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ABSTRACT

Laser spectroscopy is a technique that can be used to probe the electronic

structure of atoms/ions. The Collinear Fast Beam Spectroscopy (CFBS) group

at TRIUMF uses this technique to probe the hyperfine structure of rare iso-

topes produced on-site. The hyperfine structure of an atom, which arises from

the various interactions between the atom’s/ion’s electrons and nucleus, can

be used to infer properties, such as the spin and mean squared charge ra-

dius, of the atom’s nucleus. However, the geometry of the experimental set

up at TRIUMF allows for the possibility of optical pumping, a process by

which the atoms/ions being probed have their electronic ground state dis-

tribution changed before the hyperfine structure can be measured. This in

turn can change the relative intensities of the hyperfine transitions being mea-

sured. Optical pumping depends, mainly, on the power of the laser used to

excite the hyperfine transitions being studied. In this work, a statistical model

is developed to simulate the effects of optical pumping on hyperfine spectra

measured at TRIUMF’s CFBS experiment. With the goal of simulating the

hyperfine spectrum of any atom under investigation, the model is based on

the likelihood that an atom/ion reaches the region where the hyperfine spec-

trum is measured, in its original ground state. This likelihood is in turn used

to modify the relative intensities of each hyperfine transition. The effects of

laser power, the temperature of the atoms/ions, and the distance they must

travel before being measured are examined. Additionally, the predictions of

the model are compared to previously measured Gallium-69 and Rubidium-87

hyperfine spectra. Discrepancies between the assumed temperature and the

temperature predicted by the model were observed in the case of Gallium-

69, with a possible resolution being the effects of accelerating the atoms/ions
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when they are extracted from a Radio Frequency Quadrupole trap used for

bunching. In the case of Rubidium-87, a discrepancy between the expected

and measured relative intensity of particular transition is observed. This may

be due to an over-estimation of the power delivered to the atoms.
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ABRÉGÉ

La spectroscopie laser est une technique qui permet l’étude de la structure

electronique des atomes et ions. Le group Collinear Fast Beam Spectroscopy

(CFBS), situé à TRIUMF, applique cette technique avec le but d’étudier les

spectres hyperfines des atomes et ions rares, produit sur place. La structure

hyperfine d’un atome, résultant des interactions entre les électrons de valence

et le noyau de l’atome ou ion, peut être utilisée pour déterminer le spin quan-

tique et la valeur quadratique moyenne du rayon des charges, entre autres, de

l’atome ou ion. À TRIUMF, la géometrie de l’expérience admet l’occurence

du pompage optique, un effet qui peut amener un changement aux états de

repos des particules étudiées. Ce changement peut, à son tour, altérer les

intensités relatives des transitions hyperfines mesurées. Le pompage optique

dépend, en majeur partie, de l’intensité utilisée pour l’excitation des transi-

tions hyperfines. Ce travaille présente un modèle statistique construit pour la

simulation des effets du pompage optique sur les spectres hyperfines mesurés à

TRIUMF. Ce modèle est construit sur la probabilité qu’un atome ou ion arrive

à la région d’interaction dans son état de repos originale. Cette probabilité est

ensuite appliquée comme modification aux intensités relatives des transitions

hyperfines. Les effets de l’intensité du laser, la température des particules et

la distance qu’elles doivent traverser avant d’être mesurées sont investigués.

De plus, les résultats obtenus du modèle sont comparés aux spectres hyper-

fines, mesurés auparavant, du Gallium-69 et du Rubidium-87. Dans le cas

du Gallium-69, une différence entre la température assumée et celle calculée

par le model a été observée. Cette différence provient peut-être des méthodes

utilisées pour l’extraction et l’accélération des particules étudiées. Pour ce qui

est du Rubidium-87, une différence entre les intensités mesurées et calculées a
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été observée. Une surestimation de l’intensité effective du laser pourrait être

à l’origine de ces écarts.
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CHAPTER 1
Introduction

First observed in 1892[1], the splitting of the spectral line of a single atomic

transition, now known as the hyperfine splitting or structure of a transition,

was theoretically described in 1924 by Wolfgang Pauli[2]. The development

of quantum mechanics allowed Pauli to propose that the hyperfine splitting

of a transition arose from the interaction of the orbital electrons and a small

nuclear magnetic moment. In 1931, H. Schüler and T. Schmidt proposed

the additional contribution of a nuclear electric quadrupole moment to the

hyperfine splitting, completing the modern understanding of the interaction

mechanisms[3].

The existence of hyperfine structure offers the unique opportunity to study

the structure of the nucleus of an atom by probing the structure of a partic-

ular electronic transition. The nuclear magnetic moment proposed by Pauli

depends on the spin of the nucleus, while the electric quadrupole moment de-

scribed by Schüler and Schmidt depends on the distribution of charge in the

nucleus. If the nuclear spin and the angular momentum state of the electron

in both the ground and excited states are known, then the expected hyperfine

structure can be determined by up to four parameters. Known as the hyper-

fine coefficients, these parameters describe the strength of the electron-nucleus

interactions that give rise to the hyperfine structure. If the hyperfine spectrum

of a transition can be measured empirically, the hyperfine coefficients and, by

consequence, the nuclear structure can be determined.

Laser spectroscopy is a technique through which the hyperfine spectrum

of a transition can be measured. Briefly, atoms (or ions) are exposed to laser
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radiation. The frequency of this radiation is scanned such that, in the rest

frame of the atom/ion, it comes into resonance with an allowed atomic tran-

sition. For reasons of efficiency when working with radioactive beams, the

collinear geometry is used. The laser frequency is scanned by Doppler shift-

ing the atoms/ions into resonance, rather than changing the frequency of the

laser itself. Through the adjustment of their velocity, the atoms/ions can be

moved in to and out of resonance with a chosen transition. Resonant velocities

(and thus energies) will excite electrons through a hyperfine transition. The

subsequent de-excitation of these electrons produces an excess of photons that

can be measured using a set of light collection instruments. The location of

these peaks with respect to each other determine the values of the hyperfine

parameters and, in turn, the nuclear structure.

As with all experimental techniques, laser spectroscopy has its drawbacks.

Among others, an effect known as optical pumping can severely change the

outcome of a measurement. Optical pumping occurs when the atoms are

exposed to the laser for a significant time before passing through the light

collection region. This prolonged exposure to the laser can change the ground

state distribution of the atoms, which in turn can cause certain hyperfine

peaks to be drowned out or emphasized, altering the results of the ensuing

hyperfine coefficient calculations. The strength of optical pumping depends

on the isotope being investigated, the power of the exciting laser as well as

the overall geometry of the experimental set up.

This work develops a procedure through which the effects of optical pump-

ing on any hyperfine spectrum can be simulated. In particular, this work

focuses on the laser spectroscopy experiment set up at TRIUMF, Canada’s

national nuclear physics laboratory. The following Chapter briefly outlines

TRIUMF’s general structure, as well as how laser spectroscopy is done on

2



site. Chapter 3 provides a theoretical background to the mechanisms that

lead to hyperfine splitting, while Chapter 4 describes and demonstrates the

effects of optical pumping on a hyperfine spectrum. The methods used to

simulate the effects of optical pumping at TRIUMF are also presented in this

section, with the results presented in Chapter 5. A summary and some con-

cluding remarks are given in Chapter 6, and, finally, the developed program

is found in the Appendix.
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CHAPTER 2
Laser Spectroscopy at TRIUMF

This chapter is intended as a brief introduction to the laser spectroscopy ex-

periment present at TRIUMF, with special emphasis on the parts relevant to

this work. A more complete description of the experiment can be found in [4].

As stated in the previous chapter, collinear laser spectroscopy operates by

bringing a particle beam into resonance, through Doppler tuning, with a co-

propagating (or counter-propagating, as is the case at TRIUMF) laser, which

excites transitions in the electronic structure of the particles. The photons that

are produced as a result of the de-excitation are then measured by light collec-

tion instruments. Located in the ISAC I (Isotope Separator and ACcelerator)

experimental hall at TRIUMF, as shown in Fig. 2–1, the Laser Spectroscopy

experiment at TRIUMF, more specifically known as the Collinear Fast-Beam

laser Spectroscopy (CFBS) experiment, is shown in Fig. 2–2.

At TRIUMF, radioactive atoms are produced by 500 MeV protons im-

pinging on a heavy target, inducing spallation. The products of the spallation

then diffuse out of the target material, effuse from the target to the ion source,

where they are ionized, accelerated and mass separated using a mass separa-

tor with resolution m{∆m « 2000, where m is the mass of the atom[4]. After

the required atoms have been selected, they are then directed to the CFBS

experiment, detailed below. In general, the CFBS group studies very exotic

ions, i.e. ions that have low production rates.

2.1 Radio Frequency Quadrupole (RFQ) Trap

The ions enter the CFBS experiment as a continuous beam, where they

first encounter a radio frequency quadrupole (RFQ) Paul Trap[4]. Here, the

4



Figure 2–1: The location of the CFBS experiment within the ISAC I experimental
hall, as well as the locations of the beamline and other experiments present at
TRIUMF[4].

atoms can enter the RFQ trap and are collected for a pre-determined collec-

tion time, after which they are released in bunches. Bunching the atoms helps

to significantly reduce background counts. Briefly, the light collection system

is triggered on the release of the ion bunches, reducing the available time for

background photons to be counted. As the light collection system is only

sensitive to photons for the time window during which the ion bunch passes

through the interaction region, background counts are also only collected for

this time. Alternatively, photons are collected continuously, whether or not

there are ions in the interaction region, allowing the signal to noise ratio to

diminish over time. Ideally, the two methods produce the same signal, but

with the latter having a significantly higher background. In general, the back-

ground is formed by dark counts from the photo-multiplier and actual photons
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Figure 2–2: Schematic of the CFBS experiment at TRIUMF. Radioactive ions
produced in the target area are accelerated towards the experiment[4].

scattered around the vacuum system. When continuously collected, the back-

ground is the rate of these events multiplied by the collection time. When the

beam is pulsed, the background is the rate of the background events times the

pulse length times the number of pulses per second. A typical pulse length is

roughly 10µs at about 100 pulses per second[4].

