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Abstract 
The occupational environment has been a fruitful source of research on causes of cancer. 

Analyses in studies of occupational risk factors for cancer can experience problems if an 

attempt is made to modellarge numbers of exposures, sorne ofwhich may be highly 

correlated. Typical analyses of such studies focus on one chemical at a time, but this may 

not adequate1y deal with mutual confounding. Based on a large study in Montreal, the 

objective ofthis thesis was twofold: to assess several occupational chemicals for their 

etiologic role in lung cancer, and to explore the use of semi-Bayes modeling to 

simultaneously estimate the effects ofmany chemicals at a time. METHODS: Data came 

from a multiple-cancer case-control study of exposures in the work place. The study was 

comprised of 857 cases of lung cancer and 2172 controls consisting of patients with other 

types of cancer diagnosed from 1979 to 1985. Detailed occupational histories were 

coIlected and occupational hygienists translated these into exposure histories for 231 

chemicals. AlI chemicals were analysed with conventional modeling strategies ofboth 

single and multiple parameter models. Of the 231 chemicals, 184 were singled out for 

analysis in a single large semi-Bayes model, which is a variant of c1assical empirical 

Bayes. This analysis is a fairly novel method suited to estimating large numbers of 

parameters in the face ofsparse data. For the Bayesian portion ofthis model, chemicals 

were grouped by shared chemical and physical properties, based on the belief that these 

shared properties would imply similar effects on the risk oflung cancer. RESULTS: 

Estimates for aIl 231 chemicals were derived under the various modeling strategies. For 

most chemicals, estimates changed little across these analytic approaches, though sorne 

differences were apparent. Of the 231 chemicals assessed, 53 were earmarked as 

requiring further evaluation and underwent additional analyses. DISCUSSION: While 

semi-Bayes models have been shown previously to offer improved estimation over 

conventional analyses, the gains in using semi-Bayes models in the present study were 

less c1ear. Effort put into sorne portions of the Bayesian modeling did not materiaIly 

influence the results. A number of chemicals were earmarked as potentiallung 

carcinogens. 

XlI 



Résumé 
L'environnement professionnel offre de vastes opportunités de recherche sur les causes du 

cancer. Dans de telles études, des problèmes sont observés lorsque est tentée la 

modélisation d'un grand nombre d'expositions dont certaines peuvent être fortement 

corrélées. Ainsi, les analyses typiques ne ciblent qu'un produit chimique à la fois, sans 

tenir compte de possibles effets de confusion engendrés par d'autres substances. Basée 

sur une large étude montréalaise, cette thèse comporte deux objectifs principaux: évaluer 

le rôle étiologique de plusieurs produits chimiques sur le cancer du poumon; explorer les 

modèles semi-bayésiens pour l'estimation simultanée des effets de plusieurs produits 

chimiques. MÉTHODES: Les données proviennent d'une étude cas-témoins portant sur 

des cancers multiples en relation avec l'exposition en milieu professionnel, à laquelle ont 

participé 857 cas de cancer du poumon et 2172 témoins ayant d'autres types de cancer. 

L'historique professionnel des patients fut récolté et traduit en expositions à 231 produits 

chimiques par des hygiénistes du travail. Tous les produits furent analysés par les 

méthodes conventionnelles avec modèles simples et multiples. Des 231 produits, 184 

furent retenus pour une large analyse multiple avec un modèle semi-bayésien, une 

variante du modèle empirique de Bayes. Cette récente technique d'analyse s'avère efficace 

pour estimer un grand nombre de paramètres avec des données dont le nombre est limité. 

Pour la portion bayésienne de ce modèle, les substances furent regroupées par propriétés 

chimiques et physiques, sous l'hypothèse qu'à ces propriétés partagées seraient reliés des 

effets similaires sur les risques de cancer du poumon. RÉSULTATS: Les estimations de 

risque pour l'ensemble des 231 produits chimiques furent obtenues sous les diverses 

stratégies analytiques. Pour la majorité des produits, les deux méthodes donnaient des 

résultats comparables, avec quelques exceptions. Des 231 produits étudés, 53 furent 

retenus pour analyses plus approfondies. DISCUSSION: Bien qu'il ait été démontré par le 

passé que les modèles semi-bayésiens résultaient en une amélioration des estimations 

comparativement aux analyses conventionnelles, les gains découlant de l'utilisation des 

modèles semi-bayésiens dans cette étude ne sont pas aussi évidents. Les efforts investis 

dans l'application de ces derniers n'ont pas influencé substantiellement les résultats. Un 

certain nombre de produits chimiques ont été retenus comme carcinogènes pulmonaires 

potentiels. 
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Terminology 
The phrases 'occupational etiology' and 'occupational cancer' refer to human risks 

attributable to hazards in the workplace. These hazards can relate to general work 

conditions and environments or, as in the present thesis, chemical exposures common to, 

but not necessarily limited to, the workplace. 

As a matter of style, capital roman letters are used to represent parameters (in lieu of their 

Greek equivalents), smaU roman letters represent empirical estimates ofthe parameters, 

and bold letters signify vectors or matrices of parameters or estimates. The foUowing 

acronyms are occasionaUy used: RR for incidence density rate ratio, SMR for 

standardized mortality ratio, PMR for proportionate mortality ratio, OR for odds ratio, EB 

for empirical Bayes, SB for semi-Bayes, and MLE for maximum likelihood estimate. 

Among the chemicals, the foUowing acronyms were used: PAR for polycyclic aromatic 

hydrocarbons, MAR for monocyclic aromatic hydrocarbons, and B(a)P for 

benzo( a )pyrene. 

The expression 'confidence limits' (CL) is used to genericaUy describe even the interval 

estimates from the empirical Bayesian and semi-Bayes analyses, though the use of the 

word confidence, as it implies a Frequentist method, is formaUy incorrect. The 

terminology of empirical Bayesian modeling varies greatly throughout the published 

literature. Such approaches are equivalent to, or special cases of, hierarchical or 

multilevel models. The terminology used in the thesis wiU refer to the model containing 

the parameters ofinterest (for the occupational exposures) as the first-Ievel model or the 

maximum likelihood model, and the empirical Bayesian prior information (about the first

level parameters of interest) as the second-Ievel model. 

Reports of confidence limits throughout the introduction and literature review can be 

assumed to be 95% intervals, unless otherwise specified. 
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1 Introduction 
Dangerous substances and conditions seem to have always existed in the workplace, 

though they were not necessarily a source of concern for public health. 'Unhealthy' work 

environments were occasionally exploited as forms of punishment for slaves and convicts 

(Hunter, 1975), but it has been mostly ignorance, negligence, and maximization of profits 

that have maintained the unhygienic workplace. Consideration of the occupational causes 

of cancer has been in evidence for sorne time. A 1556 text appears to describe symptoms 

ofrespiratory disease, including lung cancer, in miners (Agricola, tr1950). In the 18th 

century, Bernardino Ramazzini (tr1964) wrote that physicians, in addition to noting signs 

and symptoms of illness, should inquire about occupation. But actual investigation into 

occupational causes likely dates back to Percival Pott (1775), a surgeon at Saint 

Bartholomew's Hospital in London. Through his own clinical observations, he described 

scrotal cancer in chimney sweeps, attributing the cancer to the cumulative effect of 

deposits of soot. 

Need for detailed occupational information was noted in 1851 when the Registrar 

General's Office in England found it impossible to determine relative mortality of silk, 

cotton, linen and woollen manufacturers, since most were registered simply as weavers 

(FaIT, 1975). The history of occupational studies in epidemiology is such that most 

research has been conducted by relating cancer mortality to occupational or industrial 

titles. Relatively few studies addressed the ons et of cancer and the role of exposure to 

particular chemicals. With so many chemicals introduced into the workplace annually, it 

has been recognized that there is a need to assess the health effects of exposure to 

chemicals whose effects have not yet been investigated (Siemiatycki et al., 1981). Past 

research on occupational cancer may well have only uncovered the "tip ofthe iceberg" of 

occupational carcinogens. 

Of all cancers, lung cancer has been associated with the most occupational causes 

discovered to date (Siemiatycki et al., 2004). That it is also a leading cause of death in 

much of the world, and that it has such a poor survival rate, underlines the importance of 

knowledge leading to primary prevention, such as that provided by occupational cancer 

research. 
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What follows is a brief overview of the descriptive epidemiology and etiology of lung 

cancer. 

1.1 Descriptive epidemiology oflung cancer 

Mortality rates and incidence rates of lung cancer have been similar because of the high 

case-fatality rate of the disease, and so routine collection of vital statistics has provided a 

long historical record of the occurrence oflung cancer (Alberg and Samet, 2003). Lung 

cancer was rare until about 1930, when a sharp rise in incidence eventually led it to 

becoming the leading cause of death from cancer among men. This is largely consistent 

with the sharp rise in cigarette smoking among men through the first half of the last 

century (Burns, 1994). Women's smoking habits increased several decades after men's 

and their lung cancer rates rose accordingly later than men's did. Though men have 

tended to have a twofold higher incidence oflung cancer than women (Miller, 1983), 

Lubin and Blot (1984) showed that differences between men and women were not 

entirely due to smoking, suggesting sex-dependent factors may have a role in lung cancer 

etiology. But for the most part, the rise and decline of rates of incidence of lung cancer 

parallel trends oftobacco use (Wingo et al., 1999), and many of the observed temporal, 

geographic, and demographic variations mentioned below are partly or wholly accounted 

for by patterns of cigarette use. 

Marked variation in lung cancer rates occurs geographically (Mason, 1994), though not 

aIl ofthis variation is thought to be due to smoking practices. For example, Western 

Scotland had a higher rate of lung cancer compared to the U.S., at allieveis of cigarette 

smoking (Ranai et al., 1988), suggesting other factors were at play, perhaps low 

consumption offresh fruit and vegetables (Gillis et al., 1988). Incidence rates tend to be 

higher in developed countries, even taking into account differences in diagnostic practices 

(Pisani et al., 1999). Urban are as in most parts of the world were also found to have high 

rates, leading to the hypothesis that air pollution may contribute to lung cancer, though 

the urban-rural difference has been attributed by Doll and Peto (1981) to patterns of 

cigarette smoking. Righ rates of lung cancer in U.S. coastal regions led to studies 

assessing the ship building industry and asbestos exposure (Blot et al., 1978). 
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Rates oflung cancer have also been found to vary with race, ethnicity, social status, and 

education. For example, black men appear to have 50% higher rates than white men (Blot 

and Fraumeni, Jr., 1996), and all these rates tend to be higher than those ofHispanics, 

Native Americans, and Asians. Income, education, and social economic status have been 

found to be inversely related to lung cancer (Fraumeni, Jr. and Blot, 1982; Mao et al., 

2001). Jewish men have been found to have very low rates oflung cancer, likely due to 

less tobacco smoking, but the reduced risk does not appear to exist with Jewish women 

(Horowitz and Enterline, 1970). 

Several histologically distinct types of lung cancer exist, arising almost entirely from 

epithelial tissue (Beadsmoore and Screaton, 2003). The most common types are 

squamous cell carcinomas, adenocarcinomas, and small cell carcinomas. These 

categories, while formally defined, are often not reliably differentiated by pathologists 

(Ives et al., 1983). Further, tumours can transform over time from one type to another, 

and a tumour can manifest as combinations oftypes. Each stage oftumour development, 

leading to an invasive carcinoma, lasts approximately 2 to 5 years as it progresses from 

mi Id to moderate to severe dysplasia, and finally to carcinoma in situ (Saccomanno et al., 

1974). Squamous celliung cancer was once the most common type, but there have 

recently been increases in adenocarcinomas and small cell carcinomas. This may be 

partly due to improved diagnostic procedures and partly due to risk factors changing over 

time. AlI the major types have been associated with smoking, but the association is 

weaker for adenocarcinomas (Barbone et al., 1997). Non-smokers appear to 

predominantly develop adenocarcinomas (Wynder and Covey, 1987). 

Temporal trends for lung cancer survival rates have remained fairly steady since the early 

seventies, though a small observed reduction in survival is thought to be due to changing 

histological patterns (Ugnat et al., 2005). On the other hand, more small cell and large 

cell cancers have appeared over the last several decades, with comparably fewer 

squamous cell and adenocarcinoma-type cancers. Evidence suggests differing survival 

rates, with small cell cancers having the worst five-year survival, at about 5%. 
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1.2 Etiology of lung cancer 

1.2.1 Cigarette smoking 

Though tobacco has been used for centuries, the sharp rise in lung cancer rates throughout 

the twentieth century is thought to be due to the introduction ofbulk manufacturing of 

cigarettes through the early 1900s, the lack of appreciation of the addictive properties of 

nicotine, and the introduction of additives that increase nicotine availability (DHHS, 

1989). These reasons likely ushered in a new pattern of sustained exposure of the lung to 

inhaled carcinogens. The observation that carcinomas of the lung might be caused by 

tobacco can be traced back to at least 1898 and other publications throughout the first half 

of the twentieth century (Don, 1994). But 1950 brought several sound epidemiologic 

studies that were the first to clearly demonstrate that tobacco smoke was a strong etiologic 

factor ofbronchogenic carcinomas (Don and Hill, 1950; Levin et al., 1950; Wynder and 

Graham, 1950). This relation was later corroborated in studies of severallarge cohorts 

(Hammond, 1966; Don et al., 1994; McLaughlin et al., 1995), but in 1964 the evidence 

was deemed strong enough for the publication of the landmark Surgeon General's Report 

that concluded that cigarette smoking caused lung cancer (PHS, 1964). 

These studies showed that smokers of two packs or more a day had about a twentyfold 

higher rate of lung cancer incidence compared to non-smokers. Risk of lung cancer is 

also strongly dependent on the duration of smoking (Don and Peto, 1978; IARC, 2004b), 

with sorne evidence indicating that the number of cigarettes smoked has less of an effect 

than the duration of smoking. The risk of lung cancer has been found to decrease after 

quitting smoking, with the reduction becoming apparent approximately five years after 

quitting (DHHS, 1990). Regardless of the duration of abstinence, consistently higher risk 

in ex-smokers has been observed compared to never-smokers (Vineis et al., 2005). A 

study using a Saskatchewan registry found that women developed cancer at an earlier age 

than men, even having smoked fewer cigarettes and for a shorter duration (McDuffie et 

al., 1991). There were also many cases among lifetime non-smokers, 15% and 3% 

respectively, for women and men. 
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Findings from several studies suggest that up to 90% of lung cancer deaths are 

attributable to smoking in the United States (Shopland et al., 1991) and other developed 

countries (Peto et al., 2005). 

Passive inhalation of second-hand smoke has also been related to the incidence of lung 

cancer (lARC, 2004b). Meta-analyses of studies of non-smoking spouses of smokers 

provide evidence for a small effect on lung cancer risk, with rate ratios between 1.2 and 

1.4 (Pershagen, 1994), with a recent study of environmental tobacco smoke reporting a 

point estimate and 95% confidence intervals of 1.3 (0.9, 2.0) (Vineis et al., 2005). To 

approximate passive smoking, it has been estimated that exposure to the equivalent of 0.5 

cigarettes a day from birth to 65 years of age, results in a rate ratio of approximately 1.4 

compared to lifetime non-smokers (Darby and Pike, 1988). 

Smoking is still an active area of research, partly to quantify the complex characteristics 

of its relation to lung cancer incidence (Leffondré et al., 2002), and partly to study the 

effects of changes to the cigarette design over the past decades, including reduced tar and 

nicotine levels (Kabat, 2003). 

1.2.2 Other non-occupational causes 

Lung cancer is a complex disease that has had several molecular, chromosomal, and 

cellular events related to its initiation and promotion (Economou et al., 1994). Most of 

the genetic defects are thought to occur in adulthood, likely due to environmental 

exposures to carcinogens, but evidence also supports an inherited susceptibility (Shields, 

1999). Several clinical reports exist offamiliallung cancer (Mulvihill, 1976; Shaw et al., 

1991), with results showing about a twofold increase in risk among relatives ofsomeone 

with lung cancer (Ooi et al., 1986). 

Several studies have focused on the theory that lung cancer can develop from the fibrosis 

or inflammatory fibrotic reaction of previous lung disease, such as tuberculosis 

(Richardson et al., 1987) or pneumonia (Alavanja et al., 1992; Brownson and Alavanja, 

2000). This issue was also raised with respect to asbestos and silica exposures, for which 

limited evidence exists that asbestosis (Browne, 1986) and silicosis (Ng, 1994), 

respectively, are on the causal pathway between exposure and lung cancer. 
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Diet was tirst linked to lung cancer in a study by Bjelke (1975), in which he reported that 

lung cancer risk was inversely related to vitamin A consumption. This was later 

hypothesized to be mainly attributed to beta-carotene (Byers, 1994). While sorne studies 

have failed to find an association between diet and lung cancer, the balance of evidence 

suggests sorne role for diet. Alberg and Samet (2003) reported that low consumption of 

carotene, the bottom quartile of use compared to the top quartile, resulted in a 50-100% 

increase in lung cancer risk. The effect appears to be specific to squamous cell and small 

cell tumours. Recent work, however, suggests that the supposed effect ofbeta-carotene 

observed in non-experimental epidemiologic studies may be due to residual confounding 

(Stram et al., 2002). 

Although the link between consumption of a1cohol and lung cancer has often been viewed 

sceptically because ofperceived residual confounding due to smoking history, many 

recent studies (Bandera et al., 2001) and a meta-analysis (Freudenheim et al., 2005) are 

suggestive of a small association to lung cancer. In particular, the meta-analysis found 

the association of a1cohol with lung cancer to be approximately 1.2 (0.9, 1.6) in men and 

even higher in men who had never smoked. 

Air pollution is potentially of great concem for risk of lung cancer. While industrial 

pollutants have been on the decline in recent decades, vehicle engine emissions, including 

nitrogen oxides and volatile organic compounds, have been on the rise (Boffetta, 2004). 

A recent review of air pollution studies suggests a rate ratio of about 1.5 for high air 

pollution urban areas compared to low air pollution rural areas (Boffetta, 2004). 

Increased risks have been reported in residential areas close to smelters, foundries, and 

chemical industries. Indoor air has also been implicated, due to fumes released by heated 

cooking oils (Zhong et al., 1999), asbestos used in indoor building materials (Boffetta and 

Nyberg, 2003), and build up ofradon, a radioactive gas that seeps into homes from soil or 

groundwater (Lubin and Boice, Jr., 1997). 

1.2.3 Occupational etiology 

Studies of occupations have given rise to a large body of information on causes of lung 

cancer and other cancers (Boffetta, 2004). Evidence exists linking many industrial 

processes and occupational groups and circumstances to a higher risk oflung cancer 
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(Siemiatycki et al., 2004), but for many substances there has not been adequate evaluation 

of their carcinogenicity. The present thesis sets out to contribute to such research in the 

context of an occupational hazard surveillance study conducted in Montreal. The 

following section reviews the vast literature that exists on many of the currently 

recognized or suspected occupationallung carcinogens. 
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2 Literature review: Occupational etiology of lung cancer 
This chapter will provide a review of the literature on several currently suspected 

occupationallung carcinogens. The literature on lung cancer, and even on occupational 

causes of lung cancer, is extraordinarily large, and so the following reviews are of 

necessity brief. Following this, typical design and analytic approaches for epidemiologic 

studies of occupation-related cancer are considered with a view to the methodological 

improvements made in the context of the present study and thesis. 

2.1 Historical roots 

Study of environmental agents in the etiology of cancer, whether pollutants at large or 

substances in the workplace, has only in recent decades come to fruition, providing 

insight into causal origins and into potential preventive measures. Aside from work on 

environmental factors, such as ambient air pollution, it was with occupationally exposed 

populations that most carcinogens were historically first observed (Siemiatycki, 1991). 

And it is with these typically involuntary and reducible exposures that measures have 

been taken to improve industrial hygiene, with a view toward controlling cancer (Boffetta, 

2004). 

Research into the etiology of cancer began in eamest in the twentieth century with animal 

experimentation and laboratory sciences (Berenblum, 1967). The epidemiologic 

approach to cancer research, as we know it, has a fairly short history, arguably beginning 

in the 1950s with landmark studies of the etiology of lung cancer, particularly of smoking 

(Doll and Hill, 1950; Mills and Porter, 1950; Levin et al., 1950; Schrek and Baker, 1950). 

Though there were earlier studies of lung cancer and suspicious occupational 

circumstances, such as nickel refineries (Bridge, 1933), chromate manufacturing (Machle 

and Gregorius, 1948), and sheep-dip manufacturing (Hill and Faning, 1948), the modem 

epidemiologic approach to cancer research came to fruition much later and in spectacular 

fashion. Notable is the demonstration ofhow large a role that cigarette smoking played in 

Iung cancer etiology and the somewhat smaller but still important role that industriai 

carcinogens have pIayed (Doll, 1994). 
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Sir Richard Doll played a prominent role in promoting the perception that lung cancer has 

an occupational etiology, independent of the role of smoking (Doll, 1959). He published 

the first quantitative assessment of asbestos exposure and risk of lung cancer (Doll, 1955). 

Though carcinogens are now recognized as arising from many sources, prior to the 1970s 

lung carcinogens were substances or circumstances found primarily in the workplace 

(Siemiatycki et al., 2004). 

The International Agency for Research on Cancer (lARC) Monograph Pro gram was 

initiated in 1969 to evaluate the carcinogenic risk of substances to humans, and to 

produce comprehensive reviews on individual substances (IARC, 2004a). The program 

has considered simple chemicals and complex mixtures, as well as other substances, such 

as radiation and viruses. The program assembles a team of international experts who 

evaluate the substance from available evidence covering chemistry, animal and laboratory 

sciences, and epidemiologic research. These experts produce qualitative and quantitative 

assessments, culminating in a classification of the substance as definitely carcinogenic to 

humans, probably carcinogenic, possibly carcinogenic, unclassifiable due to inadequate 

evidence, or probably not carcinogenic. Since its initiation, the IARC monograph 

pro gram has identified 28 occupational substances as definite carcinogens, 27 as probable 

carcinogens, and 113 as possible carcinogens (Siemiatycki et al., 2004). 

2.2 Known or suspected fung carcinogens 

Many occupational circumstances and substances have come under suspicion as being 

indicators for higher risk oflung cancer. Table 2-1 was abstracted from Siemiatycki et al. 

(2004), table 7, and Rousseau et al. (2005), table 1. It provides a listing of all the 

occupational substances, occupations, and industries that are potentially related to lung 

cancer, and frames the strength of evidence according to the authors' views of strong or 

suggestive support. 

There is a voluminous literature on the occupational etiology of lung cancer, covering 

hundreds of chemicals and occupational circumstances, hundreds of studies, and dozens 

ofreviews. For the purpose ofthis literature review, the sections on each chemical are 

brief, and reviews are provided only for a selection of the occupational substances listed 

in Table 2-1. Individual studies are not reviewed in the text, but details for many studies 
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appear in the summary tables for each chemical. These tables are not by any me ans 

comprehensive; they are a selection oflarge and well-known studies, as weIl as studies 

involving a diverse sampling of occupations with known exposure to the particular 

chemical. The layout of the chemical-specific summary tables was drawn, in particular, 

from a review article by Steenland et al. (1996). 

