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Abstract 

A ballot theorem is a theorem that yields information about the conditional probability that 
a random walk stays above its mean, given its value St after sorne specified amount of time 
t. In the first part of this thesis, ballot theorems are proved for aIl walks whose steps consist 
of independent, identically distributed random variables that are in the range of attraction 
of the normal distribution. With a mild assumption on the moments of the steps, the results 
are strengthened; the latter results are shown to be within a constant factor of optimal when 
the value of the random walk at time t is of order Vi. Further results are proved for random 
walks whose value after time t is of order O(t). 

In the second part of the thesis, two questions about the heights of random trees are studied. 
The random trees that are studied are of interest from both a purely probabilistic, and an 
algorithmic perspective. It turns out that in two seemingly very distinct settings, the height 
of a random tree turns out to be closely linked to the behavior of a random walk, in particular 
to the probability that a random walk stays above its mean. The tools developed in the first 
part of the thesis, together with additional results, are then used to derive information about 
the moments of the height of these random trees. We also demonstrate that this information 
can be used to bound the moments of the minima of certain branching random walks. 

Résumé 

Un théorème de ballottage est un théorème qui apporte de l'information sur la probabilité 
conditionnelle qu'une marche aléatoire soit toujours au dessus de sa moyenne, étant donné 
sa valeur après quelques pas. 

Dans la première partie de cette thèse, on prouve un théorème de ballottage pour toutes 
marches aléatoires telles que les pas sont les variables aléatoires indépendantes et identique­
ment distribuées et telles qu'il existe une séquence {an}~=l telle que Sni an tend vers une 
distribution de Gauss. Si on suppose que les pas ont un moment d'ordre 2 + a, a > 0, alors 
on prouve un résultat plus fort, ce qui est le plus fort possible modulo un facteur constant. 

Dans la deuxième partie de la thèse, on étudie deux questions qui s'adressent aux hauteurs 
des arbres aléatoires. Les arbres aléatoires qu'on étudie sont intéressants du point de vue de 
la probabilité ainsi que du point de vue de l'informatique. Ces deux questions qui ne semblent 
pas avoir rien à faire l'une avec l'autre peuvent toutes les deux être étudiées en utilisant une 
marche aléatoire et en utilisant les résultats de la première partie de la thèse. En étudiant 
ces arbres du point de vue des marches aléatoires, on arrive à borner les moments de leurs 
hauteurs. On démontre aussi que ces bornes impliquent des bornes pour les moments des 
minimums de certaines marches aléatoires de branchement. 
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Chapter 1 

A history of ballot theorems 

"There is a big difference between a fair game and agame it's wise to play." 

-Bertrand (1887b). 

1.1 Discrete time ballot theorems 

We begin by sketching the development of the classical ballot theorem as it first appeared 

in the Comptes Rendus de l'Academie des Sciences. The statement that is fairly called the 

first Ballot Theorem was due to Bertrand: 

Theorem 1 (Bertrand (1887c)). We suppose that two candidates have been submitted to 

a vote in which the number of voters is /1. Candidate A obtains n votes and is elected; 

candidate B obtains m = /1- n votes. We ask for the probability that during the counting of 

the votes, the number of votes for A is at all times greater than the number of votes for B. 

This probability is (2n - /1)//1 = (n - m)/(n + m). 

Bertrand's "pro of" of this theorem consists only of the observation that if Pn,m counts the 
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number of "favourable" voting records in which A obtains n votes, B obtains m votes and 

A always leads during counting of the 'votes, then 

the two terms on the right-hand si de corresponding to whether the last vote counted is 

for candidate B or candidate A, respectively. This "pro of" can be easily formalized as 

follows. We first note that the binomial coefficient Bn,m = (n + m)!/n!m! counts the total 

number of possible voting records in which A receives n votes and B receives m, Thus, the 

theorem equivalently states that for any n 2: m, Bn,m - Pn,m, which we denote by .6.n,m, 

equals 2mBn,m/(n + m). This certainly holds in the case m = 0 as Bn,o = 1 = Pn,o, 

and in the case m = n, as Pn,n = O. The binomial coefficients also satisfy the recurrence 

Bn+1,m+1 = Bn+1,m + Bn,m+l, thus so do es the difference .6.n,m. By induction, 

.6.n+1,m + .6.n,m+l 

2m B 2 (m + 1) B _ 2 (m + 1) B 
- n+m+1 n+1,m+ n+m+1 n,m+l- n+m+2 n+1,m+1, 

as is easily checked; it is likely that this is the proof Bertrand had in mind. 

After Bertrand announced his result, there was a brief flurry of research into ballot theorems 

and coin-tossing games by the probabilists at the Academie des Sciences. The first formaI 

proof of Bertrand's Ballot Theorem was due to André and appeared only weeks later (André, 

1887). Andr'e exhibited a bijection between unfavourable voting records starting with a vote 

for A and unfavourable voting records starting with a vote for B. As the latter number is 

clearly Bn,m-l, this immediately establishes that Bn,m -Pn,m = 2Bn,m-l = 2mBn,m/(n+m). 

A little later, Barbier (1887) asserted but did not prove the following generalization of the 

classical Ballot Theorem: if n > km for sorne integer k, then the probability candidate A 
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always has more than k-times as many votes as B is precisely (n - km) / (n + m). In response 

to the work of André and Barbier, Bertrand had this to say: 

"Though 1 proposed this curious question as an exercise in reason and calcu-

lation, in fact it is of great importance. It is linked to the important question of 

duration of games, previously considered by Huygens, [de] Moivre, Laplace, La­

grange, and Ampere. The problem is this: A gambIer plays a game of chance in 

which in each round he wagers l 'th of his initial fortune. What is the probability 
n 

he is eventually ruined and that the he spends his last coin in the (n + 2f..L) 'th 

round?" (Bertrand, 1887a) 

He notes that by considering the rounds in reverse order and applying Theorem 1 it is clear 

that the probability that ruin occurs in the (n+2f..L) 'th round is nothing but n:2f.l (n:2f.l)2-(2f.l+n). 

By informaI but basic computations, he then derives that the probability ruin occurs before 

the (n + 2f..L) 'th round is approximately 1 - $:, so for this probability to be large, f..L must 

be large compared to n2• (Bertrand might have added Pascal, Fermat, and the Bernoullis 

(Hald, 1990, pp. 226-228) to his list of notable mathematicians who had considered the game 

of ruin; (Balakrishnan, 1997, pp. 98-114) gives an overview of prior work on ruin with an 

eye to its connections to the ballot theorem.) 

Later in the same year, he proved that in a fair game (a game in which, at each step, the 

average change in fortunes is nil) where at each step, one coin changes hands, the expected 

number of rounds before ruin is infinite. He did so using the fact that by the above formula, 

the probability of ruin in the t'th round (for t large) is of the or der 1/t3/2, so the expected 

time to ruin behaves as the sum of 1/tl/2, which is divergent. He also stated that in a fair 

game in which player A starts with a dollars and player B starts with b dollars, the expected 

time until the game ends (until one is ruined) is precisely ab (Bertrand, 1887b). This fact 

is easily proved by letting ea,b denote the expected time until the game ends and using the 
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recurrence ea,b = 1 + (ea-l,b + ea,b-l)/2 (with boundary conditions ea+b,O = eO,a+b = 0). 

Expanding on Bertrand's work, Rouché provided an alternate proof of the above formula 

for the probability of ruin (Rouché, 1888a). He also provided an exact formula for the the 

expected number of rounds in a biased game in which player A has a dollars and bets ao 

dollars each round, player B has b dollars and bets bo dollars each round, and in each round 

player A wins with probability p satisfying aop > bo(1 - p) (Rouché, 1888b). 

AlI the above questions and results can be restated in terms of a random walk on the set 

of integers Z. For example, let So = ° and, for i 2:: 0, Si+1 = Si ± 1, each with probability 

1/2 and independently of the other steps - this is called a symmetric simple random walk. 

(For the remainder of this section, we will phrase our discussion in terms of random walks 

instead of votes, with X i+1 = SHI - Si constituting a step of the random walk.) Then 

Theorem 1 sim ply states that given that St = h > 0, the probability that Si > ° for all 

i = 1,2, ... ,t (i.e. the random walk is favourable for A) is precisely h/t). Furthermore, the 

time to ruin when player A has a dollars and player B has b dollars is the exit time of the 

random walk S from the interval [a, -bl. The research sketched above constitutes the first 

detailed examination of the properties of a random walk So, SI, ... ,Sn conditioned on the 

value Sn, and the use of such information to study the asymptotic properties of such a walk. 

In 1923, Aeppli proved Barbier's generalized ballot theorem by an argument similar to that 

used by André's. This proof is presented in Balakrishnan (1997, pp.l0l-l02), where it is also 

observed that Barbier's theorem can be proved using Bertrand's original recurrence in the 

same fashion as above. A simple and elegant technique was used by Dvoretzky and Motzkin 

(1947) to prove Barbier's theorem; we use it to prove Bertrand's theorem as an example of 

its application, as it highlights an interesting perspective on ballot-style results. 

We think of X = (Xl, ... , X n+m , Xl) as being arranged clockwise around a cycle (so that 

X n+m +1 = Xl). There are precisely n + m walks corresponding to this set, obtained by 
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choosing a first step Xi, so to establish Bertrand's theorem it suffices to show that how-

ever Xl, ... ,Xn+m are chosen such that Sn = n - m > 0, precisely n - m of the walks 

Xi+l,"" X n+m, Xl,"" Xi are favourable for A. Let Sij = Xi+l + ... + X j (this sum in-

cludes X n+m if i < j). We say that Xi, ... ,Xj is a bad run if Sij = ° and Silj < ° for aIl 

i' E {i + 1, ... ,j} (this set includes n + m if i > j). In words, this condition states that 

i is the first index for which the reversed walk starting with X j and ending with X i+1 is 

nonnegative. It is immediate that if two bad runs intersect then one is contained in the 

other, so the maximal bad runs are pairwise disjoint. (An example of a random walk and its 

bad runs is shown in Figure 1.1). 

10 

Figure 1.1: On the left appears the random walk corresponding to the voting sequence 
(1, -1, -1, 1, 1, -1, -1, 1, 1, 1), doubled to indicate the cyclic nature of the argument. On 
the right is the reversaI of the random walk; the maximal bad runs are shaded grey. 

If Xi = 1 and Sij = ° for sorne j then Xi begins a bad run, and since Sn = :Z:::~1 Xi > 0, if 

Xi = -1 then Xi ends a bad run. As Sij = ° for a maximal bad run and Xi = 1 for every 

Xi not in a bad run, there must be precisely n - m values of i for which Xi is not in a bad 

run. If the walk starting with Xi is favourable for A then for aIl i =1- j, Sij is positive, so 

Xi is not in a bad run. Conversely, if Xi is not in a bad run then Xi = 1 and for aIl j =1- i, 

Sij > 0, so the walk starting with Xi is favourable for A. Thus there are precisely (n - m) 

favourable walks corresponding to X, which is what we set out to prove. 

14 



With this technique, the proof of Barbier's theorem requires nothing more than letting the 

positive steps have value 1/ k instead of 1. This proof is notable as it is the first time the ide a 

of cyclic permutations was applied to prove a ballot-style result. This "rotation princip le" is 

closely related to the strong Markov property of the random walk: for any integer t ;::: 0, the 

random walk St - St, St+1 - St, St+2 - St, . .. has identical behavior to the walk Sa, SI, S2 and 

is independent of Sa, SI, . .. ,St. (Informally, if we have examined the behavior of the walk 

up to time S, we may think of restarting the random walk at time t, starting from a height 

of St; this will be important in the generalized ballot theorems to be presented in Chapter 

2.) This proof can be rewritten in terms of lattice paths by letting votes for A be unit steps 

in the positive x-direction and votes for B be unit steps in the positive y-direction. When 

conceived of in this manner, this proof immediately yields several natural generalizations 

(Dvoretzky and Motzkin, 1947; Grossman, 1950; Mohanty, 1966). 

Starting in 1962, Lajos Tahics proved a sequence of increasingly general ballot-style results 

and statements about the distribution of the maxima when the ballot is viewed as a random 

walk (Tahics, 1962a,b,c, 1963, 1964a,b, 1967). l highlight two of these theorems below; l 

have not chosen the most general statements possible, but rather theorems which l believe 

capture key properties of ballot-style results. 

A family of random variables Xi, ... , X n is interchangeable iffor all (rI, ... , rn) E ]Rn and all 

permutations 0" of {l, ... ,n}, P {Xi ~ rN1 ~ i ~ n} = P {Xi ~ ra (i)V1 ~ i ~ n}. We say 

Xl, ... ,Xn is cyclically interchangeable if this equality holds for all cyclic permutations 0". 

A family of interchangeable random variables is cyclically interchangeable, but the converse 

is not always true. The first theorem states: 

Theorem 2. Suppose that Xl, ... ,Xn integer-valued, cyclically interchangeable random vari­

ables with maximum value 1, and for 1 ~ i ~ n, let Si = Xl + ... + Xi. Then for any integer 

o ~ k ~ n, 
. k 

P {Si > 0 '17'1 ~ 'l ~ ni Sn = k} = -. 
n 
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This theorem was proved independently by Tanner (1961) and Dwass (1962) - we note 

that it can also be proved by Dvoretzky and Motzkin's approach. (As a point of historical 

curiosity, Takacs' proof of this result in the special case of interchangeable random variables, 

and Dwass' proof of the more general result ab ove , appeared in the same issue of Annals of 

Mathematical Statistics.) Theorem 2 and the "bad run" proof of Barbier's ballot theorem 

both suggest that the notion of cyclic interchangeability or something similar may lie at the 

he art of all ballot-style results. 

Theorem 3 (Tabics (1967), p. 12). Let Xl, X 2 , .• , be an infinite sequence of iid integer 

random variables with mean /1 and maximum value 1 and for any i ~ 1, let Si = Xl + ... + Xi' 

Then 

p {S" > 0 for n = 1,2, ... } = 1: if /1 > 0, 

if /1 ::; o. 

The proof of Theorem 3 proceeds by applying Theorem 2 to finite subsequences Xl, X 2 , .•. , X n , 

so this theorem also seems to be based on cyclic interchangeability. Takacs has generalized 

these theorems even further, proving similar statements for step functions with countably 

many discontinuities and in many cases fin ding the exact distribution of maxi=l (Si - i). 

(Takacs originally stated his results in terms of non-negative integer random variables -

his original formulation results if we consider the variables (1 - Xl), (1 - X 2), ... and the 

corresponding random walk.) Theorem 3 implies the following classical result about the 

probability of ever returning to zero in a biased simple random walk: 

Theorem 4 (Feller (1968), p. 274). In a biased simple random walk 0 = Ro, Rt, ... in which 

P {Ri+! - Ri = 1} = p > 1/2, P {Ri+t - R = -1} = 1 - p, the probability that there is no 

n ~ 1 for which Rn = 0 is 2p - 1. 

Proof. Observe that the expected value of Ri - Ri-I is 2p - 1 > 0, so if RI = -1 then with 
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probability 1, Ri = 0 for some i ~ 2. Thus, 

P {Rn i= 0 for aU n ~ 1} = P {Rn > 0 for aU n ~ 1} . 

The latter probability is equal to 2p - 1 by Theorem 3. o 

We close this section by presenting the beautiful "refiection principle" proof of Bertrand's 

theorem. We think of representing the symmetric simple random walk as a sequence of 

points (0, So), (1, SI), ... , (n, Sn) and connecting neighbouring points. If SI = 1 and the 

walk is unfavourable, then letting k be the smallest value for which Sk = 0 and "refiecting" 

the random walk So, ... ,Sk in the x-axis yields a walk from (0,0) to (n, t) whose first step 

is negative - this is shown in Figure 1.1. This yields a bijection between walks that are 

unfavourable for A and start with a positive step, and walks that are unfavourable for A 

and start with a negative step. As all walks starting with a negative step are unfavourable 

for A, all that remains is rote calculation. This proof is often incorrectly attributed to 

André (1887), who established the same bijection in a different way - its true origins remain 

unknown. 

Figure 1.2: The dashed line is the refiection of the random walk from (0,0) to the first visit 
of the x-axis. 
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1.2 Continuous time ballot theorems 

The theorems which follow are natural given the results presented in Section 1.1; how­

ever, their statements require slightly more preliminaries. A stochastic process is sim ply a 

nonempty set of real numbers T and a collection of random variables {Xt , t E T} defined 

on sorne probability space. The collection of random variables {Xl,"" Xn} seen in Section 

1.1 is an exam pIe of a stochastic pro cess for w hich T = {l, 2, ... , n}. In this section we 

are concerned with stochastic pro cesses for which T = [0, rl for sorne 0 < r < 00 or else 

T = [0, (0). 

A stochastic process {Xt , 0 ::; t ::; r} has (cyclically) interchangeable increments if for all 

n = 2,3, ... " the finite collection of random variables {Xrt/n - Xr(t-l)/n, t = 1,2, ... ,n} is 

( cyclically) intechangeable. A process {Xt , t 2: O} has interchangeable increments if for all 

r > 0 and n > 0, {Xrt/n - Xr(t-l)/n, t = 1,2, ... , n} is interchangeable, and is stationary if 

this latter collection is composed of independent identically distributed random variables. 

As in the discrete case, these are natural sorts of prerequisites for a ballot-style theorem to 

apply. 

There is an unfortunate technical restriction which appHes to all the ballot-style results 

we will see in this section. The stochastic pro cess {Xt , t E T} is said to be separable if 

there are almost-everywhere-unique measurable functions X+, X_ such that almost surely 

X_ ::; X t ::; X+ for all t E T, and there are countable subsets S_, S+ of T such that almost 

surely x+ = SUPtES+ X t and X_ = inftEs_ Xt. The results of this section only hold for 

separable stochastic processes. In defense of the results, we note that there are nonseparable 

stochastic pro cesses {Xt , 0 ::; t ::; r} for which sup{ X t - t, 0 ::; t ::; r} is non-measurable. As 

the distribution of this random variable is one of the key issues with which we are concerned, 

the assumption of separability is natural and in sorne sense necessary in order for the results 

to be meaningful. Moreover, in very general settings it is possible to construct a separable 
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stochastic pro cess {l'tlt E T} such that for aIl t E T, l't and X t are almost surely equal (see, 

e.g., Gikhman and Skorokhod, 1969, Sec.IV.2); in this case it can be fairly said that the 

assumption of separability is no loss. 

The following theorem is the first example of a continous-time ballot theorem. A sample 

function of a stochastic pro cess is a function Xw : T --+ lR given by fixing sorne w E S1 and 

letting xw(t) = Xt(w). 

Theorem 5 (Takacs (1965a)). If {Xt , a ::; t ::; r} is a separable stochastic process with 

cyclically interchangeable increments whose sample functions are almost surely nondecreasing 

step functions, then 

1 
t-s 

P {Xt - X o ::; t for a ::; t ::; rlXr - X o = s} = a t 
if a ::; s ::; t, 

otherwise. 

This theorem is a natural continuous equivalent of Theorem 2 of Section 1.1; it can be used to 

prove a theorem in the vein of Theorem 3 which applies to stochastic pro cesses {Xt, t 2: a}. 

Takacs' other ballot-style results for continuous stochastic processes are also essentially step­

by-step extensions of his results from the discrete setting; see Takacs (1965a,b, 1967, 197ab). 

In 1957, Baxter and Donsker derived a double integral representation for sup{Xt - t, t 2: a} 

when this process has stationary independent increments. Their proof proceeds by analyzing 

the zeros of a complex-valued function associated to the process. They are able to use their 

representation to explicitly derive its distribution when the pro cess is a Gaussian process, a 

coin-tossing process, or a Poisson process. This result was rediscovered by Takacs (1970a), 

who also derived the joint distribution of X r and sup{ X t - t, 0 ::; t ::; r} for r finite, using 

a generating function approach. Though these results are clearly related to the continuous 

ballot theorems, they are not as elegant, and neither their statements nor their proofs bring 

to mind the ballot theorem. It seems that considering separable stationary pro cesses in their 
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full generality does not impose enough structure for it to be possible to prove these results 

via straightforward generalization of the discrete equivalents. 

A beautiful perspective on the ballot theorem appears by considering mndom measures 

instead of stochastic processes. Given an almost surely nondecreasing separable stochastic 

process {Xt , ° :::; t :::; r}, fixing any element w of the underlying probability space il yields 

a sample function XW' By our assumptions on the stochastic process, almost every sample 

function Xw yields a measure f.-lw on [0, r], where f.-lw[O, b] = xw(b) - xw(a). This allows us to 

define a "random" measure f.-l on [0, r]; f.-l is a function with domain il, f.-l(w) = f.-lw, and for 

almost all wEil, f.-l(w) is a me as ure on [0, r]. If Xw is a nondecreasing step function, then f.-lw 

has countable support, so is singular with respect to the Lebesgue measure (Le. the set of 

points which have positive f.-lw-measure has Lebesgue measure 0); if this holds for almost all 

w then f.-l is an "almost surely singular" random measure. 

We have just seen an example of a random measure; we now turn to a more precise definition. 

Given a probability space S = (il, L:, P), a random me as ure on a possibly infinite interval 

T c IR is a function f.-l with domain il x T satisfying that for aIl r E T, p,(., r) is a random 

variable in S, and for almost all wEil, p,(w,·) is a measure on T. A random measure p, 

is almost surely singular if for almost all wEil, p,(w,.) is a measure on T singular with 

respect to the Lebesgue measure. (This definition hides some technicality; in particular, 

for the definition to be useful it is key that the set of w for which p, is singular is itself 

a measurable set! See Kallenberg (1999) for details.) A random measure f.-l on IR+, say, 

is stationary if for all t, letting Xt,i = p,(., (i + l)jt) - p,(., ijt), the family {Xt,ili E N} 

is composed of independent identically distributed random variables; stationarity for finite 

intervals is defined similar ly. 

This perspective can be used to generalize Theorem 5. Konstantopoulos (1995) has do ne so, 

as well as providing a beautiful proof using a continuous analog of the reflection principle. 
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The most powerful theorem along these lines to date is due to Kallenberg. To a given 

stationary random me as ure p, defined on T ç jR+ we associate a random variable l called 

the sample intensity of p,. (Intuitively, l is the random average number of points in an 

arbitrary measurable set B c T of positive finite measure, normalized by the measure of B. 

For a formaI definition, see (Kallenberg, 2003, p. 189).) 

Theorem 6 (Kallenberg (1999)). Let p, be an almost surely singular, stationary random 

measure on T = jR+ or T = (0,1] with sample intensity l and let X t = p,(., t) - p,(., 0) for 

tE T. Then there exists a uniform [0,1] random variable U independent from l su ch that 

X t l 
sup - = - almost surely. 
tET t U 

It turns out that if T = (0,1] then conditional upon the event that Xl = m, 1= m almost 

surely. It follows that in this case P {SUPtET ~t :s; 11XI} = max{1 - Xl, O}. Similarly, if 

T = jR+ and ~ -t m almost surely as t -t 00, then l = m almost surely, so in this case 

P {SUPtET ~t :s; 1} = max{ 1 - m, O}. This theorem can thus be seen to include continuous 

generalizations of both Theorem 2 and Theorem 3. 

Kallenberg has also proved the following as a corollary of Theorem 6 (this is a slight refor­

mulation of his original statement, which applied to infinite sequences): 

Theorem 7. If X is a real random variable with maximum value 1 and {Xl, X 2 , ••• , Xn} 

are iid copies of X with corresponding partial sums {O = So, Sl,"" Sn}, then 

It is worth comparing this theorem with Theorem 2; the theorems are almost identical, but 

Theorem 7 relaxes the integrality restriction at the co st of replacing the equality of Theorem 

2 with an inequality. In Chapter 2.4 we prove that such an inequality holds for a broad class 
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of random variables that need not satisfy a one-side boundedness condition, and prove upper 

bounds of the same order. 

1.3 Outline 

To date, Theorem 7 is the only ballot-style result which has been proved for random walks 

that may take non-integer values. Paraphrasing Harry Kesten (1993a), the goal of the first 

part of this thesis is to move towards making ballot theorems part of "the general theory of 

random walks" - part of the body of results that hold for all random walks (with independent 

identically distributed steps), regardless of the precise distribution of their steps. In Chapter 

2, we succeed in proving ballot-style theorems that hold for a broad class of random walks, 

including all random walks that can be renormalized to converge in distribution to a normal 

random variable. A truly general ballot theorem, however, remains beyond our grasp. 

The work of Chapter 2 is in pur suit of more general ballot theorems for their own sake. It 

turns out, however, that ballot theorems can and have been used for understanding many 

probabilistic and algorithmic questions, often seemingly unrelated to the ballot theorem (for 

example, the work of Takacs (1962c, 1967, 1989) explores the applications of ballot theorems 

to the theory of queues, and Dwass (1969) exhibited a connection between ballot theorems 

and branching processes; this is a connection we will also explore). 

In the second part of the thesis, we will see that in several, seemingly unrelated settings, 

ballot theorems provide useful and novel insight into the behavior of random structures. In 

Chapter 3, we use a ballot theorem-inspired approach to study the growth of the components 

of the random graph Gn,p. In Chapter 4, we build on the work of Chapter 3 to study the 

height of a random tree closely linked to the Gn,p graph process. Finally, in Chapter 5, we 

use random walks and ballot theorems to study the moments of the maxima of branching 

22 



pro cesses (which, we shall see, can equivalently be interpreted as answering a question about 

the moments of the heights of a certain class of random trees). Though the settings of 

Chapters 4 and 5 are seemingly very distinct, in both cases the height of a random tree 

turns out to be intimately linked to the behavior of a random walk, its first return to 0, and 

whether it stays positive (or negative) before that time. 
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Chapter 2 

A general ballot theorem 

The aim of this chapter is to prove analogs of the discrete-time ballot theorems of the 

previous chapter for more general random variables. The Theorems of Section 1.1 all have 

two restrictions: (1) they apply only to integer-valued random variables, and (2) theyapply 

only to random variables that are bounded from one or both sides. (In the continuous-time 

setting, the restriction appearing in Section 1.2 that the stochastic processes are almost 

surely integer-valued, increasing step functions is of the same flavour.) In this chapter we 

investigate what ballot-style theorems can be proved when such restrictions are removed. 

The restrictions (1) and (2) are necessary for the results of Section 1.1 to hold. Suppose, 

for example, that we relax the condition of Theorem 2 requiring that the variables are 

bounded from above by + 1. If X takes every value in N with positive probability, then 

P {Si> 0\11 :::; i :::; nlSn = n} < 1, so the conclusion of the theorem fails to hold. For a 

more explicit example, let X be any random variable taking values ±1, ±4 and define the 

corresponding cyclically interchangeable sequence and random walk. For S3 = 2 to occur, 

we must have {Xl ,X2 ,X3 } = {4,-1,-1}. In this case, for Si > 0, i = 1,2,3 to occur, Xl 

must equal 4. By cyclic interchangeability, this occurs with probability 1/3, and not 2/3, as 
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Theorem 2 would suggest. This shows that the boundedness condition (2) is required. If we 

relax the integrality condition (1), we can construct a similar example where the conclusions 

of Theorem 2 do not hold. 

Since the results of Section 1.1 can not be directly generalized to a broader class of random 

variables, we seek conditions on the distribution of X so that the bounds of that section have 

the correct order, i.e., so that P {Si> 0 VI::; i::; nJSn = k} = 8(k/n). (When we consider 

random variables that are not necessarily integer-valued, the right conditioning will in fact 

be on an event such as {k ::; Sn < k + 1} or something similar.) How close we can come to 

this conclusion will depend on what restrictions on X we are willing to accept. It tums out 

that a statement of this fiavour holds for the mean zero random walk S~ = Sn - nEX as 

long as there is a sequence {an }n~O for which (Sn - nEX) / an converges to a non-degenerate 

normal distribution (in this case, we say that X is in the range of attraction of the normal 

distribution and write X E V; for example, the classical central limit theorem states that if 

E {X2 } < 00 then we may take an = yin for aIl n.) 

From this point on, we restrict our attention to sums of mean zero random variables. We 

note this condition is in sorne sense necessary in order for the results we are hoping for to 

hold. If EX i= 0 - say EX > 0 - then it is possible that X is non-negative, so the only way 

for Sn = 0 to occur is that Xl = ... = X n = 0, and so P {Si> 0 VI::; i ::; nJSn = O} = 0, 

and not 8(1/n) as we would hope from the results of the previous chapter. 

In Section 2.1 we demonstrate the approach of the chapter in a restricted setting. This allows 

us to highlight the key ideas behind the general ballot theorems of this chapter without too 

much notational and technical burden. In Sections 2.2 through 2.4, we develop and prove 

generalized ballot theorems which hold when X has finite variance; these results are st ronge st 

wh en Sn = O( yin). In Section 2.5 we prove a ballot-style result which is interesting when 

Sn = 8(n). Finally, in Section 2.6 we address the limits of our approach and potential 
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avenues of research. 

2.1 Ballot theorems for closely fought elections 

One of the most basic questions a ballot theorem can be said to answer is: given that an 

election resulted in a tie, what is the probability that one of the candidates had the lead at 

every point aside from the very beginning and and the very end. In the language of random 

walks, the question is: given that Sn = 0, what is the probability that S does not return to 0 

or change sign between time 0 and time n? Erik Sparre Andersen has studied the conditional 

behavior of random walks given that Sn = 0 in great detail, in particular deriving beautiful 

results on the distribution of the maximum, the minimum, and the amount of time spent 

above zero. Much of the next five paragraphs can be found in Andersen (1953), for example, 

in slightly altered terminology. 

We call the event that Sn does not return to zero or change sign before time n, Leadn. We 

can easily bound P {Leadn 1 Sn = O} using the fact that Xl, ... ,Xn are interchangeable. If 

we condition on the multiset of outcomes {Xl,"" Xn} = {Xa(l)"'" Xa(n)}, and then choose 

a uniformly random cyclic permutation ()' and a uniform element i of {l, ... ,n}, then the 

interchangeability of Xl,' .. , X n implies that (Xa(i) , ... , Xa(n), Xa(l),"" Xa(i-l)) has the same 

distribution as if we had sampled directly from (Xl,' .. ,Xn ). 

Letting Sj = L:{:i Xa(k), in order for Leadn to occur given that Sn = 0, it must be the 

case that Si is either the unique maximum or the unique minimum among {Sl,"" sn}. The 

probability that this occurs is at most 2/n as it is exactly 2/n if there are unique maxima 

and minima, and less if either the maximum or minimum is not unique. Therefore, 

2 
P {LeadnlSn = O} ::; -. 

n 
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On the other hand, the sequence certainly has some maximum (resp. minimum) Si, and if 

Xl = Xi then Sj is always non-positive (resp. non-negative). Denoting this event by Nonposn 

(resp. Nonnegn), we therefore have 

1 1 
P {NonposnlSn = O} ~ - and P {NonnegnlSn = O} ~ -

n n 
(2.2) 

If Sn = 0 then the (n - 1) renormalized random variables given by XI = Xi+! + Xd(n - 1) 

satisfy (n - I)S~_1 = (n - 1) 2::-11 XI = (n - 1) 2:~=1 Xi = O. If Xl > 0 and none of 

the renormalized partial sums are negative, then Leadn occurs. The renormalized random 

variables are still interchangeable (see Andersen (1953, Lemma 2) for a proof of this easy 

fact) , so we may apply the second bound of (2.2) to obtain 

1 
P {LeadnlSn = 0, Xl > O} ;::: --. 

n-l 

An identical argument yields the same bound for P {Leadn 1 Sn = 0, Xl < O}, and combining 

these bounds yields 

P {LeadnlSn = O} > P {LeadnlSn = 0, Xl =1 O} P {Xl =1 OISn = O} 

1 - P {Xl = 01 Sn = O} > 
n-l 

As long as P {Xl = OISn = O} < 1, this yields that P {LeadnlSn = O} ~ crin for some 

cr> O. By interchangeability, P {Xl = OISn = O} < 1 as long as Sn = 0 does not imply that 

Xl = ... = X n = O. (Note, however, that there are cases where P {Xl = OISn = O} = 1, for 

ex ample if the Xi only take values in the non-negative integers and in the negative multiples 

of )2.) In later chapters, we refer to the above chain of reasoning as the standard rotation 

argument. 

We would like to derive similar information about P {Leadn 1 Sn = r} for arbitrary r. In 
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this preliminary discussion we restrict our attention to "smaIl" r (the meaning of which 

will become clear) , which led to the phrase "closely fought elections" in the section title. 

Furthermore, instead of studying Leadn , for the time being we will focus on the closely 

related event Lead~ that Si > 0 for aIl 0 < i < n (which is equivalently the event Leadn n 

{Xl> O}). We can apply a similar argument to that seen above to derive a weak lower 

bound on P { Lead~ 1 Sn = r}. By again renormalizing the random walk, this time letting 

X: = Xi - rln, we obtain a new random walk S', and the event that Sn = r is the event 

that S~ = O. The random variables X: are still interchangeable, and if the partial sums S: 

are aIl non-negative then Si > 0 for i = 1,2, ... ,n, so Lead~ occurs. (2.2) thus yields 

for aIl integers r ~ O. 

1 
P {Lead~ 1 Sn = r} ~ -

n 
(2.3) 

In fact, as we saw at the end of Section 1.2, for many random variables X a lower bound of 

or der r ln holds in (2.3), and we shaIl show that such bounds hold for an even larger class of 

random variables, for certain r. The primary goal of this chapter is to prove upper bounds 

of the same order. Most generaIly speaking, the question we seek an answer to is this: what 

are sufficient conditions on the structure of a multiset S of n numbers to ensure that if the 

elements of the multiset sum to r, then in a uniformly random permutation of the set, aIl 

partial sums are positive with probability of order r ln? 

One way to construct a uniformly random permutation of a multiset {Xl, ... , Xn} is as foIlows . 

• Sample uniformly from S with replacement to obtain a sequence Xl, X 2 , • •• ,Xt , stop-

ping at the first time t that every element of S has appeared (we emphasize that Xi 

and Xj must both appear if i =1- j, even if Xi = Xj) . 

• Throw out aIl but the first occurrence of each Xi in the sequence Xl, ... ,Xt . 
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The sequence Xl, ... , X t is a random walk whose steps are given by sampling uniformly from 

S. The subsequence of Xl, ... ,Xt resulting from throwing away all but the first occurrence of 

each Xi is a uniformly random permutation. For fixed 1 :::; k :::; n, the probability X k+1 = Xi 

for some i :::; k is at most kln. Fixing t and summing this bound over k < t, it follows that 

the probability there is a repeated element in Xl, ... ,Xt is at most t 2 ln. When t = o( ft), 

this probability is 0(1). In other words, for such t, with high probability the first t elements 

of a uniformly random permutation of S look like the first t steps of a random walk whose 

steps are given by sampling uniformly and independently from S. 

In this chapter, we focus our attention on sets S whose elements are sampled independently 

from a mean-zero probability distribution, Le., they are the steps of a mean-zero random 

walk. Using the connection described in the previous paragraph, it is possible to apply parts 

of our analysis to sets S that do not obey this restriction. We do not, however, pursue this 

direction in detail. 

We now return to the discussion that led to (2.3). Our basic approach is to try to find a 

way to express P { Lead~ 1 Sn = r} in terms of P { Leadn 1 Sn = O}, which we now understand 

quite well. For the purposes of this preliminary discussion, we assume that X is a non-zero 

symmetric integer random variable with maximum value A. We will make several other 

simplifying assumptions as we proceed, to facilitate the exposition. As the reader can verify, 

all assumptions are in some sense natural given that X is in the range of attraction of the 

normal distribution. We suggest the reader imagine that X takes only values +1 and -1 

(though all assumptions are valid much more generally) in reading what follows. 

In or der for Lead~ and {Sn = r} to occur, it is necessary that (1) letting T be the first time 

t > 0 that St :::; 0 or St ;::: r, we have ST ;::: r (we denote this event POSr) , (2) T < n, (3) 

X T+I + ... + X n = r - ST, and (4) for all T < i < n, X T+1 + ... + Xi > -(r + A). These 

events are shown in Figure 2.1. 
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T n 

Figure 2.1: In the above random walk Posr occurs as the walk reaches height at least r 
before its first return to O. The time T at which this occurs is less than ni 4. The remainder 
of the walk is always greater than - (r + A), and Sn = ST = r. Thus, Lead~ and {Sn = r} 
both occur. 

For a random walk S and a> 0, we say that Sn stays above -a if, for aIl 1 < i < n, Si > -a, 

and denote this event by Sn abo - a. (80 in particular, the event Sn abo 0 is just the event 

Lead~.) Let S' be the random walk S restarted at time T, so S~ = X T+1 + ... +XT+i - then 

by the strong Markov property, we have 

n-l 

p {Lead~, Sn = r} < L P {POSr , T = t} . 
t=l 

P {S~_t = r - St, S~_t abo - (r + A) 1 POSr , T = t} (2.4) 

As we shall see later, for r = o( yin 1 log n) (which we hereafter refer to as "small" r), T is 

o( n) with high enough probability that in fact, 

( 

ln/2J 
P { Lead~, Sn = r} - 0 ~ P {POSn T = t} . 

p {S~_t = r - St, S~_t abo - (r + A)IPos" T = t} ). (2.5) 

We now make three additional simplifying assumptions about the random walk S: 
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(Al) for n/2 :S n' :S n, for small r, and for integers 0 :S Ikl :S A, P {SnI = k, Sn' abo - (r + An = 

8(P{Sn=k,Snabo -r})=8(P{Sn=0,Snabo -r}), 

(A2) for small T, P{Posr,T:S Ln/2J} = 8(P{Posr}), and 

(A3) for small T, P {Sn = O} = 8(P {Sn = T}). 

Since if T = t, then -A :S r - St :S 0, by the strong Markov property and by applying first 

(Al) then (A2) in (2.5), we have that for sm aIl r, 

P { Lead~ , Sn = r } 8 (P {POST) T :::; Ln/2 J} P {Sn = 0, Sn abo - T} ) . 

8 (P { POST} P {Sn = 0, Sn abo - r} ) . (2.6) 

We can also relate the events Lead~ and Sn abo - T in the following manner. In order for 

{Lead~, Sn = O} to occur, it suffices that (A) POST occurs and T < n/4, (B) letting T' be 

the last time t < n that St ~ T or St = 0, we have St ~ r (we denote this event Pos~) and 

n - T' < n/4, and (C) letting St = ST+i - ST, and letting a = -ST - (Sn - Sn-TI), we have 

SY.I_T = a and SY.I_T abo - r. These events are shown in Figure 3.2. 

T r n 

Figure 2.2: A random walk for which the events (A),(B), and (C) aIl occur. For the random 
walk depicted ab ove , a = 0 as ST = -(Sn - Sn-T) = r. 
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By our assumption that r is small, we will be able to show that 

P {POST) Pos~, T < n/4, n - T' < n/4} 8(P {Posr} P {Pos~}). (2.7) 

Applying the assumption (Al) to the event (C), we therefore have 

P {Lead~, Sn = O} n ( P { POSr } P {PoS~} . 

