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Abstract

Proposed in this paper is a symbolic linearly elastodynamicmodel for the analysis and synthesis of MEMS. In

particular, the strain energy in the compliant links is computed from the results of a previous work, by representing

beam deflections with small-displacement screws. This allows for a systematic, coherent approach based on screw

theory. Two case studies are proposed to illustrate the application of the model. In the first example, the elastodynamic

model of a simple accelerometer is derived and compared to one available in the literature. In the second example,

a complex accelerometer is modeled, fabricated and tested.Comparison between the simulated results and data from

the literature or obtained experimentally shows the accuracy of the proposed model.

Index Terms

Compliant mechanism, accelerometer, dynamics, mechanical systems, stiffness matrix, cross-axis motions, syn-

thesis, analysis.

I. I NTRODUCTION

The development of micromachining techniques has led to therealization of more sophisticated MEMS devices—

see [1, 2]. In most instances, the underlying mechanisms aremodeled numerically [3], either through finite element

methods [4], or others, such as finite differences [5], relaxation methods [6], or the rigid finite element method [7].

These methods have been incorporated to numerical synthesis methods, among which we may cite the ground-

structure method [8], the load-path synthesis approach [9], and the homogenization method [10]. If these

methods apply to a broad range of problems, each solution gives information regarding the single problem

that corresponds to the chosen objective function, loads, constraints, mesh, optimization domain, etc. Hence,

these numerical methods tend to bury the physics of MEMS under the data. In contrast, when possible,

a symbolic approach yields mathematical relations that deepen the insight of the designer. This is thought

to be important, especially at the early stage of the design process. Accordingly, the method proposed here

may be regarded as a complement to numerical synthesis methods. The classical approach for the synthesis

of compliant micromechanisms is to simplify the representation of the physical problem by making a number of
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assumptions, which come at the expense of model accuracy.As the proposed method targets the early synthesis

of MEMS, simplicity of application to a wide range of design variants is thought to be more important than

model accuracy, leaving the final dimensional optimizationto more accurate numerical methods. Hence,

several of the classical assumptions of elastodynamic modeling will be adopted in the formulation below.

Such assumptions are at the root of other symbolic models forcompliant MEMS. One instance of this

is the replacement of the compliant links with two or more rigid links articulated with one or more kinematic

pairs—generally prismatic or revolute—constrained by translational or torsional springs. This is the idea behind

the pseudo-rigid-body model [11]–[13]. The main merit of this method is to be accurate over large displacements

while remaining relatively simple, thus allowing for a symbolic approach. However, this method is difficult to

implement when it comes to arbitrary displacements in space. Indeed, the pseudo-rigid-body model requires that

the spring-driven kinematic pairs be inserted at specific positions on the compliant links of the mechanism. If that

link is to deflect about several directions and axes—in translation and rotation—then several kinematic pairs need

to be added in series at different positions, which results in a complex kinematics model.

Another common assumption is that of small displacements ofthe micromechanism rigid-links from their

reference poses, which allows the linearization of their dynamics [14]. This assumption is valid in most MEMS

applications, since the small displacements involved tendto affect important quantities such as air friction, heat

dissipation, and electrostatic forces, but generally havelittle effect on the inertia and stiffness properties of the

mechanism. Hence, the small-displacement assumption willbe adopted here.

From the foregoing observations, it would be interesting tohave a systematic method for deriving symbolically

the complete linearized elastodynamics of complex lumped-compliance micromechanisms undergoing small dis-

placements. To this end, we resort to screw theory. We build upon the work reported in [15], which describes the

elastic properties of beams by representing their deformations with small-displacement screws. From these results,

we are able to compute the strain energy in a compliant link from the small-displacement screw representing

the relative displacement of the two rigid links it connects. The resulting model pertains to the linear theory of

elastodynamics [16], and should be relevant to the analysisand synthesis of complex micromechanisms (e.g. [2, 17]).

Two examples are included to illustrate the application of the proposed model. The first example treats the

simple case of the ADXL150, an accelerometer produced by Analog Devices; comparison of the results obtained

with those reported in [18] is included. The second example addresses the elastodynamics modeling of a complex

micromechanism composed of four rigid links and 18 compliant links. The model obtained is compared with

experimental results.
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II. DYNAMIC MODEL OF LUMPED-COMPLIANCE MECHANISMS UNDERGOINGSMALL DISPLACEMENTS

Since this is a lumped-parameter model, each component of the flexible mechanism falls into one of two categories.

The first category gathers them compliant links, which are assumed to have no inertia and a given non-null

compliance in all directions. The second category containsthe n rigid links, which are attributed a given inertia

and no compliance.

Moreover, the compliant links are modeled as Euler-Bernoulli beams, and all the rigid-link displacements are

considered to besmall. From this last assumption, the mass and stiffness properties of the links are assumed to be

constant, that is, independent of the mechanism posture.

A. The System Posture

Let us first define the fixed frameF , and frameR′
j attached to thejth rigid link, as shown in Fig. 1. Moreover,

we define frameRj as coinciding with frameR′
j whenever thejth rigid body lies in its equilibrium pose, designated

its reference pose. The origins of framesF , Rj , andR′
j are labeledO, Rj , andR′

j , j = 1, . . . , n, respectively,

whereRj is chosen to lie at the mass center of its corresponding rigidlink.

F

O

Rj

Rj

R′
j

R′
jrj

xj

Fig. 1. Thej th rigid link in its equilibrium pose and in a displaced pose

The displacement takingF into Rj is described by the pose arrayrj ≡ [θT
j ρT

j ]T , whereθj ∈ R
3 is defined

as the product of the natural invariants [19]θj anddj of the associated rotation andρj ≡ −−→
ORj ∈ R

3. The natural

invariants of a rotation are the unit-vectordj pointing in the direction of its associated axis, and its angle of rotation

θj . In order to avoid ambiguities, we use the right-hand rule inorder to determine the direction of the rotation

around the screw axis, and we constrainθj within a ball of radiusπ, that is,0 rad≤ ‖θj‖2 ≤ π rad. Notice that

this leaves an ambiguity at‖θj‖2 = π rad since, in that case,θj and−θj yield the same rotation. However, since

we are using these parameters to describe postures of the mechanism that are close to its static equilibrium posture,

this ambiguity may be resolved a priori by the good judgment of the designer.
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Similarly, we define the pose of thejth rigid body with respect to its equilibrium pose as

xj ≡ [νT
j ξT

j ]T , (1)

whereνj ∈ R
3 is the array of products of the natural invariants for the rotation takingRj into R′

j and following

the same convention as that used forθj ; moreover,ξj ≡ −−−→
RjR

′
j ∈ R

3. Since the posture of the mechanism is fully

described by the poses of all the rigid links, we define the6n-dimensionalposture array

x ≡
[

xT
1 xT

2 · · · xT
n

]T

. (2)

B. The System Kinetic Energy

For starters, we need an expression for the angular velocityωj of the jth link, which is known to be

linear in the derivatives of the linear invariants [19]. We start by computing rather Ωj , the angular-velocity

matrix of the jth link, defined as the product Q̇jQ
T
j , with Qj denoting the rotation matrix that carries F

into an orientation identical to that of Rj , making abstraction of the translation of the origin. In fact, Ωj is

CPM(ωj), with CPM ( · ) denoting the cross-product matrix1 of the three-dimensional Cartesian vector( · ).
Once Ωj is found, ωj is readily derived as its axial vector2, vect(Ωj).

