
Topological methods for representational geometries

Shael Brown

Quantitative Life Sciences Program

McGill University, Montreal

February, 2024

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of Doctor of Philosophy

©Shael Brown, 2024

ii

Abstract

The branches of systems neuroscience – neurological recordings, computational models and

behavior – offer complementary views of human cognition and experience, and can be linked

together with a popular analytical framework called representational similarity analysis

(RSA). In RSA we abstract from measurements and their units to analyze dissimilarities

between stimuli in a neural state space. A central assumption of RSA is that matrices

of representational dissimilarities, and linear comparison of matrix entries, can capture and

compare shape structures, but this assumption remains untested. In this dissertation I intro-

duce a novel framework called representational topology analysis (RTA) which can capture

and compare shape, i.e. topological, features of representational geometries and provide

evidence that RTA can identify, interpret and analyze meaningful features of neural compu-

tation that are missed by RSA.

The data structure which RTA uses to capture shape features is called a persistence di-

agram - a form of unstructured data which is not immediately amenable to typical RSA

analyses of matrices like machine learning (ML) and inference (IF). In order to solve this

problem I have created the first software package, called TDApplied, for analyzing persis-

tence diagrams with published methods for ML and IF. By analyzing simulated data and

functional magnetic resonance imaging (fMRI) data I demonstrate that TDApplied has the

potential to identify novel task and behavior-related features of neural function. By compar-

ing TDApplied’s efficiency, computational correctness and flexibility against other software

packages I also show that TDApplied is a valuable tool for applied topological analyses in

any domain.

i

By analyzing data from two vision fMRI studies I then show that RTA, used in con-

junction with the specialized tools in TDApplied, can segment representational spaces into

significant features which are missed by RSA. Therefore, comparisons in RTA can be linked

to computational features of neural systems and are more interpretable and trustworthy

compared to comparisons in RSA. The first analysis, of data from a famous RSA vision

study of IT cortex responses in primates, found a continuous shift in object category in

monkey IT cortex which did not exist in human IT cortex. This is a new finding - the

original study found evidence of similar functional architectures in human and monkey IT

cortex at the level of object category clustering. The second analysis, of data from a natural-

istic movie viewing human fMRI study, found that significant region-level representational

topological features differed by region, were not captured by representational geometry and

may encode stimulus features. It has been found that shared spatial patterns of cortical

activity exist across subjects viewing the same naturalistic movie, to different degrees in dif-

ferent brain regions. Similarity of representations suggests similarity of topologies, so with

my novel visualization technique for representational spaces called Proximity Labelled Rips

Graphs (PLRGs) I analyzed three region-level topologies (one early region, one dorsal and

one ventral) and found distinct topological signatures which were not accounted for solely

by geometry (i.e. RSA) and appeared to capture stimulus features.

Together, these findings situate RTA as a powerful tool for identifying, interpreting and

analyzing neurologically-meaningful shape features of representational geometries that RSA

cannot detect. Our software TDApplied can also be used in other domains and frameworks to

carry out efficient and customized analyses of data using shape descriptors, paving the way for

new research avenues. Linking neurological data across varied sources with RTA provides new

mechanistic insights into neural function across brain, behavior and computational models.

ii

Abrégé

Les modules de la neuroscience des systèmes – l’empreinte de l’activité neuronale, les modèles

computationnels et le comportement – offrent des perspectives différentes sur la cognition

humaine, et peuvent être liées par le cadre analytique populaire appelé l’analyse de similarité

représentationnelle (ASR). Avec l’ASR ce ne sont pas les mesures et leurs unités qui sont

importantes mais bien les distances entre stimuli dans une représentation d’état neuronal.

Un axiome essentiel de l’ASR est que les matrices des distances représentationnelles, et les

comparaisons linéaires de matrices à chaque position, peuvent déterminer et comparer les

structures de données, mais cet axiome demeure inconfirmé. Dans cette thèse, j’introduis un

cadre nouveau, l’analyse de topologie représentationnelle (ATR), qui peut déterminer et com-

parer les structures topologiques dans les géométries représentationnelles. Je démontre que

l’ATR peut identifier, interpréter et analyser les structures importantes du codage neuronal

qui sont inaccessibles à l’ASR.

L’outil employée par l’ATR pour résumer les structures topologiques est le diagramme de

persistance – un type de données non-structurées qui ne peut pas être utilisé dans les analyses

populaires en l’ASR, comme l’inférence statistique (IF) et l’apprentissage automatique (AA).

Pour résoudre ce problème j’ai développé le premier progiciel, TDApplied, pour les analyses de

diagrammes de persistances avec des méthodes bien-connus d’IF et de l’AA. En analysant des

données simulées et des données issues de l’imagerie par résonance magnétique fonctionnelle

(IRMf), je montre que TDApplied peut identifier de nouvelles caractéristiques du codage

neuronal associées aux tâches et aux comportements. À l’aide des analyses comparatives sur

iii

la vitesse, la flexibilité et les erreurs de calcul de TDApplied et d’autres progiciels, je fournis

la preuve que TDApplied est un outil efficace pour l’analyse topologique dans tout domaine.

En analysant les données de deux études IRMf sur la vision, je montre que l’ATR,

combiné avec TDApplied, peut segmenter les géométries représentationnelles en structures

topologiques significatives qui sont inaccessibles à l’ASR. Donc les comparaisons de l’ATR

peuvent être liées avec les caractéristiques computationnelles des systèmes et sont plus fi-

ables et interprétables que celles de l’ASR. Dans ma première analyse, avec les données

d’une célèbre étude ASR sur la vision concernant les réponses du cortex temporal inférieur

primate, j’ai découvert dans le cortex singe une progression graduelle pour la catégorisation

d’objets qui n’existe pas dans le cortex humain. Il s’agit d’une découverte notoire, car l’étude

originelle a trouvé des architectures fonctionnelles similaires entre les deux cortex au niveau

du regroupement de catégories d’objets. Pour ma deuxième étude, j’ai analysé les données

d’une étude IRMf qui a trouvé des motifs d’activité neuronale communs, qui variaient par

région, entre sujets visionnant le même film naturel. Une similarité d’activité suggère une

similarité des topologies et donc avec l’ATR et ma nouvelle méthode de visualisation des es-

paces représentationnels le « Proximity Labeled Rips Graphs » (PLRG) j’ai pu différencier

trois topologies locales (une région primaire, une dorsale et une ventrale). De plus, ces

topologies n’étaient pas capturées par l’ASR et semblaient capturer des caractéristiques des

stimuli.

En somme, ces résultats indiquent que l’ATR est un outil puissant pour identifier, in-

terpréter et analyser les structures topologiques représentationnelles qui font partie du codage

neuronal et qui sont indétectable à l’ASR. Notre progiciel TDApplied peut aussi analyser

les données dans d’autres domaines pour ouvrir la voie à des recherches futures. En liant

les différentes données neurologiques avec l’ATR, nous pouvons accéder à de nouvelles in-

formations mécanistiques sur la fonction neuronale à travers le cerveau, le comportement et

l’informatique.

iv

Acknowledgements

My completion of this thesis would not have been possible without the financial, academic

and personal support I have received from numerous sources.

I will be forever grateful for all the support, mentorship and understanding I have re-

ceived from my advisor, Reza. This thesis was born out of one of our first mad-scientist

brainstorming sessions (despite my initial stubbornness), and these sessions were some of

the most fun experiences of my degree. You have calmed me down when I was stressed and

re-motivated me when I felt stuck. You challenged me and pushed me to grow as a scientist,

and the skills of argumentation, which I initially thought were uninteresting and tedious, I

now consider to be one of my greatest assets. You have given me your time and effort, and it

has been an honour and a pleasure learning from, and scheming with you. I wish you nothing

but continued success and happiness in the future, and most importantly a flourishing TDA

program in the lab.

I have also received valuable feedback on my projects from my committee members and

comprehensive examiners, Professors Arjun Krishnaswamy, Bratislav Misic, Peter Savadjiev,

Erik Cook and Boris Bernhardt, and for this feedback I am extremely grateful.

To my QLS support team, Alex DeGuise and Professors Celia Greenwood and Mathieu

Blanchette, I sincerely thank you for answering all of my many questions and encouraging

me throughout this whole process. I feel extremely fortunate to have had such a caring

program administrative team, and please know that you all have had a significantly positive

impact on my PhD experience.

v

I am incredibly fortunate to have worked alongside incredibly intelligent, talented, fun

and kind lab-mates, and I thank you all for making this experience easier and more enjoyable.

To my dad, pa. You are the reason why I’ve taken this path, and I feel very blessed to be

on it. You have brainstormed with me, even when I was stubbornly insisting that I was right,

and you have edited my projects dozens of times on a moment’s notice. You have helped me

navigate academia, saving me from countless mistakes, and have kept me motivated when I

was feeling down. Thank you for being my north star throughout this process, I love you so

much.

Thank you to my whole family for supporting me before and during my degree. Zeebs,

you have made me laugh when I wanted to cry, and cry when I wanted to laugh (in a good

way). Mum, you have been and will always be my sounding board and confidante. Joe

and Bev, you guys have made Montreal feel like home for me, fed me and kept me laughing

non-stop. I love you all.

Next, I want to thank my friends Bill and Bob for their loving support these past few

years. Couldn’t have made it without you!

Finally I would like to thank my wonderful, supportive and amazing wife, Nicole. Bubs,

we made it! Thank you for everything you’ve done while I’ve walked this path, and all the

support you will continue to give me in the future. This accomplishment is ours to share

together, and G-d willing we will have many more to celebrate in the future. Thank you for

everything, my love.

For all the people in my life who loved and supported me during this process, this is for

you.

Funding

The projects in this thesis received funding from the 2016 CIHR grant for cortical mecha-

nisms of 3-D scene and object recognition in the primate brain and from the department of

Quantitative Life Sciences at McGill University.

vi

Contributions

My doctoral thesis introduces a novel framework, RTA, for capturing and comparing shape

features of representational geometries, by combining the popular tools of representational

similarity analysis and persistent homology. My approach is distinct to RSA by replac-

ing representational dissimilarity matrices (RDMs) and the correlation/correlation distance

between them with shape descriptors called persistence diagrams and tools from the math-

ematical literature called the persistence Fisher kernel/wasserstein and bottleneck metrics.

My approach is also different from other RSA variants which model non-linear dependencies

between RDM entries by capturing dependencies between any number of representational

dissimilarities. The toolbox I developed, TDApplied, is the first publicly available software

for analyzing persistence diagrams with published methods for statistical inference and ma-

chine learning in either R or Python.

Through three analyses of neurological data I tested the hypothesis that RTA captures

representational differences which RSA misses. My results supported this hypothesis, demon-

strating that shape features of representational geometries can be used to interpret represen-

tational differences via stimulus features and behavior. Finally, I tested the hypotheses that

my toolbox is the fastest, most flexible and most computational sound R package for topo-

logical analyses. My results supported this hypothesis, positioning TDApplied as a powerful

tool for topological analyses of data.

This doctoral thesis was prepared in accordance with McGill’s Faculty of Graduate and

Postdoctoral Studies manuscript-based thesis guidelines. Chapter 2 has been submitted to

the Journal of Open Source Software (JOSS) at the time of initial submission and the soft-

ware documentation is currently available at the public repository for R packages (CRAN),

and Chapter 3 has been submitted to the Proceedings of the National Academy of Science

(PNAS).

vii

Contributions of Authors

Chapter 2: TDApplied: An R package for Machine Learning and Inference with Persistence

Diagrams

Shael Brown and Reza Farivar

I conceived of the project and wrote the code, documentation and tests. RF provided

guidance on functions that should be included in the software, feedback on package usability

and editing on package documentation.

Chapter 3: The Topology of Representational Geometry

Shael Brown and Reza Farivar

RF and I conceived of the project, and I carried out the analysis with the advice and guidance

of RF. I wrote the manuscript and designed all figures, with editing from RF.

viii

List of Abbreviations

RSA representational similarity analysis

RDM representational dissimilarity matrix

RSM representational similarity matrix

TDA topological data analysis

PH persistent homology

RTA representational topology analysis

V1/V3 visual area 1/3

fMRI functional magnetic resonance imaging

PHC1/PHC2 parahippocampal area 1/2

LO1/LO2 lateral occipital area 1/2

V3a/V3b visual region 3 a/b

HCP Human Connectome Project

GLM generalized linear model

MDS multidimensional scaling

PCA principal component analysis

kPCA kernel principal component analysis

SVM support vector machine

ix

List of Figures

Chapter 1

Figure 1.1 Sampled representations from a torus, projected onto an annulus, and the re-

sulting two RDMs. The stimuli images were obtained from the supplemental information

in Kriegeskorte, 2009 but were originally introduced in Kiani et al., 2007, as is the case in

later figures. Top left are the top and bottom views of seven sampled representations from

the surface of the torus, with colored lines indicating representational distances between ad-

jacent points (green for small distances, yellow for medium and red for large). Bottom left

is the projection of these torus representations onto an annulus, with updated representa-

tional distances. These distances for both shapes are color-coded in their respective RDMs,

which would be considered equivalent by RSA, despite the representational spaces having

completely different shapes. This figure is the same as Figure 3.1. 3

Figure 1.2 A sample complex with three connected components. The left-most component

contains 2-simplices, 1-simplices and 0-simplices, the middle component contains 1-simplices

and 0-simplices, and the right component contains just a single 0-simplex. 18

Figure 1.3 The left-most complex in Figure 1.2 with labelled vertices. The four example

chains, c1 (red), c2 (green), c3 (blue) and c4 (brown) overlay the complex, following the edges

of which they are each comprised. 20

Figure 1.4 The workflow of persistent homology (copied from Figure 3.2). In this example

we have a dataset of stimuli (these are a subset of the stimuli used in the famous visual RSA

study Kriegeskorte, 2009) in a simulated fMRI 2D representational space. Each stimuli is

plotted at its coordinates in the space, with a small dot at its coordinates. We then grow an

ϵ parameter from 0 and visualize the constructed complex at three ϵ values, A, B and C. For

example, the complex at radius A has balls of radius A plotted around each stimulus, and

stimuli are connected when their two balls contain both stimulus points (and triangles are

formed between triples of connected stimuli). We construct lines which encode the lifespan

of all the topological features of the sampled points, for which A, B and C represent certain

x

ϵ values at which certain features either are born or die. At radius A there are six ”living” H0

components – since the human and monkey faces are connected they form a single component,

and the other five stimuli are their own components. At radius B the components all merge

into a single cluster, and a loop is born. At radius D the loop dies, leaving only one cluster

which lives ”forever” (i.e. we can increase the linkage radius to any larger value and there

will remain one cluster). The persistence diagram for this example dataset can be seen

in Figure 1.5. The code for this plot was inspired by https://github.com/iaciac/py-draw-

complex/blob/master/Draw%202d%20simplicial%20complex.ipynb. 28

Figure 1.5 The computed persistence diagram for the dataset in Figure 1.4, taken from

Figure 3.3. The x-values of this plot are the birth radii of topological features and the y-

values of this plot are the death radii. Reddish points denote H0 components and the gold

points represent H1 loops in the dataset. The main loop in the dataset, as seen in Figure

1.4, is the gold point high above the diagonal, and a very short-lived loop (represented by

the tiny line segment below the long lasting loop’s line segment in Figure 1.4) is the other

gold point. 29

Chapter 2

Figure 2.1 An example TDApplied workflow. A dataset (D1, left) contains one loop (yellow)

and two clusters (the loop forms one cluster and the three points on the bottom are another

cluster, and clusters are denoted by the color red). These topological features are captured

with persistent homology in a persistence diagram PD1 (middle top), and two other data sets,

D2 and D3 (not shown), have their persistence diagrams, PD2 and PD3, computed (middle

center and middle bottom). PD1 and PD2 are not very topologically different in terms

of their loops, with both containing a loop with similar birth and death values, and this is

represented by a dashed-line relationship. On the other hand, PD2 and PD3 are topologically

different in terms of their loops because PD3 does not contain a loop, and this is represented

by a dotted-line relationship. TDApplied can quantify these topological differences and

use MDS to project the persistence diagrams into three points in a 2D embedding space

xi

(right) where interpoint distances reflect the topological differences between the persistence

diagrams. 48

Figure 2.2 An example workflow of persistent homology, noting the linkage radii where a

loop exists/does not exist. 56

Figure 2.3 The example circ dataset. 58

Figure 2.4 Three sample diagrams, D1, D2 and D3, each with one or two 0-dimensional

topological features. 62

Figure 2.5 The optimal matchings between D1 and D2 (left) and D1 and D3 (right). In

the latter matching, each off diagonal point is paired with its own diagonal projection rather

than being matched with each other. 63

Figure 2.6 Probability distributions which are sums of Gaussian point masses for D1 (left),

D3 (center) and the difference of these (right). 64

Figure 2.7 The plotted persistence diagram for the circ dataset. 68

Figure 2.8 An example confidence interval centered at the loop point in the diagram of the

circ dataset. 70

Figure 2.9 The unthresholded diagram of the circ dataset (left) and the same diagram

plotted with thresholds and p-values (right). Only one significant component and loop are

left after the thresholding procedure. 72

Figure 2.10 The representative cocycle of the loop in the circ dataset, plotted as red edges.

If these edges were removed the loop would cease to exist. 76

Figure 2.11 A more ”minimal” representative cocycle, i.e. with fewer redundant edges

around the loop. .77

Figure 2.12 The VR graph at the lower ϵ radius, which is a scale at which the loop does

not yet exist. 79

Figure 2.13 The VR graph at the larger ϵ radius, which is a scale at which the loop does

exist. 79

Figure 2.14 A VR graph of the loop with nodes in the representative cycle (computed with

persistent homology in the TDA package) highlighted in red. 80

xii

Figure 2.15 The same VR graph as before but with images placed over the nodes in the

representative cycle. 82

Figure 2.16 The same D1, D2 and D3 persistence diagrams from earlier examples. 83

Figure 2.17 D1 and two noisy copies of D1. The single point in D1 is moved randomly by

a 2D Gaussian distribution of small variance. 84

Figure 2.18 MDS plot of the nine persistence diagrams based on the distances between

them. The three groups of diagrams are clearly separated. 91

Figure 2.19 Kernel PCA plot of the nine persistence diagrams based on their kernel simi-

larity values. The three groups of diagrams are again clearly separated. 92

Figure 2.20 Nine new persistence diagrams are projected into the same 2D space of the

precomputed kernel PCA model. The three groupings of diagrams maintained both their

separation and position in 2D space. 94

Figure 2.21 The VR graphs of (left) just the representative cycle time points, and (right)

all time points, with both epsilon scales at the loop birth value. .105

Figure 2.22 VR graph of all time points, colored by (left) mean respiration and (right) time-

since-last-block. Only in the right graph do we see clear color clusters or gradients, suggesting

that physiology did not account for the structure of the loops whereas task-timing did. 106

Figure 2.23 VR graph of the secondary loop, colored by time-since-last-block. 107

Figure 2.24 Surface nodes whose activity was significantly correlated with (left) theta and

(right) r. 108

Figure 2.25 Boxplot of r values in shape and face blocks. 109

Figure 2.26 A 2D scatterplot, whose x-axis is the 1D PCA embedding coordinates of the 100

subject’s emotion persistence diagrams and whose y-axis is the 100 subject’s mean response

times in the shape blocks trials. The best-fitting regression line is also plotted.110

Figure 2.27 A comparison of the mean execution time of comparing persistence diagrams

with the exact or approximate Fisher information metric calculation, where diagrams were

computed from samples of spheres and tori with varying numbers of points. The approxima-

xiii

tion was significantly faster, so much so that error bars couldn’t be displayed for its plotted

points. 116

Figure 2.28 Comparisons between the TDApplied, rgudhi and TDAstats homology calcu-

lations and simulated datasets of circles (left), tori (middle) and spheres (right). rgudhi

was the fastest, followed by TDApplied and then TDAstats. Note the different temporal

scalings of the three y-axes - more complex shapes required more compute time for all three

packages. .125

Figure 2.29 A comparison of the mean execution time of TDApplied and TDA distance

functions on persistence diagrams computed from simulated pairs of spheres and tori with

varying numbers of data points. TDApplied was significantly faster than TDA and this differ-

ence was so great that no confidence intervals could be seen for TDApplied’s plotted points.

. 127

Figure 2.30 A comparison of the mean execution time of TDApplied and persim distance

functions on persistence diagrams computed from simulated pairs of spheres and tori with

varying numbers of data points. persim was significantly faster than TDApplied, to the

point that no confidence intervals could be seen for persim’s plotted points. 128

Figure 2.31 A comparison of the mean execution time of TDApplied and rgudhi distance

functions on persistence diagrams computed from simulated pairs of spheres and tori with

varying numbers of data points. rgudhi’s exact calculations were significantly faster than

TDApplied’s approximate ones. 130

Figure 2.32 Three example persistence diagrams. .145

Chapter 3

Figure 3.1 Sampled representations from a torus, projected onto an annulus, and the re-

sulting two RDMs. The stimuli images were obtained from the supplemental information

in Kriegeskorte, 2009 but were originally introduced in Kiani et al., 2007, as is the case in

later figures. Top left are the top and bottom views of seven sampled representations from

the surface of the torus, with colored lines indicating representational distances between ad-

xiv

jacent points (green for small distances, yellow for medium and red for large). Bottom left

is the projection of these torus representations onto an annulus, with updated representa-

tional distances. These distances for both shapes are color-coded in their respective RDMs,

which would be considered equivalent by RSA, despite the representational spaces having

completely different shapes. 165

Figure 3.2 Persistent homology workflow. A linkage radius ϵ is increased from 0 and

representations (i.e. data points) are connected when their distance is at most ϵ, forming

Vietoris-Rips complexes. Seven clusters and two loops are present in the dataset, and are

tracked by the PH algorithm with each having its own line segment. At linkage radius A

there are six clusters (since the human face and monkey face are connected, and hence one

cluster has died off), while at radius B the loop is fully connected (and all components merge

into one) and at C the loop is filled in (i.e. is no longer a loop). 169

Figure 3.3 The output persistence diagram of PH run on the example dataset in Figure

3.2 (left) and an example thresholded diagram (right). In the persistence diagram there are

points for each of the seven clusters and two loops - one loop is very close to the diagonal

line where birth and death are the same, indicating that this loop was very ”short-lived”. In

the thresholded diagram only one cluster and one loop were significant, indicated by their

color and placement above their respective threshold lines. 170

Figure 3.4 The mean human (bottom right) and monkey (top left) RDMs (each converted

to a distance matrix using the transformation 1 − ρ →
√

2 ∗ (1 − ρ)). Deeper colors indicate

greater representational distances. 174

Figure 3.5 The VR graphs of the monkey RDM (left) and the human RDM (right) at the

scales of their respective loop births, with the stimuli in the representative cycles of the two

loops highlighted. The monkey visualization shows a central cluster of animal and monkey

faces, from which the loop and two flares (an animal body flair, right, and a hand flair, top

left) stem from. From the loop there is also one flair which corresponds to scenery. Only 54

of the 92 stimuli were plotted as these vertices made up the connected component of the VR

graph which contained the loop (each of the other 38 stimuli either had no connections to

xv

other stimuli or formed small, topologically uninteresting clusters). The human visualization

contained 81 of the 92 stimuli, and appears to be two dominant clusters with two paths of

sparse connections forming the loop. The clusters are animate objects (left) and inanimate

objects (right). 175

Figure 3.6 Topologies of mean representational spaces in VO (top row), PHC (middle

row) and V3 (bottom row) areas. Left column is the PLRG laid out using a graph-layout

algorithm, right column are the frames corresponding to each graph node, plotted at its

node’s 2D coordinate in the graph. The color-coding scheme for PLRG nodes, based on

MDS coordinates, is displayed to the left of the VO PLRG – the x coordinate determines a

horizontal color which is green for positive x-values and purple for negative x-values, and a

vertical color which is orange for positive y-values and blue for negative y-values, and two

nodes which have similar colors are TR’s with correlated activity patterns, i.e. are nearby

in MDS space. PHC and V3 have clearly-defined topologies in their PLRGs, whereas VO

has mainly one densely-connected cluster. As well, the lack of color-clustering and smooth

color gradients in the VO and PHC PLRG’s indicate that MDS, i.e. RSA, did not capture

the graph structure well. V3 on the other hand did exhibit color clustering and gradients,

suggesting that there was a stronger relationship between topology and geometry at the loop

birth scale. Moreover, the clustering and gradients suggest that some folding of the graph

may be appropriate, where nodes which are far apart on the graph with similar colors may

actually be proximal in terms of the geometry of data space. The frame visualization of V3

also appeared to most smoothly vary by color and scene type compared to PHC and VO.

. 178

Chapter 4

Figure 4.1 Two distinct simplicial complexes with the same homology. Both datasets have

two connected components and two loops, but in the first dataset the loops are connected

and in the second dataset they are not connected. 197

xvi

Table of Contents

Abstract . i

Abrégé . iii

Acknowledgements . v

Funding . vi

Contributions . vii

Contributions of Authors . viii

List of Abbreviations . ix

List of Figures . x

Table of Contents . xvi

1 Literature Overview 1

1.1 RSA . 6

1.1.1 RSA origins . 6

1.1.2 RSA successes in vision fMRI studies 11

1.1.3 RSA criticisms . 13

1.2 Topological data analysis . 15

1.2.1 Topology and homology . 15

1.2.2 Capturing the shape of data with persistent homology 22

1.2.3 Interpreting and analyzing persistence diagrams 33

1.2.4 Applied topological analyses in R and Python 36

1.2.5 Other topological tools . 38

1.3 Unresolved questions . 40

xvii

2 Machine learning and inference for topological data analysis with TDApplied 43

2.1 Preamble . 43

2.2 Summary . 46

2.3 Statement of need . 47

2.4 Project management . 49

2.5 References . 51

2.6 TDApplied theory and practice . 53

2.6.1 Introduction . 53

2.6.2 Computing and comparing persistence diagrams 55

2.6.3 Visualizing and interpreting persistence diagrams 67

2.6.4 Hypothesis testing . 82

2.6.5 Finding latent structure . 87

2.6.6 Predicting labels of persistence diagrams 94

2.6.7 Limitations of TDApplied functionality 96

2.6.8 Conclusion . 96

2.6.9 References . 98

2.7 Human Connectome Project analysis . 103

2.7.1 Abstract . 103

2.7.2 Introduction . 103

2.7.3 A task-related spatial loop . 105

2.7.4 Linking the secondary-loop to raw data 107

2.7.5 Linking topology to behavior . 109

2.7.6 Conclusion . 110

2.7.7 Appendix: converting correlations to distances 111

2.7.8 References . 112

2.8 Benchmarking and speedups . 114

2.8.1 Introduction . 114

2.8.2 Speedups . 114

xviii

2.8.3 Benchmarking against similar packages 123

2.8.4 Conclusion . 131

2.8.5 References . 132

2.9 Personalized analyses with TDApplied . 134

2.9.1 Introduction . 134

2.9.2 Classification with extreme gradient boosting (XGBoost) 135

2.9.3 Conclusion . 142

2.9.4 References . 143

2.10 Comparing distance calculations . 144

2.10.1 Introduction . 144

2.10.2 TDAstats’ phom.dist function . 144

2.10.3 Examples . 145

2.10.4 Comparisons . 149

2.10.5 Proof of correctness for TDApplied’s diagram distance function . . . 155

2.10.6 References . 158

Applied topology of representations 159

3 Representational topology analysis 160

3.1 Preamble . 160

3.2 Abstract . 163

3.3 Significance statement . 163

3.4 Introduction . 163

3.5 Results . 173

3.5.1 Human and monkey IT cortex data 173

3.5.2 Naturalistic movie viewing data . 176

3.6 Discussion . 179

3.7 Materials and methods . 183

3.7.1 Human vs. monkey comparison . 183

xix

3.7.2 Naturalistic movie viewing study . 184

3.8 References . 186

4 Discussion and future directions 192

4.1 Implications and origins of representational topologies 194

4.2 Linking topological features across multiple representational topologies . . . 197

4.3 Linear RSA compared to non-linear RTA representational comparisons . . . 199

4.4 Model adjudication . 201

4.5 Data pooling of RSA studies and non-RSA studies 202

4.6 Final conclusions and contributions to knowledge 204

4.7 References for Chapters 1 and 4 . 206

xx

Chapter 1

Literature Overview

Representational similarity analysis (RSA, Kriegeskorte, Mur, and Bandettini, 2008) is the

first neuroimaging analysis framework in which data can be compared across species

and imaging modalities (Kriegeskorte, Mur, Ruff, et al., 2008; Kriegeskorte, 2009), and

against computational models and behavior data (Kriegeskorte, Mur, Ruff, et al., 2008;

Rothlein and Rapp, 2014; Tamir et al., 2016; Wasserman et al., 2017). These types of com-

parisons are possible in RSA by abstracting measurement units in the two data sources

(for example fMRI voxel activity, neuron binned spike counts, etc.) to stimulus-stimulus

dissimilarity values stored in representational dissimilarity matrices (RDMs), and the func-

tion used to compute these dissimilarities is called a first-order isomorphism. We can then

compare pairs of corresponding values in two RDMs with a second-order isomorphism func-

tion – the Spearman correlation is often used due to its simplicity and scale-invariance

property. In order to capture more expressive relationships between RDMs beyond corre-

lation, which can only capture linear relationships, several studies have suggested using

other second-order isomorphisms for comparing RDMs (Diedrichsen et al., 2020; Edel-

man, 1998; Kriegeskorte and Kievit, 2013; Shahbazi et al., 2021).

Despite the broad palette of second-order isomorphisms for many experimental sce-

narios, all options to date compare corresponding entries of RDMs in order to quantify

similarity or difference of representational geometries. Each RDM entry is a represen-

1

tational dissimilarity between two conditions, so comparing only pairs of these values

obscures any similarities or differences in the representational geometries that are com-

prised of more than two dissimilarities and conditions. But the central assumption of

RSA is that an RDM defines a geometry, or shape, and shape structure is best appreci-

ated globally, i.e. viewing all first-order comparisons simultaneously. To see why shape

structures are best appreciated globally, let us consider two examples from the literature

which use mathematical modeling based on biological assumptions to identify global

shape structures in representational geometries. First, it has been shown that the repre-

sentational geometry of orientation-selective neurons in primary visual cortex is a loop

– smoothly-varying responses that repeat every 180 degrees (Singh et al., 2008). Second,

the representational geometry of rat grid cells, responsible for helping the rat determine

its location in space, is a torus (i.e. hollow doughnut) (Curto, 2017). Viewing only a small

segment of either shape would not reveal its global properties, i.e. a segment of a loop

would not capture its periodic nature.

These two representational geometries, a loop and a torus, contain shape features

which can only be appreciated at a global scale by considering distances between all

points (i.e. representations) simultaneously – the former contains a single loop, and the

latter contains two different types of loops (one which bisects the doughnut horizontally

and the other which bisects the hollow tube vertically) and one void inside the tube. These

features also vary in dimension – a loop is 1-dimensional and a void is 2-dimensional, like

the casing of a sphere. Under this shape-of-data perspective, the two representational ge-

ometries are distinct because they contain different numbers of shape features, and their

features are of different dimensions. And we know that orientation-selective cells and

rat grid cells perform distinct calculations, but in Figure 1.1 I provide a visual illustration

as to how RSA could erroneously equate the two representational geometries, of a torus

and a loop. In this illustration I show how representations which exist on a torus can

be projected onto projections within an annulus (i.e. a loop with added noise), and the

2

O
nt

ol
og

ic
al

ly
Di
ffe

re
nt

RS
A

Eq
ui
va
le
nt

Top View Bottom View

Figure 1.1: Sampled representations from a torus, projected onto an annulus, and the re-

sulting two RDMs. The stimuli images were obtained from the supplemental information

in Kriegeskorte, 2009 but were originally introduced in Kiani et al., 2007, as is the case in

later figures. Top left are the top and bottom views of seven sampled representations from

the surface of the torus, with colored lines indicating representational distances between

adjacent points (green for small distances, yellow for medium and red for large). Bottom

left is the projection of these torus representations onto an annulus, with updated rep-

resentational distances. These distances for both shapes are color-coded in their respec-

tive RDMs, which would be considered equivalent by RSA, despite the representational

spaces having completely different shapes. This figure is the same as Figure 3.1.

two RDMs would be erroneously equated by RSA despite being generated from different

shapes. I will refer to this illustration as our RSA ”counterexample”.

3

Previous studies have demonstrated that RSA can erroneously find similarity in two

computational systems (for example two artificial neural networks) that are performing

entirely distinct calculations (Chen et al., 2021; Dujmović et al., 2022). In Chen et al., 2021

the error came from (1) using biologically implausible feed-forward model architectures

of the human reading system (a system that is is known to utilize feedback mechanisms of

orthographic processing), and in Dujmović et al., 2022 the error arose from (2) confound-

ing variables which were correlated with stimulus condition, and (3) computing represen-

tational dissimilarity using different functions which project representations onto distinct

shape structures for comparison. Our RSA counterexample of the torus and loop repre-

sentational geometries is similar to (1) because we know that the computational model

of an orientation-selective cell, a loop, would not be a biologically appropriate model of

a rat grid cell, a torus, and vice versa. On the other hand, in our RSA counterexample

we were able to identify the difference between the two representational spaces based

on their shape features, whereas the difference could only be identified based on un-

derlying assumptions about the biology of the human reading system and is therefore

not data-driven. Our RSA counterexample is also similar to (2) in that the difference be-

tween the two representational spaces was due to differences in the features which define

the spaces. However, (2) was illustrated with two high-performing convolutional neural

networks, trained to recognize ten classes of naturalistic images, having highly similar fi-

nal layer representations (despite distinct computational mechanisms). Since the models

were high-performing it would be expected that the two final-layer sets of image repre-

sentations were well-clustered according to image class. On the other hand, we would

expect that earlier-layer representational geometries of the two neural networks would

differ, with the network trained with the confounding dataset displaying more clustered

representations and not so for the other network – differences that could be detected

using shape analysis. Lastly, in (3) the two first-order isomorphisms constrain the repre-

sentations to live on distinct shape structures – only one of which contains a void. While

specific samplings of the two embedding spaces could have similar geometry by chance

4

(as was shown in Dujmović et al., 2022), sufficient sampling of the space that contains

the void would capture the void structure (i.e. with points on all sides of the void) while

sufficient sampling of the space that does not contain the void would not capture any

significant void structure. Therefore, the difference between the two spaces would have

been detectable using shape analysis.

In order to resolve our new criticism of RSA, illustrated by our counterexample in Fig-

ure 1.1, in Chapter 3 I will introduce a novel framework, called representational topology

analysis (RTA), which can capture and compare various types of shape features in repre-

sentational geometries. In this framework an algorithm called persistent homology will be

used to calculate a shape descriptor, called a persistence diagram, of representational ge-

ometries defined by RDMs which contains information about shape features like clusters,

loops and voids. I will demonstrate that RTA can identify significant shape features in

representational spaces which RSA cannot, that these features can be used to find a previ-

ously unseen functional difference of human and monkey IT cortex in an object-viewing

study and that this difference is explainable and mechanistic. Moreover, I will show that

these shape features vary across regions in a naturalistic movie-viewing study and likely

represent stimulus features.

A framework which satisfies the characteristics in the previous paragraph, however,

would not be a suitable counterpart to RSA without the ability to carry out typical RSA

analyses. Two examples of such analyses include multidimensional scaling (MDS) (Mead,

1992), in which multiple RDMs and their pairwise (Spearman linear) distances are used

to define a low-dimensional embedding which captures the inter-RDM relationships, and

model inference (Kriegeskorte, Mur, and Bandettini, 2008), in which (groups of) RDMs

can be compared statistically for similarity or difference. These two analyses are exam-

ples of machine learning and statistical inference respectively, two extremely popular ap-

proaches for analyzing data. While machine learning and statistical inference procedures

tailored for the unstructured data in persistence diagrams have been published (Fasy et

al., 2014; Le and Yamada, 2018; Robinson and Turner, 2017), no publicly-available soft-

5

ware package in R or Python has offered these functionalities. In Chapter 2 I will in-

troduce a novel R software package I have authored, called TDApplied, for analyzing

persistence diagrams with machine learning and statistical inference. Through a vari-

ety of simulations I demonstrate that TDApplied is a more efficient, computationally

sound and flexible package than other R packages for topological analyses of data, and

by analyzing neurological data from HCP I show that TDApplied can extract meaningful

insights from (neurological) data in ways that other packages cannot.

Viewed as a whole, RTA with TDApplied is a powerful framework for shape analy-

sis of representational geometries which can capture meaningful, and otherwise hidden

features of neural function and analyze these features in typical RSA workflows.

1.1 Representational similarity analysis

1.1.1 RSA origins

There are three dominant and complementary modules in systems neuroscience – neural

activity measurement, computational modeling and behavior (Kriegeskorte, Mur, and

Bandettini, 2008) – and combining data (and therefore inferences) between the modules

is an enticing prospect. The statistical power of a study can be increased when pool-

ing multiple data sources – an obvious example would be across subjects, but we could

also pool data across various neuroimaging modalities (for example, MRI) with appro-

priate methodologies (Calhoun and Sui, 2016; Glasser et al., 2016; Huster et al., 2013).

Pooling data across the different modules would also allow researchers to test novel hy-

potheses which are comprised of the relationships between brain, model and behavior.

Unfortunately, there are a number of challenges facing the pooling of data between (and

even within) the modules. Behavior data, like perceptual similarity judgements in psy-

chophysics, is the result of neural computations but is only linked to those computations

via hidden and complex encoding and decoding mechanisms of stimuli and neural fea-

tures (Kriegeskorte and Diedrichsen, 2019; Laakso, 2000). On the other hand, brains can

6

vary significantly in their anatomy and functional wiring, and artificial neural networks

can vary significantly in their model architecture (for example different numbers of lay-

ers and hidden units), making comparisons between brain and model (and even between

brains and between models) very challenging (Laakso, 2000). RSA is a simple frame-

work which solves this problem of data comparison across and within modules in three

steps: (1) computing representations of stimuli, (2) comparing representations with rep-

resentational (dis)similarities, storing the results in a representational (dis)similarity matrix

(RDM/RSM) which encodes the space’s representational geometry and (3) comparing rep-

resentational dissimilarities using a second-order isomorphism. For certain types of data

(such as perceptual similarity judgements and perceptual models) it is possible to even

skip steps (1) and (2) to directly obtain an RSM/RDM without needing to capture any

notion of representation. In the language of RSA, step (2) can be viewed as calculating

first-order isomorphisms between representations.

The key to RSA’s success, hidden within the simplicity of each of its three steps, is a

number of deep ideas from psychology. In step 1 of RSA representations are computed,

but exactly do we mean by a representation? In the case of brains or neural models, the

theory of pattern activations defines a representation as an activity profile across functional

units, i.e. a snapshot of what the brain is doing in a single instance (Churchland, 1995),

which occupies a position in a neural state/activation space (Churchland, 1986). This

definition is intuitive and idealistic, but may present issues in practice – in fMRI studies

spatial-temporal noise (T. Liu, 2016) may obscure signal in individual time point activ-

ity patterns. In such studies representations could also be defined as generalized linear

model coefficients across voxels (Connolly et al., 2012; Hendriks et al., 2017), but this ap-

proach would obscure temporal information via averaging. The pattern activation theory

definition of representations should be suitable in fMRI RSA studies, so long as sufficient

steps are taken to reduce potential noise sources via preprocessing, for example spatial

smoothing or more advanced denoising techniques (Jo et al., 2010; T. Liu, 2016).

7

The second step of RSA compares representations, and in the pattern activation theory

such comparisons are meaningful because the proximity of representation positions in

state space determines perceptual similarity/dissimilarity (Churchland, 1986), establish-

ing a ”parallelism” between brain/model and behavior (Shepard and Chipman, 1970).

Perceptual dissimilarity, the principal object of study in the field of pscyhophysics, is

based on the idea that the brain featurizes the external world into a state space in which

(dis)similarity judgements are are simply the proximity between pairs of points, and that

the dimensions of this space need not be entirely describable (Goodman, 1951; Shepard

and Chipman, 1970). Small perturbations of an object’s representation in a state space, as

long as the perturbation does not affect the relative position of the representation com-

pared to other object representations, should not change the qualitative experience of

those objects (Laakso, 2000).

One problem with these ideas is that it is unclear how to select appropriate func-

tions to compute representational (dis)similarity. For example, human judgements are not

symmetric, so it has been argued that neither should representational dissimilarity func-

tions (precluding simple and popular methods like Euclidean distance and cosine dis-

tance) (Edelman, 1998). Even if a neural activity space contained enough neurologically-

relevant dimensions to completely reflect stimulus encoding, it is unlikely that any sim-

ple vector metric would be a biologically-plausible judgement mechanism. In Shepard

and Chipman, 1970 it is also argued that a parallelism exists between neural represen-

tations and perception of stimulus features (i.e. behavior), implying that future studies

should attempt to learn more biologically-plausible neural (possibly non-linear) represen-

tational dissimilarity functions based on behavioral dissimilarity judgements. The study

Bobadilla-Suarez et al., 2019 compared a number of dissimilarity functions of fMRI spa-

tial patterns, where each function was a well-known mathematical function of vectors,

to see which function’s stimulus-stimulus distance matrix best approximated the confu-

sion matrix of a well-performing classifier (decoding the stimulus being viewed at each

time point based on the time point’s spatial activity pattern). Their results indicated that

8

certain functions performed better than others; however, decoding models impose as-

sumptions on neurological data which may not be neurologically plausible and therefore

comparing against behavioral similarity judgements would be more appropriate. An-

other study, Yousefnezhad et al., 2021, used neural networks to learn flexible non-linear

dissimilarity functions between representations to define RDMs which are more appro-

priate for comparison using typical linear second-order isomorphisms like correlation,

but such representational comparisons are not interpretable/explainable and are driven

by computational assumptions alone (such as modeling neural responses using the fMRI

experiment design matrix in the GLM framework and that the brain computes gradients

in order to learn representations) as opposed to biological assumptions or a mix of the

two.

The third step of RSA is the comparison, with correlation, of two sets of correspond-

ing representational dissimilarities, an idea first proposed for behavior data in Shepard

and Chipman, 1970 and later being proposed for neural networks in Laakso, 2000. Dis-

tinct systems may perform (nearly) identical calculations, for example two people with

different sized brains may correctly solve an addition problem following the exact same

steps, but the neural state spaces of the two subjects would be different if the two brains

had different numbers of neurons so individual representations would not be compara-

ble. Therefore, what is more interesting than individual representations is the relative

positioning between multiple representations. Collections of representational distances

define a ”shape”, which is invariant under rotations and translations. However, shapes

should be identifiable as long as enough points are sampled from them, but in the RSA

framework it is only possible to compare representational spaces with the same number

of points (correlation only operates on two same-sized vectors). It was also remarked

that it would be interesting to compute matches between representations of stimuli from

different domains, although the originally proposed framework did not seem entirely

appropriate for doing so (Laakso, 2000).

