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Finite-~propertie~ of m~xirnum-~ikelihood e~t5rnators are . 
11 preS-énted; the discussion is largely confined to, propertles ~which apfl) 

l, 

--------..... 

to pararnetric mOdf.J wüth identically a~d indep~ndent1y dlstrib.uted r 

observ~!lpns-; and_\\I~the whole parameter 'ir>.-of if\,terest. ~e fast 
t,l <i {J' ' 

review various criteria which nave been advanced to ensure that the~· 

estirn~r is specifie for the parame ter and'ls close to It. This is ---
follo",;ed by an account of tnvarianCj and of condiuons for su~ficlency . ./ 

The survey is rounded out by a discussion of conc,eptual and computatiôJ\a1 

problems encountered in rnaximum-likelihood estimation and of thè problem· 

of rnaking probability-type staternents usi~g the rnaxirnum-likeli~ood .. 
. estimator. 
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Résum/ 

Ce mémoi re présente des prorri~tés non-asympto.t iques de l'est 1 matcur 

du maXImum de la vralseflblance. La dl scusslon·l~f. l iml te cn f!randc rart II ' 
.. 

aux propriétés appl1cables à des modèles paramétnques 8VPC ,ob~l'rV;JtlOl1' 

dlstTlbuées indépendamment et, identiquement, eù l'on s'lntéres",<, il 

1 
toutes 1 cs. cComposantcs du paramètre. On l'asse d' ahord e11 rc.vuc 1l'~ 

crltères qUl assurent la Justesse de ~'estlmateur ct mesurent ~on 

'éloî'go('mén-c du paramètre. Il suit un exposé de l'mvaTlanc(' ('t M'-

condItllons qUI assuren~ la suffisance de l'estImateur. Nous t crml nons 

par une dIscussion des problèmes conceptuels et nurnénqm's qUl entouTC'nt, 

l'appllc~ion de la mé.thode, ainsi que ùu problème de son utlll,satlon 
If 

dans des énoncés à charactère probabiliste. 
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CHAP-rER l 1 NTROOUCT 1 ON 

SECTION 1.1 POINT ES~~TION 

The prohlem of pnram0trlc point ~stlmation 15 on0 wher0 n S0t of 

data x:= (x)' ... , x) (\~l11Ch can 110 rc~ardNI as a point 111 m-dim<.'n-
ln 

, 
sionn) Euc)idC,'an space') 15 takell to he the renl1ZRnon of a rnndom vari-

ahle ~hose distrIbution, though unknO\\'ll. '<:an 1;(' assunJcd to hclong to a 

c~rtain pararnctric family, so that ont' ean dcnotc tht' probahility that 

x) 
<; Xo , X

2 < "0.." ... , x ...; x" , 
] m m 

or x...; Xc for sho).'t. by: 

( PC x <; xo) = Ftxo; 8) 

The functi ona l form F ( .; .) of tht' mul ti van atc cumula ti vc di strilm-

tion functlOn is complctclYlspccifie~. Ilowever, it can on1y he said of 
e that ItS value lies in sorne suhset f) of J....-dirnensional Euclidean 

space. 1 t i5 the purposc of paramctric point estimatIon to find. from 
~ 

the observed samplc x, a funcÜon êCx) of the' data (termcd an csti-

mator) which ranges over ( .. ) and which can he Sélld to represe~~ 31 

reasonab1e value fOT the unknown parameter e. 

Although sorne have criticized the use of the tcrm 'cstimator', 

preferring to speak only of 'estimates' ~(Fishct, 1958, p.7), wc note 

that everyday language~refers to an estimate as a definltc valuation of 
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n qllantity i.e. as a ~pl'cifiC'd numher. and it !H'C'ms hest to liS to dlo.,-

tin~uish the estimator!~Jls the agent or J1r_o('~s of estimation, From lb 

produet, the estim~tc (Carnap, 1962, n.S24). 
1 

SHuations wheTl' (-) ean he narrowed down to n finlte collection 

of points will not interest us, sinee the approach to such multiple de­
l) 

cision~hlems 15 essentinlly differrnt From the ol1r taJ..,ell h{'l't'. Rather. 

the cardir1ality o-L (-) will he th=}t of the set of l'cal num!ler< ln or(\el' 

to make point estImation mcnningful. It must :lIso-hr assumr(\ th:11 tlw 

parameter is identifiable, that 15, that no two distinct values 0 
"" 1 

and 0, of H arc such that Ho; 01) = Ho; 0,,). 

Justification for Point bstimation 

1 
Bcforc gaing furthrr, it may he~otcd that sorne have questioncd 

the lCf!itimacy of point estimation as Il statisa·cal prohlem. l'OInt 

cl\timation is a 1'athc1' weak form of infc1'cnce: It"mcrcly proddcc~ <l 

A 
( 

siTrgte number 0 and <loes not allow liS to ma"c probnhil i ty-re-Hrted stat(\-

- "" 
ments such as arc availahlc in tests of 51gnificance. l~cre 15 sorne 

feellng that the data cannot posl~d hly he 1'educed to n single numbc1', and 

that one should look to inte1'val estimation as the approp1'intc alternative. 

The argument i5 advanced (from a Baycsian viewpoint) by Tiao & Box (1973) 

that if a client wants n single numher (a point estimate) as the outtom(" 

/ 
of the statistical infercneQ, he ought to he tald that ne 5houldn't 

get it. 

We will not aMempt ta answer such critiqu~s directly; indeed, the 

variety of criteria which have been seriously propos cd for point estima-
5!' 

tion testifies to the essential 'fuzzincss' of the proeess. We will, 

1 

1 -, 

1 

1 
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howcvcr, i llu!itratc li fcw prl1cticnl situations which "ither dcmalld n 
/ 

point cstimah or whieh nr" sueh thnt the nnnlysi 5 i s 'considcTnhly ('n­
l' 

hanccd hy the pos!dbilit)' of point estimation. (Questions rc-)Ilting to 

the makin~ of rrohnhi1ity-lik~ statdmcnts will he disctls"Scd furthor. in 

Section 4.3.) 
1 

III land surv{'yillg. s('verlll mea~urcmcnts of 11 'qu-antity (sny, JÙw 

distance hctw('cll two points fi _and R) may h(' nVlli'lahlc, /lnd past ('),-

perience may su~g('st Il rC3so~(, p\lramctric fami ly to -rcpr-cscnt thi 5 

problcm. H~r(', presumllhl},-. it will do no good to sny thnt the survcyor 

should he satisficd with the fnet tl1l1t the Ù'istnnc(' is probnbly bctwl'l'11 1 
1.71 km and 1.7:' km. The purposc of th<.' survcy i s to construct Il map ~ 

li 
and 500ner or later thc.mcasuremcnts will hav(' to he inteRTnted with 

others and the di stance bctwcen A and B will then he rcduced to a 
\ -

point cstimatc: the nature "of the medium allows' no other rcasonnblC' 

conclusion. 

e 

Now, there is a very widc class of /~itllntions wherc the paramctcr 
1 

i s -in a sense 'reaI', whi le ,the observations can be çonstrued to havr 

been devcloped specifually ta lead ta ah aSSèssmcnt of the paramcter. 

In the rand-surveying cxample, the basic observations might he thosc of 

rcadings of angles, or ~f the timing of radar pulses, or of distance on a 

photograph, etc. Where the parameter is ~jlhysical quantity, point esti-
1 

mation has, we feel. a clear renson for eXistence. It is justified br 

our necd ta know sorne property of a real ob j ect . On the other hand, 

many situations are not of the 'measurement' type. but rathcr lare n fOTm 
~ ~~-

of 'k>delipg' of the problem by means of a parametrie family. To takc an 

example from Hartigan (1967) (who. discusses another aspect of the 

" t--
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'mt'a,sllrC'mt'nt -mol! e Ilng' di t'ho t orny) ali l'Xll<'ril11C'llt set up 10 l'valuntc th(' 
\ r" 

tC'mpcratUTl' of-;1-11c :-'\111 i ... of wlwt W(' t'ail th(' mea"lI1't'IIIOl\t t)'pl'. III ('011-

t rast, wlH'1l Il series of t<.'mpe't'ntur('c; an' tllJ..<'1l at varÎou ... t 11Il('~, 1 t 11111)' 

he dl'sirnhlc to intt'rpret tIlt' seri('s Ily m('an'" of a stochnst lC model which 

.mi~~ht involvl', sny"a pnraml'tl'r rcprp"('lltillg tIlt' m('all tCIIl]ll'r:11ure and I~:--, 

.variunce. Philo!-.ophiqllly, the na1\1r(' of tlll' ]1n'ram<,tN h('n' h dlf'f'prent, 
\, 

i t j<; a construct of our minds mort' thllll a t'cal 011.1 <'ct , y<,t l'ven wl1l'1l 

the pllramcter 1" purel)' conceptll:ù and Ilot a phy:-.ic:l1 qllant it}', 1 t /lia)' 
,,' 

~e oxtremely usef~ll to have fi point l'!-.tin'latl' for the' pnrametcr. An 

cxnlllple may he ta).,l'II frol11 tho hi ~t()ry of (;oll<.'ti<: .... 

Around 1913 it hall alrend}' bCl'll c~'tabli"lH'd that tlll' }!('nctll':l]lY-=-

detcrminetLtrait!-. of an individual art' d('tl'rmtllcd hy palrs of ~cne ... 

(prcsumnbly Iocrtted on chromosomes), (Jill' mCmllt'T of t.he pa 1 r n'prcscnting 
/ 1 

the pate~lla'l inheritnncl' and the ather, the matcrn:r\. Slmpll' Henetil' 

traits can take two charactcrs or asp(\cts .(such li" whitl' or rell C'y(\ 

t)igmcntnt;ol\ in fruit flics) dcnotcd hy A and a, Il and b etc. 

A dominant charnctcr A 15 expres5ed whencver the individual 't; gelle pair is 
'''-.. 

AA, An or aA, whiie the rcccssive chnractcr a is takcn to re5ult From 

the prcscllc(, of thl' t1011hIy rcce5sivc RClip rail' aa. If. was ail ohjcrt of 

investi~ation to study the frcqucncy of offspring5 with exprcssed charact<,r , 

pairs AB, Ah, aB and ah resulting from the m'ating of pure hybrid 

pa{ents whose gcne pairs arc of the form AqBh, the probahilities,of cach 

\ 

charncter pair hcing dcnotcd PAR' PAil' Pail' Pub' \Vith gClletic thcory 

alrcady ~ssc:tinR thllt PAR + P Ah C P AB + Pan - (). 75, the ahovc prohn-

hi lit y distribution can he parametrizcd by the cross-ovcr frcquency 

'\> 
Now why should one hc intcrcsted in /point estimates for -- ---

F'L .l _______ .. ______________ ~\ ____ ~--------------
---., 1 
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The geneticist A.II. Stùrtevant (1891-1970) interpreted 8
AB 

as (a (concep~u;]l) 
, 

distance between thè loci b-f,~t,he genoes for trait pairs (A, a) -and 

The availabiIity of estima tes 'for sev'erai \such traIt pairs c~, 
, 

abled hlm to determine that for ,many triplets A, B,C 1 wi th 8' s suHi-

ciently small, one'observed, an aimost linear relationship ê
AB 

+ ê
BC 

) 

- ê : From this last observation i t was deduced that genes are arranged 
AC 

. \ 
lipearly on the chromosome. It then became possible to prepare 'gene 

maps' 5ho~ihg ~elati ve conceptual' distances between ~ene loci. Sucb maps 

have been a great concept'ual aid in manipulating data in _the expIO'ra~'~ 

of genetic phenomena, and only point estimates caTI make them possible. 
r' 

(The above account is abstracted from Whitehouse, 1969, pp.77-90.) 

Justification for point estimation could also be made on the oasis 

, ' ~ 
of De~ision Thepry. Howerer, we feel point estimates are ~~t r~ally 

decisions about the '~alue lof 0t~hollgh there is sorne contrDversy 

attached to this view. (Tukey, '19;0, provides a lucid 'argument against 

-it; the ,distinction between estlma tion and decision is supported, e. g. , . 
in Fisher, 1959; p.IOO; Hacking, 1965, p.l64; Plante, ~971.) Aithough 

Decision Theory provides very useful criteri~ for point estirnators, we 
• 1 

take the view that point e5~imâtion is a legitimate, if primitive, form 

'" of sci$ntifi-e inference, and that a widel' class of cr~ter~a: is to be 
"\1 

, 
considered . 

, , 
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SECTION 1.2 MAXIMUM LIKELIHQOD ESTIMA TIO,N 

We will now restrict our attention to parametric fami llcs 

{FJ __ ; 8) : 8 E e} 'where a11 members F(·; 8) 1 are absolutely contlnuou~ 

with respect to a single a-finlte\measure À. ln other words, 1t wlll 

/ be assumed that the members of the parametric_ fami l y can be repre5en~cùI 

by a set of densi ties 

= dF ( .; e) ( ) 
p(x;, 8) d).. x _. 

, 
The dominating measure À lIii usually the Lebesgue me~asure, in 

which case-, we spe~of conunuous observatIons, or a counti ng measure., 

\ 
when the observations are sald to be di scrcte . Whll e . thesc two measures 

are the most common, it 15 sometlmes necessary to use sorne other measure . 
../-

For example, Proschan & Sullo (1976) use as a dominating measure the '1!îfx-

ture of the Lebesgue measure on n·dimensional Euclidean space and 

of the Lebesgue measures on sets of the form 

\ 
the intetsectlOns of such sets Ce.g. {x: x. 

1 

{x : x. = ~} and on aIl 
1 J. 

x
J 

= xl.}) considered as 

... , RI. It should be noted that whlle we may 1) 

\ /~ 
subsets of 

n-1 
R , n-2 

R , 

conceive of the data as cony;isting of contlnuOUs observations, the obs'er-

vations that are available are always essentially dlS-êrete, and that the 

use of' a family of abso1 utely cantlnuous distr~butions lnvol ves sorne 

approximation. The observations may he assumed continuous to permit the 

·ûse of a.." simple 'pararnetric fami Iy, and because they rE1Pt:esent quanti ties -

such as distances - which in various experiments could ~ evaluated with 

varying degrees ___ uf ,;recision. The rnethod of maximum llkelihood estima-

tian uses the quantity p(x; 6) with x fixed at Ithe observ~d value; 
, ' 

" 

. ( 

t 
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p(x; 6) is caned the l.ikelihood function and it 15 dcfined over the' 
A ~ 

pararneter space \ 8. The rnaximurn-likelihood cstimator 6 = 6ex) of e 
, 

lS usually defined as thaf value e E e a~ the suprernum of the 

likel1hood function 15 at!a1ncd, I.C., 

p(x; ê) = sup{ p(x; e) : e.E e } 
1 

Throughout th1S thes1S the maXlrnurn-llkelihood e~tlmator WIll he abbrevlatcd 

MLE. Another definitlon of MLE i5 sometimes used: w1th 'V = Ve 'dénotrng 

the gradient opera tor ~ respect to e, the ~lLE 1S deflned as the 

solution of the likehhood equation 

'Velog,p(x; ê) = O. 

r; :11 1 1 

When there are several st9lJbons to the likelihood equatlon, that solution 
, " 

which maXlrnizes p(x; e) lS taken as ê. Usually the two deflmtlOns 

~ , 
coincide, but the second one lS sometlmes adopted, 'for example, ll!l'r,troublc-

sorne cases where the likel ihood functlOn has a singulan ty on the b~u'nd-

ary of the pararneter space. 

The terms 'likelihaod function', !maxirnurn likelihood estimation", 

etc~ originate with Fisher (1922). There is sorne dispute as to wh~ther 
\ 

Fisher orig'inated Ithe concept, which has been attributed variously to 
" 

F.Y. Edgeworth, C.F. Gauss, P. Laplace, D. Bernoulli, and others. Sorne 

'" references to the history of MLEs are Edwards, 1974, Kendall, 1961, and 

Pratt, 197t). ~ See also---the survey by Worden (1972; 197~h..;-

The issue is clouded by the fact that MLEs can he regarded as a 
,r 

particular case of' 'Bayes' estimator5. If the parameter[ is regarded as 
~ , 

" 

a random variable wi th distribution having densi ty n(9), i t is possible \ 
( ~ 

o 

------------------------------------------- 1 , 
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to interpret p(x; e) as the density of the distributioT1 of :>. cond<.-

l' 
tional on e, and this allows us to use Bayes 1 f<Drmula to derive the 

densityof e, conditional on XI; xo : 

n* ( 8 1 x = x~(8)P(Xo; 8) 
o q(xJ 

can he re~arded as a nOPRa1îzing constant. 11"( 0) IS terrncd 
-~ 1 

the prior distribution and 11"*(0-)'": that of the posterior dIstribution 
\ 

of (8. A Bayes estimator is
l 

defined by takirig sorn~ a.pcP.!onriate charact;er-
~ , 

Is~ic of the posterior, such as its mean, medlan or mode . ./Now lit TI( 0) 
./ ' 

is the uniform distribution on e, the MLE' corresponds to the Bayes 

L- //----- estimator using the, mode of the posterio~Vhatever the resolutlOn of the 

1 -----
debate over prlOrl'ty for the Invention of MLEs, i t may be said that 

Fisher was instrumental in developing mo~ the basic theo~etical 
~ 

propertles of MLEs, in such fundargeIttal paper,s as Fisher (1922, 1925, 
\) ----1934) • Further hi~ical notes will accompany the discussion of specifie 

.____-r 

propertles. 

Motivation for the use of MLEs 

\ 

In the body of this thesis we will be concerned wi th properties of 
Il ' 

MLEs, ahd the overall "performance of the estimator with respect( toI those 
( 

properties can be taken as a justification for its use. It may, however. 
( 

be of sorne interest to try to moti vate the use of MLEs from general 

~(:~nsider~ti~ns . 
." 

The correspon<!.~ce between MLEs and BayeS esti~ators can provide 
./ 

one motivation for the use of the method, albeit a rather weak one since, 

when e is unbounded, no proper uniform density n(-) 
. { 

can Integrate to 

I~--------------------------------~~------~~ ~ ( 1 
'r 

-'-- \ 

~ ---



( 

-9-

• 
one. Another motivation with a Bayesian 'flavour' has bcen given br 

Hi'ggins (1977). It relies on the idea tnat th1e posterior dlstribution can 

boe used as t;he prior distributibn for analyzmg any other data set ob-

tained undei- similar clrcumstances. Now for a given data set >-, and . ' 
for sorne prior distribution TI whose densi ty does not vamsh on e, 

a posterior derrsny-- n* can be obtained. 
1 

prior dlstribution in copjunctlon wIth the 

If n* is now used as the 

, ~-----
sarne data set, x, a second 

posterior densi ty n** can be obtained. The process can be repeated , 

indefini tcly. a~ each st,ep using the pos,tenor of the last step as the _____ ~ ----/ 
prior. Jt is easy to see that this iterated posterior denslty will con-

verge to a degenerate distribution concentrated at 'the MLE. I-~ 

Beyond such Bayesian-style justIfications, it is temptmg to sec 

in the likelihood function a 'dual' of the density,' 50 that Just as 

knowing the density exphcitly enables us to say something a~he 

probable location of the vi:nliate x, 50 knowing the likelihood allows 

us to say something about the 'likely" value of e. The du~li ty, how-

ever, is only approximate, since the behaviour of the two functions 

pC·; e) ana p(x;·) is quite different in general. 1 

Mocleis 

It ~s convenient to speak of the model as the conj u~ction of the 

data x (considered as a random variable). of the functional form of 

the densi ties p(x; 6), of the range .e of distributions in the para­

metric family, and possib.lY of other 1 factors which may be relevant toC 

the situation at hand (such ,~~h~p;ese~; reasonable prior dis-

tribution) . 

1 
1 

1 r 

' .. 

1 . 
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~' 

An important type of model is one where the data x consists oL 

n jointly (possibly multivariate) observations x = (x x ) l' ... , n' each 

observation'having the same distribution. If the(denslty of that common 
l , 

1 

parent distribution is denoted- q-(.; 8) and if the density of x 

is denoted rÇo; e), 

as 

~' r we have ,<that the likel ihood funttion can be ,expressed 

I1(X; e) = 
n 
TI 

i=l 
q ex ; 8) . 

l 

~ While we will primarily be interested ln models where the observations 
1 

are taken to ~e independently and identically distributed, we will 

nevertheless speak of p ,as being the density (lnstead of the more 
[;{.) , 

standard usage,_ where density always refers to the parent âtstnbytlOn). 

~ 

This convention allows a more general nomenclature to be followed. 

1 

-. 
1 

1 

1 

\ 

1 ----T 
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SECTI~N 1.3 PURPOSE AND NOTATION 

:l 
The properties of MLEs most often mentioned are ~syrnptotic ones, 

This means that 1imiting properties of the sequence of MLEs {a} are 
1 n 

studied, where 

sample of size 

§ is the MLE (considered as a random variable) for a 
n 

n in a mode! with identically and independently distri-

buted observations. For exarnple, it can be established (under regularity 

L {S"'} conditions) that the sequenc~ n tends in distribution ta the dege~-

erate distribution cqncentrated at e. The main argument against con-

sidering such asymptotic properties is that they can guarantee nothing 

about the behaviour of the estimator for any given sample siz~ n. In 
--

other words, if we consider another sequence S 
n 
, such that for n < 

1010°,0, e n :> 101000 '" {a } :: 0 and for e = a , then the sequence n , n n n 
"-

enjoys aIl the asyrnptot i c properties enjoyed by {a }, whi1e a 15 
n n 

1 
comp1ete1y use1ess in practice. (Savage, 1976, p.453; see a1so: Ka11ianpur 

- ---. & Rao, 1955; Fisher, 1959, p.146). On the other hand (as noted by 

Chernoff, 1976), the theory of MLEs foor fini te samples ~s often difficul t 

or-irnpossib1e to ~late. The asyrnptotic theory does say something 

about one aspect of the sequence {ê } ,as a whole, and it can be hoped 
n 

r that when there are no sudden 'breaks.' in the sequence (as in {a } 
n 

above), the asyrnptotic property is ref1ected in weaker forrn in individual 

" .r 
members e of the sequen~e. 

n 
1 

\In this thesis we will survey non-asymptotic properties of-maximum 

~ likel+hood estimation. While we will avoid propert1es of the sequence of 

estimators, it will nbt be possible to restrict ourse1ves to properties 

" of estimators e per se. Sorne of the more significant properties of 
/ 

'" maximum likelihood estimation pertain, not to e itself, but to the 

{----_.--------~ 
1 
1 

1 

/ 

\ 

~J 

1 

1 

~ 

~ 
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manner ln which It is produccd. Thus whcn we say that ~HJ:s arc InvarJ-

." 

ant to reparametrizatlons (50 that if p(x'; 8) == q(x; cjJ), witf) ql = \)1(0), 

'then ~ '" w(ê)) , wc a~e reaIl)' saylng something, not ahout estimator::. 

ê or ~, but about the /prinClplc of estimation WhlCh a~]O\l'5 tl1e~e two 

estimators to be related ln th15 manner. 

Although It often happens that ~nly a subpararnetcr 8 
] 

of- e 15 

of Interest (wlth tre rernaining part of e he,lng tcrmcd an inèidcntal or 

nUisance ~u~parameter), we wll] on]v conslder criteria a~d propcrties 

WhlCh apply to si tua tl0ns \vhere t11,e whole paràmcter 15 of Interest. 1 f 

one seeks to motIvate the use of a method on the baSl~ of 'phllosophical' 

consIderatIons such as the apparent dualitv of the deriSity and the likel1; 

hood, It would appear deslrab]e to use sorne modifIcation of the l11--cl1-

hood functlon Instead of thc / llkelihood functl0n Itsclf. KalbflclSch 

G Sprott (1970i explore severa] possible modIfIcatIons. 

