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Abstract 
 
Introduction 
Environmental enrichment and exercise are known to promote brain plasticity. The cellular 
underpinnings associated with plasticity related changes to brain structure remain unknown. 
Anatomical changes of volume and biochemistry occurring in the brain following forced 
treadmill training are well documented in both animal and human literature, but little is known 
about the underlying physiology of how one is connected to the other. The objective of this study 
was therefore to perform longitudinal in vivo scans following exercise and to investigate these 
underlying cellular mechanisms.  
 
Methods 
3-month-old CD1 male littermate mice were randomly assigned to two groups. One group (n 
=15) was exposed to 6 weeks of forced treadmill (FT) at escalating speeds, increasing 1cm/sec 
per week beginning at 24cm/sec.  A control group (n = 12) received no treadmill exposure (NX) 
for the same 6-week interval.  
Mice were spatially normalized to an anatomical template (PERMITS

TM
, Biospective Inc.), 

providing extracted mean values of volume in 7 different cortical and subcortical regions.  All 
scans were obtained from a 7T Bruker Pharmascan system. Baseline scans were obtained 
following a weeklong training at low speed (15cm/sec) for all mice. A second scan was obtained 
from each mouse following the 6-week interval of either forced treadmill or no exercise. Upon 
completion of the final scan, all animals were sacrificed for histological examination. 
 
Results 
Analysis of volume measurements taken from baseline and post-exercise scans revealed that 6 
weeks of forced treadmill led to a significantly larger increase in hippocampal volume in FT mice 
(13.74%) compared to the increase in NX controls (4.13%) (t(24) = 8.36, p < 0.0001).  Analysis 
of the amygdala showed an increase in volume in the FT group (6.21%) compared to a decrease 
in amygdala volume in the NX controls (-1.39%) (t(24) = 3.8, p < 0.001).  Explored group 
differences in cortical thickness and volume for 5 other regions revealed no significant 
distinction. 
 
Conclusions 
We observed a significant increase in both hippocampal and amygdala volume of mice following 
forced treadmill compared to controls.  The cellular physiology that underlies these increases is 
being investigated and will reveal a better understanding of how these regions change after 
exercise training and how the brain changes in response to activity.  
 



 Introduction: 
 

The brain changes in response to the environment (Hubel, 1963; Martin, 2000; 

Buonomano, 1998).  After development, activity-dependent plastic changes occur within 

the brain to maintain survival and create a behavioral and physiological equilibrium with 

a dynamic environment.  This ability to learn and adapt rapidly has been essential to 

human evolution and our primacy in nature (Wexler, 2011).   

 

Tissues in the body increase their own blood perfusion based on activity, which if 

persistent, can result in hypertrophy of the cells (Kumar, 2009).  When functional regions 

of the brain are more active, they require a larger supply of nutrients and signaling 

molecules, which increases blood perfusion in that region (Churchill, 2002).  This 

increase can lead to the growth of cells, vascular development and an increase in 

capillary growth.  (Kumar, 2009; Churchill, 2002).  If the activity involved also includes 

learning or motor training, development of the synaptic network and associated cellular 

components can occur, leading to changes in communication and signaling, electrical 

activity, neuronal morphology, axonal and dendritic remodeling and protein composition.  

If these structural changes occur in the brain on a large scale, they can be observed and 

measured through structural magnetic resonance imaging (MRI)(Zatorre, 2012).   

 

 

 

 

 



History 

The first speculation that brain tissue was plastic and could be altered through behavior 

began in the works of psychologist William James.  In 1890, James published The 

Principles of Psychology, a seminal work that established a foundation from which both 

fields of psychology and neuroscience would arise.  In this book, he first describes 

organic matter as being ‘plastic’ and suggests the possibilities that brain tissue is capable 

of changing its physiology in response to the environment:  

 

“Two elementary brain processes have been active together or in immediate succession, 

one of them, on reoccurring, tends to propagate its excitement into the other” (James, 

1890). 

 

The predominant theory of brain tissue at the time James wrote his Principles of 

Psychology was the ‘diffuse nerve net’ or reticular theory endorsed by the Nobel Prize 

laureate Camille Golgi and followers.  This theory described the nervous system as a 

single diffuse network (Berlucchi, 2009).  This theory was soon replaced with ‘Neuron 

theory’ proposed and encouraged by Santiago Ramon y Cajal in the final decade of the 

19th century.  Cajal discovered the axonal growth cone and determined that brain tissue 

was not a continuous diffuse network but composed of discrete, specialized cells that 

somehow communicate with one another (Finger, 2000).  In 1893, the Italian psychiatrist 

Eugenio Tanzi, proposed that waves of excitation in the brain could cross distances that 

we now call synaptic clefts. He speculated that if these waves were repeated within a 

neural pathway through behavioral conditioning or learning, this could lead to 



hypertrophy of associated neurons within this path and reduce resistance, making the 

crossing between neurons easier (Berlucchi, 2009).  Building off this idea, Cajal 

expanded the theory that pathways in the brain changed over time, adding his belief that 

these networks required the creation of new pathways through growth of dendritic 

arborization and axonal branching and that this could be directly associated to the 

addition or loss of mental faculties (Azmitia, 2007).  This speculation could be 

investigated and confirmed following the pioneering work of Charles Sherrington, in 

which he revealed the existence of the synapse between neurons and the unidirectionality 

along neural pathways (Pearce, 2004).  Karl Lashley, a student of the prominent creator 

of behaviorist psychology James B. Watson, explored these theories of activity-

dependent plasticity by examining changes in the cortex following behavioral training or 

changes in behavior following lesions to the cortex.  He discovered that memories were 

not localized in the brain, but were spread out through networks in the cortex.  He 

designed two theories that have become integral to the study of neuroplasticity: The 

theories of mass action and equipotentiality.  The theory of mass action suggests the 

quality of learning depends on the amount of cortex available; damage to the cortex 

results in lower quality of performance dependent on the amount of tissue destroyed.  The 

theory of equipotentiality describes cortical tissue as being capable of taking over 

function from any surrounding tissue.  If cortical tissue is damaged within a region, 

surrounding tissue can take over the functional loss of that lesion (Josselyn, 2010).  

Lashley’s discoveries were important to plasticity because they revealed that the brain 

was highly malleable and could be shaped on a larger scale than ever conceived.  

 



Early research into neuroplasticity revealed many findings about how the brain 

structurally organizes itself and develops, but by the mid 20th century these theories were 

poorly connected and accepted universally until 1949 when Donald Hebb published The 

Organization of Behavior (Berlucchi, 2009).  Hebb proposed that conditioning in the 

brain, specifically learned tasks, occurs through the strengthening of weak or nonexistent 

synapses through chemical modification or changes in electrical properties (Hebb, 1949).  

 

“…when an axon of cell A is near enough to excite a cell B and repeatedly or persistently 

takes part in firing it, some growth process or metabolic change takes place in one or both 

cells such that A’s efficiency as one of the cells firing B is increased.” (Hebb, 1949).  

 

This concept of Hebbian plasticity established that learning and training alters the brain 

through repeated stimulation that develops neural pathways, strengthening 

communication at the synapse between neurons in a network.  The field of activity-

dependent plasticity, the idea that experience, training and environmental stimuli can 

shape the organization of brain tissue grew from these studies (Berlucchi, 2009).  

 

Activity-Dependent Structural Plasticity 

Numerous studies have observed significant structural changes in response to 

activity/experience (Maguire, 2000; Bermudez, 2009; Schneider, 2002, Draganski, 2004), 

disease (Jubault, 2010), genetic variations (Egon, 2003) and maturity (Chen, 2011; 

Erickson, 2011).  One of the earliest landmark studies investigating the role of activity in 

brain reorganization examined the size of hippocampus within London taxi drivers 



(Maguire, 2000).  A large increase in the posterior hippocampus and decrease in the 

anterior hippocampus in taxi drivers compared to non-taxi drivers was observed.  These 

changes in volume are regarded as being related to the drivers’ dependence on spatial 

navigation for traversing the city efficiently (Maguire, 2000).  This structural change was 

observed to be duration dependent, as time spent as a taxi driver was positively correlated 

with growth in the right posterior hippocampus and negatively correlated with growth in 

the anterior hippocampus (Maguire, 2000).  A further study (Maguire, 2006) confirmed 

these results in comparison with bus drivers.  Taxi drivers again exhibited an increase in 

gray matter in the right posterior hippocampus where as bus drivers did not.  Bus drivers 

drive planned routes in repetition and therefore do not require spatial memory to perform 

and lack the structural alteration to the hippocampus (Maguire, 2006).  In 2004, the May 

lab published a paper that revealed how repeated training could be used to directly alter 

brain structure. They trained participants to juggle over a 3-month period following a 

baseline scan. After this 3 month training, both participants and non-juggling controls 

were scanned again and these scans were compared to baseline. An increase in gray 

matter was discovered in the mid-temporal area (hMT/V5) and the left posterior intra-

parietal sulcus in those that were taught to juggle (Draganski, 2004). A decrease in this 

change in gray matter was noted from a third scan following a 3 month period with no 

training or practice, but not significantly, leaving open the question of how long these 

effects persist (Draganski, 2004).  These studies indicate that training and experience can 

impact the structural organization of the brain, however neither study provided any 

biological conclusion as to how and why these changes occurred.   

 



A similar finding was uncovered more recently in mice using variations of the Morris 

water maze task. In 2011, Lerch et al. detailed how activity-dependent brain restructuring 

occurs within mice and how it can be measured through MRI.  A task dependent increase 

in volume was discovered after mice were trained in either a spatially oriented swim 

maze task or a cued swim maze task.  Mice trained to use spatial navigational cues posted 

around the maze to discover a platform showed a 3.1% increase in hippocampal volume 

as measured through high resolution MRI.  Mice trained to use non-spatial cues to locate 

the platform, such as a 4-inch marker, had a 1.9% increase in the striatum, but no change 

in the hippocampus (Lerch, 2011).  The hippocampal increase in volume was also 

significantly correlated with GAP-43 staining expression, an axonal growth cone marker, 

indicating a change in neuronal morphology may have contributed to these observed 

volume changes (Lerch, 2011).   

 

Exercise 

Exercise provides a robust model for investigating changes in brain shape and volume 

following activity.  Voluntary access to wheel running or forced treadmill leads to 

extensive, global changes to the brain including neurogenesis (Van Praag, 1999; Van 

praag, 2005; Li, 2013), angiogenesis (Swain, 2003; Kleim, 2002), astrocytosis (Li, 2005) 

and cortical thickness (Anderson, 2002).   

 

Numerous studies have provided observations of exercise driven changes in the brain, but 

few connect the cellular and biochemical mechanisms that underlie these changes.  We 



were interested in designing an assay to induce a structural brain change within a mouse 

brain measurable in vivo through MRI.  This experiment consisted of three aims: 

Aim 1 – Establish if six weeks of forced treadmill at escalating speed per week would 

induce an MRI detectable reorganization in brain structure in a living mouse.  

Aim 2 – Understand the cellular mechanisms that underlie MRI detectable changes in 

brain structure 

Aim 3 – Examine how structural brain reorganization changes in aging and cognitively 

impaired mice   

 

In order to investigate if we could induce a structural brain change detectable by MRI, we 

trained mice on a 5-lane treadmill for 6 weeks to induce a change in brain shape 

measurable through MRI.  Several studies (Soya, 2007; Lin 2012, Liu, 2009) 

characterized forced treadmill as an appropriate platform for this induction.  We expected 

that by using a simple motor task like the treadmill, we could induce discrete and bilateral 

changes in structure within the brain, which could then be investigated histologically.  

 

 

 

 

 

 

 

 



 

 

 

 

Methods: 

Mice: 

27 male (aged 90 days) CD1 mice (Charles River, Senneville, QC) littermates were used 

in these experiments.  Animals were housed 3 – 4 per cage in standard housing 

conditions.  Mice were housed under a 12-h light: 12-h dark schedule and fed standard 

laboratory chow and water ad libitum.  Experiments were approved by the Animal Ethics 

Committee of the Montreal Neurological Institute and McGill University, and were 

conducted in accordance with the guidelines of the Canadian Council on Animal Care 

(CCAC).  

 

Exercise Training Procedures: 

Exercise testing was conducted on a 5-lane treadmill for mice (Harvard Apparatus, Saint 

Laurent, Quebec), located in a behavioral testing room approved by the Animal Ethics 

Committee of the Montreal Neurological Institute and McGill University.   

All mice were initially trained together for 7 days under low speeds (15cm/sec) for 15 

minutes per day to familiarize all mice to the treadmill procedure.  Following this 

training, the mice were split into two groups: exercise and sedentary control.  Mice in the 

exercise group (n = 15) were forced to run on a treadmill each day (09:30am +/- 60 

minutes) for 60 minutes, 6 days a week, at escalating speeds beginning at 24cm/sec on 



week 1 and increasing 1cm/sec per week to 29cm/sec on week 6.  The added distance of 

one centimeter increases total distance in 60 minutes by 36 meters per week (1cm/sec = 

36 meters/60mins).  We measured front right footfalls with slow motion video and found 

an average increase of 8.75% in total footfalls with each additional cm/sec per week.    

In vivo MRI Acquisition: 

Mice were anesthetized with an induction dose of 4–5% sevoflurane and secured in an 

MRI compatible bed.  All MRI studies were performed under 2.5–3% sevoflurane in 

medical air and animals were allowed to breathe spontaneously without mechanical 

ventilation.  Respiration rate and body temperature were continuously monitored using an 

MR-compatible system (Small Animal Instruments Inc., Stony Brook, NY) and the 

temperature was maintained at 37 ± 0.2 °C throughout the study using a feedback-

regulated warming system (Small Animal Instruments Inc., Stony Brook, NY).  All MR 

images were obtained from a 7T Bruker Pharmascan system (Bruker Biospin, Ettlingen, 

Germany) using a 28-mm inner- diameter, quadrature volume resonator (RAPID MR 

International, Columbus, OH).  Anatomical images were acquired using a 3D balanced 

Steady-State Free Precession (b-SSFP) sequence with repetition time (TR) = 5. 2 ms, 

echo time (TE) = 2. 6 ms, flip angle = 30°, matrix size = 128 × 128 × 64, field-of-view = 

1. 8 × 1. 8 × 0. 9 cm, spatial resolution = 140 × 140 × 140 μm, number of phase-cycles = 

4, number of averages = 4, and acquisition time = 35 min.  The phase- cycled images 

were combined using the sum-of-squares reconstruction method in order to minimize 

banding artifacts (Bangerter et al., 2004).  

MRI Processing: 



An unbiased, symmetric, customized template was generated using the anatomical scans 

from the 27 CD1 male mice using an iterative process (Fonov et al., 2011; Lau et al., 

2008).  Prior to template generation, each reconstructed image volume underwent image 

non-uniformity correction using the N3 algorithm (Sled et al., 1998), brain masking, and 

linear spatial normalization utilizing a 12-parameter affine transformation (Collins et al., 

1994) to map individual images from native coordinate space to reference space.  Briefly, 

the template generation process involved an iterative (coarse-to-fine resolution) 

estimation of the nonlinear transformation to match each MRI scan to the evolving 

average of the population (Grand’maison et al., 2013).  The final anatomical template 

(population average) was generated with an isotropic voxel resolution of 0.06 mm.  This 

customized template was parcellated into an atlas, including the following neocortical 

and subcortical regions: anterior cingulate cortex, entorhinal cortex, motor cortex, 

posterior cingulate cortex, retrosplenial cortex, somatosensory cortex 1, somatosensory 

cortex 2, hippocampus and amygdala, using the Montreal Neurological Institute (MNI) 

DISPLAY software package (http://www.bic.mni.mcgill.ca).   