Table 2-1: Occupational substances and circumstances marked as high risk for lung cancer 

Strength of evidence Substance or circumstance 

Strong Aluminium production; arsenic and arsenic compounds; asbestos; 
beryllium; cadmium and cadmium compounds; chromium 
compounds, hexavalent; coal gasification; coke production; 
hematite mining, underground, with radon exposure; involuntary 
(passive) smoking; ionizing radiation; iron and steel founding; 
selected nickel compounds, including combinations of nickel 
oxides and sulfides in the nickel refining industry; painters; silica, 
crystalline; soots; talc containing asbestiform fibres. 

[for small ceIllung cancer only: bise chloromethyl)ether and 
chloromethyl methyl ether (technical grade)] 

Suggestive Benz(a)anthracene; benzo(a)pyrene; a-chlorinated toluenes; coal 
tars and pitches; cobalt metal with tungsten carbide; di
benz[a,h]anthracene; diesel engine exhaust; epichlorohydrin; 
hairdressers and barbers; inorganic acid mists containing sulphuric 
acid; inorganic lead compounds; isopropanol manufacture, strong 
acid process; mineraI oils, untreated and mildly treated; non
arsenical insecticides; mustard gas; production of art glass, glass 
containers, and pressed ware; rubber industry; 2,3,7,8 
tetrachlorodibenzo-para-dioxin (TCDD). 

2.2.1 Asbestos 

Asbestos is a mineraI fibre of impure magnesium silicate, often used in fireproofing, 

insulation, brake linings, and building materials. The two broad classes of asbestos, 

serpentine (including chrysotile) and amphibole (including amosite and tremolite), are 

defined by their differing physical structure, where the serpentine structure is curly and 

the amphibole is needle-like. The differences in structure have lead to the different 

industrial applications. Animal research has shown that asbestos fibres can cause 

chromosomal damage in mammalian cells (Walker et al., 1992), and the size ofthe fibre 
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is believed to play an important role in its carcinogenicity. Fibres greater than 5 microns 

in length are thought to be the most dangerous species (Stanton et al., 1981; Wagner et al., 

1988). 

Table 2-2 provides the results from several published studies of asbestos exposure. 

According to the respective authors, several of the studies had large enough point 

estimates to mIe out an effect entirely due to confounding by smoking history. Liddel and 

McDonald (1980) did not adjust for smoking, but did comment on the comparability of 

smoking distributions in the comparison groups. 

Table 2-2: Results from selected studies of asbestos exposure 

Reference SMRorOR Smoking 

(95% confidence limits) 
Exposed population adjustment 

(Selikoff et al., 1979) SMR4.1 (3.9,5.0) 17800 insulation workers Yes 

(Liddell and McDonald, SMR 3.5 (2.7,4.4) 4559 chrysotile miners with Limited 
1980) asbestosis 

(Newhouse et al., 1985) SMR 3.0 (2.6, 3.3) 5100 textile plant workers No 

(Seidman et al., 1986) SMR 5.0 (4.0, 6.0) 820 amosite factory No 
workers 

(Vineis et al., 1988) OR 1.2 (0.9, 1.7) 98 cases/90 controls Yes 
automobile brake workers 

(Newhouse and Sullivan, SMR 1.0 (0.9, 1.2) 12571 workers with No 
1989) chrysotile friction products 

(Neuberger and Kundi, SMR 1.0 (0.8, 1.4) 2816 chrysotile cement Yes 
1990) workers 

(Hughes and Weill, 1991) SMR 4.3 (2.0, 8.2) 77 exposed men with Yes 
asbestosis 

(Sluis-Cremer et al., 1992) SMR 1.7 (1.3, 2.2) 7317 amphibole miners No 

(Hrubec et al., 1992) SMR 1.1 (0.8, 1.4) 2327 automobile mechanics Yes 
and repairmen 

(Pira et al., 2005) SMR 2.8 (2.2, 3.5) 889 men/1077 women No 
asbestos textile workers 
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Asbestos was first quantitatively related to lung cancer among British textile workers in a 

study by Doll (1955). Epidemiologic evidence has accumulated over the past decades, 

showing that the risk of lung cancer is increased in several asbestos-related industries, 

including miners, textile workers, friction product workers, insulation workers, shipyard 

workers, and cement workers (McDonald and McDonald, 1987). While sorne agencies 

have claimed all types of asbestos are carcinogenic and that there should be a worldwide 

ban on its use (LaDou et al., 2001), and compelling evidence exists for all forms of 

asbestos being carcinogenic for one animal species or another (Doll and Peto, 1985), there 

is still disagreement as to whether present-day exposure to both classes are equally 

culpable as causes ofhuman lung cancer (Camus, 2001; Siemiatycki, 2001). 

IARC classified asbestos as a definite human carcinogen in 1977, backed by sufficient 

evidence from both animal and human research (lARC, 1977). Individuals with 

asbestosis (implying high exposure to asbestos) appear to be more prone to lung cancer. 

A meta-analysis of six studies of asbestotics produced a summary relative risk and 95% 

CL of 5.9 (5.0, 7.0) and an analysis oftwenty cohort studies of asbestos workers produced 

a summaryrelative risk estimate of2.0 (1.9, 2.1) (Steenland et al., 1996). Disentangling 

the relationships of asbestos exposure, asbestosis, smoking, and lung cancer has been 

difficult (Hessel et al., 2005). Sorne studies have suggested that fibrosis, such as from 

pre-existing asbestosis, is a necessary antecedent to lung cancer (Liddell and McDonald, 

1980; Hughes and Weill, 1991). Ifthis is indeed the case, and there was a threshold 

whereby asbestosis did not occur at the lower levels of exposure common among CUITent 

workers (Weill, 1994), then there would be implications as to whether CUITent (low) 

asbestos exposure should still be considered hazardous. That is, if asbestosis is a 

necessary intermediate pathology, it would imply that typical CUITent levels of asbestos 

exposure are unlikely to cause lung cancer. Recent opinion holds that epidemiologic 

evidence alone is not sufficient to settle the issue (Stayner et al., 1997). 

A decline of risk has been associated with increasing time since last exposure to asbestos, 

suggesting that asbestos may act as a late-stage promoter (Seidman and Selikoff, 1990). 

Finally, though evidence has supported the combined dependence of the effects of 

asbestos exposure and cigarette-smoking, there have been conflicting claims as to whether 
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these joint effects are closer to multiplicative or additive (Berry et al., 1985; Liddell and 

Armstrong, 2002). 

2.2.2 Silica 

Silica is a crystalline compound commonly found in the forms of quartz and sand. 

Exposure to crystalline silica is common in miners, depending on ore content, and in 

industries ofmasonry, stonework, pottery, and glasswork. Animal studies offer 

conflicting evidence of its lung carcinogenicity across different rodent species (Saffioti, 

1992). Nevertheless, there was enough evidence for IARC to classify silica as a probable 

carcinogen in 1987 (IARC, 1987b; IARC, 1997), based on what was termed sufficient 

evidence in animaIs and limited evidence in humans, with the latter due to often 

inconsistent results from studies. 

Table 2-3 provides the results from several published studies of either silica exposure or 

patients with silicosis. Of note, in the study reported by Steenland and Brown (1995), the 

effect of silica was likely unconfounded by exposure to arsenic and radon in miners. 

Studies of lung cancer in relation to silicosis, a respiratory illness resulting from high 

exposure to silica, have provided evidence of a stronger relation than have studies of 

actual silica exposure. This proves somewhat difficult to interpret, as it may be that 

silicosis itself induces lung cancer. Exposure to silica is often accompanied by exposure 

to PARs, radon, asbestos, and several other suspected carcinogens (Blot and Fraumeni, 

Jr., 1996). Steenland et al. (1996) provide a best evidence synthesis and meta-analysis of 

fifteen studies ofsilicotics [summaryrelative risk and 95% CL of2.8 (2.5, 3.2)] and 

thirteen studies of silica-exposed workers [summary relative risk of 1.3 (1.2, 1.4)], both of 

which excluded studies of mines with known confounding exposures, studies using 

autopsy-based information, and proportionate mortality studies with possible selection 

biases. 

The judgement by IARC has remained somewhat controversial as several studies have not 

demonstrated an increase in risk. This might be explained by recent work, which suggests 

that the exposure-response curve of silica and lung cancer is relatively low, implying that 

a substantial number ofhighly exposed individuals would be necessary to detect the effect 

(Steenland et al., 2001). 
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Table 2-3: Results from selected studies of silica exposure 

Reference SMR Smoking 

(95% confidence limits) 
Exposed population adjustment 

(Costello and Graham, 1988) SMR 1.2 (1.0, 1.4) 5414 granite workers No 
employed '50 to '82 

(Infante-Rivard et al., 1989) SMR 3.5 (3.1, 3.9) 1165 compensated No 
silicotics 

(Koskela et al., 1990) SMR 1.6 (1.0, 2.2) 1026 granite workers No 

(Ng et al., 1990) SMR 2.0 (1.4, 2.9) 1419 men in silicosis Yes 
registry 

(Winter et al., 1990) SMR 1.3 (1.0, 1.7) 3669 pottery workers Yes 

(Merlo et al., 1991) SMR 1.5 (1.0,2.1) 1022 brick workers Yes 

(Amandus and Costello, 1991) SMR 1.3 (0.8, 2.0) 724 silicotics Yes 

(Steenland and Brown, 1995) SMR 1.1 (0.9, 1.4) 3328 gold miners Yes 

(Checkoway et al., 1997) SMR 1.3 (1.0, 1.6) 2342 diatomaceous No 
earth miners 

2.2.3 Diesel engine exhaust 

Diesel engine exhaust is a complex and variable mixture of chemicals, composed of 

several thousand oxidation and nitration products resulting from the incomplete 

combustion of diesel fuel (IARC, 1989). The relative proportions of the mixture depend 

on the type of engine, the operational circumstances, the fuel composition, and the 

presence of any emission controls. Many of the chemicals overlap with the constituents 

of tobacco smoke. Exposure is common among truck drivers and construction workers, 

but moderate levels can also be found in the general environment. It is the particulate 

phase that has been implicated in carcinogenicity (IARC, 1989). Diesel exhaust has 

gradually been restricted in North America with tighter vehicle emission standards, but 

exposure limits for nitrogen dioxide, sulphur dioxide, carbon monoxide, and the 

particulate phase, differ from one Canadian province to another. 

Many of the constituent chemicals of diesel have been assessed by IARC and deemed 

possibly carcinogenic for sorne cancers: acetaldehyde (possible carcinogen), benzene 

(definite carcinogen), formaldehyde (probable carcinogen), lead compounds (possible 
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carcinogen), and benzo(a)pyrene (probable carcinogen). In 1989, IARC c1assified whole 

diesel engine exhaust as a probable carcinogen (lARC, 1989). 

Table 2-4 presents the results from sorne major studies of diesel engine emissions. There 

are few studies with evidence of c1ear relevance for evaluating the causal role ofwhole 

diesel exhaust in lung cancer, and many of the existing studies are hampered by the lack 

of data on relevant exposure. Focussing on six studies, a meta-analysis by Steenland et al. 

(1996) provided a combined relative risk estimate and 95% CL of 1.3 (1.1, 1.4). Other 

engine emissions, such as gasoline engine exhaust, have not been properly assessed due to 

insufficient evidence (lARC, 1989). 

Table 2-4: Results from selected studies of diesel exhaust exposure 

Reference SMR, OR, or HR a 

(95% confidence limits) 
Exposed population 

(Boffetta et al., 1988) SMR 1.2 (1.0, 1.4) American Cancer Society 
Cohort; 62800 self 

reported diesel exposure 

(Gustavsson et al., 1990) SMR 1.2 (0.7, 1.8) 695 bus garage workers 

(Steenland et al., 1990) OR 1.9 (1.0, 3.4) 56 cases/36 controls 

Long-haul diesel truck 
drivers 

(Boffetta et al., 1990) OR 1.2 (0.7, 2.0) 35 cases/49 controls 

Workers exposed to 
diesel exhaust 

(Emmelin et al., 1993) OR 1.7 (1.4, 2.1) 50 cases/154 controls 

Shipyard workers 

(Garshick et al., 2004) HR 1.3 (1.1,1.6) 204 cases 

Long term railroad 
workers 

a HR, hazard ratio 

Smoking 
adjustment 

Yes 

No 

Yes 

Yes 

Yes 

No 
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2.2.4 Beryllium 

Beryllium is a metallic element used in aerospace materials, in nuc1ear reactors, and in 

copper alloys for springs and electrical contacts. Exposure to beryllium occurs mostly in 

mining and in the manufacturing of ceramics and electronic equipment. Lung cancer has 

been induced in rats and monkeys by beryllium exposure (Groth, 1980), but there have 

been few epidemiologic studies (see Table 2-5 for a selection of studies). 

In 1993, IARC c1assified beryllium as a definite carcinogen (IARC, 1993), largely based 

on the results oftwo studies: Steenland and Ward (1991) and Ward et al. (1992). One of 

the seven processing plants in the latter study was followed further and the data re

analyzed in Sanderson et al. (2001). 

Table 2-5: Results from selected studies of beryllium exposure 

Reference SMR Smoking 

(95% confidence limits) 
Exposed population adjustment 

(Mancuso, 1980) 1.4 (1.1, 1.7) 3685 beryllium plant workers No 

(Infante et al., 1980) 1.9 (0.8, 4.0) 421 men in beryllium registry No 

(Hinds et al., 1985) 1.7 (0.8, 3.5) 19 cases/17 controls Yes 

Self-reported exposure 

(Steenland and Ward, 2.0 (1.3, 2.9) 689 patients with berylliosis Limited 
1991) 

(Sanderson et al., 1.2 (1.0, 1.4) 3569 beryllium plant workers Limited 
2001) 

2.2.5 Chromium 

Chromium is a metal commonly found in trivalent and hexavalent oxidative states. Its 

various compounds had early usage in the manufacturing of inorganic pigments, but its 

most important use has been as an alloy for chrome plating and stainless steel. There 

have been several epidemiologic studies since the first observation among workers in V.S. 

chromate-production factories (Machle and Gregorius, 1948). IARC c1assified insoluble 

chromium VI as a definite carcinogen in 1990, based on what it deemed sufficient 
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evidence in animaIs and in humans (IARC, 1990). Evidence of human carcinogenicity 

has been inconsistent for soluble chromium III and controversy remains as to the relative 

effects of the trivalentlhexavalent forms (Mancuso, 1997a; Mancuso, 1997b; Gibb et al., 

2000). 

Table 2-6 provides the results from several published studies of chromium exposures. In 

a meta-analysis often large and well-designed studies of chromium workers, 

manufacturers of chromate paints, and chromate plating workers, the combined summary 

estimate and 95% CL for lung cancer was 2.8 (2.5,3.5) (Steenland et al., 1996). Many of 

the existing epidemiologic studies, however, documented historical chromium exposures 

that were tenfold higher than modem levels (IARC, 1990). Limited evidence of the 

effects of more recent chromium exposures suggests that the risk of lung cancer has 

decreased, possibly due to improvements in occupational hygiene from modifications of 

industrial processes (Luippold et al., 2005). 

Table 2-6: Results from selected studies of chromium exposure 

Reference SMR Smoking 

(95% confidence limits) 
Exposed population adjustment 

(Enterline, 1974) 9.4 (7.3, 11.9) 1212 chromate plant workers No 

(Hayes et al., 1979) 2.0 (1.6, 2.6) 1850 chromium plant workers No 

(Frentzel-Beyme, 2.0 (1.2, 3.2) Workers in a chromate No 
1983) pigment plant 

(Davies, 1984) 1.8 (l.4, 2.4) 1152 chromate pigment No 
workers 

(Sorahan et al., 1987) 1.5 (1.2, 1.9) 2689 chromium/nickel platers No 

(Hayes et al., 1989) 1.4 (0.9, 2.1) 1879 chromium pigment No 
workers 

(Takahashi and 1.9 (0.8, 3.7) 626 chromium platers Limited 
Okubo, 1990) 

(Korallus et al., 1993) 1.3 (0.6, 2.4) 678 chromate production No 
workers (post modification) 

(Luippold et al., 2005) 0.8 (0.2, 2.4) 617 chromate production No 
workers (post modification) 
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2.2.6 Nickel 

Nickel and its salts are used in electroplating and in the production of stainless steel, 

nonferrous alloys, and batteries. Studies of nickel alloy manufacturers provided 

inconsistent evidence of increased lung cancer risk (ICNCM, 1990), and many of the 

published results are likely confounded by other exposures, such as chromium VI, 

arsenic, and PARs (Blot and Fraumeni, Jr., 1996). An early study by Doll (1977) found 

that the increased risk in refineries was limited to the earliest years of operation, when 

exposure was much heavier than current (even by 1930) standards. However, using 

thirteen studies ofworkers in nickel refineries, a recent meta-analysis provided a 

summary relative risk estimate and 95% CL of 1.6 (l.4, 1.7) (Steenland et al., 1996). 

IARC classified nickel compounds (in general) as definitely carcinogenic to humans 

based on animal and human evidence, but metallic nickel in particular was only classified 

as possibly carcinogenic (IARC, 1990). Recent reviews and the report by the 

International Committee on Nickel Carcinogenesis in Man (1990) came to the same 

conclusion that the strongest evidence supports a carcinogenic role for soluble nickel and 

nickel oxides and sulphides, but not metallic nickel in non-refining processes (Hayes, 

1997). 

Table 2-7: Results from selected cohorts reviewed in ICNCM (1990) 

Reference 

INCO (Canada) 

Falconbridge (Canada) 

Hanna Nickel Smelting Company 
(United States) 

Henry Wiggin Alloy Company 
(England) 

SMR 

(95% confidence limits) 

3.1 (2.4,4.0) 

1.3 (1.0, 1.6) 

1.4 (0.9, 2.3) 

1.0 (0.6, 1.5) 

Exposed population 

1754 nickel refinery workers 

11595 nickel refinery workers 

1510 nickel miners and 
smelter workers 

1907 nickel alloy 
manufacturers 
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2.2.7 Arsenic 

Arsenic is a metallic element that exists in both inorganic and organic forms, and has been 

used in insecticides, weed killers, and various alloys. Miners, workers at copper smelters, 

manufacturers of sheep dip compounds, and those manufacturing certain pesticides have 

been substantially exposed to arsenic in the past, and are thought to be at higher risk for 

lung cancer (Hayes, 1997). Though animal studies have not provided adequate support 

for arsenic's role as a carcinogen, the evidence in humans has been consistent (Blot and 

Fraumeni, Jr., 1994). IARC classified arsenic as a definite carcinogen (IARC, 1980). 

Table 2-8 presents results from selected studies of arsenic exposure. In a meta-analysis of 

six studies, Steenland (1996) derived a summary relative risk estimate and 95% CL of 3.7 

(3.1,4.5). Sorne evidence suggests that arsenic may act as a late stage promoter oflung 

tumours (Brown and Chu, 1983). And the few studies that also assessed smoking habits 

indicate that cigarette smoking and arsenic may act synergistically (Pershagen et al., 

1981; Jarup and Pershagen, 1991). 

Table 2-8: Results from selected studies of arsenic exposure 

Reference 

(Ott et al., 1974) 

(Lee-Feldstein, 1986) 

(Enterline et al., 
1987b) 

(Taylor et al., 1989) 

(Jarup et al., 1989) 

(Lubin et al., 2000) 

(Binks et al., 2005) 

SMRorOR 

(95% confidence limits) 

SMR 3.4 (2.1, 5.3) 

SMR 2.8 (2.6,3.2) 

SMR 1.3 (1.1,2.6) 

OR 15.2 (4.9, 52.7) 

SMR 3.7 (3.0, 4.5) 

SMR 1.6 (1.2, 2.0) 

SMR 1.6 (1.4, 1.7) 

Exposed population 

603 men in pesticide plant 

8045 copper smelter 
workers 

6078 copper smelter 
workers 

Tin miners 

3916 copper smelter 
workers 

8014 copper smelter 
workers 

1462 tin smelter workers 

Smoking 
adjustment 

No 

No 

Yes 

Yes 

Yes, in (Jarup 
and Pershagen, 

1991) 

No 

No 
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2.2.8 Cadmium 

Cadmium is a metallic element commonly used in electroplating, alloys, solders, dental 

amalgams, battery contacts, and occasionally fertilizers. Although cadmium usage in the 

European Union has dec1ined, world wide usage has risen (Jarup, 2003). Lung tumours 

have been induced in rats by cadmium exposure (Heinrich, 1992), but evidence in humans 

has been hard to come by due to the common co-occurrence of other exposures in the 

workplace, inc1uding nickel and arsenic (Boffetta, 1992). The low-Ievel exposure of 

cadmium from cigarette smoking has been estimated to account for 1 to 18 lung cancer 

deaths per 10000 smokers (Hertz-Picciotto and Hu, 1994). IARC c1assified cadmium 

exposure in 1993 as a definite carcinogen in humans (IARC, 1993). 

Table 2-9: Results from selected studies of cadmium exposure 

Reference SMR Smoking 

(95% confidence limits) 
Exposed population adjustment 

(Kazantzis et al., 1988) 1.2 (1.0, 1.3) 6995 Cadmium processing No 
plant workers 

(Stayner et al., 1992) 2.7 (1.2, 5.1) 606 Cadmium smelter No 
workers 

(Sorahan and Esmen, 1.1 (0.8, 1.5) 926 Nickel-cadmium battery No 
2004) manufacturers 

2.2.9 Polycyclic aromatic hydrocarbons 

Polycyc1ic aromatic hydrocarbons (PAR) are a complex group of chemicals composed of 

variable numbers ofbenzene rings, and formed through the incomplete combustion of 

organic material. The profile of PARs is very much dependent on the conditions of their 

production, and exposure is widespread in the human environment. They are 

characteristic of, among other things, engine emissions, tobacco smoke, and cooking 

fumes. Since humans are never exposed solely to individual PARs, but rather to complex 

mixtures, animal evidence has played a crucial role in assessing carcinogenicity (IARC, 

1983). Further, distinguishing the effects ofthe different species ofP ARs from the effect 

ofthe substances they are adsorbed to, such as soot, is neither easy nor accomplishable in 
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an obvious fashion. Epidemiologic evidence does not exist to directly address the role of 

PARs, so instead studies have assessed the chemicals or occupations in which PARs are 

present to a high degree, addressing perhaps the question ofwhat proportion of the effect 

can be attributable instead to PARs (IARC, 1983). 

Early suspicions about PARs came from studies of the excess risk of lung cancer found in 

gas workers exposed to coal carbonization products (Doll et al., 1972). A portion ofthe 

increases in risk of lung cancer among coke oven workers can plausibly be accounted for 

by PARs since benzo(a)pyrene-DNA adducts have been detected in blood samples ofthe 

workers (Harris et al., 1985). Other occupations and industries, for which PARs have 

been implicated, include steelworkers, workers in aluminium smelters, and roofers 

exposed to asphalt and pitch (Blot and Fraumeni, Jr., 1996). The increased risk of lung 

cancer found in these occupations, as weIl as in workers exposed to diesel engine exhaust, 

is thought to be due to PAR exposure and not the other chemicals common to those 

workplaces (Boffetta et al., 1997). 

