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Abstract - "Quantified Doxastic Logic and the Problem of
Deduction”

In the first chapter, the reader is introduced to the 'problem of ded-
uction'. I.e., any doxastic logic that is a normal modal system containing
D where the necessity operator is construed as 'x believes that' will
presuppose that believers are 'ideal' in the sense that their beliefs are
consistent and closed under classical conjunction and implication.

Chapters two through four are devoted to a discussion of quaniified
doxastic normal systems. In chapter four, a set of axiom systems is
proposed such that the substitution of co-referentials is restricted for
doxastic contexts although ‘quantifying in' is permitted provided that the
quantifiers are read substitutionally in the semantics.

The systems proposed in chapter four inherit the problem of ded-
uction and so possible solutions are considered in chapters five and six.
The partial solution to the problem of deduction ultimately endorsed
involves construing the possibilify’ operator as 'x (non-ideally) believes

that'.



Abstract - “Quantified Doxastic Logic and the Problem of
Deduction”

In the first chapter, the reader is introduced to the 'problem of ded-

uction’. I.e., any doxastic logic that is a normal modal system containing
D where the nrecessity operator is construed as 'x believes that' will
presuppose that believers are 'ideal' in the sense that their beliefs are
consistent and closed under classical conjunction and implication.

Chapters two through four are devoted to a discussion of guantified
doxastic normal systems. In chapter four, a set of axiom systems is
proposed such that the substitution of co-referentials is restricted for
doxastic contexts although 'quantifying in' is permitted provided that the
quantifiers are read substitutionally in the semantics.

The systems proposed in chapter four inherit the problem of dgd—
uction and so possible solutions are considered in chapters five and six.
The partial solution to the problem of deduction ultimately endorsed
involves construing the possibility operator as ‘x (non-ideally) believes

that'.



Sommaire - "La logique doxastique quantifiée et le probléme
de la déduction”

Dans le premier chapitre, nous présentons au lecteur le “probléme
de la déduction”, i.e., toute logique doxastique constituant un systéme
modal normal contenant D, ol ’opérateur nécessité accepté "x croit
que” présuppose que les partisans sont "idéaux” en ce sens que leurs
croyances sont uniformes et fermées selon la conjonction et I’implication
classiques.

Les chapitres deux i quatre comportent une discussion sur les
systémes doxastiques normaux gquantifiés. Le chapitre quatre suggére
une série de systémes d’axiomes de sorte que la substitution de co-
référentiels est limitée aux contextes doxastiques, bien que la
“quantification” soit permise si les termes quantitatifs sont lus en
remplacement dans la sémantique.

Les systémes proposés au chapitre quatre héritent du probléme de la
déduction; ainsi, les chapitres cing et six se consacrent a des solutions
possibles. La solution partielle au probléme de la déduction ultimement
appuyée implique 1’acceptation I’opérateur possibilité comme étant "x

(non-idéalement) croit que".
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Preface

This thesis is in part an attempt to salvage the enterprise of adopting
normal modal logics as logics of the epistemic modalities such as knowledge
and belief. In particular, I shall be concerned with (quantified) doxastic
logic ~ or the logic of belief.

The strategy of adopting normal modal systems as logics of the so-
called epistemic modalities is not a new idea. For example, von Wright in
An Essay in Modal Logic (1951) suggests that by replacing the necessity
operator 'N' for his system M; (which is a 'normal' system in the sense
defined in section 1 of chapter one) with the epistemic operator 'V' (i.e., ‘it
is known or verified that') we attain a logic of knowledge. He also discusses
quantificational logics of knowledge such as his system 'VE'. However, von
Wright did not have at his disposal relational semantics - but merely 'nor-
mal forms'. The advent of relational semantics for logics of the alethic
modalities developed by Kripke (in for example Kripke (1963)) and for logics
of the epistemic modalities developed by Hintikka (in Hintikka (1962, 1969))
paved the way for a more extensive treatment in the literature of the sup-
posed analogy between the alethic modalities and the epistemic modalities.

The tradition in the literature with respect to doxastic logic has been to
treat belief as analogous to alethic necessity and hence to simply replace the
necessity operator 'L' for sentential and first-order normal alethic systems
with 'B’' (it is believed that). See for example Hintikka (1962), Sleigh (1972),
Eberle (1974), Rescher (1968, 1974) and Rantala (1982, 1983). In fact certain
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authors such as Lewis (in Lewis (1986)) refer to belief as 'doxastic neces-
sity'. In addition, it is supposed that the alethic possibility operator 'M' can
be replaced for doxastic logics by a 'doxastic' possibility operator such as
Hintikka's ‘Pg’ which is informally interpreted as ‘it is possible for all x
believes that'.

However, normal modal systems adopted as doxastic logics where the
necessity operator 'L’ is replaced by the belief operator 'B' (and where 'M'
is replaced by ’Pn') presuppose that believers are 'ideal’' in the sense that
their beliefs are consistent and closed under conjunction and implication.
But these principles are unacceptable qua principles of belief attribution
in the light of various counterexamples discussed in the literature. For
example, see Makinson (1966), Kyburg (1971), Marcus (1981), Stalnaker
(1976,1984) and Lewis (1986). Using Stalnaker's turn of phrase, I call this
the 'problem of deduction' for sentential and first-order belief logic.

The moral to be drawn from these counterexamples to the supposed

deductive closure and consistency of belief is that there is a need for a logic

. of the ‘non-ideal’ believer, i.e., of the believer whose beliefs are not nec~-

essarily consistent and deductively closed. Normal modal logics where
belief is taken to be analogous to alethic necessity do not appear to be
suited to the task. Further, I shall argue that the attempt by Veikko
Rantala to salvage the apparent analogy between necessity and belief ( or
knowledge) by suggesting alterations to normal axiom systems and their
semantics in Rantala (1982, 1983) ultimately does not work because his
solution inwvolves not only an equivocation with respect to the connectives
in his impossible worlds semantics (as would be suggested by Cresswell -

see Cresswell (1973, 1982, 1985)) but also in the corresponding axiom
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systems (which is a result I attempt to establish).

However, it is hasty to conclude from these considerations that nor-
mal modal logics will only provide us with logics of the 'ideal’ believer.
The solution - albeit a partial one - which 1 propose in this thesis to the
problem of deduction for normal doxastic logics is the following: I suggest
that if we wish to salvage the tradition of treating belief logics as variants
of normal alethic modal logics, then the more fruitful strategy is to treat
the alethic possibilitys operator rather than the necessity operator as 'x
believes that'. In treating belief as analogous to possibility rather than
necessity, we end up with doxastic logics which do not presuppose that
agents always conjoin their beliefs and which do not presuppose that
agents’' bellefs are always consistent. Granted, these logics retain the

_ feature that agents believe all the logical consequences of what they bel-

ieve although I shall argue that this feature is mitigated.

The solution herein proposed to the problem of deduction for normal
sentential and first-order doxastic logic was prompted by a remark made
by Marcus in "A Proposed Solution to a Puzzle About Belief* (1981): 507,
where she notes that belief ke possibilityr does not always factor out of
conjunction as is evident in Kripke's puzzling Plerre case. In pursuing this
idea, it became clear to me that belief is like possibility in another respect,
viz., a proposition and its negation can both be possible - can both be bel-
jeved. Further, given that an agent can believe both that @ and that ~a
without thereby conjoining them, it is not a consequence of treating belief
as analogous to possibility that agents who have contradictory beliefs
thereby end up believing everything.

Finally, there is the question as to how to reconstrue the necessity



O

X

operator for normal modal logics adopted as doxastic logics. I suggest that
the necessity operator can be construed as 'x /deal//y believes that'. Thus,
if we adopt normal modal systems (containing the schema D) as logics of
belief, then the resulting logics can be taken as characterizing both the ideal
believer (viz., one whose beliefs are consistent and closed under deduction)
as well as the non-ideal believer (viz., one whose beliefs are not always
consistent or closed under deduction).

A semantics is then required for our doxastic systems which gives
some sort of intuitive content to the notion that belief is like possibility in
the respect that agents can fail to conjoin beliefs and are capable of having
contradictory (though not self-contradictory) beliefs. One of the semantics
which I propose is a formalization (within the context of a relational sem-

, antics) of Stainaker's suggestion that an agent is capable of being in more

than one 'belief state’. To my knowledge, no-one has yet formalized this
idea in terms of a relational semantics for first-order belief logic.

A beljef state is defined as a set of worlds such that all the contents of
a subset of the agent's beliefs obtain at each world in the set. Stalnaker
develops this idea in chapter five of /nguiry (1984). If agents are capable of
being in more than one belief state, then x could believe that & and x could
also believe that ~a provided these two contents obtain at all members of
distinct belief states which are non—owl'erlapping. Further, the agent will
not conjoin these beliefs since at no belief state will it be the case that
and its negation will both obtain at all worlds in the state. Further, since
belief states are sets of passib/e worlds, agents will nonetheless believe the
consequences of what they belleve. Thus, a semantics of belief states

the central idea of which being that x believes that & at wy just in case
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there is at least one state s such that & obtains at all members of s) seems
to match up with the idea that belief (as in 'non-ideal' belief) is analogous
to alethic possibility.

The systems of belief logic which are ultimately endorsed in this
thesis - such that the possibility operator is construed as x believes that -
are normal quantificational systems with Jdentity. Thus a further task
which | herein undertake is to propose a set of logics of the non-ideal bel-
iever which are relatively unproblematic with respect to two of the more
prominent difficulties arising from combining the epistemic modalities with
quantifiers and identity. The first such difficulty is the issue of 'quantify-
ing into' doxastic constructions. For example, under what conditions (if
any) are we allowed to infer from Jones' belief that the next Prime Minis-
ter will abolish Free Trade, that ‘kere Is someone such that Jones believes
of that person that he/she will abolish Free Trade? The issue of ‘quan-—
tifying in' gained attention in the literature following Quine's 1956 article
"Quantifiers and Propositional Attitudes”. For example, see Hintikka (1962,
1969), Kaplan (1969), Sosa (1970), Burge (1977) and Stich (1983).

A difficulty arising from combining the epistemic modalities with
identity is that the principle that co-referential terms are intersubstitutible
salve veritate breaks down for doxastic and epistemic contexts. Thus,
even though Jones believes that Kripke is a gifted logician, he may fail to
believe that the author of Witigenstein On Rules And Private Language is
a gifted logician. The failure of the substitutivity principle for belief con-~
texts was first discussed by Frege in "On Sense and Reference® (1892). This
issue has been discussed over the years in for instance Quine (1960),
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Hintikka (1962, 1967, 1969), Sellars (1969) and more recently in Kripke
(1979) as well as in Barwise and Perry (1983).

The various logics which 1 propose for non-ideal belief in chapter six
handle the problems of quantifying in and the failure of the substitutivity
principie for belief contexts as follows: Although the substitutivity prin-
ciple is restricted to non-modal contexts in which case belief contexts are
treated as unambiguously ‘oblique’, there are no strictures on quantifying
into doxastic constructions given that the quantifiers are construed -sub-
stitutionally in the semantics. As Kripke has remarked, there is no problem
of quantifying in for modal contexts if the quantifiers are substitutional.
(Kripke (1976): 375) A result which I have hopefully established in chap-
ters four and six is that a truth-value semantics where the identity
~ statements of the language can take on different values at distinct indices
and where the truth-conditions for the quantifiers are substitutional, will
provide a characteristic semantics for logics which restrict the substitu-
tivity principle while allowing unrestricted quantifying in.

By way of some closing remarks, I developed an interest in doxastic
logic (and more generally in propositional attitude logics) in a roundabout
way as a result of my readings in Action Theory. 1 became interested in
the logic of action and subsequently in the logic and semantics of the belfef-
desire 'premises’ of practical syllogisms explaining action. It was at that
point that ] read Stalnaker's article “Propositions* (1976) where he suggests
that belief and desire qua 'functional' states (explaining behaviour) inwvolve
a partitioning of possible alternative situations (to the actual world) into
those compatible with the given attitudes and those which are not. Thus,
in terms of the practical syllogism, Jones' doing X is explained by his
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desire that Y obtains and by his belief that by doing X, Y will obtain, such
that Jones' desire that Y obtains involves his partitioning the set of alter-
natives to the actual course of events into Y alternatives and into not-Y
alternatives. The role which his belief plays in explaining his doing X

is that it determines which of those Y-alternatives to be sought is most
likely to become actual - and in this case, the prime candidate is an X & Y
alternative.

I then read Hintikka's "Semantics for Propositional Attitudes” (1969)
in which he proposes a semantics (though not a logic) of belief which is
similar to Stalnaker's possible worlds analysis of belief and desire as
follows: According to Hintikka, to say that x believes that a at wj means
that a obtains at all those worlds in the set ¢B which intutively is the set
of all those worlds 'compatible’ with the attitude in question. l.e., if x bel-
ieves that a at wj then & will obtain at each and every world at which
all the other contents of his beliefs obtain. This led me to consider the
analogy between alethic modal logics and their semantics on the one hand
and propositional attitude logics and their semantics on the other.

Hintikka's semantics was proposed with the aim of resolving two of
the problems associated with possible worlds semantics of the attitudes,
viz., the issue of quantifying in and the failure of the substitutivity prin-
ciple for doxastic contexts. It was at that point that I began thinking about
and reading the literature on these issues. In delving into the literature
I also became interested in the problem of deduction for doxastic logics.

I came to realize that Hintikka's semantics for belief logic (as Hintikka
himself notes in Hintikka (1975)) in terms of possible worlds presupposes
that agents believe all the consequences of what they believe. Thus, I
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began looking at various proposed solutions to the 'logical omniscience’
problem which led me to consider Rantala's proposals for an 'impossible
worlds' semantics for belief logic - and which was the beginning of this
work.

By way of acknowiedgements, [ wish to thank the Philosophy Depart-
ment at McGill University for their continued financial support while | was
in residence in the PhD program. [ am also indebted to a friend and for-
mer Professor, R.C. Pinto for a discussion which led to my investigating the
merits of substitutional quantification as a way of handling the problem of
quantifying in. Further, I am indebted to Storrs McCall for his support,
encouragement and his insightful suggestions vis a vis my work over the

years. Finally, I wish to thank Tony Lariviere, Bill Massicotte and James

~ Pettit for numerous philosophical discussions and for their friendship.
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Introduction

The aim of this work is to develop a first-order logic and semantics of
belief within the tradition which treats doxastic logics as smrorma/ modal
logics!, while avoiding at least some of the more serious objections gener-
ally raised against such a program. At least two sets of objections have
been raised against this enterprise in the literature. The first set of objec-
tions can be categorized as the 'problem of deduction'? which arises from
construing the alethic necessity operator 'L' as 'x believes that'. The res-
ulting logics and their semantics presuppose that believers are 'ideal’ _in the
sense that they conjoin whatever they believe, that they believe all the
(classical) logical consequences of what they believe and finally that agents
always hold consistent beliefs. Howewver, there are counterexamples in the
literature to each of these principles qua principles of belief attribution.
The logic of belief which will be proposed in chapter six avoids the consis-
tency and the adjunctive components of the problem of deduction by cons-
truing the possidility operator 'M' as 'x (non-ideally) believes that'.

Further, the second set of objections to the tradition of treating first-
order belief logics as quantified normal modal logics concerns those theses
having to do with the behaviour of the identity symbol and the quantifiers
in belief contexts. At least for systems containing the Barcan Formula3
which are characterized by invariant domain semantics, it is a thesis that

co~referential terms are intersubstitutible in doxastic contexts. But this is

! The term ‘normal’ is defined in the first chapter, p. 12.
2 As is noted in chapter one, this is Stalanker's phraseology.
3 The Barcan Formula is discussed in the second chapter, pp. 68-69
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wrong since if for example Jones believes that Tully was bald, it does not
follow that Jones thereby believes that Cicero was bald, given that he may
fail to recognize that the terms 'Tully’ and 'Cicero' are co-referentials. It
will be argued that the best way of handling this difficulty is to adopt the
Fregean tact of treating belief contexts as unambiguously ‘oblique’ in the
sense that it is not permissible to unrestrictedly substitute co-referentials
in doxastic contexts.

It is also a thesis of quantified systems with the Barcan Formula that
existential generalization with respect to a term occurring in the scope of a
belief operator is permissible not only inside but also ocutside the belief
operator. If we are construing the quantifiers standardly (as in 'objec~
tually') this thesis is wrong since from Jones' belief that the next Prime
Minister (whoever hefshe turns out to be) will attempt to balance the
budget, it does not follow that there is someone such that Jones believes of
that person that he/she will attempt to balance the budget. It will be
argued that the best way of dealing with this type of situation is to inter-
pret the quantifiers substitutionally without appeal to domains of so-called
individuals.

In order to provide the reader with a kind of map or guide through
this work, the remainder of these introductory remarks will be devoted to
outlining what will be discussed in each chapter as well as to indicating
how the various chapters connect up.

In chapter one, the reader is provided with a brief introduction to
normal modal propositional calculi and their corresponding relational sem-

antics. It is then noted that one of the traditions in the literature has been
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to regard normal systems as providing doxastic or epistemic logics where
the alethic necessity operator is construed as 'x believes (knows) that'.
Doxastic logics are distinguished from epistemic logics by suggesting that the
former should not contain T, (Ba > & for doxastic systems, which can be
read as 'if x believes that & then & obtains') whereas the latter should (if
we are traditionalists in our analysis of knowledge) contain T (Kx > & for
epistemic systems). As is mentioned, the focus of discussion will be with
doxastic rather than epistemic systems.

It is then noted that normal systems of doxastic logic containing D,
Ba > Pga which result from construing the necessity operator as 'x bel-
ieves that' provide us with logics of the 'ideal believer’ in the sense that the
following are thesis-schemata/derived inference rules for these systems:

Ti: (Ba & Bf) > B(a & B) adjunction schema
T2: ~(Ba & B~at) consistency schema

DR1: }a > p ——— |-Ba > B omnidoxasticity schema
T1 says that agents always conjoin beliefs and T2 asserts that agents' bel-
iefs are always consistent. It will be argued that Kripke's puzzling Pierre
case and his Paderewski example could be regarded as hypothetical cases
where an agent fails to conjoin inconsistent beliefs held in different con-
texts, which thereby casts doubt on T1, T2 qua principles of bellef attribu-~
tion. DR 1 informally says that agents believe whatever is logically class-
ically implied by what they believe - they are logically omnidoxastic. But
several counterexamples to DR 1 are then presented such as Stalnaker's
William III case, which calls DR 1 into question qua principle of belfef at-
tribution. In the light of the various counterexamples to T1, T2 and DR {,
it is suggested that on the assumption that the principles of belief attribu-



O

4

tion employed in setting up these examples are sound, there appears to be a
need for a logic of the mon-~ideal believer. The need for such a logic can be
seen as a challenge to the tradition of adopting normal modal logics as dox-

astic logics, which has been called the 'problem of deduction’.

The task of developing a logic (and corresponding semantics) of the
non-ideal believer within the parameters of normal modal logic (and its
corresponding Kripkean semantics) is then deferred to chapters five and
six. In confining our discussion of doxastic logics to purely propositional
calculi in the first chapter, we will have isolated the 'problem of deduction’.
in abstraction from the second set of problems mentioned above with res-
pect to normal doxastic logics, viz., those difficulties having to do with the
behaviour of the quantifiers and the identity symbol in belief contexts. This
set of objections to the program of adopting normal logics as quant/fied
doxastic logics will be discussed in chapters three and four.

The main purpose of chapter two is to provide the reader with a tech-
nical introduction to guanitified doxastic logic and its semantics. The set of
axiom systems which are considered, the SQC™ systems of doxastic quanti-
ficational calculi, are 'normal’' and therefore inherit the problem of deduc-
tion discussed in the first chapter. Two types of characteristic semantics
are then considered, viz., an invariant domain semantics which lends itself
to an objectual interpretation of the quantifiers and a truth-value seman-
tics which involves assigning truth-values to atomic wffs 'directly’, there-
by lending itself to a substitutional interpretation of the quantifiers.

Finally, it is argued that what is problematic about the metaphysics of
the invariant domain semantics, viz. that individuals are transindexical

even though they vary in their properties from index to index, is avoided
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in the truth-value semantics since the latter dispenses with domains of
individuals. This foreshadows the move in chapter four to ultimately adopt
a truth-value semantics for quantified doxastic logic where the quantifiers
are read substitutionally, partly on the grounds that the metaphysics of
this type of semantics is relatively unproblematic.

Having introduced the reader to the technical aspects of quantified belief
logic in chapter two, in chapter three the reader is then introduced to two
of the problems associated with the behaviour of -the quantifiers and the
identity symbol in belief contexts. First, it is noted that difficulties arise
from the feature that co-referentials are unrestrictedly intersubstitutible
in belief contexts for the SQC™ axiom systems. Various counterexamples
to the substitutivity feature such as the Tully/Cicero case are discussed.

It is further contended that contrary to Kripke’'s arguments in "A Puzzle
About Belief” (1979), it is fair to assume that the problem in such cases
rests with the substitutivity principle.

Next, it is argued that the feature of the SQC™ axiom systems that
quantifying into belief constructions is unrestricted leads to such counter-
intuitive results as the one mentioned above viz., the 'next Prime Minister'
case -~ at least if adopt an invariant domain semantics for these systems
where the quantifiers are read objectually. Ewven if we were to adopt a
truth-value semantics for the SQC™ systems, there is still the problem that
co-referentials are intersubstitutible for belief contexts.

Hintikka's proposed solutions on the syntactic front to both the dif-
ficulties just mentioned are then discussed. Informally, his suggestion for
dealing with the substitutivity problem is to stipulate that the agent must

recognize that the relevant identity obtains or that he/she is somehow
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'acquainted' with the given individual (under both names). In terms of
the issue of quantifying in, Hintikka restricts generalization with respect to
constants occuring in the scope of belief operators to those constants which
denote individuals with whom the individual is 'acquainted’.

In chapter four, Hintikka's syntactic suggestions for dealing with the
problems of quantifying in and the apparent failure of substitutivity for
doxastic contexts are incorporated into the amended wersions of the SQC*
axiom systems which we call the Hin-SQC™ systems. A _corresponding sem-
antics is developed for these axiom-systems based on Hintikka's remarks in
*Semantics for Propositional Attitudes” (1969). It is argued that this sem-
antics is problematic since it employs the dubious notion of an individual's
having 'correlates' across indices. The truth-wvalue semantics for the
alternative axiom-systems to the Hin-SQC™ systems proposed in the final
section avoid this difficulty by dispensing with domains of individuals.
These alternative axiom-systems which are called the Sub~-SQC™ systems
treat bellef contexts as unambiguously oblique in the sense that substitution
of co-referentials is still restricted for belief contexts. However, since the
quantifiers are given a substitutional reading in their-semanties; existential
generalization into doxastic constructions {3 unrestricted. I.e., the Sub-
SQC* systems circumwvent the problem of quantifying in entirely.

Thus, by the end of chapter four a set of normal axiom-systems will
have been proposed, the Sub-SQC™ systems, which can be regarded as at
least involving partial solutions to the problems of quantifying in and the
failure of substitutivity for belief contexts. However, because these systems

are 'normal’ they have inherited the problem of deduction and hence they



are not logics characterizing the 'non-ideal’ believer. Thus, in the final
two chapters, we shall discuss ways in which the Sub-SQC® systems and
their characteristic semantics can be amended to accommodate the problem
of deduction.

Rantala's syntactic solution to the problem of logical omnidoxasticity
which involves restricting the applicability of the doxastic version of the
rule of necessitation (- ——— |-Ba) is discussed in chapter five. His
suggestions are then extended to rendering various instances of the adjunc-
tion and consistency schemata underivable. The resulting logics, the Sub-
SQCTQ) systems therefore provide us with logics of the non-ideal believer,
or so it seems until the corresponding semantics which employs non-
standard indices is considered. It is argued that this semantics equivocates
with respect to the connectives ~, v, & > and = thereby rendering it beside
the point. It is further argued that the tact of defining these connectives in
terms of their roles in inference does not avoid this charge if it is not
assumed that only non-doxastic contexts are relevant in determining their
roles in inference. Thus, it is concluded that the Sub-SQC=() systems do
not provide us with logics of the non-ideal believer after all.

However, another strategy for altering the Sub-SQC* systems to provide
us with logics of the non-ideal believer is considered in the sixth (and
final) chapter. It is argued that if we construe the alethic possibility op-
erator as 'x non-ideally believes that' then since possibiltiy does not 'factor
out of conjunction' (as Marcus notest) and since it is not a thesis of any
normal system (with D) that ~(Ma& & M~ ) then the resulting logics
provide us with logics of the non-ideal believer who does not always con-

join his/her beliefs and who does not always hold consistent beliefs. How-

4 See Marcus (1981), p. 507.
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ever, it is noted that even if we construe the possibility operator as 'x
(non-ideally) believes that', it is still the case that non-ideal agents are
logically omnidoxastic. It is further noted that for systems containing D, if
we construe the alethic necesssty operator as 'x ideally believes that' then
combining this tact with the move of construing the possibility operator as
'x non-ideally believes that' provides us with a set of logics characterizing
both the ideal and the non-ideal believer.

Two types of characteristic semantics are then considered for the Sub-
SQC= systems (where the necessity operator is construed as ideal belief
and the possibility operator is construed as non-ideal belief) which attempt
to make sense out of the idea that non-ideal believers can hold inconsistent
beliefs in different contexts - such as in the puzzling Pierre case. One of
these semantics is based on Stalnaker's proposal that agents are capable of
being in more than one 'belief state’' at the same time (where a belief state
is defined as the set of worlds such that all the contents of a subset of the
agent's beliefs are true at each member of the set). The other type of sem-
antics dewveloped is based on Rescher's notion that belief is a relation obtain-
ing between an agent at a world aqd a special sort of non-standard world.

And so, the result of our work will be a set of first-order logics of bel~
ief which characterize the ideal and the non-ideal believer and which treat
belief contexts as unambiguously oblique while allowing unrestricted quan-~
tification into doxastic contexts given a substitutional reading of the quan-
tifiers. Although these logics presuppose that agents are logically omni-
doxastic, this feature is mitigated in the case of non-ideal belief. Then
perhaps it is hasty to abandon the tradition of basing first-order doxastic

logics on normal modal systems, if we are willing to drop that part of the
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tradition which construes the necessity operator rather than the possibil-
ity operator as 'x non-ideally believes that'.

O
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Chapter One

The Problem of Finding a Propositional Logic of Belief

1. Treating Propositional Belief Logic as Modal Logic

In Topics in Philosophical Logic (1968), Nicholas Rescher observes that
operators representing modalities qualify the truth or falsity of prop-
ositional expressions in such a way that the resulting qualified complex is
itself a propositional expression.l More precisely, if & is some proposition-
al expression of an arbitrary formal (or natural) language then so is ¢
where ¢ is some modal operator. For example, the qualifier ¢ could rep-
resent a so—called alethic modality such as necessity in which case if & is
an expression of some formal or natural language then so is ‘it is necessary
that of’. And of course, much work has been done in the area of prop-
ositional and quantificational alethic modal logics. If the qualifier ¢ rep-
resents an epistemic modality such as knowledge, acceptance or belief then
if & is a propositional expression, so is 'it is believed that (known that,
accepted that) o' or 'x believes (knows, accepts) that a'.

Several attempts at formulating elementary logics for the so-called
epistemic modalities have consisted in adopting normal alethic systems?
and informally construing the necessity operator as 'it is believed (known,

accepted) that'.3 In sections 2, 3 and 4 we shall explore various 'normal’

! Rescher (1968), p. 24
2 The phrase ‘normal system' is defined on page 3 below.

3 For example, see Hintikka (1962), Binkley (1968), Harrison (1969), Cresswell (1970),
Rescher (1968, 1974) and also Lenzen (1981).
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systems of modal logic Qs well as their semantics without suggesting any
sort of informal interpretation of the modal operator ¢ (which for alethic
systems is construed as ‘it is necessary that'). This is to ensure generality
in the sense that our results can be applied to logics where ¢ is construed
as an epistemic modality such as knowledge or belief, the logics of which
will be introduced in section 5.

As will be argued in sections 6 and 7, when we construe the qualifier ¢
as representing an epistemic modality, any normal modal system will give
us a logic for 'ideal' believers or knowers in the following sense: For any
normal system S regarded as a system of epistemic or doxastic logic, if any
material conditional is an S-thesis then it is also an S-thesis that some
agent x's believing (knowing, accepting) this conditional's antecedent log-
ically implies x's believing (knowing, accepting) the conditional's conse-
quent. In short, agents are regarded as believing all the logical consequen-
ces of what they believe. Hintikka amongst others ca.lvls this the problem of
logical omniscience.4 Further, it is also a thesis-schema of all normal sys-
tems (construed as systems of epistemic or doxastic logic) that agents bel-
ieve the conjunction of any two propositions which they believe separately.
Finally, in some normal systems, it is a thesis-schema that agents do not
believe self-contradictions or contradictories at the same time.

In both chapters five and six, after having discussed some of the prob-
lems peculiar to quantified doxastic logics, we shall then consider several
attempts at altering the semantics and the axiomatics of normal systems in
order to obtain logics of the epistemic modalities (or more specifically,
belief) which do not assume that agents are 'ideal' in the sense specified

above. It will be argued that normal modal logics do provide us with logics

4 Hintikka (1975), p. 475 and later, Rantala (1982), p. 106.
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of believers who are not ideal.
2. An Excursus into Normal Modal Axiom Systems

Before explaining what a normal modal system is, a few syntactical
preliminaries are in order. The language L for a classical/ propositional
modal logic is a triple <U,0,F> consisting of a set U of sentence variables, a
set O of primitive connectives such as ~ and & (and such that v, >, = are
definable in terms of the primitive ones) as well as the modal operator ¢
and finally the set F of well-formed formulae (wifs) which are either var-
fables or are cohstructed out of members of the sets U and O. The set F of
wifs can be defined recursively in the same way as the set of wiffs for the
classical propositional calculus with the additional proviso that if a is a
wif then s0 is a. In addition, we can introduce by definition a second
modal operator A as follows: Ad=q¢ ~p~a. If we were to construe ¢ as
the necessity operator then A® would read 'it is possible that a'. Or if ¢
represents an epistemic modality such as 'x believes that' then we might
read Ao as 'it is consistent with everything x believes that a .5

A modal axiom system is normal/ if in addition to containing every
thesis of PC, it contains every instance of the schema K, (ya & ¢{(a > B))
> ¢p. Further, any normal system will have as rules of inference the fol-
lowing: If « is a thesis of the normal system S then so is ¢a (which we
shall call R¢: |-g& — |-gda) as well as modus ponens, viz., «, (a > B)

—— B.% The system K is the 'weakest' such system meeting these

5 As an example of this treatment of the possibility operator as an epistemic operator, see
Hintikka (1962), pp. 10-11.

6 See Lemmon and Scott (1977), section 2 as well as Chellas (1980), ch. 4 and Hughes and
Cresswell (1984), ch. 1.
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minimal requirements in the sense that it is properly contained in every
other normal modal system.” K can be 'strengthened' or extended by
adding to it any of a number of schemata including the following:®

D: ¢a > Aa

T: $a > a

4;: o > ot

5: Aa > $Aa
Consider the following series of strengthenings of K. The system D (=KD)
obtained by adding the schema D to the system K contains all theses of K.
Or, more succinctly, K ¢ D. And by adding the schema T to the system K
we obtain the system T (=KT) where K ¢ D ¢ T. Purther, by adding the
schema 4 to the system T we obtain the Lewis system S4 (=KT4) such that
Kc D¢ T¢g S4. And finally, when we add to the system T the schema 5
we obtain the Lewis system S5 (=KT5) such that K¢ Dgc T ¢ S4 ¢ S5. An
alternative axiomatic base for S5 proposed by Lemmon? is to add to the
system T the schema E, At > ¢a (or equivalently by contraposition and
by the definition of A in terms of ~ and ¢, ~¢& > ¢~¢& ). The schema E is
the dual/ of the schema 5. It is a metatheorem of normal systems that an
axiomatic system S contains a iff it contains a's dual.10 As we shall later
see, all systems in this series of extensions of K from T onwards could
with some plausibility be regarded as systems of epistemic logic (or the
logic of knowledge) of varying strengths.

Alternatively, we could strengthen the system K without the addition

7 See Hughes and Cresswell (1968), pp. 29-30.

8 See Lemmon and Scott (1977), section 4 and also Chellas (1980), ch. 4. Note further that strictly
speaking, in ‘adding’ a schema to a particular system S, we are saying that S contains all instances
of that schema as well as all of its deductive consequences.

9 Lemmon and Scott (1977), section 4.

10 This is proven in Chellas (1980), pp. 126-129.
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of T but with the addition of D to obtain the following series of K-exten-
sions: K ¢ D ¢ KD4 ¢ KD456, Or, we could obtain a series of strengthenings
of K without either of the schemata Dor T: K ¢ K4 ¢ K46. As we shall
later see, both these series of K-extensions (including K itself) could be
regarded as systems of bellef logic of varying strengths.

The containment relations which were exhibited in the three series of
extensions of the normal system K considered above are well established in
the literature.11 (In the case of the second and third series, K ¢ D ¢ KD4
¢ KD45 and K ¢ K4 ¢ K45, the containment relations are obvious.) By way
of {llustration, for one of the containment relations exhibited in the first
series viz., that D ¢ T, we merely need to show that all of the instances of
the schema D are provable in the system T givén that the systems Dand T
are both K-extensions. We shall call the following sequences of schemata
'derivations' although strictly speaking a derivation is a finite sequence of
wifs. Perhaps we could call the following sequences 'derivation schemata'.
To avoid unduly lengthy derivations, we shall also take the liberty of using
implicational thesis-schemata of the Propositional Calculus. We first need to
show that [-pa > Aa:

1. ¢~ > ~a Schema T

2. ~~Q > ~)~ 1, Transposition

3. ~~a > At 2, Df. A

4. 1o > ~~a

5. o > Ao 3,4 Propositional Calculus and Modus Ponens
We are now in a position to show that [-rda > Aa:

1. a > o Schema T

2. o > Ao Theorem Schema 1

11 A detailed treatment of these inclusion relations is presented in chapters 4 and 5 in Chellas (1980).
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3. o > Ax 1,2 Propositional Calculus and Modus Ponens
Thus, the system D is contained in the system T. Also, D is properly con-

tained in T since the system D does not contain T as a thesis-schema.

3 Normal Modal Systems - Sernantic Considerations

So tar, we have been discussing normal systems of modal logic apart
from any kind of semantic considerations. The usual kind of semantics
proposed for normal modal systems is based on Kripke's work in this
area.i?2 In a Kripkean semantics, a mode! structure for a normal system
S is an ordered pair <W,R,>13 where W is a non-empty set. As Kripke
notes, we can informally regard the members of W as 'possible worlds'14,
For the purpose of developing plausibie semantics for modal belief logics, we
shall simply treat these 'worlds' as primitives in our formal semantic
theory just as ‘'individuals' are treated as primitives in the formal seman-
tics for standard first-order logic. All questions concerning the nature of
these so-called possible worlds as well as their ontological status will be
deferred to a subsequent chapter once the formal semantics has been
developed. In fact, to avoid any charges that the members of W are more
than just formal constructs of our semantic theory we shall from now on
call any wj in W (in a normal model) an index. R is a two-place relation
defined over members of W such that R ¢ W X W. Informally, for alethic

systems, wijRwj can be read as 'wj is accessible from wj'.15 Because of the

12 For example, see Kripke (1963).
13 In fact, in Kripke's semantics a normal model structure also contains a designated member of W

which informally might be regarded as the real world.’
14 Kripke (1963), p. 64
15 Hughes and Cresswell (1984), p. 7.
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element R in a normal model structure, a Kripkean semantics for normal
modal logic is called 'relational’.

An S model is a triple <W,R,V> where <W,R> is an S model structure
and where V is an assignment function which to each atomic wiff of L at
each member of W assigns either 0 or 1. l.e., V: UX W — {0,1}. We
could regard the function V as determining all the indices at which a given
atomic wiff is true in a given model M. Following the leads of both Stalna-
ker1® and Lewlis!?, we could say that V determines the proposition which
a given atomic sentence expresses.

Finally, a valuation over a model! is a function from wffs and indices
into truth-values. l.e., V)y: F X W —= {0,1}. We can define V) induc-
tively as follows (for all wy, wy € w):

1) VMmp,wy) = V(p,wy).

Supposing V(a,w;) and V(B,w;) are defined for any wj € W then:
2) Vp(~at,wy) = 1 iff Viy(at,wj) = 0.

3) Vm(a & B,wi) = 1 iff VM(“»Wi) = VM(F,wi) =1,

4) V(e v B,wy) =1 iff Viy(a,wy) = 1 or Viy(B,wy) = 1.

5) Vm(a > B,wy) =1 iff Viy(e,wy) = 0 or Viy(B,wy) = 1.

6) VMm(a = B,wy) = 1 iff Viq(ar,wy) = VB, wy).

7) Vm(ga,wy) = 1 iff for all wj such that wiRw, VM(a,wj) =1,

8) Vm(Aa,wy) =1 iff for at least one w;j where wiRw;,
VM(G,WJ) =1,
Further, validity in an S model is truth at all members of W and validity

in the relevant class 6f S models is validity in all models in that class.
The relevance of a class C of models to a particular normal system S is

related to the restrlctlohs placed on the accessibility relation R for all

16 Robert Stainaker (1976).
17 Lewis (1973).
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models in the class. For any given normal system S, those restrictions are
imposed on R which ensure that the schemata constituting the axiomatic
base are valid in that class of models. For our purposes, the following are
some of the restrictions which the relation R may be required to satisfy:

1) R is seria/ in an S-model iff for all wi € W, there is at least one
wj € W such that wiRwj.
2) R is rerlexive in an S-model iff for all wj € W, wijRwj.

3) R is symmetric in an S-model iff for all wj, wj € W, if wiRw;
then wjRw;.

4) R is transitive in an S-model iff for all Wi, Wj, Wk EW, if wiij
and wjRwy then wiRwy.

5) R is euclidean in an S-model iff for all wj, wj, wk € W, if wiRw
and wijRwy then wjRwyg.

A few comments are in order here. First of all, if R in an S-model is
reflexive, symmetric and transitive then we say that R is an ‘equivalence
relation'. What this means is that every member of W is related to every
other member of W. (As we shall later see, R is an equivalence relation for
S5 (=KT5) models.) Further, a relation R which is euclidean as well as
reflexive is also an equivalence relation given the following proposition: If
R is reflexive then R is euclidean iff it is both symmetric and transitive.
For a proof of this proposition, see Lemmon and Scott (1977).18 PRinally, if
a relation R is reflexive in an S-model then R is also serial since at the
very least, every member of W will be related to itself.

We now present a list of the schemata mentioned above in connection
with forming a fragment of all possible extensions of the system K (as well
as the schema K itself). Pollowing each schema is a specification of what

restrictions the dyadic relation R must meet in every model in a class of

18 Lemmon and Scott (1977), p. S6.
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models to render that schema C-valid. (A schema is C-valid iff every
instance of that schema is valid in every model in the class C.):1?

K: (b & $(a > B)) > ¢p R is unrestricted .

D: ¢a > AX R is serial.

T: ¢ s> & R is reflexive .
4: Ja > o R is transitive .
5. A0 > $Ad R is euclidean .

Again, these results are well established in the literature, but for the
purposes of illustration, it will be shown that 4 is valid in the class of all
transitive normal models.

The proof of this will have the structure of a reductio ad ahsurdum
and runs as follows: Suppose that 4 is invalid in a model M with a trans-
itive relation R, in which case for some wj € W, \{M(q»a ,wWy) is 1 but
VMm{(ddot,wy) = 0. Then for some wj € W where wiRw;j, VM(M,WJ-) = Q.
Since Vs (pat ,wj) = 0 there is at least one wy € W such that wjRwg and
VMm(a,wg) = 0. But since wiRw; and wjRwy and given that R is trans-
itive, it follows that w;Rwy. But since wjRw) and since Vq(da,wy) = 1,
then it follows that VM(a ,wk) = 1. But we have already shown that
VMm(at,wi) = 0 on the supposition that Vy(dbda,w;) = Vy(da yWj) =0
(such that wiij). Therefore, our original supposition is false. Q.E.D.

By way of a second example, we shall show that the schema D is valid
in the class of all seria/ models. Suppose that for some w; € W in some
model M where R is serial, Vy(da,w;) = 1 but Vq(aa,w;) = 0. Given R's
seriality we are guaranteed that there is at least one other index w ] (or
perhaps wj itself) in W such that wiRwj. Since V(dat,wy) = 1 it there-

fore follows that there is at least one wj in W such that wiRwj and

19 For a more detailed treatment of this, see Chellas (1980), p. 80
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VM(a,wj) = 1. But our intial supposition is also that Vq(aa,wy) =0 in
which case for any wj such that wjRw;, VMm(®,wj) = 0. Therefore our
initial supposition is false. Q.E.D.

Notice that any instance of the schema D would be invalid in the class
of a// normal models (which validates the schema K) since there could be
models such that for some wj in W, there is no wj such that wiRwj. This
member of W is what Hughes and Cresswell call a 'dead end'.20 At any
such index, every wiff of the form ¢a will be true since trivially, for all
Wy such that wiRw VM(a,wy) = 1. Also, since there will be no wj such
that wiRwj, it follows that VMm(Aa,wy) = 0 for any wff a. (For that mat-
ter, there can be K-models such that every index is a dead end if R = @.)
Thus, it is the seriality restriction on R which rules out this type of model.

4. Soundness and Completeness Results for Normal Systems

A normal system S is sound relative to a class C of normal models iff
for every wiff a, if & is an S-thesis then & will be valid in all models in
the class C. l.e., If |-g& then |=cat. Soundness of a system S relative to a
class C of models is established by proving that all the axiom schemata of S
are (' -valid and also that our two rules of inference , modus ponens and
|-s¢ —— |-géa preserve validity.

We can now sketch a soundness proof for K as well as for the various
K-extensions we have considered along the following lines: It is already
established that the schema K is valid in the class of all models, that D is
valid in the class of all serial modelé, that T is valid in the class of all

reflexive models, that 4 is valid in the class of all transitive models and

20 See Hughes and Cresswell (1984), pp. 33-38.
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finally that 5 is valid in the class of all euclidean models. Let S be either
K or any extension of K so far considered in which case the axiomatic base
for S will consist of some combination of the schema K (minimally), D,

T, 4 and 5 each of which is valid in a certain class of models. Then any
schema constituting S's axiomatic base will be valid In the /ntersection ot
these classes.2!

The following list illustrates for K and each of its extensions we've
considered, the class of models with respect to which each schema in the
axiomatic base of the system is valid:

K: The class of al/ models.
D(=KD): The class of seria! models.
T(=KT): The class of reflexive models.

K4: The class of transitive models.

KD4: The class of seria! and (transitive models.

K45: The class of transitive and euclidearn models.

KD45: The class of serial transitive and euclidean models.

S4(=KT4): The class of reflexive and transitive models.

S5(=KTS): The class of reflexive and euclidean models.
So far, we know that for K and each of the K-extensions considered above,
the axiom-schemata constituting their bases are valid in a certain class of
models. We now need to show that R and modus ponens preserve the
validity of the axiom-schemata (which is to say that these rules preserve
the validity of all instances of these schemata) for each of the above-
mentioned systems. From this it will follow that each of these systems is
sound with respect to a certain relevant class of models.

In order to show that R¢ and modus ponens preserve (¢ -validity it is

21 This method of proof is used in Chellas {1980), section 5.1 in chapter 5.
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sufficient to show that these rules preserve validity for the class of al
normal models of which € will be a subclass. For example, the class of
all models where R is reflexive will be a subclass of the class of all models.
First then, to show that modus ponens preserves validity, suppose that

j=a and [=a > § in which case, for every wj in W in every normal model,
VM, wy) = Viy(e 5> B,wy) = 1. But given the truth conditions for wifs of
the form of & > B, Viy(B,wy) = 1. Q.E.D. Further, to show that R¢ pre-
serves validity, suppose that |=a. Then for each wi € W in each model M,
VMo, wyi) = 1. But a0 will also be true at any index wj such that wijRw;j
and hence by the truth-conditions for wiffs of the form &, VM(qm ,wi) =1
for any such wj. Q.E.D.

So far, we have merely established that K and the various extensions
of K considered above are sound relative to certain classes of models. For
any such normal system S, these results guarantee that any S-thesis will
be valid relative to a certain class of modeis. However, this relevant class
of models will- be said to 'characterize' the normal system S if in addition
to soundness, S is complete relative to this class of models.22 A system S
is complete relative to a certain class £ of models just in case for every
wif o if & is C-valid then & is a thesis of S. l.e., for every wif «, if
|= ;o then |-got.

A method that is frequently used in proving completeness for normal
systems is the method of canonical models .23 Just what canonical models
are will become clear in the course of our exposition. The reader will
recall that a normal system S is complete relative to a class ¢ of models

just in case for every wif «, if |= ~a then |-ga. Taking the contrapositive

22 Hyghes and Cresswell (1984), p. 12.
23 For a more detailed treatment of the canonical model method of proving completeness, see Hughes
and Cresswell (1984), chapters 2 and 9.
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of this, proving completeness amounts to proving that if & is not an S-
thesis then & will be invalid with respect to €. l.e., proving completeness
amounts to proving that for every wiff «, if -Isa then =|ccl or equivalent-
ly that if -Jgo then Viq(a,w;) = 0 for some w; € W in some C-model.24
What follows is a description of how such a proof generally proceeds.

We shall say that a wff is S-consistent just in case its negation is not
an S-thesis. A set of wiffs {&y,...,&} is S-consistent just in case the wff
~(aq & ... & &) is not an S-thesis. Thus, for any wff a such that -|ga
we know that ~& will be S~consistent. According to Lindenbaum's lemma,
every S-consistent set of wffs A (which of course includes sets consisting
of just one wiff) has an extension I' which is also S-consistent as well as
maximal and such that A ¢ I'.2® A set I' of wffs is maximal/ just in case
for every wif a either it or its negation is in I'. The following lemmas
(which we shall not bother to prove here?$) illustrate properties which
any maximal consistent set will possess. Any maximal consistent set T
will be such that: |

1) Por every wff &, either & or its negation but not both will be in I

2)a vBisinTiff o isin T or .

3)a &PisinTiff « isinT and B is in T.

4) Any S-thesis is in T.

5 Ifa isinTand « > fisinT then B isinT.

Also, it follows from lemmas 4 and 5 that if « isin T and & > B is an
S-thesis then P is in I'. These lemmas will be crucial in proving the so-

called fundamental theorem of canonical models which will be described

24 Hughes and Cresswell (1984), p. 17.
25 For a proof of this lemma, the reader is referred to Hughes and Cresswell (1984), pp. 19-20.
25 For proofs of these lemmas, the reader is referred to Hughes and Cresswell (1984), pp. 18- 19,
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ﬁresently.

Recall that it is being supposed that some wff & is such that -|ga ffom
which it follows that ~a is S-consistent. Given Lindenbaum's lemma there
is a maximal consistent extension of ~&, [~&] such that ~a € [~a]. The
canonical model M for S is a triple <W,R,V> such that W is the set of all
maximal consistent sets of wffs (and hence [~a] = wy (for some i) is in
W). Also, for any wy, wjin W, wiRw; iff ()bt Ew) — a0 € wJ). Fur-
ther, for any sentential variable p, V(p,w;) = 1 iff p € wj. A valuation
over S's canonical model M for sentential variables is defined as follows:
Vu(p,wy) = V(p,wy). What remains to be proved is the so-called funda-
mental theorem for canonical models:

For any wif &, Vu(a,w;) = 1 iff o € wy.
This theorem's proof is a crucial step in the completeness proof for the
following reason: Recalling once again the supposition concerning some
arbitrary wiff a (viz., that it is not a thesis of S), its negation ~& will be
a member of ~&'s maximal consistent extension (its m.c.e.), i.e., ~a € Wi
such that wy is in W in S's canonical model M. But by the fundamental
theorem of canonical models, it follows that V, (~a&,w;j) = 1 and hence
VM(a ,Wj) = 0. Now assuming that M is in fact a model in the class C of
models with respect to which S is sound then & is C-invalid, which is
what we wanted to show. I.e., we will have shown that if ~|gat then =|~o
for any & supposing in addition that the canonical model M is in ¢ (which
of course is the class of models with respect to which S is sound). |

The fundamental theorem of canonical models is proven by induction
on the complexity of wiffs. We shall consider the cases where & is atomic,

is of the form ~f, p & Y and ¢§.
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Base Clause: Suppose that & is a sentential variable. ‘Then given

the definition of V for A and given that V(p,w;j) = Vi (p,wy), the
theorem holds for the case where & is a sentential variable.

Inductive hypothesis: Suppose that the theorem holds for wifs of
degree of complexity n. Then show that it holds for wiffs of degree

of complexity n + 1.

Case 1: o is of the form ~.

~B € wjitf B £ wy (since wy is maximal consistent.)
B¢ wiitt vu(B,wy) =0 (by the inductive hypothesis.)
Vg, wp) = 0 itf Vv (~g,wy = 1. Q.E.D.

Case 2: o 1is of the from B & v.

BaEYEWiff B, TEW (since wy is max. cons.)
B. Y € wyiff Vu(B,wy) = Vuly,wy) = 1. (by ind. hyp.)
VuBw) = vl wp) = 1iff V(B & y,wy)) =1.  QE.D.

Case 3: a is of the form ¢p.

i) Suppose that ¢f € w;.
B € wy for every wj such that wiRw. (by def. of R for M.)
VM(p,WJ) = 1 for every wj such that wjRwj. (by ind. hyp.)
Then Vy(¢f,wy) = 1. Q.E.D.

ii) Suppose that ¢f is not in w;y.2?
Then ~yf € wj. (since wj is max. cons.)
Let w = {y | ¢y € wj}.
Then w U {~B} is S-consistent.?8
Then [w U {~f}] = wiin Wis o U {~f}'s m.c.e. (Lind.'s lemma)
~Bef[wu {~f}] = wj since ~p € w U {~B}.
B € w; since w; is max. cons. and so Viulp,wy) = 0. (ind. hyp.)
WwiRw; since @ ¢ w;j (given that @ ¢ @ U {~f}) and since

27 This proof can be found in Hughes and Cresswell (1984) , pp. 24-25.
28 See Hughes and Cresswell (1984), p.21 for the proof of this lemma.
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o = {yl $1 € wy}.
Then V (¢p,wj) = 0. Q.E.D.

In outline form, this is how the proof of the fundamental theorem of can-
onical models would proceed. And so it has been established that for any
wff & of any degree of complexity, Vy (a,wy) = 1 iff & € wy where M is
S's canonical model.

Recall once more the initial supposition concerning some arbitrary wiff
a, viz., that -lga in which case ~a is S-consistent. Since ~a's m.c.e.,
[~a] = wj is in W in S's canonical model it follows by the fundamental
theorem of canonical models that Vy(~&,w;) = 1 and hence thal Vy(a,w;)
is 0. Then on the supposition that some arbitrary Qvft & is not a thesis of
S, it follows that in S's canonical mode] & is false at 2 member of W (and
in fact this member of W is ~a's m.c.e.). However, we cannot yet con-
clude that & is invalid in the class of models C with respect to which S is
sound until we have shown that the canonical model M is indeed a member
of C. Now in the case of the minimal normal system K, the completeness
result follows immediately since K is sound with respect to the class of a//
normal models. Howewver, in the case of the various K-extensions, it is the
restrictions imposed on R for every model M in € that distinguishes one
class of models from another. Therefore, for these K-extensions, showing
that M is in C amounts to showing that R as it is defined for M meets the
appropriate restrictions. Once again these results are well established in
the literature, although for purposes of illustration we shall prove com-
pleteness for D, T, K4, KD4 and $4.

In the case of D's canonical model, we know that each instance of the

schema D, ¢a > Aax is in every wj in W given that each wj is maximal
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consistent. Consider any wj in W. Suppose for some wif & that Ja is in
wi. Then since wj is maximal consistent, it follows that Aa is in wj given
that all instances of the schema D are in wj. Further, by the fundamen-
tal theorem of canonical models it follows that Vg (Aa,w;) = 1 in which
case there must be some wj in W such that wiRwj and where Vy (a,w;)
is 1. It once again follows by the fundamental theorem that a is in wj.
But then, whenever ¢a is in wj there will be a wj such that &« is in wj.
In other words, for any wj there will always be a W such that wiij
given the definition of R for D's canonical model. Therefore, R is serial for
D's canonical model. Q.E.D.

Consider T's canonical model, M. Each wj in W will contain every
instance of the schema T, ¢& > & since each wj is maximal consistent.
Suppose for some wif &, ¢a is in wi. Then given one of the lemmas for
maximal consistent sets, & is also in wj. But then for any wj in W, when-
ever ¢& is in wj so is &. So by the definition of R for T's canonical model,
wiRwj for any wj in W. Then R in T's canonical model is reflexive. Q.E.D.

Consider the canonical model M for the system K4. Suppose for any
Wi, Wj Wy in W that wijRwj and w;Rwg. Then we must show that
WiRwyg. Given the definition of R for K4's canonical model, if wjRw; then
(a)(ypx EwWj — a € wj) and it wiRwy then (a) (bt € wj— a € wg).
Each member of W in K4's canonical model will contain every instance of
the schema 4, ¢a > ¢da given that each member of W is maximal con-
sistent. Therefore, if ¢a is in wj then so is ¢pa. But if ¢ is in w; then
by the supposition that (a)(¢ax € wj — a € wj) it follows that ¢ will

be in wj. But if ¢ is in wj then by the supposition that (&) (ot € wj —
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a« € wy) it follows that & is in wi. But then (a)(¢ax € wy — & € wy).
l.e., wiRwyg on the supposition that wiRwj and wjRwy for any wy, wg
and wi in W. Therefore, R is transitive for K4's canonical model. Q.E.D.

The proof that R in the canonical model for KD4 is serial and transitive
is immediate given our proof that R is serial for D and transitive for K4.
Further, the proof that R in the canonical model for S4 is reflexive and
transitive follows from our proof that R is reflexive for T and that R is
transitive for K4.

And so, using the method of canonical models, it can be established that
K and its various extensions are complele with respect to the classes of
models which validate all their theses. l.e., K is characterized by (is both
sound and complete with respect to) the class of all models, D is charac-
terized by the class of serial models, X4 is characterized by the class of
transitive models and so on. A less formal way of expressing these results
is to say that the Kripkean 'possible world' semantics for systems of nor-
mal modal logic is adeguafe in the sense that there is a match~up or cor-
respondence between the various normal systems and their semantics. And
this 'correspondence' consists in the fact that each restriction on the rel-
ation R in a class of models can be regarded as the semantic counterpart of
the axiom-schema which that restriction validates. Consequently, any
results in the axiom-system will be mirrored in the semantics and vice-
versa.

And so, having placed the minimal normal modal system K as well as
a fragment of its extensions into perspective as it were, we are now in a
position to consider how K and its extensions can be construed as systems

of doxastic (and epistemic) logic.
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5. Epistemic Logic Contrasted with Doxastic Logic

If we are adopting some normal systemn S as a system of doxastic
logic, the tradition has been to construe ¢ (which is the necessity operator
for alethic normal systems) as ‘it is believed that' or as 'x believes that'.2?
Also, its dual A can be construed as 'it is possible for all x believes that'.

In addition, to make all this more conspicuous, we shall use ‘B' instead of
¢ and we shall use 'Pg' instead of A. So for any wif &, Pga =df. ~B~a.
Informally, this says that it is possible for all x believes that & is by def-
finition it is not the case that x believes that ~a .3 In terms of the Krip-
kean semantics for wifs of the form Ba, B& is true at an index wj; just in
case O is true at all indices Wi doxastically accessible from wji. Any wff of
the form Ppa is true at an index wj in a normal model just in case & is
true in at least one index Wy such that wj is doxastically accessible from
wi. In this semantics, the belief operator B functions as kind of a doxastic
necessity operator and Pg functions as a kind of doxastic possibility oper-
ator. And in fact, doxastic necessity and possibility coincide with logical
necessity and possibility although this will not be the case for Rantala's
non-standard index semantics which will be considered in chapter five.

We shall first of all make a few remarks concerning the semantics
of normal doxastic (and epistemic) systems. As was noted, the relation R
in the semantics for a normal belief logic is informally construed as a dox-
astic accessibility relation. The intuitive idea behind this construal of R is

that for any index wj (and for any agent x ‘inhabiting’ wj), R divides all

29 gee Hintikka (1962, 1969), Rescher (1974) and Rantala (1982, 1983).
30 For this type of treatment of the belief operator see Hintikka (1962), pp. 10-11.
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the members of W relative to wj into those which are ‘alternatives’ to wj
and those which are not. The alternatives to w; determined by R are all
those members of W at which all the content wifs a such that Ba is true
at wj are true. It follows from this that if we were to take the conjunc-
tion of all the wifs o such that Ba is true at wj then this conjunction
will be true at each wj such that wiRwy. Then what R does is to deter-
mine the set of alternatives to wj at which the agent's beliefs will a4/ be
true. Some authors such as Rescher and Hintikka call these alternatives to
wj agents' belief worlds or belief alternatives to wj.3! The notion that the
belief alternatives to an index wy are those indices at which agents' beliefs
are all true appears for example in Hintikka's '‘Semantics for Propositional

Attitudes* (1969):

My basic assumption ... is that an attribution of any propositional
attitude to the person in question inwvolves a division of all the pos-
sible worlds ... into two classes: into those possible worlds which
are in accordance with the attitude in question and into those which
are incompatible with it.32

Instead of a doxastic accessibility relation R, Hintikka in his semantics for
first-order belief logic introduces a two-place function ¢B which to an
individual a at a ‘world’ wy assigns a set of alternatives to wj such that all
of a's beliefs (or more accurately, a's believed statements) are true at each
of these alternatives.

Although in a relational model in the semantics for normal propositional
systems there is no domain D of individuals, we could replace the relation
R with a one-place function f which to each mgrriber of W assigns a set of

doxastic alternatives. We could then impose the same kinds of restrictions

31 Rescher (1979), p.104 and Hintikka (1969), p. 28.
32 Hintikka (1969), p. 25.
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on f that we place on R depending on what systern we are considering, and
hence the two kinds of semantics would amount to the same thing in terms
of what they validate.33 For example, suppose we are considering the
normal system D. Then if we define a D-model as a triple <W,f,V> (as
opposed to <W,R,V>), we would require for any f in a model in this class of
models and for any wj in W, f(w;) = @. In other words, in a D-model,
every index is such that at least one index is assigned to it by f{. This is
equivalent to requiring that R is seria/ in the relational semantics. Now
consider the doxastic version of' D, viz.,, Ba > Ppat. Suppose there is a
D-model <W,f,V> and a member of W, w; such that V(Ba,w;) = 1 but
VMm(Pga,w;y) = 0. So, for all wy € f(wy), V(o ,Wj) = 1 on the supposition
that Ba is 1 (or ‘true') at wy. But since f is such that f(w;) = @, it follows
that there is at least one Wi in W such that wj e f(wi) and given that
VM(Ba,wy) = 1 it immediatel'y follows that Vyy(Pgat,wy) = 1. Thus, a sem-
antics which requires that for any wj in W and any f in a D-model, f(w;)
= @ will validate the schema D comparable to its relational counterpart.
Given our characterization of R for models in the semantics of normal
doxastic logics, it is a feature of this type of semantics that belief is a rel-
ation between the 'typical’ bellever x at an index wj and a set of indices
assigned to wi by R. The set of indices determined by R with respect to any
given index wj constitutes the /ztersection of all the propositions expressed
by the contents of the agent's beliefs at that index. The concept of prop-
osition operative here is the following: Propositions are sets of indices such
that for any given wff a, the proposition which & expresses is the set of

indices such that &« is true at all and only these indices.3 So the /mter-

33 See Chellas (1980), p. 74.
34 This concept of proposition for natural language is found in Stalnaker (1976, 1984) and in Lewis
(1979).
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section of all the propositions expressed by the contents of agents' beliefs at
some index wjy (determined by R) will be the set of indices common to all
these propositions. We could call this set the 'intersection proposition' and
say that belief in the sort of sermnantics we are considering is a relation
between a typical believer x (at an index) and the intersection proposition.

There has been for a number of years a debate in the literature con-
cerning the objects of the attitudes for rnatura/ language. Two of the most
popular candidates for the objects of belief and other attitudes are prop-
ositions and sentences. Russell of course coined the term 'propositional
attitudes' and there have been several recent defenders of the claim that
propositions (as sets of indices) are the objects of the attitudes.3% On the
other hand, Carnap in Meaning and Necessity seems to have held that
attitudes are relations between agents and sentences. This position has
recently regained some popularity in the ‘mental representation' camp. For
example, Fodor in 'Propositional Attitudes' wants to defend the claim that
the objects of the attitudes are so-called internal representations which can
be thought of as “sentences of a nonz -natural language”.36

In any case, the debate in the semantics of natural language discussed
in the previous paragraph is circumvented for the simple formal languages
we are considering. That the objects of the attitudes for these formal lang-
uages are sets of indices or intersection propositions (and not linguistic
entities such as sentences) is a feature of the semantics. This is just the
way the semantics is set up.

The remarks which we have made concerning the semantics of nor-

mal systems of doxastic propositional logic also apply to normal systems of

35 For example, Stalnaker defends this position in Stalnaker {1976).
36 Fodor (1981), p.194.
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epistemic logic. For epistemic logics, we can replace the operator ¢ with the
more conspicuous operator K such that Ko can informally be read as 'x
knows that &*'. Further, the dual of ¢ can be replaced by the operator Py
such that Pga& reads ‘It is possible for all x knows that a'. And of course
Py is definable in terms of K for any wff & as follows: Pgxa =df. ~K~a.

Since knawledge and belief are different sorts of episternic modalities
or attitudes, one might expect that their Jogics should in some way reflect
this difference. Presumably, a key difference between the attitude of
believing and the attitude of knowing is that it is possible to have false
beliefs but it is not possible to know things that are false.3” This distinc-
tion is regarded as crucial in the traditional analysis of knowledge in terms
of justified true belief (and some additional fourth condition given the
Gettier paradox). In traditional epistemology, a necessary condition for an
agent x's knowing that & is that x's belief that & be true. And informally,
this is just what the schema T, Ka > & says, viz., if x knows that o then
a obtains. So, if we adhere to the traditional analysis of knowledge then
we would want our logic of Anowl/edge based on a normal modal system to
contain as theses all instances of the schema T. Also, any logic of belier
based on normal systems should zof contain the schema T, B&x > & since
we would not want any theses to the effect that if x believes that & then
& is true. A brief scan of the literature on the subject of belief and epis-
temic logic will show that this has in fact been the general tradition.38

In section 2, we considered three possible series of strengthenings of

the normal system K:

37 For example, ses Hintikka's comments with regards to this issus in Hintikka (1962), p. 48 as well
as Marcus (1981), p. 504.

38 See Hintikka (1962), pp. 46-49, Harrison (1969), Rescher (1973), p. 104, Eberle (1974),
p. 361 and more recently Rantala (1962).
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Series1: KgDgTg S4¢ S5

Series 2: K¢ D ¢ KD4 ¢ KD45

Series 3: K ¢ K4 ¢ K45
Supposing that any normal system of epistemic logic should contain T, then
any memher of series 1 from T onwards could be adopted as a system of
epistemic logic whereas any member of either series 2 or series 3 (but not
serieé 1 from T onwards) could be adopted as a system of doxastic logic.
Which member of series { from T onwards we choose as our system of ep-
istemic logic and which member of series 2 or 3 we choose as our system of
doxastic logic will depend on our philosophical biases.

For example, if we maintain that belief and knowledge are iterated in
the sense that if x believes (knows) that a then x believes (knows) that he
believes (knows) that a, then we would chose as our logic of belief or
knowledge any systemn containing the schema 4. The doxastic version of 4
is Ba > BBa and its epistemic version is Ko > KK&. These schemata have
been the objects of contention in the literature with respect to their phil-
osophical plausibility. Eberle for example maintains that 4 is unacceptable
for either epistemic or doxastic logics since in the case of belief, an agent
may believe some claim on the basis of certain evidence and yet "he may
not believe himself to be in possession of such sufficient evidence".39 Other
logicians such as Hintikka uphold 4 for doxastic and epistemic logics.40

It is not our purpose here to engage in these debates. Our concern will
be with the fact that whatever normal system we adopt as our logic of
belief (or knowledge), any such system will presuppose that agents are
ideal (or at least partially ideal) in the sense defined above. Our focus of

39 Eberte (1974), p. 362.
40 Hintikka (1962), p. 105.
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attention will be doxastic logics for the remainder of this work and pre-

sumably any results attained can be generalized to epistemic logics.
6. Believing Contradictions

It is our task in this and the next two sections to consider some of the
schemata derivable in the doxastic systems in series 2 and 3 of the K-ex-
tensions discussed above. We shall in fact focus on the schemata and rules
which are the formal counterparts of the conditions for a believer's being
ideal discussed above on page 2. As we shall see, these schemata and rules
are all derivable in the systems of Series 2 from D onwards. Hence, these
systems could be said to provide us with logics of the 'ideal believer'. How-
ever, as we shall see, there are ordinary language '‘counterexamples’' to the
principles of belief attribution informally expressed by these schemata. If
these examples are sound then it follows that believers are not ideal and
this in turn points to a need for a logic of the non-ideal believer.

| We shall first of all consider two of the more interesting thesis-

schemata derivable in any doxastic system in series 2 containing D. Any
K-extension in series 2 (excluding the system K itself) will contain as theses
all instances of the schema ~B(a & ~a) which informally says that it is
not the case that x believes a contradiction of the form o and not-a. We
shall call this the self-consistency schema. The reader will note that this is
a formal counterpart of the condition mentioned on page 2 that the ideal
believer is incapable of believing self-contradictions. That any wff of the
form ~B(& & ~a) is provable in any K-extension containing the schema D

can be shown as follows:
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1. B~(a & ~a) > Pp~(a & ~at) axiom-schema D

2. ~(a & ~a) PC thesis-schema

3. B~(o & ~a) doxastic version of R¢ (i.e., RB), 2
4. Pp~(a & ~a) Modus Ponens 1, 3

5. ~B(ox & ~at) given that |-p~Ba = Pg~a

Q.E.D.

From the point of view of the semantics for systems in series 2 containing
D, any wff of the form B(a & ~a ) will be unsatisfiable in any model for
such a system and hence |= ~~B(&t & ~a&). This is because of the seriality
restriction imposed on R for all models validating the schema D. We can
prove that B(at & ~a) will be unsatisfiable in any class of models where R
is serial as follows: Suppose that B(a & ~a ) is satisfiable in some serial
model M. l.e., suppose that Vq(B(ax & ~&),w;j) = 1 for some wj in W. Then
since R is serial we are guaranteed that there is at least one wj in W such
that wiRwj. Therefore, there is at least one wj in W such that Mo &
~a,wj) = 1, which is impossible. Q.E.D.

Related to the self-consistency schema is ~(Ba & B~at). lnformany, this
schema says that it is never the case that agents believe contradictories.
1.e., it is never the case that any agent x believes that & and that x bel-
feves that ~. This schema will be derivable in any system of doxastic
logic containing D (and hence the self-consistency schema ~B(a & ~at)) for
the following reason: As we shall see below, every S system contains as a
thesis-schema (Ba & Bf) > B(a & B) which we shall call the adjunction
schema . Informally, this schema says that agents believe the conjunction
of what they believe. Then for any doxastic system containing D and hence

the consistency schema, we can derive ~(Ba & B~a) from the contra-



36

positive of the adjunction schema, the self-consistency schema and modus
ponens. In terms of the semantics for any S system containing D, if B&
and B~a were both true at an index wj, then for all wj such that wijRwy,
both & and ~& are true at each such W which is impossible. And seriality
guarantees that there will be at least one such alternative to w;.

1t is worth noting that no system in our series 3 of K-extensions, viz.,
K ¢ K4 ¢ K45 contains D or T which therefore effectively blocks the proof of
any instance of ~B(& & ~a). Further, in terms of the semantics, K-, K4~
and K45-models are neither reflexive nor serial which as we shall see
invalidates ~B(&t & ~0t). Any of these classes of models will contain models
such that some member wj of W is a so-called dead end which means that
for any such wj, ~(3wj)wiij which of course includes wj itself.

To show that a wif of the form B(x & ~a ) is satisfiable in a model
where at least one of its members is a dead end, consider the following
instance of B(a & ~a), B(p & ~p). The following is an admissible made! in
the class of K, K4 and K45 models: W = {wy}, R = @ and V(p,wy) =
VM(p,wl) = { though the assignment which V gives to p is immaterial.
Since R = @ then trivially, Vq(B(p & ~p),wy) = 1. And in fact, for any wff
a, Vpm(Ba,wi) will be 1.

It is a peculiar feature of this sort of model, viz., that agents at dead
end indices will for any wff & believe it and its negation whether a is
wvalid, contradictory or contingent. In short, at dead ends agents will bel-
feve everything.

Also, the consistency schema ~(Ba & B~a) is not derivable in any sys-

tem not containing FD since its proof is blocked by the fact that ~B(a & ~«a)
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is not derivable in any such system. Further, in terms of the semantics of
such systems, there will be instances of Ba & B~& which are satisfiable in
models with dead ends. For example, consider Bp & B~p and the model W =
{wi}, R = @ and V(p,wq) = 1. Then Vjy(~p,w;) = 0. Since R = @ it follows
that Vq(Bp,wy) = Vp(B~p,wy) = 1. Q.E.D.

It is worth noting that the epistemic systems in series 1, viz., T, S4
and S5 will contain the schemata ~K(& & ~a) and ~(K& & K~0t) since the
schema D is provable in all these systems. And, in terms of the semantics
of these systems all models for T and its extensions will be reflexive and
therefore serial in which case the schemata ~K(a & ~a) and ~(Ka & K~a)
will be valid relative to their.semantics. These are presumably desirable
thesis-schemata for a logic of Anowledge since at least in traditional
epistemology a necessary condition for an agent's knowing that o is that o
be true. Then in the case of the schema ~K(a & ~a ), if it were 'allowed'
that agents can know contradictions then it would seem to follow that
contradictions can be true which is absurd, at least if we construe ~ and &
as classical negation and conjunction respectively. A similar argument
would establish that the schema ~(Ka & K~a ) is desirable for epistemic
logic since if x knows that & and x knows that ~a, it would follow that o
and ~x are both true at the same indices.

However, in the case of doxastic logic, it is not so clear that either
~B(a & ~a) or ~(Ba & B~&) are desirable thesis-schemata. As we shall
see, examples can be constructed where apparently, agents hold contra-
dictory beliefs in different contexts thus violating ~(Ba & B~a ) or they hold
self-contradictory beliefs thereby violating ~B( & ~&). The cases where

agents apparently believe self-contradictory statements hawve not received
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much sympathy in the literature.4!

First of all, it could be argued that agents will sometimes assent to
the negations of logical or mathematical truths. For example, an agent who
is not wuell versed in classical logic may assent to and hence believe that the
negation of some instance of Pierce's law, viz.,((& > f) > @) > &« is false
for classical two-valued logic. But the negation of any PC tautology will of
course be self-contradictory in which case, it will be logically equivalent to
some instance of a & ~a relative to this sort of semantics. Then it would
follow that the agent has a belief that can be represented as B(x & ~a ), on
the assumption that agents believe whatever is logically equivalent to what
they believe, which is a derfvable principle for any K-extension. This prin-
ciple is discussed below. Given that agents can and do have false or mis-
taken beliefs, then there seems to be no reason why some of an agent's
false beliefs can't be Jogically false as opposed to merely contingently so.

However, in believing that some logical truth does not obtain, the agent
will thereby end up believing everything since a self-contradiction logically
implies everything. But this i{s an absurd consequence of the supposition
that agents can believe logical truths to be false. Therefore, there is good
reason after all for wanting ~B(&t & ~& ) as a thesis-schema for any doxas-
tic logic. This reductio-style argument rests on the assumption that agents
believe whatever is logically classically implied by what they believe. This
principle holds for any K-extension and it is represented in the K thesis-
schema (Ba & |-a > B) > Bf. Then one way of countering this reductio
argument is to question the assumption that agents are '‘'omniscient’ or

more precisely, 'omnidoxastic' with respect to the consequences of what

41 For example, see Dummelt (1973) and Marcus (1981). On the other hand, Lewis does not dis-
count the possibility of self-contradictory beliefs. See Lewis (1986), p. 36.
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they believe.

But the only way to get around this assumption is to alter the seman-
tics in such a way that there are models with non-standard as well as
standard indices where the connectives are defined non-classically. Sup-
pose non-standard indices are admissible as doxastic alternatives such that
even though o logically implies f, & may be true at some such index while
B is false. In such a case, an agent may believe that o and fail to believe
that . However, it will be argued in chapter five that such tactics
ultimately do not succeed.

Nevertheless, suppose for the sake of argument that the strategy of
allowing doxastic alternatives to be both classical and non-classical will get
rid of the unpalatable result that an agent who believes that some truth of
classical logic is false (relative to the appropriate semantics) thereby bel-
feves everything. There is another problem with our example in which an
agent allegedly believes that the negation of (some instance of) Pierce's law
is classically false, viz., it is not clear what sorts of doxastic alternatives
will be such that negated tautologies can be true. This problem will now
be discussed in more detail vis a vis Marcus' comments concerning the
supposed impossibility of agents' having seif-contradictory beliefs.

First of all, we are assuming in the above example some sort of attrib-
utive principle along the following lines: Sincere assent is at the very
least surficient for belief. Thus, in our example, the agent has sincerely
assented to the claim that Pierce's law is false for classical two-valued logic
and on this basis we would attribute to this agent a belief whose content
is logically false. The principle that sincere assent is sufficient for belief

attribution has been called the 'disquotation’ principle by Kripke. Ruth
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Barcan Marcus has argued that Kripke's disquotation principle needs to be
bolstered by an additional condition, viz., that what is assented to describes
a logically possible state of affairs.42 She also holds that this condition is a
necessary one.43 So for Marcus, sincere assent does not carry over into
belief unless the state of affairs assented to is logically possible - i.e., it is
realizable in some possible world or other. Thus, it is not possible that an
agent believes that some truth of classica/ logic fails since there is no log-
ically possible world where its negation obtains, if by logically possible we
mean that the connectives ~, &, etc. are defined classically for such worlds.