The expression forQj in terms of the linear invariants is recalled for quick reference [19]:

Qj = djd
T
j + cos θj(1 − djd

T
j ) + sin θjCPM(dj),

in which 1 is the 3 × 3 identity matrix. Under the “small-displacement” assumption, θj is small enough so

that cos θj ≈ 1 and sin θj ≈ θj , the foregoing expression thus reducing to

Qj ≈ 1 + θjCPM(dj) ≡ 1 + CPM(θjdj) ≡ 1 + Nj (3)

where Nj ≡ CPM(νj).

Hence, the productQ̇jQ
T
j , which yields Ωj , can be approximated as

Ωj ≈ Ṅj(1 + NT
j ) = Ṅj + ṄjN

T
j (4)

The first term of the foregoing expression isbilinear in the natural invariants and their time-derivative, the

second isquadratic in the former, linear in the latter. Under our “small-displa cement” assumption, then,

we drop the second term and end up with an approximation forΩj involving only the first term of the

foregoing expression, whence the approximation ofωj follows:

1CPM(a) is defined as∂(a × x)/∂x, for any a,x ∈ R
3.

2The axial vectorvect(A) of a 3× 3 matrix A is defined, for every three-dimensional vectorx, as the three-dimensional vectora for which

(1/2)(A + A
T )x ≡ CPM(a)x ≡ a × x.
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ωj ≈ ν̇j , j = 1, . . . , n. (5)

Let us store the mass properties of thejth rigid link into its associatedinertia dyad [19]

Mj ≡





Ij O

O mj1



 , (6)

wheremj is the mass of thejth rigid link, Ij is its inertia matrix about pointRj , its mass centre, andO is the

3 × 3 zero-matrix. As a result, the kinetic energyT of the system is computed as

T =
1

2

n
∑

j=1

ẋT
j Mjẋj =

1

2
ẋT Mẋ, (7)

where

M ≡

















M1 O6×6 · · · O6×6

O6×6 M2 · · · O6×6

...
...

. . .
...

O6×6 O6×6 · · · Mn

















will be referred to as themass matrixof the mechanism.

C. The System Potential Energy

Consider theith compliant link that is clamped, at one end, to thejth rigid link, and, at the other end, to thekth

rigid link, with j < k. From the free-body diagram of theith compliant link shown in Fig. 2(a), we see that the

wrenchvi ∈ R
6 applied at the mass centerRj by the jth rigid link onto theith compliant link has to be balanced

out by wrenchui(si) ∈ R
6 applied at pointSi(si), wheresi is a curvilinear coordinate along the beam neutral axis.

The wrenches are defined so that their reciprocal product with the small-displacement screws defined in eq. (1) be

dimensionally meaningful. Therefore, the first three components of the wrench represent a moment, whereas the

last three represent a force, the latter applied at the corresponding mass centre, where the wrench is defined. Let us

Rj

Rj

Si

Si

si

si

vi

ui

XS,i

YS,i

ZS,i

Si

Si

(a) (b)

Fig. 2. Theith compliant link attached to thej th rigid link: (a) layout; (b) detail of the definition ofSi(si)

attach frameSi(si) with axesXS,i, YS,i, andZS,i, to the beam cross-section atsi, as shown in Fig. 2(b). Frame

Si(si) is defined so as to have itsXS,i-axis tangent to the beam neutral axis and pointing in the positive direction
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of si, and itsYS,i- and ZS,i-axes along the principal directions of the cross-section.Let τ i(si) be the array of

products of the natural invariants of the rotation taking frameRj into frameSi(si), following the same convention

as that used forθj , andσi(si) ∈ R
3 be the vector moving pointRj into Si(si). We regroup these two arrays in

the cross-section pose array

si(si) ≡ [τ i(si)
T σi(si)

T ]T ∈ R
6. (8)

Further, let us defineΣi ≡ CPM(σi) andTi ≡ CPM(τ i).

The strain energy in a beam element of lengthdsi starting at coordinatesi and ending at coordinatesi + dsi is

computed as [15]

dUi(si) =
1

2
[ui(si)]

T
S,iHi(si)[ui(si)]S,idsi, (9)

where [ · ]S,i indicates that the quantity( · ) is expressed in frameSi and with respect to its originSi. Matrix

Hi(si) ∈ R
6×6, in turn, contains the properties of the cross-section. This matrix is defined according to the strain

energy formulas for beams [20]:

Hi(si) ≡ diag

(

1

GiJi
,

1

EiIY,i
,

1

EiIZ,i
,

1

EiAi
,

αY,i

GiAi
,

αZ,i

GiAi

)

, (10)

whereE andG are the Young and the shear moduli, respectively;IY,i, IZ,i and Ji are theYS,i-axis moment of

inertia, theZS,i-axis moment of inertia, and the torsional modulus of the beam cross section, respectively3; Ai is

the area of the cross-section; andαY,i andαZ,i are the shearing effect coefficients for theYS,i andZS,i directions,

respectively. Notice that all these parameters are functions of the curvilinear coordinatesi.