2.2.10 Radon gas 

Radon is a naturally occurring radioactive noble gas. Ofthe various isotopes, it is the 

decay from uranium that is a common exposure in the human environment. Following 

inhalation, the irradiation of respiratory tissue can cause consequent chromosomal 

damage (Jostes, 1996). While studies of uranium miners have consistently demonstrated 

an excess risk oflung cancer (BEIR N, 1988), the low concentrations found in poorly 

ventilated buildings and homes is a major concem because of the numbers of individuals 

exposed and the persistence of exposure (Clarke and Southwood, 1989). A recent review 

by IARC (2001) combined eight case-control studies of residential radon, resulting in a 

summary RR and 95% CL of 1.1 (1.0, 1.2), for exposures of 100 Bq/m3
. Darby (2001) 

has estimated that up to 2000 lung cancer deaths a year in the United Kingdom are caused 

by residential radon exposure. lARe has classified radon as a definite carcinogen in 

humans (IARC, 1988). 

2.2.11 Other substances 

What follows is brief survey of several other substances that are currently, or were 

historically, under consideration as lung carcinogens. 
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The evidence for the carcinogenic effects of acrylonitrile arose from animal research and 

sorne limited evidence in humans. In contradiction to the initial study by O'Berg (1980), 

more recent evidence (Collins et al., 1989) has not supported a lung carcinogenic effect of 

acrylonitrile, inc1uding folIow-ups ofthe initial cohort (Chen et al., 1988a; Chen et al., 

1988b). IARC did c1assify acrylonitrile as a probable carcinogen based on sufficient 

animal evidence (on sites other than lung) and limited human evidence (IARC, 1979). 

Chloromethyl ethers were first discovered to be carcinogenic in laboratory animaIs, and 

human studies demonstrated their role in small celIlung carcinomas (Collingwood et al., 

1987; IARC, 1987a), apparently having an effect in both early and late stages of 

carcinogenesis. Vinyl chloride, common in early refrigerants and aerosol propellants, has 

been linked to lung cancer in several studies (Buffler et al., 1979; Wu et al., 1989), and 

c1assified as a definite carcinogen (IARC, 1987a). 

Rubber workers involved in tire curing and fuel ce Ils have been reported as being at 

higher risk for lung cancer (Mons on and Fine, 1978). Studies have found workers at 

increased risk due to ferric oxide dust and ferrochromium, but not ferrosilicon (Axelson 

and Sjoberg, 1979; Langard et al., 1980). Welders in shipyards have been implicated 

(IARC, 1990), as have workers with mild steel dust (Moulin et al., 1993). Elevated risks 

have also been reported among workers of steel pickling and operations where exposure 

to sulphuric acid and other acid mists is relatively high (IARC, 1992). Lead exposure has 

been inconsistently related to lung cancer, though a meta-analysis of several studies 

suggests a low effect of 1.1 (1.0, 1.2) (Steenland and Boffetta, 2000b). The evidence 

from several studies of formaldehyde remains inadequate (Blair et al., 1986; IARC, 

1995). As much as threefold risk of lung cancer due to toluene has been found in several 

small studies (Wong, 1988; IARC, 1992). 

Several other industrial exposures are suspected ofbeing lung carcinogens, though 

evidence is still preliminary for most (see recent reviews by Blot and Fraumeni, Jr. 

(1996), Boffetta (2004), and Siemiatycki et al. (2004». 

2.3 Undiscovered carcinogens 

There are a number of chemicals identified in animaIs as lung carcinogens but that have 

remained unstudied in humans, such as ceramic fibres, acrylamide, dichloromethane, and 
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acetaldehyde (Boffetta, 2004). Of the many chemicals in common usage in industries, 

relatively few have been studied for their health consequences. And a complex series of 

coincidences were necessary for clinicians of the past to discover many ofthose 

carcinogens ofwhich we are currently aware (Siemiatycki, 1991). These factors lead to a 

reasonable suspicion that there remain several more undiscovered carcinogens, and with a 

workplace that is constantly evolving, new chemicals are introduced regularly. 

2.4 Consideration ofmethods for studying occupational cancer 

2.4.1 Study designs 

Most human carcinogens found in the workplace were initially suspected through 

observation by astute physicians (Doll, 1975; Siemiatycki, 1984). These clinical 

discoveries were somewhat haphazard, requiring several coincident events: the tumours 

needed to occur in a large enough group of people with sorne shared occupation or 

workplace; the tumours needed to have been identified in a single clinic; and the tumours 

needed to occur with sufficient incidence to be noticeable. Epidemiologic study design is 

a step toward removing many ofthese 'conditions.' 

Broadly speaking, there are three main sources of epidemiologic information pertaining to 

occupational exposures and cancer: 

1. Routine record analyses, such as tumour registries and death certificates, 

2. Occupational cohort studies, typically with retrospective mortality information, 

3. Case-control studies. 

There has been extensive use of routine records, such as death certificates, to relate 

occupations to cancer mortality with either a proportionate mortality ratio or a 

standardized mortality ratio. While this is an inexpensive approach, it suffers several 

disadvantages, such as inaccurate job labelling, incorrect diagnostic information, 

incomplete job history, and lack of information on confounders, apart from sex and age. 

Generally, mortality is not a good indicator of incidence. While such criticisms are partly 

alleviated by the use of tumour registries, work history is rarely recorded. 

One mainstay of occupational epidemiology has been the opportunistic use of cohorts of 

workers with a shared exposure to a substance. Such studies have been useful when the 
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case was made that a particular work cohort had relatively few other 'confounding' 

workplace exposures. This approach is based on the availability of databases linking 

work history and health events. For use in epidemiologic research, establishing 

prospective systems of data collection would require decades ofwait due to the nature of 

carcinogenicity. While existing data systems have been used, they often suffer from 

incompleteness and a lack of important non-occupational information. Further, exposures 

in previous employment would typically be unavailable, often necessitating the restriction 

to studying long term employees. 

The typical design of an occupational cohort study compares the rates in the work cohort 

to national, population rates, using age and sex standardized incidence ratios or mortality 

ratios. Concern here would be with bias due to the nature of this comparison, which 

involves selectively healthy workers (Wang and Miettinen, 1982). InternaI cohort 

comparisons can remedy this problem. Rarely is there control for the confounding effects 

of smoking, which can pose serious problems for studies of lung cancer, though evidence 

suggests that the resulting bias still allows for the detection of risky substances under 

certain circumstances (Siemiatycki et al., 1988). 

By comparison, the case-control design allows for an often efficient me ans to ascertain 

incident cancers and to collect lifetime work history on multiple occupational exposures 

and potential confounders. The documentation of lifetime work history directly from 

study subjects has been used effectively to survey whole ranges of occupations and 

industries (Siemiatycki, 1984). There are several instances ofinvestigators conducting 

case-control studies within occupational cohorts, but the more typical design has used the 

catchment population of clinics or hospitals. Identifying incident cases of cancer through 

medical sources offers greater diagnostic validity than information on death certificates. 

Few such studies involve direct hygiene measurements, and the challenge has been to 

devise improved methods ofretrospective exposure assessment (Teschke et al., 2002). 

2.4.2 Documenting exposure 

Direct industrial hygiene measurements are at face-value the gold standards of exposure 

assessment, though measures of dose at the target organ wou Id be of even greater 

scientific relevance (Checkowayet al., 2004). While the direct exposure assessments 
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involve real time measurement in the workplace, unfortunately, measurements on 

historical work cohorts rarely exist or are incomplete, and designing a prospective system 

ofhygiene measurement is prohibitively expensive for most studies (Siemiatycki, 1984). 

However, when direct exposure measurement is possible, the resulting quality of 

information on the measured exposures can far surpass that which is typically found by 

other methods. 

There are several other approaches to measuring work related exposures. Sorne have 

tended to align with particular study designs. For example, occupational cohort studies 

have traditionally relied on identifying work cohorts with a fairly narrow range of 

chemical exposures, and exposure to a particular substance is assumed given the 

employment in that workplace. Identifying high risk occupations has been fruitful, but 

arguably, characterizing actual exposure histories as opposed to job histories should 

improve identification of likely carcinogens (Siemiatycki, 1984). 

While checklists of chemicals have been used during interviews and self-administered 

questionnaires to help elicit information about lifetime exposure history directly from the 

study subject, this method is difficult to implement if the number of chemical exposures is 

too large (Siemiatycki, 1984). It further suffers from workers not necessarily being 

familiar with aIl the naming conventions of the substances in their work environment. 

At its simplest level, attributing a chemical exposure to a group ofworkers with a 

common job title or within a common industry has been the most common form 

occupational cancer research in epidemiology. Altematively, a job-exposure matrix is an 

algorithm that allows for the translation of occupational or industrial titles into a set li st of 

exposures. This allows for the analysis of exposures irrespective of the occupation they 

occurred in, and its formation can be via expert opinion (Teschke et al., 2002), 

observation during walkthroughs (Sieber et al., 1991), or direct hygiene measurements 

(Kauppinen et al., 1998). Hoar et al. (1980) pioneered the effort to create a job-exposure 

matrix. Her matrix involved 500 job classes and 376 suspected carcinogens or toxins. 

One problem withjob exposure matrices is that they do not tend to be transportable to 

other countries, and they fail to take into account the temporal changes in work place 

hygiene (Siemiatycki, 1984). Another difficulty with this approach is that, insofar as 
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chemical carcinogenicity is the concern, occupationallabels can be misleading because 

chemical exposures can be vastly different among workers with similar job titles 

(Siemiatycki, 1984). 

Another method of exposure assessment, developed by Siemiatycki (1981), involves 

expert-based coding. This method has the work history of each study subject translated 

into occupational exposures by chemists and hygienists (Siemiatycki, 1984). Based on 

information elicited from a study subject's interview, from technical documents, and from 

industry consultants, experts can make informed guesses about probable chemical 

exposures in the subject's pasto As opposed to the need to create ajob-exposure matrix 

prior to its use, the expert-based system is tantamount to the graduaI creation of a matrix 

as the need arises for particular jobs or particular substances, all the while taking account 

of temporal changes and the subtleties and complexity ofwork place exposures and tasks. 

Limited evidence suggests that this approach provides for accurate and reliable exposure 

measurements (Goldberg et al., 1986; Fritschi et al., 1996; Siemiatycki et al., 1997). 

2.4.3 Analytic methods 

In assessing cancer and occupational exposures, the extent ofhandling confounding due 

to non-occupational characteristics such as age, sex, and smoking history, varies widely 

across publications. A large part of occupational cancer evidence arose from work 

cohorts compared to national populations, and these studies have tended to be limited to 

standardization of age and sex distributions. Few have sufficient information to account 

for the complexity of the confounding that might be due to smoking, though recent work 

suggests that even minimal adjustment for current smoking status is satisfactory 

(Richiardi et al., 2005). With the tendency to have more available information, analytic 

methods found in case-control studies have provided for greater control of confounding 

from non-occupational determinants of cancer risk. 

On one hand, rarely is mutual confounding considered among occupational chemicals. 

Given that workers tend to have multiple exposures in their work history, evincing 

complex correlation patterns in the work population, there is much opportunity for 

overestimation of effects that are truly null. On the other hand, studies that do document 

multiple exposures are often not sufficiently large to allow for simultaneous estimation, 
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which would take into account any mutual confounding. The predominant strategy in 

studies of multiple exposures has been to address each exposure in its own tailored 

regression model, using sorne method for the pre-selection of confounding variables. 

The approaches to handling multiple exposures can be summarized by the following three 

strategies (Greenland, 1993): 

1. A single, so-called full model with aIl the study's variables. Such models have 

been preferred over any sort of pre-selection strategy, though they are likely to be 

difficult to fit because ofsparse data (Kleinbaum et al., 1982; Miettinen, 1985; 

Rothman and Greenland, 1998); and if fit, can result in biased and imprecise 

estimates (Witte and Greenland, 1996). 

2. A single model with a reduction of parameters by sorne pre-selection. This 

approach implicitly assumes that the variables deleted from the model do not 

represent true determinants ofrisk of disease (Greenland, 1989a). Several authors 

have expressed concem with such models because the final estimation depends on 

the results of the pre-selection (Sc1ove et al., 1972; Greenland, 1989a), often 

leading to inappropriately narrow confidence interval estimates and overstated 

strength of the evidence (Viallefont et al., 2001). 

3. A separate regression model for each parameter ofinterest. Each model is tailored 

to one parameter, and only confounders are added or retained in the model, 

producing an ad hoc compromise between strategies one and two. 

Strategies for the pre-selection of variables to inc1ude in a regression model, whether 

using statistical significance or one of several other options, stem largely from the 

tradition of modeling having solely to do with the addition or removal of confounders 

(Mickey and Greenland, 1989; Maldonado and Greenland, 1993), which sorne think is not 

an appropriate guide for situations with multiple determinants ofinterest (Greenland, 

1993). Another criticism of pre-testing is that sequential testing of single parameters fails 

to appreciate that confounding can occur by the aggregate of many "small confounders" 

(Miettinen, 1976b), statistically significant or not, and that these cannot be identified one 

at a time with any reasonable certainty. 
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Though the full mode1 strategy to address confounding is not a realistically viable option 

because of the expected instability of the estimates, Witte et al. (1994) use this model as a 

step toward "more stable" estimates in the context ofmultilevel models (Greenland, 

2000a). The single model arguably has the benefit of simplicity and parsimony, when 

compared to K separate models and the procedures that went into their production. On 

the other hand, it may be unattractive because of the assumptions necessary to believe a 

large-parametered model, where the data would never have been sufficient to stratify on 

so many variables. The suggested formaI compromise is the addition of a second-Ievel 

model to the first-Ievel "full mode!" (Greenland, 2000a). This approach is otherwise 

known as empirical Bayes modeling, and it can improve estimation of the effects of the 

entire set of exposures under study and handle large models that ordinarily would not be 

efficiently estimated. 
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3 Literature review: Empirical Bayes models 
The chapter outlines a Bayesian approach to analyzing multiple exposures, typical of 

complex exposure histories. It will begin with the multiple inference problem, which will 

serve as the motivation for introducing a family of analytical techniques known as 

empirical Bayes models, ultimately leading to the semi-Bayes variant. 

3.1 The multiple inference problem 

Epidemiologic studies often harvest information across a wide range ofhuman 

experience, including diet, environment, behaviour, genetics, and, as in the present 

context, occupational circumstances. The statistical analysis of such datasets engenders 

problems of inference and method that can be referred to as multiple comparisons or 

multiple inferences. Perform enough comparisons and unusual results will eventually be 

found (Tukey, 1991). Savitz and Olshan (1995) claim that it is irrational to criticize a 

study because of the number of exposures assessed. Sorne authors have denied that the 

problem even exists (Rothman, 1990), while others have sought to deal with these issues 

in a fashion more suited to epidemiologic research than the traditional methods 

(Greenland and Robins, 1991). 

One classical approach to multiple inference arose in the context of significance testing 

and analysis of variance, where in a study ofK groups, there would be a possible K(K-

1)/2 pair-wise comparisons (Hsu, 1996). While the probability ofrejecting any given null 

hypothesis should not depend on other comparisons being conducted, the probability of 

falsely rejecting at least one true null hypothesis nevertheless increases with each 

additional comparison. In fact, if aIl the K hypotheses are mutually independent and aIl K 

null hypotheses are true, then the overall probability of falsely rejecting at least one 

hypothesis at asignificance level is 1-(I-a)K. The desire to maintain a fixed overall error 

rate a for the statistical significance tests of an entire study involving K comparisons, led 

to the development of the Bonferroni correction: if there are K independent tests, the 

corrected significance level is a1K. Epidemiologists have criticized such an adjustment of 

the significance level because, on the one hand, it can be overly stringent in studies that 

involve a multitude of exposures, and, on the other hand, significance levels may not be 
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the appropriate focus for multiple inference problems in epidemiologic studies (Savitz 

and Olshan, 1995; Greenland, 2000b). 

Inference problems can be distinguished by whether they are motivated by single 

inference questions (is this determinant related to this illness?) or by multiple inference 

questions (are any determinants in this set related to this illness?) (Rothman and 

Greenland, 1998). The latter question evokes the universal null hypothesis (no 

determinants in this set are related to the illness) and an omnibus alternative hypothesis 

(at least one determinant in this set is related to the illness), which has been criticized as a 

poor research strategy for most epidemiologic problems (Rothman, 1990; Savitz and 

Olshan, 1995). There has been a range of opinions expressed on the need for adjustment 

for multiple comparisons in different contexts (Poole, 1991; Wacholder et al., 2004). 

However, when the objectives of a study include decision making based on the results, 

such as in prioritizing further research, then recent opinion suggests that there exist 

different shades of the multiple inference question and that this can be addressed by non

Frequentist methods of analysis (Greenland and Robins, 1991). Individual hypotheses are 

maintained but with the qualification that they belong to a set (which ofthis list of 

determinants is related to this illness?). Such formulations have been suggested as 

appropriate for data searches or surveys of multiple determinants (Rothman and 

Greenland, 1998), such as the occupational cancer study that formed the basis of the 

present thesis (Thomas et al., 1986). This outlook has led to the development of 

estimators that on average improve estimation over maximum likelihood estimates for a 

set of determinants (Efron and Morris, 1973). 

Sorne epidemiology theoreticians have rejected the view that the evidence for a particular 

hypothesis is affected by how many other hypotheses are considered in the study 

(Miettinen, 1985; Rothman and Greenland, 1998). One aspect oftheir criticism is that it 

makes little sense to require different inferences from two investigators with the same 

data simply because one considered sorne additional comparisons within that data 

(Thomas and Clayton, 2004). The countervailing suggestion is that it is the prior 

credibility of an hypothesis that determines how results are interpreted (Cole, 1979; 

Miettinen, 1985; Rothman and Greenland, 1998): The lower the prior credibility, the 

stronger the evidence that is required. This naturally leads to a Bayesian framework, and 
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it is of relevance to current genetic epidemiology studies with millions of comparisons 

being feasible in a given database (Thomas and Clayton, 2004). As opposed to the 

concern for error frequencies common in the Bonferroni method of multiple inference, 

empirical Bayes models have been developed as an alternative for estimation problems 

that arise in multiple inference settings (Greenland, 2000b). 

The introduction of empirical Bayes models, which are discussed below, is based on three 

distinct lines of reasoning. The first is that while a single maximum likelihood estimate is 

asyrnptotically unbiased, maximum likelihood estimates can be paradoxically biased 

when considered in an ensemble (Thomas, 1985); that is, when considering a set of point 

estimates, the largest estimate in the set is more likely to be an over-estimate than an 

under-estimate of its true value. And imprecise estimates are more likely than precise 

estimates to be outliers. Both of these phenomena invoke the concept of regression to the 

mean, which naturally leads to a desire to shrink estimates doser to the center of the 

distribution of maximum likelihood estimates, with the amount of shrinkage possibly in 

proportion to their imprecision (Thomas, 1985; Steenland et al., 2000). The second 

reason is that there is a known bias in the maximum likelihood estimator that occurs in 

sparse data (Cordeiro and McCullagh, 1991), which, according to Greenland (2000c), 

occurs more frequently than is cornrnonly thought. This second reason also provides a 

rationale for the shrinkage estimator because the bias is predictably away from the null 

value (Cordeiro and McCullagh, 1991). The third reason is that there has been increasing 

attentiveness to the advantages of Bayesian analyses in epidemiology, with the concept of 

prior credibility as the basis for evaluating evidence (Miettinen, 1985; Rothman and 

Greenland, 1998). Within a study of multiple exposures, however, our knowledge may 

not be rich enough to set a complete Bayesian prior on each parameter (Robert, 2001). 

Recognizing that particular sets of similar exposures might have similar effects, leads to 

the concepts of correlated hypotheses and exchangeable parameters. 

3.2 Exchangeability and empirical Bayes models 

To illustrate empirical Bayes estimation, 1 will use the hypothetical example of a study in 

which data have been collected on five types of chromate compounds (ammonium 

chromate, barium chromate, basic lead chromate, calcium chromate, and potassium 
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chromate), with the objective of estimating each chemical' s effect on risk of illness, 

represented by the log odds ratio, Bi. This explanation derives from similar examples 

given by Greenland (1999; 2000a). 

When several parameters are considered for estimation, such as for the individual effects 

of the five chromate compounds, the common approach would be to estimate the value of 

each parameter, Bi, from the data using a maximum likelihood estimator. Each parameter 

can only be estimated if there is sufficient data for the estimation. Sorne of the estimates 

may be precise and others so imprecise as to render the estimates useless. Given that 

these are similar chemicals, if the data is not sufficient to estimate each of the parameters 

separately, a more stable estimate might be attained by pooling the data and assuming 

each chemical's effect is equivalent, BI = B2 = B3 = B4 = B5 = B, in this case represented 

by a single parameter for the chemical category, "chromate compounds." An ad hoc 

approach might assess risk in relation to the whole category first, and if appropriate, 

follow this with assessments ofthe individual elements. This might be a reasonable 

compromise between the approach that allows each parameter its own value, which can 

be problematic if there is sparse data, and the approach that assumes the effects are all the 

same, which neglects any possible differences among the individual chemicals. 

Choosing between these two extreme possibilities is often unnecessary. The existence of 

estimators that compromise or average across both approaches (Morris, 1983a), results in 

a model than can outperform either choice (Greenland, 1999). This has been termed as 

"borrowing strength from the ensemble" (Morris, 1983a), in that an imprecise estimate for 

any particular chemical will be bolstered by the information contained in the estimates for 

other related chemicals. 

The discussion above introduces the concept of exchangeability. For the situation at 

hand, it amounts to the beliefthat given our lack ofknowledge about carcinogens and our 

inability to make distinctions, the effects of certain occupational substances might be 

thought to be similar, or even the same, until proven otherwise. Stated another way, we 

might say that leaming of the causal relation oflung cancer to, say, barium chromate 

would necessarily increase our suspicion that lung cancer might also be causally related to 

basic lead chromate, or any of the other chromate compounds. 
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Exchangeability is a common concept in statistics and epidemiology (Greenland and 

Robins, 1986; Greenland, 1998; Lindley, 2000). It is directly related to the fundamental 

assumption of independently and identically distributed observations in probability 

theory. In the present context, by invoking exchangeability we can imagine that the K 

parameters to be estimated arise from identical distributions; in other words, the K 

coefficients are generated from K independent random draws from a single prior 

distribution (Thomas et al., 1985; Greenland, 1992). 

The compromise-estimator can be represented by the following approximation, where BI 

to Bs are considered exchangeable, 

where Wi is sorne weighting function that takes into account both the variance of the 

individual Bi and the distribution of the ensemble of Bi. If the variance for Bi is large, 

implying little evidence is contained in that maximum likelihood estimate, then Bt will be 

shifted closer to the pooled estimate, the grand mean, B. If the five Bi in our chromate 

example are widely distributed, implying BI to Bs are not actually the same and that the 

assumption of exchangeability was questionable, then Bt will be shifted closer to the 

individual estimate, Bi. This is approximately the empirical Bayesian estimator. By 

specifying which parameters are thought to be similar (the exchangeability part), the prior 

mean is ca1culated as the average of the maximum likelihood estimates for these 

parameters (the empirical part), and then each MLE is in turn averaged with this prior 

mean (the Bayesian part). This can be viewed as a means ofweighting different sources 

of information on the parameters of interest (Greenland, 1999). 

