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Ce mémoire présente des propriétés non-asymptotiques de l'estimateur

du maximum de la vraisemblance. La‘dlscussxonisg limite en grande partic

v
aux propriétés applicables 3 des mod@les paramétriques avec,observations

distrabuées indépendamment ct. identiquement, efi 1'on s<'intéressc i

{

. !
toutes les -composantes du paramétre. On passe d'abord en revue les
critéres qui assurent la justesse de %'estlmateur et mesurent son

!
‘éloignement du paramdtre. Il suit un exposé de 1'invariance et des

conditions qui assurent la suffisance de 1'estimateur. Nous terminons

'3

par une discussion des problémes conceptuels et numériques guil entourcnt

1'application de la méthode, ainsi que du probléme de gon uti1lisation
# £
dans des énoncés d charactére probabiliste. '
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- CHAPTER 1 INTRODUCTION

SECTION 1.1 POINT EST&%ATION .

The problem of parametric point estimation 1s onc where a sot of

data a = (x]. -y 2 ) {which can be reparded as a point 1n m-dimen-
m

i
sional BEuclidean space) 1s taken to be the realization of a random vari-
/
able whose distribution, though unknown. can be assumed to belong to a

. {
certain parametric family, so that one can denote the probabitity that

3

x] < xD], x2 < 3“2’ RN xm < x°m’

or x K x, for short, bv:

~ R

P(x € x,) = F(xo; 0)

The functional form F(+; *) of the multivariate cumulative distribu-

tion function is completely specified. However, it can only be said of

6 that 1ts vélue lies in some subset @ of k-dimensional Euclidean

space. It is the purpose of parametric point estimation to find, from

- .

the observed sample x, a function ﬁ(x) of the data (termed an esti-

mator) which ranges over @ and which can be said te represent a &
/

/

reasonable value for the unknown parameter 4.
Although some have criticized the use of the term 'estimator’',
o N '

preferring to speak only of 'estimates' _(Fisher, 1958, p.7), we note

that everyday language refers to an estimate as a definite valuation of




E o

to

s

a quantity i.e, as a specified numher, and it sceoms best to us to diw- S

tinguish the c%timntor,,ns the agent or process of estimation, from 1ts

product, the estimate {(Carnap, 1962, p.524). —
/
- 4
Situations where @ can be narrowed down to a finite collection

of points will not interest us, since the approach to such multiple de-

1
cisionproeblems 1s essentially different from the one taken here. Rather,

the cardidality of. @ will be that of the set of real numberst In order

to make point estimation meaningful, 1t must also”bhe assumed that the

parameter is identifiable, that 1s, that no two digtinct values 01

and 0, of O arc such that F(-; 0} = I(+; 0)).

1 2 ,
/ , -

Justification for Point Lkstimation

Beforé going further, it may be noted that some have questioned
the legitimacy of point estimation as a statisg%tnl problem. Point
e&timation is a rather weak form of inference: 1t mercly prodices a
single number § and does not allow us to mahe probahilif}-re%ﬂted state-
ments such as are available iﬁftests of saignificance. There 15 some
feeling th;t the data cannot possibly be rcduced to a single number, and
that one should look to interval estimation as the appropriate alternative,
The argument is advanced (from a Bayesian viewpoint) by Tiao\& Box (1973)
that if/a client wants a single number (a point/estimate) as the outtome
of the statiséical inference, he ought to be told that he shouldn't
getiit.

We will not attempt to answer such critiques directly; indeed, the

variety of criteria which have been seriously proposed for point estimg; -

tion testifies to the essential 'fuzziness' of the process. We will,
/ ' -

s e i

—
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" .
however, illustrate a few practical situations which'oithcr demand o
poini estimate or which are such that the nnnlysis’is ‘considerably en-
, ,
hanced b§ the possibility'pf point estimation. (Questions relating to
the making of probability-1like statements will be discussed further in

Section 4.3.) ‘
In land surveying, scveral measurcments of ni;;;ﬁtity (say,tého
distance between two points A _and B) may be available, and past ex-
perience may suggest g reasowible parametric family to -represent this
problem. Here, presumuh?}; it will do no good to say that the surveyor
should be satisfied with the fact that the &istnncc is probably between
1.71 km and 1.73 km. The purposc of ic survey is to construct a map,
and sooner or later tho.mcasuremonts‘aill have to be integrated with
others and the distance between A and B will then be reduced to u

- )

point estimatc: the nature-of the medium allows' no other reasonable

1

i

conclusion.
Now, therec is a very wide class of ‘situations where the parameter

® is -in a sense 'real', while the observations can be construed to have

been developed specifically to lead to ah assessment of the parameter.

In the land-surveying example, the basic observations might be those of

readings of angles, or of the timing of radar pulsés, or of distance on a

photograph, etc. Where the parameter is é/physical quantity, point esti-

mation has, wé feel, a clear reason for existence. It is justified by

our need to know some property of a real object. On the other hand,

many situations are not of the 'measurement' type, but rathcr»areJa form

of 'ﬁodelipg' of the problem by means of a parametric family. To take an

example from Hartigan (1967) (who discusses another aspect of the

[ —
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'measurement -modeling' dichotomy) an experiment set up to vv:llunt(‘ft}l\('
‘ !

temperature of-the sun is of what we call the measurement type.  In con-
- B
trast, when i sories of temperatures are taken at various times, 11 may

be desirable to interpret the series by means of a stochastic model which

o

.might involve, say,.a parametcer representing the mean temperature and its
2

wvariance. Philosophically, the nature of the parameter here is dafferent,
! 1
it is a construct of our minds more than a rcal object., Yet ceven when

the parameter 1s purcly conceptual and not a physical quantity, 1t may

4

ke extremely useful to have a point estimate for the paramcter.  An

example m/ny be taken from the history of Genetics,

N

Around 1913 it had already been established that the pénetically-

determined .traits of an individual are determined by pairs of genes

%
(presumably locdted on chromosomes), one member of the parr representing
/
- /
the paternal inheritance and the other, the maternal. Simple genetic

traits can take two characters or aspects (such as white or red eve

pigmentation in fruit flics) denoted by A and a, B and b ectc.

A dominant character A 1s expressed whenever the individual's gene pair is

= S~

AA, Aa or aA, while the recessive character a  is taken to result from

the presence of the doubly’ recessive geng pair aa. It was an object of
investigation to study the frequency of offsprings with expressed clmm\ctor
pairs AB, Ab, aB and ab resulting from the mating of pure hybrid
pagents whose gene pairs arc of the form AaBb, the probabilities of each

\ -
character pair being denoted Doy With genetic theory

Papr Pay p"l B’

Valrcady %sscrting that + qu = 0.75, the above proha-

Pap ¥ Pab © Pag

bility distribution can be parametrized by the cross-over frequency 0

n

AB

-
Now why should one be interested in point estimates for OA ?

pAb * Pape S B

- —

£l
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'éAC: From this last observation it was deduced that genes are arranged

v 3 [J——
\

The geneticist A.H. Sturtevant (1891-1970) interpreted BAB as a (concepg:uu])

v
I

distance between the loci of.the genes for trait pairs (A,a) -and

b). The availability of estimates for several ‘such trait pairs ehme
L

\\ ¥

‘
abled him to determine that for many triplets A,B,CJ with 8's suffi-

(8

ciently small, one-observed an almost linear relationship 6AB + éBC =
J

-

lipearly on the chromo\some. It then became possible to prepare 'gene

maps' shov?i}xg relative conceptual distances between éene loci. Such maps

have been a great conceptual aid in manipulating data in .the explo'rayn/-/*

of genetic phenomena, and only point estimates can make them possible.
r)

/\.

(The above account is abstracted from Whitehouse, 1968, pp.77-90.)

Justification for point estimation could also be made on the basis

1 .
i

. . . )
of Decision Thepry. Howeyer, we feel point estimates are not really

decisions about the value iof ’6,/ailth01_1gh there is some controversy |

attached to this view. ("fukey,’l/EJGO, provides a lucid argument against

-it; the distinction between estimation and decision is supported, e.g.,

in Fisher, 1959; p.100; Hacking, 1965, p.164; Plante, l|971.] Although
Decision Theory provides very, useful criterigx for point estimators, we

take the view that point estimation is a legitimate, if primitive, form

v

-~ o .. -
of scigntific inference, and that a wider class of criteria is to be - e
, ( v ' \
considered.
: I © ' J—
i - <
« -~
. . .
g ‘n( ;}“
— . - ‘//" .
L )
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t ft i re
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e . ez
H , e
t ' :

[ M«:\, corieiel

—— e s aam



2

i

A

SECTION 1.2 MAXIMUM LIKELIHOOD ESTIMATION

)

We will now restrict our attentioh to parametric families

'

{F(*; 8) : 6 € @ 'where all members F(+; 6) are absolutely cgntlnuous

with respect to a single o-finite measure A. In other words, 1t will

- be assumed that the members of the parametric_family can be represented

\

) . ¢
when the observations are said to be discrete. While‘:'these tw0o measures

(

by a set of densities
' dF(«;
plx; 0) = T8 b

-

The dominating measure A 15 usually the l:ebesgue measure, in

e

which case.we speak-of continuous observations, or a counting measure,

are the most common, it 1s sometimes necessary to use some other measure,

. - e
For example, Proschan § Sullo (1976) use as a dominating measure the A -

. . . n
ture of the Lebesgue measure on n-dimensional Euclidean space R | and .

of the Lebesgue measures on sets of the form {x : xi = "x]} and on all
4 1.

the intersections of such sets (e.g. {x : x.

{ 1
subsets of Rn_l, M2

= xJ = x]\}) considered as

) ey Rl. It should be noéed that while we may ‘]_ u
conceive of the data as con§ist\ing of continuous observations, the obs'e;-
vations that are available are always essentially distrete, and thaE the Y

use of a family of absolutely continuous distributions involves some

approximation. The observations may be assumed continuous to permit the

such as distances - which in various experiments could be evaluated with

1
{
‘use of a simple ‘parametric family, and because they represent quantities - s
?
varying degrees of precision. The method of maximum lakelihood estima- !

Y

-

tion uses the quantity p(x; 8) with x fixed at 'the observed value; J
— .

\




N

(] p(x; 8) 1is called the likelihood funetion and it 1s defined over the

A

parameter space, ©. The maximum-likelihood estimator 6 = 8(x) of €

1s usually defined as that value 6 € © ayh, the supremum of the
) l
likelihood function 1s attained, 1.c., i )

/ o p(x; 6) = sup{ p(x; 8) : B.e @1} . [

;oo
Throughout this thesis the maximum-likelihood estimator will be abbreviatced
MLE. Another definition of MLE is sometimes used: with ¥ = Vq -denoting

the gradient operator w”ltfrespect to 6, the MLE 1s defined as the -
| ,,
i
solution of the likelihood equation . . [

Velog p(x; 6) = 0.

v

2 &

2 ’ | . .
When there are several séldtions to the likelihood equation, that solution

)

which maximizes p(x; 8) 1s Faken as é, Usually the two definitions i ‘
(‘ ! B coincide, but the second one 1s sometimes adopted,ig‘for example, 1@g,troublo- j
some cases where the likelihood function has a singularity on the bound- ;
= ary of the parameter space. é
? £
History ' - )
//_ ' - ° '
: ] The terms 'likelihood function', 'maximum likelihood estimation’,

etc., originate with Fisher {1922). There is some dispute as to whether
§

Fisher originated ithe concept, which has been attributed variously to
F.Y. Edgeworth, C.F. Gauss, P. Laplace, D. Bernoulli, and others. Some )

references to the history of MLEs are Eﬁwards, 1974, Kendall, 1961, and ;

»

Pratt, 1976. See also-the survey by Nord%?n (1972; 1973). -

The issue is clouded by the fact that MLEs can be regarded as a

{
particular case of* 'Bayes' estimators. If the parameter’ is regarded as ‘
% ~

( a random variable with(distribution having density w(B), it is possible(w 4
\ ! ~ (

-
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o

to interpret p(x; 8) as the density of the distribution of cond¥-

\a
tional on O, and this allows us to use Bayes' formula to derive the

—

density of 0, conditional on . x/ = x,:

o

(0] x - xﬁ(e)p(xo; 0
q{x,) © '
\ J— I3

v

where q(x_,) can be regarded as a ngma”lfzing constant. T(*) 1sftermcd
=

-~

the prior distribution and n*(-‘)‘f‘ that of the posterior distribution
i
. L . N .
of (6. A Bayes estimator is defined by taking some appropriate character-
. t

LY kY
1st'Tic of the posterior, such as its mean, median or mode. Now if m(e)

is the uniform distribution on ©, the MLE corresponds to the Bayes

" estimator using the mode of the posterioy\'hatever the resolution of the
—

debgte over priority for the invention of MLEs, it may be sa(id that
Fisher was instrumental in developing mogt of the basic theoretical
properties of MLEs, in such fundame@tal papers as Fiﬁsher (1922, 1925,
1934) .  Further hi_s);grigl notes wili accompany the discussion o\f specific

properties, ¢

Motivation for the use of MLEs
)

' § (
1

In the body of this thesis we will be concerned with properties of

. i
MLEs, ahd the overall performance of the estimator with respect, to\ those
r

properties can be taken as a justification for its use. It may, however,

be of some interest to try to motivate the use of MLEs from general

. T 1 s
_considerations.

The correspondence between MLEs and Baye$ estiTators can provide
one motivation for the use of the method, albeit a rather weak one since,

LT . . o
when © 1is unbounded, no proper uniform density w(*) can integrate to
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one., Another motivation with agBayesian 'flavour' has been given by

Higgins (1977). It relies on the idea that the posterior distribution can

be used as the prior distributibn for analyzing any other data set ob-

o

. O .. , . —
tained under similar circumstances. Now for a given data set a, and

P

for some prior distribution 7 whose density does not vanish on O,

*

can be obtained. If 7" is now used as the

- -~

s - . . . d
prior distribution in conjunction with the same data set  x, a second

a posterior demsIty  u

posterior density W** can be obtained. The process can be repeated |,

indefinitely, at each step using the posterior of the last step as the

// 2

-

\/)
prior. It is easy to see that this iterated posterior density will con-

verge to a degenerate distribution concentrated at 'the MLE. -
Beyolnd such Bayesian-style justifications, it is témpting to see

in the likelihood function a 'dual' of the density,-so that just as

’ knowing the density explicitly enables us to say somet}{ing about the

probable location of the vaniate x, so knowing the likelihood allows
us to say something about the 'likely' value of 6. The duality, how-
ever, is only approximate, since the behaviour of the two functions

p(*; 8) and p(x; *) 1is quite different in general.’

Models

It %s convenient to speak of the model as the conjunction of the
data x (considered as a random variable), of the functional form of

the densities p(x; ©), of the range @ of distributions in the para-

-

metric family, and possibly of other ‘factors which may be relevant to°

the situation at hand (such ,as/tﬁe/\l;x-eseM; reasonable };rior dis-

| E

tribution).

A

—

r

—
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i

(’ - An important type of model is one where the data x consists of.

! n

-l

| \

W parent distribution is denoted- q(-; 6)

is denoted pg-; 6), we have ‘that the likelihood fuffttion can be/expressed’

Y

jointly (possibly multivariate) observations

as .

-~ )

- - p(x; 8) =

! 1

n =9

1

(x., ..

X =
1

G X ),
n

and if the density of x

¢

q(x 3 8)

each

ob§érva§ion{having the same distribution. If the‘density of that common

+ While we will primarily be interested in models where the observations

{

are taken to be independently and identically distributed, we will

nevertheless speak of p ,as being the density (instead of the more

o

- This convention allows a more
G :
i
-

: ,
¢
3 \'
g —

)

standard usage,. where density always refers to the parent

L

;

general nomenclature to be followed.

¥

?
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‘: ‘ maximum likelihood estimation pertain, not to ) itself, but to the

X -11- 7

(’ . SECTiBN 1.3 PURPOSE AND NOTATION

P

&
The properties of MLEs most often mentioned are asymptotic ones, !

\This means that limiting properties of the sequence of MLEs {én} are
studied, where én is thé MLE (considered as a random variable) for a
: sample of size n in a model with identically and independently distri-
buted observations. For example, it can be established (under régularity
conditions) that the sequence {§n]; t;nds in distribution to the degep-
\ erate distribution concentrated at 0. The main argument against con-

sidering such asymptotic properties is that they can guarantee nothing

about the behaviour of the estimator for any given sample size n. In

other words, if we consider another sequence én’ such that for n <

101009 1000, x a

, 8§ =0 and for n> 10 6 =186, then the sequence 8}
n n n . n

enjoys all the asymptotic properties enjoyed by 0 }, while 5n is
n -

/
~ completely useless in practice. (Savage, 1976, p.453; see also: Kallianpur
! ' N
. & Rao, 18955; Fisher, 1959, p.146). On the other hand (as noted by

Chernoff, 1976), the theory of MLEs for finite samples is often difficult
' or’imbossible to formulate., The asymptotic theory does say something
| about one aspect of the sequence {6n} as a whole, and it can be hoped
r t;at when there are no sudden 'breaks' in the sequence (as in {5n}

above), the asymptotic property is reflected in weaker form in individual \ B

- / - >
members en of the sequence. ) e

v / » N

EIn this thesis we will survey non-asymptotic properties of-maximum

Ey

likeljhood estimation. While we will avoid pro ertges of the sequence of .
} prop

(’ estimators, it will not be possible to restrict ourselves to propertie§

Ve

— A

of estimators 8 per se. Some of the more significant properties of : -

'
|
\



L f

manner 1n which 1t 1s produced. Thus when we say that MLEs are invari-

ant to reparametrizations {so that if p(x; 8) = q(x; ¢), with ¢ =JW(0).

‘then ¢ = Y(8)), we are really saying something, not about estimators

~

6 or ¢, but about the principle of estimation which allows these two

estimators to be related in this manner. ¥

Although 1t often happens that only a subparameter 8] of 6 15
of interest {(with Ehe remaining part of © being tcrmed an inéidental or
/

nuisance subparameter), we will onlv consider criteria and properties

which apply to situations where the whole parameter 1s of anterest., 1f

°

one sechs to motivate the use of a method on the bégiﬁ of 'philosophical
considerations such as the apparent dualitv of the déﬁgity and the likeli;
hood, 1t would appear desirable to use some modification of the likeli-
hood function instead of the’likelihood function itself. Kalbfleisch
§ Sprott (1970) explore several possible modifications.

An excellent survey of maximum-likelihood estimation fas made by

Norden (1972; 1973), with an emphasis on asymptotic pfopertles, however.

Plan - -

‘
\

In Chapter 2 of this thesis, we will consider the performance of/the
MLE relative to criteria which ensure that an estimator does, in a sense,
estimate the parametér; and relative to criteria which measure how close an

: ‘ s 3 A rovi .
estimator comes to the true value. In Chapter 3, We review the sufficiency
" & !

of the MLE and various invariance properties of the method of maximum likeli-
hood. In Chapter 4, we take a brief look at some of the factors which hin-
der the applicability of the methodl' Chapter 5 icontains a summary of pro-

perties of maximum-1likelihood estimation. The three appendicies will be

refered to at appropriate places in the main portion of the thesis,

. '
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* The probability of an eveént A willbe denoted P(A{B) or F(A),

‘achrding to whether or not 1t 1s necessary to specifv the para-
v /
meter of the probability distribution. |
{

* Both the density and the likelihood function will be” denoted

’

p(x; 6) or q(x; 8), 1t being clear from the context whether

or 8 1s regarded as fixed.

- Likewise, no distinction will be made between x regarded as a

r}ndom varidble and x as its realization. Again, the conéth

will specify which usage 1s the appropriate onc.

Yy

- The parameter space will generally be denoted © while the space over

which the random variable x takes values will be denoted =.

+ Expectation and varlance will be denoted E9 or K, VP or T, ;

»  Parameters will be denoted by lower case Greel letters 0, ¢, etc.

+
—

and their estimators will be denoted 6, 8, ¢, ¢, etciw”
\\i ,{ |
e
* Parameters and their associated functions are generally to be re-

garded as vectors. This is so commonly the case here that no

- o - \ - - .
special notation will usually be adopted to distinguish scalar from
! ]
vector parameters. The same remark holds true of the data x,
T {

which ié)usually a vector. An exception will be in denoting the -

parameter and variate of a multivariate Gaussian (or normal) distri-

bution, where vectors will be denoted by wavy underlining.
; |

* The matrix (or vector) of derivatives of a function E) is denoted
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and the matrix of second derivatives of a scalar .valued function f

—
v

will be represented by

,
T af
wwle = | L4

aeéaej

/!

(Superscript T denoting transpose.)

It will often be necessary to specify the carrier or support sct of

a function. Thygs will be done by means of a pair of pointed brachkets

to denote the indicator function of the logical statement they

enclose. Thus ( a € A) _denotes the function whose value 1s one

¥

when a 1is a member of A, . and zero otherwisc. Likewise
«

j 1 if 08¢ [a, b}
( aso<bh) =
] 0 otherwisc. A
, .

