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Abstract - "Quantified Doxastic Logic and the Problem of 
Deduction" 

In the first chapter, the reader is introduced to the 'problem of ded

uction'. I.e., any doxastic logic that is a normal modal system containing 

D where the necessity operator is construed as 'x believes that' will 

presuppose that believers are 'ideal' in the sense that their beliefs are 

consistent and closed under classical conjunction and implication. 

Chapters two through four are devoted to a discussion of quantified 

doxastic normal systems. In chapter four, a set of axiom systems is 

proposed such that the substitution of co-referentials is restricted for 

doxastic contexts although 'quantifying in' is permitted provided that the 

quantifiers are read substitutionally in the semantics. 

The systems proposed in chapter four inherit the problem of ded

uction and so possible solutions are considered in chapters five and six. 

The partial solution to the problem of deduction ultimately endorsed 

involves construing the possibility operator as 'x (non-ideally) believes 

that'. 
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Sommalre - "La log1que doxastique quantitiee et le probleme 

de la deduction" 

Dans le premier chapitre, nous presentons au lecteur le "probleme 

de la deduction", i.e., toute logique doxastique constituant un systeme 

modal normal contenant D, ou l"operateur nlce!JSitl accepte "x croit 

que" presuppose que les partisans sont "ideaux" en ce sens que leurs 

croyances sont unitormes et fermees selon la conjonction et !'implication 

classiques. 

Les chapitres deux a quatre comportent une discussion sur les 

systemes doxasttques normaux qu•nttfih . Le chapitre quatre suggere 

une serie de systemes d'axiomes de sorte que la substitution de co

referentiels est limitee aux contextes doxastiques, bien que la 

"quantification" soit permise si les termes quantitatifs sont lus en 

remplacement dans la semantique. 

Les systemes proposes au chapitre quatre heritent du probleme de la 

deduction; ainsi, les chapitres cinq et six se consacrent a des solutions 

possibles. La solution partielle au probleme de la deduction ultimement 

appuyee implique l"acceptation l'operateur possibilitl comme etant "x 

(non-idealement) croit que". 
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Preface 

This thesis is in part an attempt to salvap the enterprise of adopting 

normal modal logics as logics of the eptstemic modaUties such as knowledge 

and belief. In particular, I shall be concerned with (quantified) doxasttc 

logic - or the logic of belief. 

The strategy of adopting normal modal systems as qics of the so

called eptstemic modalities is not a new idea. Por example, von Wright in 

A.tt buy iD Mod41 Logic (1951) suuests that by replacing the necessity 

operator 'JI' for his system M1 (which is a 'normar system in the sense 

defined in section 1 of chapter one) with the eptstemic operator 'V' (i.e., 'it 

ls known or vertttec:t that') we attain a logic of knowled.ge. He also discusseS 

quantificational logics of knowledge such u his system 'VE'. However, von 

Wright did not have at his disposal relatior:aal semantics- but merely 'nor

mal forms'. The advent of relational semantics for logics of the ,u,tlzic 

modalities developed by Krtplte (in for example Krtplte (1963)) and for log1cs 

of the epistemtc modalities developed by Hintikka (in Hintikka (1962, 1969)) 

paved the way for a more extensive treatment tn the literature of the sup

posed analogy between the alethic modalities and the eptstemtc modalities. 

The tradition tn the literature with respect to doxastic logic has been to 

treat belief as analogous to alethic necessity and hence to simply replace the 

necessity operator 'L' for sentential and first-order normal alethtc systems 

with 'B' (it is beUcrvect that). See for example Htnttkka (1962), Sleigh (1972), 

Ebtrle (1974), Rescher (1968, 1974) and Rantala (1982, 1983). In fact certain 

http:knowled.ge
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authors such as Lewts (in Lewts (1986)) refer to belief as 'doxastic neces

sity'. In addition, it is supposed that the alethtc possibility operator '11' can 

be replaced for doxastic lostcs by a 'doxasttc' possibU1ty operator such as 

Htntikka's 'PJt' whiCh ts informally interpreted as '1t 1s possible tor all x 

beliews that'. 

However, normal modal systems adopted as d.oxastic logics where the 

necessity operator 'L' is replaced by the belief operator 'B' (and where 'M' 

is replaced by 'Pa') presuppose that believers are 'ideal' in the sense that 

their beliefs are consistent and closed under conjunction and implication. 

But these principles are unacceptable qua principles of beltef attribution 

in the light of various counterexamples discussed tn the literature. For 

example, see Maktnson (1966), Ityburs (1971), Marcus (1981), Stalnaker 

(1976,1984) and Lewts (1986}. Using Stalnaker's turn of phrase, I call this 

the 'problem of deduction' for sentential and first-order belief logic. 

The moral to be drawn from these counter-examples to the supposed 

deductive closure and consistency of belief is that there ts a need for a logic 

of the 'non-ideal' believer, t.e., of the believer whose beliefs are not nec

essarily consistent and deductively closed. Normal ~odal .J.osics where 

belief 1s taken to be analogous to alethic necessity do not appear to be 

suited to the task. Further, I shall argue that the attempt by Veik.ko 

Rantala to salvage the apparent analogy between necessity and beltef (or 

knowledge) by suggesting alterations to normal axiom systems and their 

semantics in Rantala (1982, 1983) ultimately does not work because his 

solution involves not only an equivocation with respect to the connectives 

1n his impossible worlds •m•ntic.5 (as would be suggested by Cresswell -

see Cresswell (1973, 1982, 1985)) but also in the corresponding axiom 
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systems (which is a result I attempt to establish). 

However, it is hasty to conclude from these constd.eratiorls that nor

mal mod.al logics wt11 only provtd.e us with loatcs of the 'ideal' believer. 

The solution - a.lbttt a partial one - which I propose in this thesis to the 

problem of deduction for normal doxastic logics is the followtns: I sugest 

that it we Wish to salvage the tradition of treating belief logics as variants 

of normal alethtc mod.al loatcs, then the more fruitful strategy is to treat 

the alethic possibility operator rather than the necessity operator as •x 

believes that •. ln treating belief as analogous to possibility rather than 

necessity, we end. up with doxastic loeics which do not presuppose that 

agents always conjoin their beliefs and which do not presuppose that 

agents' beliets are always consiStent. Granted, these logiCS retain the 

feature that agents believe all the logical consequences of what they bel

ieve although 1 shall argue that this feature is mtttaated.. 

The solution herein proposed. to the problem of deduction for normal 

sentential and first-order doxastic logic was prompted. by a remark made 

by Marcus in • A Proposed. Solution to a Puzzle About Belief• (1981): 507, 

where she notes that belief /Jk, JXJ6!1i.biUty does not always factor out of 

conjunction as is evident in Krtpke's puzzlins Pierre case. In pursums this 

ld.ea, it became clear to me that belief is like possibility in another respect, 

vtz., a proposition and. its negation can both be possible- can both be bel

ieved. Further, given that an agent can believe both that ex and that-« 

Without thereby conjoining them, tt is not a consequence of treating belief 

as analogous to possibiltty that agents who have contradictory beliefs 

thereby end up believing everything. 

Finally, there is the question as to how to reconstrue the necessity 
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operator for normal modallOSics adopted as doxastic 1011cs. I sugest that 

the necessity operator can be constry.ted as •x ldaOy bellews that•. Thus, 

lt we adopt normal modal systems ~contatninc the schema D) as 1011cs of 

belief, then the resulttnc loctcs can k taken as cb.aractertz1nc both the 1deal 

believer (viz., one whose beliefs ar•l consist.nt and clOSfld und.r deduction) 
I 

as well as the non-ideal believer ( viF., one whose beliefs an not always 

consistent or closed under deducttonl 

A semantics is then required tot our doxasttc systems .which ctves 

some sort of intuitive content to the botion that belief Is like possibil1ty in 
I 

the respect that acents can fail to cofjoin beliefs and are capable of having 

contradictory (though not self-contr~dictory) beliefs. One ot the semantics 
I 
I 

which I propose ts a tormal1zation (Wtth1n the context of a relational sem-
I 

antics) of stalnaker's sugestion that\ an agent is capable of being in more 
I 

than one 'belief state•. To my knowlflge, no-one has yet formallzed this 

idea in terms ot a relational semantic;s for first-order belief lOSic. 

A belief state is defined as a set of worlds such that all the contents of 

a subset of the asent•s beltefs obtain .teach world in the set. Stalnaker 

develops this idea in chapter five of )fqulry (1984). If apnts are capable of 

being tn more than one belief state, tJten x could believe that cc and x could 

also believe that -ex provided these tvf'o contents obtain at all members of 

distinct belief states which ar• non-overlapping. Purther, the agent will 

not conjoin these beliefs since at no belief state will it be the case that ex 

and its negation will both obtain at all worlds in the state. Purther, since 

belief states an sets of .{JO!J$.ib/1 worlds, agents will nonetheless believe the 

consequences of what they belleve. Thus, a semantics of belief states 

the central idea of which being that x believes that ex at w 1 just tn case 
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then is at least one states such that ex o1rtains at all members of s) seems 

to match up wtth the idea that belief (as in 'non-ideal' beUef) is analosous 

to alethic possibility. 

The systems of belief lo&iC which are ultimately endorsed in this 

thesis - such that the possi))llity operator is construed as x believes that -

are normal qw.rztilfc:.ti0114l systems wtth fd,ntity. Thus a further task 

which I herem undertalte is to propose a set of lostcs of the non-ideal bel

iever which are relatively unproblematic wtth respect to two of the more 

prominent difficulties arising from combining the eptstemic moclalities with 

quantifiers and identity. The first such difficulty is the issue of 'quantify

ing into' doxasttc constructions. Por example, under what conditions (if 

any) are we allowed to infer from Jones' belief that the next Prime Minis

ter will abolish Pree Trade, that tl#rr is somi/OD, such that Jones believes 

of that person that he/she will abolish Pree Trade? The issue of •quan

tifying in' gamed attention ill the literature followillg Quille's 1956 article 

"Quantifiers and Propositional Attitudes". Por example, see Hintik..ka (1962, 

1969), Kaplan (1969), Sosa (1970), Burge (1977) and st1ch (1983). 

A difficulty arising from combining the epistemic modallties with 

identity ls that the prillctple that eo-referential terms are intersubstitutlble 

Mlvrr vrrrftllt' breaks down for doxastic and eptstemic contexts. Thus, 

even though Jones belleves that Krtpke is a sifted lostctan, he may fail to 

believe that the author of Wfttgftlstlfn OD lluJn And Privati~~ is 

a gifted logtclan. The failure of the substitutivity principle for belief con

texts was first dtscussed by Prege ill "On Sense and Reference• (1892). This 

issue has been dtscussed over the years ill for instance Quine (1960), 
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Hintikk.a (1962, 1967, 1969), Sellars (1969) and more recently in Xr1p.ke 

(1979) as well as in Barwtse and Perry (1983). 

The various lostcs which I propose for non-ideal belief in chapter six 

handle the problems of quantifying 1D and the failure ot the suJ»tituttvity 

principle for belief contexts as follows: Althoush the substitutlvity prin

ciple is restricted to non-modal contexts in which case belief contexts are 

treated as unambiguously 'oblique•, there are no strictures on quantltytns 

into doxasttc constructions stwn that the quantifiers -are construed '5Ub

stituttonally in the semantics. As Xrtpke has remarked, there is no problem 

of quantifying in for modal contexts if the quantifiers are substitutional. 

(Xrtpke (1976): 375) A result which I have hopefully establlshed in chap

ters four and stx is that a trutJJ-valu' Sttm,.ntJcs where the identity 

statements of the lanauase can take on different values at distinct indices 

and where the truth-conditions for the quantifiers are substitutional, w1l1 

proVide a characteristic semantics for lostcs which restrict the substitu

tivity principle while allowtns unrestricted quantifytns tn. 

By way of some closing remarks, I developed an interest in doxastic 

logic (and more pnerally in prepositional attitude logics} in a roundabout 

way as a result ot my readtnp in Action Theory. I became interested 1D 

the lostc of action and subsequently in the Iostc and semantics ot the bellet

desire 'premises' of practical syllostsms explatnins action. It was at that 

point that I read Stalnaker's article •Propositions• (1976) where he sugests 

that belief and desire qua 'functional' states (explainins behaviour) involve 

a partitionins of possible alternative situations (to the actual world) into 

those compatible with the stwn attitudes and those which are not. Thus, 

tn terms of the practical syllostsm, Jones' dotns X ts explained by his 
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desire that Y obtains and by his belief that by doing X, Y wUl obtaiD, such 

that Jones' desire that Y obtains involves his partitioning the set ot alter

natives to the actual course of events into Y alternatives and into not-Y 

alternatives. The role which his belief plays in explaining his dotns X 

is that it determines which of those Y-alternatives to be sought is most 

likely to become actual - and in this case, the prime candidate is an X & Y 

alternative. 

1 then read Hilltik.ka's "Semantics for Propositional Attitudes" (1969) 

in which he proposes a semantics (though not a logic) of belief which is 

similar to Stalnaker•s possible worlds analysis of belief and desire as 

fOllows: According to Hintiklta, to say that x believes that Cl at w1 mean.s 

that a obtains at an those worlds 1n the set +a Which 1ntutively is the set 

ot all those worlds 'compatible' with the attitude in question. I.e., if x: bel

ieves that Cl at w1 then « will obtain at each and every world at which 

all the other contents of his beliefs obtain. This led me to consider the 

analogy between alethtc modal loslcs and their semantics on the one hand 

and proposttional attitude lostcs and their semantics on the other. 

Hilltikka's semantics was proposed with the aim of resolving two ot 

the problems associated with possible worlds semantics ot the attitudes, 

vtz., the issue of quantify1ng 1n and the failure of the substitutivity priD

ctple for doxastic contexts. It was at that poiDt that I began thinklDg about 

and reading the literature on these issues. ln delving into the literature 

1 also became 1nterested in the problem of deduction for doxastic logics. 

I came to realize that Hilltikka's semantics for belief lostc (as Hintikka 

himself notes 1n Hintikka (1975)) in terms of possible worlds presupposes 

that agents believe all the consequences of what they believe. Thus, I 
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began looking at various proposed solutions to the 'logical omniscience' 

problem which led me to consider R.antala's proposals for an 'impossible 

worlds' semantics for belief logic- and which was the beginning of this 

work.. 
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years. Finally, I Wish to thank Tony Larivtere, Bill Massicotte and James 

Pettit for numerous philosophical discussions and for their friendship. 
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Introduction 

The aim of this work is to develop a first-order lostc and semantics of 

belief within the tradition which treats doxastic logics as norma} modal 

logics1, while avoiding at least some of the rnore serious objections gener

ally raised against such a program. At least two sets of objections have 

been raised against this enterprise in the literature. The first set of objec

tions can be categorized as the 'problem of deduction •2 which arises from 

construing the alethic necessity operator 'L' as 'x believes that'. The res-

ulting logics and their semantics presuppose that believers are 'ideal' in the 

sense that they conjoin whatever they believe, that they believe all the 

(classical) logical consequences of what they believe and finally that agents 

always hold consistent beliefs. However, there are counterexamples in the 

literature to each of these principles qua principles of belief attribution. 

The logic of belief which Will be proposed in chapter six avoids the consis

tency and the adjunctive components of the problem of deduction by cons

truing the possibility operator ')(' as 'x (non-ideally) believes that'. 

Further, the second set of objections to the tradition of treating first

order belief losics as quantified normal modal lostcs concerns those theses 

having to do With the behaviour of the identity symbol and the quantifiers 

in belief contexts. At least for systems containing the Barcan Formulal 

which are characterized by invariant dornain semantics, tt is a thesis that 

eo-referential terms are 1ntersubstitut1ble in doxastic contexts. But this is 

1 The term 'normal' Is deOned in the Orst chlpler, p. 12. 

2 As is noted in chapter one. this is Stalanker's phraseology. 

3 The Barcan Formula is discussed In the second chapter, pp. 68-69 
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wrong since if for example Jones believes that Tully was bald, it does not 

follow that Jones thereby believes that Ctcero was bald, given that he may 

fail to recognize that the terms 'Tully' and 'Cicero' are co-referentials. It 

will be argued that the best way of handling this difficulty is to adopt the 

Pregean tact of treating belief contexts as unambiguously 'oblique' in the 

sense that it is not permissible to unrestrictedly substitute co-referentials 

in doxastic contexts. 

It is also a thesis of quantified systems With the Barcan Pormula that 

existential generalization With respect to a term occurring in the scope of a 

belief operator is permissible not only inside but also outside the belief 

operator. If we are construing the quantifiers standardly (as in 'objec

tually') this thesis is wrong since from Jones' belief that the next Prime 

Minister (whoever he/she turns out to be) will attempt to balance the 

budget, it does not follow that there is someone such that Jones believes of 

that person that he/she Will attempt to balance the budget. It will be 

argued that the best way of dealing With this type of situation is to inter

pret the quantifiers substitutionally without appeal to domains of so-called 

individuals. 

In order to provide the reader With a kind of map or guide through 

this work, the remainder of these introductory remarks Will be devoted to 

outlining what Will be discussed in each chapter as well as to indicating 

how the various chapters connect up. 

In chapter one, the reader is provided With a brief introduction to 

normal modal propositional calculi and their corresponding relational sem

antics. It is then noted that one of the traditions in the literature has been 
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to rep.rd normal systems as providing doxastic or epistemic loaics where 

the alethic necessity operator is construed as 'x believes (knows) that'. 

Ooxasttc logics are distinguished tram eptstemtc logics by suggesting that the 

former should not contain T, (DU ;:, oc for dorastic systems, which can be 

read as 'tt x believes that oc then ex obtains') whereas the latter should (if 

we are traditionalists in our analysis of knowledge) contain T (l:cx ;:, ex for 

epistemic systems}. As is mentioned, the focus of discussion will be with 

doxastic rather than epistemic systems. 

It is then noted that normal systems of doxastic logic containing D, 

DU ;:, Pace which result from construing the necessity operator as 'x bel

ieves that• provide us with logics of the 'ideal believer' in the sense that the 

following are thesis-schemata/derived inference rules for these systems: 

Tl: (DU & B-) ;:, B(cx & ') 

T2: -(Bcx & B-a) 

DR 1: 1-a ;:, , --I-DU ;:, B' 

adjunction schema 

consistency schema 

omnidoxasticity schema 

T1 says that agents always conjoin beliefs and T2 asserts that agents' bel

iefs are always consistent. It will be argued that Kripke's puzzling Pierre 

case and his Paderewski example could be regarded as hypothetical cases 

where an agent fails to conjoin inconsistent beliefs held in different con

texts, which thereby casts doubt on T1, T2 qua principles ot belief attribu

tion. DR 1 informally says that agents believe whatever is logically class

ically implied by what they believe - they are logically omnidoxastic. But 

several counterexamples to DR 1 are then presented such as Stalnaker's 

William III case, which calls OR !into question qua principle of belief at

tribution. In the light of the various counterexamples to T1, T2 and OR 1, 

it is suggested that on the assumption that the principles of belief attribu-
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tion employed in setting up these examples are sound, there appears to be a 

need tor a logic of the non-ld#al believer. The need for such a lostc can be 

seen as a challenge to the tradition of adopting normal modal lostcs as dox

astic logics, which has been called the 'pro.blem of deduction •. 

The task. of developing a logic (and corresponding semantics) of the 

no.n-idHI believer within the parameters of normal modal logic (and its 

corresponding Kripkean semantics) is then deferred to chapters five and 

six. In confining our discussion of doxastic logics to purely propositional 

calculi in the first chapter, we will have isolated the 'problem of deduction' 

in abstraction from the second set of problems mentioned above with res

pect to normal doxasttc logics, vtz., those difficulties havtng to do with the 

behavtour of the quantifiers and the identity sym.bol tn belief contexts. This 

set of objections to the program ot adopting normal logics as qu411tiDed 

doxastic logics will be discussed in chapters three and four. 

The main purpose of chapter two is to provide the reader with a tech

nical introduction to f{UantUied doxasttc logtc and its semantics. The set of 

axiom systems which are considered, the sac= systems of doxastic quanti

ftcational calculi, an 'normal' and therefore inherit the problem of deduc

tion discussed in the first chapter. Two types of characteristic semantics 

are then considered, vtz., an invariant domain semantics which lends itself 

to an objectual interpretation of the quantifiers and a truth-value seman

tics which involves assigning truth-values to atomic wtfs 'directly', there

by lending itself to a substitutional interpretation of the quantifiers. 

Finally, it is argued that what is problematic a.bout the metaphysics of 

the invariant domain semantics, vtz. that indiViduals are transindexical 

even though they vary in their properties from index to index, is avoided 
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in the truth-value semantics since the latter dispenses with domains of 

individuals. This foreshadows the move in chapter four to ultimately adopt 

a truth-value semantics for quantified doxasttc logic where the quantifiers 

are read substttuttonally, partly on the grounds that the metaphysics ot 

this type of semantics is relatively unproblemattc. 

Having introduced the reader to the technical aspects of quantified belief 

logic in chapter two, in chapter three the reader is then introduced to two 

of the problems associated with the behaviour of -tlM quantifiers and the 

identity symbol in belief contexts. First, it is noted that difficulties arise 

from the feature that co-referentials are unrestrtctedly intersubstitutible 

in belief contexts for the soc• axiom systems. Various counterexamples 

to the substttutivity feature such as the Tully/Cicero case are discussed. 

It is further contended that contrary to Kripke's arguments in "A Puzzle 

.About Beliett' (1979), it is fair to assume that the problem in such cases 

rests with the substitutivtty principle. 

Next, it is argued that the feature of the sac= axiom systems that 

quantifying into belief constructions is unrestricted leads to such counter

intuitive results as the one mentioned above Viz., the 'next Prime Minister' 

case- at least if adopt an invariant domain semantics for these systems 

where the quantifiers are read objectually. Even if we were to adopt a 

truth-value semantics for the sac= systems, there is still the problem that 

co-referentials are intersubstitutible for belief contexts. 

Hintikka's proposed solutions on the syntactic front to both the dif

ficulties just mentioned are then discussed. Informally, his suggestion for 

dealing with the substttutivity problem is to stipulate that the agent must 

recognize that the relevant identity obtains or that he/she is somehow 
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'acquainted' with the given individual (under both names). In terms of 

the issue of quantifying in, Hintikka restricts generalization with respect to 

constants occuring in the scope of belief operators to those constants which 

denote individuals with whom the individual is 'acquainted'. 

In chapter four, Hintikka's syntactic suggestions for dealing with the 

problems of quantifying in and the apparent failure of substitutivity for 

doxastic contexts are incorporated into the amended versions of the sac= 

axiom systems which we call the Hin-sac= systems. . A correspond.il:J3 sem

antics is developed for these axiom-systems based on Hintikka 's remarks in 

"Semantics for Propositional Attitudes .. (1969). It is argued that this sem

antics is problematic since it employs the dubious notion of an individual's 

having 'correlates' across indices. The truth-value semantics for the 

alternative axiom-systems to the Hin-sac= systems proposed in the final 

section avoid this difficulty by dispensing with domains of individuals. 

These alternative axiom-systems which are called the Sub-sac= systems 

treat be11ef contexts as unambiguously obltque in the sense that substitution 

ot co-referenttals is sttll restricted for belief contexts. However, since the 

quantifiers are given a substttutional reading in their-.,emantics; ·existential 

generalization into doxastic constructions is unrestricted. I.e., the Sub

sac• systems circumvent the problem of quantifying in entirely. 

Thus, by the end of chapter four a set of normal axiom-systems will 

have been proposed, the Sub-sac= systems, which can be regarded as at 

least involving partial solutions to the problems of quantitytng in and the 

failure of substitutivtty for belief contexts. However, because these systems 

are 'normal' they have inherited the problem of deduction and hence they 
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are not logics characterizing the 'non-ideal' believer. Thus, in the final 

two chapters, we shall discuss ways in which the Sub-sac= systems and 

their characteristic semantics can be amended to accommodate the problem 

of deduction. 

Rantala's syntactic solution to the problem of logical omnidoxasticity 

which involves restricting the applicability of the doxastic version of the 

rule of necessitation (1-cx -- l-801) is discussed in chapter five. His 

suggestions are then extended to rendering various instances of the adjunc

tion and consistency schemata underivable. The resulting logics, the Sub

OOC:Q systems therefore provide us with logics of the non-ideal believer, 

or so it seems until the corresponding semantics which employs non

standard indices is considered. It is argued that this semantics equivocates 

with respect to the connectives -, v, &, :l and= thereby rendering it beside 

the point. It is further argued that the tact of defining these connectives in 

terms of their roles in inference does not avoid this charge if it is not 

assumed that only non-doxastic contexts are relevant in determining their 

roles in inference. Thus, it is concluded that the Sub-sac=o systems do 

not proVide us with logics of the non-ideal believer after all. 

However, another strategy for altering the Sub-Sac= systems to proVide 

us with logics of the non-ideal believer is considered in the sixth (and 

final) chapter. It is argued that if we construe the aleth1c possibility op

erator as 'x non-ideally believes that' then since possibiltiy does not 'factor 

out of conjunction' (as Marcus notes4) and since it is not a thesis of any 

normal system (with D) that -(MOl & M ... OI) then the resulting logics 

proVide us with logics of the non-ideal believer who does not always con

join his/her beliefs and who does not always hold consistent beliefs. How-

"* See Marcus (1981), p. 507. 
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ev"er, it is noted that ev"en if we construe the possibility operator as 'x 

(non-ideally) believ"eS that', it is still the case that non-ideal agents are 

logically omnidoxastic. It is further noted that for systems containing D, if 

we construe the alethic Deces.s.fty operator as 'x ideally believ"eS that' then 

combining this tact with the move of construing the possibility operator as 

'x non-ideally believes that' provides us with a set of logics characterizing 

both the ideal and the non-ideal believ"er. 

Two types of characteristic semantics are then considered for the Sub

sac= systems (where the necessity operator is construed as ideal belief 

and the possibility operator is construed as non-ideal belief) which attempt 

to make sense out of the idea that non-ideal believers can hold inconsistent 

beliefs in different contexts - such as in the puzzling Pierre case. One ot 

these semantics is based on Stalnaker's proposal that agents are capable of 

being in more than one 'belief state' at the same time (where a belief state 

is defined as the set of worlds such that all the contents of a subset of the 

agent's beliefs are true at each member of the set). The other type of sem

antics dev"eloped is based on Rescher's notion that belief is a relation obtain

ing between an agent at a world a~d a special sort of non-standard world. 

And so, the result of our work will be a set of first-order logics of bel

ief which characterize the ideal and the non-ideal believer and which treat 

belief contexts as unambiguously oblique while allowing unrestricted quan

tification into doxastic contexts given a substitutional reading of the quan

tifiers. Although these logics presuppose that agents are logically omni

doxastic, this feature is mitigated in the case of non-ideal belief. Then 

perhaps it is hasty to abandon the tradition of basing first-order doxastic 

logics on normal modal systems, if we are willing to drop that part of the 
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tradition which construes the necessity operator rather than the possibil

ity operator as 'x non-ideally believes that'. 
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Chapter One 

The Problem of Finding a Propos1t1onal Logic of Belief 

1. Treating Propos1t1onal Belief Logic as Modal Logic 

In Topics in PbiJOSDpbical Logic (1968), Nicholas Rescher observes that 

operators representing m«Mb'ti~ qualify the truth or falsity of prop

ositional expressions in such a way that the resulting qualified complex is 

itself a propositional expression.! More precisely, if ex is some proposition

at expression of an arbitrary formal (or naturat) language then so is +a 
where + is some modal operator. Por example, the qualifier + could rep

resent a so-called alethtc modality such as Dt!Ctt$5ity in which case if a is 

an expression of some formal or natural language then so is 'it is necessary 

that a•. And of course, much work. has been done in the area of prop

osittonal and quantificational alethic modal logics. If the qualifier + rep

resents an c-p$t,mic modality such as knowledge, acceptance or belief then 

if 01 is a propositional expression, so is 'it is believed that (known that, 

accepted that) 01' or •x believes (knows, accepts) that a•. 

Several attempts at formulating elementary logics for the so-called 

c-pistc-mic modalities have consisted in adopting normal alethic systems2 

and informally construing the necessity operator as 'it is believed (known, 

accepted) that'. 3 ln sections 2, 3 and 4 we shall explore various 'normal' 

1 Rescher (1968). p, 24 

2 The phrase 'normal system' Is defined on page 3 below. 

:5 For example. see Hlnlikka (1962), Binkley (1968), Harrison (1969}. Cresswell (1970). 

Rescher (1968. 1974) and also lenzen (1961). 
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systems of modal logic as well as their semantics without suggesting any 

sort of informal interpretation of the modal operator + (which for alethic 

systems is construed as 'it is necessary that•). This is to ensure generality 

1n the sense that our results can be applied to logics where+ 1s construed 

as an eptstemic modality such as knowledge or bellef, the logics of which 

will be introduced in section 5. 

As will be argued in sections 6 and 7, when we construe the qualifier + 
as representing an epistemic modality, any normal modal system will give 

us a logic for 'ideal' believers or )mowers in the following sense: For any 

normal system S retarded as a system of epistemtc or doxastic logic, if any 

material conditional is an S-thesis then it is also an S-thesis that some 

agent x's believing (knowing, accepting) this conditional's antecedent log

ically implies x's believing (knowing, accepting) the conditional's conse

quent. In short, agents are regarded as believing all the logical consequen

ces of what they believe. Hintikka amongst others calls this the problem of 

logical omnisci~nce.• Further, it is also a thesis-schema of all normal sys

tems (construed as systems of epistemic or d.oxastic logic) that agents bel

ieve the conjunction of any two propositions which they believe separately. 

Finally, in some normal systems, it is a thesis-schema that agents do not 

believe self-contradictions or contradictories at the same time. 

In both chapters five and six, after having discussed some of the prob

lems peculiar to f/Uilntifi«< doxastic logics, we shall then consider several 

attempts at altering the semantics and the axiomatics of normal systems in 

order to obtain logics of the epistemic modalities (or more specifically, 

belief) which do not assume that agents are 'ideal' in the sense specified 

above. It will be argued that normal modal logics do provide us with logics 

4 Htntlkka (1975), p, 475 and later, Rant.ala (1982), p, 106. 
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of believers who are not ideal. 

2. An Excursus into Normal Modal Axlom Systems 

Before explaintna what a normal modal system is, a few syntactical 

preliminaries are in order. The lansuage L for a cl~ssical propositional 

modal loatc is a triple <V, 0, P> consisting of a set U of sentence variables, a 

set 0 of primitive connectives such as .... and & (and such that v, :), = are 

definable in terms of the primitive ones) as well as the modal operator+ 

and finally the set P of well-formed formulae (wtfs) which are either var

iables or are constructed out of members of the sets U and 0. The set F of 

wtfs can be defined recursively in the same way as the set of wtfs for the 

classical proposttional calculus with the additional proviso that if cc is a 

wff then so is +cc . In addition, we can introduce by definition a second 

modal operator A as follows: b.Ol•dt. -q,...cx. If we were to construe+ as 

the necessity operator then AOl would read •tt is possible that cc •. Or 1f + 

represents an epistemic modality such as •x believes that• then we mtaht 

read Ace as 'it is consistent with everything x believes that cc •. 5 

A modal axiom system ts norm~/ tt in addition to contatntna every 

thesis of PC, 1t contains every instance of the schema It, (+cc & +(cx :) p)) 
, +P· Further, any normal system will have as rules of inference the fol

lowtns: If cc is a thesis of the normal systemS then so is +cc (which we 

shall call R+: 1-scc - 1-s+cx) as well as modus ponens, viz., cc, (cc :) p) 
__.,. p.6 The system K is the 'weakest' such system meeting these 

5 As an example of this treatment of the possibntly operator as an eptslemtc operator, see 

Hinllkka (1962), pp. 1o-11. 

6 See Lemmon and Scoll ( 1977), section 2 as well as Chellas (1980), eh. 4 and Hughes and 

Cresswell (1984). eh. 1. 
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mlnim.al requirements in the sense that it is propttrly contained in every 

other normal modal system. 7 K can be 'strengthened' or extended by 

addina to it any of a number of schemata including the following: 8 

D: +or , ~or 

T: +or :;,or 

4: +or , ~or 
5: oor , +Aor 

Consider the followtna series of strengtheninas of K. The system D (•KD) 

obtained by addina the schema D to the system K contains all theses of K.. 

Or, more succinctly, K s; D. And by adding the schema T to the system K. 

we obtain the system T (=KT) where K s; D s; T. Further, by addina the 

schema 4 to the system T we obtain the Lewis system S4 (=KT4) such that 

K c D c T c 84. And finally, when we add to the system T the schema 5 

we obtain the Lewis system S5 (•KT5) such that K c D c T c S4 c S5. An 

alternative axiomatic base for S5 proposed by Lemmon' is to add to the 

system T the schema E, ~+« , +or (or equivalently by contrapositlon and 

by the definition of A in terms of - and +, -+or , +-+or ) . The schema E is 

the du•J of the schema 5. It is a metatheorem of normal systems that an 

axiomatic system S contains Cl iff it contains Cl 's dual.10 As we shall later 

see, all systems in this series of extensions of K from T onwards could 

with some plausibility be reaarded as systems of eptstemic loaic (or the 

Ioatc of knowledge) of varying strengths. 

Alternatively, we could strengthen the system K without the addition 

7 see Hughes llld Cresswell {1968), pp. 29-30. 
8 see lemmon llld Scott 0977), section 411ld also Chellas 0960). eh. 4. Note further that strictly 

speaking. In 'addklg' a schema to a prliculr system S, we are saying that S contains all instances 

of that schema as well as all of its deductive consequences. 
9 Lemmon llld Scott (1977), section 4. 
ID This is proven In Chellas (1960), pp. 128-129. 

http:mlnim.al
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of T but with the addition of D to obtain the following series of K -exten

sions: 1, D, KD4 , KD45. Or, we could obtain a series of strengthenings 

of 1 without either of the schemata D or T: It' K4' K45. As we shall 

later see, both these sertes of K-extenstons (including It itself) could be 

resarded as systems of belief lostc of varyins strensths. 

The containment relations which were exhibited in the three series of 

extensions of the normal system It considered above are well established in 

the Uterature.11 (In the case of the second and third series, It, D, 104 

, KD45 and It , K4 , K45, the containment relations are obvious.) By way 

of Ulustration, for one of the containment relations exhibited in the first 

series vtz., that D' T, we merely need to show that all of the instances of 

the schema D are provable in the system T liven that the systems 0 and T 

are both It-extensions. We shall call the following sequences of schemata 

'derivations' althouah strictly speakins a derivation is a finite sequence of 

wffs. Perhaps we could call the following sequences 'derivation schemata'. 

To avoid unduly lengthy derivations, we shall also take the liberty of using 

implicational thesis-schemata of the Propositional Calculus. We first need to 

show that 1-,.a ;, Aa. : 

1. +-Cl ::'1 "'« Schema T 

2. -"'« ;) +a 1, Transposition 

3. ...""'(~ ::'1 4CX 2, Of. 4 

4. I-,.a ::'1 ...... (I( 

5. cc ::'1 Ace 3,4 Propositional Calculus and Modus Ponens 

We are now 1n a position to show that 1-T+CC ::> 4CX : 

1. ~ , Cl Schema T 

2. cc ;, Aa. Theorem Schema 1 

11 A detailed treatment or these Inclusion relations Is presented In chapters 4 and Sin Chelles (1980). 
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1, 2 Propositional Calculus and. Mod. us Ponens 

Thus, the system D is contained. in the system T. Also, D is propttrly con

tained in T since the system D does not contain T as a thesis-schema. 

3: Normal Modal Systems - Semantic Considerations 

so tar, we have been dtscusslng normal systems ot modal taste apart 

from any kind. of semantic consiclerations. The usual kind of semantics 

proposed for normal modal systems is based on Kripke's work in this 

area.12 In a Krtpkean semantics, a modt~J 5tructurtf for a normal system 

S is an ordered pair <W,R,>13 where W is a non-empty set. As Kripke 

notes, we can informally rqard the members of W as 'possible worlds•14. 

For the purpose of developtna plausible semantics for modal belief Ioatcs, we 

shall simply treat these 'worlds' as primitives tn our formal semantic 

theory just as 'individuals' are treated as primitives in the formal seman

tics for standard first-order Ioatc. All questions concerning the nature of 

these so-called possible worlds as well as their ontological status w111 be 

deferred to a subsequent chapter once the formal semantics has been 

developed. In fact, to avoid any charges that the members of Ware more 

than just formal constructs of our semantic theory we shall from now on 

call any Wt in W (in a normal model) an indt~x. R ts a two-place relation 

defined over members of W such that R s: W X W. Informally, for alethic 

systems, wsRwj can he read as 'wj is accessible from w1•.15 Because of the 

12 For example, see Kripke (1963). 

13 In fact. In Krtpke's semantics 1 normal model structAre also contains • designated member of W 

which informelly might be regarded as the 'reel world.' 
14 Krtpke 0963), p, 64 

IS Hughes and Cresswell (1984), p. 7. 
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element R in a normal model structure, a Kripkean semantics for normal 

modal losic is called •relational•. 

An S model is a triple <W, R, V> where <W, R> is an S model structure 

and where V is an assignment function which to each atomic wff of L at 

each member of W assigns either 0 or 1. I.e., V: U X W --+ {0,1}. We 

could regard the function V as determining all the indices at which a given 

atomic wtf is true in a given model M. Following the leads of both Stalna

ker16 and Lewts17, we could say that V determines the proposition which 

a given atomic sentence expresses. 

Finally, a Vlllulltion owr a model is a function from wtfs and indices 

into truth-values. I.e., VM: F X W --+ {0,1}. We can define VM induc

tively as follows (for all Wf, w J I W): 

1) VM(P, Wj) • V(p, Wj). 

Supposing VM(or, Wj) and VM(,, Wf) are defined for any Wf e W then: 

2) VM(-cx, w 1) :. 1 iff VM(or, Wj) • 0. 

3) V M( or & ,, w 1) :a 1 itf V M( or, w 1) • VM(,, Wf) = 1. 

4) V M( or V ,, Wi) = 1 iff V M( or, Wf) = 1 or VM(,, Wt) = 1. 

5) V M( or :> ,, Wf) • 1 iff VM(or, Wt) • 0 or VM(,, Wt) • 1. 

6) V M( a il ,, w 1) • 1 iff V M( a, w 1) • VM(,, w1). 

7) V M( +a, Wt) = 1 lff for all Wj such that w1RwJ, V M( a, wj) • 1. 

8) VM(Aor, wi) = 1 iff for at least one Wj where WtRWj, 

VM(or, Wj) = 1. 

Further, validity in an S model is truth at all members of Wand validity 

in the relevant class C of S models is validity in all models in that class. 

The relevance of a class C ot models to a particular normal systemS is 

related to the restrictions placed on the accessibility rel11tion R for all 

16 Robert Stalnaker 0976). 

17 Lewls 0973). 
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models in the class. For any given normal system S, those restrictions are 

imposed on R which ensure that the schemata constituting the axiomatic 

base are valid in that class of models. For our purposes, the following are 

some of the restrictions which the relation R may be required to satisfy: 

1) R is ~rial in an S-model iff for all wi e W, there is at least one 

wj e W such that w1RwJ 

2) R is rei'Jeziw tn an s-model 1ft tor all w1 e W, WtRWt· 

3) R is $YJnm,trlc in an S-modellff for all wb Wj e W, if WjRWj 

then WjRWt. 

4) R is tr•nsitivr in an S-model iff for all Wft Wj, wk. e W, if wtRWj 

and WjRWk, then WtRWk· 

5) R is euclldl'4n in an s-model iff for all Wj, Wj, Wk. e W, if WjRWj 

and wtRWJt then wJRWJt. 

A few comments are in order here. First of all, if R in an S-model is 

reflexive, symmetric and transitive then we say that R is an 'equivalence 

relation'. What this means is that every member of W is related to every 

other member of W. (As we shall later see, R is an equivalence relation for 

S5 (=KTS) models.) Further, a relation R which is euclidean as well as 

reflexive is also an equivo.Ience relation given the following proposition: If 

R is reflexive then R is eucltc:lean iff it is both symmetric and transitive. 

Por a proof of this proposition, see Lemmon and Scott (1977).18 Finally, if 

a relation R is reflexive in an S-rnodel then R is also serial since at the 

very least, every member of W will be related to itself. 

We now present a list of the schemata mentioned above in connection 

with forming a fragment of all possible extensions of the system K (as well 

as the schema K itself). Following each schema is a specification of what 

restrictions the c:lyac:lic relation R must meet in every model in a class of 

tB Lemmon and Scott (1977), p. 56. 

http:1977).18
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models to render that schema C -valid.. (A schema is C -valid. iff every 

Instance of that schema is valid in every model in the class C.): 19 

K: (+cc & ~(a ;, ')) ;, ~' R is unnstricted. 

D: ~ ;,t.OI R is #Till/. 

T: ~ ;,4,1 R is ref'Jexiw. 

4: ~ ;)~ R is tr•nsitiw . 

5: t.a ;, +Aa R is euc/Jdun . 

Again, these results are well established in the literature, but for the 

purposes of tllustratton, tt will be shown that 4 ls valid in the class of all 

transitive normal models. 

The proof of this will have the structure of a reductio ad absurdum 

and runs as follows: Suppose that 4 is invalid in a model M with a trans

itive relation R, in which case for some w1 e W, V:M(+cl, w1) is 1 but 

VM(~,wi) • 0. Then for some Wj e W where wtRwj, VM(~,wj) = 0. 

Since VM(~, wj) • 0 there is at least one 'Wk. e W such that wjRwk and. 

VM(ot, wk) • 0. But since wiRwj and WjRwtt and givm that R is trans

itive, it follows that WtRWk; But since w1RWk and. since VM(+cl, wi) = 1, 

then it follows that V M( a , wlt) • 1. But we have already shown that 

VM(G, W}t) • 0 on the supposition that VM(~, Wi) • VM(~, Wj) = 0 

(such that WtRWj)· Therefore, our original supposition is false. Q.E.D. 

By way of a second example, we shall show that the schema D ts valid 

tn the class of all sc-ri.J models. Suppose that for some Wt e Win some 

model M where R is serial, VM(+cl) wi) • 1 but VM(Aa, wi) = 0. Given R's 

seriality we are guaranteed that there is at least one other index. wJ (ur 

perhaps w1 itself) in W such that wtRWj- Since VM(~,wt) =lit there

fore follows that there is at least one w j in W such that WtRw j and 

19 For a more detailed treatment of this. see Chelle (1980), p. 80 
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VM(«, Wj} • 1. But our intial supposition is also that VM(A«, wi) • 0 in 

which case for any Wj such that WtRWJ, VM(«, Wj) • 0. Therefore our 

initial supposition is false. Q.E.D. 

Notice that any instance of the schema D would be invalid in the class 

of .all normal models (which validates the schema It) since there could be 

models such that for some wi in W, there is no Wj such that wtRWJ This 

member of W is what Hushes and Cresswell call a 'dead end'. 20 At any 

such index, every wtf of the form +ex will be true since trivially, for all 

Wj such th•t wjl/wj VM(«,wj) • 1. Also, since there will be no Wj such 

that WtRWj, it follows that VM(A«, w1) • 0 for any wtf « . (For that mat

ter, there can be it-models such that every index ts a dead end if R • 0.) 

Thus, it is the seriality restriction on R which rules out this type of model. 

4. Soundness and Completeness Results for Normal Systems 

A normal systemS is $0Und relative to a class C of normal models iff 

for every wtf «, if« is an s-thesis then « will be valid in an mndP.ls tn 

the class C. I.e., If 1-s« then 1-c«. Soundness of a system S relative to a 

class C of models is established by proving that all the axiom schemata of S 

are C-valid and also that our two rules of inference, modus ponens and 

1-s« ----+ 1-s+« preserve validity. 

We can now sketch a soundness proof for K as well as for the various 

it-extensions we have considered along the following lines: It is already 

established that the schema K is valid in the class of all models, that D is 

valid in the class of all serial models, that T is valid in the class of all 

reflexive models, that 4 is valid in the class of all transitive models and 

20 Set Hughes and Cresswell (1964), pp. 33-38. 
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finally that 5 is valid in the class of all euclidean models. Let S be either 

K or any extension of K so far considered in which case the axiomatic base 

forS will consist of some combination of the schema K (minimally), D, 

T, 4 and 5 each of which ts valid tn a certain class of models. Then any 

schema constituting S's axtomattc base wtll be valtd tn the lntlrs«tlon ot 

these classes. 21 

The following list illustrates forK and each of its extensions we've 

considered, the class of models with respect to which each schema in the 

axiomatic base of the system is valid: 

K: The class of all models. 

D(•KD): The class of S~TJ41 models. 

T(=KT): The class of r1fl1xivr models. 

K4: The class of trt~nsitivr models. 

KD4: The class of SITJ'tll t~nd trt~nsitivr models. 

K45: The class of tr11nsitive and euclideoan models. 

lt045: The class of st~rit~l, trt~nsitivr t~nd ,uclidun models. 

S4(=1tT4): The class of r'fl,xiw <~nd trllnsitiw models. 

S5(=KT5): The class of reflexive <~nd euclidltln models. 

So far, we know that for K and each of the It-extensions considered above, 

the axiom-schemata constituting their bases are valid in a certain class of 

models. We now need to show that R+ and modus ponens preserve the 

validity of the axiom-schemata (which is to say that these rules preserve 

the validity of all instances of these schemata) for each of the above

mentioned systems. From this it will follow that each of these systems is 

sound wtth respect to a certain relevant class of models. 

In order to show that R+ and modus ponens preserve C -validity it is 

21 This method of proof Is used In Chellas ( 1 980 ), section 5. 1 In chapter S. 
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sufficient to show that these rules preserve validity for the class of •11 

normal models of which e will be a subclass. For example, the class of 

all models where R is reflexive will be a subclass of the class of all models. 

First then, to show that modus ponens preserves validity, suppose that 

l=cc and lace :;, ' in which case, ·for every wi in W in every normal model, 

VM(cc , Wt) = V M( cc :;, ,, wi) = 1. But given the truth conditions for wffs of 

the form of cc :;, ,, VM(,, Wt) • 1. Q.E.D. Further, to show that R+ pre

serves validity, suppose that l=cc. Then for each w1 e Win each model M, 

V M( cc, wi) • 1. But cc will also be true at any index Wj such that w1Rwj 

and hence by the truth-conditions for wffs of the form +cc, V M( +cc, w1) • 1 

for any such Wt. Q.E.D. 

So far, we have merely established that K. and the various extensions 

of K considered above are sound relative to certain classes of models. For 

any such normal systemS, these results guarantee that any S-thesis will 

be valid relative to a certain class of models. However, this relevant class 

of models will be said to 'characterize' the normal systemS if in addition 

to soundness, S is complettt relative to this class of models. 22 A system S 

is complete relative to a certain class e of models just in case for every 

wff oc it oc is C-valid then oc is a thesis of S. I.e., for every wff oc, if 

I= ea then 1-s« . 
A method that is frequently used in proving completeness for normal 

systems is the method of c.anonic.t1 models . 23 Just what canonical models 

are Will become clear in the course of our exposition. The reader will 

recall that a normal systemS is complete relative to a class e ot models 

just in case for every wff cc, if I= ea then 1-scr. Taking the contra positive 

22 Hughes and Cresswell (19&4), p. 12. 

23 For a more detailed treatment of the canonical model method of provlf19 completeness, see Hughes 

and Cresswell ( 19&4), chapters 2 and 9. 

http:c.anonic.JI
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of this, proving completeness amounts to proving that it cc is not an S

thests then cc will be invalid with respect to C. I.e., proving completeness 

amounts to provtns that for every wff cc , if -lsce then •I ccc or equivalent

ly that if -Is« then VM(CI, wi) = 0 for some Wf e Win some C'-modeL24 

What follows is a description of how such a proof generally proceeds. 

We shall say that a wtf is a-consistent just in case its nesation is not 

an S-thesis. A •t of wffs {cc h ... ,Cl n} is a-consistent just in case the wff 

-(Cit & . • • & cc n) is not an S-thests. Thus, for any wff Cl such that -!sa 
we know that ... Cl will be a-consistent. According to Lindenbaum•s lemma, 

every S-conststent set of wtfs A (which of course includes sets consjsting 

of just one wff) has an ·extension r which is also a-consistent as well as 

maximal and such that A ~ r. 26 A set r of wtfs is mazimal just in case 

for every wff Cl either it or its nesatton is in r. The following lemmas 

(which we shall not bother to prove here26) 111ustrate properties which 

any maximal consistent set will possess. Any maximal etmsist•nt set r 

will be such that: 

1) For every wff Cl, either Cl or its nesatlon but not both w111 be in r. 

2) Cl v ' is in r iff a is in r or ,. 

3) Cl & p is in r iff 01 15 in r and , is in r. 

4) Any S-thesis is in r. 

5) If Cl is in r and 01 ~ ' is in r then ' is in r. 

Also, it follows from lemmas 4 and 5 that if Cl ts in rand Cl ~ p is an 

S-thesis then p is in r. These lemmas will be crucial in proving the so

called fundamental theorem of canonical models which will be described 

24 Hughes and Crtsswell (1984), p. 17. 

25 For 1 proof of this lemma, the reader is referred to Hughes and Cresswell (1984), pp. 19-20. 

2& For proofs of these lemmas, the reader fs referred to Hughes and Cresswell (1984), pp. 18-19. 

http:C'-mode1.24
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presently. 

Recall that it is being supposed that some wff or is such that -lsor from 

which it follows that ... or Is S-consistent. Given Lindenbaum 's lemma there 

is a maximal consistent extension of ..,ex, [-or ] such that -or e (-ex]. The 

canDJZiul mod'l ),},. for S is a triple <W, R, V> such that W is the set of all 

maximal consistent sets of wffs (and hence [-or ] • w1 (for some i) is in 

W). Also, for any Wf, Wj in w, wiRWJ iff (or )(cpor e Wt __,..(I e Wj). Fur

ther, for any sentential variable p, V(p, Wt) = 1 iff p e Wt. A valuation 

over s•s canonical model),},. for sentential variables is defined as follows: 

Y)J.(P,Wt) • V(p,wl)· What remains to be proved is the so-called funda

mental theorem for canonical models: 

Por any wff or, V)J.(«, wi) • tiff ex e w1. 

This theorem's proof is a crucial step in the completeness proof for the 

following reason: Recalling once again the supposition concerning some 

arbitrary wff ex (viz., that it is not a thesis of S), its negation -or will be 

a member of ... or's maximal consistent extension (its m.c.e.), i.e., -or e wi 

such that Wi is in WinS's canonical model),},.. But by the fundamental 

theorem of canonical models, it follows that V )J. (-Cl , Wt) = 1 and hence 

Y)J.(CX, wt) = o. Now assuming that),},. is in fact a model in the class C ot 

models with respect to which S is sound then Cl is C-invalid, which is 

what we wanted to show. I.e., we will have shown that if -lscx then =lea 

for any or supposing in addition that the canonical model),},. is in C (which 

of course is the class of models with respect to which S is sound). 

The fundamental theorem of canonical models is proven by induction 

on the complexity of wffs. We shall consider the cases where Cl is atomic, 

is of the form _,, ' & T and ~-. 
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Bge ClaU¥: Suppose that or is a sentential variable. Then given 

the definition of V for )A. and aiven that V(p, Wt) = V M (p, Wt), the 
theorem hold.s for the case where or 1s a sentential variable. 

lpduct.ivc hypgthgil: Suppose that the theorem holds for wffs of 
dep-ee of complexity n. Then show that it holds for wffs of dqree 
of complexity n + 1. 

Case 1: or is of the form -p . 

... p e wi iff P - wi (since wi is maximal consistent.) 
P- w1 itt VM(P,wt) • 0 {by the inductive hypothesis.) 
V)J,..(p, wi) • 0 itf V)J,.(-p, Wt) a 1. Q.t. D. 

Case 2: or is of the from p & y. 

P & T E wi iff p, yE Wf (since w1 is max. cons.) 

'· T e Wt iff VM(P,wt). VM(f,Wj). 1. (by ind. byp.) 

VM(P,wt) • VA,A.(f,wt) • tiff VM(p & y,wi) • 1. Q.E.D. 

Case 3: or is of the form ~p. 

i) Suppose that +P I Wt. 
PE Wj for every Wj such that WtRWj- (by def. of R for M.) 
VM(p,wj) • 1 for every Wj such that w1Rwj. (by ind. hyp.) 
Then VM(+P,wt) = 1. Q.E.O. 

li) Suppose that ~- is not in w1. 21 

Then -+PE Wt. {since Wj is max. cons.) 
Let w = {y I +T e wi}· 
Then w U {-p} is S-consistent.28 
Then [w U { ... p}] = Wj in W is w U { ... p}•s m.c.e. (Und. 's lemma) 
-P e [w u { ... p)] = wJ since-Pew u { ... p}. 

P • w j since w j is max. cons. and so V M (p, w j) = 0. (ind. hyp.) 

wiRWj since w ~ Wj (aiven that w ~ w u {-p}) and since --------= 
27 This proof can be found in Hughes ftJ Cresswen ( 1984). pp. 24-25. 

28 See Hughes ftJ Cresswell 0964). p.21 for the proof of this lemma. 

http:S-consistent.28
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Q.E.D. 

In outline form, this is how the proof of the fundamental theorem of can

onical models would proceed. And so it has been established that for any 

wtf « of any degree of complexity, VM(a, Wt) • 1 itf a e w1 where M is 

S's canonical model. 

Recall once more the initial supposition concerning some arbitrary wft 

a, viz., that -lgcx in which case""(' is S-consistent. Since -a's m.c.e., 

[-a] = w1 is in W in S's canonical model it follows by the fundamental 

theorem of canonical models that VM(-a,wi) • 1 and hence lhal VM(tl,wt) 

is 0. Then on the supposition that some arbitrary wff tJ. is not a thesis of 

S, it folJows that in s•s canonical model a is false at a member of W (and 

in fact this mem))er of W ts -a•s m.c.e.). However, we cannot yet con

clude that GC is tnvaltd tn the class of models C with respect to which S is 

sound until we have shown that the canonical model M is indeed a member 

of C. Now in the case of the minimal normal system K, the completeness 

result follows immediately since K is sound with respect to the class of all 

normal models. However, in the case of the various It-extensions, tt is the 

restrictions imposed on R for every model M in C that distinguishes one 

class of models from another. Therefore, for these K-extensions, showing 

that M ts tn C amounts to showing that R as it is defined for M meets the 

appropriate restrictions. Once again these results are well established in 

the literature, although for purposes of illustration we shall prove com

pleteness forD, T, K4, KD4 and 84. 

In the caM of D's canonical model, we know that each in~t.ance nf the 

schema D, ~ ;:, .Aa is in every Wj in W given that each w1 is maximal 
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consistent. Consider any w1 in W. Suppose for some wff 01 that .;01 is in 

w1. Then since wi is maximal consistent, it follows that AOI is in w1 given 

that all instances of the schema Dare in w1. Further, by the fundamen

tal theorem of canonical models it follows that VJJ,.(b.a, wi} = 1 in which 

case there must be some Wj in W such that wtRWj and where VJJ,.(OI,wj) 

is 1. It once again follows by the fundamental theorem that a is in Wj

But then, whenever +a is in Wt there will be a Wj such that 01 is in WJ 

In other words, for any wi there will always be a Wj such that wtRWJ 

given the definition of R forD's canonical model. Therefore, R is serial for 

D's canonical model. Q.E.D. 

Consider T's canonical model, JJ,.. Each wi in W will contain every 

instance of the schema T, +a ;:, a since each wi is maximal consistent. 

Suppose for some wff 01 , .;01 is in Wi. Then given one of the lemmas for 

maximal consistent sets, 01 is also in wi. But then for any wi in W, when

ever +a is in Wt so is a . So by the definition of R tor T's canonical model, 

WtRWt tor any Wtin W. Then R 1n T's canonical model 1s reflexive. Q. E. D. 

Consider the canonical model M for the system K4. Suppose for any 

Wf, Wj, wlt in W that w1Rwj and WjRwlt. Then we must show that 

w1Rwlt. Given the definition of R for K.4's canonical model, if WtRWj then 

(a )(+a e wi - a e wj) and if wjRwlt then (a )(+a e wj - a e wk.). 

Each member of Win K4's canonical model will contain every instance of 

the schema 4, +ex ;:, ++a given that each member of W is maximal con

sistent. Therefore, if +a is in wi then so is ++a. But if ++a is in wi then 

by the SUpposition that (a )(.;G E Wi - 01 E Wj) 1t fOllOWS that q,a Will 

be in Wj· But if q,t'l is in Wj then by the supposition that (a )(+Cl e Wj -
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Cll e W£) it follows that Cll is in Wk. But then (« )(~ & Wf __. Cll e W£). 

I.e., WtRWk on the supposition that WtRWj and WjRW£ for any Wf, Wk 

and Wk in W. Therefore, R is transitive for K4*s canonical model. Q.E.D. 

The proof that R in the canonical model for K04 is serial and transitive 

is immediate given our proof that R is serial for 0 and transitive for K4. 

Further, the proof that R in the canonical model for S4 is reflexive and 

transitive follows from our proof that R is reflexive for T and that R is 

transitive for K4. 

And so, using the method of canonical models, it can be established that 

X. and its various extensions are compl#t# with respect to the classes of 

models which validate all their theses. I.e., K is characterized by (is both 

sound and complete with respect to) the class of all models, D is charac

terized by the class of serial models, K4 is characterized by the class of 

transitive models and so on. A less formal way of expressing these results 

is to say that the Kripkean •possible world' semantics for systems of nor

mal modal logic is •dt~t~zut' in the sense that there is a match-up or cor

respondence between the various normal systems and their semantics. And 

this 'correspondence' consists in the fact that each restriction on the rel

ation R in a class of models can be regarded as the semantic counterpart of 

the axiom-schema which that restriction validates. COnsequently, any 

results in the axiom-system will be mirrored in the semantics and vice

versa. 

And so, having placed the minimal normal modal system K as well as 

a fragment of its extensions into perspective as it were, we are now in a 

position to consider how K and its extensions can be construed as systems 

of doxastic (and epistemic) logic. 
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5. Eptstemic Logic Contrasted with Doxastic Logic 

If we are adopttna some normal system S as a system of doxastic 

1Q8ic, the tradition has been to construe+ (which is the necessity operator 

for alethic normal systems) as 'it ts believed that• or as 'x believes that• .29 

Also, tts dual A can be construed as 'it is possible tor all x believes that •. 

In addition, to make an this more conspicuous, we shall use '8' instead of 

+and we shall use 'Pa' instead of A. So for any wff ex, P&CX =df. -•or. 
Informally, this says that it is possible for all x believes that ex is by def

finition it is not the case that x believes that -ex. 30 In terms of the K.rip

ltean semantics for wffs of the form 8CX , 8CX is true at an index w1 just in 

case ex is true at all indices Wj dDx4stic.aJJy accessible from Wt. Any wff of 

the form Pa« is true at an index Wi in a normal model just in case ex is 

true in at least one index w j such that w J is dDUstitAJJJy accessible from 

Wt. In this semantics, the belief operator B functions as kind of a doxastic 

necessity operator and Pa functions as a kind of doxastic possibility oper

ator. And in fact, doxastic necessity and possibility coincide with loaical 

necessity and possibiltty althouah this will not be the case for R.antala's 

non-standard index semantics which will be considered in chapter five. 

We shall first of all make a few remarks concerning the sem11Dtics 

of normal doxastic (and eptstemtc) systems. As was noted, the relation R 

in the semantics for a normal belief logic is informally construed as a dDx

•stic accesstb111ty relation. The intuitive idea behind this construal of R is 

that for any index wi (and for any agent x 'inhabiting' wi), R divides all 

29 See Hinlikka (1962, 1969), Rescher (1974) and Rantlla (1962. 1983). 

30 For this type or treatment of the belief operator see Htntikka 0962). pp. to-11. 
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the members of W relative to w1 into those which are 'alternatives' to wi 

and those which are not. The alternatives to w1 determined by Rare all 

those members of W at which all the content wtfs ex such that Boc is true 

at Wt are true. It follows from this that if we were to take the conjunc

tion of all the wffs a such that BGI is true at w1 then this conjunction 

wtll be true at each Wj such that WfRWj- Then what R does ts to deter

mine the set of alternatives to w1 at which the agent's beliefs will all be 

true. Some authors such as Rescher and Hintikka call these alternatives to 

w1 agents' belief worlds or belief alternatives to Wt. 31 The notion that the 

belief alternatives to an index Wt are those indices at which agents' beliefs 

are all true appears for example in Hintikka 's 'Semantics for Propositional 

Attitudes' (1969): 

My basic assumption . . . is that an attribution of any propositional 
attitude to the person in question involves a division of all the pos
sible worlds ... into two classes: into those possible worlds which 
are in accordance With the attitude in question and into those which 
are incompatible with it. 32 

Instead of a doxasttc accessibility relation R, Hintikka in his semantics for 

first-order belief logic introduces a two-place function f 8 which to an 

individual a at a 'world' Wt assigns a set of alternatives to Wf such that all 

of a's beliefs (or more accurately, a's believed statements) are true at each 

of these alternatives. 

Although in a relational model in the semantics for normal propositional 

systems there is no domain D of individuals. we could replace the relation 

R with a one-place function f which to each member of W assigns a set of 

doxastic alternatives. We could then impose the same kinds of restrictions 

31 Rescher 0979), p.104 and Hfnllkka 0969), p. 28. 
32 Hlntlkka 0969), p. 25. 
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on f that we place on R depending on what system we are considering, and 

hence the two kinds of semantics would amount to the same thing in terms 

of what they validate. 33 For example, suppose we are considering the 

normal system D. Then if we defina a D-model as a triple <W, f, V> (as 

opposed to <W, R, V>), we would require for any f in a model in this class of 

models and for any w1 in W, f(wt) 111 0. In other words, in a 0-model, 

every index is such that at least one index is assigned to it by f. This is 

equivalent to requiring that R is seri.al in the relational semantics. Now 
I 

consider the doxastic version of D, viz., Ba ;:, PJIG . SUppose there is a 

D-model <W, f, V> and a member of W, w1 such that VM(Ba , wi) • 1 but 

VM(Pscr, w1) • 0. So, for all Wj e f(wt), V M( er, wj) = 1 on the supposition 

that BCl is 1 (or 'true') at wi. But since f is such that f(wi) 111 0, it follows 

that there is at least one Wj in W such that Wj e f(wi) and given that 

VM(B«, w1) • 1 it immediately follows that VM(PJIG, Wt) = 1. Thus, a sem

antics which requires that tor any w1 in Wand any tin aD-model, f(wt) 

111 0 will validate the schema D comparable to its relational counterpart. 

Given our characterization of R for models in the semantics of normal 

doxastic logics, it is a feature of this type of semantics that belief is a rel-

ation between the 'typical' believer x at an index w1 and a set of indices 

assigned to w1 by R. The set of indices determined by R with respect to any 

given index wi constitutes the intersection of all the propositions expressed 

by the contents of the agent's beliefs at that index. The concept of prop

osition operative here is the following: Propositions are sets of indices such 

that for any given wtt ex, the proposition which ex expresses is the set ot 

indices such that Cl is true at all and only these indices. 34 So the inter-

M See Cheltas (1960). p. 74. 

34 This concept of proposition for nelurallenguege Is found In Stalnalter ( 1976. 1984) and In lewis 

(1979). 
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section of all the propositions expressed by the contents of agents' beliefs at 

some index w1 (determined by R) will be the set of indices common to all 

these propositions. We could call this set the 'intersection proposition' and 

say that belief in the sort of semantics we are considering is a relation 

between a typical believer x (at an index) and the intersection proposition. 

There has been for a number of years a debate in the literature con

cerning the objects of the attitudes for natural language. Two of the most 

popular candidates for the objects of belief and other attitudes are prop

osititms and #nl,netl'$ . Russell of course coined the term 'propositional 

attitudes' and there have been several recent defenders of the claim that 

propositions (as sets of indices) are the objects of the attitudes. 35 On the 

other hand, Car~ap in Meaning .and Necessity seems to have held that 

attitudes are relations between agents and sentences. This position has 

recently regained some popularity in the 'mental representation' camp. For 

example, Fodor in 'Propositional Attitudes' wants to defend the claim that 

the objects of the attitudes are so-called internal representations which can 

be thought of as •sentences of a non -natural language". 36 

In any case, the debate in the semantics of natural language discussed 

in the previous paragraph is circumvented for the simple formal languages 

we are considering. That the objects of the attitudes for these formal lang

uages are sets of indices or intersection propositions (and not linguistic 

entities such as sentences) is a feature of the semantics. This is just the 

way the semantics is set up. 

The remarks which we have made concerning the semantics of nor

mal systems of doxastic propositionallogic also apply to normal systems of 

35 For ex.nple. St.alnaker defends this position in Stalnaker ( 1976). 

36 fodor (1981), p.194. 

http:attitudes.35
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epistemic logic. For epistemic logics, we can replace the operator "'with the 

more conspicuous operator l such that lex can informally be read as 'x 

knows that ex •. Further, the dual of"' can be replaced by the operator pt 

such that pta reads 'It is possible tor all x knows that a •. And of course 

pt is definable in terms of l for any wff a as follows: pta •df. -K""CI. 

Since knawJedge .tnd belief .tre different sorts of epistemic modtt lities 

or attitudes, one might expect that their Jog'ics should in some way reflect 

this difference. Presumably, a key difference between the attitude of 

believing and the attitude of knowing is .that it is possible to have false 

beliefs but it is not possible to know thtnss that are false. 37 This distinc

tion is regarded as crucial in the traditional analysis of knowledge Jn term!\ 

of justified true belief (and some additional fourth condition stven the 

Gettier paradox). In traditional epistemology, a necessary condition for an 

asent x•s knowtns that Cl is that x's belief that a be true. And informally, 

this is just what the schema T, Ita ::) a says, viz., if x knows that a then 

Cl obtains. So, if we adhere to the traditional analysis of knowledge then 

we would want our logic of know/~ based on a normal modal system to 

contain as theses all instances of the schema T. Also, any losic of belief 

based on normal systems should not contain the schema T, Ba ::) Cl since 

we would not want any theses to the effect that if x believes that a then 

a is true. A brief scan of the literature on the subject of belief and epis

temic losic will show that this has in fact been the seneral tradition. 38 

In section 2, we considered three possible series of strengthenings of 

the normal system K: 

37 For example, see HinUkka's comments with regrds to this issue in Htnlikka (1962), p, 48 as well 
as Marcus (1981 ), p. 504. 

38 See Hlntikka <1962), pp. 48-49, Harrison (1969), Rescher 0973), p. 104, Eberle (1974), 

p. 361 and more recently Rantala (1982). 
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Series 2: K s; D s; KD4 s; KD45 

Series 3: K s; K4 s; K45 
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SUpposing that any normal system of epistemic logic should contain T, then 

any member of series 1 from T onw.Jrds could be adopted as a system of 

epistemtc logic whereas any member of either series 2 or series 3 (but not 

sertes 1 from T onwards) could be adopted as a system ot doxasttc logic. 

Which member of series 1 from T onwards we choose as our system of ep

tstemic logic and which member of series 2 or 3 we choose as our system of 

doxasttc logic will depend on our philosophical biases. 

For example, if we maintain that belief and knowledse are iterated in 

the sense that if x believes (knows) that « then x believes (knows) that he 

believes (knows) that ex , then we would chose as our logic of belief or 

knowledge any system containing the schema 4. The doxasttc version of 4 

is B« :> BB« and its epistemic version ls lt« :> U.«. These schemata have 

been the objects of contention in the literature with respect to their phil

osophical plausibllity. Eberle for example maintains that 4 is unacceptable 

for either epistemic or doxastic logics since in the case of belief, an agent 

may believe some claim on the basis of certain evidence and yet "he may 

not believe himself to be hi possession of such sufficient evidence". 39 Other 

logicians such as Hintikka uphold 4 for doxasttc and epistemtc logics. 40 

It is not our purpose here to engage in these debates. Our concern will 

be with the fact that whatever normal system we adopt as our logic of 

belief (or knowledge), any such system will presuppose that agents are 

ideal (or at least partially ideal) in the sense defined above. Our focus of 

39 Eberle (1974), p. 362. 

40 Htnttkka <1962), p. 105. 
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attention will be dtJXastic logics for the remainder of this work and pre

sumably any results attained can be generalized to epistemic logics. 

6. Believing Contradictions 

It is our task in this and the next two sections to consider some of the 

schemata derivable in the d.oxutic systems in series 2 and. 3 of the It-ex

tensions discussed above. We shall in fact focus on the schemata and. rules 

which are the formal counterparts of the conditions for a believer's being 

JdMl discussed above on pace 2. As we shall see. these schemata and. rules 

ar.e all derivable in the systems of Series 2 from D onwards. Hence, these 

systems could be said. to provide us with logics of the 'ideal believer'. How

ever, as we shall see, there are ordinary language 'counterexamples' to the 

principles of belief attribution informally expressed by these schemata. If 

these examples are sound then it follows that believers are not ideal and. 

this in turn points to a need for a logic of the non-ideal believer. 

We shall first of all consider two of the more interesting thesis

schemata derivable in any doxastic system in series 2 contt~Jning D . Any 

It-extension in series 2 (excluding the system It itself) will contain as theses 

all instances of the schema ,..(ex & -ex) which informally says that it is 

not the case that x believes a contradiction of the form ex and. not-ex . We 

shall call this the self-consistency schema. The reader will note that this is 

a formal counterpart of the condition mentioned. on page 2 that the ideal 

believer is incapable of believing self-contradictions. That any wtf of the 

form -B(or & ... ex) is provable in any K-extension containing the schema D 

can be shown as follows: 
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1. a ... (« & "'Cl ) , Pr(a & -a) 

2 ..... (a & -a) 

3. B-(« & ... a) 

4. Pr(a & "'Cl) 

5. -a( a & "'Cl) 

Q.E.D. 

axiom-schema D 

PC thesis-schema 

doxastic version of R+ (i.e., RB), 2 

Modus Ponens 1, 3 

given that 1-o-Ba = Pa-a 

Prom the point of view ot the semantics for systems in series 2 containing 

D, any wtf of the form B(a & "'Cl) will be unsatisfiable in any model for 

such a system and hence l=c-B(a & ... a). This is because of the seriality 

restriction imposed on R for all models validating the schema D. We can 

prove that B(a & "'Cl ) will be unsatisfiable in any class of models where R 

is serial as follows: SUppose that B(a & "'a) is satisfiable in some serial 

model M. I.e., suppose that VM(B(a & ... a),wi) • 1 for some wi in W. Then 

since R is serial we are guaranteed that there is at least one Wj in W such 

that wiRWj- Therefore, there is at least one Wj in W such that VM(a & 

... a,wJ) • 1, which is impossible. Q.!.D. 

Related to the self-consistency schema is -(Ba & a...a). Informally, this 

schema says that it is never the case that agents believe contradictories. 

I.e., it is never the case that any agent x believes that a and that x bel

ieves that -a. This schema will be derivable tn any system of doxastic 

logic containing D (and. hence the self-consistency schema -B(cx & "'Cl ) ) for 

the following reason: As we shall see below, every S system contains as a 

thesis-schema (Ba & B'), B(a & ')which we shall call the .tdjunction 

sch'm.a . Informally, this schema says that agents believe the conjunction 

of what they believe. Then for any doxastic system containing D and hence 

the consistency schema, we can derive ... (la & a .... a) from the contra-
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positive of the adjunction schema, the self-consistency schema and modus 

ponens. In terms of the semantics for any S system containing D, if BQ 

and B-a were both true at an index w1, then for all WJ such that w1RwJ, 

both a and ... a are true at each such Wj which is impossible. And seriality 

guarantees that there will be at least one such alternative to Wt. 

It is worth noting that no system in our series 3 of K-extensions, viz., 

K c; K4 c; K45 contains D or T which therefore effectively blocks the proof of 

any instance of ... B(CI & ... a}. Further, in terms of the semantics, K-, K4-

and K45-models are Drithrr rrllrziw nor srri11l which as we shall see 

invalidates -a( a & -a}. Any of these classes of models wtll contain models 

such that some member Wi of W is a so-called dead end which means that 

for any such wb -(3wj}wiRWj which of course includes wi itself. 

To show that a wff of the form B(a & ... a) is satisfiable in a model 

where at least one of its members is a dead end, consider the following 

instance of B(or & "'GC), B(p & -p). The folloWing is an adm1s:'\tble model in 

the class of K, K4 and K45 models: W • {wt}, R = e and V(p, w1) = 
VM(p, w1) • 1 thoush the assignment which V gives to p is immaterjaJ. 

Since R = QJ then trivially, VM(B(p &- -p), w1) • 1. And in fact, for any wff 

a, VM(Ba,w1) will be 1. 

It is a peculiar feature of this sort of model, viz., that agents at dead 

end indices will for any wff a believe it and its negation whether ot is 

valid, contradictory or contingent. In short, at dead ends agents will bel

ieve everything. 

Also, the consistency schema -(lkl & B-a ) is not derivable tn any sys

tem not containing D since its proof is blocked by the fact that -B(ot & ""Cl) 
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is not derivable in any such system. Further. in terms of the semantics of 

such systems, there will be instances of Ba & B-a which are satisfiable in 

models with dead ends. For example, consider Bp & B-p and the model W = 

{w1}, R = fJ and V(p, w1) = 1. Then VM(-p, w1) = 0. Since R = fJ it follows 

that VM(Bp,w1) • VM(B-p,w1) = 1. Q.E.D. 

It is worth noting that the epistemic systems in series 1, viz., T, S4 

and S5 will contain the schemata -K(a & -a) and -(la & l-a) since the 

schema Disprovable in all these systems. And, in terms of the semantics 

of these systems all models forT and its extensions will be reflexive and 

therefore serial in which case the schemata ·-K(a & -a) and -(Ita & lt-a) 

will be valid relative to their semantics. These are presumably desirablP. 

thesis-schemata for a logic of Jcnowl«<p since at least in traditional 

epistemology a necessary condition for an agent's knowing that 01 is that 01 

be true. Then in the case of the schema -K(a & -a), if it were 'allowed' 

that agents can know contradictions then it would seem to follow that 

contradictions can be true which is absurd, at least if we construe- and & 

as cl.JSSJC.J negation and conjunction respectively. A similar argument 

would establish that the schema -(Ita & lt-a) is desirable for epistemic 

logic since if x knows that 01 and x knows that -a, it would follow that ex 

and -ex are both true at the same indices. 

However, in the case of doxastic logic, it is not so clear that either 

-B(a & -a) or -(Ba & B-a) are desirable thesis-schemata. As we shall 

see, examples can be constructed where apparently, agents hnld ~nntr~

dictory beliefs in different contexts thus violating -(Ba & B-a) or they hold 

self-contradictory beliefs thereby violating -B(cx & -ex). The cases where 

agents apparently believe self-contradictory statements have not received 
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much sympathy tn the literature. 41 

First of all, it could be argued that agents will sometimes assent to 

the negations of logical or mathematical truths. For example, an agent who 

is not wall verud in classical J.osic may assent to and hence believe that the 

nesatton of some instance of Pierce's law, viz., ((ex ::> ') ::> ex) ::> ex is false 

for classical two-valued logic. But the nesatlon of any PC tautology wtll of 

course be self-contradictory in which case, it will be logically equivalent to 

some instance of ex & ""'« relative to this sort of semantics. Then it would 

follow that the agent has a belief that can be represented as B(cx & ...ex), on 

the assumption that agents believe whatever is logically equivalent to what 

they believe, which is a derivable principle for any K-extension. This prin

ciple is discussed below. Given that agents can and do have false or mis

taken beliefs, then there seems to be no reason why some of an agent's 

false beliefs can't be Jogtc.JJy false as opposed to merely contingently so. 

However, in believing that some logical truth does not obtain, the agent 

will thereby end up believing everything since a self-contradiction logically 

implies cve"rything. But this is an absurd consequence of the supposition 

that asents can believe" logical truths to be false. Therefore, there is sood 

reason after all for wanting .... a( ex & .... «) as a thesis-schema for any doxas

tic logic. This reductio-style argument rests on the assumption that agents 

believe whatever is logically classically implied by what they believe. This 

principle holds for any K-extension and it is represented in the K thesis

schema (B« & I-« ::> ') ::> B,. Then one way of countering this reductio 

argument is to question the assumption that agents are 'omniscient • or 

more precisely, 'omnidoxastic' with respect to the consequences of what 

41 For example. see Dummelt (1973) and Marcus (1981). On the other hand. Lewis does not dis-

cow.t the possibility of self-contradictory beliefs. See lewis (1966). p. 36. 

http:Hterature.41
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they believe. 

But the only way to aet around this assumption is to alter the seman

tics in such a way that there are models with non-standard as well as 

standard indices where the connectives are defined non-classically. Sup

pose non-standard indices are admissible as doxastlc alternatives such that 

even thoush Cl logically implies,, Cl may be true at some such index while 

'is false. In such a case, an asent may believe that Cl and fail to believe 

that,. However, it will be arsued in chapter five that such tactics 

ultimately do not succeed. 

Nevertheless. suppose for the sak.e of arcument that the strategy of 

allowins doxasttc alternatives to be both classical and non-classical will set 

rid of the unpalatable result that an asent who believes that some truth of 

classical logic is false (relative to the appropriate semantics) thereby bel

ieves everythins. There is another problem with our example in which an 

agent allegedly believes that the negation of (some instance of) Pierce's law 

is classically false, viz., it is not clear what sorts of doxastic alternatives 

will be such that negated tautologies can be true. This problem will now 

be discussed 1n more detail vis a vis Marcus • comments concernins the 

supposed impossibility of asents' havtns self-contradictory l>e11efs. 

First of all, we are assumtns 1n the above example some sort of attrib

utive principle along the followins Unes: Sincere assent is at the very 

least 6U.ffici.-nt for belief. Thus, in our example, the agent has sincerely 

assented to the claim that Pierce's law is false for classical two-valued logic 

and on this basis we would attribute to this asent a belief whose content 

is losically false. The principle that sincere assent is sufficient for belief 

attribution has been called the 'disquotatton' principle by Kripk.e. Ruth 

http:6uffici.nt
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Barcan Marcus has argued that Kripk.e's disquotation principle needs to be 

bolstered by an additional condition, viz., that what is assented to describes 

a logically possible state of affairs. 42 She also holds that this condition is a 

n«~SS~~ry one. 43 So for Marcus, sincere assent does not carry over into 

belief unless the state of affairs assented to is logically possible - i.e., it is 

realizable in some possible world or other. Thus, it is not possible that an 

agent believes that some truth of c/assiCill logic fails since there is no log

ically possible world where its negation obtains, if by logically possible we 

mean that the connectives-, &, etc. are defined classically for such worlds. 

Presumably, Marcus wants to claim that analogous to maintaining 

that a necessary condition for attributing knowledge to an individual is that 

the ·claim to which he assents is true, a necessary condition for attributing 

belief to an individual is that the claim to which he assents is possible . 

In the case of knowledge, to require that what is known is true is a kind 

of 'reality• restriction in the sense that what is known must obtain in the 

'actual' world (or more neutrally, in the world or index at which the 

knowledge claim is being evaluated.) Thus, she is attempting to impose 

some sort of 'reality' restriction on belief in the sense that what is believed 

must be realizable at some logically possible world though not necessarily 

the actual one. 44 

However, Marcus does not really offer any arguments in favour of her 

reality restriction for belief. In effect, Marcus' restriction simply reflects 

the feature of a (minimally serial) relational semantics tor belief logic, that 

an agent has beliefs at an index just in case there are Jo,ica/Jy possible 

alternatives to that index such that what is believed obtains at these alter-

42 Marcus (1981), p, 505. 

43 Marcus (1981 ), p, 505. 

44 Ibid. p. 507. 

http:affairs.42
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natives. So employing Marcus• strategy of introducing a reality restriction 

to rule out cases where agents hold logically false (as in self-contradictory) 

beliefs amounts to claiming that a serial relational semantics disallows such 

cases - but this is exactly what is at issue. I.e., is there anything that 

can and should be done to a serial relational semantics for belief (and the 

corresponding logic) to accommodate cases where agents hold logically false 

beliefs? 