To illustrate sorne ofthese concepts ofrelated chemicals and exchangeable parameters, 

Figure 3-1 displays three of the five chromate chemicals mentioned above and a new 

chemical, carbon monoxide. 

The principle behind this diagram is that of exchangeability. Ifno information exists to 

distinguish the effects of the three chromate compounds or to order the magnitudes of 

their effects, one must assume symmetry among the parameters in their prior distribution 

(Gelman et al., 1995). In other words, ignorance implies exchangeability, so that the less 
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that is known about the true effects, the more confident is the claim of exchangeable 

parameters. At the top of the diagram is one chemical characteristic, named "chromate 

compound." Three chemicals, barium chromate, potassium chromate, and basic lead 

chromate, share the common property ofbeing chromate compounds. It is reasonable to 

assume that the individual effects of the three chromate compounds might be more similar 

to each other than they are to the effect of carbon monoxide. Specifying this in the 

context of the empirical Bayes model would result in the estimates of these three 

compounds shrinking toward each other. The B* 6 of carbon monoxide is unaffected by 

this shrinkage. Thus goes the argument for exchangeability, and imposing such 

constraints on the model' s estimation has several times demonstrated marked 

improvement over conventional analyses (Greenland, 1993). 

Figure 3-1: Illustration of exchangeable parameters, using four occupation al chemicals 
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The name empirical Bayes was first introduced by Robins (1955). Throughout the 1970s 

and 1980s these models were refined, culminating in the proposaI for parametric 

empirical Bayes models (Morris, 1983a). Their introduction to main stream epidemiology 

arguably dates to a publication by Thomas et al. (1985), with further developments 

occurring over the ensuing years (Louis, 1991; Greenland, 1992). 
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The basis for using these models has often been their ability to handle estimation in 

situations of sparse data, such as might occur if attempting to estimate regression models 

with large numbers of parameters in typically-sized epidemiologic studies. Bayesian 

models in general are not limited by the same rule-of-thumb restrictions of maximum 

likelihood estimation, that might otherwise lead to overfitting bias (Gelman et al., 1995); 

that is, the approximate 10: 1 case to parameter ratio (Peduzzi et al., 1996). Although 

using large multi-parameter models is seemingly contrary to the parsimony principle, 

Savage has been attributed with the saying that "models should be as large as an 

elephant" (Greenland, 2000b). This antiparsimony viewpoint, at the very least, supports 

rich models for complex problems, and has been viewed favourably as a necessary 

counterbalance for those taking the principle of parsimony to an unnecessary extreme 

(Greenland,2000b). 

Many of the improvisations commonly used in model building, such as pre-testing of 

variables for inclusion into a model based on P-values or other criteria, and the deletion of 

near-collinear parameters (Holford, 2002), come at the expense of potentially introducing 

bias into the remaining parameters and often underestimating the model's residual 

variance (Freedman and Pee, 1989). The empirical Bayes approach is in essence an 

attempt to reduce parameters from the model, without actually introducing discontinuities 

in the modeling process (Greenland, 1992). This reduction is achieved by shrinking the 

parameter estimates closer toward the null, as opposed to setting them to the null value 

with absolute certainty by deleting them from the model. 

These techniques have been variously described as a way of anticipating regression to the 

mean (Steenland et al., 2000), ofrecognizing chance occurrences (De Roos et al., 2001), 

of ensuring reduced overall error (Greenland, 2000a), of incorporating our knowledge in a 

quantitative manner (Robert, 2001), and of providing less arbitrary "best estimates" for 

ensembles of parameters (Thomas et al., 1985). The approach has been used in 

environmental (Morris, 1983a), occupational (Greenland, 1992; De Roos et al., 2001), 

biopharmaceutical (Louis, 1991), genetic (De Roos et al., 2003; Hung et al., 2004), 

dietary (Witte et al., 1994), geographic disease mapping (Marshall, 1991), and cancer 

surveillance (Steenland et al., 2000) studies, among others in epidemiology. 
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Empirical Bayes models are part of a family ofhierarchical or multilevel models, which 

also include the following regression techniques as special cases: classical Bayesian, 

penalized likelihood, mixed models, ridge, and random-coefficients (Greenland, 2000a). 

The terminology found later in the methods section of the thesis will refer to the model 

with the parameters of interest as the first level, and the prior information as the second

level model. 

3.3 Semi-Bayes models 

Even though our knowledge may not be rich enough to specify the location of the prior 

(the mean), and hence the use of the EB estimator, it is likely that we can specify a range 

ofuncertainty about the mean, especially ifwe believe that most strong carcinogens 

would have been previously identified (Greenland, 1992). In other words, we can often 

specify a range that willlikely contain the true parameter values, and thereby "focus" the 

estimation. As opposed to the empirical Bayes method of estimating the prior mean and 

variance from the data, a step toward classical Bayes can be accomplished by assuming 

values for the prior variance and only estimating the mean from the data. This has been 

referred to as semi-Bayes modeling (Greenland, 1993). 

Unlike empirical Bayes which requires iterative estimation, specifying the prior variance 

allows the equations to take on a simpler closed form (Greenland, 1992). As long as the 

true parameter values are, with reasonable certainty, to be found within the range 

specified, semi-Bayes methods will be an improvement over empirical Bayes. And as 

long as the specified prior variance is wide enough to assign a modest prior likelihood to 

the true value, semi-Bayes will outperform the usual maximum likelihood estimates 

(Greenland, 1993). 

Specifying the prior variance requires an understanding of the hypothetical residual 

effects of the parameters ofinterest, after having taken into account the information 

contained in the second level of the model-- the exchangeability information (Witte et al., 

1994). The range specified should reasonably encompass expert opinion about possible 

values of the parameters (Greenland, 1994). In a study of di et and breast cancer, Witte et 

al. (1994) specified nutrient levels that mediate the effects of food items. This involved 

prior information that the authors were quite certain would account for most of the effects 
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of the food items, and so a small, residual, twofold range for the prior standard deviation, 

T, was specified: exp(T*I.96*2)=2. On the other hand, in a study of occupational 

cancer, it could not be specified with much certainty which chemical and physical 

properties actually mediate carcinogenicity, and so allowance for a large prior standard 

deviation was necessary (De Roos et al., 2001): a tenfold range was specified, such that 

exp(T*I.96*2)=10. This states the beliefthat after having specified the sets of 

exchangeable parameters using chemical and physical properties of the occupational 

substances (similar to Figure 3-1), the residual effects ofthose substances should fall in a 

tenfold range centered close to unity, such as 0.3 to 3 on the ratio scale. By contrast, a 

conventional analysis, fitted into this framework, is tantamount to setting the prior 

variance to infinity and assuming that any empirical value is reasonable. 

3.4 Performance of semi-Bayes estimators 

Based on theory (Morris, 1983a; Greenland, 2000a), empirical Bayes estimators will 

provide overall gains in accuracy on an entire set of parameters, when compared to 

conventional maximum likelihood estimators, but any one of those estimates may be 

worse than its maximum likelihood counterpart. Morris emphasizes that for any 

particular parameter, the empirical-Bayes approach will provide these gains only insofar 

as one can assign a high prior probability to the true value of the parameter (Morris, 

1983a). 

These models require care in their design. Parameters that are clearly not exchangeable, 

need to be distinguished in the second level of the model (Greenland, 1992). Erroneously 

assuming that, say, tobacco smoke and wool fibres have exchangeable effects on lung 

cancer, will harm both estimates oftheir effects. Further, Greenland (1993) demonstrated 

that instead of allowing the prior variance to be estimated in empirical Bayes, gains in 

accuracy can be achieved with semi-Bayes modeling. Again, careful specification is 

necessary because under-specifying the prior variance can harm estimation (Greenland, 

1993). 

In simulation studies (Greenland, 1993; Witte and Greenland, 1996; Greenland, 1997), 

semi-Bayes results were compared to empirical Bayes, maximum likelihood, and pre

testing approaches in variously sized studies, sorne where asymptotic approaches should 
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be reasonable and sorne using small studies with many parameters. In small studies, 

empirical Bayes estimates showed improved accuracy and precision over maximum 

likelihood estimates. With few parameters and few study subjects, semi-Bayes models 

outperformed aIl other approaches, even with misspecification of the prior variance. In 

large studies with many parameters, EB and SB models performed similarly, with 

improvements over maximum likelihood and pre-testing approaches, but SB estimates 

were sensitive to any under-specification of the prior variance. 

These simulations also demonstrated that there are restrictions to the number of 

parameters (representing exchangeability) that can be used in the second level of the 

model. If the model with the parameters ofinterest is referred to as the first-Ievel model, 

the second-Ievel model contains the covariates that define the categories of exchangeable 

first-Ievel parameters. Additions of second-Ievel parameters are at sorne point offset by 

the cost to precision, but Witte and Greenland (1996) nonetheless recommend that as 

many categories of exchangeability should be added as can be justified scientifically, as 

this should, in theory, still ensure an overall reduced mean squared error over the set of 

parameters being estimated. 
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4 The Montreal Study 

4.1 Introduction 

A large case-control study of multiple cancers was carried out in Montreal in the early 

1980s by Siemiatycki (1991). This study served as the data source for the present thesis, 

and from here on this parent study will be referred to as the "Montreal study". 

The purpose of the Montreal study was to investigate the possible relations between 

twenty-three different types of cancer and several hundred occupational substances and 

circumstances. This chapter gives a brief overview and the essential features of the 

Montreal Study, while the Methods section of chapter 6 will address those details that 

pertain specifically to the thesis. 

4.2 Methods 

4.2.1 Source population 

Eligibility for the study was limited to men, aged 35 to 70, resident in metropolitan 

Montreal, and able to converse in French or English. Because cancer is a disease of long 

latency, and because the period of cancer occurrence was the early 1980s, the period of 

relevant exposure was roughly the 1940s through to the 1970s. In that era, relatively few 

women, as compared to men, worked in jobs involving heavy chemical exposures. 

Consequently, the cases of occupational cancer occurring in the early 1980s were more 

likely to be manifest among men than among women. The age restriction was also 

intended to focus on that subset of cases whose disease had the best chance ofbeing 

attributable to occupational exposure. Cancer in younger or older men was thought to be 

more likely caused by other lifestyle factors or a purely genetic etiology. 

4.2.2 Cancer series 

Cases were ascertained through hospital pathology departments, requiring positive 

histological or autopsy evidence of a primary-occurring tumour occurring between the 

years 1979 to 1985. Participating hospitals were estimated to account for approximately 

97% ofMontreal's tumour diagnoses reported to the Quebec Tumour Registry 

(Siemiatycki, 1991). An introductory letter was delivered to the patient, and was 
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accompanied by a brief self-administered questionnaire, which inquired about certain 

demographic characteristics and lifetime work history. Subsequently, a face-to-face 

interview was conducted, which lasted on average 80 minutes, ranging from 5 to 120 

minutes, depending on details ofthe work history. Sorne individuals refused to be 

interviewed but nonetheless accepted to complete a second, detailed self-administered 

questionnaire, which covered much of the interview material. Completed interviews were 

obtained on 3730 individuals with cancer. 

The men with cancer were intended to be a source of cases and controls, whereby an 

analysis of any particular cancer site could use instances of the other cancers as the 

control series. 

4.2.3 Electorallist series 

A second series of men was recruited into the study by random selection from the elector 

list created for the 1981 Quebec provincial elections, using a probability sample matched 

to the age distribution of the cancer series, and restricted to metropolitan Montreal 

residents. After two years, difficulties arose due to many men having moved since the 

electorallist had been enumerated. At that time, random digit dialling was instead 

implemented for the period until the new electorallist of 1984 was enumerated. 

Completed interviews were obtained on 533 men. 

The men recruited into the study from the electorallists and the random digit dialling 

procedure were intended to be used as an alternative control series. 

4.2.4 Data collection 

Structured interviews were conducted to obtain information on important potential 

confounders, such as smoking history, age, education, income, ethnicity, alcohol use, diet, 

and hobbies. Semi-structured interviews were used for the occupational portion of the 

interview, allowing interviewers to probe for more information when it was warranted 

(Siemiatycki, 1984). When study subjects themselves were not able or available to be 

interviewed, a proxy respondent, like a spouse, was instead used. Study subjects were 

asked to supply detailed descriptions for all jobs held in their lives, and the interviewers 

attempted to draw out as much information as possible about the particulars of each job. 
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The interviewers used general questionnaires and a special set of questionnaires created 

by the chemists to help with more technical information. These questionnaires were 

tailored for particular jobs, such as bricklayers, carpenters, electricians, i.a., and 

information was elicited conceming the employer, the worker's environment, raw 

materials, final products, machinery, the presence of fumes or dusts, use of protective 

equipment, and other details that might provide cIues as to incurred chemical or physical 

exposures. 

4.2.5 Exposure assessment 

The study incorporated an expert-based system of exposure assessment. A specially

trained team of chemists and industrial hygienists were provided with the detailed 

descriptions of each job in the subject's work history, and it was their responsibility to 

translate this information into codes for exposure to occupational substances. A list of 

294 substances was compiled for the study. Since the primary purpose of the study was 

the discovery ofunsuspected carcinogens, the list of exposures ofinterest was comprised 

mainly of substances for which there had previously been little or no research on human 

cancer risk. A wide variety of materials and chemical groupings were chosen. The list 

incIuded well-defined chemicals, chemical groups, mixtures ofknown and somewhat 

fixed composition, mixtures ofvariable composition, complex materials, and, 

occasionally, general categories of substances. The main criterion for selection of these 

particular substances was their presumed 'high' prevalence in the Montreal area. Of the 

294 substances that appeared on the originallist, at least eleven chemicals are presently 

considered to have strong evidence for lung carcinogenicity in humans, and at least eight 

have evidence considered as suggestive (Siemiatycki et al., 2004). 

Aside from the information from the interviewed subj ects, the chemists made use of 

information from employers, from consultants with knowledge of particular industries, 

and from several bibliographic sources. 

For eachjob, the chemists coded whether or not there had been exposure to any of the 294 

substances. Following this, for each job-specific exposure to a substance, four aspects of 

the exposure were recorded: 

41 



1. Calendar years of exposure. The chemists recorded the year the exposure began 

and the year it ended. 

2. Certainty of exposure. To reflect how confident the chemists were that a worker 

was exposed to a particular chemical, a 3-point ordinal scale was used, with 1 

indicating possible exposure, 2 indicating probable exposure, and 3 indicating 

definite exposure. 

3. Concentration of exposure. A 3-point ordinal scale was used to reflect the relative 

concentration of a chemical, with 1 indicating a relatively low concentration, and 

3 indicating high concentration, such as from actual handling of the substance. 

The concentration of the chemical in the so-called general environment was used 

as a baseline, and exposure had to have exceeded this level in the occupation to be 

coded as present. As an aid in assigning these codes, the chemists made use of 

standard benchmarks, which were occupations that were known to frequently 

correspond to each ofthe levels. Low, medium, and high concentrations are not 

on an absolute scale and are, thus, not comparable between substances. 

4. Frequency of exposure. The chemists used a 3-point ordinal scale to indicate the 

proportion ofwork time exposed to a chemical, with 1 indicating less than 5% of 

time and 3 indicating greater than 30% oftime. 

The chemists were blind as to any cancer diagnoses. One chemist would code each 

subject's file for exposures, and a second chemist would then review the original material 

and the first chemist's co ding. Final exposure codes were decided by consensus, and over 

the ensuing years the chemists have reviewed their work repeatedly, revising the exposure 

codes. 

4.3 Ana/ytie strategies 

Given the number of cancer sites and exposures in this database, and the system of expert 

exposure assessment, this data has over the years provided a basis for many analyses and 

studies. The database of the Montreal study consists of 4263 study subjects, distributed 

across many cancer sites. In particular, it has provided for the study of294 different 

occupational substances, 98 occupational groups, and 77 types of industry. Several 
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publications have arisen from the Montreal study, sorne addressing methodological issues 

(Siemiatycki et al., 1988; Siemiatycki et al., 1989; Leffondré et al., 2002; Rachet et al., 

2004) and sorne addressing, for example, particular groups of occupational substances 

(Siemiatycki et al., 1986; Siemiatycki et al., 1987) or particular sites of cancer 

(Siemiatycki et al., 1994; Parent et al., 1998; Parent et al., 2000). A monograph was also 

produced, dealing with this study in great detail (Siemiatycki, 1991). 
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5 Rationale and objectives of the thesis 

5.1 Rationale 

While tobacco smoke is c1early the most important risk factor for lung cancer, one reason 

occupational carcinogens are also of considerable importance is the involuntary nature of 

exposure and the prospect of avoidance or reduction of exposure in the workplace 

(Boffetta, 2004). Estimates for the fraction oflung cancer cases attributable to 

occupational exposures have varied greatly, ranging from below 1 % to upwards of 40% 

(Simonato et al., 1988). Moreover, the importance of occupational exposures is greater in 

certain populations, such as blue-c1ass, working men (Boffetta et al., 1995). The 

Montreal Study provides a basis for the examination ofmany previously unstudied 

occupational chemicals. While a few types of cancer in the study have been addressed in 

prior publications, a comprehensive assessment still remained for lung cancer. 

Another reason supporting the importance of occupational cancer research is that, while 

understanding of the impact of occupational exposures on the risk of lung cancer has 

often lead to regulatory change and improved hygiene in the workplace, many so-called 

occupational chemicals spill over into the general environment. Engine exhausts have 

greatly contributed to urban air pollution, and while radon was originally studied only 

among uranium miners, it is also currently an active area of research because ofthe 

seepage of radioactive gas into homes (Boffetta, 2004). For these reasons, and a simple 

enumeration of all the chemicals currently used in the workplace for which there has been 

little health research, there exists the need to continue epidemiologic investigations into 

occupationallung cancer. 

Given the number of exposures dealt with in the present thesis, addressing the potential 

for mutual confounding required special analytic methods. Empirical Bayes and semi

Bayes methods have been suggested as appropriate for occupational hazard surveillance 

(Greenland and Poole, 1994), though their applications have rarely been with a study of 

the dimensions of the Montreal study. The portion ofthe Montreal study's dataset, used 

for this research, involved 231 occupational exposures with complex, inter-related 

definitions, and so there was a need to explore different approaches to modeling the 

effects of the chemicals as well as methods ofconstructing the semi-Bayes models. 
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5.2 Objectives 

The overarching objective ofthis thesis was to provide evidence for the independent 

effect of each of several occupational chemicals on the occurrence oflung cancer, both by 

using a method of expert exposure assessment, considered to be more accurate than 

approaches used in previous community-based studies, and by thoroughly taking into 

account confounding from other occupational substances, something not always explicitly 

considered. This led to the following substantive and methodological objectives: 

Substantive objectives 

1. To provide independent estimates for the effect for each of 231 occupational 

chemicals on the risk of lung cancer. 

2. To select a subset of chemicals based on evidence of an effect on the risk of lung 

cancer, and follow this with other analyses aimed at exploring these relationships. 

a. To provide further evidence about the relationships ofthe selected 

chemicals to lung cancer, by exploring the influence of exposure duration, 

concentration, and timing on the risk of lung cancer. 

b. To provide independent estimates for the effect of each of the selected 

chemicals on the risk of particular histological subtypes of lung cancer. 

Methodological objectives 

3. To implement a semi-Bayes approach for analyzing a dataset with a large number 

of complexly related chemicals and correlated potential risk factors. 

4. To compare results derived from the semi-Bayes analyses with those derived from 

more conventional regression methods, and to link any differences in the results to 

the formaI properties of particular methods. 

45 



6 Methods 

6.1 Data source 

The present thesis used the database of the Montreal study (Siemiatycki, 1991). For a 

total of 4263 men, it inc1uded information that was used to construct variables on cancer 

diagnoses, demographic characteristics, non-occupational confounders, occupations, and 

occupational exposures. 

6.2 Case series 

The Montreal study attempted to enrol men diagnosed with cancer in any of the twenty 

largest hospitals in the Montreal area during the calendar period of September 1979 to 

June 1985. Not every case of every site of cancer was interviewed through all the years 

of the study. The case series for the present thesis was comprised of all histologically 

confirmed primary lung tumours -- topography ICD-9 codes 162.1 to 162.9 (American 

Medical Association, 1998) - admitted in the 2nd, 3rd, and 6th years of data collection. 

Histological information was collected and of the 857 cases oflung cancer diagnosed in 

the study, the following major histological subtypes of lung cancer were identified: small 

cell carcinoma (159 cases), squamous cell carcinoma (359 cases), and adenocarcinoma 

(167 cases). 

6.3 Control series 

The Montreal study allows the choice between two types of control series. One strategy 

is to use cases of cancer sites, other than the lung, to form the control series. An 

alternative strategy is to use the men that were sampled from the electorallists. Both 

strategies have their pros and cons, as discussed by Siemiatycki et al. (1981). In the 

monograph of the Montreal study, Siemiatycki (1991) preferred the strategy ofusing 

cancer patients with other types of cancer as the control series because it offered sorne 

coherence with the lung cancer series, it was larger than the electoral-based sample, and it 

minimized the chance of differential quality of information between the cases and 

controls. In the present analyses 1 opted for the same strategy. Nevertheless, the 

sensitivity of the results to this choice was addressed by replicating certain analyses using 

various options for the control series. 
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In using other cancer cases as the control series in our analyses, epidemiologic theory 

requires that the selected cancers are not themselves related to the exposures under study 

(Miettinen, 1985; Rothman and Greenland, 1998). For most ofthe occupational 

substances in the study, however, there is little evidence regarding their effects on cancer 

risk. This would make it difficult to justify the selection of only a few 'unrelated' cancers 

to form the control series. Moreover, one of the objectives ofthe thesis was to address 

mutual occupational confounding, and with many substances being assessed 

simultaneously, the difficulty of selecting cancer diagnoses unrelated to every one of the 

exposures became prohibitive. To avoid such difficulties, 1 decided to combine most of 

the other cancer sites into a single control series, hopefully "washing out" any out standing 

relations to the exposures under study. Even if there were the occasional relationship 

between a particular exposure and a particular cancer site, 1 expect that such effects would 

be largely diluted. This is an arguably conservative approach as it could attenuate the 

empirical estimates of exposure effects on lung cancer. Any true effect would be 

expected to disappear, however, only ifthat substance increased the risk for all, or most, 

of the cancers by the same magnitude. Yet limited evidence suggests that most 

carcinogens have been found to not cause multiple cancers (Magee, 1978; Merletti et al., 

1984). 

Due to the study design, cancers with higher incidence rates were disproportionately 

represented in the control series. To minimize the possibility of giving too much weight 

to a particular cancer site that unbeknownst to me was related to a chemical under study, 

no individual cancer site was allowed to account for more than ten percent of the whole of 

the control series; this involved randomly removing sub-samples from certain cancer 

sites. 