Presumably, Marcus wants to claim that analogous to maintaining
that a necessary condition for attributing knowledge to an individual is that
the claim to which he assents is fruwe, a necessary condition for attributing
belief to an individual is that the claim to which he assents is passidle .
In the case of knowledge, to require that what is known is true is a kind
of 'reality’ restriction in the sense that what is known must obtain in the
‘actual’ world (or more neutrally, in the world or index at which the
knowledge claim is being evaluated.) Thus, she is attempting to impose
some sort of 'reality' restriction on belief in the sense that what is believed
must be realizable at some logically possible world though not necessarily
the actual one.44

However, Marcus does not really offer any arguments in favour of her
reality restriction for belief. In effect, Marcus' restriction simply reflects
the feature of a (minimally serial) relational semantics for belief logic, that
an agent has beliefs at an index just in case there are Jogically possible

alternatives to that index such that what is believed obtains at these alter-

42 Marcus (1981), p. 505.
43 Marcus (1981), p. 505.
44 ibid, p. 507.
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natives. So employing Marcus' strategy of introducing a reality restriction
to rule out cases where agents hold logically false (as in self-contradictory)
beliefs amounts to claiming that a serial relational semantics disallows such
cases - but this is exactly what is at issue. [.e., is there anything that
can and should be done to a serial relational semantics for belief (and the
corresponding logic) to accommodate cases where agents hold logically false
beliefs?

Nonetheless, Marcus' suggestion for a reality restriction on belief does
raise an important issue, viz., in a relational semantics for doxastic logic
where R is minimally serial, if we allow models where agents can believe
the negations of logical truths, then it is not clear what sorts of indices
would constitute doxastic alternatives for such agents. The alternatives to
indices where agents believe that the negations of logical truths obtain
cannot be logically possible in the sense that the connectives are defined
classically since the negation of a classical logical truth could not turn ocut
to be true at such indices.

And so, doxastic alternatives where self-contradictions can turn out to
be true must be logically impossible in the sense that the connectives are
interpreted non-standardly. However, as was already noted, and as will
be argued in chapter six, such tactics ultimately do not succeed owing to
the fact that it involves an equivocation with respect to the connectives.
They mean one thing for standard indices and something else for non-
standard indices. Then since there is no way of making model-theoretic
sense of an agent's believing that the negations of logical truths hold within
the parameters of a minimally serial relational semantics, it must be

concluded that this is a feature of the semantics that is intractable and
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which can at best only be made more palatable. l.e., even though there is
some sort of case to be made for agents believing self-contradictions, a
relational semantics standard or otherwise will not be able to accommodate
this.

On the other hand, there has been a certain amount of sympathy in
the literature for the view that an individual in different contexts can
believe that & and can also believe that ~&, thus casting doubt on the
plausibiltiy of the schema ~(Ba & B~ ). This position has been espoused by
Dummett, 4% Stalnaker,46 Rescher?’ and Barcan Marcus. We shall now
consider an apparent case where an agent holds contradictory beliefs,
though in different contexts.

Saul Kripke has proposed two cases in 'A Puzzle About Belief' which can
be interpreted as cases where an agent holds contradictory beliefs in dif-
ferent contexts (although Kripke himself does not endorse this construal).
Before describing one of these cases, it is necessary to allude to two prin-
ciples which Kripke uses in its construction: The first principle which he
appeals to is the disgquotation principle alluded to above, viz., that if an
agent S (upon reflection) sincerely assents to a claim p then S believes that
P.- And the second principle which he employs is the translation principle
viz., that if a sentence p expresses a truth in language L then its trans-
lation p' in language Lj expresses a truth in L. We shall in the next par-
agraph briefly describe Kripke's ‘puzzling Pierre' case.

Pierre, a monolingual French speaker living in Paris has never been to

London and knows of it only through pictures and verbal descriptions. Sup-

45 pummett (1973), p. 268
45 Stainaker (1984), p. 83.
47 Rescher and Brandon (1980).
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pose further that he sincerely assents to and hence by the disquotation
principle believes the claim 'Londres est jolie'. In short, the sentence 'Pierre
croit que Londres est jolie' is true in French. But given the translation
principle it follows that 'Pierre believes that London is pretty' is true in
English. Now suppose that Pierre moves to a rather shabby part of London
where he acquires a spoken knowledge of English. He does not make an
association between what he calls 'Londres' in French and what he calls
'London’' in English. In his new environment, Pierre speaks only English.
He soon gives sincere assent to and hence believes the claim 'London is not
pretty' and hence the sentence 'Pierre believes that London is not pretty’
is true in English. Finally, Pierre does not withdraw his assent to what he
believed as a monolingual French speaker, viz., that London is pretty. Then
what does Pierre believe? And this, says Kripke is the puzzle. He maintains
that any answer to this question leads to an absurdity which therefore
renders the puzzling Pierre case paradoxical.48

Kripke wants to claim that in this case it is unfair to accuse Pierre of
holding contradictory beliefs since on the basis of his logical acumen alone
he could not detect the inconsistency in the contents of his alleged beliefs,
even if he were a brilliant logician. It is only if he had the additional
information that 'London’' and 'Londres' name the same place that he would
be in a position to see that these contents are contradictory, thus abandon-
ing assent to one or the other.4? And it would only be at this point that
Pierre could rightly be charged with inconsistency if he failed to abandon
assent to one or the other content. However, the assumption which Kripke
employs in his argument against this construal of the puzzling Pierre case,

viz., that an agent can be charged with inconsistencies in his beliefs only if

4B gee Kripke (1979), pp. 257-259.
49 Kripke (1979), p. 257.
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he is in a position to detect these inconsistencies without appeal to addition-
al information, is open to doubt.

It could be countered that it is in just those sorts of cases where the
contradictory nature of the contents of an agent's alleged beliefs is Jogically
undetectable in the sense that only by acquiring additional information
could the inconsistency be detected, that we would be mos¢ inclined to
attribute to the agent contradictory beliefs. Presumably, an agent with a
requisite degree of logical acumen would not hold contradictory beliefs
unless he/she failed to recognize that their contents were contradictory.
Then a situation where even the most brilliant logician is unable to detect
an inconsistency such as in the puzzling Plerre case is a kind of /Jimiting
situation where the agent would fail to recognize the inconsistency in his
alleged beliefs barring the addition of relevant information. By the prin-
ciple of charity, we may even refrain from attributing to a logically astute
agent contradictory beliefs if he /s in a position to detect the inconsistency
without recourse to additional information, the idea being that he will
eventually withdraw assent to one content or the other. Then it is only if
he is unable to detect the inconsistency without recourse to additional in-
formation that it would be fair to attribute to him contradictory beliefs.

The idea here is that agents can hold distinct and possibly incompatible
sets of beliefs in different contexts, without necessarily being in a position
to integrate these sets of beliefs. A 'context' can simply be a time or as in
the puzzling Pierre case, it could be a language. Lewis provides the example
of a hypochondriac who at certain times believes that he is healthy and at
other times believes that he is ill. As Lewis suggests, in such a case, the

agent holds contradictory beliefs though at different times.50 As will be

S0 |ewis (1986), p. 31,
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argued in chapter six, we can make sense of this type of situation as well
as the puzzling Pierre case via Stalnaker's notion that agents are capable of
being in more than one ‘belief state’ at the same time (or perhaps at dif-
ferent times as in Lewisf ‘hypochondriac' example). A belief state is a set
of worlds such that all the coﬁtents of a subset of an agent's beliefs obtain
at each world in the set. And so, it is not patently absurd after all to
attribute to puzzling Pierre contradictory beliefs. Or is it?

It could still be argued along the following lines that attributing to
puzzling Plerre contradictory beliefs involves an absurdity: Does Pierre in
the above example also believe that London is pretty and London is not
pretty? Pierre would presumably not give sincere assent to this claim.
Then by a strengthened version of Kripke's disquotation principle, viz.,
that x's sincere assent to & is both sufficient and necessary for ascribing
the belief that & to x, it would follow that Pierre does not believe this self-
contradictory claim. But the adjunction schema to be discussed below,

(Ba & Bf) > B(a & B) which says that agents believe the conjunction of
what they believe expresses a valid principle for any logic of belief based on
a normal systern where the alethic necessity operator is construed as 'it is
believed that'. Thus, given that Pierre believes that London is pretty and
given that he believes that London is not pretty, then even though Pierre
would not give assent to the self-contradictory claim that London is pretty
and that it is not pretty, he would nonetheless believe this claim - assum-
ing that the adjunction principle is sound.

And so, if we attribute to Pierre the belief that London is pretty and

the belief that London is not pretty then by the adjunction principle (and
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contrary to the strengthened disquotation principle), we are forced to con-
clude that Pierre believes that London is pretty and that London is not
pretty. But if we are forced to conclude that Pierre holds a belief whose
content is of the form & & ~& then, given the '‘omnidoxasticity’ principle
(corresponding to the schema (Ba & |-g(a > )) > Bp) discussed earlier,
viz., that agents believe the logical consequences of what they believe, it
follows that Pierre believes everything, which is absurd. However, it is
somewhat hasty to lay the blame for this generated absurdity on our attri-
bution to Pierre a set of contradictory beliefs. The absurdity generated
above is avoidable esther by rejecting the claim that Pierre holds contra-

- dictory beliefs or by abandoning the adjunction principle or by abandoning
the omnidoxasticity principle. Our tact will be to abandon the adjunction
principle since as will be argued in chapter six, the omnidoxasticity feature
of a relational semantics for belief logic is intractable, although there are
moves that can be made to rid doxastic lbgic of the adjunction feature.

It will therefore be argued in chapter six that there is a way of ac-
commodating the sort of situation where an agent has contradictory beliefs
without thereby believing their conjunction for a two-place relational sem-
antics of belief (where R is serial), although it involves interpreting the
alethic possibilityr operator as ‘it is believed that'. In interpreting the pos-
sibility operator as 'it is believed that' rather than the necessity operator,
we avoid (on both the syntactic and the semantic fronts) the consequence
of x's believing that & and x's believing that ~at, that x thereby believes
their conjunction - and hence everything. This approach is hinted at
though not developed by Marcus in a recent article.5! We shall discuss this

approach in the sixth chapter in conjunction with a resolution to this prob-

51 See Marcus (1981).
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lem discussed by Stalnaker in his book /nguiry, which we shall describe
briefly in section 9 and in more detail in chapter six.

As a concluding note on doxastic theses involving the negation operator
‘~', any doxastic K-extension will contain all instances of the schemata
B~~a > Ba and its converse Ba > B~~Q as theses. These schemata as we
shall see are more palatable as principles of belief attribution for the non-
ideal believer than the consistency schemata. Both are derivable by apply-
ing RB to the PC schemata ~~a& > & and & > ~~& respectively along with K
and modus ponens. The former expresses the principle that if an agent x
believes that not-not & then x also believes that & and the latter expresses
the principle that x will believe that not-not & if x believes that &. For
example, if x believes that every natural number has a successor then x
believes that it is false that not every natural number has a successor. Or
conversely, If x belleves that it is false that not every natural number has
a successor then x believes that every natural number has a successor.
However, the following variants of these principles involving four or more
iterations of the negation operator become a bit harder to swallow, viz.,
Ba > B~~~~0 or its converse B~~~~0t > Ba&. These are derivable given the
PC schemata & 5> ~~~~& and ~~~~ > & respectively.

The only way of mitigating this situation is to interpret '~' in some
non-standard way, though if we are concerned with '~' interptreted
classicallyy then this strategy will not work. We shall discuss the short-
comings of the non-standard worlds approach (or at least Rantala's version
of it) further in cixapter five. More immediately, in the next two sections,
we shall discuss the adjunction and omnidoxasticity schemata which are

shared by all normal doxastic systems.
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7. The Apparent Failure to Conjoin Beliefs

To date we have determined that if we adopt a K-extension containing
D as representing a system of doxastic logic then informally, we are com-
mitted to the claim that it is never the case that agents believe self-contra-
dictions since any such system will contain all instances of ~B{(a & ~a ).
We are also committed to the claim that agents cannot believe contradic-
tories separately since any such system will contain all instances of ~(Ba &
B~at). But no matter which K-extension in either series 2 or 3 we consider
as a system of doxastic logic, all instances of the following schema are
derivable/valid in K and its extensions:

(Ba & BB) > B(ox & B)
As was noted above, this schema which we have called the adjunction
schema says that any agent believing that & and believing that p separate-
1y will believe thier conjunction. Or more succinctly, agents believe the
conjunction of what they believe. We shall consider the philosophical ram-
ifications of this schema presently, but first it will be demonstrated that
the adjunction schema is derivable/valid for all K-extensions. To show
this, it will be sufficient if we demonstrate that any instances of the ad-
Jjunction schema will be derivable in K and that any instance of it will be
valid in the class of all K models.

Pirst of all, to show that any instance of the adjunction schema is
derivable in the system K, consi&er the following abbreviated sequence.52

l.e., any instance of the adjunction schema would be derived in this way:

1. |-get > (B> (o & B))

52 This derivation sequence appears in Hughes and Cresswell (1968), p. 34.
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2. B(a > (> (ax &P))) RB, 1.

3. B(a > (B> (a &P))) > (B > B> (x &P))) instance of K.

4, Ba > B(f> (x &P)) Modus Ponens, 2,3.
5. B(f > (a &B)) > (Bf > B(aa & B)) instance of K.

6. Ba > (Bf > B(a & B)) PC83, 4,5.

7. (Ba & Bf) > B(at & B) PCH, 6.

Q.E.D.

Thus, the adjunction schema is a K thesis-schema and hence it will be a
thesis-schema of any K-extension. And in fact, given soundness it also
follows that all instances of this schema will be valid in the class of all
normal models. In order to see how the semantics for K works, however,
we shall verify that the adjunction schema is valid with respect to the
class of K models and hence for all of its extensions.

Suppose that some instance of the adjunction schema is invalid in some
K model. Then there will be some wj in W in this model such that
VMm(Ba & BB, wy) = Vq(Ba,wy) = V(BB wy) = 1 but Vq(B(x & B),wy) = 0.
Then for all wj such that wjRw;, VMm(a,wp) = Viy(B,wy) = 1. But also, it
must be the case that there is some wy in W such that wiRwy and
VMm(a & B,wy) = 0 which is impossible. Q.E.D.

And so, any normal system construed as a system of doxastic logic
involves the claim that agents believe the conjunction of what they believe
separately given that each normal system contains the adjunction schema.
However, when we consider examples such as the puzzling Pierre case
discussed in the previous section, the desirability of having a system of
doxastic logic for non-ideal believers (i.e., believers who don't always have

consistent sets of beliefs) which contains the adjunction schema becomes

53 The relevant PC thesis-schemata are (0t > B) & (B> YN > (a0 5 1) & > (B> (o & ).
54 The relevant PC thesis-schema here is (0t 5> (B> 7)) > (& & B) > ).



50

doubtful. In the puzzling Pierre case we wish to avoid the consequence
that in believing that London is pretty and in believing that London is not
pretty (in different linguistic contexts), Pierre thereby believes a content of
the form a & ~& since he would end up believing everything .

There are cases where the adjunction schema seems undesirable even
where x believes that & and x believes that § and & and B are not contra-
dictories. In chapter five of /nquiry (1984), in connection with the adjunc-
tion principle, Stalnaker presents the 'paradox of the preface'.% This so-
called paradox of the preface was first formulated by Makinson in Analysis
(1965) and it has been discussed by a number of other authors through the
years.56 Suppose that a certain history book contains a disclaimer in the
preface stating that there will be certain sentences in the book which are
false. The author admits that he will most certainly be mistaken in one or
more of his assertions though he does not know which of his assertions
are false. But as Stalnaker notes, the author "... continues to believe
everything he wrote. .. "5 although he believes that there will be some
sentences constituting his book which are false. Thus, the author believes
each sentence in the book individually but he believes that the conjunction
of these sentences is false.

Then the paradox of the preface is not Zmumediately relevant to the
adjunction schema but rather it bears directly on the plausibility of a
closely related schema, (Ba & Bf) > ~B~(a & ). Informally this schema
says that if an agent x believes that & and that p individually then it is not

the case that x believes that their conjunction is false. This schema is

S5 R. Stainaker (1984), p. 92.

SB For example, see R. Hoffman (1968, 1973), A. R. Lacey (1970) and C. New (1978).
57 ibid., p. 92.
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valid and hence provable in doxastic K-extensions containing all instances
of the schema D. In fact, any instance of the above schema is derivable
from the appropriate instances of the schema D in conjunction with the
adjunction schema.

However, in any normal doxastic system containing D, it is a thesis-
schema that ~(Ba & B~ ) which is truth-functionally equivalent to B~a >
~Ba. l.e., it is a thesis of systems containing D that if an agent believes
that a0 is false then he does not believe that o is true. Thus, the preface
paradox is relevant to the adjunction schema for systems containing D since
if this is a case where an agent believes a, B, etc. while believing that
their conjunction is false then it is also a case where the agent does not be-
lieve that their conjunction is true.

Stalnaker claims that what is peculiar about the preface paradox is
that it not only shows that agents are non-ideal in the sense that they do
not always conjoin beliefs, but that it is raZjomal/ in some cases not to con-
Join belief. I.e.,' Stalnaker wants to question the adjunction principle as
a 'rationality’ condition for belief.5

Related to the preface paradox is the lottery paradox first discussed
by Kyburg.%? Several authors including Stalnaker have alluded to Kyburg's
lottery paradox which bears directly on the weaqu version of the adjunc-
tion schema, (Ba & Bf) > ~B~(a & B). In the lottery example, suppose
there is some arbitrary number of tickets, say 1,000,000. Then each ticket
relative to all the others has a 999,999/1,000,000 probability of losing. Thus,
it is 'rational’ to believe of each and every ticket that it will lose. However,
it is not ‘rational' to believe that no ticket will win.

Also, the lottery example like the preface paradox is directly relevant

38 Stalnaker (1984), p. 88,
59 See Kyburg (1971).
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to the weaker version of the adjunction schema, viz., (Bat & Bf) > ~B~(a
& B) since any 'rational' agent would be disposed to assent to the claim that
not all the tickets will lose. But as we have noted, for systems containing
D, if x believes that a is false then x also fails to believe that a is true.
Thus, the lottery paradox would also be a case (for systems containing D)
where the agent does not believe that the appropriate conjunction obtains.
In any case, as Stalnaker notes, the paradox of the preface is the better of
the two counterexamples to the principle that agents believe the conjunction
of what they believe since it does not rely on the notion of probability.¢0
Stalnaker finds it questionable that we can say that the agent believes of
any one ticket wirthout reservation that it will lose. I.e., he questions the
assumption "that a probability of .999999 is sufficient for acceptance”.!
And s0 presumably, the preface and lottery paradoxes not only indicate
that agents are non-ideal but they serve to impugn the adjunction principle
qua 'rationality' principle. Howewver, even if this is the correct conclusion
to be drawn from these paradoxes, it does not follow that the ‘ideal’ bel-
fever in the sense defined in section 1 does not conjoin his beliefs. Such an
inference could be made only if we wrongly conflate the terms 'ideality’
and ‘rationality’'. Our sense of ‘ideal' is stipulative - i.e., ideality is stip-
ulated to be tied up with the adjunction, consistency and omnidoxasticiy
principles. There is no claim being made in defining ideality in this way
that agents ought to conjoin their beliefs. The claim that agents ough? to
conjoin their beliefs (that their beliefs ought to be consistent, etc.) is the

sense of 'rationality’ which Stalnaker is employing in his discussion of the

60 See Stainaker (1984),p. 91. Stainaker aiso maintains that belief and acceptance generally is not a

malter of degree.
61 ibid, p. 91.
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adjunction principle as a ‘'rationality' condition for belief.

In chapters five and six we shall critically examine ways of altering
the semantics and corresponding axiornatics of normal doxastic systems in
order to accommodate the puzzling Pierre case as well as the preface (and
lottery) paradoxes. As will be noted in chapter six, Stalnaker suggests that
the preface paradox can be explained by claiming that the historian merely
accepls in some sense other than believes the statements of his narrative,
Even if Stalnaker is correct, there is still a need for a logic of belief which
does not suppose that agents conjoin their beliefs in order to be able to
accommodate cases such as the puzzling Pierre case.

By way of some concluding remarks concerning the relation between
the belief operator 'B' and '&' classically construed, the converse of the
adjunction schema, viz., B(a & B) > (Ba & Bf) is more palatable qua prin-
ciple of belief attribution (for the non-ideal believer) than its close cousin.
This schema expresses the principle that if x believes that & and B both

~obtain then x believes that & obtains and x believes that B obtains. For
example, if x believes that the natural numbers and the integers are both
denumerably infinite sets then x also believes that the set of natural num-
bers is denumerably infinite and x believes that the set of integers is den-
umerably infinite. This schema is derivable given the following two thesis
schemata,

B(a & B) > B

B(ax & B) > B
These two schemata which we might wish to call 'doxastic simplification'
express the principle that if x believes that & & p then x believes that

either conjunct obtains. Once again, these schemata are acceptable as prin-
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ciples of belief attribution, at least in comparison to the adjunétion schema
and at least if we are only considering two-termed conjunctions.

In the next section, we shall examine two additional thesis~schemata
and their associated rules of inference contained in all normal systems.
These rules and schemata are the formal counterparts of the principles
(qua principles of attribution) that agents believe whatever is logically
equivalent to what they believe and whatever is logically classically im-

plied by what they believe.
8: Are Agents Logically Omnidoxastic?

Given an unrestricted use of RB, we can derive the following rules of
inference for any normal doxastic modal system:

DR 1: |-g(a > B) — |-g(Ba > BP)

DR 2: |-g(a = B) — J-g(Bax = BP)
What these rules of inference amount to qua principlés of belief attribution
and how they are ‘'violated' will be discussed presently. PRirst of all, we
shall illustrate the role which the rule RB plays in their derivation.
Consider the following sequence:

1. a > P assumption

2. Ba >B) RB 1
B(ax > ) > (Ba > Bp) K schema
4. Ba > B Modus Ponens 2,3

b

Further, any instance of the equivalential version of this schema will be
derivable as follows:

1. a =8 assumption
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2. (aspPp&s(Poa) df '=.

AN (CIEY R XCER D ERCIEY )
4. a>P Modus Ponens 2,3
5. B{a >f) RB, 4

6. Ba >Bf DR, §

7. FaspaBoa)s(Poa)
8. Bpoa Modus Ponens 5,6
9. B(f>a) RB 8

10. Bf > Ba DR, 9

11. |-(Bat > BB) > ((Bf > Ba) > ((Ba > BB) & (BB > Ba)))

12. (Ba > BB) & (Bf > Ba) Modus Ponens, 2 X using 6, 10, 11.

12. Ba = Bf  df '=', 12, Q.E.D.
Further, the semantic counterparts of these two derived rules can be-
established immediately given the soundness of any normal system relative
to its semantics:

l=c(a 5> B) — = (B > Bf)

l=c(a 2 B) — |=c(Ba = Bf)

Now that we have shown that DR 1 and DR 2 are rules of inference of
any normal doxastic system, we shall next consider their intuitive import.
DR 1 informally says that any agent x will believe the logical consequences
of what he believes. We could express DR 1 as an implicational schema as
follows: (Ba & |-g(a > B)) > Bf. In the literature, this schema is known
as the logical omniscience thesis.®2 PFurther, the equivalential version of
DR 1 informally says that agents believe any wff logically equivalent to
what they believe. DR 2 can also be expressed as an implicational schema:

(Ba & |-g(a = B)) > B. These logical omniscience or more appropriately

62 For example, see Hintikka (1975) and Rantala (1982).
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logical omnidoxasticity rules of inference and their corresponding schemata
are the formal counterparts of the condition for ideal believers that such
agents believe the logical consequences of what they believe.

In chapter five of /mquiry , Stalnaker formulates the following infor-
mal counterexample to the logical omniscience principle (qua principle of

belief attribution):63

William III of England believed, in 1700, that England could avoid a
war with France. But avoiding a war with France entails avoiding
a nuclear war with France. Did William II1 believe England could
avoid a nuclear war? It would surely be strange to say that he did.

Given the omnidoxasticity principles, even though William 11l would not
sincerely assent to the claim that England could avoid a nuclear war with
France, we are committed to saying that he held this belief. Yet, there is
something wrong in attributing to good King William this belief.

An even stronger counterexample to both DR 1 and DR 2 runs as fol-
lows: Suppose that agents believe all the logical consequences of what they
believe or whatever is logically equivalent to what they believe. Then if
any agent believes one logical truth, he believes all logical truths because
any truth of logic (classically) entails and is entailed by every other logical
truth. But this seems absurd in the case of 'non-ideal' believers.

Stalnaker has alluded to this situation in his 1972 article 'Propositions’
as well as in /nquiry in attempting to vindicate his characterization of
propositions as sets of ‘worlds'. This metaphysics of propositions is implicit
in the relational semantics for normal doxastic systems. The assignment
function V in a model determines for any atomic wff & all those indices at

which & is true, viz., the 'proposition' which that wff expresses. And in

63 R. Stalnaker (1984), p. 88.
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general, the proposition which any wif expresses in this type of semantics
will be the set of indices at which that wif is true. But if any two wffs
are logically equivalent then it follows that any given agent will believe the
one if he believes the other since both will be true at all his doxastic alter-
natives if the one is. Or if x believes that & and & logically implies B then
since there are no alternatives at which & is true but p is false, it follows
that x also believes that f.

In fact, in the type of semantics we have been considering for normal
doxastic modal systems, in any given model (including models where R is
empty) agents at any index will believe all va_lid wifs since these wifs will
be true at all doxastic alternatives. In short, the following expresses a
classical entailment relationship for all normal systems: |= ce —

[=oBa. Thus, any agent x at some index will believe all valid material
conditionals from which it follows that if x believes that the antecedent of
any such conditional obtains, then x will believe that its consequent ob-
tains. And this is.the omnidoxasticity feature of the semantics discussed
above. The syntactic counterpart of |[=ra — |=~Ba is the doxastic ver-
sion of the rule of necessitation, RB, viz., I-Sa —_— I—sBa. Thus, if & is
any conditional thesis then it is also a thesis that |-gBa so that if x believes
that the antecedent of a obtains then by the schema K and modus ponens it
follows that x believes that & 's consequent obtains. And this is the omni-
doxasticity feature on the syntactic front. As we shall see in chapter five,
Rantala suggests that we can block this feature of the axiom systems by
restricting the application of RB.

On the semantic front, allowing logically impossible indices to be belief
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alternatives would be one way of solving the so-called problem of logical
omnidoxasticity since at impossible indices (such that the connectives are
not defined classically), logically equivalent wffs can differ in their truth-
values. However, as logicians such as Bigelow have pointed out, such tactics
involve the rather cumbersome task of “"reworking the semantics of
extensional and intensional operators.*® These tactics will be discussed,
criticized and ultimately rejected in chapter five. In chapter six, we shall
theﬁ argue that although there is no way of ridding the relational seman-
tics for doxastic logics of the omnidoxasticity feature, there are ways of
mitigating this feature.

It may be worth noting that Stalnaker's attempted ad hoc solution to
the probiem of omnidoxasticity with respect to belief in logical or math-
ematical truths is to say that agents can sometimes have mistaken beliefs
about which propositions various sentences; of mathematics expresses. %5
Hence, cases of mathematical or logical ignorance can be explained in terms
of ignorance of the relationship between a sentence expressing the 'neces-
sary proposition’' and the necessary proposition. Another consequence of
Stalnaker's proposal is that an agent who believies that a truth of mathe-
matics or logic is false (such as in our example of the agent who believes
that Pierce's law is false) may simply have a mistaken belief concerning
the relationship between the sentence expressing the necessary truth and
the necessary truth. In our earlier example, the agent may have a false
belief concerning Lhe relativuship belween the expression ({ax > B) > 0() >a
and the necessary proposition. Then perhaps our agent does not believe
that a logical truth is a falsehood after all. We shall return to Stalnaker's

proposal in more detail in chapter six.

64 John Bigelow (1978), p. 105.
65 R. Stainaker (1976), p. 87
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9. The Non-Ideal Believer and the Problem of Deduction

And so, in summarizing our discussion to date, it would seem that if
we adopt a normal system of modal logic in series 2 containing D we are
committed to the consistency schema, the adjunction schema and the log-
ical omniscience schema (as well as its equivalential version). A system of
logic containing all three schemata could be said to capture the notion of the
ideal believer. As noted earlier, we could define an idea/ believer as one
who is incapable of believing any contradictions, who believes the conjunc-
tion of everything he believes and finally who is logically omnidoxastic. We
also noted that any system in Series 3 without D will not contain the con-
sistency schemata (though at the price of allowing indices where agents
have maximally inconsistent sets of beliefs - viz., at dead ends).

In the preceding sections, we considered in relation to the consistency,
adjunction and omnidoxasticity schemata a number of supposed 'counter-
examples' which are possible situations where the principles of belief attri-
bution asserted by these schemata break down. Thus, a counterexample to
the omnidoxasticity schema, viz., a case where the principle of attribution
it asserts breaks down, would be a case where an agent x believes that «
and even though & logically implies §, it is somehow wrong to attribute to
X the belief that B. If these counterexamples are not spurious, then it
would seem that agents can believe contradictions (at least separately),
that there can be cases where agents fail to believe the conjunction of what
they believe and that it isn't always the case that agents believe the cons-

equences of what they believe - agents are not logically omnidoxastic. In
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short, it would seemn that believers are (or at least can be) non-ideal.

The moral to be drawn from these alleged counterexamples to the
principles expressed by the omnidoxasticity, consistency and adjunction
schemata is that a logic emmbodying principles of belief attribution for the
non-ideal believer is needed. The normal systems of doxastic logic in
series 2 and 3 are perfectly adequate qua logics of the 'ideal' believer, but
they do not provide us with logics of non-ideal believers. Authors such as
Dummett claim that there is no logic of belief. The line we are adopting
here is that there is a logic of belief - i.e., of ideal belief but there is to
date no logic characterizing believers who for example do not always con-
Jjoin their beliefs.

Admittedly, the alleged counterexamples to the consistency, adjunction
and omnidoxasticity schemata all rely on some version of Kripke's disquo-
tation principle in terms of sincere assent. Or they rely on some sort of
principle of belief attribution or other (such as a dispositional account).
Further, these cases can be regarded as involving a conflict between either
the disquotational or dispositional principle on the one hand and one of these
three principles (adjunction, consistency or omnidoxasticity) on the other.
For example, in the William 1II example, William 111's probable lack of
assent to the claim that England will avoid a nuc/ear war with France
seems to imply that he would not believe that this claim is true assuming
Kripke's strengthened disquotation principle. Yet according to the omni-
doxasticity principle, viz., that agents believe the consequences of what
they believe, we are forced to conclude that William I[II does believe that
England can avoid a nuc/ear war with France (if he believes that England

can avoid a war with France). So there is a clash here between two prin-
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ciples of belief attribution, viz., disquotational vs. omnidoxasticity.

But then as Kripke would be quick to point out, we may be too hasty in
indicting the claim that agents are ideal believers. Perhaps our disquota-
tional or dispositional principles are at fault such that amending them
would block these allegéd counterexamples to the ideality of believers. And
80, perhaps what the various cases we considered in the previous three
sections have established is not that agents are non-ideal (and hence there
is a need for a logic of non-ideal believers) but rather the weaker claim
that i some version of the disquotation principle (or for that matter any
principle of belief attribution such as a dispositional principle) used in con-
structing these cases are sound ‘Aez believers are non-ideal. So we shall
characterize our task more humbly as follows: Supposing that the dis-
quotation priniciple or some analogous principle of belief attribution are
sound and hence believers are non-ideal, we shall want to develop a logic of
noﬁ- ideal beleivers.

By way of introducing some terminology, the problem that believers
are (at least apparently ) non-ideal and that this 'fact' is not taken into
account by standard ‘possible worlds' or indexical semantics, Stalnaker
calls the 'problem of deduction’.%¢

In chapters five and six we shall attempt to develop a logic of belief
within the parameters of an indexical (relational) semantics which does
not assume that believers are ideal. In chapter five, Rantala's proposals
for both a logic and semantics of the non-ideal believer will be considered.
His proposal on the syntactic front involves restricting the doxastic var-
jant of the rule of necessitation. On the semantic front, he proposes an

‘impossible worlds' semantics for normal belief logics which allows the

66 R, Stalnaker (1984), p. 81.
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doxast_ic accessiblity relation R to range over both normal and non-normal
indices. At non-normal indices, the connectives of the language are defined
non-classically - they misbehave as it were at such indices. And by virtue
of the fact that the connectives can misbehave at non-normal indices,
agents can hold contradictory beliefs both separately and conjointly without
believing everything and also agents will sometimes fail to conjoin beliefs
and fail to believe all the consequences of what they believe.

But as promising as this approach seems to be, it will be argued that
this solution to the problem of deduction for belief logic is ultimately beside
the point since it does not explain how classical/ conjunction, negation and
implication misbehave at non-normal indices. The connectives ~, &, v, >
and = represent classical negation, conjunction, etc. for normal indices
but they represent non-classical negation, conjunction, etc. at non-normal
indices. Further, it will be argued that opting for defining the connectives
solely in terms of their roles in inference does not sidestep the problem that
there is an equivocation in the semantics with respect to ~, &, v, > and 5,
since this equlvoc#tion is also mirrored in the syntax.

In the sixth chapter, we shall then explore ways of altering the sem-
antics and axiomatics of normal systems of belief logic which do not involve
a non-classical construal of the connectives. The approach we shall develop
is motivated by Marcus' suggestion that (on the syntactic front), the belief
operator is more like the alethic possibility operator than the necessity
operator. As we shall see, on this approach agents are capable of having
contradictory beliefs separately (but not conjointly) and agents need not
always conjoin their beliefs although we still have the result that agents

are logically omnidoxastic. However, treating belief as analogous to alethic
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possibility mitigates the omnidoxasticity feature. »

The corresponding semantics for these logics will be a formalization of
Stalnaker’s suggestion that an agent can be in more than one belief state at
the same time. A belief state is a set of indices such that some of an agent's
belief contents obtain at each of these indices. If an agent x can be in more
than one belief state then x can hold contradictory beliefs in distinct states
as well as fail to conjoin beliefs which are believed in different states.

In the next three chapters we shall see what happens when we intro-
duce quantification and identity into normal doxastic systems. It will be
argued that many of the major problems that are peculiar to quantified
doxastic logic can be adequately dealt with on the semantic front within the
framework of a relational semantics with or without domains of so-called
individuals although we shall opt for the domnainless semantics because it
is metaphysically less problematic. The problem of deduction is inherited
by quantified systems and it is to this problem that we shall return in the

final two chapters.
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Chapter Two
Quantificational Belief Logic
1. Doxastic Quantificational Calculi with Identity

The reader will recall that in the last chapter it was remarked that
any of the following normal modal systems (amongst others) can be adop-
ted as systems of doxastic logic where it is assumed that agents are 'ideal
believers': KD, KD4 and KD456. Normal systems without D (and T) such as
K, K4 and K45 do not presuppose that agents always have consistent beliefs.
This is by no means an exhaustive list of doxastic logics although any nor-
mal system containing the schema T, B > & will not qualify for member-
ship in this list since it is assumed that (even ‘'ideal’) agents are capable of
having false beliefs.

Despite Quine‘s warnings concerning the evils of Aristotelian essential-
ism, much work has been done in the area of quantified normal alethic
modal logics especially following Kripke's proposed semantics for quantified
normal systems in a famous 1963 article entitled 'Semantical Considerations
on Modal Logic'. And parallel developments have occurred in the area of
normal doxasiic and epistemic quantified modal logics starting willl Hin-
tikka's work in Xnowledge and Belief in 1962.

In terms of the language of any normal system of gquantified doxastic
logic we need to add to our 'logical' symbols a denumerably infinite set of

so-called individual variables, x, y, 2, X1, X3, ... as well as the quantifier
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symbols 3 and ¥ (where the former is called the 'existential’' quantifier and
the latter is called the 'universal' quantifier) and finally the identity sym-
bol '='. In addition, we shall also add to the list of primitive symbols sets of
'non~logical’ symbols which will include a set of individual constants, a, b,
C, a1, a2, ... as well as a set of predicate variables F, G, H, Fy, Fp, ...
Intuitively, the constant symbols are the formal language counterparts of
proper names for natural languages and predicate variables are the coun-
terparts of class terms. We may also wish to add a list of so-called func-
tion symbols, f, g, h, fy, f3, ... although for our purposes this will not be
necessary. '

The union of the set of constants and the set of individual variables
will be called the set of 'individual terms'. The notion of well-formed for-
mula (Wff) can be defined recursively as follows: The base clause is that
any predicate variable followed by a finite string of individual terms is a
wif and and so is t; = t3 where t1 and t; are terms. Wifs of either of these
types will be called afomic. If both & and p are wifs then so is ~a, o & B,
avp a>p, o =f and Ba. (Recall that Ba informally can be read as 'x
believes that a'.) Finally, if A is any wiff then so are (Vv)a and (Iv)a
where v is a metasymbol ranging over variables. The wif o is said to be
the scope of the quantifiers V and 3. Any variable v occuring in the scope
of a quantifier that contains it is said to be bound. Otherwise, v is free.
Notice also that only individual variables are said to be bound by quan-.
tifiers. Systems of quantified logic where this is the case are often called
‘first-order’'. If quantifiers are also allowed to bind predicate variables

then the system is said to be 'second-order'. For our purposes we shall
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only be concerned with first-order systems. Finally, we shall call wffs
containing no free variables closed. WIffs which are not closed are open.l
This distinction will be important later on when we come to discuss the
corresponding semantics for the SQC™ systems since only closed wifs will
be assigned truth-values.

There are a few things to be noted concerning the so-called universal
and existential quantifiers. PFirst of all, the quantifiers are interdefinable
as follows: (Iv)a =df. ~(Yv)~a and (Yv)a =df. ~(3v)~a. For the set of
axiom systems which we shall propose, the existential quantifier will be
taken as primitive.

Also, for any system of first-order logic (standard, modal, doxastic)
there are at least two possible ways of informally reading the quantifiers
Y and 1 If we provide a so-called 'substitutional’ reading of these quan-
tifiers, then any wif of the form (Yv)a will be read as 'all substitution
instances of & with respect to free v are true' and (Iv)a will be read as
‘sorne substitution instance of & with respect to free v is true'. This is not
a formal definition but intuitively, a subsiftution instance of any wif o
with respect to all free occurrences in & of some variable v is the result of
uniformly replacing these occurrences of v by some constant t. We can
denote any such substitution instance of & with respect to free v as
o (t/v). The substitution approach to quantification dates back to Frege's
'Begriffsschrift' as well as Russell's 'On Denoting’' and it was revived by
Ruth Barcan Marcus? and later endorsed by such logicians as Dunn and

Belnap as well as Stine3.

1 See for example Hunter (1969), p. 139 for this distinction.
2 See Marcus (1961, 1962).
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Parallel to Marcus’ attempt to vindicate the substitutional reading of the
quantifiers was Quine's defense of the so-called odjectual or referential
interpretation of the quantifiere!. The referential reading usurped Frege's
and Russell's attempts to construe quantification substitutionally (in part
due to the efforts of Quine) and it is regarded as the 'standard' way of
informally reading the quantifiers®. We can characterize the objectual
approach to quantification roughly as follows: (Yv)a is read as 'Every
object is such that a' and (Iv)a is read as 'There exists at least one object
such that &'. As we shall see below in section 4, this way of interpreting
quantification is on shakier metaphysical and ontological grounds than is
the substitutional approach because it appeals to the problematic notion of
‘object'. It is for this reason that a semantics exclusively supporting the
latter approach will be endorsed for first-order belief logic.

As Quine and others have pointed out, the substitutional and the
objectual interpretations of the quantifiers are by no means equivalent
for reasons that will be discussed in the next section.® Nonetheless, it will
be shown in this chapter that both a domain semantics supporting an ob-
Jectual reading of the quantifiers and a truth-value sermantics supporting a
substitutional reading both characterize the first-order doxastic systems to
be discussed below.

In terms of the axiomatics for normal first-order belief logic, the most
straightforward way to proceed is to simply add to the axiomatic base for

the system K or any K-extension one of a number of possible axiomatic

3 See Dunn and Belnap (1968) and Gail Stine (1976).

4 For example, see Quine's reply to Marcus (1963).

S See Kripke (1979).

6 See Quine (1969), p. 106. Also, see Haack (1978), p. S1.
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bases for standard non-modal first-order logic with identity. Thus, the
axiomatic base for the minimal system K with quantification and identity
(which we shall call KQC= 7) would look something like this, where it is
to be understood that 't', t; and t; occurring in any of the following
schemata are metasymbols ranging over constants .

AS1: « (where a has the form of any PC thesis-schema)$

AS 2: (Ba & B(a > P)) > Bp

AS 3: a(t/v) > (V)

AS 4 t=t

AS 5: (o (t1/v) &t = t3) > a(tp/v)

A8 6: ~(Iv)~Ba > B~(Iv)~a (Barcan Formula)
The primitive rules of inference will be:

MP: o, a 5B — P

R: |a(t/v) > p— |-(3v)a > B provided t is foreign to (Ix)a > B.

RB: |00 — |-Bax ?
In a similar fashion, we can suggest axiomatic bases for any exlension of
KQC™ to obtain the systems DQC™, K4QC™, K45QC™, KD4QC™, KD45QC™, and so
on. We shall hereafter call any system in this set an SQC™ system. The
reader will note that any SQC™ system will contain the so—called Zarcan
Fformula as an axiom-schema. As Hughes and Cresswell note, the Barcan
Formula is not derivable in any normal quantified modal systern weaker

than S5.10 However, it can be consistently added to any quantified system

7 1.6., The system K plus the Quantificational Calculus with Identity.

B For example, (Yx)Fx > (¥x)¥x would have the form of the PC thesis-schema & > ot .

9 To avoid the rather cumbersome notation Fgac=0t which signifies that the wif ot is a thesis of
some SQC™ axiom system, we shall simply write |-t , it being understood that thesishood is

relative to some system or other,
10 Hughes and Cresswell (1968), pp. 170-171.
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weaker than S5 as an axiom schema. The rationale for including the
Barcan Formula as an axiom schema in the various quantified doxastic
systems of logic is that the corresponding semantics is made simpler.11
Given that each of the SQC™ systems have as part of their axiomatic
base the schema K, (Ba & B(a > B)) > B as well as containing the rule of
inference RB, |-& — |-Bat then the so~called adjunction schema and the

following two rules of inference are derivable in each of these systems:

(Ba & Bf) > B(x & B) [adjunction schema]
¢ > p — |-Ba > B [omnidoxasticity]
|-« 2 p — |-Ba = B [strong omnidoxasticity]

Infomally, the adjunction schema says that agents believe the conjunction
of what they believe., The two derived rules of inference informally assert
that agents beleive the logical consequences of what they believe and that
agents believe whatever is logically equivalent to what they believe. These
three principles asserted by the adjunction schema' and the two rules of in-
ference are (as we have seen) open to counterexamples. Thus, the quan-
tified SQC™ systems inherit from their sentential counterparts the prod/em
of deduction .

Further, any SQC" system containing the schema D, Ba > Pga also
contains all instances of the schema ~B(a & ~a) which says that it is not
the case that agents believe self-contradictions and all instances of ~(Bot &
B~a ) which says that agents never believe contradictories separately.

Once again, the principles asserted by these schemata are open to counter-
examples.

Given the soundness and completeness results for the SQC* systems (to

be discussed in the next two sections), all instances of the adjunction

11 For details about this, see chapter ten of Hughes and Cresswell (1968).
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schema will be valid in the classes of relational models characterizing the
various SQC™ systems. Further, the semantic counterparts of the two der-
ived rules of inference mentioned above hold for these systems. Finally,
the non-contradiction schemata will be valid in the classes of minimally
serial models characterizing those SQC™ systems containing D. Our task in
the remainder of this dissertation following the fourth chapter will be to
critically examine various attempts at amending the relational semantics
for doxastic logic (both quantified and sentential) in order to accommodate
these difficulties.

We shall now consider a few of the theses derivable in the gquantified
versions of the doxastic systems we considered in the previous chapter. It
is noteworthy that all instances of the following schema are derivable in
any of the SQC™ systems: t; = t3 > B(ty = tz). A proof of any instance of
this schema in any SQC™ system would lock something like this:

1. (B(tg = t1) &t = t3) > B(ty = t3) version of AS 5
2. B(ty = tg) > (tg = tp > B(ty = tp) 1, PC

3. t1=14 version of AS 4
4. B(ty = t1) 3, RB

5. ty=t;> Bty = t) 2,4 MP

Intuitively, this schema says that agents are omnidoxastic with respect to
identities. This is plausible for identities of the sort t = t but not neces-
sarily for so-called contingent identities. Other SQC™ theses which will spell
trouble philosophically are the doxastic versions of AS 3 and AS 5 above,

Ba (t/v) > (3v)Ba and (Ba (t{/v) & ty = t3) > Ba (tp/v) respectively. Infor-

mally, the former says that we are allowed to existentially generalize
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across belief operators and the latter says that co-referentials are inter-
substitutible in belief contexts. As we shall see in the next chapter, both of
these assertions are highly problematic and have been discussed in the
literature for a number of years.

However, the set of axiom systems {KQC™, K4QC®, ...} which we are
now considering is not meant to be our final word on quantified doxastic
logic. We shall suggest modifications to these axiom systems and their
characteristic semantics in chapter four which will best be able to accom-
modate the philosophical difficulties connected with quantificational doxastic
systems. The reader can consider these axiom systems and their charac-
teristic semantics as a kind of dry run as well as a framework in which
to discuss (in chapter three) some of the major difficulties associated with
quantified belief logic.

Another thesis-schema contained in each SQC* system which we shall
discuss in chapter three and which is also of philosophical interest is the
schema (3v)Ba > B(Iv)a .12 A proof sequence of any instance of this

schema would look something like this:

1. a(t/v) > @v)a AS 3
2. B(a(t/v) > (v)a) 1, RB
3. Ba (t/v) > B(Iv)a from 2, using AS 2 and MP
4. (IvV)Ba > B(Iv)«x 3, R3

Informally, what this schema says is that belief about some thing (a res)

implies belief {2a¢ such and such is the case. Stated another way, belief

12 This is a close cousin of the Barcan Formula, ~(3v)~Bat > B~(3v)~at. The reader should also

nol the converse of (v)Bat > B(Iv)ax, B(Iv)a > (Iv)Ba is not a thesis schema of any SOC™
system.
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de re implies belief de dicto. The reader may wish to skip ahead to chapter
three, section 2 for a more detailed explanation of this distinction.

In the next two sections, we shall consider semantics for the SQC* sys~
tems which support both the objectual and the substitutional interpretation
of the quantifiers. It will be argued in the final section that the semantics
supporting the substitutional interpretation of the quantifiers is preferable
because it presupposes a less problematic metaphysics than its objectual
counterpart. This latter sort of semantics will also be endorsed vis a vis
some of the problems peculiar to quantified doxastic logic, which will be

discussed in some detail in chapter three.
2. Domain Semantics for the SQC Axiom Systems

There are two types of relational semantics which we shall consider for
the SQC™ axiom sets. In the first type of semantics, a model structure for
a normal doxastic system with quantification and identity (SQC=) will be
a triple, <W,R,D> where W and R are defined as for S model structures.
lI.e., W is a non-empty set of indices and R is a 2-place relation ranging
over members of W. Depending on what sort of axiom set we want, it is
as usual possible to impose various restrictions on the relation R. For
doxastic logic one restriction we would not impose on R is reflexivity since
this would validate the schema Ba > &. Finally, D is a non-empty set of
‘Individuals’ or 'objects' which may be finite, denumerably infinite or
non-denumerably infinite.

This first type of semantics which we are considering will be called a
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‘domain semantics' (DS). In this type of semantics, an SQC™ model is an
ordered 4-tuple <W,R,D,V> where <W,R,D> is an SQC® model structure and
where V is an assignment function defined as follows:

1) V:Ind. Cons. —— D

2) V: Pred. Var. —— PDR X W
In simple language, V assigns to individual constants members of D. And to
predicate variables, V assigns sets of ordered n + 1- tuples whose first n
members is an ordered n-tuple of members of D and whose n + 1st member
is an index chosen from W. In other words, V relativizes the extension of
predicate variables to indices so that in a given model the function V can
assign different extensions to the same 'class term' from index to index.

In addition, it is stipulated that V is not a partial function.

A valuation over an SQC™ model, V) is a function from closed wifs
and indices into truth-values. For the sake of notational simplicity, we
shall use 'Wffs' to denote the set of well-formed c/ased formulae. And so,
VM: Wefs X W — {0,1}. As usual, V) can be defined inductively as
follows (for all wj, wj € W):

Basis: i. Vq(Pty...tg,wy) = 1iff <V(ty),...,V(tp), wi> € V(P)

. Vm(ty = ta,wy) = 1 iff V(tq) = V(tp).
Supposing that Viq(at,wy) and V(B,wy) are defined for any w; € W then:
Vm(~a,wp), Vm(a & B, wp), Vm(a v B,wy), Viy(a o B,wy), Viv(a = B, wy)
and VM(Ba ,wi) are defined as for the sentential normal systems. Recall
that Vy(Ba,w;) is defined as follows:

YM(Ba,wi) = 1 iff Vy(a,wy) = 1 for all wj in W such that wiRw;.
Less formally, 'x believes that &' is true at an index wij just in case the

content wff & is true at all doxastic alternatives to wij. These alternatives
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to wj are all those indices at which all content sentences of all wifs of the

form Ba true at wj are true. In section 4 we shall have more to say

concerning the metaphysical status of indices. For now, we shall treat W

as simply a set of unanalysed 'points' or indices as in chapter one. Finally,

VM for gquantified wifs will be defined as follows:

VM((YVv)a, w;) = 1 iff Viy(at (t/v),w;) = 1 for all M' based on the same
model structure as M and differing from M if at all
only in terms of what V assigns to t, which is an
arbitrarily chosen constant foreign to (Yv)«.

VM (@v)a,wy) = 1 iff Viy(a (t/v),w;) = 1 for at least one M’ based on the
same model structure as M and differing from M if at
all only in terms of what V assigns to t, which is an
arbitrarily chosen constant foreign to (Iv)a .

Intuitively, what these truth-conditions assert is that a universally
quantified wif (Yv)a is true at some index wj just in case the arbitrarily
chosen substitution instance of the scope &, & (t/v) is true at wj no matter
what member of D is assigned to t. I.e., & (t/v) must be true at w; for all
members of D. Further, an existentially quantified wff (Fv)a is true at wy

Just in case the arbitrarily chosen substitution instance of the scope &,

a (t/v) is true at wj for at least one member of D assigned to t. This read-

ing of the quantifiers is therefore ‘referential' or 'objectual’ in the sense

defined above in section 1.

The strategy of spelling out the truth-conditions of quantified wifs in
terms of what is assigned to an arbitrary t in some substitution instance

a (t/v) of the scope & across all models (which differ only in terms of
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what V assigns to t), has been suggested by Leblanc.13 The rationale
behind his proposal is that it ensures that all members of the domain D in
the appropriate model structure will be taken into account in evaluating
quantified wifs.14 If we were to provide a substitutional reading of the
quantifiers in our domain semantics, then for models with domains con-
taining individuals that are not assigned to any constant t, these indivi-
duals would be left out of consideration. Thus, suppose as an alternative to
the above characterization of Vyy for quantified wifs, we instead stipulated
that Viq((Yv)a,wy) = 1 iff Viy(a (t/v),w;) = 1 for all constants t where

it is understood for any such t, V(t) € D. Unless it is assumed that each
and every member of D will be assigned to some constant or other (and
that V is not partial) then these truth-conditions will leave ‘unnamed'
individuals (if there are any in the given model) out of the account.

The moral to drawn here is that the substitutional interpretation and
the objectual interpretation of the quantifiers are not equivalent.1% For ex-
ample, the following infinite set is 'semantically consistent’' on an objectual
reading of the quantifiers in the semantics just considered, viz., {~Fa, ~Fb,
~Fe, ..., ~Fap, ... (3x)Px}. l.e., there will be an SQC= model M and a w;
in W such that all members of this set will be true at w; - given an objec-
tual reading of the existential quantifier. This model would be such that
for some index wj, even though no member d of D assigned by V to any of
the constants is such that <d,w;> € V(F), if we consider an alternate model

M' which differs from M only in what V assigns to some designated cons-

13 See Leblanc (1976a), p. 307 and Leblanc (1976b), chs. 1 and 4.
14 See Leblanc (1976a), p. 307.
15 See Quine (1969), p. 106 and Van Frassen (1971), p. 127.
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tant ap,, then it may be the case that V(am) = d' such that <d',w;j> €
V(P). le., Vp'(Fag, wy) = 1. Therefore, it will be the case that for M,
VM{((Ix)Fx,wy) = 1 even though V)q(~Fayx,w;) = 1 for any constant ax. On
the other hand, if we were to read the existential quantifier in (Ax)Fx
substitutionally then the set {~Fa, ~Fb, ~Fc, ..., ~Fap, ... (Ix)Fx} would
be semantically inconsistent. l.e., if for every constant ax, Vp(~Fag,wy)
is 1 and hence V)q(Fay,w;) = 0 for some wj in an SQC* model M, then by
the substitutional truth-conditions for wffs of the form (3v)a, it will be
the case that Vq((Ix)Fx,w;) = 0.

In the next section a so-called truth-value semantics will be developed
for the SQC™ systems which dispenses with domains of individuals and
which involves the assignment of truth-values directly to the atomic wffs
of the language. Quantified wiffs are therefore naturally read substitution-
ally in this sort of semantics. Thus, a wff of the form (Yv)a is true at an
index wj just in case a (t/v) is true at wi for all constants t. However, the
substitutional interpretation of the quantifiers for this truth-value seman-
tics (to be discussed in the next section) and the objectual interpretation of
the quantifiers for the domain semantics just described will not be equiv-
alent as just illustrated. (For example, certain infinite sets of wffs seman-
tically consistent in the domain semantics will be inconsistent in the truth-
value semantics.) Nonetheless, this has no bearing on the fact that both
types of semantics characterize the SQC™ axiom systems. It will be shown
in this and the next section that for any SQC® axiom system, both its cor-
responding domain semantics (with an objecutal interpretation of the quan-

tifiers) and its corresponding truth-value semantics (with a substitutional
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interpretation of the quantifiers) will validate all and only those wifs
which are theses of the appropriate SQC™ system.

Validity in an SQC™ model is truth at all members of W. And validity
in the class of SQC™ models (determined by the restrictions imposed on R)
is validity in all models in the class.16

Soundness of the various SQC™ axiom sets is easily established by
showing that all instances of the axiom schemata are valid and that the
rules of inference preserve validity in the appropriate class of models. For
example, consider the axiom-schema a (t/v) > (3v)a common to all the
SQC™ systems which is the dual of the so-called particularity schema, viz.,
(Yv)a > a(t/v). Informally, suppose that for some SQC™ model Vpq(a (t/v),
wj) = 1 for some wj in W. Then there is some model M' like M such that
VM (& (t*/v), wy) = 1 where V(t*) = V(t). Therefore, Viy{(@v)a,wy) = 1.
Q.E.D.

By way of another example, consider the Barcan Formula, ~(3v)~Ba >
B~(3v)~at. Suppose for some SQC™ model, Vy(~(3v)~Ba,w;) = 1 but that
VM(B~(3v)~a,wy) = 0. le., VM{(YV)Ba,wy) =1 and Viy(B(Yv)a,w;) = 0.
If wj is a dead end (for KQC=) then this set of assignments is inadmissible.
If wj is not a dead end, then there will be some wj such that wijRw; and
such that VM((Vv)a,wJ) = 0 and hence V) (& (t/v),w_,) = 0 for at least
one M' like M. However, given that Vq((Yv)Ba,w;) = 1 then it is the case
that Ve (Ba (t/v),wy) =1 for all M' like M. But then for all wj such that
WiRwy, Vv (a (t/v),wj) 2 1 for any such M', including the M' such that
V(o (t/v),wj) = 0, which is a contradiction. Q.E.D.

16 The symbol =~ ot indicates that the wff &t is valid in a class of models, ¢ although for the
remainder of this chapter we shall simply use =&t with it being understood that o is valid in an
appropriate class of models, membership in a class being 2 matter of the restriction(s) placed on R.
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As a final example, we shall consider the axiom-schema (a (t1/v) &
t; = t3) > a (tp/v) which again is common to all the SQC™ axiom systems.
The proof that all instances of this schema are valid would proceed by in-
duction on the complexity of a (ty/v) and its substitutional variant a (to/v).
The basis of the induction is where a (t1/v) and its variant a (t5/v) are
atomic. Then a (t4/v) is either ty = t, or P...t1...ty. Since &t (tp/v) is
a [(ta/t))(4/v)] then a (tp/v) will be t3 = ty if a(ty/v) is tg = ty or & (t2/v)
will be P...t3. ..ty if @ (t4/v) 18 P...t1...tyy. Further, suppose that for
some wj in W in an SQC™ model M, Viy(a (t1/v),wy) = Viq(ty = t3, wy) = 1.
Then V(t1) = V(t3). If a(ty/v) is of the form ty = t, then V() = V(tp)
on the supposition that a (t1/v) is true at wy and so it follows immediately
that V(tp) = V(t;) and hence, Viq(tp = ty, wy) = 1. Or, if a(t1/v) is of the
form P...ty...ty then since <...V(ty)...V(ty)> € V(P) and since V(ty) =
V(tp) it follows that <...V(t3)...V(tym)> € V(P) and so Vy(P.. .t1...tm,
wi) = 1. In either case, Viy(a (t2/v),wy) = 1. This proves the basis of the
induction.

The inductive hypothesis is that whenever a (t1/v) and t; =ty are
true at an index wj in an SQC* model, then « (tp/v) is true, where a (ti/v)
and o (tzlv) are of degree of complexity n. Then, it must be shown that the
this charateristic holds where & (t;/v) and a (ty/v) are of degree of com-
plexity n + 1. Cases to be considered are where & (t;/v) and a (tp/v) are
negations, conjunctive expressions, existentially quantified expressions and
finally of the form BB(t1/v) and Bf(ty/v) respectively. We shall consider
the last case only since the other cases are trivial. Suppose then that

@ (t1/v) and a (t3/v) are of the form B(ty/v) and BB(ty/v) respectively.
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Suppose further that there is a model M and index wj where V(BB (t1/v),
wj) = VM(ty = t2,wy) = 1. Then for any wj such that wiRwj, Viq(B(t1/v),
wy) = Viq(ty = t2,w)) = 1. Then by the inductive hypothesis, it follows
that Vy(B(tz/v),wj) = 1 for all wj such that wiRw; and therefore,
Vm(Bﬂ(tzlv),wi) =1 QE.D

For a thorough discussion of completeness results, the reader is refer-
red to Hughes and Cresswell (1968, 1984) for their remarks concerning
normal alethic modal systermns with quantification. We shall here mention
some important features of these results. The canonical model AL for any
SQC™ system is a 4-tuple <W,R,D,V> where W is a set of maximal consis-
tent sets of wffs with the 3-property. The 3-property can be characterized
as follows: If (3v)a is in wy (where wj is a maximal consistent set of SQC™
wifs) then so is o (t/v) for at least one constant t. Hughes and Cresswelll?
show how to extend any consistent set of wffs to a maximal consistent set
with the 3-property. The trick as it were is to ensure that every max-
imal consistent set has the so-called 3'-property. A set of wffs has the 3'-
property just in case for every wif of the form (3v)a, the set contains the
implicational wff (Iv)a > a (t/v) for at least one constant t. Then any set
with the 3'-property will also have the 3-property since if any such set
contains a wiff of the form (3v)a then given that it contains (3v)a >
o (t/v) for at least one constant t, it will also contain a (t/v) for at least
one constant t. As we shall see in a few paragraphs, this result is impor-
tant for the case where « is of the form (3v)& in the inductive proof of
the fundamental theorem for canonical models, viz., that for any SQC™ wiff

o, Viu(a,wy) = 1 iff & € wy. The relation R ranging over members of the

17 See Hughes and Cresswell (1968),
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set of maximal consistent sets of wffs with the 3-property is defined as it
was for the canonical model for sentential normal systems: wlkwj iff
(a)(Bax € wi — & € wj). Further, D is the set of all constants.
Defining V is a bit tricky beccause we want to prevent the situation
where any identity wif is false at every member of W in M. If D for the
canonical model for any SQC™ system is simply the set of constants, then
allowing V to be the identity function such that for any constant t, V(t) = t
will have as a consequence that Vy (t1 = t2,wy) = 0 for any two distinct
constants ty, t; for any wj in W since V(t;) = V(tz). Thus, we cannot
stipulate that V is the identity function from constants into constants. In
An Introduction to Modal Logic, Hughes and Cresswell offer the following
strategy for defining V for the canonical model for normal modal identity
systems: First of all, we suppose that there is an ordering of all the cons-
tants of the language. We can then define V for constants as follows:

v(ty) = V(tj) if tj occurs earlier than t; in the ordering such that
tj = {4 is in some wj in W.
t; otherwise.

As Hughes and Cresswell argue, this way of defining V for constants will
ensure that whenever t; = t; € wj, Vu(t] = t2,wj) = 1 and vice-versa.
How this is so will be explained shortly when we discuss the base clause of
the proof of the fundamental theorem of canonical models. Finally, in
terms of defining V for predicate variables we shall stipulate that for any
constants ty,...,t,, for any predicate variable P and for any wj € W,
<tg,...,tnp,wp> € V(P) iff Pty...t, € wy.

We shall now outline the proof of the fundamental theorem of canonical
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models, viz., Vu(a,w;j) = 1 iff & € wj for all SQC™ wffs & and for all wj

in W in M, which proceeds by mathematical induction.

Base Clause: Suppose o is atomic, Then either & is of the form Pty...t,

or t4 = t;.

Suppose & is of the form ty = t;:18
1) If t; = tz € wj then if t; occurs earlier in the ordering, V(tp) is

it)

V(t1). Hence, Vi (t; = t3,w;j) = 1. For the next part of the proof,
the reader should keep in mind that |-ty = t; > t3 = t; and hence that
t) = t1 is in wj if t1 = tp is. Now if t1 does not occur earlier in the
ordering than t; (in which case t; occurs earlier in the ordering
than tq) and given that t; = t; € wj (since t; = ty € wy) it follows
that V(t1) is V(t3). Then Vy(ty = ty,wy) = 1.

If Vyg(ty = t3, w;) = 1 then V(1) = V(t2). Supposing t; and t3 are not
distinct (and hence V(tq) = t{) then t4 = t; will be of the formc = ¢
which is of course an SQC™ axiom schema and hence t4 = t; is in wj.
Or, if t1, t; are distinct constants and given that V(ty) = V(t;) then
there are two possibilities: First, V(t{) and V(t;) are assigned either
t4 or t3. But then by definition of V for constants, this assumes that
either t4 = t3 is in wj or that t; = t1 is in wy. If t3 = t{ is in wj and
given that |-ty = t1 5 t{ = t; it follows that t; = t is in wj. Second,
V(tq1) and V(ty) are assigned some constant distinct from t; and tj,
say t3. Then V(ty) = t3 and hence t3 = ty is in wj. Also, V(t3) = t3
and hence t3 = t3 is in wj. Since |-((t3 = 1) & (t3 = t2)) o t3 = t5 it
follows that ty = t3 is in wy.19 Q.E.D.

Suppose A is of the form Pty...t,:
Vi (Pty. . .th,wyp) = 1 iff <V(ty),...,V(ty),wp> € V(P)
iff <uy,...,up,wi> € V(P) (where the uj's
may be distinct from the ti's given our
earlier definition of V for constants.)
iff Pug...unp € wi. (given our definition of

1B If t1 = Ly is of the form c = ¢ then the result is immediate.
19 | owe the reasoning here in if) to Hughes and Cresswell (1968), pp. 193-194,
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V for predicate variables.)
Given that V(t;) = uy, ..., V(ty) = up it follows that uy = ty,
...up = ty are all in wy. Hence, so is their conjunction. Also,
as a kind of generalization of the SQC™ axiom schema (A(t1/v) &
ty = t3) > A(ty/v), we have |-(ug =t1 & ... &up =ty) >
(Pty...tn = Puy...uy) and hence Pty...ty = Puy...up is in wy.
But then Pty...t, is in wj if Puy...up is. Hence, it follows that
V(Pty...tp,wj) = 1iff Pty...ty € w;.20
This completes the rather cumbersome proof of the base clause for the fun-
damental theorgm. The so-called inductive hypothesis is that we suppose
the fundamental theorem holds for SQC™ wifs of degree of complexity n.
It must then be shown that the theorem holds for wifs of degree of com-
plexity n + 1. The cases where o is of the form ~f, B & y as well as Bf
are proven as before for non-quantified doxastic K~-extensions. We come

now to consider the case where & is of the form (3v)p:2

i) Suppose (3v)p € w;.
' B(t/v) € wy for some constant t. (3-property)
Vi (B(t/v), wy) = 1 by the inductive hypothesis.
Vi (B(t*/v), wy) =1 for some M’ like M except that V(t*) for
M is V(t) for M.22
Vi ((3v)B,wj) = 1 by the truth conditions for wifs of the form
@v)B.
ii) Suppose VL ((IV)B,wy) =1
Va(B(t/v), wp) =1 for at least one M' like M where t is
foreign to (3v)B.

B(t/v) € wy by the inductive hypothesis.

20 Once again, | owe the reasoning here Lo Hughes and Cresswell (1968), p. 194.
21 Since the truth-functional operators are definable in terms of ~ and &, since V is definable in
terms of 3 and since Pg is definable in terms of B, it will be sufficient to only consider the cases
where & s of the form ~B, B & ¥, BP and (Iv)B.
22 As Hughes and Cresswell point out, proof of this would proceed by induction on the complexity of
wiTs. See Hughes and Cresswell (1984), p. 168.
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-B(t/v) > V)P

B(t/v) > (V)R € wy since wj is maximal consistent.
@v) ew since wj is maximal consistent.
Q.E.D.

This completes the proof of the fundamental theorem of canonical models.

And so, we have established that for any SQC™ wiff & and for any wj €
W in SQC™'s canonical model M, Vy(a,w;) = 1 iff & € wj. Now, consider
any SQC™ wiff a such that o is not a theorem. Then ~a is syntactically
consistent from which it follows that there is an m.c.e. of ~a with the 3-
property, wj such that ~& is in wy and such that wj is in the set of max-
imal consistent sets, W in the canonical model M. Then by the fundamental
theorem, it follows that Vy (~a&,w;) = 1 and hence that Vy (&, wj) = 0.
Thus, all SQC* non-theorems are invalid in SQC™'s canonical model and
therefore all valid SQC*™ wffs are SQC™ theorems, provided that it can be
shown that the canonical model for any SQC™ system is in the class of
models which validates all of its theorems. And the proof of this consists in
showing that R in the canonical model for the SQC™ systemn satisfies the
appropriate restriction(s) if any which are imposed on R for any model in
the class of SQC™ models. For example, if the SQC™ system is K4QC™ then R
in the canonical model must be shown to be fransiiive. The reader is
referred back to chapter one to see just how such a proof is carried out.

We shall now consider a simpler type of semantics for the set of SQC™

axiom systems which dispenses with domains of objects or individuals.
It will be argued in the next section that the SQC™ axiom systems are both

sound and complete with respect to this semantics.
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3. Truth-~Value Semantics for the SQC= Axiom Systems

An alternative to the domain semantics for the SQC™ axiom systems
is what Leblanc has called 'truth-value semantics' or simply TVS. As
we shall see, this semantics dispenses with domains of individuals although
it still makes use of indices in the characterization of models. A TV sem-
antics naturally lends itself to a substitutional reading of the quantifiers
since as we have seen, such a reading of the quantifiers makes no explicit
reference to domains of individuals but simply to substitution instances.

Let us say that in a TV semantics, an SQC™ model structure is simply
an S model structure <wW,R> where W = @ and R ¢ W X W (where R may
or may not have certain restrictions imposed on it). An SQC= TV model will
be a triple, <W,R,V> where <W,R> is an S model structure and such that
V is a so-called truth-value assignment23 which to all c/osed atomic wifs
of the language assigns at an index either 0 or 1: V:Atom. Wifs X W ———
{0,1}, where 'Atom. Wifs' is the set of all closed atomic wffs. We impose
the following restrictions on V in order to guarantee that the SQC™ axiom
schemata t = t and (& (t1/v) & t3 = t3) > a(t3/v) are validated in this

semantics:
Restriction 1: If o is of the form t = t then V(a,w;) = 1 for all w; in W.
Restriction 2: If V(t; = t3,wj) = 1 then for all wj, V(ty = t2, Wy = 1.

Restriction 3: If V(t; = t,wy) = 1 for any wj in W then V(a (t1/v),w;) =
V(o (tzlv),wi) for any atomic wif a .

Just how these restrictions ensure validity of the above-mentioned axiom-

23 This phrase has been coined by Leblanc in a number of places including Leblanc (19764, 1976b).
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schemata will become evident in our discussion of soundness.

A valuation over an SQC™ TV model, V) is a function from closed wifs
and indices into truth values. l.e., Viy: Wffs — {0,1}, where 'Wifs' is
set of all closed wits. The function V) can be defined inductively as
follows for all wj, wj EW:

Basis: Vi(a,wy) = V(ot,w;) where & is atomic and such that V satisfies
restrictions 1, 2 and 3 outlined above.

Inductive Step: Suppose that Viy(a,wy), Viy(B,wj) are defined.

Then Vy(~a,wy), Vm(a & B, wy), Vm(a v B,wy), Vim(a > B,wy),’

VMm(a = B,wy) and Vy(Ba,w;) are defined as for the domain semantics.

We now come to consider the cases where o is of the form (3v)p and

where a is of the form (Vv)B:

VM(YV)B, wy) = 1 iff Vig(B(t/v),w;j) = 1 for all constants t.

VM(@V)B, wy) = 1 iff Viy(B(t/v),wy) = 1 for at least one constant t.

In short, a universally quantified wif is true at an index wj just in case
all of its substitution instances are true at wj and an existentially quanti-
fled wff is true at wy just in case at least one of its substitution instances
is true at wj. No mention is made of a set of 'individuals' in these truth-
conditions. The reading of the quantifiers here is strictly substitutional.

Finally, validity in an SQC™ model is truth at all members of W and
validity in a class of SQC™ models is validity in all models in the class.

What is distinctive about this semantics is the simplicity of the truth
conditions for atomic and quantified wffs in comparison to the domain sem-
antics. It is because of this theoretical simplicity along with a sounder

metaphysics that we shall eventually adopt a TV semantics for quantified
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doxastic logic. An argument for this claim will be developed in section 5.

1t ohould be noted that the idea for this type of semantics for quantified
modal logic dates back to Carnap’'s notion of 'state description' in Meaning
and Necessity . A state description is defined as a set S of wffs such that
for any atomic wff &, either & is in S or ~a& is in S but not both - and
nothing else is in S.24 According to Carnap, to say that a wff & 'holds' in S
means that if all the wifs in S were 'true’ i.e., if S were actual, & would
be true. It can be defined inductively what it is for any wff a to 'hold' in
S. Any atomic wff o 'holds' in S iff & is in S, and for any wifs §, 1, ~p
holds in S iff f doesn't, § v 7 holds in S iff either § or Y hold in §, etc. and
(Vv)a is in S iff "all substitution instances of its scope ... hold in it".25
Notice that Carnap treats 'V' substitutionally and that atomic wiffs ‘hold’ in
S by virtue of membership in S without appeal to 'individuals’'. In these
respects, indices in TV semantics are like state descriptions except that
Carnap didn't have the additional machinery of an accessibility relation.

So given these similarities between indices in a TV semantics and Car-
napian state descriptions, we could regard indices as kinds of state des-
criptions. l.e., we could regard TV indices as sets of wffs such that for
any atomic wiff a, either it or its negation is in the set, but not both. And
of course truth at indices so conceived is as usual defined inductively. Then
with respect to atomic wifs and their negations such sets are maximal and
they are consistent. Thus, an advantage of a TV semantics is that it pro-
vides us with a framework for a plausible metaphysics of indices.

We shall now end this digression into the history of truth-value sem-

antics for quantified alethic and doxastic modal logics by noting that Ruth

24 Carnap (1947),p. 9.
25 Carnap (1947),p9.
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Barcan Marcus in 'Dispensing With Possibilia' (1976) suggests that in the
semantics for quantified modal logic we can dispense with domains of
individuals and instead associate with each world or index in a model a set
of constants. She also notes that such a semantics lends itself to a substi-
tutional reading of the quantifiers. And of course, Leblanc as well as Dunn
and Belnap have done work in truth-value semantics for various first-
order logics.26

Soundness as usual can easily be established by showing validity of
the axiom-schemata as well as the validity preservingness of the rules of
inference in the appropriate class of SQC* models. Again, consider as an
example the SQC* axiom schema a (t/v) > (3v)a. Suppose for some SQC*
TV model M that Vy(a (t/v),w;) = 1 but that Vq((@v)a,w;) = 0. Then
VMm{(e (t/v),w;) = 0 for all constants t. But this contradicts our supposition
that Vq(a (t/v),wy) is 1 for some constant t. Q.E.D.

Soundness of any SQC™ system relative to the appropriate class of TV
models is in part guaranteed by the restrictions we have placed on the
indexed truth-value assignment V. To see how these restrictions help to
guarantee soundness, consider for example the axiom-schema (a (t;/v) &
ty = t2) > a (t2/v). Suppose there is a model M such that Viy(ty = t5, wy) =
VMm(a (t1/v),wy) = 1 but Viy(a (t/v),w;) = 0. But given Restriction 3 for V
mentioned above, if & (t1/v) and & (t3/v) are atomic then given that 4
a (t4/v) and ty = t; are true at wy, & (t3/v) must also be true at w;.

We must now consider what happens when a (t1/v) and & (p/v) are
non-atomic in (& (t1/v) & t1 = t3) > a(t3/v). In order to consider this, we

shall introduce the notion of ‘subformula'.2’ First of all, any wff & atomic

26 See Leblanc (1976b, 1982) as weil as Dunn and Belnap (1968).
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or otherwise is a subformula of itself. We next appeal to the notion of
‘immediate subformula’. If & is of the form ~f then P is an immediate
subformula of & . If & is of the form B &y, pv Y, $>5yor f =¥ then both
B and y are immediate subformulas of &. If & is of the form (3v)f or
(Vv)P then all substitution instances of § will be immediate subformulas of
« . Finally, if & is of the form Bf then § is an immediate subformula of a .
All subformulas of subformulas of & are subformulas of &&. And finally,
an ‘atomic subformula' of a wiff & is a subformula of & which is atomic.