In the sequel, we shall need the adjoint representation of the Euclidean group [21], which maps linearly the

associated Lie algebra onto itself. In the case of the cross-section pose-array screwsi(si), we obtain

Si ≡





eTi(si) O3×3

Σi(si)e
Ti(si) eTi(si)



 , (11)

which leads to the following expression of wrench[vi]R,j in frameSi, namely

[ui(si)]S,i = −[vi]S,i = −ST
i [vi]R,j , (12)

where the first equality was obtained from the equilibrium inthe free-body diagram of Fig. 2(a). Upon substituting

eq. (12) into eq. (9) and integrating over the length of theith compliant link, we obtain the strain energy as

Ui =
1

2
[vi]

T
R,jBi[vi]R,j, (13)

where

Bi ≡
∫ li

0

Si(si)Hi(si)Si(si)
T dsi,

3IY,i, IZ,i andJ are defined with respect to the centroid of the cross-section.
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and li is the length of theith compliant link. It will prove useful to express all wrenchesvi in the same reference

frameF . To do this, we will need the adjoint representation of the Euclidean group that corresponds to the rigid-body

motion taking frameF into frameRj , namely,

Rj ≡





eΘi O

Υie
Θi eΘi



 , (14)

whereΘi ≡ CPM(θi) andΥi ≡ CPM(ρi). Hence,

[vi]R,j = RT
j [vi]F , (15)

and the total strain energy—or potential energy, for that matter—of the system becomes

U =

m
∑

i=1

Ui =

m
∑

i=1

1

2
[vi]

T
FRjBiR

T
j [vi]F . (16)

For the sake of conciseness, let us rewrite this expression as

U =
1

2
[v]TFB[v]F , (17)

whereB is a block-diagonal matrix, namely,

B ≡ diag{Rj1B1R
T
j1 ,Rj2B2R

T
j2 , . . . ,Rjm

BmRT
jm

}m
i=1,

with ji taking the value of the smallest index among those of the two rigid links that are connected to theith

compliant link, and

[v]F ≡ [[v1]
T
F [v2]

T
F · · · [vm]TF ]T .

Upon writing the static equilibrium of the wrenches acting on the jth rigid link, we obtain

[wj ]Rj
−

∑

i∈C+

j

[vi]Rj
+

∑

i∈C−

j

[vi]Rj
= 06, (18)

where06 is the six-dimensional zero-vector,C+
j is the set of the indices of the compliant links that are connected

to the jth rigid link and to another rigid link that has an index greaterthan j, while C−
j is the set of the indices

of the compliant links that are connected to thejth rigid link and to another rigid link that has an index smaller

thanj. We substitute eq. (15) into eq. (18), and solve for[wj ]Rj
, which leads to

[wj ]Rj
= RT

j







∑

i∈C+

j

[vi]F −
∑

i∈C−

j

[vi]F






. (19)

In order to simplify the notation, we define the arraysv andw of compliant- and rigid-link wrenches, respectively,

that is,

[v]F ≡

















[v1]F

[v2]F
...

[vm]F

















and [w]R ≡

















[w1]R,1

[w2]R,2

...

[wn]R,n

















. (20)
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Accordingly, we may rewrite eq. (19) in the more convenient form

[w]R = RTA[v]F , (21)

whereR ≡ diag{R1,R2, . . . ,Rn} ∈ R
6n×6n, while

A ≡

















A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

An1 An2 · · · Anm

















∈ R
6n×6m. (22)

Moreover,

Aji =































































O6×6

if compliant link i is not connected

to rigid link j;

16×6

if compliant link i is connected to

rigid links j andk, with j < k;

−16×6

if compliant link i is connected to

rigid links j andk, with j > k.

This allows the introduction of thepotential energyof the external wrenches as a function of the internal wrenches,

namely,

Π = −[w]TR[x]R = −[v]TFAT R[x]R. (23)

For a linearly elastic system, the potential energyV and the complementary potential energyV take the same value,

which is the sum of the strain energy and the potential energy, namely,

V = V = U + Π = (1/2)[v]TFB[v]F − [v]TFATR[x]R. (24)

The internal wrenchesv are computed from the minimization of the potential energyV for given displacementsx

of the rigid links. This follows from the second theorem of Castigliano. The partial derivative ofV with respect to

the internal wrenches yields
∂V

∂[v]F
= B[v]F − AT R[x]R, (25)

whereas the Hessian yields
∂2V

∂[v]2F
= B. (26)

One may readily verify, from eq. (17), thatB is symmetric, positive-definite and, therefore, all stationary pointsv

of V are minima. MatrixB being nonsingular,∂V /∂[v]F of eq. (25) admits one single root, namely,

[v]F = B−1AT R[x]R. (27)

Upon substituting eq. (21) into the foregoing equation, we obtain

[w]R = K[x]R, where K ≡ RTAB−1AT R. (28)
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The potential energy can now be written as a function of the system posturex, namely,

V = (1/2)xTKx. (29)

D. Dissipated Energy

Damping in MEMS is known to be the result of a variety of phenomena (e.g.: air damping, clamp losses,

thermoelastic dissipation and crystallographic defects)that are generally nonlinear functions of the system

posturex and its derivative ẋ. However, for small displacementsx and a narrow bandwidth, it is often possible

to linearize these funtions around the operating point of the mechanical system. In the case of nonlinear

damping, the resulting ordinary differential equation is not likely to admit a closed-form solution. In the

analysis that follows, we decided to restrict ourselves to applications where observable damping phenomena

may be linearized around the operating point of the system. Moreover, it is assumed that damping acts on

the rigid links alone, which allows us to define the Rayleigh dissipation function

P = (1/2)ẋTCẋ, (30)

whereC ∈ R
n×n is at least positive-semidefinite and contains the system damping coefficients.

E. Dynamic model of the Compliant Mechanism

The Lagrangian of the mechanism is readily computed as

L ≡ T − V = (1/2)ẋTMẋ− (1/2)xTKx, (31)

and its associated Lagrange equations are

d

dt

(

∂L

∂ẋ

)

− ∂L

∂x
= −∂P

∂ẋ
+ w (32)

whence,

Mẍ + Kx = −Cẋ + w, (33)

which is the mathematical model sought. As the mass matrix isbound to be symmetric and positive-definite, we can

compute its Cholesky decomposition asM = LLT . This allows us to rewrite eq. (33) in its monic representation

[22] by performing the change of variablez = LT x, namely,

z̈ + ∆ż + Ω2z = L−1w, (34)

where∆ ≡ L−1CL−T is the dissipation matrix, andΩ2 ≡ L−1KL−T is the square of thefrequency matrixof

the undampedcompliant mechanism.

Let µi andµi, i = 1, . . . , n, be the eigenvalues and eigenvectors ofΩ2, respectively, the former being identical

to the natural frequencies-squared, the latter linear transformations of the modal vectors of the undamped system of
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eq. (34). That is, if we letλi andλi be the natural frequencies and the modal vectors of the undamped, non-excited

system (33), then

λi =
√

µi, and

λi = L−T µi, i = 1, . . . , n. (35)

Let us pursue this analysis by computing the Laplace-domaintransfer functionH(s), which maps the input

wrenchesw acting on the rigid bodies onto the system statesx, and wheres is the variable of the Laplace domain.