The following equation shows the theoretical impact on the RR if one ofthe constituent 

control sites was associated with a chemical being evaluated for its effect on lung cancer: 

RR - RR/ung 
biased - , 

L RRcancer (ncancer / ntotal ) 

where RRbiased represents the biased rate ratio for lung cancer, RRlung represents the true 

rate ratio for lung cancer, RRcancer represents the true rate ratio for each cancer subtype, 
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and Ilcancer represents the number of cases for each cancer subtype. For a plausible 

example of a large bias, the counts of each site of cancer (shown below in Table 7-1 of 

the results) can be substituted into the equation, and it can be assumed that the true rate 

ratio for the relation of lung cancer to one particular chemical is 2.0, and that the chemical 

was not related to any of the other cancers in the control series but for prostate cancer, 

with a rate ratio of3.0. The resulting biased lung cancer estimate would have shifted 

from true RR1ung=2.0 to approximately RRbiased=1.7. It is likely that the more typical 

situation would have involved smaller magnitudes of effect and less bias. These errors 

are arguably important or ignorable depending on the context of the study, but here I 

believe them to be acceptable due to the nature of surveying so many chemicals. 

6.4 The occupational chemicals 

From the initiallist of 294 occupational substances, I chose not to address the extremely 

rare substances. Thus, exposures with a lifetime prevalence of less than 1 % were 

removed from further analysis. An exception was made for a few rare chemicals that are 

currently suspected ofbeing lung carcinogens (Siemiatycki et al., 2004): beryllium 

compounds, tobacco dust, jet fuel engine emissions, and cadmium compounds. The li st 

of 231 chemicals assessed in the thesis can be found in the appendices. 

6.5 Timing ofexposures 

In a study of etiology, the timing of exposures should be thought of as occurring on a 

temporal scale where the onset of illness is at to of etiologic time (Miettinen, 1999). The 

moment of inception of a lung tumour is not in practice knowable, and so the year of 

diagnosis of the cancer was instead used. The difference between years of onset and 

diagnosis is often termed the latent period (Rothman and Greenland, 1998). It poses sorne 

difficulty in the attempt to define the period prior to diagnosis that is etiologically relevant 

for that diagnosis (Salvan et al., 1995), especially in the case of cancer which may 

require many years for the formation of a solid tumour. This difficulty is compounded by 

the problem of identifying the relevant minimum induction period for a particular 

exposure and lung cancer; that is, the time from causal action of an exposure to the 

initiation of the illness (Rothman and Greenland, 1998). Figure 6-1 illustrates these 

concepts on a time scale. 
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Figure 6-1: Induction and latent periods in the timing of exposure 
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ln defining the period of irrelevant exposure 1 discounted any exposure that occurred in 

the five years prior to diagnosis, because it would be highly unlikely that exposure in this 

period could induce the observed case of lung cancer. It is a crude attempt to address the 

relevant risk period. For an actual occupational risk factor, if five years is less than the 

true sum of latent and induction periods, then its estimated effect would be somewhat 

attenuated. 

No distinction was made between intermediate past and distant past exposures in the main 

body ofresults. The main analyses addressed the entire lifetime work history prior to 

diagnosis. The acceptability ofthis approach depends on how plausible it is for exposures 

very distant in the past to be etiologically relevant. 

6.6 Representation of the exposures in the regression models 

For each chemical that the chemists determined was present in a given job, the following 

four characteristics of exposure were taken into account: duration (in years), relative 

concentration (low, medium, or high), frequency (less than 5% ofwork period, 5 to 30%, 

or greater than 30%), and certainty (possibly, probably, or definitely present). 

If exposure to a particular substance occurred in more than one job in an individual's 

work history, the corresponding exposure characteristics were combined into a weighted 

average, with weights proportional to the duration of eachjob. A value 0.5 was added to 

eachjob's duration to account for measurement error, for example, to avoid a zero 

duration for jobs beginning and ending in the same year. Duration of the exposure was 

then calculated as the sum of eachjob's duration, and it would end where the last relevant 
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job ended. Overlapping part-time jobs were handled so that their durations were not 

incorrectly summed. 

For example, if an individual was diagnosed with lung cancer in 1980, and he was 

exposed to asbestos in four separate jobs in his work history, the relevant data would be 

represented as in Table 6-1. 

Table 6-1: A hypothetical example of a worker with exposure to a given chemical in 4 
different jobs 

Job First year Lastyear Duration Concentration Frequency Certain ty 
of job of job (years) 

1 1953 1955 2.5 2 (medium) 2 (medium) 1 (possible) 

2 1962 1972 10.5 2 (medium) 2 (medium) 3 (definite) 

3 1973 1973 0.5 1 (low) 1 (low) 3 (definite) 

4 1974, 1979 5.5 3 (high) 1 (low) 2 (probable) 

Uncertain exposures were coded as 'possible' by the chemists. These exposures were 

accounted for separately; therefore, in the case described in Table 6-1, the first job would 

not be inc1uded in the time-weighting. For the three jobs that 'probably' or 'definitely' 

occurred, each duration would then have 0.5 added to it. With the denominator summing 

to 10.5+0.5+5.5 = 16.5, the respective weights for the three jobs would then be, 

10.5/16.5=0.636,0.5/16.5=0.03, and 5.5/16.5=0.344 

The new concentration, frequency, and certainty would be ca1culated as follows: 

Concentration: 2*0.636 + 1 *0.03 + 3*0.344 = 2.33 

Frequency: 2*0.636 + 1 *0.03 + 1 *0.344 = 1.65 

Certainty: 3*0.636 + 3*0.03 + 2*0.344 = 2.69 

The new duration of the exposure to asbestos wou Id be 16.5 years, and the newly 

assumed ending date would be 1979. 
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Each of the different characteristics of exposure -- concentration, frequency, certainty, 

and duration -- is of interest independently, but for simplicity and intelligibility, a single, 

ordinal, composite index of exposure with four levels was derived. The algorithm used to 

derive the overall exposure index is described in Table 6-2. 

Table 6-2: Algorithm for defining composite exposure level 

Exposure level Exposure category Certainty of Concentration Portion of duration 
exposure 

x 
more than 5 years 
prior to diagnosis 

Frequencya or interview b 

0 Unexposed 

1 Possible exposure 1 (possible) any any 

1 Irrelevant exposure Any any o years 

2 Moderate exposure > 1 (probable, ~3 > 0 years 
definite) 

>3 >0 and <5 years 

3 Substantial exposure > 1 (probable, >3 ~ 5 years 
definite) 

a The product of the concentration and frequency weighted-averages; b The portion of exposure 
duration that falls outside of the latent/induction period. 

For a given chemical, unexposed individuals were assigned a level ofO. If the chemists 

were uncertain whether the individual had any cumulative lifetime exposure (certainty 

coded as 'possible'), no matter what the other characteristics, the assignment was with a 

level of 1. If aIl exposure occurred within the five-year latent/induction period, 

assignment was also with a level of 1. AIl other exposures were coded as either moderate 

or substantial, with substantial (leveI3) requiring high concentration and frequency and at 

least five years cumulative exposure occurring more than five years prior to the 

latent/induction period. 

When applied to the hypothetical data described in Table 6-1 for the individual who had a 

certainty of exposure greater than 1, a value for the product of concentration and 

frequency of greater than 3, and a large portion ofthe duration (16.5 - (5-(1980-1979») = 
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12.5 years) outside the 5-year latent/induction period, the algorithm assigns an exposure 

level of 3, representing substantial exposure to asbestos. In this fashion, each individual 

was assigned a single lifetime-history exposure level for each of the 231 occupational 

chemicals. 

Two levels of exposure were analyzed. Referring to Table 6-2, 'any' exposure during the 

lifetime work history corresponds to exposure levels 2 and 3; whereas 'substantial' 

exposure during the lifetime work history only corresponds to exposure level 3. In aIl 

cases, uncertain exposures (level 1) needed to be discriminated from the reference level of 

'no exposure' in the regression models. AIso, because of the overlap between 'any' and 

'substantial' levels, two separate multivariable models were estimated for each substance: 

BIX(levels 2,3) + B2X(levell), for 'any' level of exposure 

BIX(leveI3) + B2X(leveis 1,2), for 'substantial' level of exposure, 

where B's are the estimated regression coefficients and X's are dichotomous variables. 

In both cases, estimates of BI, referring to the exposure level ofinterest, were reported in 

the tables, and estimates ofB2, referring to the extraneous uncertain exposures, were 

discarded. 

6.7 Representation of the non-occupational confounders in the regression 
models 

A large number of non-occupational characteristics were elicited in the original 

interviews (Siemiatycki, 1991). In the current analyses, the choice ofwhich non

occupational confounders to inc1ude in the regression models was based exc1usively on a 

priori considerations, rather than on data-driven criteria. Based on the published 

literature of the etiology of lung cancer, variables were inc1uded in regression models to 

represent the following set of eight potential confounders: age, ethnicity, income, 

education, recreational activity, history of cigarette smoking, history of alcohol 

consumption, and respondent status. 

Age is routinely considered as an important potential confounder since it is strongly 

related to cancer risk and may be related to exposure history. Using ethnic origin as a 

potential confounder is motivated by its relation to genetic predisposition, diet, and other 
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social behaviours, all ofwhich are difficult to conceptualize and document. Family 

income and years of education are often used as proxies for socio-economic status, which 

in itselfis a vague concept, but is correlated with disease and possibly with putative risk 

factors for cancer (Mao et al., 2001). In the Montreal study, family income was not 

obtained from the interviews directly, but rather from the average annual income within 

the census tract ofresidence for each study subject, as ascertained from the Canadian 

census. Income and years of education may affect health via many mechanisms, 

inc1uding living conditions and the use ofhealth services. Recreational activity was also 

inc1uded as a confounder because physical activity has been associated with cancer risk 

(Gotay, 2005). A1cohol consumption has recently been linked to a possibly small 

increase in risk for lung cancer (Bandera et al., 2001), and c1early smoking history would 

be an important confounder to inc1ude in any lung cancer analysis. Finally, a variable for 

respondent status was inc1uded because it was anticipated that proxy respondents, usually 

spouses, might contribute a different quality of information than self-respondents, and it is 

an attempt at controlling for this. 

In order to find an optimal parameterization ofthe confounding variables, 1 conducted a 

smaU exercise using one of the occupational exposures as the prototype -- namely, silica. 

Both continuous and categorical variables were considered, and choices were made ad 

hoc by considering the Akaike Information Criterion (Akaike, 1974) and by taking into 

account how the different parameterizations affected silica's point estimate. 

Table 6-3 lists the non-occupational confounders and the variables used to represent them 

in aU the regression mode1s. Cigarette-years and drink-years are ca1culated as the average 

daily number of cigarettes or drinks, respective1y, multiplied by the years ofuse. 

Adjustment for cigarette smoking presents difficult problems in conceptualization, 

documentation, and representation in a regression model. So few non-smokers with lung 

cancer existed in the database that restricting the study to non-smokers was not possible. 

The parameterization ofthe three variables described in Table 6-3 to represent cigarette 

smoking was originally suggested in a study aimed at estimating the effects of smoking, 

but this applies just as well to the adjustment for smoking as a confounder (Leffondré et 

al.,2002). 
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Table 6-3: Statistical variables representing non-occupational confounders 

Confounder 

Cigarette smoking 

Age 

Ethnicity 

Mean census tract 
income 

Alcohol consumption 

Respondent 

Education 

Recreational activity 

Operational definition for the analyses 

Wl=l ifever smoked; Wl=O otherwise 

W2=naturallog of cigarette-years [continuous, centered] 

W3= 1 if quit smoking 2-5 years previously; W3=0 otherwise 

W4=1 if quit smoking 5-10 years previously, W4=0 otherwise 

W5=1 if quit smoking 10-15 years previously; W5=0 otherwise 

W 6= 1 if quit smoking> 15 years previously; W 6=0 otherwise 

W7=age in years [continuous] 

W8=age-squared [continuous] 

[reference is French] 

W9=1 if Jewish; W9=0 otherwise 

WI0=1 ifItalian; WlO=O otherwise 

Wll=l if Anglophone, European, or unspecified; Wll=O otherwise 

Wl2=annual income [continuous] 

[reference is 0 drink-years] 

W13=1 ifbetween 1 and 39 drink-years; W13=O otherwise 

W14=1 ifbetween 40 and 199 drink-years; W14=1 otherwise 

W15=1 ifbetween 200 and 1199 drink-years; W15=0 otherwise 

W16=1 ifbetween 1200 and 3070 drink-years; W16=0 otherwise 

[reference is self-respondent] 

W17=1 ifproxy-respondent; W17=0 otherwise 

[reference is 0 to 5 years of education] 

W18=1 if6 to 9 years; W18=0 otherwise 

W19=1 if 10 to 27 years; W19=0 otherwise 

[reference is rarely or never active in adult life] 

W20=1 ifactive once a week for six months; W20=0 otherwise 

The variables indicating the years since quitting smoking were devised so that individuals 

that quit within the two years before the diagnosis, were still considered CUITent smokers. 
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The logarithm of cigarette-years was used as it provided slightly better fit compared with 

a conventional cigarette-years parameterization (Rachet et al., 2004). Non-smokers were 

assigned a value of zero, and the values were centered among smokers so as to provide 

proper interpretation for the ever/never variable (Leffondré et al., 2002). That is, without 

centering, ever/never would be meaningless because among smokers, zero is not a 

possibility for cigarette-years, and among non-smokers, non-zero values for cigarette

years are impossible. Centering allows the rate ratio for the ever/never variable to be 

interpreted as the relative risk for a smoker with the average level of smoking compared 

to a never-smoker. 

Data were occasionally missing on either age when quit smoking or CUITent status of 

smoking. Simple imputation was used for such missing data. Among smokers, if data 

were missing for whether they had quit or not, it was assumed they were still smoking. 

For those having quit, ifthe age of quitting was missing, imputation was based on mean 

values from the remaining data. Table 6-4 lists imputed values for years since quitting 

smoking, conditional on age, a1cohol consumption, and respondent status. 

Table 6-4: Values for simple imputation ofyears since quitting smoking 

Alcohol consumption 

sJJO drink-years > 80 drink-years 

Age <45 Age 45-55 Age 55-65 Age> 65 Age <45 Age 45-55 Age 55-65 Age> 65 

.... Self 1.7 3.3 5.6 6.2 0.2 1.8 3.4 ~ 
~ 
=: 
t;:, Proxy 1.6 1.5 3.6 3.7 1.9 0.4 1.2 
~ 
~ 

~ 

6.8 Issues arising in regression modeling 

When considering the effect of a single occupational exposure, several issues arose in 

deciding which, if any, other occupational chemicals to inc1ude in the model as 

confounders. One issue is that the term chemical was used in this thesis to refer to both 

pure and complex substances. The list inc1uded complex mixtures of fixed or variable 

4.6 

1.4 
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composition, such as engine exhaust, which is composed of substances found elsewhere 

on the list. Chemical groups are also inc1uded, such as iron compounds (188), which 

encompass the presence of other specific substances on the list -- iron fumes (106), iron 

dust (33), and iron oxides (34). In a regression model, to adjust the general category for 

one of its sub-items would be to conceptually confuse the issues, induce artificial 

correlations between independent variables, and make interpretation of regression 

parameters difficult; for instance, if 1 inc1uded variables for both iron compounds and iron 

fumes in the model, 1 would have to interpret the parameter for iron compounds as the 

effect of increasing exposure to iron compounds other than iron fumes. Even more 

difficult would be the interpretation of the effect of iron fumes after adjusting for the 

effects of all iron compounds. This is also the case when adjusting complex chemicals, 

such as whole diesel engine exhaust (117), for its actual components, such as carbon 

monoxide (80) and nitrogen oxide (83); its parameter's interpretation would no longer be 

that for whole diesel exhaust. 

Figure 6-2 provides an illustration oftwo of the above difficulties in multiple regression 

modeling of determinants with complex relationships. Diagram A graphically describes 

that soot, a diesel engine emission, adsorbs polycyc1ic aromatic hydrocarbons (PARs), 

which are also diesel engine emissions, and that elsewhere on the list is benzo(a)pyrene, 

which is a particular PAR. It is questionable whether to adjust the effects of these 

particular substances for each other. But given that each can occur from separate 

industrial processes in the workplace, they can also rightfully be considered potential 

mutual confounders. Diagram B graphically describes the general category ofiron 

compounds, which was automatically coded whenever one of its constituents were coded, 

regardless ofwhether that constituent was found elsewhere on the list, or was not on the 

list, or was an iron exposure but determining which particular form of iron was difficult. 
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Figure 6-2: Illustration of complex relationships among occupational chemicals 

A. Complex mixtures, illustrated with four chemicals found on the list of occupational 
exposures. Benzo(a)pyrene [B(a)P] is a P AH, which is a diesel engine emission and is 
adsorbed onto soot, which is also an engine emission. Each ofthese can occur from 
independent industrial processes in the population. The overlap of circles only indicates 
the conceptual relatedness of the definitions of these chemicals, and not correlation of 
exposures in the study population. 

Diesel exhaust 
B(a)P 

B. Chemical groups, illustrated with four chemicals found on the list of occupational 
exposures. Exposure to iron fumes, dusts, and oxides also automatically codes for 
exposure to the more general category of iron compounds. When the actual iron exposure 
could not be determined, oiron compounds' alone was coded. 

Iron compounds 
/. .......................................................................... . 

!::::j" ........................ , ............ '<::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::, 
Iron fumes ..................................... .................................... . .................................... . 

.................................... . .................................... . .................................... . .................................... . .................................... . .................................... . .................................... . :>---------------< ............................................................................ . 
. :::: ::Qiher: #0#: :éornP9@4~: :n9f: ::::: 
::::: :~qG~liie~~~4 :i~ :t~~: ~~qy:::::::::: Iron dust 
..................................... .................................... . 

..................................... . 
:::----------------< ... :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: . 

Iron oxides 

.................................... . .................................... . .................................... . .................................... . .................................... . .................................... .................................... . ......................... " ......... . ......... , .......................... . .. , .... ,., ........................ , .. 
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For the reasons just described, the regression models that included many occupational 

exposures simultaneously in the same model were analyzed by creating a restricted list of 

substances that could, at least in principle, have their effects be mutually adjusted without 

worrying about too many conceptual issues. From the list of 231 chemicals, a shorter list 

of 184 chemicals was created for analyses at 'any' level of exposure. Due to sparse data 

at the higher exposure levels, the li st was further cut down to 146 chemicals for analyses 

at the substantiallevel of exposure. Table 6-5 lists those chemicals that were excluded 

from the larger models, along with the reasoning. 1 made a few exceptions to this mie, 

mostly because my interest in viewing their 'adjusted effects' outweighed the conceptual 

difficulties ofinterpreting the resulting parameter estimates. For example, 1 included 

gasoline engine emissions (115) and carbon monoxide (80) in the same model. For the 

purpose of testing how sensitive the results were to questionable adjustments, the results 

from a single large model, with nearly aIl 231 chemicals simultaneously analyzed, were 

also compared to the results from my preferred restricted model of 184 chemicals. As 

another sensitivity check, an even more restrictive model with only 117 chemicals was 

designed to avoid nearly every 'inappropriate adjustment' issue that was identified. 

Only one instance of perfect collinearity was found in the dataset: PARs from wood 

(216) and wood combustion products (119), but this was not a concem as neither was 

included in the larger models. On the other hand, many variables for the occupational 

exposures were highly correlated, sorne showing near-collinearity. Sorne sensitivity 

analyses avoided this issue by arbitrarily deleting one exposure from the model if a pair 

was found to have a Spearman correlation coefficient greater than 0.7. However, this 

could introduce bias to the remaining parameter, and recent work has suggested that the 

use of ridge regression can handle near-collinearity without the need for deletion (Le 

Cessie and Houwelingen, 1992; Holford et al., 2000; Holford, 2002). The purpose of 

maintaining such highly correlated variables in a single model would be to address the 

instability caused by collinearity and to attempt to differentiate the individual effects of 

the collinear variables. The empirical Bayes estimator can be considered a more 

generalized form of the ridge regression estimator (Greenland, 2000b). Thus, the single 

model with 184 chemicals retained highly correlated exposure variables, as opposed to 

deleting them. 
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Table 6-5: Chemicals excluded from the single regression model for the simultaneous 
estimation of chemical effects 

Reason for exclusion 

A chemical group 

Mixtures, with constituents 
already modeled 

Perfect coUinearity 

Nebulous definitions 

Ch emicals 

MetaUic dust (4), fabric dust (72), rubber dust (77), 
synthetic fibres (54), cutting fluids pre 1955 (170), 
cutting fluids post 1955 (171), cyanides (176), fluorides 
(177), chromium VI compounds (178), magnesium 
compounds (182), aluminium compounds (183), 
titanium compounds (184), chromium compounds (186), 
manganese compounds (187), iron compounds (188), 
nickel compounds (190), copper compounds (191), zinc 
compounds (192), silver compounds (194), tin 
compounds (196), lead compounds (201), alkanes C18+ 
(202), alkanes C1-C4 (203), alkanes C5-C17 (204), 
aliphatic alcohols (205), aliphatic aldehydes (206), 
chlorinated alkanes (207), unsaturated aliphatic 
hydrocarbons (208), aliphatic esters (210), aliphatic 
ketones (211), wood PARs (216), petroleum PARs 
(217), coal PARs (218), monocyclic aromatic 
hydrocarbons (220), aromatic alcohols (221), aromatic 
amines (222), cleaning agents (225), pharmaceuticals 
(226), laboratory products (227) 

Natural gas (90), mineraI spirits + 
benzene/toluene/xylene (169), javel water (128) 

Wood combustion products (119) 

Other pyrolysis fumes (113), other mineraI oils (166), 
other paints and varnishes (172), other PARs (215) 

* Numbers following chemical names refer to the numbering system of chemicals; see Appendix 2. 

6.9 Regression modeling 

The primary goal of the thesis was to estimate the effects of each of 231 chemicals on the 

risk oflung cancer. This was done using multiple strategies. AU the models used for 

these analyses were based on the unconditionallogistic regression model with maximum 

likelihood estimation, estimated with PROC LOGIS TIC in SAS (1999). Sorne of the 

results utilized a semi-Bayes estimator, which used the logistic regression estimates as a 

starting point. The SAS matrix language program published by Witte et al. (1998) was 
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used for all the semi-Bayes analyses. Prior information for the semi-Bayes models was 

specified in the form of matrices within standard spreadsheet software. 

The logistic transform takes the form, 

Logit R =A+BX+CW, 

where R is the incidence rate of lung cancer, A is an intercept term, X is a vector of 

variables representing each of the occupational exposures, and B is the vector of 

regression coefficients to be estimated. The model also inc1udes potential confounders, 

represented by regression coefficients, vector C, and a vector W of variables, which for 

most of the analyses represent cigarette smoking, age, ethnicity, income, alcohol 

consumption, respondent status, education, and recreational activity. The estimate of 

effect used here is the odds ratio, which from the design of the study is an estimate of the 

incidence density-type rate ratio (Miettinen, 1976a; Greenland, 1987), derived from an 

exponentiated regression coefficient, eB
• 

A fixed number of 231 chemicals were assessed. Each was given a unique number which 

is kept consistent throughout the results and discussion. A description of each chemical is 

found in the appendices. 

The various mode1ing strategies necessitated different assumptions and criteria. The 

choice of models reflected different outlooks on how extensive control of confounding 

should be and what considerations should be taken into account while determining the 

optimal dimensions of the model. These analyses began with a simple model, such as one 

with only one exposure at a time and adjustment only for the confounding of age, and 

extend through to complex models that mutually adjusted for all other occupational 

chemicals and involved a Bayesian prior. The main modeling strategies are listed below 

in Table 6-6, along with a description. 

