

CANADIAN THESES ON MICROFICHE

I.S.B.N.

THESES CANADIENNES SUR MICROFICHE

National Library of Canada
Collections Development Branch

Canadian Theses on
Microfiche Service

Ottawa, Canada
K1A 0N4

Bibliothèque nationale du Canada
Direction du développement des collections

Service des thèses canadiennes
sur microfiche

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ
MICROFILMÉE TELLE QUE
NOUS L'AVONS REÇUE

DISSOLUTION OF HIGH MELTING POINT ADDITIONS
IN LIQUID STEEL

by

STAVROS A. ARGYROPOULOS

A thesis submitted to the Faculty of Graduate Studies
and Research in partial fulfillment of the
requirements for the degree of Doctor
of Philosophy in Metallurgy

Department of Mining and Metallurgical Engineering
McGill University

August 1981

ITHAKA

When you set out for Ithaka
pray that your road's a long one,
full of adventure, full of discovery.
Laistrygonians, Cyclops,
angry Poseidon—don't be scared of them:
you won't find things like that on your way
as long as your thoughts are exalted,
as long as a rare excitement
stirs your spirit and your body.
Laistrygonians, Cyclops,
wild Poseidon—you won't encounter them
unless you bring them along inside you,
unless your soul raises them up in front of you.

Pray that your road's a long one.
May there be many a summer morning when—
full of gratitude, full of joy—
you come into harbors seen for the first time;
may you stop at Phoenician trading centers
and buy fine things,
mother of pearl and coral, amber and ebony,
sensual perfumes of every kind,
as many sensual perfumes as you can;
may you visit numerous Egyptian cities
to fill yourself with learning from the wise..

Keep Ithaka always in mind.
Arriving there is what you're destined for.
But don't hurry the journey at all.
Better if it goes on for years
so you're old by the time you reach the island,
wealthy with all you've gained on the way,
not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.
Without her you wouldn't have set out.
She hasn't anything else to give.

And if you find her poor, Ithaka won't have fooled you.
Wise as you'll have become, and so experienced,
you'll have understood by then what an Ithaka means.

C. P. Cavafy (1863-1933).

ABSTRACT

The kinetics of dissolution of titanium and vanadium in liquid steel has been studied. Two periods were distinguished: the steel shell period and the free dissolution period.

In the case of titanium, it is shown that the customary frozen shell of steel encases the cylinder following its initial immersion. Premature internal dissolution then begins as a result of liquid eutectic of $Fe_{0.3} Ti_{0.7}$ composition forming at the inner steel shell boundary. This phenomenon triggers an exothermic dissolution and erosion of the inner steel shell. The net result is considerable shortened shell melting times. During the free dissolution period, the temperature of the titanium dissolving at the interface increases and the dissolution process becomes self-accelerating.

During the steel shell period with pure vanadium and ferrovanadium alloys, no reaction was observed between the steel shell and vanadium. For low grade ferrovanadium alloys, the dissolution proceeds via a heat transfer mechanism. On the other hand, for high grades, ferrovanadium mass transfer mechanisms dominate.

A simplified mathematical model of the process has been developed to describe the coupled heat and mass transfer phenomena involved in the various systems studied.

RESUME

La cinétique de dissolution du titane et du vanadium dans l'acier liquide a été étudiée. Il a été distingué deux périodes: la période de la coquille d'acier et la période de la dissolution libre.

Dans le cas du titane, il a été montré que l'habituelle coquille d'acier solidifiée enferme le cylindre immédiatement après son immersion. Une dissolution prématuée de la partie interne se produit consécutive à la formation d'un liquide eutectique de composition $Fe_{0.3} Ti_{0.7}$ sur la face interne de la coquille d'acier. Ce phénomène déclenche une dissolution exothermique et une érosion de l'intérieur de la coquille d'acier. Il en résulte des temps de dissolution de la coquille considérablement plus court. Pendant la période de dissolution libre la température du titane se dissolvant à l'interface s'accroît et le processus de dissolution devient auto-accéléré.

Pendant la période de la coquille d'acier avec du vanadium pur et des alliages de ferro-vanadium, il n'a été observé aucune réaction entre la coquille d'acier et le vanadium. Pour des alliages de ferro-vanadium faiblement alliés, la dissolution passe par un mécanisme de transfert de chaleur. Par contre, pour des alliages de ferro-vanadium fortement allié, le mécanisme de transfert de masse prédomine.

Un modèle mathématique simplifié du processus a été développé permettant de décrire simultanément le phénomène de transfert de masse et de chaleur concernant les divers systèmes étudiés.

TABLE OF CONTENTS

	Page
ITHAKA.	1
ABSTRACT.	ii
RESUME.	iii
LIST OF FIGURES	ix
LIST OF TABLES.	xviii
CHAPTER 1. INTRODUCTION	1
1.1 PRELIMINARY REMARKS	1
1.2 ALLOY STEELS.	1
1.3 PRESENT WORK.	3
CHAPTER 2 PREVIOUS WORK.	4
2.1 GENERAL CONSIDERATION	4
2.2 DISSOLUTION IN LIQUID IRON ALLOYS	5
2.3 THERMOPHYSICAL AND TRANSPORT PROPERTIES OF LIQUID IRON	23
2.3.1 Phase Diagram.	23
2.3.2 Density.	23
2.3.3 Viscosity.	25
2.3.4 Thermal Conductivity	25
2.3.5 Specific Heat and Latent Heat of Fusion. .	26
2.3.6 Diffusivity.	26
2.4 THE IRON-TITANIUM PHASE DIAGRAM	28
2.5 THERMODYNAMIC PROPERTIES OF IRON-TITANIUM ALLOYS. .	28
2.6 THE IRON-VANADIUM PHASE DIAGRAM	30
2.7 THERMODYNAMIC PROPERTIES OF IRON-VANADIUM ALLOYS. .	32
CHAPTER 3 EXPERIMENTAL	34
3.1 INTRODUCTION.	34
3.2 CYLINDER IMMERSION EXPERIMENTS.	34
3.2.1 Materials.	37
3.2.2 Procedure for Adjusting Steel Bath Chemistry.	39
3.2.3 Procedure for Immersing Bath Thermocouple. .	41
3.2.4 Weight Sensor.	42

	Page
3.3 MICROPROCESSOR BASED DATA ACQUISITION SYSTEM	44
3.3.1 Hardware Aspects	49
3.3.2 Software Aspects	54
3.3.3 Calibration of Analog to Digital Converter	56
3.3.4 Calibration of Interrupt Timer	58
3.3.5 Signal Conditioning.	59
3.4 PROCEDURE FOR CYLINDER IMMERSION TESTS.	61
3.5 INDUCTION HEATING OF COMPOSITE SAMPLES.	62
3.6 CHEMICAL ANALYSIS	62
 CHAPTER 4 MATHEMATICAL MODEL	66
4.1 GENERAL EQUATIONS OF THE MODEL.	66
4.2 INITIAL CONDITIONS.	70
4.3 BOUNDARY CONDITIONS	72
4.3.1 Boundary Conditions and Equations for Titanium	72
4.3.2 Boundary Conditions for Vanadium	75
4.4 NUMERICAL MODEL	75
4.4.1 Assumptions Involved	76
4.4.2 Formulation of the Numerical Equations	77
4.4.3 Stability and Accuracy	92
4.4.4 Computer Model	93
4.5 COMPARISONS OF NUMERICAL MODEL PREDICTIONS WITH ANALYTICAL SOLUTIONS.	93
4.5.1 Case 1: Infinitely Long Cylinder Subjected to Sudden Temperature Change at Surface	94
4.5.2 Case 2: Infinite Cylinder with Heat Generated Within It.	96
4.5.3 Case 3: Exact Solution of Freezing Boundary with Cylindrical Symmetry	97
4.6 NATURAL CONVECTION FROM VERTICAL CYLINDERS.	102
4.6.1 Laminar Flow	102
4.6.2 Turbulent Flow	104
4.7 HEAT TRANSFER MODEL FOR ESTIMATION OF A CYLINDER'S THERMAL CONDUCTIVITY	105
 CHAPTER 5 RESULTS AND DISCUSSION OF TITANIUM DISSOLUTION IN LIQUID STEEL	106
5.1 INTRODUCTION.	106
5.2 TITANIUM THERMAL CONDUCTIVITY AT ELEVATED TEMPERATURES.	107

	Page
5.3 REACTION AT THE STEEL SHELL AND TITANIUM INTERFACE	108
5.4 INTERPRETATION OF DATA FROM THE DISSOLUTION EXPERIMENTS	119
5.4.1 Tests for Consistency of Results	126
5.4.2 Accuracy of the Method	127
5.5 APPLICATION OF THE MATHEMATICAL MODEL	128
5.5.1 Estimation of Internal Heat Generation During Steel Shell Period	128
5.5.2 Estimation of Heat Generation During the Free Dissolution Period	132
5.6 STEEL SHELL PERIOD	135
5.7 FREE DISSOLUTION PERIOD	142
5.8 THE INFLUENCE OF OXYGEN ON DISSOLUTION KINETICS	150
5.9 DISCUSSION	150
 CHAPTER 6 RESULTS AND DISCUSSION ON VANADIUM DISSOLUTION IN LIQUID STEEL	165
6.1 INTRODUCTION	165
6.2 VANADIUM DISSOLUTION IN LIQUID STEEL	165
6.2.1 Tests with Pure Vanadium	165
6.2.2 Tests with Different Ferro-Vanadium Grades	172
6.3 INTERPRETATION OF DATA	172
6.4 DISCUSSION	177
 CHAPTER 7 CONCLUSIONS	184
CHAPTER 8 FUTURE WORK	187
CHAPTER 9 CLAIM TO ORIGINALITY	188
ACKNOWLEDGEMENTS	189
 APPENDIX I	190
PART 1: TYPICAL RESULTS OF THE SECOND SET OF TITANIUM IMMERSION TESTS	190
PART 2: QUALITATIVE SIMULATION OF TITANIUM DISSOLUTION IN LIQUID STEEL USING A CALCOMP 663 DIGITAL PLOTTER	199

APPENDIX II TRANSFORMATION OF PARTIAL DIFFERENTIAL EQUATIONS INTO THE FINITE DIFFERENCE EQUATIONS	207
APPENDIX III ESTIMATION OF EXOTHERMIC HEATS OF MIXING AND TITANIUM MASS TRANSFER COEFFICIENT DURING STEEL SHELL PERIOD	209
APPENDIX IV LIST OF PROGRAMS	211
PART 1 PROGRAM KINET.	211
PART 2 PROGRAM TEMP	221
PART 3 PROGRAM OFFSET	223
PART 4 PROGRAM GAIN	225
PART 5 PROGRAM DISSOLUTION.	227
REFERENCES	240

LIST OF FIGURES

	Page
Figure 2.1 Schematic representation of the thermo-physical phenomena which take place when a solid addition is immersed in liquid steel	6
Figure 2.2 Cross section of a ferromanganese cylinder immersed for 30 seconds in a steel bath with an initial superheat 30°C	20
Figure 2.3 Schematic representation of the 'double heat effect' which is imposed on the frozen steel shell.	22
Figure 2.4 The iron-carbon phase diagram	24
Figure 2.5 The iron-titanium phase diagram	29
Figure 2.6 The iron-vanadium phase diagram	31
Figure 2.7 Heat of mixing iron and vanadium at different temperatures (K).	33
Figure 3.1 The induction furnace with its controls . . .	36
Figure 3.2 Titanium cylinder	40
Figure 3.3 Vanadium cylinder	40
Figure 3.4 Steel bath thermocouple	43
Figure 3.5 Weight sensor	43
Figure 3.6 Schematic representation of induction furnace cross section with bath and one cylinder thermocouple and the weight sensor	45

	Page
Figure 3.7 Schematic representation of induction furnace cross section with bath and two cylinder thermocouples and the weight sensor.	46
Figure 3.8 Schematic layout of the data acquisition system	47
Figure 3.9 A) Microprocessor, A/D converter, flopp disk B) Plotter, CRT, Modem	48
Figure 3.10 An overview of the boards of the micro-processor.	50
Figure 3.11 The analog input board with the A/D converter	50
Figure 3.12 Motorola assembler statements which are needed in order for the computer to perform an analog-to-digital conversion	52
Figure 3.13 Flow chart of the program KINET.	55
Figure 3.14 Typical conversational session	57
Figure 3.15 Schematic layout of a low pass filter. . . .	60
Figure 3.16 Schematic cross-section of the composite sample parallel to the cylinder vertical axis. . . .	63
Figure 3.17 Composite sample placed in an induction coil	64
Figure 4.1 Schematic representation of typical melting situation denoting the various interfaces and coordinate systems used in the mathematical model. . .	69

Figure 4.2 Schematic cross section of a dissolving titanium cylinder showing positions, boundaries, and coordinate system chosen for developing the mathematical model	71
Figure 4.3 Diagram of heat transfer model showing location of nodal points	78
Figure 4.4 Schematic representation of the movement of the steel shell-liquid steel interface.	81
Figure 4.5 Schematic representation of the linear interpolation between the temperature of the steel shell-liquid interface $\theta_{M.P.Fe}$ and the temperature of nodal point N (θ_N)	83
Figure 4.6 A schematic representation of the steel shell interface for a steel shell thickness of less than D_x units.	88
Figure 4.7 A schematic representation of the steel shell interface when the steel shell exceeds D_x units in thickness	90
Figure 4.8 Temperature distribution at various times in a cylinder of radius a with zero initial temperature and surface temperature θ_a . The solid lines show the results of analytical solution (i.e. equation 4.43). The points depict results of the numerical model. The numbers on the curves are the values of $T = kt/a^2$	95

Figure 4.9 Temperature distribution at various times in a cylinder of radius a with zero initial and surface temperatures, and a constant rate of heat generation. The solid lines show the results of analytical solution (i.e. equation 4.46). The points depict results of the numerical model. The numbers on the curves are the values of $T = kt/a^2$ 98

Figure 4.10 The solid lines show results of analytical solution (i.e. equation 4.49). The points depict results of the numerical model. The numbers on the curves are values of Q in cal s^{-1} for the continuous line source (i.e. equation 4.52) 101

Figure 5.1 1) Measured temperature at a point close to the cylinder's edge; 2) Predicted temperature at the centerline; 3) Measured temperature at the centerline. Edge thermocouple 1.35 cm from the centerline 109

Figure 5.2 1) Measured temperature at a point close to the cylinder's edge; 2) Predicted temperature at the centerline; 3) Measured temperature at the centerline. Edge thermocouple 1.1 cm from the centerline. Cylinder diameter 3.81 cm 110

Figure 5.3 The dotted lines 1a and 1b show the scatter existing in the literature on thermal conductivities of titanium. Line 2 depicts the recommended values by Ho et al.⁵⁰ The curve 3 shows present results. . 111

Figure 5.4 Cross section of a titanium cylinder (2.54 cm diameter) with surrounding steel shell and the reaction zone sandwiched in between.	112
Figure 5.5 Temperature versus time curve for inductively heated composite sample input power 9 (kw).	114
Figure 5.6 Temperature versus time curve for inductively heated composite sample	115
Figure 5.7 Two composite samples 1) after reaction, 2) before reaction	116
Figure 5.8 Schematic representation of forces which are applied to load cell	120
Figure 5.9 Results from a typical titanium dissolution experiment in liquid steel. Cylinder diameter 5.08 cm and 20 cm in length.	122
Figure 5.10 Measured steel bath temperature during a typical dissolution experiment	125
Figure 5.11 Measured and predicted temperatures in a 2.54 cm diameter cylinder.	130
Figure 5.12 Titanium cylinders 2.54 cm in diameter immersed in steel bath of initial temperature 1580°C (1853 K) for different time periods.	136
Figure 5.13 Experimental and predicted results obtained from the first set of immersion tests.	138
Figure 5.14 Titanium cylinders 1.905 cm immersed in steel bath	140

Figure 5.15 Experimental and theoretical results obtained from the second set of immersion tests. . . . 141

Figure 5.16 Cross sections of titanium cylinders 3.81 cm in diameter immersed in steel bath from the third set of immersion tests 143

Figure 5.17 Experimental and theoretical results obtained from the third set of immersion tests 144

Figure 5.18 Cross sections of titanium cylinders 3.81 cm in diameter immersed in steel bath 145

Figure 5.19 Experimental and theoretical results obtained from the fourth set of immersion tests. . . . 146

Figure 5.20 Predicted cylinder radius for a typical titanium dissolution experiment. 147

Figure 5.21 Results from titanium dissolution experiment. Cylinder diameter 2.54 cm. Steel bath oxygen content 600 ppm 152

Figure 5.22 Results from titanium dissolution experiment. Cylinder diameter 2.54 cm. Steel bath oxygen content 350 ppm 153

Figure 5.23 Logarithm of mass transfer coefficient versus reciprocal of absolute temperature. 162

Figure 5.24 Predicted total dissolution times versus diameter for different steel bath temperatures 164

Figure 6.1 Test #1. Results of a vanadium dissolution experiment in liquid steel cylinder 2.48 cm diameter length 20 cm. 166

	Page
Figure 6.2 Test #2. Results from a vanadium dis- solution experiment in liquid steel. Cylinder diameter 2.61 cm, length 20 cm	169
Figure 6.3 Test #3. Results from a vanadium dis- solution experiment in liquid steel. Cylinder diameter 1.36 cm, length 17.5 cm	170
Figure 6.4 Test #4. Results from a vanadium dis- solution experiment in liquid steel. Cylinder diameter 1.38 cm, length 1.40 cm	171
Figure 6.5 50% ferrovanadium cylinder diameter 2.54 cm, 20 cm length	173
Figure 6.6 Dynamics of dissolution of pure vanadium in liquid steel	176
Figure 6.7 Logarithm of experimental mass transfer coefficients for vanadium versus the reciprocal of absolute temperature	178
Figure 6.8 Predicted melting/dissolution times required for 2.54 cm diameter cylinders of ferrovanadium to dissolve into a steel bath at 1600°C (1873 K) versus ferrovanadium grade.	183
Figure I-1 Results from a titanium dissolution experi- ment in liquid steel. Cylinder diameter 3.81 cm and 20 cm in length.	191
Figure I-2 Predicted cylinder radius versus time for the experimental results presented in Figure I-1 . .	192

	Page
Figure I-3 Results from a titanium dissolution experiment in liquid steel. Cylinder diameter 5.08 cm and 22 cm in length.	193
Figure I-4 Predicted cylinder radius versus time for the experimental results presented in Figure I-3 . .	194
Figure I-5 Results from a titanium dissolution experiment in liquid steel. Cylinder diameter 2.54 cm and 21.0 cm in length.	195
Figure I-6 Predicted cylinder radius versus time for the experimental results presented in Figure I-5 . .	196
Figure I-7 Results from a titanium dissolution experiment in liquid steel. Cylinder diameter 3.81 cm and 21 cm in length.	197
Figure I-8 Results from a titanium dissolution experiment in liquid steel. Cylinder diameter 2.54 cm and 20 cm in length.	198
Figure I-9 Time $t = 0$. Prior to immersion	200
Figure I-10 Time $t > 0$. Immediately after immersion steel freezes around the cylinder.	201
Figure I-11 Reaction starts at the steel shell/titanium interface.	202
Figure I-12 The thickness of the steel shell and reaction zone increases.	203
Figure I-13 The thickness of the steel shell and reaction zone continues to increase.	204
Figure I-14 Steel shell starts melting back. The reaction zone becomes thicker.	205

Figure I-15 Steel shell disappears and free dissolution starts.

206

LIST OF TABLES

	Page
Table 2.1 Additions with Melting Range Lower than the Liquid Steel Melting Point	7
Table 2.2 Additions with Melting Range Higher than Liquid Steel Melting Point	8
Table 2.3 Dissolution Experiments in Liquid Iron Alloys.	10
Table 2.4 Dissolution Experiments in Pure Liquid Iron or Low Carbon Liquid Iron Alloys	14
Table 3.1 Thermal and Physical Properties of Titanium Vanadium and Armco Iron.	38
Table 5.1 Reaction Zone Analysis	118
Table 5.2 Heat and Mass Fluxes at Discrete Time Intervals During the Free Dissolution Period	151
Table 5.3 Estimated Heat and Mass Fluxes during Steel Shell Period and Free Dissolution Period	154
Table 5.4 Mass Transfer Coefficients Experimentally Measured and Predicted for Titanium.	158
Table 5.5 Average Temperature Versus Average dr/dt	160
Table 6.1 Experimental and Predicted Mass Transfer Coefficients for Vanadium.	175

1

CHAPTER 1

INTRODUCTION

1.1 PRELIMINARY REMARKS

In recent years, the process of steel alloy development has greatly benefited from the large amount of research carried out in that area. This research has led to a much improved appreciation of the relationship between micro-structure and mechanical properties, so that new alloy steels can now be developed on the basis of reasonably well understood metallurgical phenomena from the physical metallurgy viewpoint. However, at the refining stage of the alloy steel-making route, very little is known particularly on the solution rates and solution mechanisms of solid additives in raw steel. A thorough understanding of the solution mechanisms and their kinetics is of clear importance from both the academic and industrial points of view.

1.2 ALLOY STEELS

The steels whose characteristic properties are due to some element other than carbon are called alloy steels. Although manganese and silicon are included in all plain carbon steels, they are not classified as alloy steels since the principal function of dissolved manganese and silicon is to act as deoxidizers.

There are many reasons for the addition of alloying elements into liquid steel. Some of the most important are to:

- 1) improve strength at ordinary temperatures;
- 2) improve mechanical properties at either high or low temperatures;
- 3) increase hardenability;
- 4) improve toughness at any minimum hardness of strength;
- 5) increase corrosion resistance;
- 6) increase wear resistance;
- 7) improve magnetic properties.

In the present study, the dissolution of titanium and vanadium in liquid steel was investigated. Some of the effects of titanium in alloy steels are that it:

- 1) reduces martensitic hardness and hardenability in medium-chromium steels;
- 2) prevents formation of austenite in high-chromium steels;
- 3) prevents localized depletion of chromium in stain-less steel during long heating.

Vanadium is the most expensive of the common alloying elements. Some of the effects of vanadium in alloy steels are that it:

- 1) elevates coarsening temperature of austenite (promotes fine grain structure);
- 2) increases hardenability (when dissolved);
- 3) resists tempering and causes marked secondary hardening;
- 4) promotes carbide formation.

1.3 PRESENT WORK

The present work is concerned with a study of the dissolution of titanium and vanadium in liquid steel. The experimental method presently used involved the measurement of dissolution rates of cylindrical-shaped specimens immersed in stagnant steel baths.

The dissolution behaviour of these objects was carefully monitored through continuous measurement of various physical parameters. These comprised:

- 1) the apparent weight of the specimen;
- 2) temperatures of the specimen at various positions;
- 3) the temperature of the steel bath.

For some specimens measurement of the steel shell thicknesses were also taken. A mathematical model was developed to predict the rate of dissolution of titanium and vanadium in liquid steel.

CHAPTER 2

PREVIOUS WORK

In this chapter, previous work reported in the literature concerning studies of dissolution kinetics in liquid iron and iron-carbon alloys is reviewed. A discussion of the thermo-physical and transport properties of iron and low carbon iron alloys is also included with respect to thermodynamic data and phase diagrams relevant to this study.

2.1 GENERAL CONSIDERATIONS

The solution of a solid in a liquid represents a classical example of a heterogeneous process. Although most such processes involve a rather complex set of individual reaction steps, there are certain elementary aspects which are common to a wide range of reactions.

The transfer of material from a solid to liquid can be characterized as melting or as dissolution. The first occurs by application of heat, while the latter happens when the solid material comes in contact with the liquid at temperatures below the melting point of the solid. The dissolution process may be broken into two consecutive steps. The first is the surface reaction where the solid goes through a phase change to the liquid. The second is the transport of the resulting solute atoms from the interface into the bulk liquid by diffusion through a boundary layer. Either step could be rate-

controlling in the dissolution process.

Additions in liquid steel can be classified into two categories. The first are those with a melting range lower than that of liquid steel. Table 2.1 gives a list of such additions. The second category of additions are those with melting ranges higher than that of liquid steel. Examples of some of these additions are listed in Table 2.2. Figure 2.1 shows, in schematic form, the relevant thermophysical phenomena which take place when a solid addition is immersed in a bath of molten steel. The first four routes refer to low melting range additions while the fifth one depicts the case of dissolution of high melting point additions. Routes 1, 2, 3 and 5 are analyzed in a work by Guthrie⁴⁵, while route 4 is presented in great detail by the present author and Guthrie in references 46, 47.

2.2 DISSOLUTION IN LIQUID IRON ALLOYS

Extensive studies on the kinetics of dissolution of solid materials in liquid iron-carbon melts have been conducted over the past twenty-five years. The great majority of these experiments were done in either high carbon iron alloy melts or carbon saturated iron alloy melts. Far fewer experiments have been conducted in low carbon and relative pure iron alloy melts.

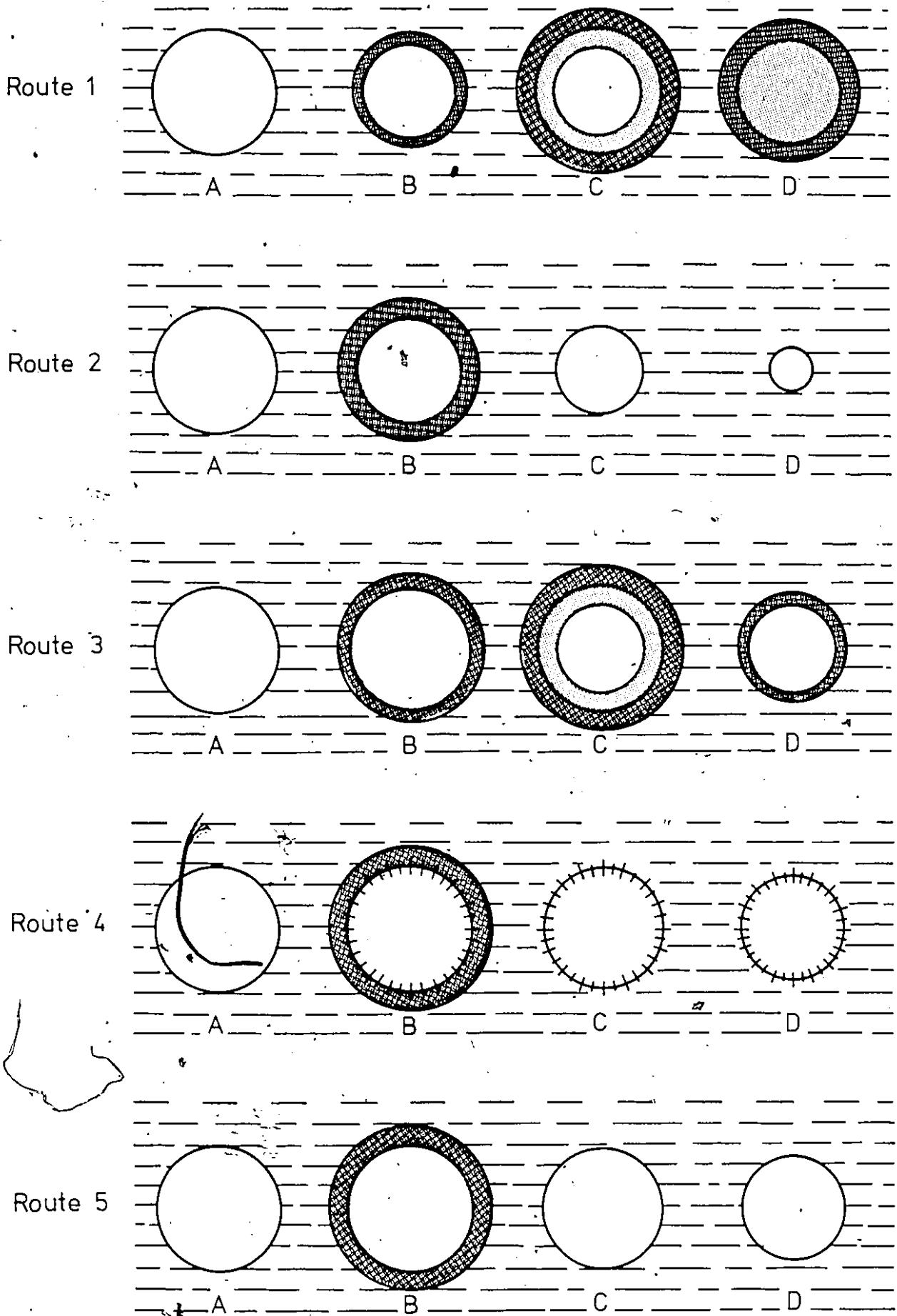


Figure 2.1 Schematic representation of the thermophysical phenomena which take place when a solid addition is immersed in liquid steel.

Routes 1, 2, 3 refer to low melting range additions. Route 4 corresponds to additions which exhibit exothermic reaction with liquid steel. Route 5 refers to high melting range additions.

Route 1 (1C) internal melting to begin and in many cases to be completed (1D) before the enclosing shell melts back. Typical examples Fe-Mn, SiMn, Al, at low steel bath superheats.

Route 2 Shows the case of an addition which after freezing the customary chill layer around it is reexposed to the bath before complete internal melting has occurred (2C). Conditions favoring such behaviour, high superheats (80-100°C) large diameters and alloys with low thermal conductivities.

Route 3 Once the solid is reexposed (3C), it is quite possible for another shell of steel (or series of shells), (3D), to form.

Route 4 Exothermic reaction starts at (3B) and steel shell melts back very fast, typical examples, Fe-Si where (3C) and (3D) are very short.

Route 5 Typical examples, Fe-V, Fe-Mo, Fe-W.

TABLE 2.1
Additions with Melting Range Lower than the
Liquid Steel Melting Point

<u>Addition</u>	<u>Melting Range of Melting Point</u>
Standard Ferromanganese	1071-1266°C (1344-1539 K)
50% Ferrosilicon	1210-1227°C (1483-1500 K)
Low Carbon Silicomanganese	1215-1260°C (1488-1533 K)
75% Ferrosilicon	1204-1316°C (1474-1589 K)
Aluminum	660°C (993 K)
Charge Chrome 50-55% Cr	1404-1482°C (1677-1755 K)

TABLE 2.2
Additions with Melting Range Higher than
Liquid Steel Melting Point

<u>Addition</u>	<u>Melting Range</u>	<u>Melting Temperature</u>
Vanadium	1902 °C	(2175 K)
Titanium	1667 °C	(1840 K)
Niobium	2467 °C	(2740 K)
Molybdenum	2615 °C	(2888 K)
Tungsten	3400 °C	(3673 K)
FeMo (62% Mo)	1800-1540 °C	(2073-1813 K)
FeW (74% W)	2700-1640 °C	(2973-1913 K)
FeNb 60% Nb		
FeV (80% V)	1670-1890 °C	(1943-2163 K)

Table 2.3 lists metallic systems of solids dissolving in iron based melts for which experimental data have been reported. These experiments have been classified according to experimental mode and geometry. The experimental mode can be classified into two subgroups; static and dynamic. In the static method, the solid specimens were held motionless in liquid and natural convection influenced the dissolution rate. In the dynamic method, specimens were rotated so that forced convection affected their rate of dissolution. Most of the experiments reported used cylindrical or disk shaped specimens. Two exceptions are:

- 1) Biletskii and Shumikhim¹⁰ studied the dissolution of spherical graphite particles in cast iron melt;
- 2) Niwa et al.¹⁸ also used an alumina crucible to study the reaction of the alumina with carbon dissolved in molten iron. The crucibles used were either alumina or graphite apart from a few exceptions where magnesia crucibles were used.

The dissolution in liquid iron alloys was reported to be a diffusion rate controlled process under most conditions. An exception is the one reported by Karchin and Grigoryan⁶ who observed that the dissolution rate of pyrographite in an iron-carbon melt was anisotropic with respect to different crystallographic faces at high rotational speeds. They found that the solution interface reaction of graphite became the controlling step at high stirring rates.

TABLE 2.3
Dissolution Experiments in Liquid Iron Alloys

Liquid	Solid	Specimen	Mode	Reference
Fe-C	Graphite	Cylinder	Static	1
Fe-C	Graphite	Cylinder	Static	2
Fe-C	Graphite	Cylinder	Static and Rotating	3
Fe-C	Graphite	Cylinder	Rotating	4
Fe-Mn	Graphite		Static	5
Fe-C	Graphite		Rotating	6
Pig Iron	Graphite	Disk	Static	7
Fe-C	Graphite	Disk	Rotating	8
Fe-Ni	Graphite	Disk	Rotating	8
Fe-P	Graphite	Disk	Rotating	8
Fe-Si	Graphite		Rotating	8
Fe-C	C			9
Cast Iron	Graphite	Spherical		10
Fe-C	Graphite			11
Fe-C	Si-C			11
Fe-C	C			12
Fe-C	Co	Disk	Rotating	13
Fe-C	Cr	Disk	Rotating	13
Fe-C	Mo	Disk	Rotating	13
Fe-C	Ni	Disk	Rotating	13
Fe-C	Si	Disk	Rotating	13
Fe-C	Ti	Disk	Rotating	13
Fe-C	W	Disk	Rotating	13
Fe-C _{sat}	Cr	Disk	Rotating	14
Fe-C _{sat}	CrC	Disk	Rotating	14
Fe-C _{sat}	Fe	Disk	Rotating	14
Fe-C _{sat}	Mo	Disk	Rotating	14

...cont.

TABLE 2.3 continued

Liquid	Solid	Specimen	Mode	Reference
Fe-C _{sat}	W	Disk	Rotating	14
Fe-C _{sat}	WC	Disk	Rotating	14
Gray Iron	SiC	Cylinder	Rotating	15
Pig Iron	C-Steel	Cylinder	Rotating and Static	16
Fe-C _{sat}	Fe	Cylinder	Rotating	17
Fe-C _{sat}	Al ₂ O ₃	Crucible	Static	18
Fe-C	C-Steel	Cylinder	Static	19
Fe-C	C-Steel	Cylinder	Rotating and Static	20
Fe-C	Cu-Mg		Static	21
Fe-C	C-Steel	Cylinder	Static and Rotating	22
Fe-C-S	Ce		Static	23
Fe-C-Si	Ce		Static	23
FeO-Fe ₂ O ₃	Fe	Cylinder	Rotating	24
Fe-C	Mg-Alloy		Static	25
Fe-C _{sat}	Al ₂ O ₃	Cylinder	Static and Rotating	26
Fe-C	Fe			27
Fe-N _{sat}	BN	Disk	Static	28
Fe-B	BN	Disk	Static	28
Fe-C _{sat}	CaC ₂	Cylinder	Rotating	29
Pig Iron	C-Steel	Cylinder	Static	30
Pig Iron	C-Steel	Cylinder	Static	31
Fe-C	Fe	Cylinder	Static and Rotating	32
Fe-C _{sat}	Mo	Cylinder	Rotating	33
Fe-S	Fe		Rotating	34
Fe-Cu	Fe	Cylinder	Rotating	35
Fe-C	Nb			36
Fe-C _{eutect}	Mo	Cylinder	Static	37
Cast Iron	Si	Disk	Rotating	38
Cast Iron	Ti	Disk	Rotating	38
Cast Iron	Cr	Disk	Rotating	38

...cont.

TABLE 2.3 continued

Liquid	Solid	Specimen	Mode	Reference
Cast Iron	Co	Disk	Rotating	38
Cast Iron	Ni	Disk	Rotating	38
Cast Iron	Mo	Disk	Rotating	38
Cast Iron	W	Disk	Rotating	38

Various additions relevant to steelmaking practices studied for dissolution kinetics in low carbon iron-based melts are listed in Table 2.4. In all cases and immediately following immersion a solid steel shell solidifies around the addition. The precise manner under which the steel shell behaves (i.e. freezing or melting) is very important for low melting point additives. However, its importance substantially lessens in the case of high melting point additions. In the first case, the dominant factor in the thermophysical phenomena is heat transfer, while in the latter, mass transfer becomes more important. For the dissolution of 50% ferro-silicon in liquid steel, a 'double heat effect' is applied to the steel shell such that the dissolution reaction becomes self-accelerating.^{46,47}

Krupman and Yavoiskii³⁷ investigated the dissolution of molybdenum in Armco Iron. They distinguished two periods in the dissolution process. The first corresponded to the 'thermal' period where a solid shell freezes around the molybdenum. The second was the 'diffusion' period which began after the temperature had equalized between the bulk liquid steel and the molybdenum specimen. They proposed the following relationship for the dependence of mass transfer coefficients on temperature:

$$\log K = - \frac{14800}{T} + 4.87$$

K: cm s^{-1}

T: $^{\circ}\text{K}$

TABLE 2.4

DISSOLUTION EXPERIMENTS IN PURE LIQUID IRON OR LOW CARBON LIQUID IRON ALLOYS

Dissolving Solid	Specimen	Experimental Mode	Reference
Ti	Disk	Rotating	38
Cr	Disk	Rotating	38
Nb	Disk	Rotating	38
Mo	Disk	Rotating	38
W	Disk	Rotating	38
FeMo (62% Mo)	Disk	Rotating	38
FeW (74% W)	Disk	Rotating	38
FeNb (60% Nb)	Disk	Rotating	38
Mo	Cylinder	Static and Vibrating	37
Mo	Cylinder	Static and Rotating	39
W	Cylinder	Static and Rotating	39
Fe-Mn	Cylinder	Static	40
Cr-Mn	Cylinder	Static	40
Fe-Cr	Cylinder	Static	40
Fe-Mn	Lumps with Isotopes	Static	41
Si-Mn	Lumps with Isotopes	Static	41
TiN		Rotating	42
Ferro-alloys			43
Fe-Mn	Cylinder	Static	44
Si-Mn	Cylinder	Static	44
Fe-Si	Cylinder	Static	44
Fe-Mn	Cylinder and Sphere	Static	45
Si-Mn	Cylinder and Sphere	Static	45
Fe-Si (50%)	Cylinder	Static	46
Fe-Si (50%)	Cylinder	Static	47
Al	Sphere	Static	48
Al	Cylinder	Rotating	49

Based on their data, an activation energy for the solution of molybdenum in liquid iron was calculated and shown to be at 273 kJ/mole or (65.1 kcal/mole). They explained this surprisingly high value of activation energy on the basis of liquid phase diffusion. However, recent work by Ershov et al.⁵⁹ and Ono et al.⁵¹ has shown that the activation energy for the diffusion of molybdenum in liquid iron is only in the order of 59 kJ/mole (14.5 kcal/mole). Consequently their explanation based on a liquid phase diffusion controlled process must be regarded with some doubt. An attempt will be made by the present author to provide another explanation for their activation energy results in Chapter 6.

Shantarin and Shurygin³⁸ studied the dissolution rates of Ti, Cr, Mo, W and FeNb, FeMo, FeW in molten pure iron. They used a disk of metal rotating in liquid iron. They found that the dissolution rates in pure iron increases in the order of Mo-W-Cr-Ti and among the ferro-alloys (FeNb, 60% Nb) - (FeMo, 62% Mo) - (FeW, 74% W). They did not provide any explanation and the precise mechanisms were neither considered nor identified. They calculated diffusion coefficients from their results, which were found to be in agreement with recent work by Ershov et al.⁵⁰

Bungardt et al.³⁹ studied the dissolution of molybdenum and tungsten in liquid steel under conditions of free and forced convection respectively. In the case of forced convection, they used rotation of their cylinders as well as

TABLE 2.5
Experimental Results from Brandis et al.³⁹

	Dissolution Rate (mol/m ² ·s)		Gas Flow Rate 14 lit Ar/h	Mass Transfer Coefficient Free Convection m/s
	Free Convection	350 (RPM)		
Mo.	0.833	2.0	3.3	1.9×10^{-5}
W	0.325	0.66	0.675	1.82×10^{-5}

flow of Argon gas through the iron bath at a rate of $(3.8 \times 10^{-6} \text{ m}^3/\text{s})$. Their results are summarized in Table 2.5. They found that the dissolution rate of molybdenum was higher than that of tungsten at 1863 K (1590°C) and that the mass transfer coefficients were about the same. At temperatures below 1910 K (1637°C) the reaction of tungsten with liquid iron resulted in the intermetallic combination Fe_7W_6 whose structure permitted no conclusion as to preferred diffusibility of the constituent elements.

Terziyan⁴¹ studied the dissolution kinetics of ferro-alloys in steel ladles. He labelled the alloys with radio-isotopes, immersed them in liquid steel for specific times and measured the loss in weight of the alloy and the radioactivity of metal samples from the ladle. The experiments were carried out in both quiescent and intensively stirred liquid steel baths. Data on the kinetics and mechanisms of dissolution of ferromanganese and silicomanganese were processed statistically. Regression equations were formulated for the time of dissolution as a function of lump size and metal temperature in relatively quiescent metal baths. They obtained:

$$T_p = 100 + 27.75 \cdot x_1 - 17.25 \cdot x_2 + 2 \cdot x_1^2 + 2 \cdot x_2^2 - 5.25 \cdot x_1 \cdot x_2 \quad (2.1)$$

$$T_p = 63 + 2.5 \cdot x_1 - 12.5 \cdot x_2 + 2.7 \cdot x_1^2 + 1.4 \cdot x_2^2 - 2.5 \cdot x_1 \cdot x_2 \quad (2.2)$$

where T_p : duration of solution (sec)

x_1 : parameter characterizing the diameter of the sample d (mm) $x_1 = (d-50)/10$

x_2 : parameter characterizing the temperature of the metal $t^{\circ}\text{C}$ $x_2 = (t-50)/15$.

Equation 2.1 gives the solution time for ferromanganese while equation 2.2 gives the solution time for silicomanganese. Terziyan claimed that these equations were determined with a sufficient degree of accuracy for predicting solution times of ferro-alloy lumps, measuring from 40 to 180 mm in diameter at bath temperatures ranging between 1560 and 1650°C (1833 to 1923 K).

In 1974, Gourtsoyannis et al.⁴⁸ developed a mathematical model predicting the melting history of aluminum spheres immersed suddenly into liquid steel. Their model predicted the formation of a solid shell of steel which rapidly froze around the aluminum sphere during the first seconds of immersion. The model also demonstrated how partial melting of the object can begin while still encased within the steel shell. It was shown that the enclosed object would continue to melt at a rate which depended on a) the rate of evolution of latent heat as the steel shell solidifies and b) the rate of convective heat transfer from the bath to the outer surface of the steel shell.

In previous work, the present author conducted a series of experiments to study the melting characteristics of ferro-

manganese and silicomanganese cylinders in molten steel baths.

A detailed account of this work is given in Ref. 44. Briefly, a heat transfer model simulating the thermal events which occur when ferromanganese and silicomanganese cylinders are immersed in molten baths was developed. The experimental results were found to be in substantial agreement with model predictions. The steel bath cooling rate and superheat were shown to be significant factors on solution kinetics of these alloys, while steel bath viscosity had no significant effect. Figure 2.2 shows a cross-section of a ferromanganese cylinder (3.81 cm diameter) following immersion for a 30 second period in a steel bath whose initial superheat was 30°C.

The modification of dissolution kinetics by the high exothermic heat of dissolution to molten steel was also studied by the present author and Guthrie.^{46,47} To this end, the kinetics of dissolution of solid cylinders of 50 wt% ferrosilicon in liquid steel were chosen. It was shown that the customary frozen shell of steel formed around the ferrosilicon cylinder following its initial immersion. Premature internal melting of the cylinder then began as a result of liquid eutectic of Fe_2Si composition forming at the inner steel shell/ferrosilicon boundary. This phenomenon was shown to trigger exothermic dissolution and erosion of the steel shell at the inner surface. The outer boundary of the steel shell melted back concurrently as a result of convective heat transfer from the steel bath.

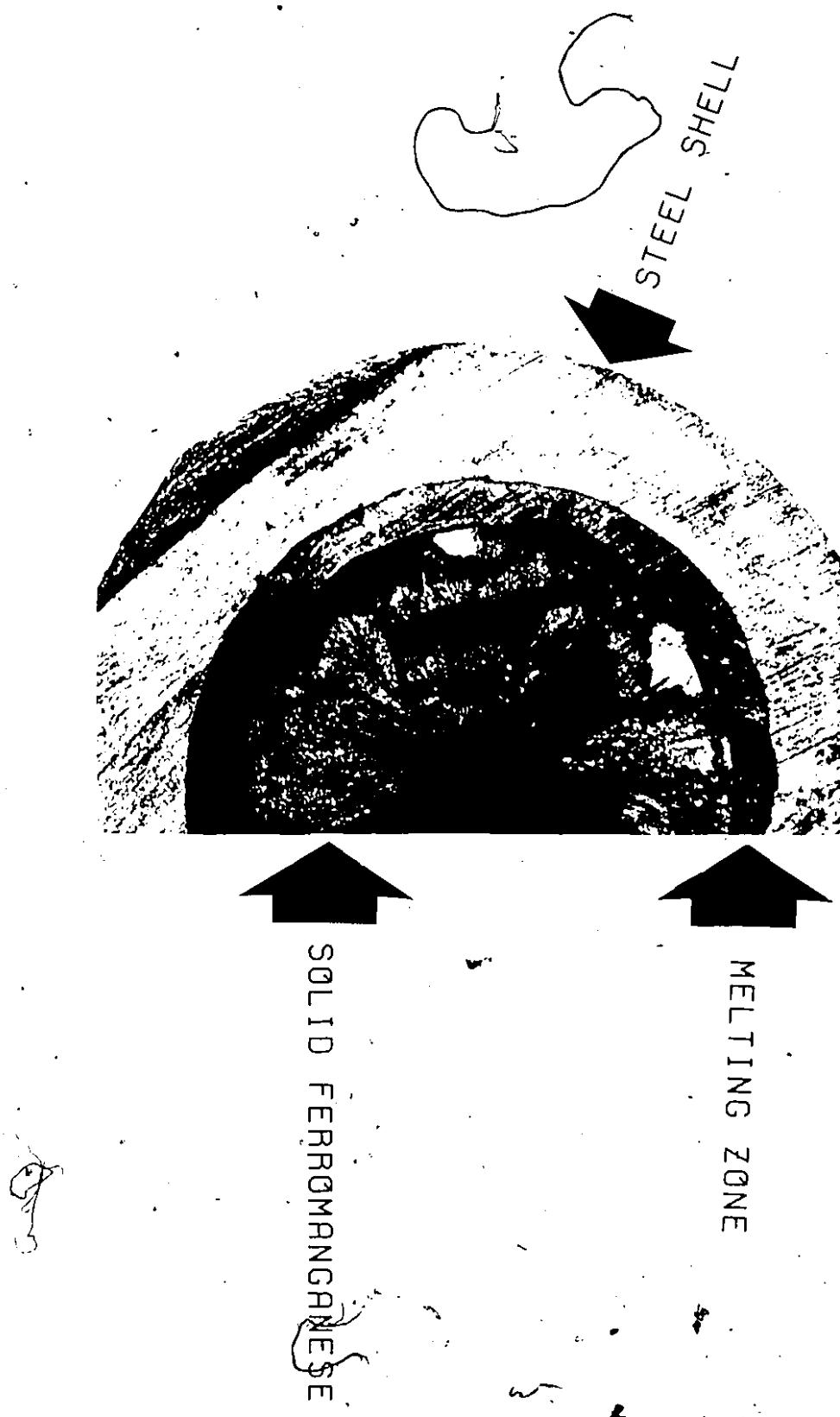


Figure 2.2 Cross section of a ferromanganese cylinder immersed for 30 seconds in a steel bath with an initial superheat 30°C .

The net result of exothermic dissolution phenomena is that considerably shortened shell dissolution times can be observed in comparison to more conventional ferro-alloy/steel systems.

A simplified mathematical model of the process was developed and Figure 2.3 gives a schematic representation of the 'double heat effect' which is imposed on the frozen steel shell.

Povolotskii et al.⁵⁸ investigated the diffusion of deoxidants such as Al, Si, Mn in molten iron using the capillary method. The diffusion coefficients, D, and energies of activation, E, for diffusion of the deoxidants in iron containing various amounts of carbon were determined. They found that in the case of separate diffusion in a melt containing oxygen, the higher the deoxidizing capacity of the element, the greater was the activation energy of diffusion. Thus, with diffusion in an iron containing 0.003-0.010% oxygen, the energy of activation of aluminum, silicon and manganese is 145.7 kJ (34.7 kcal), 121.8 kJ (29 kcal), 101.2 kJ (24.1 kcal).

In more recent work, Mucciardi⁴⁹ has studied light alloy addition techniques in steelmaking. Aluminum wires of 6.4 to 15.9 mm in diameter were fed into steel melts while their 'apparent' weights were monitored. It was found that the maximum depth of penetration of an aluminum wire fed into molten steel can be expressed in the dimensional equation:

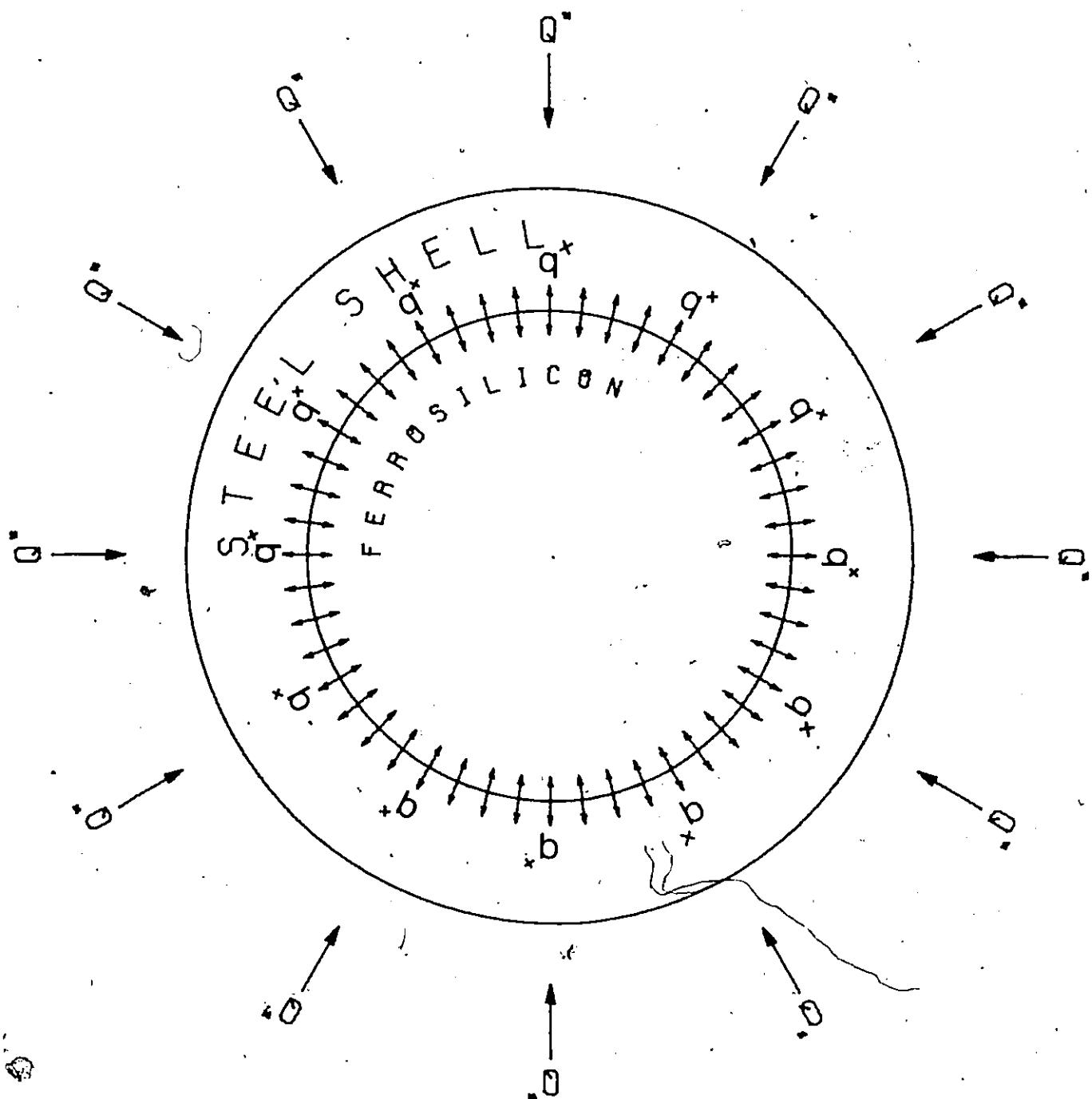


Figure 2.3 Schematic representation of the 'double heat effect' which is imposed on the frozen steel shell.

$$\text{Depth (m)} = \frac{145.5 \text{ Diameter (m)}^{0.86} \cdot \text{Velocity (m/s)}^{0.52}}{\text{Superheat (k)}^{0.34}} \quad (2.4)$$

2.3 THERMOPHYSICAL AND TRANSPORT PROPERTIES OF LIQUID IRON

2.3.1 Phase diagram

The iron-carbon phase diagram shown in Figure 2.4 is that recorded in the Thermochemistry for Steelmaking, Vol. II, by Elliot et al.⁵² The melting point of pure iron is reported to be at 1809 K (1536°C). Iron liquidus values at different temperatures ranging between 1809 K (1536°C) and 1773 K (1500°C) tabulated by Elliot et al.⁵² were used to obtain:

$$T_{mp} (\text{K}) = 1809.1 - 29.55 \cdot w_C - 85.7 \cdot w_C^2 \quad (2.5)$$

where w_C = weight percent of carbon

2.3.2 Density

The density of pure iron at various temperatures is reported in many sources including: Thermochemistry for Steelmaking, Volume II, by Elliot et al.,⁵² Lucas,⁵³ Lange⁵⁴ and in the Metals reference book by Smithells.⁵⁵

Smithells gives the density of liquid iron at 1809 K (1536°C) as 7015 kg m^{-3} (7.015 gr cm^{-3}). At higher temperatures, the density of liquid iron is given by equation 2.6.⁵⁵

$$D = D_0 + (T - T_0) (dD/dT) \quad (2.6)$$

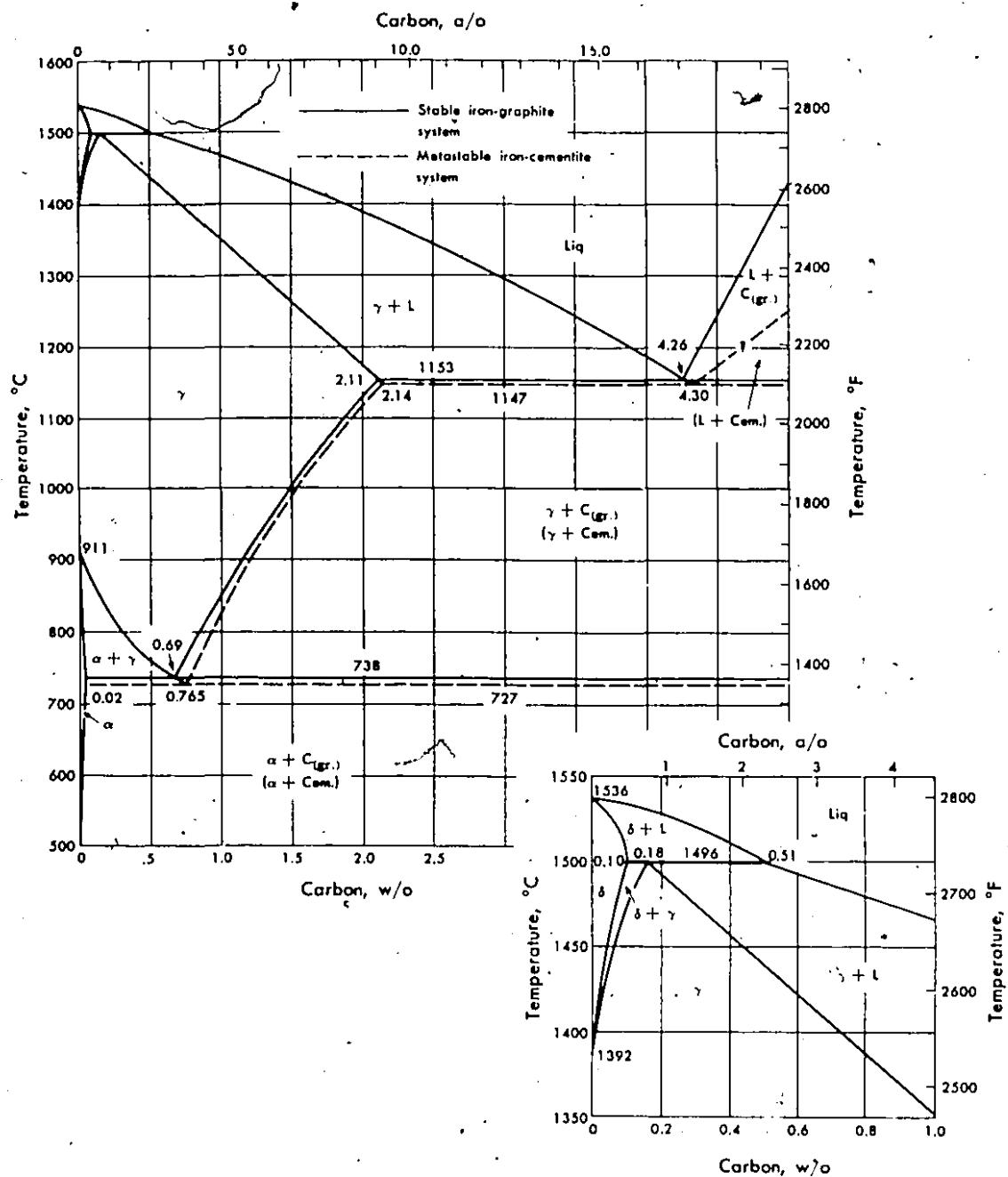


Figure 2.4 The iron-carbon phase diagram. 52

where D_0 is the density of liquid iron at melting point
 T_0 and $dD/dt = - 0.887 \text{ kg/m}^3\text{K}$ (2.7)

These values have been adopted in the present text.

2.3.3 Viscosity

Turkdogan⁵⁶ has presented data for the viscosity of liquid iron at its melting point. The value quoted is $0.00495 \text{ N}\cdot\text{S/m}^2$ (4.95 CP) with E at 41.58 kJ . The variation in viscosity with temperature for liquid iron is given by Smithells.⁵⁵

$$\eta = \eta_0 \exp\left(\frac{E}{RT}\right) \quad (2.8)$$

where $\eta_0: 0.3699 \text{ mNS/m}^2$

$E: 41.4 \text{ kJ/mol}$

$R: \text{gas constant } 8.3144 \text{ J/k mol}$

2.3.4 Thermal Conductivity

The variation in iron thermal conductivity of iron with temperature is given by Turkdogan.⁵⁶ At the melting point of pure iron, it is quoted as $30 \text{ W m}^{-1} \text{ K}^{-1}$ ($0.071 \text{ cal} \cdot \text{cm}^{-1} \cdot \text{s}^{-1} \cdot \text{C}^{-1}$), at 1873 K (1600°C) $35 \text{ W m}^{-1} \text{ K}^{-1}$ ($0.083 \text{ cal} \cdot \text{cm}^{-1} \cdot \text{s}^{-1} \cdot \text{C}^{-1}$).

2.3.5 Specific Heat and Latent Heat of Fusion

Data on iron specific heat has been summarized by Elliot et al.⁵² Lange⁵⁴ also reviewed experimental data for the specific heat of pure iron. The tabulated values of specific heat were used to obtain an average over a range of temperature. The latent heat of fusion was chosen to be 15 kJ/gr-atom,⁶³ a value reported to range between 13.4 and 15.5 kJ/g-atom.

2.3.6 Diffusivity

Ono and Shigematsu⁵¹ determined the diffusivity of vanadium, cobalt and molybdenum in molten iron using a coupled-diffusion method. They found the following results: for Fe-V alloys with vanadium contents up to 1.42%:

$$D_v = 3.69 (\pm 0.33) 10^{-5} \text{ cm}^2/\text{s} \quad \text{or}$$

$$D_v = 3.69 (\pm 0.33) 10^{-9} \text{ m}^2/\text{s}$$

at 1823 K (1550°C)

Iida and Morita⁵⁷ derived a series of expressions describing some properties such as diffusivity and viscosity of any liquid metal and alloy near their liquidus temperatures in terms of some basic physical quantities. They showed good agreement between calculated and experimental values for the solute diffusivity in liquid iron at 1873 K (1600°C). For the diffusivity of vanadium in liquid iron,

they calculated a value of $4.4 \times 10^{-9} \text{ m}^2/\text{s}$ ($4.4 \times 10^{-5} \text{ cm}^2/\text{s}$) at 1873 K (1600°C).

Ershov et al.⁵⁹ studied the diffusion of various alloying elements in liquid iron over the temperature range 1823 to 1973 K (1550 to 1700°C). They used electron microprobe analysis for the determination of concentration profiles. An exponential form $D = D_0 \exp(-Q/RT)$ was employed to determine the temperature dependence of the diffusivity.

$(D) \cdot 10^9 \text{ m}^2\text{s}^{-1}$	$D \cdot 10^9 \text{ m}^2/\text{s}$ (1873 K)	$D_0 \cdot 10^8 \text{ m}^2/\text{s}$	Q kJ/mol
V	4.1	11.10	51.66
Ti	13.8	31.00	48.3

The considerable variation in diffusion coefficients between these elements was explained by microheterogeneity of the liquid iron and by features of the distribution of the diffusing elements between the structure components of the melt.

2.4 THE IRON-TITANIUM PHASE DIAGRAM

The Fe-Ti phase diagram shown in figure 2.5 was adopted from the 'Thermochemistry for Steelmaking', Vol. II, by Elliot et al.⁵² One will note that two intermetallic compounds, 'FeTi_i' and 'Fe₂Ti', are reported. According to Ence and Margolin,⁵⁹ the compound FeTi₂, not shown in this diagram, forms a peritectoid reaction between β and FeTi at the temperature of 1273 K (1000°C).