9

In both Shepard and Chipman, 1970 and Laakso, 2000, Pearson correlation is used

to compare representational distances, largely because it is scale invariant – unaffected

by the mean and variance of its two input vectors. This property is desirable because

representations, and therefore their dissimilarities, may exist on separate scales in two

systems even if they encode the same computations. On the other hand, any function

comparing two sets of (corresponding) representational dissimilarities can be a second-

order isomorphism. In Kriegeskorte and Kievit, 2013 it was suggested that non-linear

second-order isomorphisms (as opposed to linear ones like correlation) may be useful

for capturing non-linear features of representational geometries, and several studies have

proposed isomorphisms along these lines. For example, Diedrichsen et al., 2020 proposed

a metric of independence between representational distances called distance correlation

(Szekely et al., 2008), which can capture linear and non-linear relationships while also

reducing bias in RSA experiments. Other approaches have calculated distances between

correlation matrices (commonly used as RSMs in RSA) based on the high-dimensional

structure (called a ”manifold”) on which all correlation matrices exist (Shahbazi et al.,

2021; You and Park, 2022) – correlation matrices form a subset of all matrices with special

structure. Despite the performance gains exhibited by these non-linear and more com-

plex second-order isormophisms, they each have drawbacks. Distance correlation is only

able to model non-linear dependencies in the joint distribution of the two sets of represen-

tational dissimilarities, whereas there may exist shape structures in the two spaces (like

was discussed in Laakso, 2000) which inform similarities/differences. On the other hand,

the distribution of correlations that arise specifically in neuroimaging data would likely

form a subset of the correlation-manifold (i.e. a ”sub-manifold” of all possible correlation

matrices), meaning that we may be greatly overestimating distances. Large distances are

the least informative when determining shape structure because connections exist only

locally between neighboring points on the shape (i.e. there are no discontinuous jumps

on a shape, only between clusters).

10

All of these ideas together contributed to the development of RSA. Neural activity

representations of stimuli give rise to representational geometries (which define shapes

in representational state space), regardless of whether the representations were measured

in brains or computational models. Geometries can also be computed from behavior data,

like perceptual judgements in psychophysics. Any of these geometries can then be com-

pared using a second-order isormorphism, comparing computations and experiences re-

gardless of functional wiring/architecture. By comparing behavior data with neural data

we implicitly assume the stimulus differences are parallel with neural state differences,

and by utilizing RSA to bridge the three modules of systems neuroscience we recruit tools

from decades of psychological theory.

1.1.2 RSA successes in vision fMRI studies

One domain in which RSA has had a significant impact is vision fMRI, which was the

application of RSA’s introductory paper (Kriegeskorte, Mur, and Bandettini, 2008); fMRI

recordings of human IT cortex during object viewing were collected and RDMs were com-

pared against computational-model RDMs. Subsequent studies (Kriegeskorte, Mur, Ruff,

et al., 2008; Kriegeskorte, 2009) compared, using RSA, the human fMRI data against elec-

trode recording data (Kiani et al., 2007) from monkeys viewing the same stimuli, iden-

tifying similar functional architectures between the two species. These were landmark

studies, providing poignant evidence that (1) monkey IT cortex is a suitable model for

human IT cortex for object recognition and (2) RSA is able to test hypotheses that other

methods cannot. RSA lends itself nicely to vision fMRI applications because (collections

of) neurons in visual areas compute visual features within their field of view, with sim-

pler representations in earlier areas (such as orientation-selective neurons in V1) and more

complex representations in later ones (such as face cells in IT cortex), and these feature

maps are detectable in vivo in humans using fMRI (Kamitani and Tong, 2005; Kanwisher

et al., 1997; Mack et al., 2013). Since primates have similar functional architectures for vi-

sion (Mack et al., 2013; Nassi and Callaway, 2009), and invasive techniques like electrode

11

recordings can record neural activity in monkeys at a high spatial resolution, inter-species

and inter-modality RSA could boost statistical power for inferences made about human

vision. For reasons such as these, RSA has been utilized in many insightful fMRI vision

studies.

While inter-species and inter-modality studies are interesting applications of RSA, one

of the most significant contributions of RSA to vision research was performed completely

within human subjects using only fMRI. The ventral and dorsal visual streams have been

known to process, with significant interactions, object identity and object location/motion

respectively (Mack et al., 2013; Nassi and Callaway, 2009; Ungerleider and Mishkin, 1982),

but these interactions have yet to be well-characterized. In Bracci and Op de Beeck, 2016,

object representations in human ventral and dorsal areas were disentangled according

to object shape and category using RSA, comparing against perceptual similarity judge-

ments of the objects. It was found that representational spaces changed continuously

from category-selective in later ventral areas, to mixed areas, to shape-selective later dor-

sal areas, suggesting that later visual areas in both streams are more specialized whereas

early and middle areas have significant overlap. These results are a significant achieve-

ment, which would not have been possible without RSA, as stimulus representations in

different brain regions with different anatomical shapes cannot be directly compared.

The ability of RSA to compare fMRI data across regions of different shape has led to its

application in aging studies (the ”same” brain region in adults and children would be of

different sizes). For example, in Golarai et al., 2017 and Cohen et al., 2019, visual stimuli

(images of faces and objects from different categories) were shown to a group of children

and a group of adults during fMRI scanning, and in neither paper was a difference found

between the child and adult representational spaces in IT cortex. The authors of these two

studies concluded that object representations are likely fixed at an early age, however it is

possible that their methods were insufficient to capture more complex non-linear group

differences. One interesting feature of both studies is how the two groups (child and

adult) were compared. In Cohen et al., 2019 each group had a mean RDM computed

12

and the two mean RDMs were compared with a permutation test, which is the suggested

approach from Kriegeskorte, Mur, and Bandettini, 2008. However, in Golarai et al., 2017

a permutation test of within-group correlations was employed thereby capitalizing on

within-group variations rather than averaging over them. This latter approach to group

inference in RSA has a direct counterpart in RTA, which we will discuss in Chapter 2.

While the previously mentioned studies have focused solely on vision at a regional

level, the flexibility of RSA can be used to compare different visual representations of

stimuli and at a fine scale. An example of such a study is Devereux et al., 2013, in

which the pictorial and semantic representations of words were compared using a local

searchlight-based approach (Kriegeskorte et al., 2006) combined with RSA. Their results

indicated that clusters of local-scale representational spaces exist which are representation-

agnostic, implying that cross-representation studies could result in greater inferential

power. Of particular interest in this approach is that RSA is performed even when the

stimuli are not the same, in contrast to the previously listed studies. Despite the obvious

correspondence between the cross-modality stimuli, like viewing a word or a picture rep-

resenting that word, which provides a sensible roadmap for the application of RSA, this

study is a basic example of the cross-domain experiments which were hypothesized to be

interesting applications of RSA in Laakso, 2000. Therefore, it remains an open question to

what extent different stimuli can be used in a single RSA study.

The unique value of RSA in all the studies described above is comparing data which

was not comparable using other methods in order to make meaningful inferences about

vision. Whether the comparisons were between species, modalities, brain regions, age

groups or stimulus representations, the raw activation patterns of stimuli did not exist in a

shared representational space, but their representational dissimilarities were comparable.

By leveling the playing field across these comparisons we can potentially use a number

of data sources (ones which perhaps take less time or money to collect compared to fMRI)

to make inferences about human vision with increased sample size, and this is an idea

13

which is briefly discussed in Chapter 3. In summary, RSA is a powerful and flexible tool

for studying human vision with fMRI.

1.1.3 RSA criticisms

Despite the widespread adoption and success of RSA, especially in the case of vision fMRI

studies, there have been several major sources of criticism. The first criticism has already

been discussed at the beginning of Chapter 1 – high correlation of RDMs, i.e. second-

order isomorphism values, does not imply similar calculations being carried out (Chen

et al., 2021; Dujmović et al., 2022) – which is perhaps the most problematic issue with

RSA (and is also a major challenge in model adjudication across many scientific fields).

However, other issues arise when calculating second-order and first-order isomorphisms

due to fMRI-specific and general RSA biases.

In Cai et al., 2019 and Viviani, 2021, mathematical derivations demonstrate how, in the

GLM framework, non-independence of fMRI design-matrix columns as well as spatio-

temporal autocorrelation biases RSA inferences made from second-order isomorphism

calculations. Simulations also showed that these effects can cause inflated correlations

between task RSMs and resting-state RSMs or even with RSMs generated from random

noise, whether the RSMs were computed by comparing GLM coefficients with Euclidean

distance or correlation distance (i.e. one subtract correlation), or by correlating spatial

patterns. On the other hand, second-order isomorphisms can be inflated/defalted due

to non-independence between first-order isomorphism values, for example those which

share an underlying representation (Diedrichsen et al., 2020). First-order isomorphisms,

like Euclidean and correlation distance, also can be inflated by measurement noise es-

pecially for small (close to 0) distance values, an inflation which would bias second-

order isomorphisms when the measurement noise is non-uniform across representations

(Diedrichsen et al., 2020). The solutions proposed by these studies suggest that unbi-

ased (cross-validated) first-order isomorphisms combined with incorporating the covari-

ance (dependence) structures within RDMs into second-order isomorphism calculations

14

would provide more robust RSA inferences in fMRI studies. On the other hand, from a

preprocessing perspective, it has been shown that certain methods for denoising fMRI

data can improve RSA inferences (Charest et al., 2018; Hendriks et al., 2017; Prince et al.,

2022). The current literature therefore points towards a careful combination of prepro-

cessing, postprocessing and interpretive techniques for meaningful applications of RSA

to fMRI studies. However, it seems that most RSA studies still utilize the original, simpler

framework.

In Chapter 3 we use RTA to capture and compare shape structures in spatial-pattern

correlation-distance RDMs from fMRI data, so what would be the effect of these RSA

biases on shapes and their comparisons? While outside the scope of this thesis, it is pos-

sible that effects of bias would be lower for several reasons. Firstly, higher-dimensional

shape structures, like loops or voids, are defined by specific patterns of non-independence

(i.e. autocorrelation) between distance values, meaning that shape detection may actu-

ally benefit from non-trivial RDM covariance matrices. Secondly, we explained at the

beginning of this chapter that shape analysis can detect differences in dimension between

highly-similar (measured by correlation) representational geometries, and therefore more

topologically trivial randomly-generated fMRI data may be more distinguishable to real,

more topologically rich fMRI data (we show in Chapter 2 that task-fMRI data can con-

tain loop structures of correlated spatial patterns). In Chapter 1.2.2 we will see that data

shapes are robust to small amounts of additive noise and only depend on the ordering of

representational dissimilarity values rather than the values themselves, suggesting that

uniform measurement noise or low variance non-uniform noise would not affect shape

calculations or comparisons.

1.2 Topological data analysis

In order to capture the ”shape of data” we will utilize techniques developed from the

mathematical area which is concerned with shape structure – topology. In the topological

15

approach, broadly speaking a shape (i.e. a topological space) is defined by a set of points

and a collection of neighborhood subsets, which determine the local-scale connections

between adjacent points. Global shape structure can then be described using a technique

called homology, a useful tool for determining when two shapes are distinct. Example

applications in neuroscience will be provided to give an intuitive introduction and moti-

vation for the use of topology and homology.

1.2.1 Topology and homology

One of the most popular frameworks for analyzing neuroimaging data is also one of the

simplest examples of a topological space – networks (called graphs in the mathematical

literature). For example, functional connectomes are networks which capture the tem-

poral coherence of activity between functional units, and these networks can be used to

distinguish between subjects with certain neurological conditions and controls (Y. Liu et

al., 2008; Supekar et al., 2008; Wang et al., 2009). Mathematically, a network is a pair

(V,E) where V is a set of objects (the “nodes” or “vertices”, such as voxels in an fMRI

dataset) and E is a collection of pairs of those objects (the edges between pairs of nodes,

such as significant correlations between the temporal activity of voxels). A network can

be either weighted or unweighted, depending on whether we assign a numeric value (i.e.

weight) to each edge (e.g. a voxel correlation value) or not, and can be either directed or

undirected, whether edges are directed (encoding asymmetric causal relationships) or not

(encoding symmetric relationships). For any network node v, the set of all nodes which v

has an edge with is called the ‘neighborhood’ of v (for example, all voxels which have a

significant correlation to a target voxel).

Topological spaces can be thought of as generalizations of networks: a topological

space is a pair (X,T) where X is a set of objects (like voxels) and T is a special collection

of ”open” subsets of those objects, allowing for the relationships (i.e. interaction) between

any number of the objects in X (as opposed to only permitting interactions between two

vertices in a brain network). This relaxed property is more appropriate for neurologi-

16

cal data because functional dependencies can exist between multiple (i.e. greater than

two) functional units (Sizemore et al., 2019). Topology captures nearness, i.e. adjacency,

between collections of objects in a space.

A very useful type of topological space is called a ∆-complex (Hatcher, 2002), often

called a ”(simplicial) complex” in the applied topology literature. The latter terminology

is the one we will use from this point onwards. In a complex we glue together multi-

ple simple shapes in a special way. The building blocks of these spaces are called ”n-

simplices”, of dimension n. Examples are vertices (0-simplices), edges between pairs of

vertices (1-simplices), triangles between triples of vertices (2-simplices) etc., and all sim-

plices exist in some Euclidean space (a data space of fixed dimension k in which the

distance between any two points in the space is the Euclidean distance). The dimension n

of each n-simplex [v0, v1, . . . , vn] is the number of parameters needed to locate a point on

that shape. In a complex, n-simplices are glued (i.e. intersect) along lower-dimensional

simplices, for instance two triangles could be glued along one (or more) edges/vertices.

There is a straightforward relationship between complexes and networks – the set of 1-

simplices of a complex forms a network called the complexe’s ”1-skeleton”. In Figure 1.2

we can see an example of a complex formed by the gluing of several triangles, edges and

vertices in three separate connected components.

Complexes are shape structures (possibly high dimensional and

non-visualizeable) which require special tools to identify their essential structure. In the

simpler case of networks, various well-known “graph metrics” can be computed sum-

marizing different aspects of a network’s structure, such as how segregated the graph is

into modules or how integrated the graph is (Rubinov and Sporns, 2010). While a num-

ber of graph metrics have been extended to analyze complexes (Giusti et al., 2016), there

is one particularly useful framework for determining the shape structure of complexes

for comparison -– homology (Hatcher, 2002). Homology detects the number of distinct

(i.e. independent) holes, of various dimensions, that exist in a complex, and it turns

out that if two complexes have different homology then they are not the same shape. A

17

Simplicial complex

Figure 1.2: A sample complex with three connected components. The left-most compo-

nent contains 2-simplices, 1-simplices and 0-simplices, the middle component contains

1-simplices and 0-simplices, and the right component contains just a single 0-simplex.

hole has a dimension, which is the number of parameters which encode the position of

a point around the hole, and some examples of holes are clusters (0-dimensional), loops

(1-dimensional) and voids (2-dimensional). This may seem like a strange approach to

data analysis – normally we try to ascertain where our data is by modeling distributions,

performing clustering, etc. But by finding holes in our data we are actually able to an-

swer the dual question of where our data is not, with added information about the local

dimension of our data (i.e. how many latent variables adequately capture the variance of

each data segment). Interestingly, it has been suggested that holes in neural activity space

may represent parallel processing strategies, via divergence and later re-convergence of

neural activity (Sizemore et al., 2019).

In order to compute the homology of a complex we need a piece of machinery called

the boundary map, ∂. The boundary of an n-simplex [v0, v1, . . . , vn] is the sum of all its

(n − 1)-simplices, resulting in a lower-dimensional complex – for example the boundary

of a 1-simplex [v0, v1] is ∂([v0, v1]) = v0 + v1 and the boundary of a 2-simplex [v0, v1, v2] is

∂([v0, v1, v2]) = [v0, v1] + [v1, v2] + [v2, v0]. This definition of boundary implicitly assumes

that the ordering of vertices in an n-simplex is irrelevant (and all additions are modulo

18

2) as would be the case for functional connectivity correlation connections between brain

regions. By convention, the boundary of any 0-simplex, [v0], is trivial, i.e. ∂([v0]) = 0.

In order to analyze a complex in a particular dimension n we can form n-chains, i.e.

combinations of the n-simplices in the complex. If the n-simplices are s1, . . . , sk then the

n-chains are of the form c =
∑n

i=1 aisi with each ai being either 0 or 1. For example, in

a complex representing function connections a 2-chain would be a set (or sum) of triples

of functionally-connected brain regions. The boundary map of a chain is then simply the

sum of the boundary maps ∂(c) =
∑n

i=1 ai∂(si), resulting in a lower-dimensional (n− 1)-

chain, and it turns out that the boundary map is what is called a linear map (which will

be important later when we analyze the boundary map with common tools from the field

of linear algebra, see Axler, 1997 for relevant definitions).

We can now describe n-dimensional holes in a complex, beginning with an example.

Consider the left-most component of the complex in Figure 1.2, with labelled vertices as

shown in Figure 1.3. Intuitively, a loop is a 1-dimensional hole that is not ”filled in”. Good

potential candidates for loops would be 1-chains, i.e. collections of edges in the complex,

with no boundary (∂ = 0). In Figure 1.3, four examples of such chains (labelled with

colored edges) would be

c1 = [v0, v1] + [v1, v3] + [v3, v2] + [v2, v0]

c2 = [v1, v3] + [v3, v4] + [v4, v6] + [v6, v1]

c3 = [v1, v0] + [v1, v2] + [v2, v3] + [v3, v4] + [v4, v6] + [v6, v1]

c4 = [v4, v5] + [v5, v6] + [v6, v4]

The first chain c1 goes around the two filled-in triangles and should not be considered

a loop as its interior is filled in, the second chain c2 contains the middle hole and therefore

should be considered a loop, the third chain c3 winds through the filled-in triangles and

then around the same hole as c2 and therefore should be considered the same loop, and

19

v0

v1

v2

v3

v4

v5

v6

v7

c1
c2
c3
c4

Homology complex example

Figure 1.3: The left-most complex in Figure 1.2 with labelled vertices. The four example

chains, c1 (red), c2 (green), c3 (blue) and c4 (brown) overlay the complex, following the

edges of which they are each comprised.

the fourth chain c4 contains the right hole and therefore should be considered a different

loop from c2 and c3.

We can capture this exact intuition with boundary calculations. We see that c1 is the

boundary of the 2-chain [v0, v1, v2] + [v1, v3, v2] (remembering that the ordering of vertices

in an n-simplex does not matter):

20

∂([v0, v1, v2] + [v1, v3, v2])

= ∂([v0, v1, v2]) + ∂([v1, v3, v2])

= [v0, v1] + [v1, v2] + [v2, v0] + [v1, v3] + [v3, v2] + [v2, v1]

= [v0, v1] + [v1, v3] + [v3, v2] + [v2, v0] + ([v1, v2] + [v2, v1])

= [v0, v1] + [v1, v3] + [v3, v2] + [v2, v0] + 0

= c1

On the other hand, none of the other three chains are the boundaries of some 2-chain,

simply because there is no 2-simplex which contains either [v6, v1] or [v5, v6]. Mathemat-

ically, the k-th homology group of a complex, Hk, is a quotient of two vector spaces, the

kernel of the boundary map operating on k-chains ker(∂k) (i.e. the subspace of all k-chains

with trivial boundary) and the image of the boundary map operating on (k + 1)-chains

Im(∂k+1), i.e. Hk = ker(∂k)/Im(∂k+1). In other words, n-dimensional holes are n-chains

which have 0 boundary and which are not the boundary of any (n+ 1)-chain.

In the quotient space Hk we remove from each k-chain with trivial boundary all its

parts which are the boundary of some (k + 1)-chain. Since [v1, v0] + [v0, v2] + [v2, v0] =

∂([v0, v1, v2]) (because edges are undirected) once we remove this part of c3 we are left

with exactly c2, and that is why they are the same loop. On the other hand, the difference

between c2 and c4 are all of the edges except for [v4, v6], and these edges are not a bound-

ary, and therefore these holes are different or ”independent”. This intuition is formalized

by the quotient space Hk – two holes are considered the same if they only differ by some

boundaries of (k + 1)-chains.

We can now summarize the ”shape” of a complex by counting the number of inde-

pendent holes as the dimension of the homology groups Hk, and these are called the Betti

numbers, βk. For instance, β1, the first Betti number, is the number of independent loops in

the complex, which for our example would be β1 = 2. On the other hand, β2 turns out to

21

be the number of 3D voids (i.e. 2-dimensional holes found inside a hollow 3D object) in a

complex – since our example complex lives in 2D space, β2 = 0. Another Betti number of

interest is the 0-th Betti number, β0, which counts the number of connected components

in the complex. In our example β0 = 1. To see why β0 counts connected components

lets look at H0. A 0-chain is a sum (i.e. collection) of vertices. The kernel of ∂0 is the set

of 0-chains which have 0 boundary, which by definition is all chains (since each vertex

has boundary 0). On the other hand any two vertices in the same connected component

represent the same cycle in H0, since they differ by the boundary of any path of edges

which join them. Two vertices in different connected components cannot represent the

same cycle in H0 because they are not connected by any path of edges. Therefore, H0

counts the number of connected components in a complex. In terms of linear algebra, βk

for any k can be calculated as dim null(∂k)− rank(∂k+1), where dim null is the dimension

of the kernel and rank is the dimension of the image.

We have already discussed why complexes may be more biologically appropriate

models of neurological data compared to networks, due to their ability to encode high-

dimensional interactions between multiple functional units, but Betti numbers of com-

plexes also provide several advantages over graph metrics of networks in the context of

neuroimaging analyses. Most significantly, Betti numbers of a complex are not affected

by the number of vertices or edges in the complex, whereas these quantities do impact the

calculations of graph metrics (Rubinov and Sporns, 2010). As well, graph metrics (out-

side of connected components, which are the same as β0) summarize the whole graph,

whereas independent holes could capture differences in neural dynamics in distinct func-

tional subnetworks. Also, homology disregards topologically uninformative interactions

which could be desirable from a noise filtering perspective, whereas graph metrics use all

the edges of a graph in their computations.

Despite these advantages, building complexes from data still falls prey to one of the

most challenging problems in network neuroscience – how to decide which interactions

(edges in the networks or n-simplices in the complexes) are important to include in our

22

model. Edges in functional connectivity networks are often filtered based on the signifi-

cance of their correlations (for example using the Bonferroni correction), and this filtered

network only captures network structure at the scale of the filtering threshold. However,

there is no consensus on what is the best method for determining the threshold. Weighted

networks on the other hand include all edges, and therefore may contain many false pos-

itive edges.

In any event, the omission of real edges or the inclusion of non-real edges has the abil-

ity to skew any graph metric or Betti number calculation. Developed independently, but

of particular interest in solving this problem, a tool has been developed for calculating

homology on complexes which are built from a dataset at multiple scales. This process

avoids the need for (arbitrary) thresholds of (weighted) n-simplices, and can detect holes

in the dataset at various scales. This tool is called persistent homology, and we will intro-

duce it in the following section.

1.2.2 Capturing the shape of data with persistent homology

Persistent homology (or PH for short) is the earliest, and perhaps still most popular, tool

from the field of topological data analysis (TDA). The original motivation for PH was topo-

logically simplifying 3D point clouds for computer graphics tasks (Edelsbrunner et al.,

2000), but it has since found applications in myriad of domains. For example, see Carls-

son et al., 2007 for an application in computer vision, Yen and Cheong, 2021 for an appli-

cation in economics, Krishnapriyan et al., 2021 for an application in chemistry and Haim

Meirom and Bobrowski, 2022 for an application in natural language processing. Certainly

this widespread adoption of PH is due to PH’s ability to find non-linear structures in dis-

tinct parts of datasets, in different dimensions and across different scales (as these types

of insights would be valuable for any dataset). However, another selling-point of PH is

that it has but few parameters (Salch et al., 2021), each of which is easily interpretable (for

instance, one parameter is the highest dimension in which to compute homology).

23

In the domain of visual neuroimaging PH has already been applied with widespread

success, primarily in two directions – characterizing neural population codes and distin-

guishing between groups of functional connectome networks. The neural code direction

is perhaps more validating for the use of PH in neuroimaging studies, because in cer-

tain scenarios there exists known ground truths against which we can compare estimated

topologies. For instance the representational geometry of the responses of orientation-

selective cells in V1 is a loop (Singh et al., 2008). On the other hand, functional connec-

tomic analyses with PH directly solves the problem of needing to select a threshold for

edge weights because PH calculates the homology of a dataset at multiple scales (i.e. edge

weight thresholds). Topological features of connectomes also have the straightforward

and compelling interpretation of being complex functional networks – for example a loop

in a functional network could represent parallel pathways of computation which diverge

and later re-converge (Sizemore et al., 2018). The next two paragraphs will provide ex-

amples of PH applications in neural codes and functional connectomes respectively, but

for a general review of PH applications in fMRI across both areas (as of 2021), see Salch

et al., 2021.

Persistent homology has been used to correctly identify topological features in neural

population codes in both simulation studies and neural recordings. The stimulation study

Ellis et al., 2019 demonstrated that a task-correlated ring of spatial activity, embedded into

the responses of selected voxels in simulated event-fMRI data, could be reliably detected

by PH. Without such a result, the use of PH in neuroimaging studies would be highly

unmotivated – a loop is the simplest periodic structure, and one that we would expect to

arise in block-design task fMRI data due to spatially-correlated signal in fMRI data and re-

peating tasks. Another simulation study, Kang et al., 2021, demonstrated that in a mixed

population of simulated neurons the distinct topologies of the representational spaces of

the different cell types could be separated. This study used a method called persistent

cohomology (PC), which is equivalent to PH but much faster (de Silva et al., 2011a) (this

method will be discussed later on). This result is important because most neuroimaging

24

studies collect data across diverse cell types. The studies which analyzed neural record-

ings on the other hand were able to be compared against known biological ground truths.

In Giusti et al., 2015, Betti curves, i.e. the Betti numbers of the thresholded complexes

at multiple edge-weight scales, were used to show that correlations between recordings

of rat hippocampal place cells contain geometric (i.e. non-random) information. The

study Singh et al., 2008 used PH to determine that the population activity (measured

with micro-machined electrode arrays) representational geometry of macaque V1 cells

is consistent with a 2-sphere (based on the interplay between orientation-preference and

spatial-frequency maps). The approach in Chaudhuri et al., 2019 fit a low-dimensional

embedding to sampled points in a neural state space, where the dimension of the em-

bedding was determined by the Betti numbers of the dataset. This method found a ring

in thalamic neuron binned spike counts data collected from moving mice, and this loop

encoded head direction (a single neurologically-relevant variable in an originally high-

dimensional complex data space). Taken together these studies indicate that (a) topolog-

ical features can be important features of neural population codes, and (b) that PH can

detect these features. A good review for the motivations for, and applications of using

PH to study neural codes is Curto, 2017.

Persistent homology has also been used to distinguish between groups of functional

connectomes. All of the following studies compute 0-dimensional homology of functional

networks using PH, which is related to the global-scale arrangement (i.e. clustering) of

vertices in the networks. The study Lee et al., 2011 found topological differences in the

resting-state PET functional connectomes of children with autism, ADHD and healthy

controls. In Gracia-Tabuenca et al., 2020, topological differences in resting-state con-

nectomes were found between children with ADHD and controls, and a similar study,

Gracia-Tabuenca et al., 2021, found that resting-state connectomes of children were more

segregated (i.e. clustered) when undergoing puberty compared to beforehand. Studies

such as these demonstrate the potential clinical utility of PH for differentiating between

patient subgroups based on non-invasive and non-task-specific neuroimaging. For re-

25

views that introduce PH from the perspective of network neuroscience, see Sizemore et

al., 2019 and Giusti et al., 2016.

Now that we have seen why PH is an appealing tool for the analysis of neuroimaging

data, and that it has been applied successfully in these types of studies, let us now explain

the computational process. The workflow of PH is described mathematically in Zomoro-

dian and Carlsson, 2005 and de Silva et al., 2011b, and all the definitions in the next few

paragraphs, unless otherwise stated, are taken from those sources. We will demonstrate

PH pictorially with an example based on RSA in Figure 1.4, performing homology cal-

culations up to H1 (loops). In this example, data points are 2D stimulus representations

and distances between data points are representational dissimilarities, and we will use

this RSA terminology throughout our example (in general, the PH algorithm works with

any data points and distances between them). In our example, PH takes as input a RDM

(i.e. a distance matrix), but PH can also take as input raw representations (i.e. a point

cloud dataset from which distances between data points can be calculated). The output

of PH is a shape descriptor, called a persistence diagram (Cohen-Steiner et al., 2007), of

the topological features in the representational geometry (i.e. dataset). A persistence di-

agram contains one 2D point for each topological feature (and thus the diagram can be

visualized as a 2D scatterplot), and we computed the persistence diagram for the dataset

of Figure 1.4 in Figure 1.5.

There are three main steps to computing PH:

1. At various connectivity thresholds ϵ we construct a complex whose vertices are the

stimulus representations and whose n-simplices are determined by the representa-

tional dissimilarities which are at most ϵ. For instance, an edge exists between two

representations if they are at most ϵ distance apart in the representational space, and

a triangle exists between three representations if all of the three representational dis-

similarities are at most ϵ. We can visualize this process as placing a ball of radius ϵ

around each representation and connecting representations which are in eachother’s

balls. Each such complex is called the Vietoris-Rips (VR) complex at the scale ϵ, de-

26

noted V Rϵ in this thesis, and can be viewed as an estimate of the topological (i.e.

dataset) structure at scale ϵ.

2. We grow the parameter ϵ from 0, computing a sequence of VR complexes at multiple

ϵ values in a process called a filtration. This is how we can study the representational

geometry at multiple connectivity scales simultaneously.

3. Each VR complex contains topological features which can be identified by homol-

ogy calculations, for instance clusters of connected representations are elements of

H0, loops of representations are elements of H1, etc. We can therefore track the ex-

istence of these features over consecutive ϵ values to identify topological features

of the representational space which persist (i.e. exist) over multiple connectivity

thresholds. The connectivity scale ϵ at which a particular topological feature, for in-

stance a loop of representations, comes into existence is called the feature’s birth ra-

dius. Since ϵ values are grown in the filtration, later VR complexes will always con-

tain all of the n-simplices in earlier complexes, so if ϵ is grown large enough then any

hole will eventually get filled in by the added (long-range) connections. The ϵ value

at which a topological feature gets filled in (i.e. ”dies”) is called its death radius. Each

topological feature is thus assigned a 2D point, which is (birth radius,death radius),

and the collection of all these points is the persistence diagram.

27

Voxel 1 activity

Vo
xe

l 2
 a

ct
iv

ity

Representational space

H0

H1

 radius
0 A B C

Persistent homology workflow

Figure 1.4: The workflow of persistent homology (copied from Figure 3.2). In this exam-

ple we have a dataset of stimuli (these are a subset of the stimuli used in the famous

visual RSA study Kriegeskorte, 2009) in a simulated fMRI 2D representational space.

Each stimuli is plotted at its coordinates in the space, with a small dot at its coordi-

nates. We then grow an ϵ parameter from 0 and visualize the constructed complex at

three ϵ values, A, B and C. For example, the complex at radius A has balls of radius

A plotted around each stimulus, and stimuli are connected when their two balls con-

tain both stimulus points (and triangles are formed between triples of connected stimuli).

We construct lines which encode the lifespan of all the topological features of the sam-

pled points, for which A, B and C represent certain ϵ values at which certain features

either are born or die. At radius A there are six ”living” H0 components – since the hu-

man and monkey faces are connected they form a single component, and the other five

stimuli are their own components. At radius B the components all merge into a single

cluster, and a loop is born. At radius D the loop dies, leaving only one cluster which

lives ”forever” (i.e. we can increase the linkage radius to any larger value and there will

remain one cluster). The persistence diagram for this example dataset can be seen in

Figure 1.5. The code for this plot was inspired by https://github.com/iaciac/py-draw-

complex/blob/master/Draw%202d%20simplicial%20complex.ipynb.

28

Persistence diagram

Birth

D
ea

th

H0 clusters
H1 loops

0 A B C

0

A

B

C

Figure 1.5: The computed persistence diagram for the dataset in Figure 1.4, taken from

Figure 3.3. The x-values of this plot are the birth radii of topological features and the y-

values of this plot are the death radii. Reddish points denote H0 components and the gold

points represent H1 loops in the dataset. The main loop in the dataset, as seen in Figure

1.4, is the gold point high above the diagonal, and a very short-lived loop (represented by

the tiny line segment below the long lasting loop’s line segment in Figure 1.4) is the other

gold point.

29

We described in the previous section how the homology of a single complex can be

calculated using the boundary map and tools from linear algebra. A similar approach is

also used to compute persistent homology: let S = {s1, . . . , sk} be all of the simplices that

arise in the filtration process, ordered by their birth radius. We compute the ”boundary

matrix”, D, whose rows and columns correspond to the elements of S, and D[i, j] = 1

if si is in the boundary of sj , ∂(sj), and D[i, j] = 0 otherwise. This matrix encodes both

the boundary calculations and the filtration process (since S is ordered according to the

filtration). We can then ”reduce” this matrix using certain linear column operations to

obtain a basis for the independent dimensional holes of the filtration for each dimension

n. Basis elements for n-dimensional holes are defined by a pair of n-simplices (si, sj),

where si completes the basis element (for example the edge that completes a loop) and

sj destroys the basis element (for example the edge that fills in the interior of a loop),

and the birth and death radii of this feature are the ϵ radii where si and sj appear in the

filtration respectively. A faster algorithm for computing these ”persistence pairs” (i.e. the

persistence diagram) reduces D using linear column (as opposed to row) operations, and

this process is the persistent cohomology algorithm. The details of these algorithms can

be found in Zomorodian and Carlsson, 2005 and de Silva et al., 2011b.

The most common way to interpret persistence diagrams is to calculate what is called

the persistence of each topological feature, which is its death radius subtract its birth ra-

dius. In the persistence diagram, persistence values give the vertical distance from each

point to the diagonal line where birth and death are equal to each other (points close to

this line can be thought of as topological features which are noise as they appear and

then disappear quickly). Therefore, features with larger persistence values likely repre-

sent ”real” or ”significant” features of the representational space, and those with smaller

persistence values likely represent topological noise. By filtering topological features by

a persistence threshold, we can determine the number of significant features in each ho-

mological dimension (i.e. the number of clusters, loops, etc.) and these can be thought of

as the ”Betti numbers” of the data space (like a representational space).

30

On the other hand, the birth and death radii can also be interpreted in other ways.

The first view, based on how persistent homology is calculated, is that the birth and death

radius of a topological feature are the scales at which the feature first appears and first

ceases to exist, respectively, and that these values provide information about the ”size” of

the feature in the dataset. Another interpretation – one that I have not seen elsewhere – is

that birth radius is related to the sampling rate of the topological feature and that death

radius is related to the size of the feature. As more points get sampled from a feature, the

points will become closer together and therefore the birth radius will decrease (and vice

versa). On the other hand, the feature will exist until we connect points just far enough

across the feature, and this term across is really just dependent on the size of the feature.

Persistent homology has several desirable qualities which make its application in neu-

roimaging studies very appealing. The information in a neural code is not altered by the

relabelling of functional units (for instance deciding that voxel 1 is actually voxel 2 and

vice versa) (Laakso, 2000), and this is also a property of PH because PH only depends

on the distances between points (the order of which does not affect the output persis-

tence diagram). On the other hand, the information of a neural code is not altered by

the scale of neural activity (if we multiplied all voxel activity by 2 the neural code would

remain the same) (Laakso, 2000), and this is also a property of PH because scaled dis-

tances would only result in a scaled persistence diagram (containing the same number

and type of features as before). Finally, the information of a neural code is not altered

by rotating and reflecting (in its representational space) (Laakso, 2000), operations which

would preserve all representational distances. The fact that PH depends only on the or-

dering of representational dissimilarity values (as this ordering fully determines the order

in which simplices appear in the filtration process) as opposed to the values themselves

reflects the previously mentioned property of the theory of pattern activations, that only

the relative position between representations in state space are important Laakso, 2000. In

Kriegeskorte and Kievit, 2013, a review of using representational geometry (i.e. RSA) to

study neural population codes, it was asked, ”which mathematical concepts from topol-

31

ogy and geometry might be useful for understanding neuronal population codes?” Persis-

tent homology has all of the building blocks required to be a powerful tool for analyzing

representational geometries of neural codes.

Persistence diagrams are one of the most common output formats of PH, but other

options do exist. A popular alternative is called the persistence barcode, which represents

each topological feature as the interval (birth radius,death radius) (this can be seen as

an intermediate step to calculating a persistence diagram in Figure 1.4, and is equivalent

in practice to persistence diagrams). However, one difficulty with these two data for-

mats, persistence diagrams and barcodes, is that they are a unique form of unstructured

data – a collection of some number of pairs of values. The persistence diagrams (or bar-

codes) of two representational spaces need not contain the same number of topological

features, even if the spaces contain the same number of stimulus representations. This

makes statistics (like means) and distributions of persistence diagrams complicated to

estimate (Turner, 2013; Turner et al., 2014).

In order to avoid these kinds of issues, a number of fixed-length vectorized summaries

of persistence diagrams have been introduced. Collection of vectors have well-defined,

and easy to compute, means and distributions. The most simple vector summary is called

Betti curves, that is, functions βk(ϵ) which compute the Betti number βk in the rips com-

plex V Rϵ. These functions have one value (the Betti number) at each ϵ value in the filtra-

tion, and hence multiple Betti curves can be easily compared using typical vector opera-

tions. More complex vectorizations of persistence diagrams include persistence landscapes

(Bubenik, 2015; Bubenik and Dlotko, 2017), persistence silhouettes (Chazal et al., 2014) and

persistence surfaces (Adams et al., 2017).

Persistence landscapes are functions λk(ϵ) which calculate the maximum deviation v

from the connectivity radius ϵ for which between the connectivity thresholds ϵ − v and

ϵ + v there are at least k topological features in the persistence diagram. Therefore, each

λk function can be represented as a vector, whose length is the number of ϵ values over

which we compute our PH filtration and the values of the vector are the function values

32

λk(ϵ) for each ϵ value. Like Betti curves, persistence landscape functions can be easily

compared (for instance, calculating a ”mean” landscape function is perfectly reasonable)

so long as the same filtrations (or even just the number of connectivity threshold values)

are used to compute PH across multiple datasets.

Persistence silhouettes were built off persistence landscapes – we start by defining, for

each point p = (b, d) in a persistence diagram D its triangle function Λp(ϵ) which is 0 if ϵ

is not between the birth and death values b and d, and otherwise is the distance from ϵ to

the closer of b and d (this forms a graph which looks like a triangle over all ϵ values). We

then construct persistence silhouette functions as weighted sums of the triangle functions

(with weight wp for point p): ϕ(ϵ) =
∑

p∈D wpΛp(ϵ)∑
p∈D wp

. These functions are as easily compared

as persistence landscapes, and are useful because they can disregard (via smaller weights)

topological features which are less persistent.

Persistence surfaces take a very different approach – a distribution is created from

a persistence diagram by adding a (weighted) 2D Gaussian point-mass of variance σ2

centered at each 2D point in the diagram. The distribution can be defined on a grid of

2D points, with PDF value of the distribution at a 2D point proportional to the sum of

the PDF values of each Gaussian point mass at that location. This approach also creates a

fixed-length vector (of distribution values over the grid) which is easily compared across

persistence diagrams, but has the additional access to tools from probability theory for

analyzing persistence surfaces (one of these tools we will see later).

Vectorized summaries of persistence diagrams, such as Betti curves, persistence land-

scapes, silhouettes and surfaces, are useful representations for statistics and machine

learning due to their structured nature, fast calculation and efficient comparisons (Ali

et al., 2023; Hensel et al., 2021). However, as summaries of persistence diagrams these

vectors cannot contain more information than the persistence diagrams they came from,

and certainly could result in the loss of topological information. Some of these methods

may also be more challenging to interpret, like the multi-layered definition of persistence

landscapes. Finally, each method requires additional computational steps which could

33

complicate analysis pipelines. For these reasons we will only concern ourselves with an-

alyzing persistence diagrams (computed from representational geometries) in this thesis.

While persistence diagrams do not easily lend themselves to statistics and machine

learning analyses, that is not to say that this kind of machinery has not been developed.

In the following section we will describe several published methods for analyzing persis-

tence diagrams with machine learning and statistical inference, along with the machinery

we need to carry out these procedures.

1.2.3 Interpreting and analyzing persistence diagrams

Persistent homology has the ability to capture shape structures in representational spaces

which other techniques miss – even non-linear techniques (Chung and Abbott, 2021).

These features capture local to global scale clustering of any shape, loops of 1-dimensional

periodic structure, voids of 2-dimensional periodic structure, etc. Unfortunately there are

two main challenges in PH analyses. Firstly, how can we interpret the computed features?

Knowing that a loop exists somewhere in our dataset is interesting, but without knowl-

edge of its location in data space we cannot convert this loop into a meaningful feature

of data points. And even more sinister is that this loop may not represent a ”significant”

structure in our dataset, rather representing topological noise. Secondly, since persistence

diagrams are unstructured data, how can we use them in downstream analyses? In RSA

multiple RDMs can simultaneously be projected, using multidimensional scaling, into a

2D space which captures the second-order distances between the RDMs, but it is not ob-

vious what would be an appropriate second-order isomorphism of persistence diagrams

to carry out an analogous analysis. In fact, all statistics and machine learning analyses of

RDMs in RSA are based on second-order isomorphisms, i.e. quantifying difference and

similarity, between RDMs.

Thankfully there are a number of tools that have been developed to solve exactly these

types of problems for persistence diagrams, which we will overview here and describe

more rigorously in Chapter 2. For second-order isomorphisms, the bottleneck and wasser-

34

stein distance functions (Kerber et al., 2017) (or ”metrics” in the math literature) are popu-

lar methods for quantifying differences between persistence diagrams, and the persistence

Fisher kernel (PF) (Le and Yamada, 2018) is a useful method for quantifying similarity

between persistence diagrams. These distance functions have opened the door to some

statistical inference methods, including bootstrap filtering the topological features in a

persistence diagram for significance based on their persistence values (Fasy et al., 2014).

Distance functions have also been applied in a hypothesis testing procedure for finding

differences between groups of persistence diagrams (Robinson and Turner, 2017) akin to

a non-parametric ANOVA test. One paper, Abdallah et al., 2023, even refined the group-

difference procedure for fMRI data (i.e. reduced variance and increased statistical power)

by accounting for temporal dependencies that exist within task blocks. On the other hand,

special similarity functions called kernels open the door for carrying out machine learning

on unstructured data (Murphy, 2012). The PF kernel has been used to fit support vec-

tor machine (SVM) (Murphy, 2012) models to successfully distinguish between different

datasets based on their persistence diagrams (for example distinguishing images of dif-

ferent classes of shapes, with multiple examples from each shape category), essentially by

correlating kernel values between pairs of diagrams with the similarity of their labels (in

the shape dataset example the labels would be the shape category of each diagram). There

are a number of machine learning algorithms which are based on distance functions (e.g.