2.2 Charge Exchange Cell (CEC)

If the aim is to investigate transitions in a neutral atom, then the ions

must regain their lost electron. This is the role of the charge exchange cell

(CEC), shown in detail in Fig. 2–3. Using an alkali-metal vapour that is

circulated perpendicularly to the direction of the beam, the CEC provides a

source of electrons for the oncoming ions to capture. This introduces an is-

sue, however. As the alkali-metal vapour can not be entirely contained to the

CEC, any light collection instruments, such as a photo-multiplier tube, must

be located further down the beamline. This is done to avoid the growth of an

alkali-metal coating on the light-collection surfaces which would significantly

hamper the collection of resonant photons as the experiment progresses. This
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decision provides the raison d’être for this work, as it introduces the oppor-

tunity for optical pumping, discussed in detail in Chapter 4. Since the ions

are neutralized in the CEC, they can no longer be accelerated through the use

of an electrostatic potential. As such, they must be brought into resonance

before they enter the interaction region. This is done using a set of electrodes

present in front of the CEC, shown in Fig. 2–2, as well as floating the CEC.

In the case of transitions present in the ion, then the CEC is unneeded, and

the final acceleration is done using a mesh present within the LCR, detailed

in the next section. The location of the mesh is chosen such that the ions

are in resonance just as they pass the light collection system, removing the

possibility that optical pumping could significantly affect the results of the

experiment.

2.3 Light Collection Region (LCR)

Located roughly 40 cm down the beamline from the CEC, the light collec-

tion region (LCR) (Fig. 2–4) houses the equipment necessary for detecting the

photons emitted when a beam of ions/atoms is in resonance with a counter

propagating laser. A concave mirror located opposite the photo-multiplier

tube (PMT) allows all photons within the 5% solid angle of the detection

system to be collected by a series of light collection optics, placed in front

of the PMT, designed to optimize photon detection efficiency at a particular

wavelength[4]. Using knowledge of the laser frequency, the beam energy and

photon counts, the energies of the hyperfine transitions can be determined.
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Figure 2–3: The charge exchange cell allows oncoming ions to be neutralized
through collision with a perpendicularly flowing alkali-metal vapour[4].

Figure 2–4: Schematic of the light collection region. Photons emitted through
atom/laser interactions are directed towards a photo-multiplier tube using a com-
bination of mirrors and lenses[4].
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CHAPTER 3
Theory of Laser Spectroscopy

In this chapter, the theoretical background necessary to the understanding

and simulation of a hyperfine spectrum is presented. § 3.1 describes how

the features of a hyperfine spectrum are linked to the physical properties of

a nucleus, while § 3.2 outlines the way in which lasers interact with atoms.

Note: Throughout this section, a variable written in a bold typeface is vector

valued, while its non-bold counterpart is its magnitude.

3.1 Anatomy of a Hyperfine Spectrum

How can the properties of a hyperfine spectrum, such as that of 69Ga

shown in Fig. 3–1, be translated into measurements of the physical properties

of the nucleus? The hyperfine spectrum is, after all, the result of probing the

electronic structure of the atom. The answer is that the electrons interact

with the nucleus through several mechanisms, each of which will be described

in this section. To begin, however, consider the following system: An electron

transitions from a ground state |gy to an excited state |ey. More precisely |gy

and |ey are defined as

|gy “ |ng,Jg,Jg,zy (3.1)

|ey “ |ne,Je,Je,zy , (3.2)

where ng,e are principal quantum numbers, and Jg,e “ Lg,e ` S and Jz
g,e are

the angular momentum and projection of the angular momentum on an axis

of quantization z, respectively. L is the orbital angular momentum and S the

spin of the electron. Next, if the nucleus of the atom in which this transition
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Figure 3–1: Hyperfine spectrum and level-scheme for the 4P3{2 Ñ5S1{2 transi-
tion in atomic Gallium-69. Photon counts are shown on the vertical axis, while
the horizontal shows the energies of the photons. Each allowed transition in
the level-scheme is linked to the relevant peak in the hyperfine spectrum.

is occurring has angular momentum I, then a new vector, F, can be defined

as

Fg,e “ I` Jg,e (3.3)

F describes the total angular momentum state of the atom, so |gy and |ey can

be rewritten as

10



|gy “ |ng,Fg,Fg,zy (3.4)

|ey “ |ne,Fe,Fe,zy (3.5)

For a fixed I, F can range from p|I´ J|q to p|I` J|q.

3.1.1 Peak Energies

The energy of the electrons depends on the various electron-nucleus in-

teractions present in the atom. For the purposes of this work, only three

interactions are considered. These are the isotope, magnetic dipole and elec-

tric quadrupole shifts, which lead to energy shifts on the order of roughly

10´7 ´ 10´4 eV[5]. There are higher order interactions (magnetic octopole,

electric hexadecapole), however their effects are far below the resolution of

« 10´8 eV of the experimental set-up employed at TRIUMF[6].

Isotope Shift

The isotope shift is measured with respect to a reference isotope. As

neutrons are added or removed from a nucleus, the charge distribution, as

well as the mass, of the nucleus changes. This leads to three different effects

on the energies of the electrons.

The change in the mass of the nucleus leads to what is known as the Mass

Shift, ∆EM . The Mass Shift between two isotopes with mass numbers A and

A’ is given by[7]

∆EM “
mA ´mA1

2mAmA1

˜

ÿ

i

pi ` 2
ÿ

iąj

pi ¨ pj

¸

, (3.6)

where mA and mA1 are the isotope masses, and pi is the momentum of the ith

electron. The first term is the Bohr reduced mass equation arising from the

change in the center of mass of the system, while the second term takes into

account the correlations between the momenta of all the electrons.
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The change in the charge distribution of the nucleus produces the Field

Shift. While the typical nucleus is far smaller the wavefunction of a typical

orbital electron, the effect is still important. The energy of a nucleus in the

charge density produced by the electrons at the origin, EF , is given by

EF “
Ze2

6ε0
|ψp0q|2

@

r2ch
D

(3.7)

where ε0 is the permittivity of free space, Z is the proton number, e is the

fundamental charge, ψp0q is the value of the electron wavefunction at the

nucleus. xr2chy is the mean-square charge radius of the nucleus, defined as [8]

@

r2ch
D

“

ş8

0
ρprqr2dV

ş8

0
ρprqdV

. (3.8)

The Field Shift between two isotopes is then given by

∆EF “
Ze2

6ε0
∆|ψp0q|2∆

@

r2ch
D

(3.9)

In total, then, the isotope shift ∆EA,A1 is given by

∆EA,A1 “ ∆EM `∆EF (3.10)

Typically, ∆EM can be calculated beforehand. ∆EF , however, must be de-

termined experimentally, due to the difficulties associated with calculating

∆|ψp0q|2.

Magnetic Dipole Interaction

A nucleus with a non-zero nuclear spin I will have a magnetic dipole

moment, given by

µI “ gIµNI (3.11)

where gI is the g-factor and µN is the nuclear magneton[9]. The interaction

of µI with the magnetic field produced by the electrons, Be, creates a shift in
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the energy of the orbiting electrons. Provided the electrons occupy an angular

momentum state J ‰ 0 (since J “ 0 Ñ Be “ 0), the Hamiltonian for this

interaction is given by [7]

H “ ´µI ¨Be (3.12)

This interaction leads to a shift, ∆EµI , in the energy of the atomic states by

∆EµI “
AK

2
(3.13)

where K “ FpF` 1q ´ IpI` 1q ´ JpJ` 1q and

A “
µIBe

IJ
(3.14)

Electric Quadrupole Interaction

The electric quadrupole moment is used to describe the distribution of

charge in a nucleus. For a nucleus composed of n protons and I ě 1, the

electric quadrupole moment, Q, is given by

Q “

n
ÿ

i

p3z2i ´ r
2
i q (3.15)

where r2i “ x2i ` y2i ` z2i for a chosen z-axis[9]. Noting that the deformations

described by Q are defined with respect to the z´axis, Fig. 3–2 shows how

different values of Q translate into physical differences in the charge distribu-

tion of the nucleus. If Q ă 0, then the nucleus is stretched in the x´ y plane

(oblate). If Q ą 0, then the nucleus is stretched along the z´axis (prolate).

Q “ 0 indicates that the nucleus is spherical.

In reality, direct measurement of Q is not feasible, as the nucleus is rotat-

ing. Instead, the spectroscopic quadrupole, Qs, is measured. Qs is defined as

the projection of Q onto the axis of quantization of the nucleus, and is given

13



Figure 3–2: Shape of the nucleus for Q ă 0 (oblate), Q ą 0 (prolate) and Q “ 0
(spherical)[10].

by

Qs “
Ip2I´ 1q

pI` 1qp2I` 3q
Q, (3.16)

The use of Qs as a measure of Q is valid under the assumption that the nuclear

deformation is axially symmetric. Additionally, it is assumed that the axis of

symmetry has a well defined direction with respect to I.

The Hamiltonian for the interaction between the spectroscopic electric

quadrupole moment and the electric field produced by the electrons at the

nucleus, EN , is given by

H “ ´1

6
eQs∇EN (3.17)

where

∇EN “
B2V

BxiBxj
, txj, xku P tx, y, zu b tx, y, zu, (3.18)

e is the fundamental charge and V is the electric potential[7]. Recalling that

the nuclear deformation is symmetric about the axis of quantization, the shift

in energy is then given by

∆EQs “
B

4

„ 3
2
KpK ` 1q ´ 2IpI` 1qJpJ` 1q

Ip2I´ 1qJp2J´ 1q



(3.19)
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where B is a hyperfine coefficient and is given by [7]

B “ eQs

B

B2V

Bz2

F

. (3.20)

Eq. 3.19 has singularities at I = 1
2

and J=1
2
. This captures the fact that

in either case there is no coupling between the nucleus and the electric field

gradient produced by the electrons, as an orbital angular momentum state of

1
2

is isotropically distributed in space .