/ , /

{Our usage of (, ) should not be confused with a more usual usage, .

where (X) denotes £X, the expectation of the variate X, e.g.,

' 4

Barnard, 1973.)

~
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( " CHAPTER 2 SPECIFICITY AND CLOSENESS CRITERIA

»

SECTION 2.1 SPECIFICITY

2.1.1 INTRODUCTION

The definition of estimator alluded to in the first chapter 1is

— rather incomplete since it 1s based on the "appearance'" of the estimator:

1t has merely been required that the statistic 6 range over a subsct of

i

~ /
© - the question of 6 falling not in © but on the boundary of © /

will be considered in Subsection 4.1.1. /

/ The principal requiremént we would like an estimator ¢, to satisfy

1s that of being close, in some sense, to the true 'target' value of 8.
(* Several closeness criteria will be considered;in the next section; for
most criteria, however, we are faced with a difficulty which arises from

the inability, in the Frequency outlook, of averaging the performance of

¢ ——_an estimator over the class of; possible populations or equivalently, over
the parameter space. Such a difficulty disappears when a prior distribu-

tion is available. C(onsider ,as a trivial example the problem of cstima- .
- /~ — . . ;
ting the true_proportion ® from a sample of n Bernoulli trials. The (

estimator 7 = 0.5 is in many senses a poor estimator: it totally rejects

. whatever information the sample might provide. However, if the true valuc !
- |

of T were equal to 0.5, T would undeniably be the closest estimator
/ /

T according to any reasonable criterion, for the precise population having

.-—_a parameter value equal to Ms5. Even for populations whose paramete

(j only”ﬁéarly equal to 0.5, T may still be better than some quite reason- ~_

- -15- ‘ ; S

/
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able estjymators. For instance, when closeness 1s measured by the averape

J

of the squared deviation of the estimate from the truc value, i.c.,

E(t -

: ]
tt A v
number of successes'"/n over the whole range of 7 from -- -
ang 2 2;(n+1)

to L
3

B

- - A
m%, then 7© = 0.5 15 better than the usual estimator, the MLL 1

1

+ :7T%:TT'; when n = 3 the trivial estimator 1s better than the

MLEL on the range (0.25, 0.75) (Silverstone, 1957).

could
would
mator
would

be of

In order to exclude such extremely partial estlmatogs as T, one
try to formulate a criterion of impartiality. Such a criterion

then have to be suffaciently wcai so as not to demand that the esti-
have exactly the same performance for all populations in ©: it
scem unreasonable to demand that the distribution of any estimator
the same 'shape' for all values of 0.

A slightly different approach is to ask that the estimator, or

rather the estimation method, be 'specific' to the parametrization in the

broad sense that when the same data are used to estimate 6 and, sepa- - —

-Tately, to estimate (6} (a non-trivial transformation of 6), then one

woﬁld

would

v(e),

not want the estimator of (6) to equal the estimator of 8. We
like to assure ourselves that 6 is 'targeted' to 6 but not to

that it 1s on the correqt 'scale' ('scale' is used here in the

wide sense of 'logarithmic scald4', 'harmonic scale', etc., not merely in

the sense of a unit of measuremé: t). For the nonce we will use the term

'specificity' to denote the fact that an estimition method produces esti-

mators which are ‘on target', or specific. The word 'consistency' would

perhaps be better suited but its usual meaning (i.e. prohability consis-

tency) is so well entrenched that confusion is best avoided.

.

R |




LT

-

-17- i —

2.1.2 COGREDIENCE-SPECIFICITY . .

A first approach to the qﬁcstion of specificity uses the notion of
cogredience which we will discuss at length in Chapter 3. Briefly, .
a model has a cogredlengc structurc when onc can find a group G of
transformations on the spaée of observations and an (1nduced) group- G
of transformhtions on the paramecter space,’ so that to every transformation
g € é, - one can find TE€ G to satisfy p( g(x); g(6) ) = p(x:8) for
all 6 and almost all x. An estamator t is 'cogredient' when t(x) =
6 and t( g(x) ) = E(@) for almost all x. The sugg€Stion to use a
specific type of cogfﬁﬁience to arrive at a notion of specificity has been

made by Barnard (1962) (using scale invariance) and, 1n a more general
setting by Lehmann (195Ca,pp.1-17: 1959, p.10). In this section we will
primarily give an 1llustration of the principle by justifying the speci-

ficity of a competitor to the MLE. Consider the problem of making infer-

/

ences about the éean P of a k-variate Gaussian distribution with knan
scalar covariance matrix of the form OSI, on the basis of an observation
x, when k 2 3. The problem has at least the following symmetry: if 2
were to be measured on a different linear scale (say that instead of
measuring a length in centimetres, one measured it in inches\ then instead

of reporting an observation x one would report y = ax, where a is the

-~ -~ ~

scaling factor (a = 0.3937 approximately in converting from centimetres

N . 2
to inches). - The variate y 1is not distributed as Gauss (E’OOI) but

another member of that same parametric family can be found, namely Gauss

i

(ay,azofI), which describes the distribution of the new variate y. We

~

L St
might therefore agree that an estimator t(x) = U is specific in the

sense of being scale invariant, if for all a, the estimator yields a
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selection of the group of transformations under which the estimator is

ance is

82021.
1]

In symbols,
/

(x v

¢f

[
-

“~

©

~]8-=

1

!

. 2.2
y W) =~ (ax, ay, a0, au) .

e

Thus in this problem (as enlarged by the requirement of scale invariance

for u.

g =44

4

1

(k -2) (30;) 2

\“ '

Hxﬁz

Z '

—

|

i3 at least scale-invariant, so that it can be claimed ‘to be specific

to be cpgred?ént. In the above example, it might be natural to impose

cogredience with respeé

o

It is obvious that the éstimator (1) is no longer cogrédient under this

2

-~

4

22

~

(%, ¥, 0, W)= (ax+b, au+b,aog, a

t to arl-affine transformations, i.e.,

+ E ).

wider group. Thus when several types of symmetf} are possible for a

model, confiicting criteria of ‘'cogredience-specificity' will resul

’

t.

-

-or covariance) an estimator of the type considered by James § Stein (1961):
! ‘ H f

1 -

For this reason it is perhaps best not tﬁAgeneralize the criterion be-

yond scale invariance; scale invariance also bears a strong relationship

to the notion of physical dimensionality of a parameter, which notion

should usually be respected,

/

/

Finally, we note from the result in Chapter 3, that the MLE is

]

et —— o mm . A



> model. Therefore, the MLE will alwvays be cogredience-specific.
. ¥ -

e
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always cogredient whenever thé}e éxists a cogredience structure in the
\

kel <

. T o ,
2.1.3 CRITERIA RELATED TO THE USE OF 10SS FUNCTIONS

! produced when a non-uniform quadratic .loss: R i

- ) A L C
Even before the formal introductipn;éf decision tﬁgory, loss func-

-
'

tions were being used in estimation theory. to provide closeness criteria.
In this subsection we will consider a clas%.pf specificity criteria which,
though not ngggssitated by a specific loss function, are nevertheless

closely associﬁted with, and can be derived from a loss functioA. Lehmann
(1959, p.ll),‘ih a decfsion-theoretic~§éttin§, defines' an estimator 6

to be (loss-) unbiased if:

“ Egloss (6; 8" >=EHZOSS‘(§; 8)

for| all ©' € ©. That is to say, an unbiased estimator attains ?jnimum

risk at the true value 6. Two instances of loss-unbiasedness ﬁhihhf‘
N . L:) , . i

have rather wide currency in the statistical litérature g{e: mear- \

e -

unbiasedpe§§ (usually refered to siﬁbiy as unbiasedness), which is un-

- - -

biasedness using uniform quadratie- loss:- L. N
. \

' o loss (6{ ) = o - §H2 g":A” (2

and median-unbiasedness, which is produced, when using a one-dimensional

.

parameter, by the absolute-value loss: , .

b S
_ " loss (8; 8) = |6 -8]. . "

L " - - —
There does not appear to be much discussion of the kind of unbiasedness

A )

L

’ - { \ ) . ‘A

A




(’ ’ loss (B; 8) = g(6) o - Bl ‘ \

’ e .

Uois used instead of (2), the uniform quadratic loss, even though it @ou}ﬂ

- '

sometimes be more natural (particularly in reliability studies - Canfield,
. e p A

~

\ / —— d \
1970) to use, when 6 1s one-dimensional, the 10sSs: -

¢

-

T o !
; - . )
~ 6 -
loss (8. 8) = 5 - 1 . !

\ ) -

: Mean-unbiasedness )
} - l 3

? Just as quadratic Joss is by far the most widely discussed loss \

function, mean-unbiasedness is the premier example of a specificity cri-

The criterion boils down to requiring ‘that the

terion in Statistics.
¢
expected value of the estimator exist and be equal to the true parameter.

The criterion is associated with Gauss, although it has been remarked

« ~ J
(Barqard, 1962; Sprott, 1978) that unbiasedness per se was introduced

//iﬁ€6*theéstudy of linear models by Markov. Gauss apparently specified

. \
error-consistency for estimators: that\the estimator should yield the
| \

< "

|
true parameter value when the errors are all equal to zero.

\
" Whatever the historical background, the fact remains that mean-

N

- unbiasedness is both mathematically verv tractable and statisthcally'very
- restrictive. Apart from tractability, the.-best that can be'saidﬁabout
' mean-unbiasedness as a criterion’is that it effectiyely does rule out:

ol o
extremely partial estimators. Other arguments that have been advanted
e

a

in favour of the criterion are, in our opinion, far less compelling. In ]
particular, there is a certain circular quality to the argument (cf.

Haldane §'Smith, 1956) that when a biased estimator is being used to .




-

- <y Wasan, - 1970, p:log; Tusnady, 1968), while there are other cases v

- - -21- . : !

/
. 1

-
. N 7
produce a large number of estimates which must afterwafﬁg be summarized -
- } 4 . o
by a mean ora median, that the mean or median will 1ta&]f be seriously

- - l

' — i
biased.

Among the most serious objections to the criterion we may note:
(1) That an estimation method producing mean-unbiased estimators

: in one parametrization will only produce unbiased estimators for

affine transformations of the parameter, so that the criterion is
only applicable.where only affine reparametrizations, if any, are
to be c?iiiégxed: it therefore clashes with the property of in‘grl-

ance to reparametrization, which is considered in Subsection 3/2.2.
( ./ —

- (2) That it excludes estimators which have no expectation, even when
the sgurce of the divergence is a class of events of negligible

probability.
o & A”'
E, { !

(3) That the criterion is sometimes totally iﬁapplicable because no ' ;

estimator exists which is unbiased in the mean (Ghosh & Singh, 1970;, '

EIE

"where the unique unbiased estimator takes values outside the para-
- /
%pternspace (Cox'ﬁ/ﬁinkley, 1974, p.253; Sprott, 1978; Wasan, 1970,

‘ P 108). AN

" a
s

Epf the above objections, we view the lack of invariance as bejing the -

¢ -

most crucial, because it places restrictions on the ultimate usé to which
o ;. .
i . ] ' - 1. -
the estimator will be employed; even when those uses can be foresten, it
\ ] -
is far too easy to fail to see that some non-linear transformation will -

destroy any advantage which might accrue from using an unbiabed estimator.

-

One unfortunate examplL of a slip occasioned by this situation _.—

\ — -

e w w—-—m
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ought to be sufficient to drive >home the peint. Wasan (1970, p.169)
considers the estimation of the reliability in a Weibull xmodel with known
‘sh’ape and threshhold - that is, the obgervations are eséentially from

‘an exponential variate (w{fﬂﬁknown scale parameter) raised to a known
power. The use of the MLE‘ is criticized because the MLE is biased and
because the reliability edtimator p for a ;ingle component of a system

will most often'be used, raised to the power m, to estimate (or predict)
7

-

e g m . . .
the reliability p of a system with m identical components arranged
in series...In the-situation being considered, for a true value ¢ =

0.951 of the reliability, the MLE p ’Yiil/have mean Ep = 0.938, and

) ~ 10
0.605 while (Ep) =

e Nl

for m = 10 thé true reliability will be plo

. ~10 .
0.527, a 13% relative error (here, though, ’E(pu ) would be of interest).

o

It is proposed to remedy the situation:by using the minimum-variance

unbiased estimator iin place of 0. Now simple consideration of Jen-

y

. . . ~1 s . )
sen's inequality will show that § 0 must be biased, and biased posi-
tively, so that where the MLE is unduly pessimistic about the reliability,
the proposed remedy will on the contrary be unduly optimistic. The

i

following table, based on numerical integratiy,/compares the performance
—
in terms of\}as and root-mean-square error, for the MLE and its alter-
-

. - !
native, for selected values of m,

‘

m True value MLE  MVUE Bias MLE Bias MVUE RMSE MLE RMSE MVUE

1 ~0.951  0.940 0.951 -0.011 0.000  0.034 0.027
10 0.605  0.566 0.624 -0.045 0.019_-~0.154 0.140
20 0.366— 0.336 0.408 -0.030 0.042  0.154 0.162

(Details _in Appendix A) The bias in 510 is already roughly 2 percen-

tage points, against over 4 percentage points on the conservative side

[P

s el

-

i



_Jyhifﬁ’the corresponding MLE is unbiased, does ndg‘appear to have been

i ! i !

. 3 . S a20
by the MLE. For m = 20, the bias in 0P is higher than"that in p .

e 1

A final comment about this is that'reliability is hardly the type:

of situation where one should specify a symmetric loss function. Can- -

—

field (1970) has made a similar point and hés[suggested using a piece-
wise quadratic loss.

As il}ustfated by this example, and as should be expected from an
estimator which is totally invari;nt to reparametrization, the MLE is
in general not mean-unbiased for the particular parametrization under (

consideration. The question of whether any parametrization exists, for

approached except in the special case of models of the exponential

family. TFhere, Barton (1956) has noted that with the notation:
an /

T :
p(x; 8) = exp ( t(x) ¢(6) + B(B) + g(x) ) , ‘

-

the 'mean value' reparametrization 6 — t(8) such that: . -

| -

« T(6) = - ( Vga(8) ) 'V B(8) L

i

.
or equivalently,

(6) =0E6t(x) ) -

will have an MLE which is unbiased for the corresponding parameter and
{

will be such that. its variance will attain the Cramér-Rao bound; from

|
l

the argument it also follows that this is the unique parametrization -

(asidedfrom gffins transformations) for which the MLE can be unbiased.-
— l : - \

The mean-value parametrization is not necessarily very convenient.

For e le, in theé two-parameter univariate Gaussian with mean u and
xample, P
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. 2
variance 0O, the mean value parametrization is:

3 - —

¢
nd 2

2 2 2 ot
T(H,90) = (M, ¥ +0) . .
T

'Median-unbiasedness -

, , _ !
Median-unbiasedness is the only other type of unbiasedness which
{
has been given any consideration at length. From
- : | -

u = median x

and p<a<b or uw>a>b
imply: E |x - ETﬁglE [x - bl , .
{cf. Wasan, 1970, p.119) one can immediately deduce that when an estimator

takes the median of its distribution at the true parameter value, then

that estimator will have minimum risk at the true parameter value for the

“

absolute value loss. Thus an estimator 0 1s median-unbiased for 6

when the median of § is 0.
Among other advantaggffgf/this criterion Birnpaum (1964) has noted

the fact, easily verified, that if 6 is median-unbiased for 6 and if

g is a monotone function on ©, then g(é) will be a median unbiased

estimator of g(8) . Thus, it can be claimed that this is a criterion

which is capable of being applied where one may, at a later point, want
to rescale the parameter, e.g., by taking its inverse, or its logarithm,

etc.

Disadvantages of the criterion are that it.does not appear to have
!
a multi-dimensional analogue, and Fhat when the observations have a discrete
i 9” 4
distribution, estimators based solely on the data will also have a dis-

crete distribution where, typically, the median will only be known to lie

e RO
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within a certain interval or a certain class. Birnbaum's suggestion (1964)
that an estimator be made to have a continuous distributlon\by using ran-
domization would seem rather artificial.

Because of the/general invariance of the MLE to reparametrizations,
we should again expect that the M%Elwill not in general satisfu the m%dian—
unbtasedness criterion. Thus when estimating the mean of a univariate
Gaussian with kno&n variance, the MLE will be med{an—unblased; in other
cases it 1s not: when estimating the variance of a Gaussian variate whose

mean is known, the median of the MLE's distribution will always be above

the true variance.

2.1.4 FISHER CONSISTENCY }

Consistency as usually defined is an asymptotic property of a se-
quence of estimators: if the sequence converges in probabb&{;y to the
true parameter value as the sample size goes to infinity, the sequence (and "

hence, by a usual ellipsis, the estimator as a typical member of the se-

-quence} is said to be consistent. Another definition of consistency which

is not asymptotic, was often alluded to by Fisher (e.g., in 1922; 1959,.p.1442
1935). Fisher gave a satisfactory definition for the discrete case and

an adequate general definition was given by Kallianpur & Rao (1955). The
asymptotic criterion is denoted probability consistency and the latter,
Fisher consistency. Fisher consistency appears to be definable only when

the observations are identically and independently distributed random

variables, so that this situation will be assumed to the end of this
/

— |

subsection. \

/
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Discrete Case

S 2 L4

We begin by considering the case of observations from a discrete

variate taking value x with probabiliEXQngx; 8). Without loss of
AN

generality the x's can be relabeled to be 1, 2, 3... ; denote by

p the vector whose x-th component 1s p(x; ‘8). Let the number of ob-

servations of x (after relabeling) be n and denote by q the vector

~

whose x-th component is nx/n, the observed proportion in the x-th

cell. Both p and .9 take their values on
Q=10,117x]o0, 1] x ene

where [0, 1] denotes the closed interval from zero to one and where the

i . . .
Cartesian product extends to k dimensions, or has countably-infinite
dimensionality, according to whether only Lk values of 1, or an infinite

number off x's, are possible. An estimator © which can be written as-
/

/

6 = H(q)

where H : Q - @,

\ . -
is Fisher-consistent if H(p) = 6. \J/rux

/ ?

Fixed Carrier Case

L)

—

In a more general setting, where the observations need not be dis-
{

crete, the role of q 1is taken by the empirical cumulative distribution

furiction (ECDF):

1
Fx('/) = F(y; x) = n

€ e 4 ke nen
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(where X; 3 ‘is the j-th component of the i-th observation) as a re-
b

presentation of the sample. Suppose therefore that the estimator 6 of

—

6 is a functional of the ECDF, that is -

6 = H(Fx) S

where l\i is a mapping from an abstract space of distribution functions/
into G).\ The mapping H is then called a functional of its argument.

) ~

A gimple example of a functional is:

3 H(F) = / x dF(x) —

(where x is one-dimensional) which yields the sample mean when F is

the ECDF: s

-

H(F) = [ x deLx) —_

= I x,
i

=R

An estimator 6 is said to be Fisher-consistent for © if:

°

H(Fy) =6  forall 6€0O . (3) {

1

for Fe the multivariate cumulative.distribution function:

Fo() = [ ply; 8) dA(y) ‘ ;-
, Q(x) : ) \
Q(X)\=\{y55:yjkxj for all j ) .,

~

Equation (3) means that.the functional always yields the value 0 when

it is evaluated at the distribution indexed by 6.

As pointed out_by Rao (1962a), the functional corresponding to the o

MLE is: |




H(F) = mode { / log p(x; 0) dF(x) * 6 €0} . (4

Rao claims that with this functional the MLE 1s Fisher-consistent "w1thout
aﬁy restriction whatsoever'". However, it would dppear that some care 1s
needed in using (4). First, the absolute maximum of the function 1nside
the brackets is not necessarily taken at apn interior point of @, nor 1s
it necessarily taken at a unique value of €, so that H(F) 1s properlhh
a sef—valued functional ranging over subsets of ©, including the null
set:(see Plante, 1976, for similar considerations). Second, we will de-
monstrate later on that the integral in (4) fails to be defined when T
is fﬁe distribution function of some continuous models.

The first point is inessential inasmuch as we can agree, by con-
vention (in the event that the distribution function F should4yleld

e

an H with several modes), that the criterion be satisfied so lons/;s

/
v

. .
8 1s one of those possible modes. Except for situations which give rise
to an undefined integral, 1t would seem that the mode will be unique for
a distribution function corresponding to a member of the family in .the

model under consideration. ~

Consider first the case where the family of densities has a common’

support Or carrier set:

—

p(x:8) >0 if and only if x€ S, for all €.

Define:

e
-

g(®; 0,) = [ p(x; ) log p(x; 6) dA(x).

We wish to determine the mode -or modes of g(8; 6,) , as O ranges over

o .

