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ABSTRACT

Studies on normal and regenerated rat aortic endothelium at 1, 2,
3 and 4 weeks following segmental balloon denudation injury were
carried out to evaluate: (1) the permeability to intravenously
injected Evans blue (EB) and horseradish peroxidase (HRP) using en

face aortic preparations and (2) the volume density of stress fibers

by morphometry using thin section electron microscopy. The results of
these studies indicated that: (1) the permeability of the regenerated
endothelium to both EB and HRP was identical to normal endothelium at
all time points studied and (2) stress fiber volume density
significantly increased in regenerated endothelium at 1 week as
compared to control, however, returned to and remained at normal value
at and after 2 weeks following segmental balloon injury. These
results are consistent with the view that structural and functional
changes in regenerated vascular endothelium, if present, are transient
in nature and the integrity of endothelial monolayer is eventually

reestablished during the repair process that follows a single injury.
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RESUME

Des études sur l'endothélium aortique de rat normal et régénéré
ont été effectuées 1, 2, 3, et 4 gsemaines aprés avoir pratiqué une
lésion segmentaire de dénudation & 1l'aide d'un ballonnet dans le but
d'évaluer: (1) la perméabilité au blue Evans (EB) et 3 la peroxidase
de raifort (HRP) injectés par voie intraveineuse en utilisant des
préparation aortiques en face et (2) la densité volumique des
"stress fibers" par morphométrie en microscopie électronique sur
coupes fines. Les résultats de ces études indiquent: (1) que la
perméabilité de 1l'endothélium régénéré au blue Evans et 3 la
peroxydase de raifort est identique 3 celle de l'endothélium normal &
toutes les phases de 1'étude et (2) que la densité volumique des
“stress fibers"” qui la premiére semaine, accusait une nette
augmentation dans l'endothélium régénéré par rapport au sujet témoin,
était redevenu normal 2 semaines aprés la lésion par ballonnet et
qu'il 1'est demeuré dans les semaines qui ont suivi. Ces résultats
corroborent l'hypothése voulant que les modifications structurelles et
fonctionnelles de l'endothélium vasculaire régénéré, quand elles se
produisent, revétent un caractére transitoire et que 1'intégrité de la
monocouche endothéliale se rétablit au cours du processus de

réparation qui suit une lésion unique.
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INTRODUCTION

Endothelial cells line the insides of arteries, veiuns, capillaries
and lymphatics as a monolayer. These cells have important roles in
physiological homeostasis; in the permeability of blood vessels and in
the mediation of their response to a variety of physiological and
pathological stimuli (Gimbrone et al, 1974; Jaffe et al, 1973; Majno
and Joris, 1978). Abnormalities in the structure and function of
endothelial cells may play a significant role in diseises of blood
vessel walls, particulacly thrombosis and atherosclerosis (Hiittner and
Gabbiani, 1982; Ross, 1986; Schwartz et al., 1981; Stemerman, 1974;
Thorgeirsson and Robertson, 1978). 1In culture, endothelial cells are
different from most other cells. Growth of endothelial cells unlike
that of fibroblast or smooth-muscle cells, is characterized by the
formation of a highly ordered monolayer (Haudenschild et al, 1975;
Jaffe et al, 1973; Vlodavsky and Gosgodarowicz, 1979). This monolayer
adopts a morphological appearance and differentiated properties
similar to those of the vascular endothelium in vivo. The closely
apposed and non-dividing cells of the monolayer have a distinctive
membrane asymmetry; they have a non-thrombogenic luminal surface and
can no longer internalize bound ligands such as low-density
lipoprotein, while fibronectin disappears from the luminal surface and
cencomitantly accumulates close to the basal surface (Muller and
Gimbrone, 1986; Vlodavsky and Gospodarowicz, 1979). Once the cells

have formed this highly ordered structure, the only agents shown to be
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able to stimulate growth are those that disrupt the continuity of the
monolayer. This is true both in vitro and in vivo and suggests that
contact inhibition of growth may be particularly important for
endothelial cells when compared with other cells (Schwartz et al,
1981).

The biological behaviour of the endothelial monolayer is reflected
by the extremely low “asal rate or replication in normal adult
arterial endothelium in vivo (Schwartz and Benditt, 1976; Schwartz and
Benditt, 1977 Schwartz et al, 1980). It has been demonstrated,
however, that there are focal areas of endothelium with increased
replication, and that the overall replication of aortic endothelium is
increased under certain pathophysiological conditions such as
hypertension (De Chastonay et al, 1983; Schwartz and Benditt, 1977)
and endotoxemia (Reidy, 1985; Reidy and Schwartz, 1983).

Normal quiescent arterial endothelium consists of a layer of
flattened, elongated cells oriented with their long axis in the
direction of blood flow. This quiescent cell layer, however has
properties that are crucial to normal functioning of blood vessel
wall; they fall into three major categories (Majno and Joris, 1978;
Thorgeirsson and Robertson, 1978): (1) normal endothelial cells are
metabolically active and highly versatile; they synthesize
prostacyclin (PGI,) and an activator of plasminogen, they produce
factor VIII and von Willebrand factor, they contribute several
components to the subendothelial connective tissue, and they contain

receptors to a variety of wvasoactive agents; (2) the normal
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endothelial cell layer provides a thromboresistant surface that
prevents platelet or leukocyte adherence and activation of intrinsic
or extrinsic coagulation systems; (3) the normal endothelial cell
layer forms a barrier to the passage of blood constituents into the
artery wall; this is essential to maintain normal microenvironment and
growth pattern of underlying smcoth muscle cells (Ross and Glomset,
1976) .

Endothelial continuity is vital to maintain sll major properties
of vascular endothelium particularly its thromboresistant surface and
its barrier role. Thus, these cells have been the focus of intense
studies both in vivo and in vitro (Cotran, 1989; Majno and Joris,
1978; Ryan, 1988; Stemerman, 1979; Stemerman et al, 1984; Thorgiersson
and Robertson, 1978). Alteration of the endothelial ba-rier is
obvious in small artery disease, particularly in hypertension
(Thorgiersson and Robertson, 1978) and diabetes (Rossini and Chick,
1980), and has also been widely implicated in large artery disease
(Ross and Glomset, 1976). Loss of continuity of the endothelial cell
layer is the major cause of thrombosis because it exposes the highly
thrombogenic subendothelial tissues to platelets, and initiates the
cascade of platelet adherence, aggregation, and degranulation
(Stemerman, 1979; Stemerman and Ross, 1972; Weiss, 1975).
Furthermore, there is evidence that endothelial denudation leads to
proliferation and migration of smooth muscle cells into the intima as
a result of the release of platelet-derived growth factor at sites

where endothelial continuity is disrupted (Ross and Glomset, 1976).



Pr-T N \

M.S. Cokay - 4

The ability of the vascular endothelial cell to repair a denuded
surface has been well documented both in vivo and in vitro. Large
wounds are repaired by migration and proliferation while smaller
wounds may be repaired by spreading and migration (translocation)
alone without associated proliferation (Adamson and Bowden, 1983;
Bettmann et al, 1981; Boden and Gotlieb, 1983; Clowes et al, 1983;
Fishman et al, 1975; Gotlieb, 1983; Gotlieb et al, 1987; Haudenschild
and Schwartz, 1979; Reidy et al, 1983; Schwartz et al, 1981; Schwartz
et al, 1978; Sholley et al, 1977; Wong and Gotlieb, 1988).

It is crucial to answer the question whether the repair process in
vascular endothelium results in an endothelial monolayer that acquires
normal structure and function or it results in an endothelial
monolayer that is defective in some way thus promoting vascular
disease.

There are a number of studies that demonstrated functional
differences between normal and regenerated endothelium* involving
particularly metabolic activities of endothelial cells, although, in
most cases it was not established whether these changes were transient
or permanent following injury. Specifically, injured and/or
regenerated endothelium may produce increased amounts of vasoactive
agents, growth factors (particularly a mitogen resembling PDGF) and

growth inhibitors (such as heparin) (Barrett et al, 1984; Hansson et

*Regenerated endothelium is defined as a newly formed endothelial call
layer covering a denuded arterial segment, regardless of the extent of
the re-endothelialization.
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al, 1987; Ross, 1986; Zacharias et al, 1988). Impairment of
endothelium-dependent relaxation in isolated arteries with regenerated
endothelium has been reported (Shimokawa et al, 1987; Shimokawa et al,
1989). An increase in intracellular von Willebrand factor was
demonstrated (Reidy et al, 1989). Monoclonal antibodies recognizing
new or spreading endothelium, probably by recognizing selectively
expressed antigen on these cells, have been identified (Pringle and de
Bono, 1988).

There have been few studies comparing the structural aspects of
normal and regenerated eundothelium particularly those related to
continuity of the endothelial monolayer which is vital to maintain all
major functional properties of vascular endothelium.