An excellent sUTVey 0' .. ximum-li.kelihood ostim'.tith, made h, 

Norden (1972; 1973), with an emphasls on asymptotic propertIes, however. 

Plan 

In Chapter 2 of this thesis, we will consider the performance of,! the 

MLE relatlve to criteria which ensure that an estlmator does, in a sense, 

estimate the parametér; and relative to' crlteria which measure how close an 

estimator cornes to the tr~e value. In Chapter 3 ,.,le review the sufficlency 

of the MLE and various lnvariance properties of the Ihethod of maximum like1 i-

hood. In Chapter 4, we t;,ake a brief look at sorne of the factors which hin­

der the applicability of the .rnethod'" Chapter 5 Icontains a summary of pro-

perties of maximum-l~kelihood estimation. The'three appendicies will be 

refered to at appropriate places in the main portion of ~he thesis. 

--._-. .-.; l 
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Notat~on 

The probahll i ty of an event~· fi. ... i Il he denoted pet>. \8) or F'( A) , 

ac~ording ta whether or not l t l S necessary to spec l f" the para-
1; 

mcter of the probahility dlstrilm.tlon, 

, 
1 

Both the denslty and the lihel1hood functlOn w]11 lw" dcnott'(\ 

p(x; e) or q(x; ei, ]t be1l1g'clcar from the cantt'xt ",hether >. 

or e lS rcgarded as flxcd. 

Lilcwisc, no distInction will he made betwccn x regarded as a 

r~ndom vanàble and x as its rcalizatlOn. Agaln, the con~xt 
wi Il speClfy WhlCh usage 15 the, appropnate one. 

The par,ttmeter 5pace \vill generally be dcnoted e wlule the space over 

WhlCh the randam variable tales va1lles wIll be denoted 

Expectation and variance will he denoted or E, or F. 

Parameters will be dcnoted by lower case Greel lettc1's e, ~, etc., 

and their estimators~wil1 be deno'ted ê, è, $,~, etc:?:, 
\,. ~~ , ' ,,-

Parameters and their associated functlons are generally to be re-

garded as vectars. ThIS i5 50 commonly the case here that no 

\ 
special notation w~ll usually h~ adopted to distinguish ~calar frorn 

( ~ 

vector parameters. The same remark holds truc of the data x, 

which is usually a vector. An exception will be in denoting the 

parame ter and variate of a multivariate Gaussian (or normal) distri-

bution, where v~ctors will be denoted by wavy underlining. 

The matrix (or vector) of derivatives of a function V is denoted 

__________ --------------------~-----o-" 

( , 
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and the matrix of second derivatives of a scal~r,valued functlon f 

will be represented by 

(Superscri'pt T denoting transpose.) 

It will often be necessary to specify the carrier or support set of 

a function. ~~~S~l be ,donc by means of a pair of pOlnted brackcts 

to denote the indicator functlon of the lo!!ical statement the)' 

enclose,) Thus ( a E A) __ denotes the functlon \~hose value lS one 

when a is a member of A" and zero otherwise, I.He\\'lse 

if e E [a, h]-

othcrW1SC. '1 

(Our usageof (, should not be confused with a more usual usage, 

where (X) denotes EX, the expectation of the variate À, e,g .• 

Barnard, 1973.) 

Il 
1 

J 

1 

j 

l 



( 

( 

( 

IJ 

CHAPTER 2 SPECIFICITY AND CLOSENESS CRITERIA 

SECTION 2.1 SPECIFICITY 

2 . 1 . 1 1 NTRODUCTI 01'\ 

The deflnitlon of estimator al1uded to in th~ flTst chapteT IS 

rathcr incompletc Slnce it 15 bascd on the "appcara,l1cc" of the estimator: 
~ 

It has-mcrcly been requircd that the statlstiç e range ovcr a subsct of 
"- 1 

the questIon of 0 fal hng not in (-1 but on the~ôoundar)' of (-) 

",i Il be considered in SuhsectlOn <1.1. l . / 

" The pnncipal requiremént '''e would like an estimator ll" to satlsh 

IS that of belng close, in some sense,to the truc 'target' value of ~. 

Several closeness crIteria will be considcred(ln the next sectIon; for 

most criteria, however, we are faced with a difficul~.t--!.!YICh arises trom 

the inability, in the Frequency outlook, of avcraging the performance of 

, --_an estlmator over the class of; possible populations or eqUlvalently, over 

the parameter space. Suc~ a difficulty disappears when a prior distribu-
, 

tlon is available. Consider.as a trivial example the problcm of estlma-

ting the truc~portion ! from a sample of n 
"=-

Bernoulli trials. --The n 

estimator TI = 0.5 is in many senses a poor estlmator: i t totally rejects 

whatever information the sample might provide. However, if the true valu~ 
~ 

of n were equal to 0.5, TI would undeniably be the closest estimator 
1 

according to any reasonable criterion, for the precise population having 

-~ a para~eter value equal to ()fS. Even for populations whose p':;';;;;tet.~~_~~ 
only nearly equal to 0.5, n may still be better than sorne qUlte reason- ~~~ 

-15- ! ! 

, ~, 
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able est}mators. ror lnstance, when closeness 15 measuretl hy the average 

of the squured deviatlon of the estImate from the truc value, i.e., 

A - ;: 
E( n - 'TT) , then 'TT == 0.5 15 better thun the tIsun] estimator, the' ML!. 71 

"numher of sueees50s"!n over the' wholC' range of TI from 
2/(n+1) 

tc l 
- + 

2Î(n+ 1) 
when n = :\ thc trivial estlmator 15 hetter than the 

~ 

MU: on the range (0.25, 0.75) (S11vcrstone, 19571. 

~ 

In order to exeludc such extremcly parOal estlmators as n, one 
( 

couid try to formulate n cri terlon of 'impartial i tf. Such a crI tenon 

would then have to he suffI c lcnt 1 y weal.. 50 as not to dcmand tha t the est i-

mator havc exactly the same performance for aIl populatIons ln 0): i t 

woufci seem unreasonahle to'" demand that the dIstributIon of any estimator 

he of the same 'shape' for a11 values of G. 

A slight1y different approach is to asl.. that the cstlmator, or 

rather the estImatIon method, be 'specifie' to the parame~rlzatlon in the 

broad sense that whcn the sume data arc used to estlmate Band, sepa-

-ra-tel)', to estlmate WeB) (a non-trivial transformatIon of 6). then one 

would not want the est1mator of ~(B) to equai the est1mator of 8. Wc 

" would lil..e to assure aurselves tITat B is 'targeted' to B but not to 
" 

$(9), that it 15 on the eorre~,seale, ('scale' is uscd here in the 

wide sense of 'logarïthrnie seal " 'harmonie sealc', etc., not merely in 

the sense of a unit of measur;~~ t). For the nonce we will use the term 

'speeific1ty' ta denote the fact that an estimation method produces esti-

rnat~rs which are 'on target', or specifie. The word 'eonsistency' would 

perhaps be better suitcd but its usual meaning (i.~. proQ~bility consis­

tency) is 50 weIl entrenched that confusion is best avoided. 

" , 

J 
, 1 
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2.1.2 COGREDltNCr:- SPI:C 1 FI CITY 

A fi rst approach to the question of sreei fi city uses the noU 011 of 

cogrcdicnce which ~e will discuss nt length Hl Chapter 3. Bricfl)', 

a model ha~ a cogredl l'nec structur<.' whcn one ean fIncl a group, (; of 

~ransformations on the space of ohservatlons and an (lnduccJ) group G 

of transfornlb.tlons on the paramcter spaec,' 50 that ta every tram,formatlon 

g E G, one ean find g E G to satlsfy p( g(x); g(8) ) =: p(x;O) for 

a11 8 and almost aIl ),.. An estlmator t i5 'cogredient' whcll tex) = 

§ and t( g(x) ) ::= &(Ô) for almast all ;'(,. The suggëStlon ro use a 

specifie type of cog:-'r!ience to arrive 3t a notion of specificlty has been 

made by Barnard (1962) (using scale invariance) and, ln a more gcnenll 

sctting hy Lehmann (19Sna,pp.I-17: 1959, p.IO). In thi5 scctlan wC' wIll 

primarily give an lliustratlon of the principle by justify'lIlg
l 

the' spcci-

flcity of a competi tor to the MLE. Consider ,the problem of making lnfer­

f 
ences ahout the menn );l of a k-variatc GaUSSl an di stributlon wi th kl10wn 

,., 
scalar covariance matrix of the form a~I on the hasis of an observat1on " , 

~, when ,,;;> 3. Thcproblem has at least the following symmctry: if ),. 

,~ere to be rneasured on a diffcrent linear seale (SélY that Instead of 

measuring a length in centimetres, one rneasllred it in inches) then instead 

of reporting an observation x one wOllld report y = a:x, where a is the 

scaling factor (a ::: 0.3937 approximately in eonverting from centimetres 

to inches). - The variate y is not distributed as Gauss 

another member of that same parametric family can be found, narnely Gauss 

(a~,a2a21), which describes the distribution of the new variate _ 0 y. We 

might therefore agree t1!at an estimator !(~) = lJ ,is specifie in the 

sense of being scale invariant, if for aIl a, the estimatot' yields a 

L 
\ 1 

1 -

1 
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value !(a ) lE 
.. 

(as al.! .. eompared to the true parameter a~ whcn mcasured 

in the np ropriste uni ts) when the data arc reported as ex _~nd the vari­
't.I 

anee 15 a 2
0

21. In 'symbols, 
o 

Thùs i 
o ./' 

this problem (as enlarged by the rcquirement of scale invariance 

'or covariance) an estimator of the type consiclered by Jam~s & Stein (1961): 
\ . 

_ Cl< - 2) (1) 

ln 1 

if at least scale-invariant, 50 that it can be c'laimed 'to be specifie l, 
for lJ • .. 

We note that there 5eems to be sorne degree of arbitrariness in the 

selection of the group of transformations und~ which the estimator i5 

to be c?greJtent. ~n~pe above example, it mig~t be natural to impose 
,? 

cogredience ~!t~ respect to aH/'affi.ne transformations, Le., 

It i5 obvious that the 6stirnator (1) is no longer cogredient under this 

wider group. Thus when several types of synunetry are possible for a 

J!lQdel, 'conflicting criteria of 'cogredIence-s'pecificity' will result. 

- , 1 
For this reason it is perhaps hest not to generali ze the cri terion be-

yond scale invariance; scale invariance also bears a strong reiationship 

to the notion of physical dimensionality of a parameter. which notion 
1 ~. 

should usually be respected. 

Finally, we note from the result in Chapter 3. that the MLE is 

1 

o 1 

.. 

o 

" , 

./ 
1 / , 

~--
\ 

1 1 

1 
1 

l 
1 

1 

\ 



. , 

. 
, . 
'" 

, , , 

. \ ' 

1 

-19- \ \' 
\ '\ \, . \ 

- \ ' 

a1ways cogredient whenever th;'re exists a cogredience structure in the 

'mode1. TheT'eforoe, the MLE wiU alwâys be cOgr'edi~noe-specific . 
\ 

1 

2.1.3 CRITERIA RELATED TO THE USE OF LOSS FUNCTIONS 

~ 

\ 
Even before the formaI introducÜonôf decision tli~o~y, 1055 func-

tions were being used in esti~ation theory.to provid~ closeness criteria. 
, • 1 

In this subsection we will consider a clas1,pf specificity criteria~hich, 

though not necessitated by a specifie 1055 function, are neverthe1ess - ~ 

c10se1y associated with; and can be derived fro~ a 1055 functiori. Lehmann 
\ 

" (1959, p.li), 'i~ a decision-theoretic.§éttin~. défines'an estimator e 

to be (loss-) unbiased if: 

fo.~ aIl 8' E e. That is to say, an unbiased estimator attains minimum 
\f CI 

, 1 1 1 

risk at the true value e. Two instances of 10ss-unbiasedn~Ss whi,ch 1. 

'1;'" 

have rather wide currency in the statistica1 litêrature aTe: mea~­
~ 

o~· 

unbiased~e~s (usua11y refered to simply as unbiasedne~s). which is un-

biasedness using uniform quadr~~ 10ss:-

l088 (13; a)': (~) 

1\ 
and median-unbiasedness, which i9'p!oduced, wh en Jsing a one-dimensiona1 

,-

parameter, by the absolute-val~e 1055: 
, 

lO8'8-Cê; 8) ;;; le - ê l,' .. ' ... ' 
. , 

~ There does not ap~ear to be much discussion of t~~ kin~ o~ unbiasedness 

\ t 
\ 

\ produced when a non-uniform quadratic .1055: 

, \ 

1 
\ 

Q:;.tiJr~ 

r:-

\.. 

1 

./ 
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1 
1 
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Zoss (8; 8) g(8) 118 - ê Il 

is usedjnstead of (2), the uniform quadratic 1055, even though it would 
---/~ \... 

sometimes be more natural (particularly i~ reliabili ty studies - Canfield, 
/..------ ---- . \ 

1970) to use, when 8 lS one-dimensiona1,the 1055: 

Zoss (8:-8);= 1 ~-11~ 

...----
Mean-unbiasednéss 

Just as quadratic JOss is by far the most widely discussed 1055 

function, mean-unbiasedness is the premier example of a specificity cri-

terion in Stat1stics. The CrI terion bail;; down to requiring' 'th.flt the 

expected value of the estimator exist and be equal to the true parameter. 

The criterion is associated with Gauss~ although it-has been remarked 

II 1 

(Barn,ard, 1962; Sprott, 1978) that untliasedness per se was lntroduced 

~tothe! study of linear models by ~111rkov. Gauss apparently specified 
\ ~ 

error-consistency for estimators: that\ the estimator should yield the 
\ \ 

true parame ter value when the errors are aIl equal to zero. 

\ 
Whatever the historical background, the fact remains that mean-

, unbiasedn~ss is both mathematically very tractable and statist\~cally- very 

1. restrictive. Apart from tractability, th~_best that can besaid,about 

mean-unbiasedness as a criterioIl.' i:s that it effectiyely do es rule out 1 

d ~ 

f, 
1 " 
1 
) , 

~I 

-~ . 

~ 

1 -
1 

1 

extremely partial estimators. Other arguments that have been advanced .--____ 
_ / 

in favour of the crite~!0l!_ are, in our opinion, far less compelling. In '~ 

particular. t~re is a certain circular quality to the argument (cf. 

HaMane & ((Smith; 1956) that when a biased estimator is being used to 

J ._ 

, 
" 

1 
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.-/----

produce a large number of es,timates WhlCh must afterwatâs be sununari zed 

~ Il ~j 
by a mean ~ median, that tne mean or median will it7flf be seriously 

I{ 
biased'. 

(1) 

(2) 

(3) 

Among the most serlOUS objections ta the criterlon we may note: 

That an estimation method producing mean-unblas~~;imators 

in one parametrizatlon will on1y produce unbiased estirnators faT 

affine transformations of the parameter, 50 that the criterion is 

only applicab1e~where on1y affine reparame~zations, if any, are 

to be C~,!!,""d' it therefore clashes with the proPerty of 'iL". 
ance to reparametrization\ which is considered in Subsection /.2.2. 

[ './ 
Thllt i t excl udes estimators which have no expectation, even when 

the sQurce of ,the divergence is a class of events of negligible 

probability. 

~ 1 

That the criterion is somet~es totally irtap~licable because no 

estimator exists which is unbiased in the me an (Ghosh & ~ingh, 1970; 1 

, / ____ --. ,~WàSan., -1970, p: 109; Tusnad y, 1968), while there are other cases 1} 
/ .. ,.\:....; 

(t... t· i " 
'" . where the unique unbiased estmator takes values outside the par:a-

~ 

meter space (Cox--&ÎÙnkley, 1974, p.253; Sprott, 1978; Wasan, 1970,\, 
Jl; " i ) 0 

p. 108). - \ 

Of the above objections, we view the lack of invariance as be~ng the 
17 

oost crucial, ;because it places restrictions on the ul timate usè to which 
l)r' (-' 

! • 
l 

the estimator will be emplored; even when thos-e uses can be fores~en ~ i t 
\ 

is far too easy to fail to see that sorne non-lineaT transformation will 

destroy any advanta~f which might accrue from using ,an unbia~ed estim~tor. 
1 

One unfortuna.;te example of a slip occasioned by this si tuati~~/, ---
1 ~, 
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ought ta be sufficlent to drive home the pGint. Wasan (1970, p.169) 

considers the estimation of the reliability in a Weibull rodel with known 

shape and threshhold - that is, the observations are essentially from 
,1 , --.~ 
an exponential variate (with unknown scale parameter)-raised ta a known 

power. The use of the MLE is cn tici zed because the MLE is biased and 

b'ecause the re liabi 1 i ty estimator 
"-
p for a single component of a system 

, 
will-most often'be used, raised ta the power m, ta estimate (or predict) 
/' 

----' 

the reliabili ty m 
p of a system wi th m identical components arranged 

in series. -" In the-si tuation being considered.! for _s.. true value p 

" 0.951 of the reliabili ty, the MLE p ~ve ~mean 

for m = 10 thk true re1iability wil1~be plO = 0.605 

Ep ~ 0.938, and 

( 
",)10 

while Ep = 

1\ 

0.527, 
, -' -r °10 

a 13% relative error (here, though, E(P") would be of interest). 

It is proposed to remedy the situation"by using the minimum-variance 

unbiased estimator p in place of 
1 

" '" p. Now simple cq]1sideration of Jen-

" l' t . Il show that _plO sen 5 lnequa 1 y Wl must be bLased, and biased posi-

tively·, 50 that where the HLE is unduly pessimistic about' the reliabil i ty, 

thé proposed rernedy will on the contrary be unduly optirnistic. The 
1 

following table, based on nurnerica1 integrat~compares the performance 
......-/ 

in terms of,bias and root~mean-square error, for the MLE and its alter-

--------------native, for se1ected values of m. 

m True value MLE MVUE Bias MLE Bias MVUE RMSE MLE RMSE MVUE 

1 '0.951 0.940 0.951 -0.011 0.000 ,r 0.034 0.027 

10 0.605 0.S6~ 0.624 -0.045 O. 01~ ,- ---0.154 0.140 

20 0.366- 0.336 0.408 -0.030 0.q42 0.154 0.162 1 

(Details cin Appendix A) The bias 'in -10 i5 already roughly 2 P percen-

tage points. against over 4 percentage points on the conservative side 
(,.,..-. 

~----------------------------------~-,- Î' 

1 , 
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For m = '20, the bias in 
_20 
P 

.' ---- .... 20 
is higher tha~~hat in p by the MLE. 

..... 
A final comment about this is that"re1iabilitry is hard1y the type' 

of situation where one should specify a symmetrlc 1055 function. Can- ~ 

field (1970) has made a similar point and h~s suggested using a piece-
, 1 

wise quadratic 1055. 

As illustrated by this example, and as should be expected from an 

estimator which is totally invariant to repa,rametrization, the MLE is 

in general not mean-unbiased for the partieular parametrization unde:r 

consideration. The question of w,hether any parametrization exists, for 
----

~~the correspondipg MLE is unbiased, does ~~t appear to have been 

approached except in the special'case of models of the exponential 

'family. phere, Barton (1956) has noted that with the notation: 

T 
p(x; e) = exp ( tex) ~(8) + S(8) + g(x) ) , 

the 'mean value' reparametrization 8 ~ T(8) such that: 

1 

, 1 

or equivalently. 

will have an MLE which is unbiased for the corresponding parameter and 
~ 1 

will be s,uch that.. its variance will attain the Cramér-Rao bound; from 

the argument it also follows that this is the unique parametrization 

(asideofrom affine transformations) for which the MLE can be unbiased.-
~ , ,. 

----- ~---. 
The mean-value parametrization i~ not necessar11y very conven1ent. 

, \ 
For example, in thé two-parameter univariate Gaussian with mean II and 

---

____ ---~---------:------~ .. c:-
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variance 2 
0, the mean value parametrization is: 

Median-unbiasedness 

{ 

Median-unbiasedness is the only other type of unbiasedness which 

has been given any consideration at length. From, 

li 
jJ = median x 

and jJ < a < b or jJ > ao> b 
~---

imp~y: E lx - ~E lx - bl 

(cf. Wasan, 1970, p.119) one can lmmediately deduce that when an estimator 

takes the median of its distribution at the true parame ter value, then 

that estimator will have minimum risk at the true parameter value for the 

absolute value loss. Thus an estimator ê i5 median-unbiased for e 
"-

when the median of e is e. 

Among other advantag~~is criterion 8irnpaurn (1964) ha.s noted 
"-

the fact, easily verified, that if e is median-unbiased for e-and if 

"-

g is a monotone function on e, then g(8) will be a median unbiased 

estimator of g(8) . Thus, it can be claime~ that this is a criterion 

which is capable of being applied where one may. at a later point, want 

to rescale the pararneter. e.g., by taking its inverse, or its logarithm, 

etc. 

Disadvantages of the criterion are that it·does not appear to have 
1 

a multi-dimensional analogue, and that when the observations have a discrete 
l , .­

distribution, estimators based solely on the data will a1so have a dis-

crete distribution where, typically, the median will only be known to lie 

1 
j' 
• , 
i , 

1 
1 

1 1 

1 1 

1 1 

--fi 
1 , ,1 

1 

1 ! 

1 

~-
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within a certain interval or a certain class. Birnbaum's suggestIon (1964) 

that an estim~tor be made to have a continuous distrihutloJ by uSlng ran-

domization would seem rather artificial. 

Because of invariance of the MLE to reparametrizatlons, 

we should again expe t t~at the MfE will not in geneY'al satisf!' the me,dimi-, , 

unbiasedness criterion. Thus when estimating the mean of a univariate 

Gaussian with known variance, the MLE will be median-unblased; ln other 

cases it is not: when estimating the variance of a Gaussian variate whose 

mean is known, the median of the ~1LE' s distri hution will alwa.ys be aboya 

the true variance. 

2.1.4 FISHER CONSISTENCY 

Consistency as usually defined is an asyrnptotic property of a se-

quence of estimators: if the sequence converges in probab~ty to the 

true p~rarneter value as the sarnple size goes to inflnity, th'è sequence (and 

hence, , by a usual ellipsis, the estimator as a typical member of lihe se-

'quence) is sa id to _be consistent. Another definition of consistency which 
1 

is not asyrnptotic, was' often alluded to by Fisher (e.g., in 1922; 1959, p.144; 

1935). Fisher gave a satisfactory definition for the discrete case and 

an adequate general definition was given by Kallianpur & Rao (1955). The 

asyrnptotic criterion is denoted'probabilitY,consistency and the latter, 

Fisher consistency. Fisher consistency appears to be definable only when 

the observations are identically and independently distributed random 

variables, 50 that this situation will be assurned to the end of this 
--~ 
subsection. 

« 

I( 

j 
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Di screte Case 

We begin by considering the case of observations from a discrete 

variate taking value x with probability~x; 8). Wlthout 10S5 of 
, Î~,~} 

generality the x's can be relabeled to be l, 2, 3 ... ; denotc h\' 

p the vector whose x-th component 1 S p(x; '8). Let the number of ob-

servaÙons of x (after re1abel ing) be n 
À 

and denote h}' q the vector 

whose x-th component is n ln, 
x 

the observed proportion ln the x-th 

cell. Both P and q 
1 

take theii values on 

îl = [ 0, 1 ] x [ 0, 1 ] x 

where [0, 1] denotes the closed interval from zero to one and.where the 

Cartesian product extends to k dImensions, or has countably-inflnitc 

dimensionality, according to whether only J... values of À, or an inflJ1ltc 
"-

number of! x's, are possible. An estimator 8 which can be wrltten as' 
/ 

A 

e H(q) 

where II 

is Fisher-consistent if H(p) = 8. 