P { STI-T = 0, STI-T abo - riT < ~,TI > 3; } ) 

- n(P{POSr}P{POS~}P{Sn=O,Snabo -r}). (2.8) 

Combining (2.6) and (2.8) yields that 

{ + } (P {Lead~, Sn = O}) 
P Leadn , Sn = r = 0 P {POS~} , 

and finally, assumption (A3) and (2.3) yield that 

{ + } (P { Lead~ 1 Sn = O}) ( 1 ) 
P Leadn 1 Sn = r = 0 P {Pos~} = 0 P {Pos~} . n . (2.9) 

We can thus derive upper bounds on P { Lead~ 1 Sn = r} if we can bound P {Pos~}, and if we 

can justify our assumptions (A1)-(A3). The primary work in doing so will be to justify our 

claims about the upper tail of T and our subsequent probability manipulations. Bounding 

the upper tail of T reduces to understanding the expected time T until the random walk 

first exits [0, rl, and the probability such a time exceeds its expected value by very much. 

Observation 1: The intuition given by the symmetric simple random walk, as discussed 

in Chapter 1, is that T should have expected value about r2• We will prove this, and using 

a renewal argument, we will then easily show that P {T > 2kE {T}} = O(1/2k) for k 2: l. 

Thus, if r = o( y'n/ log n), the probability that T exceeds En, (for sorne fixed E > 0) is much 
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sm aller than I/n2 once n is large enough. 

Observation 2: Assuming ET is finite, by Wald's Identity we therefore have that EST = 

ETEXI = O. We may then write 

0= EST = E {STIPosr} P {Posr} + E {STIPosr} P {POSr}. (2.10) 

This equation yields an easy upper bound on P {POSr}' By definition E{STIPosr} 2: r, and 

by our assumption that the steps have absolute value at most A, we have E {STIPosr} 2: -A. 

Therefore 

02: rP {Posr} - AP {POSr} = rP {Posr} - A(1 - P {Posr}) , 

and rearranging the latter inequality yields that P {POSr} ::; AI (r + A). 

We may derive an upper bound of the same order for P {Posr} in a similar fashion; we first 

observe that E {STIPosr} < r+A. Furthermore, since if Xl ::; 0 then POSr occurs and T = 1, 

we have 

By our assumption that Xl is symmetric, integer valued, and is never 0, this yields 

Combining (2.10) with our bounds on E {STIPosr} and E {STIPosr}, we thus have, 

0< (r + A)P {Posr} - (1/2)P {POSr} = (r + A)P {POsr} - (1/2)(1 - P {Posr}) , 

which after rearrangement gives P {Posr} 2: 1/2(A + r + 1/2). 
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The events Pos~ and Posr are dosely related. More precisely, letting S' be the "negative 

reverse" of 5 defined by Sb = 0, Sf+1 = Sf - X n - i , the event Pos~ is just the event Posr but 

with respect to the random walk S'. Since the steps of 5 are symmetric, the random walks 

S'and 5 are identically distributed, so our bound on P {Posr} immediately gives 

1 
P {Pos'} > . 

r - 2(A + r + 1/2) 
(2.11) 

Obervation 1 justifies moving from (2.4) to (2.5) and together, the bounds given in Obser­

vations 1 and 2 justify equation (2.7), establishing the validity of our derivation of (2.9). 

FinaIly, plugging the bound (2.11) into (2.9) yields that 

P { Lead~ 1 Sn = r} = 0 (;) , (2.12) 

as desired. Assuming we accept aIl the restrictions we have placed on our random variables 

and on the random walk S, the only step remaining to make the argument leading to (2.12) 

rigorous is a proof of the daims of Observation 1, i.e., that it takes order r 2 time to exit a 

strip of width rand that there are strong upper tail bounds for this time. 

In what follows we do not make the strong assumptions of this section on the distribution 

of X and on the random walk S. The only general requirement from this point on is that 

EX = ° and Var {X} > 0, Le., X is not a point mass; aIl other assumptions will be stated 

explicitly. We now turn our attention to the details. 

2.2 The time ta exit a strip. 

For r > 0, we consider the first time t for which IStl ~ r, denoting this time Tr . We prove 
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Lemma 8. There is A su ch that for aU r > l, ETT < Ar2 and for aU integers k > l, 

This is an easy consequence of a dassical result on how "spread out" sums of independent 

identically distributed random variables become. The version we present can be found in 

Kesten (1972): 

Theorem 9. For any family of independent identicaUy distributed real random variables 

XI, X 2 , . " with positive, possibly infinite variance and associated partial sums SI, S2, ... , 

there is a constant c depending only on the distribution of Xl such that for aU n, 

sup P {x :::; Sn :::; X + 1} :::; c/ Vii. 
xElR 

Proof of Lemma 8. Observe that the expectation bound follows directly from the probability 

bound, sin ce if the probability bound holds then we have 

CXl 00 00 rA 21 
ETT :::; LP {TT ~ j}:::; LrAr21P {TT> irAr21} :::; L + = 2rAr21, 

j=O i=O i=O 

which establishes the expectation bound with a slightly changed value of A. It thus remains 

to prove the probability bound. By Theorem 9, there is c> 0 (and we can and will assume 

c> 1) such that 

l2T J 
P {ISr128c2r211 :::; 2r} < L P {i :::; SrT21 :::; i + 1} 

i=l-2T J 
c 1 

< (4r + 1) < -
Jf128c2r 21 2' 

(2.13) 

the last inequality holding as c> 1 and r > 1. Let t* = r128c2r 21 - then P {TT> t*} :::; 1/2. 

We use this fact to show that for any positive integer k, P {TT> kt*} :::; 1/2\ which will 

establish the daim with A = 128c2 + 1, for example. We proceed by induction on k, having 
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just proved the daim for k = 1. We have 

P {Tr > (k + 1)t*} P {Tr > (k + 1)t* nT> kt} 

P {Tr > (k + 1)t*ITr > kt*} P {Tr > kt} 

1 
2k • P {Tr > (k + 1)t*ITr > kt*} , 

by induction. It remains to show that P {Tr > (k + 1)t*ITr > kt*} :S 1/2. If Tr > kt* then 

by the strong Markov property we may think of restarting the random walk at time kt*. 

Whatever the value of Skt*, if the restarted random walk exits [-2r,2rJ then the original 

random walk exits [-r, rl, so this inequality holds by (2.13). This proves the lemma. 0 

We may derive a stronger bound by taking two facts into consideration. First, by the 

assumption of positive variance, there are v > 0, f > 0 such that P {IXI ~ v} > f. Second, 

the bound of Lemma 8 is crude in the sense that when we restart the random walk, it is 

not really necessary that the restarted walk exit the strip [-2r,2rJ in order for the original 

random walk to exit [-r, rJ. If St = s, say, and -r < s < r, then the restarted random walk 

need only reach the boundary of [r - s, -(r + s)J in order for the original walk to exit [-r, rJ. 

To make use of the latter fact, it is useful to study the stopping time Tr,s, the first time t 

that ISt + si ~ r, for arbitrary -r :S s :S r - bounds on this stopping time imply bounds on 

Tr by taking s = O. We can show: 

Lemma 10. IJ, Jor a given v > 0, f > 0, P {IXI > v} ~ f,then Jor all r ~ 0 and all s Jor 

which 0 :S Isl :S r, 

The intuition of our pro of is contained in the case where S is a symmetric simple random 

walk. Let Ti be the first time IST.! = 2i
. In particular, we have To = ETo = 1 = (2°)2. For 
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i > 0, we have the simple reeurrence 

ETi = 2ETi - 1 + (1/2)E'Ti, 

given by considering whether the walk returns to 0 after the first time it reaches absolute 

value 2i
- 1 and before it reaches absolute value 2i

. Solving the reeurrence yields E'Ti = 4ETi - 1 , 

so by induction E'Ti = (2i)2. For general n, if Un is the first time 1 BUn 1 = n then letting i be 

the smallest integer for which 2i > n, we have 

(2.14) 

We establish the general result in mueh the same manner, but because the steps of our 

random walk do not neeessarily have size exaetly 1, we must be more eareful about what 

event will correspond to "returning to zero before first having absolute value 2i ." 

Proof of Lemma 10. First suppose r :::; v/2. For any 0:::; Isl :::; r, if IBi - 1 +sl < r and Xi 2: v 

then IBi + si 2: r. It follows that 

for all i 2: 0, so 
00 00 

(2.15) 
i=ü i=ü 

whieh establishes the daim for r :::; v /2. 

We next suppose the daim holds for rand establish it for 2r > v/2, Le., we show that for 

sueh r, for any 0 :::; Isl :::; r, 

Fix 0 :::; Isl :::; r arbitrarily. We eonsider the first time t for which IBt + si 2: r, denoting this 

37 



time Tr\;). We then consider the first time t greater than Tr\~ for which ISt - Sr(l) + si 2: r, 
T,' 

denoting this time Tr~;). We let E++ be the event that ST(I) + s > 0 and ST.\2) - ST,<I) + s > 0, 
T,S T,S r,s 

and define E+-, E-+, and E-- similarly (the superscripts indicating the sign of ST(1) + s T,_ 

and of Sr(2) - Sr(l) + s, respectively). If E++ or E-- occurs, then T2r,2s ::; Tr~~). We may 
T,S T,S 

thus write 

ET2r2s , E {T2r,2s1[E++uE--l} + E {T2r,2s1[E+-uE-+l} 

< E {Tr\~)l[E++uE--d + E {Tj,~)l[E+-uE-+l} + E {(T2r,2s - Tj,~»)l[E+-uE-+l} 

ET(2) + E {r. - T(2)IE+- U E-+} P {E+- U E-+} r,s 2r,2s r,s . (2.16) 

By definition and by the strong Markov property, 

Aiso by the strong Markov property, 

so P {E+- U E-+} ::; 1/2. Combining these facts with (2.16) gives 

(2.17) 

If ST(2) = 2s', for some 0::; Is'I ::; r, then the expected time before the random walk restarted r,_ 

at time Tr~~) reaches r or -r is ET2r,2s" Therefore 

sup E {T2r,2S - Tr~~)ISr(2) = 2s', E+- U E-+} 
O::;ls'l::;r T,' 

< sup ET2r,2s" (2.18) 
O::;ls'l::;r 
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By (2.17) and (2.18) we have 

A supremum over s gives 

ET2r,2s :S 2ETr,s + (1/2) sup ET2r,2s" 
o:Sls'l:Sr 

sup ET2r,2s:S 2 sup ETr,s + (1/2) sup ET2r,2s' , 
O:Slsl:Sr O:Slsl:Sr o:Sls'l:Sr 

which, after rearrangement, is 

sup ET2r,2s:S 4 sup ETr,s:S 4 max {(4r)2, 1} .~, 
O:Slsl:Sr O:Slsl:Sr v E 

the second inequality holding by induction. Since 2r > v/2, we have that (4r/v)2 > 1. 

Therefore, 4max{(4r/v)2, 1} = (4(2r)/v)2. This completes the pro of. o 

For a specific variable X, we can optimize this bound by choosing v and E carefully. For 

ex ample , if X is a non-zero integer valued random variable then we may take v = 1,E = 1; 

the resulting bound is identical to the bound (2.14) we proved for the simple random walk. 

We can use Lemma 10 and a renewal argument to derive bounds on the probability Tr,s is 

large that correspond to those of Lemma 8: 

Corollary 11. For any integer k > 0, 

Prao! We write T and t in place of Tr,s and r max {( 4r / V)2, 1} / El for simplicity. We proceed 

by induction on k, the daim holding for k = 1 by Lemma 10 and Markov's inequality. We 
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suppose the daim ho Ids for k. We have 

P{T>2(k+l)t} - P{T>2(k+l)tnT>2kt} 

by induction. Furthermore, 

P {T > 2(k + l)tlT > 2kt} P {T > 2kt} 

1 
- 2k ' P {T > 2(k + l)tlT > 2kt} , 

P {T > 2(k + l)tlT > 2kt} ~ sup P {T > 2(k + l)tlT > 2kt, S2kt = Si} , 
O:-=;Is'I:-=;r 

and by restarting the random walk at time 2kt just as in the proof of Lemma 8, for any such 

Si we have 

P {T > 2(k + l)tlT > 2kt, S2kt = Si} = P {Tr,s' 2: 2t} ~ 1/2. 

Thus P {T > 2(k + l)tlT > 2kt} ~ 1/2, so P {T > 2(k + l)t} ~ 1/2k+1. This completes the 

proof. o 

This fact yields an elementary and rigorous justification of Bertrand's intuition that in a fair 

game in which a gambIer starts with r coins (r is an integer and r 2: 1), the gambIer will 

not likely last for much longer than O(r2
) time. The event that the gambIer is not ruined at 

time t, is nothing but the probability that a symmetric simple random walk S started from 

o has not visited -r by time t. Let the time that S first visits -r be called T* Let S be 

an SSRW and consider the smallest value Tl for which 1 ST! 1 2: r - as each step has absolute 

value 1, necessarily ST! = ±r. By symmetry, ST! = -r with probability 1/2. For an SSRW 

we observed that we may take v = E = 1, so by Corollary 11, for any positive integer i, 

Let T2 be the first time after Tl that 1 ST2 - ST! 1 > 2r. An identical calculation yields 
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that P {T2 - Tl > 32i(2r)2} :::; 1/2i. Furthermore, T* > T2 precisely if STl = +r and 

ST2 - STl = +2r; both the latter events have probability 1/2, and they are independent by 

the strong Markov property. We define T3 , ... ,Ti in this manner, with Tj+! the first time 

after Tj that ISTHl - STj 1 ~ 2jr. If T* > 32ir2(L:~:'~ 22j ) then either 

• Tj+l - Tj > (22j )32ir2 for sorne 0 :::; j :::; i - 1, or 

• STHl - STj = 2j r for all 0 :::; j :::; i - 1 (we let To be 0 for convenience). 

Since 32ir2 (L:~:'~ 22j ) < 32i( 4i)r2, it is immediate from the above bounds that 

P {T* > 32i(4i)r2} < P {U~~~{Tj+1 - Tj > (22j )32ir2}} + P {n~~~{STHl - STj = 2
j
r}} 

i 1 i + 1 
< 2i + 2i = 2i' 

This is not a strong bound! For example, if i = log r then we have only shown that 

P {T* > 32r4 log r} = 0 (log r / r). One way we could strengthen this bound is by noting 

that the variance of Tj +! - Tj grows as j grows, so it is much more likely that the later 

differences are large than the earlier ones. We could also strengthen it by being more careful 

about the precise contribution of each difference Tj+l - Tj to T*, rather than using the crude 

union bound above. 

However, we should not hope for a much st ronger bound: if ET* were finite then by Wald's 

identity we would have EST- = 0, which is clearly nonsense as ST- is deterministically equal 

to -r. Thus the expected value of T* is infinite, so L:;::o P {T* ~ i} is infinite, thus these 

tail probabilities can not decay too quickly. More strongly, if Bertrand's back-of-the-envelope 

calculation from Section 1.1 is to be believed (and it is) then our upper bound is within a 

(log r )3/2 factor of the true asymptotics. 
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2.3 Bounding the exit probabilities 

The doubling argument used above to prove Lemma 10 and in the discussion of Bertrand's 

gambIer will be key in our pro of of the more general ballot theorem, but we will bound 

the associated probabilities more carefully. For a general sequence of random variables 

Xl, X 2 , ... and associated random walk S, we can still define the times Tl, T2 , ... just as 

above. Before, however, we were able to exploit the symmetry of the SSRW so that at each 

step, the probability we went below 2i was exactly 1/2. For the general random variables we 

are considering, this is not necessarily true. However, it does still ho Id by Wald's identity 

that EST1 = 0, so 

As discussed in Section 2.1, if we know that E{STlISTl ~ r} and -E{STlISTl ::; -r} are 

close to r, then it follows that IP {STl ~ r} - P {STl ::; -r} 1 is small, so both are close to 

1/2. 

The quantity E{IST11- r} is called the overshoot at r. Griffin and McConnell (1992) have 

considered the size of the overshoot in a very general setting; we proceed to explain those of 

their results which concern us. A random variable X for for which EX = 0 is in the do main 

of attraction of the normal distribution (X E 'D for short) if there is a sequence {an}n>o for 

which Sn/an converges in probability to a normally distributed random variable. We say X 

is a weak V random variable (X E WLP for short) if P {IXI > r} = O(l/rP). For r > 0, let 

Tr = min{t 1 IStl ~ r}. 

Theorem 12 (Griffin and McConnell (1992)). If X E 'D and EX = 0 th en E {ISTr 1 - r} = 

o(r). If in addition, X E WL2+Œ for some 0 < a < 1 then E {ISTrl- r} = O(r l
-

Œ
). Finally, 

if in addition E{IXI3
} < 00 then E{ISTrl- r} = 0(1). 
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Griffin and McConnell also show that aIl the hypotheses above are necessary for the re­

spective conclusions to hold. This paper also contains a pro of of the fact that if X 1:. V 

then E{IBYrl-r} =1= O(r), so, surprisingly, no matter what the distribution of X, either 

E { 1 BYr 1 - r} = o( r) or E {I BYr 1 - r} =1= 0 (r). 

For 0 :S Isl < r letting Tr,s be the first time that IBt + si > r as previously, the proofs from 

Griffin and McConnell (1992) yield without modification the conclusions of Theorem 12 with 

E {IByr,s + 81- r} in place of E {IByrl- r}, and uniformly in 8. 

To avoid reference to the three separate conditions appearing in Theorem 12 in what follows, 

we introduce the following notation Ox(r, f): 

00 if X 1:. V or EX =1= 0 

Ox(r,1) = 
o(r f) if X E V and EX = 0, 

0(r1
-

a 1) if 0 < Cl:' < 1, X E WL2+a and EX = 0, and 

OU) if E {IXI3
} < 00 and EX = O. 

Combining Theorem 12 with (2.19), we can now easily prove bounds on the probability that 

S + s exits [-r, r 1 in the negative direction. 

Theorem 13. For 0 :S Isl < r, 

P {B O} = r - 8 + Ox(r, 1) 
Yr • < 2' , r 

Proo! We have 

E { Byr,. 1 [Srr,s >0] } E { (SyT,s + s) 1 [SrT,s >O]} - sP {SYr,. > O} 

- E { (1 ByT,. + si - r) 1 [Srr,. >0] } + (r - s)P {Syr,. > O} 

- Ox(r, 1) + (r - s)P {SYT,. > O}. 
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by Theorem 12. Similarly, 

E { STr,s 1 [STr,s <0] } E { (STr,s + s) 1 [STr,s <a]} - sP {STr,s < o} 

-E {ISTr,s + si 1 [STr,s <0] } - sP {STr,s < o} 

- - E { (1 STr,s + si - r) 1 [STr,s <a]} - (r + s) P {STr,s < o} 

Ox(r, 1) - (r + s)P {STr,s < O}. 

Thus, by Wald's Identity, 

o ESTr,s = E {STr,sl[STr,s>O]} + E {STr,sl[STr,s<Oj} 

- (r - s)P {STr,s > O} - (r + s)P {STr,s < O} + Ox(r, 1) 

- (r - s) (1- P {STr,s > o}) - (r + s)P {STr,s < O} + Ox(r, 1) 

- (r - s) - 2r P {STr,s > O} + 0 x (r, 1). 

The daim follows. o 

When r -Isl is much larger than Ox(r, 1), the value (r - s + Ox(r, 1))/2r of Theorem 13 is 

8((r - s)/2r), which agrees with the intuition given by the symmetric simple random walk. 

The doubling argument will allow us to strengthen Theorem 13 when Isl is doser to r -

if EX = 0 and X E WL2+a for sorne a > 0, we can prove bounds of order (r - s)/2r as 

long as r - Isl = 0(1). When EX = 0 and X E 1), we will achieve such bounds as long as 

sir = 0(1). 

Lernrna 14. Suppose X E WL2+a for some 0 < Œ :::; 1. Then there are c > 1, ro > 0 su ch 

that for all r ~ ra, for all 0 :S s :S r - ra, 

(r - s) 
P {STr,s < o} ~ 16r ' 
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and for all r - ra < 8 < r 
1 

P {STrs < o} 2: -. . cr 

We prove this lemma via a straightforward application of the doubling argument, using 

Theorem 13 to bound the probability we go positive at each step. We will eventually show 

that upper bounds of the same order hold; the upper bounds also follow from a doubling 

argument, but are a litt le more work to prove. 

Prao! of Lemma 14. We first consider the case that 0 :::; 8 :::; r - ra (we will choose the value 

ro in the course of the proof). We recall that Tr,s is the first time t that ISt + 81 2: r, i.e. it 

is the first time that either St 2: r - 8 or that St :::; -(r + 8). We let u = r - 8 and d = r + s; 

note that u > ro by assumption and d > u since s > o. 

Let Ta = O. For i 2: 0, let Ti+! be the smallest t > Ii for which ISt - STJ 2: 2iu, and let Ei+l 

be the event that STi +l < STi . Finally, let j* = flog(dju)l + 1. If ni:lEi occurs then Si < u 

for all i :::; Tj >, and 

j> 

STj* :::; - L(2 i
-

1U) = -(2j * - l)u :::; -(2dju - l)u < -d = -(r + 8), 
i=l 

so Tr,s :::; 1j* and STr,s :::; -d < O. It follows that P {STr,s < O} 2: P { ni: 1 Ei} = n1:1 P {Ei}, 

the latter equality holding as the Ei are determined on disjoint sections of the random walk. 

For a given i 2: 1, Ei is the event that the walk S restarted at time Ti- 1 dips below _2i-1U 

before exceeding 2i-1U. By Theorem 13, it follows that 

(2.20) 
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for sorne constant Cl > O. We thus have 

P {STr,s < O} > ITP {Ei} 2: IT (~- (2~~)a) 2: IT (~- 2aic~ ra) 
~=1 ~=1 ~=1 a 

1 u r - s 
> -->->--

2j*+1 - 8d - 16r' 

(2.21) 

(2.22) 

(2.22) following from (2.21) as long as we choose ra large enough. This proves the first daim 

of the theorem. Observe that in particular, this implies that for all -r < s :::; r - ra, 

P {STr,s < o} 2: P {STr,r-ro < o} 2: ;;r. (2.23) 

If r - ra < s < r, Let T be the first time t that St + s 2: r or St + s :::; r - ra. By restarting 

the random walk at time T and applying (2.23), we have 

P {STr,s < O} 2: P{ST < O}P {STr,s < OIST < O} 2: P{St < O}· l~r. (2.24) 

Finally, sin ce EX = 0 and Var {X} > 0, there are v > 0, E > 0 such that P {X < -v} 2: E. 

Thus 

(2.25) 

The second daim of the theorem follows from (2.24) and (2.25) by taking C = raEfro/vl/16. 0 

In the above praof, the only place where we use the fact that X E WL2+a is in our bound 

for P {Ei}. If we replace the assumption that X E WL2+a by the assumption that X E V, 

then Ox(r, 1) = o(r), so in (2.20) we can only condude that P {Ei} 2: 1/2 - E, where we 

can make E arbitrarily small by choosing ra large. Following this chain of reasoning we can 

prave the following lemma for the case X E V; the details are omitted. 

Lemma 15. Suppose X E V for some 0 < a :::; 1. Then for all E > 0 there is ra > 0 su ch 
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that for all r ~ ro, for all 0 :S s :S r - ro, 

and for all r - ro :S s < r, 

(r - s) 
P {STr,s < o} 2: r H € ' 

1 
P {STr,s < o} ~ r H €' 

In proving corresponding upper bounds for Lemmas 14 and 15, we must consider the over­

shoot much more carefully because it has a potentially significant effect on the doubling 

argument. Suppose we have defined Tl to be the first time t that IStl ~ k (for sorne k) and 

T2 to be the first time t > Tl that that ISt - ST! 1 > 2k. If it happens that ST! ~ 2k - Le., 

S exits [-k, k] in the negative direction and has overshoot at least k - then the fact that 

ST2 - ST! is positive does not imply that ST2 is positive. Similarly, if the cumulative overshoot 

after many steps eventually exceeds k, then we can no longer conclude that a positive step 

of the doubling process implies that S exceeds zero. 

To de al with this difficulty, we need to modify our stopping times. There are two natural 

candidates for the definition of T2 , for example, which ensure that if ST2 - ST! > 0 then 

ST2 2: k: we could let T2 be the first time t > Tl that ISt - ST! 1 2: 1 ST! 1 + k; or, we could 

let T2 be the first time t ~ Tl that IST2 - kl ~ 2k. Either approach introduces technicalities 

to our proof. In the first case, the strip boundaries become random and we do not know 

precisely how many doublings there will be before the upper boundary of the strip has height 

r. In the second case, wh en we begin a restarted random walk we do not necessarily start 

from the center of the strip, and it is possible that there are "degenerate" doublings, in the 

sense that Ti+l = Ti. 

Which approach we adopt changes the precise technicalities but not the essence of the proof 

- we choose the latter as we have already developed sorne tools for analyzing exit times for 
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"non-centered" random walks. We prove: 

Lemma 16. Suppose X E WL2+a for some 0 < Cl: :::; 1. Then there are ra > 0, c > 0 such 

that for all r 2: ra, for all 0 :::; s :::; r - ra, 

p{S } < 4(r-s) Trs<O _ , , r 

and for all r - 'fa < s < r, 
c 

P {STr,s < o} :::; ~. 

In proving this lemma, we will use the following fact, which is an easy consequence of 

Theorem 12; we omit the pro of. 

Fact 17. Suppose E {X} = 0 and X E WL2+a for some 0 < Cl: < 1. Then for all E, 0 > 0 

and 0 < f3 < Cl: there is 'fa > 0 such that for all 'f 2: 'fa and for all 0 :::; Isl < 'f, 

(2.26) 

and for all i 2: 0, 

(2.27) 

Proof of Lemma 16. As in the proof of Lemma 14, the second claim of Lemma 16 follows 

easily from the first; we therefore restrict our attention to proving the first claim. 

We will use the doubling argument inductively; we begin with a sketch of our approach. We 

let u = 'f - sand d = r + Sj note that d > u since S > O. For i 2: 1, let mi = 2i-1U and let 

Vi = (2 i 
- l)u = I:~=l mi. We define a sequence of stopping times by setting Ta = 0 and, 

for i 2: 1, letting Ti be the first time t > Ti- 1 that St < -Vi or St 2: u. (Notice that if ever 

STi 2: u then Tj = ~ for aIl j 2: i. It is also possible that ~+l = ~ if, for example, the first 

time that St > Vi is also the first time St > vi+d 
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Let Fa be the event that Sa = 0, and for i > 0 let Fi be the event that STi < -Vi. (The 

event Fi is a rough analog of the event n;=l Ej from the proof of Lemma 14). Since if ever 

STi ~ u then STj ~ u for all j > i, the Fi form a decreasing sequence of events. 

We find an increasing sequence .6.i for which .6.i ::; 4 for all i, and prove inductively that 

P {Fi} ::; .6.d2i. Letting i* = l1og(d/u)J, if STr,s < 0 then Fi' must occur; it follows that 

{ } 
.6.i* 4u 4(r - s) 

P STr,s < 0 ::; 2i* ::; d ::; r . 

Of course, we would like to sim ply take .6.j = 4 for all j, but we will have to choose a litt le 

more carefully to make the induction work. The difficulty is that if FI occurs, say, and 

1 ST! 1 - VI is extremely large then the probability of F2 is much larger than 1/2. In order to 

better control this event, we have to use the bounds provided by Fact 17 on the probability 

of a large overshoot. 

For the reason discussed ab ove , we will in fact apply induction not only to bound the 

probability Fi occurs, but to the bound the probability that Fi occurs and in addition the 

overshoot is large. To make this statement more precise, we fix 0 < f3 < a, then fix sorne 

o < J < 1 and define the following events: 

A is the event Fi n {ISTJ - Vi E (0, Jm;-f3]) 

Bi is the event Fi n {ISTil- Vi E (Jm;-f3, m;-f3]) 

Di,j is the event Fi n {ISTil- Vi E (2 jm;-f3,2j
+1m;-f3]) for j ~ 0 

(We mention that the restriction 0 < 6 < 1 is the only restriction on 6.) We observe that if 

Fi occurs then either Ai or Bi or one of the Di,j must occur. We let 'Y = 1/10; continuing 

to postpone the definition of the sequence .6. i , we will in fact prove inductively that for all 
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i ;:: 1, 

P {Fi} < 
6 i 

2i ' 

P {Bi} < 
,6i and (2.28) 

2i 
, 

P {D· -} < 
,6i for aH j = 0, 1,2, ... 

~,J 2i+i ' 

Of course, the first of these inequalities establishes our claim. We state at the out set that 

6 1 = 2. As a consequence, the bound on P {FI} holds triviaHy. 

We make four requirements on the size of ro. First, we let E = ,/4 = 1/40 and insist that ro 

is large enough that for aH r ;:: ro and aH 0 :::; s :::; r, P {ISTr,s + si - r E (or 1-/3, r 1-/3]) :::; E, 

and for aH j ;:: 0, P {ISTr,s + sl- r E (2j r 1-/3, 2i+1r1-.6]} :::; E/2j; such an ro exists by Fact 

17. In particular, since u ;:: ro this establishes the bound on P {BI} and the bounds on the 

P {DI,j}, so the base case of our induction holds. 

Second, we insist that ro is large enough that for aH r ;:: ro and an s :::; r - ro, 

I
r - si 1 P {Sr < o} - - < -' r,s 2r - r/3' (2.29) 

such a choice exists by Theorem 13. Third, we insist that ro > 23//3, i.e., that ,B log ro > 3. 

Fourth, we insist that 3,( i + log r) + 12 :::; i + log r for an integers i ;:: 0 and for aH r ;:: ro. 

(With our choice , = 1/10, this inequality is easily seen to hold as long as we choose ro ;:: 218
. 

This requirement may seem to arise out of thin air - it will be used in bounding a sum at 

the end of the proof - but we state it here in or der that aH our bounds on ro appear in the 

same place.) 

We first argue inductively for the bound on P {Bi}' Let x = STi + Vi - if Fi occurs then x 

is the overshoot at the i'th doubling. The essence of our argument is that if x is small then 

for Bi+l to occur, the random walk restarted at time Ti must again have a large overshoot, 
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which we know is unlikely. Furthermore, since x is the overshoot of a previous step, we can 

bound the probability that x is large by induction. 

Observe that Ei+1 C Fi+1 C Fi, so in particular P {Ei+1} = P {Ei+1' Fi}' If Fi occurs then 

x < 0, and if -mi+1 < x < 0 then -Vi+1 ::; x - Vi = STi ::; -Vi' By restarting the random 

walk at time Ii, and applying the bounds from Fact 17, we thus have 

P {Ei+1 1 Fi, -mi+1 < x < O} < sup P {ISTmi+l,X + xl- mi+1 E (8m;~f, m;~fl} 
-mi+1::;x::;O 

< E < 1. -4 

Next, if Fi occurs and -(mi+1 + m;~f) ::; x ::; -mi+1, then letting j* = l,8logmd, either 

Di,j* or Di,j*+1 must have occurred. (This fact is a straightforward consequence of the 

definitions of the Di,j') It follows that 

By our choice of ro, we have ,B log mi 2: ,B log u 2: ,B log ro 2: 3, so in particular j* 2: 3. 

Finally, if Fi occurred and x < -(mi+1 + m;~f) then Ei+1 can not occur - the overshoot at 

the i'th step was so large we "jumped over" the interval (Vi+1 + om;~f, Vi+l + m;~fl. Thus 

P { Ei+1' Fi, mi+1 + m;~f ::; -x} = O. 
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Combining these bounds using Bayes' formula and applying (2.28) inductively, we have 

< P {Bi+!IFi, -mi+! < x < O} P {Fi' -mi+! < x < O} 

+ P { Bi+! , Fi, -(mi+l + m;.;f) ::; x ::; -mi+l} 

+ P {Bi+l' Fi, X < -(mi+! + m;.;f)} , 
< '4P {Fi} + P {Di,j} + P {Di,j+!} + 0 

, .6.i ,.6.i ,.6.i ,.6.i < ,.6.i+1 
< '42i + 2i+3 + 2i+4 < 2i+l - 2i+l ' (2.30) 

by our assumption that the sequence .6.i is increasing. This establishes the inductive step of 

the bound for P {Bi+d - the inductive argument for bounding the probabilities P {Di+l,j} 

is essentially the same, and we omit it. We now turn to the inductive step of the bound for 

As ab ove , let x = STi + Vi. Suppose that Fi occurs, and -mi+l < x < O. In this case Fi+l is 

the event that the first time j after Ti that 1 (Sj - STi) + x 1 ~ mi+ 1, we have (Sj - STi) + X ::; 

-mi+!. Note that if in fact Ai occurs, we also know that -bm;-fJ ::; x < O. By the strong 

Markov property and by (2.29), we thus have 

(2.31) 

Letting ai = 1 + (2 + b) (2 iu) -fJ, we thus have 

(2.32) 
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Letting bi = 1+3/(2iu),6 and mimicking the above calculation leading to (2.31) and to (2.32) 

yields that 

2 
(2.33) 

Similarly, letting di,j = 1 + (2 + 2j )/(2iu),6 for j = 0, 1,2, ... , we have 

(2.34) 

We remark that ai :S bi :S di,o :S di,i :S .... This is as we expect: if the i'th step is negative, 

then the larger the overshoot in step i, the more likely we go negative in step i + 1. Equation 

(2.34) may seem a little strange, as once j is large conditioning on Di,j may tell us that the 

overshoot x is greater than miH, in which case PHi occurs with probability 1. However, in 

this case di,j 2: 2, so (2.34) is still valid. In fact, letting dt,j = min{di,j, 2}, we may replace 

the term di,j in (2.34) by dt,j and the equation remains valid. 

We can now bound P {PHi} using Bayes' formula and (2.32)-(2.34): 

00 

P {PHi n Pi} = P {Fi+i n Ai} + P {PHi n Bi} + L P {PHi n Di,j} 
j=O 

00 

j=O 

a· b· LOO d~. < -.::p {A-} + ...:p {H} + ~P {D .. } 2 ~ 2 ~ 2 ~,J' 

j=O 

(2.35) 

Since P {Ai} + P {Bi} + L;:o P {Di,j} = P {Fi}, (2.35) is equivalent to the statement that 

(2.36) 

We bound (2.36) by inductively applying (2.28) to bound P {Pi}, P {Bi}, and the P {Di,j}. 
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As ai :S bi :S di 0 :S di 1 :S ... , (2.36) is weakest if the bounds of (2.28) are tight. We thus , , 

have 

(2.37) 

Finally, we use (2.37) to define Ô,i+l, by setting 

(2.38) 

and letting Ô,i+1 = Ô,i . max{ Ci, 1}. This definition completes the inductive bound for 

p {.Fi+1}' The sequence Ô,i is certainly increasing - to complete the pro of it remains to show 

that this sequence is bounded above by 4. Since Ô,1 = 2, this holds if rr:l max{ Ci, 1} :S 2. 

We recall the definitions of ai, bi , and the di,/ 

d d* . {2 + 2j 
} an i,j = 1 + mm (2 i u)!3,1 . 

Collecting terms in (2.38), we have 

Letting j' = 1 f3 (i + 1 + log u) l, it is immediate that min { (;t;;ï3 , 1 } = 1 for an j > j'. Since 

(2 + 2j )/2j ::; 3 for aU integers j ;::: 0, (2.39) therefore yields 
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since 31(j' + 1) + (2 + b) :::; 31(i + logu) + 12, which is at most i + logu by our fourth 

requirement on ra and since u 2: ra. Letting Ci = 2iu, we thus have 

(2.40) 

and since we can make Cl = 2u 2: 2ra as large as we like by our choice of ra, it follows that 

we can ensure that TI:I max { Ci, 1} :::; 2 by choosing ra large enough (this can be easily seen 

by considering the logarithm of the second product in (2.40)). This completes the pro of. 0 

In the above pro of, we chose (3 < a, then chose the sequence ~i 80 that ~i+d ~i :::; 1 + 

(log(2 i u)/(2 i u).6). If we wish to prove a similar result when X E V but X is not necessarily 

in WL 2+
a

, we may choose the sequence ~i so that ~i+1 / ~i = 1 + a for some fixed a > 0 as 

small as we wish, and define the events Bi and Di,j in order to split the overshoot into pieces 

of size 2jmi instead of 2j m;-.6. Having done this, the bounds on the overshoot provided by 

Theorems 12 and 13 yield that essentially the same pro of applies when we only impose that 

X E V. In this case, however, we can not bound ~j by a constant when j grows, but have to 

settle for the bound ~j = 0((1 + a)j). If j is at most logr, then by making a small enough 

we can ensure that ~j = O(rb) for bas small as we wish. Following this chain of reasoning, 

we can prove: 

Lemma 18. Suppose X EV. Then for all E > 0 there is ra > 0 su ch that for all r 2: ra, for 

all 0 :::; s :::; r - ra, 
(r - s) 

P {STr,s < o}:::; r l - E • 

and for all r - ro ::; s ::; r, 

We omit a formaI proof of this lemma as it consists only in mimicking the proof of Lemma 

16 along the lines sketched ab ove. 
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Combining Lemmas 14 and 16, we have proved 

Theorem 19. Suppose X E WL2+a for some ° < Œ :::; 1. Then there are ra > 0, c> ° such 

that for aU r 2: ra, for aU ° :::; s :::; r - ra, 

r - s < p {S < o} < 4(r - s). 
16r - TT,s - r 

and for aU r - ra < s < r 
1 c 

- :::; P {ST < o} :::; -. cr T,S r 

Similarly, combining Lemmas 15 and 18, we have 

Theorem 20. Suppose X E 'D. Then for aU E > ° there is ra > ° such that for aU r 2: ra, 

for aU ° :::; s :::; r - ra, 
r-s r-s 
-1+ :::; P {STr S < o} :::; -1 -. r E ' r -E 

and for aU r - ra < s < r 

1 1 
- < P {ST: < o} < -. r1+E - r,s - r 1- E 

We now prove that bounds such as those in Lemma 14 hold even if we additionally impose 

that Tr,s is not too large and none of the step sizes are too big. This introduces minor 

technicalities, but the substance of the pro of is the same as that of Lemma 14. (This 

result is perhaps less "independently interesting" than Theorems 19 and 20, but we will 

need it in proving our generalized ballot theorems.) We define Tr,s as above and let Mr,s = 

Lemma 21. Suppose EX = 0, Var {X} > ° and X E WL2+a for some ° < Œ :::; 1. Then 

there are c > 0, C > ° su ch that for aU cS > 0, there is ra > ° such that for aU r 2: ra, for 
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2 (r - s) 
P {STrs < 0, Trs ::; Cr ,Mrs < br} 2:: , , , , cr 

and for aU r - ro < s < r, 

P {STrs < 0, Trs ::; Cr2
, Mrs < br} 2:: ~. , , , cr 

Proof. Just as in Lemma 14, it is straightforward to show that the first daim of the lemma 

implies the second; we therefore focus our attention on proving the first daim. 

In a nutshell, our argument proeeeds as follows. We apply the doubling argument just as in 

the proof of Lemma 14 to bound P {STr,s < O}. We then use the independence of disjoint 

sections of the random walk to individuaUy bound the probability that any given doubling 

"takes too long". Finally, sinee for a given doubling it is fairly likely that the walk go es 

negative and that the doubling does not take "too long", we are able to use the fact that 

X E WL2+a to bound the probability that in a given doubling, any of the Xi are large, and 

condude with a union bound over all the doublings to prove the overall bound. We now 

turn to the details. 

We let u = r - sand d = r + s; recall that u > ro by assumption, that d> u as s > 0, and 

that we are interested in the first time the walk exceeds u or dips below -do For i 2:: 0 let 

Vi = (2 i 
- l)u, let To = 0 and for i 2:: 1 let Ii be the first time t > Ti- 1 that ISt - STi 1 2:: Vi· 

Finally, let j* = pog(d/u)l + 1. We proceed to define events Ei' Li, Mi (for 0 ::; i ::; j*), 

which we will use to control the behavior of the i'th doubling. To be more precise, Ei will 

control the direction of the i'th doubling, Li its duration (the time it takes to double), and 

Mi the maximum step size during the i'th doubling. 

