality reduction can 

be performed using a subset of the collection instead of the whole collection. This 

can allow forward selection to fUll more quickly, and it can allow one to add new 

songs to the dimensionally reduced similarity space without fear that the quality 

of the space will significantly degrade. However, adding new kinds ofmusic (for 

example, new genres) may present a problem; it is likely that dimensionally 

reduced similarity space will not be appropriate for representation of these new 

songs. 

7.5 Conclusions 

Initial work performed during a Sun Microsystems intemship found that 

improving classification accuracy does not necessarily translate into better 

usability of Sun's SITM music management system. This may not be the case for 

aIl systems in MIR that employ classifiers to assist in managing music based on 

similarity or other properties; it is possible that other systems may benefit more 

concretely from feature selection and other classification optimization techniques. 

However, for the SITM project, an approach similar to wrapper feature selection 

that operated on the similarity space itself showed the most potential for 

improving system usability. 

Applying forward selection to reduce the dimensionality of the similarity 

space used in the SITM system has been shown to be effective at improving the 

quality of the playlists and visualizations. The benefits are apparent even when 

using a heuristically created evaluation metric for similarity spaces. PCA can also 

be applied to the similarity spaces, particularly to improve visualization quality. 

Additionally, both forward selection and PCA can significantly reduce the size of 

the similarity space representations. 

It is hoped that this work offers a useful tool to other MIR researchers. 

Dimensionality reduction could be applied in this manner to any space in which 

similarity is calculated as a Euclidean distance, regardless of how this space is 



- 115 -

generated. Additionally, it is hoped that this work will motivate ongoing 

discussion on the problem of objectively evaluating systems that use a notion of 

musical similarity. Further work that produces a better objective evaluation metric 

than the F function above would be useful for better optimizing similarity spaces 

using forward selection or other techniques, and it would also allow direct 

comparisons of similarity systems produced by different means (e.g., by different 

research groups competing in a MIREX-like similarity contest). 
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8 CONCLUSIONS 

8.1 Objectives accomplished 

The work presented in this thesis has involved a thorough investigation of 

feature selection as an optimization method for musical genre classification. 

Specifie objectives ofthis work included the presentation of the rationale for 

investigating feature selection in the context of music classification, the 

specification of an appropriate methodology for evaluating feature selection, the 

application of this methodology to evaluate the general efficacy of feature 

selection and the appropriateness of various existing feature selection algorithms, 

the application of an appropriate feature selection algorithm to the genre 

classification problem, and a deepened understanding of the potential for feature 

selection to be of use in MIR. Each of these objectives has been met. 

This work has been motivated by the popularity and usefulness of audio 

classification in MIR, as well as the existing machine-leaming literature on 

classification and feature selection. This thesis has begun by thoroughly 

explaining these motivations and putting the CUITent work into context with a 

discussion of the relevant background in classification, music classification, and 

feature selection. 

After a discussion of the tools used and created for this work, this thesis 

has presented a critical overview of the literature discussing evaluation practices 

for feature selection. Aspects of the evaluation process for feature selection for 

which the literature provides contradictory or insufficient guidance have been 

identified, and original testing has been conducted to attempt to understand these 

aspects more thoroughly. An outcome ofthis work is a specification of a more 

reasoned and thorough strategy for applying and evaluating feature selection. 

This evaluation strategy has then been employed in an exploration of the 

general questions of whether feature selection is likely to be effective in 

increasing classification accuracy, and ofwhich algorithms may be most practical 

and appropriate. This work has identified the problem that, for sorne datasets 
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commonly used in the machine learning community, perfonnance on one 

representative subset of the data is not predictive of perfonnance on another 

representative subset. This property suggests that, for such datasets, feature 

selection is not likely to be effective in increasing classification accuracy. This 

work has also shown that, for datasets without this property, the correlation 

between the perfonnance measure used by feature selection and the generalization 

accuracy is still often weak, and/or the set of all available features is likely to 