MDS) or kernel functions (e.g. kernel k-means (Dhillon et al., 2004) for clustering and

kernel principal components analysis (Scholkopf et al., 1998) for dimension reduction).

Based on these applications, we will propose the bottleneck, wasserstein and persistence

Fisher functions as useful second-order isomorphisms of persistence diagrams.

The persistence Fisher kernel is not the only, nor the first kernel function, for persis-

tence diagrams that has been developed; however, we will focus on the PF kernel because

it was found to outperform other kernels in a number of SVM decoding tasks. We will

define and describe the persistence Fisher kernel in Chapter 2, but for the sake of compar-

ison we will briefly introduce three other kernels for persistence diagrams. The original

35

kernel for persistence diagrams is called the persistence state space kernel (PSS kernel, Rein-

inghaus et al., 2015), and captures the idea that two diagrams should be similar (i.e. kernel

value closer to 1) if Gaussian point masses of variance σ2 centered at each point of the first

diagram find the points in the second diagram highly likely and that the diagonal projec-

tion of the points in the second diagram (i.e. the set of points on the diagonal line y = x,

where birth and death are equal, that are closest to each point in the second diagram) very

unlikely. Then, the persistence-weighted Gaussian kernel (PWGK, Kusano et al., 2018) al-

lows the weighted contribution of Gaussian probabilities based on the persistence values

of the 2D points being compared, thereby filtering out some topological noise. Variably-

scaled persistence kernels (VS kernel, De Marchi et al., 2022) rescale the importance of points

in each diagram before the kernel calculation (rather than multiplying a kernel calcula-

tion by weights in the persistence-weighted Gaussian kernel). These kernels are provably

stable, i.e. small perturbations to the points in two input persistence diagrams result in

similar kernel values, but the sliced wasserstein kernel (SW kernel, Carrière et al., 2017) is

discriminative in that differences in kernel values correlate with difference in wasserstein

distance values between diagrams, making similarity and differences essentially oppo-

sites using this function. All of these methods have computational complexity (at least)

O(n2), where n is the larger number of topological features in the two input persistence

diagrams, which is a significant computational burden when the diagrams contain large

numbers of features. However, all three methods also have efficient approximation meth-

ods which increases their practicality for application. We will see later that the PF kernel

also has a fast approximation method.

While the bootstrap method for filtering persistence diagrams can help identify sig-

nificant topological features in a dataset, we need additional tools to determine what the

features represent in data space – i.e. there may be a significant loop somewhere, but where

is it and what does it mean? Representative cycles and representative co-cycles, byproducts of

the original PH and PC algorithms, can provide a subset of the data points which exist on

a particular topological feature, thereby providing hints as to the location of the feature.

36

We can then hone in on and visualize the feature using Vietoris-Rips graphs (VR-graphs,

Zomorodian, 2010), which is the graph formed by persistent homology at a particular

connectivity radius ϵ (i.e. the 1-skeleton of V Rϵ). For example, the VR graph of a dataset

at the scale of a loop birth radius will contain the loop (with the minimal possible num-

ber of edges, easing visualization), and by highlighting the representative data points we

can identify where the loop exists in the data. The ordering of data points around the

loop can then be used to help determine what the feature of the data the loop represents.

For instance, in the representational geometry of a visual fMRI study a loop may rep-

resent stimulus orientation. Using all three tools – the bootstrap, representative cycles

and VR graphs – we can segment representational geometries, i.e. RDMs, into distinct

non-linear shape features of various dimensions, and we will see in Chapters 2 and 3

examples of how these topological features can be related to stimulus features in (RSA)

studies, thereby linking brain to stimulus via topology.

1.2.4 Applied topological analyses in R and Python

In Chapter 2 we will introduce our new R software toolbox, TDApplied, for applied

topological analyses of data via statistical inference and machine learning of persistence

diagrams. TDApplied provides the functionality to carry out the procedures described

in the previous section as well as others. However, there are a number of other R and

Python packages for topological data analysis.

In R the main packages for topological data analysis are TDA (Fasy et al., 2021) and

TDAstats (Wadhwa et al., 2018), although TDA is currently unavailable on CRAN (the

main repository for publicly available R packages). Both packages can compute persis-

tence diagrams by wrapping C++ libraries – TDAwraps dionysus (Morozov, 2017), PHAT

(Bauer et al., 2013) and GUDHI (Lacombe et al., 2019), and TDAstats wraps ripser

(Bauer, 2015), and another package which is currently unavailable on CRAN called rgudhi

(Stamm, 2023) also wraps GUDHI. TDA is able to compute distances between persistence

diagrams and can therefore run the bootstrap procedure from the previous section.

37

TDAstats has a function to find group differences of persistence diagrams (as described

in the previous section); however, it uses a non-published distance function which makes

interpretation of the inferences from the procedure challenging. The R packages TDAkit

(You and Yu, 2021) and TDAvec (Islambekov and Luchinsky, 2022) are designed to extract

and analyze feature vectors (for instance persistence landscapes) computed from persis-

tence diagrams.

In Python there two libraries which encompass a number of software packages for

topological data analysis – scikit-tda (Saul and Tralie, 2019) computes persistence dia-

grams and distances/kernels between them, and giotto-tda (Tauzin et al., 2020) which

can compute persistence diagrams and interfaces with the popular package for machine

learning scikit-learn (Pedregosa et al., 2011) for using vectorized representations of

persistence diagrams in machine learning pipelines.

Despite the wide-scale applicability of these software packages none provide the func-

tionality to perform machine learning and inference directly with persistence diagrams,

i.e. without first vectorizing the diagrams. This is a significant gap in the topological

data analysis software landscape, since persistence diagrams are one of the most popu-

lar and interpretable outputs of PH, and inference and machine learning are two of the

most popular data analysis frameworks. Out of the analysis procedures listed in the pre-

vious section only the TDA package can perform the topological bootstrap, only TDA and

scikit-tda can calculate representative (co)cycles and only giotto-tda can carry out

machine learning on vectorized persistence diagrams; none of the other procedures are

carried out by any of the packages. TDApplied, as described in Chapter 2, fills this gap

in order to provide researchers and data professionals with the ability to carry out effi-

cient applied topological analyses of persistence diagrams, with a number of inference

and machine learning procedures as well as tools for interpreting persistence diagrams.

38

1.2.5 Other topological tools

Persistent homology is the first, and perhaps most popular, tool in the toolbox of TDA,

but another method called mapper (Singh et al., 2007) has also been successfully applied

in a number of neuroimaging studies. The mapper algorithm reduces a high-dimensional

dataset to a graph, where each node of the graph represents a cluster of similar data

points, and edges between two nodes represent shared data points between the two clus-

ters (some clusters will overlap by construction). Graphs are low-dimensional objects

which are well-studied and well-used in neuroimaging research, making mapper an ap-

pealing tool for computing topological summaries of neurological data. Mapper is there-

fore a more easily interpreted topological summary compared to persistent homology,

and due to the clustering procedures used in mapper, its graphs represent more com-

pressed (and flexible) representations of data than VR graphs.

Mapper has been the primary tool of analysis in a number of high-profile publications,

two of which are Saggar et al., 2018 and Saggar et al., 2022. In Saggar et al., 2018, mapper

graphs were computed from task fMRI data in subjects performing multiple tasks (visual-

spatial search, arithmetic and memory) within the same scan, where the data points were

spatial activity patterns at individual time points either during one of the tasks or during

a period of rest, and the graph structure was found to be correlated with behavior and

to encode task structure. The modularity of the computed mapper graphs, i.e. how sep-

arated the task representations were, was correlated with task performance – the more

specialized each task computation was in the brain, the higher the performance. As well,

it was found that specialized task representations were generally in the ”core” of the

graphs whereas non-specialized rest representations were generally in the ”periphery”.

On the other hand, specialized task representations tended to share node memberships

with many other representations whereas rest representations did not, and changepoint

detection algorithms was used to quickly (within a few time frames) detect transitions

between tasks. In Saggar et al., 2022 it was found that resting-state brain transitions

are continuous (as opposed to discrete) and structured (i.e. non-random) by analyzing

39

mapper graphs of resting-state fMRI data. By computing the contribution of various

resting-state networks (RSNs), i.e. activity correlations which exist in the absence of task

(Seitzman et al., 2019; Yeo et al., 2011), to each mapper graph node it was found that the

distribution of RSN contributions varied smoothly across the mapper graphs, with more

central ”hub” nodes exhibiting more uniform distributions and being the most popular

(i.e. likely) intermediate neural states along a smooth neural transition. A software called

dynamical neuroimaging spatiotemporal representations (DyNeuSR) (Ge-

niesse et al., 2019), specifically designed for analyzing and visualizing neuroimaging data

with mapper, has also been published to facilitate future research.

Despite the unique ability of mapper to visualizing and analyze neuroimaging data,

and therefore answer research questions that other techniques cannot, mapper does have

some drawbacks compared to persistence diagrams and VR graphs. For example, map-

per has number of parameters – a distance function between data points must be chosen,

a clustering algorithm (with all of its parameters) must be chosen, a function which as-

signs a value to each data point must be chosen and two other numeric parameters must

be selected. On the other hand, persistent homology only requires the distance func-

tion between data points, and the VR graph only requires the distance function and an ϵ

value. This means that selecting parameters for constructing meaningful mapper graphs

of neurological data may be more challenging and unstable compared to persistence dia-

grams and VR graphs. Clustering data points in mapper may also obscure real signal in

the data by making assumptions on cluster shape or distribution. Moreover, graphs are

1-dimensional complexes, and therefore mapper cannot capture high-dimensional struc-

ture (like voids) in datasets, nor is it tailored to identify loops, and, as we discussed ear-

lier, periodic structures are incredibly important in neurological data. It is for reasons like

these that we did not use mapper graphs as the ”RDM-replacement” data structure in our

RTA framework.

Another class of algorithms which are sometimes viewed as topological is non-linear

dimension reduction, or ”manifold learning”. Methods in this class generally compute

40

either a k-nearest neighbor graph of a dataset (i.e. a graph in which we connect each

data point to its k nearest other data points) or an ϵ-neighborhood graph (i.e. a graph

in which we connect each data point to all other points within distance ϵ) and then ob-

tain a low-dimensional (non-linear) embedding of the dataset which respects proximity

between data points (nodes) in the graph. Examples of these methods include Isomap

(Tenenbaum et al., 2000) and Laplacian eigenmaps (Reuter et al., 2006), and there have

been a number of applications of manifold learning in neuroimaging applications. In

Atasoy et al., 2016, the Laplacian eignemaps of fMRI surface data were coined ”surface

connectome harmonics” and were found to exhibit high mutual information with a num-

ber of resting state networks and to capture expected inhibition-excitation interactions in

the brain. In Gerber et al., 2009, Isomap was used to project a dataset of T1-weighted MRI

images, with a tailored distance metric between data points, into low dimensions. In I.V

et al., 2015, an increase in fMRI task decoding was found when preprocessing fMRI data

with techniques like Iosmap and Laplacian eigenmaps.

Despite the utility of manifold learning techniques, they too were not appropriate as

a topological summary of representational datasets. This is because no manifold learning

technique is tailored to capture specific non-linear periodic structures in the data, unlike

PH which can identify loops, voids, etc. Further, PC is able to perform non-linear dimen-

sion reduction by locating data points on the various holes that exist in the dataset, and

these holes are often undetected by manifold learning techniques (de Silva et al., 2011a).

1.3 Unresolved questions

Representational similarity analysis is unable to capture real topological differences of

representational geometries because topological structures can be comprised of any num-

ber of representational dissimilarities. A topologically-conscious RSA framework, which

replaces RDMs with persistence diagrams and replaces Spearman correlation (distance)

with distance and kernel functions of diagrams, therefore could answer certain questions

41

about neural function that RSA could not. However, in order for such a framework to be

adopted, we must demonstrate that the new framework can carry out the same kinds of

analyses as RSA does with RDMs (such as inference and machine learning) and that the

new framework can identify representational differences that RSA misses. In Chapter 2 I

present my software package TDApplied for applied analyses with, and interpretations

of, persistence diagrams (such as those computed in representational spaces), showing

that the new framework can carry out the same types of analyses as RSA. In Chapter 3 I

formally introduce the RTA framework and provide two studies which demonstrate how

RTA can identify topological features of representational geometries which RSA cannot.

In summary, TDApplied and the two studies demonstrate the practicality and unique

value of the RTA framework as a companion tool to RSA. In Chapter 4 I will discuss the

avenues of research that are now possible in the RTA framework.

42

Chapter 2

Machine learning and inference for

topological data analysis with

TDApplied

2.1 Preamble

The motivation for this software originally was my desire to use the group differences in-

ference test of Robinson and Turner, 2017 from the TDAstats (Wadhwa et al., 2018) pack-

age for analyzing persistence diagrams computed from RDMs, and realizing that the dis-

tance function implemented in TDAstats was non-standard. Therefore I set out to write

the group difference function myself from scratch, later adding many more functions in

order to carry out particular RTA analyses I was interested in, and found development

was easiest in the framework of an R package. The most popular repository for publicly

available R software packages is ”the comprehensive R archive network”, or CRAN for

short (https://cran.r-project.org). In order to facilitate the use of TDApplied in research

applications I have released several versions of the software on CRAN, in addition to the

development version always available on GitHub (https://github.com/shaelebrown/

TDApplied). Essential to the usability of TDApplied I have included significant amounts

43

https://cran.r-project.org
https://github.com/shaelebrown/TDApplied
https://github.com/shaelebrown/TDApplied

of examples, tests and documentation to guide users in their own applied topological

analyses. The major documentation of R packages are called vignettes, which are stan-

dalone documents providing examples or explanations about particular topics related to

a package, and are viewable from the package’s page on CRAN (for instance, TDAstats

has a vignette called ”Introduction to persistent homology with TDAstats” which is

viewable at https://cran.r-project.org/web/packages/TDAstats/index.html). The pack-

age vignettes are written for the audience of general R-users (i.e. with a software/data

science background).

This chapter is organized as follows. First we include our paper submitted to the

Journal of Open Source Software (JOSS), which is meant to be a high-level description

of the software’s purpose with a statement of need. The remaining sections are the var-

ious TDApplied vignettes, addressing (1) package functionality and examples on sim-

ulated data (called ”TDApplied theory and practice”), (2) an example RTA-like analy-

sis on the famous neuroimaging dataset called the Human Connectome Project (Glasser et

al., 2016) (”Human Connectome Project analysis”), (3) computational efficiency compar-

isons against other r and Python packages for topological data analysis (”Benchmark-

ing and speed”), (4) a workflow for carrying out topological analyses with inference and

machine learning methods which are not in the package (”Personalized analyses with

TDApplied”) and (5) explaining differences in distance calculations across R packages

(”Comparing distance calculations”). These vignettes demonstrate that TDApplied (1)

works as expected on simulated data, (2) can carry out meaningful applied analyses

of neurological data (however, note that this vignette is meant to be an example usage

of TDApplied and not a rigorous demonstration of new neurological findings), (3) is

a highly practical tool for applied topological analyses, (4) can be integrated into cus-

tom analysis pipelines and (5) has correct distance calculations (which are the basis of all

applied topological analyses). The paper and vignettes therefore provide evidence that

TDApplied is an effective tool for RTA analyses of persistence diagrams, and also for

applied topological analyses in other domains.

44

https://cran.r-project.org/web/packages/TDAstats/index.html

In order to make sure that this thesis has a consistent formatting style, we have modi-

fied the contents of this Chapter in two ways (compared to the version submitted to JOSS).

By convention figures in vignettes are not labelled because they immediately follow the

code chunk which generated them, but figure numbers and captions have been added

to this chapter for consistency. Since the domain of this thesis is neuroscience we will

follow the conventional author-year citation and bibliography format for neuroscience

publications in this chapter.

45

Submitted to JOSS, 2024.

TDApplied: An R package for machine learning
and inference with persistence diagrams

Shael Brown1 and Reza Farivar2

1Department of Quantitative Life Sciences, McGill University, Montreal Canada.

2McGill Vision Research, Department of Opthamology, McGill University, Montreal

Canada.

2.2 Summary

Topological data analysis is a collection of tools, based on the mathematical fields of topol-

ogy and geometry, for finding structure in whole datasets. Its main tool, persistent ho-

mology (Edelsbrunner et al., 2000; Zomorodian and Carlsson, 2005), computes a shape

descriptor of a dataset called a persistence diagram which encodes information about

holes that exist in the dataset (example applications span a variety of areas, see for ex-

ample Gracia-Tabuenca et al., 2020; Haim Meirom and Bobrowski, 2022; Krishnapriyan

et al., 2021). These types of features cannot be identified by other methods, making per-

sistence diagrams a unique and valuable data science object for studying and comparing

datasets. The two most popular data science tools for analyzing multiple objects are ma-

chine learning and inference, but to date there has been no open source implementation

of published methods for machine learning and inference of persistence diagrams.

46

2.3 Statement of need

TDApplied is the first R package for machine learning and inference of persistence dia-

grams, building on the main R packages for the calculation of persistence diagrams TDA

(Fasy et al., 2021) and TDAstats (Wadhwa et al., 2018, 2019) and publications of ap-

plied analysis methods for persistence diagrams (Le and Yamada, 2018; Robinson and

Turner, 2017). TDApplied is intended to be used by academic researchers and industry

professionals wanting to integrate persistence diagrams into their analysis workflows.

An example TDApplied workflow, in which the topological differences between three

datasets are visualized in 2D using multidimensional scaling (MDS) (Cox and Cox, 2008),

is visualized in figure 2.1:

47

Dataset 1 (D1) MDS embedding of loops

Loop (and cluster)

Cluster

Persistence diagram 1 (PD1)

PD2

PD3

Similar loops

Different loops

TDApplied

Persis
tent homology

Visualizing topological differences between mutiple datasets

Figure 2.1: An example TDAppliedworkflow. A dataset (D1, left) contains one loop (yel-

low) and two clusters (the loop forms one cluster and the three points on the bottom are

another cluster, and clusters are denoted by the color red). These topological features are

captured with persistent homology in a persistence diagram PD1 (middle top), and two

other data sets, D2 and D3 (not shown), have their persistence diagrams, PD2 and PD3,

computed (middle center and middle bottom). PD1 and PD2 are not very topologically

different in terms of their loops, with both containing a loop with similar birth and death

values, and this is represented by a dashed-line relationship. On the other hand, PD2

and PD3 are topologically different in terms of their loops because PD3 does not contain

a loop, and this is represented by a dotted-line relationship. TDApplied can quantify

these topological differences and use MDS to project the persistence diagrams into three

points in a 2D embedding space (right) where interpoint distances reflect the topological

differences between the persistence diagrams.

The TDApplied package is built on three main pillars:

1. User-friendly – internal preprocessing of persistence diagrams that would normally

be left to R users to figure out ad hoc, and functions designed to easily flow from

input diagrams to output metrics.

2. Efficient – parallelization, C code, computational tricks and storage of reusable and

cumbersome calculations significantly increases the feasibility of topological analy-

ses (compared to existing R packages).

48

3. Flexible – ability to interface with other data science packages to create personalized

analyses.

TDApplied has already been featured in a conference workshop (https://github.

com/WoComtoQC/wocomtoqc.github.io/blob/main/abstract.md) and a conference tu-

torial (https://www.ihcisociety.org/program/tutorial-lecture), utilized in a journal pub-

lication (Singh et al., 2023) and downloaded over 4400 times. Therefore, we propose

TDApplied as a user-friendly, efficient and flexible R package for the analysis of multi-

ple datasets using machine learning and inference via topological data analysis.

2.4 Project management

Installation and availability: TDApplied can be installed directly from CRAN using the

command install.packages("TDApplied"), or from GitHub using the devtools

package (Wickham et al., 2021). TDApplied is distributed under the GPL-3 license.

Code quality: Code has been tested using the testthat package (Wickham, 2011),

with 91.45% coverage of R code when not skipping tests involving Python code (or 88.44%

coverage when skipping the Python tests).

Documentation: TDApplied contains five main vignettes:

1. ”TDApplied theory and practice” provides example function usage on simulated

data as well as mathematical background and intuition,

2. ”Human Connectome Project analysis” demonstrates an applied example analysis

of neurological data,

3. ”Benchmarking and speedups” outlines the package’s optimization strategies and

highlights performance gains compared to other packages,

4. ”Personalized analyses with TDApplied” demonstrates how to interface TDApplied

with other data science packages, and

49

https://github.com/WoComtoQC/wocomtoqc.github.io/blob/main/abstract.md
https://github.com/WoComtoQC/wocomtoqc.github.io/blob/main/abstract.md
https://www.ihcisociety.org/program/tutorial-lecture

5. ”Comparing distance calculations” accounts for differences in computed distance

values between persistence diagrams across comparable packages.

Acknowledgements: We acknowledge funding from the CIHR 2016 grant for cortical

mechanisms of 3-D scene and object recognition in the primate brain.

50

2.5 References

Cox, M. A. A., & Cox, T. F. (2008). Multidimensional scaling. In Handbook of data visualiza-

tion (pp. 315–347). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-

540-33037-0 14

Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2000). Topological persistence and

simplification. Discrete & Computational Geometry, 28, 511–533. https://doi.org/

10.1007/s00454-002-2885-2

Fasy, B., Kim, J., Lecci, F., Maria, C., Millman, D. L., & Rouvreau., V. (2021). Tda: Statistical

tools for topological data analysis [R package version 1.7.7]. https://CRAN.R-project.

org/package=TDA

Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L. R., Auerbach, E. J., Behrens,

T. E. J., Coalson, T. S., Harms, M. P., Jenkinson, M., Moeller, S., Robinson, E. C.,

Sotiropoulos, S. N., Xu, J., Yacoub, E., Ugurbil, K., & Van Essen, D. C. (2016). The

human connectome project’s neuroimaging approach. Nature Neuroscience, 19(9),

1175–1187.

Gracia-Tabuenca, Z., Diaz-Patino, J. C., Arelio, I., & Alcauter, S. (2020). Topological data

analysis reveals robust alterations in the whole-brain and frontal lobe functional

connectomes in

attention-deficit/hyperactivity disorder. eneuro. https://doi.org/10.1523/eneuro.

0543-19.2020

Haim Meirom, S., & Bobrowski, O. (2022). Unsupervised geometric and topological ap-

proaches for cross-lingual sentence representation and comparison. Proceedings of

51

https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1007/s00454-002-2885-2
https://CRAN.R-project.org/package=TDA
https://CRAN.R-project.org/package=TDA
https://doi.org/10.1523/eneuro.0543-19.2020
https://doi.org/10.1523/eneuro.0543-19.2020

the 7th Workshop on Representation Learning for NLP, 173–183. https://doi.org/10.

18653/v1/2022.repl4nlp-1.18

Krishnapriyan, A. S., Montoya, J., Haranczyk, M., Hummelshøj, J., & Morozov, D. (2021).

Machine learning with persistent homology and chemical word embeddings im-

proves prediction accuracy and interpretability in

metal-organic frameworks. Scientific Reports, 11(1), 8888.

Le, T., & Yamada, M. (2018). Persistence fisher kernel: A riemannian manifold kernel for

persistence diagrams. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.

Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information processing systems

(Vol. 31). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/

file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf

Robinson, A., & Turner, K. (2017). Hypothesis testing for topological data analysis. Journal

of Applied and Computational Topology, 1.

Singh, Y., Farrelly, C. M., Hathaway, Q. A., Leiner, T., Jagtap, J., Carlsson, G. E., & Erick-

son, B. J. (2023). Topological data analysis in medical imaging: Current state of the

art. Insights into Imaging, 14(1), 58. https://doi.org/10.1186/s13244-023-01413-w

Wadhwa, R., Dhawan, A., Williamson, D., & Scott, J. (2019). Tdastats: Pipeline for topological

data analysis [R package version 0.4.1]. https://github.com/rrrlw/TDAstats

Wadhwa, R., Williamson, D. F. K., Dhawan, A., & Scott, J. G. (2018). Tdastats: R pipeline

for computing persistent homology in topological data analysis. Journal of Open

Source Software, 3(28), 860. https://doi.org/10.21105/joss.00860

Wickham, H. (2011). Testthat: Get started with testing. The R Journal, 3, 5–10. https://doi.

org/10.32614/rj-2011-002

Wickham, H., Hester, J., Chang, W., & Bryan, J. (2021). Devtools: Tools to make developing r

packages easier [R package version 2.4.3]. https://CRAN.R-project.org/package=

devtools

Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology. Discrete and Com-

putational Geometry, 33, 249–274. https://doi.org/10.1007/s00454-004-1146-y

52

https://doi.org/10.18653/v1/2022.repl4nlp-1.18
https://doi.org/10.18653/v1/2022.repl4nlp-1.18
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://doi.org/10.1186/s13244-023-01413-w
https://github.com/rrrlw/TDAstats
https://doi.org/10.21105/joss.00860
https://doi.org/10.32614/rj-2011-002
https://doi.org/10.32614/rj-2011-002
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=devtools
https://doi.org/10.1007/s00454-004-1146-y

2.6 TDApplied theory and practice

2.6.1 Introduction

Topological data analysis is a relatively new area of data science which can compare and

contrast data sets via non-linear global structure. The main tool of topological data analysis,

persistent homology (Edelsbrunner, Letscher, and Zomorodian 2000; Zomorodian and G.

Carlsson 2005), builds on techniques from the field of algebraic topology to describe shape

features present in a data set (stored in a “persistence diagram”). Persistent homology has

been used in a number of applications, including

• predicting stock market crashes from the topology of stock price correlations over

time (Yen and Cheong 2021),

• finding non-trivial and complex topological structure in local patches of naturalistic

images (G. E. Carlsson et al. 2007),

• translating sentences in one language into another language (from a set of candidate

sentences) using the persistence diagrams of their word embeddings (Haim Meirom

and Bobrowski 2022),

• improving model predictions of various chemical properties of molecules by includ-

ing topological features (Krishnapriyan et al. 2021), and

• distinguishing between the topology of human brain function of healthy control

subjects vs. subjects with a neurological disorder (Gracia-Tabuenca et al. 2020; Hyeky-

oung et al. 2014; Lee et al. 2011), etc.

For a broad introduction to the mathematical background and main tools of topological

data analysis, see Chazal and Michel 2017.

Traditional data science pipelines in academia and industry are focused on machine learn-

ing and statistical inference of structured (tabular) data, being able to answer questions

like:

• How well can a label variable be predicted from feature variables?

53

• What are the latent subgroups/dimensions of a dataset?

• Are the subgroups of a dataset, defined by factor features, distinguishable?

While persistence diagrams have been found to be a useful summary of datasets in many

domains, they are not structured data and therefore require special analysis methods.

Some papers (for example Robinson and Turner 2017; Le and Yamada 2018) have described

post-processing pipelines for analyzing persistence diagrams built on distance (Kerber,

Morozov, and Nigmetov 2017) and kernel (Le and Yamada 2018) calculations, however

these papers are lacking publicly available implementations in R (and Python), and many

more data science methods are possible using such calculations (Murphy 2012; Scholkopf,

Smola, and Muller 1998; Gretton et al. 2007; M. A. A. Cox and T. F. Cox 2008; Dhillon,

Guan, and Kulis 2004).

TDApplied is the first R package which provides applied analysis implementations

of published methods for analyzing persistence diagrams using machine learning and

statistical inference. Its functions contain highly optimized and scalable code (see the

package vignette “Benchmarking and speedups”) and have been tested and validated (see

the package vignette “Comparing distance calculations”). TDApplied can interface with

other data science packages to perform powerful and flexible analyses (see the package

vignette “Personalized analyses with TDApplied”), and an example usage of TDApplied

on real data has been demonstrated (see the package vignette “Human Connectome Project

Analysis”).

This vignette documents the background of TDApplied functions and the usage of those

functions on simulated data, by considering a typical data analysis workflow for topologi-

cal data analysis:

1. Computing and comparing persistence diagrams.

2. Visualizing and interpreting persistence diagrams.

3. Analyzing statistical properties of groups of persistence diagrams.

4. Finding latent structure in groups of persistence diagrams.

54

5. Predicting labels from persistence diagram structure.

To start we must load the TDApplied package:

library("TDApplied")

Let’s get started!

2.6.2 Computing and comparing persistence diagrams

2.6.2.1 Computing diagrams and TDApplied’s PyH function

The main tool of topological data analysis is called persistent homology (Edelsbrunner,

Letscher, and Zomorodian 2000; Zomorodian and G. Carlsson 2005). Persistent homol-

ogy starts with either data points and a distance function, or a distance matrix storing

distance values between data points. It assumes that these points arise from a dataset with

some kind of “shape.” This “shape” has certain features that exist at various scales, but

sampling induces noise in these features. Persistent homology aims to describe certain

mathematical features of this underlying shape, by forming approximations to the shape

at various distance scales. The mathematical features which are tracked include clusters

(connected components), loops (ellipses) and voids (spheres), which are examples of cycles

(i.e. different types of holes). The homological dimension of these features are 0, 1 and 2,

respectively. What is interesting about these particular mathematical features is that they

can tell us where our data is not, which is extremely important information which other

data analysis methods cannot provide.

55

−1.0 0.0 1.0

−1.0

−0.5

0.0

0.5

1.0

Approximation 1:
individual data points

−1.0 0.0 1.0

−1.0

−0.5

0.0

0.5

1.0

Approximation 2:
not a loop

−1.0 0.0 1.0

−1.0

−0.5

0.0

0.5

1.0

Approximation 3:
loop

−1.0 0.0 1.0

−1.0

−0.5

0.0

0.5

1.0

Approximation 4:
not a loop

Figure 2.2: An example workflow of persistent homology, noting the linkage radii where a

loop exists/does not exist.

The persistent homology algorithm proceeds in the following manner: first, if the input is

a dataset and distance metric, then the distance matrix, storing the distance metric value of

each pair of points in the dataset, is computed. Next, a parameter ϵ ≥ 0 is grown starting

at 0, and at each ϵ value we compute a shape approximation of the dataset V Rϵ, called a

simplicial complex or in this case a Vietoris Rips complex. We construct V Rϵ by connecting

all pairs of points whose distance is at most ϵ. To encode higher-dimensional structure in

these approximations, we also add a triangle between any triple of points which are all

connected (note that no triangles are formally shaded on the above diagram, even though

there are certainly triples of connected points), a tetrahedron between any quadruple of

points which are all connected, etc. Note that this process of forming a sequence of skeletal

approximations is called a Rips-Vietoris filtration, and other methods exist for forming the

approximations.

At any given ϵ value, some topological features will exist in V Rϵ. As ϵ grows, the V Rϵ’s

will contain each other, i.e. if ϵ1 < ϵ2, then every edge (triangle, tetrahedron etc.) in V Rϵ1

will also be present in V Rϵ2 . Each topological feature of interest will be “born” at some

ϵbirth value, and “die” at some some ϵdeath value – certainly each feature will die once the

56

whole dataset is connected and has trivial shape structure. Consider the example of a loop

– a loop will be “born” when the last connection around the circumference of the loop is

connected (at the ϵ value which is the largest distance between consecutive points around

the loop), and the loop will “die” when enough connections across the loop fill in its hole.

Since the topological features are tracked across multiple scales, we can estimate their

(static) location in the data, i.e. finding the points on these structures, by calculating what

are called representative cycles.

The output of persistent homology, a persistence diagram, has one 2D point for each topolog-

ical feature found in the filtration process in each desired homological dimension, where

the x-value of the point is the birth ϵ-value and the y-value is the death ϵ-value. Hence

every point in a persistence diagram lies above the diagonal – features die after they

are born! The difference of a points y and x value, y − x, is called the “persistence” of

the corresponding topological feature. Points which have high (large) persistence likely

represent real topological features of the dataset, whereas points with low persistence

likely represent topological noise.

For a more practical and scalable computation of persistence diagrams, a method has

been introduced called persistence cohomology (Silva, Morozov, and Vejdemo-Johansson

2011; De Silva, Morozov, and Vejdemo-Johansson 2011) which calculates the exact same

output as persistent homology (with analogous “representative co-cycles” to persistent

homology’s representative cycles) just much faster. Persistent cohomology is implemented

in the C++ library ripser (Bauer 2015), which is wrapped in R in the TDAstats package

(Wadhwa et al. 2019) and in Python in the ripser module. However, it was observed

in simulations that the Python implementation of ripser seemed faster, even when

called in R via the reticulate package (Ushey, Allaire, and Tang 2022) (see the package

vignette “Benchmarking and speedups”). Therefore, the TDApplied PyH function has

been implemented as a wrapper of the Python ripser module for fast calculations of

persistence diagrams.

57

There are three prerequisites that must be satisfied in order to use the PyH function:

1. The reticulate package must be installed.

2. Python must be installed and configured to work with reticulate.

3. The ripser Python module must be installed, via

reticulate::py_install("ripser"). Some windows machines have

had issues with recent versions of the ripser module, but version 0.6.1

has been tested and does work on Windows. So, Windows users may try

reticulate::py_install("ripser==0.6.1").

For a sample use of PyH we will use the following pre-loaded dataset called “circ” (which

is stored as a data frame in this vignette):

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

circ

x

y

Figure 2.3: The example circ dataset.

We would then calculate the persistence diagram as follows:

58

import the ripser module

ripser <- import_ripser()

calculate the persistence diagram

diag <- PyH(X = circ,maxdim = 1,thresh = 2,ripser = ripser)

view last five rows of the diagram

diag[47:51,]

#> dimension birth death

#> 47 0 0.0000000 0.2545522

#> 48 0 0.0000000 0.2813237

#> 49 0 0.0000000 0.2887432

#> 50 0 0.0000000 2.0000000

#> 51 1 0.5579783 1.7385925

In the package vignette “Benchmarking and speedups,” simulations are used to demon-

strate the practical advantages of using PyH to calculate persistence diagrams compared to

other alternatives.

Note that the installation status of Python for PyH is checked using the function

reticulate::py_available(), which according to several online forums does not

always behave as expected. If error messages occur using TDApplied functions regarding

Python not being installed then we recommend consulting online resources to ensure

that the py_available function returns TRUE on your system. Due to the complicated

dependencies required to use the PyH function, it is only an optional function in the

TDApplied package and therefore the reticulate package is only suggested in the

TDApplied namespace.

59

2.6.2.2 Converting diagrams to dataframes with TDApplied’s diagram_to_df func-

tion

The most typical data structure used in R for data science is a data frame. The output of

the PyH function is a data frame (unless representatives are calculated, in which case the

output is a list containing a data frame and other information), but the persistence dia-

grams calculated from the popular R packages TDA (B. T. Fasy et al. 2021) and TDAstats

(Wadhwa et al. 2019) are not stored in data frames, making subsequent machine learning

and inference analyses of these diagrams challenging. Since In order to solve this prob-

lem the TDApplied function diagram_to_df can convert TDA/TDAstats persistence

diagrams into data frames:

convert TDA diagram into data frame

diag1 <- TDA::ripsDiag(circ,maxdimension = 1,maxscale = 2,

library = "dionysus")

diag1_df <- diagram_to_df(diag1)

class(diag1_df)

#> [1] "data.frame"

convert TDAstats diagram into data frame

diag2 <- TDAstats::calculate_homology(circ,dim = 1,threshold = 2)

diag2_df <- diagram_to_df(diag1)

class(diag2_df)

#> [1] "data.frame"

When a persistence diagram is calculated with either PyH, ripsDiag or alphaComplexDiag

and contains representatives, diagram_to_df only returns the persistence diagram data

frame (i.e. the representatives are ignored).

60

2.6.2.3 Comparing persistence diagrams and TDApplied’s diagram_distance and

diagram_kernel functions

Earlier we mentioned that persistence diagrams do not form structured data, and now

we will give an intuitive argument for why this is the case. A persistence diagram

{(x1, y1), . . . , (xn, yn)} containing n topological features can be represented in a vector of

length 2n, (x1, y1, x2, y2, . . . , xn, yn). However, we cannot easily combine vectors calculated

in this way into a table with a fixed number of feature columns because

(1) persistence diagrams can contain different numbers of features, meaning their vectors

would be of different lengths, and

(2) the ordering of the features is arbitrary, calling into question what the right way to

compare the vectors would be.

Fortunately, we can still apply many machine learning and inference techniques to persis-

tence diagrams provided we can quantify how near (similar) or far (distant) they are from

each other, and these calculations are possible with distance and kernel functions.

There are several ways to compute distances between persistence diagrams in the same

homological dimension. The most common two are called the 2-wasserstein and bottleneck

distances (Kerber, Morozov, and Nigmetov 2017; Edelsbrunner and Harer 2010). These

techniques find an optimal matching of the 2D points in their input two diagrams, and

compute a cost of that optimal matching. A point from one diagram is allowed either to

be paired (matched) with a point in the other diagram or its diagonal projection, i.e. the

nearest point on the diagonal line y = x (matching a point to its diagonal projection is

essentially saying that feature is likely topological noise because it died very soon after it

was born).

Allowing points to be paired with their diagonal projections both allows for matchings of

persistence diagrams with different numbers of points (which is almost always the case in

practice) and also formalizes the idea that some points in a persistence diagram represent

61

noise. The “cost” value associated with a matching is given by either (i) the maximum of

infinity-norm distances between paired points, or (ii) the square-root of the sum of squared

infinity-norm between matched points. The cost of the optimal matching under loss (i) is

the bottleneck distance of persistence diagrams, and the cost of the optimal matching of

cost (ii) is called the 2-wasserstein metric of persistence diagrams. Both distance metrics

have been used in a number of applications, but the 2-wasserstein metric is able to find

more fine-scale differences in persistence diagrams compared to the bottleneck distance.

The problem of finding an optimal matching can be solved with the Hungarian algorithm,

which is implemented in the R package clue (Hornik 2005).

We will introduce three new simple persistence diagrams, D1, D2 and D3, for examples in

this section (and future ones):

0 1 2 3 4

0
1

2
3

4

D1

Birth

D
ea

th

0 1 2 3 4

0
1

2
3

4

D2

Birth

D
ea

th

0 1 2 3 4

0
1

2
3

4

D3

Birth

D
ea

th

Figure 2.4: Three sample diagrams, D1, D2 and D3, each with one or two 0-dimensional

topological features.

Here is a plot of the optimal matchings between D1 and D2, and between D1 and D3:

62

0 1 2 3 4

0
1

2
3

4

Best matching D1,D2

0 1 2 3 4

0
1

2
3

4

Best matching D1,D3

Figure 2.5: The optimal matchings between D1 and D2 (left) and D1 and D3 (right). In the

latter matching, each off diagonal point is paired with its own diagonal projection rather

than being matched with each other.

In the picture we can see that there is a “better” matching between D1 and D2 compared

to D1 and D3, so the (wasserstein/bottleneck) distance value between D1 and D2 would

be smaller than that of D1 and D3.

Another distance metric between persistence diagrams, which will be useful for kernel

calculations, is called the Fisher information metric, dF IM(D1, D2, σ) (Le and Yamada 2018).

The idea is to represent the two persistence diagrams as probability density functions, with

a 2D-Gaussian point mass centered at each point in both diagrams (including the diagonal

projections of the points in the opposite diagram), all of variance σ2 > 0, and calculate how

much those distributions disagree on their pdf value at each point in the plane (called their

Fisher information metric).

63

−4 −2 0 2 4

−
4

−
2

0
2

4
Distribution for D1

−4 −2 0 2 4
−

4
−

2
0

2
4

Distribution for D3

−4 −2 0 2 4

−
4

−
2

0
2

4

Difference of distributions

Figure 2.6: Probability distributions which are sums of Gaussian point masses for D1 (left),

D3 (center) and the difference of these (right).

Points in the rightmost plot which are close to white in color have the most similar pdf

values in the two distributions, and would not contribute to a large distance value; however,

having more points with a red color would contribute to a larger distance value.

The wasserstein and bottleneck distances have been implemented in the TDApplied

function diagram_distance. We can confirm that the distance between D1 and D2 is

smaller than D1 and D3 for both distances:

calculate 2-wasserstein distance between D1 and D2

diagram_distance(D1,D2,dim = 0,p = 2,distance = "wasserstein")

#> [1] 0.3905125

calculate 2-wasserstein distance between D1 and D3

diagram_distance(D1,D3,dim = 0,p = 2,distance = "wasserstein")

#> [1] 0.559017

calculate bottleneck distance between D1 and D2

diagram_distance(D1,D2,dim = 0,p = Inf,distance = "wasserstein")

64

#> [1] 0.3

calculate bottleneck distance between D1 and D3

diagram_distance(D1,D3,dim = 0,p = Inf,distance = "wasserstein")

#> [1] 0.5

There is a generalization of the 2-wasserstein distance for any p ≥ 1, the p-wasserstein

distance, which can also be computed using the diagram_distance function by varying

the parameter p, although p = 2 seems to be the most popular parameter choice.

The diagram_distance function can also calculate the Fisher information metric be-

tween persistence diagrams:

Fisher information metric calculation between D1 and D2 for

sigma = 1

diagram_distance(D1,D2,dim = 0,distance = "fisher",sigma = 1)

#> [1] 0.02354779

Fisher information metric calculation between D1 and D3 for

sigma = 1

diagram_distance(D1,D3,dim = 0,distance = "fisher",sigma = 1)

#> [1] 0.08821907

Again, D1 and D2 are less different than D1 and D3 using the Fisher information metric.

A fast approximation to the Fisher information metric was described in Le and Yamada

2018, and C++ code in the GitHub repository (https://github.com/vmorariu/figtree) was

used to calculate this approximation in Matlab. Using the Rcpp package (Eddelbuettel

and Francois 2011) this code is included in TDApplied and the approximation can be

calculated by providing the positive rho parameter:

65

https://github.com/vmorariu/figtree

Fisher information metric calculation between D1 and D2 for

sigma = 1

diagram_distance(D1,D2,dim = 0,distance = "fisher",sigma = 1)

#> [1] 0.02354779

fast approximate Fisher information metric calculation between

D1 and D3 for sigma = 1

diagram_distance(D1,D2,dim = 0,distance = "fisher",sigma = 1,

rho = 0.001)

#> [1] 0.02354779

Now we will explore calculating similarity of persistence diagrams using kernel functions.

A kernel function is a special (positive semi-definite) symmetric similarity measure be-

tween objects in some complicated space which can be used to project data into a space

suitable for machine learning (Murphy 2012). Some examples of machine learning tech-

niques which can be “kernelized” when dealing with complicated data are k-means (kernel

k-means), principal components analysis (kernel PCA), and support vector machines (SVM)

which are inherently based on kernel calculations.

There have been, to date, four main kernels proposed for persistence diagrams. In

TDApplied the persistence Fisher kernel (Le and Yamada 2018) has been implemented

because of its practical advantages over the other kernels – smaller cross-validation SVM

error on a number of test data sets and a faster method for cross validation. For information

on the other three kernels see Kusano, Fukumizu, and Hiraoka 2018; Carriere, Cuturi, and

Oudot 2017; Reininghaus et al. 2015.