In our TV semantics V) is defined inductively with V{a,wj) = Vq(a,
wj) as the basis of the induction for atomic & and such that V is an index-
ed truth-value assignment to the atomic wifs of the language. Therefore,
in this type of semantics, the truth-value assigned to a non-atomic wff o
at an index wj will be determined by what V assigns to & ‘s atomic subfor-
mulas at that index unless & is of the form Bf. Then, the value V) gives
to Bf at w; will be determined by what V assigns to the content wiff §'s
atomic subformulas at all wj such that WiRw; (assuming that the content
wif B itself is not of the form BY).

For example, suppose & is B(Fa v (Yx)Gx). Then for some TV model M
VMm(B(Fa v (Yx)Gx),w;) will be determined by what V (and hence V)
will assign to Fa as well as Ga, Gb, Gc, ... at all W such that wiij.

Given this brief digression into the notion of subformulas (atomic or
otherwise) we are now in a position to consider what happens when
« (t1/v) and a (to/v) are non-atomic in (& (t1/v) & t1 = t3) > & (t5/v). Sup-
pose there is a TV model M such that Viq(a (t1/v),wj) = Vim(ty = t,wy) = 1
but Viy(a (t2/v),wy) = 0. We shall now present an informal argument that

27 See Leblanc (1976b), section 1.1. Leblanc attributes the notion of subformula to Gentzen.
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shows any such assignment for any wj in some arbitrary TV meodel M to
be inadmissible: If V(ts = t2,wj) = 1 (and hence V(t; = t2,w;y) = 1) and
given that the atomic subformulas of o (t1/v) are the same as those of

a (tp/v) except for the occurrence of t; and tp then V will assign the same
values at wj to & (t;/v)'s atomic subformulas containing ty that it does to
a (tz/v)'s atomic subformulas containing t; given Restriction 3 for V.

If any of a (t4/v) and a (ty/v)'s atomic subformulas occur in the scope
of a doxastic operator, then the value of a (t1/v) and a (ty/v) will depend in
part on what V assigns to these atomic subformulas at all wy such that
wil!wj. And once again, V will assign the same values at each of these
wj's to o (t4/v)'s atomic subformulas containing ty that it does to & (t/v)'s
atomic subformulas containing t; given Restriction 2 for V. (Recall that
Restriction 2 for our TV semantics stipulates that if V(ty = t3,wy) = 1 then
for any other wyin W, V(t; = ta, wy) = 1.) Therefore, Viq(a (t1/v),wy) =
Vm{a (t2/v), wj) and since by supposition, V(& (t4/v), w;) = 1 then
Vm{a (ta/v),wy) = 1. Q.E.D.

As an alternative to this informal proof using the notion of subformula,
we could have used an inductive-style proof in the same manner as for
the domain semantics for the SQC™ systems. The basis would simply be
that whenever Viy(a (t1/v),wy) = Viy(ty = ta,wy) = 1, Viy(a (ta/v),wy) = 1
for a (t1/v), a (tz/v) atomic by Restriction 3.

Also with respect to soundness, consider the Barcan Formula which
as noted earlier is an axiom schema of any SQC™ system. We shall show
that all instances of this schema are valid in a TV semantics. Suppose that
for some TV model, Vq((Yv)Ba,w;) = 1 but Vy((B(Yv)a,wy) = 0. Then
VM((Vv)a,wj) = 0 for at least one wj such that wijRwj. Hence, for this
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wj, Vm(a (t/v),w;) = 0 for at least one constant t. However, on the sup-
position that Viy((Yv)Ba,w;j) = 1 then Viy(Bat (t/v),w;) = 1 for all cons-
tants t. Then for any wj such that wiRwy, VMm{a (t/v),w J) = 1 for all
constants t. Q.E.D.

Completeness of any of the SQC™ systems with respect to the appro-
priate class of TV models is established as usual by the method of canon-
ical models. A canonical model M for any SQC™ system will be a triple
<W,R,V> such that W is a maximal consistent set of wifs with the 3' and
3-properties. R for a TV canonical model is defined as usual: w;Rw j iff
(¢)(Ba € wy — a € wy).

In addition, each member of W will also have the following properties:
Since t = t is an axiom schema and since each wj in W is maximal consis-
tent, it follows that each m.c. set in W will contain every wif of the form
t = t. Further, since |-ty = t; 5> B(ty = tp) it follows that for any m.c. set
wj in W, if ty = t3 is in wj then so is B(t{ = t3). And since R is defined as
usual such that wiRwy iff (a)(Ba € wy — a € wJ) it will follow that if
ty = t2 is in wy in which case so is Bty = t) then for any w;j such that
wiRwj, t1 = t3 is in every such wj. Finally, given that [ty = t3 > (& (ty/v)
3 &t (tz/v)) and |-t1 = t3 > (& (t3/v) > a(ty/v)) it follows that |-ty = t3 >
(o (t4/v) 5 ot (tz/v)). Thus, if ty = ty 18 in wy then so is & (t1/v) = & (to/v)
and hence if & (t1/v) is in wj then so is a (tp/v) and if & (t4/v) is not in wy
then neither is a (ta/v).

The function V in the SQC™ canonical model M will be defined for atom-
ic wifs as follows: For any wiff & of the form Pty...t, or t4 = t3, V(a,w;)
= 1 iff & € wj. Because V is defined in this way for the canonical model,
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it is redundant to mention the restrictions 1 and 3 on V mentioned a few
pages back given our characterization of members of W for the canonical
model. For example, since any wj in W in the canonical model is such that
any wif of the form t = t is in wj and given that t = t € wy iff V(t = t,wy)
= 1 then it follows that V(t = t,w;) = 1 for all wffs of the form t = t.
However, the fact that each member of W contains every wif of the

form ty = t3 > B(ty = t3) merely assures us that if ty = t; is a member of
wj then t = t3 is also a member of any wj such that wiRw;. But this
property of members of W does not guarantee that if t; = ty is contained
in wj then t4 = t3 is in every w,in W regardless of whether or not
wiRwj. But we need such a guarantee if we are to mirror restriction 2 on
V, viz,, that if V(t; = t3,w;) = 1 then for all wjin W, V(t; = ta, wy) = 1.
Thus, it will be necessary to impose the following restriciton on V for the
canonical model, viz., if V(t; = t3,w;) = 1 then V(t; = tz,w‘,) = 1 for all wy
in W,

The fundamental theorem of canonical models, viz., for any SQC™ wiff &
and for any wj in W, Vg (a,wy) = 1 iff & € wj is proven as usual by

mathematical induction:

Base Clause: & is of the form Pty...t, or t3 = tj.
Vo, wy) = V(a,w;) and so the theorem holds by definition.

Inductive Hypothesis: Suppose the fundamental theorem holds for wffs of
degree of complexity n. Show that it holds for wffs of degree n+1.

Once again, the cases where & is of the form ~B, P & 1 and Bf are handled

in much the same way as they were for the sentential normal systems.
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See section 4 of chapter one for details. We shall now consider the case

where & is of the form (3Iv)$.

1) Suppose: (V)P € wy
B(t/v) € wi for some constant t by the 3-property.
Viu(B(t/v),wy) = 1 for some t by the inductive hypothesis .

V(@B wp =1

it) Suppose: Vy(@Av)B,wy) =1
Vu(B(t/v),wp =1 for some t.

B(t/v) € wy by the Inductive hypothesis .
B(t/v) > (V)P

p(t/v) > (Iv)p € w; since w; is maximal consistent.
@Av)p € wy since wy is maximal consistent.
Q.E.D.

This completes the proof of the fundamental theorem of canonical models
for the SQC™ systems. As remarked earlier, all that needs to be shown is
that the canonical model is in the class of models with respect to which the
particular SQC" axiom system is sound. The reader is once again referred
to section 4, chapter one for details of how such a proof is carried out.
Now that we have outlined a set of axiom systems for first-order
belief logic with identity as well as two types of semantics which char-
acterize these systems, we shall in the next chapter consider some of the
philosophical difficulties associated with quantified belief logic. However,
for the remainder of this chapter, we shall examine the metaphysical
underpinnings of the two types of semantics which we have considered.
It will be argued that the metaphysics of the TV semantics just developed

is simpler and hence less problematic than the metaphysics of the domain
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semantics discussed in section 2.

4. An Excursus into the Metaphysics of the Semantics for the
SQC= Axiom Systems

Technically, both the invariant domain semantics and the truth-value
semantics which we have just outlined in the previous two sections char-
aclerize the SQC™ systems. On purely technical grounds, either type of
semantics will do. However, it will be argued in this section that the
metaphysics of the truth-value semantics is less problematic than the
metaphysics of the domain semantics. And from this it follows that there
is some presumption in favour of adopting the former type of semantics
rather than the latter for the SQC™ systems.

The domain semantics which we have discussed for the SQC™ sytems
presents the following metaphysical picture: The set D in a model will
consist of a set of so-called individuals to which various properties are
ascribed at each index. The set of properties and relations ascribed to an
individual at an index is determined by the assignment function V. A pro-
perty or relation in this type of semantics is simply a set of n + 1-tuples,
each n + 1-tuple being an n-tuple of members of D and an index. Thus, in
the case of a property P, a member x of D has P at an index w; just in
case the 2-tuple <x,w;> is in P's extension, V(P). Then members of D can
be individuated from one another af an index by considering the properties
which each individual 'possesses' at that index. One such individuating

principle known as Leibniz's principle of the indiscernibility of identicals
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says that if x and y are identical then they will have all their properties in
common. Otherwise, x and y are distinct. This principle is expressible in
second-order logic as follows:

(Yx)(Yy)(x = y > (VYF)(Fx = Fy))
However, as Loux notes?8 things go awry when we consider the identity of
members of D across indices. If we appeal to Leibniz's priniciple to deter-
mine ‘transworld' (or in our parlance, 'transindex') identitiy of individuals
then we are faced with the problem that an individual may vary in its
properties from index to index. Yet, we cannot say that this isn't the
'same’' transindexical individual given the way the semantics is set up such
that members of D are invariant across indices. Therefore, Leibniz's prin-
ciple is inadequate as a criterion of flransindexical individuation of indi-
viduals for the type of semantics under consideration.

But then, what is it that accounts for transworld identity if not the
properties and relations ascribed to things? It would seem that we are
forced into the position that members of D are 'bare (transindexical) par-
ticulars' whose individuation across indices is property-independent. Some
philosophers such as Kripke?? and Kaplan have objected to the so-called
bare particular metaphysics implicit in standard modal semantics. Kaplan
rejects the metaphysical assumption implicit in the notion of a model that
individuals "have an existence which is quite independent of whatever
properties the model happens to tack onto them*.30

However, there are alternatives to the bare particular approach of

handling transindexical identity of individuals. One such alternative which

28 See Loux (1979), p. 37.
29 Kripke (1980), p. 52.
30 Kaplan (1979), p. 97.
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Loux discusses is to treat properties and relations as index-bound. Hence,
there would be no discrepancy or incompatibility between a thing's having
P at wy and its not having P af w; where wj = wj.“ Then individuals
are individuated across indices according to the set of /mdexed properties
and relations they possess. This amended version of Leibniz's principle
would be that x and y are transindex identical (in a model) just in case
they possess all the same indexed properties and relations. This is expres-
sible in second-order logic as follows, where x and y are transindex
individuals:

vx)(Vy)(x = y > (YP)(Px = Pyy))

But this way of accounting for transindex identity of individuals in a model
is simply a restatemnent of a feature of the invariant domain semantics,
viz., that a transindex individual in D can have different properties from
index to index. Then we are still left the problem of determining how an
individual can have different attributes from index to index and yet remain
the 'same’' transindex individual.

So it would seem that we cannot make good metaphysical sense of a
semantics where individuals remain invariant across indices and yet can
vary in their properties from index to index. It also appears that we are
forced to accept some sort of bare particular metaphysics in order to
account for transindexical identity of individuals. However, there is at least
one further move we could make here. We could say that an individual x
at wj is identical to an individual y at wj only if x and y share the same
essential properties. But what is it for a property to be 'essential'?

Both Kripke and Plantinga endorse the following definition of a proper-

ty P's being essential for an object x, although ultimately neither author

31 Loux (1979), p. 42.
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appeals to the notion of 'essential property’' as a solution to the supposed

problem of transindex identity:32

A property P is essential for an object (individual) x just in case
x has P at all indices at which x exists.

Plantinga regards the rider "at which x exists* as important for thé fol-
lowing reason: If it is assumed that objects exist at all worlds or indices
then supposing existence to be a predicate, it follows that any object exists
essentially and hence necessarily.

Of course the rider 'at which x exists' is superfluous for the type of
semantics under consideration since D is shared by all members of W. l.e,,
in the semantics for the SQC™ systemns, existence of an individual at an
index can be understood in terms of membership in D as follows:

x exists at wy =df, x € D.

It then follows from this definition of 'existence at wy' that any individual
existing at one index will exist at all indices in which case all existents are
necessary existents (independently of the assumption that existence is a
predicate). This is clearly an unpalatable consequence of the metaphysics of
an invariant domain semantics for belief logic. But such a consequence can
be avoided in a semantics which allows domains to vary across indices.

In a varying domain semantics, an individual x may be a member of
the domain of individuals D; associated with the index w; and yet x may
fail to be a member of D;j associated with the index wj. Then existence for
a varying domain semantics can be defined as follows:

X exists at wy =df. x € Dy
From this definition of 'existence at wy' it does zo¢ follow that if x exists at

wj then x exists necessarily (i.e., at all indices) since there could be an

32 gee Kripke (1980), p: 48 and Plantinga (1974), p. 60.
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index wj distinct from wj such that x is not in Dj. In fact, there are coun-
terpart semantics such that no individual exists at more than one index.
We shall consider varying domain semantics for belief logic in the fourth
chapter.

In any case, the notion of essential property will not on its own do the
work we want it to, viz., to serve as a criterion of individuation of trans-
indexical individuals. This is becuase there will be what Plantinga calls
‘trivial' essential properties such as being self-rdentical or being red or
sommething else which all objects will possess at all indices.3 Any object at
any index will be red or something else, and hence such a property is es-
sential to every object. Therefore, such shared essential properties will not
serve to individuate transindexical individuals. Something more is required.

As Plantinga argues, the something more which is required for an es-
sential property P of an object x to be an individuating property is P's
being unique to x in the folowing sense: There is no index wj such that
some object y distinct from x (at wj) has P at wj.3 Such an individuating
essential property is sometimes in the literature called an 'essence’ or an

‘individual essence’. More formally,

A property P is an essence for an object x just in case 1) P is essential
for x and 2) for no index wij is it the case that some object y distinct
from x (at wj) has P at wj.

A metaphysics of individuals and properties which appeals to the notion of
essences may be called an essentialist metaphysics. (As we shall see
below, although Plantinga seems to subscribe to an essentialist metaphysics,

he does not appeal to the doctrine of essences as a solution to the ‘problem’

33 plantinga (1974), pp. 60-62.
34 piantinga (1974), p. 70.
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of transindexical individuation of individuals.) Plantinga suggests that an
example of an essence for any object x would be x’s being x since for no
index wj will it be the case that some object y distinct from x at wy will
possess this property at wi.35 More concretely, an essence of Socrates
would be Socraerly or his being Socrates. There will be no wj where
some individual distinct from Socrates at wj will possess the property of
Socraerty at wyj.

And so, as an alternative to a bare particular metaphysics we could
adopt an essentialist metaphysics for the purpose of accounting for the in-
dividuation of individuals across indices. However, philosophers such as
Kripke and Plantinga think it is wrongheaded to appeal to essences as pro-
viding criteria of individuation given their conceptions of what possible
worlds are. We shall first of all consider Plantinga’s views on the 'prob-
lem’' of transindexical identity of individuals.

In The Nature of Necessity Plantinga claims that it is mistaken to view
possible worlds (or in our parlance, indices) as if they were like the ‘ac-
tual' world although occupying a different position in logical space. Extend-
ing the spatial metaphor further, it is tempting to think that it is possible
to locate each world in logical space and then to inspect its inhabitants. The
idea that we can inspect the inhabitants of each possible world is consistent
with the view that each inhabitant possesses 'empirically manifest' essen-
ces by means of which we can distinguish it from other inhabitants. Both
Plantinga and Kripke reject the view that empirically manifest essences can
serve to individuate transindexical objects given their alternative accounts

of what possible worlds are.

35 plantings (1974), pp. 71-72.
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Plantinga proposes the following theory of possible worlds: A possible
world is a possible state of affairs S which is maximal.3¢ We shall now
describe what Plantinga means by 'state of affairs' and a state of affair's
being ‘possible’ as well as ‘'maximal’. Although Plantinga does not provide
the reader with a hard and fast definition of 'state of affairs’', we could
say that a description of a state of affairs S will have one of the following
forms: either x's being P or x's being Ryy...y, where P and R are var-
iables ranging over properties and relations respectively. Thus, the fol-
lowing would constitute descriptions of states of affairs: MNixon's being the
former President of the U.S. and Agnew's being the President of Yale Un-
Iversily . The former state of affairs is actual because it obtains whereas
the latter state of affairs is possible because it currently does not obtain.
Thus, a state of affairs S is actual iff it obtains and it is possible otherwise.

Also, Plantinga leaves open the question as to whether propositions and
states of affairs can be identified although he does claim that they bear the
following intimate relation to one another: S obtains iff tkat S is true.
Thus, Nixon's being a former President obtains iff that Nixon is a former
President is true.3?

Further, a state of affairs S (actual or possible) is maximal just in case
for any other state of affairs S', S includes S’ or S precludes S'.38 And, S
includes S' just in case it is impossible that S obtains but S' fails to obtain.
S precludes S' just in case it is impossible that S and S' boih obtain. And
so, for Plantinga, a possible world is a possible state of affairs S such that

for any other state of affairs S', S either includes or precludes S'. The so-

35 plantings, pp. 44-45.
37 Plantinga (1974), pp. 45-46.
38 ibid, p. 45.


http:maxima1.36

100

called actual world is then a maximal actual state of affairs, i.e., a max-
imal state of affairs which obtains. Now that we have set up Plantinga's
metaphysics of possible worlds, we are in a position to examine his way of
handling the problem of transindexical identity.

According to Plantinga, if we regard possible worlds not as co-obtaining
simultaneously with the ‘actual' world in logical space but rather as max-
imal states of affairs which do 2ot obtain, then we shall not be tempted to
adopt the picture that inhabitants of possible worlds are on an equal on-
tological footing with actual individuals such that they can be inspected and
distinguished from one another in terms of unique essential properties.
Rather, an individual x exists in a maximal possible state of affairs S just
in case it is impossible that if S were to obtain, this very individual x
would fail to exist.

Then, there is no problem of transworld identity because the existence
of an individual x at a possible world is simply a matter of whether or not
that very individual x would exist if that particular world were actual.
Thus, to borrow Kripke's example, a possible world ‘'at which' Nixon exists
and such that he is a gardener would be a maximal possible state of affairs
such that this very individual Nixon would not fail to exist if this maximal
state of affairs were to obtain. It is, according to Plantinga, mistaken to
think that somehow we can ‘'inspect’' Nixon's essence at the possible world
in question to see whether or not this gardener really is Nixon. It is mis-
taken to think that we can somehow inspect Socrates' essence at a possible
world ‘where' he is a carpenter to determine whether or not he really is

Socrates. Rather, our carpenter is this very person Socrates who would
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exist if the state of affairs including his being a carpenter were to obtain:

...consider the state of affairs consisting in Socrates' being a car-
penter, and call this state of affairs 'S'. Does Socrates exist in 8?
Obviously: had this state of affairs been actual, he would have existed.
But is there a problem of identitifying him, picking him out, in S—that
is, must we look into S to see which thing is Socrates? Must there be
or must we know of some empirically manifest property he has in this
and every other state of affairs in which he exists? Surely not.3?

Thus, Plantinga regards the so-called problem of transworld identity as a
pseudo-problem arising from a mistaken view of what possible worlds and
their inhabitants are.

As clegant as Plantinga's attempted resolution to the problem of trans-
world identity seems to be, it does not address this problem for the sem-
antics characterizing the SQC*" systems. For one thing, indices in the sem-
antics for the SQC™ systems come as it were ready-made such that no one
index is designated. I.e., indices are on an equal ontological footing in the
sense that no one index is designated as 'actual'. Further, the existence of
an individual at an index in the formal semantics for any SQC™ system is
unproblematic and it need not be spelled out in terms of what would
happen if that particular index were 'actual’' or were to obtain (whatever
that means). Rather, an individual x exists at a member of W in an SQC®
model just in case x € D. Granted, there is the unpalatable consequence of
the way this semantics is set up that individuals exist necessarily in the
sense that they exist at every index.

However, we are still left with the residual problem that x in D could

vary in its attributes from index to index and hence we still must make

39 plantinga (1974), p. 96.
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sense of how x can be the 'same’ individual at all these indices. And this is
where either a bare particular metaphysics or an essentialist metaphysics
come into play. l.e., we resort to one of two ploys, viz., we claim that
x is a bare particular to which we can tack on any property at any index
or we claim that x has an individual essence (or essences) that we use to
pick it out from index to index. The upshot of these remarks is that
Plantinga's ultimate resolution to the problem of transindexical identity is
beside the point in terms of the formal semantics characterizing the SQC~
systems. In Naming and Necessity , Saul Kripke offers a solution to the
problem of identifying individuals across indices or 'worlds' which is
similar to Plantinga’s in the sense that Kripke also maintains that the
problem of transindex identity is a pseudo-problem based on a misconcep~
tion of what possible worlds are.4® According to Kripke, possible worlds
are not to be thought of as pqints in logical space which (to carry the
spatial analogy further) we locate and subsequently attempt to identify
transworld individuals inhabiting these worlds by means of certain
uniquely identifying essential properties. He maintains that this '‘confused’
way of thinking about possible worlds and their inhabitants has its origins
in the model theory (which he helped to develop) for quantified modal
logic. 41

Kripke's alternative metaphysical account of possible worlds (indices) is
that they are partial counterfactual situations which are stipulated at the
so-called actual world - or more neutrally, at some designated world.42

At the actual or designated world we are given a set of identifiable objects.

41 Kpripke (1980), p. 48.
41 Kripke (1980), p. 48.
42 Kripke (1980), p. 44.
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In stipulating counterfactual situations, we ask what some of these objects
we are given in the actual world would be like if they had different prop-
erties. 43

Thus, there is no need to appeal to unique essential properties or
‘essences’ in order to identify and individuate objects in these counterfac-
tual situations because we are stipulating situations where these very.
objects in the actual world have different sorts of attributes from the ones

they have at the actual world:

Some properties of an object may be essential to it, that it could not
have failed to have them. But these properties are not used to iden-
tify the object in another possible world, for such an identification is
not needed.

...on the contrary, we begin with the objects which we Aave, and
can identify, in the actual world. We can then ask whether certain
things might have been true of the objects.44

For example, one might ask what would have happend to Nixon if he had
been a gardener. There is no question of whether Nixon in this counterfac-
tual situation (where he is a gardener) is the same as Nixon in the actual
world because we are siipulaling that this is a situation where this very
man (Nixon) is a gardener. And so, there is no problem of transworld
identification of objects. This is only a problem if we base our metaphysics
of possible worlds on the model theory for quantified modal logic. (But of
course, this is exactly the sort of semantics we are working with - and

s0 we are stuck with its metaphysics, so to speak. We shall say more

about this below.)

43 Kripke (1980), p. 53.
44 bid., p. 53.
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This is not to say that essential properties of individuals play no role
in Kripke's metaphysics. They simply don't serve as individuating criteria
for transindexical individuals. Presumably, the role which essential prop-
erties play in Kripke's metaphysics is that of restricting the kinds of ques-
tions we can intelligibly ask about objects at counterfactual situations. For
example, it makes no sense to ask what Nixon would have done if he were
an automaton. In such a case, we would no longer be talking about
Nixon.45 For Kripke, what counts as a (unique) essential property for at
least material objects is their origin.4® Then in all possible worlds at which
Nixon exists, he will have had the same biological parents. However, it
would make sense to ask what would have happened if the individual
Nixon who had such and such parents had been a gardener, a poet, etc.
rather than a crooked politician.

Kripke's way of handling the problem of transindex identity, viz., by
claiming that partial counterfactual situations are stipulated at the actual
world such that 'actual' individuals are said to have alternative sets of
properties at these various situations, does not apply to the domain seman-
tics for the SQC™ systems. As was noted in arguing the irrelevance of
Plantinga's solution to the problem of transindex identity for the semantics
of the SQC™ systems, a model comes ready-made with a set W of indices
such that no member of W is 'actual’ or designated - no member of W is
stipulated relative to any other. The members of W are on an equal on-

tological footing. Further, each member of D exists at every member of W

45 Kripke (1980), p. 112.

45 jbid (1980), pp. 114-115. Another type of essential property which Kripke appeals to in the case
of material objects is that such objects are made from the same sort of substance. Thus, it would
make no sense to ask whether or not this very wooden table could have been made of ice.
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by virtue of its membership in D. This sort of metaphysics is implicit in
the semantics we are working with.

Then even if Kripke is correct in his claim that there is no problem
of transindexical individuation of individuals in the metaphysics of the
semantics of ordinary language, it does not follow that this is still not a
problem in the metaphysics of the formal domain semantics which char-
acterizes the various SQC™ systems of doxastic logic. Once again, for the
domain semantics of the SQC™ systems, the question naturally arises as to
how a member of D can be identified from one index to the next even
though it could vary in many (if not all) of its properties. Then it would
seem that one answer to this question is that members of D are bare par-
ticulars which are numerically distinct from one another independently of
the properties they possess at a given index. Or, another avenue open to us
with respect to identifying transindexical individuals is to adopt an essen-
tialist metaphysics where individuals are identified across indices in terms
of unique essential properties they possess.

And so, it would seem that the solutions of both Kripke and Plantinga to
the problem of transindexical identity are entirely beside the point with
respect to the metaphysics of the domain semantics for the SQC™ axiom
systems.

If we find a domain semantics for the SQC™ systems to be metaphysic-
ally probiematic on the grounds that we are forced to adopt either a bare
particular metaphysics or an essentialist metaphysics in order to account
for transindexical identity then we may wish to consider the alternative
domainless truth-value semantics which also characterizes these systems.

The reader will recall that in a TV model, the indexed assignment function
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V simply assigns truth values to all the atomic wffs of the language at
every member of W thus obviating the need for a domain D of 'individuals'.
But since TV models do not contain a set D of individuals, there is no prob-
lem of transindex identification of individuals. Thus, we are not forced
into accepting an inelegant metaphysics of bare particulars or an equally
inelegant essentialist metaphysics, not to mention an ontology which posits
only necessary existents.

Furthermore, a truth-value semantics lends itself to a plausible meta-
physics of indices. Since the introduction of the notion of 'index’ in the
characterization of a model for normal doxastic logic in chapter one, we
have been mute concerning the metaphysical status of indices. As was
noted in section 3 of this chapter, an index in a truth-value semantics for
any of the SQC™ systems can be regarded as a kind of Carnapian state des-
cription. l.e an index in a TV model can be thought of as a set of atomic
wifs or thelr negations such that for any atomic wif &, either & or ~&

Is in the set, but not both. Thus, any TV index is consistent (in the sense
of negation consistent) and maximal with respect to atomic wiffs and their
negations. So in attempting to make some sort of intuitive (and not just
model-theoretic) sense out of TV indices, we have exploited the close ana-
logies between these and Carnapian state descriptions, viz., that atomic
wifs are true at Carnapian state descriptions by virtue of membership and
not by appeal to individuals. And further, quantified wffs are understood
substitutionally for Carnapian descriptions. Finally, just as truth at a
state description is defined inductively so is truth at an index defined

inductively.
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This metaphysics of indices can also be applied to the semantics for the
sentential doxastic systems discussed in the previous chapter: Given that in
the semantics for the sentential normal doxastic systems, the function V is
also an indexed assignment to the atomic wffs of the language, indices in
models for the sentential systems can also be regarded as sets of atomic
wifs or their negations such that for any atomic wif & either it or ~ is
in the set. And these sets are maximal consistent with respect to atomic
wifs and their negations.

The metaphysical picture of indices as kinds of state descriptions or as
maximal consistent sets of atomic wffs or their negations seems to be rel-
atively unproblematic ontologically speaking, at least if one is not concerned
with the status of sentences or sets. However, there is one problem on the
ontological front with our Carnapian metaphysics of indic'es, viz., that in a
given model one would expect that at least one index must be 'actual' in
the sense that it is not simply a set of wiffs. l.e., what sense does it make
to say that the 'actual’ world is a set of sentences? When an agent holds a
set of beliefs at the actual world which is not itself merely a set of sen-
tences, he considers a set of alternative descriptions to the world he in-
habits and these (since they are not 'actual') will merely be sets of atomic
sentences or their negations on the basis of which his contents are true or
false at that set. However, the way our semantics is set up, no index in a
model is designated as actual and so in Lewis' parlance, actuality is treated
as a kind of indexical like 'here' or 'now'. Then there is no reason to ex-
empt any one index in a model from being a state description.

There are two ways out of this bind, viz., we could revoke our iden-
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tification of indices with state descriptions and instead treat them as sem-
antic primitives in our model theory. Il.e., indices are simply undefined
elements in a set with respect to which truth in a model is relativized.

But then we are no further ahead than we were in the first chapter in
terms of having a metaphsyics of indices. Or, we can still put the notion of
state description to work by regarding any index in a model as a semantic
primitive but at the same time stipulating that with each such primitive
is associated a state description in the following sense: The given state des-
cription will consist of every atomic wif or its negation assigned 't' by Vi

at the index.

Concluding Remarks

And so, having examined the metaphsycial underpinnings of the two
types of characteristic semantics for the SQC™ systems, it is apparent that
a TV semantics supporting a substitutional reading of the quantifiers is
preferable to the domain semantics. This is because the former type of
semantics avoids the metaphysical (as well as the ontological) difficulties
of the latter by dispensing with domains of so-called individuals.

In the next chapter, we shall consider some of the philosophical diffic~
ulties associated with gquantified belief logic rooted in ordinary language.
And in the fourth chapter, we shall consider how the SQC* systems can
be altered on the axiomatic and semantic fronts to accomodate these diffi-

culties, where uitimately a truth-value semantics will be endorsed.
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Chapter Three

Problems Associated with Quantified Belief Logic

1. Identifying the Source of Trouble: Substitutivity or
Disquotation?

As was noted in the previous chapter, any quantified SQC™ system of
belief logic has as part of its axiomatic base the schema K and the rule of
inference RB from which it follows that any such system inherits the pro-
blem of deduction. In addition, certain SQC™ thesis-schemata and corres-
ponding rules of inference concerned wﬁh the connection between the
identity symbol and the belief operator on the one hand and the connection
between the existential quantifier and the belief operator on the other have
been some cause for consternation in the literature when we consider them
qua principles of belief attribution. In this section, we shall consider var-
ious schemata and rules of inference of the former sort and in the next
section we shall consider various schemata and rules of inference of the
latter sort.

First, we shall consider the schema (Ba (t1/v) & t1 = t3) > Ba (t3/v)
which is simply the doxastic version of the SQC* axiom schema (a (t4/v) &
ty = t3) > o (t/v). Using this schema as well as modus ponens, we can
derive the following rule of inference: Ba (t1/v), t; = t; — Ba (t3/v).
More general versions of this schema and its corresponding inference rule
would simply be (& (t1/v) & t1 = t3) > a (ty/v) and a (t4/v), t; = ty ——

o (tp/v) where it is stipulated that & (t;/v) and « (t3/v) may contain the
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occurrence of a belief operator 'B' within whose scope t1 in and t3 occur.
For simplicity of exposition, we shall focus on the less general versions of
this thesis-schema and inference rule, These rules of inference and the
related schemata assert the principle that co-referential terms are inter-
substitutible in belief contexts, which we shall hereafter call the
'substitutivity principle’.

When we come to consider ordinary language examples of the derived
inference rule, the principle of belief attribution it asserts seems to break
down. For example, from Jones' believing that Cicero was an orator and
given the truth of the identity sentence 'Tully is Cicero’, it is, according to
the substitutivity principle permissible to infer that Jones believes that
Tully was an orator. But it could be objected that Jones may assent to the
claim that Cicero was an orator while witholding assent from the claim
that Tully was an orator regardless of the truth of the identity sentence
'"Tully is Cicero'.l Then assuming the strengthened diquotation principle
discussed in the first chapter, viz., that x's sincere assent to p is necessary
and sufficient for x's believing that p, it would follow that Jones believes
that Cicero was an orator while not believing that Tully was an orator.
Thus, we have constructed an apparent counterexample to the substitu-
tivity principle assuming the soundness of the strengthened disquotation
principle.

A rule of inference derivable in any SQC™ system containing the schema
D which is related to the above mentioned rule is Ba (t/v), t; = tg —
~B~a (t2/v). This rule is derivable using the schema (Ba (t3/v) & 13 = t3)

1 One of the first to impugn the substitutivity principle was Frege in ‘Sense and Reference’. And over
the years the apparent failure of this principle has been discussed by a number of philosophers includ-
ing Quine (1960), Hintikka (1962, 1969), Sellars (1969) and as we shall soon see, Kripke (1979).
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> ~B~a (t3/v) and modus ponens. In turn, any instance of this schema is

derivable in any SQC™ system containing D as follows:

1. |-(Ba (t1/v) & t4 = t3) > Ba (ta/v)

2. Ba (t2/v) > Ppa (ty/v) instance of D.

3. (Ba(ty/v) & tg = tp) > Pga(tp/v)  PC?

4. (Ba(ty/v) &ty = t3) > ~B~a (tp/v) df. Pgin terms of B

Intuitively this derived thesis-schema and the related rule of inference
assert the principle that it is impossible that x believes that a (ty/v) and
that the identity t; = t; is true and yet x believes that a (tp/v) is false.

A more concrete example of what this rule of inference permits is the fol-
lowing: Suppose that Jones believes that Cicero was an orator. Given that
Tully is Cicero, it is false that Jones believes that Tully was not an orator.

However, using the disquotation principle, we can construct an infor-
mal counterexample to this variant of the substitutivity principle asserted
by the SQC™ + D derived rule Ba (t1/v), t{ = tg —— ~B~a (t2/v) as fol-
lows: Suppose Jones sincerely assents to the claim that Cicero was an
orator, but not realizing that Cicero and Tully are one and the same person
he also sincerely assents to the claim that Tully was not an orator. Hence,
by the disquotation principle, it follows that Jones believes that Cicero was
an orator although he also believes that Tully was not an orator.

In fact, our example is apparently a case where Jones holds contra-
dictory beliefs, supposing that our original version of the substitutivity
principle, Ba (t4/v), ty = tg —— Ba (t5/v) applies. l.e., given the dis-
quotation principle, since Jones has assented to the claim that Tully was

not an orator we can conclude that Jones Jelfeves that Tully was not an

2 The PC schema used here is (&t > B) & (B > 7)) > (a > Y) which is the implicational version of
the hypothetical syllogism, along with modus ponens.
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orator. Further, given our original version of the substitutivity principle,
we can also attribute to Jones the belief that Cicero was not an orator.
Then since we have also concluded that Jones believes that Cicero was an
orator, it follows that Jones believes that Cicero was an orator and he bel-
ieves that Cicero was not an orator. However, since the substitutivity
principle Ba (t/v), t1 = tg —— Ba (t3/v) has been called into question in
our first counterexample a few pages back, it is hasty in this case to infer
that Jones has contradictory beliefs. Thus, minimally, we shall construe
this second case merely as a situation where the substituvity principle

Ba (t1/v), ty = t ——— ~B~ax (t3/v) for D systems has been violated but
not necessarily as a case where an agent has contradictory beliefs.

For this second case just considered, Kripke would maintain that it can
be construed as a sort of reductio argument against the substitutivity
principle as expressed by the SQC* rule Ba (t1/v), t; = t; — Ba (t3/v)3.
Kripke argues that it would be unfair to attribute contradictory beliefs in
this case to Jones since “even if he is a brilliant logician, he need not be
able to deduce that at least one of his beliefs must be in error."# Hence,
by assurning the substitutivity priniciple and the disquotation principle, we
have constructed a case where we are forced to conclude that an agent
holds apparently contradictory beliefs. But this is absurd since we would
not want to attribute contradictory beliefs to Jones in this example.

However, Kripke's claim that it is an aksurd consequence of assuming
the disquotation principle and the substitutivity principle represented by
the rule Ba (t4/v), ty = tg —— Ba (t3/v) (or its more general version,

a (t1/v), t4 = tg ~—— & (tp/v)) that Jones holds contradictory beliefs is

3 Kripke (1979), p. 251.
4 Kripke (1979), p. 251.
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open to question. As we have claimed in the first chapter, to say that
Jones in such a case holds contradictory beliefs is no¢ being unfair to the
facts of the situation ever ir we assume that Jones' possessing the requi-
site logical acumen does not enable him to detect the inconsistency of his
beliefs by logic alone (but only with the additional information that Tully
and Cicero are one and the same person). If anything, the undetectability
of inconsistencies in one's beliefs constitutes good grounds for saying that
agents canz sometimes hold contradictory beliefs because an agent with a
high degree of logical acumen would not believe a pair of outright contra-
dictory statements un/ess the contradictoriness of this pair is in some
sense 'hidden’. Hinitikka for example has tried to make model-theoretic
sense of this type of situation by allowing as epistemically accessible to a
given world worlds whose descriptions bear hidden inconsistencies.®

If we are right here, then Kripke's claim that our second example con-
stitutes a reductio ad absurdum to the substitutivity principle as represen-
ted by the SQC* rule Ba (t1/v), t1 = t — Ba (t5/v) misses the mark.
However, the second case which we described at the beginning of this sec-
tion does seem to constitute a counterexampie to the SQC*+D rule Ba (t1/v),
t; = t3 — ~B~a (t2/v). l.e., it is a case where the principle of belief
attribution expressed by this inference rule is violated. As we have argued,
we shall refrain from labelling it a situation where an agent holds con-
tradictory beliefs since the other version of the substitutivity principle
which itself has been called into question would need to be assumed.

At this point, Kripke would be quick to point out that what may be at
fault in our apparent counterexamples to the substitutivity principles is the
disquotation principle. l.e., we are being too hasty in indicting the two

S See Hintikka (1975).
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substitutivity principles.

To support this claim, Kripke attempts to construct two cases which
assume the disquotation principle but which do not assume the substitu-
tivity principle (unlike his earlier example) and such that an absurd
consequence is generated. However, we shall argue that there are no ab-
surdities generated by his example and hence there is no reason to suspect
the plausibility of the disquotation principle. To be fair, Kripke makes it
clear that he is not in these cases trying to vindicate the substitutivity
principle nor is he trying to indict the disquotation principle. He merely
wishes to show that it is hasty to indict the former principle in apparent
counterexamples to it which make use of the disquotation principle.®

Suppose for the sake of argument that Kripke's construal of the case
where Jones believes that Cicero was an orator and he believes that Tully,
i.e., Cicero was not an orator on the strength of the disquotation principle
constitutes an apparent reductio argument against the substitutivity prin-
ciple as asserted by the rule Ba (t1/v), ty = t; —— Ba (t3/v). Then, says
Kripke, it is hasty to conclude that it is the substitutivity principle which
is at fault. An absurdity has been generated by assuming the truth of the
substitutivity principle and the disquotation principle. Thus, the most we
can conclude is that e/zher the substitutivity principle or the disquotation
principle or both are at fault. Kripke likens this situation to the situation
in topology where from a given hypothesis we derive an absurdity but only
with the help of some set-theoretic axiom-schema. Then all we can con-
clude in this case is that either the initial hypothesis is at fault or that the
set-theoretic axiom schema is at fault.?

Kripke first of all proposes the ‘puzzling Pierre' case which we have

6 Kripke (1979), p. 269.
7 Kripke (1979), pp. 253-254.
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already discussed in the first chapter in connection with the schema ~(Ba
& B~at) which says that agents do not hold contradictory beliefs. The read-
er will recall that in the puzzling Pierre example, Pierre who is a mono-
lingual Parisian assents to the claim that Londres est jolie and given the
disquotation principle the sentence "Pierre croit que Londres est jolie" is
true in French. Then, applying the translation principle (viz., that if p ex-
presses a truth in L then its translation p' expresses a truth in L') we can
conclude that the sentence "Pierre believes that London is pretty” is true in
English. Further, suppose that Pierre ends up in some shabby section of
London where he learns to speak English. He retains his assent to the
claims he assented to while in Paris including the claim that Londres est
Jjolle. Seeing the shabbiness of his new surroundings and not realizing that
his new environment is the Londres of his dreams, he assents to the claim
that London is not pretty from which it follows that he believes that
London is not pretty. Then it follows that Pierre believes that London is
pretty and he believes that London is not pretty. Or does he?

Kripke then argues that no matter how we construe this situation, we
are led to an absurdity. For example, on one construal we could claim that
Pierre did not have contradictory beliefs on the grounds that once he moved
to London and learned to speak English he gave up the belief that London is
pretty.® But, says Kripke, this is unacceptable because part of the story
is that Pierre still assents to every claim he assented to in French. Then
we have no grounds for saying that Pierre gave up his belief that London is
pretty. Also, supposing that we did not know about Pierre's move to London
and his acquisition of English then “on the basis of his normal command of

French we would be forced to conclude that he s#i// believes that London is

8 Kripke (1979), p. 256.
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pretty."? On the other hand, if we are forced to conclude that Pierre holds
contradictory beliefs then we are being unfair to the facts of the situation
since Pierre "lacks information, not logical acumen. He cannot be convicted
of inconsistency: to do so is incorrect.*10

And so, concludes Kripke, the puzzling Pierre case is a paradox because
there is simply no way of telling just what Pierre believes. Any answer to
this question leads to an absurdity.1! However, as was argued in the first
chapter, Kripke can be taken to task on his claim that attributing contra-
dictory beliefs to Pierre is an unacceptable construal of the situation. He
seems to assume without argument that an agent cannot be charged with
holding contradictory beliefs unless he is, by means of his logical acumen
alone, able to discover this. And this assumption is at best dubious. Then
perhaps the puzzling Pierre case is not paradoxical after all because there is
no reason why we cannot attribute to Pierre contradictory beliefs which at
the very least he assents to in different linguistic contexts.

The 'puzzling Pierre' case admittedly makes use of not just the disquo-
tation principle but also the translation principle. Thus, Kripke constructs
a second case which does not depend on the translation principle but mere-
ly on the disquotation principle alone.12 This second case can be character-
ized as follows: Peter learns about a famous pianist (who unbeknownst to
Peter was also a famous politician) named 'Paderewski’. Peter then assents
to the claim that Paderewski had musical talent and from the disquota-

tional principle it follows that Peter Jelieves that Paderewski had musical

talent. In another context (but in the same language) Peter who assumes

9 Kripke (1979), p. 256.
10 ibid, p. 257.

11 ibid., p. 259.

12 ibid., pp. 265-266.
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that no politicians are musically talented hears about a famous politician
who was also named Paderewski and who unbeknownst to Peter was one
and the same person as Paderewski the pianist. Given his belief that no
politicians are musically talented, Peter assents to the claim that Pader-
ewski had no musical talent and hence by the disquotation principle it
follows that Peter Jelieves that Paderewski had no musical talent. Then
by two applications of the disquotation principle it would seermn that Peter in
one context believes that Paderewski had musical talent and in another
context Peter believes that Paderewski had no musical talent. Does Peter in
this case hold contradictory beliefs?

Kripke wants to argue that parallel to the puzzling Pierre case, no
matter how we construe this situation we are led into absurdities. For ex-
ample, one may wish to argue that once Peter has learnt about Paderewski
the politician who (Peter assumes) had no musical talent then Peter will no
longer believe that Paderewski had musical talent. But, as with the puz-
zling Pierre case, Peter presumably would not abandon assent to the claim
that Paderewski had musical talent supposing that he does not realize that
Paderewski the pianist and Paderewski the politician were one and the
same person. Thus he still believes that Paderewski had musical talent.
But, Kripke would then argue that if we are forced to admit that Peter
holds contradictory beliefs then this is unfair to the facts of the situation
sﬁnce Peter is unable to determine that the contents of his alleged beliefs are
contradictory wi7thout the additional information that Paderewski the
pianist and Paderewski the politician were one and the same person. Kripke
is assuming here that an agent can be charged with inconsistencies in his/

her beliefs only if it is possible for that agent to notice said inconsistencies
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without any additional information (such as the knowledge that some
contingent identity obtains). In short, the agent in such a case cannot be
held logically responsible for what he has assented to.

However, as was suggested with reference to the puzzling Pierre case,
this assumption is dubjous. It was argued in chapter one that it is in just
those sorts of cases where the agent cannot determine without additional
information that two sentences to which he has assented are contradic-
tories that we would be most likely to attribute to the agent contradictory
beliefs. Thus, suppose Peter had somehow found out that Paderewski the
pianist and Paderewski the politicilan were one and the same person. Then
given as premises the contents of his beliefs that Paderewski the politician
had no musical talent and that Paderewski the pianist had musical talent,
he would be in a position to infer both that Paderewski the pianist (and
politician) had musical talent and that Paderewski the pianist (and politi-
cian) had no musical talent. He would thus be in a position to see that
his beliefs were contradictory. At this point, if we are charitable, we
would suppose that Peter will come to abandon assent to the claim that
Paderewski had no musical talent or to the claim that he had talent.

On the other hand, if Peter did not have access to the information that
Paderewski the pianist and Paderewski the politician were one and the
same person, then he would not be in a position to draw the inference just
alluded to. In such a case, it would seem natural to attribute to Peter
contradictory beliefs, viz., that Paderewski had musical talent and that
Paderewski did not have musical talent, since only in the presence of the

requisite information would he abandon assent to one or the other claim.
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And so, the upshot of our discussion of Kripke's pu2zling Pierre case
and of his Paderewski example is that neither of these so-called puzzles are
paradoxical because in both cases there is a construal which does not lead
to absurdities, viz., that the agent in question holds contradictory beliefs.
it could be argued that if we were to attribute to agents contradictory bel-
jefs then we would be forced to attribute to such agents every  belief since
a contradiction logically implies everything. However, it was suggested in
chapter one that this reductio against the intelligibility of attributing to
agents contradictory beliefs relies on two principles of belief attribution.
The first such principle is that agents always conjoin theif beliefs (so that
if Pierre believes that London is pretty and Pierre believes that London is
not pretty then he believes that London is pretty and not pretty). The
second principle is that agents are logically omnidoxastic (so that if Pierre
believes that London is pretty and not pretty then he believes that Q,
where Q is any proposition whatsoever). If either of these principles are
abandoned, then the reductio just outlined does not go through. Our ulti-
mate strategy in chapter six will be to abandon the ‘adjunction principle’
(the first of the two principles).13

Supposing the intelligibility of agents being able to hold contradictory
beliefs without thereby conjoining them, it would seem that Kripke's dis-
quotation principle has survived his two 'puzzles' and so he has given us no
grounds for doubting this principle after all. Then in our alleged counter-
examples to the substitutivity principle discussed above, it is not at all un-
reasonable to suspect that the substitutivity principle is at fault.

To recap our discussion, Kripke's main argument for his claim that it

13 This line of reasoning is pursued by Ruth Marcus in Marcus (1981).
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is hasty to indict the substitutivity principle in apparent counterexamples
to this principle (which also assume some principle of belief attribution or
other, such as the disquotation principle) can be roughly characterized as
follows:

Premise 1: By assuming the disquotation principle alone the same kind of
absurdities can be ‘derived’' that are derived by assuming the
disquotation and substitutivity principles together.

Premise 2: If Premise 1 is true then it is hasty to conclude that the substi-
tutivity principle is at fault in the alleged counterexamples to it.

Conclusion: It is hasty to conclude that the substitutivity principle is at
fault in the allieged counterexamples proposed against it.

As we have argued in this section, the first premise in this argument is
questionable. Kripke's two puzzles which employ the disquotation principle
and which are not obviously relevant to the truth of the substitutivity
principle do not generate any absurdlties, supposing that it is intelligible
that agents are capable of holding contradictory beliefs in different contexts
(where a ‘context' can be temporal, linguistic or locational). We shall
make sense of this claim in chapter six vis a vis Stalnaker's notion that
agents can be in more than one ‘belief state'.

And so, Kripke's argument in favour of the claim that it is hasty to
indict the substitutivity principle such as in the alleged counterexamples
we considered earlier does not seem terribly compelling. In any case, what
these alleged counterexamples do show is the following: Supposing that the
disquotation principle (or any principle of belief attribution we employ) is

sound - and Kripke's puzzling Pierre and his Paderewski cases give us no
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reasons for thinking that it is unsound - then we have constructéd cases
where the substitutivity principle fails. These are cases where there is
a clash between two sorts of principles of belief attribution, viz., behav-
foural principles on the one hand (i.e., disquotation) and logical principles
on the other (i.e., substitutivity).

2. Is Existential Generalization Believable?

Another SQC™ schema which we shall discuss in this section and which
has generated a fair amount of contraversy in the literature qua principle
of belief attribution is the doxastic version of the axiom-schema & (t/v) >
(@)a, viz., Ba (t/v) > (3v)Ba. Given this schema and modus ponens the
rule of inference, Ba (t/v) — (3v)Ba can be derived in any SQC* system.
More general versions of this schema and its corresponding rule of infer-
ence are & (t/v) > (Iv)a and a (t/v) — (Iv)& where it is stipulated that
t occuring in a (t/v) occurs in the scope of a belief operator. Once more,
for simplicity of exposition, we shall primarily concern ourselves with the
less general version of this schema and inference rule.

These schemata and the corresponding derived rules of inference ex-
press the principle that it is permissible to existentially generalize with
respect to the occurrence of a constant t in the scope of a belief operator
oulside of that operator. In short, it is permissible to existentially quantify
into belief contexts.i4 An ofdinary language example of an inference which
accords with the derived rule permitting quantification into belief cons-
tructions is as follows: Suppose that Jones believes that Tully was a

Roman orator. Then from this we can infer that ‘kere /s some person

14 The term ‘quantifying in’ was firet coined by Quine in Quine (1956), p. 103 appearing in Linsky
(ed.) 1979.
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such that Jones believed that this very person was a Roman orator -
assuming an objectual reading of the existential quantifier. Assuming a
substitutional reading of the quantifiers, we can infer from Jones' belief
that Tully was a Roman orator that some substitution instance of 'Jones
believes that v was a Roman orator' is true. More conspicuously, we can
infer that (3v)(Jones believes that v is a Roman orator.) However, if we
treat definite descriptions as names or singular terms then we run into
trouble as we shall see in the next paragraph, but ozly if we assume an
objectual rather than a substitutional interpretation of the quantifiers ir;
the corresponding semantics.

The following constitutes an informal counterexample to the general-
ization rule mentioned above: Suppose that Jones believes that the next
Prime Minister of Canada (whoever he/she is) will attempt to balance the
budget. But there may be no individual that Jones has in mind in the
sense that if questioned he could name no specific person. And so it seems
odd to say that there /s some person such that Jones believes that that
person will be either attempt to balance the budget. More conspicuously, it
is wrong to infer from Jones' belief that the next Prime Minister of Canada
(whoever he/she is) will attempt to balance the budget that (3v)(Jones bel-
ieves that v will attempt to balance the budget). And so, it would seem that
we have a case where a sentence of the form x believes that a (t/v) is true
and yet it is false that (3v)(x believes that a), or symbolically, (3v)Ba -
supposing once more an objectual reading of '3'. This sort of counterexample
to any generalization rule allowing quantification into belief constructions is

discussed by a number of authors including Quinel5, Hintikkalé, Kaplani?

15 Quine (1956, 1960).
18 Hintikka (1962).
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and Stichi8,

The above counterexample to the generalization rule assumes that the
'the next P.M. of Canada’ can for the purposes of the SQC™ language be
treated as a constant and for the purposes of ordinary language as a proper
name. However, this assumption could be criticized on the grounds that
the expression ‘the next P.M. of Canada' is more aptly treated as a definite
description . Thus, its rough translation in the language of the SQC™ sys-
tems would be (3x)(Px & (Vy)(Py > y = x)) rather than simply treating it
as a constant, ¢. However, even if we grant that the expression ‘the next
P.M. of Canada' is best treated as a definite description, we are still faced
with an ambiguity much as we would be if we were to treat it in ordinary
language as a proper name (and hence as a constant with respect to the
language for the SQC™ systems).1? Thus, as we shall argue, treating the
expression 'the next P.M. of Canada’' as a definite description does not cir-
cumvent the problem that we cannot infer that there is a particular person
whom Jones believes will attempt to balance the budget from his belief that
the next Prime Minister whoever he/she may be will attemnpt to balance
the budget.

The sort of ambiguity which we have in mind was. first alluded to by
Keith Donnellan in his 1966 article 'Reference and Definite Descriptions’.
Donnellan in this article argues that definite descriptions are ambiguous in
the sense that they can be used by a speaker (or for that matter a believ-
er) either referentially or atiributively.

To illustrate Donnellan's notion of the referential use of definite des-

criptions, if we were using the expression 'the next P.M. of Canada' refer-

17 Kaplan (1969).
1B Stich (1983).
19 This point is made by Hintikka in Hintikka (1967), p. 47.
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entially then we would have a particular individual in mind although
success in referring to the individual in question does not depend on his/her
uniquely satisfying the description. For example, at the 1990 Liberal Leader-
ship convention, the newly appointed leader who is a hopeful for the pos-
ition of Prime Minister may be introduced as ‘the next Prime Minister of
Canada’'. Then even though the new leader of the Liberal party may in fact
lose the election, the announcer has succeeded in picking out or referring to
the individual in question. Thus, what is characteristic of the speaker's
using a definite description referentially is that it will "enable his audience
to pick out whom or what he is talking about and states something about
that person or thing."20

On the other hand, in our counterexample to the rule permitting gen-
eralization Jmzfo belief constructions, if we treat the expression 'the next
P.M. of Canada' as a definite description then this description is being used
attridutively in the sense that Jones intends that there is exactly one indi-
vidual who fits that description although he may not have the slightest
idea who that individual might be. Thus, Jones believes that there is ex-
actly one individual whoever Ae may be who is such that he/she will be
the next Prime Minister of Canada and such that he/she will attempt to
balance the budget. Thus, what is characteristic of a description being used
by a speaker (or believer) attributively is that the speaker or believer
*states something about whoever or whatever is the so~and-so.*2!

And so, even if we wish to treat the expression 'the next P.M. of Can-
ada’' as a definite description in our alleged counterexample to the SQC™

rule permitting guantification into belief contexts, it is clear that Jones is

20 ponnellan (1966), reprinted in Schwartz (1977), p. 46.
21 ipid, p. 46.
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using this description attributively rather than referentially. This is be-
cause he believes that the next P.M. whoever he/she may be will attempt
to balance the budget.?2 And of course there will only be one such person
whoever he may be that satisfies his description. But then from Jones'
belief as so characterized, it would be wrong to infer that there is some
particular individual such that Jones believes that that person will attempt
to balance the budget. And hence, treating ‘the next P.M. of Canada’ as a
definite description rather than as a name does not circumvent our appar-
ent counterexample to the rule permitting existential generalization across
belief constructions.

It is worth noting that the SQC™ rule allowing quantification izfo belief
constructions, viz., Ba (t/v) —— (Iv)Ba is not to be confused with the
SQC™ rule B« (t/v) —— B(3v)a, which informally says that it is permit-
ted to existentially generalize with respect to the occurrence of a term t
in the scope of a belief operator inside the belief operator. In the literature
this rule is qua principle of belief attribution is regarded as relatively
unproblematic.2® It is derivable in any SQC™ system as follows:

Ba (t/v) hyp.

Fa (t/v) > Gv)a

B(a (t/v) > 3v)a) 2, RB

Ba (t/v) > B(Iv)a 3, K, modus ponens

B(3v)a 1,4 modus ponens
To see that this rule is relatively unproblematic - even if we construe the
quantifiers objectually - consider once again our example of Jones who bel-

feves that the next P.M. of Canada, whoever he/she may be will attempt

22 This is not to say that Jones has no individual in mind. He may or he may not, but nonetheless in

this case he is using the description attributively.
23 For example, see Hintikka's comments in Hintikka (1962), p. 141.
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to balance the budget. Although it is wrong to infer that there is some
individual such that Jones believes that that individual will attempt to bal-
ance the budget, we can infer that even though Jones may have no one
person in mind, he believes that some person or other is such that he/she
will attempt to balance the budget.

It would seem then that there is an ordinary language distinction be-
tween constructions of the form 'x believes that (Iv)a' and (3v)(x believes
that &). In our examples discussed above, there is a distinction between
Jones' believing that there is at least one person who will attempt to bal-
ance the budget on the one hand and there being some person such that
Jones believes this very person will attempt to balance the budget. The for-
mer construction (unlike the latter) is inferable from the sentence 'Jones
believes that the next P.M. of Canada (whoever he/she is) will attempt to
balance the budget' because it is not necessary that Jones have anyone in
mind for him to believe that there is some person or other who will
attempt to balance the budget.

Assuming an analogy between belief (or 'doxastic necessity') and alethic
necessity, the distinction which we are discussing is analogous to the de
re/de dicto distinction sometimes made for alethic necessity contexts. Thus,
the construction 'it is necessary that (3v)a ' is said to be de dicto since the
necessity operator has as its scope the content sentence '(Iv)at'. An example
of this construction would be ‘it is necessary that primes exist' which
asserts that the content sentence (i.e., the ‘dictum’') 'Primes exist' is nec-
essary, which is to say that some number system is such that at least one
of its elements must be prime. On the other hand, the construction
'(3v)(it is necessary that a)' is said to be de re since the necessity oper-
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ator occurs within the scope of the quantifier. An example of this would
be ‘there exists at least one number such that necessarily it is prime’.
This sentence could also be read as saying that there is at least one number
that is essentially prime and clearly this is distinct from the claim that
necessarily , primes exist.

Because allowing quantification into necessity contexts seems to commit
us to some sort of essentialist metaphysics, Quine has taken exception to
this sort of construction.?4 We are of course explaining this distinction in
terms of an objectual reading of the quantifiers. This distinction can also
be made sense of substitutionally as follows: To assert that at least one
substitution instance of 'necessarily x is a prime’ is true is not the same
thing as asserting that necessarily at least one substitution instance of 'x
is a prime' is true. And in fact, Quine's charge of essentialism would not
apply to the distinction made in these terms - since no mention is made of
any objects possessing ‘essential' properties.

Analogous to the de re/de dicto distincition discussed above for alethic
modal contexts, there seems to be grounds for making this distinction for
propositional attitude contexts as we have seen. Thus, if we treat 'x bel-
ieves that' as analogous to ‘it is necessary that' then the construction 'x
believes that (Iv)a ' is de dicto and ‘(Iv)(x believes that &)’ is de re. And
so, if we adapt our example for alethic modal contexts to belief contexts,
the sentence 'Jones believes that primes exist' would be de dicto and the
sentence 'There exists at least one number such that Jones believes that

that number is prime' is de re.?> And intuitively, Jones may believe that

24 For example, see Quine's discussion of this point in Quine (1960, 1961).
25 This apparent distinction has been alluded to by Quine (1956), p. 102, Hintikka (1962), p. 142 end
by Kaplan (1977), p. 116. It has been questioned by Stich (1983). We shall discuss Stich's views
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there are primes without believing of any particular number that it is
prime. He may not even be able to identify primes. Perhaps he has simply
accepted on authority that such numbers exist without knowing what they
are.

If this intuitive distinction between the de dicto construction ‘x believes
that (3v)a’ and the de re locution '(3v)(x believes that a )’ is correct for
ordinary language then it would seem desirable that the two constructions
be distinct for the SQC* formal systems of doxastic logic. And this is tant-
amount to saying that we would not want the following biconditional to
hold for the SQC™ systems, viz., B(3v)a @ (3v)Ba such that the existential
quantifier is non-vacuous and where ‘B(3v)a ' represents the de dicto
locution ‘x believes that (Iv)a ' and where (3v)BA represents the de re
locution '(3v)(x believes that a)'. And in fact, this equivalence does no¢
hold for the SQC™ systems as will be shown presently.

It will be shown that the biconditional schema B(Iv)a = (3v)Ba does
not hold for the SQC™ systems of doxastic logic by showing that one half of
this biconditional schema, viz., B(3v)a > (3v)Ba does not hold for any of
these systems. Intuitively, this conditional says that belief de dicto logically
implies belief de re. This seems intuitively unacceptable if we consider the
following simple instance of this conditional schema, B(3x)Fx > (3x)BFx.
Informally, if we let 'F' stand for 'prime’ then this schema says that if x
believes that primes exist then there is some number such that x believes
that it is prime. But as we have seen in our earlier example, it is possible
that Jones believes that primes exist without it being the case that there is
any one number such that he believes that it is prime, especially in the

case where he accepts the claim that primes exist on authority alone.

on the matter below.
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Further, even if we make the de re/de dicto distinction substitutionally,
it is still not correct to endorse as a thesis any instance of B(3x)Fx >
(3x)BFx. Thus, if Jones believes that af /east one substitution instance of
v Is a prime Is {rue, it presumably would not follow that at least one
substitution instance of "Jdnes believes that v is a prime* is true. (l.e.,
he may still fail to believe that 'v is a prime’ is true for some one value of
v.) Howewver, although the schemata B(3v)a and (3v)Ba are distinct even
on a substitutional reading of the existential quantifier, it is still the case
that we are warranted on such a reading in inferring both from Ba (t/v).
Thus, from 'Jones believes that 3 is prime’ it follows both that 'Some sub-
stitution instance of "Jones believes that v is prime " is true' and also that
‘Jones believes that some substitution instance of v Is prime Is true'.

We shall now construct a formal SQC* countermodel to B(3x)Fx >
(3x)BFx thus invalidating the schema B(3v)a > (3v)Ba. As was noted in
the previous chapter, there are two sorts of characteristic semantics for
the SQC* systems, viz., a domain semantics which lends itself to an objec-
tual reading of the quantifiers and a truth-value semantics which dispen-~
ses with individuals and which lends itself to a substitutional reading of
the quantifiers. We shall show that the schema B(3v)a > (3v)Ba is invalid
in both types of semantics and given our completeness results it follows
that not all instances of this schema are provabvle in the SQC™ systems.

The reader will recall from chapter two that an SQC® mode! structure
for a domain semantics is a triple <W,R,D> where W is a non-empty set of
indices, R is a 2-place 'accessibility’ relation ranging over members of W
and D is a non-empty set of so-called individuals. An SQC* model is a 4-

tuple <W,R,D,V> such that <W,R,D> is an SQC™ model structure and V is an
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assignment function which to each constant and to each variable assigns
exactly one member of D and which to each n-place predicate variable
assigns a set of n + 1-tuples, the first n members being elements of D and
the n + 1st member being an index in W.

Then consider the SQC™ model M = <W,R,D, V> such that W = {wy, wy,
ws}, D = {dy,dp}, {<wy,w2>, <wy,w3z>} ¢ R and V(t) = dy, V(F) = {<dy,
wp>, <dz,w3>}. Let M' and M" be models based on the same model struc-
ture as M such that V(t) = dy and V(t) = dj. So Vpq:(Ft,wp) = 1, Vp(Ft,
ws) = 0, Vi (Ft, w2) = 0 and Vy«(Ft, w3) = 1. It follows that Vi((Ix)Fx,
w3) = VM((3x)Fx, ws) = 1 and hence Vq(B(3x)Fx, wy) = 1. Further, since
there are two individuals in D, then there will be no model M' such that
VM (Ft, wy) = Vi (Ft, ws) and therefore V(BFt,wy) will be 0 for any
model M' based on the same model structure as M and differing from M (if
at all) in terms of what V assigns to arbitrary t. It therefore follows that
VM((3x)BFx,w1) = 0. Then we have constructed a model M such that
VM{(B(3x)Fx,wq) is 1 but Vpq((3x)BFx,wy) is 0 which therefore invalidates
the conditional B(3x)PFx > (3x)BFx. We shall next show that this conditional
is invalidated in a truth-value (TV) semantics.

An SQC™ model for a TV semantics is an ordered triple <W,R,V> such
that W and R are defined as for an SQC™ model for the domain semantics.
The assignment function V assigns to each alomic wiff '1' or '0'. And a val-
uation over a TV model is defined inductively with V(a,wy) = Viy(ar, wy)
as the basis. The reader is referred to chapter two for a description of this
type of semantics. The following is a TV countermodel to the SQC™ condi-
tional B(3x)Fx > (3x)BFx: M = <W,R,V> such that W = {wy, wj, ws},
{<wq,w2>, <wy,w3>} ¢ R and V(Fa,w;) = V(Fb,ws3) = 1, V(Fa,w3) =
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V(Fb,wz) = 0. Further, we shall stipulate that for this model no constant
t will be such that V(Ft,w;) = V(Ft,ws). Given our characterization of V,
it follows that Vy(Fa, w3) = Vq(Fb,ws) = 1 and V(Fa,w3) = V(Fb, w3)
= 0. Hence, V((3x)Fx,w3) = Vq((3x)Fx,w3) = 1 and thus V)(B(3x)Fx,
w1) = 1, However, since we have stipulated that for this model no cons-
tant t will be such that V(Ft,wj) = V(Ft,w3) it follows that for no constant
t will it be the case that Vq(Ft,w;) = Viy(Ft,w3). Then it will be the case
that for any constant t, Vq(BFt,w{) = 0 from which it follows that
VM((3x)BFx,wy) = 0. Thus, we have constructed an SQC™ (TV) model such
that V(B(3x)PFx,wy) is 1 but Viy((Ix)BFx,wy) is 0, which therefore inval-
idates the conditional B(3x)Fx > (3x)BFx.

And so, since we have invalidated the conditional B(3x)Px > (Ix)BFx in
the two types of characteristic semantics for the SQC™ systems and given
soundness it follows that B(3x)Fx > (3x)BFx is not a thesis of any of these
systems. Therefore, B(3v)a > (3v)Ba is not an SQC™ thesis schema which
is just what we want, supposing that we maintain that belief de dicto does
not logically imply belief de re. Also, since this conditional schema is not
an SQC™ thesis schema it follows that the biconditional B(Iv)a = (Iv)Ba
is not an SQC™ thesis schema.

Although one half of the biconditional B(3v)a = (3v)Ba is not an SQC=
thesis schema, the other half of the biconditional, viz., (3v)Ba > B(Iv)a is
an SQC™ thesis schema as we shall show presently. Intuitively, this con¥
ditional schema says that belief de re logically implies belief de dicto. This
seemns to be intuitively plausible if we once more consider the case of Jones

and his beliefs concerning prime numbers. Suppose that there is some par-
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ticular number such that Jones believes that that number is a prime. Then
presumably it would also be the case that Jones believes that primes exist.
And in general, if there is some t such that x believes that t is F, then it
would seem to follow that x believes that there are F's. Thus, the condi-
tional schema (BV)BG 3 B(3v)a is desirable for quantified doxastic logic at
least if we construe the quantifiers objectually. (Similar remarks could
also be made in terms of a substitutional construal of the quantifiers.) It
will now be demonstrated that any instance of this schema is derivable
(and given soundness, any such intance is valid) in any SQC* system. |

A proof sequence of any instance of the schema (3v)Ba > B(3v)a for
an SQC" system would look something like this:

1. Fa(t/v) > @V)a

2. B(a (t/v) > (Iv)a) 1, RB
3. Ba (t/v) > B(v)a schema K, detachment.
4. (3v)Ba > B(3v)a supposing t is foreign to B(3v)a and given

the rule a (t/v) > § —— (Iv)a > § where
t is foreign to (3v)a > B.
Thus, any instance of the schema (3v)Ba > B(3v)a which says that belief
de re implies belief de dicto will be derivable in the SQC™ systems of dox-
astic logic. Given our soundness results, it then follows that any instance
of this schema is valid in the two types of characteristic semantics for the
SQC™ systems, viz., the invariant domain semantics and the truth-value
semantics.
By way of some closing observations concerning the problem of quanti-
fying in, it is worth noting that quantifying in is also unrestricted for
doxastic possibility contexts for the SQC™ axiom systems given that the
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~ following schema is a variant of the axiom-schema « (t/v) > (v)a:

Ppa (t/v) > (3v)Pga
Intuitively, this schema says that it is permissible to existentially gener-
alize with respect to a term t occurring in the scope of a doxastic possibility
operator oulside of that operator. (And of course, this schema can be uséd
to derive the rule of inference Pga (t/v) —— (Iv)Ppat.) An ordinary
language example of this schema woﬁld be the following: 1If it is possible
for all x believes that Pegasus is a winged horse, then tkere is something
such that it is possible for all x believes that it is a winged horse.

In considering the above instance of Pga (t/v) > (3v)Pga, what is ob-
Jjectionable is that there seems to be some sort of commitment to what
Marcus and others have called possidilia or fictional entities. Thus, in our
example, it would seem that an existence claim is being made concerning
doxastically possible winged horses. If one finds possibilia as unpalatable as
Quine finds essential properties, then unrestricted quantifying in for con-
texts of doxastic possibility is a serious matter. However, similar to the
case of qu#ntitying into doxastic necessity contexts, it is only on an objec-
tual reading of the quantifiers that this type of situation is problematic. If
we were to read the existential quantifier occurring in any instance of
Pga (t/v) > (Qv)Pga substitutionally then the above ordinary language in-
stance of this schema would read “If it is possible for all x believes that
Pegasus is a winged horse, then at least one substitution instance of ‘it is
possible for all x believes that v is a winged horse' is true”. And this latter
reading does not suggest any sort of ontological commitment to possibilia.

Further, as we shall see, it is a thesis-schema of the SQC™ systems

that Pg(3v)a = (3v)Pga, which could be taken as asserting that any wif
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of the form Pg(3v)a is logically equivalent to the appropriate instance of
(SV)Pna, This schema is significant in that it can be regarded as an e/-
imination schema. l.e., if [FPg(3v)a = (Iv)Ppa, then if & is a wif
containing one or more occurrences of the locution (3v)PBa (which on an
objectual reading of the quantifiers seéms to involve a commitment to dox-
astic possibilia) then B which results from replacing one or more occur-
rences of the locution (3v)Pga with its logical equivalent Pg(3v)a (which
as will be noted does not involve any sort of commitment to possibilia) will
be such that |-f = o Then all occurrences of the locution (Iv)Pga in a wiff
o are eliminable in the sense that they can be replaced by Pg(Iv)a res-
ulting in a wif B such that |-p = a.2® Thus, any instance of the schema
Ppa (t/v) > (3v)Pga permitting quantifying in for doxastic possibility con-
structions is logically equivalent to the appropriate instance of Pga t/v) >
Pp(3v)a such that the occurrence of the locution (3v)Pga has been el-
iminated. This therefore can be regarded as a solution to the problem of
quantifying in for doxastic possibility constructions, since all locutions of
the form (3v)PBa are eliminable. As Marus notes, the solution here
amounts to claiming that fictional entities can be 'analysed away"'.2?

Then it is worth proving that the following are SQC™ thesis-schemata:

1) Pga (t/v) > Pg(3v)a

2) Pg(Iv)a = (3v)Ppa
The first of these schemata is the doxastic possibility counterpart of the
innocuous schema Ba (t/v) > B(3v)a. An ordinary language instance of 1)
would be "If it is possible for all x believes that Pegasus is a winged horse
then it is possible for all x believes that tAhere are winged horses”. Unlike

25 See Hughes and Cresswell (1968), pp. 183-188.
27 Marcus (1976), p. 42. Her solution to the problem of possibilia involves adopting a TV semantics.
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its cousin Pga (t/v) > (3v)Pga, this instance of 1) does not suggest that
there are possible winged horses but merely that it is consistent with (or
possible for) everything x believes that there are such things as winged
horses. In short, there is no suggestion here of a commitment to possibilia,
even on an objectual reading of the existential quantifier in 1). Any in-
stance of schema 1), Pga (t/v) > Pg(3v)a will be derivable for any SQC™
system by using the appropriate instance of & (t/v) > (3v)a well as the
derived rule |- > f —— |-Pga > Pgf. Further, by applying R3 to the
appropriate instance of Pga (t/v) > Pg(3v)a we can derive any instance
of (3v)Pga > Pg(3v)a which is one half of the biconditional schema
Pg(3v)a = (3v)Ppa. The remaining half, Pg(3v)a > (3v)Ppa is derivable
by contraposing the Barcan Formula, ~(3v)~Ba > B~(3v)~at and by em-
ploying the fact that 'Pg' and 'B’' are interdefinable. The elimination
schema Pg(3v)a = (3v)Ppa could also be considered as asserting the prin-
ciple that all locutions of de re doxastic possibility are eliminable, where
the de re/de dicto distinction for doiastic possibility contexts is made in
terms of the scope of the quantifier as it was for belief contexts.

However, the problem of possibilia reappears for beller contexts. The
following is an ordinary language instance of the schema Ba (t/v) > (3v)B«:
If Jones believes that Pegasus is a winged horse, then Zkere /s an x such
that Jones believes that x is a winged horse. In short, if Jones believes
that Pegasus is a winged horse, then he has a de re belief concerning a
fictional entity, viz., a winged horse, which again seems to suggest an on-
tological commitment to possibilia in the sense of ‘fictional entities'. Since
there is apparently no reduction schema which will allow us to eliminate

de re belief constructions for the SQC= systems (nor is such a schema even
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desirable) then if we find talk of 'possibilia’ distasteful, the option is once
more open to us to adopt a substitutional interpretation of the quantifiers.
As a final perspective on the problem of possibilia for the SQC™ systems,
any constant in the language is assigned a member of D for every model in
the domain semantics. Then even a term t whose ordinary language cons-
trual is 'Pegasus’' will denote some member of D for any SQC™ model. Also,
there are no 'fictional’ entities (existing at merely 'possible’ worlds) in an
Invariant domain semantics since for a model M, x exists at w; =df x € D
and hence any such x is a necessary existent given that D is shared by all
indices in the model. So the individual denoted by '!;egasus' is not a fictional
entity after all, but rather a necess#ry existent, which can be taken as a

reductio against an invariant domain semantics for quantified belief logic.
3. The Myth of 'The Myth of Ambiguity’

It was noted in the previous section that the de re/de dicto distinction
can be made for propositional attitude contexts analogous to alethic modal
contexts in terms of whether or not the belief operator occurs within the
scope of the existential quantifier. Thus, if the belief operator occurs
Inside the scope of the quantifier, in which case the entire locution has the
schematic form (3v)B&, then the resulting locution is de re. On the other
hand, if the bellef operator occurs ou!side the scope of the quantifier (and
hence the sentence has the form B(3v)a ), then this locution is de dicto.

As we shall see, Stephen Stich has claimed that the de re/ de dicto dis-
tinction as just described is a ‘'myth' for propositional attitude contexts.