Molchanova⁶⁰ states that the 'FeTi₂' is stable only in the presence of oxygen. The temperature range where the liquid phase could exist in the binary iron-titanium system and where this study was concentrated, was from 1843 K (1570°C) to 1923 K (1650°C). The β liquidus was given as a straight line.⁵²

$$T_L(K) = 1940 - 2030.3 \cdot X_{Fe} \quad \text{or}$$

$$T_L(^{\circ}\text{C}) = 1667 - 2030.3 \cdot X_{Fe}$$

2.5 THERMODYNAMIC PROPERTIES OF IRON-TITANIUM ALLOYS

There is only limited published data on the thermodynamics of liquid iron-titanium. Chipman⁶⁴ estimated the activity coefficient of titanium at infinite dilution, $\gamma_{Ti}^{\circ} = 0.011$ at 1873 K. More recently, Fruehan⁶⁵ calculated the activity coefficient of Ti at infinite dilution as $\gamma_{Ti}^{\circ} = 0.038$ at 1873 K. Since then, Kaufman and Nesor⁶¹ derived an analytical description of the iron-titanium systems. They

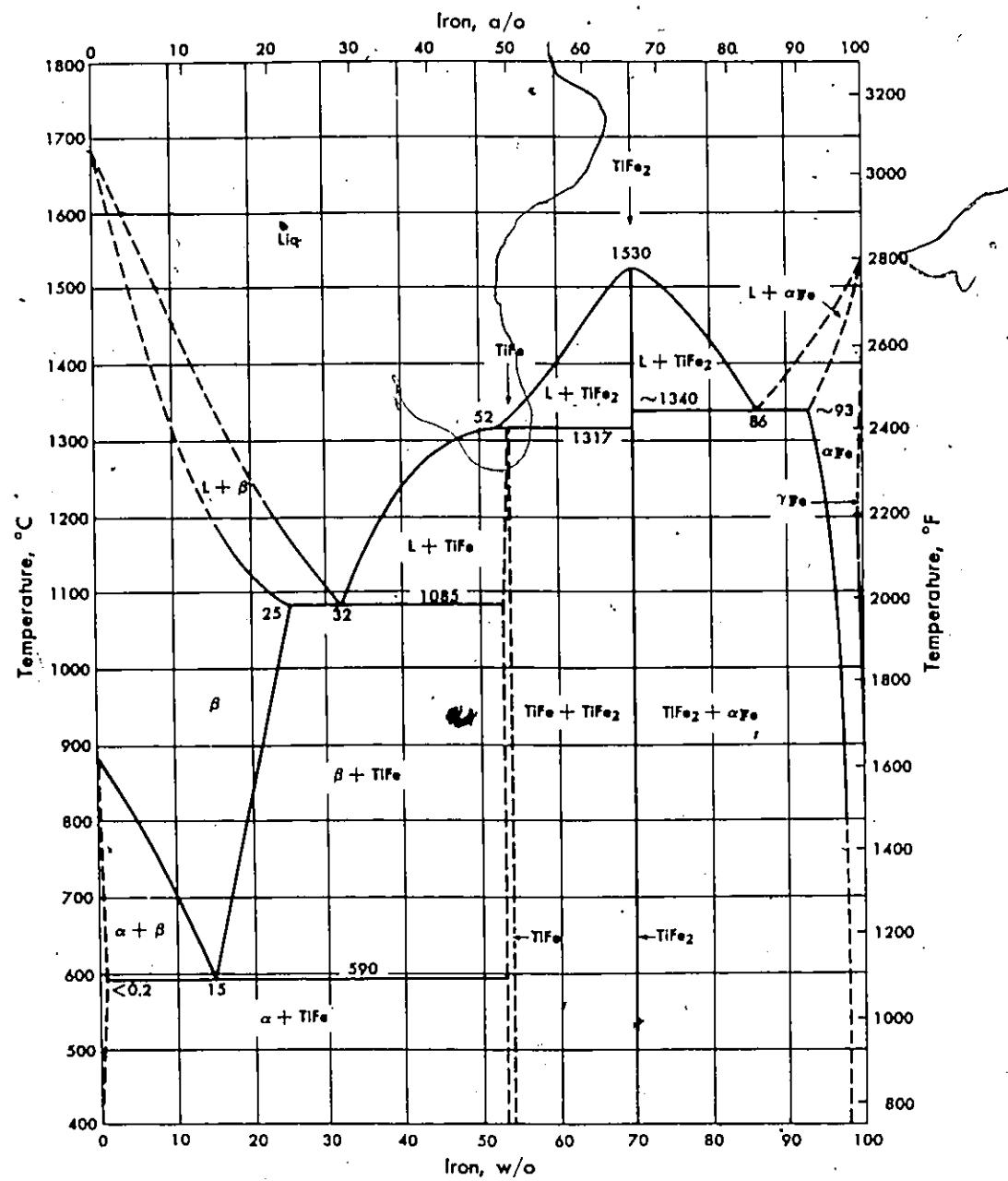


Figure 2.5 The iron-titanium phase diagram. 52

used data published in their computations from the experimental results of Kubaschewski and Dench⁶², and of Wagner and St. Pierre.⁶³ The integral heat of mixing for liquid iron and titanium is given in the following formula^[61]:

$$\Delta H_m = X_{Fe} X_{Ti} (-62760 X_{Fe} - 46024 X_{Ti})$$

where X_{Fe} : iron mole fraction

X_{Ti} : titanium mole fraction

ΔH_m : J/mol

$0 \leq X_{Ti} \leq 1$: composition range

$1400 \leq T \leq 2000$: temperature range in K

2.6 THE IRON-VANADIUM PHASE DIAGRAM

The Fe-V phase diagram in Figure 2.6 was also adopted from 'Thermochemistry for Steelmaking', Vol. II by Elliot et al.⁵² A compound Fe_3V which is not shown in their diagram, has also been reported.⁶⁶

The temperature range where the liquid phase could exist in the binary iron-vanadium system and where, therefore, the present study was concentrated, ranges between 1823 K (1550°C) and 1908 K (1635°C). The liquidus can be approximated as a straight line:

$$T_L (K) = 2041 - 520 \cdot X_{Fe} \text{ or}$$

$$T_L (^\circ C) = 1768.0 - 520 \cdot X_{Fe}$$

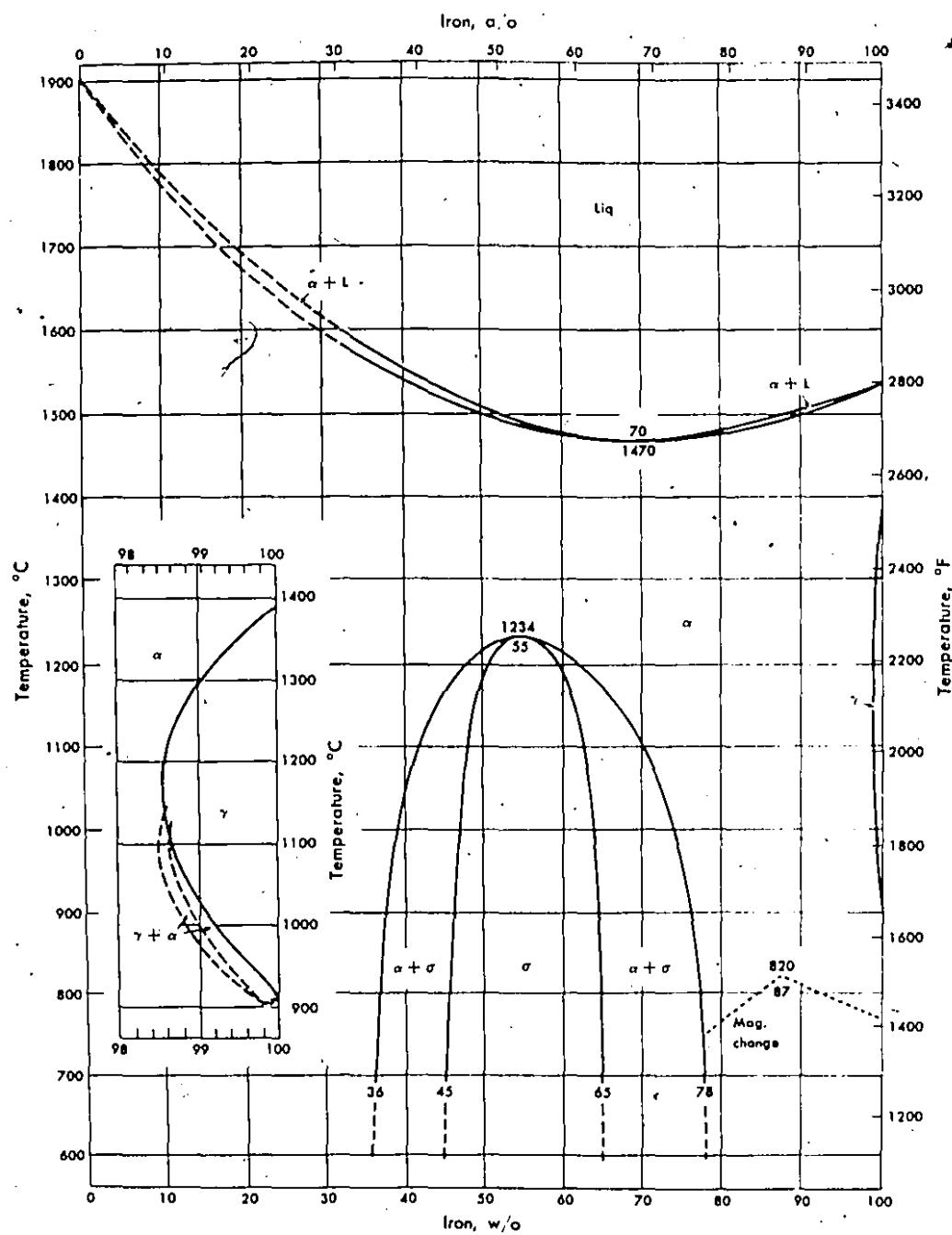


Figure 2.6 The iron-vanadium phase diagram. ⁵²

2.7 THERMODYNAMIC PROPERTIES OF IRON-VANADIUM ALLOYS

Elliot et al.⁵² have presented the partial and molar properties of mixing of liquid iron and vanadium at 1873 K (1600°C). They derived this directly from Chipman's activity curves where he made the assumption that the entropy of mixing for the solution is ideal (regular solution behaviour). More recently Kay and Kontopoulos⁶⁷ measured Henry's law coefficient γ_V° , as being 0.23, 0.21, and 0.18 at 1823 K (1550°C), 1873 K (1600°C), 1923 K (1650°C) respectively. Based on these results and with the assumption of regular solution behaviour, the present author derived the enthalpies of mixing of liquid iron and vanadium at different temperatures. Figure 2.7 summarizes these results.

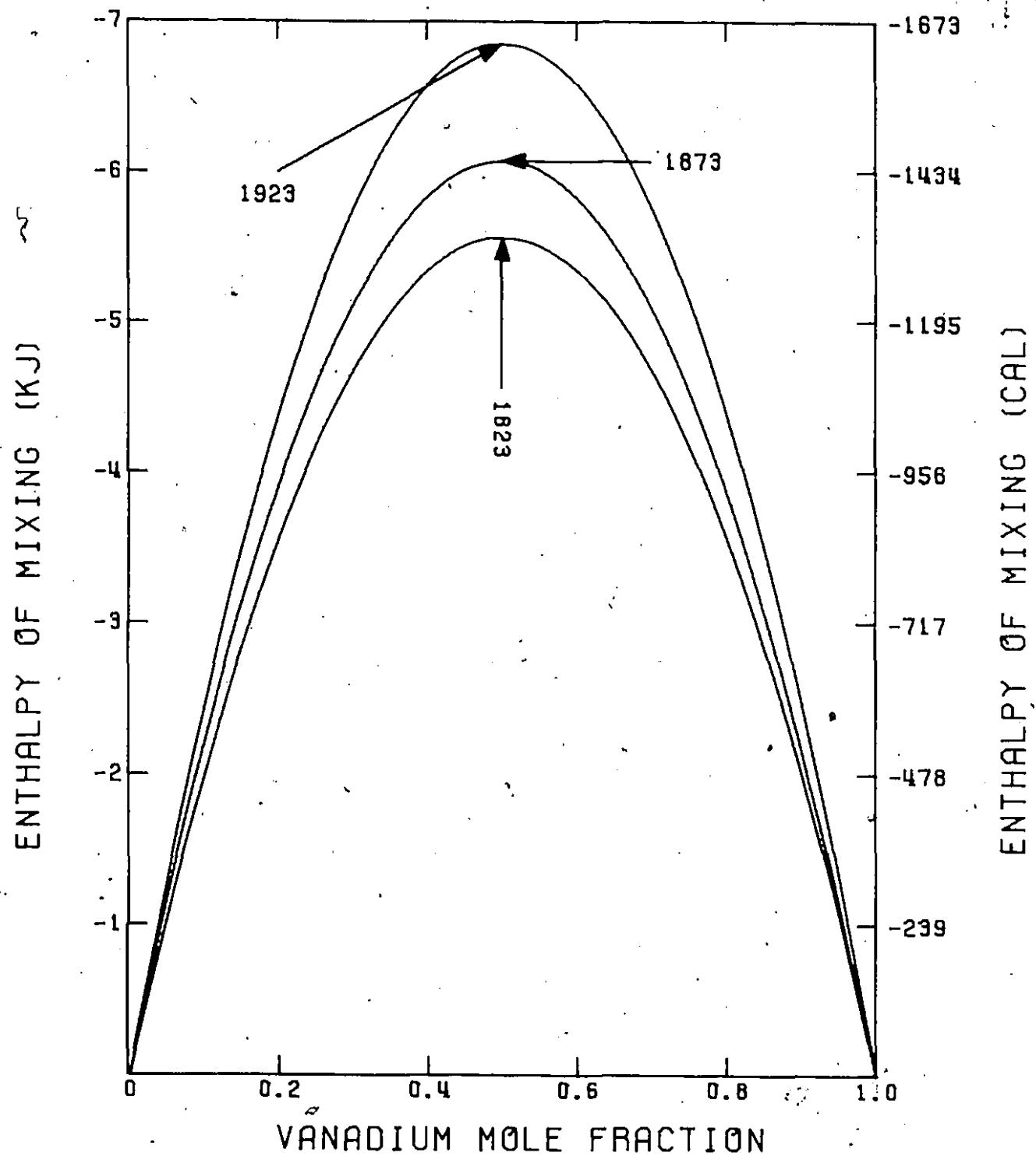
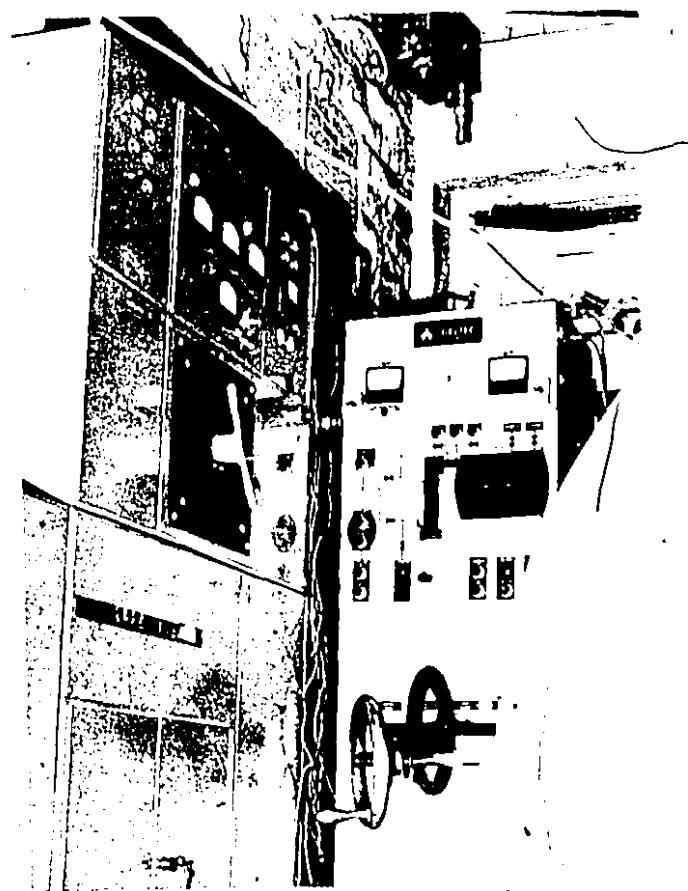


Figure 2.7 Heat of mixing of iron and vanadium at different temperatures (K).

CHAPTER 3


3.1 INTRODUCTION

In this chapter materials and experimental procedures used are presented in detail. The hardware and software aspects of a microprocessor based data acquisition system are described. This system was developed specifically for this research work.

3.2 CYLINDER IMMERSION EXPERIMENTS

The cylinder immersion tests were carried out using a Tocco meltmaster furnace to melt and contain the steel. It was a 150 kVA, 400 V, 3000 Hz unit. The inductotherm coils had 9 turns in a length of 35.6 cm, with an internal coil diameter of 33.0 cm. The alumina crucible, (90% Al_2O_3 , 10% SiO_2 supplied by Engineered Ceramics), had an internal diameter of 19.7 cm and a height of 35.6 cm. The molten charge normally filled the crucible to within 2.5 cm of the top. All of the heats were made by induction remelting an initial charge of Armco iron in an alumina crucible. Figure 3.1 shows the induction furnace with its controls. During the meltdown and throughout the heat, oxidation was minimized by placing a pipe, 0.95 cm in diameter, slightly above the rim of the crucible. Argon was passed through the pipe at a flowrate of 15 c.f.h. throughout the course of the experiment.

Figure 3.1 The induction furnace with its controls.

3.2.1 Materials

The titanium cylinders used, designated as ASTM B-348 GRADE 2, were purchased from Titanium Ltd., Ville St-Laurent, Quebec. The analysis certificate quotes 0.03% nitrogen, 0.10% carbon, 0.0125% hydrogen, 0.30% iron, 0.25% oxygen and titanium the balance. Thermophysical properties for this type of titanium along with their sources are presented in Table 3.1. The vanadium cylinders used were purchased from Metals and Byproducts Company, Sparta, New Jersey. The analysis certificate quotes 99.9% vanadium, 0.02% carbon, 0.04% oxygen, 0.02% nitrogen, and 0.02% iron. The properties of vanadium cylinders were estimated from similar properties of pure vanadium and are summarized in Table 3.1. High purity, iron melts were made by melting Armco iron having a nominal composition of 0.02%-0.03% carbon, 0.05% manganese, 0.007% phosphorus, 0.018%-0.01% sulphur, 0.001% silicon, and iron the balance.

In the case of titanium cylinders, the necessary thermocouple inserts were made by drilling out 0.31 cm diameter holes. For the vanadium cylinders the spark erosion technique was employed in order to make these holes. The exact position of the tips of these holes in the cylindrical body was found by x-ray radiography.

The ferrovanadium cylinders used were supplied from the Market Development Department of Metals Division of Union Carbide Corporation.

Table 3.1 Thermal and Physical Properties of Titanium, Vanadium and Armco Iron

Property	Titanium	Vanadium	Armco Iron
Density (kg/m ³)	89 4500 (298 K)	89 6100 (298 K)	100 7506 (1500 K)
Heat Capacity (J/kg K)	89 580 (298)	55 498 (298)	100 698 (1500 K)
Thermal Conductivity w/m K	89 16 (298)	55 31.6 (298)	100 32.1 (1500 K)
Melting Point (K)	89 1938±5	91 2173±25	1793 (est)
Phase Transformation (K)	91 1155.0	-	-
Latent Heat of Transformation (J/kg)	91 8874.8	-	-
Density (kg/m ³)	55 4100 (1938 K)	55 5700 (2173)	100 6960 (1870 K)
Heat Capacity (J/kg K)	-	-	100 822 (1870 K)
Thermal Conductivity w/m K	-	90 49.4 (1873 K)	100 41.2 (1870)
Viscosity (Pa S)	-	-	100 5.1 x 10 ⁻³
Volumetric Coefficient of Expansion	-	-	100 1.4 x 10 ⁻⁴ (1870)
Prandtl Number	-	-	0.102
Latent Heat of Fusion (J/kg)	91 322,182	91 410,370	63 268,500

Figures 3.2 and 3.3 show titanium and vanadium cylinders, respectively. In order to eliminate the bottom effects in the cylinders a steel cap was placed very tightly on the bottom of the cylinders. This cap was thicker at the corners where the melting is faster.

3.2.2 Procedure for Adjusting Steel Bath Chemistry

Sixty-five kg heats of Armco iron were melted down. The bath temperature was brought up to 1600°C (1873 K) and thereafter maintained within ± 20 K. For this measurement, Leeds and Northrup Dip-Tir thermocouples were used, which were type R (platinum/platinum-13% rhodium). The EMF measurements were taken with a Fluke 8600A digital voltmeter. At this stage the oxygen content of the bath was generally found to be in the range 1100-1200 ppm.

A 100 gr pure silicon addition followed for deoxidizing the steel. The lumps were stirred in the melt for about 30 seconds. Following this, 300 gr of aluminum rods 1.905 cm in diameter were immersed. Immediately after, 40 gr of lime were dispersed in the surface of the melt. At this point the accumulated slag was quite fluid and skimmed off easily. After three minutes, samples were taken with a 0.47 cm I.D. vycor tube, equipped with a rubber aspirator bulb. After deoxidation, the oxygen content of the steel bath was found to be between 40 and 60 ppm. In order to keep the titanium content of the steel bath to a minimum only a limited amount

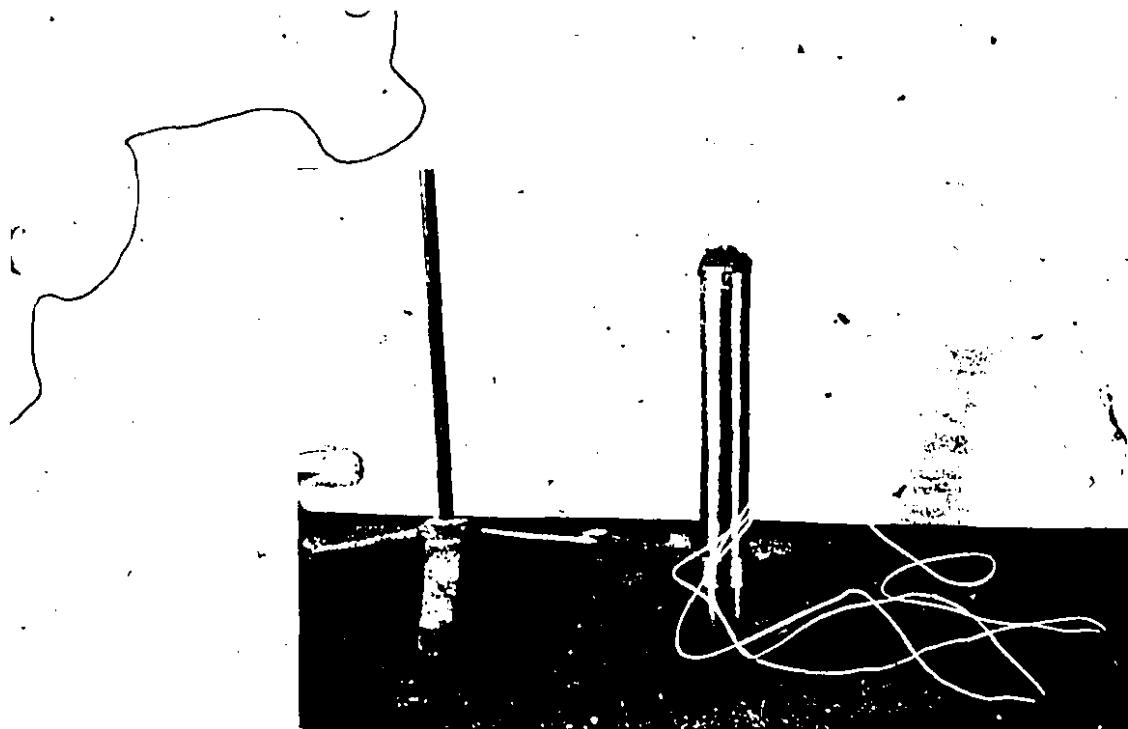


Figure 3.2 Titanium cylinder.

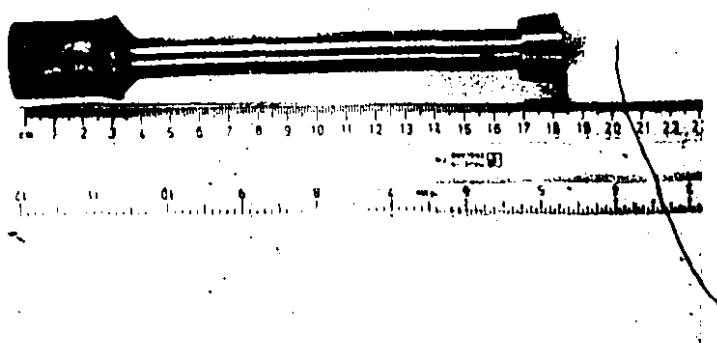


Figure 3.3 Vanadium cylinder.

of titanium cylinders were immersed in each heat. In any case, the titanium content of the steel bath never exceeded the 3.0 wt% mark. In the case of vanadium experiments each cylinder was immersed in a new steel bath.

3.2.3 Procedure for Immersing Bath Thermocouple

Once the bath chemistry had been correctly adjusted, the next step involved immersion of the bath thermocouple. As will be mentioned with the mathematical model in Chapter 4, a continuous monitoring of bath thermocouple is critical to the success of these dipping tests since melting times are normally inversely proportional to superheat temperatures ($\theta_{\text{Bath}} - \theta_{\text{M.P.Fe}}$). For typical steel plant conditions, this only amounts to at most 100°C, so for a $\pm 5\%$ error, instantaneous bath temperature must be known to be within $\pm 5^\circ\text{C}$ maximum.

The thermocouple system chosen was a type R (Platinum/platinum-13% rhodium). The thermocouple wires had been appropriately placed in a 99.8% alumina double bore insulator tube (McDanel) with O.D. 2.38 mm. The whole system was contained in a 99.8% alumina sheath 5 mm I.D., 7 mm O.D., 46 cm long with one end closed. In order to prevent slag erosion (of alumina tube) at the melt surface, a cement 'collar' 9 cm long and about 3.2 cm in diameter was bound around it over the appropriate distance. Another cement collar of the same diameter and a length of 2.5 cm was placed 6.5 cm

from the open end of the alumina sheath. This latter collar allowed better attachment of the alumina tube to the support stand. Figure 3.4 shows a bath thermocouple.

The whole thermocouple assembly was lowered to within 7 cm of the bath surface for about seven minutes, and it was connected with a Fluke 8600A digital voltmeter. It was then lowered to just above the melt surface for about ten minutes. When the temperature was at 1400°C (1673 K), the tip was immersed to a depth of 6 cm. The maximum life achieved for a thermocouple immersed in this way was one and a half hours at temperatures ranging between 1550°C and 1650°C (1823 K to 1923 K).

The platinum wires of bath and cylinder thermocouples were long and were connected with cold junction compensators, type CJ-R, supplied by Omega Engineering Inc., Stamford, Ct., U.S.A..

3.2.4 Weight Sensor

In this work, advantage was taken of a piece of equipment which had been constructed at McGill University. Using this equipment the apparent weight of the addition in the steel bath was monitored. Figure 3.5 shows a picture of this apparatus while full details are given in reference 49. In essence, the equipment provides a feeding mechanism driven by a 1/3 HP variable speed DC motor, plus a LEBOW 12 kg capacity load cell capable of measuring both tensile and

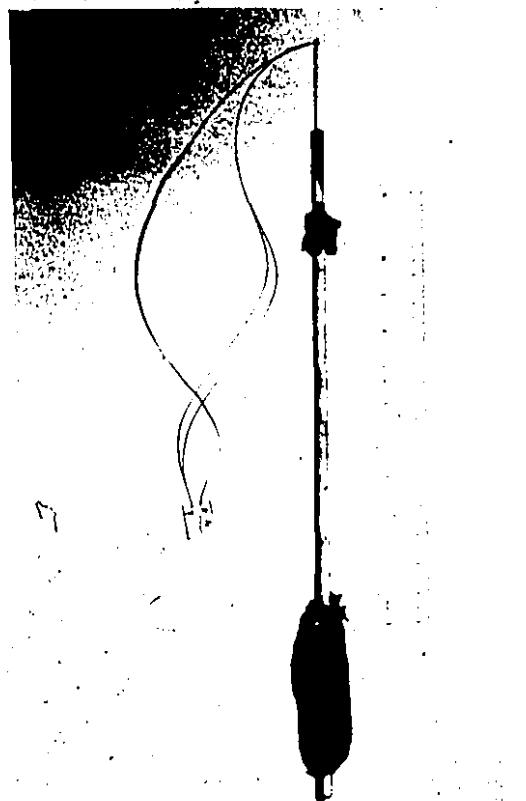


Figure 3.4
Steel bath thermo-couple.

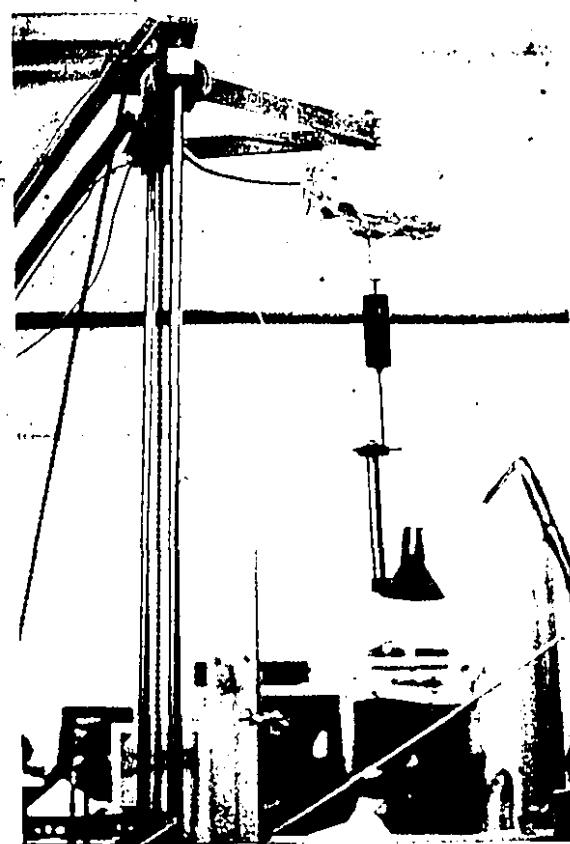


Figure 3.5
Weight sensor.

compressive loads. The load cell was calibrated by suspending known weights from it and by subsequently measuring the output signal for the input excitation voltage of 20 DC. The following mathematical expression was found to be excellent in converting analog signals to force:

$$\text{Net Downward Force (N)} = 2.778 \text{ (MIL)} - 2.996 \quad (3.1)$$

$$\text{Net Downward Force (gr force)} = 283.2 \text{ (MIL)} - 305.5$$

$$\text{Correlation} = 1.00$$

where MIL: the output signal in millivolts.

Figures 3.6 and 3.7 give schematic representations of the induction furnace with the bath and cylinder thermocouples and the weight sensor.

The accuracy of weight measurements by the load cell is equal to ± 4 gr force or ($\pm 0.039N$).

3.3 MICROPROCESSOR BASED DATA ACQUISITION SYSTEM

The monitoring of analog signals from the transducers (i.e. thermocouples and load cell) was carried out with a novel data acquisition system designed and constructed expressly for the present study. Figure 3.8 shows a schematic layout of the data acquisition and a picture of this system is presented in Figure 3.9.

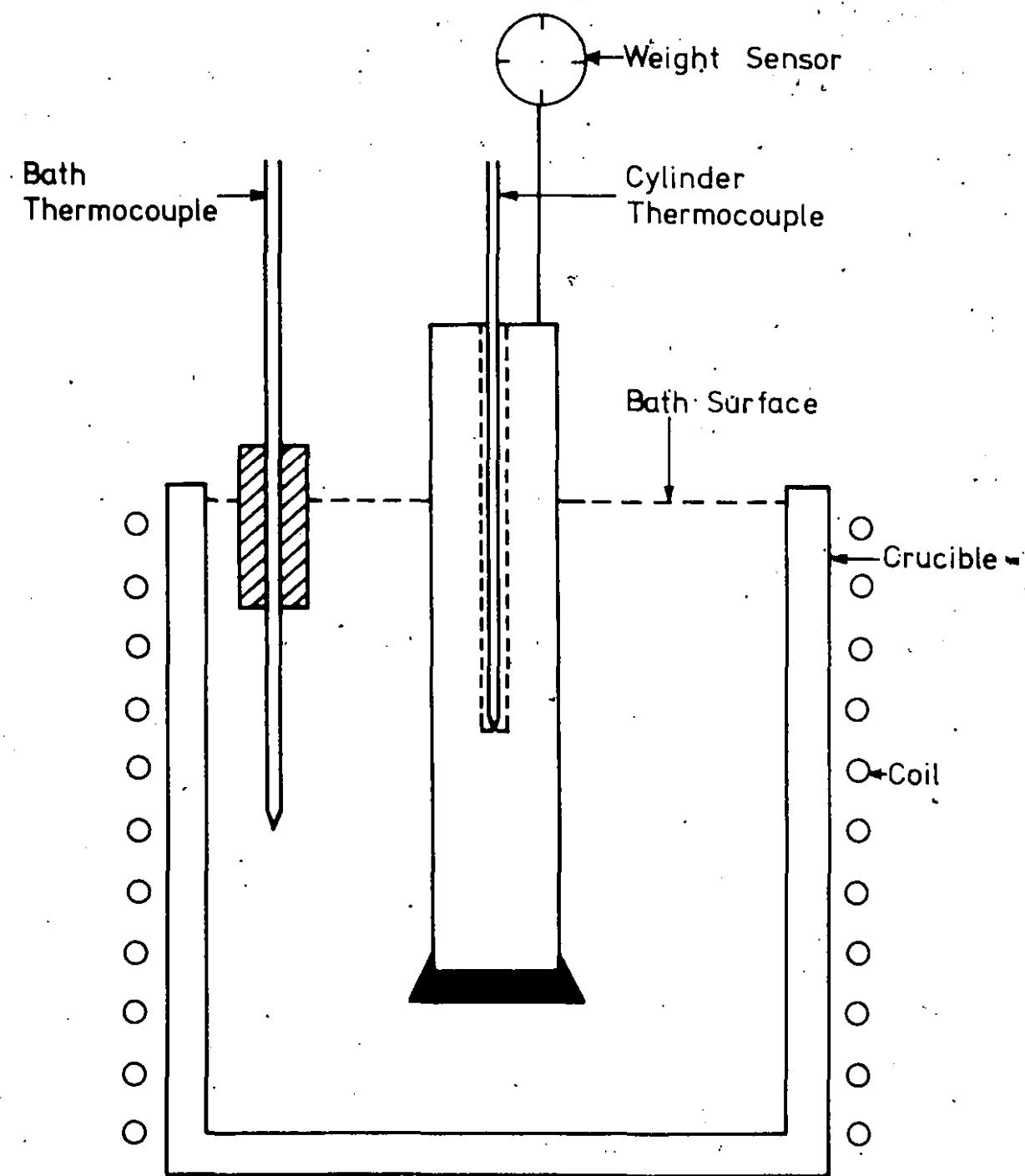


Figure 3.6 Schematic representation of induction furnace cross section with bath and one cylinder thermocouple and the weight sensor.

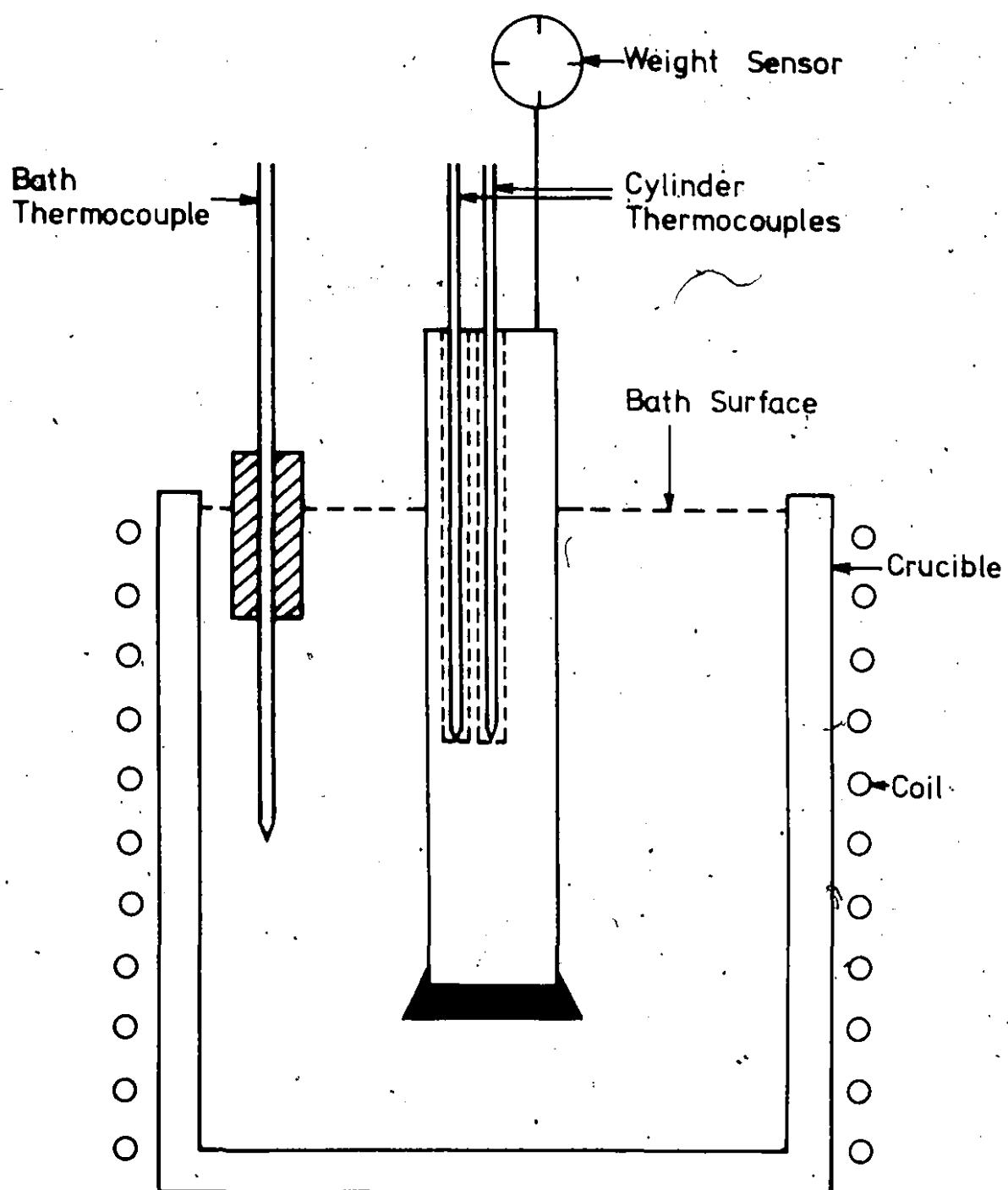


Figure 3.7 Schematic representation of induction furnace cross section with bath and two cylinder thermocouples and the weight sensor.

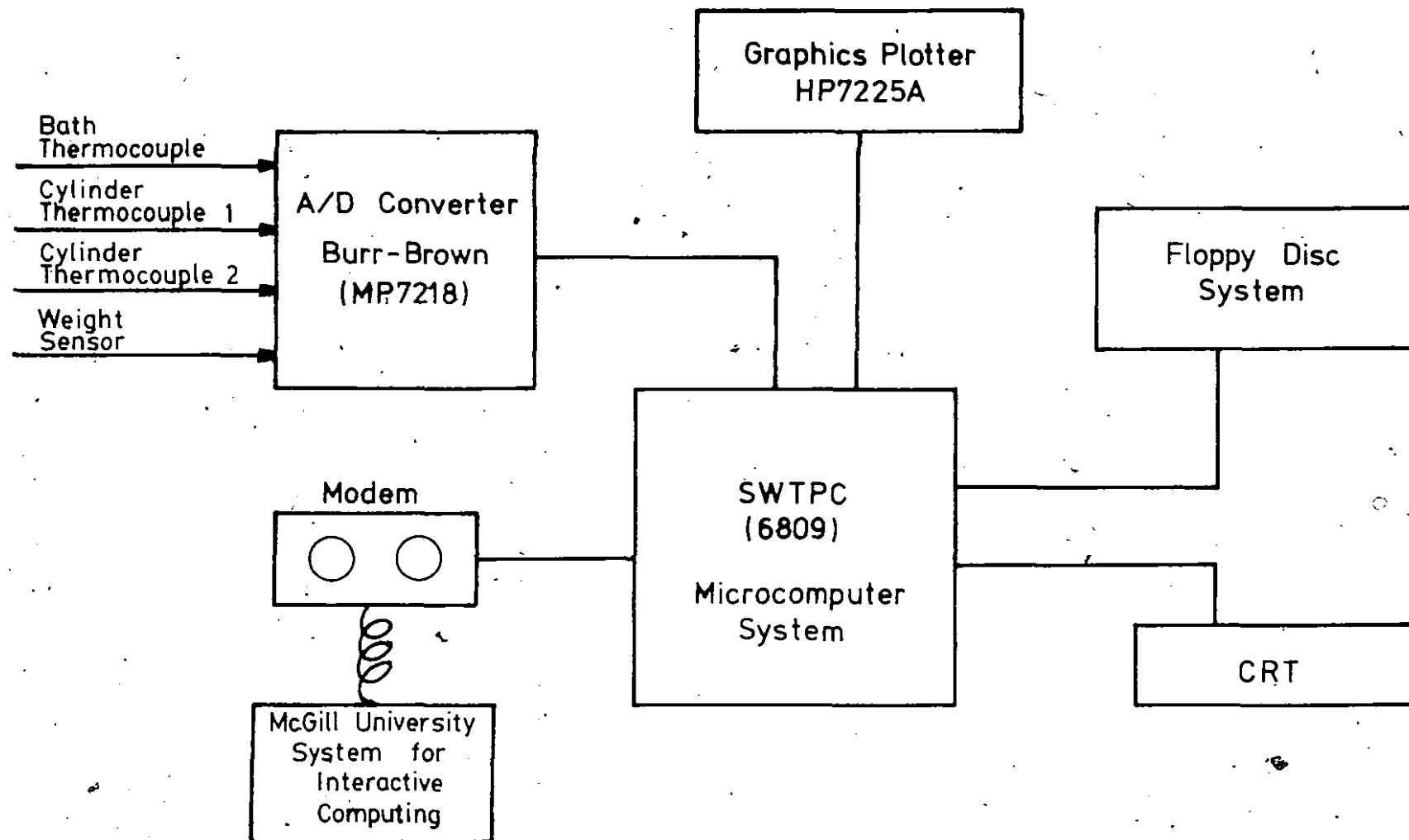


Figure 3.8 Schematic layout of the data acquisition system.

A

B

Figure 3.9 A) Microprocessor, A/D converter, floppy disk.
B) Plotter, CRT, Model M.

3.3.1 Hardware Aspects

The hardware was developed on a Southwest Technical Products Corporation computer system which uses the SS-50 bus system. The following boards were used in this computer system:

- a) The MP-09 processor board. It consists of the Motorola MC6809 processor, ROM monitor, memory management system and buffering circuits;
- b) Three memory boards - 32K, 16K and 8K respectively.
 - The total number of RAM Memory is 56K;
- c) Three serial interface boards MP-S;
- d) One Interrupt timer MP-T board;
- e) The DMAF2 Controller board;
- f) A bus extension board used to bring the SS-50 bus signals to the analogue input microperipheral board.

Figure 3.10 depicts an overview of these boards. As the measured parameters are in analog form, a translator was needed to convert them into a digital form suitable for computer processing. For this purpose, a BURR-BROWN analog input microperipheral board (MP7218) was used. This microcomputer analog input system is contained on a single printed circuit board which is treated as a memory by the CPU.¹⁰¹

Figure 3.11 shows this analog input board.

The board includes a 25 V input overvoltage protection, an analog multiplexer, a high gain instrumentation amplifier

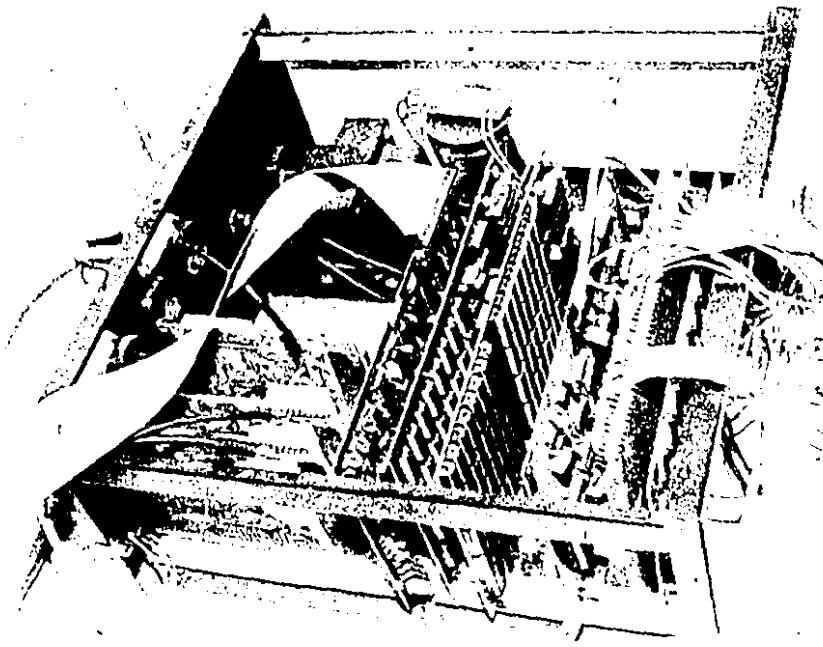


Figure 3.10 An overview of the boards of the microprocessor.

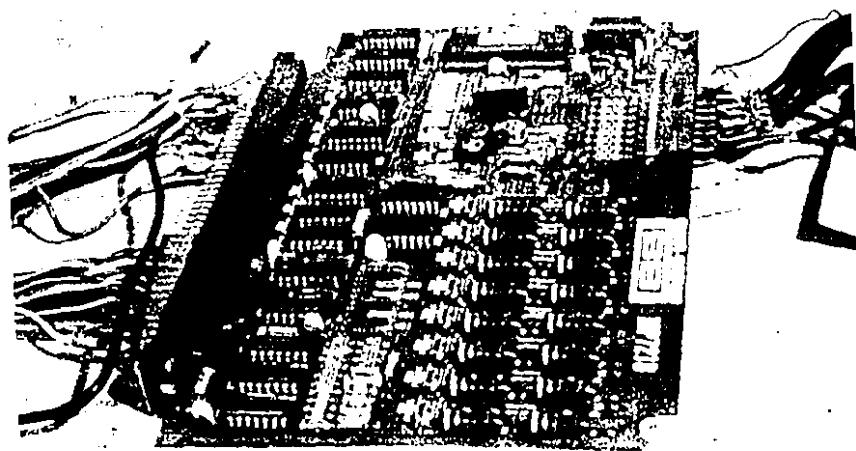


Figure 3.11 The analog input board with the A/D converter.

and a 12-bit analog to digital converter with the necessary timing, decoding and control. The analog digital converter employs the successive approximation technique. As the analog digital converter output is a 12-bit word, two 8-bit memory locations are needed for each channel. Address bits A15-A5 select the board and A4-A1 select the analog input channel to be digitized. The polling mode is used for the A/D operation. To start a conversion, the board is written using a STORE (STA) instruction. The analog input board is jumper configured so as to operate at any memory location. For this microcomputer system, the board was configured to be at location E020₁₆. Figure 3.12 shows the MOTOROLA assembler statements which are needed in order for the computer to perform an analog-to-digital conversion. The range of the analog input board is jumper selectable and was set at ± 2.5 V. By increasing the gain of the operational amplifier by a factor of 100, the analog input board was capable of measuring the range of ± 25 mV. The resolution of analog to digital conversion for the ± 25 mV analog input level is $\pm 12\mu$ V.

The interfacing of the analog input board with the microcomputer was carried out using an extension board and an 86-pin PC edge connector (SAE-43D/1-2). The signals which are required for the analog input board are supplied from the SS-50 bus. Two of them (VMA and ϕ 2) are inverted in the SWTPC bus. In order to make them compatible with analog

STA A \$E020

after a convert command

is issued, the computer is not
allowed, by software
control, to read the board
for 50 microseconds

CC LDA A \$E020
BIT A #\$10
BEQ CC
LDA B \$E021
STD 0, X++

Figure 3.12 MOTOROLA assembler statements which are needed in order for the computer to perform an analog-to-digital conversion.

input board requirements, external logic was used with an X inverter. In addition to this, the analog input board requirements have very small tolerance. Consequently, because the +12 V and -12 V power lines of the SWTPC system were not regulated, regulators were incorporated into the present system.

In order to increase the storage capability and the speed of data transfer, an SWTPC DMAF-2 floppy disk was connected to the computer system. This floppy disk system can accommodate two double sided and double density 8" diskettes and each diskette has storage capability of 970 K (bytes). The FLEX 9.0 operating system¹⁰² was used in order to control all the floppy disk operations directly from the user's terminal.

A Hewlett-Packard 7225A graphics plotter, having the 17603A personality module was interfaced with the micro-computer system. The standard RS-232-C interface cable and the hardwire handshake mode of operation were used for this interface.

The microcomputer system was interfaced with the central computing facility of the McGill University System for Interactive Computing (MUSIC). The MUSIC system is supported by the large AMDAHL V7 computer. Using this interface, any type of file can be transferred from the system diskette to MUSIC input file and vice-versa.

3.3.2 Software Aspects

A real-time software package was developed for the set of experiments described above. This software was written in MOTOROLA 6809 Assembler language. It was written so that, when running, they operated in a conversational mode allowing easy usage for neophyte terminal operators. The software package, called KINET, was used for monitoring the dissolution kinetics of solids in liquid steel. The flow chart for this program is given in Figure 3.13. As seen, eight steps are included. In the first step, the program requests the immersion time (i.e. the length of time that measurements are to be recorded), then the frequency of measurements per second. Following this, the steel bath temperature ($^{\circ}\text{C}$), below which measurements will start is requested. The program then calls for the number of channels to be scanned (i.e. the number of input analog signals to be monitored). Finally, the program checks with the user that the above data have been entered correctly, looping back or proceeding, as appropriate. The program finally determines whether the user wishes to wait. If not, the system starts monitoring bath temperatures every tenth of a second. Once this falls to that specified, the computer informs, with the message 'Time for immersion when you are ready press R'. Before the cylinder is immersed in the molten steel, the user presses R and scanning starts. At the end of scanning, the computer prints the location for the first and last BYTE of data.

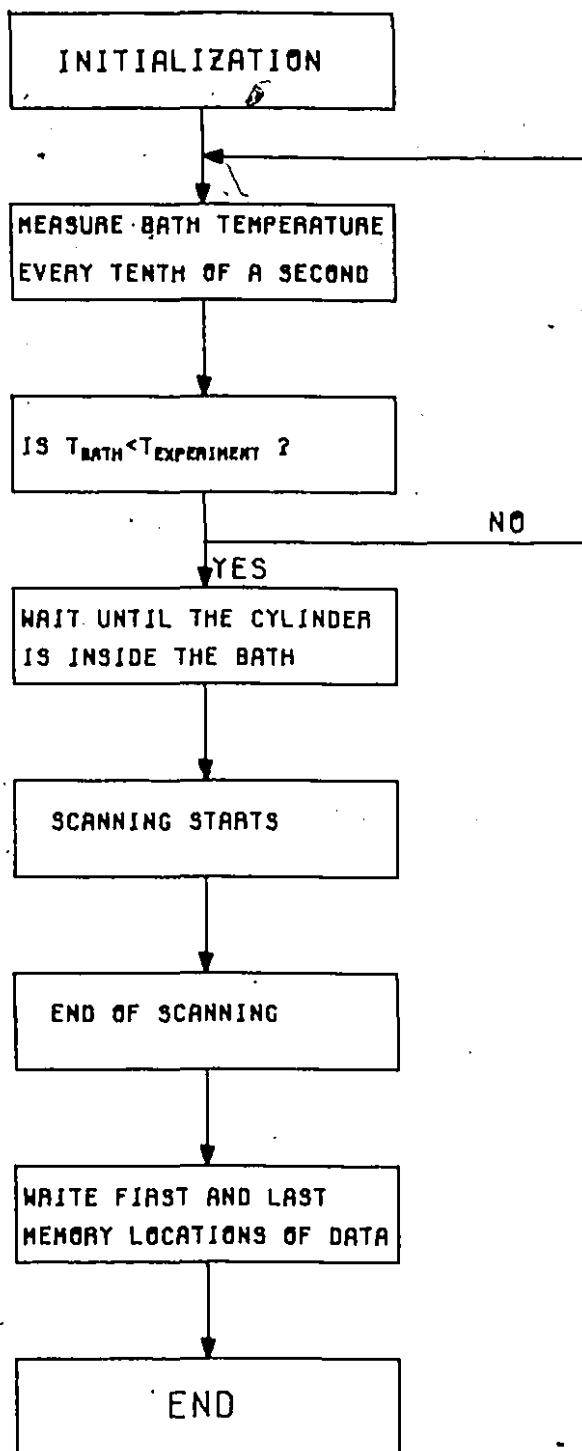


Figure 3.13 Flow chart of the program KINET.

Figure 3.14 shows a typical conversational session. The experimental results could be transferred either to floppy disk or to a disk file of McGill's large computer equivalent to the AMDAHL V7. Finally, the retrieval and conversion of raw data was carried out using a simple FORTRAN program. The software for the Hewlett-Packard 7255A Graphics Plotter was developed in BASIC high level language. An assembler listing of program KINET along with the generated code is given in Appendix IV.

In addition to the above mentioned software, another software package has been developed which enables the user of this system to monitor solidification rates of ingots. Full details about this software package are presented in reference 104.

3.3.3 Calibration of Analog to Digital Converter

Calibration was performed by connecting a precision voltage source to channel zero. A Leeds Northrup 8691-2 millivolt potentiometer was used as a voltage source. The output voltage was measured with a 8810A digital voltmeter made by FLUKE. The offset and gain adjustments were made while applying the voltages -24.994 mV and +24.981 mV, respectively. The offset adjustment is made first by using the appropriate offset calibration voltage and the program QFFSET which is listed in Appendix IV.

INSERT IMMERSION TIME IN SECONDS

60

INSERT NUMBER OF MEASUREMENTS PER SECOND

10

INSERT BATH TEMPERATURE IN DEGREES CELSIUS

1600

HOW MANY CHANNELS ARE GOING TO BE SCANNED ?

3

IS THE ABOVE DATA CORRECT ?

N

INSERT IMMERSION TIME IN SECONDS

60

INSERT NUMBER OF MEASUREMENTS PER SECOND

10

INSERT BATH TEMPERATURE IN DEGREES CELSIUS

1620

HOW MANY CHANNELS ARE GOING TO BE SCANNED ?

8

IS THE ABOVE DATA CORRECT ?

Y

DO YOU WANT TO WAIT ?

N

TIME OF IMMERSION NOW

WHEN YOU ARE READY , PRESS R

R

END OF SCANNING

FIRST DATA WAS STORED AT 0000

LAST DATA WAS STORED AT 2581

Figure 3.14 Typical conversational session.

The OFFSET calibration program was loaded to the memory and run. After 100 conversions the program was halted at the breakpoint and the contents of the accumulator B was 32_{16} . If a difference of more than 10_{16} was present then the offset trimmer resistor would have been slightly readjusted and the program restarted again. This procedure was repeated again until the contents of the accumulator were within 10_{16} of each other. The gain adjustment was made in much the same manner using the proper gain calibration voltage and the program GAIN which is listed in Appendix IV.

3.3.4 Calibration of Interrupt Timer

The actual oscillator frequency of the Interrupt Timer was adjusted by trimming the capacitor C4.¹⁰³ A HP model 5340A electronic counter was used as an accurate time base for this calibration. The actual count output of the oscillator was taken from pin 10 of IC3.¹⁰³

In order to check the accuracy of the generating IRQ interrupts from the interrupt timer board over long periods of time, a program was written which accepts and displays hours, minutes, seconds and tenths of a second in a 24 hour format on the control terminal of the computer system. The program works by first allowing the operator to enter the correct time. The MP-T interrupt timer board is configured for a tenth of a second maskable interrupts, and each time an interrupt is generated the program updates and displays

the new time. Running this program for long periods of time, the accuracy of interrupt timer was verified.

3.3.5 Signal Conditioning

An electrical noise problem was encountered when the gain of the operation amplifier of the analog input board was set to 100. On thorough testing, this noise was found to be normally distributed and could be eliminated by monitoring, and subsequently averaging, 128 or 256 samples for each data point. The former sampling was compatible with the requirements of scanning at least four input channels every one tenth of second while the latter one was compatible with requirements of scanning three input channels every one tenth of a second.

During the operation of these experiments in the high frequency induction furnace, significant noise was introduced despite the use of shielded cables to the thermocouples. This noise was modulating as an AC signal and consequently demodulation and filtering took place. A network of low-pass filters designed and built for each channel was found to have excellent response to low-frequency signals and at the same time provided a great deal of attenuation at high frequencies. A schematic layout of a low pass filter is presented in Figure 3.15. For this filter network the cut-off frequency may be computed as follows:

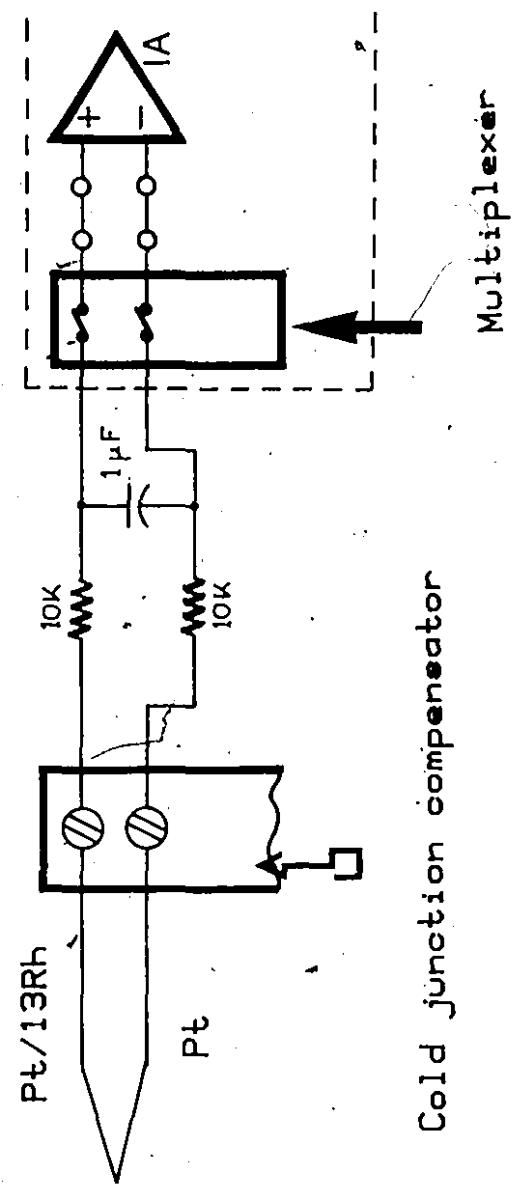


Figure 3.15 Schematic layout of a low pass filter.

$$f = \frac{1}{2\pi RC}$$

where C: size of capacitor in farads;

R: resistance in ohms;

f: the cut-off frequency in Hz above which signals are effectively eliminated.

The noise was reduced to a tolerable level by using a resistance of 10K and capacitance of $1\mu\text{F}$. The cut-off frequency of this low-pass filter was 15.9 Hz. Signals of higher frequency were largely eliminated. The filter was placed very close to the analog input board.

3.4 PROCEDURE FOR CYLINDER IMMERSION TESTS

Once the steel bath chemistry had been correctly adjusted and the bath thermocouple had been immersed into the steel bath, the temperature of the steel bath was brought up 20 to 30 K above the specified temperature. The power to the induction furnace was then switched off and the data acquisition started to measure the steel bath temperature. When this temperature was lower or equal to the specified bath temperature, a message was issued on the terminal 'Time of immersion now when you are ready, press R'. The apparatus which carried the load cell was then brought to the top of the steel bath and scanning of the specified channels started a few seconds prior to immersion. When the message 'End of scanning' appeared on the terminal the remaining portion of the cylinder was withdrawn from the steel bath and removed from the load cell.

3.5 INDUCTION HEATING OF COMPOSITE SAMPLES

In order to produce a steel-titanium interface, small cylindrical samples 2.54 cm in diameter and 1.5 cm long were machined and pressed tightly together. Figure 3.16 shows a schematic cross-section parallel to the cylinder vertical axis. A small hole with a diameter of 3 mm was then drilled through the iron up to iron-titanium interface. The composite sample was placed in the induction coil and through it, thermocouple wires were passed until the hot junction met the steel-titanium interface. Figure 3.17 shows the composite sample placed in an induction coil with a thermocouple at the steel-titanium interface.

The composite sample was then heated up inductively and the temperature-time history of the interface was recorded with the data acquisition system described. The electrical noise problem from the induction coil was eliminated by monitoring and subsequently averaging 512 samples for the thermocouple every tenth of a second. A modified version of program KINET was used for this type of experiments.

3.6 CHEMICAL ANALYSIS

The carbon analysis was done with an IR12 carbon analyser manufactured by Leco Corporation. The analyser operates on the principle of oxidizing an inductively melted sample placed in an oxide crucible by passing a stream of pure oxygen over it. The CO_2 thereby produced is analyzed in the oxygen stream by means of a luft cell whose electric signal was electronically

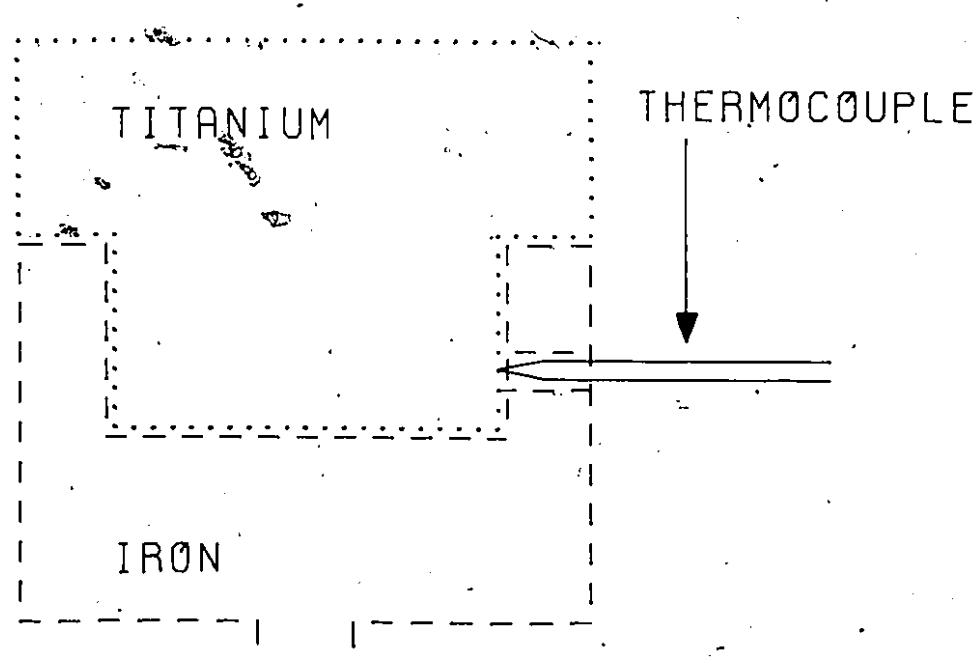


Figure 3.16. Schematic cross-section of the composite sample parallel to the cylinder vertical axis.

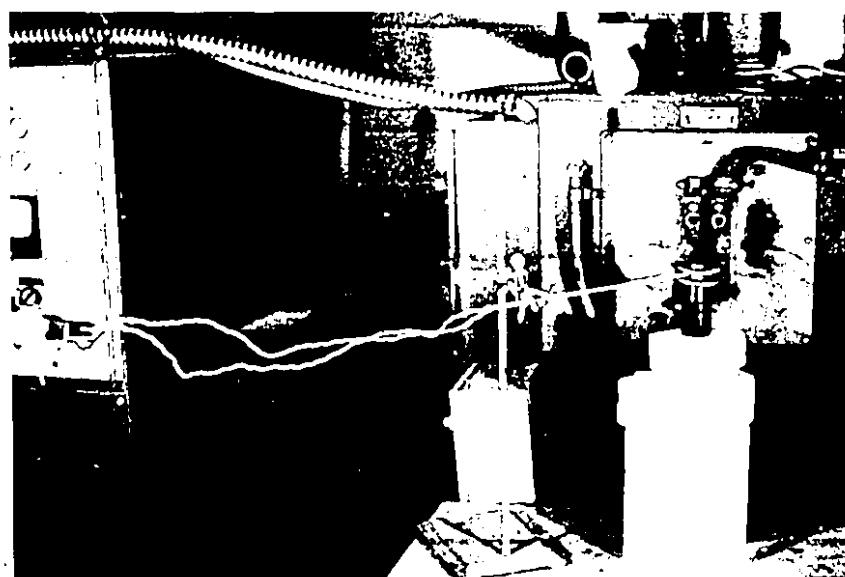


Figure 3.17 Composite sample placed in an induction coil.

integrated so as to give digital carbon weight percent readings.

The oxygen analysis was performed with a Leco RO-17 oxygen determinator. It used the inert gas fusion method. The sample was placed in a previously heated degassed graphite crucible. The crucible was resistance heated to a sufficiently high temperature for the sample to melt. The oxygen in the sample was converted to CO which is analyzed in a luft cell.

The iron, titanium and aluminum analysis was done using wet analytical methods. The samples were treated with aqua regia in order to dissolve their metal contents. The solutions were then diluted and atomic absorption was performed using a Pye-Unican Spectrophotometer SP 190.

In a few samples spectrographic analysis was performed at Sidbec-Dosco in Contrecoeur, Quebec, and iron and titanium wet analysis at QIT, Sorel, Quebec.

CHAPTER 4
MATHEMATICAL MODEL

The mathematical model described in the present text has been developed to predict heat and mass transfer events which occur when a high melting point additive is held motionless below the surface of a steel bath. A cylindrical shaped object was chosen in order to take advantage of prescribed or known heat transfer coefficients reported in the literature for cylinders. Since temperatures within the main body of the cylinder are affected mainly by heat entering in a radial direction from the bath, conduction up through the bottom surface has been ignored. Consequently, the mathematical modelling work presented in this thesis refers to a one dimensional model. The explicit finite difference method was employed to solve the set of steady state differential heat transfer equations and accompanying boundary conditions and equations.

4.1 GENERAL EQUATIONS OF THE MODEL

For an isotropic material, the heat conduction equation may be written in cartesian coordinates as:

$$\alpha \left[\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{\partial^2 \theta}{\partial z^2} \right] + \frac{q''''(x, y, z)}{\rho C_p} = \frac{\partial \theta}{\partial t} \quad (4.1)$$

where

C_p : heat capacity

ρ : density

k : thermal conductivity

$\alpha = \frac{k}{\rho C_p}$: thermal diffusivity

\dot{q}''' : heat generation per unit volume

For a cylindrical coordinate system, the spatial variables are the radial distance r , the axial distance z , and the angle ψ . These variables are related to x , y , z as:

$$x = r \cos\psi$$

$$y = r \sin\psi$$

$$z = z$$

Using these relationships equation (4.1) may be written as:

$$\frac{\partial^2 \theta}{\partial r^2} + \frac{1}{r} \frac{\partial \theta}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \theta}{\partial \psi^2} + \frac{\partial^2 \theta}{\partial z^2} + \frac{\dot{q}'''(r, \psi, z)}{k} = \frac{1}{\alpha} \frac{\partial \theta}{\partial t} \quad (4.2)$$

In the absence of heat conduction in the axial direction, $\partial \theta / \partial z = 0$ and $\partial^2 \theta / \partial z^2 = 0$. If in addition, the heat flow is symmetrical with respect to the angular component, ψ (i.e. conditions at r and z , uniform and independent of ψ).