"l

'
]
{
i
!
i




1
6; 8 ) = - B 1 axx
\ g(8; 6) é p(x; 6 log T (x) -
{
p(x; 6)
o - _ N —_— A
i ép(x. 8,) log ——gy— dA(x)
- + [ p(x; 8.) log p(x; 8_) dA(%) -
Z:S .-
+
'=g(6 50 - I(6 ;0
where - B
p(x; 6,)
t8) = ; — d)
I(8q: 8) = [ p(x; 80) log sy D00 |
|
is the Kullback-Lleibler Separator. '

Now it is hnown that 7(6 : 8) is defined and positive for constant-
carrier densities, except/ that I(eo: 8) may be zero if p(x;.08) = .
p(x; 8_) almost everywhere. As this last contingency is excluded when

the model is assumed to be indentified, we see that:
3

‘ g(8,578,) > g(8; 6. | )

when 9° # 0, so that the MLE is Fisher-consistent.

" Variable Carrier Case

Now consider a family of densities with variable carrier:-

w S(8) = { x : p(x; 6) >0}

For given 6° and 6, let:

A=S(8) NS®O), B=5(6) - SO

Then: .

<.
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[ p(x; ) tog.pix; 0 dr(x)
S(6.) : \

1]

8(8; 8)

il

[ p(x: @) log p(x; 8) dA(x)
.

+, [ p(x;+8) log p(x;-6) dA(a]. (5)
! o).

'Strictly speaking the integral over B is ill-defined since log 0

“ °

is ?ot defined. However, on€ may use the convention log 0 = - o

" since this is the limit of log p as p tends to 0 from the positive

side. It}is, therefore, quite reasonable to set the second\integralﬁln
(5) equal to -» whenever P(BIBO) > 0, and equal to zero when

P(B]Go) = 0. The function g is st11l well defined,~provi&ed the inte-
gral over A ain (5) is fimite -or diverges to -«=. When g 15 well

—

defined, let: -

3

qx; 8 = p(x; 8) [ P(Al®) 17" ¢ xe A )

»
!

then the integral over A in (5) is:

Y

J P(A[8.) a(x;78) log [ P(A8)) qx; 8) ] aA(x)
A . :

= P(Afe,) [ a(x; 6.) log a(xi 6) dA P(Al6_) log P(al0).
A ) ‘

AY

The family { q(-; 8) } has constant support and P(Aleo) = P( 5(eo)|eo) =

— ~

1, so that if:

[a(x; 8) log q(x; 68) dA(x) <=, ' n
A

the integral over A in (5) is defined and

[ p(x; ©,) log plxs 6] dA(x) <[ P(x; 8)) log p(x; 6)) dA(x)
A ; A

A

- m e AL n“‘,?g%

P
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with equality if and only if: /, -
’ ‘ ;
P( S(B)) Ns@)e)y =1 /
?nd“ ' (8)
¥ -p(x; 8 ) p(x; 6)

P(S(8 )y As@) oy ¢ -

P(S(6_)NS(BYT8 ) ~

Re———

The two conditions (8) together imply p(x;ve) = plx; B8_) a.c. A, which

JAs excluded by ‘the identifiability of the parameter. It therefore appears -

—

possible to write conditions for g(b; 6 ) to be defined in (5).

Most of the remainder of this subsection ;Z"i?flil‘—b‘c“takcn up with an
example whefe (5) reduces to an undetermined form g(6; 6 ) = =/- «,
Beforé exhibiting the example, it sh’ould be mentioned t'haot Fisher con-
sistency could still be defined, even in such cases, by the further con-
vention that, in ;:aking the mode ofl g(*; 90), those values of 9 for
which -g(6; 6_,) is not defined are to be ignored. g(8_; 6.) will be
defined (though it may be infinite) and it would appear, even when (7'
fails to hold, that th:s number of 8 for which :g(e; 60) diverges will
be at most countable. If this cgnjecture is verified, Fisher consisténcy

could be said to hold in general’ for the MLE, albeit with appropriate

conventions,

.I11-defined g

-

"

[N
The following is an example where (5) cannot be defined. It was

; - >
communicated privately to the author by Louis-Paul Rivest. ; g,
Consider first the density :
a(x) = —— Co<x<d)r .
x(log x) -
) .- .T—‘ —
N\
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v ) - (
( B " vhere ¢ = log 2.
4 M . 5 ' ’ 2
f q(x) log qfx) di(x) = - f 7 log [ x(log x) ] dx,+ log c
. A T 0 %x(log x)
h I P 2 "
. = f €Yy - 2cy logydy + log c C)
— -9—/ . ! - /
' \ wheje the change .of variables y = -log x was made. (9) diverges to -
- — J o
+ o since: — / .
S / i
T o » ' :O
~ ? .2 logc + 1
: - [ ¥y log y dy = =% p f
“ i
C .
moo -1 @
while '[y = =+ o yi - ;
- _— ¢ - v
Now form the parametric location fat;ily with © = (-, =) by °
/
( setting: o . " . )
" » / - . R -
p(x; 6) = #q(x - 8) + 2q(x + & - 0)
— B ! :
A i
Let © = E}o + 3. Then we have: d |
p(x; 6) has support on (8, 6, + 4] U (6, + 4, 8, + 1]"
) | l T/ -
. p(x; 8) has support on (73/; +1, 8+ %}\U (6, + 3, 8, +1] o :
“ so that B = (p , 6 +13] | A=(8, +3%,06_ +1] and / *
N - oy T
. - ° q(x-6,-13) q(x-6, - 1)
. ] ptx; 8) log p(x; 8) dx =—[ '———5——log 3 dx
A . . 6 _+} / -
\
. / 3 .
. SR (- (CO RSP (. A ) )
’ 2 2 .
4 ’ ° I 0 S
. — A = 4+ ® (’
— ; - N
0 . ) ) 3 ’ ’ ” s
) i, s / — v N
< Q ‘ ,
&m . B e s - —

i N ‘
9 N N ~ N . P



€ while P(B[8 ) =4 so: . — - \ o

v
0

! IB }’(X; 8 ) log p(x; 6) dx = - =, , 7
e ' / - . : u r -

. .
and g }ﬂ/(S is not ‘well-defined. ° i N
° / .o e , b . . o0 N
. Fisher Consistency in General RN : - T =

! 2 +
o - \ -
u

\9 ’ ,

Altl)‘bugfx some prolghéﬁé“crop«up“with the definition of Fisher con-

'

sistency, the situation is rather satisfactory for the MLE. Wheré the

. . | g v, -

oo . - MLE can be defined by the 'mode' functional, the MLE \is_Fish'er—consistent.
o ‘ t £l .
. oo g
In particular the criterion is satisfied for-discrete models and for con-
. /'{/_ - . N , . e \
’ toe tinuous models with constant carrier. It is also satisfied, given some o )
L ‘J < o ~

. _conventions,. when the densities have variable carrier but are bounded in

K < .» .
such a way that for every pair 60, 0, there exists a number K(Bo, 8) <o,

S —

o aa i n———a a4

(. ‘ ‘such' that: .

\ . N ' i B .p(X; 6) < K(eol e) ’

4

|

L

/

\ . .
‘since this will allow (6) to be properly defined. \

2

We note that other estimation méthods also #m'{sher-consistent \
( . .
.« M - N m
estimators. When the method of moments uses the sample moments in/n, ;
. * 7 ¢ )h ’ ¢ . i .

_

\ “the mo'ment-e'stim:'ator will be Fisher-consistent. Ponnapalli (1976) shows

o ' . ) B - \'
: Fisher consistency for a wide )Zlass of estimators in discrete models, f

~

under some regularity conditiéns on the densities. From his result, or /

s P . | : T ) P o .
direétly, one can show that the minjmum chi-squared and minimum modified "~ I
s - ‘ B |
o - chizsquared estimators are also Fi her-consistent. Other methods, such |
- as the method of moments based on/sample cumulants (k-statistics) » are not ;
|

3 @ - )

y Fisher-consistent.

, |~
4 . B 0 3

- ]

\I
j
—
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' ( ‘ L 2.1.5 SPECIFICITY CRITERIA: NOTES AND SUMMARY ——

The criteria considered above are far from exhausting the possibi-
~ \ . -

lities, although’@e believe the most common criteria have been covered.

3
Ny Here we will briefly considér a few more and offer some tentative obser-_ ©
§ .

»

¢,

vations. ' ’ .

°  Modal-unbiasedness

Y . N : ] )

. Wasan (1965 abstract; 1970,pp.120-125) has introduced the notion of

. -~ 6 - a modal-unbiased estimator, that i1s an estimator whose distribution at-
{
tains its mode at the true parameter value., The criterion is_rather un- .-
( L \ ,

attractive, 1n our opinion, partly because the mode of a distribution

»

lacks the intuitive appeal of a median or a mean, partly because its con- (g

sideration would appear to involve more mathematical complications than

s

the mean (though it might prove to be generally more tractable than the
A

) median). . . -
\ /A,——A ( g
.J . // - 1 = . M
Brlefly,\an estimator is modal unbiased if the mode of its distri-
| o
bution is the true parametér value. The criterion is related to the loss )

function: ,

< Zoss(§;6)=<§=6>,

'
1

but only through a limiting argument starting with a discrete parameter

space.

’ Despite the definition of the MLE as the mode of the likelihood func-

o

tion, the MLE is not modal-unbiased in general: the mode of the MLE of the

] o /—

variance of an independently and identically distributed Gaussian variate with .-

‘known mean, for instance, occurs not at the value of the true variance

Bt w0
i
~




( | /02 but rather at

. Specificity Induced by the Sensitivity Criterion

3

We will note later on that Barnard and Godambe's sensitivity cri-

’

terion requires that the mean of the estimating equation equal zero’for
all parameter values: this certainly serves to narrow the class 8f possible

estimators and would also appear to be properly a specificity criterion, -
{

although its effect on the estimator is rather difficult to visualize.

{
Remarks

Independently and iden}ically distributed observations were assumed/

in deriving the results on Fisher consistency; however, this does not seem
{

\,

— —

. ! ' .
to deny the applicability of the }‘;sult to wider‘classes of models., The

data could always be regarded as a sample of size one from the appropriate - f
'
parent distribution, and the MLE could be said 'to be Fisher-cdonsistent in ’

this case as well, since the sample size is not relevant to the concept.

B}

}
’ _ : i
_We note, finally, that the various (competing) specificity criteria i
will sometimes lead to quite different estimators for the same problem. |

- !

‘A remark by Norden (1972, p.342) based on the work of Fend, will serve

.

to illustrate this general fact; for the family .

- -1/k -1/k
“plxs 8)=91/]\exp(-x6 /)< x>0) ,

with k. a known integer, the MLE from a sample of size one is x*  where-

as an unbiased estimator ione whose variance attains the k-th Bhatta-

charyya bound) is xk/k!, yet both estimators are specific for 6.

W —
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SECTION 2.2 CLOSENESS o .

In this section we will consider criteria wimlch measure the close-
ness of the estimator to the parameter. With the possible exception of
information-theoretic criteria, it w:)uld appear that no optimality results
are available in the absence of some specificity criterion; such a cri-
terion is needed in‘order to rule out "extremely partial" estim'ators such

as the one considered at the beginning of °this chapter. It might be

° ¢

argued that specificity and ¢loseness criteria should be studied i1n pairs,
i

or that, in speaking of a given closeness criterion, one should restrict
t

attention.to estimators satisfying a given specificity criterion. However,

for simplicity's sake in this section we will consider closeness criteria
independently of specificity criteria. This follows an established trend
. - . { .
in the literature: for instance, the mean square error (MSE) of a biased
. . T « . .
. estimator 1s often compared to the MSE (or equivalently the variance) of
an unbiased estimator, often without any reference to a specificity cri-

terion being satisfied by the biased estimator, Indeed, there 1s something

to be said for the view that specificity criteria should merely dct to
screen out undesirable estim&tors, and that when comparing various esti-
mators one should merely ensure that each estimator satisfies some

‘ specif}y criterion, that it has some reason foﬁ/to be called an ‘

4

N

estimator.

2.2,1 VARIOUS CONCENTRATION CRITERIA
. / . .] .
Although the most common measures of closeness of a'parameter to

{ . .
its target value are in terms of a risk function*% this is not theﬁsx/ {

b it gl
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natural one. A more natural approach would ble to select, among several
competing estimators, the_estima/tor whose distribution is most concentra-
ted about the true parameter value. We are'tlms led to consider criteria
which are dgfined_strict«:/ly in terms of quantities such as | 6 -61.

(The Euclidean norm is usually used in this context although there are , __

’ ~

other iaossibilitles.) When the distribution of an estimator- € 1s more

concentrated about 6 than that of an alternative estimator 6, & is ’

said to be better than 6. In this subsection we will consider three ¥

’

criteria of concentration, and estimators will be called 'better' than \]

Y

others with respect t¢ that measure of concentration.

The nomenclature of concentration criteria appears to be rather
fuzzy and the nonce-terms ‘'strict concentration' and 'pairwise closeness'

will be used in our discussion. Finally, we note that the concentration

s

criteria stujlied here appear to be incompatible with the requirement that

an estimatfon method be invariant.under all forms of Teparametrization.

—.//

As such no optimality properties for the MLE are to be e.;::pected here.
' . / -
\ . .
Strict Concentration ' ' .

—

|~ -

The ideal closeness criterion Would appear to be what might be

called strict concentration: © is better than 0 whenever, for all
T

-

§>0 andall‘ B € O, -

P[Il 6-081l<6]>P[Il 6-81<6] .

.

%
However, the criterion is so strong that in most models it seems .

- —

to rule out all estimators, even when restrictions are placed on the class

of alternat‘ive estimators 6. The only result we have seen of this type

/is due to Pitman (1939) for the usual "Pitman estimator' in the special

_—

o

e et i Ao o i
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case of a location model with symmetric likelihood function in all samples.
N ——

¥

However, Pitman's result relates to fiducial probability, and his result

does not appear to have an equivalent frequency interpretation.

4 Proportional Closeness

The strict closeness criterion has a weak vﬁriant in the criterion
/
~

of proportional closeness: 6 1s better than é for a fixed proportional

error 60 when, for all © € G,

' o —_—

—

N R . .
\ PG -8 <s W 61 ]J=2P1I6-81<&I61]

This can be regarded as the minimum risk estimator with loss function:

loss (B; 8) = (I B -6l <5 1 61) . e

The c¢riterion has been investigated by Zacks (1966, 1967) andIZacks &

Even (1966) but from the negative angle of showing the non—ex@stence of

an overall "propartionally closest" estimator. Even if results were

available, the criterion is unappealing because the constant §_ is
arbitrary and there does not appear to be any compelling reason for. /
chosing one value of &_ over another value. - ,
‘ [
Pairwise Closeness ] aE ) -~
P
Another criterion which appears to be derived from the strict close- o~
ness criterion is pairwise closeness: in the éair‘of estimators (6, é), ol
@ is better than 6 for a given proportion Yy > % (usually, Y = %) if,
for all 06 €98, ,
’ . . i ’ \
( Pl g-6l<H0B-0l]>Y7. (1) |
r , v \ o
_/
—




The obvious frequency inierpretation of (1) is that in at least Y

of the samples, the 'better' estimator 1s closer to the parameter than

its competitor. Again, Pltmap (1939) proves such a result for fiducial

. o

probability. With the fiducial (but not necessarily the frequency} inter-
pretation, it shows that the MLE for a location parameter is inferior to
the Pitmidn 'median' estimator, except where the two coincide. A recent

use of the criterion from the frequency standpoint is in Efron (1975)

1

where it is noted that a Stein-type estimator (such as the one defined

by-equation (1) of the last section) 1is better than the MLE for. a Gauss

- A {
(u, 0,I) variate.

Admittedly, pairwise closeness 1s an appealing critetion, but it

may be useful- to recall the comment by Savage (1972, pp.226, 545): that

I

the main attraction of the criterion would appear to be the conjecture

that it should be equivalent in. some way to strict closeness; however, a
@

counter-example by Savage disproves thas.

» ——

More disturbing still is Birnbaum's, objection (1961) that the cri-
terion cannot provide a meaningful partial ordering of the class of possi-
ble estimators because it depends on the joint distribution of pairs of

estimators. It is not excluded, therefore, that one could find some model

-
v

where:

* * ‘ *
A< B, B< (C and c< A (2)

-

*
{where A < B, e.g., denotes the fact that the estimator A is better
than B in the sense of pairwise closeness).
¢ —_—
The stitus‘bf,pairwise closeness as a meaningful criterion must, therefore,
remain in doubt until (2) is shown' to be impossible, i.e., until transi;_

tivity is established. \
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2.2

.2 CLOSENESS IN MINIMUM RISK

/ ]
-
We turn now to criteria based on loss functions. As noted earlier,

the quadratic loss is by far the most popular closeness criterion, both
in tHe asymptotic case and in the finite-sample case; the risk associated

with;this loss structure is the so-called MSE, and equals the variance

J

plus; the square of the bias. It may be recalled that under appropriate

.

regularity conditions, the Cramér-Rao bound provides a u;eful lower bound
on the variance of an unbiafed estimator. o

As discussed in Section 2.1, 1n a regular exponential famiiy there
would appear to be only one garametrization for which the MLE 1s unbiased,

and under that parametrization the Cramér-Rao bound is attained. ' 1t 1s

I

_ perhaps fortunate in many exponential families commonly encounitered, the
p i

mean-value parametrization for which the Cramér-Rao bound is attained 1s

\ .
a standard one, whose use is 'natural'. Even when_ghé full standard

parameter does not coincide with the full mean-value parameter, 1t will

sometimes happen that the two parameters have in common a subparameter

.

which is of primary interest. Such 1s the case of the univariate Gaussian
distribution under the standard parametrization by the mean and variance,

~where the MLE for the mean is unbiased and has minimum variance, although

. the MLE for the variance subparameter is not unbiased and does not have

minimum mean square €rror.

¢

Occasional optimal situations such’as the above should not distract

us from the fact that in general the MLE has no optimality property urder
the MSE criterion for a parametrization of interest. There are numerous
“/studies in the literature where the performance of the MLE is assessed

against that of other estimators, for particular parametrfzatians of specific

f
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models. It would be outside the scope of this work to delve into part:-

cular cases, although given the importance which 1s usually accorded the
|

criterion, we offer that it might be desirable to have a survey or anno-

u

tated bibliography of such studies; a good start has been made i1n that
ﬁlrection in the four-volume monograph by Johnson'& Kotz (1969, 19704,
1970b and 1972), under the topic "Estimation".

| Similar studies involving the absolute value criterion are less
common but the same comment may be made, that there is in general n;

optimality result for the MLE under the minimen-absolute-value criterion

because of the invariance of the MLE under reparametrizations.

2,2.3 SENSITIVITY

/
An 'elegant theory of estimating equations’ and pivotal quantities

has been developed by Barnard, Godambe, and others which, for the method
of maximum likellﬁ;od and under regularity conditions, leads to an opti-
mality property which is valid under a wide class of parametrizations.
The basic idea, due independently to Barnard énd to Godambe (see
Godambe, 1960, acknowledgement), is to consider éstimation methods which
can be reduced ta solving an equation (or a set of equations, when the

parameter is multi-dimensional) of the form g(x; 8) = 0 yith the spegi-
fication that Eeg(x; 8) = 0; f;;ularity'conditions, both on the quan-
tity q and on the densities p, will be considered for the general
situation where 0 is multi-dimensional. We shall refer to-a quantity

g satisfying some §pepifica;ién and regularity conditions as an "unbiased

estimating equation''. As noted by Godambe (1960), a good unbiased esti-

mating equation should have small, variance while at the same time providing

0




/
good discrimination between neighbouring parameter values; the latter _

~

dg(x,0)

16 be as large as pos-

‘requirement may be rendered by having EB
sible in absolute Value. _We are, therefore, motivated to consider the

. /
dg(x,0) ] !

variance of ‘the ‘'standardized estimating equation'’ g [?6 10

so that we have: - ,

Definition -

An unbiased estimating equation g 1is more sensitive than an

alternative unbiased estimating equation h if

2 E h2
Eeg g .

g2 ah 2
Eg(Ge)” B3

holds for all 6 € @.

Result

Under the regularity conditions specified later on in this sub-

) . . d ; 8
section, the equation for the MLE (i.e., g = logdg(x, )] 18 the most

sensitive of all unbiased estimating equations; the MLE equation is essen-
tially untque in being most sensitive: any equation which has the same

sengitivity for all values ' of O 1is of the form

g(x; 8) = a(8) d logdg(x; ®) :

/ =

An interesting property shown by Bhapkar (1972) is that the sensi-
tivity of the equation based on a sufficient statistic can never be smal-
ler than the sensitivity of the original equation. In other words, com-

pressing the data to a_sufficient statistic may well enhance (but will never,

R v e
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diminish) the performance of the estimating equation; in the case of the
likelihood equations no improvement can be had, of cburse, due to the

minimal sufficiency of the likelihood function under regularity.

Regularity Conditions

We consider now the regularity conditions proposed by Bhapkar (1972)

JR———

which lead to multi-dimensional analogues of the likelihood equation

S
~

optimality.

With the parameter space © an open interval in k-dimensional

A

Euclidean space and an estimator © such that g(x; é(x)) = 0, assume:

~.