We first let Eo = Lo = Mo be the event that So = 0 (so P {Eo n Lo n Mo} = 1). Next, just 
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as in the proof of Lemma 14, we let Ei be the event that STi < STi_l - we recall that if 

n{:OEi holds then Tr,s ::; Tj * and STr,s < O. 

Before defining Li, we first observe that by Lemma 8 and the strong Markov property, there 

is A > 0 such that for aIl i 2: 1 and k 2: 1, 

{ 
i 2 } 1 P Ti - ~-l > Ak(2 u) IXI , ... , X Ti _ 1 ::; 2k ' 

Based on this observation, we let Li be the event that ~ - ~-l ::; A(4 + j* - i)(2iu)2 - so 

P {Ld ::; 2-(4+j*-i) - and let C = 512A. With this choice of C, if nt:o Ei n Li holds then 

j* j* j*-l 

Tr,s < Tj*::; LTi - ~-l ::; Au2 L(4 + j* - i)22i = Au2 (2 2j*) L 2-2k (k + 4) 
i=l i=l k=O 

< 22j* (8Au2
) < (16d2 ju2

) (8Au2) = 128Ad2 = 128A(r + 8)2 < 512Ar2 = Cr2
. 

Finally, we let Mi be the event that max{IXkl 1 ~-l < k ::; Ti} < br. The event Mi controls 

the maximum step size during the i'th doubling - if nt:o Mi n Ei occurs then Mr,s ::; br. It 

follows from these definitions and comments that 

p {ST~ .• < 0, T •. , <: Cr', M •. , < or} > P {O Ei n Li n Mi } 

- fi P { Ei n Li n Mi ID Ej n Lj n Mj } 

j* 

- II P {Ei n Li n Mà , (2.41) 
i=l 

the last equality holding by the independence of disjoint sections of the random walk. We 

prove the theorem by bounding the component probabilities of the last product in (2.41); to 

do so, it is useful to first replace the event Mi by an event that depends on a deterministic 
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number of X j . To this end, we first observe that Mi is contained in the event Mt that 

max{IXkl 1 ~-1 < k :s; min{~_l + l A(3 + j* - i)(2 iu)2 J,~}} < or, 

and if Li occurs then Ti :s; ~-1 + lA(3 + j* - i)(2i u)2J, so Mi n Li = Mt n Li' Furthermore, 

the event Mt contains the event Mt that 

Combining these facts, we thus have 

P{Ei nLi nMn 

> P {Ei n Li n Mt} ;::: 1 - P { Bi} - P { Li} - P { Mt} . (2.42) 

We now turn to the bounds on these probabilities. We bound P {Ei} just as in the course 

of Lemma 14, where we established (2.20); an identical derivation shows that there is a 

constant Co such that 

(2.43) 

Next, as we noted when defining Li, by Lemma 8 and the strong Markov property we have 

p{Ld < 
1 

(2.44) 
24+j*-i' 

Finally, we bound P { Ur} by a union bound: 

L A( 4+j* -i)(2 i u)2 J 

P {Mt*} < I: P {IXjl > or} 

(2.45) 
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Since X E WL2+a
, P {IXI 2: t} = O(l/t2+a

), so for any 61 > 0, by choosing ro large enough 

we may in particular ensure that for r 2: ro, P {IX 1 2: 6r} ::; 6d Ar2 (we will choose 61 

shortly). Since 2j *u::; 4r, it thus follows from (2.45) that for r 2: ro, 

P{Mt*} < 
61(4 + j* - i)(2iu)2 

r 2 

< 
1661(4 + j* - i) 

(2.46) 22(j*-i) 

Plugging (2.43), (2.44), and (2.46) into (2.42) yields 

We now choose 61 small enough that 1661(4 + j* - i)/22(j*-i) ::; 1/24+j*-i for all1 ::; i::; j*, 

so (2.47) gives 

1 
(2.48) 

23+j*-i' 

and combining (2.48) and (2.41) yields 

The second sum in (2.49) is strictly less than 1/2, and since u 2:: ra, we can make the first 

sum in (2.49) as small as we like by choosing ro large enough. It in particular follows that 

as long as ro is large enough, (2.49) is at least 1/2j*+2, say. In other words, 
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and we complete the proof by taking c = 32. o 

We note that by using the bound P {IXI ~ t} = O(1jt2+a
) more carefully, we could have 

replaced the event Mr,s ::; 01"2 by the event Mr,s ::; Cr2-
a, perhaps with a changed value of C, 

and derived the same probability bound; we did not bother to do so as the weaker statement 

is sufficient in our applications of Lemma 21. The following corollary is immediate: 

Corollary 22. Under the conditions of Lemma 21, there are c > 0, C > 0 such that for all 

o > 0) there is ra > 0 such that for all 1" ~ ra) for all 0 ::; 8 ::; 1" - ra) 

2 (1"-8) 
P {STr_s > 0, Tr,-s ::; Cr ,Mr,-s < or} ~ , , cr 

and for all 1" - ra < 8 < 1", 

P {STr_s > O,Tr,-s::; Cr2,Mr,_s < or} ~~. , cr 

Corollary 22 follows by applying Lemma 21 to the random walk S' given by S~ = -Si. We 

only bother stating it because in later arguments, it will be convenient to directly apply the 

corollary rather than first taking the negative of the walk under consideration, then applying 

Lemma 21. The following analogue of Lemma 21 holds when X E D, and has a practically 

identical pro of, using the fact that if St! at tends to the normal distribution then for any 

é > 0, P {Xl ~ fat} = o(ljt) (see, e.g., Petrov, 1975, p. 98 for a proof of this fact) in place 

of the bound P {X ~ t} = O(ljt2+a ) we used above. We omit the proof. 

Lemma 23. Suppose the sequence {an}n20 is su ch that Snj an tends ta the normal distribu­

tion. Then there is C > 0 such that for all é > 0, there exists ra > 0 su ch that for all 1" ~ 1"0 

and 0 ::; 8 ::; 1" - 1"0, 
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Furthermore, for aU r ~ 0 if r - ra < s < r then 

Before continuing with the development of the generalized ballot theorem, we briefly digress 

to show how Theorem 19 can be used to substantially strengthen the expectation bounds of 

Lemma 10. 

Lemma 24. Suppose E {X} = 0 and X E WL2+a for some Cl! > O. Then there is C > 0 

such that for r ~ 0 and for aU s for which 0 ::; Isl ::; r, 

ETr,s ::; C((r + s)(r - s) + r). (2.50) 

This lemma is a direct analog of the work of Bertrand and of Rouché on time to ruin, 

discussed in Section 1.1. In that section we saw that for a symmetric simple random walk, 

for any integers r > 0 and s with 0 ::; 1 si::; r, the expected time until S first visits (r - s) or 

-(r + s) is precisely (r + s)(r - s) Grimmett and Stirzaker (1992, Example 3.9.6). Provided 

that r - Isl :2: E > 0, the bound of Lemma 24 has the same order as that suggested by the 

symmetric simple random walk. 

Proof of Lemma 24. We let v > 0 and E > 0 be such that P {IXI > v} > E, and choose 

C > (8/v)2(1/E) + 2 so that (2.50) holds by Lemma 10 for small r, in particular for r such 

that (4r/v)2(1/E) < 4, and additionally any time Isl ::; r/2. We also choose C large enough 

that EC(v/4)2 :2: max{8, l/b}, where 0 is the constant from Theorem 19. 

Supposing that (2.50) holds for a given r (for which (4r/v)2 > 2), we proceed to bound 

ET2r,2s' We suppose s > 0, the result following by symmetry if s < 0 - as noted, we may 

assume by our choice of C that 2s > r. We consider the first time t at which St + 2s < 0 or 
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St + 28 ~ 2r, denoting this time T. 

If ST + 28 > 2r then T = T2r,2s' If ST < 28 then we may restart the random walk at time T 

as in Lemma 10 to see that 

E {T2r,2s - TIST < 8}:::; sup ET2r,2s" 
o:S[s'[:Sr 

Thus, just as in Lemma 10 we have 

ET2r,2s - ET+P{ST<8}·E{T2r,2s- T IST<8} 

< ET + P {ST < 8}' sup ET2r,2s' 
O:S[s'[:Sr 

By its definition, T is distributed like Tr,2s-r and the event {ST < 8} corresponds to the 

event {STr ,2s-r < o} so we have 

ET2r,2s :::; ETr,2s-r + P {STr ,2s-r < o}. sup E {T2r,2s'} . 
o:S[s'[:Sr 

By Lemma 10 and our assumption on the size of r, we have 

sup E{T2r,2s'}:::; maX{4 (!.-)2 ,2}. ~ = (4:) .~, 
O:S[s'[:Sr v EVE 

so by (2.51) 

(4r) 2 1 
ET2r2s :::; ETr2s- r + P {STr 2s-r < o}. - '-. 

" , V E 

By Theorem 19 and our assumption that max{8, 1jo} < EC(vj4)2, 

P {S o} = 8(r - (28 - r)) + (ljo) < (8 (1 _ ~) ECV
2

) 
Tr 2s-r < - + 32 ' , r r r 
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which together with (2.52) yields 

ET2r,2s < ETr,2s-r + (8 (1 - ~) + E~~2) (!:t 
8.42 

< ETr2s- r + -2-r(r - s) + Cr. 
, EV 

< ETr,2s-r + Cr(r - s) + Cr (2.53) 

Finally, by induction we have 

ETr,2s-r ~ C ((r - (2s - r)) (r + (2s - r)) + r) = 4Cs(r - s) + Cr, 

so by (2.53), 

ET2r,2s < 4Cs(r - s) + Cr + Cr(r - s) + Cr 

< 4C(r + s)(r - s) + 2Cr 

C ((2r + 2s)(2r - 28) + 2r). 

This completes the proof. D 

lntuitively, Theorem 19 is at the heart of our argument; in the language of Section 2.1, it 

provides precisely the bounds on P {Posr} that we sought. lndeed, there is a very sim­

ple intuitive argument that something like Theorem 19 should yield a ballot theorem as a 

corollary. Suppose Sn is a random walk, and we have conditioned on the event Sn = r. 

Then in the conditioned random walk Xl' X 2, ... , X~, each step has mean r / n, so at time 

t, the expected value is rt/n. If rt/n = 0(0), Le., 0 = O(n/r), then up until time t, the 

"drift" of the random walk is still within its standard deviation; in sorne sense, the walk still 

"essentially" has mean zero up to this time. Lemma 10 tells us that by time t rv n2 /r2, we 

should have le ft the interval [-Ji, Ji]; Theorem 19 then suggests the probability we do so 
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without ever leaving [0,0l is 8(1/0) = 8(r/n). (We note that the behavior of the initial 

steps of a conditioned random walk has been investigated by Zabell (1980), who considered 

for what functions h and sequences Cn, it is the case that E {h(XI ) 1 Sn = cn} ---+ Eh(XI ) as 

n ---+ 00.) 

As Theorem 19 does not apply to conditional sums, however, we can not directly formalize 

this intuitive argument, and end up having to apply Theorem 19 to the random walk "at 

both ends", as suggested by the sketch of Section 2.1. 

2.4 The generalized ballot theorerns 

We now have aIl the tools we need to prove our generalized ballot theorems; before stating 

them we need a final definition. We say a variable X has period d > ° if dX is an integer 

random variable and d is the smallest positive real number for which this holds; in this case 

X is called a lattice random variable, otherwise X is non-lattice. We prove the following two 

theorems: 

Theorem 25. Suppose X satisfies EX = 0, Var {X} > ° and X E WL2+a for some Ct> o. 

Then there exists A > ° such that given independent random variables Xl, ... ,Xn distributed 

as X with associated partial sums Si = L~=l Xi, for all ° :::; k = O( Vii), 

. (k + 1) P {k :::; Sn :::; k + A, Si > ° V ° < z < n} = 8 n3/ 2 . 

Furthermore, if X is a lattice random variable with period d, then we may take A = l/d, 

and if X is non-lattice then we may take A to be any positive real number. 

Theorem 26. Suppose X satisfies EX = 0, Var {X} > 0, and X E V. Then there exists 

a constant A su ch that su ch that given independent random variables Xl, ... ,Xn distributed 
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as X with associated partial sums Si = 2.:~=1 Xi and a sequence {an} ~=o for which Sn/an 

converges to a N(O, 1) random variable, for all ° :s; k = O(an), 

. k+1 
P {k :s; Sn :s; k + A, Si > ° V ° < 1, < n} = an . n I - o(1)' 

Furthermore, if X is a lattice random variable with period d, then we may take A = l/d, 

and if X is non-lattice then we may take A to be any positive real number. 

From these two theorems, we may derive "true" (conditional) ballot theorems as corollaries, 

at least in the case that Sn/an tends to a normal distribution and k = O(an). The following 

result was proved by Stone (1965b), and is the tip of an iceberg of related results. Let <I? be 

the density function a N(O, 1) random variable. 

Theorem 27. Suppose Sn is a sum of independent, identically distributed random variables 

distributed as X with EX = 0, and there is a sequence of constants an such that Sn/an 

converges to a N(O, 1) random variable. If X is non-lattice let B be any bounded set; then 

for any h E B and x E R 

Furthermore, if X is a lattice random variable with period d, then for any x E {n/ d 1 nEZ}, 

P {S - } - <I?(x/an ) (-1) 
n - X - + 0 an . 

an 

In both cases, an o(a;;:-l) -+ ° as n -+ 00 uniformly over all x E IR and hE B. 

We discuss this result and its relatives in more detail in Appendix B, for now contenting 

ourselves with its statement and the observation that if E {X2 } < 00 then we may take 

an = O( yin), and Theorem 27 provides a pleasing counterpart to Theorem 9. Together with 
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Theorems 25 and 26, this immediately yields: 

Corollary 28. Under the conditions of Theorem 25, 

(
k+ 1) P {Si> 0 "i 0 < i < nlk ~ Sn ~ k + A} = 8 -n- . 

Corollary 29. Under the conditions of Theorem 26, 

. k+1 
P{Si 2: 0 "i 1 ~ ~ ~ nlk ~ Sn ~ k+A} = nl-o(l)' 

We now return to the proofs of Theorems 25 and 26. In fact, we will prove the following, 

more general results. The first two theorems are upper bounds for the cases Xl E WL2+a 

and Xl E D, respectively. We note that the upper bounds do not require k = O( y'1ï) or 

k = O(an ). The second two theorems are the corresponding lower bounds, for which we 

require k = O(y'1ï) and k = O(an ), respectively. 

Theorem 30. Suppose X satisfies EX = 0, Var {X} > 0 and X E WL2+a for some 

a > O. Then for any fixed A > 0, given independent identically distributed mndom variables 

Xl,"" X n distributed as either X or -X, with associated partial sums Si = .E~=l Xi, for 

all m 2: 0 and for all k 2: -m, 

P {k S k AS· - \..10' }=o(min{k+m+1,y'1ï}.min{m+1,y'1ï}) 
~ n ~ + , t > m v < ~ < n n3/ 2 . 

Theorem 31. Suppose X satisfies EX = 0, Var {X} > 0, and X E D. Then for any fixed 

A > 0, given independent identically distributed random variables Xl, ... ,Xn distributed as 

either X or -X, with associated partial sums Si = .E~=l Xi, and a sequence {an} ~=o for 

which Sn/an converges to a N(O, 1) random variable, for all 0 < E < 1/2, for n large enough, 
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for aU m 2: 0 and for aU k 2: -m, 

P {k S k A S
. _ w . } _ 0 (min {k + m + 1, yin} . min {m + 1, yin}) 

~ n~ + , .> mvO<'/,<n - l . 
an' n -€ 

Clearly proving this theorem just for step sizes X would be sufficient as -X satisfies the 

same conditions as X. We have stated the conclusion of the theorem for both X and -X 

to satisfy the requirements of our inductive pro of. We remark that if Sni an converges to a 

normal random variable than necessarily EXI = O. The lower bounds are: 

Theorem 32. Suppose X satisfies EX = 0, Var {X} > 0 and XE WL2+a for some Œ > O. 

Then there exists A > 0 such that given independent random variables Xl,' .. ,Xn distributed 

as X with associated partial sums Si = L~=l Xi, for all 0 ~ m = O( yin) and for all k for 

which -m :::; k = O(yIn), 

P {k S k A S
. _ w 0 . } _" (min{k + m + 1, yin}. min{m + 1, yin}) 

~ n ~ + , . > mv < '/, < n - H n3/ 2 . 

Furthermore, if X is a lattice random variable with period d, then we may take A = 11d, 

and if X is non-lattice then we may take A to be any positive real number. 

Theorem 33. Suppose X satisfies EX = 0, Var {X} > 0, and X E V. Then there exists 

a constant A such that such that given independent random variables Xl,' .. ,Xn distributed 

as X with associated partial sums Si = L~=l Xi and a sequence {an}~=o for which Sni an 

converges to a N(O, 1) random variable, for all 0 < E < 1/2, for n large enough, for all 

0:::; m = O(an) and for all k for which -m :::; k = O(an), 

P {k S k A S. _ w 0 . } _" (min{k + m + 1, yin}. min{m + 1, yin}) :::; n:::; + , • > mv < '/, < n - H 1+ . 
an' n € 

Furthermore, if X is a lattice random variable with period d, then we may take A = 11d, 

and if X is non-lattice then we may take A to be any positive real number. 
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We note that we may combine the upper and lower bounds of these st ronger theorems using 

Theorem 27 to obtain conditional corollaries that are exact analogs of Corollaries 28 and 29. 

We refrain from stating these corollaries explicitly; they contain no surprises. 

Both the lower bounds and the upper bounds are proved by splitting the random walk 

SI, ... ,Sn into three parts: a beginning, a middle, and an end. In each part we consider 

what behavior must occur (when proving upper bounds), or what behavior suffices (when 

proving lower bounds) in order that k ~ Sn ~ k + A and Si > -m for all 0 < i < n. In the 

first and last parts it is necessary and sufficient that the random walk "go positive" in the 

roughly the sense of the events Pas and Pas' of Section 2.1. In the middle, it is necessary 

that the random walk sum to the right value, and sufficient that additionally, the random 

walk does not "go too negative" during this time. We first prove the upper bounds. 

Proof of Theorem 30. We first fix any A satisfying the conditions of Theorem 30. We will 

prove (2.54) by induction on n. Essentially, we use the argument sketched in Section 2.1. 

Because we allow k = n( Vii) (so k is not "small", in the terminology of that section), 

however, we can not define event such as Posk and Pas' in terms of a stopping time as we 

did there. Instead, we stop the walk deierminisiicallyat time il = Ln/4J and consider its 

behavior up to that point. If there is i ~ il for which Si ;::: oVii (for sorne carefully chosen 

0), and S has stayed above -m until this time, then we essentially argue as in Section 2.1. 

Otherwise, we inductively apply the ballot theorem. 

In the course of the pro of, we will apply induction to S as well as to the negaiive reversed 

walk sr defined by So = 0, and for 0 ~ i < n, S[+1 = S[ - X n - i . We note that if S has step 

size X then sr has step size -X, and vice-versa. For the purposes of our induction, it is 

useful to replace the order notation in the desired upper bound by an explicit constant: we 
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will show that there is C > a such that for aIl n, we have 

P {k S k A S 
w . } C min {k + m + 1, fol . min {m + 1, fol 

::; n::; + , i > -mv a < 1, < n ::; n3/ 2 ' 

(2.54) 

whether S has step size X or -X. We note that by Theorem 9, there is a constant a (and 

we can and will assume a > 1) such that P {k::; Sn ::; k + A} ::; aA/fo, whether S has step 

size X or -X. Therefore, for n :s; C/aA, (2.54) follows immediately from Theorem 9. 

We now make our choice of C more explicit, stating bounds that we will use at various 

points in the proof. We have gathered these together so that it is easy to see that our 

assumptions on the size of C are well-defined and are not contradictory. We first require 

that 1/8C2/5 > 1/C4
/ 7 , and, letting a be the constant from Theorem 9, that C 2: 8aA, that 

C1/5 2: 128a(A + 1), that C1/5 2: 256aA3 , and that C1/5 2: 144aA. (Letting 8 = 1/C2/5 

and E = 8/8 = 1/8C2/ 5 , we will use the following inequalities, which are immediate from 

our bounds on C: E > 1/C4
/
7

; C 2: 2a(A + 1)/E2; (E/2)y'C/aA 2: A; and 2Ey'C/aA < 

8y'C/4aA - 3.) 

We additionally fix a constant ro - eventuaIly, we will apply Theorem 19 to bound events 

of the form {STr,s < a}, for r 2: ro, and we choose ro large enough that Theorem 19 indeed 

applies for such r, whether S has step size X or -X. We presume Chas been chosen large 

enough that C1/1O /16vaA 2: ro. Most of our restrictions on the size of C appear in this and 

the previous paragraph, but a few more (which are much more naturally stated "in context") 

will arise as we go along. 

As noted, (2.54) holds for an n :s GjaA by Theorem 9. Fix some n > GjaA and suppose 

that (2.54) holds for aIl no :s; n, for aIl m 2: a and aIl k 2: -m, whether S has step size X 
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or -X. We will prove that for aH k 2: -A, 

. Cmin{k + m + 1, Vn}· min{m + 1, Vn} 
P {k::; Sn ::; k + A, Si> -mV 0 < '1 < n} ::; (A + 1)n3/ 2 ' 

(2.55) 

whether S has step size X or -X. Suppose for a moment that (2.55) ho Ids for aU k 2: -A, 

and choose sorne k < - A. If k ::; Sn ::; k + A and Si > -m for an 0 < i < n are ta occur, 

then it must be the case that -(k+A) ::; S~ ::; -k, and S[ 2: -(k+m+A) for aH 0 < i < n. 

Letting k' = -(k + A) and m' = (k + m + A), we have k' > 0 > -A and k' + m' = m; (2.55) 

thus yields that 

P {k ::; Sn ::; k + A, Si > -mVO < i < n} < P {k' ::; S~ ::; k' + A, S~ 2: -m' V 0 < i < n} 

Cmin{k' + m' + 1, Vn}· min{m' + 1, Vn} 
< 

(A + 1)n3/ 2 

C min {m + 1, Vn} min {k + m + A + 1, Vn} 
(A + 1)n3/ 2 

< Cmin{m + 1, Vn}(min{k + m + l, Vn} + A) 
(A + 1)n3 / 2 

Cmin{m + 1, Vn} min{k + m + l, Vn} 
< 

the last inequality holding since min{k + m + l, Vn} 2: 1, which establishes (2.54) for such 

a choice of k and of m. Therefore, ta prove that (2.54) ho Ids for this value of n it suffices ta 

show that (2.55) holds for all k 2: -A; this is the subject of the remainder of the pro of. 

We first prove (2.55) in the case that S has step size X, and begin by fixing k 2: -A. We 

note that by our assumptions on n and on C, EVn - A 2: EVn - (E/2)y'C/aA 2: EVn/2, sa 

if mis greater than EVn then since k 2: -A, we have k + m > EVn - A 2: EVn/2. Therefore, 

min{k + m + l, Vn} min{m + 1, Vn}/n3
/

2 is at least E2/2Vn, in which case (2.55) follows 

immediately from Theorem 9 and our assumption that C 2: 2a(A + 1)/E2. We thus need 

only consider the case that m ::; EVn, and hereafter presume that this is indeed the case. 
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Let E be the event that k :s: Sn :s: k + A and Si 2: -m for aIl 0 < i < n - so we seek a 

bound on P {E}. Recall that t 1 = Ln/4J. We consider the value of the walk at time Stl' If 

E is to occur then one of the following events must occur: 

• either S exceeds L 8y'tlJ before the first time S drops below -m, and additionally 

before time t 1 (we denote this event El); 

• or -m + Aj :s: Stl < -m + A(j + 1) (for sorne j = 0,1, ... , L(m + by'tl)/AJ) and 

Si 2: -m for all 1 :s: i :s: t 1 (we denote these events E2,j for j as above). 

Let r = (L8y'tlJ + m)/2, let s = (L8y'tlJ - m)/2, for i 2: 0 let Si = -Si, and let Tr,s be 

the first time t that ISi- + si 2: r. Then in the terminology of Theorem 19, El is contained 

in the event {Si,. < O}. Furthermore, r 2: 8y'tl/2 = 8vLn/4J/2 2: Vii/16C2
/
5 since 

n 2: C/Aa 2: 8 and 8 = I/C2
/
5

• Since n > C/aA, it follows that r 2: C 1
/

1O /16vaA 2: ro by 

our choice of C. By Theorem 19, therefore, there is a constant c = c(X) > 1 such that 

P {E} 
4(r-s)+c 8m+2c 8(m+c) 24(m+c) 

1 < = < < . 
- r L8y'tlJ + m - L8y'tlJ - 8Vii 

(2.56) 

Since c is constant, we may certainly choose C large enough that c :s: (1 - E)VC/aA; 

since n 2: C / aA and we have assumed that m :s: En, it follows that m + c :s: Vii, so 

24(m + c) = 24min{m + c, Vii}. From (2.56), we thus have 

P {E } 
24min{m + c, Vii} 

1 :s: 8 Vii . (2.57) 

We bound the probability of the events E2,j by induction; for such events applying (2.54) to 

the random walk SI, . .. ,Stl yields 

C(min{Aj + 1, y'tl} min{m + 1, y'tl}) 
(t1)3/2 

< 16C(Aj + 1) min{m + 1, y'tl} 
n3/ 2 
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Thus letting E2 = uL(m+80I)/AJ E2 ° we have 
, J=O ,J' 

L(m+80I)/AJ 

P {E2} < L P {E2,j} 
j=O 

• 1+": L(m+80I)/AJ 
160mm{m+l,y t l} """ (AO 1) 

< 3/2 ~ J + . 
n ° 0 J= 

160 min{ m + 1, y'tl} (m + 8y'tl 1) ( 8 r;- 1) < n3/ 2 A + m + y t l + ° 

160min{m + 1, y'tl} {II} (8 r;- 1)2 < n 3/ 2 max A' yh+m+ ° 
(2.58) 

Sinee 2EJO/aA :::; 8JO/4aA-3 by assumption, and n ~ O/aA, we have 2EvIn:::; 8Jn/4-3. 

Together with the facts that t 1 = Ln/4J and that 8 < 1, this immediately yields the bound 

8y'tl _ 1 > 8vfn14 _ ~ > E ln = m. 2 2 2 - yl~ 

It follows that (L 8y'tlJ + m + 1)2 :::; (38td2)2 < 82n, and we thus have from (2.58) that 

P {E2} :::; 1608
2 max{I/A,~ min{m + 1, vin}. 

Combining this with (2.57) yields that 

P {E E } 
24min{m + c, vin} 16082 max{I/A, 1} min{m, vin} 

1 U 2 :::; 8 vin + vin . 

Sinee 8 = 1/02/ 5 , we thus have 

P {E E } 
2402/5 min{m + c, vin} 1601/ 5 max{I/A, 1} min{m + 1, vin} 

lU 2::; vin + vin . (2.59) 

We assume 0 is chosen large enough that 24c02/5 + 1601/ 5 max{I/A, 1} < 0 3/ 7 /2a(A + 1). 
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Sinee c> 1, this implies that also 24C2
/

5 + 16C1/5 max{I/A, 1} < C3
/
7 /2a(A + 1), so 

24C2
/
5 (m + c) + 16C1/5 max{I/A, l}(m + 1) < C3

/
7 (m + 1)/2a(A + 1), 

which combined with (2.59) yields 

P {E E } < C
3

/
7 

min{m + 1, vin}. 
1 u 2 - 2a (A + 1) vin (2.60) 

If k + m + 1 2: Evin, we apply Theorem 9 and the strong Markov property to the random 

walk Stl' ... , Sn to conclude that 

Therefore, in this case, 

P{E} < P { (El U E2 ) n k ::; Sn ::; k + A} 

- P {El U E2 } P {k ::; Sn ::; k + AIE1 U E2 } 

C3
/

7 min{ m + 1, vin} 2a 
< 

2a(A + l)vIn . vin 

< 
C3

/
7 min{m + 1, vin} 

(A + l)n 

Sinee min{k + m + 1, vin} 2: Evin, and E > I/C4
/

7 by assumption, (2.61) implies that 

P{E} 
C3

/
7 min{m + 1, vin} min{k + m + 1, vin} 

< 
E(A + l)n3/ 2 

Cmin{m + 1, vin} min{k + m + 1, vin} 
< 

(A + l)n3/ 2 

(2.61) 

This establishes (2.55) in the case that S has step size X and k + m + 1 2: Evin. If S has 

step size X but k + m + 1 < Evin, then we must additionally use our inductive bounds on 

sr. If we are to have k ::; Sn ::; k + 1 and Si > -m \;i0 < i < n, then in particular, it must 
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be the case that Si ~ - max(k + m + 1, y'n) for aU 1 :S i :S t l . We define events Er and 

E'2,j (for j = 0,1, ... , lm + k + c5VtïJ), E'2 just as we defined El, E2,j, and E2' but this time 

with respect to Sr. If we are to have Sr ~ - max(k + m + 1, y'n) for aIl 1 :::; i :::; t1 then 

either Er or E'2 must occur. An identical argument to that leading to 2.60 (but applying 

(2.54) inductively to 51, ... ,5[1 instead of to 51, ... , St1) then yields the bound 

(2.62) 

FinaIly, since 5[1 = -(Xn-t1+1 + ... + X n), in order that k - 1 :::; Sn :::; k ho Id we must also 

have that 

we denote this event E3' By the strong Markov property, Sn-t1 - St1 is independent of El UE2 

and of El UE'2, so by Theorem 9, P {E3IEl U E2' El U En :S aj Jnj2 < 2ajy'n, where a> 1 

is the same constant as above. Since El U E2 and El U E'2 are likewise independent, and, 

as we have seen, aIl of El U E2' El U E'2, and E3 must occur in order for E to occur, we 

therefore have 

P {E} < P {E3} P {El U E2 } P {Er U En 

< 2a (C3
/

7 
min{m + 1, y'n}) (C3

/
7 min{k + m + 1, y'n}) 

y'n 2a(A + 1)y'n 2a(A + 1)y'n 

C min(k + 1, y'n) min(k + m + 1, y'n) 
< (A + l)n3/ 2 

as C> C6
/

7 and (A + 1)2 > A + 1. We have therefore shown that (2.55) holds wh en 5 has 

step size X; an identical argument shows that (2.55) holds when 5 has step size -X. This 

completes the proof. D 

When X E 'D, an identical argument using Theorem 20 in place of Theorem 19 proves 

Theorem 31; the proof is omitted. We now turn our attention to the lower bounds. Theorem 
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32 is a fairly straightforward consequence of Corollary 22 and of the following lemma. 

Lemma 34. Suppose X satisjies EX = 0, Var {X} > 0 and X E WL2+a for some ex > O. 

Then there exists A > 0 su ch that given independent random variables Xl, ... ,Xn distributed 

as X with associated partial sums Si = L~=l Xi, for any K > 0 and E > 0, there is 

c* > 0 su ch that for n large enough, for aU 0 < a ~ K, 0 < a' ~ K, and aU r for which 

-a'vn < r < avn, 

c* 
P {r ~ Sn ~ r + A, Si 2 -(a' + E)Vrï V 1 ~ i ~ n} > yri,' (2.63) 

Furthermore, if X is a lattice random variable with period d, then we may take A = 1/d, 

and if X is non-lattice then we may take A to be any positive real number. 

We prove Theorem 32 presuming this lemma holds, then return to its proof. 

Proof of Theorem 32. Fix any A satisfying the conditions of Theorem 32, and fix a constant 

al > 1 such that Ikl ~ al vn, Iml ~ al vn (such a constant exists by our assumption that 

both k and mare O(vn)). We first demonstrate that for any fixed constant Co, it suffices 

to prove the theorem for pairs k, m for which Ikl ~ aovn, Iml ~ aovn (for sorne constant 

ao > al which may depend on Co) and for which additionally m 2 Co and k + m 2 co. To see 

this, suppose for a moment that the theorem holds for aIl such pairs k, m. As EX = 0 and 

Var {X} > 0, and by our choice of A, it is easy to see that there exist constants Cl 2 Co and 

tl > 0 such that with probability 0(1), Xl, ... ,Xt1 are aIl positive and Cl ~ Stl ~ Cl + A. 

Similarly, there are C2 2 Co + A and t2 > 0 such that with probability 0(1), Xn-t2+1" .. ,Xn 

are an negative and, letting S[2 = - L~=n-t2+1 Xi, we have C2 ~ S[2 ~ C2 + A. Furthermore, 

for aIl n > tl +t2, for {k ~ Sn ~ k+A} and {Si 2 -m for aIl 0 < i < n} to occur it suffices 

that 

(1) Xl, ... , X t1 are aIl positive and Cl ~ Stl ~ Cl + A, 

76 



(III) considering the walk restarted at time tl given by S~ = SHi - Si and letting k' = 

k - Stl + 8I
2

, m' = m + Cl, n' = n - t l - t 2 , we have k' ::; S~I ::; k' + A and S~ 2:: -m' 

for aIl 0 < i < n'. 

The events (1) and (II) both occur with probability S1(1). Furthermore, m' 2:: Cl 2:: Co, and 

since k 2:: -m, we also have 

FinaIly, n' 2:: n/t1t2 , so letting ao = a1t l t 2 , we have Im'I ::; ao# and Ik'i ::; ao#. There­

fore, the probability of (III) is S1(min{k' +m' + 1, #} min{m' + 1, #}/(n')3/2) byassump­

tion. Since m' = m + 0(1), k' = k + 0(1), and n' = n + 0(1), combining our bounds on (1), 

(II), and (III) then yields the bound we desire for P {k ::; Sn ::; k + A, Si 2:: -m V 0 < i < n}. 

We will shortly apply Corollary 22 with the choice 8 = 1/8; for the remainder of the proof 

we let ro = ro(8) = ro(1/8) be as in the statement of Corollary 22. Based on the comments 

at the start of the proof, from this point on we can and will presume that m 2:: ro and that 

m + k 2:: ro. Since ro is constant, by the above comments we can and will also presume 

that Iml ::; aoyln and Ikl ::; aoyln, where ao is a constant possibly depending on ro but 

not on n. FinaIly, fix 'Y = 1/80, where 0 is the constant from Corollary 22, and let 

m* = min{m + 1, b/2)yIn}, k* = min{k + m + 1, b/2)yIn}. We presume n is large enough 

that b/2)yIn 2:: ro, so m* 2:: ro and k* 2:: ro· 

We consider the first time t > 0 that St 2:: 'YyIn or St ::; -m*, denoting this time T. We 

likewise consider the negative reversed walk sr with Sa = 0, for i 2:: 0 5[+1 = S[ - X n - i , 

and let T* be the first time t that SI 2:: 'Y yin or St ::; - k*. In order that k ::; Sn ::; k + A, 

and Si 2:: -m for aIl 0 < i < n, it suffices that the following three events occur (the se events 
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control the behavior of the beginning, end, and middle of the random walk, respectively): 

E3 : letting ~ = Sy* - ST, we have k + ~ ::; Sn-T* - ST ::; k + ~ + A and Si ~ -m - "(fo 

for all T < i < n - T*. 

In or der for El to occur, it suffiees that 

(2) T::; n/4, and 

(3) letting M = maxl~i~T Xi, we have M < h/4)fo. 

We use Corollary 22 to bound the probability of El. In the notation of that corollary, T is 

a stopping time Tr,-s with r = hfo + m*)/2 and s = hfo - m*)/2, and M is at most the 

corresponding maximum Mr,-s = maxl~i~T IXil. Corollary 22, applied with 8 = 1/8 and 

ra = ra(b) chosen as ab ove , then states that there are c > 0, 0 > 0 such that as long as 

r - s = m* ~ ra, with probability at least (r - s)/cr, it is the case that ST ~ "(fo, T ::; Or2 , 

and M ::; br = r /8. We have 

~ = ~('V ln + m*) < ~ (3"(fo) < "(fo 
8 8 ,yn - 8 2 4 ' 

and note that sinee "( = 1/80, we additionally have 
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Finally, applying Corollary 22, it follows that 

r - s 2m* m* 
P{Ed2:P{ST2:'Yn,T~Cr2,M~t5r}2:--= (vn ) 2: ~. 

cr c 'Y n + m* c'Yv n 

Similarly, applying CoroUary 22 to the random walk sr to bound P {E2} yields that 

Lastly, we wish to apply Lemma 34 to bound P {E3IEl, E2}. In order to apply Lemma 34, 

we show that if El and E2 occur then for E3 to occur, it suffices that an event of the form 

{ri ~ S~I ~ ri + A, S~ 2: -(a' + E)ViI! V 1 ~ i ~ ni} occur, for a suit able walk S' and a 

suit able choice of ni, of K > 0 and E > 0, of 0 < a < K, 0 < a' < K, and of ri for which 

-a'Vil! < ri < aVil! (we emphasize that though a, a' and ri may depend on ni, K and E will 

not depend on ni). 

We let S' be the random walk S restarted at time T, i.e., S~ = ST+i -ST, and set ni = n-T-

T*. We let ri = (k+6.) - given that El and E2 occur, for {k+6. ~ Sn-T* - ST ~ k+6.+A} 

to occur it suffices that ri ~ S~I ~ ri + A. Furthermore, -aovn ~ -m ~ k ~ aovn, 

16.1 < (r/2)vn, and ni 2: n/2, so we have 

;;::; r-; 'Y Vil! 'Y vn 'Y vn;;::; r-; 
-v 2(ao + 'Y/2)v n' ~ -m - J2 ~ -m - -2- < ri < aoVn + -2- ~ v2(ao + 'Y/2)v n'. 

(2.64) 

We may thus let K = J2(ao + 'Y/2), and let a = K and a' = m/ViI! + 'Y/J2; (2.64) then 

yields that -a' Vil! < ri < aVil! as required. For {ST+i 2: -'Yvn V T ~ i ~ n - T*} to occur 

given El and E2' it suffices that S: 2: -(m + 'Yyln) for aU 1 ~ i ~ ni. Since 
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letting E = ')'(1- 1/V2) we have that -(m + ')'yfii) :::; -(a' + E)yTïi, so 

P {E3IEl, E2} > P {ri :::; S~I :::; ri + A, S; 2: -(m + ')'yfii) '\j 1 :::; i < ni} 

> P {ri :::; S~I :::; ri + A, S; 2: -(a' + E)# '\j 1 :::; i < ni}. (2.65) 

It follows from (2.65) and by applying Lemma 34 to S' with these choices of ni, a, a', ri and 

E that there is c* such that 

Combining this bound with our bounds on P {El} and P {E2}' and using the independence 

of S on disjoint sections of the random walk, we thus have 

proving the theorem. 

m*k*c* 
> c2')'2n3/2 ' 

n (min { m + 1, yfii} min { k + m + 1, yfii} ) 
n3/ 2 ' 

o 

Proof of Lemma 34. Fix any A > a satisfying the conditions of Lemma 34. Fix K > 0, 

E > 0, and choose a, a', and r as in the statement of the lemma. In brief, our argument is the 

following. We split the random walk up into a large but constant number of deterministic 

"slices" (subsections of the walk), so that the walk takes much fewer than En steps in each 

slice. In each slice we bound the probability that the random walk "behaves", which, roughly 

speaking, means that it does not dip below -(a' + E)yfii and, at the end of the slice, the 

value of the walk is not far from where it "should be" if we are to have r :::; Sn :::; r + A (so 

if sorne slice ends at time k, for example, then Sk is not far from rk/n). We show that in 

each slice except the last, the random walk has at least sorne fixed positive probability of 
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"behaving" given that it behaved in aIl the previous slices. In the last step, we use the fact 

that the slices are extremely narrow to show that given that we have behaved in aIl previous 

slices, the probability we hit our desired target and in addition dip below - (a' + E) Vii is 

much smaller than the probability we hit our target. This is the picture the reader should 

keep in mind when working through the details below. 