From eq. (33), we have

H(s) = L−T (16n×6ns2 + ∆s + Ω2)−1L−1. (36)

In the balance of this article, the proposed mathematical model is applied to two MEMS devices. The ensuing

estimates of the dynamic properties are then compared against those obtained from other methods.

III. A NALYSIS OF A SIMPLE CASE: THE ADXL150 ACCELEROMETER FROMANALOG DEVICES

Even though it is now replaced with the ADXL78, the ADXL150 accelerometer from Analog Devices has been a

reference for accelerometer designers [18]. Because of that, its properties are known, and it is thus a good starting

point to validate the proposed mathematical model, and to show its usefulness. The ADXL150 has a range of

action of ±50g. It is fabricated using surface-micromachining techniques, which allows for a size as small as

753µm×657µm, which can be appreciated from Fig. 3. The ADXL150 is a uniaxial accelerometer, and hence, its

100 µm

Fig. 3. Analog Devices ADXL150

stiffness should be much lower along its sensitive axis thanalong any other direction. To verify this, we analyze

the mechanical structure of the device, which is sketched inFig. 4. In this sketch, the thicknesst of the compliant

mechanism is measured in thedirection orthogonal to the plane of the figure. The compliant legs are numbered

in encircled numerals from 1 to 4, whereas the only rigid link of this mechanism is the proof mass itself, which

is thus labelled with number 1, in a square. The dimensions are recorded in Table I, as taken from [18], except for

b, which was estimated from Fig. 3. FramesF andR1 are defined as displayed in Fig. 4, with theirX axes along
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1

2
3

4

1

L
b l

w h

O, R1

F , R1 X

Y

Fig. 4. The mechanical structure of the ADXL150

the accelerometer sensitive axis—represented here by a dashed line, and with theirY axes in the plane of the wafer

surface. We take those frames to be right-handed, and so their Z axes stem out of the plane of the wafer surface.

Moreover, the originsO and R1 of these two frames are located at the proof-mass centroid. Hence, apparently,

framesF andRj are chosen to be identical, which simplifies subsequent calculations. The material of the flexible

TABLE I

DIMENSIONS OF THEADXL150 ACCELEROMETER

L l w b h t

500 µm 120 µm 50 µm 10 µm 2.5 µm 2 µm

mechanism is polysilicon, which has a Young modulusE = 160 GPa, a Poisson ratioν = 0.2, and a density

ρ = 2331 kg/m3. The mass matrixM of the mechanism is the mass matrix of the proof mass as definedin eq. (6).

The corresponding inertia matrixis estimated to be

[I1]F = [I1]R,1 =











0.5586 0 0

0 3.088 0

0 0 3.647











× 10−18 kg·m2 (37)

from a CAD model of the proof mass that included its 54 electrodes,whereas the mass is taken to bem1 =

2.2×10−10 kg, the same value as that used by [18]. This allows the evaluation of the kinetic energy from eq. (7).

On the other hand, calculating the potential energy requires the definition of the additional framesSi(si), i =

1, 2, 3, 4. This can be done through the definition of their associated screwssi(si), i = 1, 2, 3, 4, which take frame

R1 into their respective framesSi(si), i = 1, 2, 3, 4. Because the compliant links exhibit discontinuous neutral
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axes, these screws are defined as piecewise functions, as detailed in Table II.

TABLE II

SCREWSsi(si), i = 1, 2, 3, 4

si ∈ i s
T
i (si)

[0,l[

1
h

0 0 3π/2 −L/2 −w/2 − s1 0
i

2
h

0 0 π/2 −L/2 w/2 + s2 0
i

3
h

0 0 π/2 L/2 w/2 + s3 0
i

4
h

0 0 3π/2 L/2 −w/2 − s4 0
i

[l,l+b[

1
h

0 0 0 s1 − l − L/2 b − L/2 0
i

2
h

0 0 0 s2 − l − L/2 w/2 + l 0
i

3
h

0 0 π L/2 + l − s3 w/2 + l 0
i

4
h

0 0 π L/2 + l − s4 −w/2 − l 0
i

[l+b,2l+b]

1
h

0 0 π/2 b − L/2 s1 − 2l − b − w/2 0
i

2
h

0 0 3π/2 b − L/2 2l + b + w/2 − s2 0
i

3
h

0 0 3π/2 L/2 − b 2l + b + w/2 − s3 0
i

4
h

0 0 π/2 L/2 − b s4 − 2l − b − w/2 0
i

The beam cross-section remains constant in all the compliant links, and, therefore, from the numerical data of

Table II, we obtain,

Ji = βht3 = 3.37 × 10−24 m4, with β = 0.1685,

IY,i = t3h/12 = 1.67 × 10−24 m4,

IZ,i = h3t/12 = 2.60 × 10−24 m4,

Ai = ht = 5.00 × 10−12 m2, and

αY,i = αZ,i = 6/5. (38)

Since framesF andR1 are coincident, we have

R = R1 = 16×6, (39)

and, because the four compliant links connect the fixed rigidlink to the only mobile rigid link, we may assign

A =
[

−16×6 −16×6 −16×6 −16×6

]

, (40)

where the minus sign comes from the assumption that the fixed rigid link corresponds to the indexj = 0. From

eq. (28), we obtain directly

K = diag
(

2.87 × 10−8, 1.94 × 10−7,

1.61 × 10−5, 5.16, 268, 3.17
)

, (41)

whose first three entries bear units of N·m/rad, the last three of N/m. The fourth diagonal term in eq. (41) represents

the stiffness of the mechanism along the accelerometer sensitive axis. The value reported in [13] for the same
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TABLE III

MODAL ANALYSIS OF THE ADXL150 ACCELEROMETER

i 1 2 3 4 5 6

fi (kHz) 19.11 24.38 36.08 39.90 175.60 334.62

λi

0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 1.000

0.000 1.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 1.000 0.000

1.000 0.000 0.000 0.000 0.000 0.000

dimensions was5.6 N/m, but this did neither take into account the deflection of the shorter intermediate straight

beams in each leg,i.e., the beams with a length ofb = 10 µm, nor the shear strain in any of the beams. According

to [18], the actual value measured by Analog Devices is5.4 N/m. Hence, in this case study, the proposed model

appears to be accurate.

The frequency matrix can thus be computed from its definition, in eq. (34), which yields

Ω = diag (2.27 2.51 21.0 1.67 12.0 1.31)× 105 rad/s,

= diag (36.1 39.9 335 24.4 176 19.1) kHz.

Apparently, the frequency matrix is diagonal, which allowsfor the extraction of its eigenvalues and eigenvectors

by simple inspection. For the sake of clarity, these values are listed in Table III, in ascending order.

