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Abstract

Proposed in this paper is a symbolic linearly elastodynamiciel for the analysis and synthesis of MEMS. In
particular, the strain energy in the compliant links is caneal from the results of a previous work, by representing
beam deflections with small-displacement screws. Thisaallfor a systematic, coherent approach based on screw
theory. Two case studies are proposed to illustrate theagtian of the model. In the first example, the elastodynamic
model of a simple accelerometer is derived and compared ¢oagnilable in the literature. In the second example,
a complex accelerometer is modeled, fabricated and teSmuparison between the simulated results and data from
the literature or obtained experimentally shows the acgur the proposed model.

Index Terms

Compliant mechanism, accelerometer, dynamics, mecHasystems, stiffness matrix, cross-axis motions, syn-
thesis, analysis.

|. INTRODUCTION

The development of micromachining techniques has led toghlkization of more sophisticated MEMS devices—
see [1, 2]. In most instances, the underlying mechanismsadeled numerically [3], either through finite element
methods [4], or others, such as finite differences [5], refen methods [6], or the rigid finite element method [7].
These methods have been incorporated to numerical synthesinethods, among which we may cite the ground-
structure method [8], the load-path synthesis approach [9]and the homogenization method [10]. If these
methods apply to a broad range of problems, each solution gas information regarding the single problem
that corresponds to the chosen objective function, loads oostraints, mesh, optimization domain, etc. Hence,
these numerical methods tend to bury the physics of MEMS undethe data. In contrast, when possible,

a symbolic approach yields mathematical relations that dggen the insight of the designer. This is thought
to be important, especially at the early stage of the designrpcess. Accordingly, the method proposed here
may be regarded as a complement to numerical synthesis mettis. The classical approach for the synthesis
of compliant micromechanisms is to simplify the represtotaof the physical problem by making a number of
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assumptions, which come at the expense of model accukache proposed method targets the early synthesis
of MEMS, simplicity of application to a wide range of design \ariants is thought to be more important than
model accuracy, leaving the final dimensional optimizationto more accurate numerical methods. Hence,

several of the classical assumptions of elastodynamic mdohg will be adopted in the formulation below.

Such assumptions are at the root of other symbolic models focompliant MEMS. One instance of this
is the replacement of the compliant links with two or moreididjinks articulated with one or more kinematic
pairs—generally prismatic or revolute—constrained bynstational or torsional springs. This is the idea behind
the pseudo-rigid-body model [11]-[13]. The main merit oistinethod is to be accurate over large displacements
while remaining relatively simple, thus allowing for a syalic approach. However, this method is difficult to
implement when it comes to arbitrary displacements in spameed, the pseudo-rigid-body model requires that
the spring-driven kinematic pairs be inserted at specifisitpms on the compliant links of the mechanism. If that
link is to deflect about several directions and axes—in tedio and rotation—then several kinematic pairs need

to be added in series at different positions, which resulta complex kinematics model.

Another common assumption is that of small displacementshef micromechanism rigid-links from their
reference poses, which allows the linearization of theinaiyics [14]. This assumption is valid in most MEMS
applications, since the small displacements involved tendffect important quantities such as air friction, heat
dissipation, and electrostatic forces, but generally Hétle effect on the inertia and stiffness properties of the

mechanism. Hence, the small-displacement assumptiorbeifidopted here.

From the foregoing observations, it would be interestindndwe a systematic method for deriving symbolically
the complete linearized elastodynamics of complex lumgadpliance micromechanisms undergoing small dis-
placements. To this end, we resort to screw theory. We buyilshithe work reported in [15], which describes the
elastic properties of beams by representing their defdomatwith small-displacement screws. From these results,
we are able to compute the strain energy in a compliant limknfithe small-displacement screw representing
the relative displacement of the two rigid links it conneckbe resulting model pertains to the linear theory of

elastodynamics [16], and should be relevant to the anadygisynthesis of complex micromechanisms (e.g. [2, 17]).

Two examples are included to illustrate the application leé proposed model. The first example treats the
simple case of the ADXL150, an accelerometer produced bylognBevices; comparison of the results obtained
with those reported in [18] is included. The second examdidresses the elastodynamics modeling of a complex
micromechanism composed of four rigid links and 18 compliimks. The model obtained is compared with

experimental results.
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II. DYNAMIC MODEL OF LUMPED-COMPLIANCE MECHANISMSUNDERGOING SMALL DISPLACEMENTS

Since this is a lumped-parameter model, each componeng dietkible mechanism falls into one of two categories.
The first category gathers the compliant links which are assumed to have no inertia and a given non-null
compliance in all directions. The second category cont#ies: rigid links, which are attributed a given inertia

and no compliance.

Moreover, the compliant links are modeled as Euler-Berndagdams, and all the rigid-link displacements are
considered to bemall From this last assumption, the mass and stiffness pregeofithe links are assumed to be

constant, that is, independent of the mechanism posture.

A. The System Posture

Let us first define the fixed framg, and frameR’; attached to thg'" rigid link, as shown in Fig. 1. Moreover,
we define framé; as coinciding with framek’; whenever thg'™ rigid body lies in its equilibrium pose, designated
its reference pose. The origins of fram&s R;, and R/, are labeled), R;, and R}, j = 1,...,n, respectively,

where R; is chosen to lie at the mass center of its corresponding tigid

Fig. 1. The;™ rigid link in its equilibrium pose and in a displaced pose

T

The displacement taking into R; is described by the pose array = [6;

pl1]", where8; € R? is defined
as the product of the natural invariants [¥8]andd; of the associated rotation anpg = O—RJ> € R®. The natural
invariants of a rotation are the unit-vecty pointing in the direction of its associated axis, and itslarg rotation
;. In order to avoid ambiguities, we use the right-hand ruleoider to determine the direction of the rotation
around the screw axis, and we constr@inwithin a ball of radiusr, that is,0rad < ||@,||» < wrad. Notice that
this leaves an ambiguity &®,||. = wrad since, in that casé,; and —80; yield the same rotation. However, since
we are using these parameters to describe postures of theamism that are close to its static equilibrium posture,

this ambiguity may be resolved a priori by the good judgmerthe designer.
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Similarly, we define the pose of th# rigid body with respect to its equilibrium pose as
x; =l &1, (1)

wherev; € R? is the array of products of the natural invariants for theation takingR ; into R and following
—_—
the same convention as that used figr moreover£; = R; R € R®. Since the posture of the mechanism is fully

described by the poses of all the rigid links, we define éhedimensionalposture array

T
X = X,{ Xg e XT . (2)
B. The System Kinetic Energy

For starters, we need an expression for the angular velocitg; of the ;™ link, which is known to be
linear in the derivatives of the linear invariants [19]. We dart by computing rather €2;, the angular-velocity
matrix of the ;" link, defined as the product Qj ;f with Q; denoting the rotation matrix that carries F
into an orientation identical to that of R;, making abstraction of the translation of the origin. In fact, ©2; is
CPM(wj;), with CPM () denoting the cross-product matrix* of the three-dimensional Cartesian vector( - ).