Fixed Carrier Case 

In a more general setting, where the observations need not be dis­
\ 

crete, the role of q is taken by the empirical cumulative distribution 

furtction (ECDF): 

F C-) 
x 

1 
::; F (y; x) = 

n 

n 
r 

k 
II 

i=l j=l 
x .. <;y.> 
1,J J 

\ 

" 1 
. ~ 
, 

1 

1 
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(~here x. . Ïs the j-th component of the i -th ohservatio'n) as a re-
1,J 

"-
presentation of the sample. Suppose therefore that the estimator e of 

e is a functional of the ECDF, . that is 

ê = H(F) • 
x """'" 

where ~ is a mapping from an abstract space of dlsltribuùon functions; 

into e.\ The mapping H i5 then called a functional of its argument. 
~' 

A ~imPle example of a functional is: 

\ H(F) = J x dF(x) 

(wher~ x i5 one-dimensional) which ylelds the sample 'mean when F is 

the ECDF: 

H(F) = J x dF (,x) 
x 

1 
~ L x. 

1 n 

An estimator ê is said to be Fisher-consistent for e if: 

for a11 e E e (3) 

for Fe the mult!ivarfate cumulative ,distribution function: 

Fe(x) = J pey; 8) dÀ(Y) 
Q(x) 

Q(x) =, {y E ;:: y. ...: x. 
J J 

for aIl j } . { 

Equation -('3) means that. the functional always yields the value e when 

it is evaluated at the distribution indexed bye. 

Às poin,ted out~ by Rao (1962a), the functional corresponding to the 

MLE is: 1 
-1 

. ' 

'\ 
.1 

1 

1. 

, 
1 
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Hep) :; mode { J log p(>.; 8) dF(>.) (~) 

Rao claims that with this functional th(' MLE 15 fisher-consIstent "I<'lthout 

any r.estrlction whatsocver". However, it would appenr that sorne can: 15 

needed in using (4). First, the absolutc maximum of the function 1nsH!e 

the hrackets is not necessarily taken at an intcrlor point of H, nor 15 

it necessarily taken at a unique value of r 50 that H(F) 15 properl: 

a set-valued functional ranging ovcr subsets of G, includlng the nul! 

se( (see Plante, 1976, for simi1ar conslderatlOns). Sccond, hC ",111 de-

monstrate later on that the integral_in (4) fails to be deflned when r 
1 

is the distrIbution function of sorne contlnuous models. 

The first point is inessentia1 inasmuch as wc can agrec, by con­

ventIon (in the event that the distrlbutlo~ functlon Fe should yleld 

an H with several modes), that the cTlterion he satisfIed 50 10n05 

- / e 1S one of those possible modes. Except for sItuatlOns WhlCh glve TIse 

to an 'undefined integral, It would seem that the mode 1011 he unique for 

a distributioh function correspondlng to a memher of the famlly in ,the 

model under consideration. -

Consider first the case whe-re the family of densities has a common 

support or carrier set: 

p(x : 8) > 0 if and only if x E S, for a11 e. 

Define: 

g (8; e ) = f 
1 0 

~----s 

p(x; e ) log p(x; 8') d). (x) . 
o 

We wish to determine the mode ror modes of g(8; 8
0

) Ù as 8 ranges over 

e. 

t~ __________________________________ ---------
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g(8; BJ f p(x; 8 ) log l dÀ(xl = - o • p(x; S) I~ 

S 

p(x; 8
0

) 

- - f p(x; 8 ) log dÀ(x) 
0 p(x;' 8) s 

+ f p(x; 8 ) log p(x; 8
0

) dÀ(x) 
0 

's 

g (8
0

; 8 ) 1(8 . 8) 
0 0' 

where 

p(x; 8
0

) 

1(8 0 : e) f p(x; 8 0 ) log p(x; e) dÀ(x) 

is the Kullback-Leibler Separator. 

Now i t is knO\m that 1(8: 8) is defined and positive for constant-
o 

carrier densities, excep~ that 1(8 : 8) 
o 

ma)' be zero if p(x;, e) = 

p(x; 8
0

) almost everywhere. As this last contingency i5 excluded when' 

the modei is assumed to be indentificd, wc see that: 

when e ~ e, 50 that the MLE is Fisher-consistent. 
o 

---variable Carrier Case 

/ 
Now consider a family of densities with variable carrier:-

ste) = {x p(x; 8) > 0 } . 

For given 8 
o 

and e, let: 

B = S(S ) - SeS) 
o 

Then: 

.. 

\ 
--1 

1 

1 
1 . 
f 
l 

... 1 

1 
~ 

.! 

_U 
J 
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"-

g(a; a ) J p(x; 8,,) logcp(x; 8) dÀ(x) 
0 

S(8) 

= f p(x; e ) log p(x; e) dÀ(x) 
A' 

0 

+,J p(x; ·e,,~ log p(x;"8) dÀ(À)". 
B 

CS) 

1 

Strictly speaktng the integral B is i ll-defined since log 0 over 
1 

is not defined. However, one rnay use tlie convention log 0 == - "" , 1 

since this is the ,l1mi t of log p as p tends ta 0 from the posItive 

side. 1t is, therefore, quite reas~onable to set the second--integra1 ln 

(S) equal tp _00 whenever peBI8 ) > 0, and equal te> zero when 
0 

p(Ble) == O. The function 
0 

g is sbll weIl defined,-provided the Ïnte-

gral over A ln (5) is finlte " or di verges ta _00 When g 1S weIl 

( defined, let: 

q(x; e) =' p(x; e) [ p(Ale) r l x E A ) (6) 

then the Integral over A in (5) .is: 

J p(Ale r q(x-;'e) log [ p(Ale ) q(x; e) ] dÀ(x) 
o • 0 

A 

p(Ar8
0

) f q(x; 8) log q(x/ e) dÀ + p(Ale) log p(Ale). 
A 

---j 
1 
1 , 

The family { q C'; 8) } has constant support and p(Ale) = P( S(8 )Ie ) = 
o 0 0 

l, 50 that, if: 

f q(x; e ) 
0 

log 
A 

q(x; e ) 
0 

dÀ(x) < 00 , 
\ 

(7) 

the integral over A in (5) is defined and 

( f p(x; e) .log p(x; ej dÀ(x) < J p(x; e ) log p (x; e ) dÀ(x) 
0 1 0 A A 

1 
d 



,/ 

1 

( 

with equality if and only if: 

and 

V 

P( 5(8) n5(8)18) = 1 

"p(x; 8 ) 
o 

P(S(8 ) n S(8) le ) 
o 0 

p ex; 8) 
p(s(e

o
)nS(8) le) a.e .. À 

The two conditions (8) together imply p(x; 8) = p(x; 8
0

) a.c. À. which 

'( 

1 

(8) 

~is excluded by'the identifiability of the parameter. It therefore appears 

possible to write conditions for g(8; 8
0

) to be defined in (5). 

Most of the remainder of this subsecdon w1;:1:l::- trc---cakcn ur wi tlCaTi 

example where (5) reduces to an undetermined form g(8; 8J = 00
/

_ 00. 

, 
Beforè exhibiting the example, it should be mtmtioned that Fisher con-

sistency could still be defined, even in such cases, by the furthcr con-

vention that, in taking the mode of g('; e), 
o 

those values of - ' 
e for 

which -g(8; 8
0

) is-not defined arc to he ignored. g(8
0

; 8
0

) will be 

clefined (though it may he infinite) and it would appear, even when (7) 

fails to hold, that the number of e for which g(6; 8
0

) diverges will 

be at most countable. If this conjecture is verified, Fisher consistency 
, 

could be said to hold in general/for the t-1LE, albeit with appropriate 

conventions. 

, Ill-defined g 

1 " 
The following is an example where (5) cannot be defined. It was 

;-
conununicated privately to the author by Louis-Paul Rivest. 

Consider first the density 

c 
q (x) = ----"--"'2 

x(log x) 
( O<x"~) 

1 , . 

1 

1 

" ! 

1 
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where c =' log 2. 

• 
J q(x) log <rtx) dÀ(x) = - f! e log 

x)
2 o -xe log 

2 
x(log x) ] -nx;+ log c 

00 

= J 
c 

-1 
c)' 

- ---/ 

-2 
2ey log y dy + log c 

( 

, 
whe:re the change ,of variables y = -log x was made. (9) diverges to --
,----

+ 00 since:, 

.. 
00 

J y - 2 log y dy = 
c 

log c + '1 
c 

.,00 1 
whi 1 e ' f y - = + 00 

C 

c 

Now form the parametric location family wi th e = (_00, (0) by 

setting: ), 

p(X; el-- = !q(x - e) + iq(x + i -- é) 

Let e = e +!. Then we.have: ;0 

p(X; eo) hu support on 

p(x; e) has support on 

( 9
0

, e + 
D 

1] u (9
0 

+ i, 

(e:c 

+ 1, e + l}-u (a -o 2 0 

9
D 

+ 1] , 

/ 

+ l, 9
0 

+ 1] 

(9) 

~ ---
50 that B = (Po' '9 0 

+ il , 
. / ) 

J p(.x; 9
0

) log pei; 9) dx 
A 

. ' 

(e l ,0 + 1] A = + 
0 

• 0 

l'a ' 
o q(x - e - i) 

=----- f o. 

e +1 - 2 
o 

= + CIO 

1 
D 

log 
1 

and 

.. 
dx 

'r 

, 1 
i. 

'0 

j 
/ 

1 

. 1 

1 
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;' 0 

p{Sle ) ! 50: 

o ,- f~ p(x; e;) log p(x; e) dx 

g Jn/(/ is not 'Well-d~f~nCd.· 

while 
\ 

= _ 00 , 

, 1 ! 
! 

Conslstency in ,General .. Fisher , 

Al t~ough sorne prob-têJilS crop ..... up 'with the" d-efi,ni tion' of Fisher con-

-
slstepcy, th~ situation is ~ather satisfactory for the MLE. 

l:l 

Whe~ the 
~ 

~ [ MLE CCVJ b$ d~ fined by the 'mode 1 funationa l ~ the MLE is. Fisher.-consist.en t. 
• 1 \ • ,," 1 

In particular the cri terion is satisfied for- discrete models and for con-
~ . 

tinuo1.ls modçls with constant carrier. Ii: is' aiso 'satisfied, given some 
• , ~ ç '" 

. "e,onventions,. when the densities have variable carrier but are bounded in 
.. 

suc'h a way thàt fOr every pair e , S, 
o 

there exist? a number K(S , 8) < 00 ,1 
o 

such that:· . , 

.\ 
p(x; 8) <.; K(8

01 
8) , 

\ . 
'since th~s .will allow (6) to be' p'roperly defined: / 

We note t.hat other estimation metho,ds' also y,tetâFIsher-consistent 

es'timators. When the method of momE:nts uses the sample mOllJents 
m 

r.x./n, ' 
. l 
l 

the m~ment-estim~tor will be Fisher-co sistent. Ponnapalli (1976) shows 

Fisher ~onsi~ten'cy ~or a ,~ide ilass estim~tors in discrete model~, 
.--' under some regularity condititns on he densities. From his result, or 

di'r~jtlYI, one canl show that jhe mi~'mum ~hi-squared and minimum modified 

chi"-squared estimators are aiso Fi hel'-consistent. Other methods 1 such 

-----as the met,hoCl cf moments based on .sample cumulants (k-statistics), "(are not 
. ~~ . 

,Fisher-consistent . 
1 ~ 

o 

~ t - / 

i 
/"'----

• , 1 

;,-_____ ..... 1 " ___ -.~-I--
, 1 

r 
1 

o 
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2.1.5 SPECIFICITY CRITERIA: NOTES AND SlJM1.1ARY 

The criteria considered above are far fr~ exhausting the pass1b]-
1 

lities~ a1though-~e believe the most conunon criteria have been covered. 

Here we will briefly considJr a few more and offer sorne tentative obser-_ J 

\ 

vatlOns. 

Modal-unb1asednes~ 

1 

, Wasan (1965 abstract; 1970, pp.120-125) has l.ntroduced the notion of 

a modal-unbiased estimatoT, that 1S an estimator whose d1stribution at-

tains its mode at the true parameter1valué. The critenon l~ther un-
,.r/ 

attractive, ln our opinion, partIy because the mode of a distribution 

lacks the intui ti ve app,~al of a median or a mean, partly because i ts con-

sideration would appear to invo1 ve more mathematlcal compl icatlOns than 

the mean (though i t might prove to be generallx more tractable than the 

median) . 
/~--

Briefly,l an estimâtor is modal unbiased if the mode of it"s dlstTl­

\ .. 
bution is the true parameter value. The criterion is related to the 10ss 

function: 

'los s (ê; e) = ê = e > 

but only through a limi ting l~l":gument starting with a discrete parameter 
1 • , 

space. 

Despite the defini tian of the \MLE as trie mode of the likelihood func-

tion, the !'1LE is not TTr:)dal-unbiased in gene1"al: the mode of the MLE of- the 

./ 
1 
1 

1 ~ 
variance of an independently and identically distributed Gaussian variate wi th / 

-known mean, fQr instance, a cc urs not at the value of the true variance 

, . 

.,--/ 
1 
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~02 but rather at 
n - 2 2 
--0 

n 

. #' 
1 - 1( . \\ 

... 

Specifici tl lndueed ?y the Sensi tivlty Criterion 

We will note later on that Barnard and Godambe's sensitlvity erJ-

terion requires that the mean of the estimating equation equal zero' for 

aIl parameter values: this certainly serves to narrow the class ~f possible 

eS-timators and wopld also appear to be properly a speeificity cnterion, 
\ 

although its effeet on the estimator is rather diffieult to visuahze. 

Remarks 

Independently and idenfiC~llY distributed observatlons were assumcd 

in denving the results on Fisher consistency; however, thlS does not seem 
1 \ 

to deny the appliC~bilI~y o\f th_~)>SUlt to wider \ classes of models. __ The 

data could always be regarded as a sample of si ze one from the appropnate 

parent distribution, !lnd the MLE could be said Ito be Fisher-éonsistent in 

thlS case as well, since the sarnple size is not relevant to the concept . 

We note, finally, that the various (competing) specificity criteria 

WIll sometirnes lead to quite different estimators for thesarne~problem. 

Tremark by Norden (1972, p.342) based on the work of Fend, will serve 

to illustrate this general fact; for the family 

-l/k - I/k 
. --p(x; 8) = e exp (- xe ) < x> 0 ) 

with kl' a known ~nteger, the MLE from a sample of sizellone i,s 
·1 

k x where-

as an unbiased estirnator (one whose variance attains the k-th Bhatta­

charyya <bound) is xk Ik!, yet both estirnators are specifie for e. 

_.---~---

1 

) ~ 
1 
l 
1 

1 

J 
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SECTION 2.2 CLOSENESS 

In this section we will cons1der criteria WhlCh measure the close-

ness of the estimator to the parameter. Wlth the poss"ible exception of 

1nformation-theoretic critel'ia, it would app~ar that no optimallty results 

are available in the absence of sorne speciflci ty cri terlon; such a cri-

terion is needed in" order to rul e out "extrernely partial" estimators such 

as the one considered at the beginning of othis chapter. It might be 

argued that specificity and tloseness criteria should be studied ln pairs, 

or that, in speaking of a g1ven closeness cTlterion, one shoul& restrlct 

attention~to estimators satisfying a glven spec~ficity criterion. However, 

for sirnplici tyl s sak~ in this section we will cdnsIder Closeness criterù 

independently of specificity criteria. ThIS follows an established trend 

in the 11 terature; for instance, the rnean square err~r (MSE) of a biased 

. estimator ·15 _oft~ompared tD the MSE (or equi valently the variance) of 

an unbiased estlrnator, often wltnout a'ny reference to a specificity crj-

terion being satisfied by the biased estimator. lndeed, there 1S sometlung 

to be said for the view that specifiCl ty criteria Sh01Ûd mere ly ~ct to 

sereen out undesirable estim~tors, and that wh en compa~ing various esti-

mators one should merelr ensure that each ·estimô:tor satisfies sorne 

spe~ criterion, that i t has sorne reason ~to be called an 

estimator. 

2.2,1 VARIOUS CONCENTRATION CRITERIA 

"~ i 
Although the most common measures of closeness of a1parameter,to 
1 

its target value are in terms of a risk func.tion~ this is not the ~ 

! 
, i 
1 
j 

1 

fw. .............. ____ ----~-----------------~------------ '. __ ._-~ 
:~- " 

-
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natural one. A more natural approach would be to select, among several 

competing estimators, the estimâl~or whose distribution is most concentra-

ted about the true parameter value. We are thus led ta consider cri t~ria 

" which are d.efined--.-strictly ~n terms of quantities such as Il 8 - 8 1/ • 

(The Euclidean norm is usually used ln this context al though there are 

- ,A 

other possibilitles.) When the distribution of an estimator, e IS more 

- A 

concentrated about e than that of an al ternative estimator e, e is 

said ta be better than e. In this subsectlon we will consider three "* 

criteria of concentration, and estimators WIll be called 'better' than \ 

others with respect tO" that measure of concentratlOn. 

The n~menclatùre of concentration criteria appears to be rather 

fuzzy and the nonce-terms 'strict concentration' and 'yairwise closeness' 

will be used in our discussion.' Finally, we n~te that the concentration 

criteria sit;ied here appear to be incompatible with the requirement that 

an estirnatkn method be invai-iant. under a11 forms of reparametrlZation. ___ 

As 8uch no optiTM.lity propel'ties for the MLE are to bé expeeted her,e. 

Strict.Concentration 
1, --/ -~~ 

The ideal closeness criterion wou1d appear ta he what might be 

called strict concentration: ·ê is better than 

ô > 0 and all El E e, 
1 

A _ 

e whenever. for aIl 

----~' 

P[ Il 8 - e Il < ô ] ;;., P[ Il e • 8 Il 1< ô ] • 
l , 

\t 
Howeyer, the cri terion is 50 strdng that in most models i t seems 
----~/./ 

------

to rule out aIl estimators. even wh en restrictions are placed on the class 

of al ternati ve estimators El. The only resu~ t we have seen of this type 

~ ~ue to Pi tman (1939) for the usual "Pi tman estimator" in the special 
( 
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case of a location model with s)'1l1I!letric likelihood function in aIl samplcs. 

However, Pitman's result relates ta fiducial probabillty, and,hiS result 

does not appear ta have an equival'ent frequency' interpretation. 

J Proportional C}oseness 

The strict closeness crlterion has a weak vJriant in the criterion 
".. 

of proportional closeness: e 15 bett~~han 8 for a fixed proportional 

error é when, for aIl 
o 

8 E e, 

P[ Il ê - 8 Il < 0 
o 

-
\1 e Il ] ~ P [II e - e Il < 0

0 
Il 8 Il ] . 

This can be regarded as the minImum" risk estimator wi th 1055 function: 

lOBS (ê; 8) =:' ( Il ê - e Il <.0
0 

Il e Il ) ._-- ------ - . 

The criterion hws been investigated by Zacks (1966, 1967) and Zacks & 

Even (1966) but from the negative angle of showing the non-ex~stence of 

an overall "p.ropartionally closest" estimator. Even if results were 

available, the criterion is unappealing because the constant °
0 

is 

arbitrary and there does not appear to be any compelling reason for. 

chosi~g one val ue of Ô 0 over another val ue,. 

. ------Pairwise Closeness 
r 

--~ 

Another criterion which appears to bé derived from the strict close-

ness criterion is Jairwi5e closeness: in the pair 'of estimators '" -(8, 8), 
,.. 
e i5 better than è for a given proportion y ~! (usual1y, y =!) if,; 

for a11 8 E e, 

P[ Il ê - e Il < Il 8_ - e Il ] ~ y . 
~------

(1) 

If 

'r 

. ~~ 
1 

if 
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The obvious frequency interpret~tion of' Cn is th'at in at lenst y 

of the sampI es , the 'better' est\lma tor lS closer to the parameter than 

its èompetitor. Again, Pl tman (1939) proves such a resul t for fiduc·ial 
l ," 0 

probability. With the fiducial (but not necessarily the frequency) inter-

pretation, i t shows that the Jo.!LE for a location parameter is l nfenor to 

the Pitman 'rnedian' estimator, except where the twù coincide. A recent 

use (of the cri tenon from the frequency standpomt is in Efron (10975) 

where it is noted that a Stein-type estimator (such as .the one def1ned 

by·equation (1) of the last section) IS better than the MLE for. a Gauss 

2 
(~, cr 1) variate. 

0-

Adrnittedly,· pairwlse closeness 1S an appealing criter10n. but it 

may be useful"to recall the comment by.Savage (1972, pp.22?, 245): that 

the main attraction of the criterion would appear to be the conjecture 

that i t should be equi vale"Qt in. sorne way to strict closeness; however, a 
61 

cÇlunter-exarnple by ,Savage disproves th1s. 

More disturbing still is Birnbaurn's. objection (1961) that the cri-

terion cannot provide a meaningful partial ordering of the class of possl-

ble estirnators because it depends on the joint distributiqn of paIrs of 

estima tors. It is not excluded, therefore, that one could find sorne model 

where: 

* 

* Ir 
A < B * * B < C and C < A 

(where A < 8, e.g., denotes the fact that the ~stimator A is better 

than 8 
; 

in the sense of pairwise closeness) . 

-----------

(2) 

The status ·of. pairwise c10seness as a: meaningful cri terion must, therefore, 

remain in doubt undl (2) is shawn' to be impossible, i.e., '\mtil tra]lsi:-. 

tiv~ty is e~tablished. 

'--~----'---------

'1 
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2.2.2 CLOSENESS IN MINnru~l RIS": 

We turn now to criteria"based on los~ functions. As notcd earl1cr, 

the quadratic 1055 is by far the mast popular closcness criterwn, bath 

ln trye asymptotic case and ln the finite-sarnple case; the rlsk assoclated 

with;this 1055 structure is the so-called MSE, and equals the variance 

plus!the square of the bias. It may be recalled that under appropriatp 

regularlty conditions, the Cramér-Rao bound provides a useful lower bound 

'(m the variance of an unbiased estimator. 

As 'discussed in Section 2.1, ln a regular exponentlal family ther(' 

would appear to be only one parametrization for whlch the MLE lS unbiased, 

---and undcr that parametrization the Cramér-Rao bound is attalned. ' lt 15 

perhaps fortunate ln many exponentlal families commonly encoul'ltered, the 
1 

mean-value parametrization for which the Cramér-Rao bound is attained 15 

\ 
a standard one, whose use is 'natural'. Even when thé full standard 

parameter does not coincide with the full mean-value parameter, lt will 

sometimes happen that the two parameters have in common a subparameter 

which is of prlmary interest. Such lS the case of the univariate Gaussian 

distribution under the standard parametrization by the mean a~d variance, 

··where the MLE fbr the me an is unbiased and has minimum variance, al though 

, the MLE for the varianc~ subparameter is not unbiased and does not have 

minimum mean square error~ 

Occasional optimal situations such'as the above should not distract 

us from the fact that in generoal. the MLE has no optimal.ity properoty undeI' 

the MEE ari tmon for a parametri zation of interest. There are numerous 

. '(studies in the li teniture where the performance of the MLE is assessed 

against that of other estimators, for particular parametrizati~ns of specifie 

\, 

" , 
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rnodels. It would he outside,the scope of th1s work ta delvc into partl-

,cular cases, although given the importance WhlCh 1S usually accorded the 
\ 

criterlon, we offer that it mlgh~ be desirablc to have a survey or anno-

tatcd bibliography of such studies; a good start has been made ln that 
, 

.dIrection in the four-volume monograph by .Johnson f; Katz ,(1969, 1970a, 

1970b and 1972), under the tapic "Estimation" . 