Nonetheless, Marcus• suggestion for a reality restriction on belief does 

raise an important issue, viz., in a relational semantics for doxastic logic 

where R is minimally serial, if we allow models where agents can believe 

the negations of logical truths, then it is not clear what sorts of indices 

would constitute doxastic alternatives for such agents. The alternatives to 

indices where agents believe that the negations of logical truths obtain 

cannot be logically possible in the sense that the connectives are defined 

classically since the negation of a classical logical truth could not turn out 

to be true at such indices. 

And so, doxastic alternatives where self-contradictions can turn out to 

be true must be logically impossible in the sense that the connectives are 

interpreted non-standardly. However, as was already noted, and as will 

be argued in chapter six, such tactics ultimately do not succeed owing to 

the fact that it involves an equivocation with respect to the connectives. 

They mean one thing for standard indices and something else for non

standard indices. Then since there is no way of making model-theoretic 

sense of an agent's believing that the negations of logical truths hold within 

the parameters of a minimally serial relational semantics, it must be 

concluded that this is a feature of the semantics that is intractable and 



0 

0 

42 

which can at best only be made more palatable. I.e., even thouah thtre is 

some sort of case to be made for agents believing self-contradictions, a 

relational semantics standard or otherwise wm not be able to accommodate 

this. 

On the other hand, there has been a certain amount of sympathy in 

the literature for the view that an individual in different contexts can 

believe that a and can also believe that -a , thus casting doubt on the 

plauslbUtty of the schema -(Ba & B-a). This position has been espoused by 

Dummett, t& Stalnak.er, t6 Reschert7 and Barcan Marcus. We shall now 

consider an apparent case where an agent holds contradictory beliefs, 

though in different contexts. 

Saul Kripke has proposed two cases in 'A Puzzle About Belief' which can 

be interpreted as cases where an agent holds contradictory beliefs in dif

ferent contexts (although Kripke himself does not endorse this construal). 

Before describing one of these cases, it is necessary to allude to two prin

ciples which Kripke uses in its construction: The first principle which he 

appeals to is the disquot.tion princip/C* alluded to above, viz., that if an 

agentS (upon reflection) sincerely assents to a claim p then S believes that 

p. And the second principle which he employs is the tr.tnsltttion principle, 

Viz., that if a sentence p expresses a truth in language L1 then its trans

lation p' in language L2 expresses a truth in L2. We shall in the next par

agraph briefly describe Kripke's 'puzzling Pierre' case. 

Pierre, a monolingual French speaker liVing in Paris has never been to 

London and knows of it only through pictures and verbal descriptions. Sup-

45 Dummett (1973), p. 288 

416 Stalnaker (1984). p. 83. 
47 Rescher and Brandon (1980). 



c 43 

pose further that he sincerely assents to and hence by the disquotation 

principle believes the claim 'Londres est jolie'. In short, the sentence 'Pierre 

croit que Londres est jolie' is true in French. But given the translation 

principle 1t follows that 'Pierre believes that London is pretty' is true in 

English. Now suppose that Pierre moves to a rather shabby part of London 

where he acquires a spoken knowledge of English. He does not make an 

association between what he calls 'Londres' in Prench and what he calls 

'London' in English. In his new environment, Pierre speaks only English. 

He soon gives sincere assent to and hence believes the claim 'London is not 

pretty' and hence the sentence 'Pierre believes that London is not pretty' 

is true in English. Finally. Pierre does not withdraw his assent to what he 

believed as a monolingual Prench speaker, viz., that London is pretty. Then 

what does Pierre believe? And this, says Kripke is the puzzle. He maintains 

that any answer to this question leads to an absurdity which therefore 

renders the puzzling Pierre case paradoxical. 48 

Kripke wants to claim that in this case 1t is unfair to accuse Pierre of 

holding contradictory beliefs since on the basis of his logical acumen alone 

he could not detect the inconsistency in the contents of his alleged beliefs, 

even if he were a brilliant logician. It is only if he had the additional 

information that 'London' and 'Londres' name the same place that he would 

be in a position to see that these contents are contradictory, thus abandon

ing assent to one or the other. 49 And it would only be at this point that 

Pierre could rightly be charged with inconsistency if he failed to abandon 

assent to one or the other content. However, the assumption which Kripke 

employs in his argument against this construal of the puzzling Pierre case, 

viz., that an agent can be charged with inconsistencies in his beliefs only if 

4D See Krlpke (1979). pp. 257-259. 

49 Kripke (1979). p. 257. 

http:speak.er
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he is in a position to detect these inconsistencies without appeal to addition

al information, is open to doubt. 

It could be countered that lt is in just those sorts of cases where the 

contradictory nature of the contents of an agent's alleged beliefs is JogiCJ~l/y 

undetectable tn the sense that only by acquiring addtttonaltnformatton 

could the inconsistency be detected, that we would be m0$1 inclined to 

attribute to the agent contradictory beliefs. Presumably, an agent with a 

requisite degree of logical acumen would not hold contradictory beliefs 

unlns he/she failed to recognize that their contents were contradictory. 

Then a situation where even the most brilliant logician is unable to detect 

an inconsistency such as in the puzzling Pierre case is a kind of Jimitinr 

situation where the agent would fail to recognize the inconsistency tn hts 

alleged bellefs barring the addition of relevant information. By the prin

ciple of charity, we may even refrain from attributing to a logically astute 

agent contradictory belief~ if he is in a position to detect the inconsistency 

without recourse to additional information, the idea being that he will 

eventually withdraw assent to one content or the other. Then it is only if 

he is unable to detect the inconsistency without recourse to additional in

formation that it would be fair to attribute to him contradictory beliefs. 

The idea here is that agents can hold distinct and possibly incompatible 

sets of beliefs in different contexts, without necessarily being in a position 

to integrate these sets of beliefs. A •context• can simply be a time or as in 

the puzzling Pierre case, it could be a language. Lewis provides the example 

of a hypochondriac who at certain times believes that he is healthy and at 

other times believes that he is m. As Lewis suggests, tn such a case, the 

agent holds contradictory beliefs though at different times. 50 As will be 

50 Lewts (1986), p. 31. 
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argued in chapter six, we can make sense of this type of situation as well 

as the puzzling Pierre case via Stalnak.er's notion that agents are capable of 

beins in more than one 'belief state' at the same time (or perhaps at dif

ferent times as in Lewis' 'hypochondriac' example). A belief state is a set 

of worlds such that all the contents of a subset of an agent's beliefs obtain 

at each world in the set. And so, it is not patently absurd after all to 

attribute to puzzling Pierre contradictory beltefs. Or is it? 

It could still he argued along the following lines that attributing to 

puzzling Pierre contradictory beliefs involves an absurdity: Does Pierre in 

the above example also believe that London is pretty and London is not 

pretty? Pierre would presumably not give sincere assent to this claim. 

Then by a stren,.thentld version of Kripke's disquotation principle, viz., 

that :x's sincere assent to ex is both sufficient •nd necessary for ascribing 

the belief that ex to :x, it would follow that Pierre does not believe this self

contradictory claim. But the adjunction schema to be discussed below, 

(Bc:l & BP) ;:, B(cx & p) which says that agents believe the conjunction of 

what they believe expresses a valid principle for any logic of belief based on 

a normal system where the alethic necessity operator is construed as 'it is 

believed that'. Thus, given that Pierre believes that London is pretty and 

given that he believes that London is not pretty, then even though Pierre 

would not give assent to the self-contradictory claim that London is pretty 

and that it is not pretty, he would nonetheless believe this claim- assum

ing that the adjunction principle is sound. 

And so, 1f we attribute to Pierre the belief that London is pretty and 

the belief that London is not pretty then by the adjunction principle (and 
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contrary to the strenathened disquotation principle), we are forced to con

clude that Pierre believes that London is pretty and that London is not 

pretty. But if we are forced to conclude that Pierre holds a belief whose 

content is of the form ex & ....:~ then, given the 'omnidoxastictty• principle 

(corresponding to the schema (Bel & 1-s(cx ;, p)) ;, ap) discussed earlier, 

viz., that agents believe the logical consequences of what they believe, it 

follows that Pierre believes everything, which is absurd. However, it is 

somewhat hasty to lay the blame for this generated absurdity on our attri

bution to Pierre a set of contradictory beliefs. The absurdity generated 

above is avoidable 'itb'r by rejecting the claim that Pierre holds contra

dictory beliefs or by abandoning the adjunction principle or by abandoning 

the omnidoxasUctty principle. Our tact will be to abandon the adjunctton 

principle since as will be argued in chapter six, the omnidoxastictty feature 

of a relational semantics for belief logic is intractable, although there are 

moves that can be made to rid doxastic logic of the adjunction feature. 

It will therefore be argued in chapter six that there is a way of ac

commodating the sort of situation where an agent has contradictory beliefs 

without thereby believing their conjunction for a two-place relational sem

antics of belief (where R is serial), although it involves interpreting the 

alethic pos.sibOity operator as 'it is believed that'. In interpreting the pos

sibility operator as 'it is believed that' rather than the necessity operator, 

we avoid (on both the syntactic and the semantic fronts) the consequence 

of x's believing that cc and x•s believing that -cc, that x thereby believes 

their conjunction- and hence everything. This approach is hinted at 

though not developed by Marcus in a recent article. 51 We shall discuss this 

approach in the sixth chapter in conjunction with a resolution to this prob-

51 See Marcus (1981). 
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lem discussed by Stalnaker in his book Inquiry, which we shall describe 

briefly in section 9 and in more detail in chapter six. 

As a concluding note on doxastic theses involving the negation operator 

·-·, any doxasttc :&-extension wtll contain all instances ot the schemata 

B-""41 :) B« and its converse B« :) 8-""41 as theses. These schemata as we 

shall see are more palatable as principles of belief attribution for the non

ideal believer than the consistency schemata. Both are derivable by apply

ins RB to the PC schemata --G :) ex and ex :) ...... a respectively along with K 

and modus ponens. The former expresses the principle that if an agent x 

believes that not-not a then x also believes that ex and the latter expresses 

the principle that x will believe that not-not ex if x believes that ex. Por 

example, if x believes that every natural number has a successor then x 

believes that it is false that not every natural number has a successor. Or 

conversely, if x believes that it is false that not every natural number has 

a successor then x believes that every natural number has a successor. 

However, the following variants of these principles involving four or more 

iterations of the negation operator become a bit harder to swallow, Viz., 

801 , B----G or its converse B---a :) B« . These are derivable given the 

PC schemata ex , ............ 01 and ---""41 , 01 respectively. 

The only way of mitigating this situation is to interpret • .... • tn some 

non-standard way, though if we are concerned with ·-· interptreted 

cl•$$JC.J/y then this strategy will not work. We shall discuss the short

comins;s of the non-standard worlds approach (or at least Rantala's version 

of it) furth«tr in chapter five. More imm«tdiat«tly, in the next two sections, 

we shall discuss the adjunction and omnidoxasticity schemata which are 

shared by all normal doxastic systems. 
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1. The Apparent Failure to Conjoin Beliefs 

To date we have determined. that 1f we adopt a K-extension containing 

D as representing a system of doxasttc logic then informally, we are com

mitted to the claim that it is never the case that agents believe self-contra

dictions since any such system will contain all instances of -B(ot & -ex). 

We are also committed to the claim that agents cannot believe contradtc

tories separately since any such system will contain all instances of -(Bot & 

B...,ot ) . But no matter which K -extension in either series 2 or 3 we consider 

as a system of doxastic logic, all instances of the following schema are 

derivable/valid in K and its extensions: 

(Bot & B') , B(ot & ') 

As was noted above, this schema which we have called the adjunction 

schema says that any agent believing that ot and believing that ' separate

ly will believe thier conjunction. Or more succinctly, agents believe the 

conjunction of what they believe. We shall consider the philosophical ram

ifications of this schema presently, but first it will be demonstrated that 

the ad.junction schema is derivable/valid. tor all !{-extensions. To show 

this, it will be sufficient if we d.emonstrate that any instances of the ad

junction schema will be derivable in K and that any instance of it will be 

valid in the class of all K models. 

Pirst of all, to show that any instance of the adjunction schema is 

derivable in the system K, consider the following abbreviated sequence. 52 

I.e., any instance of the adjunctlon schema would be derived in this way: 

1. 1-Kot , (' , (ex & ')) 

52 This derivation sequence appears In Hughes and Cresswen (1968), p. 34. 
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2. 8(cr , (p , (er & p))) RB, 1. 

3. 8(cr , <P , (a & p))) , (Bcr , 8(P , (er & p))) instance of K. 

4. 8Cl , 8(P , (er & p)) Modus Ponens, 2, 3. 

s. 8(p , (er & ')) , (8, ::> 8(cr & ')) instance of K. 

6. 8Cl , (8' , 8(cr & ')) fe&3, 4,S. 

7. (Bcr & 8') , 8(cr & ') PCM, 6. 

Q.E.D. 

Thus, the adjunction schema is a K thesis-schema and hence it will be a 

thesis-schema of any It-extension. And in fact, given soundness it also 

follows that all instances of this schema will be valid in the class of all 

normal models. In order to see how the semantics for K works, however, 

we shall verify that the adjunctton schema is valid with respect to the 

class of K models and hence for all of its extensions. 

Suppose that some instance of the adjunction schema is invalid in some 

K model. Then there will be some Wtin Win this model such that 

VM(BCl & 8,, w1) • VM(BCl, Wt) • VM(8,, Wt) • 1 but VM(8(Cl & ,), Wt) • 0. 

Then for all Wj such that WtRWJ, VM(Cl, wt) • VM(,, wi) • 1. But also, it 

must be the case that there is some Wk in W such that WtRWk and 

VM(Cl & ,, Wk) = 0 which is impossible. Q. E. D. 

And so, any normal system construed as a system of doxastic logic 

involves the claim that agents believe the conjunction of what they believe 

separately given that each normal system contains the adjunction schema. 

However, when we consider examples such as the puzzling Pierre case 

discussed in the previous section, the desirability of having a system of 

doxasttc logic for non-ideal believers (1.-e., believers who don•t always have 

consistent sets of beliefs) which contains the adjunction schema becomes 

53 The relevant PC thesis-schemata are ((Of ::> ') 3t (' ::> T)) ::> (Of ::> T). Of ::> (' ::> (CC 3t ,)). 
54 The relevant PC thesis-schema here is (Cl , (' ;) rn , ((Cl & P> ;) r>. 
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doubtful. In the puzzling Pierre case we wish to avoid the consequence 

that in believing that London is pretty and in believing that London is not 

pretty (in different linguistic contexts), Pierre thereby believes a content of 

the form er & -er since he would end up believing 'wrythilll . 

There are cases where the adjunction schema seems undesirable even 

where x believes that a and x believes that' and a and' are not contra

dictories. ln chapter five of lzzttuiry (1984), in connection with the adjunc

tion principle, Stalnaker presents the •paradox of the preface'. 66 This so-

called paradox of the preface was first formulated by Mak.inson in Analysis 

(1965} and it has been discussed by a number of other authors through the 

years. 56 Suppose that a certain history book. contains a disclaimer in the 

preface stating that there will be certain sentences in the book which are 

false. The author admits that he will most certainly be mistaken in one or 

more of his assertions though he does not know which of his assertions 

are false. But as Stalnak.er notes, the author ..... continues to btli"'' 

everything he wrote ... •57 although he believes that there will be some 

sentences constituting his book which are false. Thus, the author believes 

each sentence in the book individually but he believes that the conjunction 

of these sentences is false. 

Then the paradox o! the preface ls not immediately rC~eleval1l tu lhC~e 

ac:ljunction schema :but rather it bears directly on the plausibility of a 

closely related schema, (:Sex & B') , -B .... (cx & ,). Informally this schema 

says that if an agent x believes that er and that ' individually then it is not 

the case that x believes that their conjunction is false. This schema is 

55 R. Stalftlker (1984), p. 92. 
56 for example, seeR. Hoffman (1968, 1973), A. R. Lacey (1970) and C. New (1978). 
57 Ibid., p. 92. 

http:parad.ox
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valid and hence provable in doxastic K-extensions containing all instances 

of the schema 0. In fact, any instance of the above schema is derivable 

from the appropriate instances of the schema D in conjunction with the 

adjunctton schema. 

However, in any normal doxasttc system containing D, it is a thesis

schema that ... (JkX & B.wOI ) which is truth-functionally equivalent to B-a , 

-lkX. I.e., it is a thesis of systems containing D that if an agent believes 

that ex is false then be does not believe that ex is true. Thus, the preface 

paradox is relevant to the adjunction schema for systems containing D since 

if this is a case where an agent believes ex, ,, etc. whtle believing that 

their conjunction is false then it is also a case where the agent does not be

lleve that their conjunction Is true. 

Stalnaker claims that what ts peculiar about the preface paradox Is 

that it not only shows that agents are non-ideal in the sense that they do 

not always conjoin beliefs, but that it is r.rtiOD.rl in some cases not to con-

join belief. I.e., Stalnaker wants to question the adjunction principle as 

a 'rationality• condition for belief. 58 

Related to the preface paradox is the lottery paradox first discussed 

by Ityburg. 59 Several authors including stalnaker have alluded to Kyburg's 

lottery paradox which bears directly on the weaker version of the adjunc

tton schema, (lkX & B') , -B-(ex & ,). In the lottery example, suppose 

there is some arbitrary number of tickets, say 1,000,000. Then each ticket 

relative to all the others has a 999,999/1,000,000 probability of losing. Thus, 

it is 'rational' to believe of each and every ticket that it will lose. However, 

it is not 'rational' to believe that no ticket will win. 

Also, the lottery example like the preface paradox is directly relevant 

SD Stalnaker (1984), p, 88. 
59 See Kyburg (1970. 

http:ltyburg.59
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to the weaker version of the adJunction schema, viz., (Bcx & B') , -B-(a 

& ') since any •rational' agent would be disposed to assent to the claim that 

not all the tickets will lose. But as we haw noted, for systems containing 

D, it x believes that ex is false then x also fails to believe that ex is true. 

Thus, the lottery paradox would also be a case (for systems containing D) 

where the agent does not bellew that the appropriate conjunction obtains. 

ln any case, as Stalnaker notes, the paradox of the preface is the better of 

the two counterexamples to the principle that agents believe the conjunction 

of what they believe since it does not rely on the notion of probability. 60 

Stalnaker finds it questionable that we can say that the asent believes of 

any one ticket without re5ervation that it will lose. I.e., he questions the 

assumption "that a probabtUty of . 999999 is sufficient for acceptance". 61 

And so presumably, the preface and lottery paradoxes not only indicate 

that asents are non-ideal but they serve to impusn the adjunction principle 

qua 'rationality• principle. However, even if this is the correct conclusion 

to be drawn from these paradoxes, it does not follow that the 'ideal' bel

iever in the sense defined in section 1 does not conjoin his beliefs. Such an 

inference could be made only if we wronsly conflate the terms 'tdealtty' 

and 'rationaltty•. Our sense of 'ideal' is stipulatiw- i.e., ideaUty is stip

ulated to be tied up with the adjunct1on, consistency and omn1doxastic1y 

principles. There is no claim being made in defining ideality in this way 

that agents OU8bt to conjoin their beliefs. The claim that agents OU8bt to 

conjoin their beliefs (that their beliefs ought to be consistent, etc.) is the 

sense of 'rationality' which Stalnaker is employing in his discussion of the 

60 See Slalnaker (1984). p. 91. Slalnaker also maintains that belief and acceptance generally is not a 

matter of degree. 
61 lbtd. p. 91. 
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adjunction principle as a •rationality• condition for belief. 

In chapters five and six we shall critically examine ways of altering 

the semantics and corresponding axiomatics of normal doxastic systems in 

orcler to accommod.ate the puzzling Pierre case as well as the preface (and 

lottery} paradoxes. As will be noted in chapter six, Stalnaker suggests that 

the preface paradox can be explained by claiming that the historian merely 

•ccepts in some sense other than believes the statements of his narrative. 

Even if Stalnaker is correct, there is still a need for a logic of belief which 

does not suppose that agents conjoin their beliefs in order to be able to 

accommodate cases such as the puzzlins Pierre case. 

By way of some concluding remarks concernma the relation between 

the belief operator 'B' and '&' cJ.assic.tJJy construedJ the converse of the 

adjunction schema, viz., B(a & ') ;:, (BOl & B') is more palatable qua prin

ciple of belief attribution (for the non-ideal believer) than its close cousin. 

This schema expresses the principle that if x believes that a and' both 

obtain then x believes that ex obtains and x believes that' obtains. Por 

example, if x believes that the natural numbers and the inteaers are both 

denumerably infinite sets then x also believes that the set of natural num

bers is denumerably infinite and x believes that the set of integers is den

umerably infinite. This schema is derivable given the following two thesis 

schemata, 

B(cx & ') ;:, BOl 

B(cx & ') ;:, B' 

These two schemata which we might wish to call 'doxasUc simplification' 

express the principle that if x believes that a & ' then x believes that 

either conjunct obtains. Once aaain, these schemata are acceptable as prin-
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ciples of belief attribution, at least in comparison to the adjunction schema 

and at least if we are only considering two-termed conjunctions. 

In the next section, we shall examine two additional thesis-schemata 

and their associated rules of inference contained in all normal systems. 

These rules and schemata are the formal counterparts of the principles 

(qua principles of attribution) that agents believe whatever is logically 

equivalent to what they believe and whatever is logically classically im

plied by what they believe. 

8: Are Agents Logically Omn1doxast1c? 

Given an unrestricted use of RB, we can derive the following rules of 

inference for any normal doxastic modal system: 

DR 1: l-8(a ~ p) - 1-8(801 ~ ap) 

DR 2: 1-s(a • p) - 1-s(BOI • ap) 

What these rules of inference amount to qua principles of belief attribution 

and how they are 'violated • w111 be discussed presently. Pirst of all, we 

shall illustrate the role which the rule RB plays in their derivation. 

Consider the following sequence: 

1. Cl ;:) p assumption 

2. B(a ~ p) RB, 1 

3. B(« ;:) p) ;:) (801 ~ BP) X schema 

4. B« ;:) BP Modus Ponens 2,3 

Purther, any instance of the equivalential version of this schema will be 

derivable as follows: 

1. asp assumption 
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2. (er , P> & <P , er> dt '&'. 

3. 1-((cr , P> & <P, er)), (er , P> 
4. (I , , Modus Ponens 2, 3 

5. B(cr , I) RB, 4 

6. 8CI , B' OR 1, 5 

1. 1-((cr , I) & (',er)),(', er) 
8. ':'.)Cl Modus Ponens 6, 6 

9. B(', a) RB, 8 

10. B' , BCI DR1, 9 

11. 1-(Bcr , Bl) , ((81 , 8CI) , ((Bcr , B') & (B' , BCI ))) 

12. (BCI , B') & (B' , 8CI) Modus Ponens, 2 X ustnc 6, 10, 11. 

12. BCI aB' df '&', 12. Q.E.D. 

Further, the semantic counterparts of these two derived rules can be· 

established immediately pven the soundness of any normal system relative 

to its semantics: 

1-c(cr , ') - 1-c(Bcr , a') 

l•c(cr • ') - l•c(Bcr i! B') 

Now that we have shown that DR 1 and DR 2 are rules of inference of 

any normal doxastic system, we shall next consider their intuitive import. 

DR 1 informally says that any acent x will believe the lacteal consequences 

ot what he believes. We could express DR 1 as an tmpticational schema as 

follows: (Bel & I-s( a , ')) , B,. ln the literature, this schema is known 

as the lacteal omniscience thesis. 62 Purther, the equivalential version of 

DR 1 informally says that acents believe any wtf locically equivalent to 

what they believe. DR 2 can also be expressed as an implicational schema: 

(BCI & 1-s(cr a ')) , B,. These lacteal omniscience or more appropriately 

62 For eqnple, see Hlntikka ( t 975) and Rantala ( 198?). 
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logical omnidoxasticity rules of inference and their corresponding schemata 

are the formal counterparts of the condition for ideal believers that such 

agents believe the logical consequences ot what they believe. 

In chapter five of lzrqu.iry, Stalnaker formulates the following infor

mal counterexample to the logical omniscience principle (qua principle of 

belief attribution):63 

William Ill ot England believed, in 1700, that England could avoid a 
war With France. But avoiding a war With France entails avoiding 
a nuclear war With France. Did William Ill believe England could 
avoid a nuclear war? It would surely be strange to say that he did. 

Given the omnidoxasticity principles, even though William Ill would not 

sincerely assent to the claim that England could avoid a nuclear war With 

Prance, we are committed to saying that he held this belief. Yet, there is 

something wrong in attributing to good King William this belief. 

An even stronger counterexample to both OR 1 and DR 2 runs as fol

lows: Suppose that agents believe all the logical consequences of what they 

believe or whatever is logically equivalent to what they believe. Then if 

any agent believes one logical truth, he believes all logical truths because 

any truth of logic (classically) entails and is entailed by every other logical 

truth. But this seems absurd in the case of 'non-ideal' believers. 

Stalnalter has alluded to this situation in his 1972 article 'Propositions• 

as well as in Inquiry in attempting to vindicate his characterization of 

propositions as sets of 'worlds'. This metaphysics of propositions is 1mp11ctt 

in the relational semantics for normal doxasttc systems. The assignment 

function V in a model determines for any atomic wff a all those indices at 

which a is true, viz., the 'proposition' which that wff expresses. And in 

63 R. Stalnaker (1984), p. 88. 
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general, the proposition which any wff expresses in this type of semantics 

will be the set of indices at which that wff is true. But if any two wffs 

are logically equivalent then it follows that any given agent will believe the 

one if he believes the other since both will be true at all his dox.astic alter

natives tf the one ts. Or if x believes that a and a losically implies ' then 

since there are no alternatives at which a is true but ' is false, it follows 

that x also belteves that '· 

In fact, in the type of semantics we have been considering tor normal 

doxasttc modal systems, in any given model (including models where R is 

empty) a.gents at any index will believe all valid wffs since these wffs will 

be true at all doxastic alternatives. In short, the following expresses a 

classical entailment relationship for all normal systems: I= ea -

l=clkl. Thus, any aaent x at some index will believe all valid material 

conditionals from which it follows that if x believes that the antecedent of 

any such conditional obtains, then x will believe that its consequent ob

tains. And this is the om.nidoxasticity feature of the semantics discussed 

above. The syntactic counterpart of I= ea - I= clkl is the doxastic ver

sion of the rule of necessitation, RB, viz., 1-sa - 1-sBa . Thus, if a is 

any conditional thesis then it is also a thesis that 1-sBa so that if x believes 

that the antecedent of a obtains then by the schema It and modus ponens it 

follows that x believes that a's consequent obtains. And this is the omni

dox.asticity feature on the syntactic front. As we shall see in chapter five, 

Rantala suggests that we can block this feature of the axiom systems by 

restricting the application of RB. 

On the semantic front, allowing losically impossible indices to be belief 
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alternatives would be one way of solving the so-called problem of logical 

omnidoxasticity since at impossible indices (such that the connectives are 

not defined classically), logically equivalent wffs can differ in their truth

values. However, as logicians such as Bigelow have pointed out, such tactics 

involve the rather cumbersome task. of "reworking the semantics of 

extensional and intensional operators.""' These tactics wUl be discussed, 

criticized and ultimately rejected in chapter five. In chapter six, we shall 

then argue that although there is no way of ridding the relational seman

tics for doxastic logics of the omnidoxasticity feature, there are ways of 

mitigating this feature. 

It may be worth noting that Stalnak.er's attempted ad hoc solution to 

the problem of omnidoxasttctty with respect to belief in logical or math

ematical truths is to say that agents can sometimes have mistaken beliefs 

about which propositions various sentences of mathematics expresses. 65 

Hence, cases of mathematical or logical ignorance can be explained in terms 

of ignorance of the relationship between a sentence expressing the 'neces-

sary proposition • and the necessary proposition. Another consequence of 

Stalnak.er's proposal is that an agent who believies that a truth of mathe

matics or logic is false (such as in our example of the agent who believes 

that Pierce's law is false) may simply have a mistaken belief concerning 

the relationship between the sentence expressing the necessary truth and 

the necessary truth. ln our earlier example, the agent may have a false 

belief concer n.i.ng lhe .r: el•liu.r:ltSb.i.p beLwww.n Lhe wxpr etStSiun ((Ol , ') , Ol) , Ol 

and the necessary proposition. Then perhaps our agent does not believe 

that a logical truth is a falsehood after all. We shall return to Stalnalter's 

proposal in more detail in chapter six. 

64 John Blgelow 0978), p, 105. 

65 R. Stalnaker (1976), p, 87 
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9. The Non-Ideal Believer and the Problem of Deduction 

And so, in summarizing our discussion to date, it would seem that if 

we· adopt a normal system of modal logic in series 2 containing D we are 

committed to the consistency schema, the adjunction schema and the log

ical omniscience schema (as well as its equivalential version). A system of 

logic containing all three schemata could be said to capture the notion of the 

idw believer. As noted earlier, we could define an idet~l believer as one 

who is incapable of believing any contradictions, who believes the conjunc

tion of everything he believes and finally who is logically omnidoxasttc. We 

also noted that any system in Series 3 without D will not contain the con

sistency schemata (thoush at the price of allowing indices where asents 

have maximally inconsistent sets of beliefs - Viz., at dead ends). 

In the precedins sections, we considered in relation to the consistency, 

adjunct1on and omntdoxast1c1ty schemata a number of supposed 'counter

examples' which are possible situations where the principles of belief attri

bution asserted by these schemata break down. Thus, a counterexampJe to 

the omnidoxastictty schema, Viz., a case where the principle of attribution 

it asserts breaks down, would be a case where an agent x believes that cc 

and even thoush a logically implies,, it is somehow wrons to attribute to 

x the belief that p. It these counterexamples are not spurious, then it 

would seem that agents can believe contradictions (at least separately}, 

that there can be cases where asents taU to believe the conjunction of what 

they believe and that it isn't always the case that agents believe the cons

equences of what they believe- agents are not logically omnidoxasttc. In 
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short, it would seem that believers are (or at least can be) non-ideal. 

The moral to be drawn from these alleged counterexamples to the 

principles expressed by the omnldoxasticlty, consistency and adjunction 

schemata is that a lostc embodying principles of belief attribution for the 

nOD-idMI believer is needed. The normal systems ot doxasttc losic in 

series 2 and 3 are perfectly adequate qua qics of the 'ideal' believer, but 

they do not provide us with logics of non-ideal believers. Authors such as 

Dummett claim that there is no logic of belief. The line we are adopting 

here is that there is a logic of belief - i.e., of ideal belief but there is to 

date no losic characterizing believers who for example do not always con

join their beliefs. 

Admittedly, the alleged counterexamples to the consistency, adjunction 

and omnidoxastictty schemata all rely on some version of Kripk.e's disquo

tation principle in terms of sincere assent. Or they rely on some sort of 

principle of belief attribution or other (such as a dtspositional account). 

Further, these cases can be regarded as involving a conflict between either 

the dtsquotational or disposttional principle on the one hand and one of these 

three principles (adjunction, consistency or omnidoxasticity) on the other. 

Por example, in the WUltam Ill example, William Ill's probable lack of 

assent to the claim that Enciand will avoid a nucJ,•r war with Prance 

seems to imply that he would not believe that this claim is true assuming 

Kripke's strengthened disquotatton principle. Yet according to the omni

doxasticity principle, via., that agents believe the consequences of what 

they believe, we are forced to conclude that William Ill dt»s believe that 

England can avoid a nucle.r war with France (if he believes that England 

can avoid a war with France). So there is a clash here between two prtn-
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ciples of belief attribution, viz., disquotational vs. omnidoxasticlty. 

But then as Kripke would be quick to point out. we may be too hasty in 

indicting the claim that agents are ideal believers. Perhaps our disquota

tional or dtsposittonal principles are at fault such that amending them 

would block these alleged counterexamples to the ideality of believers. And 

so, perhaps what the various cases we considered in the previous three 

sections have established is not that agents are non-ideal (and hence there 

is a need. for a logic of non-ideal believers) but rather the weaker claim 

that If some version of the dtsquotation principle (or for that matter any 

principle of belief attribution such as a dtsposittonal principle) used in con

structing these cases are sound then believers are non-ideal. So we shall 

characterize our task more humbly as follows: SUpptJ5JiJI that the dis

quotatton prtntciple or some analogous principle of belief attribution are 

sound and hence believers are non-ideal, we shall want to develop a logic of 

non-ideal beleivers. 

By way of introducing some terminology, the problem that believers 

are (at least apJ»rent/y) non-ideal and that this 'fact• is not taken into 

account by standard 'possible worlds' or indexical semantics, Stalnaker 

calls the 'problem of deduction'. 66 

In chapters five and six we shall attempt to develop a logic of belief 

within the parameters ot an indexical (relational) semantics which does 

not assume that believers are ideal. ln chapter five, Rantala 's proposals 

for both a logic and semantics of the non-ideal believer will be considered. 

His proposal on the syntactic front involves restricting the doxastic var-

iant of the rule of necessitation. On the semantic front, he proposes an 

'impossible worlds' semantics for normal belief logics which allows the 

66 R. Stalnaker (1984), p. 81. 
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doxastic accessiblity relation R to range over both normal and non-normal 

indices. At non-normal indices, the connectives of the language are defined 

non-classically - they misbehave as it were at such indices. And by vtrtue 

of the tact that the connectives can misbehave at non-normal indices, 

agents can hold contradictory beliefs both separately and conjointly without 

believing everything and also agents will sometimes fail to conjoin beliefs 

and fail to believe all the consequences of what they believe. 

But as promising as this approach seems to be, it will be argued that 

this solution to the problem of deduction for belief logic is ultimately beside 

the point since it does not explain how cussic.~J conjunction, negation and 

implication misbehave at non-normalincijces. The connectives-, &, v, ::l 

and • represent classical negation, conjunction, etc. for normal indices 

but they represent non-classical negation, conjunction, etc. at non-normal 

indices. Further, it will be argued that opting for defining the connectives 

solely in terms of their roles in inference does not sidestep the problem that 

there is an equivocation in the semantics with respect to ... , &, v, ::l and a, 

since this equivocation is also mirrored in the syntax. 

In the sixth chapter, we shall then explore ways of altering the sem

antics and. axiomatlcs ot normal systems of belief logic which do not involve 

a non-classical construal of the connectives. The approach we shall develop 

is motivated by Marcus' suggestion that (on the syntactic front), the belief 

operator is more like the alethic possibility operator than the necessity 

operator. As we shall see, on this approach agents are capable of having 

contradictory beliefs separately (but not conjointly) and agents need not 

always conjoin their beliefs although we still have the result that agents 

are logically omnidoxastic. However, treating belief as analogous to alethic 

http:cussic.JJ
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possibility mitiptes the omnidoxastictty feature. 

The corresponding semantics for these loaics will be a formalization of 

Stalnaker•s suggestion that an agent can be in more than one belief state at 

the same time. A belief state is a set of indices such that some of an agent's 

belief contents obtain at each of these indices. It an agent x can be in more 

than one belief state then x can hold contradictory beliefs in distinct states 

as well as fail to conjoin beliefs which are believed. in different states. 

In the next three chapters wv shall see what happens when we intro

duce quantification and identity into normal doxastic systems. It will be 

argued that many of the major problems that are peculiar to gullntifi«< 

doxastic logic can be adequately dealt with on the semantic front within the 

framework of a relational semantics with or without domains of so-called 

individuals although wv shall opt for the domalnless semantics becauSP. tt 

is metaphysically less problematic. The problem of dP.ductinn t~ inhP.rti:P.d 

by quantified systems and it is to this problem that we shall return in the 

final two chapters. 
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Chapter Two 

Quantificational Belief Logic 

1. Doxastic Quant1f1cational Calculi with Identity 

The reader will recall that in the last chapter it was remarked that 

any of the follOWing normal mod.al systems (amonsst others) can be ad.op

{ed as systems of doxastic logic where it is assumed that agents are 'ideal 

believers': K.D, K.D4 and K.D46. Normal systems without D {and T) such as 

K., K.4 and K.45 do not presuppose that agents always have consistent beliefs. 

This is by no means an exhaustive list of do:xastic logics although any nor

mal system containing the schema T, Bel ::>ex will not qualify for member

ship in this list since it is assumed that (even 'ideal') agents are capable of 

having false beliefs. 

Despite Quine's warnings concerning the evils of Aristotelian essential

ism, much work has been done in the area of quantified normal alethic 

modal logics especially following K.ripke's proposed semantics for quantified 

normal systems in a famous 1963 article entitled 'Semantical Considerations 

on Modal Logic'. And parallel developments have occurred in the area of 

normal dozt~stic and #pist#mic quantified modal logics startir1g wilh Uin

ttkka's work in Krzowl«/g# •nd Belie-f in 1962. 

In terms of the language of any normal system of qut~nti.fled do:xastic 

logic we need to add to our 'logical' symbols a denumerably infinite set of 

so-called individual variables, :x, y, z, Xt» x2, ... as well as the quantifier 
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symbols 3 and V (where the former is called the •existential' quantifier and 

the latter is called the 'universal' quantifier) and finally the identity sym

bol '•'. In addition, we shall also add to the list of primitive symbols sets of 

'non-J.oaical' symbols which will include a set of individual constants, a, b, 

c, a1, a2, ... as well as a set of predicate variables 1', G., H, 1'1, 1'2, ... 

Intuitively, the constant symbols are the formallancuace counterparts of 

proper names for natural languages and predicate variables are the coun

terparts ot class terms. We may also wtsh to add a list ot so-called. func

tion symbols, f, g, h, fb t2, ... althouch for our purposes this will not be 

necessary. 

The union of the set of constants and the set of individual variables 

will be called the set of 'individual terms'. The notion of well-formed for

mula (wff) can be defined recursively as follows: The base clause is that 

any predicate variable followed by a finite strinc of individu.tl terms is a 

wff and and so is t1 = t2 where t1 and t2 are terms. Wffs of either of these 

types will be called •tomic . If both ex and ' are wffs then so is -ex , ex & ,, 

01 v ,, 01 ;:, ,, 01 = ' and lkX. (Recall that BcX informally can be read as 'x 

believes that a • .) Finally, if A is any wff then so are (Vv)a and (3v)a 

where v is a metasymbol ranginc over variables. The wff 01 is said to be 

the SCDJ» of the quantifiers V and 3. Any variable v occurinc in the scope 

of a quantifier that contains it is said to be .btJund . Otherwise, v is free. 

Notice also that only individu.tl variables are said to be bound by quan

tifiers. Systems of quantified logic where this is the case are often called 

'first-order'. It quantifiers are also allowed to bind predicate variables 

then the system is said to be 'second-order'. For our purposes we shall 
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only be concerned. with first-order systems. Finally, we shall call wffs 

containing no free variables cJ06tld. Wffs which are not closed are open.1 

This c1tst1nct1on wtll be important later on when we come to dtscuss the 

corresponding semantics for the sac= systems since only cloHd wtfs will 

be assigned. truth-values. 

There are a ff!W things to be noted. concerning the so-called. universal 

and existential quantifiers. First of all, the quantifiers are interdefinable 

as follows: (3v)cx =df. -(Vv)-cx and (Vv)cx =df. -(3v)-ex. For the set of 

axiom systems which we shall propose, the existential quantifier will be 

talten as primitive. 

Also, tor any system ot first-order logic (standard, modal, doxasttc) 

there are at least two possible ways of informally reading the quantifiers 

V and 3. It we provide a so-called 'substitutional' reading of these quan

tifiers, then any wff of the form (Vv)cx will be read as 'all substitution 

instances of a with respect to free v are true' and (3v )ex will be read as 

'some substitution instance of a with respect to free v is true'. This is not 

a formal definition but intuitively, a substitution inst41Zctl ot any wff ex 

with respect to all free occurrences in ex of some variable v is the result of 

uniformly replacing these occurrences of v by some constant t. We can 

denote any such substitution instance of a with respect to free v as 

ex (t/v}. The substitution approach to quantification dates back to Prege's 

'Begriffsschrift' as well as Russell's 'On Denoting' and it was revived by 

Ruth Barcan Marcus2 and later endorsed by such logicians as Dunn and 

Belnap as well as Stine3. 

1 See for eKample Hunter 0969). p. 139 for this distinction. 

2 See Marcus 0961, 1962). 
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Parallel to Marcus• attempt to vindicate the substitutional reading of the 

quantifiers was Quine's defense of the so-called objltctu•J or rttlt~rt~nti•l 

interpretation of the quantifiers4. The referential reading usurped Frege•s 

and Russell's attempts to construe quantification substitutlonally (in part 

due to the efforts of Quine) and it is regarded as the 'standard' way of 

informally readin& the quantifiers&. We can characterize the objectual 

approach to quantification roughly as follows: (Vv)« is read as 'Every 

object is such that« • and (3v)« is read as 'There exists at least one object 

such that ex •. As we shall see below in section 4, this way of interpreting 

quantification is on sha.k.ier metaphysical and ontological grounds than is 

the substitutional approach because it appeals to the problematic notion of 

'object'. It is for this reason that a semantics exclusively supporting the 

latter approach will be endorsed for first-order belief logic. 

As Quine and others have pointed out, the substitutional and the 

objectual interpretations of the quantifiers are by no means equivalent 

for reasons that will be discussed in the next section. 6 Nonetheless, it will 

be shown in this chapter that both a domain semantics supporting an ob

jectual reading of the quantifiers and a truth-value semantics supporting a 

substitutiona.l reading both characterize the first-order doxastic systems to 

be discussed below. 

In terms of the axiomatics for normal first-order belief logic, the most 

straightforward way to proceed is to simply add to the axiomatic base for 

the system K or any K-extenston one of a number of possible axiomatic 

3 See 01m and Belnap (1968) and 6111 Sltne 0976). 
4 For example. see Q.rine's reply to Marcus (1963). 
5 See Krtpke (1979). 

6 See Clllne (1969), p. 106. Also, see HHct (1978), p. 51. 
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bases for standard non-modal first-order logic with identity. Thus, the 

axiomatic base tor the minimal system K with quantification and identity 

(which we shall call ttoc= '1) would look something like this, where it is 

to be understood that 't', t1 and t2 occurring in any of the following 

schemata are metasymbols ranaing over ctm6t.ant6 : 

.A.S 1: a (where a has the form of any PC thesis-schema)8 

AS 2: (Bel & B(CI ~ ')) ~ B' 
AS 3: a (t/v) ~ (3v)a 

AS 4: t = t 
AS 5: (a (tt/v) & t1 • t2) ~ a (ta/v) 

AS 6: -(3v)~aa ~ B-(3v)-a (Barcan Formula) 

The primitive rules of inference will be: 

MP: Cl , a ~ ' -- ' 
R3: 1-a (t/v) ~ ' - l-(3v)CI ::> ' provided t is foreign to (3x)a ~ ,. 

RB: 1-or -I-Bex 9 

In a similar fashion, we can suggest axiomatic bases for any extll'n6ion of 

ttQC= to obtain the systems oac=, K4QC=, K45QC=, KD4QC•, KD45QC•, and so 

on. We shall hereafter call any system in this set an sac= system. The 

reader will note that any sac• system will contain the so-called &rc.n 

Formula as an axiom-schema. As Hughes and Cresswell note, the Barcan 

Formula is not derivable in any normal quantified modal system weaker 

than S5.10 However, it can be consistently added to any quantified system 

1 I.e., The system K plus the <Mntificalional Calculus with Identity. 

8 For example, (VxJx ~ (Vxfx would have the form of the PC thesis-schema Cl ~or. 
9 To avoid the rather cumbersome notation J-soc•a which signifies that the wiT Cl is a thesis of 

some soc• axiom system. we shall simply write J-a , it being understood that thesishood is 

relative to some system or other. 
10 Hughes and Cresswell (1968). pp. 170-171. 

http:J-soc.1J
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weaker than S6 as an axiom schema. The rationale for including the 

Barcan Formula as an axiom schema in the various quantified doxastic 

systems of logic is that the corresponding semantics is made simpler.11 

Given that each of the SQC• systems have as part of their axiomatic 

base the schema K, (BG & B(ex :::. ')) :::. B' as well as containing the rule of 

inference RB, l-ex ---+ 1-8CX then the so-called adjunction schema and the 

following two rules of inference are derivable in each of these systems: 

(BCX & B'}, B(cx & ') [adjunction schema] 

l-ex , ' ---+ 1-BG , B' 
l-ex • ' ---+ 1-BCX • ., 

[ omnidoxastic!ty] 

[strong omnidoxasttcity] 

lnfomally, the adjunction schema says that agents believe the conjunction 

of what they believe. The two derived rules of inference informally assert 

that agents beleive the logical consequences of what they believe and that 

agents believe whatever is logically equivalent to what they believe. These 

three principles asserted by the adjunction schema and the two rules of in

ference are (as we have seen) open to counterexamples. Thus, the quan

tified soc• systems inherit from their sentential counterparts the problem 

of deduction . 

Further, any SQC• system containing the schema D. BQl :::. Pacx also 

contains all instances of the schema -B(CI & -ex) which says that it is not 

the case that agents believe self-contradictions and all instances of ""(Ba & 

B-cx ) which says that agents never believe contradictortes separately. 

Once again, the principles asserted by these schemata are open to counter

examples. 

Given the soundness and completeness results for the soc= systems (to 

be discussed in the next two sections), all instances of the adjunction 

1 t For details about this, see chapter ten of Hughes end Cresswell (1968). 

http:simpler.l1
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schema will be valid in the classes of relational models characterizing the 

various sac• systems. Further, the semantic counterparts of the two der

ived rules of inference mentioned above hold for these systems. Finally, 

the non-contradiction schemata will be valid in the classes of minimally 

SlritJJ models characterizing those S~ systems containing D. Our task in 

the remainder of this dissertation following the fourth chapter will be to 

critically examine various attempts at amending the relational semantics 

for doxasttc logic (both quantified and sentential) in order to accommodate 

these difficulties. 

We shall now consider a few of the theses derivable in the qut~ntified 

versions of the doxastic systems we considered in the previous chapter. It 

is noteworthy that all instances of the following schema are derivable in 

any of the sac= systems: t1 = t2 ;, B(tt = t2). A proof of any instance of 

this schema in any~ system would look something like this: 

1. (B(tt = tt) & t1 = t2) ;, B(tt = t2) version of AS 5 

2. B(tt = t1) ;, (tt = t2 ;, B{tt = t2) 1, PC 

3. tt = tt version of AS 4 

4. B(tt = tt) 3, RB 

5. t1 = t2 ;, B(tt = t2) 2,4 MP 

Intuitively, this schema says that agents are omnidoxastic with respect to 

identities. This is plausible for identities of the sort t = t but not neces

sarily for so-called contingent identities. Other sac· theses which will spell 

trouble philosophically are the doxastic versions of AS 3 and AS 5 above, 

B« (t/v) ;, (3v)B« and (8« (tt/v) & t1 = t2) ;, B« (t2/v) respectively. Infor

mally, the former says that we are allowed to existentially generalize 
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across belief operators and the latter says that eo-referential& are inter

substltutible in belief contexts. As we shall see in the next chapter, both of 

these assertions are highly problematic and have been discussed in the 

literature for a number of years. 

However, the set of axiom systems {Koc-, K4QC•, ... } which we are 

now constdertngts not meant to be our final word on quantified doxastic 

logic. We shall su~tnt modifications to these axiom systems and their 

characteristic semantics in chapter four which wlll best be able to accom

modate the philosophical difficulties connected with quantiticational doxastic 

systems. The reader can consider these axiom systems and their charac

teristic semantics as a kind of dry run as well as a framework in which 

to discuss (in chapter three) some of the major difficulties associated with 

quantified belief logic. 

Another thesis-schema contained in each sQC= system which we shall 

discuss in chapter three and which is also of philosophical interest is the 

schema (3v)lkl ;, B(3v)a .12 A proof sequence of any instance of this 

schema would look something like this: 

1. a. (t/v) ;, (3v )a. AS3 

2. B(a. (t/v) ;, (3v)a.) 1, RB 

3. Bcr ( t/v) ;:, B(3v )a. from 2, using AS 2 and MP 

4. (3v)Bcr ::) B(3v)a. 3, R3 

Informally, what this schema says is that belief 11.bout some thing (a res) 

implies belief tlut such and such is the case. Stated another way, belief 

'2 This is a close cousin of the Barcan Formula. -(3v)-Btl. ;, B-(3v)-a.. The reader should also 

not the converse of (3v )la ;, B<3v )G. B(3v )a ;, (3v )la is nota thesis schema of any sac· 
system. 

http:B(3v)a.12
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d' rr implies belief d, dlcto . The reader may wish to skip ahead to chapter 

three, section 2 for a more detailed explanation of this distinction. 

In the next two sections, we shall consider semantics for the sac= sys

tems which support both the objectual and the substituttonalinterpretatton 

of the quantifiers. It will be argued in the final section that the semantics 

supporting the substttutional interpretation of the quantifiers is preferable 

because it presupposes a less problematic metaphysics than its objectual 

counterpart. This latter sort of semantics w111 also :be endorsed vis a vts 

some of the problems peculiar to quantlfll!d doxastic logic, which will be 

discussed tn some detail in chapter three. 

2. Domain Semantics for the sex= Axiom Systems 

There are two types of relational semantics which we shall consider for 

the soc= axiom sets. In the first type of semantics, a model structure for 

a normal doxastic system with quantification and identity (sac=) will be 

a triple, <W,R,D> where Wand Rare defined as forS model structures. 

I.e., W is a non-empty set of indices and R is a 2-place relation ranging 

over members of W. Depending on what sort of axiom set we want, it is 

as usual possible to impose various restrictions on the relation R. For 

dozastic logic one restriction we would not impose on R is reflexivity since 

this would validate the schema Bel ::> ex . Finally, 0 is a non-empty set of 

'individuals' or 'objects' which may be finite, denumerably infinite or 

non-denumerably infinite. 

This first type of semantics which we are considering will be called a 
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'domain semantics' (OS}. In this type of semantics, an sac= model is an 

ordered 4-tuple <W,R,D, V> where <W,R,D> is an sac= model structure and 

where V is an assignment function defined as follows: 

1) V: Ind. Cons. _____,.. D 

2) V: Pred. Var. _____,.. PJ)D X W 

In simple lans:uas;e, V assigns to individual constants members of D. And to 

predicate variables, V assigns sets of ordered n + 1- tuples whose first n 

members is an ordered n-tuple of members of D and whose n + 1st member 

is an index chosen from W. In other words, V relativizes the extension of 

predicate variables to indices so that in a given model the function V can 

assls;n different extensions to the same 'class term' from index to index. 

In addition, 1t is stipulated that V is not a partial function. 

A v•lu4titJn over an sac- model, VM is a function from cJOSidwtts 

and indices into truth-values. For the sake of notational simplicity, we 

shall use 'Wffs' to denote the set of well-formed closed formulae. And so, 

VM: Wffs X W ___.. {0,1}. As usual, VM can be defined inductively as 

follows (for all Wf, Wj E W): 

Basis: i. VM(Ptt ... tn, Wt) = 1 iff <V(tt), ... , V(tn), Wt> E V(P) 

U. VM(tt = t2, Wt) • 1 iff V(tt) = V(t2)· 

Suppostns: that VM(a, wl} and VM(,, wt) are defined tor any wi e W then: 

VM( -a, Wt), VM(a & ,, Wt), V M( a v ,, Wt), VM(CI :;, ,, Wt), VM(a !! ,, Wt) 

and VM(Ba, wt} are defined as for the sentential normal systems. Recall 

that VM(BcX, w1) is defined as follows: 

V:M(BcX, wi) = 1 iff V M( a, wj) = 1 for all Wj in W such that w 1Rwj. 

Less formally, 'x believes that a • is true at an index wi just in case the 

content wff a is true at all doxastic alternatives to wi. These alternatives 
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to w1 are all those indices at which all content sentences of all wffs of the 

form Bel true at Wt are true. In section 4 we shall have more to say 

concernina the metaphysical status of ind.ices. For now, we shall treat W 

a.a simply a set of unanalyaed 'points' or indices as in chapter one. Finally, 

VM for qUMJtifi«< wffs will be defined as follows: 

VM((Yv)or, wi) • 1 iff VM(or (t/v), wi) • 1 for all M• based on the same 

model structurl' as M and differing from M if at all 

only in terms of what V assigns tot, which is an 

arbitrarily chosen constant foreign to (Yv)or. 

VM((3v)or, wt) • 1 iff VM•(or (t/v), wt) • 1 for at least one M' based on the 

same model structure as M and differing from M if at 

all only in terms of what V assigns tot, which is an 

arbitrarily chosen constant foreign to (3v)or. 

Intuitively, what these truth-conditions assert is that a universally 

quantified wff (Yv)a is true at some index Wt just in case the arbitrarily 

chosen substitution instance of the scope or, or (t/v) ts true at w1 no matter 

what member of D ts assigned to t. I.e., a (t/v) must be true at Wt for all 

members of D. Further, an existentially quantified wff (3v)or is true at Wf 

just in case the arbitrarily chosen substitution instance of the scope or, 

ex (t/v) is true at wi for at least one member of D assigned tot. This read

ing of the quantifiers is therefore 'referential' or 'objectual' in the sense 

defined above in section 1. 

The strategy of spell1ng out the truth-conditions of quantified wffs tn 

terms of what is assigned to an arbitrary tin some substitution· instance 

ex (t/v) of the scope or across all models (which differ only in terms of 
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what V assigns tot), has been suggested by Leblanc.13 The rationale 

behind his proposal is that it ensures that all members of the domain D in 

the appropriate model structure will be taken into account in evaluating 

quantified wffs.14 lf we were to provide a substitution.al reading of the 

quantifiers in our domain semantics, then for models with domains con

taining individuals that are not assigned to any constant t, these indivi

duals would be left out of consideration. Thus, suppose as an alternative to 

the above characterization of VM for quantified wffs, we instead stipulated 

that VM({Vv)cx, wi) • 1 iff VM(cx (t/v), wi) • 1 for all constants t where 

it is understood. for any such t, V(t) E D. Unless it is assumed that each 

and every member of D will be assigned to some constant or other (and 

that V is not partial) then these truth-conditions will leave •unnamed' 

individuals (if there are any in the given model) out of the account. 

The moral to drawn here is that the substitutional interpretation and 

the objectual interpretation of the quantifiers are not equivalent.16 For ex

ample, the following infinite set is 'semantically consistent' on an objectual 

reading of the quantifiers in the semantics just considered, viz., {-Fa, -Pb, 

-Pc, ... , -Pan, ... (h)Px}. l.e., there will be an SQc= model M and a w1 

in W such that all members of this set will be true at wi - given an objec

tual reading of the existential quantifier. This model would be such that 

for some index Wi, even though no member d of D t~ssign«< by V to any of 

the constants is such that <d, w1> e V(F), if we consider an alternate model 

M' which differs from M only in what V assigns to some designated cons-

13 See leblanc (19761), p. 307 and Leblanc (1976b), chs. 1 and 4. 
14 See Leblanc (19761), p. 307. 

15 See Qdne (1969), p. 106 and Van Frassen (1971), p. 127. 

http:equtvalent.16
http:Leblanc.13
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tant am, then it may be the case that V(am) = d' such that <d', Wt> e 

V(F). I.e., VM•(Fam, Wt) = 1. Therefore, it will be the case that for M, 

VM((h)Fx,wt) = 1 even though VM( ... Falt,wt) = 1 for any constant alt· On 

the other hand, U we were to read the existential quantifier in (3x)Px 

substitutiona/Jy then the set {-Fa, .... Pb, ... Fe, ... , -Fan, . . . (3x)Px} would 

be semantically iJJCOil$/strnt. I.e., if for every constant ak, VM( -Fak, wt) 

is 1 and hence VM(Fak, w1) • 0 for some wi in an soc• model M, then by 

the substitutional truth-conditions for wtfs of the form (3v)a, it will be 

the case that VM((3x)Fx, w1) • 0. 

In the next section a so-called truth-value semantics will be developed 

for the sac- systems which dispenses with domains of individuals and 

which involves the assignment of truth-values directly to the atomic wffs 

of the language. Quantified wffs are therefore naturally read substitution

ally in this sort of semantics. Thus, a wtf of the form (Vv)cx is true at an 

index Wt just in case C:X (t/v) is true at w1 for all constants t. However, the 

substituttonaltnterpretatton of the quantifiers for this truth-value seman

tics (to he discussed in the next section) and the objectual interpretation of 

the quantifiers for the domain semantics just described will not be equiv

alent as just illustrated. (For example, certain infinite sets of wtfs seman-. 

tically consistent in the domain semantics will he inconsistent in the truth

value semantics.) Nonetheless, this has no bearing on the fact that both 

types of semantics characterize the sac• axiom systems. It will be shown 

in this and the next section that for any sac• axiom system, both its cor

responding domain semantics (with an objecutal interpretation of the quan

tifiers) and its corresponding truth-value semantics (with a suhstitutional 
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interpretation of the quantifiers) will validate all and only those wffs 

which are theses of the appropriate sQC• system. 

V.aUdlty 1n an sac= model is truth at all members of W. And validity 

1n the class of sac- models (determined by the restrictions imposed on R) 

is validity in all models in the class.16 

SoundniiSS of the various sac= axiom sets is easily established by 

showing that all instances of the axiom schemata are valid and that the 

rules of inference preserve validity in the appropriate class of models. For 

example, consider the axiom-schema or (t/v) :) (3v)or common to all the 

~ systems which is the d.ual of the so-called particularity schema, vi.z., 

(Yv)or :) or (t/v). Informally, suppose that tor some SQC= model VM(a (t/v), 

w1) = 1 for some Wi in W. Then there is some model M' like M such that 

VM•(or (t"/v), wi) • 1 where V(t") • V(t). Therefore, VM((3v)cx, w1) = 1. 

Q.E.D. 

By way of another example, consider the Barcan Formula, ... (3v)-84r :) 

B-(3v)-cx. Suppose for some sac- model, VM( ... (3v)-B4r, w1) = 1 but that 

VM(B-(3v)-cx,wi) • 0. I.e., VM((Vv)B4r,wi) = 1 and VM(B(Vv)CX,wt) = 0. 

If w1 is a d.ead. end. (for KQC•) then this set of assignments is inadmissible. 

If Wi is not a d.ead end, then there will be some Wj such that wiRWj and. 

such that VM((Vv)or,wj) = 0 and hence VM•(or (t/v),wj) = 0 for at least 

one M' like M. However, given that VM((Vv)B4r, wi) = 1 then it is the case 

that VM•(Bor (t/v), w1) = 1 for all M' like M. But then for all WJ such that 

wiRwj, VM•(CX (t/v),wj) • 1 for any such M', includ.ing the M' such that 

VM•(CX (t/v),wj) = 0, which is a contradiction. Q.E.D. 

I & The symbol 1-c or indicates that the wff or is valid In a class of models, C although for the 

remainder of this chapter we shall simply use l-ex with it being understood that or is valid in an 
appropriate class of models, membership in a class being a malt.er of the restrictlon(s) placed on R. 
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As a final example, we shall consider the axiom-schema (a (t1/v) & 

t1 • t2)::) a (t2fv) which asatn is common to all the sac• axiom systems. 

The proof that all instances of this schema are valid would proceed by in

duction on the complexity of a (tt/v) and its substttuttonal variant a (t2/v). 

The buls ot the induction is where a (tt/v) and its variant a (t2fv) are 

atomic. Then a (tt/v) is either t1 • tn or P ... t1 ... tm. Since a (t2/v) is 

a [(t2/tt)(tt/v)] then Gl (ta/v) will be t2 = tn if a (tt/v) is t1 = tn or Gl (t2/v) 

Will be P ... t2 ... tm if a (tt/v) is P ... t1 ... tm· Purther, suppose that for 

some Wtin W 1n an SQC- model M, VM(GI (tt/v), wt) • VM(tt • t2, wt) • 1. 

Then V(t1) • V(t2)· If a (tt/v) is of the form t1 • tn then V(t1) • V(tn) 

on the supposition that Cl (tt/v) ls true at w1 and so it follows immediately 

that V{t2) • V{tn) and hence, VM(t2 = tn, wi) = 1. Or, if Cl (tt/v) is of the 

form P ... t1 ... tm then since < ... V(tt) ... V(tm)> e V(P) and since V(tt) a 

V(t2) it follows that < ... V(t2) ... V(tm)> e V(P) and so VM(P ... t1 ... tm, 

Wt) • 1. In either case, VM(GI (t2/v), wi) • 1. This proves the basis of the 

induction. 

The inductiw bypotb~ is that whenever Cl (tt/v) and t1 = t2 are 

true at an index w1 in an s~ model, then a (tvv) is true, where a (t1/v) 

and a (tvv) are of degree of complexity n. Then, it must be shown that the 

this charateristtc holds where Gl (tt/v) and Gl (ta/v) are of degree of com

plexity n + 1. cases to be considered are where 01 (t1/v) and a (ta/v) are 

nesattons, conjunctive expressions, existentially quantified expressions and 

finally of the form B'(tt/v) and B'(ta/v) respectively. We shall consider 

the last case only since the other cases are trivial. SUppose then that 

Cl {tt/v) and a {t2/v) are of the form B'(tt/v) and B'(ta/v) respectively. 
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SUppose further that there is a model M and index Wt where VM(Bp(tt/v), 

wt) • VM(t1 • t2, wt) • 1. Then for any Wj such that WtRwj, VM(P(tt/v), 

wJ) • VM(t1 • t2,wJ) • 1. Then by the Jnductlw hypotbtllli6, it follows 

that VM(P(t2fv), wj) • 1 for all WJ such that WtRWj and therefore, 

VM(Bp(t2fv),wt) • 1. Q.E.D. 

For a thorouah discussion of cornpl•t•n,_ results. the reader is refer

red to HuShes and Cresswell (1968, 1984) for their remarks concerning 

normal aleth1c modal systems with quanUt1cat1on. We shall here mention 

some important features of these results. The canonical model .U. for any 

sac= system is a 4-tuple <W, R, D, V> where W is a set of maximal consis

tent sets of wffs with the 3-property. The 3-property can be characterized 

as follows: If (3v)ex is in wi (where w1 is a maximal consistent set of sac= 
wtfs) then so is ex (t/v) for at least one constant t. Hughes and Cresswen17 

show how to extend any consistent set of wffs to a maximal consistent set 

with the 3-property. The trick as it were is to ensure that every max

imal consistent set has the so-called 3'-property. A set of wffs has the 3'

property just in case for every wff of the form (3v )ex, the set contains the 

implicattonal wff (3v)cx ::;) ex (t/v) for at least one constant t. Then any set 

with the 3'-property will also have the 3-property since if any such set 

contains a wff of the form (3v)ex then given that it contains (3v)a , 

ex (t/v) for at least one constant t, it will also contain ex (t/v) for at least 

one constant t. As we shall see in a frN parasraphs, this result is impor

tant for the case where ex is of the form (3v )ex in the inductive proof of 

the fundamental theorem for canonical models, viz., that for any sac• wtf 

a , V .u, (a , w1) • 1 iff a e Wi. The relation R ransins over members of the 

17 See Hughes and Cresswell (1968). 
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set of maximal consistent sets ot wffs with the 3-property is defined as it 

was for the canonical model for sententtal normal systems: WtRWJ ttf 

(cx)(Ba e w1 ___..ex e wj). Further, D is the set of all const•Dts. 

Definin& V is a bit tricky beccause we want to prevent tbe situation 

where any identity wff is false at every member of W in M.. If D for the 

canonical model for any sac- system is simply the set of constants, then 

alloWin& V to be the identity function such that for any constant t, V(t) = t 
will have as a consequence that V.u,(tt = t2,wi) • 0 for any two distinct 

constants t1, t2 for any Wtin W since V(tt) • V(t2). Thus, we cannot 

stipulate that V 1s tbe identity function from constants into constants. In 

An IDtrtJductiOD to ModAl LoliC. Hupes and Cresswell offer the following 

strategy for defining V for the canon1cal model for normal modal identity 

systems: Plrst of all, we suppose that there is an ordering of all the cons

tants of tbe language. We can then define V for constants as follows: 

V(lf) • V(tj) 1t tJ occurs earlier than t1 in the ordering such that 

tj • tt is in some Wt in w. 
t1 otherwise. 

As Hughes and Cresswell argue, this way of defining V for constants will 

ensure that whenever t1 • t2 e W!J V .u,(tl = t2, wi) • 1 and vice-versa. 

How this is so will be explained shorUy when we discuss the base clause of 

tbe proof of the fundamental theorem of canonical models. Pinally, in 

terms of defining V for predicate variables we shall stipulate that for any 

constants th ... , tn, for any predicate variable P and for any wi e W, 

<tt, ... , tn, w1> & V(P) ttf Ptt· .. tn & w1. 

We shall now outline the proof of the fundamental theorem of canonical 
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models, vtz., V )J. (tJ , Wt) • 1 iff tJ e Wt for all SQC- wtfs tJ and for all Wt 

in Win .u.. which proceeds by mathemattcaltnductton. 

Base Clause: SUppose tJ is atomic. Then either tJ is of the form Ptt ... tn 

or t1 • t3. 

Suppose a is of the form t1 • t2:18 
1) If t1 • t2 e Wt then if t1 occurs earlier in the ordering, V(t2) is 

V(tt). Hence, V.u,(tt • t2, Wt) • 1. Por the next part of the proof, 
the reader should keep in mind that 1-tt • ta, t2 = t1 and hence that 
ta • tt is in w1 if tt • t2 is. Now if t1 does not occur earlier in the 
ordering than t2 (in which case t2 occurs earlier in the ordering 
than tt) and given that t2 • t1 8 Wi (sJnce t1 • t2 ! Wf) it follows 
that V(tt) is V(t2)· Then V,M.(tt • t2, w1) • 1. 

ii) If V.u,(tt • ta,wt) • 1 then V(tt) • V(ta). Supposina t1 and t2 are not 
distinct (and hence V(tt) • t1) then t1 • t2 will be of the form c • c 
which is of course an SQC• axiom schema and hence t1 = t2 is in wi. 
Or, if tt- ta are distinct constants and aiven that V(tt) = V(t2) then 
there are two possibilities: First, V(tt) and V(t3) are assigned either 
t1 or t2. But then by definition of V for constants, this assumes that 

either t1 = t2 is in WJ or that ta = t1ts in w1. If ta • t1ts in Wt and 
atven that I-ta • t1 , tt • t2 it follows that t1 • ta is in Wt. Second, 
V(tt) and V(ta) are assigned some constant distinct from t1 and t2, 
say t3. Then V(tt) • ts and hence t3 = ttis tn Wf. Also, V(t2) = t:s 
and hence t3 • t2 is in w1. Since l-((t3 • tt) & (t3 • t2)) , t1 = t2 it 
follows that t 1 • t2 is in Wj.19 Q.E.D. 

Suppose A is of the form Ptt ... tn: 
V )J.(Ptt ... tn, wi) • 1 iff <V(tt), ... , V(tn), Wt> e V(P) 

iff <ut, ... ,un,Wt> e V(P) (where the Ut'S 
may be distinct from the tt 's atven our 
earlier definition of V for constants.) 

1ft Put· .. Un e w1. (atven our definition of 

18 If t 1 • L2 Is of the form c • c then the result is Immediate. 

19 I owe the reasoning here In 11) to Hughes and Cresswell (1968), pp. 193-194. 
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V for predicate variables.) 
Given that V(tt) • u1, ... , V(tn) • un it follows that u1 • tlt 

... un • tn are all in wi. Hence, so is their conjunction. Also, 

as a kind of generalization of the sac- axiom schema (A(tt/v) & 

t1 = t2) ;, A(t2/v), we have 1-(ut = t1 & ... & Un = tn) ;, 
(Ptt ... tn a Pu1 ... un) and hence Pt1 ... tn s Put ... Un is in wi. 
But then Pt1 ... tn is in wi if Put ... un is. Hence, it follows that 
V(Pt1 ... tn, Wt) = 1 iff Ptt· .. tn e Wi. 20 

This completes the rather cumbersome proof of the base clause for the fun-

damental theorem. The so-called inductive hypothesis ls that we suppose 

the fundamental theorem holds for sac= wffs of degree of complexity n. 

It must then be shown that the theorem holds for wffs of degree of com

plexity n + 1. The cases where 01 is of the form -p, p & T as well as BP 

are proven as before for non-quantified doxastic K-extensions. We come 

now to consider the case where a is of the form {3v)-:21 

i) Suppose (3v)p e w1. 

p(t/v) e Wi for some constant t. (3-property) 
VM(P(t/v), w1) • 1 by the inductivtt hypothnis. 

VM:(P(t"/v), Wt) = 1 for some M' like M except that V{t") for 
M' is V(t) for M. 22 

VM((3v)p, Wt) = 1 by the truth conditions for wffs of the form 
(3v)p. 

ii) Suppose VM((3v),, Wt) = 1 
V M'(P(t/v), w1) = 1 for at least one M' like M where t is 

foreign to (3v) p. 
,(t/v) e Wf by the inductive hypothesis. --------

20 Once aptn. I owe the reasoning here t.o Hughes and Cresswell (1968), p. 194. 

21 Since the lruth-f't.llctional operators are deOnable In terms of- and 8t, since V is deOnable in 

terms or 3 and since Pa is deOnable in terms of 8, it will be sufficient t.o only consider the cases 

where« Is of the form_,. P & T· 8, and (JI)p. 
22 As Hughes and Cresswell point out, proof of lhis would proceed by Induction on the compleKity of 

wffs. See Hughes and Cresswell (1984), p, 168. 



83 

1-P(t/v} ::» (3v)p 
p(t/v) ::> (3v)P e wi 
(3v)p e w 1 
Q.I.D. 

since wi is maximal consistent. 
since Wi is maximal consistent. 

This completes the proof of the fundamental theorem of canonical models. 

And SO, We have established that for any sac= wff Cl and for any Wi E 

win sac•·s canonical model M, VJJ,(Cl,wi). 1 iff Cl e Wt. Now, consider 

any sac= wff ex such that ex is not a theorem. Then -ex is syntactically 

consistent from which it follows that there is an m.c.e. of -ex with the 3-

property, wi such that -ex is in wi and such that wi is in the set of max

imal consistent sets, W tn the canonical model J).. Then by the fundamental 

theorem, it follows that VJJ.(-cx, w1) • 1 and hence that VJJ.(a., w1) = 0. 

Thus, all sac= non-theorems are invalid in sac• 's canonical model and 

therefore all valid sac• wffs are SQC- theorems, provided that it can be 

shown that the canonical model for any sac• system is in the class of 

models which validates all of its theorems. And the proof of this consists in 

showing that R in the canonical model for the sac= system satisfies the 

appropriate restriction(s) if any which are imposed on R for any model in 

the class of sac• models. Por example, if the SQc• system is K4ac• then R 

in the canonical model must be shown to be tr4nsitive . The reader is 

referred back to chapter one to see just how such a proof is carried out. 

We shall now consider a simpler type of semantics for the set of SQC= 

axiom systems which dispenses with domains of objects or individuals. 

It will be argued in the next section that the sac= axiom systems are both 

sound and complete with respect to this semantics. 

http:model.AA
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3. Truth-Value Semantics for the SQC= Axiom Systems 

An alternative to the domain semantics for the sac= axiom systems 

is what Leblanc has called 'truth-value semantics' or simply TVS. As 

we shall see, this semantics cilspenses with domains of individuals although 

it still makes use of indices in the characterization of models. A TV sem

antics naturally lends itself to a substttuttonal reading of the quantifiers 

since as we have seen, such a reading of the quantifiers makes no explicit 

reference to ciomatns of indtvtciuals but simply to substitution instances. 

Let us say that in a TV semantics, an sac- model structure is simply 

an S model structure <W,R> where W • QJ and R' W X W (where R may 

or may not have certain restrictions imposed on it). An sac= TV model will 

be a triple, <W,R, V> where <W,R> is an S model structure and such that 

V is a so-called truth-value assi&nment23 which to all c/OMd atomic wffs 

of the language assi&ns at an index either 0 or 1: V: Atom. Wffs X W --

{0,1}, where 'Atom. Wffs' is the set of all c/OS#d atomic wffs. We impose 

the followtna restrictions on V in order to guarantee that the sac= axiom 

schemata t • t and (01 (tt/v) & t1 • t2) , or (t2iv) are validated in this 

semantics: 

Restriction 1: If 01 is of the form t • t then V(or, Wt) • 1 for all Wtin W. 

Restriction l: If V(tt • t2, wt) • 1 for any Wt in W then V(« (tt/v), w 1) • 

V( or (t2/v), Wi) for any atomic wff or . 

Just how these restrictions ensure validity of the above-mentioned axiom-

23 This phrase has been coined by lebl.-c In • I'KII1Iber of places Including leblanc ( 19761. 1976b). 
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schemata will become evident in our discussion of !IDUndnr.l!1. 

A valuation over an sex- TV model, VM is a function from cltJS«l wffs 

and indices into truth values. I.e., VM: Wffs- {0,1}, where 'Wffs' is 

set of all cJtJS«l wffs. The function VM can be defined inductively as 

follows for all Wb WJ S W: 

Basis: VM(OI , Wt) • V(OI, w1) where 01 is atomic and such that V satisfies 

restrictions 1, 2 and 3 outlined above. 

Inclucttve Step: SUppose that VM(OI, Wt), VM(,, Wt) are cletined. 

Then VM(N(I, Wf), VM(OI & ,, Wt), VM(OI v ,, Wt), VM(OI ;:, ,, Wt)," 

VM(cx !! ,, wi) an4 V),f(BCI, Wf) are defined as for the domain semantics. 

We now come to consider the cases where 01 is of the form (3v)' and 

where a is of lhe form (Vv}': 

VM((Vv),, Wt) • 1 iff VM(,(t/v), Wt) • 1 for all constants t. 

VM((3v),, Wt) • 1 iff VM(,(t/v), Wt) = 1 for at least one constant t. 

In short, a universally quantified wff is true at an index w1 just in case 

all of its substitution instances are true at w1 and an existentially quanti

fied wff is true at w1 just tn case at least one of its substitution instances 

is true at Wi· No mention is made of a set of 'individuals' in these truth

conditions. The reading of the quantifiers here is strictly substitutional. 

Finally, v.Jidity tn an sac- model is truth at all members of W and 

validity in a class of sac• models is validity in all models in the class. 

What ts distinctive about this semantics is the simplicity of the truth 

conditions for atomic and quantified wtfs in comparison to the domain sem

antics. It is because of this theoretical simplicity along with a sounder 

metaphysics that we shall eventually adopt a TV semantics for quantified 
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dozastic lostc. An arsument for this claim will be developed in section 5. 

It should be noted that the idea for this type of semantics for quantified 

modallostc dates back to Carnap's notion of 'state description' tn MHni1J8 

.nd Nllt»$6/ty. A state description is defined as a setS of wffs such that 

for any atomic wtf ex, either ex is in S or -ex is in S but not both - and 

nothing else 1s in s.24 According to Carnap, to say that a wtf ex 'holds' inS 

means that if all the wtfs inS were 'true' i.e., ifS were actual, ex would 

be true. It can be defined inductively what it 1s for any wff ex to 'hold' in 

S. Any atomic wff Cl 'holds' inS itf ex is inS, and for any wffs p, y, -P 
holds inS iff p doesn't, p v T holds inS iff either p or T hold inS, etc. and 

(Vv)cx is inS iff "all substitution instances of its scope ... hold in it" .25 

Notice that Carnap treats 'V' substitutionally and that atomic wtfs 'hold' in 

S by virtue of membership inS without appeal to 'individuals'. In these 

respects, indices in TV semantics are like state descriptions except that 

Carnap didn •t have the additional machinery of an accessibility relation. 

So given these stm1larities between indices ln a TV semantics and Car

naptan state descriptions, we could regard indices as kinds of state des-

criptions. I.e., we could rqard TV indices as sets of wffs such that for 

any atomic wff ex, either it or its negation is in the set, but not both. And 

of course truth at indices so conceived is as usual defined inductively. Then 

with respect to atomic wffs and their negations such sets are maximal and 

they are consistent. Thus. an advantage of a TV semantics is that it pro

vides us with a framework for a plausible metaphysics of indices. 

We shall now end this digression into the history of truth-value sem

antics for quantified alethic and doxastic modal logics by noting that Ruth 

24 Crnap C 1947), p. 9. 

25 Carnap (1947), p.9. 
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Barcan Marcus in 'Dispensing With Posstbilta' (1976) suggnts that in the 

semantics for quantified modal logic we can dispense with domains of 

individuals and instead associate with each world or index in a model a set 

of constants. She also notes that such a semantics lends itself to a substi

tutional readina of the quantifiers. And of course, Leblanc as well as Dunn 

and Belnap have done work in truth-value semantics for various first

order logics. 26 

Soundltns as usual can easUy be established by showinl validity ot 

the axiom-schemata as well as the validity preservtngness of the rules of 

inference in the appropriate class of sex- models. Again, consider as an 

example the soc• axiom schema ex (t/v) 3 (3v)cx. Suppose for some SQC= 

TV model M that VM(cx (t/v),wi) = 1 but that VM((3v)cx,wi) a 0. Then 

VM(CI (t/v), w1) a 0 for all constants t. But this contradicts our supposition 

that VM(cx (t/v),wt) is 1 for some constant t. Q.E.D. 

Soundness of any sac• system relative to the appropriate class of TV 

models is in part suaranteed by the restrictions we have placed on the 

indexed truth-value assignment V. To see how these restrictions help to 

guarantee soundness, consider for example the axiom-schema (ex (t1/v) & 

t1 • t2) 3 Cl (t2fv). Suppose there is a model M such that VM(tt = t2, Wt) = 

VM(CI (tt/v), w1) = 1 but VM(CI (t/v), wi) = 0. But given Restriction 3 for V 

mentioned above, if Cl (tt/v) and Cl (t2fv) are atomic then given that 4 

01 (t1/v} and t1 • t2 are true at wb Cl (t2/v) must also be true at w1. 

We must now consider what happens when Cl (tt/v) and Cl (t2/v) are 

non-atomic tn (a (tt/v) & t1 a t2) , Cl (t2/v). In order to consider this, we 

shall introduce the notion of •subformula •. 27 P1rst of all, any wff ex atomic 

26 See leblanc (1976b, 1982) as well as DU'ln ll'ld Belnap (1968). 
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or otherwise is a subformula of itself. We next appeal to the notion of 

'immediate subformula •. If or is of the form _, then ' is an immediate 

subformula of or . If or is of the form , & T, , v T, I :;) T or I • T then both 

I and Tare immedtate subformulas of or. lf or is of the form (3v)' or 

(Vv)l then all substitution instances of' will be immediate subformulas of 

or. Pinally, if or is of the form B' then' is an immediate subformula of ex. 

All subformulas of subformulas of ex are subformulas of ex. And finally, 

an •atomic subformula" of a wff ex ts a subformula of ex whtch ts atomic. 