¢

(Conditions on the family of densities) ~

I
for all B € 6

T
A1) Vg log pl(x; 6 and Veve log p(x; B8) exist a.e. A(x);

A.2) ‘both f pix; ©) dA(xl and j VB log p(x; 6) dA(x) can be differen-

o

tiated with respect to € wunder the integral sign;

A.S)J Ee [(Vealog p)(Ve log p)T:] is pésitlve definite.

f
(Conditions on the estimating equation)

for all 6 €O

B.1) Eeg(x;‘e) = 0; B

B.2) Veg(x; B) exists a.e. A(Xx);
%

B.E) f g(x; 8) p(x; 8) dA(x) 1is differentiable under the integral sign;

B.4) Ey [}Veg(x; 9))(V98(X; 6))T:] is positive definite} -

B.5) El g(x; 8) (g(x; 8))71 exists finitely.
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Multi-dimensional Case

/
The multi-dimensional analogue of (2) uses the matrix

i
-1 T, -1
= v . . v
J @ = (& eg] Vo(g(x; 8)) -[(EyVpe) ) (4)
{our notation deviates from Bhapkar's at this point).

Resuit

With g* denoting the set of likelihood estimation equations

’ g*(x; 8) = Vg log p(%; 6) ,
= -

the matriz T

3,(8) - J () S (5)
g g

is at least positive semi-definite for any other unbiased estimating
equation §g.
@
Bhapkar proposes two scalar analogues of (3) based on the charac-

teristic roots of (5). Thus we are led to two subsidiary optimality

properties for g*.

‘ < ] Y
det Jg,(e) det Jg( ) . 6)
and

trace J ,(8) < tmce"Jg(eg :

Equality, in (6) at least, is ruled out except for g equal to a multi-
ple of the likelihood estimating equation.

We note in passing that there exists a multi-dimensional analogue

- /‘ Wk N

et ooty
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of enhanced performance under compression to a sufficient statistic.

'
K

3
Di scussion p
it e . S
/
In our view there \are three main limitations to the usefulness of
o / ‘
the results concerning sensitivity.

i

The first is that the regularity conditions {A.1, A.2, A.3) exclude *

models where the density has a cérrier depending on the parameter. In-
deed, in such models the MLE, if it exists meaningfully, is not in gen-
eral a solution of the likelihood eq}}itions so that not much is to be
expected from any extensions of the criterion in this direction.

Second, condition (B.1l) serves to rule out wide classes of‘ estimation
methods, If the estimating equation g(x; 68) = 0 produces .an estimator
8  with bias Eeg(x; 8) = h(8), then the unbiased version of that esti-
mating(equation is g*(x; 9) L g(x; 8) - h(8) which (in the n’ointrivialll
case where the bias h(8) is not c’onstant) should lead to an est;lmator
6 different from 6. Alternatively, one could retain the biased esti-
mating equation but modify formulas (3) and (5). For a one-dimensional

-

parameter simple algebra leads to the inequality:

Eglg - Bg)’ (91}%&2)2
=y @ 9
LEB(dS) () Ee [ ]2

This resembles the version of the Cram&r-Rao inequality for biased esti-

mators - of which it is a generalization. We fancy that the result then
3 ?

would lose its appeal to many for reasons similar to those which make the
'biased' version of the Cramér-Rao inequality unattractive: not only

does the inequality fail to address itself to departures from the target
o

-

@




/

~40-
// <

\ o

[} -

value g =.0, but also the impact of the derivative of the bias 1s

-~
'

difficult to assess,

-

Lastly, the optimality criterion considered heke differs from

other criteria we are considering in that it properly concerns the method ~
* ' ot

of estimation rather than the estimator. FEven after gaining some famil-
§

iarity wilh inequalities such as (3), the agthor finds himself wondering

-

"Yes, the MLE comes from the most specific estimating eqdétlon in its
class: but what does that tell me about the MLE itself?"
Against these reservations (and the last one may be due simply to

insufficient familiarity with the present concepts), the criterion has
. /

the great advantage (as noted by Barnard, 1973) of being invariant to

reparametrizations, subject, of course, to the change of parameters being

°

smooth enough to respect the regularity ‘conditions.

Furthermore, the criterion bears an intimate relation to pivotal
I

quantifies (t6 the extent that we could have replaced estimating equations'

by pivotal quantities' in the above discussion; we did not do so

in order

to underline ‘the fact that the criterion does not refer to estimators
as such but to a method of obtaining estimators). Pivotal- quantities pro-
vide a sound ébproach to inference since, as noted by Kempthorne § Folks

(1971, p.338) among others, stable pivotals - those whose distribution

e . 7/
is altogether independent of the parameter - seem to provide the only

¢

entry into exact distribution theory, and since much of the app}oximate
, .

.. theory is likewise based on approximately -stable, pivotals.

°
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2.2.4 INFORMATION-THEORETIC CLOSENESS ’ ’ T
. 0 ! . . /

h -

We approach the topic of this subsection with some d1ffidenc§ be-

o

cause "the approéch taken by many authors on the subject is rather wider

than that of parametric estimation: (see, for instance, Good,/1963; ;

Dutta, 1966; Kullback, 1968, 'pp.37-39; and Gokhale & Kullback, 1978, .

* p.17). These authors, and others, use information-theoreti¢ arguments

" to resolve the global problem of specﬁfying the model, wheye the speci- (

fication in many instances is so deep that it includes the actual setting

v . 0 - I -
of values for.the model's parameter; this last operation/ is, of course, :

H

our own problem of point estimation. Inconsistencies, or at least meaning-
. less results, are to be feared when the concepts appropyiate to the wider ~-

problem are constricted-to the narrower one. Nevertheless, 1t may be worth-
. f Q !
. : , . ] . s
while to sketch, at least, some points of contact between the information- i
theoretic approach and maximum-likelihood estimation. : /

—

We begin by offering some standard definitions from Information

Theory. 1In general, Information Theory may be said to be primarily con-

,

cerned with discrepancies between specifi'ed probability distributions. ;
, P P b4 s

<7 -
Let F and G be two probability distributions, corresponding to .proba-

. and uG, vhere UF ds absolutely continuous with

)

respéct to Ve and where both are absolutely/cop;iﬁﬁaagrwith respect .to a

bility measu%es Y

o-finite dominating measure A, A measure of the discrepancy between F

and G assseen from the distribution F 1is the Kullback-Leibler Separator\

already encountered in Subsection 2.1.4: - ////,
dF dc . .\ -t
:r( F:6) =] log {:EX (x) (E'X (x)) ]dF(x).o-

o
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Other names for If F : 6) are 'the mean information for discrimimating ,

in favor of .F ‘against G' (Kullback, 1968, p.5) or 'the iqformation

of G relative‘to F'. We note in passihg that I is not a symmetric

operator: I( F : G) #I(G: F) for most F a;d G; and that

I(F: G)# 0. Amotivation for considering I 1is given in Savage

(1972, pp.48-49) in tﬂat I 1is the expected value of the logarithm of

the likelihood-ratio statistic for two cpmpeting hypotheses F and G.
o o

The theory of I( F : G ) is developed extensively by Kullback (1968).

A ‘related concept’is that of the eritropy of a probability distri-
P p

bution F: ' /////’_

!

| g H(F) = - [ log -.:—;— (x) dF(x)

% ~

The motivation for, # as a measure of the disorder in the distribution
\

F has been given by Shannon (1948, p.392). Analogous motivations are
reviewed by Rényi, (1961). In the remainder of this subsection, the argu-
ments of I and H will be cumulative distribution functions or their

| sy . .
densities as convenient in the context.

/ T
. . -

Discrete Distributions o l e

We prefate this part of the Qiscussion‘ﬁiﬁh/fﬁb remark that the

N

discussions in the literature are in the context of contingency tables and
do not necessarily extend to models with an infinite number of cells.
In discrete models with n_ observations of the value x and

n-= Enx observations in all the 'observed distribution', q(*) which

takes the value q(x) =’nx/n for the cell x, is absolutely continuous

with respect-to all the possible moéel distributions p(-; 6)

// - \

-

e i

B R e
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(' which are of interest. The exception is those values of 6 for which

p(x; B) =0 in a cell x in which a nonzero count was observed n, > 0;

. /”/‘i iﬁ such cases)efdata provide a crucial vt/e/s,t/a‘g'ains‘t such values of © ’
(the hypothesis indexed by B8 being incbmpatible with the data).' It
seems reasonable that we would want to exclude such values of 6 in any
_ , estimatlc(m process. It therefore makes sense to speak,n at least formally,
of the information of p(+; 8) in favour of the/data’:’ :
) n - nx/n ‘ A
| - TCq: p(s; 0 ) = & o log omps ®
f ’ \
It is ‘easy to see from (8) that for fixed q(*), the vatue of 8 for which
; ) ) I(q; p(+; 8) ) ‘is minimizo/eqi is pi‘ecisely the value which maximizes —
o the logauthm of thg likelihood function, so that we have the formal inter- :
( pretation that the MLE selects the distribution ‘p(°; 8) so as to mini- ) ( I
-mize the discrimination information in ‘the sample relative to the class l
of possible distributions (see Bishop, Fienberg § Holland, 1975* p.346, ‘
\ for example), More loosely, the estimated dist;'ipution p(*; 6) is T J
'clo;est to the data' in some sense. /
| Against this it should be noted that the otherl variant  I(p(-; 8) : q)
\ ’ is minimized by the ‘'minimum di§gr,imiﬁation information estimate' (in tﬁe'

|
nomenclature of Gokhale § Kullback, 1978) or by what Bishop, Fienberg l
i

& Holland (1975) term the I‘modified minimum discrimination information

a ‘ / B
/Jstimate' (MMDIE). In general the MLE is not equal to the MMDIE so that, ’

/ 1
using this second_ 'optimality criterion’, the MLE is not in generai =

optimal. The class of situations in which the two estimates are equi- -

valent is called the 'internal constraint problqm"'. It corr(pon;s to o

v

3 .
4

/
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; n;mber of { p(+;0):0E€ 61 }/ﬂfch minimizes I( p(°; ©) p(*; 6) )
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thoSe situations where the .data happen to fit the model perfectly, the

observed counts satisfying all the constraints ,imp’o/s/ed by the model.

Exponential Models

!

r . ‘o . ‘
| Exponential families are the only other instance where we have found
1 n :
what we believe to be valid results. In the information-theoretic approdch

exponential distributions are distinguished as thaé class of probability
distributions ©p(.; 6) -fdenoted here by the densitiesj which assigns

finite value to the expectation of the given statistic t 'and for which
I( p(*; 8) :q ) is minimized for é fixed 'reference' distribution r(°}.

*

That 1is:

T :

With Gy = { p() : [ tx)p(x) dA(x) =8 ),

'

GGI being a class of probability densities with -

respect to A, let p(+; 8) be the element of ,

G6 which minimizes I(p*; r) for p*EGe; then:
[ r

—

—~ _

T . .
e6 t(x) c(®)r(x). a

'

-—
p(x: 8) =

It is shown by Kullback (1968,},94}%11/5{ the MLE for a given sample/

o

selects B so as top‘nimi/ie/ I( p(*; 6) :r ). Another result along
- e .

those lines is given by Simon (1973). With a given sample yielding an

(ug;on’sfi‘ained) MLE Ré' when the parameter space is ©, let 91 be a

subset of 6. I'I‘her} the MLE 61 for 6 restricted to O, selects that

o

.over BE€E 91. Thus the constrained MLE 61 is 'closest' to the uncon-
I A .

strained MLE 6, just as the latter is ‘'closest' to the reference distri-
8

bution r(*).

)i
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: é: discrete case, averaging the log-likelihood over a legitimate distribution,
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Discuss;on

Another, rather tantalizing result in information-theoretic close-

ness has been presented by Kriz & Talacko (1968). Howeyer, there are
serious problems with the proof gifen/and we have prefered to discuss the
! 4

questi%P in Appendix C.

€

The remaining results in this subsedtion are interesting, but it

B

is difficult to translate them into a claim that' the MLE is close to the

parameter in any reasonable semse. In particular, we find that, in the

I( p(-38) :q), 1is more meaningful than averaging over the 'observed'
'd%#tribution, so that we would prefer the optimality property satisfied

by the MMDIE to the one satisfied by the MLE.

PR
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CHAPTER 3 SUFFICIENCY AND INVARIANCE \ T

4

i
In this chapter sufficiency and various types of invariance are

considered. The reason for dealing with both properties tdgether will

bécome clear in the second section, where sufficiency plays subsidiary
role.
SECTION 3.1 SUFFICIENCY

3.1.1 INTRODUCTION ' * , _ /

I

———

The concept of sufficieﬁcy was introduced into statistics by Fisher -
(1920) , although the term itself was essentially introduced in a later £
article (1922). Some aspects of the :pnehistory', so to speak, of suffi-

ciency are considered by Stigler (1973 and 1976). 1t would appear that a
sy
8

—

parallel conceptAIh Statistical Mechanics emerged earlier (see Mandelbrot,

"1962), however, the context there is much wider and similar to the situ-

ation discussed at the beginning of subsection 2.2.4. !
°. Briefly, a statistic t is sufficient for the parameter € if

for any other statistic s, the distribution of s conditional on

-

t = t_ is the same for all values of 8. A sufficient ‘statistic t

[-]

is minimal sufficient if it can be written-as a function of any suffi-

cient statistic.

There is' some question as to whether sufficiency has any relevance

in the context of point estimation (Savage, 1976, p.459). An e§t%matdr L

-




( is principally a function which points to one member’of {p(-; 0)
8 € ©} as being a reasonable approximation to'!the underlying distribu-

tion which gave rise to the data. However, 1nasmuch as an estimate will
, - 1 . ‘
often have to be used alone, as it were, in lieu of the full data set

(as in the examples cited ih Chapter 1), the estimator 1s also a summary
of the data (Rao, 1962a) and sufficiency is relevant at this point since B
any information which is lost in th1s‘condensation is irrelevant to the
- modei. Indeed, sufficiency was introduced in the'specific context of
- maximum-likelihood estimation.
{ o . Fisher appears to have believed (1925) that when a sufficient
statistic exists, the MLE must be sufficient. That this 1s not so can —
v _be seen from an example of Barndorff-Nielsen éo be discussed later, as '

well as from an example of Savage (1976, pp.460-461). The latter ‘

°

e - L -
( -example 1s significant in that 1t also shows (at least in .some finite, §
) >
discrete parametric families) that it is possible to construct a Fisher-

consistent, sufficient estimator in a situation where the MLE itself is
’ .
not sufficient.

The theory of the sufficiency of MLEs, as indeed the theory of

sufficiency as 4 whole, seems to be rather incomplete at this mSmenp,

although we may have missed some important developments in the literature,

- The remainder of this subsection will consider what can be said about

sufficiency in general models.
- \\ . a
The next three subsections will consider three classes of models with

- RS

identically and independently distributed observations. We hesitate some-

what in presenting{this material, since what is correct in those subsec-
"

tions appears in tw6 recent monographs (Barndorff-Nielsen, 1978} Huzurbazar,

—

Poee

g

B K:::
™
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1976), while the remainder is hardly more than conjectures supported by—
heuristic arguments. Nevertheless, it may be useful for the sake of com-

pleteness to abstract the results from the above monographs and to comple-

ment them wrth some (admittedly shaky) additional results. Throughout this
4

section, p will denote the density of the data and q, the density of
one observation (i.e., the density of the parent distribution).

An important criterion for the existence of a sufficient statistic
is the factorization criterion (Fisher, 1922; see.Bahadur, 1954 for a

fuller proof). The crlterionxﬁpplies to all models (not necessarily

'with identically and independently distributed observations) where the

family {P(-

8); 6 € @ of distributions 1s dominated by a o-finite
measure A. It states that a sufficient statistic t(x) exists 1f and
only 1f there exist non-negative functions h on the range of x and

g on the ra;ge of t with the compound function g(t(*); 6) measurable

as a function of x, and h  functionally independent of 6, so that:
LU (x) = plx; 8) = g(t00; OR(x). (1)

4

fhe proof of the criterion (e.g., Lehmann, 1959, pp.AECEO) indicates
that when t is sufficient, the functions g and h may be taken to

be densities. e
A

AlthOugh we are not concerned here with models where {?(-le)

-

6 € @ 1s not domlnatede it may be noted that minimal sufficiency is a

rather uninteresting property in such models. Burkholder (1961) has

shown'that in such cases, there may exist statistics s and* t, with t
N \

being a compression of s, t = f(s), such that t is sufficient but s

2

is-not: in other words, compressing the data may add information.

7 i

a
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" ,and that ¢(*) ‘range over a h-dimensional subset of Euclidean space

/
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From (1) 1t is easy to derive the result that.-the MLE must be a

function of any sufficient statistic. In the context of sufficiency,.
however, this does not say very much, since the function is not necessarily
one-to-one, so that sufficiency may be lost. The result is discussed at

greater length under the topic of invariance to data transformation

(subsection 3.2.1).

3.1.2 CONSTANT CARRIER, CONTINUOUS CASE

\

The theory of sufficiency seems to be best'established for parent
distributions which are absolutely continuous with respect to Lebesgue
meéasure and whose densit{es’have a carrier set'whlch is the‘samé fo;T;II
members of the parametric family: In this setting, and with reguiar;ty

conditions, it can be shown (Koopman, 1936; Pitman, 19%6; also: Fisher,

1934; Darmois, 1935) that the only parent distributions which admit a suffi- —

cient statistic of constant dimensionality for all sample sizes are of the ;

_exponential form with densities: ' , , '

T
g(x; 8) = exp{ t(x) ¢(8) - «(8) + g(x) ] . (2)

1t is convenient to require that the components of t be affinely
’ &

—_—

independent : k ?

z aiti(x) =a, a.e.A(x) = ai =0

! i n £
. f i

?

' ¢
which contains an open (k-dimensional) interval, k = dim ¢ = dimt. It !

5 is easily seen that, when dim ¢ = dim 6, t(x) 1is sufficient for 6,

since the conditional density of x .given t =t  is

©

v
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H

[ g(x; 8)dx = [ exp[g(x)]dx
' t(x)=t, A(x)=t,

It is also true that t is minimal sufficient.
&t

When dim ¢ > dim 8, the exponential family (2) may be said to be

curved, in the nomenclature of Efron .(1975). In curved ekponential

families it appears to be a general rule that the MLE 1s not sufficient,

although a completely rigorous proof eludes us. With T ='interior of

the range of t, assume P(T|8) > 0 for all 8 € ©. .Then with probabil-

ity g{fater than zero, the MLE 6 "Is a solution of the likelihood equa-

tion:

v

o -

H
H 13

V‘log plx; ©) V log q(xl; 8)

i=1

NV 6(6) ¢ - nv k(8) = 0, ,

i

where t = Zt(xi]/n. Thus:

Vo TE ==vx(d). )

T . . . . .
Now V¢ , a matrix of dimension dim 6 x dim ¢, has rank no larger than

dim 8, and therefore rank strictly smaller than dim t. Hence the MLE -

"will be a strict contraction of thé minimal sufficient statistic t, and

cannot itself be sufficient. Even when dim ¢ = dim 6, however, 1t need

not be true that the MLE will be sufficient. A trivial case must first be

(considered; when the parameter space © is smaller than it could be, iT

will often happen that the restricted MLE will occur on the boundary of

€ and that it will be a many-to-one function of t, For example, when

the parent distribution is univariate Gaussian with unknown mean j} and

] 2 . .
known variance g¢,, and when the parameter space 1is restricted to

Lol



{

{u : u> 0}, then with probasilitf é(u) > 0, the sample mean ; will

be negative'and the MLE takes value zero, so that the MLE is not a one-

to-one function of the minimal sufficient statistic "X, Even making © °

as large as possible does not ensure that the MLE will be sufficient.

Consider an example due to Barndorff-Nielsen (1978, pp.152-153). The
parent distribution is ~-
k-1 8y 4
q(x; 8) = kx eex_K( ) ¢ x>1) 1

{

where K 1is a known constant greater than one:- For general 6, -the

function «(6) cannot be represented in closed form in terms of elemen-

tary functions, although when 6 < 0, «k can be properly defined as

e

—- K(8) = log [:f kx—k—l'xex dx} .o (3
AR B )

— !

Furthermore, when 6 > O the integral in (3) diverges, so that, at its .
' . ‘

fullest extent, © = (-o, Oi. ’ ‘ ) L

In this model, the sample meangéfrg minimal sufficient statistac, ;
but whenever the sample mean is greater than k/(k - 1), the corresponding (
MLE is equal to zero. To see this, note that: !