Measuring ROI-based Cortical Thickness 

For cortical thickness measurements, the cortical mask with inside, outside, 

interhemispheric, and resistive boundaries was nonlinearly aligned with each subject 

using the template-to-subject transformation.  Streamlines running from the inner to outer 

boundaries of the cortex were defined using Laplace's equation and their length was used 

as the measure of cortical thickness (Lerch et al., 2008).  The mean cortical thickness was 

computed from an intermediate surface for each of the pre-defined ROIs from the 



spatially normalized thickness maps.  Whole cortical volume was also computed from the 

transformed cortical mask for each subject.   

 

 

 

 

Measuring ROI-based Volume 

Regional volumes were measured using a fully automated, atlas-based segmentation 

method.  Briefly, ROI labels from a parcellated atlas were mapped to each subject image 

volume in native space by nonlinear registration (Collins, 1995). 

 

 

Statistics and Analysis 

Statistical analysis was performed using GraphPad Prism Software 

(http://www.graphpad.com/scientific-software/prism/).  ROI-based measures from the 

left and right hemispheres were combined, and quantitative results are expressed as mean 

± standard deviation of the effect of interest.  Specifically, a Student's two-tailed t-tests 

were used for group comparisons.  The data was adjusted for multiple comparisons using 

the Bonferroni correction and p < 0.05 was considered significant.  

 

 

 

 



 

 

 

 

 

Results: 

3-month old male CD1 mice (EX, n = 15) were trained on a 5-lane treadmill at escalating 

weekly speeds to induce structural changes detectable by MRI.  Volume and cortical 

thickness measurements were compared to a sedentary control (SC, n = 12) that 

experienced no added training or handling.  All animals were scanned at 3-months for 

baseline comparison.  After 6 weeks of treadmill training, all mice were scanned again, 

and neuroanatomic volume and cortical thickness were measured for multiple regions for 

comparison.  

Longitudinal cortical thickness measurements from CD1 mice 

The initial investigation into structural changes following forced treadmill was to 

examine cortical thickness changes in regions associated with learning and exercise.  

From the cortical mask aligned to each subject, we attained mean cortical thickness from 

each of the predetermined ROIs.  Examination and statistical testing on these 

measurements revealed no significant distinctions between exercised mice and sedentary 

controls (Fig. 1).  These results indicate that 6 weeks of forced treadmill had no 

significant effect on cortical thickness compared to sedentary controls.   



 

Figure.  1.  Regional MRI cortical thickness measures from 3-month old male CD1 mice following 6 weeks of forced treadmill.  
No differences were found between exercised mice and controls at p <0.05 significance.   

 

Longitudinal volume measurements from CD1 mice 

The next investigation to discover if 6 weeks of forced treadmill influenced brain 

structure measured the total volume of 12 regions, specifically: Lateral Ventricles, 

Striatum, Thalamus, Hippocampus, Amygdala, Motor Cortex, Entorhinal Cortex, 

Retrosplenial Cortex, Anterior Cingulate Cortex, Posterior Cingulate Cortex, 

Somatosensory Cortex 1, and Somatosensory Cortex 2 (Table.  1 + Fig. 2).  This analysis 

revealed a significant increase of total volume in both the amygdala (t(24) = 3.059, p = 

0.03) and hippocampus (t(24) = 3.417, p = 0.013) within the EX group compared to SC, 

after an unpaired, two tailed t-test corrected for multiple comparisons.  No other regions 

were significant at p < 0.05. 
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Regions Grouping 
Baseline 
Volume (mm3) 

Post Exercise 
Volume (mm3) 

t Value (EX vs. 
SC, Post Exercise) 

Corrected  
p-value 

Lateral Ventricles 
 
Exercise Group 5.89 6.6 0.24 0.82 

  Sedentary Control 6.61 6.55 

Somatosensory 1 Exercise Group 13.77 13.4 0.02 0.98 
  Sedentary Control 14.25 13.4 

Somatosensory 2 Exercise Group 8.5 7.76 0.56 0.58 
  Sedentary Control 8.07 7.61 

Striatum Exercise Group 22.3 23.21 1.72 0.1 
  Sedentary Control 21.7 22.36 
Thalamus Exercise Group 20.17 20.7 1 0.33 
  Sedentary Control 19.84 20.24 

Motor Cortex Exercise Group 13.95 13.4 0.25 0.8 
  Sedentary Control 13.65 13.55 
Hippocampus Exercise Group 28.37 32.27 3.42 0.012* 
  Sedentary Control 28.51 29.7 

Amygdala Exercise Group 13.54 14.34 3.06 0.03* 
  Sedentary Control 13.58 13.39 

Entorhinal Cortex Exercise Group 10.22 10.38 1.32 0.2 
  Sedentary Control 10 9.98 

Retrosplenial Cortex Exercise Group 8.46 8.82 0.45 0.65 
  Sedentary Control 8.69 8.38 

Anterior Cingulate Cortex Exercise Group 1.22 1.28 0.27 0.79 
  Sedentary Control 1.19 1.25 
Posterior Cingulate Cortex Exercise Group 1.23 1.12 0.39 0.69 
  Sedentary Control 1.25 1.15 

Total Intracranial Volume Exercise Group 509.8 536.64 1.47 0.16 
  Sedentary Control 508.4 519.3 

 

 Table.  1. Volume data from all regions and groups.  An unpaired T-test was performed on post exercise values (EX vs. SC) to 

compare volume change following 6 weeks of treadmill or no exercise.  Corrected p < 0.05 was considered significant. 



 

 

Figure. 2.  Regional MRI volume measures from 3-month old male CD1 mice following 6 weeks of forced treadmill (exercise) and 

sedentary controls (controls).  Both the amygdala (t(24) = 3.059, p = 0.03) and hippocampus (t(24) = 3.417, p = 0.013)  
had increased total volume after correcting for multiple comparisons.  * indicates p < 0.05.  

 

Volume measurements of hippocampus in mice after forced treadmill 

Analysis of the hippocampus revealed a significant increase in volume (t(24) = 3.417, p = 

0.013) of mice following 6 weeks of forced treadmill compared to sedentary controls 

(Fig. 3). Mean hippocampal volume measured at baseline was 28.37mm3 in EX group.  

Measurements following exercise revealed an increase of 3.9mm3 to 32.27, or a 13.7% 

increase in volume from baseline.  Controls increased from 28.51mm3 at baseline to 29.7, 

an increase of 1.19mm3, a 4.1% increase.   
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Figure. 3.  Raw MRI volume measures of hippocampus (A) and % change over time (B) from 3-month  
old male CD1 mice following 6 weeks of forced treadmill (exercise) and sedentary controls (controls).   * indicates p < 0.05.  

 

Volume Measurements of amygdala in mice after forced treadmill 

Analysis of the amygdala complex revealed a significant increase in volume (t(24) = 

3.059, p = 0.03) of mice following 6 weeks of forced treadmill compared to sedentary 

controls (Fig. 4).  Mean amygdala volume measured at baseline was 28.52mm3 in SC 

group, which increased by 1.17mm3 to 29.69mm3, or a 4.1% increase in volume 

following a 6-week sedentary period.  Controls showed a decrease in volume from 13.58 

to 13.39mm3 after 6 weeks or a loss of 1.4%.  

 

 

Figure. 4.  Raw MRI volume measures of amygdala complex (A) and % change over time (B) from 3-month  
old male CD1 mice following 6 weeks of forced treadmill (exercise) and sedentary controls (controls).   * indicates p < 0.05.  
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Discussion: 

Exercise induces large structural volume changes  

These results establish that forced treadmill at escalating speeds can induce an MRI 

detectable reorganization in brain structure in mice.  Six weeks of forced treadmill led to 

a 9.6% increase in hippocampal volume over sedentary controls and a 7.6% larger 

increase in volume of the amygdala over controls, which showed a non-significant 

reduction in volume from baseline.  Despite these large alterations in brain shape, no 

significant decrease in total intracranial volume was discovered, nor a volumetric 

decrease in any of the examined regions, suggesting this increase may have been 

compensated for globally in small cellular changes.  Such significant increases in volume 

were unexpected as evidence previous characterized increases less then 2% in humans 

following exercise (Erickson 2011).  

 

Exercise induced no detectable change in cortical thickness 

There are numerous studies observing an increase in angiogenesis within the motor 

cortical regions following exercise (Swain, 2003; Kleim, 2002, Van Praag, 2005).  We 

were interested in investigating whether this increase in vasculature was affecting the 

thickness of the cortex within regions associated with exercise and training.  Of the 6 

regions chosen, no change in thickness was measured from baseline.  Finding no change 

in thickness conflicts with Anderson et al., that found female rats given voluntary access 

to wheel running increased cortical thickness in a small region of the motor cortex 

(Anderson et al. 2002).  This conflict is likely due to differences in methodology, as they 



performed thickness measurements on post mortem sliced and stained tissue that, rather 

than MRI and cortical masking. Measuring thickness on post mortem tissue that has been 

sliced, processed and stained often distorts and reshapes the tissue, allowing for more 

inaccurate measurements. The effect differences between using wheel vs. treadmill likely 

had a large impact, as well as using females vs. males or rats vs. mice.  

 

Cellular physiology underlying volume change in hippocampus 

We are currently performing histological investigation to uncover the cellular changes 

associated with the increase in hippocampal volume.  A large number of studies have 

observed changes in the hippocampus following various methods of exercise (Erickson, 

2010; Van Praag, 1999; Van Praag, 2005; Kitamura, 2003; O'Callaghan, 2007; Adlard, 

2004; Adlard, 2005; Liu, 2009; Neeper, 1996).  Hippocampal changes in animals 

following one week or more of wheel running or forced treadmill include an increase in 

neurogenesis (Van praag, 1995; Van praag, 2005; Kitamura, 2003), enhanced LTP 

(O'Callaghan, 2007), increased BDNF (Liu, 2009; Adlard, 2005; Kitamura, 2003; 

Neeper, 1996; Berchtold, 2005), increased glutamate receptors (Lou, 2008; Kitamura, 

2003; Dietrich, 2005; Farmer, 2004), increases in dendritic and axonal remodeling (Lin, 

2012; Olson, 2006), and gliogenesis (Li, 2005; Ehniger, 2003). Increases in BDNF within 

the hippocampus following exercise correlate highly with increased neurogenesis in the 

dentate gyrus as well as better performance in memory tasks (Van praag, 2005; 

O'Callaghan, 2007; Liu, 2009).  BDNF, injected directly into the dentate gyrus increases 

neurogenesis (Scharfman, 2005).  Cultured hippocampal neurons that receive acute and 

gradual increases in BDNF result in neurite branching and dendritic spine development, 



through the activation of its trkB receptor pathway.  Damage that occurs in the 

hippocampus following chronic periods of stress is also mediated through the actions of 

glucocorticoids on BDNF (Schaaf, 1998).  These observations led us to believe the 

volume increase observed within the hippocampus is likely due to an increase in 

expression of BDNF following regular exercise.  BDNF is shown to increase 

neurogenesis (Sharfman, 2005) and dendritic remodeling in the hippocampus, through an 

activity-dependent mechanism (Kellner, 2014).  This activity-dependent increase in 

BDNF within the hippocampus can be mediated by glutamate signaling through the 

phospholipase C signaling pathways (Canossa, 2001).  Glutamate activation is shown to 

directly stimulate BDNF in hippocampal neurons, providing a mechanism for activity-

dependent BDNF release (Hartmann, 2001).  Glutamate receptors and mediators, such as 

GluR1, GluR2/3, SAP-97 and GRIP-1 are increased in mouse cortical tissue following 

exercise (Dietrich, 2005; Real, 2010), and forced treadmill directly enhanced LTP in the 

dentate gyrus (O'Callaghan, 2007) and increased NMDAR1 mRNA expression in the 

hippocampus, which was directly associated with enhanced BDNF expression (Lou, 

2008).  Taken together, it appears long-term exercise training may trigger large changes 

of glutamate signaling in the hippocampus, enhancing LTP and synaptic remodeling.  

This increased glutamate signaling increases BDNF within the hippocampus, increasing 

neurogenesis, axonal and dendritic remodeling and spine density.  It is possible that 

through these actions, exercise is increasing hippocampal volume.  

 

Cellular physiology underlying volume change in amygdala 



The volume increase within the amygdala complex following forced treadmill is due 

most likely to the effects of stress/fear rather than through training.  Direct comparisons 

between forced treadmill and voluntary wheel running indicate the treadmill provides a 

larger stress and fear component, due likely to the shock received for noncompliance and 

the absence of choice.  Wheel access provides an enrichment novelty that mice have 

freedom to utilize, whereas the treadmill is a forced activity.  Both wheel running and 

treadmill improve performance in water maze tasks, as well as enhanced expression of 

BDNF-trkB signaling within the hippocampus, but only the treadmill improved 

performance on the passive/avoidance test (Liu, 2009), which involves shocking an 

animal as it moves from a brightly lit chamber to darkness, then measuring its latency to 

enter the darkness upon testing after an extended period.  This test is recognized as 

measuring fear memory.  As well, only treadmill enhanced BDNF-trkB signaling in the 

amygdala (Liu, 2009).  If forced treadmill is viewed as a model of fear conditioning, a 

mechanism for amygdala growth becomes clear.  Fear conditioning induces behavioral 

LTP in the amygdala (Rattiner, 2005).  As well, BDNF mRNA expression is elevated in 

the basolateral amygdala in the period just following fear conditioning (Rattiner, 2004).  

Volume growth within the amygdala complex following forced treadmill is likely a 

reflection of enhanced synaptic activity and BDNF expression due to fear learning, 

leading to increased dendritic spine density and neurite growth.  It would not be expected 

that hippocampal growth was due to a fear conditioning as chronic restraint stress 

simultaneously increases dendritic spine density and growth in the basolateral amygdala 

(BLA) while causing dendritic atrophy within the hippocampus (Lakshminarasimhan, 

2012). Consideration of fear conditioning as a cause of amygdala increase should be 



noted as conflicting to hippocampal findings as fear conditioning leads to atrophy within 

the hippocampus (Lakshminarasimhan, 2012). These findings of chronic restraint stress 

were also associated with an increase in BDNF in the BLA, and reduced BDNF in the 

hippocampus (Lakshminarasimhan, 2012).   

 

 

Current/Future Work 

The work described here indicates that 6 weeks of forced treadmill induces a nearly 10% 

larger increase in hippocampal volume and nearly a 6% larger increase in amygdala 

volume compared to sedentary controls.  Evidence suggests this growth may be due to 

glutamate signaling, LTP enhancement and BDNF expression within the regions, leading 

to increased neurogenesis, neurite remodeling and an increase in dendritic spine density.  

Histological investigation is on going to confirm or reject this speculation.   

Using the template created by averaging all the MRI sections from all mice, we can 

reconstruct stained sections to fit within the regions structurally altered and quantify all 

markers within. Immunostaining and 3D reconstruction of stained sections for stereology 

may indicate how these volume changes are occurring structurally.  Markers of neuronal 

density such as the neuronal nuclear antigen NeuN, for astrocytosis using glial fibrillary 

acidic protein (GFAP) and neuronal morphology like GAP43, an axonal growth cone can 

be stained for and reconstructed to count total signal within a single region such as the 

complete hippocampus.  Markers for glutamate receptors, BDNF and trkB and plasticity 

can be measured as well to reveal how these structural changes are mediated.  

 



Having established that exercise from forced treadmill at escalating speeds can induce a 

structural brain change, this platform can be used to understand how the brain structurally 

reorganizes in various transgenic models and circumstances.  

 

 

Forced treadmill on aging and cognitively impaired mice 

The forced treadmill platform will be utilized to understand how exercise influences brain 

structure in an aging mouse model with amyloidosis to investigate how Alzheimer’s 

disease might affect plasticity and training.  Twenty-nine male mice aged 10 – 12 

months, with an overexpression of the Swedish (670/671KM→NL) and Indiana 

(717V→F) mutations of human APP will been scanned at baseline and trained under the 

same treadmill protocol as the CD1 mice to induce structural changes in the brain.  