In our TV semantics VM is defined inductively with V(or, wi) • V M( ex, 

w1) as the basis of the induction for atomic ex and such that V is an index

ed truth-value assignment to the atomic wffs of the lansuase. Therefore, 

in this type of semantics, the truth-value assisned to a non-atomic wff or 

at an index w1 will be determined by what V assisns to or •s atomic subfor

mulas at that index unless ex is of the form B,. Then, the value VM stves 

to B' at Wt will be determined by what V assisns to the content wff , •• 

atomic subformulas at all Wj such that WtRWj (assumtns that the content 

wff' itself is not of the form BT). 
Por example, suppose ex ts B(Pa v (Vx)Gx). Then for some TV model M 

VM(B(Pa v (Vx)Gx), Wt} will be determined by what V (and hence VM) 

will assign to Pa as well as Ga, Gh, Gc, ... at all Wj such that w1RwJ 

Given this brief dtsression into the notion of suhformulas (atomic or 

otherwise) we are now in a position to consider what happens when 

or (tt/v) and ex (t2fv) are non-atomic in (ex (tt/v) & t1 • t2) :;) ex (t2/v). SUp

pose there is a TV model M such that VM(or (tt/v), Wt) • VM(t1 • t2, wi) = 1 

but VM(a. (t2fv), wi) • 0. We shall now present an informal arsument that 

27 See Leblenc C1976b), section 1.1. Leblanc at.tributes the notion of subformula to Gentzen. 
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shows any such asstanment for any Wtin some arbitrary TV model M to 

be inadmissible: If VM(tt • t3. w1) • 1 (and hence V(t1 • t3, Wt) • 1 ) and 

given that the atomic subformulas of Cll (t1/v) are the same as those of 

a (t2fv) except for the occurrence of t1 and t2 then V will assign the same 

values at wi to Cll (t1/v)'s atomic subformulas containing t1 that it does to 

ex (t2/v)'s atomic subformulas containing t2 given Restriction 3 for V. 

If any of Cll (tt/v) and ex (t2fv)'s atomic subformulas occur in the scope 

of a doxastic operator, then the value of a (tt/v) and ex (t2fv) will depend in 

part on what V assigns to these atomic subformulas at all WJ such that 

WtRWJ· And once again, V wtll assisn the same values at each of these 

wj's to a (tt/v)•s atomic subformulas contatntns t1 that it does to a (t2fv)'s 

atomic subtormulas containlns t2 pven Restriction 2 for V. (Recall that 

Restriction 2 for our TV semantics stipulates that lt V(tt • t2, wt) • 1 then 

for any other Wj in W, V(tl • t2,wj) • 1.) Therefore, VM(ex (tt/v),wt) • 

VM(CII (t'lfv), w1) and since by supposition, V M( ex (t1/v), Wt) • 1 then 

VM(CII (t'lfv), Wt) • 1. Q.E.D. 

As an alternative to this Informal proof uslns the notion of subformula, 

we could have used an inductive-style proof in the same manner as for 

the domain semantics for the sac- systems. The basis would simply be 

that Whenever VM(ex (tt/v), Wi) = VM(tt • t2, Wt) • 1, VM(ex (t'lfv), Wt) = 1 

for ex (lt/v), ex (t2fv) atomic by Restriction 3. 

Also with respect to soundness, consider the Barcan Formula which 

as noted earlier is an axiom schema of any sac= system. We shall show 

that all instances of this schema are valid in a TV semantics. Suppose that 

for some TV model, VM((Vv)BCII, Wt) = 1 but VM((B(Vv)CII, Wi) • 0. Then 

VM((Vv)a, Wj) • 0 for at least one Wj such that WtRWj· Hence, tor this 
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Wj, VM{ex {t/v), Wj) = 0 for at least one constant t. However, on the sup

position that VM{(Vv)BCX, Wt) = 1 then VM(BCX {t/v), Wt) • 1 for all cons

tants t. Then for any Wj such that w1Rwj, VM(ex (t/v),wj) = 1 for all 

constants t. Q.E.D. 

CompJ•t•nns of any of the sac- systems with respect to the appro

priate class of TV models 1s established as usual by the method of canon

teal models. A canonical model JJ, for any sac= system will be a triple 

<W, R, V> such that W 1s a maximal consistent set of wtfs with the 3' and 

3-properties. R for a TV canonical model is defined as usual: wtRWj iff 

(ex )(BCX e w1 ...... ex e w1). 

In addition, each member of W will also have the followins properties: 

Since t • t 1s an axiom schema and since each Wt in W is maximal consis

tent, it follows that each m.c. set in W will contain every wtf of the form 

t = t. Further, since 1-tl • t2 , B(tt = t2) it follows that for any m.c. set 

Wf in W, if t1 • t2 ls in Wf then so 1s B(tt = t2). And since R is defined as 

usual such that WtRWJ iff (ex ){BCX e Wt ___.ex e Wj) it will follow that it 

t1 = t2 1s in wi in which case so ls B(tt = t2) then for any Wj such that 

WtRWJ, t1 • t2 is tn every such Wj· Finally, given that 1-tt = t2, (« (tt/v) 

, « (t2fv)) and 1-tt • t2 , {« (ta/v) , ex (tt/v)) it follows that l-t1 • t2 , 

(ex (tt/v) • « (ta/v)). Thus, it t1 = t2 is in w1 then so is « (tt/v) lili « (t2/v) 

and hence if « (tt/v) is in Wt then so is ex (t2/v) and it« (tt/v) is not in Wf 

then neither is ex (t2/v). 

The function V in the sac- canonical model JA. will be defined for atom

ic wffs as follows: For any wff « of the form Pt1 ... tn or t1 • t2, V(«, wi) 

• 1 iff « e wi. Because V is defined in this way for the canonical model, 
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it is redundant to mention the restrictions 1 and 3 on V mentioned. a few 

pages back pven our characterization of members of W for the canonical 

model. Por example, since any w1 in W in the canonical model is such that 

any wff of the form t • t is in Wi and pven that t = t e wi itf V(t = t, w1) 

• 1 then it follows that V(t = t, wi) • 1 for all wffs of the form t = t. 

However, the fact that each member of W contains every wff of the 

form t1 • t2 ::~~ B(tt • t2) merely assures us that if tt • t2 is a member of 

wi then t1 • t2 is also a member of any Wj such tlut wjllwj. But this 

property of members of W does not cuarant.ee that if t1 • ta is contained. 

in Wi then t1 = ta is in rwry Wj in I+' rqardless of whether or not 

WtRWj· But we need such a guarantee if we are to mirror restriction 2 on 

V, viz., that it V(tt • t2,w1) • 1 then for all Wj in W, V(tt = t2,wj) = 1. 

Thus, it will be necessary to impose the following restriciton on V for the 

canonical model, viz., if V(tt = t2, Wi) • 1 then V(tt • t2, Wj) • 1 for all Wj 

tn W. 

The fundamental theorem of canonical models, viz., for any SQC= wff a 

and for any w1 in W, VM,(a.,wi) = 1 iff a e wi is proven as usual by 

mathematical induction: 

Base Clause: a is of the form Ptt ... tn or t1 • t2. 
V M,(a, w1) = V(a, w1) and so the theorem holds by definition. 

Inductive Hypothesis: Suppose the fundamental theorem holds for wffs of 
dqree of complexity n. Show that it holds for wffs of dqree n+1. 

Once again, the cases where a is of the form .... ,, ' & y and B' are handled 

in much the same way as they were for the sentential normal systems. 

http:cuarant.ee
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See section 4 of chapter one for details. We shall now consider the case 

where 01 is of the form (3v ),. 

1) SUppose: (3v)' I Wt 

11) SUppose: 

'(t/v) e Wi for some constant t by the 3-property. 
VJ,A,{,(t/v),wt) • 1 for some t by the iDductiw hypothesis. 

VJ,A,((3v),, Wt) • 1 

VJ,A,{(3v),,wi) • 1 
VJ,A,(,(t/v),wt) = 1 

'(t/v) e w1 
1-,(t/v) ;:, (3v)' 
'(t/v) ;:, (3v)' I Wi 

(3v)' I Wt 
Q.E.D. 

for some t. 
by the inductiw bypotbll!lis . 

since Wi is ma.xtma.l consistent. 
since wi is ma.xlma.l consistent. 

This completes the proof of the fundamental theorem of canonical models 

for the sac• systems. As remarked earlier, all that needs to be shown is 

that the canonical model is in the class of models with respect to which the 

particular ~ axiom system is sound. The reader is once again referred 

to section 4, chapter one for details of how such a proof is carried out. 

Now that we have outlined a set of axiom systems for first-order 

beltef logic with identity as well as two types of semantics which char

acterize these systems, we shall in the next chapter consider some of the 

pbilosopbiCJtl difficulties associated with quantified belief logic. However, 

for the remainder of this chapter, we shall examine the metaphysical 

underptnnincs of the two types of semantics which we have considered. 

It will be argued that the metaphysics of the TV semantics just developed 

is simpler and hence less problematic than the metaphysics of the domain 
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semantics discussed in section 2. 

4. An Excursus into the Metaphysics of the Semantics for the 

soc= Axiom Systems 

Technlcally, both the invariant domain semantics and the truth-value 

semantics which we have just outlined in the previous two sections char

•ctl'ri•the sex- systems. On purely technical srounds, either type of 

semantics will clo. However, it will be arsued in this section that the 

metaphysics of the truth-value semantics is less problematic than the 

metaphysics of the domain semantics. And from this it follows that there 

is some presumption in favour of adoptins the former type of semantics 

rather than the latter for the sac• systems. 

The dorn•Jn semantics which we have discussed for the sac= sytems 

presents the followins metaphysical picture: The set Din a model will 

consist ot a set ot so-called 1nd1Viduals to which various properties are 

ascribed at each index. The set of properties and relations ascribed to an 

individual at an index is determined by the assignment function V: A pro

perty or relation in this type of semantics is simply a set of n + 1-tuples, 

each n + 1-tuple betns an n-tuple of members of D and an index. Thus, in 

the case of a property P, a member x of D h•s P •t •n index wi just in 

case the 2-tuple <:x, Wt> is in P's extension, V(P). Then members of D can 

he 1nd1viduated from one another •t •n index by constdertns the properties 

which each individual 'possesses' at that index. One such indtviduatins 

principle known as Leibniz's principle of tbl' indJ'scl'rnibiJJty of idl'ntlc.als 
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says that if x and y are identical then they will haw all their properties in 

common. Otherwise, x and y are distinct. This principle is expressible in 

second-order Ioatc as follows: 

(Vx)(Vy)( x • y;:, (VP)(Px • Py)) 

However, as Loux notes28 things go awry when we consider the identity of 

members ot D across indices. If we appeal to Leibniz's priniciple to deter

mine 'transworld' (or in our parlance, 'transindex') tdentitiy of individuals 

then we are faced with the problem that an individual may vary in its 

properties from index to index. Yet, we cannot say that this isn •t the 

'same• transindexicalindividual given the way the semantics is set up such 

that members of Dare invariant across indices. Therefore, Leibntz's prin

ciple is inadequate as a criterion of tnJD.sindlxiCtJJ individuatton of indi

viduals for the type of semantics under consideration. 

But then, what is it that accounts for transworld identity if not the 

properties and relations ascribed to things? It would seem that we are 

forced into the position that members of Dare 'bare (transindexical) par

ticulars' whose individuation across indices is property-independent. Some 

philosophers such as Kripke29 and Kaplan haw objected to the so-called 

bare particular metaphysics implicit in standard modal semantics. Kaplan 

rejects the metaphysical assumption implicit in the notion of a model that 

individuals "haw an existence which is quite independent ot whatever 

properties the model happens to tack onto them". 50 

However, there are alternatives to the bare particular approach of 

handling transindexical identity of individuals. One such alternative which 

28 Set lOUK (1979), p, 37. 

29 Kripke (1980), p. 52. 
3D Kap1an (1979), p. 97. 
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Loux discusses is to treat properties and relations as index-hound. Hence, 

there would be no discrepancy or incompatibility between a thing's having 

P •t w1 and its not having P •t Wj where Wi • Wj- 31 Then individuals 

are indlviduated across indices according to the set of inde-xed properties 

and relations they possess. This amended version of Leibniz's principle 

would be that x and y are transindex identical (in a model) just in case 

they possess all the same Jnd'X«< properties and relations. This is expres

sible in second-order logic as follows, where x and y are transindex 

individuals: 

(Vx)(Vy)( x • Y:;, (VPt)(PtX • Pty)) 

But this way of accounting for transindex identity of individuals in a model 

is simply a restatement of a feature of the invariant domain semantics, 

Viz., that a transindex indiVidual in D can have different properties from 

index to index. Then we are still left the problem of determining how an 

individual can have different attributes from index to index and yet remain 

the 'same' transindex individual. 

So it would seem that we cannot make good metaphysical sense of a 

semantics where individuals remain invariant across indices and yet can 

vary in their properties from index to index. It also appears that we are 

forced to accept some sort of bare particular metaphysics in order to 

account for transtndexical identity of tndtvtduals. However, there is at least 

one further move we could make here. We could say that an individual x 

at w1 is identical to an individual y at Wj only if x and y share the same 

~ntJ•J properties. But what is it for a property to be 'essential'? 

Both Kripke and Planting& endorse the following definition of a proper

ty P's being essential for an object x, although ultimately neither author 

31 Loux (1979). p. 42. 
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appeals to the notion of •essential property' as a solution to the supposed 

problem of transindex identity: 32 

A property Pis essent:lal for an object (individual) x just in case 
x hasP at all indices at which x exists. 

Plantinp reprds the rider •at which x exists• as important for the fol-

lowing reason: If it is assumed that objects exist at all worlds or indices 

then supposing existence to be a predicate, it follows that any object exists 

essentially and hence necessarily. 

Of course the rider 'at which x exists' is superfluous for the type of 

semantics under consideration since D is shared by all members of W. I.e., 

in· the semantics for the sac- systems, existence of an individual at an 

index can be understood tn terms of membership in D as follows: 

x exists at w1 •df. x e D. 

It then follows from this definition of 'existence at wi' that any individual 

existing at one index will exist at all indices in which case all existents are 

n~ry existents (independently of the assumption that existence is a 

predicate). This is clearly an unpalatable consequence of the metaphysics of 

an invariant domain semantics for bellef logic. But such a consequence can 

be avoided in a semantics which allows domains to vary across indices. 

In a varytns domain semantics, an individual x may be a member of 

the domain of individuals Dt associated with the index w1 and yet x may 

fail to be a member of DJ associated with the index WJ Then existence for 

a varying domain semantics can be defined as follows: 

x exists at wi •df. xI Dt 

Prom this definition of 'existence at Wt' it does not follow that if x exists at 

Wt then x exists n«ns.arJJy (i.e., at all indices) since there could be an 

32 See Krtpke (1980), p; 48 and Planttnga 0974). p. 60. 
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index Wj distinct from Wf such that xis not in DJ In fact, there are coun

terpart semantics such that no indiVidual exists at more than one index. 

We shall consider varying domain semantics for belief logic 1n the fourth 

chapter. 

In any case, the notion of essential property will not on its own do the 

work. we want it to, viz., to serve as a criterion of ind1Viduat1on of trans

indexical individuals. This is becuase there will be what Plantinga calls 

'triVial' essential properties such as beirll self-identiC~~/ or being red or 

something e/51 which all objects Will possess at all indices. 33 Any object at 

any index Will be red or something else, and hence such a property is es

sential to every object. Therefore, such shared essential properties will not 

serve to individuate transindexicalindiViduals. Something more is required. 

As Plantinga argues, the something more which is required for an es

sential property P of an object x to be an individuating property is P's 

being unique toxin the folowtng sense: There is no index wi such that 

some object y distinct from x (at w1) has P at wi. 34 Such an individuating 

essential property is sometimes in the literature called an •essence' or an 

'indiVidual essence•. More formally, 

A property P is an essence for an object x just in case 1) Pis essential 
for x and 2) for no index Wi is it the case that some object y distinct 
from x (at w1) has P at w1. 

A metaphysics of individuals and properties which appeals to the notion of 

essences may be called an essentialist metaphysics. (As we shall see 

below, although Plantinga seems to subscribe to an essentialist metaphysics, 

he does not appeal to the doctrine of essences as a solution to the 'problem' 

33 Plantlnga (1974), pp. 60-62. 

34 Plantlnga (1974), p. 70. 
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of transindexical individuation of individuals.) Plantinsa sussests that an 

example of an essence for any object x would be z'$ beiDI z since for no 

index Wi will it be the case that some object y distinct from x at wi will 

possess this property at wi. 35 More concretely, an essence of Socrates 

would be Socraeity or his being Socratn . There will be no wi where 

some individual distinct from Socrates at Wi will possess the property of 

Socraelty at Wt. 

And so, as an alternative to a bare particular metaphysics we could 

adopt an essentialist metaphysics for the purpose of accountins for the in

dividuation of individuals across indices. However, philosophers such as 

Kripke and Plantinsa think it is wronsheaded to appeal to essences as pro

viciins criteria of individuation given their conceptions of what possible 

worlds are. We shall first of all consider Plantinsa's views on the 'prob

lem' of transindexical identity of individuals. 

In The Nature of N6CI$$/ty Plantinga claims that it is mistaken to view 

possible worlds (or in our parlance, indices) as if they were like the 'ac

tual' world although occupying a different position in logical space. Extend

ins the spatial metaphor further, it is tempting to think that it is possible 

to locate each world in logical space and then to inspect its inhabitants. The 

idea that we can inspect the inhabitants of each possible world is consistent 

with the view that each inhabitant possesses 'empirically manifest' essen

ces by means of which we can distinsuish it from other inhabitants. Both 

Plantinga and Kripke reject the view that empirically manifest essences can 

serve to individuate transindexical objects given their alternative accounts 

of what possible worlds are. 

35 Planttnga (1974), pp. 71-72. 
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Plantinp proposes the following theory of possible worlds: A possible 

world is a possible state of affairs S which is maxima1.36 We shall now 

describe what Planting& means by 'state of affairs• and a state of affair's 

being 'possible' as well as 'maximal'. Althoush Plantinga does not provide 

the reader with a hard and fast definition of 'state of affairs•, we could 

say that a dncripliOD of a state of affairs S will have one of the followtna 

forms: either z's being P or x's being RyJ ... y 11 where P and Rare var

iables ranging over properties and relations respectively. Thus, the fol

lowing would constitute descriptions of states of affairs: Nixon 's beil'll th~ 

form'r Pri'Sidrnt Df thr U. S. and ,Agnrw's being thr .Prwidrnl of Yale Un

iwrsily. The former state of affairs is actual because it obtains whereas 

the latter state of affairs is possible because it currenUy does not obtain. 

Thus, a state of affairs S is actual iff it obtains and it is possible otherwise. 

Also, Plantinga leaves open the question as to whether propositions and 

states of affairs can be identified althouah he does claim that they bear the 

followina intimate relation to one another: S obtains iff lhtat S is true. 

Thus, Nixon's being • formrr Prmdenl obtains iff lh.tt Nixon is a former 

.Prwident is true. 37 

Further, a state of affairs S (actual or possible) is maximal just in case 

for any other state of affairs S', S includes S' or S precludes S'. 38 And, s 

includes s· just in case it is impossible that s obtains but s· fails to obtain. 

S precludes S' just in case it is impossible that SandS' both obtain. And 

so, for Plantinaa, a possible world is a possible state of affairs S such that 

for any other state of affairs S', S either includes or precludes s•. The so-

36 Plantlnga. pp. 44-45. 

37 Plant.inga (1974), pp. 45-46. 

38 Ibid. p. 45. 

http:maxima1.36
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called actual world is then a maximal actual state of affairs, i.e., a max

imal state of affairs which obtains. Now that we have set up Plantinga's 

metaphysics of possible worlds, we are in a position to examine his way of 

handling the problem of tra.nsindexlcal identity. 

Accordins to Pla.ntinsa, if we rqard possible worlds not as eo-obtaining 

simultaneously with the 'actual' world in logical space but rather as max

imal states of affairs which do not obtain, then we shall not be tempted to 

adopt the picture that inhabitants of possible worlds are on an equal on

tological footing with actual individuals such that they can be inspected and 

distinguished from one another in terms of unique essential properties. 

Rather, an individual x exists in a maximal possible state of affairs S just 

in case it is impossible that if S were to obtain, this very individual x 

would fail to exist. 

Then, there is no problem of transworld identity because the existence 

of an individual x at a possible world is simply a matter of whether or not 

that very individual x would exist if that particular world were actual. 

Thus, to borrow Kripke's example, a possible world 'at which' Nixon exists 

and such that he is a sardener would be a maximal possible state of affairs 

such that this very individual Nixon would not fail to exist if this maximal 

state of affairs were to obtain. It is, accordins to Plantinsa, mistaken to 

think that somehow we can 'inspect' Nixon's essence at the possible world 

in question to see whether or not this gardener really is Nixon. It is mis

taken to think that we can somehow inspect Socrates' essence at a possible 

world 'where' he is a carpenter to determine whether or not he really is 

Socrates. Rather, our carpenter is this very person Socrates who would 



c 101 

exist lf the state of attatrs tnclud.lng hls being a carpenter were to obtain: 

... consider the state of affairs consisting in Socrates• being a car
penter, and call this state of affairs •s•. Does Socrates exist in S? 
Obviously: had thls state of affairs been actual, he would have existed. 
But is there a problem of identitifying him, pickins him out, inS-that 
is, must we look into S to see which thins is Socrates? Must there be 

or must we know of some empirically manifest property he has in this 
and every other state of affairs in which he exists? Surely not. 39 

Thus, Pla.nt1np. resards the so-called problem of transworld identity as a 

pseudo-problem arising from a mistaken view of what possible worlds and 

their inhabitants are. 

As elegant as Plantinsa•s attempted resolution to the problem of trans

world identity seems to be, it does not address this problem for the sem

antics charactertains the SQC- systems. Por one thins, indices in the sem

antics for the sac• systems come as it were ready-made such that no one 

index is desisnated. I.e., ind.lces are on an equal ontolostcal footins in the 

sense that no one index is desisnated as •actual'. Purther, the existence of 

an individual at an index in the formal semantics for any sac- system is 

unproblematic and it need not be spelled out in terms of what would 

happen if that particular index were 'actual' or were to obtain (whatever 

that means). Rather, an individual x exists at a member of Win an sac= 

model just in case x e D. Granted, there is the unpalatable consequence of 

the way this semantics is set up that individuals exist necessarily in the 

sense that they exist at every index. 

However, we are still left with the residual problem that x in D could 

vary in its attributes from index to index and hence we still must make 

30 PlanUnga (1974). p. 96. 



c 

c 

102 

sense of how x can be the 'same' individual at all these indices. And this is 

where either a bare particular metaphysics or an essentialist metaphysics 

come into play. I.e., we resort to one of two ploys, viz., we claim that 

xis a bare particular to which we can tack on any property at any index 

or we claim that x has an individual essence (or essences) that we use to 

pick it out from index to index. The upshot of these remarks is that 

Plantinga 's ultimate resolution to the problem of transindexical identity is 

beside the point in terms of the formal semantics characterizing the sac= 
systems. In N•mfnl 4Dd N«essity, Saul Kripke offers a solution to the 

problem of identifying individuals across indices or 'worlds' which is 

similar to Plantinga •s in the sense that Kripk.e also maintains that the 

problem of transindex identity is a pseudo-problem based on a misconcep

tion of what possible worlds are. 40 According to Kripke, possible worlds 

are not to be thought of as points in logical space which (to carry the 

spatial analogy further) we locate and subsequently attempt to identify 

transworld individuals inhabiting these worlds by means of certain 

uniquely identifying essential properties. He maintains that this 'confused • 

way of thinking about possible worlds and their inhabitants has its origins 

in the model theory (which he helped to develop) tor quantified modal 

logic. 41 

Kripk.e's alternative metaphysical account of po~sible worlds (indices) is 

that they are partial counterfactual situations which are stipulated at the 

so-called actual world- or more neutrally, at some designated world. 42 

At the actual or designated world we are given a set of identifiable objects. 

41 Krtpke (1980), p. 48. 

41 Kripke (1980), p. 48. 

42 Kripke (1980), p. 44. 
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In stipulaUns counterfactual situations, we ask. what some of these objects 

we are siven in the actual world would be lik.e if they had different prop

erties.4:3 

Thus, there is no need to appeal to unique essential properties or 

•essences• in order to identify and indivtduate objects in these counterfac

tual situations because we are stipulatins situations where these w-ry 

objects in the actual world have different sorts of attributes from the ones 

they have at the actual world: 

Some properties of an object may be essential to it, that it could not 
have failed to have them. But these properties are not used to iden
tify the object in another possible world, for such an identification is 
not needed . 
. . . on the contrary, we bqin with the objects which we Juw, and 
can identify, in the actual world. We can then ask. whether certain 
thinss mtsht have been true of the objects. 44 

Por example, one mtsht ask. what would have happend to Nixon if he had 

been a sardener. There is no question of whether Ntxon in this counterfac

tual situation (where he is a sardener) is the same as Nixon in the actual 

world because we are stJpul•tinl that this is a situation where this very 

man (Nixon) is a gardener. And so, there is no problem of transworld 

identification of objects. This is only a problem if we base our metaphysics 

of possible worlds on the model theory for quantified modallosic. (But of 

course, this is exactly the sort of semantics we are working with- and 

so we are stuck. with its metaphysics, so to speak.. We shall say more 

about this below.) 

43 Krlt*e (1980). p. 53. 
44 Ibid., p, 53. 
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This is not to say that essential properties of individuals play no role 

in Kripke's metaphysics. They simply don't serve as individuating criteria 

for transindexical individuals. Presumably, the role which essential prop-

erttes play in Krtpke's metaphysics is that of restricting the kinds of ques

tions we can intellisibly ask about objects at counterfactual situations. For 

example, it makes no sense to ask what Ntxon would have done if he were 

an automaton. In such a case, we would no longer be talking about 

Nixon. 46 Por Kripke, what counts as a (unique) essential property for at 

least material objects is their origin. 46 Then in all possible worlds at which 

Nixon exists, he will have had the same biological parents. However, it 

would make sense to ask what would have happened if the individual 

Nixon who had such and such parents had been a gardener, a poet, etc. 

rather than a crooked politician. 

Kripk.e's way of handling the problem of transindex identity, viz., by 

claiming that partial counterfactual situations are stipulated at the actual 

world such that 'actual' individuals are said to have alternative sets of 

properties at these various situations, does not apply to the domain seman

tics for the SQC= systems. A.s was noted in arguing the irrelevance of 

Plantinga's solution to the problem of transindex identity for the semantics 

of the sac= systems, a model comes ready-made with a set W of indices 

such that no member of W is 'actual' or designated- no member of W is 

stipulated relative to any other. The members of Ware on an equal on

tological footing. Further, each member of D exists at every member of W 

45 Krtpke (1960), p. 112. 
46 lbid (1960), pp. 114-115. Another type of essential property which Kripke appeals to in the case 

of material objects is that such objects are made from the same sort of substance. Thus, it would 

make no sense to ask whether or not this very wooden table could have been made of ice. 

http:origin.46
http:Nixon.46
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by virtue of its membership in D. This sort of metaphysics is implicit in 

the semantics we are working with. 

Th~n even if Jtripk.e is corr~t in his claim that there is no problem 

of transindexical individuation of individuals in the metaphysics of the 

semantics of ordinary language, it doe not follow that this is still not a 

problem in the metaphysics of the formal domain semantics which char

acterizes the various sac- systems of doxastic logic. Once again, for the 

domain semantics of the sac• systems, the quntion naturally arises as to 

how a member of D can be identified from one ind~x to the next even 

thouah it could vary in many (if not all) of its properties. Then it would 

s~m that one answer to this quetion is that members of D are bare par

ticulars which are numerically distinct from one another independently of 

th~ properties they posses at a given index. Or, another avenue open to us 

with respect to id~ntifying transindexical individuals is to adopt an essen

tialist metaphysics where individuals are identified across indices in terms 

of unique essential properties they possess. 

And so, it would seem that the solutions of both Jtripk.e and Plantinga to 

the problem of transindexicalidentity are entirely beside the point with 

respect to the metaphysics of the domain semantics for the sac= axiom 

systems. 

If we find a domain semantics for the sac= systems to be metaphysic

ally problematic on the grounds that we are forced to adopt either a bare 

particular metaphysics or an essentialist metaphysics in order to account 

for transindexical identity then we may wish to consider the alternative 

domainless truth-value semantics which also characterizes these systems. 

The reader will recall that in a TV model, the indexed assignment function 
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V simply assigns truth values to all the atomic wffs of the language at 

every member of W thus obviating the need for a domain D of 'individuals'. 

But since TV models do not contain a set D of individuals, there is no prob

lem of transindex identification of individuals. Thus, we are not forced 

into accepting an inelegant metaphysics of bare particulars or an equally 

inelegant essentialist metaphysics, not to mention an ontology which posits 

only necessary existents. 

Furthermore, a truth-value semantics lends itself to a plausible meta

physics of indices. Since the introduction of the notion of 'index' in the 

characterization of a model for normal doxastic logic in chapter one, we 

have been mute concerning the metaphysic.J status of indices. As was 

noted in section 3 of this chapter, an index in a truth-value semantics for 

any of the SQC= systems can be regarded as a kind of Carnapian state des

cription. I.e an index in a TV model can btl thought of as a set of atomic 

wits or their negations such that for any atomic wff a, either a or -a 

is in thft set, but not botb. Thus, any TV index is consistent (in the sense 

of negation consistent) and maximal with respect to atomic wffs and their 

negations. So in attempting to make some sort of intuitive (and not just 

model-theoretic) sense out of TV indices, we have exploited the close ana

logies between these and Carnapian state descriptions, viz., that atomic 

wffs are true at Carnapian state descriptions by virtue of membership and 

not by appeal to individuals. And further, quantified wffs are understood 

substitutionally for Carnapian descriptions. Finally, just as truth at a 

state description is defined inductively so is truth at an index defined 

inductively. 
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This metaphysics of indices can also be applied to the semantics for the 

sentential doxastic systems discussed in the previous chapter: Given that in 

the semantics for the sentential normal doxastic systems, the function V is 

also an indexed assignment to the atomic wffs of the language, indices in 

models for the sentential systems can also be regarded as sets of atomic 

wffs or their negations such that for any atomic wff oc either it or -oc is 

in the set. And these sets are maximal consistent with respect to atomic 

wtfs and their negations. 

The metaphysical picture of indices as kinds of state descriptions or as 

maximal consistent sets of atomic wffs or their negations seems to be rel

atively unproblematic ontologically speaking, at least if one is not concerned 

with the status of sentences or sets. However, there is one problem on the 

ontological front with our Carnapian metaphysics of indices, viz., that in a 

given model one would expect that at least one index must be 'actual' in 

the sense that it is not simply a set of wffs. I.e., what sense does it make 

to say that the 'actual' world is a set of sentences? When an agent holds a 

set of beliefs at the actual world which is not itself merely a set of sen

tences, he considers a set of alternative descriptions to the world he in

habits and these (since they are not 'actual') will merely be sets of atomic 

sentences or their negations on the basis of which his contents are true or 

false at that set. However, the way our semantics is set up, no index in a 

model is designated as actual and so in Lewis' parlance, actuality is treated 

as a k.ind of indexical lik.e 'here' or 'now'. Then there is no reason to ex

empt any one index in a model from being a state description. 

There are two ways out of this bind, viz., we could revoke our iden-
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tification of indices With state descriptions and instead treat them as sem

antic primitives in our model theory. I.e., indices are simply undefined 

elements in a set with respect to which truth in a model is relativized. 

But then we are no further ahead than we were in the first chapter in 

terms of having a metaphsytcs of indices. Or, we can still put the notion of 

state description to work by regarding any index in a model as a semantic 

primitive but at the same time stipulating that With each such primitive 

is associated a state description in the following sense: The given state des

cription will consist of every atomic wff or its negation assigned '1' by VM 

at the index. 

Concluding Remarks 

And so, having examined the metaphsycial underpinnings of the two 

types of characteristic semantics for the sac= systems, it is apparent that 

a TV semantics supporting a substitutional reading of the quantifiers is 

preferable to the domain semantics. This is because the former type of 

semantics avoids the metaphysical (as well as the ontological) difficulties 

of the latter by dispensing with domains of so-called individuals. 

In the next chapter, we shall consider some of the philosophical diffic

ulties associated with quantified belief logic rooted in ordinary language. 

And in the fourth chapter, we shall consider how the sac= systems can 

be altered on the axiomatic and semantic fronts to accomod.ate these diffi

culties, where ultimately a truth-value semantics will be endorsed. 
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Chapter Three 

Problems Associated with Quantified Belle! Logic 

1. IdentifYing the Source of Trouble: Substituttvtty or 
Dtsquotation? 

As was noted in the previous chapter, any quantified soc= system of 

belief logic has as part of its axiomatic base the schema IC. and the rule of 

inference RB from which it follows that any such system inherits the pro

blem of deduction. In addition, certain sac- thesis-schemata and corres

pondina rules of inference concerned with the connection between the 

identity symbol and the belief operator on the one hand and the connection 

between the exist,-nti•J qu•ntifJ,-r and the belief operator on the other have 

been some cause for consternation in the literature when we consider them 

qua principles of belief attribution. In this section, we shall consider var

ious schemata and rules of inference of the former sort and in the next 

section we shall consider various schemata and rules of inference of the 

latter sort. 

Ptrst, we shall consider the schema (Ba (tt/v) & t1 = t2) :;) Ba (t2/v) 

which is simply the doxasttc version of the soc= axiom schema (G (t1/v) & 

t1 • t2) :;) tJ (t2fv). Ustna this schema as well as modus ponens, we can 

derive the following rule of inference: Ba (tt/v), t1 • t2 - BG (t2fv). 

More general versions of this schema and its corresponding inference rule 

would simply be (G (tt/v) & t1 = t2) :;) G (t2fv) and G (tt/v), t1 = t2 -

G (t2fv) where it is stipulated that G (tt/v) and G (tlfv) may contain the 
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occurrence of a belief operator 'B' within whose scope t1 in and t2 occur. 

For simplicity of exposition, we shall focus on the less general versions of 

this thesis-schema and inference rule. These rules of inference and the 

related schemata assert the principle that eo-referential terms are inter

substitutihle in belief contexts, which we shall hereafter call the 

'suhstituttvtty principle'. 

When we come to consider ordinary language examples of the derived 

inference rule, the principle of belief attribution it asserts seems to break 

down. For example, from Jones • believing that Cicero was an orator and 

given the truth of the identity sentence 'Tully 1s Cicero', it is, according to 

the substituttvtty principle permissible to infer that Jones believes that 

Tully was an orator. But it could be objected that Jones may assent to the 

claim that Cicero was an orator while wttholding assent from the claim 

that Tully was an orator regardless of the truth of the identity sentence 

'Tully is Cicero• ,1 Then assuming the streD~th~ntid diquotation principle 

discussed in the first chapter, viz., that x's sincere assent top is necessary 

and sufficient for x's believing that p, it would follow that Jones believes 

that Cicero was an orator while not believing that Tully was an orator. 

Thus, we have constructed an apparent counterexample to the substitu-

tivity principle assuming the soundness of the strengthened disquotation 

principle. 

A rule of inference derivable in any sac= system containing the schema 

D which is related to the above mentioned rule is BcX (tt/v), t1 = t2 -

-B-ar (t2/v). This rule is derivable using the schema (BCX (tt/v) & t1 = t2) 

1 One of the nrst to Impugn the substltulivily principle was Frege in 'Sense and Reference'. And over 

the yers the apparent failure or this principle has been discussed by a number of philosophers includ

tno Qline (1960), Hlntikka 0962, 1969), Sellars 0969) and as we shall soon see. Krlpke (1979). 
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, ... B""'i' (t,jv) and modus ponens. In turn, any instance of this schema is 

derivable in any sac- system containing D as follows: 

1. 1-(JIG (tt/v) & t1 • ta) , lkX (t2/v) 
2. JIG (t2fv) , PJJGC (t2fv) 
3. (JIG (tt/v) & t1 • ta) , PJJGC (t2fv) 
4. (JIG (t1/v) & t1 • ta) , -B-cx (t,jv) 

instance of D. 
pe2 

df. Pa in terms of B 

Intuitively this derived thesis-schema and the related rule of inference 

assert the principle that it is impossible that x believes that oc (tt/v) and 

that the identity t1 • ta .is true and yet x believes that oc (t,jv) is false. 

A more concrete example of what this rule of inference permits is the fol

lowing: SUppose that Jones bel1eves that Cicero was an orator. Given that 

Tully is Cicero, it is false that Jones believes that Tully was not an orator. 

However, using the disquotation principle, we can construct an infor

mal counterexample to this variant of the substitutivtty principle asserted 

by the sac• + D derived rule JIG (tt/v), t1 • ta - -B""'i' (t2/v). as fol

lows: SUppose Jones sincerely assents to the claim that Cicero was an 

orator, but not realizing that Cicero and Tully are one and the same person 

he also sincerely assents to the claim that Tully was not an orator. Hence, 

by the dtsquotation principle, it follows that Jones believes that Ctcero was 

an orator although he also believes that Tully was not an orator. 

In fact, our example is apparenUy a case where Jones holds contra-

dictory beliefs, supposing that our original version of the substituttvtty 

principle, Bor (tt/v), t1 = ta - lkX (ta/v) applies. I.e., given the dts

quotatton principle, since Jones has assented to the claim that Tully was 

not an orator we can conclude that Jones btli'ws that Tully was not an 

2 The PC schema used here Is ((or , P> ~ cp , yn , Cor , y> which Is the tmpltcaUonel version of 
the hypolhellcal syllogism. along wtth modus ponens. 
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orator. Further, given our original version of the substitutivity principle, 

we can also attribute to Jones the belief that Cicero was not an orator. 

Then since we have also concluded that Jones believes that Cicero was an 

orator, it follows that Jones believes that Cicero was an orator and he bel

ieves that Cicero was not an orator. However, since the substitutivity 

principle B4X (tt/v), t1 = t2 - B4X (t2fv) has been called into question in 

our first counterexample a few pages back, it is hasty tn this case to infer 

that Jones has contradictory beliefs. Thus, minimally, we shall construe 

this second case merely as a situation where the substituvity principJe 

801 (tt/v), t1 • t2 -B-Ot (t'J./v) for D systems has been violated but 

not necessarily as a case where an agent has contradictory beliefs. 

For this second case just considered, Kripke would maintain that it can 

be construed as a sort of rl!ductio argument against the substitutivity 

principle as expressed by the sac= rule B4X (tt/v), t1 = t2 - BCI (t2/v)3. 

Kr1pke argues that 1t would be unfair to attribute contradictory beliefs in 

this case to Jones since "even if he is a brilliant logician, he need not be 

able to deduce that at least one of his beliefs must be in error."" Hence, 

by assuming the substitutivity priniciple and the disquotation principle, we 

have constructed a case where we are forced to conclude that an agent 

holds apparently contradictory beliefs. But this is absurd since we would 

not want to attribute contradictory beliefs to Jones in this example. 

However, Kripke's claim that it is an absurd consequence of assuming 

the d1squotation principle and the subst1tut1vity principle represented by 

the rule 801 (t1/v), t1 = t2 - 801 (t·J/v) (or its more general version, 

0t (tt/v), t1 • t2 - Cl (t;z/v)) that Jones holds contradictory beliefs is 

3 KMpke (1979), p. 251. 
~ KMpke (1979), p. 251. 
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open to question. As we have claimed in the first chapter, to say that 

Jones in such a case holds contradictory beliefs is not being unfair to the 

facts of the situation c-wn If we assume that Jones' possessing the requi

site logical acumen does not enable hlm to detect the inconsistency of his 

bellefs by logtc alone (but only With the adcUtionallnformatton that Tully 

and Clcero are one and the same person). If anythins, the undetectability 

of inconsistencies in one's beliefs constitutes sood srounds for saytns that 

asents ~:»n sometimes hold contradictory beliefs because an agent with a 

high degree of logical acumen would not believe a pair of outright contra

dictory statements unle-ss the contradictoriness of this pair is in some 

sense 'hidden'. Hinttik.ka for example has tried to make model-theoretic 

sense of this type of situation by alloWing as eplstemically accessible to a 

given world worlds whose descriptions bear hidden inconsistencies. 6 

If we are right here, then Kripke's claim that our second example con

stitutes a reductio ad absurdum to the substitutivity principle as represen

ted by the sac- rule Bell (tt/v), t1 • t2 - Bell (t2fv) misses the mark. 

However, the second case which we described at the beginning of this sec

tion does seem to constitute a CDzmterexMI'lp/e to the sac-+D rule Bell (tt/v), 

t1 • t2 ----+ ""IHI (ta/v). I.e., it is a case where the principle of belief 

attribution expressed by thls inference rule ls Violated. As we have arsuect, 

we shall refrain from labelllna tt a situation where an agent holds con

tradictory beliefs since the other version of the substitutivity principle 

which itself has been called into question would need to be assumed. 

At this point, Kripke would be quick to point out that what m~y be at 

fault in our apparent counterexamples to the substitutivity principles is the 

disquotatton principle. I.e., we are being too hasty in indicting the two 

S See HlnUkka (1975). 

http:Htnit1k.ka
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substitutivity principles. 

To support this claim, lripke attempts to construct two cases which 

assume the disquotatton principle but which do not assume the substitu

ttvtty principle (unlike his earlier example) and such that an absurd 

consequence 1s generated. However, we shall argue that there are no ab

surdities generated by his example and hence there 1s no reason to suspect 

the plausibility of the disquotation principle. To be fair, Kripke makes it 

clear that he is not in these cases trying to vindicate the substitutivtty 

principle nor 1s he trying to indict the disquotation principle. He merely 

wishes to show that it is hasty to indict the former principle in apparent 

counterexamples to it which make use of the disquotation principle. 6 

SUppose for the sake of argument that Kripke's construal of the case 

where Jones believes that Ctcero was an orator and he believes that Tully, 

i.e., Ctcero was not an orator on the striJIIIb of tbe dlsquotation principle 

constitutes an apparent reductio argument against the substitutivity prin

ciple as asserted by the rule Bel (t1/v), t1 • t2 - Bel (t2/v). Then, say!' 

Kripke, it is hasty to conclude that it is the substitutivity principle which 

is at fault. An absurdity has been generated by assuming the truth of the 

substitutivity principle 4nd the disquotation principle. Thus, the most we 

can conclude is that 1itb1r the substitutivtty principle or the dtsquotation 

principle or both are at fault. Kripke likens this situation to the situation 

in topology where from a given hypothesis we derive an absurdity but only 

with the help of some set-theoretic axiom-schema. Then all we can con

clude in this case is that either the initial hypothesis is at fault or that the 

set-theoretic axiom schema is at fault. 7 

Krlpke first of all proposes the •puzzUng Pierre• case which we have 

6 Krlpke (1979), p. 269. 
7 Krlpke ( 1979), pp. 253-254. 
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already discussed in the first chapter in connection with the schema -(Ba 

& B-a ) which says that agents do not hold contradictory beliefs. The read

er will recall that in the puzzling Pierre example, Pierre who is a mono

lingual Parisian assents to the claim that Londres est jolie and given the 

d1squotat1on principle the sentence "Pierre crott que Londres est jolie" is 

true in French. Then, applying the translation principle (viz., that if p ex

presses a truth in L then its translation p' expresses a truth in L') we can 

conclude that the sentence "Pierre believes that London is pretty" is true in 

English. Further, suppose that Pierre ends up in some shabby section of 

London where he learns to speak English. He retains his assent to the 

claims he assented to while in Paris including the claim that Londres est 

jolie. Seeing the shabbiness of his new surroundings and not realizing that 

his new enVironment is the Londres of his dreams, he assents to the claim 

that London is not pretty from which tt follows that he believes that 

London is not pretty. Then it follows that Pierre believes that London is 

pretty and he believes that London is not pretty. Or does he? 

Kripke then argues that no matter how we construe this situation, we 

are led to an absurdity. For example, on one construal we could claim that 

Pierre did not have contradictory beliefs on the grounds that once he moved 

to London and learned to speak English he gave up the belief that London is 

pretty. 8 But, says Kripke, this is unacceptable because part of the story 

is that Pierre still assents to every claim he assented to in French. Then 

we have no grounds for saying that Pierre gave up his belief that London is 

pretty. Also, supposing that we did not know about Pierre's move to London 

and his acquisition of English then "on the basis of his normal command of 

French we would be forced to conclude that he still believes that London is 

8 Kripke (1979). p. 256. 
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pretty."' On the other hand, it we are forced to conclude that Pierre holds 

contradictory beliefs then we are being unfair to the facts of the situation 

since Pierre •tacks information, not logical acumen. He cannot be conVicted 

of inconsistency: to do so 1s incorrect. •10 

And so, concludes ltripke, the puzzling Pierre case is a paradox because 

there is simply no way of tell1ng just what Pierre believes. Any answer to 

this question leads to an absurdity.11 However, as was argued in the first 

chapter, X.ripke can be taken to task on his claim that attributing contra

dictory beliefs to Pierre is an unacceptable construal of the situation. He 

seems to assume without argument that an agent cannot be charged with 

holding contradictory beliefs unless he is, by means of his logical acumen 

alone, able to discover this. And this assumption is at best dubious. Then 

perhaps the puzzling Pierre case is not paradoxical after all because there is 

no reason why we cannot attribute to Pierre contradictory beliefs which at 

the very least he assents to in different linguistic contexts. 

The 'puzzling Pierre' case admittedly makes use of not just the disquo

tation principle but also the translation principle. Thus, X.ripk.e constructs 

a second case which does not depend on the translation principle but mere

ly on the disquotatton principle alone.12 This second case can be character

ized as follows: Peter learns about a famous pianist (who unbeknownst to 

Peter was also a famous politician) named 'Paderewsld'. Peter then assents 

to the claim that Paderewsk.i had musical talent and from the disquota

tional principle it follows that Peter believes that Paderewski had musical 

talent. In another context (but in the same language) Peter who assumes 

9 Krlpke (1979), p. 256. 
10 lbtd, p, '157. 

11 Ibid., 1>· 259. 
12 Ibid., pp. 265-266. 

http:alone.12
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that no politicians are musically talented hears about a famous politician 

who was also named. Paderewski and who unbeknownst to Peter was one 

and the same person as Paderewski the pianist. Given his belief that no 

politicians are musically talented, Peter assents to the claim that Pader

ewski had no musical talent and hence by the disquotation principle it 

follows that Peter .MJJ~ that Paderewski had no musical talent. Then 

by two applications of the d.isquotation principle it would seem that Peter in 

one context believes that Paderewski had musical talent and in another 

context Peter believes that Paderewski had no musical talent. Does Peter in 

this case hold contradictory beliefs? 

Krtpke wants to argue that parallel to the puzzling Pierre case, no 

matter how we construe this situation we are led into absurdities. Por ex

ample, one may wish to argue that once Peter has learnt about Paderewski 

the politician who (Peter assumes) had no musical talent then Peter will no 

lonaer believe that Paderewski had musical talent. But, as with the puz

zling Pierre case, Peter presumably would not abandon assent to the claim 

that Paderewski had musical talent supposing that he does not realize that 

Paderewski the pianist and Paderewski the politician were one and the 

same person. Thus he still believes that Paderewskl had musical talent. 

But, Krlpke would then argue that if we are forced to admit that Peter 

holds contradictory beliefs then this ls unfair to the facts of the situation 

since Peter is unable to determine that the contents of his allqed beliefs are 

contradictory without the additional information that Paderewski the 

pianist and Paderewski the politician were one and the same person. Kripke 

is assumina here that an agent can he charged with inconsistencies in his/ 

her beliefs only if it is possible for that agent to notice said inconsistencies 
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without any additional information (such as the knowledse that some 

continsent identity obtains}. In short, the agent in such a case cannot be 

held lopcally responsible for what he has assented to. 

However, as was sussnted with reference to the puz:zlins Pierre case, 

this assumption is dubious. 1t was argued in chapter one that it is in just 

those sorts of cases where the agent cannot determine without additional 

information that two sentences to which he has assented are contradtc

tories that we would be most likely to attribute to the agent contradictory 

beliefs. Thus, suppose Peter had somehow found out that Paderewski the 

pianist and Paderewski the politician were one and the same person. Then 

atven as premises the contents of his beliefs that Paderewski the politician 

had no musical talent and that Paderewski the pianist had musical talent, 

he would be in a position to infer both that Paderewskt the pianist (and 

politician) had musical talent and that Paderewski the pianist (and politi

cian) had no musical talent. He would thus be in a position to see that 

his beliefs were contradictory. At this point, if we are charitable, we 

would suppose that Peter will come to abandon assent to the claim that 

Paderewski had no musical talent or to the claim that he had talent. 

On the other hand, if Peter did not have access to the information that 

Paderewski the pianist and Paderewski the politician were one and the 

same person, then he would not be in a position to draw the inference just 

alluded to. In such a case, it would seem natural to attribute to Peter 

contradictory beliefs, viz., that Paderewski had musical talent and that 

Paderewski did not have musical talent, since only in the presence of the 

requisite information would he abandon assent to one or the other claim. 
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ADd so, the upshot of our cliscussion of Kripke's puzzling Pierre case 

and of his Paderewski example is that neither of these so-called puzzles are 

paradoxical because in ))oth cases there is a construal which does not lead 

to absurdities, viz., that the agent in question holds contradictory beliefs. 

It could be argued that if we were to attribute to agents contradictory bel

iefs then we would be forced to attribute to such asents '"'TY' belief since 

a contradiction logically implies everything. However, it was suaested in 

chapter one that this reductio against the intellisibUtty of attributing to 

aaents contradictory beliefs relies on two principles of belief attribution. 

The first such principle is that agents always conjoin their beliefs {so that 

if Pierre belleves that London is pretty and Pierre believes that London is 

not pretty then he believes that London is pretty and not pretty). The 

second principle is that agents are lostcally omnldoxastic (so that if Pierre 

believes that London is pretty and not pretty then he believes that Q, 

where Q is any proposition whatsoever). If either of these principles are 

abandoned, then the reductio just outlined does not ao throuth. Our ulti

mate strategy in chapter six will be to abandon the 'adjunction principle' 

(the first of the two principles).13 

Supposlnt the 1ntel11glb111ty of agents being able to hold contradictory 

beliefs without thereby conjoinins them, it would seem that Kripke's dis

quotatton principle has survived his two 'puzzles• and so he has aiven us no 

grounds for doubting this principle after all. Then ln our alleaed counter

examples to the substitutivity principle discussed above, it is not at all un

reasonable to suspect that the substitutivity principle ts at fault. 

To recap our discussion, Krtpke's main araument for his claim that it 

13 This line of reasoning is pursued by Ruth twcus In M.-cus (1981). 

http:principles).13
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is hasty to indict the substitutivity principle in apparent counterexamples 

to this principle (which also assume some principle of belief attribution or 

other, such as the disquotation principle) can be roughly characterized as 

follows: 

PremiSe 1: By assumtna the dJsquotatton principle alone the same k.tnd of 
absurdities can be 'derived' that are derived by assumtnc the 
disquotatton and substitutivity principles qether. 

PremiSe 2: If Premise 1 is true then it is hasty to conclude that the substi
tutivity principle is at fault in the allqed counterexamples to it. 

Conclusion: lt is hasty to conclude that the substituttvity principle is at 
fault in the alllqed. counterexamples proposed aaainst it. 

As we have arcued. in this section, the first premise in this argument is 

questionable. Kripke's two puzzles which employ the disquotatton principle 

and. which are not obviously relevant to the truth of the substitutivity 

principle do not generate any absurdities, supposing that it is tntelligible 

that agents are capable of holdins contradictory beliefs in different contexts 

(where a 'context• can be temporal, linguistic or locational). We shall 

make sense of this claim in chapter six vis a vis stalnaker's notion that 

agents can be in more than one 'belief state•. 

And so, K.ripke's argument in favour of the claim that tt is hasty to 

indict the substttuttvity principle such as in the allqed. counterexamples 

we considered earlier does not seem terribly compelling. In any case, what 

these allqed. counterexamples d.o show is the following: Supposing that the 

disquotation principle (or any principle of belief attribution we employ) is 

sound- and Kripke's puzzling Pierre and his Paderewski cases give us no 
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reasons for thinktns that it is unsound - then we have constructed. cases 

where the substitutivity principle fails. These are cases where there is 

a clash between two sorts of principles of belief attribution, viz., behav

ioural principles on the one hand (i.e., disquotation) and logical principles 

on the other (i.e., substltuttvity). 

2. Is Existential Generallzation Believable? 

Another sac- schema which we shall discuss in this section and which 

has generated ·a fair amount of contraversy in the literature qua principle 

·of belief attribution is the doz•stic version of the axiom-schema ex (t/v) => 

(3v)a, viz., Bell (t/v) , (3v)801. Given this schema and modus ponens the 

rule of inference, Bel (t/v) ___. (3v)Bcl can be derived in any sac- system. 

More general versions of this schema and its corresponding rule of infer

ence are ex (t/v) , (lv)OI and 01 (t/v) - (3v)a where it is stipulated that 

t occurins in 01 (t/v) occurs in the scope of a belief operator. Once more, 

for simplicity of exposition, we shall primarily concern ourselves with the 

less general version of this schema and inference rule. 

These schemata and the corresponding derived rules of inference ex-

press the principle that it is permissible to existentially generalize with 

respect to the occurrence of a constant tin the scope of a belief operator 

outsidtt of that operator. In short, it is permissible to existentially quantify 

into belief contexts. if An ordinary language example of an inference which 

accords with the derived rule permitting quantification into belief cons

tructions is as follows: Suppose that Jones believes that Tully was a 

Roman orator. Then from this we can infer that tbttn is some person 

14 Tht term 'quantifying In' was nrst coined by ~lne tn ~ine (1956), p. 103 appertng In Unsky 

(ed.) 1979. 
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such that Jones believed that this very person was a Roman orator -

assumina an objectual readtna of the existential quantifier. Assumina a 

subsUtutlonal read.lna of the quantifiers, we can infer from Jones• belief 

that Tully was a Roman orator that som1 substitution instance of • Jones 

believes that v was a Roman orator• is true. More conspicuously, we can 

infer that (3v)(Jones believes that vis a Roman orator.) However, if we 

treat definite descriptions as names or sinaular terms then we run into 

trouble as we shall see in the next paraaraph, but only if we assume an 

objectual rather than a substitutlonal interpretation of the quantifiers in 

the correspondtns semantics. 

The followina constitutes an informal counterexample to the aeneral-

ization rule mentioned above: Suppose that Jones believes that the next 

Prime Minister of Canada (whoever he/she is) will attempt to balance the 

budaet. But there may be no individual that Jones has in mind in the 

sense that if questioned he could name no specific person. And so it seems 

odd to say that th1r1 is some person such that Jones believes that that 

person will be either attempt to balance the budset. More conspicuously, it 

is wrona to infer from Jones' belief that the next Prime Minister of Canada 

(whoever he/she is) will attempt to balance the budset that (3v)(Jones bel

ieves that v will attempt to balance the budaet). And so, it would seem that 

we have a case where a sentence of the form x believes that Cl (t/v) is true 

and yet it is false that (3v)(x believes that ex), or symbolically, (3v)B« -

supposing once more an objectual reading of '3'. This sort of counterexample 

to any generalization rule allowing quantification into belief constructions ts 

discussed by a number of authors including Quine15, Hintikka16, Kaplan17 

IS Qine (1956, 1960). 

16 HtnUkka (1962). 
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and Stlch18. 

The above countere:xample to the seneraliZaUon rule assumes that the 

'the next P.M. of Canada' can for the purposes of the sac- language be 

treated as a constant and for the purposes of ordinary language as a proper 

name. However, this assumption could be criticized on the grounds that 

the expression 'the next P.M. of Canada' is more aptly treated as a d'l.init' 

d~iptiorz . Thus, its rough translation in the language of the sac• sys

tems would be (3x) (Px & (Vy) (Py ;:, y = x)) rather than simply treating it 

as a constant, c. However, even if we srant that the expression 'the next 

P.M. of Canada' is best treated as a definite description, we are still faced 

with an ambiguity much as we would be it we were to treat it in ordinary 

language as a proper name (and hence as a constant with respect to the 

lansuase for the sac- systems).19 Thus, as we shall argue, treating the 

expression 'the next P. M. of Canada' as a definite description does not cir

cumvent the problem that we cannot inter that there is a particular person 

whom Jones believes will attempt to balance the buqet from his belief that 

the next Prime Minister whoever he/she may be will attempt to balance 

the budget. 

The sort of ambiauity which we have in mind was first alluded to by 

Keith Donnellan in his 1966 article 'Reference and Definite Descriptions'. 

Donnellan in this article arsues that definite descriptions are ambisuous in 

the sense that they can be used by a speaker (or for that matter a believ

er) either nf,nnti•JJy or •ttrlJJutiwJy. 

To illustrate Donnellan's notton of the referential use of definite des-

criptions, it we were using the expression 'the next P.M. of Canada' nf,r-

17 Kaplan 0969). 
18 SUch ( 1983). 

19 This point Is made by HlnUkkaln Hlntlkka (1967). p. 47. 
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•nti11/ly then we would have a particular individual in mind although 

success in referring to the individual in question does not depend on his/her 

uniquely satisfying the description. For example, at the 1990 Uberal Leader

ship convention, the newly appointed leader who is a hopeful for the pos

ition of Prime Minister may be introduced as 'the next Prime Minister of 

Cmada •. Then even though the new leader of the Uberal party may in fact 

lose the election, the announcer has succeeded in picking out or referring to 

the individual in question. Thus, what is characteristic of the speaker's 

using a definite description referentlally is that it will "enable his audience 

to pick out whom or what he is talkins about and states something about 

that person or thing. •20 

On the other hand, in our counterexample to the rule permitting gen

eralization into belief constructions, if we treat the expression 'the next 

P. M. of Canada' as a definite description then this description is being used 

llttributiwly in the sense that Jones intends that there is exacUy one indi

Vidual who fits that description although he may not have the slightest 

idea who that individual might be. Thus, Jones believes that there is ex

actly one individual wbt.IIII'VIrr b• nuy btr who is such that he/she will be 

the next Prime Minister of Canada and such that he/she will attempt to 

balance the budget. Thus, what is characteristic of a description being used 

by a speaker (or believer) attributively is that the speaker or believer 

"states something about whoever or whatever is the so-and-so. •21 

And so, even if we Wish to treat the expression 'the next P. M. of Can

ada • as a definite description in our alleged counterexample to the sQC= 

rule permitting quantiflcatlon into belief contexts, it is clear that Jones is 

20 Donnellan (1966), reprinted in Schwartz (19n), p. 46. 
21 tbtd, p. 46. 



0 

125 

using this descripUon attributively rather than referentially. This is be

cause he believes that the ne:x:t P.M. wboc-wr bl/sb' JZUY be will attempt 

to balance the budget. 22 And of course there will only be one such person 

whoever he may he that satisfies his description. But then from Jona' 

belief as so characterized., it would be wrong to infer that there is some 

particular individual such that Jones believes that that person will attempt 

to balance the budget. And hence, treating 'the ne:x:t P.M. of canada' as a 

definite description rather than as a name does not circumvent our appar

ent countere:x:ample to the rule permitting existential generalization across 

belief constructions. 

It is worth noting that the sac- rule allowing quantification into belief 

constructions, vtz., Bcx (t/v) - (3v)Bcx is not to be confused with the 

sac= rule Bcx (t/v) - B(3v)a, which informally says that it is permit

ted to existentially generalize with respect to the occurrence of a term t 

in the scope of a belief operator inside- the belief operator. In the literature 

this rule ts qua principle of belief attribution is regarded as relatively 

unproblematic. 23 It is derivable in any sac- system as follows: 

1. Bcx (t/v) hyp. 

2. 1-a (t/v} ::» (3v)a 

3. 8(« (t/v) ::» (3v)«) 2, RB 

4. Bcx (t/v) ::» 8(3v)« 3, K, modus ponens 

5. B(3v)« 1,4 modus ponens 

To see that this rule is relatively unproblematic - even it we construe the 

quantifiers objectually- consider once again our example of Jones who bel

ieves that the ne:x:t P.M. of Canada, whoever he/she may be will attempt 

22 This Is not to say that Jones ha no Individual In mind. He may or he may not. but nonetheless In 

this cesa he Is ustng the description attributively. 
23 For e~CM~Pie, see Hlntlkka's comments In Hintlkka (1962). p. 141. 
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to balance the budget. Although it is wrong to infer that there is some 

individual such that Jones believes that that individual will attempt to bal-

ance the budget, we ~n infer that even though Jones may have no one 

person tn mtnd, he believes that some person or other ts such that he/she 

will attempt to balance the budget. 

It would seem then that there is an ordinary language distinction be

tween constructions of the form 'x believes that (3v)41' and (3v)(x believes 

that a ) . In our examples discussed above, there is a distinction between 

Jones• believing that there is at least one person who will attempt to bal

ance the budset on the one hand and there betns some person such that 

Jones believes this very person will attempt to balance the budget. The for

mer construction (unlike the latter) is inferable from the sentence 'Jones 

believes that the next P.M. of Canada (whoever be/she is) will attempt to 

balance the budget' because it is not necessary that Jones have anyone in 

mind for him to believe that there is some person or other who will 

attempt to balance the budset. 

Assumins an analogy between belief (or 'doxastic necessity•) and aletbic 

necessity, the distinction which we are discusstns is analogous to the de 

re/de dicto distinction sometimes made for .tl,tbic necessity contexts. Thus, 

the construction 'it is necessary that (3v )a • is said to be d, dicto since the 

necessity operator has as its scope the content sentence '(3v)« '. An example 

of this construction would be 'it is necessary that primes exist' which 

asserts that the content sentence (i.e., the 'dictum') 'Primes exist' is nec

essary, which is to say that some number system is such that at least one 

of its elements must bl prime. On the other hand, the construction 

'(3v)(it is necessary that«)' is said to be d, ~ since the necessity oper-
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a tor occurs witbln the scope of the quantifier. An example of this would 

be 'there exists at least one number such that n~rUy it is prime'. 

This sentence could also be read as saytng that there is at least one number 

that is ~ntJ•JJy prime and clearly this is distinct from the claim that 

n~ri/y, primes exist. 

Because allowing quantification into necessity contexts seems to commit 

us to some sort of essentialist metaphysics, Quine has taken exception to 

this sort of construction. 24 We are of course explainina this distinction in 

terms of an objectual readina of the quantUiers. This distinction can also 

be made sense of substitutionally as follows: To assert that at least one 

substitution instance of • D~CeSS~Jrl/y xis a prime• is true is not the same 

thing as asserttna that n~rUy at least one substitution instance of 'x 

is a prime' is true. And in fact, Quine's charge of essentialism would not 

apply to the distinction made in these terms- since no mention is made of 

any objects possessing 'essential' properties. 

Analogous to the de re/de dicto distincition discussed above for alethic 

modal contexts, there seems to be grounds for making this distinction for 

proposttional attitude contexts as we have seen. Thus, U we treat •x bel

ieves that* as analogous to 'it is necessary that' then the construction 'x 

believes that (3v)cr• is d11 dJcttJ and '(3v)(x believes that er)' 1s dll re. Ancl 

so, il ww adapt our example for alet.hic modal contexts to belitrf contexts, 

the sentence 'Jones believes that primes exist' would be de dicto and the 

sentence 'There exists at least one number such that Jones believes that 

that number is prime' is de re. 26 And intuitively, Jones may believe that 

24 For example. see Qline's discussion or this point in Qline C 1960. 1961 ). 

25 This apprent distinction hiS been alluded to by Qllne (1956). p, 102. Hintikka (1962). p. 142 and 

by Kaplan (1977). p. 116. ll hiS been questioned by SUch (1983). We shall discuss SUch's views 

http:construction.24
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there are primes without beJJ.evtns of any particular number that it is 

prime. He may not even he able to identify primes. Perhaps he has simply 

accepted on authority that such numbers exist without knowing what they 

are. 

If this intuitive distinction between the de dicto construction 'x believes 

that (3v)a 1 and the de re locution '(3v)(x believes that a ) 1 is correct for 

ordinary language then it would seem desirable that the two constructions 

be distinct for the sac- formal systems of doxastic logic. And this is tant

amount to sayt.ns that we would not want the following biconditional to 

hold for the sac- systems, viz., B(3v)a • (3v)Ba such that the existential 

quantifier is non-vacuous and where 'B(3v)a 1 represents the de dicta 

locution •x believes that (3v)a • and where (3v)BGr represents the de re 

locution '(3v) (x believes that a ) '. And in fact, this equivalence does not 

hold for the sac- systems as will be shown presently. 

It will be shown that the biconditional schema B(3v)a • {3v)Ba does 

not hold for the sac- systems of doxastic logic by showing that one half of 

this blconditional schema, viz., B(3v)a :::> (lv)BGI does not hold for any of 

these systems. Intuitively, this conditional says that belief de dicto logically 

Implies belief de re. This seems intuitively unacceptable if we consider the 

following simple instance of this conditional schema, B(h)Px:;, (h)BPx. 

Informally, if we let •p• stand for 'prime' then this schema says that if x 

believes that primes exist then there is some number such that x believes 

that it 1s prime. But as we have seen in our earlier example, it is possible 

that Jones believes that primes exist without it being the case that there is 

any one number such that he believes that 1t is prime, especially in the 

case where he accepts the claim that primes exist on authority alone. 

on the matter below. 
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Further, even if we make the de re/de dicto distinction substitutionally, 

it ts sttll not correct to endorse as a thesis any instance of B(3x)Fx;, 

(3x)BFx. Thus, it Jones believes that •t IMst on' su/J$tltutlon Instant:~ of 

vIs • prim' is tru', tt presumably would not follow that at least one 

substitution instance of •Jones believes that vIs • prim' • is true. (I.e., 

he may still fail to believe that •v is a prime• is true for some one value of 

v.) However, althoush the schemata B(3v)CI and (3v)Bcl are distinct even 

on a substituttonal readins of the e:x:tstenttal quantifier, it is sttll the case 

that we are warranted on such a readinstn inferrins both from Bel (t/v). 

Thus, from 'Jones believes that 3 is prime' it follows both that 'Some sub

stitution instance of •Jones believes that vIs prim, • is true' and also that 

'Jones belteves that som' substitution Jnsune~ of vis prim, Is tru' '. 

We shall now construct a formal sac- countermodel to B{3x)Fx;, 

(3:x:)BF:x: thus tnvalidatins the schema B{3v)a , (3v)Bcl. As was noted in 

the previous chapter, there are two sorts of characteristic semantics for 

the sac- systems, viz., a domain semantics which lends itself to an objec

tual readtns of the quantifiers and a truth-value semantics which dispen

ses with individuals and which lends itself to a substttuttonal readins of 

the quantifiers. We shall show that the schema B(3v)CI ;, (3v)BCI is invalid 

tn both types of semantics and stven our completeness results tt follows 

that not all instances of this schema are provabvle in the sac• systems. 

The reader will recall from chapter two that an sac- mod'/ structur' 

for a domain semantics is a triple <W,R,D> where W is a non-empty set of 

indices, R is a 2-place •accesstbutty' relation ranstns over members of W 

and D 1s a non-empty set of so-called individuals. An sac- model is a 4-

tuple <W,R,D, V> such that <W,R,D> is an sac- model structure and V is an 
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assignment function which to each constant and to each variable assigns 

exactly one member of D and which to each n-place predicate variable 

assigns a set of n + 1-tuples, the first n members being elements of D and 

then+ 1st mem))er ))etng an index In W. 

Then consider the sac• model M • <W, R, D, V> such that W • { wb wa, 

w3}, D • {dbda}, {<wtJ wa>, <w1, W3>} ; R and V(t) • d!J V(F) • {<d1, 

wa>, <da,W3>}. Let M' and M" be models based on the same model struc

ture as M such that V(t) • dt and V(t} = da. So VM•(Ft, w2) = 1, VM•(Ft, 

w3) = 0, VM•(Ft, w2) • 0 and VM•(Ft, w3) = 1. It follows that VM((3x)Fx, 

w2) = VM((3x)Fx, W3) = 1 and hence VM(B(3x)Fx, w1) = 1. Further, since 

there are two individuals in D, then there will be no model M' such that 

VM•(Ft, wa) = VM•(Ft, W3) and therefore VM(BPt, w1) will be 0 for any 

model M' based on the same model structure as M and differing from M (if 

at all) in terms of what V assigns to arbitrary t. It therefore follows that 

VM( (3x)BPx, w1) • 0. Then we have constructed a model M such that 

VM(B(3x)Px, w1) is 1 but VM( (3x)BFx, w1) is 0 which therefore invalidates 

the conditional B(3x)Px :> (3x)BFx. We shall next show that this conditional 

is invalidated in a truth-value (TV) semantics. 

An sac= model for a TV semantics is an ordered triple <W, R, V> such 

that Wand Rare defined as for an sac• model for the domain semantics. 

The assignment function V assigns to each 11tomic wff '1' or '0'. And a val

uation over a TV model is defined inductively with V(u, w1) • VM(u, wi) 

as the basis. The reader is referred to chapter two for a description of this 

type of semantics. The following is a TV countermodel to the soc= condi

tional B(3x)Fx :> (3x)BPx: M = <W,R, V> such that W = {wl, wa, w3}, 

{<wt,wa>, <wt,W3>}' Rand V(Fa,wa) = V(Fb,W3) • 1, V(Fa,w3) = 
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V(Fb, wa) • 0. Purther, we shall stipulate that for this model no constant 

t will be such that V(Pt, wa) • V(Pt, ws). Given our characterization of V, 

tt follows that VM(Pa, wa) • VM(Pb, ws) • 1 and VM(Pa, ws) • VM(Pb, ws) 

• 0. Hence, VM((3x)Px, wa) • VM((3x)Px, ws) • 1 and thus VM(B(3x)Px, 

w1) • 1. However, since we have stipulated that for this model no cons

tant t will be such that V(Pt, wa) • V(Pt, ws) tt follows that for no constant 

t Will 1t l)e the case that VM(Pt, wa) • VM(Pt, w3). Then lt will be the case 

that for any constant t, VM(BPt, w1) • o from which 1t follows that 

VM((3x)BPx,w1) • 0. Thus, we have constructed an sac= (TV) model such 

that VM(B(3x)Px, w1) is 1 but VM((3x)BPx, w1) is 0, which therefore inval

idates the conditional 8(3x)Px :> (3x)8Px. 

And so, since we have invalidated the conditional 8(3x)Px :> (3x)BPx in 

the two types of characteristic semantics for the soc= systems and given 

soundness it follows that 8(3x)Px ::) (3x)BPx is not a thesis of any of these 

systems. Therefore, 8(3v)« :> (3v)Ba is not an soc= thesis schema which 

is just what we want, supposing that we maintain that belief de dicto does 

not logically imply belief de re. Also, since this conditional schema is not 

an sac= thesis schema 1t follows that the biconditional B(3v)cx a (3v)Ba 

is not an sac= thesis schema. 

Although one half of the biconditional 8(3v)cx a (3v)Ba is not an sQC• 

thesis schema, the other half of the bicondttlonal, viz., (3v)B« :> B(3v)« is 

an soc= thesis schema as we shall show presently. Intuitively, this con

ditional schema says that belief de re logically implies belief de dicto. This 

seems to be intuitively plausible if we once more consider the case of Jones 

and his beliefs concerning prime numbers. Suppose that there is some par-
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ttcular number such that Jones believes that that number is a prime. Then 

presumably it would also be the case that Jones believes that primes exist. 

And in general, it there is some t such that x believes that t is P, then it 

would seem to follow that x believes that there are P's. Thus, the condi

tional schema (3v)Ba :a B(3v)a is desirable for quantified doxastic logic at 

least if we construe the quantifiers objectually. (Similar remarks could 

also be made in terms of a substitutional construal of the quantifiers.) It 

will now be demonstrated that any instance of this schema is derivable 

(and given soundness, any such intance is valid) in any sac• system. 

A proof sequence of any instance of the schema (3v )Ba :a B(3v)oc for 

an sac- system would look something like this: 

1. 1-oc (t/v) :a (3v)oc 

2. B(a (t/v) :a (3v)a) 1, RB 

3. Ba (t/v) ::. B(3v)oc 

4. {3v)Boc ::. B(3v)a 

schema K, detachment. 

supposing t is foreign to B(3v )a and given 

the rule a {t/v) :a ' ___.. {3v)a :a ' where 

t is foreign to (3v )oc :a '· 

Thus, any instance of the schema (3v)JkX :a B(3v)a which says that belief 

de re implies belief de dicto wtll be derivable in the sac- systems of dox

astic logic. Given our soundness results, it then follows that any instance 

of this schema is valid Jn the two types of characteristic semantics for the 

sac- systems, viz., the invariant domain semantics and the truth-value 

semantics. 

By way of some closing observations concerning the problem of quanti

fying in, it is worth noting that quantifying in is also unrestricted for 

doxt~stlc JJO$$/bl/lty contexts for the soc- axiom systems given that the 
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following schema is a variant of the axiom-schema« (t/v) , (3v)«: 

P)l« (t/v) ;:, (3v)Pa« 

Intuitively, this schema says that it is permissible to existentially gener

alize with respect to a term t occurring in the scope of a doxastic possibillty 

operator outsid.- of that operator. (And of course, this schema can be used 

to derive the rule of inference PJJ« (t/v) _... (3v )Pa« . ) An ordinary 

language example of this schema would be the following: If it is possible 

for all x believes that Pegasus is a winged horse, then tberels something 

such that it is possible for all x believes that it is a winged horse. 

In considering the above instance of Pa« (t/v) , (3v)Pa«, what is ob

jectionable is that there seems to be some sort of commitment to what 

Marcus and others have called posstblli• or fictional entities. Thus, in our 

example, it would seem that an existence claim is being made concerning 

doxastically possible winged horses. If one finds possibilia as unpalatable as 

Quine finds essential properties, then unrestricted quantifying in for con

texts of doxastic possibility is a serious matter. However, similar to the 

case of quantifying into doxastic necessity contexts, it is only on an obj«

tu•J reading of the quantifiers that this type of situation is problematic. 1t 

we were to read the eXistential quantifier occurring in any instance of 

PJICI (t/v) , (3v)PJJ« substitutioruJJy then the above ordinary language in

stance of this schema would read •u it is possible for all x believes that 

Pegasus is a winged horse, then at least one substitution instance of 'it is 

possible for all x believes that vis a winged horse' is true•. And this latter 

reading does not suggest any sort of ontological commitment to possibilla. 

Further, as we shall see, it is a thesis-schema of the sac= systems 

that Pa(3v)« s (3v)P)I«, which could be taken as asserting that any wtf 
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of the form Pa(3v)« is logically equivalent to the appropriate instance of 

(3v)P:a<JL This schema is significant in that it can he regarded as an 11-

imin•tiDD schema. I.e., if I-Pa(3v)a • (3v)Paa, then if a is a wff 

contalntns one or more occurrences of the locution (3v)Paa (which on an 

objectual readins of the quantifiers seems to involve a commitment to dox

astic possibilia) then ' which results from replacins one or more occur

rences of the locution (3Y)PaG With its lostcal equivalent Pa(3Y)a (which 

as Will he noted does not involve any sort of commitment to possibilia) will 

be such that 1-, i! a. Then all occurrences of the locution (3v)Paa in a wff 

a are 1Jimi1Ubl1 in the sense that they can be replaced by Pa(3v)a res

ultins in a wff ' such that 1-, • a . 26 Thus, any instance of the schema 

PJ1CX (t/v) ;, (3v)PJICX permittins quantifyins in for doxastic possibility con

structions is logically equivalent to the appropriate instance of PaG (t/v) ;, 

Pa(3Y)a such that the occurrence of the locution (3Y)PaG has been el

iminated. This therefore can be rqarded as a solution to the problem of 

quant1fy1ns tn for doxasttc poss1b111ty constructions, since all locutions of 

the form (3v)PaG are eUminable. As Marus notes, the solution here 

amounts to clatmins that fictional entities can be 'analysed away•.27 

Then it is worth provins that the followtns are sQC• thesis-schemata: 

1) Paa (t/v) , P8(3v)a 

2) P8 (:tv)a • (:tv)Paa 

The first of these schemata is the doxastic possibility counterpart of the 

innocuous schema Ba (t/v) ;, B(3Y)a. An ordinary lansuase instance of 1) 

would be •If it is possible for all x believes that Pesasus is a winged horse 

then it is possible for all x believes that lb1r1 .uy winged horses•. Unlike 

26 See Hughes and CressweJI (1968), pp. 183-188. 

27 Mrcus (1976). p. 42. Her solution to the problem of posslblltalrwolves adopting a TV semantics. 
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its cousin PJI(X (t/v) , (3v)P]IG, this instance of 1) does not suggest that 

tbt~n •n possible Winced horses but merely that it is consistent With (or 

possible for) everythina x believes that there are such thincs as Winced 

horses. In short, there is no sunestion here of a commitment to posstbilia, 

even on an objectual readtnc ot the existential quantifier 1n 1). Any in

stance of schema 1), PJIOI (t/v) , Pa(3v)4X Will be derivable for any sac= 

system by ustnc the appropriate instance of 4X (t/v) ;:, (3v)4X well as the 

derived rule 1-a , ' - 1-PJIOI , PaP. Purther, by applytnc R3 to the 

appropriate instance of PJIOI (t/v) , Pa(3v)4X we can derive any instance 

ot (3v)PJI(X ;:, Pa(3v)oc which is one half of the biconditional schema 

Pa(3v)4X • (3v)PJIOI. The remaintnc half, Pa(3v)a , (3v)PJIOI is derivable 

by contrapostna the Barcan Formula, -(3v) ... B4X , B-(3v)-a and by em

ploytnc the fact that 'Pa' and 'B' are interdetinable. The elimination 

schema Pa(3v)« a (3v)Pa4X could also be considered as asserttna the prin-

ciple that an locutions of d• r• doxastic possibility are eliminable, where 

the de re/de dicto distinction for doxastic possib111ty contexts is made in 

terms of the scope of the quantifier as it was for belief contexts. 

However, the problem of possibilia reappears for btl"f contexts. The 

followtncls an ordinary tancuace instance of the schema BGI (t/v) ::> (3v)Bcx: 

11 Jones believes that Peaasus is a Winced horse, then tht~rt~ is an x such 

that Jones believes that xis a Winced horse. In short, if Jones believes 

that Peaasus is a winced horse, then he has a de n belief concernina a 

fictional entity, viz., a winced horse, which qain seems to sunest an on

toloatcal commitment to possib1lia in the sense of 'fictional entities'. Since 

there is apparently no reduction schema which will allow us to eliminate 

de re btllief constructions for the sac• systems (nor is such a schema even 
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desirable) then if we find talk of 'possibiUa' distasteful, the option is once 

more open to us to adopt a substitutionalinterpretation of the quantifiers. 

As a final perspective on the problem of possibllia for the SQC• systems, 

any constant in the J.ansuqe is assigned a member of D for every model in 

the domain semantics. Then even a term t whose ordinary language cons

trualis 'Pegasus• will denote some member of D for any sQC• model. Also, 

there are no 'fictional' entities (existing at merely 'possible' worlds) in an 

lnvariul domain semantics since for a model M, x exists at Wt ==df x e D 

and hence any such x is a D«n5fJry existent given that D ls shared by all 

indices in the model. So the individual denoted by 'Pegasus' is not a fictional 

entity after all, but rather a necessary existent, which can be taken as a 

reductio against an invariant domain semantics for quantified belief logic. 

3. The Myth of 'The Myth of Ambiguity' 

It was noted in the previous section that the de re/de dicto distinction 

can be made for proposttional attitude contexts analogous to alethic modal 

contexts tn terms of whether or not the belief operator occurs within the 

$COJ» ot the existential quantifier. Thus, 1f the belief operator occurs 

Jnsld1 the scope of the quantifier, in which case the entire locution has the 

schematic form (3v)lkl, then the resulting locution Is de re. On the other 

hand, if the belief operator occurs outsld1 the scope of the quantifier (and 

hence the sentence has the form B(3v)« ), then this locution is de dicto. 

As we shall see, Stephen Stich has claimed that the de re/ de dicto dis

tinction as just described is a 'myth' for proposttional attitude contexts. 