Since cell to cell interactions as well as cell to matrix
interactions are essential in maintaining the continuity of the
endothelial monolayer, one aspect of each of these interactions were
selected in the studies presented in this thesis:

(1) The permeability of the normal and regenerated asortic
endothelium to Evans blue (EB), a dye which rapidly complexes with
serum albumin when injected intravenously (Schwartz et al, 1978;
Stemerman et al, 1977), and horseradish peroxidase (HRP), a protein
tracer of about 40,000 molecular weight (Karnovsky, 1967), following
segmental denudation in en face rat aortic preparations was studied in
time-sequence as a reflection of cell to cell interactions in the

endothelial monolayer.
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There are only a few reported studies dealing with the
permeability characteristics of regenerated aortic endothelium and
they seem to convey conflicting messages. One study describes no
difference in the permeability of re-endothelialized areas of rabbit
aorta to horseradish peroxidase as compared to normal endothelium
(Stemerman, 1981); other studies report increased permeability of
re-endothelialized intima to lipoproteins as compared to normal rabbit
intima (Day et al, 1985; Schwenke and Zilversmit, 1989).

(2) The volume density of stress fibers (organelles implicated in
cellular attachment of endothelial cells to subendothelium) in normal
and regenerated rat aortic endothelium following segmental denudation
was studied in time-sequence by morphometric analysis using thin
section electron microscopy as a reflection of cell to matrix
interactions in the endothelial monolayer.

It is well established that endothelial cells of regenerated
aortic endothelium in vivo contain a strikingly increased number of
stress fibers as compared with those of quiescent normal endothelium
(Gabbiani et al, 1983; Hiittner et al, 1985). However, the stress
fiber volume density of regenerated endothelium has not been studied
in time-sequence. A recent study published during the writing of this
thesis, has demonstrated qualitatively by immunofluorescent microscopy
using anti-platelet myosin antibody that the stress fiber expression
in regenerated rat and rabbit aortic endothelium is reversible (White

et al, 1988).
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UATERTALS AND METHODS

Experimental Procedures

The experimental protocol for the studies of the segmental aortic
endothelial denudation and regeneration in rats is shown schematically
in Figure 1. The experiments were carried out in 36, two-month old
male Wistar rats (Charles River, Canada, Inc., Montreal, Quebec,
Canada), weighing 250 to 300 gm. The anim‘us were purchased through
the McGill University Animal Center and housed and caved for in their
facilities throughout the experiments. The rtats were fed Rat Chow
#5012 (Purina Mills Inc, St. Louis, MO, U.S.A.) and water, both ad
libitum except the overnight period preceding the operations described
below when they were deprived of food and water. The animals were
divided into two series of 18 rats, one series serving for the
permeability studies using EB dye and the other for the permeability
studies using HRP. The HRP series also served, subsequently, for the
morphologic and morphometric studies using thin section electron
microscopy. Three rats in each series were utilized as non-operated

control animals and the remaining 15 underwent a segmental denudation

of the aortic intimal surface to remove the endothelium with a
saline-filled embolectomy catheter (2F Fogarty, Edwards Laboratories
Inc., Santa Ana, California, U.S.A.) applying the method of
Baumgartner and Studer (Baumgartner and Studer, 1966) with minor

modifications (Gabbiani et al, 1982, Reidy et al, 1983).
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SEGMENTAL AORTIC ENDOTHELIAL DENUDATION AND REGENERATION

CONTROL
30°0R 6 1 WK 2 WKS 3 WKS 4 WKS

( \lV. EB or HRP ]

Figure 1: Schematic representation of the experimental protocol to
visualize the permeability of the denuded and re-endothelialized rat
sortic segments to intravenously injected EB or HRP following balloon

' injury. A total of 36 adult male Wistar rats, 3 animals per group

providing 18 animals for the EB series and 18 animals for the HRP

series, were ugsed for the experiments.

v,
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Segmental denudation of aorta was selected as opposed to denudation of
the full length of the aorta to obtain completely regenerated
endothelium in a relatively short time.

The animals were anesthesized by intraperitoneal pentobarbital
{Somnotol, M.T.C. Pharmaceuticals, Mississauga, Ontario, Canada)
administered at a dose of 65 mg/kg body weight for the operations. A
3 cm long inferior midline neck incision was made and the left common
carotid artery was isolated and ligated at the cephalad side. The
embolectomy catheter was inserted caudally into the artery as a small
transverse incision in the vessel was held open by microdissecting
tweezers (Dumont No. 7 JB EM Services Inc., Montreal, Quebec,
Canada). The tip of the catheter was further advanced into the
thoracic aorta to a distant most point of 5 cm measured from the
caudad angle of the left muscular triangle in the neck. The balloon
of the catheter was inflated to a diameter of 4 mm with a
predetermined amount of saline (about 0.05 cc). A 1.0 + 0.1 cm long
segment of the thoracic aorta between the first and fourth pairs of
intercostal artery openings was denuded of the endothelium by moving
the catheter back and forth six times. After the completion of the
denudation, the balloon was deflated and withdrawn. The carotid
artery was ligated caudally to the catheter insertion site after
removal of the catheter. The skin incision was closed with 11 mm
Michel clips. The operation was completed by punching an accession
number in the ears of the rats for identification. Following the

operation, the animals were separated into groups of 3 rats for



M.S. Cokay - 10

time-sequence studies on the regenerated aortic endothelium both in
the EB and HRP series. The selected time points comprised of 30
minutes, 1 week, 2 weeks, 3 weeks, and 4 weeks following the surgery

for the EB series and 6 minutes, 1 week, 2 weeks, 3 weeks and 4 weeks

following the surgery for the HRP series.

Permeability Studies using EB and HRP at Macrogcopic Level

EB Series. All rats in the EB series, 15 operated and 3
non-operated control, under intraperitoneal pentobarbital anesthesia,
were injected through the left femoral vein with 1 cc of 1% EB dye
(Allied Chemical Corp., New York 6, New York, U.S.A.) in 0.9% sodium
chloride solution 30 minutes prior to their sacrifice (Clowes et al
1983; Clowes et al 1985; Haudenschild and Schwartz, 1979) by
simultaneous exsanguination from the thoracic segment of the inferior
vena cava and perfusion fixation through the ascending aorta preceeded
by a 30 second flush by a 0.9% sodium chloride solution. The
perfusion fixation was initiated by modified Karnovsky's fixative
(Hittner et al, 1973a; Huttner et al, 1973b) containing 1%
paraformaldehyde and 1.25% gluteraldehyde in 0.1 N sodium cacodylate
buffer (pH 7.4) with 5% sucrose (final osmolality: 0O 750 mOsm) for 5
ninutes. The perfusion was continued with a second fixative solution
containing 2% paraformaldehyde and 2.5% glutaraldehyde with the same
buffer (final osmolality: ~0 900 mOsm) for 10 minutes. The flush and

fixative solutions prepared at room temperature were administered

B L e B e e b & . whn
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through a canula placed in the aortic arch at 120 mmHR pressure while
the solutions were allowed to escape from the inferior vena cava.

After the perfusion fixation, the aorta, including the arch as
well as the thoracic and abdominal segments, was removed en bloc using
sharp dissection and further fixed for 2 hours by immersion in the
second fixative solution then stored overnight in 0.1 N sodium
cacodylate buffer (pH 7.4) containing 11.25% sucrose (final
osmolality: O 380 mOsm) at 4° C. The fixed aortas were then cleaned
of their adventitial elements under a dissecting microscope, trimmed,
opened longitudinally and pinned out on a silicone rubber pad with
stainless steel minutien pins (Fine Science Tools Inc., Belmont,
California, U.S.A.). The specimens were grossly examined first
unaided then under a magnifying lens, and photographed.

HRP Series. All rats in the HRP series, 15 operated and 3
non-operated control, under intraperitoneal pentobarbitol anesthesia,
were injected through the left femoral vein with HRP (Horseradish
peroxidase, Type II, Sigma Chemical Company, St. Louis, Montana,
U.S.A.) at a dose of 10 mg/100 gm body weight dissolved in 0.5 cc of
0.9% sodium chloride solution 6 minutes prior to perfusion fixation
and sacrifice in the same manner as in the EB series. The dose of 10
mg/100 g body weight and the circulation time of 6 minutes for HRP
were selected as they resulted in a reproducable overall white
background with only focal light brown patches in the aortas of
non-operated Wistar rats [this contrasts previously reported findings

in Sprague-Dawley rats where the same dose and circulation time for
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HRP resulted in a considerably dark background staining (Hittner et
al, 1973 a; Huttner et al, 1973 b) presumably related to histamine
and serotonin release (Cotran and Karnovsky, 1%967)).

The same fixative solutions as for the EB series were used,
however the 30 second flush was with Krebs-Ringer-Bicarbonate (KRB)
containing 8 mg heparin sodium (Fisher Scientific Co., Chemical
Manufacturing Division, Fair Lawn, New Jersey, U.S.A.) per 100 ml XRB
solution (Nagy et al, 1983). After the perfusion fixation, the aorta,
including the arch as well as the thoracic and abdominal segments, was
removed en bloc using sharp dissection and further fixed for 2 hours
by immersion in the second fixative solution and stored overnight in
0.1 N sodium cacodylate buffer (pH 7.4) containing 11.25% sucrose
(final oswolality: OO 380 mOsm) at 49 C with the same composition as
the one used for the EB series.