The Hyperfine Equation

The resonant energy of a transition between |gy “ |ng,Fg “ I` Jgy and

|ey “ |ne,Fe “ I` Jey is then given by

Ehfs “ Efs `∆EA,A1 `∆EµI

ˇ

ˇ

ˇ

Fe,I,Je

Fg,I,Jg
`∆EQs

ˇ

ˇ

ˇ

Fe,I,Je

Fg,I,Jg
. (3.21)

When a hyperfine spectrum is fitted, the fit parameters which govern the

locations of the peaks are the hyperfine parameters A and B for both |ey and

|gy, as well as what is known as the centroid, ν0. The centroid combines the

fine structure energy and the isotope shift into one quantity. It is important to

note that while the values of hyperfine coefficients can be directly linked to the

physical properties of the nucleus, only the change in the centroid with respect

to a reference isotope can be used to measure the change in the mean-square

charge radius.

3.1.2 Peak intensities

The other notable characteristic of a hyperfine spectrum, the ratios of the

peak intensities can give information as to the spin of the nucleus if the angular

momentum states of the electron orbitals are known. The origin of the peak

intensities is presented in more detail in the Angular Part of § 3.2, however

in the interest of the completeness of this section, the result is presented here.

The intensity of a transition from |Fe,Je, Iy to |Fg,Jg, Iy, relative to other
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available transitions, is known as the Racah intensity and is given by

Intensity “ p2Fe ` 1qp2Fg ` 1q

$

’

&

’

%

Fg Fe 1

Je Jg I

,

/

.

/

-

2

(3.22)

where the quantity in curly brackets is the Wigner 6-j symbol[7]. An important

property of the Racah intensities is the dependence on I. In cases where the

value of I may be ambiguous, the relative intensities of the transitions can be

used to discriminate between values of I.

3.1.3 Peak Widths

The lineshape of the peaks is the result of three physical processes, out-

lined in this section. These three processes are of varying importance, depend-

ing on the properties of the atoms being probed, contributing Lorentzian or

Gaussian profiles to the peak shape.

Natural Linewidth

The first addition to the linewidth of an atomic transition is the natural

linewidth. The energy-time version of the uncertainty principal, ∆E∆t “ ~

leads to

∆ν “
∆E

h
“

1

2πτ0
(3.23)

where τ0 is the mean lifetime of the state and ∆ν is the full width half max-

imum of the Lorentzian profile describing the natural lineshape of an atomic

transition[7].

Power Broadening

Stimulated emission occurs when an atom in an excited state is in the

presence of photons with energy similar to an available atomic transition. In

the case of laser spectroscopy, the laser provides the source of stimulating

photons. Stimulated emission leads to power broadening, which depends on

the power of the laser. In addition to the effects of the photon density, the
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Stark effect, where spectral lines are shifted due to the presence of an external

electric field, can also contribute to line broadening.[11] The lifetime of a state

will decrease according to

1

τ
“

1

τ0

c

1`
I

Is
, (3.24)

where I is the laser intensity and Is is the saturating laser intensity, which

occurs when the rate of absorption is equal to the rate of stimulated emission

on resonance. The expected lifetime of an excited electron decreases, resulting

in a Lorentzian contribution to the lineshape as a consequence of the energy-

time version of the uncertainty principal[7].

Doppler Broadening

Doppler broadening occurs when the atoms have a thermal velocity spread

along the direction of propagation. This velocity spread leads to a shift in the

frequency of the laser observed as by the atoms. The velocity distribution of a

collection of atoms with mass mA at temperature T , along an axis z, is given

by the so-called Maxwell-Boltzmann distribution [12]

P pvzq “

c

mA

2πkT
exp

ˆ

´
mAv

2
z

2kT

˙

(3.25)

where k is the Boltzmann constant and vz is the velocity component of the

atoms along the z-axis. The half width half maximum (HWHM) of this dis-

tribution is

HWHM “

d

2 log p2qkT

mA

. (3.26)

For a Gaussian lineshape, the HWHM is also give by

HWHM “
a

2 logp2qσg (3.27)

where σg the square root of the variance of the distribution, σ2
g “ kT {mA in

the case of a Gaussian profile. When an observer is moving relative to a source

of radiation, the frequency of the radiation measured by the observer obeys
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the following [13]

fo “ fs

d

1` v{c

1´ v{c
(3.28)

where fo and fs are the observed and source frequencies, respectively, v is the

velocity of the observer relative to the source and c is the speed of light in

a vacuum. Differentiating the above with respect to v, and assuming v ! c

leads to

dfo
dv
“2

fs
c

dfo “fs

ˆ

8kT logp2q

mAc2

˙1{2

dfo is the HWHM of the Gaussian lineshape that Doppler broadening con-

tributes to the overall lineshape of the transition[7].

Voigt Profile

As the strengths of the above processes can change depending on the

parameters of the experiment, a Voigt profile is used when fitting the hyperfine

spectra. The Voigt profile, defined as a convolution of the Lorentzian and

Gaussian profiles, has no exact analytic solution. For the purposes of this

work, the Pseudo-Voigt profile, given below, is used.

Vpxq “ 1´ ε

σg
?

2π
exp

ˆ

px´ x0q
2

2σ2
g

˙

`
εσ

πppx´ x0q2 ` σ2q
(3.29)

This is the weighted sum of a Gaussian and a Lorentzian where ε is a parameter

that determines the relative contribution of the each and x0 is the centroid. σ

is the Voigt linewidth and σg “ σ{
?

2 log 2 is defined such that the full width

half maximum of the profile as well as its components is 2σ[14].

3.2 Spontaneous Emission in
Multi-Level Atoms

A hyperfine spectrum is constructed through the measurement of the

photons emitted as electrons in excited states de-excite to lower energy states.
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In order to simulate a hyperfine spectrum, then, it is necessary to understand

the mechanisms through which electrons transition between energy levels in

an atom.

Consider a single two-level atom in an excited state. The wavefunction of

the system is given by

|ψy “ ce,0e
´iωet |e, 0y `

ÿ

S

cg,1e
´ipωg`ωqt |g, 1Sy (3.30)

where S “ pk, εq gives the wavevector k and polarization ε of an emitted

photon, ω “ kc1 , ωe and ωg are the angular frequencies corresponding to the

energy of the excited and ground states, respectively[8]. The time evolution

of the two states is described by

i
dce,0ptq

dt
“
ÿ

S

cg,1SptqΩSe
´ipω´ωaqt (3.31)

i
dcg,1Sptq

dt
“ ce,0ptqΩ

˚
Se

ipω´ωaqt (3.32)

where the coupling between each state is given by the Rabi frequency

Ωs “ ´µ ¨Eω{~. The electric dipole moment, µ between two states is given

by

µ “ e xe| r |gy (3.33)

and the electric field per mode is given by

Eω “

c

~ω
2ε0V

ε. (3.34)

V is the volume over which the field is quantized and will eventually drop out.

Integration of Eq. 3.32 and substitution of the result into Eq. 3.31, followed

1 In reality ω “ kνpωq, due to the emission/absorption effects of a resonant
gas[15]. However, in this for this work, the density of atoms is so low that
they are effectively in free space, and νpωq « c.
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by further integration yields

dce,0ptq

dt
“ ´

γ

2
ce,0ptq, (3.35)

where

γ “
ω3µ2

3πε0~c3
(3.36)

is the decay rate for the population of the excited state, ω is the frequency

of the transition and c is the speed of light in a vacuum. The mean lifetime

of the excited state is given by τ “ 1{γ. For an excited state where multiple

decay paths are available, the total decay rate, γt is given by

1

γt
“
ÿ

i

1

γi
(3.37)

where the γi are the partial decay rates for each decay path.

3.2.1 The Dipole Moment

In general, calculating the dipole moment µ “ xe| ε ¨ r |gy is not a simple

task. In the simplest case (read hydrogenic wavefunctions), the Wigner-Eckart

theorem states that the dipole moment can be split into two separate quantities

in the following manner [8]

µeg “ eRneJe,ngJgAJeJz
e ,JgJ

z
g

(3.38)

where RneJe,ngJg and AJeJz
e ,JgJ

z
g

are the radial and angular parts of the dipole

moment, described in more detail below.

Radial Part

In most cases where the hyperfine structure is being probed, the radial

part of the dipole moment only acts as an overall multiplicative factor for

the strength of the coupling between the excited and ground states. This is

due to the fact that all available ground states typically share the same radial

wavefunction, likewise in the case of the excited states. The radial part is
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given by

RneJe,ngJg “ xRneJe | r |RngJgy “

ż 8

0

r2RneJeprqrRngJgprqdr (3.39)

where the RnJ are the hydrogenic radial wavefunctions of their respective

states

RnJprq “ NnJρ
J expp´ρ{2qJ2J`1

n´J´1pρq (3.40)

where NnJ is a normalization constant and J2J`1
n´J´1pρq are the Laguerre poly-

nomials evaluated at ρ “ 2r{na0, where a0 is the Bohr radius. The J2J`1
n´J´1pρq

can be expanded in a power series

Jmn prq “
n
ÿ

k“0

ckr
k (3.41)

It is possible to extend this analysis to atomic structures that have an

isolated electron sitting outside a closed shell. This is done using the effective

principal quantum number n˚ “ n´ δJ , where δJ is called the quantum defect

and depends on the orbital angular momentum J. This extended analysis is,

however, not necessary, as an empirical measure ofR2
neJe,ngJg

is easily obtained,

and remains constant over all hyperfine transitions. This is done through the

use of the decay rate of the fine-structure transition, γf . From Eq. 3.37, the

decay rate of the fine-structure excited state is given by

1

γf
“ 3πε0~c3

ÿ

i

1

ω3
i µ

2
i

(3.42)

Substitution of Eq. 3.38 in to the above yields

1

γf
“

3πε0~c3

R2e2

ÿ

i

1

ω3
iA2

i

(3.43)
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where the subscripts on R and A have been dropped for convenience. Rear-

ranging gives the following expression for R2

R2
“

3πε0~c3γf
e2

ÿ

i

1

ω3
iA2

i

. (3.44)

Note that this result allows R to take both negative and positive values. For

the purposes of the calculations present in this work, however, only the square

of the radial part is important. As such, the degeneracy in Eq. 3.44 can safely

be ignored.