The persistence Fisher kernel is computed directly from the Fisher information metric

between two persistence diagrams: let σ > 0 be the parameter for dF IM , and let t > 0.

Then the persistence Fisher kernel is defined as kP F (D1, D2) = exp(−t ∗ dF IM(D1, D2, σ)).

66

Computing the persistence Fisher kernel can be achieved with the diagram_kernel

function in TDApplied:

calculate the kernel value between D1 and D2 with sigma, t = 2

diagram_kernel(D1,D2,dim = 0,sigma = 2,t = 2)

#> [1] 0.9872455

calculate the kernel value between D1 and D3 with sigma, t = 2

diagram_kernel(D1,D3,dim = 0,sigma = 2,t = 2)

#> [1] 0.9707209

As before, D1 and D2 are more similar than D1 and D3, and if desired a fast approximation

to the kernel value can be computed.

2.6.3 Visualizing and interpreting persistence diagrams

2.6.3.1 TDApplied’s function plot_diagram

Persistence diagrams can contain any number of points representing different types of

topological features from different homological dimensions. However we can easily view

this information in a two-dimensional plot of the birth and death values of the topological

features, where each homological dimension has a unique point shape and color, using

TDApplied’s plot_diagram function:

plot_diagram(diag,title = "Circle diagram")

67

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Circle diagram

Birth

D
ea

th

H0 clusters
H1 loops

Figure 2.7: The plotted persistence diagram for the circ dataset.

Now that we can visualize persistence diagrams we will describe three tools which can be

used for their interpretation – filtering out noisy topological features with bootstrapping,

representative (co)cycles and Vietoris-Rips graphs (called VR graphs for short).

2.6.3.2 Bootstrapping topological features and TDApplied’s

bootstrap_persistence_thresholds function

Noise in datasets can drastically affect the results of inference and machine learning proce-

dures. Therefore it is desirable to clean data before applying such procedures. Noise in

persistence diagrams are low persistence topological features, i.e. features whose birth and

death values are very similar (such points would be near the diagonal line when plotted).

68

The question of determining which points in a persistence diagrams are “significant” and

which are “noise” has been addressed via a bootstrapping approach in B. Fasy et al. 2014.

The idea of the procedure is as follows, where X is the input data set and α is the desired

threshold for type 1 error:

1. We first compute D, the diagram of X .

2. Then we repeatedly sample, with replacement, the original data to obtain

{X1, . . . , Xn} and compute new persistence diagrams {D1, . . . , Dn}.

3. We calculate the bottleneck distance of each new diagram with the original, d∞(Di, D),

in each dimension separately.

4. Finally we compute the 1− α percentile of these values in each dimension.

These thresholds form a square-shaped “confidence interval” around each point in D. In

particular, if t was the threshold found for dimension k then the confidence interval around

a point (x, y) ∈ D (of dimension k) is the set of points {(x′, y′) : max(|x− x′|, |y − y′|) < t}.

For example, if we calculated the bottleneck-threshold-based confidence interval around

the single 1-dimensional point in the circ dataset’s persistence diagram, we would get

something like this:

69

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Circ diagram with confidence interval

Birth

D
ea

th

H0 clusters
H1 loops

t

t

Figure 2.8: An example confidence interval centered at the loop point in the diagram of

the circ dataset.

In this setup, “significant” points will be those whose confidence intervals do not touch the

diagonal line, i.e. where birth and death is the same. Note that the persistence threshold is

twice the bottleneck distance threshold calculated above: the (Euclidean) distance from the

point to the bottom right corner of the box is
√

2t, which must be greater than or equal to

the (Euclidean) distance of the point to its diagonal projection, which is y−x√
2 . Therefore, for

the point to be considered real (i.e. significant),
√

2t ≤ y−x√
2 , implying that the persistence

of the point, y − x, must be no less than twice the bottleneck threshold t.

Like in Robinson and Turner 2017 we can calculate the p-value for a feature as p = Z+1
N+1

where Z is the number of bootstrap iterations which, when doubled, are at least the

persistence of the feature, and N is the number of bootstrap samples. In order to ensure

70

that the p-value of any topological feature which survives the thresholding is less than α

we transform α by α← max{α(N+1)−1,0}
N+1 .

The function bootstrap_persistence_thresholds can be used to determine these

persistence thresholds. Here is an example for the circ dataset, and the results can be

plotted with the plot_diagram function (with overlaid p-values using the graphics text

function):

calculate the bootstrapped persistence thresholds using 2 cores

and 30 iterations. We'll use the distance matrix of circ to

make representative cycles more comprehensible

library("TDA")

thresh <- bootstrap_persistence_thresholds(

X = as.matrix(dist(circ)),

FUN_diag = 'ripsDiag',

FUN_boot = 'ripsDiag',

distance_mat = T,

maxdim = 1,thresh = 2,num_workers = 2,

alpha = 0.05,num_samples = 30,

return_subsetted = T,return_pvals = T,

calculate_representatives = T)

diag <- thresh$diag

plot original diagram and thresholded diagram side-by-side,

including p-values. These p-values are the smallest possible

(1/31) when there are 30 bootstrap iterations

par(mfrow = c(1,2))

plot_diagram(diag,title = "Circ diagram")

71

plot_diagram(diag,title = "Circ diagram with thresholds",

thresholds = thresh$thresholds)

text(x = c(0.2,0.5),y = c(2,1.8),

paste("p = ",round(thresh$pvals,digits = 3)),

cex = 0.5)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Circ diagram

Birth

D
ea

th

H0 clusters
H1 loops

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Circ diagram with thresholds

Birth

D
ea

th

H0 clusters
H1 loops

p = 0.032

p = 0.032

Figure 2.9: The unthresholded diagram of the circ dataset (left) and the same diagram

plotted with thresholds and p-values (right). Only one significant component and loop are

left after the thresholding procedure.

To see why we needed to load the TDA package prior to the function call please see

the bootstrap_persistence_thresholds function documentation. The bootstrap

procedure can be done in parallel or sequentially, depending on which function is spec-

ified to calculate the persistence diagrams. There are three possible such functions –

TDAstats’ calculate_homology, TDA’s ripsDiag and TDApplied’s PyH. The func-

tions calculate_homology and ripsDiag can be run in parallel. However, PyH is

the fastest function followed by calculate_homology based on our simulations. Both

72

ripsDiag and PyH allow for the calculation of representative (co)cycles (i.e. the approxi-

mate location in the data of each topological feature), whereas calculate_homology

does not. Therefore, our recommendation is to pick the function according to the following

criteria: if a user can use the PyH function, then it should be used in all cases except for

when the input data set is small, the machine has many available cores and the number of

desired bootstrap iterations is large. Otherwise, use calculate_homology for speed or

ripsDiag for calculating representatives.

2.6.3.3 Representative (co)cycles

One of the advantages of the R package TDA over TDAstats is its ability to calculate

representative cycles in the data, i.e. locating the persistence diagram topological features

in the input data set. Having access to representative cycles can permit deep analyses of the

original data set by finding particular types of features spanned by certain subsets of data

points. For example, a representative cycle of a 1-dimensional topological feature would be

a set of edges between data points which lie along that feature (a loop). The PyH function

can also find representative cocycles (i.e. analogues of representative cycles for persistent

cohomology) in its input data, which are returned if the calculate_representatives

parameter is set to TRUE. In that case, the PyH function returns a list with a data frame called

“diagram,” containing the persistence diagram, and a list called “representatives.” The

“representatives” list has one element for each homological dimension in the persistence

diagram, with one matrix/array for each point in the persistence diagram of that dimension

(except for dimension 0, where the list is always empty). The matrix for a d-dimensional

feature (1 for loops, 2 for voids, etc.) has d + 1 columns, where row i contains the row

indices in the data set of the data points in the i-th substructure in the representative (a

substructure of a loop would be an edge, a substructure of a void would be a triangle, etc.).

Here is an example where we calculate the representative cocycles of our circ dataset:

73

ripser has already been imported, so calculate diagram

with representatives

diag_rep <- PyH(circ,maxdim = 1,thresh = 2,ripser = ripser,

calculate_representatives = T)

identify the loops in the diagram

diag_rep$diagram[which(diag_rep$diagram$dimension == 1),]

#> dimension birth death

#> 50 1 0.5579783 1.738593

show the representative for the loop, just the first five rows

diag_rep$representatives[[2]][[1]][1:5,]

#> [,1] [,2]

#> [1,] 50 42

#> [2,] 46 42

#> [3,] 50 4

#> [4,] 42 29

#> [5,] 42 16

The representative of the one loop contains the edges found to be present in the loop.

We could iterate over the representative for the loop to find all the data points in that

representative:

unique(c(diag_rep$representatives[[2]][[1]][,1],

diag_rep$representatives[[2]][[1]][,2]))

#> [1] 50 46 42 29 16 7 48 4 11 25 40 37 22 43 15 20 34 32 27

#> [20] 8 44 36 39 5 1 21 24

74

Since the circ dataset is two-dimensional, we could actually plot the loop representative

according to the following process:

1. Pick a threshold ϵ between the birth and death radii of the cocycle.

2. Plot all edges between pairs of points in circ of distance no more than ϵ.

3. Highlight all edges in the representative.

Since the death radius of the main cocycle is 1.738894, we can use the following code to

plot the cocycle at thresholds value 1.7:

plot(x = circ$x,y = circ$y,xlab = "x",ylab = "y",

main = "circ with representative")

for(i in 1:nrow(circ))

{

for(j in 1:nrow(circ))

{

pt1 <- circ[i,]

pt2 <- circ[j,]

if(sqrt((pt1[[1]]-pt2[[1]])ˆ2 + (pt1[[2]]-pt2[[2]])ˆ2) <= 1.7)

{

graphics::lines(x = c(pt1[[1]],pt2[[1]]),

y = c(pt1[[2]],pt2[[2]]))

}

}

}

for(i in 1:nrow(diag_rep$representatives[[2]][[1]]))

{

pt1 <- circ[diag_rep$representatives[[2]][[1]][i,1],]

pt2 <- circ[diag_rep$representatives[[2]][[1]][i,2],]

75

if(sqrt((pt1[[1]]-pt2[[1]])ˆ2 + (pt1[[2]]-pt2[[2]])ˆ2) <= 1.7)

{

graphics::lines(x = c(pt1[[1]],pt2[[1]]),

y = c(pt1[[2]],pt2[[2]]),col = "red")

}

}

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

circ with representative

x

y

Figure 2.10: The representative cocycle of the loop in the circ dataset, plotted as red edges.

If these edges were removed the loop would cease to exist.

This plot shows the main loop that was found via persistent cohomology, and the rep-

resentative is a set of edges (in this 2D case) whose removal would destroy the loop. A

more intuitive notion of a “representative loop” can be found with persistent homology,

for instance using the TDA ripsDiag function with the location parameter set to TRUE.

Another example of the representative cocycle can be found using another threshold value,

for instance the (rounded up) birth value of 0.6009:

76

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

circ with representative

x

y

Figure 2.11: A more "minimal" representative cocycle, i.e. with fewer redundant edges

around the loop.

Since we know that the data points in the representatives help form a loop in the original

data set, we could perform a further exploratory analysis in circ to explore the periodic

nature of the feature. While in this example we know that a loop will be present, this type

of analysis could help find hidden latent structure in data sets.

2.6.3.4 VR graphs and TDApplied’s vr_graphs and plot_vr_graph functions

Integral to the plots in the previous section were that the circ dataset is 2D, but most

datasets are not 2D. In order to investigate topological features of high-dimensional

datasets we can use the Vietoris-Rips complexes which are calculated as an intermediate

step in persistent homology (as described earlier). Recall that the Vietoris-Rips complex

of a dataset is a skeletal representations of the dataset’s structure at a particular scale ϵ

formed by connecting data points of distance at most ϵ and adding higher-dimensional

structures (like triangles between triples of connected points). The connections between

77

data points in a Vietoris-Rips complex form a “VR graph” (Zomorodian 2010), and this

graph can be visualized regardless of the dimension of the underlying dataset.

We can use the function vr_graphs to compute VR graphs at a variety of scales, and can

visualize the resulting graphs with the igraph package (Csardi and Nepusz 2006) and

the plot_vr_graph function. To demonstrate this functionality, we will pick two ϵ scales

to study the dataset structure of circ, only based on its persistence diagram - the first scale

will be half the birth radius of the loop and the second scale will be the average of the

loop’s birth and death radius:

get half of loop's birth radius

eps_1 <- diag[nrow(diag),2L]/2

get mean of loop's birth and death radii

eps_2 <- (diag[nrow(diag),3L] + diag[nrow(diag),2L])/2

compute two VR graphs

gs <- vr_graphs(X = circ,eps = c(eps_1,eps_2))

Next we can plot both VR graphs:

plot first graph

plot_vr_graph(gs,eps_1)

78

1
2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30
31

3233 34

35

36 37

38

39

40

41

42

43

44

45

46

47

48

49

50

Figure 2.12: The VR graph at the lower ϵ radius, which is a scale at which the loop does

not yet exist.

plot second graph

plot_vr_graph(gs,eps_2)

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21
22

23

24

25

26 2728

29

30
31

32

33

34

35

36
37

38

39

40

41

42

43

44

45

46

47

48

49

50

Figure 2.13: The VR graph at the larger ϵ radius, which is a scale at which the loop does

exist.

79

The first graph shows that at a scale before the loop is born, the dominant loop does not

exist in the data (and that the space is more fragmented), while the second graph was

able to retrieve the dominant loop. Visualizing multiple VR graphs of a dataset, choosing

particular scales of interest from the persistence diagram of the dataset, can be an effective

tool for interpreting topological features.

The input parameters of plot_vr_graph can help customize the graph visualizations.

For example, if we want to investigate the loop we can also customize the plot to highlight

the loop representative, and to only plot the component of the graph which contains the

loop vertices:

1

2

3

4

5

6

7

8
9

10

11

12

13
14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

49

50

Figure 2.14: A VR graph of the loop with nodes in the representative cycle (computed with

persistent homology in the TDA package) highlighted in red.

We can customize one level further by removing the vertex labels and using the graph

layout (i.e. x-y coordinates of all vertices) to plot other things on the graph:

plot only component containing the loop stimuli with

vertex colors

layout <- plot_vr_graph(gs,eps_2,cols = colors,

component_of = stimuli_in_loop[[1]],

80

vertex_labels = F,return_layout = T)

layout <- apply(layout,MARGIN = 2,FUN = function(X){

return(-1 + 2*(X - min(X))/(max(X) - min(X)))

})

get indices of vertices in loop

not necessary in this case but necessary when we have

removed some vertices from the graph

vertex_inds <- match(stimuli_in_loop,as.numeric(rownames(layout)))

add volcano image over loop nodes

image could be anything like rasters read from

png files! this is just an example..

utils::data("volcano")

volcano <- (volcano - min(volcano)) / diff(range(volcano))

for(i in vertex_inds)

{

graphics::rasterImage(volcano,xleft = layout[i,1L] - 0.05,

xright = layout[i,1L] + 0.05,

ybottom = layout[i,2L] - 0.05,

ytop = layout[i,2L] + 0.05)

}

81

Figure 2.15: The same VR graph as before but with images placed over the nodes in the

representative cycle.

These visualizations can help determine which points are part of a representative and what

the dataset structure is at various scales.

2.6.4 Hypothesis testing

Having visualized and interpreted our data of interest (persistence diagrams), a common

next step in data analysis pipelines is to ask statistical questions in the form of hypothesis

testing (Casella, Berger, and Company 2002). Two such questions that we will focus on are:

1. Are groups of persistence diagrams different from each other?

2. Are two groups of persistence diagrams independent of each other?

In order to answer these questions we need to generate groups of persistence diagrams.

We will generate diagrams which are random deviations of D1, D2 and D3 diagrams from

earlier:

82

0 1 2 3 4

0
1

2
3

4

D1

Birth

D
ea

th

0 1 2 3 4

0
1

2
3

4

D2

Birth

D
ea

th
0 1 2 3 4

0
1

2
3

4

D3

Birth

D
ea

th

Figure 2.16: The same D1, D2 and D3 persistence diagrams from earlier examples.

The helper function generate_TDApplied_vignette_data (seen below) adds Gaus-

sian noise with a small variance to the birth and death values of the points in D1, D2 and

D3, making “noisy copies” of the three diagrams:

Here is an example D1 and two noisy copies:

83

0 1 2 3 4

0
1

2
3

4

D1 and noisy copies

D1
D1'
D1''

Figure 2.17: D1 and two noisy copies of D1. The single point in D1 is moved randomly by

a 2D Gaussian distribution of small variance.

2.6.4.1 Detecting group differences and TDApplied’s permutation_test function

One of the most important inference procedures in classical statistics is the analysis of vari-

ance (ANOVA), which can find differences in the means of groups of normally-distributed

measurements (Casella, Berger, and Company 2002). Distributions of persistence diagrams

and their means can be complicated (see Turner 2013 and Turner et al. 2014). Therefore, a

non-parametric permutation test has been proposed which can find differences in groups

of persistence diagrams. Such a test was first proposed in Robinson and Turner 2017,

and some variations have been suggested in later publications. In Robinson and Turner

84

2017, two groups of persistence diagrams would be compared. The null hypothesis, H0,

is that the diagrams from the two groups are generated from shapes with the same type

and scale of topological features, i.e. they “come” from the same “shape.” The alternative

hypothesis, HA, is that the underlying type or scale of the features are different between

the two groups. In each dimension a p-value is computed, finding evidence against H0 in

that dimension. A measure of within-group distances (a “loss function”) is calculated for

the two groups, and that measure is compared to a null distribution for when the group

labels are permuted.

This inference procedure is implemented in the permutation_test function, with sev-

eral speedups and additional functionalities. Firstly, the loss function is computed in

parallel for scalability since distance computations can be expensive. Secondly, we store

distance calculations as we compute them because these calculations are often repeated.

Additional functionality includes allowing for any number groups (not just two) and

allowing for a pairing between groups of the same size as described in Abdallah et al.

2023. When a natural pairing exists between the groups (such as if the groups represent

persistence diagrams from the same subject of a study in different conditions) we can

simulate a more realistic null distribution by restricting the way in which we permute

group labels, achieving higher statistical power.

In order to demonstrate the permutation test we will detect differences between noisy

copies of D1, D2, D3:

permutation test between three diagrams

g1 <- generate_TDApplied_vignette_data(3,0,0)

g2 <- generate_TDApplied_vignette_data(0,3,0)

g3 <- generate_TDApplied_vignette_data(0,0,3)

perm_test <- permutation_test(g1,g2,g3,

num_workers = 2,

dims = c(0))

85

perm_test$p_values

#> 0

#> 0.04761905

As expected, a difference was found (at the α = 0.05 significance level) between the three

groups.

The package TDAstats also has a function called permutation_test which is based on

the same test procedure. However, it uses an unpublished distance metric between persis-

tence diagrams (see the package vignette “Comparing distance calculations”) and does not

use parallelization for scalability. As such, care must be taken when both TDApplied and

TDAstats are attached in an R script to use the particular permutation_test function

desired.

2.6.4.2 Independence between two groups of paired diagrams and TDApplied’s

independence_test function

An important question when presented with two groups of paired data is determining

if the pairings are independent or not. A procedure was described in Gretton et al. 2007

which can be used to answer this question using kernel computations, and importantly

uses a parametric null distribution. The null hypothesis for this test is that the groups are

independent, and the alternative hypothesis is that the groups are not independent. A test

statistic called the Hilbert-Schmidt independence criteria (Gretton et al. 2007) is calculated,

and its value is compared to a gamma distribution with certain parameters which are

estimated from the data.

This inference procedure has been implemented in the independence_test function,

and returns the p-value of the test in each desired dimension of the diagrams (among other

additional information). We would expect to find no dependence between noisy copies of

D1, D2 and D3, since each copy is generated randomly:

86

create 10 noisy copies of D1 and D2

g1 <- generate_TDApplied_vignette_data(10,0,0)

g2 <- generate_TDApplied_vignette_data(0,10,0)

do independence test with sigma = t = 1

indep_test <- independence_test(g1,g2,dims = c(0),num_workers = 2)

indep_test$p_values

#> 0

#> 0.4314036

The p-value of this test would not be significant at any typical significance threshold,

reflecting the fact that there is no real (i.e. non-spurious) dependence between the two

groups, as expected.

2.6.5 Finding latent structure

Patterns may exist in a collection of persistence diagrams. For example, if the collection

contained diagrams from three distinct shapes then we would like to be able to assign

three distinct (discrete) labels to the correct subsets of diagrams. On the other hand,

maybe the diagrams vary along several dimensions, like the mean persistence of their

loops and the mean persistence of their components. In this case we would like to be

able to retrieve these continuous features for visualizing all diagrams in the same (2D

in this example) space. These two types of analyses are called clustering and dimension

reduction respectively, and are two of the most common and popular machine learning

applications. We will explore three techniques from these areas - kernel k-means from

clustering, and multidimensional scaling and kernel principal components analysis from

dimension reduction.

87

2.6.5.1 Kernel k-means and TDApplied’s diagram_kkmeans function

Kernel k-means (Dhillon, Guan, and Kulis 2004) is a method which can find hidden

groups in complex data, extending regular k-means clustering (Murphy 2012) via a ker-

nel. A “kernel distance” is calculated between a persistence diagram and a cluster cen-

ter using only the kernel function, and the algorithm converges like regular k-means.

This algorithm is implemented in the function diagram_kkmeans as a wrapper of the

kernlab (Karatzoglou et al. 2004) function kkmeans. Moreover, a prediction function

predict_diagram_kkmeans can be used to find the nearest cluster labels for a new set

of diagrams. Here is an example clustering three groups of noisy copies from D1, D2 and

D3:

create noisy copies of D1, D2 and D3

g <- generate_TDApplied_vignette_data(3,3,3)

calculate kmeans clusters with centers = 3, and sigma = t = 2

clust <- diagram_kkmeans(diagrams = g,centers = 3,dim = 0,t = 2,

sigma = 2,num_workers = 2)

display cluster labels

clust$clustering@.Data

#> [1] 2 2 2 3 3 3 1 1 1

As we can see, the diagram_kkmeans function was able to correctly separate the three

generating diagrams D1, D2 and D3 (the cluster labels are arbitrary and therefore may not

be 1,1,1,2,2,2,3,3,3; however, they induce the correct partition).

If we wish to predict the cluster label for new persistence diagrams (computed via the

largest kernel value to any cluster center), we can use the predict_diagram_kkmeans

function as follows:

88

create nine new diagrams

g_new <- generate_TDApplied_vignette_data(3,3,3)

predict cluster labels

predict_diagram_kkmeans(new_diagrams = g_new,clustering = clust,

num_workers = 2)

#> [1] 2 2 2 3 3 3 1 1 1

This function correctly predicted the cluster for each new diagram (assigning each diagram

to the cluster label by D1, D2 or D3, depending on which diagram it was generated from).

2.6.5.2 Multidimensional scaling and TDApplied’s diagram_mds function

Dimension reduction is a task in machine learning which is commonly used for data

visualization, removing noise in data, and decreasing the number of covariates in a

model (which can be helpful in reducing overfitting). One common dimension reduction

technique in machine learning is called multidimensional scaling (MDS) (M. A. A. Cox

and T. F. Cox 2008). MDS takes as input an n by n distance (or dissimilarity) matrix D,

computed from n points in a dataset, and outputs an embedding of those points into a

Euclidean space of chosen dimension k which best preserves the inter-point distances.

MDS is often used for visualizing data in exploratory analyses, and can be particularly

useful when the input data points do not live in a shared Euclidean space (as is the case for

persistence diagrams). Using the R function cmdscale from the package stats (R Core

Team 2021) we can compute the optimal embedding of a set of persistence diagrams using

any of the three distance metrics with the function diagram_mds. Here is an example

of the diagram_mds function projecting nine persistence diagrams, three noisy copies

sampled from each of D1, D2 and D3, into 2D space:

89

create 9 diagrams based on D1, D2 and D3

g <- generate_TDApplied_vignette_data(3,3,3)

calculate their 2D MDS embedding in dimension 0 with

the bottleneck distance

mds <- diagram_mds(diagrams = g,dim = 0,p = Inf,k = 2,

num_workers = 2)

plot

par(mar=c(5.1, 4.1, 4.1, 8.1), xpd=TRUE)

plot(mds[,1],mds[,2],xlab = "Embedding coordinate 1",

ylab = "Embedding coordinate 2",

main = "MDS plot",

col = as.factor(rep(c("D1","D2","D3"),each = 3)),

bty = "L")

legend("topright", inset=c(-0.2,0),

legend=levels(as.factor(c("D1","D2","D3"))),

pch=16, col=unique(as.factor(c("D1","D2","D3"))))

90

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

15
0.

00

MDS plot

Embedding coordinate 1

E
m

be
dd

in
g

co
or

di
na

te
 2

D1
D2
D3

Figure 2.18: MDS plot of the nine persistence diagrams based on the distances between

them. The three groups of diagrams are clearly separated.

The MDS plot shows the clear separation between the three generating diagrams (D1, D2

and D3), and the embedded coordinates could be used for further downstream analyses.

2.6.5.3 Kernel principal components analysis, and TDApplied’s diagram_kpca func-

tion

PCA is another dimension reduction technique in machine learning, but can be preferable

compared to MDS in certain situations because it allows for the projection of new data

points onto an old embedding model (Murphy 2012). For example, this can be important

if PCA is used as a pre-processing step in model fitting. Kernel PCA (kPCA) (Scholkopf,

Smola, and Muller 1998) is an extension of regular PCA which uses a kernel to project

complex data into a high-dimensional Euclidean space and then uses PCA to project that

data into a low-dimensional space. The diagram_kpca method computes the kPCA

embedding of a set of persistence diagrams, and the predict_diagram_kpca function

can be used to project new diagrams using a pre-trained kPCA model. Here is an example

using a group of noisy copies of D1, D2 and D3:

91

create noisy copies of D1, D2 and D3

g <- generate_TDApplied_vignette_data(3,3,3)

calculate their 2D PCA embedding with sigma = t = 2

pca <- diagram_kpca(diagrams = g,dim = 0,t = 2,sigma = 2,

features = 2,num_workers = 2)

plot

par(mar=c(5.1, 4.1, 4.1, 8.1), xpd=TRUE)

plot(pca$pca@rotated[,1],pca$pca@rotated[,2],

xlab = "Embedding coordinate 1",

ylab = "Embedding coordinate 2",main = "PCA plot",

col = as.factor(rep(c("D1","D2","D3"),each = 3)))

legend("topright",inset = c(-0.2,0),

legend=levels(as.factor(c("D1","D2","D3"))), pch=16,

col=unique(as.factor(c("D1","D2","D3"))))

−0.2 0.0 0.2 0.4

−
0.

2
0.

0
0.

2

PCA plot

Embedding coordinate 1

E
m

be
dd

in
g

co
or

di
na

te
 2

D1
D2
D3

Figure 2.19: Kernel PCA plot of the nine persistence diagrams based on their kernel

similarity values. The three groups of diagrams are again clearly separated.

92

The function was able to recognize the three groups, and the embedding coordinates can

be used for further downstream analysis. However, an important advantage of kPCA

over MDS is that in kPCA we can project new points onto an old embedding using the

predict_diagram_kpca function:

create nine new diagrams

g_new <- generate_TDApplied_vignette_data(3,3,3)

project new diagrams onto old model

new_pca <- predict_diagram_kpca(new_diagrams = g_new,

embedding = pca,num_workers = 2)

plot

par(mar=c(5.1, 4.1, 4.1, 8.1), xpd=TRUE)

plot(new_pca[,1],new_pca[,2],xlab = "Embedding coordinate 1",

ylab = "Embedding coordinate 2",main = "PCA prediction plot",

col = as.factor(rep(c("D1","D2","D3"),each = 3)))

legend("topright",inset = c(-0.2,0),

legend=levels(as.factor(c("D1","D2","D3"))), pch=16,

col=unique(as.factor(c("D1","D2","D3"))))

93

−0.2 0.0 0.2 0.4

−
0.

2
0.

0
0.

2

PCA prediction plot

Embedding coordinate 1

E
m

be
dd

in
g

co
or

di
na

te
 2

D1
D2
D3

Figure 2.20: Nine new persistence diagrams are projected into the same 2D space of the

precomputed kernel PCA model. The three groupings of diagrams maintained both their

separation and position in 2D space.

As we can see, the original three groups, and their approximate location in 2D space, is

preserved during prediction.

2.6.6 Predicting labels of persistence diagrams

One of the most valuable problems that machine learning is used to solve is that of

prediction - can a variable Y be predicted from other variables X . Kernel functions can be

used to predict a variable Y from a persistence diagram D using a class of models called

support vector machines (SVMs) (Murphy 2012).

2.6.6.1 Support vector machines and TDApplied’s diagram_ksvm function

SVMs are one of the most popular machine learning techniques for regression and classifi-

cation tasks. SVMs use a kernel function to project complex data into a high-dimensional

space and then find a sparse set of training examples, called “support vectors,” which

maximally linearly separate the outcome variable classes (or yield the highest explained

variance in the case of regression).

94

Unlike in the case of dimension reduction or clustering, it is possible that our persistence

diagrams may each have a label, either discrete or continuous, which gives us more

information about the underlying data represented by the diagram. For instance, if

our persistence diagrams represented periodic behavior in stock market trends during a

particular temporal window then a useful (discrete) label could be whether the overall

market went up or down during that period. Being able to predict such labels from the

persistence diagrams themselves is a way to link persistence diagrams to external data

through modeling, i.e. classification and regression.

SVMs have been implemented in TDApplied by the function diagram_ksvm, tailored

for input datasets which contain pairs of persistence diagrams and their outcome variable

labels. A prediction method is supplied called predict_diagram_ksvm which can be

used to predict the label value of a set of new persistence diagrams given a pre-trained

model. A parallelized implementation of cross-validation model-fitting is used based on

the remarks in (Le and Yamada 2018) for scalability (which avoids needlessly recomputing

persistence Fisher information metric values). Here is an example of fitting an SVM model

on a list of persistence diagrams for a classification task (guessing whether the diagram

comes from D1, D2 or D3):

create thirty noisy copies of D1, D2 and D3

g <- generate_TDApplied_vignette_data(10,10,10)

create response vector

y <- as.factor(rep(c("D1","D2","D3"),each = 10))

fit model with cross validation

model_svm <- diagram_ksvm(diagrams = g,cv = 2,dim = c(0),

y = y,sigma = c(1,0.1),t = c(1,2),

num_workers = 2)

95

We can use the function predict_diagram_ksvm to predict new diagrams like so:

create nine new diagrams

g_new <- generate_TDApplied_vignette_data(3,3,3)

predict

predict_diagram_ksvm(new_diagrams = g_new,model = model_svm,

num_workers = 2)

#> [1] D1 D1 D1 D2 D2 D2 D3 D3 D3

#> Levels: D1 D2 D3

As we can see the best SVM model was able to separate the three diagrams We can gain

more information about the best model found during model fitting and the CV results by

accessing different list elements of model_svm.

2.6.7 Limitations of TDApplied functionality

There is one main limitation of TDApplied which should be discussed for its own future

improvements – TDApplied functions cannot analyze numeric and factor features with

persistence diagrams. This may be too inflexible for some applications, where the data

may include several persistence diagrams, or a mix of persistence diagrams, numeric

and categorical variables. The package vignette “Personalized analyses with TDApplied”

demonstrates how one can circumvent this issue using extra code; however, a future

update to TDApplied might construct such functionality directly into its functions.

2.6.8 Conclusion

Current topological data analysis packages in R (and Python) do not provide the ability

to carry out statistics and machine learning with persistence diagrams, leading to a high

barrier to adoption of topological data analysis in academia and industry. By filling in this

gap, the TDApplied package aims to bridge topological data analysis with researchers

96

and data practitioners in the R community. Topological data analysis is an exciting and

powerful new field of data analysis, and with TDApplied anyone can access its power for

meaningful and creative analyses of data.

97

2.6.9 References

Abdallah, Hassan et al. (2023). “Statistical inference for persistent homology applied

to simulated fMRI time series data”. In: Foundations of Data Science 5.1, pp. 1–25.

DOI: 10 . 3934 / fods . 2022014. URL: https : / / www. aimsciences . org / article / id /

62e247312d80b75987612297.

Bauer, Ulrich (2015). Persistent homology algorithm toolbox. URL: https://github.com/Ripser/

ripser.

Carlsson, Gunnar E. et al. (2007). “On the Local Behavior of Spaces of Natural Images”. In:

International Journal of Computer Vision 76, pp. 1–12.

Carriere, Mathieu, Marco Cuturi, and Steve Oudot (2017). “Sliced Wasserstein Kernel

for Persistence Diagrams”. In: Proceedings of the 34th International Conference on Machine

Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine

Learning Research. PMLR, pp. 664–673.

Casella, G., R.L. Berger, and Brooks/Cole Publishing Company (2002). Statistical Inference.

Duxbury advanced series in statistics and decision sciences. Thomson Learning. ISBN:

9780534243128.

Chazal, Frederic and Bertrand Michel (Oct. 2017). “An Introduction to Topological Data

Analysis: Fundamental and Practical Aspects for Data Scientists”. In: Frontiers in Artificial

Intelligence 4. DOI: 10.3389/frai.2021.667963.

Cox, Michael A. A. and Trevor F. Cox (2008). “Multidimensional Scaling”. In: Handbook of

Data Visualization. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 315–347. ISBN: 978-

3-540-33037-0. DOI: 10.1007/978-3-540-33037-0_14. URL: https://doi.org/10.1007/978-3-

540-33037-0_14.

98

https://doi.org/10.3934/fods.2022014
https://www.aimsciences.org/article/id/62e247312d80b75987612297
https://www.aimsciences.org/article/id/62e247312d80b75987612297
https://github.com/Ripser/ripser
https://github.com/Ripser/ripser
https://doi.org/10.3389/frai.2021.667963
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1007/978-3-540-33037-0_14

Csardi, Gabor and Tamas Nepusz (2006). “The igraph software package for complex

network research”. In: InterJournal Complex Systems, p. 1695. URL: https://igraph.org.

De Silva, Vin, Dmitriy Morozov, and Mikael Vejdemo-Johansson (2011). “Dualities in

persistent (co) homology”. In: Inverse Problems 27.12, p. 124003.

Dhillon, Inderjit S., Yuqiang Guan, and Brian Kulis (2004). “A Unified View of Kernel

k-means , Spectral Clustering and Graph Cuts”. In.

Eddelbuettel, Dirk and Romain Francois (2011). “Rcpp: Seamless R and C++ Integration”.

In: Journal of Statistical Software 40.8, pp. 1–18. DOI: 10.18637/jss.v040.i08.

Edelsbrunner, Herbert and John Harer (Jan. 2010). Computational Topology: An Introduction.

American Mathematical Society. ISBN: 978-0-8218-4925-5. DOI: 10.1007/978-3-540-33259-

6_7.

Edelsbrunner, Herbert, David Letscher, and Afra Zomorodian (2000). “Topological Persis-

tence and Simplification”. In: Discrete & Computational Geometry 28, pp. 511–533.

Fasy, Brittany et al. (Mar. 2014). “Confidence Sets for Persistence Diagrams”. In: The Annals

of Statistics 42, pp. 2301–2339.

Fasy, Brittany T. et al. (2021). TDA: Statistical Tools for Topological Data Analysis. R package

version 1.7.7. URL: https://CRAN.R-project.org/package=TDA.

Gracia-Tabuenca, Zeus et al. (2020). “Topological Data Analysis reveals robust alterations

in the whole-brain and frontal lobe functional connectomes in

Attention-Deficit/Hyperactivity Disorder”. In: eneuro.

Gretton, Arthur et al. (2007). “A Kernel Statistical Test of Independence”. In: Ad-

vances in Neural Information Processing Systems. Ed. by J. Platt et al. Vol. 20. Cur-

ran Associates, Inc. URL: https : / / proceedings . neurips . cc / paper / 2007 / file /

d5cfead94f5350c12c322b5b664544c1-Paper.pdf.

Haim Meirom, Shaked and Omer Bobrowski (May 2022). “Unsupervised Geometric and

Topological Approaches for Cross-Lingual Sentence Representation and Comparison”.

In: Proceedings of the 7th Workshop on Representation Learning for NLP. Dublin, Ireland:

99

https://igraph.org
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1007/978-3-540-33259-6_7
https://doi.org/10.1007/978-3-540-33259-6_7
https://CRAN.R-project.org/package=TDA
https://proceedings.neurips.cc/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf

Association for Computational Linguistics, pp. 173–183. DOI: 10.18653/v1/2022.repl4nlp-

1.18. URL: https://aclanthology.org/2022.repl4nlp-1.18.

Hornik, Kurt (2005). “A CLUE for CLUster Ensembles”. In: Journal of Statistical Software

14.12. DOI: 10.18637/jss.v014.i12.

Hyekyoung, Lee et al. (Sept. 2014). “Hole detection in metabolic connectivity of

Alzheimer’s disease using kappa-Laplacian”. In: Proceedings of the International Confer-

ence on Medical Image Computing and Computer-Assisted Intervention. Vol. 17, pp. 297–304.

ISBN: 978-3-319-10442-3. DOI: 10.1007/978-3-319-10443-0_38.

Karatzoglou, Alexandros et al. (2004). “kernlab – An S4 Package for Kernel Methods in R”.

In: Journal of Statistical Software 11.9, pp. 1–20. URL: https://www.jstatsoft.org/v11/i09/.

Kerber, Michael, Dmitriy Morozov, and Arnur Nigmetov (2017). “Geometry Helps to

Compare Persistence Diagrams”. In: ACM Journal of Experimental Algorithmics 22. ISSN:

1084-6654. DOI: 10.1145/3064175. URL: https://doi.org/10.1145/3064175.

Krishnapriyan, Aditi S. et al. (2021). “Machine learning with persistent homology and

chemical word embeddings improves prediction accuracy and interpretability in metal-

organic frameworks”. In: Scientific Reports 11.1, p. 8888.

Kusano, Genki, Kenji Fukumizu, and Yasuaki Hiraoka (2018). “Kernel Method for Per-

sistence Diagrams via Kernel Embedding and Weight Factor”. In: Journal of Machine

Learning Research 18.189, pp. 1–41. URL: https://jmlr.org/papers/v18/17-317.html.

Le, Tam and Makoto Yamada (2018). “Persistence Fisher Kernel: A Riemannian Manifold

Kernel for Persistence Diagrams”. In: Advances in Neural Information Processing Systems.

Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc. URL: https://proceedings.neurips.

cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf.

Lee, Hyekyoung et al. (2011). “Discriminative persistent homology of brain networks”. In:

2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 841–844.

DOI: 10.1109/ISBI.2011.5872535.

Murphy, Kevin P (2012). Machine learning: a probabilistic perspective. MIT press.

100

https://doi.org/10.18653/v1/2022.repl4nlp-1.18
https://doi.org/10.18653/v1/2022.repl4nlp-1.18
https://aclanthology.org/2022.repl4nlp-1.18
https://doi.org/10.18637/jss.v014.i12
https://doi.org/10.1007/978-3-319-10443-0_38
https://www.jstatsoft.org/v11/i09/
https://doi.org/10.1145/3064175
https://doi.org/10.1145/3064175
https://jmlr.org/papers/v18/17-317.html
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://doi.org/10.1109/ISBI.2011.5872535

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org/.

Reininghaus, Jan et al. (2015). “A stable multi-scale kernel for topological machine learn-

ing”. In: Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 4741–4748.

Robinson, Andrew and Katharine Turner (2017). “Hypothesis testing for topological data

analysis”. In: Journal of Applied and Computational Topology 1 (2).

Scholkopf, Bernhard, Alexander Smola, and Klaus-Robert Muller (1998). “Nonlinear Com-

ponent Analysis as a Kernel Eigenvalue Problem”. In: Neural Computation 10, pp. 1299–

1319.

Silva, Vin de, Dmitriy Morozov, and Mikael Vejdemo-Johansson (2011). “Persistent Coho-

mology and Circular Coordinates”. In: Discrete & Computational Geometry 45.4, pp. 737–

759.

Turner, Katharine (July 2013). “Means and medians of sets of persistence diagrams”. In:

arXiv.

Turner, Katharine et al. (2014). “Frechet Means for Distributions of Persistence Diagrams”.

In: Discrete & Computational Geometry 52.1, pp. 44–70.

Ushey, Kevin, JJ Allaire, and Yuan Tang (2022). reticulate: Interface to ’Python’. R package

version 1.24. URL: https://CRAN.R-project.org/package=reticulate.

Wadhwa, Raoul et al. (2019). TDAstats: Pipeline for Topological Data Analysis. R package

version 0.4.1. URL: https://github.com/rrrlw/TDAstats.

Yen, Peter Tsung-Wen and Siew Ann Cheong (2021). “Using Topological Data Analysis

(TDA) and Persistent Homology to Analyze the Stock Markets in Singapore and Taiwan”.

In: Frontiers in Physics 9. ISSN: 2296-424X. DOI: 10.3389/fphy.2021.572216. URL: https:

//www.frontiersin.org/article/10.3389/fphy.2021.572216.

Zomorodian, Afra (2010). “The Tidy Set: A Minimal Simplicial Set for Computing Ho-

mology of Clique Complexes”. In: Proceedings of the Twenty-Sixth Annual Symposium on

Computational Geometry. SoCG ’10. Snowbird, Utah, USA: Association for Computing

101

https://www.R-project.org/
https://CRAN.R-project.org/package=reticulate
https://github.com/rrrlw/TDAstats
https://doi.org/10.3389/fphy.2021.572216
https://www.frontiersin.org/article/10.3389/fphy.2021.572216
https://www.frontiersin.org/article/10.3389/fphy.2021.572216

Machinery, pp. 257–266. ISBN: 9781450300162. DOI: 10 .1145/1810959.1811004. URL:

https://doi.org/10.1145/1810959.1811004.

Zomorodian, Afra and Gunnar Carlsson (Feb. 2005). “Computing Persistent Homology”.

In: Discrete and Computational Geometry 33, pp. 249–274. DOI: 10.1007/s00454-004-1146-y.

102

https://doi.org/10.1145/1810959.1811004
https://doi.org/10.1145/1810959.1811004
https://doi.org/10.1007/s00454-004-1146-y

2.7 Human Connectome Project analysis

2.7.1 Abstract

In the TDApplied package vignette “TDApplied theory and practice” simulated data is

used to provide examples of package function. In this vignette we will demonstrate that

TDApplied can carry out meaningful analyses of real (i.e. non-simulated) data which other

software packages cannot. We analyzed data from a very well-known neurological dataset,

and identified topological features of neurological computation in single and multiple

subjects which were correlated with (i) the task the subjects were performing while the data

was collected, and (ii) the behavior (i.e. reaction time) of the subjects during the task – these

correlations suggest that the features are meaningful in the context of an neuroimaging

analysis. Moreover, these features were identified, interpreted and analyzed with the

bootstrap_persistence_diagram, vr_graphs and diagram_kpca functions, only

the first of which has any implementation in another R package (TDA). TDApplied is

therefore a powerful tool for applied topological analyses of data.