The fixed aortas were processed to demonstrate the presence and
the localization of the intravenously injected HRP by incubating the
aortas en bloc in dark and gently agitating for 1 hour at room
temperature in Graham-Karnovsky medium [10 ml of 0.05 M tris-HCl
buffer, pH 7.6, containing 10 mg of 3,3'-diaminobenzidine
tetrahydrochloride (DAB) and 0.1 ml of 1% Hy0,] (Graham and Karnovsky,
1966). After the HPR-DAB chromogen reaction had been completed the
gortas were cleaned of their adventitial tissue under a dissecting
microscope, trimmed, opened longitudinally and pinned out on silicone
rubber pads with stainless steel minutien pins as en face

preparations. The specimens were then grossly examined, first unaided
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then under a magnifying lens, and photographed.

Morpholopic and Morphometric Studies on Endothelial Stress Fibers

using Thin Section Electron Microscopy

Tissue Preparation for Electron Microscopy. The aortas fixed by

perfusion then imrersion were sectioned, using sharp and clean razor
blades, under a dissecting microscope to obtain about 0.2 x 0.1 x 0.0S
cm longitudinal tissue blocks of the vessel wall including the intima
and media. The sections were always taken from the dorsal aspect of
the aorta between the intercostal artery openings tc obtain
regenerated endothelium at various time points during the experiments.
The tissue blocks were postfixed for 90 minutes with ferrocyanide
reduced 1% osmium tetroxide (Karnovsky, 1971) in Palade buffer (pH
7.4) containing 4.9% sucrose (final osmolality: o0 430 mOsm) for 90
minutes at room temperature. The tissue blocks were then dehydrated
in graded ethanol and embedded in Epon 812. One micron thick sections
were cut with glass knives by an LKB III ultramicrotome and stained
with toluidine blue for light microscopy. Thin sections, about 80 nm
thick, were cut, using diamond knives from the areas selected on the
basis of light microscopy, and double stained with uranyl acetate and
lead citrate then examined in Philips EM 300 and Philips EM 200
electron microscopes at 60 kv for qualitative and quantitative studies

respectively.
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Morphometric Estimation of Stress Fiber Volume Densities.

Morphometric estimation of stress fiber volume densities in normal and
regenerated rat aortic endothelium were carried out in the HRP series
using a stratified random sampling aprroach as illustrated
schematically in Figure 2.

A total of 15 rats were included in morphometric studies. The
non-operated control group was represented by 3 rats. Similarly, each
of the experimental groups except, the 6 minute group where there was
no grossly identifiable regenerated endothelium (see Figure 4), was
represented by 3 rats. Four longitudinally sectioned tissue blocks of
aortic wall, including the intima and media, obtained from the dorsal
aspect of each aorta between the second and fourth pairs of the
intercostal artery openings were selected. The tissue blocks were
processed and a single double-stained grid was prepared, from each
block for thin section electron microscopy, as described above.

Random electron micrographs of the endothelium were taken by reference
to the frame of the supporting grid. A maximum of 2 micrographs from
each "square"” of the grid and a total of 10 consecutive pictures from
a grid were recorded on 35 mm film strips (Kodak, Catalogue No. 157
6073), at the primary magnification of X 3210, calculated by using a ,
carbon grating replica (JB EM Services Inc., Montreal, Quebec,
Canada). A positive contact print of each film strip was made using a
long "light box" (Weibel, 1979). The positive films were projected in
a "back projection unit” and the image was superimposed on a screen

equipped with a short-line multipurpose test system with a test point
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Figure 2: Hierarchy of sampling for morphometric

evaluation of stress fiber volume densities in control

and regenerated rat aortic endothelium in various

experimental groups.
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* number of 168 (Pp = 168) and a test line length of 168 cm (Ly = Py x
d4/2 = 168 em). The final magnification on the screen was X 31959
calculated in the same fashion as described above.

The volume density of the stress fibers in reference to the
endothelial cell layer (Vygf o)) was calculated by point counting,
according to the method of Weibel (Weibel, 1979), for each tissue

block with the following equation:

L. Psf(i)
L. Pel(i)

VVsf, el *

where, the numerator and denominator were the sums of the points
falling on the stress fibers and endothelial cell layer, respectively.
Each animal was represented by the mean stress fiber volume
density of 4 tissue blocks and each experimental group, in turn, was
represented by the mean stress fiber volume density of 3 animals. The

results were evaluated by one-way analysis of variance (ANOVA)

(Kleinbaum and Kupper, i978), and multiple comparisons were performed
applying Tukey's method. On account of the comparative nature of the
statistical analysis on the morhometric data, the values of the stress
) fiber volume densities were not corrected for errors due to finite
section thickness (the Holmes effect), section compression and tissue

shrinkage.

L el
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RESULTS

Permeability of Normal and Regenerated Rat Aortic Endothelium to EB as

Evaluated by Macroscopic Examination of En Face Aortic Preparations

Representative en face aortic preparations from control rat and
rats 30 minutes to 4 weeks following segmental endothelial denudation
subjected to intravenous injection of 1 cc of 1% EB 30 minutes prior
to sacrifice are shown in Figure 3.

Control rats injected intravenously with EB showed uniformly white
luminal (endothelial) surfaces similar to non-EB injected animals. At
30 minutes following segmental balloon injury a 1.0 + 0.1 cm long
sharply demarcated blue stained segment, measured axially, was evident
in the thoracic aorta between the first and fourth pairs of the
intercostal artery openings representing the de-endothelialized aortic
segment permeable to EB. As shown in Figure 3, an approximately 0.1
cm wide blue strip was seen in the luminal surface of the cephalad
portion of the thoracic aorta in each animal at 30 minutes, obviously
related to the insertion of the catheter into the segment to be
denuded as well as back and forth movement of the catheter during
denudation. A short blue tail, about 0.3 cm long and 0.1 cm wide, was
also seen at the caudad margin of the denuded segment presumably
caused by the tip of the catheter extending beyond the inflated
balloon. These inadvertent catheter related injuries were not seen at

later time points. At 1 week, 2 weeks and 3 weeks following segmental
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Figure 3: En face view of rat aortas following intravenous EB
injection. All but the control animals have undergone an aortic
baliooning procedure for segmental endothelial denudation 30 minutes
to 4 weeks prior to EB injection. The blue areas (appear black in
Black and white photographs) represent de-endothelialized aortic
surface permeable to EB. The re-endothelialization has started and
advanced from the non-denuded endothelium of the cephalad and caudad
margins as well as of the intercostal arteries. This is evidenced by
the progressive diminution of the size of the denuded blue areas
during the course of the experiments. The re-endothelialization was
complete by 4 weeks., WNote that the 30 minute and 1 week aortas have
been opened ventrally while the control, 2 week, 3 week, and 4 week
aortas have been opened dorsally in order to better visualize the
final stages of regeneration. The permeability of the regenerated
endothelium to EB at each time point studied is identical to that of
the control endothelium as evidenced by the white color of both the

control and regenerated endothelium. x 2.3.
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{ balloon injury there was progressive decrease in the size of the
denuded areas permeable to EB. This was characterized by the
appearance of white patches around the openings of the intercostal
arteries followed by the coalescence of these patches resulting in
white strips running in-line with the openings of the intercostals.
The expansion of the white areas around the openings of the
intercostals was accompanied by extension of white fields from both
the cephalad and caudad directions resulting in shortening of the
denuded segment permeable to EB. The pattern of the progressive
decrease in the size of the denuded aortic surface areas correlate
well with the well-established knowledge that the endothelial
regeneration in denuded rat aortas advances both from the endothelium

[ of the intercostal arteries and from the endothelium of the
non-denuded cephalad and caudad aortic segments (Haudenschild and
Schwartz, 1979; Poole et al, 1958; Schwartz et al, 1978).

At 4 weeks, the re-endothelialization was complete as evidenced by

the absence of any aortic surface areas permeable to EB.

: The rate and patterm of progressive decrease in the size of the

E denuded aortic surface areas permeable to EB were similar in all
aortas within each group representing a given time point.

The permeability of the re-endothelialized areas was identical to
the endothelium of the non-operated control sortas as well as of the

non-denuded segments of the experimental aortas in all time points

studied.

P
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Permeability of Normal and Regenerated Rat Aortic Endothelium to HRP

as Evaluated by Macroscopic Examination of En Face Aortic Preparations

Representative en face aortic preparations from control rat and
rats 6 minutes to 4 weeks following segmental endothelial denudation,
subjected to intravenous injection of 10 mg/100 g body weight HRP 6
minutes prior to sacrifice, are shown in Figure 4.