Once Q; is found, w; is readily derived as itsaxial vector?, vect(€2;).

The expression forQ; in terms of the linear invariants is recalled for quick reference [19]
Q; = d;d} + cos0;(1 —d;d}) + sin§;CPM(d;),

in which 1 is the 3 x 3 identity matrix. Under the “small-displacement” assumption, #; is small enough so

that cosf; ~ 1 and sin6; ~ §;, the foregoing expression thus reducing to

where N, = CPM(v;).

Hence, the productQjQT, which yields €2;, can be approximated as
Q; ~N;(1+N7)=N; + N;,NT (4)

The first term of the foregoing expression isbilinear in the natural invariants and their time-derivative, the
second isquadratic in the former, linear in the latter. Under our “small-displa cement” assumption, then,
we drop the second term and end up with an approximation for€2; involving only the first term of the

foregoing expression, whence the approximation o ; follows:
1CPM() is defined ad(a x x)/dx, for anya,x € R3.

2The axial vectorvect(A) of a3 x 3 matrix A is defined, for every three-dimensional vectaras the three-dimensional vectarfor which
(1/2)(A + AT)x = CPM(a)x = a X x.
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OJj’RJI'/j, jZl,...,?’L. (5)
Let us store the mass properties of tierigid link into its associatednertia dyad[19]

I, O
O mjl

: (6)

wherem; is the mass of the™ rigid link, I, is its inertia matrix about poinR;, its mass centre, an@ is the

3 x 3 zero-matrix. As a result, the kinetic ener@yof the system is computed as

1o~ A Y

T = 3 Zx;‘erxj = §XTMX, (7)
j=1

where

M; Oegxs -+ Ogxs
O6xs6 Mz -+ Ogxs

M =
O6x6 Osxs -+ M,

will be referred to as thenass matrixof the mechanism.

C. The System Potential Energy

Consider the™ compliant link that is clamped, at one end, to tfferigid link, and, at the other end, to thd"
rigid link, with j < k. From the free-body diagram of th& compliant link shown in Fig. 2(a), we see that the
wrenchv; € RS applied at the mass cent&; by the j rigid link onto thei™ compliant link has to be balanced
out by wrenchu;(s;) € RS applied at pointS;(s;), wheres; is a curvilinear coordinate along the beam neutral axis.
The wrenches are defined so that their reciprocal produdt thi# small-displacement screws defined in eq. (1) be
dimensionally meaningful. Therefore, the first three comgrds of the wrench represent a moment, whereas the

last three represent a force, the latter applied at the spomeding mass centre, where the wrench is defined. Let us

Zs,i

(@) (b)

Fig. 2. Thei™ compliant link attached to thg! rigid link: (a) layout; (b) detail of the definition af;(s;)

attach frameS;(s;) with axesXs ;, Ys;, and Zs ;, to the beam cross-section gt as shown in Fig. 2(b). Frame

Si(s;) is defined so as to have if§s ;-axis tangent to the beam neutral axis and pointing in thétipeslirection
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of s;, and itsYs ;- and Zs ;-axes along the principal directions of the cross-sectiat.7;(s;) be the array of
products of the natural invariants of the rotation takirgnfieR ; into framesS;(s;), following the same convention
as that used fof;, ando;(s;) € R® be the vector moving poink; into S;(s;). We regroup these two arrays in
the cross-section pose array

si(si) = [Ti(s)T ai(s)T)T € RO (8)

Further, let us defin&; = CPM(o;) andT; = CPM(;).

The strain energy in a beam element of lendth starting at coordinate; and ending at coordinate + ds; is
computed as [15]
1

dU;(s;) = 5[ui(Si)]g,iHi(Si)[ui(sz‘)]s,idsia 9)

where [-]s,; indicates that the quantity-) is expressed in framé, and with respect to its origirb;. Matrix
H;(s;) € R®*5, in turn, contains the properties of the cross-sections Thatrix is defined according to the strain

energy formulas for beams [20]:

(10)

1 1 1 1 i i
H,(s;) = diag ( ovi 27, > ,

G.J;  Eily;’ Elz; E;A;’ GiA;" G;A;
where £ and G are the Young and the shear moduli, respectivély;, Iz, and J; are theYs ;-axis moment of
inertia, theZs ;-axis moment of inertia, and the torsional modulus of thenbeaoss section, respectivéjy4; is

the area of the cross-section; atgl; andaz; are the shearing effect coefficients for theg; and Zs ; directions,

respectively. Notice that all these parameters are funstaf the curvilinear coordinate;.

In the sequel, we shall need the adjoint representation efBiclidean group [21], which maps linearly the

associated Lie algebra onto itself. In the case of the csesfion pose-array scresy(s;), we obtain

s=| 0 Ow (11)
e Ei(si)eTi(Si) eT'L(Si) ’

which leads to the following expression of wrengh|z ; in framesS;, namely
[wi(si)]s.i = ~[vils.i = =S Vil (12)

where the first equality was obtained from the equilibriumtie free-body diagram of Fig. 2(a). Upon substituting
eq. (12) into eq. (9) and integrating over the length of thecompliant link, we obtain the strain energy as
1

Ui = =[vilk

D) ‘Bi[vi]R,ja (13)