A3 =-f kxnk eex dxe—K(B) = Eex .
1 , ,

(This is true in general of exponential families.) Also,

12 : R .
Te_ & f ik RO | ; ’
do —
= f kx KH1 Oxk(8) f kx.k xR (®) dx °g%- r
- = K x2 - E.x E.x ‘ } ‘
-8 9" "8 ’

and so
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2 9 -
g_%;= V(x)>0 . P
g ' :

This means that E x 1is an increasing function of- 6, so that its’

greatest value is

’

6

e

{t

) B 00« Y
max{ Ex:8€0 } = Ex = Jkx T dx = W/(k-1)
1

7

Now if x > k/(k -1), ~ the likelihood function 1s strictly increasing,

since

/

. n . ] -
4 log T g(x.; 8 =n 11-{ 8Xx - k(8) - constant’)
as O 1 a6 )
7 : - e .
=n ( x - 36 6) ) > 0. _

Therefore, the MLE fails to be sufficient, even though a sufficient

statistic exists. This occurs because the model allows realizations

of the sufficient statistic t which cannot be values of E_t for any 6.

6

A statement of conditions for the MLE to be sufficient requires

some nomenclature adapted from Barndorff-Nielsen (1978).

When ¢(8) is a one-to-one mapping of @, it is_possible to repara-

metrize the family so as to have

a(x; 8) = expl t(x)'6 - k5 (8) Ib(x) ;

»

when this tan be done the parameter. . @ is called the natural para-

/ N
meter and its corresponding parameter space ©, the natural parameter

SEace. ———
© is said to be full when
T -
e=1{6:[exp( t(x) 8)b(x})dx <=}
i.e., when the parameter space is as large as possible.

= e Sy L) A5 e

ok ok aton
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. Result ({Barndorff-Nielsen, 1978, p.152)

~whatever the dominating measure, so long as the carrier of the exponential

© et

: o » “
b

* The finite boundary of the full natural parameter ,space is the sect !

of finite O, every neighbourhood of which contains points in ‘both ©

> and in its complement.

/

[+

* Kk is steep if for any sequence {Bi}, 1 converging to a point on ‘-
o _1[: . .
the finite boundary of @, limll VK(G])" = @, (Differentiability of «-
10 » . .

1s guaranteed by Theorem 9 in Lehmann, 1959, p.52.) Wh,,en the finite
‘ ) ‘ . -
boundary is void (i.e., when the natural parameter space is the .

Euclidean space), k 1is steep by definition.-

Also, denote:

0

w
i

corivex hull of the range of t(*),

closure S

@]
]

-]
it

finite boundary of S.

. ¥
When'™ P(B|B) =0 and ® s full, the MLE is a sufficient statistic

if ‘and only if x 18 steep.
N J—
An equivalent condition for steepness (and hence for sufficiency
of the MLE) is P(B|8) = 0 and

. ,
t( interior 6 ) = tnterior C, - — :

6
Nielsen, 1978, p.142.) It may be noted that the above résults are valid—

where T(6) is the mean-value parametrization T(6) = E_t. (Barndorff-

— !

family distributions is constant.

-
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3.1.3 VARIABLE CARRIER, CONTINUOUS CASE /

- ‘The regularity conditions used to derive the stahdard characteriza-

tion of distributions admitting sufficient statistics exclude families of

continuous distributions whose carrier set depends on the parameter. The
) ~
general case, where the carrier set is arbitrary, seems to be very compli-

" cated (see, e.g., Fraser, 1963). However, for the important situation

where the observations are univariate and where the carrier set is an inter-

val (possibly a half-line), Huzurbazar (1976, pp.95-187) has developed a

‘rather complete theory to complement the Koopman and Pitman results.

There is, however, no discussion of thé& sufficiency 6f the MLE in
Huzurbazar's treatment.

. I‘i;;rbazar's results may be condensed to two types of model. Let
the carrier set be demoted (a(8), b(8)). In the first type, a and b
depend on € through aone;diménsional subparameter «, so that the
carrier set may be denoted cs(a(cx), b(a)) .~ When a and b \are'differenti-
able monotone functions in o (such that as o increases, a 1is non-,

increasing and b is non-decreasing or vicé-versa), Huzurbazar's theory

shows that the only (parent) parametric families which admit a sufficient

* statistic have density of the form:

T
q(x; 8)-exp[ t(x) ¢(8) - x(8) + g(x) ] ¢ a(x) <x<b(a)) . “)

(When © is itself one-dimensional, the imner product tT¢ in (4)

vanishes.) A sufficient statistic for, 6 .in (4) is then the set (a, t(x))

where

- '

1y,

a = max( inf{ a : a(@) = x

(n)

o }, inf{ a : b(c'n) = x

when a is non-increasing and b is non-decreasing. (When the directions—

&

whon gl

3
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|
of a and b "are reversed, the theory can he applied by reparametri’\zm\%

\ f

. - ‘ b

o+ -a.) 5 - . L
° \.-/“:

The question of the sufficiency of the MLE L\e in (4) does not appea[r

to have been ‘considered in general, and we only sketch a proof.’
Let us assume a very simpljfied version of (4), where it 1s possible fo

reparametrize the model .8-+ (a, ¢) so that:

4

a(x; o, ¢) = exp[ ()70 - k(a,8) + g(x) 1¢ a(@) < x<b(@)) - . (5)
-8 . . . - .

Also, assume both ~a and b are strictly mOnotone functions.
o g

e

[}

1 It would appear that sufficiency results could Be obtained by 2 two-

. stage argumént, first f1xin’gu o at a_  and applying the constant-carrier

resuit, and then letting o ’tend to 4. In order for theé argument to

(Y - f
apply, the range of ¢ for fixed a would have to be

"

A o ko e 4

X b(a) T y
) = {10 :. [ exp[ t(x) P + g(x) Jdx <=1} ; .
’ a(e) T -
[} o - | o a( . . ‘ | <
it ‘must also be assumed that the finite boundary of &(a) has probability
zero. When this is so, the steepness condition, ?-5(—35)—@— + @ on the

finite boundary, would guarantee that the MLE ¢(a,, x) for the subpara-r

© y

meter ¢ conditional on on\= a,, would be a one-to-one function of t,.

era——

It can also be gstablished that «k(a, ¢} 1is increasing in o, so that
the likelihood function for fixed ¢ -is decreasing in &. Thereford,

since & is the smallest value of & which is consistent with the data,

>

the likelihood function should ,a;:taiil its absolute maximum at (a, 3(5, x)).

t

) 1

Then -(d, $) would always be a one-to-one function df the sufficient/ - ’ g

. . . . . )
statistic (a, t), ahd the MLE would be a sufficient statistic.

o , _ 3 ’

. The second type of parent distribution which admits a sufficient

] ,o®

statistic is where theé endpoints depenkd, on a two-dimensional subparameter,

o




e
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( . " say (o, B).” Then Huzurbazar's theory shows that the distributions nust

have density- of the form:

q(x; 8) = expl t(x) 6(8) - (8).+ g(x) ] ¢ ale, B) <x<b(a B) ). (o)
. , | . - : - T

. . : . . T . .
(When 6 1is two-dimensional, the inner product t ¢ ~once again vanishes.)

—~Huzurbazar's theory shows that a minimal sufficient statistic for 6 1is:

M 4

s X\
Xy X _
1t is possible to consider the sufficiency of the MLE in models

.

t(x) ). .

-

o
— ~

/

s alxi o, B, 9) = expl (06 - k@, B, 9) +g(0]Ca< x<B8), 7

) where’ (6) can be reparametrized to:

-

; T where it 1s further assumed that (&, B) ranges ovdr a two-dimensional
J

interval A x B. When t};e.range of ¢ for fixed (a, BR) 1s

o : V
Bay B) = (o [ exp[ t0)'9 + g Jax <=}
’ a
|

k4

and when the finite boundary of ¢(a, B) has probability zero one can use
a two-stage argument similar to the above. It can be seen that «(-, B, ¢)

is strictly decreasing while K(%;_, $) is strictly increasing, so that

| ’ if the maximum of the likelihood for fixed (a0, B) = (o, B)) occurs at

¢(a,, B,» x), then the absolute maximum must occur at the point (a, B, ¢)
\ y ) .

, X)]. When the $teepness condition is

kay 2w %y Xy ¥

satisfied, $(a°, B,, x)_.is a one-to-one function of t, so0 (a, B, &)

S

is a one-to-one function of the sufficient statistic (x(l), xv(n): t).
A s T L

’Hencé'undpr the above conditions, it would appear that the MLE must be

L - sufficient. ’ < / ) : .

A on——
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3.1.4 DISCRETE CASE -

The regularity conditions of the Koopman and Pitman result (2) also

T
exclude models where the observations are discrete.  Jeffreys (1960) has

offered a proof that discrete parent distribut{ogs whi'ch admit sufficient sta-

r

tisfics are of the e‘Xpon,'Qntial type. Ho?zever, his proofmasserts that a set
of non-linear equations must have a solution, and this fact is not at all
transparent. to us. It m.ay, however, be remarked that all discrete distri-
butions with finite carriers admit a sufficient statistic of constant

\"
dimension (namely, the vector’of counts of obseyuens in each cell).

The theory developed by Barndorff-Nielsen (1978) for the sufficienc)
of the MLE cannot be applied to the discrete ccase,/e{ca; w}?en the carrier

set in totally unbounded —€7g., ‘a family of distributions having the set

of all integer numbers {positive and negative) aysfcarrler set. When

the sufficient statistic t(x) 1s restricted, say t(x) 2 0,” then be-

-

cause of discreteness there must be at least one mass point ( e.g.,
t = 0) on the boundary of ’ S, "the convex hull of t/he/ﬁge of t(*).

Hence, the conditions P(B{8) = 0 is not satisfied.
|

Barndorff-Nielsen (1978; p.155) shows that” when the ranée of t

is finite, the MLE for the mean-value parameter T = T(8) = E’et in:

e

-
-

-

e

T q(x; 8) = expl t0) ' - k(8) +g(x) ],

is £ = t, so that it may be claimed that the MLE is sufficient in such

‘cases (the steepness of «k is ensured by the fact that with the range of

— >~

t being finite, the full patural parameter space must be the Euclidean

space of the appropriate dimension). Some caution is necessary with this

. ) / .

T
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(, - résult, however, since points'r/'on the -border B may correspond to :

infinite parameter values in the 'natural' parametrization. In a simple
P P P

model such as the Bernoulli, the mean-value parametrization is the stan-

dard one to use; in other models, ho/wever, an:MLE " T € B may not be

i -

reasonable,’ and the full parameter cannot be estima,tedr—b)"'maxiinum-likeh— o

hood. ”(See Barndorff-Nielsen, 1978, pp.156-158, for an example involving

Jdogistic regression with intercept o and slope B, where for some .

A
samples only o + B can be estimatéd, in other, only a.)

>

-

e

T

3.1.5 CONCLUSION—" -

The results of this survey of sufficiency properties are rather dis-

/appointmg. The cases convered are far from exhaustive, and even in .

those cases, the theory is at places sketchy. Perhaps the best com¢lu-

sion would be that the MLE is not necessafily sufficient, even in models -

which admit a sufficient statistic whose dimension is that of the parameter.
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( SECTION 3.2 INVARIANCE .

f

.

The term 'invariance' will be-used in this section in two distinct

mean}gs,:
(1) An estimator which is computed from a transformed version of the data
‘ .
(using the model induced by the transformation) may coincide with

the estimator computed from the original data and model, where both

T ) estimators are derived according to the same method. In symbols:

y = t(x) "éy(tr(x)j =8 (x)

. . . |

(2) When the distribution is reparametrized, the estimator of the trans-
formed parameter may equai the transformation of the estimator of \

the original parameter, both estimators being derived from the same

method. In symbols:

PN
o

b= 88 ~b(x) = ¥(B) | f

The third subsection will consider the situation where a conjunc-

// -
7 tion of the t;'ansfomations in points (1) and (2) is such that the model 2
‘ resulting from the double tran;fomation is the same as the original model.
; The basic material inlth’i/é/section is so standard that the histori- :
Qg%- cal notes will be omitted. The presentation, particuiarly in subsection

) 3.2.1, deviates somewhat from what we have seen in the literature,

-

/

. 1 i 3.2.3 .. INVARIANCE WITH RESPECT TO TRANSFORMATIONS OF THE DATA

Transformations of the data occur routinely in at least two settings.

—

First, the data may be rescaled in some way, perhaps to facilitate computa- ~~

tions. One example is taking the logarithm of observations which are
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=
N ~
assumed to follow the lognormal distribution. Second, the data may be

compressed, as is done regularly with indepgndently and identicﬁllyfdis-
tributed discrete data where instead of reporting, say, that the first
observation fell in cell number 4%, the second fell in cell number 1 and
so on, it is standard practice to report only the count of events in
each cell (i.e., essentially, the order statistic). Condensation has
occurred here since the order. 1n which the events occurred cannot be re-
covered from the order statistic., Here we will consider a wider class
of transformations yh;ch includes both of the above’types. In geﬁcral,
consider measurabie transformations t : Z T, whefg/JT may be =
ltself. For each t the transformation will carry the variable x

with density p(*; 8) into a random variable y = t(x) with density

q(+; 6). For general t, the distribution in the transformed model

{y;, q(-;0); 6€O } wifiinot‘be/identified: a trivial example is

]

t(x) = constant, where q(-; 91) q(+; 6,) for all 6,, 6, € ©. However,!

l’
a sufficient condition for © € © to be identifiable in q(-; 6) 1s that

t(x), considered as a statistic, be sufficiént for 6. The proof of’this !

is easily seen from the factorization criterion (formula (1) of Section

-
—_—

3.1). Since: — ' . ,

T q( t(x); 8] T(x) = p(x; 6) /

- then q(+; 8)) = q(+; 6)) if and only if

p(*; /61) = p(-; 62)

-

so that 0 is identifiable under q if it is identified under the
1
original model p. We note, however, that some,non-sufficient transfor-

mations may also produce identifiable models.

ey f

e st R rhee Vo b
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Definition

An estimation method is said to be invariant under the family T

1

of transformations which preserve sufficiency if for every t € T and

for almost every 'sample x the method produces estimators 6)(, 6\” respectively

for the models’ .{ x; p(+; 8); 6 €O} and {y; q(-; 8); 8 €O } such
that éx(x) =8 (t(x)). We have the following simple
' b4

/ . ;

Result a

The method of maximum likelihood is invariant under all transforma-

tions of the data which preserve sufficiency.

Remark

Of the two possible approaches - finding the mode of the ilke]ihood

function and finding the root of the likelihood equation which maximizes

{ .

the likelihood function - the same approach must be taken for both models.

Proof .

Using the Neyman factorization criterion, it is seen that the like-

lihood function for the transformed mo&el, using t(x), must equal the
likelihood function for the origindl model based on x, up to a amftz?ﬂf
multipl icative factor. Therefore, ~the maximum-1ikelihood ‘estimator must

be the same in both cases.

The result is hardly new, of course: it is merely a transposition
£ -

in the setting of invariance of the familiar result that the MLE.is a

function of every sufficient statistic. A consequence is

P




SIS e

~-68-

Corollérz 1

s

The method of maiimﬁmllikelihood will yield the same estimator under
all one-to-one measurable transformations of the data.

This last result has been proved under the somewhat more restric-
tive assumptioqs of the 'inverse function theorem', that the transfor-
mation be differentiahle and have a differentiable inverse (e.g., Sverdrup,
18967, P.123),‘ Both the Result and Corollary i concern thé method of

maximum likelihood rather than the estimator it produces: It may, there-

for, be worthwhile to state separately a property of the MLE 1tself.’

2

[

“Corollary 2 -

When the observations are independently and-identically distributed

the maxrimum-likelihood estimator remains invariant inder all permuiﬁtionr

of the observations. =~ '
Corollary 2 'is, in a sense, a minimal property one should expect

of an estimator in this situation, and indeed we cannot think of any stan-
\

dard estimating procedure which would take the order of the observations

into account when independence of identically distributed observations is_

specified.

3.2.2 INVARIANCE WITH RESPECT TO TRANSFORMATIONS OF THE PARAMETER

’ . -

To a certain extenk, it may_be argued tﬁat the parametrization chosen
in the model being entertaineq is ine;sential, serviné merely as an 1n-
dexing sc?eme for the various probability distributions and that the goal
of estimation is to select the distribution which is most, appropriate to

represent the data that have been obtained. While this is an extreme
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view,'it is often the case that several parametrizatigns are possible

and meaningful. for the same family of distributions. The two-parameter

Gaussian distributional family is usually indexed by its mean and variance

v

2 .
(u, 0) but (¢, 0) would, 1n some sense be an even morc natural choice,

since both of its components are of the same physical dimension and ©

————

is a scale parameter. Other possible parametrizations are (y, €)

where € = 0.67450 1s the probable error, and (u, 1), where 7T=VY2/C is

T ;
the modulus of precision. The exponential distribution with density

~

P(x; 8) = exp( -x/6 )¢ x>0 might be parametrized by the frequency of
failure ¢ = 1/€ aswell as by the expected lifetime 6. 1n a more general

vein, for exponential families 1t is more convenient to workh with the 'matural’

parametrization even when this differs from the standard parametrization:
\ -

fer the two-parameter Gaussian, the 'natural' parameter corresponding

"
to the usual sufficient statistic (Zx, Ix7) 18
_ 8 1 :
8—(-—2,——7).
20

Generally, when the original paggmetrization has typical member © with
density p(-; 8}, for any fixed one-to-one transformation ¢ = Y(8)
{which need not even be measurable, though in practice ¢ will not only

El

be measurable but even analytic) the same density may be represented with

the parameter ¢ as

-1
ple; ¥ ($)) - T (D

q(*; ¢)
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Definition

A method of estimation 1s invar¥ant under reparametrizations if

for any one-to-one transformation Y(B6; = ¢ of the parameter, the method
yields estimators é for ©6 and é for ¢ such that 3 = w(é).

From (1) we have the following

Result

The method of maximum likelihood iec invariant under rerarametrizatione.

It should be noted that invariance to reparametrizations 1s shared by

a large class of methods for the discrete case, such as the method of
minimum chi-squared, the method of minimum modified chl—%guared, etc. In
fact, invariance under reparametrizations 1s feadily seen to hold in the
identically and independently distributed case for all methods which arc

based on a criterion function {or an estimating equation) when the lattery

‘
'

depends on 6. through the set of likelihood elements { q(x ;8 ) . K
1 -

1

i=1,2, ...,n}. On the other hand several other methods, foremost -

among which 1s the method of moments, do not enjoy the property of in-

¢

variance. i )

L

—

¢
, The value of the property is debatable‘ on the one hand one would

want to keep open the possibility of using a different parametrization .

with a given situation, on the other hand the scope of allowable trans-

formations is much too wide, ;ince we are quite unlikely to use parametri- -
zations which are not some smooth transformation of the original parame-
trization. Also, where an element of symmetry between the parameter

space © and the space of observations X 1is present in the problem

(as discussed in the next subsection under cogredience), it seems that

one would want to limit even more stringently the possible reparametrizations

A




to those which do not destroy this symmetry,
) .
7

Note on Many-to-one Transformations of the Parameter

A more general result than the one just stated has been claimed bv
Zehna (1966). The method of maximum-likelihood 1s claimed\td be invar-
iant under any transformation ¥ of the parameter, even when ' maps

different values of € into the same value. Two objections can be made

LY

tg»this. First, as noted by Berk (1967), the likelihood function of-which
W(é) 1s purported to be the maximum, does not in general correspond to the
likelihood function of any random variable. Second, because of this fact the

proof of the statement must contain a definition and so an 'induced' likel:-

Ty R

gy

hood function M(¢) = sup { p(x; 8) : ¢ = Y(B) } 1s intrqgucgd; on this

i

definition hangs the result.

The justificatién given by Befk for calling w(é) the MLE is that
the use of the transformation ¢ singles out a subsét of the parameter
space © in much the same wayhthat considering the 1i-th component of
the parameter 6 focusses atgention on a subset of B©. If one feelg

comfortable in saving that the MLE for the mean yu of the two-parameter

"
Gaussian is {i, when the full parameter is 8 = (y, 07), then there is

not too much harm in calling ¥(8) the MLE of ¥(8). With the Bernouil:

distribution with standard parameter T, however, the variance VY(m) =

7(1 - ) has the same dimensionality as- the parameter, 7, and in order to

3

apply the above justification it appears one must consider a reparametri-

zation such as —

/
¢(m) = (11 -7, ( #<d)) .

ot e g et e =
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so that the transformed parameter space is no longer a continuous subset
.~

of Euclidean space..

5.2.3 COGREDIENCE

/ /
Many parent parametric families for univariate x are of the type
X -
.0

pix; (u, o)) = pn{ U]" where we speak of 1 as being a location parameter
J ¢

and of O as a scale parameter., When a model assumes identically and

independently distributed observaticdns from such a family, there exists
an intimate relationship between .the-data and the parameter 6 = (u, 0).

The latter’ 1s no longer a mere index for the family of distributions,

S~

1t also has a 'physical’ meaning and 1t seems reasonple ‘to expect that

o

the method of estimation being used will respect this relationship. The

notion of location-and-scale model can be generalized to that of cogre-

dience.