Following training, all mice will be scanned again and sacrificed to analyze for volume 

and cortical thickness measures, corresponding histology and 3D reconstruction for 

stereology as previously described.  By understanding how aged animals with 

amyloidosis are being affected by exercise, we can observe how structural plasticity 

changes over time and how it is affected under pathological circumstances.  

 

Forced treadmill on Brainbow mice 

An interesting model to investigate how forced treadmill effects neural pathways and 

specific cell types is the Brainbow mouse.  Developed by the labs of Jeff Lichtman and 

Joshua Sanes at Harvard, the Brainbow mouse was first presented in a 2007 Nature paper 

(Livet, 2007).  Brainbow mice utilize the Cre-Lox recombination to splice specifically 



targeted DNA sections, inserting randomly arranged fluorescent protein genes that are 

divided by loxP sites.  In the presence of the Cre recombinase, this inserted transgene 

undergoes an excision event that promotes expression of these fluorescent genes.  These 

sites have multiple copies of the transgene allowing for each neuron to express one of a 

wide variety of fluorescent combinations and emit a distinctive hue (Livet, 2007).  The 

ability to fluorescently label neuron types in mice that are forced to run at escalating 

speeds would allow us to visualize the distinct changes in neural pathways associated 

with structural reorganization of the brain.  

 

 

Platforms for inducing structural change 

Forced treadmill requires little behavioral training and cognitive functioning for the 

mouse.  Most mice adapt to the 60-minute protocol within the first 10 days and maintain 

a consistent pace through the 6-week experimental period.  This simplistic training may 

limit the amount of tissue structurally affected.  To investigate how other regions are 

reorganized structurally, it is necessary to train under different protocols that utilize more 

or specialized brain functioning.   

The Barnes maze can be utilized to measure spatial learning and memory and how the 

brain reshapes in response to a more cognitive task.  Mice are placed in the center of a 

large circular field with bright lights above and 20 indentions surrounding the 

circumference.  One of these 20 indentions opens to a dark chamber where the mouse can 

escape the light, as mice are nocturnal and bright lighting is a strong aversion.  

Navigational markers are placed on walls surrounding the table to provide the mouse 



with spatial cues.  Latency to find the dark chamber is measured and shorter durations are 

accepted as learning the maze.  Training on the Barnes maze targets more cognitive and 

spatial mapping regions of the brain and are likelier to induce structural changes in 

regions more associated with spatial memory and learning, as well as having a more 

global effect on the brain as the animal attempts to ‘solve’ a task under aversive pressure.     

 

 

 

Environmental Enrichment was the first assay used to analyze structural brain changes 

and could be a valuable tool for inducing changes in cortical structure (Diamond, 2001).  

In the 1960’s, Marion Diamond and colleagues revealed that rats living under enriched 

conditions for 30 days had greater cortical thickness than rats in standard or impoverished 

living conditions (Kerch, 1960).  Environmental enrichment was defined as 12 animals 

living together in a large cage that contained 5 – 6 objects to play with or climb upon 

(e.g., wheels, ladders, small mazes).  These objects were changed twice a week to 

maintain novelty (Krech, 1960).  These were compared to standard housing conditions 

with three animals to a small cage with no objects and impoverished conditions with a 

single housed animal with no objects.  Under these conditions, environmental enrichment 

led to an increase in cortical thickness globally which was associated to increased nerve 

cell size, dendritic lengthening and an increase in dendritic spine density (Krech, 1960).  

Environmental enrichment has also been associated with increased astrocytosis (Ehniger, 

2003), improved spatial memory and maze performance (Leggio, 2005), dendritic spine 

development (Leggio, 2005; Mora, 2007), improved outcomes for many diseases 



affecting the nervous system (Nithianantharajah, 2006) and a decrease in spontaneous 

apoptosis within the hippocampus (Young, 1999).  Enrichment has long lasting, global 

effects, but little is known about the cellular physiology underlying these structural 

changes.  Early studies measured a change in cortical thickness as measured by analyzing 

stained tissue on slides.  This assay could be used to induce structural reorganization in 

the cortex that could be measured in vivo with more accurate MRI technology and 

histological 3D reconstruction for cellular analysis to better understand how the 

environment effects neurophysiology.    

Conclusion 

In this investigation, it was shown that 6 weeks of forced treadmill at escalating speeds 

led to an increase of almost 10% in hippocampal volume and an increase of almost 6% in 

amygdala volume compared to sedentary controls.  Ongoing histological investigation 

will reveal the cellular changes that occurred with these increases in volume.  The 

significance of these investigations will become clearer once the cellular physiology is 

revealed.  Studies like these advance techniques in noninvasive examination within living 

animals.  Studies performed non-invasively in vivo have great potential in a clinical 

setting.  Development of these tools improves diagnoses and aids in the understanding of 

how disease begins and manifests, which can lead to early prevention methods for 

neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Multiple 

Sclerosis and various brain related cancers.  With a better understanding of structural 

reorganization in response to the environment, we gain insight into cognition and how the 

human brain has evolved into the most complex object in the known universe.  

 



 

 

 

 

 

 

 

Works Cited 

Abel, T., Havekes, R., Saletin, J. M., & Walker, M. P. (2013). Sleep, plasticity and memory from 
molecules to whole-brain networks. Current Biology : CB, 23(17), R774–88. 
doi:10.1016/j.cub.2013.07.025 

Adlard, P. a, & Cotman, C. W. (2004). Voluntary exercise protects against stress-induced decreases in 
brain-derived neurotrophic factor protein expression. Neuroscience, 124(4), 985–92. 
doi:10.1016/j.neuroscience.2003.12.039 

Adlard, P. a, Perreau, V. M., & Cotman, C. W. (2005). The exercise-induced expression of BDNF within 
the hippocampus varies across life-span. Neurobiology of Aging, 26(4), 511–20. 
doi:10.1016/j.neurobiolaging.2004.05.006 

Akbik, F., Cafferty, W. B. J., & Strittmatter, S. M. (2012). Myelin associated inhibitors: a link between 
injury-induced and experience-dependent plasticity. Experimental Neurology, 235(1), 43–52. 
doi:10.1016/j.expneurol.2011.06.006 

Akers, K. G., Martinez-Canabal, a., Restivo, L., Yiu, a. P., De Cristofaro, a., Hsiang, H.-L., … Frankland, 
P. W. (2014). Hippocampal Neurogenesis Regulates Forgetting During Adulthood and Infancy. 
Science, 344(6184), 598–602. doi:10.1126/science.1248903 

Alon, U. (2009a). How to choose a good scientific problem. Molecular Cell, 35(6), 726–8. 
doi:10.1016/j.molcel.2009.09.013 

Amedi, A., Raz, N., Pianka, P., Malach, R., & Zohary, E. (2003). Early “visual” cortex activation correlates 
with superior verbal memory performance in the blind. Nature Neuroscience, 6(7), 758–66. 
doi:10.1038/nn1072 

Anderson, B. J., Eckburg, P. B., & Relucio, K. I. (2002). Alterations in the thickness of motor cortical 
subregions after motor-skill learning and exercise. Learning & Memory (Cold Spring Harbor, N.Y.), 
9(1), 1–9. doi:10.1101/lm.43402 

Arshavsky, Y. I. (2006). “The seven sins” of the Hebbian synapse: can the hypothesis of synaptic plasticity 
explain long-term memory consolidation? Progress in Neurobiology, 80(3), 99–113. 
doi:10.1016/j.pneurobio.2006.09.004 



Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry--the methods. NeuroImage, 11(6 Pt 1), 
805–21. doi:10.1006/nimg.2000.0582 

Azmitia, E. C. (2007). Cajal and brain plasticity: Insights relevant to emerging concepts of mind. Brain 
Research Reviews, 55(2), 395–405. doi:10.1016/j.brainresrev.2007.01.010 

Badhwar, A., Lerch, J. P., Hamel, E., & Sled, J. G. (2013). Impaired structural correlates of memory in 
Alzheimer’s disease mice. NeuroImage. Clinical, 3, 290–300. doi:10.1016/j.nicl.2013.08.017 

Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of 
memory. Neuropsychologia, 45(13), 2883–901. doi:10.1016/j.neuropsychologia.2007.06.015 

Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral 
tegmental dopamine neurons. Nature, 412(6842), 79–83. doi:10.1038/35083586 

Barrickman, N. L., Bastian, M. L., Isler, K., & van Schaik, C. P. (2008). Life history costs and benefits of 
encephalization: a comparative test using data from long-term studies of primates in the wild. Journal 
of Human Evolution, 54(5), 568–90. doi:10.1016/j.jhevol.2007.08.012 

Barth, A. L., & Kuhlman, S. J. (2013). The many layers of specification and plasticity in the neocortex. 
Neuron, 79(5), 829–31. doi:10.1016/j.neuron.2013.08.021 

Basser, P. J., & Evren, Ö. (2009). Introduction to Diffusion MR, 3–10. 

Bavelier, D., Green, C. S., Han, D. H., Renshaw, P. F., Merzenich, M. M., & Gentile, D. a. (2011). Brains 
on video games. Nature Reviews. Neuroscience, 12(12), 763–8. doi:10.1038/nrn3135 

Becker, J. A., Hedden, T., Carmasin, J., Maye, J., Rentz, D. M., Putcha, D., … Johnson, K. a. (2011). 
Amyloid-β associated cortical thinning in clinically normal elderly. Annals of Neurology, 69(6), 
1032–42. doi:10.1002/ana.22333 

Belarbi, K., Burnouf, S., Fernandez-Gomez, F.-J., Laurent, C., Lestavel, S., Figeac, M., … Blum, D. 
(2011). Beneficial effects of exercise in a transgenic mouse model of Alzheimer’s disease-like Tau 
pathology. Neurobiology of Disease, 43(2), 486–94. doi:10.1016/j.nbd.2011.04.022 

Belmonte, M. K., Cook, E. H., Anderson, G. M., Rubenstein, J. L. R., Greenough, W. T., Beckel-
Mitchener, a, … Tierney, E. (2004). Autism as a disorder of neural information processing: directions 
for research and targets for therapy. Molecular Psychiatry, 9(7), 646–63. doi:10.1038/sj.mp.4001499 

Benowitz, L. I., & Routtenberg, a. (1997). GAP-43: an intrinsic determinant of neuronal development and 
plasticity. Trends in Neurosciences, 20(2), 84–91. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/9023877 

Berchtold, N. C., Chinn, G., Chou, M., Kesslak, J. P., & Cotman, C. W. (2005). Exercise primes a 
molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. 
Neuroscience, 133(3), 853–61. doi:10.1016/j.neuroscience.2005.03.026 

Berlucchi, G. (2002). The origin of the term plasticity in the neurosciences: Ernesto Lugaro and chemical 
synaptic transmission. Journal of the History of the Neurosciences, 11(3), 305–9. 
doi:10.1076/jhin.11.3.305.10396 



Berlucchi, G., & Buchtel, H. a. (2009). Neuronal plasticity: historical roots and evolution of meaning. 
Experimental Brain Research, 192(3), 307–19. doi:10.1007/s00221-008-1611-6 

Berrios, G. (n.d.). Cotards syndrome: analysis of 100 cases. 1997. 

Beth, A., Paul, D., Kathryn, C., & Adam, S. (2011). Effect of Exercise Training on Hippocampal Volume 
in Humans : A Pilot Study, i. 

Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011a). Amygdala volume 
and social network size in humans. Nature Neuroscience, 14(2), 163–4. doi:10.1038/nn.2724 

Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011b). Amygdala volume 
and social network size in humans. Nature Neuroscience, 14(2), 163–4. doi:10.1038/nn.2724 

Biedermann, S., Fuss, J., Zheng, L., Sartorius, A., Falfán-Melgoza, C., Demirakca, T., … Weber-Fahr, W. 
(2012). In vivo voxel based morphometry: detection of increased hippocampal volume and decreased 
glutamate levels in exercising mice. NeuroImage, 61(4), 1206–12. 
doi:10.1016/j.neuroimage.2012.04.010 

Biology, M., & Solver, P. (n.d.). Molecular Biology Problem Solver. 

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. (2006). Complex networks: Structure and 
dynamics. Physics Reports, 424(4-5), 175–308. doi:10.1016/j.physrep.2005.10.009 

Bock, O. (2013). Cajal, Golgi, Nansen, Schäfer and the neuron doctrine. Endeavour, 37(4), 228–34. 
doi:10.1016/j.endeavour.2013.06.006 

Bouzas-rodriguez, J., Cabrera, J. R., Delloye-bourgeois, C., Ichim, G., Delcros, J., Raquin, M., … Mehlen, 
P. (2010). Neurotrophin-3 production promotes human neuroblastoma cell survival by inhibiting 
TrkC-induced apoptosis, 120(3). doi:10.1172/JCI41013DS1 

Boyke, J., Driemeyer, J., Gaser, C., Büchel, C., & May, A. (2008). Training-induced brain structure 
changes in the elderly. The Journal of Neuroscience : The Official Journal of the Society for 
Neuroscience, 28(28), 7031–5. doi:10.1523/JNEUROSCI.0742-08.2008 

Bradbury, E. J., King, V. R., Simmons, L. J., Priestley, J. V, & McMahon, S. B. (1998). NT-3, but not 
BDNF, prevents atrophy and death of axotomized spinal cord projection neurons. The European 
Journal of Neuroscience, 10(10), 3058–68. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/9786200 

Bruel-Jungerman, E., Laroche, S., & Rampon, C. (2005). New neurons in the dentate gyrus are involved in 
the expression of enhanced long-term memory following environmental enrichment. The European 
Journal of Neuroscience, 21(2), 513–21. doi:10.1111/j.1460-9568.2005.03875.x 

Bueller, J. a, Aftab, M., Sen, S., Gomez-Hassan, D., Burmeister, M., & Zubieta, J.-K. (2006). BDNF 
Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biological 
Psychiatry, 59(9), 812–5. doi:10.1016/j.biopsych.2005.09.022 

Buonomano, D. V, & Merzenich, M. M. (1998). CORTICAL PLASTICITY : From Synapses to Maps. 

Buonomano, D. V, & Merzenich, M. M. (1998). Cortical plasticity: from synapses to maps. Annual Review 
of Neuroscience, 21, 149–86. doi:10.1146/annurev.neuro.21.1.149 



Burgess, N., Maguire, E. a, & O’Keefe, J. (2002). The human hippocampus and spatial and episodic 
memory. Neuron, 35(4), 625–41. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12194864 

Burghardt, P. R., Fulk, L. J., Hand, G. a, & Wilson, M. a. (2004). The effects of chronic treadmill and 
wheel running on behavior in rats. Brain Research, 1019(1-2), 84–96. 
doi:10.1016/j.brainres.2004.05.086 

Busch, V., Schuierer, G., Bogdahn, U., & May, A. (n.d.). Changes in grey matter induced by training 
Newly honed juggling skills show up as a transient feature on a brain-imaging scan ., 311–312. 