5J

where l
Bi = / Si(Si)Hi(Si)Si(Si)Td8i7
0

‘?'Iyyi, Iz ; andJ are defined with respect to the centroid of the cross-section
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andl; is the length of the™ compliant link. It will prove useful to express all wrenchesin the same reference
frameF. To do this, we will need the adjoint representation of thellBean group that corresponds to the rigid-body

motion taking frameF into frameR;, namely,

| O 14
a Y,e® i 7 a4

where®; = CPM(0;) andY,; = CPM(p,). Hence,
[Vilr,; = R?[Vi]fa (15)

and the total strain energy—or potential energy, for thattera—of the system becomes

m m 1
U=y Ui=> §[vi]£RjBiR;‘-F [vi] 7. (16)
1=1 =1
For the sake of conciseness, let us rewrite this expression a
1
U =5 VFBV, (17)

whereB is a block-diagonal matrix, namely,

B = diag{R;,B1R] .R;,BoR] ,....R; B,R] }7"

J17 Jm

with j; taking the value of the smallest index among those of the fgjinl finks that are connected to th&
compliant link, and

Vr=lvilF [velz - [vmlF"

Upon writing the static equilibrium of the wrenches acting the ;™ rigid link, we obtain
Wilr, — Z [Vilr, + Z [Vilr, = O, (18)
iec; ieC;
whereOg is the six-dimensional zero—vectqi};r is the set of the indices of the compliant links that are cotetk
to the 5™ rigid link and to another rigid link that has an index greatfean j, while C; is the set of the indices
of the compliant links that are connected to i rigid link and to another rigid link that has an index smaller

than j. We substitute eq. (15) into eq. (18), and solve [fef]| =, which leads to

wilr, =R [ Y [vilr = Y [vilz | - (19)

o+ o
zeCj 1€Cj

In order to simplify the notation, we define the arraysndw of compliant- and rigid-link wrenches, respectively,

that is, ) ) ) .
[vilr [(Wilr,1
[va]F [WalR 2
[v]Fr = : and [wlg = : . (20)
_[Vm]}'_ _[Wn]R,n_
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Accordingly, we may rewrite eq. (19) in the more convenienrtr
[W]R = RTA[V]]:, (21)

whereR = diag{R, Rz, ..., R, } € R"*6" while

All A12 e Alm
Ay Ay - Aoy
A= _ ' _ € ROn*6m (22)
Anl An2 e Anm
Moreover, . . . .
if compliant link ¢ is not connected
O¢xs o
to rigid link j;
if compliant link ¢ is connected to
Aji = Lloxe L , o
rigid links 57 and k, with j < k;
if compliant link ¢ is connected to
-1
% rigid links j andk, with j > k.

This allows the introduction of thpotential energyf the external wrenches as a function of the internal wresch
namely,
I = —[wlz[x]r = ~[V]FATR[X]R. (23)

For a linearly elastic system, the potential ene¥ggand the complementary potential enefgyake the same value,

which is the sum of the strain energy and the potential eneramely,
V=V=U+1=(1/2)[v]EB[v]r — V]FATR[X]%. (24)

The internal wrenches are computed from the minimization of the potential enevgyor given displacements
of the rigid links. This follows from the second theorem ofsBigliano. The partial derivative of with respect to

the internal wrenches yields

_ _ AT
8[V]]: = B[V]]: A R[X]R, (25)
whereas the Hessian yields -
82_‘/ —B (26)
o

One may readily verify, from eq. (17), th&8 is symmetric, positive-definite and, therefore, all staéiry pointsv

of V are minima. MatrixB being nonsingula)V' /d[v] of eq. (25) admits one single root, namely,
[v]r = BT'ATR[x]%. (27)
Upon substituting eq. (21) into the foregoing equation, voéam

wlr = K[x]zr, where K=RTAB'AR. (28)
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The potential energy can now be written as a function of thetesy posturex, namely,

V = (1/2)xTKx. (29)

D. Dissipated Energy

Damping in MEMS is known to be the result of a variety of phenonena (e.g.: air damping, clamp losses,
thermoelastic dissipation and crystallographic defects}that are generally nonlinear functions of the system
posture x and its derivative x. However, for small displacements and a narrow bandwidth, it is often possible
to linearize these funtions around the operating point of tle mechanical system. In the case of nonlinear
damping, the resulting ordinary differential equation is not likely to admit a closed-form solution. In the
analysis that follows, we decided to restrict ourselves topplications where observable damping phenomena
may be linearized around the operating point of the system. Mreover, it is assumed that damping acts on

the rigid links alone, which allows us to define the Rayleigh sipation function
P = (1/2)xTCx, (30)

whereC € R™*" is at least positive-semidefinite and contains the systempday coefficients.

E. Dynamic model of the Compliant Mechanism

The Lagrangian of the mechanism is readily computed as
L=T-V = (1/2)x"Mx — (1/2)x"Kx, (32)

and its associated Lagrange equations are

d(aL) oL 0P

dt\ox) ox 0%

32
7 +w (32)

whence,

Mx + Kx =-Cx +w, (33)

which is the mathematical model sought. As the mass mattiwisd to be symmetric and positive-definite, we can
compute its Cholesky decomposition & = LL”. This allows us to rewrite eq. (33) in its monic represeotati

[22] by performing the change of variable= L™ x, namely,
i+ Az+Q%z =L 1w, (34)

where A = L~'CL~7 is thedissipation matrixand? = L~'KL~7 is the square of thérequency matrixof

the undampeccompliant mechanism.

Let u; andp,, i = 1,...,n, be the eigenvalues and eigenvector€Bf respectively, the former being identical

to the natural frequencies-squared, the latter lineasttamations of the modal vectors of the undamped system of
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eq. (34). That is, if we leh;, and; be the natural frequencies and the modal vectors of the upednmon-excited

system (33), then

Ai = /u;, and
Ni = L Tp, i=1,...,n (35)

Let us pursue this analysis by computing the Laplace-dorraimsfer functionH(s), which maps the input
wrenchesw acting on the rigid bodies onto the system stateand wheres is the variable of the Laplace domain.
From eq. (33), we have

H(s) = L™ (1gnx6ns® + As + Q%) 7L~ (36)

In the balance of this article, the proposed mathematicadlehe applied to two MEMS devices. The ensuing

estimates of the dynamic properties are then compared sighinse obtained from other methods.