Control rats injected intravenously with HRP showed uniformly
vhite luminal (endothelial) surfaces similar to non-HRP injected
animals. At 6 minutes following segmental balloon injury a 1.0 + 0.1
cm long sharply demarcated brown colored segment, meausured axially,
was evident in the thoracic aorta between the first and fourth pairs
of intercostal artery openings representing the de-endothelialized
aortic segment permeable to HRP. As shown in Figure 4, an
approximately 0.1 cm wide brown colored strip was seen in the luminal
surface of the cephalad portion of the thoracic aorta in each animal
at 30 minutes obviously related to the insertion of the catheter into
the segment to be denuded and movement of the catheter during
denudation. A short brown tail about 0.3 cm long and 0.1 cm wide, was
also seen at the caudad margin of the denuded segment presumably
caused by the tip of the catheter extending beyond the inflated
balloon. These inadvertent catheter related injuries were not seen at
later time points. At 1 week, 2 weeks and 3 weeks following segmental
balloon injury there was a progressive decrease in the size of the

denuded areas permeable to HRP. This was characterized by the
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Figure 4: En face view of rat aortas following intravenous HRP
injection and en bloc incubation of aortas with DAB and hydrogen
peroxide. Similar to the EB experiments all but the control animals
have unergone an aortic ballooning procedure for segmental endothelial
denudation 6 minutes to 4 weeks prior to HRP injection. The brown
areas (appear black in Black and White photographs) produced by
HRP-DAB chromogen reaction represent the de-endothelialized aortic
surface permeable to HRP. Note that the control, 6 minute, 1 week and
2 week aortas have been opened ventrally while the 3 week and 4 week
aortas have been opened dorsally in order to better visualize the
final stages of regeneration. The permeability of the regenerated
endothelium at each time point studied is identical to that of the -
control endothelium as evidenced by the white color of both the

control and regenerated endothelium. x 2.3.
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appearance of white patches around the openings of the intercostal
arteries followed by the coalescence of these patches resulting in
white strips running in-line with the openings of the intercostals.
The expansion of the white areas around the openings of the
intercostals was accompanied by extension of white fields from both
the cephalad and caudad directions resulting in shortening of the
denuded segment permeable to HRP. At 4 weeks there were no aortic
surface areas permeable to HRP indicating complete re-endothelial-
ization of the denuded aortic segment. The rate and pattern of
progressive decrease in the size of the denuded aortic surface areas
permeable to HRP were similar in all aortas within each group
representing a given time point. Furthermore, the pattern of
progressive decrease in the size of the denuded aortic surface areas
was gimilar to the pattern observed in the EB injected animals, thus
correlating with well-established observations on endothelial
regeneration of denuded rat aortas (Haudenschild and Schwartz, 1979;
Poole et al, 1958; Schwartz et al, 1978). However, as compared to
aortas of the EB injected animals (where both the non-denuded
endothelial surface and the re-endothelialized areas appeared
uniformly white) aortas of the HRP injected animals showed poorly
defined small patches of brownish discoloration of various intensity
both in the non-denuded endothelial surface and in the
re-endothelialized areas. These brown patches were clearly lighter
than the brown areas representing denuded aortic segments, and occured

in all groups, most prominently at early time points after balloon
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injury. They probably corresponded to areas of increased permeability
to HRP, related to operative stress and/or regional differences of
endothelial permeability reported also in aortas of non-operated

control animals (Stemerman, 1981).

Morphology of Stress Fibers in Normal and Regenerated Rat Aortic

Endothelium using Thin Section Electron Microscopy

The general fine structure of the endothelial cell layer of
control rat aorta and regenerated endothelium of rat aortas 1 week, 2
weeks, 3 weeks and 4 weeks following balloon injury is shown in the
composite picture of low power electron micrographs in Figure 5.

As compared to control endothelium, endothelial cells of the
regenerated endothelium appeared larger and contained more organelles
such as prominent Golgi apparatus and rough endoplasmic reticulum. 1In

particular, stress fibers, organelles that are implicated in cellular

adhesion to the subendothelial matrix (Burridge, 1981; Byers and
Fujiwara, 1982; Byers et al, 1984; Fujiwara et al, 1986; White et al,
1983; Wong et al, 1983) were seen infrequently in control aortic
endothelium while they were frequent in regenerated endothelium, most
prominently at 1 week after segmental denudation of endothelial cell
layer. These observations are in agreement witb well-—established
knowledge on the presence of an increased number of stress fibers in
gortic endothelial cells during the regeneration that follows

experimental endothelial denudation demonstrated by immunof luorescence
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and morphometric techniques (Gabbiani et al, 1983; Huttner et al,
1985). Longitudinal and transverse views of individual stress fibers
from regenerated endothelial cells are illustrated in Figures 6 _to 8.
The stress fibers are made up of bundles of cytoplasmic
microfilaments with periodic dense bodies. They are oriented axially
in endothelial cells and attached exclusively to the abluminal plasma
membrane where they show coaxial alignment with extracellular matrix
fibers of the subendothelium (Huttner et al, 1985; White and Fujiwara,
1986). In the cytoplasm of endothelial cells, adjacent to the
attachment domain of stress fibers, there is an electron dense zone

which has been named "subplasmalemmal microfilament condensation"

(Huttner et al, 1985) and is structurally similar to "dense bands"
considered to be an integral part of force transmissions apparatus in

smooth muscles (Gabella, 1984; Huttner, et al, 1989).

Morphometric Analysis on Stress Fiber Volume Densities in Normal and

Regenerated Rat Aortic Endothelium using Thin Section Electron

Microscopy

The results of morphometric analysis on stress fiber volume
densities are summarized in Table 1 and depicted graphically in Figure
9. An ANOVA F test (which compares the variability between groups to
the variability within groups) showed statistically significant
differences (p < 0.01) among the mean stress fiber volume densities of

(continued on page 37)
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Figure S: Composite picture of thin section electron micrographs of
endothelium from control rat aorta and regenerated endothelium from
rat aortas 1 week, 2 weeks, 3 weeks and 4 weeks following bYalloon
injury. Note that regenerated endothelial cells at 1 wee™z, as
compared to control, appear larger, contain more organelles such as
prominent Golgi apparatus and rough endoplasmic reticulum and
particuarly are equipped with a large number of well developed stress
fibers (asterisks). At 2 weeks, 3 weeks, and 4 weeks the endothelial
cells appear still larger than control but stress fibers are less

numerous than at 1 week. Note that stress fibers appear cut

transversally in all micrographs as endothelial cells of all aortas

have been cut transversally. x 19,000. v
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Figure 6: Thin section electron micrograph of an endothelial cell
from regenerated endothelium of rat aorta at 1 week after balloon
injury showing a prominent stress fiber cut longitudinally. The
stress fiber is made up of bundles of microfilaments with periodic
dense bodies. The microfilaments are attached to the abluminal plasma
membrane (seen here tangentionally cut) and show coaxial alignment
with extracellular matrix fibers of the subendothelium. The close
association between the cytoplasmic ctress fibers (predominantly
actin) and extracellular matrix fibers (predominantly fibronectin) has
been named fibronexus in other in wvivo and in vitro systems (Singer,

1979; Singer et al, 1984). X 59,000.
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Figure 7: This thin section electron micrograph of endothelial cells
from regenerated endothelium of rat aorta at 1 week after balloon
injury shows a longitudinelly cut stress fiber, similar to that seen
in Figure 6. Here however, the stress fiber-membrane attachment
domain is better visualized as the plasma membrane is favourably
oriented. The electron dense cytoplasmic zone adjacent to the
attachment domain (arrows) has been named "subplasmalemmal
microfilament condensation' (Hittner et al 1985) and is identical to
"dense bands'" considered to be an integral part of the force
transmission apparatus in smooth muscle (Gabella 1984). Note the
absence of plasmalemmal vesicles at the stress fiber-membrane

attachment domain, contrasting the numerous plasmalemmal vesicles ..

present in the endothelial plasma membrane not specialized for cell to

matrix attactment. X 59,000.
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Figure 8: Thin section electron micrograph of endothelial cells from
regenerated endothelium of rat aorta at 1 week after balloon injury
showing a large stress fiber cut transversally. Note cross section of
extracellular matrix fibers in the subendothelium adjacent to the
stress fiber. The diameter of the extracellular matrix fibers is

larger than that of the microfilaments composing the stress fiber.

x 93,000.

.
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Table 1

Stress fiber volume densities in control and regenerated rat
aortic endothelium following segmental balloon catheter injury
in various experimental groups*.

Volume Densities (cm®)

Regenerated Endothelium

Control 1 wk 2 wks 3 wks 4 wks
o 1 0.01511 0.04435 0.02122 0.02338 0.03081
i
g 2 0.02057 0.04001 0.01230 0.00090 0.02142
o
5 3 0.01604 0.05617 0.01249 0.02396 0.01183

Meant 0.01724 0.04684¢ 0.01534§ 0.01608% 0.02135%

SEMI 0.0020655 0.0059139 0.0036034 0.009298 0.0067105

* Stress fiber volume density is the ratio of the volume of
endothelial stress fibers to the volume of endothelial
cell layer.

t ANOVA F test showed significant differences among the mean
stress fiber volume densities for the five groups (P < 0.01).

t Significantly increased over each of the four other means
(by Tukey's method with overall significance level a = 0.05).