Equation (4.2) reduces to:

$$\frac{\partial^2 \theta}{\partial r^2} + \frac{1}{r} \frac{\partial \theta}{\partial r} + \frac{\dot{q}'''(r)}{k} = \frac{1}{\alpha} \frac{\partial \theta}{\partial t} \quad (4.3)$$

Finally, without any heat generation, this general equation simplifies to that for transient, radial conduction of heat in a cylinder:

$$\frac{\partial^2 \theta}{\partial r^2} + \frac{1}{r} \frac{\partial \theta}{\partial r} = \frac{1}{\alpha} \frac{\partial \theta}{\partial t} \quad (4.5)$$

or

$$\frac{\partial \theta}{\partial t} = \frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \theta}{\partial r} \right) \quad (4.5)$$

Figure (4.1) presents a typical set of circumstances existing during the growth and melt back of a steel shell on a cylindrical additive immersed in liquid steel. The diagram represents a schematic cross section perpendicular to the cylinder's vertical axis. Appropriate expressions for transient conduction in the solid additive and the steel shell are therefore:

Solid additive:

$$0 \leq r \leq r_1^*, \quad 0 \leq t < t_{\text{total}}$$

$$\frac{\partial \theta}{\partial t} = \frac{\alpha_s}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \theta}{\partial r} \right) \quad (4.6)$$

Solid steel shell:

$$r_1^* \leq r \leq r_2^*, \quad 0 \leq t \leq t_{\text{total}}$$

$$\frac{\partial \theta}{\partial t} = \frac{\alpha_{Fe}}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \theta}{\partial r} \right) \quad (4.7)$$

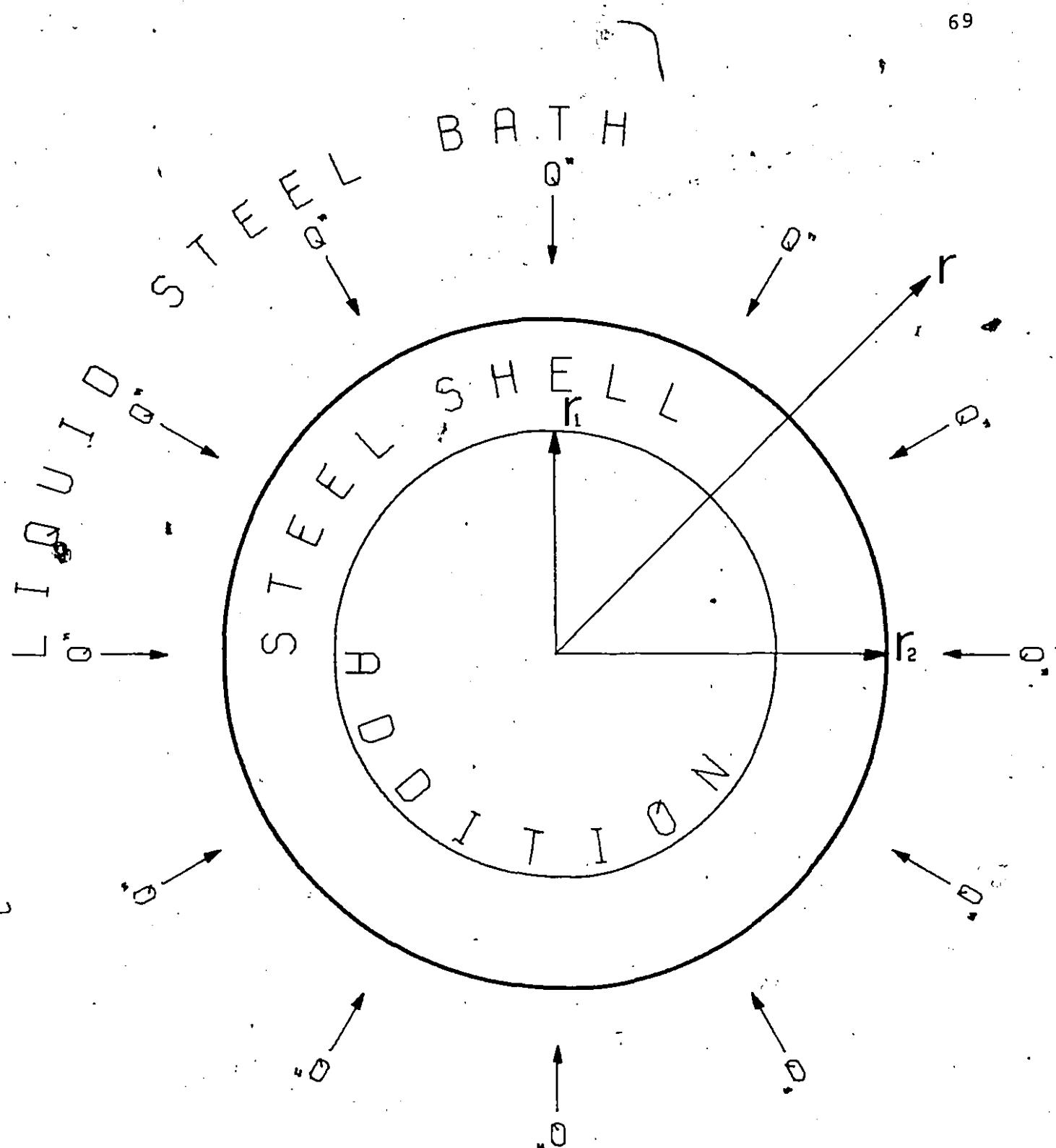


Figure 4.1 Schematic representation of typical melting situation denoting the various interfaces and coordinate systems used in the mathematical model.

For titanium, when the steel shell/titanium interface exceeds a certain threshold temperature, an exothermic reaction is initiated. This phenomenon can be represented (in its most simple form) through a constant heat generation term at the inner steel shell interface, together with associated erosion of the steel shell. This erosion is caused by a constant flux of dissolved titanium, supplied through dissolution of the titanium core. Figure 4.2 presents these phenomena in schematic form.

4.2 INITIAL CONDITIONS

Prior to immersion, the temperature of the cylinder is taken to be uniform at θ_0 and the radius of the cylinder is denoted by r_1^* . Expressing the above conditions mathematically

$$\begin{aligned} t &= 0 \quad \text{and} \quad 0 \leq r \leq r_1^* \\ \theta &= \theta_0 \end{aligned} \quad (4.8)$$

The bulk temperature is taken to be constant prior to immersion:

$$\begin{aligned} t &= 0 \quad \text{and} \quad r > r_1^* \\ \theta &= \theta_B \end{aligned} \quad (4.9)$$

Finally, at time $t = 0$

$$r = r_1 = r_2 \quad (4.10)$$



Figure 4.2 Schematic cross section of a dissolving titanium cylinder showing positions, boundaries, and coordinate system chosen for developing the mathematical model.

4.3 BOUNDARY CONDITIONS

In writing boundary conditions, these have been listed in a systematic way starting at the cylinder's centre and time zero and proceeding radially outwards towards the liquid steel bath. Since the phenomena occurring during the dissolution of titanium in molten steel are quite complex, it was decided to present the boundary conditions in two different sections: the first for titanium and the second for vanadium.

4.3.1 Boundary Conditions and Equations for Titanium

As the radial heat flow is assumed to be symmetrical about the cylinder's central axis, the net heat flux at this axis must be zero:

$$\nabla t, \quad 0 \leq t \leq t_{\text{total}}, \quad r = 0$$

$$\frac{\partial \theta}{\partial r} = 0 \quad (4.11)$$

The interfacial heat fluxes prior to the exothermic reaction between the steel shell and titanium can be taken equal:

$$0 < t < t_R, \quad r = r_1$$

$$-K_{Fe} \frac{\partial \theta}{\partial r} = -K_s \frac{\partial \theta}{\partial r} \quad (4.12)$$

The difference in temperature between the inner surface of the steel shell and the surface of the titanium cylinder depends on R_T , the interfacial thermal resistance.

$$0 < t < t_R, \quad r = r_1$$

$$q'' = \frac{\theta_{Fe}^* - \theta_s^*}{R_T}, \quad (4.13)$$

Perfect thermal contact is established at r_1 , once a eutectic liquid of iron and titanium has formed ($\theta^* > 1090^\circ C$ or 1363 K) at times greater than t_R :

$$t_R < t < t_{total}, \quad r = r_1 \quad (4.14)$$

$$R_T = 0, \quad \theta^* > 1363 \text{ K}$$

When the exothermic reaction starts, the difference between heat fluxes into and out of the interface or reaction zone must be balanced by the heat flux generated from the exothermic reaction. Making the approximation that this zone be treated as acting as the original iron/titanium interface, one can write:

$$t_R \leq t \leq t_{total}, \quad r = r_1$$

$$-K_{Fe} \frac{\partial \theta}{\partial r} + N''_{Ti} Q''_{Gen} = -K_{Ti} \frac{\partial \theta}{\partial r} \quad (4.15)$$

The temperature at the interface between the steel shell and the liquid steel is constant and equal to the melting point of the steel bath.

$$\checkmark t, 0 < t < t_{\text{total}}$$

$$r = r_2$$

$$\theta = \theta_{\text{M.P.Fe}} \quad (4.16)$$

The difference between the heat fluxes from the bulk liquid steel to the interface at r_2 , and from this interface into the body of the steel shell is used to freeze or to melt the solid shell. The relevant mathematical statement is thus equation (4.17):

$$\checkmark t, 0 < t < t_{\text{total}}, r = r_2$$

$$(K_{\text{Fe}} \frac{\partial \theta}{\partial r})_{\text{Fe, shell}} = \rho_{\text{Fe}} L_{\text{Fe}} \frac{\partial r}{\partial t} + \dot{q}_{\text{conv}}'' \quad (4.17)$$

The heat flux, \dot{q}_{conv}'' , which was used in equation (4.17) will depend on the heat transfer coefficient as well as the temperature 'driving force':

$$\dot{q}_{\text{conv}}'' = h(\theta_{\text{Bath}} - \theta_{\text{M.P.Fe}}) \quad (4.18)$$

The mass transfer phenomena occurring at the inner steel shell wall at $r = r_1$ can be expressed by the following:

$$\dot{N}_{Ti}'' = K_{Ti} (C_{Fe/Ti} - C_{Ti}) \quad (4.19)$$

Finally the temperature of the steel bath far from the steel shell can be regarded as being constant:

$$\checkmark t, \quad 0 < t \leq t_{total}$$

$$r \rightarrow \infty, \quad \theta = \theta_{bath} \quad (4.20)$$

4.3.2 Boundary Conditions for Vanadium

Vanadium follows a more conventional route during steel shell formation and melt back. In this case, there is no exothermic triggering mechanism at the steel shell/vanadium interface and no equations equivalent to equations (4.14), (4.15) and (4.19). The remaining boundary conditions are applicable, however, during steel shell formation and melt back.

$$\checkmark t, \quad 0 < t < t_{total} \quad (4.21)$$

t_{total} is the time during which a frozen steel shell surrounds the addition.

4.4 NUMERICAL MODEL

As the set of partial differential equations (4.6) and (4.7) is too complex for analytical solutions with such boundary conditions, numerical procedures were employed to predict shell thickness, melting rates, etc. as a function

of time. The explicit numerical technique was employed for solving the set of partial differential equations and boundary conditions just described.

4.4.1 Assumptions Involved

The technique of numerical integration involves certain simplifying approximations. These are discussed in a later section of this chapter. Assumptions in describing the physical phenomena of a cylinder's dissolution/melting were:

(i) Conduction up through the bottom surface was ignored. Thus temperatures in the main body of the cylinder are affected only by heat entering in a radial direction from the bath.

(ii) The heat transfer was taken to be symmetrical about the cylinder's axis (i.e. slight variations with respect to length are ignored.)

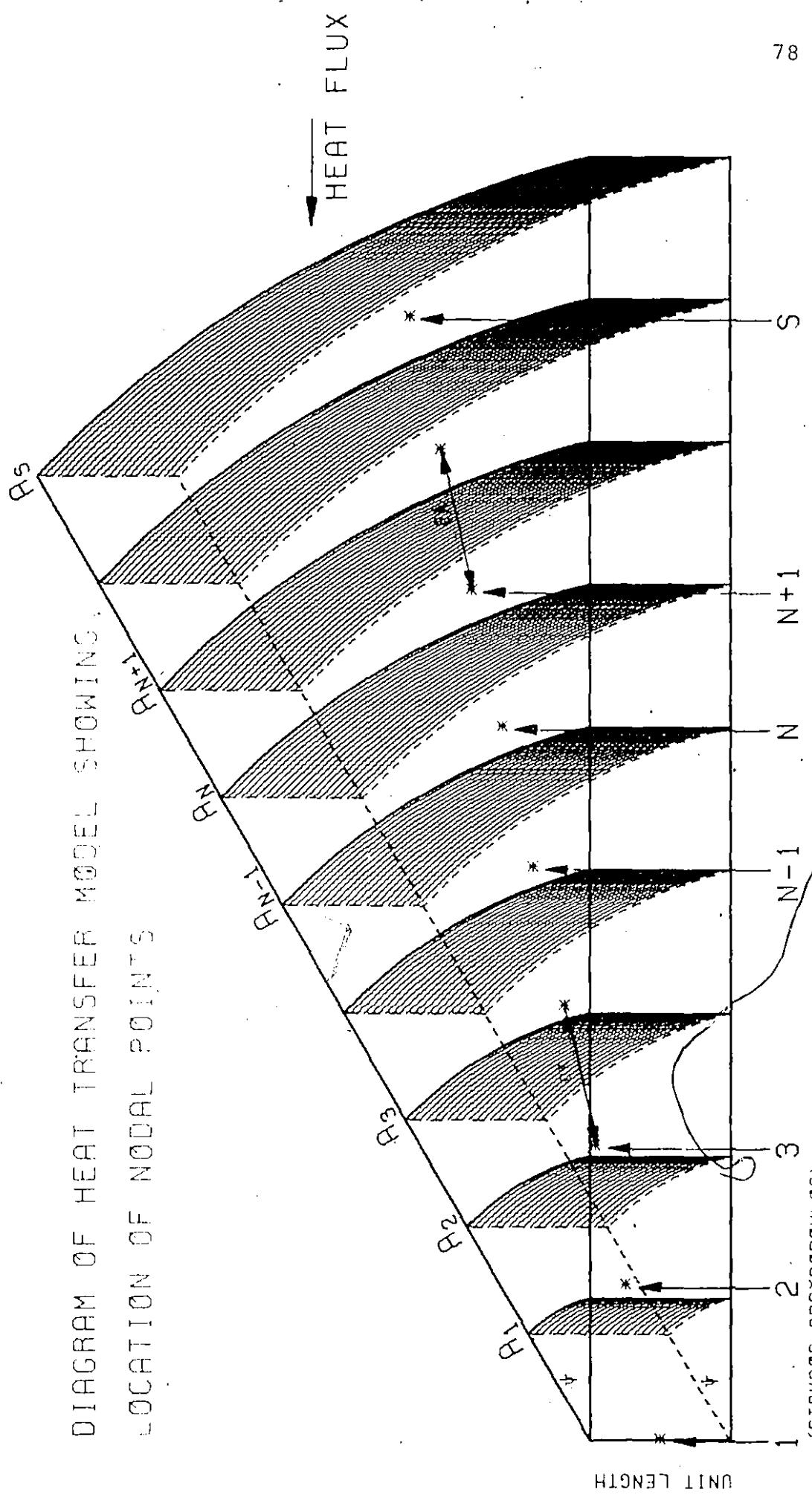
(iii) The immersion of the ferro-alloy cylinder in the liquid steel is assumed to take place instantaneously.

(iv) The cylinder maintains its outer physical dimensions during the freezing and melting process involved (i.e. variations of density were neglected).

(v) The material within each elemental volume or node was assumed to have uniform temperature and thermophysical properties.

(vi) The temperature of the solid-liquid steel interface was constant during the freezing or melting process of steel shell.

4.4.2 Formulation of the Numerical Equations


In order to set up the relevant numerical equations for the solution of the heat transfer problem, it was decided to consider a typical section of the cylinder as shown in figure 4.3. As seen, the section was considered to be composed of equally spaced elemental volumes with nodal points located at their centres. The central nodal point located on the cylinder's axis was designated as number 1, and successive points as 2, 3, 4, etc. The cross-sectional area, A_1 refers to the surface area located halfway between nodal points 1 and 2, and the volume V_1 to the volume of the segment bounded by the cylinder's axis and the surface A_1 . Similarly, volume V_2 refers to the volume of the segment bounded by surfaces A_1 and A_2 . Thus for the diagram shown in figure 4.3, subtending an angle ψ of 1 radian and of unit length above the cylinder's axis, the relevant cross-sectional area A_1 and volume V_1 are given by:

$$A_1 = \frac{Dx}{2}, \quad V_1 = \frac{Dx^2}{8}$$

Similarly, the cross-sectional area A_2 and volume V_2 are given by:

$$A_2 = \frac{3Dx}{2}, \quad V_2 = Dx^2$$

In general, the cross-sectional area A_N and volume V_N are given by:

$$A_N = \frac{(2N-1)Dx}{2}, \quad V_N = (n-1)Dx^2$$

$$V_N, \quad N \geq 2$$

Thus, writing a heat balance for nodal point N for unsteady-state heat conduction between N and two adjacent nodal points (N+1) and (N-1) yields the general equation:

$$\theta'_N = \theta_N \left\{ 1 - M \left(\frac{2N-1}{2N-2} \right) - M \left(\frac{2N-3}{2N-2} \right) \right\} + M \left(\frac{2N-1}{2N-2} \right) \cdot \theta_{N+1} \\ + M \left(\frac{2N-3}{2N-2} \right) \cdot \theta_{N-1} \quad (4.22)$$

where $M = \frac{KDt}{\rho \cdot C_p \cdot Dx^2}$

θ'_N represents the new temperature of nodal point N at time $t + \delta t$.

Equation 4.22 is the numerical equivalent of differential equations (4.6) and (4.7) cast in the finite difference explicit form. In Appendix II, equation 4.22 is derived directly from partial differential equations (4.6) and (4.7).

As seen, a knowledge of the nodal point temperature at time t allows new nodal point temperatures θ'_N to be calculated at time $t + \delta t$ in any region of the cylinder (i.e., addition, steel shell).

The finite difference equation for the central nodal point 1, satisfying boundary condition (4.11) is:

$$\theta'_1 = \theta_1(1-4M) + 4M\theta_2 \quad (4.23)$$

Referring to the figure 4.4, let us assume that the solid shell-liquid steel interface at time t is in position A. Let x_t be the distance between the last nodal point $N+1$ and the liquid-solid steel interface. At time $t+\delta t$, the new interface position is given by a dashed line. Then the relevant boundary condition equation (4.17) can be written in finite difference form as follows:

$$\rho_{Fe} \cdot L_{Fe} \cdot \frac{\delta r}{\delta t} = K_{Fe} \left(\frac{\theta_{M.P.Fe} - \theta_{N+1}}{x_t} \right) - h(\theta_{Bath} - \theta_{M.P.Fe}) \quad (4.24)$$

Here, ρ_{Fe} : steel density

L_{Fe} : steel latent heat

K_{Fe} : steel thermal conductivity

h : convective heat transfer coefficient from bath to outer surface of the addition.

When x_t exceeded Dx (radial nodal point distance), a new nodal point was assigned, labelled $N+1$. The remaining nodes were relabelled, becoming N , etc. Similarly, when δr became negative, the reverse procedure was applied. In the case where a new nodal point was assigned and labelled $N+1$, the temperature for this new nodal point was calculated, using linear interpolation between the temperature of nodal point N

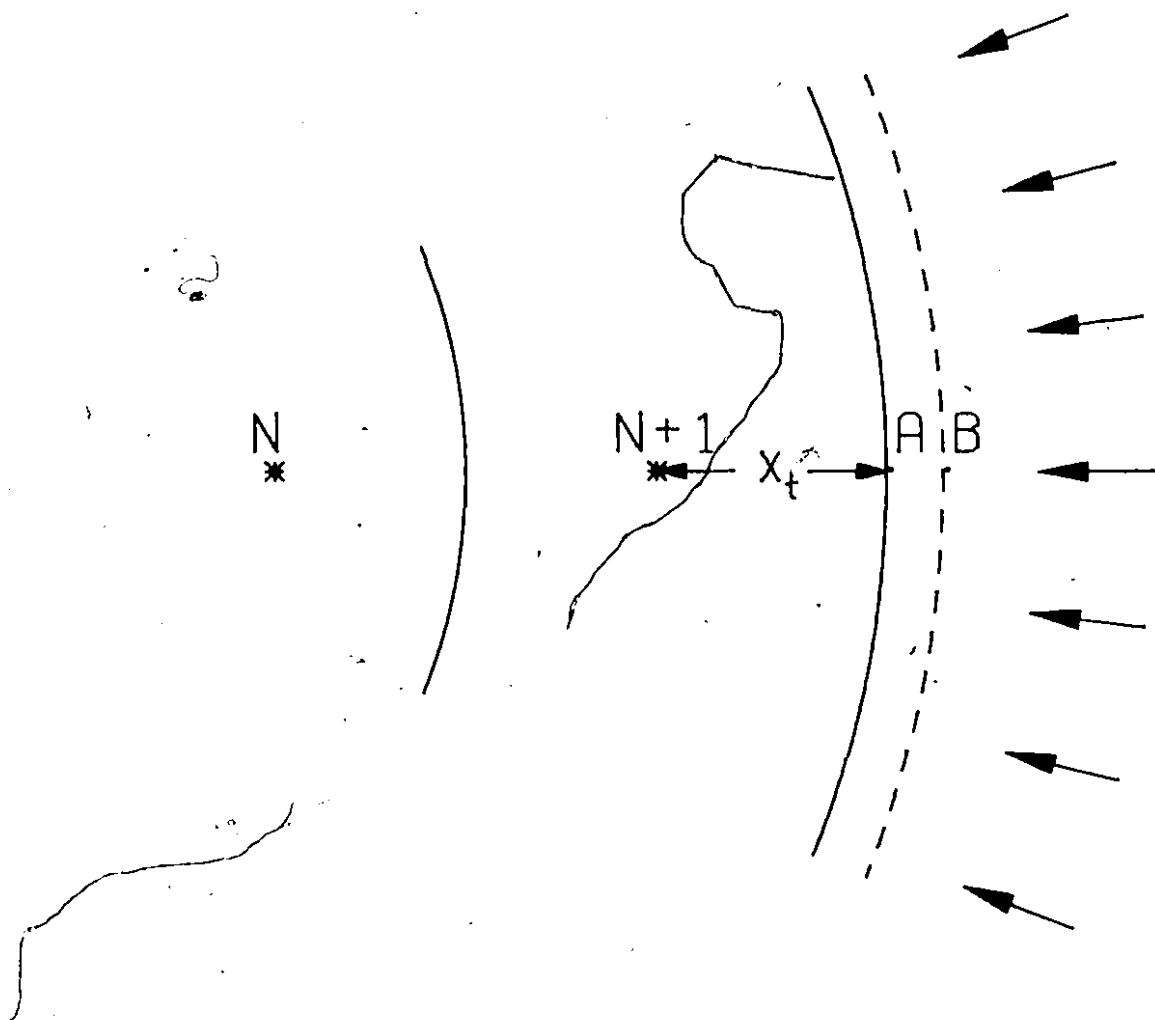


Figure 4.4 Schematic representation of the movement of the steel shell-liquid steel interface x_t is the distance of last nodal point from this interface at time t . The dashed line represents the position for this interface at time $t+\delta t$.

and the melting point of steel (temperature of solid-liquid steel interface).

The above notation is illustrated in figure 4.5. The following equation gives the temperature of the newly assigned nodal point, N+1:

$$\theta'_{N+1} = \frac{(\theta'_{M.P.Fe} \cdot DLX + x_t \cdot \theta'_N)}{x_t + DLX} \quad (4.25)$$

where θ'_{N+1} : new temperature for new nodal point (N+1)

θ'_N : new temperature for the N nodal point

$\theta'_{M.P.Fe}$: steel melting point.

Referring again to figure 4.4 the finite difference equation for the finite element corresponding to nodal point N+1 therefore becomes:

$$\theta'_{N+1} = \theta_{N+1} \left\{ 1 - \frac{M}{x_t} \frac{(2N+1)}{2N} Dx - M \frac{(2N-1)}{2N} \right\} + M \frac{\theta'_{M.P.Fe}}{x_t} \frac{2N+1}{2N} Dx + M \frac{2N-1}{2N} \theta'_N \quad (4.26)$$

The M or Fourier Modulus appearing in equations (4.22), (4.23), (4.26) is dimensionless and represents:

$$M = \frac{K \cdot D_t}{\rho \cdot C_p \cdot D_x^2} \quad (4.27)$$

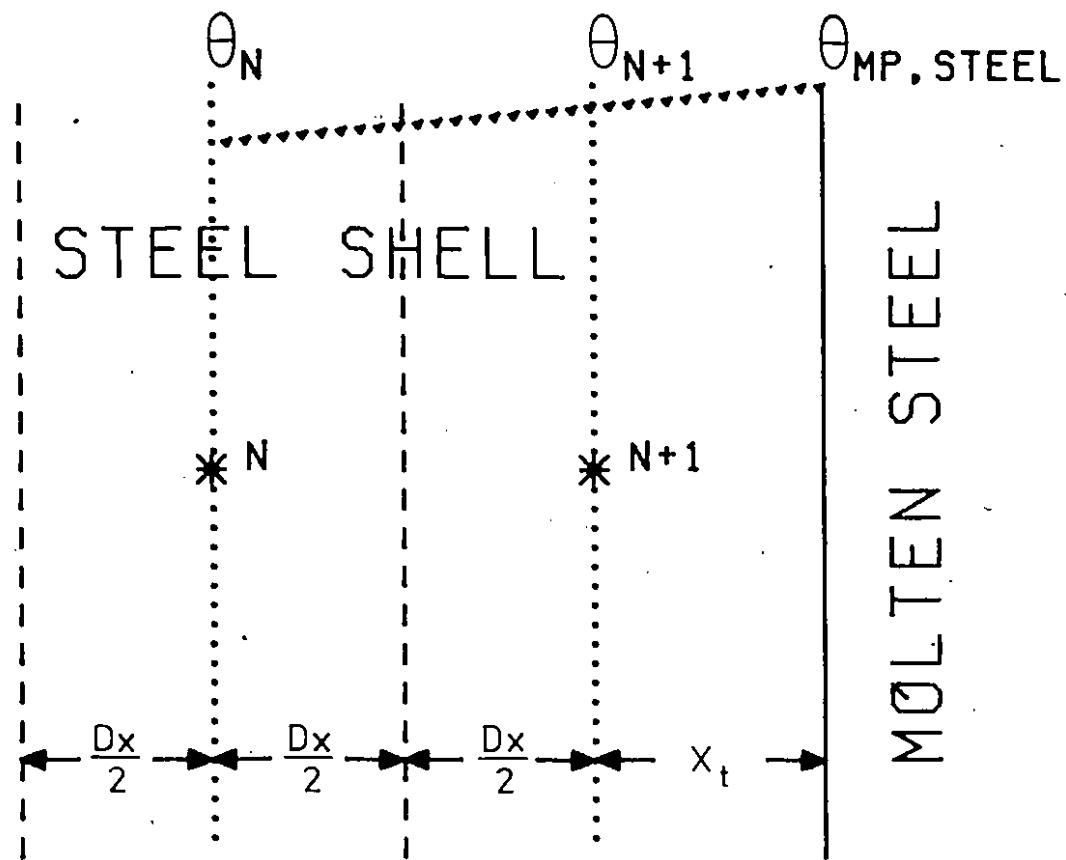


Figure 4.5 Schematic representation of the linear interpolation between the temperature of steel shell-liquid interface $\theta_{M.P., Fe}$ and the temperature of nodal point N (θ_N).

where K : thermal conductivity

ρ : density

C_p : heat capacity at constant pressure

D_x : distance between two adjacent nodal points

D_t : iteration time.

In the case where there is heat generation inside an elemental volume N , this is taken into account through proper modification of the corresponding finite difference equation.

Referring to figure 4.3, let us assume that heat is generated in the nodal point, N , at a rate of \dot{Q}''' per unit volume. Writing a heat balance for nodal point N for unsteady-state heat conduction between N and two adjacent nodal points $(N+1)$ and $(N-1)$ yields the general equation:

$$\theta'_N = \theta_N \left\{ 1 - M \frac{2N-1}{2N-2} - M \frac{2N-3}{2N-2} \right\} + M \frac{(2N-1)}{(2N-2)} \theta_{N+1} \\ + M \left(\frac{2N-3}{2N-2} \right) \theta_{N-1} + \frac{\dot{Q}'''}{\rho \cdot C_p} D_t \quad (4.28)$$

where \dot{Q}''' : heat generation per unit volume

ρ : density

C_p : heat capacity (at constant pressure)

Equation (4.28) represents the generalized transformation of equation (4.3) into an equivalent finite difference form.

During the heating of cylindrical additives, phase changes may occur (i.e. titanium α can transform endothermically

to β at 1155 K or 882°C).

The numerical model took this transformation into account in the following way. Thus, once the temperature at nodal point N , θ_N , reached the transformation temperature of the addition, θ'_N was computed. The difference between θ'_N and the transformation point temperature θ_{TR} , was then accumulated until it equalled or exceeded the fictitious temperature change given by equation (4.29):

$$\Delta T_{\text{TR}} = \frac{L_{\text{TR}}}{C_{\text{ps}}} \quad (4.29)$$

where ΔT_{TR} : fictitious temperature change

L_{TR} : the latent heat of transformation of the addition

C_{ps} : the heat capacity of the solid cylindrical addition.

During the course of this accumulation process, θ_N was always reinitialized to θ_{TR} after each iteration. Once node N accumulated a temperature increase equivalent to ΔT_{TR} the material comprising nodal point N was considered to be fully transformed (i.e. transformation of titanium α to titanium β).

For a given nodal point N , the M modulus can have two values, $M_{N,N-1}$, $M_{N,N+1}$. The first corresponds to the centrally directed heat flux bearing nodal point N , i.e. the heat flux between nodal point N and $N-1$. The second value corresponds to the heat flux entering nodal point N , from $N+1$. The

numerical values of these fluxes will depend on the phases existing at the adjacent nodal points (i.e. N and N+1 or N and N-1).

For the α phase of the addition, the value for the M modulus is given by the following formula:

$$M_{\alpha} = \frac{K_{\alpha} Dt}{\rho C_{P\alpha} Dx^2} \quad (4.30)$$

where K_{α} : thermal conductivity of the α phase of the addition
 $C_{P\alpha}$: heat capacity of the α phase.

For the β phase of addition the M modulus becomes:

$$M_{\beta} = \frac{K_{\beta} Dt}{\rho C_{P\beta} Dx^2} \quad (4.31)$$

where K_{β} : thermal conductivity of β phase
 $C_{P\beta}$: heat capacity of β phase.

For the steel shell region, the M modulus is given by:

$$M_{Fe} = \frac{K_{Fe} Dt}{\rho_{Fe} C_{PFe} Dx^2} \quad (4.32)$$

where K_{Fe} : thermal conductivity of steel
 ρ_{Fe} : density of steel
 C_{PFe} : heat capacity of steel.

When nodal point N is in the α phase and the adjacent nodal point is in the β phase, the M modulus was assigned the following formula:

$$M_{\alpha-\beta} = \frac{K_{\alpha-\beta} \frac{Dt}{Dx^2}}{\rho C_{P\alpha}} \quad (4.33)$$

where the $K_{\alpha-\beta}$ is the equivalent thermal conductivity taken as:

$$K_{\alpha-\beta} = \frac{2 K_{\alpha} K_{\beta}}{K_{\alpha} + K_{\beta}} \quad (4.34)$$

For the case in which a nodal point N is in the β phase and the adjacent nodal point is in the α phase then

$$M_{\beta-\alpha} = \frac{K_{\alpha-\beta} \frac{Dt}{Dx^2}}{\rho C_{P\beta}} \quad (4.35)$$

$K_{\alpha-\beta}$ was given in equation (4.34)

The presence of a thermal resistance between the addition and the inner surface of the steel shell necessitates the modification of dimensionless numbers M, which are applied to the relevant numerical equations. This thermal resistance may be a gas layer or a thin oxide film. For modelling purposes it is assumed that this thermal resistance is of negligible thickness and heat capacity. In the solidification or melting of the steel shell there are two distinct situations. The first is depicted schematically in figure 4.6. In this case

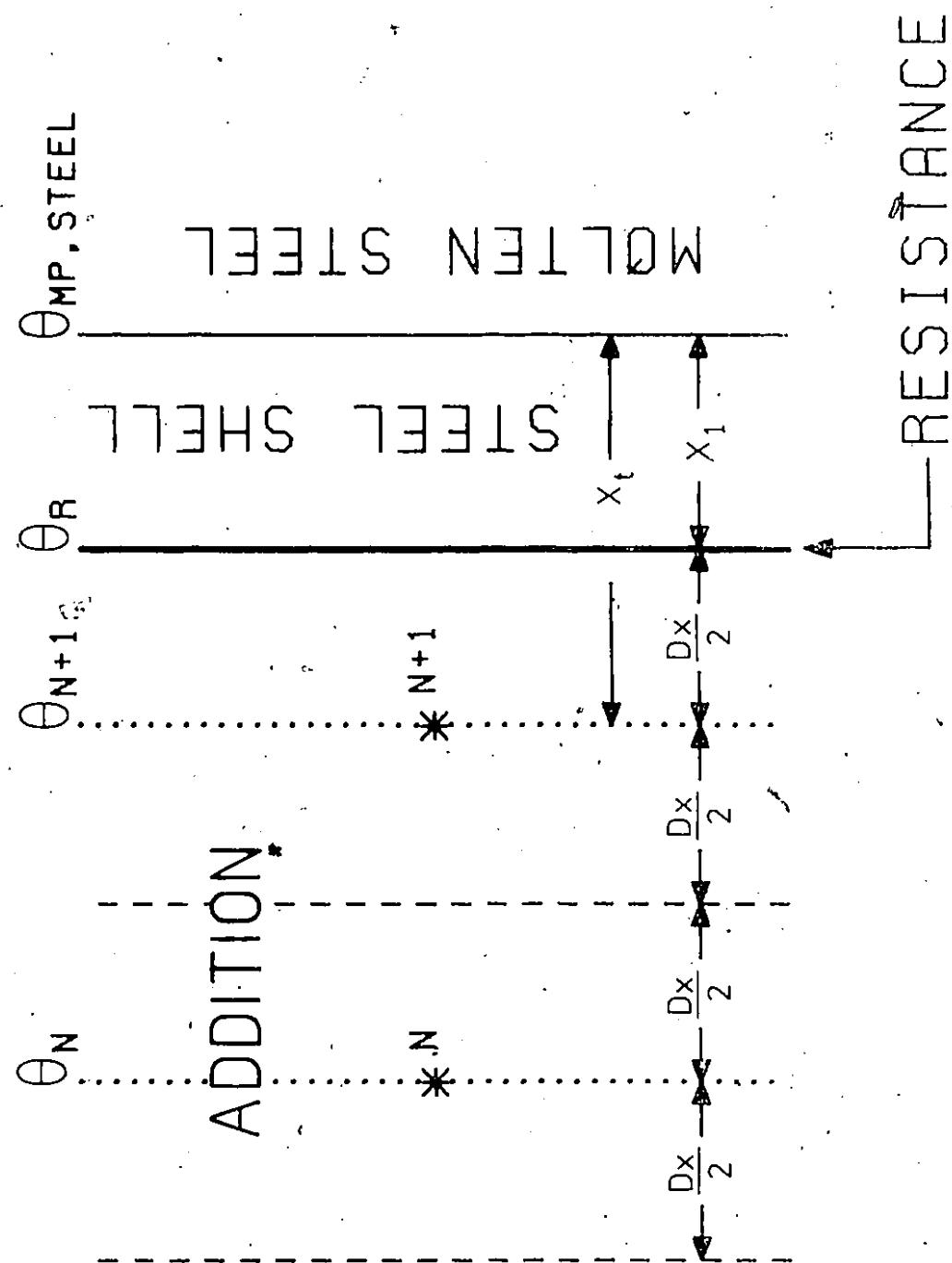


Figure 4.6 A schematic representation of the steel shell interface for a steel shell thickness of less than D_x units.

there is no nodal point in the steel shell, since the shell thickness is smaller than the radial nodal point distance. The latter case is illustrated schematically in figure 4.7. Here, there is a nodal point in the steel shell, since the shell thickness is greater than the radial nodal point distance. Referring to figure 4.6, the heat flux through the steel shell is expressed as:

$$\dot{q}_{Fe}'' = \frac{K_{Fe}}{x_1} \Delta\theta_{Fe} \quad (4.36)$$

where K_{Fe} : thermal conductivity of steel

x_1 : steel shell thickness

$\Delta\theta_{Fe}$: temperature difference across the steel shell.

The heat flux through the interfacial resistance is given as

$$\dot{q}_R'' = \frac{1}{R} \Delta\theta_R \quad (4.37)$$

where R : thermal resistance

$\Delta\theta_R$: temperature difference across the thermal resistance.

The heat flux between the steel shell addition interface and the nodal point $N+1$ was expressed as:

$$\dot{q}_{N+1}'' = \frac{K_s}{Dx/2} \Delta\theta_s \quad (4.38)$$

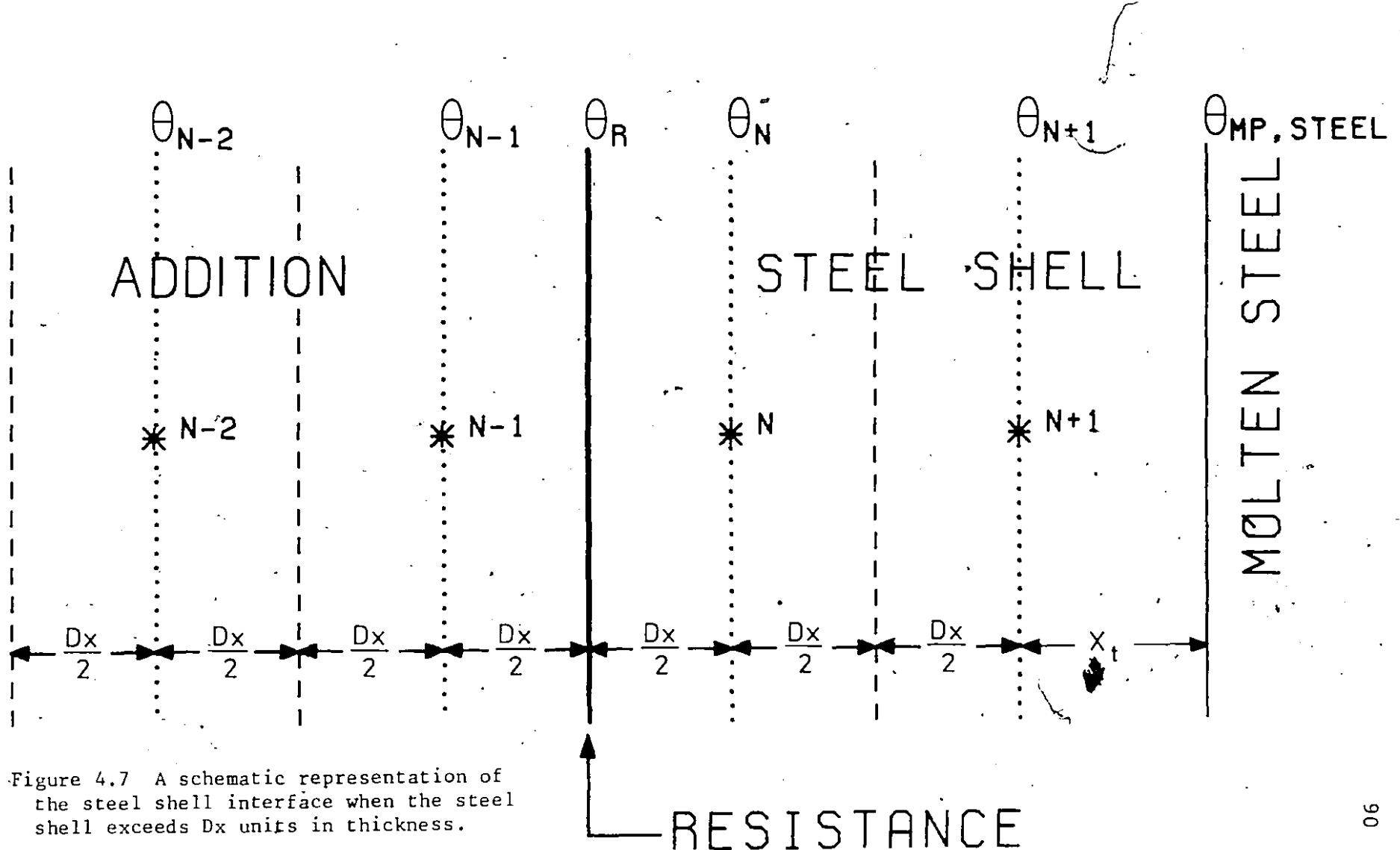


Figure 4.7 A schematic representation of the steel shell interface when the steel shell exceeds D_x units in thickness.

where K_s : thermal conductivity of addition

$\Delta\theta_s$: temperature difference across the steel shell
addition interface and the nodal point N+1.

For the heating period during which thermal resistance operates, there is no accumulation or generation of heat across the liquid-solid steel interface and the nodal point N+1, so that heat fluxes must be equal. Hence,

$$\dot{q}_{Fe}'' = \dot{q}_R'' = \dot{q}_{N+1}'' = \frac{K_{eq}}{x_t} \Delta\theta_{total} \quad (4.39)$$

where K_{eq} : the equivalent thermal conductivity

x_t : distance between nodal point N+1 and liquid-steel interface

$\Delta\theta_{total}$: temperature difference across liquid-solid steel interface and the nodal point N+1.

From the definition of $\Delta\theta_{total}$ the following relation is obtained:

$$\Delta\theta_{total} = \Delta\theta_{Fe} + \Delta\theta_R + \Delta\theta_s \quad (4.40)$$

From equations (4.36), (4.37), (4.38), (4.39) and (4.40) the following expression is derived:

$$K_{eq} = \frac{2 K_s K_{Fe} x_t}{(2 K_s x_1 + 2 K_R K_s K_{Fe} + D x K_{Fe})} \quad (4.41)$$

For the case which is depicted schematically in figure 4.7, a similar procedure was followed. Referring to figure 4.7 the equivalent thermal conductivity between nodal points N-1 and N was expressed by:

$$K_{eq} = \frac{2 K_s K_{Fe} DX}{(K_s DX + 2 R K_s K_{Fe} + DX K_{Fe})} \quad (4.42)$$

Note that this expression can be derived from (4.41) if $x_1 = DX/2$ and $x_t = DX$.

4.4.3 Stability and Accuracy

A critical feature of any finite difference technique is its stability and accuracy. For a numerical solution of a finite difference equation to be of any value, it is self-evident that its solution must converge correctly. This occurs (i.e. the accuracy improves) when the finite increments DX (distance between nodal points and Dt (time iteration step)) are decreased in size. Analysis shows^{68,69,70} that a restrictive relationship between the size Dx and Dt exists when using the explicit finite difference technique.

For cylinder coordinates it is readily shown that the modulus ($M = K DT/\rho Cp Dx^2$) should not be greater than 0.25. If this criterion is not satisfied results become unstable and will oscillate from one time step to another, the term $(1-4M)$ in equation (4.23) becoming negative. The value chosen for M in the present calculations was 0.06. It is worth noting

that smaller M values made no significant changes in the numerical solutions.

4.4.4 Computer Model

The numerical calculation is performed in the following way. The temperature and the M modules for all nodal points are initially assigned with values corresponding to the initial temperatures and initial M modules for each material used. Then over the next time step, Dt , the temperature of all nodal points are recalculated using the finite difference equations (4.22), (4.23), (4.26). The shell thickness is calculated using equation (4.24). After that, the corresponding M modules for each nodal point are assigned and the calculations for the new temperatures can be repeated over successive time intervals. The above are easily converted in FORTRAN computing language.

A program called DISSOLUTION was written in FORTRAN computing language, compiled with FORTRAN H compiler and executed on an AMDAHL V7 computer. A list of this program along with all symbols appears in Appendix IV.

4.5 COMPARISONS OF NUMERICAL MODEL PREDICTIONS WITH ANALYTICAL SOLUTIONS

In mathematical modelling it is essential to demonstrate general validity by comparing a model's predictions with any cases where analytical solutions might exist. In this section of the thesis, the numerical model was adopted to run under

three different limiting conditions for which analytical solutions are available.

4.5.1 Case 1: Infinitely Long Cylinder Subjected to Sudden Temperature Change at Surface

If a cylinder of infinite length and zero initial temperature has its surface maintained at θ_a , a constant, for $t > 0$, the solution for the transient temperature field is given by⁷¹:

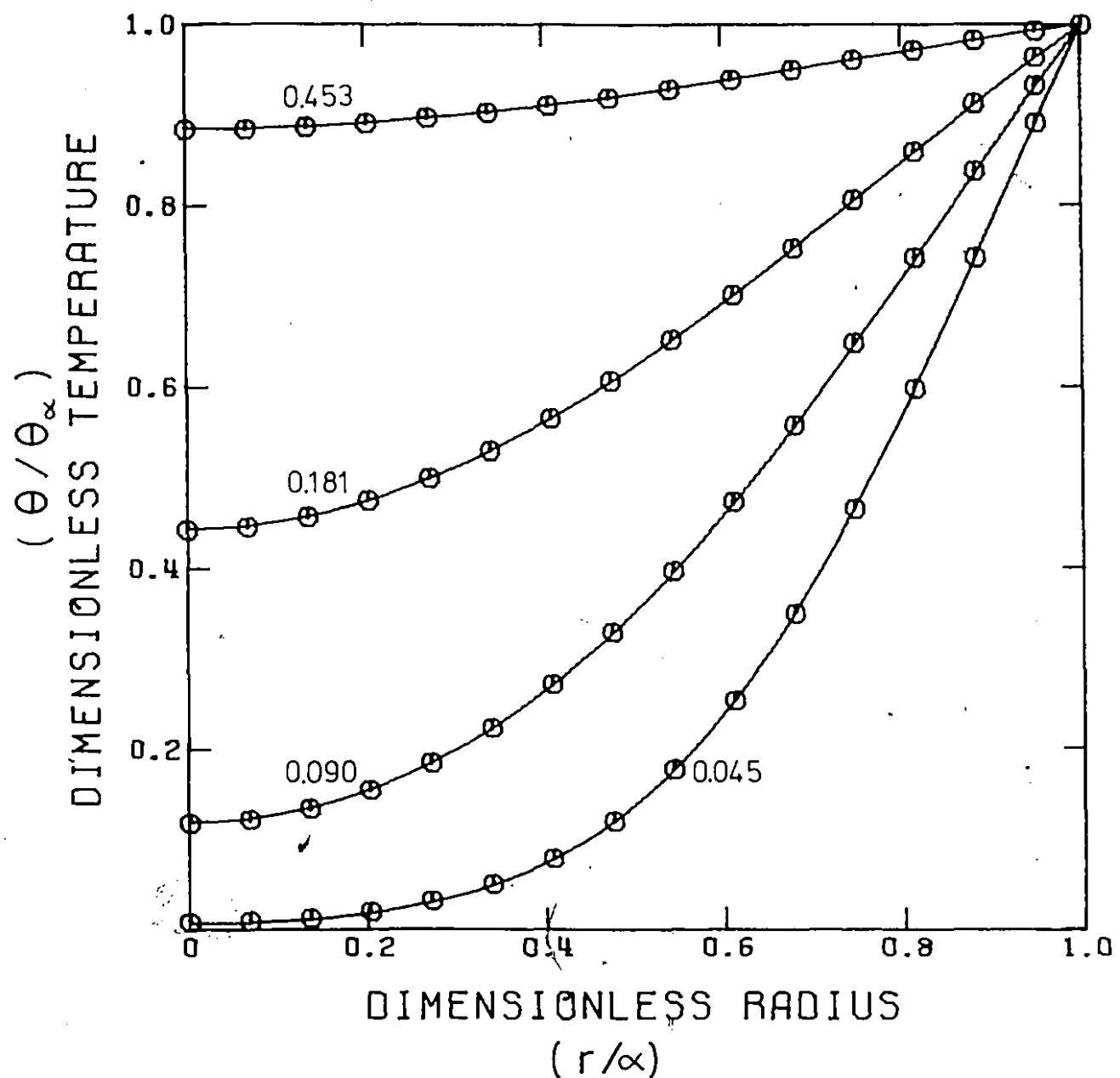
$$\frac{\theta}{\theta_a} = 1 - 2 \sum_{n=1}^{\infty} e^{-\beta_n^2 T} \frac{J_0(r\beta_n/a)}{\beta_n J_1(\beta_n)} \quad (4.43)$$

where a: cylinder radius

k: thermal diffusivity

T: kt/a^2

θ : temperature of cylinder at radius r


$J_0(x)$: Bessel function of the first kind of order zero

$J_1(x)$: Bessel function of the first kind of order one

β_n : n 1,2,... are the roots of $J_0(\beta) = 0$ (4.44)

The sum of the right hand side of equation (4.43) was computed from the first eight terms, the roots for equation (4.44) being obtained from reference 72. The solution to equation (4.43) is given in reference 71 in graphical form. Owing to the uncertainty in reading values from these plots, computer programs were written by the author for equation (4.43). The results are presented in graphical form in Figure 4.8

Figure 4.8 Temperature distribution at various times in a cylinder of radius a with zero initial temperature and surface temperature θ_a . The solid lines show the results of analytical solution (i.e. equation 4.43). The points depict results of the numerical model. The numbers on the curves are the values of $T = Kt/a^2$.

together with predictions from the present model. As seen, there is excellent agreement between the analytical and numerical solutions.

4.5.2 Case 2: Infinite Cylinder with Heat Generated Within It

Consider the case of an infinite cylinder of diameter a , at zero initial temperature with constant heat generation at a rate Q_0 per unit time and per unit volume at $t > 0$. The temperature on the inside of the cylinder is then given by⁷³:

$$\theta = \frac{Q_0(a^2 - r^2)}{4K} - \frac{2Q_0}{aK} \sum_{n=1}^{\infty} e^{-ka_n^2 t} \frac{J_0(r \alpha_n)}{\alpha_n^3 J_1(a \alpha_n)} \quad (4.45)$$

Substituting $a \alpha_n = \beta_n$ and $kt/a^2 = T$,

the following equation is derived:

$$\frac{4K\theta}{Q_0 a^2} = 1 - \left(\frac{r}{a}\right)^2 - 8 \sum_{n=1}^{\infty} e^{-\beta_n^2 T} \frac{J_0(r \beta_n/a)}{\beta_n^3 J_1(\beta_n)} \quad (4.46)$$

where K : thermal conductivity

a : cylinder radius

θ : temperature of cylinder at radius r

The solution to equation (4.46) is given in reference 73 in a graphical form. As before, due to uncertainties in reading values from these plots, computer programs were written so that particular solutions to the equation (4.46)

could be evaluated more accurately. The results are plotted in figure 4.9 for comparison with equivalent predictions of the present models. Again, the agreement between analytical and numerical solutions is excellent.

4.5.3 Case 3: Exact Solution of Freezing Boundary with Cylindrical Symmetry

Carslaw and Jaeger⁷⁴ present an analytical solution for the problem of freezing with cylindrical symmetry. Consider the case where the surface of separation between the solid and liquid phases is at radius $r = R(t)$. The liquid region has the thermal constants ρ , C_{Pl} , K_l , α_l and exists for $r > R$. The solid region exists for $r < R$ and is assigned thermal constants ρ , C_{Ps} , K_s , α_s . If $\theta_2(r)$ and $\theta_1(r)$ are the temperatures in the liquid and solid regions respectively and θ_{mp} is the melting point, the boundary conditions at $r = R$ are:

$$\theta_1 = \theta_2 = \theta_{mp} \quad (4.45)$$

and

$$K_s \frac{\partial \theta_1}{\partial r} - K_l \frac{\partial \theta_2}{\partial r} = LH \rho \frac{dR}{dt} \quad (4.46)$$

where LH: latent heat of solidification

ρ : density

For the case of a continuous line source along the axis $r = 0$ which extracts heat at the rate Q per unit time at $t > 0$, the temperature distribution in the solid region is given by

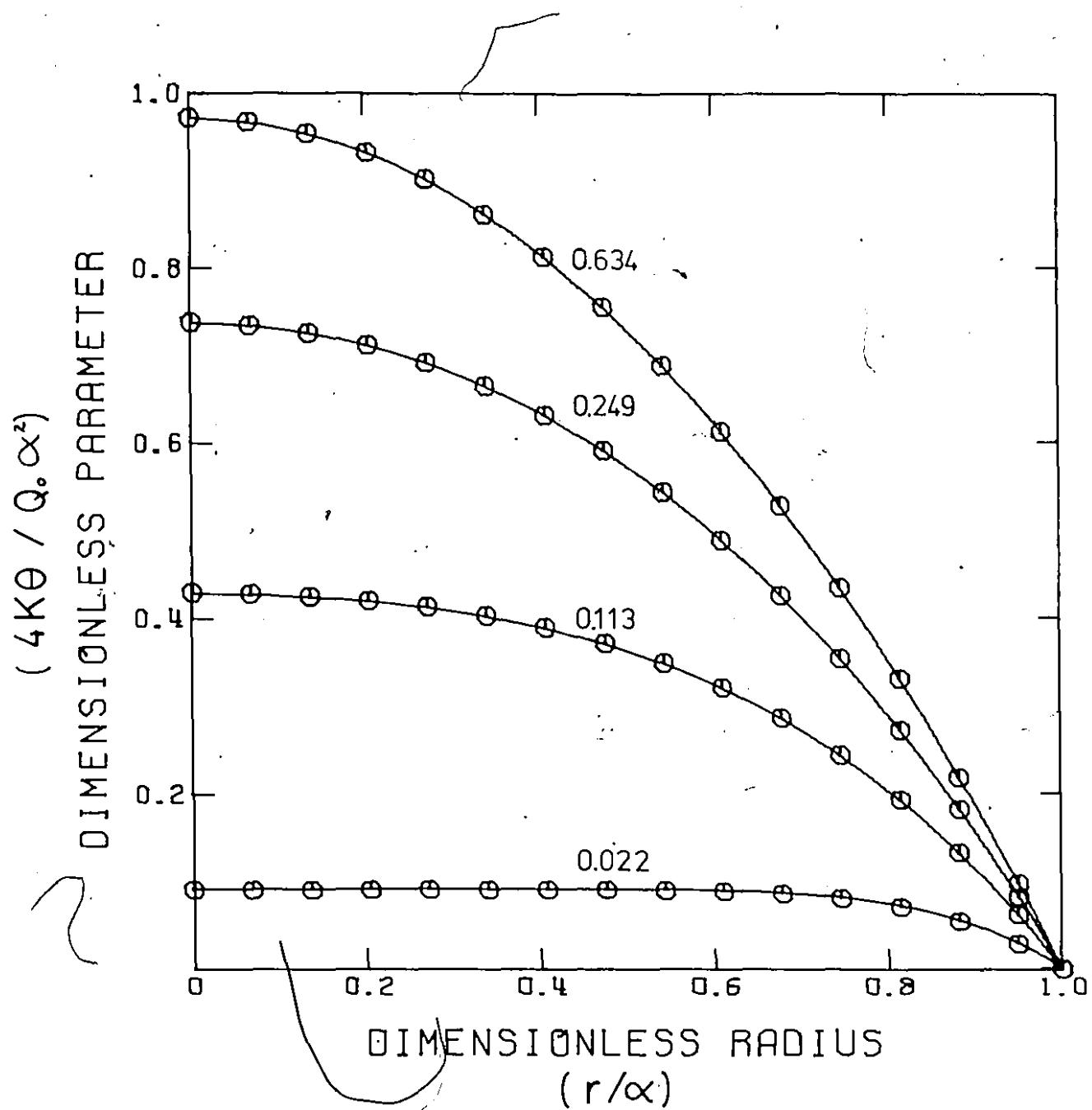


Figure 4.9 Temperature distribution at various times in a cylinder of radius a with zero initial and surface temperatures, and a constant rate of heat generation. The solid lines show the results of analytical solution (i.e. equation 4.46). The points depict results of the numerical model. The numbers on the curves are the values of $T = Kt/a^2$.

the following formula:

$$\theta_1(r) = \theta_{mp} + \frac{Q}{4\pi K_s} \left\{ Ei\left(-\frac{r^2}{4K_s t}\right) - Ei(-\lambda^2) \right\} \quad (4.47)$$

for $0 < r < R$

The temperature distribution in the liquid region is given by:

$$\theta_2(r) = \theta_\infty - \frac{(\theta_\infty - \theta_{mp})}{Ei(-\lambda^2 a_s/a_1)} Ei\left(-\frac{r^2}{4a_1 t}\right) \quad (4.48)$$

for $r > R$

where

$$R = 2\lambda(a_s t)^{\frac{1}{2}} \quad (4.49)$$

λ is the root of

$$\frac{Q}{4\pi} e^{-\lambda^2} + \frac{K_1(\theta_\infty - \theta_{mp})}{Ei(-\lambda^2 a_s/a_1)} e^{-\lambda^2 a_s/a_1} = \lambda^2 a_s LH \quad (4.50)$$

The function $Ei(x)$ is called exponential integral and is defined as

$$Ei(x) = \int_x^\infty \frac{e^{-u}}{u} du \quad (4.51)$$

LH: the latent heat of solidification.

Initial conditions ($t = 0$) at the central axis ($R = 0$) are that $\theta_2 = \theta_\infty$; i.e. at the beginning of freezing, the whole region at $r > 0$ is liquid with a temperature θ_∞ . For $t > 0$,

$$\lim_{r \rightarrow 0} \left\{ (2\pi r K_s) \frac{\partial \theta_1}{\partial r} \right\} = Q \quad (4.52)$$

Equation (4.52) expresses in mathematical terms, that a continuous line source along the axis for $t > 0$ extracts heat at a rate of Q per unit time.

Paterson has shown⁷⁵, that equation (4.50) has only one positive root. The 'secant' method⁷⁶ was used in order to find the root of equation (4.50). In this way, the propagation of a fusion boundary can be expressed by equation (4.49).

This solution was also used in order to check the accuracy of the author's numerical model. Thus, by predicting the advance of a solidifying front at the steel shell (radius r_2 , figure 4.1), analytically equivalent computations could be checked.

For a given of Q in equation (4.50) a value of λ was computed using the 'secant' method. By using equation (4.49), the time taken, t_{IN} , was then calculated for the case of the solid-liquid interface being at a specified radius R_1 . The temperature profile in the solid region was calculated using equation (4.47). This profile was then used as initial conditions in the numerical model. In order to simulate precisely the conditions of the line source along the cylinder axis which are expressed in equation (4.52), the temperature of nodal point 1 (figure 4.3) was computed using equation (4.47) at every iteration step. Figure 4.10 presents results from

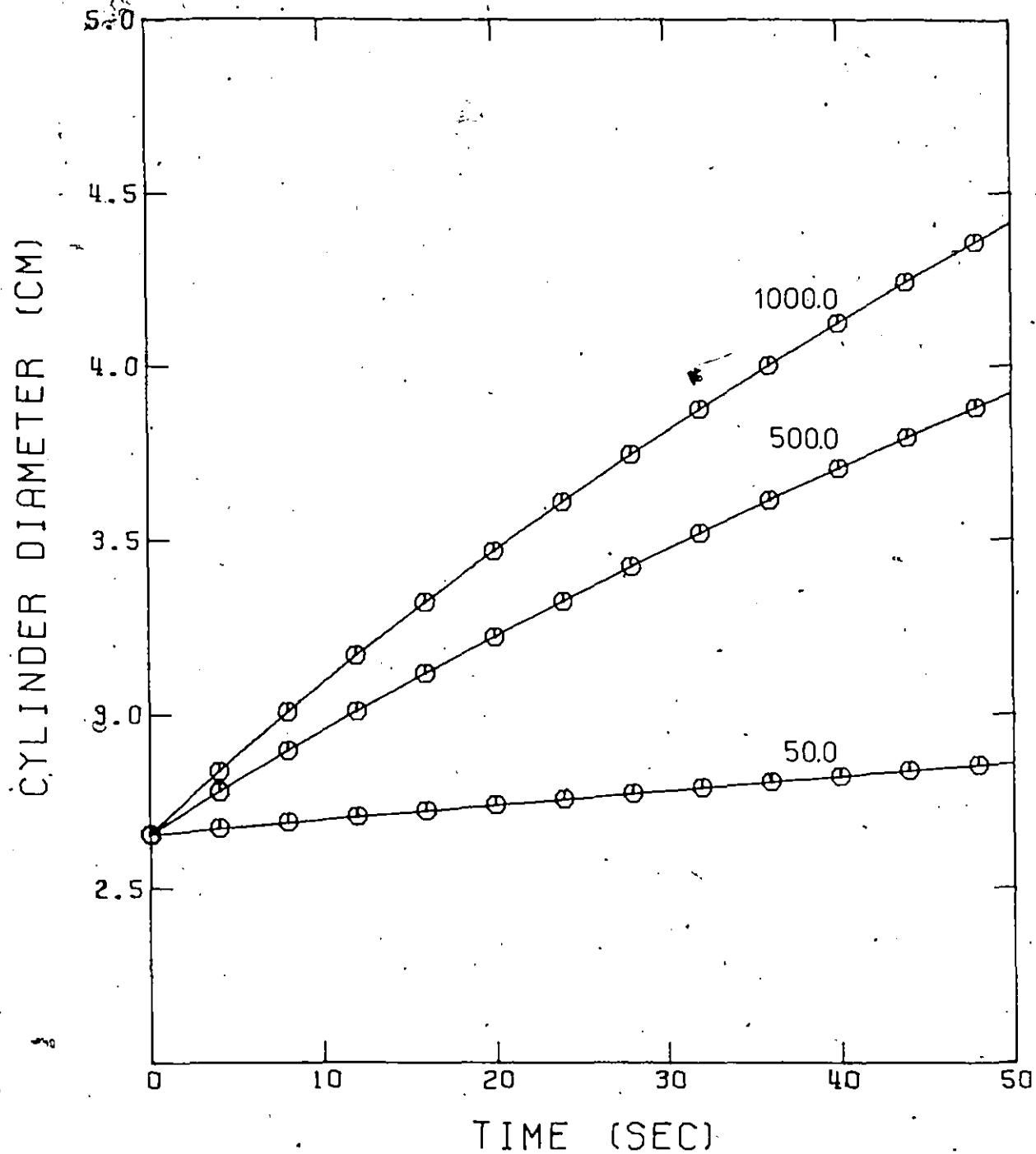


Figure 4.10 The solid lines show results of analytical solution (i.e. equation 4.49). The points depict results of the numerical model. The numbers on the curves are values of Q in cal s^{-1} for the continuous line source (i.e. equation 4.52).

the analytical and numerical solutions for various heat extraction rates, Q . As seen, excellent agreement exists between these two types of solutions.

4.6 NATURAL CONVECTION FROM VERTICAL CYLINDERS

There are two categories in the experimental and theoretical studies of natural convection. The first is uniform heat flux between the convecting fluid and the solid plate, and the second is uniform surface temperature of the solid. The latter case corresponds to conditions for the present study: the constant temperature represents the melting point temperature of the solid in contact with the liquid. It is assumed the laminar flow conditions in liquid metals prevail up to $Gr Pr$ (Rayleigh number) = 10^9 , the transition value reported by Holman.⁸¹ Above this value, turbulent flow conditions prevail.

4.6.1 Laminar Flow

The equation for natural laminar convection to a flat plate proposed by Churchill and Usagi⁸⁰ for a uniform surface temperature was used.

$$Nu_x, \text{ flat plate} = \frac{0.503 (Gr_x Pr)^{0.25}}{\left(1 + \left(\frac{0.492}{Pr}\right)^{9/16}\right)^{4/9}} \quad (4.53)$$

Sparrow and Gregg⁷⁷ and Cebeci⁷⁸ have computed the deviation that will occur between local Nusselt numbers for cylinders and flat plates, owing to curvature of the former.

Cebeci⁷⁸ extended the results of Sparrow and Gregg⁷⁷ to fluids having Prandtl numbers as low as 0.01. Some of these data of Cebeci⁷⁸ was correlated by Mucciárdi⁷⁹, using the least square technique, to give:

$$\frac{Nu_x, \text{cylinder}}{Nu_x, \text{flat plate}} = 0.2672 \epsilon \text{Pr}^{-0.42} + 1.011 \text{Pr}^{-0.02} \quad (4.54)$$

where $Nu_x, \text{cylinder}$: the local Nusselt number, x units from the leading edge of a vertical cylinder;

$Nu_x, \text{flat plate}$: the local Nusselt number, x units from the leading edge of a vertical plate;

x : the distance from the leading edge;

r : the radius of the cylinder

Gr_x : the local Grashof number

ϵ : the dimensionless transverse-curvature parameter which is defined as:

$$\epsilon = \frac{2\sqrt{2}}{0.25} \left(\frac{x}{r} \right) \quad (4.55)$$

Thus, the appropriate final expression for estimating heat fluxes around cylindrical bodies is arrived at by combining the equations (4.53), (4.54) and (4.55).

$$Nu_x, \text{cylinder} = 0.2672 \text{ Pr}^{-0.42} \frac{2\sqrt{2}}{\text{Gr}_x^{0.25}} \left(\frac{x}{r}\right)$$

$$\times \frac{0.503(\text{Gr}_x \text{Pr})^{0.25}}{\left(1 + \left(\frac{0.492}{\text{Pr}}\right)^{9/16}\right)^{4/9}} + 1.011 \text{ Pr}^{-0.02}$$

$$\times \frac{0.503(\text{Gr}_x \text{Pr})^{0.25}}{\left(1 + \left(\frac{0.492}{\text{Pr}}\right)^{9/16}\right)^{4/9}} \quad (4.56)$$

The reliability of these correlations have been established in independent work^{46, 47, 79} where solid/liquid metal systems were studied that involved natural convective heat transfer to vertical cylindrical surfaces of uniform surface temperature.