result in near-optimal generalization accuracy. In these cases, feature selection 

may therefore fail to work, or el se fail to result in remarkable improvements in 

accuracy. These findings support the claim of one machine-Ieaming researcher 

that more intensive search algorithms for feature selection tend not to provide any 

advantage over less intensive algorithms, despite the increased time needed for 

them to mn. Outcomes of this work include a deepened understanding of whether 

and why feature selection is likely to benefit a certain problem, as well as the 

recommendations that simple and fast feature selection algorithms should be used 

instead of complex and slow algorithms, and that care should be taken to ensure 

that feature selection actually improves generalization accuracy. 

Based on these findings, a simple feature selection algorithm has been 

applied to a genre classification problem using a commonly used music datas et, 

popular audio features, and a standard classification algorithm. Using the 

evaluation methodology previously found to be appropriate, it has been shown 

that feature selection does modestly improve generalization accuracy on this 

dataset. However, it has also been shown that a simpler and faster dimensionality 

reduction technique is capable of increasing classification accuracy to a similar 

degree. Applying either dimensionality reduction algorithm results in a genre 

classification system that outperfonns a few of the genre classifiers submitted to a 

recent MIR contest. However, it is not clear that this system is competitive with 

the highest-perfonning algorithms in this contest, which use more sophisticated 

modeling and classification techniques. In addition to elucidating the magnitude 

of improvement in genre classification accuracy possible with feature selection, 
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this work has provided an analysis offeature selection's impacts on other aspects 

of the classification process. 

W ork in the context of an intemship has provided an opportunity to 

investigate the impact of feature selection on a working music management 

system that used a genre classifier to construct a measure of musical similarity. 

While it seems that feature selection is capable of producing improved 

classification accuracy, the nature of the music management system is such that 

improved classification accuracy does not translate into improved quality of the 

playlists and visualizations created by the system. A more successful approach to 

improving the system has been developed, which involves applying a feature­

selection-like algorithm to reduce the dimensionality of a "similarity space," 

while maximizing an objective measure of the quality ofthis space that is 

constructed to correlate roughly to the subjective usability of the system. 

Outcomes of this work include a deepened understanding of the limits of feature 

selection to improve the usability of one classifier-based system, as weIl as an 

appreciation of the power of wrapper feature selection search techniques and a 

new means of hamessing this power to optimize any system that relies on a 

distance-based measure of musical similarity. 

8.2 Contributions to MIR and machine learning 

The work performed in the context of this thesis has implications for 

future work in MIR, particularly work involving music classification and the 

assessment of musical similarity. It is not valid to conclude from this work that 

feature selection will offer a similar magnitude of improvement in generalization 

accuracy for other classification problems, or even for audio genre classification 

using a different dataset or a different set of features. However, this work 

underscores that the use of an appropriate evaluation strategy for feature selection 

is absolutely necessary; it has been demonstrated that the use of CV accuracy of 

the best feature subset found by a selection algorithm may not be at aIl predictive 

of the generalization accuracy obtained with that subset. This thesis has outlined a 

carefuIly reasoned and specific evaluation methodology that can be used to more 
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accurately assess feature selection's efficacy. Additionally, this work has shown 

that the cost of implementing and running complex and intensive feature selection 

algorithms is not worthwhile for many classification problems. AH of these 

findings may be useful to any classification work in MIR, including not only other 

audio classification but non-audio classification as well. This work has also 

shown that feature selection does have the potential to reduce feature extraction 

time, classification time, and feature storage space, and these benefits are 

especially relevant to other research in audio classification. 