§ Not significantly different from the control value (by
Tukey's method with overall significance level o = 0.05).

I Standard error of mean.
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Figure 9: Morphometric data on mean stress
fiber volume densities in control and
regenerated rat aortic endothelium.

Based on Table 1. Bars represent + SEM.
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(continued from page 26)

the normal and regenerated rat aortic endothelium from the S groups
tested, namely the non-operated control, 1 week, 2 weeks, 3 weeks and
4 weeks groups. This indicated that most of the total variability was
due to differences between groups rather than to differences within
groups, implicating true biological variation as the source of
variation as opposed to measurement error variation. In order to
deternine what specific differences there were between the various
groups, multiple pairwise comparisons of the means, applying Tukey's
method, were performed.

There was a significant increase in stress fiber volume density in
the regenerated rat aortic endothelium at 1 week after the segmental
balloon injury as compared to the stress fiber volume density in
control endothelium from non-operated animals (p < 0.01). The stress
fiber volume density in regenerated rat aortic endothelium at 2 weeks
following the aortic segmental balloon injury returned to near control
value and remained low at 3 weeks and 4 weeks. These changes were
ref lected in statistical analysis as the mean stress fiber volume
density in regenerated rat aortic endothelium at 1 week after the
segmental balloon injury was significantly increased as compared to
the stress fiber volume densities in regenerated endothelium =zt 2
weeks, 3 weeks, and 4 weeks (p < 0.01, p < 0.05 and p < 0.05
respectively). Furthermore, the mean stress fiber volume densities in
regenerated rat aortic endothelium at 2 weeks, 3 weeks and &4 weeks

following aortic segmental balloon injury were not significantly
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different from the mean stress fiber volume density in control
endothelium (p > 0.05 for all three pairwise comparisons). A second
ANOVA F test excluding the 1 week group was also performed which
showed no significant differences (p > 0.05) among the mean stress
fiber volume densities for the remaining four groups (namely the
control, 2 weeks, 3 weeks, and 4 weeks groups), further indicating

that. the 1 week group had the largest contribution in the test.

Tab

LN 4
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CURRENT STATE OF KNOWLEDGE AND DISCUSSION OF RESULTS

Permeability Pathways in Vascular Endothelium

The ultimate purpose of the circulatory system is to allow
continuous exchange of substances between blood and tissues. Because
of its strategic location, the endothelial cell layer in most areas
assumes the role of a barrier regulating this exchange. 1In arteries,
the endothelial cell layer acts as a selective permeability barrier
and is essential to regulate the influx of plasma macromolecules into
the the arterial wall and particularly to maintain the normal
microenvironment and growth pattern of underlying smooth-muscle cells
(Ross, 1986).

Structurally, a continuous endothelial cell layer provides a
number of potential routes to the subendothelial space, via channels
along intercellular tight junctions, via plasmalemmal vesicles and/or
transendothelial channels and in the lipid phase of the endothelial
plasma membrane.

Intercellular Tight Junctions. Open or leaky tight junctions are

well established as pathways of water-soluble macromolecules across
continuous endothelium at certain segments of the microvascular bed,
notably the venous ends of the capillaries and/or in the
post-capillary venules under both physiclogical and pathological
conditions (Majno, 1965; Majno and Palade, 1961; Majno et al, 1969;

Simionescu N et al, 1978). The permeability characteristics of tight
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junctions in arterial capillaries (Karnovsky, 1967; Michel, 1979;
Palade et al, 1979; Renkin, 1979; Simionescu N et al, 1975), and in
arteries (Florey et al, 1970; Giacomelli and Wiener, 1974; Huttner et
al, 1973c; Hittner et al, 1973d, Schwartz and Benditt, 1972; Stein and
Stein, 1972), however, are a matter of some controversy.

Nevertheless, it appears that the tight junctions of arterial
endothelium are normally impermeable or have low permeability to
macromolecules in most regions. They are, however, relatively labile
structures that may widen under the influence of hemodynamic factors
such as high blood pressure and possibly of vasoactive agents (Huttner
et al, 19734; Nagy et al, 1979; Thorgeirsson and Robertson, 1978).

The leakiness of the endothelium in the venous capillaries and
post-capillary venules to macromolecules correlates with the presence
of single-stranded and discontinuous tight junctions, while the
relative impermeability of the endothelium in the arterial end of
capillaries and of arterioles correlates with the presence of
multistranded and continuous belts of tight junctions between adjacent
endothelial cells in these vascular segments (Simionescu M et al,
1975; Simionescu N et al, 1978). Structurally discontinuous,
mechanically weak tight junctions between adjacent endothelial cells
in the venous ends of the microcirculation may provide sites for a
small number of leaks allowing the low level non-selective passage of
nacromolecules across the endothelial cell layer under normal
conditions (Bundgaard and Frgkjaer-Jensen, 1982). They are obvious

sites of endothelial cell separation which results in a large increase
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in protein efflux and elevated lymph-to-plasma total protein ratio in
inflammation (Grega, 1986). This view of microvascular permeability
is supported by recent physiological data (Grega, 1986; Grega et al,
1982; Olesen and Crone, 1984; Olesen and Crone, 1986) and is
consistent with the notion that all transcapillary solute transport
occurs by passive processes in accordance with the original pore
theory (Bundgaard et al, 1979; Pappenheimer, 1953).

In large arteries, such as the aorta, the complexity of
endothelial tight junctions lies generally between "leaky" venous-type
and “tight" capillary-type tight junctions, being characterized by
mostly continuous single- or double-stranded junctional belts (Hiittner
et al, 1973b; Hittner et al, 1973c; Huttner et al, 1982; Hiittner and
Peters, 1978; Hiittner et al, 1985; Simionescu M et al, 1976). There
is, however, considerable heterogeneity in tight junctional structure
from cell to cell even within the same aortic segment, with
discontinuous tight junctions also occurring focally in normal aortic
endothelium (Huttner et al, 1982; Hiittner and Peters, 1978). Cell
junction heterogeneity correlates with areas of different permeability
in this cell layer as evidenced by preferential labelling of some
interendothelial clefts following in vivo injection of ultrastructural
tracers both under normal and under pathophysiological conditions
(Huttner et al, 1973b; Huttner et al, 1973c; Hittner et al, 1973d).

It correlates also with observations made on asortic endothelium
following addition of ruthenium red, after fixation of the endothelial

cell layer. This cationic extracellular tracer was observed to



i

M.S. Cokay - 42

penetrate the entire length of intercellular spaces between some
endothelial cells but it was stopped by tight junctional elements
between other endothelial cells (Martinez-Palomo, personal
communications). Preferential penetration of some interendothelial
clefts by silver salts has also been observed in aortic endothelium
(Majno et al, 1985; Zand et al, 1982). Thus, large-vessel endothelium
with its "tight" and "leaky" regions seems to mirror the situation in
the microcirculation with its juxtaposed "tight® and *leaky" segments,
where the mechanically weak "leaky" regions react primarily to various
hemodynamic and chemical stimuli (Hittner et al, 1973d).

Plasmalemmal Vesicles and/or Transendothelial Channels. The large

population of plasmalemmal vesicles in continuous endothelium is its
most conspicuous anatomical feature (Bruns and Palade, 1968; Wagner
and Robinson, 1984). It has been suggested, on the basis of studies
with fine structural tracers, that these vesicles and/or
transendothelial channels represent the sole avenue for exchange of
water-soluble macromolecules across capillary endothelium under
physiological conditions (Palade et al, 1979; Simionescu N, 1983;
Simionescu N et al, 1975). It has further been suggested that
vesicular transport across the microvascular endothelium occurs in the
perfused rat heart (Boyles et al, 1981) and in frog mesenteric
capillaries (Clough and Michel, 1981; Turner et al, 1983) and
vesicular transport has also been implicated as a mechanism

recponsible for increased permeability of arterial endothelium in
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various pathophysiological situations (Thorpgeirsson and Robertson,
1978).