Slrnilar studies involving the absolute value criterion are less 

common but the same cOJllll1en t ma)" be mad~, tha t there is in g'enera l /'w 

optimality resuZt for the MLE uruler the minimum-absolute-value criteri01: 

because of the invariance of the 1-1LE under reparame~rizat1ons. 

2.2~3 SENS ITIVITY 

1 

An 'elegant theory of estimatlng equations' and pivotal quantltles 

has been developed by Barnard, Godarnbe, and others WhlCh, for the method 

of maximum likehhood and under regularity/ conditIons, leads to an optl-

~ality property which i5 valid under a wide class of parametrizations. 

The basic idea, d~e indcpendcntlY to Barnard and to Godambe (see 

Godambe, 1960, acknowledgement), is to conslder estimation methods which 

can be reduced to solving an equation (or a set of equations, when the 

parameter is multi-dimenslonal) of the fom g(x; e) = 0 wi th the spe~i­

fication that Eeg(x; e) = 0; regularitY'conditions, both on the quan­

tity q and on the den~jties p, will be considered for the general 

situation where e is 'mui ti-dimensional. \'le shaH refer tO'a quanti t)' 

( 

g 'satisfying sorne ~p~cifica,tion and regulari ty conditions as an "unbiased 

estimating equation". As nOJted by Godambe (1960), a good unbiased esti-

~ting equation should have smalL varian~e while at the sarne time providing 
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good dIscriminatIon between neighbouring pa.rametcr va}ues; the l_attc.r -=------

·requirement may b~ rendered by havlng dg(x,8) E be as large as pos-
8 de 

sible in absolutc value. We are~ therefore, motivated ta cohsidcr the 
, ( 

varian~e of'the 'standardi~ed estimating equatIon' g [Ee dg~~,e)J -1 

50 that we have: 

Defini tian 

An unbiased estimating equation g is more sensitive than an 

alternative unblased estlmating equation h if 

holds for aIl e E e. 

Itesult 

Undep the peguZarity conditions specified Zatep on ~n this sub-

t · th t' ~ th M'TE(' dlogp (x;8)J,;sthe sec ~on, e bequa ~on JOP e ~ ~.e'J g = de v mo~r 

sensitive of aU unhiased estimating equations; the MLE equation 'Z-s essen-

tiaZZy unique in being most sensitive: any equa~ion which has t~e samc 

sen$itivity for aZZ vaZues'of e is of the form 

g (x; e) = a(8) cl log p(x; 8) 
de 

""-p­
An interesting property shawn by Bhapkar (1972) is that the sensi-

tivity of the equation based on a sufficient statistic can never be smal-

1er than the sensitivity of the original equation. In other words, com-

pressing the data ta a. sufficient statistic may well enhance (bu-t will never_ 

/ c 
) 

-\ 

i 
1 

1 

i 
f 

./ 
, 

l 

-~ü-
-------

"'-. 
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dimirrtsh-) the performance of the estfïîiatlng e_quatIon; in the case of the 

likelihood equations no improvement can be had, of course, due to thé 

mInimal sufficiency of the likelihooçl function under regularity: 

RegulaTlty Conditions 

l'le consider nok' the regularity candi tion;; proposed by Bhapkar (1972) 

WhlCh lead ta muiti-dimenslonai analogues of the likelihood equatlon 

optima 1 i ty . 

\'li th the parameter space e an open lnterval in k-dimenslonal 

A A 

Euclidean space and an estimator 8 such that g(x; 8(x)) = 0, assume: 

(Conditions on the family of densities) 

for a11 8 E e 

/ A.l) \7e log p(x; 8) and 
( 

T 
'Ve'Ve log p(x; e) exist a.e. À(x) ; 

A.2) 'bath f p(x; 8) dÀ(x) and J \78 
log p(x; 8) dÀ(x) can be differen- , : 

tiated with respect to e under the integral slgn; 

A.3) Ee [C'Ve ,log p)('Ve log p)T] is positIve definite. 

(Cond'i t~ons on the estimating equation) 

for a11 e E e 

B.2) 'Veg(x; B) exists a.e. À(x) ; 

'" 
B.3) f g(x; e) p(x; e) dÀ(x) is differentiable under the integral sign; 

, , 

B.4) ES [(Veg(X; 9»)(V
e
g(x; è»T] is positive definite'; 

c B.5) Ee[ g(x; e) (g(x; 9)) Tl exists finitely. 

", 

- ---- -----<'--~-----

~ 
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Multi-dimensional Case 

1 
The mul~i-dimensionaL analogue of (2) use~ ~he matrix 

J (e) 
g 

(OUF notation deviates from Bhapkar's at this p~int). 

Result 

with g* denoting th~ set of likeZihood estiTrl'ltion eauations 

g*(x; 8) = 'Ve log pei; 8) , 

., 
the rrntrix 

J (e) - J * (é) g g 1 

-is at ~east positiue semi-definite for any othe!' unbiased estirrr:zting 

equation g. 

Bhapkar propo~es two scalar analogues of (3) based on the charac-

teristic roots of (S). Thus we are led to two subsidiary optimality 

properties for g*. 

det J *(9) ~ àet J (8) 
,g g 

and 

(4) 

(S) 

--
(6) 

Equality, in (6) at least. is ruled out except for' g equal to a muIti-

pIe of the likelihood estimating equation . 

We note in passing that there exJsts a iIIul ti-dimensional analogue 

~ ............... ----------------------------------------------

j 
, 

, . 
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of enhanced performance under comptession to a sufficicnt statistic. 

1 , 
Discussion 

'- \ 
In our view there \are three main limi ta tlon~ to the usefulness of 

( 

the results concerning sensitivity. 

The first i5 that the regularity conditions (A.I, A.2, A.3) exclude .... 

models where the densi t'Y has a carrier dependiJ,lg on the parameter. In-

deed, ln such models the MLE, if it exists meaningfully, is not in gen-

eral a solution of the likelihood equations 50 that not much is to be 

expected from any extensions of the cri terion in this direction. 

Second, condition (B.I) serves to yule out wide classes of estlmation 

methods. If the estimating equation g(x; 8) = 0 produces ·an estimator 

ê with b'ias Eeg(x; S) '" h(8). then the unbiased version of that estl-
1 

mating equation is g*(x; 8) = g(x; 8) - h(8) which (in the nontrivial 

case where the bias h(8) is not constant) should lead to an estimator 

è different from ê. Al ternati vely, one could retain the biased esti-

mating equation but modify formulas (3) and (S). for a one-'dimensional 

parameter simple algebra leads to the inequality: 

(7) 

/ (Th' 1 h f hé' f b . . 15 resemb es t e version 0 t e Crarn r-Rao inequal1 ty or 1ased estl-

mators' - of which it is a generalization. We fancy that the result then 
~ c 

would lose its appeal to many for reasons similar to those which make the 

'biased' version of the Cramér-Rao inequalit>.:" unattractive: not only 

does the inequali t:y fail to address i tself ,t.o 'departures from t:he target 
(p 

------_. -_.~-

-f-
I 

1 
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value g ="0, but aiso the impact of the derivative of the billS 15 

difficui t to assess. 

Lastly. the optima li ty criterion considered h\ di He" 

other criteria we are considering in that it prop~rly concerns 
01 

from 

the method 

of estimation rather than the estimator. EVen after gaining sorne famiI-
\ 

iarity with inequalities sueh as (3), the author finds himself wondering 

"Yes, the MLE cornes from the most 'specifie estirnating eqJatlon in its 

eIass: but what does that tell me about the MLE i tself?" 
1 

Against these reservati9ns (and the last one rnay be due simply to 

insufficient farniliarity with the present concepts), the criterion has 
1 

the great advantage (as noted by Barnard, 1973) of being invariant to 

repararnetrizations, subject, of course, to the change of parameter~ being 

sID?oth enough to respect the r~gularity'conditions. 

Furtherrnore, the criterion bears an intimate relation to pivotaI 
/ 

quanti ties (t6 the extent that 'we could have replaced 'estimating equations' 

by pivotaI quantities' in the above discussion; we did not do 50 in order 

to underline "the faet that the cri terion does not refer to 'estimators 

as sueh but to a rnethod of obtaining estimators). PivotaI· quantities ,pro­

vide a so~nd a-pproaeh to inference since, as noted by Kempthorne & Foiks 

(1971, p.338) among others, stable pivotaIs - thosewhose distribution 
1 

~s aItogether independent of the parameter ~ seem to,provide the only 

entry into exact distribution theory, and since much of the approximate 
/ 

,_ theory is likewise based on approximately 'stable, pivotaIs. 

\ 

~ .............. ~--------~-
'. 

, 
i 
1 

( 1 
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CLOSENESS 

--
We approach the tOplC o~ this subsection with sorne ,hffidence be-

cause'thè approach taken by manY,aùthors on the,stlbject is ratJt~r wider 

than that of parametric estimatIon: (,see, for instance, Good, 1963; 

Dutta, 1966; Kullback, 1968, ·pp.37-39; and' Gokha1e & Kullbac , 1978, 

p.17). Thes~ aùtnors, and others, use information-theoretl arguments 
, 

to resolve the global problem of specifying the mode1, the 2peci-

ficaÙon in many instances is 50 deep that
l 

i t lTIc"ludes actual setting 

1 

• 

, 
'of values for,the model's parameter; this last operation is, of course, , " 

our \own' problem of point estimation. Inconsistencies, li at least mean;ng-: 

~ less results, are to he feared when the concepts approp i~te to the wider ' 

problem are constricted-t9 the narrower one. Neverthel 55, lt may be worth­
(~ 

1 
while to sketch, at least, sorne points of con,tact between the information-' 

-
theoretic approach and maximum-likelihood estimation. 

We begin by offering sorne standàrd definitions from Information 

Theory. In ge~eral, Informati'on Theory ~y be said to be primarily con~ 

cerned wi th discrepancies between specifi1ed probability distributions. 

1 

Let F and G be two probability distributions, corr~sponding to.proba­

hili'ty measutes lJ
F

,' and lJ
G

, where ~F Dis absolutely continuous wfih 

respect to ,~G and where both are absolutely'co~~ with respect.to a 

a-finite dominating measure À. A measure of the discrepancy between F 

\ and G as.seen from the distribution F is the)Kullback-Leibler Separator 

already encountered in Subse,ction 2.1.4: /' 

I( F 
fdF 

G ) = J log LdÀ ex) (
dG ') -rl 
d). ex) J dF(x}c . 

- ,. 

1. ~------~------_--,--~----,~-~----1 ) 

~ 
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Lï 
Other,names for If F : G) are 'the mean infprmation for discriminatlng l 

in favor of oF 'against G' (Kullback, 1968, p.5) or 'the information 

of G relative to F'. We note in pass{ng that l is not a symmetric 
-. 

operator: I( F : G ) =1= I( G : F ) for most F and G' , and that 

I( F : G ) > O •. A motivation for consldering l is given in Savage 

(1972, pp.48-49) in that l is the expected value of the logarithm of 
~ 1 

the like1ihood-ratio statistic for two cpmpet~ng hypotheses F and G. 

'" The theory of I( F : G) is developed exte~sive1y by Ku11back (1968). 

A 'related concept~is that of the ert~ropy of a probabi11ty distri-

but;,ion F: 

B(F) 
dF - J log dÀ (x) dF(x) . 

The motivation for" H as a measure of the dlsorder in the distribution 
\ 

F has been given by Shannon (1948, p.392). Ana10gous motIvatIons are 

reviewed by Rényi, (1961). In the remainder of this subsection, the argu-

ments of l ~nd H will be cumulative distribution functions or then 

densities as convenient in the context. 

Dascrete Distributions 

We preface this part of the d,iscussion ~e,\ remark that the 

discussions in the 1iterature are in the context of contingency tables and 

do not necessari 1y extend to models with an jnfini te number of cells. 

In discrete mode1s with n observations of the value x and 
x 

1 n = En observations in aIl Üle 'observed distribution', q(o) which 
x x 

takes the value q(x) = n ln 
x 

fOT the celI. x, is absolutely continuous 

with respect-to aIl the possible model distributions pC-; 6) 
( 

1 , , 

1
J 
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whith are of interest. The exception is those values of 8 for which 

p(x; e) o in a cell x in which a nonz.ero count was observed nx > 0; 
, 

in s~ch cases the~data provide a crucial te~ainst such values of e 
~. ...-/ 

(the hypothe.sis indexed by 
1 e being incompatible with the data). It 

seems reasonable that we would want to exclu&e such values of e in any 

estimatlOn process. It therefore make's sense to speak" at least formal1y, 

of the infonnation of p(.; 8,) in favour of they~ 

n . n ln 
JC q : p(.,' 8) ) ;: l: x log ~x--:~ 

x n, p(x; e) 
( 8) 

It is 'easy to see from (8) that for flxed q('), the value of e for which 

J( q ; p('; e») 'is minimiz~d, ~s precisely the value which maXlmlZes 
r.' 

the logan thm of the likelihood function,so that wellave the formaI inter­
( 

pretation that the MLE selects the ~istribution p('; e) 50 as to mini-

-IDize the discrimination information in the sample relative to the class' 
~. 

of possible distribut10ns (see Bishop, Fienberg & Holland, 1975~ p.346, 

for example) 1 More loosely, the e5tlmated distribution pC'; 8) i5 

'clol>est to the data' in sorne sense. 

Against this i t should be noted that the other variant J(p(.; 8) : q) 

\ 
is minimized by the 'minimum dis~.imination information estimate' (in tl'îe 

nomenclature of Gokhale & KullbJck, 1978) or by what Bishop~ "fienberg 

& Holland (1975) t-e_l'1ll the j'modified minimum -d_is crimir:ation information 

/ 
~stimate' (J.tIDIE). In gene~al the MLE is not equal to the MMOIE so that, 

using this second_ 'optimality criterion', the MLE is not in" general 

opt,imal.. The class of situations in which the two _ estïrnates !ire equi-

valent is called the 'intèrnal constraint probl~m'j . It co~s to 

~-

.. 1 , , 
-; .. 

, . 
-- 1 1- , 

, , 
, 
\ 
1 
! 
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those situa tions where the.data happen to fit the model perfectly. the 

obs~rved counts satisfying aIl the constraints .iIDPôsed by the model. 

Exponential Models 

EXP~nential families are the only other instance where ~f have found 

what we believe to be valid resul ts. In the information-theorettc apprOl'lch 

exponential distributions are distinguished as that class of probability 

distributions pC 0; e) -fdenoted here by '!the densities) which assigns 

finite value to the expectation or the .given statistic t and for which 

I( p(o; e) : q) is rninimized for a fixed 're-ferenj:e' distribution rCo). 

That i5: 

With Ge = { pCo) : f t(x)p(x) dÀCx) = e } 

G~ being a class of probability den5ities with 

0 

respect to À, let pC 0; e) be the element of 

Ge which minimizes I(p*; r) for p* E G . then: 
( e' 

~~------
eTt(x) 

p(x: e) ,= e c(8)r(x) . 

It is shown by Kullback (1968, y.Jl4)--tfÎât the MLE for a given samp~ Il 
---- ~-------

----selects 'é so as to 3inimrie I( p(o; e) : r ). Another result along 
----~ 

those lines is given· by Simon (1973). 
o 

With a given sample yielding an; 

(~9Gnstrained) MLE ê when the parameter space is e, let e be a 
1 

subset of e. The~ the MLE ê 1 for e restricted to e, selects that 

member of {p{o; e) : e E e ~h minimizes I( p(-; 8) : p(o; ê) ) 
1 ,.. 

over e El 8 1 , Thus the constrained MLE el is 'closest ~ to the uncon-
A 

strained MLE e, just as the lat~er i5 'closest' to the reference distri-
Ir 

bution r( -) • 
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Discuss\on 

Another. rather tanta1izing result in information~theoretic c1ose­

ness ha31been presented by Kriz & Ta1acko (1968). Howeyer, there are 
, 

serious prob1ems with the proof giventand we have prefered to discuss the 
l , 

question in Appendix C . . ,~ 

The-remaining results in this subseëtion are interesting, but it 

ts difficul t to translate them into a claim thatl the PotLE is close to the 

paràmeter ~n any reasonable sense. In particular, we find th,a t, in the 
~~ 1.> , 

~ discrete case, averaging the log-likelihood over a 1egitimat~ distribution, 

le p(o; 8) : q), is more meaningful than averaging over th~ 'observed' 

'distribution, $0 that we would pre fer the optimality property satisfied 
c' 

by the MMDIE to the one satisfied by ,the MLE. 
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CHAPTER 3\ SUFFICIENCY AND INVARIANCE 
1 

\ 
.'1 

In this chapter sufficiency and various types of inva ia~ce are 

considered. the reason for dealing with both properties t6g ther will 

become clear in the second section, where sufficiency plays subsidiary 

role. 

SECTION"3.1 SUFFICIENCY 

----- ----
3.1.1 INTRODUCTION 

The concept of sufficiency was introduced into statistics by FisheT-

(1920), although the terrn itsel,f was essentially introduced in a later 

article (1922). Sorne aspects of t~e ~prehistory', 50 to speak, of suffi-

ciency are considered by Stigler (1973 and 1976). It would appear that a 
1 ~ _~--------

paraI lei concept in Statistical Mechanics emerged earli~r (see Mandelbrot, 

'1962), however, the context there is much wider and similar ta the situ~ 

ation discyssed at the beginning of subsection 2.2.4. 

". Briefly, a statistic t is sufficient for the parameter e if 

for any other statistic s, the distribution of 5 conditional on 
/ 

t == to is the s8.me for aIl values of e. A sufficient ~statistic t 

is minimal sufficient if it can be written'as a function of any suffi-, 

dent statistic. 

There i5' sorne question as to whether sufficiency h* any relevance 

in the context of point estimation (Savage, 1976, p.459). An e5ttmator - ( 

'r 

1 ," 
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J 

is principall~ a function which poin~s to one member'of {pC-; 0) : 

e E e} as being a reasonable approXimation to \ the underlYlng distnbu-
, 

tion which 
, 

gave rise to the p.ata. However, masmuch as an e~timate wi 11 
\ 

often have to be used alone, as it were, in heu of th,e full data set 

(as in the examples cited in Chapter 1), the estimator lS also a summary 

of the data (Rao, 1962a) and suffic1ency is relevant at this point s~nce 

any information which is lost in thlS condensation is lrrelevant to the 

model. Indeed, sufficiency was introduced in the specifie co.ntext of 

maximum-likelihood estimatIon. 

Fisher appears to have belleved (1925) that when a sufficient 

statistic exists, the to1LE must he sufficient. That thlS 15 not 50 can 

be seen from an example of Barndorff-Nielsen ta be discussed later, as 

weIl as from an exampIe of Savage (1976, pp.460-461). The latter 

• 1 
,example 15 5ignificant in that It a150 shows (at least ln ,sorne flnlte, 

\ ? 
dlscrete parametric families) that i t is possIble to ,construct a Fisher-

consistent, sufficient estimator in a sItuation where the toiLE itself 15 

not sufficient. 

The theory of the sufficiency of ~H.Es, as indeed the theory of 

sufficiency as ci whole, seems to be rather incomplete at thlS moment .. 

a1though we may haye missed sorne important deve10pments in the literature, 

The remainder of this subsection will consider what can be said about 

sufficiency in general models. 
\ - \1 

The next three subsections will consider three classes of models wi th 

identically and independently distributed observations. We hesitate some­

what in presenting( this material, since what is correct in those subsec-· 

-------tions appears in two recent monographs (Barndorff-Nielse~, 1978; Huzurbazar, 

~~ ............ -----------------
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1976), while the rernainder is hardly marc than conjectures supported br--

heuristlc argumen,ts. Neverthe l ess, i t rnay be use fuI for the sake of corn-

pleteness to abstract the results from the abovc monographs and ta comple­

ment thern wrth sorne (adrnittedly shaky) addl tional results. Throughout thi's 
J 

sectlOn, p will denote the denslty of the data and q, the den5i ty of 

one observation (i.e., the density of the parent distrIbutIon). 

An important crlterlon for the existence of a sufficient statlstlc 

is the factorization criterion (FIsher, 1922; see Bahadur, 1954 for a 

fuller proof). The crlterion~applies to aIl models (not necessarily 

\WI th identically and' Independently distributed observatIons) where the 

farnlly {PC olS); e E e} of dIstributIons lS dommated by a a-fIni te 

rneasure À. It state., that a sufficient statistlc tex) eXlsts If and 

only If there eXlst non-negatlve functions h on the range of x and 
, . 

g o~ the range of t with the compound function g(t(o); 8) measurable 

as a function of x, and h functiona+ly independent of e, 50 that: 

I( 

dP(oje) (x) 
dÀ 

p(X; 6) "" g(t(x); tl)h(x). 

The proof of the crIterion (e.g., Lehma(1n, 1959, pp.48-S0) indicates 

(1) 

that when t is sufflcient, the functions g and h may be taken to 

be densities . 
. \ 

Al tnough we are not concerned here W1 th models where {pC -1 e) 

e E e} lS not domwated~ it J1lay be noted that minimal sufficiency is a 

rather uni~rest{ng property in such models. Burkholder (1961) has 

shown'that in such cases, there may exist statistics s and/{' t, with t 

being a compression of s, t;' f(s), such that t is sufficient but 5 

~s, not: in other words.. compressing the data may add information. 
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From (1) 1t is easy to der ive the result thatthe MLE must be a 

function of any sufhcient statistlc. In the context of sufficlency-,. 

however, this does not s~y very much, since the function is not necessan]y 

one-to-one, so that sufficiency may be lost. The result is discussed at 

greater length under the topie of invariance to data transformation 

(subsection 3.2.1). 

3.1.2 CONSTANT CARRIER, CONTINUOUS CASE 

The theory of sufficiency seems to be best established for parent 

distributions which are absolutely continuous witW respect to Lebesgue 

m~sure and whose' densi ties have a carr1er set Wh1Ch is the sarne for aIl 

members of the parametric family. In this setting, and with regu1arlty 

condltïons, it can be shown (Koopman, 1936; Pitman, 1936; also: Fisher, , . 

1934; Darmois, 19~5) that the only parent distributions which admit a suffI-
r , 

cient statistlC of constant_dimensionality for aIl sample sizes are of the 

1 exponenUal form wi th densi ties: 

T 
g(x; e) = ex;p{ tex) 4>(8) - K(8) + gtx) ] . (2) 

1t is con'l(enient to require that the components ùf t be affinel)' 
,;\ 

independent: 

1: a. t. (x) 
1 l 

= an a.e..Àlx) ~ a. - 0 
1 

,and that ~(.). range over a k-dimensional subset of Euclidean space 

which contains an open (~-dimensional) interval, k = d~m ~ = dim t. It 

is easily seen that, when dim ~ : dirn e. tex) is'sufficient for 8. 

sinee the conditional densi~y of' x .given t = to is 

-. 

j 
(; 
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J g(x; e)dx J > exp [ g(x) ]dx .. 
t(x)=t o .t(x)=t o 

It is also true that t i s minimal sufficient. 