The approach for strategy 1 represents a typical analysis in an occupational cohort study 

(Checkoway et al., 2004), where adjustment of each chemical's effect was only for age. 

Strategy 2 represented a conventional approach to such a large set of exposures, whereby 

the occupational chemicals were analyzed one-at-a-time, each within a separate regression 

model. Each exposure effect was adjusted for the standard set of non-occupational 
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confounders listed in Table 6-3. Strategy 3 was similar to strategy 2, but now each 

chemical-specific regression mode1 was also adjusted for the following seven suspected 

lung carcinogens: asbestos (5), crystalline silica (6), chromium VI compounds (178), 

arsenic compounds (193), benzo(a)pyrene (219), diesel engine exhaust (117), and any 

source ofpolycyc1ic aromatic hydrocarbons (214). 

Several issues arose when considering which chemical effects could be adjusted for each 

other. For the reasons described above, in section 6.8, 184 of the 231 chemicals were 

singled out to form a smaller list of chemicals whose effects could be simultaneously 

estimated in a single mode!. The remaining strategies involved models that were based 

on this shorter list of 184 chemicals. 

Strategies 4 and 5 can be considered intermediate approaches between the 'one-at-a time 

approach' of strategy 3 and the 'single regression approach' of strategy 6, where all 

chemical effects were estimated simultaneously. In strategy 4, each chemical was 

analyzed in a separate regression model that used automatic forward selection with a P

value ~.25 criterion for the entry of other chemicals. The criterion of 0.25 was chosen 

to inc1ude chemicals with estimates that were statistically significant or marginally non

significant. Because P-values for the other variables would vary depending on which 

'main exposure' was already forced into the corresponding model, the selection of 

covariates might vary from model to mode!. Each regression model began with the non

occupational variables forced into the model along with the one chemical that was the 

focus ofthat mode!. Automatic forward selection then proceeded to add the chemical that 

had the smallest P-value conditional on the variables already inc1uded in the mode!. 

Strategy 5 involved estimating a single model where the only chemicals to be inc1uded 

were those that met an automatic forward selection strategy using a P-value ~.25 as the 

entry criterion. Unlike strategy 4, where all chemical effects were estimated, because 

each was analyzed in a separate regression model, in strategy 5 only a single logistic 

model was fit and the effects of chemicals not inc1uded in this model were set to zero on 

account ofbeing exc1uded. 
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Table 6-6: List of main regression modeling strategies 

Model Numberof Numberof Occupational Non-
Bayes 

strategy 
Short label Regression Chemicals chemicals adjusted as occupational 

model 
Location of results 

Models assessed confounders confounders 

Separate models, age- 231 231 0 Age No Estimates not 
adjusted only shown 

2 1 Separate models 231 231 0 AlI a No Table 7-3 

3 1 Separate models, with 231 231 7 suspected Alla No Table 7-11 
seven suspected lung carcinogens b 

carcinogens 

4 1 Separate models, Forward 184 184 Between 0 and 183 Alla No Table 7-11 
selection (chosen by P:::; 0.25) 

5 1 Single model, Forward Between 0 and Depends on which Alla No Estimates not 
selection 184 (ch os en by chemicals were shown 

P:::; 0.25) selected 

6 1 Single model 184 AlI Alla No Estimates not 
shown 

7 1 Single model, semi-Bayes, 184 AlI Alla Yes Table 7-11 
common prior 

8 1 Single model, semi-Bayes, 184 AlI Alla Yes Table 7-11 
categories of 
exchangeability 

a age, ethnicity, income, education, recreational activity, history of cigarette smoking, history of alcohol consumption, and respondent status; 
0\ 

b asbestos, crystalIine silica, chromium VI compound s, arsenic compounds, benzo(a)pyrene, diesel engine exhaust, and polycyclic aromatic N 

hydrocarbons from any source. 



Strategy 6 involved a single regression model with aIl chemicals included, regardless of 

their statistical significance. Because of the size of the model, most of these estimates 

were expected to be imprecise, and previous publications have cautioned against using 

similar models for interpretation (Witte et al., 1994). For this reason, these estimates of 

the effects of chemicals are not presented in any table. This model' s role was primarily as 

an interim step to the semi-Bayes approach, described below. 

A semi-Bayes strategy was considered over the use oftraditional empirical Bayes models. 

This was because of the greater control that can be exerted over the modeling, in terms of 

specifying prior variances from a scientific basis (Greenland and Poole, 1994), and to 

potentially gain improved estimation accuracy, as suggested in previous simulation 

studies (Greenland, 1993; Witte and Greenland, 1996). 

Strategies 7 and 8 were semi-Bayes models (Greenland, 1992), and they built on the 

single model of strategy 6 by incorporating prior information about the parameters being 

estimated. This information was employed as assumptions of exchangeability about the 

effects of specific subsets of individual chemicals, meaning that within a subset of 

chemicals it was believed that their effects on lung cancer would likely be similar. For 

example, two chromate compounds would believably have more similar effects on lung 

cancer to each other than either would to the effect of, say, asbestos. Section 6.10 

provides more detail about the implementation of these models. In brief, strategy 7 was 

designed to be a naïve model that treated all of the occupational chemical parameters as 

exchangeable. It used modeling strategy 6 as its first-Ievel model, and the resulting 

estimates for each chemical were shrunk to a common prior mean. The prior variance for 

each parameter needed to represent a range of values that would most likely include the 

true magnitude of effect of each chemical (Witte et al., 1994). The prior variance was set 

to 0.345, which corresponded to a tenfold range of plausible values for the effects being 

estimated, such as 0.3 to 3 on the rate ratio scale. 

In comparison to strategy 7, the approach to strategy 8 treated only subsets ofparameters 

as exchangeable, based on shared chemical and physical properties (Greenland and Poole, 

1994). These properties were represented in a second-Ievel model, which described the 

parameters (effects of the chemicals) in the first-Ievel model. These subsets were not 
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necessarily mutually exclusive. Chemicals could appear in multiple subsets as long as 

they were characterized by those particular chemical or physical properties. Thus, 

chemical-specific estimates from model 6 were shrunk in a multidimensional fashion, 

taking into account whichever subsets the chemical belonged to. The prior variance for 

each parameter was set to 0.246, which corresponded to a sevenfold range of plausible 

values for the effects being estimated. It was a smaller value because more information 

was included in the second-Ievel model than had been inc1uded in strategy 7. The idea 

behind this is that as more information is included in the second-Ievel model, less 

uncertainty remains about the chemicals in the first-Ievel model (Witte et al., 1994). The 

model from strategy 8 also inc1uded information to indicate which parameters represented 

occupational exposures already suspected ofbeing carcinogenic to lung tissue. 

AlI of the above mentioned modeling strategies involve numerous assumptions. Sorne 

assumptions pertain to regression modeling in general, and sorne are peculiar to the 

various confounder selection strategies. Further, the parameterization of variables and the 

single index of exposure also involve assumptions. For example, the exposure index was 

based on an algorithm that multiplied ordinal values of concentration and frequency, with 

a further weighting by exposure duration, all of which involve assumptions about the 

relative effects of these exposure characteristics. 

Only chemical-specific estimates from certain strategies were presented in tables. Other 

strategies were included for comparison purposes only, and their estimates were provided 

in the methodology-oriented results section, where they were often treated in aggregate. 

To be somewhat lenient in deciding which results to comment on in the text and follow

up in secondary analyses, 90% confidence limits were preferred over 95% limits. As a 

second rationale, a small technical advantage with 90% limits is that they more c10sely 

approximate the exact limits than would be the case with the 95% counterparts (Rothman 

and Greenland, 1998). 

6.10 Implementation of the semi-Bayes models 

The semi-Bayes approach relied on a two-Ievel model, where the first level involved a 

simultaneous estimation of the effects of many occupational chemicals, using the usual 

maximum likelihood fitting method oflogistic regression (strategy 6); and the second 
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level was a weighted-Ieast-squares linear regression that modeled the first-Ievel 

parameters (Greenland, 1992; Greenland, 1993), while accounting for the 

heteroscedasticity in the variances ofthe first-Ievel estimates. This is a two-Ievel 

hierarchical model, where the second level would be thought ofby Bayesians as the prior. 

To simplify the fitting, a method-of-moments approach was used (Kass and Steffey, 1989; 

Marshall, 1991; Greenland, 1992). Method-of-moments can be thought ofas a non

iterative first-order approximation to a maximum likelihood approach for acquiring the 

moments of a distribution, such as the mean and variance. It has been used in previous 

applications ofsemi-Bayes models (Greenland, 1993; Witte et al., 1994; De Roos et al., 

2001). Two assumptions in using this approach were: that the distribution of maximum 

likelihood estimates was approximately normal, and that the likelihood would overwhelm 

any departures from normality, resulting in a normal posterior distribution even in the 

case of violations (Greenland, 1992). 

To fit this two-Ievel model, the following four steps were necessary: (i) estimate the 

effects of aIl the chemicals using conventionallogistic regression, based on the model in 

strategy 6, (ii) specify a second-Ievel matrix for these effects, (iii) specify the second

level residual intercepts, and (iv) specify the second-Ievel residual variances. 1 used the 

SAS matrix language pro gram of Witte et al (1998), which was modified to account for 

the study design. The program is listed in the appendices, with annotations, and was 

originally designed to handle empirical Bayes models, as well as the semi-Bayes variant. 

The difference between empirical Bayes and semi-Bayes lies in step (iv), where in the 

former the prior variances are estimated from the data, and in the latter the prior variances 

are specified according to scientific evidence. 

Details of the four consecutive steps follow. 

Step i 

As a first step, the single regression model (strategy 6 from Table 6-6) with all chemicals 

represented simultaneously was fit with PROC LOGISTIC in SAS (SAS, 1999). The 

model for analyzing the 'any exposure' level was, Logit R=XB + WC, where X was the 

vector of 184 exposure variables, B was the vector of 184 exposure parameters, W was 

the vector of20 non-occupational covariates plus 125 covariates for uncertain exposure 
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levels (not aIl exposures had sufficient numbers to warrant adjustment for this level of 

exposure), and C was the vector ofthe 145 parameters. The resulting first-Ievel estimates 

were inherently unstable; that is, implausible estimates were expected because of the low 

number of cases compared to the large number of parameters being estimated in the 

model. 

Step ii 

The second step required specifying the second-Ievel matrix ofprior information. In the 

naïve approach to semi-Bayes regression (modeling strategy 7 in Table 6-6), aIl the 184 

parameters of interest were considered exchangeable. In other words, this model shrank 

each of the 184 chemical-specific rate ratio estimates, obtained in step (i), toward the 

geometric mean of aIl the estimates combined, (Il rlj t l84 
(Steenland et al., 2000). The 

extent of the shrinkage for each estimate was determined by its variance and the specified 

prior variance, described below. 

Altematively, expert knowledge can be brought to bear on the problem (Greenland, 

1992), as in modeling strategy 8. In collaboration with chemists and industrial hygienists, 

1 identified subsets of chemicals that were believed to have exchangeable effects based on 

shared chemical and physical properties. Such properties are plausibly relevant for lung 

carcinogenesis. Creating these categories of exchangeability was an iterative process that 

required several meetings with the chemists, hygienists, and epidemiologists. The 

chemists were first tasked with identifying as many major axes of chemical properties 

(elements, functional groups, and organic/inorganic characteristics) and physical 

properties (dusts, fumes, vapours, etc.) as they could. These were eventually combined in 

meaningful ways that categorized the list of 231 chemicals into subsets of related 

chemicals. These subsets were not mutually exclusive. 

The effects of the chemicals in a particular subset were believed to be more similar to 

each other than to the effects of chemicals not in the subset, and 1 had little a priori reason 

to suspect the magnitude of effect of any one chemical in a subset to be lower or higher 

than any other chemical's effect in that subset. The chemists began with over 70 possible 

subsets, which 1 will refer to as categories, and eventually refined the list to 30 by 

removing categories which would have only contained one chemical or which were 
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deemed inappropriate for exchangeability purposes. For example, a category like 

'solvents,' which was based on how chemicals were use d, was discarded because it would 

not have c1ear implications for carcinogenicity. Removing categories was done 

cautiously because any property that was not inc1uded would de facto be considered of no 

consequence (Witte et al., 1994). 

Table 6-7 identifies the categories specified for use in the semi-Bayes model strategy 8. 

Each of the chemicals can belong to one, to several, or to none of the categories. 

Chemicals not included in a subset still had their parameter estimates shrunk toward sorne 

overall prior mean, but wouldn't benefit from the influence of other chemicals with 

similar properties. 

Table 6-7: Second-Ievel categories, based on chemical and physical properties 

No. Chemical and physical property Description 

1 Polypeptides Polymers of peptides (chains oftwo or more amino 
acids). 

2 Polysaccharides Type of carbohydrate: a major class of naturally 
occurring organic compounds. Polysaccharides are 
mainly sugars, starches and cellulose. 

3 Fibrous inorganic dusts Inorganic in nature, these dusts are threadlike strands, 
usually pliable and capable ofbeing spun into a yarn. 

4 Silica containing compounds Compounds containing at least one atom of silicon (Si). 

5 Metal dusts (excluding oxides) 

6 Metal oxide dusts 

7 Metal oxide fumes 

8 Heavy metal compounds 

9 Monocyclic aromatic 
hydrocarbons 

10 Polycyclic aromatic 
hydrocarbons 

Pure metal dusts only, excludes metallic oxides and 
other metallic compounds. 

Oxides of any metal, in dust form. 

Main component of the fume produced when a metal is 
heated to melting point. 

Compounds containing metals ofhigher molecular 
weights. 

Substances containing one and only one aromatic ring, 
regardless of other functional groups. 

Substances containing more than one aromatic ring, 
regardless of other functional groups. 
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No. 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

Chemical and physical property 

Engine emissions 

Inorganic acid mists 

Resins and resin-containing 
compounds 

Carbonaceous compounds 

Aliphatic alkanes (C5-CI7) 

Aliphatic alcohols 

Aliphatic chlorinated 
hydrocarbons 

Inorganic gases 

Organic gases (CI-C4) 

Inorganic salts 

Magnesium compounds 

Aluminium compounds 

Chromates 

Manganese compounds 

Iron compounds 

Nickel compounds 

Copper compounds 

Zinc compounds 

Tin compounds 

Lead compounds 

Description 

Complex mixture of substances produced by an internai 
combustion engine. 

Inorganic acids in aerosol form. 

Gum-like substances obtained from trees or 
manufactured synthetically. 

Carbon-rich substances. 

Hydrocarbons containing between 5 and 17 carbon 
atoms per molecule. 

Aliphatic compounds containing at least one hydroxyl 
group. 

Aliphatic substances containing at least one chlorine 
atom. 

Inorganic compounds that are gaseous at room 
temperature. 

Organic compounds that are gaseous at room 
temperature. 

Ionic compounds formed between the anion of an acid 
and the cation of a base; often soluble in water. 

Metallic compounds containing magnesium. 

Metallic compounds containing aluminium. 

Metallic compounds containing hexavalent chromium. 

Metallic compounds containing manganese. 

Metallic compounds containing iron. 

Metallic compounds containing nickel. 

Metallic compounds containing copper. 

Metallic compounds containing zinc. 

Metallic compounds containing tin. 

Metallic compounds containing lead. 
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To avoid inappropriate shrinkage, it would have been necessary to distinguish strong 

determinants oflung cancer from weaker ones in the second-Ievel model. For example, if 

smoking history was inc1uded as part of the semi-Bayes modeling (in fact, it was treated 

as a tixed effect, and the maximum likelihood estimate was not part of the second-Ievel 

modeling), it would be inappropriate to inc1ude it in a category with other known 

occupational carcinogens. The effect of smoking on lung cancer is typically so strong, 

that its semi-Bayes estimate would be inappropriately shifted downward and the estimates 

ofthe other chemicals would be inappropriately shifted upwards. Distinguishing these 

effects by separate categories of exchangeability would rectify the problem. The 

parameters of the non-occupational confounders, such as smoking and age, were not of 

interest, and so they were treated as tixed effects; that is, they were not inc1uded in the 

second-Ievel modeling and their estimates were not shrunk. Further, most occupational 

substances in the Montreal study were expected to have relatively small effects, and so 

errors in specifying categories of exchangeability would be expected to have only minor 

consequences to the results. 

With the analysis in strategy 8, the maximum likelihood estimates of the tirst level tended 

to not only be shrunk toward their overall common mean, but they were also shrunk 

toward the means of the categories the exposures belonged to. 

These categories were represented in the second-Ievel model by dichotomous covariates. 

The data used for the second-Ievel estimation was designed as a matrix (the z-matrix), 

with 184 rows corresponding to the 184 chemicals in the analysis and 31 columns 

corresponding to the 30 categories and 1 intercept (described in step iii). Each chemical 

was scored with a 'l'in the appropriate column if it belonged to that category of 

exchangeability and a '0' otherwise. The approach for semi-Bayes strategy 7 did not 

implement categories of exchangeability, so the z-matrix was simply reduced to an 

'intercept' vector of l's, which implies that aIl chemical effects were deemed 

exchangeable. For illustrative purposes, Table 6-8 presents an extract from the second

level matrix for strategy 8. Substances with zeroes across aIl columns were not deemed 

exchangeable with any other substances; these were left out of any of the subsets, but 

their estimates were still shrunk toward the overall prior mean. 
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Such a matrix, as represented in Table 6-8, represents an attempt at creating a 'data 

equivalent' of a prior belief, which is then weighted along with the study data (Greenland, 

2006). 

Table 6-8: Selected elements of the second-Ievel model: Covariates 

Categories of exchangeability (second-Ievel covariates) b 

Chemicals a Fibrous Si-containing Metal Inorganic 
inorganic dusts compounds oxide dusts acid mists 

Alumina 0 0 1 0 

Silica 0 1 0 0 

Asbestos 1 1 0 0 

Diesel exhaust 0 0 0 0 

Glass fibres 1 1 0 0 

Phosgene 0 0 0 0 

a Selected from the 184 possible chemicals. b Selected from the 30 possible properties used as 
categories of exchangeability 

Step iii 

Step three involved the specification of the second-Ievel residual intercepts. That is, after 

taking into account the second-Ievel information 1 specified in step ii for strategy 8, it may 

still have been possible to capture sorne of the predictable residual effect of the chemicals. 

For most, since 1 knew little about their effects, they were left with a near-zero prior 

mean. For the chemicals with strong or suggestive previous evidence oftheir 

carcinogenicity, however, 1 specified intercepts that equalled the expected residuallog 

rate-ratios. These were taken from a recent meta-analysis of published studies on lung 

cancer (Steenland et al., 1996). Specifically, to be conservative, 1 used values close to the 

published lower 95% limits derived from those meta-analyses, since many ofthe studies 

focused on highly exposed workers. While aIl the rest were set to zero, the intercepts for 

the following chemicals were set to nonzero log rate ratio values (rate ratio in 

parentheses): silica, 0.18 (1.2); asbestos, 0.64 (1.9); iron oxides, 0.1 (1.1); diesel exhaust, 
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0.1 (1.1); arsenic, 1.1 (3.0); chromates, 0.8 (2.4); beryllium, 0.26 (1.3); nickel, 0.33 (1.4); 

cadmium, 0.18 (1.2); soot, 0.1 (1.1); coal gas, 0.1 (1.1); coal tar and pitch, 0.1 (1.1); 

polycyc1ic aromatic hydrocarbons, 0.1 (1.1); and sulphuric acid, 0.1 (1.1). Table 6-9 

presents sorne ofthese elements, from the second-Ievel model. 

Step iv 

Step four required specifying values for the second-Ievel variance for each of the 184 

parameters ofinterest. The "prior" variance is used as a scaling factor (Greenland, 1992), 

in that the amount of shrinkage of the logistic regression maximum likelihood estimate is 

in part determined by what was specified for the second-Ievel variance. Based on prior 

knowledge of the magnitude of effects commonly seen in occupationallung 

carcinogenesis (Steenland et al., 1996), and with sorne knowledge ofthe exposure levels 

in the Montreal industrial environment (Ramzan Lakhani, personal communication), 1 

surmised that most if not an of the effects being estimated in the study would manifest at 

somewhat low magnitude. Thus, 1 specified with 95% certainty that the true effects of the 

chemicals would most likely fan in a tenfold range about zero for rate ratios (tenfold 

implying, for example, 0.5 to 5). It was preferable to err on the conservative side by 

choosing values for the second-Ievel variance that are large enough to encompass an 

reasonable opinions about the potential effects (Witte and Greenland, 1996). The value 

for this variance is ca1culated from a simple algebraic formula that represents with 95% 

certainty (1.96 standard deviations, much like 95% confidence intervals) that the residual 

effects will fan in a Q-fold range for rate ratios: T2=(ln(Q)/3.92i. For the naïve, 

intercept-only approach (mode1ing strategy 7 in Table 6-6), 1 specified a tenfold range, 

which corresponded to a prior variance of T2=(ln(1 0)/3.92i=0.345. 

With the addition of the information on chemical properties and the information on 

previous evidence of carcinogenicity, 1 needed to envision what would be the residual 

effects of the first-Ievel chemicals after having regressed out the 'effects' contained in the 

exchangeability information modeled in the second level. If everything important to 

occupational carcinogenesis was inc1uded in the second level, then the prior variances 

should be set to zero (Witte et al., 1994). On the other hand, with no information in the 

prior, the prior variance would effectively be in finit y, and the maximum likelihood 

71 



estimates (from modeling strategy 6) would result. The "residual effect" is the effect 

theoreticaUy left to the chemical after having accounted for any portion that might be 

attributed to the chemical and physical properties that were specified as second-Ievel 

categories. For the approach with aU the exchangeability information (modeling strategy 

8), requiring in principle that there be less residual effect, 1 specified a sevenfold range 

(variance T2=0.246). 

Not really having any reason to distinguish which effects of the occupational substances 

was more or less "accounted for" by the chemical and physical properties, 1 set aU the 

prior variances to the same value. Table 6-9 presents sorne of the elements in the second

level model for modeling strategy 8. 

Table 6-9: Selected elements of the second level model: Residual effects 

Residual effects 

Chemical T (range) Intercept 

Alumina 0.246 (7) 0 

Silica 0.246 (7) 0.18 

Asbestos 0.246 (7) 0.64 

Diesel exhaust 0.246 (7) 0.1 

Glass fibres 0.246 (7) 0 

Phosgene 0.246 (7) 0 

The estimation 

The final semi-Bayes model can be represented with these two levels: 

Logit R = A + XB + WC, the first level, and 

B=ZP+D, the second level, where Z is the vector of30 second-Ievel covariates (in the 

case of modeling strategy 8) plus 1 intercept, P is the vector of second-Ievel parameters, 

and D is a random variable with mean zero and variance set to accord with the tenfold or 

sevenfold ranges mentioned above. 
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The posterior estimates were attained by averaging the estimated prior mean vector, zp, 

and the vector of maximum likelihood estimates, b, with weights proportional to the 

covariance matrix of the first-level estimates and the specified second-level variance, T2 

(Greenland, 1992). 

Presentation of second-level parameter estimates 

To appreciate the influence ofthe second-level covariates on lung cancer, the parameter 

estimates from the second-level model were also presented. In this context, the estimates 

would indicate the expected effect of the second-level characteristic on the risk oflung 

cancer (Witte et al., 1994). 