Angular Part

Unlike the radial part of the dipole moment, the angular part changes

depending on the F state of the excited and ground states. An outline of the

procedure followed to find A is outlined in this section, a complete treatment

of the calculation can be found in [8].

In the presence of hyperfine structure, the atomic eigenstates can be rep-

resented in the following manner

|n,F,Fzy “
ÿ

i

Ci |n,J,Jzy |I, Izy (3.45)

where J = J + S, S is the spin of the electron and the Ci’s are Clebsch-Gordan

coefficients. The J states can further be decomposed into combinations of J

and S states

|n,F,Fzy “
ÿ

i

Ci |I, Izy
ÿ

k

Ck |n,J,Jzy |S,Szy (3.46)

This is possible since the optical electric field only couples the orbital angular

momentum, J, components of the eigenstates. The Clebsch-Gordan coeffi-

cients can be expressed as

Ci “ xJ,Jz; S,Sz|J,Jzy “ p´1q´J`S´Jz
?

2J` 1

¨

˚

˝

J´ S S J

Jz ´ S Sz ´Jz

˛

‹

‚

(3.47)
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where the quantity in brackets is the Wigner 3-j symbol. Substituting Eq.

3.46 into the definition of µ gives

µ “
ÿ

q“´1,0,1

ep´1q1`Je`Jg`I´Fe,zRneJe,ngJg

ˆ

b

p2Jg ` 1qp2Je ` 1qp2Fg ` 1qp2Fe ` 1q

ˆ

$

’

&

’

%

Je ´ S Je S

Jg Lg ´ S 1

,

/

.

/

-

$

’

&

’

%

Je Fe I

F Jg 1

,

/

.

/

-

¨

˚

˝

Fg 1 Fe

Fg,z q ´Fe,z

˛

‹

‚

(3.48)

where the quantity in the curly brackets is not a 3-j symbol but a 6-j symbol,

and q is the polarization of the electric field (1,0,-1). Recalling that RneJe,ngJg

is a multiplying factor only and can be pulled out of the summation, then the

angular part of µ (Eq. 3.38) is given by

A “
ÿ

q“´1,0,1

ep´1q1`Je`Jg`I´Fe,z ˆ

b

p2Jg ` 1qp2Je ` 1qp2Fg ` 1qp2Fe ` 1q

ˆ

$

’

&

’

%

Je ´ S Je S

Jg Jg ´ S 1

,

/

.

/

-

$

’

&

’

%

Je Fe I

F Jg 1

,

/

.

/

-

¨

˚

˝

Fg 1 Fe

Fg,z q ´Fe,z

˛

‹

‚

.

(3.49)

3.2.2 Selection Rules

The coupling of the ground state and excited state through the optical

electrical field places restrictions on the change in the angular momentum

state of the atom. In the case of transitions between orbital angular momen-

tum states present in hyperfine atomic structures, only transitions where ∆F

“ ˘1, 0 are permitted. These selection rules reflect conservation of angular

momentum. Photons have angular momentum ~. The angular momentum of

the photon can either be parallel, anti-parallel or perpendicular to the axis of

quantization, reflecting ∆F“ ˘1, 0 respectively. Additionally, the transition

F’ = 0 Ñ F = 0 is forbidden. This is because F is a result of the coupling
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between I and J. F’ = 0 implies that I = 0 = J’ or |I| = |J|. The emission

of a photon requires a change in angular momentum, which is impossible in

both cases, as J does not change[7].

3.3 Photon Scattering Rates

The rate at which photons are absorbed by atoms is an important factor

in the simulation of hyperfine spectra. For a two level system, where the popu-

lation of the the excited state ρe and the ground state ρg obey the conservation

rule ρe ` ρg “ 1, the total scattering rate from a laser field is given by

γp “
s0{2

1` s0 ` p2δ{γq2
(3.50)

where s0 is the on resonance saturation parameter s0 “ Il{Is, δ is the detuning

parameter and γ is the decay rate of the excited state. Il is the intensity of

the laser field and Is is the saturation intensity defined as

Is ”
πhc

3λ3τ
(3.51)

where λ is the wavelength of emission of a resonant photon and τ “ 1{γ is the

lifetime of the excited state. The detuning parameter can be defined as

δ “ |fl ´ fres| (3.52)

where fl is the frequency of the laser and fres is the resonant frequency of the

transition[8]. Eq. 3.50 provides an easy evaluation of the expected time for an

on-resonance photon to be absorbed, which will be needed in the next chapter.
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CHAPTER 4
Simulation of Optical Pumping

As mentioned in the Chapter 2, the distance between the CEC and the LCR in-

troduces the possibility of optical pumping, a process that changes the ground

state distribution of the atoms as they travel the distance between the two re-

gions. This change in ground state distribution is induced by the interaction of

the atoms with the laser before they reach the LCR. In an atomic system that

has not interacted with a laser, the ground state distribution of the hyperfine

levels is statistical.[11] The likelihood of an electron occupying hyperfine level

F is proportional to 2F ` 1. In a system with N hyperfine ground states, each

with F = Fn, where n = 1,2,3,..N, the probability of an electron occupying,

the i-th level is given by [11]

ProbpFiq “
2Fi ` 1

řN
j“1 2Fj ` 1

. (4.1)

However, as the electron goes through a series of excitation/decay cycles, cer-

tain ground states will be selected over others, depending on selection rules as

well as transition probabilities. Optical pumping manifests itself through the

modification of the relative peak heights in a hyperfine spectrum, as shown in

Fig. 4–1, where the peak heights of a hyperfine spectrum of Francium show

the effects of optical pumping. The expected peak heights as calculated by the

Racah intensities are shown in red, and are compared to the intensities mea-

sured with the laser continuously on (solid black) and those measured when

the laser was pulsed (black outline). The pulsed intensities are similar to the

expected intensities, while those measured with a continuous wave (cw) laser

deviate significantly.
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Figure 4–1: Demonstration of the effects of optical pumping on the relative peak
heights for a hyperfine spectrum of Francium-208. The Racah intensities are shown
in red, while the intensities measured for a continuous wave (cw) laser and a pulsed
laser are shown in solid black and black lines, respectively. The Digital Analogue
Converter (DAC) is proportional to the laser frequency. The cw measurements
deviate significantly from the Racah intensities, while the pulsed measurements are
closer to the expected intensities[4].

To illustrate the effect of mechanisms of optical pumping, consider the

following: A hyperfine system has two ground states, F1 and F2, as well as an

excited state F3, as shown in Fig. 4–2. When the atom is in the excited state,

it has probability P pF3 Ñ F2q of decaying to the F2 state, and probability

1 ´ P pF3 Ñ F2q of decaying to the F1 state. If the atom is exposed to a

laser resonant with the F2 Ñ F3 transition, what is the probability that after

time t the ground state of the atom is still F2? Say that the lifetime of the

F2 Ñ F3 transition is τ , and that the average time for a resonant photon to

be absorbed is tabs. Then the number of excitation/decay cycles in time t,
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Figure 4–2: Toy model of a hyperfine system with two ground states, F1 and F2,
and a single excited state F3. If this system is exposed to a laser resonant with the
F2 Ñ F3 transition, then as the atom goes through excitation and decay cycles, the
chances of having an electron in F2 available for excitation decrease.

Ncycles, is

Ncycles “
t

τ ` tabs
. (4.2)

rounded down to the closest integer. If at any time, the atom decays to the

F1 state, then it is no longer on resonance and the chances of a photon being

absorbed are negligible. As such, the probability that the atom is in F2 after

Ncycles is

P pF2q “ PpF3 Ñ F2q
Ncycles . (4.3)

As P pF3 Ñ F2q ă 1, then the chances of finding an electron in the F2 state

decrease as t increases. If, for example, one began measuring the number of

resonant photons emitted after time t for a collection of atoms with the above

hyperfine structure, the number of photons measured would be reduced by a

factor of P pF2q. This calculation is the basis for the method used in this work
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to measure the effect of optical pumping on the atoms being investigated at

the CFBS, presented in the following section.

4.1 Optical Pumping as a Modification to the Racah Intensities

To evaluate the effects of optical pumping on a hyperfine spectrum col-

lected at the CFBS experiment, the toy model presented above need only be

expanded on. The important quantities are the time an atom interacts with

the laser before entering the LCR, the time it takes for a resonant photon to be

absorbed, the lifetimes of each excited state and the probability of an electron

decaying to the ground state from which it originated. The computation of

each of these quantities is shown in this section, after which they are combined

to calculate how the Racah intensity for each transition must be modified to

show the effects of optical pumping.

4.1.1 Interaction Time

The interaction time, tint is the time that the atom will be possibly be

interacting with the laser before entering the LCR. Its calculation is straight-

forward. If the distance between the CEC and the LCR is d, and the atoms

are moving at a velocity v, then the interaction time is

tint “
d

v
. (4.4)

While d is a static and (for collimated light) known quantity, v changes depend-

ing on the frequency of the laser and the resonant frequency of the transition

in question. As mentioned in Chapter 2, the CFBS fixes the frequency of the

laser and uses electrodes to alter the speed of the oncoming atoms, shifting

the frequency observed by the atoms. Knowing the initial energy of the beam

Eb and the mass of the atoms mA, the initial velocity of the atoms is

vinit “

c

2Eb
mA

, (4.5)
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If the resonant frequency of a transition is fres and the frequency of the laser

is flas, then the velocity at which the atom will observe fres, vres, is described

by [16]

fres “ flas

d

1` vres{c

1´ vres{c
. (4.6)

Rearranging yields the following expression for vres

vres “ c
pfres{flasq

2 ´ 1

pfres{flasq2 ` 1
(4.7)

and

tint “
d

c

pfres{flasq
2 ` 1

pfres{flasq2 ´ 1
(4.8)

4.1.2 Absorption Time of a Resonant Photon

For a chosen transition, what is the expected time, tabs that passes before

a resonant photon is absorbed by the atom, given a laser field of intensity I?