Wh en dim ~ > dim' e, th~ exponcntlal family (2) may be ?ald ta be 

curved, ln the nomenclature of Efron ,(1975), In curved exponential 

families it appears ta be a g~neral rule that the MLE lS not sufflClent, 

al though a completely ngorous proof eludes us. WI th T = "lntenor of 

the range of t f assume peTle) > 0 for aIl e E e. 'Then wlth probabil-
1 

ity grfater than zero, the HLE ê is a solutIon of the llkehhood equa-

tion: 

'il log p'ex; 8) 

where t = Lt e x.) ln. Thus: 
1 

n 
L 

i=l 
'il log q (x ; 8) 

l 

nV K(8) 
, 

0, 

T 
Now ViP, a inatrix of dimensIon dim e x dim 4>, has rank no larger than 

dim e, and therefore rank str.Ictly smal fer than dim i. Hence the MLE -­

'will be a strict contraction of the minimal sufficlent statlstlc t and 
, -

cannot itself be sufficient.' Even when dim '4> = dim e, however, lt necd 

not be truc that the MLE will be suffici~nt. A trivial case must first he 

considered; when the parameter space e 1S smaller than it could be, it-

,will often h'appen that the restricted MLE will occur on the houndary of 

e and that it will pe a many-to-one funetion of t. For example, when 

the parent distribution is univariate Gauss~an with unknown me an ~ and 

known variance and when the parameter 5pace i5 restricted ta 
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( h.l : \.l ~ a}, then with probabilitf ~(lJJ > O~ the sample mèan x WIll 

be negative and the MLE takes value zero, 50 that the t-ILE is not a one-

to-one function of the minimal sufficient statlstic ex. Even making e 

as large as po~_sible does not ensure that the MLE will be suffi ci ent . 

Consider an example due to Barndorff-Nielsen (1978, pp.152-l53). The 

parent distribution is 

q(x; 8) = kx- k- 1 e8X
-

K (8r ( x > 1 ). 

where k- is a known constant greater th an one.-- For general 8. -the 

function K(8) cannot be represented in closed forro in terms of elemen----

tary functions'. although when 8":;;; 0, K can be properly defined as 

10&[1 -k-l ex d'] K(8) kx 'x . ( 3) 

-, 
( 

Furthermore. when 8> 0 the integral in ( 3) diverges, 50 that. at its 

----- -full est extent, 9= ( -"", 0]. 

ln this model, the sample mean 15 a mini~al sufficient statistlc, 

but whenever the sample mean is greater than k/(k - 1). the' corresponding 

MLE is equal to zero. To s,ee this. note that: 

"" dK __ -f kx-k ex -K(8) 
de 1 e dxe = ES:x., • / 

(This is true in general of exponential families.) Also, 

'2 
d J -k eX-K(e) d te 

<lx 
de 2 = 'Cm' kx e 

f -hl eX-K(e) - J -k eX-K(e) dK 
= kx e dx kx e dx o-

de 

Eiex 
2 

- Ee x Ee x ;: 

" , ( and so 
/ 

1 

1 , 

1 
1 
1 

'L_ 
r 

! 
l' 
1 

--- 1 

J 
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This means that EeX is an increasing function of· e, 50 that its/ 

greatest value is 
(\ 

) 

eÉe} =E" o 
00< -J... 
f kx dx:: kl (Jo.. - l) 
l 

Now if Je > k/(k - 1), the likeIihood function IS strictly Increaslng, 

since 

d n d 
de log TI q(x.; 8) = n de 8x "K(8) 

i=l, l 
constant) 

dK ~ 
- n ( x - de (8) ) > 0 . 

Therefore, the MLE fails to be sufficient, even though a sufficient 

statistic exists. This occurs because the model a110w5 rea1izations 

of the sufficient statistic t which cannot be values of Eet f~r any e. 

A 5taternent pf conditions for the ~ILE ta be sufficient requires 

sorne nomenclature adapted frorn Barndorff-Nielsen (1978). 

When ~(e) is a one-ta-one rnàpping of '8, it is-possible to repara-

rnetrize the famiIy sa as ta have 

\ T 
q(x; 8) = exp{ tex) e K; (8) lb(x) 

when this can be done the parame~e is cal1ed the naturaI para-
1 • 

meter and its corresponding parameter space e, the naturaI pararneter 

space. 

e is said to be full when 

T e '" { e : J exp( t(x) e )b(x)dx < co}, 

i.e.,when the parameter space is as large as possible. 

, 
, 
l , 

1 
l 

1 
1 , 
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~t\ 
The finite boundary df the full natural parameter tSJlace is the set 

of fini te e, every neighbourhood of which contains points in 'both e 

and in its complemen~. 

ro 

K is steep if for any sequence {8} converging to a point on ' 
i i,=l 

the fini te boundary of e. lim Il \7K(e)1I "" 00. (~ifferentiability of K' 
i-loo l . 

1S guaranteed byTheorem9 in Lehmann, 1959, p.52.) \\'l}en t,he finite 
1 

boundary is void (i .e., wh en the natural parameter 5pace is the, 

Euclidean space). K i5 steep by definition.· 
1 

Also, denote: 

S ::: convex hull of the range of t (.) , 
/ 

C ::: closure S 

B = fini te boundary oj S. 

Resul t (Barndorff-Nielsen, 1978. p.lS2) 

/ V 
When p(BI8) ::; 0 ànd e 'l-S full, the MLE is a sufficient s~tisti(! 

ir and only if K is steep. 

An equivalent condition for steepness (and ~ence for suffiçiency 

of the MLE) is P(B le) ::; 0 and 

T( intel'iol' e ) = interiol' 'c 

where T(e) is the mean-value parametrization T(e) = ~et. .(Barndorff­

Nielsen. 1978, p-:L42.) It 'may be noted that the aoove resu'lts ar~ valid--

whatever the dominating measure, so. long as the 'carrier of the exponential 

faJRily distributions is constant. 

\ 
/ \ 

., 
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1 

( 3.1.3 VARIABLE CARRIER, CONTINUOUS CASE 

'The regulari ty condi tlans used to deri ve the standard <;lY.lracter17.a-

tion of distributions admitting sufficient statis~lcS exclude families of 

continuous dis!ributions whose carner set depends on the paramet;er. The 
~~ 

general case, where the carner set is arbitrary, seems ta be very compli-

cated (see, e.g., Fraser, 1963). However, for the important SItuation 

where the observ.ations are unlvariate and where the carrier set i~ inter-

val (possiblya haŒ-line), Huzurbazar (1976, pp.9S-lB7) has developed a 

'rather complete theory to complement the Koopman and Pitman results. 

There is, however, no discussion of tne-suffl.ciency of the f.fLE in 

Huzurbazar's treatment. 

" Huzurbazar' s resul ts may be co~densed ta two types of model. Let 

( 
the carrier set be denoted (a(8), b(e)). In the fnst type, a and b 

depend on e through a one -dimensional subparameter a., s-o that the 

carrier set may be denoted (a(a.), b(a)) " .. When 
q 

a and b are "differenti-

/ 
able monotone functions in a (such that as a. increases, a is non- / 

increasing and b is non-decreasing or vicè-versa). Huzurbazar's theory 

shows that the only (parent) pararnetric families which admit a suffiClent 

statistic have densi ty of the form: 

T 
q(x; ~)-exp[ tex) $(a) - K(a) + g(x) ] ( a(x) < x < b(a~ ) (4.) 

(When e 1S i tself one-dirnensional, the inner product t
T4J in (4) 

vanishes.) A sufficient statistic for, e .in (4) is then the set Cà, tex») 

where 
" 

Cl = Maxe inf{ Cl a «(Y.) = X(l) }. inf{ a. b(cx.):: X(n) } ) 

. 
( when a is non-il'!creasing and b is non-decre,asing. (When the directiens-

W? 

~ 1 

'I~_-_____ - ----0;-------- "\ 
1 -:. 

1 
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and b -are reversed, the theory can he applied 

The question of the sUfficiency pf the MLE c e 
\ 

in (~ does. not 

ta have be,en 'considered in general, and w~ only sketch a proof. ' 

Let us assume a very simplWied verSlOn of (4), where it IS possible to 

reparametrize the model ~a,,-+ fa, cj» sa that: 

q(x; a, cj» 0= exp[ tex) Tq, - K(a, cj» + g(x) } ( a(o) < x < b(o.) ') 
- IJ 

Aiso, assume bath ~a and b are stric'tly mO}lotone functlons. 
If' 

o 
o 

( 5) 

~ 
lIt wquld appear that sufficiency results cou1d be obtained by a two-

" stage argumênt, first flxing a at a 
o 

and applying the constant-carner 

result, and then letting 0. 'tend to éi . 
~ 0 

In ordér for the argument ta 

apply, the range of cp for fixed 0 ,~ould have to be 
o 

\ 

b(u) T 
= {Icp :" J' exp[ tex) .cp + g(x) ]dx < co} 

a (~) (..... ~~ 

it 'must a150 be a'ssumed that ,the finite boundary of 4>(a) has probability 

Wh th " th t d't' laK(~~ CP) 1 ~ 00 on the zero. , en n 15 1S 50, . e s e.epness con 1 lon. o'/' ~ 

finite boundary, wou!d guarant~e that the MLE <P~a", x) for the subpara­

meter"·cp conditional' on a.\= a o ' would be a one-to-one function of t. 

lt can also be e.stabl'-.ished that K(a., <1» is itlcreaslng ln a, 50 that 

/~ the likelihood function for fixed cp -i5 decreasing in éx. Therefore, 

since a is the smallest value. of u which is consistent with the data, 
, .. 

the likeHhood ronction should ,attain i ts absolute maximum' at (à, ~(éi, x» . 

The'n -(à, ~) 
.~-'-

would ~lways be a one-to-one function ()f the sufficient~ 
o ", 

statistic (a, t), ahd"the MLE would be a sufficient statisti~. 
,f 

n The second type of .parent distribution which admi ts a sufficient 
) 0 , , 

statistic is where thé endpoints depend on a two-dimensional subparameter, 
'~ 0 

", 

f /. , . 

'. 1 

, 1 . 

1 
1 
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say (a: B).· Then Huzurbazar's theory shows that the distributions must , . 

have ,density: of the form: 

q(x; 8) = 
T 

exp [ tex) 4>(8) - K(8).+ g(x) ] < a(a .. S) < x < b(a, B) ) . (6) \ 

1 
~~' 

(Whcn e 
o 

is t:wo-dimensiona l, the inner product 
T /------ '/' 

t: cp '-----once again vani shes.) 
, 

-~tuzurbazart 5 t:heory shows thatl a minimal su:fh.cient ,statistic for 8 is: 

( x(l)' \n)' t (x) ). 

olt is possible t:o consider the sufficiency of thb MLE in models 

where' (6) can be reparametrized ta: 

.. T 
q(x; a, 8, <p) = exp [ tex) <p - K(a. B, CP) + g(x)] < a < x < B } , 

,where i t 1S 'further ass~e<f~ -~~ (a, (3) ranges o~~r a two-dlmenS10nal 

interval A x B. When the ,range of cp for fixed (~, B) 15 

B 
4>(a', B), = {cp:' J exp[ t(x)T!p + g(x)~ ex> J-;-­

a 

( 7) 

and when the finite bbundary of ctJ(a, B) has probabihty zero one can use 

a two-stage argument simllar to' the abo'Ve. It can be seen that d·, B. 4» 

is strictly decreasi~g while ~,cp) is stnctly Increasing, 50' that 

if the maxilllUJn of the likèlihe,od for fixed (a, B) = (a
o

' BJ occurs at 

~(ao' Bo' x), then f)1e absolute maximum must occur at the point 
A '" ", 

(a, B. CP) , . 
= (x(l)' ,x(n)i. ' CP(\n Jo X (n)' x~). When the steepness condfdon is 

sati5fied, ~(CXo. Bo' x) _,.is a one-to-one func~ion of t. ~o (â, S, ~) 
, " <l , 

is a one-to-one function of the sufficient statistic 
~~ ~ 

'Hence und,~r the ,ab ove conditions, i t would appear that the, MLE must be 

sufficient. 1 

, . 

l' 
~--------------~----~-----+--------

1 
1 
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3.1.4 DISCRETE CASE 

The regularity conditions of the Koopman and Pitman result (2) also 

exclude mpdels whel"e the observations aTe_~1:'~te .. Jeffreys (1960) has 

offered a proof that discrete parent distributions whlch admIt sufficicnt sta-
~, . , 

tistics are of the e'x'pon~ntial type, However, his prooL .. .asscrts that a set 
~ , ~ 

of non-linear equations must have a sol~tion, and-ihls fact is not at aIl 

transparen~ to us. It may, however, be remarked that all discrete distrJ-

" butions with fini~e carners admIt a sufficient statlstic of fonstant 

dimension (namely, the vector'of counts of observa~s in each cell) ~ 
l ' ~ 

p 

JI 

, . 

The theoTy. developed by Barndorff-Nlelsen (1978) for th~ suffiClenC) 

\ ' ~ ---
of the MLE cannat be applied to th~ d1screte case,yxêept wJren the carner 

set in totally unbounde~----e:g., 'a famlly of dlstributions having the set . .. 
of a11 integer numbers (pas i t Ive and nega ti ve) "~~arner S,et. When 

the sufficient statistic t (x) 1S restricted, say tex) > 0: then bt:-

cause of discre.teness there must be at least one ~ass point ( e. g., 

t = 0) on the boundary of S, the convex hull of ~rangé of t (.) . 

Hence, Jhe conditions F(B 1 e) = 0 is not satisfied. 

Barndorff-Nieisen (l918, p.155) shows that" when the range of t.. 

is fini te, the MLE" for the mean-value parameter T 0::;" ,(el "" E t e in: 

T 
- q(x; e) = exp[ tex) a - K(a) + g(x) , , 

o ~ 

is " t = t, sô· that it may he claimed that the MLE is sufficient in such 

'cases (the steepness Of.K is ensured by the fact that wi th the range of 

t being finite. the?tural' parameter space ~st be the E~~lidean 

space of the appropriate dimension). Sorne caution' is necessary with this t---c~ 

l _______ ~- -, 

1 1 

\ 

1 \ 
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résult, however, since point~n the 'bo~der B ~ay correspond to r 

infinite yarameter values in the 'natural' parametrization. In a simple 

model such as the Bernoulli, the mean-value parametrizatlOn is the stan­

dard one to use; -in other modè~s, h"Q;ever, all;:MLE ' T E B may not be 

reasomil>le, , and th~ full pat:ameter cannot be estima,tedcby maxilÎlum-IikelI-

hood. (See Barndorff-Nielsen, 1978, pp.IS6-l58, for an example lnvolving 
,/" 

.logistic regression with intercept Cl and s'lope. 8, where for sorne 

samples only Cl + B can be estimatèd, ion other, only Cl.) 

The results of this su!vey of sufficiency properties are rather dis-
) 

~appointlllg. The cases convered are far, from exhaustive, and even in 

ihose cases, the theory is at places sketchy. Perhaps the best co~lu­

sion'would be that ~he MLE is not nec~saTffy sufficient, even in models 

Iwhich admit a sufficient statistic whose dimension is that of the parameter. 

~. 

1) 

'·1 
" 

, 
1 
r , 

1 
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SECTION 3,2 INVARIANCE 

The 1;erm 'invari'ance' wi 11 be- used ~n this section in two distinct 

me~~ 
(1) An estimator which is compu.ted from a transformed version of the data 

(using the' model induced by the transformation) may .coincide wi th 

the estimator ,:omputed from the original data and mo~el, where both 

estimators are derived according to the same method, In symbols: 

y = tex) * B (t.(x») :;: ê (x) 
y x 

(2) When the distribution is r~parametrized, the estimator of th~ trans-

formed parameter may equal the transformation of the'estimatoT of 

the original paramet~r, bath estimators being derived from the same 

method:- - In symbols: 

lep = '.pee) .. -~(x) ::; tJ!(ê(x») 

The third subsection 'will consider the situation where a conjunc-

tion of the transformations ill points (1) and (2) is such that the model 

resulting from the double transformation is the same as the original model ~ , 
1 

----The basic material in-this section iS 50 standard that the Ihistori-

cal notes will be omitted. The presentation, particularly in subsection 
1 " .. 

3. 2 • L devia tes sODIeWha t from wha t we have seen in the li tera ture . 

3.2..+.\INVARIJANCE .lm RESPECT TO TRANSFORMATIONS OF mE DATA 
.-/( 

1 

Transformations of the data occur routinely i~ at least two settings. i 

1 

/-- l 
First, the data may be rescaled in SOBle way, perhaps to faei 1 i tate computa- _: " 1 1 

tions. One eX8DlJ?le is taldng the logari thm of observations which are 
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/----
assumeârto foIlow the lognormal distribution. Second, the data may be 

compressed, as is done regularly with indep&ndently and identical1y dis-

tributed discrete data where instead of reporting, say, that the flrst 

observation fell in celI number 4~ the second fell in cclI numbcr 1 and 

50 on, i t is standard practice to report only the coullt of evcnts in 

each eell (i.e., essentially, the order statlstIc). CondensatIon has 

occurred here since the arder, ln which the events occurred cannot be re-

covered from the order staf!.istlc. Here wc wIll conslder a wldcr c1ass 
1 

of transformations which Includes both of the abovc)types. In ~eperal, 

consider measurabl,e transformations t ::: '-'T, w~~T may be 

ltself. For each t the/transformatIon will carry the varIable x 

with density pC·; B) into a random varIable y = tex) wlth densn)' 

q(.; 8). For general t, the dIstribution in the transformed model 

{ y; q ( 0; 8); e E e } ~-

wHl notbe--identified: a trl'y_i.a1~example is 

tex) == constant, where q(o; e/ == q(o; 8
2

) for aIl 8
1

, 8
2 

E e. However, 1 

a sufficient condition for e E 0 to be identifiable in q(.; e) lS that 

t(x), considered as a statistic, be sufficiènt for e. The proof 01 this 

is easily seen from the factorization criterion iformula (1) of SectIon 

3.1) . Since: 

q( t(x); e) T(X) = p(x; 8) 
, '. 

~-- 50 that e is identifiable under q if i t is identi,fied llI!deT the 
1 

~riginal model p. We note, however, that ~ome.non-sufficient transfor-

mations may also produce identifiable models. 

4 J 

'. 

i 

" 1 

1 
1 

1 

.fI l 
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Defini tian 

An estimation methoct is said to be <invariant under the fami Iy T 

of transfonnations which preserve sufficiency if for every t E T and 
A A 

for aimost every'sample x the method produces est imators fi ,Or respectIve!)' x ) 

for the models' ,{ x; pC-; 8); 8 E e} and {y; q("; 8); e E e J such 

that ê (x) = ê (t(X)). We have the following simple 
x'' y 

~esuit 

'.the method of maximwn l.i~elihood' is invanant unae1" aU transforma-
\ 
l , 

tions of the data whiah preserve sufficiency. 

Remqrk 

Of the two possi,bIe approaches - finding the mod~ of the J.l~elihood 

function and ,finding the root of the li~elihood equatlon which maXlmizes 
t 

th~ likelihood function - the same approach must be taken for both models. 

Proof 

Usin"g the Neyman factorization criterion, it is seen that the like­

lihood function for the transformed model, using t(x), must equal.the 

likelihood function for the original model based on x, up to a ocrnst~~~ 

mul tiplic~tive factor. TJlerefore, "the maiXimum':likelihood "estimator mus~ 

be thë same in both cases, 

The result is hardly n~w, of course: it is merely a transposition , 
in the setting of invariance of the familiar resul t that the MLE· is a 

function of every sufficient stàtistic. A consequence i:; 

{ ., 

• Il 

, i 
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Corollary 

The method of ma:rimwn-Zikelihood !.JiU yieLd the same estimatoY' unde}> 

aU Otze-to-one measurable trunsfo1'T1UItions of the data .. 

This last result has been proved under the somewhat more restric-

tlve assumptions of the 'inverse functlon theorem', that the transfor-

mation be differential;lle and have a differentiable inverse Ce.g., Sverdrup, 

1967, p.123) .. Both the Result and Corollary l concern the method of 

maxïmum likehhood rather than' the estimator i t produces. It may, there-

for, be worthwhile to state separately a property of the MLE Itself.· 

, Corollary 2 

When the obsepvations are independent ly and-ide;ztica lly dis tpibuteC: 

the 1'I'Ii1Ximwn-likelihood estirrutol' remains invaT'iant undep all peP177Utationf' 

of the obsepvations . 

Corollary ..., '. .. 15, in a sense, a minImal property one should expect 

of an estimator in this situatIon, ~nd Indecd wc cannat think of any 5tan-

dard estimating procedure which would take the order of the observations 

into account when i,ndependence of idenÙcally distrihuted observations is 

specified. 

3.2.2 INVARIANCE WITH RESPECT TO TRANSFORMATIONS OF THE PARAMETER 

To a certain extent, it may_ be argued that the parametrization choSCJl 

in the mode! being entertained is inessenti~I, serving merely as an 1n-

dexing scheme for the various probability distributions and that the goal 
/ 

of estimation is to select the distribution which is, most, approp,riate to 

represen't the data that have been obtained. While thi~ is an extreme 

"~_ 1 

_1 
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view,' i t is often the cas~ tha(- several parametri zatlQ...ns are possIble 

and meaningful, for the same fami1y of dIstributIons. The two-parameter 

Gaussian distributlOnal family is usually indexed by its rnean and varIance --. ~ '" 
2 

(~, 0) but (Il, 0) wou1d, ln some sense be an even more natural choice, 

since both of its components are ot the same phYSIcal dImenSIon and 0 

is a scale parameter. Othcr po~sib1e parametrizations are (~, c) 

where E: = 0.67450 1S the probable error, and (~o, 1), where F·,l2lo is 

the modulus of preClsion. The exponential distribution with densit)" 

p(x; e) =' exp( -xie) ( x > 0) might be parametTlzed by the frequency of 

failurc <jJ = 1/6 
\ 

as well as by the expccted lIfcume b. 1 n a more genera] 

vein, for exponent1a1 fami iles 1 t 1S more convenlent to worh 1-,'1 th the 'natural' 

parametrization even when this differs from the standard parametrizatlon: 

-fi»" the two-parameter Gal,lSSl an, the 'natura]' parameter correspond1ng 

" to the usua1 sufficient statistic (I.::\., i.:x-) lS 

Generally, when the original parametrization has typical member 6 wltn 
1 

density p(.; e). for any fixed one-ta-one transformatIon q' = ~(tl) 

(which need not even be measurable, though in practice 1jJ wi 11 not. onJ)' 

be measurable but even analytic) the same density may be represented with 

the parameter 4> as 

-] 
= p(-; tJ! (4))) • (1) 

Jl' __________ ------------~---------------
~-- , ---------......;.---
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DefinitIOn 

A method ,of estImation 1S invarrant under reparametn :at10n5 if 

for any one-to-one transformatIon 1jJ(8 j = <p of the parameter, the method 

r ~ A ~ 

yields estimators e for El and 4' for 4' such that 4 = ~J(G). 

From (1) wc have the fol1owlng 

Result 

The method of rraximum likelihood is 1:nvariant under re~ar'ametrization['. 