4.6.2 Turbulent Flow

Experimental heat transfer data and recommended correlations reported by various authors^{84, 85, 86, 87} show significant scatter (i.e. $\approx 40\%$). While the present experiments were carried out under conditions dominated by laminar flow, turbulent natural convection heat transfer coefficients can be estimated on the basis of the following correlation:

$$Nu = 0.10(\text{Ra})^{1/3} \quad (4.57)$$

where Ra: Rayleigh number.

Equation (4.57) was derived from experimental work of Warner and Arpaci⁸⁸ and it is in remarkable agreement with the analytical correlation of Bayley.⁸³ Holman⁸¹ extends the applicability of equation (4.57) to Rayleigh numbers up to 10^{13} .

4.7 HEAT TRANSFER MODEL FOR ESTIMATION OF A CYLINDER'S THERMAL CONDUCTIVITY

A numerical model was developed in order to estimate the thermal conductivity of titanium. In essence, this model solves the differential equation (4.5) for a variable surface temperature with no moving boundary.

In many of the present experiments, two temperatures in the cylinder were measured, one at the center and the other close to the cylinder's edge. It is then possible to solve equation (4.5) numerically using as one boundary condition the measured time-temperature relationship close to the cylinder's edge and the fact that $\partial\theta/\partial r = 0$ at $r = 0$. Thus, the model accepts as an input parameter the near surfaces temperature-time relationship to compute the centerline temperature for a given thermal conductivity. The thermal conductivity best fitting the measured and predicted centerline temperatures then provides a good estimate ($\approx \pm 5\%$) of the cylinder's thermal conductivity over the temperature range investigated.

CHAPTER 5

RESULTS AND DISCUSSION ON TITANIUM DISSOLUTION
IN LIQUID STEEL5.1 INTRODUCTION

In this chapter, the experimental results obtained for the dissolution of titanium in liquid steel are discussed. Two sets of immersion tests were carried out. The first set involved simple dipping experiments in which titanium cylinders were immersed in liquid steel for different time periods. They were then withdrawn and the steel shell thicknesses and the reaction zones were measured after first cutting the cylinders in half. The total number of titanium cylinders for this set of tests was fifteen. The cylinder diameters ranged from 3.81 cm to 1.905 cm.

The second set of immersion tests involved the dipping of titanium cylinders together with simultaneous monitoring of cylinder and steel bath temperatures, and displaced weight during the dissolution. Thirty-eight cylinders were used for this set. The cylinder diameter ranged from 5.08 cm to 2.54 cm. For the cylinders with a 2.54 cm diameter only the center line temperature was measured while for the larger diameter cylinders (i.e. 3.81 cm and 5.08 cm) temperatures at two locations were measured: one at the centerline, the other at a position close to the edge of the cylinder.

In a further series of tests, the reaction starting temperature between iron and titanium was studied. Five tests were carried out.

Results of titanium thermal conductivity and reaction starting temperature are presented in the first sections of this chapter. In the following section a typical experimental result is analyzed together with model predictions and two periods of dissolution are identified. In the later sections of this chapter, detailed analysis of the two dissolution periods is carried out. Finally, in Appendix I, typical results for the second set of immersion tests are presented in graphical form. At the end of Appendix I a qualitative simulation of titanium dissolution in liquid steel using the Calcomp 663 digital plotter is presented.

5.2 TITANIUM THERMAL CONDUCTIVITY AT ELEVATED TEMPERATURES

The thermal conductivity of titanium used in the present tests (ASTM B 348 Grade 2) is reported¹⁸⁹ to be 0.16 w/cm K at room temperature. However, this property is not known for higher temperatures and the recommended values for thermal conductivity for well-annealed high purity polycrystalline titanium shows considerable change (according to Ho et al.⁹⁰), especially at elevated temperatures. The numerical model described in section 4.7 was used for acquiring the necessary information on metal conductivity.

Figures 5.1 and 5.2 show two typical applications of the numerical model discussed in section 4.7. The heat capacity data was taken from Hultgren et al.⁹¹ The density at room temperature was taken from reference (55). The density at higher temperatures was evaluated from McCoy's⁹² thermal expansion data assuming isotropic thermal expansion. Curve 3 in Figure 5.3 shows the results obtained from the present study. The estimated error in these results is $\pm 5\%$ for temperatures up to 1600 K. Unfortunately, no data on thermal expansion at higher temperatures. For the range of 1600 K to 1700 K the thermal diffusivity was evaluated and it was found to be $0.0855 \times 10^{-4} \text{ m}^2/\text{sec} \pm 0.004 \times 10^{-4} \text{ m}^2/\text{sec}$.

Referring to Figure 5.3, the scatter which exists in the literature on titanium thermal conductivity lies between curves 1a and 1b. Line 2 is that recommended by Ho et al.⁹⁰ for high purity polycrystalline titanium. The fact that the estimated thermal conductivity is lower than that recommended for high purity titanium can be attributed to the small amount of impurities present in the titanium which was available for use.

5.3 REACTION AT THE STEEL SHELL AND TITANIUM INTERFACE

Preliminary work on dissolution kinetics showed a reaction starting between the titanium and the encasing steel shell during the initial stages of immersion. Figure 5.4 shows a picture of the reaction taking place at the steel shell/titanium interface. In some preliminary tests, efforts

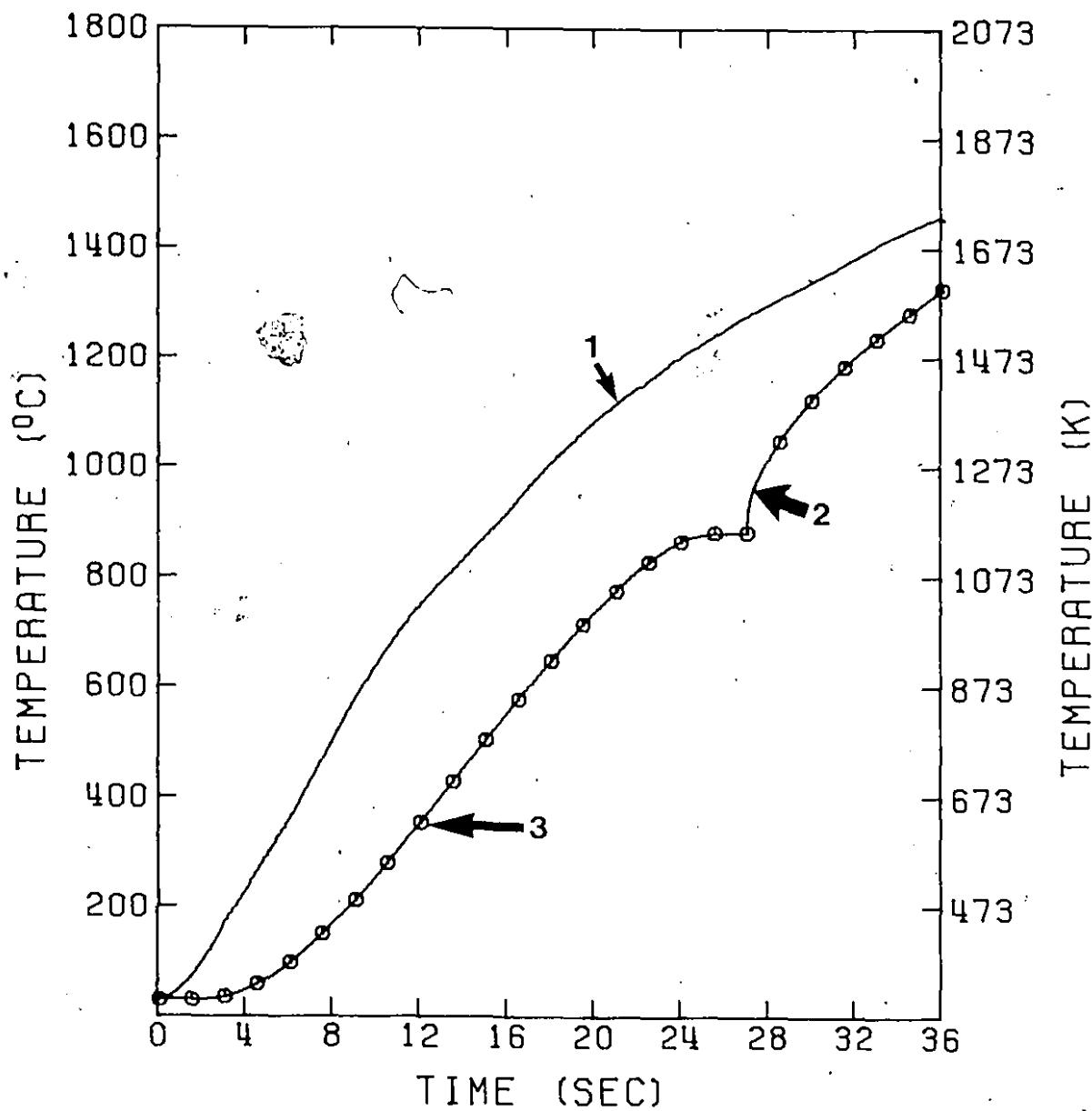


Figure 5.1 1) measured temperature at a point close to the cylinder's edge.
2) predicted temperature at the centerline.
3) measured temperature at the centerline.

Edge thermocouple 1.35 cm from the centerline.
Cylinder diameter 3.81 cm.

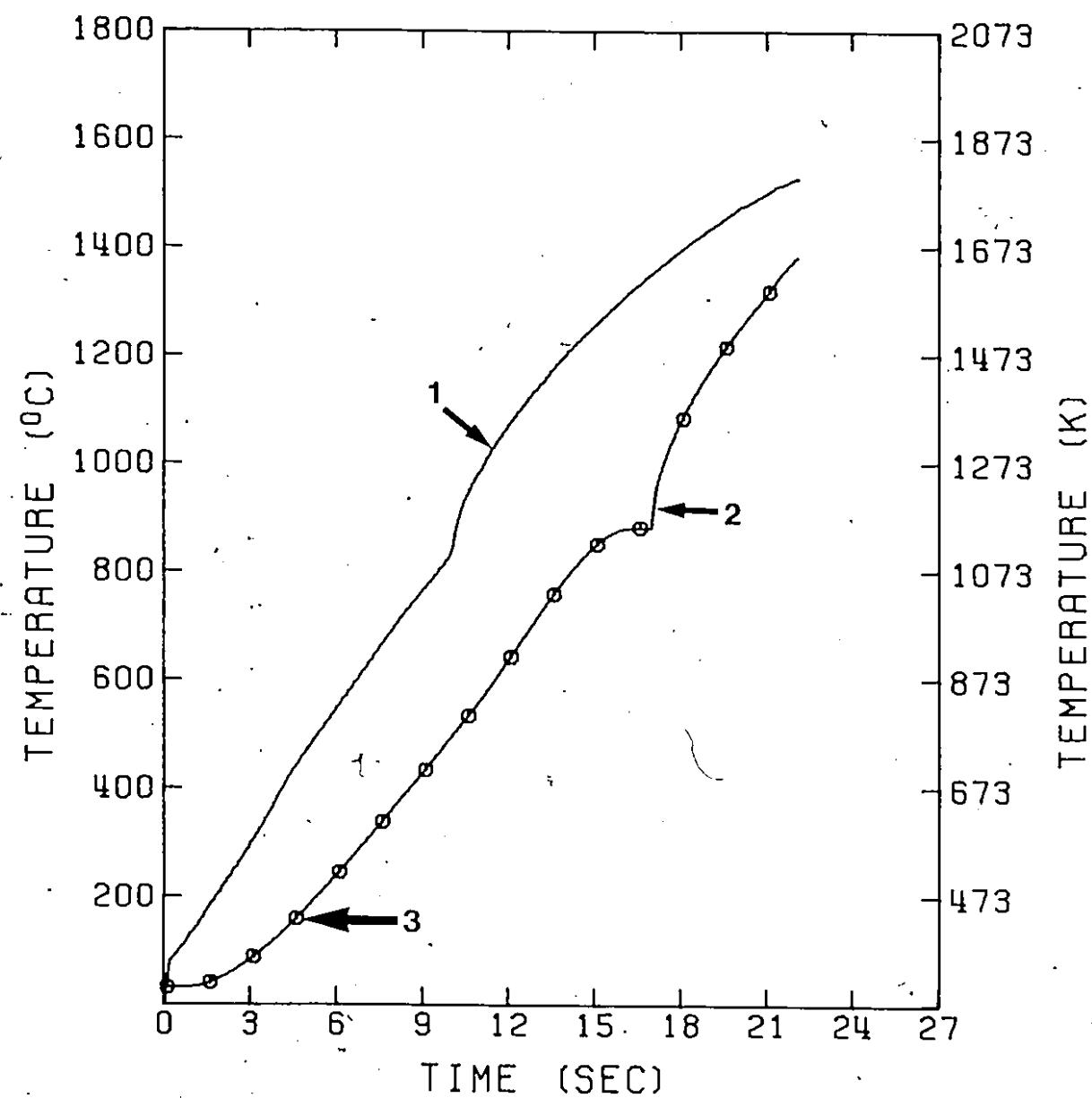


Figure 5.2 1) measured temperature at a point close to the cylinder's edge.
 2) predicted temperature at the centerline.
 3) measured temperature at the centerline.

Edge thermocouple 1.1 cm from the centerline.
 Cylinder diameter 3.81 cm.

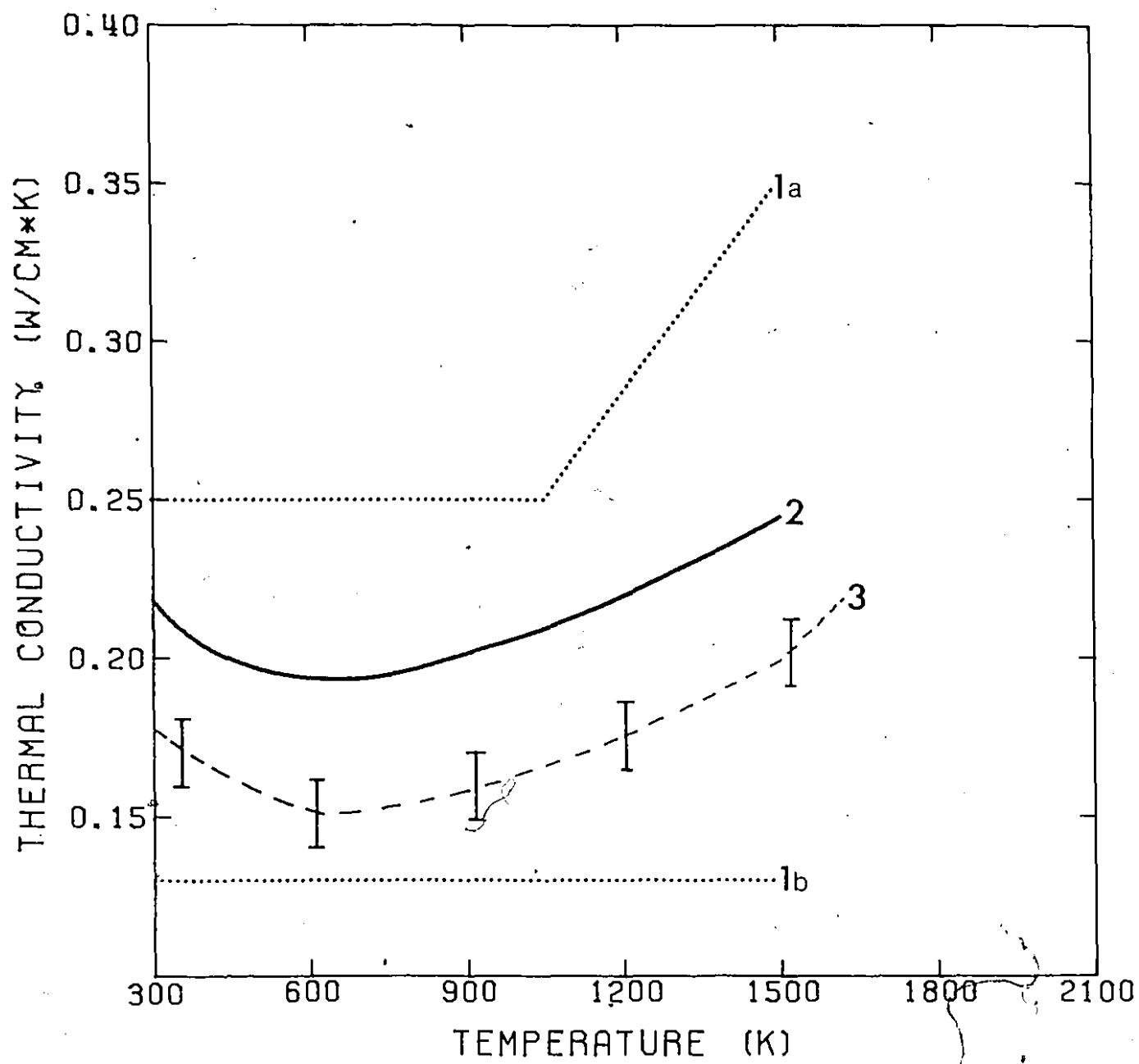


Figure 5.3 The dotted lines 1a and 1b show the scatter existing in the literature on thermal conductivities of titanium. Line 2 depicts the recommended values by Ho et al.⁹⁰ The curve 3 shows present results.

Figure 5.4 Cross section of a titanium cylinder (2.54 cm diameter) with surrounding steel shell and the reaction zone sandwiched in between.

were aimed at finding when and how the exothermic reaction between steel and titanium starts.

Composite samples of iron and titanium were heated inductively. The preparation of these samples is described in Chapter 3. The input power to the coil was kept at 9 (kw) throughout the heating history of the sample. The result is presented in Figure 5.5. The slope of the curve decreases with time and after 120 seconds the heating curve becomes horizontal. This is due to the increased radiant heat losses from the specimen. When the input power to the coil was 21 (kw) (Figure 5.6), different characteristics in the heating curve are to be noted. As seen, the slope of the curve tended to decrease. However, after 62 seconds of heating and when the temperature was approximately 1190°C (1463 K), the slope of the heating curve showed an increase and became erratic. During this period a violent reaction between iron and titanium was observed (Figure 5.7).

In an earlier thermodynamic study, Kubaschewski and Dench⁹³ observed that equi-atomic mixtures of iron and titanium would react at about 1090°C (1363 K), the eutectic temperature. The difference between starting reaction temperatures of the present study and that of Kubaschewski and Dench can be attributed to the different experimental conditions and materials used.

One set of immersion tests involved simple dipping experiments in which titanium cylinders 2.54 cm in diameter

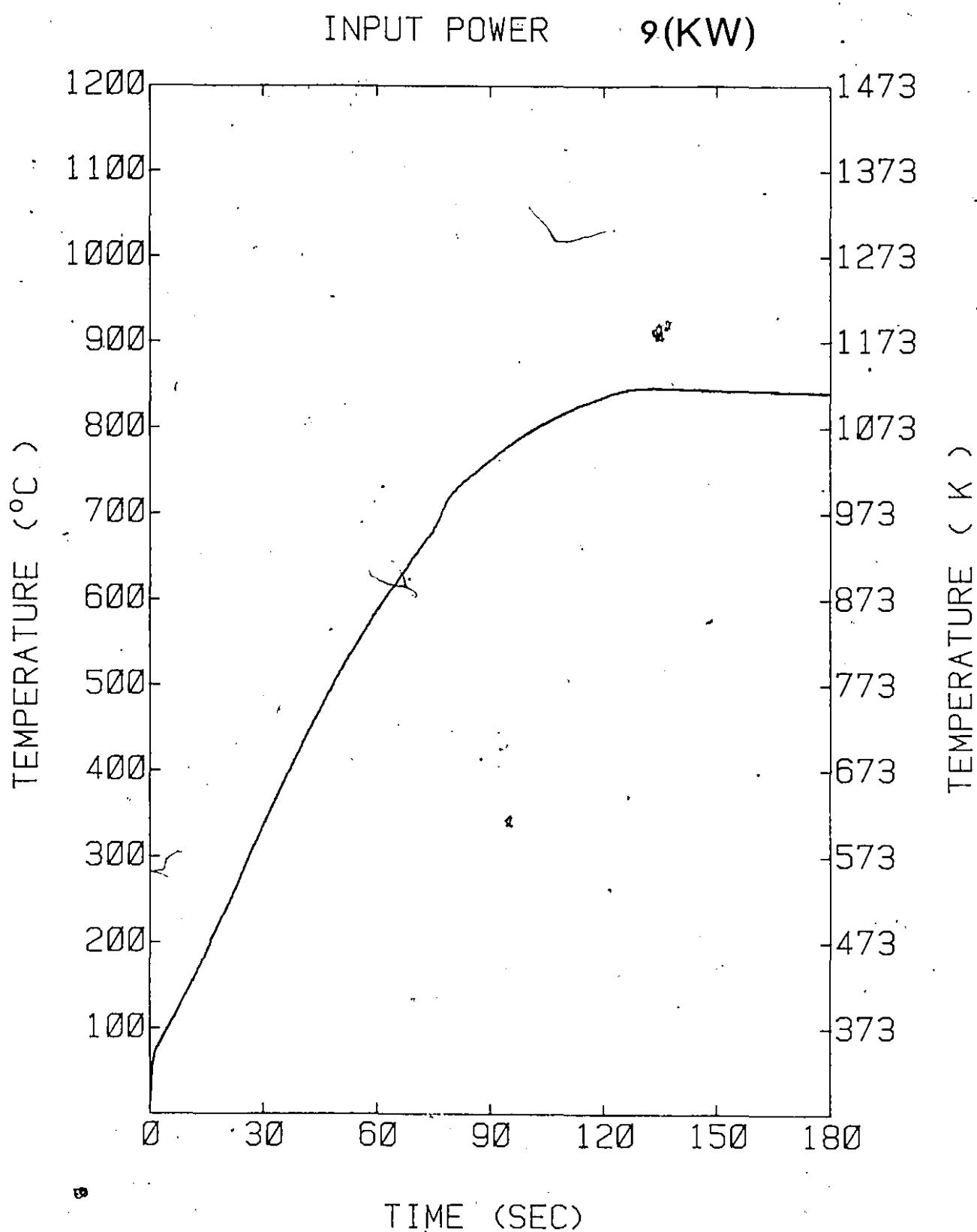


Figure 5.5 Temperature versus time curve for inductively heated composite sample.

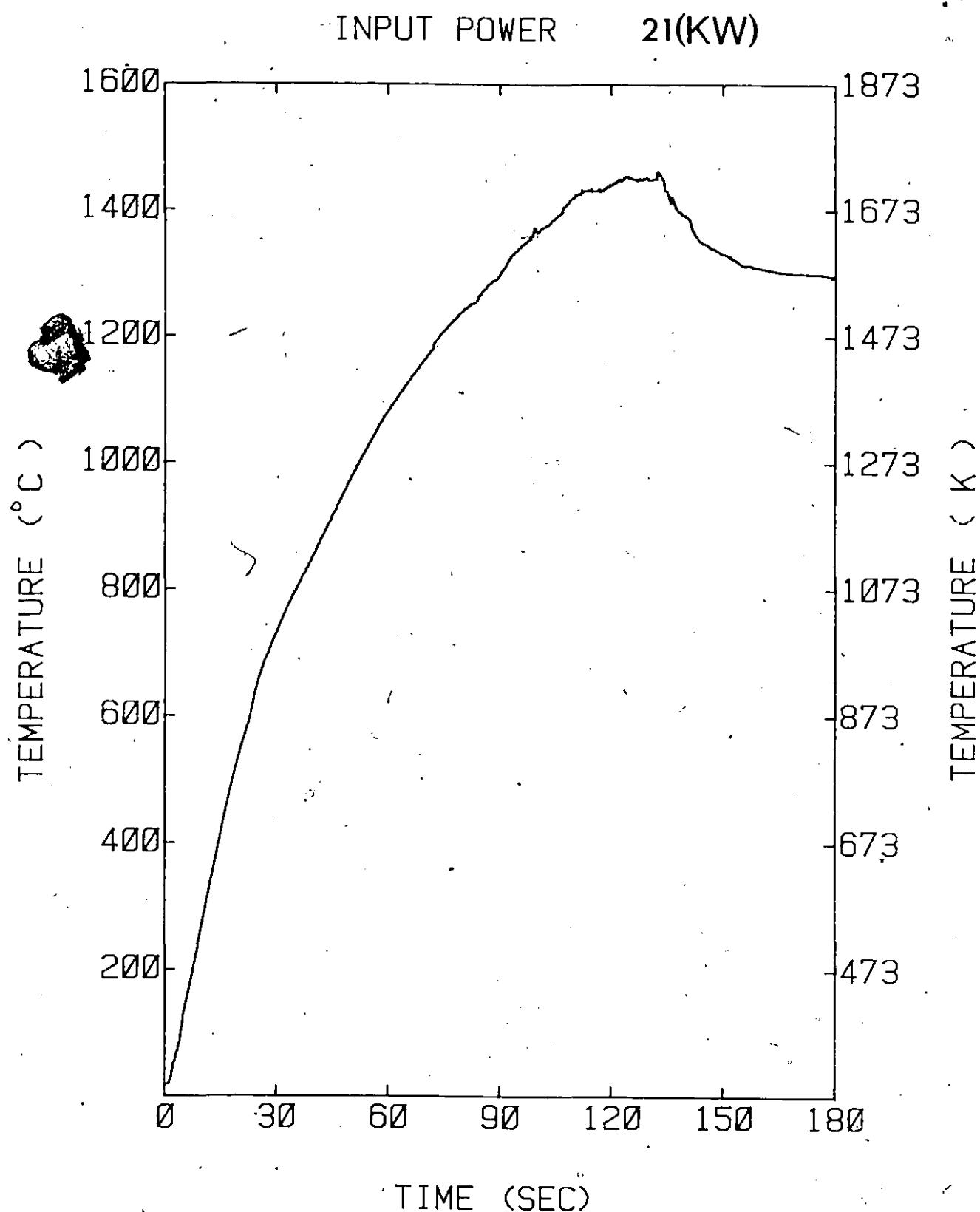


Figure 5.6 Temperature versus time curve for inductively heated composite sample.

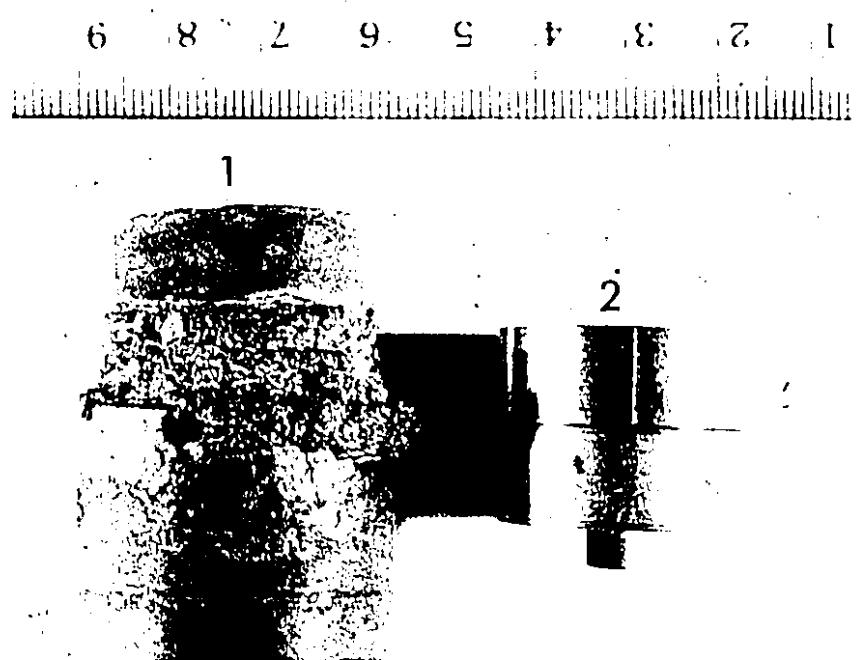


Figure 5.7 Two composite samples
1) After reaction
2) Before reaction

and 15 cm in length were immersed to within 1.0 cm of their top surfaces. Immersion time periods ranged from 5 to 15 seconds. Initial steel bath temperature varied between 1580°C (1853 K) and 1600°C (1873 K). The cylinders were withdrawn and rapidly quenched in water. They were then cut in half and samples from the reaction were taken and analysed. The results are shown in Table 5.1. Referring to Table 5.1, it is clear that the composition of the reaction zone lies around the 60 wt% iron.

The relative volumetric amounts of iron and titanium which had reacted at the original steel shell-titanium interface could be found by measuring final reaction parameters at the inside boundary of the steel shell and at the titanium boundary. An electronic digitizer (Numonics Model 1224) was used for the task. A typical sample can be seen in Figure 5.4. From this analysis it was found that the relative weight of steel shell in the reaction was 60%, with titanium at 40% making up the balance.

Consequently, in interpreting these phenomena, one can conclude that reaction between iron and titanium starts around the eutectic temperature in very pure well-packed mixtures.⁹³ The same reaction starts at slightly higher temperatures when the interfacial contact is either imperfect or when an oxide film coats the interface. The eutectic liquid provides the necessary trigger for the internal exothermic dissolution reaction to proceed. The composition of

TABLE 5.1
REACTION ZONE ANALYSIS

Steel Bath Temperature 1580°C (1853 K)
Immersion Time - 10 sec.

Fe%	Ti%
59.6	33.2
55.2	36.3
57.0	32.9
59.6	30.7
63.9	28.1
63.0	27.2

Steel Bath Temperature 1580°C (1853 K)
Immersion Time - 15 sec.

Fe%	Ti%
56.5	42.0
72.6	25.8
53.9	42.9

Steel Bath Temperature 1600°C (1873 K)
Immersion Time - 5 sec.

Fe%	Ti%
65.4	28.1
57.2	35.6
63.4	28.3
52.8	40.1
61.4	32.9

Steel Bath Temperature 1600°C (1873 K)
Immersion Time - 10 sec.

Fe%	Ti%
54.1	37.9
51.2	44.3
63.0	31.6

iron and reaction zone during this dissolution remains around 60 wt% Fe and 40 wt% Ti.

5.4 INTERPRETATION OF DATA FROM THE DISSOLUTION EXPERIMENTS

Using the force monitoring equipment described in Chapter 3, the load cell registers an increase in the net downward force. The rate at which the force changes then allows the rate of dissolution to be monitored. Figure 5.8 shows schematically the forces which act on the load cell when a cylinder is immersed in liquid steel.

Mathematically the above can be expressed as follows:

$$F_{NDF} = F_G - F_B \quad (5.1)$$

where F_{NDF} : Net downward force. This is the force which the load cell registers;

F_G : Gravitational force;

F_B : Buoyancy force.

The gravitational force F_G can be expressed by the following equation:

$$F_G = V_{AIR} \cdot \rho_{Ti,s} \cdot g + V_{IMM} \cdot \rho_{Ti,s} \cdot g \quad (5.2)$$

where V_{AIR} : The volume of one portion of the cylinder which is outside of the liquid steel during the dissolution in m^3 ;

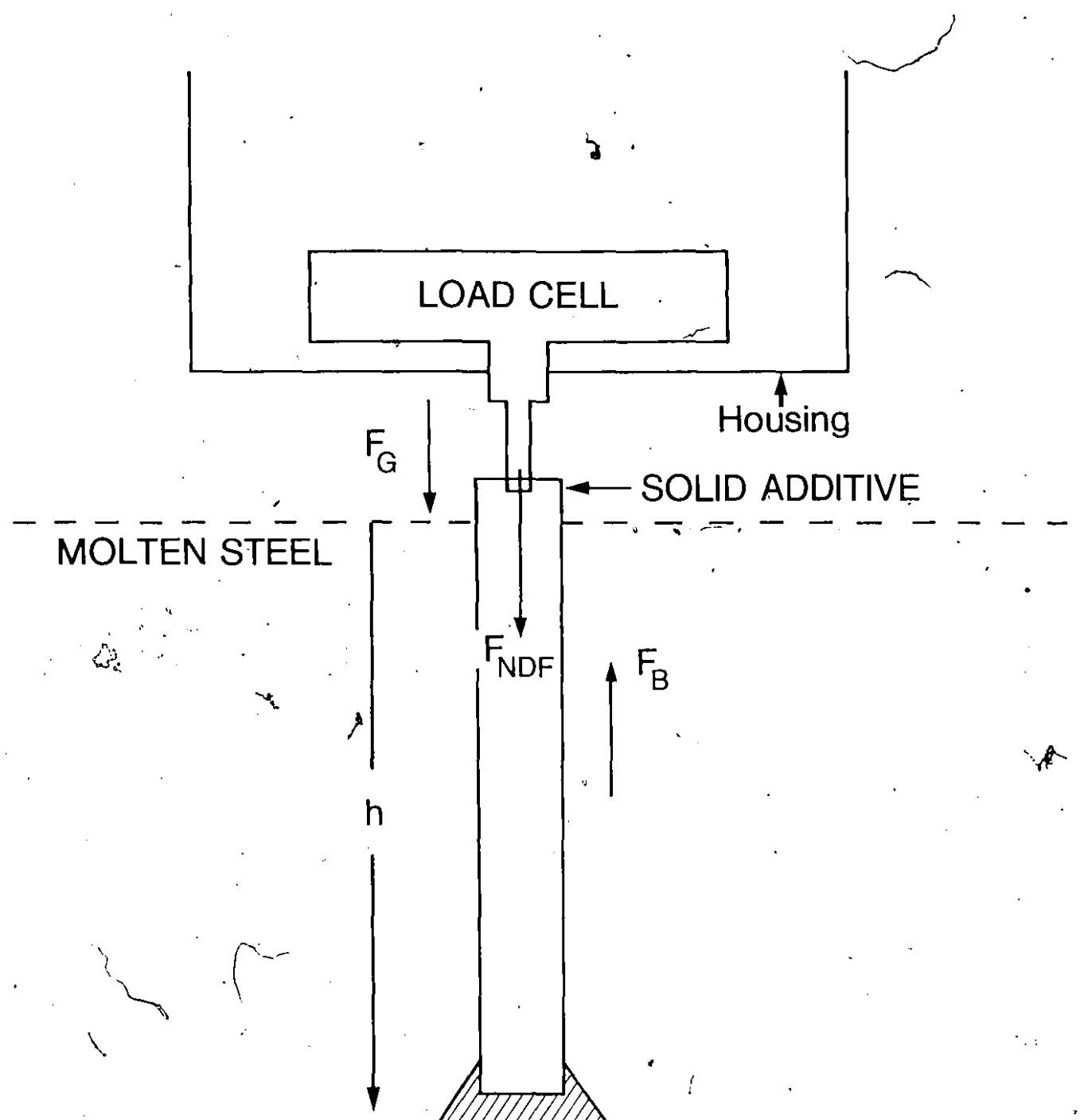


Figure 5.8 Schematic representation of forces which are applied to load cell.

V_{imm} : The volume of the other portion of the cylinder which is inside the liquid steel during the dissolution in m^3 ;

$\rho_{Ti,s}$: Density of the titanium cylinder, kg/m^3 ;

g : Gravitational constant $9.81 m/s^2$

The term F_B describes the buoyancy forces. According to Archimedes' principle: Any object wholly or partially immersed in a fluid is buoyed up by a force equal to the weight of the displaced fluid. This can be defined as:

$$F_B = V_{imm} \rho_{Fe,l} g \quad (5.3)$$

where $\rho_{Fe,l}$: Density of the liquid steel.

Combining equations (5.1), (5.2) and (5.3):

$$F_{NDF} = V_{AIR} \rho_{Ti,s} g + V_{imm} \rho_{Ti,s} g - V_{imm} \rho_{Fe,l} g \quad (5.4)$$

Differentiating equation (5.4) with respect to time and assuming that the difference $(\rho_{Ti,s} - \rho_{Fe,l})$ is constant (i.e. independent of time)

$$\frac{dF_{NDF}}{dt} = \frac{dV_{imm}}{dt} (\rho_{Ti,s} - \rho_{Fe,l}) g \quad (5.5)$$

Figure 5.9 depicts some typical results for the titanium dissolution experiments. The diameter of the cylinder was

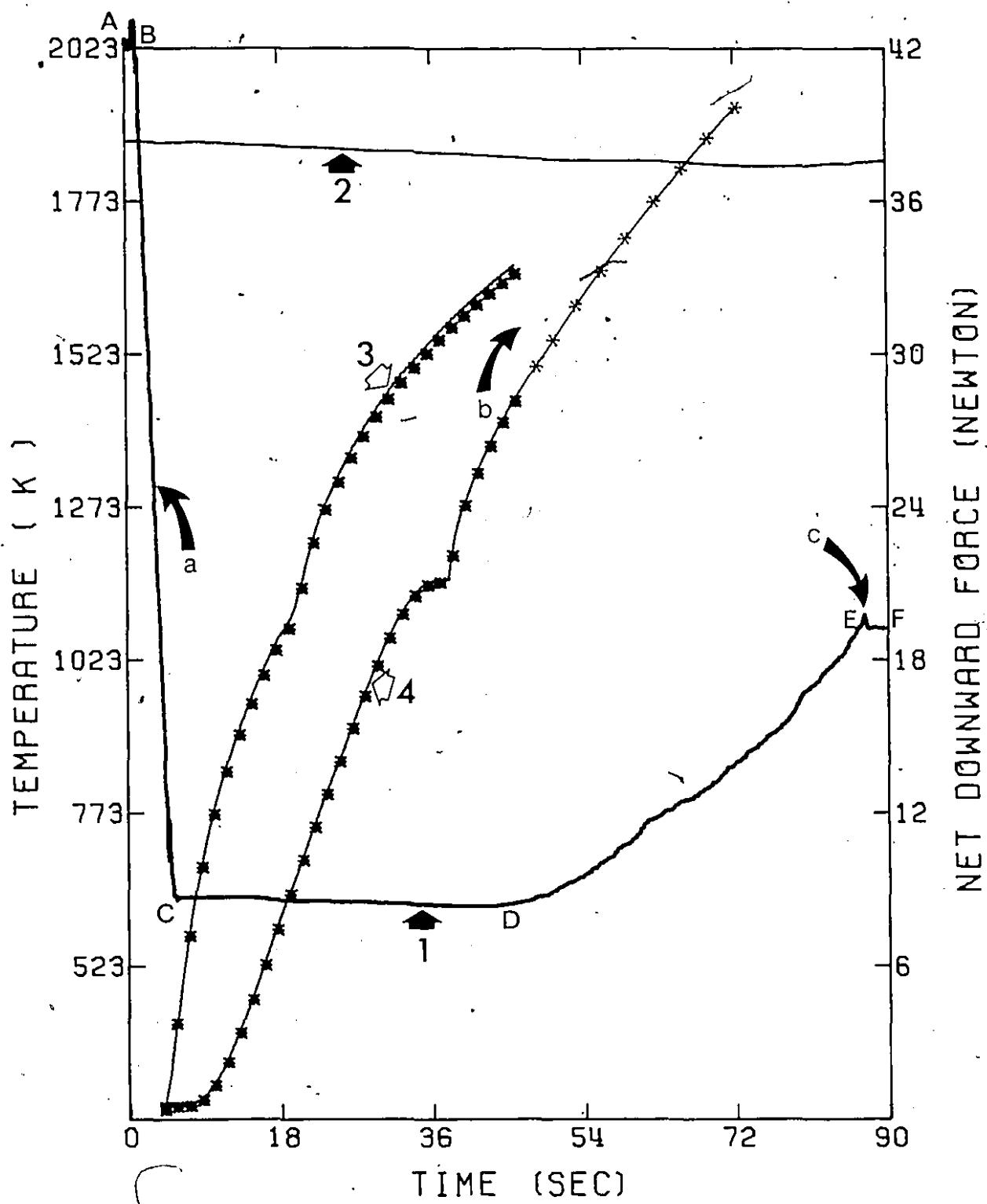


Figure 5.9 Results from a typical titanium dissolution experiment in liquid steel. Cylinder diameter 5.08 cm and 20 cm in length.

- 1) Registered net downward force;
- 2) Measured steel bath temperature;
- 3) Measured and predicted temperature at a point 1.95 cm from cylinder centerline;
- 4) Measured and predicted centerline temperature.

5.08 cm (2") and its length 20 cm. The two thermocouples were 9 cm away from the cylinder's bottom.

Curve one of figure 5.9 shows the force registered on the load cell during the dissolution experiment. The data acquisition system started monitoring the dissolution parameters a few seconds before the immersion of the titanium cylinder into liquid steel. During the period AB the load cell registers only the gravitational forces. When the leading edge of the titanium cylinder touches the surface of the steel bath the force which the load cell monitors starts to decrease. This is due to the increase in the buoyancy forces and is represented in line one by the segment BC. The subsequent segment CD in line one depicts the steel shell period during which the shell of solid steel freezes around the cylinder. The force registered by the load cell remains constant during this period. It transpires that the expansion of titanium cylinder and the freezing of a solid steel shell tend to compensate each other so that only minor effects are exerted on the overall force balance provided they occur simultaneously.

The segment DE of line one shows the free dissolution period where there is no frozen steel shell around the titanium cylinder. During this period the volume of the titanium cylinder decreases due to dissolution and consequently the buoyancy forces also decrease (Equation 5.3). The net result

is that the force which the load cell registers increases during this period. The dissolution of titanium cylinder ends at the point where the segment EF of line one starts.

Curve two of Figure 5.9 shows measured steel bath temperatures. The same line is plotted in Figure 5.10 on an expanded scale. It is clear that the steel bath temperature decreases with time up to 78th second mark and that this must be largely due to heat losses from the steel bath since the power was turned off during an experiment. However, following the 78th second, a sharp increase in the steel bath temperature is to be observed. This fact can only be attributed to the exothermic effects of titanium as it disperses into the liquid steel during dissolution.

Lines three and four show experimental and predictive temperatures in the interior of the titanium cylinder. The solid lines represent predictions while the points show the measured temperatures. Curve four shows the temperature at vertical axis of the cylinder and while curve three represents temperatures at a distance 1.95 cm away from the cylinder's vertical axis. Time zero for the cylinder's temperatures is taken as the half way point between the instant and completion of the initial immersion (i.e. points B and C in the curve one, Figure 5.9).

Referring to Figure 5.9, the centerline temperature (curve four) increases rapidly up to the thirty-fifth second of

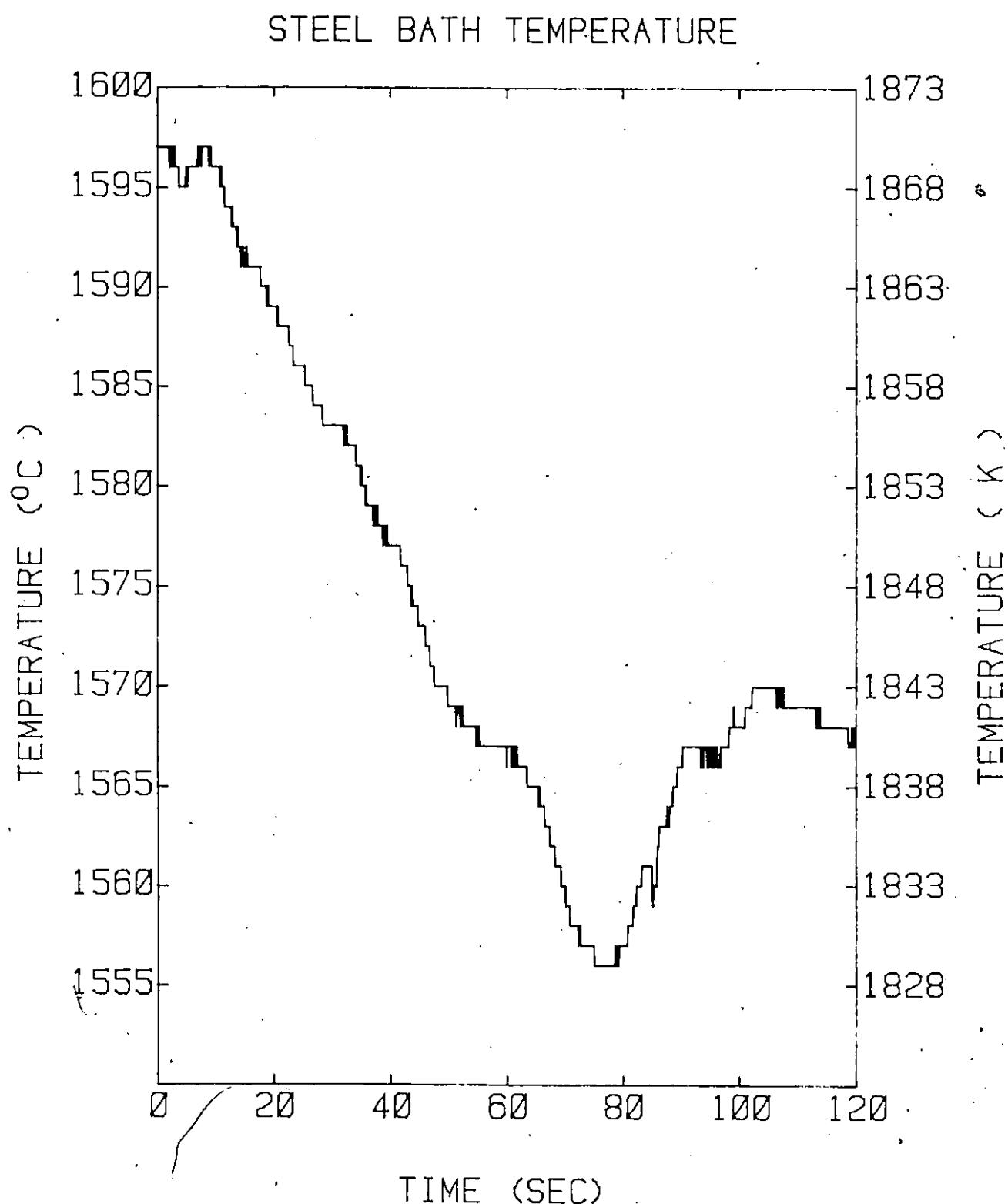


Figure 5.10 Measured steel bath temperature during a typical dissolution experiment.

immersion. A reduction in the rate of temperature rise then follows up to the thirth-seventh second. The cause for this slowed ascent can be explained in terms of the endothermic transformation of α -Ti to β -Ti. This occurs at a temperature of 882°C (1155 K). As seen there is a very good agreement between experimental and predicted temperatures.

Line three of Figure 5.9 shows measured and predicted temperatures at a radial distance of 1.95 cm from the cylinder's vertical axis. An increase in the rate of temperature rise is observed after the eighteenth second, and this can be attributed to the heat which is generated from the exothermic reaction of iron and titanium at the steel shell-titanium interface.

The dissolution of titanium in liquid steel involves two distinct periods. The first is 'the steel shell period' and the second is 'the free dissolution period'. Referring to Figure 5.9, the time coordinate of the curved arrow tips (a,b) show where each one of the above periods start. The steel shell period lies between a and b while the free dissolution period starts at b and ends at c. In the next sections of this chapter these periods are analyzed in more detail.

5.4.1 Tests for Consistency of Results

Consistency tests of the load cell results were performed for each cylinder immersion test. Thus, the immersion length

for each cylinder could be found by measuring its length prior to and following immersion. From the immersion length, the volume of the cylinder which had been immersed was found. Then using the equation (5.4), the expected net downward force was calculated. Referring to Figure 5.9, the difference between the net downward force at point B and C of curve one were within 5% of that calculated.

Second, the difference between the registered force at D and E must be equal with that calculated from equation (5.3) within 5% error.

An experimental run was rejected if it failed one of these tests. For these reasons, about 10% of the experimental runs were rejected. Typical causes would be: slag freezing onto the cylinder at the melt line, cylinders hitting or touching the sides of the crucible.

5.4.2 Accuracy of the Method

The accuracy of the method depends upon the difference between the steel bath density and the density of individual element tested. The larger this difference, the higher the accuracy of the displaced weight measurements. In this respect the accuracy of estimation of volumetric change of addition during the dissolution can be found using equation (5.5), data supplied from Table 3.1 and the accuracy of weight sensor. In the case of the titanium cylinders for example, the volumetric change could be estimated within an accuracy of $\pm 1.3 \text{ cm}^3$. For vanadium cylinders, volumes were within $\pm 3.1 \text{ cm}^3$.

Consequently, this method can be applied with greatest accuracy to additions whose densities are most different from that of steel (e.g. Si, Al, Ti, Mg, W, B). Its applicability substantially lessens in those cases where addition densities approaching that of the steel bath.

5.5 APPLICATION OF THE MATHEMATICAL MODEL

From the foregoing discussion it is clear that the phenomena occurring during the dissolution of titanium in molten steel are quite complex. Nevertheless, it will be shown that a semi-empirical heat and mass transfer model of the dissolution process can provide good predictions.

Evidently, any such model must incorporate the essential elements of the phenomena involved. Thus, the model was used to estimate first the internal heat generation during steel shell period and second, the inwards directed heat flux during the free dissolution period.

5.5.1 Estimation of Internal Heat Generation during Steel Shell Period

In the absence of detailed information about the internal heat generation during the steel shell period, it was decided to postulate this in its simplest form by considering that there is a constant rate of heat generation at r_1 in Figure 4.2, the original steel shell interface. This heat generation is caused by the erosion of the steel shell by a constant flux of dissolved titanium supplied by the dissolving titanium

core. Equation (4.15) in Chapter 4 represents the relevant mathematical expression. In expressing equation (4.15) numerically, the term \dot{Q}_{GEN}'' has to be applied to a small but finite elemental volume DV. In order to estimate an equivalent planar heat source the following equation can be applied:

$$\dot{Q}_{GEN}''(DA) \equiv \dot{Q}'''(DV) \quad (5.6)$$

where DV: elemental volume

\dot{Q}''' : heat generation term per unit volume and per unit time

DA: surface of elemental volume DV

\dot{Q}_{GEN}'' : planar heat source per unit surface and per unit time

Figure 5.11 shows temperature time results obtained for a 2.54 cm diameter titanium cylinder placed in a bath of steel at 1590°C (1863 K). For comparison the continuous curve one was generated on the basis of the mathematical model, taking the rate of heat generation at the steel shell titanium interface as zero throughout the dissolution process. The end of the predicted curve one (arrow d) denotes the time at which the encasing steel shell will have entirely melted back to expose solid titanium.

Curve two denotes experimental results and model predictions taking the rate of internal heat generation equal $9.5 \text{ cal s}^{-1} \text{ cm}^{-2}$ ($3.97 \times 10^5 \text{ w m}^{-2}$). Arrow a from curve two

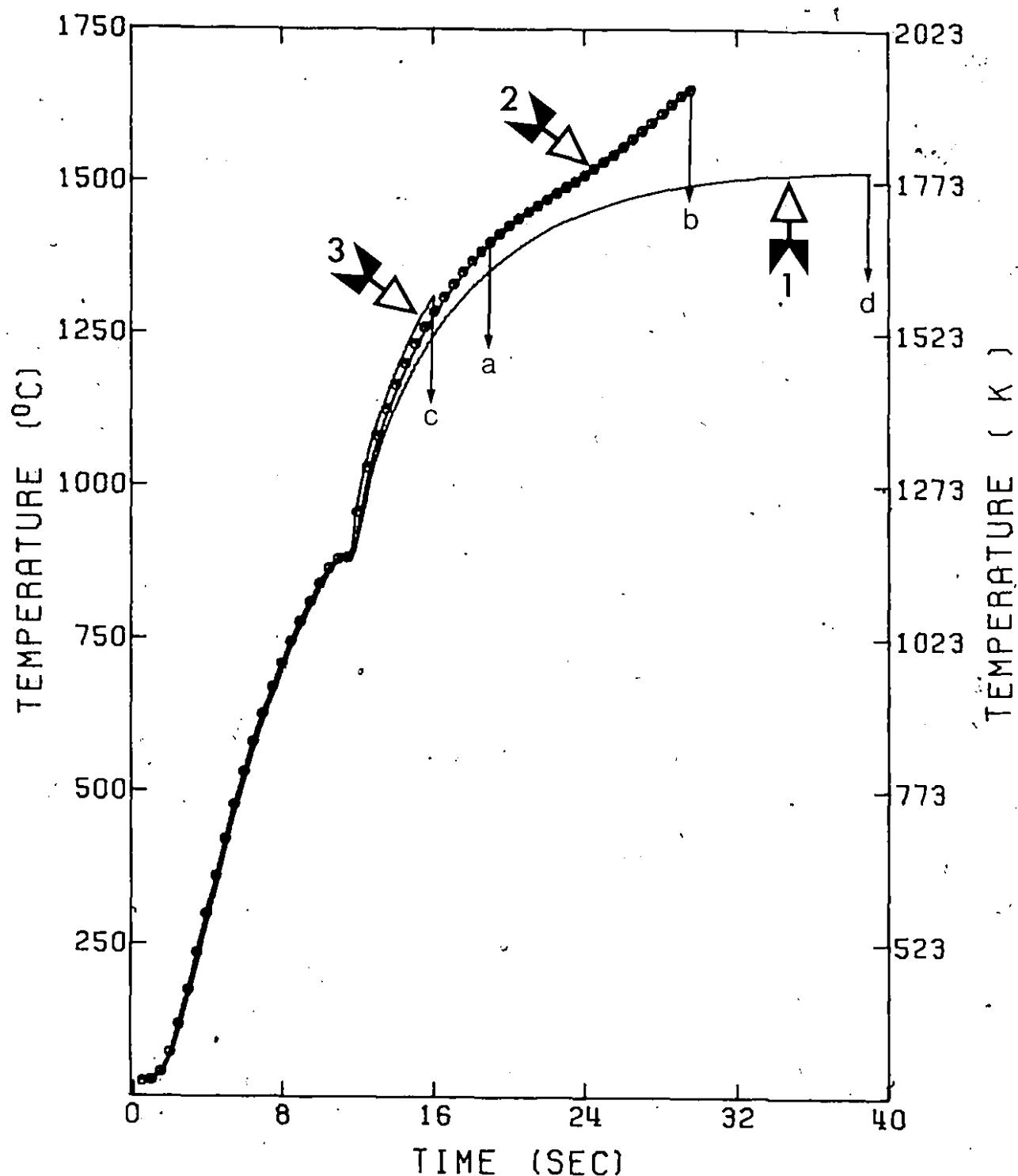


Figure 5.11 Measured and predicted temperatures in a 2.54 cm diameter cylinder.

shows the time at which the steel shell period is predicted to end and marks the start of the free dissolution period. The latter terminates at the time marked by arrow b (i.e. 30 sec). Curve three presents model predictions taking the rate of internal heat generation at the interface equal to $10.5 \text{ cal s}^{-1} \text{ cm}^{-2}$ or $(4.39 \times 10^5 \text{ w m}^{-2})$. Arrow c points out the time at which the steel shell period ends at the $10.5 \text{ cal s}^{-1} \text{ cm}^{-2}$ or $(4.39 \times 10^5 \text{ w m}^{-2})$.

The results of fifteen different cylinders were analysed in the same way. The rate of heat generation so deduced varied from $8 \text{ cal s}^{-1} \text{ cm}^{-2}$ or $(3.34 \times 10^5 \text{ w m}^{-2})$ to $11 \text{ cal s}^{-1} \text{ cm}^{-2}$ or $(4.60 \times 10^5 \text{ w m}^{-2})$. From these values an effective mass transfer coefficient for titanium could be estimated. The relevant procedures used are described in Appendix III. In this manner, the estimated mass transfer coefficient of titanium ranged from 0.025 to 0.035 cm s^{-1} or $(2.5 \times 10^{-4} \text{ to } 3.5 \times 10^{-4} \text{ m s}^{-1})$. In a similar way the estimated mass transfer coefficient for iron ranged from 0.024 to 0.033 cm s^{-1} or $(2.4 \times 10^{-4} \text{ to } 3.3 \times 10^{-4} \text{ m s}^{-1})$.

Referring to Figure 5.11, curves one, two and three tend to give different predictions after the ninth second mark. This is due to the fact that the heat generation term is applied only when the interface of titanium steel shell has reached a certain temperature called the reaction starting temperature. According to the analysis presented in Section 5.3, the reaction starting temperature was taken equal to

1090°C (1363 K) for any prediction presented in this chapter. The interfacial thermal resistance was taken equal to $10 \text{ cm}^2 \text{ s }^\circ\text{C cal}^{-1}$ ($2.39 \times 10^{-4} \text{ m}^2 \text{ K W}^{-1}$) throughout the analysis. This value is not an arbitrary taken constant but a value which was estimated on the basis of previous work on this subject.^{79,49} The convective heat flux from the steel bath to the titanium cylinder was determined on the basis of the experimental dimensionless correlations presented in Section 4.6.

5.5.2 Estimation of Heat Generation during the Free Dissolution Period

During the free dissolution period heat is generated in the vicinity of the dissolving titanium interface. This results from the intermixing of liquid iron with titanium. Under conditions of free dissolution the convective heat flux to the cylinder's surface cannot be evaluated using the correlations presented in Section 4.6. In fact, practically no information is available on heat transfer characteristics for this class of dissolution problem. Szekely and Chaung⁹⁵ in some low temperature experimental work studied the accelerated melting of ice spheres in sulfuric acid and provide a qualitative explanation based on a higher temperature within the sulfuric acid close to the surface of the ice sphere. The higher temperature region resulted from the exothermic heat of mixing of water in sulfuric acid.

In the free dissolution period, the interfacial heat flux directed towards the dissolving titanium interface and from this interface into the body of undissolved titanium cylinder must be equal. The relevant mathematical statement is equation 5.7:

$$(K_{Ti} \frac{\partial \theta}{\partial r})_{Ti} = \dot{q}_{IFD}'' \quad (5.7)$$

where K_{Ti} : thermal conductivity of titanium;

\dot{q}_{IFD}'' : inwardly directed external heat flux for the free dissolution of titanium in liquid steel.

This heat flux (i.e. \dot{q}_{IFD}'') is responsible for the rapid temperature increase which is observed in the center of the titanium cylinder (see Figure 5.9, curve four) during the free dissolution period. It is clear from this curve that the temperature in the cylinder center exceeds the steel bath temperature after a certain time. In the absence of any information about the magnitude of \dot{q}_{IFD}'' it was decided to postulate this in its simplest form by considering that there is a constant heat flux inwardly directed from the heat which is generated in the vicinity of the dissolving interface into the body of undissolved titanium cylinder. The rate at which the dissolving interface moves can be easily calculated as follows. Referring to Figure 5.8, the volume of the immersed portion of the titanium cylinder can be expressed as:

$$V_{imm} = \pi r^2 h \quad (5.8)$$

where r : cylinder radius

h : immersed cylinder length

Substituting equation (5.8) into (5.5), equation (5.5) can be written:

$$\frac{dF_{NDF}}{dt} = \frac{d(\pi r^2 h)}{dt} (\rho_{Ti,s} - \rho_{Fe,l}) g \quad (5.9)$$

assuming that the dissolution takes place in the radial direction only. This assumption is valid in view of special precautions which were taken to that effect (see Chapter 3). Consequently, equation (5.9) can be written as:

$$\frac{dF_{NDF}}{dt} = \pi h \frac{d(r^2)}{dt} (\rho_{Ti,s} - \rho_{Fe,l}) g$$

or

$$\frac{dF_{NDF}}{dt} = 2\pi hr \frac{dr}{dt} (\rho_{Ti,s} - \rho_{Fe,l}) g \quad (5.10)$$

Equation 5.10 shows how the radial velocity of the dissolving interface varies in relation to the rate at which the net downward force the load changes. The mathematical model in the free dissolution period runs in a coupled heat and mass transfer manner as follows: From the measured change in the net downward force (Figure 5.9 curve one) the rate at which the dissolving interface moves can be calculated

using equation (5.10). For a given q''_{IFD} , the centerline temperatures can be predicted. The value of q''_{IFD} which gives predictions providing the best fit for the measured centerline temperatures provides q''_{IFD} for the given experimental conditions. It is important to note that q''_{IFD} relates solely to the inwardly directed heat flux.

The rate of inwardly directed external heat generation during the free dissolution period was found to lie between 6.5 and 10 $\text{cal s}^{-1} \text{cm}^{-2}$ or $(2.72 \times 10^5 \text{ and } 4.186 \times 10^5 \text{ w m}^{-2})$.

5.6 STEEL SHELL PERIOD

In order to study the steel shell period, in a more detailed manner, three sets of immersion tests were carried out using titanium cylinders. These tests involved simple dipping experiments of titanium cylinders for specific times. The cylinders were then withdrawn, cross-sectioned, and steel shell thicknesses and internal reaction zones measured.

The first set of immersion tests involved titanium cylinders 2.54 cm in diameter and 20 cm in length. These cylinders were immersed to within 1.5 cm of their top surface. Immersion time periods ranged from 5 to 20 seconds. The initial steel bath temperature during these experiments was 1580°C (1853 K) and the bath cooling rate was equal to 0.3°C/sec . Figure 5.12 shows photographs of the cylinder's cross-sections following immersion. As seen, cylinder D had only a steel shell in its upper part. This was due to the steel

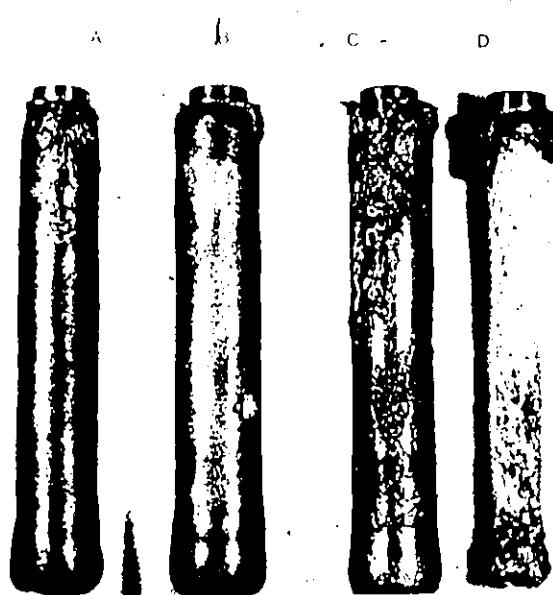


Figure 5.12 Titanium cylinders 2.54 cm in diameter immersed in steel bath of initial temperature 1580°C (1853 K) for different time periods. A = 5 sec., B = 10 sec., C = 15 sec., D = 20 sec.

shell breaking and slipping off during withdrawal. Nevertheless, the diameter of the steel shell was measured from the part which remained around the cylinder. It is worth noting at this point that the cylindrical shape is maintained for long immersion periods (i.e. cylinder D). This justifies the adoption of a one dimensional model.

Experimental and theoretical (i.e. predicted) results are shown in Figure 5.13. Line one shows how the outer radius of the cylinder changed with time. The dotted line two depicts the initial radius of the cylinder. The dashed lines three and four present the predicted extent of the internal exothermic dissolution reaction and gives the location of the steel shell and titanium interfaces, respectively. As seen, the predicted location of the steel shell/liquid steel interface and that of the inner steel shell boundary agree very well with the experimental data indicating that heat flux estimates at the outer and inner steel shell surfaces are both independently correct.

In the second set of immersion tests, cylinders 1.905 cm in diameter and 16.5 cm in length were immersed in liquid steel to within 1.0 cm of their top surface. Immersion periods ranged from 5 to 15 sec. The initial steel bath temperature during these experiments was 1580°C (1853 K) with a steel bath cooling rate equal to 0.23°C/sec. Figure 5.14 shows cross sections of these cylinders after immersion while Figure 5.15 depicts experimental and theoretical results for this set of experiments.