A natural frequency of24.7 kHz is reported in [18] in the direction of the accelerometersensitive axis, which is

somewhatlarger than the24.4 kHz obtained here. The reason behindthis is the different stiffnessestimate, which,

in the case of [18], did not take into account the shear strainnor the compliance of the intermediate beam in

each leg of the ADXL150. There is a relatively large difference between the fundamental frequency and that of the

mode in the direction of the accelerometer sensitive axis, as compared to the small difference of the former with that

of a translational out-of-plane motion of the proof mass, which may surprise anyone who is not familiar with MEMS

design. Indeed, at this scale, the damping due to the squeezed film of air between the proof mass and the substrate is

extremely high in that direction, which prevents this parasitic motion from becoming significant at high frequencies.

To substantiate this claim, let us estimate the damping in the system by assigning some values to matrixC defined

in eq. (30). Here, we consider only the damping that is due to air friction beneath the proof mass and between the

electrodes. Moreover, even though it may be just as high as the damping due to proof-mass translations, we neglect

air damping due toproof-massrotations. This choice is mainly justified by virtue of correspondence of the lowest

frequencies of the system to those of the translational proof-mass motions; the choice can also be justified by the
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level of complexity associated with the modeling of the air flow around a rotating plate close to a flat surface.

Indeed, the air flow beneath the proof mass induced by in-wafer-plane translations may be modeled as a simple

Couette4 flow, whereas the air flow produced by out-of-wafer-plane translations may be assimilated to a Poiseuille5

flow [18]. Moreover, as a rough approximation, we consider the flow between the electrodes as well as when the

proof mass translates in theX-axis direction to be of the Poiseuille type; we consider a Couette flow when the

proof mass translates in theY -axis direction. As a result, we have

C = diag{0, 0, 0, η(L − 2b)w/c + 108 × 96ηlt3/(π4d3),

η(L − 2b)w/c + 108ηlt/d,

96η(L − 2b)w3/(π4c3)}, (42)

i.e.,

C = diag{0, 0, 0, 1.107× 10−6,

0.629× 10−6, 259.858× 10−6} N s/m, (43)

wherec = 1.6 µm is the gap between the proof mass and the chip,d = 1.3 µm is the gap between two electrodes,

andη = 18 × 10−6 Pa s is the dynamic viscosity of air.

The associated matrix transfer function is computed from eq. (36). In the case of an accelerometer, the array of

rigid-link external wrenchesw defined in eq. (20) may be regarded, from d’Alembert’s principle, as an array of

inertial wrenches. Moreover, if we assume that the instant screw axis of any motion of the accelerometer frame

lies at infinity, which is reasonable for a small mechanical system, we can neglect the angular velocity and writew

as a linear function of the twist time-derivativea of the accelerometer frame. Hence, the acceleration field ofthe

accelerometer frame is approximated by a helical field represented by screwa, which is formed with the angular

acceleration of frameF with respect to an inertial frame, and the acceleration of its origin O with respect to a

fixed reference point, both expressed in the accelerated frameF . Symbolically, we obtain

w = −MRTTa, (44)

whereT ≡ [16×6 16×6 · · · 16×6]
T .

Let us now labelξX , ξY , and ξZ the components of the position of the proof-mass position vector ξ1, and

aX , aY , andaZ the components ofa. We also define unit vectorse4 ≡ [0T
3 1 0T

2 ]T , e5 ≡ [0T
4 1 0]T , and

4A Couette flow is a laminar flow of an incompressible Newtonianfluid induced by the relative motion of the two parallel planes in relative

translation that contain the fluid [23].

5A Poiseuille flow is a laminar flow of an incompressible Newtonian fluid in a pipe [23].
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e6 ≡ [0T
5 1]T , which lets us write the input-output relationships

hX(s) ≡ ξX(s)/aX(s) = −eT
4 H(s)MRTTe4, (45)

hY (s) ≡ ξY (s)/aY (s) = −eT
5 H(s)MRTTe5, (46)

hZ(s) ≡ ξZ(s)/aZ(s) = −eT
6 H(s)MRTTe6. (47)

We compute the complex frequency responseshX(ω), hY (ω), andhZ(ω) of the proof mass to transverse accelera-

tions by evaluating the corresponding transfer functions at ω
√
−1, whereω is the input frequency. Upon computing

the magnitudes and phase angles of these complex functions,we obtain the Bode plots of Fig. 5.

From the magnitude-vs.-frequency plot of Fig. 5(a), we see that the accelerometer response toZ-axis accelerations

is overdamped, whereas the responses to in-wafer plane accelerations are underdamped. Nevertheless, the out-of-

wafer-plane motion can still pose problems when the proof mass is subjected to low-frequency accelerations (e.g.

gravitational or centripetal) along theZ-direction of frameF . Indeed, cross-axis sensitivity is the highest source

of errors (±2% of the full-scale range, i.e., 1g) for the ADXL150 accelerometer.
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Fig. 5. Frequency response of the ADXL150: (a) magnitude and(b) phase
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IV. A NALYSIS OF A COMPLEX CASE: THE SIMPLICIAL BIAXIAL ACCELEROMETER

Let us now turn our attention towards a more complex mechanical architecture, that of theSimplicial Biaxial

Accelerometer(SBA) [24], which is shown in Fig. 6. The proof mass of this accelerometer takes the shape of a

regular triangle. This triangle is suspended at each of its edges by a pair ofdistal beams, which connects at its other

ends to an intermediate rigid link. In turn, this rigid link is suspended by fourproximalbeams perpendicular to their

corresponding pair of distal beams, which connect to the accelerometer frame at their other ends. As a result, this

mechanism is compliant to proof-mass translations in the wafer plane, while offering high stiffness to proof-mass

rotations and translations out of the wafer plane.The equilateral triangular geometry of the SBA resembles

that of the HexFlex [25] while resulting in a completely different mechanical behavior. If the SBA allows

for in-plane translations of its moving platform, the HexFlex allows for any displacements of its moving

platform in space. Moreover, in the case of the SBA, the moving platform serves as an acceleration sensor,

whereas the HexFlex moving platform is actuated through itssupporting legs.A prototype of thepackaged

microfabricated device is shown in Fig. 7.