Bussey, T. J., Holmes, a, Lyon, L., Mar, a C., McAllister, K. a L., Nithianantharajah, J., … Saksida, L. M. 
(2012). New translational assays for preclinical modelling of cognition in schizophrenia: the 
touchscreen testing method for mice and rats. Neuropharmacology, 62(3), 1191–203. 
doi:10.1016/j.neuropharm.2011.04.011 

Bussey, T. J., Padain, T. L., Skillings, E. a, Winters, B. D., Morton, a J., & Saksida, L. M. (2008). The 
touchscreen cognitive testing method for rodents: how to get the best out of your rat. Learning & 
Memory (Cold Spring Harbor, N.Y.), 15(7), 516–23. doi:10.1101/lm.987808 

Butz, M., Wörgötter, F., & van Ooyen, A. (2009). Activity-dependent structural plasticity. Brain Research 
Reviews, 60(2), 287–305. doi:10.1016/j.brainresrev.2008.12.023 

Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science (New York, N.Y.), 
304(5679), 1926–9. doi:10.1126/science.1099745 

Buzsáki, G., Logothetis, N., & Singer, W. (2013). Scaling brain size, keeping timing: evolutionary 
preservation of brain rhythms. Neuron, 80(3), 751–64. doi:10.1016/j.neuron.2013.10.002 

Calabrese, R. L. (2007). Motor networks: shifting coalitions. Current Biology : CB, 17(4), R139–41. 
doi:10.1016/j.cub.2006.12.007 

Carbonell, F., Charil, A., Zijdenbos, A. P., Evans, A. C., & Bedell, B. J. (2014). β-Amyloid is associated 
with aberrant metabolic connectivity in subjects with mild cognitive impairment. Journal of Cerebral 
Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow 
and Metabolism, (February), 1–11. doi:10.1038/jcbfm.2014.66 

Carmody, R. N., & Wrangham, R. W. (2009). The energetic significance of cooking. Journal of Human 
Evolution, 57(4), 379–91. doi:10.1016/j.jhevol.2009.02.011 

Cerovic, M., d’Isa, R., Tonini, R., & Brambilla, R. (2013). Molecular and cellular mechanisms of 
dopamine-mediated behavioral plasticity in the striatum. Neurobiology of Learning and Memory, 
105, 63–80. doi:10.1016/j.nlm.2013.06.013 

Chae, C.-H., & Kim, H.-T. (2009). Forced, moderate-intensity treadmill exercise suppresses apoptosis by 
increasing the level of NGF and stimulating phosphatidylinositol 3-kinase signaling in the 
hippocampus of induced aging rats. Neurochemistry International, 55(4), 208–13. 
doi:10.1016/j.neuint.2009.02.024 

Champagne, F. a, & Curley, J. P. (2005). How social experiences influence the brain. Current Opinion in 
Neurobiology, 15(6), 704–9. doi:10.1016/j.conb.2005.10.001 

Chang, F. F., & Greenough, W. T. (1982). Lateralized effects of monocular training on dendritic branching 
in adult split brain rats, 232, 283–292. 



Chavis, P., & Westbrook, G. (2001). Integrins mediate functional pre- and postsynaptic maturation at a 
hippocampal synapse. Nature, 411(6835), 317–21. doi:10.1038/35077101 

Chen, M. J., & Russo-Neustadt, A. a. (2005). Exercise activates the phosphatidylinositol 3-kinase pathway. 
Brain Research. Molecular Brain Research, 135(1-2), 181–93. 
doi:10.1016/j.molbrainres.2004.12.001 

Chen, Z. J., He, Y., Rosa-Neto, P., Gong, G., & Evans, A. C. (2011). Age-related alterations in the modular 
organization of structural cortical network by using cortical thickness from MRI. NeuroImage, 56(1), 
235–45. doi:10.1016/j.neuroimage.2011.01.010 

 

Chiang, M., Barysheva, M., Shattuck, D. W., Lee, A. D., Avedissian, C., Klunder, A. D., … Paul, M. 
(2009). GENETICS OF BRAIN FIBER ARCHITECTURE AND, 29(7), 2212–2224. 
doi:10.1523/JNEUROSCI.4184-08.2009.GENETICS 

Chomsky, N. (2002). The Faculty of Language. Science (New York, N.Y.). 

Churchill, J. D., Galvez, R., Colcombe, S., Swain, R. a, Kramer, A. F., & Greenough, W. T. (2002). 
Exercise, experience and the aging brain. Neurobiology of Aging, 23(5), 941–55. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/12392797 

Cohen, J. E., Lee, P. R., Chen, S., Li, W., & Fields, R. D. (2011). MicroRNA regulation of homeostatic 
synaptic plasticity. doi:10.1073/pnas.1017576108/-
/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1017576108 

Collins, D. L., Holmes, C. J., Peters, T. M., & Evans, A. C. (1996). Automatic 3-D Model-Based 
Neuroanatomical Segmentation, 208(1995), 190–208. 

Collins, D. L., Zijdenbos, A. P., Kollokian, V., Sled, J. G., Kabani, N. J., Holmes, C. J., & Evans, A. C. 
(1998). Digital Brain Phantom, 17(3), 463–468. 

Colom, R., Quiroga, M. Á., Solana, A. B., Burgaleta, M., Román, F. J., Privado, J., … Karama, S. (2012). 
Structural changes after videogame practice related to a brain network associated with intelligence. 
Intelligence, 40(5), 479–489. doi:10.1016/j.intell.2012.05.004 

Cortés-Mendoza, J., Díaz de León-Guerrero, S., Pedraza-Alva, G., & Pérez-Martínez, L. (2013). Shaping 
synaptic plasticity: the role of activity-mediated epigenetic regulation on gene transcription. 
International Journal of Developmental Neuroscience : The Official Journal of the International 
Society for Developmental Neuroscience, 31(6), 359–69. doi:10.1016/j.ijdevneu.2013.04.003 

Costa, D. a, Cracchiolo, J. R., Bachstetter, A. D., Hughes, T. F., Bales, K. R., Paul, S. M., … Potter, H. 
(2007). Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. 
Neurobiology of Aging, 28(6), 831–44. doi:10.1016/j.neurobiolaging.2006.04.009 

Cotman, C. W., & Berchtold, N. C. (2002). Exercise : a behavioral intervention to enhance brain health and 
plasticity, 25(6), 295–301. 

Cotman, C. W., Berchtold, N. C., & Christie, L.-A. (2007). Exercise builds brain health: key roles of 
growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464–72. 
doi:10.1016/j.tins.2007.06.011 



Crick, F. (n.d.). Function of Dream Sleep. Function of Dream Sleep. 

Crick, F. (1988). @ Neural Edelmanism. 

Cruikshank, S. J., & Weinberger, N. M. (1996). Evidence for the Hebbian hypothesis in experience-
dependent physiological plasticity of neocortex: a critical review. Brain Research. Brain Research 
Reviews, 22(3), 191–228. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8957560 

Daniel H. Geschwind1, and P. R. (2013). Cortical Evolution: Judge the Brain by Its Cover. Neuron. 

Davidson, R. J., Jackson, D. C., & Kalin, N. H. (2000). Emotion , Plasticity , Context , and Regulation : 
Perspectives From Affective Neuroscience, 126(6), 890–909. 

Dayan, E., & Cohen, L. G. (2011). Neuroplasticity subserving motor skill learning. Neuron, 72(3), 443–54. 
doi:10.1016/j.neuron.2011.10.008 

Debruyne, H. (n.d.). Cotards syndrome: a review. 2009. 

Deci, E. L., & Ryan, R. M. (2013). The “ What ” and “ Why ” of Goal Pursuits : of Behavior Human Needs 
and the Self-Determination, 11(4), 227–268. 

Deng, W., Saxe, M. D., Gallina, I. S., & Gage, F. H. (2009). Adult-born hippocampal dentate granule cells 
undergoing maturation modulate learning and memory in the brain. The Journal of Neuroscience : 
The Official Journal of the Society for Neuroscience, 29(43), 13532–42. 
doi:10.1523/JNEUROSCI.3362-09.2009 

Desimone, R., & Duncan, J. (1995). NEURAL MECHANISMS OF SELECTIVE VISUAL, 193–222. 

Dhenain, M., Ruffins, S. W., & Jacobs, R. E. (2001). Three-dimensional digital mouse atlas using high-
resolution MRI. Developmental Biology, 232(2), 458–70. doi:10.1006/dbio.2001.0189 

Diamond, M. C. (2001). Response of the brain to enrichment. Anais Da Academia Brasileira de Ciências, 
73(2), 211–20. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11404783 

Diamond, M. C., Rosenzweig, M. R., Edward, L., Lindner, B., & Lyon, L. (n.d.). IMPOVERISHMENT 
ON RAT CEREBRAL CORTEX The first part of this paper deals with rat brain anatomy as affected 
by variations of starting age and of duration of exposure to enriched ( com- cortical depth 
measurements and weights of brain samples are compared , 3(1), 47–64. 

Dickerson, B. C., & Wolk, D. a. (2012a). MRI cortical thickness biomarker predicts AD-like CSF and 
cognitive decline in normal adults. Neurology, 78(2), 84–90. doi:10.1212/WNL.0b013e31823efc6c 

Dickerson, B. C., & Wolk, D. a. (2012b). MRI cortical thickness biomarker predicts AD-like CSF and 
cognitive decline in normal adults. Neurology, 78(2), 84–90. doi:10.1212/WNL.0b013e31823efc6c 

Dickerson, B. C., & Wolk, D. A. (2012c). ARTICLES MRI cortical thickness biomarker predicts AD-like 
CSF and cognitive decline in normal adults. 

Dietrich, M. O., Mantese, C. E., Porciuncula, L. O., Ghisleni, G., Vinade, L., Souza, D. O., & Portela, L. V. 
(2005). Exercise affects glutamate receptors in postsynaptic densities from cortical mice brain. Brain 
Research, 1065(1-2), 20–5. doi:10.1016/j.brainres.2005.09.038 



Ditye, T., Kanai, R., Bahrami, B., Muggleton, N. G., Rees, G., & Walsh, V. (2013). Rapid changes in brain 
structure predict improvements induced by perceptual learning. NeuroImage, 81, 205–12. 
doi:10.1016/j.neuroimage.2013.05.058 

Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor 
skills. Current Opinion in Neurobiology, 15(2), 161–7. doi:10.1016/j.conb.2005.03.004 

Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Büchel, C., & May, A. (2006). 
Temporal and spatial dynamics of brain structure changes during extensive learning. The Journal of 
Neuroscience : The Official Journal of the Society for Neuroscience, 26(23), 6314–7. 
doi:10.1523/JNEUROSCI.4628-05.2006 

Draganski, B., & Kherif, F. (2013). In vivo assessment of use-dependent brain plasticity--beyond the “one 
trick pony” imaging strategy. NeuroImage, 73, 255–9; discussion 265–7. 
doi:10.1016/j.neuroimage.2012.08.058 

Draganski, B., & May, a. (2008). Training-induced structural changes in the adult human brain. 
Behavioural Brain Research, 192(1), 137–42. doi:10.1016/j.bbr.2008.02.015 

Edelman, G. M. (1993). Neural Darwinism: selection and reentrant signaling in higher brain function. 
Neuron, 10(2), 115–25. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8094962 

Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., … Weinberger, 
D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and 
human memory and hippocampal function. Cell, 112(2), 257–69. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/12553913 

Eggermont, L., Swaab, D., Luiten, P., & Scherder, E. (2006). Exercise, cognition and Alzheimer’s disease: 
more is not necessarily better. Neuroscience and Biobehavioral Reviews, 30(4), 562–75. 
doi:10.1016/j.neubiorev.2005.10.004 

Ehninger, D., & Kempermann, G. (2003). Regional effects of wheel running and environmental enrichment 
on cell genesis and microglia proliferation in the adult murine neocortex. Cerebral Cortex (New York, 
N.Y. : 1991), 13(8), 845–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12853371 

Engel, a K., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down 
processing. Nature Reviews. Neuroscience, 2(10), 704–16. doi:10.1038/35094565 

Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E., … Kramer, A. F. 
(2007). Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. 
Neurobiology of Aging, 28(2), 272–83. doi:10.1016/j.neurobiolaging.2005.12.012 

Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Heo, S., Mclaren, M., … Kramer, A. F. (2011). 
NIH Public Access, 30(15), 5368–5375. doi:10.1523/JNEUROSCI.6251-09.2010.BDNF 

Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Morris, K. S., White, S. M., … Kramer, A. F. 
(2011). NIH Public Access, 19(10), 1030–1039. doi:10.1002/hipo.20547.Aerobic 

Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., … Kramer, A. F. (2011). 
Exercise training increases size of hippocampus and improves memory. Proceedings of the National 
Academy of Sciences of the United States of America, 108(7), 3017–22. 
doi:10.1073/pnas.1015950108 



Evans, A., & Boucher, M. (2007). A Discrete Diffrenthil. 

Evans, A. C., Janke, A. L., Collins, D. L., & Baillet, S. (2012). Brain templates and atlases. NeuroImage, 
62(2), 911–22. doi:10.1016/j.neuroimage.2012.01.024 

Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F. H., & Christie, B. R. (2004). Effects of voluntary 
exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-
Dawley rats in vivo. Neuroscience, 124(1), 71–9. doi:10.1016/j.neuroscience.2003.09.029 

Fields, R. D. (2014). Neuroscience. Myelin--more than insulation. Science (New York, N.Y.), 344(6181), 
264–6. doi:10.1126/science.1253851 

Finger, Stanley (2000). "Chapter 13: Santiago Ramon y Cajal. From nerve nets to neuron doctrine". Minds 
behind the brain: A history of the pioneers and their discoveries. New York: Oxford University 
Press. pp. 197–216. ISBN 0-19-508571-X.  

Fischl, B., & Dale, a M. (2000). Measuring the thickness of the human cerebral cortex from magnetic 
resonance images. Proceedings of the National Academy of Sciences of the United States of America, 
97(20), 11050–5. doi:10.1073/pnas.200033797 

Foster, N. E. V, & Zatorre, R. J. (2010). Cortical structure predicts success in performing musical 
transformation judgments. NeuroImage, 53(1), 26–36. doi:10.1016/j.neuroimage.2010.06.042 

Foundations, N., & Cognitive, O. F. (n.d.). Neurological Foundations of Cognitive Neuroscience. 

Fu, M., & Zuo, Y. (2011). Experience-dependent structural plasticity in the cortex. Trends in 
Neurosciences, 34(4), 177–187. doi:10.1016/j.tins.2011.02.001 

Fuchs, E., Flügge, G., Ohl, F., Lucassen, P., Vollmann-Honsdorf, G. K., & Michaelis, T. (2001). 
Psychosocial stress, glucocorticoids, and structural alterations in the tree shrew hippocampus. 
Physiology & Behavior, 73(3), 285–91. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/11438353 

Ganguly, K., & Poo, M.-M. (2013). Activity-dependent neural plasticity from bench to bedside. Neuron, 
80(3), 729–41. doi:10.1016/j.neuron.2013.10.028 

Gascon, E., Vutskits, L., & Kiss, J. Z. (2010). Structure and Function of the Neural Cell Adhesion 
Molecule NCAM, 663, 127–136. doi:10.1007/978-1-4419-1170-4 

Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, a, … Rapoport, J. L. 
(1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature 
Neuroscience, 2(10), 861–3. doi:10.1038/13158 

Giorgio, a, Watkins, K. E., Chadwick, M., James, S., Winmill, L., Douaud, G., … James, a C. (2010). 
Longitudinal changes in grey and white matter during adolescence. NeuroImage, 49(1), 94–103. 
doi:10.1016/j.neuroimage.2009.08.003 

Giorgio, A., Santelli, L., Tomassini, V., Bosnell, R., Smith, S., De Stefano, N., & Johansen-Berg, H. 
(2010). Age-related changes in grey and white matter structure throughout adulthood. NeuroImage, 
51(3), 943–51. doi:10.1016/j.neuroimage.2010.03.004 



Gong, G., He, Y., & Evans, A. C. (2011a). Brain connectivity: gender makes a difference. The 
Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 17(5), 575–91. 
doi:10.1177/1073858410386492 

Gong, G., He, Y., & Evans, A. C. (2011b). Brain connectivity: gender makes a difference. The 
Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 17(5), 575–91. 
doi:10.1177/1073858410386492 

Gong, G., He, Y., & Evans, A. C. (2011c). Brain connectivity: gender makes a difference. The 
Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 17(5), 575–91. 
doi:10.1177/1073858410386492 

Gottmann, K., Mittmann, T., & Lessmann, V. (2009). BDNF signaling in the formation, maturation and 
plasticity of glutamatergic and GABAergic synapses. Experimental Brain Research, 199(3-4), 203–
34. doi:10.1007/s00221-009-1994-z 

Grand’maison, M., Zehntner, S. P., Ho, M.-K., Hébert, F., Wood, A., Carbonell, F., … Bedell, B. J. (2013). 
Early cortical thickness changes predict β-amyloid deposition in a mouse model of Alzheimer’s 
disease. Neurobiology of Disease, 54, 59–67. doi:10.1016/j.nbd.2013.02.005 

Gray, J. D., Milner, T. a, & McEwen, B. S. (2013). Dynamic plasticity: the role of glucocorticoids, brain-
derived neurotrophic factor and other trophic factors. Neuroscience, 239, 214–27. 
doi:10.1016/j.neuroscience.2012.08.034 

Greenough, W. T., Larson, J. R., & Withers, G. S. (1985). Effects of unilateral and bilateral training in a 
reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex. Behavioral 
and Neural Biology, 44(2), 301–14. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2415103 

Griesbach, G. S., Hovda, D. a, Molteni, R., Wu, a, & Gomez-Pinilla, F. (2004). Voluntary exercise 
following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of 
function. Neuroscience, 125(1), 129–39. doi:10.1016/j.neuroscience.2004.01.030 

Griffin, E. W., Bechara, R. G., Birch, A. M., & Kelly, A. M. (2009). Exercise enhances hippocampal-
dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus, 19(10), 973–
80. doi:10.1002/hipo.20631 

Grodzinsky, Y., & Nelken, I. (2014). Neuroscience. The neural code that makes us human. Science (New 
York, N.Y.), 343(6174), 978–9. doi:10.1126/science.1251495 

Grogan, a, Parker Jones, O., Ali, N., Crinion, J., Orabona, S., Mechias, M. L., … Price, C. J. (2012). 
Structural correlates for lexical efficiency and number of languages in non-native speakers of 
English. Neuropsychologia, 50(7), 1347–52. doi:10.1016/j.neuropsychologia.2012.02.019 

Grubb, M. S., & Burrone, J. (2010). Activity-dependent relocation of the axon initial segment fine-tunes 
neuronal excitability. Nature, 465(7301), 1070–4. doi:10.1038/nature09160 

Hamzei, F., Glauche, V., Schwarzwald, R., & May, A. (2012). Dynamic gray matter changes within cortex 
and striatum after short motor skill training are associated with their increased functional interaction. 
NeuroImage, 59(4), 3364–72. doi:10.1016/j.neuroimage.2011.10.089 

Hardy, B. J. D., & Muschenheim, C. (1934). (Aldrich (2), Cobet, (6), 817–831. 



Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems 
on the road to therapeutics. Science (New York, N.Y.), 297(5580), 353–6. 
doi:10.1126/science.1072994 

Hebb, Donald O. (1949) The Organization of Behavior. Wiley: New York, NY.  

Hébert, F., Grand’maison, M., Ho, M.-K., Lerch, J. P., Hamel, E., & Bedell, B. J. (2013). Cortical atrophy 
and hypoperfusion in a transgenic mouse model of Alzheimer’s disease. Neurobiology of Aging, 
34(6), 1644–52. doi:10.1016/j.neurobiolaging.2012.11.022 

Heinrichs, S. C., Leite-Morris, K. a, Guy, M. D., Goldberg, L. R., Young, A. J., & Kaplan, G. B. (2013). 
Dendritic structural plasticity in the basolateral amygdala after fear conditioning and its extinction in 
mice. Behavioural Brain Research, 248, 80–4. doi:10.1016/j.bbr.2013.03.048 

Helfer, J. L., Goodlett, C. R., Greenough, W. T., & Klintsova, A. Y. (2009). The effects of exercise on 
adolescent hippocampal neurogenesis in a rat model of binge alcohol exposure during the brain 
growth spurt. Brain Research, 1294, 1–11. doi:10.1016/j.brainres.2009.07.090 

Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: behavior, 
function, and structure. Neuron, 76(3), 486–502. doi:10.1016/j.neuron.2012.10.011 

Heyn, P., Abreu, B. C., & Ottenbacher, K. J. (2004). The effects of exercise training on elderly persons 
with cognitive impairment and dementia: A meta-analysis. Archives of Physical Medicine and 
Rehabilitation, 85(10), 1694–1704. doi:10.1016/j.apmr.2004.03.019 

Hihara, S., Notoya, T., Tanaka, M., Ichinose, S., Ojima, H., Obayashi, S., … Iriki, A. (2006). Extension of 
corticocortical afferents into the anterior bank of the intraparietal sulcus by tool-use training in adult 
monkeys. Neuropsychologia, 44(13), 2636–46. doi:10.1016/j.neuropsychologia.2005.11.020 

Hitti, F. L., & Siegelbaum, S. a. (2014). The hippocampal CA2 region is essential for social memory. 
Nature, 508(7494), 88–92. doi:10.1038/nature13028 

Hobson, J. A. (2009). REM sleep and dreaming: towards a theory of protoconsciousness. Nature Reviews. 
Neuroscience, 10(11), 803–13. doi:10.1038/nrn2716 

Holtmaat, a, De Paola, V., Wilbrecht, L., & Knott, G. W. (2008). Imaging of experience-dependent 
structural plasticity in the mouse neocortex in vivo. Behavioural Brain Research, 192(1), 20–5. 
doi:10.1016/j.bbr.2008.04.005 

Holtmaat, A., Randall, J., & Cane, M. (2013). Optical imaging of structural and functional synaptic 
plasticity in vivo. European Journal of Pharmacology, 719(1-3), 128–36. 
doi:10.1016/j.ejphar.2013.07.020 

Hölzel, B. K., Carmody, J., Vangel, M., Congleton, C., Yerramsetti, S. M., Gard, T., & Lazar, S. W. 
(2011a). Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry 
Research, 191(1), 36–43. doi:10.1016/j.pscychresns.2010.08.006 

Hölzel, B. K., Carmody, J., Vangel, M., Congleton, C., Yerramsetti, S. M., Gard, T., & Lazar, S. W. 
(2011b). Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry 
Research, 191(1), 36–43. doi:10.1016/j.pscychresns.2010.08.006 

Horn, K. E., Glasgow, S. D., Gobert, D., Bull, S., Girgis, J., Tremblay, M., … Kennedy, T. E. (2012). DCC 
expression by neurons regulates synaptic plasitcity in the adult brain. Cell Reports, 1–42. 



Horn, K. E., Glasgow, S. D., Gobert, D., Bull, S.-J., Luk, T., Girgis, J., … Kennedy, T. E. (2013). DCC 
expression by neurons regulates synaptic plasticity in the adult brain. Cell Reports, 3(1), 173–85. 
doi:10.1016/j.celrep.2012.12.005 

Horn, K. E., & Kennedy, T. E. (2012). Putting flesh on the bones: DCC combines membrane insertion with 
cytoskeletal reorganization to promote chemoattraction (commentary on Cotrufo et al.). The 
European Journal of Neuroscience, 36(9), 3151. doi:10.1111/ejn.12011 

Hoveida, R., Alaei, H., Oryan, S., Parivar, K., & Reisi, P. (2011). Treadmill running improves spatial 
memory in an animal model of Alzheimer’s disease. Behavioural Brain Research, 216(1), 270–4. 
doi:10.1016/j.bbr.2010.08.003 

Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: roles in neuronal development and function. 
Annual Review of Neuroscience, 24, 677–736. doi:10.1146/annurev.neuro.24.1.677 

Intlekofer, K. a, & Cotman, C. W. (2013). Exercise counteracts declining hippocampal function in aging 
and Alzheimer’s disease. Neurobiology of Disease, 57, 47–55. doi:10.1016/j.nbd.2012.06.011 

Investigation, B. P. (n.d.). No Title. 

Isler, K., & van Schaik, C. (2006). Costs of encephalization: the energy trade-off hypothesis tested on birds. 
Journal of Human Evolution, 51(3), 228–43. doi:10.1016/j.jhevol.2006.03.006 

Isler, K., & van Schaik, C. P. (2009). The Expensive Brain: a framework for explaining evolutionary 
changes in brain size. Journal of Human Evolution, 57(4), 392–400. 
doi:10.1016/j.jhevol.2009.04.009 

Jacobi, S., Soriano, J., Segal, M., & Moses, E. (2009). BDNF and NT-3 increase excitatory input 
connectivity in rat hippocampal cultures. The European Journal of Neuroscience, 30(6), 998–1010. 
doi:10.1111/j.1460-9568.2009.06891.x 

James, William. (1890) The Principles of Psychology. New York City, NY: Henry Holt and Company.  

Ji, Y., Lu, Y., Yang, F., Shen, W., Tang, T. T.-T., Feng, L., … Lu, B. (2010). Acute and gradual increases 
in BDNF concentration elicit distinct signaling and functions in neurons. Nature Neuroscience, 13(3), 
302–9. doi:10.1038/nn.2505 

Johansen-Berg, H., Baptista, C. S., & Thomas, A. G. (2012). Human structural plasticity at record speed. 
Neuron, 73(6), 1058–60. doi:10.1016/j.neuron.2012.03.001 

Jones, E. G. (2011). Cajal’s debt to Golgi. Brain Research Reviews, 66(1-2), 83–91. 
doi:10.1016/j.brainresrev.2010.04.005 

Josselyn, Sheena. (2010) Continuing the search for the engram. Journal of Psychiatry Neuroscience. 35(4): 
221 – 228. 

Jubault, T., Gagnon, J.-F., Karama, S., Ptito, A., Lafontaine, A.-L., Evans, A. C., & Monchi, O. (2011). 
Patterns of cortical thickness and surface area in early Parkinson’s disease. NeuroImage, 55(2), 462–
7. doi:10.1016/j.neuroimage.2010.12.043 

Kahn, D., & Gover, T. (2010). Consciousness in dreams. International review of neurobiology (Vol. 92, pp. 
181–95). Elsevier Inc. doi:10.1016/S0074-7742(10)92009-6 



Kang, D.-H., Jo, H. J., Jung, W. H., Kim, S. H., Jung, Y.-H., Choi, C.-H., … Kwon, J. S. (2013). The effect 
of meditation on brain structure: cortical thickness mapping and diffusion tensor imaging. Social 
Cognitive and Affective Neuroscience, 8(1), 27–33. doi:10.1093/scan/nss056 

Karni, a, Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1998). 
The acquisition of skilled motor performance: fast and slow experience-driven changes in primary 
motor cortex. Proceedings of the National Academy of Sciences of the United States of America, 
95(3), 861–8. Retrieved from 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=33809&tool=pmcentrez&rendertype=abst
ract 

Kellner, Y., Gödecke, N., Dierkes, T., Thieme, N., Zagrebelsky, M., & Korte, M. (2014). The BDNF 
effects on dendritic spines of mature hippocampal neurons depend on neuronal activity. Frontiers in 
Synaptic Neuroscience, 6(March), 5. doi:10.3389/fnsyn.2014.00005 

Kempermann, G., Fabel, K., Ehninger, D., Babu, H., Leal-Galicia, P., Garthe, A., & Wolf, S. a. (2010). 
Why and how physical activity promotes experience-induced brain plasticity. Frontiers in 
Neuroscience, 4(December), 189. doi:10.3389/fnins.2010.00189 

Kempermann, G., Gast, D., & Gage, F. H. (2002). Neuroplasticity in old age: sustained fivefold induction 
of hippocampal neurogenesis by long-term environmental enrichment. Annals of Neurology, 52(2), 
135–43. doi:10.1002/ana.10262 

Kerr, a L., Steuer, E. L., Pochtarev, V., & Swain, R. a. (2010). Angiogenesis but not neurogenesis is critical 
for normal learning and memory acquisition. Neuroscience, 171(1), 214–26. 
doi:10.1016/j.neuroscience.2010.08.008 

Keshavan, V., & Tandon, N. (2012). How to give an effective presentation. Asian Journal of Psychiatry, 
5(4), 360–1. doi:10.1016/j.ajp.2012.09.013 

Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis 
activity. Science (New York, N.Y.), 279(5357), 1714–8. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/9497289 

Kim, J. S., Singh, V., Lee, J. K., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D., … Evans, A. C. (2005). 
Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian 
map and partial volume effect classification. NeuroImage, 27(1), 210–21. 
doi:10.1016/j.neuroimage.2005.03.036 

Kim, S.-E., Ko, I.-G., Kim, B.-K., Shin, M.-S., Cho, S., Kim, C.-J., … Jee, Y.-S. (2010). Treadmill exercise 
prevents aging-induced failure of memory through an increase in neurogenesis and suppression of 
apoptosis in rat hippocampus. Experimental Gerontology, 45(5), 357–65. 
doi:10.1016/j.exger.2010.02.005 

Kitamura, T., Mishina, M., & Sugiyama, H. (2003). Enhancement of neurogenesis by running wheel 
exercises is suppressed in mice lacking NMDA receptor ε1 subunit. Neuroscience Research, 47(1), 
55–63. doi:10.1016/S0168-0102(03)00171-8 

Kleim, J. a, Barbay, S., Cooper, N. R., Hogg, T. M., Reidel, C. N., Remple, M. S., & Nudo, R. J. (2002). 
Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. 
Neurobiology of Learning and Memory, 77(1), 63–77. doi:10.1006/nlme.2000.4004 



Kleim, J. a, Cooper, N. R., & VandenBerg, P. M. (2002). Exercise induces angiogenesis but does not alter 
movement representations within rat motor cortex. Brain Research, 934(1), 1–6. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/11937064 

Kleim, J. a, Hogg, T. M., VandenBerg, P. M., Cooper, N. R., Bruneau, R., & Remple, M. (2004). Cortical 
synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill 
learning. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 24(3), 
628–33. doi:10.1523/JNEUROSCI.3440-03.2004 

Kleim, J. a, Markham, J. a, Vij, K., Freese, J. L., Ballard, D. H., & Greenough, W. T. (2007). Motor 
learning induces astrocytic hypertrophy in the cerebellar cortex. Behavioural Brain Research, 178(2), 
244–9. doi:10.1016/j.bbr.2006.12.022 

Kleim, J. A., Markham, J. A., Vij, K., Freese, J. L., Ballard, D. H., & Greenough, W. T. (2008). NIH Public 
Access, 178(2), 244–249. doi:10.1016/j.bbr.2006.12.022.Motor 

Klein, D., Mok, K., Chen, J.-K., & Watkins, K. E. (2013). Age of language learning shapes brain structure: 
A cortical thickness study of bilingual and monolingual individuals. Brain and Language, 1–5. 
doi:10.1016/j.bandl.2013.05.014 

Klintsova, A. Y., Dickson, E., Yoshida, R., & Greenough, W. T. (2004). Altered expression of BDNF and 
its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain 
Research, 1028(1), 92–104. doi:10.1016/j.brainres.2004.09.003 

Kolb, B., Cioe, J., & Comeau, W. (2008). Contrasting effects of motor and visual spatial learning tasks on 
dendritic arborization and spine density in rats. Neurobiology of Learning and Memory, 90(2), 295–
300. doi:10.1016/j.nlm.2008.04.012 

Kozorovitskiy, Y., Gross, C. G., Kopil, C., Battaglia, L., McBreen, M., Stranahan, A. M., & Gould, E. 
(2005). Experience induces structural and biochemical changes in the adult primate brain. 
Proceedings of the National Academy of Sciences of the United States of America, 102(48), 17478–
82. doi:10.1073/pnas.0508817102 

Kramer, A. F., & Erickson, K. I. (2007). Capitalizing on cortical plasticity: influence of physical activity on 
cognition and brain function. Trends in Cognitive Sciences, 11(8), 342–8. 
doi:10.1016/j.tics.2007.06.009 

Krech D, Rosenzweig MR and Bennett EL. (1960). Effects of environmental complexity and training on 
brain chemistry. J Comp Physiol Psychol 53: 509- 519 

Kronenberg, G., Bick-Sander, A., Bunk, E., Wolf, C., Ehninger, D., & Kempermann, G. (2006). Physical 
exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. 
Neurobiology of Aging, 27(10), 1505–13. doi:10.1016/j.neurobiolaging.2005.09.016 

Kuczewski, N., Porcher, C., Lessmann, V., Medina, I., & Gaiarsa, J.-L. (2009). Activity-dependent 
dendritic release of BDNF and biological consequences. Molecular Neurobiology, 39(1), 37–49. 
doi:10.1007/s12035-009-8050-7 

Kuhn, S. (2014). Positive Association of Video Game Playing with Left Frontal Cortical Thickness in 
Adolescents. Plosone. 