1t should be noted that invariance ta - reparamctrlZ<;J.t10ns 15 -shared bl' 

a large class of methods for the d1screte case, such as the method of 

minimum chi-squared, the method of mInimum modifled Chl-sÇjuared, etc, ln 
.t' 

fact, invariance under reparametrlzatlons 1S ieadily seen to hold ln the 

Identically and independently distribute<l case for aIl methods which an 

based on a criterion function (or an estirnatlng equation) when the latter 

depends on e· th~ough the set of likelihood elements { qlx ;8 ) . 
l 

i = 1 t 2, "', n }. On the other hand several other methods, foremost 

among which 1S the method of moments, do not enjoy the property of In-

variance,. 
( 

" The value of the property is debatablc' on the one hand one \o,ould 

want to keep opeh the possibllity of using a different parametrlzatlon 

with a given sItuation, on the other hand the scope of allowable trans-

formations is much too wide, since we are qUI te Wllikely to use parametTl-

zations which are not sorne srnooth transformation of the original paramc-

trization. Also, where an element of s)~etry between the parame ter 

space e and the space of observations is present in the problem-

(as discussed in the next suhsection under cogredience), it seems that 

one would want to limit even more stringently the possible reparametrizations 

.1 
~----------------------
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to those which do not destroy this syrmnetry, 

Note on Many-tc-one Transformations of the Parameter 

, 

A more general result than the one just stated has b\een claimed by 

Zehna (1966). The method of maximum-likelihood 1S Claimed1t; be invar-
\ . 

iant under an)' trans formç.t ion ljJ' ofl;he parameter. even wh en ~I maps 

different values of e into the sa me value, Two obiectlons can be made - \ 

to this. First, as noted by Berk (1967), the likellhood funct10n of'whlCh 

~(ê) 1S purported to' be the maXImum, does not in gen~r~l correspond to the 

likelihood function of any random vanable. Second, because of this fact the 

proof of the statement, must contain a definl!ion and' 50 an 'lnduced' l ikel1-

hood functlOn M(cj» = sun { p(x; 8) 

definltlon hangs the result. 

The justlflcation given by Berk for call1ng the l-fLE is that 

the use of the transformation ljJ singles out a subset of the parameter 

space e in much the same way that considering the i-th component of 

the parame ter e focusses attention on a subset of 8. If one feels 

cOlllfor,table in saying that the MLE for the me an ).l of the t",o-parameter 

Gaussian is " ).l, when the full parameter is then there i s 

not too much harn in calling l/!(ê) tl1e ~fLE of l/!(8). Wi th the Bernoui 11 

~ distribution with standard parameter TI, ~owever. the variance ~(n) = 

n(1 - 'If) has the ;same dimensionali ty as; the parameter, 1T. and in order to 

apply the ~bove justification it appears one must consider a reparametri-

zation such as 

~ (n) = ( nO - n), ( n < !) ) 

iL, ...... ________ --------

1 

1 
!' 

, 
1 

1 

. / 

i ~ , 
i 
1 : 
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50 that the transformed parameter space is no longer a continuous suhset 
, , 

of Euclidean space. 

3.2.3 COGR.E5ÏENCE 

Many parcnt parametric farnilies for umvariate x are of the type 

p(x; , [x f.I), 
(IJ, 0») = p ---, "here wc spcak, of ~ as being a location parametcr 

o ,0 ) 

and of a as a scale parameter. When a model assumes identlcally and 

independently distributed observatIons from such a famil)', there ex~sts 

an intlmate reÈ!.lOnship between -t-he- data and the pararneter e '" (\.l, 0)" 

The latter
O 

15 no longer a l)lere index for the family of distributions, 

lt a1so has a 'physical' mcanlng and lt seerns reaso~le 'ta expect that 

t,he rnethod of estImation be~ng used WIll respect this relatlOnshlp. The 

notIon of location-and-scaie model can be generalized to' that of cogre-

dlence. 

Defini tion 

A cogredience mode! {x; p(x; el; e E e} is ,one-where there exists 

a group G of transformations on and a group G of transformatIons 

on e such that 

for aIl g E G, there exists a gEG so that 

y = g(x) has density pC g(x); &(6»); 

1 A 

g is sa id ta be the transformation induced by g. An estimator e i5 

said to be cOgredient under this mode! if i(ê):=:~, where ê is th"e 

estimator of e based on the original data x and $ is the estimator of 

4t:;: g(B) based on the transfot1lled data g(x). 

.1 ____________ -----
___ J 

r 
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The transformations in G must have the property that for al) 

g E G the measure 
-1 

À (g CA)) be such that the dominating 

measure À is absolutely continuous 'With respect to 
-1 

Àg C see Lehmann, 

1959, p.252). 

~-

'Invariance' is the standard term for the notion we have termed 'co-

gredience'. The term 'cog:r;edience' was used by Lehmann in a set of lecture 

notes (1950). 'al though his book (19.59) uses the standard term. W,e have 

preferred to avoid describing yet a third fo~ of invariance in tlüs ~ sec­

tion by the same same. The word 'cogredience' aiso has sorne appeal 'in the 

context of point estimation in that i t serves as a reminder of the fact 

Jhat changes are being made on tWQ entities, and that a change on one of 

the two entities erttails a correspondi~g change ln the other. 

Resuit 

The ma.:r:irm..on-liketihood estimtor is aogredient wuier any aogredienae' . , 

roodel. 

The proo:f of the resul t ca!! proceed in one of two simple ways: ei ther by 

combining the results of subsections 3.1.1 and 3.1.2, or directly, by 
, 

noting that the likelihood function for the original and for the trans-

foraed parameters must b~ proportional, since the densities of corres-' 
1)\ 

ponding data x and g(x) are equal fo:r
c 

correspo~ding parameters. The 

direct approach has this advantage: with it, it is clear ~hat it refers to a 

property of the estimator itself, rather than to a property of the .ethod 

of estimation. / 

The IIOre general situation, where the transformed mo!iel is not tbe 

original one, but the transfoI'llation is suffi cient , leads to a simHar 

• 0 

: ' 
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[J 

invariance property for the method of maximum likelihood. lIowever, not 

aIl data transformations whic~ may reasonably be said to induce a 

transformation on the parameter could be considered will have the invari-

ance property for the method of maximum likelihood. -----
An example of the more general kind of transformation has been con-

sidered ,by Dudewicz (1971) '. His-----dTscussion is in terms of a k-variate 

Gaussian distribution but we will restrict our attention to the bivariate 

situation. Let·x = (Xl' x
2

) be distributed bivariate Gaussian with 

mean and identity covariance matri~. Let t be the trans-

fonnation whic_h orders th'e components in increasing order tex) = y = 

-----~ 

where .p(.) is the density of Gauss (0,1)., 

Here. it seems natura1 to app1y the same ~ransformation ta the 

... 
parameter Î1, since when the order of the data is lost, the ordering of J' 

the parameter components loses its meaning and the parame ter is, no longer 

identifiable, whereas the transformed parameter tell) = v = (v}' v2) = 

(min(lll' ll2)' maX(lll' l.I
2
») is identifiable. Consider estimation of v 

based on a single observation y. (A less appealing si tuation woulet have 

y be the ordered vector of averages of n observations; it 1S not clea-r-
-

that such a situation is realistic. however.) Dudewicz shows that the MLE 
, 

for v based on the ordered data pair y is: 

:v := ex, x) ( d <. >/2_) ~+ ex - s, x + s) ( d > /2 ) J _____ 

, . 
~, 

" 

, , 

1 

1 

.1 
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- r 2 ~ ,X:= 
c, 

is where d = y'l - (xl + X
2
)/2, 5 = _0. and ( the lml que 

2d 0 

, ~-

d
2 . 

d> 12. positive root of c coth(c/2) = wh en 
A ,.. 

Thus exC:ept w~en, YI = Y2' \J + toCJ.1) and ~~:' or rather the 

'method of maximum likelihood. i5 not invarlant und"r this type Of'dO~ 
transformat,ion. ~ \' 

3. 2~4, ESTHtATION IN SEGMENTE!) t-l)DELS 0, 

" It seems appr9pria,te to cl'ose this sèction, and this chaptet, with, 

~ 

a s~~le but interesting property WhlCh is related to both invarIance and, 

\ sufflciency. 
, '" 

Suppose that the data come naturally in two or more segments: 

x:= (YI' 'Y2'" ·,ym), wheré the Yi may be mUltidimensional, not necessarily , 
, , , 

',' of ,<the same dime~sion: The Ijlodel {x; pC o ;8); a E e} cOfld he termed a 

segmept,ed model when the Y i '~re" jointly (stochas'fi,cal y) independent, 

an4 where the ~rginal distribution ot y. 
l 

"'(not necessarily of the same dimension 'for 

depends_pn a subpaT~méter, Bi 

aIl i) ln such,a'way that the 

" '\ ' ".~ .. '8 ,,/ . vaTlt;lus . 
, , 1 are' functionaIly independent, i.e., '8 'cart be reparametrized 

( 

(' 

to whicn ranges over e = 8
1 

x e~ x _._.X Sm It is th~n 

possiblè to write 
m 

P(x;9)!;" .• n} Pi (Yi;è i ) 
1= . 

! 
( e.: E e. ) 

1 l 
1 

for appr~pri,ate den'Si ties Pi 

, N~w, for aIl sampl-és. the ·likelihood function, fact'Ors, into functionally 
" 

independent s~gm~nts. and the MLE for the' sOb~arameter e., wi 11 he 3-f.unc-o 
. . 1 /" 

tion ~of Yi 'OlÜY~d' ~"l "not de~end"on' any other segment 

, 1 

,JE< ! 

, 
1 • 

1 .. ,.,~---' 
"i.!!!!!!!! • 

" " 
, D 

iJ' 
", 

J 
! , 
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.. 

of the data. In othey' 'Wol'ds, 1-r. a segmented mode l, the MLE wil,l use o~1lll 
, 0 

the data from the appropria te 8egment of the data to eetimate the COl'l'es-

L 
ponding 8ubpal'ametel'. ' 

-------",/"" . A si~pie i llustratlon of a segm~nted model l sone w,heTe the data arc 

taken to be lndependent obse~Yatlan5 of a k-dimensional random varIable, 
"'tI ,,/'/ 

n 

Ga~ss()J, O~I") , wherc 
u 

I~ with multivariate .Gausslan dIstrIbutIon a~ 
o 

4,t- \ • 

known and the paTà~atcr spacc 15 ~_ Carte5ian product of m subsets of the • 
1~ 

real hnc. 
fi;~-'-

(TypJ..e"âllY, thc-'parameter spacc i5 th'e full k-dlmens1Onal 
\ 

.éuclldean space.) -The ML!; ~ lS such that lts l-th component cPn1y Involve-; 

1 ~ 

the i-th component of th.c observatIon!>. lt thereby avolds the klnd of oh-
1 

jectlon . that IS someùmes lcveled'\~gainst Stei n-type êstlmators, that they .. 
mlX possibly Incommensurate unH5. (Sec Efron & MorTl~, 1973, for a rcfer-

ence to a simllaT obJectIon.) 

'A segmented mQdel 15 an extreme case of a mode} WhlCh adml ts an 

f,S-suffic"lent' statistic "(sec Barndorff-Nlclscn, 1978, p. 50). In thI5 

, ~ 

more general 'situatlon, there eXlst 'statistics t
l 

and t
2 

and a repara-

metrization e .... (9}, 8
2

) , e .... ~\ )( H
2 

such that 

p(x;9) = p'}(t l ;8
1

) P2(tz;8 zJ,z) (2) 

.. 
(P2(t2; 8zlt2) being t~c dcnsity of,a condi~ional distribution). Then 

t
l 

is said to be 'S-suffiéient', for 6
1 

(and 'S-ancilliary' fOT 8
2
), ln 

(2) J the MLE for the subparameter el wou 1 d depend on l' x tprough t 1 
( 

only (although it would not in general be ;-pffiéient for el)' 

/ 
1 
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CHAPTER 4 APPLICABILITY 

This 5hapter survey~ some of the factors whj ch l1mi t the arrl) cabj llt)' 
-~ ----of maximum-likelihood estimation. We begin by studying sorne conceptual 

difflculties\; thïs is followed bya survey o.f P~em5 relatlng to the 

cornputational aspect of es~irnatlOn; flnally, 'the questlon of making dl s-

tributional statements ~bout the paramet~r lS considered. 
\ 

SECTION 4.1 CONCEPTUAL DIFFICULTIES 
" ~ 

4.1.1 EXISTENCl:. 

A fundamental difficulty is that,~en when It is possible to specl-

fy a llikelihood function, that function may fail to attaln l ts maXImum 

o~(~~specified parameter space B. 

There are situations where the parameter space is 'unn~tural]y' 

restrieted, such as when it is specified that the st~ndard parameter n ~ 

of a Bernoulli distribution cannot equal ~ ,-r6r/iliat t,he mean of a Gaussian 

--- ~ 
distribution mus-t'1Je strictly positive. In such -SI tuations the l i~d 

function may'take its maximum at one of the excluded values, 50 that the 

~ethod fails to produce an estimator on ~he proper range. 

-------A~imilar situation ~111 oeeur when it is desired to exclude from 

a those val_ues of e which correspond to degenerate distributions. 1 As -- ' ./..-~ , 

an exampl e, take ~a- -Bernoulli m-odel wi th n observa tians and standard 
/ /~--

( 

parameter n. When aIl n observations are equal to zero, the MLE is 

-77-
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TI = 0, which corre'sponds to a distribution eonecntrated at zero. J'or 

sorne purpose~,sueh ~y where the estlmate is-to'bc used ln a simulatIon 
, • 1 

~ 
stu~y to produ~e samples similar to the one which was obseFved, sueh an 

estimate is not reasonablc, .and,sorne other method of estlmatlbn must be 

used. (Sec Arnold, 1972, and' Schafer, 1976 for sorne alternatives.) 

lJegenerate dlstributlons:.are even more eon~eptually troublesome 

when the observatIons are continuous, since a degenerate dIstribution 15 

not absolutely eontinu~us-with respect to Lebesgue measurc. The like11-

hpod functioris~yPIeallY unbounded in such. cases. (Barnard, 1974, offers-

an interesting interpretatlon of such a situation.) lt, WIll bften 
1 

happen that the.lÏkelihood tunetion 1S unbounded only for sets of data 

whose probabillty is, ze-ro un~er aIl models: for example, the Gaussian 

model wlth parameter 
o 2 1 

(~.o) will only have an unbounded likellhood 

funcfion (correspondi~~ dege,nerate distribution) when aIl observations 

are equal; thi~ possibility can be discoynted by the fact that sueh an 

" 
.event has zerô prbbability for aIl values of 

2 
(jJ,o ). However, there 

are IJlIQdels" where tbe MLf: corresponds to a ,degenerate distribution with 

probabllity greater than zero: an example is the lognormal mode] whose 

parent distribution has density: 

, '2 
q(x; (jJ,l;,q)) = (x·lJ)/2iTor

I
exp{ -! [log(x-jJ) -l;] /02 } (jJ<x). 

'f 
1 

It can be show~ (Hill, 1963) that for any sampIe, the likelihood is 
1 

unbounded in the neighbourhood of the poinr---(lJ.ç,O) == (X( ). -03,00) 
,-~ l 

(where xCI) is the smallest observed value in the samp1e), the MLE 
oP 

corresponding therefore to the degœnerate distribution coneentrated at 

, ., 
, 

.. 1 

, 
1 

~l 
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The last example may also serve to highlight the' fact that, for thl' 

parametrization being considered, the'ML~ may he a pOInt at Infin1ty: 

such pOInts may, or may not"bc difficult ta interprct, dcpendlng on the 

clTcumstanccs. - 'AIso, whi]e )singulântlcs _~~.c ]ikcllhood function 

can he removed by taklng account of the discrete structure of the ~ata_ 

(sec latcr, subsection 4.].3), the same 15 not true for pOInts 3t inflnlty: 

the Bernoulli model with the cxponentlal-famlly 'natural' paramctrizatlOn 

-1 e = ~ogl l1f! -11) will ylcld an estlmate G = =u, when aIl observa-

.-------
tlons a:r.c-- zero. 

4.1.2 ROBUSTNESS 

1 

A robust estimator lS one Whlch WIll stlJ.-l-he roughly on targct 

whcn the truc modcl 15 somcwhat di ffcrent from the assumed mode 1. J t 
~~ 

is rather dlfficult to make gencral statements about the robustness of 

t~e MLE, sincc each particular modcl WO~ld have to be consldercd sepa­

rately against an appropriate set of al ternÇ1.tlves. ln general, though, 
1 

the MLE ought not to be supposcd to be robust, Slnce lt;"denvatlon makes 

such expllci t use of the assumed model. lndeed, in the mos! common 
~--

studies (c.g.,Andrews, Bickel, Hampcl, Huber, Hogers & Tukey~ ]972) the 

MLE serves as a baseline, as a supposedly non-robust estimator agalnst 

which other estimators are comparcd. 

The notion of robustness seems to requITe a dcfinition of para-

meter which is rather different from the one we have adopted here. 

/ 
Although Huber (1972) mentions the possibility of uSlng a parametrls/~---

family as a class of alternative distributions, a more fruitful approach 

'f 
~I""",,-----------------
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i5 to use more genera] classes of alternatIves WhlCh arc not all of th~ 

sarne parametTlc family. In such situatj ons one should really srea~ of 

_ the sllhparameter of intercst which mlght be, say, the medlan of the dlS-

-~-

tribution (the other subparameters bCIng 'lncldent~l '). lurthcrmore. It .< 

dlfficult to spcak ln thIS contcxt of the para~ctcr as lndcxlng a famil) 

of distTlbutlon~, at most, lt Indexe', that aspect of the dI~tTlbutJon 

WhlCh j<"fe1t to bc relevant, <;uch a5> ]ts 'centralIty' ln the case of 

robust estimators of locatIon. 

4.1. 3 DISCR!:l f: S11WCnJRL 

1 OI,lT last cpnccptual dl fflcu] ty IS that the ob~crvatloTiS can nover 

bl.~urned to be continuou~ ./ea~uTemcnt S Lan on Ir hc carn cd out to --
o 

a dcflnltc number of declmal places, sa that the varIable WhlCh IS cffcc-

tlve)y obscrved 1~ dlscretc, ançl It may be argucd that the model ~hou]d 

_~roperly be modifjccl to account for the dlscrete structure of the data. 

Thus, when the mode1 15 that observatlOn"s are those of a Gaussian 

vanate, one should really speci fy that the observatlOns Wlll be grouped 

50 that Xl = (J.U h'i11 be Tcported whcnevcr the true, underlying var-
j 

iate Yi 15, e.g., in the range -0.05 to +0.05. The likelihood function.., 

for a set of observations x}' ••• , x n i s then: 

p(x; p,o) = j=~"" [41(0.lj+~.05-lJ} _ 4>(O.IJ-~.OS-lJ)JnJ 
,# 

l , 

1 

(1) 

~ where n. is the numberôf yls in the range O.lj, - 0.05 to O.lj .. 
J 

0.05 (equivalently, the number of x's equal to O.lj) and 4'(0) 

is the cumulative di~tribution function of the standard Gauss (0,1). 

t 

~I 
~---------------------
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In a sense, the usual likelihood funetlon. 

p(x; 11.0) 

n 
l .p ( 

i = 1 

X. - )J 
l 

o 

(Wlth <P \dcnotlng the dcnslty of Gau.,,, (0,1) ) ean only he regardce 

as, an, approxirnatlOn to the trul Il ~ cl Ihood funct l on (1). and tl1(:' :.tandarc 

~ ( ~ (x - X):: 1 

ML[ (iJ,ô~)::= 1 x, L ln 1 onl)" approxIIDatcl: maXlml:CS (l! 1 

Very often, the dIfferenc(' behcen the apprOXlmat<:- ML! ana th(' trut 

one 1S qUlte ncgllgibl<:. In sorne modds, ho\<,cver, thc contra,;t 15 <,tTltln):' 

fOT example, the IlJ..elIhood funetlOTl for the threc-parameter lognormal 

model usually attalJlS 1 t~ maxImum at an Intenor pOInt of ,the paramctér 

space, when account 1:' taken of th<. dlscrctl struc.ture 1 ste d"SCU<;SlCJT. 

ln Barna rd. 1966, and Kempthorne, 1966). 
1 

An extreme VICI< of dl screte structure .... ould fOTce U~ to ah.à)'~ 

compute the MLL on the basis of a dlscTetl::ed model. HowcvéT, a rncthoJ 

of estimat,lon should be computatlonally tractable as weIl as, bçln~ con-. , 

ceptually good, and the <:;xtrema Vlew would seem to exclude computatlOn­

'ally simple,MLE's in most modeis \\ith an undcrJpng, 'unobscrvcd', contln-

uous varlatc. 

I~------------------~ -- - - ------------'----
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SECTION 4 2 COMPUTATIONAL DIFFI CULTIES 

4.2.1 AVAII..ABIUT) or A IJENSlT) 

ln mast caSé" encountered, the] itellhoc,J funct10n l~ avallable III 

terms of clement<.tr, functlon<, and Jte .Çcnera] heha\'10Ur can tIC tleduccl' 

readll \'. he \'>1 s), tt' po; nt out LCH tha t <"uch 1 s not il 1""3)" '-C 

lh, })arctü-l..[\,y 'stahle' la", fOTm a rather 'ittractn'{ paramctrH 

fam:ily 
f'~> 

ln partHuJ)Jr, thev' constJtutc- the claS5 of IlmltJnr tllstrlnu-

tIons of quantJt l C~ :o'Uch a' 
4 

r Tl 
-}, 1 j a , 

li) n 
for s(i} tat] <. "e4uence~ 

',a and {b J .... hen ,tJ""I(: ranJom vanahles ~), , art: l!ldepcnJentJ.\ ,and 
T n 1 

Idcntlcall y dlstTl buteè, .stabl <- (.ll st Tl butlon" can therefoTe he used te' , 

modcl vanables ... ·hlCh are cOTlsnjcreJ to ans(:- frorr, ~om(' sort of avcragln~ 

process thlS arglmlcnt 1!'- but LI ~11ght generallzatloTJ of one of the common 

arguments advanced ln favour of (,ausslan model::, and It leads ta <; far 

Tlcher cla~s of dl stTloutJon<, 

In l ts most genera 1 form, a stabl e dl stri butlon 1 s Indexed by a 

four-dlmcns:lonal parametcr (Cl,t,·t'.6). such/that the charactcTlstic 
• 

functlon of the dlstnhutlon 15: 

. 
feu) = E êXp(lUX) 

2 
where Û,) '" w(u,a)'''''= tan(iHlj2) ( a* l) + ï loglul ( a= 1). 

6 and '('.C ar(!o, respectivel}', locatlOn and scale subpararnetersowhlle B 

telated to tlle skewnpss of the distribution and a, the 'chsracteristic 

exponent', determ1ncs the mop!ents 'which exist finitely: fOT Cl < 2, aIl 

moments of order Cl < a 
o 

exist, and no moments of order 1 a > a may exist. 
o 

u 
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It lW!Ùd appear (Feller, !971, p.581; Pau]son, Holcomh [., Lc:I,tch, 

1975) that denSltleS of stable la""s ln tcrms of clernentar)' functlons aT( 

kno ... n ln the follov.ing'sltUatlOns only ('i' and are arbnrary) 

a = 2, E 

Cl 1,. f 

(J • GausSlan dlstnbutlon 

(J Cauchy dlstrlhùtlo~ 

J 
rT;;;' 1 y':", 

thl~ dlstTlbutlon doc~ not secm to have 

a standard Damc) but )t5- densîty 1S h:nO\m to be: 

-, 

Fol=. general memhcrs of the clas5- of stable dlstrlbütlons. therefore, the 

dCDSlt) for each separatc \aluf: of x and of (:J..~;r,; ) ... ou)d have to 

b~ cornputed numerlcall~, elther b) Integratlng the characterlstlc functlon 

or b~ uSlng t.he InfInIte seTles reprcsent.atlon for the denslt> (reller, 

1971, p.S83J. 