IIl. ANALYSIS OF A SIMPLE CASE: THE ADXL150 ACCELEROMETER FROMANALOG DEVICES

Even though it is now replaced with the ADXL78, the ADXL15Caterometer from Analog Devices has been a
reference for accelerometer designers [18]. Because tfithgroperties are known, and it is thus a good starting
point to validate the proposed mathematical model, and tovsits usefulness. The ADXL150 has a range of
action of £50g¢. It is fabricated using surface-micromachining techngjuehich allows for a size as small as

753 pm x 657 pm, which can be appreciated from Fig. 3. The ADXL150 is a uiaibxccelerometer, and hence, its

Fig. 3. Analog Devices ADXL150

stiffness should be much lower along its sensitive axis tlang any other direction. To verify this, we analyze
the mechanical structure of the device, which is sketchdeign4. In this sketch, the thicknesf the compliant
mechanism is measured in tkd@ection orthogonal to the plane of the figure. The compliant legs are numbered
in encircled numeralsfrom 1 to 4, whereas the only rigid link of this mechanism ie firoof mass itself, which

is thus labelled with number 1, in a square. The dimensioagegorded in Table I, as taken from [18], except for

b, which was estimated from Fig. 3. Framg&sandR; are defined as displayed in Fig. 4, with théiraxes along
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®

Fig. 4. The mechanical structure of the ADXL150

the accelerometer sensitive axis—represented here byheddise, and with theit” axes in the plane of the wafer
surface. We take those frames to be right-handed, and soAhakes stem out of the plane of the wafer surface.
Moreover, the origing) and R; of these two frames are located at the proof-mass centraéthcél apparently,

framesF andR; are chosen to be identical, which simplifies subsequentizlons. The material of the flexible

TABLE |
DIMENSIONS OF THEADXL150 ACCELEROMETER

L l w b h t
500 um | 120pum | 50 gm | 10 pm | 2.5pum | 2 um

mechanism is polysilicon, which has a Young modulis= 160 GPa, a Poisson ratio = 0.2, and a density
p = 2331kg/m’. The mass matriM of the mechanism is the mass matrix of the proof mass as déifineg. (6).

The corresponding inertia matris estimated to be

0.5586 0 0
Mlr=Mlga=| 0 3088 0 |x107" kgm? (37)
0 0 3.647
from a CAD model of the proof mass that included its 54 elatdsgwhereas the mass is taken to ben; =

2.2 x 10710 kg, the same value as that used by [18]his allows the evaluation of the kinetic energy from eq. (7

On the other hand, calculating the potential energy requine definition of the additional frame$(s;), i =
1,2,3,4. This can be done through the definition of their associateeMss;(s;), i = 1,2, 3,4, which take frame

R1 into their respective frameS;(s;), « = 1,2,3,4. Because the compliant links exhibit discontinuous néutra
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axes, these screws are defined as piecewise functions,akeden Table II.

TABLE I
SCREWSS;(s;),1=1,2,3,4

si € i sT(s;)
1 0 0 3n/2 —L/2 —w/2-s1 0]
YHE 0 0 =2 L2 w/2ts; 0
3 [0 0 w2 L2 w2+ss 0]
4 [0 0 32 L2 —w/2-ss 0]
1 0 0 0 si—1—L/2 b—L/2 0
ek 0 0 0 ss—1—L/2 w/2+l 0
3 0 0 m L/241—-s3 w/2+1 0
4 0 0 = L2+i-si —w2-1 0
oo w2 b-r/2 si-2-b-w2 0
Geb2tep) |2 [0 0 8m/2 b-L/2 24btw/2-s 0
3(fo 0 372 L/2-b 2+4btw2—s3 0
4o 0o =2 L2-b si-2-b-w/2 0

The beam cross-section remains constant in all the comglides, and, therefore, from the numerical data of

Table Il, we obtain,

J; = Bht? =3.37x 10724 m*, with 8 =0.1685,
Iy; = t°h/12 = 1.67 x 10~ ** m*,
Iz; = h%t/12 =2.60 x 10~2* m*,
A, = ht=5.00x 1072 m?, and
agz; =6/5. (38)

Qy i

Since framesF andR; are coincident, we have
R = R; = 16xs; (39)
and, because the four compliant links connect the fixed figkito the only mobile rigid link, we may assign
A= [_16><6 —1ex6 —lexs _16><6} ; (40)

where the minus sign comes from the assumption that the figgd link corresponds to the index = 0. From

eg. (28), we obtain directly

K = diag (2.87 x 107%, 1.94 x 1077,
1.61 x 107°, 5.16, 268, 3.17) (41)

whose first three entries bear units ofiNrad, the last three of N/m. The fourth diagonal term in €q.) fepresents

the stiffness of the mechanism along the accelerometeitisenaxis. The value reported in [13] for the same
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TABLE Il

MODAL ANALYSIS OF THE ADXL150 ACCELEROMETER

i 1 2 3 4 5 6
fi (kHz) | 19.11 | 24.38 | 36.08 | 39.90 | 175.60 | 334.62

0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000
1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

dimensions wa$.6 N/m, but this did neither take into account the deflectionha shorter intermediate straight
beams in each leg.e., the beams with a length ob = 10 um, nor the shear strain in any of the beams. According
to [18], the actual value measured by Analog Devices.4sN/m. Hence, in this case study, the proposed model

appears to be accurate.

The frequency matrix can thus be computed from its definjtioreq. (34), which yields

Q = diag(2.27 2.51 21.0 1.67 12.0 1.31) x 10° rad/s
diag (36.1 39.9 335 244 176 19.1) KkHz

Apparently, the frequency matrix is diagonal, which allofes the extraction of its eigenvalues and eigenvectors

by simple inspection. For the sake of clarity, these valuesliated in Table I, in ascending order.

A natural frequency o24.7 kHz is reported in [18] in the direction of the accelerometensitive axis, which is
somewhatarger than the24.4 kHz obtained here. The reason behthi is the different stiffnessstimate, which,
in the case of [18], did not take into account the shear straimor the compliance of the intermediate beam in
each leg of the ADXL150 There is a relatively large difference between the fundamidrequency and that of the
mode in the direction of the accelerometer sensitive asigompared to the small difference of the former with that
of a translational out-of-plane motion of the proof massiclvhmay surprise anyone who is not familiar with MEMS
design. Indeed, at this scale, the damping due to the squidibmeof air between the proof mass and the substrate is

extremely high in that direction, which prevents this p@masotion from becoming significant at high frequencies.