We let a = y'Var {X}, choose sorne large integer t and let 0 = l/t. We require that 0 is 

much smaller than E and in particular that aV8 < (E/2). We additionally require that V8lrl 
is much sm aIler than a Vii; we will make our upper bounds on 0 (which are equivalently 

lower bounds on t) more precise in the course of the pro of, but emphasize that 0 depends 

only on X, K, and E, and not on n. 

Let Do be the event that So = ° (so P {Do} = 1), let no = 0, and let m = on. For 1 ::; i ::; t, 

let ni = LimJ - the ni are the boundaries of the "slices". Note that nt = n and for aIl 

1 ::; i ::; t, m - 1 < ni - ni-l < m + 1. For 1 ::; i < t define the following events: 

• Bi is the event that ior - a Vm ::; Sni ::; ior + a Vm. 

• Ci is the event that Sj ~ -(a' + E)Vii for aIl ni-l < j ::; ni, and 

• Di is the event Bi n Ci. (Di is the event that the i'th slice "behaves".) 

Note that for aIl 1 ::; i < t, ior > -a' Vii, so if Bi occurs then Sni > -a'n - aVm = 

-a'n - aJ81ï > -(a' + E)Vii, the last inequality holding by our choice of fJ. It foIlows that 

if nt:îDi occurs then in particular Sj > -(a' + E)Vii for aIl 1 ::; j ::; nt-l' We daim that 

there is Co > ° such that for n large enough, 

(2.66) 

81 



and that there is 60 > 0 such that 

Combining (2.66) and (2.67) using Bayes' formula gives that 

(2.68) 

which establishes (2.63) by letting c* = c060 . It remains to prove (2.66) and (2.67). 

To prove (2.67), we write 

t-l 

II P {DiIDi- 1} , (2.69) 
i=l 

and bound the probabilities P {DiIDi-l} = P {Bi, CiIDi- 1} for 1 :S i :S t - 1. We do so by 

bounding P {BiIDi-d from below and bounding P {Bi' Ci IDi - 1} from above; we now turn 

to the first of these bounds. 

We split the event Di - 1 into two events, depending on whether Sni_l is in the "upper half" 

or the "lower half" of the interval [(i - 1)6r - ClVm, (i - 1)6r + ClJm]. If Di-l occurs then 

either (i - 1)6r :S Sni_l :S (i - 1)6r + ClVm, which we denote by H, or (i - 1)6r - ClVm :S 

Sni_l < (i - 1)6r, which we denote by L. If L occurs then for Bi to occur it suffices that 

6r :S Sni - Sni_l :S br + ClVm. By the strong Markov property it follows that 

(2.70) 
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We mentioned when defining 15 that we required V8lrl to be much smaller than avn; since 

Irl :::; max{ a, a'}vn :::; K vn, for any a > 0, by choosing 15 small enough we may in particular 

ensure that lV8r/avnl < a. For su ch a choice of 15 it follows from (2.70) that 

(2.71) 

Since Ini - ni-l - ml :::; 1, Sni-ni_l/avrn tends to a N(O, 1) random variable as n tends to 

00, and the latter probability in (2.71) tends to <1>(1- a) - <1>(a), where <1> is the distribution 

function of a N(O, 1) random variable; we may ensure <1>(1 - a) - <1>(a) > 1/3 by choosing 

a small enough. For such an a, (2.71) yields that for n large enough, P {BiIDi, L} > 1/3. 

An identical argument yields the same bound for P {BiIDi-l' H}; it follows that for n large 

enough, for all 1 :::; i < t, 

P {BiIDi-ll L} P {LIDi-l} - P {BiIDi-l' H} P {HIDi-l} 

1 1 
> 3 (P {LIDi-l} + P {RIDi - 1}) = 3· (2.72) 

We next bound P {Bi' C\IDi-t}; to this end, suppose that Di-l = Bi-l n Ci- 1 occurs, and 

Bi occurs but Ci do es not occur. Since Bi- 1 occurs and avrn = aVlii < (E/2)vn and 

(i - l)l5r > -a' vn, we have 

Sni_l ~ (i - l)l5r - avrn > -(i - l)l5r - (E/2).Jii > -(a' + E/2).Jii, (2.73) 

Since Ci does not occur, it follows that there must be some ni-l < j < ni su ch that 

Sj < -(a' + E).Jii. Since Bi does occur, a derivation just as that of (2.73) shows that 

Sni ~ -(a' + E/2).Jii, SO Sni - Sj > (E/2).Jii. Let J be the first time j > ni-l that 

Sj < -(a' + E).Jii - then from the above comments and the strong Markov property it 
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follows that 

P {Bi' CilDi-d < P {J < ni, Sni - SJ > Er} 
< j=~+l P {J =j}P {Sn. - Sj 2: <r} 
< max P {S . - S. > Efo} 

ni-l <j<ni n, J - 2 

< l~k~~~ni_l P { Sk 2 Er} , (2.74) 

Sinee Xl E 'D, there is f3 > 0 such that P {Sj 20} > f3 for aIl j > O. (This follows easily 

from convergence to the normal distribution, and is proved in (Griffin and McConnell, 1992), 

for example.) It follows by the strong Markov property that for aIl 1 ::; k ::; ni - ni-l, 

P {Sni-ni_1 2 Er} > P {Sni-ni_1 2 Er ISk 2 Er} P {Sk 2 Er} 
> P {Sni-ni_l-k 2 O} P { Sk 2 Er} > f3P { Sk 2 Er} , 

which combined with (2.74) gives 

P {Bi,CiIDi-d < f3-lp {Sni-ni_1 > Er} 
- f3-lp {S;i?m

1 

2 2a~}' (2.75) 

As Sni-ni_l/ay'rii converges to a N(O, 1) random variable, for n large we may make the last 

probability in (2.75) as small as we like by choosing 6 small enough; in particular we may 

therefore ensure that for n large, P {Bi' CilDi-d ::; 1/6. It follows by this bound and by 

(2.72) that for n large, 

{ 
- } 1 1 1 

P {D·ID· l} = P {B·ID· l} - P H GID· l > - - - = -t t- t t- t, t t- - 3 6 6 . 
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FinaUy, combining this bound with (2.69), we have 

t-l 1 
P {Do, Dl,"" Dt-d = II P {DiIDi-l} 2: 6t- l ' 

i=l 

which establishes (2.66) with c* = 6-(t-l) > O. 

To prove (2.67), first let n' = n - nt-l, and note that m ~ n' < m + 1. Let B be the event 

that r ~ Sn ~ r + A and let C be the event that Si 2: -(a' + E)y'n V nt-l ~ i ~ n - we 

aim to show that P {B, CI n~:6 Dd 2: bol y'n. By the definitions of Band C, establishing 

this bound will prove (2.67) and complete the proof of Lemma 34. We note that by the 

strong Markov property, P {B, CI n~:6 Di} = P {E, CIDt-l}. Much as in proving (2.66), 

we will establish our lower bound for P {B, CIDt- l} by bounding P {BIDt-l} from below 

and bounding P {B, GIDt-d from above. 

We wish to apply Theorem 27 to bound P {x ~ Sn - Snt_l ~ X + A}; sinee (J2 = E {X2} < 

00, and n - nt-l = n', by the eentrallimit theorem we may take an = (J# when applying 

Theorem 27. Since n' 2: m, by Theorem 27 there is a* > 0 such that for n large enough, for 

aU 0 ~ Ixl ~ 2(JVm = 2(J..[tii, we have P {x ~ Sn - Snt_l ~ X + A} 2: a*I#. We recaU 

that we chose b small enough that V6lrl < (Jy'n, and note that if Dt-l holds then sinee also 

(t - l)br = r - br, 

ISnt-l - ri ~ ISnt_l - (t -l)brl + I(t -l)br - ri ~ (JVm +blrl < (JVm+ Vb((Jvn) = 2(JVm. 

By Theorem 27 and the strong Markov property, we therefore have 

(2.76) 

We bound P {E, GIDt-l} from above in much the same fashion as we bounded P {Bi' GiIDi-l}' 

The intuition of the bound is that if Dt-l occurs then for Band G to occur the walk must 
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first dip far below its mean and then end up in a specifie interval of length A at time n. The 

fact that the walk must end up in a specifie small interval allows us to use Theorem 9 to 

obtain upper bounds on P {B, GIDt-d that are a factor of Vii st ronger than our bounds 

on P {Bi' GiIDi-d. To apply Theorem 9, however, we end up having to split our bound 

into two parts, separately bounding the events that the walk Snt_l+1 , ... , Sn dips below 

- (a' + E) Vii in the first half or in the second half of its steps. We now formalize this sketch. 

Let S' be the random walk given by S: = Snt_l+ i - Snt_ll for 0 ::; i ::; n', and let sr be the 

reversed walk given by SQ = 0 and for i ~ 0, S[+l = S[ - X n- i , also for 0 ::; i ::; n'. Given 

that Dt-1 and B both occur, Snt_l > -(a' + E/2)Vii and Sn > -a'Vii. If additionally C 

does not occur, then there is 1 ::; j < n' such that Snt-l+i ::; -(a' + E)Vii. Given Dt-1 and 

B, for C to occur one of the following two events must therefore occur: 

• either there is 1::; j::; ln'/2J such that Sj ::; -(E/2)Vii, and 

• or there is 1 ::; j ::; r n' /21 such that sr; ::; -EVii, and 

We denote these two events A' and Ar, respectively. We remark that the rather complicated 

two-sided inequalities in the definitions of A' and Ar are both equivalent, after rearrange­

ment, to the condition that r ::; Sn ::; r + A. We have written them as we did in order to 

highlight that we use this as a condition on the difference S~, - st n' /2 J (when defining A') 

and on the difference S~, - S[n' /2J (when defining Ar). With these definitions, we thus have 

P {B, CI Dt-d ::; 2 max{P {A'IDt-l}' P {ArIDt_1}} = 2 max{P {A'}, P {Ar}}, the preced­

ing equality holding by the strong Markov property. We next prove that max{P {A'} , P {Ar} } 
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is at most a* /4#, from which it follows that P {E, GIDt_I} ::; a* /2#. Combining this 

bound with (2.76) yields that P {E, CIDt - 1} ;::: a* /2# > a* /2Vn, which proves (2.67) 

with 60 = a* /2 and thus completes the proof. It remains to prove our bounds on P {A'} and 

For 1 :::; j :::; n' /2, let Aj be the event that j is the smallest integer for which Sj :::; -(E/2)Vn' 

The Aj are disjoint events so L;:'{2J P {Aj} :::; 1. Furthermore, if Aj occurs then either 

Slnl/2J :::; -EVn/4, or else Slnl/2J - Sj ;::: EVn/4. Letting n* = Ln'/2J, we thus have 

P {::J * S' -EVn} P {Sn" :::; _EVn
4
n} ::JI :::; j :::; n S.t. j:::; 2 :::; 

+ ~ P{Aj}P {s~. - s; 2: Ef} 
{ 1 

' 1 EVn} { , EVn} < P Sn*;::: -4- + ~ax P Sn*_j;::: -4- , 
l:SJ:Sn*-l 

the second inequality holding by the strong Markov property and as L;:'{2J P {Aj} :::; 1. 

Using the fact that there is {3 > a such that P {S~ ;::: a} ;::: (3 for all i and a simple conditioning 

argument, just as we did in proving (2.75), then yields that 

Since n* = ln'J2J, S~./(JJn'J2 converges to a N(a, 1), by choosing 6 small we may make 

the last probability in (2.77) as small as we wish, for aH n. In particular, fixing any 61 > a 

we may presume we have chosen 6 small enough that (2.77) yields 

(2.78) 
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By Theorem 9 there is a constant a** depending only on X and A such that for aIl x and aIl 

k, P {x::; Sk ::; X + A} ::; a** /V"k. In particular, we thus have 

a** 2a** 
P {r - Snt_l +ln' /2J ::; S~I - S[n l /2J ::; r + A - Snt_l +ln' /2J} ::; vL ni /2 J ::; # (2.79) 

for n large enough. The events in whose probabilities are bounded in (2.78) and (2.79) are 

determined on disjoint sections of the random walk S'. Since both must occur in order that 

A' occur, we thus have 

P {A'} < 261a** 
-# 

Choosing 61 = a* /8a**, we thus have that P {A'} ::; a* /4# for n large enough. An 

identical argument to bound P {AT} yields that P {AT} ::; a* /4# for ni large enough, so 

max{P {A'}, P {AT}} ::; aI/4#, as claimed. This completes the proof. 0 

We note that Lemma 34 has an exact analogue in the case that Xl E V and Sn/an tends 

to a normal distribution; in this case, by an identical pro of, we end up with a lower bound 

of c* jan instead of c* / Vii in (2.63). We can then establish Theorem 33 in exactly the same 

fashion as we did Theorem 32; once again, we omit the details. This completes our work 

on general ballot theorems for the normal case. We now turn our attention to a ballot-style 

result that is is interesting when Sn is much farther from its mean. 

2.5 Ballot theorems for landslide elections 

In this section we consider what meaningful ballot-style statements can be made wh en Sn -

E {Sn} = 8(n). The centrallimit theorem suggests that if X is in the range of attraction of 

the normal, then Sn - E {Sn} is likely 8( Vii), and it is for such random variables and such 

deviations that the results of Chapter 2 are essentially optimal. The results of this section 
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apply to a different kind of random variable; we will restrict our attention to sums of iid 

random variables with positive variance whose mean is 0 (as usual) and whose maximum 

value is 1. (Of course, any non-negative random variable that is bounded from above can be 

renormalized to satisfy this constraint.) We place no restriction on the lower tail behavior 

of the random variables - in particular, it is possible that E {X 2 } = 00 

This is a setup we have already seen in Chapter 1. For example, if X is integer valued we saw 

that P {Si> 0 VI::; i ::; nJSn = k} = k/n. In this chapter we are interested in a related 

though distinct question: given that Sn = k > 0, what is the probability that Si < k· (i/n) 

for all 0 < i < n? More generally, for sorne positive a possibly depending on n and un der 

the same conditioning, what is the probability that Si < k . (i / n) + a for aU 0 < i < n? The 

answer to the first question foUows from the rotation argument we have already used several 

times. Let Xi = Xi - k/n and set Si = Xl + ... + Xi = Si - ik/n - note that in particular 

Sn = o. The variables Xl, ... ,Xn are interchangeable, and Si < Sn . (i/n) = ki/n for aU 

o < i < n precisely if Si < 0 for aU 0 < i < n. Since Sn = 0, the probability of the latter 

event is 8(1/n), as we saw in Section 2.1. 

The results and techniques we have seen so far in this chapter suggest it might be reasonable 

to believe that for suit able a, the probability that Si < k·(i/n)+a for aU 0 < i < n, given that 

Sn = k, is O(a2/n). We are not able to prove this, and have to settle for a somewhat weaker 

result (which, roughly stated, consists in replacing O(a2/n) by O(a5/n)). In a nutsheU, the 

weakness in our argument is due to the fact that in addition to the rotation argument, we 

end up relying on asymptotic estimates of the probability that Sn > k for k = D(n) (i.e., 

asymptotic estimates for large deviations). These estimates introduce a sort of "impurity" 

into the ballot-style argument, which interferes with our ability to apply the techniques we 

used above. Our intuition is that this reliance on asymptotic estimates for large deviations 

should be unnecessary and that its removal would lead to a strengthening of our results. We 

remark that Reed (2003) has proved a similar result for random walks in which the steps are 
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exponential mean 1 random variables, and we adopt his approach in this section. 

At a high level, our argument is no different from that sketched in Section 2.1 (for the 

moment, we assume we are dealing with integer random variables that are never 0). Let us 

say that Sn stays belowa (and denote this event S bel a) if, for all 0 < i < n, Si < Sn (i / n) +a. 

We are then interested in comparing P {Sn = En n Sn bel a} with P {Sn = En} for 0 < E < 1 

and for "suit able" a. We observe that if Sa2 = w 2 - a, say, and Sn - Sn-a2 = w 2 + a, then 

for Sn = En and Sn bel 0 to occur, it suffices that in addition, the following events occur: 

( a) Si < fi for 0 < i < a 2 , 

(b) Sn - Sn-i > Ei for 0 < i < a 2, 

The third of these events is just the event {S~I = En' n S* bel a}, where S* is just S restarted 

at time a2 , and n' = n - 2a2 . By the standard rotation argument, the probability of (a) 

given that Sa2 < w 2 is at least 1/ a2 . Similarly, the conditional probability of (b) is at least 

1/a2. If the events Sa2 = w 2 - a and Sn - Sn-a2 = w 2 + a both had probability 0(1), then 

the independence of disjoint sections of the random walk would yield: 

P {Sn = En n S bel O} = P {S~_2a2 = E(n - 2a2) n S bel a} ·0 (:4) . 

Since we also know that the left-hand-side of the above equation is 8(P {Sn = En} ln), it 

would follow from the above equation that 

P {Sn-2a2 = E(n - 2a2) n Sn-2a2 bel a} = 0 (:) P {Sn = En}. (2.80) 

Finally, if additionally P {Sn-2a2 = E( n - 2a2)} and P {Sn = En} were of the same or der , then 

(2.80) would yield the sort of statement we are aiming to prove. The key way in which our 
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sketch is incorrect is that P {Sn-2a2 = E( n - 2a2 )} and P {Sn = En} are significantly different 

- as we shall see later, they differ by a factor of roughly ec.2a2 for some c = c( E) > 0 - so 

(2.80) would not yield a statement ofthe form P {Sn bel alSn = En} = O(a4 /n), but instead, 

a bound which is incorrect. Similarly, the events Sa2 = w 2 - a and Sn - Sn-a2 = w 2 + a do 

not have probability 0(1). 

Fortunately, bounds on the probabilities of these events follow from large deviations asymp­

totics. Though the necessity of these estimates complicates the proofs that follow, the 

complication is purely technical, and turning the ab ove sketch into a proof is by-and-large 

an exercise in using them at the appropriate points of the argument. The requisite results 

on large deviations appear in Appendix A; we combine the results from that section which 

we will need into the following lemma. 

Lemma 35. Let S be a mndom walk with iid steps distributed as X with EX = 0, Var {X} > 

0, and sup{x 1 p {X> x} > O} = 1. Then for any 0 < E < 1 there are positive constants 

b, c, and d, and f such that 

and for a, a' = o( vn) (with a' an integer J, 

P {Sn-al> En + a} = (1 + o(l))e-ad-alfp {Sn> En}, 

where for any g(n) tending ta in finit y with n, the convergence of the term 0(1) is uniform 

over lai, la'i < vn/g(n). 

A caveat: this lemma applies only when X is non-lattice, i.e., there is no r =J. 0 for which 

r X is an integer random variable. As discussed in Appendix A, an equivalent lemma exists 

when X is lattice. Though we prove the following result using Lemma 35, we state it more 
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generally and omit the proof for lattice random variables to avoid a near-verbatim repetition 

of the non-lattice proof. We remark that the condition sup{ x 1 p {X > x} > O} = 1 can be 

replaced by the condition "X is bounded from above" by renormalizing. 

Theorem 36. Let Xl, ... ,Xn be iid random variables with mean 0, positive variance and 

maximum value 1, and let Si = Xl + ... + Xi for 1 :S i :S n. Fix constants Ct > 0, 0 < E < 1, 

and choose real numbers a, r with 1 :S a = O(nl
/

5
) and r = o( ft). If Xl is non-lattice, then 

P {Sn bel a 1 En + r :S Sn :S En + r + Ct} = 0 ( :) , (2.81) 

any g(n) tending to infinity with n, the convergence of the term 0(1) is uniform over Irl < 

ft/g(n). Furthermore, if Xl is lattice then for any Ct for which CtXl is integer, the same 

result holds. 

Proof. As discussed, we restrict our attention to the case that Xl is non-lattice. We prove 

the lemma assuming Ct = 1 and r = 0; the proof is identical for general Ct and r. Fix n and let 

n* = n+2a2 ; as a = O(nl / 5 ) we have n = 8(n*). We let S' be the walk with S; = Sa2+i - Sa2. 

As in the above sketch, we proceed by comparing the following two probabilities: 

and P {En :S S~ :S En + 1 n S~ bel a} . 

Let E (resp. E*) be the event {En :S S~ :S En + 1} (resp. {En* :S Sn- :S En* + 3}). For any 

o :S i :S a-l, for E* n {Sn- bel O} to occur it suffices that the following events occur: 

El,i is the event that -(a + i) ::; Sa2 - w 2 ::; -(a + i - 1). 

E2,i is the event that a + i :S Sn* - Sn--a2 - w 2 :S a + i + 1. 

E3 is the event that En :S S~ :S En + 1. 

Bel is the event that Sa2 bel 0 and, letting S; = Sn*-a2+j - Sn-_a2, that S~2 belO. 
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Bela is the event that S~ bel a. 

We will show that 

P {Bela 1 E3} 0 (:) ,i.e., 

P {S~ bel alEn ::; S~ ::; En + 1} 
_ 0 ( an5) , 

which proves (2.81) with ct = 1 as the walk S' is distributed identically to the walk S; as 

noted ab ove , the proof for general ct is identical. 

Since for any i ::; 3a, a + i/3 is O(a), by Lemma 35 there is d > 0 such that 

and 

As E1,i and E2,i are independent and P {w2 ::; Sa2 ::; w 2 + 1} is 8(P {Sa2 ;::: w 2 } ) by Lemma 

35, it follows that 

(2.82) 

for sorne constants band c, again by Lemma 35. AIso, the standard rotation argument and 

the strong Markov property yield that P {BelIE1,i, E 2,d = 8(I/a4
). Combining this fact 

and (2.82) and again using the strong Markov property we have 

(2.83) 

Since E* n {Sn' bel O} occurs if the above conjunction of events occurs for any 1 ::; i ::; a - 1, 
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and for i -:J j the events E1,i and E1,j are disjoint, by summing over i in (2.83) it follows that 

(2.84) 

The standard rotation argument and Lemma 35 yield that 

{ * {S 1}} - 8 ( 1 ) P {E*} - 8 ( b -cn") _ 8 (_b_ -C(n+2a
2
)) PEn n" be 0 - n* - (n*)3/2 e - n 3/ 2e , 

which, combined with (2.84), yields that 

(2.85) 

A final application of Lemma 35 to bound P {E3} gives 

(2.86) 

As b is a constant, (2.85) and (2.86) together imply P {Bela 1 E3} = O(a5 ln). o 

2.6 Conclusion 

In this this chapter and the last, I aimed to demonstrate that the theory of ballots is not only 

rich and beautiful, in-and-of itself, but is also very much alive. The results of this chapter 

are far from conclusive in terms of when ballot-style behavior can be expected of sums of 

independent random variables, and more generally of permutations of sets of real numbers. 

In the next few paragraphs, I highlight sorne of the questions that remain unanswered. 

The results of Section 2.4 are unsatisfactory in that they only yield "true" (conditional) 

ballot theorems when Sn = O( y'ri). Ideally, we would like results such Corollaries 28 and 29 
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to ho Id whatever the range of Sn. The weakness of our approach is that it relies on estimates 

for P {x :::; Sn :::; X + c} that are based on the central limit theorem, and these estimates are 

not good enough when Sn is not O( yfiï). There is also room to improve the results of Section 

2.4 for Sn = O(yfiï). When we only assume X E 'D, the term n1- o(1) in our result is surely 

not optimal, and should be replaced by 8(n). 

The restriction to variables X E 'D is not obviously necessary in order for ballot-style behavior 

to occur. On the other hand, the proof technique used above can not be generalized very 

much. Kesten and MaIler (1994) and, independently, Griffin and McConnell (1994), have 

derived necessary and sufficient conditions in order that P {STr,Q} --+ 1/2 as r --+ 00; in 

particular they show that for any Œ < 2, there are distributions with E {xa} = 00 for which 

P {STr,Q} --+ 1. Therefore, we can not expect to use a result such as Theorem 19 in this case, 

which seriously undermines our approach. The results of Section 2.5 do ho Id for variables 

with infinite variance; however, they give bounds with respect to the conditioned mean. It 

would be nice to have a ballot theorem, in this case, that bounded the probability that the 

actual expected value stayed above its mean. 

In terms of the sort of conditional expected value ballot theorem we saw in Section 2.5, 

there are also unanswered questions. As we noted in Section 2.5, Theorem 36 should hold 

for a = O(nl/2 ) (instead of a = O(nl/5 )), with the bound O(a5 ln) replaced by O(a2 ln). 

With a litt le more work, we could perhaps have forced our approach to yield a bound of 

O( a4 1 n); however, the correct upper bound seems beyond the reach of our approach. It is 

also unclear just when the approch of Section 2.5 can be made to work at aU if the one-sided 

boundedness condition is relaxed. (We could have generalized our results somewhat, but 

only by imposing analytic conditions on the random variable X that have nothing to do 

with the ballot theorem on any intuitive level.) 

As we touched upon at various points in the chapter, aspects of our technique seem as though 
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they should work for analyzing more general random permutations of sets of real numbers. 

Since Andersen observed the connection between conditioned random walks and random 

permutations (Andersen, 1953, 1954), and Spitzer (1956) pointed out the full generality 

of Andersen's observations, just about every result on conditioned random walks has been 

approached from the permutation-theoretic perspective sooner or later. There is no reason 

the results of this chapter should not benefit from such an approach. 

96 



Chapter 3 

The size and structure of the incipient 

giant component of Gn,p 

3.1 Introduction 

Random graphs lie at the heart of probabilistic combinatorics, but were first introduced to 

answer a completely deterministic problem. Perhaps the most famous classical theorem in 

combinatorics is the theorem of Ramsey (1929), a special form of which states that for any 

integer k there is n such that given any graph G with n vertices, either G contains a clique 

of size k or an independent set of size k. Ramsey in particular proved that, viewed as a 

function of n, we may take k > (log n) /2. In other words, any graph with n vertices contains 

either a clique or an independent set of size at least (log n) /2. 

Erdos (1947) used random graphs to give a simple proof that this lower bound on k is within 

a factor of 4 of the best possible bound, by showing that there exist graphs on n vertices 

containing neither a clique nor an independent set of size greater than 2 log n; we present 
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his proof in a slightly altered form. Let Gn ,1/2 be a labeled graph with n vertices chosen 

uniformly at random from among aH such graphs. We may think of constructing Gn ,1/2 

starting from n isolated vertices by fiipping a fair coin for each edge and adding the edge if 

the coin cornes up heads. In other words, in Gn ,1/2 each edge is present independently and 

with probability exactly 1/2. 

We may easily bound the probability that Gn ,1/2 contains a clique of size k. The probability 

a given set of k vertices in Gn ,1/2 is a clique is 2-(~), as each of the pairs within the k vertices 

must be joined by an edge. By a union bound, the probability any k vertices form a clique is 

at most G)2-(~) ::; n k 2-k(k-l)/2/ k!. If n > 2 and k > 2 log n, this is strictly less than 1/2. By 

considering the complement of Gn ,1/2 (the graph whose edges are the non-edges of Gn ,1/2), 

an identical bound follows for the size of the largest independent set. Thus the probability 

that Gn ,1/2 contains a clique of size k > 2 log n or an independent set of size k is strictly less 

than 1, so there is sorne graph with n vertices that contains neither of these subgraphs. (We 

remark that this may also have been the first use of the probabilistic method.) 

The notation Gn ,1/2 highlights the fact that we choose each edge independently with prob­

ability 1/2; the more general model Gn,p (for 0 ::; p ::; 1) chooses each edge independently 

with probability p. In the closely related model Gn,m, we select uniformly at random from 

among aIl graphs with m edges. One may pose the question: how do es the structure of Gn,m 

(resp. Gn,p) change as m ranges from 0 to G) (resp. p ranges from 0 to 1)? 

The seminal papers addressing this issue are due to Erdos and Rényi (1959, 1960, 1961). 

These papers analyzed the random graph model Gn,m, establishing the remarkable faet that 

many eommonly studied graph properties have a threshold function in Gn,m. To explain 

precisely what we mean, it helps to fix a specifie example; we consider the question of whether 

Gn,m is eonneeted. Erdos and Rényi (1959) showed that, letting m = m(n) = (nlogn)/2, for 

aH E = E(n) > 0 for which E(n) = w(1/10gn), Gn,(1+E)m is eonnected with probability tending 
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to 1 as n tends to infinity (asymptotieaUy almost surely, or a.a.s.), and a.a.s, Gn,(l-é)m is not 

connected. This paper also found asymptotic bounds for the probability that G n,(nlogn+cn)/2 

is connected, for fixed c, in particular bounding this probability away from both 0 and 1. 

Adopting a piece of terminology from statistical physics, we say that m = (n log n + en) /2 

is in the critieal window for connectivity. 

The subjects addressed in (Erdos and Rényi, 1960) are close to the heart of this chapter. It 

was established in that paper that for any fixed t > 0, if m = m(n) < (1 - t)n/2 then a.a.s 

the largest component of Gn,m has size O(log n). If m > (1 + t)n/2 then a.a.s.: 

(*) The largest component Hn,m of Gn,m has size n( n) and aU other components have size 

O(logn). 

(In choosing Hn,m, we break ties by choosing the largest component so as to maximize the 

largest vertex index it contains - thus this component is unique.) FinaUy, they showed that 

if m = n/2 then the largest component of Gn,m has size 8(n2/3 ) and there may be many 

components of this order. 

It is possible to consider the of random graphs {Gn,m} ~2o as a graph process: we label the 

edges of the graph with the integers L = {1, ... , (;)}, chose a uniformly random permutation 

a of L, and sequentiaUy add the edges in the order given by a. The in this process, for each 

o :S m :S (;), the graph with edges a(I), . .. ,a(m) is distributed as Gn,m. This pro cess has 

the property that for m < m', Gn,m is a subgraph of Gn,ml, which is often useful for analysis. 

In fact, (Erdos and Rényi, 1960) established a st ronger result than that stated above: they 

showed that in the random graph pro cess for Gn,m, a.a.s. (*) holds for aU m > (1 + t)n/2. 

This implies that a.a.s., for aU m' > m > (1 + t)n/2, Hn,m ç Hn,m" Restating this in 

colourful but imprecise language, which component is the largest never changes, the largest 

component simply expands by gobbling up smaUer ones. When m > (1 + t)n/2, Hn,m is 
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called the giant component. 

We remark that in the random graph model Gn,p, the number of edges is distributed as 

Bin(G),p), and is thus with high probability about (~)p+ O(M); this fact allows us to 

translate results for one model into results for the other with relative ease. In particular, 

it follows from bounds on the tails of the binomial distribution that given a function M(n) 

and a graph property P, if for aIl m = O( y'M(n)), a.a.s. Gn,M(n)+m has P, then a.a.s. Gn,p 

has P, and is not difficult to see that the converse also holds. It turns out that Gn,p is 

often easier to study than Gn,m because of the independence between edges and, as we shall 

see, because for certain values of p the behavior of Gn,p can be analyzed via a branching 

process. For the remainder of the chapter, we phrase our discussion in terms of Gn,p, even 

wh en stating results originally proved for Gn,m' 

The aim of this chapter is to understand aspects of the structure of Gn,p when p is in the 

critical window for the existence of a giant component, i.e., when p-l/n = o(l/n). (For the 

remainder of this chapter, we will refer to this as "the" critical window, as we will consider 

no others). More precisely, we aim to establish explicit (i.e. not asymptotic) bounds on the 

size and number of edges of the largest component Hn,p of Gn,p when p - lin = o(l/n). We 

return to this question after providing a brief history of the study of the giant component. 

The results of Erdos and Rényi (1960) were rediscovered by Stepanov (1970a,b), who worked 

directly with the Gn,p model. (Stepanov was the first person to refer to the threshold 

phenomena appearing in Gn,p as "phase transitions" , another term borrowed from statistical 

physics). In the course of his work, Stepanov also introduced the continuous time random 

graph process, in which each edge e of the complete graph Kn is assigned an independent 

copy Xe of some continuous, non-negative random variable X, and the graph Gn(t) consists 

of aIl edges e with Xe ::; t. We note that if X is a [0,1] random variable, then for 0 ::; p ::; 1, 

Gn(p) is distributed as Gn,p' (This process allows us to think of the graph Gn,p as "evolving" 
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over time, and will be important both in this chapter and in Chapter 4.) Ivchenko (1973a,b) 

built on the work of Stepanov; his work was primarily focussed on the critical window for 

connectivity and not for the existence of a giant. 

The first major progress on the behavior of Gn,p in the critical window was due to Bollobas 

(1984). He showed that for any function h(n) > 0 which is w((logn)1/2n-4/ 3), a.a.s. for all 

p > lin + h(n), 

(a) IHn,pl = (4 + o(1))n2h(n), and all other components have size o(n2/3
), and 

(b) for all p' > p, Hn,p ç Hn,pl. 

It follows that for such p it already makes sense to refer to Hn,p as "the" giant component. 

Luczak (1990, 1991, 1993, 1998) published a sequence of papers analyzing the behavior of 

Gn,p for p in the critical window, and in particular strengthening Bollobas's results. He 

showed showing (a) and (b), ab ove , ho Id as long as h(n) = w(n-4
/

3
) (so it makes sense to 

speak of "the" giant component for all p = lin + w(n-4/ 3 )). 

Luczak also proved a strong "symmetry principle" for the lower and upper parts of the 

critical window. Roughly stated, his result is that for h(n) = w(n-4/
3

), if p = lin + h(n) 

and p* = lin - h(n), then the structure of Gn,p' is "the same as" the structure of Gn,p 

with the giant component Hn,p removed (we denote this graph Gn,p - Hn,p), in that if any 

graph property P ho Ids a.a.s. for for Gn,p - Hn,p, then it holds a.a.s. for Gn,p*. For 

p* < lin - w(n-4/ 3 ) as ab ove , he also proved explicit upper tail bounds on the size of the 

largest components and and on the greatest distance between any two vertices in the same 

connected component of Gn,p* (i.e. on the diameter of Gn,p*). 

Another topic of considerable interest to researchers has been the excess of the giant com­

ponent, defined as the difference between the number of edges and the number of vertices. 
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A connected graph with excess -1, for example, is a treej a connected graph with excess 0 

contains exactly one cycle (and is called a unicyclic graph); graphs with excess at least one 

are called "complex". Janson et al. (1993) studied the size and excess of Gn,p in the critical 

window in detail, in particular deriving asymptotic bounds on the excess of the giant and 

the probability that there is ever a complex component aside from the giant; similar results 

for random multigraphs are also derived. Related work also appears in Luczak et al. (1994). 

Aldous (1997) has defined a stochastic pro cess related to a procedure for growing Gn,p and 

shown that this pro cess has a Brownian motion as a weak limit. Based on this fact, he is 

able to der ive the asymptotic joint distribution of the sizes and excesses of the k large st 

components of Gn,p for p in the critical window. (We will discuss this in a little more detail 

later, when we use a related pro cess in our own analysis.) Further results on the size of the 

Hn,p during the critical phase appear in the recent paper of Pitt el (2001), which proves a 

central limit theorem for the random variable measuring the size of Hn,p and asymptotics 

for the tails of this random variable, together with an interesting account of known results. 

We study Hn,p by analyzing a branching pro cess for growing Gn,p and a random walk which 

can be associated to this branching process. Using this approach, we are able to prove fairly 

strong upper and lower tail bounds on the size and excess of Hn,p' (Independently, Kim 

(2006) has recently demonstrated an elegant use of a graph pro cess with Poisson-distributed 

vertex degrees to arrive at similar bounds to ours for the size of Hn,p; his approach can also 

be used to treat the excess of Hn,p, though he does not do so explicitly.) We now proceed to 

the details of our argument. 

102 



3.2 U nderstanding Gn,p through breadth-first search 

We analyze the component structure of Gn,p using a pro cess similar to breadth-first search 

(BFS) (Cormen et al., 2001) and to a process used by Aldous (1997) to study random graphs 

in the critical window from a weak limit point of view. We highlight that Gn,p is a labeled 

random graph model with vertex set {VI, V2,' .. ,vn }. For i 2: 0, we define the set Oi of open 

vertices at time i, and the set Ai of the vertices that have already been explored at time i. 

We set 0 0 = VI, Ao = 0, and construct Gn,p as follows: 

Step i (0 ::; i ::; n - 1): Let V be an arbitrary vertex of Oi and let Ni be the random set of 

neighbours of v. Set OHI = Oi UNi - {v} and Ai+1 = Ai U {v}. If OHI = 0, then 

reset OHI = {u}, where u is the element of {Vl,V2,'" ,vn } - Ai with the smallest 

index. 

Each time OHI = 0 during sorne Step i, then a component of Gn,p has been created. To 

get a handle on this process, we now further examine what may happen during Step i. 

The number of neighbours of v not in Ai U Oi is distributed as a binomial random variable 

Bin(n - i -IOil,p). By the properties of Gn,p, the distribution of edges from v to V - Ai is 

independent of what happens in the previous steps of the process. Furthermore, if OHI = 0 

does not occur during Step i, then w E Oi+1 - Oi precisely if w tf. Ai U Oi and we expose 

an edge from v to w during this step. It follows that 10H11 is distributed as max(IOil + 

Bin(n - i -IOil,p) -1,1). An advantage of this method of construction is that if Ot+1 = 0 

during Step t, instead of thinking of the pro cess continuing to construct Gn,p we may think 

of restarting the process to construct Gn-t,p' 

We can thus analyze the growth of the components of Gn,p, created by the above BFS-based 

process, by coupling the process to the following random walk. Let 80 = 1. For i 2: 0, let 
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Xi+1 = Bin(n - i - Si,P) - 1, and let 

With this definition, for aU i < n - 1, Si is precisely IOiJ, and any time Si-1 + Xi = 0, a 

component of Gn,p has been created. We will sometimes refer to such an event as {Si = O} 

or say that "s visits zero at time i". 

An analysis of the height of the random walk Sand its concentration around its expected 

value will form a crucial part of our derivation of bounds for the size of Hn,p' We will 

prove matching upper and lower bounds that more-or-less tie down the behavior of the 

random variable Si for i in a certain key range, and thereby imply bounds on the sizes of 

the components of Gn,p' In analyzing this random walk, we find it convenient to use the 

foUowing related, but simpler processes: 

• S' is the walk with Sb = 1 and S~+! = S~ +X:+1, where X:+! = Bin(n - i -IOil,p) -1, 

for i 2: O. This walk behaves like Si but is allowed to take non-positive values. 

• S* is the walk with S~ = 1 and S;+l = S; + Bin(n,p) - 1. 

• Sind is the walk with Sind = 1 and s~nd = s~nd + Bin(n - (i + 1) p) - 1 for i > 0 o 2+1 2 ,,- . 

• Sh is the walk with sg = 1 and Sf+1 = Sf + Bin(n - (i + 1) - h,p) - 1, for i 2: O. 