, J 
l\e1 ther of the above al ternatlVes i s very palatabl c and thos( 

references wc have sccn esche",' maxlrnum-llkelihood estImatIon ln favour 

of other rnethods (e.g., Fama 6 Roll, '1968; Press, 1972; l'aulson, Hol<;omb 

& Lei Teh, 1975). The probl cm may not be' ,computationa1] y prohibltl ve 
, 

(after a11, most elementary functlons ,are effectivcly approxilllated numer­
. \ 

lcally by a truncated version of the appropTlate inflni te serIes); ho~e\'er, 

one is rather uneasy about 'compu~ing the ,maximum of a functlon whose 

shape one knows so litt1e about: 

4.2.2 SOLUTION 

Although in many common models (Gaussian, one-paTam~ter exponential. 

binomial, etc.) the MLE can be determined explicitly as a known function 

\ 

\ 

, 
\ 

\ 

J 
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of the observatlOns. l t l S gencra] 1y th~ case tha t the ~1L1: can onJ:- )l( 

dcterroined impllCltly, and that It5 value must he obtalned h\ numCTlc::,: 

procedures. ThIs IS partleularJy truc .. hen the undcrl)'ln1' dl stTl butl or, 

15 concelved to he contlnuOU5 but .. herc It 15 ùecldcù to takl 3ccount 

of the dlserete structure of the observatl0n<-. 

Jt v.ould he outs1de the "cope of our sur\'e: to ÙISCUSô> al; lfH 

numeTlcal procedures \;hlCh ean he W·U.; to ohta,lj, the l'~L!. he lN:r<:h nott 

that the advent of conputcrs has not entJ r('1)' reflloved ,-omputatJonal COr,S1G-

eratlons from the statlstielan's r~r\'1eh 

10 shov.' that cven a ,r(}-~h(r 'nIer' 100"ln1' denslty call-producc .. 

'bad' llkclihood fun e·u 0': , consldl'r the T'ludc] of Idenucal)\'and Ind(·· 

p~ndently dlstrlbuted ~ontinuous ob~cr\'atlQnS fT0~ a parent dlstrlhutlUJ 

v.lth densit)': 

p(x; f:) 
-', ). 

ç: (,' 0 <;; À .-;;: r. 1 
a 

:: a - x' 
+---{ ~-<À<;a a a - ç. , 

( l 1 

\Ohere a is a kno,,'Tl con'stant, (1; 1S mereI)' a tnangular-shaped densl t~ 

~ 

wlth support on (O,a) and mode at t. Oll\'("r (1972) sho~:: that the 

likeljhood functlon corre~pondlng to (1) is eontlnuou~ and plece~lse 

convex. The convex 'pleces' are "]olned at the vàlues ~- = ). , ... , x 
1 n 

to forro cusps. Thus an)' solution to the likellhood equation mus! lea-d 

to a local minimum, and the glob'al maX1nrurn must be sought among the values 

..• , x . 
n 

(Mantel, 1972, mentIons an even more pathological 

example where the 'cusps' have infini te height.) ]t ~ould appear ta be a 

general mIe that the computational aspect- of finding the toILE must be 

carefully scrutinizea. whenever the densi ty 15 defined piecewise and when-

ever its carrier depends on the value of the parameter. 
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4.2.:)" U!\IQUE!\ESS 
l , 

Whenever the ~lLl cannot be ohtalncd cxpl1cltl}, It 15 of 1ntcrcst 

to detenIllne \\hether the 1 liellhood functlon has several modes, hhen a 

unlmodal l1kel1hood funct10n cannot he assurncd, specIal care muq N-

cxerc1scd to ensurc that the com~ut3tlonal procedure selecte the correct 

mode. 1,\ classJc cxamr}c of il 'smoo!l' mUltJmoclal JJI..ellt~ood funet10n 15 

provld('d b~ the model ... nJc}; assume~ lndependcnt.h and ldentlcalh dlstn-

butcd ohservatlon~ bf a Caueh, varlate "'lth kno ... n scale (=1" anc unlnoh~ 

medlan The lik~11hood functlon 1S 

plx; 

n 
~I=~. (x - 6)2] -] [ ].. J 

1=] 

( ~ , - ' 

a ratlonal functl'on \\ltr. no slngular)t1es on the rea} a,us. Barnett 
~ ,'if 

(J966J shoked ln a SlIDulatH>n study that 1t 15 falrl:-' commor. for (2) te· 

be mu] tlmodal , 
, 

.\.nothcr rather extrcme case of mu] tlmoda-lJ t\ 15 pronded hy the 

mode] M.lth p;rent d1stributlon umform on (::-,6'+1); the likellhood 
r 

functlon 1"5-

p(x; 6) = ).(1»6}( x <; 
(nl 

f + l > (3) 

.(where and x 
(n l 

are re~pectivel)' the smallest 'and largest obser-

vatlons) and the maxiID~ is attained at aIl 

e E [ \n) -l,x O ) ]., 

Severa1 approaches for proving the unimo'1ali ty of the ·1 ikelihood 

function are p0ssible. The simplest approach is to show that the logarit,hm 

of the likelihood function is strictl)' concave. (Act,ually. i t is sufficient 



( 

( 

t 

to sho\o, that sorne ~trlctly monotone functlon of the 11~ellhood functlon 1'-

strlctly concave; the 10garlth~ l~ usuall~ the ~05t COnvcnlcnt transfor-

matlon to use, howcyer.\ It c:m be shoh'n,for c'''L,ple, th3t ln expOTlcnt:ial 

far.nlles .. lth the natl;,él] para!'1etn::atlOn, the lo,ganthr of tlle llkcl1-

hood functlon 15 a str~:t~~ conl~\e:funcllon. provjded that :hr carrIer of 

the densltles lS not COTlcentr&ted on a propcT affIne suhspaLc of t-

dlDenslonaJ Eucllclean space, .. here k = ;~F ; (Barndorff-\1(,)5en, 197f. 

pp,IO:), 140, lhereforc ln eXl'0nentla1 far.nllcs the llhellhood functlon 

l ~ unll7Joda l, 

\I.e note that unlmocl:,llt:- dOéS not ln general nold truc of cun'eè 

J 

exponent1al faml11~5 multlDodallty occurs in the bl\'arlatc GaUSSlan "neT, 

onJ\ the'correlatlon cocfflClent 1S,to he estlnatcd (~cndall t Stuart, 

1973, p.40) or ~hcn the correlatIon coeffICIent 15 :ero, the \aTlanCes 
o 

unknol\'n and rOSSI hl\' dl sOnct and bath \'3nates have Unt.nOl·;n common mean 

(FIelds, hramer ~ Clunles-Ross, 196~). 

hneD It 15 not possible ta transform the 11kelihood functlon Into 

a concave function,~it ma)' stdl be helpful to sholo that aIl likelihood 

sets 

C(O"I = {c:p(x; e»p(x; 6,) 

, 
are Gonvex (the likelihood function 1S then said to be pseudo-concave). 

Pseudo-concava)' ~d 11 not of i tsel f guarantee UTIimodali ty, since the abso-

lute maximum could still be atta1ned on a connected set as it is in (3) 

above. However, it is sometimes possible to rule out the possibility of 

the likelihood function 'flattening out' to a plateau (see Antle, Klimko 

& Harkness, 1970, for one instance). 

" 

1 
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t'w'hen concavlty or pseudo-concavity cannot be proved, lt is sometimc!' 

possible to determine the unimodality of the likelihood function by showlng 

-that only local maxima are possible. Two cases must be distlnguished 

here. When the parameter_is one-dimenslonal and the second derivatlve 

of the likelihood function exists eYerywhere, one can use Rolle's theorem 

\to show that when the likelihood has two local maxima, there must be a 

local minimum between them. Therefore,if it is possIble to sho~ that: 

feT aIl 8 such that 
dp(x; e) ~ 

de 0, 

we will have shown un irDod a li ty, of the likeJihood functIOn. ' 

How~ver, when the'parameter has dImension greater than one, the 

si tuation i s qui te different. It has been noted by l'Tarone & Gruenhage 

(1975) that there exist smooth functions of -t1o'o or more variables, 

such that there exist local maxima and no other t'urning points. 1 t is 

true that the fmlction 'exhibi ted by Tarone & Gruenhage is not known "tc!, 

be a likelihood function,. but we know of no argument which would guarantee, 

that a, likelihood function cannot 'misbehave' in this ~way. It is rather 

unfortunate :that on, IDOre th an one occasion, the mul tidimensiona1 case 

has been unjustifiab1y treated like the 9Re-dimensional (an instance is 

in
j 

Huzurbazar, 1949, a~so in Kendall & Stuart, 1913, p.S61. 

Makelâine~. Schmidt & St yan (Ün6) have de~eloped a rigorous cri­

terion for th~ mbltidimensional case. A sequence of points {e}, in the 
\ m 

parameter space \8 is said to converge to the' boundary when: .(1) it con-
/ - \ 

ve(ges properly tb a point on the finite boundary of e, or j;2) Il a mil -HO. 

/ 

l " 
/ ---------- -~----

) 
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The likelihood function p(x; .) is said to be 'constant on the boundary t 

whenever: D 

lim p(x; e ) = c 
1II-fal m 

for 'some constant c· and for aIl sequences which converge t.o the boun-

l' 

(1) 

(2) 

(3) 

the likelihood function is co~stant on' the boundary, 

the .parameter '~pace i5 a c~nnected open subset 

of k-dimensional Euclidean space and, 

the logarithm of the likelihood function is 

twice differentiable on e with negatlve-definite 
T- ' 

JUatrix of second derivatives W log p(x; e) at a11 

points e such that. V log p(x:; El) == o. ' 

Under conditions (1), (2) and (3). Makeliiinen, Schmidt & St yan (12.76) sho\o. \ 

that tiè likelihood function must have a unique maximum. Thus it i5 

sufficient to show constancy on _the boundary in addition to nonexistence .,. 

of'saddle points and local minima, in order to show ~nimodality.* 

FinaUy'. a special method involvîng the partial solution,of the l.ike­

lihood equations - ha~ been mentioned br Cox (1976). In his method. at the 

k-th step the origi~al parâmeters e •... , e 
1 k-l 

have already been e:xpressed 

2 

in terJIIs"of 6k , .... , ~q' The k-th pivot is def~ned as 
il log 

'The likelihood equatTon 

( 

... 

ae 2 
k 

i 5 then 501 ved 'for e 
'k 

* The use of the criterion is illusirated i'n, Appendi:x B, wlÎere it 'iS used 
to '~pair an exi5ting proof of W'li..odali ty • . __ ~ 

. --
1 . ) 
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in tems of 0k+l'. ",' ~aqJ and 01" ••• , 6
k

_1 RTC ~imilarly rccxpTcssclt 
-

in--1:ems of e
k 

l' ... , e. If a~l the q pivots cntl he ~hown to be 
! + q , , 

negative, Je lil<elil)ood function·must he unimodal. An oarlic,r application -----~ '. .'---.of this met-hoJL(without B general 'statement, t~~Rh) can b~ found in l'i:kc 
. . :t / , 

(1966) to prov~ the unimodal1 ty of the likcli hood function for a samplc fro'm . i • ______ 

a t~-"a~mcter' Wcibull parent pOJl\llat:io~, 
" 
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SECTld~ DISTRI~UTIONAL INFtRENCE 
.' / 

4.3.1 ASYMJ1TOTIr. APrn.nXlMATIONS 

l. Point estimation m'ay he rCRRrdcd n!' one type- of stati stica 1 1n-
dj, 

fer~nce. ~incc it allows us to sny somothinR ahout th~ possihle nature of 
~! , 

th1c tru("o ll)odcl. liowcycr, an infercflc(' of th(' tYl-)C. which n 11ow~ \ts 

'.1 
to makc confiaencc st-atoments, significnncC' tC!'t" and the likl' lS mort' 

satisfyinR: ln this secHen wc ""il 1 s\lrvC'~' thos(' aspC'cts of what mi~ht h" 

callcd distributiol}Rl .ii1ferencc, which nrc r~lntcd to ~Il,b, 0;' to thl:' ll!-,('-

. 
lihood function. Our rcvicw wU] lhc too hrio-f to do justice io the.' impor-

tanc~ o-f---tnC top'ic, as wc will mcrcly sketch a fcw possihlc appraaches. 

The pJtcIy"'rrêqû@.tist rcsulrs!which will he discusscd in tht' firs:.'two 

subscctions are aIl dcrivcd from the (aêt tha.t, under rc~laritv conditions, .. 
l- • 

, , 

the ML!: from a model with idcntically and indepcnde-ntly distrihuted ohser­

vations has a distribution which is a5ymrtQ.ticnll~ Gauss C8, He) -1/n1 
) 

wherc ICe) is- the Fisher information matrix 
) 

1(e) '" Ee,[ 'Ve1og p(x; 0) ~( \1e1og p(Xj e) ) ~ ]. 
'-

/ -
1'~e regularity condition!; -usually required art' rather strinRcnt, including 

dilferentiabili ty of log p(x; 0) to the third derivative (Cramér. 194b, 

'pp.SOO-SOl). ~LeCa.m (1970) relaxes thesc conditions to diff'crentiability . , . 

-of log p(x; 0) in mean sqUllre, but hi s pioaf secms ta he vaUd o!!.ly for 
, ), ' 

a o~e-dim~sional parmmetet. 

A simple example of 'a parent disuibu·t~on which docs not lead to an 

asymptotic Gaussian distribu.tion i5 provided by' the uniform distribution 

- '" on (O,e). It is rather easy to establish that the ML'E e .. max{x1 , .. 'lX
n

) 

J ( 

, 0 ,/ '\.' 

1~",,""""""--------~----~~----f.7---·/~ . '/ 
, -:-----

--~~ 

/ 
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Improvcd Arrroximation~ . . " 

• 
One way of improvjn~ tj:lc Rccurncy of the Gaussian approximation " 

(WhCT~-it is avnilah1c) has hccn MvC10pc~ hy Ilaldanc &.Smith (1956).~ In 

the ca~C' of dl ~crctc dis-tr'i blltion~ wi th houndcd pararnctc-r spacc. th('y 
J 1 >.... \ ~ '.h'-- • 

werc ahle to providc' approximatc: expressions for the ~hir~1 and fourth 
, 

cumulantsoi tht' distrihution ,of thC' MU:: 'in tcT1"~ of thé truc pal"amctC'T. 

Baldant' 6 Smith wcr.C' primal"ily interMtcd in approximatin.~ ?hc_motncnt:~ 
.' 

themsclves, hut it 11a5 hf:'cn )suggested by Kendall &. Stuart (I9?~, }l.50) th;lt 
, ~ 

" thc$c cumulnnts could he used to ohtain approximatc confidence intcravals 

for the' pararnctet Ity wlly of the Pearson system of distrihutions. 

A more frui tful way of mnnipulatin,~ the .standàrd Gaussian approxi ~ 
- ) . 

mation is to use quantit'ies which arc nt least asymptotically pivotaI,. 

i.e., ~hose asymptotic dist,rihution 1S the same for 1\11 values of the trllJ"" 
/1 

parametcr. One such asymptotic pivota,} 1 i ~ 

"1 

which, under the regularity condition$, ha$ 8$ymptotically a .Xi: distri-
r' 

bution ,(where k:. dime). Spratt (1975) considers severa1 asymptotic pi\'-

otals in the one.diménsiona1 case. 

One might seek to improve such asymptdtic Ipivotals by deriving other-
• 1 ) 

pivotaIs whose momentscoinci1e ev en more closcly.with those of Il Gaussian 
-

dist,..ibution. Bartlett (1953a, h) refines th~ score pivotaI 

d log d~()l; a) [ l (Ja) ]:, 

~ 

obtaining (rom it li quanti ty whose skewness vanishes asymptotically.u Other 

,..,. ... -_--.. ----.. 1 ....... ---~--;----•. --'.-"J---' 

L ________________ __ 
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worJ.. Along thesé lincs hn1' hecn (\one h~' Welch "& Peon (l96\~) \~h'cn 0 is 

( , 
Il location pnrameter. 

'Normali ty' of the Likelihoo'd Function 

-
On(" drawhack to tJl(~ lIspfuln-e~s of an)' a1'ymptot,i(' rcsul t i 5 thl' nh-

1 , 
~ Jenc~ny useful hound on th" error involvcd. say. in t~c di fference' 

/ 1 (l _ ~. 

--
hctween th~ actua1 si~nificancc lovel _attain~d hy Il 5tatistic, and tl';~ 

\' 

. -
level predicted by the. a1'ymptoti~ theqry, usod to dcrive that .-stati$,J:ic. 

Otherwi5e ~tRted. wh~h i5 the sample si'J.~ 'large' enough? td'rte apponlinR ~ 
, --~ -' 

~ .. / ~ 

approach uses th" notion of 'n?rmality' of fhe likelihood funchon. 

) • , Briefl)'. if the, asymptotic distrib~tion of 'ê werc in faet 'GausSial\, the 

.. 
'\ 

1 

"" 
,'" 

.-.-

. ) 

1 

ob5er~ed likeliho'Qd function wou1d of course be a bell'\shapcd function • ~ '" 

, 

----
eXR(,.~y proporti 01\a1"'J to the densi ty of ~u$sian variate.' Thcreforc i t 

ma)' he, ~oped thd"t when- the obscrved likelihood functîon i5 approximatel y 

" hell--shap"d. the nsymptotic approximation to tht' distribution of e is 
", 

fairly accuratc >(~prott' & Kalbfleiseh, 1969). I~Of course' it'-has becn 

pointed out by the proponents, 'of the argument 'lth8t i t i5 not le~i timate tél 

infer from an observed 'normal' likelihood fun'ction that the distribution ) 
q 

i5 in fact Gaussian, 

Perhaps the·'most satisfying!justificatio for ,the 'nor~ality' cri:">,-, 

terion is a weak version.. of ,the likelihood pd ciple. The strong likeli-
l ' 

h~o~ principle, as promoted by 8irnbaum (1962) would (loosely speaking) , 

have statistical inferences based on the obser ed likelihood fun;tion. ~i t'ft(. 

out any ~eference to those elements of thJ experiment which 

are not reflected in the likelihood function. 
-- --

-ciple is similar but would exclude situations 

version of the prin­

e~mple. a COg~-

1 

J 

, 
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• 

,,~icn~? structure cxists (~nard t; SJll'ott. 1971). 

l' ,Wc note, howevcr, thnt oven the weak likclihood prlnciplc dcpnrts 
';, ' 

• fr~m strict f'rcquen,tist ~ril:tciples. Thus the di strihution' of the MU: '" 11 

1 ........ l , 

\ '" ' of. the stand,ard Bernoulli pal"amcter i::; n reflcction of aIl pos!;.ible sam: -

pIcs., :hokc J..hich are .J'li cel)' sJlread Ol;t (yic'lding a !=losc npproximntion to 

à Gaussi'hn densi ty) and thosc that nr~ '!nore extrcmc. such as happens whén 
f • 

-,lu ohservations arc equal 'to .. eTo br ta one (tht' IH.elihood function 
v J" J 

• ' for !'luch a sample is not at a11 'normal '). 
• ~-\ J. .. IJ \ .. 

If one accepts t)tC not1<:11 .of InormaÙ ty' for likclihood functions~) 
\1 \ .' \ 

i t is possibl e to deri ve Itechniques which appenr' to .be useful in refi~ink 
~ ~ ~ , ,. , 

the- asY.J«ptotïc approximati!'n. 'J'nus one mey secJ.,. a l,1~rametriza.t~OI; which 
! ' 

wou)d make the Mt:'E mor~\ near)y Gaussi~n. SP10tt (1973) nas deyclopctl, 
1 , 
_ npmerical cri t'eria for judging whether a gi ven ~parametri zation w~uld im-

" .. t ~ 

~ 

j . 

. -

• ! 

," 
9 ' 

1 

" 

prove things. ThI.'l idea of 'transforrning to normality\ was also considered • 

by Anscornb~ (19J (bu~ with a Ba;esian, j~st"ification'). ~scc 31so Mitchell (1%2)',-':-/ 
.-,. 

Linearity and Adequacy of fit 
l, i\ .. 

,A furthor drawbacK of asymptotic app-roximadons is 'that tnese. of ~ <~ 

necessi ty" ~e~ ta fi t the' ,'centre' rIf the distribution rather Cla~çlr, 
j 

but that the ~pproximation ma)' be pOOl' at the t~ils (where, ~f course, 
1 . 

interest 1s 1 ikely to centre) . 

In a slightly similar vein, it has been suggest_d (Sprott, 1975) 

that in deciding whether to r~finc an ~pproximation, account be taken ~f 

wh ether the resulting a,pproximation would be more, or lesl, linea~", in 'the 

parameter. A non-linear approximation, may lead to unsatisfactory results 
• <) 

in the tail areas, su ch as a confidence interval which is not p~operly 
~~ 

/ 

" 

1> 

1 
" 1 \ 

1 
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containcd in the pnram~tcr spncc. 

" 

"4.3.2 LIKELIHOOD SETS , 

,Wc now considcr infcrencc based on likelihood sets:. It wU] he n~­

sùmcd thnt P,(:x:' J' < Q> a~d the 5C'tS wili for c;on~cnicn'c(' he dcnotcd li\": 

C(r) :: IC(r; x) '" { 6: p(x; e) ;> rp(x; ê) }, (1) 

wherc TE '(O,p. It is nppealinR to tise likelihood sets in distri'butional 

inferen~cs, first becllusc· in the !TIost familiar modcls wRcre uniformly most 

powerful tests. are available. thcse are based 01\ thc'likelihood ratio, sO" . .. . 

thRt.on~ mi:ht h~pe ,tha,h~ 1 good l' properties wi Il hold, in attenuatct! (' 

fa Tm , for more gcneraI ·situations. A second reason fQr using likelihood \ , . 

sets' is that these are""'f'he nlltmal cxtel15ion, 50 t'o speak, of the ~lLl : 

if on~ a~c~pts B~rnbaum' s ~haracterhation c1964) of a point., estimllte 'as 

a confi denee infcrval. wi th 0% confidence coefficient. then the ~1LE 15 'the 
~ , Q J 

J , 

0\ confidence ·,interval belonging to the family of confidence intéTvals' 
_, \'II \ 

. Freguentist Approach . 

... ~'" • \ h,. 

Whel) the conditions ~or the ~1LF. to, have an i'Symptotic Gaussian djstri-

butiQn are 'satisfi'ed, ;the likelihood r;atio i5 asymptoticai Iy pivotaI Ilnd 

likelihood sets' may readily be used as approximate confidence ~ntervals for. . , 

the parameter. wi th app;oximat'e content dctermined hy r. _ Thu~. setting 

-2 ~ ~ 
r "" e one obtains that C(r) has roughly 95% cont.cnt (the a.symptotic 

1 
1 ..--.., 

~ level being P( e, E C(r) 1 e ) = 0.954 ) ,\ 

\ Hu~son (l97~) has reviewed the performance of JI i~keIihood sets for 

'\ \ 
\ i 
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Il number o~ \modol s. Aside hom asscssinR the tr,ut' situlltlon li) ~pccifiç 

modc)s. his l'cvicw i5 a uscful l'cmindcl' that in RCncl'al, the' nct\l:l 1 ('011-

fidence.content of n· likelihood set will ùcpc-nd, not ooly on l', but nlso 

on -the sampfc si Zoé .and the true parameter va l ue. 
," .. 

A l'esult fol' ensu,l'ing that the content is indcpendent. of' e has 

bocn given hy Spj,stvo,ll (197'2). ~~ "l'e5u1.t is aV\ll~ iahlC' only wh:rc Il 

cogredicnce structurelS present, and wherc mild reRula'rity conaiti~ns 
.... 