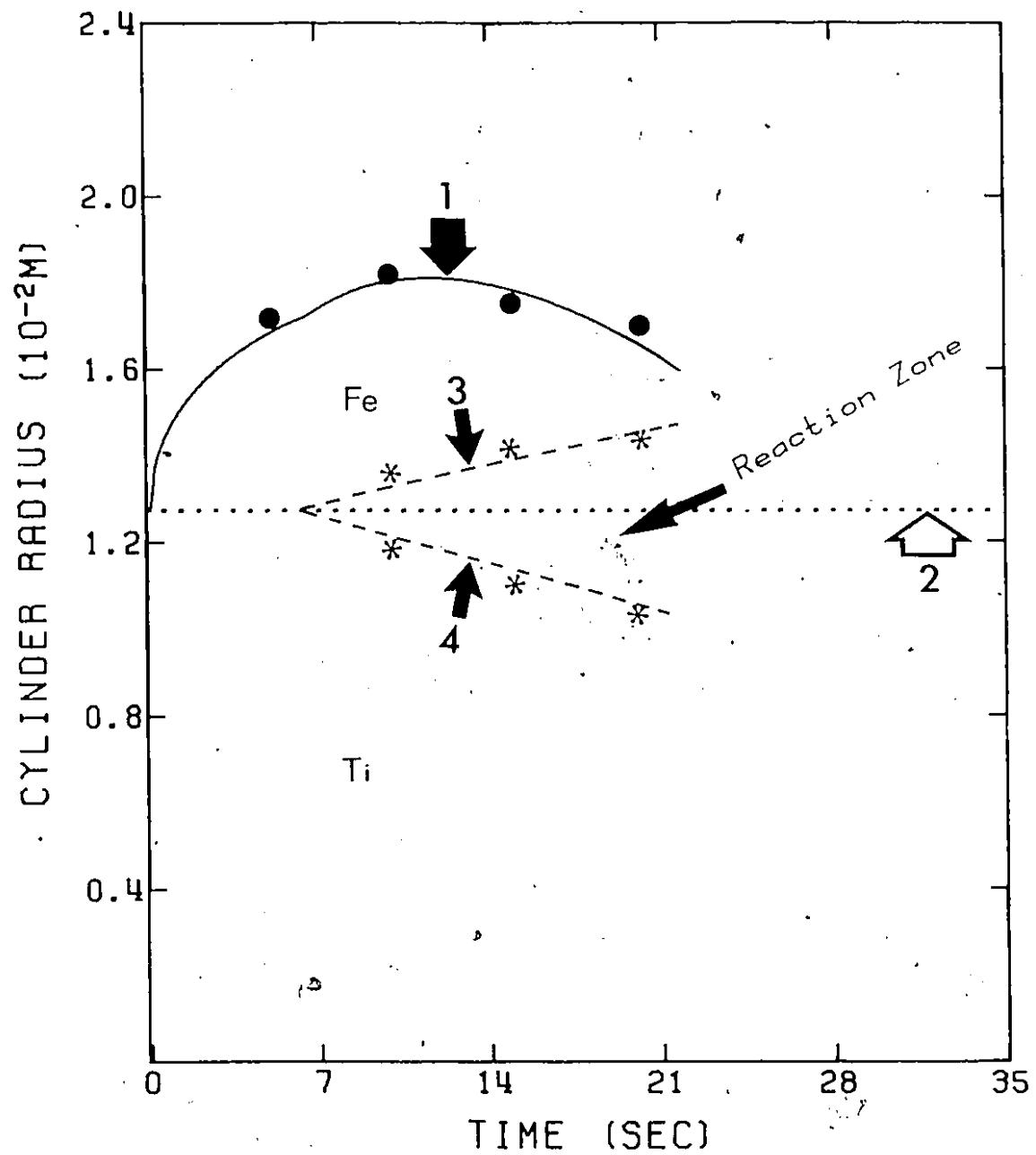
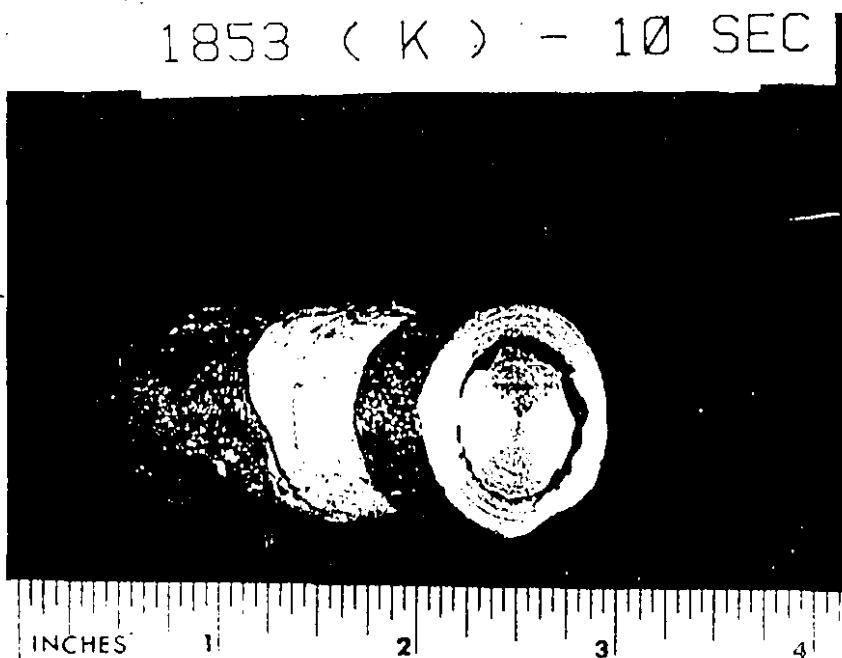


Figure 5.13 Experimental and predicted results obtained from the first set of immersion tests.

- 1) Predicted radius;
- 2) Initial radius;
- 3) Predicted reaction line in the steel shell;
- 4) Predicted reaction line in the titanium.



Figure 5.14 Titanium cylinders 1.905 cm in diameter immersed in steel bath. Pictures A and B show sectioned titanium cylinders. Picture C depicts the whole cylinder.

1853 (K) - 5 SEC

140

1853 (K) - 10 SEC

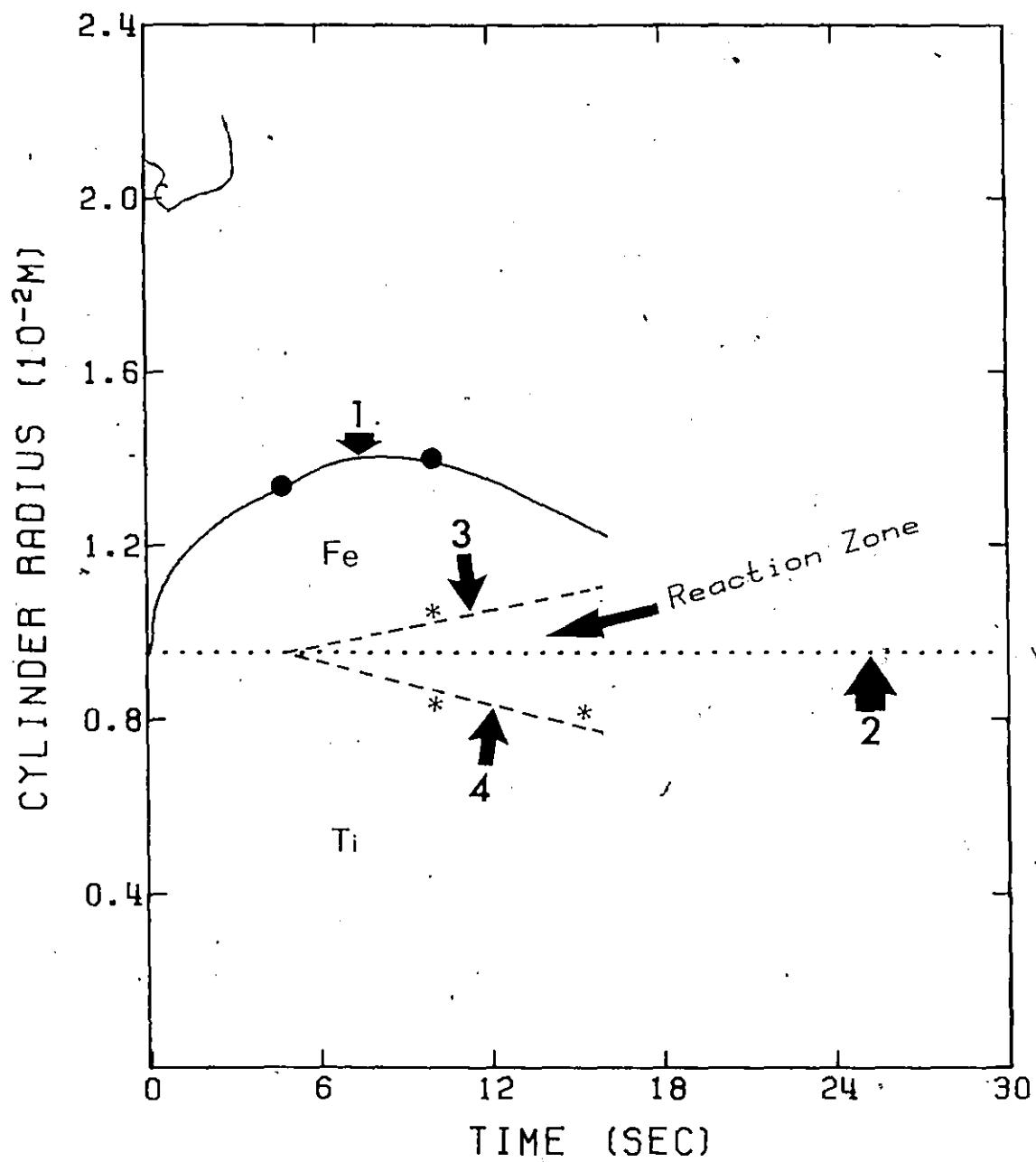
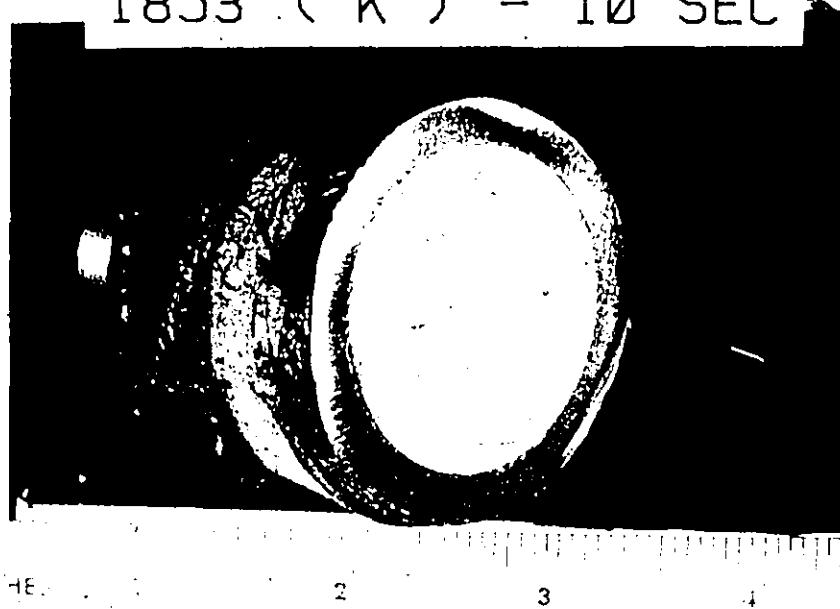


Figure 5.15 Experimental and theoretical results obtained from the second set of immersion tests.

- 1) Predicted cylinder radius;
- 2) Initial cylinder radius;
- 3) Predicted reaction line in the steel shell;
- 4) Predicted reaction line in the titanium.


In the third set of immersion tests, cylinders 3.81 cm in diameter and 16.5 cm in length were immersed in liquid steel to within 1.0 cm of their top surface. Immersion time periods ranged from 5 to 10 sec. The initial steel bath temperature during these experiments was 1580°C (1853 K) with a steel bath cooling rate of 0.32°C/sec. Figure 5.16 presents cross sections of these cylinders while figure 5.17 shows predicted and experimental results.

The fourth set of immersion tests involved titanium cylinders 3.81 cm in diameter and 16.5 cm in length. These cylinders were immersed to within 1.0 cm of their top surface. Immersion time periods ranged between 5 to 15 sec. The initial steel bath temperature during these experiments was 1600°C (1873 K) with a steel bath cooling rate equal to 0.32°C/sec. Figure 5.18 shows cross sections of these cylinders while Figure 5.19 presents the experimental and theoretical results obtained in a graphical form.

5.7 FREE DISSOLUTION PERIOD

Referring to Figure 5.9, the radius of the titanium cylinder during the free dissolution period (i.e. from D to E, curve one) was deduced on the basis of equation (5.10). These results are plotted in Figure 5.20. Line two shows the initial cylinder diameter. The steel-shell period starts at A and finishes at B, while the free dissolution period commences at B and ends at D. A very important feature to be

1853 (K) - 10 SEC

1853 (K) - 15 SEC

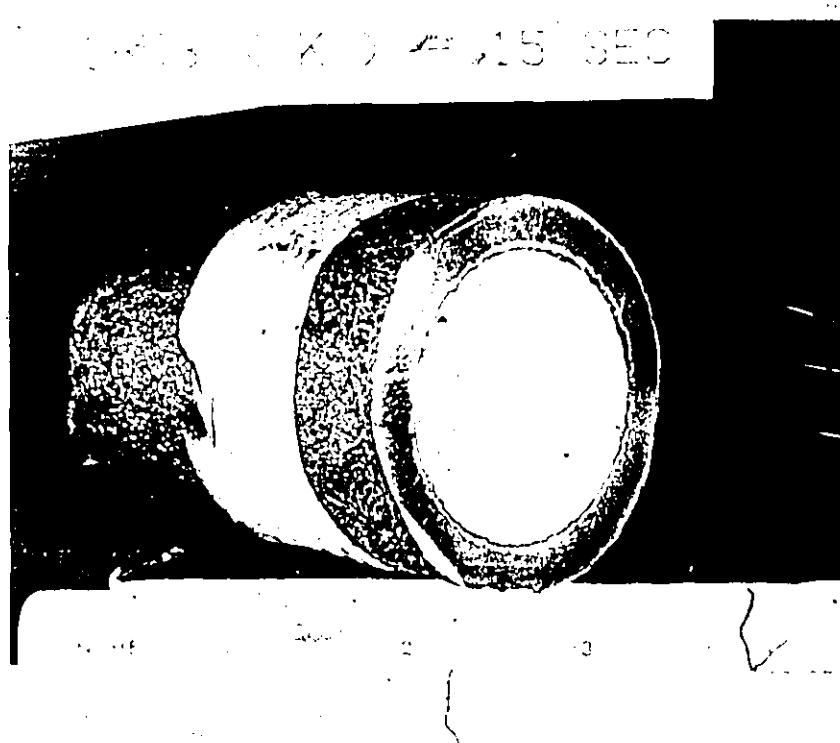


Figure 5.16 Cross sections of titanium cylinders 3.81 cm in diameter immersed in steel bath from the third set of immersion tests.

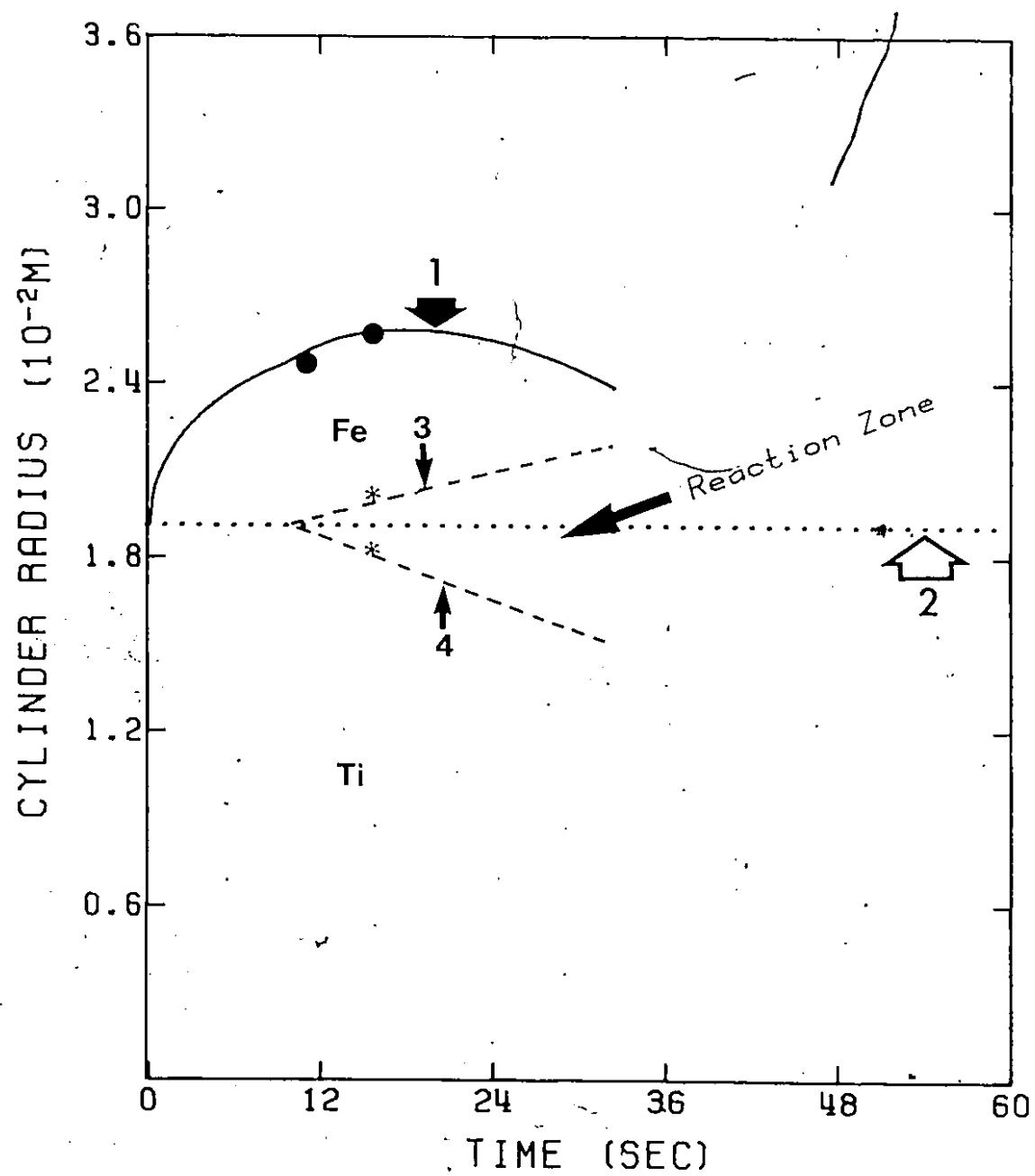
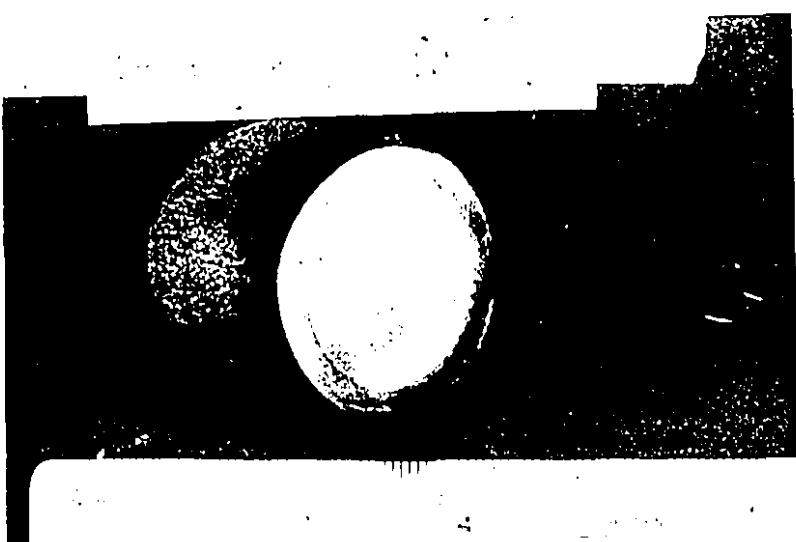




Figure 5.17 Experimental and theoretical results obtained from the third set of immersion tests.

- 1) Predicted cylinder radius;
- 2) Initial cylinder radius;
- 3) Predicted reaction line in the steel shell;
- 4) Predicted reaction line in the titanium.

1873 (K) - 5 SEC

1873 (K) - 15 SEC

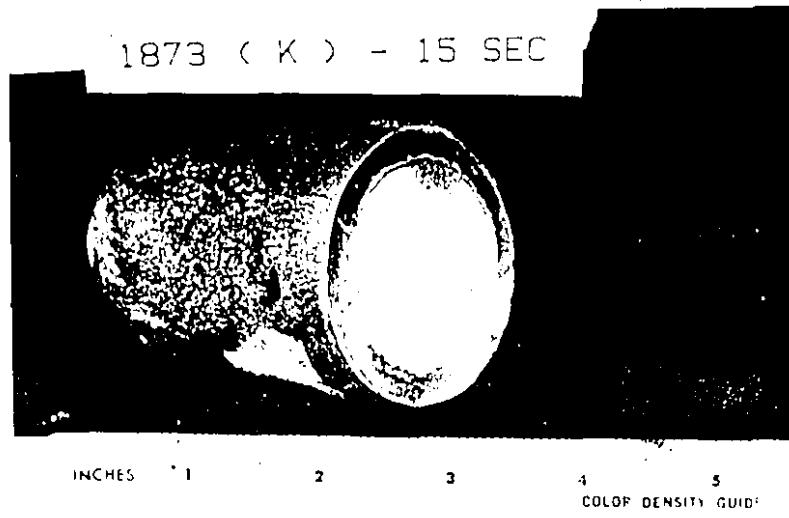


Figure 5.18 Cross sections of titanium cylinders 3.81 cm in diameter immersed in steel bath.

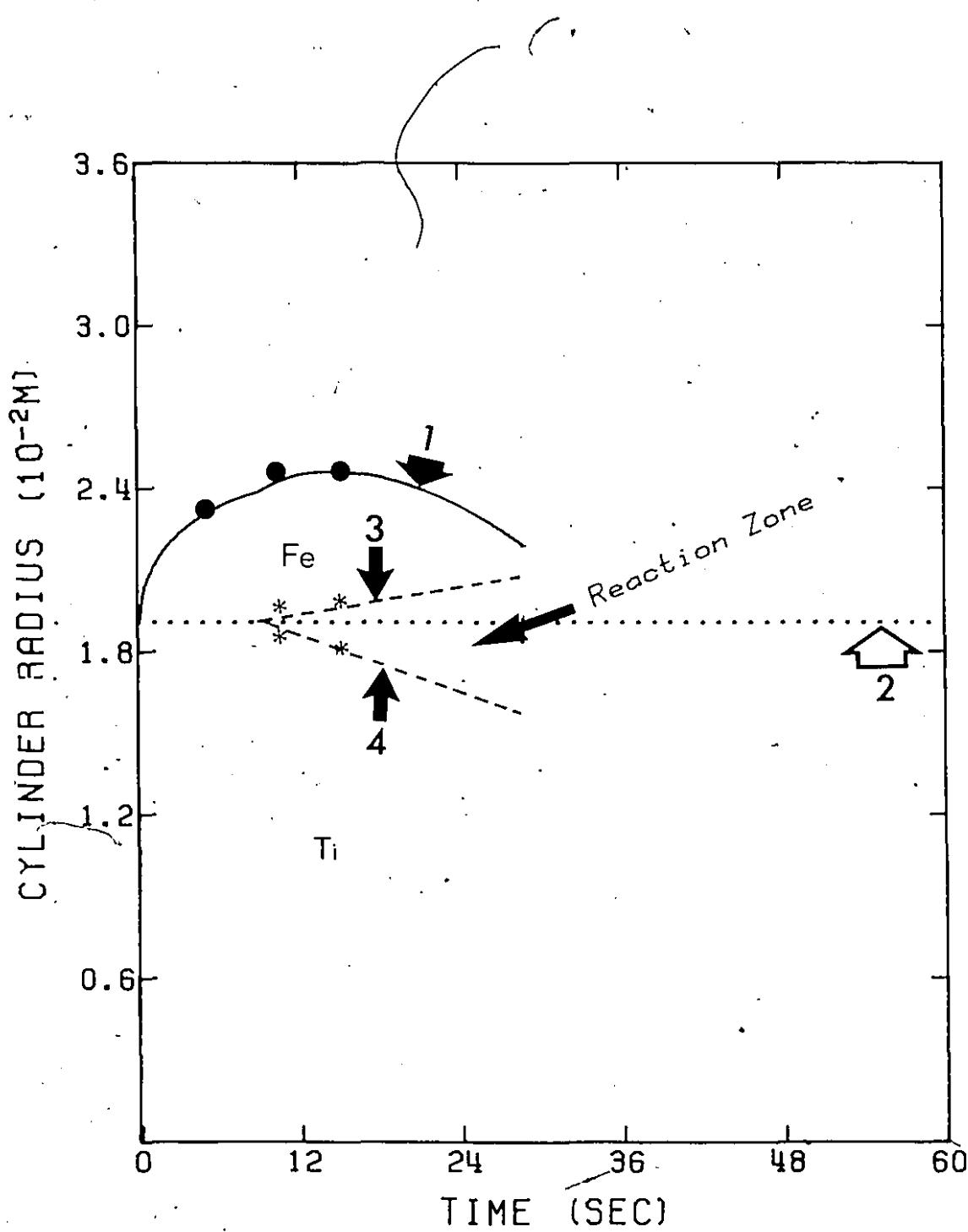


Figure 5.19 Experimental and theoretical results obtained from the fourth set of immersion tests.

- 1) Predicted cylinder radius;
- 2) Initial cylinder radius;
- 3) Predicted reaction line in the steel shell;
- 4) Predicted reaction line in titanium

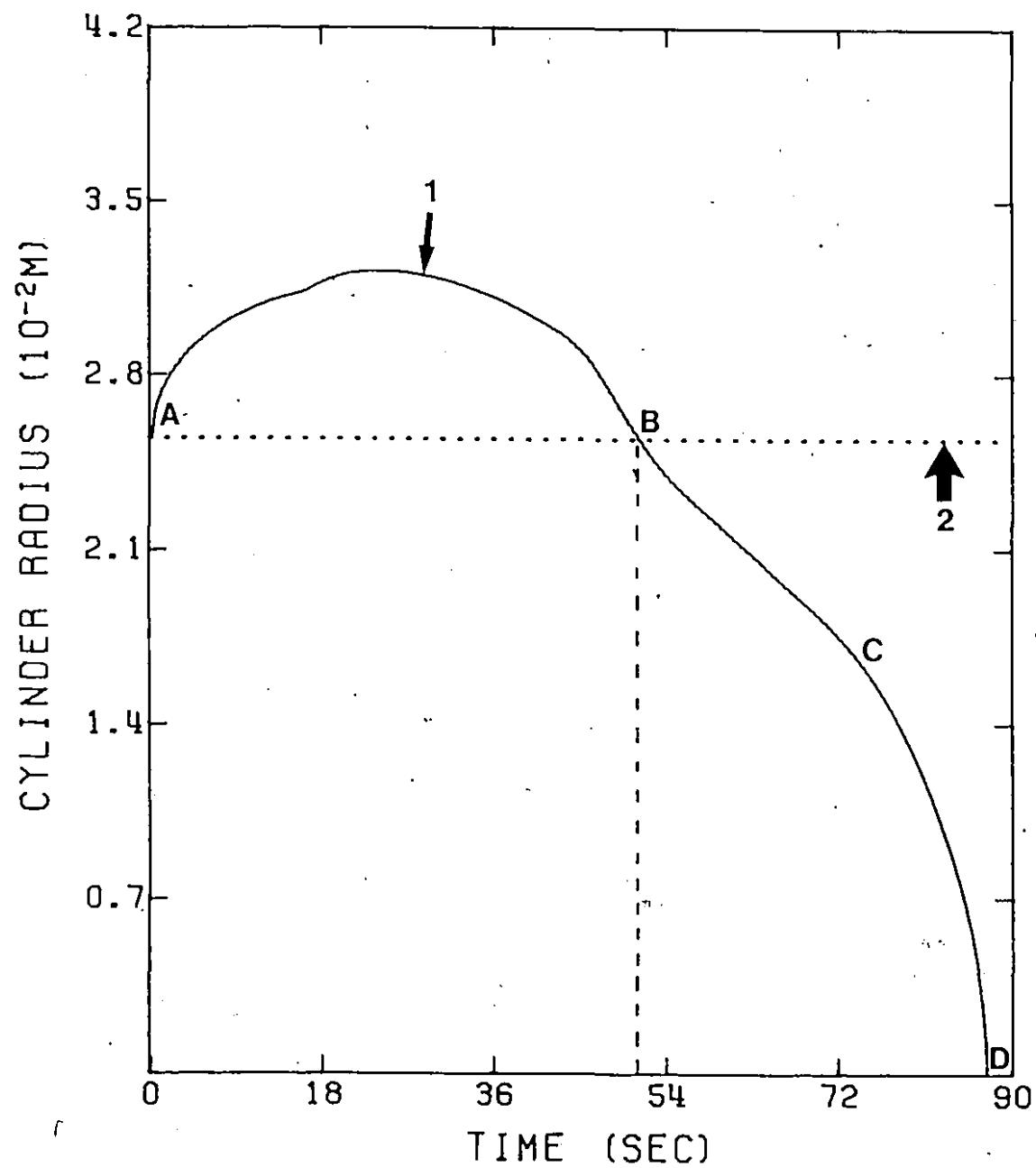


Figure 5.20 Predicted cylinder radius for a typical titanium dissolution experiment.

- 1) Predicted cylinder radius;
- 2) Initial cylinder radius;
- AB) Steel shell period;
- BCD) Free dissolution period;
- BC) Dissolution;
- CD) Melting.

observed from Figure 5.20 is the definite increase in $-dr/dt$, the radial velocity of the cylinders retreating surface during the free dissolution period. This rate could change quite dramatically during the final stages of free dissolution as is evident from Figure 5.20. Examination of the temperature profiles computed during the free dissolution period has shown that the temperature of the dissolving titanium interface increases. During the early stages of 'free dissolution' the temperature of the dissolving Ti interface is lower than titanium's melting temperature. As the free dissolution proceeds, the calculated surface temperatures at the dissolving interface approach the melting point temperature of titanium. Referring to Figure 5.20, the computed temperature at the dissolving interface increases between points B and C, approaching titanium's melting point at C. It is for this reason that the rate of decrease in cylinder radius increases dramatically (Section CD on curve one). It is emphasized that these high temperatures refer strictly to local phenomena.

From the foregoing observations it is clear that the free dissolution of titanium may sometimes be subdivided into both dissolution and melting periods. It is worth noting at this point that during the free dissolution period an increasing degree of turbulence is to be observed in the plume of rising steel surrounding the cylinder.

In the free dissolution period the heat which is generated in the vicinity of the dissolving titanium interface results from the intermixing of liquid iron with titanium. In order to quantify this phenomenon, it is of interest to recall that since a small amount of titanium is being mixed with a large quantity of liquid steel, the heat of mixing should closely approximate the partial molar enthalpy of the system. This partial molar enthalpy was calculated from reference 61 to be equal 14.9 k cal/mole of titanium.

Referring to Figure 5.20, an average molar flux during the free dissolution was deduced at discrete time intervals during the dissolution period. From these values, the total heat generated at the vicinity of dissolving titanium interface was estimated using the following formula:

$$\dot{Q}''_{\text{Total}} = \Delta\bar{H}_{\text{Ti}} \cdot \dot{N}''_{\text{FD}} \quad (5.11)$$

where $\Delta\bar{H}_{\text{Ti}}$: partial molar enthalpy of mixing of titanium with liquid steel.

\dot{N}''_{FD} : molar flux of dissolving titanium.

The \dot{Q}''_{Total} term contains two components: the first is the inwards directed heat flux \dot{q}''_{IFD} (i.e. towards the dissolving titanium interface) and the second is the outwards directed heat flux \dot{q}''_{OFD} (i.e. towards the steel bath). The term \dot{q}''_{IFD} was estimated in section 5.5.2 to be:

$$8.25 \pm 1.75 \text{ cal s}^{-1} \text{ cm}^{-2} (3.45 \times 10^5 \text{ w m}^{-2})$$

The outwards directed heat flux can therefore be derived on the basis of the following formula:

$$\dot{q}_{OFD}'' = \dot{Q}_{Total}'' - \dot{q}_{IFD}'' \quad (5.12)$$

The results are summarized in Table 5.2. As seen, the proportion of heat flux which is directed into the liquid steel increases with time and this fact can explain the accelerated turbulence which was observed during the free dissolution period.

5.8 THE INFLUENCE OF OXYGEN ON DISSOLUTION KINETICS

Figures 5.21 and 5.22 present results for titanium dissolution into liquid steel with oxygen contents of 600 ppm and 350 ppm respectively. No significant change was to be observed in any of the dissolution times.

5.9 DISCUSSION

Estimated heat and molar fluxes in the steel shell/titanium reaction zone are presented in Table 5.3. The agreement found between predicted and experimentally measured reaction zones determines the consistency of the estimated values. The reaction at the steel shell/titanium reaction zone must be largely responsible for at least halving shell melt back times for the conditions chosen. Naturally, at superheats

TABLE 5.2

HEAT AND MASS FLUXES AT DISCRETE TIME INTERVALS DURING THE
FREE DISSOLUTION PERIOD

Time (sec)	\dot{N}''_{FD} mole $s^{-1} cm^{-2}$	\dot{Q}''_{Total} cal $cm^{-2} s^{-1}$	\dot{q}''_{IFD} cal $cm^{-2} s^{-1}$	\dot{q}''_{OFD} cal $cm^{-2} s^{-1}$
54.0	0.0013	19.3	8.25	11.05
64.0	0.0033	49.1	8.25	40.85
74.0	0.0036	53.6	8.25	45.35
84.0	0.0077	114.0	8.25	105.75

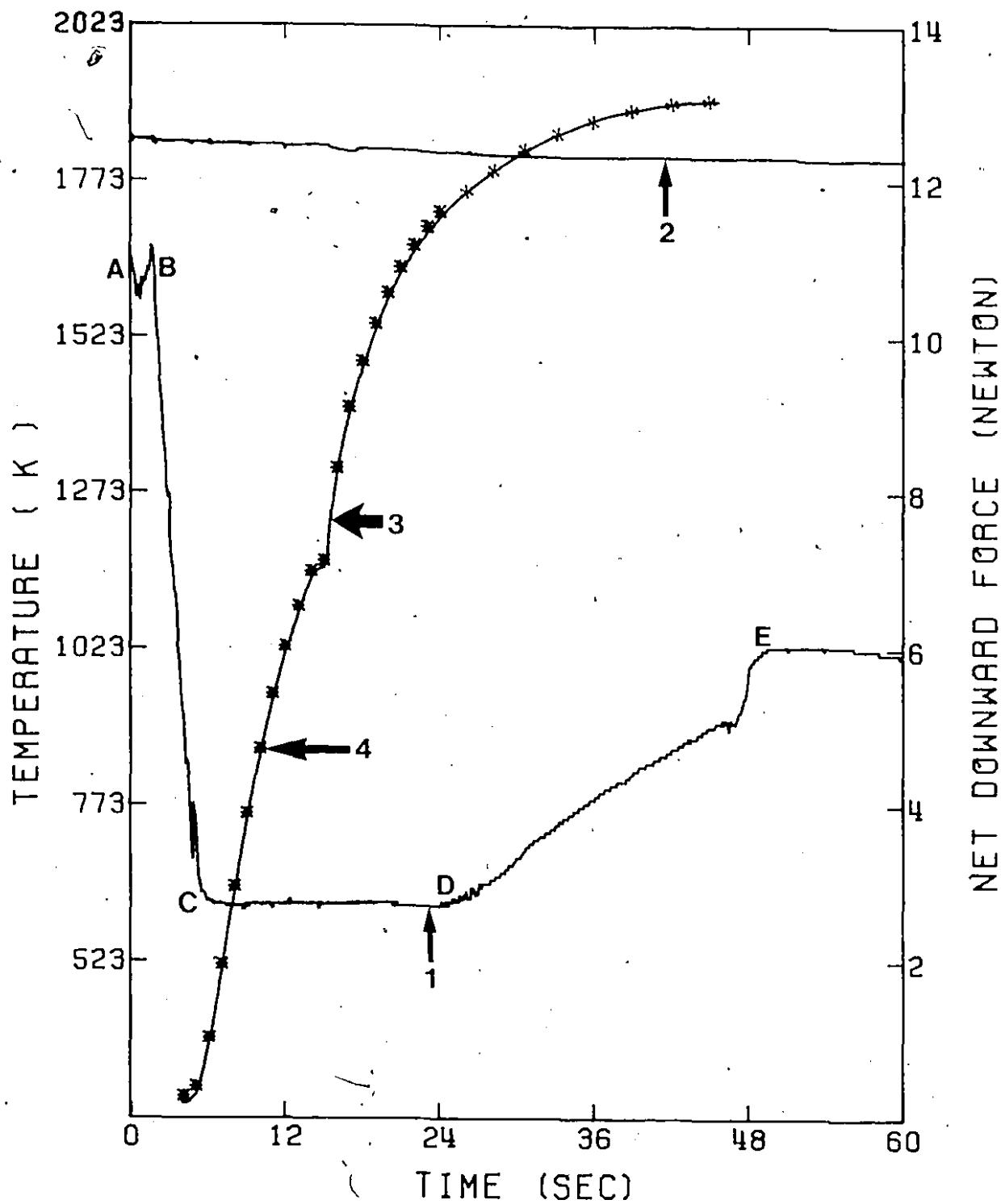


Figure 5.21 Results from titanium dissolution experiment. Cylinder diameter 2.54 cm. Steel bath oxygen content 600 ppm.

- 1) Registered net downward force;
- 2) Measured steel bath temperature;
- 3) Predicted centerline temperature;
- 4) Measured centerline temperature.

Figure 5.22 Results from titanium dissolution experiment. Cylinder diameter 2.54 cm. Steel bath oxygen content 350 ppm.

- 1) Registered net downward force;
- 2) Measured steel bath temperature;
- 3) Predicted centerline temperatures;
- 4) Measured centerline temperatures.

TABLE 5.3

ESTIMATED HEAT AND MASS FLUXES DURING STEEL SHELL PERIOD AND FREE DISSOLUTION PERIOD

	CGS Units	SI Units
Steel Shell Period	Heat flux at the interface	$9.5 \pm 1.5 \text{ cal cm}^{-2}\text{s}^{-1}$
	Molar flux of iron	$0.0018 \pm 0.0002 \text{ mol cm}^{-2}\text{s}^{-1}$
	Molar flux of titanium	$0.0013 \pm 0.0002 \text{ mol cm}^{-2}\text{s}^{-1}$
	Mass transfer coefficient of iron	$0.028 \pm 0.004 \text{ cm s}^{-1}$
	Mass transfer coefficient of titanium	$0.030 \pm 0.004 \text{ cm s}^{-1}$
Free Dissolution Period	Heat flux during free dissolution	$8.25 \pm 1.75 \text{ cal cm}^{-2}\text{s}^{-1}$
		$3.44 \pm 0.73 \text{ w m}^{-2}$

approaching zero the enhancement would become far greater since the convective heat inputs from the steel bath would be drastically reduced. As seen in section 5.6, the predicted locations of the steel shell/liquid steel interface and that of the inner steel shell boundary agree rather well with the experimental data. This indicates that the heat flux estimated at the outer and inner steel shell surfaces are both independently correct. The starting time for the reaction at the steel shell titanium interface depends mainly upon two factors: first is the cylinder diameter and second is the steel bath superheat.

The semi-empirical method of estimating heat fluxes generated during the steel shell period involves errors $\pm 15\%$. The error results from two factors; the first derives from the convective heat transfer correlations used at the outer surface of the steel shell while the second arises from the fact that steel shell melt back and exposure of titanium in liquid steel must be somewhat stochastic in nature. Thus, any slight imperfections in a hot, rapidly thinning shell will lead to premature exposure of titanium in liquid steel.

As pointed out in section 5.4, free dissolution commences once the steel shell period ends. In general, one can expect the free dissolution of titanium cylinders to be controlled by mass transport of dissolved titanium through a titanium rich boundary layer adjacent to the cylinder out into the

liquid steel bath. Thus, continuity at the dissolving interface dictates that:

Net moles of titanium lost from cylinder per unit time = Net moles of titanium diffusing into steel bath per unit time, i.e.

$$-\frac{d}{dt}(\pi r^2 h \rho_{Ti} / M_{Ti}) = K_{Ti} 2\pi r h (C_{Ti}^{*L} - C_{Ti}^B) \quad (5.13)$$

where r : cylinder radius

h : cylinder immersion length

ρ_{Ti} : density of titanium

M_{Ti} : titanium molecular weight

C_{Ti}^{*L} : liquidus concentration of titanium at the temperature of steel bath

C_{Ti}^B : bulk concentration of titanium in the steel

K_{Ti} : experimental mass transfer coefficient

Since h , ρ_{Ti} , and M_{Ti} are independent of time and C_{Ti}^B is equal to zero, equation (5.13) reduces to:

$$-\frac{dr}{dt} = \frac{K_{Ti} * C_{Ti}^{*L}}{\rho_{Ti} / M_{Ti}} \quad (5.14)$$

Based on this expression, an experimental mass transfer coefficient can be estimated.

Ravoo et al.⁹⁶ suggested the following correlation for turbulent mass transfer from vertical plates:

$$Sh_L = 0.13 (Gr_L Sc)^{1/3} \quad (5.15)$$

where * Sh_L : Sherwood number

Sc : Schmidt number

Gr_L : Grasshof mass transfer number

Mass transfer coefficients experimentally measured and predicted from equation (5.15) during the early stages of free dissolution of titanium are presented in Table 5.4.

The features to be observed from table 5.4 are first that the experimentally measured mass transfer coefficients are higher than the predicted ones from equation (5.15) and second is the strong influence of bath temperature on measured mass transfer coefficients. This trend was observed in every experiment. The strong dependency of the mass transfer coefficient on temperature cannot be explained solely on the basis of liquid phase diffusion. It is proposed that the accelerating degree of turbulence which was to be observed during the free dissolution period altered fluid flow patterns in the vicinity of the dissolving titanium interface.

Thus, on observing the bath surface during the course of an experiment, the steel surrounding the addition was relatively quiescent during the steel shell period and the first part of the free dissolution period. However, visual examih-

* More explanations about these dimensionless numbers can be found in Reference 97.

TABLE 5.4

MASS TRANSFER COEFFICIENTS DURING TITANIUM FREE DISSOLUTION

Temperature	Mean Experimental Mass Transfer Coefficient cm s^{-1}	Predicted Mass Transfer Coefficient from Eq. 5.15 cm s^{-1}
1580°C	0.0183 \pm 0.0015	0.0127
1630°C	0.0391 \pm 0.002	0.0137

ation of the surface of the bath close to the addition showed it becoming much hotter and turbulent, with the upwelling plume of liquid becoming faster during the later stages of free dissolution. Recalling Levich's⁹⁸ proposal that the thickness of the mass transfer boundary layer δ is related to velocity:

$$\delta = f\left(\frac{1}{v^n}\right) \quad (5.16)$$

where v : velocity of moving liquid

n : exponent ranging from 0.5 to 1

One can expect changes in the recirculation rate of liquid steel to increase the effective mass transfer coefficient.

During the free dissolution period the relative proportions of dissolution and melting depend upon the steel bath temperature; that is, the higher the steel bath temperature, the larger the proportion of cylinder which is molten when it is dispersed in liquid steel. From the analysis of the experimental results, it was found that when the inward radial velocity of the titanium interface was less than 0.045 cm s^{-1} , dissolution dominated, while above this figure melting occurred.

An average dr/dt and an average steel bath temperature during the free dissolution period was estimated for the 17 different runs. Table 5.5 summarizes this data. Using equation (5.14), an average mass transfer coefficient was also computed. Linear regression analysis of these results was

TABLE 5.5
EXPERIMENTALLY MEASURED dr/dt DURING TITANIUM FREE DISSOLUTION

Run No.	Average Temp.	Average dr/dt
1	1564.0	0.058
2	1573.0	0.062
3	1580.0	0.057
4	1600.0	0.098
5	1625.0	0.127
6	1625.0	0.141
7	1606.5	0.082
8	1568.0	0.054
9	1551.0	0.042
10	1560.0	0.045
11	1571.6	0.066
12	1569.6	0.051
13	1570.0	0.049
14	1570.0	0.048
15	1572.5	0.049
16	1572.5	0.049
17	1580.0	0.060

performed for a relationship between $\log K$ and the reciprocal value of absolute temperature shown in Figure 5.23. The equation for the curve one is:

$$\log K = \frac{15481.54}{T} + 7.2846 \quad (5.17)$$

with a correlation coefficient of 0.887 at 16 degrees of freedom, and a standard error of estimate 0.051. According to these data, the apparent activation energy for the solution of titanium in liquid steel was found to be 296.3 kJ/mol or (70.5 k cal/mole). The reason for this surprisingly high activation energy is twofold. First the average steel bath temperature during the free dissolution period does not represent the temperature of the dissolving interface which is higher. Second, the exothermic reaction alters the fluid flow patterns in the vicinity of the dissolving interface and makes the effective boundary layer thinner, thereby increasing the sensitivity of experimental mass transfer coefficients to changes in temperature.

While the mathematical model developed can easily predict thermal events during the steel shell period for any given set of conditions (i.e. steel bath temperature, cylinder diameter), the free dissolution period is more complex. Thus, molar fluxes cannot be evaluated from existing dimensionless mass transfer correlations, due to the complex hydrodynamic phenomena associated with this class of dissolution problem.

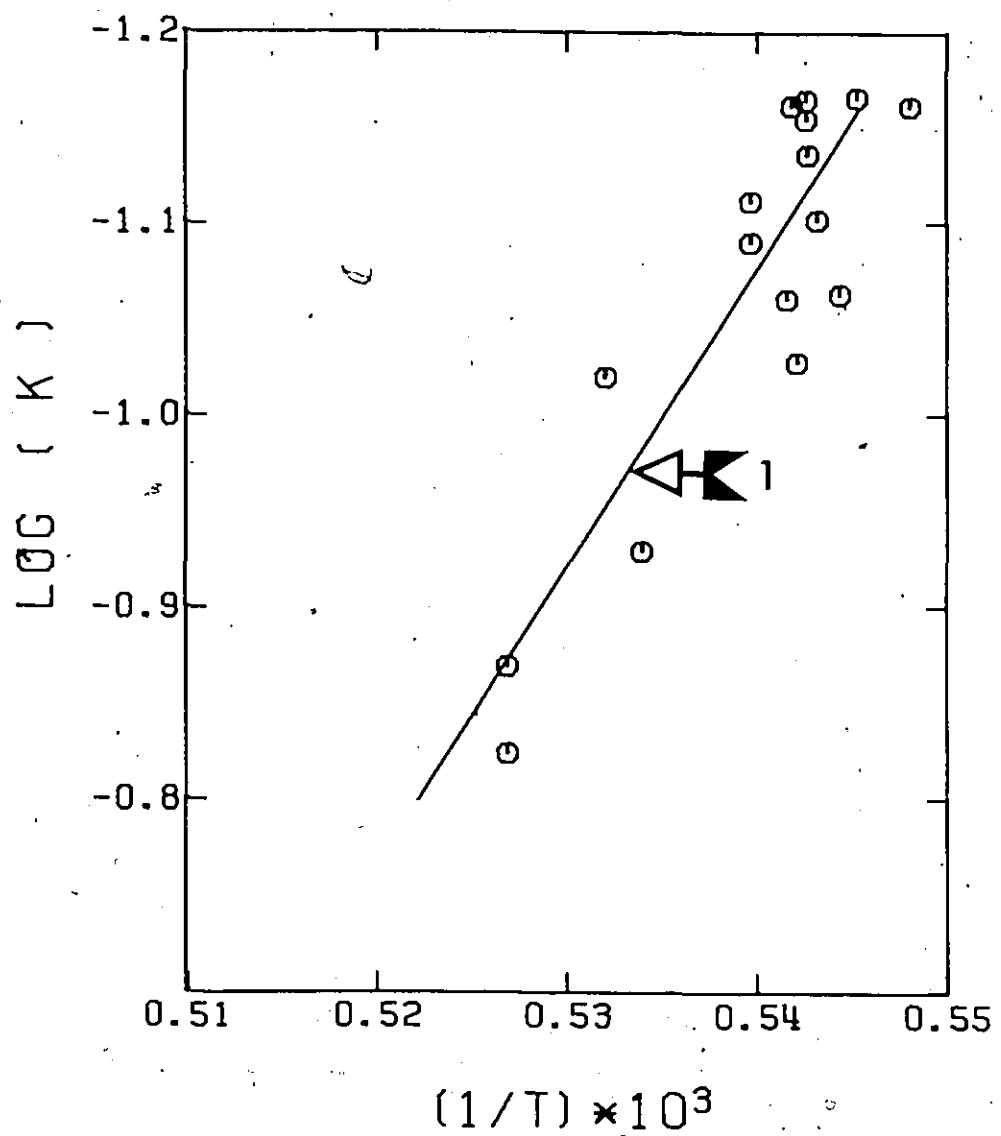


Figure 5.23 Logarithm of mass transfer coefficient versus reciprocal of absolute temperature.

In view of this difficulty, which is left for future work, a statistical approach has been adopted to predict free dissolution times.

Referring to Table 5.5, a linear regression was performed between the average steel bath temperature and the average radial velocity of the cylinder during the free dissolution period. This procedure yielded to the equation:

$$\left(\frac{dr}{dt}\right)_{\text{mean}} = -1.96 + 0.00128 \theta \quad (5.18)$$

where θ : degree celsius

The correlation coefficient was found to be 0.945 at 16 degrees of freedom with a standard error of estimate equal to 0.01.

For a given set of conditions the mathematical model was used to predict the time for steel shell period, while equation (5.18) was used to predict the free dissolution time. The sum of these two periods represents the total dissolution time. The results are presented in Figure 5.24.

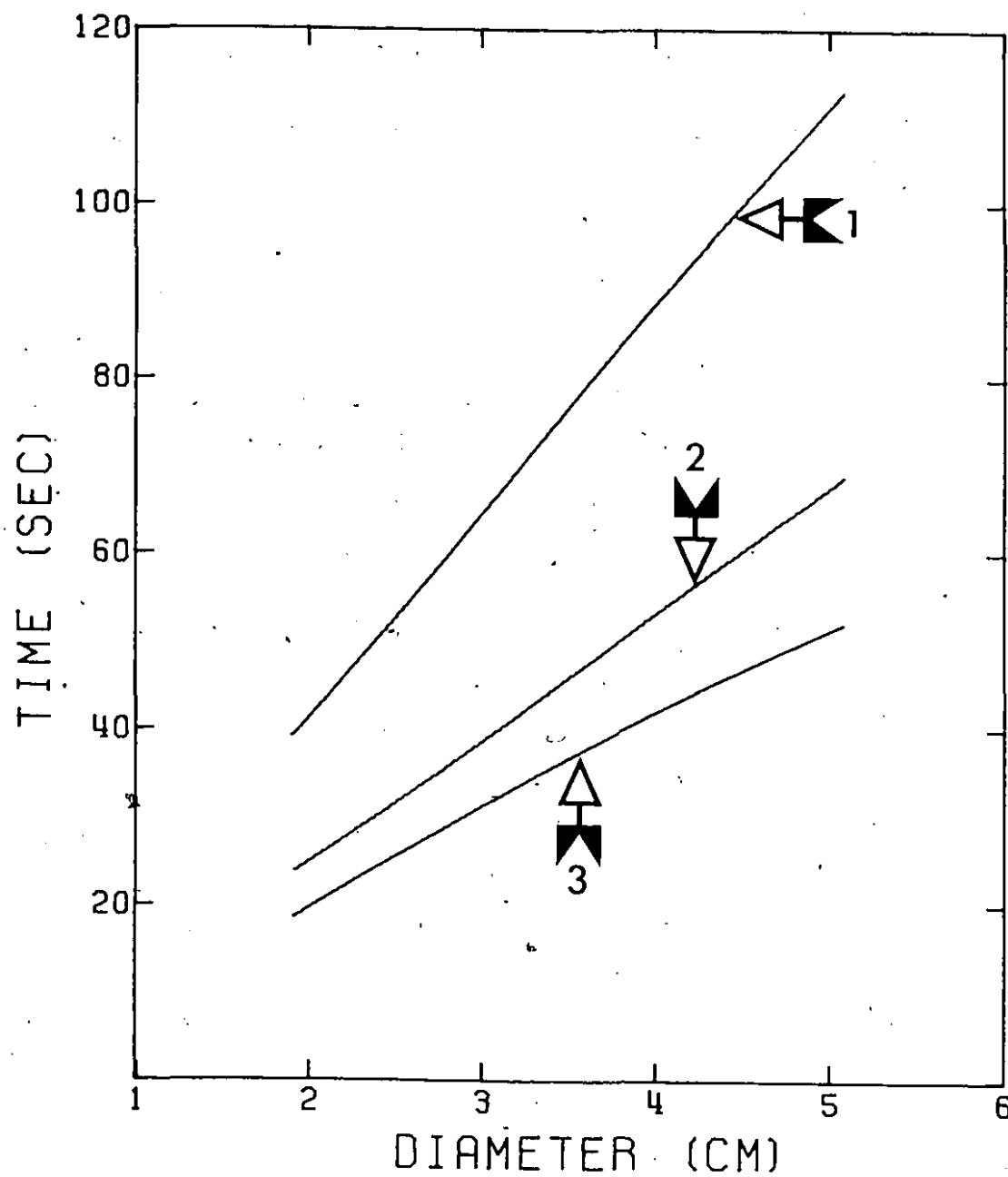


Figure 5.24 Predicted total dissolution times versus diameter for different steel bath temperatures.
1) liquid steel at 1570°C (or 1843 K)
2) liquid steel at 1600°C (1873 K)
3) liquid steel at 1630°C (1903 K)

CHAPTER 6

RESULTS AND DISCUSSION ON VANADIUM DISSOLUTIONIN LIQUID STEEL6.1 INTRODUCTION

In this chapter, the experimental results obtained for the solution of pure vanadium and ferrovanadium alloys are presented and discussed. Referring to the iron-vanadium phase diagram in Chapter 2, ferrovanadium alloys with vanadium grades lower than 60 wt% have a melting range which is lower than the steel melting point. Consequently, one can expect different solution patterns between ferrovanadium alloys of different grade. For this reason it was decided that the effect of vanadium content on the solution of ferrovanadium alloys in liquid steel should be investigated.

Four pure vanadium cylinders and ten ferrovanadium cylinders with grades varying between 30 wt% and 80 wt% vanadium were therefore prepared for immersion tests in liquid steel. The reason for the relatively small number of tests on pure vanadium cylinders were their prohibitive cost ($\approx \$800/\text{cylinder}$).

6.2 VANADIUM DISSOLUTION IN LIQUID STEEL6.2.1 Tests with Pure Vanadium

Figure 6.1 presents results for the dissolution of a pure vanadium cylinder 2.48 cm in diameter and 20 cm in length.

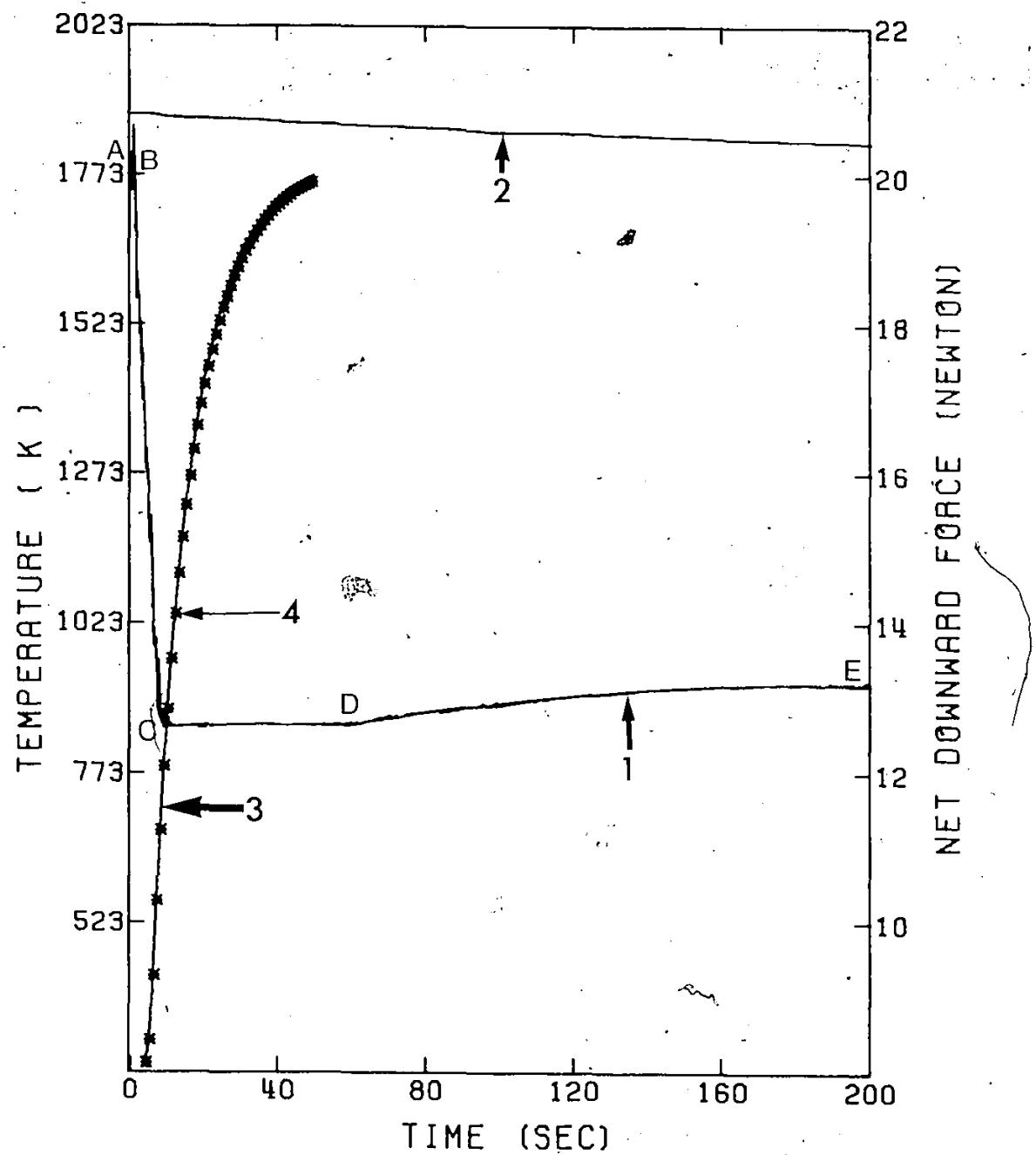


Figure 6.1 Test #1 Results from a vanadium dissolution experiment in liquid steel cylinder 2.48 cm, length 20 cm.

- 1) Registered net downward force;
- 2) Steel bath temperature;
- 3) Predicted centerline temperature;
- 4) Measured centerline temperature.

The vanadium cylinder was immersed to within 3.0 cm of its top surface. Curve one depicts the net downward force which the load cell registers. During the period AB the load cell registered only the gravitational forces. When the leading edge of the cylinder touched the surface of the steel bath the force which the load cell monitored started to decrease. Segment BC represents this period. The subsequent segment CD of curve one depicts the steel shell period (i.e. when a shell of solid steel was frozen around the cylinder). The force registered by the load cell remains constant during this period. Segment DE of line one shows the free dissolution period where there is no frozen steel shell around the vanadium cylinder. During this period, pure dissolution took place at a steady rate as evidenced by the upward slope of the force-time curve. Thus, as more of the submerged cylinder dissolved, the buoyancy force term decreased and the pull on the load cell increased. Line two in Figure 6.1 shows the measured steel bath temperature. The initial steel bath temperature for this experiment was 1600°C (1873 K). Line three presents experimental results and model predictions for the centerline temperature during the steel shell period. Time zero for the temperature of the cylinder is taken as the half way point between the times which correspond to the beginning and end of initial immersion (i.e. points B and C in curve one, Figure 6.1). As seen, very good agreement

between experimental and predicted centerline temperatures is achieved.

Similar results for a vanadium cylinder 2.61 cm in diameter are presented in Figure 6.2. For this experimental run the initial steel bath temperature was 1620°C (1893 K).

Figure 6.3 shows experimental results and model predictions for the dissolution of a pure vanadium cylinder 1.36 cm in diameter and 17.5 cm in length. The vanadium cylinder was immersed to within 30 cm of its top surface. The initial steel bath temperature for this experimental run was 1636°C (1909 K).

Results for the fourth pure vanadium cylinder are presented in Figure 6.4. In this experimental run, the cylinder had a diameter of 1.38 cm and a length of 14.0 cm and was immersed to within 2.0 cm of its top surface. The initial steel bath temperature was 1643°C (1916 K). This fourth cylinder had no centerline thermocouple.

In the first three tests, the temperatures measured at the centerline of the cylinder during the free dissolution period tended to be higher than the steel bath temperature. This fact is clear in test number three (Figure 6.3). In tests one and two, the recorded centerline temperatures exhibited erratic behaviour during the free dissolution period. For this reason, centerline temperatures are not plotted during the free dissolution periods in Figures 6.1 and 6.2 respectively.

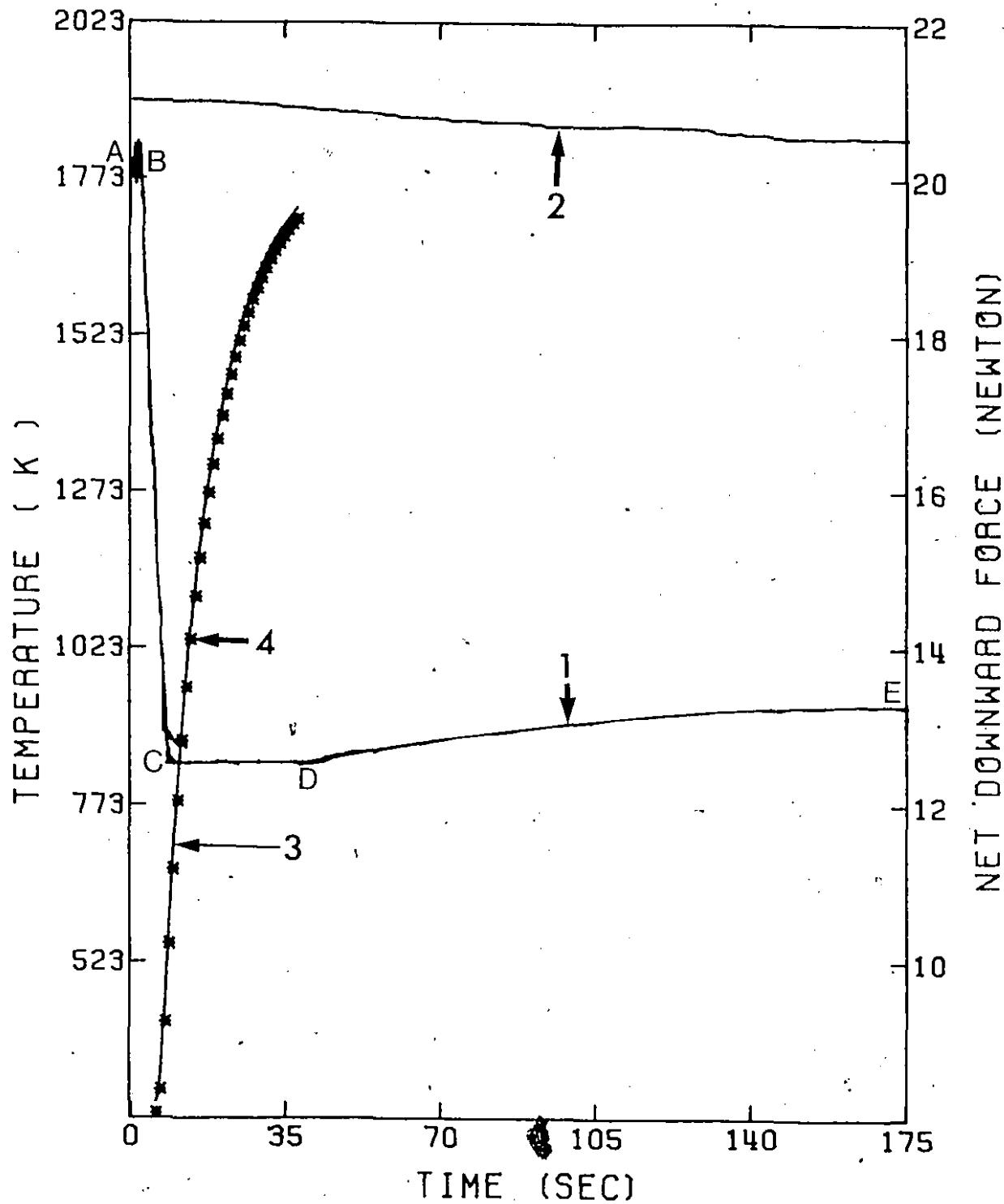


Figure 6.2 Test #2 Results from a vanadium dissolution experiment in liquid steel. Cylinder diameter 2.61 cm, length 20 cm.

- 1) Registered net downward force;
- 2) Steel bath temperature;
- 3) Predicted centerline temperature;
- 4) Measured centerline temperature.