Kühn, S., Gleich, T., Lorenz, R. C., Lindenberger, U., & Gallinat, J. (2013). Playing Super Mario induces 
structural brain plasticity: gray matter changes resulting from training with a commercial video game. 
Molecular Psychiatry, (August), 1–7. doi:10.1038/mp.2013.120 

Kwon, H.-B., & Sabatini, B. L. (2011). Glutamate induces de novo growth of functional spines in 
developing cortex. Nature, 474(7349), 100–104. doi:10.1038/nature09986 

Lakshminarasimhan, H., & Chattarji, S. (2012). Stress leads to contrasting effects on the levels of brain 
derived neurotrophic factor in the hippocampus and amygdala. PloS One, 7(1), e30481. 
doi:10.1371/journal.pone.0030481 

Lange-Asschenfeldt, C., & Kojda, G. (2008). Alzheimer’s disease, cerebrovascular dysfunction and the 
benefits of exercise: from vessels to neurons. Experimental Gerontology, 43(6), 499–504. 
doi:10.1016/j.exger.2008.04.002 

Lazarov, O., Robinson, J., Tang, Y.-P., Hairston, I. S., Korade-Mirnics, Z., Lee, V. M.-Y., … Sisodia, S. S. 
(2005). Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. 
Cell, 120(5), 701–13. doi:10.1016/j.cell.2005.01.015 

Leasure, J. L., & Jones, M. (2008). Forced and voluntary exercise differentially affect brain and behavior. 
Neuroscience, 156(3), 456–65. doi:10.1016/j.neuroscience.2008.07.041 

Ledoux, J. E. (2000). Emotion Circuits in the Brain, 155–184. 

Lee, K. J., Park, I. S., Kim, H., Greenough, W. T., Pak, D. T. S., & Rhyu, I. J. (2013). Motor skill training 
induces coordinated strengthening and weakening between neighboring synapses. The Journal of 
Neuroscience : The Official Journal of the Society for Neuroscience, 33(23), 9794–9. 
doi:10.1523/JNEUROSCI.0848-12.2013 

Leggio, M. G., Mandolesi, L., Federico, F., Spirito, F., Ricci, B., Gelfo, F., & Petrosini, L. (2005). 
Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the 
rat. Behavioural Brain Research, 163(1), 78–90. doi:10.1016/j.bbr.2005.04.009 

Lerch, J. P., Carroll, J. B., Dorr, A., Spring, S., Evans, A. C., Hayden, M. R., … Henkelman, R. M. (2008). 
Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease. 
NeuroImage, 41(2), 243–51. doi:10.1016/j.neuroimage.2008.02.019 

Lerch, J. P., & Evans, A. C. (2005). Cortical thickness analysis examined through power analysis and a 
population simulation. NeuroImage, 24(1), 163–73. doi:10.1016/j.neuroimage.2004.07.045 

Lerch, J. P., Yiu, A. P., Martinez-Canabal, A., Pekar, T., Bohbot, V. D., Frankland, P. W., … Sled, J. G. 
(2011). Maze training in mice induces MRI-detectable brain shape changes specific to the type of 
learning. NeuroImage, 54(3), 2086–95. doi:10.1016/j.neuroimage.2010.09.086 

Li, H., Liang, A., Guan, F., Fan, R., Chi, L., & Yang, B. (2013). Regular treadmill running improves spatial 
learning and memory performance in young mice through increased hippocampal neurogenesis and 
decreased stress. Brain Research, 1531, 1–8. doi:10.1016/j.brainres.2013.07.041 

Li, J., Ding, Y.-H., Rafols, J. a, Lai, Q., McAllister, J. P., & Ding, Y. (2005). Increased astrocyte 
proliferation in rats after running exercise. Neuroscience Letters, 386(3), 160–4. 
doi:10.1016/j.neulet.2005.06.009 



Li, W., Wu, B., Avram, A. V, & Liu, C. (2012). Magnetic susceptibility anisotropy of human brain in vivo 
and its molecular underpinnings. NeuroImage, 59(3), 2088–97. 
doi:10.1016/j.neuroimage.2011.10.038 

Li, X., Yang, Z., & Zhang, A. (2009). The effect of neurotrophin-3/chitosan carriers on the proliferation 
and differentiation of neural stem cells. Biomaterials, 30(28), 4978–85. 
doi:10.1016/j.biomaterials.2009.05.047 

Lillard, A. S., & Erisir, A. (2011). Old dogs learning new tricks: Neuroplasticity beyond the juvenile 
period. Developmental Review, 31(4), 207–239. doi:10.1016/j.dr.2011.07.008 

Lim, Y. Y., Villemagne, V. L., Laws, S. M., Ames, D., Pietrzak, R. H., Ellis, K. a, … Maruff, P. (2013). 
BDNF Val66Met, Aβ amyloid, and cognitive decline in preclinical Alzheimer’s disease. 
Neurobiology of Aging, 34(11), 2457–64. doi:10.1016/j.neurobiolaging.2013.05.006 

Lin, T.-W., Chen, S.-J., Huang, T.-Y., Chang, C.-Y., Chuang, J.-I., Wu, F.-S., … Jen, C. J. (2012). 
Different types of exercise induce differential effects on neuronal adaptations and memory 
performance. Neurobiology of Learning and Memory, 97(1), 140–7. doi:10.1016/j.nlm.2011.10.006 

Liu, C. (2010). Susceptibility tensor imaging. Magnetic Resonance in Medicine : Official Journal of the 
Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 63(6), 
1471–7. doi:10.1002/mrm.22482 

Liu, C., Li, W., Johnson, G. A., & Wu, B. (2011). High-field (9.4 T) MRI of brain dysmyelination by 
quantitative mapping of magnetic susceptibility. NeuroImage, 56(3), 930–8. 
doi:10.1016/j.neuroimage.2011.02.024 

Liu, C., Li, W., Wu, B., Jiang, Y., & Johnson, G. A. (2012). 3D fiber tractography with susceptibility 
tensor imaging. NeuroImage, 59(2), 1290–8. doi:10.1016/j.neuroimage.2011.07.096 

Liu, H., Zhao, G., Cai, K., Zhao, H., & Shi, L. (2011). Treadmill exercise prevents decline in spatial 
learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term 
potentiation. Behavioural Brain Research, 218(2), 308–14. doi:10.1016/j.bbr.2010.12.030 

Liu, Y.-F., Chen, H., Wu, C.-L., Kuo, Y.-M., Yu, L., Huang, A.-M., … Jen, C. J. (2009a). Differential 
effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of 
amygdalar brain-derived neurotrophic factor and synaptotagmin I. The Journal of Physiology, 587(Pt 
13), 3221–31. doi:10.1113/jphysiol.2009.173088 

Liu, Y.-F., Chen, H., Wu, C.-L., Kuo, Y.-M., Yu, L., Huang, A.-M., … Jen, C. J. (2009b). Differential 
effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of 
amygdalar brain-derived neurotrophic factor and synaptotagmin I. The Journal of Physiology, 587(Pt 
13), 3221–31. doi:10.1113/jphysiol.2009.173088 

Livet, J., Weissman, T. a, Kang, H., Draft, R. W., Lu, J., Bennis, R. a, … Lichtman, J. W. (2007). 
Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. 
Nature, 450(7166), 56–62. doi:10.1038/nature06293 

Lledo, P.-M., Alonso, M., & Grubb, M. S. (2006). Adult neurogenesis and functional plasticity in neuronal    
circuits. Nature Reviews. Neuroscience, 7(3), 179–93. doi:10.1038/nrn1867 

Lopez-Larson, M. P. (2012). ALTERED PREFRONTAL AND INSULAR CORTICAL THICKNESS, 
220(1), 164–172. doi:10.1016/j.bbr.2011.02.001.ALTERED 



Lou, S., Liu, J., Chang, H., & Chen, P. (2008). Hippocampal neurogenesis and gene expression depend on 
exercise intensity in juvenile rats. Brain Research, 1210, 48–55. doi:10.1016/j.brainres.2008.02.080 

Lövdén, M., Bodammer, N. C., Kühn, S., Kaufmann, J., Schütze, H., Tempelmann, C., … Lindenberger, U. 
(2010). Experience-dependent plasticity of white-matter microstructure extends into old age. 
Neuropsychologia, 48(13), 3878–83. doi:10.1016/j.neuropsychologia.2010.08.026 

Lövdén, M., Wenger, E., Mårtensson, J., Lindenberger, U., & Bäckman, L. (2013). Structural brain 
plasticity in adult learning and development. Neuroscience and Biobehavioral Reviews, 37(9 Pt B), 
2296–310. doi:10.1016/j.neubiorev.2013.02.014 

Luo, L. (2002). Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annual 
Review of Cell and Developmental Biology, 18, 601–35. 
doi:10.1146/annurev.cellbio.18.031802.150501 

Lynch, M. A., Introduction, I., Erk, B., Potentiation, L., Age, D., & Cognition, E. (2004). Long-Term 
Potentiation and Memory, 87–136. 

Lyttelton, O., Boucher, M., Robbins, S., & Evans, A. (2007). An unbiased iterative group registration 
template for cortical surface analysis. NeuroImage, 34(4), 1535–44. 
doi:10.1016/j.neuroimage.2006.10.041 

MacDonald, D., Kabani, N., Avis, D., & Evans, a C. (2000). Automated 3-D extraction of inner and outer 
surfaces of cerebral cortex from MRI. NeuroImage, 12(3), 340–56. doi:10.1006/nimg.1999.0534 

Maguire, E. a, Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. 
D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the 
National Academy of Sciences of the United States of America, 97(8), 4398–403. 
doi:10.1073/pnas.070039597 

Maguire, E. A., Woollett, K., & Spiers, H. J. (2006). London Taxi Drivers and Bus Drivers : A Structural 
MRI and Neuropsychological Analysis, m, 1091–1101. doi:10.1002/hipo 

Malenka, R. C., Bear, M. F., & Alto, M. P. (2004). LTP and LTD: An Embarrassment of Riches. Neuron, 
44, 5–21. 

Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review 
of Neuroscience, 25, 103–26. doi:10.1146/annurev.neuro.25.112701.142758 

Manning, L. (2008). Do some neurological conditions induce brain plasticity processes? Behavioural Brain 
Research, 192(1), 143–8. doi:10.1016/j.bbr.2008.04.001 

Manuscript, A. (2011). NIH Public Access, 70(5), 304–322. doi:10.1002/dneu.20765.Post-synaptic 

Manuscript, A., Juvenile, C., Produces, S., Dendritic, C., Remodeling, A., & Rats, F. (2013). NIH Public 
Access, 37(1), 39–47. doi:10.1016/j.psyneuen.2011.04.015.Chronic 

Markham, J. a, & Greenough, W. T. (2004). Experience-driven brain plasticity: beyond the synapse. 
Neuron Glia Biology, 1(4), 351–63. doi:10.1017/s1740925x05000219 



Markham, J. a, Herting, M. M., Luszpak, A. E., Juraska, J. M., & Greenough, W. T. (2009). Myelination of 
the corpus callosum in male and female rats following complex environment housing during 
adulthood. Brain Research, 1288, 9–17. doi:10.1016/j.brainres.2009.06.087 

Martin, S. J., Grimwood, P. D., & Morris, R. G. M. (2000). S YNAPTIC P LASTICITY AND M 
EMORY : An Evaluation of the Hypothesis, (Hebb 1949), 649–711. 

Matsuda, N., Lu, H., Fukata, Y., Noritake, J., Gao, H., Mukherjee, S., … Poo, M.-M. (2009). Differential 
activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. The 
Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29(45), 14185–98. 
doi:10.1523/JNEUROSCI.1863-09.2009 

May, A. (2008). Chronic pain may change the structure of the brain. Pain, 137(1), 7–15. 
doi:10.1016/j.pain.2008.02.034 

May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive 
Sciences, 15(10), 475–82. doi:10.1016/j.tics.2011.08.002 

May, A., Driemeyer, J., Boyke, J., Gaser, C., & Bu, C. (2008). Changes in Gray Matter Induced by 
Learning — Revisited, 3(7), 1–5. doi:10.1371/Citation 

Maya-Vetencourt, J. F., Tiraboschi, E., Greco, D., Restani, L., Cerri, C., Auvinen, P., … Castrén, E. 
(2012). Experience-dependent expression of NPAS4 regulates plasticity in adult visual cortex. The 
Journal of Physiology, 590(Pt 19), 4777–87. doi:10.1113/jphysiol.2012.234237 

McCloskey, D. P., Adamo, D. S., & Anderson, B. J. (2001). Exercise increases metabolic capacity in the 
motor cortex and striatum, but not in the hippocampus. Brain Research, 891(1-2), 168–75. Retrieved 
from http://www.ncbi.nlm.nih.gov/pubmed/11164820 

McEwen, B. S. (1998). Protective and Damaging Effects of Stress Mediators, 171–179. 

Mcewen, B. S. (1999). STRESS AND HIPPOCAMPAL. 

Merzenich, M. M., Jenkins, W. M., Johnston, P., Schreiner, C., Miller, S. L., Tallal, P., … Jan, N. (2013). 
Training All use subject to JSTOR Terms and Conditions Temporal Processing Deficits of Language-
Learning Impaired Children Ameliorated by Training, 271(5245), 77–81. 

Merzenich, M. M., Nelson, R. J., Stryker, M. P., Cynader, M. S., Schoppmann, a, & Zook, J. M. (1984). 
Somatosensory cortical map changes following digit amputation in adult monkeys. The Journal of 
Comparative Neurology, 224(4), 591–605. doi:10.1002/cne.902240408 

Meyer, M., Liem, F., Hirsiger, S., Jäncke, L., & Hänggi, J. (2013). Cortical Surface Area and Cortical 
Thickness Demonstrate Differential Structural Asymmetry in Auditory-Related Areas of the Human 
Cortex. Cerebral Cortex (New York, N.Y. : 1991). doi:10.1093/cercor/bht094 

Miller, E. K., & Cohen, J. D. (2001a). An integrative theory of prefrontal cortex function. Annual Review of 
Neuroscience, 24, 167–202. doi:10.1146/annurev.neuro.24.1.167 

Miller, E. K., & Cohen, J. D. (2001b). An integrative theory of prefrontal cortex function. Annual Review 
of Neuroscience, 24, 167–202. doi:10.1146/annurev.neuro.24.1.167 



Miller, F. D., & Kaplan, D. R. (2001). Cellular and Molecular Life Sciences Neurotrophin signalling 
pathways regulating neuronal apoptosis, 58, 1045–1053. 

Milliken, G. W. (1996). Use-Dependent Primary Motor Alterations of Movement Representations Cortex 
of Adult Squirrel Monkeys in of Physiology and, 16(2), 785–807. 