His alternative account of a situation such as "ones• believing that primes 
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exist (de dicto) vs. Jonn• believing that a particular natural number n is 

prime {de re) is that the ambiguity here is not inherent to Jones' belief 

states, but is Instead traceable to the cont,nts ot Jone's beliefs. In short, 

Stich wants to claim that belief is never ambiguous- only contents are. If 

Sttch is right, then the de re/de dtcto distinction is spurious and this in 

turn calls into question any logic of belief which mirrors such a distinction 

in terms of quantifier scope. 

We shall now critically examine SUch's argument for his claim that 

belief 1s not fundamentally ambiauous. It will be argued that in the final 

analysts, SUch's araument 1s not persuasive. Before appraising Stich's 

araument, it will be necessary to briefly describe his account of belief 

constructions and belief states. 

Stich applies Davidson's remarks concerntna indirect quotation contexts 

in 'On Saying That' to propositional attitude constructions by maintaining 

that any belief construction ot the form •x believes that ex • can be para

phrased as •ex. x believes that.' where ex is an utterance token or a speech 

act and where 'that• functions as a demonstrative referring to or. Actually, 

Stich paraphrases the construction 'x believes that• (where 'that' is a dem

onstrative referring to an utterance token) further as follows: •x is in a 

sin:u111r belief state to the one which •would play the typical causal role if 

my utterance of th.-t had had a typical causal history". 28 The italicized 

'that•29 in Stich's paraphrase of •x believes that• is the demonstrative ref-

errina to ex. Intuitively, what this paraphrase means is that the agent x to 

whom we are attributing the belief must be in a state which is simJJ.-r to 

the state which would lead us (the belief ascribers) to utter or. And the 

28 Stlch (1983), p. 88. 

29 The Italics tn the previous quotaUon are u own. 



0 

c 

138 

sorts of similarity which Stich has in mind here are 'functional' or •causal 

pattern• similarity alone with other types such as 'ideoloaical' similarity. 

Two belief states St and. Sa are luDctiiJ1Mlly similar just in case they play 

similar causal roles with respect to nMDY of the same types of behaviours 

and. dispositions to behave and. with respect to nz•DY of the same types of 

causal interactions amoncst belief states. It follows from this definition of 

functional similarity that this concept admits of degrees given the quantity 

term •many•. It is also worth noting that the central notion of similarity 

upon which the other notions depend. is this notion of luDcliDDIIl similarity 

which we have just defined. so 

To see briefly how sttch's story actually works, consider the case 

where after hearing Trudeau during an tntervtew speaking about the evils 

of the Meech Lake Accord, someone ascribes to him the belief that the 

Meech Lake Accord ought to be rejected. What attributing this belief to 

Trudeau amounts to on Stich's account is the claim that the belief state 

play1na a central causal role in the "causal history leadina up to" Trudeau's 

utterance of 'The Meech Lake Accord ought to be rejected' is simil.u to the 

state of the ascriber which would play a central causal role in the history 

leading up to the ascriber's utterance of 'The Meecb Lake Accord ought to be 

rejected •. Sticb makes 1t clear that be is breaking here with the so-called 

functionalist account of belief states31 presumably because the 'sameness' 

30 SUch also takes into accotllt simUrtty of two belief states with respect to other parameters such 

as the network of belief states In which each state ocars. Thus, state S 1 Is ltltHJ/ogkllly stmn .. 

to a distinct state S2 just in case S 1 and ~ occw In networks of belief such thlt a significant num
ber of the belief states In S ,·s network re causally or fllldtone11y simllr to a significant number 

of the states In ~·s network of belief. lt follows from this definition thlt 1deological simllrtty' 

admits of degrees. For details of SUch's accut of stmilrlty of belief states, see his discussion of 
this In Stlch (1982), pp. 180-203 and In SUch (1983), pp. 88-90. 

31 SUch 0983), pp. 6-7. 'Nhat SUch takes • 'ft.rlctlonallst' theory of mental states to be end how thts 
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of belief states is connected not just with functional similarity but also 

with other types of simtlarity conceptually parasitic upon this type. 

It is not our concern here to determine the plaus1b111ty of Stich's neo

funct1onal1st account of belief ascription nor to attempt to deal with any 

problems which Stich's theory may inherit from Davidson's account of 

indirect quotation contexts. For tb,. ale,. of •qum,.nt we shall srant that 

SUch's account of belief ascription and belief constructions for ordinary 

lanauage can survive criticisms. Then the question we shall address in the 

remainder of this section is the following: SUpposing that SUch's account of 

belief ascription and of ordinary lanauase belief constructions is sound, does 

it (in conjunction with a certain view of indefinite descriptions which he 

holds and which will be discussed presently) pose a threat to the tenability 

of the de re/ de dtcto distinction 1 

As an example of the position which Sticb is attacking, Quine in 'Quan

tifiers and Propositional Attitudes' espouses the view that the de re cons

truction '(3v)(x believes y(y is an F) of v)• (where y(y is an F) is an ex-, 

pression denoting an attribute) and the de dicto construction 'x believes that 

(3v)(v is an F)' are both paraphrases of the ambtsuous sentence schema 'x 

believes that someone is an F'. Por example, the supposedly ambiguous sen

tence 'Jones believes that someone is a Liberal' can be paraphrased as 

either '(3v)(Jones believes y(y is a Liberal) of v)' if Jones' belief is de re 

(i.e., be bears a primitive relation to an attribute and to an individual) or 

as 'Jones believes that (3v)(v is a Liberal)' if Jones' belief is de dicttJ 

(i.e., he bears a two-termed relation to a proposition). 

Hence, what Quine is assuming tn the above example is that the ambig

uity of the above sentence can be traced to whether or not Jones' belief is 

ts connected with his dennttton offoocttonal similarity Is explafned In Stlch (1982), pp. 181-4. 
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de re or de dicto. In other words, Quine is assuming that the source of 

ambiguity in sentences of the form 'x believes that someone is an F' is the 

'believes that' construction since belief can be either de re or de dicto. And 

these assumptions, viz., 1) that the ambiguity ot the above sentence is tied 

up with the 'believes that' construction and 2) that there are two types of 

belief, de re and de dicto which explains this ambiguity are what Stich 

wants to call into question. 

SUch's way of handling the ambiguity of the sentence 'Jones believes 

that someone is a Liberal' would be to apply his Davidsonian (as well as 

neo-functionalist) method of paraphrasing belief constructions as follows: 

The sentence 'Jones believes that someone is a Liberal' is analysable as 

'Someone is a Liberal. Jones believes that.' where the pronoun 'that' 

functions as a demonstrative referring to the utterance 'Someone is a IJ]:)

eral'. 32 Furthermore, the sentence 'Jones believes that' could itself be 

paraphrased according to SUch's neo-functtonalist analysis of such cons

tructions discussed above. 33 What is important about Stich's analysis is 

that it involves (a la Davidson) the isolation or separation of the content 

'Someone is a Liberal' from the 'believes that' construction. Then assum-

ing we admit that the original belief sentence is ambiguous, this move sets 

the stage for Stich's argument that the ambiguity has as its source an 

ambiguity in the separable etmtent sentence and not the 'believes that' 

construction. We shall now briefly describe this argument. 

According to SUch, the content 'Someone is a Liberal' which has been 

isolated from the 'believes that' construction tn his analysis of the above 

32 SUch (1983), p. 121. 

:53 SUch (1963), p, 121. 

http:above.33
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sentence 1s amhisuous, which 1s evidenced by the fact that it can be para

phrased. in one of two ways: The first way of paraphrasing the content 

utterance 'Someone 1s a Liberal' 1s to treat the term 'someone' as an ord.in-

ary languaae analogue of the existential quantifier. Thus, we could para

phrase the content as '(3v)(v 1s a Liberal)' and hence we are treating it as 

a so-called 'indefinite description'. 3t And this sort of paraphrase of the 

content as an indefinite description 1s appropriate in cases where the agent 

has no particular individual in mind in the sense that when questioned as 

to whom in particular he 1s referring, he is hard pressed to name any 

specific individual. 31 In short, he merely believes that there are Liberals, 

which is what Qutne and others would eaU a notJOD4/ belief. 

On the other hand, the content 'Someone is a Liberal' 1s analysable as a 

kind of definite description in which case the term 'someone' does not func

tion as the ordinary language analogue of a quantifier occurring in an 

indefinite description. 56 In other words, the term 'someone' functions as 

a kind of uniqueness operator (i.e., 31). For example, if the believer has 

Trudeau in mind, then this content might be analysed roughly as 'Someone 

is a Liberal. He 1s a former Prime Minister of Canada. He is from an 

influential CAnadian family, he is a lawyer, and so on. •37 This sort of 

analysts of the content utterance is appropriate, according to Stich in cases 

where the person to whom we are ascribing the belief has someone in par

ticular in mind in the sense that when questioned as to whom he 1s refer

ring, he might give a name or a series of definite descriptions. And this 

sort of case is what traditionally has been called by Quine and others a 

34 SUch (1983), p. 120. 
3S ibld, p. 1 19. 

36 lbid, p, 120. 
37 Ibid., p, 119. 
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case of de re or relational belief. 

The special twist to Stich 's analysis of the ambiguous construction 

• Jones believes that someone is a Liberal' is that the ambiguity does not rest 

with the 'believes that• construction but rather With the content utterance. 

Prom this, Stich concludes that there is no such thing as de re and de dicto 

Mlief states. There is only one kind of belief which can be accounted for 

(at least as a first-stab) within a neo-functionalist theory, although there 

are two ways of analysing the contents of beliefs or belief states. We shall 

now present an objection to SUch's handling of the de re/de dicto distinct

ion. 

Although the content 'Som~ne is a Liberal' when interpreted as an 

indefinite description, viz. as '(3v)(v is a Liberal)' seems to wear its logical 

form on its sleeve (to borrow a turn of phrase from Davidson), it is not in 

any way obvious how we can sometimes construe this as a kind of extend

ed definite description. What is the relation between the analysandum, 

viz., 'Someone is a Liberal' and the analysans such as 'Someone is a Liber

al. He is a member of an influential Canadian family, and so on ... '? The 

relation is certainly not one of making the logical form of the analysandum 

apparent, especially since the analysans Will presumably vary from believ

er to believer. I.e., two different believers may have different sets of des

criptions by means of which they pick out the relevant individual(s) they 

have in mind. They may have in Kaplan's parlance distinct 'inner stories'. 

Stich's claim that in some cases a content of the form 'Someone is an F' 

can be read as an indefinite description and sometimes as an extended def

inite description is on the same footing as Quine's claim that 'Jones believes 

that x is an F' can sometimes be given a notional reading and sometimes a 
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relational reading. ln neither case ls it ln any way evident what interpre

tation we should give to the appropriate locution, at least given the locution 

alone. However, if we are just concerned with logical form then the 'cor

rect' construal would seem to be that of an indefinite description 1n the 

case of 'Someone 1s an P'. Presumably, contextual considerations such as 

the agent's other beliefs (i.e., his 'inner story') would have to be taken 

into account in order to decide how to interpret the content 'Someone is an 

F'. But if we need to appeal to the agent •s beliefs in order to determine 

what his/her beliefs are, then this amounts to circularity. Thus, at 

the very best, SUch's alternative account of the apparent amibiguity of 

belief constructions is subject to the same sorts of difficulties as the View 

(such as Qutne•s) which it is replacing. 

4. Interlude 

And so, to summarize our discussion to date, in the first two sections 

we have identified three problematic sac= rules of inference concerned 

with the connection between either the identity symbol and the belief oper

ator or between the existential quantifier and the belief operator. These 

three problematic rules are as follows: 

R1: 8G (tt/v), t1 • t2 8G (t2/v) -or its more general version. 

R2: BG (tt/v), t1 • t2 - -B-cx (tlfv) 

R3: Bcx (t/v) - (3v)BCX -or its more general version. 

Actually, the second rule of inference, Bcx (tt/v), t1 • t2- -B-cx (t2fv) 

is derivable only in the sac- + D systems of doxasttc logic. The first two 

rules express the so-called substitutivtty principle, Viz., that eo-referential 
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terms are intersubstttutible in belief contexts. The third rule expresses the 

principle that it is permissible to extstentally generalize with respect to the 

occurrence of a constant t in the scope of a belief operator outside of the 

belief operator. In other words, the third rule permits unrestricted quanti

fication into ~lief constructions. As we have seen, there are reasons for 

suspecting the plausibility of all three rules given various ordinary lang

uage •counterexamples' which we have constructed. However, the counter· 

examples to R3 allowing unrestricted quantification into belief contexts 

are relevant only if the existential quantifier is atven an obj«;tual reading 

in the corresponding domain semantics. Thus, R3 is unproblematic if the 

existential quantifier ts read substttuUonally in the corresponding TV sem

antics. 

It was also noted that the counterpart of R3 for doxastic PiJS$lblllty 

viz., PJICX (t/v) (lv)PJICX which allows unrestricted quantifying 

into doxastic possibility constructions is derivable for the soc- axiom

systems. This schema is philosophically objectionable on the grounds that 

it at least seems to involve a commitment to possibilta- assuming 'l' is 

read objectually. Uke R3, this rule (and the corresponding schema) is 

unproblemattc if 'l' is read substttuttonally. Further, given the sac• 

eltmtnatton schema PJ(lv)G a (lv)PJICX, the problem of quantifying in 

for doxasttc possibillty constructions is resolvable, even given an objec

tual reading of the quantifiers. 

On the other hand, the following rule of inference and schema which 

hold for the SQC• systems are intuitively plausible and hence desirable for 

any system of doxastic loatc: 
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The rule of inference R4 permits existential generalization with respect to 

the occurrence of a term t in the scope of a belief operator in.sidtt the belief 

operator. And as we have just seen, the schema S1 says that belief de re 

implies belief de dicto. 

Apparently, what is needed if we adopt a domain semantics for the 

SQC• systems are modifications to the rules of inference R1, R2 and R3 and 

hence to the SQC- axiom systems which will accommodate the counter

examples we have constructed. To ensure soundness and completeness of 

the resulting systems, corresponding changes will need to be made to their 

domain semantics. (Of course, we shall also want to retain the rule R4 and 

the schema S1 mentioned above, if possible.) So in sections 5 and 6, we 

shall consider Hintikka 's suggestions for modifying the axiomatics of quan

tified belief logic wben tbe qu•ntifi#rs 11re re11d obj«:tu11lly to accommo

date these counterexamples. He discusses these proposals in a number of 

places including Knowl«<p 11nd Bttlief (1962). 

As we shall see, Hintikka's suggestions for a quantified logic of belief 

involves treating belief constructions as ambiguous in the sense that some 

constructions are 'notional' and others are 'relational' (to borrow Quine's 

phraseiology). He then restricts quantifying in (i.e., the inferring of de re 

constructions) and the substitution of co-referentials to what we shall call 

relational constructions. And so treating belief contexts as ambiguous is 

intesral to Hintikka's solutions to the problems of failure pf substitutivity of 

co-referentials and to the problem of quantifying in. (It will be noted in 
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chapter four that his solution to the problem of quantifying in applies a 

fortiori to this problem for contexts of doxastic possib111ty.) 

Although Blntikka •s suaesUons for a quantified logic of belief are able 

to accommodate the various informal counterexamples we have considered 

in the first two sections for logics where the quantifiers are read object

ually, it will be argued ln the fourth chapter that Blntikka •s corresponding 

•m•ntJcs presupposes a problematic •counterpart' metaphysics. This is 

owing to the fact that the semantics he proposes for quantified belief logic is 

a domain semantics such that with each index in a model is associated a 

unique domain of individuals. Then althoush there is no problem of trans

index identity sillce all individuals are index-bound, there is a problem 

connected with idenUtytngtndtviduals' counterparts across indices. 

On the other hand, tf we adopt a truth-value semantics for the SQc

systems such that the quantifiers are given a substitutional reading, then 

R~ (and its counterpart for doxastic possibility) is unproblematic. Then 

emendations must be made in the logic and in the semantics to eliminate R1 

and R2 allowins unrestricted substitution of co-tdenticals although we can 

can 1et by without dispensinl with or modlMDI the rule R3 permittinl 

existential quantification into belief contexts. We st11l of course retain the 

distinction between the de re construction (3v)B4C and the de dicto cons

truction B(3v)a in the semantics in the sense that the latter does not entail 

the former. And, in chapter four we shall propose a quantified logic of 

belief (or to be more precise, a collection of belief logics) which eliminates 

R1 and R2 (for systems containing 4) and yet retaills R3. In proposing 

these logics we dispense with the relational/notional distinction and follow 

the Pregean path of treating beltef contexts as always oblique- i.e., substt-
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tutton of co-referentials ts never permitted in belief contexts. 

Finally, it will be araued in the fourth chapter that although both Hin

tikka •s logic of belief (and its objectual semantics) and our own logic of 

belief (where the quantifiers are read substitutlonally) are able to handle 

the countenxamples discussed in the first two sections, the latter is the 

preferable of the two. Por one thins, the truth-value semantics charac

terizing our own proposed quantified doxasttc systems dispenses with 

domains of individuals and hence the •counterpart' problem encountered in 

Hinttkka's varying domain semantics ts avoided. Further, there is no need 

to invoke the controversial relational/notional distinction in order to solve 

the problem of 'quantifying in' since there is no such problem for a logic 

where the quantifiers are construed substitutionally in the corresponding 

semantics. 

Section 5. Hintik.ka's Solution to the Problem of 'Quantifying In' 

According to Hintikka, existential generalization with respect to the 

occurrence of a constant t outside a belief construction of the form lkX (t/v) 

is permissible only if the agent x has an opinion as to who (or what) t is. 

1. e., tbgn is SDJDtt iDdividu•J v such that x believes that this individual is 

t. 38 Hintikka renders the locution 'there is some individual v such that x 

believes that vis t• for first-order belief logic as '(3v)B(v = t)' such that 

the quantifier is to be read objectually. This locution signifies that x is 

38 See HlnUkka (1962). pp. 144-146; HinUkka (1969)reprlnted In Unsky (1971). p. 156. There is as 

HlnUkkl notes himself In HlnUkkl (1962), p. 145an eneloov between the locutton Hv)BCv • LYIIld 

the locutton Ov)(y • 11 which asserts that there is some indtvidull denoted by t - or more simply 

that t exists since the former locution asserts that there is some lndtvtdull denoted by t such that x 

has an opinion concernino who t Is. 

http:1969)reprlnt.ed
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'acquainted' with the individual denoted by t (and we shall have more to 

say about the concept of •acquaintance' below). Then Hintikka's proposal 

for a Iosic of belief which avoids the rule R3, B4X (t/v) - (3v)N per

mittins unrestricted quantification into belief constructions with respect to 

a constant t is to only allow quantication into belief constructions with res

pect tot which are coDjointld with the appropriate 'acquaintance• locu

tion. More formally, existential generalization with respect to a constant 

t occurring in a locution of the form B4X (t/v) is permitted only it B4X (t/v) 

is conjoined with (3v)B{v • t). 39 Or in terms of inferential contexts, Hin

tikka's stricture is that generaliza.tion with respect tot occurring in a 

locution of the form 801 (t/v) is permitted only if {3v)B(v • t) is added as a 

premise. This stricture on existential generalization for belief contexts is 

imposed for the reason that x may believe that tl (t/v) and yet he may 

have no idea who or what t is, in which case it would not be appropriate 

to infer that th'n is !1D111' Jndividu•J v such that x believes that a.4o 

Consider the example discussed in the second section, viz., Jones' belief 

that the next P.M. of Canada (whoever he/she is) will attempt to balance 

the budget. This would be symbolized in the language of the SQC• systems 

simply as BP'p. Then Hinttkka would not permit existential generaliztion 

with respect tot outside the belief operator. I.e., we could not infer from 

BP'p the de re locution (3x)Bx. This inference would only go through if it 

were added as a premise that Jones has some individual in mind- that he 

is 'acquainted' with someone or other whom he thinks will fit the descrip

tion of attempting to balance the federal budget. I.e., only it Wfl add as a 

premise (3x)B(x = p) can we infer from BFp that (3x)BPx. 

39 ·If we are right. •(Ex~Mp• is Implied by "Bap(b/x) & <Ex!Wb • xt but not by ·sap(blx)• alone.· 
This appears in Htntikka (1962), p. 1-49 • 

..., HtnUkka (1962), p. 143-4, p. 1-49. 
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In the light of Blntikka's remarks concerning existential generalization 

into belief constructions, we could restrict the sac= axiom-schema a (t/v) ~ 

(3v )a to cases where t does not occur in the scope of a belief operator and 

we could add as an axiom-schema (and thus derive as a rule of inference): 

S2 (a (t/v) & (3v)(v = t & B(v = t)) ~ (3v)a where t may occur in 

the scope of a belief operator(s). 

R3* (a (t/v) & (3v)(v • t & B(v • t)) --+ (3v)a where t may occur 

in the scope of a belief operator(s). 

Instances of S2 would be the following: 

1) ((B(Pa v Gb) v Ha) & (3x)(x • a) & B(x = a)) ~ (3x)B((Px V Gb) v Hx) 

2) ((PaPb & Hb) & (3x)(x • b & B(x • b)) ~ (3x)((PaPx & Hx) 

2) is an instance of S2 since 'PaPb' is definable as -B-Pb in which case, 

'b' does occur in the scope of a belief operator. We shall discuss the phil

osophical significance of 2) in chapter four. Also, &iven the definab111ty of 

'Pa' in terms of 'B', the restrictions for S2 and R3* can be made more aen

eral. I. e., it can be required that t may occur in the scope of a dox.astic 

operator{s). For S2 and R3*, restricting quantifying in to contexts involving 

'acquaintance', the singular term t may also occur outside the scope of the 

doxastic operator as in 1) and 2). Then in such cases, Hintikka argues that 

the 'actual world' must be taken into account (or more neutrally, the index 

at which the wff is being evaluated). t1 This is the sianificance of adding 

'v • t' to the acquaintance locution resulting in '(3v)(v • t & B(v = t)'. As 

we shall see in discussing Hintikka 's solution to the problem of the failure 

of substitutivtty of co-referentials for belief contexts, this locution can in

formally be construed as saying that x has a tru1 opinion as to who t is. 

"'1 Hlnllkka (1969) reprinted in Llnslcy (1971), p. 157. 
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x•s having a true opinion as to who some individual t is will be regarded 

as a special sort of relational context which guarantees subsitutivity. 

Further, the locution (3v)(v • t & B(v = t) is needed to guarantee the 

validity of the more general schema S2 with respect to the semantics to be 

discussed tn chaptiT four. Por reasons which will be discussed in the next 

chapter, for systems not containing the schema 4, Ba :-, BBOI it will be 

necessary to impose the proviso on the above schema and rule of inference 

that there is no iteration of any belief operators in a (t/v) within whose 

scope t lies. 

In order to make some sort of philosophical sense out of Hintiltk.a's 

proposal for dealing with the problem of quantifying in for doxasttc loctc, 

we shall compare his proposal to those of both Qutne and Kaplan who try 

to resolve this problem on the ordinary language front. As we shall see, 

Hintiltk.a's resolution to the the problem of quantifying in resembles the 

solution which Kaplan offers in spirit if not in detail. Further, K.aplan 

provides an analysis of the notion of 'representation' which at least gives 

some intuitive content to Hintik.ka's notion of 'having an opinion as to who 

t is' which is symbolized in terms of what we have called the •acquaint

ance• locution. These brief digressions will therefore help us to put into 

perspective Hintikka 's formal solution to the problem of quantifying tn. 

We shall first of all compare Hintikk.a and Quine on the issue of quan

tifying in. The position of Qulne's which we are about to examine is not 

his final word on the subject of quantification in propositional attitude con

texts, although it is the position which is most widely discussed in the 

literature. 

In 'Quantifiers and Proposttional Attitudes' (1956) and in Word and Ob-



0 

0 

151 

jtlct (1960), Quine developed the view that there are two types of belief 

construction, viz., relational and notional. In the simplest sort of case, a 

nl,.tiorul belief construction is such that at least one singular term t 

occurs Within the scope of the belief operator 'purely referentially' or 

'transparently' in the sense that the believer bears some sort of primitive 

relation R to the denotatum oft and to an atttibute.42 Schematically, any 

relational belief construction attributing a property P to some individual t 

can be represented as •x believes y(y is a P) of t• where the locution •y(y is 

a P)' is an expression for an attribute. Quine treats attributes as inteD

$/tlllS of degree 1 such that the degree of the intension is determined by the 

number of tree variables occurring in the 1ntenstonalidiom.t3 An instance 

of this schema would be 'Jones believes that y(y ls a Liberal) of Trudeau' 

where this construction depicts a three termed relation R between Jones, 

the attribute denoted by •y(y is a Uberal)' and the individual denoted by 

•Trudeau•. 

Quine's treatment of relational constructions can easily be generalized. 

Por example, a relational belief construction expressing a four termed rel

ation between a believer. a 2nd-degree intension (assertinz a relationship 

between two individuals y and z) and two individuals t1 and t2 Will have 

the schematic form •x believes yz(y R'd z) of t1 and t2' where •yz(y R'd z)' 

denotes a 2nd degree intension- a two-termed relation. An instance of this 

schema would be 'Jones believes that yz(y denounced z) of Ctcero and Cat

aline' where this construction depicts a four-termed relation between 

Jones, ctcero, Cataltne and the 2nd-degree intension •yz(y denounced z). In 

42 QJine (1960). p. 145. 

43 ().rine (1960), p. 104. ().rine does not ultimately commit himself ontologically to inlensional entities 

although he Onds them useful for elucldaUnt the relaUonal/noUonal distinction. He also uses this tact 
in an earlier article. viz .• ~lne (1956). 

http:Intensiona11diom.t3
http:atttibute.42
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gener~ reldtional belief for Quine will be ann 2! 3-termed relation which 

obtains between a believer, some nth-degree intension (n 2! 1) and n 2! 1 

individuals. It follows, at least prima facie, that there will be an infinite 

number of irreducibly primitive senses of relational belief. 

Relating Quine•s notion of relational belief to the problem of quantifying 

in, Quine restricts quantification into belief constructions with respect to 

singular terms occurring tr•n•p.~nmtly within the scope of the belief op

erator, because in such constructions the believer bears a primitive rel

ation (call it •acquaintance' or whatever) to the individuals denoted by 

these terms. Hence, we can existentially generalize into belief constructions 

only with respect to terms denoting individuals to whom the believer is 

related. 

For example, in the case of the relatiODal construction 'Jones believes 

y(y is a Liberal) of Trudeau', Jones bears a three-termed relation to the 

attribute denoted by •y(y is a Democrat}' and the individual denoted by 

'Trudeau'. Then we can infer that there is some individual v such that 

Jones believes y(y is a Liberal) of v, or more conspicuously we can infer 

that (3v)(Jones believes y(y is a Liberal) of v). Notice then the similarity 

between Quine's solution to quantifying in and Hintikka's, viz., that like 

Quine, Hintik.ka only allows existential generalization with respect to terms 

denoting indivduals with whom the believer is 'acquainted'. Quine simply 

treats this 'acquaintance' relation as a primitive. 

It was noted earlier that Quine posited two senses of belief and there

fore two types of belief constructions, viz., relational and notional. In con

trast to relational constructions, singular terms occurring withing the 

scope of the belief operator in a notional belief construction occur 'opaq-

http:Hlnt1k.ka
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uely'. A singular term in the scope of a belief operator occurs op.aqueJy if 

it does not occur transparently or purely referentially, i.e., if it is such 

that the individual it denotes is not an individual to which the believer is 

related. Since the be11ever is not primitively related to the appropriate 

individual. then Quine prohibits existential generalization with respect to 

the term in the belief construction which would normally denote this 

individual. In short, we cannot make de re generalizations from purely 

notional constructions. Once again, Quine's prohibiting quantifying into 

notional constructions is similar to Hintiltlta 's strictures against quan

tifying into constructions which are not conjoined with locutions indicating 

that the believer is 'acquainted' with the appropriate individual. 

More formally, Qutne treats notional belief as a two-termed relation 

between a believer and a proposition. (Quine regards propositions as Oth 

degree intensions. And of course, Quine ultimately disavows any commit

ment to propositions in favour of •eternal sentences'.) Thus, the schematic 

form of a notional belief construction is 'x believes that p' where pis a 

Oth-d.egrn intension, i.e., a proposition. Purther, Quine then prohibits 

existential generalization with respect to any variables occurring in expres

sions denoting tntensions occurring within the scope of a belief operator

thereby not grantingintensions the same ontological status as individuals 

denoted by singular terms. Since the expression 'p' in a notional construc

tion of the form •x believes that p' denotes a Oth degree intension, i.e., a 

proposition, then it is not permissible to existentially generalize Wtth res

pect to any variables or constants occurring in p. 4-t However, although we 

cannot infer de re constructions from notional locutions, Quine does permit 

de dicto inferences from notional locutions- i.e., we can existentially 

44 Q.dne (1956), p. 189. 
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aeneralize with respect to t occurring in the content proposition p if the 

quantifier occurs as part of the scope of the belief operator, as we shall 

next see. 

To see more clearly what Quine's proposal amounts to with respect to 

notional constructions, consider once more our example of Jones' belief con

cerning the next P.M. of Canada. Since there is no particular individual 

such that Jones believes of that very individual that he/she will attempt to 

balance the budget, then there is no individual to whom Jones is related. 

Thus, we would render this belief notionally, 1. e., as a two-termed rel

ation between ·Jones and the proposition 'that the next P.M. of Canada will 

attempt to balance the budget'. I.e., the appropriate construction in this 

case would be 'Jones believes that the next P.M. of Canada (whoever he/she 

is) will attempt to balance the budget' which is an instance of the notional 

schema •x believes that p'. Therefore, it is not permissible in this case to 

existentially generalize (outside the belief operator) with respect to the 

singular term 'the next P.M. of Canada (whoever he/she is)'. However, 

since Jones believes that individuals who would attempt to balance the 

budget exist similar to our case where the agent believes that primes exist, 

then from the above notional construction we t~~re permitted to inter that 

'Jones believes that (3x)(x will attempt to balance the budget)', which is a 

de dictq construction. 

And so, Quine and Hintiltlta appear to both agree that quantification into 

'notional' belief constructions where the believer is not related to the ap

propriate individual should be prohibited but that quantifying in is permit

ted in purely relational contexts where such a relation does obtain. If the 

belief context is relational then in quantifying in, the scope of the de re 
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quantifier ts the rrl.ttional construction for Quine whereas for Htntik.k.a, 

the scope of the de re quantifier is the notional locution - t. e., the inferred 

de re construction wlll simply have the form (3v)BGI where the scope of 

the quantifier does not include what we have called the •acquaintance' 

locution. Further, they disagree on the tssue of whether or not there are 

two 'irreducible' senses of belief and corresponding belief constructions. (Or 

at least Quine in one of his ph11osophtcal moments disagrees with Rintik.k.a 

on this issue.) Por Quine, a relational construction is not JNITIIJlily re

expressible as a notional locution conjoined with somethtns else. This is 

because notional belief is a primitive two-termed relation between a bel

iever and a proposition whereas relational belief is ann~ 3-termed rel

ation between a believer, an intension and an individual. In fact, there 

are an infinite number of irreducible types of relational belief. 

Hintik.k.a, on the other hand, seems to allow that any relational belief 

construction involving the claim that the believer is 'acquainted' with the 

appropriate individual is expressible as the conjunction of a notional 

construction (which by itself does not assert any such relationship) and 

what we mtcht call an 'acqatntance' locution. I.e,. the rrlati'tmal schema 

Bcx (t/v) & (3v)B(v • t} is the conjunction of the notloru.J schema BCX (t/v) 

and the 'acquaintance' schema (3v)B(v = t). Then for Hintlk.k.a, relational 

belief is reducible to notional belief in the sense that relational locutions 

are partially expressible in terms of notional locutions. It is this sense 

of reduction that has been the subject of much discussion in the litera

ture.t& The strategy that Hintik.k.a is employing concerning the issue of 

quantifying in, viz., that there are types of belief constructions which we 

shall herein call notional and relational, the latter being 'reducible' to the 

45 For example. see HlnUkka (1967), Kaplan (1969), Sou (1970) and Burge (1977). 
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former is similar to the strategies employed hy Kaplan and Sosa. In par

ticular, we shall compare Hintikka and Kaplan on this score. 

Kaplan presents his characterization of the notional/relational distinc

tion in his article 'Quantifying In' (1969). In our example of Jones and his 

belief concerning the next Prime Minister of Canada, assuming his belief is 

not1011•l then the sentence attributing to him this belief would be char

acterized hy Kaplan as • Jones B <the next Prime Minister of Canada (who

ever he/she mipt be) will attempt to balance the budget>•. The symbol 'B' 

is of course the belief operator and the idiosyncratic quotation marks serve 

to indicate that anything occurring Within these marks (and hence the 

entire content sentence itself) occurs relenntidlly, though the reference of 

the terms and the entire content sentence Will not be their 'usual' refer

ences (such as individuals in the case of singular terms) but rather them

selves. In short, the entire content sentence within the peculiar quotation 

marks refers to an expression, viz., itself. 46 (Kaplan bases his character

ization of notional belief sentences at least in part on Frege's remarks con

cerning indirect quotation and propositional attitude constructions.) So 

schematically, any notional belief sentence will have the form •x B <s> • 

where the expression variableS occurring within the idiosyncratic marlts 

ranges over names for sentences. 

Kaplan then prohibits existential generalization with respect to any 

singular tums occurring in the contentS of a notional construction since 

although the terms are referential in the sense that they denote them

selves, they are not custom•rUy referential and so they do not denote any 

individuals with whom the individual is in some sense acquainted. So 

we cannot generalize with repect to the term 'the next Prime Minister of 

46 See Kaplen (1969) reprinted tn linslcy (1971), p. 122. 
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Canada • in the above example, since this expression does not refer to any 

particular individual with whom the believer is 'acquainted' (or in Kap

lan's parlance, the individual is not r,pr,..ntld to the believer by the 

expression which customarily denotes it). 

Notice that there are three senses of the term •referential' being used 

in the above paragraph. First, there is a distinction between custom•ry 

and Jndlrw:t reference implicit in Kaplan's treatment of notional construc

tions, a distinction which has its origins in the writings of Frege. The cus

tomary referent of a singular term t will be an Individual and its indirect 

referent will be itself. Further, for both Quine and Kaplan, the third sense 

of 'referential' which is crucial for determining whether or not we can 

generalize with respect to a term t occurring in the scope of a belief oper

ator is that the term not only denotes its •customary' referent but also that 

the believer is somehow 'acquainted' with this individual. I.e., a singular 

term t occurs referenttallvs in the scope of a belief operator just in case 1) 

t denotes its customary referent and 2) the believer xis 'acquainted' with 

t. This third sense of 'referential' or at least the second condition (refer

ring to the notion of 'acquaintance•) is similar to Htntiklta's notion of a bel

iever's having an opinion as to who t is, or more precisely, it is similar to 

Hintiltlta's notion of having a tru' opinion as to who some individual is. 

As we shall see presently, Kaplan attempts to provide an analysis of this 

third sense of 'referential' in terms of the notion of 'representation'. 

According to Kaplan, a nl•tton•J belief construction ts partially expres

sible as a notional construction in the following sense: In the simplest sort 

of case, a relational belief construction is a two-termed conjunction, one of 

http:custom.ry
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whose conJuncts is a notton•J construction and whose other conJunct is a 

'representation• locution. The representation locution asserts that the rel

evant sinsular term t occurrtns in the notional conjunct 'represents' an 

indiVidual y for the believer x in the sense that t denotes an indiVidual 

with whom the tndivtdual is 'acquainted' - or in Kaplan's parlance, t is 

a vtvtd name of y for the believer x. (We shall presently discuss precisely 

what Kaplan means by •t is a Vivid name of y for x'.) The schematic form 

of a representation locution is R(t, y, x) which can be read as •t represents 

the individual y to the believer x•. Then, the schematic form of a nl•

tion.J belief construction (in the simplest sort of case where there is only 

one sinsular term t) is 'R(t, y, x) & x B <s(t/v)>• such that the first con

junct is the representation locution and the second conjunct is a notional 

construction. Further, we can make a de n seneralization with respect 

to t occurrtns in this construction since the individual it customarily de

notes is one with whom the believer is 'acquainted'. Thus, it is possible to 

quantity into any such construction (with respect tot) resultins in 

(3S)[R(S, y, x) & x B <s(8/v)>]. 

An instance of the above relational schema would be 'R( Trud,t~u, Tru

deau, Jones) & Jones B < Truduu ts a Lil:leral> where the first conjunct 

asserts that the indiVidual Trudeau which is the customary referent of the 

term Trud,.•u occurrins tn the notional construction is such that Jones 

is 'acquainted' with this individual. Further, quantification into this rel

ational construction is permitted with respect to the term Trudeau since 

it 'represents' the individual Trudeau to the believer Jones. I.e., the fol

lowtns de re generalization is permissible, viz., (3S)[R(S, Trudeau, Jones) 

& Jones B <S is a Liberal>]. 
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And so for ltaplan, relational belief is r«<ucibJe to notional belief in the 

sense that relational constructions are partially expressible in terms of 

notional constructions. And on this score, Kaplan and Hintikka are in 

agreement. Recall that for Hintikka, a relational locution (in the simplest 

sort of case where only one sinsular term is under consideration) is a two

termed conjunction consistins of a notiDrNil locution whose schematic form 

is 'lkX (t/v)' and whose second conjunct is an 'acquaintance' locution, the 

schematic form of which is '(3v)B(v • t)•. 

On the other hand, H1nt1kk.a and ltaplan differ With respect to their 

characterization of quanttfytns into relational contexts in the folloWing 

sense: Whereas Hintikka stipulates that the scope of the quantifier in a de 

re construction will be a notional locution only (as was already noted), 

ltaplan stipulates that the scope of the quantifier in a de re construction 

will be a relational construction and hence, the schematic form of a de re 

construction will be (3S)[R(S, y, x) & x s<s(S/v)>]. In short, Hintikka 

allows quantifying into notional locutions occurrins in relational contexts 

whereas Kaplan allows quantifytns into relational locutions. 

We shall now consider Kaplan's notion of •representation' since this 

may shed some light on the intuitive construal of Hintikka's 'acquaintance• 

locution '(3v)B(v • t)' as well as the locution '(3v)(v = t & B(v == t))'. 

Accordins to ltaplan, a sinsular term t represents its customary refer

ent y to the believer x just in case 1) t denotes y which is tantamount to 

saying that t must have y as its customary referent, 2) t is a name of y 

for the believer x and finally 3) t is vivid. <l? Kaplan claims that a term t 

denotn an individual by virture of its descriptive content and hence that 

denotation is "the analosue for names to resemblance for ptctures•48 Then 

41 Keplan (1969) reprinted in linsky (1971), p. 138. 

4S ibid .• p. 136. 
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presumably a term, if not itself a definite description must have cert.ain 

descriptions associated with it if it is to denote an individual. Further, 

Kaplan provides a so-called genetic account of how a singular term comes 

to be a n•me of sometbiDI for someone . For example, Jones may read in a 

magazine article about a famous political figure Jean Chretien who is des

cribed in the article as quite possibly the next Prime Minister of Canada, a 

loyal Liberal and so on. If he had not heard others mention this individual 

beforehand then Jones would, on the basis of the descriptions in the article 

dub him 'Chretien'. Then the expression 'Chretien' has become for Jones a 

name of the individual K.ennedy. Or, if he has heard others speak of this 

individual Chretien using the same descriptions he would have read in the 

article then once again the expression 'Chretien' will become a name of the 

individual Chretien for Jones. In short the term 'Chretten' (whose initial 

reference has been established by descriptions or perception or whatever) 

has been passed on from speaker to speaker which is what Krtpke calls a 

'causal' theory of naming. 49 And so, as Kaplan notes, there is no one way 

by which an expresssion 8 must come to be a name of some object y for a 

believer x. In some cases, the so-called dubbing of the object may come 

about through direct perceptual means, in other cases through descriptive 

means and in still other cases by being passed on from speaker to 

speaker.50 

According to Kaplan, a further condition which a term must satisfy for 

it to represent some individual y to a believer x is that in addition to its 

49 Kripke develops a so-called causal account of names in Kripke ( 1980) which bears certain similar

flies to the account which Kaplan is providing. However, Kripke only allows that proper names can 
serve as names of objects since they, unlike descriptions, re rigid designators. A rigid designator 

is an expression which denotes the same object in all the worlds at which it exists. 
50 Kaplan (1969) reprinted in Linsky (1971). p. 135. 
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denoting y and its beina a name of y for x, it must also be vivid. A name's 

vividness is tied up with the role its denotatum plays in a believer's so

called inner story which is the set of contents the agent believes. 51 Thus, 

Jones may believe that some individual is a loyal Liberal, is a former Min

ister of Finance, is the new leader of the Liberal Party and so on and per

haps the individual he has dubbed 'Chretien• satisfies these descriptions. 

Thus, when he considers these descriptions, the individual he has dubbed 

'Chretien • comes readily to mind. Itaplan also admits of degrees of vividness 

of a term and the degree of vividness will depend upon the role the deno

tatum of the term plays in the aaent's inner story. at Thus, in the case of 

Jones, it he has many beltefs about the Ufe and accomplishments of a 

certain former Minister of Finance then the name 'Chretten • will for him 

be of a high degree of vividness. Thus, Kaplan stipulates that for an ex

pression t to represent y to x, it is a necessary condition that t be a 

suffici#nlly vivid name of y for x. 

Kaplan notes that his notion of • vivid name' and Htntikka's notion of 

'having an opinion (belief) as to who t is' more or less amount to the same 

thing. &3 I.e., to have a vivid name of some individual x implies that this 

individual has a central role to play in the agent's 'inner story• and hence, 

it would seem to follow that the believer will have an opinion as to who 

this individual is. Thus, we could say that a believer x•s having a (suf

ficienUy) vivid name t of an object y is a suffici#nl condition for x•s hav

ing an opinion as to who (or what) y is. However, if a term t r#prt~unts 

an object y toxin the sense that not only is t a vivid name of y for x but 

51 Kaplan In Llnsky (1971). p. 136. 
S2 Ibid., p. 136. 

53 Kaplan in Llnsky 0971), pp. 136-7. 

http:story.52
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also that t •actually' denotes an object y, this is sttll not !luffici.-nt tor x's 

havina a tru11 opinion as to who some individual y (denoted by t) is, as 

will be arsued below. 

Whether or not we agree with ltaplan's story of what it is tor an ex

pression t to represent an individual y to a believer x, at least his account 

of representation gives some substance or flesh to the notion of an agent's 

having an opinion as to who y is. M I.e., we can make some sort of intui

tive sense of Hintikka's •aquaintance' locution whose schematic form is 

(lv)B(t • v) which occurs as a conjunct in relational construtions (or as a 

premise in a relational inferential context). 

Before discussing Hintikk.a's solution to the problem of the failure of 

substitution of co-referentials in belief contexts, there is a possible objec

tion to his way of handling the problem of quantifying in. As was noted, 

B1ntikka 's solution to the problem of quantifying in relies on the distinction 

between n.l.ltlon.tl and notlon.tl constructions such that sentences of the 

former type are partially expressible in terms of sentences of the latter 

type. However, there has been much controversy in the literature con

cerning the tenability of the thesis that relational belief is rllduclble to 

notional belief in Hintikka's (and ltaplan•s) sense. Tyler Burae, for example, 

has called the reductbtlity thesis into question. 5& 

Burge maintains that K.aplan's thesis that relational belief constructions 

are partially expressible 1n terms of notional belief constructions amounts 

to the position that relational belief is a 'mere species' of notional belief. 66 

54 Ernest Sosa ln Sosa (1970) argues that an t~~P~Iatable consequence of Kaplan's notion of Vividness' 

is that one could not have relational beliefs concerning Individuals that play only a minor role in the 

believer's so-called inner story. Thus, Sosa replaces the notion of Vivid name' with the notion of 

'dfstlft9Uished term'ln his characterization of relational belief which supposedly avoids this 

consequence. Hts remarks on this matter can be found on pp. 889-891. 
ss See Surge ( 1977). 
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According to Burge, this characterization of relational beliefs ignores their 

fundamentality and hence it is wrongheaded. Burge has argued at length 

that relational beliefs are more fundamental than notional ones in the sense 

that havtng ballets of the former type "1s a necessary condition tor using 

and understanding language - and in fact for any any propositional under

standing - and tor acquiring empirical knowledge". 57 Burge defines rll

•tJon•J beliefs as involvins some sort of non-conceptual relation between 

the believer and the appropriate individuals or objects, whereas Dctional 

beliefs involve a relation between the believer and a dictum - such as a 

proposition. Y (In fact, Burse uses the terms de re/de dicto to make this 

distinction since he first of all alludes to it in terms of the scope of the 

existential quantifier.) Thus, Burse seems to be claimtns that we could not 

even have notional beliefs (defined as above) without having at least some 

relational beliefs. In this sense, relational beliefs are more fundamental 

than notional beliefs and hence the former is not reducible to the latter. 

As support for his fundamentality thesis, Burge cites the case of a 

computer which has perfect mastery of the syntax of some mathematical 

language. In such a case, it would presumably be unwarranted to claim 

that the computer has any UJZdlrstJIDdiizg of this tansuase since this would 

require an ab111ty on the computer's part to interpret its symbols. But the 

ability to interpret the symbols of a language would, claims Burse, require 

the ab111ty to make non-linguistic or non-conceptual correlations between 

the symbols and what they denote. 59 Further, Burge claims that the 

ability to make non-conceptual correlations between symbol and referent 

56 8trge (1977), p. 350. 

57 8trge (1977). p. 349. 
58 Bc.rge (1977), pp. 345-6. 
59 Bc.rge {1977), p. 347. 
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presumably presupposes that the believer has relational beliefs. Therefore, 

we could not even attribute to the computer notional beliefs- since the 

abUity to understand dicta such as propositions presumably requires the 

ability to have relational beliefs. And so Burse concludes that in seneral, a 

necessary condition for attributing beliefs (including notional ones) to an 

asent is that we can also attribute to the agent (irreducibly) relational 

bellefs.60 

Burge then sees Kaplan's reducibillty thesis as posing a potential threat 

to his fundamentality thesis and so he attempts to refute Ita plan's position. 

This of course bears directly on Hintik.k.a 's treatment of belief since he too 

subscribes to the reducibUity thesis. To counter Kaplan's position, Surge 

argues that there can be cases where an agent has a relational belief (in 

Burge•s sense of the term) and yet, we would not say in such a case that 

the agent has a vivid name that denotes the individual who is the object of 

his belief. One example which Burge cites is that we may see someone 

walking in the distance and not see him clearly enough to individuate 

him. Thus, he does not play a central role in our 'inner story', meaning 

that we do not possess a vivid name of this individual and yet, we may 

believe of tbis Jndividu41 that he has a red cap - which is a relational 

belief. Therefore, there is something irreducibly non-conceptual about rel

ational belief (in the sense that we can have such beltefs wtthout possess

ing vivid names) and hence, they are not mere species of notional beliefs. 

The reducibUity thesis is therefore wrong. 

!rnest Sosa has suuested adopting a more modest version of Kaplan 's 

reducibility thesis, viz., that to have a relational belief, it ts not necessary 

that the agent have a vivid name of the relevant individual(s) in his pos-

60 Burge (19n> • .,. 348. 

http:beUefs.60
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session, but merely a 'distinguished term •. 61 As Sosa notes, a distinguished 

term can vary from context to context - sometimes it may be associated 

with a complex of intricate descriptions and sometimes it may simply be 

a name in the absence of descrtpUons.62 Then thts would allow for cases 

where an indivcliual does not play a central role in the agent's inner story 

and yet, the agent may still have a relational belief concerning this indivi

dual. Thus, in Surge's case of the man with the red cap, Sosa would say 

that the believer has a disUnguished term for this individual, viz., 'the 

man in the distance with the red cap' although this may be the only des

cription of this individual the believer possesses. In response to this, Burge 

would retort that even though an agent will often or even always have 

a dtsttnguised term (1n SOsa's sense} 1n hts/her possession, the tact that 

distinguised terms are contextually dependent indicates that there is some

thing 'irredicibly' non-linguistic or conceptual about relational belief. 63 

lt is not initially clear that Burge's indictment of K.aplan's vivid name 

criterion for having relational beliefs is thereby an indictment of Hintik.ka 's 

notion of 'having an opinion as to who (or what) t is'. This is because 

having a vivid name for an object y is (as we have sussested) merely a 

suffici,nt and not a neccessry condition for having an opinion as to who or 

what some individual is. There is no reason why a believer x couldn't have 

an opinion as to who or what some individual t is even though x doesn't 

have an elaborate set of descriptions or a vivid name by means of which to 

pick. out or identify t. M Therefore, it would not be inconsistent with Hin

tikka's characterization of r'l.t.tit:JJUJ belief (in some sense of the term) 

61 Sosa (1970), p. 890. 

62 Ibid. pp. 890-1. 

63 Burve 09n>. p. 352. 
64 For example, see HinUkka (1962), p. 149. 

http:beUef.63
http:descrlpuons.62
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that one could have a relational belief without thereby having any set of 

descriptions associated with it. 

However, eztendins Burse's indictment of Kaplan's vivid name critier

ton to Sosa's 'dtstinsutsded term' criterion for attributins to an asent rel

ational beliefs does thereby eaU into question Hintikka's 'acquaintance' 

condition for attributing relational beliefs to asents. This is because min-

ima.lly, havins an opinion as to who t is requires that the asent possesses a 

sinsular term (name or description) of the individual, viz., t. (I.e., the 

locution (3v)B(v == TuUy) says that there is some individual v such that z 

beleves that vis Tully.) But distinsutshed terms in certain types of con-

texts can turn out to be merely sinsular terms - names or definite des

criptions. 

Nonetheless, althoup Hintikka like Kaplan subscribes to the reducibility 

thesis and is thereby open to Bursa's objection just discussed, there is a 

certain sense in which for Hintikk.a, relational beliefs are irreducible. I.e. , 

the acquaintance locution whose schematic form is '(3v)B(t == v)• which is 

conjoined with a notional locution in a r'l•tJon•J construction of the form 

'8« (t/v) & (3v)B(t • v)• is itself a d, r, construction which is inferable 

from a relational construction. I.e., one of the components of a relational 

construction is itself relational. As Hintikka himself has noted, the de re 

locution '(3v)B(t • v)• is not inferable from the notional locution B(t • t•) 

unless this in turn is conjoined with the de re locution (3v)B(t • v). Also, 

this stricture prevents the sort of case where from Jones' belief that Tully 

is (id.entical with) Tully we infer that Jones has an opinion as to who Tul

ly is. I.e., it prevents all inferences of the form B(t = t) ---+ (3v)B(t = v) 

since the conclusion (3v)B(t • v) must also be a premise of the arsu-
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ment. 66 In short, we must beg the question for any such inference to go 

through." 

Now that we have considered in some detail Hintikka's views on 

quantifying 1n, which relies on making a distinction between relational 

and notional belief (although Hintikka himself does not employ this term

inology} such that the former is 'reducible' to the latter, we shall next 

consider his suggestions for dealing with the problem of the failure of the 

substitutivity principle for first-order belief logic. As we shall see, Hintik

ka's solution to this problem also relies on distinguishing between notional 

and relational constructions - although the relational constructions are of 

a special type. 

6. Htntikk.a's Treatment of the Apparent Failure of 

SUbstttutivity of Co-referentials for Belief Contexts 

Vis a vis the sorts of examples we considered in section 1, the following 

schemata which allow unrestricted substitution of co-referentials in doxas-

tic contexts were called into question qua principles of belief attribution: 

i) (a (tt/v) & t1 = t2) :;, a (t2fv) where t1 and t2 occurring 1n a (tt/v) 
and« (t2fv) respectively, may occur 
in the scope of a doxastic operator(s). 

ii) (lkl (tt/v) & t1 • t2) :;, ""B-« (t2fv) for sQC• + D systems only. 

Corresponding to these schemata are the following rules of inference: 

tu) a (tt/v), t1 = t2 --+a (t2fv) where t1 and t2 occurring in a (tt/v) 
and« (t2/v) respectively may occur in 

65 HinUkka (1962), p. 145-6. 

66 ibid, p. 1<45. As HinUkka fW'ther notes, this type of slricbre is similrlo the striclW't imposed In 

free logics which would prevent the inferencel• t ---+ (3v}(v •l) since in free logic, an 

eddiUonal required premise is the conclusion (3v )Cv • t). 
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the scope of a doxastic operator(s). 

iv) 1101 (tt/v), tt • t2 - -B-a (tafv) for SQC= + D systems only. 

Notice that i) and W) are more general versions of (1101 (tt/v) & t1 • t2) ;:, 

1101 (ta/v) and 1101 (tt/v), t1 • t2 - 1101 (tafv) respectively. Thus, we 

have stipulated in the case of i) and its corresponding inferential version 

iii) that t1 and t2 may occur in the scope of dox4stic operators (which in

cludes both •a• and 'Pa'). The following would both be instances of i): 

Ot (BPa & a • b) ;:, BPb 

U}a ((Gc & (BPa V PaHa)) & a • b) ;:, (Gc & (BPb V PaHb)) 

Supposing the undesirabiUty of 1) - iv ), then we would not want any 

of their instances as theses/inference rules for a first-order logic of belief. 

To this end, all instances of the schema i) can be blocked (as theses) for 

any system of quantified. belief logic by restricting the sac• axiom-schema 

(a (tt/v) & t1 • t2) ;:, a (tafv) to cases where tit t2 do not occur within the 

scope of a doxastic operator in a (tt/v), a (tafv). Or, we could simply stip

ulate that a (tt/v), a (ta/v) are wffs of standard first-order logic. Fur

ther, in restricting this axiom-schema in this way, we thereby render all 

instances of 11) - iv) underivable for our quantified doxastic logic since they 

depend on the appropriate instances of i) for their derivation. (In the case 

of the derivation of any instance of ii), see section 1.) 

Also, by restricting the axiom-schema (a. (tt/v) & t1 • ta) ;:, tJ. (ta/v) to 

cases where th ta do not occur within the scope of a doxastic operator in 

cc (tt/v), cc (ta/v) we also block the derivation of any instance of the sac
thesis-schema t1 • t2 , B(tt • ta) which as was noted in section 1 of chap

ter two is derivable by appealing to the unrestricted version of this axiom

schema. It was also noted that the schema t1 = ta ;:, B(tt • ta) asserts the 
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somewhat implausible principle that asents are omnido:xasttc with respect 

to continpnt identities. Thus. by restrtctinc (ex (tt/v) & t1 = t2) ;:, ex (t2fv) 

in the way suaested above, we shall thereby rid our lQiic of the undesir

able feature that aaents are omnldo:xastlc With respect to tdenuues. 

Since we shall want to ellmtnate 1) - tv) as thesis-schemata/inference 

rules of our quantified loaic of belief, we shall consider alternative schem

ata/rules to replace them, such that these schemata/rules do not allow un

restricted substitution of co-referentials In belief (or more generally, do:x

astic} contexts. Hintikka has two sugesttons along these lines. 

As a first stab, Binttkka's way of handlinc the countere:xamples to the 

schemata and rules of inference 1) - iv) is to simply require that the rel

evant identity must occur within the scope of a belief operator. 67 I.e., in 

the case of the schemata 1) and 11), we add to the antecedent 'B(t1 = ta)' 

which says that :x l»li1ws that the ldentitiy t1 • ta obtains and in the case 

of the rules of inference we make an analogous move. So, the emendated 

versions of i) - iv} will be: 

t)• (ex (tt/v) & t1 • ta & B(tt • t2)) > ex (t2fv) where t1 and ta occurring 
in ex (tt/v) and ex (t2fv) respectively, may 
occur in the scope of a doi:astic operator(s). 

U)* (Bex (tt/v) & t1 • ta & B(tt • t2)) ::> -a-a (t2fv) for sac= + 0 systems. 

Ut)• ex (tt/v), t1 • ta, B(tt • ta) - ex (t2fv) where t1 and ta occurring in 
t1. (tt/v) and t1. (t2fv) respectively may 
occur in the scope of a do:xastic operator(s). 

1v)* Bcx (tt/v), t1 • ta, B(tt • t2) - -a-ex (t2/v) for SQC= + 0 systems 

In the case of 1)* and lU)*, the conjunct 'tt • t2' in the antecedent of 1)* 

and the premise 'tt = ta' in 111)* are both superfluous if ex (t1/v) and 

67 See Hinttkka (1967). p. 55 and Hintlkkl {1969) reprinted in Llnsky (1971 ). p. 155. 
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or (t'liv) are B'(tt/v), B'(t'liv) or are Pa'(tt/v), Pa,(t2/v). Also, t1 = t2 

could be deleted from 11)* and iv)* without any loss of plausibility. This is 

owing to the fact that in purely doxastic constructions all that matters is 

that the agent biH"-"S that t1 = ta for substitution to go through. This 

w1ll become evident when we consider Hintik.ka's semantic proposals. 

Note that the locution B(tt • ta) in the above constructions is notional

it is not assumed that the agent has any opinions as to who the individual 

denoted by t1 and ta is. The agent x merely believes that the identity t1 = 
ta obtains. And this would seem to guarantee that substitution will go 

through, as we shall now demonstrate. 

Consider the counterexample outlined in section 1 to i) and 111), viz., 

the case where Jones believes that ctcero was an orator and yet, given 

the sinDKtb,D«< disquotation principle, Jones may wtthold assent to the 

claim that Tully was an orator in which case, Jones does not believe that 

Tully was an orator (even though exactly one person is denoted by 'Cicero' 

and 'Tully'). However, if it is stipulated beforehand that Jones believes 

that the identity 'Tully = Cicero• obtains, then presumably this situation 

would not arise. Similar remarks apply to the counterexample to U) and 

lv). Further, since it is no longer assumed that agents are omntdoxastJc 

With respect to contingent 1dent1t1es if we block an instances or t1 = t2 :;, 

B(t1 • ta), then from the mere fact that an identity actually obtains, it 

does not follow that the agent believes that it does. Thus in the Tully/Cicero 

example, the reason that Jones does not believe that Tully is an orator even 

though he believes that Cicero is an orator ts that he is not logically omnt

doxasttc With respect to contingent identities. 

A second suagestion which Htnttkka proposes for dealing with the fail-
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ure of substttuttvity of co-referenttals for belief contexts is the following: 

Suppose that the agent x has an opinion as to who some individual denoted 

by ttis and that x also has an opinion as to who the individual denoted by 

t2 ts. Suppose further that the agent's optntons as to who t1 and t2 are, are 

tru' - t.e., his opinions hold sway In the actual world. Then according to 

Hintikka, we could render this situation symbolically as '(3v)(v • t1 & B(v 

• tt)) & (3v)(v • ta & B(v • ta))• which intuitively says that x has tru1 

opinions as to who the individuals denoted by t1 and t2 are. Further, sup

pose that the identity t1 • t2 actually obtains, or more neutrally, that this 

identity obtains at the index which the agent 'inhabits•. Then since x's 

opinions (as to who t1 and t2 are) are true and given that t1 and t2 are 'in 

fact' identical, it would seem to follow that x Will recognize or believe that 

t1 and t2 are identical. I.e., Hintikka is here suuesttna that from (3v)(v • 

t1 & B(v = tt)), (3v)(v • t1 & B(v • tt)) and t1 = t2 we are warranted in 

inferring that B(tt • t2),68 Notice that both (3v)(v • t1 & B(v • t1)) and 

(3v)(v = t1 & B(v • t1)) are special sorts of •acquaintance' locutions - such 

that the opinions that x has about t1 and t2 are in fact true. 

Vis a vis Htnttkka 's remarks here, one of the emendations we shall 

propose to the SQC= systems will be to add as an axiom-schema, 

v) ((3v)(v = t1 & B(v • t1)) & (3v)(v • t2 & B(v • t2)) & t1 • t2) :;, 

B(tt = t2) 

Given v) as an axiom-schema, we could obtain its inferential version, viz., 

vi) ((3v)(v • t1 & B(v • tt)), (3v)(v • t2 & B(v = t2)), t1 • t2 -

(B(tt = t2) 

Once again, v) and vi) both express the attributive principle that if x has 

true opinions as to who two individuals are, and these two individuals are 

68 See Hlntlkka (1967), pp. 55-56. Hlntlkka makes this suggetlon for eplstemlc contexts. 
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'in fact' identical then x will believe (notionally) that this identity obtains. 

It is also worth noting that if an agent x has a true opinion as to who 

some individual denoted by t1 is and if the identity t1 • t2 obtains then 

presumably x will thereby have a true opinion as to who the individual 

denoted by t2 is (viz., the same person who is denoted by t1). Thus, Hin

tikka would supposedly endorse the schema ((3v)(v a t1 & B{v • t1)) & 

t1 = t2) :;, (3v)(v = t2 & B(v • t2). 

We shall presenUy show how Hintikka's principle can be used to ex

plain why the substitutivity of identicals sometimes fails for belief con

texts. Pirst, however, we shall consider a possible objection to the principle 

expressed by v) and vi). It could be objected that in a case such as K.ripke's 

Paderewski example discussed in section 1, Jones has true opinions as to 

who Paderewski is, viz., both a politician and a pianist. Yet Jones does not 

recognize that Paderewski the pianist and Paderewski the politician are one 

and the same person- under different descriptions. Then this is a counter

example to Hintiltka's principle that if an agent x has true opinions as to t1 

and t2 are and if t1 and t2 are one and the same person then x will rec

ognize that this identity obtains. 

We shall now consider a possible response which H1nt1kk.a could. make 

to this objection. It could be countered that in the Paderewski example, 

although Jones has opinions as to who Paderewski is - under certain des

criptions- and although these descriptions are true, it is hasty to conclude 

that Jones knows (or even has a tru11 opinion as to) who Paderewski ls. 

I.e., it could be claimed that although having true descriptions of someone 

may often play a role in knowing who that person is- or having tru11 

opinions as to who xis- the possession of said descriptions is by no means 
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sufficient (or even necessary) for knowing who someone ts. Perhaps 

havtna a true opinion as to who someone ts, ts in part, or in some cases 

such as the ones Burae has outlined even wholly a matter of some sort of 

non-conceptual •acquaintance• with the 1nd1vtdual as Htnttkka himself has 

suggested. Thus, in the Tully/Ctcero case, Jones may have opinions as to 

who the individual named 'Tully' is and he may have opinions as to who 

the individual named 'Cicero' is, by virtue of the possession of a set of 

(true) descriptions. Yet, Jones may fatl to make the connection that Tully 

and Cicero are one and the same person. Then in such a case one would be 

inclined to say that Jones does not know (nor does he have a true opinion 

as to) who Tully, i.e., Cicero is. 

To continue with our exposition of Hintiklta's second way of handling 

the failure of the suhstitutivity of co-referentials for belief contexts, he 

uses the principle (right or wrong) expressed by v) and vt) to explain why 

this failure sometimes occurs and to show that in certain types of rela

tional contexts, substitution will so throuah. 

Suppose that x believes that a (tt/v) at Wf· Suppose further that x has 

true opinions as to who t1 and t2 are and that the identity 't1 = t2' obtains 

at the particular index. Then it follows by vt) above that x beli~ that 

t1 • t2 obtains. But by a more specific version of tit)•, vtz., BcX (tt/v), t1 = 

t2, B(tt = t2} --+ BcX (t2fv), it follows that x also believes that a (t2/v) at 

wi. However, if x fails to have a true opinion as to who the individual 

denoted by t1 and t2 is then this sort of situation is not sufficient for 

inferrrin& that x believes that a (t2fv). 

To see how this way of handlina co-referentials for belief contexts 

works, consider once more our example where Jones believes that Cicero 
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was an orator anc:l yet he does not believe that Tully was an orator. Hin

tikka's first explanation of why this sort of situation is possible is that 

Jones may not believe that Tully is identical to Cicero. Otherwise, he would 

(U he is in some sense of the term 'rational') also believe that Tully was 

an orator. Notice that in this example, since no assumptions are made to 

the effect that Jones is 'acquainted' with the inc:lividual Cicero (i.e., Tully) 

then it follows that Jones' belief that Cicero is an orator is best treated as 

being l'lotion.V. However, what Hintikka's second proposal for handling co

referentials in belief contexts amounts to is that if Jones' belief that Cicero 

is an orator is re/~tiOJM/ in a special sense, viz., that he has a true opin

ion as to who Cicero is in which case given that Tully • Cicero, Jones has a 

true opinion as to who Tully is then it follows that Jones believes that 

Tully is identical with Cicero. 69 And stven that Jones believes that Ctcero 

was an orator, it follows (by ill)*) that Jones also believes that Tully was 

an orator. If Jones fails to have true opinions as to who the indivdual 

denoted by both 'Tully' and 'Cicero' is then we are not warranted in infer

ring from his belief that Cicero was an orator that Tully was an orator. 

Thus, Hintikka's explanations of the Tully/Cicero example are 1) Jones 

does not believe (notionally) that the same tndivdualis denoted by these 

terms or 2) Jones d.oes not have trur opinions as to who Tully, i.e., Cicero 

is. Purther, Hintik.ka's two explanations are linked as follows: 1f Jones 

does have a true opinion as to who Tully, i.e., Cicero is then he will there

by believe (notionally) that Tully is id.entical to Ctcero from which it fol

lows that if he believes that Tully was an orator he believes that Cicero 

was an orator. On the other hand, Jones' believing notionally that Tully 

is identical to Cicero will not be sufficient for claiming that he has true 

69 See once again Hlntlkka (1967), pp. 55-6. 

http:Cicero.69
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opinions as to who Tully, i.e. Cicero is. He may believe that the identity 

'Tully = Cicero• obtains without his havin& the sli&htest idea as to who this 

individual is. 

Finally, in terms of adopting Hintik.ka's second way of dealing with co

refentials in belief contexts (in addition to his first way), if we have al

ready revised the sac- systems in such a way that 1)* and v) discussed 

above are added as axiom-schemata, then any instance of the following 

schema can be easily derived for these emendated systems (as we shall 

demonstrate in the next chapter): 

vii) (a (tt/v) & (3Y)(v • t1 & B(v • t1)) & (3Y)(v • t2 & B(v = t2)) & 

t1 • ta) ;, a (tvv) -where t1 and t2 occurring in a (tt/v), a (ta/v) 
respectively may occur within the scope of 
a doxastic operator(s). 

Given vii), the following will be a derived rule of inference: 

viii) a <tt/v), (3Y)(v • t1 & B(v • t1)), (3Y)(v • t2 & B(v = t2)), t1 = t2 

--+ a (tvv) - where t1 and t2 occurring in a (t1/v), a (tvv) 

respectively may occur within the scope of a doxastic operator(s). 

Although both vii) and viii) are rather horrendous-looking, they merely 

express the principle that co-referentials are intersubstitutible in belief 

contexts provided that the agent has true opinions as to who the referents 

of these terms are. 

Concluding Remarks: 

Now that Hintikka's proposals for dealing with 1) the problem of quan

tifYing in and 2) the problem of the failure of substttutivtty of eo-refer-
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entials for belief contexts have been discussed, we shall in the next chaper 

systematize his proposals on the axiomatic front vis a vis emendations to 

the SQC- systems discussed in chapter two. Also, we shall discuss H1nUk

ka's proposals on the •m•ntlc front for dealing with the two problems 

just mentioned and a characteristic semantics for the emendated sac= sys

tems based on his proposals will be developed. 

Finally, since quantifying in is only problematic for systems where the 

quantifiers are construed objectually, we shall propose a collection of logics 

where the quantifiers are interpreted substttutionally and such that quan

tification into belief contexts is unrestricted and yet substitution of co-ref

erentials in belief contexts is prohibited. These logics will also be emendat

ed versions of the sac• systems discussed in chapter two, and their sem

antics will be emendated versions of the TV semantics also discussed in 

that chapter. It will then be argued that we should adopt the substi

tutional sac- systems rather than the emendated systems based on Hin

tikka 's proposals since the former has a less problematic semantics than 

the latter and because the former does not posit two types of bellef. 
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Chapter Four 

Some Proposals for a Quantified Logic of Belief 

1. The Hin-SQC= Systems of Doxastic Quantiticattonal Calculi 

To bring together Bintik.lta's various suaesttons for a logic of belief 

which were discussed tn the previous chapter into some kind ot coherent 

whole, we shall now propose a set of alternative axiom systems to the SQC= 

axiom systems for belief logic. These alternative axiom systems are based 

on Bintiklta's proposals for dealing with the apparent faUure of the subs

tituttvtty principle for belief contexts as wen as his proposed stricture with 

respect to quantifying into such contexts. We shall call the following set of 

axiom schemata and rules of inference the system Hin-K.QC= such that any 

Htn-SQC• system Dot containing 4, Bel , BBcl can be obtained by 'exten

ding' the doxasttc sententtal fragment of Htn-KQC• in the way described in 

the first chapter. (For example, by adding the schema D, vtz., Bel ;:, PJICX to 

Hin-KOC: we would obtain the system Hin-KDoc=, and so on.): 

AS 1: oc (where oc has the form ot any PC thesis-schema) 

AS 2: (Bel & B(oc , ')) , B' 

AS 3: cc (t/v) , (3v)cc (provided that t does not occur within 

the scope of a doxastic operator) 

AS 4: (cc (t/v) & (3v)(v = t & B(v • t)) , (3v)cc (where t may occur 

within the scope of a doxastic operator(s) and where 

there is no iteration of any doxastic operator.) 

http:Hln-K.OC
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AS 5: t • t 

AS 6: (« (tt/v) & t1 = t2) ;:, « (tlfv) (provided that t1, t2 do not occur 

in the scope of a doxastic operator) 

AS 7: (a (tt/v} & t1 = t2 & B(t1 = t2)) ;:, a (tlfv) (provided that t17 t2 

may occur in the scope of a doxastic operator 

or possibly several and where there is no 

iteration of any such operators.) 

AS 8: (tt = t2 & (3v)(v • t1 & B(v = t1)) & (3v)(v = t2 & B(v = t2)) ::> 

B(tt = t2) 

The primitive rules of inference will be: 

MP: a , « ::> ' ' 

R3: 1-a (t/v) ;:, , ____. l-(3v)a ;:, , (tor any constant t foreign to (3v)a ::> ' 

and provided that t does not occur in 

the scope of a doxastic operator.) 

RB: 1-a ____. 1-Ba 

AS 3 and R3 prohibit unrestricted quantification into belief contexts as well 

as quantification into contexts of doxastic possib111ty. Thus for example, 

neither of the following are instances of .AS l, viz., BPa ::> (3x)BPx and PaPa 

::> (3x)PaPx (the latter being equivalent to -B-P a ;:, (3x)-B-Px). AS 4 in 

effect restricts quanttfytns in (for both doxasttc necessity and possibtlity) to 

nl•tlon•l contexts. 

The followtns is a version of AS 4 for doxastic possibility, (PaGC (t/v) & 

((3v)(v = t & B(v = t)) ::> (3v)PaGC. It could be objected that in the Hintikka 

systems, we are committed ontolosically to poss1b111a (and in this case there 

is supposedly no reduction schema to mitisate the situation- althoush we 
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shall leave this question open), provided that the agent is 'truly acquainted' 

with the appropriate individual. For example, an ordinary language 

instance of this schema milbt be "If it is true for all Jones believes that 

Pegasus is a winged horse and he has a true opinion as to who Pegasus is, 

then there is something such that it is possible for all Jones believes that it 

is a winged horse". However, it can be countered that we are not here 

committed ontologically to (doxastically) possible winged horses since it 

must be the case that (from a semantic point of view) 'Pegasus' denotes 

something existing at Jones' world (because his opinion is 'true') as well as 

at all the doxastic alternatives to his world for it to be the case that th1r1 

is somethinc such that it is possib/1 for all he believes that it is a winged 

horse. This will be discussed in further detail in the next section once the 

semantics for our Hin-SQC• systems has been deVeloped. 

To continue, AS 6 prohibits unrestricted substitution of co-referentials 

in contexts of doxastic necessity (and possibility) and AS 7 restricts substi

tution of co-referentials in doxastic contexts to cases where the agent bel

ieves (notionally) that the relevant identity obtains. AS 8 states that hav

ing true opinions as to who t1 and t2 are, viz., one and the same person is 

a sufficient condition for x's believins that t1 • t2. AS 8 ln conjunction 

with AS 1 can be used to derive TS 1 (described below) which restricts 

substitution of co-reterentials to special sorts of relational contexts. Also, 

for Hin-soc= systems containing D, AS 8 in conjunction with D, Ba :. P8 <X 

ensures the derivabtuty of the following variant of AS 8 for doxasttc pos

stbil1ty: 

(tt • t2 & (3v)(v = t1 & B(v = t1)) & (3v)(v = t2 & B(v = t2)) , Ps(tt = t2) 

This schema says that having true opinions as to who t1 and t2 are, viz., 
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one and the same person is a sufficient condition for it betns consistent 

with all x belleves that t1 • t2. 

Note that instead of the schema (B« (t/v) & (3v)B(v = t)) ;, (3v)B« 

where a. (t/v) contains no doxastic operators within whose scope t lies, we 

introduced the more seneral schema (a. (t/v) & (3v)(v • t & B(v • t)) ;, 

(3v)a. as an axiom-schema (AS 4) for the Hintikka systems (where ex {t/v) 

contains no iterated belief. (and. for that matter no iterated doxastlc pos

sibility) operators wtthin whose scope the constant t lies). The reason for 

maktns this axiom-schema more seneral, in the sense that ex (t/v) may 

involve doxastlc wffs but may not itself be a doxastic wff, is in order to 

ensure completeness of the Hin-SQC• systems with respect to the semantics 

we shall consider in the next section. Two instances of AS 4 would be (BFa 

& {3x)(x • a & B(x = a)) ;:, (3x)BPx as well as ((BGa v BFa) & (3x)(x • a & 

B(x • a)) ;:, (3x)(BGx v BFx). Similar remarks apply to the axiom-schema 

AS 7, (a. (tt/v) & t1 • t2 & B(tt = t2)) ;:, Cl (t21v) since it is a more seneral 

version of (B« (ttfv) & t1 = ta & B(tt = ta)) ;:, B« (t21v). 

It we were to include in the axiom-set the schema 4 then the resultlns 

Hin-Kac• + 4 system (or more senerally any Hin-sac= + 4 system) would 

differ from the Hin-soc- systems in the followtns respect: The proviso 

for AS 4, AS 7 and R3a viz., that there is no iteration of the relevant doxas

tic operator{s), would be lifted for reasons to be discussed in the next sec

tion when we come to consider the semantics for these axiom sets. 

What is noteworthy about the above set of axiom-schemata both con

taintns and not contatntns 4 1s that it does not contain the Barcan Formula 

(Vv)B« ;, B(Vv)cx. The reasons for not includins the Barcan Formula in 
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the axiomatic base is that this base would not be $0Und relative to the 

semantics which Hintikk.a proposes. This will be discussed in section 3. 

Also, a somewhat counterintuitive result of restricting the rule of in

ference R3, ViZ., ex (t/v) :> p- (3v)ex :> p such that t is foreign to (3v)ex 

:> p and provided that t is not in the scope of a doxastic operator is that the 

proof of the implicational schema (3v)BCX :> B(3v)ex asserting that belief de 

re entails belief de dicto is effectively blocked. As was discussed in section 1 

of chapter two, the unrestricted rule R3 where it is not required that t is 

not in the scope of a belief operator is integral to the derivation of any ins

tance of (3v)B« :> B(3v)cx. The underivability of this schema in any of the 

Bin-sac- systems turns out to be a necessary evil to guarantee soundness 

of the axiom system relative to the semantics discussed in the next section. 

Further, the reduction schema for doxastic possibility, viz., (3v)Psa = 
Ps(3v)cx is not a thesis-schema for the the Hln-soc= systems since AS 3 

mentioned above is restricted and given that the Barcan Formula is not a 

thesis-schema. However, this reduction schema is not needed for the pur

pose of eliminating all instances of quantifying into do:x:astic possibility con

structions since the schema Psf.1 (t/v) :> (3v)Psf.X is not a version of AS 3, 

vtz., ex (t/v) :> (3v)ex and if we are right, since wtfs such as (Psf.X (t/v) & 

((3v)(v = t & B(v = t)) :> (3v)Psf.X are innocuous from an ontological point 

of view. 

The following is a theorem-schema for the Hin-sac= systems: 

TS 1: (a (ttfv) & t1 • t2 & (3v)(v = t1 & B(v = t1) & (3v)(v • t2 & B(v = t2)) 

:> ex (t2,/v) (where t1, t2 may occur in the scope of doxasti oper

ator(s) and such that there is no iteration of said 

belief operator(s) - for systems not containing 4.) 
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As was noted in the previous chapter, TS 1 restricts substitution of co

referentials to special sorts of relational contexts, viz., contexts where the 

agent has true opinions as to who t1 and ta are, i.e., one and the same 

person. Further, the following are rules ot inference which are derivable 

for any of the Htn-sac- systems: 

DR 1: or (t/v), (3v)(v • t & B(v • t) - (3v)or (with the same provisos 

as for AS 4.) 

DR 2: or (t1/v), t1 = ta, B(tt • t2) - or (t2fv) (with the same provisos 

as for AS 7.) 

DR 3: (or (t1/v) & t1 • ta & (3v)(v • t1 & B(v • t1) & (3v)(v • ta & B(v • 

ta)) ____,..or (t2fv) (with the same provisos as forTS 1.) 

First of all, any instance of TS 1is derivable in any Hin-SQC- system using 

AS 7 and AS 8 as follows (where the provisos mentioned above are under

stood and where it is also understood that there is no iteration of the belief 

operator(s) within whose scope any of the relevant constants occur for 

systems not containing 4): 

1. (tt • ta & (3v)(v • t1 & B(v • t1)) & (3v)(v = t2 & B(v = t2)) ;:) 

B(t1 • t2) AS 8 

z. (tt = t2 & (3v)(v • tt & B(v • t1)) & (3v)(v • t2 & B(v = ta)) ;:) 

(B(t1 • t2) & t1 • t2) 1, P.C.1 

3. B(tt • t2) & t1 • t2) ;:) (or (tt/v) ;:) or (ta/v)) AS 7 

4. (tt = t2 & (3v)(v • t1 & B(v = t1)) & (3v)(v • tz & B(v • tz)) ;:) (or (t1/v) 

;:) or (t2fv)} 1,2 P.C. 

5. (or (tt/v) & t1 = t2 & (3v)(v • t1 & B(v • t1) & (3v)(v = ta & B(v = t2)) 

;:) or (t2fv) 

Q.E.D. 

3, P.C. 
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Finally, aiven TS 1, DR 3 is derivable usina modus ponens for the Hin

soc= systems. Also, atven the appropriate versions of AS 4 and AS 7 alona 

with modus ponens, both DR 1 and DR 2 respectively are derivable for any 

Hin-sac- system. 

By way of some final remarks, the Htn-sac= systems inherit the pro

blem of deduction as discussed ln chapter one. This is owing to the fact 

that these systems like their sac= counterparts are normal modal systems 

in the sense that they contain the schema K and have RB as a rule of in-

ference. Thus, the logical omnidoxasticity inference rule l-ex :::> ' - Jkl 

, B' and the adjunction schema (lkl & B') :::> B(cx & ') are derivable in 

the Hin-sac- systems and the consistency schemata ... B(cx & ...a ) and .... (Jkl 

& a...a) are derivable tn any Htn-sac• + D system. Purther, stnce as we 

have seen, there is no iteration of the belief operator for various thesis

schemata allowing quantification into notional locutions occurring in rel

ational contexts (or allowing substitution of co-referentials for special sorts 

of relational contexts} for Hin-sac= systems not containing 4, there is some 

presumption in favour of adopttna as a system of doxasttc logic any Kin

sac• +.system, althouah we shall not push this point. 