His alternative account of a situation such as Jones' believing that primes
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exist (de dicto) vs. Jones' believing that a particular natural number n is
prime (de re) is that the ambiguity here is not inherent to Jones' belief
states, but is instead traceable to the conlents of Jone's beliefs. In short,
Stich wants to claim that belief is never ambiguous - only contents are. If
Stich is right, then the de re/de dicto distinction is spurious and this in
turn calls into question any logic of belief which mirrors such a distinction
in terms of quantifier scope.

We shall now critically examine Stich's argument for his claim that
belief is not fundamentally ambiguous. It will be argued that in the final
analysis, Stich's argument is not persuasive. Before appraising Stich's
argument, it will be necessary to briefly describe his account of belief
constructions and belief states.

Stich applies Davidson's remarks concerning indirect quotation contexts
in 'On Saying That' to propositional attitude constructions by maintaining
that any belief construction of the form ‘'x believes that & ‘' can be para-
phrased as 'a. x believes that.' where & is an utterance token or a speech
act and where 'that' functions as a demonstrative referring to a. Actually,
Stich paraphrases the construction 'x believes that' (where ‘that' is a dem-
onstrative referring to an utterance token) further as follows: ‘x is in a
similar belief state to the one which “"would play the typical causal role if
my utterance of fkat had had a typical causal history*.28 The italicized
‘that'?? in Stich's paraphrase of ‘x believes that' is the demonstrative ref-
erring to a . Intuitively, what this paraphrase means is that the agent x to
whom we are attributing the belief must be in a state which is similar to

the state which would lead us (the belief ascribers) to utter . And the

28 stich (1983), p. 88.
29 The italics in the previous quotation are our own.
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sorts of similarity which Stich has in mind here are ‘functional’' or ‘causal
pattern' similarity along with other types such as 'ideological' similarity.
Two belief states Sq and S; are functionally similar just in case they play
similar causal roles with respect to many of the same types of behaviours
and dispositions to behave and with respect to many” of the same types of
causal interactions amongst belief states. It follows from this definition of
functional similarity that this cohcept admits of degrees given the quantity
term '‘many'. It is also worth noting that the central notion of similarity
upon which the other notions depend is this notion of functional similarity
which we have just defined.30

To see briefly how Stich's story actually works, consider the case
where after hearing Trudeau during an interview speaking about the evils
of the Meech Lake Accord, someone ascribes to him the belief that the
Meech Lake Accord ought to be rejected. What attributing this belief to
Trudeau amounts to on Stich's account is the claim that the belief state
playing a central causal role in the "causal history leading up to" Trudeau's
utterance of ‘The Meech Lake Accord ought to be rejected’ is similar to the
state of the ascriber which would play a central causal role in the history
leading up to the ascriber’'s utterance of 'The Meech Lake Accord ought to be
rejected'. Stich makes it clear that he is breaking here with the so-called

functionalist account of belief states3! presumably because the ‘sameness’

30 stich also takes into account similarity of two belief states with respect to other parameters such
as the network of belief states in which each state occurs. Thus, state Sy is /oologically similar
to a distinct state So just in case Sy and S occur in networks of belief such that a significant num-
ber of the belief states in S¢'s network are causally or functionally similar to a significant number
of the states in So's network of belief. It follows from this definition that deological similarity’
admits of degrees. For details of Stich's account of similarity of belief states, see his discussion of

this in Stich (1982), pp. 180-203 and in Stich (1983), pp. 88-90.
31 Stich (1983), pp. 6-7. What Stich takes a functionalist’ theory of mental states to be and how this
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of belief states is connected not just with functional similarity but alg.o
with other types of similarity conceptually parasitic upon this type.

It is not our concern here to determine the plausibility of Stich's neo-
functionalist account of belief ascription nor to attempt to deal with any
problems which Stich's theory may inherit from Davidson's account of
indirect quotation contexts. For the sake of argument we shall grant that
Stich's account of belief ascription and belief constructions for ordinary
language can survive criticisms. Then the question we shall address in the
remainder of this section is the following: Supposing that Stich's account of
belief ascription and of ordinary language belief constructions is sound, does
it (in conjunction with a certain view of indefinite descriptions which he
holds and which will be discussed presently) pose a threat to the tenability
of the de re/ de dicto distinction?

As an example of the position which Stich is attacking, Quine in 'Quan-
tifiers and Propositional Attitudes' espouses the view that the de re cons-
truction '(Iv)(x believes y(y is an B) of v)' (where y(y is an F) is an ex-
pression denoting an attribute) and the de dicto construction 'x believes that
(3v)(v is an F)' are both paraphrases of the ambiguous sentence schema 'x
believes that someone is an F'. For example, the supposedly ambiguous sen-
tence ‘Jones believes that someone is a Liberal' can be paraphrased as
either '(3v)(Jones believes y(y is a Liberal) of v)' if Jones' belief is de re
(i.e., he bears a primitive relation to an attribute and to an individual) or
as 'Jones believes that (Iv)(v is a Liberal)' if Jones' belief is de dicto
(i.e., he bears a two-termed relation to a proposition).

Hence, what Quine is assuming in the above example is that the ambig-

uity of the above sentence can be traced to whether or not Jones' belief is

is connected with his definition of functional similarity is explained in Stich (1982), pp. 181-4.
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de re or de dicto. In other words, Quine is assuming that the source of
ambiguity in sentences of the form 'x believes that someone is an F' is the
'believes that' construction since belief can be either de re or de dicts. And
these assumptions, viz., 1) that the ambiguity of the above sentence is tied
up with the 'believes that' construction and 2) that there are two types of
belief, de re and de dicto which explains this ambiguity are what Stich
wants to call into question.

Stich's way of handling the ambiguity of the sentence 'Jones believes
that someone is a Liberal' would be to apply his Davidscnian (as well as
neo-functionalist) method of paraphrasing belief constructions as follows:
The sentence 'Jones believes that sormeone is a Liberal' is analysable as
‘Someone is a Liberal. Jones believes that.' where the pronoun ‘that'
functions as a demonstrative referring to the utterance 'Someone is a Lib-
eral’.32 Furthermore, the sentence 'Jones believes that' could itself be
paraphrased according to Stich's neo-functionalist analysis of such cons-
tructions discussed above.33 What is important about Stich's analysis is
that it involves (a la Davidson) the isolation or separation of the content
'‘Someone is a Liberal' from the 'believes that' construction. Then assum-
ing we admit that the original belief sentence is ambiguous, this move sets
the stage for Stich's argument that the ambiguity has as its source an
ambiguity in the separable confent sentence and not the 'believes that'
construction. We shall now briefly describe this argument.

According to Stich, the content '‘Someone is a Liberal' which has been

isolated from the 'believes that' construction in his analysis of the above

32 stich (1983), p. 121.
33 Stich (1983), p. 121.
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sentence is ambiguous, which is evidenced by the fact that it can be para-
phrased in one of two ways: The first way of paraphrasing the content
utterance ‘Someone is a Liberal' is to treat the term 'someone’ as an ordin-
ary language analogue of the existential quantifier. Thus, we could para-
phrase the content as '(3v)(v is a Liberal)' and hence we are treating it as
a so-called 'indefinite description'.3 And this sort of paraphrase of the
content as an indefinite description is appropriate in cases where the agent
has no particular individual in mind in the sense that when questioned as
to whom in particular he is referring, he is hard pressed to name any
specific individual.3® In short, he merely believes that there are Liberals,
which is what Quine and others would call a notional belief.

On the other hand, the content 'Someone is a Liberal' is analysable as a
kind of definite description in which case the term 'someone' does not func-
tion as the ordinary language analogue of a quantifier occurring in an
indefinite description.3 In other words, the term 'someone’ functions as
a kind of uniqueness operator (i.e., 3!). For example, if the believer has
Trudeau in mind, then this content might be analysed roughly as 'Someone
is a Liberal. He is a former Prime Minister of Canada. He is from an
influential Canadian family, he is a lawyer, and so on.'3” This sort of
analysis of the content utterance is appropriate, according to Stich in cases
where the person to whom we are ascribing the belief has someone in par-
ticular in mind in the sense that when questioned as to whom he is refer-
ring, he might give a name or a series of definite descriptions. And this

sort of case is what traditionally has been called by Quine and others a

34 stich (1983), p. 120.
35 ibid, p. 119.
38 ibid, p. 120.
37 ibid., p. 119.
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case of de re or relational belief.

The special twiét to Stich's analysis of the ambiguous construction
‘Jones believes that someone is a Liberal' is that the ambiguity does not rest
with the 'believes that' construction but rather with the content utterance.
From this, Stich concludes that there is no such thing as de re and de dicto
belief states. There is only one kind of belief which can be accounted for
(at least as a first-stab) within a neo-functionalist theory, although there
are two ways of analysing the contents of beliefs or belief states. We shall
now present an objection to Stich's handling of the de re/de dicto distinct-
ion.

Although the content 'Someone is a Liberal' when interpreted as an
indefinite description, viz. as '(Iv)(v is a Liberal)' seems to wear its logical
form on its sleeve (to borrow a turn of phrase from Davidson), it is not in
any way obvious how we can sometimes construe this as a kind of extend-
ed definite description. What is the relation between the analysandum,
viz., '‘Someone is a Liberal' and the analysans such as '‘Someone is a Liber-
al. He is a member of an influehtial Canadian family, and soon ...'? The
relation is certainly not one of making the logical form of the analysandum
apparent, especially since the analysans will presumably vary from believ-
er to believer. l.e., two different believers may have different sets of des-
criptions by means of which they pick out the relevant individual(s) they
have in mind. They may have in Kaplan's parlance distinct 'inner stories’.

Stich's claim that in some cases a content of the form 'Someone is an F'
can be read as an indefinite description and sometirnes as an extended def-
inite description is on the same footing as Quine's claim that 'Jones believes

that x is an F' can sometimes be given a notional reading and sometimes a
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relational reading. In neither case is it in any way evident what interpre-
tation we should give to the appropriate locution, at least given the locution
alone. However, if we are just concerned with logical form then the 'cor-
rect' construal would seem to be that of an indefinite description in the
case of 'Someone is an F'. Presumably, contextual considerations such as
the agent's other beliefs (i.e., his ‘inner story') would have to be taken
into account in order to decide how to interpret the content '‘Someone is an
F'. But if we need to appeal to the agent's beliefs in order to determine
what his/her beliefs are, then this amounts to circularity. Thus, at

the very best, Stich's alternative account of the apparent amibiguity of
belief constructions is subject to the same sorts of difficulties as the view

(such as Quine's) which it is replacing.

4. Interlude

And so, to summarize our discussion to date, in the first two sections
we have identified three problematic SQC™ rules of inference concerned
with the connection between either the identity symbol and the belief oper-
ator or between the existential quantifier and the belief operator. These
three problematic rules are as follows:

R1: Ba (t1/v), t1 = ty —— Ba(tp/v) - or its more general version.

R2: Ba (ty/v), t1 = t —— ~B~a (t3/v)

R3: Ba (t/v) —— (3v)B« - or its more general version.
Actually, the second rule of inference, Ba (t1/v), t; = t3 —— ~B~at (t3/v)
is derivable only in the SQC* + D systems of doxastic logic. The first two

rules express the so-called substitutivity principle, viz., that co-referential
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terms are intersubstitutible in belief contexts. The third rule expresses the
principle that it is permissible to existenially generalize with respect to the
occurrence of a constant t in the scope of a belief operator outside of the
belief operator. In other words, the third rule permits unrestricted quanti-
fication iZnzéo belief constructions. As we have seen, there are reasons for
suspecting the plausibility of all three rules given various ordinary lang-
uage 'counterexamples’' which we have constructed. However, the counter-
examples to R3 allowing unrestricted quantification into belief contexts
are relevant only if the existential quantifier is given an objectua/ reading
in the corresponding domain semantics. Thus, R3 is unproblematic if the
existential quantifier is read substitutionally in the corresponding TV sem-
antics.

It was also noted that the counterpart of R3 for doxastic possidility
viz., Ppd (t/v) —— (3v)Ppa which allows unrestricted quantifying
into doxastic possibility constructions is derivable for the SQC* axiom-
systems. This schema is philosophically objectionable on the grounds that
it at least seems to involve a commitment to possibilia - assuming ‘3 is
read objectually. Like R3, this rule (and the corresponding schema) is
unproblematic if '3’ is read substitutionally. Further, given the SQC=
elimination schema Pg(3v)a = (3v)Pga, the problem of quantifying in
for doxastic possibility constructions is resolvable, even given an objec-
tual reading of the quantifiers.

On the other hand, the following rule of inference and schema which
hold for the SQC™ systems are intuitively plausible and hence desirable for

'any system of doxastic logic:
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R4: Ba (t/v) — B(Iv)a

s1: (3v)Ba > B(3v)a
The rule of inference R4 permits existential generalization with respect to
the occurrence of a term t in the scope of a belief operator inside the belief
operator. And as we have just seen, the scherma S1 says that belief de re
implies belief de dicto.

Apparently, what is needed if we adopt a domain semantics for the
SQC™ systems are modifications to the rules of inference R1, R2 and R3 and
hence to the SQC™ axiom systems which will accommodate the counter-
examples we have constructed. To ensure soundness and completeness of
the resulting systems, corresponding changes will need to be made to their
domain semantics. (Of course, we shall also want to retain the rule R4 and
the schema Si fnentioned above, if possible.) So in sections 5 and 6, we
shall consider Hintikka's suggestions for modifying the axiomatics of quan-
tified belief logic where the quantifiers are read objectually to accommo-
date these counterexamples. He discusses these proposals in a number of
places including Knowl/edge and Belief (1962).

As we shall see, Hintikka's suggestions for a quantified logic of belief
involves treating belief constructions as ambiguous in the sense that some
constructions are 'notional' and others are 'relational’ (to borrow Quine's
phraseiology). He then restricts quantifying in (i.e., the inferring of de re
constructions) and the substitution of co-referentials to what we shall call
relational constructions. And so treating belief contexts as ambiguous is
integral to Hintikka's solutions to the problems of failure of substitutivity of
co-referentials and to the problem of quantifying in. (It will be noted in
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chapter four that his solution to the problem of quanfifying in applies a
fortiori to this problem for contexts of doxastic possibility.)

Although Hintikka's suggestions for a quantified logic of belief are able
to accommodate the various informal counterexamples we have considered
in the first two sections for logics where the quantifiers are read object-
ually, it will be argued in the fourth chapter that Hintikka's corresponding
semantics presupposes a problematic 'counterpart' metaphysics. This is
owing to the fact that the semantics he proposes for quantified belief logic is
a domain semantics such that with each index in a model is associated a
unique domain of individuals. Then although there is no problem of trans-
index identity since all individuals are index-bound, there is a problein
connected with identifying individuals' counterparts across indices.

On the other hand, if we adopt a truth-value semantics for the SQC*
systems such that the quantifiers are given a substitutional reading, then
R3 (and its counterpart for doxastic possibility) is unproblematic. Then
emendations must be made in the logic and in the sermantics to eliminate R1
and R2 allowing unrestricted substitution of co-identicals although we can
can get by without dispensing with or modifying the rule R3 permitting
existential quantification irnfo belief contexts. We still of course retain the
distinction between the de re construction (3v)Ba and the de dicto cons-
truction B(3v)a in the semantics in the sense that the latter does not entail
the former. And, in chapter four we shall propose a quantified logic of
belief (or to be more precise, a collection of belief logics) which eliminates
R1 and R2 (for systems containing 4) and yet retains R3. In proposing
these logics we dispense with the relational/notional distinction and follow
the Fregean path of treating belief contexts as always obuque ~ i.e., substi-
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tution of co-referentials is never permitted in belief contexts.

Finally, it will be argued in the fourth chapter that although both Hin-
tikka's logic of belief (and its objectual semantics) and our own logic of
belief (where the quantifiers are read substitutionally) are able to handle
the counterexamples discussed in the first two sectiohs, the latter is the
preferable of the two. For one thing, the truth-value semantics charac-
terizing our own proposed quantified doxastic systems dispenses with
domains of individuals and hence the 'counterpart' problem encountered in
Hintikka's varying domain semantics {s avoided. Further, there is no need
to invoke the controversial relational/notional distinction in order to solve
the problem of 'quantifying in' since there is no such problem for a logic
where the quantifiers are construed substitutionally in the corresponding

semantics.
Section 5. Hintikka's Solution to the Problem of 'Quantifying In'

According to Hintikka, existential generalization with respect to the
occurrence of a constant t outside a belief construction of the form Ba (t/v)
is permissible only if the agent x has an opinion as to who (or what) t is.
l.e., there is some individual v such that x believes that this individual is
t.38 Hintikka renders the locution ‘there is some individual v such that x
believes that v is t' for first-order belief logic as '(3v)B(v = t)' such that

the quantifier is to be read objectually. This locution signifies that x is

38 See Hintikka (1962), pp. 144~146; Hintikka (1969) reprinted in Linsky (1971), p. 156. There is as
Hintikka notes himsalf in Hintikka (1962), p. 145 an analogy between the locution (3v)B(v = {) and
the locution (Iv)(v = tY which asserts thal thers is some individual denoted by t - or more simply
that t exists since the former locution asserts that there is some individual denoted by t such that x
has an opinion concerning who t is.
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‘acquainted' with the individual denoted by t (and we shall have more to
say about the concept of 'acquamtaﬁce' below). Then Hintikka's proposal
for a logic of belief which avoids the rule R3, Ba (t/v) —— (3Iv)Ba per-
mitting unrestricted quantification into belief constructions with respect to
a constant t is to only allow quantication into belief constructions with res-
pect to t which are conjoined with the appropriate ‘acquaintance’ locu-
tion. More formally, existential generalization with respect to a constant
t occurring in a locution of the form Ba (t/v) is permitted only if Ba (t/v)
is conjoined with (IV)B(v = t).39 Or in terms of inferential contexts, Hin-
tikka's stricture is that generalization with respect to t occurring in a
locution of the form Ba (t/v) is permitted only if (3v)B(v = t) is added as a
premise. This stricture on existential generalization for belief contexts is
imposed for the reason that x may believe that a (t/v) and yet he may
have no idea who or what t is, in which case it would not be appropriate
to infer that there Is some individual v such that x believes that ot .40
Consider the example discussed in the second section, viz., Jones' belief
that the next P.M. of Canada (whoéver he/she is) will attempt to balance
the budget. This would be symbolized in the language of the SQC* systems
simply as BFp. Then Hintikka would not permit existential generaliztion
with respect to t outside the belief operator. I.e., we could not infer from
BFp the de re locution (3x)Bx. This inference would only go through if it
were added as a premise that Jones has some individual in mind - that he
is ‘acquainted’ with someone or other whom he thinks will fit the descrip-
tion of attempting to balance the federal budget. I.e., only if we add as a ‘
premise (Ix)B(x = p) can we infer from BFp that (3x)BFx.

39 "I we are right, "(Ex)Bap” is implied by “Bap(b/x) & (Ex)Bab = x)" but not by “Bap(b/x)" alone."
This appears in Hintikka (1962), p. 149.
4O Hintikka (1962), p. 1434, p. 149.
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In the light of Hintikka's remarks concerning existential generalization
into belief constructions, we could restrict the SQC= axiom-schema a (t/v) >
(3v)a to cases where t does not occur in the scope of a belief operator and
we could add as an axiom-schema (and thus derive as a rule of inference):

82 (a(t/v) &« AV)(v=t&B(v=1t)>s@va wheret may occur in
the scope of a belief operator(s).

R3* (a (t/v) & (v)(v =1t & B(v =t)) — (Iv)a where t may occur
in the scope of a belief operator(s).

Instances of S2 would be the following:

1) ((B(Fa v Gb) v Ha) & (3x)(x = a) & B(x = a)) > (Ix)B((Fx v Gb) v Hx)

2) ((PpFb & Hb) & (Ix)(x = b & B(x = b)) > (Ix)((PPFx & Hx)
2) is an instance of S2 since 'PgFb’ is definable as ~B~Fb in which case,
'b* does occur in the scope of a belief operator. We shall discuss the phil-
osophical significance of 2) in chapter four. Also, give_n the definability of
'‘Pg' in terms of 'B', the restrictions for S2 and R3* can be made more gen-
eral. l.e., it can be required that t may occur in the scope of a doxastic
operator(s). For S2 and R3', restricting quantifying in to contexts involving
‘acquaintance’, the singular term t may also occur outside the scope of the
doxastic operator as in 1) and 2). Then in such cases, Hintikka argues that
the 'actual world’' must be taken into account (or more neutrally, the index
at which the wiff is being evaluated).4 This is the significance of adding
‘v = t' to the acquaintance locution resulting in ‘(Qv)(v=t & B(v = t)'. As
we shall see in discussing Hintikka's solution to the problem of the failure
of substitutivity of co-referentials for belief contexts, this locution can in-

formally be construed as saying that x has a #rwe opinion as to who t is.

41 Hintikka (1969) reprinted in Linsky (1971), p. 157.
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x's having a frue opinion as to who some individual t is will be regarded
as a special sort of relational context which guarantees subsitutivity.

Further, the locution (3v)(v = t & B(v = t) is needed to guarantee the
validity of the more general schema S2 with respect to the semantics to be
discussed in chapter four. For reasons which will be discussed in the next
chapter, for systems not containing the schema 4, B > BBa it will be
necessary to impose the proviso on the above schema and rule of inference
that there is no iteration of any belief operators in & (t/v) within whose
scope t lies.

In order to make some sort of philosophical sense out of Hintikka's
proposal for deéung with the problem of quantifying in for doxastic logic,
we shall compare his proposal to those of both Quine and Kaplan who try
to resolve this problem on the ordinary languége front. As we shall see,
Hintikka's resolution to the the problem of quantifying in resembles the
solution which Kaplan offers in spirit if not in detail. Further, Kaplan
provides an analysis of the notion of 'representation' which at least givés
some intuitive content to Hintikka's notion of 'having an opinion as to who
t is' which is symbolized in terms of what we have called the 'acquaint-
ance' locution. These brief digressions will therefore help us to put into
perspective Hintikka's formal solution to the problem of quantifying in.

We shall first of all compare Hintikka and Quine on the issue of quan-
tifying in. The position of Quine's which we are about to examine is not
his final word on the subject of quantification in propositional attitude con-
texts, although it is the position which is most widely discussed in the

literature.

In 'Quantifiers and Propositional Attitudes' (1956) and in Word and Ob-
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Ject (1960), Quine developed the view that there are two types of belief
construction, viz., relational and notional. In the simplest sort of case, a
relational belief construction is such that at least one singular term t
occurs within the scope of the belief operator 'purely refgrentlally' or
‘transparently’ in the sense that the believer bears some sort of primitive
relation R to the denotatum of t and to an atttibute.42 Schematically, any
relational belief construction attributing a property P to some individual t
can be represented as 'x believes y(y is a P) of t' where the locution 'y(y is
a P)' is an expression for an attribute. Quine treats attributes as inten-
sions of degree 1 such that the degree of the intension is determined by the
number of free variables occurring in the intensional idiom.45 An instanée
of this schema would be ‘Jones believes that y(y is a Liberal) of Trudeau'
where this construction depicts a three termed relation R between Jones,
the attribute denoted by 'y(y is a Liberal)' and the individual denoted by
‘Trudeau’.

Quine's treatment of relational constructions can easily be generalized.
For example, a relational belief construction expressing a four termed rel-
ation between a believer, a 2nd-degree intension (asserting a relationship
between two individuals y and z) and two individuals ty and t3 will have
the schematic form 'x believes yz(y R'd 2) of t1 and t;' where 'yz(y R'd 2)"
denotes a 2nd degree intension - a two-termed relation. An instance of this
schema would be 'Jones believes that yz(y denounced z) of Cicero and Cat-
aline' where this construction depicts a four-termed relation between

Jones, Cicero, Cataline and the 2nd-degree intension 'yz(y denounced z). In

42 Quine (1960), p. 145.
43 Quine (1960), p. 104. Quine does not uitimately commit himself ontologically to intensional entities

although he finds them useful for elucidating the relational/notional distinction. He also uses this tact
in an earlier article, viz., Quine (1956).
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generai, relational belief for Quine will be an n 2 3-termed relation which
obtains between a believer, some nth-degree intension (n 2 1) and n 2 1
individuals. It follows, at least prima facie, that there will be an infinite
number of irreducibly primitive senses of relational belief.

Relating Quine's notion of relational belief to the problem of quantifying
in, Quine restricts quantification into belief constructions with respect to
singular terms occurring lransparently within the scope of the belief op-
erator, because in such constructions the believer bears a primitive rel-
ation (call it 'acquaintance' or whatever) to the individuals denoted by
these terms. Hence, we can existentially generalize into belief constructions
only with respect to terms denoting individuals to whom the believer is
related.

For example, in the case of the relational construction 'Jones believes
y(y is a Liberal) of Trudeau', Jones bears a three-termed relation to the
attribute denoted by 'y(y is a Democrat)’ and the individual denoted by
‘Trudeau’. Then we can infer that lhere is some individual v such that
Jones believes y(y is a Liberal) of v, or more conspicuously we can infer
that (3v)(Jones believes y(y is a Liberal) of v). Notice then the similarity
between Quine's solution to quantifying in and Hintikka's, viz., that like
Quine, Hintikka only allows existential generalization with respect to terms
denoting indivduals with whom the believer is ‘acquainted’. Quine simply
treats this 'acquaintance' relation as a primitive.

It was noted earlier that Quine posited two senses of belief and there-
fore two types of belief constructions, viz., relational and notional. In con-
trast to relational constructions, singular terms occurring withing the

scope of the belief operator in a mofional belief construction occur 'opaq-
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uely'. A singular term in the scope of a belief operator occurs opagquely if
it does not occur transparently or purely referentially, i.e., if it is such
that the individual it denotes is not an individual to which the believer is
related. Since the believer is not primitively related to the appropriate
individual, then Quine prohibits existential generalization with respect to
the term in the belief construction which would normally denote this
individual. In short, we cannot make de re generalizations from purely
notional constructions. Once again, Quine's prohibiting quantifying into
notional constructions is similar to Hintikka's strictures against quan-
tifying into constructions which are not conjoined with locutions indicating
that the believer is ‘acquainted’' with the appropriate individual.

More formally, Quine treats notional belief as a two-termed relation
between a believer and a propesition . (Quine regards propositions as Oth
degree intensions. And of course, Quine ultimately disavows any commit-
ment to propositions in favour of 'eternal sentences'.) Thus, the schematic
form of a notional belief construction is 'x believes that p' where p is a
Oth-degree intension, i.e., a proposition. Further, Quine then prohibits
existential generalization with respect to any variables occurring in expres-
sions denoting intensions occurring within the scope of a belief operator -
thereby not granting intensions the same ontological status as individuals
denoted by singular terms. Since the expression 'p' in a notional construc-
tion of the form 'x believes that p' denotes a Oth degree intension, i.e., a
proposition, then it is not permissible to existentially generalize with res-
pect to any variables or constants occurring in p.4* However, although we
cannot infer de re constructions from notional locutions, Quine does permit

de dicto inferences from notional locutions - i.e., we can existentially

44 Quine (1956), p. 189,
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generalize with respect to t occurring in the content proposition p if the
quantifier occurs as part of the scope of the belief operator, as we shall
next see.

To see more clearly what Quine's proposal amounts to with respect to
notional constructions, consider once more our example of Jones' belief con-
cerning the next P.M. of Canada. Since there is no particular individual
such that Jones believes of that very individual that he/she will attempt to
balance the budget, then there is no individual to whom Jones is related.
Thus, we would render this belief notionally, i.e., as a two-termed rel-
ation between Jones and the proposition 'that the next P.M. of Canada will
.attempt to balance the budget’. l.e., the appropriate construction in this
case would be 'Jones believes that the next P.M. of Canada (whoever he/she
is) will attempt to balance the budget' which is an instance of the notional
schema ‘x believes that p'. Therefore, it is not permissible in this case to
existentially generalize (outside the belief operator) with respect to the
singular term ‘the next P.M. of Canada (whoever he/she is)'. However,
since Jones believes that individuals who would attempt to balance the
budget exist similar to our case where the agent believes that primes exist,
then from the above notional construction we are permitted to infer that
‘Jones believes that (3x)(x will attempt to balance the budget)’, which is a
de dicto construction.

And so, Quine and Hintikka appear to both agree that quantification into
'notional’' belief constructions where the believer is not related to the ap-
propriate individual should be prohibited but that quantifying in is permit-
ted in purely relational contexts where such a relation does obtain. If the

belief context is relational then in quantifying in, the scope of the de re
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quantifier is the relational construction for Quine whereas for Hintikka,
the scope of the de re quantifier is the notional locution - i.e., the inferred
de re construction will simply have the form (3v)Ba where the scope of
the quantifier does not include what we have called the ‘acquaintance’
locution. Further, they disagree on the issue of whether or not there are
two ‘'irreducible’ senses of belief and corresponding belief constructions. (Or
at least Quine in one of his philosophical moments disagrees with Hintikka
on this issue.) For Quine, a relational construction is not partially re-
expressible as a notional locution conjoined with something else. This is
because notional belief is a primitive two-termed relation between a bel-
iever and a proposition whereas rélatlonal belief is an n 2 3-termed rel-
ation between a believer, an intension and an individual. In fact, there
are an infinite number of irreducible types of relational belief.

Hintikka, on the other hand, seems to allow that any relational belief
construction involving the claim that the’ believer is ‘acquainted' with the
appropriate individual is expressible as the conjunction of a notional |
construction (which by itself does not assert any such relationship) and.
what we might call an 'acqaintance’ locution. l.e,. the relafiona/ schema
Ba (t/v) & (3v)B(v = t) is the conjunction of the notioral schema Ba (t/v)
and the 'acquaintance’' schema (3v)B(v = t). Then for Hintikka, relational
belief is reducible to notional belief in the sense that relational Jocutions
are partially expressible in terms of notional Jocutions. It is this sense
of reduction that has been the subject of much discussion in the litera-
ture.4® The strategy that Hintikka is employing concerning the issue of
quantifying in, viz., that there are types of belief construcfions which we

shall herein call notional and relational, the latter being 'reducible’ to the

45 For example, see Hintikka (1967), Kaplan (1969), Sosa (1970) and Burge (1977).
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former is similar to the strategies employed by Kaplan and Sosa. In par-
ticular, we shall compare Hintikka and Kaplan on this score.

Kaplan presents his characterization of the notional/relational distinc-
tion in his article 'Quantifying In’' (1969). In our example of Jones and his
belief concerning the next Prime Minister of Canada, assuming his belief is
notional then the sentence attributing to him this belief would be char-
acterized by Kaplan as 'Jones B <the next Prime Minister of Canada (who-
ever he/she might be) will attempt to balance the budget>'. The symbol 'B'
is of course the belief operator and the idiosyncratic quotation marks serve
to indicate that anything occurring within these marks {(and hence the
entire content sentence itself) occurs referentially, though the reference of
the terms and the entire content sentence will not be their 'usual’ refer-
ences (such as individuals in the case of singular terms) but rather them-
selves. In short, the entire content sentence within the peculiar quotation
marks refers to an expression, viz., itself.46 (Kaplan bases his character-
ization of noticnal belief sentences at least in part on Frege's remarks con-
cerning indirect quotation and propositional attitude constructions.) So
schematically, any notional belief sentence will have the form 'x B <S>
where the expression variable S occurring within the idiosyncratic marks
ranges over names for sentences.

Kaplan then prohibits existential generalization with respect to any
singular terms occurring in the content S of a notional construction since
although the terms are referential in the sense that they denote them-
selves, they are not cusfomarily referential and so they do not denote any
individuals with whom the individual is in some sense acquainted. So

we cannot generalize with repect to the term ‘the next Prime Minister of

46 See Kaplan (1969) reprinted in Linsky (1871), p. 122.
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Canada’ in the above example, since this expression does not refer to any
particular individual with whom the believer is ‘acquainted' (or in Kap-
lan's parlance, the individual is not represented to the believer by the
expression which customarily denotes it).

Notice that there are three senses of the term 'referential’ being used
in the above paragraph. First, there is a distinction between customary
and Iindirect reference implicit in Kaplan's treatment of notional construc-
tions, a distinction which has its origins in the writings of Frege. The cus-
tomary referent of a singular term t will be an individual and its indirect
referent will be itself. Further, for both Quine and Kaplan, the third sense
of 'referential' which is crucial for determining whether or not we can
generalize with respect to a term t occurring in the scope of a belief oper-
ator is that the term not only denotes its 'customary’ referent but also that
the believer is somehow 'acquainted’ with this individual. I.e., a singular
term t occurs referentiallys in the scope of a belief operator just in case 1)
t denotes its customary réferent and 2) the believer x is ‘acquainted' with
t. This third sense of 'referential' or at least the second condition (refer-
ring to the notion of 'acquaintance') is similar to Hintikka's notion of a bel-
iever's having an opinion as to who t is, or more precisely, it is similar to
Hintikka's notion of having a /rue opinion as to who some individual is.

As we shall see presently, Kaplan attempts to provide an analysis of this

third sense of ‘referential' in terms of the notion of 'representation’.
According to Kaplan, a re/ational belief construction is partially expres-

sible as a notional construction in the following sense: In the simplest sort

of case, a relational belief construction is a two-termed conjunction, one of
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whose conjuncts is a notional construction and whose other conjunct is a
'representation’ locution. The representation locution asserts that the rel-
evant singular term t occurring in the notional conjunct 'represents’' an
individual y for the believer x in the sense that t denotes an individual
with whom the individual is 'acquainted’ - or in Kaplan's parlance, t is

a vivid name of y for the believer x. (We shall presently discuss precisely
what Kaplan means by 't is a vivid name of y for x'.) The schematic form
of a representation locution is R(t, ¥, x) which can be read as 't represents
the individual y to the believer x'. Then, the schematic form of a re/a-
tional belief construction (in the simplest sort of case where there is only
one singular term t) is 'R(t, vy, x) & x B <S(t/v)>' such that the first con-
Junct is the representation locution and the second conjunct is a notional
construction. Further, we can make a de re generalization with respect
to t occurring in this construction since the individual it customarily de-
notes is one with whom the believer is 'acquainted’'. Thus, it is possible to
quantify into any such construction (with respect to t) resulting in
@3)IRE, y, x) & x B <s(8/v)].

An instance of the above relational schema would be 'R( 7rudeau, Tru-
deau, Jones) & Jones B < 7rudeau is a Liberal®> where the first conjunct
asserts that the individual Trudeau which is the customary referent of the
term 7rudeau occurring in the notional construction is such that Jones
is 'acquainted’ with this individual. Further, quantification into this rel-
ational construction is permitted with respect to the term 7rudeau since
it ‘represents’ the individual Trudeau to the believer Jones. I.e., the fol-
lowing de re generalization is permissible, viz., (38)[R(S, Trudeau, Jones)
& Jones B <§ is a Liberal”].
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And so for Kaplan, relational belief is reducikle to notional belief in the
sense that relational constructions are partially expressible in terms of
notional constructions. And on this score, Kaplan and Hintikka are in
agreement. Recall that for Hintikka, a relational locution (in the simplest
sort of case where only one singular term is under consideration) is a two-
termed conjunction consisting of a nofional locution whose schematic form
is 'Ba (t/v)' and whose second conjunct is an 'acquaintance’ locution, the
schematic form of which is '(IV)B(v = t)'.

On the other hand, Hintikka and Kaplan differ with respect to their
characterization of quantifying into relational contexts in the following
sense: Whereas Hintikka stipulates that the scope of the quantifier in a de
re construction will be a notional locution only (as was already noted),
Kaplan stipulates that the scope of the quantifier in a de re construction
will be a relational construction and hence, the schematic form of a de re
construction will be (38)[R(, y, x) & x B<S(§/v)>]. In short, Hintikka
allows quantifying into notional locutions occurring in relational contexts
whereas Kaplan allows quantifying into relational locutions.

We shall now consider Kaplan's notion of ‘'representation' since this
may shed some light on the intuitive construal of Hintikka's ‘acquaintance’
locution ‘(IV)B(v = t)' as well as the locution '(Iv)(v = t & B(v = t))".

According to Kaplan, a singular term t represents its customary refer-
ent y to the believer x just in case 1) t denotes y which is tantamount to
saying that t must have y as its customary referent, 2) t is a name of y
for the believer x and finally 3) t is vivid.4?7 Kaplan claims that a term t
denotes an individual by virture of its descriptive content and hence that

denotation is “the analogue for names to resemblance for pictures"4® Then

47 Kaplan (1969) reprinted in Linsky (1971), p. 138.
4B ibid., p. 136.
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presumably a term, if not itself a definite description must have certain
descriptions associated with it if it is to denote an individual. Further,
Kaplan provides a so-called genetic account of how a singular term comes
to be a name of something for someone . For example, Jones may read in a
magazine article about a famous political figure Jean Chretien who is des~
cribed in the article as quite possibly the next Prime Minister of Canada, a
loyal Liberal and so on. If he had not heard others mention this individual
beforehand then Jones would, on the basis of the descriptions in the article
dub him ‘'Chretien'. Then the expression 'Chretien' has become for Jones a
name of the individual Kennedy. Or, if he has heard others speak of this
individual Chretien using the same descriptions he would have read in the
article then once again the expression 'Chretien' will become a name of the
individual Chretien for Jones. In short the term 'Chretien' (whose initial
reference has been established by descriptions or perception or whatever)
has been passed on from speaker to speaker which is what Kripke calls a
‘causal’ theory of naming.4? And so, as Kaplan notes, there is no one way
by which an expresssion § must come to be a name of some object y for a
believer x. In some cases, the so-called dubbing of the object may come
about through direct perceptual means, in other cases through descriptive
means and in still other cases by being passed on from speaker to
speaker.50

According to Kaplan, a further condition which a term must satisfy for

it to represent some individual y to a believer x is that in addition to its

49 Kripke develops a so-called causal account of names in Kripke (1980) which bears certain similar-
ities to the account which Kaplan is providing. However, Kripke only allows that proper names can
serve as names of objects since they, unlike descriptions, are rigid designators. A rigid designator

is an expression which denotes the same object in all the worlds at which it exists.
50 Kaplan (1969) reprinted in Linsky (1971), p. 135.
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denoting y and its being a name of y for x, it must also be vivid. A name's
vividness is tied up with the role its denotatum plays in a believer's so-
called inner story which is the set of contents the agent believes.51 Thus,
Jones may believe that some individual is a loyal Liberal, is a former Min-
ister of Finance, is the new leader of the Liberal Party and so on and per-
haps the individual he has dubbed ‘Chretien’ satisfies these descriptions.
Thus, when he considers these descriptions, the individual he has dubbed
‘Chretien' comes readily to mind. Kaplan also admits of degrees of vividness
of a term and the degree of vividness will depend upon the role the deno-
tatum of the term plays in the agent's inner story.% Thus, in the case of
Jones, if he has many beliefs about the life and accomplishments of a
certain former Minister of Finance then the name ‘Chretien' will for him
be of a high degree of vividness. Thus, Kaplan stipulates that for an ex-
pression t to represent y to x, it is a necessary condition that t be a
sufficiently vivid name of y for x.

Kaplan notes that his notion of ‘'vivid name' and Hintikka's notion of
'having an opinion (belief) as to who t is' more or less amount to the same
thing.® I.e., to have a vivid name of some individual x implies that this
individual has a central role to play in the agent's ‘'inner story' and hence,
it would seem to follow that the believer will have an opinion as to who
this individual is. Thus, we could say that a believer x's having a (suf-
ticiently) vivid name t of an object y is a sufficient condition for x's hav-
ing an opinion as to who (or what) y is. However, if a term t represents

an object y to x in the sense that not only is t a vivid name of y for x but

51 Kaplan in Linsky (1971), p. 136.
52 jpig., p. 136.
53 Kaplan in Linsky (1971), pp. 136~7.
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also that t 'actually’ denotes an object y, this is still not sufficient for x's
having a Zrue opinion as to who some individual y (denoted by t) is, as
will be argued below.

Whether or not we agree with Kaplan's story of what it is for an ex-
pression t to represent an individual y to a believer x, at least his account
of representation gives some substance or flesh to the notion of an agent’s
having an opinion as to who y is.% 1.e., we can make some sort of intui-
tive sense of Hintikka's 'aquaintance’' locution whose schematic form is
(3v)B(t = v) which occurs as a conjunct in relational construtions (or as a
premise in a relational inferential context).

Before discussing Hintikka's solution to the problem of the failure of
substitution of co-referentials in belief contexts, there is a possible objec-
tion to his way of handling the problem of quantifying in. As was noted,
Hintikka's solution to the problem of quantifying in relies on the distinction
between relational and notional constructions such that sentences of the
former type are partially expressible in terms of sentences of the latter
type. However, there has been much controversy in the literature con-
cerning the tenability of the thesis that relational belief is reducible to
notional belief in Hintikka's (and Kaplan's) sense. Tyler Burge, for example,
has called the reducibility thesis into question.5®

Burge maintains that Kaplan's thesis that relational belief constructions
are partially expressible in terms of notional belief constructions amounts

to the position that relational belief is a 'mere species' of notional belief.5¢

54 Ernest Sosa in Sosa (1970) argues that an unpalatable consequence of Kaplan's notion of Vividness'
is that one could not have relational beliefs concerning individuals that play only a minor role in the
believer's so-called inner story. Thus, Sosa replaces the notion of Vivid name’ with the notion of
‘'distinguished term’ in his characterization of relational belief which supposedly avoids this

consequence. His remarks on this matter can be found on pp. 889-891.
S5 See Burge (1977). '
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According to Burge, this characterization of relational beliefs ignores theh_'
fundamentality and hence it is wrongheaded. Burge has argued at length
that relational beliefs are more fundamental than notional ones in the sense
that having beliefs of the former type “is a necessary condition for using
and understanding language ~ and in fact for any any propositional under-
standing - and for acquiring empirical knowledge".5? Burge defines re/-
ational beliefs as involving some sort of non-conceptual relation between
the believer and the appropriate individuals or objects, whereas notional
beliefs involve a relation between the believer and a dictum - such as a
proposition.®® (In fact, Burge uses the terms de re/de dicto to make this
distinction since he first of all alludes to it in terms of the scope of the
existential quantifier.) Thus, Burge seems to be claiming that we could not
even have notional beliefs (defined as above) without having at least some
relational beliefs. In this sense, relational beliefs are more fundamental
than notional beliefs and hence the former is not reducible to the latler.

As support for his fundamentality thesis, Burge cites the case of a
computer which has perfect mastery of the syntax of some mathematical
language. In such a case, it would presumably be unwarranted to claim
that the computer has any understanding of this language since this would
require an ability on the computer's part to interpret its symbols. But the
ability to interpret the symbols of a language would, claims Burge, require
the ability to make non-linguistic or non-conceptual correlations between
the symbols and what they denote.5% Further, Burge claims that the

ability to make non-conceptual correlations between symbol and referent

S6 Burge (1977), p. 350.
S7 Burge (1977), p. 349.
S8 Burge (1977), pp. 345-6.
S9 Burge (1977), p. 347.
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presumably presupposes that the believer has relational beliefs. Therefore,
we could not even attribute to the computer notional beliefs - since the
ability to understand dicta such as propositions presumably requires the
ability to have relational beliefs. And so Burge concludes that in general, a
necessary condition for attributing beliefs (including notional ones) to an
agent is that we can also attribute to the agent (irreducibly) relational
beliefs. 60

Burge then sees Kaplan's reducibility thesis as posing a potential threat
to his fundamentality thesis and so he attempts to refute Kaplan's position.
This of cx.mrse bears directly on Hintikka's treatment of belief since he too
subscribes to the reducibility thesis. To counter Kaplan's position, Burge
argues that there can be cases where an agent has a relational belief (in
Burge's sense of the term) and yet, we would not say in such a case that
the agent has a vivid name that denotes the individual who is the object of
his belief. One example which Burge cites is that we may see someone
walking in the distance and not see him clearly enbugh to individuate
him. Thus, he does not play a central role in our ‘inner story', meaning
that we do not possess a vivid name of this individual and yet, we may
believe of this individual that he has a red cap - which is a relational
belief. Therefore, there is something irreducibly non-conceptual about rel-
ational belief (in the sense that we can have such beliefs without possess-
ing vivid names) and hence, they are not mere species of notional beliefs.
The reducibility thesis is therefore wrong.

Ernest Sosa has suggested adopting 2 more modest version of Kaplan's
reducibility thesis, viz., that to have a relational belief, it is not necessary
that the agent have a vivid name of the relevant individual(s) in his pos-

60 Byrge (1977), p. 348.
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session, but merely a ‘distinguished term'.%1 As Sosa notes, a distinguished
term can vary from context to context - sometimes it may be associated
with a complex of intricate descriptions and sometimes it may simply be
a name in the absence of descriptions.%2 Then this would allow for cases
where an indivdiual does not play a central role in the agent's inner story
and yet, the agent may still have a relational belief concerning this indivi-
dual. Thus, in Burge's case of the man with the red cap, Sosa would say
that the believer has a distinguished term for this individual, viz., ‘the
man in the distance with the red cap' although this may be the only des-
cription of this individual the believer possesses. In response to thfs, Burge
would retort that even though an agent will often or even always have
a distinguised term (in Sosa's sense) in his/her possession, the fact that
distinguised terms are contextually dependent indicates that there is some-
thing 'irredicibly' non-linguistic or conceptual about relational belief.%3

It is not initially clear that Burge's indictment of Kaplan's vivid name
criterion for having relational beliefs is thereby an indictment of Hintikka's
notion of 'having an opinion as to who (or what) t is'. This is because
having a vivid name for an object y is (as we have suggested) merely a
sufficient and not a neccessry condition for having an opinion as to who or
what some individual is. There is no reason why a believer x couldn't have
an opinion as to who or what some individual t is even though x doesn't
have an elaborate set of descriptions or a vivid name by means of which to
pick out or identify t.% Therefore, it would not be inconsistent with Hin-

tikka's characterization of relational belief (in some sense of the term)

61 Sosa (1970), p. 890.

62 ipid, pp. 890-1.

63 Burge (1977), p. 352.

64 For example, see Hintikka (1962), p. 149.
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that one could have a relational belief without thereby having any set of
descriptions associated with it.

However, extending Burge's indictment of Kaplan's vivid name critier-
jon to Sosa's 'distinguisded term’' criterion for attributing to an agent rel-
ational beliefs does thereby call into question Hintikka's 'acquaintance’
condition for attributing relational beliefs to agents. This is because min-
imally, having an opinion as to who t is requires that the agent possesses a
singular term (name or description) of the mdividual, viz., t. (l.e., the
locution (3v)B(v = Tully) says that there is some individual v such that x
beleves that v is Tully.) But distinguished terms in certain types of con-
texts can turn out to be merely singular terms - names or definite des-
criptions.

Nonetheless, although Hintikka like Kaplan subscribes to the reducibility
thesis and is thereby open to Burge's objection just discussed, there is a
certain sense in which for Hintikka, relational beliefs are irreducible. l.e.,
the acquaintance locution whose schematic form is '(3v)B(t = v)' which is
conjoined with a notional locution in a relational/ construction of the form
'‘Ba (t/v) & (3v)B(t = v)' is itself a de re construction which is inferable
from a relational construction. l.e., one of the components of a relational
construction is itself relational. As Hintikka himself has noted, the de re
locution '(3v)B(t = v)' is not inferable from the notional locution B(t = t')
unless this in turn is conjoined with the de re locution (Iv)B(t = v). Also,
this stricture prevents the sort of case where from Jones' belief that Tully
is (identical with) Tully we infer that Jones has an opinion as to who Tul-
ly is. l.e., it prevents all inferences of the form B(t = t) —— (3v)B(t = v)

since the conclusion (3v)B(t = v) must also be a premise of the argu-
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ment.% In short, we must beg the question for any such inference to go
through. 6

Now that we have considered in some detail Hintikka's views on
quantifying in, which relies on making a distinction between relational
and notional belief (although Hintikka himself does not employ this term-
inology) such that thé former is 'reducible' to the latter, we shall next
consider his suggestions for dealing with the problem of the failure of the
substitutivity principle for first-order belief logic. As we shall see, Hintik-
ka's solution to this problem also relies on distinguishing between notional

and relational constructions - although the relational constructions are of

a special type.

6. Hintikka's Treatment of the Apparent Failure of
Substitutivity of Co-referentials for Belief Contexts

Vis a vis the sorts of examples we considered in section 1, the following
schemata which allow unrestricted substitution of co~-referentials in doxas-~

tic contexts were called into question qua principles of belief attribution:

1) (a(ty/v) & tg = t3) > & (t/v) where t; and t; occurring in a (t1/v)
and o (tp/v) respectively, may occur
in the scope of a doxastic operator(s).
i) (Bat (t4/v) & t5 = t3) > ~B~at (tp/v) for SQC™ + D systems only.
Corresponding to these schemata are the following rules of inference:
ii) & (t4/v), tg = ty — a(tp/v) where ty and t; occurring in o (t1/v)
and a (tp/v) respectively may occur in

65 Hintikka (1962), p. 145-6.

66 ibid, p. 145. As Hintikka further notes, this Lype of stricture is similar to the stricture imposed in
free logics which would prevent the inference t = t ——— (3v)(v = t) since in free logic, an
additional required premise is the conclusion (3v)(v = t).
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the scope of a doxastic operator(s).
iv) Ba (t1/v), t1 = tg —— ~B~at (tp/V) for SQC™ + D systems only.

Notice that i) and iii) are more general versions of (Bax (t1/v) &ty = t3) >
Ba (t5/v) and Ba (t4/v), t4 = t3 —— Ba (t2/v) respectively. Thus, we
have stipulated in the case of i) and its corresponding inferential version
iii) that ty and t; may occur in the scope of doxastic operators (which in-
cludes both 'B' and 'Pn'). The following would both be instances of i):

1)1 (BFa & a = b) > BFb |

11)3 ((Gc & (BFa v PgHa)) & a = b) > (Gc & (BFb v PgHb))

Supposing the undesirability of i) ~ iv), then we would not want any
of their instances as theses/inference rules for a first-order logic of belief.
To this end, all instances of the schema i) can be blocked (as theses) for
any system of quantified belief logic by restricting the SQC* axiom-schema
(o (t4/v) & tg = t3) 5> a (tp/v) to cases where ty, t; do not occur within the
scope of a doxastic operator in & (t4/v), a (t/v). Or, we could simply stip-
ulate that o (t1/v), a (t2/v) are wifs of standard first-order logic. Fur-
ther, in restricting this axiom-schema in this way, we thereby render all
instances of ii) - iv) underivable for our quantified doxastic logic since they
depend on the appropriate instances of i) for their derivation. (In the case
of the derivation of any instance of ii), see section 1.)

Also, by restricting the axiom-~schema (& (t1/v) & t1 = t3) > a(tp/v) to
cases where t4, tz do not occur within the scope of a doxastic operator in
a (t1/v), a (t2/v) we also block the derivation of any instance of the SQC=
thesis~schema tq = t3 > B(t1 = t2) which as was noted in section 1 of chap-
ter two is derivable by appealing to the unrestricted version of this axiom-

schema. It was also noted that the schema t{ = t; > B(t{ = t3) asserts the
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somewhat implausible principle that agents are omnidoxastic with respect
to contingent identities. Thus, by restricting (& (t1/v) & t1 = t3) > a (t2/v)
in the way suggested above, we shall thereby rid our logic of the undesir-
able feature thaf agents are omnidoxastic with respect to identities.

Since we shall want to eliminate 1) - iv) as thesis-schemata/inference
rules of our quantified logic of belief, we shall consider alternative schem-
ata/rules to replace them, such that these schemata/rules do not allow un-
restricted substitution of co-referentials in belief (or more generally, dox-
astic) contexts. Hintikka has two suggestions along these lines.

As a first stab, Hintikka's way of handling the counterexamples to the
schemata and rules of inference i) - iv) is to simply require that the rel-
evant identity must occur within the scope of a belief operator.%? I.e., in
the case of the schemata i) and ii), we add to the antecedent 'B(t; = t3)
which says that x bel/eves that the identitiy t1 = t; obtains and in the case
of the rules of inference we make an analogous move. So, the emendated

versions of 1) - iv) will be:

)* (a (t4/v) & tg = t3 & B(ty = t3)) > a (t3/v) where ty and t occurring
in a (t4/v) and a (t3/v) respectively, may
occur in the scope of a dokastic operator(s).

#)x (B (t3/v) & tg = t3 & B(t; = t3)) > ~B~a (to/v) for SQC* + D systems.

Hi)* a (t4/v), tg = t, B(ty = t3) — & (t3/v) where t4 and t; occurring in
a (t4/v) and a (ty/v) respectively may
occur in the scope of a doxastic operator(s).

iv)* B (t1/v), tg = t3, B(ty = t3) — ~B~a(tp/v) for SQC= + D systems

In the case of 1)* and iif)*, the conjunct 'ty = t;' in the antecedent of 1)*

and the premise 'ty = t3' in 1ii)* are both superfluous if & (t4/v) and

CJ 67 See Hintikka (1967), p. 55 and Hintikka (1969) reprinted in Linsky (1971), p. 155.
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o (t/v) are BB(ty/v), BB(t2/v) or are PgB(ty/v), PgB(ta/v). Also, tg = t3
could be deleted from ii)* and iv)* without any loss of plausibility. This is
owing to the fact that in purely doxastic constructions all that matters is
that the agent belleves that tq = ty for substitution to go through. This
will become evident when we consider Hintikka's semantic proposals.

Note that the locution B(ty = t3) in the above constructions is notional -
it is not assumed that the agent has any opinions as to who the individual
denoted by t; and t; is. The agent x merely believes that the identity ty =
t; obtains. And this would seem to guarantee that substitution will go
through, as we shall now demonstrate.

Consider the counterexample outlined in section 1 to i) and iii), viz.,
the case where Jones believes that Cicero was an orator and yet, given
the strengthened disquotation principle, Jones may with;ald assent to the
claim that Tully was an orator in which case, Jones does not believe that
Tully was an orator (even though exactly one person is denoted by 'Cicero’
and 'Tully'). However, if it is stipulated beforehand that Jones believes
that the identity 'Tully = Cicero' obtains, then presumably this situation
would not arise. Similar remarks apply to the counterexample to ii) and
iv). Further, since it is no longer assumed that agents are omnidoxastic
with respect to contingent identities if we block all instances of t; = t3 >
B(t{ = t2), then from the mere fact that an identity actually obtains, it
does not follow that the agent believes that it does. Thus in the Tully/Cicero
example, the reason that Jones does not believe that Tully is an orator even
though he believes that Cicero is an orator is that he is not logically omni-
doxastic with respect to contingent identities.

A second suggestion which Hintikka proposes for dealing with the fail-
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ure of substitutivity of co-referentials for belief contexts is the following:
Suppose that the agent x has an opinion as to who some individual denoted
by t1 is and that x also has an opinion as to who the individual denoted by
t> is. Suppose further that the agent’'s opinions as to who ty and tj are, are
true - i.e., his opinions hold sway in the actual world. Then according to
Hintikka, we could render this situation symbolically as '(3v)(v = t; & B(v
= 1)) & (3V)(v = t3 & B(v = t3))' which intuitively says that x has frue
opinions as to who the individuals denoted by ty and t; are. Further, sup-
pose that the identity t; = t; actually obtains, or more neutrally, that this
identity obtains at the index which the agent 'inhabits'. Then since x's
opinions (as to who t{ and t; are) are true and given that t; and t; are ‘'in
fact' identical, it would seem to follow that x will recognize or believe that
ty and ty are identical. l.e., Hintikka is here suggesting that from (3v)(v =
ty & B(v = t4)), (Qv)(v = t{ & B(v = t;)) and t4 = t; we are warranted in
inferring that B(t; = t3).¢8 Notice that both (Iv)(v = t; & B(v = t;)) and
(Av)(v = t1 & B(v = t1)) are special sorts of 'acquaintance’ locutions - such
that the opinions that x has about t; and t; are in fact true.

Vis a vis Hintikka's remarks here, one of the emendations we shall
propose to the SQC™ systems will be to add as an axiom-schema,

V) (GV)(v=t1 &B(v=1t)) &« GV)(v= t) & B(v=1t3) &ty =t3) >

B(ty = tp)
Given V) as an axiom-schema, we could obtain its inferential version, viz.,

vi) (QV)(v =t & B(v = t1)), Gv)(v =ty & B(v = tp)), t; = ty ——

(B(t = t2)
Once again, v) and vi) both express the attributive principle that if x has

true opinions as to who two individuals are, and these two individuals are

68 See Hintikka (1967), pp. 55-56. Hintikka makes this suggetion for epistemic contexts.
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‘in fact' identical then x will believe (notionally) that this identity obtains.

It is also worth noting that if an agent x has a true opinion as to who
some individual denoted by ty is and if the identity t; = t; obtains then
presumably x will thereby have a true opinion as to who the individual
denoted by tj is (viz., the same person who is denoted by t4). Thus, Hin-
tikka would supposedly endorse the schema ((Iv)(v = tq & B(v = t3)) &
t1 = t3) o Av)(v = t3 & B(v = t).

We shall presently show how Hintikka's principle can be used to ex-
plain why the substitutivity of identicals sometimes fails for belief con-
texts. First, however, we shall consider a possible objection to the principle
expressed by v) and vi). It could be objected that in a case such as Kripke's
Paderewski example discussed in section 1, Jones has true opinions as to
who Paderewski is, viz., both a politician and a pianist. Yet Jones does not
recognize that Paderewski the pianist and Paderewski the politician are one
and the same person ~ under different descriptions. Then this is a counter-
example to Hintikka's principle that if an agent x has true opinions as to t4
and t; are and if t{ and t; are one and the same person then x will rec-
ognize that this identity obtains.

We shall now consider a possible response which Hintikka could make
to this objection. It could be countered that in the Paderewski example,
although Jones has opinions as to who Paderewski is - under certain des-
criptions - and although these descriptions are true, it is hasty to conclude
that Jones knows (or even has a {rue opinion as to) who Paderewski is.
I.e., it could be claimed that although having true descriptions of someone
may often play a role in Anowing who that person is - or having frue

opinions as to who x is - the possession of said descriptions is by no means
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sufficient (or even necessary) for knowing who someone is. Perhaps
having a true opinion as to who someone is, is in part, or in some cases
such as the ones Burge has outlined even wholly a matter of some sort of
non-conceptual ‘acquaintance’ with the individual as Hintikka himself has
suggested. Thus, in the Tully/Cicero case, Jones may have opinions as to
who the individual named 'Tully’ is and he may have opinions as to who
the individual named 'Cicero’ is, by virtue of the possession of a set of
(true) descriptions. Yet, Jones may fail to make the connection that Tully
and Cicero are one and the same person. Then in such a case one would be
inclined to say that Jones does not know (nor does he have a frue opinion
as to) who Tully, i.e., Cicero is.

To continue with our exposition of Hintikka's second way of handling
the failure of the substitutivity of co-referentials for belief contexts, he
uses the principle (right or wrong) expressed by v) and vi) to explain why
this failure sometimes occurs and to show that in certain types of rela-
tional contexts, substitution will go through.

Suppose that x believes that a (t;/v) at w;. Suppose further that x has
true opinions as to who t{ and t; are and that the identity 'ty = t' obtains
at the particular index. Then it follows by vi) above that x Jelieves that
t1 = t3 obtains. But by a more specific version of iii)*, viz., Ba (t1/v), t; =
tz, B(ty = t3) — Ba (tp/v), it follows that x also believes that & (tp/v) at
wij. However, if x fails to have a true opinion as to who the individual
denoted by ty and t; is then this sort of situation is not sufficient for
inferrring that x believes that a (ty/v).

To see how'this way of handling co-referentials for belief contexts

works, consider once more our example where Jones believes that Cicero
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was an orator and yet he does not believe that Tully was an orator. Hin-
tikka's first explanation of why this sort of situation is possible is that
Jones may not believe that Tully is identical to Cicero. Otherwise, he would
(if he is in some sense of the term 'rational') also believe that Tully was
an orator. Notice that in this example, since no assumptions are made to
the effect that Jones is 'acquainted’ with the individual Cicero (i.e., Tully)
then it follows that Jones' belief that Cicero is an orator is best treated as
being notional. However, what Hintikka's second proposal for handling co-
referentials in belief contexts amounts to is that if Jones' belief that Cicero
is an orator is relational in a special sense, viz., that he has a {rue opin-
ion as to who Cicero is in which case given that Tully = Cicero, Jones has a
true opinion as to who Tully is then it follows that Jones believes that
Tully is identical with Cicero.%® And given that Jones believes that Cicero
was an orator, it follows (by iii)*) that Jones also believes that Tully was
an orator. If Jones fails to have true opinions as to who the indivdual
denoted by both 'Tully’ and 'Cicero’ is then we are not warranted in infer-
ring from his belief that Cicero was an orator that Tully was an orator.

Thus, Hintikka's explanations of the Tully/Cicero example are 1) Jones
does not believe (notionally) that the same indivdual is denoted by these
terms or 2) Jones does not have frue opinions as to who Tully, i.e., Cicero
is. Further, Hintikka's two explanations are linked as follows: If Jones
does have a true opinion as to who Tully, i.e., Cicero is then he will there-
by believe (notionally) that Tully is identical to Cicero from which it fol-
lows that if he believes that Tully was an orator he believes that Cicero
was an orator. On the other hand, Jones' believing notionally that Tully '
is identical to Cicero will not be sufficient for claiming that he has true

69 See once again Hintikka (1967), pp. 55-6.
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opinions as to who Tully, i.e. Cicero is. He may believe that the identity
*Tully = Cicero' obtains without his having the slightest idea as to who this
individual is.

Finally, in terms of adopting Hintikka's second way of dealing with co-
refentials in belief contexts (in addition to his first way), if we have al-
ready revised the SQC* systems in such a way that i)* and v) discussed
above are added as axiom-schemata, then any instance of the following
schema can be easily derived for these emendated systems (as we shall
demonstrate in the next chapter):

vil) (@ (ty/v) & @v)(v = t; & B(v =t1)) & Qv)(v = t3 & B(v = t2)) &
ty = t3) > a(ty/v) - where tq and t; occurring in & (t1/v), a (t3/v)
respectively may occur within the scope of
a doxastic operator(s).

Given vii), the following will be a derived rule of inference:
vill) a (t4/v), @Gv)(v=t{ &B(v=ty)), @Gv){iv=t & B(v=1ty)), t1 = t;

— a (ta/v) - where t; and t; occurring in a (t4/v), a(t3/v)
respectively may occur within the scope of a doxastic operator(s).

Although both vii) and viii) are rather horrendous-looking, they merely
express the principle that co-referentials are intersubstitutible in belief

contexts provided that the agent has true opinions as to who the referents

of these terms are.

Concluding Remarks:

Now that Hintikka's proposals for dealing with 1) the problem of quan-
tifying in and 2) the problem of the failure of substitutivity of co-refer-
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entials for belief contexts have been discussed, we shall in the next chaper
systematize his proposals on the axiomatic front vis a vis emendations to
the SQC™ systems discussed in chapter two. Also, we shall discuss Hintik-
ka's proposals on the semantic front for dealing with the two prohleins
Just mentioned and a characteristic semantics for the emendated SQC™ sys-
tems based on his proposals will be dewveloped.

Finally, since quantifying in is only problematic for systems where the
quantifiers are construed objectually, we shall propose a collection of logics
where the quantifiers are interpreted substitutionally and such that quan-
tification into belief contexts is unrestricted and yet substitution of co-ref-
erentials in belief contexts is prohibited. These logics will also be emendat-
ed versions of the SQC™ systems discussed in chapter two, and their sem-
antics will be emendated versions of the TV semantics also discussed in
that chapter. It will then be argued that we should adopt the substi-
tutional SQC* systems rather than the emendated systems based on Hin-
tikka'$ proposals since the former has a less problematic semantics than

the latter and because the former does not posit two types of belief.
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Chapter Four

Some Proposals for a Quantified Logic of Belief
1. The Hin-SQC= Systems of Doxastic Quantificational Calculi

To bring together Hintikka's various suggestions for a logic of belief
which were discussed in the previous chapter into some kind of coherent
whole, we shall now propose a set of alternative axiom systems to the SQC™
axiom systems for belief logic. These alternative axiom systems are based
on Hintikka's proposals for dealing with the apparent failure 6f the subs-
titutivity principle for belief contexts as well as his proposed stricture with
respect to quantifying into such contexts. We shall call the following set of
axiom schemata and rules of inference the system Hin-KQC* such that any
Hin-SQC™ system ot containing 4, Ba > BBX can be obtained by 'exten-
ding' the doxastic sentential fragment of Hin-KQC™ in the way described in
the first chapter. (For example, by adding the schema D, viz., B& > Ppa to
Hin-KQC™= we would obtain the system Hin-KDQC=, and so on.):

AS1: o (where & has the form of any PC thesis-schema)

AS 2: (Ba & B(a > f)) > Bf

AS 3 a(t/v) » (va (provided that t does not occur within

the scope of a doxastic operator)

AS4: (a(t/v) & @AvV)(v=t&B(v=t)) > (@v)a (wheret may occur

within the scope of a doxastic operator(s) and where

there is no iteration of any doxastic operator.)
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ASS5: t=t
AS 6: (a(tg/v) & t4 = t3) > a(ty/v) (provided that ty, t3 do not occur
in the scope of a doxastic operator)
AST: (a(ty/v) &ty = t3 & B(ty = t3)) > a(tz/v) (provided that ty, t;
may occur in the scope of a doxastic operator
or possibly several and where there is no
iteration of any such operators.)
AS8: (1=t & @V(v=t; &Bv=1t)) & @AV)(v=t &B(v=1t))o
B(ty = tp)
The primitive rules of inference will be:
MP: o, a5 —— P
RY: |-a (t/v) 5 p —— |~(3v)a > B (for any constant t foreign to (Iv)a > B
and provided that t does not occur in
the scope of a doxastic operator.)

RB: |-o¢ —— |-Ba

AS 3 and R3 prohibit unrestricted quantification into belief contexts as well
as quantification into contexts of doxastic possibility. Thus for example,
neither of the following are instances of AS 3, viz., BFa > (3x)BFx and PgFa
> (3x)PgFx (the latter being equivalent to ~B~Fa > (3x)~B~Fx). AS 4 in
effect restricts quantifying in (for both doxastic necessity and possibility) to
relational contexts.

The following is a version of AS 4 for doxastic possibility, (Pga (t/v) &
(@v)(v =t & B(v = t)) > (3v)Ppa. It could be objected that in the Hintikka
systems, we are committed ontologically to possibilia (and in this case there

is supposedly no reduction schema to mitigate the situation - although we
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shall leave this question open), provided that the agent is 'truly acquainted'
with the appropriate individual. For example, an ordinary language
instance of this schema might be "If it is true for all Jones believes that
Pegasus is a winged horse and he has a true opinion as to who Pegasus is,
then there is something such that it is possible for all Jones believes that it
is a winged horse”. However, it can be countered that we are not here
committed ontologically to (doxastically) possible winged horses since it
must be the case that (from\a semantic point of view) 'Pegasus’ denotes
something existing at Jones' world (because his opinion is 'true') as well as
at all the doxastic alternatives to his world for it to be the case that there
Is something such that it is paﬁs:blc for all he believes that it is a winged
horse. This will be discussed in further detail in the next section once the
semantics for our Hin-SQC™ systems has been developed.

To continue, AS 6 prohibits unrestricted substitution of co-referentials
in contexts of doxastic necessity (and possibility) and AS 7 restricts substi-
tution of co-referentials in doxastic contexts to cases where the agent bel-
ieves (notionally) that the relevant identity obtains. AS 8 states that hav-
ing true opinions as to who t{ and t; are, viz., one and the same person is
a sufficient condition for x's believing that t1 = t3. AS 8 in conjunction
with AS 7 can be used to derive TS 1 (described below) which restricts
substitution of co~referentials to special sorts of relational contexts. Also,
for Hin-SQC= systems containing D, AS 8 in conjunction with D, Ba > Pga
ensures the derivability of the following variant of AS 8 for doxastic pos-
sibility:

(t1 = t2 & Q) (v =t3 & B(v = ty)) & @Qv)(v = t3 & B(v = t3)) > Pg(ty = t)

This schema says that having true opinions as to who t{ and t; are, viz.,
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one and the same person is a sufficient condition for it being consistent
with all x believes that t; = t3.

Note that instead of the schema (Ba (t/v) & (IV)B(v = t)) > (I)Ba
where & (t/v) contains no doxastic operators within whose scope t lies, we
introduced the more general schema (@ (t/v) & GV)(v=t & B(v=1t)) >
(3v)a as an axiom-schema (AS 4) for the Hintikka systems (where a (t/v)
contains no iterated belief (and for that matter no iterated doxastic pos-
sibility) operators within whose scope the constant t lies). The reason for
making this axiom-schema more general, in the sense that a (t/v) may
involve doxastic wffs but may not itself be a doxastic wff, is in order to
ensure completeness of the Hin~-SQC™ systems with respect to the semantics
we shall consider in the next section. Two instances of AS 4 would be (BFa
& (Ix)(x=a&B(x=2a))> (3x)BFx‘as well as ((BGa v BFa) & (Ix)(x = a &
B(x = a)) 5 (3x)(BGx v BFx). Similar remarks apply to the axiom-schema
AS 7, (a(ty/v) & tg = t3 & B(tg = t3)) > o (t2/v) since it is a more general
version of (Ba (t1/v) & ty = t3 & B(ty = t3)) > Ba (t5/v).

If we were to include in the axiom-set the schema 4 then the resulting
Hin-KQC® + 4 system (or more generally any Hin-SQC™ + 4 system) would
differ from the Hin-SQC™ systems in the following respect: The proviso
for AS 4, AS 7 and R3; viz., that there is no iteration of the relevant doxas-
tic operator(s), would be lifted for reasons to be discussed in the next sec-
tion when we come to consider the semantics for these axiom sets.

What is noteworthy about the above set of axiom-schemata both con-
taining and not containing 4 is that it does not contain the Barcan Formula

(Yv)Ba > B(Yv)a. The reasons for not including the Barcan Formula in
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the axiomatic base is that this base would not be sound relative to the
semantics which Hintikka proposes. This will be discussed in section 3.

Also, a somewhat counterintuitive result of restricting the rule of in-
ference R3, viz., a (t/v) > p —— (3v)a > P such that t is foreign to (IvV)a
> B and provided that t is not in the scope of a doxastic operator is that the
proof of the implicational schema (Iv)Ba > B(3v)a asserting that belief de
re entails belief de dicto is effectively blocked. As was discussed in section 1
of chapter two, the unrestricted rule R3 where it is nof required that t is
not in the scope of a belief operator is integral to the derivation of any ins-
tance of (Iv)Bat > B(3v)a. The underivability of this schema in any of the
Hin-SQC™ systems turns out to be a necessary evil to guarantee soundness
of the axiom system relative to the semantics discussed in the next section.
Further, the reduction schema for doxastic possibility, viz., (EIv)PBa =
Pg(3v)a is not a thesis-schema for the the Hin-SQC™ systems since AS 3
mentioned above is restricted and given that the Barcan Formula is not a
thesis-schema. However, this reduction schema is not needed for the pur-
pose of eliminating all instances of quantifying into doxastic possibility con-
structions since the schema Pga (t/v) > (3v)Ppat is not a version of AS 3,
viz., a (t/v) > (3v)a and if we are right, since wifs such as (Pga (t/v) &
(3v)(v = t & B(v = t)) > (3v)Pga are innocuous from an ontological point
of view.

The following is a theorem-schema for the Hin-SQC™ systems:
TS1: (@(tg/v) &ty =t & AV)(v=t; &B(v=1t;) & @AV)(v=t; & B(v = t3))

> a(ty/v) (where ty, t; may occur in the scope of doxasti oper-
ator(s) and such that there is no iteration of said

belief operator(s) - for systems not containing 4.)
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As was noted in the previous chapter, TS 1 restricts substitution of co-
referentials to special sorts of relational contexts, viz., contexts where the
agent has true opinions as to who tq and t; are, i.e., one and the same
person. Further, the following are rules of inference which are derivable
for any of the Hin-SQC™ systems:

DR 1: a (t/v), @V)(v =t & B(v=1t) — (Iv)aa (with the same provisos

as for AS 4.)
DR 2: a (t4/v), t1 = t3, B(ty = t3) — a(t3/v) (with the same provisos

as for AS 7.)
DR3: (@(ty/v) &ty =t & A)(v=ti &B(v=t) &« @AV)(v=t) &B(v=
t3)) — a(ty/v) (with the same provisos as for TS 1.)

First of all, any instance of TS 1 is derivable in any Hin-SQC™ system using
AS 7 and AS 8 as follows (where the provisos mentioned above are under-
stood and where it is also understood that there is no iteration of the belief
operator(s) within whose scope any of the relevant constants occur for
systems not containing 4):

1. 1=t & @v)(vs= ti &B(v=ty)) & @v)(vs= t2 & B(v =t3)) >

B(ty = tp) AS 8
2. (4 =t & @V)(v =ty & BV = t1)) & (AV)(V = t3 & B(V = t3)) >
(B(ty = t3) &ty = t3) 1, P.c.2
3. B(tg = t3) & tg = t3) 5 (o0 (t1/v) 5> & (ty/v)) AS 7
4. (1=t & @A) (v=t; &B(v=1t1)) & @V)(v =t & B(v =1ty) > (a(t;/v)
> a (tp/v)) 1,2 P.C.
5. ((ty/v) &ty =t & AV)(V =t & B(v =t1) & @V)(v = t3 & B(v = tp))
> a (t/v) 3, P.C.
Q.E.D.

—

le, Hor &P &Y) >8] = [(a0 &B &7) > (6 & )]
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Finally, given TS 1, DR 3 is derivable using modus ponens for the Hin-
SQC= systems. Also, given the appropriate versions of AS 4 and AS 7 along
with modus ponens, both DR 1 and DR 2 respectively are derivable for any
Hin-SQC™ system. '

By way of some final remarks, the Hin-SQC™ systems inherit the pro-
blem of deduction as discussed in chapter one. This is owing to the fact
that these systems like their SQC*® counterparts are normal modal systems
in the sense that they contain the schema K and have RB as a rule of in-
ference. Thus, the logical omnidoxasticity inference rule |-a > p — Ba
> Bf and the adjunction schema (Ba & Bf) > B(a & B) are derivable in
the Hin-SQC™ systems and the consistency schemata ~B(a & ~&) and ~(Ba
& B~a) are derivable in any Hin-SQC= + D system. Purther, since as we
have seen, there is no iteration of the belief operator for various thesis-
schemata allowing quantification into notional locutions occurring in rel-
ational contexts (or allowing substitution of co-referentials for special sorts
of relational contexts) for Hin-SQC™ systems not containing 4, there is some
presumption in favour of adopting as a systermn of doxastic logic any Hin-
SQC* + 4 system, although we shall not push this point.