Recent investigations have identified a number of distinct
properties of the membrane of endothelial plasmalemmal vesicles,
including the paucity or absence of anionic sites detected by
cationized ferritin binding, suggesting that these structures may
favour the penetration of anionic molecules (such as the majority of
plasma proteins) for diffusion or vesicular transport (Simionescu M et
al, 1985), the high concentration of lectin receptors (Simionescu M et
al 1982) and of binding sites for albumin (Ghitescu et al, 1986) as
well as the presence of a specific antigen, detected by its monoclonal
antibody (Schlingemann et al, 1985) only on vesicles and not on the
adjacent plasmalemma proper. A characteristic striped surface
structure has been also observed on the cytoplasmic aspect of
plasmalemmal vesicles, distinct from that of coated pits and
plasmalemma proper (Peters et al, 1985). Quick-freeze, deep-etch
studies (Bearer et al, 1985) have identified furthermore an internal
structure in the diaphragm of plasmalemmal vesicle, similar to that of
fenestral diaphragms (Clementi and Palade, 1969). All these data seem
to rule out derivation of plasmalemmal vesicles by random
invaginations from the plasmalemma and suggest their potential rcle in
macromolecular transport. Vesicular transport of various plasma
constituents such as low-density lipoproteins (Vasile et al, 1983),
glycosylated albumin (Williams et al, 1981), albumin and fibrinogen

(Bendayan, 1980; Yokota, 1983), transferrin (Jefferies et al, 1984)
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and insulin (King and Johnson, 1985) has been suggested in various in
vitro and in vivo systems.

Although these data certainly implicate plasmalemmal wvesicles in
receptor-mediated transfer of ligands across vascular endothelium and
are consistent with observations on the uptake at the luminal surface
and discharge at the tissue front of cationized ferritin by vesicles,
the role of plasmalemmal vesicles and/or transendothelial charaels in
passive, non-selective permeation of macromolecules across the
endothelial cell layer is questionable. Studies using a rapid
freezing-substitution method of fixation suggest that the number of
plasmalemmal vesicles and the fusion of vesicles to form
transendothelial channels may be related to a slow influence of
chemical fixatives (Mazzone and Kornblau, 1981; McGuire and
Twietmeyer, 1983; Robinson et al, 1984; Wagner and Andrew, 1985;
Wagner and Robinson, 1982). An extreme example illustrating how
chemical fixatives may effect the plasma membrane is the extensive
vesiculation that occurs, including formation of plasmalemmal vesicles
and transendothelial channels in endothelial cells fixed with
glutaraldehyde, in the presence of the membrane detergent
dimethylsulphoxide. The electron microscopic studies of frog
mesenteric capillaries with tannic acid as a mordant imply that most
of the endothelial vesicles are permanent or semipermanent structures
which may be labelled by macromolecular tracers through 4iffusion
rather than through transport (Bundgaard, 1980; Bundgaard and

Frgkjaer-Jensen, 1982; Bundgaard et al, 1979; Bundgaard et al, 1983;
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Frgkjaer-Jensen, 1980). In this context, extensive labelling of
endothelial vesicles by ultrastructural tracer molecules reported in
various pathophysiological situations may imply that these tracers
dif fused into the vesicles from the subendothelial space after they
had traversed focally opened endothelial tight junctions (Huttner and
Gabbiani, 1982).

Lipid Phase of the Endothelial Plasma Membrane. Diffusion in the

lipid phase of the endothelial cell membrane has been proposed as a
mechanism of lipid transport across continuous endothelium (Scow et
al, 1976; Scow et al, 1980). According to this model of transport,
the relatively water-insoluble products of lipolysis (diglycerides,
monoglycerides and free fatty acids) would preferentially dissolve in
the outer layer of the endothelial plasma membrane. Hawving entered
this lipid phase, they could rapidly diffuse along the cell surface to
reach the abluminal side, where binding to extracellular matrix or
transfer to other cells might occur (Scow et al, 1976; Scow et al,
1980). Lipoprotein lipase, an enzyme which hydrolyses the
triglyceride component of plasma chylomicrons, appears to be bound to
the glycoprotein coat of the luminal endothelial surface (Dicorleto
and Zilversmit, 1975), thus this hypothetical scheme indicates the
potential for active involvement of endothelium in the transport of

complex lipids into the arterial wall. Another mechanism whereby

lipoproteins may cross the endothelial cell layer is receptor-mediated
uptake and discharge (Vasile et al, 1983) by the endothelial cells as

noted above. In this context, receptor density on the endothelial
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cell surface may influence lipid deposition in the arterial wall under
various pathophysiological conditions (Day et al, 1985). The fate of
plasma lipids and other macromolecules which have reached the
subendothelial space may also be influenced by endothelium-associated
connective tissue elements., For example, certain glycosaminoglycans
can selectively bind low—density lipoproteins (Iverius, 1972), thus
changes of intimal glycosaminoglycans synthesized by the endothelial
cells and/or smooth muscle cells may be an important factor
contributing to intimal 1lipid accumulation (Alavi et al, 1983; Alavi
et al, 1989; Falcone et al, 1984; Kinsella and Wight, 1986; Minick et
al, 1977; Moore, 1989; Moore et al, 1982; Moore and Richardson, 1985;
Richardson et al, 1980).

As it is reflected in the discussion above, there ’is no generally
accepted transport pathways across vascular endothelium. However,
currently available information is consistent with the view that while
normal rat aortic endothelium transports slight amounts of proteins
through plasmalemmal vesicles, the overall permeability of the
endothelial cell layer to water-soluble substances including proteins
depends on the complexity of tight junctions interconnecting adjacent
endothelial cells. There is heterogeneity in tight junction structure
between the endothelium of various normal rat arterial segmerts and
considerable heterogeneity in tight junction structure from cell to
cell even within the same normal rat aortic segment. Cell junction
heterogeneity correlates well with areas of different permeability in

rat aortic endothelium both in normal and pathophysiological
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conditions (Hittner et al, 1973b; Huttner et al, 1973¢; Hittner et al,

1973d; Hittner et al 1989).

Permeability of Regenerated Aortic Eundothelium

There are only a few reported studies dealing with permeability
characteristics of regenerated aortic endothelium. Using EB-protein
complex as a marker of denudation and re—endothelialization various
investigators consistently demonstrated that there is no difference of
permeadbility to EB between the non-denuded normal and regenerated
rabbit aortic endothelium (Stemerman et al, 1977; Stemerman, 1981)
although some studies describe areas of increased permeability to EB
in areas with presumed increased hemodynanmic stress, particularly in
the aortic arch . Using HRP as a more sensitive marker for
endothelial permeability on en face aortic preparations, one study
demonstrated focal areas of increased permeability appearing as brown
spots both in normal and regenerated rabbit aortic endothelium,
however, the percentages of surface areas spotted brown were not
significantly different between normal and regenerated endothelium
(Stemerman, 1981).

As far as the structural aspects of regenerated rat aortic
endothelium is concerned, morphometric studies using freeze-fracture
electron microscopy (during regeneration that follows experimental
balloon denudation in a setting similar to the studies presented here)

furnished evidence that tight junctions acquire an increased degree of
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complexity in regenerated as compared to normal rat aortic
endothelium. The increased complexity of tight junctions in
regenerated endothelium was interpreted as a reflection of increased
endothelial cell turnover. It is well established that endothelial
'cells following injury move, while maintaining a monolayer sheet; this
probably requires a continuous breakdown and rebuilding of their
junctions (Huttner et al, 1985). Although variation in the number of
junctional elements provides up to now the best correlation with
observed differences in tight junction permeabdility (Claude and
Goodenough, 1973; Easter et al, 1983; Friend and Gilula, 1972;
Simionescu N et al, 1978), the functional significance of these
findings was not clear as these structural studies were not
accompanied by permeability studies on the regenerated endothelium.
Also these structural changes in regenerated endothelium were not
followed in t‘me-sequence studies.

The studies presented in this thesis were designed to compare the
permeability of the normal and regenerated rat aortic endothelium to
intravenously injected EB and HRP in en face aortic preparations at
various time points during regeneration that follows balloon
denudation of rat aortic endothelium.

The results of these studies indicated that the permeability of
the re-endothelialized areas to both EB and HRP was identical (at the
level of the sensitivity of techniques utilized i.e. gross evaluation,
unaided and under a magnifying lens, of en face aortic preparations)

to the endothelium of non-operated control aortas as well as of the
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non-denuded segments of the experimental aortas in all time points
studied from the early stages of regeneration to complete
re-endothelialization of the denuded aortas, that is from 1 week to 4
weeks following ballon injury. These observations suggest that
healing in vascular endothelium following a single denudation injury
results in an endothelial monolayer that acquires and maintains normal
permeability to water-soluble substances. The results of the
time-sequence studies presented here are in agreement with those of
others testing regenerated aortic endothelium at a single time point
with intravenously injected EB and/or HRP (Stemerman et al, 1977;
Stemerman, 1981), and also provide indirect support for the view that
the endothelial monolayer during the process of regeneration may
maintain normal permeability in the face of high cell turnover by
increased turnover and complexity of the tight junctions
interconnecting neighboring cells in the monoliayer (Hittner et al,
1985). The overall increase in tight junction complexity probably
compensates for leaky sites that may occur in increased numbers in
regenerated as compared to normal aortic endothelium (Huttner et al,
1985; Schwartz et al, 1975).

These results do not necessarily contradict the reported increase
in permeability of re-endothelialized intima to lipoproteins as
compared to normal rabbit intima (Day et al, 1985; Schwenke and
Zilversmit, 1989). Diffusion in the lipid phase of endothelial cell
membrane (Scow et al, 1976) or receptor-mediated uptake and discharge

(Vasile et al, 1983) depending on receptor density on the endothelial
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cell surface (Day et al, 1985) may play a role in lipoprotein
transport during the process of regeneration independently of pathways

available to water-soluble substances.