In the next section, we shall examine HinUklta's proposals on the sem

antic front for dealing with the failure of the substltuttvtty principle and 

for dealing with the problem of quantifying in. Based on his proposals, we 

shall attempt to develop a semantics with respect to which the Hin-sac= 

systems are sound as well as complete. I.e., we shall argue that this sem

antics (which is a 'varying domain semantics} is characteristic for the 

Hln-sac- systems just discussed. 
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2. Hintikka 's Suggestions for a Semantics of Belief 

As we shall see, a distinctive feature of Hintikk.a 's semantics for belief 

logic is that each index in the set W of indices in a model has associated 

with it its own set of individuals (such that these indexed domains are 

non-overlapping), in distinction to the domain semantics for the SQC= sys

tems where each member of W in a model shares the same set of individ

uals. This distinctive feature of Hinitkk.a's semantics is tied up with his 

solution to the problem that co-referentials are not unrestrictedly inter

substitutible in belief contexts. How this is so, we shall describe below. 

Recall that in order to deny thesis-hood to any wff of the form 

(« (tt/v) & t1 = t2) ::> « (t2/v) where t!J t2 may occur in the scope of a dox

astic operator, it was necessary to restrict the axiom-schema (« (t1 /v) & 

t1 • t2) ::> Cl (t2fv) to cases where t1 and t2 do not occur in the scope of any 

doxastic operators for the Hin-sac= axiom systems. To deny thesis-hood to 

the doxastic version of (« (t1/v) & t1 = t2) ::> Cl (t2/v) is tantamount to 

denying that co-referentials are intersubstitutible for notional belief cons

tructions. But what does this proposal amount to on the semantic front 

and more specifically within the framework of an indexical or possible 

worlds semantics for belle!? To answer this, 1t will first be helpful by 

way of review to outline just what an indexical or possible worlds seman

tics amounts to for a quantified doxastic logic. 

ln an indexical or possible worlds semantics for belief logic, to say that 

an agent x believes that Cl (t/v) at an index wi in a model (or more formal

ly, for VM(B« (t/v), w1) to take the value '1') it must be the case that the 

content Cl (t/v) is true at all the doxastic alternatives to w 1. As Hintik.ka 



0 

0 

185 

notes, the set of do:xastic alternatives to a given index will be the set of in

dices at which all the content wffs ot agents' beliefs will be true.2 Pur-

ther, we cashed out the notion of 'doxastic alternative' in terms of a so

called doxastic accessibility relation R which may or may not have various 

restrictions imposed on it depending on the axiom system we are consider

ing. Thus, it our doxastic system is K then R is unrestricted, if it is D 

then R is serial and so on. Por .-u,f models, R must never be reflexive 

since agents can have false beliefs although for #pi$/#rnic models, R must 

always be reflexive since, presumably, what one knows/$ the case at the 

'actual' world. 3 In effect, what R does is to determine for any given index 

Wf at what indices all the content wffs of belief wffs true at w1 are true. 

This idea is central to the syntactic definition of R for the canonical model 

of any normal system, i.e., WfRWJ iff (Vex)(Ba e wi- ex e wj). 

Hintikka in 'Semantics for Proposittonal Attitudes' (1969) cashes out the 

notion of 'doxastic alternative' in terms of a two-place function • B which 

to each 'world' (in Hintikka's parlance) Wt and to each individual assigns a 

set ot worlds where any member Wj of this set will be such that all the 

contents of the beliefs which the individual holds at w1 will be true at Wj

Thus, syntactically we could define ••<t, Wt) for any t e Di (where Dt Is 

the set of individuals associated with w1) and for any Wt e W as a function 

determining the set S where for any Wj in W, Wj is a member of S just in 

case (V ex )('t believes that ex• e w1 - ex e wJ). Then •t1 believes that 

ex (t2/v)' is true at a world Wt just in case oc (ta/v) ts true at all Wj such 

that Wj e (the sets determined by) 4»a(t!J w1). 

Although Hintlkka does not mention this issue, it is not clear how (sim-

2 Htnttkka (1969) reprinted In Ltnsky 0971), pp. 150-151. 

3 By 'actual' world here we mean the world or Index at which the belief wff Is being evaluated. 
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Uar to the doxastic accessibUity relation R) •• could be appropriately res

tricted to fit a given norm•J axiom system. Thus, for a system containing 

K and 4 (i.e., Bel ;:, BBcl) R must be transitive. But how could such a res

triction be imposed on •a? The function •• is relativtzed not only to worlds 

but also to individuals and since (as we shall presently see) individuals are 

'world-bound' in this type of semantics in the sense that the domains as

sociated with each world are non-overlapping, we cannot characterize the 

transitivity requirement for • B as follows: • B for K4 systems must be 

such that for any individual tin D and any worlds wb Wj and 'Wk, if Wj e 

•a(t, Wt), W}t I •a(t, WJ) then 'Wk, I •a(t, Wi). This Characterization iS ill 

conceived because it assumes that t is a transworld individual. But the pos

s1b111ty of transworld indiViduals ts strictly speaking disallowed given that 

world-associated domains are non-overlapping. The reason for this feature 

of Hintikka's semantics is (as we shall presently see) tied up with his 

attempt to deal with the failure of the substitutivity principle. 

Granted, we could introduce as Lewis does the notion of •counterpart', 

but at the very least this would make the characterization of transitivity, 

etc. for •• somewhat messy because as Lewis notes, it is possible for an 

individual at a world to have more than one counterpart at another 

world. 4 (This ts J:lecause if we cash out the notion of counterpart in terms 

of the notion of similarity then it is possible for two or more indiViduals at 

Wj to be equally similar tot at Wt.) We shall have more to say concerning 

Lewis' notion of counterpart below. Bintik.ka sidesteps this difficulty by 

proposing the introduction into his semantics a 'family' of functions P such 

that each member of this set takes as a value exactly one individual for 

each world. Then although there are strictly spealr./Dg no transworld tndi-

4 See lewts (1983), p. 29. 
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viduals, JtJtJtWJy 6ptMkiD8 the individuals which are the values of any ft in 

P at various worlds amount to one transworld individual. 6 This presum

ably prevents the problem of an individual's 'spllttms' across worlds. 6 

But as we shall arsue below, we still do not obtain transworld individuals 

in this way, even loosely speaking. 

In the li&ht of the above-mentioned difficulties with Hintikka 's function 

• B it is perhaps best to stay with our doxastic accessibility relation R in 

developins the characteristic semantics for the Bin-sac= systems. If there 

is any moral to be drawn from the above remarks concerning the function 

•• which in effect relativizes doxastic alternatives to worlds .tnd to indi

viduals, it is that such a device willsenerate a semantics for belief but not 

a semantics characterizing any correspondins normal axiom system. In 

any case, the special twist to Hintikka 's semantics is his relativtzation of 

domains of individuals to indices or worlds such that these domains are 

non-overlappins. We shall now discuss this feature of Htntik.ka 's semantics 

with respect to the problem of the apparent failure of the substitutivity 

principle for belief contexts. 

And so, if we want a characteristic semantics for the Hin-SQC• sys

tems, what is needed is an alteration to the semantics characterizing the 

SQC"' systems which invalidates the doxastic version of the schema 

(er (tt/v) & t1 • t2) :) er (t2fv), where t1, t2 may occur in the scope of the 

belief operator. The semantical 'sleight of hand • which Hintikka employs 

towards this end in 'Semantics for Proposttional Attitudes' is to construct 

belief models in such a way that associated with each index or world is its 

own domain of individuals such that there is no overlapping. In terms of 

5 HlnUkka (1969), p. 160. 

6 ibid. p. 159. 
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the machinery required for this sort of move, Hintikka simply replaces the 

set D of indiViduals for belief models with a set {Dt} of sets of tnd1viduaJs7 

where each of the subscripts of the Dt •s corresponds to the appropriate 

subscripts of the w1 •s. Por example, Dt would be the domain of individual~ 

associated with w1. Purther, it would be required that for any two Dt's in 

{Dt}, if 1 "j then Dt n Dj • fiJ. Equivalently, we could introduce into the 

definition of a Bin-sac= model a function Q 8 which to each world assisns 

a subset of the set D of 'individuals' where it ts specified that for any two 

of these relativized. domains, i.e., for any two of the Q(wt)'s, their inter

section is the empty set. I.e., for any Q(wt) and for any Q(wj) where 

1 • J, Q(wi) n Q(wj) • fiJ. 

It domains of indiViduals are relat1vizec:t to indices With no overlapping 

then naturally the assignment function V would also be relativtzed. to in

dices for terms and for predicate variables. And this is just what Hintikk.a 

proposes in 'Semantics for Propositlonal .Attitudes'.' In short, for any con

stant t and for any index wb V(t, w1) e Dt where Dt is the domain of indi

viduals associated With Wt and for any predicate variable P, V(P, wi) s; 

Dtn where Dtn is the set of all n-tuples of indiViduals in Di· In short, V 

assigns to a constant at an index some member of that index's domain and 

to each predicate variable and index, V assigns to this pair a subset of the 

set of all n-tuples of members of that index's domain of individuals. If we 

relativize the assignment function V to indices for constants then it is pos

sible for distinct constants t1 and t2 to be assigned the same individual at 

one index wi for a model M in which case the identity t1 = t2 holds for wi 

1 See Hinitlkka (1969)reprtnted in Unsky (1971), p. 151. Hintlkka uses the locution I(.U,) to repre-

sent the phrase 'the domain of individuals I associated with the world .U.'. 
8 See the discussion of the 'world-associating' function Q In Hughes and Cresswen (1968), p. 171. 
9 Sn HinUkka (1969) reprinted In Unsky (1971), pp. 151-152. 
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while V assigns to these constants dUf,rent individuals at another index 

w j where i 111 J in which case, the identity t1 = t2 is false for w J' 10 

This feature of Hintikka 's semantics puts it at odds with the domain 

semantics for the sac• systems since in the latter type of semantics, if an 

identity t1 • t2 is true at any index in the model it is true at all indices in 

the model. This is owing to the fact that the assignment function V for the 

sac• models is not relativtzed to indices given that each index in a model 

draws on the same domain of individuals. Thus, the schema t1 = t2 ::,) 

B(t1 • t2) which intuitively says that agents are omnidoxastic with respect 

to contingent identities is valid in the sac- semantics but it is inv~t/idattld 

with respect to the Hin-sac• semantics since although t1 = t2 may be true 

at some Wtin Wit could be false at some doxastically accessible index Wj 

if V assigns distinct individuals to t1 and t2 at Wj-

In the light of Hintikka 's suggested semantics for belief logic, consider a 

simple Htn-Sac-' model M11 consisting of two indices, w1 and w2 such that 

Dt = {d} and~ • {e,f} and such that V(a,wt) • V(b,wt) • d but V(a,w2) 

• e whereas V(b, w2) • f. Further, suppose that V(F, w2) • {e}. And 

finally, suppose that w2 is dox•stiC.JJJy •CCiti6JbJ, from wb i.e., suppose 

that {<W!J wa>} r; R. This model will serve to invalidate the following in

stance of the sac- thesis-schema (A(tt/v) & t1 = t2) ;, A(t2fv) where t1, ta 

may occur in the scope of the belief operator, (BFa & a • b) ;, BFb. More 

concretely, we could think of a, b as 'Tully' and 'Cicero' repectively and 

let F be 'Roman orator'. The schema tn question asserts the principle that 

co-referentlals are without restriction lntersubstitutible in belief cons

tructions and the instance we are considering says that if x believes that 

tO HlnUkka (1969) reprinted In Unsky (1971), p. 155. 

11 To be technically precise, we have not yet established that this Is a Hln-soc· model, although we 
shall have something to say concerning somdness and completeness below. 
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Tully is a Roman orator and given that Tully is Cicero then x also believes 

that Cicero is an orator. 

Informally, we can see how the (partial) model described above could 

serve to invalidate (BPa & a • b) , BPb: Even though a and b are assigned 

by V the same individual d for Wt they are assigned distinct individuals, 

viz., e and t respectively for w2 (which is doxast1cally accessible from Wt) 

and hence a • b is false for w2. Further, since e assigned to the constant a 

is in the extension of P for w2 and f assigned to b for w2 is not in the 

extension of P for w2 it follows that Fa is true for this index but that Pb is 

false. Then although Pais true for all doxastic alternatives to w1 in this 

model, Pb is false for some doxastic alternative to Wt in the model. Hence, 

althouch it is true at Wt that BPa and that a= b, it is also false that BPb 

at this index. Q. E. D. 

The upshot of these remarks is that in the sort of semantics which Htn

ttkka has proposed for belief logic, there can be mod.els where x believes 

that a (tt/v) at some Wi and the identity t1 • t2 holds at Wf and yet x may 

fail to believe that a (ta/v) at this index since there is some alternative Wj 

to Wt such that the identity t1 = t2 does not hold at this alternative. In 

short, co-referentials are not intersubstttutible ln notional constructions for 

this sort of semantics which jibes With Hintik.lta's syntactic proposal that 

for us to infer a wff of the form 4X (ta/v) from a (tt/v) (such that t1, t2 

occur in the scope of a belief operator) and t1 • t2 we must add as a prem

ise B(tt • t2).12 Prom a semantic point of view, this guarantees that the 

identity t1 • t2 holds for all the doxastic alternatives to the index at which 

a (tt/v) and 4X (ta/v) are being evaluated.13 This is because if B(tt = ta) is 

121n feet. for the Inference ofla(l2'v> from la(t,/v) logo t.hrough it Is sufficient that 1<t1 • t2> 
Is an addiUonal premise rendering t 1 • t2 supernuous. 

13 Thus, In HtniUkka (1967), p. 55 Hlnttkka states with respect to eplstemtc logtc that "Substltutlvtty 
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true at the index at which ex (ttfv) and ex (t2/v) are being evaluated then 

the identity t1 • t2 holds tor all the doxastic alternatives to this index in 

which case it is impossible for the contents of the belief wffs containing t1, 

t2 to differ 1n their truth-values at any of these alternatives. Otherwise, 

there is no guarantee that t1 and t2 ·won't refer to distinct individuals in 

some alternative to the index at which ex (tt/v) and ex (t2/v) are being 

evaluated.1f 

As was noted in the previous section, any wff of the form (ex (tt/v) & 

t1 • t2 & B(tt • t2)) :;, ex (t2fv) where t1, t2 may occur within the scope of a 

doxastic operator is a Htn-sac- thesis provid«< that the contents of any 

doxastic wtfs tn which t1, t2 occur are not themselves doxastic wffs. This 

restriction holds for systems not containing the schema Bcx :;, BBCI . This 

provision was introduced so as to ensure soundness of the Htn-sac= sys

tems not containing 8CX :;, BBCI with respect to the type of semantics we are 

now considering. To illustrate why the introduction of this provision was 

necessary, consider the following instance of the schema {Cl (tt/v) & lt = t2 

& B(tt = t2)) :;, ex (t2fv) where t1, t2 may occur in the scope of a doxastic 

operator viz.. (BBPa & a • b & B(a = b)) :;, BBPb which involves an itl'r

atiOD ot the belief operator. (A parallel example for doxastic possibility 

would be <PaPaPa & a • b & B(a = b)) :;, PaPaPb.) 

Now, the following simple model based on Hintikka's proposal for a 

semantics of belief will invalidate the formula (BBPa & a • b & B(a =b)) :;, 

BBPb: Suppose that this model consists of exactly three indices, wb w2 

and w3. Let the domain of individuals associated with w1, viz., Dt = {d}, 

everywhere presupposes thlt two terms refer to the same Individual in i1l!d eplstemically possible 

world we have to consider. If we are talking of what a knows or does not know. this is guaranteed 
only by the sentence (26) 'Ka(b • cY: 

14 Hlnlikka (1969) reprinted in Linsky (1970. p. 155. 
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and let~ • {e} and Il3 • {f,s}. Further, suppose that wa is doxastically 

accessible from w1 and. that W'3 is doxastically accessible from wz but that 

W'3 is not accessible from w1. I.e.,{<w1JW2>, <w2,W'3>} s; R. R's intrans

iUvity with respect to this model is permissible if this is a model for a Bin

sac- system without 4. Also, let V(a, w1) • V(b, w1) = d, V(a, wa) = 

V(b, wa) = e but V(a, W'3) = f and V(b, W'3) = g. Finally, let the extension of 

F for w3 be f. More formally, V(F, W'3) = {f}. Then Fa will be true at w3 

and a • band Fb will both be false at w3. Further, a= band BPa are both 

true at wa whereas BFb is false at wa. Then it follows that BBPa and B(a 

• b) and a • b are all true at w1 but BBFb is false at w1. This (partial) 

model therefore invalidates the formula (BBFa & a= b & B(a • b))::) BBFb 

which is an instance of the schema (t:J. (tt/v) & t1 = ta & B(tt • ta)) , 

t:J. (ta/v) such that t1, t2 may occur in the scope of a doxastic operator. 

However, the model described above would not be admissible as a model 

for any Hin-sac- + 4 system since any model in the class of models char

acterizing these systems would. have to be tr•nsitiw . And so, to guarantee 

soundness of any Hin-sac• system not containing 4 with respect to some 

class of models where it is not required that R be transitive, tt is necessary 

to restrict the schema (t:J. (tt/v) & t1 • t2 & B(t1 = t2)) , « (ta/v) where t1, 

ta may occur in the scope of a belief operator to instances where no itera

tion of this belief operator is involved. So this explains the rationale behind 

our proviso. Similar remarks apply to the restrictions we imposed on the 

doz•stJc axiom-schema (t:J. (t/v) & (3v)(v = t & B(v • t)) , (3v)t:J. and the 

theorem-schema (t:J. (tt/v) & t1 = ta & (3v)(v = t1 & B(v = tt) & (3v)(v = ta 

& B(v • ta)) , « (ta/v) and their corresponding rules of inference for the 



0 
193 

Hin-sac• systems not containing 4. These restrictions on AS 4 and AS 7 can 

be dropped for the Hm-sac• + 4 systems given the transitivity requirement 

on R in the semantics, since this aurantees that if B(tt • t2) is true at 

some index Wi then so is BB(t1 • t2). 

Now that we have discussed Hinttkka's solution to the apparent failure 

of the substitutivtty principle on the semantic front, we still need to con

sider how his semantics deals with rel.ation.al constructions with respect to 

the substitution of co-referentials and with respect to the issue of existen

tial generalization into such constructions. 

Hintikka's relativization of sets of individuals to indices (and hence his 

relativtzation of V to indices for terms and predicate variables) besides pre

venting unrntrlcted substitution of co-referentlals in belief constructions 

also disallows existential quantification into notion.al constructions not oc

curring in relational contexts. That is, the sort of semantics Hintikka is 

propostna would invalidate the schema a. (t/v) , (3v)a. and the inference 

rule oc (t/v) _. (3v )a. where in both cases, t occurs in the scope of a 

doxasttc operator. To 1llustrate that this is the case, consider a more spe

cific version of the above schema, viz., BOC (t/v) ;:, (3v)Boc. If Ba. (t/v) is 

true at an index Wi then oc (t/v) must be true at all wj such that w1RwJ' 

But atven that indices have associated With them their own domain of 

individuals and hence that V is relativtzed to indices, it follows that 't' 

occurring in the content a. (t/v) will denote a distinct individual in every 

wJ such that w1RwJ where a. (t/v) holds. Then it is false to say that tbent 

Is some lndividu.al v such that x believes of v that oc. In sum, from 

Btl (t/v) we cannot infer (3v)Ba. because in the type of semantics we are 

considerina, the existence of transindexical individuals is disallowed. And 
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all of this jibes with Hintik.k.a's syntactic stricture against quantifying into 

notional constructions. 

However, as we noted, Hintiltk.a does allow quantification into relation

al contexts (as defined in the third chapter, section 5) and also substitution 

of co-referentials with respect to special sorts of relational contexts (where 

the individual has tru1 opinions as to who t1 and t2 are). And in terms of 

relational contexts where quantifying in is permissible, Htnttkka pnrtra~ 

any such context (similar to Kaplan) in terms of a notional construction 

conjoined with any 'acquaintance' construction of the form (3v)B(v • t) 

which intuttvely says that x has an opinion as to who t is. In terms of the 

· special sorts of relational contexts where substituion of co-referentials is 

permissible, the relevant sorts of contexts must be such that x has true 

opinions as to who t1 and t2 are, which are represented respectively as 

(3v)(v • t1 & B(v • t1)) and as (3v)(v = t2 & B(v • t2)). These locutions 

are also relevant for quantifying into constructions which are not purely 

doxastic. 

But given that in the sort of semantics which Hintik.k.a is proposing there 

are no transindexical individuals, it is not clear how it is possible for any 

locutions of the form (3v)B(v = t) or of the form (3v){v • t & B{v = t)) to 

be true at any index in any .belief model not containing dead ends.15 I.e., 

how can there be some indivdual v such that •v • t' is true at every dox

astic alternative to the index in question if all individuals are index {or 

world) bound? And this is tantamount to asking how it is possible for bel-

15 The reader mey recall that so-caned dead ends as Hughes end Cresswetl call them are such that no 
lndtces re accessible from them end hence trtvially, •Y wff or the form Bot wtll be true at•y 
such index given the truth conditions for wffs or this form. Then at a dead end. •Y wff of the form 
(JI)BCX will also be true since '3' wm be vacuous or if not, then Its scope will be true for at least 
one world-bound indivdual which Is denoted by v In Bot. 
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levers to have opinions as to who individuals are in this type of semantics. 

More generally, it is not clear how any relational locution of the form 

(3v)BG could be true at any index (which is not a dead end) in a model in 

this type of semantics, which amounts to asking how Hintikka can make 

semantic sense of quantifying into belief constructions (and by extension 

into constructions of doxasttc possibility). It would therefore seem that 

more semantic machinery has to be added to Hinttkka's semantics to allow 

for relational contexts where agents have opinions as to who certain rele

vant individuals are and more generally to allow for quantifying into be~ief 

constructions even though this semantics does not allow for transindexical 

individuals.16 

In order to allow in his semantics for relational contexts where agents 

have opinions as to who certain relevant individuals are and in order to 

make sense of quantifying into belief constructions, Hintik.k.a introduces into 

the definition of a belief model a 'family' of functions P = {ft, t2, ... , fn, 

... } such that each member of P is assigned for every index in the model 

exactly one member of the domain of individuals associated with that in

d.ex.17 In other words, each fk. in P is a function from indices into index

bound. individuals. More formally, for any Wi in W, fk. (wi) S Dt where fk. 

may be undefined for some of the indices in W, in which case f& would be 

partial. 18 According to Hintikk.a, the set of world-bound individuals deter

mined by some fk. in P (where we could define this set by 'abstraction' as 

{fk(wt): fk,(wi) e Dt}) is what we normally mean by the 'same' indiVidual 

16 Thts point Is made by HlnUkkaln Hlntlkka 0969), p. 159. 
17 HtnUkka makes this proposal In Hlnttkka ( 1969), pp. 159-162. 

18 HtnUkka Imposes the requirement for membership In F that tfft(Wf) • f~Wf) then ft(Wj) • f~Wj) 
for any doxastlc alt.ernaUve Wj tow,. · 
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extsting at different indices or worlds. Thus, he is claiming that " ... the 

apparenUy different individuals which are correlated by one of the func

tions fEP is just what we ordinarily mean by one and the same 1ndivid

uat•.1' 

And we can see how the ftt's in Pare intended to sidestep the problem 

that any locution of the form (3v)BG (or more generally (3v)a where free 

v occurs in the scope of a belief operator) will be false for any index which 

is not a dead end. It can be stipulated that any wff of the form (3v )a 

(where free v occurs in the scope of a belief operator) is true at an index 

w1 in a model just in case a (t/v) is true at wi for at least one individual d 

in Dt such that for some fk in P, fk(wi) • d and such that fk is defined for 

all doxastic alternatives to Wt. The proviso that din Dt is the value of 

fk ( w1) where this fk is defined for all alternatives to w1 ensures that 

there Will be a set of index-bound individuals which includes d where 

intuitively this set can be regarded as the 'same' individual (loosely speak

ing, of course) existins at Wt and at all of its alternatives. Then loosely 

speaking, if any wff of the form (3v)BG (which is a more specific version 

of (3v)a where free vis in the scope of a belief operator) is true at w1, we 

can say that tbrrl' 16 MJmr Jndividufll v such that x believes that A of v 

where the description tbr JndJvidu•l v is cryptic for a set of individuals 

defined by '{fk(wi): fk,(Wj) E Dt}'. 

More concretely, suppose that there is some individual v such that 

Jones believes of this individual that he was a Roman orator. I.e., his 

de re belief can be represented as '(3v)(Jones believes that v was an or

ator)' such that this is inferable from a relational context .. Then the 

individual that Jones has in mind, i.e., the 'individual' With whom Jones 

is acquainted, Will not be a transworld individual existtns at all the dox-

19 HtnUkka ( 1969). p. 160. 
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astic alternatives to the world he inhabits. Rather1 the 'individual' with 

whom Jones is acquainted is really a collection of index-bound individuals 

who are 'correlated' via some sort of 'correlating' function fk.· 

And so, we can make sense in Hintik.k.a's semantics of existential quan

tification outside the belief operator after all. This paves the way for the 

allowance of there being relational contexts where the believer has an 

opinion as to who some relevant individual is. I.e., what having an opinion 

as to who some individual is amounts to is the believer's considering this 

'same' individual to speak. loosely- since we are really speaking here of 

a collection of correlated index-bound individuals- at all the alternatives to 

the world he {the believer) inhabits. More formally, any locution of the 

form {3v)B(v • t) is true at an index wi just ln case B(t' = t) is true for at 

least one individual din Di such that d is the value of an fk. in P and such 

that f& is defined for all doxastic alternatives to w1. And to say that 

B(t' • t) is true at w1 for at least one individual din Di such that d is the 

value of an fk. in P and such that fk. is defined for all doxastic alternatives 

to Wi is to say that t' • t is true at any alternative Wj to Wt where t' • t 

is tru' .tt .tny sucb Wj .for ez.tct/y DD' member o.t tb' set {fk ( w1): fk ( wi) 

e Di}), viz., for the indivdualin DJ which is the value of fk,(wj)· 

We shall now consider how this rather complicated semantic machinery 

parallels Hintikka 's proposal on the syntactic front of restricting quanti

fying in to nl.ttion.tl contexts. I.e., we can infer (3v)Bcr from Bcr (t/v) 

only it we add as a premise (3v)B(v = t). (Or if er (t/v) is a construction 

which ts not purely doxasttc such that t may also occur outside the scope of 

a belief operator, then we shall need to add '(3v)(v = t & B(v = t))' as will 
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be explained. presently.) From a semantic point of view, what the premise 

(3v)B(v • t) guarantees is that the individual denoted by tin Bar (t/v) is 

the 'same' individual at all the doxast1c alternatives to the world at which 

Bel (t/v) 1s being evaluated. I.e., 1t (3v)B(v • t) is true then there ls some 

individual (in the domain Dt associated with the index at which it is true) 

denoted by t and which is such that its correlates are denoted by tat all 

alternatives to the index in question. Given this guarantee, then it is true 

that tbere is some Jndividuc~l v such that x believes that ex of v. Thus, if 

Jones believes that Tully was bald and further, if Jones has an opinion as 

to who Tully is - which semantically means that the term 'Tully' denotes 

the 'same' individual at all the alternatives which Jones considers - then 

there is some individuc~J v such that Jones believes of v that he was bald. 

Suppose that we wish to quantify into a construction such as BFa & Ga 

which could be a symbolization of for example, "Jones believes that Tully 

was bald, and Tully in fact was an orator". Then in order to quantify into 

this construction which is not purely doxastic, it would not be sufficient to 

add as a premise '(h)B(x • a)' (which for our example reads "Jones has 

an opinion as to who Tully is .. ). From a semantic point of view, this is 

owing to the fact that we need to guarantee that the individual denoted by 

the constant 'a' at the index at which BFa & Ga is being evaluated, w1, is 

the same individual (strictly speaking) who is denoted by some t" <~I WJ 

such that V(t .. ,wi) • f}t(wi) for some fk in F and such that t" =a is true 

at all doxastic alternatives to w1. All that (h)B(x = a) guarantees is that 

'a' denotes the 'same' individual (loosely speaking) at all the <~ltern.ttivn 

to Wt. Thus, if instead of (h)B(x • a), suppose we add as a premise to BFa 

& Ga the construction (h) (x • a & B(x • a)) which for our example reads 
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"Jones has a true opinion as to who Tully is". Then if both premises are 

true, there will he an M' lik.e M such that t" =a is true at w1 and B(t" = 
a) is true at w1 such that V(t",wt) • V(a,wi) = fk(wt). Then •a• will den

ote the 'same' individual at Wt which 1s denoted by 'a' at all the alterna

tives to Wt and hence, we can quantify with respect to •a• occurring in 'Ga' 

as well as with respect to •a• occurring in BPa- they denote the 'same' 

individual (loosely speaking). Thus, in our example, we can conclude that 

then is some indiVidual x such that Jones believes that x 1s bald and such 

that x was an orator. I.e., from BFa & Gain conjunction with (3x)(x =a & 

B(x • a)) we can infer that (3x) (BFx & Gx). 

As was stipulated in section 1 in AS 4, (ex (t/v) & (3v)(v = t & B(v = t)) 

:;, (3v)ex and its inferential counterpart, OR 1, we shall in general require 

that to infer (3v)ex from ex (t/v) where t's occurrence has not been res

tricted to non-doxastic wffs, then we must add (3v)(v = t & B(v = t)) as 

a premise. This will certainly handle cases such as the one discussed ln 

the preVious paragraph. Further, requiring (3v)(v = t & B(v = t)) rather 

than just (3v)(B(v • t)) as an additional premise avoids a commitment to 

possibilia, if by a 'posstb111um' we mean a purely fictional entity- fictional 

relative to some index that is20 - for versions of AS 4 such as Pace (t/v) & 

((3v)(v = t & B(v = t)):;, (3v)Pacx, which was alluded to briefly in section 

1. Thus, suppose that at some index Wt it is true that it is possible for all 

Jones believes that Pegasus is a winged horse. Then for there to be some

thing such that it is possible for all Jones believes that it is a winged horse, 

the term 'Pegasus' must denote not only the 'same' individual at all alter

natives to Jones' world w1 but also this 'same• individual denoted by 'Pega-

20 We could say that tn Hlnttkka's semantics, x extsts at Wi -df. x e o1, from whtch tt follows that If 
xis not in Dt then xIs flctionll relative tow,. 
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sus' must exist at Jones' world. (I.e., Jones must have a true opinion as to 

who Pegasus is.) But if Pegasus is 'fictional' (relative to wi) then we can

not infer that there is some entity v such that it is possible for all Jones 

believes that it is a winged horse. (There will be a commitment to corre

lates at other indices if the entity is non-fictional and so in this sense, 

there is still a commitment to possibilia in Hintikka's semant1cs.21) 

Finally, given AS 4 and DR 1 such that to infer (3v)cc from cc (t/v) 

where t's occurrence b•.s not been restricted to non-doxastic wtfs, we 

must add (3v)(v • t & B(v • t)) as a premise, then we can never infer 

that agents have de n beliefs concerning fictional entities. Thus, if Jones 

inhabits a world where there are no winged horses, then even though he 

may believe notionally that Pegasus is a winged horse and even though he 

may have an opinion as to who Pesasus is (or symbolically, (3x)B(x = 
Pegasus) is true at Jones' world) he cannot have a true opinion as to 

Pegasus is. I.e., the the locution '(3x)(x = Pqasus & B(x = Pqasus)' will 

not be true at the index which Jones inhabits given that Pegasus is not con

tained in the domain of individuals associated with that index. Thus, we 

cannot infer from Jones' notional belief that Pegasus is a winged horse in 

conjunction with his opinion as to who Pegasus is that tber11 is an x such 

that Jones believes that xis a winged horse. 

Nonetheless, even in the light of these remarks, it would seem that in 

the final analyts Hinttkka 's semantics for belief does involve an ontological 

commitment to po.s.sibili• in the sense of 'fictional entities' as we shall now 

argue. Since each index Wf in a model has associated with it its own do

main of individuals Dt, then to say that x exists •t wi amounts to requir-

21 Mrcus seems to Identify possibilla with f)(re1y ncuonal entitles. See Marcus (1976). Then what 

we have rgued Is that AS 4 does not commit us ontologfcally to possib111a - fn Marcus' sense of the 
term. 

http:semantics.21
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inc that x e Dt· This is presumably why quantifiers whose scopes do not 

involve doxastic expressions range only over members of Dt. Then an entity 

x is fictlon41 reatiw to tiD Index WJ just in case 1) x is not a member of 

o1 althoush 2) xis a member of at least one Ilk, associated With some wk 

such that i "k. (Thus, so-called impossible objects or 'impossibilia' such as 

square triangles would not qualify as fictional entities relative to any index 

since they do not satisfy condition 2).) However, since no domains overlap 

in Hintikka's semantics, it follows that relative to any index W!J any object 

not in Dt but in any other Dj Will be fictional. Therefore, any object 'exis

ting' at Wf Will be fictional relative to any other index. Thus, there seems 

to be a proliferation of (relative) fictional entities or JXJS$ibilill in Hintik.ka's 

semantics just as there is a proliferation of DI/Cr.JS.ary existents for the 

SQC- domain semantics developed in chapter two. 

However, the set P discussed above seems to mitigate the situation just 

alluded to, viz., that there is a proliferation of fictional entities in Hintik

ka's semantics for belief logic. I.e., an individual at w1 may have 'cor

relates' at other indices in which case, we are considering the 'same' in

dividual at different indices rather than a whole set of fictional entities 

relative to Wi. We shall now consider whether or not the set P does what 

it is supposed to, viz., providing a way of making sense of talking about 

the 'same' transindexicalindividual for a varying domain semantics. 

Although Hintik.ka's somewhat ad hoc maneuvre of introducing the set 

P of functions (where each member of Pis assigned for each index in the 

model exactly one individual} seems to provide us with a way of making 

sense of relational contexts in a semantics which relativizes domains of in

dividuals to indices, there are some problems which need to be dealt With 
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in relation to this maneuvre. Pirst of all, Hintiklt.a would have to admit 

(as he in fact doa22) that strictly SJJMkiDI, the set of individuals defined 

by a set such as {fk(wt): fk(wi) e Di} does not constitute a transworld in

dividual. And philosophers such as Kripke and Plantinga would be quick to 

find fault with this. They would point out that what we ordinarily mean 

when we talk about a counterfactual such as 'If Humphrey had won the 

1968 election, he would have done such and such' is that in some possible 

world this wry s.m1 !J'noD Humphrey (and not some 'correlate') won 

the election and in such a world he did such and such. 25 (In the case of 

Kripke, his criticism is tied up with his view that possible worlds are stip

ulated as situations in which some individual existing at the actual world 

has different non-essential attributes.) Their comments concerning coun

terfactuals could also be extended to the case of propositional attitudes such 

as belief since they could claim that when x Mlievr~S that Humphrey did 

such and such, what x ts doing is to consider all the doxastic alternatives to 

the •actual' world where this wry sam1 !J'TSOD Humphrey (and not some 

set of 'correlated' individuals determined by an fk in P) did such and such. 

Nonetheless, it could be noted that if there is no problem in analysing 

counterfactual locutions (and the same could be said of propos1t1onal attit

ude locutions) in terms of such abstract entities as 'possible worlds' then 

what is wrong with also introducing the notion of 'correlate' (or in Lewis' 

jargon, 'counterpart') into the analysis. However, one response to this is 

that the notion of •correlate' (or 'counterpart') perhaps unnecessarily com

plicates the analysts of counterfactual and propositional attitude locutions. 

On the other hand, as we have seen, the notion of 'transworld individual' 

22 Hlntikka (1969), p. 160. 

23 See Kripke (1980), p. 45 and also see Planlfnge (1979) In loux (1979), pp. 162-3. 



c 

c 

203 

is itself problematic, at least for indexical semantics of formal systems. 24 

In any case, even if Hintikk.a is able to answer the objections of Kripke 

and Plantinga concering his set P of 'correlating' functions, he is faced with 

the further difficulty that even loosely Spt1'4lcing a set such as {fk(wi): 

fk,(wi) e Dt} does not amount to a transworld individual since it is possible 

that any two 'correlates' who are the values of an fk at different indices 

share no properties in common. More to the point, it is possible that at 

the index Wt where a belief wff Ba (t/v) is being evaluated, the individual 

denoted by t who is the value of fk(wi) may have no properties in common 

with one of its correlates at some Wj such that WtRWj and where this cor

relate is the value of fk(wj)· In short, Hintikka has placed no strictures 

on the members of F which woUld prevent this sort of situation from aris

ing. But then in what sense would such a set of individuals determined by 

a 'correlating' function fk where possibly some of the members of this set 

share no properties in common constitute even loosely speaking the 'same' 

individual existing at different indices? Clearly, what is needed is the 

introduction of appropriate strictures for members of the set P of 'correlat

ing' functions that would prevent this sort of situation from arising or at 

least further strictures on the truth-conditons for wffs of the form (3v)Bc:x 

with respect to the function fk· 

At least as a rough beginning, we could require that for any 

locution of the form (3v)Boc to be true at an index, not only must it be the 

case that Bcx (t/v) is true at Wt for at least one individual d in Dt such that 

for some fk in F, fk(wt) = d and such that f& is defined for all doxastic 

alternatives to wb it must 4lso be the case that all the individuals who 

are the values of fk at the doxastic alternatives to w 1 must be counter-

24 See chapter lwo, secUon 4. 
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ptJrts ot d at Wt in the sense that they are more similar to d than any 

other member of their respective indices. David Lewis has been the recent 

champion of counterpart theory.25 Lewis cashes out the notion of 'counter

parthood' in terms of the notion of 'comparative similarity' (which as 

Quine has pointed out ts itself a somewhat problematic notJon26) a~ 

follows: 

y at Wj is a counterpart of x at wi =df. y at Wj resembles x at w1 
more closely (with respect to certain relevant properties) than any 
other individual z at w J' 

As Lewis notes, it is possible that an individual x at w1 will have more 

than one counterpart at w j since there could be two or more individuals 

at w j who equally resemble x at Wt and such that no other individuals 

resemble x more closely than they do. 27 Also, as Lewis admits, the notion 

of comparative simllarity in terms of which the counterpart relation is 

defined is itself problematic in the sense that determining comparative sim

ilarity is a matter of contextual considerations meaning that it has to be 

determined what sorts of properties are important or relevant. 28 

Unfortunately, Lewis' counterpart relation is faced with the same sorts 

of difficulties that Hintikka's notion of 'correlate' was, viz., it could be ob

jected that when we speak counterfactually or in the context of propos1-

ttonal attitudes we are consdertng what the wry sam' individual is doing 

in alternatives to the 'actual' world and not what his counterparts are 

doing. Further, as was noted, an individual x at w1 can have more than 

25 For example, see Lewls (1966) reprinted in Lewls (1983). 
26 Q.line (1969), pp. 118-9. Q.llne In this rttcle seems to be sceptical that any general definition of 

compratlve slmUrtty aprt. from various branches or the theoretical sciences can be formulated 
(eg .• In terms of 'kinds'). 

27 Lewis (1983), p. 29. 

28 ibid. p, 28 

http:theory.25
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one counterpart at some alternative w j in which case it seems somewhat 

arbitrary that ftt takes as its value only one of these individuals at Wj to 

serve as the •correlate' of x at Wt. But the most serious problem with 

appealing to Lewis' notion of counterpart as a way of preventing the sort 

of case where .-n individual's correlates at other indices have nothing in 

common with it (and perhaps with each other) is that there is nothing to 

prevent the sort of situation where trivilllly every indvidual at Wj is a 

counterpart of x at Wi since no individual at Wj shares any properties in 

common with x at Wi. In such a case, since nothing at w j shares any

thing in common with x at Wt (except perhaps self-identity) then all in

dividuals at Wj equally resemble x and hence every individual at Wj is 

trivially a counterpart of x at wi. 

Perhaps in the final analysis, Hintikka does not need Lewis' notion of 

counterpart since he could argue that the notion of correlate is no more 

problematic than the notion of •transworld • individual given that in a bare 

particular metaphsyics, an individual conceived as a 'bare particular' may 

share no properties in common with itself existing at other indices. 29 

Given our informal remarks concerning Hintikka 's semantics for belief 

logic, we shall now attempt to make his proposals more precise by des

cribing what a Hin-soc= model would look like. In the next section, we 

shall attempt to show that the Hin-scx= systems not containing 4 are sound 

and complete with respect to the type of semantics we are about to des

cribe . 

.Any Hin-Scx= model M is a S-tuple <W,R, {Dt},F, V> where W is a non

empty countable set of indices, R is a 2-place relation ranging over mem

bers of W (i.e., R s; W X W) where various restrictions may be imposed on 

29 See our remarks concerning the problems associated with the notion of transworld individual In the 

semantics for the sac· systems where all Indices share the same domain of Individuals. 
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R such as transitivity if M is a model for a Hin-sac= + 4 system. Further, 

{Dt} is a set of sets of individuals such that the subscript of each of the Of's 

'corresponds' with the subsrcipt of the appropriate member of Wand such 

that for any Di and Dj such that i • j, Dt n Dj • fiJ. Intuitively, Di is the 

domain of individuals associated with the index Wtin W. The set F = {ft, 

f2, ... , fn, ... } is a possibly non-empty set of so-called correlating partial 

functions such that for any fk in F and for every wi in W, fk.(wi) has as 

its value at most one member of Dt or is undefined. We shall have more to 

say concerning the component F below when we discuss the truth-condi

tions of wffs of the form (3v)a and (Yv)a where free v occurs in the 

scope of a belief operator. Finally, V is an assignment function defined for 

terms and for predicate variables as follows: 

1) For any constant t and for any wi in W, V(t, Wt) e Dt 

2) For any predicate variable P and for any Wi in W, V(P, w1) s; Dtn 

In order to be able to evaluate wffs of the form (3v)oc and (Yv)oc where· 

free v occurs in the scope of a belief operator and in order to guarantee 

soundness of the Hin-soc= systems with respect to the type of semantics 

under consideration, it will be necessary to impose the following restriction 

on V for constants: 

For any consant t and for any wi in W, if V(t, Wt) = fk. (wt) for some 

fk in F then for any Wj such that WtRWj, V(t, wj) = fk(wj)· 

The import of this stricture will become clear when we consider the truth 

conditions for quantified belief wffs of the form (3v)Bcx and (Yv)Bcx or for 

wffs where the scope of the quantifier involves a doxastic operator(s) 

within whose scope free v lies. 
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For simplicity of exposition we shall stipulate that V for constants is 

always defined which guarantees that if V(t,wi) = ftt(wi) for some ftt in P 

then by the above restriction on V, ftt(wj) will be defined for any Wj such 

that WtRWJ· Stipulating that V is always defined for constants also avoids 

having a logic with truth-value gaps on the semantic front and on the syn

tactic front, we can get by with ct (t/v) , (3v)ct (where ct (t/v) is not a 

beUef wff) as an axiom schema rather than its 'free logic' variant, (ct (t/v) 

& (3v){v = t)) , (3v)ct ). Further, Hintik.k.a suggests that one index or 

'world' in W be regarded as 'distinguished' in the sense that it is singled 

out as the so-called •ctuaJ world. 30 However, as is well esiablishedJ lh~ 

two sorts of indexical semantics (viz., our version where no member of W 

is designated and Hintikka's version where one member of W is desig

nated) validate the same sets of wffs. 31 

A valuation over a Hin-sac= model, VM is a function from wffs into 

truth-values, i.e., VM:Wffs- {0,1} defined inductively as follows for 

all wb WJ in W: 

Basis i. VM(Pt1 ... tn, Wt) = 1 iff <V(tt, Wt), ... , V(tn, Wt)> e V(P, wi) 

11. VM(tt = t2, Wt) = 1 iff V(t!J Wi) a V(t2, Wt) 

Supposing that VM(ct , Wi) and VM(,, wi) are defined for any wi ir1 W then: 

VM( -ct, Wt), VM(ct & ,, Wt), VM(ct V ,, Wt), VM(ct :J ,, Wt) and VM(Cl a 

,, wi) are defined as for the sentential systems. Also, VM(Ikl , wi) is de

fined as for the sentential doxastic systems as follows: 

VM(Ikl, Wt) = tiff for all Wj such that WtRWj, VM(Cl, Wj) = 1. 

If A is the scope of a quantitfer such that free v does not occur in the 

scope of a belief operator then: 

VM((3v)ct, wi) a 1 iff VM•(ct (t/v), w1) = 1 for at least one M' based on 

30 Hlntlkka (1969), p. 152. 
31 Hughes and Cresswell {1968), p. 351. 

http:world.3O
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the same model structure as M and differing from 

M (if at all) only in terms of what V assigns to 

arbitary t foreign to (3v)OI from Dt. 

VM((Vv)OI, wi) • 11ft VM•(OI (t/v), wi) = 1 for every M' based on the 

same model structure as M and differing from M 

(if at all) only in terms of what V assigns tot 

foreign to (Vv)tA from Dt· 

Notice that the truth of a quantified wff at an index depends on what V 

assigns to some arbitrary constant t occurring in the scope tA (and which 

is foreign to the quantified wtf) from the domain of individuals associattld 

witb that Jnd,x as opposed to the semantics for the sac= systems where 

the truth of such wtfs was tied up with what V assigned to contants from 

the $b•red domain D. In other words, in this type of semantics, the 

quantifiers range over individuals in the domain associated with the index 

at which the quantified wtf is being evaluated. 

Further, as is the case for the domain semantics for the sac= systems, 

in the current type of semantics we are considering, it is not being assum

ed that each member of a domain in a given model is assigned to a cons

tant. The only assumption that is being made is that each constant denotes 

exactly one member of any index-associated domain. This allows for the 

possibility that there will be (indexed) domains with 'more' individuals 

than denoting constants. So, to ensure that the scope of a universally 

quantified wff is true for •11 the individuals in the appropriate indexed 

domain, it is stipulated that the scope tA must be true over all possible 

assignments of individuals to some arbitrary constant t replacing free v in 

tA. 



0 

c 

209 

Finally, in order to evaluate quantified wffs where the scope is dox

astic (where for example the scope may be 'Fx & BGx'), it is necessary to 

consider the set F = {f!J f2, ... , fn, ... } of 'correlating' partial functions 

mentioned above where each fk. in F is defined as follows: For any Wi in 

W, fk.(wi) e Dior is undefined. The following is a necessary condition for 

membership in the set F, vtz. that for any fk,, fm in F, if fk,(wi) = fm(wt) 

then tor any Wj such that wiRWj, fk(wj) = fm(Wj)· Intuitively, each fk 

in F is a function which for any Wf in W takes as its value exactly one 

member of the domain of individuals Di associated with Wi or is undefined . 

.As we have seen, Hintik.k.a's reason for introducing the set F of 'correlating' 

functions is to enable us to make sense of quantifying across belief opera-

tors by allowing us to speak. loosely of the 'same' individual existing at the 

alternatives to a given index. Whether or not F accomplishes this task. is 

as we have seen open to doubt. In any case, given this definition of the set 

F of 'correlating' functions, we can characterize the truth-conditions of 

quantified wffs whose scopes are doxastic as follows: 

Suppose free v occurriJ18 in the scope a of (.N )a occurs in the scope 

of at least one 'B' or 'Pa' operator. Then, 

VM((3v)a, wi) = 1 iff VM•(tl (t/v), wi) = 1 for at least one M' based 

on the same structure as M and differing from 

M (if at all) in terms of what V assigns to t 

foreign to (3v)cx from Di and where V(t, wi) for 

any such M' must be the value of an fk. in F.32,33 

32 Since V(v,wi) must be the value of an fk In F and since V(v,wj> for any WjRWj Is defined, it follows 

from our restriction on V mentioned above that for any such w j• fk(w j> must also be defined. 
33 These truth-conditions are more or less in the spirit of the truth conditions for wffs of the form 

(3v)CX (where vIs in the scope of a belief operator) appearing In Hlntlkka (1969), p. 161. 
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Further, it is possible that M' will differ from 

M in what V (for M') assigns tot at any Wj such 

that WjRWJ 

SUppose I'm v occurriJII In the SCOPfl tx o.t (Yv )a occurs In the scopt1 

o.t 111 Just on1 'II' or 'Pa' OIJ'rlltor. Th1n~ 

VM((Vv)cx, Wt) • 1 iff VM•(CX (t/v), wi) • 1 for every M' based on the 

same model structure as M and differing from 

M (if at all) only in terms of what V assigns to 

t foreign to (Vv)cx from Dt and where V(t, w1) 

for each such M' must be the value of an fk in F. 

Further, it is possible that M' may differ from 

M in terms of what V (for M') assigns to t at any 

Wj such that wtRWJ 

In short, if a universally or existentially quantified wff's scope is such 

that free v occurs in the scope of a doxastic operator, then it must be added 

to the truth-conditions that the individuals assigned to arbitrary t from Dt 

for any M' based on M such that V M( ex (t/v), Wf) is true must be the value 

of an fk such that fk is defined for all alternatives to Wf. In short, non

vacuous quantifiers occurring outside a belief operator range over special 

kinds of individuals in the appropriate Dt (Le., in the domain of indviduals 

associated with the index Wt at which the quantified wff is being evalu

ated). These individuals are special in the sense that they have associated 

with them (via some fk in F) 'correlates' for all indices which are doxastic 

alternatives to the index in question. Loosely speaking, the individuals over 

which the quantifiers outside a belief operator range are 'transindextcal' or 

more precisely 'transalternative'. Consequently, the rider that M' may 
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differ from M not only in terms of what V assigns to arbitrary t at Wf 

but in terms of what V assigns to t at any Wj such that WtRWj is that V 

must assign to t for M' the 'same' individual (loosely speaking) at 1111 the 

alternatives to wi that it assigns to t at Wi. 

Now that we have laid out formally Bintikka's proposed semantics 

for quantified belief logic, we shall show in the next section that in fact the 

Bin-sac• systems are sound (and complete) with respect to this semantics. 

3. The Hin-sac= Systems - Soundness and Completeness Results 

SOundnHS of any of the Htn-sac- systems relative to the appropriate 

class of beli1f models, each model in the class being a 5-tuple <W,R,{Dt},P, 

V> such that the elements of this 5-tuple are defined as above and where R 

is restricted depending on the Hin-sac• system under consideration, is 

proven in the usual manner. Por example, if the system under consider

ation is Hin-KDQC• then soundness of this system with respect to the class 

of s1rial belief models is proven by showing that the axiom-schemata are 

valid in this class of models and that the rules of inference preserve valid

ity. And in general, for any Bin-sac• system, soundness is proven by 

showing that the axioms are valtd with respect to the appropriate class of 

belief models and by showing that the rules of inference preserve validity. 

We shall show below that the following crucial axiom-schemata which 

are common to all the Hin-sac- systems and which distinguish these sys

tems from the sac• systems discussed in the second chapter are valid with 

respect to any <W,R,{Di},P, V> model: 

AS 3: Cl (t/v) ;:, (3v)Ol provided that t does not occur in the 
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scope of a doxastic operator. 

AS 4: (ex (t/v) & (3v)(v = t & B(v • t)) ;:, (3v)ex where t may occur 

in the scope of doxastic operator(s) and 

proVided that there ts no iteration ot 

said operator(s) for systems not con

taining 4. 

AS 6: (ex (t1/v) & t1 = t2) ;:, ex (t2fv) proVided that th t2 do not occur in 

the scope of a doxastic operator. 

AS 7: (ex (t1/v) & t1 = t2 & B(t1 = t2)) ;:, ex (t2/v) where t occurs in the 

scope of doxastic operator(s) which 

in the case of systems not containing 4 

are untterated. 

AS 8: (t1 = t2 & (3v)(v = t1 & B(v = t1)) & (3v)(v = t1 & B(v = t1))) ;:, 

B(t1 .. t2). 

Further, we shall show that the following restricted rule of inference fur 

all Hin-soc= systems preserves validity: 

R3: ex (t/v) ;:, ' (3v)ex ;:, ' for any constant t foreign to (3v)ex ;:, ' 

and proVided that t does not occur in 

the scope of a doxastic operator. 

Before proving soundness, it was mentioned in section 1, the Barcan 

Formula (Vv)Ba ;:, B(Vv)or was not included as an axiom-schema (or more 

generally as a thesis schema) for any of the Hin-soc= systems in order to 

ensure soundness since as we shall now show, this schema is invalid in 

any class of 'Hintik.k.a' models- in any model of the sort <W,R,{Di},F,V>). 

To show that the Barcan Formula is invalid in any class of 'Hintik.ka' 

models, we shall construct a countermodel to the following simple instance 
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of this schema, vtz., (Vx)BFx, B(Yx)Fx. First of all, let W = {wt,wa} and 

let {<w!J w2>} (; R. 3t Further, suppose that Dt = {c,d} and that Da = {e,f} 

and we shall introduce the set F • {ft} such that ft (w1) • c and ft (wa) = 

e. Then although the individuals c and e are both index-bound, we can 

think of the set {c,e} determined by ft as the 'same' individual existing at 

different indices. So far we have described a Hin-SQc= model structure. 

Then let the model M based on this structure be described by V(t, w1) = d 

and V(t, wa) • f and such that V(F, wa) = {e}. Let M' be a mndel ha~ed nn 

this structure and differing from M only in that V(t, w1) = c and in that 

V(t, w2) • e. It should be obvious that any other model based on the above 

structure and differing from M if at all only in terms of what V assigns to 

arbitrary t for w1 (and tor wa) suCh t.l:l•t V(t, w1) = ft (wt) Will be M' as 

described above. 

Now that we have constructed the models M and M' we shall next show 

that M is a count,rmod'J to (Vx)BFx :t B(Yx)Fx by showing that 

VM((Yx)BFx,w1) = 1 but that VM(B(Yx)Fx,wt) = 0. First, VM•(Ft,w2) = 1 

from which it follows that VM•(BFt,w1) = 1. Since for every M' like M 

such that V(t, w1) = f1 (w1) - which in this case does not include M -

VM•(BFt, w1) • 1, it follows that VM((Yx)BPx, w1) = 1. On the other hand, 

although VM•(Pt, wa) • 1, VM(Pt, wa) = o and hence there is at least one 

model like M, viz., M itself such that Pt at w2 is false. Thus, 1t is the case 

that VM((Vx)Fx,w2) • 0. Then VM(B(Yx)F:x:,w1) = 0. Q.E.D. 

Hence, the sort of semantics under consideration invalidates the Barcan 

Formula and so to preserve soundness of the Hin-soc• axiom systems with 

respect to this type of semantics, we have not added BF as an axiom

schema to the Hin-soc= systems. 

34 For Ule sake of generalft y. it would be better to say Ulat { <w 1• w 2 > J i; R. 
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We shall now show that Hintik.k.a's proposed semantics validates the 

crucial schemata AS 3, 4, 7, 8 which are axiom-schemata shared by all 

the Hin-~ systems. In addition, it will be shown that in Hintikka's 

semantics R3 mentioned above which are inference rules shared by all the 

Hintikk.a systems, preserve validity. These soundness results will apply to 

Hin-sac- systems not containing 4, although they can be generalized to the 

Hin-sac= + 4 systems. 

lt will first of all be demonstrated that all instances of AS 3 and AS 6 

which prohibit quantifying in and substitution of co-referentials for 

notional contexts respectively are valid. In addition, the inferential version 

of AS 3, R3 will be shown to be validity-preserving and it will also be 

demonstrated that all instances of AS 8 (which involves the claim that 

having true opinions as to who t1 and t2 are, viz., one and the same 

individual logically implies that x will recognize their identity) are valid

ated in the semantics under consideration. 

First of all, consider the schema AS 3, Viz., ex (t/v) ;:) (3v)ex such that 

tin ex (t/v) does not occur in the scope of a belief operator. Suppose that 

there is a Hintikka model M • <W,R,{Dt},F, V> such that at least one w1 in 

W, VM(tlt (t/v), wi) = 1. Then there is an M' like M such that for some ar

bitrary t", V(t",wt) tor M' is V(t,ws) for M. Then VM•(ex (t/v),w1) = 1 

and hence, VM((3v)OC,wt) = 1. Q.E.D. 

We shall next consider AS 6, (ex (tt/v) & t1 = t2) ;:) ex (t2fv) such that 

t1 and t2 do not occur in the scope of a belief operator. The proof of AS 6 

will be by induction on the complexity of ex (tt/v) and oc (t2/v). The basis 

of the induction is where ex (tt/v) and oc (t2fv) are atomic. The proof of 
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the basis, viz., that all instances of (or (tt/v) & t1 = t2) ::l or (t-Jv) where 

or (tt/v) and or (t-Jv) are atomic proceeds in much the same way as it did 

for the sQC= systems, although V for t1 and t2 is relativized to the appro

priate index. The inductive hypothesis is that all instances of (a. (tt/v) & 

t1 = t2) ::l or (t2/v) are valid for cases where or (tt/v) and a. (t2fv) are of 

degree of complexity n. I.e., for any wi in any model, whenever VM(tt = 
t2, wi) • 1, VM(a. (t1/v), wi) = VM(CI (t2fv), Wf) where a. (tt/v) and a. (t2/v) 

are of degree of complexity n. It must then be shown that this character

istic holds for cases where a. (tt/v) and a. (t2fv) are of degree of complexity 

n + 1. 

The cases that need to be considered are where a. (tt/v} and a. (t2/v) 

are 1} of the forms ,.,,(tt/v) and -p(t2fv), 2} of the forms [p & y](tt/v) and 

[p & y](t2fv) and finally 3) of the forms (3v")P(tt/v) and (3v")P(t2/v). 

The case where 01 (tt/v) and 01 (t2/v) are of the forms BP(tt/v} and 

BP(t-Jv) need not be considered since lt has been stipulated that tl» t2 do 

not occur in the scope of any doxastic operators. 

Case 1: a. (tt/v) and Cl (t2fv) are of the forms ,.,p(t1/v} and -p(t2fv). 

Suppose that VM( ... p(tt/v), Wt) = VM(tt = t2, Wt) = 1. 

Then VM(,(tt/v), Wt) = 0 and stven that VM(t1 = t2, wi) = 1, it 

follows that VM(,(t2/v}, wt) = 0 by the inductive hypothesis . 

Then VM(-p(t2fv),w1) = 1. 

case 2: or (tt/v) and a. (t2fv) are of the forms [' & y](tt/v), [p & y](t2/v). 

Suppose that VM([p & y](tt/v), Wt) = VM(tt = t2, Wt) • 1. 

So VM(P(tt/v), wi} = VM(y(tt/v), wi) • 1 and since VM(t1 = t2, wt} 

= 1, VM(,(t2fv), w1) = VM(y(t2fv), Wt) = 1 by the inductive hyp. 

Then VM([p & y](t2/v), Wt) = 1. 
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Case 3:oc (tt/v) and oc (tafv) are of the forms (lv")P(tt/v) and (lv")P(t2fv). 

Suppose that VM((lv•)p(tt/v), Wt) = VM(tt • ta, Wt) = 1. 

So there is an M' like M such that VM•(P[(tyv .. ), (tt/v)], Wt) = 1 

and since VM•(t1 = ta, w1) = 1 then by the inductive hyp ., 

VM•(,[(tyv .. ), (ta/v)], wi) • 1. 

So, VM((lv .. ),(t2fv), Wt) = 1. 

Q.E.D. 

This completes the proof that all instances of AS 6 are valid. 

Another schema which we shall consider is AS 8, (tt = ta & (lv)(v = t1 

& B(v • t1)) & (lv)(v = ta & B(v = t2))) , B(tt = t2). Suppose that there 

is a Htntikka model M and an index Wi in W such that VM(tt = ta, w1) = 

VM((lv)(v = t1 & B(v = t1)), Wj) = VM((lv)(v = t2 & B(v = ta)), Wt) = 1 but 

VM(B(t1 • t2), Wj) • 0. Since VM(lt = t2, Wj) • 1 then V(tb Wt) • V(ta, Wj). 

Since VM((lv)(v • t1 & B(v • t1)), w1} = 1 then there is at least one M' 

like M such that VM•(t3 • tt.Wt) = VM•(B(t3 = t1)},wt) = 1 for an arbi

trary t3 and where V(t3,w1) = fk(wt) for some fk in F. So V(t3,wi) = 

V(t1, w1) and for all Wj such that WtRWj VM•(t3 = t1, wj) = 1 and hence 

V(t1,wj) = V(t3,wj) • fk(wj). (Recall our condition on V that if V(t,wi) = 
fk(wi) then for all Wj such that WtRWj, V(t,wj) = fk(wj).)And ctven that 

VM((lv)(v = ta & B(v = ta)), Wt) = 1 then then there is at least one M" like 

M such that VM"(t3 • ta,wt) = VMu(B(t3 = ta)),wt) = 1 and where V(t3,w1) 

• fn(wt) for some fn in F. So V(v, w1) • V(ta, w1) and for all WJ such that 

WjRWJ VM•(t;, = t2,wJ) = 1 and hence V(t2,wJ) = V(t3,wJ) = fn(wJ). 

Given that for M, M' and M .. , V(tt, w1) = V(ta, wi) (this is because M' 

and M" will differ from M if at all only in what V asstgris to t3 for wi 

and possibly for any Wj such that wtRWj) then for M, V(thwt) = V(t3,w1) 
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== V(t2, Wt) • fk(wi) = fn(wt>· Since fk(wt) = fn(wt) then for any Wj such 

that WjRWj, fk(wj) • fn(wj). But since for any Wj such that WfRWj, 

V(th wj) = fk(wj) and V(t2, Wj) = fn(wj) and further, since for any such 

wj, fk(wj) = fn(wj) it follows that for any Wj such that WtRwJ, V(t1,wj) 

• V(t2, wj)· Therefore, for any Wj such that WfRWj, VM(t1 = t2, wj) = 1 

and hence VM(B(t1 • t2), w1) = 1 which contradicts our initial supposjttnn 

that VM(B(t1 = t2),wi) • 0. Q.E.D. 

Finally, we shall show that the restricted rule a (t/v) =» '- (3v)a 

::» ' for any constant t (provided that t is foreign to (3v)a =» ' and that t 

occurring in a (t/v) does not occur tn the scope of a doxastic operator) pre

serves validity. (The proof that modus ponens and the doxastic counter

part of the rule of necessitation preserve validity is similar to the proof for 

the sentential systems.) Thus, our hypothesis will be that !=a (t/v) =» ' for 

any constant t such that t does not occur in ,. Then it will be shown that 

I= (3v )a =» p. The proof proceeds as follows: 

SUppose that for some Hintikka model M = <W, R, {Dt}, P, V>, 

VM(P,wt) = o. 
Then for any M' like M except in V's assignment to t" foreign to ' some 

member of Db 

VM•(P, w1) • 0- since t" is foreign top. 

By hypothesis, 

VM•(a (t"/v) =» ,, Wf) • 1 for any M' like M. 

VM•(a (t"/v),wt) = 0 for any M' like M. 

VM((3v)a, wi} • 0. 

Thus, for any index Wf in any Hintikka model, whenever VM(,, wt) = 0, 

VM((3v)a, Wf) = 0 on the assumption that l~a (t/v) :> ,. Le., 1~(3v)a ;-, ' 
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1f !=cc (t/v) ;:, p,36 Q.E.D. 

It will now be shown that all instances of AS 4 which restricts quan

tifying in to relational contexts and that AS 7 which restricts substitution 

of co-referent1als to contexts where the agent believes that the relevant 

identity holds are valid. 

First, consider AS 7, (ex (tt/v) & t1 = ta & B(tt = ta)) ;, 01 (tyv) where 

it is allowed that t1, ta may occur in the scope of a belief operator. The 

proof that all instances of AS 7 are valid will (as for its restrictive 'cousin' 

AS 6), proceed by induction on the complexity of a. (tt/v) and a. (tyv). 

The bllsis is where ex (tt/v) and ex (ta/v) are atomic. Then for any index 

Wt in a model, the truth of the identity 't1 = ta' at said index is sufficient 

to guarantee that if VM(ll (tt/v), wi) = 1 then VM(a. (tyv), wi) = 1. The 

inductive JzypotbtiSis is that all instances of AS 1 are valid where a. (tt/v) 

and 01 (tyv) are of degree of complexity n. What needs to be shown is that 

all instances of AS 7 are valid for cases where 01 (tt/v) and 01 (ta/v) are of 

degree of complexity n + 1. The cases to be considered are where 01 (tt/v) 

and ex (ta/v) are of the forms 1) ... p(tt/v) and ... p(ta/v), 2) [' & y](tt/v) and 

[p & y](ta/v), 3) (3v•),(t1/v) and (3v")P(t2fv) and finally, 4) BP(tt/v) and 

BP(ta/v). Cases 1) - S) proceed in much the same way that they did for 

AS 6 although we shall illustrate case 3). Finally, we shall consider case 

4, which involves considering the purely doxastic version of AS 7. 

Case 3:01 (tt/v) and a. (ta/v) are of the forms (3v")P(tt/v) and (3v")P(ta/v) 

Suppose that VM((3v•)p(tt/v), Wt) • VM(tl • ta, w1) • VM(B(tl • 

t2), w 1) = 1. 

So there is an M' like M such that VM•(B[(t3/v"), (tt/v)], w1) = 1 

(and if free v" occurs in the scope of a doxastic operator then 
-------

35 The author has modelled the reasoning here an.er Hughes and Creswell (1968), pp. 140-141. 
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V(t•,wt) • fk(wt) for some fk e P). 

Then since VM•(tl • t:z, w1) • VM•(B(tl • t:z), w1) • 1, by the 

inductiw byp ., VM•(B[(ty'v•), (t2fv)], w1) • 1. 

So, VM((3v•)B(t2fv), w1) • 1. 

Q.E.D. 

Case 4: ex (t1/v) and ex (t2fv) are of the forms B'(tt/v) and B'(t2fv) res

pectively. 

Suppose that for some Bin-sQC= model M and for some Wt in W, 

VM(Bcx (t1/v), w1) • VM(t1 • t2, w 1) • VM(B(t1 = t2), w1) • 1. 

Since VM(Bcx (t1/v), w1) • 1, then for any Wj such that WtRWj, 

VM(ex (t1/v), w1) • 1. Purther, since VM(B(t1 = ta), Wt) = 1 then for 

any Wj such that w1Rwj, VM(t1 = ta,wt) = 1. 

It can then be shown by induction on the complexity of the contents 

ex (tt/v) and ex (ta/v) where t1, ta do not occur in the scope of dox

astic operators for systems not containing 4, that VM(ex (ta/v), Wj) 

is 1 for all Wj such that WtRWJ The proof here ts as for AS 6. 

(Por systems containing 4, it would also be the case that VM(B(tt = 
ta, Wj) • 1 and so we could simply appeal to the inductive hypo

thesis.) 

And so for any Wj such that w1Rwj, VM(41 (t2fv), Wj) = 1 on the 

suppostion that VM(IICX (tt/v), Wt) • VM(t1 = ta, Wt) = VM(B(t1 

=ta), wt) = 1 and therefore, VM(IICX (ta/v), w1) = 1. 

Q.E.D. 

Next, consider AS 4, ex (t/v) & (3v)(v = t & B(v = t)) , (3v)u. Suppose 

there is some Wt in W in a Hintikka model M such that V M( ex (t/v), Wt) = 
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VM((3v)(v • t & B(v • t), w1) = 1. Then it will be shown that VM((3v)«, 

Wf) • 1. Supposing that VM((3v)(v = t & B(v • t), wi) • 1 then there will 

be at least one M' like M except possibly in V's assignment to some ar

bitrary t" (which must be foreign to (3v)«) at w1 some member of Dt 

such that VM•(t• • t, Wf) = 1 = VM•(B(t• • t), w1) = 1 and such that 

V(t•, wi) • fk(wi). Purther, since VM(« (t/v), wi) = 1 then VM•(« (t/v), Wt) 

= 1 (given that t• is foreign to (3v)« - and given that t replaces all occur

rences of free vis « (t/v)). So, it is the case that VM•(t" = t, wi) = 1 = 
VM•(B(t" • t), wi) • VM•(« (t/v), wi) = 1. Then it will be shown that 

VM•(« (t"/v),wi) = 1. This can be proven by induction on the complexity of 

« (t/v), « (t"/v). 

The basis of the induction is where er (t/v), er (t"/v) are atomic and the 

proof of the basis proceeds as it did for AS 7. The inductive hypothesis is 

that for er (t/v) of degree of complexity n, whenever VM•(t" = t, wi) = 1 = 

VM•(B(t .. = t),w,) = VM•(er(t/v),wt) then VM•(er(t"/v),wi) = 1. We then 

need to show, that this will hold true for « (t/v), er (t"/v) of degree of com

plexity n + 1. The cases to be considered are where ex (t/v), ex (t"/v) arP. 

1) negattons, 2) conjunctions, 3) existentially quantified wtfs and 4) of the 

form ap(t/v), BP(t"/v) respectively. These cases are proven exactly as 

they were for AS 7. 

Then by induction on the complexity of wtfs, we can conclude that 

whenever VM•(t" = t, wi) • VM•(B(t" "" t), Wt) • VM•(er (t/v), Wt) = 1 then 

VM•(Gl (t"/v), w1) = 1 where er (t/v), er (t"/v) are of any degree of complex

ity. Since V(t", w1) = fk(wi) for some member of P and since VM•(Gl (t"/v), 

wt) = 1 (which in turn relied on the suppositions that VM(Gl (t/v), w 1) = 
VM((3v)(v = t & B(v = t), Wt) = 1), it follows that VM((3v)ex, Wi) = 1. 
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O.E.D. 

Now that we have illustrated some results concerning soundness of 

the Hin-sQC• systems (at least those not containing 4) with respect to the 

appropriate classes of Hintikka models, we shall in the remainder of this 

section sketch a Henkin-style proof of completeness of these systems with 

respect to this type of semantics. As usual we shall sketch a Henkin-style 

completeness proof for the Hin-SOCC systems. What we shall want to show 

for any Hin-soc= system is that any non-theorem will be invalid in the 

appropriate Htn-sQC• canonical model. I. e., for any non-theorem ex, 

VJ,A,.(G,wt) • 0 tor some maximal consistent set w1 (of a special sort) in the 

system •s canonical model, M. The characteristics of a Hin-soc• canonical 

model will now be described. 

Any Hin-sQC== canonical model M is a 5-tuple, <W,R, {Di},F, V> such that 

W is a set of maximal consistent sets of wtfs with the 3-property and with 

the 3B-property. I.e., W == {w1:w1is a maximal consistent set with the 3-

property and with the 3B-property}. As was discussed in chapter two, a 

maximal consistent set Wi has the 3-property just in case for any wtf of 

the form (3v)a, if (3v)a is in Wf then so is oc (t/v) for some constant t. In 

the case of the Hin-soc= systems we shall add the rider that the scope of 

the quantlfier is such that free v does not occur in the scope of a belief 

operator. We can guarantee that any maximal consistent set has the 3-

property by (consistently) adding for any wff of the form (3v)oc in w1 an 

implicational wtf having the form (3v)CI ;, Cl (t/v) for at least one constant 

t. What it is for a maximal consistent set Wf to possess the 3B-property 

will be defined once we have defined the element F for the canonical model. 

Given our definition of W for the canonical model, R is a two-place rel-
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ation ranging over members of W which can be defined as follows: For any 

w 1, WJ in W, WtRWJ iff (Voc )(Bc:l e w1 --+ oc e wi). Further, {Dt} is a set 

of sets of constants, each set of constants being associated with the appro

priate Wt in W (where the subscripts •match up'} where Dt is the set 

CONS which is the set of all constants which can occur in any well-form

med formula of the language L for the Hin-SQc• systems. We shall assign 

the subscript •t• to this set, i.e., we shall call the set CONS which is Dt the 

set CONSt. Also, we shall construct a set of sets of constants, { CONSt} 

where CONSt e {CONSt} (each set being denumerably infinite like CONSt) 

such that no member of any of these sets if i • 1 can occur in any wff of L 

for the Hin-SQC• systems. Each of these sets is assigned a subscript such 

that if a set tn this series is CONSt then we shall say that this set is Dt. A 

requirement for membership in {CONSt} is that for any 1, J where i • j, 

CONSt n CONSj is 0. In short, the members of {CONSt} are non-overlap

ping. 

Then we can define {Dt} as follows: For any Db Dj in {Dt} such that 

i • j, Di = {ul u e CONSt} and Dj • {PIpe CONSj} such that Dt n Dj = 0. 

Also, Dt = {tl t e CONSt} where CONS1 is simply the set CONS which ig the 

set of all constants which can occur 1n any wff of L for the Hin-SQC== 

systems. For any constant in CONSf where i 111 1, we shall introduce the 

function g which to each constant in CONSt assigns exactly one constant 

from CONSt (• CONS). We shall call the value of g(u) where u is a cons

tant in CONSt(1111) u* where u* is in CONSt (=CONS). 

The set F is a set {ftJ f2, ... , fn, ... } of 'correlating' functions where 

each member of this set, f& for each Wi in W takes as its value exactly one 

constant in the Dt associated with w1 or is undefined. Then for any fk in F 
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and for any wi in W, fk(wi) e Dt or is undefined. Further, for any fk, 

fn in F, if fk(wi) = fn(wi) then for any Wj such that WtRWj, fk(wj) = 
fn(wj)· Given our definition of F for the canonical model we can now pre

sent the characteristics of any maximal consistent set Wf possessing the so

called 3:e-property. Any Wf in W possesses the 3B-property just in case for 

any wff of tha form (;w)or whara 3 is non-vacuous and such that or is 

either a belief wff or involves a belief wff in whose scope v occurs, if 

(3v)cx is in wi then ex (t/v) is in Wt for at least one constant t such that t 

denotes (where 'denotes' will be spelled out in terms of V) a constant in Dt 

which is the value of an fk in F. We can ensure that any Wf in W has the 

3B-property by adding for every wff of the form (3v)cx in wi (where 3 is 

non-vacuous and such that A is either a belief wff or involves a belief wff 

in whose scope v occurs) the implicational wff (3v)cx ::>a (t/v) for at least 

one constant t such that t denotes a term in Di which is the value of an fk 

in F (on the condition that we can preserve consistency). 

Finally, we can define V for constants for w1 e W similarly to how we 

defined V for constants for ~ for the SQC"" systems by first of all supposing 

that the members of CONS can be ordered. Then for any constant tt, and 

for w1 e W, V(tb w1) = V(tj, w1) if tj occurs earlier in the ordering such 

that tj = ti e w1 or V(ti, w1) = t1 (where ti is in CONS) otherwise. For any 

constant t1 and for any WJ(•l) in W, V(tt, wj) = un such that un e Dj and 

such that t1 = un* e Wj.36 V for predicate variables for w1 e W is defined 

as for the sac= systems as follows: For any P e PREO, for w1 e W, 

<t1, ... , tn> & V(P, Wt) iff Ptt ... tn & Wt where the ti'S in the n-tuple 

36 We shall also impose the same restriction on V for terms for the canonical model as for any model 

in the appropriate class, viz .• that if V(l,wj) • fk(w;) for some fJc then for all Wj such that WjRWj· 

V(t,wj) • fk(Wj). 
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<t!J ... , tn> are constants in Dt. V for predicate variables for any Wi(;e1) 

in W is defined as follows: <Ut, ... un> & V(P,wt) iff Put*· .. un* & V(P,wt) 

where the Ut's tn the n-tuple <UtJ ... un> are constants in Dt· 

Now that we have characterized the canonical model for any Hin-sQC= 

system, we shall in outline form provide a proof of the fundamental the

orem of canonical models, viz., VJJ.(tl., Wt) = 1 iff tJ e Wt for any Wtin W. 

The proof proceeds by induction on the complexity of formulae: 

Base Cl~ use : Suppose tJ is atomic in which case tJ is i) of the form t1 = 

t2 or is ii) of the form Ptt ... tn. 

1) tJ is of the form t1 = ta. 
The proof that VJJ.(lt = t2, Wt) = 1 iff tt = t2 & Wt proceeds as it did for 

the SQC= systems. We shall now prove that V_u.(tt • t2,w1) • 1 iff 
t1 • t2 & Wf for Wi in W Where i • 1. 

Suppose that VJJ.(tt • ta,wt) = 1. 
Then V(t!J Wt) • V(t2, Wt) 
Then V(ttt w1) = un • V(t2, wi) where un is a constant in Dt. 
Then t1 = Un* E Wt and t2 = Un* E Wt given the definition of V for 

constants for Wi(•1) in W. 
Then t1 = un* & t2 • un* e w1 given that wi is maximal consistent 

1-(tt = un* & ta = un*) => t1 = ta 
Hence, (tt = Un* & ta = un*) ::> t1 = t2 e wi since Wi is max. con. 
Hence, t1 = t2 e w1 since w1 is max. con. 

Suppose that t1 = t2 E Wi · 
Then tt = Un* e Wt such that Un e Dt 
Then t1 = t2 & t1 = un* e wi since w1 is maximal consistent. 
1-(tt = t2 & t1 = un*) => t2 = Un* 
Hence, (tt = t2 & t1 = un*) ::> t2 = un* e w1 since w1 is max. con. 
t2 • Un* E Wi since Wt is max. con. Where Un E Of. 

V(t2, wt) = Un = V(tt, wi) given the definition of V for constants for 

any Wt(;el) in W. 
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U) A is of the form Ptt ... tn. 
We can prove V.u,(Ptt· .. tn, w1) = 1 iff Ptt· .. tn e w1 in the same way 

we proved this for the sac· systems. 
The proof of V.u,(Ptt ... tn,wi) =tiff Pt1 ... tn e Wt for any Wt(•1) in W 
proceeds as follows: 

V .u,(Ptt ... tn, Wf) • 1 iff <V(tb Wf), ... , V(tn, Wt)> E V(P, Wf) 
iff <UtJ ... ,un> e V(P,wt) where each Ut e Di· 

iff Put* ... un* e Wt. (given the definition of V for 
predicate variables.) 

Now if V(th Wt) • Ut, ... , V(tn, Wt) • un where ub ... , un are all in Dt 
then t1 • Ut*, ... , tn • un* are all in wi given the definition of V for 
constants for any Wf(~t1) in Wand hence tt = u1* &, ... ,& tn = un* e 
Wt. Since 1-(tt =Ut*&, ... ,& tn • Un*);) (Put*· .. un* = Ptt ... tn)37 then 
{tt =Ut*&, ... ,& tn • Un*);) (Put*· .. Un* !i Ptt ... tn) E Wf. Therefore 
Put*· .. Un* !i Ptt ... tn E Wj in Which case Pt1 ... tn E Wf if Put*· .. Un* 
is. Therefore, V .u. (Ptt ... tn, Wt) = 1 iff Ptt ... tn e Wi. Q. E. D. 

Now that we have proven the base clause, we appeal to the inductive 

hypotbrsis, viz., that the fundamental theorem of canonical models holds 

for wffs of degree of complexity n. What we must now show is that the 

fundamental theorem holds for wffs of degree of complexity n + 1. The 

proof of this for the cases where Gl is of the form -p, p & T and B' pro

ceeds as it did for the sentential doxastic systems and tor the sac= sys

tems. What needs to be considered is the case where Gl is of the form 

(3v),. The proof of the case where the scope 'of the quantifier is simply a 

wff where free vis not in the scope of a doxastic operator proceeds roughly 

along the same lines as the proof of the case where or is of the form (3v) p 
for the sac= systems. What remains to be shown is that the fundamental 

theorem holds for the case where free v in the scope 'of (3v)' occurs in 

the scope of a doxastic operator. 

37 See the reasoning behind this on pages 67-681n chapter two. 

http:Ptl--.tn
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Case: er ts of the form (3v)' where the scope' is such that free v occurs 

in the scope of a doxastic operator. 

Suppose that (3v)' e w1. 
Then '(t/v) e w1 for at least one cons. t which denotes some cons. 

1n Dt which is the value of an fk 1n F. I.e., 
V(t, wi) = fk for some fk in F. This 1s guaran
teed by the 3}3-property. 