In the next section, we shall examine Hintikka's proposals on the sem-
antic front for dealing with the failure of the substitutivity principle and
for dealing with the problem of quantifying in. Based on his proposals, we
shall attempt to develop a semantics with respect to which the Hin-SQC™
systems are sound as well as complete. 1.e., we shall argue that this sem-
antics (which is a 'varying domain semantics) is characteristic for the

Hin-SQC™ systems just discussed.



184

2. Hintikka's Suggestions for a Semantics of Belief

As we shall see, a distinctive feature of Hintikka's semantics for belief
logic is that each index in the set W of indices in a model has associated
with it its own set of individuals (such that these indexed domains are
non-overlapping), in distinction to the domain semantics for the SQC™ sys-
tems where each member of W in a model shares the same set of individ-
uals. This distinctive feature of Hinitkka's semantics is tied up with his
solution to the problem that co-referentials are not unrestrictedly inter-
substitutible in belief contexts. How this is so, we shall describe below.

Recall that in order to deny thesis-hood to any wff of the form
(a (t4/v) & t1 = t3) > a (tp/v) where ty, t) may occur in the scope of a dox-
astic operator, it was necessary to restrict the axiom-schema (x (ty /v) &
ty = t3) > a (ta/v) to cases where t; and t; do not occur in the scope of any
doxastic operators for the Hin-SQC™ axiom systems. To deny thesis-hood to
the doxastic version of (& (t4/v) & tq = t3) > a(ty/v) is tantamount to
denying that co-referentials are intersubstitutible for notional belief cons-
tructions. But what does this proposal amount to on the semantic front
and more specifically within the framework of an indexical or possibie
worlds semantics for belief? To answer this, it will first be helpful by
way of review to outline Just what an indexical or possible worlds seman-
tics amounts to for a quantified doxastic logic.

In an indexical or possible worlds semantics for belief logic, to say that
an agent x believes that & (t/v) at an index wj in a model (or more formal-
ly, for Viq(Ba (t/v),w;) to take the value '1') it must be the case that the

content & (t/v) is true at all the doxastic alternatives to wy. As Hintikka
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notes, the set of doxastic alternatives to a given index will be the set of in-
dices at which all the content wifs of agents' beliefs will be true.2 Fur-
ther, we cashed out the notion of 'doxastic alternative' in terms of a so-
called doxastic accessibility relation R which may or may not have various
restrictions imposed on it depending on the axiom systermn we are consider-
ing. Thus, if our doxastic system is K then R is unrestricted, if it is D
then R is serial and so on. For belief models, R must never be reflexive
since agents can have false beliefs although for epistemic models, R must
always be reflexive since, presumably, what one knows is the case at the
‘actual’ world.3 In effect, what R does is to determine for any given index
wi at what indices all the content wffs of belief wifs true at w;j are true.
This idea is central to the syntactic definition of R for the canonical model
of any normal system, i.e., wijRwy iff (VYa)(Ba € wy —— o E wj).

Hintikka in 'Semantics for Propositional Attitudes' (1969) cashes out the
notion of ‘doxastic alternative' in terms of a two-place function ¢ g which
to each ‘world' (in Hintikka's parlance) wij and to each individual assigns a
set of worlds where any member wj of this set will be such that all the
contents of the beliefs which the individual holds at wy will be true at wy.
Thus, syntactically we could define ¢ g(t,w;) for any t € D; (where D; is
the set of individuals associated with wy) and for any w; € W as a function
determining the set S where for any wj in W, wy is a member of S just in
case (Yo )('t believes that &' € w; — & € wj). Then 'ty believes that
a (to/v)' is true at a world wj just in case a (t5/v) is true at all w such
that wy € (the set S determined by) ¢ p(t),wj).

Although Hintikka does not mention this issue, it is not clear how (sim-

2 Hintikka (1969) reprinted In Linsky (1971), pp. 150-151.
3 By ‘actual’ world here we mean the world or index at which the belief wff is being evaluated.
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ilar to the doxastic accessibility relation R) ¢ p could be appropriately res-
tricted to fit a given nmormal/ axiom system. Thus, for a system containing
K and 4 (i.e., Ba > BBa) R must be transitive. But how could such a res-
triction be imposed on ¢ g? The function ¢ g is relativized not only to worids
but also to individuals and since (as we shall presently see) individuals are
'world-bound' in this type of semantics in the sense that the domains as-~
sociated with each World are non-overlapping, we cannot characterize the
transitivity requirement for ¢ g as follows: ¢ g for K4 systems must be
such that for any individual t in D and any worlds wj, Wi and wy if wj €
¢p(t,wi), wx €90 n(t,wj) then wyi € $g(t,w;). This characterization is ill
conceived because it assumes that t is a transworld individual. But the pos-
sibility of transworld individuals is strictly speaking disallowed given that
world-associated domains are non-overlapping. The reason for this feature
of Hintikka's semantics is (as we shall presently see) tied up with his
attempt to deal with the failure of the substitutivity principle.

Granted, we could introduce as Lewis does the notion of ‘counterpart’,
but at the very least this would make the characterization of transitivity,
etc. for ¢ g somewhat messy because as Lewis notes, it is possible for an
individual at a world to have more than one counterpart at another
world.4 (This is because if we cash out the notion of counterpart in terms
of the notion of similarity then it is possible for two or more individuals at
wj to be equally similar to t at wi.) We shall have more to say concerning
Lewis' notion of counterpart below. Hintikka sidesteps this difficulty by
proposing the introduction into his semantics a ‘family’ of functions F such
that each member of this set takes as a value exactly one individual for

each world. Then although there are sérictly speaking no transworld indi-

4 See Lewis (1983), p. 29.
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viduals, Joosely speaking the individuals which are the values of any {; in
F at various worlds amount to one transworld individual.® This presum-

ably prevents the problem of an individual's 'splitting’ across worlds. 6

But as we shall argue below, we still do not obtain transworld individuals
in this way, even loosely speaking.

In the light of the above-mentioned difficulties with Hintikka's function
¢ p it is perhaps best to stay with our doxastic accessibility relation R in
developing the characteristic semantics for the Hin-SQC™ systems. If there
is any moral to be drawn from the above remarks concerning the function
¢ g which in effect relativizes doxastic alternatives to worlds and to indi-
viduals, it is that such a device will generate a semantics for belief but not
a semantics characterizing any corresponding normal axiom system. In
any case, the special twist to Hintikka's semantics is his relativization of
domains of individuals to indices or worlds such that these domains are
non-overlapping. We shall now discuss this feature of Hintikka's semantics
with respect to the problem of the apparent failure of the substitutivity
principle for belief contexts.

And so, if we want a characteristic semantics for the Hin-SQC™ sys-
tems, what is needed is an alteration to the semantics characterizing the
SQC™ systems which invalidates the doxastic version of the schema
(o (t4/v) & t1 = t3) > & (ta/v), where t;, t3 may occur in the scope of the
belief operator. The semantical 'sleight of hand' which Hintikka employs
towards this end in ‘Semantics for Propositional Attitudes' is to construct
belief models in such a way that associated with each index or world is its

own domain of individuals such that there is no overlapping. In terms of

S Hintikka (1969), p. 160.
6 ibid, p. 159.
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the machinery required for this sort of move, Hintikka simply replaces the
set D of individuals for belief models with a set {D;} of sets of individuals?
where each of the subscripts of the Di's corresponds to the appropriate
subscripts of the wy's. For example, Dy would be the domain of individuals
associated with wy. Further, it would be required that for any two Dj's in
{Dy}, if 1 = j then Dy N Dy = @. Equivalently, we could introduce into the
definition of a Hin-SQC® model a function Q 8 which to each world assigns
a subset of the set D of 'individuals' where it is specified that for any two
of these relativized domains, i.e., for any two of the Q(wj)'s, their inter-
section is the empty set. l.e., for any Q(wj) and for any Q(wj) where
1=j, Q(wy) n a(wy) = 2.

If domains of individuals are relativized to indices with no overlapping
then naturally the assignment function V would also be relativized to in-
dices for terms and for predicate variables. And this is just what Hintikka
proposes in ‘Semantics for Propositional Attitudes'.? In short, for any con-
stant t and for any index wj, V(t,wj) € D; where Dj is the domain of indi-
viduals associated with w; and for any predicate variable P, V(P,wi) c
D4 where Dif! is the set of all n-tuples of individuals in D;. In short, V
assigns to a constant at an index some member of that index's domain and
to each predicate variable and index, V assigns to this pair a subset of the
set of all n-tuples of members of that index's domain of individuals. If we
relativize the assignment function V to indices for constants then it is pos-
sible for distinct constants t4 and t; to be assigned the same individual at

one index wj for a model M in which case the identity ty = t; holds for wy

7 See Hinitikka (1969) reprinted in Linsky (1971), p. 151, Hintikka uses the locution I(M) to repre-
sent the phrase ‘the domain of individuals | associated with the world AL.

8 See the discussion of the ‘world-associating’ function Q in Hughes and Cresswell (1968), p. 171.

9 See Hintikka (1969) reprinted in Linsky (1971), pp. 151-152.
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while V assigns to these constants Jdifferent individuals at another index
wj where i » § in which case, the identity t; = t; is false for w;.10

This feature of Hintikka's sernantics puts it at odds with the domain
semantics for the SQC™ systems since in the latter type of semantics, if an
identity t4 = t; is true at any index in the model it is true at all indices in
the model. This is owing to the fact that the assignment function V for the
SQC* models is not relativized to indices given that each index in a model
draws on the same domain of individuals. Thus, the schema t; = t3 >
B(ty = t3) which intuitively says that agents are omnidoxastic with respect
to contingent identities is valid in the SQC™ semantics but it is inzvalidated
with respect to the Hin-SQC™ semantics since although t{ = t; may be true
at some wj in W it could be false at some doxastically accessible index w;
if V assigns distinct individuals to t1 and tz at w;.

In the light of Hintikka's suggested semantics for belief logic, consider a
simple Hin-SQC™ model Mil consisting of two indices, wy and wj such that
Dy = {d} and Dy = {e,f} and such that V(a,wj) = V(b,wy) = d but V(a,w)
= ¢ whereas V(b,w3) = f. Further, suppose that V(F,wj) = {e}. And
finally, suppose that w; is doxastically accessible from wy, i.e., suppose
that {<wy,w5>} ¢ R. This model will serve to invalidate the following in-
stance of the SQC™ thesis-schema (A(t)/v) & ty = t3) 5 A(ty/v) where t, t;
may occur in the scope of the belief operator, (BFa & a = b) > BFb. More
concretely, we could think of a, b as ‘Tully’' and 'Cicero’ repectively and
let F be 'Roman orator'. The schema in question asserts the principle that
co-referentials are without restriction intersubstitutible in belief cons-

tructions and the instance we are considering says that if x believes that

10 Hintikka (1969) reprinted in Linsky (1971), p. 155,

11 To be technically precise, we have not yet established that this is a Hin-S0C™ model, although we
shall have something to say concerning soundness and completeness below.
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Tully is a Roman orator and given that Tully is Cicero then x also believes
that Cicero is an orator.

Informally, we can see how the (partial) model described above could
serve to invalidate (BFa & a = b) > BFb: Even though a and b are assigned
by V the same individual d for wy they are assigned distinct individuals,
viz., e and { respectively for w; (which is doxastically accessible from wl)
and hence a = b is false for wj. Further, since e assigned to the constant a
is in the extension of F for w9 and { assigned to b for wy is not in the
extension of F for w it follows that Fa is true for this index but that Fb is
false. Then although Fa is true for all doxastic alternatives to wy in this
model, Fb is false for some doxastic alternative to wq in the model. Hence,
although it is true at wy that BFa and that a = b, it is also false that BFb
at this index. Q.E.D.

The upshot of these remarks is that in the sort of semantics which Hin-
tikka has proposed for belief logic, there can be models where x believes
that a (t1/v) at some wj and the identity ty = t; holds at w; and yet x may
fail to believe that a (t3/v) at this index since there is some alternative wj
to wj such that the identity ty = t; does not hold at this alternative. In
short, co-referentials are not intersubstitutible in notional constructions for
this sort of semantics which jibes with Hintikka's syntactic proposal that
for us to infer a wif of the form a (t/v) from & (t1/v) (such that ty, t;
occur in the scope of a belief operator) and t1 = t2 we must add as a prem-
ise B(t; = t3).12 From a semantic point of view, this guarantees that the
identity ty = t3 holds for all the doxastic alternatives to the index at which
o (t1/v) and & (t3/v) are being evaluated.13 This is because if B(ty = t;) is

121n fact, for the inference of Bat (Lo/v) from Bat(L1/v) to go through it Is sufficient that Bty =ty)
is an additional premise rendering t{ = Lo superfiuous.
13 Thus, in Hinitikka (1967), p. 55 Hintikka states with respect Lo epistemic logic that “Substitutivity
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true at the index at which a (t4/v) and a (t3/v) are being evaluated then
the identity tq = t3 holds for all the doxastic alternatives to this index in
which case it is impossible for the contents of the belief wffs containing tg,
ty to differ in their truth-values at any of these alternatives. Otherwise,
there is no guarantee that t{ and t; won't refer to distinct individuals in
some alternative to the index at which a (t1/v) and & (t5/v) are being
evaluated. 14

As was noted in the previous section, any wif of the form (a (i1/v) &
ty =ty & B(ty = t2)) > a(ta/v) 'where t4, t2 may occur within the scope of a
doxastic operator is a Hin-SQC"™ thesis provided that the contents of any
doxastic wiffs in which ty, t3 occur are not themselves doxastic wifs. This
restriction holds for systems nof containing the schema Ba > BBx . This
provision was introduced so as to ensure soundness of the Hin-SQC™ sys-
tems not containing Bx > BB& with respect to the type of semantics we are
now considering. To illustrate why the introduction of this provision was
necessary, consider the following instance of the schema (& (t1/v) & t; = t3
& B(ty = t3)) > a (t3/v) where t{, t; may occur in the scope of a doxastic
operator viz., (BBFa & a = b & B(a = b)) > BBFb which involves an iter-
ation of the belief operator. (A paraliel example for doxastic possibility
would be (PgPgFa & a = b & B(a = b)) > PgPpPb.)

Now, the following simple model based on Hintikka's proposal for a
semantics of belief will invalidate the formula (BBFa & a = b & B(a = b)) >
BBFb: Suppose that this model consists of exactly three indices, wq, w3
and w3. Let the domain of individuals associated with wy, viz., Dy = {d},

everywhere presupposes that two terms refer to the same individual in each epistemically possible
world we have to consider. If we are Lalking of what a knows or does not know, this is guaranteed
only by the sentence (26) Xa(b = ¢}."

14 Hintikka (1969) reprinted in Linsky (1971), p. 155.
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and let Dy = {e} and D3 = {f,g}. Further, suppose that wy is doxastically
accessible from wj and that wy is doxastically accessible from w; but that
wi3 is not accessible from wy. l.e.,{<wy,wy>, <w3,w3>} ¢ R. R's intrans-
itivity with respect to this model is permissible if this is a model for a Hin-
SQC™ system without 4. Also, let V(a,wy) = V(b,wy) = d, V(a,wy) =
V(b,w3) = e but V(a,ws) = f and V(b,w3) = g. Finally, let the extension of
F for w3 be f. More formally, V(F,wz) = {f}. Then Fa will be true at wj
and a = b and Fb will both be false at w3. Purther, a = b and BPa are both
true at wy whereas BFb is false at wy. Then it follows that BBFa and B(a
= b) and a = b are all true at wy but BBFb is false at wy. This (partial)
model therefore invalidates the formula (BBFa & a = b & B(a = b)) > BBFb
which is an instance of the schema (& (t1/v) & t4 = t3 & B(ty = t3)) >
a (t2/v) such that ty, t; may occur in the scope of a doxastic operator.
However, the model described above would not be admissible as a model
for any Hin-SQC™ + 4 system since any model in the class of models char-
acterizing these systems would have to be fransit/ve. And so, to guarantee
soundness of any Hin-SQC™ system not containing 4 with respect to some
class of models where it is not required that R be transitive, it is necessary
to restrict the schema (& (t1/v) & tq = t & B(ty = t3)) > a (tp/v) where ty,
t2 may occur in the scope of a belief operator to instances where no itera-
tion of this belief operator is involved. So this explains the rationale behind
our proviso. Similar remarks apply to the restrictions we imposed on the
doxastic axiom-schema (o (t/v) & (W)(v =t & B(v = t)) 5 (Jv)a and the
theorem-schema (a (t)/v) &ty =t & W)(v=t; &Bv=t) & AV)(v=t)
& B(v = t3)) > a (t3/v) and their corresponding rules of inference for the
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Hin—-S{)C= systems not containing 4. These restrictions on AS 4 and AS 7 can
be dropped for the Hin-SQC™ + 4 systems given the transitivity requirement
on R in the semantics, since this gurantees that if B(t1 = tz) is true at
some index wj then so is BB(t; = t3).

Now that we have discussed Hintikka's solution to the apparent failure
of the substitutivity principle on the semantic front, we still need to con-
sider how his semantics deals with relational constructions with respect to
the substitution of co-referentials and with respect to the issue of existen-
tial generalization into such constructions.

Hintikka's relativization of sets of individuals to indices (and hence his
relativization of V to indices for terms and predicate variables) besides pre-
venting unrestricted substitution of co-referentials in belief constructions
also disallows existential quantification into zof/onal/ constructions not oc-
curring in relational contexts. That is, the sort of semantics Hintikka is
proposing would invalidate the schema & (t/v) > (3v)a and the inference
rule & (t/v) —— (3v)a where in Both cases, t occurs in the scope of a
doxastic operator. To illustrate that this is the case, consider a more spe-
cific version of the above schema, viz., Ba (t/v) > (3v)Ba. If Ba (t/v) is
true at an index w; then a (t/v) must be true at all wj such that wijRw.
But given that indices have associated with them their own domain of
individuals and hence that V is relativized to indices, it follows that 't
occurring in the content & (t/v) will denote a distinct individual in every
wj such that wijRwj where a (t/v) holds. Then it is false to say that t»ere
Is some Individual v such that x believes of v that a&. In sum, from
Ba (t/v) we cannot infer (3v)Ba because in the type of semantics we are

considering, the existence of transindexical individuals is disallowed. And
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all of this jibes with Hintikka's syntactic stricture against quantifying into
notional constructions.

However, as we noted, Hintikka does allow gquantification into relation-
al contexts (as defined in the third chapter, section 5) and also substitution
of co-referentials with respect to special sorts of relational contexts (where
the individual has #rue opinions as to who ty and t; are). And in terms of
relational contexts where quantifying in is permissible, Hintikka portrays
any such context (similar to Kaplan) in terms of a notional construction
conjoined with any ‘acquaintance' construction of the form (Iv)B(v = t)
which intutively says that x has an opinion as to who t is. In terms of the
- special sorts of relational contexts where substituion of co-referentials is
permissible, the relevant sorts of contexts must be such that x has true
opinions as to who t{ and t; are, which are represented respectively as
(Av)(v = t1 & B(v = t4)) and as (Iv)(v = t3 & B(v = t3)). These locutions
are also relevant for quantifying into constructions which are not purely
doxastic.

But given that in the sort of semantics which Hintikka is proposing there
are no transindexical individuals, it is not clear how it is possible for any
locutions of the form (3v)B(v = t) or of the form (Iv)(v =t & B(v = t)) to
be true at any index in any belief model not containing dead ends.1% I.e.,
how can there be some indivdual v such that 'v = t' is true at every dox-
astic alternative to the index in question if all individuals are index (or

world) bound? And this is tantamount to asking how it is possible for bel-

1S The reader may recall that so-called dead ends as Hughes and Cresswell call them are such that no
indices are accessible from them and hence trivially, any wiY of the form Bat will be true at any
such index given the truth conditions for wiffs of this form. Then at a dead end, any wiT of the form
()Bax will also be true since '3' will be vacuous or if not, then its scope will be trus for at least
one world-bound indivdual which is denoted by v in Box.
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fevers to have opinions as to who individuals are in this type of semantics.
More generally, it is not clear how any relational locution of the form
(3v)Ba could be true at any index (which is not a dead end) in a model in
this type of semantics, which amounts to asking how Hintikka can make
semantic sense of quantifying into belief constructions (and by extension
into constructions of doxastic possibility). It would therefore seem that
more semantic machinery has to be added to Hintikka's semantics to allow
for relational contexts where agents have opinions as to who certain rele-
vant individuals are and more generally to allow for quantifying into belief
constructions even though this semantics does not allow for transindexical
individuals.16

In order to allow in his semantics for relational contexts where agents
have opinions as to who certain relevant individuals are and in order to
make sense of quantifying into belief constructions, Hintikka introduces into
the definition of a belief model a 'family' of functions F = {t1, 2, ..., In,
...} such that each member of F is assigned for every index in the model
exactly one member of the domain of individuals associated with that in-
dex.1? In other words, each fy in F is a function from indices into index-
bound individuals. More formally, for any wj in W, fi(wy) € Dj where fj
may be undefined for some of the indices in W, in which case fx would be
partial.1® According to Hintikka, the set of world-bound individuals deter-
mined by some fx in F (where we could define this set by 'abstraction' as

{tx (wy): fx(wy) € D;}) is what we normally mean by the 'same’ individual

16 This point Is made by Hintikka in Hintikka (1969), p. 159.

17 Hintikka makes this proposal in Hintikka (1969), pp. 159-162.

18 Hintikka imposes the requirement for membership in F that If £1(wi) = fo(w}) then f(w §) = falwy)
for any doxastic alternative wj to w;. '
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existing at different indices or worlds. Thus, he is claiming that “...the
apparently different individuals which are correlated by one of the func-
tions 7€F is just what we ordinarily mean by one and the same individ-
ual* 19

And we can see how the fx's in F are intended to sidestep the problem
that any locution of the form (3v)Ba (or more generally (Iv)a where free
v occurs in the scope of a belief operator) will be false for any index which
is not a dead end. It can be stipulated that any wff of the form (3v)a
(where free v occurs in the scope of a belief operator) is true at an index
wj in a model just in case o (t/v) is true at wj for at least one individual d
in Dj such that for some fx in F, fx(w;) = d and such that fy is defined for
all doxastic alternatives to wj. The proviso that d in Dj is the value of
fx (W) where this fy is defined for all alternatives to w; ensures that
there will be a set of index-bound individuals which includes d where
intuitively this set can be regarded as the 'same’ individual (loosely speak-
ing, of course) existing at wi and at all of its alternatives. Then loosely
speaking, if any wif of the form (3v)Ba (which is a more specific version
of (3v)a where free v is in the scope of a belief operator) is true at wj, we
can say that there /s some Individual v such that x believes that A of v
where the description (Ae individual v is cryptic for a set of individuals
defined by '{fic(wj): fy(wy) € Di}'.

More concretely, suppose that there is some individual v such that
Jones believes of this individual that he was a Roman orator. l.e., his
de re belief can be represented as '(3v)(Jones believes that v was an or-
ator)’ such that this is inferable from a relational context. Then the
individual that Jones has in mind, i.e., the 'individual' with whom Jones
is acquainted, will not be a transworld individual existing at all the dox-

19 Hintikka (1969), p. 160.
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astic alternatives to the world he inhabits. Rather, the 'individual' with
whom Jones is acquainted is really a collection of index-bound individuals
who are 'correlated’ via some sort of ‘correlating' function fy.

And so, we can make sense in Hintikka's semantics of existential quan-
tification outside the belief operator after all. This paves the way for the
allowance of there being relational contexts where the believer has an
opinion as to who some relevant individual is. 1.e., what having an opinion
as to who some individual {8 amounts to is the believer's considering this
'same’' individual to speak loosely - since we are really speaking here of
a collection of correlated index-bound individuals - at all the alternatives to
the world he (the believer) inhabits. More formally, any locution of the
form (3v)B(v = t) is true at an index w; just in case B(t' = t) is true for at
least one individual d in Dy such that d is the value of an fy in F and such
that fx is defined for all doxastic alternatives to wj. And to say that
B(t' = t) is true at w; for at least one individual d in Dj such that d is the
value of an fx in F and such that fy is defined for all doxastic alternatives
to wj is to say that t' = t is true at any alternative wj to wj where t’' = ¢
Is true at any such wy for exactly one member of the set {fx(wy): fi(wj)
€ Di}), viz., for the indivdual in Dy which is the value of fk(wj).

We shall now consider how this rather complicated semantic machinery
parallels Hintikka's proposal on the syntactic front of restricting quanti-
fying in to relational contexts. I.e., we can infer (3v)Ba from Ba (t/v)
only if we add as a premise (3V)B(v = t). (Or if & (t/v) is a construction
which is not purely doxastic such that t may also occur outside the scope of

a belief operator, then we shall need to add '(Iv)(v = t & B(v = t))' as will
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be explained presently.) From a semantic point of view, what the premise
(3v)B(v = t) guarantees is that the individual denoted by t in Ba (t/v) is
the 'same’ individual at all the doxastic alternatives to the world at which
Ba (t/v) is being evaluated. l.e., if (3v)B(v = t) is true then there is some
individual (in the domain Dj associated with the index at which it is true)
denoted by t and which is such that its correlates are denoted by t at all
alternatives to the index in question. Given this guarantee, then it is true
that there is some individual v such that x believes that o of v. Thus, if
Jones believes that Tully was bald and further, if Jones has an opinion as
to who Tully is ~ which semantically means that the term 'Tully' denotes
the 'same’ individual at all the alternatives which Jones considers - then
there Is some individual v such that Jones believes of v that he was bald.
Suppose that we wish to quantify into a construction such as BFa & Ga
which could be a symbolization of for exarnple, “Jones believes that Tully
was bald, and Tully in fact was an orator". Then in order to quantify into
this construction which is not purely doxastic, it would not be sufficient to
add as a premise '(Ix)B(x = a)' (which for our example reads "Jones has
an opinion as to who Tully is*). From a semantic point of view, this is
owing to the fact that we need to guarantee that the individual denoted by
the constant ‘a’ at the index at which BFa & Ga is being evaluated, wj, is
the same individual (strictly speaking) who is denoted by some t* af w;
such that V(t*,wy) = fx(wj) for some fy in F and such that t* = a is true
at all doxastic alternatives to wy. All that (3x)B(x = a) guarantees is that
‘a’ denotes the 'same’ individual (loosely speaking) at all the alternatives
to wj. Thus, if instead of (3x)B(x = a), suppose we add as a premise to BFa

& Ga the construction (Ix)(x = a & B(x = a)) which for our example reads
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"Jones has a /rue opinion as to who Tully is". Then if both premises are
true, there will be an M' like M such that t" = a is true at wy and B(t" =
a) is true at wy such that V(t",wy) = V(a,wy) = fx(wy). Then 'a’ will den-
ote the 'same’' individual at wj which is denoted by ‘'a' at all the alterna-
tives to wy and hence, we can quantify with respect to 'a’ occurring in ‘Ga’
as well as with respect to 'a’' occurring in BFa - they denote the 'same’
individual (loosely speaking). Thus, in our example, we can conciude that
there Is some individual x such that Jones believes that x is bald and such
that x was an orator. l.e., from BFa & Ga in conjunction with (Ix)(x = a &
B(x = a)) we can infer that (Ix)(BFx & Gx).

As was stipulated in section 1 in AS 4, (a (t/v) & (IV)(v =t & B(v = t))
5> (3v)a and its inferential counterpart, DR 1, we shall in general require
that to infer (3v)a from & (t/v) where t's occurrence has nof been res-
tricted to non-doxastic wifs, then we must add (Qv)(v =t & B(v = t)) as
a premise. This will certainly handle cases such as the one discussed in
the previous paragraph. Further, requiring (3v)(v = t & B(v = t)) rather
than just (3v)(B(v = t)) as an additional premise avoids a commitment to
possibilia, if by a 'possibilium' we mean a purely fictional entity - fictional
relative to some index that is20 - for versions of AS 4 such as Pgx (t/v) &
(@v)(v = t & B(v = t)) > (3v)Pga, which was alluded to briefly in section
1. Thus, suppose that at some index wj it is true that it is possible for all
Jones believes that Pegasus is a winged horse. Then for there ‘o be some-
thing such that it is possible for all Jones believes that it is a winged horse,
the term 'Pegasus' must denote not only the 'same' individual at all alter-

natives to Jones' world wj but also this ‘same' individual denoted by 'Pega-

20 we could say that in Hintikka's semantics, x exists at w; =df. x € Dy, from which it follows that if
% is not in D; then x is Alcliona/ relative to w;.
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sus' must exist at Jones' world. (l.e., Jones must have a true opinion as to
who Pegasus is.) But if Pegasus is 'fictional' (relative to wj) then we can-
not infer that there is some entity v such that it is possible for all Jones
believes that it is a winged horse. (There will be a commitment to corre-
lates at other indices if the entity is non-fictional and so in this sense,
there is still a commitment to possibilia in Hintikka's semantics.2)

Finally, given AS 4 and DR 1 such that to infer (3v)a from « (t/v)
where t's occurrence has not been restricted to non-doxastic wffs, we
must add (3v)(v = t & B(v = t)) as a premise, then we can never infer
that agents have de re beliefs concerning fictional entities. Thus, if Jones
inhabits a world where there are no winged horses, then even though he
may believe notionally that Pegasus is a winged horse and even though he
may have an opinion as to who Pegasus is (or symbolically, (Ix)B(x =
Pegasus) is true at Jones' world) he cannot have a frue opinion as to
Pegasus is. I.e., the the locution '(3x)(x = Pegasus & B(x = Pegasus)' will
not be true at the index which Jones inhabits given that Pegasus is not con-
tained in the domain of individuals associated with that index. Thus, we
cannot infer from Jones' notional belief that Pegasus is a winged horse in
conjunction with his opinion as to who Pegasus is that Zkere /s an x such
that Jones believes that x is a winged horse.

Nonetheless, even in the light of these remarks, it would seem that in
the final analyis Hintikka's semantics for belief does inwvolve an ontological
commitment to possidilia in the sense of ‘fictional entities' as we shall now
argue. Since each index wj in a model has associated with it its own do-

main of individuals Dy, then to say that x exisés a2 w; amounts to requir-

21 Marcus seems to identify possibilia with purely fictional entities. See Marcus (1976). Then what

we have arqued is that AS 4 does not commit us ontologically o possibilia - in Marcus’ sense of the
term.
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ing that x € D;. This is presumably why quantifiers whose scopes do not
involve doxastic expressions range only over members of D;. Then an entity
X is fictional relative to an mdéx w; just in case 1) x is not a member of
Dj although 2) x is 2 member of at least one Dy associated with some wy
such that i = k. (Thus, so-called impossible objects or 'impossibilia’ such as
square triangles would not qualify as fictional entities relative to any index
since they do not satisfy condition 2).) However, since no domains overlap
in Hintikka's semantics, it follows that relative to any index wj, any object
not in Dj but in any other Dj will be fictional. Therefore, any object 'exis-
ting' at wj will be fictional relative to any other index. Thus, there seems
to be a proliferation of (relative) fictional entities or possibilia in Hintikka's
semantics just as there is a proliferation of zecessary existents for the
SQCT domain semantics developed in chapter two.

However, the set F discussed above seems to mitigate the situation just
alluded to, viz., that there is a proliferation of fictional entities in Hintik-
ka's semantics for belief logic. l.e., an individual at w; may have ‘cor-
relates' at other indices in which case, we are considering the 'same’ in-
dividual at different indices rather than a whole set of fictional entities
relative to wi. We shall now consider whether or not the set F does what
it is supposed to, viz., providing a way of making sense of talking ahout
the ‘same’ transindexical individual for a varying domain semantics.

Although Hintikka's somewhat ad hoc maneuvre of introducing the set
F of functions (where each member of F is assigned for each index in the
model exactly one individual) seems to provide us with a way of making
sense of relational contexts in a semantics which relativizes domains of in-

dividuals to indices, there are some problems which need to be dealt with
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in relation to this maneuvre. First of all, Hintikka would have to admit
(as he in fact does2?) that sirictly speaking, the set of individuals defined
by a set such as {fxx(wy): fix(wj) € Dy} does not constitute a transworld in-
dividual. And philosophers such as Kripke and Plantinga would be quick to
find fault with this. They would point out that what we ordinarily mean
when we talk about a counterfactual such as 'If Humphrey had won the
1968 election, he would have done such and such’ is that in some possible
world this very same person Humphrey (and not some ‘correlate') won
the election and in such a world he did such and such.?® (In the case of
Kripke, his criticism is tied up with his view that possible worlds are stip-
ulated as situations in which some individual existing at the actual world
has different non-essential attributes.) Their comments concerning coun-
terfactuals could also be extended to the case of propositional attitudes such
as belief since they could claim that when x be/feves that Humphrey did
such and such, what x is doing is to consider all the doxastic alternatives to
the 'actual’ world where this very same person Humphrey (and not some
set of 'correlated’ individuals determined by an fx in F) did such and such.
Nonetheless, it could be noted that if there is no problem in analysing
counterfactual locutions (and the same could be said of propositional attit-
ude locutions) in terms of such abstract entities as 'possible worlds' then
what is wrong with also introducing the notion of 'correlate’ (or in Lewis'
jargon, 'counterpart') into the analysis. However, one response to this is
that the notion of 'correlate’ (or ‘counterpart') perhaps unnecessarily com-
plicates the analysis of counterfactual and propositional attitude locutions.

On the other hand, as we have seen, the notion of 'transworld individual’

22 Hintikka (1969), p. 160.
23 See Kripke (1980), p. 45 and also see Plantinga (1979) in Loux (1979), pp. 162-3.



203

is itself problematic, at least for indexical semantics of formal systems.24
In any case, even if Hintikka is able to answer the objections of Kripke

and Plantinga concering his set F of 'correlating' functions, he is faced with
the further difficulty that even /oosely speaking a set such as {fyx(w;):
fix(wji) € Dy} does not amount to a transworld individual since it is possible
that any two 'correlates' who are the values of an fy at different indices
share no properties in common. More to the point, it is possible that at
the index wy where a belief wff Ba (t/v) is being evaluated, the individual
denoted by t who is the value of fk(wi) may have no properties in common
with one of its correlates at some wj such that wjRw; and where this cor-
relate is the value of fk(wj). In short, Hintikka has placed no strictures
on the members of F which would prevent this sort of situation from aris-
ing. But then in what sense would such a set of individuals determined by
a 'correlating' function fx where possibly some of the members of this set
share no properties in common constitute even loosely speaking the 'same’
individual existing at different indices? Clearly, what is needed is the
introduction of appropriate strictures for members of the set F of 'correlat-
ing' functions that would prevent this sort of situation from arising or at
least further strictures on the truth-conditons for wffs of the form (3v)Ba
with respect to the function fy.

| At least as a rough beginning, we could require that for any
locution of the form (Iv)Ba to be true at an index, not only must it be the
case that Ba (t/v) is true at wy for at least one individual d in Dy such that
for some fy in F, fx(wjy) = d and such that fy is defined for all doxastic
alternatives to wij, it must a/so be the case that all the individuals who

are the values of fy at the doxastic alternatives to w; must be counter-

24 gee chapter two, section 4.
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parts of d at wj in the sense that they are more similar to d than any
other member of their respective indices. David Lewis has been the recent
champion of counterpart theory.2 Lewis cashes out the notion of 'counter-
parthood’ in terms of the notion of 'comparative similarity’ (which as
Quine has pointed out is itself a somewhat problematic notion?®) as

follows:

y at wj is a counterpart of x at wy =df. y at Wy resembles x at wj
more closely (with respect to certain relevant properties) than any
other individual z at wj.

As Lewis notes, it is possible that an individual x at wj will have more
than one counterpart at wj since there could be two or more individuals
at wj who equally resemble x at wj and such that no other individuals
resemble x more closely than they do.?? Also, as Lewis admits, the notion
of comparative similarity in terms of which the counterpart relation is
defined is itself problematic in the sense that determining comparative sim-
ilarity is a matter of contextual considerations meaning that it has to be
determined what sorts of properties are important or relevant.28
Unfortunately, Lewis' counterpart relation is faced with the same sorts
of difficulties that Hintikka's notion of 'correlate’ was, viz., it could be ob-
Jected that when we speak counterfactually or in the context of proposi-
tional attitudes we are consdering what the very same individual is doing
in alternatives to the ‘actual’' world and not what his counterparts are

doing. Further, as was noted, an individual x at wy can have more than

25 For example, see Lewis (1968) reprinted in Lewis (1983).

26 Quine (1969), pp. 118 - 9. Quine In this article seems to be sceptical that any general definition of
comparative similarity apart from various branches of the theoretical sciences can be formulated
(eg., in terms of Xinds').

27 Lewis (1983), p. 29.

28 ibid, p. 28
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one counterpart at some alterhative wj in which case it seems somewhat
arbitrary that fi takes as its value only one of these individuals at wj to
serve as the 'correlate’ of x at wj. But the most serious problem with
appealing to Lewis' notion of counterpart as a way of preventing the sort
of case where an individual's correlates at other indices have nothing in
common with it (and perhaps with each other) is that there is nothing to
prevent the sort of situation where frivially every indvidual at wj is a
counterpart of x at wj since no individual at w j shares any properties in
common with x at wy. In such a case, since nothing at w § shares any-
thing in common with x at wj (except perhaps self-identity) then all in-
dividuals at wy equally resembie x and hence every individual at wj is
trivially a counterpart of x at w;j.

Perhaps in the final analysis, Hintikka does not need Lewis’' notion of
counterpart since he could argue that the notion of correlate is no more
problematic than the notion of 'transworld' individual given that in a bare
particular metaphsyics, an individual conceived as a 'bare particular' may
share no properties in common with itself existing at other indices.2?

Given our informal remarks concerning Hintikka's semantics for belief
logic, we shall now attempt to make his proposals more precise by des-
cribing what a Hin-SQC® model would look like. In the next section, we
shall attempt to show that the Hin-SQC™ systems not containing 4 are sound
and complete with respect to the type of semantics we are about to des-
cribe.

Any Hin-SQC= model M is a 5-tuple <W,R,{D;},F,V> where W is a non-
empty countable set of indices, R is a 2-place relation ranging over mem-

bers of W (i.e., R ¢ W X W) where various restrictions may be imposed on

29 See our remarks concerning the problems associated with the notion of transworld individual in the
semantics for the SQC™ systems whers all indices share the same domain of individuals.
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R such as transitivity if M is a model for a Hin~SQC™ + 4 system. Further,
{Dy} is a set of sets of individuals such that the subscript of each of the Dj's
‘corresponds’ with the subsrcipt of the appropriate member of W and such
that for any Dj and Dj such thati = j, DN Dj = @. Intuitively, Dy is the
domain of individuals associated with the index wj in W. The set F = {fy,
£2, ..., Iy - .} is a possibly non-empty set of so-called correlating partial
functions such that for any fy in F and for every wj in W, fk(wi) has as
its value at most one member of Dj or is undefined. We shall have more to
say concerning the component F below when we discuss the truth-condi-
tions of wifs of the form (Iv)a and (Yv)a where free v occurs in the
scope of a belief operator. Finally, V is an assignment function defined for
terms and for predicate variables as follows:

1) For any constant t and for any wj in W, V(t,w;) € D;

2) For any predicate variable P and for any wj in W, V(P,w;) ¢ D;R
In order to be able to evaluate wifs of the form (Iv)a and (Yv)a where
free v occurs in the scope of a belief operator and in order to guarantee
soundness of the Hin-SQC™ systems with respect to the type of semantics
under consideration, it will be necessary to impose the following restriction
on V for constants:

For any consant t and for any wj in W, if V(t,wy) = fx(wjy) for some

fk in F then for any wj such that wiRw;, V(t,wj) = fe(wy).
The import of this stricture will become clear when we consider the truth
conditions for quantified belief wffs of the form (Iv)Ba and (Yv)Ba or for
wifs where the scope of the quantifier involves a doxastic operator(s)

within whose scope free v lies.
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For simplicity of exposition we shall stipulate that V for constants is
always defined which guarantees that if V(t,w;) = fx(w;) for some f in F
then by the above restriction on V, fk(wj) will be defined for any wj such
that wiRw §r Stipulating that V is always defined for constants also avoids
having a logic with truth-value gaps on the semantic front and on the syn-
tactic front, we can get by with a (t/v) > (v)a (where a (t/v) is not a
belief wif) as an axiom schema rather than its 'free logic' variant, (a (t/v)
& 3v)(v=t)) > (3@v)a). Further, Hintikka suggests that one index or
'world' in W be regarded as 'distinguished’ in the sense that it is singled
out as the so-called actua/ world.30 However, as is well established, lhe
two sorts of indexical semantics (viz., our version where no member of W
is designated and Hintikka's version where one member of W /s desig-
nated) validate the same sets of wffs, 3t

A valuation over a Hin-SQC™ model, V) is a function from wffs into
truth-values, i.e., Vy:Wffs —— {0,1} defined inductively as follows for
all wj, wjin W:
Basis 1. V(Pty...tn,wy) = 1 iff <V(ty,wy),...,V(tn,Wi)> € V(P,w;)

. Vi(ty = t, wy) = 1 iff V(tq, wy) = V(ig, wy)

Supposing that Vyq(a »Wj) and VM(B,wy) are defined for any wj; in W then:
Vm(~a, wy), Vim(a & B,wy), Vim(a v B,wy), Viy(at > B, w;) and Vy(a =
B, wi) are defined as for the sentential systems. Also, Vp(Ba,w;) is de-
fined as for the sentential doxastic systems as follows:

VM(Ba,wy) = 1 iff for all wj such that wiRw;, VM(a,wj) =1,
If A is the scope of a quantiifer such that free v does not occur in the
scope of a belief operator then:

VM(@EV)a, wy) =1 iff V(e (t/v), wy) = 1 for at least one M' based on

30 Hintikka (1969), p. 152.
31 Hughes and Cresswell (1968), p. 351.
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the same model structure as M and differing from
M (if at all) only in terms of what V assigns to
arbitary t foreign to (3v)a from Dj.

VM((YV)a,wy) = 1 iff V(e (t/v),wy) = 1 for every M' based on the

same model structure as M and differing from M

(if at all) only in terms of what V assigns to t

foreign to (Yv)a from Dj.
Notice that the truth of a quantified wff at an index depends on what V
assigns to some arbitrary constant t occurring in the scope & (and which
is foreign to the quantified wff) from the domain of individuals associated
with that index as opposed to the semantics for the SQC™ systems where
the truth of such wffs was tied up with what V assigned to contants from
the shared domain D. In other words, in this type of semantics, the
quantifiers range over individuals in the domain associated with the index
at which the quantified wiff is being evaluated.

Further, as is the case for the domain semantics for the SQC™ systems,
in the current type of semantics we are considering, it is not being assum-
ed that each member of a domain in a given model is assigned to a cons-
tant. The only assumption that is being made is that each constant denotes
exactly one member of any index-associated domain. This allows for the
possibility that there will be (indexed) domains with 'more’ individuals
than denoting constants. So, to ensure that the scope of a universally
quantified wiff is true for a// the individuals in the appropriate indexed
domain, it is stipulated that the scope & must be true over all possible
assignments of individuals to some arbitrary constant t replacing free v in
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Finally, in ordef to evaluate quantified wffs where the scope is dox-
astic (where for example the scope may be 'Fx & BGx'), it is necessary to
consider the set F = {fy, f5,..., fp, ...} of 'correlating’ partial functions
mentioned above where each fx in F is defined as follows: For any wj in
W, fx(wj) € Dj or is undefined. The following is a necessary condition for
membership in the set F, viz. that for any fi, fmy, in F, if fi(wy) = fn(wy)
then for any wj such that wijRw;, fk(Wj) = fm(wy). Intuitively, each fy
in F is a function which for any wj in W takes as its value exactly one
member of the domain of individuals Dj associated with wj or is undefined.
As we have seen, Hintikka's reason for introducing the set F of 'correlating’
functions is to enable us to make sense of quantifying across belief opera-
tors by allowing us to speak loosely of the 'same' individual existing at the
alternatives to a given index. Whether or not F accomplishes this task is
as we have seen open to doubt. In any case, given this definition of the set
F of ‘correlating' functions, we can characterize the truth-conditions of
quantified wffs whose scopes are doxastic as follows:

Suppose free v occurring in the scope & of ()& occurs in the scope
of at least one ‘B’ or ‘Pg’ operator. Then,

VM(@V)a,wy) = 1 iff Vg (a (t/v),wy) = 1 for at least one M' based
on the same structure as M and differing from
M (if at all) in terms of what V assigns to t
foreign to (3v)a from D; and where V(t,w;) for

any such M' must be the value of an fy in F.3%3

32 Since V(v,w;) must be the value of an . in F and since Vlv,wj) for any wiRw; is defined, it follows
from our restriction on V mentioned above that for any such Wi, fklw j) must also be defined.
33 These truth-conditions are more or less in the spirit of the truth conditions for wffs of the form
(Iv)ax (where v is in the scope of a belief operator) appearing in Hintikka (1969), p. 161.
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Further, it is possible that M' will differ from

M in what V (for M') assigns to t at any wj such

that wiRwj.
Suppose free v occurring in the scope & of (| Yv)a occurs in the scope
of at least one ‘B’ or 'Pg’' operator. Then,

VM((V V), wy) = 1 iff V(e (t/v),wy) = 1 for every M' based on the

same model structure as M and differing from

M (if at all) only in terms of what V assigns to

t foreign to (Yv)a from Dy and where V(t,wy)

for each such M' must be the value of an fx in F.

Further, it is possible that M' may differ from

M in terms of what V (for M') assigns to t at any

wj such that wiRw;.
In short, if a universally or existentially quantified wff's scope is such
that free v occurs in the scope of a doxastic operator, then it must be added
to the truth-conditions that the individuals assigned to arbitrary t from Dy
for any M' based on M such that Vyy(a (t/v),wy) is true must be the value
of an fx such that fk is defined for all alternatives to wj. In short, non-
vacuous quantifiers occurring outside a belief operator range over special
kinds of individuals in the appropriate Dj (i.e., in the domain of indviduals
associated with the index wj at which the quantified wff is being evalu-
ated). These individuals are special in the sense that they have associated
with them (via some f in F) ‘correlates' for all indices which are doxastic
alternatives to the index in question. Loosely speaking, the individuals over
which the quantifiers outside a belief operator range are 'transindexical' or

more precisely 'transalternative'. Consequently, the rider that M' may
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differ from M not only in terms of what V assigns to arbitrary t at wj
but in terms of what V assigns to t at any wj such that wiRwJ is that V
must assign to t for M' the 'same’ individual (loosely speaking) at a// the
alternatives to wj that it assigns to t at wj.

Now that we have laid out formally Hintikka's proposed semantics
for quantified belief logic, we shall show in the next section that in fact the

Hin-SQC= systems are sound (and complete) with respect to this semantics.
3. The Hin-SQC™ Systemns - Soundness and Completeness Results

Soundness of any of the Hin-SQC™ systems relative to the appropriate
class of Jeller models, each model in the class being a 5-tuple <W,R,{D;i},F,
V> such that the elements of this 5-tuple are defined as above and where R
is restricted depending on the Hin-SQC™ system under consideration, is
proven in the usual manner. For example, if the system under consider-
ation is Hin-KDQC™ then soundness of this system with respect to the class
of serial belief models is proven by showing that the axiom-schemata are
valid in this class of models and that the rules of inference preserve valid-
ity. And in general, for any Hin-SQC® system, soundness is proven by
showing that the axioms are valid with respect to the appropriate class of
belief models and by showing that the rules of inference preserve validity.

We shall show below that the following crucial axiom-schemata which
are common to all the Hin-SQC™ systems and which distinguish these sys-
tems from the SQC™ systems discussed in the second chapter are valid with
respect to any <W,R,{Dj},F, V> model:

AS 3: a(t/v) 5 (W)a provided that t does not occur in the
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scope of a doxastic operator.
AS 4 (a(t/v) &« GV)(v=t & B(v=t)) > (Iv)a where t may occur
in the scope of doxastic operator(s) and
provided that there is no iteration of
said operator(s) for systems not con-
taining 4.
AS 6: (o (t4/v) &ty = t3) > &t (ta/v) provided that ty, t; do not occur in
the scope of a doxastic operator.
AS T: (o (tg/v) &ty = t2 & B(ty = t3)) > & (tz/v) where t occurs in the
scope of doxastic operator(s) which
in the case of systems not containing 4
are uniterated.
ASS: (t1=t) & (AV)(v=t1 &B(v=1t)) & @V)(v=1t &B(v=1t)))>
B(t1 = tz).
Further, we shall show that the following restricted rule of inference for
all Hin-SQC™ systems preserves validity:
R3: a(t/v) > p —— (3v)a > B for any constant t foreign to (Iv)a > B
and provided that t does not occur in
the scope of a doxastic operator.

Before proving soundness, it was mentioned in section i, the Barcan
Formula (Yv)Ba > B(Yv)a was not included as an axiom~-schema (or more
generally as a thesis schema) for any of the Hin-SQC™ systems in order to
ensure soundness since as we shall now show, this schema is invalid in
any class of 'Hintikka' models - in any model of the sort <W,R, {Di}, F,V>).

To show that the Barcan Formula is invalid in any class of 'Hintikka'

models, we shall construct a countermodel to the following simple instance
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of this schema, viz., (Vx)BFx > B(Yx)Fx. First of all, let W = {wy, w3} and
let {<wy,w5>} ¢ R.¥# Purther, suppose that Dy = {c,d} and that D; = {e,f}
and we shall introduce the set F = {f{} such that f1(wy) = ¢ and fj(wy) =
e. Then although the individuals ¢ and e are both index-bound, we can
think of the set {c,e} determined by f1 as the 'same’ individual existing at
different indices. So far we have described a Hin-SQC™ model structure.
Then let the model M based on this structure be described by V(t,wy) = d
and V(t,wy) = f and such that V(F,wy) = {e}. Let M' be a model hased on
this structure and differing from M only in that V(t,wy) = c and in that
V(t,wz) = e. It should be obvious that any other mode! based on the above
structure and differing from M if at all only in terms of what V assigns to
arbitrary t for wy (and for wj) such that V(t,wiy) = f1(wy) will be M' as
described above.

Now that we have constructed the models M and M' we shall next show
that M is a countermode! to (Yx)BEx > B(Yx)Fx by showing that
VM((Yx)BFx,wy) = 1 but that Vpp(B(Vx)Fx,wq) = 0. First, Vpp(Ft,wp) = 1
from which it follows that V) (BFt,wy) = 1. Since for every M' like M
such that V(t,wy) = f;(wy) - which in this case does not include M -

VM (BFt,wy) = 1, it follows that Viy((¥Yx)BFx, wq) = 1. On the other hand,
although Vi (Ft,wy) = 1, Viy(Ft,w3) = 0 and hence there is at least one
model like M, viz., M itself such that Ft at w is false. Thus, it is the case
that V(M((Yx)Fx,w3) = 0. Then V(B(Yx)Fx,wy) = 0. Q.E.D.

Hence, the sort of semantics under consideration invalidates the Barcan
Formula and so to preserve soundness of the Hin-SQC™ axiom systems with
respect to this type of semantics, we have not added BF as an axiom-

schema to the Hin-SQC= systems.

34 For the sake of generality, it would be better to say that {<wy,wo>) ¢ R.
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We shall now show that Hintikka's proposed semantics validates the
crucial schemata AS 3, 4, 7, 8 which are axiom-schemata shared by all
the Hin-SQC™ systems. In addition, it will be shown that in Hintikka's
semantics R3 mentioned above which are inference rules shared by all the
Hintikka systems, preserve validity. These soundness results will apply to
Hin-SQC™ systems not containing 4, although they can be generalized to the
Hin-SQC= + 4 systems.

It will first of all be demonstrated that all instances of AS J and AS 6
which prohibit quantifying in and substitution of co-referentials for
notional contexts respectively are valid. In addition, the inferential version
of AS 3, R3 will be shown to be validity-preserving and it will also be
demonstrated that all instances of AS 8 (which involves the claim that
having true opinions as to who t4 and t; are, viz., one and the same
individual logically implies that x will recognize their identity) are valid-
ated in the semantics under consideration.

First of all, consider the schema AS 3, viz., a (t/v) > (3v)a such that
t in a (t/v) does not occur in the scope of a belief operator. Suppose that
there is a Hintikka model M = <W,R,{D{},F,V> such that at least one wj in
W, VMm{a (t/v),wy) = 1. Then there is an M' like M such that for some ar-
bitrary t*, V(t",wy) for M' is V(t,w;) for M. Then Vpp(a (t/v),wy) = 1
and hence, Vy((3v)a,wy) = 1. Q.E.D.

We shall next consider AS 6, (& (t1/v) &ty = t3) 5> a(tp/v) such that
t1 and t3 do not occur in the scope of a belief operator. The proof of AS 6
will be by induction on the complexity of o (t1/v) and & (t/v). The zasis

of the induction is where & (t1/v) and o (tp/v) are atomic. The proof of
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the basis, viz., that all instances of (& (t1/v) & tg = t3) > a (t3/v) where

a (t4/v) and a (tz/v) are atomic proceeds in much the same way as it did
for the SQC™ systems, although V for t4 and t; is relativized to the appro-
priate index. The inductive hypothesis is that all instances of (& (t1/v) &
ty = t3) > o (ty/v) are valid for cases where a (t1/v) and a (ty/v) are of
degree of complexity n. l.e., for any wj in any model, whenever VM(t1 =
ty,wy) = 1, V(e (t1/v), wy) = Vim(a (t2/v), wy) where a (t1/v) and a (t3/v)
are of degree of complexity n. It must then be shown that this character-
istic holds for cases where o (t1/v) and a (tp/v) are of degree of complexity
n+1i.

The cases that need to be considered are where o (t1/v) and a (tp/v)
are 1) of the forms ~p(ty/v) and ~B(ty/v), 2) of the forms [B & y](t1/v) and
(B & Y](t2/v) and finally 3) of the forms (Iv*)B(t;/v) and (Iv*)B(ty/v).
The case where a (t1/v) and a (t3/v) are of the forms Bf(ty/v) and
BB(tz/v) need not be considered since it has been stipulated that ty, t; do
not occur in the scope of any doxastic operators.

Case 1: & (t1/v) and & (tp/v) are of the forms ~B(t1/v) and ~B(ty/v).
Suppose that V(~B(t1/v),wy) = Vm(ty = to,wy) = 1.
Then V(B(t1/v),w;) = 0 and given that Vq(t; = ty,wy) = 1, it
follows that V(B(ta/v),w;) = 0 by the inductive hypothesis .
Then Viy(~p(ta/v),wy) = 1.

Case 2: &t (t1/v) and & (t3/v) are of the forms [B & Y](t1/v), [P & Y1(to/v).
Suppose that V([P & YI(t1/v),wy) = VM(ty = to,wy) = 1.
So Vim(B(t1/v), wy) = Vim(Y(t1/v),wy) = 1 and since V(g = ty, wy)
= 1, VM(B(t2/v), wy) = Vim(Y(ta/v),wy) = 1 by the inductive hyp.
Then Viy([B & y](ta/v),wy) = 1.
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Case 3:a (t1/v) and a (t5/v) are of the forms (Iv")B(t1/v) and (Iv*)B(ta/v).

Suppose that Viq((3v")B(t1/v),wy) = Vim(ty = to,wy) = 1.

So there is an M' like M such that Vi (B[(tz/v"), (t1/v)],wy) = 1

and since V) (ty = ty,wj) = 1 then by the Inductive hyp .,

Vi BLCts/v), il wi) = 1.

So, Vi(Q@v")p(ta/v), wy) = 1.

Q.E.D.
This completes the proof that all instances of AS 6 are valid.

Another schema which we shall consider is AS 8, (t1 = t; & (IvV)(v =ty
& B(v=1ty)) & Gv)(v =1ty & B(v=ty))) > B(t; = t3). Suppose that there
is a Hintikka model M and an index wj in W such that V(ty = ty,wy) =
VM(@V)(v = t1 & B(v = t1)),wy) = V((@v) (v = t3 & B(v = t3)),w)) = 1 but
VM(B(ty = t3),wy) = 0. Since Viq(ty = t3, wy) = 1 then V(t1,wy) = V(ty, wy).
Since Vq((Iv)(v = t; & B(v = t1)),w;) = 1 then there is at least one M'
like M such that Vyq(tz = ty,wy) = Ve (B(tz = t1)),wy) = 1 for an arbi-
trary tz and where V(t3, wy) = fx(wy) for some fi in F. So V(tz,wy) =
V(t1,wy) and for all wy such that wiRwj V:(t3 = t,wj) = 1 and hence
V(ty, wy) = V(ts, wy) = fix(wj). (Recall our condition on V that if V(t,wy) =
fi(wy) then for all wj such that wiRwj, V(t,w;) = fx(wj).)And given that
VM(@AV) (v = t3 & B(v = t3)),w;) = 1 then then there is at least one M" like
M such that Vqe(tz = t, wy) = V«(B(tz = t3)),wy) = 1 and where V(tz, w;)
= fn(wy) for some fp in F. So V(v,wy) = V(t3,wj) and for all wj such that
wiRwj Vpe(ts = tp,w) = 1 and hence V(ta, wy) = V(ts,wy) = fn(wJ).
Given that for M, M' and M", V(t{,w;) = V(t3,w;) (this is because M’

and M" will differ from M if at all only in what V assigns to t3 for w;
and possibly for any wj such that winwj) then for M, V(ty,wy) = V(tz, wy)
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= V(t, wyp) = fix(wy) = fn(wy). Since fi(wy) = fn(wy) then for any wy such
that wiRwj, fk(wj) = fn(WJ). But since for any wj such that wjRwy,
V(ty,wy) = fx(wy) and V(t2,wj) = fn(wj) and further, since for any such
wi, fk(wj) = fn(wj) it follows that for any wj such that wiRwy, V(t1,wj)
= V(ta,w;). Therefore, for any wj such that wiRwj, Vim(ty = t,wy) = 1
and hence Viy(B(t; = t3),w;) = 1 which contradicts our initial supposition
that Vq(B(t; = t),wy) = 0. Q.E.D.

Finally, we shall show that the restricted rule a(t/v) > p — (Iv)a
> B for any constant t (provided that t is foreign to (3v)a > B and that t
occurring in & (t/v) does not occur in the scope of a doxastic operator) pre-
serves validity. (The proof that modus ponens and the doxastic counter-
part of the rule of necessitation preserve validity is similar to the proof for
the sentential systems.) Thus, our hypothesis will be that |=a (t/v) > B for
any constant t such that t does not occur in p. Then it will be shown that
[=(3v)ax 5> B. The proof proceeds as follows:

Suppose that for some Hintikka model M = <W,R, {Di}, F,V>,

VMm(B,wy) = 0.

Then for any M' like M except in V's assignment to t" foreign to p some

member of Dj,

VM (B, wy) = 0 - since t* is foreign to B.

By hypothesis,

VM (e (t*/v) 5> B,wy) = 1 for any M’ like M.

VM (& (t"/v),wy) = 0 for any M' like M.

VM(@EV)a,wy) = 0.
Thus, for any index wj in any Hintikka model, whenever Viy(f,wy) = 0,
VM((Av)a,wy) = 0 on the assumption that o (t/v) > 8. Te, FG)a > 8
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if =a (t/v) 5> .35 Q.E.D.

It will now be shown that all instances of AS 4 which restricts quan-
tifying in to relational contexts and that AS 7 which restricts substitution
of co-referentials to contexts where the agent believes that the relevant
identity holds are valid. |

First, consider AS 7, (& (t1/v) & t; = t3 & B(ty = t3)) > a (t/v) where

it is allowed that t4, t3 may occur in the scope ‘of 2 belief operator. The

proof that all instances of AS 7 are valid will (as for its restrictive 'cousin'

AS 6), proceed by induction on the complexity of a (t1/v) and a (t/v).

The lasis is where a (t1/v) and o (t3/v) are atomic. Then for any index

wij in a model, the truth of the identity 't{ = t3' at said index is sufficient

to guarantee that if Vyq(a (t1/v),w;) = 1 then V(e (t2/v),wi) = 1. The
inductive Rypothesis is that all instances of AS 7 are valid where a (t1/v)
and o (t3/v) are of degree of complexity n. What needs to be shown is that
all instances of AS 7 are valid for cases where o (t1/v) and a (ty/v) are of
degree of complexity n + 1. The cases to be considered are where o (t1/v)
and o (to/v) are of the forms 1) ~B(ty/v) and ~B(ty/v), 2) [B & y1(t4/v) and

B & Y1(t2/v), 3) (Qv*)B(t4/v) and (Fv*)B(ty/v) and finally, 4) Bf(ty/v) and

Bp(ty/v). Cases 1) - 3) proceed in much the same way that they did for

AS 6 although we shall illustrate case 3). Finally, we shall consider case

4, which involves considering the purely doxastic version of AS 7.

Case 3:0t (t1/v) and o (t3/v) are of the forms (Iv*)B(t1/v) and (Fv")p(ta/v)
Suppose that Vp(@Av*")B(t1/v), wy) = Vim(t) = to, wy) = Vm(B(ty =
t2),wy) = 1.

So there is an M’ like M such that V) (B[(tz/v"), (t1/v)],wy) = 1

(and if free v* occurs in the scope of a doxastic operator then

35 The author has modelled the reasoning here after Hughes and Creswell (1968), pp. 140-141.



219

V(t*,wy) = fx(wy) for some fx € F).
Then since V(g = t3, wy) = Ve (B(ty = t3),wy) = 1, by the
inductive hyp ., Vi (B[(t3/v*), (t2/v)],wy) = 1.
So, Vp((3v*)B(ta/v),wy) = 1.
Q.E.D.
Case 4: & (t4/v) and a (tp/v) are of the forms Bf(ty/v) and Bf(ty/v) res-
pectively.
Suppose that for some Hin~SQC™ model M and for some wj in W,

VMBa (t1/v), wy) = Viq(ty = ty, wy) = Viu(B(tg = t3),wy) = 1.

Since Vy(Ba (t4/v),wy) = 1, then for any wj such that wiRwy,
Vp{a (t1/v),wy) = 1. Further, since VM(B(t1 = t3),wj) = 1 then for
any wj such that wiRwj, V(g = t,wy) = 1.

1t can then be shown by induction on the complexity of the contents

a (t1/v) and a (ta/v) where ty, t3 do not occur in the scope of dox-

astic operators for systems not containing 4, that Vy(a (to/v),w 3
is 1 for all wj such that wiRwj. The proof here is as for AS 6.

(For systems containing 4, it would also be the case that VM(B(t1 =

tz,WJ) = 1 and so we could simply appeal to the inductive hypo-
thesis.)

And so for any w;j such that wiRw;, V(e (t2/v),w;) = 1 on the
suppostion that Viy(Ba (t1/v),w;) = Vm(ty = ta, wy) = Viu(B(ty
=t3),wj) =1 and therefore, Vy(Ba (t3/v),wy) = 1.

Q.E.D.

Next, consider AS 4, aa (t/v) & (Av)(v =t & B(v = t)) > (v)a. Suppose
there is some wj in W in a Hintikka model M such that Vy(a (t/v),w;) =
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VM(@V)(v =t & B(v - t),wy) = 1. Then it will be shown that Vq((Iv)a,
wj) = 1. Supposing that Viq((@v)(v = t & B(v = t),w;) = 1 then there will
be at least one M’ like M except possibly in V's assignment to some ar-
bitrary t" (which must be foreign to (I3v)a) at wj some member of D;
such that Vy(t* = t,wy) = 1 = Vg (B(t" = t),w;) = 1 and such that
V(t*,wy) = fx(wy). Purther, since V(o (t/v),wy) = 1 then Vi (a (t/v), wy)
= 1 (given that t" is foreign to (3v)a - and given that t replaces all occur-
rences of free v is a (t/v)). So, it is the case that Vi (t" = t,wj) =1 =
VM (B(t" = t),wy) = V(o (t/v),wy) = 1. Then it will be shown that
Vme(a (t*/v),wy) = 1. This can be proven by induction on the complexity of
o (t/v), a (t"/v).

The basis of the induction is where a (t/v), a (t*/v) are atomic and the
proof of the basis proceeds as it did for AS 7. The inductive hypothesis is
that for o (t/v) of degree of complexity n, whenever Viy(t* = t,wy) =1 =
VM (BQ" = t),wy) = Vg (a (t/v),w;) then V(o (t"/v),wi) = 1. We then
need to show that this will hold true for a (t/v), & (t"/v) of degree of com-
plexity n + 1. The cases to be considered are where & (t/v), & (t*/v) are
1) negations, 2) corUuncti'ons, 3) existentially quantified wffs and 4) of the
form Bf(t/v), BB(t"/v) respectively. These cases are proven exactly as
they were for AS 7.

Then by induction on the complexity of wffs, we can conclude that
whenever Vi (t* = t,wy) = Vg (B(t" = t),wy) = Vg (a (t/v),wy) = 1 then
VM (o (¢4/v), wy) = 1 where a (t/v), a (t"/v) are of any degree of complex-
ity. Since V(t*,wj) = fx(w;) for some member of F and since Vg (o (t*/v),
wj) = 1 (which in turn relied on the suppositions that Vy(a (t/v),w;) =
VM(@V)(v =t & B(v = t),w;) = 1), it follows that Vy(@v)a,wy) = 1.
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Q.E.D.

Now that we have illustrated some results concerning soundness of
the Hin-SQC™ systems (at least those not containing 4) with respect to the
éppropriate classes of Hintikka models, we shall in the remainder of this
section sketch a Henkin-style proof of campleteness of these systems with
respect to this type of semantics. As usual we shall sketch a Henkin-style
completeness proof for the Hin-SQC™ systems. What we shall want to show
for any Hin-SQC™ system is that any non-theorem will be invalid in the
appropriate Hin-SQC™ canonical model. I.e., for any non-theorem a,
Viu(a,wy) = 0 for some maximal consistent set w; (of a special sort) in the
system's canonical model, M. The characteristics of a Hin-SQC™ canonical
model will now be described.

Any Hin-SQC* canonical model M is a 5-tuple, <W,R,{Dj},F,V> such that
W is a set of maximal consistent sets of wffs with the 3-property and with
the 3g-property. l.e., W= {wi:wl is a maximal consistent set with the 3-
property and with the JB-property}. As was discussed in chapter two, a
maximal consistent set wj has the I-property just in case for any wiff of
the form (Iv)a, if (Jv)a is in wy then so is o (t/v) for some constant t. In
the case of the Hin-SQC™ systems we shall add the rider that the scope of
the quantifier is such that free v does not occur in the scope of a belief
operator. We can guarantee that any maximal consistent set has the 3-
property by (consistently) adding for any wif of the form (Iv)a in wj an
implicational wff having the form (Iv)a > a (t/v) for at least one constant
t. What it is for a maximal consistent set w; to possess the Ig-property
will be defined once we have defined the element F for the canonical model.

Given our definition of W for the canonical model, R is a two-place rel-
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ation ranging over members of W which can be defined as follows: For any
wi, wjin W, wiRwj iff (Ya)(Ba € wy —— & € wj). Further, {Di} is a set
of sets of constants, each set of constants being associated with the appro-
priate wi in W (where the subscripts 'match up’) where Dy is the set
CONS which is the set of all constants which can occur in any well-form-
med formula of the language L for the Hin-SQC™ systems. We shall assign
the subscript '1' to this set, i.e., we shall call the set CONS which is D4 the
set CONSi. Also, we shall construct a set of sets of constants, {CONSi}
where CONS; € {CONS;} (each set being denumerably infinite like CONS;)
such that no member of any of these sets if i # 1 can occur in any wiff of L
for the Hin-SQC™ systems. Each of these sets is assigned a subscript such
that if a set in this series is CONS; then we shall say that this set i1s D;. A
requirement for membership in {CONS;} is that for any i, j where i = j,
CONS{ N CONS; is &. In short, the members of {CONs;} are non-overlap-
ping.

Then we can define {D;} as follows: For any Dj, Dj in {Dj} such that
i = j, D; = {ul u € CONS;} and D; = {pip€ CONSj} such that Dj N D; = @.
Also, Dy = {t| t € CONSy} where CONS; is simply the set CONS which is Lhe
set of all constants which can occur in any wiff of L for the Hin-SQC=
systems. For any constant in CONS; where i = 1, we shall introduce the
function g which to each constant in CONS; assigns exactly one constant
from CONS; (= CONS). We shall call the value of g(u) where u is a cons-
tant in CONS;(»1) u* where u* is in CONSy (=CONS).

The set F is a set {f1, f2, ..., Iy .} of ‘correlating' functions where
each member of this set, fx for each wj in W takes as its value exactly one

constant in the D; associated with wj or is undefined. Then for any fy in F
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and for any wj in W, fk(wi) € D; or is undefined. Further, for any fy,

fn in F, if fix(wj) = fx(w;) then for any wj such that wiRwj, fx(w;) =
fn(wj). Given our definition of F for the canonical model we can now pre-
sent the characteristics of any maximal consistent set w; possessing the so-
called 3g-property. Any wj in W possesses the 3g-property just in case for
any wif of the form (Iv)a where 3 is non-vacuous and such that a is
either a belief wif or involves a belief wff in whose scope v occurs, if
(Iv)a is in wj then a (t/v) is in w; for at least one constant t such that t
denotes (where 'denotes' will be spelled out in terms of V) a constant in D
which is the value of an fx in F. We can ensure that any w; in W has the
Ig-property by adding for every wiff of the form (Iv)a in w; (where 3 is
non-vacuous and such that A is either a belief wff or involves a belief wff
in whose scope v occurs) the implicational wiff (3v)a > a (t/v) for at least
one constant t such that t denotes a term in Dy which is the value of an fy
in F (on the condition that we can preserve consistency).

Finally, we can define V for constants for wi € W similarly to how we
defined V for constants for A for the SQC™ systems by first of all supposing
that the members of CONS can be ordered. Then for any constant tj, and
for wy € W, V(tj, wy) = V(tj,wy) If tj occurs earlier in the ordering such
that tj = t; € wy or V(tj,wy) = t; (Where t; is in CONS) otherwise. For any
constant t; and for any Wi(1) inw, V(ti,Wj) = up such that u, € Dj and
such that t; = up* € wy.% V for predicate variables for wy € W is defined
as for the SQC” systems as follows: For any P € PRED, for wi € W,

<ty, ...,tn> € V(P,wy) iff Pty...t; € wy where the ti's in the n-tuple

38 We shall also impose the same restriction on V for terms for the canonical model as for any model
in the appropriate class, viz., that if V(t,w;) = fi(w;) for some f then for all wj such that wiRWj.
V(t.Wj) = fi(w).
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<ty, ...,tn> are constants in Dy. V for predicate variables for any wj(x1)
in W is defined as follows: <uy,...un> € V(P,w;) iff Pug*...up* € V(P,wj)
where the uj's in the n-tuple <uy, ...up> are constants in D;.

Now that we have characterized the canonical model for any Hin-SQC™
system, we shall in outline form provide a proof of the fundamental the-
orem of canonical models, viz., Vy(a,w;) = 1 iff & € wj for any wj in W.
The proof proceeds by induction on the complexity of formulae:

Base Clause: Suppose & is atomic in which case & is i) of the form t{ =

ty or is ii) of the form Ptq...ty.

i) a is of the form ty = t5.
The proof that Vi (ty = tz,wq) = 1 iff t1 = t; € wy proceeds as it did for
the SQC™ systems. We shall now prove that Vy(t1 = t3, wy) = 1 iff
ty = t3 € wj for wj in W where i = 1.

Suppose that Vi (t1 = t, wy) = 1.
Then V(t;,wy) = V(t3, wy)
Then V(t3,wj) = up = V(t,w;) where uy is a constant in D;.
Then t1 = up* € wj and t3 = up* € wy given the definition of V for
constants for wj(«1) in W.
Then ty = up* & ty = up* € wy given that wy is maximal consistent
|-(t1 =un*&ty = un*) >t =t
Hence, (t1 = up* & t) = up*) >ty = t) € w; since wj is max. con.
Hence, t) = t3 € wj since wj is max. con.
Suppose that ty =ty € wj.
Then t4 = up* € wi such that u, € Dj
Then ty = t3 & t{ = up* € w; since wj is maximal consistent.
|-(t1 = t2 & ty = up®) > ty = up*
Hence, (ty = t3 & t4 = up*) > ty = upy* € wy since wjy is max. con.
t2 = up* € wj since wy is max. con. where u, € D;.
V(t2, wy) = up = V(t4,w;) given the definition of V for constants for
any wij(x1) in W.
VM(tl = ty,wy) = 1.
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ii) A is of the form Pty...ty.
We can prove Vju(Pty...ty,wq) = 1 iff Pty...ty € wy in the same way

we proved this for the SQC* systems.
The proof of Vi (Pty...ty,wj) = 1 iff Pty.. .ty € wy for any wy(xq) in W
proceeds as follows:

Vi (Pty. . .t wy) = 1iff <V(t,wy), ..., V(ty, wp> € V(P,wy)
iff <uy,...,up> € V(P,w;) where each u; € D;.
iff Pug*...up* € wy. (given the definition of V for
predicate variables.)
Now if V(t,wj) = uy, ..., V(tn,wj) = up where uy,...,up are all in D;
then t{ = u(*,...,tn = up* are all in wj given the definition of V for
constants for any wj(x1) in W and hence ty = u1* &,...,& ty = up* €
wj. Since |-(t; = uy* &,...,& tg = up*) > (Pug*...up* = Pty...tn)% then
(1 = ug* &, ...,& ty = up*) > (Pug*...up* = Pty...t,) € wj. Therefore
Pui*...up* = Pty.. .ty € w; in which case Pty.. .ty € w;j if Pug*. . .up*
is. Therefore, Vy (Pty.. .ty,wy) = 1 iff Pty...t, € wi. Q.E.D.

Now that we have proven the base clause, we appeal to the inductive
hypothesis, viz., that the fundamental theorem of canonical models holds
for wffs of degree of complexity n. What we must now show is that the
fundamental theorem holds for wifs of degree of complexity n + 1. The
proof of this for the cases where o is of the form ~f, f & Y and Bf pro-
ceeds as it did for the sentential doxastic systems and for the SQC™ sys-
tems. What needs to be considered is the case where & is of the form
(3v)B. The proof of the case where the scope § of the quantifier is simply a
wif where free v is not in the scope of a doxastic operator proceeds roughly
along the same lines as the proof of the case where a is of the form (Iv)p
for the SQC™ systems. What remains to be shown is that the fundamental
theorem holds for the case where free v in the scope B of (3v)p occurs in

the scope of a doxastic operator.