This is simply the inverse of the scattering rate, as described in Eq. 3.50,

evaluated at resonance, i.e. δ “ 0

tabs “

ˆ

s0γ{2

1` s0

˙´1

. (4.9)

4.1.3 Lifetime of an Excited State

This quantity is already known. The inverse of Eq. 3.36 gives the lifetime,

τ , of a particular transition

τ “
3πε0~c3

ω3µ2
. (4.10)

4.1.4 Time for Excitation/Decay Cycle

Combining the results from the two above sections, the average time that

it takes for an atom to go through an excitation/decay cycle, assuming that
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it returns to the ground state that it was in before excitation, tcycle, is

tcycle “tabs ` τ (4.11)

“

ˆ

s0γ{2

1` s0

˙´1

`
3πε0~c3

ω3µ2
(4.12)

4.1.5 Probability of Returning to Original Ground State

The probability of an atom decaying to the ground state from which it was

excited is computed by comparing the decay rates of all possible transitions

that share the same excited state as the transition in question, i.e.,

P pOGSq “
γOGS

ř

PT γPT
(4.13)

where P pOGSq is the probability of the atom returning to the original ground

state, γOGS is the decay rate of the transition that results in the return to the

original ground state and γPT is the decay rate of all possible transitions that

share the same excited state as the transition in question.

4.1.6 Probability of Reaching the LCR

Finally, the probability of an atom reaching the LCR without changing

its ground state is given by

P pOGS at LCRq “

ˆ

γOGS
ř

PT γPT

˙

tint
tcycle

(4.14)

where tint
tcycle

is rounded down to the nearest integer, reflecting the fact the

excitation/decay cycles are quantized events.

4.2 Modification of the Racah Intensities

Now that the probability of finding an atom in its original ground state

when it reaches the LCR is known, the effects of optical pumping can be

simulated through the modification of the Racah intensity for each transition.
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For a given transition Fe Ñ Fg the modified Racah intensity, IRmod
, is

IRmod
“P pFg at LCRqp2Fe ` 1qp2Fg ` 1q

$

’

&

’

%

Fg Fe 1

Je Jg I

,

/

.

/

-

2

(4.15)

“

ˆ

γOGS
ř

PT γPT

˙

tint
tcycle

p2Fe ` 1qp2Fg ` 1q

$

’

&

’

%

Fg Fe 1

Je Jg I

,

/

.

/

-

2

(4.16)

which results from the combination of Equations 4.14 and 3.22.

4.3 Summary

In this Chapter, optical pumping was treated as a modification to the

Racah intensities, which describe the intensities of hyperfine transitions. Op-

tical pumping changes the ground state distribution of the atoms/ions before

they enter the LCR. To simulate this effect, the probability of an atom reach-

ing the LCR without changing ground state was calculated (Sections 4.1.5

and 4.1.6) for each hyperfine transition. This probability was a function of the

laser power, the distance between the CEC and the LCR, and the likelihood

of the transition in question. Once the probability of an atom remaining in

its original ground state was known, the corresponding Racah intensity was

multiplied to get the adjusted intensity for that particular transition.

4.3.1 Previous Method: Monte-Carlo Type Simulation

The method developed above is based on statistical ensembles describ-

ing the state of the atoms/ions as they pass through the experiment. Pre-

viously, a full simulation of each atom as it passed through the experiment

was developed. This method was eventually abandoned due to the excessive

computation time required. For posterity’s sake, it is mentioned here.

In this section, the Monte-Carlo simulation of a hyperfine spectrum mea-

sured at TRIUMF is described in detail. §4.3.1 includes little more than a

31



graphical representation of the algorithm followed when the atoms are inter-

acting with the laser. Each subsequent section is dedicated to an individual

step in the algorithm, detailing the logic and computations required at that

step. The final section shows how a hyperfine spectrum is built through the

repeated application of the interaction loop.

Select
velocity and
ground state

Compute
exitation

rates

Advance
by eaxcita-
tion time

In IR?
Excite to
new state

Advance by
mean lifetime

In IR? Next atom

Deexcite and
select new

ground state
In LCR?

Record
photon and
increase
counter

Yes

No

No

Yes

Yes

No

Figure 4–3: Flow chart detailing the steps undertaken by the algorithm to follow
the atom as it moves through the IR. The green ellipses and blue rectangles compose
the interaction loop of the simulation, where the atom interacts with the laser and
goes through excitation/decay cycles. Finally, the yellow rectangle is the end point
of the loop, and occurs when then atom has moved beyond the IR.

4.4 Interaction Loop

Fig. 4–3 shows each step taken an atom as it passes through the simula-

tion. The red rounded rectangles represent preliminary steps in the simulation,

where initial properties are imparted to the atom. The first preliminary step

selects a velocity and ground state for the atom. The following step is the

calculation of the likelihood of excitation for each allowed transition. This

prepares the atom for what can be considered the main loop of the algorithm.

Here, the atom and laser interact as the atom traverses the IR.

The interaction loop is composed of green ellipses and blue rectangles.

Two of the three green ellipses represent regular checks to ensure that the
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atom is still in the IR. If at any point the atom is found to have moved beyond

the IR, then the algorithm moves on to the next atom. The third green ellipse

is dedicated to checking if a photon released by the atom would be measured

by the PMT. The evolution of the state and position of the atom is described

by the blue rectangles.

4.4.1 Preliminary Steps

The first two steps select the initial properties given to the atom, de-

termining how likely the atom is to interact with the laser. The two most

important properties are the velocity and the ground state of the atom. Both

are chosen through the sampling of their respective probability distributions.

Velocity Selection

The velocity of the atom va can be decomposed in to two elements: the

mean velocity of the beam, vm, and the thermal velocity vT .

va “ vm ` vT (4.17)

The mean velocity is determined by the energy of the beam and the mass of

the atom, i.e.

vm “

c

2Eb
mA

(4.18)

where Eb is the energy of the beam and mA is the mass of an atom with mass

number A.

The thermal velocity is selected by sampling the Maxwell-Boltzmann dis-

tribution (Eq. 3.25). This is done using the Box-Muller transform, which

samples a uniform distribution twice and converts the results into a sample of

a normal distribution. A sample vT , of a Maxwell-Boltzmann distribution

vT “ σMB

a

´2 log x1 cosp2πx2q (4.19)

33



where x1, x2 P r0, 1s are two randomly generated numbers taken from a uni-

form distribution and σMB is the square root of the variance of the Maxwell-

Boltzmann distribution.

Ground State Selection

For an atom with a coupled angular momentum state Fg as the ground

state, the electron can occupy any of the 2Fg ` 1 projections on the axis of

quantization. A particular projection, say Fi P r´Fg,´Fg ` 1, ..., Fg ´ 1, Fgs,

has a probability of being occupied that is proportional to 2Fi`1. Taking the

probability space occupied by each projection into account, the probability

that an electron occupies the projection Fi, P pFiq, is given by

P pFiq “
2Fi ` 1

ř

j 2Fj ` 1
(4.20)

Knowing this, the ground state can be chosen through the generation of a

random number x P r0, 1s from a uniform distribution. Each projection is

given a range of numbers from 0 to 1, proportional to Eq. 4.20. If x falls in

the assigned range, then that ground state is chosen.

Computation of Excitation Rates

With the ground state and the velocity of the atom now selected, the

probability that a transition will occur can be calculated. For each allowed

transition between the chosen ground state Fg and an excited state Fe,i, the

transition rate γi is given by Eq. 3.50. Note that the laser frequency fl must

be shifted according to Eq. 3.28.

4.4.2 Interaction Loop

The interaction loop of the algorithm is the place where the atoms undergo

several instances of excitation and decay. Also included are regular checks to

see in the atom would still be present in the interaction region, as well as
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whether or not a released photon would be measured by the light collection

system present in the experiment.

Excitation Time

Once all the excitation rates have been computed, the atom can now be

advanced by the expected time it takes for a transition to occur. This time is

called the excitation time, te, and is given by

te “
ÿ

i

1

γi
(4.21)

After time te, the atom is advanced a distance de “ teva. If it is still in the

interaction region, then an excited state Fe is chosen by sampling a uniform

distribution where each transition is given a region proportional to 1{γi, in

similar style to the method used to select the ground state. If the atom is no

longer in the interaction region after te, then it is discarded and the algorithm

moves on to the next atom.

Advancing by the Mean Lifetime, Decay and Selection of New
Ground State

Once the excited stated of the atom has been selected, then the atom

is advanced a distance dl “ tlva where tl is the mean lifetime of the excited

state. The mean lifetimes of each excited state are computed (according to §

3.2) once at the beginning of the simulation, then stored for later use. If the

atom is still in the interaction region after having moved dl, then it decays into

one of the allowed ground states. If not, then the simulation moves on to the

next atom. As with the selection of the excited state, a uniform distribution

is sampled, and each ground state Fg,i is given a range of values proportional

to the inverse of the lifetime of the transition from the excited state, Fe, to

Fg,i.
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Once a ground state is selected, a photon with energy given by Eq. 3.21

is ”released”. If the atom is in the light collection region, then this photon

is recorded for later analysis. Additionally, a counter that keeps track of the

number of photons collected at each beam energy is increased by one. If the

atom is not in the LCR, then nothing is recorded, and the excitation-decay

process begins again with the computation of excitation rates.

4.4.3 Simulation of Complete Run

In order to simulate a complete experimental run, a chosen number of

atoms, say N, are passed in sequence through the above loop. This is done

in turn for each beam energy in a list of energies that are selected such that

the Doppler shifted laser energies range from the lowest energy to the highest

energy transition, with some leeway on either side. This range can be called

Er. The graph of photon counts per beam energy is in fact the hyperfine

spectrum. Alg. 1 shows the pseudo-code that is followed for the simulation

of a collection of atoms passing through the experiment. Following Alg. 1 is

a list of all the preliminary parameters needed by the simulation in order to

compute the necessary quantities presented in this section.
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Result: Simulation of complete hyperfine spectrum

Input all preliminary parameters;

for Beam energy in Er do

for Each atom do

Run interaction loop;

Record photon count;

end

Sum photon count into counts per beam energy;

end

Plot photon count at each beam energy;

Algorithm 1: Pseudo-code for the simulation of a complete hyperfine spec-

trum.

The preliminary parameters mentioned in the above pseudo-code refer to

all the quantities required to perform a complete simulation of a hyperfine

spectrum measured at TRIUMF. A list of these parameters is provided below,

for completeness.