VM(,(t/v),wt) = 1 for at least one constant t such that V(t,wt) = 
fk by the inductive hypothrsis . 

VM•(,(t•/v),wt) = 1 for an JA.' like M and such that V(t•,wt) = 
V(t,wt) = fk(wi). 

VM((3v),, Wt) • 1. Q.E.D. 

Suppose that VM((3v),,wt) • 1. 
Then VM•(,(t .. /v),wt) • 1 for at least one M' like M and such that 

V(t", Wi) • fk(wt). 
Then VJ,A.(,(t/v),wi} = 1 for some constant t such that V(t,wi) = 

V(t .. ,w,) = fk(wi). 
Since M' differs from ..U. if at all only in what V assigns tot" at 

w1 then V(t.wt) = fk(wt) for M'. But V(tU,wt) = fk(wi) for M'. 
So, VM•(t = t .. ,w,) = 1. 

For for any WJ 1n W such that w,Rwj, V(t,wj) = V(t",wj) • 
fk(wj) assumins that the same restriction applies to V for terms 

for the canonical model as for any other Hintikka model, vi2., that 
if V(t, w1) = fk(wt) for some tk then for all Wj such that WtRWj, 
V(t, Wj) = fk(wj). 
Then VM•(t• = t, Wj) = 1 for all Wj such that wtRWj (since M' is 

like M except in v•s assisnment tot".) 
Thus, VJA_•(B(t" = t),wt) = 1. 
Thus, V,u.•(t" = t & B(t" = t),wi) = 1 
Thus, V M((3v)(v = t & B(v • t), w1) = 1. 

Then VM(B(t/v),wt) • VM((3v)(v =t & B(v = t),wi) = 1 and hence: 
VJA_(B(t/v) & (3v)(v = t & B(v = t),wi) = 1. 

Given that the fundamental theorem has been proven tor wffs of 
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the form p & T then: 
p(t/v) & (3v)(v =t & B(v = t) E Wt 
1-(P(t/v) & (3v)(v = t & B(v = t)) 3 (3v)p 
(p(t/v) & (3v)(v • t & B(v = t)) 3 (3v)p e Wi since w1 is max. con. 
(3v)p e Wt since Wt is max. con. 
Q.E.O. 

This completes the proof of the fundamental theorem of canonical models. 

By induction on the complexity of wffs, we have proven that VJ,A.(tA,wt) 

• 11ff tA e wi for any wtf tA and for any maximal consistent set of wtfs, 

Wi. Now suppose tA is a non-theorem for some Hin-sac= system. Then "'lA 

will be syntactically consistent and hence by Undenbaum's lemma we can 

construct "'lA 's maximal consistent extension wi which is in the set of 

maximal consistent sets, W in the canonical model, M such that "'lA e Wt. 

Then by the fundamental theorem of canonical models, V ),A ("'lA , wi) • 1 and 

hence VJ,A.(tA,wt} • 0. In short, any non-theorem will be invalid in the ap

propriate system's canonical model. What remains to be shown is that the 

relevant Hin-sac= system's canonical model ),A is in the class of models 

with respect to which that system is sound. And as we outlined in chapter 

one this can be proven by showina that R has the appropriate character

istics. For example, tf we are to prove that Htn-Knac••s canonical model is 

in the class C of models with respect to which this system is sound, it 

must be shown that R in the canonical model is serial. And how this can 

be done is discussed in the first chapter. 

4. An Alternative to Hintikka•s Logic and Semantics for Belief 

As we have just seen, the Hintikka axiom systems for belief and their 
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characteristic semantics enable us to make sense of quantification into 

belief constructions as well as substitution of co-referentials in such con

structions. This is achieved by making a distinction between relational and 

notional belief contexts which has been the time-honoured tradition on the 

ordinary language front with such philosophers as Kaplan and Sosa. 

In particular, the problem of quantifying into ordinary language belief 

contexts is a problem for a belief logic mirroring such contexts only if we 

construe the existential quantifier in our logic objectu4lly . Thus, from 

'Jones believes that the next Prime Minister of Canada will attempt to bal

ance the budget• we would not infer that there is some individual v such 

that Jones believes of v that he/she will attempt to balance the budget'. And 

so, in any logic of belief where the existential quantifier is construed ob

jectually, it would be undesirable to have a rule of inference permitting 

unrestricted quantification across propositional attitude operators. How

ever, if we read the quantifiers substitutionally in the semantics for our 

belief logic then there is no problem with respect to 'quantifying in'. I.e., if 

'3' is given a suhstitutional reading in the semantics, then from lkll (t/v) 

we can infer (3v)B« since this says intuitively that there is a substitution 

instance of Bor (which in this case is Bor (t/v)) which is true. No mention 

is made of there being any individual (in the appropriate domain of indivi

duals) v such that B« (t/v) is true. 

Then a logic of belief in which the quantifiers are construed substitu

tionally does not inherit the ordinary language problem of quantifying into 

belief constructions. This point has been made by Kripke in a paper dealing 

with substitutional quantification for first-order logic: 

... the intelligibility of substitutional quantification into a belief or a 
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modal context is auaranteed provided the belief or modality is intel
li&ible when applied to a closed sentence ... As Quine has pointed out, 
even for a context as opaque as quotation, where no-one thinks that 
satisfaction for referential variables makes any immediate sense, sub
stitutional quantification is immediately intelligible. 38 

Then it would seem reasonable to adopt a logic of belief or for that matter 

of any modality where the quantifiers are read substitutionally. However, 

Kripke claims that it is best to have first-order modal or belief logics which 

contain both kinds of quantifiers since 11SUbstitutional quantification is 

here, as always, not a riv.tl theory to referential quantification". 39 We 

shall now offer an argument against Krtpke's claim and in favour of the 

claim that at least for a logic of propositional attitude modalities such as 

bi/Jif' it is best to adopt a logic of belief where the quantifiers are read 

substitutionally only in the semantics. The obvious advantage of adopting 

such a logic is that we are able to sidaAtP.p the problem of quantifying tn 

entirely. But there are other reasons for adopting a belief logic where the 

quantifiers are read solely substitutionally (in conjunction with a truth

value semantics), as we shall presently see. 

An obvious candidate for a semantics of a logic of belief where the 

quantifiers are read substitutionally would be a trutb-v.Jlutt semantics. 

As the reader may recall, a TV semantics dispenses with domains of indi

viduals for TV models. In fact, the atomic wtfs of the language for the 

appropriate system are assigned truth-values at any given index in the 

model without appeal to individuals in the same way that the atomic wtfs 

are assigned truth-values at indices for sentential systems. And employing 

V(tJ, Wt) = VM(tJ, wt) where tJ Is atomic as the basis, we can define the 

31! Kripke (1976), p. 375. 

39 ibid. p. 375. 
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truth-conditions for the different sorts of wffs of the language inductively. 

The advantage which a TV semantics supporting a substttutional read

ing of the quantifiers has over a domain semantics (such as for the sac• 

systems where the indices in a model share the same domain of individuals 

or such as for the Hin-soc= systems where the indices in a model have 

their own non-overlapping domains) is that it has none of the difficulties 

associated with the metaphysics of the domain semantics. 

A.s was argued in chapter two, a problem with the domain semantics 

tor the sac= systems is that it is not clear what the criteria for transindex 

individuation would be other than regarding members of Din an sac= 

model as so-called bare particulars, which is a notion that philosophers 

such as Kaplan find objectionable. In addition, it was noted that individuals 

in sac= models are necess.try extstents given that for any such model, the 

domain D is shared by all indices. On the other hand, if we opt for a Hin

tikka-type semantics for belief logic where each index has associated with 

it its own non-overlapping domain of individuals then we are faced with 

the problem of making sense of an index-bound individuars having 'correl

ates' across doxastic alternatives which is necessary for dealing With 

quantification across propositional attitude operators. Further, there is the 

objection raised by both Kripke and Plantinga that names denoting indivi

duals in propositional attitude constructions (as well as in counterfactual 

conditional constructions) denote the .s~me individual existing at various 

alternatives and not a series of 'correlates'. Finally, whereas the invariant 

domain semantics involves a proliferation of necessary existents, the vary

ing domain semantics for the Hin-SQC= systems involves a proliferation of 

possibilia - given that indexed domains of individuals are non-overlapping. 
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A TV semantics for belief logic avoids the metaphysical and ontological 

embarassments associated with the different types of domain semantics by 

simply dispensing with domains of individuals. The solution to the diffi

culties outlined above is simple enough: If there are no domains of indivi

duals for models, then there is no question of transindexicalidentity of 

individuals or of transindexical similarity (as in the case of determining 

conditions for counterparthood)40. Then there is some presumption in 

favour of adopting a TV semantics for belief logic. 

Another presumption in favour of adopting a TV semantics for first

order belief logic is that it obviates the need for relational contexts with 

respect to which existential generalization would normally be restricted. 

In short, from the point of view of quantifying across propositional attitude 

operators, it is unnecessary to appeal to the notional/relational distinction 

or the de re/de dicta distinction (although this distinction still applies when 

it is characterized in terms of the quantifiers) ln Kaplan's or Hintikka's 

sense where 'acquaintance' with the relevant individual(s) distinguishes 

a relational context from a notional one. 

However, the TV semantics we have outlined for the sQC• systems 

while rightly allowing for unrestricted substitutJon•J quantification across 

prepositional attitude operators also allows for unrestricted substitution of 

eo-referential terms for prepositional attitude constructions. But this latter 

feature is undesirable in the light of the schema t1 = t2 ;:, B(t1 = t2) that is 

validated in the sQC= TV semantics and which intuitively says that agents 

are omnidoxastic with respect to contingent identities. This schema is un-

40 As with the TV semantics for the soc• systems. the TV semantics for the set of axiom-systems 
we shall presently develop does not involve any 'assignments' of Individuals to constants. The 
question of what constants denote is sidestepped. 
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tenable since presumably agents can fall to be/few that contingent iden

tities obtain - as in the Tully/Cicero case discussed in the third chapter. 

Then in the light of these considerations, it is undesirable to have a sem

antics (and a logic) of belief which allows for unrestricted substitution of 

co-referentials (or to be unprejudiced, co-identicals) for belief construc

tions. Since agents are presumably not omnidoxastic with respect to con

tingent identities then if x believes that ex (tt/v) at an index Wt and if the 

identity t1 = t2 holds at this index, it does not follow that the agent also 

believes that ex (t2fv). (Once again, consider the Tully/Cicero case.) The 

agent may fail to beU"" that the identity t1 = t2 holds. The obvious way 

of guaranteeing that this identity holds at all alternatives is to require that 

the agent believes that the identity holds which was one of Hintik.ka's 

ways of dealing with this problem. However, we shall not use Hintikk.a's 

second strategy of allowing substitution to go through for special sorts of 

relational contexts since our logic and semantics does not assume a rela

tional/notional distinction. 

Notice that this diagnosis of the problem of the failure of substitutivity 

of co-referentials for belief constructions makes no appeal to the notional 

vs. relational distinction for belief contexts. In fact, this diagnosis of the 

problem lends itself to the view that belief contexts are fundamentally un

ambiguous and in fact they are, to borrow Frege's phrase, unambiguously 

'oblique' in the sense that eo-referential& (or more appropriately, co-iden

ticals) are never substitutible in such contexts, given that agents are not 

omnidoxastic with respect to contingent identities. On the other hand, con

texts not involving propositional attitude modalities are 'transparent' with 

respect to the substitution of co-referentials in which case there is an 
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ambiguity that does not lie in the belief operator itself but rather in the 

distinction between non-doxutic and doxastic contexts (or more generally 

between modal vs. non-modal contexts).•1 

What is here being proposed is that we adopt a TV semantics for belief 

logic which lends itself solely to a substitutional reading of the quantifiers 

thus allowing unrestricted quantification across doxastic operators and yet 

which treats belief contexts as unambiguously oblique With respect to the 

substitution of co-referentials. As we shall see, this type of semantics can 

be developed by simply adopting the TV semantics for the sac= systems and 

lifting the restriction on V that if V(t1 • ta, w1) • 1 then V(t1 = t2, wj) • 1 

for all Wj in W. This allows that even though t1 = t2 holds at wb it may 

fail to hold at some Wj in W such that WtRWj in which case an agent at 

Wi Will fail to believe that this identity holds thus invalidating t1 = t2 , 

B(t1 = t2). Then even though x at wi believes G. (t1/v) and even though t1 = 

t2 holds at Wf, x may fall to believe that G. (t2/v) at Wi since G. (tt/v) and 

ex (ta/v) may differ in their truth-values at some alternative Wj (since t1 = 

ta may fail to hold at this wj). Further, since in this type of semantics the 

quantifiers are interpreted substitutionally then unrestricted quantification 

into belief constructions is permitted thus obviatin& the need for the rela

tional/notional distinction. Nor does this distinction rear its inelegant head 

in discussing the failure of substitutivity for belief contexts since Hintikka's 

AS 8 which allows subsitution of identicals to go through for special sorts of 

relational contexts turns out to be invalid in this semantics- as will be 

shown presently. 

It should be apparent that the advantage of a TV semantics of belief 

41 This vtew of things Is In the spirit of Frege's treatment of belief contexts as 'oblique' and non
belief contexts as tr•sparent with respect to the Issue of substitution in 'Sense and Reference·. 
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logic which lends itself to a solely substitutional reading of the quantifiers 

whJ1e restrlcti/11 substitution of co-identlcals vs. the type of semantics 

which Kripke is advocating which allows for both kinds of quantifiers or 

vs. a Hintikk.a-type semantics where the quantifiers are read solely ol:l

jectually is that the former type does not treat belief contexts as aml:liguous 

(thus for example sidestepping SUch's objections concerning the so-called 

myth of ambiguity of belief contexts). It is presumably better in the sense 

of 'theoretically simpler' to get by with one rather than two senses of 

belief. .Also, the purely substitutional TV semantics avoids the difficulties 

that are associated With the met•physlcs ot any semantics appealing to so

called domains of indviduals. 

The appropriate set of axiom-systems for the kind of semantics we are 

proposing Will simply be the sQC= axiom systems each of which Will in

clude as an axiom schema a (t/v) ::;) (3v)cx which allows for unrestricted 

substitution.tl quantification across propositional attitude operators (if t 

occurring in a (t/v) occurs in the scope of a doxastic operator42) with the 

folloWing emendation: Any such system Will have as an axiom-schema a 

restricted version of (a (t1/v) & t1 = t2) ;:) ex (t2/v) where it is stipulated 

that t1, t2 in a (t1/v), a (t2/v) do not occur in the scope of doxastic oper

ators. The restriction on this schema effectively blocks the proof of the 

schema t1 = t2 ;:) B(tl = t2) which says that agents are omntdoxastic with 

respect to contingent identities since the unrestricted version is integral to 

the proof of this schema. More importantly, this restriction disallows as a 

specific version of this schema (Bel (t1/v) & t1 = t2) ;:) Bel (t2/v) which says 

that co-tdenticals are freely substitutible in belief constructions. Also, the 

above-mentioned restriction disallows as instances of this schema wtfs 

42 This would allow as instances of this schema such wffs as Bfa::;) (31<)8Fx as well as (fa 8t Bfa)::;) 
C3KXFx 8t Bfx). 
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such as ((Fa & BGa) & a • b) :> (Pb & BGb) or ((Fa & P)IGa) & a = b) , (Fb & 

PJIGb). 

Further, we shall add as an axiom-schema (01 (tt/v) & t1 = t2 & 

B(tt • t2)) , a (tafv) where t1 and t2 may occur in the scope of doxastic 

operators which in the case of systems without 4 are uniterated for the 

same reasons as discussed in the case of the Bin-sac- systems. Intuitive

ly, this schema asserts that the substituttvity of identicals is permissible 

for belief contexts provid«i that the agent believes that the relevant iden

tity obtains. That all instances of this schema are valid/provable for the 

systems· we shall presently discuss and that Hintikka 's AS 8 is not valid/ 

derivable for these same systems reflects our Pregean position that belief 

contexts are unambiguously oblique. 

And so, we shall call the following axiom-system Sub-KQC= such that 

any Sub-sQC• system can be obtained by extending the doxastic sentential 

fragment in the way discussed in the first chapter: 

AS 1: a where a has the form of a PC thesis. 

AS 2: (Bcr & B(OI ;, ')) ;, B' 

AS 3: oc (t/v) , (lv)oc 

AS 4: t = t 

AS 5: (oc (tt/v) & t1 = t2) , oc (tafv) (provided that t1 and t2 do not 

occur in the scope of a doxastic operator.) 

AS 6: (oc (tt/v) & t1 • t2 & B(tt = t2)) , oc (t2/v) (where t1, t2 may 

occur in the scope of doxasttc operator(s) 

which for systems without 4 are 

uniterated.) 
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AS 7: (Vv)Bex ;, B(Vv)ex (Barcan Pormula) 

The rules of inference will simply be modus ponens as well as: 

RB l-ex - I-Bex 
R3 l-ex (t/v) ;, ' - l-(3v)ex => ' (for any t foreign to (3v)ex , ') 

Before dtscusstns the correspondins semantics, we shall show that belief 

de re logically (classically) implies belief de dicto for the Sub-soc= .systems, 

which as cUscussed. in chapter three also makes sense if we construe the 

quantifiers substitutionally. Thus, suppose that some substitution instance 

of 'Jones believes that vis prime' is true. Then it follows that Jones bel

ieves that some substitution instance of •v is a prime' is true. So, it is 

desirable that l-(3v)Bcx :> B{3v)ex for the Sub-Sac- systems. A derivation 

sequence of any instance of (3v)Bcx , B(3v)ex for the Sub-sac• systems 

will look like this: 

1. l-ex ( t/v) , (3v )ex 

2. B(ex (t/v) => (3v)ex) 

3. Bcx (t/v) => B(3v)ex 

4. (3v)Bcx => B(3v)ex 

Q.E.D. 

1, RB 

2, K and modus ponens. 

3, R3 

Purther, given that our Sub-sac• axiom systems contain the Barcan 

Pormula, and stven that 'B' and 'Pa' are interdetinable, then any instance 

of the following schema for doxasttc possib111ty is derivable (by contra..:. 

posins the appropriate instance of the Barcan Formula), viz., Pa(3v)ex => 
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(3v)PJIG. And given AS 3, ex (t/v) :l (3v )ex along with the derived rule 

of inference l-ex :l p - 1-PJIG :l PBP as well as R3, any instance of the 

schema. (3v)PJIG , (3v)PJIG is derivable for the Sub-sac= systems. It 

therefore follows that l-(3v)PJIG • (3v)PJIG which thereby ensures the 

elimination of all de re construtions for doxastic possibility for these sys

tems. However, nothing hangs on this reduction schema from the point 

of VieW of the TV semantics for the systems proposed in this section, since 

questions of ontology (including the problem of 'possibilia') have been 

sidestepped or at the very least, deferred given that models do not contain 

as elements domains of individuals. 

We shall now provide a somewhat more formal presentation of the TV 

semantics for these Sub-SQC= axiom systems which lends itself to a sub

stitutional reading of the quantifiers. What follows is a desription of this 

semantics, with remarks on what it does and does not validate as well as 

remarks concerning soundness and completeness. 

A &..tb-sQC= TV model will be a triple <W, R, V> such that W lll! 0, R ' 

W X W with the appropriate restrictions placed on R depending on the sys

tem under consideration. V is an indexed truth-value assignment to the 

atomic wtfs of the language. I.e., V: {Atomic Wffs} X W- {0.1}. We 

have obviated the need tor domains of indiViduals in our characterization 

of a Sub-SQC= TV model. For each member of W, the function V simply 

assigns to the atomic wffs of the language truth-values. 

Further, to guarantee soundness, we shall impose the following res

trictions on V for any Wf in W: 

Restriction 1: It ex is of the form t = t then V( ex, wi) = 1 for all w 1 in W. 

Restriction 2: If V(t1 = t2, Wf) = 1 then V(cx (t1/v), Wf) = V(cx (t2/v), Wf) for 
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any Wtin Wand where a (tt/v) and a (t2/v) are atomic. 

Restriction 1 bears directly on the validity of AS 4, t = t and of course the 

second restriction bears on the validity of AS 5, (a (tt/v) & t1 = t2) :> 

a (t2fv) such that t1 and t2 do not occur in the scope of a belief operator. 

Also, notice that there is no restriction on V to the effect that if V(tl = 

t2, Wt) = 1 then V(t1 = t2, Wj) = 1 for all Wj in W. Hence, there is nothing 

preventing V from assigning to a contingent identity wff different truth

values at different indices. And this feature of the semantics is what 

invalidates the schema (Ba (tt/v) & t1 = t2) :> Ba (t2fv) allowing substitu

tion of identicals in belief constructions as well as the schema t1 = ta :> 

B(tt • t2) which asserts that agents are omntdoxastic with respect to 

contingent identities. 

Finally, a valuatiDJJ over a Sub-sQC= TV model is a function from 

wffs and indices into truth-values. I.e., VM: Wffs X W-----+ {0, 1}. And 

VM can be defined inductively with the following as the basis: 

VM(a, wi) = V(a, wi) where ex is atomic (either of the form t1 = ta or 

of the form Ptt ... tn) where V has imposed on 

the two restrictions mentioned above. 

Inductive Step: Suppose that VM(cx, wi) and VM(,, wi) ar~ defiru:d. 

1) VM(-a, Wj) • 1 iff VM(fX, w 1) = 0. 

2) VM(Cl & ,, Wj) • 1 ltf VM(cx, Wj) • VM(,, Wj) • 1. 

3) VM(Bcx, w1) • 1 iff VM(a, Wj) • 1 for all Wj such that WtRWJ 

4) VM((3v)a, Wt) = 1 iff V M( ex (t/v), w1) • 1 for at least one constant t. 

Notice that the existential quantifier is treated substitutionally in the def

inition of VM for wtfs of the form (3v)cx . This makes the Sub-sac• axiom 

schema a (t/v) :> (3v)cx more palatable for cases where tin ex (t/v) occurs 
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in the scope of a doxastic operator. 

V•lidity of a wff A in a Sub-SQC• model is truth of that wff at all w1 

in W for that model and validity of a wff A with respect to a class of such 

models is validity of that wff in each model in the class. 

Before discussing our soundness results, we shall verify that the 

schemata (Bel (tt/v) & t1 = t2) ::> Bel (t2/v) and. t1 = ta => B(tt = t2) as well 

as B1nt1kka's AS 8, Viz., (tt = t2 & (3v)(v = t1 & B(v = t1)) & (3v)(v = t2 & 

B(v = t2)) ::> (B(t1 = ta) & t1 = ta) are invalidated for any Sub-SQc= TV 

model. First of all, consider the following instance of the schema (Ba (tt/v) 

& t1 • ta) ::> BOl (t2fv}, viz., (BFa & a • b) ::> BPb. The following is a coun

termod.el to this wff, viz., W = {wb wa} and further, for the sake of gcm

erality we shall say that {<wt,wa>}' R. Let V(a = b,wl) = 1 in which 

case V(Pa, w1) • V(Pb, w1) given restriction 2 for V. Further, let V(Fa, wa) 

= 1 and. V(a = b, wa) = V(Fb, w2) • 0 and. hence, VM(Fa, wa) = 1 and VM(a = 

b, w2) = VM(Fb, w2) = 0. Then VM(BFa, Wt) = 1. Also, even though V M( a 

= b,w1) = 1, VM(B(a = b),wl) = 0. Finally, VM(BFb,wt) = 0. Q.E.O. 

Next, consider the following instance of t1 = t2 => B(tt = t2), vtz., a = b 

::> B(a = b). The countermod.el to (BFa & a= b) ::> BFb will serve as a 

countermod.el to a • b ::> B(a • b) Q. E. D. 

Finally, consider the following instance of Bintikka 's AS 8, (a = b & 

(3x)(x = a & B(x = a)) & (3x)(x • b & B(x = b)) ::> (B(a = b) & a= b). Let 

M be such that W = {wh wa}, <wt, w2> c R and V(a = b, w 1) = V(c = a, 

Wt) = V(d = b, Wt) = 1 and. hence VM( (a = b, Wt) = VM(C = a, Wt) = 

VM(d = b, w1) = 1. Suppose further that V(a = b, w2) = VM(a = b, w2) = 0 

but that V(c • a, w2) • V(d. • b, w2) • VM(c = a, w2) • VM(d • b, w2) .,. 1. 
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Then VM(B(c = a), w1) = VM(B(d = b), w1) = 1 and hence, VM((3x)(x = a & 

B(x = a)),w1) • VM((3x)(x = b & B(x • b),w1) = 1. But, VM(B(a = b),w1) 

• 0 and hence VM(B(a • b) & a= b,w1) • 0. Q.E.D. 

soundness of any SUb-SQc= system with respect to the appropriate 

class of TV models is established in the usual manner, viz., by showing 

that the axiom-schemata are valid and that the rules of inference preserve 

validity. We shall consider four crucial axiom schemata with respect to 

validity, viz., AS 3, 5, 6 and 7, viz., a (t/v) :l (3v)a, (a (tt/v) & t1 = t2) :l 

a (t2/v), (a (tt/v) & t1 = t2 & B(tt = t2)) :l a (t2/v) and the Barcan Formula 

respectively. 

First of all, suppose that M is a TV model of the sort specified above 

such that for some Wtin W, VM(a (t/v), w1) = 1 but VM((3v)a, wi) = O for 

some instance of a (t/v) :l (3v)a. But since a substitution instance of 

(3v)a, viz., a (t/v) is true at w1 in W by supposition, it must also be the 

case that {3v)a is true at w1 which contradicts our initial supposition that 

VM((3v)a,wi) = 0. Q.E.D. 

Next, suppose that VM(a (tt/v}, wi) = VM(tt = t2, w1) = 1, VM(a (ta/v), 

wi) = 0 for some instance of (a (tt/v) & t1 = t2) :l a (t2/v) where t1 and t2 

do not occur 1n the scope of a doxasttc operator. If a (t1/v) and a (t2/v) are 

atomic then this is inadmissible as a Sub-SQCI TV model because of Res

triction 2 for V cited above. Where a (tt/v) and a (ta/v) are not atomic, 

then the values assigned to them by VM for Wt are determined by what V 

(and hence VM) assign to their atomic subformulas at this index. (Or if 

they contain any subformulas with doxastic operators such that t1 and t2 

do not occur in their scopes then the values of these subformulas will be 

determined by what V assigns to their atomic subformulas at all doxastic 
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alternatives to Wt.) And so, given Restriction 2 for V cited above, whatever 

value V assigns to any atomic subformula of er (tt/v) at w1 containing 

occurrences of tb it must assign the same value to the corresponding atom

ic subformulas of« (t2/v) which differ only in that t2 occurs wherever t1 

occurs in Ol (tt/v)'s atomic subformulas. Thus, V M( er (tt/v), wi) = 1 = 

VM(Ol (tyv), Wt) given that V(tt • ta, Wt) = VM(tt = ta, Wf) = 1. And so the 

set of valuations described above are inadmissible. Q.E.D. 

To show that all instances of the axiom-schema AS 6, (oc (tt/v) & t1 = t2 

& B(tt = t2)) ;:, « (t2/v) are valid, suppose that for some wi in a TV model 

M, VM(cr (t1/v), Wt) = VM(t1 = t2, Wi) = VM(B(t1 = t2), Wi) = 1. Then for all 

Wj such that WtRWj, VM(tt = t2, Wj) = 1. er (t2/v) is simply Ol [(t2/t1) 

(tt/v)]. Then all those atomic subtormulas ot A(t2/v) containing occur-

rences of t2 which are not atomic subformulas of contents of doxastic op

erators will be assigned the same value by V at wi that V assigns to the 

corresponding atomic subformulas of Ol (t1/v) by Restriction 2 for V (giwn 

that VM(tl = t2,wi) = 1). Further, all those atomic subformulas of 01 (tt/v) 

containing occurrences of t1 which are atomic subformulas of contents of 

(uniterated) doxastic operators will be assigned the same value by V at all 

Wj such that WtRWj which V assigns to the 'corresponding• atomic subfor

mulas of 01 (tt/v) at each such Wj -and this is guaranteed by Restriction 2 

since for all Wj such that wtRWj, VM(t1 = t2, Wj) = 1. So in either case, 

VM(OI (t2/v), wi) = VM(cr (tt/v), Wt) = 1. Q.E.D. 

Finally, to show that the Barcan Formula is validated in this type of 

semantics, suppose that VM((Vv)B«,wt) = 1 and VM(B(Vv)CW,wt) = 0 for a 

TV model M for some wi in W for some instance of the Barcan Formula. 

Then for every term t, VM(B« (t/v),wi) = 1 and hence for any Wj in W 
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such that WtRWj, VM(a (t/v),wj) = 1 for every constant t. Then for any 

Wj where WtRWj, VM((Vv)a, Wj) = 1 and hence VM(B(Vv)a, w1) = 1 

which contradicts our initial supposition that VM(B(Vv)a, Wt) = 0. Q.t. D. 

To conclude our remarks concerning soundness, we shall show that the 

rule of inference cc {t/v) ;:, p - (3v)a ;:, P for any t foreign to (3v)cc ;:, P 

preserves validity. Suppose that l=a (t/v) ;:, p for any such tin which case 

for any TV model M, whenever VM(P,wt) = 0, VM(cc (t/v),wt) = 0. But in 

such a case, VM((3v)a, wi) = 0 where free v in a replaces tin cc (t/v) for

eign to (3v)a ;:, P and so whenever VM(p, Wt) = 0, then VM((3v)cc, wt) == O, 

i.e., 1=(3v)a ;:, p on the supposition that l=a (t/v) ;:, p. Q.E.D. 

Finally, compJ't'ness tor the various Sub-sac= systems with respect 

to the appropriate class of TV models can be established by the method of 

canonical models. The canonical model M for a Sub-Sac= system will be a 

triple <W,R, V> where W = {wd Wtis a maximal consistent set with the 3-

property}. As usual we can guarantee that any maximal consistent set Wt 

in W has the 3-property if for any wff of the form (3v )cc we can consis

tenUy add (3v)a ;:, a (t/v) for at least one constant t. R is defined in the 

usual manner, i.e., w1RwJ iff (V cc )(Ba e w1- ex e wj)· Every mem

ber ot W will have the following properties: Since any Wt in W is maximal 

consistent then 1t contains every wtt ot the form t • t given that 1-t = t. 
Further, 1-(a (tt/v) & t1 = t2) ;:, cc (t2fv) where t1, t2 do not occur in the 

scope of a doxastic operator, in which case any wff of the form (cc (tt/v) & 

t1 • t2) ;:, a (t2fv) e Wf for any Wf in W. So if t1 • t2 is in any such w1 

then if ex (tt/v) is in w1 so is ex (t2/v). Notice that these properties which 

any member of W will possess in the canonical model are the syntactic 

counterparts of the two restrictions we imposed on V in the semantics. 
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And given the way V is defined for the canonical model, it is redundant to 

impose these restrictions on V for this sort of model. 

Since t1 = t2:;, B(t1 = t2) is not a thesis-schema of the Sub-soc= sys

tems (owing to the fact that AS 5, (« (t1/v) & t1 = t2) :;, Cl (t2fv) is restric

ted to instances where t1 and t2 do not occur in the scope of a doxastic 

operator), then there is no guarantee that any of its instances will be a 

member of each and every maximal consistent set of wtfs in W. And this 

in turn means that there is no guarantee that if t1 = t2 e wi in W then 

for all Wj such that w1Rwj, t1 • t2 e Wj· (Thus, the canonical model for 

the Sub-sac= systems differs from the canonical model for in the TV sem

antics for the soc= semantics in this respect.) This feature of the canon

ea! model for any of the Sub-sac= systems reflects the fact that in the 

semantics, the restrition on V which stipulates that an identity holds at 

all indices in the model if it holds in at least one, is lifted. 

In the canonical model for any Sub-soc• system, V is defined as 

V(«, wt) = 11ff « e Wt. A valuation over the canonical model, VJA, is de

fined as follows for atomic wffs: VJA,(«,wt) • V(«,wt) from which it will 

follow that VJA,(Cl, Wt) = 1 iff Cl & Wi· This in fact is the basis of the 

inductive proof of the fundamental theorem of canonical models which 

states that V(Cl, Wf) = 1 iff ()( & Wi for any wtf ()( . The inductive hypothesis 

in the proof of the fundamental theorem is that the theorem holds for wffs 

of degree of complexity n. What needs to be shown is that the theorem 

holds for wffs of degree of complexity n + 1. 

The cases where a. is of the form .... p, p & T and BP are proven in 

roughly the same manner that they were proven for the sentential systems 
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in the first chapter. The case where 01 is of the form (3v)' is proven as 

follows: 

1) Suppose that (3v)' I Wt. 

Then ,(t/v) e Wt for at least one constant t by the 3-property. 

VJ,A.(,(t/v),wi) = 1 for any such t by the inductive hyp. 

VJ,A.((3v),, Wt) = 1. Q.E.D. 

11) Suppose that VJ,A.({3v),, Wj) = 1. 

Then V J,A.(,(t/v), wi) = 1 for at least one constant t. 

,(t/v) I Wj by the inductiW hypothesis. 

1-,(t/v) > (3v),. 

'(t/v) , (3v)' e wi since wi is maximal consistent. 

(3v)' e wi since wi is maximal consistent. 

Q.E.D. 

Given the fundamental theorem of canonical models, all that needs to be 

shown is that the canonical model for any Sub-sac= system is in that sys

tem's class of models With respect to which it is sound. And this is proven 

by showing that R has the requisite properties. The proof of this proceeds 

in the usual manner. 

Concluding Remarks: 

And so, in our discussion of systems of quantified belief logic where to 

any normal system not containing T we add axiom-schemata concerned 

with quantification and identity (and the relation between these and the 

belief operator) we have seen that two problems are associated with first 

order belief logic, i.e., the problem of quantifying in and the problem of the 
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failure of substitutivity of co-referentials. As we have seen, we could 

adopt Hinitik.k.a's proposals for a logic and semantics of quantified belief log

ic which restrict quantification into belief constructions to relational con

texts and substitution of co-referentials to special sorts of contexts. Or we 

could adopt as systems of quantified belief logic (for the purposes of dealing 

with the above-mentioned problems) the Sub-SQc= systems and their 

characteristic TV semantics. These systems sidestep the problem of quan

tifying in by providing a substitutional reading of the quantifiers and also, 

they treat all belief contexts as unambi&uously oblique with respect to the 

substitution of co-referentials. 

We have argued that there is some presumption in favour of adopting 

the Sub-SQc= systems as opposed to the Hintik.k.a systems since the sem

antics for the former set of systems is on metaphysically more solid ground 

than the semantics for the latter type of systems. Further, the Sub-sac= 

systems posit only one sense of belief as opposed to the Hin-soc= systems 

which posit two senses of belief which is also a reason for preferring the 

former set of systems to the latter. 

Since both the Sub-SQc= and the Hin-soc= systems are normal modal 

systems (with quantification) they inherit the problem of deduction dis

cussed in the first chapter. It is now to this problem which we shall 

return in the next chapter. 
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Chapter Five 

Non-normal Indices and the Problem of Deduction 

1. Introductory Remarks 

In the prevtows chapter we arguecl that there is some presumption in 

favour of adopting the SUb-SQC- systems rather than the Bin-SQC- systems 

as quantificational doxastic logics since the characteristic semantics of the 

former is less problematic than that of the latter. Both types of axiom

systems share the feature that strictures are imposed on substitution of 

co-referentials in cloxastic contexts although they differ with respect to the 

issue of quantification into such contexts. For any Bin-sac- system, quan

tification into doxastic constructions is restricted to so-called relational con

texts because the quantifiers are given an objectual reading whereas for 

the SUb-sac- systems quantification into doxastic constructions is unres

tricted given that the quantifiers are read substitutionally. 

However, both types of quantificational doxastic systems inherit what 

Stalnaker has callecl the problem of deduction since all instances of the fol

lowins schemata are derivable (ancl thus valid) in each of these systems: 

(Ba & B') , B(ex & ') adjunction schema 

(Ba & l-ex , ,) , B, omnidoxasticity schema 

(Ba & l-ex & ,) , B' omnidoxasticity schema (equtvalential version) 

The omnidoxasticity schemata could also be characterized as the following 

rules of inference respectively: 
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All instances of the three schemata mentioned above are theses of any Hin

SQC- or SUb-SQCI system and the two rules are derivable in any of these 

systems owing to the fact that both types of systems are normal in the 

sense defined in chapter one. I.e., any such system contains the proposi

tional calculus, the schema K, (801 & B(OI ::> ')) ::> B' as well as the doxastic 

variant of the rule of necessttatton, viz., l-01 --.... l-801. It was then dem

onstrated how the above schemata and rules of inference are derivable in 

any normal doxastic system . 

. Informally, the adjunction schema says that aaents believe the con

junction of what they believe separately (i.e., that belief is 'closed' under 

conjunction) and the omnidoxasticity schemata can be read as saying that 

agents believe all logical consequences of (or what is logically equivalent 

to) whatever they believe. I.e., the omnidoxasticity schemata assert the 

principle that belief is closed under logical implication or under logical equi

valence. As was suagested in chapter one, the tenability of these principles 

qua principles of belief attribution is questionable in the light of certain or

dinary language counterinstances, which in turn render them doubtful as 

thesis-schemata for any modal logic construed as a logic of non-ideal belief. 

The fact that relative to a possible worlds semantics for belief, belief is 

closed under conjunction as well as as under both logical implication and 

logical equivalence is part of what stalnaker calls the problem of deduction 

in the light of these various counterinstances (such as the paradox of the 

preface with respect to the adjunctton principle). 

Another principle of belief attribution which can be called into ques-
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tion in the light of such examples as the puzzling Pierre case (discussed in 

chapters one and three) is the principle that agents are incapable of bel

ieving both a statement and its negation. The formal counterpart of this 

principle in the languace of either the Hin-SQC= or the Sub-SQC• systems ts 

the schema -(Bcx & B-a ) . Stalnak.er regards this principle as the remaining 

part of the problem of deduction. I.e., qua principle of belief attribution it 

is problematic since it would seem that there can be cases where an agent 

will believe both a statement and its negation (perhaps in different •con

texts•). A close cousin of this principle is the claim that agents cannot bel

ieve self-contradictory statements, which in the language of our formal 

systems is expressible as the schema -B(a & -«). There appears to be 

more sympathy in the literature for the principle expressed by this schema 

than for the former prlnciple.1 As was noted in chapter one, both of 

these schemata, viz., -(Bcx & B-a) and -B(a & -a) are derivable in any 

Hin-SQC= or Sub-sac= system containing the schema D, Bcx , Paa . 

What will concern us in this and the next chapter is whether or not 

there is any way of altering the axtomatics as well as the corresponding 

r1JationaJ semantics (1. e., a semantics where models have as elements a 

set W of indices and a two-place relation R such that R ' W X W) of the 

SUb-sac= systems of quanttficat1onal doxastic logic (With identity) in such 

a way that at least not all instances of the adjunction and omntdoxasticity 

schemata are derivable/valid in these systems. The reason we shall confine 

our attention to the Sub-SQC= systems as opposed to the Hin-SQc= systems 

is that the characteristic semantics of the former is simpler than that of 

the latter in the sense that the semantics of the former class of systems 

does not appeal to domains of individuals. Thus, in considering emendations 

1 For example, s" M .. cus (1981) as well as Dwnmttl (1980). 

http:Stalnak.er
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to the semantics of the Sub-sac- systems we do not need to factor into 

these emendations domains of individuals. 

Further, we shall consider what can be done in terms of altering the 

aldomatics of those Sub-sac- systems containing the schema D so that not 

all instances of the schema ... (BcX 8c B ... cx) are theses for these systems. Or 

from the point of view of the semantics of these systems, is there any way 

of rendering at least some instances of Bcx 8c ~ex satisfiable in certain Sub

sac- models? 

More immediately, in the next two sections, we shall be concerned with 

critically examining Rantala's proposal for altering the semantics of normal 

doxastic quantificational calculi and the corresponding syntactic altera

tions to rid them of the problem of deduction. On the syntactic front Ran

tala suggests restricting the doxastic variant of the rule of necessitation to 

some pre-selected subset of the set of wffs. Depending on which set to 

which this rule is applicable we select, this move can effectively block the 

derivation of certain or all instances of the adjunction schema, our variant 

of the consistency schema and most instances of the omnidoxasticity 

schemata. 

On the semantic front, Rantala's proposal tor dealing with the problem 

of deduction is to allow the doxastic accessib111ty relation R to range over 

not only normal indices (such that wffs are evaluated at these indices in 

the 'standard' way) but also over 'non-normal' indices. As we shall see 

presently, non-normal indices in such a semantics turn out to be indices 

where in terms of the truth-functional connectives and the belief operator, 

almost anything goes. I. e., wffs are evaluated non-standardly at such 

indices and hence, it is possible that at these indices so-called logical truths 
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could turn out to be false or logical falsehoods could turn out to be true. 

Vis a vis Cresswell's comments concerning impossible worlds semantics 

for belief logic, it will be argued in section 6 that this type of semantics 

ultimately does not succeed in freeing our systems of doxastic logic from the 

closure of belief under conjunction and logical implication (and from the 

consistency stricture on belief) - at least if we are speaking of 'classical' 

conjunction and implictatton. The type of semantics which Rantala has 

proposed for his restricted axiom systems equivocates with respect to the 

connectives &, ::. and - since they are defined inductively for normal worlds 

and non-inductively for non-normal worlds. Therefore, all that he has 

shown on the semantic front is that for example, agents may fail to conjoin 

contents of beliefs in some non-c/a55ICIIJ sense of 'conjoin'. It will further 

be argued that the response open to Rantala, viz., that the connectives are 

defined in terms of their roles in inference does not mitigate the charge of 

equivocation. 

In the next chapter, a less extreme alternative to Rantala's semantics 

for belief developed by Rescher will be critically discussed. Rescher's sem

antics involves the assumption that belief is a relation between a believer 

and a non-standard world although even so-called non-standard worlds 

are such that all the truths of classical two-valued logic hold. Nonetheless, 

at non-standard worlds, er and ' may obtain without their conjunction 

thereby obtaining. Thus, agents may fail to conjoin their beliefs - or bel

ieve that a and that -a without thereby believing their conjunction

although agents are still omnidoxastic in this type of semantics. Further, 

it will be argued that Rescher's semantics can be vindicated of the charge 
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2. Rantala •s Syntactic Proposals for a Logic of Belief not 

Presupposing Omniscience 

In two recent articles Vetkk.o Rantala has suggested a number of 

alterations to the axtomatics and correspondtna semantics of both senten

tial and quantlftcattonal normal systems construed as loatcs of propositton

al attitudes. 2 The purpose of these alterations is to obtain loatcs which do 

not presuppose that aaents are loatcally omniscient in the case of epistem

ic loatcs and which do not presuppose that aaents are loatcally omnidoxas

tic in the case of belief loatcs. We shall consider his suagested modifications 

with respect to the omnidoxasticity schemata and their associated rules of 

inference for the SUb-SQC• systems of belief loatc proposed in section 4 of 

the last chapter. Rantala's suagested chances to propositional attitude loatcs 

and their semantics can also be used to rid the Sub-soc= systems of the 

adjunction schema as well as the close cousin of the consistency schema, 

-(BOI & B-01) as thesis-schemata, although he does not explicitly discuss 

these particular applications of his proposals. In short, Rantala provides 

us with the syntactic and semantic machinery to rid the Sub-SOC: systems 

of the problem of deduction. In this section, we shall examine in detail 

exactly how Rantala's proposed changes work with reference to the prob

lem of deduction for the SUb-SQC• (and Sub-Sac• +D) systems although as 

we shall see in section 5 his suggestions on the semantic front are at the 

very least philosophically objectionable. 

On the syntactic front, Rantala •s proposal which though simple is effec

tive is to restrict the applicability of the doxasttc variant of the rule of 

2 Rantala (1982), Rantala (1983). 
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necessitaUon. The detaUs of his proposal are as follows: Given the setS of 

wtfs of the appropriate language L, he defines the set 0 as any possibly 

non-empty (recursive) subset of S. I.e., 0 c S. It is arbitrary as to what 

0 is. OUr choice of this set depends on what sorts of derivations we wish 

to block. The appltcabUtty of our doxastic variant of the rule of necess1-

tat1on RB, 1-c:x ----.. 1-Bc:x is then restricted to the set 0 as just defined. 3 

Thus, the restricted version of RB which following Rantala we shall call 

RBQ can be characterized as follows: 

1-oc ----.. 1-Bc:x where c:x e 0. 

Note that for our unrestricted suo-sac• systems, 0 = S. It ts evident that 

given the restriction that oc is in 0. we cannot unrestrictedly substitute for 

the scope Cl of the belief operator any wtf p logically equivalent to c:x thus 

preserving the thesishood ot Bc:x, un/155 pis itself a member of 0. I.e., if 

1-oc 11 p, and stven that from oc (where 1-c:x and cc e 0) we can infer Bc:x 

such that 1-Bc:x, the substitution of ' for c:x in Bc:x resulting in BP preserves 

theoremhood only if ' is also in 0. 

For example, suppose that from a wff of the form c:x v -oc (the 'law of 

the excluded middle') which ts by stipulation in 0 we infer that B(c:x v -oc ) 

by RBQ where 1-B(« v -oc) since RBQ preserves theoremhood. provided that 

the scope of the belief operator is in 0. Suppose further that -(c:x & -c:x) is 

not in 0. Then even though 1-(c:x v ... oc) e -(oc & -oc ), we cannot substitute 

-(oc & -oc) for c:x v "'0C in the wtf B(c:x v -oc) to obtain B-(« & "'or) as a 

theorem since -(ex & -ex) is not in 0. 

As Rantala notes, 0 can be a logic (such as the tntuitionistic calculus) 

although he does not make this a requirement given that •tt is hardly ad

equate to suppose that a person•s attitudes are necessarily guided by a 

3 Rantala (1982), p. 108 and Rantala (1983), pp. 56-57. 
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lostc". 4 Thus, his only stricture on 0 for any restricted doxastic or epis

temic logic is that 0 be recursive. However, if we wish to block certain 

select instances of the ad.junction schema or the consistency schema (and 

perhaps not all instances of the omnidoxasttcity schema) given the ldlosyn

cractty of agents• belief systems, then an additional requirement is needed 

for 0. The significance of this requirement will be discussed when we 

come to consider the corresponding ~m•ntlcs for the Sub-sac•o axiom 

systems in the next section. Thus, in addition to Rantala•s minimal recur

sivity requirement, we shall impose the following stricture on the set 0: 

RO: If 0 16 not • 'c.tlculu6 1 tben 1:¥ ; 0 only If I~ 1:¥ f 0. 

For simplicity of exposition, we shall primarily concern ourselves with 

restricted doxasttc systems where 0 is not a calculus. Thus, we can simp

lify RO as follows: 

RO•: 1:¥ I 0 onJy If'~ 1:¥ ; 0. 

As will be argued in the next section, this stricture will help to ensure 

completeness of the Rantala systems (where 0 is not a calculus) with res

pect to his impossible worlds semantics by ensuring that any wff ex ren

dered underivable by exlcuding the appropriate wffs from 0 will also be 

tnval1dated in the semantics. 

We have already seen how t~ziom-6Cblm.atl can be restricted as for 

example in the case of the schema (« (tt/v) & t1 = t2) ;:, ex (t2/v) which for 

both the Bin-sac= and Sub-SQc- systems is restricted to cases where 

« (tt/v) and its substitutional variant « (t2/v) are such that t1, t2 do not 

occur in the scope of a doxasttc operator. This stricture imposes limits on 

what counts as an instance of the schema (ex (tt/v) & tt • t2) ;:, ex (t2/v). 

Similarly, Rantata•s restriction on the rule RB such that it is applicable 

4 Rentela (1982), p. 108. 
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only to a recursive subset 0 of the set of wffs imposes limits on which 

instances of Boc such that l-ex count as theses. This stricture on RB can 

in turn be used to block the derivation of select instances of the omnidox

astictty schemata, the adjunction schema or the schema -(Bcx & B-ex } for 

systems containing D. The details of how this ts so will now be discussed. 

Pirst of all, we shall focus on the omnidoxasticity schemata and their 

associated rules of inference and in particular on their 1mpl1cat1onal ver

sions such that our remarks concerning them can easily be extended to the 

equivalential versions. Consider the simplnt sort of case where we wish 

to block the derivation of (Bcx & l-ex ::> ') ::> B' and its associated rule where 

ex ::> ' is the thesis-schema ex ::> (ex v ') for exactiy one inst.tnce of this 

schema, viz., Pa ::> (Pa v Gb). Suppose for the sake of exposition that we 

are not concerned with blocking the derivation of any instances of any 

other problematic schemata such as the adjunction schema. Thus, our goal 

is to block the derivation of (BPa & (Pa ::> (Pa v Gb)) ::> B(Pa v Gb) and we 

shall want to restrict the derived rule 1-(ex ::> ') --- 1-(Boc ::> B') to cases 

where ex ::> 'is not the thesis Pa ::> (Pa v Gb). However, given the restric

tion RO-, viz., 11 e 0 only U I .:1 11 e 0 we shall end up blocking the der

ivation of much 'more' than we bargained for as will be demonstrated 

presently. 

In terms of the schema (BP a & (Pa ::> (Pa v Gb)) ::l B(Pa v Gb), its der

ivation would proceed along the following lines for the unaltered SUb-sac• 

systems: 

1. 1-Pa ::> (Pa V Gb) 

2. 1-B(Pa ::> (Fa v Gb)) 1, RB 
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3. 1-BPa, B(Pa v Gb) 2, K and MP 

4. 1--(Pa, (Fa v Gb)) v (BPa, B(Fa v Gb)) 3, PC5 

5. 1-(Pa, (Fa v Gb)) , (BFa, B(Pa v Gb)) 4, PC 

6. (BPa & (Fa , (Pa v Gb)) !:) B(Pa v Gb) 5, PC 

The first three Unes of this derivation constitutes the derivation of the rule 

of inference 1-(oc , ') ----+ 1-(Bcl , B') for the case where GC , ' is the 

thesis Pa , (Pa v Gb). And more generally, any instance of this schema 

and rule would be derived in the same way. Notice that what is crucial to 

the derivation of this (and for that matter any) instance of the omni

doxasticity schema and its associated rule is the application of RB to the 

thesis Pa, (Fa v Gb) (or more generally, to whatever wff is under consid

eration). 

So applying Rantala •s suggestion of restricting RB to the set 0 where 0 

t S and where 0 is recursive to the particular case we are considering, 

we would initially stipulate that 0 excludes the thesis Fa, (Fa v Gb). 

However, our additional proposed stricture on 0, viz., R.01l requires us to 

exclude from 0 an infinite number of wtfs. I.e., 0 will not contain Fa:::> 

(Fa v Gb) as well as any wff of the form' :::> (Fa::. (Fa v Gb)). Further, 

since any wff of the form ' ::. (Pa , (Fa v Gb)) is excluded from 0 by R.01l 

then tor any instance of ' ::. (Fa::. (Fa v Gb)), each wtf of the form T ::. 

(' ::. (Fa::. (Fa v Gb))) will also be excluded from 0- and so on ad infini

tum. Since all of the wffs being excluded from 0 are implicational (and in 

fact they are also theses') then we shall in effect end up blocking the 

derivation of an infinite number of instances of the omnidoxasticity 

schema. 

Of course, there will be implicational theses which survive exclusion 

s We are appealing here to the PC schema ex , (' v ex land detachment. 

6 These lmpllcatlonal wffs wm be theses since If 1-CX then 1-- ::. ex for any wrr ex. 



256 

from 0. In particular, any substitutional variant of (Fa;:, (Fa v Gb)) as 

for example Gb;:, (Be v (Gb & (3x)Rxc)) will survive exclusion (i.e., any 

wff of the form ClC ;:, (cx v -)). Granted, any thesis of the form ClC ;:, (cx v 

-)will be logically equivalent to Fa;:, (Fa v Gb) as well as to any other 

thesis excluded from 0, although exclusion from 0 is not closed under 

detachment- the stricture RC- is not a 'closure under detachment' condi

tion for exclusion from 0. 

Thus, if we wish to block the derivation of (BFa & (Fa:> (Fa v Gb)) ;:, 

B(Fa v Gb) without in general blocking the derivation of 'wry instance 

of (BClC & (cx ;:, (cx v ')) ;:, B(cx v ') then as a way of meeting the recursiv

ity requirement on 0 we can stipulate that the set 0 = S - {S I S is Fa ;:, 

(Fa v Gb) or S is an instance of ' 1 ;:, ( ... (-n ;:, (Fa;:, (Fa v Gb)) ... ).} 

where any of the - 1·s are wffs of any degree of complexity. It should be 

noted that each instance of ' 1 ;:, ( ... ('n :> (Fa > (Fa v Gb)) ... ) will be a 

thesis since 1-Fa;:, (Fa v Gb). Finally, as was noted, in blocking the deri

vation of this one instance, (BFa & (Fa ;:, (Fa v Gb}) > B(Fa v Gb) of one 

version (BClC & (cx ;:, (cx v ')) ;:, B(cx v ') of the omnidoxasticity schema. we 

thereby block the derivation of an infinite number of instances of other 

versions of the omnidoxasticity schema given our adherence to RO-. 

Suppose that we wished to block the derivation of sevt1r.U instances 

of (BClC & (cx ;:, (cx v ')) > B(cx v ') such as (8Gb & (Gb ;:, (He v (Gb & 

(3x)Rxc)))) ;:, B(Hc v (Gb & (h)Rxc)) as well as (BFa & (Fa :> (Fa v Gb)) > 

B(Fa v Gb) without blocking the derivation of any other instances of 

this version of the schema. Then in accordance with Rantala 's recursivlty 

requirment for 0 and given our stricture RO• we can let Q = S - {S I S is 
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Pa :::> (Pa v Gb) or S is Gb :::> (He v (Gb & (3x)Rxc)) or S is an instance of ' 1 

:::> ( ••• ('n :::> (Pa :::> (Pa v Gb)) . . . ) or S is an instance of ' 1 :::> ( ••• ('n :::> 

(Gb :::> (He v (Gb & (h)Rxc)))) ... ).} The point being made here is that 

despite our restriction RC- on the set 0, it is possible to block the deri

vation of select instances of at least version of the omnidoxasticity schema. 

It would of course be possible to block. the derivation of a// instances of 

all versions of this schema by simply excluding from 0 all implicational 

theses. However, as we shall next see, such a radical move would not be 

desirable. 

In the light of the following considerations, there is a version of the 

omntdoxasticity schema none of whose instances should be blocked for the 

restrtctect doxasuc systems being considered in this section, vtz., (Ba (t/v) 

& l-ex ( t/v) :::> (3v )ex) :::> 8(3v )ex : Some system where any or all instances of 

ex (t/v) :::> (3v)ex are excluded from 0 will be such that -l(3v)Ba :::> B(3v)cx 

(which says that belief de re logically implies belief de dicta). But it was 

suggested in the preVious chapter that this schema is desirable even for a 

doxastic losic where the quantifiers are given a substitutional reading in 

the semantics. More importantly, completeness of the restricted Sub-sac• 

systems relative to the sort of semantics to be considered in the next sec

tion is guaranteed only if ex (t/v) :::> (lv)ex e Q for all instances of ex (t/v) :::> 

(3v)ex. As a way of ensuring that no instance of ex (t/v) ::. (lv)ex will be 

excluded from 0, we could impose the following additional stricture on 0: 

R301: Any w.ff of of tb1 form a (t/v) ::~ (.1v )a 6 0. 

Purther, we need to ensure that R301 does not conflict with our other 

stricture on 0, viz., ROw. Thus, a final stricture which we shall impose 

on 0 is the following: 

http:block.ed
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R3Ca: ~ny wff of of tiJ# form (3v)« 6 Q 

This stricture will prevent the sort of case where a wtf of the form (3v)« 

has been excluded from 0, in which case by RC-, it would follow that no 

instances of 01 (t/v) ;:, (3v)oc for some scope or are in 0 - which would 

conflict with our requirement that every instance of or (t/v) => (3v)oc is in 

0.7 However, as will become apparent, if we are adopting the Rantala 

systems solely for the purpose of blocking various instances (or perhaps 

all instances) of the omnidoxastictty, consistency and adjunction schemata 

(in their present forms) then the only wtfs that will be excluded from 0 

will be Jmplic.tion.tl wtts. Then this renders R~ superfluous. 

It is worth noting that even If we were to block the applicabtuty of RBQ 

to alltmplicational theses by excluding them from 0, it is nonetheless a 

rule of the Rantala systems that 1-oc :> 01 --~ 1-Boc :> BOl. This rule does 

not require for its derivation the rule RBQ since it is in fact derivable 

simply by substituting •Boc • for •a • in a ;:, a. 1t would seem odd it this 

were not a rule even for a logic which does not assume that agents• beUefs 

are consistent and deductively closed. 

As was noted, the substitution of lopcally equivalent scopes does not 

preserve theoremhood of theses of the form Ba where ex itself is a thesis 

in 0 unJHS the substituens is itself in 0. Hence, we cannot sidestep the 

blockage of the derivation of some instance of (Boc & 1-a ;:, ') :> B' -or the 

corresponding inferential version 1-a :::. ' --~ 1-Ba ;:, B' by applying RB 

to the appropriate equivalent of a ;:, ' (eg., ... a v ' or ... (a & ... p)) and then 

7 For proving completeness. ills sufflcenl that 0 Includes MJrY Instance of a (t/v) ;:, (3v)OI 
though fl need nollnclude wery Instance of (V v )a :::. « ( t/v}. Whalls crucial for complete
ness of the Ranlala systems with respect to his proposed non-normal index semantics Is that wery 

Instance of la (t/v) :::. B(3v)a Is derivable. which depends for Its derivation on the given 
lnslance of a (t/v} :::. (3v)a. 
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by substituting « ~ ' for the scope of 8( ""(X v p) or B-(« & --). Similar 

remarks apply to the equivalenttal version of the omnidoxasticity schema 

and inference rule. 

What is excluded from 0 to which the restricted rule RBQ applies 

for the purpose of blocking the derivation of select instances of some tm

plicattonal version of the omnidoxasttcity schema could affect the status of 

at least some instances of the adjunction schema (.BcX & ap) ~ B(oc & p) as 

well as the status of at least some instances of the consistency schema 

-(.BcX & 8""(11) for Sub-SQC• systems containing D. Recall that the proof of 

any instance of (.BcX & BP) :> B(« & p) depends on the appropriate instance 

of the thesis-schema oc ~ (' ~ (oc & ')) as follows: 

1. 1-oc ~ <P ~ (oc & p)) 

2. B(oc ~ (p => (oc & p))) 1, RB 

3. 1-B(oc ~ (' ~ (oc & p))) ~ (.BcX ~ B(P ~ (oc & p))) 

4. 8cX ~ B(p ~ (oc & p)) 2,3 MP 

5. 1-B(, ~ (« & p)) ~ (Bp ~ 8(« & ')) 

6. BCX ~ (Bp ~ B(cx & p)) 4,5 pe8 

1. (.BcX & BP) ~ B(oc & p) 6, PC 

In short, the proof of any instance of the adjunctton schema depends on 

the application of RB to the appropriate instance of the thesis-schema 

« ~ (p ~ (« & p)}. But if certain instances of cx ~ (p ~ (oc & p)) is not in 

the set 0 to which Rantala's restricted version of RB, viz., RBQ applies (for 

the purpose of blocking some instance of the omnidoxasticity schema} then 

the derivation of the appropriate instances of the adjunction schema will be 

effectively blocked. Appealing to the non-implicational versions of the 

appropriate instance of the schema cx ~ (p ~ (cx & p)} will not help matters 

D To be more precise. we would have to appeal to the appropriate instances of the t.hesls-schemata 
((OC , P> ~ cp :> yn :> ccx , y>as wellas « :> <P ~ (« ~ pn. 
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since once aaain, substitution of loaically equivalent scopes of belief theses 

(where the scopes are themselves theses) does not preserve theoremhood of 

the belief wff unless the substituens is itself in 0. 

As was noted, despite the stricture RO•, IX ; 0 Dnly if I :J IX f 0, it 

was possible to block the derivation of select instances of at least one ver

sion of the omnidoxasticity schema - although at the price of rendering 

underivable an infinity of instances of other versions of the schema - not 

to mention instances of other schemata such as the ad.junction schema. 

Similarly, it is possible to block select instances of the ad.jucntion schema 

without thereby blocking the derivation of every instance of this schema -

provided that nothing else has been excluded from 0 for the purpose of 

rendering instances of other sorts of schemata underivable, and provided 

we are willing to pay the price of rendering underivable an infinity of 

other wffs. 

Suppose for example that we wish to block the derivation of (B(V x)Fxa 

& BGbc) ;, B((Vx)Fxa & Gbc)) as well as (BFa & BGb) ;, B(Fa & Gb)) but no 

other instances of the ad.junction schema. Then provided that nothing else 

has been excluded from 0 for the purpose of rendering instances of other 

sorts of schemata undertvable, we can effectively block their derivation by 

stipulating that 0 = {8 18 ts (Yx)Pxa ;, (Gbc ;, ((Vx)Pxa & Gbc)) or 8 is 

Fa ;, (Gb ;, (Fa & Gb)) or 8 is an instance of ' 1 ;, ( ... ('n ;, (Gbc ;, ((Vx)Fxa 

;, (Gbc;, ((Vx)Pxa & Gbc)))) ... ) or 8 is an instance of ' 1 ;, ( ... <'n;, (Fa;, 

(Gb;, (Fa & Gb)))) ... )}. Further, even though any instance of the schema 

or ;, (' ;, (or & ')) is logically equivalent to the wffs excluded from 0, none 

of these instances of or ;, (' ;, (a & ')) are thereby themselves excluded 

from 0. This is owing to the fact that exclusion from 0 is not closed under 
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detachment- as was noted earlier, the stricture R.O- is not a 'closure 

under detachment • condition for exclusion from 0. 

More aenerally, it 0 excludes •11 instances of the schema 4X ;::, (p ;::, (4X 

& p)) then no instance of the adjuncUon schema will be derivable in the 

appropriate Sub-sac- system and of course no instance of the omnidoxas

ticity schema with respect to any instance of (X ;::, (p , ((X & p)) wUl be 

provable- alone with an infinity of other instances of the omnidoxastictty 

schema. Presumably, one version of the adjunct1on schema, the derivation 

of whose instances we would not want to block, is (Bel & Bel) , B(4X & 4X )) 

all of whose instances will be derivable ustna RBQ and assumina that 0 

includes every instance of 4X , (4X , (4X & 4X )). (We shall not, however, 

impose any hard and fast stricture on 0 to ensure that all instances of this 

version of the adjunction schema are derivable since neither soundness nor 

completeness depend on this.) Further, for Sub-Sac= systems containing 

the schema D, if we stipulate that 0 excludes .-11 instances of the schema 

a , (' , (a & p)) (and therefore an infinity of other wtfs), then we also 

end up blockina the derivation of all instances of the schema ... (BCI & B-4X ) 

which is the other third of the so-called problem of deduction. It will now 

be explained why this is so. 

For Sub-sac• systems containina D, the derivation of any instance of 

the schema -(Ba & B-(X) depends on the appropriate instance of the follow

ins version of the adjunction schema, viz., (Ba & B-4X) , B(4X & -4X) which 

in turn depends for its derivation on the schema 4X , ( ... 4X , (ex & ... a)): 

1. 1--(a & ... ex) 

2. B ... ( a & "'4X) 1, RB (unrestricted version) 
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3. 1-B-(cx & -ex) ;:, -B(cx & -ex) (a version of D) 

4. -B(cx & ... ex) 2,3 detachment 

5. 1-... B(cx & -ex) , ... (BCX & a...cx) contraposttive ot adjunction schema 

6 .... (BCX & 8-cx) 4,5 detachment 

If we were to restrict the rule RB to the set Q where it is stipulated that 

0 does not include some instance of ex ;:, (-ex ;:, (ex & -ex)) (as well as an 

lnfintty of other wffs in accordance with RC-) then this would effectively 

block the derivation of the appropriate instance of (BCX & B-cx) ;:, B(cx & 

-ex) as well as an infinity of instances of the omnidoxasticity schema. In 

turn, the underivabil1ty of this instance of (BCX & 8-cx) , B(cx & ... ex) blocks 

the derivation of the appropriate instance of .... (BCX & B-cx). 

And so, if we were to adopt Rantala 's proposal for handling the logical 

omniscience problem for modal logics construed as prepositional attitude 

logics and by extension for dealing with the more general 'problem of ded

uction', then we would replace the Sub-SQC- systems with the Sub-sac=o 

systems as embodying principles of belief attribution. The Sub-sac=o sys

tems have the same set of axiom-schemata as the Sub-Sac= systems and 

the same rules of inference except that in the former case, the doxastic 

variant of the rule of necessitatton is restricted in 1ts application to mem

bers of an arbitrary recursive subset of the setS of wtfs, 0. What 0 is 

depends on our purposes as well as on the strictures RO• and R301. Thus, 

for some 0 ~ S, the axiom system Sub-Kac=o would be characterized as 

follows: 

.Aziom-scbemata: AS 1- AS 7 as for Sub-Kac= 

AS1-AS7 
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lnfen•nce Rules : Modus Ponens, R3. 

And in place of RB, RBQ: 

l-01 ..__. l-801, provided that 01 e 0 

where 0 ts recurslvr and is a subset of S, the set of wtfs. Further, 0 

must meet the following additional strictures: 

RC-: tt ; 0 only if I,;, tt ; 0. 

Rl01: Any wff of' of' the form tt (t/v) ,;, (.N )tt £0. 

Notice finally that for any particular normal quantificational doxastic 

system such as Sub-KQC•, there will be a whole set of logics, viz., {Sub

Koc-o I 0 ' S} where S is the set of wtfs and where the rule RB is res

tricted to the set 0. In the limiting case where 0 = S, we simply have the 

system Sub-KQC• and in the other direction, the limiting case where 0 = 0 

would result in a system where there are no theses of the form Ba since 

RBQ is inapplicable and such that no instances of the adjunction, consis

tency and omnidoxasticity schemata are theses (with the exception of the 

omnidoxasticity schemata and rules with respect to wffs of the form 01 ;:) 01 

and a = 01 ). Further, there will be an infinite number of logics 'in be

tween• these two limiting systems where 0 c S (i.e., 0 'S, 0 ;e S) and 

such that S ;e 0 where any such system is properly contained in Sub-KQC•. 

Any such system is properly contained in Sub-KQC= since every thesis of 

any such Sub-Koc=o system is also a thesis of Sub-KQc= but not vice-

versa. 

3. Non-normal Index Semantics for Quantified Belief Logic 

Having seen on the syntactic front how the derivation of select instan-
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ces of some version of the omnidoxasticity schemata, and certain or all 

instances of both the adjunction and the consistency schemata can be 

blocked- at the price in all cases of their being an infinity of wffs whose 

derivation will be blocked - we shall now investigate Rantala 's correspon

dinc proposals on the gm..ntic front for invalldatinc various instances of 

these schemata. As we shall see presently, the general semantic sleight of 

hand which Rantala employs is to allow the relation R in a model to range 

not only over normal but also over so-called non-normal indices where the 

connectives are defined non-standardly. 

The reader will recall that a Sub-SQC- model is an ordered triple, 

<W, R, V> such that W is a non-empty set of indices and R is a two-place 

'doxastic accessibility' relation ranging over members of W such that R is 

serial if the system is SUb-K.DQC=, transitive if the system is Sub-K.4oc= 

and so on. Further, V is a function which to each .t.tomic wff assigns 

either '1' or '0' with the two restrictions mentioned in the previous chap

ter, Viz., that for any w1 in W, V(t = t, wi) = 1 and if V(t1 = t2, wi) = 1 

then V(« (tt/v),wi) • V(a (t2/v),wi). Further, a valuation over a model 

VM is defined inductively with V(a, wt) = VM(tl., w1) as the basis of the 

induction. Finally, the truth-conditions for quantified wffs are substitu

tional rather than objectual. For example, VM((3v)a, Wt) = 1 iff 

VM(tl. (t/v), w1) = 1 for at least one constant t. In the previous chapter we 

tried to show that this type of semantics characterizes the Sub-SQCW 

systems of doxasttc logic. 

What is now n~ed is a type of semantics which characterizes the var

ious Sub-SQCCQ systems. The type of semantics described in the previous 

http:block.ed
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paragraph validates all instances of the omnidoxasttcity schemata and the 

adjunction schema as well as the consistency schema whenever R is serial. 

(This is assuming soundness results.) Hence, this sort of semantics will 

not do for systems for which certain or all instances of these crucial 

schemata are undertvahle. Por example, suppose we wish to set up a 

cJJ•r•ct,.risUc semantics for the system Sub-KDQC•o where 0 • S- {SI S 

is an instance of G ;:, (' ;, (G & ')) or S is an instance of ' 1 ;, ( ... ('n ;:, 

( G ;:, (' ;:, ( G & ')))) .•. ) • } • Then all instances of the adjunction schema, 

our variant of the consistency schema and an infinity of instances of the 

omnidoxasticity schema (as well as other schemata) are underivable in this 

system. So what is needed is a semantics which invalidates whatever is 

rendered underivahle by restricting RBQ to 0 as just specified and of course 

which validates whatever remains derivable for Suh-IC.DQC"O (soundness) 

as well as validating tJIZ/y that which is derivable for Sub-KDQC=o 

(completeness). Such a characteristic semantics is needed for any Sub

SQC=Q system where 0 a S. 

Rantala's suggestion for a type of semantics which would characterize 

the Suh-sac-o systems and hence which would invalidate all wffs render

ed underivable by virtue of how 0 is set up runs roughly as follows: 9 A 

Sub-soc•o model is a 4-tuple <W, w*,R, V> such that w • 0 and w* is a 

possibly non-empty set of 'non-normal' indtces10 such that W n w* • 0. 

Further, R ranges over members of W u w* or more formally, R' (W U 

w*) X (W u w*). The assignment function V is defined for members of 

W u w* as follows: V: Atomic Wffs X (W u w*) _,. {0, 1}. In addition, 

the two restrictions concerning the behaviour of the identity symbol which 

applied to V for members of W in the semantics for the Sub-Sac= systems, 

9 See R.tntala (1982), p. 109; R.tntala (1983). pp. 46-47. 
10 The stgnincance of the appellation 'non-normal' will be elCJ)lained presently. 



0 

0 

266 

apply to V for members of W U w*. We shall now put the set w* to work 

in dealinS with the •problem of deduction • because as we shall now see, the 

special twist to the sort of semantics we are currently considerins is that 

the vaJzutJon function Vy is not defined inductively for members of w*. 

The valuation Vy as usual takes wffs at indices into truth-values, 

althoush what is distinctive about VM in Rantala 's semantics is that it as

sisns values to wffs at both normal and •non-normal' indices. I.e., VM: 

Wffs X (W u w*) {0,1}. VM for members of W is defined as usual by 

induction with V(tl., Wt) • VM(tl., Wt) as the basis. VM for members of w* 

for .1tomJc wffs is of course defined as it is for members of W, i.e., 

V(cx, wi) = V M( ex, w1) since a function can only asstsn to a wff '1' or '0' at 

the same index but not both. However, VM for non-atomic wffs is not def

ined for members of w* by induction usins V(cx, Wt) = VM(tl., wi) as the 

basis. In effect, the standard conditions for the connectives, the belief op

erator and the quantifiers are at least initially lifted for non-normal in

dices. Finally, validity in a model is defined as truth at all normal indices 

and validity in a class of models is of course validity in all models in the 

class.U 

Since validity in any SUb-Boc=Q model is defined as truth at all nor

mal indices and validity in a class of models is truth at all normal indices 

in all models in the class, it is sufficient that R has imposed on it the re

quisite strictures (for validating all instances of an appropriate axiom

schema such as D, 4 or 6} for members of W only. For example, for any 

Sub-Kooc=o system containtns D, Ba ::> PJJCX it will be sufficient to require 

that if Wt is ln W then there is at least one Wj in W such that w 1RwJ Or 

if we are considerins the system Sub-KD4oc=o then it is sufficient to 

11 See Rantala (1982), p. 109. To be more precise, Rantala uses 'true in M' instead of 'valid In M'. 
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require that R is serial and transitive for members of W,12 

And so the reason that the members of w* (such that W n w* = 0) are 

called non-normal (or non-standard or impossible) is that VM is not def

ined inductively for such indices and hence if the connectives, the belief op

erator and the quantifiers 'misbehave• then theses of the particular unres

tricted system could turn out to be false at these indices, a situation which 

Nicholas Rescher calls "logical anarchy"13. However, as will be argued, the 

phrase 'logical anarchy' is a misnomer with respect to Rantala's impossible 

worlds. 

Although the standard truth-conditions for non-atomic wffs which 

hold for. the normal (or 'classical'14) indices are lifted for non-normal (or 

'non-classical') indices, it is not the case that 'anything goes' at impossible 

indices. This is because a number of strictures need to be imposed on VM 

for impossible indices in order to ensure soundness. One such stricture 

which Rantala discusses is the following: 

1) Por any w1 in w*, if VM(GC, wt) • VM(GC :;, p, wt) ,. 1 then 

VM(P,wi) • 1.1& 

In other words, even impossible indices are closed under detachment al-

though this is not equivalent to re-introducing the standard truth

conditions for material implication. This is because there is nothing in the 

above restriction which prevents any implicational thesis from being false 

at a non-normal index- provided that as we shall presently see, this 

thesis is not in the set 0 described above. All that this restriction pre-

12 Rantala (1982), p. 109. 
13 Rescher and Brandom (1980 ), p. 21. 
14 The appellations 'classical' vs. 'non-classical' for the kind or sernMUcs we n now discussing have 

been used by Cresswellln a number of places Including Cresswell (1970) and Cresswell (1973). 
15 This Is discussed In Rantala (1982), p. 109 and in Rantala 0983), p. 61. 
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eludes is the sort of case where for some non-normal index Wt and for any 

Wffs a, ,, VM(a, Wt) = V M( a ;, p, Wt) = 1 but VM(,, Wt) = 0. 

What this stricture imposed on lmptcational wffs for members of w* 

guarantees is the validity of the Sub-~Q axiom-schema (Ba & B(a ;, 

')) ;, B' for the following reason. SUppose that for some Sub-sQC•o model 

<W, w*, R, V>, such that for some wffs a, ,, VM(Ba, Wf) • VM(B(cx ;, 

,),wi) = 1 but that VM(B,,wi) = 0. Then there is some Wj e W U w* such 

that wiRwj and where although VM(a, Wj) = VM(cx ;, ,, Wj) = 1, VM(,, Wj) 

is 0. But if WJ is in W this set of valuations is inadmissible by virtue of 

the truth-conditions for •;,• and if WJ is tn w* then this set of valuations is 

inadmissible by virtue of the above mentioned 'closure under detachment' 

stricture. 

An additional stricture which Rantala imposes on members of w* for 

qu•ntifiCcttion.aJ doxastic systems is that for any universally quantified 

wff of the form (Vv)a and for any w1 e w*: 

2) If VM(tl. (t/v), wi) = 1 for all constants t then VM((Vv)tJ, Wf) = 1.16 

A similar stricture (also in conditional form) would be imposed on VM for 

members of w* tor existentially quantified wffs.17 Of course these stric-

tures are equivalent to re-introducing one half of the classical or standard 

truth-conditions for quantified wffs. As Rantala notes, these restrictions 

are needed for propositional attitude logics which contain as an axiom

schema the Barcan Formula (BF), (Vv)Ba ;, B(Vv)a ,18 In short, the 

reintroduction of one half of the classical truth-conditions for the quan

tifiers via the above mentioned strictures is necessary to guarantee the 

1 fl Rantata makes this stricture a blcondiUonal although rendering lt as a condUonal does the same 

work and greatly simplifies the completeness proof. 

17 I.e., for any w1ln w•. lfVM(tJ (Vv),w 1> • 1 for at leest one term l then VM(( ~)tJ .wl) • 1. 
18 See Rantala (1983), p. 61. 



c 

269 

soundness of the SUb-soc-Q systems all of which contain BP' relative to the 

type of semantics we are considering as will now be shown. 

SUppose that there is a Sub-SQCI'Q model M = <W, w*, R, V> such that 

VM((Vv)B«, w,) = 1 for some w1 in W. Por every constant t, VM(B« (t/v), 

Wt) = 1. So, for every constant t, V M( a (t/v}, wj) = 1 for any wj e W u w* 

such that WtRWj· If Wj is in W then by the standard truth-conditions for 

univerally quantified wffs, VM((Vv)a, Wj) • 1 and if Wj is in w* then by 

the above stricture imposed on VM for non-normal indices, it also follows 

that VM((Vv)a, Wj) = 1. Thus, since for every Wj e W u w* such that 

wiRWj, VM((Vv)a,wj) • 1 it follows that VM(B(Vv)a,wi) • 1. Q.E.D. 

It should be noted that even though the quantifiers behave standardly 

at all non-normal indices, it is still possible for theses whose major con

nectives are truth-functional or which are belief wffs but which involve 

quantifiers to be false at such indices (provided they are not in 0). They 

can turn out to be false by virtue of the non-standard behaviour of the 

major connective or the belief operator at impossible worlds. 

There is one further stricture which Rantala imposes on VM for the 

members of w* in order to ensure soundness, viz., that wffs which are 

valid in the model in the sense that they are true at all the normal indices 

and which are such that they are in the set Q (viz., the recursive subset 

of the setS of wtfs to which the rule RBQ applies) must also be true at all 

non-normal indices in the model. Expressed more formally, 

3) Por any Wt in w* and for any wff a such that a e 0, 

lf V M( a, wj) • 1 for all wj ln W then V M( a, wt) • 1. 

It will now be shown how this condition helps to guarantee soundness of 

any Sub-sQC=o system relative to this sort of semantics. 
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Suppose that for some wff «, I-« and suppose further that « is in 0. 

Then by RBQ it follows that 1-Boc. Now suppose also that I-«, i.e., that « 

is valid. What we need to show is that 1-Bcx, from which it follows that 

the rule RBQ preserves validity. Since by supposition « is valid, it follows 

that for any model M • <W, w*, R, V> in the appropriate class of models, 

VM(OI, Wt) • 1 for all Wi in W. Further, since by supposition 01 is in the set 

0 and given our stricture on VM for members of w* it follows that for any 

non-normal index Wj in w* in any model, VM(«, Wj) • 1. In other words, 

the validity of« coupled with its membership in \h,e set 0 ensures that oc 

is true at all indices both normal and non-normal in any model. And this 

in turn guarantees that for any normal index w1 in any model (in the rel

evant class of models), VM(IkX, wi) = 1. And so the rule of inference RBQ 

preserves validity by virtue of Rantala's stricture that valid wffs in 0 are 

true at all non-normal indices in any model. Q. E. D. 

By way of clarification, Rantala's 'non-normal' or 'impossible' indices 

are not to be confused with the so-called d'4d ,nds for classes of models 

for It-extensions where R is not serial. As described in chapter one, at any 

such index, all wffs of the form Bol are true and all wffs of the form PJJ(I 

are false, thus invalidating D, since no world is accessible from a dead end 

including itself. However, the connectives and the belief operator 'behave• 

standardly at such indices. Hence, all theses of the appropriate system are 

validated at dead ends. And these two characteristics, viz., that the con

nectives are defined standardly and that theses remain valid at dead ends 

distinguishes them from Rantala's non-normal incUces. Finally, at a dead 

end although agents believe anything including 01 & -01 , oc & -01 could never 

http:standard.ly
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be true at any dead. end whereas ex & -« could turn out to be true at a 

RantaUan impossible world since • ... • and '&' are not defined inductively. 