37 See the reasoning behind this on pages 67-68 in chapter two.
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Case: & is of the form (3v)$ where the scope f is such that free v occurs

in the scope of a doxastic operator.

Suppose that (Iv)p € w;.

Then B(t/v) € wy for at least one cons. t which denotes some cons.
in Dj which is the value of an fg in F. l.e,
V(t,wj) = fi for some f) in F. This is guaran-
teed by the 3g-property.

Vi (B(t/v),wy) =1 for at least one constant t such that V(t,w;) =

fx by the inductive hypothesis .
Vi (B(t*/v),wy) = 1 for an A’ like M and such that V(t",w;) =
V(t,wi) = fk(wi)'
Vu(@@v)g,wy) = 1. Q.E.D.

Suppose that Vi ((3v)8,wy) = 1.
Then Vi (B(t*/v),wy) = 1 for at least one AL' like M and such that
V(t",wp) = fx(wy).
Then Vy (B(t/v),wy) = 1 for some constant t such that V(t,w;) =
V(te,wi) = fx(wy).
Since M' differs from AL if at all only in what V assigns to t" at
wj then V(t.wy) = f)c (wy) for M'. But V(t",w;) = fi (wy) for M.
So, Vau(t = t,wy) = 1.
For for any wj in W such that wiRwy, V(t,wj) = V(t",wj) =
fk(Wj) assuming that the same restriction applies to V for terms
for the canonical model as for any other Hintikka meodel, viz., that
if V(t,wj) = fx(wj) for some fy then for all wj such that wiRw;,
V(t,Wj) = fk(wj)'
Then Vg'(t" = t,w;) = 1 for all wj such that wiRw; (since M' is
like M except in V's assignment to t".)
Thus, V' (B(t* = t),wy = 1.
Thus, Vi (t" =t & B(t" = t),w;) = 1
Thus, Vu(@v)(v =t & B(v = t),w;)) = 1.
Then Vy (B(t/v),wy) = Vu((@v)(v =t & B(v = t),w;) = 1 and hence:
VIUB(/V) & QV)(v=t & B(v =1t),wj = 1.
Given that the fundamental theorem has been proven for wffs of



227

the form B & ¥ then:
B(t/v) & Qv)(v=t&B(v=1t) Ew
FBENV) & @Qv)(v=taB(v=1t)) > @Ev)p
B@/v) & @V)(v =t & B(v=1t)) > (V)P € w; since wj is max. con.
(Iv)p € wy since wj is max. con.
Q.E.D.

This completes the proof of the fundamental theorem of canonical models.
By induction on the complexity of wifs, we have proven that Vy (&, w;)
=1 iff &« € wj for any wff & and for any maximal consistent set of wifs,
wj. Now suppose & is a non-theorem for some Hin-SQC® system. Then ~a
will be syntactically consistent and hence by Lindenbaum's lemma we can
construct ~& 's maximal consistent extension w;j which is in the set of
maximal consistent sets, W in the canonical model, M such that ~@ € wj.
Then by the fundamental theorem of canonical models, Vy (~&,w;) = 1 and
hence Vy (&, w;) = 0. In short, any non-theorem will be invalid in the ap-
propriate system’s canonical model. What remains to be shown is that the
relevant Hin-SQC™ system's canonical model M is in the class of models
with respect to which that system is sound. And as we outlined in chapter
one this can be proven by showing that R has the appropriate character-
istics. For example, if we are to prove that Hin-KDQC™'s canonical model is
in the class C of models with respect to which this system is sound, it
must be shown that R in the canonical model is serial. And how this can

be done is discussed in the first chapter.

4. An Alternative to Hintikka's Logic and Semantics for Belief

As we have just seen, the Hintikka axiom systems for belief and their
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characteristic semantics enable us to make sense of quantification into
belief constructions as well as substitution of co-referentials in such con-
structions. This is achieved by making a distinction between relational and
notional belief contexts which has been the time-honoured tradition on the
ordinary language front with such philosocphers as Kaplan and Sosa.

In particular, the problem of quantifying into ordinary language belief
contexts is a problem for a belief logic mirroring such contexts only if we
construe the existential quantifier in our logic objectuallyr. Thus, from
'Jones believes that the next Prime Minister of Canada will attempt to bal-
ance the budget' we would not infer that f2ere /s some individual v such
that Jones believes of v that he/she will attempt to balance the budget'. And
so, in any logic of belief where the existential quantifier is construed ob-
Jectually, it would be undesirable to have a rule of inference permitting
unrestricted quantification across propositional attitude operators. How-
ever, if we read the quantifiers subststutionally in the semantics for our
belief logic then there is no problem with respect to 'quantifying in'. l.e., if
‘Y’ is given a substitutional reading in the semantics, then from Ba (t/v)
we can infer (3v)Ba since this says intuitively that there is a substitution
instance of Baa (which in this case is Ba (t/v)) which is true. No mention
is made of there being any individual (in the appropriate domain of indivi-
duals) v such that Ba (t/v) is true.

Then a logic of belief in which the quantifiers are construed substitu-
tionally does not inherit the ordinary language problem of quantifying into
belief constructions. This point has been made by Kripke in a paper dealing

with substitutional quantification for first-order logic:

.. .the intelligibility of substitutional quantification into a belief or a
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modal context is guaranteed provided the belief or modality is intel-
ligible when applied to a closed sentence ... As Quine has pointed out,
even for a context as opaque as quotation, where no-one thinks that
satisfaction for referential variables makes any immediate sense, sub-
stitutional quantification is immediately intelligible.38

Then it would seem reasonable to adopt a logic of belief or for that matter
of any modality where the quantifiers are read substitutionally. However,
Kripke claims that it is best to have first-order modal or belief logics which
contain both kinds of quantifiers since "substitutional quantification is
here, as always, not a rsva/ theory to referential quantification”.3? We
shall now offer an argument against Kripke's claim and in favour of the
claim that at least for a logic of propositional attitude modalities such as
belief it is best to adopt a logic of belief where the quantifiers are read
substitutionally only in the semantics. The obvious advantage of adopting
such a logic is that we are able to sidestep the problem of quantifying in
entirely. But there are other reasons for adopting a belief logic where the
quantifiers are read solely substitutionally (in conjunction with a truth-
value semantics), as we shall presently see.

An obvious candidate for a semantics of a logic of belief where the
quantifiers are read substitutionally would be a ‘ruth-value semantics.
As the reader may recall, a TV semantics dispenses with domains of indi-
viduals for TV models. In fact, the atomic wiffs of the language for the
appropriate system are assigned truth-values at any given index in the
model without appeal to individuals in the same way that the atomic wffs
are assigned truth-values at indices for sentential systems. And employing

V(a,wy) = Viy(at,w;) where a is atomic as the basis, we can define the

3B Kripke (1976), p. 375.
39 ibid, p. 375.
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truth-conditions for the different sorts of wiffs of the language inductively.

The advantage which a TV sermantics supporting a substitutional read-
ing of the quantifiers has over a domain semantics (such as for the SQC™
systems where the indices in a model share the same domain of individuals
or such as for the Hin-SQC™ systems where the indices in a model have
their own non-overlapping domains) is that it has none of the difficulties
associated with the metaphysics of the domain semantics.

As was argued in chapter two, a problem with the domain semantics
for the SQC™ systems is that it is not clear what the criteria for transindex
individuation would be other than regarding members of D in an SQC~
model as so-called bare particulars, which is a notion that philosophers
such as Kaplan find objectionable. In addition, it was noted that individuals
in SQC™ models are necessary existents given that for any such model, the
domain D is shared by all indices. On the other hand, if we opt for a Hin-
tikka-type semantics for belief logic where each index has associated with
it its own non-overlapping domain of individuals then we are faced with
the problem of making sense of an index-bound individual's having l'correl-
ates’ across doxastic aiternatives which is necessary for dealing with
quantification across propositional attitude operators. Further, there is the
objection raised by both Kripke and Plantinga that names denoting indivi-
duals in propositional attitude constructions (as well as in counterfactual
conditional constructions) denote the same individual existing at various
alternatives and not a series of ‘correlates’. Finally, whereas the invariant
domain semantics involves a proliferation of necessary existents, the vary-
ing domain semantics for the Hin-SQC™ systems involves a proliferation of

possibilia ~ given that indexed domains of individuals are non-overlapping.
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A TV semantics for belief logic avoids the metaphysical and ontological
embarassments associated with the different types of domain semantics by
simply dispensing with domains of individuals. The solution to the diffi-
culties outlined above is simple enough: If there are no domains of indivi-
duals for models, then there is no question of transindexical identity of
individuals or of transindexical similarity (as in the case of determining
conditions for counterparthood)?0. Then there is some presumption in
favour of adopting a TV semantics for belief logic.

Another presumption in favour of adopting a TV semantics for first-
order belief logic is that it obviates the need for relational contexts with
respect to which existential generalization would normally be restricted.

In short, from the point of view of quantifying across propositional attitude
operators, it is unnecessary to appeal to the notional/relational distinction
or the de re/de dicto distinction (although this distinction still applies when
it is characterized in terms of the quantifiers) in Kaplan's or Hintikka's
sense where 'acquaintance' with the relevant individual(s) distinguishes

a relational context from a notional one.

However, the TV semantics we have outlined for the SQC* systems
while rightly allowing for unrestricted substitutional quantification across
propositional attitude operators also allows for unrestricted substitution of
co-referential terms for propositional attitude constructions. But this latter
feature is undesirable in the light of the schema ty = t > B(t; = t) that is
validated in the SQC® TV semantics and which intuitively says that agents

are omnidoxastic with respect to contingent identities. This schema is un-

40 As with the TV semantics for the SOC™ systems, the TV semantics for the set of axiom-systems
we shall presently develop does not involve any ‘assignments’ of individuals to constants. The
question of what constants denote is sidestepped.
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tenable since presumably agents can fail to believe that contingent iden-
tities obtain - as in the Tully/Cicero case discussed in the third chapter.
Then in the light of these considerations, it is undesirable to have a sem-
antics (and a logic) of belief which allows for unrestricted substitution of
co~referentials (or to be unprejudiced, co~identicals) for belief construc-
tions. Since agents are presumably not omnidoxastic with respect to con-
tingent identities then if x believes that a (t;/v) at an index wj and if the
identity t; = t; holds at this index, it does not follow that the agent also
believes that & (t5/v). (Once again, consider the Tully/Cicero case.) The
agent may fail to believe that the identity t; = t; holds. The obvious way
of guaranteeing that this identity holds at all alternatives is to require that
the agent belleves that the identity holds which was one of Hintikka's
ways of dealing with this problem. However, we shall not use Hintikka's
second strategy of allowing substitution to go through for special sorts of
relational contexts since our logic and semantics does not assume a rela-
tional/notional distinction.

Notice that this diagnosis of the problem of the failure of substitutivity
of co-referentials for belief constructions makes no appeal to the notional
vs. relational distinction for belief contexts. In fact, this diagnosis of the
problem lends itself to the view that belief contexts are fundamentally un-
ambiguous and in fact they are, to borrow Frege's phrase, unambiguously
‘oblique’ in the sense that co-referentials (or more appropriately, co-iden-
ticals) are never substitutible in such contexts, given that agents are not
omnidoxastic with respect to contingent identities. On the other hand, con-
texts not involving propositional attitude modalities are 'transparent’ with

respect to the substitution of co~referentials in which case there is an
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ambiguity that does not lie in the belief operator itseif but rather in the
distinction between non-doxastic and doxastic contexts (or more generally
between modal vs. non-modal contexts).4!

What is here being proposed is that we adopt a TV semantics for belief
logic which lends itself solely to a substitutional reading of the quantifiers
thus allowing unrestricted quantification across doxastic operators and yet
which treats belief contexts as unambiguously oblique with respect to the
substitution of co-referentials. As we shall see, this type of semantics can
be developed by simply adopting the TV semantics for the SQC™ systems and
lifting the restriction on V that if V(t; = t3,wy) = 1 then V(tq = tz,wj) =1
for all w § in W. This allows that even though t{ = t; holds at wj, it may
fail to hold at some wj in W such that wjRwj in which case an agent at
wi will fail to believe that this identity holds thus invalidating t = t3 >
B(t; = t3). Then even though x at w; believes a (t4/v) and even though t; =
t; holds at wj, x may fail to believe that a (t3/v) at wj since o (t1/v) and
@ (t2/v) may differ in their truth-values at some alternative w;j (since t; =
t2 may fail to hold at this wj). Further, since in this type of semantics the
quantifiers are interpreted substitutionally then unrestricted quantification
into belief constructions is permitted thus obviating the need for the rela-
tional/notional distinction. Nor does this distinction rear its inelegant head
in discussing the failure of substitutivity for belief contexts since Hintikka's
AS 8 which allows subsitution of identicals to go through for special sorts of
relational contexts turns out to be invalid in this semantics ~ as will be
shown presently.

It should be apparent that the advantage of a TV semantics of belief

41 This view of things is in the spirit of Frege's treatment of belief contexts as ‘oblique’ and non-
belief contexts as transparent with respect to the issue of substitution in ‘Sense and Reference’.
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logic which lends itself to a solely substitutional reading of the quantifiers
while restricting substitution of co-identicals vs. the type of semantics
which Kripke is advocating which allows for both kinds of quantifiers or
vs. a Hintikka-type semantics where the quantifiers are read solely ob-
Jjectually is that the former type does not treat belief contexts as ambiguous
(thus for example sidestepping Stich's objections concerning the so-called
myth of ambiguity of belief contexts). It is presumably better in the sense
of 'theoretically simpler' to get by with one rather than two senses of
belief. Also, the purely substitutional TV semantics avoids the difficulties
that are associated with the metaphysics of any semantics appealing to so-
called domains of indviduals.

The appropriate set of axiom-systems for the kind of semantics we are
proposing will simply be the SQC™ axiom systems each of which will in-
clude as an axiom schema & (t/v) > (3v)a which allows for unrestricted
substitutional quantification across propositional attitude operators (if t
occurring in & (t/v) occurs in the scope of a doxastic operatort?) with the
following emendation: Any such system will have as an axiom-schema a
restricted version of (a (t1/v) & t1 = t3) > a (t3/v) where it is stipulated
that ty, tp in a (t3/v), a (t3/v) do not occur in the scope of doxastic oper-
ators. The restriction on this schema effectively blocks the proof of the
schema tq = t > B(t] = t3) which says that agents are omnidoxastic with
respect to contingent identities since the unrestricted version is integral to
the proof of this schema. More importantly, this restriction disallows as a
specific version of this schema (Bat (t;/v) & t; = t3) > Ba (t3/v) which says
that co-identicals are freely substitutible in belief constructions. Also, the

above-mentioned restriction disallows as instances of this schema wiffs

42 This would allow as instances of this schema such wffs as BFa > (3x)BFx as well as (Fa & BFa) 5
(IxXNFx & BFx).
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such as ((Fa & BGa) & a = b) > (Fb & BGb) or ((Fa & PgGa) &a-= b) > (Fb &
PRGD).

Further, we shall add as an axiom-schema (ot (t1/v) & t1 = t5 &
B(ty = t3)) > a (ty/v) where t; and t; may occur in the scope of doxastic
operators which in the case of systems without 4 are uniterated for the
same reasons as discussed in the case of the Hin-SQC™ systems. Intuitive-
ly, this scherna asserts that the substitutivity of identicals is permissible
for belief contexts provided that the agent believes that the reievant iden-
tity obtains. That all instances of this schema are valid/provable for the
systems'we shall presently discuss and that Hintikka's AS 8 is not valid/
derivable for these same systems reflects our Fregean position that belief
contexts are unambiguously oblique.

And so, we shall call the following axiom-systemm Sub-KQC® such that
any Sub-SQC™ system can be obtained by extending the doxastic sentential
fragment in the way discussed in the first chapter:

AS 1: o where a has the form of a PC thesis.
AS 2: (Bx & B(x > B)) > Bf
AS 3. a(t/v) > (v)a
AS4: t=t
ASS: (a(ty/v) &ty = t3) > a(tp/v) (provided that t; and t; do not
_ occur in the scope of a doxastic operator.)
AS 6: (a(ty/v) & tq = t3 & B(ty = t3)) > a(ta/v)  (where t{, t; may
occur in the scope of doxastic operator(s)
which for systems without 4 are

uniterated.)
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AS 7: (Yv)Ba > B(Yv)ax (Barcan Formula)
The rules of inference will simply be modus ponens as well as:

RB |- —— |-Bat
RI a(t/v) > p —— |-(@v)a 5 B (for any t foreign to (Jv)a > B)

Before discussing the corresponding semantics, we shall show that belief
de re logically (classically) implies belief de dicto for the Sub-SQC™.systems,
which as discussed in chapter three also makes sense if we construe the
quantifiers substitutionally. Thus, suppose that some substitution instance
of 'Jones believes that v is prime' is true. Then it follows that Jones bel-
ieves that some substitution instance of 'v is a prime’ is true. So, it is
desirable that |-(3v)Ba > B(3v)a for the Sub-SQC™ systems. A derivation
sequence of any instance of (3v)Bax > B(3v)a for the Sub-SQC™ systems
will look like this:

1. [~ (t/v) 5 Av)a

2. Bla (t/v) > @3v)a) 1, RB

3. Ba (t/v) > B(@v)a 2, K and modus ponens.

4. (3v)Ba > B(3v)a 3, R3
Q.E.D.

Further, given that our Sub-SQC™ axiom systems contain the Barcan
Formula, and glveﬁ that 'B' and 'Pg' are interdefinable, then any instance
of the following schema for doxastic possibility is derivable (by contra-

posing the appropriate instance of the Barcan Formula), viz., Pg(3v)a >
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(3v)Pgo.  And given AS 3, a (t/v) > (3v)a along with the derived rule

of inference |-a > p — |-Pga > PP as well as R3, any instance of the
schema (3v)Ppa > (3v)Ppa is derivable for the Sub-SQC® systems. It
therefore follows that |-(3v)Pga = (3v)Pga which thereby ensures the
elimination of all de re construtions for doxastic possibility for these sys-
tems. Howewver, nothing hangs on this reduction schema from the point

of view of the TV semantics for the systems proposed in this section, since
questions of ontology (including the problem of 'possibilia') have been
sidestepped or at the very least, deferred given that models do not contain
as elements domains of individuals.

We shall now provide a somewhat more formal presentation of the TV
semantics for these Sub-SQC™ axiom systems which lends itself to a sub-
stitutional reading of the quantifiers. What follows is a desription of this
semantics, with remarks on what it does and does not validate as well as
remarks concerning soundness and completeness.

A 8ub~SQC™ TV model will be a triple <W,R,V> such that W= @, R ¢
W X W with the appropriate restrictions placed on R depending on the sys-
tem under consideration. V is an indexed truth-value assignment to the
atomic wffs of the language. l.e., V: {Atomic Wffs} X W — {0.1}. We
have obviated the need for domains of individuals in our characterization
of a Sub-SQC* TV model. For each member of W, the function V simply
assigns to the atomic wiffs of the language truth-wvalues.

Further, to guarantee soundness, we shall impose the following res-
trictions on V for any wj in W:
Restriction 1: If & is of the form t = t then V(at,w;) = 1 for all wj in W.
Restriction 2: If V(t; = t3,wj) = 1 then V(& (t1/v),wy) = V(a (t3/v), w;) for
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any wj in W and where o (t4/v) and a (t3/v) are atomic.
Restriction 1 bears directly on the validity of AS 4, t = t and of course the
second restriction bears on the validity of AS 5, (o (t4/v) &ty = t3) >
a (t3/v) such that t; and ty do not occur in the scope of a belief operator.
Also, notice that there is no restriction on V to the effect that if V(t1 =
t3,wi) = 1 then V(t; = tz,wj) = 1 for all wjin W. Hence, there is nothing
preventing V from assigning to a contingent identity wff different truth-
values at different indices. And this feature of the semantics is what
invalidates the schema (Ba (t1/v) & ty = t3) > Ba (t2/v) allowing substitu-
tion of identicals in belief constructions as well as the schema t{ = t3 >
B(t1 = tz) which asserts that agents are omnidoxastic with respect to
contingent identities.

Finally, a valuation over a Sub-SQC* TV model is a function from
wifs and indices into truth-values. l.e., Viy: Wffs X W —— {0,1}. And
VM can be defined inductively with the following as the basis:

Vm(e,wjy) = V(at,wy) where a is atomic (either of the form ty = t; or
of the form Pty.. .tn) where V has imposed on
the two restrictions mentioned above.

Inductive Step: Suppose that Viy(a,w;) and V(B, w;) are defined.

1) vm(~a,wy) = 1 iff Vyp(a,wy) = 0.

2) V(e & B,wy) = 1 iff (e, wy) = V(B wy) = 1.

3) VMm(Ba,wy) = 1 iff Viy(er,wj) = 1 for all wy such that wiRw;.

4) Vpm(@Ev)a,wy) = 1 iff Viy(a (t/v),wy) = 1 for at least one constant t.
Notice that the existential quantifier is treated substitutionally in the def-
inition of V) for wifs of the form (3v)a. This makes the Sub-SQC™ axiom

schema a (t/v) > (3v)& more palatable for cases where t in & (t/v) occurs
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in the scope of a doxastic operator.

Validity of a wif A in a Sub-SQC™ muodel is truth of that wif at all wy
in W for that mode] and validity of a wiff A with respect to a class of such
models is validity of that wff in each model in the class.

Before discussing our soundness results, we shall verify that the
schemata (Ba (t1/v) & t; = t3) > Ba (t;/v) and ty = t3 > B(t; = t) as well
as Hintikka's AS 8, viz., (t1 =t & Gv)(v=t; & B(v =t1)) & Av)(v =ty &
B(v = t3)) > (B(ty = t3) & t; = ty) are invalidated for any Sub-SQC™ TV
model. First of all, consider the following instance of the schema (Ba (t1/v)
& tq = t3) > Ba (tp/v), viz., (BFa & a = b) > BFb. The following is a coun-
termodel to this wff, viz., W = {wy, w3} and further, for the sake of gen-
erality we shall say that {<wj,wy>} ¢ R. Let V(a = b,wy) = 1 in which
case V(Fa,w1) = V(Fb,wy) given restriction 2 for V. Further, let V(Fa,w,)
= 1 and V(a = b,wj) = V(Fb,w3) = 0 and hence, Vp(Fa,w3) = 1 and Vjy(a =
b,wj) = Vq(Fb,w3) = 0. Then V)q(BFa, wy) = 1. Also, even though Vjy(a
= b,wy) = 1, Vq(B(a = b),wy) = 0. Finally, V)y(BFb,wy) = 0. Q.E.D.

Next, consider the following instance of t{ = t3 > B(t1 = tz), viz.,a=zb
> B(a = b). The countermodel to (BFa & a = b) > BFb will serve as a
countermodel to a = b > B(a = b) Q.E.D.

Finally, consider the following instance of Hintikka's AS 8, (a = b &
A)(x=a&Bx=2a)&@x)(x=b&B(x=0))>(B(a=b) &a=Db). Let
M be such that W = {wy, wp}, <wy, wy> € R and V(a = b,wy) = V(c = a,
wi) = V(d = b,w) = 1 and hence V{((a = b,wy) = Vm(c = a,wy) =
VM(d = b,wy) = 1. Suppose further that V(a = b,ws) = Vy(a = b,wy) = 0
but that V(c = a,w3) = V(d = b,ws) = Viq(c = a,w3) = Viy({d = b,wy) = 1.
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Then Viy(B(c = a),wy) = VM(ﬁ(d = b),wq) = 1 and hence, V((3x)(x = a &
B(x = a)),wy) = Viq((@x)(x = b & B(x = b),wy) = 1. But, Vim(B(a = b),wy)
= 0 and hence Vq(B(a = b) & a = b,wy) = 0. Q.E.D.

Soundness of any Sub-SQC™ system with respect to the appropriate
class of TV models is established in the usual manner, viz., by showing
that the axiom-schemata are valid and that the rules of inference preserve
validity. We shall consider four crucial axiorn schemata with respect to
validity, viz., AS 3, 5, 6 and 7, viz., a (t/v) > (Iv)ea, (a(t;/v) & t; = t3) >
a (ta/v), (& (ty/v) &ty = t3 & B(tg = t3)) > a(tp/v) and the Barcan Formula
respectively.

First of all, suppose that M is a TV model of the sort specified above
such that for some wj in W, Vyy(a (t/v),wy) = 1 but Viy((3v)a,w;) = 0 for
some instance of a (t/v) > (3v)a. But since a substitution instance of
(3v)a, viz., a(t/v) is true at w; in W by supposition, it must also be the
case that (Jv)a is true at wi which contradicts our initial supposition that
VM(@v)a,wy) = 0. Q.E.D.

Next, suppose that Viy(a (t1/v),wy) = Viy(ty = ta,wy) = 1, V(e (ta/v),
wj) = 0 for some instance of (& (t1/v) & ty = t3) > o (t3/v) where t4 and t;
do not occur in the scope of a doxastic operator. If & (ti/v) and a (t5/v) are
atomic then this is inadmissible as a Sub-SQC™ TV model because of Res-
triction 2 for V cited above. Where & (t1/v) and a (lev) are not atomic,
then the values assigned to them by Vi for wy are determined by what V
(and hence VM) assign to their atomic subformulas at this index. (Or if
they contain any subformulas with doxastic operators such that t{ and t;
do not occur in their scopes then the values of these subformulas will be

determined by what V assigns to their atomic subformulas at all doxastic
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alternatives to wi.) And so, given Restriction 2 for V cited above, whatever
value V assigns to any atomic subformula of & (ti/v) at wy containing
occurrences of tq, it must assign the same value to the corresponding atom-
ic subformulas of a (t/v) which differ only in that t; occurs wherever tg
occurs in & (t1/v)'s atomic subformulas. Thus, Viq(a (t1/v),wy) = 1 =
VMl (ta/v), wy) given that V(i1 = t3, wy) = Viy(t] = t3,wp) = 1. And so the
set of valuations described above are inadmissible. Q.E.D.

To show that all instances of the axiom-schema AS 6, (o (t1/v) & t; = tp
& B(ty = t3)) > a (tp/v) are valid, suppose that for some wj in a TV model
M, Vpmla (t9/v), wyp) = Vim(ty

wj such that wiRwj, Viy(ty

ty, wi) = Vm(B(t3 = t3),w;) = 1. Then for all

trwy =1 o (ta/v) is simply o [(ta/ty)
(t4/v)]. Then all those atomic subformulas of A(ty/v) containing occur-
rences of t3 which are not atomic subformulas of contents of doxastic op-
erators will be assigned the same value by V at wj that V assigns to the
corresponding atormic subformulas of o (t1/v) by Restriction 2 for V (given
that Viy(ty = t3,w;) = 1). Further, all those atomic subformulas of o (t;/v)
containing occurrences of t{ which are atomic subformulas of contents of
(uniterated) doxastic operators will be assigned the same value by V at all
Wi such that Wiij which V assigns to the ‘corresponding’ atomic subfor-
mulas of & (t1/v) at each such Wwj ~ and this is guaranteed by Restriction 2
since for all wj such that wiRwj, Vm(ty = t3, wj) = 1. So in either case,
Vm{a (ta/v), wy) = V(e (tg/v),wy) = 1. Q.E.D.

Finally, to show that the Barcan Formula is validated in this type of
semantics, suppose that Vy((Yv)Ba,w;) = 1 and Vy(B(Yv)a,w;) = 0 for a
TV model M for some wj in W for some instance of the Barcan Formula.

Then for every term t, Vp(Ba (t/v),w;) = 1 and hence for any wjin W
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such that wiRw;, v (t/v),wJ) = 1 for every constant t. Then for any
wj where wiRw;, VM((Vv)a,wJ) = 1 and hence V(B(YVv)a,wy) = 1
which contradicts our initial supposition that Vy(B(Yv)a,w;) = 0. Q.E.D.

To conclude our remarks concerning soundness, we shall show that the
rule of inference & (t/v) > p —— (Iv)a > B for any t foreign to (IV)a > B
preserves validity. Suppose that |=a (t/v) > B for any such t in which case
for any TV model M, whenever Vy(,wy) = 6, Viy{x (t/v),wy) = 0. But in
such a case, Viy((3v)a,w;) = 0 where free v in & replaces t in o (t/v) for-
eign to (3v)a > B and so whenever Vy(B,w;) = 0, then Viq((Iv)a,w;) = 0,
i.e., F(Qv)a > B on the supposition that = (t/v) > . Q.E.D.

Finally, completeness for the various Sub-SQC™ systems with respect
to the appropriate class of TV models can be established by the method of
canonical models. The canonical model M for a Sub-SQC™ system will be a
triple <W,R,V> where W = {le wj is a maximal consistent set with the 3-
property}. As usual we can guarantee that any maximal consistent set wi
in W has the 3-property if for any wff of the form (Iv)a we can consis-
tently add (3v)a > o (t/v) for at least one constant t. R is defined in the
usual manner, i.e., wikw; iff (Ya)(Ba € wy —— a € wj). Every mem-
ber of W will have the following properties: Since any wj in W is maximal
consistent then it contains every wff of the form t = t given that |-t = t.
Further, [-(at (t1/v) & t1 = t3) > & (ta/v) where ty, t do not occur in the
scope of a doxastic operator, in which case any wff of the form (& (t1/v) &
ty = t3) o a(ty/v) € wy for any wy in W. So if t; = t) is in any such w;
then if a (t4/v) is in wj so is & (t5/v). Notice that these properties which
any member of W will possess in the canonical model are the syntactic

counterparts of the two restrictions we imposed on V in the semantics.
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And given the way V is defined for the canonical model, it is redundant to
impose these restrictions on V for this sort of model.

Since ty = t3 > B(ty = t3) is not a thesis-schema of the Sub-SQC= sys-
tems (owing to the fact that AS 5, (& (t3/v) & t3 = t3) > & (t3/v) is restric-
ted to instances where t1 and tz do not occur in the scope of a doxastic
operator), then there is no guarantee that any of its instances will be a
member of each and every maximal consistent set of wiffs in W. And this
in turn means that there is no guarantee that if t{ = t3 € wj in W then
for all w § such that wiij, ty =t € AT (Thus, the canonical model for
the Sub~SQC™ systems differs from the canonical model for in the TV sem-
antics for the SQC™ semantics in this respect.) This feature of the canon-
cal model for any of the Sub-SQC™ systems reflects the fact that in the
semantics, the restrition on V which stipulates that an identity holds at
al! indices in the model if it holds in at least one, is lifted.

In the canonical model for any Sub-SQC™ system, V is defined as
V(a,wj) = 1 iff « € wi. A valuation over the canonical model, Vi is de-
fined as follows for atomic wifs: Vi (&, wy) = V(a,wj) from which it will
follow that Vy (&t,wj) = 1 iff ® € wy. This in fact is the Basis of the
inductive proof of the fundamental theorem of canonical models which
~ states that V(a,wy) = 1 iff & € wj for any wWif a. The inductive hypothesis
in the proof of the fundamental theorem is that the theorem holds for wffs
of degree of complexity n. What needs to be shown is that the theorem
holds for wffs of degree of complexity n + 1. |

The cases where & is of the form ~f, p & ¥ and Bf are proven in

roughly the same manner that they were proven for the sentential systems
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in the first chapter. The case where & is of the form (SV)B is proven as
follows:
i) Suppose that (Iv)p € w;.
Then P(t/v) € wj for at least one constant t by the 3-property.
Vi (B(t/v),wy) = 1 for any such t by the inductive hyp.
Vi ((@v)g,wy) = 1. Q.E.D.
i) Suppose that V (@v)B,wy) = 1.
Then V1 (B(t/v),wy) = 1 for at least one constant t.
B(t/v) € w; by the inductive hypothesis.
[-B(t/v) > Iv)B.
B(t/v) > (3v)p € wj since wj is maximal consistent.
(HV)B € wij since wj is maximal consistent.
Q.E.D.
Given the fundamental theorem of canonical models, all that needs to be
shown is that the canonical model for any Sub~SQC™ system is in that sys-
tem's class of models with respect to which it is sound. And this is proven
by showing that R has the requisite properties. The proof of this proceeds

in the usual manner.

Concluding Rermnarks:

And so, in our discussion of systems of quantified belief logic where to
any normal system not containing T we add axiom-schemata concerned
with quantification and identity (and the relation between these and the
belief operator) we have seen that two problems are associated with first

order belief logic, i.e., the problem of quantifying in and the problem of the
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failure of substitutivity of co-referentials. As we have seen, we could
adopt Hinitikka's proposals for a logic and semantics of quantified belief log-
ic which restrict quantification into belief constructions to relational con-
texts and substitution of co-referentials to special sorts of contexts. Or we
could adopt as systems of quantified belief logic (for the purposes of dealing
with the above-mentioned problems) the Sub-SQC™ systems and their
characteristic TV semantics. These systems sidestep the problem of quan-
tifying in by providing a substitutional reading of the quantifiers and also,
they treat all belief contexts as unambiguously oblique with respect to the
substitution of co-referentials.

We have argued that there is some presumption in favour of adopting
the Sub-SQC™ systems as opposed to the Hintikka systems since the sem-
antics for the former set of systems is on metaphysically more solid ground
than the semantics for the latter type of systems. Further, the Sub-SQC~
systems posit only one sense of belief as opposed to the Hin-SQC™ systems
which posit two senses of belief which is also a reason for preferring the
former set of systems to the latter.

Since both the Sub-SQC® and the Hin-SQC™ systems are normal modal
systems (with quantification) they inherit the problem of deduction dis~
cussed in the first chapter. It is now to this problem which we shall

return in the next chapter.



246

Chapter Five

Non-normal Indices and the Problem of Deduction

1. Introductory Remarks

In the previous chapter we argued that there is some presumption in
favour of adopting the Sub-SQC™ systems rather than the Hin-SQC™ systems
as quantificational doxastic logics since the characteristic semantics of the
former is less problematic than that of the latter. Both types of axiom-
systems share the feature that strictures are imposed on substitution of
co-referentials in doxastic contexts although they differ with respect to the
issue of quantification into such contexts. For any Hin-SQC™ system, quan-
tification into doxastic constructions is restricted to so—called relational con-
texts because the quantifiers are given an objectual reading whereas for
the Sub-SQC™ systems quantification into doxastic constructions is unres-
tricted given that the quantifiers are read substitutionally.

However, both types of quantificational doxastic systemns inherit what
Stalnaker has called the problem of deduction since all instances of the fol-
lowing schemata are derivable (and thus valid) in each of these systems:

(B & Bf) > B(x & B) adjunction schema

(Ba & |- 5 B) > Bf  omnidoxasticity schema

(Ba &|-a = §) > BB  omnidoxasticity schema (equivalential version)
The omnidoxasticity schemata could also be characterized as the following

rules of inference respectively:
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(o > ) — (B > Bf)

(¢ = ) —— -(Ba = Bf)
All instances of the three schemata mentioned above are theses of any Hin-
SQC* or Sub-SQC™ system and the two rules are derivable in any of these
systems owing to the fact that both types of systems are normal in the
sense defined in chapter one. l.e., any such system contains the proposi-
tional calculus, the schema K, (Ba & B(a > B)) > Bf as well as the doxastic
variant of the rule of necessitation, viz., |-& ——— |-Ba. It was then dem-
onstrated how the above schemata and rules of inference are derivable in
any normal doxastic system.

_Informally, the adjunction schema says that agents believe the con-
junction of what they believe separately (i.e., that belief is ‘closed’' under
conjunction) and the omnidoxasticity schemata can be read as saying that
agents believe all logical consequences of (or what is logically equivalent
to) whatever they believe. l.e., the omnidoxasticity schermnata assert the
principle that belief is closed under logical implication or under logical equi-
valence. As was suggested in chapter one, the tenability of these principles
gqua principles of belief attribution is questionable in the light of certain or-
dinary language counterinstances, which in turn render them doubtful as
thesis-schemata for any modal logic construed as a logic of non-ideal belief.
The fact that relative to a possible worlds semantics for belief, belief is
closed under conjunction as well as as under both logical implication and
logical equivalence is part of what Stalnaker calls the problem of deduction
in the light of these various counterinstances (such as the paradox of the
preface with respect to the adjunction principie).

Another principle of belief attribution which can be called into ques-
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tion in the light of such examples as the puzzling Pierre case (discussed in
chapters one and three) is the principle that agenté are incapable of bel-
feving both a statement and its negation. The formal counterpart of this
principle in the language of either the Hin-SQC™ or the Sub-SQC® systems is
the schema ~(Ba & B~a). Stalnaker regards this principle as the remaining
part of the problem of deduction. l.e., qua principle of belief attribution it
is problematic since it would seem that there can be cases where an agent
will believe both a statement and its negation (perhaps in different 'con-
texts'). A close cousin of this principle is the claim that agents cannot bel-
ieve self-contradictory statements, which in the language of our formal
systems is expressible as the schema ~B( & ~). There appears to be
more sympathy in the literature for the principle expressed by this schema
than for the former principle.l As was noted in chapter one, both of

these schemata, viz., ~(Bot & B~t) and ~B(a & ~0ot) are derivable in any
Hin-8QC® or Sub-SQC™ system containing the schema D, Bat > Pgat.

What will concern us in this and the next chapter is whether or not
there is any way of altering the axiomatics as well as the corresponding
relational semantics (i.e., a semantics where models have as elements a
set W of indices and a two-place relation R such that R ¢ W X W) of the
Sub-SQC™ systems of quantificational doxastic logic (with identity) in such
a way that at least not all instances of the adjunction and omnidoxasticity
schemata are derivable/valid in these systems. The reason we shall confine
our attention to the Sub-SQC™ systems as opposed to the Hin-SQC™ systems
is that the characteristic semantics of the former is simpler than that of
the latter in the sense that the semantics of the former class of systems

does not appeal to domains of individuals. Thus, in considering emendations

! For sxample, ses Marcus (1981) as well as Dummett (1980).
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to the semantics of the Sub-SQC™ systems we do not need to factor into
these emendations domains of individuals.

Further, we shall consider what can be done in terms of altering the
axiomatics of those Sub-SQC* systems containing the schema D so that not
all instances of the schema ~(B& & B~ ) are theses for these systems. Or
from the point of view of the semantics of these systems, is there any way
of rendering at least some instances of Bt & B~ satisfiable in certain Sub-
SQC® models?

More immediately, in the next two sections, we shall be concerned with
critically examining Rantala's proposal for altering the semantics of normal
doxastic quantificational calculi and the corresponding syntactic altera-
tions to rid them of the problem of deduction. On the syntactic front Ran-
tala suggests restricting the doxastic variant of the rule of necessitation to
some pre-selected subset of the set of wifs. Depending on which set to
which this rule is applicable we select, this move can effectively block the
derivation of certain or all métances of the adjunction schema, our variant
of the consistency schema and most instances of the omnidoxasticity
schemata.

On the semantic front, Rantala's proposal for dealing with the problem
of deduction is to allow the doxastic accessibility relation R to range over
not only normal indices (such that wffs are evaluated at these indices in
the 'standard' way) but alsc over 'non-normal’ indices. As we shall see
presently, non-normal indices in such a semantics turn out to be indices
where in terms of the truth-functional connectives and the belief operator,
almost anything goes. l.e., wifs are evaluated non-standardly at such

indices and hence, it is possible that at these indices so-called logical truths
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could turn out to be false or logical falsehoods could turn out to be true.

Vis a vis Cresswell's comments concerning impossible worlds semantics
for belief logic, it will be argued in section 5 that this type of semantics
ultimately does not succeed in freeing our systems of doxastic logic from the
closure of belief under conjunction and logical implication (and from the
consistency stricture on belief) - at least if we are speaking of 'classical’
conjunction and implictation. The type of semantics which Rantala has
proposed for his restricted axiom systems equivocates with respect to the
connectives &, > and ~ since they are defined inductively for normal worlds
and non-inductively for non-normal worlds. Therefore, all that he has
shown on the semantic front is that for example, agents may fail to conjoin
contents of beliefs in some non-classical sense of ‘conjoin'. It will further
be argued that the response open to Rantala, viz., that the connectives are
defined in terms of their roles in inference does not mitigate the charge of
equivocation.

In the next chapter, a less extreme alternative to Rantala's semantics
for belief developed by Rescher will be critically discussed. Rescher's sem-
antics involves the assumption that belief is a relation between a believer
and a non-standard world although even so-called non-standard worlds
are such that all the truths of classical two-valued logic hold. Nonetheless,
at non-standard worlds, & and p may obtain without their conjunction
thereby obtaining. Thus, agents may fail to conjoin their beliefs - or bel-
ieve that & and that ~a¢ without thereby believing their conjunction -
although agents are still omnidoxastic in this type of semantics. Further,

it will be argued that Rescher's semantics can be vindicated of the charge
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that Rantala's is open to, viz., equivocation with respect to ~ and &.

2. Rantala's Syntactic Proposals for a Logic of Belief not

Presupposing Omniscience

In two recent articles Veikko Rantala has suggested a number of
alterations to the axiomatics and corresponding semantics of both senten-
tial and quantificational normal systems construed as logics of proposition-
al attitudes.2 The purpose of these alterations is to obtain logics which do
not presuppose that agents are logically omniscient in the case of epistem-
ic logics and which do not presuppose that agents are logically omnidoxas-
tic in the case of belief logics. We shall consider his suggested modifications
with respect to the omnidoxasticity schemata and their associated rules of
inference for the Sub-SQC™ systems of belief logic proposed in section 4 of
the last chapter. Rantala's suggested changes to propositional attitude logics
and their semantics can also be used to rid the Sub-SQC™ systems of the
adjunction schema as well as the close cousin of the consistency schema,
~(Ba & B~at) as thesis~schemata, although he does not explicitly discuss
these particular applications of his proposals. In short, Rantala provides
us with the syntactic and semantic machinery to rid the Sub-SQC™ systems
of the problemn of deduction. In this section, we shall examine in detail
exactly how Rantala's proposed changes work with reference to the prob-
lem of deduction for the Sub-SQC= (and Sub-SQC= + D) systems although as
we shall see in section 5 his suggestions on the semantic front are at the
very least philosophically objectionable.

On the syntactic front, Rantala‘'s proposal which though simple is effec-
tive is to restrict the applicability of the doxastic variant of the rule of

2 Rantala (1982), Rantala (1983).
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necessitation. The details of his proposal are as follows: Given the set S of
wiffs of the appropriate language L, he defines the set £ as any possibly
non-empty (recursive) subset of S. Il.e., Q¢ S. It is arbitrary as to what
€ 1s. Our choice of this set depends on what sorts of derivations we wish
to block. The applicability of our doxastic variant of the rule of necessi-
tation RB, |-& — |-Bat is then restricted to the set Q as just defined.3
Thus, the restricted version of RB which following Rantala we shall call
RBQ) can be characterized as follows:

[F¢ —— |-Bat  where a € Q.

Note that for our unrestricted Sub-SQC® systems, ) = S. It is evident that
given the restriction that a is in Q, we cannot unrestrictedly substitute for
the scope & of the belief operator any wiff B logically equivalent to & thus
preserving the thesishood of Bat, un/ess B is itself a member of Q. l.e., if
|-« = B, and given that from & (where |-a and & € Q) we can infer Ba
such that |-Ba, the substitution of § for & in Ba resulting in Bf preserves
theoremhood only if B is also in Q.

For example, suppose that from a wff of the form & v ~a (the 'law of
the excluded middle') which is by stipulation in Q we infer that B(a v ~a)
by RBQ) where |-B(a v ~at) since RBQ) preserves theoremhood provided that
the scope of the belief operator is in €. Suppose further that ~(a & ~a) is
not in Q. Then even though |-(a v ~a) = ~(& & ~0t), we cannot substitute
~(0t & ~a) for & v ~& in the wff B(&t v ~a) to obtain B~(a & ~&) as a
theorem since ~(a& & ~a) is not in Q.

As Rantala notes, {) can be a logic (such as the intuitionistic calculus)
although he does not make this a requirement given that "it is hardly ad-

equate to suppose that a person's attitudes are necessarily guided by a

5 Rantala (1982), p. 108 and Rantala (1983), pp. 56-57.
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logic".4 Thus, his anlyr stricture on € for any restricted doxastic or epis-
temic logic is that Q be recursive. However, if we wish to block certain
select instances of the adjunction schema or the consistency schema (and
perhaps not all instances of the omnidoxasticity schema) given the idiosyn-
cracity of agents' belief systems, then an additional requirement is needed
for . The significance of this requirement will be discussed when we
come to consider the corresponding semaniics for the Sub-SQC=() axiom
systems in the next section. Thus, in addition to Rantala's minimal recur-
sivity requirement, we shall impose the following stricture on the set Q:
RQ: Ir 0 is not a ‘calculus’ then o ¢ Qonly if f> a ¢ 2

For simplicity of exposition, we shall primarily concern ourselves with
restricted doxastic systems where Q is not a calculus. Thus, we can simp-
lifty RQ as follows:

ROx: a ¢Qonlyiffoa §0.

As will be argued in the next section, this stricture will help to ensure
completeness of the Rantala systems (where Q is not a calculus) with res-
pect to his impossible worlds semantics by ensuring that any wff o ren-
dered underivable by exlcuding the appropriate wffs from Q will also be
invalidated in the semantics.

We have already seen how axiom-schemata can be restricted as for
example in the case of the schema (& (t1/v) & ty = t3) > a (t/v) which for
both the Hin-SQC™ and Sub-SQC™ systems is restricted to cases where
« (t1/v) and its substitutional variant a (t/v) are such that t;, t; do not
occur in the scope of a doxastic operator. This stricture imposes limits on
what counts as an instance of the schema (& (t1/v) & t; = t3) > a (tp/v).

Similarly, Rantala's restriction on the rule RB such that it is applicable

4 Rantala (1982), p. 108.
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only to a recursive subset { of the set of wffs imposes limits on which
instances of Ba such that |- count as theses. This stricture on RB can
in turn be used to block the derivation of select instances of the omnidox-
asticity schemata, the adjunction schema or the schema ~(Ba & B~a) for
systems containing D. The details of how this is so will now be discussed.

First of all, we shall focus on the omnidoxasticity schemata and their
associated rules of inference and in particular on their implicational ver-
sions such that our remarks concerning them can easily be extended to the
equivalential versions. Consider the simplest sort of case where we wish
to block the derivation of (Ba & |-a > B) > Bf and its associated rule where
o > B is the thesis-schema o > (& v B) for exactly one instance of this
schema, viz., Fa 5 (Fa v Gb). Suppose for the sake of exposition that we
are not concerned with blocking the derivation of any instances of any
other problematic schemata such as the adjunction schema. Thus, our goal
is to block the derivation of (BFa & (Fa > (Fa v Gb)) > B(Fa v Gb) and we
shall want to restrict the derived rule |-(a > p) —— |-(Ba > Bf) to cases
where & > B is not the thesis Fa > (Fa v Gb). However, given the restric-
tion RQx, viz., &« €Qonly if f > o €42 we shall end up blocking the der-
ivation of much ‘more' than we bargained for as will be demonstrated
presently.

In terms of the schema (BFa & (Fa > (Fa v Gb)) > B(Fa v Gb), its der-
ivation would proceed along the following lines for the unaltered Sub-SQC™
systems:

1. |-Fa > (Fa v Gb)

2. |-B(Fa > (Fa v Gb)) 1, RB
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3. |-BFa > B(Fa vGb) 2, K and MP

4. |-~(Fa > (Fa v Gb)) v (BFa > B(Fa v Gb)) 3, PCS

5. |-(Fa > (Fa v Gb)) > (BFa > B(Fa v Gb)) 4, PC

6. (BFa & (Fa > (Fav Gb)) oB(Fav Gb) 6, PC
The first three lines of this derivation constitutes the derivation of the rule
of inference |-(a > p) —— |~(Ba > Bp) for the case where a > B is the
thesis Fa > (Fa v Gb). And more generally, any instance of this schema
and rule would be derived in the same way. Notice that what is crucial to
the derivation of this (and for that matter any) instance of the omni-
doxasticity schema and its associated rule is the application of RB to the
thesis Fa > (Fa v Gb) (or more generally, to whatever wff is under consid-
eration).

So applying Rantala's suggestion of restricting RB to the set Q where Q
C S and where Q is recursive to the particular case we are considering,
we would initially stipulate that  excludes the thesis Fa > (Fa v Gb).
However, our additional proposed stricture on €, viz., ROQx requires us to
exclude from Q an infinite number of wifs. l.e., Q will not contain Fa >
(Fa v Gb) as well as any wif of the form B > (Fa > (Fa v Gb)). Further,
since any wif of the form B > (Fa > (Fa v Gb)) is excluded from Q by ROx
then for any instance of § > (Fa 5 (Fa v Gb)), each wif of the form Y >
(f > (Fa > (Fa v Gb))) will also be excluded from ) - and so on ad infini-
tum. Since all of the wffs being excluded from Q are implicational (and in
fact they are also Zheses ®) then we shall in effect end up blocking the
derivation of an infinite number of instances of the omnidoxasticity
schema.

Of course, there will be implicational theses which survive exclusion

S We are appealing here to the PC schema & > (f v & ) and detachment.
6 These implicational wils will be theses since if ot then |- > & for any wiT &.



256

from €. In particular, any substitutional variant of (Fa > (Fa v Gb)) as
for example Gb > (He v (Gb & (Ix)Rxc)) will survive exclusion (i.e., any
wif of the form o > (@ v B)). Granted, any thesis of the form a > (a0 v
) will be logically equivalent to Fa > (Fa v Gb) as well as to any other
thesis excluded from €, although exclusion from { is not closed under
detachment - the stricture RQ» is not a 'closure under detachment' condi-
tion for exclusion from €.

Thus, if we wish to block the derivation of (BFa & (Fa > (Fa v Gb)) >
B(Fa v Gb) without in general blocking the derivation of every instance
of (Ba & (a > (a v B)) > B(a v B) then as a way of meeting the recursiv-
ity requirefnent on  we can stipulate that the set Q =8 - {8 |§ is Fa >
(Fa v Gb) or 8 is an instance of By > ( ...(B, > (Fa> (Fav Gb))... ).}
where any of the $i's are wifs of any degree of complexity. It should be
noted that each instance of B; > (... (B, > (Fa > (Fa v Gb))...) will be a
thesis since |-Fa > (Fa v Gb). Finally, as was noted, in blocking the deri-
vation of this one instance, (BFa & (Fa > (Fa v Gb)) > B(Fa v Gb) of one
version (Ba & (& > (@ v f)) > B(« v B) of the omnidoxasticity schema we
thereby block the derivation of an infinite number of instances of other
versions of the omnidoxasticity schema given our adherence to RQx.

Suppose that we wished to block the derivation of severa/ instances
of (Ba & (& > (& v §)) >B(ax v #) such as (BGb & (Gb > (Hc v (Gb &
(3x)Rxc)))) > B(Hc v (Gb & (Ix)Rxc)) as well as (BFa & (Fa > (Fa v Gb)) >
B(Fa v Gb) without blocking the derivation of any other instances of
this version of the schema. Then in accordance with Rantala‘s recursivity

requirment for { and given our stricture RQ* wecanlet Q =S - {§ |§ is
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Fa > (Fa v Gb) or § is Gb 5> (Hc v (Gb & (3x)Rxc)) or § is an instance of B,
3(...(Bp>(Fa> (Fa v Gb))... ) or § is an instance of B; > ( ... (B, >
(Gb > (Hc v (Gb & (Ix)Rxc))))... ).} The point being made here is that
despite our restriction RQ» on the set €, it is possible to block the deri-
vation of select instances of at least version of the omnidoxasticity schema.
1t would of course be possible to block the derivation of a// instances of
all versions of this schema by simply excluding from € all implicational
theses. However, as we shall next see, such a radical move would not be
desirable.

In the light of the following considerations, there is a version of the
omnidoxasticity schema none of whose instances should be blocke& for the
restricted doxastic systems being considered in this section, viz., (Ba (t/v)
& |-t (t/v) 5> (3v)a) > B(3v)a: Some system where any or all instances of
a (t/v) > (Qv)a are excluded from £ will be such that -{(Iv)Ba > B(Iv)«a
(which says that belief de re logically implies belief de dicto). But it was
suggested in the previous chapter that this schema is desirable even for a
doxastic logic where the quantifiers are given a substitutional reading in
the semantics. More importantly, completeness of the restricted Sub-SQC*
systems relative to the sort of semantics to be considered in the next sec-
tion is guaranteed only if « (t/v) > (3v)a € Q for all instances of &« (t/v) >
(Iv)a. As a way of ensuring that no instance of & (t/v) > (3v)a will be
excluded from €, we could impose the following additional stricture on
RX): Any wif of of the form a (/) > (W)a €12
Further, we need to ensure that R301 does not conflict with our other
stricture on €, viz.,, RQ¥. Thus, a final stricture which we shall impose
on € is the following:
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RX)y: Any wiT of of the form (N)a €52
This stricture will prevent the sort of case where a wiff of the form (3v)a
has been excluded from €2, in which case by RQ=x, it would follow that no
instances of a (t/v) o> (3v)at for some scope & are in - which would
conflict with our requirement that every instance of & (t/v) > (3v)a is in
7 However, as will become apparent, if we are adopting the Rantala
systems solely for the purpose of blocking various instances (or perhaps
all instances) of the omnidoxasticity, consistency and adjunction schemata
(in their present forms) then the only wifs that will be excluded from
will be implicational wffs. Then this renders R302 superfluous.

It is worth noting that even if we were to block the applicability of RBQ)
to all implicational theses by excluding them from £, it is nonetheless a
rule of the Rantala systems that & > &« ——— |-Ba > Ba. This rule does
not require for its derivation the rule RB() since it is in fact derivable
simply by substituting 'Ba ‘' for ‘a‘ in & > a It would seem odd if this
were not a rule even for a logic which does not assume that agents' beliefs
are consistent and deductively closed.

As was noted, the substitution of logically equivalent scopes does not
preserve theoremhood of theses of the form Ba where & itself is a thesis
in Q unless the substituens is itself in . Hence, we cannot sidestep the
blockage of the derivation of some instance of (Ba & |-a > B) > Bf - or the
corresponding inferential version |-« > f —— |-Ba > B by applying RB
to the appropriate equivalent of & > B (eg., ~a v B or ~(a¢ & ~)) and then

7 For proving completeness, it is sufficent that © includes every instance of & (t/v) > (3v)a
though it need not include every instance of (Yv)a > o (t/v). What is crucial for complete-
ness of the Rantala systems with respect to his proposed non-normal index semantics is that every
instance of Bat (t/v) > B(3v)a is derivable, which depends for its derivation on the given
instance of & (t/v) > (3v)a
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by substituting & > B for the scope of B(~a v §) or B~(ax & ~f). Similar
remarks apply to the equivalential version of the omnidoxasticity schema
and inference rule.

What is excluded from € to which the restricted rule RB() applies
for the purpose of blocking the derivation of select instances of some im-
plicational version of the omnidoxasticity schema cou/d affect the status of
at least some instances of the adjunction schema (Ba & Bf) > B(at & ) as
well as the status of at least some instances of the consistency schema
~(Bot & B~a) for Sub-SQC™ systems containing D. Recall that the proof of
any instance of (Ba & Bf) > B(a & ) depends on the appropriate instance
of the thesis-schema & > (§ > (& & B)) as follows:
ca > (B> (a &PB))
.Bla>(P>(x &p))) 1, RB
. FB(a 5> (B> (o &B))) > (Ba > B(B > (« & $)))
. Ba > B( > (a &B)) 2,3 MP
. BB > (¢ & B)) > (Bf > B(x & PB))
6. Ba > (Bf > B(a & B)) 4,5 pcs
7. (Ba & BB) > B(x & B) 6, PC

(S I S 7 B N

In short, the proof of any instance of the adjunction schema depends on

the application of RB to the appropriate instance of the thesis-schema

a > (B> (o & B)). But if certain instances of & > (f > (& & §)) is not in
the set © to which Rantala's restricted version of RB, viz., RBQ) applies (for
the purpose of blocking some instance of the omnidoxasticity schema) then
the derivation of the appropriate instances of the adjunction schema will be
effectively blocked. Appealing to the non-implicational versions of the
appropriate instance of the schema & > (B > (& & B)) will not help matters

B To be more precise, we would have to appeal to the appropriale instances of the thesis-schemata
(X P& (P> YNo(x>y)aswellasax > (B> (o & B)).
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since once again, substitution of logically equivalent scopes of belief theses
(where the scopes are themselves theses) does not preserve theoremhood of
the belief wff unless the substituens is itself in Q.

As was noted, despite the stricture RQ», & £Qonly irf > a f!?, it
was possible to block the derivation of select instances of at least one ver-
sion of the omnidoxasticity schema ~ although at the price of rendering
underivable an infinity of instances of other versions of the schema - not
to mention instances of other schemata such as the adjunction schema.
Simnilarly, it is possible to block select instances of the adjucntion schema
without thereby blocking the derivation of every instance of this schema -
provided that nothing else has been excluded from £) for the purpose of
rendering instances of other sorts of schemata underivable, and provided
we are willing to pay the price of rendering underivable an infinity of
other wifs.

Suppose for example that we wish to block the derivation of (B(Yx)Fxa
& BGbc) > B((Yx)Fxa & Gbc)) as well as (BFa & BGb) > B(Fa & Gb)) but no
other instances of the adjunction schema. Then provided that nothing else
has been excluded from Q for the purpose of rendering instances of other
sorts of schemata underivable, we can effectively block their derivation by
stipulating that Q = {8 | § is (VYx)Fxa > (Gbc > ((Vx)Fxa & Gbc)) or § is
Fa > (Gb > (Fa & Gb)) or § is an instance of By > (...(f, > (Gbc > ((Yx)Fxa
> (Gbe > ((Yx)Fxa & Gbc))))...) or § is an instance of By > (... (B, > (Fa >
(Gb > (Pa & Gb))))...)}. Further, even though any instance of the schema
a > (B> (o &P)) is logically equivalent to the wifs excluded from €, none
of these instances of & > (f > (& & B)) are thereby themselves excluded

from €. This is owing to the fact that exclusion from € is not closed under
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detachment - as was noted earlier, the stricture RQx is not a 'closure
under detachment' condition for exclusion from €.

More generally, if € excludes a// instances of the schema o > (f > (a
& ﬁ)) then no instance of the adjunction schema will be derivable in the
appropriate Sub~-SQC™ system and of course no instance of the omnidoxas-
ticity schema with respect to any instance of & > ( > (& & B)) will be
provable ~ along with an infinity of other instances of the omnidoxasticity
schema. Presumably, one version of the adjunction schema, the derivation
of whose instances we would not want to block, is (Ba & Ba) > B(at & o))
all of whose instances will be derivable using RB() and assuming that Q
includes every instance of & > (& > (& & a)). (We shall not, however,
impose any hard and fast stricture on Q to ensure that all instances of this
version of the adjunction schema are derivable since neither soundness nor
completeness depend on this.) Further, for Sub-SQC™ systems containing
the schema D, if we stipulate that £ excludes a// instances of the schema
a > (B > (@ & B)) (and therefore an infinity of other wifs), then we also
end up blocking the derivation of all instances of the schema ~(Ba & B~a )
which is the other third of the so-called problem of deduction. It will now
be explained why this is so.

For Sub-SQC* systems containing D, the derivation of any instance of
the schema ~(Ba & B~0t) depends on the appropriate instance of the follow-
ing version of the adjunction schema, viz., (Ba & B~x) > B(at & ~a) which
in turn depends for its derivation on the schema a > (~a > (& & ~a)):

1. ~(ax & ~ax)

2. B~(a & ~a) 1, RB (unrestricted version)
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FB~(ax & ~ax) > ~B(x & ~a) (a version of D)
~B(a & ~00) 2,3 detachment
[-~B(at & ~a) > ~(Bat & B~at) contrapositive of adjunction schema

o o s o

~(Ba & B~a) 4,5 detachment

If we were to restrict the rule RB to the set 2 where it is stipulated that
Q) does not include some instance of & > (~a& > (& & ~at)) (as well as an
infinity of other wffs in accordance with RQx) then this would effectively
block the derivation of the appropriate instance of (Bat & B~a) > B(a &
~0) as well as an infinity of instances of the omnidoxasticity schema. In
turn, the underivability of this instance of (Bat & B~a) > B(ax & ~&) blocks
the derivation of the appropriate instance of ~(Bat & B~at).

And so, if we were to adopt Rantala's proposal for handling the logical
omniscience problem for modal logics construed as propositional attitude
logics and by extension for dealing with the more general 'problem of ded-
uction’, then we would replace the Sub-SQC™ systems with the Sub-SQC=Q
systems as embodying principles of belief attribution. The Sub-SQC7() sys-
tems have the same set of axiom—schematé as the Sub-SQC* systems and
the same rules of inference except that in the former case, the doxastic
variant of the rule of necessitation is restricted in its application to mem-
bers of an arbitrary recursive subset of the set S of wffs, . What Q is
depends on our purposes as well as on the strictures RQ* and RBQI. Thus,
for some £) ¢ S, the axiom system Sub-KQC=() would be characterized as
follows:

Axiom-schemata: AS 1 - AS 7 as for Sub-KQC™
AS1-AS7
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Inference Rules : Modus Ponens, R3.
And in place of RB, RB():
|- —— |-Ba, provided that & € Q

where Q i1s recursive and is a subset of S, the set of wffs, Further,
must meet the following additional strictures:
ROx:. a RQonlyiff>a ¢12
RX),: Any Wit of of the form a (i/v) > (W)a € 2

Notice finally that for any particular normal quantificational doxastic
systemn such as Sub-KQC=, there will be a whole set of logics, viz., {Sub-
Kac= | Q ¢ S} where S is the set of wifs and where the rule RB is res-
tricted to the set Q. In the limiting case where Q = S, we simply have the
system Sub-KQC= and in the other direction, the limiting case where Q = @
would result in a system where there are no theses of the form Ba since
RBQ) is inapplicable and such that no instances of the adjunction, consis-
tency and omnidoxasticity schemata are theses (with the exception of the
omnidoxasticity schemata and rules with respect to wiffs of the form a > &
and o= ). PRurther, there will be an infinite number of logics 'in be-
tween' these two limiting systems where Q ¢ S (ie., Q¢ S, Q = 8) and
such that S = @ where any such system is properly contained in Sub-KQC=.
Any such system is properly contained in Sub~-KQC= since every thesis of
any such Sub-KQC™() system is also a thesis of Sub-KQC™ but not vice-

versa.

3. Non-normal Index Semantics for Quantified Belief Logic

Having seen on the syntactic front how the derivation of select instan-
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ces of | some version of the omnidoxasticity schemata, and certain or all
instances of both the adjunction and the consistency schemata can be
blocked ~ at the price in all cases of their being an infinity of wiffs whose
derivation will be blocked - we shall now investigate Rantala's correspon-.
ding proposals on the semantic front for invalidating various instances of
these schemata. As we shall see presently, the general semantic sleight of
hand which Rantala employs is to allow the relation R in a model to range
not only over normal but also over so-called non-normal indices where the
connectives are defined non-standardly.
The reader will recall that a Sub-SQC™ model is an ordered triple,
<W,R,V> such that W is a non-empty set of indices and R is a two-place
‘doxastic accessibility’ relation ranging over members of W such that R is
serial if the system is Sub-KDQC"™, transitive if the system is Sub-K4QC~
and so on. Further, V is a function which to each aformuc wiff assigns
either '1' or '0' with the two restrictions mentioned in the previous chap-
ter, viz., that for any wj in W, V(t = t,w;) = 1 and if V(t; = tp,wy) = 1
then V(& (t4/v),wy) = V(a (t3/v),wy). Further, a valuation over a model
VM is defined inductively with V(a,w;) = Viy(or,wy) as the basis of the
induction. Finally, the truth-conditions for quantified wffs are substitu-
tional rather than objectual. For example, Vq((Iv)a,wy) = 1 iff
Vm(e (t/v),w;) = 1 for at least one constant t. In the previous chapter we
tried to show that this type of semantics characterizes the Sub-SQC"™
systems of doxastic logic.
What is now needed is a type of semantics which characterizes the var-

ious Sub-8QC7() systems. The type of semantics described in the previous
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paragraph validates all instances of the omnidoxasticity schemata and the
adjunction schema as well as the consistency schema whenever R is serial.
(This is assuming soundness results.) Hence, this sort of semantics will
not do for systems for which certain or all instances of these crucial
schemata are underivable. For example, suppose we wish to set up a
characteristic semantics for the system Sub-KDQC=() where Q=8 - {8 | §
is an instance of & > (f > (& & B)) or § is an instance of By > (... (B, >
(0 5> (B> (x &8)))) ...).}. Then all instances of the adjunction schema,
our variant of the consistency schema and an infinity of instances of the
omnidoxasticity schema (as well as other schemata) are underivable in this
system. So what is needed is a semantics which invalidates whatever is
rendered underivable by restricting RB() to Q as just specified and of course
which validates whatever remains derivable for Sub-KDQC™() (soundness)
as well as validating orz/y that which is derivable for Sub-KDQC™(Q)
(completeness). Such a characteristic semantics is needed for any Sub-
SQC=() system where = S.

Rantala‘s suggestion for a type of semantics which would characterize
the Sub-SQC®Q) systems and hence which would invalidate all wffs render-
ed underivable by virtue of how Q is set up runs roughly as follows:? A
Sub-SQC=Q) model is a 4-tuple <W, W",R, V> such that W = @ and W* is a
possibly non-empty set of ‘non-normal’ indices!® such that wn wW* = @,
Further, R ranges over members of W U w* or more formally, R¢ (Wu
W*) X (WU W*). The assignment function V is defined for members of
WU W as follows: V: Atomic Wifs X (W U W*) —— {0,1}. In addition,
the two restrictions concerning the behaviour of the identity symbol which

applied to V for members of W in the semantics for the Sub~-SQC™ systems,

9 See Rantala (1982), p. 109; Rantala (1983), pp. 46-47.
10 The significance of the appellation non-normal’ will be explained presently.
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apply to V for members of W U W*. We shall now put the set W* to work
in dealing with the 'problem of deduction’' because as we shall now see, the
special twist to the sort of semantics we are currently considering is that
the valuation function Vyy is not defined inductively for members of w*,

The valuation V) as usual takes wifs at indices into truth-values,
although what is distinctive about V) in Rantala's semantics is that it as-
signs values to wffs at both normal and 'non-normal’ indices. l.e., VM:
Wits X (W U W*) —— {0,1}. V)y for members of W is defined as usual by
induction with V(a,wj) = Viq(at,w;) as the basis. V) for members of W*
for atomic wifs is of course defined as it is for members of W, i.e.,
V(a,wy) = Viy(a,wy) since a function can only assign to a wif '1' or '0' at
the same index but not both. However, V) for non-atomic wifs is not def-
ined for members of W* by induction using V(& ,w;) = Vy(or,w;) as the
basis. In effect, the standard conditions for the connectives, the belief op-
erator and the quantifiers are at least initially lifted for non-normal in-
dices. Finally, validity in a model is defined as truth at all normal indices
and validity in a class of models is of course validity in all models in the
class.11

Since validity in any Sub-SQC=() model is defined as truth at all nor-
mal indices and validity in a class of models is truth at all normal indices
in all models in the class, it is sufficient that R has imposed on it the re-
quisite strictures (for validating all instances of an appropriate axiom-
schema such as D, 4 or 5) for members of W only. For example, for any
Sub-KDQC=() system containing D, Bat > Pga it will be sufficient to require
that if wy is in W then there is at least one w in W such that wiRwjy. Or
if we are considering the system Sub-KD4QC®() then it is sufficient to

11 See Rantala (1962), p. 109. To be more precise, Rantala uses true in M instead of Valid in M.
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require that R is serial and transitive for members of w.12

And so the reason that the members of W* (such that wn w* = @) are
called non-normal (or non-standard or impossible) is that V) is not def-
ined inductively for such indices and hence if the connectives, the belief op-
erator and the quantifiers ‘misbehave* then theses of the particular unres-
tricted system could turn out to be false at these indices, a situation which
Nicholas Rescher calls “logical anarchy"i3. However, as will be argued, the
phrase ‘logical anarchy' is a misnomer with respect to Rantala's impossible
worlds.

Although the standard truth-conditions for non-atomic wiffs which
hold for. the normal (or 'classical'l4) indices are lifted for non-normal (or
'‘non-classical') indices, it is not the case that 'anything goes' at impossible
indices. This is because a number of strictures need to be imposed on Vyy
for impossible indices in order to ensure soundness. One such stricture
which Rantala discusses is the following:

1) For any wj in W, if Viy(a,wj) = Vi(a > B,wj) = 1 then
VM(F,W]) =116
In other words, even impossible indices are closed under detachment al-
though this is not equivalent to re-introducing the standard truth-
conditions for material implication. This is because there is nothing in the
above restriction which prevents any implicational thesis from being false
at a non-normal index - provided that as we shall presently see, this

thesis is not in the set ) described above. All that this restriction pre-

12 Rantala (1982), p. 109.

13 Rescher and Brandom (1980, p. 21.

14 The appellations ‘classical’ vs. non—classical’ for the kind of semantics we are now discussing have
been used by Cresswell in a number of places including Cresswell (1970) and Cresswell (1973).

15 This is discussed in Rantala (1982), p. 109 and in Rantala (1983), . 61.
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cludes is the sort of case where for some non-normal index wj; and for any
wifs a, B, Viy(a,wy) = Viy(a > B, wy) = 1 but VM(ﬂ,wi) = 0.

What this stricture imposed on impicational wffs for members of w*
guarantees is the validity of the Sub-SQC=() axiom-schema (Ba & B(a >
B)) > Bf for the following reason. Suppose that for some Sub-SQCZ(Q) model
<W,W* R,V>, such that for some wifs &, B, Vp(Ba,wy) = Vy(B(ax >
B),w;) = 1 but that Vy(Bf, w;) = 0. Then there is some wj € W U W* such
that wijRwj and where although VM(a,wj) = V(e > B,wj) =1, VM(B,wj)
is 0. But if wy is in W this set of valuations is inadmissible by virtue of
the truth-conditions for '>' and if wj is in W* then this set of valuations is
inadmissible by virtue of the above mentioned ‘closure under detachment'
stricture.

An additional stricture which Rantala imposes on members of w* for
quantificational doxastic systems is that for any universally quantified
wif of the form (Yv)a and for any wj € W*

2) If VM(a‘ (t/v),wj) = 1 for all constants t then Viq((Yv)a,wy) = 1.16
A similar stricture (also in conditional form) would be imposed on Vv for
members of W* for existentially quantified wffs.1?7 Of course these stric-
tures are equivalent to re-introducing one half of the classical or standard
truth-conditions for quantified wffs. As Rantala notes, these restrictions
are needed for propositional attitude logics which contain as an axiom-
schema the Barcan Formula (BF), (Yv)Bx > B(Yv)« .18 In short, the
reintroduction of one half of the classical truth-conditions for the quan-

tiflers via the above mentioned strictures is necessary to guarantee the

16 Rantala makes this stricture a biconditional although rendering it as a condtional does the same
work and greatly simplifies the completeness proof.

17 \e., for any w; inW", if V(0L (/v),w {) = 1 for at least one term L then V() ot wy) = 1.
18 See Rantala (1983), p. 61.
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soundness of the Sub-SQC*(Q) systems all of ‘which contain BF relative to the
type of semantics we are considering as will now be shown.

Suppose that there is a Sub-SQC"() model M = <w,w"‘, R,V> such that
VM{((YV)Ba,w;) = 1 for some wj in W. For every constant t, Viy(Ba (t/v),
wy) = 1. So, for every constant t, Viy(a (t/v),wy) = 1 for any w; EW U W*
such that wiRwj. If wjis in W then by the standard truth-conditions for
univerally quantified wffs, VM((Vv)at,wj) = 1 and if wj is in W* then by
the above stricture imposed on V) for non-normal indices, it also follows
that Viy((Yv)a,w;) = 1. Thus, since for every wj € W U w* such that
wiRwj, Viy((Yv)a,wj) = 1 it follows that Viy(B(Yv)a,wy) = 1. Q.E.D.

It should be noted that even though the quantifiers behave standardly
at all non-normal indices, it is still possible for theses whose major con-
nectives are truth-functional or which are belief wffs but which involve
quantifiers to be false at such indices (provided they are not in ). They
can turn out to be false by wvirtue of the non-standard behaviour of the
major connective or the belief operator at impossible worlds. |

There is one further stricture which Rantala imposes on V) for the
members of W* in order to ensure soundness, viz., that wiffs which are
valid in the model in the sense that they are true at all the normal indices
and which are such that they are in the set  (viz., the recursive subset
of the set S of wiffs to which the rule RBQ applies) must also be true at all
non—nprmal indices in the model. Expressed more formally,

3) For any wj in W* and for any wff & such that a € ),

it Vm(at,wy) = 1 for all wjin W then V(o wy) = 1.
It will now be shown how this condition helps to guarantee soundness of

any Sub-SQCT() system relative to this sort of semantics.
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Suppose that for some wiff &, |-a and suppose further that a is in Q.
Then by RB(Q) it follows that |-Ba. Now suppose also that |=a, i.e., that o
is valid. What we need to show is that |=Ba, from which it follows that
the rule RB(Q) preserves validity. Since by supposition & is valid, it follows
that for any model M = <W,W"', R,V> in the appropriate class of models,
VMm(a,wy) = 1 for all wj in W. Further, since by supposition & is in the set
2 and given our stricture on V) for members of W* it follows that for any
non-normal index wj in W* in any model, V(o ,wj) = {. In other words,
the validity of & coupled with its membership in the set Q) ensures that o
is true at a// indices both normal and non-normal in any model. And this
in turn guarantees that for any normal index wj in any model (in the rel-
evant class of models), Vq(Ba,w;) = 1. And so the rule of inference RB()
preserves validity by virtue of Rantala's stricture that valid wffs in Q are
true at all non-normatl indices in any model. Q.E.D.

By way of clarification, Rantala's 'non-normal’ or 'impossible’ indices
are not to be confused with the so-called dead ends for classes of models
for K-extensions where R is not serial. As described in chapter one, at any
such index, all wffs of the form Ba are true and all wffs of the form Ppa
are false, thus invalidating D, since no world is accessible from a dead end
including itself. However, the connectives and the belief operator 'behave'
standardly at such indices. Hence, all theses of the appropriate system are
validated at dead ends. And these two characteristics, viz., that the con-
nectives are defined standardly and that theses remain valid at dead ends
distinguishes them from Rantala's non-normal indices. Finally, at a dead

end although agents believe anything including & & ~a&, & & ~0& could never


http:standard.ly

()

271

be true at any dead end whereas & & ~& cou/d turn out to be true at a
Rantalian impossible world since '~' and '&' are not defined inductively.