To substantiate this claim, let us estimate the dampingdrsyistem by assigning some values to mattidefined
in eq. (30). Here, we consider only the damping that is dudrtfriation beneath the proof mass and between the
electrodes. Moreover, even though it may be just as highesldmping due to proof-mass translations, we neglect
air damping due tgroof-massrotations. This choice is mainly justified by virtue of caepndence of the lowest

frequencies of the system to those of the translational fpreass motions; the choice can also be justified by the

March 30, 2008 DRAFT



JOURNAL OF MICROELECTROMECHANICAL SYSTEMS 13

level of complexity associated with the modeling of the aiwflaround a rotating plate close to a flat surface.
Indeed, the air flow beneath the proof mass induced by intwaéame translations may be modeled as a simple
Couetté flow, whereas the air flow produced by out-of-wafer-planastations may be assimilated to a Poisetille
flow [18]. Moreover, as a rough approximation, we consider flow between the electrodes as well as when the
proof mass translates in th&-axis direction to be of the Poiseuille type; we consider ai@te flow when the

proof mass translates in thé-axis direction. As a result, we have

C = diag{0, 0, 0, n(L — 2b)w/c + 108 x 96nit* /(x*d?),
n(L — 2b)w/c + 108nlt/d,
96n (L — 2b)w®/(x*c)}, (42)

C = diag{0, 0, 0, 1.107 x 107,
0.629 x 107%, 259.858 x 107°} Ns/m (43)

wherec = 1.6 um is the gap between the proof mass and the chip,1.3 um is the gap between two electrodes,

andn = 18 x 10~% Pas is the dynamic viscosity of air.

The associated matrix transfer function is computed from(86). In the case of an accelerometer, the array of
rigid-link external wrenchesv defined in eq. (20) may be regarded, from d’Alembert’s ppiei as an array of
inertial wrenches Moreover, if we assume that the instant screw axis of anyianatf the accelerometer frame
lies at infinity, which is reasonable for a small mechanigatsm, we can neglect the angular velocity and wwite
as a linear function of the twist time-derivatiweof the accelerometer frame. Hence, the acceleration fielthef
accelerometer frame is approximated by a helical field greed by screva, which is formed with the angular
acceleration of frameF with respect to an inertial frame, and the acceleration &foitigin O with respect to a

fixed reference point, both expressed in the acceleratedeffa. Symbolically, we obtain
w = —MR"Ta, (44)

whereT = [1gx6 loxs -+ lexo|’.

Let us now labekx, &, and{z the components of the position of the proof-mass positioctoret,, and

ax, ay, andaz the components oh. We also define unit vectors, =[0I 1 01]7, es =[0] 1 0]7, and

4A Couette flow is a laminar flow of an incompressible Newtoriiid induced by the relative motion of the two parallel plarie relative
translation that contain the fluid [23].

5A Poiseuille flow is a laminar flow of an incompressible New#mfluid in a pipe [23].
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es = [0 1]T, which lets us write the input-output relationships

hx(s) = €x(s)/ax(s) = —elH(s)MRT Te,, (45)
hy(s) = &v(s)/ay(s) = —el H(s)MR Te;, (46)
hz(s) = €2(s)/az(s) = —el H(s)MRT Teg. (47)

We compute the complex frequency responsg$w), hy (w), andhz(w) of the proof mass to transverse accelera-
tions by evaluating the corresponding transfer functiansd—1, wherew is the input frequency. Upon computing

the magnitudes and phase angles of these complex functi@nsbtain the Bode plots of Fig. 5.

From the magnitude-vs.-frequency plot of Fig. 5(a), we bt the accelerometer respons&Zt@xis accelerations
is overdamped, whereas the responses to in-wafer planéeeati@ns are underdamped. Nevertheless, the out-of-
wafer-plane motion can still pose problems when the proa$sria subjected to low-frequency accelerations (e.g.
gravitational or centripetal) along th&-direction of frameF. Indeed, cross-axis sensitivity is the highest source

of errors (2% of the full-scale range, i.e.,g) for the ADXL150 accelerometer.

10

(T
(%), 1o

180
150r

120r

$(w)
)

90r

60r

30t

(b)

Fig. 5. Frequency response of the ADXL150: (a) magnitude (@yghase
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IV. ANALYSIS OF A COMPLEX CASE: THE SIMPLICIAL BIAXIAL ACCELEROMETER

Let us now turn our attention towards a more complex meclérchitecture, that of th&implicial Biaxial
Accelerometel(SBA) [24], which is shown in Fig. 6. The proof mass of this @lecometer takes the shape of a
regular triangle. This triangle is suspended at each ofdtges by a pair oflistal beams, which connects at its other
ends to an intermediate rigid link. In turn, this rigid link suspended by foyoroximalbeams perpendicular to their
corresponding pair of distal beams, which connect to thelacometer frame at their other ends. As a result, this
mechanism is compliant to proof-mass translations in theemalane, while offering high stiffness to proof-mass
rotations and translations out of the wafer plaim@e equilateral triangular geometry of the SBA resembles
that of the HexFlex [25] while resulting in a completely different mechanical behavior. If the SBA allows
for in-plane translations of its moving platform, the HexFlex allows for any displacements of its moving
platform in space. Moreover, in the case of the SBA, the movim platform serves as an acceleration sensor,
whereas the HexFlex moving platform is actuated through itssupporting legs. A prototype of thepackaged

microfabricated device is shown in Fig. 7.

Fig. 6. CAD model of theSimplicial Biaxial Acceleromete(SBA)

Fig. 7. Packaged microfabricated SBA
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For the purpose of this analysis, a top view of the SBA is shawhig. 8, where each link is labelled with a
number appearing in a circle for a compliant link, and in a barxa rigid link. Table 1V lists the numerical values

of the dimensions appearing in Fig. 8 as well as the numeviglale of the device wafer thicknegs

Fig. 8. Dimensions of th&implicial Biaxial Accelerometer

TABLE IV
DIMENSIONS OF THESIMPLICIAL BIAXIAL ACCELEROMETER

L l w t r
5544 ym | 4400pm | 105pum 300 um | 78.7 um
a b c d e

10000um | 2500 um | 2020um | 1000m | 200 um

A. Kinetic Energy

FramesR;, j =1,...,n, n =4, are located at the mass centers of their corresponding liigks, and oriented

so that screws;, j = 1,...,n, take the values

ri = |00 —Ba/6-1-f oT,
[0l 2r/3
(a/2+ V3l +V3f)/2 (V3a/6+1+f)/2 0],
r3 = [0 —27/3
—(a/2+V3L+V3f)/2 (V3a/6+1+f)/2 0T,

1)
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andr, = 0g, where

f

(b+ c)(be? — 2d> + 3bd? + 6bde — 6de?) — 2¢2c?