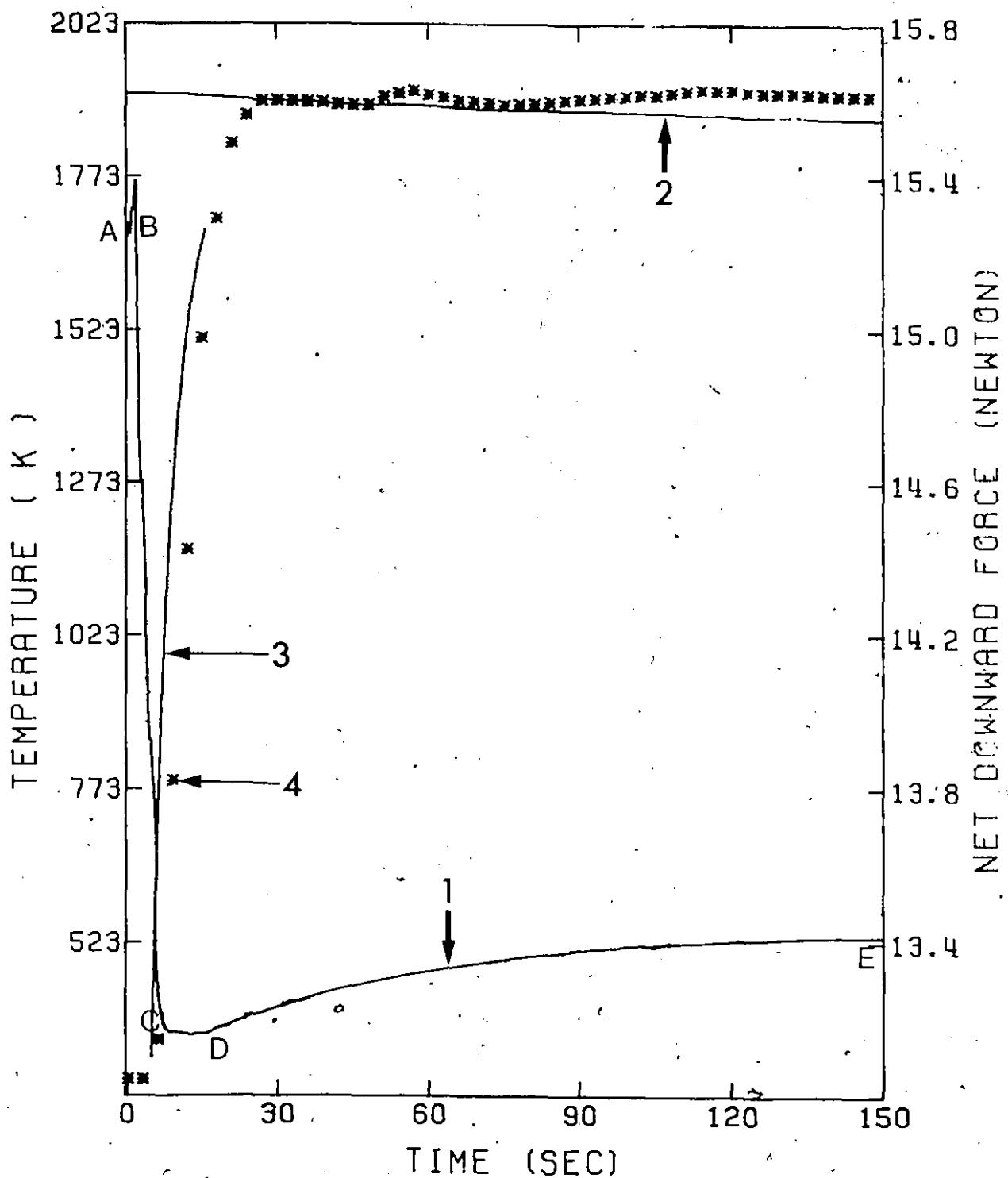


Figure 6.3 Test #3 Results from a vanadium dissolution experiment in liquid steel. Cylinder diameter 1.36 cm, length 17.5 cm.

- 1) Registered net downward force;
- 2) Steel bath temperature;
- 3) Predicted centerline temperature;
- 4) Measured centerline temperature.

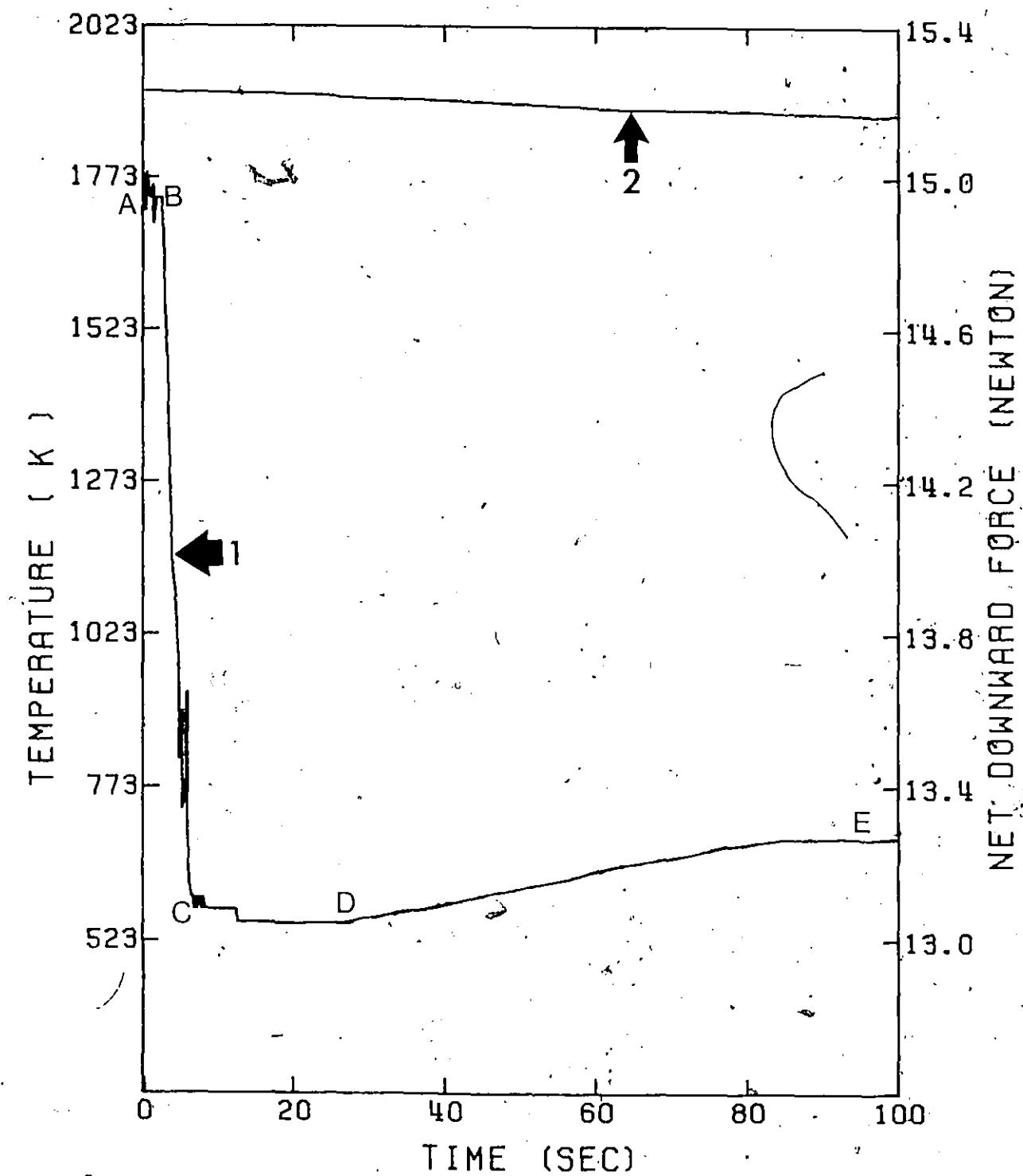


Figure 6.4 Test #4 Results from a vanadium dissolution experiment in liquid steel cylinder diameter 1.38 cm, length 1.40 cm.

- 1) Registered net downward force;
- 2) Measured steel bath temperature.

6.2.2 Tests with Different Ferro-Vanadium Grades

In some preliminary tests, Fe-V cylinders of 30, 40, 50 and 80 wt% vanadium and 2.54 cm in diameter and 10 cm in length, were immersed in liquid steel at 1600°C (1873 K). It was observed that the Fe-V cylinders with 30, 40 and 50 wt% vanadium became 'spongy' and close to collapse as they were pulled out of the steel bath after immersion times of 30 to 40 sec. On the other hand, this did not seem to be the case for Fe-V cylinders with 80% vanadium which appeared to be strong as they were withdrawn from the steel bath after extended immersion times (\approx 60-70 sec.).

Figure 6.5 shows results for one test with a 50 wt% Fe-V cylinder immersed in steel at 1600°C (1873 K). Line one of Figure 6.5 shows the force registered by the load cell while line two shows the measured steel bath temperature during the experiment. The feature to be noted in curve one is the sharp increase in load at the 42nd second (arrow A). This was followed by a plateau marking the sudden release of the molten alloy into the steel bath. It is worth noting at this point that under these conditions, the mathematical model predicts steel shell melt back time at 39 seconds.

6.3 INTERPRETATION OF DATA

Following similar reasoning to that explained in the previous chapter, an experimental mass transfer coefficient was computed for the free dissolution of vanadium in liquid

50% FERRO-VANADIUM

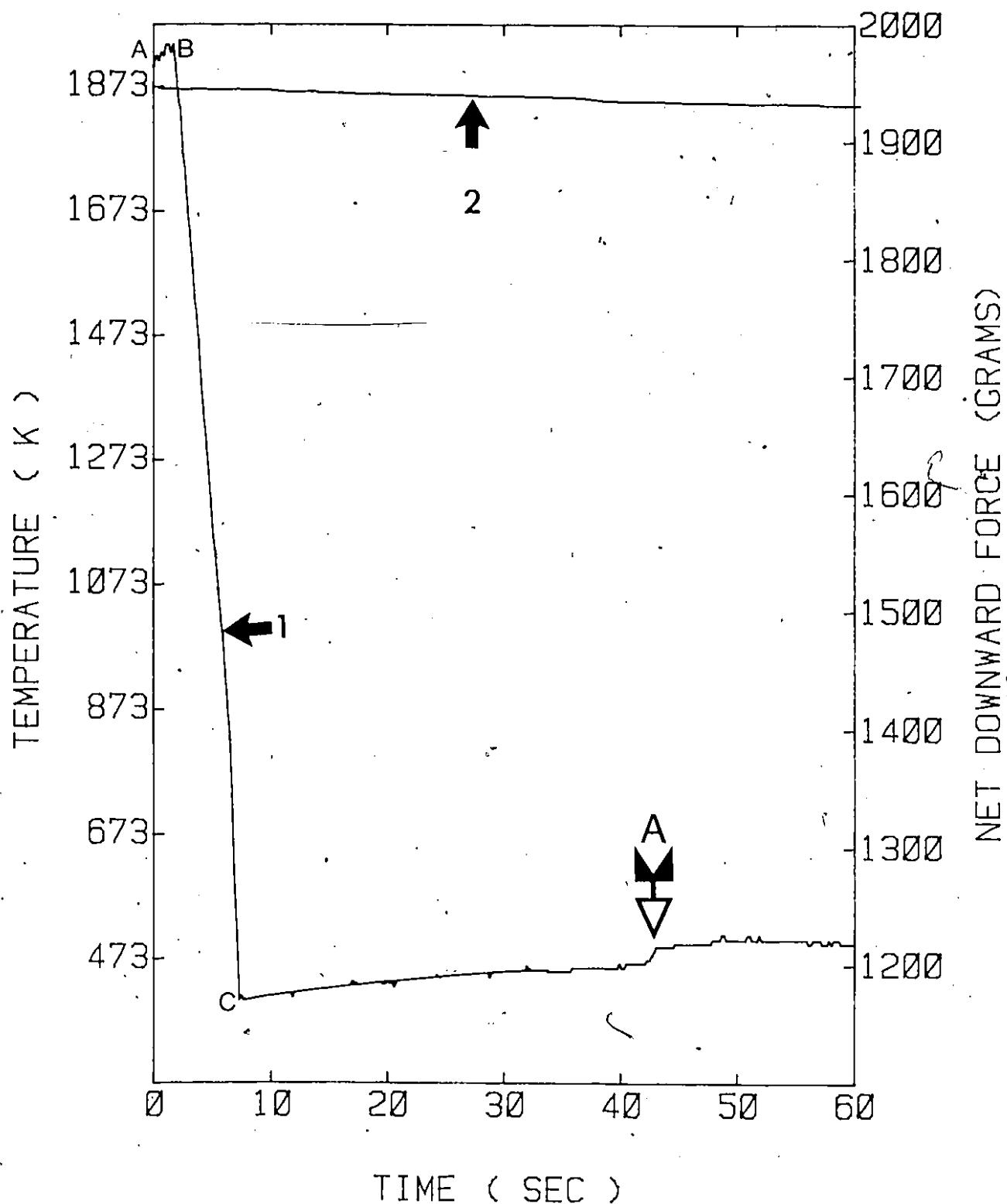


Figure 6.5 50% Ferro-vanadium cylinder: diameter 2.54 cm, 20 cm length.

- 1) Net downward force;
- 2) Measured steel bath temperature.

steel. The temperature used in these computations was the average measured steel bath temperature during free dissolution. For comparison, mass transfer coefficients may be predicted on the basis of empirical correlations available in the literature for condition of natural convection to vertical cylinders. Thus, the vanadium cylinders, on dissolving, release material which is less dense than the surrounding steel. This will generate upward currents around the dissolving cylinder. One proven relationship for dissolution of vertical cylinders is equation (5.15) presented in the previous chapter. Table 6.1 shows a comparison of predicted and experimental results.

Referring to Table 6.1, two aspects are to be noted. Firstly, the experimental mass transfer coefficients are in reasonable agreement but tend to be higher than those predicted by equation (5.15). Secondly, the inward radial velocity of the interface tended to increase during the course of the free dissolution of vanadium in liquid steel. The latter aspect is demonstrated quite clearly in Figure 6.6 where the radius of the cylinder for test number three is plotted versus time.

Theoretically, however, dr/dt is expected to be constant for normal isothermal dissolution phenomena. Also it is to be noted that the steel shell period is quite short in comparison with the free dissolution period.

TABLE 6.1
EXPERIMENTAL AND PREDICTED MASS TRANSFER COEFFICIENTS FOR VANADIUM

Test No.	Average Temperature	Experimental Average Mass Transfer Coefficient cm s^{-1}	Predicted Mass Transfer Coefficient cm s^{-1}	Experimental (dr/dt) cm s^{-1}	Experimental molar flux $\text{mole cm}^{-2} \text{s}^{-1}$	Period (sec)
1	1580°C or 1853 K	0.0038 ± 0.0003	0.0043	0.0026	0.00023	59.4 - 99.2
	1570°C or 1843 K	0.0029 ± 0.0003	0.0043	0.0020	0.00022	99.2 - 150
2	1590°C or 1863 K	0.0047 ± 0.0002	0.0043	0.0033	0.00037	50 - 100
	1576°C or 1849 K	0.0057 ± 0.0003	0.0042	0.0039	0.00044	100 - 150
3	1625°C or 1898 K	0.0061 ± 0.001	0.0046	0.0047	0.00053	16.5 - 50.1
	1615°C or 1888 K	0.0076 ± 0.001	0.0045	0.0057	0.00064	50.1 - 95.1
4	1634°C or 1907 K	0.0071 ± 0.0015	0.0047	0.0056	0.00063	22.0 - 41.2
	1625°C or 1898 K	0.010 ± 0.002	0.0046	0.0084	0.00091	41.0 - 75.0

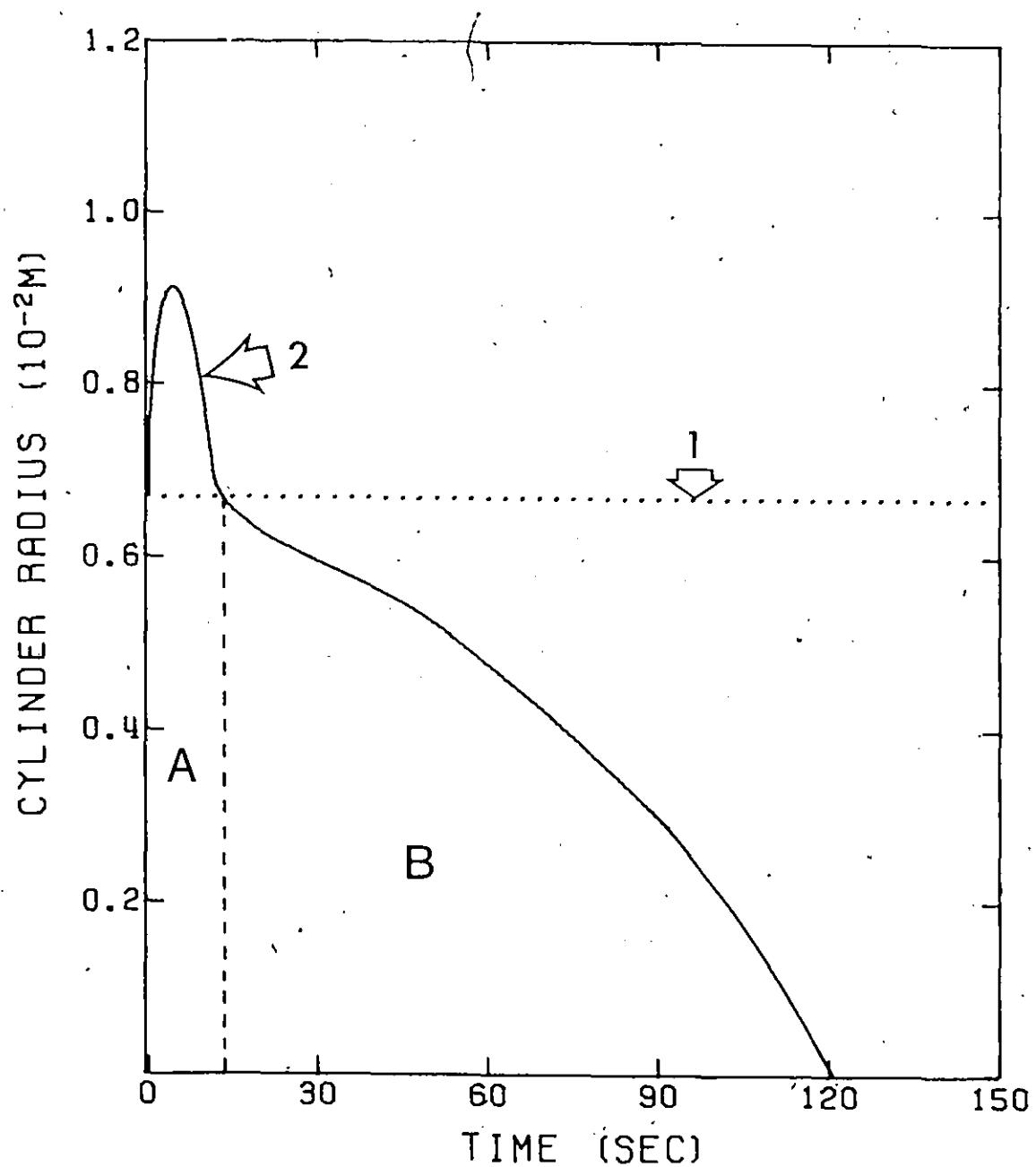


Figure 6.6 Dynamics of dissolution of pure vanadium in liquid steel.

- 1) Original diameter;
- 2) Predicted and calculated diameter;
- A) Steel shell period;
- B) Free dissolution period.

One common feature which was observed in all the ferro-vanadium alloys tested, is that the steel shell which freezes around the cylinder melts back in a conventional way. That is, no reaction was observed at the steel shell-ferrovanadium interface.

6.4 DISCUSSION

As pointed out in section 2.7, the mixing of vanadium with liquid steel is somewhat exothermic. This may be the reason for the experimental mass transfer coefficients being higher than those predicted. Furthermore, the 'exothermicity' of mixing is stronger at higher steel bath temperatures.

Another feature to be observed from Table 6.1 is that the experimental mass transfer coefficient generally increases in the later stages of free dissolution. This may be caused by the exothermic reaction in the vicinity of the dissolving vanadium interface enhancing natural convection, thereby thinning the effective mass transfer boundary layer and enhancing mass transfer coefficients.

In Figure 6.7, the logarithm of the experimental mass transfer coefficients measured during the early stages of free dissolution are plotted against the reciprocal of absolute temperature. By regression analysis, one obtains:

$$\text{Log } K = - \frac{15707.7}{T} + 6.082 \quad (6.1)$$

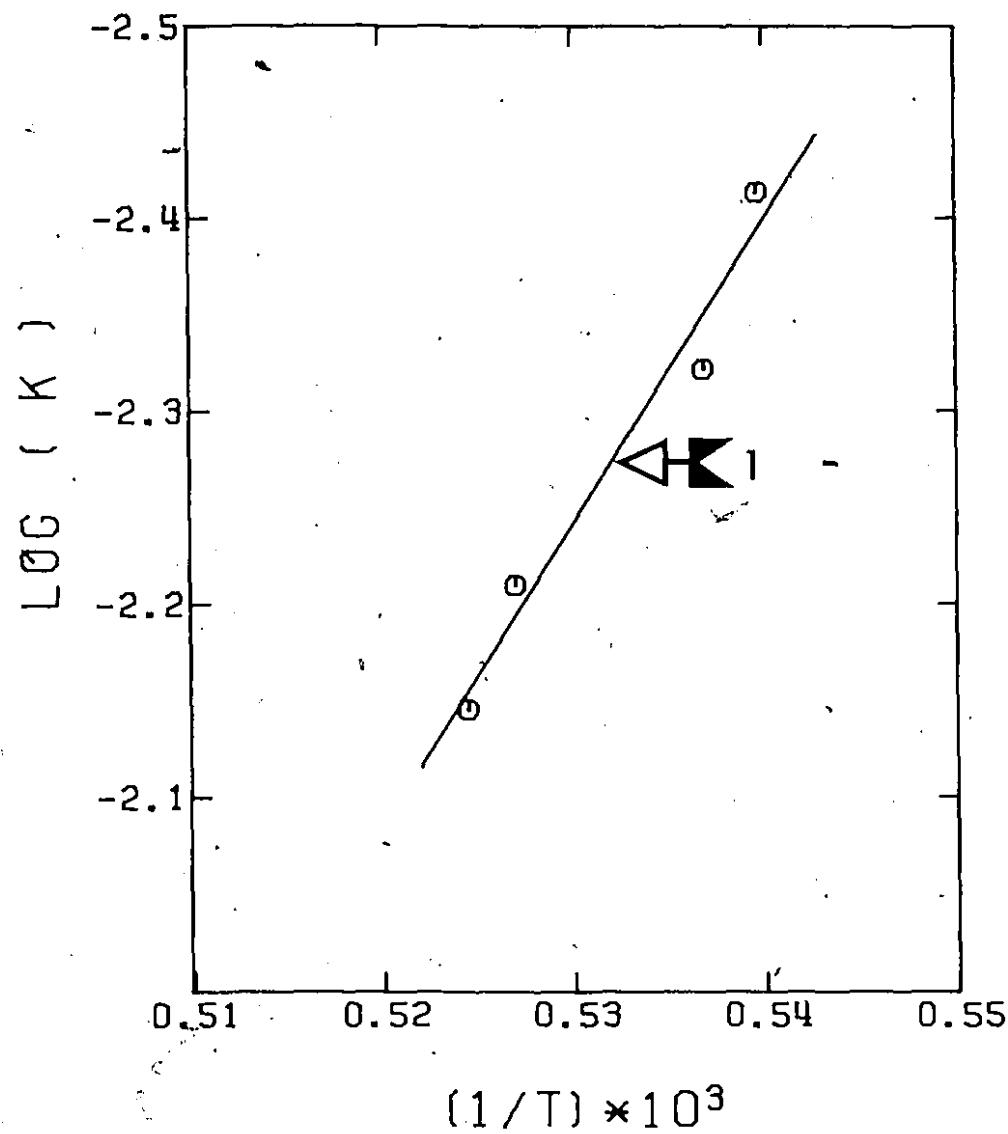


Figure 6.7 · Logarithm of experimental mass transfer coefficients for vanadium versus the reciprocal of absolute temperature.

Equation (6.1) is plotted as curve one of Figure 6.7. The slope of this line represents an Arrhenius-type apparent activation energy for the solution of vanadium in liquid steel. The value was found to equal 71.5 kcal/mole or (300.6 kJ/mole). This large apparent activation energy for the dissolution of vanadium in liquid steel is close to that obtained by the author for titanium dissolution in liquid steel.

Krupman et al.³⁷ also measured a large apparent activation energy for the dissolution of molybdenum in liquid steel. They report values in the order of 65.1 kcal/mole (273.4 kJ/mole). These uncommonly high values for vanadium, titanium and molybdenum are most likely explained on the basis of the exothermic reactions taking place as they dissolve in liquid steel. For such elements, the temperature at the dissolving interface is higher than the temperature of the bulk steel and tends to increase during the course of dissolution. Consequently, one can regard their dissolution as being non-isothermal. Therefore, the high activation energy reported by Krupman et al.³⁷ for molybdenum dissolution can be explained on a similar basis to the systems studied in the present work.

Based on all the experimental work carried out on the behaviour of pure vanadium and Fe-V alloy additions in steel baths, it is concluded that the dissolution proceeds via a

heat transfer or melting dominated mechanism for alloys containing less than 68% vanadium and by a mass transfer mechanism for all alloys containing more than this amount.

From the results presented in Table 6.1, an average rate of radius decrease $(dr/dt)_{\text{mean}}$ and an average steel bath temperature during the free dissolution was calculated for each dissolution test on pure vanadium. A regression between $(dr/dt)_{\text{mean}}$ and bath temperature yielded:

$$(dr/dt)_{\text{mean}} = -0.11 + (0.75 \times 10^{-4}) \theta \quad (6.2)$$

where θ : temperature in $^{\circ}\text{C}$.

At 1600°C (1873 K) equation (6.2) gives:

$$(dr/dt)_{\text{mean}} = 0.0045 \quad (6.3)$$

From this equation and from equation (5.14) an average molar flux of vanadium during free dissolution was found to be:

$$N_{\text{mean}} = 0.0005 \frac{\text{mole}}{\text{cm}^2 \text{ sec}} \quad \text{or}$$

$$N_{\text{mean}} = 0.025 \frac{\text{gr. of V}}{\text{cm}^2 \text{ sec}} \quad (6.4)$$

Shantarin et al.³⁸ have found that solution rates of ferro-alloys are higher than the corresponding solution rates of pure metals. They proposed the following equation:

$$N_{FeMe} = \frac{N_{Me}}{(\%Me)_{FeMe}} 100\% \quad (6.5)$$

where N_{Me} : pure metal solution rate in (gr $\text{cm}^{-2} \text{ s}^{-1}$)

$(\%Me)_{FeMe}$: percentage of element in the ferro-alloy

N_{FeMe} : solution rate of ferro-alloy in (gr $\text{cm}^{-2} \text{ s}^{-1}$)

According to Shantarin et al., they feel that equation (6.5) implies that the concentration gradients are identical to pure metals and ferro-alloys and consequently a greater loss of specimen weight is necessary in the solution of ferro-alloys to maintain the same concentration gradient. Since Santarin et al.³⁸ were able to apply this ratio satisfactorily in the solution of pure W and FeW and the solution of pure Mo and FeMo, equation (6.5) has been adopted as a first estimate to the Fe-V system.

Thus, Figure 6.8 shows the predicted melting/dissolution times required for 2.54 cm diameter cylinders of ferrovanadium to dissolve into a steel bath at 1600°C (1873 K) versus ferro-alloy grade. As seen, all alloys below 68% V require approximately 33 seconds while those above need a minimum of 240 seconds. Pure vanadium requires the maximum time of 316 seconds. It is important to note that vanadium would start dissolving in the bath at all compositions once the steel shell freezing on them had remelted.

MASS TRANSFER MECHANISMS

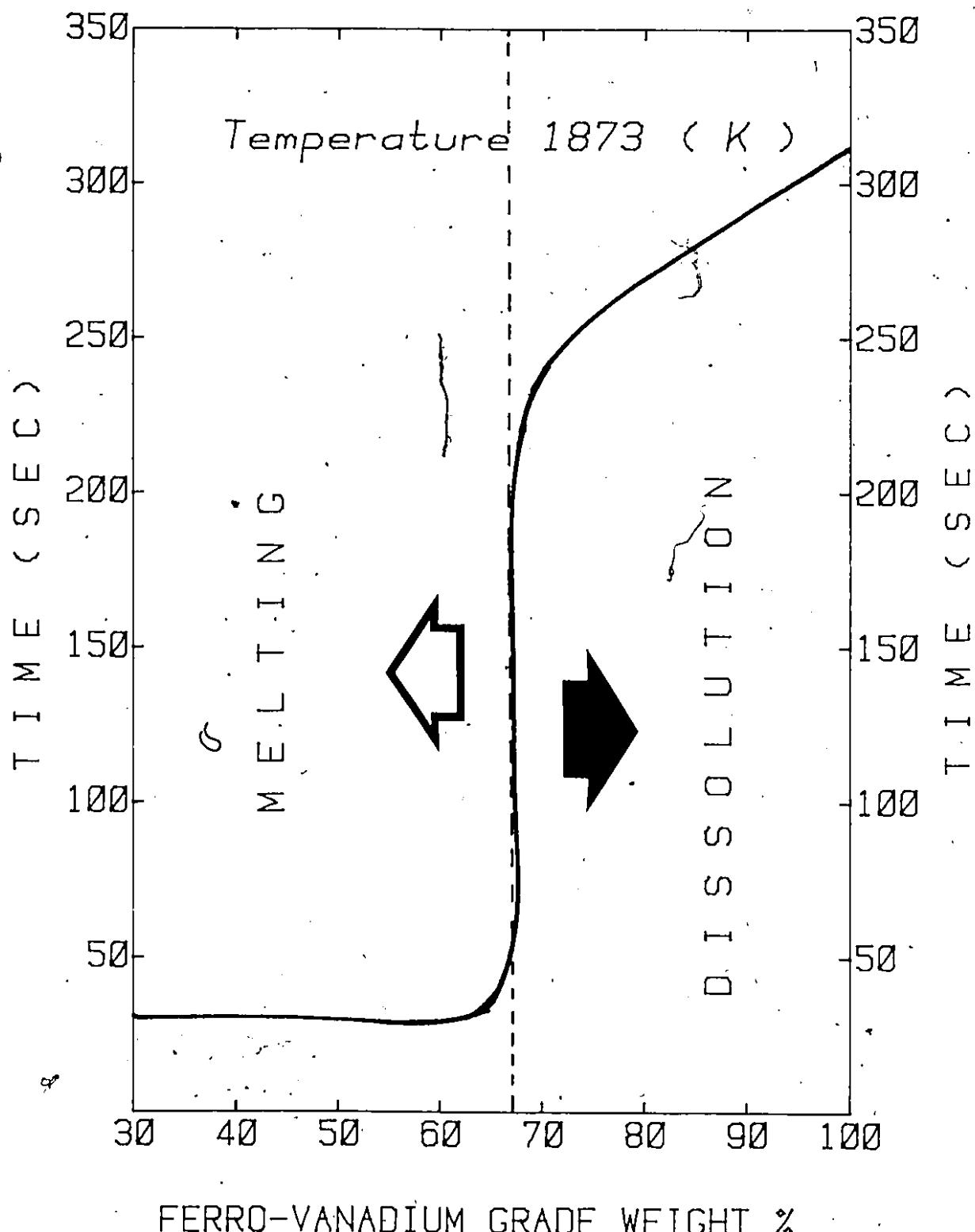


Figure 6.8 Predicted melting/dissolution times required for 2.54 cm diameter cylinders of ferrovanadium to dissolve into a steel bath at 1600°C (1873 K) versus ferrovanadium grade.

Figure 6.8 demonstrates clearly the significant difference in solution times between the different grades of ferro-vanadium. In grades where melting occurs, the kinetics is about seven times faster than in grades where dissolution dominates. Consequently, improved consistency and efficiency of alloy additions to steel baths can be expected for steel-plant practises calling for the use of the low grade ferro-vanadium alloys.

CHAPTER 7

CONCLUSIONS

The purpose of this work was to investigate the dissolution of high melting point additives to liquid steel. For this reason, titanium and vanadium were chosen as representative cases for study. Conclusions resulting from the present investigation are outlined below.

- 1) An experimental technique for measuring the dissolution of cylindrical shaped specimens in liquid steel has been developed. The dissolution can be monitored by measuring a) the apparent weight of the specimen, b) temperatures of the specimen at various locations and c) the temperature of the steel bath.
- 2) During the dissolution of titanium in liquid steel, two distinct periods were identified. The 'steel shell period' and the 'free dissolution period'.
- 3) In the steel shell period, a steel shell is first formed when a titanium addition is immersed in liquid steel. The dissolution reaction starts at the steel shell solid titanium interface, once the temperature at this interface reaches about 1190°C or 1463 K. A liquid film of eutectic composition then forms and an exothermic reaction is initiated. A 'double heat effect' is applied to the steel shell and the steel shell melting times are decreased. It was estimated that the net heating effect (heat flux) during exothermic

reaction was ($3.97 \pm 0.63 \text{ w m}^{-2}$) or ($9.5 \pm 1.5 \text{ cal cm}^{-2} \text{ s}^{-1}$) under nominal conditions of natural convection.

4) During the 'free dissolution period', the temperature at the surface of the dissolving titanium increases causing the dissolution to accelerate. In the early stages of 'free dissolution', the temperature of the dissolving interface is lower than melting point of Ti and dissolution occurs. In the later stages of 'free dissolution', the temperature of the dissolving interface approached titanium's melting point and melting occurred. The relative proportions of dissolution and melting during free dissolution depend upon cylinder diameter, steel bath superheat and hydrodynamic conditions.

5) A simplified mathematical model of the dissolution process has been developed to describe the coupled heat and mass transfer phenomena taking place. The model was shown to be capable of providing a good quantitative representation of the processes studied.

6) Pure vanadium and ferrovanadium alloys dissolve in a more conventional manner: that is, no reaction product is observed between the steel shell and solid vanadium. The kinetics of dissolution of vanadium in liquid steel is significantly lower than that of titanium.

7) The dissolution of ferrovanadium alloy additions in steel baths proceeds via a heat transfer or melting dominated mechanism for alloys containing less than 60% vanadium and by

a mass transfer mechanism for all alloys containing more than this amount.

CHAPTER 8

FUTURE WORK

It is suggested that the turbulence generated during the free dissolution of titanium in liquid steel would be well worth further hydrodynamic investigation. The dissolution of ice cylinders in a 93 wt% H_2SO_4 at temperatures of $-25^{\circ}C$ (or 248 K) could serve as a low temperature model for this purpose. At higher temperatures, the dissolution of iron in a ferrosilicon bath with 50 wt% silicon could prove to be an appropriate model.

Another area where future work is called for is in the quantitative analysis of exothermic heats of mixing and dissolution rates. This problem could be tackled experimentally by studying the behaviour of iron cylinders in ferrosilicon baths of differing silicon contents.

CHAPTER 9

CLAIM TO ORIGINALITY.

Many aspects of this work are, in the author's opinion, contributions to original knowledge.

Thus, an experimental 'direct' method for studying the dissolution of solid alloy additions in molten steel has been developed which is capable of yielding data of high accuracy.

In terms of developing the data acquisition system, the interface of SS-50 bus* with the MOTOROLA EXORciser bus* is new.

In the metallurgical context, the reaction between steel shell and titanium is a novel phenomenon which has been observed and explained. Similarly, a detailed analysis of heat and mass transfer phenomena associated with the dissolution of titanium in liquid steel has been carried out that is entirely novel.

This work contains the first experimental data on the dissolution kinetics of pure vanadium and ferrovanadium alloys in liquid steel.

*bus is a standardized combination of microprocessor signals which are common in many subsystems.

ACKNOWLEDGEMENTS

The author would like to express his sincere appreciation to Professor R.I.L. Guthrie, for his guidance and assistance during the course of this work.

The author wishes to express his special gratitude to his friend Dr. Kasi Ananthanarayanan for his valuable help during the development of the data acquisition system.

The author wishes to thank the Quebec Ministry of Education and the Steel Company of Canada for their financial support.

Last but not least, the author would like to express his deep appreciation to his wife Angie, who had to bear with the special moods of a graduate student husband and for her patience and love throughout the long years of graduate studies and research work.

APPENDIX I

PART 1: TYPICAL RESULTS OF THE SECOND SET OF
TITANIUM IMMERSION TESTS

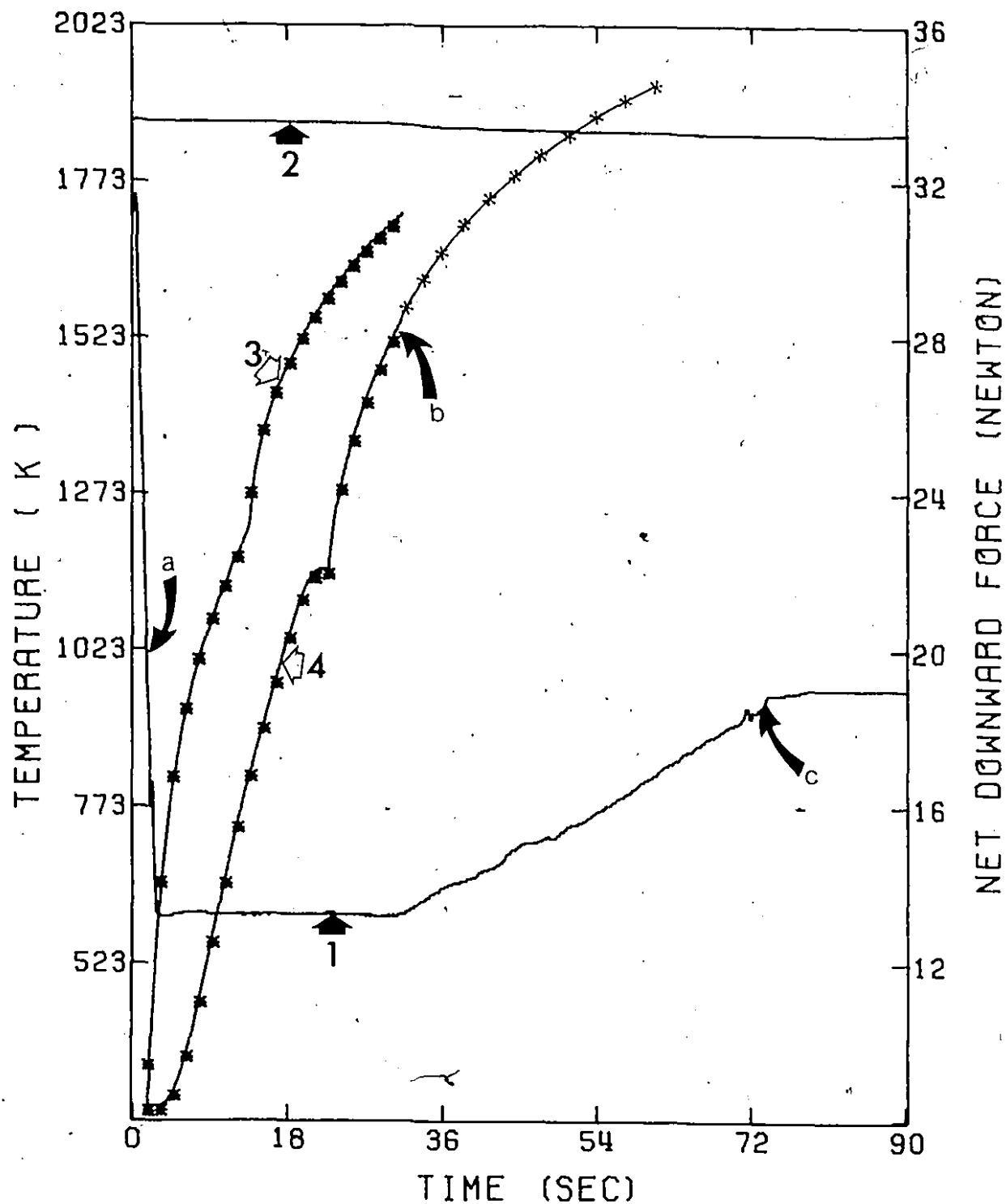


Figure I-1 Results from a titanium dissolution experiment in liquid steel. Cylinder diameter 3.81 cm and 20 cm in length:

- 1) Registered net downward force;
- 2) Measured steel bath temperature;
- 3) Measured and predicted temperatures at a point 1.62 cm from cylinder centerline;
- 4) Measured and predicted temperatures at the cylinder's centerline.

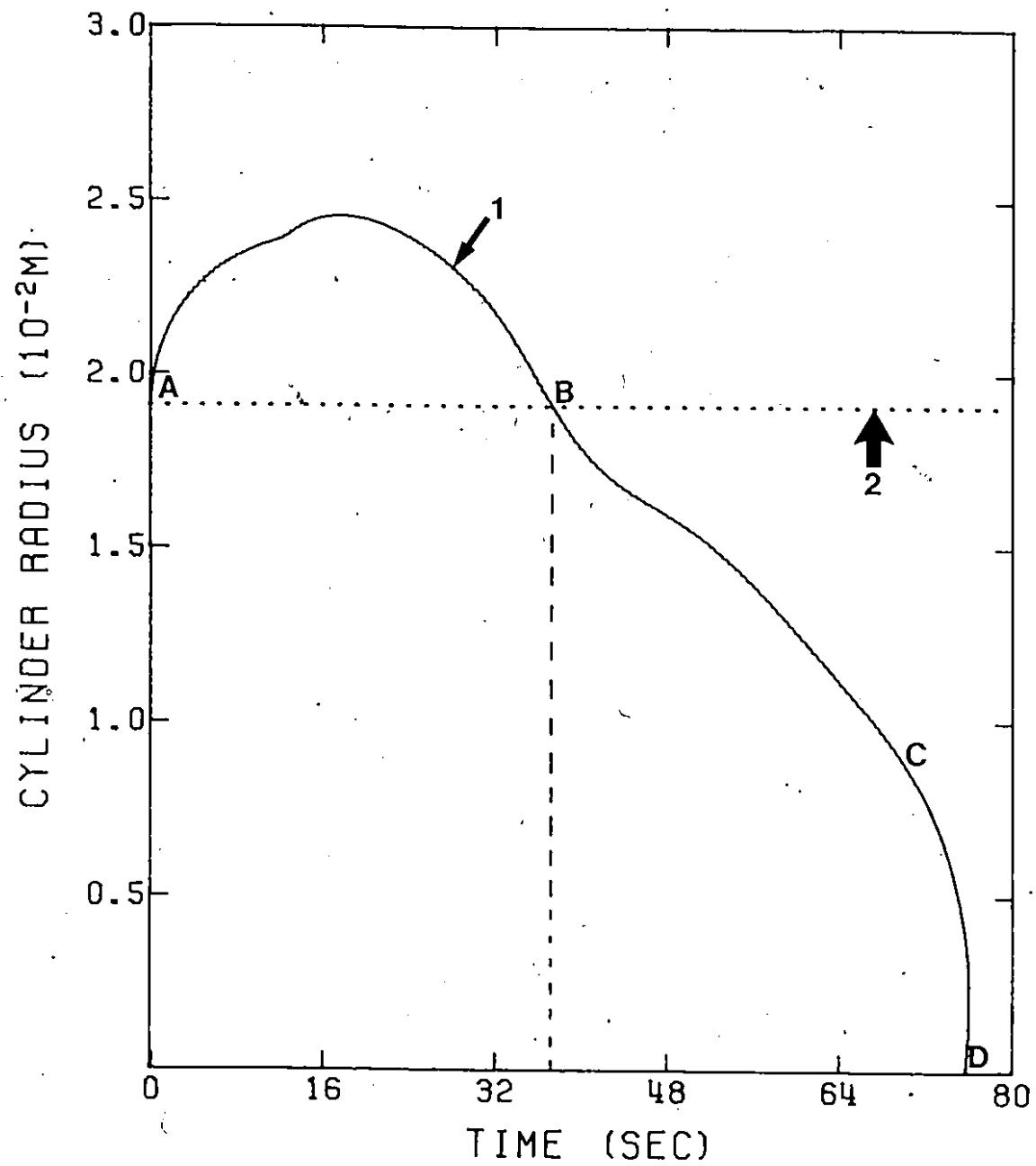


Figure I-2 Predicted cylinder radius versus time for the experimental results presented in Figure I-1:

- AB: steel shell period
- BCD: free dissolution period
- BC: dissolution
- CD: melting
- 1: cylinder radius
- 2: initial cylinder radius

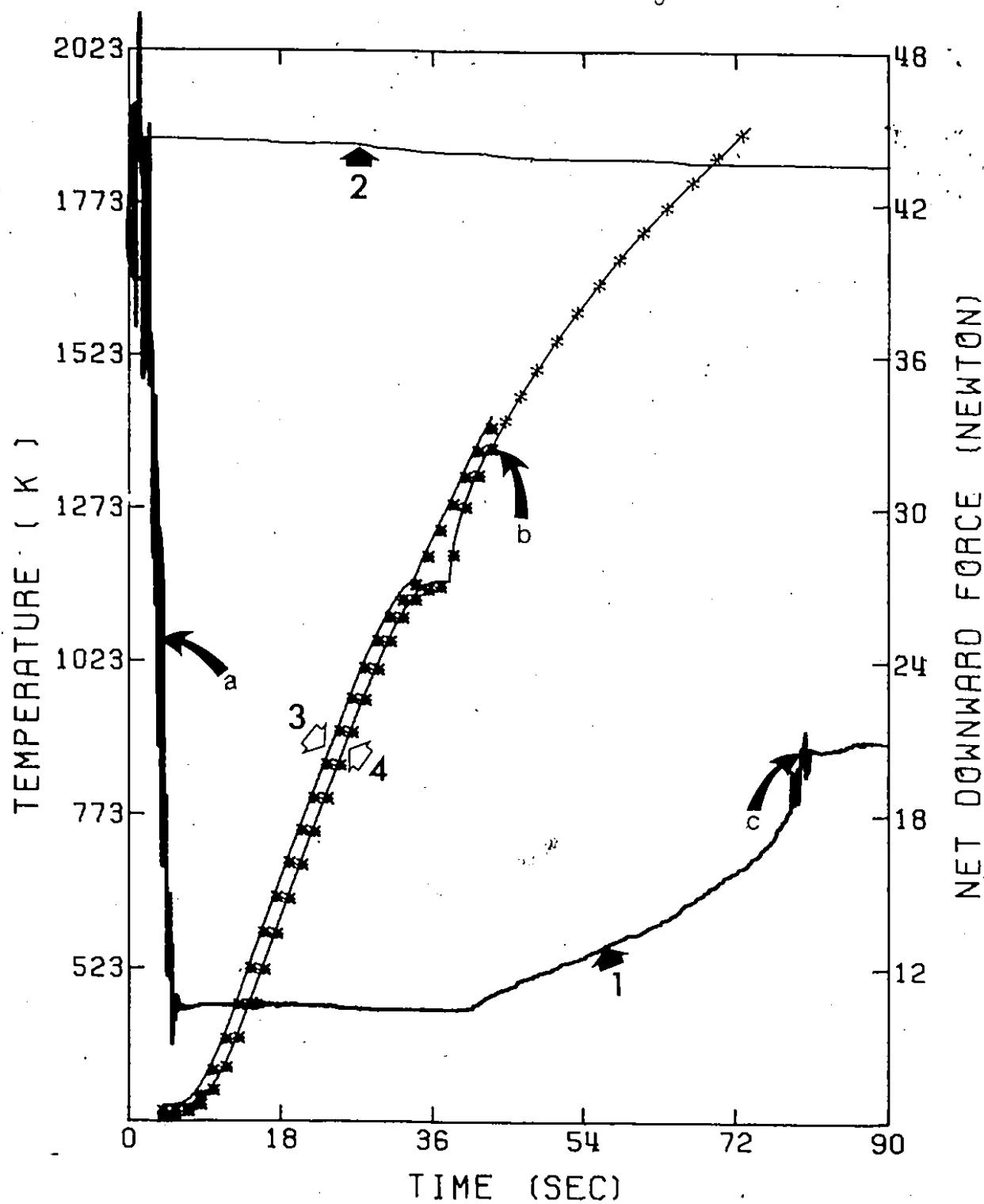


Figure I-3 Results from a titanium dissolution experiment in liquid steel. Cylinder diameter 5.08 cm and 22 cm in length:

- 1) Registered net downward force;
- 2) Measured steel bath temperature;
- 3) Measured and predicted temperatures at a point 0.7 cm from cylinder centerline;
- 4) Measured and predicted temperatures at the cylinder's centerline.

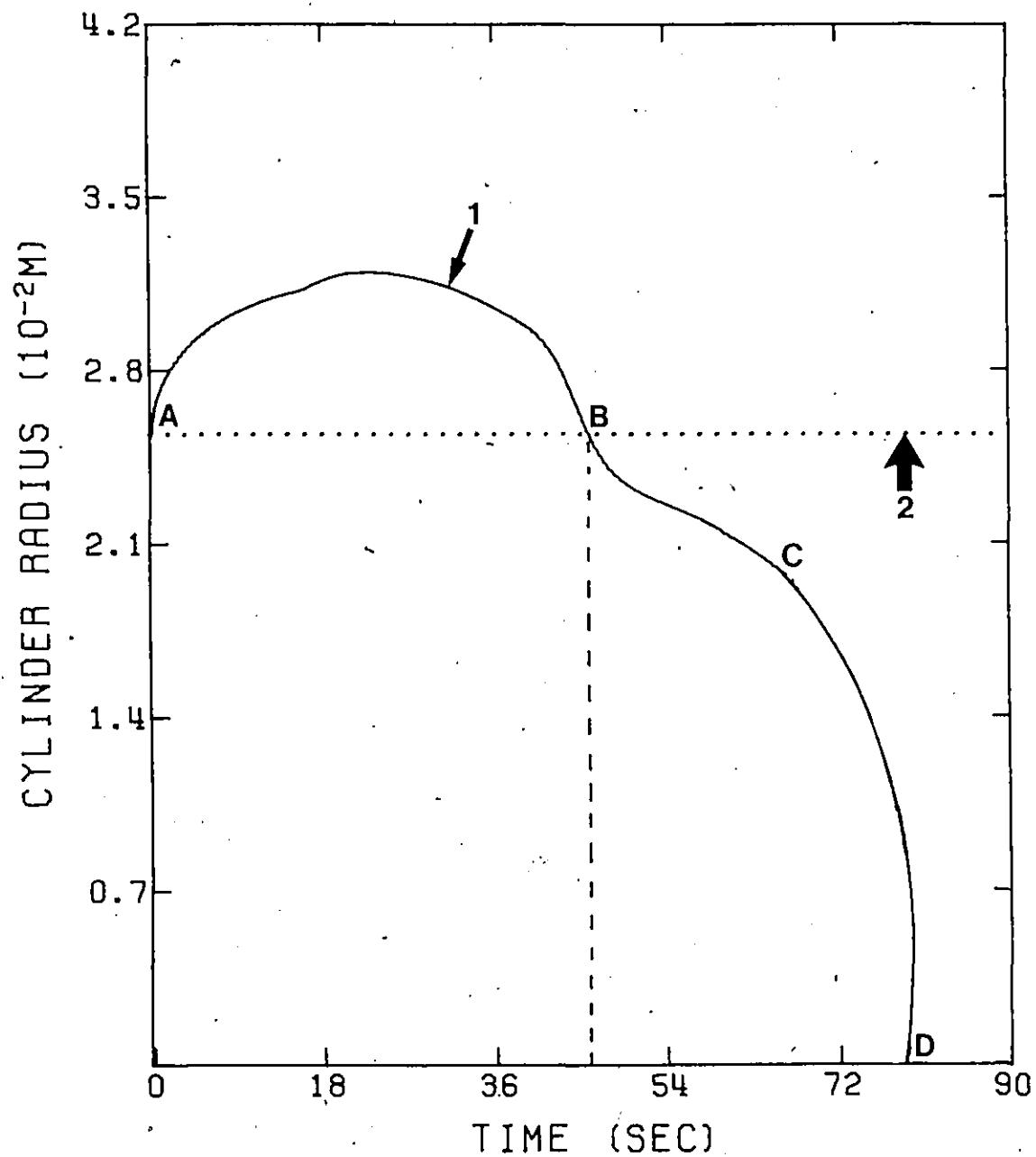


Figure I-4 Predicted cylinder radius versus time for the experimental results presented in Figure I-3:

- 1: Predicted cylinder radius
- 2: Initial cylinder radius
- AB: Steel shell period
- BCD: Free dissolution period
- BC: Dissolution
- CD: Melting

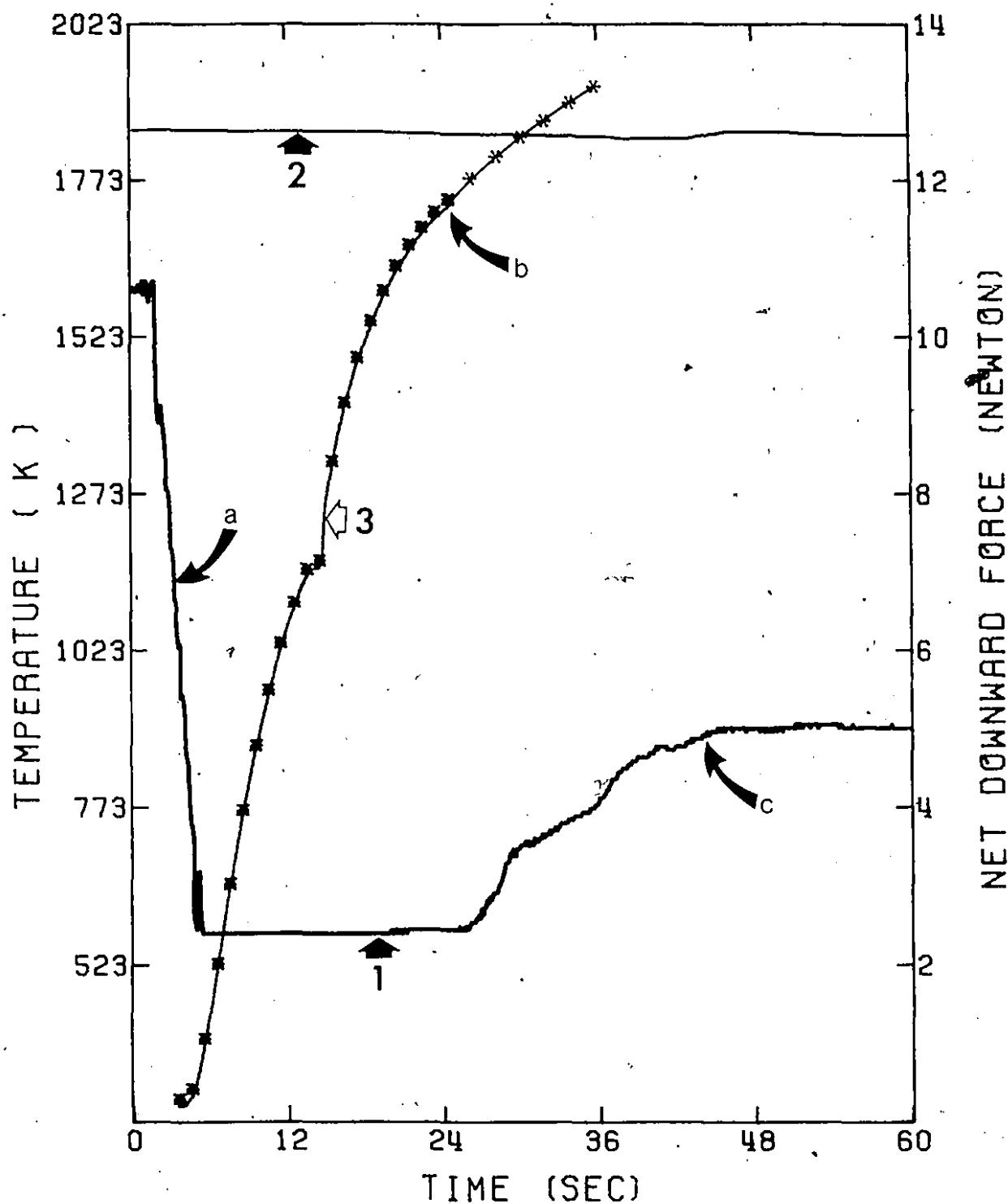


Figure I-5 Results from a titanium dissolution experiment in liquid steel. Cylinder diameter 2.54 cm and 21.0 cm in length:

- 1) Registered net downward force;
- 2) Measured steel bath temperature;
- 3) Measured and predicted temperatures at the cylinder's centerline.

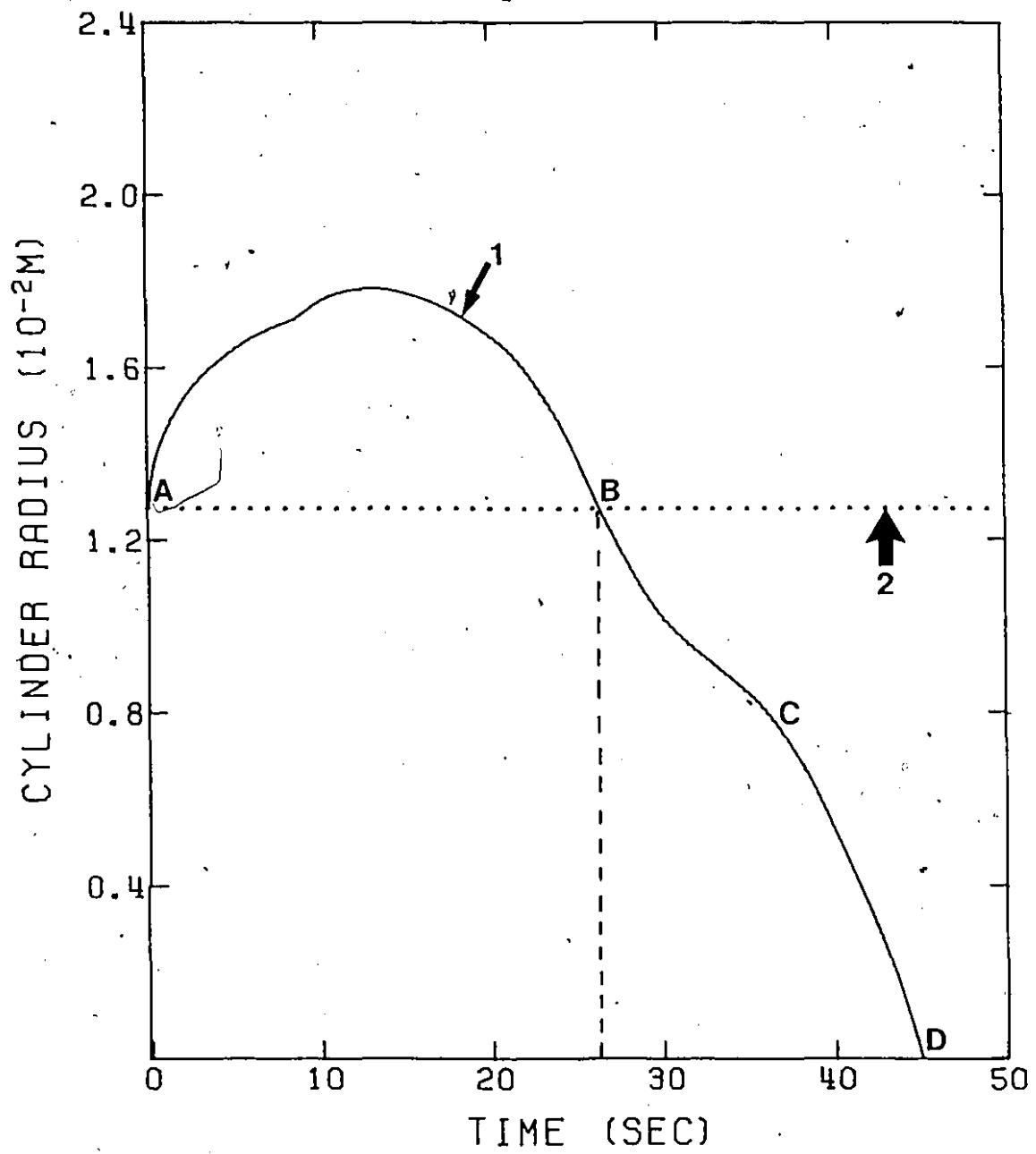


Figure I-6 Predicted cylinder radius versus time for the experimental results presented in Figure I-5:

- 1: Predicted cylinder radius;
- 2: Initial cylinder radius;
- AB: Steel shell period;
- BCD: Free dissolution period;
- BC: Dissolution;
- CD: Melting

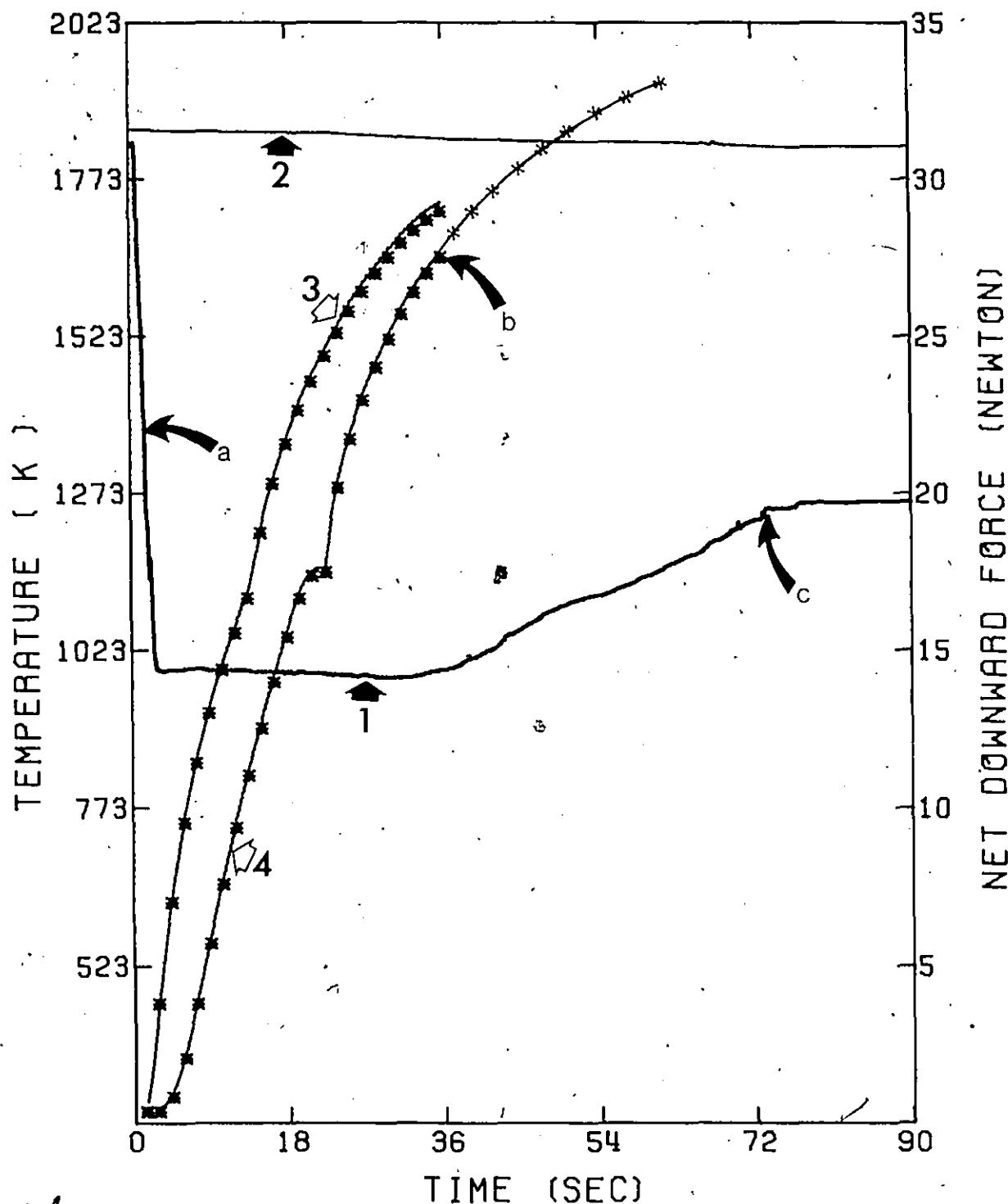


Figure I-7 Results from a titanium dissolution experiment in liquid steel. Cylinder diameter 3.81 cm and 21 cm in length:

- 1) Registered net downward force;
- 2) Measured steel bath temperature;
- 3) Measured and predicted temperatures at a point 1.35 cm from cylinder centerline;
- 4) Measured and predicted temperatures at the cylinder's centerline.