Nor are the impossible indices of Rantala to be confused with Kripkean
non-normal indicesi? which can be used in setting up the characteristic
semantics for the (non-normail?®) modal systems S2 and S3.21 Like dead
ends for K-extensions not containing D or T, any non-normal index for S2
and S3 models is such that no index is accessible from it including itself al-
though it must be accessible from some other index. Il.e., if wj in W in an
S2 or S3 model is ‘non-normal' then ~(Iw;)(w;j € W U W22 & wiRw;) &
(3wyg)(wx € W & wxRwj). However, what distinguishes non-normal
indices for S2 and S3 models from dead ends is that in the former case any
wif of the form Bat is false at such indices and hence given the inter-
definability of 'B' in terms of 'Pg' any wiff of the form Pgo will be true at
such indices, which of course is the reverse of the situation for dead ends.

The reason that this 'reverse' situation obtains for Kripkean non-nor-
mal indices has to do with the truth-conditions for belief wffs in this type
of semantics. Given that an S2, S3 model is a triple <W,R,V> where W is
a non-empty set of at least one normal and possibly some non-normal
worlds, and where R is quasi-reflexive? (for S2) or R is quasi-reflexive
and transitive (for S3), Viq(Ba,wy) = 1 iff wiRwy and for all wj such that
wiRwj VM(&,wj) = 1. The proviso that wiRwj in the truth-conditions for

belief wifs gives us a semantics that validates the schema T, Ba > & which

19 See Kripke (1965).

20 By ‘non-normal’ here, we mean that S2 and S3 do not have an unrestricted rule of necessitation.
We have not considered S2 and S3 as potential logics of belief since both contain B > of. See
Hughes and Cresswell (1968), pp. 246-253 for a detailed discussion of these axiom systems.

21 gee Hughes and Cresswell (1968), pp. 274-276.

22 w* {s a set of Kripkean non-normal indices.

23 R is a quasi-relexive relation ranging over the members of W =df. for any w; in W, if there is at
least one w; in W such that if wiRw; then wiRw;.
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therefore rules out S2, S3 as viable logics of belief. Since any Kripkean non-
normal world is such that no world including itself is accessible from it, it
follows that the 'wiRwj' proviso is never satisfied and hence for any wff of
the form Bo, Ba will be false at such an index. And by the interdefin-
abitlity of Pg in terms of B, all wiffs of the form Pga will be true at this
sort of index.

Finally, validity in an S2, S3 model is truth at all norma/ worlds and
hence certain modal theses of S2, S3 such as |-g; 3B~(a & ~at) where a is
a wif of PC, can turn out to be false at Kripkean non-normal worlds. In
fact, all instances of B~(& & ~at ) will be false at non-normal indices even
though |-B~(at & ~a). And this is so by virtue of the 'wyRwj' proviso in the
truth conditions for belief wffs coupled with the inaccessibilty of non-nor-
mal worlds. Nonetheless, we still could never have the type of situation
where & & ~a is true at Kripkean non-normal indices since once again, the
connectives '~' and '&' are defined classically. And this distinguishes Krip-
kean non-normal indices from Rantalian impossible indices since in the lat-
ter case, wffs of the form a & ~& could turn out to be true.

To discern for any given Sub-SQC¥() system whether or not Rantala's
proposed semantics validates all and only what is derivable in the system,
we must prove soundness and completeness. How such proofs might pro-
ceed will be discussed in outline fashion. However, before addressing these
questions, more needs to be said concerning the exact 'mechanics’ of
Rantala's proposed semantics for 'restricted’ propositional attitude logics.

On the syntactic front, we saw that what blocks the derivation of certain

philosophically objectionable wffs such as certain instances of the adjunc-
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tion schema was to set up the set Q in such a way that a key application
of RBQ) in the derivation of that wiff is blocked. In the case of the adjunc-
tion schema, we set up Q in such a way that it excludes the appropriate
instance of & > (B > (& & B)) as well as any instance of f; > (... (B, >

(¢ > (B> (x &B)))). But what we want to determine is what aspects of
the 'corresponding’ (if we are not question begging) semantics invalidates
the instance of the adjunction schema whose derivation has been blocked in
the appropriate axiom system.

What provides the answer to this question is the role which the set
plays in the semantics intended to characterize the restricted Sub-SQC¥Q
systems. This arbitrarily selected subset of the set of wffs is the crucial
link between the syntactic move of blocking the derivation of a certain
objectional wff and the semantic move of invalidating this wff. This set Q
plays a role in invalidating those schemata which it renders underivable in
the 'corresponding’ axiom systefn via one of the strictures that Rantala
imposes on the valuation function for impossible indices in a model, i.e., if
& is true at all normal indices in the model (i.e., if & is valid or 'true’ in
the fnodel) then & is also true at all non-normal indices in the model pro-
vided that a is in the set €. 1f & is not in Q then it could turn out to be
false at some non-normal index even though |=pa or |=a.

In order to illustrate how this stricture on V) for non-normal indices
invalidates objectionable wffs whose derivations are blocked in the syntax,
we shall consider the following instance of the adjunction schema, viz.,
(BFa & B~Fa) > B(Fa & ~Fa). The derivation of this wff can be blocked in
any Sub-SQC=() system by stipulating that Q=S - {§ | § is Fa 5 (~Fa > (Fa
& ~Fa)) or § is an instance of B; > (...(B,, > (Fa 5 (~Fa > (Fa & ~Fa))))}.
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In short, by excluding the wif Fa > (~Fa > (Fa & ~Fa)) and any instance of
By > (...(B, > (Fa 5 (~Fa > (Fa & ~Fa)))) from the set Q to which the rule
RBQ) applies, we effectively block the derivation of (BFa & B~Fa) > B(Fa &
~Fa) since a crucial step in this derivation involves applying RBQ) to the
wif Fa > (~Fa > (Fa & ~Fa)). Further, the derivation of the following
instances of the omnidoxasticity and consistency schemata (for systems
containing D), viz., (BFa & [-Fa > (~Fa > (Fa & ~Fa)) > B(~Fa > (Fa & ~Fa))
and ~(BFa & B~Fa) respectively are blocked for reasons discussed in the
previous section. And of course there is an infinity of other wifs whose
derivation is effectively blocked including an infinity of instances of the
omnidoxasticity schema. We shall now see on the semantic front exactly
how setting up Q in the way we have invalidates the above mentioned
instances of the adjunction and omnidoxasticity schemata.

The following will constitute a Sub-SQCTQ) countermodel to the follow-
ing instances of the adjunction, omnidoxasticity and consistency schemata,
viz., (BFa & B~Fa) > B(Fa & ~Fa), (BFa & |-Fa > (~Fa > (Fa & ~Fa)) > B(~Fa
> (Fa & ~Fa)) and ~(BFa & B~Fa) respectively. Let M be such that W =
{wyl, W* = {w3}, {<wy,w>} C R. LetQ=8-{8|8 is Fa> (~Fa 5> (Fa &
~Fa)) or § is an instance of §; > (...(f,, > (Fa > (~Fa > (Fa & ~Fa))))}

Let V(Fa,w1) = V)(Fa,wq) = 1 and since w; is normal, Vyq(~Fa,wy) = 0.
Also, since V(Fa,wy) = 0 it follows that Vpq(Fa > (~Fa > (Fa & ~Fa)), wy)
= 1 given once again that wy is normal. Suppose further that V(Fa,wz) =
VMm(Fa,wy) = 1. We shall set up Vy(~Fa,w;) as 1, which is admissible
because wj is non-normal and hence '~' is not defined inductively.

The index w3 is non-normal and in addition, Fa > (~Fa > (Fa & ~Fa)) is

not in 2 Further, given our restriction RQx for Q, viz., that a £ Q only
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if @ > B £, then any wif of the form By > (...(B, > (Fa> (~Fa > (Fa &
~Fa)))) will be excluded from . Then the following valuation is admis-
sible, viz., Viy(Fa > (~Fa 5 (Fa & ~Fa)),w3) = 0 as will now be shown.

Our stipulating that Vyy(Fa > (~Fa > (Fa & ~Fa)),w,) = 0, Rantala's
closure restriction on members of W*, viz., that for any w;in W', if
Vp(a, wp) = Vag(a > fwy) = 1 then Vg w;) = 1 is not violated since
any wif of the form B; > (...(B, > (Fa 5 (~Fa > (Fa & ~Fa)))) is excluded
from Q. Thus, we can stipulate that for any wff of the form B, > (...(f,
> (Fa > (~Fa > (Fa & ~Fa)))), Vm(B; > (... (B, > (Fa > (~Fa > (Fa &
~Fa)))), w3) = 0. [Note also that this stipulation will not violate the res-
triction for any member of W*, that ir @ €42 and if Viy(a,wy) = 1 for all
wj in W then Vy(a,wy) = 1 for all wi in W*.]

To illustrate that the closure restriction on members of W* will not be
violated in letting Vq(Fa > (~Fa 5> (Fa & ~Fa)), w3) = 0, suppose that some
wif B is true at wy in W* such that |- > (Fa > (~Fa > (Fa & ~Fa))). Since
B > (Fa > (~Fa > (Fa & ~Fa))) has been excluded from € by our stricture
ROQx in which case our stipulating that Vy(p > (Fa > (~Fa > (Fa &
~Fa))),w3) = 0 is admissible, then the closure restriction on members of
W* has not been violated. [For example, § might be ~Fa > (Fa > (Fa & ~Fa))
in which case, Vp(~Fa > (Pa > (Pa & ~Fa)),w3) = 1. Nonetheless, given
RQx, the wif (~Fa > (Fa > (~Fa & Fa))) > (Fa > (~Fa > (Fa & ~Fa))) is not
in ©Q and hence it is admissible to stipulate that it is false at wz.] But, it
could be countered that Viy(p > (Fa > (~Fa > (Fa & ~Fa))),wp) = 0 is not
admissible since there could be some wiff Y such that Y is true at wy and
such that |-y > (B > (Fa 5 (~Fa > (Fa & ~Fa)))) - which could violate the

closure restriction on members of W*. However, the wff Y > B > (Fa>
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(~Fa > (Fa & ~Fa)))) is itself excluded from by RQx» and so, it is admis~
sible to stipulate that Viy(y > (B > (Fa > (~Fa > (Fa & ~Fa)))),w3) = 0.

And in general, for any wif of the form $, > (...(f, > (Fa> (~Fa>
(Fa & ~Fa))))...), if there is a wif B, true at w; such that |-p, > (§; >
(...(Bp > (Fa > (~Fa > (Fa & ~Fa))))...)) then since B, > (B> (... (B, >
(Fa > (~Fa > (Fa & ~Fa))))...)) is not in Q by ROx, it is admissible to stip-
ulate that this wff is false at wy thereby not violating the closure restric-
tion on members of W* - if it has also been stipulated that the consequent
B> (...(B, > (Fa > (~Fa > (Fa & ~Fa))))...) is false at wy. Q.E.D.

Given that Vyy(Fa > (~Fa > (Fa & ~Fa)),w3) = 0 then the closure res-
triction on implication is not violated for w; in letting Vy(~Fa > (Fa &
~Fa),w3) = 0 even though V)(Fa,w3) = 1. Thus, Vjy(BFa,wy) = 1 although
VMm(B(~Fa > (Fa & ~Fa)),wy) = 0 which therefore invalidates the above
instance of the omnidoxasticity schema.

Also, since '&' is not defined inductively, it is admissible to let Vq(Fa &
~Fa,w3) = 0 even though we have stipulated that V(Fa,wp) = Vq(~Fa,w3)
= 1. Further, we shall not be viclating the ‘closure' restriction on impli-
cation for non-normal worlds in stipulating that VM(Fa & ~Fa,w2) = 0 even
though Viy(Pa,w3) = Viq(~Fa,w3) = 1 since Vp(Fa > (~Fa > (Fa & ~Fa)),
w) = Vi(~Fa > (Fa & ~Fa),w;) = 0. Then even though Vjy(BFa,w;) =
VM(B~Fa,w1) = Vy(BFa & B~Fa,wj) = 1 (which therefore invalidates the
consistency schema for systems containing D), Vy(B(Fa & ~Fa),wy) = 0
thereby invalidating the above mentioned instance of the adjunction
schema. Q.E.D.

This example was in part intended to illustrate the significance behind
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the restriction RQx on the set ). As was noted in the previous section, it
is possible to construct Q in such a way that the resulting Sub-SQC Q)
axiom system will not contain certain select instances of some schema such
as the adjunction, consistency or omnidoxasticity schema - provided that
we are willing to pay the price of having a logic such that an infinity of
other wiffs derivable in the corresponding unrestricted Sub-SQC=() system
are thereby rendered underivable. The cost which is exacted by employing
the restriction RQ)s in the axiom system is paid back in the semantics since
we are ensured that the select instance of the crucial schema (such as the
adjucntion schema) which is rendered underivable in the syntax is invali-
dated in the semantics.

With respect to invalidating select instances of the omnidoxasticity,
adjunction or consistency schemata rendered underivable in the given
axiom system, the rule RQx serves the function of ensuring that the clos-
ure restriction on V) for non-normal indices and the restriction that if
a €9 and if Vq(a,wy) = 1 for all wj in W then VMm(a, wy) = 1 for all w;
in W*, do not conflict. For example, suppose that Y is a wff to which the
rule RBQ) must be applied for the appropriate instance of the adjunction
schema to be derived. In such a case, Y will be an instance of o > (B >
(o & B)). Then excluding Y from Q as well as all instances of f; > (...(§,
> a)...) given RQ* results in the appropriate instance of the given schema
being rendered underivable. The parallel situation in the semantics is that
in excluding o from €, & can take on the value ‘false’ at some non-normal
alternative wj to the index at which the given instance of the schema is
being evaluated. However, if there is some wiff § such that |-f > @ and

such that Viy(f,wy) = 1 then f > a's being excluded from 2 given RQx
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allows the assignment of the value ‘false’ to f > & at wj thereby avoiding
a violation of the closure restriction if Y has been assigned 'false’ at wj.
Further, assigning 'false' to p > & at wj will not itself involve a violation
of the closure restriction since any witf of the form $> (B > a) is also
excluded from €2 given RQx.
What is now needed are general completeness results to/ show that for

any wif a, if & is not a thesis of the given Sub-SQC7() system then «

is invalid in the appropriate class of models. In the next section, we shall

therefore address ourselves to the question of soundness and completeness

of the Sub-SQC™() systems relative to the sort of semantics just presented.

4. Soundness and Completeness Results for the Sub-SQC=¢ Systems

We have already seen how the three strictures which Rantala imposes
on V) for non-normal indices helps to ensure soundness of the various
Sub-8SQC7() systems relative to his proposed impossible worlds semantics.
These strictures ensure that the schema K and the Barcan Formula are
valid in the appropriate class of models and that the restricted rule RBQ
preserves validity. The proofs that the remaining axiom-schemata such as
t=t, a(t/v) > Aa, a(ty/v) & t; = t3) > a (ty/v) where ty, t; do not
occur in the scope of doxastic operators and o where & has the form of a
PC thesis, are valid and that the other rules of inference, MP and restricted
R3 preserve validity are straightforward enough. They proceed roughly
along the same lines as the proofs for the unrestricted Sub-SQC™ systems.

However, a fourth stricture is needed for V)4 for non-normal indices

in Sub-SQC=() models which will ensure the validity of all instances of the
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following Sub-SQC=() axiom-schema, viz., (&t (t1/v) & t1 = t3 & B(y = t3)) >
o (t2/v) - where it is stipulated that t;, t; may occur in the scope of dox-
astic operators. This schema restricts substitution of identicals to cases
where the agent believes that the relevant identity obtains. However, as it
stands, the following simple instance of this schema viz., (B(Fa v Gc) &
a=b &B(a=>b)) > B(Fb v Gc) is invalidated in the following Sub-SQC*(Q)
(partial) model: W = {wy}, W* = {ws}, <wy, wo> € R and V(Fa,w3) = 1
and V(a = b,wz) = 1. Then by one of the restrictions applying to V for
members of WU W*, V(Fb,w;) must also be 1. Then Vjy(a = b,wy) =
VMm(Fa,w3) = Viy(Fb, w3) = 1. But since wj is non-normal in which case
‘VM' is not defined inductively, the following are admissible valuations:
VMm(Fa v Gec,w3) = 1 and V)y(Fb v Ge,w3) = 0. Then V(B(Fa v Gc),wy) = 1
but Vpm(B(Fb v Gc),wy) = 0.

Thus, what is needed to avoid the above kind of situation is the intro-
duction into the semantics of a fourth restriction, which merely stipulates
that Vi for members of W* is such that for any wiffs & (t1/v) and a (tp/v)
of any degree of complexity,

4) 1f Viy(ty = t3, wy) = 1 then Vy(a (t1/v), wy) = Viy(a (ta/v), wy).

In particular, this restriction would disallow the above (partial)
counter-model to (B(Fa vGc) & a=b & B(a = b)) > B(Fb v Gc) since given
that Vy(Fa v Gc,wp) = Viy(a = b,wyp) = 1, then it must also be the case
(vis a vis Restriction 4 on V) for members of W*) that Vy(Fa v Gc,w,) =
1. Generally speaking, Restriction 4 on V) for members of w* would en-
sure that the restriction on V for members of W U W* viz., that if V(t1 =
t2, wy) = 1 then V(& (t1/v),wy) = V(a (to/v), wy), can be extended to V) for
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members of W* where the connectives and the belief operator are defined
non-classically.

Completeness is a little tricky to establish for the Sub-SQC™() systems
since it is not immediately obvious how we can characterize the set w* for
any Sub-SQC®() system's canonical model. In his 1982 article, Rantala
suggests characterizing w* for a system's canonical mode] roughly as fol-
lows: Given that W for the particular system's canonical model M = <W,
W* R,V> is a set of maximal consistent sets of wffs each set having the
3-property, we define the set W* as itself a set of sets of wffs where for
any member of this set, wy there is exactly one member of W, wy such
that wy = {x € Wffs | Ba € w;y}.2¢ In other words, any member of W Wi
is a set of wffs where for exactly one member of W, wj, each wff & in the
set wj will be such that Ba is in wj. Given that R for M is defined as
usual, viz., wiRwj iff (Ya)(Bx Ewj — a0 € wj), it follows that for any
member wj of W* there is exactly one member of W, wy such that WwiRwj.
Further, for any member of W, wj there is exactly one member of W*, wj
such that wil?.w‘j"’6 provided that wj contains at least one wif of the form
Ba. What this amounts to intuitively is that for a Sub-SQC=() canonical
model, for each maximal consistent set with the 3-property in W, w; we
construct a set of wffs wj consisting of all and only the content wffs of all
the belief wffs contained in wj. Whether or not the members of W* them-
selves have the 3-property is immaterial given - as we shall see - that the
fundamental theorem of canonical models for members of W* is not proven
inductively.

To summarize, a Sub-SQC=() canonical model M is a 4-tuple <W,W*,R,

V> where W is a set of maximal consistent sets of wffs with the 3-proper-

24 pantala (1982), p. 110.
25 Rantala (1982), p. 110 and Rantala (1983), p. 53.
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ty and W* is a set of sets of wiffs where for each wj in W there is a wj in
W* which is such that for any wiff & in wj, Ba is in wy. The element R
is defined as wiRw iff (Va)(Ba € wy —— a € WJ) although as we have
not yet noted, Rantala requires that for any ordered pair <wjwi> in R, wj
€ W and wj EWU W* I.e., Rantala stipulates tha{ for any Sub-SQC=()
canonical model, R ¢ W X (WU W*).26 This in effect means that no index
is accessible from any non-normal index including itself for the canonical
model although given the definition of W* for M, it follows that each wj in
W* is such that wiRwj for exactly one wj in W. Given the ‘'inaccessibility"
of members of W* for the canonical model plus the fact that every wj in
W* is 'accessible' from some member of W, it would seem that in these
very respects, non-normal indices in the canaonical mode! for any Sub-
SQC(Q) system are similar to Kripkean non-normal indices which are used
in setting up the semantics for S2 and 83. There is also a fundamental
difference between Kripkean non-normail indices and members of w* for
M as will be argued below.

We can define the element V in the canonical model M for members of
W U W* as follows: Where a is atomic and for any wyin WU W¥
V(a,wy) = 1 iff ® € wj. For members of W*, we let V(a,wyp) = V(a,w;)
and hence VM(“ »Wi) = 1 iff & € wj for any atomic wif o although we do
not prove the fundamental theorem of canonical models for members of W*
using induction (presumably since VM is not defined inductively for mem-
bers of W* in any Sub-SQC*() model, M). Thus, it is simply stipulated that
for any wif a and for any wj in W*, vV (a,wy) = 1 iff & € wy.27 And so,

if a wif of the form BB is in some member of W, wj then it follows that

26 See Rantala (1982),p. 110.
27 Rantala (1982), p. 111.
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Ba is in some wj in W?* such that wijRwj. Then by the fundamental
theorem of canonical models for non-normal indices, Vp(Ba,w;) = 1 and
this shows that unlike Kripkean non-normal indices in the semantics for S2
and S3, belief wffs can be true at Rantalian non-normal indices in any
Sub-SQC*Q) canonical model.
Further, for the valuation over any Sub-SQC¥() canonical model, Vyy,
the fundamental theorem of canonical models is proven for members of W
by induction with Vg (a,w;) = V(a,w;) and so Vi (o, wy) = 1 iff & € w;
for any atomic wiff a as the basis of the induction. And the inductive proof
would proceed along the same lines as it did for the unrestricted Sub-SQC™
systems (using the inductive hypothesis that the theorem holds for wffs of
degree of complexity n) except for the case where o is of the form Ba. In
this case, the proof of the subcase that if Vy (Bat,w;j) = 1 then Ba € wj is
considerably simplifed by appeal to the fact that every non-normal index
in W* is accessible from exactly one normal index in W in the canonical
model:
Subcase a): Suppose V (Ba, wy) = 1
then Vy(a,wj) = 1 such that w; € W* where WiRwj.
ax Ew 3 since w § is non-normal and given that for
any such index, Vy(a,wj) = 1iff & € wj.
Ba € wy given that wj = {a | Ba € wy}.%®
The remaining subcase, viz., that if B& € wj then Vi (Ba,w;) = 1 is
proven in basically the same way as it is for the Sub-SQC™ systems:
Subcase b): Suppose Ba € wy
then & € wj for any wjin WU W* such that wiRw;.

28 Rantala (1982), p. 111. Our proof of subcase b) differs from Rantala's since his proof relies on the
the system’s containing the schema T. His proposals are primarily for epistemic logic.
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VM(a..wJ) = 1 by the inductive hypothesis if w; € W
or immediately if wj € W*,
Vu(Ba,w;) = 1 by the truth-conditions for Ba .
Q.E.D.

Now that the fundamental theorem of canonical models has been proven
for normal indices (and is stipulated to hold for non-normal ones), all that
remains to be shown is that the canonical model is a model for the par-
ticular Sub-SQC*() system under consideration.

Showing that the canonical model M is in the class of models with
respect to which the particular Sub-SQC¥() system is sound involves two
steps. First, as before, we must show that the element R in M has the
requisite characteristics. For example, for any Sub-KDQC™() system it must
be proven that R in its canonical model is serial for W in the sense defined
above, viz., for any normal index wj in W there is at least one W inw
such that wjRwyj. _

Once we have established that R in the particular Sub-SQCT() system's
canonical model meets the appropriate constraints, it must next be shown
that V4, meets the strictures imposed on V) for non-normal indices in any
Sub-SQC=() model.2% First of all, it must be shown that for any w; in W*
in M and for any wifs o, B, if Vy (o, wyp) = Vy(a 5> §,wp) =1 then
V(B,wy) = 1. The reader is referred to Rantala's 1982 article for details
of this proof although in outline fashion, it involves supposing that Vu(a s
wi) = V(o > ,wy) = 1. Then Ba € wjand B(a > ) € wj since wy = {a |
Bax € wj} for exactly one wj in W. From this it follows that Ba & B(a > f)
€ wj and since |-(Ba & B(a > B)) > Bf it further follows that Bf € w;.
And given that wj = {a | Ba € w;}, B € wj and so Vy(,wp) = 1. QE.D.

29 Rantals (1982), pp. 111-112,
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Next, we need to show that the second set of strictures which Rantala
imposes on V) for members of W*, viz., that for any wj in W¥, if
VMm(e (t/v),w;) = 1 for all constants t then Vq((Yv)ot,wy) =1 and if
VMm{a (t/v),wy) = 1 for at least one constant t then V((@v)a,wy) = 1
applies to V4 for the canonical model. We shall prove that these two
strictures apply to Vy for any wj in W* as follows:
1) For any wj in W*, suppose V(e (¢/v), wy) = 1 for all constants t.
thus, a(t/v) € wy for all t by def. of Vj for
members of W*.
thus, Ba(t/v) € wj  for all t such that wyj €W
where wy = {a | Ba € wy}
Vi (Ba (t/v),wJ) =1 for all t.
thus, VM((VV)BG,WJ) = 1,
(Yv)Ba € wj by the fundamental theorem.
F(vv)Ba > B(Yv)ax BF
(Yv)Ba > B(Yv)a € wj since wj is
maximal consistent
B(Yv)a € wj  since wj is max. con.
(YV)a € wy since wy = {a | Ba € w}.
Vi ((Yv)a,wy) = 1 by df. Vg for mem-
bers of W*,

2) For any wj in W*, suppose V(& (t/v),wy) = 1 for some constant t.
then «a(t/v) € w; for some constant t by the def.

of VM for members of W*.
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Ba (t/v) € wj for some cons. t such that w;
in W and wy = {a | Ba € wy}.
|-Bat (t/v) > B(3v)a  which is a thesis for
any Sub-SQC~() system such
that € includes all instances
of a(t/v) > (I)a.
(Note: The upshot of this step in the proof is that the completeness result
goes through only for systems such that RB() is applicable to all instances
of the axiom-schema & (t/v) > (3v)a. This is because the derivation of
any instance of Ba (t/v) > B(3v)a depends on the application of RBQ) to the
appropriate instance of & (t/v) 2 (3v)at along with the schema K and modus
ponens. In short, for the sake of guaranteeing completeness, it should be
stipulated that any Sub-SQC%() system we chose as our system of quanti-
fied doxastic logic should be such that Q includes all instances of « (t/v) >
(3v)a. Therefore, the type of semantics we have discussed in this section
only chatacterizes those Sub~SQC=() systems such that £ includes all ins-
tances of & (t/v) > (3v)a. We shall now proceed with the proof.)
Bx (t/v) > B@v)a € wj (wj is max. con.)
B(I)a € wj since wj is max. con.
(Iv)a € wy since wy = {a | Ba € wy}.
Vau(@v)a,wy) = 1 by df. of Vyy for non-
normal indices.
Q.E.D.
Further, we shall need to show that the third stricture which Rantala
imposes on V) for members of W* for Sub-SQC=Q models, viz., that for all
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wi in W¥, if Vq(at,wj) = 1 for all wjin W and if & is in © thenVy(a,
wiy) = 1 applies to V4 for members of W¥* in the appropriate canonical
model. The proof of this can be found in Rantala's 1982 article and so we
shall reproduce it here only in outline form.3 In essence, the proof in-
volves showing that if for some a in Q, VM(a ,wj) =1 for all w j inw
then & is in each such wj in W from which it follows that |-« and by RBQ
that |-Ba. Then B& is in every wj in W. So for every wj in w* it follows
that & is in wj and hence that Vy(a,wj) = 1. Q.E.D.

Finally, the fourth stricture which was imposed on V)q for members of
W* viz., that if Viy(ty = ty, wy) = 1 then Viy(a (t1/%), wy) = Ve (t2/v), wy)
(for wifs a (t1/v), a (t3/v) of any degree of complexity), is proven to hold
for Vyy for members of W* as follows:

Suppose: Viu(ty = ta, wy) = V(o (t4/v), wy) = 1 but Vu(e (ta/v), wy) = 0
for some wj in w* in M. I.e., we are supposing that even
though Vi (ty = ta, wy) = 1, Vy(a (t1/v), wyp) = Vi (a (t/v), wy).

thus, t1 = t; € wj and a (t1/v) € wy
thus, B(ty = t3) € wj and Ba (ty/v) € wj such that w; € W and
where wi = {a | Ba € wj} and hence, wjRwj.
thus, Ba (t1/v) & B(ty = t;) € wj given that wj is max. cons.
F(Ba (t1/v) & B(ty = t3)) > Ba (tp/v)31
*  (Ba (ty/v) & B(ty = t3)) > Ba (tp/v) € wj since wj is max. cons.

Ba (t)/v) Ew j since wj is max. cons.

30 See Rantala (1982), p. 112.

31 This schema can be regarded as the purely doxastic’ variant of the axiom-schema (ot (t1/v) &
ty =t &B(ty = t2)) > a(ty/v) where Ly and to may occur in the scope of doxastic operators.
The conjunct in the antecedent, t{ = to is rendered superfluous. To avoid any technical objections,
we could simply add this variant of the above schema to any Sub-SQC™ () system as an axiom-
schema.
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a (t2/v) € wy since wy = {a | Ba € wj}.

V(e (t2/v),wj) = 1 by the fundamental theorem which con-
radicts our earlier supposition that Vg (a (tz/v),wy) = 0.
Q.E.D.

And so once we have proven that a given system's canonical model is
such that the four strictures on V)4 for non-normal indices apply to Vy
for members of W"‘, then this in conjunction with showing that R in M
meets the relevant constraints establishes that M is in the appropriate class
of models. And this in turn would complete the completeness proof. In the
next section, we shall see that although Rantala's proposals for a logic of
propositional attitudes not presupposing omniscience and for that matter
(although he does not discuss this) not presupposing the adjunction or the
consistency of attitudes seems to work, the characteristic semantics which
he proposes is objectionable which effectively puts us back to square one.
I.e., we are in need of an unobjectionable characteristic semantics for the

restricted Sub-SQC7(Q) systems.

5. Non-Standard Indices and Equivocation

In the previous section, it was argued that Rantala's semantics is ef-
ficacious in invalidating select instances of the omnidoxasticity schemata
(and their corresponding rules of inference), the adjunction schema as well
as the consistency schemata. This is owing to the feature of his semantics
that any thesis not in £ can turn out to be false at non-normal indices -
provided that we impose the stricture RQx on Q for cases where € is not

a calculus.
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One objection which could be made to Rantala's semantics is that we
cannot make good infuitive sense of non-normal indices, even if we can
make good model-theoretic sense of them. In chapter two it was argued
that intuitively, (normal) indices can be regarded as Carapian state des-
criptions. l.e., for any atomic wif & and for any index wj, either o is in
wi or ~& is but not both. Thus, indices conceived in this way are consis-
tent (and maximal) sets of atomic wffs or their negations. It was also
remarked that if we find objectionable the view that (normal) indices are
sets of wifs, then we could treat indices as primitives in our semantics,
although we could associate with each index a state description in the fol-
lowing manner: The associated state description consists of all those atomic
wifs or thelr negations assigned ‘1’ at the index by Vi in the model.

However, a Rantalian non-norrmal index is such that V) may assign
to any atomic wif &0 and its negation '1' or it may assign to & and its
negation '0' or it may differ in its assignment of a member of {1,0} to &
and its negation. This is owing to the feature of the semantics that Vi is
defined non-inductively for non-normal indices (while being subject to the
four strictures discussed in the previous section). Suppose we were to
associate with each non-normal index a set S of atomic sentences or their
negations such that membership in the set is determined by what Vy
assigns to any atomic wff o and its negation at the index. Then the resul-
ting set may not be a Carnapian state description since it may be both
negation inconsistent as well as non-maximal - for some atomic wff & and
its negation, it is possible that both it and ~a are in 8 or that neither a
nor ~0 are in S. Hence, in the general case, we cannot conceive of non-

normal indices either as state descriptions or as being associated with state
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descriptions. Then it would seem to follow that we cannot make intuitive
sense out of non-normal indices.

But even though in the general case we cannot conceive of non-nor-
mal indices either as state descriptions or as being associated with state
descriptions, it could be argued that non-normal indices are either identifi-
able with or can be associated with what we shall call ‘quasi-state des-
criptions’. Like state descriptions, a quasi state description Q is a set of
wifs, particularly either atomic wiffs or their negations although for any
atomic wiff o and its negation ~a, either both are in S, neither are in S or
one or the other is in S. Therefore, unlike state descriptions, quasi state
descriptions may fail to be consistent or maximal. Then we could say that
a non-normal index Js a quasi-state description or that associated with
each non-normal index is a quasi-state description S such that for any
atomic wiff & or its negation ~a, o or ~a is in S just in case V) assigns
‘1’ to either or both of these wffs at the appropriate non-normal index.

And so it would seem that we can make some sort of intuitive sense
out of Rantalian non-normal indices if we think of them as being associated
with what we have called quasi state descriptions. Further, there is no
reason why any non-normal index conceived as being associated with some
quasi state description cannot be a respectable belief alternative to the index
which an agent inhabits, since its associated description will by definition
contain no self-contradictory wffs of the form o & ~& (where & is atomic)
even if the description contains both & and ~a&. And since non-normal in-
dices are not closed under conjunction, then even though both & and ~a
may be true at such an index, it does not follow that their conjunction is

unless the index contains the appropriate instance of @ > (~& > (& & ~a).
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Hence any inconsistencies cbtaining at non-normal indices may be 'hidden'
in the sense that their conjunction may fail to obtain.

However, there is an additional problem alluded to by Max Cresswell
concerning impossible index semantics. Supposing that the connectives are
not defined inductively at non-normal indices, then there is no way to
determine what any of these connectives represent - they collapse into one
another.32 Anything goes for all of the connectives with the exception of
the closure stricture for '>' discussed above. Thus, there is-no difference
truth-conditionally speaking between any wff of the form « v §, & & f
and a s B. At non-normal indices, v, & and s are semantically indisting-
uishable - they cannot be individuated.

Howevwer, even if Cresswell's charge that there is no way of individu-
ating logical connectives (with the exception of the strictures imposed on
VM for members of W*) for non-normal indices can somehow be answered,
there is a more serious objection which he levels against impossible index
semantics for belief: If the connectives ~, v, &, 3, and = are defined non-
inductively for non-normal indices then we are not showing how they
misbehave if they are classically construed. All that we-are-showing is
that ~, v, &, 35, and = do not represent classical/ negation, disjunction,
conjunction, implication and equivalence for non-normal indices.33 For
example, if & and > represented classical conjunction and implication at
non-normal indices then any thesis containing these connectives would be
true at any such index. But this need not be the case if the thesis is not in
€. Therefore, & and > are not classical conjunction and implication which

happen to misbehave at non-normal indices - classical conjunction and

32 Cresswell (1982), pp. 74-75.
33 See Cresswell (1973), p. 41 and Cresswell (1982), p. 74.
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implication cannot misbehave and still be claasical.

In sum, Cresswell's charge here seems to be that we are equivocating
with respect to the connectives ~, v, &, 3, 2 in a non-normal index sem-
antics. Cresswell's objection is itself less objectionable if it is not assumed
that the classical interpretations of ~, & v, > and = are in any sense
privileged. I.e., the objection is not that ~, & v, > and = do not represent
‘real' negation, conjunction, etc. for non-normal indices but simply that we
are equivocating with respect to these connectives. They mean one thing
for impossible indices and they mean something else for normal indices.
(Stating the objection in this way avoids any rejoinders to the effect that
there is no priveleged interpretation of ~, &, v, > and =.) This equivocation
is not benign for the reason that Rantala's impossibie index semantics is
supposed to explain for example how agents can fail to classical/y conjoin
believed contents which obtain at non-standard alternatives. But if a con-
tent of the form & & P is false at some impossible alternative to an index
wji even though the 'conjuncts' & and B are true, then '&' in & & B is not
classical conjunction. So, it has not been demonstrated how some instance
of the adjunction schema, (Ba & Bf) > B(a & B) is invalid if '&’ in the
scope of the belief operator in the consequent is classical conjunction.

The 'classical’ rejoinder to Cresswell's second criticism of an impossible
worlds semantics for belief logic is to first of all claim that the connectives
of a formal logic are definable solely in terms of their role in inference - or

in terms of certain characteristic axioms.3® PFor example, the axiom-

34 Cresswell seems to suggest that the problem with impossibie worlds sementics is that for example
‘~' is not ‘real’ negation at impossible indices. See Cresswell (1973), ch. 3. He aiso seems to

assume that '~' qua real’ negation is truth-functional. See Cresswell (1985), p. 74.
35 This stance has received support in the literature including Belnap (1961), Rescher (1980), and

Read (1988), to name a few.
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schema 'a > (B > (& & B))' could be regarded as a kind of syntactic def-
inition of '& since it asserts that if & obtains and then if § obtains, & & §
obtains. On the other hand, if & & P fails to obtain then it follows that
either ~&x obtains or that ~f obtains or both. Then this is the syntactic
counterpart of the characteristic two-valued matrix for '&' classically
construed. Similar remarks apply for example to '~' since ~(& & ~a) could
be regarded as the syntactic counterpart of the characteristic matrix for '~
classically interpreted. Also, the two ‘paradoxes of material implication’,

a > (f>oa)and ~¢ > (¢ > B) can be regarded as characterizing '>' con-
strued as material implication.

Suppose for the sake of argument that the connectives of a formal
language really are definable in terms of their role in inference or in terms
of certain 'characteristic' axioms - as illustrated above. Then it can be
further argued that even though Rantala's semantics equivocates with res-
pect to the interpretation of the connectives, there is no corresponding
equivocation in the axiom-systems which are sound and complete with res-
pect to this semantics. 1.e., like our Sub-SQC* systems, any of the res-
tricted Sub-SQC™() doxastic systems contain all the thesis-schemata (as
well as material detachment) of the classical propositional calculus. So in
the Sub-SQC~() axiom-systems, the connectives ~, &, v, > and = 'behave’
inferentially as they would for the unrestricted systems. Since by sup-
position the connectives are definable purely syntactically, then we could
opt for defining them in this way rather than truth-conditionally thereby
circumventing Cresswell's charge of equivocation. This line of reasoning is
in fact taken up by Rescher in defense of a less extreme version of a non-

standard worlds semantics for belief logic, which will be discussed briefly



293

in the next chapter.3é

As might be suspected, the Achilles' heel in this line of reasoning is the
crucial supposition that the connectives of a language are definable solely in
terms of their roles in inference. Prior has called this supposition into
question by proposing the following reductio argument against it: Suppose
that we wish to introduce into the language of some formal system the
connective 'tonk'. Then an additional clause is added to the formation rules
to the effect that if &, B are wiffs then 'a tonk B' is a wff. We might then
define the connective ‘tonk’' proof-theoretically in any number of ways
including the following:

1) o |- o tonk B

2) o tonk B |- B
1) says that o tonk B is a deductive consequence of & and 2) says that p is
a deductive consequence of & tonk B. But by the transitivity of the ded-
uctive consequence relation, we obtain:

3) « |-p
3) says that from any wiff & we can deduce any wiff B, which is absurd.
Therefore, connectives cannot be defined solely in terms of their role in
inference. 37

A similar reductio-style argument could be offered for the claim that
the connectives of a formal system cannot be defined solely in terms of
certain characteristic axioms. I.e., suppose that we introduce the following
axiom-schemata characterizing 'tonk':

4) a > (a tonk B)

5) (o tonk B) > B

36 Rescher (1980), pp. 22-23.
37 See Prior (1961, 1964).
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Then by the transitivity of material implication, we can derive from 4)
and 5):

6) |-a 5B
6), which is also attainable from 3) by the deduction theorem says that
any wif logically implies any other wif, which is absurd. So, connectives
cannot be defined solely in terms of characteristic axiom-schemata.

The obvious counter-move at this point is to argue that Prior has not
shown that the connectives such as ~, v, & > and = cannot be defined
proof-theoretically, but merely that certain strictures need to be imposed
regarding the introduction of new connectives into a formal system.38 (The
existing connectives would also need to satisfy these strictures.) For ex-
ample, Belnap has suggested that any new connective must be a so-called
conservative extension of an existing axiom-system.3? A connective such
as 'tonk' is an extenmsion of an existing system in the sense that 1) a new
clause must be added to the current formation rules and 2) additional
axiom-schemata or inference rules are introduced. However, 'tonk' is not
a conservalive extension of the existing system since new inference rules
or axiom-schemata which characterize it result in the derivation of wffs
not involving 'tonk'. The conservativeness requirement therefore blocks
the derivation of & > § from 4) and 5). Belnap regards the conservative-
ness requirement as an ‘existence' condition for any new connective.

The point being made is that by imposing the right sorts of strictures
as to what counts as a connective of a formal system, we can avoid Prior's
objection that the connectives cannot be defined proof-theoretically. How-
ever, even if this is the case, Rantala's impossible index semantics is not

vindicated of Cresswell's charge of equivocation since as will now be shown

38 Read (1988), p. 169.
39 See Belnap (1961), reprinted in Strawson (1967).
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this equivocation is mirrored in the corresponding axiom-systems.

The response to Cresswell's charge of equivocation with respect to the
connectives in an impossible worlds semantics such as Rantala's was that
these connectives can be defined proof-theoretically ~ although the lesson to
be drawn from Prior's 'tonk' example is that the defined connectives must
meet certain requirements. But the axioms (or rules) in terms of which
~, & Vv, 3> and = are definable involve no apparent equivocation with res-
pect to them - the connectives behave classically in inferential contexts for
the Sub-SQC=() systemns. But in fact, the fallacy in this line of reasoning is
the assumption that to determine how ~, &, v, > and = behave, we merely
need to take into account various non-doxastic or non-modal thesis-
schemata or inference rules. This view is somewhat myopic. In order to
fully characterize the connectives ~, &, v, > and = for a modal or doxastic
logic, presumably we must also take into account how they behave in
modal or doxastic contexts.

If it is granted that to characterize the connectives ~, &, v, > and s,
we must take into account their behaviour in doxastic as well as non-
doxastic contexts, then for example the adjunction schema, (Ba & Bﬂ) >
B(x & B) could be regarded as expressing the principle that belief factors
out of ‘&' if it is classical conjunction. The conjunction in the scope of the
consequent, B(at & PB) is classical since any instance of this schema is der-
ivable (for the unrestricted Sub-SQC™ systems) by applying RB to the ap-
propriate instance of & > (B > (o & ﬂ)) which charcterizes '&' for non-dox-
astic contexts. (The reader should note that all 'classical' non-modal theses

for '&' such as commutativity and associativity hold for the Rantala sys-
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tems.) Now suppose that there is a Sub-SQC=() system such that some or
all instances of (Bax & Bf) > B(x & B) are nof theses of the system by
virtue of the appropriate wifs being excluded from £ to which RBQ applies
- in accordance with the stricture RQ». Then '&' occurring in the conse-
quent Bla & ﬂ) of any instances of the adjunction schema which are not
theses is not classical conjunction but some sort of 'hyperintensional' (to
coin a phrase of Cresswell's) conjunction since in such cases, belief does not
factor out of it. Therefore, in the syntax, there is an equivocation with
respect to '&'.

Further, this equivocation in the axiom-system mirrors the situation
in the semantics that for impossible indices, '&' and the other connectives
are defined non-inductively. Thus, if some instance of (Bx & Bﬂ) > B(ox &
B) is not a thesis of a given Sub-SQC=() system it is (given completeness)
also invalid in the semantics. And this invalidity implies the existence of
at least one index in a model which is assigned at least one impossible al-
ternative such that ‘e & B' is false at this alternative even though both
‘conjuncts' & and P are true. Therefore, '&' at this alternative does not
represent classical conjunction, which means that we are equivocating
with respect to '&'. And so, Rantala's impossible index semantics cannot
be vindicated by opting for defining the connectives of the language proof-
theoretically since the same charge of equivocation applies to the proof-

theoretic definition of the connectives.

Concluding Remarks

Although the Sub-SQC™ systems can be altered in such a way that RB
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ié restricted to some recursive subset of the set of wiffs, thereby rendering
certain instances of the omnidoxasticity, adjunction and consistency schém-
ata underivable, the corresponding semantics which allows impossible
indices to serve as doxastic alternatives involves an equivocation with
respect to the connectives ~, & v, > and =. This equivocation is not benign
since for example, the semantics does not explain how agents can fail to
classically conjoin beliefs. Further, defining the connectives proof-theor-
etically (rather than truth-conditionally) does not help matters since in
taking into account how the above-mentioned connectives behave in doxas-
tic contexts, there is an equivocation with respect to ~, &, v, > and =.
Then we are back to square one since we still have not shown how
agents can fail to classically conjoin beliefs or can fail to believe all the
classical logical consequences of what they believe. In fact, it would seem
that any attempt at such an explanation will be entirely beside the point.
The alternative is to accept the adjunction, consistency and omnidoxastic-
ity schemata as features of logiés of belief which involve construing the
alethic necessity operator as 'x believes that'. |
There is however another alternative to the one just mentioned. Per-
haps the long-standing tradition of construing the necessity operator for
alethic systems as 'x believes that' is best seen as a degenerating research
program. It will be argued in the next chapter that if we wish to treat
doxastic logics as variants of normal alethic modal logics, the more fruit-
ful tact is to treat belief as passibility rather than necessity. Since for
normal systems possibility does not factor out of conjunction and since
~(Mo & M~a) is not even a thesis of normal systems with D, then treating

belief as a kind of possibility avoids the result that agents conjoin their
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Chapter Six

The Intractable Problem of Logical Omnidoxasticity

Section 1: The Possibility of Belief

In the previous chapter, an attempt by Rantala to modify the axiom-
atics and semantics of normal systems of doxastic logics in order to deal
with the problem of deduction was critically discussed. Any restricted
normal logic based on Rantala's suggestions will render certain instances of
the following schemata invalid/underivable:

(Ba & Bf) >B(a &B)  adjunction schema

(Ba & |-a > §) > Bf omnidoxasticity schema
Further, if our particular axiom system contains D then Rantala's sugges-
tions will give us a logic and semantics which renders any or ail instances
of the following invalid/underivable:

~(Ba & B~a)  consistency schema

(B & Bf) > ~B~(at & )  weakened adjunction schema
The so-called weakened adjunction schema says that an agent will never
believe that any conjunction of whatever he believes will fail to obtain.

As was explained in chapter one, if we regard these schemata inform-
ally as embodying principles of belief attribution, then there are ordinary
language counterexamples to these principles which make it undesirable to
have a logic of belief containing the ‘corresponding’ schemata. The Kripke

puzzle discussed in chapters one and three can be regarded as a case not
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only where an agent has inconsistent beliefs but also (and arguably) as a
case where the agent fails to conjoin these contradictory beliefs, which
bears directly on the intuitive plausibility of both the consistency and the
adjunction schemata. I[.e., these schemata qua principles of belief attri-
bution seem to conflict with Kripke's disquotation principle of belief
attribution. Further, the omnidoxasticity principle conflicts with some-
thing like a Kripkean disquotation principle of belief attribution since even
though an agent may assent to and hence bellM that some truth of logic
obtains, he may fail to assent to some other logical truth. Yet by the
omnidoxasticity principle, we would be forced to attribute to the agent
belief in both truths.

Although Rantala's suggestions seem to rid the Sub-SQC™ systems of
the problem of deduction by restricting RB to some arbitrary set Q, which
in the semantics also plays a role in invalidating various instances of the
above-mentioned schemata, his semantics equivocates with respect to the
connectives ~, & v, > and 8. Further, the tact of defining the connectives
proof-theoretically does not escape this difficulty since the equivocation
with respect to ~, &, v, > and = is mirrored in the corresponding axiom-
systems.

More generally, from a syntactic perspective, any alteration to a Sub-
SQC* normal system which renders some instance of the omnidoxasticity,
adjunction or consistency schemata underivable involves a (proof-theoretic)
redefinition of, and hence an equivocation with respect to one of ~, &, v, >
and =. For example, suppose that we wish to block the derivation of some
instance of the adjunction schema, (Ba & Bf) > B(a > ). As we have

illustrated elsewhere!, the derivation of any instance of this schema pro-

1 See chapter one, section 6.
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ceeds as follows:

S ENCENCE Y )

.Bl@>(>(x&p)) 1, RB

. B > (B> (a & B))) > (Ba > B(B > (« & B)))

Ba > B(f > (¢ & B)) 2,3 MP

BB > (x & B)) > (Bf > B(a & B))

. Bat > (Bf > B(a & P)) 4,5 PC

. (Ba &BB) >B(ax &B)) 6, PC

In order to block the derivation of any instance of (Ba & Bf) > B(a & B))

[

~ oo o s N

there are a number of possible moves that could be made. First, we could
deny thesishood to the appropriate instance of & > (f > (@ & B)) or to any
PC thesis used in the derivation, although this would involve a redefinition
of the ‘'classical' connectives, if they are being defined proof-theoretically.
If we arbitrarily block any instance of modus ponens then we are equi-
vocating with respect to '>' since in some instances, '>' detaches and in
others it does not. Or, if we deny thesishood to the appropriate instance
of K then we are redefining '>' (and 'B’) since for normal systems, belief
always distributes into '>' if '>' is classical. Finally, if RB is arbitrarily
restricted such that it does not apply to some instance of & > (f > (&« & B))
then once again, we are redefining ‘&' (and possibly '>').

And so, either on the semantic front (using a non-standard worlds
semantics) or on the syntactic front, any alteration such that some or all
instances of the omnidoxasticity, adjunction or consistency schemata are
rendered invalid/underivable will not show how ‘classical’ negation or
conjunction or implication misbehave for modal or doxastic contexts. If

either negation or conjunction or implication misbehave for modal or dox-
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astic contexts, then they are no longer classical. Therefore, the very
enterprise of attempting to alter normal doxastic systems in such a way
that some or all instances of the omnidoxasticity, adjunction or consistency
schemata are rendered invalid/underivable, is ill-conceived. Any such
effort would be beside the point. If our logic of belief is based on a normal
system of modal logic such that the necessity operator is informally con-
strued as 'x believes that', then the omnidoxasticity, adjunction and (for
systems containing D) consistency features are intractable.

Given the above considerations, if we find any of the omnidoxasticity,
ad junction or consistency schemata objectionable qua principles of belief
attribution then the tact of adopting normal systems where the necesssty
operator is construed as 'x believes that' ought to be abandoned. However,
it does not follow from this that normal logics (with corresponding rela-
tional semantics) cannot serve as logics characterizing the ‘non-ideal’ bel-
jever, viz., one who for example does not always conjoin his/her beliefs.

In discussing the Kripke puzzle about belief, Marcus argues that puz-
zling Pierre does not believe a self-contradictory state of affairs, viz., Lon-
don's being both pretty and not pretty, given her reality restriction on
belief. The moral that she draws from this is that " ... belief, like pos-
sibility, does not always factor out of a conjunction®.2 Perhaps the moral
to be drawn from her remark is that in drawing an analogy between al-
ethic modal logic and doxastic logic, rather than construing the necessity
operator as 'x believes that’, it may be more instructive to treat the belief
operator as a kind of passibilityr operator.

Further, we have argued elsewhere that a case can be made for the

claim that puzzling Pierre holds contradictory beliefs in different ‘contexts'.

2 Marcus (1979), p. 507.
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I.e., he believes that London is pretty and he believes that London is not
pretty. Then for cases such as this, belief once more closely resembles
the alethic possibility operator rather than the necessity operator since
~(Ma & M~0t) is not a thesis schema for normal systems (Where 'M' here
is Polish notation for the posibility operator).

To summarize, hypothetical situations such as the puzzling Pierre case
suggest that belief is analogous to alethic possibility rather than to necessity
since belief in such cases does not factor out of classical conjunction. Fur-
ther, it is apparent in such cases that agents are capable of holding contra-
dictory beliefs in different 'contexts’. It is established in the literature that
for normal alethic systems (where 'M' here is Polish notation for the pos-
sibility operator), the following are nof thesis-schemata3:

1) (Mo & MB) > M(x & PB)

it) ~(Ma & M~a)
However, the following alethic variant of the omnidoxasticity rule of infer-
ence is derivable in any normal alethic system:

iii) Fa > p —— |-Ma > Mp
The derivation of iii) would proceed as follows (where L is Polish notation
for ‘it is necessary that'):

1. |a > B hyp.

2. L(a > B) 1, RL

3. |FL(ax 5> B) > (Ma > MB)

4. Ma > Mp 2,3 Modus Ponens.
Further, any instance of the corresponding schema is derivable for any
normal system, viz.,

iv) (M & |- > B) > MP

3 See Hughes and Cresswell (1968), ch. 2.
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The derivation of any instance of this schema would consist of lines 1) -
4) above as well as:

5) ~(a > ) v (M > M) PC, 4

6) (@ >p)> (Max >MB) PC, 5

7) (Ma & a > B) > Mp PC, 6 (where |-a > B)

Also, if it is the case that |-a = § in which case |-« > p and |-f > & it can
easily be shown that |-Ma = M. Thus, the eguivalential versions of iii)
and iv) are derivable for any normal system.

Suppose that we construe the passibility operator M for alethic normal
systems as 'x (non-ideally) believes that', thereby replacing every occur-
rence of M in the above schemata by B. Then we would obtain doxastic
logics which though presupposing that agents are logically omnidoxastic, do
not presuppose that agents always conjoin what they believe and which
do not assume that agents are incapable of having contradictory beliefs.
Therefore, normal logics will provide us with logics characterizing the non-
ideal believer, supposing that the possibility operator (rather than the nec-
essity operator) is construed as 'x believes that'.

Further, the alethic necessity” operator can be reinterpreted as 'x
Ideally believes that' since all instances of the following schemata/rules of
inference involving the necessity operator are derivable for any normal
system:

v) (Lot &LB) > L{x & §)

vi) & > p —— |-La 5 LP

vii) (Lat & |- > B) > LB
In addition, all instances of the following schema are derivable for any

normal system containing D:
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viil) ~(La & L~at)

Replacing each occurrence of the ‘L' operator in each of these schemata
(and for the given set of axiom-schemata) with the operator 'By' which
reads 'x ideally believes that' gives us a set of logics characterizing the
'ideal believer' - assuming that the normal systems we are working with
contain D. This is because it was stipulated in chapter one that the ideal
believer always conjoins his/her beliefs, does not hold contradictory beliefs
and always believes the consequences of what he/she believes.4

And so, combining the proposal to construe the possibility operator as 'x
believes that' and the necessity operator as 'x ideally believes that' for
normal systems containing D, we obtain logics which characterize both the
ideal and the non-ideal believer. PFurther, this tact does not involve any
sort of alteration to the syntax of the given normal system and thus, there
is no redefinition of the connectives ~, &, v, 5> and = for modal or doxastic
contexts. Il.e., it cannot be charged that there is any sort of equivocation
with respect to these connectives such that they behave in one way in
non-modal contexts and another way in modal contexts.

What we are here proposing is to adopt the Sub-SQC™ + D systems
developed in the fourth chapter as doxastic logics where the necessity op-
erator is construed as 'x ideally believes that' and where the possibility
operator is construed as 'x (non-ideally) believes that'. The resulting logics
will be called the Stal-SQC™ + D systems since their truth-value semantics
will be based on Stalnaker's informal solution on the semantic front to the
problem of deduction. The reason for specifying that these systems contain
D is to ensure that they also characterize the 'ideal' believer as defined in

the first chapter. l.e., logics with D will be such that an agent does not

4 See section 1 of chapter one.
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hold contradictory beliefs if we are discussing ‘ideal’' belief. Notice further
that for all these systems, Ba =df.~Bj~0 and hence it is a simple matter to
show that |-Ba = ~Bj~a and that |-Bj& = ~B~a. What follows is a descrip-
tion of the Stal-KDQC™ system of doxastic logic such that any KD extension
(not containing T) can also serve as a doxastic logic depending on what our
philosophical biases are:

AS 1: o where o has the form of a PC thesis

AS 2: (Bja & By(a > B)) > By

AS 3. Bja > Bax

AS4: a(t/v) > (V)

ASS5: t=t

As 6: (a(ty/v) & tq = tp) > a(ty/v) provided ty, t3 do not occur in the

scope of any doxastic operators.
AS 7: (& (t4/v) & t1 = t3 & By(ty = t3)) > a (t2/v) where ty, t; may
occur in the scope of doxastic operators.

As 8: (Yv)Bja > By(Yv)a
Rules of inference:

RB; ot ——— I-B;a

MP a,asp——§8

A a(t/v) o p—— (Qv)a > B for any t foreign to (Iv)a > B.
The following schemata and rules are all those derivable for the corres-
ponding Sub-KDQC™ system except that we have replaced all occurrences
of the operator 'B' with the operator 'Bj' to signify that these schemata
and rules characterize the /dea! believer:

Tt (Bjo & Byf) > By(x & §) ideal adjunction schema

T2 ~(Bja & Bj~a) ideal consistency schema
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T3 (Bjx & |~ > B) > Byp ideal omnidoxasticity schema
T4 (Bja & |a = §) > Byp ideal omnidoxasticity schema
- equivalential version

Rl |a 5 —— |-Bjax > Byf ideal omnidoxasticity - implicational

R2 |a 8 p —— |-Bj . Byf ideal omnidoxasticity - equivalential
Thus, the Stal-KDQC™ system and its extensions will provide us with logics
characterizing the Jdeal believer. Further, the following are instances of
AS 4, a(t/v) > (3v)a and of AS 7, (& (t1/v) & t1 = ty & By(ty = t3)) >
a (ta/v) respectively:

AS 4" Bja (t/v) > (3v)Ba ideal doxastic generalization schema

AS 7*: (Bya (t1/v) & tq = ty & By(ty = t3)) > Bya (ta/v)

ideal doxastic substitution schema

What these indicate is that quantification into the idea/ belief operator is
unrestricted and that substitution of co-referentials in Jdea/ belief con-
texts is restricted to cases where the agent ideally believes that the rel-
evant identity holds. It could be objected that a so-called ideal believer
would be omnidoxastic with respect to contingent identities. However, to
reiterate, our definition of what constitutes the 'ideal believer' is purely
stipulative - the ideal believer conjoins his/her beliefs, does not hold con-
tradictory beliefs and believes all the classical logical consequences of what
he/she believes. Then whether or not the agent is onmnidoxastic with
respect to identities has no bearing on his/her ideality. The ideality criteria
Just mentioned can be regarded as purely deductive constraints on belief.

It was earlier claimed that the Stal-SQC™ + D systems can also be

regarded as logics which characterize the non-ideal! believer who nonethe-
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less believes all the logical consequences of what he/she believes. And in
fact, not all instances of the adjunction and consistency schemata are der-
ivable in any Stal-SQC* + D system for non-ideal belief:

-] (Ba & Bf) > B(ax & B) (non-ideal) adjunction schema

-| ~(Ba & B~axt) (non-ideal) consistency schema
That the non-ideal adjunction and consistency schemata are not thesis-
schemata for the Stal-SQC™ systems is owing to the fact that their alethic
counterparts, (Mo & MB) > M(a & f) and ~(Mo & M~at) are not thesis-
schemata for normal alethic modal systems.

For alethic systems, (Mo & M@) > M(a & B) is not a thesis schema since
the derivation of any instance of this schema depends upon M's distributing
into '>' in the appropriate instance of & > (f > (& & §)). However, in gen-
eral M does not distribute into '>' for normal systems since the possibili-
tation version of the schema K is not a thesis-schema for normal systems.
lLe., -| M(a 5 §) > (Ma > Mf). On the other hand, the following is a
theorem-schema for any alethic modal system:

FL(x 5> B) > (Ma > MB)

This follows directly from K.® In order to derive some instance of M{(a >
B) > (Mx > MP), we would need L(a 5 B) > (Ma > MB) as well as the
appropriate instance of M(at > ) > L(at > B) which is not a thesis of any
normal system. Thus, M(at > B) > (Ma > Mp) is not a thesis-schema for
any normal alethic system and hence neither is (MA & MB) > M(a & B).
But then neither is ~(Ma & M~0t) a thesis-schema of any alethic K-exten-
sion since the derivation of any of its instances depends on the appropriate

version of (Mo & Mf) > M(ax & f).

Further, since M(at > B) > (Ma > Mg) is not a thesis-schema for alethic

S See Hughes and Cresswell (1968), ch. 2, p. 37.
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normal systems, then neither is its doxastic counterpart a thesis-schema
for the Stal-SQC= systems. l.e., -| B(& 5> p) > (Ba > Bf). Thus, unlike
ideal belief, non-ideal belief does not distribute into '>'. However, this is
not necessarily an undesirable state of affairs in the light of the following
variant of the puzzling Pierre case, which in fact is suggested by Kripke.®
Suppose that while in France, puzzling Pierre assents to "Si Londres n'est
pas JOlie, New York n'est pas jolie". Then by the disquotation and the
translation principles, Pierre believes that if London is not pretty then New
York is not pretty. Suppose further that Pierre after having moved to Lon-
don assents to "London is not pretty*. Then by the disquotation principle
he believes that London is not pretty. So, Pierre believes that London is not
pretty and Pierre believes that if London is not pretty then New York is
not pretty. Yet, Pierre may not assent to the claim that New York is not
pretty (while living in London) even though he believes that London is not
pretty. Thus, by the disquotation principle, it is false that Pierre believes
that New York is not pretty. Further, if we are speaking of non-ideal
belief where for example the agent can fail to conjoin beliefs (and we have
good reason to suspect that Pierre does not always conjoin his beliefs), then
the disquotation principle does not in this particular case conflict with any
other principle of belief attribution, such as the non-ideal variant of K.
I.e., for non-ideal belief, it is not assumed that agents will always make
modus ponens inferences from contents of the forms « and &« > f§ to §.

One possible explanation of the above case is that Pierre holds two sep-
arate beliefs (whose contents are of the forms & and & > S) in different
linguistic contexts and hence he fails to make the inference to the claim

that New York is not pretty. If our explanation of this situation is correct,

6 Kripke (1979), pp. 257-8.
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then it is a desirable feature of our doxastic logic that the non-ideal variant
of K, (Ba & B(x > B)) > Bf is not a thesis-schemata. In other words, it is
being suggested that Kripke's variant of the puzzling Pierre case is a hypo-
thetical situation where an agent x believes that o and believes that &
classically implies § and yet x fails to believe that ﬁ ‘

Although the Stal-SQC™ systems provide us with logics which charac-
terize the believer who is non-ideal in the sense that he/she méy fail to
conjoin beliefs and/or may hold contradictory beliefs (though separately),
agents are nonetheless assumed to be logically omnidoxastic. The omni-
doxasticity schemata and rules of inference (both the implicational and the
equivalential versions) are derivable for these systems as was explained
above with reference to the M operator. 1l.e., all instances of the following
are derivable for any Stal-SQC* + D system:

TS (Ba &|-a > f) > Bf non-ideal omnidoxasticity schema
T6 (B &|-a =) > B non-ideal equivalential omnidoxasticity
schema

RS |- 5 p —— |-Ba > Bf non-ideal omnidoxasticity - implicational

R4 |- = § —— |-Ba = Bf non-ideal omnidoxasticity - equivalential
Further, the non-ideal variant of RBj is derivable for any Stal-SQC™ + D
system by virtue of D. l.e., the following is a rule of any such system:

RB o —— |-Ba

The rule RB is derivable (using D) as follows:

1. o hyp.

2. Byt 1, RBy
3. -Bja > Ba D

4. Ba 2,3 MP

Q.E.D.
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Finally, we shall consider the relation between non-ideal belief and the
existential quantifier on the one hand and the relation between non-ideal
belief and the identity symbol on the other. First, since the following is
an instance of AS 4, a (t/v) > (Iv)«a, it follows that quantification into non-
ideal belief contexts is unrestricted.

AS 4" Ba (t/v) > (3v)Ba
It comes as no surprise that guantification into non-ideal doxastic contexts
is unrestricted given that the quantifieres are construed substitutionally
in the corresponding truth-value semantics to be discussed below. Also,
as with Zsdea/ belief, non-ideal belief de re implies non-ideal belief de dicto
since the following is a thesis-schema for any Stal-SQC™ + D system:

T7: (3v)Ba > B(Av)a
Any instance of T7 is easily derivable as follows:

1. o (t/v) 5> (V)a

2. Ba (t/v) > B(3v)a 1, R3

3. Qv)Ba > BAv)a 2, R3
The substitution of co-referentials in non-ideal doxastic contexts is restric-
ted to cases where the agent Jideally believes that the relevant identity
obtains, given that the following is an instance of AS 7, (& (t1/v) &t = t3 &
B](tl = tz)) > a (t2/v), viz.,

AS 7" (Ba (t1/v) & tq = t3 & By(ty = t3)) > Ba (tp/v)

The reason why substitution of co-referentials is restricted to cases where
the agent Jdeally believes that the relevant identity obtains will become
evident when we consider the semantics for the Stal-SQC* + D systems
below.

And so, the Stal-SQC* + D systems are simply the Sub-SQC™ + D sys-
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tems such that all occurrences of B and Pp in theses of the latter are
replaced by By and B respectively in theses of the former. For example, D
for the Sub-SQC" + D systems, Ba > Pga is the counterpart of Bj& > Bx
for the Stal-SQC" + D systems. Thus, the characteristic semantics for the
Sub-SQC™ + D systems, viz., the truth-value semantics described in chap-
ter four, also characterizes the Stal-SQC™ + D systems although we replace
VMm(Ba,wy) with Viy(Bya,w;) and we further replace Viy(Pgat,wy) with
VM(Ba,wy). Thus, where a truth-value model is a triple <W,R,V> such
that minimally R is serial and such that W and V are defined as they were
for the Sub-SQC™ + D systems, the truth-conditions for ideal and non-ideal
belief are as follows:

VM(Bra, wy) = 1 iff for all wj such that wiRwj, Vy(a,wy) = 1.
VMm(Ba,wy) = 1 iff for at least one wj such that wiRwj, vma,wy) = 1.
Thus, in the semantics for the Stal-SQC™ + D systems, ideal belief is treat-
ed like alethic necessity and non-ideal belief is treated like alethic possib-
ility. |

Although we have a ‘ready-made’ semantics for the Stal-SQC™ + D sys-
tems as illustrated above, it would be preferable to have a characteristic
semantics which makes some sort of intuitive sense of situations such as
the puzzling Pierre case. It has been suggested that in the puzzling Pierre
case, Plerre holds imcompatible beliefs in distinct confexis. Thus, what is
needed is a semantics which gives some content to the notion that agents
are capable of holding distinct sets of beliefs in different contexts.

Robert Stalnaker in /mguiry has argued that agents can be in more
than one 'belief state' and that this accounts for why agents can sometimes

fail to conjoin bellefs or hold contradictory beliefs. A belief state s; is the
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set of possible situations such that all the contents of a subset of an agent's
beliefs obtain at each situation in the set. Stalnaker suggests that an agent
can be in more than one belief state at the same time.? Thus, x believes
that a at wy Iff for at least one belief state, & obtains at every member of
the state. So, puzzling Pierre can believe that London is pretty and he can
also believe that London is not pretty if he is in at least two distinct belief
states such that the former content obtains at all members of one state and
the latter content obtains at all members of the other state. Also, Pierre
does not conjoin these beliefs since in neither state is a & ~a true at any
member. The notion that Pierre is in more than one belief state can be
regarded as explicating what it.means to say that Pierre holds separate
sets of beliefs in distinct confextis. We shall provide a more detailed ex-
position of Stalnaker's solution to the problem of deduction in terms of
'belief states' in the next section.

In the third section, an attempt will be made to make model-theoretic
sense out of Stalnaker's informal semantic proposal that agents can be in
two or more distinct belief states. l.e., a formal relational semantics will
be developed for the Stal-SQC™ + D systems which incorporates Stalnaker's
idea that agents can be in more than one belief state. It will be argued that
this semantics in fact characterizes the Stal-SQC™ + D doxastic systems.

An alternative to Stalnaker's semantics which also makes sense of the
notion of holding separate beliefs in distinct 'contexts’ will be developed in
section 4. This alternative semantics will be based on Rescher's proposal
that belief can be treated as a relation between a believer and a non-stan-
dard world. However, it will be argued that unlike Rantala's non-standard

worlds semantics, Rescher's semantics avoids the charge of equivocation

7 Stalnaker (1984), pp. 82-4.
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with respect ~, &, v, > and =.

Superposed worlds are constructed out of normal worlds as follows: &
obtains at a superposed world w constructed out of wi and w; just in
case & obtains at either wjy or wy. Then even though & is true at wy and
is false at wy and even though f is false at wy but true at wp, both & and
B will obtain at the superposed world w*. Yet their conjunction will fail to
obtain since & & f is false at both component worlds. Now if w* is the
non-standard world to which the believer is related, then & and § will
both be true at this superposed world and yet their conjunction o & § is
false and hence, x will believe that & and that p without believing that a &
B. 1f B happens to be ~a then this sort of situation would also be a case
where an agent holds contradictory beliefs (but without believing their
conjunction). It will be suggested how Rescher's solution to the problem of
deduction in terms of non-standard worlds can be adapted to provide a
characteristic relational semantics for the Stal-SQC*™ + D systems.

Finally, in section 5 it will argued that in general, the problem of
logical omnidoxasticity is intractable for a normal logic of belief since any
alteration to the logic and semantics in order to avoid the omnidoxasticity
feature will result in an equivocation with respect to the connectives ~, &,
v, > and 2. Thus, any such solution to the omnidoxasticity element of the
problem of deduction will be beside the point. However, it will be argued
that the features of our Stal-SQC™ + D systems and their corresponding
semantics that agents do not always conjoin beliefs and are capable of
having inconsistent beliefs mitigates the omnidoxasticity feature of these

logics.
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2. Belief States and the Problem of Deduction

In /nguiry, Stalnaker attempts to solve the problem of deduction in
part by appealing to the notion that agents are capable of being in several
distinct belief states or more generally, acceptance states. Before discussing
what he means by a ‘state’, we shall first clarify what he means by the
notion of ‘acceptance’. Stalnaker classifies the attitude of belief as belonging
to a genus or class of propositional attitudes which he calls attitudes of
acceptance. He further claims that what is involved in accepting a prop-
osition P is to regard P, even if only tacitly, as true. l.e., in accepting a
proposition , the agent is disposed to act in at least some of the ways he
would act if he (without reservation) were to believe P to be true. Thus, a
criterion of something's being an acceptance attitude with respect to some
content proposition P is that "the attitude is said to be correct whenever
the proposition is true*® Then other types of attitudes such as desires or
hopes differ from acceptance attitudes in that correctness of the former is
not judged in terms of whether or not the content proposition is true.?

Attitudes of acceptance include such diverse attitudes as tacitly pre-
supposing, assuming, supposing and believing.10¢ According to Stalnaker,
belief differs from these other sorts of acceptance attitudes in several
ways. For one thing, belief supposedly requires some sort of ‘entertaining’
of a proposition whereas an acceptance attitude such as presupposing does
not. Thus, one may simply take for granted that a certain proposition P
obtains (thereby acting in ways consistent with P's being true) without

8 Stainaker (1984), p. 80.
9 ibid, p. 80.
10 Stalnaker (1984), p. 79.
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ever really having considered or entertained this proposition in the process
of inquiry or deliberation. Or, a person may tacitly presuppose some prop-
osition for the sake of inquiry or investigation without committing himself
to its being true in the long run. As we shall see below, the ‘cash value' of
Stalnaker's classifying belief as a kind of acceptance attitude is the efficacy
of this move in helping to resolve the problem of deduction. A few more
preliminaries are in order before shall be in a position to explain exactly
what Stalnaker means by belief or acceptance siales .

Stalnaker adopts what he calls a 'causal-pragmatic’' account of the ac-
ceptance attitude of belief: The pragmatic element of this account is that
an agent x believes that P only if x is disposed to act in ways which "will
tend to serve his interests and desires in situations in which P is true".11
This dispositional account (or for that matter, functionalist accounti?) of
belief assumes that there is an intimate connection between beliefs and
desires, a theme which is also present in Stalnaker's 1976 article 'Prop-
ositions’. l.e., the agent's desires and beliefs function as premises in Aris-
totelian practical syllogisms in the sense that for any given action &, that
action is explained by x's wanting or desiring that o will obtain and by the
agent's believing that by doing §, o will obtain.13

The causal/ element of Stalnaker's account of belief is that x believes
that P only if x's belief 'indicates’' that P. And x's belief indicates that P
means that under ‘'optimal conditions’ x's belief that P is caused by some
state s of the environment such that the proposition Q asserting that s ob-

tains, entails P.14 PRurther, Stalnaker regards this causal account of belief

"1 ibid, p. 82. See also ch. 1 and In particular, p. 15.
12 Stainaker regards the pragmatic account as functionalist since beliefs (and desires) are understood

in terms of their role in determining and rationalizing action. See Stalnaker (1976), p. 80.
I3 Stainaker (1972), p. 81.
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as supplementary to the pragmatic account (rather than as an alternative
to it) for the following reason: Many types of 'representational’ states of
an agent are causally related to the environment and so in order to distin-
guish belief from other types of representational states, it is necessary to
recognize that beliefs are connected with dispositions to act (in the man-
ner specified above).15 1.e., the pragmatic account of belief provides us
with a criterion for distinguishing belief states frorn other types of so-
called mental representations which are also caused by states of the envir-
onment.

Stalnaker's causal-pragmatic account of belief can serve as a principle
of belief attribution. l.e., x believes that P just in case 1) x is disposed to
act in ways which tend to realize his desires in all those situations in
which P obtains and 2) x's belief indicates that P. Thus, if either of these
two conditions fail to obtain, viz., that the agent does not have the requis-
ite dispositions (or does not exhibit the appropriate behaviours, verbal or
otherwise) or if the appropriate causal circumstances are absent (what-
ever they may be) then we would not attribute to the agent the approp-
riate attitude. At least the pragmatic aspect of Stalnaker's account of belief
gua principle of belief attribution is consistent with Kripke's disquotation

principle since in the latter case, a belief that P is ascribed to an agent on

145talnaker (1984), p. 18. Stainaker offers a more detailed account of the ‘indication’ relation in
Stainaker (1984), pp. 12-13. l.e., if @ is the state of an object and f is a one-one function taking
each state a of the object into exactly one state of the environment, f(a), then says Stainaker, this
correlation is explained by fla)s causing a in the object - assuming normal’ or optimal conditions of
the environment. Then a state @ of an object x indicates that P just in case the proposition that the
environment is in state f(a) entails that P. Thus, x believes that P only if his belief indicates thal P,
f.e., only if P is entailed by a proposition asserting that some state of the world causing x's belief
state obtains.

15 ibid, pp. 18-19. By representational state’, Stalnaker is referring to Fodor's notion of mental
representation.
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the basis of his verbal behaviours, viz., his sincere assent to P.