3(b+c)(e(b—rc)+2d(b—d))

17

The mass properties of the rigid links are computed from a GA@lel, which yields

M4)R 4

= my =ms = 1.387 x 102 kg,
= 30.25 x 1073 kg,

= [L]r,2 = I3]r,3,
— diag (0.1456 0.4656 0.5904) x 10~ kg n?,

= diag (12.63 12.63 252.1) x 10~ kg n.

The mass matrix is evaluated directly from these numeriailas and the definition of eq. (7).

B. Potential Energy

Upon defining the lengthg = b/2 + L andh = v/3a/6 + 1 + e, screwss;, i = 1,.

as

March 30, 2008

S1

S2

S3

Sq

S5

S6

S7

S8

S11

S12

513

S14

0 0 7 g—d—s; —h—d 0"
0 0 7 g—sy —h 0",

[O 0 7/2 ¢/2 s3—V3a/6—1 O}T

S9 = S15,

{o 0 /2 —¢/2 si—+3a/6-1 O}T

510 = S16,

0 0 0 ss—g —h 0,
0 0 0 ss+d—g —h—d 0]

0 0 /3

— \/gh/Q— (9—814)/2

)

)

T

0 0 —7/3 VB(h+d)/2—(g—d—s7)/2
B T
(/2 V(g —d—s7)/2 0} ,
00 —7/3 V3h/2 — (g — s5)/2
h/24+V3(g — s8)/2 or,
0 0 2r/3 VBh/2+ (g—s1)/2
h/2-VBlg—sn)/2 O}T,
0 0 21/3 V3(h+d)/2+ (g —d—s512)/2
B T
(/2= VBlg—d—s12)/2 0] .
0 0 /3 —V3(h+d)/2—(9—d—s13)/2
(h+d)/2 —V3(g—d — s13)/2 0}

)

..,m, m = 18, are evaluated
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h/2 = V/3(g — s14)/2 or,
{0 0 —21/3 —V3h/2+ (g—s17)/2
T
h/2+V3(g — s17)/2 0} , and
S18 = |:O O —271'/3 —\/§(h+d)/2+(g—d—518)/2
(h+d)/2+V3(g —d—s18)/2 O}T.

S17

Turning our attention to the elastostatic properties of ¢bepliant links, we realize that the beams are not all
identical in that respect, since silicon crystal is an aingg@c material. The axes of the cubic crystal correspond to
the axes of frameF shown in Fig. 8. As a result, the Young moddlj and the shear modul¥;,, i = 1,...,m, are
not all equal, depending on the orientation of their coroesfing compliant link with respect to the crystal axes.

Because of the symmetry in the crystal, we have

. 1 1 1 1 Qy (654
Hi =d ) ) ) ) ’ ) 48
lag<GlJ BEily Eil; ELA GLA GLA) (48)
fori=1,...,6, and
1 1 1
Hi = di ; ) )
18 <G4TJ E Iy E Iy
1 ay Qyz
49
EAA’G4YA’G4ZA>’ (49)
fori=17,...,18, where thel subscript refers to the beams that aré)ator 90° from a crystal axis, and the

subscript refers to the beams that arg@ft or 60° from a crystal axis. Because of material anisotropy, twdairis
shear moduli are associated with the cross-sections tleaheatr orthogonal to one of the crystallographic axes.
These moduli, which we labé&l, y- andG . z, correspond, respectively, to the directions of ¥, andZs ; axes
of the cross-section frame$(s;), i =7, ..., 18. Moreover, in this model we neglect any coupling betweesitor
and bending due to the distinct shear moduli in compliarkdin= 7,...,18. In fact, to avoid overcomplicating
the problem, we define the section shear modulus in torsicdtheasverage of the two actual shear moduli of the
section, that is,

Gor=(Gry +Grz)/2 (50)

This saves us from resorting to a modified Saint-Venant ntetldiich would require the solution of a partial
differential equation of the form
oly, 2) Po(y, 2)

GA,YTyQ + GA,ZT =0, (51)

and wherep(y, z) represents the warping of the beam cross-sections. Hentleg case of pure torsion, we consider

the material to be isotropic with a shear modulusdf ;.
The numerical values of the foregoing elastic propertiesgaven in Table V, as reported in [26]. The geometric

properties of the beam cross-sections, also gathered ile Yalwere computed from the formulag= Bwt?, with

B =0.258, Iy = wt3/12, I; = w3t/12, and A = wt, whereas the shear correction factors ase = az = 6/5
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TABLE V
CROSSSECTION PROPERTIES OF THE COMPLIANT LINKS OF THEBA

E 130.2 GPa G 79.4 GPa
E/ x 157.2 GPa G,y 79.4 GPa
Gé,Z 55.9 GPa Gé,T 67.6 GPa

J 0.8965 x 1016 m* Iy 0.2363 x 101> m?
Iz 0.2894 x 1016 m* A 0.3150 x 10=7"m?
ay 1.2 ay 1.2

for rectangular cross-sections [27]. This permits the cotation of the stiffness matrix as defined in eq. (28).

C. Dissipated Energy

It is assumed that all energy dissipation comes from aitifnicwithin the 2.5;m gap between the proof mass
and the handle wafer. Following the same method as in Setlifioa Couette flow is assumed for in-wafer-plane
proof-mass translations, while the air flow produced by pmass rotations and other rigid-link displacements
are neglected. As in Section Ill, we may yet assume that arolwiafer-plane proof-mass translation generates
a Poiseuille flow beneath it, but the triangular geometryhe proof mass prevents us from using the solution
for rectangular plates. In order to obtain a rough estimigteys assume a Poiseuille air flow beneath the proof
mass that is orthogonal to the closest triangle edges, ash&lckin Fig. 9. Consider now the small element of area
underneath the proof mass that has a widghand a total length of,/\/3 — y, wherey is the coordinate of the
element intersection with th¥-axis. We may assume that the damping due to this small eleimgiven by the

formula for rectangular plates that have one side much taitgn the other [18], that is,
dez = 96n(dq)(a/V3 —y)* /(x'p?), (52)

wherep = 2.5 um is the gap between the proof mass and the handle wafer.cBngje¢he element widthlg onto
the Y'-axis yields the relatiomlq = v/3dy /2, which, upon substitution in eq. (52), allows for a summaitiwver the

upper branch of the triangular proof mass that leads to thegial

a/\/§
e)3 = 15V3n / (a/V/3 — y)dy

Tip?
B 48v/3n a/V3 34
T T ), yay
whence,
4+/3na*
cr = — (53)
TP

thereby obtaining the result sought.