Stress Fibers in Normal and Regenerated Rat Aortic Endothelium

Stress fibers are bundles of actin filaments containing myosin and
alpha-actinin that are found in many cultured cells, but they are
present only in vascular endothelial cells among non-muscle cells in
living organisms; their function is probably related to isometric
contraction and adhesion (Abercrombie and Dunn, 1975; Buckley and
Porter, 1967; Burridge, 1981; Byers and Fujiwara, 1982; Byers et al,
1984; Fujiwara and Pollard, 1976; Fujiwara et al, 1986; Geiger et al,
1984b; Gordon et al, 1982; Lazarides and Weber, 1974; Lloyd et al,
1977; Mangeat and Burridge, 1984; Norton and Izzard, 1982; Weber and
Greoschel-Stewart, 1974; Wong et al, 1983). Stress fibers have also
been called central actin microfilament bundles as opposed to the
network of actin microfilaments located at the periphery of
endothelial cells (Kim et al, 1989). Stress fibers are relatively
rare in normal wvascular endothelium in vive (Gabbiani et al, 1983),
but are more prominent in endothelial cells of regions exposed to high
velocity flow, such as the left ventricle, aortic valve and aorta
(White and Fujiwara, 1986; Wong et al, 1983). Even within the aorta
there are marked differences in stress fiber expression between the

thoracic and abdominal ecgments, the stress fibers being more numerous
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in the abdominal aorta where branching is more pronounced that could
lead to more non-laminar flow (White et al, 1988; White and Fujiwara,
1986). Furthermore, in the thoracic segment they occur mainly in
endothelial cells located immediately below intercostal artery
pranches, sites obviously subjected to different flow pattern than the
rest of the aortic luminal surface (Gabbiani et al, 1983).

Stress fibers in vascular endothelial cells in vivo become
numerous during hypertensicn (Gabbiani et al, 19/5; Gabbiani et al,
1979; White and Fujiwara, 1986; White et al, 1983), in areas of
experimentally elevated shear stress (Kim et al, 1989) and develop in
most of the aortic endothelial cells during the regeneration that
follows experimental endothelial denudation (Gabbiani et al, 1983;
Huttner et al, 1985). This implies that stress fibers play a role in
increased cellular adhesions to the subendothelial matrix during
increased hemodynamic stress (as in branching regions of normal
arteries and during hypertension in general) or possibly when the
compositon of subendothelial matrix is altered, say during endothelial
regeneration in vivo or in culture conditions (Huttner et al, 1989).
While stress fibers in vivo are oriented axially in the direction of
the blood flow; stress fibers in cultured endothelial cells run both
circumferentially along the cell boundary and across its width
(Gotlieb et al, 1984; Rogers and Kalnins, 1983; wWong and Gotlieb,
1988). These changes in the cytoskeleton may be due either to the
lack of proper subendothelial matrix components or the lack of blood

flow or both under culture conditions. The role of subendothelial

[ TR
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matrix composition is further suggested by marked species differences
in stress fiber expression. It is well established that the rabbit
aortic endothelium contains significantly more stress fibers than that
of the rat. Different organization of the subendothelial matrix in
the rat and rabbit has been documented (White et al, 1984) and
implicated, in addition to presumed differences in normal hemodynamic
states between these two species (White et al, 1988).

It has also been postulated that stress fibers may play a role in
cellular migration in situ (Gordon et al, 1982). This suggestion,
however, conflicts with data from in vitro studies (Herman et al,
1981; Lewis et al, 1982) whereby it was demonstrated that stress fiber

expression and cell migration are inversely related. A recent in vivo

study correlates with the in vitro observations by demonstrating that
the extent of stress fiber expression in the regenerating endothelium
is dependent upon the location of the endothelial cells in the
regenerating sheet; there is a reduced stress fiber expression at the
leading edge of the regenerating sheet as compared to the rest of the
regenerating endothelium (White et al, 1988). While these in vive
observations give further support for the inverse correlation between
migration and stress fiber expression inferred from in wvitro studies,
they do not contradict the well established observations that during
the early stages of regeneration endothelial cells contain a
strikingly increased number of stress fibers as compared to normal

endothelium (Gabbiani et al, 1983; Huttner et al, 1985; White et al,

1988).
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Stress fibers in vivo are connected exclusively to the abluminal
plasma membrane of endothelial cells (Huttner et al, 1985). At the
site of stress fiber attachment there is an electron dense cytoplasmic
zone adjacent to the endothelial plasma membane that has been called

*subplasmalemmal microfilament condensation™ (Huttner et al, 1985)

(see figure 7). Subplasmalemmal microfilament condensations at the
abluminal endothelial plasma membrane occur without associated stress
fibers as well, both in normal and regenerated endothelial cells
(Huttner et al, 1985). The quantification of stress fiber related and
unrelated subplasmalemmal microfilament condensations shows that the
total surface density of these structures does not change in
regenerated as compared to normal aortic endothelium, thus suggesting
that endothelial cells are normally equipped with structures to which
stress fibers can be connected when they increase in numbers under
stressful conditions (Huttner et al, 1985).

Subplasmalemmal microfilament condensations are also seen at the
lateral endothelial cell .embrane in association with tight junctions
(Martinez-Palomo et al, 1980; Pinto da Silva and Kachar, 1982; Shasby
et al, 1982; Huttner et al, 1985), however, these are never associated
with stress fibers in vivo (Huttner et al, 1985). Subplasmalemmal
microfilament condensations at the abluminal endothelial cell piasma

membrane are identical to "focal contacts" with the substratum

described in various cultured cells (Abercrombie and Dunn, 1975; Heath

and Dunn, 1978; Izzard and Lochner, 1976) and also to "dense bands"

considered to be an inte_ral part of force transmision apparatus in
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smooth muscle (Gabella, 1984). It is interesting to note that
membrane domains specialized for stress fiber attachment are different
from the rest of the endothelial plasma membrane; they are resistant
to formation of filipin-sterol complexes suggesting that they are
probably too rigid to be easily deformed (Huttner et al, 1985).
Furthermore, intracytoplasmic actin and actin-associated proteins,
particularly alpha-actinin and vinculin as well as concomitant
extracellular fibronectin have been localized at cell to matrix
attachment sites in various in vitro and in vivo systems (Byers and
Fujiwara, 1982; Chen and Singer, 1982; Couchman et al, 1983a;
Couchman et al, 1983b; Geiger, 1979; Geiger et al, 1984a; Geiger et
al, 1980; Hay, 1981; Herman et al, 1984; Hynes, 1981; Hynes and
Yamada, 1982; Kleinman et al, 1981; Singer, 1982; Singer and Paradiso,
1981; Tomasek et al, 1982). Recently an integral membrane protein
associated with sites of microfilament-membrane attachment has been

identified (Rogalski and Singer, 1985). Alpha-actinin is an

actin-associated protein of molecular weight of 100, 000; it seems to
act as a cross-linker and a spacer between actin filaments (Jockusch
and Isenberg, 1981). A number of proteins are known to accumulate at
sites of actin-membrane association where cells adhere to substrates
(Weeds, 1982). Vinculin, intracellular protein with molecular weight
of 130, 000 (Geiger, 1979) and the vinculin-binding protein talin
(Burridge, 1981; Burridge and Connell, 1983), are found at focal
contacts or adhesion plaques of non-muscle cells and also at the dense

bands (but not at the dense bodies) of smooth muscle cells (Geiger et
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al, 1980). These proteins localized at the cytoplasmic side of the
cell membrane have been implicated in the linkage of actin filaments
to the cell membrane although the structural nature of the linkage is
not clear (Beckerle, 1986); a direct interaction between a-actinin and
vinculin (Craig, 1985) and the role of an 82, 000 molecular weight
protein (Beckerle, 1986) have been recently suggested. Fibronectin, a
200, 000 molecular weight glycoprotein, has been shown to mediate
adhesion of the cell membane to the stroma in various in vitro and in
vivo systems (Hynes and Yamada, 1982). Fibronectin has an affinity
for collagen, glycosaminoglycans and also for the surface of many cell
types; it also has a tendency towards self-association, which can
result in the formation of fibrils. Studies using monoclonal antibody
technology suggest that the fibronectin receptor is a transmembrane
glycoprotein complex {Brown and Juliano, 1986; Hasegawa et al, 1985;
Knudsen et al. 1985; Rogalski and Singer, 1985) that has an
extracellular binding site for fibronectin (Horwitz et al, 1985) in
addition to a domain that interacts with the vinculin-binding protein,
talin (Horwitz et al, 1986). The transmembrane linkage of talin with
the extracellular matrix via the fibronectin receptor provides one
mechansism by which cytoplasmic components can become functionally
coupled to extracellular matrix (Beckerle, 1986). These data suggest
complex but specific interactions between cytoplasmic actin filaments
and extracellular fibronectin fibers across the plasma membrane at