Nor are the impossible indices of Rantala to be confused. with Knpkean 

non-normal ind.tces19 which can be used in setting up the characteristic 

semantics for the (non-normaJ20) modal systems S2 and 83.21 Uke dead 

ends forK-extensions not containing D or T, any non-normal index for S2 

and S3 models is such that no index is accessible from it including itself al

thouah it must be accessible from some other index. I.e., if Wt in Win an 

S2 or S3 model is 'non-normal' then ... (3wj)(wJ e w u w*22 & wtRWJ) & 

(3w'Jt,)('Wk, e W & Wk,RWt). However, what distinguishes non-normal 

indices for S2 and S3 models from dead ends ts that in the former case any 

wtf of the form Bee is false at such indices and hence given the inter

definability of 'B' in terms of 'Ps' any wtf of the form Ps« will be true at 

such indices, which of course is the reverse of the situation for dead ends. 

The reason that this 'reverse' situation obtains for Kripkean non-nor

mal indices has to do with the truth-conditions for belief wtfs in this type 

of semantics. Given that an 82, S3 model is a triple <W,R, V> where W ts 

a non-empty set of at least one normal and possibly some non-normal 

worlds, and where R is quast-reflextve23 (for 82) orRis quasi-reflexive 

and. transitive (for S!), VM(Bcx, wi) • 1 iff w1Rw1 and for all Wj such that 

WtRWj, VM(ex, Wj) • 1. The proviso that wsRWt in the truth-conditions for 

belief wtfs gives us a semantics that validates the schema T, S. ;:, ex which 

19 See Krlpke (1965). 

20 By 'non-normal' here, we mean that. S2 M'ld S3 do not have • unrestricted rule of necessitation. 

We have not considered S2 .ad S3 as potential logics of belief since both contain Bex :> ex . See 
Hughes M'ld Cresswell (1968), pp. 246-253 for a detailed discussion of these IXiom systems. 

21 Set Hughes and Cresswell ( 1968). pp. 274-276. 

22 w• is a set of Kripkean non-normal indices. 
23 R is a quasi-relexive relation r.-.ging over the members ofW -elf. for any w1 In W,lfthere is at 

least one Wj lnW 5UCh that lfwtRwj then WtRwf. 
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therefore rules out 82, S3 as viable logics of belief. Since any Kripk.ean non

normal world is such that no world iDcJuding l/$,u is accessible from it, it 

follows that the 'wtRWt' proviso is never satisfied and hence for any wtf of 

the form lkr, lkr will be false at such an index. And by the interdefin

abitlity of Pa in terms of B, all wtfs of the form PJJ(I will be true at this 

sort of index. 

Finally, validity in an 82, S3 model is truth at all nor1Tl41 worlds and 

hence certain modal theses of 82, S3 such as 1-82, 38-(ex & ... ex ) where ex is 

a wtf of PC, can turn out to be false at Kripk.ean non-normal worlds. In 

fact, all instances of B-(01 8c -ex) will be false at non-normal indices even 

thoup 1-B-(ex & .... 01 ). And this is so by virtue of the 'wtRWt' proviso in the 

truth conditions for belief wffs coupled with the inaccessibilty of non-nor

mal worlds. Nonetheless, we still could never have the type of situation 

where ex & -ex is true at Kripkean non-normal indices since once again, the 

connectives ·-· and '&' are defined classically. And this distinguishes Krip

kean non-normal indices from Rantalian impossible indices since in the lat

ter case, wtfs of the form 01 & -01 could turn out to be true. 

To discern for any given Sub-sac==o system whether or not Rantala's 

proposed semantics validates all and only what is derivable in the system, 

we must prove soundness and completeness. How such proofs might pro

ceed will be discussed tn outline fashion. However, before addressing these 

questions, more needs to be said concerning the exact 'mechanics' of 

Rantala's proposed semantics for 'restricted' propositional attitude logics. 

On the syntactic front, we saw that what blocks the derivation of certain 

philosophically objectionable wffs such as certain instances of the adjunc-
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tion schema was to set up the set 0 in such a way that a key application 

of R.BQ in the derivation of that wff is blocked. In the case of the adjunc

tion schema, we set up 0 in such a way that it excludes the appropriate 

instance of« , (' , (« & ')) as well as any instance of ' 1 , ( ... ('n , 

(« , (' , (« & ')))). But what we want to determine is what aspects of 

the 'corresponding• (if we are not question begging) semantics inv•lid•tes 

the instance of the adjunction schema whose derivation has been blocked in 

the appropriate axiom system. 

What provides the answer to this question is the role which the set 0 

plays in the •m.ntlcs intended to characterize the restricted Sub-soc=o 

systems. This arbitrarily selected subset of the set of wffs is the crucial 

link. between the syntactic move of blocking the derivation of a certain 

objectional wff and the semantic move of invalidating this wff. This set 0 

plays a role in invalidating those schemata which it renders underivable in 

the 'corresponding• axiom system via one of the strictures that Rantala 

imposes on the valuation function for impossible indices in a model, i.e., if 

ex is true at all normal indices in the model (i.e., if a is valid or 'true' in 

the model) then ex is also true at all non-normal indices in the model pro

vtdttd that ex is in tbe set 0. If ex is not in 0 then it could turn out to be 

talse at some non-normal index even tbougb I=M« or l=ex. 

In order to 111ustrate bow this stricture on VM for non-normal indices 

invalidates objectionable wffs whose derivations are blocked in the syntax, 

we shall consider the following instance of the adjunction schema, viz., 

(BP a & B-P a) , B(Pa & -Fa}. The derivation of this wff can be blocked in 

any SUb-sac•o system by stipulating that 0 = s - {8 I 8 is Pa , ( -Pa , (Pa 

& -Pa)) or 8 is an instance of ' 1 , ( ... <Pn, (Pa, (-Pa, (Pa & -Pa))))}. 
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In short, by excluding the wff Fa ;, (-Fa ;, (Fa & ... Fa)) and any instance of 

'1 ;, ( ... ('n ;, (Fa ;, (-Fa ;, (Fa & -Fa)))) from the set 0 to which the rule 

RBQ applies, we effectively block the derivation of (BFa & B-Fa) ;, B(Fa & 

-Pa) since a crucial step in this derivation involves applying RBQ to the 

wff Pa;, (-Fa;, (Fa & ... pa)). Further, the derivation of the following 

instances of the omnidoxasticity and consistency schemata (for systems 

containing D), viz., (BFa & 1-Fa;, ( ... Fa;, (Fa & .... Fa)) ;, B(-Fa ;, (Fa & -Fa)) 

and -(BFa & B-Fa) respectively are blocked for reasons discussed in the 

previous section. And of course there is an infinity of other wffs whose 

derivation is effectively blocked including an infinity of instances of the 

omnidoxasticity schema. We shall now see on the semantic front exactly 

how setting up 0 in the way we have tnvAitd•tn the above mentioned 

instances of the adjunction and omnidoxasticity schemata. 

The following will constitute a Sub-sac=o countermodel to the follow

ing instances of the adjunction, omnidoxasticity and consistency schemata, 

viz., (BPa & B-Fa) ;, B(Fa & ... Fa), (BFa & 1-Fa;, (-Fa;, (Fa & -Fa)) ;, B(-Fa 

;, (Fa & -Fa)) and -(BFa & B-Fa) respectively. Let M be such that W = 

{w1}, w* = {w2}, {<Wt,W2>} ~ R. Let 0 = s- {I I I is Fa:;) (-Fa:;) (Fa & 

-Pa)) or I is an instance of p1 ;, ( ... <Pn ;, (Fa ;, (-Fa ;, (Fa & -Fa))))} 

Let V(Fa, w1) = VM(Fa, w1) • 1 and since w1 is normal, VM( .... Fa, w1) = 0. 

Also, since VM(Fa, w1) • 0 it follows that VM(Pa ;, (-Fa ;, (Fa & -Fa)), w1) 

= 1 given once again that w1 is normal. Suppose further that V(Fa, w2) • 

VM(Fa, w2) • 1. We shall set up VM( .... Fa, w2) as 1, which is admissible 

because w2 is non-normal and hence • ... • is not defined inductively. 

The index w2 is non-normal and in addition, Fa ;, (-Fa ::> (Fa & -Fa)) is 

not in 0. Further, given our restriction RO• for 0, vtz., that a - 0 only 

http:invAlld.tl
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if a ::. ' ~ 0. then any wff of the form ' 1 ::. ( ... ('n::. (Fa::. (-Fa::. (Fa & 

... Fa)))) will be excluded from 0. Then the following valuation is admis

sible, viz., VM(Fa ::. (-Fa ::. (Fa & ..,Fa)), wa) = 0 as will now be shown. 

Our stipulattns that VM(Fa ::. ("'Fa ::. (Fa & -Fa)), w2) = 0, Rantala 's 

closure restriction on members of w*, viz., that for any WJ in ~ if 

VAt( a, wj) • V M(' a .:~A wj) • 1 tb'n VAf{A wj) • 1 is not violated since 

any wff of the form ' 1 ::. ( ... ('n ::. (Fa ::. (-Fa ::. (Fa & "'Fa)))) is excluded 

from 0. Thus, we can stipulate that for any wff of the form ' 1 ::. ( ... ('n 

::. (Fa ::. (-Fa ::. (Fa & ..,Fa)))), VM('1 ::. ( ... ('n ::. (Fa ::. (-Fa ::. (Fa & 

-Fa)))), w2) = 0. [Note also that this stipulation will not violate the res

triction for any member of w*, that U a EO and it VM(CX,wt) • 1 for all 

Wt in W then VM(a, wtt) • 1 for all Wit in w*.] 

To illustrate that the closure restriction on members of w* will not be 

violated in letting VM(Fa ::. (-Fa ::. (Fa & -Fa)), w2) • 0, suppose that some 

wff' is true at wa in w* such that 1-, ::. (Fa::. (-Fa::. (Fa & "'Fa))). Since 

' ::. (Fa ::. (-Fa ::. (Fa & -Fa))) has been excluded from 0 by our stricture 

ROw in which case our stipulatins that VM(' ::. (Fa::. (-Fa::. (Fa & 

-Fa))), w2) = 0 is admissible, then the closure restriction on members of 

w* has not been violated. [For example, ' miSht be -Fa ::. (Fa ::. (Fa & -Fa)) 

1n which case, VM(-Fa ::. (Fa::. (Fa & -Fa)), wa) = 1. Nonetheless, given 

RO•, the wff (-Fa, (Fa, (-Fa & Fa))) , (Fa, (-Fa, (Fa & -Fa))) is not 

in 0 and hence it is admissible to stipulate that it is false at wa.] But, it 

could be countered that VM(' ::. (Fa ::. (-Fa , (Fa & -Fa))), w2) • 0 is not 

admissible since there could be some wff y such that y is true at w2 and 

such that 1-y ::. (' ::. (Fa ::. (-Fa ::. (Fa & -Fa)))) - which could violate the 

closure restriction on members of w*. However, the wff y ::. (' ::. (Fa, 
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( ... Fa ;:, (Fa & -Fa)))) is itself excluded from 0 by RC- and so, it is admis

sible to stipulate that VM(T , (' , (Fa , (-Fa , (Fa & -Fa)))), wa) • 0 . 

.And in seneral, for any wff of the form ' 2 ;:, ( ... <'n ;:, (Fa, (-Fa, 

(Fa & ..,Fa)))) ... ), if there is a wff ' 1 true at w2 such that 1-,1 , (,2;:, 

( ... ('n , (Fa , ( -Pa , (Pa & -Pa)))) ... ) ) then since ' 1 , ('2 , ( ... ('n , 

(Fa , ( .... pa , (Pa & ... Fa)))) ... ) ) is not in 0 by RO•, it is admissible to stip

ulate that this wff is false at w2 thereby not vtolattns the closure restric

tion on members of w*- if tt has also been stipulated that the consequent 

'2;:, (. .. ('n , (Fa, ( ... Fa, (Fa & ...,Fa))}) ... ) is false at wa. Q.E.D. 

Given that VM(Fa, (-Fa , (Fa & ...,Fa)),wa) • 0 then the closure res

triction on implication is not violated for w2 in lettins VM( ... Pa ;:, (Fa & 

-Pa), w2) • 0 even thoush VM(Fa, w2) • 1. Thus, VM(BFa, w1) = 1 althoush 

VM(B( ... pa , (Pa & -Fa)), w1) • 0 which therefore invalidates the above 

instance of the omnidoxastictty schema. 

Also, since '&' is not defined inductively, it ts admissible to let VM(Fa & 

-Fa, w2) • 0 even thoush we have stipulated that VM(Fa, w2) = VM( ""Fa, w2) 

• 1. Further, we shall not be vtolatins the 'closure' restriction on impli

cation for non-normal worlds in stipulattns that VM(Pa & -Fa, w2) • 0 even 

thoush VM(Fa,w2) = VM{-Fa,w2) • 1 since VM(Fa, (-Fa, (Fa & .... Fa)), 

w2) • VM(-Fa, (Fa & -Pa),w2) = 0. Then even thoush VM(BPa,wt) = 
VM(B-Pa, w1) • VM(BFa & B-Fa, w1) = 1 (which therefore invalidates the 

consistency schema for systems containing D), VM(B(Pa & .... pa), w1) = 0 

thereby invalidattns the above mentioned instance of the adjunctton 

schema. Q.E.D. 

This example was in part intended to illustrate the significance behind 
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the restriction Re- on the set 0. As was noted in the previous section, it 

is possible to construct 0 in such a way that the resulting Sub-sac-o 

axiom system will not contain certain select instances of some schema such 

as the adjunctton, consistency or omnidoxasticity schema- provided that 

we are willtng to pay the price of having a logic such that an infinity of 

other wtfs derivable tn the corresponding unrestricted Sub-sac•o system 

are thereby rendered underivable. The cost which is exacted by employing 

the restriction RO• in the axiom system is paid back in the semantics since 

we are ensured that the select instance of the crucial schema (such as the 

adjucntion schema) which is rendered underivable in the syntax is invali

dated in the semantics. 

With respect to invalidating select instances of the omnidoxasticity, 

adjunction or consistency schemata rendered underivable in the given 

axiom system, the rule RO• serves the function of ensuring that the clos

ure restriction on VM for non-normal indices and the restriction that if 

a e 0 and if VM(a,wt). 1 for all Wi in w then VM(a,wj). 1 for all Wj 

in w*, do not conflict. For example, suppose that T is a wtf to which the 

rule RBQ must be applied for the appropriate instance of the adjunction 

schema to be derived. In such a case, T will be an instance of ex 3 " 3 

(a & p)). Then excluding T from 0 as well as all instances of p1 3 ( ... <Pn 

, a ) ... ) given RC- results in the appropriate instance of the given schema 

being rendered underivable. The parallel situation in the semantics is that 

in excluding a from 0, a can take on the value 'false' at some non-normal 

alternative Wf to the index at which the given instance of the schema is 

being evaluated. However, if there is some wtf p such that 1-' 3 ex and 

such that VM(p, wi) • 1 then P 3 a •s being excluded from 0 given RO• 



0 

278 

allows the assignment of the value •false• to ' , Cl at Wt thereby avoiding 

a violation of the closure restriction if T has been assigned •false• at Wt. 

Further, assigning •talse• to ' , Cl at Wt will not itself involve a violation 

of the closure restriction since any wff of the form S , (' , Cl ) is also 

excluded from 0 given RO•. 

What is now needed are general completeness results to show that for 

any wtf Cl, if Cl is not a thesis of the given Sub-sac= a system then Cl 

is invalid in the appropriate class of models. In the next section, we shall 

therefore address ourselves to the question of soundness and completeness 

of the Sub-soc-o systems relative to the sort of semantics just presented. 

4. Soundness and Completeness Results for the Sub-SQC=o Systems 

We have already seen how the three strictures which Rantala imposes 

on VM for non-normal indices helps to ensure soundness of the various 

Sub-sac==o systems relative to his proposed impossible worlds semantics. 

These strictures ensure that the schema K and the Barcan Formula are 

valid in the appropriate class of models and that the restricted rule RHo 

preserves validity. The proofs that the remaining axiom-schemata such as 

t = t, Cl (t/v) , (3v)Cil, Cl (t1/v) & t1 = t2) , Cl (t2/v) where th t2 do not 

occur in the scope of doxastic operators and Cl where Cl has the form of a 

PC thesis, are valid and that the other rules of inference, MP and restricted 

R3 preserve validity are straightforward enough. They proceed roughly 

along the same lines as the proofs for the unrestricted Sub-sac= systems. 

However, a fourth stricture is needed for VM for non-normal indices 

in Sub-sac=o models which will ensure the validity of all instances of the 
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following Sub-SQCIQ axiom-schema, viz., (01 (t1/v) & t1 = t2 & B(tt = ta)) :::. 

01 (t2/v) - where it is stipulated that t1, t2 may occur in the scope of dox

utic operators. This schema restricts substitution of identicals to cases 

where the agent believes that the relevant identity obtains. However, as it 

stands, the followins simple instance of this schema viz., (B(Pa v Gc) & 

a = b & B(a = b)) :::. B(Fb v Gc) is invalidated in the followtns Sub-sac-a 

(partial) model: W = {w1}, w* = {wa}, <WtJ wa> c:; R and V(Pa, w2) = 1 

and V( a = b, wa) = 1. Then by one of the restrictions applying to V for 

members of W u w*, V(Fb,wa) must also be 1. Then VM(a = b,w2) = 
VM(Fa, wa) = VM(Fb, w2) • 1. But since wa is non-normal in which case 

•vM• is not defined inductively, the following are admissible valuations: 

VM(Fa v Gc, w2) • 1 and VM(Fb v Gc, w2) = 0. Then VM(B(Pa v Gc), w1) = 1 

but VM(B(Fb v Gc), Wt) = 0. 

Thus, what is needed to avoid the above kind of situation is the intro

duction into the semantics of a fourth restriction, which merely stipulates 

that VM for members of w* is such that for any wtfs Cl (tt/v) and 01 (ta/v) 

of any dqree of complexity, 

4) If VM(tl = ta,wi) • 1 then VM(OI (t1/v),wi) = VM(OI (t2fv),wt). 

In particular, this restriction would disallow the above (partial) 

counter-model to (B(Fa v Gc) & a • b & B{a a b)) :l B(Fb v Gc) since given 

that VM(Fa v Gc, wa) = VM(a = b, w2) = 1, then it must also be the case 

(vis a vis Restriction 4 on VM for members of w*) that VM(Fa v Gc,w2) = 
1. Generally speaking, Restriction 4 on VM for members of w* would en

sure that the restriction on V for members of W u w* ~z., that if V(t1 = 
ta,wt) = 1 then V(OI (t1/v),w1) = V(OI (t2fv),wt), can be extended to VM for 
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members of w* where the connectives and the belief operator are defined 

non-classically. 

Compl't'n,_ is a little tricky to establish for the Sub-soc-o systems 

since tt ts not immediately obvious how we can characterize the set w* for 

any Sub-Bac-Q system's canonical model. In his 1982 article, Rantala 

sugests characterizing w* for a system •s canonical model roughly as fol

lows: Given that W for the particular system's canonical model M • <W, 

w*, R, V> is a set of maximal consistent sets of wtfs each set having the 

3-property, we define the set w* as itself a set of sets of wtfs where for 

any member of this set, WJ there is exactly one member of W, Wt such 

that wj • {ex e Wffs I BCII e w1}.24 In other words, any member of w*, Wj 

is a set of wtfs where for exactly one member of W, WiJ each wtf ex in the 

set Wj will be such that BCII is in Wt. Given that R for M is defined as 

usual, viz., WiRWj iff (Vex )(BCII & Wt- Ql & Wj), it follows that for any 

member Wj of w* there is exactly one member of W, wi such that WfRWj

Purther, for any member of W, w1 there is exactly one member of w•, wj 

such that WtRwl' provided that w1 contains at least one wff of the form 

BCII. What this amounts to intuitively is that for a Sub-sac=o canonical 

model, for each maximal consistent set with the 3-property in W, Wt we 

construct a set of wffs Wj consisting of all and only the content wffs of all 

the belief wffs contained in wi. Whether or not the members of w* them

selves have the 3-property is immaterial given- as we shall see- that the 

fundamental theorem of canonical models for members of w* is not proven 

inductively. 

To summarize, a Sub-Bac-Q canonical model M. is a 4-tuple <W, w*,R, 

V> where W ts a set of maximal consistent sets of wtfs with the 3-proper-

24 Ranllla (1982), p. 110. 

25 Ranllla (1982), p. 110 and Ranllla (1983), p. 53. 
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ty and w* is a set of sets of wffs where for each Wj in W there is a wi in 

w* which is such that for any wff GC in wb BGC is in wJ. The element R 

is defined as wtRWj tff (VGC)(BGC E wi- GC E Wj) although as we have 

not yet noted, Rantala requires that for any ordered pair <WtJWj> in R, wi 

e Wand Wj E W u w*. I.e., Rantala stipulates that for any Sub-Sac=o 

canonical model, R ~ W X (W U w*). 26 This in effect means that no index 

is accessible from any non-normal index including itself for the canonical 

model although given the definition of w* for .U., it follows that each Wj in 

w* is such that WfRWj for exactly one w1 in W. Given the 'inaccessibility• 

of members of w* for the canonical model plus the fact that every wi in 

w* is 'accessible' from some member of W, it would seem that in these 

very respects, non-normal indices in the c.ano.nJC4l modl'l for any Sub

SQC=o system are similar to K.ripkean non-normal indices which are used 

in setting up the semantics for S2 and S3. There is also a fundamental 

difference between Kripkean non-normal indices and members of w* for 

..U. as will be argued below. 

We can define the element V in the canonical model ..U. for members of 

W U w* as follows: Where 01 is atomic and for any w1 in W U w*, 

V(OI,wt} = 1 iff 01 E Wt. Por members of w*, we let V,.u.(OI,wt) = V(OI,wt) 

and hence V ,.u.(GC , w1) = 1 iff 01 E w1 for any atomic wtf ex although we do 

not prove the fundamental theorem of canonical models for members of w* 

using induction (presumably since VM is not defined inductively for mem

bers of w* in any Sub-sac-a model, M). Thus, 1t is simply stipulated that 

for any wtf GC and for any wi in w*, V,.u.(GC, w1) = tiff GC e w 1.27 And so, 

if a wff of the form BBGC is in some member of W, w1 then it follows that 

2fl See Rantale 0982), p. 110. 

27 Rantale (1982), p. 111. 
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Bor is in some Wj in w* such that wiRWj· Then by the fundamental 

theorem of canonical models for non-normal indices, VM(Bor, Wt) • 1 and 

this shows that unlike Kripkean non-normal indices in the semantics for S2 

and S3, belief wtfs can be true at Rantalian non-normal indices in any 

SUb-S~Q canonical model. 

Further, for the valuation over any SUb-sac=Q canonical model, VJJ., 

the fundamental theorem of canonical models is proven for members of W 

by induction with VJJ.(or,wt) • V(or,wt) and so VJJ.(or,wt) • 1 iff or e wi 

for any atomic wtf or as the basis of the induction. And the inductive proof 

would proceed along the same lines as it did for the unrestricted SUb-sac= 

systems (using the inductive hypothesis that the theorem holds for wffs of 

degree of complexity n) except for the case where or is of the form aor . In 

this case, the proof of the su:bcase that if V }J. (Bor , w1) • 1 then Bor e wi is 

considerably simplifed by appeal to the fact that every non-normal index 

in w* is accessible from exactly one normal index in Win the canonical 

model: 

Subcase a): SUppose VJJ.(Bor,wt) = 1 

then VJJ.(or,wJ) • 1 such that Wj e w* where w1RwJ 

or e Wj since Wj is non-normal and given that for 

any such index, VJJ.(or,wj) = 1 iff or e WJ 

Bor e Wi given that Wj. {or I Bor e Wf}.28 

The remaining subcase, viz., that if Bor e wi then V M (Bor , w1) • 1 is 

proven in basically the same way as it is for the Sub-soc= systems: 

Subcase b): Suppose Bor e Wi 

then 01 E Wj for any Wj in W U w* such that WtRWj-

28 Rantala ( 1982), p. 111. Our proof of subcase b) differs from Rantala's since his proof relies on the 

the system's containing the schema T. His proposals re primarily for eptstemlc logic. 
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VJJ.(tll.,wj) • 1 by the inductive hypothesis if Wj I W 

or immediately if w J e w*. 

V M (JIG, wt) • 1 by the truth-conditions for JIG . 

Q.E.D. 

Now that the fundamental theorem of canonical models has been proven 

for normal indices (and is stipulated to hold for non-normal ones), all that 

remains to be shown is that the canonical model is a model for the par

ticular Sub-SQC-Q system under consideration. 

Showing that the canonical model M is in the class of models with 

respect to which the particular Sub-SQC-Q system is sound involves two 

steps. First, as before, we must show that the element R in M has the 

requisite characteristics. For example, for any Sub-K~Q system it must 

be proven that R tn its canonical model is serial for Win the sense defined 

above, vtz., for any normal index Wtin W there is at least one Wj in W 

such that w1RwJ. 

Once we have established that R in the particular Sub-SQC-Q system's 

canonical model meets the appropriate constraints, it must next be shown 

that VM meets the strictures imposed on VM for non-normal indices in any 

Sub-SQC""Q model.29 First of all, it must be shown that for any w1 in w* 

in M and for any wffs a, J, if VJJ.(ex,wi) • VM(ex :> J,wt) = 1 then 

VJJ..(J, w1) = 1. The reader is referred to Rantala's 1982 article for details 

of this proof although in outline fashion, it involves supposing that VJ,J..(ex, 

w1) = V J,J..(G => p, w1) = 1. Then JIG e wJ and B(ex => P> e WJ since wi = {ex I 

JIG e Wj} for exactly one WJ in W. Prom this it follows that Bex & B(ex => p) 

e Wj and since 1-(JIG & B(ex :> p)) :> BP it further follows that BP e Wj· 

And given that Wt ={ex I JIG e Wj}, p e Wt and so V,u.(P,wi) = 1. Q.E.D. 

29 Rantala (1982). pp. 111-112. 

http:model.29
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Next, we need to show that the second set of strictures which Rantala 

imposes on VM for members of w*, viz., that for any w1 in w*, if 

VM(a (t/v),wl) = 1 for all constants t then VM((Vv)a ,w1) = 1 and if 

VM(a (t/v), w1) = 1 for at least one constant t then VM((3v)a, wi) = 1 

appUes to V JA, for the canonical model. We shall prove that these two 

strictures apply to V JA, for any Wt in w* as follows: 

1) Por any wi in w*, suppose VJA,(t:A (t/v), w1) = 1 for all constants t. 

thus, a (t/v) e wi for all t by def. of VJA, for 

members of w*. 

thus, Jkl (t/v} & Wj for all t SUCh that Wj E W 

Where Wi a {a jlkl E Wj} 

VJA_(Ikl (t/v), wj) = 1 for all t. 

thus, VJA_((Vv)lkl,wj) = 1. 

(Vv)lkl e Wj by the fundamental theorem. 

1-(Vv)BG , B(Vv)a BF 

(Vv)BG , B(Vv)a e Wj since Wj is 

maximal consistent 

B(Vv)a e Wj since Wj is max. con. 

(Vv)a e Wi since Wt = {a I Ba e Wj}· 

VJA_((Vv)a, wi} = 1 by df. VJA, for mem

bers of w*. 

2) For any Wi in w*, suppose VJA,(a (t/v}, Wt) = 1 for some constant t. 

then a (t/v) E w1 for some constant t by the def. 

of V M for members of w*. 
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Bcx (t/v) e Wj for some cons. t such that Wj 

in Wand wi • {a I BOc e Wj}· 

I-BeX (t/v) :;, 8(3v)a which is a thesis for 

any Sub-sQC=c system such 

that C includes all instances 

of or (t/v) :;, (3v)or . 

(Note: The upshot of this step in the proof is that the completeness result 

coes throu&h only for systems such that RBQ is applicable to all instances 

of the axiom-schema or (t/v) :;, (3v)a. This is because the derivation of 

any instance of Bcx (t/v) :;, 8(3v)or depends on the application of RBQ to the 

appropriate instance of or (t/v) :;, (3v)a along with the schema K and modus 

ponens. In short, for the sake of guaranteeing completeness, it should be 

stipulated that any Sub-SQC=o system we chose as our system of quanti

fied doxastic losic should be such that 0 includes all instances of or (t/v) :;, 

(3v)or. Therefore, the type of semantics we have discussed in this section 

only chatactertzes those Sub-Sac=c systems such that C includes all ins

tances of a (t/v) :;, (3v}a. We shall now proceed with the proof.) 

801 (t/v) :;, 8(3v)cx e Wj (wj is max. con.) 

B(3v}oc e wj since Wj is max. con. 

(3v)cx e wi since wi • {or I 801 e wj}· 

V,u.((3v)oc, w1) • 1 by df. of V,u. for non-

normal indices. 

Q.E.D. 

Further, we shall need to show that the third stricture which Rantala 

imposes on VM for members of w* for Sub-sQC=c models, viz., that for all 
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wi in w*, if VM(or ,wj) • 1 for all Wj in Wand if or is in 0 thenVM(or, 

w1) • 1 applies to V JA, for members of w* in the appropriate canonical 

model. The proof of this can be found in Rantala's 1982 article and so we 

shall reproduce it here only in outline form. 30 In essence, the proof in

volves showin& that if for some a in 0, V)J.(CX,wj) = 1 for all Wj in W 

then a is in each such Wj in W from which it follows that 1-a and by RBQ 

that I-Bex. Then Ba ts tn every Wj tn W. So for every Wi in w* it follows 

that or is in wi and hence that V)J.(CX, Wt) = 1. Q.E.D. 

Finally, the fourth stricture which was imposed on VM for members of 

w* viz., that if VM(tl = t2, Wt) = 1 then VM(CI (tl/v), Wt) = VM(CI (t2fv), Wt) 

(for wtfs a (tt/v), a (t2/v) of any decree of complexity), is proven to hold 

for V JA, for members of w* as follows: 

Suppose: V,u.(tt = t2,w1) = V,u.(a(tt/v),wt) = 1 but V)J.(CC(t2/v),wt) = 0 

for some w1 in w* in .AA.. I.e., we are suppostnc that even 

thou&h V)J.(tt = t2, Wt) = 1, V)J.(CI (tt/v), Wt) • V)J.(CI (t/v), Wt). 

thus, t1 = t2 e wi and a (t1/v) e wi 

thus, B(tl = t2) e Wj and Bcx (t1/v) e Wj such that Wj e W and 

where w1 • {a I Ba e wj} and hence, WjRWt· 

thus, 8GC (tt/v) & B(tl .,. t2) e Wj given that wj is max. cons. 

1-(BGC (tt/v) & B(t1 = t2)) ::> Ba (t2fv)31 

" (Ba (tt/v) & B(tt • t2)) ;, Bcx (t2fv) e Wj since Wj is max. cons. 

" Ba (t2/v) e Wj since Wj is max. cons. 
-------

30 See Rantala 0982). p. 112. 

31 This schema can be regarded as the 'ptrely doxastlc' variant of the axiom-schema ea (t1/v) & 

t1 •t2 & 8(t1 • t2));, a Ct2/v) where t1 and t2 may occur in the scope of doxastic operators. 

The conjunct in the anlecedent,ll • t2 is rendered superfluous. To avoid any technical objections. 

we could simply add this variant or the above schema to any Sub-soc• 0 system as an axiom

schema. 

http:anlecedent.ll
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ex (t2/v) e w1 since w1 • {ex I JkX e wJ}. 

VJ,A.(ex (t2fv), wi) = 1 by the fundamental theorem which con

radicts our earlier supposition that VJ,A.(ex (t2/v), w1) • 0. 

Q.E.D. 

And so once we have proven that a given system's canonical model is 

such that the four strictures on VM for non-normal indices apply to VJ,A. 

for members of w*, then this in conjunction with showing that R in M 

meets the relevant constraints establishes that )J.. is in the appropriate class 

of models. And this in turn would complete the completeness proof. In the 

next section, we shall see that although Rantala's proposals for a logic of 

propositional attitudes not presupposing omniscience and for that matter 

(although he does not discuss this} not presupposing the adjunction or the 

consistency of attitudes seems to work, the characteristic semantics which 

he proposes is objectionable which effectively puts us back to square one. 

I.e., we are in need of an unobjectionable characteristic semantics for the 

restricted Sub-soc=o systems. 

5. Non-Standard Indices and Equivocation 

In the previous section, 1t was argued that Rantala's semantics is ef

ficacious in invalidating select instances of the omnidoxasticity schemata 

(and their corresponding rules of inference), the adjunction schema as well 

as the consistency schemata. This is owing to the feature of his semantics 

that any thesis not in 0 can turn out to be false at non-normal indices

provided that we impose the stricture RC- on 0 for cases where 0 is not 

a calculus. 
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One objection which could be made to Rantala's semantics is that we 

cannot make good iDtuitiw sense of non-normal indices, even if we can 

make good model-theoretic sense of them. In chapter two it was argued 

that intuitively, (normal) indices can be regarded as carapian state des

criptions. I.e., for any atomic wff ex and for any index wb either ex is in 

Wi or ... ex is but not both. Thus, indices conceived in this way are consis

tent (and maximal) sets of atomic wffs or their negations. It was also 

remarked that if we find objectionable the view that (normal) indices are 

sets of wffs, then we could treat indices as primitives in our semantics, 

although we could associate with each index a state description in the fol

lOWing manner: The associated state description consists of all those atomic 

wtts or their negattons assigned '1' at the index by VM in the model. 

However, a Rantalian non-normal index is such that VM may assign 

to any atomic wff ex .and its negation '1' or it may assign to ex .and its 

negation '0' or it may differ in its assignment of a member of {1,0} to ex 

and its negation. This is OWing to the feature of the semantics that VM is 

defined non-inductively for non-normal indices (while being subject to the 

four strictures discussed in the previous section). Suppose we were to 

associate with each non-normal index a setS of atomic sentences or their 

negations such that membership in the set is determined by what VM 

assigns to any atomic wff er and its negation at the index. Then the resul

ting set may not be a carnapian state description since it may be both 

negation inconsistent as well as non-maximal- for some atomic wff ex and 

its negation, it is possible that both it and ... er are in S or that neither ex 

nor -01 are inS. Hence, in the general case, we cannot conceive of non

normal indices either as state descriptions or as being associated with state 
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descriptions. Then it would seem to follow that we cannot make intuitive 

sense out of non-normal indices. 

But even though in the aeneral case we cannot conceive of non-nor

mal indices either as state descriptions or as betna associated with state 

descriptions, it could be araued that non-normal indices are either identifi

able with or can be associated with what we shall call 'quasi-state des

criptions•. Like state descriptions, a quasi state description Q is a set of 

wffs, particularly either atomic wffs or their neaations althouah for any 

atomic wtf ex and its neption "1X, either both are inS, neither are in S or 

one or the other is in S. Therefore, unlike state descriptions, quasi state 

descriptions may taU to be consistent or maximal. Then we could say that 

a non-normal index is a quasi-state description or that associated with 

each non-normal index is a quasi-state descriptionS such that for any 

atomic wff ex or its neaation -ex, ex or "1X is inS just in case VM assians 

'1' to either or both of these wffs at the appropriate non-normal index. 

And so it would seem that we can make some sort of intuitive sense 

out of Rantalian non-normal indices if we think. of them as beina associated 

with what we have called quasi state descriptions. Further, there is no 

reason why any non-normal index conceived as being associated with some 

quasi state description cannot be a respectable belief alternative to the index 

which an asent inhabits, since its associated description will by definition 

contain no self-contradictory wtfs of the form ex & ... ex {where ex is atomic) 

even if the description contains both ex and -ex. And since non-normal in

dices are not closed under conjunction, then even thoush both ex and -ex 

may be true at such an index, it does not follow that their conjunction is 

unless the index contains the appropriate instance of cc ::> (-cc ::> (cc & -cc). 
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Hence any inconsistencies obtaining at non-normal indices may be 'hidden' 

in the sense that their conjunction may fail to obtain. 

However, there is an additional problem alluded to by Max Cresswell 

concerning impossible index semantics. Supposing that the connectives are 

not defined inductively at non-normal indices, then there is no way to 

determine what any of these connectives represent- they collapse into one 

another. 32 Anything goes for all of the connectives With the exception of 

the closure stricture for ';:, • discussed above. Thus, -there is·-IW .dif~rence 

truth-conditionally speaking between any wff of the form oc v ,, oc & , 

and oc • ,. At non-normal indices., v, & and • are semantically indisting

uishable - they cannot be individuated. 

However, even if Cresswell's charge that there is no way of individu

ating logical connectives (with the exception of the strictures imposed on 

VM for members of w*) for non-normal indices can somehow be answered, 

there is a more serious objection which he levels against impossible index 

semantics for belief: If the connectives-, v, & , ;:,, and= are defined non-

inductively for non-normal indices then we are not shoWing how they 

misbehave if they are cillssically construed. All· that we are-showing is 

that -, v, & , ;:,, and= do not represent c/d$5l'c.tll negation, disjunction, 

conjunction, implication and equivalence for non-normal indices. 33 For 

example, if & and;:, represented classical conjunction and implication at 

non-normal indices then any thesis containing these connectives would be 

true at any such index. But this need not be the case if the thesis is not in 

0. Therefore, & and ;:, are not classical conjunction and implication which 

happen to misbehave at non-normal indices- classical conjunction and 

32 Cresswell (1982), pp. 7+75. 

33 See Cresswell (1973), p. 41 and Cresswell (1982), p. 74. 
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implication cannot misbehave and still be classical. 

In sum, Cresswell's charge here seems to he that we are equivocating 

with respect to the connectives ... , v, & , :., sin a non-normal index sem-

antics. Cresswell's objection is itself less objectionable if it is not assumed 

that the classical interpretations of ... , &, v, :. and = are in any sense 

privileged. 34 I.e., the objection is not that ... , &, v, :. and = do not represent 

•real' negation, conjunction, etc. for non-normaltndtces but simply that we 

are equivocating with respect to these connectives. They mean one thing 

for impossible indices and they mean something else for normal indices. 

(Stating the objection in this way avoids any rejoinders to the effect that 

there is no priveleged interpretation of -, &, v, :. and s.) This equivocation 

is not benign for the reason that Rantala 's impossible index semantics is 

supposed to explain for example how agents can fail to classically conjoin 

believed contents which obtain at non-standard alternatives. But 1f a con

tent of the form Cl & p is false at some impossible alternative to an index 

Wt even though the 'conjuncts' Cl and Pare true, then '&' in Cl & Pis not 

classical conjunction. So, it has not been demonstrated how some instance 

of the adjunction schema, (Bcx & BP) :. B(cx & p) is invalid if '&' in the 

scope of the belief operator in the consequent is classical conjunction. 

The 'classical' rejoinder to Cresswell's second criticism of an impossible 

worlds semantics for belief logic is to first of all claim that the connectives 

of a formal logic are definable solely in terms of their role in inference - or 

in terms of certain characteristic axioms. 35 For example, the axiom-

34 Cresswell seems to suggest that the problem with Impossible worlds semantics Is that for example 

• ... • Is not 'real' negation at Impossible indices. See Cresswell (1973), eh. 3. He also seems to 
assume that ·-· qua 'real' negation Is truth-f'unct.lonal. See Cresswell (1985), p. 74. 

35 This stance has received support In the literature Including Belnap (1961 ), Rescher (1980), and 

Read (1988), to name a few. 
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schema •a ;:, (,;:, (a & '))' could be regarded as a kind of syntactic def

inition of '&' since it asserts that if a obtains and then if ' obtains, a & ' 

obtains. On the other hand, if a & 'fatls to obtain then tt follows that 

either -a obtains or that-- obtains or both. Then this is the syntactic 

counterpart of the characteristic two-valued matrix for '&' classically 

construed. Similar remarks apply for example to ·-· since -(a & -a) could 

be regarded as the syntactic counterpart of the characteristic matrix for ·-· 

classically interpreted. Also, the two 'paradoxes of material implication', 

ex ;:, (' ;:, ex) and -a , (a ;:, ') can be regarded as characterizing ';:,' con

strued as material implication. 

Suppose for the sake of argument that the connectives of a formal 

language really are definable in terms of their role in inference or in terms 

of certain 'characteristic' axioms- as illustrated above. Then it can be 

further argued that even though Rantala's semantics equivocates with res

pect to the interpretation of the connectives, there is no corresponding 

equivocation in the axiom-systems which are sound and complete with res

pect to this semantics. I.e., like our Sub-sac= systems, any of the res

tricted Sub-sac-o doxastic systems contain all the thesis-schemata (as 

well as material detachment) of the classical propositional calculus. So in 

the Sub-SQc=o axiom-systems, the connectives -, &, v, ;:, and • 'behave' 

inferentially as they would for the unrestricted systems. Since by sup

position the connectives are definable purely syntactically, then we could 

opt for defining them in this way rather than truth-conditionally thereby 

circumventing Cresswell's charge of equivocation. This line of reasoning is 

in fact taken up by Rescher in defense of a less extreme version of a non

standard worlds semantics for belief logic, which will be discussed briefly 
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in the next chapter. 36 

As might he suspected, the Achilles' heel in this line of reasoning is the 

crucial supposition that the connectives of a language are definable solely in 

terms of their roles in inference. Prior has called this supposition into 

question by proposing the following reductio argument against it: Suppose 

that we wish to introduce into the language of some formal system the 

connective 'tonk'. Then an additional clause is added to the formation rules 

to the effect that 1f GC, ' are wffs then 'GC tonk ,. is a wff. We might then 

define the connective 'tonk' proof-theoretically in any number of ways 

including the following: 

1) GC 1- GC tonk ' 

2) GC tonk ' 1- ' 
1) says that GC tonk ' is a deductive consequence of GC and 2) says that ' is 

a deductive consequence of GC tonk '· But by the transitivity of the ded

uctive consequence relation, we obtain: 

3) GC 1- ' 
3) says that from any wff GC we can deduce any wff ,, which is absurd. 

Therefore, connectives cannot he defined solely in terms of their role in 

inference. 31 

A similar reductio-style argument could he offered for the claim that 

the connectives of a formal system cannot be defined solely in terms of 

certain characteristic axioms. I.e., suppose that we introduce the following 

axiom-schemata characterizing 'tonk •: 

4) GC ;:, (GC tonk ') 

5) (GC tonk ') ;:, ' 

36 Rescher (1960). pp. 22-23. 

37 See Prior (1961. 1964). 
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Then by the transitivity of material implication, we can derive from 4) 

and 5): 

6) I-ce , P 
6), which is also attainable from 3) by the deduction theorem says that 

any wtt logically lmpl1es any other wtt, which is absurd. So, connectives 

cannot be defined solely in terms of characteristic axiom-schemata. 

The obvious counter-move at this point is to argue that Prior has not 

shown that the connectives such as ... , v, &, ::>and • cannot be defined 

proof-theoretically, but merely that certain strictures need to be imposed 

regarding the introduction of new connectives into a formal system. 38 (The 

existing connectives would also need to satisfy these strictures.) For ex-

ample, Belnap has suggested that any new connective must be a so-called 

conservdtiw ext1nsion of an existing axiom-system. 39 A connective such 

as 'tonk' is an ext1nsion of an existing system in the sense that 1) a new 

clause must be added to the current formation rules and 2) additional 

axiom-schemata or inference rules are introduced. However, 'tonk' is not 

a conSirvllliw extension of the existing system since new inference rules 

or axiom-schemata which characterize it result in the derivation of wffs 

not involving 'tonk •. The conservativeness requirement therefore blocks 

the derivation of cc ::> p from 4) and 5). Belnap regards the conservative-

ness requirement as an 'existence' condition for any new connective. 

The point being made is that by imposing the right sorts of strictures 

as to what counts as a connective of a formal system, we can avoid Prior's 

objection that the connectives cannot be defined proof-theoretically. How

ever, even if this is the case, Rantala's impossible index semantics is not 

vindicated of Cresswell's charge of equivocation since as will now be shown 

:se Read (1988), p. 169. 

39 See Belnap (1961), reprinted In Strawson (1967). 

http:axlom-system.39
http:system.38
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this equivocation ls mirrored in the correspondinc axiom-systems. 

The response to Cresswell's charce of equivocation with respect to the 

connectives in an impossible worlds semantics such as Rantala's was that 

these connectives can be defined proof-theoretically- althouch the lesson to 

be drawn from Prior's 'tonk.' example is that the defined connectives must 

meet certain requirements. But the axioms (or rules) in terms of which 

-, &, v, > and • are definable involve no apparent equivocation with res

pect to them - the connectives behave cl4sslcal/y in Inferential contexts for 

the Sub-sac=o systems. But in fact, the fallacy in this line of reasoninc is 

the assumption that to determine how-, &, v, >and= behave, we merely 

need to take into account various non-doxastic or non-modal thesis

schemata or inference rules. This view is somewhat myopic. In order to 

fully characterize the connectives-, &, v, > and • for a modal or doxastic 

loctc, presumably we must also take into account how they behave in 

modal or doxastic contexts. 

If it is granted that to characterize the connectives -, &, v, , and •, 

we must take into account their behaviour in doxastic as well as non

doxastic contexts, then for example the adjunction schema, (Bex & B') > 

B(ex & ') could be regarded as expressing the principle that belief factors 

out of '&' if 1t is cl4ssical conjunction. The conjunction in the scope of the 

consequent, B(ex & F) is classical since any instance of this schema is der

ivable (for the unrestricted Sub-SQC• systems) by applying RB to the ap

propriate instance of ex :> (' > (ex & ')) which charcterizes '&' for non-dox

astic contexts. (The reader should note that all 'classical' non-modal theses 

for '&' such as commutativity and associativity hold for the Rantala sys-
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tems.) Now suppose that there is a Sub-sac= a system such that some or 

all instances of (BG & B') :l B(a & ') are Dol theses of the system by 

virtue of the appropriate wffs being excluded from 0 to which RBQ applies 

- in accordance with the stricture RO•. Then '&' occurring in the conse

quent B(a & ') of any instances of the adjunction schema which are not 

theses ts not cJ•ssJCill conjunction but some sort of 'hyperintensional' (to 

coin a phrase of Cresswell's) conjunction since in such cases, belief does not 

factor out of it. Therefore, in the syntax, there is an equivocation with 

respect to '&'. 

Purther, this equivocation in the axiom-system mirrors the situation 

in the semantics that to~ impossible indices, '&' and the other connectives 

are defined non-inductively. Thus, 1f some instance of (BG & B') , B(a & 

') is not a thesis of a given Sub-SQC=o system it is (given completeness) 

also invalid in the semantics. And this invalidity implies the existence of 

at least one index in a model which is assigned at least one impossible al

ternative such that 'G & ,. is false at this alternative even though both 

'conjuncts' ex and ' are true. Therefore, '&' at this alternative does not 

represent classical conjunction, which means that we are equivocating 

with respect to '&'. And so, Rantala's impossible index semantics cannot 

be vindicated by opting for defining the connectives of the language proof

theoretically since the same charge of equivocation applies to the proof

theoretic definition of the connectives. 

Coa.cludtns Remarks 

Although the Sub-sac- systems can be altered in such a way that RB 
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is restricted to some recursive subset of the set of wffs, thereby renderinc 

certain instances of the omntdoxastictty, adjunctton and consistency schem

ata undertvable, the correspondins semantics which allows impossible 

indices to serve as doxastic alternatives involves an equivocation with 

respect to the connectives-, &, v, ;:, and=· This equivocation is not benisn 

since for example, the semantics does not explain how agents can fail to 

cJ.usia.JJy conjoin beliefs. Further, defining the connectives proof-theor

etically (rather than truth-conditionally) does not help matters since in 

taking into account how the above-mentioned connectives behave in doxas

tic contexts, there is an equivocation with respect to -, &, v, ;:, and s. 

Then we are back to square one since we still have not shown how 

asents can fall to cl.a.ssic.aJJy conjoin beliefs or can fail to believe all the 

c.t.ssiCJIJ logical consequences of what they believe. In fact, it would seem 

that any attempt at such an explanation will be entirely beside the point. 

The alternative is to accept the adjunction, consistency and omnidoxastic

ity schemata as features of logics of belief which involve construing the 

alethic necessity operator as •x believes that •. 

There is however another alternative to the one just mentioned. Per

haps the lonc-standtnc tradition of construtnc the necessity operator for 

alethic systems as 'x believes that' is best seen as a degenerating research 

program. It will be argued in the next chapter that if we wish to treat 

doxastic logics as variants of normal alethic modal logics, the more fruit

ful tact is to treat belief as po!ISibility rather than necessity. Since for 

normal systems possibility does not factor out of conjunction and since 

.... (Mcx & )( ... ex ) is not even a thesis of normal systems with D, then treatins 

belief as a kind of possibility avoids the result that asents conjoin their 
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Chapter Six 

The Intractable Problem of Logical omntdoxastictty 

Section 1: The Possibllity of Belief 

In the previous chapter, an attempt by Rantala to modify the a:x:tom

aucs and semantics of normal systems of do:x:asttc logics tn order to deal 

with the problem of deduction was critically discussed. Any restricted 

normal logic based on Rantala 's suggestions will render certain instances of 

the following schemata invalid/underivable: 

(Bcr & B-) ;, B(Gt & -) ad.junction schema 

(Bcr & 1-Gt ;, ') ;) B' omnido:x:asticity schema 

Further, tf our particular axiom system contains D then Rantala's sugges

tions will give us a logic and semantics which renders any or all instances 

of the following invalic:t/underivable: 

... (acr & B-Gt) consistency schema 

(Bcr & B') ;, -B-(Gt & ') weakened ad.junction schema 

The so-called weakened ad.junction schema says that an agent will never 

believe that any conjunction of whatever he believes will fail to obtain. 

As was explained in chapter one, if we regard these schemata inform

ally as embodying principles of belief attribution, then there are ordinary 

language counterexamples to these principles which make it undesirable to 

have a logic of belief containing the 'corresponding' schemata. The Kripke 

puzzle discussed in chapters one and three can he regarded as a case not 
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only where an agent has inconsistent beltefs but also (and arguably) as a 

case where the agent fatls to conjoin these contradictory beltefs, which 

bears directly on the intuitive plaustb111ty of both the consistency and the 

adjunctton schemata. I.e., these schemata qua principles of beUet attri

bution seem to conflict with Kripke's disquotation principle of belief 

attribution. Purther, the omntdoxasticity principle conflicts with some

thing like a Kripkean disquotatton principle of belief attribution since even 

though an agent may assent to and hence belteve that some truth of logic 

obtains, he may fail to assent to some other logical truth. Yet by the 

omnidoxasttcity principle, we would be forced to attribute to the agent 

belief in both truths. 

Although Rantala's suggestions seem to rid the Sub-SQC= systems of 

the problem of deduction by restricting RB to some arbitrary set 0, which 

in the semantics also plays a role in invalidating various instances of the 

above-mentioned. schemata, his semantics equivocates with respect to the 

connectives-, &, v, :land a. Further, the tact of defining the connectives 

proof-theoretically does not escape this difficulty since the equivocation 

with respect to-, &, v, ;, and • is mirrored. in the corresponding axiom

systems. 

More generally, from a syntactic perspective, •ny alteration to a Sub

sex- normal system which renders some instance of the omntdoxasttcity, 

adjunction or consistency schemata underivable involves a (proof-theoretic) 

redefinition of, and hence an equivocation with respect to one of-, &, v, , 

and •. Por example, suppose that we wish to block the derivation of some 

instance of the adjunction schema, (84X & B') , B(a :> '). As we have 

Ulustrated elsewhere1, the derivation of any instance of this schema pro-

1 See chapter one, secUon 6. 
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ceeds as follows: 

1. l-ex => (' => (ex & ')) 

2. B(cx => (' :> (ex & '))) 1, RB 

3. 1-B(cx => (' => (ex & '))) => (B« => B(' => (ex & '))) 

4. BCI => 1(, => (ex & ')) 2,3 MP 

5. 1-B(, => (ex & ')) => (B' => B(cx & ')) 

6. Bcx :> (B' :> B(CI & ')) 4,5 PC 

7. (BCI & B') => B(cx & ')) 6, PC 

In order to block the derivation of any instance of (BCI & B') => B(OI & ')} 

there are a number of possible moves that could be made. Pirst, we could 

deny thesishood to the appropriate instance of 01 => (' => (ex & ')) or to any 

PC thesis used 1n the derivation, althoush this would involve a redefinition 

of the 'classical' connectives, if they are betns defined proof-theoretically. 

It we arbitrarily block any instance of modus ponens then we are equi

vocating with respect to '=>' since in some instances, '=>' detaches and in 

others it does not. Or, 1f we deny thesishood to the appropriate instance 

of K then we are redefining '=>' (and 'B') since for normal systems, belief 

always distributes into '=>' if '=>' is classical. Finally, if RB is arbitrarily 

restricted such that tt does not apply to some instance of 01 :> (' :> (01 & ')) 

then once again, we are redefining '&' (and possibly '=>'). 

And so, either on the semantic front (using a non-standard worlds 

semantics) or on the syntactic front, any alteration such that some or all 

instances of the omnidoxasticity, adjunction or consistency schemata are 

rendered invalid/underlvable will not show how 'classical' negation or 

conjunction or implication misbehave for modal or doxastic contexts. If 

either negation or conjunction or implication misbehave for modal or dox-
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ast1c contexts, then they are no lonser classical. Therefore, the very 

enterprise of attemptins to alter normal doxastic systems in such a way 

that some or all instances of the omnidoxasticlty, adjunction or consistency 

schemata are rendered lnvalld/undertvable, ts m-conceived. Any such 

effort would be beside the point. If our lostc of belief is based on a normal 

system of modal lostc such that the necessity operator is informally con

strued as •x believes that•, then the omnidoxasticity, adjunction and (for 

systems containtns D) consistency features are intractable. 

Given the above considerations, if we find any of the omnidoxasticity, 

adjunction or consistency schemata objectionable qua principles of belief 

attribution then the tact of adoptins normal systems where the necessity 

operator is construed. as •x believes that• ouSht to be abandoned. However, 

it does not follow from this that normallosics (with correspondtns rela

tional semantics) cannot serve as lostcs characterizins the 'non-ideal' bel

iever, viz., one who for example does not always conjoin his/her beliefs. 

In discussins the Kripke puzzle about belief, Marcus arsues that puz

zltns Pierre does not believe a self-contradictory state of affairs, viz., Lon

don's betns both pretty and not pretty, stven her reality restriction on 

belief. The moral that she draws from this is that • ... belief, like pos

sibility, does not always factor out of a conjunction". 2 Perhaps the moral 

to be drawn from her remark is that in drawins an analosv between al

ethic modallosic and doxastic Iosic, rather than construins the necessity 

operator as •x believes that•, it may be more instructive to treat the belief 

operator as a kind of possibility operator. 

Purther, we have arsued elsewhere that a case can be made for the 

claim that puzzlins Pierre holds contradictory beliefs in different 'contexts•. 

2 Marcus (1979). p. 507. 
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I.e., he believes that London is pretty and he believes that London is not 

pretty. Then for cases such as this, belief once more closely resembles 

the alethic possibility operator rather than the necessity operator since 

-(MCI & M ... CI) is not a thesis schema for normal systems (where '11' here 

is Polish notation for the poslblllty operator). 

To summarize, hypothetical situations such as the puzzling Pierre case 

suggest that belief is analogous to alethic possibility rather than to necessity 

since belief in such cases does not factor out of classical conjunction. Fur

ther, it is apparent in such cases that agents are capable of holding contra

dictory beliefs in different •contexts'. It is established in the literature that 

for normal alethic systems (where '11' here is Polish notation for the pos

sibility operator), the following are not thesis-schemata!: 

1) (IICI & 11,) , II(CI & ') 

ii) ... (JICI & )( ... Cl ) 

However, the following alethic variant of the omnidoxasticity rule of infer

ence is derivable in any normal alethic system: 

iii) 1-a , ' -.. 1-Ma , .. , 
The derivation of iii) would proceed as follows (where L is Polish notation 

for 'it 1s necessary that'): 

1. I-CI , ' hyp. 

1, RL 

3. 1-L(a :) ') , (Ma :) M') 

4. JI(X :) .. , 2, 3 Modus Ponens. 

Further, any instance of the corresponding schema is derivable for any 

normal system, viz., 

iv) (lla & l-a , ') , M' 
3 See Hughes and Cresswell (1968), eh. 2. 
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The derivation of any instance of this schema would consist of lines 1) -

4) above as well as: 

5) -(or ~ ') v (llor ~ 11') PC, 4 

6) (ex ~ ') ~ (llex ~ 11') PC, 5 

7) (llex & ex ~ ') ~ 11' PC, 6 (where 1-or ~ ') 
Also, if it is the case that l-ex a ' in which case l-ex ~ ' and 1-, ~ ex it can 

easily be shown that 1-llor = 11,. Thus, the equivtalentilll versions of iii) 

and iv) are derivable for any normal system. 

Suppose that we construe the JJ05$ibility operator 11 for alethic normal 

systems as •x (non-ideally) believes that', thereby replacing every occur

rence of 11 in the above schemata by B. Then we would obtain doxastic 

logics which though presupposing that agents are logically omnidoxastic, do 

not presuppose that agents always conjoin what they believe and which 

do not assume that agents are incapable of having contradictory beliefs. 

Therefore, normal logics will provide us with logics characterizing the non

ideal believer, supposing that the possibility operator (rather than the nec

essity operator) is construed as •x believes that •. 

Further, the alethic Decl$$ily operator can be reinterpreted as 'x 

ide11Jly believes that' since all instances of the following schemata/rules of 

inference involving the necessity operator are derivable for any normal 

system: 

v) (Lex & L') ~ L(ex & ') 

vi) l-ex ~ '-1-LCX , L' 
vii) (Lor & l-ex , ') , L' 

In addition, all instances of the following schema are derivable for any 

normal system containing D: 
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vUi) -(La & L-«) 

Replacinc each occurrence of the 1L 1 operator in each of these schemata 

(and for the atven set of axiom-schemata) with the operator 'Bt' which 

reads 1X ideally believes that I gives us a set of logics characteriZing the 

'ldeal believer'- assuming that the normal systems we are working with 

contain D. This is because it was stipulated in chapter one that the ideal 

believer always conjoins his/her beliefs, does not hold contradictory beliefs 

and always believes the consequences of what he/she believes." 

And so, combining the proposal to construe the possibility operator as 'x 

believes that' and the necessity operator as •x ideally believes that' for 

normal systems containing D, we obtain loatcs which characterize both the 

ideal and the non-ideal believer. Further, this tact does not involve any 

sort of alteration to the syntax of the atven normal system and thus, there 

is no redefinition of the connectives-, &, v, :;, and • for modal or doxastic 

contexts. I.e., it cannot be charged that there is any sort of equivocation 

with respect to these connectives such that they behave in one way in 

non-modal contexts and another way in modal contexts. 

What we are here proposing is to adopt the SUb-SQC• + D systems 

developed in the fourth chapter as doxasttc logics where the necessity op

erator is construed as •x ideally believes that • and where the possibility 

operator is construed as •x (non-ideally) believes that'. The resulting logics 

will be called the stal-sac== + D systems since their truth-value semantics 

will be based on Stalnaker's informal solution on the semantic front to the 

problem of deduction. The reason for specifying that these systems contain 

D is to ensure that they also characterize the 'idear believer as defined in 

the first chapter. I.e., loatcs with D will be such that an agent does not 

4 See section 1 of chapter one. 
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hold contradictory beliefs 1f we are discusstna 'ideal' belief. Notice further 

that for all these systems, BcX •df."'Bt-G and hence it is a simple matter to 

show that I-BeX & "'Bt-G and that 1-Bt« & -J ... a . What follows is a descrip

tion of the Stal-KDQC- system of doxastic lostc such that any ltD extension 

(not contatnina T) can also serve as a doxastic logic depending on what our 

philosophical biases are: 

AS 1: a where a has the form of a PC thesis 

AS 2: (BJCI & Bt(CI ;:, ')) ;:, Bt' 

AS 3: Bt« ;:, BCI 

AS 4: Cl (t/v) ;:, (3v)CI 

AS 5: t = t 
AS 6: (ex (tt/v) & t1 • t2) ;:, ex (t2/v) provided t1, t2 do not occur in the 

scope of any doxastic operators. 

AS 7: (a (tt/v) & t1 = t2 & Bt(tt • t2)) ;:, ex (t2iv) where th t2 may 

occur in the scope of doxastic operators. 

AS 8: (Yv)Bta ;:, Bt(Yv)a 

Rules of inference: 

RBt l-a ---.... 1-BtGI 

MP ex, Gl ;:, '---.... ' 

31 ex (t/v) ;:, ' (3v)Gt ;:, ' for any t foreign to (3v)ex ;:, '· 

The following schemata and rules are all those derivable for the corres

ponding Sub-It~ system except that we have replaced all occurrences 

of the operator '8' with the operator '81' to signify that these schemata 

and rules characterize the id,•l believer: 

T1 (IJGI & Bt') ;:, Bt(ex & ') 

T2 -(IJGI & Bt-a ) 

ideal adjunction schema 

ideal consistency schema 
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R1 l-ex , ' - 1-Btex , BtP 

R2 l-ex a ' 1-BJGI • BtP 

ideal omnidoxasticity schema 

ideal omnidoxasticity schema 

- equivalential version 

ideal omnidoxasticity - implicational 

ideal omnidoxasticity - equivalential 

Thus, the Stal-IC.DQC- system and its extensions will provide us with logics 

characteriZing the JdN.l beltever. Further, the following are instances of 

AS 4, ex (t/v) , (3v)ex and of AS 7, (ex (tt/v) & t1 • ta & Bt(tt = ta)) , 

ex (ta/v) respectively: 

AS 4•: BJG (t/v) :::t (3v)IJG ideal doxastic generalization schema 

AS 7•: (Bt« (tt/v) & t1 = ta & BJ(tt • ta)) , IJG (ta/v) 

ideal doxastic substitution schema 

What these indicate is that quantification into the idMl belief operator is 

unrestricted and that substitution of co-referentials in idul belief con

texts is restricted to cases where the agent ideally believes that the rel

evant identity holds. It could be objected that a so-called ideal believer 

would be omnidoxastic with respect to contingent identities. However, to 

reiterate, our definition of what constitutes the 'ideal believer• is purely 

stipulative - the ideal believer conjoins his/her beliefs, does not hold con

tradictory beliefs and believes all the classical logical consequences of what 

he/she believes. Then whether or not the agent is onmntdoxastic with 

respect to identities has no bearing on his/her ideality. The ideality criteria 

just mentioned can be regarded as purely deductive constraints on belief. 

It was earlier claimed that the Stal-SQC- + D systems can also be 

regarded as logics which characterize the non-idul believer who nonethe-



0 

308 

less believes all the losical consequences of what he/she believes. And in 

fact, not all instances of the acljunction and consistency schemata are der

ivable in any Stal-SQC' + D system for non-ideal belief: 

-J (Bel & B') ~ B(« & ') 

-1 .... (Bcx & ...... ) 

(non-ideal) adjunctton schema 

(non-ideal) consistency schema 

That the non-ideal acljunction and consistency schemata are not thesis

schemata for the stal-SQC' systems is owing to the fact that their alethic 

counterparts, (11« & 11,) ~ II(GC & ') and -(11« & ll.vex) are not thesis

schemata for normal alethic modal systems. 

Por alethic systems, (11« & 11') ~ II(GC & ') is not a thesis schema since 

the derivation of any instance of this schema depends upon ll's distributing 

into ·~· in the appropriate instance of GC ~ (' ~ (GC & ,)). However, in gen

eral 11 does not distribute into ·~' for normal systems since the possibili

tation version of the schema K is not a thesis-schema tor normal systems. 

I.e., -III(GC ~ ') , (lla , 11,). On the other hand, the following is a 

theorem-schema for any alethic modal system: 

1-L(GC ;, ') ;, (IICI ;, 11,) 

This follows directly from K. & In order to derive some instance of M(GC ~ 

') , (llcx ~ 11,), we would need L(GC ~ ') ~ (IICI ~ 11,) as well as the 

appropriate instance of ll(cx , ') ~ L(cx ~ ') which is not a thesis of any 

normal system. Thus, ll(cx , ') , (lla , 11,) is not a thesis-schema for 

any normal alethic system and hence neither is (MA & MB), M(GC & ,). 

But then neither is -(Mcx & M.vex) a thesis-schema of any alethic K-exten

sion since the derivation of any of its instances depends on the appropriate 

version of (IIGC & 11,) , ll(cx & ,). 

Further, since II(GC ~ ') ~ (IIGC ~ 11,) is not a thesis-schema for alethic 

s See tfuohes and Cresswell (1968), eh. 2. p. 37. 
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normal systems, then neither is its doxastic counterpart a thesis-schema 

for the Stal-sQC= systems. I.e., -1 B(cx , ') , (Bcx , B,). Thus, unlike 

ideal belief, non-ideal belief does not distribute into •,•. However, this is 

not necessarily an undesirable state of affairs in the light of the following 

variant oi the puzzling Pierre case, which in fact is suggested by Kripk.e. 6 

Suppose that while in Prance, puzzling Pierre assents to "Si Londres n'est 

pas Jolie, New York. n 'est pas jolie". Then by the disquotation and the 

translation principles, Pierre believes that if London is not pretty then New 

York. is not pretty. Suppose further that Pierre after having moved to Lon

don assents to •tondon is not pretty". Then by the disquotation principle 

he believes that London is not pretty. So, Pierre believes that London is not 

pretty and Pierre believes that 1f London is not pretty then New York. is 

not pretty. Yet, Pierre may not assent to the claim that New York. is not 

pretty (while living in London) even though he believes that London is not 

pretty. Thus, by the disquotation principle, it is false that Pierre believes 

that New York. is not pretty. Further, if we are speaking of non-ideal 

belief where for example the agent can fail to conjoin beliefs (and we have 

good reason to suspect that Pierre does not always conjoin his beliefs), then 

the disquotation principle does not in this particular case conflict with any 

other principle of belief attribution, such as the non-ideal variant of K. 

I.e., for non-ideal belief, it is not assumed that agents will always make 

modus ponens inferences from contents of the forms Cif and Cif , p top. 

One possible explanation of the above case is that Pierre holds two sep-

arate beliefs (whose contents are of the forms Cif and Cif , p) in different 

linguistic contexts and hence he fails to make the inference to the claim 

that New York is not pretty. It our explanation of this situation is correct, 

6 Kripke (1979). pp. 257-8. 
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then it is a desirable feature of our d.oxastic logic that the non-ideal variant 

of It, (BGC & B(cr ;:, ')) ;:, B' is not a thesis-schemata. In other words, it is 

beinc sugested. that Kripk.e's variant of the puzzlinc Pierre case is a hypo

thetical situation where an acent x believes that ex and. :believes that ex 

classically implies ' and. yet x fails to believe that p. 
Althoup the Stal-S~ systems provide us with logics which charac

terize the believer who is non-ideal in the sense that he/she may fail to 

conjoin beliefs and./or may hold contradictory beliefs (thouch separately), 

acents are nonetheless assumed. to be locically omnidoxastic. The omni

doxastictty schemata and. rules of inference (both the tmplicational and the 

equtvalential versions) are derivable for these systems as was explained. 

above with reference to the Ill operator. I.e., all instances of the followinc 

are derivable for any Stal-SQC= + D system: 

T5 (BGC & 1-c:r , ') ;:, B' 
T6 (BGC & 1-c:r • ') ;:, B' 

non-ideal omnidoxasticity schema 

non-ideal equivalential omnidoxasticity 

schema 

R3 l-ex ;:, '--1-:aa ;:, B' non-ideal omnidoxastictty- implicational 

R4 1-c:r • '-- 1-Bc:r • B' non-ideal omnidoxastictty- equtvalential 

Further, the non-ideal variant of RB1 is derivable for any Stal-soc= + D 

system by virtue of D. I.e., the followincts a rule of any such system: 

RB l-ex -- 1-Bc:r 
The rule RB is derivable (usinc D) as follows: 

1.CX hyp. 

2. BJG 1, RBJ 

3. I-B1cr ;:, :acr D 

4. Bcr 2,3 MP 

Q.E.D. 
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Pinally, we shall consider the relation between non-ideal belief and the 

existential quantifier on the one hand and the relation between non-ideal 

belief and the identity symbol on the other. P1rst, since the following is 

an instance of AS 4, ex (t/v) ::> (3v)cx, it follows that quantification into non

ideal belief contexts is unrestricted: 

AS 4 ... Bcx (t/v) ::> (3v)Bcx 

It comes as no surprise that quantification into non-ideal doxastic contexts 

is unrestricted given that the quantifieres are construed substitutionally 

in the corresponding truth-value semantics to be discussed below. Also, 

as With idnl belief, non-ideal belief de re implies non-ideal belief de dicto 

since the following is a thesis-schema for any Stal-sac= + D system: 

T7: (3v)Bor ::> B(3v)G 

Any instance of T7 is easily derivable as follows: 

1. j-G (t/v) ::> {3v)G 

2. BG (t/v) ::> B(3v)G 1, R3 

3. (3v)BG ::> B(3v)G 2, R3 

The substitution of co-referentials in non-ideal doxastic contexts is restric

ted to cases where the asent idn.Uy believes that the relevant identity 

obtains, stven that the following is an instance of AS 7, (ex (tt/v) & t1 • ta & 

Bt(tt • ta)) => ex (ta/v), vtz., 

AS 7... (Bcx (tt/v} & t1 • ta & Bt(tt • ta)) => Bcx (ta/v) 

The reason why substitution of co-referentials is restricted to cases where 

the agent idnlly believes that the relevant identity obtains will become 

evident when we consider the semantics for the Stal-SQC- + D systems 

below. 

And so, the stal-S~ + D systems are simply the SUb-SQC• + D sys-
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tems such that all occurrences of B and Pa in theses of the latter are 

replaced by 81 and B respectively in theses of the former. For example, D 

for the Sub-SQC• + D system~ Bel ;) PJICX is the counterpart of BJCX ;) Bel 

tor the stal-SQCI + D systems. Thus, the characteristic semantics tor the 

Sub-sac• + D systems, viz., the truth-value semantics d~ribed in chap

ter four, also characterizes the Stal-sac- + D systems althoush we replace 

VM(BCI, wi) with VM(Brcx, wt) and we further replace VM(Pacx, wt) with 

VM(BCI, Wt). Thus, where a truth-value model is a triple <W, R, V> such 

that minimally R is serial and such that W and V are defined as they were 

for the Sub-Sac-+ D systems, the truth-conditions for ideal and non-ideal 

beltef are as follows: 

VM(BJCX, Wt) • tiff for all Wj such that WtRWj, VM(cx, Wj) = 1. 

VM(BCI, wt) = tiff tor at least one Wj such that WtRWj, VM(cx, Wj) = 1. 

Thus, in the semantics for the Stal-Sac= + D systems, ideal belief is treat

ed like aletbic necessity and non-ideal belief is treated like alethic possib

ility. 

Altho\llh we have a •ready-made' semantics for the Stal-sac== + D sys

tems as illustrated above, it would be preferable to have a characteristic 

semantics which makes some sort of intuitive sense of situations such as 

the puzzlina Pierre case. It has been sugested that in the puzzling Pierre 

case, Pierre holds irncompa.ttble beliefs in distinct corztttxts . Thus, what is 

needed is a semantics which gives some content to the notion that agents 

are capable of hold.ins distinct sets of beliefs in different contexts. 

Robert Stalnak.er in Inquiry has arsued that agents can be in more 

than one 'belief state' and that this accounts for why agents can sometimes 

fail to conjoin beliefs or hold contradictory beliefs. A belief state st is the 
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set of possible situations such that all the contents of a subset of an agent's 

beliefs obtain at each situation in the set. Stalnaker suggests that an agent 

can be in more than one belief state at the same time. 7 Thus, x believes 

that a at Wt 1ft for at least one belief state, a obtains at every member of 

the state. So, puzzling Pierre can believe that London is pretty and he can 

also believe that London is not pretty if he is in at least two distinct belief 

states such that the former content obtains at all members of one state and 

the latter content obtains at all members of the other state. Also, Pierre 

does not conjoin these beliefs since in neither state is a & -a true at any 

member. The notion that Pierre is in more than one belief state can be 

regarded as explicating what it means to say that Pierre holds separ.ate 

sets of beliefs in distinct contexts . We shall provide a more detailed ex

position of Stalnaker's solution to the problem of deduction in terms of 

'belief states' in the next section. 

In the third section, an attempt will be made to make model-theoretic 

sense out of Stalnak.er's informal semantic proposal that agents can be in 

two or more distinct belief states. I.e., a formal relational semantics will 

be developed for the Sta1-soc= + D systems which incorporates Stalnaker's 

idea that agents can be in more than one belief state. It will be argued that 

this semantics in fact characterizes the stal-sQC= + D doxastic systems. 

An alternative to Stalnak.er's semantics which also makes sense of the 

notion of holding separate beliefs in distinct 'contexts' will be developed in 

section 4. This alternative semantics will be based on Rescher's proposal 

that belief can be treated as a relation between a believer and a non-stan

dard world.. However, it will be argued that unlike Rantala's non-standard 

worlds semantics, Rescher's semantics avoids the charge of equivocation 

7 Stalnaker (1984), pp. 82-4. 
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with respect ... , &, v, => and •. 

Superposed worlds are constructed out of normal worlds as follows: Gl 

obtains at a superposed world w+ constructed out of w1 and w2 just in 

case Gl obtains at ..ttb11r w1 or w2. Then even though Gl is true at w1 and 

is false at w2 and even thoulh 'is false at w1 but true at w2, both Gl and 

' will obtain at the superposed world w+. Yet their conjunction will fail to 

obtain since GC & 'is false at both component worlds. Now if w+ is the 

non-standard world to which the believer is related, then Gl and ' will 

both be true at this superposed world and yet their conjunction Of & 'is 

false and hence, x will believe that GC and that' without believing that Gl & 

'. If ' happens to be ...a then this sort of situation would also be a case 

where an agent holds contradictory beliefs (but without believing their 

conjunction). It will be suggested how Rescher•s solution to the problem of 

deduction in terms of non-standard worlds can be adapted to provide a 

characteristic relational semantics for the Stal-sac- + D systems. 

Finally, In section 5 lt will argued that in general, the problem of 

lopcal omntdoxasticfty is intractable for a normal lope of belief since any 

alteration to the lope and semantics in order to avoid the omnidoxasticity 

feature will result in an equivocation with respect to the connectives-, &, 

v, ::> and •. Thus, any such solution to the omntdoxasttcity element of the 

problem of deduction will be beside the point. However, it will be argued 

that the features of our Stal-sac- + D systems and their corresponding 

semantics that agents do not always conjoin beliefs and are capable of 

haVing inconsistent beliefs mitigates the omnldoxasttcity feature of these 

logics. 
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2. Belief states and the Problem of Deduction 

In ID(/Uiry, Stalnaker attempts to solve the problem of deduction in 

part by appealing to the notion that agents are capable of being in several 

distinct belief states or more generally, acceptance states. Before discussing 

what he means by a 'state', we shall first clarify what he means by the 

notion of •acceptance'. Stalnaker classifies the attitude of belief as belonging 

to a genus or class of propoSitional attitudes which he calls attitudes of 

acceptance. Be further claims that what ts involved in •cceptiJ18 a prop

osition Pis to regard P, even if only tacitly, as true. I.e., in accepting a 

proposition, the agent is disposed to act in at least some of the ways he 

would act if he (without reservation) were to believe P to be true. Thus, a 

criterion of somethina's betna an acceptance attitude with respect to some 

content proposition Pis that •the attitude is said to be corrti'Ct whenever 

the proposition is true•• Then other types of attitudes such as desires or 

hopes differ from acceptance attitudes in that correctness of the former is 

not judged in terms of whether or not the content proposition is true. 9 

Attitudes of acceptance include such diverse attitudes as tacitly pre

supposing, assumtna, supposina and believtna.10 Accordtns to Stalnaker, 

belief differs from these other sorts of acceptance attitudes in several 

ways. For one thins, beltef supposedly requires some sort of 'entertaining' 

of a proposition whereas an acceptance attitude such as presupposing does 

not. Thus, one may simply take for granted that a certain proposition P 

obtains (thereby acting in ways consistent with P's being true} without 

8 Stelnaker (1964), p. 80. 
9 Ibid. p. 80. 
10 Statneker (1964), p. 79. 
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ever really havtna considered or entertained this proposition in the process 

of inquiry or del1J:)erat1on. Or, a person may tacitly presuppose some prop

osition for the sake of inquiry or investigation without committing himself 

to its belna true in the lona run. As we shall see below, the 'cash value' of 

Stalnak.er•s classifYtna belief as a kind of acceptance attitude is the efficacy 

of this move in helping to resolve the problem of deduction. A few more 

preliminaries are in order before shall be in a position to explain exactly 

what Stalnaker means by belief or acceptance st.ltti:S. 

Stalnaker adopts what he calls a •causal-pragmatic' account of the ac

ceptance attitude of belief: The PTtiiiZMiic element of this account is that 

an agent x believes that P only if x is disposed to act in ways which "will 

tend to serve his interests and desires in situations in which P is true" .11 

This disposttional account (or for that matter, functionalist account12) of 

belief assumes that there is an intimate connection between beliefs and 

desires, a theme which is also present in Stalnaker's 1976 article 'Prop

ositions'. I.e., the agent's desires and beliefs function as premises in Aris

totelian practical syllogisms in the sense that for any stven action a, that 

action is explained by x•s wanting or desiring that a will obtain and by the 

agent's believtns that by doing p. a will obtain.13 

The c.uS41 element of Stalnaker•s account of belief is that x believes 

that P only if x's belief 'indicates' that P. And x•s belief indicates that P 

means that under 'optimal conditions' x•s belief that Pis caused by some 

states of the environment such that the proposition Q asserting that sob

tains, entails P.14 Purther, Stalnaker reprds this causal account of belief 

11 ibid. p. 82. See also eh. 1 and In parUculr. p. 15. 

12 Stalnaker reprds the .,....le account a f'ftUonaUst since beliefs (and desires) n understood 

In terms of their role In determlntno and raUonatiztno ac:Uon. See Stalnaker (1976). p. 80. 
13 StaJnaker (1972), p. 81. 

http:obtain.13
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as supplementary to the pragmatic account (rather than as an alternative 

to it) tor the following reason: Many types of 'representational' states of 

an agent are causally related to the environment and so in order to distin

guish belief from other types of representational states, it is necessary to 

recognize that beliefs are connected with dispositions to act (in the man

ner specified above).15 I.e., the pragmatic account of belief provides us 

with a criterion for distinguishinc belief states from other types of so

called mental representations which are also caused by states of the envir-

onment. 

Stalnaker•s causal-pragmatic account of belief can serve as a principle 

of belief attribution. I.e., x believes that P just in case 1) x 1s disposed to 

act in ways which tend to realize his desires in all those situations in 

which P obtains and 2) x•s belief indicates that P. Thus, if either of these 

two conc:Utions fall to obtain, viz., that the agent does not have the requis

ite dispositions (or does not exhibit the appropriate behaviours, verbal or 

otherwise) or if the appropriate causal circumstances are absent (what

ever they may be) then we would not attribute to the agent the approp

riate attitude. At least the pragmatic aspect of Stalnak.er's account of belief 

qua principle of belief attribution is consistent with Kripke's disquotation 

principle since in the latter case, a belief that Pis ascribed to an agent on 

14stallllker (1984), p. 18. Stallllker offers a more detailed ICCOWtt of the 1ncfication' relation in 

Stallllker (1984). pp. 12-13. I.e., If els the state of an object and r is a one-one fll1ction taking 

each state • of the object Into exactly one slate of the environment. f(e). then says Stalnaker, this 
correlation is explained by f(el's caustng • in the object- asswntng 'normal' or optimal conditions of 

the environment. Then • state • of an object x indicates that P just In case the proposition that the 

environment. Is tn state f(•) entails that P. Thus, x believes that P only If his belief Indicates that P, 
I.e., only If P is entailed by 1 proposition asserting lhll some state or the world causing x's belief 
slate obtains. 