List of Preliminary Parameters and Their Symbols

• Isotope mass: mA

• Ground J-state: Jg

• Excited J-state: Je

• Nuclear spin: I

• Principal quantum number of ground state: ng

• Principal quantum number of excited state: ne

• Magnetic dipole hyperfine coefficient of ground state: Ag

• Magnetic dipole hyperfine coefficient of excited state: Ae

• Electric quadrupole hyperfine coefficient of ground state: Bg

• Electric quadrupole hyperfine coefficient of excited state: Be
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• Beam temperature: Tb

• Laser frequency: fl

• Laser intensity: Il

• Fine structure transition energy: Efs

• Number of atoms to simulate per beam energy: Na

• Distance between CEC and LCR: d

• Length of LCR: dLCR
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CHAPTER 5
Results

This section presents and examines the results of the modeling outlined in

the previous section. § 5.2 shows the effects of changing important input

parameters, such as the temperature, on a simulated spectrum of Gallium-69.

5.1 Initial Test

As a first test, this Fig. 5–1 presents a comparison between a measured

spectrum of Gallium-69 and a simulated spectrum generated using the param-

eters given in Table 5–1.

Figure 5–1: Comparison between a measured spectrum of Gallium-69 and a spec-
trum simulated using the parameters given in in Table 5–1. The baseline counts
(3.6˘0.1) for the simulated spectrum are given by a best fit line of the Gallium-69
spectrum. The results of this fit are shown in table 5–2.
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Au (MHz) Al (MHz) Bu (MHz) Bl (MHz)
1070.908128 188.512676 0 68.333737

Temperature (K) Power (mW) CEC-LCR Dist. (m)
300 1.0 0.40

Table 5–1:

Au (MHz) Al (MHz) Bu (MHz) Bl (MHz) Background
1070˘4 188˘2 0 68˘ 4 3.6˘ 0.1

Table 5–2: Table of best fit parameters for the spectrum shown in Fig.5–1.

A distinct difference in the peak widths between the simulated and mea-

sured spectra can be seen in Fig. 5–1, where the simulated spectrum has

narrower peaks than the measured spectrum. A reduced χ2 (defined as χ2 “

1
N

řN
i
psi´miq

2

σ2
i

, where si is the simulated counts, and mi and si are the mea-

sured counts and their uncertainty, respectively) statistic of 3.167010 is re-

ported as a measure of accuracy between the simulation and data. Note that

the second peak from the left is composed of two transitions. Since the tem-

perature is merely an estimate based on the temperature of the inert gas used

to cool the ions in the RFQ, it is possible that this estimation is inaccurate.

Fig. 5–2 shows the reduced χ2 statistic as a function of the temperature used

in the simulation. The estimated temperature of 300 K is lower than the tem-

perature that produces the lowest reduced χ2 value, occurring at „910 K. This

could be due to reheating of the ions as they are extracted from the RFQ and

accelerated towards the LCR.

5.2 Temperature, CEC-LCR Distance and Power

In this section, the effects of changing the temperature of the beam, the

distance between the CEC and the LCR, and the laser power are shown and

discussed.

40



Figure 5–2: The reduced χ2 statistic as a function of the temperature used in the
simulation of a Gallium-69 hyperfine spectrum. The estimated temperature of 300
K is shown, as well as the temperature at which a minimum in the χ2 value occurs,
„ 910 K.

5.2.1 Temperature

The temperature of the atoms as they interact with the laser is expected

to affect the widths of the peaks in the resulting hyperfine spectra. Eq. 3.1.3

describes the effects of temperature on the Gaussian contribution to the width

of a Voigt profile. Fig 5–3 shows the effects of temperature on a simulated

spectrum of Gallium-69. As the temperature increases, Doppler broadening

begins to dominate over the natural linewidth of the peaks and the hyperfine

structure of the spectrum is diluted.
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Figure 5–3: The effects of the temperature on the hyperfine spectrum of Gallium-
69. As the temperature of the atoms increases, the Doppler contribution to the
width of the peaks increases. At sufficiently high temperatures (« 2.0ˆ 103 K), the
hyperfine structure of the atom begins to smooth out.

5.2.2 CEC-LCR Distance

Eq.4.14 inversely depends on the distance between the CEC and the LCR.

The likelihood of an atom reaching the LCR in its original ground state de-

creases as the CEC-LCR distance increases. Conversely, this likelihood in-

creases as the CEC-LCR distance decreases. Fig 5–4 shows the effects of chang-

ing this distance on a simulated Gallium-69 spectrum, for a fixed power of 1.0

mW. Between 0.1 and 1.0 m, there is no discernible difference between the

simulated spectra. As the distance increases, optical pumping begins to have

a larger effect. At 5 m, the central peak begins to completely dominate the

spectrum at the expense of the smaller peaks near 1.5 and 4 ˆ10´3+2.9709512

eV.
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Figure 5–4: The effects of changing the CEC-LCR distance on a simulated spectrum
of Gallium-69, for a laser power of 1.0 mW.

5.2.3 Laser Power

The power of the laser is the most important parameter when simulating

the effects of optical pumping on a hyperfine spectrum. This sections first

shows the behavior of the model as the power is changed. Figures 5–5 and

5–6 show how a simulated spectrum of Gallium-69 changes as the power of the

exciting laser is increased from 1.0 to 100 mW. As the power of the laser is

increased, certain transitions become less likely with respect to others, chang-

ing the relative intensities of the peaks. At laser powers about 20 mW, the

spectrum begins to be dominated by the Fg “ 3 ÑFe “ 2 transition. At

powers above 50 mW, the spectrum is entirely dominated by this transition.

Rubidium-87

In a recent experimental run at TRIUMF, the hyperfine spectrum of

Rubidium-87 (I = 1.5, Je = 1.5, Jg = 0.5), a level diagram of which is shown

in Fig. 5–7 was examined as the power of the exciting laser was changed. The
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Figure 5–5: The effects of the power of the exciting laser on a simulated Gallium-69
spectrum are shown above for laser powers between 0.1 and 40 mW.

Figure 5–6: Increasing the power of the laser causes optical pumping to have a
greater effect on the resulting spectrum. The above shows the simulated spectrum
of Gallium-69 for laser powers between 50 to 100 mW.
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experiment was set up in a very similar manner to those described in Chapter

2. However, rather than collecting Rubidium atoms through the collision of

protons with a target material, a stable source of Rubidium was used. Below

are the results of the run, compared to the spectra predicted by the algorithm

described in the previous chapter.

Figure 5–7: Level diagram of Rubidium-87.

Fig. 5–8 shows the performance of the simulation for laser powers of 4.5

to 18.9 µW. The lack of data between the two groups of peaks is due to the

method of scanning used. To reduce the collection time required, only the

regions where peaks were expected were scanned. Also shown are the reduced

χ2 values for each comparison. The simulated spectra tend to exaggerate the

effects of optical pumping, exemplified by the predicted height of the left-most
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(a) (b)

(c) (d)

Figure 5–8: Comparison between the simulated (red) and measured (black) hyper-
fine spectrum of Rubidium-87 for laser power: (a) 4.5 µW (b) 8.7 µW (c) 12.5 µW
(d) 18.9 µW .

peak. In each case, this peak is much lower than the corresponding peak in

the measured spectrum. This trend continues in Fig. 5–9 and Fig. 5–10 where

the comparison between the simulated and measured spectra are shown, for

powers ranging from 22.1 to 36.4 µW and 39.1 to 108.0 µW, respectively. Fig.

5–10d shows the performance of the model when compared to the Rubidium-87

spectra. The reduced χ2 statistic is reported for each Rubidium spectrum and

is plotted as a function of the laser power. As a general trend, the model ac-

curacy decreases as the power increases. Examining the comparisons between

the predicted and measured spectra of Rubidium-87, a discrepancy between

the expected and measured height of the lowest energy peak, located at „

46



(a) (b)

(c) (d)

Figure 5–9: Continuing from Fig. 5–8, a comparison between the simulated (red)
and measured (black) hyperfine spectrum of Rubidium-87 for laser power: (a) 22.1
µW (b) 24.0 µW (c) 24.4 µW (d) 36.4 µW . Also shown are the reduced χ2 values
for each comparison.

0.75e-5+1.58903 eV, is present across all laser powers, indicating that the

model overestimates the effects of optical pumping for this transition (Fe = 1,

Fg = 2). The most likely culprit for this discrepancy is the assumption that

100% of a the laser power is delivered to the atoms.
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(a) (b)

(c) (d)

Figure 5–10: The final set of spectra exploring the effect of the laser power on the
hyperfine spectrum on Rubidium-87 for laser powers: (a) 39.1 µW (b) 50.1 µW
(c) 108.0 µW . Also shown are the reduced χ2 values for each comparison. (d)
shows the reduced χ2 statistic as a function of the power of the exciting laser for
the Rubidium-87 experimental run.
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CHAPTER 6
Conclusion

In this work, a brief introduction to collinear laser spectroscopy at TRIUMF

was presented, followed by the theoretical background necessary to understand

the hyperfine structure of an atom. Then, a treatment of optical pumping

as a modification to the Racah intensities was described and then used to

simulate the effects of optical pumping on the measured hyperfine spectra of

both Gallium-69 and Rubidium-87. The effects of the beam temperature, the

experimental geometry and the power of the exciting laser were explored on a

simulated Gallium-69 spectrum. Increasing the temperature caused the peak

width to increase, while increasing the distance between the CEC and the

LCR affected the relative heights of the hyperfine peaks. Increasing the laser

power caused the relative peak heights to change. Continuously increasing

the laser power led to the complete domination of a single transition, with the

other transitions being pumped out. When compared to measured Gallium-69

spectra, there was a discrepancy between the assumed beam temperature ( 300

K) and the temperature that produced most accurate simulation ( 910 K),

possibly caused by an inaccurate estimation of the cooling effects of the RFQ,

or a broadening effect caused by the accelerating voltages. When compared

to Rubidium-87 spectra measured using different laser powers, the simulation

consistently underestimated the height of the lowest peak. The discrepancy

between the measured and simulated Rubidium-87 spectra seemed to increase

with laser power.