0.3 mm

10 mm

proof-mass
electrodes

stopper

flexible beams

Fig. 6. CAD model of theSimplicial Biaxial Accelerometer(SBA)

aluminum
mount

package

acrylic cover

Fig. 7. Packaged microfabricated SBA
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For the purpose of this analysis, a top view of the SBA is shownin Fig. 8, where each link is labelled with a

number appearing in a circle for a compliant link, and in a boxfor a rigid link. Table IV lists the numerical values

of the dimensions appearing in Fig. 8 as well as the numericalvalue of the device wafer thicknesst.

a
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d

L 45◦
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l
r

1

23
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8
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1213

14 15

16

17
18

1

23

4

O F X

Y

Fig. 8. Dimensions of theSimplicial Biaxial Accelerometer

TABLE IV

DIMENSIONS OF THESIMPLICIAL BIAXIAL ACCELEROMETER

L l w t r

5544µm 4400µm 105 µm 300 µm 78.7 µm

a b c d e

10000µm 2500µm 2020µm 1000µm 200 µm

A. Kinetic Energy

FramesRj , j = 1, . . . , n, n = 4, are located at the mass centers of their corresponding rigid links, and oriented

so that screwsrj , j = 1, . . . , n, take the values

r1 =
[

0T
4 −

√
3a/6 − l − f 0

]T

,

r2 = [0T
2 2π/3

(a/2 +
√

3l +
√

3f)/2 (
√

3a/6 + l + f)/2 0]T ,

r3 = [0T
2 − 2π/3

−(a/2 +
√

3l +
√

3f)/2 (
√

3a/6 + l + f)/2 0]T ,
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andr4 = 06, where

f ≡ (b + c)(be2 − 2d3 + 3bd2 + 6bde − 6de2) − 2e2c2

3(b + c)(e(b − c) + 2d(b − d))
.

The mass properties of the rigid links are computed from a CADmodel, which yields

m1 = m2 = m3 = 1.387 × 10−3 kg,

m4 = 30.25× 10−3 kg,

[I1]R,1 = [I2]R,2 = [I3]R,3,

= diag (0.1456 0.4656 0.5904)× 10−9 kg m2,

[I4]R,4 = diag (12.63 12.63 252.1)× 10−9 kg m2.

The mass matrix is evaluated directly from these numerical values and the definition of eq. (7).

B. Potential Energy

Upon defining the lengthsg ≡ b/2 + L andh ≡
√

3a/6 + l + e, screwssi, i = 1, . . . , m, m = 18, are evaluated

as

s1 = [0 0 π g − d − s1 − h − d 0]
T

,

s2 = [0 0 π g − s2 − h 0]T ,

s3 =
[

0 0 π/2 c/2 s3 −
√

3a/6 − l 0
]T

= s9 = s15,

s4 =
[

0 0 π/2 − c/2 s4 −
√

3a/6 − l 0
]T

= s10 = s16,

s5 = [0 0 0 s5 − g − h 0]T ,

s6 = [0 0 0 s6 + d − g − h − d 0]
T

,

s7 =
[

0 0 − π/3
√

3(h + d)/2 − (g − d − s7)/2

(h + d)/2 +
√

3(g − d − s7)/2 0
]T

,

s8 =
[

0 0 − π/3
√

3h/2 − (g − s8)/2

h/2 +
√

3(g − s8)/2 0
]T

,

s11 =
[

0 0 2π/3
√

3h/2 + (g − s11)/2

h/2 −
√

3(g − s11)/2 0
]T

,

s12 =
[

0 0 2π/3
√

3(h + d)/2 + (g − d − s12)/2

(h + d)/2 −
√

3(g − d − s12)/2 0
]T

,

s13 =
[

0 0 π/3 −
√

3(h + d)/2 − (g − d − s13)/2

(h + d)/2 −
√

3(g − d − s13)/2 0
]T

,

s14 =
[

0 0 π/3 −
√

3h/2 − (g − s14)/2
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h/2 −
√

3(g − s14)/2 0
]T

,

s17 =
[

0 0 − 2π/3 −
√

3h/2 + (g − s17)/2

h/2 +
√

3(g − s17)/2 0
]T

, and

s18 =
[

0 0 − 2π/3 −
√

3(h + d)/2 + (g − d − s18)/2

(h + d)/2 +
√

3(g − d − s18)/2 0
]T

.

Turning our attention to the elastostatic properties of thecompliant links, we realize that the beams are not all

identical in that respect, since silicon crystal is an anisotropic material. The axes of the cubic crystal correspond to

the axes of frameF shown in Fig. 8. As a result, the Young moduliEi and the shear moduliGi, i = 1, . . . , m, are

not all equal, depending on the orientation of their corresponding compliant link with respect to the crystal axes.

Because of the symmetry in the crystal, we have

Hi = diag

(

1

G⊥J
,

1

E⊥IY
,

1

E⊥IZ
,

1

E⊥A
,

αY

G⊥A
,

αZ

G⊥A

)

, (48)

for i = 1, . . . , 6, and

Hi = diag

(

1

G∠,T J
,

1

E∠IY
,

1

E∠IZ
,

1

E∠A
,

αY

G∠,Y A
,

αZ

G∠,ZA

)

, (49)

for i = 7, . . . , 18, where the⊥ subscript refers to the beams that are at0◦ or 90◦ from a crystal axis, and the∠

subscript refers to the beams that are at30◦ or 60◦ from a crystal axis. Because of material anisotropy, two distinct

shear moduli are associated with the cross-sections that are not orthogonal to one of the crystallographic axes.

These moduli, which we labelG∠,Y andG∠,Z , correspond, respectively, to the directions of theYS,i andZS,i axes

of the cross-section framesSi(si), i = 7, . . . , 18. Moreover, in this model we neglect any coupling between torsion

and bending due to the distinct shear moduli in compliant links i = 7, . . . , 18. In fact, to avoid overcomplicating

the problem, we define the section shear modulus in torsion asthe average of the two actual shear moduli of the

section, that is,

G∠,T ≡ (G∠,Y + G∠,Z)/2. (50)

This saves us from resorting to a modified Saint-Venant method, which would require the solution of a partial

differential equation of the form

G∠,Y
∂2φ(y, z)

∂y2
+ G∠,Z

∂2φ(y, z)

∂z2
= 0, (51)

and whereφ(y, z) represents the warping of the beam cross-sections. Hence, in the case of pure torsion, we consider

the material to be isotropic with a shear modulus ofG∠,T .

The numerical values of the foregoing elastic properties are given in Table V, as reported in [26]. The geometric

properties of the beam cross-sections, also gathered in Table V, were computed from the formulaeJ = βwt3, with

β = 0.258, IY = wt3/12, IZ = w3t/12, andA = wt, whereas the shear correction factors areαY = αZ = 6/5
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TABLE V

CROSS-SECTION PROPERTIES OF THE COMPLIANT LINKS OF THESBA

E⊥ 130.2 GPa G⊥ 79.4 GPa

E∠,X 157.2 GPa G∠,Y 79.4 GPa

G∠,Z 55.9 GPa G∠,T 67.6 GPa

J 0.8965 × 10−16 m4 IY 0.2363 × 10−15 m4

IZ 0.2894 × 10−16 m4 A 0.3150 × 10−7 m2

αY 1.2 αZ 1.2

for rectangular cross-sections [27]. This permits the computation of the stiffness matrix as defined in eq. (28).