15 lbld, pp. 18-19. 8y 'representational state', Sta1naker Is referring to Fodor's notion or mental 

representation. 
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the basis of his verbal behaviours, viz., his sincere assent to P. 

More importantly, Stalnak.er claims that the pragmatic element of his 

account of bellef naturally lends itself to the view that the appropriate ob

jects of beUef (and of the attitudes generally) are non-empty sets of pos

sible situations.16 I.e., because a necessary condition of x•s belleving that P 

on the pragmatic approach is that x is disposed to act in ways which will 

tend to satisfy his desires in ptJ5$iJJ.W $./lu•tJons where P obtains, then it 

would seem that belief is a relation between an agent and a set of worlds. 

We shall now describe briefly what Stalnalter means by possible world or 

situation. (Por the sake of exposition we shall use the terms 'world' and 

'situation• interchangeably.) 

Stalnaker maintains a so-called moderate realism with respect to pos

sible worlds, viz., that tber.- .n alternative ways the 'actual' world could 

have been and that these alternative possible worlds are 'respectable en

tities in their own right•17 in the sense that they are not reducible to other 

sorts of things such as sets of sentences. (This latter part of his moderate 

realist thesis does not put his view of possible worlds at odds with the 

view we espoused earlier since it was maintained that an index is •assoc

iated' with a state description.) Further, Uke extreme modal realists such 

as Lewis, Stalnaker maintains that •actual' functions as an indexical. On 

the other hand, Stalnaker parts company with the extreme modal realists 

since he holds that possible worlds are not on an equal ontological footing 

with the so-called actual world in the sense of being things of the same 

sort as the actual world.18 

1& Stalnaker (1972), p. 81. 
17 See Stalnaker (1984), p. 50. 
10 lbld, p. 47. 

http:world.18
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One of stalnalter's sround.s for holding that an indexical analysis of 

•actual' is not incompatible with the view that possible worlds are not on 

an equal ontolosical footing with the •actuar world is that just as an index

ical analysis of tense does not entail a commitment to the existence of 

concrete 'times', so an indexical analysis of •actual' does not commit one to 

there being concrete worlds like our own.19 It is beyond the scope of this 

discussion to evaluate stalnaker's views here. We are merely attemptins 

to explain roughly what he means by 'possible worlds' or 'possible situa

tion', which is important since as we shall next see, the notion of possible 

situation is intesral to his characterization of what belief and acceptance 

s/416'$ are. 

If we view belief and acceptance generally as any relation between an 

agent and an appropriate set of possible situations where the content prop

osition obtains (or for that matter we could say that this set of possible 

situations simply is the proposition which the agent accepts), then a belief 

or acceptance st•te can be defined as a set of possible situations where all 

the contents of the agent's beliefs or acceptance attitudes obtain. Further, 

since all those propositions which an agent accepts obtain at all worlds in 

the correspondins acceptance state20 it follows that x accepts that P just in 

case P obtains at all those worlds contained. in the agent's acceptance 

state.21 If we regard propositions as sets of worlds (or in our parlance, 

indices) then we can think of an acceptance state as the interMCtitm of all 

the propositions which the agent accepts. This feature of belief and accep

tance states is consistent with the view espoused in chapter one that the 

objects of beliefs in a relational semantics are partial propositions, viz., the 

19 lbid, p. 47. 

20 lbid, p. 81. 
21 lbld, p. 69. 
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set of indices where all the contents of aaents' beltefs are true, such that 

this set of indices relative to an index is determined by the accessibility 

relation R. 

Given Stalnaker's 4ettnltton ot an acceptance (and belief) state as a set 

of worlds such that all the contents of what the aaent accepts (or believes) 

obtain at each of these worlds, it follows that these states are deductively 

closed. I.e., for any contents P, Q and for any acceptance states: 

1) If P obtains at every world ins then if P entails Q, Q obtains in 

every world in s. 

2) If P and Q both obtain at every world ins then P & Q obtains at 

every world of s. 

3) lf P obtains at every world ins then .... p obtains at no world ins. 

Prom now on, we shall refer to P, Q neutrally as contents rather than as 

content proptJ$/tiDJJs since if we reaard propositions as sets of worlds, it is 

not clear in what sense a set of worlds can be said to obtain at (or be true 

at) each world in an acceptance state. Stalnaker rqards these three ded

uctive constraints for acceptance states as 'definln& conditions' on what an 

acceptance state is. I.e., any acceptance state must satisfy these three 

deductive conditions. 

The above deductive constraints on any acceptance state are explained 

by the fact that each world win a states is 'normal' in the sense that the 

connectives are defined standardly. Thus, if Pis true at a world wins 

and ctven that 1-P :) Q, it follows that Q will also obtain at wins since ':)' 

is interpreted classically for every wins. Further, if P and Q both obtain 

at a world w in s, it follows that P & Q will also obtain at w given that '&' 

is interpreted classically for members of s. Finally, if P obtains at some 
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w in s and siven that • .... • is interpreted classically at members of s, then 

-P will not obtain at w. 

Since x believes (or more generally, accepts) that P itf P obtains at each 

world in the agent's acceptance state, then the following qu• principles of 

belief or acceptance attribution •correspond • to (in the sense of being infer

able from) the three deductive constraints on acceptance states: 

1)* If x believes that P and P entails that Q then x believes that Q. 

2)* If x belleves that P and x believes that Q then x believes that P & Q. 

3)* If x believes that P then x does not believe that ... p, 

1)* corresponds to the deductive constraint 1), 2)* corresponds to 2) and 

finally, 3)* corresponds to the deductive constraint 3). Further, the prin

ciples of belief attribution 1)*, 2)* and 3)* have as their formal counter

parts the omntdoxastictty, ac:ljunction and consistency schemata respective

ly for the Sub-SQCII systems of doxastic logic. I.e., 1)*, 2)* and 3)* have 

as their formal counterparts the following: 

1)** (BCX & 1-oc ;, ') ;, B' omnidoxasticity schema 

2)** (Boc & B') ;, B(Ol & ') ac:ljunction schema 

3}** -(Boc & B-01 ) consistency schema 

It is at this stage of the dialectic that Stalnak.er alludes to the 'problem of 

deduction'. 

As Btalnaker notes, the conditions 1)* through 3)* inferable from the 

deductive constraints 1) - 3), when applied to the •totality• of an agent's 

beliefs admit of at least apparent counterexamples. These counterexamples 

are hypothetical cases where agents fail to believe the consequences of what 

they believe, thus impugning 1)*, or cases where agents fail to conjoin 

beliefs thereby impugning 2}* or cases where agents seem to believe con-

http:Btalna.k.er
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tradictortes thereby tmpuaning 3)*. As we have argued in the first chapter, 

the Itripke puzzle can be regarded as a counterexample to the adjunction 

and consistency conditions 2)* and 3)* and the Wllliam Ill case (as well as 

examples involVing mathematical bellefs) can be regarded as counter

examples to the omnidoxasttcity condition 1)*. As was also noted in chapter 

one, the principles of bellef attribution used in setting up these apparent 

counterexamples could themselves be called into question. However, if for 

the sake of argument we assume that the principles used. are sound, then 

the problem of deduction is the problem that the three deductive constraints 

on acceptance states seem to break. down in the light of these examples. 

I.e., it would seem that belief states are not deductively closed. which 

means that the view that possible worlds are the relata of beliefs does not 

take account of the 'facts•. 

stalnak.er's diagnosis of and his solution to the problem of deduction in

volves two approaches. The first approach is that the alleged counter

examples to 2)*- 3)* and hence to 2) - 3) do not impugn these constraints 

qua defining conditions of belief stattM. Rather, what these examples do 

show is that we cannot apply 2) - 3) to the tot•JJty of agents' beliefs, at 

least if agents are not ideally rationa1.22 What Stalnaker's diagnosis here 

implies, is the possibility that the totality of an agent's beliefs is not neces

sarily exhausted by just one belief state in which case it is possible that 

agents can be in more than one belief state at the same time. Thus, an 

agent x believes that P just in case for at least one belief state amongst 

possibly several, P obtains at each world in that state. 

This approach explains why an agent who (for simplicity of exposition) 

is in two belief states s1 and s2 can fail to conjoin his belief that P and his 

22 Slatnaker (1984), p. 83. 
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belief that Q. I.e., P may obtain at all the worlds in s1 while Q obtains at 

all the worlds in 52 and yet there may be at least one world in s1 where Q 

does not obtain and there may be at least one world in s2 such that P does 

not obtain. In such a case as this, x will not believe that P & Q because this 

conjunction fails to obtain in at least one world in s1 and in at least one 

world in s2. These remarks can be extended to the case where Q is simply 

-P, i.e., an agent x may believe that P in s1 and he may believe that -Pin 

s2 and yet in neither state does x believe that P & .... p, 

Or less formally, as stalnaker notes, we can make sense of an agent's 

being in more than one belief state on the pr.,-matic account of belief as 

follows: In one type of context, x may be disposed to act in ways that will 

satisfy his desires in P-worlds which is explained by belief state s123 and 

in a different context, x may be disposed to act in ways that would satisfy 

his desires in Q-worlds which is explained by belief state s2 (or in -P

worlds 1f Q is simply the negation of P). 24 And yet x may not be disposed 

in either context to act in ways that would satisfy his desires in P & a
worlds explainable by either belief state. This is because in the first context 

where he is disposed to act in accordance with state s1 he may not be dis

posed to act in ways that bring about his desires in Q-worlds and in the 

second context where he is disposed to act in accordance with state s2 he 

may not be disposed to act in ways to satisfy his desires in P-worlds. 

This part of Stalnaker's solution to the problem of deduction can also 

be regarded as a kind of solution to the Kripke puzzle discussed in chapters 

one and three. In the puzzling Pierre case, assuming the disquotation and 

translation principles, it would seem that we have a situation where the 

23 The belief state explains this acUon since P obtains at every world in that slate. 
24 Slalnaker (1984), p. 83. 
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agent Pierre has inconsistent beliefs, viz., that London is pretty and that 

London is not pretty, at least U we maintain that the indetectabiUty of 

certain inconsistencies is a reason for (rather than against) holding that 

asents can sometimes hold inconsistent billets. Further, 1t we agree With 

Marcus' reality restriction discussed in chapter one, then Pierre would 

presumably not believe that London is pretty and London is not pretty. 

I.e., this is a case where an agent x believes that ex and x believes that -a 

thereby violating the consistency condition for belief states. This is also a 

case where the agent fails to conjoin these contradictory beliefs thereby 

violattns the conjunction condition for belief states. 

So what does puzzling Pierre believe if we were to adopt stalnaker's 

view that asents can be in more than one belief state? He believes that Lon

don is pretty and he believes that London is not pretty. The content 'Lon

don is pretty' obtains at all the members of one belief state s1 and the con

tent 'London is not pretty• obtains at all the members of a different belief 

state, s2. The self-contradictory state of affairs that London is both pretty 

and not pretty obtains at no member of either s1 or s2 and hence Pierre 

does not believe that London is both pretty and not pretty. Or given a prag

matic account ot belief, Pierre is disposed to act (verbally) in two different 

ways in two different contexts (the one context beins when he is speaktns 

French and the other bein& when he is an Enslish speaker in London) as a 

result of being in incompatible belief states. Further, Pierre does not conjoin 

his beliefs as long as he remains in these separate belief states. He cannot 

be disposed to act in accordance with some belief state such that his actions 

would tend to satisfy his desires in 'impossible' worlds where a self-con

tradictory state of affairs obtains. 



0 
325 

Stalnaker would argue here that the Kripke puzzle and any supposed 

counterexample to the deductive constraints 2) and 3) do not impugn these

constraints qua defining conditions on belief st•IN . What for example the 

puzzling Pierre case shows is that if we try to impose these two deductive 

constraints on the tot.Uty of the agent's beliefs, then we run into trouble. 

In the puzzling Pierre case, his two states explaining his dispositions to act 

ln different sorts of contexts are internally consistent and presumably 

closed under conjunction. But because they are incompatible with one 

another then when we come to consider the totality of Pierre's beliefs, cer

tain inconsistencies arise, such as his believing that London is pretty and 

also believing that London is not pretty. 

We have so far discussed the first part of Stalnaker's stratesv of dealing 

with apparent counterexamples to the second and third deductive cons

traints on belief and acceptance states. I.e., he stipulates that agents can 

be in more than one belief state and then argues that these constraints 

break. clown when we mlsapply them to the totality ot agents' beliefs. so, 

qua defining conditions of belief st11ln, conditions 2) and 3) which are the 

claims that belief states are internally consistent and are closed under con

junction remain intact. 

However, the strategy of allowing agents to be in more than one belief 

state will not answer the various counterexamples to the first d.eductive 

constraint on belief states, viz., that states are closed under logical conse

quence. This is because if x believes that P then for some state Sf, P will be 

true at every world tn s1. Purther, tf 1-P, Q then the P, Q wm be true 

at every world in every belief state. Then for any state s1 such that P is 
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true at ewry world in SJ. (and hence x believes that P) it will also be the 

case that Q is true at ewry world in SJ.· Thus, x also believes that Q. So 

clearly, another approach is needed for deaUns with the allesed counter

examples to the first deductive condition on belief states. We shall defer 

discussion of the second part of stalnaker•s solution to the problem of ded

uction vis a vis the closure under Iostcal consequence condition for belief 

states until the final section. Suffice it to say that his solution simply 

involves makins this condition more palatable. 

Finally, before attemptins to formalize Stalnaker's notion that asents 

can be in more than one belief state, it is important to note that he does not 

think that this stratesv will adequately answer the preface paradox dis

cussed in chapter one. The preface paradox was a case where the author 

of a narrative believed each statement in the narrative separately althoush 

he believed that their conjunction was false. The preface case bears 

directly on the plausibility of the schema (lkX & BJ) , -B-(« & J) which is 

contained ln any normal doxastlc system containins 0. Further, this case 

is also relevant to the adjunction schema for systems contalnins 0 since for 

such systems, I-B-ex , -lkX. However, Stalnaker does not see the preface 

paradox as bearins merely on the plausibiUty of condition 2) for belief 

states qua definins condition. 

Rather, he maintains that even U a non-ideal asent is aspirins towards 

possessing an intesrated system of beliefs (in which case he/she would be 

in one belief state), it may not be warranted that he always conjoin his 

beliefs. The apparent moral to be drawn from the preface paradox seems to 

be that it would be unwarranted for the qent to conjoin his beliefs in this 

case, if he has reason to believe that there will be at least one false state-
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ment in his narrative. So the preface paradox does not merely impugn the 

conjunctive closure constraint qua defining condition for belief states. In 

addition, it apparenUy impugns the conjunctive closure constraint qua 

•rationality condition'. 25 

What 1s implied tn Stalnaker's remarks just discussed is that there are 

two ways in which the deductive constraints on belief states, 2) - 3) can 

be regarded. They can first of all he thought of as defining conditions for 

belief states. Qua defining conditions of belief states they cannot be applied 

to the totality of an agent's beliefs assuming that the agent in question may 

not have integrated his various belief· states. Thus, a way of resolving the 

Kripk.e puzzle is to resist applying the deductive constraints on belief states 

to the totality of Pierre's beliefs. Second, the deductive constraints 2) - 3) 

can be regarded as 'rationality conditions' for potentially integrated systems 

of bel1efs26, I.e., the 'ideal' believer that we discussed in chapter one 

would have an integrated system of beliefs- he would be in one integrated 

belief state. Hence, the ideal believer would always conjoin his beliefs and 

finally he would not hold inconsistent beliefs. (As we noted in chapter one, 

the ideal believer Will also be regarded as an agent who believes the logical 

consequences of what he believes.) So anyone aspiring to ideality as a bel

iever will aspire to integrate his belief states into one system such that 

the deductive constraints 2) - 3) on belief states also apply to his integrated 

system. These constraints qua rationality conditions can be regarded as 

goals. However, the preface paradox seems to pose a. case where even the 

non-ideal believer aspiring to ideality would be Wise not to conjoin his/her · 

beliefs, and so this impugns the conjunctive closure constraint qua ration

ality condition for non-ideal believers. 

25 Stalnaker (1984), p. 88. 

26 He alludes to this distinction in Stainaker (1964), p. 84. 



0 

c 

328 

The solution which Stalnaker offers to the paradox of the preface ex

ploits his earlier dtstincition between belief vs. acceptance (and bellef states 

vs. acceptance states). Given this distinction, an agent :x: may accept that 

P without believing that P. Be may tacitly presuppose that P is true for 

the sake of inquiry or he may simply take it for granted that Pis true. 

But we would not be inclined to say in such a case that x bi-IJIIWS that P. 

And, claims Stalnaker, this is what happens in the case of the preface. The 

author accepts (in the sense of tacitly presupposes) that the entire nar

rative is true and hence )le merely •~pis that any given statement in the 

narrative .ts true. But he does not JJI'/Jrw of the whole story, or of any 

one statement, that it is true, since he is ready to abandon any of these in 

the light of new evidence: 

The explanation of the preface phenomenon that 1 am suggesting re
quires that we say that the historian does not, without qualification 
bi-/Jrw that the story be accepts is correct; nor does he believe with
out qualification, all of the individual statements he makes in telling 
the story ... 27 

Thus, the preface paradox is not really a case where the conjunctive con-

straint qua rationality condition for integrated systems of beliefs fails since 

the author of the narrative does not really birlit1Vt1 any of the statements 

in his narrative. 

And so, in this section, we have discussed Stalnaker's solution to the 

problem of deduction tor the conjunctive and consistency constraints on 

belief states qua defining conditions, which involves allOWing agents to be 

in more than one belief state. Further, we have seen that be makes a 

distinction between defining conditions and rationality conditions which are 

two ways in which the deductive constraints discussed above can be re-

27 Stalnaker (1984). p. 94. 
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an agent can be in more than one belief state at the same time. Thus, 

what is needed is an alternative (truth-value) semantics for the stal-SQc= 

+ D systems which formalizes Stalnaker's notion that agents can be in 

several distinct belief states. 

The intuitive idea behind this alternate semantics is this: We define a 

model in the usual way as consisting in part of a set W of indices. Since 

ideal belief is 'integrated', the ideal believer will be in one belief state con

sisting of all the doxastic alternatives to the world he inhabits. Thus, x 

ideally believes that ex at w1 just in case ex is true at all the alternatives 

to w1. Por technical purposes, instead of defining 'alternativeness' in terms 

of a two place relation R such that Wj is an alternative to wi just in case 

<wb w j> e R, we shall define it equivalently in terms of a function f from 

W into PW.28 I.e., f will assign to each index a set of indices which can be 

thought of as the alternatives to that index. These two ways of defining 

'alternativeness' are equivalent since for any index Wif we can define f in 

terms of R as follows: f(wi) = {wj I WjRWj}.29 Thus, the semantics in 

which we use f instead of R to define 'alternativeness' can still be regarded 

as a relational semantics since at any time we could dispense with fin 

favour of R. Finally, the restrictions we would impose on R such as ser

iality can also be mirrored by f. Thus, we could represent the seriality 

restriction for f as follows: Por any wi in W, f(wi) ;&! 0. 

A third element in a Stal-sQC= model in this alternate semantics will 

be the set S where the members of S are sets of 'belief states'. Each belief 

state is itself a set of indices. For each member Sj of S (i.e., for each set 

of belief states) there will correspond exactly one member of W, Wj- The 

28 see chapter one, p. 30 of thfs dissertation. 

29 see Chellas (1980), p. 74. 

http:WjRWj}.29
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members of each belief state in Sj wtll be drawn from the alternatives as

signed to the corresponding index w J by f. I. e., each S J will be the set of 

all subsets (i.e., the 'power set•) of f(wj) in which case, each states in Sj 

wtll be a set of alternatives to WJ (i.e., s ~ f(wj).) Further, since for 

dozutl'c logics, indices are not necessarily alternatives to themselves, then 

it is not a requirement that {wj} e Sj. We shall use two subscripts for any 

members of each set of states SJ, where the first subscript j will denote 

from which set of states s was drawn and the second subscript k will 

simply number the state (in the same way that the indices in Ware num

bered). Thus, 'Sjk' can be read as 'the kth member of Si. 
The purpose of restricting the members of each state in any S J to the 

alternatives of the corresponding index, w J is to ensure an interdependence 

between ideal belief and non-ideal belief - intuitively, the non-ideal bel

iever will partition the set of alternatives to the index he inhabits into dis

tinct states whereas the ideal believer will integrate all the alternatives in

to one system. Also, this ensures the validity of the equivalence Bc:l a 

... 81-or which states that non-ideal belief is definable in terms of ideal bel

ief. The definability of non-ideal belief in terms of ideal belief is important 

for establ1shtns completeness results, as will soon become evident. 

The setS of sets of belief states, SJ, Sk, etc. wUl fisure into the truth-

conditions for non-ideal belief as follows: 

x ntm-ld•41Jy believes that ex at w1 just in case for at least one non
empty belief state Sik such that stk ~ f(wi), ex is true at every index 
in that state. 

I.e., x non-ideally believes that ex at wi just in case for at least one non-

empty belief state whose members are all alternatives to wb ex is true at 

each member of that state. Thus, in terms of the semantics, non-ideal 
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belief is still treated analogously to alethic possibility since x non-ideally 

believes that er at wi only if there is •t Je.-st one state such that er is true 

at all members of that state. Therefore, it is not required that the content 

of non-ideal belief is true at ewry alternative to the index in question but 

merely that it be true at ewry alternative in some state. Further, the 

truth-conditions for non-ideal belief jibe with the truth-conditions for 

non-ideal belief in stalnalter•s informal semantics and this was our aim-

to make the notion of bellef state and its role in defining non-ideal belief 

more conspicuous. 

Pinally, the fourth element of a Stal-SQCK model in this alternate sem

antics will be the assignment function V which as usual assigns to atomic 

wffs independently of any domain of 'individuals' either '1' or •o•. And V 

will have the two restrictions imposed on it as for the standard semantics 

for the stal-sac= systems. As usual, a valuation over a model VM will be 

defined inductively with V(er, wi) = VM(er, w1) for er atomic as the basis. 

We shall now provide a more formal characterization of this semantics. 

A Stal-SQC- model will be defined as a 4-tuple, <W,f,S, V> such that 

the elements W, f, Sand V are defined as follows: 

1) W 111 I?J (i.e., W is a non-empty set of indices.) 

2) f:W -- PW (i.e., for each wi in W, f(wi) ~ W) 

3) S is a set of 'belief states• where each Sj e S = Pf(wj) for exactly 

one Wj e W. (Then each Sjk e Sj is such that Sjk ~ f(wj).)30 

4) V:Atomic Wffs X W --+ {0,1} sucb that: 

i) If er is t = t then for all Wt I W, V(a, Wt) = 1. 

ii) Por all Wf I W, if V(tt = t2, Wt) • 1 then V(tJ. (tt/v), Wt) • 
--------

30 Stalnaker does not require that belief states are sets of lltilf'lllt/WJs to some Index. We are here 

at.t.empUng to formalize his semenUcs for belief with the context of a reJaUonal semenUcs. 
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V(a (t2fv), Wt). 

A valuation over any such model, VM:Wffs X W ---+ {0,1} is defined in

ductively as follows: 

Basis: V{ a, wt) • VM(a, Wt) for any a atomic. 

Suppose that V M( a , Wj) and VM(,, w1) are both defined. Then, 

a) VM( -a, Wj) • 1 iff V M( a, Wt) • 0. 

b) VM(a & ,, w 1) • 1 iff VM(a, w1) • VM(,, Wt) • 1. 

c) VM((Vv)a, Wj) • 1 tff VM(a (t/v), Wj) • 1 for all t e CONS 

d) VM(BJa, Wj) • 1 tff for all Wj e W such that wJ e f(wt), 

VM(a,wj) • 1. 

e) VM(Ba, Wt) • 1 iff for at least one non-empty stk e St such that Sfk 

' f(wt), VM(a, Wj) = 1 for all Wj e stk· 

Further, validity in • m«<r/ of the sort described above will be truth at 

all indices in the model and VMidity in tbr •ppropri•t• cJ•ss of m«<r/s 

(determined by the restrictions imposed on f) is validity in all models in 

the class. 

Now that we have provided a somewhat formal description of our 

alternate semantics for the Stal-scx- systems, we shall see whether or not 

this semantics cJJ.r•ctrrJzws the Stal-SQC• systems. 

P'trst ot all, 1t needs to be shown that any gtven Stal-SQC• system ts 

sound relative to the appropriate class of Stal-SQCI models of the sort just 

described. And as usual, soundness is established by demonstrating that all 

instances of the axiom-schemata are valid and that the rules of inference 

preserve validity in the appropriate class of models. We shall not set out 

to prove this here since it parallels the proof of soundness for the Sub-Sac= 

systems. 
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However, we shall consider the status of the following crucial schem

ata and rule of inference with respect to the type of semantics we are 

proposing: 

1) Bel • ... ...... 

ii) BJOI • -11-01 

Ui) (801 & B') :> B(OI & ') 

iv) ... (801 & 11-01) 

v) (801 (tt/v) & t1 • ta & B(t1 = t2)) , 801 (tafv) 

vi) l-01 :~~ ' _,.. l-801 :~~ B' 

If the two equivalences 1) and 11) are both valid then B and Br are inter

definable. (We could consistently add i) and 11) as axiom-schemata to the 

stal-SQC- systems.) The tnterdeftnabntty 8 and Br wtll be important later 

on in terms of establishing completeness. 

To establish the validity of all instances of 1), 801 • -Br·OI, suppose that 

for some Stal-sQC• + D model M and for some index wb VM(801 , w1) = 

VM(BJ-«1, w1) = 1. Then for some non-empty Sik in St such that Stk ~ 

f(w,), VM(OI, Wj) • 1 for all WJ in Sfk· Supposing further that VM(Br-«~, 

w1) = 1, then for •JJ Wj in W such that Wj e f(wi), VM(-01, Wj) = 1 which 

contradicts one of the consequences of our supposition that VM(BCI, w1) = 1. 

Or, on the other hand, suppose that VM(Br-cx, w1) = VM(BCI, w1) = o. Then 

there is at least one Wj in f(wt) such that VM(OI, Wj) • 1. But since Wj 1s 

in f(ws), then {wj} & Pf(wt)· And since each •tk e Pf(wt) then there wtll 

be some Stk in St such that •tk = {wJ} in which case there is an Stk ~ 

f(wi) such that VM(OI, Wj) = 1 for all members of Sfk. Hence, VM(BOI, Wf) = 
1 which contradicts our earlier supposition that VM(Ikl, wt) = 0. Q.E.D. 

To establish the validity of all instances of ii), BJCX • ....... 01, suppose 
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that then is a Stal-SQC= + D model M such that VM(BJGC , Wf) • VM(B-GC , 

w1) • 1. Then for all WJ in W such that Wj I f(wt), VM(cx, Wj) • 1. If 

VM(B-«, Wt) is 1 then there is at least one Sfk ' f(wt) such that VM(-cx, 

Wj) • 1 for all Wj in sik· But this contradicts one of the consequences of 

our supposition that VM(BJGC, Wt) • 1. On the other hand, suppose that 

VM(B-cx , w1) • 0 • VM(BJGC, wt). If VM(B-«, Wt) • 0, then there is no Sfk 

' f(wt) such that VM(-cx, Wj) • 1 for all Wj tn Sfk· But 1f VM(BJCX, Wf) • 0 

then there is at least one WJ tn f(wt) such that V M( a, Wj) • 0 and hence 

VM(-«, Wj) • 1. But then there is some Stk in St such that Sfk • {wj} in 

which case there is some stk such that VM(-«, wj) • 1 for all Wj in stk. 

And from this it follows that VM(B-a, w1) • 1 which contradicts our 

earlier assumption that VM(B-cx,wi) • 0. Q.E.D. 

Now that we have established that the equivalences 1) and 11) are both 

valid, it follows that the operators B1 and B are interdefinable for the 

Stal-soc- + D systems. We shall next show that the schemata 111) and iv) 

have 1nval1d instances, thus showing that this semantics does not presup

pose that non-ideal believers always conjoin their beliefs nor presupposing 

that agents always have consistent beliefs. 

Consider the followins instance of iii), viz., (BP'a & 8Gb) ;:) B(Fa & Gb). 

Consider the Stal-soc- + D model M such that W • {w1,w21 'W3} and such 

that f(w1) • {w2,W)}. Then, S1 = Pf(w1) = {0,{w2},{w3},{w2,W)}}. Let 

su = {w2} and let s12 • {w3} and let s13 • {w2, W)}. Let V(Fa, w2) • 1, 

V(Fa, 'W3) • 0, V(Gb, w2) • 0 and V(Gb, 'W3) • 1. Since VM is V for atomic 

wffs, then these assignments also hold for VM. Then VM(Fa & Gb, w2) • 

VM(Pa & Gb,W3) • 0. Thus, there is no non-empty •tk' f(wt) such that 
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for every member Wj of sut, VM(Pa & Gb,wj) = 1. Thus, VM(B(Pa & Gb), 

w1) = 0. However, VM(BPa, w1) • 1 since VM(Pa, w2) = 1 such that su = 
{w2} and also, VM(BGb,w1) • 1 since VM(Gb,w:s) = 1 such that s12 = {w:s}. 

Q. !. D. Notice that this model is also a countermodel to -(BPa & B-P a) 

which is an instance of the consistency schema iv). 

As was noted in section 1, substitution of co-referentials for the Stal

sQC• + D systems for non-ideal doxastic contexts is restricted to cases such 

that the agent x JdMJJy believes that the relevant identity obtains. It 

was also promised that some sort of explanation would be offered on the 

semantic front as to why it is not sufficient that the agent merely non

Jdally bellews that the relevant identity obtains for substitution to go 

through for non-ideal doxast1c contexts. This amounts to showing that 

some instance of (JIG (t1/v) & t1 = t2 & B(tl = t2)) , Ba (tl!v), which says 

that substitution of co-referentials goes through for non-ideal doxastic 

contexts provided the agent non-ide•lly believes that the relevant identity 

obtains, is invalid in the sort of semantics being considered. 

Consider the following instance of (JIG (t1/v) & t1 = t2 & B(tt = t2)) , 

Ba (t2/v), viz., (BPa & a = b & B(a = b)) , BPb. It will be shown that there 

is a Stal-SQC"" + D model such that this wff is invalid. In fact, we shall 

employ the same model-structure employed above in invalidating the in

stances of the non-ideal adjunction and consistency schemata. I.e., W = 
{w1,w2,w3}, f(w1) ""{w2,w3} and 81 • Pf(w1) • {0,{w2},{w3},{w2,w3}}. 

As before, let su = {w2} and let 512 = {w3} and let 513 = {w2,w3}. Let 

V(Pa, w2) = 1 and V(Fb, w2) = V(a = b, w1) = 0. Then VM(Pa, w2) = 1 and 

VM(a = b, Wt) = VM(Pb, w2) = 0. Further, let V(Pa, w3) = V(Pb, w3) = 0 

and V(a = b, w3) = 1. Then VM(Pa, w3) • VM(Pb, w3) = 0 and VM(a = b, w1) 



0 337 

= 1. Since for all members of su. Pais assianed '1' by VM it follows that 

VM(BPa, w1) = 1. Since for all members of s12• a • b is assigned '1' by VM 

it follows that VM(B(a • b), w1) = 1. Finally, because there is no non

empty s1k in S1 such that Pb is assigned '1' by VM for all members of s1k 

then it follows that VM(BPb, w1) = 0. Q.E.D. 

Informally, what this countermodel suggests is that it is on the con

dition that the relevant identity t1 = t2 obtains at •11 alternatives to an 

index wi in a model that we are guaranteed that if ex (tt/v) is true at all 

members of some belief state then so is ex (t,}v). In other words, provided 

the agent x iduOy believes that t1 = t2 obtains then if x believes that 

ex (t1/v), x also believes that ex (t,}v). The agent's merely non-ideally bel

ieving that t1 = t2 obtains leaves open the possibility that t1 = t2 fails to 

obtain at any alternative at which ex (t1/v) obtains. Then this situation in 

turn leaves open the possibility that there is no alternative at which 

ex (t,}v) obtains. 

What remains to be discussed is the implicational version of the logical 

omnidoxasticity rule vi), i.e., l-ex :l ' -- I-Bex :l 8,. It will be shown 

that the semantics we are considering for the Stal-SQC- + D systems pre

supposes that non-ideal beltevers are logically omnidoxasttc by establtshing 

the validity preservtngness of the above rule. Suppose that l=cx :l '· Then 

for any model M and for every index Wf in that model, VM(cx :l ,, wi) • 1. 

Suppose however that VM(Bcx :l B,, wi) • 0 for at least one w1 for some 

model M. Then VM(Bcx, Wt) = 1 but VM(B,, Wt) = 0. If VM(BCX, wi) = 1 then 

for at least one non-empty Sik ~ f(wi), VM(cx, wj) = 1 for all Wj e sik· 

And if VM(B,, Wi) • 0 then for every non-empty Sfk ~ f(wt), VM(,, Wj) = 0 

for at least one Wj in Sik· However, by supposition that VM(BCI, w1) = 1, it 
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was concluded that there is at least one Sik such that VM(a, Wj) • 1 for 

every Wj in Sik· But by suppostna that VM(Bp, Wt) • O, this Stk will be 

such that for at least one Wj in Sik• VM(P, Wj) • 0. But V M( a, Wj) • 1 at 

this same member of Stk and by another supposition, VM(a , p,wj) • 1. 

And this leads to a contradiction. Q.E.D. 

Compl't'IWS5 of the Stal-sac- systems relative to the type of seman

tics we have proposed is established in the usual way by the method of 

canonical models. A Stal-sac- canonical model .M is a 4-tuple, <W,f,S, V> 

such that: 

a) W • {wt I Wt is a maximal consistent set of wffs with the 3-property} 

b) For any w 1 in w, f(wt) • {wJ e w I (V A)(Bta e w1 --+ a e wJ)}. 

c) s • {SJ 1 (3rw,)(wt e w & SJ • Pf(wt))} 

d) For any atomic wff a, V(a, w1) • 1 iff a E w1. 

Usma as the basis V(a , wi) • V .M (a, w1) from which it follows atven d) 

that V,M.(G,wt) • tiff a E Wt for a atomic, we prove the lund.am,ntlll 

thti'Dr#m of canonical models, i.e., for any wff a, V .u.(a, wi) • 1 iff a E 

Wf, by induction on the complexity of a . The inductive proof proceeds alona 

the same lines as it did for the SUb-sac• systems. 

Further, the case where a is of the form BtP proceeds 1n the same way 

as the case where a is of the form BP for the Sub-Sac- systems aiven that 

the truth-conditions for wffs of the form BtP for the Stal-sac• systems 

are identical to the truth-conditions for wffs of the form BP for the Sub

sac- systems. Finally, it was shown that for the Stal-SOC: systems, the 

non-ideal belief operator B can he defined in terms of the ideal belief 

operator Bt with the latter taken as primitive. Thus, once it has been es

tablished that the fundamental theorem holds for wffs of the form BtP and 

http:model.AA
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pven that it holds for the primitive connectives and a primitive quantifer, 

it follows that the fundamental theorem holds for •JJ wffs including wffs 

of the form B,. 
Finally, once the fundamental theorem has been established it remains 

to be shown that the canonical model for the given Stal-SQc= system is in 

the class of models with respect to which that system ls sound. And this 

1s shown by provtng that t meets the appropriate restrictions. 

And so, we have attempted to tormal1ze Stalnaker's model that agents 

can be in more than one belief state (thereby explaining why belief is not 

deductively closed) on the semantic front. To make Stalnaker•s notion of 

belief states more conspicuous, we considered an alternative semantics for 

the Stal-Sac= systems which factored into the truth-conditions for non

ideal belief wffs, non-empty sets of indices - intuitively, belief states

such that these Indices are amongst the alternatives to the pven index, 

thus ensuring an interdependence between ideal and non-ideal belief. 

Although the Stal-sac= + D systems of doxastic lope are the closest we 

have come to modal lopes capturing principles of belief attribution for the 

non-ideal believer, we are still left with the presupposition that agents are 

lopcally omnidoxast1c. In the final section, we shall reconsider the prob

lem of lostcal omn1doxasticity arguing that it is intractable for lopes of 

belief with relational semantics. However, in the next section, we shall 

briefly consider as a plausible alternative to Stalnaker's informal proposal 

that agents can be in more than one belief state, a formal proposal of Res

cher•s which involves the supposition that non-ideal beltef ts a relation 

betwem an agent and a so-called superposed world. 
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4. When Worlds Collide 

In deflning belief as a relation between an agent and possibly many 

sets of worlds or bellet states, Stalnaker ts able to construct a possible 

worlds semantics of belief which does not presuppose that agents always 

conjoin their beliefs or that their beliefs are always consistent. Unked to 

his view that the objects of belief are (possibly disjoint) sets of worlds is 

his causal-pragmatic account of belief and belief attribution. I.e., a nec

essary condition for attributing to x the belief that a is that x be disposed 

in one sort of context to act in ways that will tend to satisfy his desires 

at all a -worlds - which suuests that the objects of beliefs are sets of 

worlds. Then it an agent acts in incompatible ways in two different con

texts (for example be may act in ways that satisfy his desires in a worlds 

and in another context, be may act in ways that satisfy his desires in -a 

worlds- as in the puzzling Pierre case), this is explainable by his being 

related to two disjoint sets of worlds or belief states. 

In Tb1 LDgic of IDconsist1ncy, Nicholas Rescber et al offer a solution to 

the problem of deduction (but not to the problem of logical omnidoxasticity) 

in the same vein as Stalnaker's solution. For Rescber, belief involves a dis

postion to assent to a statement. Further, it is possible that an agent can 

have various dispositions to assent in dUferent contexts. His account of 

belief attribution is not incompatible with Stalanker's since he gives a dis

positional analysis, thus making it a 'pragmatic' account, although the rel

evant types of actions are speech acts, viz., verbal assent (thus bearing 

similarities to Krtpk.e's disquotation principle). So, if an agent can be dis

posed to act in different ways in different situations, then· this leaves open 
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the poss1b1Uty that the agent may :be disposed to assent to ex in one context 

(thereby believing that ex) and that he may be disposed to assent to "'11 in 

another context (thereby beltevtng that -ex), without the asent thereby 

believtns that ex & "'11: 

At a more mundane level, it 1s common for an individual to be simul
taneously cltsposed to assent to a statement if queried and to be dispos
ed to assent to the denial of that statement if queried in some variant 
context (once again, this does not mean that one is ever disposed to 
assent to the conjunction of a statement and its denial). 31 

Thus, he misht explaln the lripke puzzle along Stalnakerian lines by arsu

ins that puzzling Pierre was disposed to assent to 'Londres est jolie' in one 

context and he was disposed to assent to 'London is not pretty• in another, 

without his thereby believtns that London is both pretty and not pretty. 

To avoid the sort of situation where an agent who has incompatible 

beliefs in different contexts ends up believing a contradiction, Rescher 

imposes the following restriction on any asent's set of beliefs: The set of 

believed statements must be 'minimally consistent• in the sense that it is at 

most wrtallly inconsistent. 32 A set of statements is wrt•kly inconsistent 

just in case for some wff ex and for some world w, Cl is true at wand -Cl 

is true at w, but ex & ... ex is true at now. 33 Strong inconsistency is def

ined as follows: For some wff ex, and for some world w, ex & -Cl is true at 

w - hyperinconsistency occurs when for every wff ex and for some world . 

w, ex & -ex is true at w. M 

Accordins to Rescher (and as arsued in chapter one), if the 'minimal 

31 Rescher et al (1980). p.101. 

32 Rescher et al (1980), p. 100. 

33 ibid. p. 25. 

34 fbld, p. 2<4. 
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consistency• restriction were not imposed on an agent •s set of beliefs, then 

since a contradiction logically implies everything, any agent believing that 

Cl & ... Cl would thereby believe everything. 3& So, puzzling Pierre's set of 

beliafa must satisfy the minimal consistency requirement to avoid the con-

sequence that he believes everything. Thus, it he believes that London is 

pretty and he believes that London is not pretty, he does not thereby 

believe that London is both pretty and not pretty. So for Rescher (as tor 

Marcus), assent carries over into belief only it what is assented to is seU-

It is our task in the remainder of tbis section to examine Rescber's 

formal proposal for makins sense out of the above type of situation. I.e., 

we shall consider his sugestions for a semantics of belief wbicb allows 

that agents can have contradictory beliefs (whose contents are assented to 

in different contexts) and which allows that agents can fail to conjoin bel

iefs, but which requires that an agent's system of beliefs be minimally 

consistent. In short, Rescher is offering an alternative account as to bow 

it is possible that agents can hold incompatible sets of beliefs in different 

contexts. Finally, it will then be argued that Rescber's semantic proposals 

can be adopted to provide a characteristic semantics for the Stal-sQC= + D 

systems. 

The formal semantics of belief which Rescher develops rests on the 

assumption that belief is a relation between a believer (at a world) and a 

non-standard world. 36 The contents ot the agent's beltefs would all bold at 

thts world. Depending on the type ot non-standardness we are considering, 

the contents true at this world may include for some wff ex, both ex and 

35 ibid. p. 102. 

36 Rescher et al (1980 ), p. 1 05. 

http:world.36
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-a , but not a & -a thus meetins his minimal consistency requirement. 

Further, the non-standard world to which the believer at a world is 

related may be such that even thoush ex and 'both obtain, it is possible 

that ex & 'falls to obtain. Then in this type of semantics, if what we have 

called non-ideal belief is a relation between a believer at a world and the 

right sort of non-standard world, the follawtns schemata (couched in the 

languase of our Stal-SQCI' + D systems) would be invalid: 

i) (Bor & B') 3 B(a & ') 

ii) -(Bor & 8-a ) 

non-ideal adjunction 

non-ideal consistency 

And the followtns would be valid in this type of semantics: 

iv) -B(ex & ... ., } non-ideal self-consistency 

We shall now see exactly how Rescher spells out 'non-standardness•. 

In Rescher's semantics, there are two types of non-standard worlds, 

viz., 'schematic' and 'superposed'. Both types of non-standard worlds are 

constructed by means of 'world-fusion' with standard worlds as the initial 

basis of the fusion. Thus, a belief model would consist of a set of standard 

worlds and a set of non-standard worlds ultimately constructable from the 

standard ones by means of world-fusion. Consider the simplest sort of case 

where a non-standard world is constructed out of two standard ones. Then 

the two types of world-fusion are as follows: 37 

1) World canjunctiOD -Given two standard worlds wi and Wj, wi A Wj 

is the world such that for any proposition ex, a is true at w1 r.a Wj just 

in case a is true at both w1 and w J' 

2) World disjunction -Given two standard worlds w1 and Wj, w1 W Wj 

is the world such that for any proposition a, a is true at w 1 w wj tff 

a is true at either Wt or Wj-

37 Rescher et al (1980). pp. 9- 11. 
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Non-standard worlds formed by the operation of world conjunction are 

called 'schematic' and non-standard worlds formed by the operation of 

world disjunction are •superposed •. 

As Rescher notes, sciJ'm•tJc worlds will be incomplete in the sense 

that for some proposition ex and its nesatton -ex, it is possible that neither 

ex nor -ex will obtain. :se Thus, in the simplest sort of case, if ex is true at 

Wt and false at Wj and if -ex is false at w1 but true at Wj then neither ex 

nor -ex will obtain at the schematic world Wf ~ Wj- What is non-standard 

about so-called sch'm•tlc worlds is their incompleteness. Standard pos

sible worlds will be such that for any proposition ex, either ex or -ex ob

tains (but not both). However, for a schematic world Wt n Wj, it is never 

the case that ex and -ex can both obtain at such a world since this would 

mean that ex and -ex are both true at both w1 and wJ But this is impos

sible since schematic worlds are ultimately constructed out of standard 

worlds where the connectives are defined classically. Purther, for any 

schematic world Wf ,_ Wj, if ex and 'obtain then so must their conjunction 

ex & ,, since ex and ' must each obtain at both w1 and at wJ' 

Since ldul believers cannot hold contradictory beliefs and do not nec

essarily conjoin their beliefs, then ideal belief in Rescher's semantics 

could be regarded as a relation between a believer at a world and a schem

atic world (constructed out of the doxastic alternatives to the world the 

acent inhabits). Thus, ideal belief is a relation to non-standard worlds 

which are schematic. This idea will be explored further below when we 

come to consider Rescher's proposals vis a vis a characteristic semantics 

for the Stal-sQC• + D systems. 

On the other hand, so-called SU]WrptJ$tl'd worlds will be weakly in-

38 Ibid. p. 9. 
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consistent in the sense that it is possible that for some proposition ex , both 

ex and .-.ex may obtain. Thus, if ex is true at Wt and if .-.ex is true at w J 

then both ex and .-.ex will be true at Wi Ill WJ And generally, for any Wffs 

GC and,, if« is true at w1 but false at Wj and' is false at w1 but true at 

Wj then GC & ' is false at both w1 and Wj and hence GC & ' is false at wi w 

Wj- However, ex and' are individually (though not conjointly) true at wi 

u Wj since GC is true at Wt and ' is true at Wj· 

Then the kind of non-standard world that would best serve as the 

relatum of nan-idul belief is the superposed world. What is non-standard 

about superposed worlds is that unlike standard worlds, they are weakly 

(though not strongly) inconsistent. Further, the conjunctions of propositions 

or more neutrally statements true at superposed worlds need not them

selves be true. And this makes them suitable relata of belief if we wish to 

allow for non-ideality. What is being suaested is that if x believes that GC 

is true (at some world- perhaps the actual world) then GC must be true at 

a non-standard world formed by SUJl'TpDSititJIZ . Thus, it is possible that x 

beletves that ex and that x believes that ... GC (since ex and .-.ex may both ob

tain at the appropriate superposed world) without thereby believing that 

ex & -or (since superposed worlds are minimally consistent). 

However, superposed worlds are not non-standard tn the sense that 

Rantala's non-normal indices are. For one thing, superposed worlds al

though weakly inconsistent are not slrtJDIIY inconsistent since ultimately 

they are formed from standard worlds as their basis, and so there will 

never be a standard world where GC & .-.ex obtains. The same can be said of 

schematic worlds. Also, if the relata of non-ideal belief are superposed 

worlds then since GC & .-.ex obtains at no superposed world, it will never be 
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the case in this type of semantics that x (non-ideally) believes that or & -or 

-i.e., there will be no superposed world where this content obtains. Thus, 

no instance of the schema B(or & ""(') is satisfiable and hence -B(or & -or) 

will be valid. 1n this type of semantics. 

Another reason that superposed worlds are not non-standard in the 

sense that Rantala's non-normal worlds are is that since superposed 

worlds are constructed ultimately from standard ones and since every 

thesis of the appropriate system of loatc will be true at each standard 

world, then every thesis will be true at every superposed world. And the 

same can be said of schematic worlds. But given this feature of superposed 

worlds, it follows that acents will be omnid.oxasttc with respect to all 

theses of the appropriate system. I.e., if belief is a relation between a 

believer and a non-standard possible world, then since all theses are true 

at any non-standard world, every agent will believe all theses. This in

cidentally is another one of the intuitive requirements which. R.escher im

poses on acents • systems of beliefs in addition to the minimal consistency 

condition. 39 

The following will be •semantic• prinicples which hold for standard 

or normal worlds but which fail for superposed worlds: (We shall let M 

designate some arbitrary model consistinc of a set of standard and non

standard worlds, and VM will be a valuation over any such model.)40 

1) If VM(or , w1) • 1 then it is not the case that VM( -or, wi) • 1. 

2) If V M( ex, w1) = VM(p, Wt) • 1 then VM(cx & p, w1) = 1. 

It was explained earlier why these semantic principles break down for 

39 ibid. p. 100. 

40 Rtscher uses different notation. He discusses the status of these principles nongsl others in 

secUon s. pp. 15-20. 
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superposed world.s. Given that they do, it is evident how such a semantics 

can refute the DDI'l-idul adjunction and consistency schemata. I.e., if a 

superposed world can be weakly inconsistent, then if there is some believer 

x related to such a world where ex and -or both obtain at this world then x 

will believe that ex and x will believe that ... ex (at some world). Thus, the 

non-ideal consistency schema -(BcX & a-ex) is refuted in this type of sem

antics. Purtber. siven that condition 2) is violated for superposed worlds, 

it follows that if some believer xis related to a superposed world where ex 

and p both obtain but ex & p fails to obtain then x will believe that ex and x 

will believe that p but x will not believe that ex & p (at some world). Thus, 

the non-ideal adjunction schema (BcX & BP) , B(ex & p) is refuted in this 

type of semantics. 

Similar to our Stalnaker1an semantics for the Stal-sac= + D systems, 

Rescber•s proposed semantics for belief losic presupposes that asents non

ideally believe all the lostcal consequences of what they believe. The reason 

that the semantic principle that if V M( ex, w1} • VM(ex , p, w1) • 1 then 

VM(P, w1) • 1 fails for superposed worlds is that there could. be two worlds 

Wj and Wj such that ex is true at W!J ex , ex and p are false at Wf and. 

such that ex , ' is true at Wj, ex and. ' are both false at WJ It follows 

from this that ex and ex , 'are both true at the superposed world w1 u Wj 

but P will be false at w1 u wj-U However, the failure ot this semantic 

principle for non-standard indices does not alter the fact that whenever 

l-ex , B, this principle holds. This is because ex , p obtains for #very world 

if 1-oc , P and so the type of situation mentioned above where the implica

tion principle breaks down by virtue of ex , p beins false at a component 

world could not arise (even if the component world is non-standard). 

41 Rescher el al (1980), p. 19. 
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This situation of logical omnidoxasticity is stonger than Rescher's 

requirement for belief systems (in addition to the minimal consistency 

requirement) that •a11 sentences deducible from belief sentences by one

premise inferences of first-order logic is believed •42 since in the type of 

semantics he is proposing, qents would believe •ny consequence deducible 

from believed sentences given the omnido:xasticity feature of his semantics. 

And so, it would appear that Rescher has developed a semantics for 

belief logic which invalidates the non-ideal acljunction and consistency 

schemata, which does not allow agents to hold self-contradictory beliefs 

and which presupposes that agents believe (both ideally and non-ideally) 

all logical. truths. But although Rescher•s superposed worlds are not Uk.e 

Rantala's non-normal worlds in certain respects, they also resemble Ran-

tala's non-normal worlds in the respect that ·-·and'&' behave non

standardly for superposed worlds (as does •,•43). But then this feature of 

Rescher's semantics is open to the same objection levelled by Cresswell 

against a Rantala-type semantics, viz., that • .... • and '&' do not represent 

cl•ssic.J negation and conjunction respectively for superposed worlds. So 

for example, this semantics does not illustrate how it is possible for agents 

to believe both that 01 and its ci4SSI"cal negation, NOI. Rather, all that his 

semantics shows is how it is possible for an agent to believe both that er 

and its par•COIZSJstent negation. 

Rescher responds to this objection to his proposed semantics for belief 

by emphasizing that he is not proposing a deviant /fJIIC, but merely a dev

iant semantics.'" For example, although the sc-mdlltic principle that if 

42 tbtd, p. 100. 

43 ibid.p.19. TheprinclplelhattfVM(CI,Wf)RIVM(CX :> '·Wt)•1 thenVM(,.wt)•1 breaks 

down ror superposed worlds. 
44 Rescher et al (1980). p. 18. 

http:ibid.p.19
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VM(«, Wt) • VM(,. Wt) • 1 then VM(« & ,, Wt) == 1, fails for superposed 

worlds, the correspondtna 6yztt.ctic principle « , ' 1- « & ' is retained for 

the appropriate ax1om-system.45 And so, Rescher•s response to the charae 

of equivocation with respect to the connectives ·-·, '&' (and ':;,') in his sem

antics is that he admits the charae hut claims that what is important is 

how the connectives behave inferentially: 

our own choice here Is clear - we follow the mainstream of 1oa1ca1 
tradition in atvtna priority to the inferential aspect, taking the stance 
that what a loatcal connective "really is" is to he determined in terms 
of what it d()(l$ in inferential situations. 46 

We have already considered this response to the charae of equivocation 

with respect to the connectives in relation to Rantala's non-standard index 

semantics for belief loatc discussed tn the preVious chapter. It was SUBBest

ed that this response may not avoid the charge of equivocation with res

pect to the connectives-, &, v, :;, and s if it rests on the dubious assump

tion that-, &, v, :;, and • are definable solely in terms of their behaviour 

in non-modal or non-doxastic inferential contexts. As was SUBBested in the 

preVious chapter and in section 1, 1t is also necessary to take into account 

how the connectives behave in doxastic or modal contexts in order to 

discern their roles in inference for doxastic loatcs. 

Thus, Rescher's semantics can escape the charge of equivocation only 

if the corresponding Ioaic is not deViant- not only for non-modal hut also 

for modtll contexts. Recall that the Stal-SQCD + D systems are loatcs such 

that the connectives behave non-devtantly not only for non-modal hut also 

for modal contexts. They are simply normal systems of alethtc modal logic 

4S ibid. p. 18. 

416 ibid. p. 23. 
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such that the necessity operator is construed as •x ideally believes that' and 

the possibility operator is construed as •x non-ideally believes that •. Tben 

for example, instances of the adjunction schema for norz-i'dMI belief are 

uncterivable tor these systems not because the connectives behave non

standardly in doxastic contexts, but owing to the fact that the alethic pos

sibility operator is construed as 'x ideally believes that •. Now, suppose 

that Rescher's semantic proposals are adopted as providing an account of 

both the norz-i'dNl and the i'dNl believer. I.e., non-ideal belief involves 

a relation to a superposed world and ideal belief involves a relation to a 

schematic world. Tbese characterizations of both ideal and non-ideal belief 

wtll be incorporated into a semantics characterizing the Stat-soc= + D 

systems- which can be regarded as logics of the ideal and non-ideal bel

iever. 

Then even though the connectives ... , & and::;, are defined non-standardly 

for superposed worlds, this sort of semantics can escape the charge of 

equivocation with respect to"", & and::;, since the corresponding logics are 

non-deviant. (Note also that hi this semantics, the connective •v• behaves 

non-classically for sch#m•tlc worlds since it is possible that VM(a v ,, 

w+) • 1 for some schematic world w+, and yet V M( a, w+) = VM(,, w+) • 

0. •'1) We shall now consider in detail just what this Reschertan semantics 

for the Stal-sac= + D systems will look like. 

A Rescherian TV semantics for the Stal-Sac= + D systems wlll involve 

defining a stat-sac- + D model as a 7-tuple <W,R,w+,w•,f,g,V> where 

W and R are defined as usual as a non-empty set of indices and a two

place (minimally serial) relation ranging over members of W respectively. 

Further, the sets w+ and w• are non-empty sets of su_p#rposed and 

47 Rescher et al (1980). p. 15. 
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schenutic indices respectively. Also, f is a one-one onto function which 

associates with each member of W, exactly one member of w+ and 1 is a 

one-one onto function which associates with each member of W exactly 

one member of w•. The idea here is that with each index in W is assoc

iated exactly one superposed index and exactly one schematic index. Then, 

a non-ideal belief wff, B4X will be true at w1 in W just in case the content 

« is true at the 6U.fJ#Tpt)lltld index f(wt) and an ideal belief wff, Bt« will 

be true at wi in W just in case the content ex is true at the scbem.atlc 

index c(wi). The truth-conditions for wtfs at superposed and schematic 

indices will be outlined in the next paracraph when we discuss the valu

ation function VM· 

The assignment function V as ususal assigns to atomic wtfs at mem

bers of W, either '0' or '1' where '1' is the designated value, with the same 

two restrictions imposed on V (in relation to the identity symbol • .. •) as for 

the Stalnakertan TV semantics for the stal-sac= + D systems. Further, for 

members of W, the valuation function VM is defined inductively in the 

usual manner such that the truth-conditions for quantified wtfs are sub

stitutional. The truth-conditions for non-ideal belief and for ideal belief 

will lnltlt~J/y be the truth-conditions for possib1lity and necessity respec

tively for alethtc normal systems, viz., tn terms of the alternattveness 

relation R. 

Once VM is defined for members of W, it can be defined for the scbem

.tllc indices in w• as follows: Por any wff 4X, VM(«, g(wi)) • 1 iff for all 

Wj such that wiRwj, VM(cx, wj) = 1. I.e., a wff « is true at a schematic 

world c(wi) assiped to a member of W, Wt just 1n case« is true at .J// 

the alternatives to Wt determined by R. But if.« is true at all alternatives 
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to w1 then it follows that Bta is true at Wt. This leads to the specification 

of truth-conditions for ideal belief in terms of schematic indices as follows: 

VM(BtCI,wt) • 11ff VM(a. Wj) • 1 for all Wj such that wtRWj iff 

VM(CI ,g(wt)) • 1. These truth-conditions for tdeal belief tntuittvely jibe 

with Rescher•s injunction that the non-standard world to which a believer 

at a world is related •must satisfy all and only the statements of a lang

uage L which the individual believes•.•• I.e., the wffs true at a schematic 

index g(wt) associated with a member of W, will be the contents of all 

wffs of the form Bta true at Wt. 

Further, VM can be defined for the SUP'Tpos«/ indices in w+ as fol

lows: For any wff a, VM(CI ,f(wi)) • 1iff for at least one Wj such that 

wiRWJ, VM(CI, Wj) • 1. I.e., a wff a is true at a superposed world f(wt) 

assigned to a member of W, Wf just in case ex is true at at Just one of 

the alternatives to Wt determined by R. But if ex is true at some alter

native to w1 then it follows that Ba is true at Wt. This leads to the spec

ification of truth-conditions for non-ideal belief in terms of superposed 

indices as follows: VM(Ba, wt) = 1 iff V M( a, wj) • 1 for at least one Wj 

such that wiRWJ 1ft VM(CI ,f(wi)) • 1. Finally, all those wtfs true at a 

superposed index f(wt) will be all and only those contents of non-ideal 

belief wffs of the form Ba true at the associated index Wt. 

We shall now provide a somewhat more formal characterization of the 

TV semantics for the stal-SQC= + D systems described above: 

A Stal-sa<:- + D serial model M • <W,R, w+, w•,f,g, V> such that 

1) w- 0. 

2) R s; W X W where R is minimally serial. 

3) w+- 0. 

-48 Rescher et aH1980), p. 105. 
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4) w• • e. 

5) f:W- w* such that f is 1-1 and onto. 

6) s:W --. w• such that 8 is 1-1 and onto. 

7) V:Atomlc Wffs X W --. {0,1} with the followin& restrictions: 

a) If a is of the form t •t then V(a, wi) = 1 for all wi e W. 

b) For all Wi I W, if V(t1 • t2, Wi) • 1 then V(Cif (tt/v), Wi) = 

V(Cif (t2fv), Wt). 

A v•Ju•tJOD over a Stal-sac- + D mod.el, VM ts such that: 

VM:Wffs X (W U w* U w•) -·- ...... {0,1}. 

VM is defined for all members of W inductively as follows: 

Basis: V M( a, wi} • V(cx, w1) for a atomic. 

Inductive Hypothesis: Suppose that VM(A, w,), VM(B, wi) are defined. Then: 

i) VM("'CI, Wt) • 1 iff VM(Cif, Wt) = 0. 

ii) VM(CI ;:, ,, Wi) = 1 Uf either VM(Cif, Wi) • 0 or VM(,, wi) = 1. 

Ui) VM((3v)cx, Wt) • 1 iff VM(Cif (t/v), wi) • 1 for at least one constant t. 

iv) VM(Bcl, wi) = 1 iff VM(Cif, wi) • 1 for at least one Wj in W such that 

WjRWj. 

v) VM(BtCif, Wt) • 1 iff VM(CX, Wt) • 1 for all Wj in W such that WiRWj

Notice that the truth-conditions for ideal and non-ideal belief are specified 

initially by appeal to the doxastic accessibility relation R. In definin& 

the valuation function for members of w* and w• it will be possible to 

restate the truth-conditions tor ideal and non-ideal belief by appeal to 

the notion of non-standard indices. 

Given the definition of VM for members of W, we can define VM for 

members of w* (i.e., the set of •superposed' indices) as follows: 
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For any wtf er and for any f(wt) in w*: 

VM(Cl,f(wt)) • 11ft VM(«,wj) = 1 for at least one Wj in W such that 

WtRWj-

It follows from thiS definition of the valuation function VM tor superposed 

indices and from the definition of VM for members of W that: 

VM(Ba, Wt) = 1 iff VM(« ,f(wi)) = 1. 

In other words, the truth-conditions for non-ideal belief in terms of the 

serial relation Rare equivalent to the truth-conditions for non-ideal belief 

in terms of superposed indices. 

Further, ctven the definition of VM for members of W, we can define 

VM for members of w• (i.e., the set of 'schematic' indices) as follows: 

Por any wtf ex and for any s(wi) in w•: 

VM(cx ,g(wi)) = 11ff VM(CX,wj) = 1 for all Wj in W such that WtRWj

lt follows from this definition of the valuation function VM for schematic 

indices and from the definition of VM for members of W that: 

VM(BJCl, Wt) = 1 iff VM(« ,g(wi)) = 1. 

Thus, once apin, it is possible to restate the truth-conditions for ideal 

belief in terms of schematic indices. 

Finally, as usual, valldity 1n a model of the type just described will be 

truth at all members of W and validity in a class of models Will be validity 

in all models in the class. 

Since the truth-conditions for both ideal and non-ideal belief wffs are 

stateable solely in terms of R, without appeal to non-standard indices, the 

elements of a Stal-SQC• + D model, w+ and w• are from a purely technical 

point of view dispensable. I.e., the elements W, Rand V are sufficient to 

give us a characteristic semantics for the Stal-Soc= + D systems as was 
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previously mentioned. However, the elements w+ and w• serve the pur

pose of formalizing on the model-theoretic front Rescher•s suuestion that 

belief can be rqarded as involving a relation between a believer at a world 

and a non-standard world such that if the believer is related to the right 

sort of non-standard world (viz., a superposed world), he may fa1l to con

Join beliefs or he may hold contradictory beliefs. Further, because the 

truth-conditions for belief wffs in terms o~ R which treat the connectives 

classically are more fundamental than and equivalent to the Reschertan 

truth-conditions for belief wffs in terms of non-standard worlds, any 

charge of equivocation with respect to the connectives for the non-standard 

worlds can be avoided. And in any case, the correspondins axiom-systems 

are non-deviant. 

Since from a technical point of view, the elements w+ and w• are dis

pensable, soundness and completeness results are immediate. However, 

we shall illustrate how the Rescherian element of the semantics validates 

the axiom-schema D, Bt« ~ Bor for the Stal-Sac- + D systems. Suppose 

that there is a Stal-SQCI + D model, <W,R, w+, w•,f,g, V> such that for 

some member of W, Wt and for some instance of Bt« ~ Bc:r, VM(BJG, Wf) • 

1 but VM(Ikl, Wt) • 0. On the supposlUon that VM(BJCX, Wt) • 1 then 

VM(G ,g(wt)) • 1. Then for all Wj such that WjRWj, VM(G, Wj) • 1. But 

if by supposition VM(Bor, Wt) • 0 then VM(G ,f(wt)) = 0 and hence, for any 

Wj such that wtRWj, VM(«, wJ) • 0 which contradicts our earlier result 

that for all Wj such that WtRWJ, VM(c:r, wj) • 1, given that R is serial. 

Q.E.D. 

In terms of completeness, for the canonical model M, W would as usual 

be a set of maximal consistent sets of wffs with the 3-property, WtRWj iff 
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(ex )(B1ex e w1 ;:, ex e Wj) and V( ex, wt) • 1 iff ex e wi. The fundamental 

theorem of canoncial models with V(ex, w1) • 1 iff ex e Wi as the basis is 

proven inductively for members of W. Further, any member of the set w+ 
f(wt) could be defined as {ex I Bcx e w1} and any member of w•, s(wt) 

could be defined as {ex I Brex e Wj}. Further, the fundamental theorem 

could be proven for members of V along the following lines: V M( ex ,f(wj)) 

• 1 tff VM(BCX J Wj) • 1 jff Bcx e Wf (given the fundamental theorem for 

members of W) tff ex e f(wt). Similar remarks apply to members of w•. 
Finally, the given canonical model is proven to be in the relevant class of 

models by showing the R is serial. 

And so, it has been argued that the Stal-SQC" + D systems provide us 

with logics of both the ideal and the non-ideal believer by construing the 

possibility operator as •x non-ideally believes that'. Further, we developed 

two types of characteristic semantics for these systems, both of which are 

attempts to make some sort of model-theoretic sense out of the notion that 

agents can hold contradictory beliefs in different contexts without thereby 

conjoining these beliefs. The semantics based on Stalnak.er•s suggestion 

attempted to make sense out of this sort of situation in terms of the idea 

that agents are capable of being in more than one belief state. On the other 

hand, the semantics based on Rescher•s suggestions attempted to make 

sense out of agents holding incompatible beliefs in different contexts by 

claiming that agents' 'belief worlds' (i.e. the worlds at which all and only 

the contents of the asents beliefs obtain) can be non-standard. 

However, the Stal-SQC• + D systems and their characteristic semantics, 

although providing us with logics of the non-ideal believer are such that 

even the non-ideal believer accepts all the logical consequences of what he 
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believes. ln short, such logics still assume that agents are logically omni

doxasttc. lt will be argued in the next section that this is the best we can 

do within the parameters of doxastic logics based on normal systems since 

any alterations to rid these logics of the omnidoxasttcity feature will res

ult in an equivocation with respect to the connectives. 

5. The Intractable Feature ot Logical omn1doxast1c1ty 

If our semantics for belief logic rests on the assumption that belief is 

a relation between a believer at an index and a standard 'alternative• index 

or a set of standard alternative indices (determined by some two place 

relation or function) such that the contents of one's beliefs are true at 

these alternatives, then this semantics will presuppose that any agent x 

will believe the logical consequences of (or whatever is logically equivalent 

to) what he believes. Thus, in this type of semantics all instances of the 

following are valid for either ideal or non-ideal belief (and we shall use 'B' 

here to denote both interchangeably): 

i) {Ba & l-ex => ') => B' 
tt) {Bar & l-ex a ') , B' 

And the corresponding derived rules of inference preserve validity: 

iii) I-« :) ' - 1-Ba :) ., 

iv) 1-« = ' 1-BGr = 8' 
The explanation of this runs as follows: Any index which is logically 

possible or •standard' or 'normal' will be such that it is closed under impli

cation. Further, (supposing soundness), any thesis- impltcational or 
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otherwise will be true at any standard tndex. Thus, any belief alternative 

or any member of a beltef state (whtch can be regarded as a set of alter

natives to a pven index) will be such that it is closed under implication 

and will be such that every thesis is true. Now, suppose some agent x 

believes that Cl at an index Wt in which case Cl will be true at the appro

priate alternatives- or at all members of some belief state. Then since 

every alternative is closed under implication and pven that all implica

ttonal theses are true at each alternative, it follows that for any wff p 
such that I-ce ::) ' or I-ce • ,, ' will also be true at each relevant altern

ative. Then x will also believe that '· This is so whether we treat belief 

as analogous to necessity or to possibUty. 

The problem of lopcal omn1doxasttc1ty for a relational semantics for 

belief becomes even more acute if we consider the case of belief with res

pect to lopcal truths or truths of mathematics. Since any logical truth or 

truth of mathematics will be true at every normal index in a model, then 

all these truths will obtain at any alternative assigned to (a typical bel

iever at) an index. Then if belief is understood as a relation between a 

believer at an index and an alternative or set of alternatives, every bel

iever will believe all the truths ot logic and mathematics, whether or not 

the asent has entertained any such truth. Further, the asent will believe 

all the consequences of some truth of logic which he believes, since they 

themselves will be logical truths and therefore true at all the same indices. 

If logical omnidoxasticity is found to be objectionable then we may 

wish to rethink our views concerning the relata of belief alons the follow

ins lines: We could resard belief as a relation between the 'typical' agent at 

an index and some non-st.and.Jrd possible world or index, or a set of such 

http:non-st.and.rd
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indices or a set of both normal and non-normal indices. These non-stand

ard alternatives would involve a redefinition of ';::)' since either detachment 

would not bold or the relevant tmpUcattonal thesis would turn out to be 

false at such Indices. But as was argued in chapter five, tbts move invites 

disaster since we can be charged with equivocation with respect to the con

nective '=»' given that it is defined non-classically for non-standard indices. 

Purtber, the ploy of optins for defintns •,• in terms of its role in infer

ence does not escape the cbarse of equivocation since its hehalvour will 

be deviant- at least for dox•stic contexts, if tbe appropriate instance of 

(BCIC & 1-cr ;::) ') ;::) 8' is rendered underivable. In short, any alteration to 

tbe axiom-system such that some instance of the omnidoxasticity schema 

is underivable simply mirrors the equivocation with respect to ';:,' in the 

semantics. If '=»' is classical, then it can misbehave neither for doxastic 

nor for non-doxastic contexts. Therefore, the enterprise of altering the 

axiom-system such that some instance of the omnidoxasticity schema is 

rendered underivable is baide the point. 

Granted, the n(JIJ-/d#41 adjunction and consistency schemata can be 

rendered underivable for doxastic logics without risk of equivocation only 

because this tact involves reconstruing alethic possibility as 'x non-ideally 

believes that'. There are no alterations made to the given axiom-system 

such that any of the connectives-, v, &, , and • misbehave in doxastic 

contexts. The resulting logic is non-deviant. Further, even if we construe 

alethic possibility as non-ideal belief, the resulting system retains the 

omnidoxasticity feature with respect to non-ideal belief. Thus, the only 

way to rid the axiom-system of the omnidoxasttctty feature would be to 

redefine the inferential role of ';::)' for doxastic contexts, which once more 
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leaves us open to the charse of equivocation 

And so, if we wish to avoid the charse of equivocation with respect to 

•::>• while retaining a normal system (and its correspondins relational sem

antics) as our quantified doxastic logic then the hest we can do, it would 

seem, is to attempt to make the omnidoxasticity feature of the semantics 

more palatable, philosophically. 

For example, Stalnaker in a number of places49 has tried to make omni

doxasticity with respect to mathematical or logical truths more palatable 

as follows: He claims that if an asent apparently fails to believe some 

mathematical truth which is losically implied by (and logically implies) 

any mathematical truth he already believes, what is really goins on is that 

the asent simply does not recognize that the sentence he is considering ex

presses a mathematical truth. Thus, if he believes one mathematical truth 

he believes them all, but he may fail to believe that some sentence or other 

expresses any given truth: 

The apparent failure to see that a proposition is necessarily true or 
that propositions are necessarily equivalent, is to be explained as the 
failure to see what propositions are expressed by the expression in 
question. eo 

A consequence of this vtew is that the objects of mathematical investigation 

are twofold, viz., the D#Cti'SUry proposition expressed by all true math

ematical expressions and secondly the propositions having to do with the 

relationship between mathematical expressions and the proposition they 

express. 51 When asents fail to recognize that two mathematical truths are 

equivalent, the source of this failure will be the latter objects of study. 

<49 For example, see Stalnat.er ( 1976) and Stalneker (1984), the end of chapter four. 
SO Stalnaker (1984), p. 84. 
51 Stalnaker (1984), pp. 84-85. 
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As stalnak.er recosmzes, a feature of this view is that the objects of 

mathematical inquiry turn out to be contingently true propositions, viz., 

those propositions expressing the connections between mathematical expres

sions and. the necessary proposition- and. these relations may vary from 

world. to world. or from context to context. 

In the case of omnidoxasticity with respect to non-mathematical belief, 

such as the William 111 case mentioned in chapter one, Stalnak.er•s strategy 

is to admit that William 111 does not believe that England could avoid a nuc

lear war with Prance, although in some sense of acet~plance, he accepts 

this. (This is how Stalnak.er exploits his distinction between belief and 

acceptance.) Thus, it may not be a defining condition of belief states that 

they are closed under logical consequence- i.e., we cannot characterize 

belief states simply as sets of worlds. For example, we may require that 

x believes that a U « 1s true at all worlds in some belief state and if the 

agent has entertained this content - or understood it. 52 The problem with 

this move is that Stalnak.er is departing from a possible worlds approach 

to belief rather than making the omnidoxasticity feature of such an ap

proach more palatable. 

Finally, although the problem of logical omnidoxasticity is intractable 

for relational indexical semantics of belief, there is one advantage which 

our Stalnak.erian semantics for the Stal-sQC= + D systems in terms of belief 

states has over the other approaches, viz., that if an agent is in more than 

one belief state then he may fail to conjoin his beliefs. Thus, suppose that 

1-(a & ') ;:, Q, where Q is any statement. In a Stalnak.erian belief state 

semantics, x may believe that a and x may believe that ' and yet he may 

not believe their conjunction. And so x may fail to believe that Q. But in a 

52tbld. p. 89. 
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semanUcs such that aaents believe the conjunction of what they believe, 

the agent in believing that a and that ' would also end up believing that Q. 

Thus, even though aae'bts are omnidoxastic they in some sense believe 

'less'. Also, in this type ot semantics although 1-(a & -a) ;:, Q where Q is 

any statement, if x believes that a and that -a , he will not thereby bel

ieve everything. Similar remarks apply to our Rescherian semantics for 

the sta1-soc== + D systems. 
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conclusion 

An attempt has been made in this dissertation to salvage the enterprise 

of basing first-order doxastic logic on normal alethic modal logic by coun

tering one of the major objections to this prosram. I.e., if we construe 

the alethic necessity operator as •x believes that' then the resulting logics 

characterize the 'ideal' believer who believes all the consequences of what 

he/she believes, who conjoins his/her beliefs and who never holds inconsis

tent beliefs. But various counterexamples cited in the literature indicate 

the need for a logic embodying principles of belief attribution for the bel

iever who is non-ideal. We have argued that normal doxastic logics do 

just that if we construe the alethic possibility operator as 'x non-ideally 

believes that• since possib111ty does not factor out of conjunction for normal 

systems and further given that -(MCI & M-cc ) is not a thesis-schema for 

normal systems. The omnidoxasttcity feature is retained for non-ideal 

belief although this feature is mitigated given the failure of non-ideal belief 

to factor out of conjunction. 

More specifically, our final proposal for a set of first-order logics of the 

non-ideal believer are the Stal-SQC::: systems of doxastic logic. These logics 

can be thought of as embodying principles of belief attribution for the non

ideal as well as the ideal believer by construing the necessity operator as 

•x idetally believes that' and such that the possibility operator is construed 

as 'x non-idet~Jly believes that'. Two types of characteristic semantics 
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were considered, viz., a relational semantics formalizing Stalnaker's notion 

of agents' being capable of being in more than one belief state and a rel

ational semantics based on Rescher's proposal that belief is a relation ob

taining between a believer at an index and some non-standard index. 

A more promising set of emendations to the Sub-sQC= systems discussed 

in chapter four resulting in logics characterizing the non-ideal believer is 

the set of non-normal logics called the Sub-SOC:Q systems. These systems 

not only get rid of the adjunction and consistency features of the Sub-SOC: 

+ D systems, but in addition they render underivable an infinity of ins

tances of the omnidoxasticity schemata. These results are achieved vis a 

vis Rantala 's proposal to restrict for normal systems the doxasttc version of 

the rule of necessttation to some recursive subset of the set of wtts. How

ever, it is when we come to consider the corresponding impossble index 

semantics for these systems that the following difficulty becomes evident: 

At non-normal indices, the connectives behave non-standardly in which 

case, we are equivocating with respect to these connectives in the seman

tics. For example, classical conjunction cannot misbehave and remain 

classical. 

Further, the strategy of defining the connectives in terms of their roles 

in inference 1n the corresponding axiom-systems does not circumvent the 

charge of equivocation- assuming that dox,astic contexts are also relevant 

in determining the roles of-, v, &, :::) and • in inference. If we are right 

here, then any attempt at altering normal axiom systems where the neces

sity operator is construed as 'x (non-ideally) believes that' such that any 

instances of the adjunction, consistency or omnidoxasticity schemata are 

rendered underivable will involve an equivocation with respect to one or 
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more of the connectives, thereby being entirely beside the point with 

respect to the problem of deduction. 

The Stal-sac• (+D) systems do not equivocate with respect to the 

connectives since the elimination of the ad.junction and consistency features 

for non-ideal belief is not achieved by altering the role of the connectives in 

doxastic contexts. Further, in the Stalnakerian semantics proposed for 

these systems, the connectives behave classically at indices which are the 

elements of belief states. The Rescherian semantics in terms of superposed 

and schematic indices could initially be charged with equivocation with 

respect to the connectives -, & and ;:, for super.PtJ$ed indices. However, on 

closer inspection, superposed indices are formed by 'world-fusion' on 

standard indices where the connectives behave classically. Thus, 1t could 

be countered that in terms of the semantics, the connectives are definable 

in terms of their behaviour at standard indices out of which superposed 

indices are 'fused'. 

The Stai-sac= axiom-systems are therefore our final word on the pro

blem of deduction. The omnidoxasticity feature is intractable for these sys

tems since any attempt to rid them of this characteristic would involve 

altering the role of ';:,' in non-ideal belief contexts, thereby resulting in an 

equivocation with respect to these connectives. The corresponding move 

in the semantics would involve the introduction of Rantalian non-normal 

indices- such that ';:,' behaves non-standardly. However, the omnidox

asticity feature of our Stal-soc= systems will not have as a consequence 

that an agent who believes that a and who also believes that -a thereby 

ends up believing everything, even though a & -01 logically implies Q such 

that Q is any statement. J'his is owing to the fact that these logics do not 
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presuppoH that agents always conjoin their beliefs. .And in fact, the Stal

sac= systems of doxastic logic can be regarded as accomodating the Kripke 

puzzle along the following lines: Although puzzling Pierre believes that 

London is pretty and he believes that London is not pretty, he does not 

thereby end up believing everything since he presumably does not conjoin 

these beliefs. 

Pinally, the Stal-soc=' systems of doxastic logic also provide elegant 

ways of handling some of the problems associated with quantified doxastic 

systems, viz., the problem of quantifying in and the apparent failure of 

the substitutivity of co-referentials for belief contexts. Pirst, the quanti- · 

tiers are construed substi'tutiOIZilJJy in the corresponding semantics, which 

therefore circumvents the problem of quantifying into doxastic construc

tions. Por example, if Jones believes (ideally or non-ideally} that the next 

Liberal leader will be in favour of balancing the budget, we are warranted 

in inferring that some substitution instance of 'Jones believes that x will be 

in favour ot balancing the budget' is true. Thus, unlike Hintikka's proposed 

solution to the problem of quantifying in which appeals to the traditional 

relational/notional distinction, no such distinction is necessary for the Stal

SQC"" systems. 

Along Pregean lines, all belief constructions (ideal or non-ideal} are 

unambiauously oblique for these systems in the sense that co-referentials 

are not unrestrictedly substitutible for belief contexts. Only if the agent 

believes that the relevant identity obtains, is subtitution warranted. And 

this is the solution to the substitutivity problem afforded by the Stal-SQc= 

systems. What is elegant about the solutions to the substitutivity problem 
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and to the problem of quantifying in provided by the Stal-sQC= systems as 

opposed to the Hin-soc= systems is that tn the former case, only one type 

of belief context for both ideal and non-ideal belief is posited. Granted, 

we have embraced our own dichotomy between ideal and non-ideal belief 

although the payoff of making such a distinction is a partial solution to 

the problem of deduction tor first-order belief logic. 

In addition, the semantics characterizing the Stal-soc= systems is 

metaphysically less problematic than the 'correlate' semantics character

izing the Hin-soc= systems. Domains of individuals are dispensed with in 

the truth-value semantics characterizing the Stal-SQc= systems thereby 

avoiding the problem of having to make intuitive (and not just model

theoretic) sense of the notion of 'correlates'. 
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