Mischel, W., Ebbesen, E. B., & Zeiss, a R. (1972). Cognitive and attentional mechanisms in delay of 
gratification. Journal of Personality and Social Psychology, 21(2), 204–18. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/5010404 

Mitra, R., & Sapolsky, R. M. (2008). Acute corticosterone treatment is sufficient to induce anxiety and 
amygdaloid dendritic hypertrophy. Proceedings of the National Academy of Sciences of the United 
States of America, 105(14), 5573–8. doi:10.1073/pnas.0705615105 

Molendijk, M. L., van Tol, M.-J., Penninx, B. W. J. H., van der Wee, N. J. a, Aleman, a, Veltman, D. J., … 
Elzinga, B. M. (2012). BDNF val66met affects hippocampal volume and emotion-related 
hippocampal memory activity. Translational Psychiatry, 2(1), e74. doi:10.1038/tp.2011.72 

Molteni, R., Ying, Z., & Gomez-Pinilla, F. (2002). Differential effects of acute and chronic exercise on 
plasticity-related genes in the rat hippocampus revealed by microarray. European Journal of 
Neuroscience, 16(6), 1107–1116. doi:10.1046/j.1460-9568.2002.02158.x 

Mora, F., Segovia, G., & del Arco, A. (2007). Aging, plasticity and environmental enrichment: structural 
changes and neurotransmitter dynamics in several areas of the brain. Brain Research Reviews, 55(1), 
78–88. doi:10.1016/j.brainresrev.2007.03.011 

Morris, G. P., Clark, I. a, Zinn, R., & Vissel, B. (2013). Microglia: a new frontier for synaptic plasticity, 
learning and memory, and neurodegenerative disease research. Neurobiology of Learning and 
Memory, 105, 40–53. doi:10.1016/j.nlm.2013.07.002 

Morris, R. G. M. (2013). NMDA receptors and memory encoding. Neuropharmacology, 74, 32–40. 
doi:10.1016/j.neuropharm.2013.04.014 

Münte, T. F., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. 
Nature Reviews. Neuroscience, 3(6), 473–8. doi:10.1038/nrn843 

Nagy, Z., Lagercrantz, H., & Hutton, C. (2011). Effects of preterm birth on cortical thickness measured in 
adolescence. Cerebral Cortex (New York, N.Y. : 1991), 21(2), 300–6. doi:10.1093/cercor/bhq095 

Natt, O., Watanabe, T., Boretius, S., Radulovic, J., Frahm, J., & Michaelis, T. (2002). High-resolution 3D 
MRI of mouse brain reveals small cerebral structures in vivo. Journal of Neuroscience Methods, 
120(2), 203–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12385770 

Neeper, S. a, Gómez-Pinilla, F., Choi, J., & Cotman, C. W. (1996). Physical activity increases mRNA for 
brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Research, 726(1-2), 49–
56. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8836544 

Nejad, A. (2004). Co-existence of lycanthropy and Cotard’s syndrome in a single case. 

Nesler, K. R., Sand, R. I., Symmes, B. a, Pradhan, S. J., Boin, N. G., Laun, A. E., & Barbee, S. a. (2013). 
The miRNA pathway controls rapid changes in activity-dependent synaptic structure at the 
Drosophila melanogaster neuromuscular junction. PloS One, 8(7), e68385. 
doi:10.1371/journal.pone.0068385 



Nichol, K., Deeny, S. P., Seif, J., Camaclang, K., & Cotman, C. W. (2009). Exercise improves cognition 
and hippocampal plasticity in APOE epsilon4 mice. Alzheimer’s & Dementia : The Journal of the 
Alzheimer's Association, 5(4), 287–94. doi:10.1016/j.jalz.2009.02.006 

Nichol, K. E., Parachikova, A. I., & Cotman, C. W. (2007). Three weeks of running wheel exposure 
improves cognitive performance in the aged Tg2576 mouse. Behavioural Brain Research, 184(2), 
124–32. doi:10.1016/j.bbr.2007.06.027 

Nithianantharajah, J., & Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and 
disorders of the nervous system. Nature Reviews. Neuroscience, 7(9), 697–709. doi:10.1038/nrn1970 

Nudelman, A. S. (2011). Neuronal Activity Rapidly Induces Transcription of the CREB-Regulated 
MicroRNA-132, In Vivo, 20(4), 492–498. doi:10.1002/hipo.20646.Neuronal 

Numakawa, T., Adachi, N., Richards, M., Chiba, S., & Kunugi, H. (2013). Brain-derived neurotrophic 
factor and glucocorticoids: reciprocal influence on the central nervous system. Neuroscience, 239, 
157–72. doi:10.1016/j.neuroscience.2012.09.073 

O’Callaghan, R. M., Ohle, R., & Kelly, A. M. (2007). The effects of forced exercise on hippocampal 
plasticity in the rat: A comparison of LTP, spatial- and non-spatial learning. Behavioural Brain 
Research, 176(2), 362–6. doi:10.1016/j.bbr.2006.10.018 

Oest, M., Meyer, T., Backens, M., & Schneider-axmann, T. (2014). Hippocampal Plasticity in Response to 
Exercise in Schizophrenia, 67(2), 133–143. 

Oliff, H. S., Berchtold, N. C., Isackson, P., & Cotman, C. W. (1998). Exercise-induced regulation of brain-
derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Research. Molecular 
Brain Research, 61(1-2), 147–53. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9795193 

Olson, A. K., Eadie, B. D., Ernst, C., & Christie, B. R. (2006). Environmental enrichment and voluntary 
exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. 
Hippocampus, 16(3), 250–60. doi:10.1002/hipo.20157 

Ota, K. (2014). REDD1 is essential for stress-induced synaptic loss  and depressive behavior . Nature 
Neuroscience . 

Palomero-Gallagher, N., Vogt, B. a, Schleicher, A., Mayberg, H. S., & Zilles, K. (2009). Receptor 
architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Human 
Brain Mapping, 30(8), 2336–55. doi:10.1002/hbm.20667 

Pantev, C., & Herholz, S. C. (2011). Plasticity of the human auditory cortex related to musical training. 
Neuroscience and Biobehavioral Reviews, 35(10), 2140–54. doi:10.1016/j.neubiorev.2011.06.010 

Parasoglou, P., Berrios-Otero, C. a, Nieman, B. J., & Turnbull, D. H. (2013). High-resolution MRI of early-
stage mouse embryos. NMR in Biomedicine, 26(2), 224–31. doi:10.1002/nbm.2843 

Park, H., & Poo, M. (2013). Neurotrophin regulation of neural circuit development and function. Nature 
Reviews. Neuroscience, 14(1), 7–23. doi:10.1038/nrn3379 

Park, H., Yang, J., Seo, J., & Lee, J. (2013). Dimensionality reduced cortical features and their use in 
predicting longitudinal changes in Alzheimer’s disease. Neuroscience Letters, 550, 17–22. 
doi:10.1016/j.neulet.2013.06.042 



Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual 
Review of Neuroscience, 28, 377–401. doi:10.1146/annurev.neuro.27.070203.144216 

Pearce, J. M. (2004). "Sir Charles Scott Sherrington (1857-1952) and the synapse". Journal of neurology, 
neurosurgery, and psychiatry 75 (4): 544. PMC 1739021. PMID 15026492. edit 

Pearn, J. (n.d.). Jules Cotard (1840–1889) His life and the unique syndrome which bears his name . 2003. 

Pezawas, L., Verchinski, B. a, Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E., … 
Weinberger, D. R. (2004). The brain-derived neurotrophic factor val66met polymorphism and 
variation in human cortical morphology. The Journal of Neuroscience : The Official Journal of the 
Society for Neuroscience, 24(45), 10099–102. doi:10.1523/JNEUROSCI.2680-04.2004 

Pietropaolo, S., Sun, Y., Li, R., Brana, C., Feldon, J., & Yee, B. K. (2008). The impact of voluntary 
exercise on mental health in rodents: a neuroplasticity perspective. Behavioural Brain Research, 
192(1), 42–60. doi:10.1016/j.bbr.2008.03.014 

Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical 
map reorganization through top-down influences. The Journal of Neuroscience : The Official Journal 
of the Society for Neuroscience, 26(18), 4970–82. doi:10.1523/JNEUROSCI.3771-05.2006 

Priel, A., Tuszynski, J. a, & Woolf, N. J. (2010). Neural cytoskeleton capabilities for learning and memory. 
Journal of Biological Physics, 36(1), 3–21. doi:10.1007/s10867-009-9153-0 

Qin, W., Liu, Y., Jiang, T., & Yu, C. (2013). The development of visual areas depends differently on visual 
experience. PloS One, 8(1), e53784. doi:10.1371/journal.pone.0053784 

Ra, S. M., Kim, H., Jang, M. H., Shin, M. C., Lee, T. H., Lim, B. V., … Kim, S. S. (2002). Treadmill 
running and swimming increase cell proliferation in the hippocampal dentate gyrus of rats. 
Neuroscience Letters, 333(2), 123–6. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/12419496 

Raichle, M. E., MacLeod, a M., Snyder, a Z., Powers, W. J., Gusnard, D. a, & Shulman, G. L. (2001). A 
default mode of brain function. Proceedings of the National Academy of Sciences of the United States 
of America, 98(2), 676–82. doi:10.1073/pnas.98.2.676 

Rajasekharan, S., & Kennedy, T. E. (2009). Protein family review The netrin protein family, 1–8. 

Rakic, P. (1995). A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion 
during evolution. Trends in Neurosciences, 18(9), 383–8. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/7482803 

Rakic, P. (2002). the evidence, 3(January). 

Ramirez, S., Liu, X., Lin, P.-A., Suh, J., Pignatelli, M., Redondo, R. L., … Tonegawa, S. (2013). Creating a 
false memory in the hippocampus. Science (New York, N.Y.), 341(6144), 387–91. 
doi:10.1126/science.1239073 

Rampon, C., Jiang, C. H., Dong, H., Tang, Y. P., Lockhart, D. J., Schultz, P. G., … Hu, Y. (2000). Effects 
of environmental enrichment on gene expression in the brain. Proceedings of the National Academy 
of Sciences of the United States of America, 97(23), 12880–4. doi:10.1073/pnas.97.23.12880 



Raviola, E., & Mazzarello, P. (2011). The diffuse nervous network of Camillo Golgi: facts and fiction. 
Brain Research Reviews, 66(1-2), 75–82. doi:10.1016/j.brainresrev.2010.09.005 

Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., … Giedd, J. N. (2011). 
How does your cortex grow? The Journal of Neuroscience : The Official Journal of the Society for 
Neuroscience, 31(19), 7174–7. doi:10.1523/JNEUROSCI.0054-11.2011 

Reagan, L. P., Hendry, R. M., Reznikov, L. R., Piroli, G. G., Wood, G. E., McEwen, B. S., & Grillo, C. a. 
(2007). Tianeptine increases brain-derived neurotrophic factor expression in the rat amygdala. 
European Journal of Pharmacology, 565(1-3), 68–75. doi:10.1016/j.ejphar.2007.02.023 

Real, C. C., Ferreira, A. F. B., Hernandes, M. S., Britto, L. R. G., & Pires, R. S. (2010). Exercise-induced 
plasticity of AMPA-type glutamate receptor subunits in the rat brain. Brain Research, 1363, 63–71. 
doi:10.1016/j.brainres.2010.09.060 

Rebola, N., Srikumar, B. N., & Mulle, C. (2010a). Activity-dependent synaptic plasticity of NMDA 
receptors. The Journal of Physiology, 588(Pt 1), 93–9. doi:10.1113/jphysiol.2009.179382 

Rebola, N., Srikumar, B. N., & Mulle, C. (2010b). Activity-dependent synaptic plasticity of NMDA 
receptors. The Journal of Physiology, 588(Pt 1), 93–9. doi:10.1113/jphysiol.2009.179382 

Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation 
of primary auditory cortex following discrimination training in adult owl monkeys. The Journal of 
Neuroscience : The Official Journal of the Society for Neuroscience, 13(1), 87–103. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/8423485 

Rhyu, I. J. (2012). Effects of Aerobic Exercise Training on Cognitive Function and Cortical Vascularity in 
Monkeys, 167(4), 1239–1248. doi:10.1016/j.neuroscience.2010.03.003.Effects 

Rhyu, I. J., Bytheway, J. a, Kohler, S. J., Lange, H., Lee, K. J., Boklewski, J., … Cameron, J. L. (2010). 
Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. 
Neuroscience, 167(4), 1239–48. doi:10.1016/j.neuroscience.2010.03.003 

Rimol, L. M., Nesvåg, R., Hagler, D. J., Bergmann, O., Fennema-Notestine, C., Hartberg, C. B., … Dale, 
A. M. (2012). Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. 
Biological Psychiatry, 71(6), 552–60. doi:10.1016/j.biopsych.2011.11.026 

Rizos, E. N., Papathanasiou, M., Michalopoulou, P. G., Mazioti, a, Douzenis, a, Kastania, a, … Lykouras, 
L. (2011). Association of serum BDNF levels with hippocampal volumes in first psychotic episode 
drug-naive schizophrenic patients. Schizophrenia Research, 129(2-3), 201–4. 
doi:10.1016/j.schres.2011.03.011 

Rogalski, E., Cobia, D., Harrison, T. M., Wieneke, C., Weintraub, S., & Mesulam, M.-M. (2011a). 
Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. 
Neurology, 76(21), 1804–10. doi:10.1212/WNL.0b013e31821ccd3c 

Rogalski, E., Cobia, D., Harrison, T. M., Wieneke, C., Weintraub, S., & Mesulam, M.-M. (2011b). 
Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. 
Neurology, 76(21), 1804–10. doi:10.1212/WNL.0b013e31821ccd3c 

Ron de Kloet, E. (2014). From Receptor Balance to Rational Glucocorticoid Therapy. Endocrinology, 
(May), en20141048. doi:10.1210/en.2014-1048 



Rosenzweig, M. R., & Bennett, E. L. (1996). Psychobiology of plasticity: effects of training and experience 
on brain and behavior. Behavioural Brain Research, 78(1), 57–65. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/8793038 

Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9(5), 
250–7. doi:10.1016/j.tics.2005.03.005 

Sabuncu, M. R., Desikan, R. S., Sepulcre, J., Yeo, B. T. T., Liu, H., Schmansky, N. J., … Fischl, B. (2011). 
The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Archives of Neurology, 
68(8), 1040–8. doi:10.1001/archneurol.2011.167 

Sagi, Y., Tavor, I., Hofstetter, S., Tzur-Moryosef, S., Blumenfeld-Katzir, T., & Assaf, Y. (2012). Learning 
in the fast lane: new insights into neuroplasticity. Neuron, 73(6), 1195–203. 
doi:10.1016/j.neuron.2012.01.025 

Sahay, A., Scobie, K. N., Hill, A. S., O’Carroll, C. M., Kheirbek, M. a, Burghardt, N. S., … Hen, R. 
(2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. 
Nature, 472(7344), 466–70. doi:10.1038/nature09817 

Sanchez, M. M., Das, D., Taylor, J. L., Noda, a, Yesavage, J. a, & Salehi, a. (2011). BDNF polymorphism 
predicts the rate of decline in skilled task performance and hippocampal volume in healthy 
individuals. Translational Psychiatry, 1(10), e51. doi:10.1038/tp.2011.47 

Sapolsky, R. M. (2014). Glucocorticoids and Hippocampal Atrophy in Neuropsychiatric Disorders, 57, 
925–935. 

Sauvageot, C. (2002). Molecular mechanisms controlling cortical gliogenesis. Current Opinion in 
Neurobiology, 12(3), 244–249. doi:10.1016/S0959-4388(02)00322-7 

Schaaf, M. J., de Jong, J., de Kloet, E. R., & Vreugdenhil, E. (1998). Downregulation of BDNF mRNA and 
protein in the rat hippocampus by corticosterone. Brain Research, 813(1), 112–20. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/9824681 

Scharfman, H., Goodman, J., Macleod, A., Phani, S., Antonelli, C., & Croll, S. (2005). Increased 
neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. 
Experimental Neurology, 192(2), 348–56. doi:10.1016/j.expneurol.2004.11.016 

Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of 
Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 
5(7), 688–94. doi:10.1038/nn871 

Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. (2009). Training induces changes in white-
matter architecture. Nature Neuroscience, 12(11), 1370–1. doi:10.1038/nn.2412 

Schulte-Herbrüggen, O., Chourbaji, S., Ridder, S., Brandwein, C., Gass, P., Hörtnagl, H., & Hellweg, R. 
(2006). Stress-resistant mice overexpressing glucocorticoid receptors display enhanced BDNF in the 
amygdala and hippocampus with unchanged NGF and serotonergic function. 
Psychoneuroendocrinology, 31(10), 1266–77. doi:10.1016/j.psyneuen.2006.09.008 

Schultz, W. (1997). A Neural Substrate of Prediction and Reward. Science, 275(5306), 1593–1599. 
doi:10.1126/science.275.5306.1593 



Science, S. M., Winter, N., Griffin, A., & Hauser, J. R. (2013). The Voice of the Customer Author ( s ): 
Abbie Griffin and John R . Hauser THE VOICE OF THE CUSTOMER, 12(1), 1–27. 