cell-to-matrix attachment sites.
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The microfilaments of the stress fibers attached to the abluminal
endothelial plasma membrane show coaxial alignment with extracellular
matrix fibers of the subendothelium (see figure 6). Using
immunof luorescence and immunoelectron microscopy, similar extacellular
matrix fibers have been shown in transformed fibroblasts and in
myofibroblasts of granulation tissue in vivo to consist of fibronectin
and the close association between bundles of cytoplasmic actin
filaments (stress fibres) and bundles of extracellular fibronectin

microfibrils has been named the "fibronexus", a structure specialized

for increased cell-to-matrix adhesion (Singer, 1979; Singer et al,
1984). As discussed above, aortic endothelial cells also develop
abundant stress fibers and adhesive structures, structurally identical
to fibronexus in situations requiring their increased attachment to
the subendothelium such as in hypertension (Gabbiani et al, 1975;
Gabbiani et al, 1979; White and Fujiwara, 1986; White et al, 1983), in
experimental conditions with elevated shear stress (Kim et al, 1989)
and particularly during the regeneration that follows endothelial
denudation (Gabbiani et al, 1983; Huttner et al, 1985). While it is
relatively easy to understand the need for an increased endothelial
cell attachment to the subendothelial matrix (and consequently an
increased number of stress fibers) in conditions with increased
hemodynamic stress, the reason for a strikingly increased number of
stress fibers in endothelial cells during regeneration is not clear.
Altered matrix composition could explain the large number of stress

fibers consistently present in cultured cells, and has been implicated
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in marked species differences in stress fiber expression as discussed

above.

In analogy to these situations, it is conceivable that increased
number of stress fibers is needed for endothelial cell adhesion to the
subendothelial matrix because the composition of the subendothelial
matrix is altered during regeneration that follows balloon injury. It
is unlikely that the increased number of stress fibers is related to
an increased replication rate and movement in regenerating endothelium
(White et al, 1988). Although a significant increase in stress fiber
expression of regenerated as compared to normal endothelium is well
established (Gabbiani et al, 1983; Hiittner et al, 1985), there have
been no quantitative time-sequence studies on the frequency of stress
fibers in aortic endothelial cells during the process of regeneration
that follows endothelial denudation. A recent study, published during
the writing of this thesis, has demonstrated, qualitatively by
immunof luorescence microscopy, reversible changes in stess fiber
expression in regenerated rat aortic endothelium (White et al, 1978).

The present studies were designed to evaluate quantitatively the
frequency of stress fibers in time-sequence from the early stages of
regeneration to complete re-endothelialization of segmentally denuded
rat aortas. Statistical analysis of morphometric data on volume
densities of stress fibers indicated a significant increase in stress
fiber volume densities in regenerated endothelium at 1 week after
segmental balloon injury as compared to that of normal endothelium.

The stress fiber volume density in regenerated aortic endothelium at 2
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weeks following segmental balloon injury returned to near normal value
which was not significantly different from that of the normal aortic
endothelium. Furthermore, stress fiber volume densities at 3 weeks
and 4 weeks following segmental balloon injury remained near normal
values which were again not signficantly different from that of the
normal aortic endothelium. These observations suggest that healing in
vascular endothelium following a single denudation injury results in
an endothelial monolayer that acquires an increased number of stress
fibers at the early stages of regeneration; however, the phenomenon of
increased stress fiber expression during the process of regeneration
is transient.

These results are in agreement with previous reports indicating
the presence of an increased number of stress fibers in aortic
endothelial cells during the regeneration that follows experimental
endothelial denudation (Gabbiani et al, 1983; Huttner et al, 1985).
They correlate well and give quantitative support, furthermore, to the
recent immunof luorescence study, published during the writing of this
thesis, which demonstrated reversible changes in stress fiber
expression in regenerated rat aortic endothelium (White et al, 1988).
The transient increase in stress fiber expression may reflect a
temporary demand for greater adhesive capabilities of endothelial
cells until the subendothelial extracellular matrix is remodeled
during the regeneration process following balloon injury. The
significant increase in stress fiber expression demonstrated at 1 week

in the current study contrasts the significant increase in stress
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fiber expression demonstrated at 2 weeks in a previous report (Huttner
et al, 1985). This discrepancy may be related to differences in
experimental techniques of endothelial denudation (short versus long
aortic segments) and sampling for electron microscopy (sampling from
fixed site versus sampling near the advancing edge of regenerating
endothelium). Although, the results presented here are based only on
the evaluation of the relative volumes of stress fibers in endothelial
cell layers, the direction of changes implicates that increase in
stress fibers in regenerating vascular endothelium that follows a
single injury is transient in nature.

On the basis of the results presented in this thesis and those of
others elaborated in the discussion, it may be hypothesized that
vascular endothelium attempts to maintain its structural and
functional integrity during the process of regeneration on one hand by
forming more complex tight junctions to maintain adequate cell to cell
interactions and normal permeability in the face of high cell turnover
during the early stages of endothelial regeneration and on the other
hand by developing an increased number of stress fibers to provide
adequate cell to matrix interactions in the face of a probably
defective subendothelial matrix during the early stages of
regeneration. It may be presumed that increased tight junction
complexity returns to normal in parallel with the establishment of
normal cell turnover in a quiescent endothelial monolayer upon
completion of regeneration, in analogy to the transient nature of

increased stress fiber expression that provides adequate cell to
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matrix adhesion until the subendothelial matrix is remodeled to its
normal state upon completion of regeneration.

Although the data presented in this thesis represent only two
selected aspects of regenerated endothelium, they are consistent with
the view that changes in regenerating vascular endothelium are
transient in nature and the structural and functional integrity of the
endothelial monolayer is eventually reestablished upon the completion

of regeneration following a single injury.
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SUMMARY AND CONCLUSIONS

Endothelial cells line insides of arteries, veins, capillaries and
lymphatics as a monolayer. Continuity of this monolayer, particularly
in arteries, is vital to maintain all major properties of endothelium
such as metabolic activity, thromboresistant surface and barrier
function. These properties of the endothelial monolayer, in turn, are
crucial to normal functioning of blood vessel wall. Therefore, it is
important to answer the question whether the repair process in
vascular endothelium that follows injury results in an endothelial
monolayer that acquires normal structure and function or it results in
an endothelial monolayer that is defective in some way thus promoting
vascular disease.

Cell to cell interactions and cell to matrix interactions were
essential in maintaining the continuity of the endothelial monolayer.
In the studies presented in this thesis, one aspect of each of these
interactions were selected to evaluate the function of this cell layer
during the process of regeneration that follows denudation injury:

(1) the permeability of the normal and regenerated aortic endothelium
to EB and HRP was studied in time-sequence following segmental
denudation in en face rat aortic preparations as a reflection of cell
to cell interactions in the endothelial monolayer, (2) the volume
density of stress fibers in normal and regenerated rat aortic
endothelium was studied in time-sequence following segmental
denudation by morphometric analysis using thin section electron

microscopy as a re“lection of cell to matrix interactions in the
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endothelial monolayer.

The current state of knowledge on the permeability pathways in
vascular endothelium and on the morphology and function of stress
fibers in normal and pathophysiological conditions were reviewed and
the results of the experimental work presented in this thesis were
correlated with the available relevant information.

The results of the experiments presented here indicated that:

(1) the permeability of the regenerated endothelium to both EB and
HRP was identical to normal endothelium in all time points studied
from the early stages of regeneration to complete
re-endothelialization of the denuded aortas, implicating that the
endothelium maintains normal permeability to water soluble substances
during the process of rvegeneration that follows a single denudation
injury, (2) stress fiber volume density was significantly increased in
regenerated endothelium at 1 week after segmental balloon injury as
compared to that of normal endothelium; however, stress fiber volume
density returned to and remained at normal value at and after 2 weeks
following segmental balloon injury, indicating the transient nature of
increased stress fiber expression during the process of regeneration.

The results presented in this thesis, although representing only
two selected aspects of cell to cell and cell to matrix interactions
in regenerated endothelium, are consistent with the view that
structural and functional changes in regenerated vascular endothelium,
if present, are transient in nature and the integrity of the
endothelial monolayer is eventually reestablished during the repair

process that follows a single injury.
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ORIGINAL CONTRIBUTIONS TO KNOWLEDGE

(1) The observations that the permeability of regenerated rat
aortic endothelium to EB and HRP are identical to that of normal

endothelium at all time points during the process of regeneration

following a single injury [supporting previous observations made in
rabbit aortic endothelium at a single time point of regeneration
(Stemerman, 1981)]).

(2) Quantitative evidence for the transient nature of increased

stress fiber expression in regenerated rat aortic endothelium

[supporting recent qualitative observations made by immunofluorescence
microscopy and published during the writing of this thesis that the
changes in stress fiber expression are reversible in regenerated

endothelium (White et al, 1988)].
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