2.7.2 Introduction

A popular technology for studying neural function is called functional magnetic resonance

imaging (fMRI), in which oxygenated blood-flow across the brain is detected via magnetic

resonance over multiple time points; fMRI is a proxy measurement of neural activity.

Spatial activity patterns, i.e. vectors of measured values across space in a single time point,

are modulated by performing tasks. The study design is the sequence of temporal blocks

of performing these tasks and each task type is called a condition, and a study design

can evoke meaningful information about neural processing related to tasks. Collections

of spatial activity patterns (for example the spatial patterns evoked by a particular task

over multiple time points) have previously been analyzed with topological and geometric

techniques which capture their global structural features (X. Liu et al., 2013; Saggar et al.,

103

2018, 2021; Shine et al., 2019). However, these analyses are not designed to capture the

spatially periodic features of fMRI data which we would expect to exist in abundance

(Caballero-Gaudes and Reynolds, 2017; Greve et al., 2013; T. Liu, 2016). One persistent

homology analysis of fMRI spatial pattern data found robust 0-dimensional topological

features (i.e. clusters of time points with similar spatial patterns) whose persistence values

negatively correlated with fluid intelligence (Anderson et al., 2018). Larger differences

between spatial patterns at different time points generally corresponded to lower values

of fluid intelligence, but higher-dimensional topological features such as loops were not

considered in that analysis.

In this exploratory analysis, using the R package TDApplied, we utilized persistent

homology to find, in one subject’s fMRI data in an emotion task, task-related signal in the

form of a spatial loop. We then linked the loop back to the subject’s raw data to interpret

what neurological features the loop represented. Finally we showed that topological

features in 100 subject’s emotion task fMRI data were correlated with behavior (i.e. the

subject’s response time to certain task blocks). While neuroimaging researchers would not

consider a single loop within one subject “real” or “significant” without finding a similar

loop across multiple subjects, the task of optimally matching loops between datasets is

an open problem, so we leave the problem of finding group-level spatial loops to future

work. For our analysis we will use data from the famous Human Connectome Project

(Glasser, Smith, et al., 2016) which contains extensively preprocessed neuroimaging data

from roughly 1200 subjects. We focused on the HCP emotion task data, which alternated

between two conditions - deciding which of two faces matched another target face in

emotion, and deciding which of two shapes matched another target shape. We only

analyzed the right-to-left phase encoding scan (this is a parameter of MRI imaging which

determines the ordering of when image slices of the brain are obtained) as this was the

phase encoding direction for the specific subject loop we analyzed. Also, all fMRI data

was projected onto surface nodes – points on a mesh of the brain’s surface geometry –

which are more comparable across subjects than standard 3D volumes (Glasser, Smith,

104

et al., 2016). The script used to perform the analysis can be found in the "exec" directory of

TDApplied. Our analysis demonstrates the potential of using TDApplied for deriving

interpretable and otherwise obscured insights from real datasets.

2.7.3 A task-related spatial loop

For HCP subject 103111 we calculated a persistence diagram by analyzing the time-point

by time-point correlation matrix [ρi,j] of spatial patterns. A distance matrix was computed

by the transformation ρi,j →
√

2(1 − ρi,j) (see the appendix for details), and the bootstrap

procedure (Fasy et al., 2014) found a single significant loop. We plotted the VR graph

(Zomorodian, 2010) of the loop representative with ϵ being the birth value (with nodes

labelled by their time points), and the VR graph of the whole dataset at this ϵ (with nodes

in the representative cycle colored red):

Rips graph of representative cycle

20

8

38

3

26

37

23

13
9

18
25

17

19

28

10

33

22 21

11

46

4

24

31

76

42

35

5
14

32

47

34

15

Rips graph of all data

Figure 2.21: The VR graphs of (left) just the representative cycle time points, and (right) all

time points, with both epsilon scales at the loop birth value.

Two things are apparent from these plots – the first is that the most persistent loop is

the first task block (based on the time points in that block), and the second is that the

dataset mainly forms two major loops in a figure eight. The secondary loop was the

105

second most persistent loop in the diagram, and was comprised of (almost) all other time

points. We found that physiology (i.e. breathing, measured in the HCP dataset as the

pressure exerted by the subject’s abdomen on the sensor belt, and averaged for each graph

node) did not account for the two-loop structure, whereas task structure (measured by

time-since-last-block – i.e. the length of time since the most recent task block started) did.

In these graphs, red represents high values, pink middle-high, white middle, light blue

middle-low, blue low and black missing.

Respiratory Time since last block

Figure 2.22: VR graph of all time points, colored by (left) mean respiration and (right)

time-since-last-block. Only in the right graph do we see clear color clusters or gradients,

suggesting that physiology did not account for the structure of the loops whereas task-

timing did.

The secondary loop seemed task-related when we colored its VR graph by time-since-

last-block (i.e. the length of time since the most recent task block started), with clusters of

106

similarly-colored time points (i.e. nodes) and smooth gradients at various points around

the loop:

Rips graph of secondary loop

Figure 2.23: VR graph of the secondary loop, colored by time-since-last-block.

2.7.4 Linking the secondary loop to raw data

We next linked the secondary loop back to the fMRI data from which it came. From the

2D layout of its VR graph we computed a θ variable (angle around the loop, between

−π and π) and an r variable (distance to the origin). Using linear models of the form

Ai = β1 cos(θ)+β2 sin(θ)+β3 and Ai = β4r+β5 for the activity A of surface node i, we found

that out of the total 91282 surface nodes, the activity of 1475 had a significant relationship

with either cos(θ) or sin(θ), and the activity of 53 had a significant relationship with r

(significance thresholding was done at the Bonferroni level of approximately 0.05/(2 ∗

91282) = 2.74 ∗ 10−7). These two sets of nodes only shared one common node.

Here are surface plots of the nodes for the left hemisphere, generated using python,

responding to θ and r:

107

Figure 2.24: Surface nodes whose activity was significantly correlated with (left) theta and

(right) r.

A large cluster of surface nodes responding to θ was found in the left hemisphere (and not

in the right hemisphere), which appeared to belong to the brain region Pol1 in the insular

cortex. Interestingly, Pol1 was not found to show significant differences in activity between

the faces and shapes conditions (Glasser, Coalson, et al., 2016), despite the implication

of the insular cortex in emotional processing (Gogolla, 2017). This finding suggests that

spatial loops of fMRI data may contain complementary information to typical task-based

analyses of fMRI data.

A t-test then found a significant difference in mean r values between shape and face blocks:

108

Shape Face

0.
2

0.
4

0.
6

0.
8

1.
0

r across conditions, p < 0.01

Condition
r

Figure 2.25: Boxplot of r values in shape and face blocks.

2.7.5 Linking topology to behavior

The main goal of using a summary statistic of neurological data, such as persistence

diagrams of spatial activity patterns, is to correlate the statistic with behavior. In the HCP

dataset, mean reaction time (in milliseconds) was recorded for all subjects and all tasks, so

we checked whether topology was predictive of reaction time for the emotion task. We

selected 100 subjects at random, computed their emotion right-to-left phase encoding data

persistence diagrams, and computed a one dimensional kernel PCA embedding. We then

plotted the relationship between the first embedding dimension and reaction time to shape

blocks, which had a correlation of about 0.31:

109

−0.10 −0.05 0.00 0.05 0.10

60
0

80
0

12
00

Topology−Behavior Relationship

Embedding dim 1

M
ea

n
S

ha
pe

 B
lo

ck
 R

ea
ct

io
n

T
im

e
(m

s)
Correlation = 0.31

Figure 2.26: A 2D scatterplot, whose x-axis is the 1D PCA embedding coordinates of the

100 subject’s emotion persistence diagrams and whose y-axis is the 100 subject’s mean

response times in the shape blocks trials. The best-fitting regression line is also plotted.

We then computed statistical significance by Fisher-transforming the sample correlation

of 0.31 to obtain a test-statistic of about 0.32, and compared this statistic to a normal

null distribution with mean 0 and standard error 1/
√

100 − 3 ≈ 0.1 (Fisher et al., 1936).

The resulting p-value, for a two-sided null hypothesis, would have been less than 0.002,

suggesting a significant positive correlation between the topology of neural activity spatial

patterns and subject behavior.

2.7.6 Conclusion

We analyzed loops of spatial pattern correlations in HCP emotion fMRI data using

TDApplied, and were able to visualize and interpret significant loops of an individ-

ual subject, relating them to the study design. Such a result implies a complex structure for

the representation of the conditions, a complexity that cannot be captured by linear models

assuming clustered distributions. Moreover, our topology embedding, enabled with this

110

software and approach, allowed us to discover a relationship between fMRI patterns

and reaction time – effectively, capturing a complex brain-behavior relationship. These

results point towards the potential usage of 1-dimensional topology in finding task and/or

behavior relationships with fMRI or other neuroimaging modalities, again implying that

the shape of neuroimaging data may not be completely captured by traditional analysis

methods. Moreover, our analysis hinged on the usage of several functions which are

(largely) unique to TDApplied. These results show that TDApplied is the most flexible

and useful tool for carrying out meaningful analyses of data.

2.7.7 Appendix: converting correlations to distances

In our analysis of HCP data we converted correlation values to correlation distance values

using the formula ρ →
√

2 ∗ (1 − ρ). To see why this transformation does produce distance

values, let X and Y be two vectors (of the same length n) with 0 mean and unit variance.

Then ρ(X, Y) = Cov(E,Y)
σxσy

= E[(X−0)(Y −0)]
(1)(1) = E[XY] =

∑n

i=1 XiYi

n
. The Euclidean distance of

X and Y is therefore d(X, Y) =
√∑n

i=1(Xi − Yi)2 =
√∑n

i=1 X2
i + ∑n

i=1 Y 2
i − 2 ∑n

i=1 XiYi =√
n + n − 2ρ(X, Y) =

√
2n(1 − ρ(X, Y)) ∝

√
2(1 − ρ(X, Y)). Therefore, since a scaled

distance metric (by a positive number like
√

n) is also a distance metric (this is very easy

to verify), the transformation ρ →
√

2 ∗ (1 − ρ) indeed gives distance values. Note that in

Anderson et al., 2018 a proportional transformation was used ρ →
√

1 − ρ ∝
√

2(1 − ρ)

and therefore our results are consistent with those found in that work.

111

2.7.8 References

Anderson, K. L., Anderson, J. S., Palande, S., & Wang, B. (2018). Topological data analysis

of functional mri connectivity in time and space domains. In G. Wu, I. Rekik, M. D.

Schirmer, A. W. Chung, & B. Munsell (Eds.), Connectomics in neuroimaging (pp. 67–

77). Springer International Publishing.

Caballero-Gaudes, C., & Reynolds, R. C. (2017). Methods for cleaning the bold fmri signal.

NeuroImage, 154, 128–149. https://doi.org/https://doi.org/10.1016/j.neuroimage.

2016.12.018

Fasy, B., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., & Singh, A. (2014). Confi-

dence sets for persistence diagrams. The Annals of Statistics, 42, 2301–2339.

Fisher, R. A., et al. (1936). Statistical methods for research workers. Statistical Methods for

Research Workers, (6th Ed).

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil,

K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van Essen, D. C.

(2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615),

171–178.

Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L. R., Auerbach, E. J., Behrens,

T. E. J., Coalson, T. S., Harms, M. P., Jenkinson, M., Moeller, S., Robinson, E. C.,

Sotiropoulos, S. N., Xu, J., Yacoub, E., Ugurbil, K., & Van Essen, D. C. (2016). The

human connectome project’s neuroimaging approach. Nature Neuroscience, 19(9),

1175–1187.

Gogolla, N. (2017). The insular cortex. Current Biology, 27(12), R580–R586. https://doi.org/

https://doi.org/10.1016/j.cub.2017.05.010

112

https://doi.org/https://doi.org/10.1016/j.neuroimage.2016.12.018
https://doi.org/https://doi.org/10.1016/j.neuroimage.2016.12.018
https://doi.org/https://doi.org/10.1016/j.cub.2017.05.010
https://doi.org/https://doi.org/10.1016/j.cub.2017.05.010

Greve, D., Brown, G., Mueller, B., Glover, G., Liu, T., & Network, F. B. R. (2013). A survey

of the sources of noise in fmri. Psychometrika, 78, 396–416.

Liu, T. (2016). Noise contributions to the fmri signal: An overview. NeuroImage, 143, 141–

151.

Liu, X., Chang, C., & Duyn, J. (2013). Decomposition of spontaneous brain activity into

distinct fmri co-activation patterns. Frontiers in Systems Neuroscience, 7, 101. https:

//doi.org/10.3389/fnsys.2013.00101

Saggar, M., Shine, J. M., Liégeois, R., Dosenbach, N. U. F., & Fair, D. (2021). Precision

dynamical mapping using topological data analysis reveals a unique hub-like

transition state at rest. bioRxiv. https://doi.org/10.1101/2021.08.05.455149

Saggar, M., Sporns, O., Gonzalez-Castillo, J., Bandettini, P. A., Carlsson, G. E., Glover, G. H.,

& Reiss, A. L. (2018). Towards a new approach to reveal dynamical organization of

the brain using topological data analysis. Nature Communications, 9.

Shine, J. M., Breakspear, M., Bell, P. T., Ehgoetz Martens, K. A., Shine, R., Koyejo, O., Sporns,

O., & Poldrack, R. A. (2019). Human cognition involves the dynamic integration of

neural activity and neuromodulatory systems. Nature Neuroscience, 22(2), 289–296.

Zomorodian, A. (2010). The tidy set: A minimal simplicial set for computing homology of

clique complexes. Proceedings of the Twenty-Sixth Annual Symposium on Computational

Geometry, 257–266. https://doi.org/10.1145/1810959.1811004

113

https://doi.org/10.3389/fnsys.2013.00101
https://doi.org/10.3389/fnsys.2013.00101
https://doi.org/10.1101/2021.08.05.455149
https://doi.org/10.1145/1810959.1811004

2.8 Benchmarking and speedups

2.8.1 Introduction

The TDApplied package provides a wide variety of tools for performing powerful applied

analyses of multiple persistence diagrams, and in order to make these analyses more

practical a number of computational speedups have been built-in. These speedups involve

other programming languages (Python and C++), parallel computing and intuitive tricks,

and result in significant performance gains (compared to other similar R packages). In this

vignette we will describe the methods that are used to make TDApplied a highly practical

and scalable package for applied topological data analysis in R, as well as benchmarking

TDApplied functions against suitable counterparts. All benchmarking was carried out

on a Windows 10 64-bit machine, with an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz 3.60

GHz processor with 8 cores and 64GB of RAM.

2.8.2 Speedups

2.8.2.1 Parallelization

When performing multiple independent computations, parallelization can increase speed

by performing several computations concurrently. TDApplied utilizes parallelization in

three ways to achieve significant performance gains:

1. Calculating distance and Gram (i.e. kernel) matrices in parallel – these matrices are

the backbone, and limiting runtime factors, of all TDApplied machine learning and

inference methods.

2. Carrying out the bootstrap procedure (to find significant topological features) in

parallel – each bootstrap iteration involves an independent distance calculation.

3. Determining the loss-function value in the permutation test procedure, where dis-

tances are calculated between each pair of diagrams in the same (permuted) group.

114

Parallelization is performed in an operating-system agnostic manner, ensuring that these

speedups are available to all TDApplied users.

2.8.2.2 Fisher information metric approximation

The Fisher information metric (Le and Yamada, 2018) unlocks the door to a number of

TDApplied machine learning and inference functions via the persistence Fisher kernel.

However, the computational complexity of calculating this metric is quadratic in the

number of points in its input diagrams (Le and Yamada, 2018), making calculations using

diagrams with many points prohibitive. To solve this issue, a fast approximation has been

described for the Fisher information metric using the Fast Gauss Transform (Morariu et al.,

2008). This approximation reduces the runtime complexity of the distance calculation to

be linear – a huge performance gain with large persistence diagrams. The implementation

of the Fast Gauss Transform at https://github.com/vmorariu/figtree was copied

into TDApplied with only slight modifications to interface with Rcpp (Eddelbuettel

and Francois, 2011), providing the approximation functionality. Note that the “epsilon”

parameter in the original C++ code is called rho in TDApplied’s implementation in order

to avoid confusion about error bounds – epsilon usually denotes an error bound (like in

the original code). However, rho is not itself a bound on the approximation error of the

metric itself, but rather for some subcalculations.

To illustrate how significant this speedup can be, we sampled unit spheres and tori

(with inner tube radius 0.25 and major radius 0.75) with different numbers of points

100,200,. . . ,1000 (with 10 iterations at each number of points), calculated their persistence

diagrams and benchmarked calculating their Fisher information metric in dimensions

0, 1 and 2, with and without approximation. The plot below shows the results (plotting

the mean runtime with a 95% confidence interval, which was too small to show for the

approximation):

115

https://github.com/vmorariu/figtree

200 400 600 800 1000

0
10

0
20

0
30

0
40

0

Approximation Benchmarking

Points in shape

M
ea

n
ex

ec
ut

io
n

tim
e

(s
ec

)

Approximation
Exact

Figure 2.27: A comparison of the mean execution time of comparing persistence diagrams

with the exact or approximate Fisher information metric calculation, where diagrams

were computed from samples of spheres and tori with varying numbers of points. The

approximation was significantly faster, so much so that error bars couldn’t be displayed

for its plotted points.

A linear model of the runtime ratio (division of the exact vs. approximation mean runtimes)

regressed onto the number of points in the shapes found a highly significant positive slope

of about 0.57. This means that for every additional 100 points in the shapes the runtime

ratio increases by about 0.57 – larger inputs generally lead to greater runtime savings.

Unfortunately this approximation cannot currently be run in parallel in TDApplied

functions, so in cases where the number of points in the persistence diagrams is small

or the number of available cores is large we may consider using the exact calculation

instead. However, functions are provided in the “exec/parallel_with_approximation.R”

script which can be loaded into your environment to compute distance and Gram matrices

116

in parallel with approximation (and these matrices can be input into other TDApplied

functions directly – see the following section).

As a demonstration we will create ten persistence diagrams from circles (100 points points

sampled on each) and compute their Fisher information metric distance matrix in parallel

with and without approximation:

create 20 diagrams from circles

g <- lapply(X = 1:10,FUN = function(X){

return(TDAstats::calculate_homology(TDA::circleUnif(100),

dim = 0,threshold = 2))

})

calculate distance matrices

d_exact <- distance_matrix(g,distance = "fisher",sigma = 1)

d_approx <- parallel_approx_distance_mat(g,rho = 1e-6)

The timing difference was impressive – the exact distance matrix was calculated in about

44.8s, whereas the approximate distance matrix was calculated in 1.8s! Moreover, the

maximum percent difference between the two matrices was only about 0.9%. When

we repeated these calculations with twenty diagrams the timing was 180s for the exact

calculation compared to 3.7s with the approximation, and when we used twenty diagrams

with each circle having 200 sampled points the timings were 174s and 2.4s for the exact

and approximate calculations respectively.

These simulations indicate that the functions parallel_approx_distance_matrix

and parallel_approx_gram_matrix in the "exec" directory can unlock exceptional

performance increases in calculating distance/Gram matrices, and can be particularly

useful when combined with the speedup documented in the following section. However,

117

we have found that these parallelized approximation functions can sometimes cause

(seemingly non-reproducible, perhaps related to either parallel processing or memory

allocation) fatal errors, requiring the user to manually restart the R session. This function

should be used carefully, and perhaps not in large loops which may get interrupted. A

future update to TDApplied should resolve this issue.

2.8.2.3 Using pre-computed matrices

Redundancy can be a huge computational strain when performing multiple related and

slow calculations. Applied topological data analysis unfortunately falls victim to this

problem since machine learning and inference methods are built on calculating (potentially

the same) distance/Gram matrices. In order to circumvent this issue TDApplied machine

learning and inference functions can accept as input precomputed distance/Gram matri-

ces. Therefore, if a number of analyses are being carried out with the same persistence

diagrams and with the same distance/kernel parameter choices (as is often desired) then

the distance/Gram matrices can each be computed once and reused across functions.

To illustrate how this works in practice we will use the

generate_TDApplied_vignette_data function to generate nine persistence dia-

grams and analyze them with multidimensional scaling (Cox and Cox, 2008), kernel

k-means (Dhillon et al., 2004) and kernel principal components analysis (Scholkopf et al.,

1998):

generate_TDApplied_vignette_data <- function(num_D1,num_D2,num_D3)

{

num_D1 is the number of desired copies of D1, and likewise

for num_D2 and num_D3

create data

118

D1 = data.frame(dimension = c(0),birth = c(2),death = c(3))

D2 = data.frame(dimension = c(0),birth = c(2,0),

death = c(3.3,0.5))

D3 = data.frame(dimension = c(0),birth = c(0),death = c(0.5))

make noisy copies

noisy_copies <- lapply(X = 1:(num_D1 + num_D2 + num_D3),

FUN = function(X){

i stores the number of the data frame to make copies of:

i = 1 is for D1, i = 2 is for D2 and i = 3 is for D3

i <- 1

if(X > num_D1 & X <= num_D1 + num_D2)

{

i <- 2

}

if(X > num_D1 + num_D2)

{

i <- 3

}

store correct data in noisy_copy

noisy_copy <- get(paste0("D",i))

add Gaussian noise to birth and death values

n <- nrow(noisy_copy)

noisy_copy$dimension <-

as.numeric(as.character(noisy_copy$dimension))

noisy_copy$birth <-

119

noisy_copy$birth + stats::rnorm(n = n,mean = 0,sd = 0.05)

noisy_copy$death <-

noisy_copy$death + stats::rnorm(n = n,mean = 0,sd = 0.05)

make any birth values which are less than 0 equal 0

noisy_copy[which(noisy_copy$birth < 0),2] <- 0

make any birth values which are greater than their death

values equal their death values

noisy_copy[which(noisy_copy$birth > noisy_copy$death),2] <-

noisy_copy[which(noisy_copy$birth > noisy_copy$death),3]

return(noisy_copy)

})

return list containing num_D1 noisy copies of D1, then

num_D2 noisy copies of D2, and finally num_D3 noisy copies

of D3

return(noisy_copies)

}

create noisy copies of D1, D2 and D3

g <- generate_TDApplied_vignette_data(3,3,3)

calculate MDS embedding

mds <- diagram_mds(diagrams = g,k = 2,dim = 0,sigma = 1.5,

distance = "fisher")

120

calculate kmeans clusters with 3 centers

clust <- diagram_kkmeans(diagrams = g,centers = 3,dim = 0,

t = 2,sigma = 1.5)

calculate kpca embedding

pca <- diagram_kpca(diagrams = g,dim = 0,t = 2,sigma = 1.5,

features = 2)

The time taken to run the MDS, k-means and PCA lines was about 2.53s. Noting that the

distance/Gram matrices had shared parameters (i.e. the distance matrix was calculated

with the Fisher information metric and the values of t and sigma were all shared), we then

repeated the analysis by pre-computing one distance (and Gram) matrix and using these

in all three analyses:

D <- distance_matrix(diagrams = g,dim = 0,sigma = 1.5,

distance = "fisher")

K <- exp(-2*D)

class(K) <- "kernelMatrix"

calculate MDS embedding

mds <- diagram_mds(D = D,k = 2)

calculate kmeans clusters with 3 centers

clust <- diagram_kkmeans(diagrams = g,K = K,centers = 3,dim = 0,

t = 2,sigma = 1.5)

calculate kpca embedding

pca <- diagram_kpca(diagrams = g,K = K,dim = 0,t = 2,sigma = 1.5,

121

features = 2)

The new runtime (including calculating the distance and Gram matrices) was about

0.59s, over three times faster than the original. We then repeated the analyses using 300

persistence diagrams, i.e. with

create noisy copies of D1, D2 and D3

g <- generate_TDApplied_vignette_data(100,100,100)

The timing scaled proportionally – without using precomputed matrices the time taken

was about 121.8s and with precomputed matrices the time taken was about 39.69s. We

recommend using precomputed matrices whenever performing multiple analyses of the

same persistence diagrams with shared distance/kernel parameters.

2.8.2.4 Storing calculations in permutation_test

Another significant source of redundancy can be found in the permutation_test func-

tion – in each calculation of the loss function, a distance value is computed between each

pair of diagrams in the same (possibly permuted) group. However, diagrams will often

appear in the same permuted group meaning distances would be needlessly recalculated.

To solve this problem the permutation_test function creates an initially trivial distance

matrix (with entries -1) between all persistence diagrams across all groups, updates its

entries when new distance calculations are performed (in parallel as discussed earlier)

and retrieves already computed values whenever possible. It is possible to input precom-

puted distance matrices to this function. However, for standalone usage depending on

the group sizes and number of permutations not every pair of diagrams may appear in

some permuted group together, so the implemented speedup avoids redundancy without

calculating unnecessary distances.

122

2.8.3 Benchmarking against similar packages

In order to properly situate TDApplied in the landscape of software for topological data

analysis, we will compare the speed of its calculations to similar calculations from other

packages. In the following sections we will benchmark:

(1) Persistent (co)homology calculations with TDApplied’s PyH, TDAstats’

(Wadhwa et al., 2019) calculate_homology and rgudhi’s (Stamm, 2023)

compute_persistence.

(2) Wasserstein distances between persistence diagrams with TDApplied’s

diagram_distance and TDA’s (Fasy et al., 2021) wasserstein.

(3) Wasserstein distances between persistence diagrams with TDApplied’s

diagram_distance and the persim Python module’s (https://persim.scikit-

tda.org/en/latest/) wasserstein.

(4) Fisher information metric distances between persistence diagrams with

TDApplied’s diagram_distance and rgudhi’s

PersistenceFisherDistance.

The script that was used to perform benchmarking (and plotting the results) is available in

the exec directory of this package, using PyH in certain cases and thus requiring Python.

A simple error check is included for the installation of the reticulate package, but the

script will throw an error if reticulate is not properly connected with Python. In order

to perform the benchmarking against rgudhi, rgudhi must be installed explicitly (again

requiring configuration with Python) as it is not even a suggested package for TDApplied

installation. In all cases, benchmarking followed a similar procedure, involving sampling

data from simple shapes (unit circles, unit spheres and tori with inner tube radius 0.25

and major radius 0.75) with various number of rows, and performing 10 benchmarking

iterations at each number of rows. The mean and standard deviation of run time for the

two functions were then calculated at each number of rows.

123

https://persim.scikit-tda.org/en/latest/
https://persim.scikit-tda.org/en/latest/

The benchmarking results are displayed graphically in the following three subsections. On

top of comparing raw run time of the various functions, we also compared the scalability

of the functions by computing the runtime ratios (i.e. quotient of runtimes in the two

packages) of the functions and regressing the ratios onto the number of points in the input

shapes. Overall we found that TDApplied’s functions are faster and scale better than

their R counterparts, and scale similarly to Python counterparts. These results indicate

that TDApplied is a powerful and efficient tool for applied topological data analysis in R.

2.8.3.1 Benchmarking PyH against TDAstats’ calculate_homology function and

rgudhi’s compute_persistence function

The long calculation time of persistence diagrams is likely a large contributing factor to

the slow adoption of topological data analysis for applied data science. Much research

has been carried out in order to speed up these calculations, but the current state-of-the-

art is the persistent cohomology algorithm (De Silva et al., 2011). In R, the TDAstats’

calculate_homology function is the fastest option for persistence diagram calculations

(Somasundaram et al., 2021), being a wrapper for the ripser (Bauer, 2015) persistent

cohomology engine. TDApplied’s PyH function is a Python wrapper for the same en-

gine, and rgudhi also provides a Python cohomology engine via the C++ library GUDHI

(Lacombe et al., 2019) with its compute_persistence function. Note that rgudhi’s

function required a number of lines of code to use (i.e. to calculate a persistence diagram

across all desired dimensions from a dataset) and we benchmarked all of these lines (see

the benchmarking script in the "exec" directory for details). We benchmarked all three

function’s run time on circles, spheres and tori. The results were as follows:

124

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Circles

Points in shape

M
ea

n
ex

ec
ut

io
n

tim
e

(s
ec

) TDApplied
TDAstats
rgudhi

200 400 600 800 1000

0
10

20
30

40
50

Tori

Points in shape

M
ea

n
ex

ec
ut

io
n

tim
e

(s
ec

) TDApplied
TDAstats
rgudhi

200 400 600 800 1000

0
5

10
15

20
25

30

Spheres

Points in shape

M
ea

n
ex

ec
ut

io
n

tim
e

(s
ec

) TDApplied
TDAstats
rgudhi

Figure 2.28: Comparisons between the TDApplied, rgudhi and TDAstats homology

calculations and simulated datasets of circles (left), tori (middle) and spheres (right).

rgudhi was the fastest, followed by TDApplied and then TDAstats. Note the different

temporal scalings of the three y-axes - more complex shapes required more compute time

for all three packages.

As we can see the run time of compute_persistence was fastest, followed by PyH

and finally calculate_homology. We then used linear models to analyze how the

three functions scale compared to each other for all three shapes, regressing the ratio of

runtimes onto the number of points in the data set. For the models dividing the runtime of

calculate_homology by that of PyH, the intercepts were significant and positive but

the slopes were positive and either barely significant or not significant (at the α = 0.05

level). This suggests that the runtime of the two functions scale similarly, but there was

a constant speed increase of PyH which differed by shape (about 1.06 times faster for

circles, 1.75 times faster for tori and 3 times faster for spheres). The models for dividing

the runtime of PyH by that of compute_persistence yielded similar results - roughly

constant multiplicative runtime decreases with rgudhi. Overall, if Python is available to a

125

TDApplied user then the PyH function may provide speedups compared to the TDAstats

function calculate_homology, but in that case rgudhi’s compute_persistence is

the fastest option at the expense of more lines of code (computing a persistence diagram of

just dimension 0 as a data frame takes 5 lines of code).

2.8.3.2 Benchmarking the TDApplied diagram_distance and TDA wasserstein

functions

Computing wasserstein (or bottleneck) distances between persistence diagrams is a key

feature of some of the main topological data analysis software packages in R and Python.

However, these calculations can be very expensive, rendering practical applications of

topological data analysis nearly unfeasible. Since TDAstats has implemented an uncon-

ventional distance calculation (see the package vignette “Comparing distance calculations”

for details), we will benchmark TDApplied’s diagram_distance function against the

TDA wasserstein function on spheres and tori, calculating their distance in dimensions

0, 1 and 2 and recording the total time. The results were as follows (the 95% confidence

interval was too small to be plotted for the diagram_distance function):

126

200 400 600 800 1000

0
10

00
20

00
30

00

Points in shape

M
ea

n
ex

ec
ut

io
n

tim
e

(s
ec

)

TDApplied
TDA

Figure 2.29: A comparison of the mean execution time of TDApplied and TDA distance

functions on persistence diagrams computed from simulated pairs of spheres and tori

with varying numbers of data points. TDApplied was significantly faster than TDA and

this difference was so great that no confidence intervals could be seen for TDApplied’s

plotted points.

A linear model, regressing the ratio of TDA’s runtime divided by TDApplied’s runtime

onto the number of points in the data set, found a significant positive coefficient of the num-

ber of points. This suggests that diagram_distance scales better than wasserstein,

and the model estimated a 95x speed up for 1000 data points. These results suggest that

distance calculations with TDApplied are faster and more scalable, making the applica-

tions of statistics and machine learning with persistence diagrams more feasible in R. This

is why the TDA distance calculation was not used in the TDApplied package.

2.8.3.3 Benchmarking the TDApplied diagram_distance function against

persim’s wasserstein function

While the functionality of Python packages for topological data analysis packages are

out of the scope for an R package, in order to fully situate TDApplied in the landscape

127

of topological data analysis software we will benchmark the diagram_distance func-

tion against its counterpart from the scikit-TDA collection of libraries, namely the

wasserstein function from the persim Python module. The R package reticulate

(Ushey et al., 2022) was used to carry out this benchmarking, via installing, importing

and using the persim module. This benchmarking procedure also used spheres and tori,

calculating distances in dimensions 0, 1 and 2, and the results were as follows (confidence

intervals for the persim package were too small to be plotted):

200 400 600 800 1000

0
5

10
20

30

Points in shape

M
ea

n
ex

ec
ut

io
n

tim
e

(s
ec

)

TDApplied
persim

Figure 2.30: A comparison of the mean execution time of TDApplied and persim distance

functions on persistence diagrams computed from simulated pairs of spheres and tori with

varying numbers of data points. persim was significantly faster than TDApplied, to the

point that no confidence intervals could be seen for persim’s plotted points.

The runtime of the persim wasserstein function was significantly faster than

TDApplied’s diagram_distance function. However, a linear model of the runtime

ratio of TDApplied vs. persim against the number of points in the shape finds evidence

that the two functions scale similarly, since the estimated coefficient for number of points

was not significant but the intercept (15) was highly significant. Nevertheless, the raw

128

speed increase in Python could be the basis for a very fast Python counterpart to the

TDApplied package in the future.

2.8.3.4 Benchmarking the TDApplied diagram_distance and rgudhi

PersistenceFisherDistance functions

Kernel calculations of persistence diagrams open the door for a number of kernel-based

machine learning methods, and the fisher information metric is the building block for one

such kernel function (Le and Yamada, 2018). Currently, only the TDApplied and rgudhi

R packages provide the functionality for any kernel calculations, and while rgudhi pro-

vides more kernel functions than TDApplied, rgudhi requires Python configuration

whereas TDApplied does not. We will benchmark TDApplied’s diagram_distance

function against rgudhi’s PersistenceFisherDistance function. We were not able

to use the approximation functionality of rgudhi’s function (its documentation is missing

a reproducible example), so we only benchmarked against rgudhi’s exact distance calcu-

lation. We again performed benchmarking on spheres and tori, calculating their distance

in dimensions 0, 1 and 2 and recording the total time. Only the TDApplied approximate

distance calculation runtimes (not the exact calculation runtimes) were comparable to those

of rgudhi’s exact calculation, so here we plot the results of TDApplied’s approximate

and rgudhi’s exact calculations:

129

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

Points in shape

M
ea

n
ex

ec
ut

io
n

tim
e

(s
ec

)

TDApplied
rgudhi

Figure 2.31: A comparison of the mean execution time of TDApplied and rgudhi distance

functions on persistence diagrams computed from simulated pairs of spheres and tori with

varying numbers of data points. rgudhi’s exact calculations were significantly faster than

TDApplied’s approximate ones.

The rgudhi exact calculations were clearly faster than TDApplied’s approximate

ones. However, a linear model regressing the ratio of TDApplied’s runtime divided by

rgudhi’s runtime onto the number of points in the data set found a significant negative

coefficient of the number of points. This suggests that diagram_distance scales better

than PersistenceFisherDistance, and with enough data points there would be

performance gains using the TDApplied function. However, if Python configuration for

the rgudhi package is possible then the rgudhi function should be preferred for Fisher

information metric calculations for diagrams with not too many points.

An important consequence of these results are that for some analyses we can compute

faster distance/Gram matrices with rgudhi compared to with TDApplied, and these

matrices can feed directly into TDApplied’s machine learning and inference methods. An

example of how to do so can be found in the “Comparing Distance Calculations” package

vignette, with functions that can be copied and ran.

130

2.8.4 Conclusion

TDApplied includes a wide variety of functions for machine learning and inference with

persistence diagrams; however, these methods can have prohibitively long runtimes. In

order to make TDApplied functions more practical, a number of speedups have been

implemented resulting in substantial performance gains, including parallelization, fast

approximation to the Fisher information metric and allowing precomputed distance/Gram

matrices to be input to the functions. Benchmarking TDApplied functions against suitable

counterparts in R situates TDApplied as the state-of-the-art in terms of speed for topo-

logical data analysis calculations in R. However, comparisons against Python functions

(including the rgudhi package) indicate that further speedups may be possible. With

all its optimizations, TDApplied makes applied topological data analysis possible and

practical like never before.

131

2.8.5 References

Bauer, U. (2015). Persistent homology algorithm toolbox. https://github.com/Ripser/ripser

Cox, M. A. A., & Cox, T. F. (2008). Multidimensional scaling. In Handbook of data visualization

(pp. 315–347). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-

33037-0_14

De Silva, V., Morozov, D., & Vejdemo-Johansson, M. (2011). Dualities in persistent (co)

homology. Inverse Problems, 27(12), 124003.

Dhillon, I. S., Guan, Y., & Kulis, B. (2004). A unified view of kernel k-means , spectral

clustering and graph cuts. UTCS Technical Report.

Eddelbuettel, D., & Francois, R. (2011). Rcpp: Seamless R and C++ integration. Journal of

Statistical Software, 40(8), 1–18. https://doi.org/10.18637/jss.v040.i08

Fasy, B. T., Kim, J., Lecci, F., Maria, C., Millman, D. L., & Rouvreau., V. (2021). Tda: Statistical

tools for topological data analysis [R package version 1.7.7]. https://CRAN.R-project.

org/package=TDA

Lacombe, T., Montassif, H., Soriano-Trigueros, M., Spreeman, G., & Takenouchi, M. (2019).

The gudhi library is a generic open source c++ library, with a python interface, for topological

data analysis (tda) and higher dimensional geometry understanding. https://gudhi.inria.

fr/

Le, T., & Yamada, M. (2018). Persistence fisher kernel: A riemannian manifold kernel

for persistence diagrams. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.

Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information processing systems

(Vol. 31). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/

959ab9a0695c467e7caf75431a872e5c-Paper.pdf

132

https://github.com/Ripser/ripser
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.1007/978-3-540-33037-0_14
https://doi.org/10.18637/jss.v040.i08
https://CRAN.R-project.org/package=TDA
https://CRAN.R-project.org/package=TDA
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf

Morariu, V., Srinivasan, B., Raykar, V. C., Duraiswami, R., & Davis, L. S. (2008). Auto-

matic online tuning for fast gaussian summation. In D. Koller, D. Schuurmans,

Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems

(Vol. 21). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2008/file/

d96409bf894217686ba124d7356686c9-Paper.pdf

Scholkopf, B., Smola, A., & Muller, K.-R. (1998). Nonlinear component analysis as a kernel

eigenvalue problem. Neural Computation, 10, 1299–1319.

Somasundaram, E. V., Brown, S. E., Litzler, A., Scott, J. G., & Wadhwa, R. R. (2021).

The r journal: Benchmarking r packages for calculation of persistent homology

[https://doi.org/10.32614/RJ-2021-033]. The R Journal, 13, 184–193. https://doi.

org/10.32614/RJ-2021-033

Stamm, A. (2023). Rgudhi: An interface to the gudhi library for topological data analysis [R

package version 0.2.0]. https://CRAN.R-project.org/package=rgudhi

Ushey, K., Allaire, J., & Tang, Y. (2022). Reticulate: Interface to ’python’ [R package version

1.24]. https://CRAN.R-project.org/package=reticulate

Wadhwa, R., Dhawan, A., Williamson, D., & Scott, J. (2019). Tdastats: Pipeline for topological

data analysis [R package version 0.4.1]. https://github.com/rrrlw/TDAstats

133

https://proceedings.neurips.cc/paper/2008/file/d96409bf894217686ba124d7356686c9-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/d96409bf894217686ba124d7356686c9-Paper.pdf
https://doi.org/10.32614/RJ-2021-033
https://doi.org/10.32614/RJ-2021-033
https://CRAN.R-project.org/package=rgudhi
https://CRAN.R-project.org/package=reticulate
https://github.com/rrrlw/TDAstats

2.9 Personalized analyses with TDApplied

2.9.1 Introduction

TDApplied contains a variety of built-in methods for performing applied analyses of

persistence diagrams. However, these methods are by no means a comprehensive list of

common tools used in data science. A TDApplied user may wish to augment their exist-

ing analysis pipelines to include persistence diagrams, which we will call a “personalized

analysis.” In this vignette we will explore how to use TDApplied in personalized analyses

using a technique called vectorization – assigning vectors to persistence diagrams and using

these vectors in downstream analyses. Note that TDAvec (Islambekov and Luchinsky,

2022) and TDAkit (You and Yu, 2021) are two R packages specifically designed for vector-

ization analyses, however the methods they implement remove some information in the

persistence diagrams (Bubenik, 2015; Hensel et al., 2021) whereas the kernel approach in

TDApplied does not remove any information. Nevertheless, TDAvec and TDAkit may

also be consulted for performing personalized analyses of persistence diagrams.

In this vignette we will focus on supervised machine learning analyses (i.e. classification

and regression tasks), but similar approaches can be used for unsupervised machine

learning, inference, etc. Standard supervised learning methods take as input an n × f

feature matrix (each row representing one data point and each column representing a

dataset feature) and a label vector. However, suppose that we had a complicated feature

matrix which contains persistence diagrams (i.e. topological features), numeric and factor

features (i.e. non-topological features). This data could be incredibly rich in predictive power,

but requires special treatment to be used in typical model training pipelines. A pipeline

using TDApplied would be:

1. First separate the features into topological features T1, . . . , Tk, each of which is a list

of diagrams, and non-topological features which is a n × (f − k) feature matrix called

NT .

134

2. For each topological feature Ti = {Di,1, . . . , Di,n} we compute its (approximate) n × n

Gram matrix Gi.

3. Column bind all Gi together into a n × (kn) feature matrix G.

4. Column bind G and NT to get a new n × (kn + f − k) feature matrix F .

5. We train the model using the feature matrix F and the original labels.

Once we have built our model we may want to make predictions for n′ new data points. In

order to make predictions we need to convert this new data into a feature matrix resembling

F , and this can be done using the same pipeline as above except in step 2 we compute the

cross Gram matrix (see the package vignette “TDApplied theory and practice” for details

about Gram and cross Gram matrices) of each T ′
i with its corresponding Ti.

The following section provides an example of these two pipelines.