6.11 Ranking and selection of chemicals 

Although accurate estimation is a foremost concem, it is often useful to con si der ranking 

of different exposures to prioritize them for further study (Thomas, 1985). In order to 

reduce the 231 occupational substances to a shorter list, chemicals were selected based on 

the evidence from the analyses outlined in Table 6-6. The first step in the selection was to 

rank the chemicals based on the strength of evidence. Simple methods of ranking are 

problematic for several reasons: ranking based on point estimates takes no account of the 

evidence represented by the variance, ranking based on P-values would not accurately 

account for the magnitude of effect, and ranking on a lower confidence limit is arbitrary 

in its choice of alpha level, where different choices lead to different ranking (Thomas et 

al., 1985; Thomas, 1985). The empirical-Bayes estimator, however, allows for a uniform 

approach to this problem (Thomas et al., 1985). A desirable characteristic of the 

empirical Bayes estimator is that it pulls imprecise estimates from the tails of the 

distribution of aIl estimates back toward the centre of the distribution (Thomas, 1985). 

This, in effect, anticipates regression to the mean (Thomas, 1985; Casella, 1985; 

Steenland et al., 2000), in that large imprecise estimates are more likely to be 

overestimates than not. In the re-ordering of estimates, extreme estimates with large 

variance will be shrunk substantially, sometimes even leapfrogging sorne initially weaker 

estimates with smaller variances (Berger, 1983). In theory, this allows for a better 

selection of chemicals with large point estimates. 
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6.11.1 The ranking 

1 ranked the chemicals using results from two ofthe modeling strategies: strategy 8, the 

semi-Bayes approach that assessed 184 chemicals in a single model, using categories of 

exchangeability based on shared chemical and physical properties; and strategy 3, a 

conventional approach that analyzed each of the 231 chemicals in a separate regression 

model, with adjustment for seven currently recognized lung carcinogens. Since more 

chemicals were analyzed in the approach for strategy 3, there was the possibility that 

more and/or different chemicals would be included in the eventual selection. 

1 ranked the chemicals based on the semi-Bayes point estimates of strategy 8, and then 

conducted a separate ranking based on the point estimates of strategy 3. Estimates for any 

level of exposure were ranked separately from estimates for the substantiallevel of 

exposure. This approach provided four separate lists of ranked chemicals. 

6.11.2 The selection 

To create the shorter list of chemicals with the strongest supporting evidence, 1 applied 

the following scheme to each ofthe four ranked lists. Focusing on potential causal (as 

opposed to preventive) substances, only chemicals with a point estimate above 1.0 were 

considered, and the chemicals had to also meet at least one of the following criteria: 

• Chemical was a currently suspected or recognized lung carcinogen, based on 

previous evidence, or 

• Point estimate was statistically significant with P-value ::;;0.1, or 

• Point estimate fell in the upper tail ofthe distribution, regardless ofwhether it was 

statistically significant or not. This was the only criterion that was explicitly 

based on the ranking of the chemicals. Operationally, this entailed selecting all 

chemicals descending the list until 1 reached the smallest estimate that remained 

statistically significant with P-value ::;;0.1. 

The models in strategy 3 did not have the same properties as the model of strategy 8, in 

terms of the latter's shrinking of estimates according to magnitude and precision. Thus, 

when selecting chemicals from the two lists based on strategy 3, the last criterion was not 

applied. 
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6.12 Attributable number of exposed cases 

To provide an alternative to the rate ratio estimates, the number of exposed cases 

attributable to each of the chemical exposures (attributable number, AN) was also 

ca1culated and presented. Taking into account the number of exposed cases in the study 

population, the AN provides a useful public health indicator of the impact of an exposure 

on a population (Rothman and Greenland, 1998). The formula used to ca1culate AN was 

derived according to the formula of Miettinen (1974), 

AN=(RR-l)C RR E' 

where CE is the number of exposed cases at either any level of exposure or substantial 

level of exposure. 

It must be borne in mind that the estimates for the AN were based on both any and 

substantial exposure levels, and that these analyses were carried out independently of 

each other. Therefore, inconsistencies might arise. For instance, even though it is 

entirely possible to empirically observe a higher AN at the substantiallevel of exposure 

than at any level of exposure, since any exposure subsumes substantial exposure, this 

result would be logically impossible. Any apparent contradictory results reflect the 

weighting oftrue exposure levels in the 'any exposure' category and the statistical 

imprecision of the estimates. 

6.13 Secondary analyses on the selected chemicals 

The secondary analyses, for the most part, focussed on adding further evidence for each 

of the chemicals selected by the ranking and selection methods. Sorne ofthese analyses 

were undertaken to add more evidence as to whether or not there was truly a relationship 

with lung cancer. Other results may be used as further information about the 

characteristics of the exposure-Iung cancer relationship. 

6.13.1 Analyses of exposure characteristics 

AlI the analyses listed ab ove used an algorithm that combined exposure characteristics of 

concentration, frequency, certainty, and duration into a cumulative lifetime index. 

Addressing sorne of these characteristics independently could further inform the weight of 
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evidence for each chemical by providing insight into the form of the relationship with 

lung cancer. These analyses were restricted to the chemicals that were earmarked by the 

ranking and selection methods of section 6.11. 

Three sets of analyses were aimed at exploring exposure characteristics. For each 

analysis, a separate regression model was fit for each chemical. For each chemical being 

in tum analyzed, men were deleted from the analysis iftheir exposure had been coded by 

the chemists as low certainty (certainty=l, see section 4.2.5). The operational definitions 

of the variables for these analyses are described in Table 6-10. Analyses inc1uded: 

1. Analyses of concentration and frequency: Two levels of exposure were defined, 

combining the chemists' codes for concentration and frequency. Low to moderate 

levels of exposure, defined by having either characteristic coded as low or 

medium (1 or 2 on the 3-point ordinal scale), were differentiated from high levels 

of exposure, defined by having both characteristics coded as high (3 on 3-point 

ordinal scale). AlI results were adjusted for the eight standard non-occupational 

confounders. 

2. Analyses of duration: Two exposure durations were modeled separately. In the 

analysis of short duration exposures, men exposed for more than 10 years were 

removed from the analysis. In the analysis of long duration exposures, exposed 

men with 10 or less years of exposure were removed. AlI results were adjusted for 

the eight standard non-occupational confounders. 

3. Analyses oftime windows: In separate regression models, cumulative exposure 

within two separate windows oftime were modeled, as illustrated in Figure 6-3. 

In the first regression model, exposed men were restricted to those that were 

exposed in the period 5 to 20 years before diagnosis. The same algorithm 

described in Table 6-2 for combining concentration, frequency, duration, and 

certainty, was used here, but now applied solely within this window oftime. 

These analyses were based on any level of exposure within that window, and did 

not address the substantiallevel of exposure. The five years prior to diagnosis 

was again treated as an inductionllatency period and exposures in this period were 

deleted from the analyses. In the second regression model, exposed men were 
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restricted to those that were exposed in the period 20 or more years prior to 

diagnosis. AlI results were adjusted for the eight standard non-occupational 

confounders. 

Table 6-10: Statistical variables representing characteristics of exposure 

Analysis Exposure characteristic Operational definition of variables 

1 Concentration and Frequency [reference is never-exposed] 

2a 

2b 

3a 

3b 

Duration, 1-10 years 

Duration, 10+ years 

Time window, 5-20 years 
prior to diagnosis 

Time window, 20+ years prior 
to diagnosis 

XI = 1 if either concentration or frequency are low or 
medium (3-point ordinal scale values of 1 or 2); 
XI =0 otherwise 

X2= l if concentration and frequency are both high 
(3-point ordinal scale values above 2); X2=0 
otherwise 

[reference is never-exposed] 

XI = 1 if exposed for 1 to 10 years; XI =0 otherwise. 

[reference is never-exposed] 

XI = 1 if exposed for 10+ years; Xl =0 otherwise. 

[reference is never-exposed] 

XI=1 if exposure occurred in the period 5-20 years 
prior to diagnosis; Xl =0 otherwise. 

[reference is never-exposed] 

XI = 1 if exposure occurred more than 20 years prior 
to diagnosis; Xl=O otherwise. 

Figure 6-3: Illustration oftime windows of exposure 

0( 

Second time window of 
indeterminate length, 

beginning 20 years prior to 
diagnosis 

• 
First time window of 
15 years, beginning 

5 years prior to 
diagnosis 

Diagnosis 

• • 
5-year latent/induction 

period, beginning at 
diagnosis 
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6.13.2 Analyses with histological subtypes of lung cancer 

Limited evidence suggests that sorne lung carcinogens act on particular histological cell 

types and not on others (Churg, 1994). Thus, where numbers permitted, analyses were 

conducted to examine associations between chemicals and histological subtypes of lung 

cancer. 1 carried out three separate sets of analyses. The case series was restricted in tum 

to one ofthe three major forms oflung cancer in the study: small cell, squamous cell, and 

adenocarcinoma. For each histology-specific case series, the chemicals were assessed in 

separate regression models, with adjustment for the standard eight non-occupational 

confounders (modeling strategy 2, see Table 6-6). Analyses were restricted to any level 

of lifetime exposure to a chemical, and did not include an assessment of the substantial 

exposure level. 

6.14 Evaluation of the models 

6.14.1 Comparison of results from different modeling strategies 

One of the objectives of the thesis was to compare the estimates from the semi-Bayes 

models to those from the other modeling strategies, and to further tie the resulting 

estimates to the respective properties of the models. While studies of simulated data 

allow an evaluation ofhow well models perform with respect to true parameter values, 1 

was limited to the existing dataset. Estimates were descriptively compared across the 

different modeling strategies. To summarize how or if the estimates tended to differ, 

various statistics were employed: the mean, median, skew, and kurtosis of the logistic 

beta estimates for the set of parameters, as well as the mean of the estimated standard 

errors. 

Spearman correlations were used to compare the distributions of the ranks of estimates 

from pairs ofmodels. Marginal distributions oflogistic beta estimates and P-values were 

presented. Common criticisms of the P-value metric were not ignored (Goodman, 1993; 

Lang et al., 1998; Goodman, 2001), but 1 nevertheless sought to place the estimates from 

the models within the context of conventional views ofthe strength of evidence: RR<1 

and P-value <0.05 to signify evidence of a preventive effect, and RR> 1 and P-value<0.05 

to signify evidence ofa causal effect. P-values between 0.05 and 0.15, on both sides of 
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the scale, were used to indicate marginal evidence, and P-values ~.15, no matter which 

side of the scale the estimate lay, were used to indicate little or no evidence of an effect. 

To highlight particular issues, two-way cross tabulations and scatter plots ofthe estimates 

were used when comparing pairs of modeling strategies. 

A comparison of the strategies was also based on how many resulting estimates were 

statisticaUy significant with P-values < 0.05 and how these numbers compared with 

expected numbers. Considering the 184 chemicals at any level of exposure and the 146 

chemicals at the substantiallevel of exposure, a simplistic calculation was used to derive 

the number of estimates expected to be elevated merely due to random processes. This 

calculation was based on the assumption of a global nuU hypothesis that aU rate ratios 

equal unit y, asymptotic frequentist principles of95% confidence intervals, and perfect 

validity of aU the mode1s. Based on the assumptions, one would expect, for any exposure 

and substantial exposure, respectively, 0.05*184=9.2 and 0.05*146=7.3 estimates with P

values below 0.05. 

Statistical tests 

Due to the number of chemicals being analyzed, not every estimate for every chemical 

that appeared in the tables of results was further described in the text. Selections of 

results for sorne narration in the text were often based on estimates with P-values =:;;0.1. 

As the main results were based on the control series design using cancer patients, a simple 

statistical test was used to indicate when one of these estimates appreciably differed from 

the estimate using the e1ectorallist control series. For this purpose, 1 defined 

'appreciable' as a one standard deviation difference. The calculation, which was only 

used when presenting results from the mode1 that adjusted each chemical's effect for the 

eight non-occupational confounders (strategy 2, see Table 6-6), was arrived at by: 

(bcancer-belectoral)/ ~ SE ;ancer + SE ;lectoral > 1.0. 

6.14.2 Sensitivity analyses 

A common evaluation of regression modeling is to check for influential data and for lack 

of fit, but the more important concem here is c1early related to sparse data (Greenland, 
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1992). That is, the amount of data seems inadequate for the number of parameters 

involved in my larger models. The semi-Bayes approach has been proposed as a me ans 

of addressing such issues (Greenland, 2000b). 

The results ofmany of the sensitivity analyses described below were presented as scatter 

plots, which aHow a visual representation ofhow the estimates from different modeling 

strategies tended to differ. 

Semi-Bayes models 

1 evaluated how dependent the results were on my preferred analytic choices by changing 

certain assumptions and characteristics of the analyses. The sensitivity analyses inc1uded 

two checks on the semi-Bayes models: different specifications of the prior variance, and 

a different method ofhandling previous evidence oflung carcinogenicity in the second 

level of the model. Results were compared from different models where the prior 

variances, in turn, were set to values representing infinity (the maximum likelihood 

estimate), a tenfold range, a sevenfold range, a twofold range, and zero (corresponding to 

the empirical Bayes model, where the prior variances were estimated instead of 

specified). Previous evidence, in my preferred approach, was represented as a second

leve1 continuous covariate (see step iii, section 6.10). Again, results were compared from 

different approaches, one model where the previous evidence was instead represented by 

a dichotomous covariate (a zero indicating no previous evidence, a one indicating 

previous evidence), and a second model where previous evidence was not inc1uded in the 

model at aH. 

Full model for strategy 6 

There were also several different versions ofwhat constituted the single, large regression 

model (modeling strategy 6, from Table 6-6). While my preferred model inc1uded 184 

chemicals at 'any leve1 of exposure', 1 also analyzed models with different numbers of 

chemicals: a) A model that avoided any pre-selection at an, and inc1uded nearly an 231 

chemicals simultaneously; b) A model inc1uding only 117 chemicals, removing an those 

that 1 had identified as posing conceptual difficulties and even chemicals that 1 retained in 

my preferred model despite minor conceptual issues (see section 6.8); and, c) A model 
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with variables deleted to avoid issues of multiple near-collinearity (Spearman correlations 

greater than 0.7). 

Issues related to possible over-adjustment of estimates 

As suggested ab ove, minor conceptual issues remained in the list of 184 chemicals used 

for the single regression model, strategy 6. To assess the extent of any over-adjustment 

caused by adjusting certain troublesome chemicals for each other, a series ofmodels were 

constructed that focussed on one issue at a time. For example, the point estimate of 

crystalline silica was tracked as other silica-based substances were added to the model 

one at a time. Other issues addressed in a similar fashion were: glass dust and glass 

fibres, natural rubber and styrene-butadiene rubber, whole engine exhausts and individual 

engine emissions, various sources for polycyclic aromatic hydrocarbons, various natural 

gases, general dusts and fumes, and the highly correlated chromium fumes and nickel 

fumes. 

Control series options 

Another evaluation included a comparison of results using three different designs for the 

control series: the cancer series, the electorallist series, and an amalgamation of the two. 

For the amalgamated control series, the 533 men from the electorallist were pooled with 

533 men randomly chosen from the cancer series. Actual point and interval estimates for 

the effects of the chemicals under these three designs are shown in the appendices. 

Respondent status 

The analyses described above involved inclusion of respondent status as a covariate in the 

regression models. As a sensitivity analysis, an alternative strategy would be to restrict 

the analyses to the population of self-responders, which presumably would increase the 

accuracy of interview information. 

Issues related to correlation and confounding 

This section explores how the estimate for a particular chemical changed with the graduaI 

addition of other chemicals, up to the size of the full model strategy of 184 chemicals 

(strategy 6). While focusing on the estimate for a single chemical, the intention was to 

assess whether the addition of so many other variables to the model would produce either 
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obvious or unpredictable patterns. A few chemicals were chosen for illustrative purposes, 

although only those with greater than 100 exposed cases were considered. With the focus 

on one chemical, say asbestos, 183 separate logistic models, each with asbestos and one 

of the 183 other variables, were fit. This allowed a ca1culation of the percentage change 

in the unadjusted estimate for asbestos due to each of the other chemicals. The chemicals 

were then reordered so that the first to be added to the gradually increasing model would 

be the chemical which had caused the greatest percentage change on the unadjusted 

estimate of asbestos, that is, the chemical that appeared to be the strongest confounder of 

the effect of asbestos. The second to be added to the model had caused the second 

greatest percentage change on the unadjusted estimate for asbestos, and so on. AlI 183 

other chemicals were gradually added, allowing me to track the estimate for asbestos 

across all184 iterations of the model. In all cases, the eight standard non-occupational 

confounders were inc1uded. 
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7 Results 

7.1 Response rates 

To be eligible for the Montreal study, patients had to be diagnosed with cancer in the 

pathology departments of the eighteen participating hospitals during the years 1979 to 

1985 (Siemiatycki, 1991). Of the 4576 eligible individuals with cancer identified during 

the accrual period, completed interviews or self-administered questionnaires were 

obtained on 3730 individuals, an average response rate of 81.5%. Of the respondents, 

82% had a face-to-face interview, 10% had a telephone interview, and 8% completed a 

self-administered questionnaire. Proxy respondents, such as spouses, accounted for 20% 

of the completions. 

Table 7-1 lists a selection of the main types of cancer inc1uded in the study, the 

corresponding number of eligible individuals, and their rates of participation. In the main 

analyses, for the reasons listed in section 6.3, cancer sites other than lung were used to 

comprise the control series. Sorne cancers, such as cancer of the testis, contributed little 

to the control series, while others, such as cancer of the colon, would have contributed a 

large portion and so were reduced in number. The last column in the table shows the final 

number of cases of each cancer sub-type in the dataset. 

The final cancer control series was comprised of 2172 individuals. Among these, 57 had 

primary cancers at two sites. 

The second series of men used as the control series in sorne of the analyses were 

randomly drawn from Montreal electorallists and a random digit dialling procedure. Of 

the 740 people contacted in the Montreal study, 533 completed an interview, a 72% 

response rate (Siemiatycki, 1991). 1 refer to these as the electorallist control series. 
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Table 7-1: Response rates for selected types of cancer 

Type of cancer Number Eligible for Response Number of cases used 
Montreal Study Rate (%) in present analyses 

Lung 1082 79.2 857 

Esophagus 129 76.7 99 

Stomach * 318 78.9 215 

Small intestine 37 78.4 22 

Colon * 607 81.9 216 

Recto-Sigmoid * 285 81.8 215 

Rectum 304 84.5 190 

Liver 76 63.2 48 

Gallbladder 42 71.4 30 

Pancreas 164 70.7 116 

Prostate * 557 80.6 214 

Testis 34 76.5 27 

Penis 15 66.7 10 

Bladder * 617 78.4 216 

Kidney 227 78.0 177 

Skin melanoma 124 83.1 121 

N.H. lymphoma 258 83.3 216 

Hodgkin's lymphoma 59 91.5 54 

Myeloma 27 85.2 23 

• Identifies those cancer sites which were restricted to 10% of the size of the control series (see 
section 6.3) 
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7.2 Characteristics of the study population 

Table 7-2 presents the distributions of selected non-occupational characteristics separately 

for the case series, cancer control series, and electorallist control series. Compared to the 

cancer controls, there were more smokers among the case series. Both were similar in 

most other respects; the individuals in the case series, however, appeared to have fewer 

years of education, have less sustained recreational activity in adulthood, and were more 

likely to be of French origin. 

Table 7-2: Distribution of selected characteristics in the study population 

Age 

Ethnicity 

Characteristic 

35-50 

50-55 

55-60 

60-70 

70-75 

French 

Jewish 

Italian 

Other 

1981 Census tract incorne 

< 16k 

16-30k 

30-50k 

50-60k 

60k+ 

Akohol index (drink- years) 

o 
1-40 

40-200 

Case series 
(n=857) 

78 (9%) 

108 (13%) 

191 (22%) 

447 (52%) 

33 (4%) 

592 (69%) 

13 (2%) 

48 (6%) 

204 (23%) 

151 (18%) 

629 (73%) 

70 (8%) 

5 (1%) 

2 (1%) 

311 (36%) 

53 (6%) 

288 (34%) 

Cancer 

Control series 
(n=2172) 

332 (15%) 

276 (13%) 

385 (18%) 

1055 (49%) 

124 (6%) 

1238 (57%) 

106 (5%) 

182 (8%) 

646 (30%) 

265 (12%) 

1514 (70%) 

351 (16%) 

11 (1%) 

31 (2%) 

1038 (48%) 

214 (10%) 

583 (27%) 

Electorallist 

Control series 
(n=533) 

60 (11%) 

67 (12%) 

96 (18%) 

264 (50%) 

46 (9%) 

342 (64%) 

14 (3%) 

37 (7%) 

140 (26%) 

57 (11%) 

407 (76%) 

67 (12%) 

0(0%) 

2 (0%) 

299 (56%) 

55 (10%) 

132 (25%) 
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Cancer Electorallist 
Characteristic 

Case series 
(n=857) Control series Control series 

(n=2172) (n=533) 

200-1200 185 (22%) 316(14%) 46 (9%) 

1200 + 20 (2%) 21 (1%) 1 (0%) 

Education (years) 

0-5 179 (21%) 340 (15%) 78 (15%) 

6-9 391 (46%) 797 (37%) 255 (48%) 

10+ 287 (33%) 1035 (48%) 200 (38%) 

Ever smoked cigarettes 

No 13 (2%) 375 (17%) 105 (20%) 

Yes 844 (98%) 1797 (83%) 428 (80%) 

Cigarette-years 

1-800 155 (18%) 775 (36%) 182 (34%) 

801-1200 222 (26%) 485 (22%) 121 (23%) 

> 1200 467 (54%) 537 (25%) 125 (23%) 

Years since quit smoking 

Still smokinglrecently quit 697 (81 %) 1215 (56%) 363 (68%) 

2-5 22 (2%) 217 (10%) 64 (12%) 

5-10 23 (3%) 103 (5%) 25 (5%) 

10-15 53 (6%) 149 (7%) 41 (8%) 

>15 49 (6%) 113 (5%) 40 (8%) 

Respondent 

Self 605 (71%) 1706 (79%) 466 (87%) 

Proxy 252 (29%) 466 (21%) 67 (13%) 

Recreational activity 

No 604 (70%) 1320 (61%) 287 (54%) 

Yes 253 (30%) 852 (39%) 246 (46%) 
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7.3 Basic results for occupational chemicals 

This section presents results from a number of simple approaches to assessing the effects 

of the occupational chemicals. It should provide sorne understanding of the distributions 

of exposures, the unadjusted estimates, and the estimates adjusted for non-occupational 

confounders only. Later sections will provide an evaluation and comparison of the 

different modeling strategies, and will present estimates from the more complex models. 

Table 7-3 presents the tabulated counts of exposed and unexposed individuals used for the 

present analyses, aHowing the derivation ofunadjusted estimates for each substance. The 

table also shows estimates from modeling strategy 2, which inc1uded adjustment for eight 

non-occupational confounders (see Table 6-3). 