C. Dissipated Energy

It is assumed that all energy dissipation comes from air friction within the 2.5µm gap between the proof mass

and the handle wafer. Following the same method as in SectionIII, a Couette flow is assumed for in-wafer-plane

proof-mass translations, while the air flow produced by proof-mass rotations and other rigid-link displacements

are neglected. As in Section III, we may yet assume that an out-of-wafer-plane proof-mass translation generates

a Poiseuille flow beneath it, but the triangular geometry of the proof mass prevents us from using the solution

for rectangular plates. In order to obtain a rough estimate,let us assume a Poiseuille air flow beneath the proof

mass that is orthogonal to the closest triangle edges, as sketched in Fig. 9. Consider now the small element of area

underneath the proof mass that has a widthdq and a total length ofa/
√

3 − y, wherey is the coordinate of the

element intersection with theY -axis. We may assume that the damping due to this small element is given by the

formula for rectangular plates that have one side much larger than the other [18], that is,

dcZ = 96η(dq)(a/
√

3 − y)3/(π4p3), (52)

wherep = 2.5 µm is the gap between the proof mass and the handle wafer. Projecting the element widthdq onto

theY -axis yields the relationdq =
√

3dy/2, which, upon substitution in eq. (52), allows for a summation over the

upper branch of the triangular proof mass that leads to the integral

cZ/3 =
48

√
3η

π4p3

∫ a/
√

3

0

(a/
√

3 − y)3dy

=
48

√
3η

π4p3

∫ a/
√

3

0

y3dy

whence,

cZ =
4
√

3ηa4

π4p3
, (53)

thereby obtaining the result sought.

As a result, matrixC of eq. (30) takes the symbolic and numeric values

C = diag
(

[0T
21 ηA4/p ηA4/p 4

√
3ηa4/(π4p3)]T

)

, and
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Fig. 9. Squeezed-film damping of the SBA proof mass

C = diag
(

[0T
21 3.12 × 10−4 3.12 × 10−4

8.19 × 102]T
)

N·s/m.

D. Estimated Dynamics

The first modes of the SBA are computed from eq. (35), which yields the results of Table VI. Because of

the 24 degrees of freedom of the compliant mechanism, these results are somewhat more intricate. The first two

frequencies differ only by round-off error, their associated modes involving motions of all four rigid links. For

acceleration measurement, we are interested only in proof-mass motions, which are represented here by vector

λi,4. Apparently, from Table VI, the first two modes correspond toin-wafer-plane motions of the proof mass, with,

in one case, a parasitic in-wafer-plane rotation. This parasitic motion is not due to round-off errors, but rather to

silicon anisotropy. One must bear in mind, however, that therotational component ofλi,4 is expressed in radians,

whereas the translational component is expressed in meters. Hence, for instance, a100 µm displacement of the

proof mass along the direction of the first mode results in a parasitic rotation of 7.88 rad, or to relative position

errors of the vertices of the proof mass of0.788 µm. This result is thought to be acceptable; we may safely say

that the fundamental frequency corresponds now to the two sensitive directions. In turn, the third natural frequency

appears to be dominated by rotations, except for a small non-null value at theZ-axis translational direction of the

proof-mass. In fact, modeλ3 may be visualized as a rotation of the proximal rigid links about their associated

Xi axes—which are parallel to their corresponding edge of the triangular proof mass—and a translation—for the

most part—of the proof mass along theZ-axis. Hence, we see that the natural frequency of the parasitic out-of-

wafer-plane motion is now higher than that of the sensitive axes, which is, apparently, an advantage of the SBA

mechanical architecture over that of the ADXL150 accelerometer.
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TABLE VI

MODAL ANALYSIS OF THE SIMPLICIAL BIAXIAL ACCELEROMETER

i 1 2 3 4 5 6

fi (Hz) 53.21 53.22 69.02 178.74 187.28 423.05

λi,1

0.000 -0.000 -0.601 0.564 0.000 -0.998

-0.000 0.000 0.000 0.000 0.058 0.000

0.214 0.000 -0.000 -0.000 -0.000 -0.000

-0.000 -0.000 -0.000 -0.000 -0.000 -0.000

-0.000 0.486 0.000 -0.000 -0.000 -0.000

0.000 -0.000 -0.000 0.001 0.000 0.003

λi,2

-0.000 -0.000 -0.564 -0.311 -0.511 -0.028

-0.000 0.000 -0.003 0.047 -0.027 -0.003

-0.455 -0.452 -0.000 -0.000 -0.000 -0.000

-0.000 0.000 0.000 -0.000 -0.000 0.000

0.360 -0.243 -0.000 0.000 -0.000 -0.000

-0.000 0.000 -0.000 -0.000 -0.001 0.000

λi,3

0.000 -0.000 -0.564 -0.311 0.511 -0.028

-0.000 0.000 0.003 -0.047 -0.027 0.003

-0.455 0.452 -0.000 -0.000 -0.000 -0.000

-0.000 -0.000 -0.000 -0.000 0.000 0.000

-0.360 -0.243 -0.000 0.000 0.000 -0.000

0.000 -0.000 -0.000 -0.000 0.001 0.000

λi,4

-0.000 -0.000 -0.040 0.695 0.000 -0.050

-0.000 -0.000 0.000 -0.000 -0.688 -0.000

0.328 0.000 -0.000 -0.000 0.000 -0.000

0.416 0.000 0.000 0.000 -0.000 0.000

0.000 -0.486 -0.000 0.000 0.000 0.000

-0.000 0.000 0.003 0.000 0.000 0.000

In order to evaluate the effect of damping over the accelerometer, matrixH(s) is computed according to eq. (36).