• 1 \ 
. lirc. s~tisfied ~n eitller the gl'OUIi of transformat'Îons or thl'",likclihood ' 

function, lt is cv en shown that not only"do 'the C{r) have content indC'-
1 

o 

pendent, of 'e, hut' also that considered·as confidence sbts. they arc un-
, \ 

biascd. A strongcr rcsut"t by Joshi '(1970) has that for n, one-dimenslonnl 
. . 

l~cation perameter 1l\nd undcr regula'Tity conditions, the C(r) nre minimnx , . \ , 
amoii'~ aIl confidence sets wi tb . the, same confidence coeffici cnt, i. c:, thcv 

~ 

have smallest expected (Lebesgue) volume, 

\ 
; 

. Likelihqod Inferenc~ 

We close this subsection by mentioning a mode of reasoning based 

on the"likelihood function which dcparts frânkly trom stan-dard frcquentist 

theory. The basic idea is that r in (1) can be used as a mèasurc of , , 
, , 

plausibili t:y fo~' a value of 6. on the boundary of \e (1") . 1 t would be 

t~o l~!,g to 'detail the h~story of this. but i t may be noted that" somethin~ 

along those Unes see'ms to have been advocated ~arly by Fisher (in 
,) ---:- , ...... 

pâpers such 'as 192.1 and 1925, lWith a, more explicituse in 1959, p.74). 
• 0 

f> (Edwârds (1972) has a more compl ete"theory of 'the subj eet.) Wc may a1so 

,note t~at t~e notion has s.ome s~pport from\ the Bayesian.! viewpoint, since 

when an (improper) ,prior distribution i s ass\D1led for e', r is just the 

~ 
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'Wc 
, 

reta in trom I, 

, -- \ .- ' 

'. \ ' 

posterior pr?bahility of- C(r) (Anscombc, 19(1). 

cdtics ~f t~e'appr~\h,(COX. 1958;';lackett. 1966) tb.at wh~n severa 1 
, v 

similàr mo'del:s are considered, to a gi-.ven value of r will 'corres~fnd 
\ ,. , ' . .' \, 

di fferent con\fidence, coefficients, accordi'ng \ in part, ta the dimens.i~n, of 

the parameter 1 \ .i ô ~\ 
~ \, ' 

\ " r ~ ., 
U.3 STOCHASrrrC ORDERING 

i 

l ' 
WCI may end this discussJon on Il 

'1 
pert y of1the prob~bilitr'distribution ..' ~.' ~ l' , 
resu-l t.is duc to ~ante (.1.976). 

" 

Resul t 

positive note br meritiol}in~ a pro· . 
of the MLE in ce~ta~n models. Th" 

yt ~ _ J çiàr ~ 

,If the 'MLE. ê' of a çme-dimeruriona,Z pazoameter ,8 exista uniqueZy 
';j il ,,' 

f.ol' aZmost aH saTfJPZee and is meaétœabZe, and if the family of dist1"ibu-

, 

tiOtlB {p(.; 6);- e E e "'} for à univat'iate observation haB aonstant carrier, 

no.n-de~i4eas1·.ng tikeUhood l"atio ( e* > e ~ p(x; e")/p(x; 6) is a 11On­

deal'8asing fUrlction of x) and is stoahastioaZly Ol'dered (e* > e -
~ 1 

J~90P(Y; e*)dÀ(Y) :> J~oo pey; 6)d;l.Cy)~), then the famiZy of distributions 
1 \ 

of the I1LE is stoohasticaUy ol'der~d also. If 

Note :)the resul t is valid for observations on any ordered measurabie space, 

and an analogous resu~; is i~dicated 
\, ho 

identically distr~buted observations. 

in the case of independen.tly but not 
l... ' • , 

\ ,/ 

~ 
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;)210& p(Xj e) 
When . aeax 

, \ 
exists, it is 'n necessary and suffidcilt co'ndi-

tion -for {p(.; "8); e E 8} to have monotone likelihood ratio that 
. . ~ 

2 /.' ,\ 
a l~Bdt&~Xi ~) ;> O' f~r all . e ànd ~~l 'x (Lehmann, 1959, p .111). The 

abpve res_ul t i~ thei'cf-ore not avail~ble in many oodel S,_ It may' be noted . - J 

-1 
! 

~ . f \ f 

/ . 
that when • ---

P(~i e) c. exp ( tex) 4>(6) - K(a) - g(x) ] 

. . 
, (i:e .;.in an exponential family wi th dim <1> '" dim e :: 1) the condition l'c-, , 

t , 

0 

duce:; to the req\,lirement that <t> be'a monotone function of e. 
" 

? 
~: 
r 
t 
, \ 
l 

\ ~ 

j~ 

\ ; ( 
l , 

... . 
--~1 

t' 1 

~ 

~ 
. \ 

'''" .\. 
. \ 

\ : 
, ' 



(, 
" 

1 

- ,0 

CHAPTER 5 CONCLUSION 

\ ' \ 

1 For the llutho~. the pri.nc1ipai llttr~j:ivenëss_oLJnaxiJtlllm-likelihood­

estimation lies in '"the fact that it5 use can be 8cUempted in ~st modeIs, 

whether with discrete or continuous data. when t~observations are d 

independentIY and ~denticallY distributed. and when the 'madel has some 

other. more complicated strluctùre. 0 Itseéms to ClOme closer than any 
\ 

other method to being the 'portmanteau' method.-Of- point estimation. 
) . 

However, it cannot be uS,ed effectively in aIl model~, as discussed ~il' '1> ______ _ 

Chapur 4. 

What. then, are the finite-sample propert~s of maximwn-likeli\hood 
~ ~ 

estimation? The method can properly be said to-~e estimators. . - \ 
- - 1 

since MLEs are specifie in the sense of Fisher cônsisténcy. Apart from , 
Fisher consistehcy, MLEs hav~ another reason fo~ b~g cailed specifie 

in modeis where a cogredience (or invariance) struc~ure exists. 

The invariance of MLEs .~o repa\rametrization--i5 a-rather.. s1gnifi-
\ 

cant property in any model where the parametrization 1s arbitrary. 
" ' 

On the other hand, the only kind of optimaHty-:-'property enjoyed 
1 

by-MLEs under closèness ,criteria would appear to_~e sensitivity. and 
'- \ ' 

the appea} of this·nption is not immediate. - \ 

-< Even 1n modeIs where it is possible to find a sufficient stat~stic 

of the same dimension as the par\meter. ~ MLE needL~ot be sufficient~ 

though suf~iciency is 1 attained by the oMLE' in 1Dany examples of practicai 

importance. 
o 

\ 

There ~s no universal) practicable way of-maki~g frequentist 
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'probability statemcnts about t-he parametcr on the hasis of the m.L. 

However, the approXi~ate distributional theory is rather well-devcloped. 

In general, it could be said that the \maximum-likclihood estimat.ion 
~, 

exploits the hig~ly specifie, parametric, l}on-rohust aspect!>r.of the model. 
\ . 

Its use will be most satisf~ctory wherc one is rather confident that the 

model adequately describes the situation which effcctivCIy Rave rise. to 

the data set und eT 'consideration. 
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APPENDIX' A 

\ , 
CALCULATION OF THE TABLE IN SUBSECTION 2.1.3 

niE MODEL 

, 
\ 

The situation assumed by Wasan (1970, pp.162-171) is as follows. A 

sample of n observatiqns zr' ... , zn is taken from a Weibull, parent 

distribùtion with known shape parameter K , unknown seale parameter ~ and 

zero thresho1d. The observations might represent the observed lifetimes 

~so~e type of electronic component under test. ,Tt is desired to estlmatc 

from the samp1e the reliabili t)' of a typica1 eomponent ~ .that is, the probabl­

li ~y that i twill fail before ,the speeified mission time. Nowa -Weibull 

K variate z has the same distribution as y, where y is exponentiall)' 

~~~istributed with'mean 9 = ~K. We will therefore work with the simpler 

exponential distribution, with density 
\\ 

-,1 
pey; 9) = e exp( -yle) 

- Let' the spe~ified mission time be denoted 

y > 0 } . 
,\ ' 

./ \ K 
Y n (representing y 0 

original Weibull scale). The rfliability of one componeni is then 

in the 

\ 

Cp 
When a s~stem consist's of m identica1 component.s arranged in series, so 

" 
that the sys~em fails as soifn as one component fails, the reliability of 

the system as'a whole i5 
( J" 

. .~ 

m 
p • 
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ESTIMATION 

l . 
The reliabili ty p, i5_ a one-to-one function of 8. !'lO -.t}1a,t the 

m Am ~ 
.MLE of p '1s simplY P \\= exp(-yom/tJ). Now the MLE in an éxponentia1 

\> • 

" m~el is ê = Ey./n so i t is easily. seen that bthe pivotaI quanti ty x = 
A \ l en e, ha~._a ganuna distr~hution wi th scale p'ar~meter l and shape paramctcr n. 

Thus we have: 
~. <) 

~ 
00 n-1 -\x Am f exp 

( y mn' x e dx Ep '= l- ~-J (n - l) ! o . -

suhs t i t ut ing -from (1), we obtain /~--

~ m ~ n-1 -x 
E ..... m' f -mn/x x e dx ( 2) P \= P (n - 1) ! 

0 

Another estimator of p is the MVUE p 

. 
ê;:: Ey.!n. 

1 
1t shou1d be noteâ that P is specifically the MVUE 

for P. and that if one knew wi th certainty that 
m 

P was. the,parameter 

of interest, then one should use the MVUE for~ pm. ~However. i t wou~d appear) 

~hat Wasan proposes to use We have: 

00 ( ) (n-l)m - n-l -x 
_m J Yo . > x e d 

Ep = 1 .- ex (ex y" )----Cn _ 1) 1 x 
o 

= r ft' +lO~ P) -( x> -log P) 
n-1 -x 

x e dx 
(n - o! 

1 

QI) 

[1 + ~) 1 + .!.~.8_l\ > 0 ] (n-l)m 
n-1 -x 

f [ x e dx. = x .< 
0 

x " Cn - 1) 1 
(3) 

----
Neither (2) nor (3) reduce to tabulated functions. 50 that numerical intc-

. 
gration is required. 
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TRUNCATION ERROR . J ~ 

It may be noted thaf in both (2) ami (3)-;· the term in brackets is 

alwaxs less than qne. Thus the truncati'On error made in carrying out._thl' .. 
in~egration ovcr a finite range 

" 
(O,t), " will be bounded by 

, \ ( 

w n-l -x 
J x e dx. 
t Cn - 1) 

( 

(1\ ) 

for.specified values of n and' t, '""li 4) may' be obta iQed from a tab 1 e 0 f 
. 

the incomplete gamma f~nction. I~ th~ prQgram which was used to compute 

the 'table, t was set'at 22 and n, 
\ 

~t 5, so that the truncation error 

.. -6 
made in evaluatiryg (21 and (3) was less t~~~~1 x 10 . 

/' 

INTEG,IWI' ION 
<r 

"... The in'tegrati;n of (2) and (3) ovJr (0.22) was carried out using ~-~ 
<" 

Simpson's rule iteratively, with successive halving of the step size. 

Iterations werc terminated when successive approximations'of the integrnl 
. -6 

differed by less than 0.25 x 10 convergerice to the integr~l appeared 

to be quadratic in aIl cases; the effective difference betweèn the final 

approximation and the péhuliimate one was usually_oJl the order of 10-
8 or-~ 

-7 "-
ID and the effecti v~ mesh si ze used to, éompute the integral \oIas ~i t_her 

0.043 or 0.086 (equ~valentl~, the final approximation involves a sum of 

2
10 

or 2
9 

functional,values). 

AU the abovc computat~ons were dQne in double precision on the IBM 

370/158 computer at ~fcGi 11 University. A lis~ing of the pro gram follows 

~ this appendix. In the program, n: 5 and 
\ .. 

as in Wasan's ' . 
example, while m: 1, 2, 10, -20, 40. 
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The figures for the mean in the table were ,'t~,ken dir:~bl)' fr',!"l tllC' 
\ . 
'v 'computer output; they may be assumed to be correct to the number of dcci-

mal places in the table. The root-mean-square error ~as compùted with 

.' the aid of two evajuatlans of 
~m 

Ep ; e.~. : 

The c~lculation ~was done an APF Mark 51 ~cicimtific hand calculator wi th 
" 0 

4 

arithmetical operations valïd to about seven decimal places. Howevër, 

(S) 

even though the truncation and approximation ~rrors together may be of 

arder 10-
6

" the values used in computing (5) had been rounded lD---l-O-
S 

by the p~ogram. Therefare, the thitd decimal in the RMSE figures-~~-~fh~ 
<> 

table may not be qu~te accurate. 
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IListing of the program to compute the table in Subsection 2.1.3. 
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APPENDIX B 

UNIMODALITY OF THE LIKE~IHOOD FUNCTION FROM THE TWO-PARAMELER 

CAUCHY DISTRIBUTIO)N 

In this appendix we illustrate the use of the criter~on of Mike1ainen, 
------- -

Schmidt and St yan (1976) to prove the unimodality of the likelihood functio~ 

iu a model which appears to have been, inadequately treated in the 1it~rature: 

Copas (1975) considers a:model with identically and independently' 
) 

distributed observations from a two-parameter Cauchy distribution. With ~ 

~enoting the. mode of the distribution and cr denot~ng the standard scale! -

parameter. the likeliho~d function is 

1 1 
p(x; (p,a)) = 11 n 

11' CI 

The parameter, space is {(p,o): _GO < 11 < .... 01< CI < co}. 

---------The argument used by Copas is as ~ollows: for a fixed p = Po ' 

(1) 

p(x;(~o,a)) is ~hown to be'unimoda1 as a function of) a*. It is also shown 

that whenever __ ~_p = 0 .1 the matrix of second deri~atives, V V T log P is 

__ negative definite. so that local minima or saddle pOints are excluded. From 

.these, it is deduced that' p(x; (-. on must be unimodal (except for 

3amptes where at least half of the observttions-coincide) •. The above ârgu-

ment i5 weak on two grounds. 
) 

Fi;st, it fails to take account of the be-. , 

_ haviour of the function on the boundary. 
! 

Second, there exist funetions 

which ~atisf}' both conditions but which neverthele$s fail to be unimodal. 

/ 

* Copas' usage of the term 'unimodal' includes the term 'strictly aonotone'. 
J ,k 
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For example. the function exhihited by Tarone & Gruenhage (1975): 

f(x,y) ::: _'(e- 2y 
+ e-Ysinx) {-OC> '" x '" OC> • _co "'.Y < co} 

has l~èaI maxima at a11 pOlnt.s _~}Y = (fn ... 2nk. log 2) for any integer 

_ k • and is also unimodal in one coordinate: for fixed x = x 

is unimodal'when considered as a function of )'. 
1 

o 
f(x , r) 

o 

It seems rather ra:re for the-Hk1Hihood function of an identifi~ble 

parameter tq b~/periodic, sa f might not be considere~ to be a convincing 

counterexample; also, f cannbt be related in any obvious way to an actual 

likeiihood function. It may, therefore. be useful to present a second counter-

----------example which looks more like a likelihood function. 
1 

Consider first the funct~on 
..., 

g(x,y) = ![~(x - 1.5) + ~(x + 1.5] ~(y - x~) 

where ~Q') is the density of the standard Gaussian distribution. Then g 

has only three critical points, at 
, 2 

(x,y) = (0,0) • (a,~) and 

where a:: 1.4632 •.. is one of the two modes of ~(x - 1.5) + ~(x +'1.5). 

The _point (0,0) is a saddle .poin~ while 

local maxima. Hence by restrictin 

h has two maxima, bath 

critical points. AIso, for fixed x 

at. y = x: ( lx/ ; ,1>,+ l ( Ixl < n., 

2 (a,a ) 

space 
) 

are both 

the carrier set, and no other 

h(x IY) is unimodal, with mode 
Q 

. 
The function ·h could be interpreted as the likelihood function of 

/ 
a-biVariate pbservation (0,0) • where the first component is assumed to 

,/ 

be a realization of the m~xture of a Gaussian distribution with mean at 
) 

x + 1.5 and of a Gaussian distribution with mean at 
) , ; ! ' 

x - 1.S J while the 

-} 
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second component is aSfume(Lto-bc independent of the first and dist'Tihuted 
, '!-,) 

as a Gaussian varia~ with mean at y-x· (the standard errors of aIl tpree 
) 

Gaussian distributions being known to be egual to one) . 
J 

Returning now to the Cauchy eXB.J1lpl e. we can see tha t we neerl on llY 5ho\\' 

constancyon the boundiiry _in order to complete Copas' proof of!the unimodality 

of the likelihood funè'tion. FO'r this -i t i5 necessary to assume (as does, 

Copas)", that one half or more of the observations are not aIl equal. 

l ---------
Let the distinct values of the x' s be denoted y (1)' y (~ ... , y (m) 1 

with Y(l) <Y(2) <"'<Y(m)' let ni be the number of x's è<fual to Y(i) 

and nO = max n. ; 
• 1 
1 

finally denote d = !m~n Cy (i) 
l 

y (i-/1). Under the 

above assumption, n > 2no or, equivalently, n - 2nO ~ 1 • Our approach 

s to cbnsider the value of thé likelihood function p(x; (~.o)) on a rec-
l '-, /" 

R(N) in the parame ter space with vertices ~) = (±N,x/N) , 

(±N,N) As N increases. the rectangle clearly approacheslt~e boundary , 

of the param~~er space, so that we'can r~trict. our att.ention ~o 
) 

~(2) , 

It is easily seen that with N as in (2). we have for aIl i , 1 

1YCi) - NI <~N 3 (3) 

'. and I!'Ci) +Jll <2 N ! 

Clearly R(N) = RI U R2 U RS u R4 , where 
J . 

RI .. {(Il,o) : -N .:; Il .:; N. ° .. l/N} 

Rf 
:; {(1l,O) : -N .:; Il .:; N. (] = Hl, 

R .. 
3 

{(~,o) : r = N. lIN < cr .:; N} 

R4 = {(p,o): li .. -N. lIN < cr -; " 

First note that-there is at most onè i ----

l~~:~, .... __ ~--~~~----~~ 
J' 
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, Fol' al~ other j I~ 

while 

i ~ therefore. Ii 1 y (j) - III ;> d • which e,\ures 

[1 + [rOl: "rT < [1 • :~-I 

This ensures that -~ 

'\ 

n ' - f 2]- (n-n ) 
n p(x; (~.a)) < a~ II + :2 0 

.. < n~2no -2(n-no) (1 d • 
L 

The~last relation enables us to get 'a erude bound for p on RI . 
, 1 

wnp(x; (~,(1)) < cl. 
1 N 

-- -------- ----Turning now to R;-. w~ see immediately that 

so that 

wher.e c = 2 
(9 n 
i) .. 

n 1 1 1 
11" p(x; (li. 0»)< - = - < -. 

on ~ N 

lea~s to 

a + Ir {il 0- Nj' ;:. a + ~ N: 

~-~-~ 

n ~ 1 1 
... p(x; (~.o)) < c2 if . 
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It follows fr,om the above that on R(N)\ 

c3 1 
p(x; (~fa» C;; n N 1 

\ ~ 
c3 = max(cl'c2t. As N'" al ) P(Xi (lI,a)) 

---..... ,-

-+ 0 on .Run so that 

the likelihoïd function 1S constant (z~ro) on the -b~ of the parameter 

space. / 

The situation where2nO > n ".is discussed in Copas (1975). It ~hould 
<1 

be noted that when 50 many observations are coincid~nt, the continuous model 
1 

,-
would seem to be a rather crude approximation to the data, ~nd consideration 

/" 

should be ~Iiven to ocomputing the exact likelihood function for the discretized ~ 

observations. as discussed in subsection:4.1;3. 

Part of the argument presented in this section is taken from a prelimi-
o 

nary revision for publication of Mâkeliinen, Schmidt & St yan (1976). ----- -- - ~- \ 
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APPEND 1 X C Il 

NOTES ON MINIMUM ENTROPY ESTIMATION 

Kriz & Talacko (1968) have attempted to develop a 'minimum entropy 
\1 

estimator' using a measure of information defined as the entropy of the 

posterior dis'tribution minus ,the entropy of the prior distribution conèen-

trated at the true value of the' parameter. Their 'minimum entropy esti-

mator' is the estimator ~ich minimizes the loss of information when the \ 

true parameter is replaced by an estimated value. Their claim is that '. & 
- in the case of independently and identically distributed observations the~ 

MLE corresponds to their minimum entrop~ estimator; in the ~ase where the 

observations are dependent or do not f91low the same distribution they 

indicate that the-MLE would not have the stated op~imality property. 
, li 

Unfortunately. we believe the claim made in the above paper to be 

unfounded in its wide generality and perhaps meaningless. In MathematicaZ 
" " 

RevielJS. K6rezlioglu (1969) notes the need for correefton at one point 
-' 

but does not.Pass judgement on the rèsult. Nevertheless, w~ indicate 

below some of the major pOinis where we believe ~he argument is wrong. 

w. have not SUCc.~'.!'f in repair~ng the proof and conject~re th.t the 

~r.e.sult does nq.t hold. The article's original notation iS used to a great 

\ extent. In our nota ti on 
\ 

• 
/ 

;. 

r , 

l" 
r" 

d 



( 

" ", 

\ :~ 
~, 

& 
t 
ct 

~ / , 

~ ~ 
'1 
l' 1 
.1: 
'" 

C-2 

x. • the i-th ohservation in the data 
l 

x 

e e e 
J 

the data considered as a point in 
n-dimensional Euclidean space 

(used here as a dummy variable) 
J -

the true parameter 

q,(x
i

; a), the densi ty of the i -th coIrlPonent 
of ;lS \properly J the' parent. distri­
bution) , 

a vector whos~th ~omponent is 
H(q(.; e»), the entropy of q(.~ e). 

(1) On page 58 of the article, in fotlDula '9' the substitution: 

_ -' f( f;.I~(~) ) = J.f(~.le) «s(a - a) de 
1. e l 

, .J 

ts made, where IS(. - a) 0 is the deg~nerate prior concentrated at 
. 

o.. Two interpretations may be imagined for ~ on the'left~hand 
\ 

side of (9)., First, that ~ is a d~y variable representing a 

ge~eral'sample point which is the integration variable; this inter-

" pretation is belied by the fact t~at a for a giyen sample is not 

exactty equal to the true parameter value {l.-The second interpre-

tation would have ~ be the collection (in veotor forro) of the 

sample points C .. But then the left-hand side of (9) would depend 
, 1. 

strictly on the observed data, while the right-hand side would 

depend on both th~ data and the parameter ,a, which would mean that the 

" par~eter- a does not'index the distribution. The objection might 

be circumv~nted by:requiring ê to be sufficient (which the article 
o 

does not do) but this would narrow the applicability of the result. 
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• \. 
(2) ln Section 3, pp.59-50, the quantity Q(ê; ~) ;: H(~lê) B(E,;lal is 

(3) 

the differe,nce in the 10ss of info:pna~ion by taking the \ pnameter to 

\be its estimated value ,rather than the true value. AcC~rding to the 

definition, the norm ôf Q should he minimized; instead the norm of 

r H (s I"ê) is minimi zed. Even though Q depends on the cnoice of 

estimator only through H(slê), the estimator"which minimizes the 

nom of H(s 1 ê) wi 11 not necessarily qe ~he estimator whfch mini-

mizes the nOrDI of Q. ~ 

Ag~~n .on page 60, the quantity , 

(l0) , 

would appear to be a misprint for 

(11) 

since (10) is an imaginary number. But, the transformation of (11) to: 

1: - log f(t;.I~) f(ç.la) 
l l 

i,S puzzling, since in geneTal 

Since the a~ove steps appear to ,be central to the argument, tlLe re­

sul t concern~!lg the optima lit y property of the MLE is in doubt:. 
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