Note that aU of these walks are allowed to go negative. We couple aU the above walks 

ta S. S' is coupled to S by its definition. We couple Sind to S by letting, for each i, 

Sf~1 = Sind + Xi+! + Bin(Si,p), and couple S* to S in a similar fashion. We couple Sh to 

S by for each i considering the random variable Bin( n - (i + 1) - h, p) as a sum of either 

a subset or a superset of the random variables comprising the sum Xi = Bin(n - i - Si'P), 

according to whether Si ::; h+ 1 or Si > h+ 1, respectively. We emphasize that until the first 
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visit of S to 0, S' agrees with S while Sind and S* strictly dominate it. Finally, S dominates 

Sh until the first time that S exceeds h + 1. We will rely on the properties of these simpler 

walks when analyzing S. 

As a preliminary exercise, consider what happens to the random walk S which corresponds 

to the random graph pro cess Gn,l/n' It is known (Erdos and Rényi, 1960) that at this 

point, the large st component has size 8(n2
/

3
). We provide a simple pro of of this fact using 

the random walks defined above and the ballot theorem approach of the previous chapter. 

Denote by C(v) the component of Gn,p containing v - we focus on the size of the component 

C (VI) containing VI. 

Note that IC (vI) 1 > t precisely if Si =1= 0 for aIl i :::; t. The probability of this event is bounded 

above by the probability that the random walk S* has not returned to zero by time t. The 

steps of S* are iid random variables distributed as Bin(n, l/n) - 1. Furthermore, the size of 

the component containing VI is deterministically at most n. It follows that P {IC(VI)I ~ t} 

is at most the probability that the first return to 0 of S* is between times t and n. 

By Theorem 9 (or in this case, since Sk + k is a binomial, by explicit computation), the 

probability that Sk = 0 is O(l/Vk). By the standard rotation argument, it follows that the 

probability that S* first returns to zero at time k is O(1/k3/2). Summing over t :::; k :::; n, it 

follows that the probability S* first returns to zero between times t and n is O(1/tl / 2 ). By the 

comments of the previous paragraph, it follows that the probability VI is in a component of 

size at least t is O(1/t l
/

2
). Let Nt be the number of vertices in components of size at least t. 

By linearity of expectation, it follows from the above fact that ENt = O(n/tl
/ 2 ). If there are 

any vertices in components of size t, there are at least t such vertices, so E {Nt 1 Nt ~ 1} ~ t. 

Since 

105 



our bound on ENt yields that there is e such that P {Nt 2:: 1} :::; tiENt :::; enlt3/2, which 

immediately yields that probability there is a component of size much larger than n2
/

3 is 

small. Letting L be the size of the largest component, we thus have 

EL < ~ P {L > i} < n 2/3+ ~ P {L > t} < n 2/3+ ~ en < n 2/3+ 2en = (2e+1)n2/3 
- L....t - - L....t - - L....t t 3/ 2 - n1/ 3 ' 

i=O t=n2!3 t=n2!3 

i.e., the expected size of the large st component is O(n2/ 3 ). 

This technique does not yield a corresponding lower bound due to the fact that the expected 

change in S in a step becomes increasingly negative as the walk continues. As an aside, 

however, we note that we may use an essentially identical approach to study a critical (mean 

one) branching process. We can then easily derive the precise probability that such a process 

has size exactly t in terms of the probability that St = O. This probability was first calculated 

by Dwass (1969); in the same paper he pointed out the link with a random walk such as 

ours. Though his pro of did not proceed via the ballot theorem, he used his result to prove 

a ballot theorem for such random walks. 

We can use a similar approach to bound the size of the largest component for p = 11 n- fi n4/ 3 

and f > 0, by additionally using Chernoff's tail bounds for the binomial distribution: 

Theorem 37 (Chernoff, 1952). If Y = Bin(m, q), then denoting EY (whieh is mq) by À, 

we have: 

(3.1) 

and 

(3.2) 

When p = lin - fi n4/ 3 and 0 < f = o( n 1/3), the probability that le (vI) 1 2:: t is again at most 

the probability that S* first returns to zero between times t and n. Since ESt = - fkln 1/ 3, 
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by Chernoff's bounds P {St 2: O} ::s e-3fk/8n2/3. In fact, it is an easy computation from the 

properties of the binomial distribution to show that P {Sk = O} = O(P {Sk 2: O} /Jk) = 

O( e-3/k/8n2/3 / J"k). By the standard rotation argument, the probability that S* first returns 

to zero at time k is at most 2P {St = O} /k = O(e-3fk/8n2/3/k3/2). 

Summing over t ::s k ::s n yields that P {IC(vdl 2: t} = O(e-3ft/8n2/3/0), so by linearity of 

expectation EINtl = O(ne-3ft/8n2/3/0). From here we can argue just as in the case p = l/n 

to obtain that the expected size of the largest component of G n,l/n- f /n4/3 is at most n2/3 / f· 

We note that Nachmias and Peres (2005) have used an analysis similar to, but more powerful 

than that sketched above to derive st ronger bounds than those shown above for the size of the 

largest component of Gn,l/n' Their proof uses essentially the same BFS-based exploration 

pro cess for Gn,l/n, but takes advantage of the fact that the random walk S* is in fact a 

martingale. By applying the optional stopping theorem for martingales to the event that 

S* first returns to zero at time t, they obtain the bound P {IC(Vl)1 2: t} ::s 1ft where we 

obtained P {IC(Vl)1 2: t} = O(t-1
/

2
). This strengthening allows them to prove that the 

probability that the largest component has size at least Cn2
/

3 is at most 3/C2
. Additionally, 

their martingale analysis allows them to prove explicit bounds on the probability that this 

component is much smaller than n 2/ 3 ; such bounds do not follow straightforwardly using 

the above approach. (We note that in the course of their proof, N achmias and Peres prove 

analogs of Theorem 19 and Lemma 24 for the martingale S*. For the case they consider, 

their results are st ronger than ours as they are able to take advantage of the fact that the 

steps of S* are binomial.) Furthermore, aspects of their analysis can be used to bound the 

sizes of components of Gn,p for p in the critical window (Peres, 2006). 

In the upper part of the critical window, the above approach fails. If p = l/n + f /n4/ 3 and 

f > 0 then at the outset the walk S has positive drift (the steps have positive mean), so we 

expect the walk to move into the positive values. As the walk continues, at sorne point the 
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steps have roughly zero mean, then negative mean, and finally we reach a time t where we 

expect the total drift to be zero (a back-of-the-envelope approximation pretending that S 

behaves exactly as Sind suggests that this t should be about 2fn2/ 3 ). With a reasonably high 

probability, the first time t we return to zero is indeed close to 2fn2/ 3 . But the probability 

that we stay above 0 before time t given that S visits zero at time t is not O(ljt) - the the 

nature of the drift makes it much more likely that such an event occurs than it would be 

were the steps identically distributed. For this reason, we can not straightforwardly apply 

the ballot theorem argument to derive an upper bound on the size of the giant component 

in the upper portion of the critical window. 

Instead, we use one of the tools that was crucial in the proofs of the ballot theorems of 

Section 2.4 to develop tools for showing that with high probability, the random walk S is 

never far from its expected value. We introduce a degree of independence to the problem via 

the random walks Sind and Sh. Intuitively speaking, these walks provide "upper bounds" 

and "lower bounds" on the value of S, and have the advantage that we can control them 

directly using Chernoff bounds due to the independence of their steps. This will allow us to 

show that with high probability, a large component of size about 2fn2/ 3 appears in the first 

(2 + E)fn2
/

3 steps of the random walk. 

Once this large component has appeared, in the portion of the random walk that remains the 

drift is negative; we can therefore use the ballot theorem-based technique above to bound 

the sizes of the remaining components of Gn,p and thereby show that with high probability, 

this large component is indeed the giant component. (The behavior of the remainder of the 

random walk can be se en as confirmation of the fact mentioned in the introduction that the 

structure of Gn,p - Hn,p is much like that of a subcritical random graph. As a matter of fact, 

using existing knowledge about the behavior of subcritical random graphs will turn out to 

yield better probability bounds than using the ballot theorem.) 
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The preceding argument and remarks lend credence to two daims: (1) that the largest 

component of Gn,1/n+f/n2/3 has size O(fn2
/

3
), and (2) that any component of this size must 

arise early in the branching process. The main goal of the rest of this chapter is to state 

and prove precise versions of these daims To do so, we need to tie down the behavior of S. 

First, however, we analyze Sind,sh and S', as they buck a little less wildly. 

3.3 The height of the tamer walks 

We can handle Sind for p = lin + 8 using the analysis discussed ab ove , which consists of 

little more than standard results for the binomial distribution. Specifically, we have that for 

t ~ 1, s;nd + (t - 1) is distributed like Bin(nt - e~l) ,p), so by linearity of expectation, we 

have: 

Fact 38. For p = lin + 8 with 8 < lin, 

E Sind ~ t(t + 1) t(t + 1)8 1 1 
t = unt - 2n - 2 +:::; t + . 

Using the fact that the variance of a Bin(m,p) random variable is m(p - p2), we have: 

Fact 39. For p = lin + 8 with 8 = o(l/n) and t = o(n), 

Var {S;nd} = Var {s;nd + (t - 1)} = (1 + o(l))t 

Intuitively, s;nd has a good chance of being negative if the variance exceeds the square of 

the expectation and a tiny chance of being negative if the expectation is positive and dwarfs 

the square root of the variance. Indeed, we can formalize this intuition using the Chernoff 

(1952) bounding method. 
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We are interested in the critical range, p = l/n + 0 for 0 = o(l/n). For such 0, t(t + 1)0/2 

is o(t(t + 1)/2n), so we see that Es;nd goes negative when Ont ~ t(t + 1)/2n, i.e., when 

t ~ 20n2. Furthermore, for any a E (0,1), there exist al = al(a) > 0 and a2 = a2(a) > 0 

such that ESfnd is sandwiched between alOnt and a20nt, for aon2 :::; t :::; (2 - a)on2. As a 

consequence, (Es;nd)2 = 8(02n2t2) = 8(03n4t) for such p and t. 

AIso, Fact 39 states that Var {Sfnd } = (1 + o(l))t, so the square of the expectation dwarfs 

the variance in this range provided 03n4 is much greater than l, i.e., provided 0 is much 

greater than 1/n4
/

3
• 

Writing 0 = f /n4/3 = f(n)/n4/3, we will focus on the case where f > 1 and f = o(nl/3). We 

assume for the remainder of Section 3.2, and in particular as a hypothesis in aIllemmas and 

theorems of this section, that p = l/n + f /n4/3 and that f satisfies these constraints. In the 

lemma that follows we use Chernoff bounds to show that Sfnd is close to its expected value 

for aIl such f. 

Lemma 40. For aU1 :::; t :::; n - 1 and 0:::; x :::; t, 

Furthermore, for any 1 :::; i < j :::; t, 

Prao! The tail bound on Srd - sind follows by applying Theorem 37 to (Srd - Sind) + (j­

i), which is a binomial random variable. Before applying it, we observe that by Fact 38, 

E {Sjnd - Sfnd + (j - i)} :::; 2j :::; 2t. Thus 
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which establishes the latter daim. The former is obtained by applying an identical argument 

to St + (t - 1), which is also a binomial random variable with mean at most 2t. 0 

We turn now to Sh, which is also easier to handle than S. 

Lemma 41. For aU 1 :::; t :::; n - 1, 

ESh = !:L _ t(t + 1 + 2h) _ t(t + 1 + 2h)f + 1. 
t n1/3 2n 2n4/ 3 

Furthermore, for aU integers 0 :::; i < j :::; t and for all 0 :::; x :::; t, 

We omit the proof of this lemma as it is established just as Fact 38 and Lemma 40. The above 

lemmas yield tail bounds on the value of sorne of the random walks associated with S at 

sorne specifie time t. These bounds rather straightforwardly yield bounds on the probability 

that S is far from its expected value at any time up to sorne fixed time t: 

Lemma 42. Fix 1 :::; t :::; n - 1 and 1 :::; x :::; t. Then 

Furthermore, an identical bound holds for Sh, for any h for which t + h :::; n. 

Proof. Let A be the event that there is i :::; t for which ISfnd - ESfndl 2': x - we aim to show 

bounds on P {A}. We consider the first time i* at which ISf!,d - ESf!,dl 2': x (or i* = t + 1 if 

this never occurs). 

For i :::; t, let Ai be the event that i* = i and let Bi be the event that Ai occurs and 

Is:nd - ES:ndl :::; x/2. Finally, let B be the event that Is:nd - ES:ndl > x/2. If A occurs 
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then either one of the events Bi occurs or B occurs. Furthermore, if Ai occurs then for Bi to 

occur it must be the case that I(s:nd - stnd) - (ES:nd - EStnd)1 2:: x/2. As i* is a stopping 

time, it follows by the strong Markov property that for any i :::; t, 

Furthermore, the Ai are disjoint so the P {Aà sum to at most 1. It follows that 

t t 

P{A} < P{B}+ LP{Bà =P{B}+ LP{BiIAi}P{Ai} 
i=l i=l 

< P {B} + ~~~ P {I(s;nd - s:nd) - E {s;nd - s:nd} 12:: x/2} 

< 2 ~~~ P {I (s;nd - sfnd) - E {s;nd - Srd} 1 2:: x/2} 

< 4e-x2/20t , 

by applying Lemma 40. An identical bound holds for Sh by mimicking the above argument 

but applying Lemma 41 at the last step. D 

3.4 The height of S 

We now turn to the walk we are really interested in. For all i it is deterministically the 

case that Si :::; Sind + i, so we may use Lemma 42 to bound Si (equivalently, IOil) for 

1 :::; i :::; t :::; n - 1. Letting x = Et in Lemma 42 yields: 

Corollary 43. Fix 1 :::; t :::; n - 1 and 0 < E:::; 1. Then 

The above crude bound on IOil is a result of bounds on Sind and the fact that Si - stnd :::; i. 
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To get more precise information on the height of Si, we need to improve our bound on 

Si - Sfnd. To this end, we note that letting Zt be the number of times that Si hits zero 

up to time t, we have St = S~ + Zt. Since S~ hits a new minimum each time St hits zero, 

Zt = - min {S~ - 111 :S i :S t}. Since Sind strictly dominates S', we thus have Si :S Sfnd + Zi 

for all1 :S i :S n-1, which will turn out to yield considerably better bounds than Si :S Sfnd+i 

once we have obtained bounds on Zi' Such bounds follow from the following lemma: 

Lemma 44. For aU 1 :S t :S n - 1 

P S' < -- - - for some 1 < 't < t < 8e-t n . {
if 2t2 

.} 3/400 2 

~ - n1/3 n J' - - -

Proof of Lemma 44. By Corollary 43, the probability IOil ~ (5/4)t for sorne 1 :S i :S t is 

at most 4e-t/320 . On the other hand, as long as IOil :S 5t/4 for aU 1 :S i :S t, S~+l - S~ ~ 

Bin(n-i- 5t/4,p) -1, so S~ ~ S;t/4 for all1 :S i :S t. Furthermore, it foUows from Lemma 41 

and the fact that f = o(n1/ 3 ) that for any E > 0, for n large enough, for aU1 :S i :S t, 

Es~t/4 > if _ (1 + L) i(i + 1 + 5t/2) > if _ (7/4 + E)t
2 

~ - n1/3 n1/3 2n - n1/3 n 

Thus, if S~ :S if /nl/3 - 2t2/n for sorne 1 :S i :S t, then either 

(a) IOjl ~ 5t/4 for sorne 1 :S j :S t, or 

We have already seen that (a) occurs with probability at most 4e-t/320 :S 4e-t3/400n2. By 

choosing E = 1/40, say, and applying Lemma 42 with x = (1/4 - E)t2/n = 9t2/40n, it 

follows that for n large enough (b) occurs for sorne 1 < 'l < t with probability at most 

o 

It is immediate that 
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Corollary 45. For n large enough, the probability that Zt > 2t2 ln is at most 8e-t3/100n2. 

We are now able to derive much st ronger upper tail bounds on Si: 

Theorem 46. For n large enough, the probability that Si > 20j2n1/ 3 for some 1 ~ i ~ 3fn2/3 

is at most 12e-J3 /6o . 

Proof. Let t = 3fn2/3. If Si ~ 20j2n1/
3 for sorne 1 ~ i ~ t then either Zt ~ Zi ~ 18j2n1

/
3 or 

Sfnd ~ 2j2n1/ 3. Corollary 45 yields that the former event has probability at most 8e- f3 /15 . 

Furthermore, using Fact 38 it is straightforward to see that ES1nd ~ j2n1/
3 for aIl i, so 

applying Lemma 42 with x = j2n1/ 3 yields that the probability S1nd is more than 2j2n1
/
3 

for sorne 1 < 'l ~ t is at most 4e-x2/20t = 4e-r /60. Combining these bounds yields the 

rewU. 0 

3.5 Growing a giant component 

U sing these bounds on the height of S, we are able to determine the structure of the giant 

component of Gn,p for p in the range we are focussing on. Recall that the excess of a 

connected graph H is equal to IE(H)I- IV(H)I. In this section we prove: 

Theorem 47. For all 0 < c < 1 there is F > 1 such that for f > F and n large enough, 

with probability at least 1 - 85e-c4 f3 /26
.100, the random graph Gn,p contains a component H 

of size between (2 - c)fn2/3 and (2 + c)fn2/3, and excess between P /20 and 150f3. 

We note that though this theorem is stated for c < 1, we could derive a version that he Id 

for larger c by straightforwardly extending Theorem 46 to apply to values of t other than 

3fn2/3. We prove this theorem in two steps. We first bound the probability that we obtain 

a component of the desired size, and then bound the excess of this component. 
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3.5.1 The size of the giant component 

To begin, we strengthen the argument used in Lemma 44 by using the st ronger bound on 

the height of S given by Theorem 46, to show: 

Theorem 48. Fix 0 < a ::; 1. Then for n large enough, the prabability that Si = 0 for some 

afn2/3 ::; i ::; (2 - a)fn2/3 is at most 13e-céf3/200. 

Prao! As Si ~ S; for aIl i, it suffiees to prove that the probability S; ::; 0 for sorne sueh i 

is at most 13e-a4 f3 /200. Letting h = 20 j2n 1/3, we have that S' is at least Sh until the first 

time i that Si ~ h. From Lemma 41, 

for n large enough. For afn2/3 ::; i ::; (2 - a)fn2/3 and n large enough, it follows from Faet 

4 that ESfnd ~ (a2 /2)j2n1/3, so 

Furthermore, sinee f = o(n1/3), for n large enough and i ::; (2 - a)fn2/3 we have i/n2/3 ::; 

(2 - a)f ::; a 2n 1/3/800, 80 

40a2 j2n 1/3 9a2 j2n 1/3 
-

800 20 

Therefore, if S~ ::; 0 for sorne afn2/3 ::; i ::; (2 - a)fn2/3, either Sj ~ h for sorne j ::; i 

or Sf ::; ESf - 9a2 j2n 1/3 /20. By Theorem 46, the former event has probability at most 

12e- f3 /6o < 12e-a4f3/200. Letting t = (2 - a)fn2/3 and x = 9a2 j2n1/3 /20 and applying 
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Lemma 42 yields that the latter event has probability at most 

This completes the proof. o 

Corollary 49. For n large enough, the probability that Si ::; j2n1/3/10 for some fn2/
3/2 ::; 

i::; 3fn2/ 3/2 is at most 16e-f3/3000. 

Proof. We let a: = 1/2 and follow an identical chain of reasoning from the fact that Si 2: S: 

for aIl i. If S: ::; j2n1/3/1O for sorne fn 2/ 3/2 ::; i ::; 3fn2/ 3/2, then for sorne j ::; i, either 

Sj 2: h = 20j2n1/3 or Sf ::; ESf - j2n1/3/1O. By Theorem 46, the former event has 

probability at most 12e- f3 
/605. By Lemma 42 the latter event has probability at most 

4e - f3 /3000. o 

Theorem 48 tells us that with high probability, S does not visit zero between times a:fn2/ 3 

and (2 - a:)fn2/ 3. Furthermore, Si ::; SInd + Zafn2/3 until the first time after a:fn2/ 3 that S 

visits zero. Combining this fact with our tail bounds on Sind and Zafn2/3, we can show that 

S very likely does visit zero around time 2fn2/ 3 : 

Theorem 50. Fix 0 < a: ::; 1. Then for n large enough, the probability that S does not visit 

zero between time (2 - a:)fn2/ 3 and (2 + 2a:)fn2/ 3 is at most 23e-a4f3/100. 

Proof. For simplicity, let l = (2 - a:)fn2/ 3 , f = (2 + 2a:)fn2/ 3 and let N be the event that S 

does not visit zero between time f and t. If Sfnd < - Zt then Sf < - Zt, so S has visited 0 

between times f and t. Therefore, 
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We bound the right hand side of this equation by writing 

p {Sind> -Z} < p {Sind> -r} + P {Z > r} t - i- t - i, (3.3) 

and deriving bounds on the two terrns of the right-hand-side of (3.3) for suitably chosen r. 

For any r, 

(3.4) 

Sinee Zi> Za:fn2/3 occurs precisely if S visits zero between tirnes o:fn2/3 and t, Theorern 48 

yields that 

(3.5) 

By its definition, Za:fn2/3 > 20:2j2n1/3 precisely if S:::; -20:2j2n1/3 for sorne i::; o:fn2/3. 

Applying Lernrna 44 with t = o:fn2/3 thus yields that 

p {Za:fn2/3 > 20:2 f 2n1/3} < p { S~ ::; ~!;3 - 2~2 for sorne 1 ::; i ::; t} 
< 8e-t3/400n2 

Letting r = 20:2 j2n1/3, (3.4), (3.5), and (3.6) yield 

Furtherrnore, 
- ~ 

ESind < .!.L - ~ < -(20: + 20:2)f2n1/3 
t - n1/3 2n - , 
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(3.7) 



that 

Combining (3.3), (3.7) and (3.8) yields that 

This completes the proof. o 

3.5.2 The excess of the giant 

Theorems 48 and 50 tell us about the size of the giant component of Gn,p" We now turn to 

its excess. Letting Hp be the component of Gn,p alive at time fn 2/ 3 , we will prove 

Lemma 51. Let Exc be the event that Hp has excess at least j3 /20 and at most 150j3. 

Then for n large enough, 

(3.9) 

Prao! For sim pli city in coming calculations, we define the net excess of a connected graph H 

to be equal to the excess of H, plus 1. The net excess of components of Gn,p can be analyzed 

much as we have just analyzed their size. In the pro cess defined at the beginning of Section 

3.2, each element of the random set Ni of neighbours of Vi that is in the set Oi contributes 

exactly 1 to the net excess of the component alive at time i. Thus, if a component is created 

between times tl and t2 of the pro cess (precisely, if Stl - 1 = 0 and the first time greater 

than tl - 1 at which S visits 0 is t2), then the net excess of this component is precisely 

L!~~ll Bin(IOil-1,p) = Bin(L!~~ll Si -l,p). Our upper bound on S in Theorem 46 can be 

thus used to praye upper bounds on the net excess of Hp. We split the event Exc into the 

events EXCI that Hp has excess greater than 150j3 and EXC2 that Hp has excess less than 
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Let Big be the event that Hp has size more than 3fn2/3, let High be the event that Si ~ 

20Pn1/3 for sorne i ~ 3fn2/3. If Big occurs then S does not return to zero between tirne 

(3/2)fn2/3 and tirne 3fn2/3, so by applying Theorern 50 with a = 1/2 yields that P {Big} ~ 

23e-a4 f3 /400 = 23e- f3 /(2
6

.100). By Theorern 46, P {High} ~ 8e- f3 /60. If neither Big nor 

High occurs, then the net excess of Hp is at rnost Bin(M,p), where M = ~;!~2/3 (Si -

1) ~ 60pn. For any m ~ 60pn, EBin(m,p) ~ 120P, so by Theorern 37, it follows that 

P {Bin(m,p) ~ 150f31Big, High} ~ e- f3 . Cornbining these bounds yields 

Next let Small be the event that Si < pn1/3/1O for sorne fn2/3 /2 ~ i ~ (3fn2/3/2. By 

Corollary 49, P {Small} ~ 16e-r /3000 If Small does not occur then the net excess of Hp 

3fn2 / 3/2 
is at least Bin(M,p), where M = ~i=fn2/3/2(Si - 1) ~ pn/10. By for any m ~ pn/10, 

Theorern 37 yields that P {Bin(m,p) ~ p /20} ~ e-f3/1200. Cornbining these bounds yields 

P {EXC2} ~ 17e-f3/3000. Finally, cornbining our bounds on P {EXCl} and P {EXC2} proves 

the theorern. o 

3.5.3 The proof of Theorem 47 

Theorerns 48 and 50, applied with a = c/2, yield that Hp has size between (3/2)fn2/3 and 

(5/2)fn2/3 with probability at least 1 - 36e-c4 f3 /(2
4

.100). Lernrna 51 shows that the excess 

of Hp is between P/20 and 150P with probability at least 1 - 4ge- f3 /(2
4

.lOO). Thus, the 

probability both hold is at least 1-85e-c4 f3 /(2
4

.100), as clairned. (We note that this establishes 

sornething slightly st ronger than Theorern 47; narnely, we have shown that the component 

Hp has such size and excess with the desired probability.) 
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3.6 The Giant Towers Over the Others 

As discussed in the introduction, the probability of growing a large component which st arts 

in iteration t of the process decreases as t increases. This is what allows us to show that very 

likely there is a unique giant component and aIl the other components are much sm aller. 

To be precise, let Tl be the first time that S visits zero after time (2 - ex)fn2
/

3
. Then the 

remainder of Gn,p has n' = n - Tl vertices and each pair of vertices is joined independently 

with probability p. If ex = 1/4, say, then 

_ .!. + (2 - ex)f < ~ (1 _ (2 - ex)f) + L 
p n n 4/ 3 - n' n l / 3 n 4/ 3 

1 (f /2) 
< n' (n' )4/3· (3.10) 

Thus the final stages of the pro cess look like a subcritical pro cess on n' vertices. We could 

analyze how this procedure behaves by looking at the behaviour of our random walks as in 

the last three subsections but instead we find it convenient to quote results of Luczak who 

did obtain tail bounds for the subcritical process. 

The following theorem is a reformulation of Luczak (1990, Lemma 1) and Luczak (1998, 

Theorem 11). Those results are stated for the case f = f(n) -7 00, but in both cases the 

proof is easily adapted to our formulation; the details are omitted. 

Theorem 52. For all fixed K > 1, there exists F > 1 su ch that for all f > F, n large 

enough and p = l/n - f /n4
/

3
, for aU k > K the probability that Gn,p contains a component 

of size larger than (k + log(j3) )n2/3 / f2 or a complex component of size larger than 2k is at 

most 3e-k
. Furthermore, the probability there is a tree or unicyclic component of Gn,p with 

size at most n 2/ 3 / f and longest path at least 12n 1/31og f / J1 is at most e-VJ . 
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Using this result we easily obtain the following two theorems: 

Theorem 53. There is F > 1 such that for f > F and n large enough, with probability at 

least 1_2e- f2 /2
, the component alive at time fn 2/3 is the largest component, i.e., Hp = Hn,p' 

Theorem 54. For any E > 0 There is F = F(E) > 1 so that for all f > F and p = 

l/n + f /n4
/

3
, the expected number of components of Gn,p of size exceeding (3/2)fn2/3 is at 

most 1 + 2e- f2 /2. 

Theorems 53 and 54 are simple consequences of Theorem 52 and of the above BFS-based 

process. Let Tl be the first time after (7/4)fn2/3 that S visits O. By applying Theorem 48 

with a = 1/4, the probability that the random walk returns to zero between times fn 2/ 3/4 

and 7fn2/3/4 is at most 13e-f3/29.100, which is at most e- f2 /2 for f large enough. If the 

random walk does not return to zero between these times, then Hp is the largest component 

grown up to time Tl and IHpl ;:::: 3fn2/3/2. We restart the bran ching process to grow the 

graph Gn-Tt,p' Theorem 52 guarantees that the probability a component of size exceeding 

n 2
/

3 ever occurs after time Tl is at most e- f2 /2
. Combining these two bounds proves Theorem 

53. 

If a component of size exceeding n2/ 3 does occur after time Tl, then once it dies we again 

restart the branching process to grow the remainder of the graph; again, and independently, 

the probability a component of size exceeding n2/ 3 ever occurs is at most e- f2 /2 . Continuing 

in this manner yields the geometric upper bound (e-p /2)i on the probability there are 

precisely i large components grown after time Tl; by making F large enough we may ensure 

that L::l (e- f2/2 )i < 2, which proves Theorem 54. 
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3.7 Conclusion 

The results of this chapter find their place in an already rich body of theory; we pose just 

one question about how it might be extended. Our bounds address the "large deviations" 

of the size of the giant component, in the sense that we allow both the size and the excess a 

range of the same order as their expected value before our bounds kick in. We expect that 

similar bounds should be achievable for smaller deviations, and in particular conjecture that 

for p = l/n + f(n)/n4
/
3

, 0 < f(n) -t 00 and f(n) = o(n1
/
3

), P {IHn,p - EHn,pl ~ n2
/
3

} = 

e-o(J). We expect that this result is achievable by being more careful with the methods of 

this section. 

In this chapter, we connected the growth of the components of Gn,p for p in the critical 

window to the behavior of a random walk. In particular, we showed that the size of the 

giant component Hn,p can be found by studying the the first return to zero of this random 

walk after a certain key time. In the next chapter, we show how the information we have 

derived can be used to bound the diameter of a random tree closely linked to the random 

graph process Gn,p. 
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Chapter 4 

Minimum Weight Spanning Trees 

liA fool sees not the same tree that a wise man sees. IJ 

William Blake, 1790 

4.1 Introduction 

Given a connected graph G = (V, E), E = {el, ... , eIEI}, together with edge weights W = 

{w(e)le E E}, a minimum weight spanning tree of Gis a spanning tree T = (V,E') that 

minimizes 

2: w(e). 
eEE' 

As we show below, if the edge weights are distinct then this tree is unique; in this case we 

denote it by MWST( G, W) or simply MWST( G) wh en W is clear. 

Minimum spanning trees are at the heart of many combinatorial optimization problems. 

In particular, they are easy to compute (Boruvka, 1926; Jarnik, 1930; Kruskal, 1956; Prim, 
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1957), and may be used to approximate hard problems such as the minimum weight traveling 

salesman tour (Vazirani, 2001). (A complete account on the history of the minimum spanning 

tree problem may be found in the surveys of Graham and Hell (1985), and Nesetril (1997).) 

As a consequence, much attention has been given to studying their structure, especially 

in random settings and under various models of randomness. For instance, Frieze (1985) 

determined the weight of a the MWST of a complete graph whose edges have been weighted 

by independent and identically distributed (i.i.d.) [0, l]-random variables. This result has 

been reproved and generalized by Frieze and McDiarmid (1989) and Aldous (1990). Under 

the same model, Aldous (1990) derived the degree distribution of the MWST. Both these 

results rely on local properties of minimum spanning trees. We are interested in their global 

structure. 

The distance between vertices x and y in a graph H is the length of the short est path from 

x to y. The diameter diam( H) of a connected graph H is the greatest distance between 

any two vertices in H. We are interested in the diameters of the minimum weight spanning 

trees of a clique Kn on n vertices whose edges have been assigned i.i.d. real weights. We use 

w(e) to denote the weight of e. In this paper we prove the following theorem, answering a 

question of Frieze and McDiarmid (1997, Research Problem 23): 

Theorem 55. Let Kn = (V, E) be the complete graph on n vertices, and let {Xele E E} 

be independent identically distributed edge-weights. Then conditional upon the event that for 

all e i= f, Xe i= XI, it is the case that the expected value of the diameter of MWST(Kn ) is 

8(n1/ 3 ). 

We start with sorne general properties of minimum spanning trees. Let T be sorne minimum 

weight spanning tree of G. If e is not in T then the path between its endpoints in T consists 

only of edges with weight at most w(e). If e = xy is in T then every edge f between the 

component of T - e containing x and the component of T - e containing y has weight at 
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Ieast w( e), since T - e + J is aiso a spanning tree. Thus, if the edge weights are distinct, e is 

in T precisely if its endpoints are in different components of the subgraph of G with edge set 

{JlwU) < w(e)}. It follows that if the edge weights are distinct, T = MWST(G) is unique 

and the following greedy aigorithm (Kruskal, 1956) generates MWST(G): 

(1) Order E as {el, ... , em } so that w(ei) < w(ei+d for i = 1,2, ... , m - 1. 

(2) Let ET = 0, and for i increasing from 1 to m, add edge ei to ET uniess doing so 

wouid create a cycle in the graph (V, ET). The resulting graph (V, ET) is the unique 

MWSTofG. 

Kruskal's aigorithm above lies at the heart of the proof of Theorem 55. It provides a way to 

grow the minimum spanning tree that is perfectIy suited to keeping track of the evolution 

of the diameter of ET as the edges are processed. We now turn our attention to this forest 

growing pro cess and review its use fui properties. 

Observe first that, if the weights w(e) are distinct, one does not need to know {w(e), e E E} 

to determine MWST(G) , but merely the ordering of E in (1) ab ove. If the w(e) are i.i.d. 

random variables, then conditioning on the weights being distinct, this ordering is a random 

permutation. Thus, for any i.i.d. random edge weights, conditional upon aIl edge weights 

being distinct, the distribution of MWST( G) is the same as that obtained by weighting E 

according to a uniformly random permutation of {1, ... , m}. 

This provides a natural link between Kruskal's aigorithm and the Gn,m random graph evo­

Iution pro cess of Erdos and Rényi (1960). This well-known process, discussed in Chapter 3, 

consists of an increasing sequence of lEI = G) random subgraphs of Kn defined as follows. 

Choose a uniformly random permutation el, ... ,elEI of the edges, and set Gn,m to be the 

subgraph of Kn with edge set {el, ... , em}. If we let ei have weight i, 1 :::; i :::; G), then 
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em E MWST(Kn) precisely if em is a cutedge of Gn,m. We may view Kruskal's algorithm, 

ab ove , as a restricted random graph pro cess - we run the usual random graph process but 

rather than adding all edges in order, we only add those that do not create cycles. (This 

and other restricted random graph pro cesses have been studied by (Aldous, 1990; Rucinski 

and Wormald, 1992; Erdos et al., 1995; Rucinski and Wormald, 1997; Wormald, 1999).) 

Using this link, the lower bound is easily obtained. It suffices to note that, with pos­

itive probability, Gn ,n/2 contains a tree component T whose size is between n2/ 3/2 and 

2n2/3 (see Janson et al. (2000), Theorem 5.20). This tree is a subtree of MWST(Kn), so 

diam(MWST(Kn)) 2:: diam(T). Conditioned on its size, such a tree is a Cayley tree (uniform 

labeled tree), and hence has expected diameter 8(n1/ 3 ) (Rényi and Szekeres, 1967; Flajolet 

and Odlyzko, 1982). Therefore, E {diam(MWST(Kn))} = O(n1/ 3 ). 

The upper bound is much more delicate. To obtain it, we in fact study the random graph 

pro cess Gn,p (Stepanov, 1970a,b; Janson et al., 2000; Bollobas, 2001): assign an independent 

[O,I]-uniform edge weight w(e) to each edge e of Kn' and for aIl p E [0,1], set Gn,p = 

{flw(f) :::; p}. Our preference for this model over Gn,m is due to the fact that it can 

be analyzed via the BFS-based process seen in Chapter 3. For this edge weighting, e E 

MWST( G) precisely if e is a cutedge of Gn,w(e)' This implies that the vertex sets of the 

components of Gn,p are precisely the vertex sets of the components of the forest Fn,p = 

MWST(Kn) n {elw(e) :::; p} built by Kruskal's algorithm. Actually it implies something 

stronger: MWST(Kn)n{elw(e) :::; p} consists exactly ofthe unique MWSTs of the connected 

components of Gn,p under the given weighting. It is this fact which allows us to determine 

the diameter of MWST(Kn). 

The results of the previous chapter guide our analysis. We shall take a snapshot of Fn,p 

for an increasing sequence of p and examine how this graph evolves. Due to the above 

connection with Gn,p, we know that for p = 1 + tin, there is already a component of Fn,p 
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of size r2(n) (the component corresponding to Hn,p)' This fact is crucial to our analysis. 

Essentially, rather than looking at Fn,p, we focus on the diameter of MWST(Kn) n Hn,p for 

p = lin + r2(n-4/ 3 ). To track the diameter of this increasing (for inclusion) sequence of 

graphs, we use the following facto For a graph C = (V, E), we write lp(C) for the length of 

the longe st path of G. The subgraph of C induced by a vertex set U C V is denoted C[U]. 

Lemma 56. Let C, C' be graphs such that CcC'. Let H C H' be connected components 

of C, C' respectively. Then diam(H' ) ::; diam(H) + 2Ip(C/[V - V(H)]) + 2. 

Figure 4.1: The path P = Pl U P2 U P3 from WI to W2 in H'. 

Proof. For any WI and W2 in H', let Pi be a short est path from Wi to H (i = 1,2), and let P3 

be a shortest path in H joining the endpoint of Pl in H to the endpoint of P2 in H. Then 

Pl U P2 U P3 is a path of H' from WI to W2 of length at most diam( H) + 2lp( C' [V - V (H)]) + 2 

(See Figure 4.1). 0 

If p < p' and Hn,p ç Hn,pl, then Lemma 56 implies that diam(MWST(Hn,pl)) is at most 

diam(MWST(Hn,p)) + 2lp(Cn,pl[V - V(Hn,p)]). We con si der an increasing sequence lin < 

Po < Pl < ... < Pt < 1 of values of P at which we take a snapshot of the random graph 

process. Specifically, we fix sorne large constant F, set fi = (5/4)i F, stopping at the first 

integer t for which ft 2: n l
/

31 log n, and choose Pi = lin + fdn4
/

3 (the reason for this choice 

will become clear). This is similar to Luczak's method of considering "moments" of the 
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graph pro cess (Luczak, 1990). For each Pi, we consider the largest component Hn,Pi of Gn,Pi' 

We define d"tï to be the diameter of MWST(Kn) n Hi' 

For 1 ::; i < t, we say Gn,Pi is well-behaved if 

(1) IHn,pJ 2:: (3/2)n2
/

3 fi and the longest path of Hn'Pi has length at most fln 1/3
, and 

(II) the longest path of Gn,Pi+1 [V - V(Hn,pJl has length at most n1
/
3

/ y'J; 

If Gn,Pi is well-behaved then by Lemma 56, dti+1 - dti ::; 2n 1/3 / y'J;. Let i* be the smallest 

integer for which Gn,Pi is well-behaved for aIl i* ::; j < t or i* = tif Gn,Pt_l is not well-behaved. 

We have deterministically that 

t-l 

dit - dti* < L n 1/3 / -J7; 
i==i* 

t-l 

< p-1/2n1/3 L(4/5)i/2 = O(n1/3 ). (4.1) 
i=1 

A simple argument given at the end of this section yields that E {MWST(Kn) - dit} 

O(10g6 n). Thus, 

(4.2) 

It remains only to bound Ed"tï*. The key to doing so is to show that for aIl j between 0 and 

t -1 

P {i* = (j + 1)} ::; 4e-VIi /8 (4.3) 

Using (4.3) together with (4.1) and the fact that the longest path has length no longer than 
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n yields that 

t-l 

E{d~.} < ftnl/3+nP{i*=t}+Lfi4nl/3P{i*=i} 
i=l 

t-l 

< F 4n 1/3 + n(4e-(n1/3
/S1og n)1/2) + L fi4n1/3 (4e-(!;-dS)1/2) 

i=l 

t-l 

< F 4n 1/3 + O(l/n) + 4n1/3 L fi4e-(!;-dS)1/2 = O(n1/ 3 ). 

i=l 

Combining this with (4.2) completes the upper bound of Theorem 55. To prove (4.3), we 

note that if i* = j + 1 and j > 0, then one of (I) or (II) fails for Gn,pj' We shall show that 

(A) P {(I) fails for Gn,pj} :::; e-ylJj, and 

(B) P {(II) fails for Gn,pJ :::; 3e-J/j/s. 