As a result, matrixC of eq. (30) takes the symbolic and numeric values

C = diag ([051 nAs/p nAs/p 4\/§na4/(7f4p3)]T), and
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Fig. 9. Squeezed-film damping of the SBA proof mass

C = diag ([03; 3.12x107* 3.12x 107"
8.19 x 10%7) N-s/m

D. Estimated Dynamics

The first modes of the SBA are computed from eq. (35), whichdgi¢he results of Table VI. Because of
the 24 degrees of freedom of the compliant mechanism, these seardt somewhat more intricate. The first two
frequencies differ only by round-off error, their assoewdtmodes involving motions of all four rigid links. For
acceleration measurement, we are interested only in prass motions, which are represented here by vector
Ai,a. Apparently, from Table VI, the first two modes correspondntavafer-plane motions of the proof mass, with,
in one case, a parasitic in-wafer-plane rotation. This giicamotion is not due to round-off errors, but rather to
silicon anisotropy. One must bear in mind, however, thatrtitational component oA, 4 is expressed in radians,
whereas the translational component is expressed in meidersce, for instance, &00 um displacement of the
proof mass along the direction of the first mode results in @$8c rotation of 7.88 rad, or to relative position
errors of the vertices of the proof mass @788 um. This result is thought to be acceptable; we may safely say
that the fundamental frequency corresponds now to the tweitde directions. In turn, the third natural frequency
appears to be dominated by rotations, except for a smallmudinsalue at theZ-axis translational direction of the
proof-mass. In fact, modas; may be visualized as a rotation of the proximal rigid linksoabtheir associated
X, axes—which are parallel to their corresponding edge of tiaadular proof mass—and a translation—for the
most part—of the proof mass along tleaxis. Hence, we see that the natural frequency of the pigrasit-of-
wafer-plane motion is now higher than that of the sensitivesawhich is, apparently, an advantage of the SBA

mechanical architecture over that of the ADXL150 accelertam
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TABLE VI

MODAL ANALYSIS OF THE SIMPLICIAL BIAXIAL ACCELEROMETER

i 1 2 3 4 5 6
fi (Hz) | 5321 | 5322 | 69.02 | 178.74 | 187.28 | 423.05
0.000 | -0.000 | -0.601| 0.564 | 0.000 | -0.998
-0.000 | 0.000 | 0.000 | 0.000 | 0.058 | 0.000
0.214 | 0.000 | -0.000 | -0.000 | -0.000 | -0.000
21| 0,000 | -0.000 | -0.000 | -0.000 | -0.000 | -0.000
-0.000 | 0.486 | 0.000 | -0.000 | -0.000 | -0.000
0.000 | -0.000 | -0.000 | 0.001 | 0.000 | 0.003
-0.000 | -0.000 | -0.564 | -0.311 | -0.511 | -0.028
-0.000 | 0.000 | -0.003 | 0.047 | -0.027 | -0.003
-0.455 | -0.452 | -0.000 | -0.000 | -0.000 | -0.000
22| 65000| 0.000 | 0.000 | -0.000 | -0.000 | 0.000
0.360 | -0.243 | -0.000 | 0.000 | -0.000 | -0.000
-0.000 | 0.000 | -0.000 | -0.000 | -0.001 | 0.000
0.000 | -0.000 | -0.564 | -0.311 | 0.511 | -0.028
-0.000 | 0.000 | 0.003 | -0.047 | -0.027 | 0.003
-0.455 | 0.452 | -0.000 | -0.000 | -0.000 | -0.000
23| 0,000 | -0.000 | -0.000 | -0.000 | 0.000 | 0.000
-0.360 | -0.243 | -0.000 | 0.000 | 0.000 | -0.000
0.000 | -0.000 | -0.000 | -0.000 | 0.001 | 0.000
-0.000 | -0.000 | -0.040 | 0.695 | 0.000 | -0.050
-0.000 | -0.000 | 0.000 | -0.000 | -0.688 | -0.000
0.328 | 0.000 | -0.000 | -0.000 | 0.000 | -0.000
2t | 0416 | 0000 | 0000 | 0.000 | -0.000 | 0.000
0.000 | -0.486 | -0.000 | 0.000 | 0.000 | 0.000
-0.000 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000

In order to evaluate the effect of damping over the acceletemmatrixH(s) is computed according to eq. (36).
As in Section Ill, we apply d’Alembert’s principle of inegtiforces to the dynamic system, taking the inertia forces
acting on the rigid links as input forces of eq. (33), the apbeing the proof mass displacements. In particular,
upon applying successively pure accelerations alongXheY, and Z-axis directions, we obtain the complex
frequency responsésx (w), hy (w), and hz(w), respectively, of translations of the proof mass in eachheké
directions. The magnitudes and phase angles of these freguesponses are shown in the Bode plots of Fig. 10. The
lower sensitivity of the proof-mass displacementsZtaxis accelerations than to thé- andY -axis accelerations is
confirmed from Fig. 10(a). One may also observe a good isgtfopin-wafer-plane accelerations, and a bandwidth

of approximatelyl00 rad/s.
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Fig. 10. Frequency response of the SBA: (a) magnitude angl{age angle

E. Measured Dynamics

The mechanical structure of the SBA was tested by applying short impulse accelerations in the negative
direction of its Z axis, as defined in Fig. 8. The “free” resonations of the stmecwere then recorded using a
vibrometer. A schematic and a picture of the test bench apgvishn Fig. 11. In this setup, the shaker (Bruel &
Kjeer Mini-Shaker 4810) is driven by a regular sound amplifidarman Kardon HK3300), which itself takes its
input from a signal generator. A typical time-history of thlkaker impulse input voltage is displayed in Fig. 12.
The resulting motions of the SBA rigid-links are recorded thg vibrometer (Polytec PSV-400), which sheds a
laser beam vertically down on the sample. The laser beanogr@mmed to scan 382 points on the SBA, according
to the mesh shown in Fig. 13. Point-velocities are measuyethé vibrometer, and, thence, a frequency-domain
distribution of the point-velocities of the acceleromegechitecture is computed and recorded by the controller
(Polytec OFV-5000).