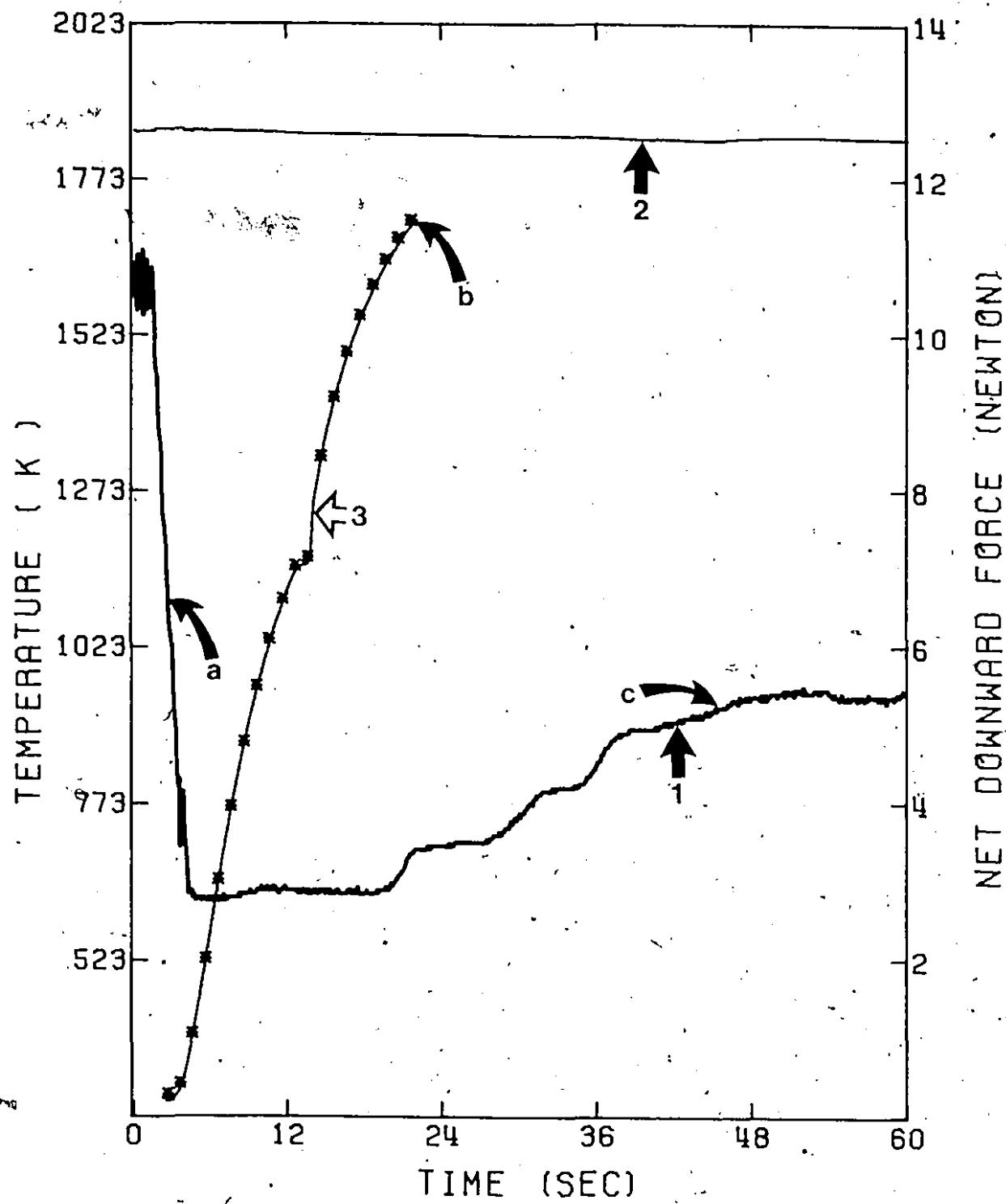


Figure I-8 : Results from a titanium dissolution experiment in liquid steel.
Cylinder diameter 2.54 cm and 20 cm in length:

- 1) Registered net downward force;
- 2) Measured steel bath temperature;
- 3) Measured and predicted temperatures at the cylinder's centerline.

APPENDIX I

PART 2: QUALITATIVE SIMULATION OF TITANIUM
DISSOLUTION IN LIQUID STEEL USING A
CALCOMP 663 DIGITAL PLOTTER

Events which occur in the cross-section of a titanium cylinder perpendicular to the cylinder vertical axis are presented sequentially.

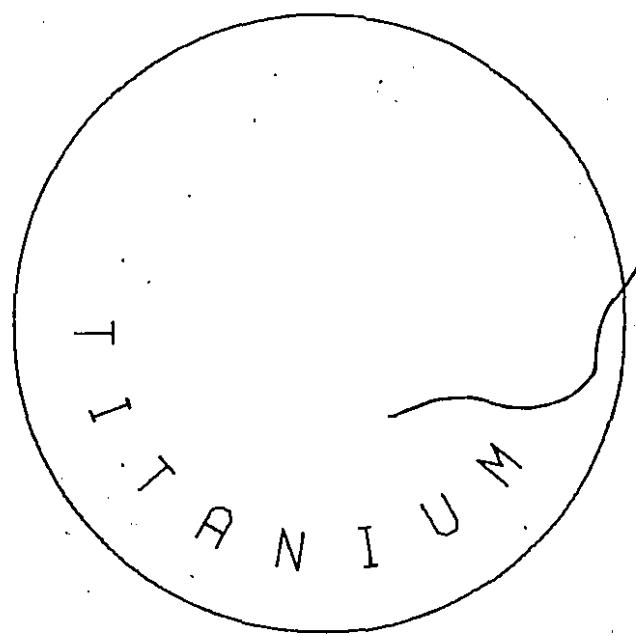


Figure I-9 Time $t = 0$. Prior to immersion.

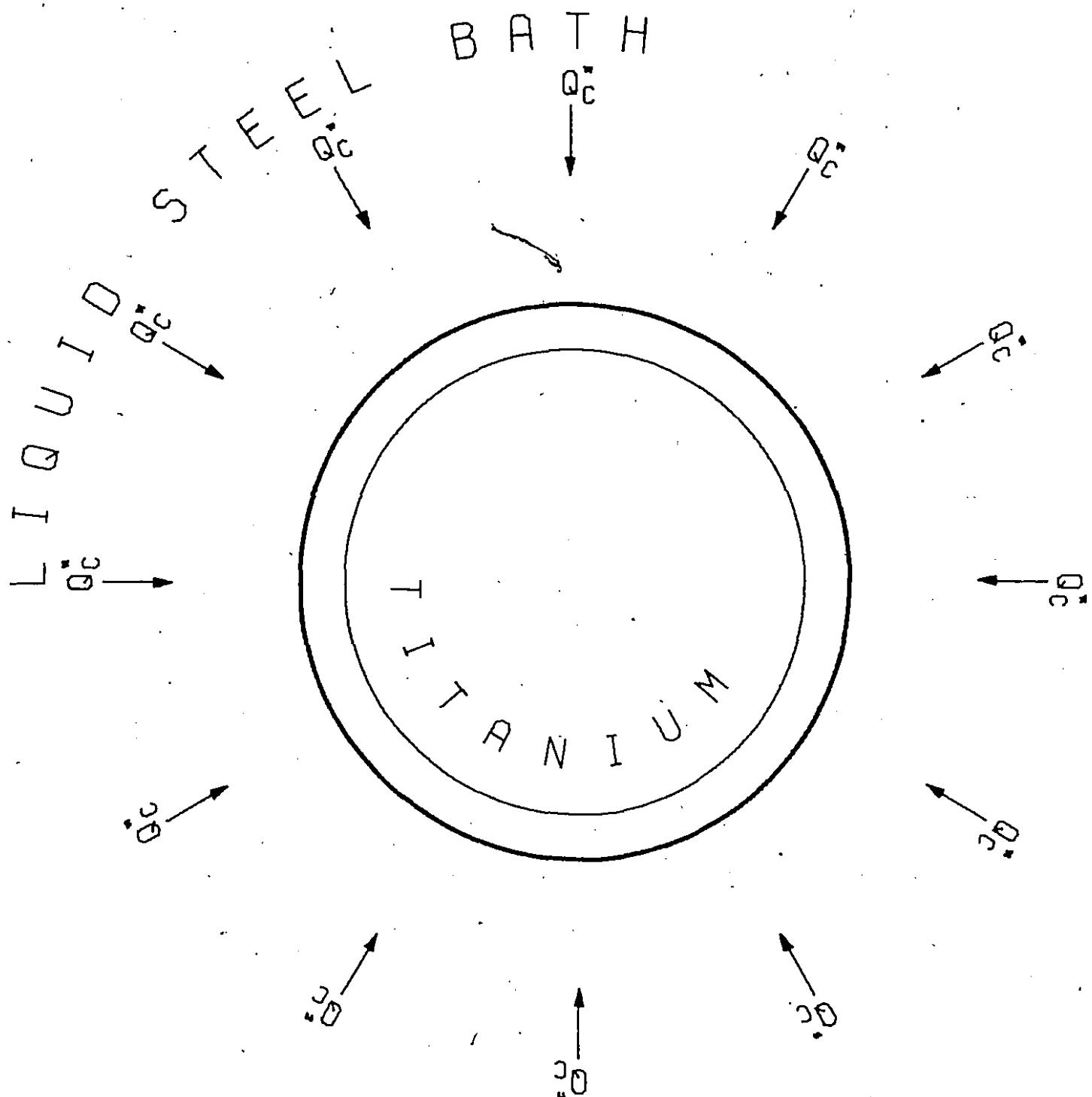


Figure I-10 Time $t > 0$. Immediately after immersion steel freezes around the cylinder.

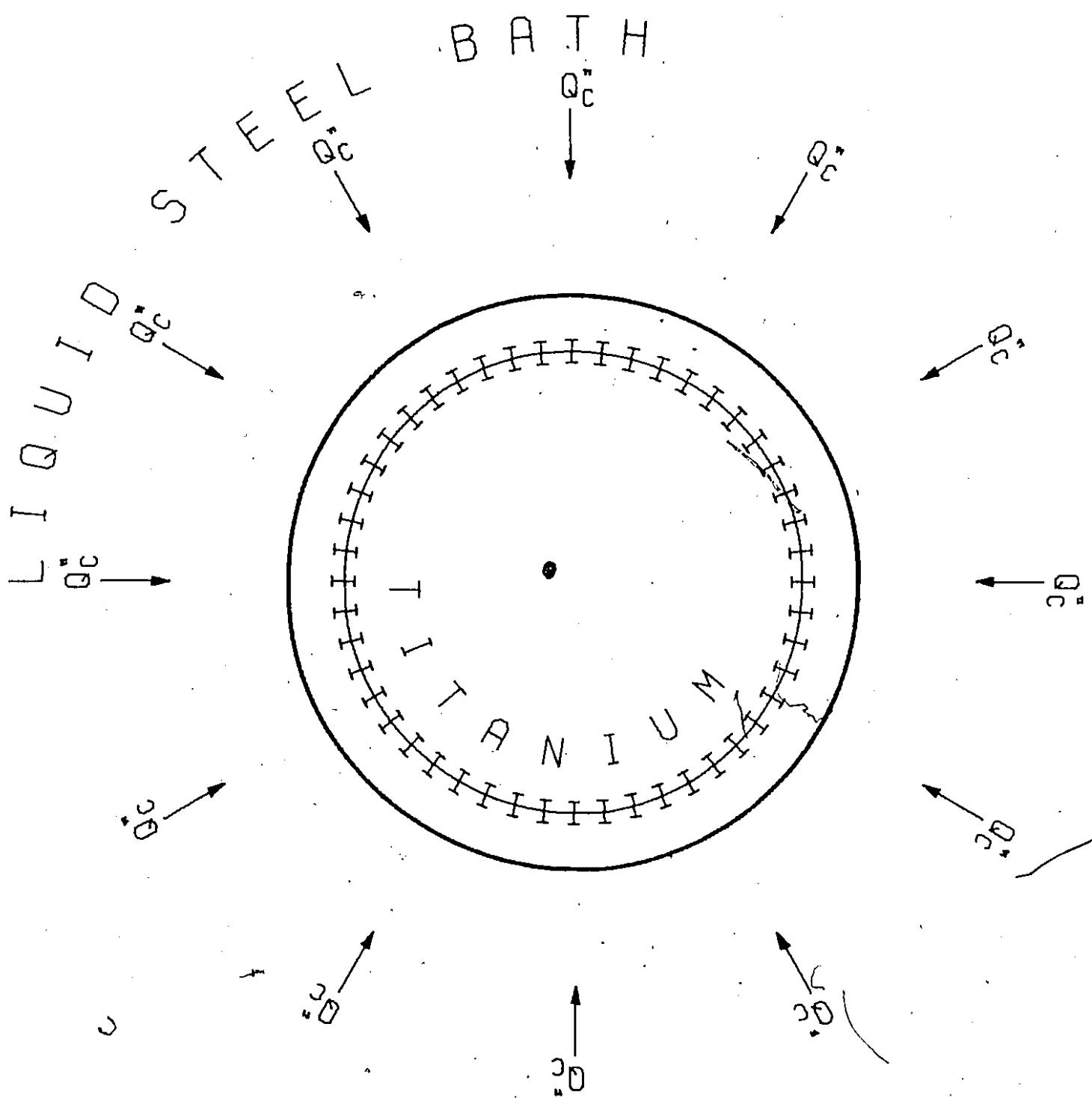


Figure I-11 Reaction starts at the steel shell/titanium interface.

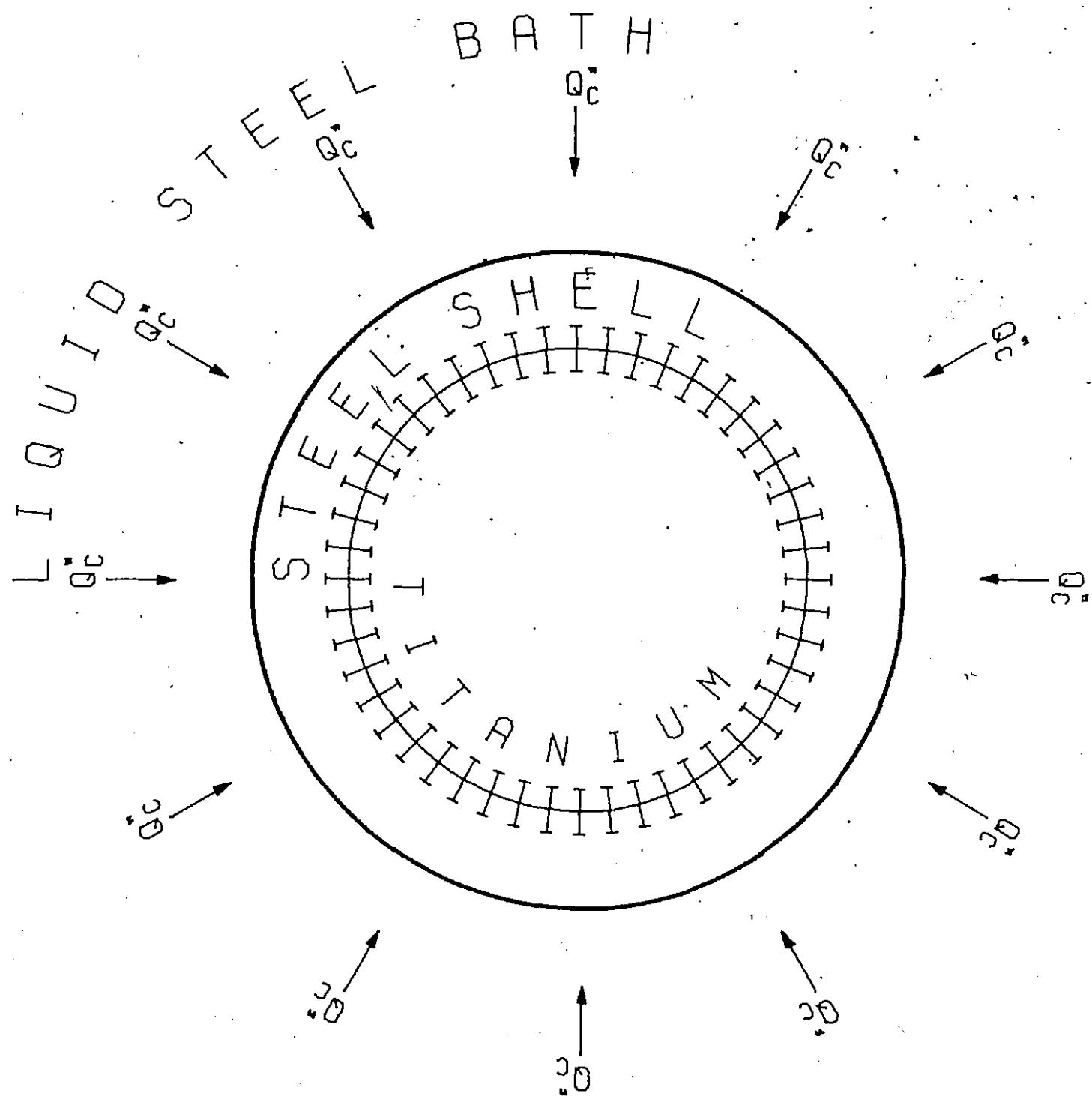


Figure I-12 The thickness of the steel shell and reaction zone increases.

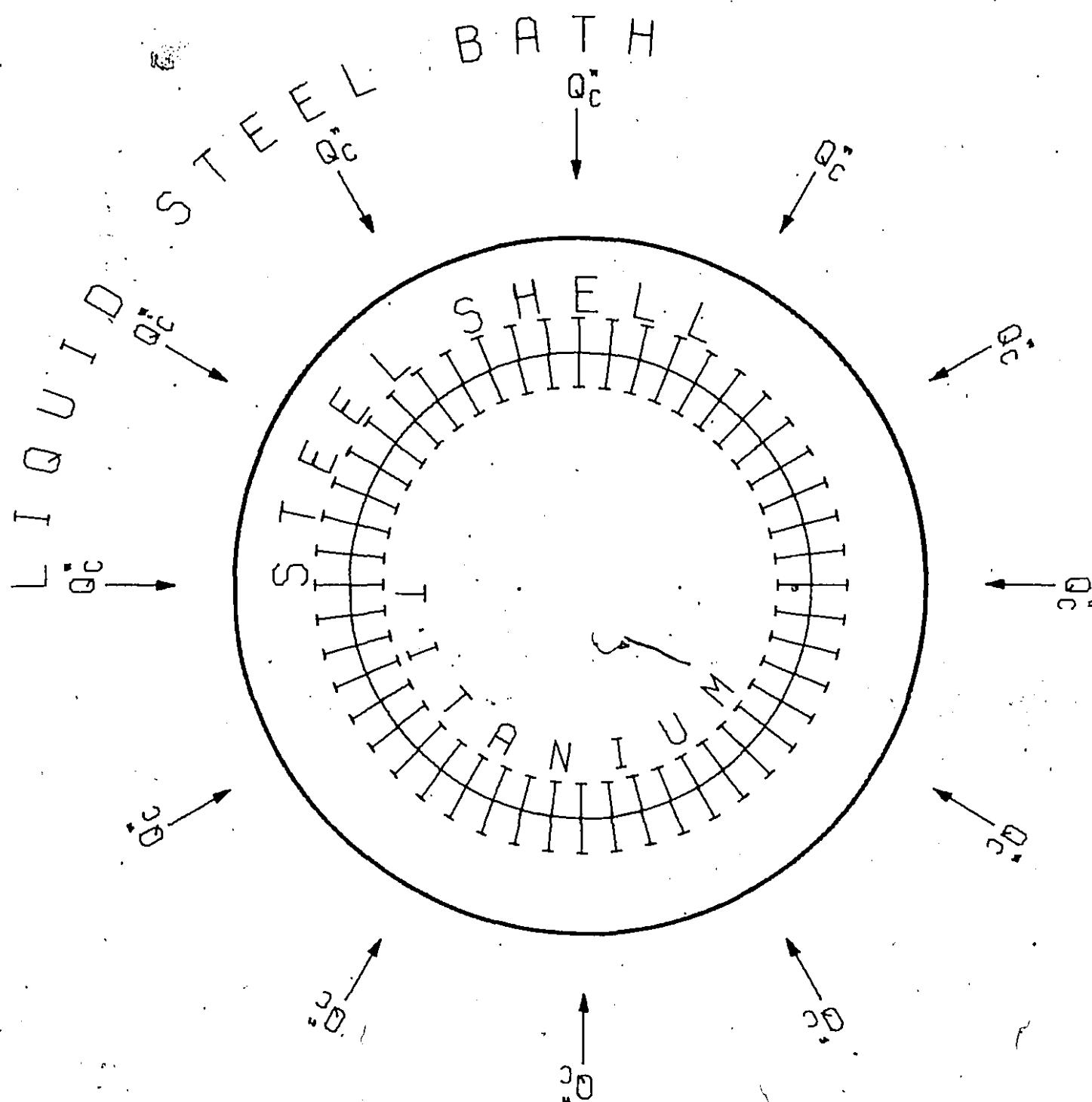


Figure I-13 The thickness of the steel shell and reaction zone continues to increase.

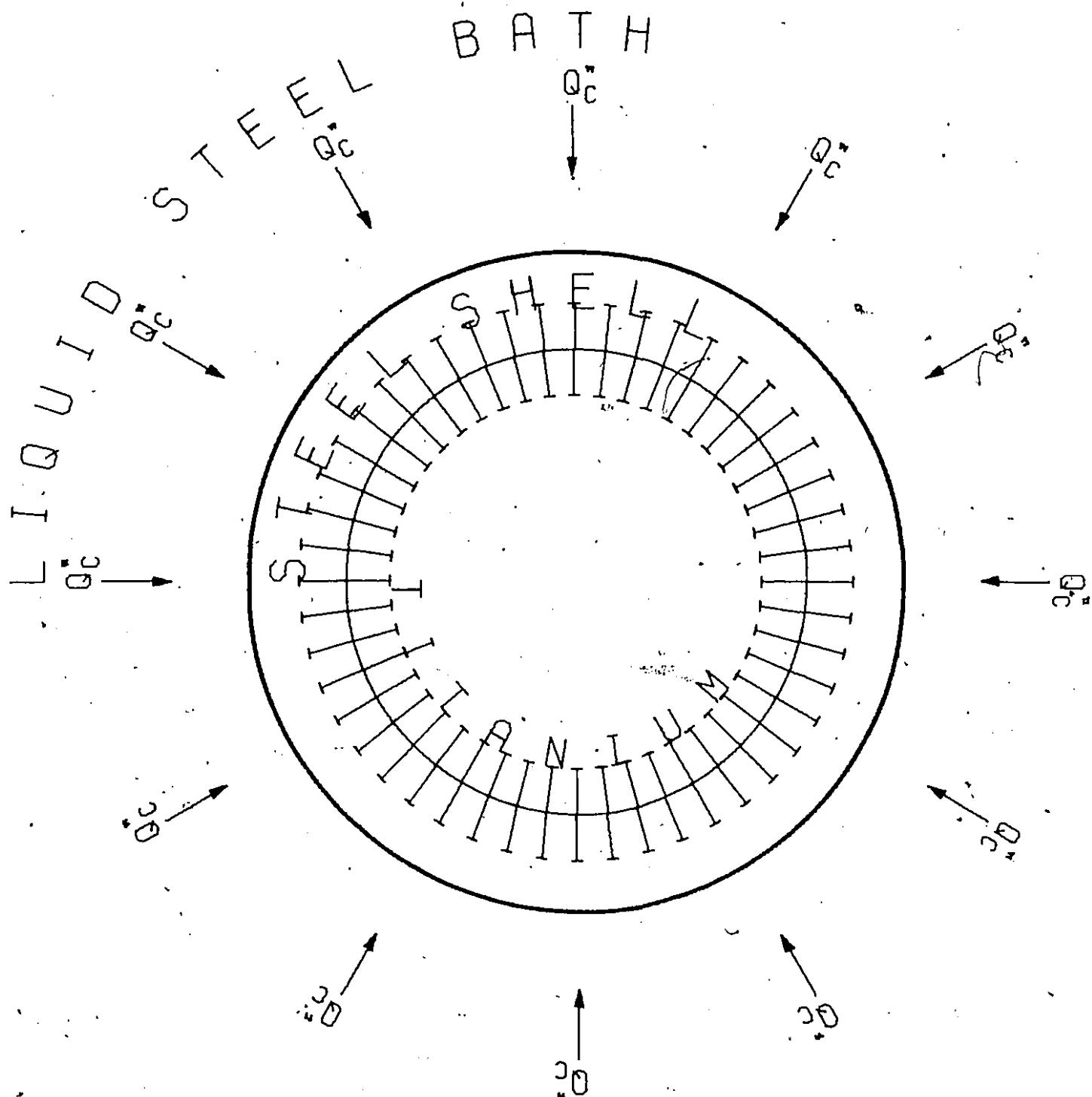


Figure I-14 Steel shell starts melting back. The reaction zone becomes thicker.

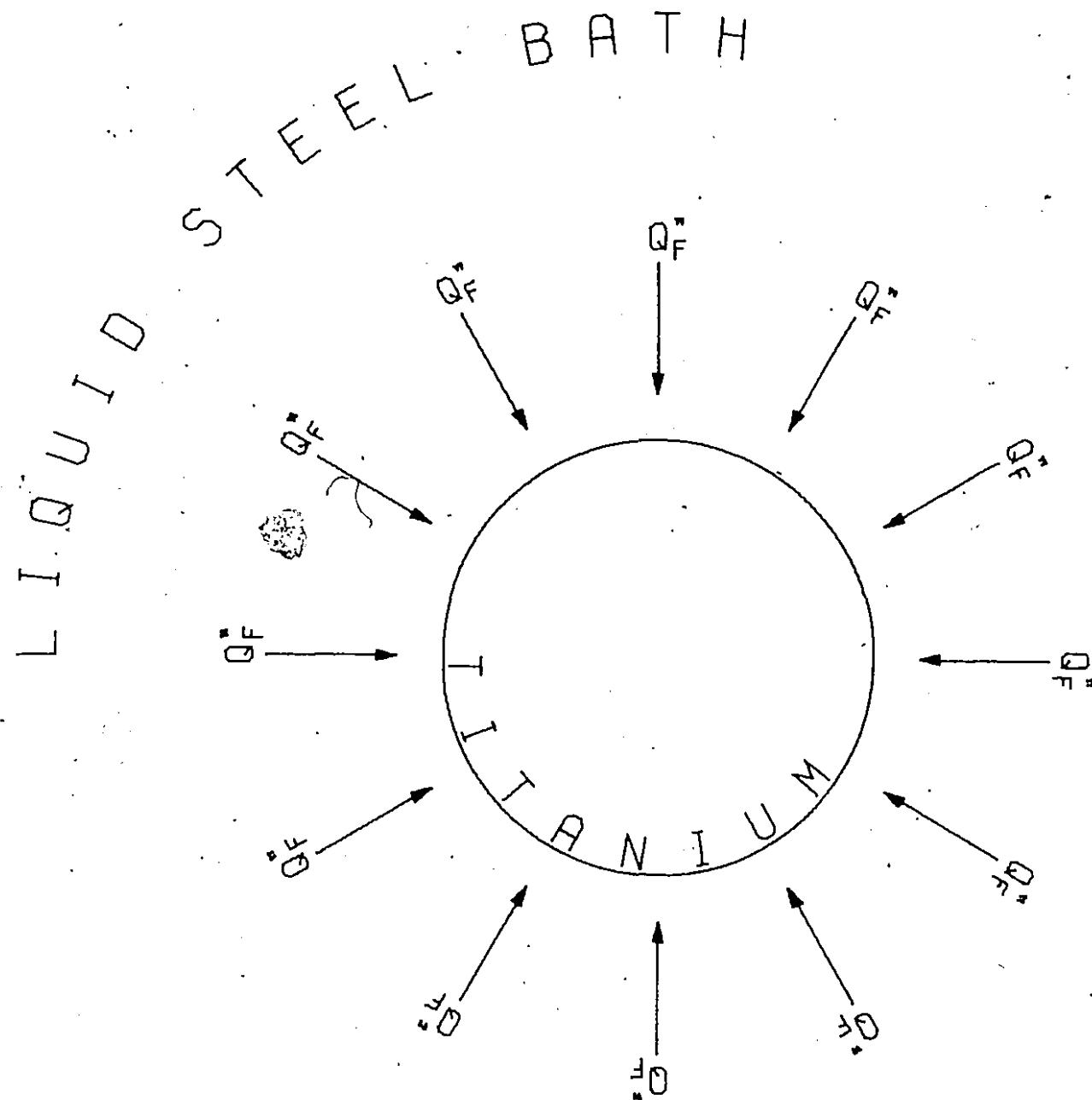


Figure I-15 Steel shell disappears and free dissolution starts.

APPENDIX II

TRANSFORMATION OF PARTIAL DIFFERENTIAL EQUATIONS INTO
THE FINITE DIFFERENCE EQUATIONS

The equation:

$$\frac{a}{r} \frac{\partial}{\partial r} (r \frac{\partial \theta}{\partial r}) = \frac{\partial \theta}{\partial t}$$

can be written as:

$$\frac{\partial^2 \theta}{\partial r^2} + \frac{1}{r} \frac{\partial \theta}{\partial r} = \frac{1}{a} \frac{\partial \theta}{\partial t} \quad (\text{II-1})$$

From Taylor series with proper substitution, the following expressions can be obtained.⁶⁸

$$\left(\frac{d\theta}{dr} \right)_N = \frac{\theta_{N+1} - \theta_N}{\Delta r} - \left(\frac{d^2 \theta}{dr^2} \right)_N \frac{\Delta r}{2!} - \left(\frac{d^3 \theta}{dr^3} \right)_N \frac{(\Delta r)^2}{3!} \dots \quad (\text{II-2})$$

$$\left(\frac{d^2 \theta}{dr^2} \right)_N = \frac{\theta_{N+1} - 2\theta_N + \theta_{N-1}}{(\Delta r)^2} - \left(\frac{d^4 \theta}{dr^4} \right)_N \frac{(\Delta r)^2}{12} \dots \quad (\text{II-3})$$

Similarly,

$$\left(\frac{d\theta}{dt} \right)_N = \frac{\theta_{N+1} - \theta_N}{\Delta t} - \left(\frac{d^2 \theta}{dt^2} \right)_N \frac{\Delta t}{2!} - \left(\frac{d^3 \theta}{dt^3} \right)_N \frac{\Delta t^2}{3!} \dots \quad (\text{II-4})$$

Keeping the first term on the right hand side of equations (II-1), (II-2), (II-3) and truncating the rest the following equations can be obtained:

$$\left(\frac{\partial \theta}{\partial r}\right)_N \approx \frac{\theta_{N+1} - \theta_N}{\Delta r} \quad (II-5)$$

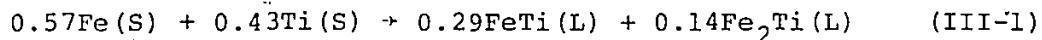
$$\left(\frac{\partial^2 \theta}{\partial r^2}\right)_N \approx \frac{\theta_{N+1} - 2\theta_N + \theta_{N-1}}{(\Delta r)^2} \quad (II-6)$$

$$\left(\frac{\partial \theta}{\partial t}\right)_N \approx \frac{\theta'_N - \theta_N}{\Delta t} \quad (II-7)$$

Substituting equations (II-6) and (II-7) into equation (II-1) we obtain:

$$\frac{\theta_{N+1} - 2\theta_N + \theta_{N-1}}{(\Delta r)^2} + \frac{1}{r} \frac{\partial \theta}{\partial r} = \frac{1}{a} \frac{\theta'_N - \theta_N}{\Delta t} \quad (II-8)$$

The second term on the left hand side of equation (II-8) can be written as:


$$\frac{1}{r} \frac{\partial \theta}{\partial r} \approx \frac{1}{(N-1)\Delta r} \frac{\theta_{N+1} - \theta_{N-1}}{2\Delta r} \quad (II-9)$$

Substituting (II-9) into (II-8) we obtain the equation (4.22).

APPENDIX III

ESTIMATION OF EXOTHERMIC HEATS OF MIXING AND TITANIUM
MASS TRANSFER COEFFICIENT DURING STEEL SHELL PERIOD

At the steel shell-titanium interface, solid steel at a temperature below its melting point is dissolving and mixing with solid titanium. It was found experimentally (section 5.3) that the relative amounts of Fe and Ti in the reaction zone are 60 wt% Fe and 40 wt% Ti. The product we assume is a mixture of FeTi and Fe_2Ti . Consequently, the exothermic dissolution reaction can be represented by:

where

$$-\frac{1}{0.57} \dot{N}_{Fe}'' = \frac{1}{0.43} \dot{N}_{Ti}'' \quad (III-2)$$

This intermixing results in an enthalpy change ΔH_m

$$\Delta H_m = 0.57H_{Fe} + 0.43H_{Ti} - 0.29H_{FeTi} - 0.14H_{Fe_2Ti} \quad (III-3)$$

The study of the above enthalpy change was done using the facility for the analysis of chemical thermodynamics.⁹⁴ The data were taken from reference 61. It was found that:

$$\Delta H_m = -6.97 \text{ kcal/mole of titanium} \quad (III-4)$$

The semi-empirically determined heat flux fitting the dissolution data was found to be in the range of 8 to 11 cal $\text{cm}^{-2} \text{ sec}^{-1}$ (or 3.34×10^5 to $4.60 \times 10^5 \text{ w m}^{-2}$).

Consequently, the molar flux is given by:

$$\dot{N}'' = \frac{\text{Heat flux}}{\Delta H_m}$$

which can range from 1.14×10^{-3} to $1.57 \times 10^{-3} \text{ g mole cm}^{-2} \text{ s}^{-1}$

The mass transfer coefficient can be defined as:

$$k_{\text{Ti}} = \frac{\text{molar flux of Ti}}{\text{net concentration driving force}}$$

where the driving force: $C_1 - C_2$ and

$$C_1: \text{mole of Ti in (Pure Ti)}/\text{cm}^3 = 0.09556$$

$$C_2: \text{mole of Ti in (mixture 40 wt\% Ti)}/\text{cm}^3 = 0.0511$$

Consequently for the system studied, the mass transfer coefficient of titanium varied from 0.025 to $0.035 \text{ cm sec}^{-1}$ or (2.5 to 3.5 m s^{-1}). In a similar way the mass transfer of iron was calculated and found to range from 0.024 to 0.033 cm s^{-1} .

The thickness of the reaction zone could therefore be deduced based on a knowledge of the heat released and the stoichiometry of the reaction (Equation III-1).

APPENDIX IV
LIST OF PROGRAMS

PART 1: PROGRAM KINET WRITTEN IN
MOTOROLA 6809 ASSEMBLER

DEVELOPED BY
STAVROS A. ARGYROPOULOS
McGILL UNIVERSITY

1981

1			NAM	MEASUR		
2	7000		OAC	\$7000		
3	7000 10FF	7474	STS	STACK		
4	7004 1A	10	SEI		SET INTERRUPT MASK BIT	
5	7006 8E	70EB	LDX	*BASIC		
6	7009 BF	BFFF	STX	\$BFFF		
7	700C 7F	7450	ARXH	CLA	V	
8	700F 7F	745E		CLR	0	INITIALIZATION
9	7012 8E	7204		LOX	*IN1	FOR IMMERSION TIME
10	7015 80	F09E		JSR	PDATA1	
11	7018 80	F0BA	START	JSR	INEEE	INSERT A NUMBER
12	7018 81	00		CMPA	*\$00	COMPARE WITH C R
13	7010 27	1A		BEQ	TEL	IF EQUAL GO TO TEL
14	701F 80	30		SUBA	*\$30	CHANGE FROM ASCII
15						TO STRAIGHT BINARY
16	7021 78	7450		ASL	V	MULTIPLY BY TWO
17	7024 F6	7450		LDAB	V	STORE THE RESULT
18	7027 78	7450		ASL	V	MULTIPLY BY FOUR
19	702A 78	7450		ASL	V	MULTIPLY BY EIGHT
20	7020 FB	7450		ADOB	V	ADD THE RESULT
21	7030 34	04 ABE0		ABA		ADD B AND A KEEP
22						THE RESULT AT A
23	7034 B7	7450		STAA	V	STORE RESULT AT V
24	7037 20	0F		BRA	START	GO TO START
25	7039 86	7450	TEL	LOAA	V	
26	703C 87	7461		STAA	ST2	
27	703F 8E	72FA		LOX	*IN2	WRITE IN2
28	7042 80	F09E		JSR	PDATA1	
29	7045 7F	7450		CLR	V	
30	7048 7F	745E		CLR	0	
31	704B 80	F0BA	START1	JSR	INEEE	INSERT A NUMBER
32	704E 81	00		CMPA	*\$00	INITIALIZATION
33						FOR NUMBER OF MEASUREMENTS
34	7050 27	1A		BEQ	TEL1	PER SECOND
35	7052 80	30		SUBA	*\$30	CHANGE FROM ASCII
36						TO STRAIGHT BINARY
37	7054 78	7450		ASL	V	MULTIPLY BY TWO
38	7057 F6	7450		LDAB	V	STORE THE RESULT
39	705A 78	7450		ASL	V	MULTIPLY BY FOUR
40	705D 78	7450		ASL	V	MULTIPLY BY EIGHT
41	7060 FB	7450		ADOB	V	ADD THE RESULT
42	7063 34	04 ABE0		ABA		ADD B AND A KEEP
43						THE RESULT AT A
44	7067 B7	7450		STAA	V	STORE
45	706A 20	0F		BRA	START1	GO TO START1
46						MULTIPLICATION SUBROUTINE
47	706C 4F		TEL1	CLRA		CALCULATING
48						THE LENGTH OF TIME
49	706D 5F			CLAB		TEMPERATURES
50						ARE READ FOR DO LOOP
51	706E 8E	0008		LOX	*\$08	MULTIPLY V
52	7071 58		SHIFT	ASLB		
53	7072 49			ROLA		BY ST2
54	7073 78	7450		ASL	V	THE RESULT
55	7076 24	05		BCC	DECRA	IS, IN THE
56	7078 FB	7461		ADOB	ST2	TWO ACCUMULATORS
57	707B 89	00		ADCA	*0	A AND B
58	707D 30	1F	DECRA	DEX		
59	707F 26	F0		BNE	SHIFT	
60	7081 8E	745F		LOX	*ST1	COUNTER ADDRESS
61	7084 A7	84		STAA	0,X	STORE FIRST BYTE
62	7086 E7	01		STAB	1,X	STORE SECOND BYTE
63	7088 8E	7324		LOX	*LINE	OUTPUT A LINE

64	7088 80	FD9E		JSR	PDATA1	
85	708E 8E	734A		LDX	*IN3	OUTPUT INSERT
66						BATH TEMPERATURE
87	7091 80	FD9E		JSR	PDATA1	
68	7094 80	7250		JSR	DECIMA	
89						JUMP TO SUBROUTINE DECIMA
70	7097 8E	7426		LDX	*CHAN	OUTPUT LINE WRITING
71	709A 80	FD9E		JSR	PDATA1	HOW MANY CHANNELS
72	709D 80	FD8A		JSR	INEEE	INSERT A NUMBER
73	70A0 80	30		SUBA	*\$30	CONVERT TO BINARY
74	70A2 48			ASLA		MULTIPLY BY TWO
75	70A3 88	20		ADDA	*\$20	ADD THE RESULT TO 20
76	70A5 8E	746A		LOX	*CHAR	FIND THE ADDRESS OF CHAR
77	70A8 C6	E0		LDAB	*\$E0	E0 IS THE FIRST BYTE
78						OF CHANNEL ADDRESS
79	70AA E7	84		STAB	0.X	STORE AT CHAR
80	70AC A7	01		STAA	1.X	STORE AT CHAR+1
81	70AE 8E	7328		LDX	*TSEK	OUTPUT A LINE IS THE
82	70B1 80	FD9E		JSR	PDATA1	ABOVE DATA CORRECT
83	70B4 80	FD8A		JSR	INEEE	INSERT A CHARACTER
84	70B7 81	59		CMPA	*'Y	IF YES
85	70B9 27	03		BEQ	TEL0S	GO TO TEL0S
86	70B8 7E	700C		JMP	ARXH	OR GO TO ARXH
87	70B8 8E	7378	TEL0S	LDX	*IN4	OUTPUT A LINE
88	70C1 80	FD9E		JSR	PDATA1	DO YOU WANT TO WAIT
89	70C4 80	FD8A		JSR	INEEE	INSERT A CHARACTER
90	70C7 81	59		CMPA	*'Y	IF YES
91	70C9 27	F9		BEQ	TEL0S1	GO TO TEL0S1
92	70C8 8E	71CB		LOX	*BATH	GET ADDRESS
93						OF THE BATH SCANNING
94	70CE BF	0FC8		STX	\$0FC8	SUBROUTINE
95						AND STORE FOR IRQ INTERRUPTS
96						CONFIGURATION FOR INTERRUPT TIMER
97	7001 8E	E010		LDX	*\$E010	
98	7004 86	FF		LOAA	*\$FF	
99	7006 A7	02		STAA	2,X	
100	7008 86	30		LDAA	*\$30	
101	700A A7	03		STAA	3,X	
102	700C 86	80		LDAA	*\$80	
103	700E A7	02		STAA	2,X	
104	70E0 86	06		LDAA	*\$06	SET INTERRUPTS
105	70E2 A7	02		STAA	2,X	EVERY SECOND
106	70E4 3C	EF	LL	CWAI	*\$EF	
107						CLEAR INTERRUPT MASK BIT
108						AND WAIT FOR INTERRUPT
109	70E6 10FE	7474		LOS	STACK	
110	70EA 39			RTS		
111						RETURN CONTROL TO BASIC
112	70EB 10FF	7474	BASIC	STS	STACK	
113						AT THIS POINT B ACCUMULATOR
114						CARRIES THE RESULT OF THE COMPARISON
115						IF B 0 OR + THEN THE BATH TEMPERATURE
116						IS EQUAL OR
117						LOWER THAN THE SPECIFIED TEMPERATURE
118	70EF F6	745C		LDAB	KAPOU	
119	70F2 50			TSTB		TEST FOR TEMPERATURE
120	70F3 20	EF		BLT	LL	IF NEGATIVE GO TO LL
121	70F5 86	3C		LDAA	*\$3C	
122	70F7 87	E013		STAA	\$E013	DISABLE FURTHER INTERRUPTS
123	70FA 8E	7397		LDX	*INS	WRITE INS
124	70FD 80	FD9E		JSR	PDATA1	
125	7100 108E	0000		LDY	*\$00	
126	7104 8E	7144		LOX	*SCAN	
127	7107 BF	0FC8		STX	\$0FC8	

128	710A BE	745F		LDX	ST1	
129	7100 BD	F0BA	LL1	JSR	INEEE	WAIT LOOP
130			*			TO START SCANNING
131	7110 81	52		CMPA	#'R	IF R THEN START
132	7112 26	F9		BNE	LL1	
133			*			CONFIGURATION FOR SCANNING ROUTINE
134	7114 1A	10		SEI		
135	7116 CC	FF30		LOD	#\$FF30	
136	7119 FD	E012		STO	\$E012	
137	711C 86	80		LDAA	#\$80	
138	711E B7	E012		STAA	\$E012	RESET OSCILLATOR/DIVIDER
139	7121 86	05		LDAA	#\$05	SET UP TIMING-INTERVAL
140			*			EVERY TENTH OF A SECOND
141	7123 B7	E012		STAA	\$E012	
142	7126 3C	EF	SCI	CWAI	#\$EF	
143			*			CLEAR INTERRUPT MASK BIT AND
144			*			WAIT FOR IRQ INTERRUPTS
145	7128 30	1F		LEAX	-1,X	
146			*			DECREASE COUNTER
147	712A 26	FA		BNE	SCI	
148	712C 86	3C		LDAA	#\$3C	
149	712E B7	E013		STAA	\$E013	DISABLE
150			*			FURTHER INTERRUPTS
151	7131 BE	7303		LOD	#END1	
152	7134 BD	F09E		JSR	PDAT1	
153	7137 CC	0FFF		LOD	#\$0FFF	
154			*			ARTIFICIAL DATA
155	7138 ED	80		STD	0,Y+	
156	713C 1E	21		EXG	Y,X	
157	713E BD	F06A		JSR	OUT4HS	WRITE THE LAST ADDRESS
158	7141 7E	C003		JMP	\$C003	
159			*			SCANNING ROUTINE
160	7144 B6	E012	SCAN	LDAA	\$E012	
161			*			NO MORE INTERRUPTS DURING EXECUTION
162			*			OF INTERRUPT SERVICE ROUTINE
163	7147 CE	E020		LOD	#\$E020	A/D BOARD BASE ADDRESS
164	714A BE	0000	SCANN	LOD	#\$00	CLEAR MEMORY LOCATIONS
165	714D BF	746C		STX	VAL	FROM VAL TO
166	7150 BF	746E		STX	VAL+2	
167	7153 BF	7470		STX	VAR+1	VAR+2
168	7156 8E	0080		LOD	#\$0080	
169	7159 A7	C4	SCAN1	STAA	0,U	CHANNEL ADDRESS
170			*			TO BE CONVERTED
171	715B 80	7288		JSR	STATIS	ADDITION SUBROUTINE
172	715E 86	02		LOD	#\$02	
173	7160 4A		DELAY	DECA		
174	7161 26	FD		BNE	DELAY	
175	7163 B6	E020	CC1	LOD	\$E020	CHECK
176			*			IF THE CONVERSION IS COMPLETED
177	7166 85	10		BITA	#\$10	
178	7168 27	F9		BEQ	CC1	
179	716A 86	E020		LOAA	\$E020	GET MOST SIGNIFICANT BYTE
180	716D F6	E021		LDAB	\$E021	GET LEAST SIGNIFICANT BYTE
181	7170 85	08		BITA	#\$08	CHECK IF THERE IS NEGATIVE
182			*			VOLTAGE
183	7172 27	0C		BEQ	SKATA	IF YES
184	7174 8A	FD		DRAA	#\$F0	PUT F IN THE MOST
185			*			SIGNIFICANT BITS
186	7176 B7	7470		STAA	VAR+1	
187	7179 86	FF		LOAA	#\$FF	DO THE SAME
188	717B B7	746F		STAA	VAR	AND STORE AT VAR
189	717E 20	0A		BRA	STAVR	
190	7180 84	0F	SKATA	ANDA	#\$0F	PUT 0 IN THE MOST
191			*			SIGNIFICANT BITS

192	7182	B7	7470		STAA	VAR+1	STORE AT VAR+1
193	7185	86	00		LDAA	#\$00	PUT 00 AND STORE
194	7187	B7	746F		STAA	VAR	AT VAR
195	7188	F7	7471	STAVR	STAB	VAR+2	
196	7180	30	1F		LEAX	-1,X	DECREMENT CONVERSIONS
197				*			COUNTER
198	718F	26	C8		BNE	SCAN1	
199	7191	FB	746E		ADD8	VAL+2	SIMILAR INSTRUCTIONS
200				*			WITH SUBROUTINE STATUS
201	7194	F7	746E		STAB	VAL+2	
202	7197	B6	7470		LDAA	VAR+1	
203	7198	B9	7460		ADCA	VAL+1	SUBROUTINE FOR THE
204	7190	B7	7460		STAA	VAL+1	FINAL ADDITION
205	71A0	B6	746F		LDAA	VAR	
206	71A3	B9	746C		ADCA	VAL	
207	71A6	B7	746C		STAA	VAL	
208				*			THIS SECTION FINDS THE AVERAGE
209				*			OF THE CONVERSIONS
210	71A9	86	07		LDAA	#\$07	
211	71A8	77	746C	DAVID	ASR	VAL	
212	71AE	76	7460		ROR	VAL+1	
213	71B1	76	746E		ROR	VAL+2	
214	71B4	4A			DECA		
215	71B5	26	F4		BNE	DAVID	
216	71B7	FC	7460		LD0	VAL+1	GET THE CONVERSION RESULT
217	71B8	E0	A1		STD	0,Y++	STORE IN THE MEMORY AND
218				*			INCREMENT INDEX REGISTER BY TWO
219	71BC	33	42		LEAU	2,U.	
220	71BE	11B3	746A		CMPU	CHAR	
221				*			CHECK IF ALL CHANNELS HAVE BEEN CONVERTED
222	71C2	27	03		BEQ	RET1	
223	>71C4	7E	714A		JMP	SCANN	CONVERSION
224	71C7	10AF	66		RET1	STY	6,S
225	71CA	38			RTI		RETURN FROM INTERRUPT
226				*			INTERRUPT SERVICE ROUTINE FOR INITIAL
227				*			BATH MEASUREMENTS
228	71CB	B6	E012	BATH	LDAA	\$E012	NO MORE INTERRUPTS DURING
229				*			THE EXECUTION OF INTERRUPT SERVICE ROUTINE
230	71CE	108E	0100		LDY	#\$0100	DO 256 CONVERSIONS
231	71D2	8E	0000		LOX	#\$00	CLEAR MEMORY
232	71D5	BF	746C		STX	VAL	LOCATIONS
233	71D8	BF	746E		STX	VAR+2	VAL
234	71D8	BF	7470		STX	VAR+1	TO VAR+2
235	71DE	B7	E020	BATH1	STAA	\$E020	INITIATE CONVERSION
236	71E1	B0	72B8		JSR	STATIS	JUMP TO STATIS
237	71E4	B6	05		LDAA	#\$05	
238	71E6	4A		DELAY1	DECA		
239	71E7	26	F0		BNE	DELAY1	
240	71E9	B6	E020	BATH2	LDAA	\$E020	
241	71EC	85	10		BITA	#\$10	
242	71EE	27	F9		BEQ	BATH2	
243	71F0	B6	E020		LDAA	\$E020	FIRST BYTE OF CONVERSION
244	71F3	F6	E021		LDAB	\$E021	SECOND BYTE OF CONVERSION
245	71F6	85	08		BITA	#\$08	LOGICAL AND FOR + OR -
246	71F8	27	0C		BEQ	BATH3	IF + GO TO BATH3
247	71FA	8A	F0		ORAA	#\$FD	PUT F FOR TWO'S COMPLEMENT
248	71FC	B7	7470		STAA	VAR+1	STORE AT VAR+1
249	71FF	B6	FF		LDAA	#\$FF	LOAD FF
250	7201	B7	746F		STAA	VAR	STORE FOR TWO'S COMPLEMENT
251	7204	20	0A		BRA	BATH4	GO TO BATH4
252	7206	84	0F	BATH3	ANDA	#\$0F	PUT 0 FOR TWO'S COMPLEMENT
253	7208	B7	7470		STAA	VAR+1	STORE AT VAR+1
254	7208	B6	00		LDAA	#\$00	
255	7200	B7	746F		STAA	VAR	STORE 00 AT VAR

256 7210 F7 7471 BATH4 STAB VAR+2
 257 7213 31 3F LEAY -1,Y LOAD CONVERSION'S NUMBER
 258 7215 27 03 BEQ NEXT IF 0 GO TO NEXT
 259 >7217 7E 710E JMP BATH1 JUMP TO BATH1
 260 * CONVERSION'S AVERAGE
 261 721A FB 746E NEXT ADDB VAL+2
 262 721D F7 746E STAB VAL+2
 263 7220 B6 7470 LDAA VAR+1
 264 7223 B9 7460 A0CA VAL+1
 265 7226 B7 7460 STAA VAL+1
 266 7229 B6 746F LDAA VAR
 267 722C B9 746C A0CA VAL
 268 722F B7 746C STAA VAL
 269 * AT THIS POINT VAL AND VAL+1 HAVE
 270 * THE CONVERSION'S AVERAGE
 271 7232 BE 746C LDX VAL LOAD CONVERSION AVERAGE AND
 272 7235 BF BFF9 STX \$BFF9 MOVE CONVERSION RESULT
 273 * TO BASIC
 274 7238 1E 10 EXG X,D
 275 723A 10B3 7462 CMPD SRCE1
 276 723E 2F 04 BLE DONE
 277 7240 C6 FF LOAB =>FF
 278 7242 20 02 BRA OUT
 279 7244 C6 01 DONE LOAB =>01
 280 7246 F7 745C OUT STAB KAPOU
 281 7249 8E 7324 LDX LINE
 282 724C 80 FD9E JSR PDATA1
 283 724F 38 RTI RETURN FROM INTERRUPT
 284 * THE SUBROUTINE DECIMA ACCEPTS
 285 * DATA FOR THE
 286 * BATH THERMOCOUPLE IN DECIMAL
 287 * FORM AND
 288 * MODIFIES IT IN HEXADECIMAL FORM
 289 * THIS DATA IS TREATED AS ADDRESS
 290 * AND THE CONTENT OF THIS
 291 * ADDRESS IS THE HEXADECIMAL FORM OF THE
 292 * BATH THERMOCOUPLE WHICH IS COMPARED WITH
 293 * THE MEASURED BATH TEMPERATURE
 294 7250 7F 7456 DECIMA CLR VV
 295 7253 7F 7457 CLR VV+1
 296 7256 80 FD8A STARTD JSR INEEE
 297 7259 81 00 CMPA =>00 IF THIS IS CR
 298 725B 27 48 BEQ FIN 00 TO FIN
 299 725D 80 30 SUBA =>30 CHANGE FROM ASCII
 300 725F B7 745C STAR KAPOU
 301 7262 78 7457 ASL VV+1
 302 7265 79 7456 ROL VV
 303 7268 BE 7456 LDX VV
 304 726B BF 7458 STX ALPHA
 305 726E 78 7457 ASL VV+1
 306 7271 79 7456 ROL VV
 307 7274 78 7457 ASL VV+1
 308 7277 79 7456 ROL VV
 309 727A BE 7456 LDX VV
 310 727D BF 745A STX BETA
 311 7280 B6 7459 LDAA ALPHA+1
 312 7283 F6 7458 LDAB ALPHA
 313 7286 B8 7458 A0DA BETA+1
 314 7289 F9 745A A0CB BETA
 315 728C B7 7457 STAA VV+1
 316 728F F7 7456 STAB VV
 317 7292 C6 00 LOAB =>00
 318 7294 B6 745C LDAA KAPOU
 319 7297 BB 7457 A0DA VV+1

320	729A F9	7456		ADCB	VV	
321	729D B7	7457		STAR	VV+1	
322	72A0 F7	7456		STAB	VV	
323	72A3 20	81		BRA	STARTO	
324	72A5 B6	7456	FIN	LDAA	VV	
325	72A8 8A	70		ORAA	#\$70	PUT 7 AT THE HIGH ORDER BITS
326				STAA	VV	
327	72A8 B7	7456		LDX	VV	VV CONTAINS THE ADDRESS OF THE TABLE
328	72A0 BE	7456		STO	SRCE1	SRCE1 CONTAINS THE
329				CONTENT OF THE		
330	72B0 A6	84		LOAA	0,X	GET THE HIGH ORDER BYTE
331	72B2 E6	01		LOAB	1,X	GET THE LOW ORDER BYTE
332	72B4 F0	7462		STO	SRCE1	
333				LOAB	VAR+2	
334				ADDB	VAL+2	
335	72B7 39			STAB	VAL+2	
336				LDAA	VAR+1	
337				ADCA	VAL+1	
338				STAA	VAL+1	
339	72B8 F6	7471		STATIS	LOAB	VAR+2
340	72B8 FB	746E			ADDB	VAL+2
341	72B8 F7	746E			STAB	VAL+2
342	72C1 B6	7470			LDAA	VAR+1
343	72C4 B9	7460			ADCA	VAL+1
344	72C7 B7	7460			STAA	VAL+1
345	72CA B6	746F			LDAA	VAR
346	72CD B9	746C			ADCA	VAL
347	72D0 B7	746C			STAA	VAL
348	72D3 39				RTS	
349	72D4 00 0A		IN1		FCB	\$00,\$0A
350	72D6 49 4E 53 45				FCC	/INSERT IMMERSION TIME/
	72D8 52 54 20 49					
	72D8 40 40 45 52					
	72E2 53 49 4F 4E					
	72E6 20 54 49 4D					
	72EA 45					
351	72E8 20 49 4E 20				FCC	/ IN SECONDS/
	72EF 53 45 43 4F					
	72F3 4E 44 53					
352	72F6 00 0A 0A 04				FCB	\$00,\$0A,\$0A,\$04
353	72FA 00 0A		IN2		FCB	\$00,\$0A
354	72FC 49 4E 53 45				FCC	/INSERT NUMBER OF /
	7300 52 54 20 4E					
	7304 55 40 42 45					
	7308 52 20 4F 46					
	730C 20					
355	7300 40 45 41 53				FCB	/MEASUREMENTS PER SECOND/
	7311 55 52 45 40					
	7315 45 4E 54 53					
	7319 20 50 45 52					
	731D 20 53 45 43					
	7321 4F 4E 44					
356	7324 00 0A 0A 04		LINE		FCB	\$00,\$0A,\$0A,\$04
357	7328 00 0A 0A		TSEK		FCB	\$00,\$0A,\$0A
358	7328 49 53 20 54				FCC	/IS THE ABOVE DATA CORRECT ?/
	732F 48 45 20 41					
	7333 42 4F 56 45					
	7337 20 44 41 54					
	733B 41 20 43 4F					
	733F 52 52 45 43					
	7343 54 20 3F					
359	7346 00 0A 0A 04				FCB	\$00,\$0A,\$0A,\$04
360	734A 00 0A 0A		IN3		FCB	\$00,\$0A,\$0A
361	734D 49 4E 53 45				FCC	/INSERT BATH TEMPERATURE/

7351	52	54	20	42				
7355	41	54	48	20				
7359	54	45	40	50				
7350	45	52	41	54				
7361	55	52	45					
362	7364	20	49	4E	20	FCC	/ IN DEGREES CELSIUS/	
	7368	44	45	47	52			
	736C	45	45	53	20			
	7370	43	45	4C	53			
	7374	49	55	53				
363	7377	00	0A	0A	04	FCB	\$00,\$0A,\$0A,\$04	
364	7378	00	0A	0A		IN4	FCB	\$00,\$0A,\$0A
365	737E	44	4F	20	59	FCC	/00 YOU WISH TO WAIT ?/	
	7382	4F	55	20	57			
	7386	49	53	48	20			
	738A	54	4F	20	57			
	738E	41	49	54	20			
	7392	3F						
366	7393	00	0A	0A	04	FCB	\$00,\$0A,\$0A,\$04	
367	FD8A	INEEE				EQU	\$F08A	
368	FD9E	P0ATA1				EQU	\$F09E	
369	FD0F	0UTEE1				EQU	\$F00F	
370	FD6A	0UT4HS				EQU	\$F06A	
371	FD2B	BADDR				EQU	\$F02B	
372	7397	00	0A	07	0A	INS	FCB	\$00,\$0A,\$07,\$0A
373	739B	54	49	40	45	FCC	/TIME OF IMMERSION NOW/	
	739F	20	4F	46	20			
	73A3	49	40	40	45			
	73A7	52	53	49	4F			
	73AB	4E	20	4E	4F			
	73AF	57						
374	73B0	00	0A	07		FCB	\$00,\$0A,\$07	
375	73B3	57	48	45	4E	FCC	/WHEN YOU ARE READY , PRESS R/	
	73B7	20	59	4F	55			
	73BB	20	41	52	45			
	73BF	20	52	45	41			
	73C3	44	59	20	2C			
	73C7	20	50	52	45			
	73CB	53	53	20	20			
	73CF	52						
376	7300	00	0A	04		FCB	\$00,\$0A,\$04	
377	7303	00	0A			FCB	\$00,\$0A	
378	7305	45	4E	44	20	FCC	/END OF SCANNING/	
	7309	4F	46	20	53			
	730D	43	41	4E	4E			
	73E1	49	4E	47				
379	73E4	00	0A	00	0A	FCB	\$00,\$0A,\$00,\$0A,\$0A	
	73E8	0A						
380	73E9	46	49	52	53	FCC	/FIRST DATA WAS STORED AT 0000/	
	73E0	54	20	44	41			
	73F1	54	41	20	57			
	73F5	41	53	20	53			
	73F9	54	4F	52	45			
	73FD	44	20	41	54			
	7401	20	20	30	30			
	7405	30	30					
381	7407	00	0A	00	0A	FCB	\$00,\$0A,\$00,\$0A	
382	740B	4C	41	53	54	FCC	/LAST DATA WAS STORED AT /	
	740F	20	44	41	54			
	7413	41	20	57	41			
	7417	53	20	53	54			
	741B	4F	52	45	44			
	741F	20	41	54	20			
	7423	20	20					

383	7425 04	CHAN	FCB	\$04
384	7426 00 0A		FCB	\$00, \$0A
385	7428 48 4F 57 20		FCC	/HOW MANY CHANNELS ARE GOING /
	742C 40 41 4E 59			
	7430 20 43 48 41			
	7434 4E 4E 45 4C			
	7438 53 20 41 52			
	743C 45 20 47 4F			
	7440 49 4E 47 20			
386	7444 54 4F 20 42		FCC	/TO BE SCANNED/
	7448 45 20 53 43			
	744C 41 4E 4E 45			
	7450 44			
387	7451 20 3F		FCC	/ ? /
388	7453 00 0A 04		FCB	\$00, \$0A, \$04
389	7456	VV	RMB	2
390	7458	ALPHA	RMB	2
391	745A	BETA	RMB	2
392	745C	KAPOU	RMB	1
393	7450	V	RMB	1
394	745E	O	RMB	1
395	745F	ST1	RMB	2
396	7461	ST2	RMB	1
397	7462	SRCE1	RMB	2
398	7464	STORE	RMB	2
399	7466	SRCE	RMB	2
400	7468	DEST	RMB	2
401	746A	CHAR1	RMB	1
402	746B	CHAR2	RMB	1
403	746C	VAL	RMB	3
404	746F	VAR	RMB	3
405	7472	VVV	RMB	2
406	7474	STACK	RMB	2
407		* TABLE FOR COMPARISONS		
408	750C	ORG	\$750C	
409	750C 05 95	FCB	\$05, \$95	
410	75E1	ORG	\$75E1	
411	75E1 05 9A	FCB	\$05, \$9A	
412	75E6	ORG	\$75E6	
413	75E6 05 A0	FCB	\$05, \$A0	
414	75EB	ORG	\$75EB	
415	75EB 05 A6	FCB	\$05, \$A6	
416	75F0	ORG	\$75F0	
417	75F0 05 AC	FCB	\$05, \$AC	
418	75FS	ORG	\$75FS	
419	75FS 05 B1	FCB	\$05, \$B1	
420	75FA	ORG	\$75FA	
421	75FA 05 B7	FCB	\$05, \$B7	
422	75FF	ORG	\$75FF	
423	75FF 05 BD	FCB	\$05, \$BD	
424	7604	ORG	\$7604	
425	7604 05 C3	FCB	\$05, \$C3	
426	7609	ORG	\$7609	
427	7609 05 C8	FCB	\$05, \$C8	
428	760E	ORG	\$760E	
429	760E 05 CE	FCB	\$05, \$CE	
430	7613	ORG	\$7613	
431	7613 05 D4	FCB	\$05, \$D4	
432	7618	ORG	\$7618	
433	7618 05 D9	FCB	\$05, \$D9	
434	761D	ORG	\$781D	
435	761D 05 DF	FCB	\$05, \$DF	
436	7622	ORG	\$7622	
437	7622 05 E5	FCB	\$05, \$E5	

438	7627		ORG	\$7627
439	7627	05 EB	FCB	\$05,\$EB
440	762C		ORG	\$762C
441	762C	05 F0	FCB	\$05,\$F0
442	7631		ORG	\$7631
443	7631	05 F6	FCB	\$05,\$F6
444	7636		ORG	\$7636
445	7636	05 FC	FCB	\$05,\$FC
446	763B		ORG	\$763B
447	763B	06 01	FCB	\$06,\$01
448	7640		ORG	\$7640
449	7640	06 07	FCB	\$06,\$07
450	7645		ORG	\$7645
451	7645	06 00	FCB	\$06,\$00
452	764A		ORG	\$764A
453	764A	06 12	FCB	\$06,\$12
454	764F		ORG	\$764F
455	764F	06 18	FCB	\$06,\$18
456	7654		ORG	\$7654
457	7654	06 1E	FCB	\$06,\$1E
458	7659		ORG	\$7659
459	7659	06 23	FCB	\$06,\$23
460	765E		ORG	\$765E
461	765E	06 29	FCB	\$06,\$29
462	7663		ORG	\$7663
463	7663	06 2F	FCB	\$06,\$2F
464	7668		ORG	\$7668
465	7668	06 34	FCB	\$06,\$34
466	766D		ORG	\$766D
467	766D	06 3A	FCB	\$06,\$3A
468	7672		ORG	\$7672
469	7672	06 40	FCB	\$06,\$40
470	7677		ORG	\$7677
471	7677	06 45	FCB	\$06,\$45
472	767C		ORG	\$767C
473	767C	06 4B	FCB	\$06,\$4B
474	7681		ORG	\$7681
475	7681	06 50	FCB	\$06,\$50
476	7686		ORG	\$7686
477	7686	06 56	FCB	\$06,\$56
478			END	

0 ERROR(S) DETECTED

SYMBOL TABLE:

ALPHA	7458	ARXH	700C	BRODR	F028	BASIC	70EB	BATH	71CB
BATH1	710E	BATH2	71E9	BATH3	7206	BATH4	7210	BETA	745A
CCI	7163	CHA1	746A	CHA2	746B	CHAN	7426	O	745E
DAV10	71AB	DECIMA	7250	DECRA	7070	DELAY	7160	DELAY1	71E6
DEST	7468	DONE	7244	END1	7303	FIN	72A5	INI	7204
IN2	72FA	IN3	734A	IN4	737B	INS	7397	INEEE	F0BA
KAPOU	745C	LINE	7324	LL	70E4	LL1	7100	NEXT	721A
OUT	7246	OUT4HS	F06A	OUTEE1	F00F	POATA1	F09E	RET1	71C7
SCI	7126	SCAN	7144	SCAN1	7158	SCANN	714A	SHIFT	7071
SKATA	7180	SRCE	7466	SRCE1	7462	ST1	745F	ST2	7461
STACK	7474	START	7018	START1	7048	START0	7256	STATIS	7288
STAVR	718A	STORE	7464	TEL	7039	TEL1	706C	TELOS	708E
TEL0S1	70C4	TSEK	7328	V	7450	VAL	746C	VAR	746F
VV	7456	VVV	7472						

APPENDIX IV
LIST OF PROGRAMS

PART 2: PROGRAM TEMP WRITTEN
IN BASIC

PROGRAM TEMP RUNS
SIMULTANEOUSLY WITH
PROGRAM KINET

DEVELOPED BY
STAVROS A. ARGYROPOULOS
McGILL UNIVERSITY

1981

```
10 LET M=50000,/4096.
20 LET A0=3.4238682E+2
30 A1=6.1485536E-2
40 A2=2.7924100E-7
50 OP0KE HEX ("BFFB"),HEX ("7000")
60 M1=M*USA (0)
70 M2=M1*M1
80 TE=A0+A1*M1+A2*M2
90 PAINT USING "****,*",TE
100 M1=M*USA (0)
110 M2=M1*M1
120 TE=A0+A1*M1+A2*M2
130 PRINT USING "****,*",TE
140 GO TO 100
150 END
```