Definition

A cogredience model { x; p(x; 8); 8 €@} 1is one-where there exists

—

a group G of transformations on = and a group G of transformations

on O such that

for all g € G, there existsa g€ G so that

y = g(x) has density p(g(x); g(8) );

— ! A
g is said to be the transformation induced by g. An estimator 8 is

2
w

said to be cogredient under this model if g(8) = ¢, where B is the
estimator of © based on the original data x and $ is the estimator of

¢ = E(e) based on the transformed data g(x). .

—

/
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s

The transformations in G must have the property that for al)
- _ -1 o
g € G the measure (\g l) () = X( g "(A) ) be such that the dominating
measure A is absolutely continuous ‘with\respect to )\g-l (see Lehmann,
a

1959, p.252). ’ ~

'Invariance' is the standard term for the notion we have termed 'co-

gredience'. The term 'cogredience' was used by Lehmann in a set of lecture i

notes (1950), ‘although his book (1959) uses the standard term. We have ‘ !
preferred tol avoid describing yet a third form of invariz;nce in this sec- :
tion by the same same. The word ‘'cogredience' also h:;s some appeal 'in the
context of point estimation in that it serves as a reminder of the fact
that changes are being made on two entities, and that a change on one of

the two entities entails a corresponding change 1in the other.

<

Result

The maximen-1likelihood estimator is cogredient under any cogred’éence’
The proof?f the resuhlt cab proceed in one of two simple ways: either by
combining the results of subsections 3.i.1 and 3.1.2, or difecply, by
noting that t’he likeliilood function for tﬁeroriginal and for the trans-
formed parameters must be proportio'nal, since the densities of corres-
ponding data x and g(x) are equal fo.rrcorresggr_lding parameters. The
direct approach has this advantage: with it; it is clear that it refers to a

property of the estimator itself, rather than to a property of the method

Q / ' /

- i i l

of estimation. ;

The more general situation, where the transformed model is not the

v

original one, but the transformation is sufficient, leads to a similar o
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g

invariance property for the method of maximum likelihood. lowever, not .

- e

all data transformations which may reasonably be §aid to induce a
transform;«.ltion on the parameter could be considered will have the invari-
ance prope;rty for th;a method of maximum likelihood. -
An example of the n;ore generall kind of transformation has been con-
sidered by Dudewicz (‘1971)‘. His/d'rscus_sion is in terms of a k-variate -
Gaussian dis)tribution but we will restrict our attention to the bivariate
situation. Let *x = (x,, X_.) be distributed bivariate Gaussian with
mean y = (]’_]1, “2) and identity covariance matrix. Let t be the trans-

formation which orders the components in increasing order t(x) =y =

(yl,_yz), yl = min(xl, xz),ﬂy?_ = max(x],l xz)/. Then y has density:

p(y; w <y, )

1 2

[ ety -.1‘11) ey, =By ey, ud wly, - w)) 1y

where ¢(.) 1is the density of Gauss (0,1).

Here, it seems natural to apply the same gransformation to the

‘* B
parameter W, since when the order of the data is lost, the ordering of Y

]

the parameter components loses its meaning and the parameter is no longer
identifiable, whereas the transformed parameter t(u) = v = (vys v,) =
(min(ul, uz), max(ul, uz)) is identifiable. Consider estimation of v

based on a single observation y, (A less appealing situation would have

y be the ordered vector of averages of A observations; it is not clear

that such a situation is realistic, however.) Dudewicz shows that the MLE

f i
for v based on the ordered data pair y is:

i

4

V=(x, x)( d<V2) + (i-/s,:’u s) ( d> v2)

~

o il

P

T

3t
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. A T
(’ E ;hefé d=yy, -y [ Xo= (x, * X )/2, s = Y and € 1s the unique
: SRS U £ 1A S T A 7 o
/,//o/ N PE )
\ : positive root of € coth(e/2) = d° when d> /2. -

Iy

i - \ Thus except when y] y,, v #* t(u) and E/prE[‘ or rather the

]
method of maximum 11ke11hood, is not invaraiant under this type of dou

k]

. transformation. ) . e . . ) o
e ? -
3.2:4. ESTIMATION IN SEGMENTED MODELS .. - o
p . Lo ,

+® It seems appropriate to close this séction, and this chaptef, with

« o . e A - ’
a simple but interesting property which is rélated to both invariance and-

. . . sufficiency, . ’ —
\ (\’\ N I . e

Suppose that the data come naturally in two or more segments: -

R - x'= (yl,‘yz,...,ym),wheré the y; may be multidimensional, not necessarily

B . . o
< .

of the same dimension.’ The model {x; p( :6); 8 e 0} coPld be termed a

» L. 'I -
o ‘f ' segmented model when the Y; ‘are: jointly (;Z::;:::;::;)y) 1ndependent,

> ¢ -

and where the marginal distribution of Y4 depends_on a subparameter ei

syt . . ¢
] ‘(not necessarily of the same dimension for all i) 1in such a-way that the
: s b \ ”ﬁ ) : ‘1\ ) ‘ . \ N
) L/:wf~9ar19us ei are'functionally independent, i.e., '© can be reparametrized
N ¢ ( ) , . i
o - . to (9 Y en 9 p) » which ranges over © =0 x© x . .xO . It is then
J » o & 2 1 2 - m . :
‘ p0551b1e to wrlte ’
K a . J \ \ R mo-o-. .
i P o - ’ 2 . ) = .
y R . p(X.Q) 'iI—Il p; (v5:65) <6} €6, )
. - for apprépriate densities P; - | - ‘
1§ Do ) t wa for all samplés, the likelihood fdnction factors into functionally

: 1ndependent segments and the MLE for the’ sub;arameter 6 . w111 be g,func—

. R tlon of Yy only, and w£§5 not depend on’ any other segment

v

‘(yl:---a Yi_}: yi+l’“" ym)

e ome

4

At v
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" t. 'is said to be 'S-suffidient' for 8

9

T P

of the data. In other words, inr a segmented'hodel,othe MLE will use only

ES

the data from the appropriate segment of the data to estimate the corres-
ponding subparameter. - . , ; -
/A@- ° \ ®©

o

s L,
o A simple illustration of a segmented model 1s one where the data are

—l

_taken to bc n 1ndependent observations of a k-dimensional random variablc,
" £ e

PRI

e

with multivariate .Gaussian distribution Gauss(y, 051) , where d; 15

known and the paramater space is a Cartesian product of m subset; of the

v

. s

g ol o . ¢
real line. (Typaedlly, the parameter space is the full k-dimensional _

o -

) - { 4
the i-th component of the observations. It thereby avoids the kind of ob-
l 3
jection that 1s sometimes leveledlagainst Stein-type estimators, that they
add

mi1x p055161y incommensurate units, (See Efron § Morris, 1973, for a refer-

-
-

~ence to a similar objection.)

/‘ 2
‘A segmented model 1s an extreme case of a model which admits an

9 4

'S-sufficaent’ statistlcg(see Barndorff-Nielsen, 1978, p. 50). In this

more general situation, there exist ‘statistics t. and t. and a repara-

1 2
metrization 6 - (61,62) , O~ 91 x 82 such that

P{x;8) = p (t,30)) p,(t,;6,]%,) (2)

>
(p,(ty; letz) being the density of a conditional distribution). Then

1 (and 'S-ancilliary' for 62). In

would depend on, x through 1t

1

(2), the MLE for the subparameter 6
r

1 1

only (although it would not in general be sufficient for 6 ).

S,

. { .
-Euclidean space.) The MLE 1 1s such that 1ts 1-th component only involves

o
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CHAPTER 4 APPLICABILITY —

]

This chapter surveys some of the factors which limit the applicability

—~

of maifhum—likelihood estimation. We begin by studying some conceptual
diffzcultieﬁ; this is followed by a survey of ptgglemg‘re]atlng to the —

computational aspect of estimation; finally, 'the question of making dis-

tributional statements about the parameter 1s considered. -

4
T

——

SECTION 4.1 CONCEPTUAL DIFFICULTIES - ]

4.1.1

EXISTENCL s

A fundamental difficulty is that,~éven when 1t is possible to speci-

fy a likelihood function, that function may fail to attain 1ts maximum
on-the specified parameter space 8,

There are situations where the parameter space is 'unnaturally'

i)

restricted, such as when it is specified that the stindard parameter T

of a Bernoulli distribution cannot equal 4,67 that the mean of a Gaussian

—

T
distribution must“be strictly positive. In such situations the likelilicod

|
f {

function may ‘take its maximum at one of the excluded values, so that the

method fails to produce an estimator on the proper range. )

*

,/ -
A-€imilar situation w1ll occur when it is desired to exclude from

t

© those values of 6 which correspond to degenerate distributions.' As

T

an example, take_a-Bernoulli model with n observations and standard

-

parame{ér n. When all n observations are equal to zero, the MLE is

i ' -77-

R

- e

P



LR W

7 = 0, which corresponds to a distribution concentrated at zero. For

P

some purposes, such as where the estimate is to be used 1n a simulation

study to produce samples similar to the one which was observeéd, such an
N k!

estimate is not reasonable, and some other method of estimatibn must be

~ l

used. (See Arnold, 1972, and Schafer, 1976 for some alternatives.) T
g Degenerate distributions, are even more conceptually troublesome
when the observations are continuous, since a degenerate distribution 1s o

\

not absolutely continuous with respect to Lebesgue measure. The likeli-

1]

hood function/fgziyplcally unbounded in such. cases. (Barnard, 1974, ofifrs

an interesting interpretation of such a situation.) 1t w1ll often :
happen that the.likelihood function 1s unbounded only for sets of data °
whose probability is zero under all models: for example, the Caussian

model with parameter Eu,oz)‘ will only have an unbounded 1ikelihood

funé;ion (correspondi#g/ﬁg,a degenerate distribution) when all observations

are equal; this possigility can be dfécoqnted by the fact that such an .
.event has zero probability for all values of (u,oz). However, there

are models’where the MLE corresponds to a,degenerate distribution with ‘

probability greater than zero: an example is the lognormal model whose

parent distribution has density:

- N 2
Texpl =3 [ log (x-1) -2 1°/02 } (u<x ). _
¢ i :

{

It can be shown (Hill, 1963) that for any sample, the likelihood is
|

q(x; 11,5,9 )= [ (x-p)v2n0]

unbounded in the neighbourhood of the pgint"’tu,C,O) = ( ,c0)

X s -
(1)
(where x is the smallest observed value in the sample), the MLE

()

corresponding therefore to the degenerate distribution concentrated at

o et o e s o

-oo,oo) .

X1y’ B B




L - %
- s
- - )
- -79’ ) _/
(' The last example ma} also serve to highlight the' fact that, for the

parametrization being considered, the MLE may be a point at infinity:
such points may, or may not,-be difficult to interpret, depending on the

circumstances.  Also, while singularities in _the likelihood function

can be removed by taking account of the discrete structure of the data
(see later, subsection 4.1.3), the same 15 not truc for points at infinity:
the Bernoulli model with the exponential-family 'natural’ parametrization

-1 .
b = log| n(1-m) ] will vield an estimate © = =» when all observa-

—

7
tions are-zero.

{ -

o

/
4.1.2  ROBUSTNESS

[
A robust estimator 1s oné which will stLlJ be roughly on target

when the true model 1s somewhat different from the assumed model. It
( —
is rather difficult to make gencral statements about the robustness of

— the MLE, since each particular model woeld have to be considered sepa-

rately against an appropriate se} of alternatives. 1In general, though,
the MLE ought not to be supposed to be robust, since 1ts "derivation makes !

such explicit use of the assumed model. Indeed, in the most common .

i
o e

studies (e.g., Andrews, Bickel, Hampel, Huber, Rogers § Tukey% 1972) the
MLE serves as a baseline, as a supposedly non-robust estimator against
which other estimators are compared.

' The notion of robustness seems to require a definition of para-

meter which is rather different from the one we have adopted here.
l

Although Huber (1972) mewtions the pOSSlblllty of u51ng a parametric -~

A e N

— - family as a class of alternative distributions, a more fruitful approach

\

[ R U
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e is to use more general classes of alternatives wh1ch/arc not all of the
same parametric family. In such situations onch;hou]d really speal of
_ the svbparameter of interest which might be, say, the median of the dis-
_ tribution (the other suhparametcr; being 'incidentgl'). Turthcrmore. 1t 1
difficult to speak 1n this context of the paramcter as indexing a family
of distribution: at most, 11t 1ndexes that aspect of the distribution

which is . felt to be relevant, such as 1ts 'centrality' 1n the case of

robust estimators of Jlocation.

4.1.3 DISCRETE STRUCTURL

 Our last conceptual difficulty is that the observations can never

t
'

be=agsumed to be continuous. Measurements can only be carried out to

a definite number of decimal places, so that the variable which 15 effec-

tively observed 1s discrete, and 1t may be argued that the model should

_properly be modified to account for the discrete structure of the data.
. vait

Thus, when the model 1s that observations are those of a Gaussian
variate, onc¢ should really specify that the observations will be grouped

. sa that x, = 0.0 will be reported whenever the truc, underlying var-
#

iate Y; 15, €.g., in the ?ange -0.05 to +0.05. The likelihood function

for a set of observations x], e, Xn is then: /
' @ . n s
0.15+0.05 - 0.1 -0.05-yu
p(x; w,0) = T [:°( it i G ):] YLm
= - .
o ] o .

« where nj is the number of y's in the range 0.1 - 0.05 to 0.1 +
0.05 (equivalently, the number of x's equal to 0.1j) and ¢()

is the cumulative distribution function of the standard Gauss (0,1).
7 _

»
v
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In a sense, the usual likelihood function.

, n X. - b
p(x; u,0) = T o[ = ’
i=1
(with ¢ denoting the density of Gauss (0,1) |} can only be regarded

as an approximation to the truc li}elihood function (1), and the standard
v 5
!

i

MLE (u,67) = | X,

-
~{x_ -Xx)-
p(x, - x)7

()

only approximately maximizes {1,
n { "

/
Very often,ythé difference between the approximete ML ana the truc
one 15 quite negligible. In some models, houcvcr,uthe contrast 15 straking:
for example, the likelihood function for the three-parameter lognormal

model usually attains 1ts maximum at an interior point of -the parameter

space, when account 15 taken of the discrete structure (ste discussiorn

1n Barnard, 1966, and Kempthorne, 1966]
/ ——
~  An extreme view of discrete structure would force us to always
compute the MLE on the basis of a discreticed model. However, a method

of estimation should be computationally tractable as well as, beging con-

ceptually gooa, and the extreme view would seem to exclude computation-

»

"ally simple MLE's in most models with an underlying, 'unobserved’', contin-

uous variliate.




SECTION 4 2 COMPUTATIONAL DIFFICULTIES

4.2.1 AVATLABILITY OF A DENSITY

In most cases encountered, the lilelihood function 1+« available 1in
terms of clementar. functions and 1t< gencral behaviour can be deduced

readilv. e wish to point out here that such 1s not always ~o
d u
The Pareto-L&vy 'stable' laws form a rather artractive parametric

-~

. r
family In partsculur, thev/ constitute the class of limiting distribu-

r I
taons of quantitics such as { R :hr |/a , for s@itable seguences
) n
{ 4 r);:l )
{ar and  {b_;, when . the random variables > : are independently anc
n B ]

identically distributed. Stablc_gntrzbuuons can therefore be used to
mode] variables which are considered to arise from some sort of averaging
process this argument 1< but a slight generalia:zation of one of the common
arguments advanced in favour of Gaussian models, and 1t leads to a far
richer class of diastmbutions

In 1ts most generzl form, a stable distribution 1s indexed by a

»

four-dimensaonal parameter (u«,f,7,4), such/that the characteristic
+
14

function of the distribution 1s:

-

-
3,

f(u) = £ éxpfiux) = exp} 16w - ‘y|m§a{ 1+ifwsignul ],

. il
where w = w{u,a) = tan(ra/2} ( a#1) + - logiu| ( a=1y.

B

¢ and Y- are, respectively, location and scale subparameters.while £ 1s

\b‘

related to the skewness of the distribution and o, the 'characteristic
J

exponent', determines the moments which exist finitely: for a <2, all

moments of order a_<a exist, and no moments of order a_ > a may exist.

i

N




It would appear (Feller, 197¥, p.581; Paulson, Holcomb & Leitch,

1975) that densities of stable laws 1n terms of clementary functions arc

known in the folloving'51tuatlons only (v and ¢ are arbitrary)

a = 2, F =0 _Gaussian distraibution

a = 1,.F =0 Cauchy distribltaon -,
N (

———

a =3, F =1 this distribution docs not seem to have

a standard namc; but 11ts density 1s known to be:

‘,l - ,(\1—5/: -—- - —
S CXJ) e (X
' y ’; n 20(x - ¢

—

pl(x, 6, = L

a

]

density for each separate value of x and of (a,f;y,%)

ot

> 0o

B

°

Fox general members of the clas: of stable distrabutions, therefore, the

would have to

be computed numerically, either by integrating the characteristic function

v

or by using the infinite series representation for the density

1971, p.583).

. . s
Neither of the above alternatives is very palatable and those

references we have seen eschew maximum-likelihood estamation in favour

[l

(Feller,

of other methods (e.g., Fama E Roll, '1968; Press, 1972; Paulson? Holcomb

& Leitch, 1975). The problem may not be’ computationally prohibitave

[

bl

(after all, most elementary functions are effectively approximated numer-

o

>

1cally by a truncated version of the appropriate infinite series); however,

one is rather uneasy about ccomputing the maximum of a

shape one knows so little about.

4,2.2 SOLUTION

2

function whose

4

Although in many common models (Gaussian, one-parameter exponential,

binomial, etc.) the MLE can be determined explicitly as a known function

LA



:

of the observations, 1t 1s generally the casc that the MLE can only be
determined implicitly, and that 1ts value must be obtained bv numerica.

procedures. This 1s partacularly true when the underlying distribution
' /
15 conceived to bhe continuous but where 1t 1s decided to take account

of the discrete structurce of the observations.

It would be outside the scornc of our surved to discuss al!l the
numerical procedures which can bec usce to obtaarn, the MLI . ke merely note

that the advent of computers has not entirely removed computationasl comsia-

o
13

erations from the statistician's parvice .

To show that even a Tather 'nice' loohking density can procuce .«

'bad' lilelihood functior, consider the model of adentically: and inde-

pendently distributed sontimnuous observations from a parent distributics

©

with density:

Ja - '
-~ (= < ag oz 1
aa-~*-

. ¥

.
E-C-O < xS G+

>

3a}
N
£l

-~ . Px;

Wiy

‘ R ]
where a is a known constant. (1; 1s merely a triangular-shaped densit:

LY ' —_——
with support on (0,a; and mode at €. Oliver [1972) showe that the

‘

likelihood function corresponding to (1} is continuous and piecewlsc

convex. The convex ‘'pieces' are joined at the values = = 1 X

l, ey n

to form cusps. Thus any solution to the lilelirhood equation must lead
to a local minimum, and the global maximum must be sought among the values

6 = x cees xn. {Mantel, 1972, mentions an even more pathological

17
example where the 'cusps' have infinite height.) 1t would appear to be a

general rule that the computational aspect of finding the MLE must be

carefully scrutinized, whenever the density 1s defined piecewise and when-

ever its carrier depends on the value of the parameter, B
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4.2.3, UNIQUENESS

I H

Whenever the MLL cannot be obtained explicitly, 1t 1s of interest

to determine whether the likelahood function has several modes. Wwhen a

1

unimodal lialelihood function cannot be assumed, special care must be

‘

exercised to ensurc that the comyutatlonal procedure selects thc correct
mode. A classic examplc of a 'smoot! ' multimodal Ilikelirnood function 1s
provided by the model which assumes independentlsy and identacally distri-
buted obse;vat10n5 6f & Cauchv variate wi1th lnown sg;lc (=1,, anc¢ unknowr

median (. The likelihood function 1s

R .

pix; &1=2n T [ 1+ (x_-8)7) 7| (2
- 3

1=1 . -

I

4
z rational function with no singularities on thc real axis. Barnett
»
2 .
(1966 showed 1n & simulation studv that 1t is fairly commorn for (2} tc

be rmmltimodal.
Another rather extreme case of multimodality 1s provided by the

{ i

mode]l with pgrcnt distribution unlforp on “,6%1); the likelarhood

!

function 1’s-

. = > < & ) 3
plx; &) ( x(]} 8¢ X(n) + 17 (3}

(where X(l) and «x are respectively the smallest and largest obser-

(n)

~vations) and the maximum is attained at all

6€ [ x -1,x 1.