This implies (4.3) sinee 3e-.Jiï8 + e-V! < 4e-.Jiï8 for all f > O. 

We prove (B) using the tail bounds on the size of Hn,p that we proved in Chapter 3. We 

combine these bounds with existing knowledge about the diameter of Gn,p for subcritical p 

(Luczak, 1998), together with the fact that for p > l/n, p - l/n = o(l/n), the structure 

of Gn,p, minus its giant component, is very similar to the structure of a subcritical random 

graph (Bollobas, 1984; Luczak, 1990) (we mentioned this fact in Section 3.1). 

We remind the reader that the excess of G is the quantity IE( G) I-IV( G) 1; trees, for example, 

have excess -1. Rényi and Szekeres (1967) and Flajolet and Odlyzko (1982) have studied the 

moments of the height of uniformly random labeled trees, and Luczak (1995) has provided 

information about the precise number of such trees with a given height. This latter result 

can be used to prove tail bounds on the lengths of longe st paths in uniformly random labeled 

graphs with small exeess. We will prove (A) by combining the bounds on the size and exeess 

of Hn,p from Chapter 3 with these latter bounds. 
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We now return to a description of the final stage of the pro of, in which we establish that 

E {MWST(Kn ) - dit} = O(log6 n). It is convenient to think of growing the MWST in a 

different fashion at this point. Let Ht = Hn,pt and consider an arbitrary component C of 

Gn,Pt[V - V(Ht)]. The edge e with one endpoint in C and the other endpoint in sorne other 

component of Gn,Pt and minimizes w(e) subject to this is a cutedge of Gn,w(e)' Therefore e 

is necessarily an edge of MWST(Kn ). 

Let E be the event that IHtl > n/ log n and every other component of Gn,Pt has longest path 

of length at most n 1
/
6 Jlogn. If E does not occur then one of (1) or (2) fail for Gn,Ptl so (A) 

and (B) tell us that 

(4.4) 

Since the edge weights are Li.d., the second endpoint of e is uniformly distributed among 

vertices not in C. If E holds, it follows that with probability at least IHtl/n > 1/10gn, the 

second endpoint is in Ht. If the second endpoint is not in Ht, we can think of C joining 

another component to create C'. The component C' has longe st path of length at most 

2n 1/6 Jlog n. 

(As an aside, note that MWST(C' ) is not necessarily a tree created by Kruskal's algorithm, 

as there may weIl be edges leaving C' which have weight less than w(e). The technique of 

growing the MWST of a graph by focussing on the cheapest edge leaving a specifie component, 

rather than the cheapest edge joining any two components, is known as Prim's tree growing 

method (Janiik, 1930; Prim, 1957).) 

Conditional upon this choice of e, the edge e' leaving C' which minimizes w(e' ) is also in 

MWST(Kn ). Again, with probability at least 1/ log n the second endpoint lies in Ht . If not, 

C' joins another corn ponent to create Cil with longe st path of length at most 3n 1/6 Jlog n. 
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Continuing in this fashion, we see that the probability the component containing Chas 

longe st path oflength greater than rn1/ 6 y'10g n when it joins to H t is at most (1-1/ log ny. 

In particular, the probability that it has length greater than n 1/6 (log n) 7/2 is at most (1 -

1/logn)log3 n = o(1/n2). 

Since C was chosen arbitrarily and there are at most n such components, with probability 

1 - o(l/n) none of them has longest path of length greater than n I / 6 (10g n)1/2 before joining 

Ht . It follows from Lemma 56 that with probability 1 - o(l/n), diam(MWST(Kn )) - dit ::; 

2nI/ 6 (logn)7/2 + 2. Since diam(MWST(Kn )) never exceeds n, it fOllows that 

so 

E {diam(MWST(Kn )) - dit} < E {diam(MWST(Kn )) - ditlE} + nP {Ë} 

_ O(nI / 6 (logn)7/2). (4.5) 

In Section 4.2 we use results from Chapter 3 to prove (B). In Section 4.3 we derive tail 

bounds on the diameters of random treelike graphs. Finally, in Section 4.4 we use these tail 

bounds and results from Chapter 3 to prove (A). 

4.2 The proof of (B) 

Let 'H be the set of alllabeled connected graphs H with vertex set V(H) C {VI, ... , vn } for 

which H has between (3/2)fn2/3 and (5/2)fn2/3 vertices. For H E 'H, let CH be the event 

that in the random graph process, H is a connected component of Gn,p, and let Bad be the 
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event that in the randorn graph process, no elernent of H is a connected cornponent of Gn,p' 

For any event E we rnay write 

P{E} < P{Bad} + L P{EICH}P{CH}. 
HE7-i 

If Bad occurs then Gn,p has no cornponent of size between (3/2)fn2
/
3 and (5/2)fn2

/
3

, so 

by Theorern 47 applied with c = 1/2, P {Bad} ::; 85e-j3/21o.100 ::; e- j for f large enough. 

Therefore, 

P{E} < e- j + LP{EICH}P{CH}. 
HE1i 

< e- j +E{I{H : CH holds }1}(rnaxP{EICH}). 
HE1i 

Applying Theorern 54 to bound the above expectation, presurning f is large enough that 

2e-P /2 < 1, for n large enough we have that 

P {E} ::; e- j + 2rnaxP {EICH}. 
HE1i 

(4.6) 

Let p = l/n + f /n4
/
3 and let p' = l/n + (5/4)f /n4

/
3

, and recall that Hn,p is the largest 

cornponent of Gn,p' We will apply equation (4.6) to the event Long that sorne cornponent of 

Gn,p'[V - V(Hn,p)] has longest path of length at least n 1/ 3 / f1/4. 

For any graph H E H, the graph Gn,p'[V - V(H)] is Gn"p' for sorne n' ::; n - (3/2)fn2
/
3

, and 

so 

p' _ .!. + (5/4)f < ~ (1 _ (3/2)f) + (5/4)f 
n n4/ 3 - n' n1/ 3 n4/ 3 

< ~ _ (1/4)f < ~ _ (1/8)f 
n' n4/ 3 - n' (n' )4/3 ' 

(4.7) 

for n large enough. Let Large(H) be the event that either 
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(a) Gn,p'[V - V(H)] has a component of size larger than 8n2/3 1 J, or a complex component 

of size greater than J, or 

(b) Gn,p'[V - V(H)] has a tree or unicyclic component of size at most 8n2/3 1 J and longe st 

path of length at least 36n 1/3 log JI ..fJ. 

Gn,p'[V - V(H)] is a subcritical random graph by (4.7). For J large enough, Theorem 52 

applied with k = J 110, say, therefore yields that (a) occurs with probability at most 3e- fI1O • 

Theorem 52 also yields that (b) occurs with probability at most e-VJï8. As 3e- fllO ::; e-VJï8 

for J large enough, this yields P {Large(H)} ::; 2e-VJï8 for J large enough. 

If CH occurs but (a) does not then Gn,p certainly has no component of size larger than H 

so H = Hn,p. AIso, for J large enough 36n1/3 10gJI..fJ < n 1/31P14, so for such J, if CH 

occurs and Large(H) does not occur then Long does not occur. Furthermore, Large(H) is 

independent of CH as the two events are determined by disjoint sets of edges. Therefore, 

P {LongICH } ::; P {Large(H) ICH } = P {Large(H)} ::; 2e-VJï8, 

which combined with (4.6) applied with E = Long yields 

Lemma 57. There exists F > 1 su ch that Jar J > F, Jar n large enough, P {Long} < 

3e-VJï8. 

This proves the bound (B) stated in the introduction. 

4.3 Longest paths in random treelike graphs 

As mentioned in the introduction, information about the excess of a random connected graph 

gives us information about its diameter. This is, in essence, because a random graph with 
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only a few more edges than vertices is "treelike"; in this section we make this idea precise. 

4.3.1 The diameter of uniform trees 

We first collect the required bounds on the diameter of trees. A uniform random rooted 

tree of size s is a tree chosen uniformly at random from among aIl rooted labeled trees with 

s nodes. Rényi and Szekeres (1967) and Flajolet and Odlyzko (1982) have calculated the 

asymptotics of the moments of the height Hs of a uniform random rooted tree Rs of size 

sand provided sharp information about the number of uniformly random rooted trees of 

size sand height cy'S for constant c. Through combinatorial arguments, Luczak (1995) has 

extended these results to count the number of such trees when c = c(s) is w(l). The version 

of Luczak's result that we need can be stated as: 

Theorem 58 (Luczak (1995), p. 299). There is C > 0 such that for s large enough, for all 

t ~ Cy'S, 

In fact, this theorem is weaker than what Luczak proved, but it is easier to state and suffices 

for our purposes. We have as an immediate consequence: 

Corollary 59. There is C > 0, Buch that for s large enough, for all c ~ C, 
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Proof. By Theorem 58, we have that for c 2: C, 

s 
1 -t2/4s 

P {Hs 2: cvs} < L -e 
Vs t=rcJSl 

r Vs-cl r(c+i+l)JSl-l 
1 -t2/4s < L L -e 

Vs i=O t=r(c+i)JSl 
r Vs-c-ll 

< Vs + 1 L e-(c+i)2/4 

Vs i=O 

< 2e-c2 /4 , 

as long as c and s are large enough. o 

There is a natural s-to-l map from rooted trees of size s to unrooted trees of size s, obtained 

by "unrooting". Clearly, if Ts is an unrooted tree corresponding to Rs via this map, then 

lp(Ts) = lp(Rs) :::; 2Hs. As a consequence, 

Lemma 60. Let Ts be a uniformly random unrooted tree (a Cayley tree) on s nodes. Then 

there is C > 0 su ch that for s large enough, for all c > C 

(4.8) 

Lemma 60 is the key fact about random trees that allows us to bound the lengths of the 

longe st paths of uniformly random connected tree-like graphs. We now focus our attention 

on bounding longest paths in such graphs. In doing so, it is useful to describe them in a way 

that emphasize sorne underlying tree structures. 

135 



4.3.2 Describing graphs with small excess 

Given a connected labeled graph G with excess q, define the core C = C(G) of G to be 

the maximum induced subgraph of G which has minimum degree 2. To see that the core 

is indeed unique, we note that it is precisely the graph obtained by repeatedly removing 

vertices of degree 1 from G until no such vertices exist (so in particular, if G is a tree then C 

is empty). It is clear from the latter fact that G[V - V(C)] is a forest, so if Vi E V - V(C), 

then there is a unique short est path in G from Vi to sorne Vj E V(C). We thus assign to each 

vertex V j E V (C) the set of labels 

LVj = {j} U {ilthe shortest path from Vi to C ends at Vj}. 

We next define the kernel K = K(G) to be the multigraph obtained fram C(G) by replacing 

aIl paths whose internaI vertices aIl have degree 2 in C and whose endpoints have degree 

at least three in C by a single edge (see, e.g., Janson et al., 2000). If q < 1 we agree that 

the kernel is empty; otherwise the kernel has minimum degree 3 and precisely q more edges 

than vertices. It follows that the kernel always has at most 2q vertices and at most 3q edges. 

We denote the multiplicity of edge e in K by m(e). We think of K as a simple graph in 

which edge e has positive integer weight m(e), to emphasize the fact that parallei edges are 

indistinguishable. We may keep track of what vertices correspond to edges of K (G) as we 

did for vertices of C(G): if Pl, ... , Pm(e) are paths of C(G) corresponding to edge e = xy 

of K(G), we let L~ = UVEV(Pi)-X-Y Lv (if ~ = xy then L~ = 0) and assign a set of sets of 

labels {L!, ... , L:(e)} to e. We emphasize that permuting the order of Pt, ... , Prn(e) does not 

change the label of e. 

Given a labeled graph G, the above reduction yields a labeled multigraph K and sets Lv for 

each vertex of K, {L!, ... , L:(e)} for each edge of K. Conversely, any graph with nonempty 
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labeled kernel K to which such sets have been assigned can be described uniquely in the 

following way: 

• For aIl Vi E V (K), let TVi be a labeled tree with labels from LVi' 

• For aIl e = xy E V(K), and aIl i = 1,2, ... ,m(e), let T; be a labeled tree with labels 

from L~ (if L~ = 0 then Te = 0 - this can occur for at most one i E {1, 2, ... ,m(e)}). 

If L~ =1- 0, our description depends on whether e is a loop, i.e., on whether y = x: 

- If x =1- y then mark an element of L~ with an X and mark an element of L~ with 

a Y. We allow that the same element of L~ receives both markers. 

- If x = y then place two markers of type X on elements of L~. Again, we allow 

that the same element of L~ receives both markers. 

Observe that in marking elements of L~, if e = xy and x =1- y then there are IL~12 ways to 

place the markers. If e = xx then there are IL~I + (I~~I) = (IL~I + 1)IL~I/2 ways to place the 

markers as we may either choose an element of L~ and place both X markers on it, or we 

may choose two distinct elements of L~ and place an X marker on each. 

We obtain G from this description as follows: 

1. for aIl Vj E V(K), identify the vertices Vj E V(K) and Vj E TVjl then 

2. for aIlloops e = xx E E(K), choose a copy of e for each nonempty tree T;, 1 ::; i ::; 

m( e). Remove this edge and let x be adjacent to the vertices in T; marked with X. 

3. for aIl e = xy E E(K) with x =1- y, choose an edge xy for each nonempty tree T;, 

1 ::; i ::; m(e). Remove this edge, then let x (respectively y) be adjacent to the vertex 

in T; marked with X (respectively Y). 
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Clearly labeled graphs with distinct labeled kernels are not identical. Now, let C, C' be 

graphs with the sarne labeled kernel K. If for sorne v E V (K), Lv =J. L~ or for sorne e E E (K), 

{L!, ... ,L~(e)} =J. {L~I, ... ,L~m(e)}, then C,C' are not identical. Rence, given a labeled 

kernel K, and sets of labels {Lvlv E V(K)}, UeEE(K){L!, ... , L~(e)}, and distinguished 

elernents of the nonempty sets L~ as described ab ove , there are 

vEV(K) eEE(K) i:L~#0 

possible graphs, eorresponding to the choices of a tree for each set Lv and for each set L~. It 

follows that if C is a uniformly random conneeted labeled graph with p vertices and excess 

q 2: 1 specified by its kernel K and a description as ab ove , then conditional on the sizes 

of their elements, the sets Tv = {Tvlv E V(K)} and TE = UeEE(K){T;, ... , T;n(e)} must be 

uniformly random amongst all sueh sets. As a consequence, conditional on their sizes, the 

unrooted labeled trees in Tv and in TE must be uniformly random; i.e., they are simply 

Cayley trees. 

Labeled unicyclic graphs (graphs with excess 1) have empty kernels but nonempty cores; 

they can be described in a similar but simpler way. Suppose we are given a labeled graph 

C with unique cycle C. We let Tl be the unique maximal tree containing vertex VI and 

containing exactly one elernent v* of C - set Tv = {Tl} and mark v*. The vertex v* has 

exactly two distinct neighbours w*, x* in the tree T2 induced by the vertices in V(C) - V(TI); 

we let TE = {T2 } and mark w*, x*. Given trees Tl, T2 such that VI E V(TI ), Tl contains one 

rnarked vertex v* and T2 contains two rnarked vertices w*, x*, we may construct a unicyclic 

graph G by letting w* and x* be adjacent to V*. The only difference between this bijection 

and that given for graphs with nonernpty kernel is that now we need to mark a vertex in the 

tree in Tv. As ab ove , this bijection shows that conditional on their sizes, the trees Tl and 

T2 are Cayley trees. 
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4.3.3 The diameter of graphs with small excess 

With this latter fact in hand, it is easy to prove bounds on lp( G). Recall that the net excess 

of a connected graph G is equal to the excess of G, plus 1. 

Lemma 61. Let G be a uniformly random labeled connected graph on s vertices and with 

net excess q. Then there is C su ch that for s large enough, for all c 2: C, 

P {lp(G) 2: 2(5q + l)cVs + lOq} :::; max{10q, 2}e-c2
/
4

• ( 4.9) 

Prao! The bound holds by (4.8) if q = O. If q > 0 then let the sets Tv and TE be defined as 

above, and let T = Tv U TE - then ITI :::; 5q as if q 2: 2, the kernel has at most 2q vertices 

and at most 3q edges, counting multiplicity, and if q = 1 then ITvl = ITEI = 1. Trivially, 

any path P in G is composed of paths from the trees in T together with edges of G that 

are not edges of sorne tree in T. For a given tree T, if P does not have an endpoint in T 

then it must enter and exit T at most once, Le., the intersection of P with T, if nonempty, 

is itself a path. P may also enter one or two of the trees without leaving them - such trees 

must contain an endpoint of P. If the endpoints are in distinct trees then the intersection 

of these trees with Pare both paths; if the endpoints are in the same tree then that tree's 

intersection with P consists of two paths. 

(In fact, P can not enter every tree. If q > 1, for example, then the set of vertices and edges 

of the kernel that have trees intersecting Pean not itself contain a cycle in the kernel. We 

crudely bound the length of P by supposing that it may contain a path from every tree and 

two paths from at most one tree, so at most (5q + 1) paths from trees of T in total.) 

Each time the path P enters or exits a tree, it uses an edge of G that is not an edge of a 

tree in T. By the definition of the trees in T, there are precisely two such edges for each 
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nonempty tree T;; thus there are at most 10q such edges in total. We thus have 

We choose C large enough so that if ITI ~ C Vs and c ~ C then Lemma 60 applies to 

T with this choice of c. For c ~ C, for an TET either ITI < CVs, in which case 

P {lp(T) ~ 2cVs} = 0, or ITI ~ C Vs, in which case sinee ITI :::; s, there is c' ~ c such that 

2cVs = 2c' JiTï. In the latter case, P {lp(T) ~ 2cVs} = P {lp(T) ~ 2c' JiTï} :::; 2e-c2
/

4 

by Lemma 60. Therefore, by a union bound applied to the right-hand-side of (4.10) we have 

4.4 The proof of (A) 

We apply Lemma 61 to bound lp(Hn,p). First, let D be the event that Hn,p has size greater 

(5/2)fn2/ 3 , which we denote by s, or excess greater than 150P, which we denote by q. If D 

occurs then either 

(a) Hp has size greater than s or exeess greater than q or 

By Theorem 47, the event (a) occurs with probability at most 85e-J3/210.100, which is at 

most e- f for f large enough. By Theorem 53, the probability that (b) occurs is most 

2e-P /2 , also at most e-f for f large enough, so P {D} :::; 2e-f . Letting Ep be the event that 
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(4.11) 

Furthermore, 2(5q + l)cylS + 10q < 5000cp/2n1/ 3 for f large enough. It follows by applying 

Lemma 61 with c = j1/2/5000 (which is at least C for f large enough) that 

for f large enough. By this bound and (4.11), we have P {Ep } :::; 2e-f + e-f /2
30

, which is at 

most e-Vl for f large enough. This proves the bound (A) of the introduction, and completes 

the proof. 

4.5 Conclusion 

We have pinned down the growth rate of the diameter of the minimum weight spanning tree 

of Kn whose edges are weighted with Li.d. [0, l]-uniform random variables. We did so by 

using an equivalence between Kruskal's algorithm for growing the minimum weight spanning 

tree of Kn and a restricted version of the random graph process for Gn,p. Theorem 55 raises 

a myriad of further questions. Two very natural questions arising directly from our result 

are: does E{diam(MWST(Kn ))} /n 1
/

3 converge to a constant? What constant? 

Theorem 55 seems related not only to the diameter of minimum spanning trees, but also to 

the diameter of Gn,p itself. This latter problem still seems difficult wh en p gets doser to l/n 

(Chung and Lu, 2001). A key difference between the analysis required for the two problems 

is captured by the fact that there is sorne (random) p* such that for p 2: p*, the diameter of 

Gn,p is decreasing, whereas the diameter of Fn,p is increasing for an 0 :::; p :::; 1. At sorne point 
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in the range (p -l/n) = o(l/n), the diameters Gn,p and Fn,p diverge; the precise behavior of 

this divergence is unknown. If the expected diameter of Gn,p is unimodal, for example, then 

it makes sense to search for a specific probability p** at which the expected diameters of Gn,p 

and Fn,p cease to have the same or der. In this case, what can we say about Ip* - p**I? For 

p = (1 + E)/n and E > 0 constant, the diameter of Gn,p is concentrated on a finite number of 

values, whereas it follows from results of Luczak et al. (1994) that this is not the case in Gn,p 

for p = l/n + O(1/n4/
3

). How does this behavior change as p increases through the critical 

window? Answering such questions would seem to be a prerequisite to a full understanding 

of the diameter of Gn,p in the critical range. 

Can this method be used to study the diameters of minimum weight spanning trees of other 

graphs? Bollobas et al. (1992) have exhibited a modified branching process for growing 

random subgraphs of the hypercube. Can a corresponding random walk be found, allowing 

their approach to be combined with ours to find the diameter of a random minimum weight 

spanning tree of the hypercube? 
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Chapter 5 

Maxima in branching random walks 

A branching random walk (or BRW) starts with a single particle r placed at position 0 

on the real line. This particle splits into a random, finite number of children according 

to sorne distribution B (so BEN), which we call the branching distribution. Each of its 

children is independently and randomly displaced according to a second, real-valued random 

variable E, which we call the step size. These children form the first generation of the 

branching random walk. Each child v then splits independently into a random number of 

children, again according to the distribution B, and these children are independently and 

randomly displaced from the position of v according to E to form the second generation. 

This operation is iterated infinitely. We note that if B were identically 1, then this would 

simply be a random walk on :IR distributed like E. 

We may equivalently define branching random walks in terms of a branching pro cess (or 

Galton- Watson process) , which is defined by a single parameter, a non-negative integer 

valued random variable B. We start with a single node, the zero th generation Go = {r} 

This node r has a random number of child nodes according to B; these offspring form the 

first generation G I = {VI, ... , V B}. Each of these children independently have a random 
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number of offspring according to the distribution B; the collection of these offspring form 

the second generation G2 . We continue in this manner to define G3 , G4 , ... ; the union of 

these nodes and the edges that link child to parent form a possibly infinite tree T = T(B). 

To define a BRW from a branching pro cess , we choose a second random variable E and 

assign an independent copy of E to each edge of the random tree T. The resulting structure 

is equivalent to that given by the first formulation of the BRW, as we may see by thinking 

of each node v as having a position Sv on the real line which is by the sum of the edge 

labels on the path connecting r to v. (For the formaI details of a probabilistic construction 

of branching random walks, see, e.g., Harris (1963).) 

One of the most well-studied parameters associated with branching random walks is the 

minimum after n steps, which we denote M~. In the branching pro cess formulation, we may 

define M~ as the minimum value of Sv over aIl nodes v having unweighted depth n in T. 

Viewed as a point pro cess on the line, this minimum is the position of the leftmost particle 

of the n'th generation. (We set M~ = 00 if Gn = 0, Le., if the process does not survive for 

n generations. Clearly, if M~ = 00 for sorne n then M~, = 00 for aIl n' > n.) One of the 

first properties of M~ to be investigated was when it obeys a "law of large numbers", Le., for 

what branching random walks is there a constant 'Y such that M~/n -+ 'Y (for the moment 

we decline to specify what sort of convergence we mean when we write "-+"). 

If EB ::; 1 then with probability 1, there is n such that G~ = 0 (see Athreya and Ney, 1972) 

(except in the special case that B = 1 deterministicaIly, in which case Mn is just the sum 

of n independent identically distributed random variables and is weIl understood); if such 

an n exists we say the BRW does not survive. In this case M~/ n -+ 00 almost surely. If 

EB = J1 > 1 then with positive probability, the BRW survives; we denote the event that 

the BRW survives by S. When the BRW survives, we may ask whether M~/n has a finite 

limit. To see when we might expect such a limit to exist, we first note that there is a random 
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variable W such that G~/ f.Lb -+ W almost surely, and if f.L > 1 then P {W > O} = P {S} 

(see Athreya and Ney, 1972). Intuitively, this suggests that if the BRW survives then IG~I 

almost surely exhibits exponential growth. It seems natural, then, that E should need to 

satisfy some form of exponentiallower tail bound in or der for M~/n to converge to a finite 

limit. 

In a sequence ofpapers, each building on the results of the last, Hammersley (1974), Kingman 

(1975) and Biggins (1976b) proved a law of large numbers for M~ in a very general setting. 

They showed that if El, ... ,EB are the locations of the particles in the first generation (so 

El, . .. ,EB are independent and distributed as E), EB > 1, and there is c > 0 for which 1 < 

E {2:!1 e-CEi 
} < 00, then there is a finite constant "1 such that M~/n -+ "1 as n -+ 00 almost 

surely given that the BRW survives. This result is now known as the Hammersley-Kingman-

Biggins theorem (we have stated their theorem in slightly less than its full generality). The 

condition on the sum E { 2:!1 e-CEi
} essentially imposes the exponential tail bounds we 

suggested would be needed for such a result to hold. 

When Hammersley (1974) initiated research into the behavior of Mn' he posed several ques­

tions to which complete answers remain unknown. In particular, he asked if more detailed 

information about Mn - "In than that given by the above law of large numbers can be found, 

about the behavior of the differences EMn+1 - EMn as n becomes large, and about the 

higher moments of Mn. In this chapter we answer Hammersley's questions for a class of 

branching random walks with certain "nice" properties - we will be more explicit about our 

results shortly. See also Biggins (1977); Bramson (1978b); Biggins (1979); Durrett (1983); 

Dekking and Host (1991); McDiarmid (1995); Bachmann (2000) for further investigations 

into the behavior of M~ and of Hammersley's questions. We will discuss certain results from 

these papers in the course of the chapter. 

When the step size E is non-negative, E may be viewed as a "time to birth": the label on 
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edge vw is the time it takes for v to produce child w. We may then ask: what particles are 

born before time t? This set of particles is precisely the set of nodes of v for which Sv ::; t. 

As E is non-negative, if Sv > t for sorne node v, then for aIl descendants w of v, Sw > t. 

When we view the branching random walk in its branching process formulation, then, the 

set of nodes corresponding to the particles born before time t form a subtree of T, which 

we denote Tt
b. The depth of a no de v is the number of edges on the path from r to v - the 

height Hf of ~b is the (unweighted) greatest depth of any node of ~b. The random variables 

Hf and M~ are closely linked: namely, we have the relations 

M~ = inf{m 1 H'/n ;::: n} and H; = max{n ENI M~ ::; t}. (5.1) 

It follows that results on the distribution of M~ yield results on the distribution of Hf and 

vice-versa. 

The trees Tl are quite similar to a family of trees arising in the analysis of algorithms, 

called ideal trees. Suppose we are given a fixed integer d ;::: 2 and a random vector X = 

(Xl, ... ,Xd) satisfying L~=l Xi = 1 and whose entries are identically distributed as sorne 

variable X ;::: O. (Such a vector is called a split vector (Broutin and Devroye, 2005) - we 

may think of it as splitting the interval [0,1] into sub-intervals of length Xl,' .. ,Xd . We 

emphasize that the component random variables of X are not necessarily independent - in 

fact, since they are identically distributed and sum to 1, they can only be independent if 

they are an deterministically equal to 1/ d.) 

We consider the infinite d-ary tree T! with root rand assign a copy Xv of X to each node 

v of T!. We think of the children of each node v as being ordered (say as WI,· .. ,Wd), 

and associate the elements of Xv = (Xv,l,"" Xv,d) to the edges VWI, .. . ,VWd. (We will 

sometimes refer to the label of an edge e and write Xe without reference to the split vector 

of which Xe is a component.) FinaIly, we assign each no de v a label Lv which is the product 
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of the edge labels on the path from r to v. For t 2: 0, the ideal tree Tf is the subtree of Td 
consisting of aIl nodes v for which Lv 2: d-t ; we denote the height of Ti by Hi. 

To link ideal trees and branching random walks, we transform the edge labels Xe, letting 

Ee = -logdXe, so that Ee takes values in [0,00]. Defining the vertex labels Sv just as for 

the branching random walk, it follows that ~i is the subtree of T! consisting of nodes v for 

which Sv :::; t. Tt
i is very similar to a branching random walk, but has the key difference that 

there is dependence between certain edge labels. (AIso, the branch factor is deterministically 

d, whereas for the branching random walk we allowed a random number of children B.) 

Ideal trees were introduced by Devroye (1986), who used them to find the first order term 

of the height of random binary search trees; his lower bound exploited the close connection 

between ideal trees and branching random walks. In this work he studied the ideal tree with 

split vector X = (U, l-U), where U is a uniform [0,1] random variable (we remark that l-U 

is also a uniform [0,1] random variable). He showed in particular that for this split vector, 

the height Hi of the ideal tree Ti satisfies EHUt -7 c* ln 2, where c* is the unique solution in 

(2,00) of the equation c In(2e/ c) = 1. Later, Devroye and Reed (1995) expanded on this work, 

showing that EHi - (c*ln2)t = O(lnt), and Var {Hi} = 0(ln2 t). SubstantiaIlyexpanding 

on the same approach, Reed (2003) showed that Var{Hn = 0(1). Reed additionally 

proved that EH: = (c*ln2)t - 3Int/2In(c*/2) + 0(1), and proved exponential tail bounds 

for P {IHf - EH: 1 2: x}. After being apprised of Reed's work, Drmota (2003) proved using 

completely different techniques that Var {Hn = 0(1), and additionally proved that the 

distribution function for H: - EH: converges uniformly in n to sorne implicitly defined 

distribution function <P. (In fact, the primary objective of aIl the above work was to prove 

results about the height of random binary search trees, not ideal trees. We have stated the 

results in terms of ideal trees as they are the focus of this chapter. Chauvin and Drmota 

(2005) have recently used Drmota's approach to show that the variance of the height of 

random m-ary search trees is 0(1).) 
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As they will be important in the remainder of the chapter, we now give a very brief sketch 

of sorne of the key ideas from Devroye (1986), Devroye and Reed (1995) and Reed (2003). 

We consider the transformed edge labels given by E = - lOg2 U as above. Sinee U is a 

uniform [0,1] random variable, E is an exponential mean 1 random variable. Fix an integer 

h and sorne path r = Vo, VI, ... ,Vh ending at depth h. Let the transformed labels on the 

path to Vh be El,"" Eh. Letting Si = El + ... + Ei for 1 :::; i :::; h, the Si form a 

random walk (note also that Si = -log Lv.). The probability that Vh is in Tt
i is precisely 

the probability that Sh :::; t. Denote by Nt,h the set of nodes at depth h that are in Tl; 

by linearity of expectation and symmetry, EINt,hl = 2hp {Sh :::; t}. It follows that when 

p {Sh :::; t} = 0(2-h), we have ENt,h = 0(1), so P {Hf 2: h} = 0(1). Furthermore, bounding 

P {Sh :::; t} is straightforward as Sh is a sum of h independent exponential mean 1 random 

variables, i.e., it has a gamma distribution with parameter h. Classic results on the gamma 

distribution then directly yield bounds on P {Sh :::; t}. In fact, letting h* > ° be the smallest 

integer for which P {Hf 2: h*} < 2-h*, it turns out that the bounds given by the above 

approach are enough to show that EH; :::; h* + 0(1). (This was the technique used by 

Devroye (1986) to prove an upper bound on EH;.) 

To prove a lower bound on EH1, it is not enough to find an integer h for which EINt,hl = 

0(1). Indeed, it turns out that for h* as defined ab ove , EINt,h*1 = 0(1) but there is 

a > ° such that P {INt,h* 1 2: 1} = P {Hf 2: h*} = o(d-Qt ). (It follows immediately that 

E {INt,h* 1 1 INt,h* 1 2: 1} = O(dQt ) - in other words, knowing that the height of Tt
i is at least 

h* increases the expected number of nodes in Tt
i at depth h* by at least dQt .) 

The lower bound from Devroye and Reed (1995) is loosely based on the fact that for any 

non-negative, integer random variable Z, EZ = E {ZIZ 2: 1} P {Z 2: 1} + 0, so as long as 

P {Z 2: 1} > ° we may write 

P {Z 2: 1} 
EZ 

(5.2) 
E {ZIZ 2: 1}' 
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so studying P {Z 2: 1} amounts to studying how much the expected value of Z increases, 

given that Z is at least 1. They were thus motivated to search for a random variable Zh for 

which (1) if Zh 2: 1 then Ti has height at least h, and (2) knowing that Zh is at least 1 does 

not increase the expected value of Zh by "very much". 

In order define the random variable Zh used by Devroye and Reed, we first discuss how the 

behavior of the random walk ending at Vh affects the number of other nodes of Ti at depth 

h. Recall that we fixed a path Vo, VI, ... ,Vh; for 1 ::; i ::; h, the node Vi-l has a child Vi on the 

path and another child, which we caU Wi. Every element of Tt
i at depth h aside from possibly 

Vh is in one of the subtrees rooted at sorne Wi (for 1 ::; i ::; h), and the expected number of 

elements in the subtree rooted at Wi depends crucially on the sum Si-l = -log LVi _ l ' This 

dependence is intuitively clear, since L Vi _ l and LWi differ only by a factor of XVi_1Wil which 

is very likely 0(1). Furthermore, the subtree of Tl rooted at Wi is distributed as Ti/Lwi' so, 

generally speaking, the larger Si-l, the smaller tl LWi and the smaller the chance that Wi has 

a descendent in ~i at depth h. It is thus plausible that if Si is "large" for most 1 ::; i ::; h 

then given such information, the conditional expected number of nodes of Ti at depth h is 

not too large. 

This idea motivated Devroye and Reed to call Vh a good node if Vh E Tt
i (so Sh ::; t) and 

additionally Si 2: i . Shi h for an 1 ::; i ::; h (we extend this definition to an nodes at depth h 

by symmetry). We denote by Gn,h the set of good nodes at depth h. The random variable 

IGn,hl clearly satisfies (1) ab ove. 

To calculate EIGn,hl, Devroye and Reed used a ballot theorem. By the standard rotation 

argument, the probability that Sh ::; t and additionally Si 2: i . Shlh for all 1 ::; i ::; h, is 

8(P {Sh ::; t} Ih). By linearity of expectation and symmetry, the expected number of good 

nodes at depth h is 2hp {Sh ::; t} Ih, so again by the properties of the gamma distribution, it 

is straightforward to find the smallest value h' for which EIGn,h'l ::; 1 and to show that in fact 
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EIGn,h'l = 8(1) - it turns out that h' is h* -O(log h*). By a more formaI version of the above 

discussion, they then showed that for any node v at depth h in T!, E { 1 G n,h Il v E G n,h} :::; 

1 + 0(h2EIGn ,hl), which has the flavour of condition (2), above. Combining this fact with 

a more sophisticated variant of (5.2) arising from an application of the second moment 

method, some well-known facts about the gamma distribution, and a standard amplification 

argument, was enough for them to show that EH; 2: h' - O(log h*) = h* - O(log h*). 

In fact, it turns out that EH; = h' + 0(1). To show this, Reed (2003) exploited the 

properties of exponential random variables to prove a ballot theorem very similar to that 

of Section 2.5. This gave him rather precise control over the behavior of the random walk 

SI, ... ,Sh and the probability it stays near its conditioned mean. In particular, he was able 

to show that a random walk with iid exponential steps that stays above its conditioned 

mean very likely stays "weIl above" its conditioned mean most of the time. In other words, 

if Vh is good, then not only is Si 2: i . Shi h for aIl i, but in fact it is quite likely that 

Si 2: i . Shlh + f(i, h) for some function f(i, h) that is fairly large when both i and h - i 

are much larger than 1 (i.e., f(i, h) is fairly large except "at the ends" of the random walk 

SI, ... ,Sh). He is thereby able to strengthen the result of Devroye and Reed, proving that in 

fact E {IGn,hIIIGn,hl 2: 1} :::; 1+0(EIGn,hl). Arguing as did Devroye and Reed but using this 

stronger bound, he shows that EH: 2: h' - 0(1). By an argument also based on the ballot 

theorem, which is essentially a careful application of several union bounds but whose detailed 

outline we postpone, he shows a matching upper bound and so proves that EH: = h' +0(1). 

The ballot theorem of Section 2.5 is the key new ingredient that allows us to use Reed's 

approach to study the heights and the minima of a much more general family of random 

trees and branching random walks. 
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5.1 Ideal Branching Random Walks 

Suppose we are given a branching random walk with branching distribution Band step size 

E. Suppose further that there is an integer d ~ 2 such that B :::; d, and additionally E is 

non-negative. Let T be the weighted tree corresponding to this BRW. There is a natural way 

to obtain T as a subtree of T! (which we remind the reader is the infinite d-ary tree with 

root r). At each node v of T! with children Wl, ... , Wd, we assign an independent copy Bv of 

B. We label the edges VW1, ... ,VWB with independent copies E VW1 " .. ,EVWB of E, and label 

the remaining edges with labels EVWB+l = ... = EVWd = +00. For a node v of T, the weight 

of the path from r to v is the sum of the edge labels along this path. The subtree of T! 

containing aIl nodes connected to the root by a path of finite weight is distributed precisely 

as T. (We observe that T! with such weights is not necessarily a branching process, as 

the labels (EVWll ••• ,EvwJ are possibly infinite, and, more importantly, are not necessarily 

independent - knowing EVWl = 00, for example, gives us information about Band thus 

about the probability that the other edge labels are finite.) 

We now introduce the objects we study in this chapter, of which both the weighted tree T! 

of the previous paragraph, and the split trees we saw ab ove , are examples. Suppose we are 

given a vector E = (El, ... ,Ed) of possibly dependent random variables each distributed as 

some random variable E that takes values in [0, 00] and that inf {x ~ ° 1 P {E :::; x} > o} = 0, 

i.e. that E takes values arbitrarily close to zero. We note that these conditions on E are 

equivalent to requiring that E is bounded from below as we may then replace E by the 

variable E - inf {x 1 P {E :::; x} > O}. 

We calI a vector E satisfying these conditions an ideal vector. As above, we consider a copy 

of the infinite d-ary tree T! in which each node v is assigned an independent copy Ev of 

E - we denote this tree Td(E), or T(E) when d is clear from context. For each node v, we 

associate the component random variables of Ev with the edges VW1, ... ,VWd from v to its 
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children. We will use both the notation ev = (Ev,!, ... ,Ev,d) and ev = (EVW1 " .. ,EVWd)' 

We calI T(e) an ideal branching random walk. We note that every split tree may be viewed 

as an ideal branching random walk: given a split vector X = (X!, .. . ,Xd), we may define 

an associated ideal vector E = (El,"" Ed ) by letting Ei = -logdXi and possibly applying 

an additive shift to the Ei. Furthermore, consider any BRW with branching distribution B 

satisfying the deterministic bound 0 :::; B :::; d and with step size and step size E that is 

bounded from below. We may view such a BRW as contained in ideal branching random 

walk, by letting El, ... , EBbe independent copies of E - E - inf {x 1 P {E :::; x} > O}, letting 

EB+!' ... ,Ed aIl equal +00, taking a uniformly random permutation (J of 1, ... ,d and setting 

E = (Ea(l) , "') Ea(d))' (We remark that taking a random permutation ensures that the 

component random variables of e are identically distributed.) By analogy with branching 

random walks, we say that T(e) survives if there is an infinite path r = Vo, V!, V2, ... along 

which aIl edge labels are finite. We denote the event that T(E) survives by S, and say that 

T(E) is supercritical if P {E < oo} > l/d (so if T(E) is supercritical then P {S} > 0). 