More importantly, Stalnaker claims that the pragmatic element of his
account of belief naturally lends itself to the view that the appropriate ob-
Jects of belief (and of the attitudes generally) are non-empty sets of pos-
sible situations.1¢ 1.e., because a necessary condition of x's believing that P
on the pragmatic approach is that x is disposed to act in ways which will
tend to satisfy his desires in possible situations where P obtains, then it
would seem that belief is a relation between an agent and a set of worlds.
We shall now describe briefly what Stalnaker means by possible world or
situation. (For the sake of exposition we shall use the terms 'world' and
'situation’ interchangeably.)

Stalnaker maintains a so-called moderate realism with respect to pos-
sible worlds, viz., that there are alternative ways the 'actual' world could
have been and that these alternative possible worlds are ‘respectable en-
tities in their own right'i? in the sense that they are not reducible to other
sorts of things such as sets of sentences. (This latter part of his moderate
realist thesis does not put his view of possible worlds at odds with the
view we espoused earlier since it was maintained that an index is 'assoc-
jated' with a state description.) Further, like extreme modal realists such
as Lewis, Stalnaker maintains that 'actual’ functions as an indexical. On
the other hand, Stalnaker parts company with the extreme modal realists
since he holds that possible worlds are not on an equal ontological footing
with the so-called actual world in the sense of being things of the same

sort as the actual world.18

16 Stainaker (1972), p. 81.
17 See Stalnaker (1984), p. S0.
18 jbid, p. 47.
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One of Stalnaker's grounds for holding that an indexical analysis of
‘actual’ is not incompatible with the view that possible worlds are not on
an equal ontological footing with the 'actual' world is that just as an index-
ical analysis of tense does not entail a commitment to the existence of
concrete 'times’, so an indexical analysis of 'actual' does not commit one to
there being concrete worlds like our own.1? It is beyond the scope of this
discussion to evaluate Stalnaker's views here. We are merely attempting
to explain roughly what he means by 'possible worlds' or 'possible situa-
tion’, which is important since as we shall next see, the notion of possible
situation is integral to his characterization of what belief and acceptance
states are.

If we view belief and acceptance generally as any relation between an
agent and an appropriate set of possible situations where the content prop-
osition obtains (or for that matter we could say that this set of possible
situations simply /s the proposition which the agent accepts), then a belief
or acceptance sfale can be defined as a set of possible situations where all
the contents of the agent's beliefs or acceptance attitudes obtain. Further,
since all those propositions which an agent accepts obtain at all worlds in
the corresponding acceptance state20 it follows that x accepts that P just in
case P obtains at all those worlds contained in the agent's acceptance
state.2! If we regard propositions as sets of worlds (or in our parlance,
indices) then we can think of an acceptance state as the intersection of all
the propositions which the agent accepts. This feature of belief and accep-
tance states is consistent with the view espoused in chapter one that the

objects of beliefs in a relational semantics are partial propositions, viz., the

19 ibid, p. 47.
20 ipid, p. 81.
21 {pid, p. 69.
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set of indices where all the contents of agents' beliefs are true, such that
this set of indices relative to an index is determined by the accessibility
relation R.

Given Stalnaker's definition of an acceptance (and belief) state as a set
of worlds such that all the contents of what the agent accepts (or believes)
obtain at each of these worlds, it follows that these states are deductively
closed. l.e., for any contents P, Q and for any acceptance state s:

1) 1f P obtains at every world in s then if P entails Q, Q obtains in

every world in s.
2) If P and Q both obtain at every world in s then P & Q obtains at
every world of s.

3) 1If P obtains at every world in s then ~P obtains at no world in s.
From now on, we shall refer to P, Q neutrally as contents rather than as
content propositions since if we regard propositions as sets of worlds, it is
not clear in what sense a set of worlds can be said to obtain at (or be true
at) each world in an acceptance state. Stalnaker regards these three ded-
uctive constraints for acceptance states as 'defining conditions’ on what an
acceptance state is. [.e., any acceptance state must satisfy these three
deductive conditions.

The above deductive constraints on any acceptance state are explained
by the fact that each world w in a state s is 'normal’ in the sense that the
connectives are defined standardly. Thus, if P is true at a world win s
and given that |-P > Q, it follows that Q will also obtain at w in s since '>’
is interpreted classically for every w in s. Further, if P and Q both obtain
at a world w in s, it follows that P & Q will also obtain at w given that '&'

is interpreted classically for members of s. Finally, if P obtains at some
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w in s and given that '~' is interpreted classically at members of s, then
~P will not obtain at w.

Since x believes (or more generally, accepts) that P iff P obtains at each
world in the agent's acceptance state, then the following gqua principles of
belief or acceptance attribution ‘correspond’ to (in the sense of being infer-
able from) the three deductive constraints on acceptance states:

1)" If x believes that P and P entails that Q then x believes that Q.

2)* If x believes that P and x believes that Q then x believes that P & Q.

3)* If x believes that P then x does not believe that ~P.

1)* corresponds to the deductive constraint 1), 2)* corresponds to 2) and
finally, 3)* corresponds to the deductive constraint 3). Further, the prin-
ciples of belief attribution 1)*, 2)* and 3)* have as their formal counter-
parts the omnidoxasticity, adjunction and consistency schemata respective-
ly for the Sub-SQC™ systems of doxastic logic. I.e., 1)*, 2)* and 3)* have
as their formal counterparts the following:

1) (Ba &|-a 5 p) >Bp  omnidoxasticity schema

2)** (Ba & Bf) > B(a & §) adjunction schema

3)** ~(Ba & B~at) consistency schema
It is at this stage of the dialectic that Stalnaker alludes to the 'problem of
deduction’.

As Stalnaker notes, the conditions 1)' through 3)' inferable from the
deductive constraints 1) - 3), when applied to the 'totality’ of an agent's
beliefs admit of at least apparent counterexamples. These counterexamples
are hypothetical cases where agents fail to believe the consequences of what
they believe, thus impugning 1)*, or cases where agents fail to conjoin

beliefs thereby impugning 2)* or cases where agents seem to believe con-
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tradictories thereby impugning 3)*. As we have argued in the first chapter,
the Kripke puzzle can be regarded as a counterexample to the adjunction
and consistency conditions 2)* and 3)* and the William 111 case (as well as
examples involving mathematical beliefs) can be regarded as counter-
examples to the omnidoxasticity condition 1)*. As was also noted in chapter
one, the principles of belief attrihutibn used in setting up these apparent
counterexamples could themselves be called into question. However, if for
the sake of argument we assume that the principles used are sound, then
the problem of deduction is the problem that the three deductive constraints
on acceptance states seem to break down in the light of these examples.
L.e., it would seem that belief states are not deductively closed which
means that the view that possible worlds are the relata of beliefs does not
take account of the 'facts’.

Stalnaker's diagnosis of and his solution to the problem of deduction in-
volves two approaches. The first approach is that the alleged counter-
examples to 2)* - 3)* and hence to 2) - 3) do not impugn these constraints
qua defining conditions of belief sfafes. Rather, what these examples do
show is that we cannot apply 2) - 3) to the fofality of agents' beliefs, at
least if agents are not ideally rational.22 What Stalnaker's diagnosis here
implies, is the possibility that the totality of an agent's beliefs is not neces-
sarily exhausted by just one belief state in which case it is possible that
agents can be in more than one belief state at the same time. Thus, an
agent x believes that P just in case for at least one belief state amongst
possibly several, P obtains at each world in that state.

This approach explains why an agent who (for §implicity of exposition)
is in two belief states sy and s can fail to conjoin his belief that P and his

22 Stainaker (1984), p. 83.
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belief that Q. l.e., P may obtain at all the worlds in 89 while Q obtains at
all the worlds in sy and yet there may be at least one world in 81 where Q
does not obtain and there may be at least one world in s3 such that P does
not obtain. In such a case as this, x will not believe that P & Q because this
conjunction fails to obtain in at least one world in s4 and in at least one
world in s3. These remarks can be extended to the case where Q is simply
~P, i.e., an agent x may believe that P in s; and he may believe that ~P in
82 and yet in neither state does x believe that P & ~P.

Or less formally, as Stalnaker notes, we can make sense of an agent's
being in more than one belief state on the pragmatic account of belief as
follows: In one type of context, x may be disposed to act in ways that will
satisfy his desires in P-worlds which is explained by belief state 3425 and
in a different context, x may be disposed to act in ways that would satisfy
his desires in Q-worlds which is explained by belief state s; (or in ~P-
worlds if Q is simply the negation of P).2¢ And yet x may not be disposed
in either context to act in ways that would satisfy his desires in P & Q-
worlds explainable by either belief state. This is because in the first context
where he is disposed to act in accordance with state s; he may not be dis-
posed to act in ways that bring about his desires in Q-worlds and in the
second context where he is disposed to act in accordance with state sy he
may not be disposed to act in ways to satisfy his desires in P-worlds.

This part of Stalnaker's solution to the problem of deduction can also
be regarded as a kind of solution to the Kripke puzzle discussed in chapters
one and three. In the puzzling Pierre case, assuming the disquotation and

translation principles, it would seem that we have a situation where the

25 The belief state explains this action since P obtains at every world in that state.
24 gtainaker (1984), p. 83,
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agent Pierre has inconsistent beliefs, viz., that London is pretty and that
London is not pretty, at least if we maintain that the indetectability of
certain inconsistencies is a reason for (rather than against) holding that
agents can sometimes hold inconsistent beliefs. PFurther, if we agree with
Marcus' reality restriction discussed in chaptef one, then Pierre would
presumably nof¢ believe that London is pretty and London is not pretty.
lLe., this is a case where an agent x believes that & and x believes that ~a
thereby violating the consistency condition for belief states. This is also a
case where the agent fails to conjoin these contradictory beliefs thereby
violating the conjunction condition for belief states.

So what does puzzling Pierre believe if we were to adopt Stalnaker’s
view that agents can be in more than one belief state? He believes that Lon-
don is pretty and he believes that London is not pretty. The content 'Lon-
don is pretty’' obtains at all the members of one belief state sy and the con-
tent 'London is not pretty' obtains at all the members of a different belief
state, s5. The self-contradictory state of affairs that London is both pretty
and not pretty obtains at no member of either sq or s; and hence Pierre
does not believe that London is both pretty and not pretty. Or given a prag-
matic account of belief, Pierre is disposed to act (verbally) in two different
ways in two different contexts (the one context being when he is speaking
French and the other being when he is an English speaker in London) as a
result of being in incompatible belief states. Further, Pierre does not conjoin
his beliefs as long as he remains in these separate belief states. He cannot
be disposed to act in accordance with some belief state such that his actions
would tend to satisfy his desires in ‘impossible’ worlds where a self-con-~

tradictory state of affairs obtains.
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Stalnaker would argue here that the Kripke puzzle and any supposed
counterexample to the deductive constraints 2) and 3) do not impugn these .
constraints qua defining conditions on belief stales. What for example the
puzzling Pierre case shows is that if we try to impose these two deductive
constraints on the fofality of the agent's beliefs, then we run into trouble.
In the puzzling Pierre case, his two states explaining his dispositions to act
in different sorts of contexts are internally consistent and presumably
closed under conjunction. But because they are incompatible with one
another then when we come to consider the totality of Pierre's beliefs, cer-
tain inconsistencies arise, such as his believing that London is pretty and
also believing that London is not pretty. .

We have so far discussed the first part of Stalnaker's strategy of dealing
with apparent counterexamples to the second and third deductive cons-
traints on belief and acceptance states. 1.e., he stipulates that agents can
be in more than one belief state and then argues that these constraints
break down when we misapply them to the totality of agents' beliefs. So,
qua defining conditions of belief siafes, conditions 2) and 3) which are the
claims that belief states are internally consistent and are closed under con-
Jjunction remain intact.

However, the strategy of allowing agents to be in more than one belief
state will not answer the various counterexamples'to the first deductive
constraint on belief states, viz., that states are closed under logical conse-
quence. This is because if x believes that P then for some state s, P will be
true at every world in s4. Further, if [-P 5> Q then the P > Q will be true

at every world in every belief state. Then for any state s; such that P is
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true at every world in s (and hence x believes that P) it will also be the
case that Q is true at every world in s;. Thus, x also believes that Q. So
clearly, another approach is needed for dealing with the alleged counter-
examples to the first deductive condition on belief states. We shall defer
discussion of the second part of Stalnaker's solution to the problem of ded-
uction vis a vis the closure under logical consequence condition for belief
states until the final section. Suffice it to say that his solution simply
involves making this condition more palatable.

Finally, before attempting to formalize Stalnaker's notion that agents
can be in more than one belief state, it is important to note that he does not
think that this strategy will adequately answer the preface paradox dis-
cussed in chapter one. The preface paradox was a case where the author
of a narrative believed each statement in the narrative separately although
he believed that their conjunction was false. The preface case bears
directly on the plausibility of the schema (Ba & Bf) > ~B~(& & ) which is
contalne& in any normal doxastic system containing D. Further, this case
is also relevant to the adjunction schema for systems containing D since for
such systems, |-B~0 > ~Ba. However, Stalnaker does not see the preface
paradox as bearing merely on the plausibility of condition 2) for belief
states qua defining condition.

Rather, he maintains that even if a non-ideal agent is aspiring towards
possessing an integrated system of beliefs (in which case he/she would be
in one belief state), it may not be warranted that he always conjoin his
beliefs. The apparent moral to be drawn from the preface paradox seems to
be that it would be unwarranted for the agent to conjoin his beliefs in this

case, if he has reason to believe that there will be at least one false state-
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ment in his narrative. So the preface paradox does not merely impugn the
conjunctive closure constraint qua defining condition for belief states. In
addition, it apparently impugns the conjunctive closure constraint qua
‘rationality condition’.25

What is implied in Stalnaker's remarks just discussed is that there are
two ways in which the deductive constraints on belief states, 2) - 3) can
be regarded. They can first of all be thought of as defining conditions for
belief states. Qua defining conditions of belief states they cannot be applied
to the totality of an agent's beliefs assuming that the agent in question may
not have integrated his various belief- states. Thus, a way of resolving the
Kripke puzzle is to resist applying the deductive constraints on belief states
to the totality of Pierre's beliefs. Second, the deductive constraints 2) - 3)
can be regarded as 'rationality conditions' for potentially integrated systems
of beliefs26, I.e., the 'ideal' believer that we discussed in chapter one
would have an integrated system of beliefs - he would be in one integrated
belief state. Hence, the ideal believer would always conjoin his beliefs and
finally he would not hold inconsistent beliefs. (As we noted in chapter one,
the ideal believer will also be regarded as an agent who believes the logical
consequences of what he believes.) So anyone aspiring to ideality as a bel-
iever will aspire to integrate his belief states into one system such that
the deductive constraints 2) - 3) on belief states also apply to his integrated
system. These constraints qua rationality conditions can be regarded as
goais. However, the preface paradox seems to posé a case where even the
non-ideal believer aspiring to ideality would be wise not to conjoin his/her"
beliefs, and so this impugns the conjunctive closure constraint qua ration-

ality condition for non-ideal believers.

25 Stalnaker (1984), p. 88.
26 He alludes to this distinction in Stalnaker (1984), p. 84.
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The solution which Stalnaker offers to the paradox of the preface ex-
ploits his earlier distincition between belief vs. acceptance (and belief states
vs. acceptance states). Given this distinction, an agent x may accept that
P without believing that P. He may tacitly presuppose that P is true for
the sake of inquiry or he may simply take it for granted that P is true.
But we would not be inclined to say in such a case that x believes that P.
And, claims Stalnaker, this is what happens in the case of the preface. The
author accepts (in the sense of tacitly presupposes) that the entire nar-
rative is true and hence he merely accepts that any given statement in the
narrative is true. But he does not bel/eve of the whole story, or of any
ohe statement, that it is true, since he is ready to abandon any of these in

the light of new evidence:

The explanation of the preface phenomenon that 1 am suggesting re-
quires that we say that the historian does not, without qualification
believe that the story he accepts is correct; nor does he believe with-
out qualification, all of the individual statements he makes in telling
the story ...?%7

Thus, the preface paradox is not really a case where the conjunctive con-
straint qua rationality condition for integrated systems of beliefs fails since
the author of the narrative does not really Jelleve any of the statements
in his narrative.

And so, in this section, we have discussed Stalnaker's solution to the
problem of deduction for the conjunctive and consistency constraints on
belief states qua defining conditions, which involves allowing agents to be
in more than one belief state. Further, we have seen that he makes a
distinction between defining conditions and rationality conditions which are

two ways in which the deductive constraints discussed above can be re-

27 Stalnaker (1984), p. 94.
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an agent can be in more than one belief state at the same time. Thus,
what is needed is an alternative (truth-value) semantics for the Stal-SQC™
+ D systems which formalizes Stalnaker's notion that agents can be in
several distinct belief states.

The intuitive idea behind this alternate semantics is this: We define a
model in the usual way as consisting in part of a set W of indices. Since
ideal belief is 'integrated’, the ideal believer will be in one belief state con-
sisting of a// the doxastic alternatives to the world he inhabits. Thus, x
ideally believes that & at wj just in case & is true at all the alternatives
to wi. For technical purposes, instead of defining 'alternativeness’ in terms
of a two place relation R such that wj is an alternative to wj just in case
<Wj, Wi € R, we shall define it equivalently in terms of a function f from
W into PW.28 ] e., f will assign to each index a set of indices which can be
thought of as the alternatives to that index. These two ways of defining
‘alternativeness' are equivalent since for any index wj, we can define f in
terms of R as follows: f(wj) = {w; | wijRw;}.2% Thus, the semantics in
which we use f instead of R to define 'alternativeness' can still be regarded
as a relational semantics since at any time we could dispense with f in
favour of R. Finally, the restrictions we would impose on R such as ser-
iality can also be mirrored by f. Thus, we could represent the seriality
restriction for f as follows: For any wj in W, f(wi) =z 0,

A third element in a Stal-SQC™ model in this alternate semantics will
be the set S where the members of S are sets of 'belief states'. Each belief
state is itself a set of indices. For each member Sj of S (i.e., for each set

of belief states) there will correspond exactly one member of W, Wi The

28 gee chapter one, p. 30 of this dissertation.
29 5e¢ Chellas (1980), p. 74.
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members of each belief state in Sj will be drawn from the alternatives as-
signed to the corresponding index wj by f. l.e., each Sj will be the set of
all subsets (i.e., the '‘power set') of f (WJ) in which case, each state s in S;
will be a set of alternatives to wy. (l.e,s¢ f(wj).) Further, since for
doxastic logics, indices are not necessarily alternatives to themselves, then
it is not a requirement that {wj} € S;. We shall use two subscripts for any
member s of each set of states SJ, where the first subscript j will denote
from which set of states s was drawn and the second subscript k will
simply number the state (in the same way that the indices in W are num-
bered). Thus, ‘sjk' can be read as 'the kth member of SJ'.

The purpose of restricting the members of each state in any S; to the
alternatives of the corresponding index, wj is to ensure an interdependence
between ideal belief and non-ideal belief - intuitively, the non-ideal bel-
fever will partition the set of alternatives to the index he inhabits into dis-
tinct states whereas the ideal believer will integrate all the alternatives in-
to one system. Also, this ensures the validity of the equivalence Ba =
~By~0t which states that non-ideal belief is definable in terms of ideal bel-
fef. The definability of non-ideal belief in terms of ideal belief is important
for establishing completeness results, as will soon become evident.

The set S of sets of belief states, SJ, Sk, etc. will figure into the truth-

conditions for non-ideal belief as follows:

X non-ideally believes that o at wj just in case for at least one non-
empty belief state sjx such that sjx ¢ f(wy), & is true at every index
in that state.

l.e., x non-ideally believes that a at wj just in case for at least one non-
empty belief state whose members are all alternatives to wj, & is true at

each member of that state. Thus, in terms of the semantics, non-ideal
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belief is still treated analogously to alethic possibility since x non-ideally
believes that & at wj only if there is af /east one state such that a is true
at all members of that state. Therefore, it is not required that the content
of non-ideal belief is true at ewvery alternative to the index in question but
merely that it be true at every alternative in some state. Further, the
truth-conditions for non-ideal belief jibe with the truth-conditions for
non-ideal belief in Stalnaker's informal semantics and this was our aim -
to make the notion of belief state and its role in defining non-ideal belief
more conspicuous.

Finally, the fourth element of a Stal-SQC™ model in this alternate sem-
antics will be the assignment function V which as usual assigns to atomic
wifs independently of any domain of 'individuals' either '’ or '0'. And V
will have the two restrictions imposed on it as for the standard semantics
for the Stal-SQC™ systems. As usual, a valuation over a model V) will be
defined inductively with V(a,w;) = Viy(a,w;y) for o atomic as the basis.
We shall now provide a more formal characterization of this semantics.

A Stal-SQC™ model will be defined as a 4-tuple, <W,f,8,V> such that
the elements W, f, S and V are defined as follows:

1) W=02 (i.e., Wis a non-empty set of indices.)

2) W —— PW (l.e., for each wj in W, f(wy) ¢ W)

3) S is a set of 'belief states’ where each Sj€S= Pf(wj) for exactly

one wj € W. (Then each sy € Sj is such that sjx ¢ f(wj).)3°

4) V:Atomic Wffs X W ——= {0,1} such that:

) If & is t = t then for all wj € W, V(a,wj) = 1.
ii) For all wy € W, if V(t; = t3,w;) = 1 then V(a (t4/v),w;) =

c 30 Stalnaker does not require that belief states are sels of a/lernatives to some index. We are here
attempting to formalize his semantics for beliel with the context of a relational semantics.
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V(o (ta/v), wy).
A valuation over any such model, Vi Wffs X W ——~ {0,1} is defined {n-
ductively as follows:

Basis: V(a,w;) = Vy(a,wj) for any a atomic.

Suppose that Vp(a,w;) and Vq(B,w;) are both defined. Then,

a) V(~at,wy) = 1 iff Viy(a,wy) = 0.

b) V(e & B, wy) = 1 iff Viy(e,wy) = Viy(B,wy) = 1.

c) VM(Vv)a,wy) = 1 iff Viy(a (t/v),wy) = 1 for all t € CONS

d) Vm(Bat,wy) = 1 iff for all wj € W such that w; € f(wy),

VM(a,wj) =1,
e) V(Ba,wy) = 1 iff for at least one non-empty sjx € S such that sy
¢ 1(wy), Viy(a,wy) = 1 for all wj € syi.
Further, validity in a model! of the sort described above will be truth at
all indices in the model and validity in the appropriate class of models
(determined by the restrictions imposed on f) is validity in all models in
the class.

Now that we have provided a somewhat formal description of our
alternate semantics for the Stal-SQC" systems, we shall see whether or not
this semantics claracterizes the Stal-SQC™ systems.

First of all, it needs to be shown that any given Stal-SQC™ system is
sound relative to the appropriate class of Stal-SQC™ models of the soft Just
described. And as usual, soundness is established by demonstrating that all
instances of the axiom-schemata are valid and that the rules of inference
preserve validity in the appropriate class of models. We shall not set out
to prove this here since it parallels the proof of soundness for the Sub-SQC™

systems.
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However, we shall consider the status of the following crucial schem-
ata and rule of inference with respect to the type of semantics we are
proposing:

1) Ba = ~Bj~a

ii) Bja = ~B~a

itf) (B & B) > B(ax & f)

iv) ~(Ba & Brar)

v) (Bat (t4/v) & tg = t3 & B(tg = t3)) > Ba (tp/v)

vi) -t 5 p —= |-Ba > B
If the two equivalences i) and ii) are both valid then B and By are inter-
definable. (We could consistently add i) and ii) as axiom-schemata to the
Stal-SQC™ systems.) The interdefinability B and By will be important later
on in terms of establishing completeness.

To establish the validity of all instances of i), Bx = ~Bj~&, suppose that
for some Stal-SQC*™ + D model M and for some index wy, VM (Ba yWy) =
VM(By~a,w;) = 1. Then for some non-empty sjx in S; such that sjx ¢
f(wy), Vm(a ,wj) = 1 for all wjin sjx. Supposing further that Vy(By~a,
wi) = 1, then for a// wj in W such that wj € f(wy), VM(~a,w_i) = 1 which
contradicts one of the consequences of our supposition that VM(Ba ,Wij) = 1,
Or, on the other hand, suppose that Viy(Bj~a,w;) = Vy(Ba,w;j) = 0. Then
there is at least one w; in f(wy) such that VM(a,wj) = 1. But since wj Is
in f(wy), then {wj} € Pf(wy). And since each sjx € Pf(wj) then there will
be some sjx in S; such that sy = {wj} in which case there is an sjx ¢
f(wy) such that Vy(a,w)) = 1 for all members of sjx. Hence, Vy(Bat,wy) =
1 which contradicts our earlier supposition that Vy(Ba,w;) = 0. Q.E.D.

To establish the validity of all instances of ii), Bja = ~B~(, suppose
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that there is a Stal-SQC™ + D model M such that Viy(Byo,w;) = Viy(B~a,
wi) = 1. Then for ali wj in W such that wj € f(wy), VM(a,WJ) =1, If
VM(B~at,wy) is 1 then there is at least one six ¢ f(w;) such that Viy(~a,
wj) = 1 for all wj in sqx. But this contradicts one of the consequences of
our supposition that Vq(Bja,w;j) = 1. On the other hand, suppose that
VM(B~a,wy) = 0 = Vq(Byot,wy). If Viy(B~a,w;) = 0, then there is no sjx
¢ f(wj) such that VMm(~at,wy) = 1 for all wjin sj. Butif VM(Bra,wy) = 0
then there is at least one wy in f(wj) such that Vyq(a,wy) = 0 and hence
VMm(~®,wj) = 1. But then there is some sjx in S; such that sy = {wy} in
which case there is some sj such that V(~a,wy) = 1 for all wy in sik.
And from this it follows that Vq(B~a,w;) = 1 which contradicts our
earlier assumption that Vq(B~a,w;) = 0. Q.E.D.

Now that we have established that the equivalences i) and ii) are both
valid, it follows that the operators By and B are interdefinable for the
Stal-SQC™ + D systems. We shall next show that the schemata iii) and iv)
have invalid 1nstancés, thus showing that this semantics does not presup-
pose that non-ideal believers always conjoin their beliefs nor presupposing
that agents always have consistent beliefs.

Consider the following instance of iii), viz., (BFa & BGb) > B(Fa & Gb).
Consider the Stal-SQC® + D model M such that W = {wy,w, w3} and such
that f(wy) = {wa,w3}. Then, 8y = Pf(wy) = {8, {ws},{ws},{ws, w3}}. Let
811 = {wz} and let 893 = {ws3} and let 543 = {w), w3}, Let V(Fa,w3) = 1,
V(Fa,ws3) = 0, V(Gb,w3) = 0 and V(Gb,w3) = 1. Since Vj is V for atomic
wifs, then these assignments also hold for V)q. Then V)y(Fa & Gb,wj) =
VM(Fa & Gb,ws3) = 0. Thus, there is no non-empty sq) ¢ f(wy) such that
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for every member wj of sy, vMm(Fa & Gb,wj) = 1. Thus, Viy(B(Fa & Gb),
wi) = 0. However, Viy(BFa,wy) = 1 since Vq(Fa,w3) = 1 such that sy5 =
{w3} and also, V)y(BGb,w1) = 1 since Viy(Gb,w3) = 1 such that s13 = {ws}.
Q.E.D. Notice that this model is also a countermodel to ~(BFa & B~Fa)
which is an instance of the consistency schema iv).

As was noted in section 1, substitution of co-referentials for the Stal-
SQC* + D systems for non-ideal doxastic contexts is restricted to cases such
that the agent x /deally’ believes that the relevant identity obtains. It
was also promised that some sort of explanation would be offered on the
semantic front as to why it is not sufficient that the agent merely non-
Ideally believes that the relevant identity obtains for substitution to go
through for non-ideal doxastic contexts. This amounts to showing that
some instance of (Ba (t1/v) & t1 = t3 & B(t1 = t3)) > Ba (t/v), which says
that substitution of co-referentials goes through for non-ideal doxastic
contexts provided the agent non-ideally believes that the relevant identity
obtains, is invalid in the sort of semantics being considered.

Consider the following instance of (Ba (t1/v) & t1 = t3 & B(ty = t3)) >
Ba (tp/v), viz., (BFa & a = b & B(a = b)) 5 BFb. It will be shown that there
is a Stal-SQC™ + D model such that this wff is invalid. In fact, we shall
employ the same model-structure employed above in invalidating the in-
stances of the non-ideal adjunction and consistency schemata. l.e., W =
{wi, w2, w3}, f(wy) = {wz, w3} and Sy = Pf(wy) = {9, {w3},{ws},{wa,ws}}.
As before, let sy4 = {w3} and let sq3 = {ws} and let sq3 = {wy, w3} Let
V(Fa,w3) = 1 and V(Fb,w3) = V(a = b,wy) = 0. Then V)y(Fa,w;) = 1 and
Vm(a = b,wy) = Vq(Fb,w3) = 0. Further, let V(Fa,ws) = V(Fb,w3) = 0
and V(a = b,w3) = 1. Then V)y(Fa,w3) = Vy(Fb,w3) = 0 and Vjy(a = b,wy)
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= 1. Since for all members of sq1, Fa is assigned '1' by Vy, it follows that
VM(BFa,wy) = 1. Since for all members of sq3, a = b is assigned '1' by Viy
it follows that Vpq(B(a = b),wy) = 1. Finally, because there is no non-
empty sik in Sq such that Fb is assigned '1' by V) for all members of s{y
then it follows that Vyq(BFb,w¢) = 0. Q.E.D.

Informally, what this countermodel suggests is that it is on the con-
dition that the relevant identity tq = t; obtains at a/Z/ alternatives to an
index wj in a model that we are guaranteed that if a (t1/v) is true at all
members of some belief state then so is & (t3/v). In other words, provided
the agent x /deally believes that t1 = t; obtains then if x believes that
a (t4/v), x also believes that a (t/v). The agent's merely non-ideally bel-
ieving that tq = t; obtains leaves open the possibility that ty = t; fails to
obtain at any alternative at which a (t;/v) obtains. Then this situation in
turn leaves open the possibility that there is no alternative at which
a (tp/v) obtains.

What remains to be discussed is the implicational version of the logical
omnidoxasticity rule vi), i.e., o > f —— |-Ba > Bf. It will be shown
that the semantics we are considering for the Stal-SQC™ + D systems pre-
supposes that non-ideal believers are logically omnidoxastic by establishing
the validity preservingness of the above rule. Suppose that |=& > §. Then
for any model M and for every index wj in that model, Viq(a > B, wj) = 1.
Suppose however that Vq(Ba > Bf,w;) = 0 for at least one w; for some
model M. Then Viy(Ba,wj) = 1 but Vj(BB,w;) = 0. If Vpq(Ba,w;) = 1 then
for at least one non-empty sjx < f(wy), Viy(&, wj) = 1 for all wj € syk.
And if Vy(BB,w;) = 0 then for every non-empty sjx ¢ f(wy), VM(B,WJ) =0
for at least one wj in sjk. However, by supposition that Vy(Ba,wy) = 1, it
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was concluded that there is at least one sjx such that Vy(a,wj) = 1 for
every wj in six. But by supposing that V(BB,wy) = 0, this sy will be
such that for at least one wj in ik, Viq(B,wj) = 0. But Vy(ar,wy) =1 at
this same member of sjx and by another supposition, Vi(a > B, wy) = 1.
And this leads to a contradiction. Q.E.D.

Completeness of the Stal-SQC™ systems relative to the type of seman-
tics we have proposed is established in the usual way by the method of
canonical models. A Stal-SQC*™ canonical model M is a 4-tuple, <W,f,S,V>
such that:

a) W = {wj | wj is a maximal consistent set of wtfs with the 3-property}
b) For any wj in W, f(wj) = {wj EW|(YA)(Bx Ewj — a0 € wj)}.
c) 8 = {S; | Mw)(wy € W & 55 = Pt(wy)}
d) For any atomic wiff &, V(a,wy) = 1 iff & € wj.
Using as the basis V(a,w;) = Vy (&, wj) from which it follows given d)
that Vy (o, wy) = 1 iff & € wj for & atomic, we prove the fundamental
theorem of canonical models, i.e., for any wiff &, VM(“»Wi) =1iffd €
wi, by induction on the complexity of & . The inductive proof proceeds along
the same lines as it did for the Sub-SQC" systems.

Further, the case where & is of the form Bjf proceeds in the same way
as the case where & is of the form Bf for the Sub-SQC* systems given that
the truth-conditions for wiffs of the form BIB for the Stal-SQC™ systems
are identical to the truth-conditions for wffs of the form Bf for the Sub-
SQC* systems. Finally, it was shown that for the Stal-SQC= systems, the
non-ideal belief operator B can be defined in terms of the ideal belief
operator By with the latter taken as primitive. Thus, once it has been es-
tablished that the fundamental theorem holds for wffs of the form Bjp and
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given that it holds for the primitive connectives and a primitive quantifer,
it follows that the fundamental theorem holds for a/Z/ wiffs including wffs
of the form Bp.

Finally, once the fundamental theorem has been established it remains
to be shown that the canonical model for the given Stal-SQC™ system is in
the class of models with respect to which that system is sound. And this
is shown by proving that f meets the appropriate restrictions.

And so, we have attempted to formalize Stalnaker's model that agents
can be in more than one belief state (thereby explaining why belief is not
deductively closed) on the semantic front. To make Stalnaker's notion of
belief states more conspicuous, we considered an alternative semantics for
the Stal-SQC™ systems which factored into the truth-conditions for non-
ideal belief wffs, non-empty sets of indices - intuitively, belief states -
such that these indices are amongst the alternatives to the given index,
thus ensuring an interdependence between ideal and non-ideal belief.

Although the Stal-SQC™ + D systems of doxastic logic are the closest we
have come to modal logics capturing principles of belief attribution for the
non-ideal believer, we are still left with the presupposition that agents are
logically omnidoxastic. In the final section, we shall reconsider the prob-
lem of logical omnidoxasticity arguing that it is intractable for logics of
belief with relational semantics. However, in the next section, we shall
briefly consider as a plausible alternative to Stalnaker's informal proposal
that agents can be in more than one belief state, a formal proposal of Res-
cher's which involves the supposition that non-ideal belief is a relation

between an agent and a so-called superposed world.
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4. When Worlds Collide

In defining belief as a relation between an agent and possibly many
sets of worlds or belief states, Stalnaker is able to construct a possible
worlds semantics of belief which does not presuppose that agents always
conjoin their beliefs or that their beliefs are always consistent. Linked to
his view that the objects of belief are (possibly disjoint) sets of worlds is
his causal-pragmatic account of belief and belief attribution. l.e., a nec-
essary condition for attributing to x the belief that & is that x be disposed
in one sort of context to act in ways that will tend to satisfy his desires
at all o -worlds - which suggests that the objects of beliefs are sets of
worlds. Then if an agent acts in incompatible ways in two different con-
texts (for example he may act in ways that satisfy his desires in & worlds
and in another context, he may act in ways that satisfy his desires in ~ot
worlds - as in the puzzling Pierre case), this is explainable by his being
related to two disjoint sets of worlds or belief states.

In The Logic of Inconsistency , Nicholas Rescher et al offer a solution to
the problem of deduction (but not to the problem of logical omnidoxasticity)
in the same vein as Stalnaker's solution. For Rescher, belief involves a dis-
postion to assent to a statement. Further, it is possible that an agent can
have various dispositions to assent in different contexts. His account of
belief attribution is not incompatible with Stalanker's since he gives a dis-
positional analysis, thus making it a 'pragmatic’' account, although the rel-
evant types of actions are speech acts, viz., verbal assent (thus bearing
similarities to Kripke's disquotation principle). So, if an agent can be dis-
posed to act in different ways in different situations, then this leaves open
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the possibility that the agent may be disposed to assent to & in one context
(thereby believing that a) and that he may be disposed to assent to ~a in
another context (thereby believing that ~« ), without the agent thereby
believing that o & ~at:

At a more mundane level, it is common for an individual to be simul-
taneously disposed to assent to a statement if queried and to be dispos-
ed to assent to the denial of that statement if queried in some variant
context (once again, this does not mean that one is ever disposed to
assent to the conjunction of a statement and its denial).31

Thus, he might explain the Kripke puzzle along _Stalnakerian lii'xes by argu-
ing that puzzling Pierre was disposed to assent to 'Londres est jolie' in one
context and he was disposed to assent to 'London is not pretty' in another,
without his thereby believing that London is both pretty and not pretty.

To avoid the sort of situation where an agent who has incompatible
beliefs in different contexts ends up believing a contradiction, Rescher
imposes the following restriction on any agent's set of beliefs: The set of
believed statements must be 'minimally consistent' in the sense that it is at
most weakly inconsistent.32 A set of statements is weak/y inconsistent
Just in case for some wif & and for some world w, & is true at w and ~a
is true at w, but & & ~a is true at no w.3 Strong inconsistency is def-
ined as follows: For some wif &, and for some world w, a & ~0 is true at
w - hyperinconsistency occurs when for every wif & and for some world .
w, o & ~a is true at w. ¥

According to Rescher (and as argued in chapter one), if the 'minimal

31 Rescher et al (1980), p.101.
32 Rescher et al (1980), p. 100.
33 ibid, p. 25.
34 ibid, p. 24.
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consistency' restriction were not imposed on an agent's set of beliefs, then
since a contradiction logically implies everything, any agent believing that
o & ~0 would thereby believe everything.3% So, puzzling Pierre's set of
beliefs must satisfy the minimal consistency requirement to avoid the con-
sequence that he believes everything. Thus, if he believes that London is
pretty and he believes that London is not pretty, he does not thereby
believe that London is both pretty and not pretty. So for Rescher (as for
Marcus), assent carries over into belief only if what is assented to is selr-
consistent .

It is our task in the remainder of this section to examine Rescher's
formal proposal for making sense out of the above type of situation. l.e.,
we shall consider his suggestions for a semantics of belief which allows
that agents can have contradictory beliefs (whose contents are assented to
in different contexts) and which allows that agents can fail to conjoin bel-
iefs, but which requires that an agent's system of beliefs be minimally
consistent. In short, Rescher is offering an alternative account as to how
it is possible that agents can hold incompatible sets of beliefs in different
contexts. Findly, it will then be argued that Rescher's semantic proposals
can be adopted to provide a characteristic semantics for the Stal-SQC= + D
systems.

The formal semantics of belief which Rescher develops rests on the
assumption that belief is a relation between a believer (at a world) and a
non-standard world.3 The contents of the agent's beliefs would all hold at
this world. Depending on the type of non-standardness we are considering,

the contents true at this world may include for some wff &, both & and

35 ibid, p. 102.
36 Rescher et al (1980), p. 105.
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~a, but not a & ~0¢ thus meeting his minimal consistency requirement.
Further, the non-standard world to which the believer at a world is
related may be such that even though o and p both obtain, it is possible
that & & f fails to obtain. Then in this type of semantics, if what we have
called non-ideal belief is a relation between a believer at a world and the
right sort of non-standard world, the following schemata (couched in the
language of our Stal-SQC= + D systems) would be invalid:

i) (Ba & BB) > B(o & B) non-ideal adjunction

ii) ~(Bat & B~at) non-ideal consistency
And the following would be valid in this type of semantics:
iv) ~B(at & ~at) non-ideal self-consistency
We shall now see exactly how Rescher spells out 'non-standardness’.

In Rescher's semantics, there are two types of non-standard worlds,
viz., 'schematic' and 'superposed’'. Both types of non-standard worlds are
constructed by means of 'world-fusion' with standard worlds as the initial
basis of the fusion. Thus, a belief model would consist of a set of standard
worlds and a set of non-standard worlds ultimately constructable from the
standard ones by means of world-fusion. Consider the simplest sort of case
where a non-standard world is constructed out of two standard ones. Then
the two types of world-fusion are as follows:3?

1) World conjunction - Given two standard worlds wj and wj, Wi A w;j
is the world such that for any proposition o, & is true at w; R wj just
in case & is true at both wj and wj.
2) World disjunction - Given two standard worlds wi and Wi, Wi B wy
is the world such that for any proposition a, & is true at w; ¢ wj iff

o is true at either wj or w;.

37 Rescher et al (1980), pp. 9 - 1.
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Non-standard worlds formed by the operation of world conjunction are
called 'schematic' and non-standard worlds formed by the operation of
world disjunction are 'superposed’.

As Rescher notes, schematic worlds will be incomplete in the sense
that for some proposition & and its negation ~a, it is possible that neither
o nor ~0 will obtain.3® Thus, in the simplest sort of case, if a is true at
wj and false at wj and if ~a is false at wy but true at wj then neither a
nor ~a will obtain at the schematic world wy @ wj. What is non-standard
about so-called schematic worlds is their incompleteness. Standard pos-
sible worlds will be such that for any proposition a, either & or ~& ob-
tains (but not both). However, for a schematic world wi N wj, it is never
the case that o and ~a can both obtain at such a world since this would
mean that & and ~& are both true at both wj and wj. But this is impos-
sible since schematic worlds are ultimately constructed out of standard
worlds where the connectives are defined classically. Further, for any
schematic world wy A wj, if & and f obtain then so must their conjunction
@ & B, since a and f must each obtain at both wj and at wy.

Since sdeal believers cannot hold contradictory beliefs and do not nec-
essarily conjoin their beliefs, then ideal belief in Rescher's semantics
could be regarded as a relation between a believer at a world and a schem-
atic world (constructed out of the doxastic alternatives to the world the
agent inhabits). Thus, ideal belief is a relation to non-standard worlds
which are schematic. This idea will be explored further below when we
come to consider Rescher's proposals vis a vis a characteristic semantics
for the Stal-SQC™ + D systems.

On the other hand, so-called superposed worlds will be weakly in-

38 ibid, p. 9.
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consistent in the sense that it is possible that for some proposition a, both
o and ~a may obtain. Thus, if & is true at wj and if ~& is true at w;
then both o and ~0 will be true at w; & wj. And generally, for any wffs
o and B, if & is true at wj but false at wj and § is false at wj but true at
wj then & & B is false at both wj and wj and hence & & P is false at w; ¥
AT However, o and B are individually (though not conjointly) true at wj
U wj since & is true at wy and § is true at w;.

Then the kind of non-standard world that would best serve as the
relatum of non-ideal dbelief is the superposed world. What is non-standard
about superposed worlds is that unlike standard worlds, they are weakly
(though not strongly) inconsistent. Further, the conjunctions of propositions
or more neutrally statements true at superposed worlds need not them-
selves be true. And this makes them suitable relata of belief if we wish to
allow for non-ideality. What is being suggested is that if x believes that «
is true (at some world - perhaps the actual world) then & must be true at
a non-standard world formed by superposition. Thus, it is possible that x
beleives that & and that x believes that ~a (since & and ~& may both ob-
tain at the appropriate superposed world) without thereby believing that
o & ~a (since superposed worlds are minimally consistent).

However, superposed worlds are not non-standard in the sense that
Rantala's non-normal indices are. For one thing, superposed worlds al-
though weakly inconsistent are not séronmg/y inconsistent since ultimately
they are formed from standard worlds as their basis, and so there will
never be a standard world where & & ~0 obtains. The same can be said of
schematic worlds. Aiso, if the relata of non-ideal belief are superposed

worlds then since & & ~0t obtains at no superposed world, it will never be
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the case in this type of semantics that x (non-ideally) believes that a & ~a
- i.e., there will be no superposed world where this content obtains. Thus,
no instance of the schema B( & ~a) is satisfiable and hence ~B(0t & ~a )
will be valid in this type of semantics.

Another reason that superposed worlds are not non-standard in the
sense that Rantala's non-normal worlds are is that since superposed
worlds are constructed ultimately from standard ones and since every
thesis of the appropriate system of logic will be true at each standard
world, then every thesis will be true at every superposed world. And the
same can be said of schematic worlds. But given this feature of superposed
worlds, it follows that agents will be omnidoxastic with respect to all
theses of the appropriate system. l.e., if belief is a relation between a
believer and a non-standard possible world, then since all theses are true
at any non-standard world, every agent will believe all theses. This in-
cidentally is another one of the intuitive requirements which Rescher im-
poses on agents' systems of beliefs in addition to the minimal consistency
condition.3?

The following will be 'semantic' prinicples which hold for standard
or normal worlds but which fail for superposed worlds: (We shall let M
designate some arbitrary model consisting of a set of standard and non-
standard worlds, and V) will be a valuation over any such model. )40

1) 1f Viq(et,wy) = 1 then it is not the case that Vq(~o,wy) = 1.

2) 1f Viy(o,wy) = ViM(B,wyp) = 1 then V(o & B,wy) = 1.

It was explained earlier why these semantic principles break down for

39 ibid, p. 100.
40 Rescher uses different notation. He discusses the status of these principles amongst others in
section S5, pp. 15-20.
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superposed worlds. Given that they do, it is evident how such a semantics
can refute the non-idea! adjunction and consistency schemata. l.e., if a
superposed world can be weakly inconsistent, then if there is some believer
x related to such a world where o and ~0t both obtain at this world then x
will believe that‘ o and x will believe that ~at (at some world). Thus, the
non-ideal consistency schema ~(Ba & B~ ) is refuted in this type of sem-
antics. Fufther, given that condition 2) is violated for superposed worlds,
it follows that if some believer x is related to a superposed world where o
and f§ both obtain but o & § fails to obtain then x will believe that & and x
will believe that § but x will not believe that o & p (at some world). Thus,
the non-ideal adjunction schema (Ba & Bf) > B(a & B) is refuted in this
type of semantics.

Similar to our Stalnakerian semantics for the Stal-SQC™ + D systems,
Rescher's proposed semantics for belief logic presupposes that agents non-
ideally believe all the logical consequences of what they believe. The reason
that the semantic principle that if Viy(a,wy) = Vq(a > B, wy) =1 then
VM(B, wy) = 1 fails for superposed worlds is that there could be two worlds
wij and wj such that & is true at wj, & > & and B are false at wj and
such that a > § is true at wj, a and B are both false at wj. It follows
from this that & and o > f are both true at the superposed world w; U wj
but B will be false at wj U wj.41 However, the failure of this semantic
principle for non-standard indices does not alter the fact that whenever
|-« > B, this principle holds. This is because & > B obtains for every world
if |- > B and so the type of situation mentioned above where the implica-
tion principle breaks down by virtue of & > § being false at a component

world could not arise (even if the component world is non-standard).

41 Rescher et al (1980), p. 19.
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This situation of logical omnidoxasticity is stonger than Rescher’s
requirement for belief systems (in addition to the minimal consistency
requirement) that "all sentences deducible from belief sentences by one-
premise inferences of first-order logic is believed*42 since in the type of
semantics he is proposing, agents would believe any consequence deduciblé
from believed sentences given the omnidoxasticity feature of his semantics.

And so, it would appear that Rescher has developed a semantics for
belief logic which invalidates the non-ideal adjunction and consistency
schemata, which does not allow agents to hold self-contradictory beliefs
and which presupposes that agents believe (both ideally and non-ideally)
all logical truths. But although Rescher's superposed worlds are not like
Rantala's non-normal worlds in certain respects, they also resemble Ran-
tala's non-normal worlds in the respect that '~' and '&' behave non-
standardly for superposed worlds (as does '>'4%). But then this feature of
Rescher's semantics is open to the same objection levelled by Cresswell
against a Rantala-type semantics, viz., that '~' and '&' do not represent
classical négauon and conjunction respectively for superposed worlds. So
for example, this semantics does not illustrate how it is possible for agents
to believe both that & and its classica/ negation, ~a. Rather, all that his
semantics shows is how it is possible for an agent to believe both that o
and its paraconsistent negation.

Rescher responds to this objection to his proposed semantics for belief
by emphasizing that he is not proposing a deviant Jogic, but merely a dev-

iant semantics.44 For example, although the semantic principle that if

42 ibid, p. 100.
43 ibid, p. 19. The principle that if Vjy(ot . w) and V(at > B.w;) = 1 then Viq(B.w;) = | breaks

down for superposed worlds.
44 Rescher et al (1980), p. 18.
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VM, wy) = Viy(B,wy) = 1 then Viy(a & B, wy) = 1, fails for superposed
worlds, the corresponding syntactic principle o, |- a & B is retained for
the appropriate axiom-system.4® And so, Rescher's response to the charge
of equivocation with respect to the connectives '~', ‘&' (and '>') in his sem-
antics is that he admits the charge but claims that what is important is

how the connectives behawve inferentially:

Our own choice here is clear - we follow the mainstream of logical
tradition in giving priority to the inferential aspect, taking the stance
that what a logical connective “really is" is to be determined in terms
of what it does in inferential situations.4é

We have already considered this response to the charge of equivocation
with respect to the connectives in relation to Rantala's non-standard index
semantics for belief logic discussed in the previous chapter. It was suggest-
ed that this response may not avoid the charge of equivocation with res-
pect to the connectives ~, & v, > and = if it rests on the dubious assump-
tion that ~, &, v, > and = are definable solely in terms of their behaviour
in non-modal or non-doxastic inferential contexts. As was suggested in the
previous chapter and in section 1, it is also necessary to take into account
how the connectives behave in doxastic or modal contexts in order to
discern their roles in inference for doxastic logics.

Thus, Rescher's semantics can escape the charge of equivocation only
if the corresponding logic is not deviant - not only for non-modal but also
for /modal contexts. Recall that the Stal-SQC= + D systems are logics such
that the connectives behave non-deviantly not only for non-modal but also

for modal contexts. They are simply normal systems of alethic modal logic

45 ibid, p. 18.
46 jpid, p. 23.
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such that the necessity operator is construed as ‘'x ideally believes that' and
the possibility operator is construed as 'x non-ideally believes that'. Then
for example, instances of the adjunction schema for non-ideal belief are
underivable for these systems not because the connectives behave non-
standardly in doxastic contexts, but owing to the fact that the alethic pos-
sibility operator is construed as 'x ideally believes that’'. Now, suppose
that Rescher's semantic proposals are adopted as providing an account of
both the rnon-ideal! and the ideal/ believer. 1.e., non-ideal belief involves
a relation to a superposed world and ideal belief involves a relation to a
schematic world. These characterizations of both ideal and non-ideal belief
will be incorporated into a semantics characterizing the Stal-SQC™ + D
systems - which can be regarded as logics of the ideal and non-ideal bel-
fever.
Then even though the connectives ~, & and > are defined non-standardly
for superposed worlds, this sort of semantics can escape the charge of
equivocation with respect to ~, & anﬁ > since the corresponding logics are
non-deviant. (Note also that in this semantics, the connective 'v' behaves
non-classically for schematic worlds since it is possible that VM(a v B,
wt) = 1 for some schematic world w*, and yet Vp(a,w*) = Viy(B,w*) =
0.47) We shall now consider in detail just what this Rescherian semantics
for the Stal-SQC™ + D systems will look like.

A Rescherian TV semantics for the Stal-SQC* + D systems will involve
defining a Stal-SQC* + D model as a 7-tuple <W, R,W"’,W',f,g,V> where
W and R are defined as usual as a non-empty set of indices and a two-~
place (minimally serial) relation ranging over members of W respectively.

Further, the sets W+ and w? are non-empty sets of superposed and

47 Rescher et al (1980), p. 15.
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schematic indices respectively. Also, f is a one-one onto function which
associates with each member of W, exactly one member of W and g is a
one-one onto function which associates with each member of W exactly
one member of W*. The idea here is that with each index in W is assoc-
jated exactly one superposed index and exactly one schematic index. Then,
a non-ideal belief wff, Ba will be true at wj in W just in case the content
a is true at the superposed index f(wi) and an ideal belief wff, Byt will
be true at wy in W just in case the content a is true at the schematic
index g(wi). The truth-conditions for wiffs at superposed and schematic
indices will be outlined in the next paragraph when.we discuss the valu-
ation function Vy.

The assignment function V as ususal assigns to atomic wiffs at mem-
bers of W, either '0’ or '1' where '1' is the designated value, with the same
two restrictions imposed on V (in relation to the identity symbol '=') as for
the Stalnakerian TV semantics for the Stal~-SQC™ + D systems. Further, for
members of W, the valuation function V) is defined inductively in the
usual manner such that the truth-conditions for quantified wiffs are sub-
stitutional. The truth-conditions for non-ideal belief and for ideal belief
will /nitially be the truth-conditions for possibility and necessity respec-
tively for alethic normal systems, viz., in terms of the alternativeness
relation R.

Once V) is defined for members of W, it can be defined for the schem-
atic indices in W* as follows: For any wif a, VMm(e,g(wy)) = 1 iff for all
wj such that wiRwj, Viq(a,wj) = 1. Le., a wif & is true at a schematic
world g(w;) assigned to a member of W, w; just in case & is true at a//

the alternatives to w; determined by R. But if & is true at all alternatives
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to wy then it follows that Bya is true at wy. This leads to the specification
of truth-conditions for ideal belief in terms of schematic indices as follows:
Vum(Bra, wy) = 1 iff Viy(e, WJ) = 1 for all wj such that wjRw; iff
Vm(a,g(wy)) = 1. These truth-conditions for ideal belief intuitively jibe
with Rescher's injunction that the non-standard world to which a believer
at a world is related "must satisfy all and only the statements of a lang-
uage Z which the individual believes".48 I.e., the wiffs true at a schematic
index g(wy) associated with a member of W, will be the contents of all
wifs of the form Bj& true at wj.

Further, V) can be defined for the superposed indices in W* as fol-
lows: For any wif a, Viy(a,f(wy)) = 1 iff for at least one wj such that
WiRwj, VM(a,wJ) = 1. le., a Wff & is true at a superposed world f(wj)
assigned to a member of W, wj just in case & 18 true at af /east one of
the alternatives to wj determined by R. But if & is true at some alter-
native to wj then it follows that B& is true at wj. This leads to the spec-
ification of truth-conditions for non-ideal belief in terms of superposed
indices as follows: Vi(Ba,wy) = 1 iff Viy(a, wy) = 1 for at least one wy
such that wiRwy iff Vy(a,f(wy)) = 1. Finally, all those wifs true at a
superposed index f(w;) will be all and only those contents of non-ideal
belief wifs of the form Ba true at the associated index wj.

We shall now provide a somewhat more formal characterization of the
TV semantics for the Stal-SQC™ + D systems described above:

A Stal-SQC™ + D serial model M = <W,R, W+, W?* f,g, V> such that

1) W=0.

2) R ¢ W X W where R is minimally serial.

NwWwrag,

48 Rescher et al (1980), p. 105,
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D Wy
5) £:W ——— W"* such that f is 1-1 and onto.
6) g:W ——— W* such that g is 1-1 and onto.
7) V:Atomic Wtfs X W —— {0,1} with the following restrictions:
a) If o is of the form t =t then V(a,w;) = 1 for all wj € W.
b) For all w; € W, if V(t; = t3,wy) = 1 then V(a (t3/v),w;) =
V(e (t2/v), wy).
A valuation over a Stal-SQC* + D model, Vy is such that:
VM:Wets X (WU W* uw?) — {0,1}.
VM is defined for all members of W inductively as follows:
Basis: Vq(a,wj) = V(a,w;) for a atomic.
Inductive Hypothesis: Suppose that Viy(A,wy), VM(B,wj) are defined. Then:
1) Vpm(~o, wy) = 1 iff Viy(a,w;) = 0.

ii) vm(a > B,wy) =1 iff either Viy(a,wy) =0 or Viy(B,wy) = 1.
iti) vm(@v)a,wy) = 1 iff Viy(a (t/v), wy) = 1 for at least one constant t.
iv) Viy(Ba,wy) = 1 itt VMm{a,wj) = 1 for at least one wj in W such that

WiRwj,

v) VM(Bra,wy) = 1 iff Viy(at,wy) = 1 for all wjin W such that wiRw;.
Notice that the truth-conditions for ideal and non-ideal belief are specified
initially by appeal to the doxastic accessibility relation R. In defining
the valuation function for members of W* and W* it will be possible to
restate the truth-conditions for ideal and non-ideal belief by appeal to
the notion of non-standard indices.

Given the definition of V)y for members of W, we can define V)4 for

members of W* (i.e., the set of 'superposed' indices) as follows:



- 354

For any wff o and for any f(w;) in w*:
Vim(a, £(wy)) = 1 iff Vy(at,wy) = 1 for at least one wy in W such that
WiRwj.
It follows from this definition of the valuation function V) for superposed
indices and from the definition of V) for members of W that:

Vm(Ba,wy) = 1 iff Vy(a,t(wy)) = 1.

In other words, the truth-conditions for non-ideal belief in terms of the
serial relation R are equivalent to the truth-conditions for non-ideal belief
in terms of superposed indices.

Further, given the definition of Vy for members of W, we can define
VM for members of w* (i.e., the set of 'schematic’ indices) as follows:

For any wiff a and for any g(wj) in w*.

Vm(a,g(wy)) = 1 iff Viy(a,wj) = 1 for all wjin W such that wiRw;.
It follows from this definition of the valuation function V) for schematic
indices and from the definition of Vyq for members of W that.

VM(Bia, wy) = 1 iff Vy(a,g(wy)) = 1.

Thus, once again, it is possible to restate the truth-conditions for ideal
belief in terms of schematic indices.

Finally, as usual, validity in a model of the type just described will be
truth at all members of W and validity in a class of models will be validity
in all models in the class.

Since the truth-conditions for both ideal and non-ideal belief wffs are
stateable solely in terms of R, without appeal to non-standard indices, the
elements of a Stal-SQC* + D model, W* and w?* are from a purely technical
point of view dispensable. I.e., the elements W, R and V are sufficient to

give us a characteristic semantics for the Stal-SQC™ + D systems as was
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previously mentioned. However, the elements W* and w* serve the pur-
pose of formalizing on the model-theoretic front Rescher's suggestion that
belief can be regarded as involving a relation between a believer at a world
and a non-standard world such that if the believer is related to the right
sort of non-standard world (viz., a superposed world), he may fail to con-
Join beliefs or he may hold contradictory beliefs. Further, because the
truth-conditions for belief wffs in terms of R which treat the connectives
classically are more fundamental than and equivalent to the Rescherian
truth-conditions for belief wffs in terms of non-standard worlds, any
charge of equivocation with respect to the connectives for the non-standard
worlds can be avoided. And in any case, the corresponding axiom-systems
are non-deviant.

Since from a technical point of view, the elements W+ and w? are dis-
pensable, soundness and completeness results are immediate. However,
we shall illustrate how the Rescherian element of the semantics validates
the axiom-schema D, Bjat > Ba for the Stal-SQC™ + D systems. Suppose
that there is a Stal-SQC™ + D model, <W, R,W"’,W', f,8, V> such that for
some member of W, w; and for some instance of Bja > Ba, Vq(Bjat,w;) =
1 but Vy(Ba,wj) = 0. On the supposition that Vq(Bya,w;) = 1 then
VMm(a,g(wy)) = 1. Then for all wy such that wiRwj, Viy(a,wj) = 1. But
if by supposition Vp(Bat,w;) = 0 then Vy(at,f(w;)) = 0 and hence, for any
wj such that wiRwJ, VM(a,wj) = 0 which contradicts our earlier result
that for all wy such that wiRwy, V(e ,wJ) = 1, given that R is serial.
Q.E.D.

In terms of completeness, for the canonical model M, W would as usual

be a set of maximal consistent sets of wffs with the 3-property, wiij iff
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(¢ )(Bjx € wi > @ € wj) and V(a,wj) = 1 iff @ € wj. The fundamental
theorem of canoncial models with V(a,w;) = 1 iff & € wj as the basis is
proven inductively for members of W. Further, any member of the set wt
f(wj) could be defined as {a | Ba € wj} and any member of w?, g(wy)
could be defined as {& | By« € wj}. Further, the fundamental theorem
could be proven for members of W* along the following lines: Vy(a,f(w;))
= 1 iff Vq(Ba,wj) = 1 iff Ba € w; (given the fundamental theorem for
members of W) iff & € f(wy). Similar remarks apply to members of w*,
Finally, the given canonical model is proven to be in the relevant class of
models by showing the R is serial.

And so, it has been argued that the Stal-SQC™ + D systems provide us
with logics of both the ideal and the non-ideal believer by construing the
possibility operator as 'x non-ideally believes that'. Further, we developed
two types of characteristic semantics for these systems, both of which are
attempts to make some sort of model-theoretic sense out of the notion that
agents can hold contradictory beliefs in different contexts without thereby
conjoining these beliefs. The semantice based on Stalnaker's suggestion
attempted to make sense out of this sort of situation in terms of the idea
that agents are capable of being in more than one belief state. On the other
hand, the semantics based on Rescher's suggestions attempted to make
sense out of agents holding incompatible beliefs in different contexts by
claiming that agents' 'belief worlds' (i.e. the worlds at which all and only
the contents of the agents beliefs obtain) can be non-standard.

However, the Stal-SQC™ + D systems and their characteristic semantics,
although providing us with logics of the non~ideal believer are such that

even the non-ideal believer accepts all the logical consequences of what he
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believes. In short, such logics still assume that agents are logically omni-
doxastic. It will be argued in the next section that this is the best we can
do within the parameters of doxastic logics based on normal systems since
any alterations to rid these logics of the omnidoxasticity feature will res-

ult in an equivocation with respect to the connectives.

5. The Intractable Feature of Logical Omnidoxasticity

If our semantics for belief logic rests on the assumption that belief is
a relation between a believer at an index and a standard ‘alternative’ index
or a set of standard alternative indices (determined by some two place
relation or function) such that the contents of one's beliefs are true at
these alternatives, then this semantics will presuppose that any agent x
will believe the logical consequences of (or whatever is logically egquivalent
to) what he believes. Thus, in this type of semantics all instances of the
following are valid for either ideal or non-ideal belief (and we shall use 'B’
here to denote both interchangeably):
i) (B & |-a > B) > B
it) (Ba & |-o = B) > Bp
And the corresponding derived rules of inference preserve validity:
itt) |-a 5 p ——= |-Ba > Bp
iv) |- = p —— |-Ba = Bp
The explanation of this runs as follows: Any index which is logically
possible or 'standard’ or ‘'normal’ will be such that it is closed under impli-

cation. Further, (supposing soundness), any thesis - implicational or
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otherwise will be true at any standard index. Thus, any belief alternative
or any member of a belief state (which can be regarded as a set of alter-
natives to a given index) will be such that it is closed under implication
and will be such that every thesis is true. Now, suppose some agent x
believes that & at an index wj; in which case a will be true at the appro-
priate alternatives - or at all members of some belief state. Then since
every alternative is closed under implication and given that all implica-
tional theses are true at each alternative, it follows that for any wif F
such that |-a 5> § or |-a = g, B will also be true at each relevant altern-
ative. Then x will also believe that p. This is so whether we treat belief
as analogous to necessity or to possibilty.

The problem of logical omnidoxasticity for a relational semantics for
belief becomes even more acute if we consider the case of belief with res-
pect to logical truths or truths of mathematics. Since any logical truth or
truth of mathematics will be true at every normal index in a model, then
all these truths will obtain at any alternative assigned to (a typical bel-
iever at) an index. Then if belief is understood as a relation between a
believer at an index and an alternative or set of alternatives, every bel-
iever will believe all the truths of logic and mathematics, whether or not
the agent has entertained any such truth. Further, the agent will believe
all the consequences of some truth of logic which he believes, since they
themselves will be logical truths and therefore true at all the same indices.

If logical omnidoxasticity is found to be objectionable then we may
wish to rethink our views concerning the relata of belief along the follow-
ing lines: We could regard belief as a relation between the 'typical' agent at

an index and some non-standard possible world or index, or a set of such
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indices or a set of both normal and non-normal indices. These non-stand-
ard alternatives would involve a redefinition of '>' since either detachment
would not hold or the relevant implicational thesis would turn out to be
false at such indices. But as was argued in chapter five, this move invites
disaster since we can be charged with equivocation with respect to the con-
nective '>' given that it is defined non-classically for non-standard indices.

Further, the ploy of opting for defining 's' in terms of its role in infer-
ence does not escape the charge of equivocation since its behaivour will
be deviant - at least for doxastic contexts, if the appropriate instance of
(Ba & |-a > B) > Bp is rendered underivable. In short, any alteration to
the axiom-system such that some instance of the omnidoxasticity schema
is underivable simply mirrors the equivocation with respect to '>' in the
semantics. If '>' is classical, then it can misbehave neither for doxastic
nor for non-doxastic contexts. Therefore, the enterprise of altering the
axiom-system such that some instance of the omnidoxasticity schema is
rendered underivable is beside the point.

Granted, the nmon-idea!/ adjunction and consistency schemata can be
rendered underivable for doxastic logics without risk of equivocation only
because this tact involves reconstruing alethic possibility as 'x non-ideally
believes that'. There are no alterations made to the given axiom-system
such that any of the connectives ~, v, & > and = misbehave in doxastic
contexts. The resulting logic is non-deviant. Further, even if we construe
alethic possibility as non-ideal belief, the resulting system retains the
omnidoxasticity feature with respect to non-ideal belief. Thus, the only
;Nay to rid the axiom-system of the omnidoxasticity feature would be to

redefine the inferential role of '>' for doxastic contexts, which once more
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leaves us open to the charge of equivocation

And so, if we wish to avoid the charge of equivocation with respect to
's' while retaining a normal system (and its corresponding relational sem-
antice) as our quantified doxastic logic then the best we can do, it would
seem, is to attempt to make the omnidoxasticity feature of the semantics
more palatable, philosophically.

For example, Stalnaker in a number of places? has tried to make omni-
doxasticity with respect to mathematical or logical truths more palatable
as follows: He claims that if an agent apparently fails to believe some
mathematical truth which is logically implied by (and logically implies)
any mathematical truth he already believes, what is really going on is that
the agent simply does not recognize that the sentence he is considering ex-
presses a mathematical truth. Thus, if he believes one mathematical truth
he believes them all, but he may fail to believe that some sentence or other

expresses any given truth:

The apparent failure to see that a proposition is necessarily true or
that propositions are necessarily equivalent, is to be explained as the
failure to see what propositions are expressed by the expression in
question.50

A consequence of this view is that the objects of mathematical investigation
are twofold, viz., the necessary proposition expressed by all true math-
ematical expressions and secondly the propositions having to do with the
relationship between mathematical expressions and the proposition they
express.5! When agents fail to recognize that two mathematical truths are

equivalent, the source of this failure will be the latter objects of study.

49 For example, see Stainaker (1976) and Stalnaker (1984), the end of chapter four.
S0 Staineker (1984), p. 84.
S1 Stainaker (1984), pp. 84-85.
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As Stalnaker recognizes, a feature of this view is that the objects of
mathematical inquiry turn out to be contingently true propositions, viz.,
those propositions expressing the connections between mathematical expres-
sions and the necessary proposition - and these relations may vary from
world to world or from context to context.

In the case of omnidoxasticity with respect to non-mathematical belief,
such as the William 111 case mentioned in chapter one, Stalnaker's strategy
is to admit that William 111 does not believe that England could avoid a nuc-
lear war with France, although in some sense of acceptance, he accepts
this. (This is how Stalnaker exploits his distinction between belief and
acceptance.) Thus, it may not be a defining condition of belief states that
they are closed under logical consequence - i.e., we cannot characterize
belief states simply as sets of worlds. For example, we may require that
X believes that o if & is true at all worlds in some belief state and if the
agent has entertained this content - or understood it.52 The problem with
this move is that Stalnaker is departing from a possible worlds approach
to belief rather than making the omnidoxasticity feature of such an ap-
proach more palatable.

Finally, although the problem of logical omnidoxasticity is intractable
for relational indexical semantics of belief, there is one advantage which
our Stalnakerian semantics for the Stal-SQC™ + D systems in terms of belief
states has over the other approaches, viz., that if an agent is in more than
one belief state then he may fail to conjoin his beliefs. Thus, suppose that
|-(o & B) 5 Q, where Q is any statement. In a Stalnakerian belief state
semantics, x may believe that & and x may believe that f and yet he may

not believe their conjunction. And so x may fail to believe that Q. But in a

52 ihid, p. 89.
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semantics such that agents believe the conjunction of what they believe,
the agent in believing that & and that § would also end up believing that Q.
Thus, even though agehts are omnidoxastic they in some sense believe
‘less'. Also, in this type of semantics although |-(a & ~a) 5 Q where Q is
any statement, if x believes that a& and that ~&, he Mll not thereby bel-
ieve everything. Similar remarks apply to our Rescherian semantics for

the Stal-SQC™ + D systems.
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Conclusion

An attempt has been made in this dissertation to salvage the enterprise
of basing first-order doxastic logic on normal alethic modal logic by coun-
tering one of the major objections to this program. I.e., if we construe
the alethic necessity operator as 'x believes that' then the resulting logics
characterize the 'ideal’ believer who believes all the consequences of what
he/she believes, who conjoins his/her beliefs and who never holds inconsis~-
tent beliefs. But various counterexamples clted in the literature indicate
the need for a logic embodying principles of belief attribution for the bel-
iever who is non-idea/. We have argued that normal doxastic logics do
Just that if we construe the alethic possibi/ity” operator as 'x non-ideally
believes that' since possibility does not factor out of conjunction for normal
systems and further given that ~(Ma & M~ ) is not a thesis-schema for
normal systems. The omnidoxasticity feature is retained for non-ideal
belief although this feature is mitigated given the failure of non-ideal belief
to factor out of conjunction.

More specifically, our final proposal for a set of first~-order logics of the
non-ideal believer are the Stal-SQC™ systems of doxastic logic. These logics
can be thought of as embodying principles of belief attribution for the non-
ideal as well as the ideal believer by construing the necessity operator as
'x Jdeally believes that' and such that the possibility operator is construed

as 'x non-ideally believes that’. Two types of characteristic semantics
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were considered, viz., A relational semantics formalizing Stalnaker's notion
of agents' being capable of being in more than one belief state and a rel-
ational sermantics based on Rescher's proposal that belief is a relation ob-
taining between a believer at an index and some non-standard index.

A more promising set of emendations to the Sub-SQC™ systems discussed
in chapter four resulting in logics characterizing the non-ideal/ believer is
the set of non-normal logics called the Sub-SQC™() systems. These systems
not only get rid of the adjunction and consistency features of the Sub-SQC~
+ D systems, but in addition they render underivable an infinity of ins-
tances of the omnidoxasticity schemata. These results are achieved vis a
vis Rantala's proposal to restrict for normal systems the doxastic version of
the rule of necessitation to some recursive subset of the set of wiffs. How-
ever, it is when we come to consider the corresponding impossble index
semantics for these systems that the following difficulty becomes evident:
At non-normal indices, the connectives behave non-standardly in which
case, we are eﬁuivocating with respect to these connectives in the seman-
tics. For example, classical conjunction cannot misbehave and remain
classical.

Further, the strategy of defining the connectives in terms of their roles
in inference in the corresponding axiom-systems does not circumvent the
charge of equivocation - assuming that doxasiic contexts are also relevant
in determining the roles of ~, v, &, > and = in inference. If we are right
here, then any attempt at altering normal axiom systems where the neces-
sity operator is construed as 'x (non-ideally) believes that' such that any
instances of the adjunction, consistency or omnidoxasticity schemata are

rendered underivable will involve an equivocation with respect to one or
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more of the connectives, thereby being entirely beside the point with
respect to the problem of deduction.

The Stal-SQC™ (+ D) systems do not equivocate with respect to the
connectives since the elimination of the adjunction and consistency features
for non-ideal belief is not achieved by altering the role of the connectives in
doxastic contexts. Further, in the Stalnakerian semantics proposed for
these systems, the connectives behave classically at indices which are the
elements of belief states. The Rescherian semantics in terms of superposed
and schematic indices could initially be charged with equivocation with
respect to the connectives ~, & And > for superposed indices. However, on
closer 1nspection; superposed indices are formed by 'world-fusion' on
standard indices where the connectives behave classically. Thus, it could
be countered that in terms of the semantics, the connectives are definable
in terms of their behaviour at standard indices out of which superposed
indices are 'fused'.

The Stal-SQC™ axiom-systems are therefore our final word on the prb-
blem of deduction. The omnidoxasticity feature is intractable for these sys-
tems since any attempt to rid them of this characteristic would involve
altering the role of '>' in non-ideal belief contexts, thereby resulting in an
equivocation with respect to these connectives. The corresponding move
in the semantics would involve the introduction of Rantalian non-normal
indices - such that 's' behaves non-standardly. However, the omnidox-
asticity feature of our Stal-SQC™ systems will not have as a consequence
that an agent who believes that & and who also believes that ~& thereby
ends up believing everything, even though & & ~a logically implies Q such
that Q is any statement. This is owing to the fact that these logics do not
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presuppose that agents always conjoin their beliefs. And in fact, the Stal-
SQC™ systems of doxastic logic can be regarded as accomodating the Kripke
puzzle along the following lines: Although puzzling Pierre believes that
London is pretty and he believes that London is not pretty, he does not
thereby end up believing everything since he presumably does not conjoin
these beliefs.

Finally, the Stal-SQC= systems of doxastic logic also provide elegant
ways of handling some of the problems associated with quantified doxastic
systems, viz., the problem of quantifying in and the apparent failure of
the substitutivity of co-referentials for belief contexts. First, the quanti- -
fiers are construed substitutionally in the corresponding semantics, which
therefore circumvents the problem of quantifying into doxastic construc-
tions. For example, if Jones believes (ideally or non-ideally) that the next
Liberal leader will be in favour of balancing the budget, we are warranted
in inferring that some substitution instance of 'Jones believes that x will be
in favour of balancing the budget’' is true. Thus, unlike Hintikka's proposed
solution to the problem of quantifying in which appeals to the traditional
relational/notional distinction, no such distinction is necessary for the Stal-
SQC™ systems.

Along Fregean lines, all belief constructions (ideal or non-ideal) are
unambiguously oblique for these systems in the sense that co-referentials
are not unrestrictedly substitutible for belief contexts. Only if the agent
believes that the relevant identity obtains, is subtitution warranted. And
this is the solution to the substitutivity problem afforded by the Stal-SQC=

systems. What is elegant about the solutions to the substitutivity problem



0

367

and to the problem of quantifying in provided by the Stal-SQC™ systems as
opposed to the Hin-SQC™ systems is that in the former case, only one type
of belief context for both ideal and non-ideal belief is posited. Granted,

we have embraced our own dichotomy between ideal and non-ideal belief
although the payoff of making such a distinction is a partial solution to
the problem of deduction for first-order belief logic.

In addition, the semantics characterizing the Stal-SQC= systems is
metaphysically less problematic than the 'correlate’ semantics character-
izing the Hin-SQC= systems. Domains of individuals are dispensed with in
the truth-value semantics characterizing the Stal-SQC™ systems thereby
avoiding the problem of having to make intuitive (and not just model-

theoretic) sense of the notion of ‘correlates'.
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