(n) (1

-

o

Several approaches for proving the uninggé}ity of the -likelihood

function are possible. The simplest approach is to show that the logarithm

of the likelihood function is strictly concave. {Actually, it is sufficient .

p—




to show that some strictly monotone function of the likelihood function 1+

J— 5

strictly concave; the logarithr 1s usually the most convenient transfor-

mation to use, however.) It cap be shown, for example, that in exponential

families with the natural parametrization, the logarithr of tne lihel:-

hpod function 1s a strzttly concave’funcuion, provided that the carrier of

e,

the densities 15 not concentrated on a proper affine subspace of -

dimensional Eucildean space, where L ; i 7 {Barndorff-hielsen, 197¢,
pr.103, 140, Therefore in exponential families the likelahood functaon
15 unmimodal. | SN .
he note that uﬁxpodalzt) does not 1n general sold true of curved
efponentxal families multimodality occurs in the bivariate Gaussian when
on]§ the' correlation coefficient 13.to be estimated (hendall & Stuart, ‘

1875, p.40) or when the correiation coefficient 1s zero, the rariances

Y

unknown and possiblv dxsiznct and both variates have unknown common mean
ﬁFlelds, hramer & Clunies-Ross, 1962;.

When 1t 1s not possible to transform the likelihood function into
a concave function,bit may still be helpful to show that all likelihood
sets \

C6) = { 6:p(x; 8) 2 p(x; 8) !

are convex (the likelihood function 1s then said te be pseudo-concave).
Pseudo-concavity will not of itself guarantee unimodality, since the abso-
lute maximum could still Se attained on a connected set as it is in (3)
above. However, it is sometimes possible to rule out the possibility of
the likelihood function 'flattening out' to a plateau (see Antle, Klimko

v

& Harkness, 1970, for one instance).

e
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( / When concavity or pseudo-concavity cannot be proved, 1t is somctimes
J .
possible to determine the unimodality of the likelihood function by shéwmg

s

. that only local maxima are possible. Two cases must be distinguished
here. When the parameter _is one-dimensional and the second derivative

of the likelihood function exists everywhere, one can use Rolle's theorem

v

. %to show that when the likelihood has two local maxima, there must be a

local minimum between them. Therefore,if it is possible to show that:

& ~

2
d p(x; 8) -
2
/ de

—— fer all 6 such that d (Sé 8) = 0,

&

) we will have shown unimodality of the likelihood function.
However, when the®parameter has dimension greater than one, the
situation is quite ’differeﬁt. It has been noted by “Tarone & Gruenhage
' {1975) that there exist smooth functions Sftwo or more variables,
such that there exist local maxima and no other turning po;nts. It is

true that the function exhibited by Tarone § Gruenhage is not known “tq

be a likelihood function, but we know of no argument which would guarantee.

-

that a.likelihood function cannot 'misbehave' in this.way. 1t is rather

unfortunate that on more than one occasion, the multidimensional case

"has been unjustifiably treated like the ome-dimensional (an instance is

—

in Huzurbazar, 1949, also in Kendall § Stuart, 1973, p.56).

Mikeldinen, Schmidt § Styan (1976) have developed a rigorous cri-

m}ﬁu Py Ll ol IR T VAR

terion for the nﬁ\xltidimensional case. A sequence of points {Bm}v in the

- parameter space \9 is said to converge to the boundary when: -(1) it con-
p |

verges properly to a point on the finite boundary of 8, or Q3 i Bm!i +

i
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The likelihood function p(x; *) 1is said to be 'constant on the boundary!

- ) .
s o L

whenever:

. s

B lim p(x; 8 ) = ¢
Mo . m

/

for 'some constant c- and for all sequences which converge to the boun-

[

A\

o

dary. Assume that: ’ -

— ©

(1) the likelihood function is constant on the boundary,

(2) the‘parameter‘s"pace is a connected open subset Lo

- - . of k-dimensional Euclidean space and .

%3) the logarithm of the likelihood function is ;

| twice differentiable on © with negative-definite .

matrix of second derivatives WT{dg pix; 65 at all
points 8 such that V log p(x; 8) = 0.

“

Under conditions (1), (2) and (3), Mikeldinen, Schmidt § Stﬁran (1976) show .
that the likelihood function must have a unique maximum. Thus it i

sufficient to show constancy on .the boundary in addition to nonexistence

2

of 'saddle points and local minima, in order to show unimodality.* N

2
(4

Finally, a special method involving the partial'solution.of the like-

o

lihood equautionsuhas' been menticned by Cox {1976). In his method, at the

k-th step the original pagm_gters 61, “ens ek 1 have already been expressed ;

2 o o '
3 Qlog pk(‘x, Bk,..., Bq]', —
2

in terms®of 6,, ..., By The k-th pivot is deflined as

. , N

\ .
3108 pk(x) ek’-o-p/ea) = 0 is then SOlved :.for e‘k ‘ .

30, : o —

‘The likelihood equation
/ ' . .

* The use of the ¢riterion is illusfrgted in Appendix B, where it is used
to repair an existing proof of umimodality. ° . -

— . i
—— L —
— < -
“ - . .

> . . o )
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SECTION-4<3  DISTRIBUTIONAL INFERENCE

i re
Nl ! .

/ -
: ° ! ‘ 2
4.3.1 ASYMPTOTIC APPROXIMATIONS

Point estimation may be regarded as onc type of statistical in-

& —
ference, since it allows us to say something about the possible nature of

By

tie true model. However, an inferefice of the type which allows us

& N

+ [3 > L3 (7 A3 ’
to make confidence statements, significance tests and the like 1s more
satisfying, 1In this scction we will survey those aspects of what might be

called distributional ifnference, which are related to MLEs or to the like-
¢ e ¢
lihood function. Our review will ‘he too brief to do justice fto the impor-

.

tanck of—the topic, as we will mercly sketch a few possible approaches.

/ v i

- J
The p&'ely ﬁ‘éﬁ\gmist results-which will be discussed in the first two

subsections are all derived from the fact that, under rcgularity conditions, -

R L
the MLE from a model with identically and independently distributed obser-

vations has a distribution which is asymptotically Gauss (6, x(e)']/m

/
where T1(6) 1is the Fisher information matrix
) .

1(6) = EG[ Velbg p(x; 9)_/( Velog p(x; 8) )T ] . J
) ; N

]

The regularity conditions usually required are rather stringent, including )

di).fferentiability of log p(x; *) to the third derivative (Cramér, 1940,

© pp.500-501). - LeCam (1970) relaxes these conditions to differentiability

of log p(x; *) in mean square, but his proof seems to be valid only for

S ».

s S -
a olte-dxm{nsional parameter, . ) e
A simple example of a parent distribution which does not lead to an
asymptotic Gaussian distribution is provided by the uniform distribution
on (0,0). It is ‘rather easy to establish that the MLE b = max(xl....,xn) .
J " : ' |
o / _ L R
‘ . t
B )
- T T : T

>

J

//)
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- 1s asymptotically exponentially-distpibuted with mean  0/n. , -
I
Improved Approximations - L

%

: One way of improvi)ng the accuracy of the Gaussian approximation ,

»

(vherc it is available) has been developed by Haldane & Smith (1956) > In
the case of discrete distributions with bounded paramecter space, they
! B ) Vi . K2
A
were able to provide approximate expressions for the ;hird and fourth

cumulants of the distribution of the MLE, “in terms of thé true paramcter.

Haldane § Smith werc primarily interested in approximating the_mohents

L
o

tf\emselircs, but it has been jsuggested by Kendall & Stuart (1973, p.50) that
, ‘ [ B

thesc cumulants could be used to obtain apeproximate confidence interyals
for the parameter By ;vay of the Pcarson system of distributions, '

’ A more fruitful way of manipulating the .standard Gau}ssian approxi-
mation is to use quantities which Er; at least asyﬂmtotically (pivotal,v

i.e., wvhose asymptotic distribution is the same for all values of the trug
i e

7

parameter. One such asymptotic pivotad!is

-j]-(ﬁ -1 6-6, -

{

| s

. 2 . .
which, under the regularity conditions, has asymptotically a Xy distri-
bution (where %k = dim8). Sprott (1975) cohsiders several asymptotic piv-

otals in the one-diménsional case.

One might seek to improve such asymptdtic ]pivotals by deriving other-

_ .o {\
pivotals whose moments ‘coinci(}e even more closely-with those of a Gaussian

-

Vdiseribution: Bartl—ett (1853a, b) refines thg score pivotal

y e e 17
obtaining from it a quantity whose skewness vanishes asymptotically. Other
_\/ ) -

- . ~

fe

f

,

R ]
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. 'Normality' of the Likelihood Function . .

o

. - 202,

— - - ' » ~

“n

M o

A ] e ’ 1 . ‘ \._ ’ i

J e . » o :

done by Welch § Peers (1963) when 0 is -
a v i 'S

5

work along these lines has heen

(3

. ! .
a location parameter, |

) ) - ) . i -

Onc¢ drawback to the usefulness of any asymptotic result is the ab-
i . : g , )

N

sence-of-any useful bound on the error involved, say, in tt\c di fference _

e - .

9

between the actual significance level attained by a statistic, and thé

level predicted by the. asymptotic thegry used to derive thatsstatigtic.

Otherwise stated, whén is the sample siz® 'large' enough? f&‘x‘e appealing * . ﬂ
» 'a p - ] . T e .
approach uses the notion of 'normality' of the likelihood function. :

Briefly, if the asymptotic distribution of § were in fact'Gaussian, the
! - .

obser\’.ved likelihoqd function would of course be a bellashaped function * .

i 3 —

- |

exac,,t(l/y p'roport:‘lo?’\al%l to the density of 6aussian variate. Therefore it
may be hoped thdt when- the observed likelihood function is approximately

bell-shaped, the asymptotic approximation to the distribution of 6 is

5

fairly accurate{/Sﬂprotf& Kalbfleisch, 1969). \'wOfl course it has becn ;
pointed out by the proponents,‘of the argument ‘\that it is not l/egititﬁate to 5
infer from an observed 'mormal' likelihood fun’ctism that the distribution ! T @
is in fact Gaussian.

Perhaps the-most satisfying justificatiop for the 'normality' cri- .. -

> i

terion is a weak version ofrthe‘ m]ikelihood principle. The strong likeli-
h/oogl principle, as promoted b)} Birnbaum (‘i962) would (loosely speakiné) , ’
have statistical inferences based on the observed likelihood fun;tion, v_ait#— E
out an;' reference to those elements of the design of the\ experiment which :

are not reflected in the likelihood function, [The weak version of the prin-

“ciple is similar but would exclude sTtuati_ons jhere. for exiample..a cogré-

P _— i
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« « for such a sample is not at aj}l 'normal'). | !
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¢

L3

©
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dience structure exists (Barnard & Sprott, 1971). _ '
. We note, however, that even the weak likelihood principle departs

- ‘ 0 ~
from strict frequentist principles. Thus the distribution of the MiII T 0 -

[

of.thérstanQard Bernoulli pérameter is a reflection of all possible sam- -

» s . -
ples, those which arec nicely spread out (yielding a close approximation to

—

» N i 9
a Gaussian density) and those that arc wore extreme, such as happens when

*»41} observations are equal to zéro or to on¢ (the likelihood function ) ,

-

.

)

+

- '

v - 4 A
v‘ \

If one accepts the notion of 'normality' for likelihood functions? .

.. ‘ T R
it is possible to derive;techqiques which appear to be useful in refin}nk\

the asyfiptotic approximation. Thus one may secek a parametrization which

"

-

- - l ~ M
would make the MLE more\near}y Gaussian. Sprott (1973) has developed - , .
numerical criteria for judging whether a given peparametrization would im- d

. ' R
prove things. The idea of 'transforming to normality! was also considered -

by Ansconbe (196@} (but with a Bayesian justification). See also Mitchell (1962},

1

“
1

[
- 4

Linearity ahd Adequacy of Fit
. i .

~— A further drawback of asymptotic approximations is that these, of,*

% . o , . . N } -
necessity, tend to fit the ‘'centre’ of the distribution rather clo@qu, 1 . .

e { .
but that the épproximation may be poor at The tails (where, 6f course,

—

interest is likely to centre). o ;5 )

In a slightly similar vein, it has been suggestdd (Sprott, 1975)

that in deciding whether to refine an gpproximation, account be taken of . )

PR VOV S
v

whether the resulting approximation would be more, or lesz, linear in ‘the

parameter. A non-linear approximation may lead to unsatisfactory results

o

- <
in the tail areas, such as a confidence interval which is not pﬁoperly

e

5 N |
. ¢ J
N v
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>4.3.2 LIKELIHOOD SETS : X - | .

We now consider inference based on likelihood sets.. It will he as-

sumed that p(x:+)- < = and the sets will for con\acnicn“c(\ he denoted By

C(r) =}C(r; x) = { B:p(;(: 9) > rp(x: 8 1, S

where 1 € b(O,Z‘l). It is appealing to use likelihood sets in distributional

inference, first because in the most familiar models where uniformly most

powerful tests are available, these are based on tlgc-likelihood ratio, so~-

that one might hope thayg@he 'good' properties will hold, in attenuated /
z . o

M ]
form, for more general ‘situations., A second reason for using likelihood \

sets"is that these are the natural exteﬁsion, 50 to speak, of the Mii:

if one accepts Birnbaum's characterization (1964) of a point estimate as
0 i -~
a confidence inferval.with 0% confidence coefficient, then the MLE is 'the

Q s

B 4 ) &
0% confidence dinterval belonging to the family of confidence intervals’

which are likélihood sets, : o L

7
LY
¢ -

i

- Fiqg:entist Approach

L] é&.’! ' 3\ ’ "o -
When the conditions” for the MLE to_have an f&ymptotic Gaussian distri-

v

bution are satisfied, the likelihood ratio is asymptotically pivotal and

likelihood sets may readily be used as approximate confidence jntervals for.

the parameter, wi{h app‘x:oximate content determined by r. Thus, setting

- 0

- 4 ‘

T =e one obtains that C(r) has roughly 95% content (the as$ymptotic
‘\ ~ ‘

level being P( 8 € €(r) |8 ) = 0,954 )

Hulison (1971) has reviewed the performance of /ikelihood sets for

s

[
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a number of\models. Aside from assessing the true situation in specific

’ .

models, his review is a useful reminder that in general, the actual con-
fidence.content of a likelihood set will depend, not only on r, but also
on the sampf% size¢.ahd the true paramet'erﬁvslue. =7

« A result for ensuring that the céntent is independent. of 8 has

N -
>

i . W
been given by Spjdtvoll (1972). Th\e result is avk&ilahlc only where &
P - ’ -, >

3

cogredience structure is present, and where mild regularity conditions
\ B

. i
" dre satisfied dn either the group of transformations or the, likelihood ;

function. 1t is even shown that not only’'do the C(r) have content inde-

"pendent of '6, but also that considered.as confidence stts, they are un-

%

biased.

P «

A stronger resul't by Joshi (1970) has that for a one-dimensional

- - ‘ [ >
location parameter sand under regularity conditions, the C(r) are minimax

B - N

1 \
O 3 > ) . . .
among all confidence sets with the same confidence coefficient, i.c., thev
A :

have smallest expected (Lebesgue) volume, i} .

Likelihood Inference

.

We close this subsection by mentioning a mode of reasoning based
on the'l'}kelihood function which departs frankly from stamdard frequentist

th'eory. The basic idea is that r in (1) can be used as a measure of
B I

@

p‘]ausibilitykfort‘ a value of 6. on the boundary eof C(r). Ibt would be

iqo long to detail the history of this, but it may be noted that something

+

along tho?e lines seems to have been advocated early by Fishex (in

-

pipers such 'as 1921 and 1925, with a more explicit use in 1959, p.74).

¢ (Edwards (1972) has a more complete theory of the %ixhject.) We may also

. -

.note that the notion has some support from\the Bayesian’ viewpoint, since

whenu an (improper) prior distribution is assumed for 8, r is just the

[
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posterior prqbability of C(r) (Anscombe, 1961). 'We retain from|

U —

t

o

_critics of tl)’e'approa-e\h-(Cox, 1958; Plackett, 1966) that when several

>

' similar mo‘dellks are considered, to a giwven value of r will 'correspjfnd

-
- .

different confidence coefficients, according, in part.to the dimension of

. Vo . I
the parameter, " t LN ’ \i . ’
[ ’ . :
| f s : . 3
‘ , ’ Y T "Y*—d - . — ‘ a
4,3.3 STOCHASTIC ORDERING \ )
; » R -
We:may end this discussion on a pasitive note by mentioning a pro-

7 14
perty of 'the probability-distribution of the MLE in certain models. The
. . ’ 40

result .is due to lﬁlante CLS?G) .

, w
' s
B

Result : ) ) o —

—

7 A S . - . ,
If the MLE, © of a one-dimensional parameter 0 exists uniquely

for almost all samples and is measurable, and if the family of distribu-

tions { p(-; 8);y 6 € @} for a univariate observation has constant carrier,
A} -

non-decheasing likelihood ratio ( 8" > 6 = p(x; 67)/p(x; 8) is a non-

deéreasinéy function of x ) and is stochastically ordered ( 8°>0 =

~

x . . ; ~ . . .

f-;, ply; 8%)dx(y) > ,[:o p(y; B)dA(y)&), then the family of distributions
I | ’ -

of the MLE is stachastically ordered also. "

Note: "the result is valid for observations on any ordered measurabie Space,

and an analogous result is indicated in the ca‘fe of independently but not

3

° &
identically distri\buted observations.

4

}

\
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2’1og p(x; 6)

‘ When 363 % exists, it is a necessary and sufficient condi-
tion-for {p(+;8); 6 € @} to hdve monotone likelihood ratio that
32 < ) 9 . . \ . o PN
S1og BUX; 9) > 0 for all © Andall 'x (Lehmann, 1959, p.111). The ,
sbove result iy therefore not available in many middels. It may be noted ’
that when ' . ] , ) . )
pix; 8) = exp[ t(x) 6(8) - X(8) - g(x) ] : —_
(i ."e\.,‘.i'n an expc'mential family with dim ¢ = dtm € = 1) the condition re-
duces to the requirement that ¢ be'a moﬁotor_le function of 6. s .
. ’ , . - M Te—
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CHAPTER 5 CONCLUSION )

. \ ‘ - .
| For the author, the princ\ipal attractivenéss_of_maximum-likelihood-

estimation lies in the fact that its use can be attempted in frost models,

whether with discrete or continuous data, when thé observations are |,

K

independentl& and identically distributed, and when the model has some
: 1

other, more complicated structiire. ~ It seems to come closer than any

\ N
other method to being the 'portmanteau' method of point estimation,
AY

However, it cannot be used effectively in all mogelé, as discussed iﬂ/

e
. +

Chapter 4. _ =

What, then, are the finite-sample properties of maximum-likel%hood
® -
estimation? The method can properly be said to-produce estimators,

B
—_— - 4

since MLEs are specific in the sense of Fisher consisténcy. Apart from
N . ’ . .

Fisher consistéhcy, MLEs have another reason for being called specific

in models where a cogredience (or invariance) structure exists.

——

The invariance of MLEs :to repﬁ%ametrizationfis a rather éignifi—
S ,
cant property in any model where the parametrization is arbitrary.

-]

On the other hand, the only kind of optimality property enjoyed
{ ——— .

by -MLEs under closéness'criteria would appear to be sensitivity, and
; ) - - \
the appeal of this notion is not immediate. __ a

- Even in models where it is possible to find a sufficient statistic

1

of the same dimension as the par?meter, thé MLE need not be sufficient,
though sufficiency is, attained by the MLE inmany examples of practical

importance. -

i o -

N i
There is no universal, practicable way of making frequentist °

—

1

. i
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‘probability statements about the parameter on the hasis of the MLL.

However, the approximate distributional theory is rather well-developed,

In general, it could be said that the ,maximum- likelihood estimation
@
exploits the hlgﬁly specific, parametric, non-robust aspectqhof the model,
§
Its use will be most satlsf£ctory where one is rather confldent that the

model adequately describes the situation whlch cffectively gave rise. to

the data set under 'consideration. \ o

] }
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CALCULATION OF THE TABLE IN SUBSECTION 2.1.3

—

. 9,
. ? - .
THE MODEL T:> 3

[N St

-

The situation assumed by Wasan (1970, pp.162-171) is as follows. A

- sample of n observatidns =z z is taken from a Weibull, parent

1o
distribution with kﬂown shape parameter K, unknown scale parameter ¢ and
zero threshold. The observations might represent the observed lifetimes

" g¥(soﬁe type of electronic component under test. It is desired to estimate
from the sampie the reliability of a typical componeﬁt) that is, the probabi-

( © lity that it will fail before the specified mission time. Now a Weibull

variate z has the same distribution as yK, where y 1is exponentially

A ’ - 4
distributed with mean 6 = ¢k. We will therefore work with the simpler

/
i

) exponential distribution, with density
t ’ - ) W
‘\ P(y; ©) = 67 exp(-y/8) C y >00. “

A Y

!
S op - . ! S
Let the specified mission time be denoted y. (representing y_, in the

! -~

original Weibull scale). The rgliability of one compoﬁenf is then
‘ ] \

XU
%

’ .o P =Py >y,) = exp(-y /6). . ‘ ()

.

When a system consists of m identical components arranged in series, so
~ "

that the system fails as soon as one component fails, the reliability of

— n ) ’

the system as‘a whole is p ,

1 { #ot

3
3
i
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ESTIMATION

The reliability p.