2.9.2 Classification with extreme gradient boosting (XGBoost)

XGBoost (Chen and Guestrin, 2016) is currently one of the most popular and high-

performing machine learning models for classification and regression in industry. How

could we access this prediction performance from TDApplied? Let’s start by loading the

xgboost package (Chen et al., 2023):

library(xgboost)

The xgboost package has an xgboost function with a simple interface for training

XGBoost models, requiring only a feature matrix and label vector. For our example we will

consider the task of predicting which shape each training example came from – a circle,

torus or sphere. The features of our data points are two topological features, one persistence

diagram sampled from the shape in dimension 1 and the other diagram sampled from

dimension 2, two numeric features which are the mean persistence of the two diagrams,

and one factor feature which is a random binary vector. We illustrate by creating 30 data

points for this example:

135

create 30 diagrams from circles, tori and spheres

up to dimension 2

diags <- lapply(X = 1:30,FUN = function(X){

if(X <= 10)

{

return(TDAstats::calculate_homology(TDA::circleUnif(n = 100),

dim = 2,threshold = 2))

}

if(X > 10 & X <= 20)

{

return(TDAstats::calculate_homology(TDA::torusUnif(n = 100,

a = 0.25,c = 0.75),

dim = 2,threshold = 2))

}

if(X > 20)

{

return(TDAstats::calculate_homology(TDA::sphereUnif(n = 100,

d = 2),

dim = 2,threshold = 2))

}

})

subset into two features, dimension 1 and dimension 2

T1 <- lapply(X = diags,FUN = function(X){

136

df <- X[which(X[,1] == 1),]

if(!is.matrix(df))

{

df <- as.data.frame(t(df))

}

return(as.data.frame(df))

})

T2 <- lapply(X = diags,FUN = function(X){

df <- X[which(X[,1] == 2),]

if(!is.matrix(df))

{

df <- as.data.frame(t(df))

}

return(as.data.frame(df))

})

calculate max persistence of each diagram

max_pers_H1 <- unlist(lapply(X = T1,FUN = function(X){

return(max(X[[3]] - X[[2]]))

}))

max_pers_H2 <- unlist(lapply(X = T2,FUN = function(X){

137

if(nrow(X) == 0)

{

return(0)

}

return(max(X[[3]] - X[[2]]))

}))

create random binary vector

rand_bin <- sample(factor(c("yes","no")),size = 30,replace = T)

specify data labels, 0 for circle, 1 for torus, 2 for sphere

labs <- rep(c(0,1,2),each = 10)

Now that we have constructed our dataset we will follow steps 1 through 5 of the pipeline

to train an XGBoost model:

form non-topological feature matrix

NT <- cbind(max_pers_H1,max_pers_H2,rand_bin)

calculate the approximate Gram matrix for each

topological feature

G1 <- gram_matrix(diagrams = T1,sigma = 0.01,dim = 1,rho = 0.0001)

G2 <- gram_matrix(diagrams = T2,sigma = 0.01,dim = 2,rho = 0.0001)

column bind G_i's into 30x60 feature matrix

G <- cbind(G1,G2)

column bind G and NT into 30x63 feature matrix

138

Fmat <- cbind(G,NT)

fit XGBoost model with maximum 50 boosting iterations

model <- xgboost(data = Fmat,label = rep(c(0,1,2),each = 10),

nrounds = 50,verbose = 0,

objective = "multi:softmax",num_class = 3)

Now that we have fit our model, let’s create three new data points:

new_diags <-

list(TDAstats::calculate_homology(TDA::circleUnif(n = 100),

dim = 2,threshold = 2),

TDAstats::calculate_homology(TDA::torusUnif(n = 100,

a = 0.25,c = 0.75),

dim = 2,threshold = 2),

TDAstats::calculate_homology(TDA::sphereUnif(n = 100,d = 2),

dim = 2,threshold = 2))

subset into two features, dimension 1 and dimension 2

T1_prime <- lapply(X = new_diags,FUN = function(X){

df <- X[which(X[,1] == 1),]

if(!is.matrix(df))

{

df <- as.data.frame(t(df))

}

return(as.data.frame(df))

})

139

T2_prime <- lapply(X = new_diags,FUN = function(X){

df <- X[which(X[,1] == 2),]

if(!is.matrix(df))

{

df <- as.data.frame(t(df))

}

return(as.data.frame(df))

})

calculate max persistence of each new diagram

max_pers_H1_prime <- unlist(lapply(X = T1_prime,FUN = function(X){

return(max(X[,3] - X[,2]))

}))

max_pers_H2_prime <- unlist(lapply(X = T2_prime,FUN = function(X){

if(nrow(X) == 0)

{

return(0)

}

return(max(X[,3] - X[,2]))

}))

create random binary vector

140

rand_bin_prime <- sample(factor(c("yes","no")),size = 3,

replace = T)

We can now predict the label of these new data points as follows:

form non-topological feature matrix

NT_prime <- cbind(max_pers_H1_prime,max_pers_H2_prime,

rand_bin_prime)

calculate the approximate cross Gram matrix for each

topological feature

G1_prime <- gram_matrix(diagrams = T1_prime,other_diagrams = T1,

sigma = 0.01,dim = 1,

rho = 0.0001)

G2_prime <- gram_matrix(diagrams = T2_prime,other_diagrams = T2,

sigma = 0.01,dim = 2,

rho = 0.0001)

column bind G_i prime's into 3x60 feature matrix

G_prime <- cbind(G1_prime,G2_prime)

column bind G_prime and NT_prime into 3x63 feature matrix

Fmat_prime <- cbind(G_prime,NT_prime)

fix column names of Fmat_prime to be the same as Fmat

colnames(Fmat_prime) <- colnames(Fmat)

predict data labels

stats::predict(model,Fmat_prime)

141

[1] 0 1 2

2.9.3 Conclusion

TDApplied contains functions which can perform a number of common data analyses

with persistence diagrams. However the inability of these functions to analyze multiple

features of varying types limits their utility for rich datasets. In this vignette we showed

how TDApplied can be used to perform flexible supervised learning with topological

and non-topological features with XGBoost models, but similar pipelines could be used

for unsupervised learning and inference tasks. As such, TDApplied can interface with

important data science packages to add the value of persistence diagrams to standard data

science pipelines.

142

2.9.4 References

Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. Journal

of Machine Learning Research, 16(1), 77–102.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of

the 22nd acm sigkdd international conference on knowledge discovery and data mining,

785–794.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R.,

Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., & Yuan, J. (2023). Xgboost:

Extreme gradient boosting [R package version 1.7.5.1]. https://CRAN.R-project.org/

package=xgboost

Hensel, F., Moor, M., & Rieck, B. (2021). A survey of topological machine learning methods.

Frontiers in Artificial Intelligence, 4, 681108. https://doi.org/10.3389/frai.2021.681108

Islambekov, U., & Luchinsky, A. (2022). Tdavec: Vector summaries of persistence diagrams [R

package version 0.1.1]. https://CRAN.R-project.org/package=TDAvec

You, K., & Yu, B. (2021). Tdakit: Toolkit for topological data analysis [R package version 0.1.2].

https://CRAN.R-project.org/package=TDAkit

143

https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=xgboost
https://doi.org/10.3389/frai.2021.681108
https://CRAN.R-project.org/package=TDAvec
https://CRAN.R-project.org/package=TDAkit

2.10 Comparing distance calculations

2.10.1 Introduction

A number of R packages exist for computing distances between pairs of persistence

diagrams, including TDA (Fasy et al., 2021), rgudhi (Stamm, 2023) and TDApplied.

Comparing the speed of these calculations was performed in the “Benchmarking and

speed” package vignette, but here we treat the more basic question of “are these distance

calculations the same across packages?” Through examples we show that the answer

is unfortunately no, but through exploration we attempt to reconcile these differences

and provide guidelines for using the different packages. Moreover, we include a proof

of algorithm correctness for TDApplied’s distance function and in the following section

we describe why we do not compare TDApplied’s distance function against that of the

TDAstats package (Wadhwa et al., 2019).

2.10.2 TDAstats’ phom.dist function

The TDAstats package has a (wasserstein) distance function, phom.dist, which is

described in its package documentation as being “not meaningful without a null distri-

bution.” But what does this mean? We examined the source code for TDAstats, i.e. its

"R/inference.R file", and found that the internal function wass_workhorse on lines 77-

103 is the actual distance calculation. In this function, the persistence values (i.e. death -

birth) for topological features of two diagrams (and their diagonal projections appended to

the opposite diagram) are ordered from largest to smallest. The persistence values are then

paired between the two diagrams according to their orderings, and the absolute differences

of these ordered persistence values are exponentiated and summed. This algorithm is not

guaranteed to produce an optimal matching of the topological features (in the sense of the

usual wasserstein cost function), and is missing the final exponentiation (in the case of

the 2-wasserstein metric we take the square root of the sum of squared distances). These

144

differences to the standard wasserstein formulation were clear to the authors of TDAstats,

and while their phom.dist function is not exactly a wasserstein metric it is still a compar-

ison statistic of two persistence diagrams which can be studied with inference techniques.

Nevertheless, these differences are the reason why in TDApplied documentation we refer

to TDAstats’ distance calculation as being “non-standard” and why comparisons (of

calculations and benchmarking) are not made against it.

2.10.3 Examples

In order to compare the distance calculations of TDA, rgudhi and TDApplied, we will

specify three simple diagrams (the same D1, D2 and D3 from the package vignette

“TDApplied theory and practice”) and consider distances between each of the three

possible pairs. The three diagrams are as follows.

0 1 2 3 4

0
1

2
3

4

D1

Birth

D
ea

th

0 1 2 3 4

0
1

2
3

4

D2

Birth

D
ea

th

0 1 2 3 4

0
1

2
3

4

D3

Birth

D
ea

th

Figure 2.32: Three example persistence diagrams.

D1’s point is (2, 3), D2’s points are {(2, 3.3), (0, 0.5)}, and D3’s point is (0, 0.5).

In order to compare the distance calculations of the packages we need to have the correct

values of the distances. Using the infinity-norm distance for calculating matchings in the

145

bottleneck and wasserstein distances as in Kerber et al., 2017 and Edelsbrunner and Harer,

2010, we get the following optimal matchings and distance values:

1. Between D1 and D2 we match D1’s (2, 3) with D2’s (2, 3.3), and D2’s (0, 0.5) with

its diagonal projection (0.25, 0.25). Therefore, the bottleneck distance is 0.3 and the

wasserstein distance is
√

0.32 + 0.252 =
√

0.1525 ≈ 0.3905125.

2. Between D1 and D3 we match D1’s (2, 3) with its diagonal projection (2.5, 2.5),

and D3’s (0, 0.5) with its diagonal projection (0.25, 0.25). Therefore, the bottleneck

distance is 0.5 and the wasserstein distance is
√

0.52 + 0.252 =
√

0.3125 ≈ 0.559017.

3. Between D2 and D3 we match D2’s (0, 0.5) with D3’s (0, 0.5), and D2’s (2, 3.3) with

its diagonal projection (2.65, 2.65). Therefore, the bottleneck distance is 0.65 and the

wasserstein distance is
√

0.652 = 0.65.

For the Fisher information metric (Le and Yamada, 2018) we will use the parameter σ = 1

for simplicity. We must first calculate vectors ρ1 and ρ2, normalize them by dividing by

the sum of their respective elements, then compute cos−1(√ρ1 · √
ρ2) (where cos−1 is the

arccos function). See Le and Yamada, 2018 for computational details.

1. Between D1 and D2 we augment D1 to contain D2’s projection points and

vice versa, obtaining diagrams D′
1 = {(2, 3), (2.65, 2.65), (0.25, 0.25)} and

D′
2 = {(2, 3.3), (0, 0.5), (2.5, 2.5)}. We compute ρ1 and ρ2 as

ρ1 ={exp(0) + exp(−0.545/2) + exp(−10.625/2),

exp(−0.545/2) + exp(0) + exp(−11.52/2),

exp(−10.625/2) + exp(−11.52/2) + exp(0),

exp(−0.09/2) + exp(−0.845/2) + exp(−12.365/2),

exp(−10.25/2) + exp(−11.645/2) + exp(−0.125/2),

exp(−0.5/2) + exp(−0.045/2) + exp(−10.125/2)}/(2π)

146

ρ2 ={exp(−0.09/2) + exp(−10.25/2) + exp(−0.5/2),

exp(−0.845/2) + exp(−11.645/2) + exp(−0.045/2),

exp(−12.365/2) + exp(−0.125/2) + exp(−10.125/2),

exp(0) + exp(−11.84/2) + exp(−0.89/2),

exp(−11.84/2) + exp(0) + exp(−10.25/2),

exp(−0.89/2) + exp(−10.25/2) + exp(0)}/(2π)

Therefore the arccos of the dot product of the square root of the sum-normalized

vectors is approximately 0.02354624.

2. Between D1 and D3 we augment D1 to contain D3’s projection point and vice versa,

obtaining diagrams D′
1 = {(2, 3), (0.25, 0.25)} and D′

3 = {(0, 0.5), (2.5, 2.5)}. We

compute ρ1 and ρ2 as

ρ1 ={exp(0) + exp(−10.625/2),

exp(−10.625/2) + exp(0),

exp(−10.25/2) + exp(−0.125/2),

exp(−0.5/2) + exp(−10.125/2)}/(2π)

147

ρ2 ={exp(−10.25/2) + exp(−0.5/2),

exp(−0.125/2) + exp(−10.125/2),

exp(0) + exp(−10.25/2),

exp(−10.25/2) + exp(0)}/(2π)

Therefore the arccos of the dot product of the square root of the sum-normalized

vectors is approximately 0.08821907.

3. Between D2 and D3 we augment D2 to contain D3’s projection point and

vice versa, obtaining diagrams D′
2 = {(2, 3.3), (0, 0.5), (0.25, 0.25)} and D′

3 =

{(0, 0.5), (2.65, 2.65), (0.25, 0.25)}. We compute ρ1 and ρ2 as

ρ1 ={exp(0) + exp(−11.84/2) + exp(−12.365/2),

exp(−11.84/2) + exp(0) + exp(−0.125/2),

exp(−12.365/2) + exp(−0.125/2) + exp(0),

exp(−11.84/2) + exp(0) + exp(−0.125/2),

exp(−0.845/2) + exp(−11.645/2) + exp(−11.52/2),

exp(−12.365/2) + exp(−0.125/2) + exp(0)}/
√

2π

148

ρ2 ={exp(−11.84/2) + exp(−0.845/2) + exp(−12.365/2),

exp(0) + exp(−11.645/2) + exp(−0.125/2),

exp(−0.125/2) + exp(−11.52/2) + exp(0),

exp(0) + exp(−11.645/2) + exp(−0.125/2),

exp(−11.645/2) + exp(0) + exp(−11.52/2),

exp(−0.125/2) + exp(−11.52/2) + exp(0)}/
√

2π

Therefore the arccos of the dot product of the square root of the sum-normalized

vectors is approximately 0.08741134.

2.10.4 Comparisons

While all three of TDA, rgudhi and TDApplied provide functions for the bottleneck and

wasserstein calculations, only TDApplied and rgudhi have the functionality to calculate

the Fisher information metric. We calculated the results of each distance calculation, for

each pair of Di and Dj (i ̸= j) and each package, and stored the results in tables according

to the three distance metrics under comparison:

Bottleneck comparison:

pair ground_truth TDApplied TDA rgudhi

1 D1 and D2 0.30 0.30 0.30 0.30

2 D1 and D3 0.50 0.50 0.50 0.50

3 D2 and D3 0.65 0.65 0.65 0.65

149

Wasserstein comparison:

pair ground_truth TDApplied TDA rgudhi

1 D1 and D2 0.3905125 0.3905125 0.55 0.55

2 D1 and D3 0.5590170 0.5590170 0.75 0.75

3 D2 and D3 0.6500000 0.6500000 0.65 0.65

Fisher information metric comparison:

pair ground_truth TDApplied rgudhi

1 D1 and D2 0.02354624 0.02354624 0.02354624

2 D1 and D3 0.08821907 0.08821907 0.08821907

3 D2 and D3 0.08741134 0.08741134 0.08741134

All three packages agreed on the value of the three bottleneck calculations, and both

TDApplied and rgudhi agreed on all Fisher information metric calculations. However,

while TDA and TDAstats agreed on the three wasserstein calculations, two of these

differed from TDApplied’s output. This occurred because TDA and rgudhi use a slightly

different formula for computing wasserstein distances – where the distance between

matched pairs of persistence diagram points is Euclidean rather than an infinity-norm

distance. This is a perfectly suitable distance metric and matches the formula in Robinson

and Turner, 2017. However, it is different from the published formulas in important works

like Kerber et al., 2017 and Edelsbrunner and Harer, 2010 (which are the formulas that

TDApplied implements).

We state a quick last note of comparison between the kernel calculations in TDApplied

and rgudhi. Even though their Fisher information metric calculations appear to be

the same (perhaps up to small differences in algorithm precision), it turns out that

rgudhi and TDApplied return drastically different kernel values. For example, the

Fisher information metric between D2 and D3 was (correctly) stated as 0.08741134 for

both packages. It follows that when t = 2 the persistence Fisher kernel value should be

150

exp(−2 ∗ 0.08741134) ≈ 0.8396059, which is the exact value of the TDApplied calculation

diagram_kernel(D2,D3,dim = 0,t = 2). However, the code

gudhi_kern <- rgudhi::PersistenceFisherKernel$new(bandwidth = 0.5)

gudhi_kern$apply(D2[,2:3],D3[,2:3])

returns the value 0.7550683 (note that the bandwidth parameter is 1/t). Even more

perplexing is that the following code

gudhi_kern <-

rgudhi::PersistenceFisherKernel$new(bandwidth_fisher = 0.5)

gudhi_kern$apply(D2[,2:3],D3[,2:3])

returns the value 1.8326, which should not be possible for the function exp(−t ∗ dF IM)

as t and dF IM are always positive and non-negative respectively (so the maximum value

should be 1). Unfortunately we were not able to identify the source of this confusion

by examining the source code of rgudhi (and GUDHI), but it is still possible to calculate

correct kernel values as follows:

d <- rgudhi::PersistenceFisherDistance$new() # sigma = 1

t <- 2 # or whatever desired parameter

exp(-t*d$apply(D2[,2:3],D3[,2:3]))

Since distance calculations are much faster with rgudhi than with TDApplied (see the

package vignette “Benchmarking and speedups”), and because distance and Gram matrices

can be precomputed and reused across multiple analyses (again see “Benchmarking and

speedups”) it would be desirable to have a (correct) rgudhi Gram matrix function. An

example of such a function is the following:

create rgudhi distance object

sigma = 0.01

gudhi_dist <-

151

rgudhi::PersistenceFisherDistance$new(bandwidth = 0.01,

n_jobs = 1L)

create list of diagrams, only birth and death values in

dimension 1

g <- lapply(X = 1:10,FUN = function(X){

df <- diagram_to_df(TDA::ripsDiag(X = TDA::circleUnif(n = 50),

maxdimension = 1,maxscale = 2))

return(df[which(df[,1] == 1),2:3])

})

distance matrix function

diagrams is a list of diagrams (only birth and death columns)

gudhi_dist is the rgudhi distance object

gudhi_distance_matrix <- function(diagrams,gudhi_dist){

get number of rows of each diagram since rgudhi can't

calculate distances with empty diagrams

rows <- unlist(lapply(diagrams,FUN = nrow))

inds <- which(rows > 0)

if inds is empty then return 0 matrix

if(length(inds) == 0)

{

return(matrix(data = 0,nrow = length(diagrams),

ncol = length(diagrams)))

152

}

calculate distance matrix for non-zero-row diagrams

d_non_zero <- gudhi_dist$fit_transform(diagrams[inds])

fix diagonal which can sometimes have non-zero entries

diag(d_non_zero) <- rep(0,nrow(d_non_zero))

symmetrize (necessary due to numeric rounding issues)

d_non_zero[which(upper.tri(d_non_zero),arr.ind = T)

[,c("col","row")]] <-

d_non_zero[upper.tri(d_non_zero)]

if all diagrams had at least one row, return

if(length(inds) == length(diagrams))

{

return(d_non_zero)

}

create empty distance matrix d

d <- matrix(data = 0,nrow = length(diagrams),

ncol = length(diagrams))

update entries of d

e <- as.matrix(expand.grid(inds,inds))

e <- e[which(e[,1] < e[,2]),]

if(!is.matrix(e))

{

153

e <- t(as.matrix(e))

}

d[e] <- d_non_zero[which(upper.tri(d_non_zero),arr.ind = T)]

e <- e[,2:1]

if(!is.matrix(e))

{

e <- t(as.matrix(e))

}

d[e] <- d_non_zero[which(upper.tri(d_non_zero),arr.ind = T)]

return(d)

}

Gram matrix function

diagrams is a list of diagrams (only birth and death columns)

t is the t parameter like in diagram_kernel

gudhi_dist is the rgudhi distance object

gudhi_gram_matrix <- function(diagrams,t,gudhi_dist){

calculate distance matrix

D <- gudhi_distance_matrix(diagrams = diagrams,

gudhi_dist = gudhi_dist)

return(exp(-t*D))

}

calculate the Gram matrix

154

G <- gudhi_gram_matrix(diagrams = g,t = 1,gudhi_dist = gudhi_dist)

Another issue with rgudhi calculations can be reproduced as follows:

create data frame

D = data.frame(dimension = c(0,0),birth = c(0,0),

death = c(1.089866,1.098640))

create rgudhi distance object

gudhi_dist <-

rgudhi::PersistenceFisherDistance$new(bandwidth = 0.01,n_jobs = 1)

compute distance

gudhi_dist$apply(D[,2:3],D[,2:3])

[1] 0.00000001490116

This calculation returns a non-zero number for the distance value of D with itself. This is

likely due to numerical rounding issues, and its discovery in rgudhi has led to an update

in TDApplied’s diagram_distance function which now returns 0 for this calculation:

diagram_distance(D,D,distance = "fisher",sigma = 0.001)

[1] 0

2.10.5 Proof of correctness for TDApplied’s diagram_distance func-

tion

Even though the Hungarian algorithm can be used to solve the linear sum assignment

problem (LSAP) (Hornik, 2005), finding a minimal cost matching of two sets of points,

some work needs to be done to properly apply the algorithm to calculate wasserstein or

bottleneck distances. For an example we will consider the bottleneck distance, although

155

the argument still holds with a simple change for the wasserstein distance (squaring matrix

entries). Let Diag1 and Diag2 be two diagrams, with n1 and n2 points respectively, whose

projections onto the diagonal are denoted by π(Diag1) and π(Diag2) respectively. Then

take M to be the following (n1 + n2) × (n1 + n2) matrix:

M =

 d∞(Diag1, Diag2) d∞(Diag1, π(Diag2))

d∞(π(Diag1), Diag2) 0


Each row corresponds to the n1 points in Diag1 followed by the n2 projections π(Diag2),

and vice versa for the columns. Then we claim that the solution of the LSAP problem on

M has the same cost as the bottleneck distance value between Diag1 and Diag2.

Firstly, we claim that a solution to the LSAP problem on M has a cost which is no less than

the distance value. Let the distance value be s. Now suppose, to reach a contradiction, that

there existed a lower-cost matching for the LSAP problem for M , m,of cost s′ < s. Since

projection points are matched together with cost 0 in M , let m′ contain all the matches in m

which are not between two projection points. Then m′ would be matching for the distance

calculation which has lower cost than s, contradicting the minimality of s. Therefore, a

solution to the LSAP problem on M has a cost which is no less than the distance value.

Next, we claim that a solution to the LSAP problem on M has a cost which is no greater

than the distance value. Now suppose, to reach a contradiction, that the solution to the

LSAP on problem M had cost s, which was larger than the real distance value, s′. Let m′

be a matching for the distance calculation of s′. Then since each point in either diagram is

either paired with a point in the other diagram or its own diagonal projection, there must

be an equal number of unpaired points in both diagrams in m′. Therefore, we can augment

m′ to a matching m on M in which the unpaired diagonal points are arbitrarily paired up

with cost 0. Thus, m has cost s′ < s, contradicting the minimality of s. Therefore, a solution

to the LSAP problem on M has a cost which is no greater than the distance value.

156

Therefore, a solution to the LSAP problem for M has a cost which is both greater than and

less than the bottleneck distance value, and hence the two values must be equal.

157

2.10.6 References

Edelsbrunner, H., & Harer, J. (2010, January). Computational topology: An introduction.

American Mathematical Society. https://doi.org/10.1007/978-3-540-33259-6_7

Fasy, B. T., Kim, J., Lecci, F., Maria, C., Millman, D. L., & Rouvreau., V. (2021). Tda: Statistical

tools for topological data analysis [R package version 1.7.7]. https://CRAN.R-project.

org/package=TDA

Hornik, K. (2005). A CLUE for CLUster Ensembles. Journal of Statistical Software, 14(12).

https://doi.org/10.18637/jss.v014.i12

Kerber, M., Morozov, D., & Nigmetov, A. (2017). Geometry helps to compare persistence

diagrams. ACM Journal of Experimental Algorithmics, 22. https://doi.org/10.1145/

3064175

Le, T., & Yamada, M. (2018). Persistence fisher kernel: A riemannian manifold kernel

for persistence diagrams. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.

Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information processing systems

(Vol. 31). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/

959ab9a0695c467e7caf75431a872e5c-Paper.pdf

Robinson, A., & Turner, K. (2017). Hypothesis testing for topological data analysis. Journal

of Applied and Computational Topology, 1.

Stamm, A. (2023). Rgudhi: An interface to the gudhi library for topological data analysis [R

package version 0.2.0]. https://CRAN.R-project.org/package=rgudhi

Wadhwa, R., Dhawan, A., Williamson, D., & Scott, J. (2019). Tdastats: Pipeline for topological

data analysis [R package version 0.4.1]. https://github.com/rrrlw/TDAstats

158

https://doi.org/10.1007/978-3-540-33259-6_7
https://CRAN.R-project.org/package=TDA
https://CRAN.R-project.org/package=TDA
https://doi.org/10.18637/jss.v014.i12
https://doi.org/10.1145/3064175
https://doi.org/10.1145/3064175
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://CRAN.R-project.org/package=rgudhi
https://github.com/rrrlw/TDAstats

Applied topology of representations

Chapter 2 demonstrated how TDApplied can be used to carry out various RSA-like

analyses on persistence diagrams, but with the additional interpretive abilities of certain

persistent-homology-specific tools (like VR graphs) researchers can dive deeper into what

topological features of representational spaces mean. However, to this point I have not

formally defined RTA as a framework for neuroimaging analyses nor have I shown

experimentally that RTA provides insights which RSA misses. There are also special

considerations for RSA-type experiments that require attention and discussion which are

outside the scope of computational topology, for example how to interpret the topology

of RDMs. In Chapter 3 I will define the RTA framework, demonstrate its unique value

compared to RSA in two studies, and discuss practical issues related to its application and

interpretation in RSA-like studies.

159

Chapter 3

Representational topology analysis

3.1 Preamble

In Chapter 2 I implemented the necessary computational tools to make persistence dia-

grams fit into common analysis pipelines of RDMs in RSA. In this chapter I will introduce

the representational topology analysis (RTA) framework for capturing and comparing the

shape of representational geometry and use the software TDApplied in applications. In

this new framework topological similarities and differences which are missed by RSA can

be identified, and comparisons can be linked to topological features which live ”within”

the RDMs which generated them. This approach can therefore provide more interpretable

and trustworthy comparisons of representational geometries, while avoiding some of the

major pitfalls of RSA addressed in Chapter 1 (like how similarity of RDMs does not imply

computational similarity). I first provide an example of two representational spaces with

similar geometries but different topologies, and explain how judging these spaces to be

similar would be biologically incorrect. I then demonstrate the utility of RTA on two stud-

ies – a reanalysis of a famous RSA vision study and a naturalistic movie viewing fMRI

study – by identifying topological features of neural computation that differentiated be-

tween species/regions and which were undetected by RSA. By introducing a novel data

visualization technique called the Proximity Labelled Rips Graph the topological features

160

identified by RTA can be visualized and linked with stimulus features, effectively allow-

ing for the segmentation of representational spaces into neural features of computation.

This paper has been submitted to the proceedings of the national academy of science

(PNAS) journal.

161

Submitted to PNAS, 2024.

The Topology of representational geometry

Shael Brown1 and Reza Farivar2

1Department of Quantitative Life Sciences, McGill University, Montreal Canada.

2McGill Vision Research, Department of Opthamology, McGill University, Montreal

Canada.

Keywords: Representational similarity analysis — Topological data analysis — Per-

sistent homology — Representational geometry — Object representation — Human —

Macaque — fMRI

Acknowledgements: We would like to thank Prof. Nikolaus Kriegeskorte for his in-

valuable feedback on this research. S.B. and R.F. acknowledge funding from the CIHR

2016 grant for cortical mechanisms of 3-D scene and object recognition in the primate

brain.

162

3.2 Abstract

Representational similarity analysis (RSA) is a powerful tool for abstracting and then

comparing neural representations across brains, regions, models and modalities. How-

ever, typical RSA analyses compares pairs of representational dissimilarities to judge sim-

ilarity of two neural systems, and we argue that such methods can not capture the shape

of representational spaces. By leveraging tools from computational topology, which can

probe the shape of n-dimensional data, we augment RSA to be able to detect more sub-

tle yet real differences and similarities of representational geometries. This new method

could be used in conjunction with regular RSA in order to make new inferences about

neural function.

3.3 Significance statement

Big data in high-dimensional spaces, like neuroimaging datasets, contain important shape

structures. These shape structures can be analyzed to identify the underlying features and

dynamics which drive the system. We showed that such analyses, applied to neural activ-

ity patterns elicited by viewing various objects, can identify real but subtle and complex

features of those objects which are encoded in the brain.

3.4 Introduction

Comparisons of object representations in human cortex can give meaningful insight into

the neural mechanisms which encode them, and representational similarity analysis (RSA)

is a popular framework for organizing and analyzing many such comparisons. RSA es-

timates the representational geometry of a (neural) computational system as a matrix of

representational similarities (RSM) or dissimilarities (RDM) (Kriegeskorte and Diedrich-

sen, 2019). Two such matrices can then be compared with a second order isomorphism to

quantify similarity or differences between the two systems – Spearman correlation is com-

163

monly used in neuroimaging studies (Kriegeskorte, Mur, and Bandettini, 2008; Shepard

and Chipman, 1970). Correlation between RDMs can identify (i) brain regions which

similarly represent stimuli, (ii) commonalities in neural codes between species, (iii) com-

putational models which faithfully represent the function of a brain region, and more.

The powerful and flexible machinery of RSA has yielded many successes in neuro-

sciences and neuroimaging in particular – the introductory paper Kriegeskorte, Mur, and

Bandettini, 2008 has been cited over 3300 times so far. More pertinent to the current dis-

cussion are examples of RSA applied to fMRI vision studies – one study, Connolly et al.,

2012, showed that there may be a spectrum of representations of animals in human visual

cortex, from most animate to least; another study, Bracci and Op de Beeck, 2016, showed

that visual areas represent shape and category to different extents and with interactions;

and in Kriegeskorte, Mur, Ruff, et al., 2008 it was shown that primates may have a similar

neural code for object representations in the IT cortex.

However, there have been several major criticisms of RSA, the strongest being that

two computational systems with highly similar RDMs may be carrying out their compu-

tations in fundamentally different ways (X. Chen et al., 2021; Dujmović et al., 2022). With

the primary goal of RSA being to infer whether two computational processes are simi-

lar or not, this issue alone may render our inferences from RSA experiments as limited.

For example, in Figure 3.1 we consider a representational space of a torus, i.e. a hollow

doughnut. Projected into two dimensions (for instance using multidimensional scaling)

the torus becomes a 2D annulus (i.e. a circle with added noise) and representations sam-

pled from the torus project to representations in the annulus. Yet the RDMs of the two

sets of representations, one set on the surface of the torus (in 3D) and the other along the

2D annulus are erroneously equated by RSA. This example demonstrates that the central

assumption of RSA – that linear distances of matrices sufficiently captures similarity of

representational geometry for comparison – is not necessarily true.

While our example may seem artificial, orientation-selective neurons in V1 have the

representational space of a loop (Singh et al., 2008) and rat grid cells have the represen-

164

O
nt

ol
og

ic
al

ly
Di
ffe

re
nt

RS
A

Eq
ui
va
le
nt

Top View Bottom View

Figure 3.1: Sampled representations from a torus, projected onto an annulus, and the re-

sulting two RDMs. The stimuli images were obtained from the supplemental information

in Kriegeskorte, 2009 but were originally introduced in Kiani et al., 2007, as is the case in

later figures. Top left are the top and bottom views of seven sampled representations from

the surface of the torus, with colored lines indicating representational distances between

adjacent points (green for small distances, yellow for medium and red for large). Bottom

left is the projection of these torus representations onto an annulus, with updated rep-

resentational distances. These distances for both shapes are color-coded in their respec-

tive RDMs, which would be considered equivalent by RSA, despite the representational

spaces having completely different shapes.

165

tational space of a torus (Curto, 2017). Thus we must use tools that are sensitive to the

shape of the representational space of neurophysiological data, or we may err in drawing

similarities between two cells (e.g. grid cells and V1 simple cells) based on a simplified

model of their representation.

But does this example demonstrate a problem using RDMs to capture representational

geometry or rather a problem using correlation as a second-order isomorphism? It has

previously been suggested that using non-linear second-order isomorphisms would bet-

ter account for non-linear geometries (Kriegeskorte and Kievit, 2013), and some stud-

ies proposed such isomorphisms for analyzing correlation matrices of neurological data

(Shahbazi et al., 2021; You and Park, 2022). A technique called distance correlation (Szekely

et al., 2008) has also been shown to be a useful measure of independence in RSA model

comparisons (Diedrichsen et al., 2020), being able to capture non-linear dependencies as

well as linear ones. These approaches accounted for the non-independence of pairs of

correlation/distance matrix entries, but in the example offered above comparing a torus

and its projection onto an annulus, the difference comes from global topology, which

implicates distinct causal mechanisms – the annulus contains one periodic phenomenon

(captured in one loop) whereas the torus contains two – the major loop and the minor

loop which bisects the tube. Such structural features are only detectable when taking into

account all dissimilarities together, not just the non-independence of pairs. For example,

a Gaussian-distributed cluster, and the same cluster punctured with a small hole in its

center, will have similar covariance matrices despite the former being a cluster and the

latter being an annulus.

Unfortunately it is not possible in RSA to segment RDMs into features (i.e., sub-

components) of their representational geometries. Multidimensional scaling (MDS) (Mead,

1992) has been used to project RDMs into low dimensions for visualization of representa-

tional spaces (Kriegeskorte, Mur, and Bandettini, 2008), but the projection dimensions are

not directly interpretable and are always linear. For example, in Kriegeskorte, Mur, Ruff,

et al., 2008 RSA found evidence of a shared neural code in primate IT cortex, but MDS

166

embeddings only revealed a blob-like distribution of representations coarsely separated

by object category. If segmentation of representational spaces were possible, we could

have linked representational similarity to features of the representational spaces (see be-

low), but this is not possible with current RSA methods. In summary, RDMs, and RSA

by proxy, do not address complex (i.e, global and not linear) representational geometries

and the question of appropriate second-order isomorphism may only be solved once the

representational geometry is appropriately captured.

The mathematical discipline concerned with studying distance/adjacency between

objects in an abstract space is topology (Hatcher, 2002), and tools from computational

topology can be applied to multivariate data to derive topological metrics. Structure

or shape of data at a local scale can be integrated into global shape descriptors using

topological tools, and shape features can then be quantified and analyzed to capture the

richness of data structure. Topology has a number of desirable qualities for analyzing rep-

resentational geometries. For example, the topology of an object does not change when

the object is rotated, stretched or reflected (Hatcher, 2002). Robustness to these transfor-

mations would also be expected of representational geometries – the features of neural

codes do not depend on the order of the labels of functional units, or the scale of neural

activity (Laakso, 2000).

The field of topological data analysis (TDA) provides practical tools for analyzing data

using topology, and TDA has been applied in myriad fields (Carlsson and Vejdemo-

Johansson, 2021). The most established tool in TDA is persistent homology (PH, Edels-

brunner et al., 2000; Zomorodian and Carlsson, 2005), which seeks to identify topological

features present in data, classified by their dimension. Persistent homology takes as in-

put the distance matrix of a dataset (like an RDM), and identifies structures inherent in

the data, such as clusters, loops and voids (which are elements of the H0, H1 and H2

groups respectively). Persistent homology also provides information about the the sizes

and density of points belonging to these structures, which can be used to determine which

features are significant.

167

The workflow of the PH algorithm can be seen in Figure 3.2. The process begins with

a sweep through values of a linkage radius – a parameter that defines the extent of the

neighbourhood within which two data points would be joined (linked) to form a structure

(called the Vietoris-Rips complex), and the topological features of these structures at each

linkage value are classified as belonging to either H0 (clusters), H1 (loops), H2 (voids), etc.

As we sweep through linkage values, features will appear, persist across some range of

linkage values, and then disappear – as shown in Figure 3.2, the points on the loop form

that loop only within a certain range of radii B and all points eventually fully connect

at radius C, destroying the loop structure. The linkage values where a feature comes

into existence and ceases to exist are called the birth and death values, respectively. For

further mathematical details on this process see Edelsbrunner et al., 2000; Zomorodian

and Carlsson, 2005. The birth and death values, along with the feature dimensions, are

plotted in persistence diagrams as shown in Figure 3.3, and points which having death

value much larger than their birth value (i.e. their point in the persistence diagram is

high above the diagonal line where birth and death are equal) are called ”persistent”.

A thresholding procedure (Fasy et al., 2014) can then be used to distinguish between

persistent, i.e. significant, topological features and non-persistent, i.e. noise, topological

features, and an example of this can also be seen in Figure 3.3. Another useful piece of

information that can be extracted for each topological feature is the representative cycle,

which is a subset of data points in a given topological object. For additional details, see

Chazal and Michel, 2017.

As the number of sampled points in an object grows, the topological features of the

points, recovered by persistent homology, converge to the underlying features (Chazal

et al., 2014) even in the presence of noise in the dataset (Edelsbrunner et al., 2000). In this

sense, increased sampling provides greater validity of the topology of the data space.

It has been demonstrated that persistent homology can detect event-related periodic

spatial signals (i.e. spatial loops) in simulated event-related fMRI data (Ellis et al., 2019).

A related technique for calculating persistence diagrams called ”persistent cohomology”

168

Voxel 1 activity

Vo
xe

l 2
 a

ct
iv

ity

Representational space

H0

H1

 radius
0 A B C

Persistent homology workflow

Figure 3.2: Persistent homology workflow. A linkage radius ϵ is increased from 0 and

representations (i.e. data points) are connected when their distance is at most ϵ, forming

Vietoris-Rips complexes. Seven clusters and two loops are present in the dataset, and are

tracked by the PH algorithm with each having its own line segment. At linkage radius A

there are six clusters (since the human face and monkey face are connected, and hence one

cluster has died off), while at radius B the loop is fully connected (and all components

merge into one) and at C the loop is filled in (i.e. is no longer a loop).

can detect representational space topologies of neural population responses of simulated

rat neurons (Kang et al., 2021). Persistent homology has also been used to find meaning-

ful structure in correlation matrices of spike trains in rat place cells using vectorized sum-

maries of persistence diagrams called Betti curves (Giusti et al., 2015). PH also correctly

characterized a low-dimensional neural manifold of mouse behavior analyzing binned

spike counts of thalamic neurons (Chaudhuri et al., 2019). The results of these studies

suggest that persistence diagrams are a useful tool for characterizing representational

spaces, but four properties of diagrams make them particularly well-suited for this task:

169

Persistence diagram

Birth

D
ea

th

H0 clusters
H1 loops

0 A B C

0

A

B

C

Thresholded diagram

Birth

D
ea

th

H0 clusters
H1 loops

0 A B C

0

A

B

C

Figure 3.3: The output persistence diagram of PH run on the example dataset in Figure 3.2

(left) and an example thresholded diagram (right). In the persistence diagram there are

points for each of the seven clusters and two loops - one loop is very close to the diagonal

line where birth and death are the same, indicating that this loop was very ”short-lived”.

In the thresholded diagram only one cluster and one loop were significant, indicated by

their color and placement above their respective threshold lines.

1. The topological features in persistence diagrams can be identified in their input

datasets, thereby allowing us to segment datasets into representational features.

2. Persistence diagrams remain consistent under different orderings of the same vari-

ables.

3. Two persistence diagrams can be meaningfully compared even if their input datasets

contained different numbers of data points or variables.

4. Persistence diagrams converge as the number of data points in their input datasets

grow (Chazal et al., 2014).

Property 1 means that we can uncover topological features of representational geome-

tries, allowing for constraints on the mechanisms implicated while making comparisons

170

between systems more interpretable. For example, a torus and a loop have different num-

bers of significant loops (two and one respectively), and therefore we could distinguish

between RDMs sampled from them. Also, two systems with similar linear aspects in their

geometries may perform different calculations and this could be uncovered by investigat-

ing their topological sub-structures.

On the other hand, Properties 2 and 3 suggest that using persistent homology to ana-

lyze representational geometries may allow for the pooling of data from different studies,

even studies with different (but relatable) sets of conditions/stimuli so long as their pool-

ing is defensible and interpretable to the researcher – for examples, studies investigat-

ing face processing may use different face conditions, different non-face stimuli, etc, and

Properties 2 and 3 of PH allow us to pool results from these studies for stronger inference

of representations.

As multiple RDMs can be compared using RSA, we would need an equivalent topo-

logical tool to compare multiple persistence diagrams. For second-order isomorphisms of

persistence diagrams there exist two main approaches in the literature – for differences,

we can use distance calculations (Kerber et al., 2017) and for similarities we can use kernel

calculations (Le and Yamada, 2018). Since topological features can be comprised of any

number of data points (representations), we can capture differences between any number

of data points between two representational geometries using these topological second-

order isomorphisms. While in regular RSA differences and similarities are essentially

opposites (like in the case of correlation and correlation distance), due to the complex na-

ture of persistence diagrams (Turner et al., 2014) we need specialized and distinct tools to

calculate their differences and similarities.

Two typical analyses of RDMs include

• Inference – deciding if two RDMs or two groups of RDMs are similar/different (an

important example of which is model comparison), and

• Visualization – using MDS to project an RDM into low dimensions (Kriegeskorte,

Mur, and Bandettini, 2008).

171

Similar analyses can be performed with persistence diagrams – differences among sets

of persistence diagrams can be found using distance-based permutation approaches as in

Abdallah et al., 2023; Robinson and Turner, 2017 – and the pairwise distances between

multiple persistence diagrams can be used to form an MDS embedding of the diagrams

into a low-dimensional space. We have implemented these analytical and inferential tools

to carry out TDA on large multivariate datasets (e.g. fMRI) in our software package

TDApplied (Brown and Farivar, 2022). Therefore, the machinery is in place to analyze

persistence diagrams computed from RDMs in ways similar to RSA.

We propose a new approach called representational topology analysis (RTA) for detect-

ing structures of representational space. In RTA, RDMs are converted to distance matrices

(although this is not necessary for correlation dissimilarity matrices; see the methods sec-

tion) and then analysed with persistent homology, resulting in persistence diagrams, i.e. rep-

resentational topologies, that can then be analyzed with topological machine learning and

inference methods. Comparing persistence diagrams is preferable to comparing RDMs

because the latter do not encode the topology of data space, while the former explicitly

represents this information. Representational topology analysis is ideal in conjunction

with regular RSA (for inference on linear aspects of data space) in order to make powerful

inferences about representational geometry and, by extension, fundamental mechanisms

that gave rise to them. Interpretations from RTA are also complementary to interpreta-

tions from RSA because in the topological case we can make conclusions about when two

representational geometries are different or similar topologically, compared to the regu-

lar RSA case where we can only say if two geometries are linearly different or similar.

Below, we applied RTA on two datasets and were able to answer questions that regular

RSA could not, demonstrating the potential value of representational topology.

172

3.5 Results

In order to compare RTA with RSA we carried out two studies – the first used data from

one of the seminal studies of RSA, Kriegeskorte, Mur, Ruff, et al., 2008, and the second

used data from a study of shared representations of naturalistic movie viewing across

subjects, Hall, 2009; Zhang and Farivar, 2020.