Towards future work, there is likely some merit in comparing the simu-

lation to different isotopes in future experiments. A larger sample of isotopes
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would help to identify the consistent limitations of the simulation, given that

the discrepancies between the simulated and measured spectra in this work

do not have consistent sources i.e. peak widths in the case of the Gallium-69

spectra and peak heights in the case of the Rubidium-87 spectra. Additionally,

the results of this work also point to the possibility of using the peak widths to

measure the cooling effects of the RFQ. Currently, the isotopes are assumed

to be in thermal equilibrium with the cooling gas in the RFQ before they

are re-injected into the beam line. Given that the Gallium-69 results showed

significant discrepancies between the measured and simulated peak widths,

the assumption of thermal equilibrium can be called into question and further

investigation with other isotopes may help examine its validity.
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APPENDIX A
Written Code

#This version of the code outputs the likelihood of an

atom making it to the LCR in the same ground state

that it started in.

import numpy as n

import math as m

import cmath as cm

import time as ti

from decimal import *

import random as r

import numpy.linalg as lin

from sympy.physics.wigner import wigner_6j , wigner_3j

from scipy.special import wofz

import matplotlib.pyplot as plt

#----------------------INTRO ---------------------------

#------------------Preamble

------------------------------------

# Important constants
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kB = 8.6173324 * 10**( -5) #eV/K boltzmanns constant

kB_J = 1.38064852e-23#boltzmann constant in J/K

amu = 931.4940954*10**6 #eV/c^2 rest energy of one atomic

mass unit

amu_kg = 1.66054e-27 #amu in kg

c = 299792458 #m/s speed of light

alpha = 0.0072973525664 #fine structure constant

m_e = 0.5109989461*10**6#eV/c^2 mass of electron

c_e = 1.6021766208*10**( -19) #charge of electron in

Coulombs

r_e = 2.817*10**( -15)#classical electron radius in m

kB_cc = kB/(c**2)#kB/c^2 boltzmann constant per c^2

hbar = 6.582119514*10**( -16) #reduced planck constant in

eV*s

h_js = 6.626070040*10**( -34) #planks constant in J s

e_0 = 8.854187817*10**( -6) /(6.242*10**(24)) #vacuum

perimittivity in Coulombs ^2/eV*m

a_0 = 5.29*10**( -11) #bohr radius in m

def GSP(I,J_l):#Returns a random F state for ground state

Js = n.arange(-J_l ,J_l + 1,1)

Fs = Js + I

F_mg = 2*Fs+1

tot = n.sum(F_mg)

F_mg = F_mg/tot

F_mat = n.zeros ([len(Js) ,2])

F_mat [:,0] = Fs
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F_mat [:,1] = F_mg

rnum = r.uniform (0,1)

lower = 0

for f in n.arange(0,len(Js)):

upper = lower + F_mat[f,1]

if rnum == 1:

F_state = Fmat[len(Js) -1,0]

elif lower <= rnum < upper:

F_state = F_mat[f,0]

lower = upper

return F_state

def Boltz(M,T):#returns random z-velocity from a

Boltzmann distribution (m/s)

sig = (kB*T/(2.0*n.pi*M/c**2))**(0.5)

ran1 = n.random.uniform (0,1)

ran2 = n.random.uniform (0,1)

vel = sig*n.sqrt (-2.0*n.log(ran1))*n.cos (2.0*n.pi

*ran2)

return vel

def Cauch(mean ,gam):

ran1 = n.random.uniform (0,1)

cauch = mean + gam*n.tan(n.pi*(ran1 -0.5))

return cauch
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#Define K

def K(F,I,J):

Kk = F*(F+1.0) - I*(I+1.0) - J*(J+1.0)

return Kk

#Define Beta

def Beta(K,I,J):

if I <= 0.5 or J <= 0.5:#check for B coeffs. Set

to zero if they’re not important

Beta = 0

else :

Beta = (3.0*K*(K+1.0) -4.0*I*(I+1.0)*J*(J

+1.0))/(8.0*I*(2.0*I-1.0)*J*(2.0*J

-1.0))

return Beta

def E_hf(J,I,F,A,B):#energy of each hyperfine level in eV

. From allen leary’s thesis

Kk = K(F,I,J)

E_hfine1 = (hbar *2.0*n.pi)*(0.5*(A*10**6)*Kk)#

here A is converted to Hz , same for B on the

next line

E_hfine2 = (hbar *2.0*n.pi)*((B*10**6) /4.0) *(1.5*

Kk*(Kk +1.0) -2.0*I*J*(I+1.0)*(J+1.0))/(I*J

*(2.0*I -1.0) *(2.0*J -1.0))

ch = m.isnan(E_hfine2)

if m.isnan(E_hfine2):
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E_hfine2 = 0

E = E_hfine1+E_hfine2

return E

def Rad(N_u ,J_u ,N_l ,J_l):#this function returns the

radial matrix element for two states in units of a_0

lw = (N_l ,J_l -0.5)

for ch in n.arange (0,14,1):

rads = rad_mat[ch]

if lw in [rads [0]]:

break

if N_u == 2:

mat_el = rads [1]

if N_u == 3:

mat_el = rads [2]

if N_u == 4:

mat_el = rads [3]

if N_u == 5:

mat_el = rads [4]

return mat_el

def F(I,J_u ,J_l):#returns all the possible transistions

Fu ->Fl J_u , J_l

J_us = n.arange(-J_u ,J_u+1,1)

J_ls = n.arange(-J_l ,J_l+1,1)

F_us = I + J_us

F_ls = I + J_ls

trans = []

56



ntrans = 0

for u in F_us:

for l in F_ls:

ch = n.abs(u-l)

if ch == 1:

trans.append(u)

trans.append(l)

trans.append(u-I)

trans.append(l-I)

amp = (2.0*l+1.0) *(2.0*u

+1.0)*( wigner_6j(u,l

,1,J_l ,J_u ,I))**2

trans.append(amp)

ntrans = ntrans + 1

if ch == 0:

if u != 0:

trans.append(u)

trans.append(l)

trans.append(n.

abs(u-I))

trans.append(n.

abs(l-I))

amp = (2.0*l+1.0)

*(2.0*u+1.0) *(

wigner_6j(u,l

,1,J_l ,J_u ,I))

**2

trans.append(amp)
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ntrans = ntrans +

1

Ftemp = n.array(trans)

F = Ftemp.reshape ((ntrans ,5))

F[:,4] = F[: ,4]/n.sum(F[: ,4])

return F

def mu(N_u ,J_u ,F_u ,F_uz ,N_l ,J_l ,F_l ,F_lz ,I,q):#compute

the dipole moment. from eq. 4.33 pg 55 in Laser

cooling and Trapping (Metcalf)

rad_el = Rad(N_u ,J_u ,N_l ,J_l)*a_0 #q is the

photon polarization q = +-1 or 0

exp = c_e *( -1.0) **(1+(J_u -0.5) +0.5+ J_l+J_u+I-F_uz

)

sqrt = n.sqrt ((2.0* J_u +1.0) *(2.0* J_l +1.0) *(2.0*

F_u +1.0) *(2.0* F_l +1.0))

wig6 = wigner_6j ((J_u -0.5),J_u ,0.5,J_l ,(J_l -0.5)

,1)*wigner_6j(J_u ,F_u ,I,F_l ,J_l ,1)

wig3 = wigner_3j(F_l ,1,F_u ,F_lz ,q,-F_uz)

mu = rad_el*exp*sqrt*wig6*wig3

return mu

def A_calc(J_u ,F_u ,F_uz ,J_l ,F_l ,F_lz ,I,q):#compute the

dipole moment. from eq. 4.33 pg 55 in Laser cooling

and Trapping (Metcalf)

#q is the photon polarization q = +-1 or 0

exp = c_e *( -1.0) **(1+(J_u -0.5) +0.5+ J_l+J_u+I-F_uz

)

sqrt = n.sqrt ((2.0* J_u +1.0) *(2.0* J_l +1.0) *(2.0*

F_u +1.0) *(2.0* F_l +1.0))
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wig6 = wigner_6j ((J_u -0.5),J_u ,0.5,J_l ,(J_l -0.5)

,1)*wigner_6j(J_u ,F_u ,I,F_l ,J_l ,1)

wig3 = float(wigner_3j(F_l ,1,F_u ,F_lz ,q,-F_uz))

A_calc = exp*sqrt*wig6*wig3

return [A_calc ,exp ,sqrt ,wig6 ,wig3]

def Dop(v,wn):

beta = v/c #beta factor

fact = ((1.0+ beta)/(1.0- beta))**(0.5)

obs = fact*wn

return obs

def Scatter(gamma ,s_0 ,delta):#scattering rate of photons

from laser metcalf pg.25

gamma_prime = gamma*n.sqrt (1.0+ s_0)

scattering_rate = (s_0 /(1.0+ s_0))*(gamma /2.0)

/(1.0+(2.0* delta/gamma_prime)**2)

return scattering_rate

def Lorentz(xdata ,cent ,gamma):

Lor = (1.0/n.pi)*( gamma /((xdata -cent)**2+ gamma

**2))

return Lor

def gaussian(xdata ,cent ,sig):

Gauss = n.exp(-(xdata -cent)**2/(2* sig **2))/(sig*n

.sqrt (2.0*n.pi))

return Gauss
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def realvoigt(xdata ,cent ,f_g ,f_l):

z = (xdata -cent+1j*f_l)/(f_g*n.sqrt (2*n.pi))

wof = wofz(z)

voigt = wof.real/(f_g*n.sqrt (2*n.pi))

return voigt

def pseudovoigt(xdata ,cent ,f_g ,f_l):

f = (f_g **5+2.69269* f_g **4* f_l +2.42843* f_g **3* f_l

**2+4.47163* f_g **2* f_l **3+0.07842* f_g*f_l **4+

f_l **5) **(1.0/5)

#eta =1.0 - n.abs (1 -(1.36606*( f_l/f) -0.47719*( f_l

/f)**2+0.11116*( f_l/f)**3))

#eta=1

eta = 1.36606*( f_l/f) -0.47719*( f_l/f)

**2+0.11116*( f_l/f)**3

pseudovoigt = (eta*Lorentz(xdata ,cent ,f_l /2.0)

+(1.0- eta)*gaussian(xdata ,cent ,f_g/2))

return pseudovoigt ,eta

def voigt(xdata ,amp ,cent ,sig ,ep):#define the voigt peak.