As in Section III, we apply d’Alembert’s principle of inertia forces to the dynamic system, taking the inertia forces

acting on the rigid links as input forces of eq. (33), the outputs being the proof mass displacements. In particular,

upon applying successively pure accelerations along theX , Y , and Z-axis directions, we obtain the complex

frequency responseshX(ω), hY (ω), and hZ(ω), respectively, of translations of the proof mass in each of these

directions. The magnitudes and phase angles of these frequency responses are shown in the Bode plots of Fig. 10. The

lower sensitivity of the proof-mass displacements toZ-axis accelerations than to theX- andY -axis accelerations is

confirmed from Fig. 10(a). One may also observe a good isotropy for in-wafer-plane accelerations, and a bandwidth

of approximately100 rad/s.
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Fig. 10. Frequency response of the SBA: (a) magnitude and (b)phase angle

E. Measured Dynamics

The mechanical structure of the SBA was tested by applying toit short impulse accelerations in the negative

direction of itsZ axis, as defined in Fig. 8. The “free” resonations of the structure were then recorded using a

vibrometer. A schematic and a picture of the test bench are shown in Fig. 11. In this setup, the shaker (Brüel &

Kjær Mini-Shaker 4810) is driven by a regular sound amplifier(Harman Kardon HK3300), which itself takes its

input from a signal generator. A typical time-history of theshaker impulse input voltage is displayed in Fig. 12.

The resulting motions of the SBA rigid-links are recorded bythe vibrometer (Polytec PSV-400), which sheds a

laser beam vertically down on the sample. The laser beam is programmed to scan 382 points on the SBA, according

to the mesh shown in Fig. 13. Point-velocities are measured by the vibrometer, and, thence, a frequency-domain

distribution of the point-velocities of the accelerometerarchitecture is computed and recorded by the controller

(Polytec OFV–5000).

The Polytec controller returns a frequency-domain distribution of the velocities of the scanned points{Sj}382
j=1,

along with their phase correspondance with a reference signal. As can be seen from Fig. 11(a), in the test bench, the
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Fig. 11. SBA test bench: (a) schematic representation and (b) photograph
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Fig. 12. Typical voltage impulse applied at the shaker input

shaker input voltage was used as the reference signal. From these results, the complex velocity frequency response

vj(ω) of each point may be computed.
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Fig. 13. Points scanned by the vibrometer

The point-displacement frequency responsedj(ω) may then be obtained as

dj(ω) = vj/(ωi), (54)

wherei ≡
√
−1. On the other hand, point-acceleration frequency responseaj(ω) is given by

aj(ω) = ωivj. (55)

Let us now define the setsF andP of the indices of the points pertaining to the accelerometerframe and proof mass,

respectively,as illustrated on Fig. 13.From this, we may reference the proof-mass point-displacement response

magnitudes with the rms-value of the frame point-acceleration response magnitudes. This yields the normalized

displacements

d̄j(ω) =
dj(ω)

√

1
n

∑

k∈F |ak(ω)|2
, j ∈ P , (56)

wheren is the cardinality ofF . Finally, we obtain an overall magnitude response of the proof mass by taking the

rms-value of the displacements of its 60 scanned points. Symbolically, we have

d̄rms(ω) =

√

1

m

∑

j∈P
|d̄j(ω)|2, (57)

wherem = 60 is the cardinality ofP . On the other, the meaning of an overall phase diagram of the proof-mass

point-displacements is less apparent, and, therefore, it was decided to leave them separate. Hence, the phase angle

φ̄j(ω) of point j ∈ P is readily computed as

φ̄j = arctan

[ℑ{d̄j(ω)}
ℜ{d̄j(ω)}

]

. (58)

The resulting frequency response is shown in Figs. 14(a) and(b), along with the modeled frequency response,

which was already shown in Fig. 10. Notice that the 60 phase angles φ̄j , j ∈ P are displayed in Fig. 14(b). As

can be seen from these figures, the measured frequency response is fairly close to the ones given by the transfer

functionshX(ω) andhY (ω). The modeled and measured peak frequencies are 53.2 Hz and 46.3 Hz, respectively.
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This difference may be due in part to the rough approximationof the damping coefficient, which appears to have

been underestimated.
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Fig. 14. Comparison between the SBA model and the experimental results: (a) magnitudes and (b) phase angles

V. CONCLUSIONS

Although the assumptions put forward in this article are common in elastodynamics modeling, the

mathematical tools used are not. In particular, screw theory allows for a sound, broad-scope, and simple

formulation of the dynamic model of a lumped MEMS. The general framework in which the proposed method

is developed is important for the evaluation of large numbers of variants with different topologies, numbers

of degrees of freedom, etc. Moreover, the simplicity of the resulting model formulation is thought to be of

crucial importance, since the usefulness of a symbolic solution is generally dictated by its level of intricacy. A

major factor contributing to the simplicity of the dynamic m odel obtained is the parameters chosen for the

representation of rigid-link rotations in space. As shown in eq. (5), for small displacements, the time rates

of these parameters are approximately equal to the rigid-link angular velocity, which simplifies the model
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formulation. The resulting symbolic models should yield information on the relations between the design

parameters and the design objectives. This is thought to be especially important in MEMS design, e.g., for

assessing the scalability of a design, the effect of constraints on certain dimensions due to microfabrication

limitations, the overall feasibility of certain actuation schemes, estimating parasitic displacements, etc.

The model was applied to the relatively simple mechanical architecture of the adready-existing ADXL150

accelerometer, and the estimated dynamic properties of thedevice were compared to published data, which confirmed

the accuracy of the proposed model. The dynamic model was then applied to the SBA, an accelerometer that

comprises four rigid links and 18 compliant links. The modeled and measured dynamic properties of the mechanism

were compared, which corroborated the previous results. Furthermore, the two case studies showed that the proposed

formulation can streamline both symbolic and numeric calculations when the complete system dynamics is to be

modeled.

An example of a potential application of this method to MEMS synthesis comes from the expression of

the stiffness matrix obtained in eq. (28), which is completely decoupled. Indeed,K appears as a product of

matrices R, A, and B, containing the information on the rigid-link poses, the mechanism topology, and the

compliant-link stiffness properties, respectively.This should prove useful for the synthesis of lumped-compliance

micromechanisms.As an example, one could impose the rigid-link poses and the compliant links used for

a particular MEMS, and then treat the topology A as a design variable. Another potential application of

this method could come from its combination with the model proposed in [28]. In this reference, the authors

modeled the dynamics of a compliant micromechanism subjected to nonlinear external forces by approximating

its displacements with a time-varying linear combination of its modes. These modes are computed from a linear

dynamic model similar to that of eq. (33), except that the compliant links are discretized rather than treated as

continua. Treating the compliant links as Euler-Bernoullibeams—or any other compliance model—and expressing

the system state in terms of rigid-link poses, twists, and twist-rates minimizes the number of generalized coordinates

of the associated model. Since computing the stiffness matrices of Euler-Bernoulli beams is a linear process, and

because the dimension of the associated nonlinear eigenvalue problem is minimized, this method should streamline

the computation of the mechanism dynamic response.
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