3.5.1 Human and monkey IT cortex data

One of the earliest applications of RSA to visual fMRI studies was Kriegeskorte, Mur,

Ruff, et al., 2008, in which RSA was used to show a common representational code in the

primate inferior temporal cortex by comparing fMRI data in humans and electrophysi-

ology data in monkeys (which was collected in the study Kiani et al., 2007). But what

topological representational features exist in this shared space? Regular RSA cannot seg-

ment RDMs to find features of a representational space, and therefore cannot address this

question. One of the authors of Kriegeskorte, Mur, Ruff, et al., 2008 provided us with the

mean RDMs from the group of four humans and the group of two monkeys for the 92

visual stimuli displayed in Figure 3.4. The stimuli in the experiment were images of var-

ious categories, including animals, humans, body parts, naturalistic scenes and objects,

and these images can be found in the supplementary data of Kriegeskorte, Mur, Ruff,

et al., 2008.

A common analysis of persistence diagrams includes identifying the most persistent

feature, i.e. the topological feature with greatest difference between their death and birth

values – it ”lives” longest compared to all other features. We identified the most persis-

tent loop from each of the two diagrams, which we will refer to as the ”human loop” and

”monkey loop”. For each loop we calculated a representative cycle, i.e. a subset of the 92

stimuli on each loop. Representative cycles are a useful tool for exploring topological fea-

tures because those features may occupy distinct regions of the data space. For example,

imagine a dataset with a loop and a cluster (not touching each other) – all the data points

173

Monkey RDM

Hum
an RDM

Figure 3.4: The mean human (bottom right) and monkey (top left) RDMs (each converted

to a distance matrix using the transformation 1−ρ →
√
2 ∗ (1− ρ)). Deeper colors indicate

greater representational distances.

would be used to calculate the data’s persistence diagram but only a subset of the points

would lie on the loop. On the other hand, the points that do not lie on the loop, even

if they are not part of any other interesting topological structure, can still have immense

value in non-topological analyses (for instance in RSA analyses).

A visualization that can help identify data features defined by topological features is

the graph defined by a Rips complex, called a Vietoris-Rips graph (Zomorodian, 2010) or

VR graph for short. At each linkage radius ϵ in persistent homology, a set of edges are

defined between the data points based on their distances (all the distances ≤ ϵ), and this

defines a graph at each linkage. We visualized the VR graph of the monkey RDM at the

linkage radius of the monkey loop birth, and likewise for the human RDM and loop, in

Figure 3.5 to get a sense of the topological structure of the monkey and human RDMs at

those linkage scales.

174

Human VR graphMonkey VR graph

Monkey VR graph Human VR graph

Figure 3.5: The VR graphs of the monkey RDM (left) and the human RDM (right) at the

scales of their respective loop births, with the stimuli in the representative cycles of the

two loops highlighted. The monkey visualization shows a central cluster of animal and

monkey faces, from which the loop and two flares (an animal body flair, right, and a

hand flair, top left) stem from. From the loop there is also one flair which corresponds to

scenery. Only 54 of the 92 stimuli were plotted as these vertices made up the connected

component of the VR graph which contained the loop (each of the other 38 stimuli either

had no connections to other stimuli or formed small, topologically uninteresting clusters).

The human visualization contained 81 of the 92 stimuli, and appears to be two dominant

clusters with two paths of sparse connections forming the loop. The clusters are animate

objects (left) and inanimate objects (right).

Striking differences occur between the two representational spaces in this view – the

monkey VR graph highlights substantially more clustered representations that we can

easily label, such as animals, hands, faces, objects, etc., while the human representational

spaces appear to be organized into two clusters symmetrically around a loop. That in

both cases the representations appear to be lobes organized around a central confluence

is intriguing, and may merit greater investigation. It is worth noting that RSA suggests

that the monkey and human representations are highly comparable (Kriegeskorte, Mur,

Ruff, et al., 2008), finding a gross clustering into animate and inanimate objects in both

175

human and monkey spaces, whereas RTA reveals the ways in which they are actually

different.

3.5.2 Naturalistic movie viewing data

In Zhang and Farivar, 2020, local spatial patterns of BOLD activity in subjects viewing 2D

and 3D naturalistic movies (Hall, 2009) were found to be highly conserved across sub-

jects in early visual areas and were modified by region and visual stream – early, ventral

and dorsal. It would therefore be expected that group-average topological features differ

by region especially for regions in different visual streams. In order to test this hypothe-

sis we analyzed region-level data from Zhang and Farivar, 2020, constructing timepoint-

by-timepoint spatial-pattern correlation distance RDMs (i.e., the correlation distance be-

tween time i and j of the BOLD patterns in each region) and used RTA to characterize the

shape of representational space in group average RDMs from certain early, ventral and

dorsal regions.

Movie viewing is a naturalistic task that typically induces very similar temporal pat-

terns of activity in a group of subjects (Hasson et al., 2004a, 2010) and it has recently

been shown that this similarity is likely driven by gamma oscillations (Y. Chen and Fari-

var, 2020) and is detectable in the spatial patterns in a manner that is more informative

of viewing condition (stereoscopic 3D vs mono) than the temporal pattern correlation

(Hasson et al., 2004b). Here, we used RTA to determine whether the structure of the

representational space of spatial patterns over time is different between regions/streams.

To this end we computed group-average region-level significant topological features

– loops which survived the thresholding procedure of Fasy et al., 2014 (see the methods

section for details). Significant loops which exist at different scales (i.e. with different

birth and death values) would indicate qualitatively different representational structures.

We computed the mean RDMs for five regions, across subjects, of higher ventral regions

VO1 and VO2, higher dorsal regions PHC1 and PHC2 and the early region V3 in both

hemispheres for both 3D movie clips, resulting in 20 RDMs. We chose to analyze only

176

3D movie data to ensure that there was no confounding effect of stimulus condition in

our analysis, and because 3D movies are closer to naturalistic stimuli than 2D movies.

We used the bootstrap procedure to identify significant loops, and determined the most

persistent loops from the VO regions, PHC regions and V3. The result was three group-

average RDMs – one VO RDM, one PHC RDM and one V3 RDM.

In order to compare the three representational spaces, we plotted the VR graphs of the

three mean RDMs, at the scale of their respective loop birth values, subsetted to contain

only the data points which were in the components of their respective loop representative

cycles. Since each graph represents data from one movie across subjects, each graph node

represents a TR in its graph’s movie, so each node is plotted with the movie frame five

seconds prior to the TR (accounting for the hemodynamic lag). To determine if and where

RSA provided a complementary view of these graphs, we projected the three RDMs (sub-

setted for the TRs in their respective VR graphs) into 2D space using MDS and colored

each node in the VR graph by its location in MDS space. We call this novel visualization

a proximity-labelled rips graph (PLRG for short). Finally, in order to link the PLRG’s back

to the raw data we also plotted the movie frame associated with each graph node at the

node’s location (in the graph space, not in the MDS space). The results can be seen in

Figure 3.6.

177

Relative Distance
(MDS Projection)

PLRG

PHC PLRG

PLRG

VO PLRG

V3 PLRG

VO frames

PHC frames

V3 frames

Figure 3.6: Caption on following page.

178

Figure 3.6: Topologies of mean representational spaces in VO (top row), PHC (middle

row) and V3 (bottom row) areas. Left column is the PLRG laid out using a graph-layout

algorithm, right column are the frames corresponding to each graph node, plotted at

its node’s 2D coordinate in the graph. The color-coding scheme for PLRG nodes, based

on MDS coordinates, is displayed to the left of the VO PLRG – the x coordinate deter-

mines a horizontal color which is green for positive x-values and purple for negative

x-values, and a vertical color which is orange for positive y-values and blue for nega-

tive y-values, and two nodes which have similar colors are TR’s with correlated activity

patterns, i.e. are nearby in MDS space. PHC and V3 have clearly-defined topologies in

their PLRGs, whereas VO has mainly one densely-connected cluster. As well, the lack

of color-clustering and smooth color gradients in the VO and PHC PLRG’s indicate that

MDS, i.e. RSA, did not capture the graph structure well. V3 on the other hand did exhibit

color clustering and gradients, suggesting that there was a stronger relationship between

topology and geometry at the loop birth scale. Moreover, the clustering and gradients

suggest that some folding of the graph may be appropriate, where nodes which are far

apart on the graph with similar colors may actually be proximal in terms of the geometry

of data space. The frame visualization of V3 also appeared to most smoothly vary by

color and scene type compared to PHC and VO.

The differences in the topological structure between the three regions can be readily

appreciated, and these structures were not accounted for by MDS of the RDMs. This

illustrates the importance of topological analysis of representational space for inference

on similarity.

3.6 Discussion

We demonstrated the potential of topological analysis in identifying representational

structures in stimulus-driven fMRI patterns, and showed how this knowledge of the

representational geometry can be complementary to standard RSA. Importantly, sensi-

tivity to topological features allows one to find non-linear dimensions in representational

spaces, such as the loop we reported for the monkey IT data. This approach goes beyond

179

classic inferential statistics and allows us to have insight into the nature of the mecha-

nisms underlying neural representations.

We first examined two RDMs, one averaged from four human’s IT cortices and one av-

eraged from two monkey’s IT cortices. Unlike in Kriegeskorte, Mur, Ruff, et al., 2008 we

found that the representational spaces were different because the most persistent loops

in the monkey and human representational spaces did not appear to encode the same

information – the monkey loop likely encoded a continuous spectrum of change in ob-

ject category, whereas the human loop was more likely the distal connections between

animate and inanimate clusters. Two possible explanations of the differences between

the two loops could be that (1) human IT cortex efficiently resolves object category into

natural and animate clusters, whereas this distinction is more blurred (i.e. continuous) in

monkey IT cortex, or (2) the representational spaces are distinct simply because humans

and monkeys can have very different semantic encodings of the same image. The first

explanation seems unlikely – the monkey VR graph also had a clear distinction between

animate and inanimate objects. The second explanation seems more likely, for example a

giraffe and a monkey may have similar representations in humans because they are both

animals found in Africa, and in monkeys because they are both non-dangerous creatures

– in other words, there is not a one-to-one semantic correspondence. This result is per-

haps the best exemplar of the major criticism of RSA described earlier – the two species

may be performing very different calculations, and this difference was only detectable

using RTA.

We carried out the same analytic approach to a naturalistic movie viewing dataset

(Zhang and Farivar, 2020). We analyzed group-mean topological structures in VO, PHC

and V3 areas. Our novel proximity-labeled rips graphs of the spaces, at the scale of their

most persistent (significant) loop’s birth, were visually very different between the three

regions and could not be accounted for by geometry alone – the VO and PHC PLRGs did

not have similar colorings of nearby nodes, and the V3 PLRG had clusters of similarly-

colored nodes which existed far apart in the graph. By plotting the frames corresponding

180

to 5 seconds prior to each TR over each TR’s graph node, we can see that V3 is likely

representing low-level movie features – like object position/movement or scene color, as

demonstrated by the many neighboring frames which seem to only differ in the position

of objects in the frame or the scene color. On the other hand, there is not a clear division

of scene (object) category in the VO PLRG, nor is there a clear relationship between graph

structure and object movement/position in the PHC PLRG, but the PHC does exhibit a

clear structure (as opposed to VO). In this example RTA was also able to capture aspects

of representational spaces which RSA could not.

While RSA provides a ”hub” for researchers to integrate data from different modal-

ities, species, etc., it may be limited by the requirement of fixed-size matrices to encode

representational geometries and correlations. Because persistent homology

• is invariant under reordering its input data,

• can compare outputs regardless of the number of points it used as input, and

• its output converges as the number of data points grows,

representational topology analysis may be well-suited to compare RDMs across RSA

studies which do not have the same stimulus set or set size, building on ideas first pro-

posed in Laakso, 2000. Concrete evidence for this use-case of RTA is hidden in our nat-

uralistic movie analysis – free movie viewing does not follow the traditional task-based

experimental design of RSA studies, which is necessary to compute stimulus-stimulus

representational dissimilarities, but the flexibility of RTA allowed us to consider each

time point as a ”stimulus”, the spatial pattern at a time point its ”representation”, and

carry out principled comparisons of the topological structures which arose across subjects

and movies. This means that fMRI datasets (as well as data from other functional neu-

roimaging modalities) can be compared regardless of their experimental design or dura-

tion, which would be particularly interesting for resting-state datasets. Resting state data

is characterized by co-fluctuations between distal but functionally-related regions (Biswal

181

et al., 1995; Cordes et al., 2000; De Luca et al., 2006), which implies the existence of peri-

odic spatio-temporal signals that could be detected with persistent homology – spherical

representational topologies have already been identified in resting-state (and naturalis-

tic image viewing) electrophysiological data from V1 in monkeys (Singh et al., 2008) and

this topology could be explained by the interactions between the (periodic) orientation

and spatial frequency feature maps. To our knowledge RTA is the first framework that

allows comparisons between scans of different duration and study design without tem-

porally collapsing data.

Despite the unique capabilities of RTA, it does have several limitations. Firstly, it

is more complicated than regular RSA – there are more computational tools which are

needed to carry out a topological analysis. Secondly, RTA is more computationally de-

manding – persistent homology can be computed quickly with small RDMs (up to around

100 stimuli) in low dimensions, but computing higher-dimensional homology with large

RDMs will likely be slower. Similarly, the analysis procedures for persistence diagrams

can take time if the persistence diagrams contain many points (although this can be reme-

died by using the bootstrap procedure to only select significant topological features) or

if there are a large number of persistence diagrams (as in a fMRI searchlight analyses).

Thirdly, RTA does need a minimum number of stimuli in an experiment to potentially be

able to find meaningful topological structure – there are no formal rules, but probably at

least ten to find a loop and at least twenty to find a void might be a reasonable assump-

tion. However, in Kriegeskorte, 2009 it is suggested that regular RSA performs best when

there are many stimuli, so the same would hold for RTA.

Representational topology analysis directly addresses the topology of representational

space – an aspect that RSA (as a linear geometric method) cannot. This understanding of

representational geometry is useful in that it can reveal non-linear dimensionality of the

representation space which has direct implications for the nature of the input patterns

and, by extension, the mechanisms that give rise to those input patterns. In this manner,

182

understanding the topology of representational space provides for novel insights unaf-

forded by existing methods.

3.7 Materials and methods

3.7.1 Human vs. monkey comparison

We received two RDMs from the authors of Kriegeskorte, Mur, Ruff, et al., 2008, one

which was the average RDM from four human subject’s 3T fMRI data and the other of

which was the average RDM from two monkey subject’s electrode recording data. The

entries of the RDMs were (average) correlation distances (i.e. 1 subtract Pearson correla-

tion) between the spatial response patterns of voxels/cells for each pair of stimuli. For

more details, see Kriegeskorte, Mur, Ruff, et al., 2008. We further transformed the correla-

tion distance values from 1− ρ to
√
2(1− ρ) which better satisfy the mathematical notion

of distance (Brown and Farivar, 2022).

We calculated persistent homology of the two RDMs using the R package TDA (Fasy et

al., 2021), up to homological dimension 1 (loops), up to the connectivity radius which was

the maximum RDM entry, and using the dionysus library functionality (Morozov, 2017)

to calculate representative cycles (i.e., a subset of the data points that lie on each loop)

for the loops. We then computed VR graphs (Zomorodian, 2010) from the two RDMs at

the scale of the birth radius of the most persistent loop for each RDM. The stimuli in the

two representative cycles were highlighted with deeper colors. The layout of the graph

is optimized to project connected nodes nearby each other in 2D space and unconnected

nodes further apart, using a graph layout algorithm from the R package igraph (Csardi

and Nepusz, 2006). We plotted only the graph component which contained the represen-

tative cycle nodes. The computation and visualization of the VR graphs was performed

by TDApplied.

183

3.7.2 Naturalistic movie viewing study

For a detailed account of the data, acquisition and preprocessing of our naturalistic movie

viewing analysis, see Zhang and Farivar, 2020. The study collected 3T fMRI data, with

3mm3 voxels, from 55 subjects watching four 5-minute movie clips in one scan (two clips

each viewed in both 2D and 3D). The TR was 2 seconds, and the first 1 minute of each

movie clip was not analyzed, resulting in 120 TRs of data for each movie clip. Data pre-

processing was carried out with the AFNI software (Cox, 1996) and fMRI voxel data was

projected onto cortical surface nodes (36002 per hemisphere) with the SUMA (Saad and

Reynolds, 2012) and FreeSurfer (Fischl et al., 2002) software packages. Cortical regional

boundaries followed the probabilistic atlas from Wang et al., 2015.

We chose to solely analyze 3D movie clips in our analysis, in the regions V3, VO and

PHC. To calculate an ROI RDM in a hemisphere for a particular movie clip we selected

the surface nodes in that hemisphere which were in the ROI (based on atlas boundaries),

and computed Pearson correlation between each pair of TRs of the time series activity of

all the nodes in that movie. This resulted in a 120x120 representational similarity matrix,

which was converted to an RDM by transforming each correlation value ρ to the distance

value
√

2(1− ρ). To obtain a group average RDM for each region, movie and hemisphere,

we averaged the subject-specific RDMs.

We calculated persistent homology of the RDMs using the R package TDAstats (Wad-

hwa et al., 2019), up to homological dimension 1 (loops) and up to the connectivity radius

which was the maximum RDM entry. This homology calculation was used in conjunc-

tion with the bootstrap procedure (Fasy et al., 2014) in TDApplied to identify significant

topological features, and was implemented with 30 bootstrap iterations and significance

threshold α = 0.1 to avoid over thresholding. The subsetted persistence diagram, accord-

ing to the bootstrap thresholding procedure, then contained significant group-average

region-level topological features (loops). For each region – V3, VO and PHC – we iden-

tified the most persistent significant loop out of all its thresholded diagrams, the loop’s

birth radius and the RDM it came from. We then used the R package TDA to calculate

184

the representative cycles for those three significant loops from their respective RDMs, by

performing the same persistent homology calculation with the dionysus library func-

tionality.

Our novel Proximity-Labelled Rips Graph (PLRG) visualization requires an RDM, the

birth scale of a loop and its representative cycle. The nodes of the PLRG graph are the TRs

(i.e. spatial patterns) and connections between nodes are determined by the RDM entries

which are at most the birth scale (i.e. a PLRG is a VR graph). We plotted only the graph

component which contained the representative cycle nodes. Once again the position of

the graph nodes in 2D were determined by the igraph package. In order to color the

PLRG nodes, the RDM is projected into 2D using the R package stats (R Core Team,

2021), and the color of each node is determined by the location of its data point in MDS

space according to a horizontal color scale (pink (left) to green (right)) and a vertical color

scale (blue (bottom) to orange (top)). Outside of calculating the color of each node, the

full visualization process of a PLRG is performed by TDApplied.

185

3.8 References

Abdallah, H., Regalski, A., Kang, M. B., Berishaj, M., Nnadi, N., Chowdury, A., Diwadkar,

V. A., & Salch, A. (2023). Statistical inference for persistent homology applied to

simulated fmri time series data. Foundations of Data Science, 5(1), 1–25. https://doi.

org/10.3934/fods.2022014

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity

in the motor cortex of resting human brain using echo-planar mri. Magnetic Reso-

nance in Medicine, 34(4), 537–541. https://doi.org/https://doi.org/10.1002/mrm.

1910340409

Bracci, S., & Op de Beeck, H. (2016). Dissociations and associations between shape and

category representations in the two visual pathways. The Journal of Neuroscience :

the Official Journal of the Society for Neuroscience, 36(2), 432–444. https://doi.org/10.

1523/JNEUROSCI.2314-15.2016

Brown, S., & Farivar, D. R. (2022). Tdapplied: Machine learning and inference for topological

data analysis [R package version 0.1.0]. https://CRAN.R- project.org/package=

TDApplied

Carlsson, G., & Vejdemo-Johansson, M. (2021). Topological data analysis with applications.

Cambridge University Press. https://doi.org/10.1017/9781108975704

Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A., & Fiete, I. (2019). The intrinsic at-

tractor manifold and population dynamics of a canonical cognitive circuit across

waking and sleep. Nature Neuroscience, 22(9), 1512–1520.

186

https://doi.org/10.3934/fods.2022014
https://doi.org/10.3934/fods.2022014
https://doi.org/https://doi.org/10.1002/mrm.1910340409
https://doi.org/https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1523/JNEUROSCI.2314-15.2016
https://doi.org/10.1523/JNEUROSCI.2314-15.2016
https://CRAN.R-project.org/package=TDApplied
https://CRAN.R-project.org/package=TDApplied
https://doi.org/10.1017/9781108975704

Chazal, F., & Michel, B. (2017). An introduction to topological data analysis: Fundamental

and practical aspects for data scientists. Frontiers in Artificial Intelligence, 4. https:

//doi.org/10.3389/frai.2021.667963

Chazal, F., Glisse, M., Labruère Chazal, C., & Michel, B. (2014). Convergence rates for

persistence diagram estimation in topological data analysis. 31st International Con-

ference on Machine Learning, ICML 2014, 1.

Chen, X., Martin, R., & Fischer-Baum, S. (2021). Challenges for using representational

similarity analysis to infer cognitive processes: A demonstration from interactive

activation models of word reading. Proceedings of the Annual Conference of the Cog-

nitive Science Society, 43. https://par.nsf.gov/biblio/10321541

Chen, Y., & Farivar, R. (2020). Natural scene representations in the gamma band are pro-

totypical across subjects. NeuroImage, 221, 117010. https://doi.org/https://doi.

org/10.1016/j.neuroimage.2020.117010

Connolly, A. C., Guntupalli, J. S., Gors, J., Hanke, M., Halchenko, Y. O., Wu, Y.-C., Abdi,

H., & Haxby, J. V. (2012). The representation of biological classes in the human

brain. Journal of Neuroscience, 32(8), 2608–2618. https://doi.org/10.1523/JNEUROSCI.

5547-11.2012

Cordes, D., Haughton, V. M., Arfanakis, K., Wendt, G. J., Turski, P. A., Moritz, C. H.,

Quigley, M. A., & Meyerand, M. E. (2000). Mapping functionally related regions of

brain with functional connectivity mr imaging. American Journal of Neuroradiology,

21(9), 1636–1644.

Cox, R. W. (1996). Afni: Software for analysis and visualization of functional magnetic

resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173. https :

//doi.org/https://doi.org/10.1006/cbmr.1996.0014

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network re-

search. InterJournal, Complex Systems, 1695. https://igraph.org

Curto, C. (2017). What can topology tell us about the neural code. Bulletin of the American

Mathematical Society, 54(1), 63–78.

187

https://doi.org/10.3389/frai.2021.667963
https://doi.org/10.3389/frai.2021.667963
https://par.nsf.gov/biblio/10321541
https://doi.org/https://doi.org/10.1016/j.neuroimage.2020.117010
https://doi.org/https://doi.org/10.1016/j.neuroimage.2020.117010
https://doi.org/10.1523/JNEUROSCI.5547-11.2012
https://doi.org/10.1523/JNEUROSCI.5547-11.2012
https://doi.org/https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/https://doi.org/10.1006/cbmr.1996.0014
https://igraph.org

De Luca, M., Beckmann, C., De Stefano, N., Matthews, P., & Smith, S. (2006). Fmri resting

state networks define distinct modes of long-distance interactions in the human

brain. NeuroImage, 29(4), 1359–1367. https://doi.org/https://doi.org/10.1016/j.

neuroimage.2005.08.035

Diedrichsen, J., Berlot, E., Mur, M., Schütt, H., & Kriegeskorte, N. (2020). Comparing rep-

resentational geometries using the unbiased distance correlation. arXiv.

Dujmović, M., Bowers, J. S., Adolfi, F., & Malhotra, G. (2022). The pitfalls of measur-

ing representational similarity using representational similarity analysis. bioRxiv,

1. https://doi.org/10.1101/2022.04.05.487135

Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2000). Topological persistence and sim-

plification. Discrete & Computational Geometry, 28, 511–533.

Ellis, C., Lesnick, M., Henselman, G., Keller, B., & Cohen, J. (2019). Feasibility of topo-

logical data analysis for event-related fmri. Network Neuroscience, 3, 1–12. https :

//doi.org/10.1162/netn a 00095

Fasy, B., Kim, J., Lecci, F., Maria, C., Millman, D., & Rouvreau, V. (2021). Tda: Statistical

tools for topological data analysis [R package version 1.7.7]. https://CRAN.R-project.

org/package=TDA

Fasy, B., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., & Singh, A. (2014). Confi-

dence sets for persistence diagrams. The Annals of Statistics, 42, 2301–2339.

Fischl, B., Salat, D., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Kouwe, A., Kil-

liany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A.

(2002). Whole brain segmentation: Automated labeling of neuroanatomical struc-

tures in the human brain. Neuron, 33, 341–55. https://doi.org/10.1016/S0896-

6273(02)00569

Giusti, C., Pastalkova, E., Curto, C., & Itskov, V. (2015). Clique topology reveals intrinsic

geometric structure in neural correlations. Proceedings of the National Academy of

Sciences, 112(44), 13455–13460. https://doi.org/10.1073/pnas.1506407112

Hall, H. (2009). Under the sea 3d.

188

https://doi.org/https://doi.org/10.1016/j.neuroimage.2005.08.035
https://doi.org/https://doi.org/10.1016/j.neuroimage.2005.08.035
https://doi.org/10.1101/2022.04.05.487135
https://doi.org/10.1162/netn_a_00095
https://doi.org/10.1162/netn_a_00095
https://CRAN.R-project.org/package=TDA
https://CRAN.R-project.org/package=TDA
https://doi.org/10.1016/S0896-6273(02)00569
https://doi.org/10.1016/S0896-6273(02)00569
https://doi.org/10.1073/pnas.1506407112

Hasson, U., Malach, R., & Heeger, D. J. (2010). Reliability of cortical activity during natural

stimulation. Trends in Cognitive Sciences, 14(1), 40–48.

Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004a). Intersubject synchro-

nization of cortical activity during natural vision. Science, 303(5664), 1634–1640.

https://doi.org/10.1126/science.1089506

Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004b). Intersubject synchro-

nization of cortical activity during natural vision. Science, 303(5664), 1634–1640.

https://doi.org/10.1126/science.1089506

Hatcher, A. (2002). Algebraic topology. Cambridge University Press.

Kang, L., Xu, B., & Morozov, D. (2021). Evaluating state space discovery by persistent

cohomology in the spatial representation system. Frontiers in Computational Neuro-

science, 15. https://doi.org/10.3389/fncom.2021.616748

Kerber, M., Morozov, D., & Nigmetov, A. (2017). Geometry helps to compare persistence

diagrams. ACM Journal of Experimental Algorithmics, 22. https://doi.org/10.1145/

3064175

Kiani, R., Esteky, H., Mirpour, K., & Tanaka, K. (2007). Object category structure in re-

sponse patterns of neuronal population in monkey inferior temporal cortex [PMID:

17428910]. Journal of Neurophysiology, 97(6), 4296–4309. https://doi.org/10.1152/

jn.00024.2007

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis –

connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience,

2, 4. https://doi.org/10.3389/neuro.06.004.2008

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., &

Bandettini, P. A. (2008). Matching categorical object representations in inferior tem-

poral cortex of man and monkey. Neuron, 60(6), 1126–1141.

Kriegeskorte, N. (2009). Relating population-code representations between man, monkey,

and computational models. Frontiers in Neuroscience, 3. https://doi.org/10.3389/

neuro.01.035.2009

189

https://doi.org/10.1126/science.1089506
https://doi.org/10.1126/science.1089506
https://doi.org/10.3389/fncom.2021.616748
https://doi.org/10.1145/3064175
https://doi.org/10.1145/3064175
https://doi.org/10.1152/jn.00024.2007
https://doi.org/10.1152/jn.00024.2007
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.3389/neuro.01.035.2009
https://doi.org/10.3389/neuro.01.035.2009

Kriegeskorte, N., & Diedrichsen, J. (2019). Peeling the onion of brain representations

[PMID: 31283895]. Annual Review of Neuroscience, 42(1), 407–432. https://doi.org/

10.1146/annurev-neuro-080317-061906

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: Integrating cognition,

computation, and the brain. Trends in Cognitive Sciences, 17(8), 401–412. https://

doi.org/https://doi.org/10.1016/j.tics.2013.06.007

Laakso, A. (2000). Content and cluster analysis: Assessing representational similarity in

neural systems. Philosophical Psychology, 13.

Le, T., & Yamada, M. (2018). Persistence fisher kernel: A riemannian manifold kernel for

persistence diagrams. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.

Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information processing systems

(Vol. 31). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/

file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf

Mead, A. (1992). Review of the development of multidimensional scaling methods. Jour-

nal of the Royal Statistical Society. Series D (The Statistician), 41(1), 27–39.

Morozov, D. (2017). Dionysus is a c++ library for computing persistent homology. https://

mrzv.org/software/dionysus2/

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation

for Statistical Computing. Vienna, Austria. https://www.R-project.org/

Robinson, A., & Turner, K. (2017). Hypothesis testing for topological data analysis. Journal

of Applied and Computational Topology, 1.

Saad, Z. S., & Reynolds, R. C. (2012). Suma [20 YEARS OF fMRI]. NeuroImage, 62(2), 768–

773. https://doi.org/https://doi.org/10.1016/j.neuroimage.2011.09.016

Shahbazi, M., Shirali, A., Aghajan, H., & Nili, H. (2021). Using distance on the rieman-

nian manifold to compare representations in brain and in models. NeuroImage, 239,

118271. https://doi.org/https://doi.org/10.1016/j.neuroimage.2021.118271

190

https://doi.org/10.1146/annurev-neuro-080317-061906
https://doi.org/10.1146/annurev-neuro-080317-061906
https://doi.org/https://doi.org/10.1016/j.tics.2013.06.007
https://doi.org/https://doi.org/10.1016/j.tics.2013.06.007
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://mrzv.org/software/dionysus2/
https://mrzv.org/software/dionysus2/
https://www.R-project.org/
https://doi.org/https://doi.org/10.1016/j.neuroimage.2011.09.016
https://doi.org/https://doi.org/10.1016/j.neuroimage.2021.118271

Shepard, R. N., & Chipman, S. (1970). Second-order isomorphism of internal represen-

tations: Shapes of states. Cognitive Psychology, 1(1), 1–17. https://doi.org/https:

//doi.org/10.1016/0010-0285(70)90002-2

Singh, G., Mémoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., & Ringach, D. (2008). Topo-

logical analysis of population activity in visual cortex. Journal of Vision, 8, 11.1–18.

https://doi.org/10.1167/8.8.11

Szekely, G., Rizzo, M., & Bakirov, N. (2008). Measuring and testing dependence by cor-

relation of distances. The Annals of Statistics, 35. https : / / doi . org / 10 . 1214 /

009053607000000505

Turner, K., Mileyko, Y., Mukherjee, S., & Harer, J. (2014). Frechet means for distributions

of persistence diagrams. Discrete & Computational Geometry, 52(1), 44–70.

Wadhwa, R., Dhawan, A., Williamson, D., & Scott, J. (2019). Tdastats: Pipeline for topological

data analysis [R package version 0.4.1]. https://github.com/rrrlw/TDAstats

Wang, L., Mruczek, R. E. B., Arcaro, M., & Kastner, S. (2015). Probabilistic maps of vi-

sual topography in human cortex. Cerebral Cortex, 25 10, 3911–31. https : / / api .

semanticscholar.org/CorpusID:206372126

You, K., & Park, H.-J. (2022). Geometric learning of functional brain network on the cor-

relation manifold. Scientific Reports, 12(1), 17752. https://doi.org/10.1038/s41598-

022-21376-0

Zhang, A., & Farivar, R. (2020). Intersubject spatial pattern correlations during movie

viewing are stimulus-driven and nonuniform across the cortex. Cerebral Cortex

Communications, 1(1). https://doi.org/10.1093/texcom/tgaa076

Zomorodian, A. (2010). The tidy set: A minimal simplicial set for computing homology

of clique complexes. Proceedings of the Twenty-Sixth Annual Symposium on Computa-

tional Geometry, 257–266. https://doi.org/10.1145/1810959.1811004

Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology. Discrete and Com-

putational Geometry, 33, 249–274. https://doi.org/10.1007/s00454-004-1146-y

191

https://doi.org/https://doi.org/10.1016/0010-0285(70)90002-2
https://doi.org/https://doi.org/10.1016/0010-0285(70)90002-2
https://doi.org/10.1167/8.8.11
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/009053607000000505
https://github.com/rrrlw/TDAstats
https://api.semanticscholar.org/CorpusID:206372126
https://api.semanticscholar.org/CorpusID:206372126
https://doi.org/10.1038/s41598-022-21376-0
https://doi.org/10.1038/s41598-022-21376-0
https://doi.org/10.1093/texcom/tgaa076
https://doi.org/10.1145/1810959.1811004
https://doi.org/10.1007/s00454-004-1146-y

Chapter 4

Discussion and future directions

In this dissertation I have demonstrated a new limitation of RSA – an ability to detect

or compare topological structures in representational geometries – and I have developed

a novel framework, called RTA, which can be used in conjunction with my new soft-

ware package, TDApplied, to overcome this limitation. It was previously known that

two systems performing distinct calculations could be erroneously equated by RSA, but

I have shown that RTA is able to detect and visualize these computational differences, in

a number of cases, by probing the topology of representational geometry. RTA captures

representational topology by computing persistence diagrams from RDMs, and can com-

pare persistence diagrams with distance and kernel functions in order to carry out typical

RSA-like analyses. I utilized RTA to analyze the data from two neuroimaging studies –

an RSA study of primate IT cortex responses to objects of various categories and a spatial-

pattern analysis study of human cortical responses to naturalistic movie viewing in 3D.

In my two RTA analyses I have shown that RTA, unlike RSA, can segment repre-

sentational geometries into significant (non-linear) features of neural computation. My

first analysis found a novel distinction (an object-category loop in monkeys) between the

functional architectures of human and monkey IT cortex while capturing, as well, ex-

pected object-category clustering that was found in previous studies. My second analysis

demonstrated the utility of my new visualization technique for representational topolo-

192

gies called the Proximity Labelled Rips Graph (PLRG). The PLRG is a powerful tool be-

cause it directly shows where in a dataset representational geometry can and cannot ac-

count for representational topology. The original study found evidence of similar (i.e.

shared) spatial patterns across subjects during movie viewing, to different extents in dif-

ferent brain regions. While these findings suggest consistent region-level computations

across subjects, which vary by region, I have shown, using PLRGs, that there are region-

level topological signatures of neural response that vary by region during naturalistic

movie viewing.

Both of the two RTA studies relied in an essential way on my new software package

TDApplied to carry out calculations and visualizations, and I have demonstrated the

utility of TDApplied for topological analyses of data in a number of software documen-

tation texts called vignettes. By analyzing data from the Human Connectome Project in a

RTA-like pipeline, I have demonstrated that TDApplied can capture topological features

of neural computation which are related to task and behavior. With a number of simula-

tions I have also showed that TDApplied is more highly optimized, flexible and compu-

tationally correct compared to other R packages for analyzing persistence diagrams.

Taken together, my two RTA studies and my TDApplied vignettes show that the

topology of representational geometry, captured by RTA and not by RSA, is critical to

making interpretable and trustworthy representational comparisons. RTA should there-

fore direct future RSA studies to reflect more deeply on what neural features of computa-

tion are hidden within their RDMs and to explain their RDM comparisons. Future studies

should validate data pooling applications of RTA, such as combining data from studies

with related but different stimuli or combining data from resting-state scans, in order to

produce comparisons which were previously impossible and therefore provide new in-

ferences of neural function. RTA would be a valuable addition to any neuroscientist’s

toolbox.

193

4.1 Implications and origins of representational topologies

In Chapter 1 I discussed two concrete examples from the literature of representational

topologies which exist in neurological data. First, the representational space of neural

activity in primary visual cortex lives on a sphere (Singh et al., 2008), perhaps due to

the interplay between orientation and spatial frequency maps. Second, in Curto, 2017, a

torus representational topology was found to be a good model of rat grid cell responses

because of the way their receptive fields tile the rat’s field of view. From a mathemati-

cal perspective, complex topological structures can arise from gluing points on a shape

– a loop is a line with its endpoints glued, a torus is a gluing of the edges of a square

(Hatcher, 2002) or a hexagon (Curto, 2017). This perspective provides the simple expla-

nation that representational topologies can arise due to same representations of distinct

stimuli. For example, if we were conducting a study of orientation-selectivity in V1 and

our stimuli were bars of all angle rotations, then our stimulus space would be spanned

by a single angle variable which could take any numeric value. Clearly, any two stimuli

whose angle differs by a non-zero multiple of 180 degrees are visually the same, and will

therefore evoke the same neural representations. Therefore the representational space of

all oriented bars will be glued together at angles which differ by multiples of 180 degrees,

forming a loop. In this way biology takes into account the topology of stimulus features.

As noted in Chapter 1, two of the main application areas of persistent homology in

fMRI analyses are analyzing connectome graphs and neural codes, and the interpretation

of topological features which arise in both domains must be treated separately. One per-

spective on topological features of connectome graphs is that holes may represent parallel

processing strategies – the divergence and later re-convergence of flows of information in

the brain (Sizemore et al., 2018), a plausible theory given that the primate brain is known

to employ a number of parallel processing strategies (Nassi and Callaway, 2009). Un-

fortunately for this theory, persistent homology forms undirected relationships between

functional units so there is no notion of directed temporal flow of information when calcu-

194

lating persistent homology of a connectome graph. A more conservative interpretation of

loops in a functional connectivity connectome graph would be a network of regions that

co-fluctuate according to a single latent variable. Similarly, in the case of spatial loops in

fMRI data (i.e. neural codes) defined by spatial pattern correlations, topological features

do not code for temporal information. A more conservative interpretation of a spatial

pattern topological features would be a collection of functional units (perhaps forming a

functional network) which were not involved in neural function in certain data segments

(for example the suppression of a resting-state network during the computation of a par-

ticular task). Modelling and visualization techniques like those employed in the HCP

analysis in Chapter 2 can be used to help determine when topological features, like loops,

are traversed temporally according to stimulus conditions or according to physiological

measures like respiration. However, in the case of connectome graphs or neural codes,

specific methodology should be developed for the integration of directed relationships

between functional units to capture temporal patterns in topological features.

One area of neuroimaging that could provide useful ideas in this task is called ”walks

on neural manifolds.” A neural manifold is defined as the structure of permissible neural

states, and walks are the temporal traversal of these structures during neural computation

(Pillai and Jirsa, 2017; Shine et al., 2019). The topological signature of a representational

geometry, i.e. the collection of all significant topological features and their arrangement

together in representational space, can therefore be interpreted as a neural manifold with

added information about latent variables in each data segment. The study Chaudhuri

et al., 2019 defined this neural manifold using persistent homology to characterize the

dimension of the representational geometry (using Betti numbers) and fit splines of cor-

responding dimension to the data. However, this approach is different to RTA because

it is not designed for comparisons across datasets, but rather for finding a latent variable

representation of a single dataset. Ideas from the theory of walks on neural manifolds

could provide a future avenue for incorporating temporal information from neuroimag-

ing studies into RTA analyses.

195

Implicit to all of the RTA analyses in this thesis, and to the studies of neural manifolds

and structured flows on manifolds, is the famous manifold hypothesis – that the essen-

tial structure of high-dimensional data is low-dimensional. We only analyzed clusters

and loops in our RTA analyses, i.e. homological dimensions 0 and 1, but it could cer-

tainly be the case that higher-dimensional topological features exist in representational

spaces. For example, the spherical representational space of V1 (Singh et al., 2008) and

the torus representational space of rat grid cells (Curto, 2017) each contain a void – a

feature of homological dimension 2. From a computational standpoint, calculating per-

sistence diagrams in high dimensions can quickly become intractable depending on the

number of representations (Somasundaram et al., 2021; Zomorodian and Carlsson, 2005).

In Chapter 2 we showed that TDApplied is a highly efficient persistent homology engine

compared to other R packages, and we would expect even more significant performance

gains in higher dimensions; however, high-dimensional topological structures, in repre-

sentational spaces with many points, should only be sought when there is strong evidence

suggesting that such structures exist in the data.

It is important to note that a single RTA analysis is only observational. That is to say,

that if we have the hypothesis that a particular representational topological feature repre-

sents certain stimulus features (for example the object-category loop identified in Chapter

3), then we could test that hypothesis in a follow-up study. The procedure would be to

mix the stimuli on the topological feature, based on the hypothesized stimulus features,

and seeing if the representations of these new stimuli fill in the original topological fea-

ture. This would validate not just the existence of a topological feature (which we can

already do using the bootstrap procedure (Fasy et al., 2014)) but that it captures the stim-

ulus features we think it does.

196

Complex 1 Complex 2

Figure 4.1: Two distinct simplicial complexes with the same homology. Both datasets

have two connected components and two loops, but in the first dataset the loops are

connected and in the second dataset they are not connected.

4.2 Linking topological features across multiple represen-

tational topologies

As mentioned in Chapter 1, if two shapes have different homology then they are not the

same shape, but the inverse statement is not true – it is possible for different shapes to

have the same homology (i.e. counts of topological features), and in the case of RTA this

means that topological similarity of two neural systems does not guarantee similarity of

computations (more on this in the next section). For example, the two simplicial com-

plexes in Figure 4.1 have the same number of H0 components and H1 loops, but their

arrangement in space implies possibly distinct generating mechanisms. The connected

loops in the first complex could represent solely vertical or horizontal rotations of a 3D

object – 0 horizontal rotation and 0 vertical rotation are the same transformation, but all

other transformations are distinct, being either purely horizontal or vertical. The two dis-

tinct loops in second complex could represent rotation of two distinct groups of images,

say of human faces and animal faces.

197

Visualizations like VR graphs, coupled with the information in representative cycles,

can be helpful in describing the arrangement of topological features in their representa-

tional space, as in our analyses in Chapters 2 and 3, but these approaches would not be

as useful in higher dimensions. It was even noted in Sizemore et al., 2019 that there is not

currently a best method for picking representative cycles, which presents a challenge for

comprehensively segmenting representational geometries.

Ideally there would be a method which could (semantically) link topological features

across representational spaces, replacing analyses of individual features, but unfortu-

nately no such method exists in the applied topology literature. The essential challenge

is that a topological feature can not be linked to a unique subset of its representational

space (for example, many collections of stimuli may capture the loop within an annulus

structure). Other neuroimaging analysis frameworks, for example RSA and functional

connectivity, circumvent this issue by establishing a direct correspondence between the

dimensions of two data spaces (RDMs and functional units, respectively). One paper

(Salch et al., 2021) proposed a method for linking loops according to their location in a

shared data space (which was not the case for our analyses in Chapter 3) by quantifying

translations between loops, but there are other transformations of topological features

that could capture their semantic differences.