} .

MLE of o"

© is simply o™ = exp(-y m/8).
model is 0 =

has.a gamma distribution with Scale parameter 1 and shape parameter n.

v

{

is a one-to-one function of B8, so-.that the
- ® ‘) *
Now the MLE in an exponential -

ﬁyi/n so it is easily. seen that*the pivotal quantity x = :

' (

6,
Thus we have: .
s 79
oy ) KM o X
E = | ex -8 | mm——dXx
s e |- = o ,
substituting -from (1), we obtain pa
o n mn/x&v -1 e-x .
B = 1o ] dx . (2)
0 (n m-DT
Another estimator of p is the MVUE p y .

where © =

\
for p,

of interest,

‘that Wasan proposes to use

-

~m
Ep

1t

Neither (2)

gration is required. ‘

and that if one knew with certainty that pm

[ yo\n-l— | '
g >%2y
[ neJ " ~- |

Ly, /n. ' It should be noted that P is specifically the MVUE

was the, parameter

then one should use the MVUE for™ dm. However, it would appear)

~m . m v~
P to estimate p . We have:
© (n-m n-1 -x ‘
Yo . X
/ [1 Gx] ¢ 0x >y, T ¢ -
0 .
}o [1' + EEMJ { x> -log p) xn-l e-X dx ‘ ‘@
0 | X in - 1) ! - .
o \ n 1 -x .
f [ 1 + }_gg_p (1 + —-&——10 d‘\) 0 ](n -1)m X e dx. (3)
0 X : X . i (n-1)1 (
- ///

s

" t;{y
\

o 0 R gl A i

N o
S “ .t
s . .

nor (3) reduce to tabulated functions, so that numerical inte-

) °
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; : . . i
TRUNCATIOQ ERROR . - | A // o i
oo . !

- It may be noted that in both (2) and (3); the term in brackets is ’

always less than gne. Thus the truncation error made ih carrying out the
. | . ~ P -

.

integration over a finite range (0,t), . will be bounded by ‘ w\

J— [ , L ' (

Xn--] e-x
AR S, b ) \ 4

G- o @,

”
&

~ —f

|
For specified values of n gnd“ t, 44) may be obtained from a table of

the incomplete gamma function. In the prqgram Wthh was used to compute

the'table, t was set‘at 22 and n, at 5, so that the truncation error -

made in evaluating (2), and (3) was less than €345 x 10'6_

\ —_ -

Y ; » Eoo
INTEGRATION ©

§ | o

*_The iﬁtegration of (2) and (3) over (0,22) Qas carried out using>//////’
- . éﬁ

Simpson's rule iteratively, with successive halving of the step size.

—

Iterations were terminated when successive approximations ¢of the integral
- ) -6

differed by less than 0.25 x 10 ., Convergence to the 1ntegra1 appeared

to be quadratic in all cases; the effective dlfference between the final

o 1 - 8 .

approximation and the peénultimate one was usually on—the order of 10 or,//////‘
- { ° \ . - / 3

10 , and the effective mesh size used to compute the integral was either .

0.043 or 0.086 (equivalently, the final approximation involves a sum of

10 9
2" or 2 functional yvalues). -

All the above computatjons were done in double precisiomr on the IBM

370/158 computer at McGill University. A listing of the program follows
} 4 \

this appendix. In the program, n =5 \and p=0. 951 as in Wasan's

— 4 [

example, while m = 1, 2, 10, 20, 40. B : L _
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R T

s ; /

.

) (f " The figures for the mean in the table were ‘taken diregely from the .

N -

, ‘N .
‘computer output; they may be assumed to be correct to the number of deci-

¢ — ! ° .

mal places in the table. The root-mean-square crror was compﬁted with

. s’ A ~M
. the aid of two evaluations of Epm or Ep; e.g.: ‘ :

s
[}

v’ -

.

' RusEGE™) =VEG™ - N7 =VEGR™ 1 20BN + o (5) 4

o The calculation .was done an APF Mark 5 scientific hand calculator with

. . 4 " . :
- arithmetical operations valid to about seven decimal places. However,

°
¢

- even though the truncation and approximation errors together may be of |

’

-6 -5
/o order 10 ,, the values used in computing (5) had been rpunded to 10

by the ppogrém. Therefore, the £hifd decimal in the RMSE figures-in the

. < ‘:
B table may not be quite accurate. . ’ . é
. . |
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! tWATFLY e
4 cxaccunou OF SOME MOMENTS OF ESTIMATORS OF THE RELTABILITY R !
b C FOR THE ®EIBULL DISTRINUTION (LOCATION = 0, SCALE = UNKNOWN
2 SNAPE ® KNUWN )} DR EQUI VALENTLY FOR THE ONE=-BARANETER upou:m'uu
"
< PROGRAMMED 1978.04.27 BY ALFK wCwILLAN -
C
‘ < TO DATAIN A RUN FOR TRE Mol oEas PLACF A 'C' IN COLUMN 1| OF THE
' e [4 FIRSY CARD IN FACH OF THE TwD PATRS LABELED S0 AND | 000 AND REMOVE
¥ 4 THE $C* ERON THE SECOND cano OF EACH PAIR
¢ ,
4 1 IwpLICY a:uoo CA-HeP=2)
4 MOWNY IS A YABLE CF YHE IM WOMENTS TO BE COMPUTED
, H INTEGF® uo-uusn 7 12210620480 /7 o 1N 78/
C
DOIMIALB) = A~ DMINI(A
4 F 1S A STATEMENY ruucntn CORRESPOND ING YO THE UNNORMAL LZED
3 INTEGRAND
. S0 FI(X) = DODIM 1,000 ¢ DLOGR/X » 0.,0D0 )*ONS © NeeM ¢ DEXP(=X)
€ B0 Fix) = ROSINS/X) ® XN & DEXP(-X)
. ¢ n:m;s = ZERD'TO HMl, VTRUNCAT 1ON ERROR BOUND PRCP{GAMMA(N) .GT. HI)
Wl ® 22
< R = NTL!ABILITV '
© R = 0.9%10 —
k4 DLOGR- & nLocl ) T
. 4 N = NUMRER OF ITEMS IN THE SAMPLE USED TO ESTIMATE R
a N =S
9 “anN-13 R
Ve C sm PING RULE » SUCCESS IVE INTEGRALS DIFFERING BY LESS THAN STOP,
- < OR NITER ITFRATIONS: XNGRM IS A NORWMALIZING CONSTANT USED TO
< nsnucz THE NUMBER OF DRERATIONS IN THE INTEGRAND
10 NITER = 50
11 STOP ® 0.25%0-0
. 12 XNORM = 14000 /7 ( 0.,0D0 & OGAMMA( DFLODATIN) ) )
VL c LOOP YO COMPUTE DIFFERENT MOMENTS = EXPECTATION OF ESTIWATED
5 RELIABILITY OF A SYSVEM WITHM 'S¢ COMPONENYS ,
13 OD 1 IMS = 141N
14 1S = MOMNYLINS) 4
1% MS s M & IX
18 NS = N & 1S
(S USF SIMPSON'S RULE SETTING F(O) = O TO AVOID A SINGLARITY
17 ENDS = (W1 <
C STEP 1S TWICE YRE ACTUAL STEP S12€
— 1R STEP = Ml B
19 SMODD = F{ H1/200 ) *
20 SMEVEN = 0.
v 21 K &)
22 SMOLD = (ENDS ¢ 4DO®SMODD) & STEP & XNORM_
23 WHITE(G+1000) IS -
. 24° 1000 FORMAT{'1l VALUE OF MCMENT #0,IV ,* OF MoV UWEL'2/2/)
, ( / C1000 FORMAT(®} VALUE OF MOMENT 8°%13 o' OF MolLeEe '777/7) '
25 WRITF(G1001) KoSMOLDWSYOLD \
.26 001 FORMAT(® ITER, #°%,13,* VALUE @ E12.8.° CHANGE =°* E1243)
27 DO 2 ITER = 2,NITER
2@ SMEVEN = s-cvm * SmMOOD
29 /SND00 -
o STCP = srewa P .
3 XK =K ® ) -
32 R owHl e stewz.o s
S s o Em e AACKWARD —SURMA T FON-—STARTS W ETH SHALLER TEANS - [
L K
SN ,
s .
= iy =
33 oo 3 R 14K .
i 3 36 X e x step 4
4 ! 38 3 S™MODD = SMODD ¢ F(X)
36 SPNEW = (EFNDS ¢ ADOOSNODD ¢+ 2D0SMEVEN) ¢ STEP & XNORW
37 DIFF = SMNEW - SMOLD
. . 38 . . -n,nuo.loon ITERLSVNEW.OLFF
39 SNOLD Nk w
a0 n(mss(otrn Ja¥a STOP ) GO TO & ¥
4l 2 CONTINUE
. . a2 . 4 RIS = ROCLS . a
i ay ABSER = SMMEW - RIS -
b LYY RELER = ABSCR 7 RIS
as WRITE(O +1Q02) ls.sunev. ISs RIS, ABSER RELER
T M a0 1002 FORMAT(*O0 END OF ITERATIONS. FINAL vALUE OF vmur [ANS L LI § 1KY
. £ 1 Fa.3 l'o"nv. . cnwncmnomc RGO, 12,% [S°,FO,
y "0 ABKDLUTE ERROR ' ,F8.8.° pERCENT tanon e, /
¢ 3 zpro.:v,n
- :: 1 CO':TINW 1
4 a9 1003 FORMAT(*1) !ND oF J0B') . P
£ 50 sTop .
3 o %1 END i . -
kS - - . -
3
iy , SDA TA
g !
A I .
3 ] i
¥ , - N
i » FIGURE A.l _
: . . —
i : . - +
7, Listing of the program to compute the table in Subsection 2.1.3.
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( APPENDIX B

o | J—

UNIMODALITY OF THE LIKELIHOOD FUNCTION FROM THE TWO-PARAMETER .
CAUCHY DISTRIBUTION -

§

/ \ —

. In this appendix we illustrate the use of the criterion of Mikeldinen,

T

Schmidt and Styan (1976) to prove the unimodality of the likelihood function

in a model which appears to have been, inadequately treated in the literature.
/ Copas (1975) con.;.idefs a-'‘model with )identically and independently -
o distributed observations from a two-parameter Cauchy distribution. With u

\_t‘l?;denoting the mode of the distribution and o denoting the standard scale/ -, ~

parameter, the likelihood function is

/ -

. 71 -0 xe - w) 7 |
T p(x; (w,0)) = —= H[1+ 10 /] . (0

T g i=1

The parameter space is {(y,0): -* < u <=, 0 < g < =},
The argument used by Copas is as t:ollows: for a fixed w =y , ' )
P{(x; (35,0)) is shown to be unimodal as a function of ' ¢, It is also shown

that whenever Zl/og_p = 0 , 'the matrix of second deriyatives, VVTlog p is

-

~__ negative definite, so that local minima or saddle points are excluded. From

= —
(<)

) these, it is deduced ghat‘ p(x; (=, *)) must be unimodal (except for

—

_samples where at least half of the observations—coincide).* The above argu-

W
ment is weak on two gz:o’unc]ls. First, it fails to take account of the be-

. /
- (ﬁ _ _ haviour of the function on the boundary. Second, there exist functions -

i ’ which s)atisfy both conditions but which nevertheless fail to be unimodal. —
/

* Copas' usage of the term 'unimodal' includes the term 'strictly monotone'.
) Wy .
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~ The point (0,0} is a saddle point while (a,azJ and (-a,az) are both

{
1
b
hY
-]
1
N 2
.
[
Vb ey A

|
For example, the function exhibited by Tarone § Gruenhage (1975):

f(x,y) = _:(e,gy + e'ysinx) (- < X <™, c0<y<w) .
has local maxima at all points  (x,y) = (%n + 21k, log 2) for any integer
A, and is also unimodal in one coordinate: for fixed x = X, s f(xo,)‘) -
is unimodzjil'when considered as a function of y . “

It seems rather rare for the-likelihood function of an identifiable
!

parameter td be.periodic, so f might not be considered to be a convincing

) . =
counterexample; alse, f cannot be related in any obvidus way to an actual

1ikelihooé function. It may, therefore, be useful to present a second counter-

example mm{? more like a likelihood function. =
Consider first the function o | .
. g(x,y) = i[p(x - 1.5) + o(x . 1.5] wgy - xz) , | N
where ¢(-) is the density of the standard Gaussian di'stributionn. Ther‘n g {/5

bt ok

has only three critical points, at (x,y)’ = (0,0) , (a,az) and (-a',az) s

where a = 1.4632... is one of the two modes of ¢(x - 1.5) + ¢(x +'1.5).

-

(y>1), ' -
h has two maxima, both in thelinteri f the /’:can;ief set, and no other
i:ritical points. Also, for fixed x = X/ h(x,,y) is unimodal, with mode
at.7y=x3(|x|>/“1)(+1(|xl<])., )

The function h could be interpreted as the likelihood function of

< / )
a-bivariate observation (0,0) , where the first component is assumed to

-

be a realization of the mixture of a Gaussian distribution with mean at |

x + 1.5 and of a Gaussian distribution with mean at x - 1.5 , while the
1 , ° I .

s mc . e o omen o

[ -




(f," second component is as}sumed‘_go,bc independent of the first and distributed
R -’ . )

[ 3085
as a Gaussian variate with mean at y - x° (the standard errors of all three

Gaussian distributions being known to be e?ual to one). ,

. . Returnping now to the Cauchy example, we can see that we need only show
- .

) .
constancy on the boundary in order to complete Copas' proof of the unimodality

of the likelihood function. For this it is necessary to assume (as does

N Copas), that one half or more of the observations are not all equal.

o

Let the distinct values of the x's be denoted y(l), y(,: ,...,y(m),
with Y1) < Y2) <...< Y (m) " let n . be the number of X’s "_éfaUal to ¥iiy
and ﬁo = m?x n; s finally denote d = !min (y(i) - y(i-lfj' Under the
. above assumption, n > 2n0 or, equivalently, n - 2n0 # 1, Our approach

is to consider the value of thé 1ike1ihoog_i) function p(x; (u,o))/“on a rec-
tangle R(N) in the parameter spac]e with vertices at_ (u,e) = (¥N,1/N} , l A
( ’ (N,N) . As N increases, the rectangle clearly approachef)‘t‘he boundary

of the parameter space, so that we Can restrict our attention to L

J .

J — N > max{-Sy(l), 3y(n), 1} . \ (2)- L
. It is easily seen that with N as in (2), we have for all 1 : - - ]
e . - { .
2 . b
- IY(i) = N! <'§N (3) !
. ' 2 . .
L T ?nd l_)!(l) +Jl <3'N . . ) -L

Clearly wR(N) = Rl U R2 u R3 U R4, where

o : ) |
S R, = {(n,0): -NS u<N, g =1/N}
— i 1 R?={(u,o): N<u<N o=N). " , .
\
- R3={(u,o): P=N, 1/N € ¢ < N} _ |
B 'R4={(p,o): u=-N, I/NSoc<T® . "
. . L - | .
o First note that-there is at most one i such that |y-(i)‘ R coal ;
‘ _ 3 )
. L !
. o
—_—




e B-4
—_—
| . / ) .7
( -  For al& other j'# i , therefore,a Iy(j) - u] » d , which eq{sures b
- - W29l g1
, 1 Py “ | < S, j
_ o o ,
while - ) -
C ‘ _ -1 .
S 1+ y‘i' ) u < 1., }
o S
This ensures that —~ ) )
“ ( — B \ .
; » : 2 ]-(n-n) —
- : (ks (1,0)) <S4 |1+ %} ’ :
- o U 1
- . ~ <U“‘2"O d-2(n-no) . |
The -last relation enables us to get'a crude bound for p on R1 :
L e o)) Sy o
.\/4-2 '
where c, = d’ (n-np) P p =
e -
( Turning now to R;’ , We see immediately that
’ n : 1 1 _1
d TPl (M, 0))< 5= 5 <=
o NN )
i On R, , (3) leads to - ! -,
| Yoo - N a N -
. - > - 0N - -
g + [ Sl)o J a+ 9 g —
so that ' ) d : co
n -
' : TR0 (w,0)) < NG +,% Nz) v /
; I <NGWH™ -
. e <, Lce L
. T2y 2N
9.n .
where ¢, = (@7 . . —
Similarly, on R4 : ‘ ) - o
7 n — , 1 T
. Tp(x; (o)) <S¢, f

e 'y R A O e A Y A emaey
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( i It follows from the above that on R(N)‘
. , c ! . N >
1 pd
i pix; (u,O)))< —33; R

4

‘uhere Cy = max(cl,cz)/ . As N= o, p(x; (¥,9)) >0 on R(N) so that

the likeli}mfd function is constant (zero) on the -boundary of the parameter

space. - - . -

f The situation where _ZnO 2 n.is discussed in Copas (1975). It §hou1d

: ‘ %

§ be noted that when so many observations are coincident, the continuous model

H would seem to be a rather crude approximation to the data, and consideration

[ -
L. , should be %iven to computing the exact likelihood function for the discretized |
| . — ’
- observations, as discussed in subsection 4.1.3. )—

! \ Part of the argument pregented in this section is taken from a prelimi-
. nary' revision for publication of Midkeldinen, Schmidt § Styan (1976\).
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APPENDIX C .

[
i
/

Kriz § Talacko (1968) have attempted to develop a 'minimum entropy
estimator! u51ng a measure of 1n£ormat10n defined as the entropy of the
postenor distribution minus ‘the entropy of the prior distribution concen-
trated at the true value of the parameter. Their ‘'minimum entropy esti- _

mator' is the estimator which minimizes the loss of information when the\

true parameter is replaced by an estimated value. Their claim is that .

T - . - J . N
in the case of independently and identically distributed observations the-

MLE corresponds to their minimum entropy. estimator; in the case where the
observations are dependent or do not follow the same distribution they
indicate that the :MLE wguld not have the stated op¥imality property.
Unfortunately, we believe the claim made in the abdve paper to be
unfounded in its wide generality and perhaps ﬁeaningless. In Mathematical
Review;, Kﬁrezlio‘élﬁ (1969} notes the need for correcﬁonJ at one point
but does not.pass judgement on the résult. Nevertheless, we indicate
below some of the major poml\.s where we believe the argument 15 wrong.
We have not succeed\ﬁi in repairing the proof and conject:xre that the
—result does not hold. The article's original notation is used to s great

\
' extent. In our notation
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( ’ £Es would be . X, » . the i-th observation in the data

. . ‘ / .
the data considered as a point in
n-dimensional Euclidean space

(used here as a dummy variable)

N J

J
the true parameter

o 3

f(Ei]é) "o q“(xi; 8), the density of the i-th coniponent
' / , of x (properly, the parent distri-

- s

- ] bution) ',
' ' |
. a vector whose _i-th component is
H(q(+; 8)), the entropy of q(+; 0).

i o}

/ H(§|8)

(1) On page 58 of the article, in formulé '9' the substitution:

COECE BB ) = [-£(E,.]8) 6(8 - o) db (9)
_ 1 e 1

} ' ‘ -

( is made, where &8(° - a) _ is the degenerate prior concentrated at

| a. Two interpretations may be imagined for & on the‘left-hand
) side of} (9) .. First, that § 1is a dummy variable representing a
— |
gePeral'sample point which is the integration variable; this inter-
pretation is belied by the fact that 8 for a giyen Qample is not
exactiy equal to the true parameter value a. --The second interpre-
tation would have & be the collection (in ‘vec\tor form) of the

sample points' Ei. But then the left-hand side of (9) would depend

\g strictly on the observed data, while the right-hand side would

\ . depend on both the data and the parameter .a, which would mean that the

) parameter o does not vindex the distribution. The objection might

be circumvented by:lrequiring § to be sufficient {which the article

aQ

does not do) but this would narrow the applicabhility of the result.




C-3 \‘ ' \ s

: oo : \
C (2) 1In Section 3, pp.59-50, the quantity Q(B; £) = H(E|®) - H(E|o) is

the difference in the loss of infomtion by taking the parameter to

\ .
be its estimated value rather than the true value. According to the

definition, the norm 6f Q should be minimized; instead the norm of

a

. - H(El@) is minimized. Even though Q depends on the choice of

estimator only through u(glé), the estimator 'which minimizes the

3

norm of H(£|§) will not necessarily be the estimator which mini-

| S \

mizes the norm of Q.

(3) Ag\a;n on page 60, the quantity ' : .

o

(20 108” £05; 1B £ a0} (10)
1 i ,
\

) would appear to be a misprint for
! | Z(1log f(&ilé))z fz(Eila) ]5 o (11)

since (10) is an imaginary number, But the transformation of (11) to: .

\ | - L - log £(5,|6) £(& |

. n 2 n
is puzzling, since in general [ I Y; ]% Fly..
) ' i i ‘
. _ = )
Since the atfove steps appear to be central to the argument, the re-
sult concerning the optimality property of the MLE is in doubt.
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