As we did for ordinary branching random walks, we assign each node V of T(e) a label Sv 

which is the sum of the edge labels on the path from r to v. Just as for bran ching random 

walks and for split trees, we may define the trees {Tdt2':o, Tt containing aIl nodes v with 

Sv :::; t; we let Ht be the height of Tt. For n = 1,2, ... , we define Mn to be the minimum 

label of any node v at depth n. Aiso just as for ordinary branching random walks, we have 

the relationships 

Mn = inf{m 1 Hm;::: n} and Ht = max{n ENI Mn:::; t}, (5.3) 

for aIl n = 1,2, ... and for aIl t ;::: O. The aim of the remainder of the chapter is to pin 

down EMn to within 0(1) for a broad class of ideal BRWs that in particular captures aIl 

supercritical branching random walks with bounded branching distribution and bounded 
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steps, as weIl as aIl split trees. We say T(E) has bounded steps if there is a constant A > 0 

such that E < A when E is finite. In this chapter we prove: 

Theorem 62. Suppose we are given an supercritical ideal bran ching random walk T(E) with 

bounded steps, where E = (El, ... , Ed) has component random variables distributed as E. 

Suppose additionally that Var {E} > 0, and that P {E = O} =1= 1/ d. Then there are 7* ;:::: 0, 

{3* ;:::: 0 depending only on E su ch that E {MnIS} = 7*n + (3* ln n + 0(1) for all integers 

n > O. Furthermore, there are c > 0, 8 > 0 such that for all x ;:::: 0 and all n = 1,2, ... , 

P {IMn - 7*n - {3* ln ni ;:::: xlS} ~ ce-ox . 

To give an idea of how we will prove Theorern 62, we first consider the special case that 

P {E = O} > l/d and E is never 00 (so there is sorne constant A for which E ~ A). In 

this case P {S} = 1 so the conditioning in Theorern 62 vanishes. We consider the related 

branching pro cess To in which the set of children of anode is the set of its children in T(E) 

for which the displacernent is O. Clearly, this walk survives with positive probability, so there 

is a positive probability Po that Mn = 0 for every n. 

Suppose that we want to bound the probability that Mn is greater than x, conditioned on 

survival. If n is at rnost x/A then every node at depth n has label at most nA ~ x, so 

P {Mn> x} = O. for larger n, we first observe that for any node v at depth lx / A J, the tree 

rooted at v whose nodes are the descendants w of v with Sw = Sv is distributed precisely as 

To; we ternporarily denote this tree To(v). 

The tree To ( v) survives with probability Po, and if To ( v) survives then in particular, there is 

a descendent w of vat depth n in T(t:) for which Sw = Sv, so Mn :::; Sw = Sv :::; x. It follows 

that 

P {Mn> x} ::; P { n {To(v) does not surVive.}} . 
vat depth lxlAJ 

Since the subtrees rooted at distinct nodes at depth lx / A J are independent and there are 
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dLx/AJ such nodes, it follows that 

P {Mn> x} < II P {To( v) does not survive.} 
vat depth Lx/AJ 

(1 _ po)d lX
/
AJ 

, 

(5.4) 

which in particular proves the tail bound of Theorem 62 and also immediately implies that 

EMn = 0(1). The key to the above line of reasoning is the ide a of analyzing the subtrees 

of T(E) rooted at depth lx/AJ independently in or der to strengthen our probability bound. 

We will hereafter refer to this technique as an amplification argument. McDiarmid (1995) 

uses this idea in much the same fashion as above in his analysis of the minima of bran ching 

random walks; it also plays a key role in both (Devroye and Reed, 1995) and (Reed, 2003). 

When P {E = O} > l/d but E is possibly infinite, we still have that P {To survives} = Po 

for sorne Po > o. For x ;::: 0 and n ;::: x/A, we temporarily let Nx be the set of nodes at 

depth lx/AJ with finite labels (so with labels at most Alx/AJ :S x). Using an amplification 

argument just as we did in deriving (5.4) immediately yields that for any integer c > 0, 

(5.5) 

So, to han die this case, we really need to analyze the distribution of the number of nodes at 

a given level of a supercritical branching process. 

It turns out that there is E > 0 depending only on E such that P {O < INxl < EX} decreases 

exponentially in x. In Section 5.1.1, we will show how such a bound be easily proved by 

growing T(E) using a slight variant of the breadth-first-search-based exploration process 

first seen in Chapter 3 and analyzing a corresponding random walk. (Such bounds for INx 1 

are well-known; other proofs can be found in, e.g., Athreya and Ney (1972) or McDiarmid 

(1995).) We will then use this bound and an easy amplification argument such as that 
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sketched above to prove exponential tail bounds for P {Mn 2: X 1 S} and thereby prove 

Theorem 62 in the case P {E = O} > 1/ d. Combined with the ballot theorem and a litt le 

more work, this line of argument will also yield lower tail bounds for Mn' which we will need 

for the case P {E = O} < l/d. 

We remark that the case P {E = O} > l/d of Theorem 62 is a result of Biggins (1976a). We 

have included a proof of this case as it is easier and gives a clear ide a of the approach we 

will take in handling the case P {E = O} < l/d. In tackling the case P {E = O} < l/d, it 

will in fact be more convenient to study H t than to study Mn. We will show: 

Theorem 63. Suppose we are given an supercritical ideal branching random walk T(E) with 

bounded steps, where E = (El, ... , Ed ) has component random variables distributed as E. 

Suppose additionally that Var {E} > 0, and that P {E = O} < l/d. Then there are T > 0, 

{3 > 0, and A > 0 depending only on E su ch that P {IHt - Tt - {31ntl ::; A} = 0(1) for all 

t 2: 1. 

For any T > 0, (3 > 0, letting f(t) = Tt - {3lnt, there is a > 0 such that If(t)/T + 

((3/T)lnf(t) - tl ::; a as long as t 2: 1. Letting f*(t) = t/T + ({3/T)t, it follows from this 

fact and from Theorem 63 that P {Hj*(n)+A+a > n} = 0(1) and P {Hj*(n)-A-a < n} = 

0(1). By the first relationship in (5.3), it follows that P {Mn::; f*(n) + A + a} = 0(1) 

and P {Mn 2: f*(n) - A - a} = 0(1). Thus, if we can prove that when P {E = O} < l/d 

there is some value bn for which we have exponential tail bounds for P {IMn - bnl 2: xIS}, 

we must have bn = E{MnIS} + 0(1). Combining such tail bounds with Theorem 63, it 

follows that we must also have bn = f*(n) + 0(1), which proves Theorem 62 in the case that 

P {E = O} < l/d, with T* = l/T, {3* = {3/T. 

From Theorems 62 and 63 and from (5.3), we also immediately obtain 

Corollary 64. Under the conditions of Theorem 63, E{HtIS} = Tt-{31nt+0(1), and there 

are c > 0, b > 0 such that for all x 2: 0 and aU n = 1,2, ... , P {IHn - EHnl 2: x 1 S} ::; 
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We note that a recent series of papers (Broutin and Devroye, 2005; Broutin et al., submitted, 

2006) has established the asymptotics of the first order term of the height of a very general 

family of trees; their techniques can in particular be used without modification to prove that 

Hn/n -+ 7 for ideal branching random walks. Broutin et. al. also treat the case where the 

edges of T! have lengths in addition to the weights given ab ove , and prove a law of large 

numbers for the resulting "weighted height" . 

Before proceeding to the proofs of our results, we briefly discuss a probabilistic structure 

closely related to branching random walks: branching Brownian motion (BBM). In this 

model, an initial particle starts at position 0 on the realline and begins a standard Brownian 

motion. The particle decays according to an exponential me an 1 clock; when the clock goes 

off, the particle splits into two, each of which continues an independent Brownian motion 

and each of which independently decays according to an exponential mean 1 clock. This 

pro cess is continued forever. 

The pride of place among results on branching Brownian motion goes to Bramson (1978a, 

1986), who studied the maximum position Mt of any particle at time t. Bramson first showed 

that Mt, adjusted by its me di an mt, converges in distribution to a certain "travelling wave" , 

which is a distribution formally defined as one of a family of solutions to a certain partial 

differential equation called the KPP equation (see Bachmann (1998) for details). He then 

found the value of mt, showing that there is a constant c such that 

mt = V2t-3Int/2+c+o(1). 

The similarity of this equation to that found by Reed for the expected height of random 

binary search trees and to that appearing in Theorem 62 is too great to be ignored. In fact, 
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the lines of argument in Bramson (1978a) and in Reed (2003) are strikingly similar. Reed's 

argument is essentially a discrete-time analog of Bramson's argument, which proceeds by 

finding precise estimates for the behavior of a Brownian motion conditioned on its value at 

time t, and in particular in bounding the probability that such a Brownian motion strays 

far from its conditioned mean. Perhaps surprisingly, though the overall structure of the 

arguments is very similar, they differ in almost every detail, and there is no obvious way to 

move directly from Bramson's results to discrete equivalents. Indeed, Biggins (1997) noted 

that though it was widely expected that analogous results to Bramson's should hold for 

branching random walks, at that time there had been essentially no progress on proving 

such results. As with much of the theory of random walks, it seems that the treatment 

of discrete and continuous time differs substantially even when the resulting facts are very 

similar in nature. 

ln Section 5.1.1, we prove Theorem 62 in the case that P {E = O} > 11d. In Section 5.2, we 

give a sketch of some of the key ideas behind our proof of Theorem 63 that fleshes out the 

high-level discussion of Devroye and Reed's results given above. In Section 5.3 we develop 

two key lemmas based on the ballot theorems of Chapter 2. Finally, in Sections 5.4 and 5.5, 

respectively, we prove lower tail bounds and upper tail bounds on Hn that together prove 

Theorem 63 and thereby establish Theorem 62 in the case P {E = O} < 11d. First, however, 

we fix a few aspects of the notation that will recur in the remainder of the section and prove 

Theorem 62 in the case that P {E = O} > 11d. 

Notation 

We recall that our object of study is a copy of the infinite d-ary tree Too = T! with root r. 

We have assigned each edge e = vw a label Evw; we additionally assign each node v a label 

Sv that is the sum of the edge labels on the path from r to v. Let X~ be the nodes of T 00 at 
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depth h, and let Nn,h be the set of nodes of Tn at depth h (we remark that for the remainder 

of the section we use the index n instead of t - so n is not necessarily integer). We observe 

that the height Hn of Tn is just the largest h for which Nn,h =1- 0, and that for any integer 

h 2: 0, Mh is the smallest n 2: 0 for which Nn,h =1 0 

For the sake of our analysis, it will be useful to fix a distinguished infinite path P in T 00 

with nodes r = Vo, Vl, .... We denote the labels along this path by El, E2, . .. ; recall that 

these labels are iid and distributed as some random variable E, O:S E :S 00. We further let 

Si = SVi = El + ... + Ei. We remind the reader that Vi E Tn precisely if Si :S n. 

Each node Vi has one child Vi+1 in P - let its other children be called V~~l' ... , V~!~l). Denote 

by T/j the subtree of Too rooted at vij) (note that T/j is isomorphic to Too ). Let T~,j = 

T/j n Tn (which may be empty), and let N~'{ be the set of nodes of Nn,h that are contained 

in T~,j. 

5.1.1 Bounding Mn when P {E = O} > l/d 

As discussed ab ove , we let To be the subtree of T(ê) consisting of aIl descendants of the 

root for which the displacement is O. This tree is distributed as a supercritical branching 

pro cess and therefore has some positive probability of survival Po > O. We let the maximum 

step size be A and observe that for any x 2: 0 and n 2: x/A, if T(ê) contains k nodes with 

finite label at depth Lx/AJ (i.e. INx,Lx/AJ 1 = k) then for n 2: x/A, the probability that Mn 

is greater than x is at most p~, so we really want to study the distribution of the size of 

Nx,Lx/AJ as x grows. 

The set Nx,Lx/AJ is just the set of nodes with finite labels in T(ê), and is therefore distributed 

as the set of vertices at depth Lx / A J of a supercritical branching process. We will prove using 

the random walk-based techniques developed in Chapter 3 that for such a set, there are E > 0, 
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Co > 0, and 60 > 0 such that for aU x ~ 0, 

(5.6) 

(As noted in the discussion proceeding the statement of Theorem 62, this is a classic result 

in the theory of branching pro cesses that can be found in Athreya and Ney (1972) or in 

McDiarmid (1995).) Since if S occurs then in particular 1 Nx,LxjAj 1 > 0 for aU x, it foUows 

that for x large enough, for n 2: x/A, 

P {Mn> x, S} < P {o < INx,LxjAj 1 ::; EX} + P {Mn> X 1 INo, LxjAj 1 > EX} 

< C e-oox + p€X < C e-ox o 0 _ 1 , (5.7) 

for sorne Cl > 0 and 6 > O. FinaUy, since the ideal BRW is supercritical, we have P {S} = P > 

o. Letting C = cI/p, by the previous fact and by (5.7) we thus have P {Mn> xlS} ::; ce-ox 

for n 2: lx/AJ. For n < x/A, if S occurs then Mn ::; An < x, so P {Mn> xlS} = O. This 

proves the exponential tail bounds of Theorem 62 and also proves that E {MnIS} = 0(1), 

which completes the proof of Theorem 62 in the case P {E = O} > l/d. 

To prove (5.6), we explore the subtree of T(E) with finite labels using the breadth-first-search 

exploration process of Section 3.2. Namely, we maintain a set (which we now think of as 

a queue) of open vertices Oi. We begin with 0 1 = {r}, the root of T(E). A step of the 

exploration pro cess consists of removing a vertex Vi+! from the front of the queue Oi, letting 

CHI be the set of children w of Vi+! for which the edge label EVi+lW is finite, and adding the 

elements of CHI to the back of the queue to form Oi+l. If ever Oi = 0 then we set Oj = 0 

for aU j 2: i. 

We now point out several properties of this exploration pro cess which follow immediately 

from its definition. First of aU, this pro cess explores T(E) level-by-level; at any given time i, 
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there is an integer h 2: 0 for which Oi is entirely contained within X~ U X~+I. Furthermore, 

as a step of the exploration pro cess can only increase the depth of the deepest explored 

node by 1, if Oi contains an element of X~ then i 2: h. Finally, for a given integer h > 0, 

if Oi contains elements of X~-1 and OHI does not, then OHI is entirely contained within 

X~; more strongly, in this case Oi+l is precisely NAh,h' In particular, it follows from these 

facts that for a given x, if 1 Nx,lx/Aj 1 ::; k then there is i ~ Lx/AJ for which IOil ::; k. As a 

consequence we can bound the size of Nx,lx/Aj from below by studying the behavior of IOil 

as i grows. 

For i = 0,1,2, ... , we let Si = IOil; the sequence Sa, SI, . .. forms a random walk. Let 

X o = 0; for i > 0, if Oi > 0 then let X H1 = CHI -1 and if Oi = 0 then let Xi = O. With the 

random variables X o, Xl, ... so defined, Si = L:~=o X j for an i 2: o. We remark that given 

that Oi > 0, Xi+! is an integer-valued random variable taking values in {-1, 0,1, ... , d - 1} 

(with distribution E, say). We couple S to a random walk S' for which Sb = 1 and, for 

which, for i 2: 0, S~+! = S~ + X~+l , where XL X~, ... are independent random variables 

distributed as E. (So when Si > 0, XI+l = Xi+! and XI+! + 1 is precisely the number of 

children w of Vi+! for which EVi +1 W is finite.) We emphasize that until S hits zero, Si and SI 

are identical, and we let to be the first time that Sto = 0, or let to = 00 if S is never zero. 

Using this coupling and the facts from the previous paragraph, for any x 2: 0 and V > 0, we 

have 

P {O < Nx,lx/Aj < v} < P {:Ji ~ l~J S.t. 0< Si < v} 

- P {:Ji ~ l~J S.t. t o > i and 0 < S~ < v } 

< P {:Ji ~ l~J S.t. 0 < S: < v} . (5.8) 

The steps of the random walk S' have positive mean - we choose 0 < E < 1/2A so that 

EE > 2EA and thus ES~ > 1 + (2EA)i. Letting v = EX, we in particular have ESLx/Aj ~ 

1 + (2EA) Lx/AJ ~ 2EX, so if i = Lx/AJ + j then ES: ~ 2EX + (2EA)j. Combined with (5.8), 
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this yields 

P {o < Nx,lx/Aj < V} < P {3j ~ 0 s.t. SLx/Aj+j :::; ESLx/Aj+j - EX - (2EA)j} 
00 

< L P {SLx/Aj+j :::; ESLx/Aj+j - E(X + 2Aj)} . (5.9) 
j=O 

Since S' has bounded step size (-1 :::; Xi :::; d - 1 for aU i), we can easily der ive (5.6) from 

(5.9) by, e.g, Chernoff bounds. 

In fact, a much st ronger statement than (5.6) is true; essentially, we may replace the prob­

ability P {o < Nx,lx/Aj :::; EX} by P {o < Nx,lx/Aj :::; (1 + E) lx/Aj} in (5.6) and the inequality 

remains valid. This has been proved by McDiarmid (1995), who was then able to use this 

stronger inequality to prove exponential tail bounds for P {Mn < xIS} when X < E {MnIS} 

(in the same work he pinned down E {MnIS} to within O(logn) in the case P {E = o} < 

l/d). Of course, exponentiallower tail bounds hold triviaUy when E {MnIS} = 0(1), which 

is why we did not need to prove such bounds in the case P {E = o} > 1/ d. We will need 

lower tail bounds when considering the case P {E = o} < l/d; with more work, we could 

derive such bounds using the above random walk approach. We decline to do so, instead 

using McDiarmid's result, which we now state: 

Lemma 65 (McDiarmid (1995)). Given an supercritical ideal branching random walk T(ê) 

with bounded steps, for all n = 1,2, ... , let bn = inf{t : P {Mn:::; t} ~ P {S} /2}. Then there 

are c > 0,0> 0 such that for aU X ~ 0 and aU n, P {IMn - bnl > X 1 S} < ce-8x
. 

(McDiarmid originally stated this result for non-negative branching random walks with 

bounded steps, but his proofs apply without change to ideal branching random walks. See 

also Athreya (1994) for related results.) As discussed just after the statement of Theorem 

63, combining Theorem 63 with tail bounds such as those of Lemma 65 immediately proves 

both the case P {E = o} < 1/ d of Theorem 62 and, as a consequence, Corollary 64. The 

remainder of the chapter is therefore devoted to proving Theorem 63. 
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5.2 A few key ideas 

For the remainder of the chapter, we will be primarily concerned with analyzing the behavior 

of the random walk SI, S2, ... given by the labels of the distinguished path Vl, V2, ... - from 

studying this random walk we will prove both the upper and the lower bounds of Theorem 

63. It turns out that it will usually be more convenient to study the negative random walk 

st given by Si = -Si = -SVi. (For general nodes v E Too , we likewise let S~ = -Sv.) 

For a given h, P {Vh E Tn } is just the probability S~ ~ -no By linearity of expectation 

and by symmetry, the expected number of nodes of depth h that are in Tn is dh times this 

probability. As we discussed when summarizing the results of Devroye and Reed, it seems 

a likely bet that the expected height of Tn will be close to the smallest value h* such that 

P {Vh* E Tn } :::; 1/ dh
*, Le., the first level for which ENn,h :::; 1. We calI the value h* the 

breakpoint. 

Our guess that the expected height is near the breakpoint is not perfectly accurate, but it 

is not far off; as we shall see, the expected height is 8(n), and the breakpoint h* is within 

o (log n) of the expected height. Furthermore, this analysis will highlight several of the key 

ideas behind the st ronger results to follow. For this reason, we devote the remainder of this 

section to an exploration of the breakpoint and what it can tell us about the height of Tn . 

5.2.1 The breakpoint 

The object of this section is to pin down the value h* and, more importantly, to bound the 

probability P {S~ ~ c - n} for "small" c and for h near h*. This information is a straightfor­

ward consequence of the asymptotics for large deviations appearing in Appendix A. (For the 

reader who recalls the use of these results in Section 2.5, what follows should be somewhat 
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familiar.) We wish to find the smallest h for which P {Sh 2:: -n} :::; 1/ dh
. The results of the 

appendix yield: 

Lemma 66. Let h* = h*(n) he the smallest integer for which P {S~* 2:: -n} :::; l/dh*. Then 

there are constants T > 0, ct > 0, and 1 > a such that 

(a) h* = Tn - l~: + 0(1) and P {S~* 2:: -n} = e (~), and 

(h) if c, c' = o( y'ri) then 

( 
-ae' -"te) 

P {Sh*+c' 2:: c - n} = e e dh*+c' ' 

where for any g(n) tending ta infinity with n, the arder notation e is uniform over Ici, Ic'I :::; 

y'ri/g(n). 

Proof. We consider the random walk So, Si, ... , Sh given by Si = SUEE = 2:~=1 (-EdEE); 

this is a non-positive random walk with mean -1, so the results of Appendix A apply to 

S. Since P { - EdEE = a} < 1/ d, by Corollary 83 there is a real number to > a and 

a function A(t) that is infinitely differentiable in an open neighbourhood of to for which 

toA'(to) - A(to), which we denote f(to), equals Ind. Furthermore, by Corollary 84, letting 

T = -(A'(to)EE)-l, ct = -A(to), and Co = t.j27rA"(t) , it is the case that T > 0, ct > 0, 

co> 0, and letting h = Tn, letting a = -rl~:l, we have 

P { Sh+a 2:: -n/EE} 

coe-aa-hf(to) __ (coe-lnn/2) __ (~) 
(1 + 0(1)) ..fh+O, - e v'h - e dh . 

h + a dh h 

Corollary 84 also yields that increasing (resp. decreasing) a by 1 decreases (resp. increases) 

P {S~+a 2:: -n} by a constant factor; it follows that h* is within 0(1) of h + a and that 

P {S~+a 2:: -n} = e(l/dh), i.e., (a) holds. FinallY' letting 1 = to, statement (b) and the 
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comment that follows are a direct consequence of Corallary 85 applied with this specifie 

choice of h * . D 

For our purposes, the main point of the uniformity result in Lemma 66 is that it allows us to 

"take the or der notation outside the sum"; we will often do so to avoid excessive definition 

of arbitrary constants, and will not always remark that we are using part of Lemma 66. 

From this lemma, we can immediately derive upper tail bounds on P {Hn 2:: h* + il, which by 

symmetry and a union bound is at most dh*+ip {S~+i 2:: -n}. In particular, it follows fram 

Lemma 66 (b) that there is E > a such that P {Hn 2:: h* + i} = 0((1- E)i) for i = o(fo). It 

is tempting to try to bound the expected value from below using Lemma 66 as weIl. Lemma 

66 tells us that the expected number of nodes of Tn at level h* - i is O(eoi
), so is growing 

exponentially fast as i increases (and i = o( fo) ). This fact on its own is not enough to 

bound EHn from below, however. Indeed, it turns out that E {Hn} - h* is not 0(1). 

We know, however, that if we can find some integer h' within o( fo) of h* for which 

P {INn,h,1 =1- a} = 0(1), then by Lemma 65 we have exponential tail bounds on P {INn,h'-il = a}. 

To find such a value h', for each integer h with h - h * = o( fo), we will define a set of "good" 

nodes Gn,h that is a subset of Nn,h. We mentioned such "good" nodes in the introduction 

to this chapter, in our earlier discussion of Devroye and Reed's proof technique. Essentially, 

a good node is a node v of Nn,h for which the random walk ending at v stays below its 

conditioned mean (in fact, we will impose one other, rather insignificant condition as part of 

the definition of good nodes). The definition of good will ensure that if EIGn,hl is large then 

P {IGn,hl 2:: 1} is 0(1), so we will be able to find lower bounds on EHn by studying EIGn,hl. 

This is the subject of the next section. 
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5.2.2 Good nodes 

Recall that we have fixed the infinite path vo, VI, ... in Too , and that these vertices have 

received labels Sb, S~, .... For h ::; h* for which h - h* = o( vn), we say that node Vh is a 

good node of Tn if the following properties hold: 

(G1) Sh ~ -n, (so Vh E Tn ), 

(G2) Sh::; 2 - n, and 

(G3) 5: ::; i . Sh/h for aIl 0 < i < h; adopting the language of Section 2.5, we will say Sh 

stays below 0 and write Sh bel 0 for this event. 

We extend this definition to aIl nodes x at depth h by symmetry, and denote the set of good 

nodes of Tn at depth h by Gn,h' The key to this section, and indeed to the who le chapter, is 

an analysis of Gn,h along the lin es sketched in the opening paragraph of this section. 

Condition (G2) says that Sh is not too large. By Lemma 66 (b), the probability that 

Sh ::; 2 - n given that Sh ~ -n is 8(1). By replacing the (G2) by the condition Sh ::; C - n 

for sorne large C, we could make this probability arbitrarily close to l. Intuitively, therefore, 

we can think that the "typical" node in Tn at depth h satisfies something like (G2). 

Condition (G3) is the key to the definition. In the language of random walks, it says the 

random walk S' is staying below its (conditional) mean up to time h. In the current setting, 

it states that along the path to Vh, the labels 5: are decreasing "at least as fast as they 

should". Because these labels are decreasing quickly, it will follow that knowing that Vh is 

in Tn does not increase the expected number of nodes of Tn in the subtrees hanging off the 

path VOVI ... Vh by very much. (G3) is precisely the sort of condition we studied in detail in 

Section 2.5; we saw there that P {Sh bel OISh} = 8(1/h). Combined with our discussion of 
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(G2), it follows that E/Gn,h/ = 8(E/Nn,h//h). We will eventually show that if EIGn,hl = n(l) 

then P {IGn,hl > O} = n(I). As a warmup, we prove: 

Fact 67. For h < h* for which h* - h = o( vn)J ifEIGn,hl = n(l/h2) then P {IGn,hl ~ 1} = 

n(l/h2) = n(l/n2). 

Prao f of Fact 67. To prove a lower bound on P {I G n,h 1 ~ 1}, we would like to use (5.2); 

however, it turns out to be much easier to calculate E {IGn,hl 1 Vh E Gn,h} than to calculate 

E {/Gn,hl 1 IGn,hl ~ 1}. As a consequence, instead of (5.2) we use a version of the second 

moment method often called the Erdos-Chung inequality (see Chung and Erdos (1952) and 

also Devroye and Reed (1995) and Alon and Spencer (2000), Chapter 2), which in our setting 

can be stated as follows: for any random set S ç X~, 

P {ISI > 1} > EISI 
- - 1 + SUPvEXh E {ISII v E S}' 

00 

(5.10) 

for any h = 1,2, ... (we will apply (5.10) both here and later in the chapter). Let S = Gn,h' 

By the symmetry of the ideal vector E, E {IGn,hll v E Gn,h} is identical for aIl v E X~, so 

we may replace SUPvEX~ E {IGn,hl 1 v E Gn,h} by E {IGn,hl 1 Vh E Gn,h} and obtain 

P {IG 1 > 1} > EIGn,hl 
n,h - - 1 + E {IG 1 1 v E G } . n,h h n,h 

(5.11) 

It follows that to prove Fact 67, it suffices to show that E {IGn,hl 1 Vh is good} is O(h2EIGn,hl). 

Recalling the definitions from the beginning of Section 5.2, we have 

E {IGn,hl 1 Vh is good} < E {INn,hl 1 Vh is good} 
h-l d-l 

< 1 + L LE {IN~{ 1 1 Vh is good} 
i=O j=l 

h-l 

- 1 + L(d - I)E {IN~',~II Vh is good}. (5.12) 
i=O 
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We write h = h * - c, where 0 < c = o( yin) by our choice of h. Since Vh is good, for 0 :::; i < h, 

S~ :::; (2 - n)(i/h) :::; 2 - ni/ho It follows that for such i, N~tl,l is at most the number of , 

nodes x in X~ that are in T~+l,l and for which the sum S~,h-i of the negatives of the edge 

labels on the path from Vi+l,l to x is at least -n(h - i)/h - 2. Letting ni = n(h - i)/h, we 

have that 

h - i 
hni (h* - c)ni h*ni cni 

- - ----
n n n n 

ni Inn c(h - i) 
- Tni - + 0(1) -

h 2na 

> h*(ni) - c(h h- i) + 0(1). (5.13) 

Next, let Cf be such that h - i = h*(ni) - Cf. By (5.13), we thus have Cf = h - h*(ni) - i ~ 

0(1) - c(h - i)/h. By Lemma 66 (b), therefore, 

(
eŒC(h-i)/h) 

p {S~,h-i ~ -ni - 2} = P {Sx,h*-C* ~ -ni - 2} =f 0 dh- i ' 

so by linearity of expectation, 

Plugging this into (5.12), yields E {IGn,hl 1 Vh is good} = 1 + O(heCŒ ). Since EIGn,hl = 

8(EINn,hl/h), it follows from Lemma 66 (b) that EIGn,hl = (1 + o(l))eca /h, so if EIGn,hl = 

0(1/h2) then E {IGn,hl 1 Vh E Gn,h} = 0(h2EIGn,hl) by (5.11), as desired. 0 

By Fact 67 and a standard amplification argument, we could show that P {INn,h*-alnnl ~ I} = 

0(1) for some a = 0(1) and thereby show that EHn ~ h* - alnn; we will not do so as we 

are headed towards stronger bounds. It turns out that the expected height of Tn is within 

0(1) of the depth at which we expect 8(1) good nodes of Tn . The key to proving this 

result is to strengthen Fact 67. We will eventually show that for values of h for which 
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h* - h = o( vin), E {IGn,hl 1 Vh E Gn,h} = EIGn,hl + 0(1), and exhibit an integer h' in this 

range which we can write as h' = Tn - ,Bln n + 0(1) for sorne constant T > 0, ,B > 0, 

and for which E {IGn,h,l} = 0(1). This irnrnediately irnplies by (5.10) and by syrnrnetry 

that P {IGn,h,1 > O} = 0(1). Since Gn,h ç; Nn,h, it follows that P {INn,h,1 > O} = 0(1), so 

P {Hn ~ h'} = 0(1), which proves the lower half of the bound of Theorern 63. 

To prove that E {IGn,hl 1 Vh E Gn,h} = EIGn,hl + 0(1), we will need to better understand 

the effect of conditioning on the event {Vh is good}, and in particular what this conditioning 

irnplies about the difference of S~ frorn its conditioned rnean, for 1 ::; i ::; h. We will tackle 

this problern with the aid of the conditional ballot theorern results of Section 2.5. Proving 

that P {INn,h'+il =1= O} decays rapidly with i, and thereby proving the upper half of the bound 

of Theorern 63, will also rely crucially on the conditional ballot theorern. We therefore devote 

the next section to collecting the information about the conditional behavior of the randorn 

walk S~, ... , S~ that we will need to accornplish the airns of this chapter. 

5.3 Staying low 

The airn of this section is to gather two results about the conditional behavior of the randorn 

walk S~, ... ,S~ - these results address the difference between S~ and its conditional rnean 

(conditioned on Sh), for 1 ::; i ::; h. The first of these bounds we already proved in Section 

2.5; the second is a straightforward consequence of the first. We rernind the reader of 

sorne terrninology frorn Section 2.5: we say that S~ stays below a if, for aU 0 < i < h, 

S: < SI" (i / h) + a. E is a lattice mndom variable if there is r -=f 0 for which rEis integer; 

otherwise it is non-lattice. The following is a slight weakening of Theorern 36, restated in 

terrns of the randorn walk S'. 

Lemma 68. For all constants c > 0, 0 < E < EE and all a, r with 1 ::; a = 0(h1j5
) and 
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r = O(h1/ 5), if E is non-lattice then 

p {S~ bel a 1 - Eh + r ::; S~ ::; -Eh + r + c} = 0 ( ~) . 

Furthermore, if E is lattice then the above equation holds for all c for which cE is integer. 

For the remainder of the chapter, we assume E is non-Iattice to avoid unedifying case analysis; 

aIl results ho Id in the lattice case with virtually identical proofs. Using this lemma, we can 

bound the conditional probability that S~ spends much time near its average, given that it 

stays below its average. For a given a > 0, let Ba be the event that there is sorne k for which 

a33 ::; k ::; h - a33 and for which Sk ~ S~(k/h) - min(k, h - k)1/33. For each fixed k in this 

range let Ba,k = {Sk ~ S~(k/h) - min(k, h - k)1/33}. Then: 

Lemma 69. For aU constants c> 0, 0 < E < -EE, aU integers a > 1 and all r = O(h1
/
5

), 

p {S~ bel a, Ba 1 - Eh + r ::; S~ ::; -Eh + r + c} = 0 (h~5 ) . 

Proof. We assume r = 0 for simplicity; an identical proof yields the result for general r. We 

denote the conditional probability P {. 1 - Eh ::; S~ ::; -Eh + c} by pc { . }. Fix k and a as 

above and let kh = min(k, h - k). Given that -Eh ::; S~ ::; -Eh + c, if Ba,k and S~ bel a 

are to occur then it must be the case that -Ek - k~/33 ::; S~(k/h) ::; -Ek + c + a + 1. More 

strongly, there must be sorne integer i such that l_k~/33 J ::; i ::; r c + al and for which the 

following events occur: 

• Ai,k is the event that {-Ek + i ::; Sk ::; -Ek + i + 1} and {Sk bel a + k~/33 + c}, and 

• Ei,k is the event that {-E(h - k) - i - 1 ::; S~ - Sk ::; E(h - k) - i + c} and, letting 

S; = Sj - Sk for k < j < h, {Sh-k bel a + k~/33 + c}. 
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Sinee Ba,k n {Sk bel a} ç U~:~:~~/33J Ak,i n Ek,i, it follows by a union bound that 

h_a33 1 Ek+c+a l 
pc {Sk bel a, Ba} < L L pc {Ek,i, Ak,i} (5.14) 

k=a33 i= l Ek_k~/33 J 

We will show that for each k, for all i in the above range 

(5.15) 

Presuming this for the moment that (5.15) holds, using this bound in (5.14) yields 

pc {Sk bel a, Ba} < 

Sinee a::; k1/
33 , (a+kl/33+ c)11 = O(k1/ 3), so the last fraction above is O(lje/6 ). Therefore, 

the whole sum is O(a33/6
) = O(a5

), so we have pc {Sk bel a, Ba, O} = O(1/a5h) as desired. 

It therefore remains to prove (5.15). 

By the strong Markov property, Ak,i and Ek,i are independent, so we have P {Ek,i, Ak,i} = 

p {Ek,i} p {Ak,à. By Lemma 68, it follows that 

P {Ak,i 1 - Ek + i ::; S~ ::; -Ek + i + 1} = 0 a + kh k + c ( 
( 1/33 )5) 

(5.16) 
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and 

. * . ((a + k~/33 + C)5) 
p{Ek.iI-E(h-k)-z-l:::;Sh_k:::;-E(h-k)-z+c} =0 h-k . (5.17) 

By the asymptotic estimates for large deviations found in Appendix A (or, for the reader 

who recalls the details of Section 2.5, by Lemma 35), it is immediate that 

P{i:::;S~+Ek:::;i+1}.P{-i-1:::;Sh-k+E(h-k):::;-i+c} =8( h1
/

2 
). 

P {O :::; S~ + Eh:::; c} (k(h - k))1/2 

Combining this equation with the two equations (5.16) and (5.17), this proves (5.15) and 

completes the proof. D 

We remark that if h is within O(logn) of Tn then taking E = l/T, r = Eh - n, we have 

r = O(1og h) = O(h1
/

5
) and furthermore, the event {-Eh + r :::; S~ :::; -Eh + r + c} is 

precisely the event {-n :::; S~ :::; -n + cl. In the remainder of the section, we will often use 

Lemmas 68 and 69 to bound probabilities of the form P {·I - n :::; S~ :::; -n + c} for h with 

h - Tn = O(logn), without bothering to explicitly derive the values E and r. 

5.4 The lower bound 

The proof of the lower bound is a refinement of the line of argument of Section 5.2: we 

consider the special set of good nodes, find the depth h' at which we expect 8(1) good 

nodes, and use the properties of the random walks en ding at good nodes to show that with 

probability 0(1), Tn has a good node, and hence same node, at depth h'. 

We denote by h' = h' (n) the smallest depth at which we expect at most 1 good node of 

Tn. Since for any h, EIGn,hl = 8(EINn,hl/h) = 8(dhp {S~ ~ -n} /h), by Lemma 66 (b), 
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h'(n) = h*(n) - a-lIn n + 0(1), which by Lemma 66 (a) is Tn - (3/2)a- l ln n + 0(1). We 

let (3 = (3/2)a-1, so that h'(n) = Tn - (3 ln n + 0(1). (In the remainder of the chapter we 

show that Theorem 63 holds with this choiee of T and of (3.) 

By our choiee of T and of (3, we have EIGn,h'l = 8(1). By following chain of reasoning 

described above, we will prove: 

Lemma 70. P {INn,h,1 ?: 1} = 0(1) 

As noted at the end of Section 5.2.2, the lower half of the bound of Theorem 62 immediately 

follows from a bound such as that of Lemma 70. 

Proof of Lemma 70. The chain of reasoning in the proof is quite similar to that of the proof 

of Fact 67. For a node x at depth h, P {x is good} = 8(1/h)P {-n ::; x::; 2 - n}. Sinee 

h' - Tn is O(logn), we may apply Lemma 69 to obtain that for aIl integers a > 1, the 

probability that there is sorne a33 < k < h' - a33 for which 

S~ > S' (!.-) -min{k h' - k}1/33 
t - h h' ' 

is 0(1/ ha5 )p { -n ::; x ::; 2 - n} and is therefore O(P {x is good} / a5
). It follows that there 

is C such that if x is good then with probability at least 1/2, for aIl C ::; k ::; h' - C, 

S' < S' (!.-) -min{k h' - k}1/33 
t - h h' ' . (5.18) 

If x is good and additionally satisfies this condition, we say that x is well-behaved. We 

denote the set of well-behaved nodes at depth h by Wn,h. We emphasize that every weIl-

behaved node is good, and every good no de is in Tn . Furthermore, since each good node is 

well-behaved with probability at least 1/2, it follows from the definition of h' that EWn,h' = 

0(1). We claim that E {IWn,h,1 1 Vh' E Wn,h'} = EWn,h' + 0(1). Applying (5.10) with S = 
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Wn,h' , it immediately follows that P {IWn,h,1 2: 1} = n(I), so since Wn,h' C Nn,h' , we have 

P {jNn,h,j 2: 1} = n(1). We thus turn to proving our claim about Wn,h" namely, that 

E {jWn,h'j j Vh' is well-behaved} = EjWn,h'j + 0(1). 

We now remind the reader of some notation from earlier in the section. We recall that no de 

Vi-1 has child Vi that is on the distinguished path P, and that its remaining children are 

vP), ... ,V~d-1). Node v~j) is the root of a subtree of Trx> that we denoted T:i. 