One technique that may be particularly well-suited for capturing semantic differences

between topological features of the same dimension, regardless of the representational

spaces they live in, is the Procrustes analysis Andreella et al., 2023. A Procrustes analysis

can optimally project multiple matrices (like RDMs) into a shared data space using linear

operations (like translations, scaling, rotations and reflections). The main challenge which

would need to be resolved for Procustes analyses of topological features is that topolog-

ical features form subsets of representational spaces, possibly resulting in different-sized

matrices, which Procrustes is not designed to accommodate. Nevertheless, such an ap-

proach for linking topological features across datasets would be a useful future direction

of both RTA and applied topology research.

198

4.3 Linear RSA compared to non-linear RTA representa-

tional comparisons

Non-linear isomorphisms for RSA have been shown to be effective tools for geometric

comparison (Diedrichsen et al., 2020; Shahbazi et al., 2021; You and Park, 2022), and RTA

implements only non-linear comparisons of representational topologies. On the other

hand, the simplicity and interpretability of linear methods like Spearman correlation re-

mains a convincing argument for their use in RSA experiments. I contend that neither

approach – linear comparisons in RSA or non-linear comparisons in RTA – is universally

better than the other, but both are necessary to make principled comparisons. That is why

I suggest using RTA with RSA as complementary techniques. To argue this point, we will

now provide examples of situations where we would expect linear RSA comparisons to

be more effective than non-linear RTA comparisons, and vice versa.

First, let us suppose that two representational geometries were each fully captured by

a single Gaussian cluster. Then the principle components of the clusters would repre-

sent linear dimensions which fully capture all of the data variance. Linear comparisons

in RSA would essentially compare how well the linear dimensions of the two clusters

align (possibly taking into account the variance of each dimension, depending on which

second-order isomorphism is used). On the other hand, the non-linear comparisons in

RTA could only determine that each dataset was comprised of a single cluster. In this

case, linear comparisons in RSA would provide more detailed comparisons. However,

this is predicated on the knowledge that each representational geometry was a single

Gaussian cluster – we could determine the clustering structure either with MDS in RSA

or with RTA.

If the representational spaces had more than one cluster, or if the clusters had non-

Gaussian (i.e. non-linear) shape then the example starts to fall through for linear com-

parisons. In the former case, representational dissimilarities between points in distinct

Gaussian clusters with distinct principle components (i.e. directions of variance) are not

199

informative – the number of clusters are meaningful, and components within each clus-

ter are meaningful, but comparing points between clusters is not (since the clusters may

be representing different representational features). In this case, only within-cluster rep-

resentational dissimilarities are helpful for comparison, making methods like Spearman

correlation of RDMs sub-optimal. RTA would be able to correctly identify the number of

clusters, but again would disregard the geometric information contained in the within-

cluster representational dissimilarities, so segmenting the representational geometries

into the clusters and analyzing clusters independently with linear methods may be the

best approach for comparison. If the clusters are non-Gaussian then linear dimensions

would not be appropriate to capture data variance. For instance a cluster which is a loop

is mechanistically different from a Gaussian cluster, even if the principle (linear) dimen-

sions of variance are the same. That is not to say that RTA comparisons are better than

linear RSA comparisons for all cases of non-Gaussian cluster comparisons, but certainly

RTA will be best when clusters have some non-trivial topological structure (like loops,

voids, etc.).

In Chapter 3 I provided several examples of representational comparisons which were

enhanced by comparisons of representational topologies compared to linear geometric

comparisons, exactly because the spaces contained some significant topological features.

Based on the discussion above, single Gaussian clusters may be most appropriate for

analysis with linear RSA comparisons, but what are we to do when we don’t know the

structure of our representational geometries? One possible future extension of this thesis

work would be to combine RSA and RTA comparisons by first (1) segmenting the rep-

resentational geometry into representational features (including components) using VR

graphs and representative cycles and then (2) compare each distinct topological feature

in one representational geometry with each distinct component in the other geometry

(with both features having the same topological dimension) using linear RSA compar-

isons. Such an approach, as opposed to simply applying both RSA and RTA to a dataset,

200

would integrate topological and geometric comparisons to incorporate both big-picture

and fine-scale information in comparisons, and should be pursued as future work.

Perhaps a simpler way in which linear RSA comparisons and non-linear RSA com-

parisons could be combined in a single framework would be forming a joint similarity

function. In RSA, Spearman correlation quantifies similarity between two RDMs with a

value between -1 and 1, and in RTA the persistence Fisher kernel quantifies similarity be-

tween two persistence diagrams with a value between 0 and 1. To form a joint similarity

function between two representational geometries we could form a weighted average be-

tween the Spearman correlation (linearly scaled to be between 0 and 1) of the two RDMs

and the persistence Fisher kernel of the two persistence diagrams. While such a function

would not itself technically be a kernel function, it would still be a similarity function

which takes into account geometric and topological similarity into a single score for com-

parison.

4.4 Model adjudication

One of the most important features of RSA is the ability to carry out model adjudication

(i.e. comparison). The correlation value between two RDMs can be bootstrapped to com-

pute a confidence interval Kriegeskorte et al., 2008, and multiple correlation values can be

compared to determine which RDM out of a list of possible candidates is the best ”model”

of a target RDM. We can even determine the statistical significance of a single (Spearman)

correlation value, because a fisher-transformed correlation has a known, closed-form null

distribution Fisher et al., 1936.

While model adjudication was not a focus of the RTA studies presented in Chapter

3, it is clear that RTA does have the potential to carry out some of these desirable pro-

cedures. For instance, given two RDMs and their respective persistence diagrams, we

could generate a confidence interval for their distance/kernel value by (1) bootstrap re-

sampling the two RDMs, (2) computing their two ”bootstrapped” persistence diagrams,

201

and (3) computing the distance/kernel value between the two bootstrapped diagrams.

By repeating this process many times we could estimate the sampling distribution of the

distance/kernel value directly, and therefore determine a confidence interval for the esti-

mate. On the other hand, multiple distance/kernel values can be compared to determine

the best candidate persistence diagram, out of a list of diagrams, for a target persistence

diagram. Both of these routines should be included in future RTA studies.

Unfortunately it is not presently possible to compute the p-value for a single dis-

tance/kernel value between persistence diagrams. Therefore, even though we could

identify the best candidate persistence diagram to a target diagram, it would not be clear

if there was a significant relationship between the two diagrams. One possible framework

for testing the relatedness of two persistence diagrams (as opposed to determining the

significance of a distance/kernel value) would be to (1) compute the difference RDM of

their two RDMs, (2) translating off-diagonal distances to be positive, and (3) performing

the bootstrap procedure (Fasy et al., 2014). If the bootstrap found any significant topolog-

ical features in the difference RDM then we would say that the RDMs were statistically

distinct – otherwise similar. For RTA to have useful model adjudication machinery, a pro-

cedure (like the one described above, or one that could estimate the p-value of a single

distance/kernel value) should be introduced and validated.

4.5 Data pooling of RSA studies and non-RSA studies

One of the most significant challenges in neuroimaging studies, like most RSA studies,

is obtaining sufficient sample size to make inferences due to the high costs of obtain-

ing high-quality neuroimaging data. Each RSA dataset will have its own set of stimuli,

conditions, experimental design, acquisition etc., resulting in some number of stimulus-

stimulus RDMs. Since the orientation selectivity of V1 neurons should be detectable re-

gardless of which exact stimulus is being rotated (for example a bar, a squiggly line, a

snake, etc.) any RSA study of orientation selectivity in V1, regardless of stimuli used,

202

acquisition, study design etc., should result in representational geometries defined by a

loop. These kinds of cross-dataset comparisons are not possible in RSA, but are possible

in RTA. In fact, we can compare data from any two RSA studies, although when there is

a relationship between the two sets of stimuli (based on the questions the studies were

trying to answer), for example, two sets of images of faces and houses, this type of com-

parison would be most useful. Interest in these types of comparisons were discussed in

Laakso, 2000, but have lacked a principled framework for their application.

RSA studies use a task-based neuroimaging paradigm to compare stimulus represen-

tations, but this is not the only kind of neuroimaging experimental framework. Hidden

in my HCP and natural movie viewing analyses in Chapters 2 and 3 is a new avenue for

application of RTA to resting-state neuroimaging analyses, or to studies with different

(but ideally related) study designs. In both analyses I computed RDMs as correlation dis-

tances of spatial patterns over time, considering each time point as its own stimulus and

each spatial pattern as its representation. Since RTA can compare persistence diagrams

regardless of the number of data points in the underlying representational spaces, RTA

could therefore compare persistence diagrams computed from resting-state data of any

duration, or between task-based functional data regardless of duration or study design.

The case of resting-state topological comparisons would be very interesting – the non-

independence of (periodic) activity of resting-state networks may be captured in low-

dimensional topological features which would define new neural mechanisms at rest. On

the other hand, comparisons of studies with different designs would also be extremely

interesting – the benefits of naturalistic neural stimulation from naturalistic movie view-

ing could be combined with the benefits of targeted task-based neural signals evoked

by carefully engineered image stimuli to make new and exciting inferences about neural

function using RTA.

203

4.6 Final conclusions and contributions to knowledge

The topology of representational geometry captures meaningful features of neural com-

putation that are missed by RSA. In this thesis I have demonstrated that:

1. RTA can analyze persistence diagrams, by using TDApplied, in ways that RSA can

analyze RDMs.

2. RTA can segment representational geometries (i.e. RDMs) into topological features

of neural computation, which can be visualized to make principled and interpretable

comparisons of representational geometries.

3. PLRGs can locate where in a representational dataset geometry does not account for

topological features of neural function.

4. TDApplied can be used to identify and interpret task and behavior-related features

of neural computation.

5. TDApplied is a state-of-the-art R package for efficient and flexible topological anal-

yses of data (a suite of analyses which cannot currently be carried out by other pack-

ages).

The ability to capture, compare and analyze (with machine learning and inference)

representational topologies has significant implications for future research. Future RSA

studies can compare representational geometries as well as representational topologies,

with RTA, to make more trustworthy inferences. By segmenting RDMs into topological

features, future studies can also link abstract representational dissimilarities back to struc-

tures/patterns of representations, tying together topological features, neural features of

computation and stimulus features. Due to the flexibility of persistent homology, data

from RSA studies which were previously not comparable can now be compared, meaning

higher statistical power in making inferences and being able to answer novel questions of

204

neural function. Finally, since persistence diagrams are used in applications in many do-

mains (i.e. outside of neuroimaging) our software opens the door to interpretable, flexible

and powerful applied topological analyses to the wider research community.

205

4.6 References for Chapters 1 and 4

Abdallah, H., Regalski, A., Kang, M. B., Berishaj, M., Nnadi, N., Chowdury, A., Diwadkar,

V. A., & Salch, A. (2023). Statistical inference for persistent homology applied to

simulated fmri time series data. Foundations of Data Science, 5(1), 1–25. https://doi.

org/10.3934/fods.2022014

Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova,

S., Hanson, E., Motta, F., & Ziegelmeier, L. (2017). Persistence images: A stable

vector representation of persistent homology. Journal of Machine Learning Research,

18.

Ali, D., Asaad, A., Jimenez, M., Nanda, V., Paluzo-Hidalgo, E., & Soriano-Trigueros, M.

(2023). A survey of vectorization methods in topological data analysis. IEEE Trans-

actions on Pattern Analysis & Machine Intelligence, 45(12), 14069–14080. https://doi.

org/10.1109/TPAMI.2023.3308391

Andreella, A., De Santis, R., Vesely, A., & Finos, L. (2023). Procrustes-based distances

for exploring between-matrices similarity. Statistical Methods & Applications, 32(3),

867–882.

Atasoy, S., Donnelly, I., & Pearson, J. (2016). Human brain networks function in

connectome-specific harmonic waves. Nature Communications, 7.

Axler, S. J. (1997). Linear algebra done right. Springer New York.

Bauer, U. (2015). Persistent homology algorithm toolbox. https://github.com/Ripser/ripser

Bauer, U., Kerber, M., & Reininghaus, J. (2013). Persistent homology algorithm toolbox. https:

//www.sciencedirect.com/science/article/pii/S0747717116300098

206

https://doi.org/10.3934/fods.2022014
https://doi.org/10.3934/fods.2022014
https://doi.org/10.1109/TPAMI.2023.3308391
https://doi.org/10.1109/TPAMI.2023.3308391
https://github.com/Ripser/ripser
https://www.sciencedirect.com/science/article/pii/S0747717116300098
https://www.sciencedirect.com/science/article/pii/S0747717116300098

Bobadilla-Suarez, S., Ahlheim, C., Mehrotra, A., Panos, A., & Love, B. (2019). Measures

of neural similarity. Computational Brain & Behavior, 3. https://doi.org/10.1007/

s42113-019-00068-5

Bracci, S., & Op de Beeck, H. (2016). Dissociations and associations between shape and

category representations in the two visual pathways. The Journal of Neuroscience :

the Official Journal of the Society for Neuroscience, 36(2), 432–444. https://doi.org/10.

1523/JNEUROSCI.2314-15.2016

Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. Jour-

nal of Machine Learning Research, 16(1), 77–102.

Bubenik, P., & Dlotko, P. (2017). A persistence landscapes toolbox for topological statistics

[Algorithms and Software for Computational Topology]. Journal of Symbolic Com-

putation, 78, 91–114. https://doi.org/https://doi.org/10.1016/j.jsc.2016.03.009

Cai, M. B., Schuck, N. W., Pillow, J. W., & Niv, Y. (2019). Representational structure or

task structure? bias in neural representational similarity analysis and a bayesian

method for reducing bias. PLOS Computational Biology, 15(5), 1–30. https://doi.

org/10.1371/journal.pcbi.1006299

Calhoun, V., & Sui, J. (2016). Multimodal fusion of brain imaging data: A key to finding the

missing link(s) in complex mental illness [Brain Connectivity in Psychopathology].

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(3), 230–244. https:

//doi.org/https://doi.org/10.1016/j.bpsc.2015.12.005

Carlsson, G. E., Ishkhanov, T., de Silva, V., & Zomorodian, A. (2007). On the local behavior

of spaces of natural images. International Journal of Computer Vision, 76, 1–12.

Carrière, M., Cuturi, M., & Oudot, S. (2017, August). Sliced Wasserstein kernel for persis-

tence diagrams. In D. Precup & Y. W. Teh (Eds.), Proceedings of the 34th international

conference on machine learning (pp. 664–673, Vol. 70). PMLR.

Charest, I., Kriegeskorte, N., & Kay, K. (2018). Glmdenoise improves multivariate pattern

analysis of fmri data. NeuroImage, 183. https://doi.org/10.1016/j.neuroimage.

2018.08.064

207

https://doi.org/10.1007/s42113-019-00068-5
https://doi.org/10.1007/s42113-019-00068-5
https://doi.org/10.1523/JNEUROSCI.2314-15.2016
https://doi.org/10.1523/JNEUROSCI.2314-15.2016
https://doi.org/https://doi.org/10.1016/j.jsc.2016.03.009
https://doi.org/10.1371/journal.pcbi.1006299
https://doi.org/10.1371/journal.pcbi.1006299
https://doi.org/https://doi.org/10.1016/j.bpsc.2015.12.005
https://doi.org/https://doi.org/10.1016/j.bpsc.2015.12.005
https://doi.org/10.1016/j.neuroimage.2018.08.064
https://doi.org/10.1016/j.neuroimage.2018.08.064

Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A., & Fiete, I. (2019). The intrinsic at-

tractor manifold and population dynamics of a canonical cognitive circuit across

waking and sleep. Nature Neuroscience, 22(9), 1512–1520.

Chazal, F., Fasy, B. T., Lecci, F., Rinaldo, A., & Wasserman, L. (2014). Stochastic conver-

gence of persistence landscapes and silhouettes. Proceedings of the Thirtieth Annual

Symposium on Computational Geometry, 474–483. https://doi.org/10.1145/2582112.

2582128

Chen, X., Martin, R., & Fischer-Baum, S. (2021). Challenges for using representational

similarity analysis to infer cognitive processes: A demonstration from interactive

activation models of word reading. Proceedings of the Annual Conference of the Cog-

nitive Science Society, 43. https://par.nsf.gov/biblio/10321541

Chung, S., & Abbott, L. (2021). Neural population geometry: An approach for under-

standing biological and artificial neural networks [Computational Neuroscience].

Current Opinion in Neurobiology, 70, 137–144.

Churchland, P. (1986). Some reductive strategies in cognitive neurobiology. Mind, 95(379),

279–309.

Churchland, P. (1995). The engine of reason, the seat of the soul: A philosophical journey into the

brain. London. https://books.google.ca/books?id=J9D4uhcNvdIC

Cohen, M. A., Dilks, D. D., Koldewyn, K., Weigelt, S., Feather, J., Kell, A. J., Keil, B., Fischl,

B., Zöllei, L., Wald, L., Saxe, R., & Kanwisher, N. (2019). Representational similarity

precedes category selectivity in the developing ventral visual pathway. NeuroIm-

age, 197, 565–574. https://doi.org/10.1016/j.neuroimage.2019.05.010

Cohen-Steiner, D., Edelsbrunner, H., & Harer, J. (2007). Stability of persistence diagrams.

Discrete & Computational Geometry, 37(1), 103–120.

Connolly, A. C., Guntupalli, J. S., Gors, J., Hanke, M., Halchenko, Y. O., Wu, Y.-C., Abdi,

H., & Haxby, J. V. (2012). The representation of biological classes in the human

brain. Journal of Neuroscience, 32(8), 2608–2618. https : / / www. jneurosci . org /

content/32/8/2608

208

https://doi.org/10.1145/2582112.2582128
https://doi.org/10.1145/2582112.2582128
https://par.nsf.gov/biblio/10321541
https://books.google.ca/books?id=J9D4uhcNvdIC
https://doi.org/10.1016/j.neuroimage.2019.05.010
https://www.jneurosci.org/content/32/8/2608
https://www.jneurosci.org/content/32/8/2608

Curto, C. (2017). What can topology tell us about the neural code. Bulletin of the American

Mathematical Society, 54(1), 63–78.

De Marchi, S., Lot, F., Marchetti, F., & Poggiali, D. (2022). Variably scaled persistence ker-

nels (vspks) for persistent homology applications. Journal of Computational Mathe-

matics and Data Science, 4, 100050. https://doi.org/https://doi.org/10.1016/j.

jcmds.2022.100050

de Silva, V., Morozov, D., & Vejdemo-Johansson, M. (2011a). Persistent cohomology and

circular coordinates. Discrete & Computational Geometry, 45(4).

de Silva, V., Morozov, D., & Vejdemo-Johansson, M. (2011b). Dualities in persistent

(co)homology. Inverse Problems, 27(12), 124003. https://doi.org/10.1088/0266-

5611/27/12/124003

Devereux, B. J., Clarke, A., Marouchos, A., & Tyler, L. K. (2013). Representational simi-

larity analysis reveals commonalities and differences in the semantic processing of

words and objects. The Journal of Neuroscience : the Official Journal of the Society for

Neuroscience, 33(48), 18906–18916. https://doi.org/10.1523/JNEUROSCI.3809-

13.2013

Dhillon, I. S., Guan, Y., & Kulis, B. (2004). A unified view of kernel k-means, spectral clustering

and graph cuts. Citeseer.

Diedrichsen, J., Berlot, E., Mur, M., Schütt, H., & Kriegeskorte, N. (2020). Comparing rep-

resentational geometries using the unbiased distance correlation. arXiv.

Dujmović, M., Bowers, J. S., Adolfi, F., & Malhotra, G. (2022). The pitfalls of measur-

ing representational similarity using representational similarity analysis. bioRxiv,

1. https://doi.org/10.1101/2022.04.05.487135

Edelman, S. (1998). Representation is representation of similarities. Behavioral and Brain

Sciences, 21(4), 449–467. https://doi.org/10.1017/S0140525X98001253

Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2000). Topological persistence and sim-

plification. Discrete & Computational Geometry, 28, 511–533.

209

https://doi.org/https://doi.org/10.1016/j.jcmds.2022.100050
https://doi.org/https://doi.org/10.1016/j.jcmds.2022.100050
https://doi.org/10.1088/0266-5611/27/12/124003
https://doi.org/10.1088/0266-5611/27/12/124003
https://doi.org/10.1523/JNEUROSCI.3809-13.2013
https://doi.org/10.1523/JNEUROSCI.3809-13.2013
https://doi.org/10.1101/2022.04.05.487135
https://doi.org/10.1017/S0140525X98001253

Ellis, C., Lesnick, M., Henselman, G., Keller, B., & Cohen, J. (2019). Feasibility of topo-

logical data analysis for event-related fmri. Network Neuroscience, 3, 1–12. https :

//doi.org/10.1162/netn a 00095

Fasy, B., Kim, J., Lecci, F., Maria, C., Millman, D., & Rouvreau, V. (2021). Tda: Statistical

tools for topological data analysis [R package version 1.7.7]. https://CRAN.R-project.

org/package=TDA

Fasy, B., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., & Singh, A. (2014). Confi-

dence sets for persistence diagrams. The Annals of Statistics, 42, 2301–2339.

Fisher, R. A., et al. (1936). Statistical methods for research workers. Statistical methods for

research workers., (6th Ed).

Geniesse, C., Sporns, O., Petri, G., & Saggar, M. (2019). Generating dynamical neuroimag-

ing spatiotemporal representations (DyNeuSR) using topological data analysis.

Network Neuroscience, 3(3), 763–778. https://doi.org/10.1162/netn a 00093

Gerber, S., Tasdizen, T., Joshi, S., & Whitaker, R. (2009). On the manifold structure of

the space of brain images. In G.-Z. Yang, D. Hawkes, D. Rueckert, A. Noble, &

C. Taylor (Eds.), Medical image computing and computer-assisted intervention – miccai

2009 (pp. 305–312). Springer Berlin Heidelberg.

Giusti, C., Ghrist, R., & Bassett, D. (2016). Two’s company, three (or more) is a sim-

plex: Algebraic-topological tools for understanding higher-order structure in neu-

ral data. Journal of Computational Neuroscience, 41. https://doi.org/10.1007/s10827-

016-0608-6

Giusti, C., Pastalkova, E., Curto, C., & Itskov, V. (2015). Clique topology reveals intrinsic

geometric structure in neural correlations. Proceedings of the National Academy of

Sciences, 112(44), 13455–13460. https://doi.org/10.1073/pnas.1506407112

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E.,

Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van

Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature,

536(7615), 171–178.

210

https://doi.org/10.1162/netn_a_00095
https://doi.org/10.1162/netn_a_00095
https://CRAN.R-project.org/package=TDA
https://CRAN.R-project.org/package=TDA
https://doi.org/10.1162/netn_a_00093
https://doi.org/10.1007/s10827-016-0608-6
https://doi.org/10.1007/s10827-016-0608-6
https://doi.org/10.1073/pnas.1506407112

Golarai, G., Liberman, A., & Grill-Spector, K. (2017). Experience

shapes the development of neural substrates of face processing in human ven-

tral temporal cortex. Cerebral Cortex, 27(2), 1229–1244. https://doi.org/10.1093/

cercor/bhv314

Goodman, N. (1951). The structure of appearance. Harvard University Press. https://books.

google.ca/books?id=F kHAQAAIAAJ

Gracia-Tabuenca, Z., Dı́az-Patiño, J. C., Arelio, I., & Alcauter, S. (2020). Topological data

analysis reveals robust alterations in the whole-brain and frontal lobe functional

connectomes in attention-deficit/hyperactivity disorder. eneuro.

Gracia-Tabuenca, Z., Dı́az-Patiño, J. C., Arelio, I., Moreno, M. B., Barrios, F. A., & Alcauter,

S. (2021). Development of the functional connectome topology in adolescence: Ev-

idence from topological data analysis. bioRxiv. https://doi.org/10.1101/2021.10.

04.463103

Haim Meirom, S., & Bobrowski, O. (2022). Unsupervised geometric and topological ap-

proaches for cross-lingual sentence representation and comparison. Proceedings of

the 7th Workshop on Representation Learning for NLP, 173–183. https://doi.org/10.

18653/v1/2022.repl4nlp-1.18

Hatcher, A. (2002). Algebraic topology. Cambridge University Press.

Hendriks, M. H. A., Daniels, N., Pegado, F., & Op de Beeck, H. P. (2017). The effect of spa-

tial smoothing on representational similarity in a simple motor paradigm. Frontiers

in Neurology, 8, 222–222. https://doi.org/10.3389/fneur.2017.00222

Hensel, F., Moor, M., & Rieck, B. (2021). A survey of topological machine learning meth-

ods. Frontiers in Artificial Intelligence, 4, 681108. https://doi.org/10.3389/frai.2021.

681108

Huster, R., Yu, Q., Segall, J., & Calhoun, V. (2013). Function-structure associations of the

brain: Evidence from multimodal connectivity and covariance studies. NeuroImage,

102. https://doi.org/10.1016/j.neuroimage.2013.09.044

211

https://doi.org/10.1093/cercor/bhv314
https://doi.org/10.1093/cercor/bhv314
https://books.google.ca/books?id=F_kHAQAAIAAJ
https://books.google.ca/books?id=F_kHAQAAIAAJ
https://doi.org/10.1101/2021.10.04.463103
https://doi.org/10.1101/2021.10.04.463103
https://doi.org/10.18653/v1/2022.repl4nlp-1.18
https://doi.org/10.18653/v1/2022.repl4nlp-1.18
https://doi.org/10.3389/fneur.2017.00222
https://doi.org/10.3389/frai.2021.681108
https://doi.org/10.3389/frai.2021.681108
https://doi.org/10.1016/j.neuroimage.2013.09.044

Islambekov, U., & Luchinsky, A. (2022). Tdavec: Vector summaries of persistence diagrams [R

package version 0.1.1].

I.V, A., N, S., & .M, D. (2015). Decoding multiple subject fmri data using manifold based

representation of cognitive state neural signatures. International Journal of Computer

Applications, 115, 1–7. https://doi.org/10.5120/20224-2512

Jo, H. J., Saad, Z. S., Simmons, W. K., Milbury, L. A., & Cox, R. W. (2010). Mapping sources

of correlation in resting state fmri, with artifact detection and removal. NeuroImage,

52(2), 571–582. https://doi.org/https://doi.org/10.1016/j.neuroimage.2010.04.

246

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human

brain. Nature Neuroscience, 8(5), 679–685. https://doi.org/10.1038/nn1444

Kang, L., Xu, B., & Morozov, D. (2021). Evaluating state space discovery by persistent

cohomology in the spatial representation system. Frontiers in Computational Neuro-

science, 15. https://doi.org/10.3389/fncom.2021.616748

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module

in human extrastriate cortex specialized for face perception. Journal of Neuroscience,

17(11), 4302–4311.

Kerber, M., Morozov, D., & Nigmetov, A. (2017). Geometry helps to compare persistence

diagrams. ACM Journal of Experimental Algorithmics, 22. https://doi.org/10.1145/

3064175

Kiani, R., Esteky, H., Mirpour, K., & Tanaka, K. (2007). Object category structure in re-

sponse patterns of neuronal population in monkey inferior temporal cortex [PMID:

17428910]. Journal of Neurophysiology, 97(6), 4296–4309. https://doi.org/10.1152/

jn.00024.2007

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis –

connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience,

2, 4. https://doi.org/10.3389/neuro.06.004.2008

212

https://doi.org/10.5120/20224-2512
https://doi.org/https://doi.org/10.1016/j.neuroimage.2010.04.246
https://doi.org/https://doi.org/10.1016/j.neuroimage.2010.04.246
https://doi.org/10.1038/nn1444
https://doi.org/10.3389/fncom.2021.616748
https://doi.org/10.1145/3064175
https://doi.org/10.1145/3064175
https://doi.org/10.1152/jn.00024.2007
https://doi.org/10.1152/jn.00024.2007
https://doi.org/10.3389/neuro.06.004.2008

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., &

Bandettini, P. A. (2008). Matching categorical object representations in inferior tem-

poral cortex of man and monkey. Neuron, 60(6), 1126–1141.

Kriegeskorte, N. (2009). Relating population-code representations between man, monkey,

and computational models. Frontiers in Neuroscience, 3. https://doi.org/10.3389/

neuro.01.035.2009

Kriegeskorte, N., & Diedrichsen, J. (2019). Peeling the onion of brain representations

[PMID: 31283895]. Annual Review of Neuroscience, 42(1), 407–432. https://doi.org/

10.1146/annurev-neuro-080317-061906

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain

mapping. Proceedings of the National Academy of Sciences, 103(10), 3863–3868. https:

//doi.org/10.1073/pnas.0600244103

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: Integrating cognition,

computation, and the brain. Trends in Cognitive Sciences, 17(8), 401–412. https://

doi.org/https://doi.org/10.1016/j.tics.2013.06.007

Krishnapriyan, A. S., Montoya, J., Haranczyk, M., Hummelshøj, J., & Morozov, D. (2021).

Machine learning with persistent homology and chemical word embeddings im-

proves prediction accuracy and interpretability in

metal-organic frameworks. Scientific Reports, 11(1), 8888.

Kusano, G., Fukumizu, K., & Hiraoka, Y. (2018). Kernel method for persistence diagrams

via kernel embedding and weight factor. Journal of Machine Learning Research, 18(189),

1–41. http://jmlr.org/papers/v18/17-317.html

Laakso, A. (2000). Content and cluster analysis: Assessing representational similarity in

neural systems. Philosophical Psychology, 13.

Lacombe, T., Montassif, H., Soriano-Trigueros, M., Spreeman, G., & Takenouchi, M. (2019).

The gudhi library is a generic open source c++ library, with a python interface, for topolog-

ical data analysis (tda) and higher dimensional geometry understanding. https://gudhi.

inria.fr/

213

https://doi.org/10.3389/neuro.01.035.2009
https://doi.org/10.3389/neuro.01.035.2009
https://doi.org/10.1146/annurev-neuro-080317-061906
https://doi.org/10.1146/annurev-neuro-080317-061906
https://doi.org/10.1073/pnas.0600244103
https://doi.org/10.1073/pnas.0600244103
https://doi.org/https://doi.org/10.1016/j.tics.2013.06.007
https://doi.org/https://doi.org/10.1016/j.tics.2013.06.007
http://jmlr.org/papers/v18/17-317.html
https://gudhi.inria.fr/
https://gudhi.inria.fr/

Le, T., & Yamada, M. (2018). Persistence fisher kernel: A riemannian manifold kernel for

persistence diagrams. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.

Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information processing systems

(Vol. 31). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/

file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf

Lee, H., Chung, M. K., Kang, H., Kim, B.-N., & Lee, D. S. (2011). Discriminative persis-

tent homology of brain networks. 2011 IEEE International Symposium on Biomedical

Imaging: From Nano to Macro, 841–844. https://doi.org/10.1109/ISBI.2011.5872535

Liu, T. (2016). Noise contributions to the fmri signal: An overview. NeuroImage, 143, 141–

151.

Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., & Jiang, T.

(2008). Disrupted small-world networks in schizophrenia. Brain, 131(4), 945–961.

Mack, S., Kandel, E., Jessell, T., Schwartz, J., Siegelbaum, S., & Hudspeth, A. (2013). Prin-

ciples of neural science, fifth edition. McGraw-Hill Education. https://books.google.

ca/books?id=s64z-LdAIsEC

Mead, A. (1992). Review of the development of multidimensional scaling methods. Jour-

nal of the Royal Statistical Society. Series D (The Statistician), 41(1), 27–39.

Morozov, D. (2017). Dionysus is a c++ library for computing persistent homology. https://

mrzv.org/software/dionysus2/

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT press.

Nassi, J., & Callaway, E. (2009). Parallel processing strategies of the primate visual system.

Nature Reviews Neuroscience, 10, 360–72. https://doi.org/10.1038/nrn2619

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12, 2825–2830.

214

https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://doi.org/10.1109/ISBI.2011.5872535
https://books.google.ca/books?id=s64z-LdAIsEC
https://books.google.ca/books?id=s64z-LdAIsEC
https://mrzv.org/software/dionysus2/
https://mrzv.org/software/dionysus2/
https://doi.org/10.1038/nrn2619

Pillai, A. S., & Jirsa, V. K. (2017). Symmetry breaking in space-time hierarchies shapes

brain dynamics and behavior. Neuron, 94(5), 1010–1026. https://doi.org/https:

//doi.org/10.1016/j.neuron.2017.05.013

Prince, J. S., Charest, I., Kurzawski, J. W., Pyles, J. A., Tarr, M. J., & Kay, K. N. (2022).

Improving the accuracy of single-trial fmri response estimates using glmsingle (P.

Kok, F. P. de Lange, P. Kok, & B. Turner, Eds.). eLife, 11, e77599. https://doi.org/

10.7554/eLife.77599

Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. (2015). A stable multi-scale kernel for

topological machine learning. Proceedings of the IEEE conference on computer vision

and pattern recognition, 4741–4748.

Reuter, M., Wolter, F.-E., & Peinecke, N. (2006). Laplace–beltrami spectra as ‘shape-dna’ of

surfaces and solids [Symposium on Solid and Physical Modeling 2005]. Computer-

Aided Design, 38(4), 342–366. https://doi.org/https://doi.org/10.1016/j.cad.2005.

10.011

Robinson, A., & Turner, K. (2017). Hypothesis testing for topological data analysis. Journal

of Applied and Computational Topology, 1.

Rothlein, D., & Rapp, B. (2014). The similarity structure of distributed neural responses

reveals the multiple representations of letters. NeuroImage, 89, 331–344. https://

doi.org/https://doi.org/10.1016/j.neuroimage.2013.11.054

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses

and interpretations [Computational Models of the Brain]. NeuroImage, 52(3), 1059–

1069. https://doi.org/https://doi.org/10.1016/j.neuroimage.2009.10.003

Saggar, M., Shine, J. M., Liégeois, R., Dosenbach, N. U. F., & Fair, D. (2022). Precision

dynamical mapping using topological data analysis reveals a hub-like transition

state at rest. Nature Communications, 13(1), 4791.

Saggar, M., Sporns, O., Gonzalez-Castillo, J., Bandettini, P. A., Carlsson, G. E., Glover,

G. H., & Reiss, A. L. (2018). Towards a new approach to reveal dynamical organi-

zation of the brain using topological data analysis. Nature Communications, 9.

215

https://doi.org/https://doi.org/10.1016/j.neuron.2017.05.013
https://doi.org/https://doi.org/10.1016/j.neuron.2017.05.013
https://doi.org/10.7554/eLife.77599
https://doi.org/10.7554/eLife.77599
https://doi.org/https://doi.org/10.1016/j.cad.2005.10.011
https://doi.org/https://doi.org/10.1016/j.cad.2005.10.011
https://doi.org/https://doi.org/10.1016/j.neuroimage.2013.11.054
https://doi.org/https://doi.org/10.1016/j.neuroimage.2013.11.054
https://doi.org/https://doi.org/10.1016/j.neuroimage.2009.10.003

Salch, A., Regalski, A., Abdallah, H., Suryadevara, R., Catanzaro, M., & Diwadkar, V.

(2021). From mathematics to medicine: A practical primer on topological data anal-

ysis (tda) and the development of related analytic tools for the functional discovery

of latent structure in fmri data. PLoS ONE, 16(8).

Saul, N., & Tralie, C. (2019). Scikit-tda: Topological data analysis for python. https://doi.

org/10.5281/zenodo.2533369

Scholkopf, B., Smola, A., & Muller, K.-R. (1998). Nonlinear component analysis as a kernel

eigenvalue problem. Neural Computation, 10, 1299–1319.

Seitzman, B. A., Snyder, A. Z., Leuthardt, E. C., & Shimony, J. S. (2019). The state of resting

state networks. Topics in Magnetic Resonance Imaging : TMRI, 28(4), 189–196.

Shahbazi, M., Shirali, A., Aghajan, H., & Nili, H. (2021). Using distance on the rieman-

nian manifold to compare representations in brain and in models. NeuroImage, 239,

118271. https://doi.org/https://doi.org/10.1016/j.neuroimage.2021.118271

Shepard, R. N., & Chipman, S. (1970). Second-order isomorphism of internal represen-

tations: Shapes of states. Cognitive Psychology, 1(1), 1–17. https://doi.org/https:

//doi.org/10.1016/0010-0285(70)90002-2

Shine, J. M., Breakspear, M., Bell, P. T., Ehgoetz Martens, K. A., Shine, R., Koyejo, O.,

Sporns, O., & Poldrack, R. A. (2019). Human cognition involves the dynamic inte-

gration of neural activity and neuromodulatory systems. Nature Neuroscience, 22(2),

289–296.

Singh, G., Mémoli, F., & Carlsson, G. E. (2007). Topological methods for the analysis of

high dimensional data sets and 3d object recognition. SPBG.

Singh, G., Mémoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., & Ringach, D. (2008). Topo-

logical analysis of population activity in visual cortex. Journal of Vision, 8, 11.1–18.

https://doi.org/10.1167/8.8.11

Sizemore, A. E., Giusti, C., Kahn, A., Vettel, J., Betzel, R., & Bassett, D. (2018). Cliques and

cavities in the human connectome. Journal of Computational Neuroscience, 44, 1–31.

https://doi.org/10.1007/s10827-017-0672-6

216

https://doi.org/10.5281/zenodo.2533369
https://doi.org/10.5281/zenodo.2533369
https://doi.org/https://doi.org/10.1016/j.neuroimage.2021.118271
https://doi.org/https://doi.org/10.1016/0010-0285(70)90002-2
https://doi.org/https://doi.org/10.1016/0010-0285(70)90002-2
https://doi.org/10.1167/8.8.11
https://doi.org/10.1007/s10827-017-0672-6

Sizemore, A. E., Phillips-Cremins, J. E., Ghrist, R., & Bassett, D. S. (2019). The importance

of the whole: Topological data analysis for the network neuroscientist. Network

Neuroscience, 3(3), 656–673. https://doi.org/10.1162/netn a 00073

Somasundaram, E. V., Brown, S. E., Litzler, A., Scott, J. G., & Wadhwa, R. R. (2021). Bench-

marking R packages for Calculation of Persistent Homology. The R Journal, 13(1),

184–193. https://doi.org/10.32614/RJ-2021-033

Stamm, A. (2023). Rgudhi: An interface to the gudhi library for topological data analysis [R

package version 0.2.0]. https://CRAN.R-project.org/package=rgudhi

Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis

of intrinsic functional brain connectivity in alzheimer’s disease. PLoS computational

biology, 4(6), e1000100.

Szekely, G., Rizzo, M., & Bakirov, N. (2008). Measuring and testing dependence by cor-

relation of distances. The Annals of Statistics, 35. https : / / doi . org / 10 . 1214 /

009053607000000505

Tamir, D. I., Thornton, M. A., Contreras, J. M., & Mitchell, J. P. (2016). Neural evidence that

three dimensions organize mental state representation: Rationality, social impact,

and valence. Proceedings of the National Academy of Sciences, 113(1), 194–199. https:

//doi.org/10.1073/pnas.1511905112

Tauzin, G., Lupo, U., Tunstall, L., Perez, J. B., Caorsi, M., Medina-Mardones, A., Dassatti,

A., & Hess, K. (2020). Giotto-tda: A topological data analysis toolkit for machine

learning and data exploration.

Tenenbaum, J. B., Silva, V. d., & Langford, J. C. (2000). A global geometric framework for

nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. https : / / doi .

org/10.1126/science.290.5500.2319

Turner, K. (2013). Means and medians of sets of persistence diagrams. arXiv.

Turner, K., Mileyko, Y., Mukherjee, S., & Harer, J. (2014). Frechet means for distributions

of persistence diagrams. Discrete & Computational Geometry, 52(1), 44–70.

217

https://doi.org/10.1162/netn_a_00073
https://doi.org/10.32614/RJ-2021-033
https://CRAN.R-project.org/package=rgudhi
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1073/pnas.1511905112
https://doi.org/10.1073/pnas.1511905112
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319

Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A.

Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). MIT

Press.

Viviani, R. (2021). Overcoming bias in representational similarity analysis. https://doi.

org/10.48550/ARXIV.2102.08931

Wadhwa, R. R., Williamson, D. F. K., Dhawan, A., & Scott, J. G. (2018). Tdastats: R pipeline

for computing persistent homology in topological data analysis. Journal of Open

Source Software, 3(28), 860. https://doi.org/10.21105/joss.00860

Wang, L., Zhu, C., He, Y., Zang, Y., Cao, Q., Zhang, H., Zhong, Q., & Wang, Y. (2009).

Altered small-world brain functional networks in children with attention-deficit/

hyperactivity disorder. Human Brain Mapping, 30(2), 638–649.

Wasserman, E., Chakroff, A., Saxe, R., & Young, L. (2017). Illuminating the conceptual

structure of the space of moral violations with searchlight representational simi-

larity analysis. NeuroImage, 159, 371–387. https://doi.org/https://doi.org/10.

1016/j.neuroimage.2017.07.043

Yen, P. T.-W., & Cheong, S. A. (2021). Using topological data analysis (tda) and persis-

tent homology to analyze the stock markets in singapore and taiwan. Frontiers in

Physics, 9. https://doi.org/10.3389/fphy.2021.572216

Yeo, B. T., Krienen, F., Sepulcre, J., Sabuncu, M., Lashkari, D., Hollinshead, M., Roffman, J.,

Smoller, J., Zollei, L., Polimeni, J., Fischl, B., Liu, H., & Buckner, R. (2011). The orga-

nization of the human cerebral cortex estimated by functional correlation. Journal

of Neurophysiology, 106, 1125–65. https://doi.org/10.1152/jn.00338.2011

You, K., & Park, H.-J. (2022). Geometric learning of functional brain network on the cor-

relation manifold. Scientific Reports, 12(1), 17752. https://doi.org/10.1038/s41598-

022-21376-0

You, K., & Yu, B. (2021). Tdakit: Toolkit for topological data analysis [R package version 0.1.2].

https://CRAN.R-project.org/package=TDAkit

218

https://doi.org/10.48550/ARXIV.2102.08931
https://doi.org/10.48550/ARXIV.2102.08931
https://doi.org/10.21105/joss.00860
https://doi.org/https://doi.org/10.1016/j.neuroimage.2017.07.043
https://doi.org/https://doi.org/10.1016/j.neuroimage.2017.07.043
https://doi.org/10.3389/fphy.2021.572216
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1038/s41598-022-21376-0
https://doi.org/10.1038/s41598-022-21376-0
https://CRAN.R-project.org/package=TDAkit

Yousefnezhad, M., Sawalha, J., Selvitella, A., & Zhang, D. (2021). Deep representational

similarity learning for analyzing neural signatures in task-based fmri dataset. Neu-

roinformatics, 19(3), 417–431.

Zomorodian, A. (2010). The tidy set: A minimal simplicial set for computing homology

of clique complexes. Proceedings of the Twenty-Sixth Annual Symposium on Computa-

tional Geometry, 257–266. https://doi.org/10.1145/1810959.1811004

Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology. Discrete and Com-

putational Geometry, 33, 249–274. https://doi.org/10.1007/s00454-004-1146-y

219

https://doi.org/10.1145/1810959.1811004
https://doi.org/10.1007/s00454-004-1146-y