The work performed at Sun Microsystems suggests that improving 

classification accuracy may not be sufficient to improve the subjective usability of 

a classification-based system. This finding may be surprising to many researchers 

in MIR, given the attention paid to increasing classification accuracy in papers 

published at ISMIR and systems submitted to MIREX. While this work does not 

imply that increasing classification accuracy is never a useful pursuit, it does 

suggest that MIR researchers should also place a priority on evaluating the 

performance of systems in practice. It may be appropriate, for example, to ho Id a 

MIREX contest judged according to subjectively evaluated playlist and/or 

visualization quality in order to encourage MIR researchers to work toward 

explicitly improving these capabilities of their systems. 

The work performed at Sun also suggests that, despite potentiallimits of 

feature selection's ability to improve usability of a given system, the optimization 

approach used in wrapper feature selection can still be a powerful too1. In the case 

of Sun' s system, similarity is computed via a distance in a "similarity space." If 

one is able to define an objective met'ric on the similarity space that roughly 

corresponds to system usability, the "black box" ofwrapper feature selection can 

be replaced with an evaluator ofthis metric, and feature selection search methods 

can be used to optimize the space. The use of a distance metric to compute 

similarity is not unique to Sun's system, and this optimization approach could be 

employed in any project using such a metric, regardless of how the similarity 

space is created or how the objective metric is defmed. 
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The work in this thesis is relevant to research in machine leaming as weIl. 

For one thing, this work supports previous findings that intensive feature selection 

methods are not use fui, that poor evaluation methodology can greatly exaggerate 

the efficacy of feature selection in improving classification accuracy, and that 

feature selection may be shown to offer little or no benefits to classification 

accuracy when evaluated prudently. Furthermore, the exploration of many 

standard machine-Iearning datasets using exhaustive feature selection and Monte 

Carlo methods elucidates some common causes of feature selection failing to be 

an effective tool. Finally, the evaluation methodology specified in this work can 

be used to evaluate the efficacy of wrapper feature selection for improving 

classification in any domain. 

8.3 New questions 

This work has raised some new questions whose investigation lies outside 

the scope of this thesis, but whose answers may have interesting implications for 

other work in MIR and machine leaming. First of aIl, what is the cause of the lack 

of correlation between CV accuracy and classification accuracy on different 

representative subsets of particular datasets? What are the implications of this 

correlation for the use of CV as a predictor of generalization accuracy for these 

datasets? How reliably might one predict whether a dataset is likely to exhibit this 

behavior (e.g., by using Monte Carlo evaluations, as have been used in this 

work)? 

Next, what is an appropriate method for objective1y evaluating systems 

that generate playlists or visualizations based on measures of musical similarity? 

(And does such a method exist?) The work performed at Sun demonstrated that a 

heuristic metric was sufficient for use in optimizing similarity spaces for playlist 

and visualization generation, but it would be beneficial to have a more weIl­

reasoned and generally applicable metric for this purpose. Such a metric could 

replace the heuristic metric currently used for optimization of the similarity space. 

AdditionaIly, it could be used to judge between different similarity-based playlist 

generation and/or visualization systems, for example in the context of a MIREX 
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contest. This is an interesting question, first of aU because work at Sun suggested 

that previously proposed metrics based on genre, artist, or album metadata are 

insufficiently related to subjective quality of playlists and visualizations to be 

used alone. Second of aU, much work in MIR (including Sun's system) employs 

the assumption that a listener-independent, context-independent measure of 

similarity between two pieces of music is relevant to the problem of playlist 

generation, even though a playlist is in reality used by a particular user in a 

particular context. If efforts to produce an objective evaluator of generic music 

similarity prove difficult, it may be because the concept of generic music 

similarity is itself problematic. 

8.4 Conclusions 

The work in this thesis has examined the potential for feature selection to 

be a use fui tool for audio genre classification in particular, and for MIR in 

general. The MIR and machine-learning literature has been used as the foundation 

for this work when possible, and original empirical work has been performed 

when the literature has provided Ïnsufficient guidance. The outcomes are a deeper 

understanding of feature selection, both in general and as it applies to music 

classification, empirical results that have the potential to inform future work in 

both MIR and machine leaming, and the illumination of open questions in these 

fields. 
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