Sehgal, M., Song, C., Ehlers, V. L., & Moyer, J. R. (2013). Learning to learn - intrinsic plasticity as a 
metaplasticity mechanism for memory formation. Neurobiology of Learning and Memory, 105, 186–
99. doi:10.1016/j.nlm.2013.07.008 

Sehm, B., Taubert, M., Conde, V., Weise, D., Classen, J., Dukart, J., … Ragert, P. (2014). Structural brain 
plasticity in Parkinson’s disease induced by balance training. Neurobiology of Aging, 35(1), 232–9. 
doi:10.1016/j.neurobiolaging.2013.06.021 

Seifert, C. L., Magon, S., Staehle, K., Zimmer, C., Foerschler, A., Radue, E.-W., … Sprenger, T. (2012). A 
case-control study on cortical thickness in episodic cluster headache. Headache, 52(9), 1362–8. 
doi:10.1111/j.1526-4610.2012.02217.x 

Selkoe, D. J. (2001). Alzheimer ’ s Disease : Genes , Proteins , and Therapy. Physiological Reviews, 81(2), 
741–766. 

Shi, Y., & Ethell, I. M. (2006). Integrins control dendritic spine plasticity in hippocampal neurons through 
NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. 
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 26(6), 1813–22. 
doi:10.1523/JNEUROSCI.4091-05.2006 

Sled, J. G., Zijdenbos, a P., & Evans, a C. (1998). A nonparametric method for automatic correction of 
intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97. 
doi:10.1109/42.668698 

Smith, M. a, Makino, S., Kvetnansky, R., & Post, R. M. (1995). Stress and glucocorticoids affect the 
expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. The 
Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 15(3 Pt 1), 1768–77. 
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7891134 

Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–55. 
doi:10.1002/hbm.10062 

Soffié, M., Hahn, K., Terao, E., & Eclancher, F. (1999). Behavioural and glial changes in old rats following 
environmental enrichment. Behavioural Brain Research, 101(1), 37–49. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/10342398 

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-
dependent synaptic plasticity, 919–926. 

Soya, H., Nakamura, T., Deocaris, C. C., Kimpara, A., Iimura, M., Fujikawa, T., … Nishijima, T. (2007). 
BDNF induction with mild exercise in the rat hippocampus. Biochemical and Biophysical Research 
Communications, 358(4), 961–7. doi:10.1016/j.bbrc.2007.04.173 

Spontaneous, S., Engert, F., & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal 
long-term synaptic plasticity, 399(May). 

St. James, D. (2012). Seven deadly speaker sins. Currents in Pharmacy Teaching and Learning, 4(3), 217–
218. doi:10.1016/j.cptl.2012.04.007 



Stahnisch, F. W., & Nitsch, R. (2002). Santiago Ram ó n y Cajal ’ s concept of neuronal plasticity : the 
ambiguity lives on, 25(11), 589–591. 

Stein, M., Federspiel, A., Koenig, T., Wirth, M., Strik, W., Wiest, R., … Dierks, T. (2012). Structural 
plasticity in the language system related to increased second language proficiency. Cortex; a Journal 
Devoted to the Study of the Nervous System and Behavior, 48(4), 458–65. 
doi:10.1016/j.cortex.2010.10.007 

Su, M. Y., Jao, J. C., & Nalcioglu, O. (1994). Measurement of vascular volume fraction and blood-tissue 
permeability constants with a pharmacokinetic model: studies in rat muscle tumors with dynamic Gd-
DTPA enhanced MRI. Magnetic Resonance in Medicine : Official Journal of the Society of Magnetic 
Resonance in Medicine / Society of Magnetic Resonance in Medicine, 32(6), 714–24. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/7869893 

Sublette, M. E., Baca-Garcia, E., Parsey, R. V, Oquendo, M. a, Rodrigues, S. M., Galfalvy, H., … Mann, J. 
J. (2008). Effect of BDNF val66met polymorphism on age-related amygdala volume changes in 
healthy subjects. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 32(7), 1652–5. 
doi:10.1016/j.pnpbp.2008.06.009 

Suri, D., & Vaidya, V. a. (2013). Glucocorticoid regulation of brain-derived neurotrophic factor: relevance 
to hippocampal structural and functional plasticity. Neuroscience, 239, 196–213. 
doi:10.1016/j.neuroscience.2012.08.065 

Swain, R. ., Harris, a. ., Wiener, E. ., Dutka, M. ., Morris, H. ., Theien, B. ., … Greenough, W. . (2003). 
Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor 
cortex of the rat. Neuroscience, 117(4), 1037–1046. doi:10.1016/S0306-4522(02)00664-4 

Sweatt, J. D. (2009). Alzheimer ’ s Disease. Mechanisms of Memory (Second Edi., pp. 292–319). Elsevier 
Inc. doi:10.1016/B978-0-12-374951-2.00012-3 

Takagi, S., Obata, K., & Tsubokawa, H. (2002). GABAergic input contributes to acti v ity-dependent 
change in cell v olume in the hippocampal CA1 region, 44, 315–324. 

Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N., … Kawashima, R. 
(2010). Training of working memory impacts structural connectivity. The Journal of Neuroscience : 
The Official Journal of the Society for Neuroscience, 30(9), 3297–303. 
doi:10.1523/JNEUROSCI.4611-09.2010 

Tallal, P., Miller, S. L., Bedi, G., Byma, G., Wang, X., Nagarajan, S. S., … Merzenich, M. M. (1996). 
Language comprehension in language-learning impaired children improved with acoustically 
modified speech. Science (New York, N.Y.), 271(5245), 81–4. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/8539604 

Taubert, M., Draganski, B., Anwander, A., Müller, K., Horstmann, A., Villringer, A., & Ragert, P. (2010). 
Dynamic properties of human brain structure: learning-related changes in cortical areas and 
associated fiber connections. The Journal of Neuroscience : The Official Journal of the Society for 
Neuroscience, 30(35), 11670–7. doi:10.1523/JNEUROSCI.2567-10.2010 

Taubert, M., Lohmann, G., Margulies, D. S., Villringer, A., & Ragert, P. (2011). Long-term effects of 
motor training on resting-state networks and underlying brain structure. NeuroImage, 57(4), 1492–8. 
doi:10.1016/j.neuroimage.2011.05.078 



Ten Brinke, L. F., Bolandzadeh, N., Nagamatsu, L. S., Hsu, C. L., Davis, J. C., Miran-Khan, K., & Liu-
Ambrose, T. (2014). Aerobic exercise increases hippocampal volume in older women with probable 
mild cognitive impairment: a 6-month randomised controlled trial. British Journal of Sports 
Medicine, i, 1–8. doi:10.1136/bjsports-2013-093184 

The Mendeley Support Team. (2011a). Getting Started with Mendeley. Mendeley Desktop. London: 
Mendeley Ltd. Retrieved from http://www.mendeley.com 

The Mendeley Support Team. (2011b). Getting Started with Mendeley. Mendeley Desktop. London: 
Mendeley Ltd. Retrieved from http://www.mendeley.com 

Thomas, C., & Baker, C. I. (2013). Teaching an adult brain new tricks: a critical review of evidence for 
training-dependent structural plasticity in humans. NeuroImage, 73, 225–36. 
doi:10.1016/j.neuroimage.2012.03.069 

Thorns, J., Jansma, H., Peschel, T., Grosskreutz, J., Mohammadi, B., Dengler, R., & Münte, T. F. (2013). 
Extent of cortical involvement in amyotrophic lateral sclerosis -- an analysis based on cortical 
thickness. BMC Neurology, 13(1), 148. doi:10.1186/1471-2377-13-148 

Tohka, J., Zijdenbos, A., & Evans, A. (2004). Fast and robust parameter estimation for statistical partial 
volume models in brain MRI. NeuroImage, 23(1), 84–97. doi:10.1016/j.neuroimage.2004.05.007 

Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E., & Svoboda, K. (2002). 
Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 
420(6917), 788–94. doi:10.1038/nature01273 

Tronel, S., Fabre, A., Charrier, V., Oliet, S. H. R., Gage, F. H., & Abrous, D. N. (2010). Spatial learning 
sculpts the dendritic arbor of adult-born hippocampal neurons. Proceedings of the National Academy 
of Sciences of the United States of America, 107(17), 7963–8. doi:10.1073/pnas.0914613107 

Tropea, D., Van Wart, A., & Sur, M. (2009). Molecular mechanisms of experience-dependent plasticity in 
visual cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological 
Sciences, 364(1515), 341–55. doi:10.1098/rstb.2008.0269 

Tuoc, T. C., Pavlakis, E., Tylkowski, M. A., & Stoykova, A. (2014). Control of cerebral size and thickness. 
Cellular and Molecular Life Sciences : CMLS. doi:10.1007/s00018-014-1590-7 

Uda, M., Ishido, M., Kami, K., & Masuhara, M. (2006). Effects of chronic treadmill running on 
neurogenesis in the dentate gyrus of the hippocampus of adult rat. Brain Research, 1104(1), 64–72. 
doi:10.1016/j.brainres.2006.05.066 

Um, H.-S., Kang, E.-B., Koo, J.-H., Kim, H.-T., Jin-Lee, Kim, E.-J., … Cho, J.-Y. (2011). Treadmill 
exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer’s disease. 
Neuroscience Research, 69(2), 161–73. doi:10.1016/j.neures.2010.10.004 

Ungerleider, L. (2002). Imaging Brain Plasticity during Motor Skill Learning. Neurobiology of Learning 
and Memory, 78(3), 553–564. doi:10.1006/nlme.2002.4091 

Van Haren, N. E. M., Schnack, H. G., Cahn, W., van den Heuvel, M. P., Lepage, C., Collins, L., … Kahn, 
R. S. (2011a). Changes in cortical thickness during the course of illness in schizophrenia. Archives of 
General Psychiatry, 68(9), 871–80. doi:10.1001/archgenpsychiatry.2011.88 



Van Haren, N. E. M., Schnack, H. G., Cahn, W., van den Heuvel, M. P., Lepage, C., Collins, L., … Kahn, 
R. S. (2011b). Changes in cortical thickness during the course of illness in schizophrenia. Archives of 
General Psychiatry, 68(9), 871–80. doi:10.1001/archgenpsychiatry.2011.88 

Van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and 
neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2(3), 266–70. doi:10.1038/6368 

Van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of environmental 
enrichment. Nature Reviews. Neuroscience, 1(3), 191–8. doi:10.1038/35044558 

Van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal 
neurogenesis in aged mice. The Journal of Neuroscience : The Official Journal of the Society for 
Neuroscience, 25(38), 8680–5. doi:10.1523/JNEUROSCI.1731-05.2005 

Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise 
on synaptic plasticity and cognition. The European Journal of Neuroscience, 20(10), 2580–90. 
doi:10.1111/j.1460-9568.2004.03720.x 

Vaynman, S., Ying, Z., & Gómez-Pinilla, F. (2004). Exercise induces BDNF and synapsin I to specific 
hippocampal subfields. Journal of Neuroscience Research, 76(3), 356–62. doi:10.1002/jnr.20077 

Vogt, B. A., Berger, G. R., & Derbyshire, S. W. G. (2003). Structural and functional dichotomy of human 
midcingulate cortex, 18, 3134–3144. doi:10.1046/j.1460-9568.2003.03034.x 

Voss, U., Holzmann, R., Tuin, I., & Hobson, J. A. (2009). Lucid dreaming: a state of consciousness with 
features of both waking and non-lucid dreaming. Sleep, 32(9), 1191–200. Retrieved from 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2737577&tool=pmcentrez&rendertype=a
bstract 

Voss, W., Vanpatter, M., Pontifex, M. B., Raine, L. B., & Konkel, A. (2014). NIH Public Access, 172–183. 
doi:10.1016/j.brainres.2010.08.049.A 

Wenger, E., Schaefer, S., Noack, H., Kühn, S., Mårtensson, J., Heinze, H.-J., … Lövdén, M. (2012). 
Cortical thickness changes following spatial navigation training in adulthood and aging. NeuroImage, 
59(4), 3389–97. doi:10.1016/j.neuroimage.2011.11.015 

Wexler, B. E. (2011). Culture and Neural Frames of Cognition and Communication. doi:10.1007/978-3-
642-15423-2 

Williams, M. R., Chaudhry, R., Perera, S., Pearce, R. K. B., Hirsch, S. R., Ansorge, O., … Maier, M. 
(2013). Changes in cortical thickness in the frontal lobes in schizophrenia are a result of thinning of 
pyramidal cell layers. European Archives of Psychiatry and Clinical Neuroscience, 263(1), 25–39. 
doi:10.1007/s00406-012-0325-8 

Wong, P. C. M., Warrier, C. M., Penhune, V. B., Roy, A. K., Sadehh, A., Parrish, T. B., & Zatorre, R. J. 
(2010). NIH Public Access, 18(4), 828–836. doi:10.1093/cercor/bhm115.Volume 

Woolf, C. J., & Salter, M. W. (2014). Neuronal Plasticity : Increasing the Gain Pain, 288(5472), 1765–
1768. 

Woollett, K., & Maguire, E. a. (2011). Acquiring “the Knowledge” of London’s layout drives structural 
brain changes. Current Biology : CB, 21(24), 2109–14. doi:10.1016/j.cub.2011.11.018 



Wr, R. R. N., Dqg, Q., Deryh, F., Dssurdfk, D., Irxqg, Q. R. W., Dq, I., … Hdv, I. R. U. (n.d.). %xvvh\ 
0rxvh 7rxfk 6fuhhq &kdpehu 3dfndjh 0rgho, 5–9. 

Young, D., Lawlor, P. a, Leone, P., Dragunow, M., & During, M. J. (1999). Environmental enrichment 
inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nature Medicine, 5(4), 448–
53. doi:10.1038/7449 

Yuede, C. M., Zimmerman, S. D., Dong, H., Kling, M. J., Bero, A. W., Holtzman, D. M., … Csernansky, J. 
G. (2009). Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and 
behavior in the Tg2576 mouse model of Alzheimer’s disease. Neurobiology of Disease, 35(3), 426–
32. doi:10.1016/j.nbd.2009.06.002 

Zagrebelsky, M., & Korte, M. (2014). Form follows function: BDNF and its involvement in sculpting the 
function and structure of synapses. Neuropharmacology, 76 Pt C, 628–38. 
doi:10.1016/j.neuropharm.2013.05.029 

Zatorre, R. J. (2013). Predispositions and plasticity in music and speech learning: neural correlates and 
implications. Science (New York, N.Y.), 342(6158), 585–9. doi:10.1126/science.1238414 

Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: music and 
speech. Trends in Cognitive Sciences, 6(1), 37–46. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/11849614 

Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: neuroimaging 
changes in brain structure during learning. Nature Neuroscience, 15(4), 528–36. doi:10.1038/nn.3045 

Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 
355–405. doi:10.1146/annurev.physiol.64.092501.114547 

 

 



 

 
The thesis of Brocke Addison is approved by: 
 
 
 
 
 
 
_______________________________________                              __________________ 
 
Dr. Alan Evans       Date 
 
 
_______________________________________                              __________________ 
 
Dr. Barry Bedell       Date 
 
 
_______________________________________                              __________________ 
 
Dr. Tim Kennedy           Date 
 



 
 

The thesis of Brocke Addison is approved by: 
 
 
 
 
 
 
_______________________________________                              __________________ 
 
Dr. Alan Evans       Date 
 
 
_______________________________________                              __________________ 
 
Dr. Barry Bedell       Date 
 
 
_______________________________________                              __________________ 
 
Dr. Tim Kennedy           Date 
 



 



 