Let the set of well-behaved nodes at depth h that are in T:i be W~'{. To simplify notation, let , 

Wi = W~:~, and denote the functions P {- j Vh' is well-behaved} and E {- j Vh' is well-behaved} 

by pw {.} and EW {.}, respectively. Finally, for each i fix an arbitrary node Xi at depth h 

that is a descendent of V~l), let the partial sums of the negatives of the labels on the path 

from V~l) to Xi be S~i,l' S~i,2"'" S~i,h'-i-1' We remark that the edge labels contributing to 

the sum S~i,h'-i-1 are a subset of the edge labels contributing to the vertex label S~i; more 

precisely, 

S~. h'-i-1 + S~ - E (1) 
1" Vi-l Vi 

(5.19) 

We now mimic the portion of the proof of Fact 67 that leads to (5.12), in our case for the 

particular value h = h'. By symmetry, we have 

h'-l d-1 
EW {Wn,h'} - 1 + L LEw {W~',{} 

i=ü j=l 

h'-l 
- 1 + I)d - l)EW {Wi } . (5.20) 

i=ü 

Since d = 0(1) and, for a given i, Wh'-i ::; id, it follows that for any integer 0 < c = 0(1), 

"E.7~~;-c(d - 1)EW {Wi } ::; "E.~=1 (d - 1)id = 0(1). By this fact, by (5.20), and by the fact 
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that (d - 1) is constant, to prove the lemma it therefore suffices to show that 

h'-C 

L EW {IWil} = 0(1), (5.21) 
i=l 

where C is the same constant as in the definition of well-behaved. 

By symmetry, EW {IWil} = dh'-ipw {Xi E Wi}. In order for Xi E Wi to OCCUf, we must in 

particular have that S~i 2: -n, so by (5.19), we must have S~i,h'-i-l 2: -n - S~ = c - n 

for sorne c 2: O. Furthermore, S~i,h'-i-l is distributed as S~'-i-l and is independent of 

El, ... ,Eh, and therefore of S~. This independence will allow us use the bounds of Lemma 

66 to bound the conditional probability that S~i,h'-i-l 2: c - n. When i is far from 1 and 

from h' - C, the bounds on Si given by the fact that Vh' is well-behaved will ensure that c 

is large enough that the conditional probability that S~i>h'-i-l 2: c - n is extremely small. 

By slightly modifying this same approach, we will prove similar bounds when i is near 1 or 

near h' - C; summing these bounds will prove (5.21). We now turn to the details. 

For any i, letting ni = n(h' - i)/h' as in the proof of Fact 67 and mimicking the derivation 

of (5.13) gives 

h' - i - 1 _ h' ni + 0 (1) 
n 

j3n i ln n 0(1) - Tni - + 
n 

80 since S~i,h'-i-l is distributed as S~'-i-l and is independent of El,' .. ,Eh, for any c = 

o( yni), by Lemma 66 (b) we have 

pw {S~i,h'-i-l 2: c - nd - p {S~'-i-l 2: c - nd = e(p {S~'(ni) 2: c - ni}) 

_ e (~~~~:~) = e (n~:,~~) . (5.22) 
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For any i > C, since Vh' is well-behaved we have 

S: ~ S~,(ilh') - min{ i, h' - i}1/33 ~ 2 - min{ i, h' _ i}1/33 - ~~. 

For for such an i, therefore, in or der for Xi to be in Tn , we must have 

S' , > min{i h' - i}1/33 - 2 - n(h' - i) = min{i h' - i}1/33 - 2 - n,. (5.23) 
xi,h'-z-l -, h" z 

In particular, when min{ i, h'_iP/33 2: 2ln ni" applying (5.22) with c = min{ i, h'-iP/33 -2 

yields that pw {Xi E Tn } = 0(nie-2Inn Idh'-i) = O((dh'-in)-l), so by linearity of expectation 

and symmetry, EW {Wi } = O(l/n) for su ch i. Letting t = t(n) = r(2lnnl,)331, then, 

(5.24) 

This bounds the bulk of the sum (5.21); it remains to consider the cases when i is either 

close to 1 or close to h' - C. 

Case 1 (h' - t ~ i ~ h' - C): let k = h' - i, so C ~ k < t. Since k is so small, 

ni = n(h' - i)lh = nklh ~ kir + 0(1). By (5.22) and (5.23), we thus have 

(5.25) 

By linearity of expectation and by symmetry, 

Case 2 (1 ~ i < t): by (5.19), we know that S~ h'-i-l = S~, - (S~ - E, (1»). We condition 
1" 1, V'l.-lVi 
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on the value of S~ - E. (1) (which is necessarily less than 2 - ni/h' as Vh' is well-behaved), 
V'l.-lV i 

and show that for any s :2: ni / h' - 2, 

This implies that EW {IWnNI} = dh'-ipw {Xi E Wn,h'} - O(1/i3), for all 1 < i :::; t, so 

L::=l EW {Wd = 0(1). It thus remains to prove (5.26). 

For Xi E Wn,h' to occur given that -(s + 1) :::; S~ - E?) < -s, we must have that S~i,h'-i-l :2: 

s - n(h' - i)/h' = s - ni' If s :2: ni/h' + 2Inn/,!, then since i :::; t = 0((lnn)33), it follows 

that 2ln n/,!, = o( .;ni). By applying (5.22) with c = 2ln ni'!', we therefore have 

pW {Xi is well-behaved 1 - (s + 1) :::; S: - El < -8} < P {S~'-i-l :2: 2ln n/'!' - ni} 

O( d-(h'-i)n- l ). 

It follows that for such i and s, EW {Wi 1 - (s + 1) :::; S: - EP) < -s} = O(n- l ) = 0(i-3). 

Finally, if s :::; ni/h' + 2Inn/,!,t then letting a = s - ni/h' :2: -2, in order for Xi to be 

well-behaved (in fact, in or der for it to be good), it must be the case that 

(i) a - n(h' - i)/h' :::; S~. h'-i-l :::; a + 3 - n(h' - i)/h', and 
" 

(ii) the random walk S~i,l"'" S~i,h'-i-l stays below a + 3. 

We again emphasize that the random walk S~ 1"'" S~. h'-i-l is independent of El,"" Eh" 
t, 1;, 

By (5.22), the probability of (i) given El,"" Eh' is O(nie-a'Y /dh'-i). By Lemma 68, the 

conditional probability of (ii) given (i) and El, ... ,Eh' is 0(a5/ni)' Combining these two 

bounds yields 

pW {Xi is well-behaved 1 - (s + 1) :::; S: - E?) < -s} _ 0 (a~~,~:'Y) . 
176 



If i :S C then i 3 = 0(1), so since a 2: -2 and '"'( is constant, a5e-a1d-(h'-i) = O(d-(h'-i)) = 

0(d-(h'-i)i-3 ), and (5.26) holds. If i 2: C, then as Vh' is well-behaved, -(8+ 1) :::; S~ - EP) :::; 

S~ < 2 - ni/h' - i 1/ 33 so a = 8 - ni/h' > i 1/ 33 - 3. In this case a5e-a1 is 0(il/11e-1il/33) 
~ - , - , , 

which is 0(1/i3), and again (5.26) holds. This completes the pro of. o 

5.5 The upper bound 

We know that the naive approach to proving an upper bound on P {Hn 2: h' + il, namely, 

bounding P {Vh'+i E Tn}, then applying a union bound, will not work; it is the approach we 

used in Section 5.2, and only yields an upper bound of h* + 0(1) on the expected height. To 

prove our upper bound, then, we will certainly have to take into consideration the dependence 

between the labels of different nodes at depth h' +i. Equivalently, we will have to understand 

the dependence between the dh'+i different random walk8 from the root to depth h' + i. 

We observe that we can easily prove strong enough bounds for one group of potential nodes 

of Tn , namely, the set of good nodes at depth h' + i: by the standard rotation argument (or 

by Lemma 68), P {Vh E Gn,h'+i} = O(P {Vh E Nn,h'+i} /(h' + i)), from which strong bounds 

on P {Gn,h'+i =1= 0} follow directly from Lemma 66 (b) and a union bound over all nodes at 

depth h' + i. 

We prove our general bound by splitting the nodes of Tn at depth h' + i into many groups. 

In each group the behavior of the random walks leading to the nodes of the group will be in 

sorne sense homogeneous, in that any random walk leading to a node in the group will satisfy 

sorne specified constraint on its difference from its conditioned mean. This homogeneity will 

yield that the accuracy of our ballot-theorem-plus-union-bound based argument to bound 

the probability that any given group is non-empty will be greatly improved. In essence, this 

is because our conditions on the random walks will tell us precisely how to optimize our 
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applications of the lemmas from Section 5.3 for these specifie nodes. When we recombine 

the bounds we obtain for the individual groups (again by union bound), the result will be 

strong enough to yield exponential upper tail bounds on P {Nn,h'+i =1= 0} for small i: 

Lemma 71. There are Al > 0, E' > 0 su ch that for 0 :S i = 0(nl
/
5

), P {Nn,h'+i =1= 0} :S 

AI (l - E/)i. 

We note that the upper half of the bound of Theorem 63 immediately follows Lemma 71, as 

if Nn,h'+i = 0 then Hn < h' +i. Since h'- (rn - ,sInn) = 0(1), we may choose A = 0(1) 

large enough that AI (l - E/)(hl-(m-,Blnn))+A :S 1/4, say. Lemma 71 then implies that 

P {Hn 2:: rn - ,sInn + A} = P {Hn 2:: rn - ,sInn + (h' - (rn - ,sInn)) + A} :S 1/4. 

(In fact, the bound of Lemma 71 is much stronger than we need in order to prove the upper 

half of the bound of Theorem 63.) In proving Lemma 71, we will repeatedly use the following 

fact, which is a simple consequence of the definition of h' and Lemma 66 (b), and which we 

restate for convenience: 

Fact 72. For h = h' + i and 0 < i = o(y'ri) P {S~ 2:: -n} = 8(P {2 - n 2:: S~ 2:: -n}) = 

8(~). 

We note that we need only prove the bound of Lemma 71 for i larger than any fixed constant, 

as we may presume the bound holds for i small by our choice of Al, We may also restrict our 

attention to i :S (1 + a- l ) log n, say, as if i > (1 + a- l ) log n then h' + i 2:: h* + log n + 0(1) 

and the result is implied by Lemma 66 (b). For the remainder of this section, we assume i 

is an integer between 0 and h* - h' + log n, and let h = h' + i. By Lemma 66 (b), for any 

node x at depth h P {x E Nn,h, S~ :S 2 - n} = 8(P {x E Nn,h}), so it also suffices to prove 

that P f3x E Nn,h, S~ :S 2 - n} = 0((1- E)i). 

We now proceed to define the "homogeneous" groups discussed above, and bound the prob-
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abilities they are non-empty, in a sequence of daims. The proof of each daim will consist 

of straightforward applications of Lemma 66 and the lemmas of Section 5.3, and Lemma 71 

will be a trivial consequence of the bounds of the daims. 

Let a = L eŒi/lO J, and let Aa be the set of nodes x of Tn at depth h for which S~ ~ 2 - n and 

for which the negative random walk ending at x stays below a. 

Claim 73. P {Aa =1- 0} = O(e-iŒ/ 2 ). 

Proof. By Lemma 68, 

(
a
5) (eia/2) P {Vh E Aa 1 - n ~ S~ ~ 2 - n} = 0 h = 0 h . 

By Fact 72, it follows that P {Vh E Aa} = 0 (ne- iŒ / 2 jhdh ) = O(e-Œi/ 2 jdh ). The daim 

follows by symmetry and by linearity of expectation. o 

Since h*(n) = rn - (2a)-1Iogn, there is c* such that for any h' ~ h ~ h* + logn and k ~ h 

(5.27) 

and for any k :::; h/log h, 

(5.28) 

Let c = log5 n, and let He consist of the nodes x of Tn at depth h for which S~ :::; 2 - n and 

for which the negative random walk ending at x does not stay below c. Then 

Claim 74. P {He =1- 0} = 0 (e- i ). 

Proof. If He is not empty, then for sorne 0 < k < h there is a node y at depth k for which 

the sum of the negatives of the labels on the path to y is at least -nk j h + c. When k 2: c3
, 
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by (5.27) and by Lernrna 66 (b), 

{ 

1 nk} P Sk?:: c - h < 
{ 

1 nk} 
P Sh*(nk/h)-rc* lognl ?:: c - h 

_ 0 (ël<C* IOgn-,C) = 0 ( 1 ) 
dk n 1og4 ndk ' 

for n large enough, as "jC - ac*logn = w(log4n). When i4 :::; k :::; c3, we have k:::; h/logh 

as long as n is large enough, so by (5.28) and Lernrna 66 (b), 

{ 

1 nk} P Sk?:: c - h :::; 
{ 

1 1/3 nk} P Sh*(nk/h)-c*?:: k - h 

(
ël<C'_'

k1
/
3
) (1) 

o dk = 0 elkl/3dk . 

When k :::; i 4, c - nk/h ?:: c - k - c* ?:: c - ((1 + a- l ) 10gn)4 - c* > 0 for n large enough, so 

P {S~ ?:: c - nk/h} = O. By the above bounds and by syrnrnetry, we thus have 

P {H, 7" 0} < ~ dkp { S; 2 c _ n:} 

< 0 (t eOk'~' dk ) + 0 C~l nlO~' n ) 

_ 0 (e- i ) + O(nl-loén) = O(e- i ), 

as i = O(log n). 0 

For each integer b with a :::; b :::; c, we say that Vh is in the set Mb if Vh E Tn, S~ :::; 2 - n, 

and S~ is below b + 1 but not below b. Note that this irnplies S~ ?:: b - nk/h for sorne 

o < k < h. We say that Vh is in Mbid if Vh E Mb and additionally S~ ?:: b - nk/h for sorne 

b33 
:::; k :::; h - b33

. For k < b33 (resp. k > h - b33
), we say that Vh is in Mt if Vh E Mb and 

additionally, k is the smallest value for which S~ ?:: b - nk/h. We extend these definitions 

to the other nodes x at depth h by syrnrnetry. We rernind the reader that a = l eai/
ID J and 
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that c = log5 n. 

Claim 75. P {3b, a:S b:S c S.t. Mr: id =f 0} = O(e-ai
) 

Proof. Fix a :S b :S c. By Lemma 69, 

P {Vh E Mr:
id 

1 - n :S S~ ::; 2 - n} = 0 (h~5 ) , 

so by Fact 72, P {Vh E Mr: id } = O(ne-ai /hb5dh
) = O(e-ai /b5dh

). By symmetry and by 

linearity of expectation, P {Mr: id =f 0} = O(e-ai /b5). The daim follows by summing over 

b. o 

Claim 76. P {3b, a::; b::; c, 1::; k::; b33 S.t. Mt =f 0} = O(e- i
) 

Proof. Fix band k as above. For each node x at depth k, let W x be the set of descendents 

of x in Mt. By symmetry and a union bound, P {Mt =f 0} :S dkp {WVk =f 0}. If WVk is 

nonempty, then necessarily S~ 2:: b - nk/h. Since k ::; b33 ::; c33 = (logn)165, for n large 

enough k:S h/logh, so by (5.28), k 2:: h*(nk/h) - c*. 

If k ::; rb/2, then since n/h = r + 0(1), we have b - nk/h > 0 for n large enough, so 

P {WVk =f 0} = O. If rb/2 < k :S b33 , then b 2:: k1/33 2:: (rb/2)1/33. By Lemma 66 (b) we 

therefore have 

< P {SI> b- nk} < P {SI> (rb) 1/33 b1/33 _ nk} 
k- h - k- 2 h 

(

eac*-r(Tb/2)1/33bl/33) = (e-r(Tb/2)1/33) 
o dk 0 dk . 

A union bound over 1 :S k :S b33 thus gives 
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We sum this bound over b between a and c, and crudely bound the whole sum by writing 

OCL~=a e-b1!40) = 0(e-a1!41). Sinee a1/ 41 is at least i as long as i is large enough, the daim 

follows. o 

Claim 77. P {::lb, a:::; b:::; c, 1:::; k:::; b33 
S.t. Mt- k =1- 0} = O(e-i ) 

Proof. Fix band k as ab ove , and let r = h - k. For each node x at depth r, let Wx be 

the set of descendents of x in Mt. By symmetry and a union bound, P {Mt- k =1- 0} :::; 

dh-kp {WVr =f:. 0}. Suppose WVr is nonempty - then necessarily b - nr/h :::; S~ :::; 2 + (b + 

1) - nr / h and in addition S~ bel b (or else r is not the first time S' exeeeds its mean by b). 

Since r = h - k = h - 0 ((log n) 165) = h' + i - 0 ( (log n) 165), an easy calculation mimicking 

many we have seen before shows that r - h'(nr/h) = i + 0(1). Therefore, Lemma 66 (b) 

implies that 

(ne-ab) 
P{b-nr/h:::;S~:::;b+3-nr/h}=0 ~ . 

Furthermore, by Lemma 68 and the fact that r 2: h - b33 = D(h) = D(n), we have 

P {S~ bel b 1 b - nr / h :::; S~ :::; b + 3 - nr / h} = 0 (~) = 0 (~) . 

Combining these bounds yields that 

so by symmetry and a union bound, P {Mt-k =f:. 0} = O(élnb-ab). Just as in the proof of 

Claim 76, summing this bound over b yields the result. o 

We are now prepared for 

Proof of Lemma 71. Hn 2: h is the event that there is a vertex of Tn at depth h, i.e., that 
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Nn,h =f 0. It is immediate from the definitions of the sets Aa, He, Mb id and Mt that any 

vertex in Nn,h is either in Aa, or in He, or in Mb id (for sorne integer a ::; b::; c), or in Mt (for 

sorne integer a ::; b ::; c and sorne integer k for which either 1 ::; k ::; b33 or h - b33 
::; k ::; h). 

Applying Claims 73, 74, 75, 76, and 77, respectively, to bound each ofthese events, it follows 

that 

for sorne E' > a. This completes the pro of. D 

5.6 Conclusion 

There are several natural questions raised by our results. Our results in particular yield 

the expected value of the minimum of a branching random walk with bounded degree and 

bounded step sizes that have zero probability of extinction, to within 0(1). Both the re­

quirement of bounded degree and that of bounded step sizes, should be able to be relaxed 

to sorne degree while maintaining that the conclusions of Theorem 62 still hold. In fact, an 

approach very similar to that seen above can be used to prove such a result when we have 

"strong enough" exponential upper tail bounds on the step size E (which is a condition quite 

similar to but st ronger than that required for the Hammersley-Kingman-Biggins theorem); 

a proof of this fact will eventually be presented elsewhere. What are necessary and sufficient 

conditions for such a result to hold? 

The most obvious natural complement to the results of this section would be a treatment 

of the case P {E = a} = 11d. In this case it is known (McDiarmid, 1995) that Var {Mn} = 

O(logn). However, Bramson (1978b) has shown examples of branching random walks for 

which in our terminology P {E = a} = 11d and for which there is a constant c such that 
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Mn - c log log n converges in distribution to a non-degenerate random variable. It follows 

that any result akin to that of Theorem 62 that held when P {E = O} = 1/ d would certainly 

require a different kind of additive renormalization than that of Theorem 62. For what 

functions f (n) are there branching random walks with step size E for which P {E = O} = 1/ d 

and and Mn - f(n) converges in distribution to a non-degenerate random variable? 
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Chapter 6 

Conclusion: A percolation-theoretic 

perspective 

In the second half of this thesis, particularly in Chapters 4 and 5, we explored the connection 

between ballot theorems (and, more generally, random walks) and the heights of random 

trees. The perspective of first-passage percolation provides another way to look at our results, 

and yields a raft of research questions that may deserve study using a ballot theorem-based 

approach. To explain this angle in a litt le more detail, we first provide an (extremely 

abridged) introduction to the key ideas of first-passage percolation. 

Suppose we are given a connected graph G = (V, E) with non-negative edge weights given by 

a function w : E --7 [0,00), and a fixed no de r E V that we calI the origin. (We assume for 

the moment that G is finite but willlater relax this restriction.) Given a path P = VOVI •.. Vk, 

the weight w(P) of P is 2:7';:;-~ W(ViVi+l)' Given any node v =1- r in G, the weighted distance 

from r to v is the weight of the smallest weight path from r to v - we denote this weighted 

distance d(r, v). FinaIly, for any t 2: 0, we let Gr(t) be subgraph of G induced by aIl nodes 

v with d(r, v) :::; t, and calI Gr(t) the first passage percolation cluster of depth t rooted at r. 
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We hereafter assume that Gand w are such that for aIl v, there is a unique path P for which 

w(P) = d(r, v), Le., a unique smallest weight path from r to v, and denote this path Pv; 

we furthermore presume that if v =J. w then d(r, v) =J. d(r, w). (We say that in this case the 

weight function w is reasonable.) We let Tr be the union over all v E V of the paths Pv, and 

calI Tr the shortest pa th tree for (G, w). For t ~ 0 we let Tr (t) be the intersection of Tr and 

Gr(t). 

To see that Tr is a tree, fix any vertex v E V. Then v E Gr(w(Pv)) and, for any t < w(Pv), 

v tJ: Gr(t). Since G is finite, by our assumption that d(r, w) =J. d(r, v) for w =J. v it follows 

that there is 0:::; t < w(Pv) for which Gr(w(Pv)) = Gr(t) - {v}. Letting v*v be the last edge 

on the path Pv, necessarily v* E Gr(t) - it follows that Tr(w(Pv)) is just the graph Tr(t) 

together with the edge v*v. It is then easy to prove by induction that Tr is indeed a tree. 

Clearly, if 0 :::; s :::; t then Gr(s) :::; Gr(t); since Gis connected we also have Ut~oGr(t) = G. 

The family of graphs {Gr (t) h~o defines an increasing graph process, in the sense that if 

o :::; s :::; t then Gr(s) ç Gr(t), and since G is connected there is sorne value t* for which 

Gr(t*) = G. Similarly, {T:(t)h>o is an increasing graph process, and Tr = Tr(t*) is a 

spanning tree for G. In fact, in showing that Tr was a tree we showed the st ronger statement 

that Tr(t) is a tree for an t, so in particular is a spanning tree for Gr(t). 

If the edge weights given by w are random, then {Gr(t) h~o and {Tr(t) h~o are random graph 

pro cesses, which we can investigate in the same spirit as we investigated the with the graph 

pro cesses of Chapter 4. 

We begin by supposing that G = Kn and that the edge weights w(e) are given by independent 

uniform [0, 1] random variables: as with Gn,p we may ask how Gr(t) and Tr(t) grow as t grows 

from 0 to 1. In fact, for this problem it has been more common to study Kn with exponential 

mean 1 edge weights. For such a weighting Janson (1999) has that for any fixed r, letting 

t* be the smallest t for which Gr(t) = Kn' it is the case that t* logn/n ~ 2 in probability. 

186 



In other words, for this choice of G and of w, for any E > 0 the first passage percolation 

cluster Gr(t) becomes the whole graph at time between (2 - E)njlogn and (2 + E)nj log n 

with probability tending to 1 as n tends to infinity. 

When G = Kn and w weights the edges of G with iid random variables (and aIl edge weights 

are distinct with probability 1), we derived the height of another spanning tree of Kn in 

Chapter 4: the minimum weight spanning tree of G. It turns out that the structure of the 

short est path tree Tr is much simpler than the structure of the minimum weight spanning 

tree of Kn; we now explain why. Given any time t ;::::: 0 and corresponding tree Tr(t), the 

next edge to attach to Tr (t) in the graph process is equally likely to conne ct any pair of 

vertices of V(Tr(t)) and V(Kn) - V(Tr(t)). In particular, the location at which the next 

edge connects to Tr(t) is equally likely to be any vertex of Tr(t). Trees constructed in such a 

fashion called are called random recursive trees, and are extremely well-studied; see (Smythe 

and Mahmoud, 1995) for a survey of results on their structure. In particular, their height 

is known to be asymptotic to e ln n (Moon, 1974). Together with the results of Chapter 4, 

this demonstrates in particular that for edge weights as ab ove , the shortest path tree Tr is 

not distributed like the minimum weight spanning tree of Kn. 

When random recursive trees arise as short est path trees for Kn' many new problems arise: 

for example, what is the total weight of Tr? What is the weighted height of Tr? What is the 

average weighted distance between nodes in Tr ? These and many other questions have been 

investigated in a sequence of papers by van der Hofstad et al. (2001,2002, 2005a,b), as weIl 

as by Janson (1999). This viewpoint also provokes new questions for the minimum weight 

spanning tree. What is its weighted diameter? If we consider the method of Prim (1957) for 

growing the MWST (which grows the MWST starting from a single node - see Page 4.1), 

then we may think of the starting node as the root - what then is the expected weighted 

height of the MWST? 
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We may also consider the subject of Chapter 5 in a first passage percolation-theoretic light. 

To do so, we relax the restriction imposed early in the conclusion that G is finite, and 

additionally allow that the weight function w take value infinity. In Chapter 5 we considered 

infinite d-ary rooted trees whose edges e were assigned "exponentiallabels" Le taking values 

in [-00,0]. Let G = T:J and let w(e) = -Le - then in the language of Chapter 5, for n ~ 0 

Gr(n) is just the tree Tn- Theorem 62, then, can be viewed as answering a question about 

the moments of first-passage percolation on trees. 

Can the techniques of Chapter 5 be used to study first-passage percolation on other graphs? 

The variance of the depth of the first-passage percolation cluster in 'Z} with exponential 

mean 1 edge weights is a well-studied open problem (see Kesten (1993b); Pemantle and 

Peres (1994); Talagrand (1995); Newman and Piza (1995); Benjamini et al. (2003), among 

other work). To date the best known upper bound on this variance is O(tjlogt) and the 

best known lower bound is of order O(logt). Benjamini et al. (2003) state that physical 

evidence suggests the variance of the depth is order t 1/ 3 , and that recent work on increasing 

subsequences in random permutations of IID random variables (Zeitouni and Deuschel, 1999; 

Johansson, 2000) supports this hypothesis. If the variance is indeed of or der t 1
/

3
, then 

rigorous upper bounds and lower bounds that approach the "correct" answer to the problem 

both remain elusive. Might the approach of Chapter 5 provide sorne insight into its solution? 
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Appendix A 

The requisite results on large 

deviations 

The results we use concern the so-called exact asymptotics for large deviations. They address 

the first order term of P {Sn> ESn + En} for positive E, for sums of random variables which 

individually satisfy certain conditions on their moments. The result we state is considerably 

less general than the strongest known results; we have simplified the setting as much as 

possible given the demands of the thesis. 

We assume we are given iid random variables Xl, X 2 , ... , distributed as X, where X is a 

non-positive, extended real-valued random variable with mean -1. We furthermore assume 

for simplicity that there is no real number r i= 0 for which r X assumes only integer values 

(i.e., X is not a lattice random variable). There are versions of all results from this section 

which apply to lattice random variables, and work just as well for all our purposes; we set 

aside a formaI treatment of such random variables purely to avoid an unenlightening and 

gratuitous technical burden. 
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The cumulant generating function, or rate function, of X is defined as A = Ax(t) = 

log E { etX } (we will omit the subscript X when obvious from context). We first state a 

few properties of the function A which we will need in our discussion. 

Fact 78. A(t) S 0 for t 2: 0 and limt->oo A(t) = -00. 

Proof. This is immediate as X is non-positive and has negative mean. o 

We let t* = inf{t 1 A(t) < oo} - the previous fact implies t* S O. 

Fact 79. The function A is convex, and for any t E (t*, 00), A is infinitely differentiable in 

an open neighbourhood of t. 

Proof. See (Dembo and Zeitouni, 1992, Lemma 2.2.5 and Exercise 2.2.24). o 

Fact 80. limt->o+ N(t) 2: -1 and, ift* < 0 then N(O) = -1. 

Proof. By definition, A(O) = logE {eOX } = 0, and for any t > 0, by Jensen's inequality 

A(t) = log E {éX } 2: E {tX} = -t. This establishes the first daim as N(t) is increasing. 

By an identical argument, if t* < t < 0 then A(t) 2: -t, so N(O) S -1; the second daim 

follows. 0 

Let x* = sup{x 1 p {X > x} > O} then we have 

Fact 81. N is increasing and limt->oo N(t) = x*. 

Proof. The fact that N is increasing follows from Fact 79. To see the second daim, fix any 

é > 0 and let p = p(é) = P {x* - é S X S x*}. We have A(t) = log(E {etX l[x:;::x*_E]} + 
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E {e tX l[x<x*-E]})' As X is non-positive and has negative mean, the first expectation above 

dominates the second, i.e., 

FinaIly, sinee pt (x* - E) :::; log E { é X 1 [X2: x * -éd :::; ptx*, it follows that for aIl 6 > 0 there 

exists t8 > 0 such that for aU t ~ t8, 

pt(x* - E) - 6 :::; log E {etX 1 [X2:X*-é] } :::; ptx* + 6. 

As we may make E and 6 arbitrarily small and A' is increasing, the result follows. D 

For i > 0, let Si = Xl + ... + Xi' The following result was proved by Badahur and Rao 

(1960) and is stated here approximately as found in (Dembo and Zeitouni, 1992, Theorem 

3.7.4 and Exercise 3.7.10). 

Theorem 82 (Badahur and Rao (1960)). For any 0 < a :::; o( y"ii) and t > 0 

(1 _ -ta) -n(tA'(t)-A(t)) 
P {Sn E [nA'(t), nA'(t) + al} = (1 + 0(1)) e e ,(A.1) 

t VA" (t)27rn 

and given any g(n) tending to infinity with n, the convergence 0(1) is uniform in a < 

y"iijg(n). 

(The uniformity statement does not appear in Dembo and Zeitouni (1992), but fact implied 

by the proof given there.) We note that, letting f(t) = tA'(t) - A(t), f(O) = 0 and f'(t) = 

tA"(t) is positive when t is positive; therefore the second exponent in (A.1) is always negative, 

so these estimates are non-trivial. We also have 

Corollary 83. fis increasing and limt-.oo f(t) = ln(ljP{X = x*}) (where we interpret the 

right-hand-side as 00 if P {X = x*} = 0). 
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Proof. Since for any E > 0, P {Sn 2: x*n} 2: P {X = x*} n, it is immediate from Theorem 

82 that limt->oo f(t) must be at most ln(1/P {X = x*}). To see that in fact equality holds, 

choose any small E > 0 and any c > E. If we are to have Sn 2: (x* - E)n then at most an 

E/C proportion of the Xi can satisfy Xi ::; x* - c. Letting p = p(c) = P {X 2: x* - cl, it 

follows that P {Sn 2: (x* - E)n} ::; P {Bin(n,p) 2: (1 - E/c)n}. Since p(c) ~ P {X = x*} as 

c ~ 0, letting c ~ 0 and E ~ 0 in such a manner that 1 - E/C ~ 1, it follows from standard 

binomial estimates that limt-->oo f(t) must be at least ln(I/P {X = x*}). 0 

By studying A and its derivatives, we can use this theorem to der ive a relation between the 

asymptotics of P {Sn> nN(t)} and P {Sm> nN(t)}, the precise form of which depends on 

n - m. We show: 

Corollary 84. When b = o(n1/ 2 ), for n large enough 

P {Sn-b 2: nN(t)} = (1 + o(I))eb(f(t)-A(t))p {Sn 2: nN(t)} , 

and for any function 9 tending ta infinity with n, the convergence 0(1) is uniform for b ::; 

vn/g(n). 

Proof. Let m = n - b, and suppose m is small enough that there is s > 0 for which 

nN(t) = mN(s). Since N is negative and increasing, if m > n then such an s certainly 

exists, s 2: t, and A is infinitely differentiable on an open neighbourhood of s. Furthermore, 

since A is continuous and t > 0, there is E > 0 such that if m 2: (1 - E)n again we can find 

such a value s. Furthermore, by choosing E small enough we may again ensure that A is 

infinitely differentiable in an open neighbourhood of s. Since m 2: n - 0(n1/2 ), for n large 

enough m is certainly at least (1 - E)n. 

Writing N(s) - N(t) = O(A"(t)(s - t)) and letting b = n - m yields that (s - t) = O(b/m). 
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By a Taylor approximation of N around t, we also have that 

A' (8) - A' (t) = (8 - t)A" (t) + O( (8 - t)2), 

so since N(8) = (n/m)N(t), 

(8 _ t) N(8) - N(t) + 0((8 - t)2) = (n/m)N(t) - N(t) 0((8 _ t)2) 
- A"(t) A"(t) + 

bN(t) 2 bN(t) ( b2 ) 
mA"(t) + 0((8 - t) ) = mA"(t) + 0 m2 . 

(A.2) 

Furthermore, a Taylor expansion of f around t gives 

f(8) - f(t) = (8 - t)j'(t) + 0((8 - t?) = (8,- t)tA"(t) + 0 (:2) , 

which combined with the approximation of (8 - t) from (A.2) and the fact that f(t) = 

tN(t) - A(t) gives 

f( 8) f(t) bN(t)f'(t) 0 (~) = f(t) btN(t) 0 (~) 
+ mA" (t) + m2 + m + m 2 

_ nf(t) + ~A(t) + 0 (~) . (A.3) 
m m m2 

It follows that e-mf(s) = e-bA(t) . e-nf(t) . eO(b2 / m). By this fact and by Theorem 82, we have 

e-mf(s) 

p {Sm 2: nA'(t)} = P {Sm 2: mA'(8)} = (1 + 0(1))-.---; /:===:===7=7 
8V 21rmA"(8) 

e-bA(t) . e-nf(t) . eO(b2 lm) 

- (1 + 0(1)) 8 J21rmA" (8) . 

When b - o( y'ri), the term eO(b
2 
lm) is 1 + o( 1) and furthermore, 8 J A" (8)m - (1 + 
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o(l))tylA"(t)n. Therefore, 

e-b(A(t))e-mj(t) 
P{Sm 2: nA'(t)} = (1 +0(1)) . 

tyl27rnA"(t) 

When b ::; fol g(n), eO(b2jm) = eO(ljg(n)2), which yields the second daim of the Iemma. D 

Combining the theorem and the first corollary, we obtain the bound 

Corollary 85. Wh en c and C'are o( fo), for n large enough, 

ec' N(t)-cte-nj(t) 
P {Sn+c1 2: nA'(t) + c} = (1 + 0(1)) yi , 

t A"(t)27rn 

and given any g(n) tending ta infinity with n, the convergence 0(1) is uniform in c, c' ::; 

folg(n). 

We omit a formaI pro of of Corolary 85 as it proceeds exactIy as the proof of Corollary 83. 
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Appendix B 

Ratio limit theorems 

In Section 2.4, we stated the following theorem. Reeall that X is a lattice random variable 

with period r if there is r > ° sueh that r X is integer, and let f be the density funetion of a 

N(O, 1) random variable. 

Theorem 86. Suppose Sn is a sum of independent, identicaUy distributed random variables 

distributed as X with EX = 0, and there is a sequence of constants an such that Sni an 

converges to a N(O, 1) random variable. If X is non-lattice let B be any bounded set; then 

for any h E B and x E R 

Furthermore, if X is a lattice random variable with period r, then for any x E {nlr 1 nEZ}, 

In both cases, an0(a~l) -+ ° as n -+ 00 uniformly over aU x E IR and hE B. 
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This theorem is in fact a consequence of a much more general result of Stone (1965b); it is 

known as a ratio limit theorem, as it gives control over the ratio 

p {ISn - xl ::; h/2} 
P {ISn - yi ::; h/2} 

for certain x and y - in particular, ifboth are O(an), then this ratio is 8(i.p(x/an)/i.p(y/an)) = 

8(ey2
-

X2
). 

The behavior of such ratios is closely linked to the spread of the sum Sn. The spread of a 

sum of (not necessarily identically distributed) random variables is generally measured by 

the concentration function Q(Sn, h) = sup{P {x::; Sn ::; X + h} : xE lR.}, which measures 

how much of its mass Sn puts in any interval of length h. If limn-->oo Q(Sn, h) = 0 then Sn is 

called "essentially divergent"; of course, for iid sums of random variables; this is equivalent 

to the requirement that Var {Xl} > O. We used a result on the spread of sums of iid random 

variables (Theorem 9) in our development of the generalized ballot theorem of Chapter 2.4. 

Theorem 9 is implied by Theorem 86, which is fundamentally more powerful, as it supplies 

not just an upper bound for the probability that Sn is in a certain set, but gives precise 

asymptotics for this probability. 

Much more is known about su ch ratios than is contained in the above theorem. The paper 

by Stone (1965b) in fact proves a result such as Theorem 86 in the case that X is in the 

range of attraction of any stable distribution with a density. In particular, this might give us 

hope that we could extend our analysis to random variables X with E {X1+a
} < 00 for sorne 

o < a < 1. (Unfortunately, as we noted in Section 2.6, the doubling argument that was a key 

element of the proof does not ho Id in this case; more work is still needed to derive a ballot 

theorem for such random variables.) Stone's work was one step in a series of increasingly 

general results, the most general of which is found in Stone (1966) and applies to random 

walks on locally compact commutative groups; other results on the subject are found in 
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(Rvaceva, 1962; Gnedenko and Kolmogorov, 1954; Bretagnolle and Dacunha-Castelle, 1964; 

Stone, 1965a). 

We note that ballot theorems themselves provide a sort of ratio limit theorem: if 

P {Si > 0 V 0 < i < n 1 x ::; Sn ::; X + h} = 8 (X / n ) 

then letting T- be the time of entry of S into the interval (-00,0), we have 

P {x ::; Sn ::; X + h, T- > n} = 8 (P {y ::; Sn ::; y + h}) . 
P {y ::; Sn ::; y + h, T- > n} P {x ::; Sn ::; X + h} 

If Sn/an converges to a normal distribution, for example, and x, y = O(an) then Theorem 

86 tells us this ratio is 8(ey2
-

X2
). 

In fact, the existence of ratio limit theorems has been investigated for many events other 

than {x ::; Sn ::; X + h}. The number of entries to a set up to time n, the event that Sn is the 

first partial sum in a set, the probability of hitting one set before another, and many related 

quantities, have all been studied from this perspective. Sorne of the most powerful results 

appear in (Kesten and Spitzer, 1963a,b; Port and Stone, 1967; Ornstein, 1969a,b; Levitan, 

1971). Kesten (1972) provides a rather comprehensive and easily digestible survey of results 

related to the spread of sums of independent random variables and ratio limit theorems. We 

note that Theorems 30 through 33 seem to be a first step towards a ratio limit theorem for 

ratios of the form 
P {x ::; Sn ::; X + A, T -EVn > n} 
P {y ::; Sn ::; y + A, T_ EVn > n} , 

where T_ EVn is the first time t that St ::; -EJfi. Ratio limit theorems of roughly this form 

have been established for certain classes of random walks and Markov chains (Kesten and 

Spitzer, 1963b; van Doorn and Schrijner, 1995; Kesten, 1995), but usually with X and y fixed 

(not varying with n) and with the stopping time T -EVn replaced by TT with r fixed. 
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Isaac (1983) has shown a close connection between the existence of ratio limit theorems 

and an asymptotic independence property for random walks. (A random walk on Z, say, 

is asymptotically independent if for all fixed i, j, k, P {Si = j 1 Sn = k} ---+ P {Si = j} as 

n ---+ 00.) Kesten (1995) has investigated the same connection for more general Markov 

chains. In Section 2.1, we discussed how the early steps of a random walk conditioned on the 

event {Sn =}a should not be too different from an unconditioned random walk; asymptotic 

independence is one way to formalize what we might mean by "not too different". We 

strongly believe that the appearance of this connection in the ratio limit theorem setting 

is no accident, and that a better understanding of it will lead immediately to progress on 

generalizing the ballot theorems of Chapter 1. 
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