If ep is less than 0 or greater than 1, mess up the

profile

x = xdata

C = cent

S = sig

A = amp

E = ep
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Sg = S/n.sqrt (2*n.log (2))

vmodel = (A*(1.0-E)/(Sg*n.sqrt (2.0*n.pi)))*n.exp(-(x-

C)**2/(2.0* Sg**2))+ ((E*A)/(n.pi))*(S)/((x-C)**2+S

**2)

if 0>E or 1<E:

vmodel = vmodel + 50000

return vmodel

#-----------------------Inputs

-------------------------------------

v_c = raw_input(’Use the same parameter vector ?(y/n)’)#

makes it easier to rerun things

#v_c = ’y’

if v_c in [’n’]:

mss = float(raw_input(’Isotope mass (AMU):’))#get

mass of isotope

Z = float(raw_input(’Z (# of protons):’))#get

charge of nucleus

J_l = float(raw_input(’Lower J state:’))#get

lower J state of transition

J_u = float(raw_input(’Upper J state:’))#get

upper J state of transition

I = float(raw_input(’Nuclear spin:’))#get nuclear

spin of isotope
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gamma_e = float(raw_input(’Experimental decay 

rate of fine structure transition (Hz):’))

A_u = float(raw_input(’Upper A coefficient (MHz):

’))#hyperfine coefficients

A_l = float(raw_input(’Lower A coefficient (MHz):

’))

B_u = float(raw_input(’Upper B coefficient (MHz):

’))

B_l = float(raw_input(’Lower B Coefficiet (MHz):’

))

T = float(raw_input(’Beam Temperature (K):’))#get

beam temperature

l_wn = float(raw_input(’Laser wavenumber (cm^(-1)

):’))#get laser wavelength

l_p = float(raw_input(’Laser Power (mW):’))#get

laser power

wn_fs = float(raw_input(’Fine Structure 

transition wavenumber (cm^(-1)):’))

d = float(raw_input(’Distance between CEC and LCR

 (m):’))#distance over which optical pumping

is problematic

FILENAME = str(raw_input(’Experimental file (if 

none , then write n)’))

vec = [mss ,Z,J_l ,J_u ,I,gamma_e ,A_u ,A_l ,B_u ,B_l ,T,

l_wn ,l_p ,wn_fs ,d,FILENAME]

if v_c in [’y’]:

mss = float(vec [0])
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Z = float(vec [1])

J_l = float(vec [2])

J_u = float(vec [3])

I = float(vec [4])

gamma_e = float(vec [5])

A_u = float(vec [6])

A_l = float(vec [7])

B_u = float(vec [8])

B_l = float(vec [9])

T = float(vec [10])

l_wn = float(vec [11])

l_p = float(vec [12])

wn_fs = float(vec [13])

d = float(vec [14])

FILENAME = vec [15]

m_is = amu*int(mss) #mass of the isotope

m_is_kg = amu_kg*int(mss)

En_fs = hbar*n.pi*2*c*10**2*( wn_fs)#energy in eV of fine

structure

prefact = 3.0*n.pi*e_0*hbar*c**3* gamma_e/c_e **2

#Determine lifetimes and widths of each transition

F_t = F(I,J_u ,J_l)#get the transitions and transition

amplitudes

n_tr = F_t.shape [0]#number of transitions

n_par = F_t.shape [1]#number of parameters in F_t
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F_n = n.zeros((n_tr ,15))#create new matrix with extra

columns of Photon energy , Energy width , lifetime ,

saturation intensity , saturation parameter

F_n [0:n_tr ,0: n_par] = F_t #put in original F_t

#the next section will be filling F_n with the relevant

quantities , up until A

A_vec = n.zeros ((n_tr))

omeg_vec = n.zeros ((n_tr))

#count = 0

for k in n.arange(0,n_tr ,1):

A_calc_int =0

A_calc_tot = 0

#first , photon energy

f_u = F_n[k,0]#get upper F state

f_l = F_n[k,1]#get lower F State

f_u_en = E_hf(J_u ,I,f_u ,A_u ,B_u) #get energy of

upper state knowing the fine structure energy

f_l_en = E_hf(J_l ,I,f_l ,A_l ,B_l) #get energy of

lower state knowing the fine structure energy

del_en = f_u_en -f_l_en + En_fs

F_n[k,4] = del_en #get energy difference in eV

and store it

omeg = del_en/hbar #angular frequency in Hz
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#next , get mean lifetime of decay. To do this , we

need to compute A for each (f_uz ,f_lz ,q) This

is spontaneous emission

A_calc_int = 0

A_calc_tot = 0

for fuz in n.arange(-f_u ,f_u+1,1):#for each

projection on z axis of top F state

for flz in n.arange(-f_l ,f_l+1):#for each

projection on z axis of lower F state

for q in [ -1.0 ,0 ,1.0]:

A_calc_int = n.abs(A_calc

(J_u ,f_u ,fuz ,J_l ,f_l ,

flz ,I,q)[0])

A_calc_tot = A_calc_tot+

A_calc_int

A_vec[k] = A_calc_tot

omeg_vec[k] = omeg

R_exp = (prefact*n.sum (1.0/( A_vec **2* omeg_vec **3.0)))

**(0.5)

for k in n.arange(0,n_tr ,1):

mutot = R_exp*c_e*A_vec[k]

dec_r = (omeg_vec[k]**3) *(mutot **2) /((3.0*n.pi)*

e_0*hbar*c**3) /10#decay rate in Hz

tau = 1.0/ dec_r

spread = hbar /(2* tau)

F_n[k,5] = spread #input energy spread in eV
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F_n[k,6] = tau #input lifetime in seconds

F_n[k,7] = F_t[k,4]

wl_fs = 2.0*n.pi*hbar*c/En_fs

wl = 2.0*n.pi*hbar*c/del_en #transition

wavelength in meters

I_s = n.pi*h_js*c/(3.0*( wl **3.0)*tau) #compute

saturation intensity pg. 25 in Metcalf , in W

F_n[k,8] = I_s

F_n[k,9] = (l_p)/(I_s /10.0) #compute on resonance

saturation parameter pg. 25 in metcalf

#compute the velocity of the atoms on resonance

e_trans = F_n[k,4]#transition energy

f_trans = e_trans /(hbar *2.0*n.pi)#transition

frequency

f_init = c*(l_wn *100)#initial frequency in hz

v_trans = c*(( f_trans **2- f_init **2)/( f_trans **2+

f_init **2))

F_n[k,10] = n.abs(v_trans) #speed of the atom

necessary for resonance

#next , evaluate the likelihood that an atom in gs G will

come back to that state after being excited

F_n_shape=F_n.shape

for k in n.arange(0,n_tr ,1):

F_n_temp = []

trans = 0

gs = F_n[k,1]#get the ground state

es = F_n[k,0]#get the excited state

for kk in n.arange(0,n_tr ,1):
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if F_n[kk ,0] == es:

F_n_temp.append(F_n[kk ,:])#get

all the transitions with es as

excited state

trans = trans+1

F_n_temp = n.reshape(F_n_temp ,(trans ,F_n_shape

[1]))#reshape the array

decay_rates = 1.0/ F_n_temp [:,6]

tot_decay_rate = n.sum(decay_rates)

decay_rates_norm = decay_rates/tot_decay_rate

for kkk in n.arange(0,len(decay_rates) ,1):#find

the one transition that allows for the same gs

if F_n_temp[kkk ,1]==gs:

prob_of_og=decay_rates_norm[kkk]#

likelihood of returning to og

ground state

F_n[k,11] = decay_rates_norm[kkk]

#store likelihood of returning

to og ground state

scatter_res = Scatter (1.0/ F_n[k

,6],F_n[k,9] ,0)#get scattering

rate on resonance

F_n[k ,12]= scatter_res#store

scattering rate on resonance

tot_time = F_n[k ,6]+1.0/

scatter_res#get total

transition time = scattering

time + lifetime
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num_trans = m.floor ((d/F_n[k,10])

/tot_time)#total number of

transitions rounded down

F_n[k,13] = num_trans#store

number of transitions

prob = prob_of_og **( num_trans)#

likelihood of finding og gs

when you enter LCR

F_n[k,14] = prob#store the above

prob

#now start plotting what a regular spectrum should look

like

xdata = n.arange(n.min(F_n[: ,4]) *0.999999 ,n.max(F_n[: ,4])

*1.000001 ,1e-8)

spec_sum = n.zeros ((len(xdata) ,))

spec_int = 0

amp=1

#print vec [12]

#print vec [10]

for spec in n.arange(0,n_tr ,1):

gamma_stim_cal = (1.0/((1.0/( F_n[spec ,6])))*n.

sqrt (1.0+I/F_n[spec ,8]))

gamma_stim = 1/(1.0/((1.0/ gamma_e))*n.sqrt (1.0+I/

F_n[spec ,8]))
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#gamma_stim_used = 1/(n.pi *2*(1/ gamma_e))*hbar

*2.0*n.pi*n.sqrt (1.0+ I_s/F_n[spec ,8])

boltz_FWHM = F_n[spec ,4] * (8.0* kB_J*T*n.log(2)/(

m_is_kg*c**2))**(0.5)

boltz_HWHM_rel = (1.0/8.0) *(2.0* kB_J*T*n.log (2)/(

m_is_kg*c**2))**(0.5)

spec_int = F_n[spec ,14]* F_n[spec ,7]* realvoigt(

xdata ,F_n[spec ,4], boltz_HWHM_rel ,

gamma_stim_cal)#plot the peak weighed by the

chances of it not being pumped

print boltz_HWHM_rel

print gamma_stim_cal

#print F_n[spec ,5]*n.sqrt (1.0+I/F_n[spec ,8])

#print F_n[: ,14]

spec_sum=spec_sum+spec_int
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