The Polytec controller returns a frequency-domain distidn of the velocities of the scanned poir{tgj}ﬁ%,

along with their phase correspondance with a referencebkigs can be seen from Fig. 11(a), in the test bench, the

March 30, 2008 DRAFT



JOURNAL OF MICROELECTROMECHANICAL SYSTEMS 23

vibrometer
vibrometer controlle&
0O 00O
SBA
signal generatgg‘
[ ooo
8000 ooo
[-N-N-N-)
shaker amplifier

(b)

Fig. 11. SBA test bench: (a) schematic representation apngh@ograph
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Fig. 12. Typical voltage impulse applied at the shaker input

shaker input voltage was used as the reference signal. Frese tresults, the complex velocity frequency response

v;j(w) of each point may be computed.
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Fig. 13. Points scanned by the vibrometer

The point-displacement frequency respordsév) may then be obtained as
dj(w) = v;/(wi), (54)
wherei = /—1. On the other hand, point-acceleration frequency respange) is given by
a;(w) = wiv;. (55)

Let us now define the sefs andP of the indices of the points pertaining to the acceleromietene and proof mass,
respectivelyas illustrated on Fig. 13.From this, we may reference the proof-mass point-displacgmesponse
magnitudes with the rms-value of the frame point-acceilenatesponse magnitudes. This yields the normalized

displacements
- d;(w)

dj(w) = ,
VA Dier lan(@)P

wheren is the cardinality of7. Finally, we obtain an overall magnitude response of thepmoass by taking the

7 €P, (56)

rms-value of the displacements of its 60 scanned points.b8lioally, we have

o) = [ Ml )
J€

wherem = 60 is the cardinality ofP. On the other, the meaning of an overall phase diagram of tbef{mass
point-displacements is less apparent, and, thereforeast decided to leave them separate. Hence, the phase angle

q}j (w) of point j € P is readily computed as

$; = arctan {%] : (58)

The resulting frequency response is shown in Figs. 14(a) (Apdalong with the modeled frequency response,
which was already shown in Fig. 10. Notice that the 60 phasgeam;, j € P are displayed in Fig. 14(b). As
can be seen from these figures, the measured frequency sespmfairly close to the ones given by the transfer

functionsh x (w) andhy (w). The modeled and measured peak frequencies are 53.2 Hz addHabrespectively.
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This difference may be due in part to the rough approximatibthe damping coefficient, which appears to have

been underestimated.

10 ‘ ‘ ‘ ‘
10" 10° 10" 10° 10°
w (rad/s)
(a)
180 preremsmzz :
P /
$(w)
) 90t ¢x (W), ¢y (w) B
45} b, j € p—
0 -1 ‘ 0 ‘ 1 2 V 3
10 10 10 10

10
w (rad/s)
(b)

Fig. 14. Comparison between the SBA model and the experahessults: (a) magnitudes and (b) phase angles

V. CONCLUSIONS

Although the assumptions put forward in this article are common in elastodynamics modeling, the
mathematical tools used are not. In particular, screw theoy allows for a sound, broad-scope, and simple
formulation of the dynamic model of a lumped MEMS. The generdframework in which the proposed method
is developed is important for the evaluation of large numbes of variants with different topologies, numbers
of degrees of freedom, etc. Moreover, the simplicity of theeasulting model formulation is thought to be of
crucial importance, since the usefulness of a symbolic sdian is generally dictated by its level of intricacy. A
major factor contributing to the simplicity of the dynamic m odel obtained is the parameters chosen for the
representation of rigid-link rotations in space. As shown n eq. (5), for small displacements, the time rates

of these parameters are approximately equal to the rigid-lik angular velocity, which simplifies the model

March 30, 2008 DRAFT



JOURNAL OF MICROELECTROMECHANICAL SYSTEMS 26

formulation. The resulting symbolic models should yield iformation on the relations between the design
parameters and the design objectives. This is thought to bespecially important in MEMS design, e.g., for
assessing the scalability of a design, the effect of consimés on certain dimensions due to microfabrication

limitations, the overall feasibility of certain actuation schemes, estimating parasitic displacements, etc.

The model was applied to the relatively simple mechanicahiggcture of the adready-existing ADXL150
accelerometer, and the estimated dynamic properties afd@hiee were compared to published data, which confirmed
the accuracy of the proposed model. The dynamic model was &pplied to the SBA, an accelerometer that
comprises four rigid links and 18 compliant links. The madkind measured dynamic properties of the mechanism
were compared, which corroborated the previous resultshBtmore, the two case studies showed that the proposed
formulation can streamline both symbolic and numeric dalions when the complete system dynamics is to be

modeled.

An example of a potential application of this method to MEMS gnthesis comes from the expression of
the stiffness matrix obtained in eq. (28), which is complefg decoupled. Indeed,K appears as a product of
matrices R, A, and B, containing the information on the rigid-link poses, the me&hanism topology, and the
compliant-link stiffness properties, respectively.This should prove useful for the synthesis of lumped-coamie
micromechanismsAs an example, one could impose the rigid-link poses and theompliant links used for
a particular MEMS, and then treat the topology A as a design variable Another potential application of
this method could come from its combination with the modedpmsed in [28]. In this reference, the authors
modeled the dynamics of a compliant micromechanism sudgjeti nonlinear external forces by approximating
its displacements with a time-varying linear combinatidrit® modes. These modes are computed from a linear
dynamic model similar to that of eq. (33), except that the plant links are discretized rather than treated as
continua. Treating the compliant links as Euler-Bernooiams—or any other compliance model—and expressing
the system state in terms of rigid-link poses, twists, andttvates minimizes the number of generalized coordinates
of the associated model. Since computing the stiffnessiceatiof Euler-Bernoulli beams is a linear process, and
because the dimension of the associated nonlinear eigenpabblem is minimized, this method should streamline

the computation of the mechanism dynamic response.
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