APPENDIX IV
LIST OF PROGRAMS

PART 3: PROGRAM OFFSET WRITTEN
IN MOTOROLA 6809
ASSEMBLER

PROGRAM OFFSET IS USED
FOR A/D CALIBRATION

DEVELOPED BY
STAVROS A. ARGYROPOULOS
McGILL UNIVERSITY
1981

1					NAM	OFFSET	
2	8000				ORG	\$8000	
3	8000	108E	F800		LDY	*\$F800	
4	8004	86	64	START	LDAA	*\$64	
5	8006	87	B1B0		STAA	COUNT	
6	8009	4F			CLRA		
7	800A	7F	B1AF		CLR	BHTA	
8	8000	87	03E0	CONV	STAA	\$03E0	
9	8010	8E	801A		LDX	*\$801A	
10	8013	B0	E2C5		JSR	DELAY1	
11	8016	86	03E0	CC1	LDAA	\$03E0	
12	8019	85	10		BITA	*\$10	
13	801B	27	F9		BEQ	CC1	
14	8010	86	03E0		LDAA	\$03E0	
15	8020	F6	03E1		LDAB	\$03E1	
16	8023	85	08		BITA	*\$08	
17	8025	27	04		BEQ	SKATA	
18	8027	8A	F0		ORAA	*\$F0	
19	8029	20	02		BRA	STAVR	
20	8028	84	0F	SKATA	ANDA	*\$0F	
21	8020	F0	B1B1		STO	STORE	
22	8030	108C	B1B1		CMPY	STORE	
23	8034	28	03		BNE	AA	
24	8036	7C	B1AF		INC	BHTA	
25	8039	7A	B1B0	AA	DEC	COUNT	
26	803C	26	CF		BNE	CONV	
27	803E	B6	B1AF		LDAA	BHTA	
28	8041	87	B1B3		STAA	STAB	
29	8044	8E	B1B3		LDX	*STAB	
30	8047	B0	E0BF		JSR	OUT2H	
31	804A	8E	B1B5		LOX	*LINE	
32	8040	B0	E07E		JSR	POATA1	
33	8050	B0	E1AC		JSR	INEEE	
34	8053	81	48		CMPA	*'F	
35	8055	27	09		BEQ	TEL0S	
36	8057	8E	B1B5		LDX	*LINE	
37	805A	B0	E07E		JSR	POATA1	
38	>8050	7E	8004		JMP	START	
39	8060	3F		TEL0S	SWI		
40	B1AF				ORG	\$B1AF	
41	B1AF			BHTA	RMB	1	
42	B1B0			COUNT	RMB	1	
43	B1B1			STORE	RMB	2	
44	B1B3			STAB	RMB	2	
45	81B5	20	20	04	LINE	FCB	\$20,\$20,\$04
46				E2C5	DELAY1	EQU	\$E2C5
47				E0BF	OUT2H	EQU	\$E0BF
48				E07E	POATA1	EQU	\$E07E
49				E101	OUTEEE	EQU	\$E101
50				E1AC	INEEE	EQU	\$E1AC
51					END		

0 ERROR(S) DETECTED

SYMBOL TABLE:

AA	8039	BHTA	B1AF	CC1	8016	CONV	800D	COUNT	B1B0
DELAY1	E2C5	INEEE	E1AC	LINE	B1B5	OUT2H	E0BF	OUTEEE	E101
POATA1	E07E	SKATA	B028	START	8004	STAVR	B02D	STORE	B1B1
STAB	B1B3	TEL0S	B080						

APPENDIX IV
LIST OF PROGRAMS

PART 4: PROGRAM GAIN WRITTEN
IN MOTOROLA 6809
ASSEMBLER

PROGRAM GAIN IS USED
FOR A/D CALIBRATION

DEVELOPED BY
STAVROS A. ARGYROPOULOS
McGILL UNIVERSITY

1981

1					NAM	CRIN	
2	8000				ORG	\$8000	
3	8000	108E	07FF		LOD	#\$07FF	
4	8004	86	64	START	LDAA	#\$64	
5	8006	B7	B180		STAR	COUNT	
6	8009	4F			CLRA		
7	800A	7F	B1AF		CLA	BHTA	
8	8000	B7	D3E0	CONV	STAR	\$D3E0	
9	8010	8E	801A		LOX	#\$801A	
10	8013	80	E2C5		JSR	DELAY1	
11	8016	86	D3E0	CC1	LDAA	\$03E0	
12	8019	85	10		BITA	#\$10	
13	8018	27	F9		BEQ	CC1	
14	8010	86	D3E0		LDAA	\$03E0	
15	8020	F6	D3E1		LDAB	\$03E1	
16	8023	85	08		BITA	#\$08	
17	8025	27	04		BEQ	SKATA	
18	8027	8A	F0		ORAA	#\$F0	
19	8029	20	02		BRA	STAVR	
20	8028	84	0F	SKATA	ANDA	#\$0F	
21	8020	F0	B1B1	STAVR	STD	STORE	
22	8030	108C	B1B1		CMPY	STORE	
23	8034	26	03		BNE	AA	
24	8036	7C	B1AF		INC	BHTA	
25	8039	7A	B1B0	AA	DEC	COUNT	
26	803C	26	CF		BNE	CONV	
27	803E	86	B1AF		LDAA	BHTA	
28	8041	87	B1B3		STAR	STD	
29	8044	8E	B1B3		LOX	STAR	
30	8047	80	E08F		JSR	OUT2H	
31	804A	8E	B1B5		LOX	LINE	
32	8040	80	E07E		JSR	PDATA1	
33	8050	80	E1AC		JSR	INEEE	
34	8053	81	46		CMPA	#\$F	
35	8055	27	09		BEQ	TEL0S	
36	8057	8E	B1B5		LOX	LINE	
37	8058	80	E07E		JSR	PDATA1	
38	>8050	7E	8004		JMP	START	
39	8060	3F		TEL0S	SWI		
40	B1AF				ORG	\$81AF	
41	B1AF			BHTA	AMB	1	
42	B1B0			COUNT	AMB	1	
43	B1B1			STORE	AMB	2	
44	B1B3			STAR	AMB	2	
45	B1B5	20	20	04	LINE	FCB	\$20,\$20,\$04
46				E2C5	EQU	\$E2C5	
47				E08F	EQU	\$E08F	
48				E07E	EQU	\$E07E	
49				E101	EQU	\$E101	
50				E1AC	EQU	\$E1AC	
51				END			

0 ERROR(S) DETECTED

SYMBOL TABLE:

AA	8039	BHTA	B1AF	CC1	8016	CONV	8000	COUNT	B1B0
DELAY1	E2C5	INEEE	E1AC	LINE	B1B5	OUT2H	E08F	OUTEEE	E101
PDATA1	E07E	SKATA	8028	START	8004	STAVR	8020	STORE	B1B1
STD	B1B3	TEL0S	8060						

APPENDIX IV
LIST OF PROGRAMS

PART 5 : PROGRAM DISSOLUTION
WRITTEN IN FORTRAN

DEVELOPED BY
STAVROS A. ARGYROPOULOS
McGILL UNIVERSITY

1981

```

C      PROGRAM --- DISSOLUTION ---
REAL*4 T(2,185),H(185,2),LHT1,LHTR,MT11,MT12
REAL*4 MFE,MFET11,MT1FER,MT2FE,MTLFE,MT2L,MTL2,QQ(185)
REAL*4 DTA(185),DTLH(185),Q(185),MFET2A,MFET2,MFETL,MT12,MT21
REAL*4 MPFE,LENGTH,ITA,KT1,KT2,KTIL,LHFE,KFE,MT1L
REAL*4 MT2FER,MTL1,MT1L
REAL*4 RADIUS,RAD,RO,A1
REAL*4 KT,KEQ,KFET11,KFET12
INTEGER CI,INDEX(20)
COMMON /PART1/ DLX,DLX5,X,A,KFE,Q,TRE,TT,TR,TL,M,T
COMMON /PART2/ MT1FER,MT2FER,MT2FE,MTLFE,MT2L,MT1,MT2
COMMON /PART3/ MT1L,MFE,MT12,MT21,MFET2A,MFETL,DEAD,RAD1
COMMON /PART4/ DEFE,CPFE,QMT11,QMT12,QMTIL,MPFE,KT1
COMMON /PART5/ DLX22,KT2,KTIL,MFET2,QGEN
COMMON /PART6/ DTA,DTLH,QG1,DTT,DX,CPT11,CPT12,CPTIL,DLT
COMMON /PART7/ LD,N,CI,N3

C
C      SECTION 1 ---
C      INPUT DATA
C
READ(5,10) INDEX(11),11=1,20
10 FORMAT(20A4)
READ(5,1) L0
C      L0: NUMBER OF NODAL POINTS
1   FORMAT(12)
READ(5,3) ITER
C      ITER: NUMBER OF ITERATIONS
3   FORMAT(16)
2   FORMAT(F12.5)
READ(5,2) DLT
C      DLT: ITERATION TIME
READ(5,2) COUL
C      COUL: COOLING RATE OF THE BATH
READ(5,2) LENGTH
C      LENGTH: CYLINDER IMMERSION LENGTH
READ(5,2) ITA
C      ITA: INITIAL TEMPERATURE OF THE CYLINDER
READ(5,2) MPFE
C      MPFE: STEEL MELTING POINT
READ(5,2) TR
C      TR: TRANSFORMATION TEMPERATURE
READ(5,2) TL
C      TITANIUM MELTING POINT
READ(5,2) CPT11
C      CPT11: CP FOR THE FIRST RANGE
READ(5,2) CPT12
C      CPT12: CP FOR THE SECOND RANGE
READ(5,2) CPTIL
C      CPTIL: CP FOR LIQUID TITANIUM
READ(5,2) KT1
C      KT1: CONDUCTIVITY FOR THE FIRST RANGE
READ(5,2) KT2
C      KT2: CONDUCTIVITY FOR THE SECOND RANGE
READ(5,2) KTIL
C      KTIL: CONDUCTIVITY FOR THE LIQUID TITANIUM
READ(5,2) DLX
C      DLX: DISTANCE BETWEEN NODAL POINTS
READ(5,2) CPFE
C      CPFE: CP FOR IRON
READ(5,2) KFE
C      KFE: CONDUCTIVITY FOR IRON
READ(5,2) DEAD
C      DEAD: DENSITY OF TITANIUM

```

```

      READ (5, 2) DEFE
      DEFE; DENSITY OF IRON
      READ (5, 2) B
      READ (5, 2) QGEN
      READ (5, 2) LHFE
      LHFE; LATENT HEAT OF IRON
      READ (5, 2) LHTI
      LHTI; LATENT HEAT OF TITANIUM
      READ (5, 2) LHTA
      LHTA; LATENT HEAT OF TRANSFORMATION
      READ (5, 3) II
      COUNTER FOR OUTPUT
      READ (5, 2) SPH
      SPH; SUPERHEAT
      READ (5, 2) R
      R; RESISTANCE
      READ (5, 2) TAE
      READ (5, 3) LL
      READ (5, 2) DAT
      READ (5, 2) QG1
      READ (5, 3) NUMBER
      READ (5, 3) LAST

      C
      C      SECTION 2 ---
      C      CALCULATIONS OF DIFFERENT H VALUES
      C      AND INITIAL CONDITIONS
      C

      OTTA=LHTA/CPTI1
      JJ1=0
      OTTLH=LHTI/CPTI2
      OTTFF=LFHE/CPFE
      DLX22=DLX**2.0
      CPFEE=CPFE*DLX22
      HTI1=(KT1*DLT)/(DEAD*CPTI1*DLX22)
      HTI2=(KT2*DLT)/(DEAD*CPTI2*DLX22)
      HTIL=(KT1L*DLT)/(DEAD*CPTIL*DLX22)
      KFE=(KFE*DLT)/(DEFE*CPFEE)
      MFETI1=(2*KFE*KT1*DLX*DLT)/( (KFE*DLX+2,0*KFE*KT1+KT1*DLX)*
      CPFEE*DEFE)
      MFETI1=(2*KFE*KT1*DLX)/(KFE*DLX+2,0*KFE*KT1+KT1*DLX)
      MFETI2=(2*KFE*KT2*DLX)/(KFE*DLX+2,0*KFE*KT2+KT2*DLX)
      MFET2R=(2*KFE*KT2*DLX*DLT)/( (KFE*DLX+2,0*KFE*KT2+KT2*DLX)*
      CPFEE*DEFE)
      MFET2=(2,0*KFE*KT2*DLT)/( (KFE+KT2)*CPFEE*DEFE)
      MFETL=(2*KFE*KT1L*DLT)/( (KFE+KT1L)*CPFEE*DEFE)
      HT12=(2*KT1*KT2*DLT)/( (KT1+KT2)*CPTI1*DEAD*DLX22)
      HT21=(2,0*KT2*KT1*DLT)/( (KT1+KT2)*CPTI2*DEAD*DLX22)
      HT1FER=(2*KT1*KFE*DLX)*DLT/( (KT1*DLX+2,0*KFE*KT1+KFE*
      DLX)*CPTI1*DEAD*DLX22)
      HT2FER=(2*KT2*KFE*DLX)*DLT/( (KT2*DLX+2,0*KFE*KT2+KFE*
      DLX)*CPTI2*DEAD*DLX22)
      HT2FE=(2*KT2*KFE*DLT)/( (KT2+KFE)*CPTI2*DEAD*DLX22)
      HTLFE=(2,0*KT1L*KFE*DLT)/( (KT1L+KFE)*CPTIL*DEAD*DLX22)
      HT2L=(2,0*KT2*KT1L*DLT)/( (KT2+KT1L)*CPTI2*DEAD*DLX22)
      HT1L=(2,0*KT1*KT1L*DLT)/( (KT1+KT1L)*CPTI1*DEAD*DLX22)
      HTL2=(2,0*KT2*KT1L*DLT)/( (KT2+KT1L)*CPTIL*DEAD*DLX22)
      HTL1=(2,0*KT1*KT1L*DLT)/( (KT1+KT1L)*CPTIL*DEAD*DLX22)
      QMTI1=DLT/(CPTI1*DEAD)
      QMTI2=DLT/(CPTI2*DEAD)
      QMTIL=DLT/(CPTIL*DEAD)
      SMTI1=QMTI1/DLX22
      SMTI2=QMTI2/DLX22
      SMTIL=QMTIL/DLX22
      WRITE (6,34) (INDEX (II), II=1,20)

```

```

34  FORMAT('1',//,1X,20A4)
  WRITE(6,35)L0
35  FORMAT(3X,'NUMBER OF NODAL POINTS =',15)
  WRITE(6,36)ITERA
36  FORMAT(3X,'NUMBER OF ITERATIONS =',18)
  WRITE(6,37)DLT
37  FORMAT(3X,'DLT =',F10.4)
  WRITE(6,38)COUL
38  FORMAT(3X,'BATH COOLING RATE =',F12.4)
  WRITE(6,39)LENGTH
39  FORMAT(3X,'CYLINDER LENGTH =',F12.4)
  WRITE(6,40)ITA
40  FORMAT(3X,'INITIAL TEMPERATURE OF THE CYLINDER =',F12.4)
  WRITE(6,41)MPFE
41  FORMAT(3X,'STEEL MELTING POINT =',F12.4)
  WRITE(6,42)TA
42  FORMAT(3X,'TRANSFORMATION TEMPERATURE =',F12.4)
  WRITE(6,43)TL
43  FORMAT(3X,'TITANIUM MELTING POINT =',F12.4)
  WRITE(6,44)CPT1
44  FORMAT(3X,'CP FOR THE FIRST RANGE =',F12.4)
  WRITE(6,45)CPT12
45  FORMAT(3X,'CP FOR THE SECOND RANGE =',F12.4)
  WRITE(6,46)CPT1L
46  FORMAT(3X,'CP FOR THE LIQUID TITANIUM =',F12.4)
  WRITE(6,47)KT1
47  FORMAT(3X,'THERMAL CONDUCTIVITY FOR THE FIRST RANGE =',F12.4)
  WRITE(6,48)KT2
48  FORMAT(3X,'THERMAL CONDUCTIVITY FOR THE SECOND RANGE =',F12.4)
  WRITE(6,49)KT1L
49  FORMAT(3X,'THERMAL CONDUCTIVITY FOR THE LIQUID TI =',F12.4)
  WRITE(6,50)DLX
50  FORMAT(3X,'NODAL POINTS DISTANCE =',F12.4)
  WRITE(6,51)CPFE
51  FORMAT(3X,'CP FOR IRON =',F12.4)
  WRITE(6,52)KFE
52  FORMAT(3X,'THERMAL CONDUCTIVITY FOR IRON =',F12.4)
  WRITE(6,53)DEAO
53  FORMAT(3X,'TITANIUM DENSITY =',F12.4)
  WRITE(6,54)DEFE
54  FORMAT(3X,'IRON DENSITY =',F12.4)
  WRITE(6,55)B
55  FORMAT(3X,' B =',F12.4)
  WRITE(6,56)QGEN
56  FORMAT(3X,'HEAT GENERATION =',F12.5)
  WRITE(6,57)LHFE
57  FORMAT(3X,'LATENT HEAT OF IRON =',F12.4)
  WRITE(6,58)LHT1
58  FORMAT(3X,'LATENT HEAT OF TITANIUM =',F12.4)
  WRITE(6,59)LHTA
59  FORMAT(3X,'LATENT HEAT OF TRANSFORMATION =',F12.4)
  WRITE(6,60)I1
60  FORMAT(3X,'FREQUENCY OF OUTPUT =',16)
  WRITE(6,61)SPH
61  FORMAT(3X,'STEEL BATH SUPERHEAT =',F12.4)
  WRITE(6,62)A
62  FORMAT(3X,'RESISTANCE =',F12.4)
  WRITE(6,63)TRE
63  FORMAT(3X,'REACTION STARTING POINT =',F12.4)
  WRITE(6,64)MT11
64  FORMAT(3X,' MT11 =',F12.4)
  WRITE(6,65)MT12
65  FORMAT(3X,' MT12 =',F12.4)
  WRITE(6,66)MT1L

```

```

66  FORMAT(3X, ' MTJL =', F12.4)
67  WRITE(6, 67) MFE
68  FORMAT(3X, ' MFE =', F12.4)
69  WRITE(6, 68) MFET11
70  FORMAT(3X, ' MFET11 =', F12.4)
71  WRITE(6, 69) MFET2R
72  FORMAT(3X, ' MFET2R =', F12.4)
73  WRITE(6, 70) MFET2
74  FORMAT(3X, ' MFET2 =', F12.4)
75  WRITE(6, 71) MFETL
76  FORMAT(3X, ' MFETL =', F12.4)
77  WRITE(6, 72) MT12
78  FORMAT(3X, ' MT12 =', F12.4)
79  WRITE(6, 73) MT21
80  FORMAT(3X, ' MT21 =', F12.4)
81  WRITE(6, 74) MT1FER
82  FORMAT(3X, ' MT1FER =', F12.4)
83  WRITE(6, 75) MT2FE
84  FORMAT(3X, ' MT2FE =', F12.4)
85  WRITE(6, 76) MTLFE
86  FORMAT(3X, ' MTLFE =', F12.4)
87  WRITE(6, 77) MT2L
88  FORMAT(3X, ' MT2L =', F12.4)
89  WRITE(6, 78) MTL2
90  FORMAT(3X, ' MTL2 =', F12.4)
91  WRITE(6, 79) SMT11
92  FORMAT(3X, ' SMT11 =', F12.4)
93  WRITE(6, 80) SMT12
94  FORMAT(3X, ' SMT12 =', F12.4)
95  WRITE(6, 81) SMTJL
96  FORMAT(3X, ' SMTJL =', F12.4)
97  WRITE(6, 82) QMT11
98  FORMAT(3X, ' QMT11 =', F12.4)
99  WRITE(6, 83) QMT12
100  FORMAT(3X, ' QMT12 =', F12.4)
101  WRITE(6, 84) QMTJL
102  FORMAT(3X, ' QMTJL =', F12.4)
103  WRITE(6, 85) LL
104  FORMAT(3X, ' LL =', I3)
105  WRITE(6, 86) MT2FER
106  FORMAT(3X, ' MT2FER =', F12.4)
107  WRITE(6, 87) MTL1
108  FORMAT(3X, ' MTL1 =', F12.4)
109  WRITE(6, 88) MT1L
110  FORMAT(3X, ' MT1L =', F12.4)
111  WRITE(6, 8900) DAT
112  FORMAT(10X, 'DISSOLUTION FRONT MOVING RATE=', F12.3)
113  WRITE(6, 8910) QG1
114  FORMAT(10X, 'FREE DISSOLUTION HEAT GENERATION RATE=', F12.3)
115  WRITE(6, 8920) NUMBER
116  FORMAT(10X, 'ITERATION NUMBER WHERE FREE DISSOLUTION',
117  *IX, 'STARTS=', I6)
118  WRITE(6, 8930) LAST
119  FORMAT(10X, 'LAST NODAL POINT FOR ITERATIONS', I6)
120  N=L0-1
121  N: MOVEABLE NODAL POINT
122  L1=L0+1
123  L1: FIRST NODAL POINT IN THE STEEL SHELL
124  L2=3*L0
125  DLX5=DLX*0.5
126  DLX15=DLX*1.5
127  X=DLX5
128  H1=-TA+TA
129  H2=-TL+TA

```

```

H3=-MPFE+ITA
00 90 J=1,L0
T(1,J)=ITA
M(J,2)=HT11
M(J,1)=HT11
DTA(J)=H4
DTLH(J)=H2
QQ(J)=QHT11
Q(J)=0,0
80  CONTINUE
00 100 J=L1,L2
M(J,2)=MFE
Q(J)=0,0
QQ(J)=0,0
DTA(J)=H3
DTLH(J)=0,0
100  CONTINUE
M(L1,1)=MFET11
CALL SMT1FE
C,      CALL SMT1FE IN ORDER TO SET THE PROPER M(L0,2)
N2=L0-1
L3=L1+1
00 101 J=L3,L2
M(J,1)=MFE
101  CONTINUE
RAD=(N2+0.5)*DLX
COUL=COUL*DLT
RAD1=(2.*L0-1)*DLX5
RAD2=RAD1**2.0
TLEN=2.0*(2**0.5)*(LENGTH)
C1=0
TAA=TA-DTTA
TLL=TL-DTTLH
TFFE=MPFE-OTTFF
N4=L1
HH1=41400.0/8.3144
HH2=CPFE/KFE
HH3=8*981.0*(LENGTH**3)
HH4=0.678044*KFE/LENGTH
HH5=0.38*KFE
E916=9./16.
E49=-4./9.

C
C      SECTION 3 ---
C      CALCULATES NEW TEMPERATURES
C      AND THE POSITION OF STEEL SHELL INTERFACE
C
00 3000 I=1,ITER
TT=1*DLT
IF (IJJ1,NE,0) GO TO 105
SPH=SPH-COUL
TV=1809.15+SPH
TVR=HH1/TV
V=0.003689*EXP (TVR)
DEFE1=7.015-0.000883*SPH
PR=V*HH2
GR=SPH*(DEFE1**2*(HH3)/(V**2))
H1=10.492/PR1** (E916)
H2=(1+H1)** (E49)
H4=HH4*(PR**0.23)*H2
H3=HH5*(PR**(-0.171))*H2
H5=H3/RAD
H=H5+H4*(GR**0.25)
E=(TLEN)/(1(GR**0.25)*RAD)

```

```

C
C      T(2,1) : NEW TEMPERATURE AT THE FIRST NODAL POINT
C
105  T(2,1)=T(1,1)*(1-4.*M(1,2))+4.0*M(1,2)*T(1,2)+Q(1)*QQ(1)
      H1=T(2,1)-T(1,1)
      DTA(1)=DTA(1)+H1
      IF (1, GE, N4) DTLH(1)=DTLH(1)+H1
      RN=N-1
      GO 102 J=2,N
      R=J-1.

C
C      T(2,J) : NEW TEMPERATURES FROM THE SECOND NODAL POINT
C      UNTIL THE ONE BEFORE LAST NODAL POINT
C
      T(2,J)=T(1,J)*(1- M(J,2)*(12.0*A+1)/(2.0*A))
      M(J,1)*(12.0*A-1)/(2.0*A))
      M(J,1)*(12.0*A-1)/(2.0*A))*T(1,J-1)+/
      M(J,2)*(12.0*A+1)/(2.0*A))*T(1,J+1)+Q(J)*QQ(J)
      H1=T(2,J)-T(1,J)
      DTA(J)=DTA(J)+H1
      IF (J, GE, N4) DTLH(J)=DTLH(J)+H1
102  CONTINUE
C
C      T(2,N+1): NEW TEMPERATURE AT THE LAST NODAL POINT
C
      IF (JJ1, NE, 0) CALL FREE
      IF (JJ1, NE, 0) GO TO 140
      AN1=(12*N+1)/2.0)*DLX+X-DLX5
      AN=(12*N-1)/2.0)*DLX
      VN1X=(2*X*N*DLX+X*2.0+N*DLX22-(DLX22/4.0))/2.0
      IF (N+1, GT, L0) GO TO 114
      VN1=N*DLX22
      VFE=VN1X-VN1
      WFE=VFE*DEFE
      WN1=VN1*DEAD
      RMEAN=(WFE+WN1)/VN1X
      IF (T(1,L0), LE, TR) GO TO 110
      IF (T(1,L0), GT, TR, AND, T(1,L0), LT, TL) GO TO 112
      CP=CPT1L
      KT=KT1L
      GO TO 115
110  CP=CPT1I
      KT=KT1
      GO TO 115
112  CP=CPT12
      KT=KT2
      GO TO 115
114  KEQ=KFE
      CPMEAN=CPFE
      RMEAN=DEFE
      KT=KFE
      IF (N+1, EQ, L1, AND, T(1,L0), LE, TR) KT=KFET1I
      IF (N+1, EQ, L1, AND, T(1,L0), GT, TR) KT=KFET12
      GO TO 120
115  P=X-DLX5
      KEQ=(DLX+2.0*A)*(KT*KFE/(DLX*KFE+2.0*A*KT*KFE+2.0*KT*A))
      CPMEAN=(CPFE*WFE+CP*WN1)/(WFE+WN1)
120  FIRST=(MPFE-T(1,N+1))*AN1*KEQ*DLT/(X*RMEAN*CPMEAN*VN1X)
      SECOND=(T(1,N+1)-T(1,N))*AN*KT*DLT/(DLX*RMEAN*CPMEAN*VN1X)
      T(2,N+1)=T(1,N+1)+FIRST-SECOND+Q(N+1)*QQ(N+1)
      H1=T(2,N+1)-T(1,N+1)
      DTA(N+1)=DTA(N+1)+H1
      IF (N+1, GE, N4) DTLH(N+1)=DTLH(N+1)+H1
C      DX: CALCULATION OF THE MOVEMENT OF THE INTERFACE

```

```

C      IN THE ITERATION STEP
110  IF (N+1, GT, L0) GO TO 130
111  KT=KT1
112  IF (T(1, L0), GT, TA) KT=KT2
113  P=X-DLX5
114  KEQ=(DLX+2.0*P)*(KT*KFE/(DLX*KFE+2.0*R*KT*KFE+
115  *2.0*KT*P))
116  GO TO 132
130  KEQ=KFE
132  DX=(MPFE-T(1, N+1))*KEQ*DLT/(DEFELHFE*X)-
133  *(H*SPH*DLT)/(DEFELHFE)
C      X: DISTANCE OF THE SHELL INTERFACE FROM THE LAST NODAL POINT
140  X=X+DX
141  N3=N+1
C      RAD : RADIUS OF CYLINDER IN EVERY ITERATION STEP
142  RAD=(2.*N+1)*DLX/2.+X-DLX5
143  NDIF=N-LAST
144  IF (NDIF) 3100, 3100, 153
C
C      SECTION 4---
C      THE PROGRAM CHECKS FOR THE POSITION OF STEEL SHELL
C      LIQUID STEEL INTERFACE
C
153  IF (X-DLX5) 155, 160, 160
155  N=N-1
156  N3=N+1
157  X=X+DLX
158  GO TO 165
160  IF (X-DLX5) 165, 161, 161
161  N=N+1
162  N3=N+1
163  X=X-DLX
164  T(1, N+1)=(MPFE*DLX+X*T(2, N))/(X+DLX)
165  DTR(N+1)=T(1, N+1)-MPFE
C
C      SECTION 5 ---
C      CALCULATION OF LATENT HEAT OF TRANSFORMATION
C
166  00 250 J=1, L0
167  IF (J, GE, N4) GO TO 190
168  IF (DTR(J), GT, 0.0) GO TO 170
169  T(1, J)=DTR(J)+TR
170  GO TO 250
171  IF (DTR(J), GT, DTTA) GO TO 180
172  T(1, J)=TR
173  GO TO 250
174  T(1, J)=TR+DTR(J)
175  DTLH(J)=DTLH(J)+(CPT11*(T(1, J)-TR)/CPT12)
176  N4=J
177  IF (DTLH(J), GT, 0.0) GO TO 200
178  T(1, J)=DTLH(J)+TL
179  GO TO 250
180  IF (DTLH(J), GT, DTTLH) GO TO 210
181  T(1, J)=TL
182  GO TO 250
183  T(1, J)=TLL+DTLH(J)
184  250  CONTINUE
185  IF (L1, GT, N3) GO TO 270
186  00 260 J=L1, N3
187  IF (DTR(J), GT, 0.0) GO TO 262
188  T(1, J)=DTR(J)+MPFE
189  GO TO 260
262  IF (DTR(J), GT, DTTFE) GO TO 264
263  T(1, J)=MPFE

```

```

G0 TO 260
264 T(1,J)=TFFE+OTR(J)
260 CONTINUE
270 IF (LL, EQ, 0) G0 TO 365
    IF (CI, EQ, 0) CALL TEMPER
    IF (CI, NE, 0) CALL REACT1
C
C      SECTION 6 ---
C      SETS PROPER M VALUES
C
365 IF (T(1,1), GT, TL) G0 TO 400
    IF (T(1,1), GT, TR, AND, T(1,1), LE, TL) G0 TO 420
    IF (T(1,1), LE, TR) G0 TO 425
400 DD 405 J=1,L0
    M(J,1)=MT1L
405 CONTINUE
    DD 410 J=1,N2
    M(J,2)=MT1L
410 CONTINUE
    CALL SMTLFE
    G0 TO 500
420 IF (T(1,2), GT, TL) M(1,2)=MT2L
    IF (T(1,2), GT, TR, AND, T(1,2), LE, TL) M(1,2)=MT12
    G0 TO 430
425 IF (T(1,2), GT, TL) M(1,2)=MT12L
    IF (T(1,2), GT, TR, AND, T(1,2), LE, TL) M(1,2)=MT12
    IF (T(1,2), LE, TR) M(1,2)=MT11
430 DD 460 J=2,N2
    IF (T(1,J), GT, TL) G0 TO 435
    IF (T(1,J), GT, TR, AND, T(1,J), LE, TL) G0 TO 440
    IF (T(1,J), LE, TR) G0 TO 450
435 M(J,2)=MT1L
    IF (T(1,J-1), GT, TL) M(J,1)=MT1L
    IF (T(1,J-1), GT, TR, AND, T(1,J-1), LE, TL) M(J,1)=MTL2
    IF (T(1,J-1), LE, TR) M(J,1)=MTL1
    G0 TO 460
440 IF (T(1,J+1), GT, TL) M(J,2)=MT2L
    IF (T(1,J+1), GT, TR, AND, T(1,J+1), LE, TL) M(J,2)=MT12
    IF (T(1,J+1), GT, TR, AND, T(1,J-1), LE, TL) M(J,1)=MT12
    IF (T(1,J+1), LE, TR) M(J,1)=MT21
    G0 TO 460
450 IF (T(1,J+1), GT, TL) M(J,2)=MT1L
    IF (T(1,J+1), GT, TR, AND, T(1,J+1), LE, TL) M(J,2)=MT12
    IF (T(1,J+1), LE, TR) M(J,2)=MT11
    M(J,1)=MT11
460 CONTINUE
    IF (T(1,L0), GT, TL) G0 TO 470
    IF (T(1,L0), GT, TR, AND, T(1,L0), LE, TL) G0 TO 480
    IF (T(1,L0), LE, TR) G0 TO 490
470 CALL SMTLFE
    IF (T(1,N2), GT, TL) M(L0,1)=MT1L
    IF (T(1,N2), GT, TR, AND, T(1,N2), LE, TL) M(L0,1)=MTL2
    IF (T(1,N2), LE, TR) M(L0,1)=MTL1
    G0 TO 500
480 CALL SMT2FE
    IF (T(1,N2), GT, TR, AND, T(1,N2), LE, TL) M(L0,1)=MT12
    IF (T(1,N2), LE, TR) M(L0,1)=MT21
    G0 TO 500
490 CALL SMT1FE
    M(L0,1)=MT11
500 IF (N+1, GT, L0) G0 TO 510
    G0 TO 1200
510 IF (T(1,L0), GT, TL) M(L1,1)=MFETL
    IF (T(1,L0), GT, TR, AND, T(1,L0), LE, TL) M(L1,1)=MFET2R

```

```

1200 IF IT(1,L0),LE,TA)M(L1,1)=MFETJ1
      00 1210 J=1,L0
      IF IT(1,J),LE,TA) QQ(J)=QMTJ1
      IF IT(1,J),GT,TA,AND,T(1,J),LE,TL) QQ(J)=QMTJ2
      IF IT(1,J),GT,TL) QQ(J)=QMTJ1
1210 CONTINUE
      IF (JJ1,EQ,0) GO TO 2900
      IF IM00(1,J),EQ,0) GO TO 1300
      GO TO 2900
1300 WRITE(6,1301)TT, IT(1,J), J=1,N3)
1301 FORMAT(1X,F12.4,10(1X,F10.4),/6X,10(1X,F10.4),
      1/6X,10(1X,F10.4),/6X,10(1X,F10.4),/6X,10(1X,F10.4),
      1/6X,10(1X,F10.4),/6X,10(1X,F10.4),/6X,10(1X,F10.4),
      1/6X,10(1X,F10.4),/6X,10(1X,F10.4),/6X,10(1X,F10.4),
      1/6X,10(1X,F10.4),/6X,10(1X,F10.4),/6X,10(1X,F10.4),
      1/6X,10(1X,F10.4),/6X,10(1X,F10.4))
      WRITE(6,1302)X,RAD
1302 FORMAT('0','DISTANCE FROM LAST NODAL POINT=',F10.5,
      $10X,'RADIUS OF CYLINDER=',F10.5)
2900 IF (J,EQ,NUMBER) GO TO 2910
      GO TO 3000
2910 N3=L0-1.
      N=N3-1
      X=DLX15
      JJ1=1
      T(1,L0)=MPFE+SPH
3000 CONTINUE
3100 WRITE(6,3101)
3101 FORMAT('0',20X,'LAST TEMPERATURE')
      WRITE(6,1301)TT, IT(1,J), J=1,N3)
      STOP
      END

```

```

C
      SUBROUTINE TEMPER
      REAL*4 T(2,185),M(185,2),LHT1,LHTR,MTJ1,MTJ2
      REAL*4 MFE,MFETJ1,MT1FER,MT2FE,MTLFE,MT2L,MTL2,QQ(185)
      REAL*4 DTA(185),DTLH(185),Q(185),MFET2R,MFET2,MFETL,MT12,MT21
      REAL*4 MPFE,KT1,KT2,KTIL,KA,MT2FER,KFE
      REAL*4 MTIL,MTL1,MT1L
      INTEGER CI,INDEX(20)
      COMMON /PART1/ DLX,DLX5,X,R,KFE,Q,TRE,TT,TA,TL,M,T
      COMMON /PART2/ MT1FER,MT2FER,MT2FE,MTLFE,MT2L,MT1,MT2
      COMMON /PART3/ MTIL,MFE,MT12,MT21,MFET2R,MFETL,DEAD,RAD1
      COMMON /PART4/ DEFE,CPFE,QMTJ1,QMTJ2,QMTJ1,MPFE,KT1
      COMMON /PART5/ DLX22,KT2,KTIL,MFET2,QGEN
      COMMON /PART7/ L0,N,CI,N3
      IF IT(1,L0),LT,TA) KA=KT1
      IF IT(1,L0),GE,TA,AND,T(1,L0),LT,TL) KA=KT2
      IF IT(1,L0),GT,TL) KA=KTIL
      IF IN+1,GT,L0) GO TO 5
      Y=X
      TPFE=MPFE
      GO TO 6
5   Y=DLX
      TPFE=TPFE-KFE/(Y-DLX5)
6   F1=TPFE*(KFE/(Y-DLX5))
      F2=(1+(KA*R/OLX5))*R
      F3=KA*T(1,L0)*R/OLX5
      F4=KFE/(Y-OLX5)
      F4=F4+1./R
      F4=1./F4
      F5=F4/F2
      F6=F3*F4/F2
      F7=F1*F4

```

```

TSHEL=(F7+F6)/(1,-FS)
F8=F2/RA
TADD=(TSHEL+F3)/F8
IF (TSHEL.GT.TRE.AND.TADD.GT.TRE) GO TO 20
GO TO 40
20 CI=CI+1
WRITE(6,25) TT
25 FORMAT('0',1H/,20X,30('*'),1H/,20X,'THE REACTION STARTS AT '=',
$F10.5,2X,'SEC',1H/,20X,30('*'),1H//)
MFET2R=MFET2
MT2FER=MT2FE
R=0.0
40 RETURN
END
C
SUBROUTINE SMT1FE
REAL*4 T(2,185),M(185,2),LHT1,LHTA,MT11,MT12
REAL*4 MFE,MFET11,MT1FER,MT2FE,MTLFE,MT2L,MTL2,QQ(185)
REAL*4 DTA(185),DTLH(185),Q(185),MFET2R,MFET2,MFETL,MT12,MT21
REAL*4 MPFE,MT2FER,KT1,KT2,KT1L,KA,KEQ,KFE
REAL*4 MT1L,MTL1,MT1L
INTEGER CI,INDEX(20)
COMMON /PART1/ DLX,DLX5,X,R,KFE,Q,TRE,TT,TR,TL,M,T
COMMON /PART2/ MT1FER,MT2FER,MT2FE,MTLFE,MT2L,MT1,MT2
COMMON /PART3/ MT1L,MFE,MT12,MT21,MFET2R,MFETL,DEAD,RAD1
COMMON /PART4/ DEFE,CPFE,QMT11,QMT12,QMT1L,MPFE,KT1
COMMON /PART5/ DLX22,KT2,KT1L,MFET2,QGEN
COMMON /PART7/ LD,N,CI,N3
IF (N+1.GT.LD) GO TO 10
GO TO 20
10 M(1,2)=MT1FER
GO TO 100
20 P=X-DLX5
KEQ=(DLX+2.0*X)*(KT1*KFE/(DLX*KFE+2.0*R*KT1*KFE+2.0*KT1*X))
M(1,2)=(QMT11/((DLX5+X)**2.000))*KEQ
100 RETURN
END
C
SUBROUTINE SMT2FE
REAL*4 T(2,185),M(185,2),LHT1,LHTA,MT11,MT12
REAL*4 MFE,MFET11,MT1FER,MT2FE,MTLFE,MT2L,MTL2,QQ(185)
REAL*4 DTA(185),DTLH(185),Q(185),MFET2R,MFET2,MFETL,MT12,MT21
REAL*4 MPFE,MT2FER,KT1,KT2,KT1L,KA,KEQ,KFE
REAL*4 MT1L,MTL1,MT1L
INTEGER CI,INDEX(20)
COMMON /PART1/ DLX,DLX5,X,R,KFE,Q,TRE,TT,TR,TL,M,T
COMMON /PART2/ MT1FER,MT2FER,MT2FE,MTLFE,MT2L,MT1,MT2
COMMON /PART3/ MT1L,MFE,MT12,MT21,MFET2R,MFETL,DEAD,RAD1
COMMON /PART4/ DEFE,CPFE,QMT11,QMT12,QMT1L,MPFE,KT1
COMMON /PART5/ DLX22,KT2,KT1L,MFET2,QGEN
COMMON /PART7/ LD,N,CI,N3
IF (N+1.GT.LD) GO TO 10
GO TO 20
10 M(1,2)=MT2FER
GO TO 100
20 P=X-DLX5
KEQ=(DLX+2.0*X)*(KT2*KFE/(DLX*KFE+2.0*R*KT2*KFE+2.0*KT2*X))
M(1,2)=(QMT12/((DLX5+X)**2.000))*KEQ
100 RETURN
END
C
SUBROUTINE SMTLFE
REAL*4 T(2,185),M(185,2),LHT1,LHTA,MT11,MT12
REAL*4 MFE,MFET11,MT1FER,MT2FE,MTLFE,MT2L,MTL2,QQ(185)

```

```

REAL*4 DTA(185), DTLH(185), Q(185), MFET2R, MFET2, MFETL, MT12, MT21
REAL*4 MPFE, MT2FER, KT1, KT2, KTIL, KA, KFE, KEQ
REAL*4 MTIL, MTL1, MTL2
INTEGER CI, INDEX(20)
COMMON /PART1/ DLX, DLX5, X, R, KFE, Q, TRE, TT, TA, TL, M, T
COMMON /PART2/ MT1FER, MT2FER, MT2FE, MTLFE, MT2L, MT1, MT2
COMMON /PART3/ MTIL, MFE, MT12, MT21, MFET2R, MFETL, DEAD, RAD1
COMMON /PART4/ DEFE, CPFE, QMT11, QMT12, QMTIL, MPFE, KT1
COMMON /PART5/ DLX22, KT2, KTIL, MFET2, QGEN
COMMON /PART7/ L0, N, CI, N3
IF (N+1, GT, L0) GO TO 10
GO TO 20
10 M(IL0, 2)=MTLFE
GO TO 100
20 P=X-DLX5
KEQ=(DLX+2.0*X)*(KTIL*KFE/(DLX*KFE+2.0*KTIL*P))
M(IL0, 2)=(QMTIL*((DLX5+X)**2.000))/KEQ
100 RETURN
END
C
SUBROUTINE REACT1
REAL*4 T(2, 185), M(185, 2), LHT1, LHTR, MT11, MT12
REAL*4 MFE, MFET11, MT1FER, MT2FE, MTLFE, MT2L, MT12, QQ(185)
REAL*4 DTA(185), DTLH(185), Q(185), MFET2R, MFET2, MFETL, MT12, MT21
REAL*4 MPFE, MT2FER, KT1, KT2, KTIL, KA
REAL*4 MTIL, MTL1, MTL2, KFE
INTEGER CI, INDEX(20)
COMMON /PART1/ DLX, DLX5, X, R, KFE, Q, TRE, TT, TA, TL, M, T
COMMON /PART2/ MT1FER, MT2FER, MT2FE, MTLFE, MT2L, MT1, MT2
COMMON /PART3/ MTIL, MFE, MT12, MT21, MFET2R, MFETL, DEAD, RAD1
COMMON /PART4/ DEFE, CPFE, QMT11, QMT12, QMTIL, MPFE, KT1
COMMON /PART5/ DLX22, KT2, KTIL, MFET2, QGEN
COMMON /PART7/ L0, N, CI, N3
DO 10 J=1, N3
Q(J)=0.0
10 CONTINUE
Q(IL0)=QGEN
RETURN
END
C
SUBROUTINE FREE
REAL*4 T(2, 185), M(185, 2), LHT1, LHTR, MT11, MT12
REAL*4 MFE, MFET11, MT1FER, MT2FE, MTLFE, MT2L, MT12, QQ(185)
REAL*4 DTA(185), DTLH(185), Q(185), MFET2R, MFET2, MFETL, MT12, MT21
REAL*4 MPFE, LENGTH, ITA, KT1, KT2, KTIL, LHFE, KFE, MTIL
REAL*4 MT2FER, MTL1, MTL2
REAL*4 KT, KEQ, KFET11, KFET12
INTEGER CI, INDEX(20)
COMMON /PART1/ DLX, DLX5, X, R, KFE, Q, TRE, TT, TA, TL, M, T
COMMON /PART2/ MT1FER, MT2FER, MT2FE, MTLFE, MT2L, MT1, MT2
COMMON /PART3/ MTIL, MFE, MT12, MT21, MFET2R, MFETL, DEAD, RAD1
COMMON /PART4/ DEFE, CPFE, QMT11, QMT12, QMTIL, MPFE, KT1
COMMON /PART5/ DLX22, KT2, KTIL, MFET2, QGEN
COMMON /PART6/ DTA, DTLH, QG1, DRT, DX, CPT11, CPT12, CPTIL, DLT
COMMON /PART7/ L0, N, CI, N3
RN1=((2*N+1)/2.0)*DLX+X-DLX5
RN=((2*N-1)/2.0)*DLX
VN1X=((2*X*N*DLX+X**2.0+N*DLX22-(DLX22/4.0))/2.0
IF (IT(1, N+1), LT, TA) GO TO 10
IF (IT(1, N+1), GE, TA, AND, T(1, N+1), LE, TL) GO TO 20
GO TO 30
10 CP=CPT11
KT=KT1
GO TO 50

```

```
20  CP=CPT12
    KT=KT2
    GO TO 50
30  CP=CPT1L
    KT=KT1L
50  F1=(DEAD*CP*VN1X)
    F2=QG1*AN1*DLT/F1
    F3=F1*DLX
    F4=KT*AN*(T(1,N+1)-T(1,N))*DLT
    F5=F4/F3
    T(2,N+1)=T(1,N+1)+F2-F5
    F1=T(2,N+1)-T(1,N+1)
    DTA(N+1)=DTA(N+1)+F1
    DTLH(N+1)=DTLH(N+1)+F1
    DX=-DTA*DLT
    RETURN
    END
```

REFERENCES

1. V.O. Dahlke and O. Knacke, 'Die Auflösung von Kohlenstoff in Flüssigem Eisen', Arch. Eisenhüttenw., 26, 373, 1955.
2. R. Krzeszewski, 'Kinetics of Dissolving Stable Carbon in Liquid Iron', Prace Inst. Odlewnictwa, 13, 1, 1963.
3. M. Kosaka and S. Minowa, 'Mass Transfer from Graphite Cylinder into Liquid Fe-C Alloy', Tetsu-to-Hagane, 53, 1467, 1967.
4. R.G. Olsson, V. Koump, and T.F. Perzak, 'Rate of Dissolution of Carbon in Molten Iron-Carbon Alloys', Trans. AIME, 236, 426, 1966.
5. V.D. Shantarin, V.V. Utochkin, and V.S. Kubryavtsev, 'Diffusion of Carbon in Manganese-Base Melts', Izv. VUZ chernaya Met., No. 6, 5, 1968.
6. V.P. Karshin and V.A. Grigoryan, 'Kinetics of the Dissolution of Graphite in an Iron-Carbon Melts', Izv. VUZ chernaya Met., No. 11, 16, 1970.
7. V.M. Surovsky and N.K. Nekrasov, 'Kinetics of Solution of Carbon in Iron', Izv. VUZ chernaya Met., No. 1, 164, 1971; Steel in the USSR, No. 1, 75, 1971.
8. P.M. Shurygin and V.I. Kryuk, 'The Kinetics of Dissolving Carbon in Iron-Carbon Solutions', Izv. VUZ chernaya Met., 6, No. 12, 14, 1963.
9. V.P. Cherevko, B.M. Boichenko, V.M. Dusha, B.M. Korkin, 'Kinetics of Dissolution of Carbon Materials in Iron-

Carbon Melts', Metallurgiya Koksokhimiya. Resp. Mezhred.
Nauch.-tekhn. sb 1977, 52, 36-39.

- 10. A.K. Biletskii, V.S. Shumikhin, 'Dissolution of Solid Spherical Particles in a Liquid', Protessy Plavki Liteinykh Splavov, 65-70, 1979.
- 11. A. Mihajlovic, B. Marincek, 'Dissolution Kinetics of Technical Graphites in Iron Melts', Arch. Eisenhuettenw 44(7), 507-512, 1973.
- 12. V.M. Surovskii, N.K. Nekrasov, 'Kinetics of the Dissolution of Carbon in a High-Carbon Melt', Sb. Tr., Mosk. Vech. Metall. Inst. 1972, No. 13, 13-16 (in Russian).
- 13. P.M. Shurygin and V.D. Shantrin, 'Diffusion in the Fe-C System', Fiz. Met. Metallovedenie, 17, 471, 1964
- 14. P.M. Shurygin and V.D. Shantrin, 'Solubility of Metals in Fe-C Solutions', Izv. VUZ. chernaya Met., 6, No. 10, 5, 1963.
- 15. J.W. Robison, A.B. Draper, 'Dissolution of Silicon Carbide in Liquid Gray Irons', Paper No. A 78-21, 107th AIME Annual Meeting, Denver, February, 1978.
- 16. R.D. Pehlke, P.D. Goodell and R.W. Dunlap, 'Kinetics of Steel Dissolution in Molten Pig Iron', Trans. AIME, 233, 1420, 1965.
- 17. R.G. Olsson, V. Koump, and T.F. Perzak, 'Rate of Dissolution of Carbon-Steel in Molten Iron-Carbon Alloys', Trans. AIME, 233, 1654, 1965.

18. K. Niwa, M. Shimei and R. Shina, 'A Kinetic Study on the Reaction of the Alumina Crucible with Carbon Dissolved in Molten Iron', Nippon Kinzok Gakkai-Si, 30, 329, 1966.
19. M. Kosaka and S. Minowa, 'Dissolution of Steel Cylinder into Liquid Fe-C Alloy', Tetsu-to-Hagane, 52, 1429, 1966.
20. M. Kosaka and S. Minowa, 'Mass Transfer from Solid Metal Cylinder into Liquid Metal', Tetsu-to-Hagane, 52, 1429, 1966.
21. A.V. Klibus, B.M. Lepinskikh, and A.A. Gorshkov, 'Kinetics of the Dissolution of a Copper-Magnesium Alloy in Molten Cast Iron', Dop. Akad. Ukrain. R.S.R., 6A, 536, 1967.
22. M. Kosaka and S. Minowa, 'Dissolution of Steel Cylinder into Liquid Fe-C Alloy', Tetsu-to-Hagane, 53, 983, 1967.
23. A.V. Kaibichev, B.M. Lepinskikh, E.E. Shrëtsov and B.I. Sergin, 'Kinetics of Dissolution of Cerium in Cast Iron', Russian Casting Production, No. 3, 108, 1968.
24. A.A. Vostryakov and B.M. Lepinskikh, 'Kinetics of Dissolution of Iron in Oxide Melts', Izv. Akad. Nauk SSSR Met., No. 4, 33, 1968; Russ. Met., No 4, 23, 1968.
25. B.M. Lepinskikh, A.V. Kaibichev, and V.A. Pankratov, 'Kinetics of Dissolution of Magnesium Alloys in Iron-Carbon Melts', Trudy Inst. Met. Sverdlovsk, No. 20, 160, 1969.
26. A. Simkovich, K. Li, and C.L. McCabe, 'Dissolution of Alumina in Carbon-Saturated Liquid Iron', Trans. AIME, 245, 897, 1969.

27. H. Nomura and K. Mori, 'The Rate of Dissolution of Iron into Liquid Fe-C Alloy', Tetsu-to-Hagane, 55, 1134, 1969.
28. G.N.K. Iyengar and R.D. Pehlke, 'Dissolution of Boron Nitride in Liquid Iron', Met. Trans. 1, 2235, 1970.
29. H. Ooi, Y. Oguchi, and H. Nakato, 'Rate of Desulfurization of Carbon-Saturated Iron Melts by a Rotating Cylinder of Calcium Carbide', Tetsu-to-Hagane, 56, 991, 1970.
30. J. Szekely, Y.K. Chuang, and J.W. Hlinka, 'The Melting and Dissolution of Low-Carbon Steels in Iron-Carbon Melts', Met. Trans., 3, 2825, 1972.
31. R.I.L. Guthrie and P. Stubbs, 'Kinetics of Scrap Melting in Baths of Molten Pig Iron', Canadian Metallurgical Quarterly, vol. 12, no. 4, 465-473, 1973.
32. Yeong-Ukim, R.D. Pehlke, 'Mass Transfer during Dissolution of a Solid into Liquid in the Iron-Carbon System', Met. Trans. AIME, vol. 5, 2527-2532, 1974.
33. R.B. Gundlach and R.D. Pehlke, 'Rate of Molybdenum Solution in Carbon-Saturated Liquid Iron', Met. Trans. AIME, 3, 2337-2342, 1972.
34. A.A. Vostryakov, B.M. Lepinskikh and L.N. Shibanova, 'Kinetics of Dissolution of Iron in its Sulfide Melts', Deposited Dec. 1975; VINITI 2013-75, 15 pp.
35. R. Ohno, 'Rates of Dissolution of Rotating Iron Cylinders in Liquid Copper and Copper-Iron Alloys', (Res. Inst. Iron, Steel Other Met., Tohoku Univ., Sendai, Japan). Met. Trans., 4(4), 909-915, 1973 (Eng.).

36. V.D. Shantarin and P.M. Shurygin and V.V. Utochkin, 'Kinetics of the Dissolution of Niobium in Iron-Carbon Melts', Izvest. Akad. Nauk SSSR, Metally, 3, 31-33, 1966.
37. L.I. Krupman and V.I. Yavoiskii, 'Kinetics of Ferroalloy Dissolution in a Steel-Teeming Ladle', Izv. Vysshikh Uchebn. Zavedenii, Chern. Met., 7(9), 35-42, 1964.
38. V.D. Shantarin and P.M. Shurygin, 'Kinetics of Alloying Cast Iron and Steel with Pure Metals and Ferroalloys', Liteinoe Proizv (7), 19-21, 1964; Russian Castings Production, No. 7, 309-311, 1964.
39. K. Bungardt, K. Wiebking, H. Brandis and H. Schmalzried, 'The Dissolution of Molybdenum and Tungsten in Iron Melts as a Contribution to the Process of Dissolution of Solid in Liquid Materials. I.-Dissolution of Solid Metallic Bodies in Metal Melts Unaffected by Convection. II-Dissolution of Solid Metallic Bodies in Metal Melts Influenced by Convection', DEW. Techn. Ber., 9(3), Sept. 1969, 407-438; discussion 431-437 (in German).
40. I.P. Kazachkov and I.B. Parimonchik, 'Kinetics of Fusion of Ferro-Alloys', Steel in USSR, 123-124, February 1973.
41. P.G. Terziyan, 'The Kinetics of the Solution of Ferro-alloys in Molten Steel', Stal', 2, 126-127, 1973.
42. G.S. Ershov and V.M. Bychev, 'Kinetics of the Dissolution of Titanium Nitride and Diffusion of Oxygen in Molten Iron', Izvest. Akad. Nauk SSSR, Metally, 1, 62-63, 1975 (in Russian).

43. I.P. Kazachkov and I.B. Parimonchik, 'Factors Determining the Rate of Dissolution of Alloys in Molten Steel', Metall. Koksokhim., 49, 56-60, 1976 (in Russian).
44. S.A. Argyropoulos, 'The Kinetics of Ferro-Alloy Solution in Liquid Steel', Master's Thesis, Department of Mining and Metallurgical Engineering, McGill University, Montreal, Canada, 1977.
45. R.I.L. Guthrie, 'Addition Kinetics in Steelmaking', Electric Furnace Proceedings, AIME, 1977.
46. S.A. Argyropoulos and R.I.L. Guthrie, 'The Exothermic Dissolution of 50 wt% Ferro-Silicon in Molten Steel', Canadian Metallurgical Quarterly, 18, 267-281, 1979.
47. S.A. Argyropoulos and R.I.L. Guthrie, 'The Influence of High Exothermic Heats of Dissolution to Molten Steel', 1979 Inter. Seminar Heat and Mass Transfer in Metallurgical Systems, Sept. 3-7, Dubrovnik, Yugoslavia, 1979.
48. L. Gourtsoyannis, H. Henein, and R.I.L. Guthrie, 'Some Kinetic and Hydrodynamic Aspects of Making Aluminum and Ferro-Alloy Additions to Steel Baths', Physical Chemistry of Production or Use of Alloy Additives, Proceedings of Sessions from the 103rd AIME Annual Meeting, Edited by John Farrel, 45-67, 1974.
49. F.A. Mucciardi, 'A Study of Light Alloy Addition Techniques in Steelmaking', Ph.D. Thesis, Dept. of Mining and Metallurgical Engineering, McGill University, Montreal, October, 1980.

50. G.S. Ershov, A.A. Kasatkin, I.V. Gavrilin, 'Diffusion of Various Alloying Elements in Liquid Fe in the Temperature Range 1550-1700°C', Izv. Akad. Nauk SSSR, Met., 2, 76-79, 1978; Diffusion and Defect Data, 195-196, 1978.
51. Y. Ono and T. Shigematsu, 'Diffusion Coefficients of Vanadium, Cobalt and Molybdenum in Molten Iron', Journal Japan Inst. Metallurgy, 41(1), 62-68, 1977.
52. J.F. Elliot, M. Gleiser, V. Ramakrishna, 'Thermochemistry for Steelmaking', Addison-Wesley Publishing Company Inc.
53. L.D. Lucas, in 'Physiochemical Measurements in Metals Research', (R.A. Rapp, ed), p. 219, Wiley (Interscience), New York, 1970.
54. K.W. Lange, 'Zur Temperaturleitfähigkeit des Eisens', Arch. Eisenhüttenw., 41, 559, 1970.
55. C.J. Smithells, 'Metals Reference Book', Fifth edition, Butterworths, 1976.
56. E.T. Turkdogan, 'Physical Chemistry of High Temperature Technology', Academic Press, 1980.
57. T. Iida and Z. Morita, 'Estimation of Some Physical Properties of Liquid Steel Near the Liquidus Temperature', Proceedings of the International Iron and Steel Congress, Chicago, April 1978.
58. D.Y. Povolotskii, V.E. Roshchin, and A.N. Keis, 'Diffusion of Deoxidants in Molten Iron', Steel in the USSR, 2(4), 289-291,

59. E. Ence and H. Margolin, 'Re-Examination of Ti-Fe and Ti-Fe-O Phase Relations', Trans. AIME, 206, 572-577, May 1956.
60. E.K. Molchanova, 'Phase Diagrams of Titanium Alloys', Daniel Davey and Co., Inc., New York, . Phase Diagram.
61. L. Kaufman and H. Nesor, 'Coupled Phase Diagrams and Thermochemical Data for Transition Metal Binary Systems', CALPHAD, 2, no. 1, 55-80, Pergamon Press, 1978.
62. O. Kubaschewski and W.A. Dench, 'The Heats of Formation in the Systems Titanium-Aluminium and Titanium-Iron', Acta Met., 3, 339, 1955.
63. S. Wagner and G. St. Pierre, 'Thermodynamics of the Liquid Binary Iron-Titanium by Mass Spectrometry', Metal. Trans., 5, 887, April 1974.
64. J. Chipman, 'The Deoxidation Equilibrium of Titanium in Liquid Steel', Transactions of the Metallurgical Society of AIME, 218, 767, August 1960.
65. R.J. Fruehan, Met. Trans., 1, 3403-3410, 1970.
66. I.I. Kornilov and V.S. Mikheev, Doklady Akad. Nauk SSSR, 104, No. 1, 88, September 1955.
67. D.A.R. Kay and A. Kontopoulos, 'Determination of Deoxidation Thermodynamics in the Fe-V-O System Using Solid Electrolytes', Proceedings of the International Symposium on Metallurgical Chemistry-Applications in Ferrous Metallurgy, held in the University of Sheffield, 19-21 July, 1971, pp. 178-183.

68. Dale U. von Rosenberg, 'Methods for the Numerical Solution of Partial Differential Equations', American Elsevier Publishing Co., Inc., New York, 1969.
69. B. Carnahan, H.A. Luther, and J. Wilkes, 'Applied Numerical Methods', John Wiley and Sons, Inc.
70. G.M. Dusinberre, 'Heat-Transfer Calculations by Finite Differences', International Textbook Company, 1961.
71. H.S. Carslaw and J.C. Jaeger, 'Conduction of Heat in Solids', Oxford University Press, 1959, Second Edition, page 199.
72. N.W. McLachlan, 'Bessel Functions for Engineers', Oxford at the Clarendon Press, Second edition, 1961.
73. H.S. Carslaw and J.C. Jaeger, 'Conduction of Heat in Solids', Oxford University Press, 1959, Second edition, p. 204.
74. H.S. Carslaw and J.C. Jaeger, 'Conduction of Heat in Solids', Oxford University Press, 1959, Second edition, p. 295.
75. S. Paterson, 'Propagation of a Boundary of Fusion', Proc. Glasgow Math. Ass., 1, 42-47, 1952-1953.
76. G.G. Bach, 'Computing Methods I, II', Dept. of Mechanical Engineering, McGill University, September 1971.
77. E.M. Sparrow and J.L. Gregg, 'Laminar Free Convection Heat Transfer from the Outer Surface of a Vertical Circular Cylinder', Transactions of ASME, November 1956, pp. 1823-1829.

78. T. Cebeci, 'Laminar Free Convection Heat Transfer from the Outer Surface of a Vertical Slender Circular Cylinder', Proceedings of the Fifth International Heat Transfer Conference, Tokyo, Vol. 3, 15-19, September 1974.
79. F.A. Mucciardi, 'Heat Flow to Cylinders Submerged in Liquid Metal Baths', Master's Thesis, Dept. of Mining and Metallurgical Engineering, McGill University, Montreal, January 1977.
80. S.W. Churchill and R. Usagi, 'A General Expression for the Correlation of Rates of Transfer and Other Phenomena', AIChE Journal, 18, 1121-1128, November 1972.
81. J.P. Holman, 'Heat Transfer', Fourth edition, McGraw-Hill, 1976.
82. E.R.G. Eckert and T.W. Jackson, 'Analysis of Turbulent Free-Convection Boundary Layer on a Flat Plate', NACA TR 1015, 1951.
83. F.J. Bayley, 'An Analysis of Turbulent Free-Convection Heat Transfer', Proc. Instn. Mech. Engrs, 169(20), 361, 1955.
84. T. Fujii, 'Experimental Studies of Free Convection Heat Transfer', Bull. J.S.M.E., 2(8), 555, 1959.
85. O.A. Saunders, 'Effect of Pressure upon Natural Convection in Air', Proc. R. Soc. A127, 278, 1936.
86. M. Jakob and W. Linke, 'Heat Transfer in Boiling Water', Forsch. Ceb. Ing. Wes. 4, 75, 1933.

87. W.H. McAdams, 'Heat Transmission', Third Edition, McGraw-Hill, New York, 1954.
88. C.Y. Warner and V.S. Arpaci, 'An Experimental Investigation of Turbulent Natural Convection in Air at Low Pressure Along a Vertical Heated Flat Plate', Int. J. Heat Mass Transfer, 11, 397-406, .
89. Metals Handbook, Volume 3, Ninth Edition, American Society for Metals, p. 375, 1980.
90. G.Y. Ho, R.W. Powell, P.E. Liley, 'Thermal Conductivity of the Elements: A Comprehensive Review', Journal of Physical and Chemical Reference Data, volume 3, 1974; Supplement No. 1, pp. 682-688, Published by the American Chemical Society and the American Institute of Physics.
91. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelly, and D.D. Wagman, 'Selected Values of the Thermodynamic Properties of the Elements', American Society for Metals,
92. H.E. McCoy, 'Thermal Expansion of Iodide Titanium', Trans. Amer. Soc. of Metals, 57, 743-746, 1964.
93. O. Kubaschewski, and W.A. Dench, 'The Heats of Formation in the Systems Titanium-Aluminum and Titanium-Iron', Acta Metallurgica, 3, 339-346, July 1955.
94. C.W. Bale, A.D. Pelton, W.T. Thompson, 'Facility for the Analysis of Chemical Thermodynamics', FACT User's Guide, Edition 1, June 1979, McGill University, Ecole Polytechnique.

95. J. Szekely and Y.K. Chuang, 'On the Melting and Dissolution of a Solid in a Liquid with a Strong Exothermic Heat of Solution', Chemical Engineering Science, 27, 2300-2304, 1972.
96. E. Ravoo, J.W. Rotte and F.W. Levenstern, 'Theoretical and Electrochemical Investigation of Free Convection Mass Transfer at Vertical Cylinders', Chemical Engineering Science, 25, 1637-1652, 1970.
97. J. Szekely and N. Themelis, 'Rate Phenomena in Process Metallurgy', Wiley-Interscience, 1971.
98. V.G. Levich, 'Physicochemical Hydrodynamics', Prentice-Hall, p. 42, 1962.
99. An. N. Nesmeyanov and G. Trapp, Zh. Fiz. Khim. 39(2), 356-9, 1965 (in Russian).
100. Metals Handbook, Volume 1, Ninth Edition, American Society for Metals,
101. Instruction Manual: Microcomputer Analog Input System MP7218, Burr-Brown Research Corporation, P.O. Box 11400, Tucson, Arizona, U.S.A.,
102. FLEX 09TM Disk Operating System, Technical Systems Consultants Inc., P.O. Box 2574, West Lafayette, Indiana 47906, U.S.A.
103. MP-T Interrupt Timer Instruction Manual, Southwest Technical Products Corporation, San Antonio, Texas, U.S.A.
104. S.A. Argyropoulos, R.I.L. Guthrie and K. Ananthanarayanan, 'Microprocessor Studies in Process Metallurgy', The Canadian Mining and Metallurgical Bulletin, August 1980.