The exposures documented in the study occurred over a wide range of prevalence, from a 

minimum of approximately 0.5% ofthe population, for chemicals such as beryllium 

compounds, to a maximum of63% for exposure to sorne form ofpolycyc1ic aromatic 

hydrocarbons (PARs). The varying precision of confidence intervals in Table 7-3 reflects 

this wide range. The median prevalence was 4.3%, with an inter-quartile range from 

2.3% to 9.5%. 

AH estimates were presented at two exposure levels, any level of cumulative lifetime 

exposure and a substantiallevel of cumulative lifetime exposure. A few exposures are 

missing estimates at the substantiallevel of exposure, reflecting insufficient numbers to 

calculate those estimates. Sorne interval estimates, such as for fluorocarbons (212) at the 

substantial exposure level, appear to have a lower confidence bound of 0; this is merely 

rounding error, though it do es reflect large imprecision. 

Substance labels in italics indicate that that substance was not used in the larger models 

for the conceptual reasons listed in section 6.8 and Table 6-5. Substances with an asterisk 

indicate that the corresponding estimates using the electorallist series as controls differed 

appreciably from the estimates using the cancer series as controls, the latter forming the 

basis of the main results. The criterion 1 used for "appreciable" was a difference between 

the point estimates that exceeded one standard error, using the calculation described in 

section 6.14.1. 
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Section 7.8.3 provides an evaluation ofthe different control series design options, and 

estimates for aIl chemicals using the electorallist series as controls can be found in the 

appendices. 

The results in Table 7-3 reflect which chemicals were associated with a higher risk of 

lung cancer, though not necessarily indicating causality. The models only inc1uded 

adjustment for non-occupational confounders and not for any of the effects of other 

correlated chemicals, thus presumably leading to overestimation. At any and substantial 

levels of exposure, 63 and 38 substances, respectively, had statistically significant 

estimates with P-Value<O.I. The following 25 substances had systematically elevated 

estimates: excavation dust, crystalline silica, Portland cement, metallic dust, borates, 

alumina, aluminium compounds, zinc dust, zinc fumes, zinc compounds, wood dust, 

nitrogen oxides, gas welding fumes, metal oxide fumes, manganese fumes, manganese 

compounds, iron fumes, iron compounds, copper fumes, copper compounds, solvents, 

kerosene, heating oil, mineraI spirits with benzene-toluene-xylene, and alkanes (C5-CI7). 
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Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 a, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Controls RR{90% CL} Cases Controls RR{90% CL} 

1. Abrasives Dust 610 1666 237 487 1.2 (1.0, 1.4) 100 237 1.0 (0.8, 1.3) 

2. Inorg.lnsul.Dust 739 1921 112 228 1.1 (0.9, 1.4) 36 62 1.2 (0.8, 1.8) 

3. Excavation Dust 746 1961 109 198 1.5 (1.2, 1.8) 69 99 1.7 (1.3, 2.3) 

4. Metal/ic Dust 569 1590 276 562 1.3(1.1,1.6) 138 253 1.5 (1.2, 1.8) 

5. Asbestos 657 1795 177 335 1.2 (1.0, 1.4) 34 47 1.7 (1.1, 2.6) 

6. Crystalline Silica 607 1663 238 480 1.3 (1.1, 1.5) 81 130 1.7 (1.3,2.3) 

7. Portland Cement 773 2014 79 141 1.4 (1.0, 1.8) 51 80 1.5 (1.1, 2.2) 

8. Glass Dust * 839 2144 18 24 2.0 (1.1, 3.5) 6 15 0.8 (0.3, 2.0) 

9. Glass Fibres 790 2009 50 130 0.9 (0.7, 1.2) 10 24 0.9 (004, 1.7) 

10. Industrial Talc 795 2042 35 94 0.9 (0.6, 1.2) 8 28 0.8 (004, 1.6) 

Il. Brick Dust * 820 2085 34 81 0.9 (0.6, 1.3) 10 23 1.0 (0.5, 1.9) 

12. Clay Dust * 823 2118 28 43 1.9 (1.2, 3.0) 9 15 1.6 (0.7,3.3) 

13. Concrete Dust * 759 1971 97 192 1.2 (0.9, 1.5) 58 85 1.6 (1.2, 2.2) 

14. Bronze Dust 845 2145 Il 27 1.0 (0.5, 1.9) 4 16 0.8 (0.3, 2.0) 

a Each row corresponds to a separate regression model to estimate the effects ofthat chemical al one, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, alcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as contraIs, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

00 Italics indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
1.0 explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 3
, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Controls RR{90% CL} Cases Con trois RR{90% CL} 

15. Brass Dust 833 2131 24 40 1.6 (1.0, 2.6) 10 15 1.6 (0.8, 3.3) 

16. Stainless Steel Oust 803 2082 51 85 1.6 (1.2, 2.2) 20 36 1.6 (1.0, 2.7) 

17. Mild Steel Dust * 684 1831 169 330 1.3 (1.1, 1.6) 79 169 1.2 (0.9, 1.6) 

18. Inorg.Pigments 760 1979 93 187 1.3 (1.0, 1.6) 21 32 1.6 (0.9, 2.7) 

19. Mineral Wooi Fibres 781 2029 61 121 1.1 (0.8, 1.5) 10 25 0.7 (0.4, 1.4) 

20. Extenders 805 2048 49 122 1.0 (0.7, 1.3) 11 30 0.8 (0.4, 1.5) 

21. Aluminium Allcy Dust * 783 2049 63 115 1.5 (1.1, 2.0) 25 57 1.2 (0.8, 1.9) 

22. Ashes 821 2120 36 51 1.4 (0.9, 2.1) 21 26 1.4 (0.8, 2.3) 

23. Cosmetic Talc 840 2132 13 27 1.3 (0.7, 2.4) 2 13 0.4 (0.1, 1.4) 

24. Borates 843 2150 Il 20 2.0 (1.0,3.9) 4 4 4.7(1.2,17.6) 

25. Sodium Carbonate 841 2138 15 33 1.2 (0.7, 2.1) 

26. Alumina 683 1849 160 299 1.3 (1.1, 1.6) 26 45 1.6 (1.0, 2.5) 

27. Silicon Carbide 797 2040 51 117 1.1 (0.8, 1.5) 10 19 1.2 (0.6, 2.4) 

28. Suif ur 845 2136 9 31 0.7 (0.4, 1.4) 3 6 1.6 (0.4, 5.7) 

a Each row corresponds to a separate regression model to estimate the effects ofthat chemical alone, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, alcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both ofthe estimates, which in this table use the cancer series as controls, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

1.0 ltaUes indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
0 explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 a, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exp os ure 
Cases Controls Cases Controls RR(90% CL} Cases Con trois RR(90% CL} 

29. Calcium Oxide 733 1893 69 144 1.1 (0.8, 104) 25 46 lA (0.9, 2.3) 

30. Calcium Sulphate 749 1959 100 197 1.2 (0.9, 1.5) 58 94 1.4 (1.0, 1.9) 

31. Calcium Carbonate * 807 2025 46 143 1.0 (0.7, 1.3) 14 24 lA (0.8, 2.7) 

32. Titanium Dioxide 816 2089 38 80 1.1 (0.8, 1.6) 6 7 2.0 (0.7, 5.5) 

33. Iron Dust 818 2082 37 87 1.1 (0.7, 1.6) Il 37 0.8 (004, lA) 

34. Iron Oxides 753 1951 101 213 1.1 (0.9, lA) 30 66 0.9 (0.6, lA) 

35. Copper Dust 807 2075 47 92 1.3 (0.9, 1.8) 14 17 2.7 (1.3, 504) 

36. Zinc Dust 829 2122 26 45 1.6 (1.0, 2.6) 5 5 3.7 (1.1, 11.7) 

37. Zinc Oxide 821 2104 34 64 1.2 (0.8, 1.8) 4 6 1.1 (004, 3.6) 

38. Lead Oxides 832 2137 22 34 1.8 (1.1, 2.9) 8 9 2.2 (0.9, 504) 

39. Basic Lead Carb. 827 2126 28 42 lA (0.9, 2.2) 3 4 1.7 (004, 6.9) 

40. Lead Chromate 822 2106 35 62 1.1 (0.8, 1.7) 3 4 1.7(004,7.3) 

41. Organic Dyes & Pig. 783 1986 70 173 1.0 (0.8, 1.3) 14 26 lA (0.7, 2.5) 

42. Cotton Dust * 791 1969 65 202 0.9 (0.7, 1.2) 30 105 0.8 (0.5, 1.2) 

a Each row corresponds to a separate regression model to estimate the effects of that chemical alone, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, aIcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as controls, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

'-D Ita/ies indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 8
, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Controls RR(90% CL) Cases Con trois RR(90% CL) 

43. Wooi Fibres * 815 2026 41 143 0.9 (0.6, 1.3) 22 91 0.7 (0.5, 1.1) 

44. Wood Dust * 620 1705 227 445 1.2(1.0,1.4) 122 218 1.3 (1.0, 1.6) 

45. Grain Dust 787 2008 60 154 0.9 (0.7, 1.2) 26 59 0.9 (0.6, 1.4) 

46. Flour Dust 818 2094 36 74 1.0 (0.7, 1.4) 16 44 0.7(0.4,1.1) 

47. Fur Dust 843 2133 14 38 1.2 (0.7, 2.1) 6 18 0.8 (0.4,2.0) 

48. Hair Dust 848 2147 9 24 0.9 (0.5, 1.9) 5 16 1.0 (0.4, 2.5) 

49. Starch Dust 837 2139 14 26 1.4 (0.8, 2.6) 5 12 1.3 (0.5, 3.5) 

50. Sugar Dust 841 2148 15 21 1.6 (0.9, 3.0) 6 9 1.2 (0.5, 3.3) 

51. Leather Dust 836 2095 21 74 0.7 (0.5, 1.1) 10 32 0.8 (0.4, 1.5) 

52. Tobacco Dust * 848 2156 9 16 1.0 (0.5, 2.1) 3 5 0.8 (0.2, 2.8) 

53. Natural Rubber 810 2075 44 88 1.2 (0.8, 1.7) 3 22 0.3 (0.1, 1.0) 

54. Synthetic Fibres 811 2018 45 148 0.9 (0.7, 1.2) 20 80 0.7 (0.5, 1.2) 

55. Plastic Dust * 810 2036 43 120 0.9 (0.7, 1.3) Il 36 0.9 (0.5, 1.7) 

56. Rayon Fibres 836 2108 20 57 0.9 (0.6, 1.5) 10 22 1.1 (0.6, 2.3) 

a Each row corresponds to a separate regression model to estimate the effects ofthat chemical alone, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, alcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as control s, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

'-0 Italics indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
N explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 8
, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Con troIs RR(90% CL) Cases Controls RR{90% CL} 

57. Acrylic Fibres * 837 2112 18 53 0.8 (0.5, 104) 9 21 1.0 (0.5, 2.0) 

58. Polyester Fibres * 826 2072 31 97 1.0 (0.7, 1.5) 16 59 0.8 (0.5, 1.3) 

59.~ylonFibres 833 2102 23 61 l.l (0.7, 1.7) 10 28 0.8 (004, 1.6) 

60. Acetate Fibres 843 2131 12 38 0.8 (004, 1.5) 3 Il 0.8 (0.2, 204) 

61. Cellulose ~itrate * 836 2106 18 57 0.7 (004, 1.2) 9 27 0.7 (004, lA) 

62. Polyvinyl Chloride * 845 2130 Il 36 0.6 (0.3, 1.2) 3 6 l.l (0.3,3.8) 

63. Polyvinyl Acetate 834 2104 21 64 0.7 (004, 1.0) 

64. Poly-Acrylates 827 2106 29 60 1.3 (0.8, 1.9) 8 14 1.4 (0.6, 3.1) 

65. Alkyds * 815 2082 39 88 1.0 (0.7, 1.5) 8 21 0.9 (004, 2.0) 

66. Epoxies * 844 2144 13 24 1.8 (1.0, 3.5) 6 7 2.5 (0.9, 6.6) 

67. Phenol-Formald. * 806 2087 47 67 1.5 (1.0, 2.1) 5 13 0.8 (0.3, 2.0) 

68. Urea-Formald. * 799 2083 50 79 1.5 (l.l, 2.1) 4 12 0.7 (0.3, 2.0) 

69. Polyurethanes 838 2136 18 30 lA (0.8, 204) 6 10 1.8 (0.7, 4.5) 

70. Styrene-Buta.Rubber 817 2074 38 90 0.9 (0.6, 1.3) 2 19 0.2 (0.1, 0.9) 

--
a Each row corresponds to a separate regression model to estimate the effects ofthat chemical al one, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, alcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as control s, differed statistically from the 
estimates using the electoraIIist series as controls (see appendices for estimates using the eIectoraIlist series). 

'-0 llaUes indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
w explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 a, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Controls RR(90% CL) Cases Controls RR(90% CL) 

71. Polychloroprene 827 2105 30 63 1.1 (0.7, 1.6) 3 5 1.1 (0.3, 4.0) 

72. Fabric Dust * 780 1950 77 219 0.9 (0.7, 1.2) 39 122 0.9 (0.7, 1.3) 

73. Coal Dust * 791 2069 63 101 1.4 (1.0, 1.9) 31 48 1.5 (1.0, 2.4) 

74. Carbon Black 803 2067 52 100 1.3 (0.9, 1.7) 5 16 0.7 (0.3, 1.8) 

75. Cellulose 790 2044 58 117 1.1 (0.8, 1.5) 16 36 1.0 (0.6, 1.8) 

76. Soot 764 2003 91 166 1.2 (0.9, 1.5) 26 35 1.6 (1.0, 2.6) 

77. Rubber Dust 824 2085 31 81 0.9 (0.6, 1.3) 2 17 0.3 (0.1, 1.1) 

78. Graphite Dust 846 2140 8 26 0.7 (0.3, 1.4) 5 0.4 (0.1, 2.7) 

79. Hydrogen * 836 2124 19 46 0.9(0.5,1.4) 3 7 1.2 (0.3, 4.1) 

80. Carbon Monoxide 367 1103 478 1037 1.2 (1.0, 1.4) 108 188 1.3 (1.0, 1.6) 

81. Hydrogen Cyanide * 838 2127 14 36 0.9 (0.5, 1.6) 7 16 0.7 (0.3, 1.6) 

82. Ammonia * 762 1918 86 233 0.9 (0.7, 1.2) 28 90 0.8 (0.5, 1.1) 

83. Nitrogen Oxides * 610 1748 240 414 1.6 (1.3, 1.9) 36 53 1.6 (1.1, 2.4) 

84. Ozone 787 2044 67 121 1.5 (1.1, 2.0) 8 18 1.2 (0.5, 2.5) 

a Each row corresponds to a separate regression model to estimate the effects ofthat chemical alone, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, a1cohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as controls, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

10.0 lta/ies indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
.j:::.. 

explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 a, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Con trois RR(90% CL) Cases Controls RR(90% CL) 

85. Hydrogen Fluoride 813 2120 38 49 2.0 (1.3, 2.9) 4 5 1.3 (0.4, 4.2) 

86. Sulphur Dioxide 702 1837 144 325 1.1 (0.9, 1.3) 10 25 0.9 (0.4, 1.7) 

87. Hydrogen Sulphide 816 2070 37 98 1.0 (0.7, 1.5) 8 19 0.8 (0.4, 1.6) 

88. Chlorine 839 2115 15 57 0.5 (0.3, 0.9) 10 22 0.8 (0.4, 1.6) 

89. Hydrogen Chloride 776 1981 59 149 1.0 (0.8, 1.3) 26 60 1.1 (0.7, 1.6) 

90. Natural Gas 826 2116 24 54 1.0 (0.6, 1.5) 8 5 3.2 (1.2, 8.6) 

91. Methane 809 2073 41 96 1.0 (0.7, 1.4) 13 13 2.8 (1.3, 5.7) 

92. Propane * 811 2084 39 76 1.2 (0.9, 1.8) 2 7 0.8 (0.2, 3.4) 

93. Fonnaldehyde 674 1680 125 308 0.9 (0.7, 1.1) 23 66 0.8 (0.5, 1.3) 

94. Acetylene 808 2083 47 83 1.6 (1.1, 2.2) 5 0.4 (0.1, 3.0) 

95. Phosgene * 843 2136 Il 33 0.8 (0.4, 1.4) 

96. Spray Gases 841 2128 15 40 1.0 (0.6, 1.7) 3 16 0.5 (0.2, 1.5) 

97. Coal Gas 847 2147 8 24 0.6 (0.3, 1.2) 2 3 1.5 (0.3, 7.4) 

98. Gas Welding Fumes * 733 1939 115 211 1.5 (1.2, 1.8) 50 85 1.5 (1.1, 2.2) 

a Each row corresponds to a separate regression model to estimate the effects of that chemical alone, with adjustment only for the non-
occupational confounders: age, incorne, ethnicity, cigarette use, alcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as control s, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

1.0 ltalies indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
VI explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 a, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Con trois RR(90% CL} Cases Controls RR(90% CL} 

99. Arc Welding Fumes 747 1932 107 224 1.2 (0.9, 1.5) 44 72 1.5 (Ll, 2.2) 

100. Soldering Fumes 794 2023 55 137 1.1 (0.8, 1.5) 31 64 1.3 (0.9, 2.0) 

101. Metal Oxide Fumes * 660 1767 190 388 1.3 (Ll, 1.5) 87 142 1.6 (1.3, 2.1) 

102. Aluminium Fumes 832 2128 23 42 1.4 (0.9, 2.3) 8 15 1.1 (0.5, 2.5) 

103. Calcium Oxide Fumes 790 2036 66 131 1.3 (1.0, 1.8) 27 47 1.4 (0.9, 2.2) 

104. Chromium Fumes 808 2112 43 53 2.2 (1.5, 3.3) 8 12 2.1 (0.9, 4.8) 

105. Manganese Fumes * 794 2071 60 97 1.6 (1.2, 2.2) 14 15 3.4 (1.6, 7.0) 

106. Iron Fumes 759 1990 94 172 1.4 (1.1, 1.8) 52 80 1.7 (1.2, 2.3) 

107. Nickel Fumes 809 2110 42 55 2.1 (l.4, 3.1) 8 12 2.1 (0.9, 4.8) 

108. Copper Fumes 808 2108 47 59 2.2 (1.5,3.1) 16 19 2.3 (1.2,4.2) 

109. Zinc Fumes 814 2104 39 62 1.6(1.1,2.3) 16 18 3.0 (1.6, 5.8) 

110. Silver Fumes 841 2141 15 30 1.4 (0.8, 2.4) 7 14 1.6 (0.7, 3.6) 

111. Tin Fumes 804 2086 49 82 1.6 (1.1, 2.2) 10 19 1.2 (0.6, 2.5) 

112. Lead Fumes 813 2086 41 78 1.4 (1.0, 2.0) 7 20 0.9 (0.4, 1.9) 

a Each row corresponds to a separate regression model to estimate the effects of that chemical alone, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, aIcohol use, respondent status, years of education, and recreationa1 activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as controls, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

1.0 ltalics indicate the particular chemical will not appear in further tables of resuIts for more complex regression models (see table 6-5 for 
0"\ explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 ft, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Controls RR(90% CL} Cases Con trois RR(90% CL) 

1l3. Other Pyrolysis Fumes 680 1820 171 339 1.3 (l.l, 1.6) 75 148 1.2 (0.9, 1.5) 

114. Cooking Fumes * 798 2032 57 135 0.8 (0.6, l.l) 29 69 0.9 (0.6, 1.3) 

115. Gas Eng.Emissions 465 1266 379 879 0.9 (0.8, l.l) 292 635 1.0 (0.8, 1.1) 

116. Coal Comb.Products 803 2084 51 84 1.4 (1.0, 2.0) 19 36 l.l (0.7, 1.9) 

117. Diesel Eng.Emissions * 675 1835 165 295 1.2 (1.0, 1.5) 81 144 1.3 (1.0, 1.7) 

118. Liquid Fuel Comb.Prod. 783 2039 71 131 1.2 (0.9, 1.6) 27 63 1.0 (0.6, 1.5) 

119. Wood Comb.Products 814 2072 40 88 1.0 (0.7, 1.4) 17 31 l.l (0.7,2.0) 

120. Natural Gas Comb.Prod. 827 2098 23 71 0.7 (0.5, l.l) 6 16 0.9 (0.4, 2.1) 

121. Jet Fuel Eng.Emiss. 854 2147 3 22 0.4 (0.2, 1.3) 

122. Propane Eng.Emiss. * 823 2128 28 41 1.7 (1.1, 2.6) 15 28 1.2 (0.7, 2.1) 

123. Plastics Pyrol.Prod. 837 2096 17 72 0.6 (0.4, 0.9) 11 37 0.6 (0.3, l.l) 

124. Rubber Pyrol.Prod. 837 2120 20 50 0.9 (0.6, 1.5) 9 23 0.8 (0.4, 1.6) 

125. Propane Comb.Prod. * 821 2096 30 64 l.l (0.7, 1.6) 13 17 1. 7 (0.9, 3.3) 

126. Inorg.Acid Solutions 713 1859 129 264 1.2 (1.0, 1.5) 34 86 1.0 (0.7, 1.5) 

a Each row corresponds to a separate regression model to estimate the effects ofthat chemical alone, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, alcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both ofthe estimates, which in this table use the cancer series as controls, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

'D lta/ics indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
-...l explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 a, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Controls RR(90% CL} Cases Controls RR(90% CL} 

127. Alkali, Caustic Solutions 773 2019 72 141 1.3 (1.0, 1. 7) 23 41 1.6 (1.0, 2.6) 

128. Javel Water 808 2043 44 118 0.7 (0.5, 1.0) 30 64 0.9 (0.6, 1.3) 

129. Plating Solutions 846 2148 10 22 1.1 (0.5, 2.2) 4 8 1.3 (0.4, 3.9) 

130. Nitric Acid * 845 2138 9 31 0.8 (0.4, 1.6) 3 15 0.5 (0.2, 1.5) 

131. Phosphoric Acid 841 2137 14 26 1.7 (0.9, 3.1) 2 7 0.8 (0.2, 3.6) 

132. Sulphuric Acid * 719 1841 90 206 1.0 (0.8, 1.3) 13 38 0.8 (0.5, 1.5) 

133. Methanol * 809 2062 44 103 1.0 (0.7, 1.3) 16 31 1.4 (0.8, 2.5) 

134. Ethanol * 842 2136 15 32 1.4 (0.8, 2.5) 2 7 1.1 (0.3, 4.7) 

135. Ethylene Glycol 816 2080 38 86 0.9 (0.6, 1.2) 

136. Isopropanol 814 2086 40 83 1.1 (0.8, 1.6) 15 30 1.3 (0.7,2.3) 

137. Acetic Acid 828 2086 28 82 0.9 (0.6, 1.4) 8 25 1.2 (0.6, 2.4) 

138. Carbon Tetrachloride 809 2060 36 96 1.0 (0.7, 1.4) 19 35 1.6 (0.9, 2.6) 

139. Methylene Chloride 839 2121 17 46 0.9 (0.6, 1.6) 8 16 2.0 (0.9, 4.6) 

140.1,1,1.-Trichlorethane 835 2137 16 24 1.8 (1.0, 3.3) 9 16 1.9 (0.8, 4.2) 

a Each row corresponds to a separate regression model to estimate the effects of that chemical alone, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, a1cohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as controls, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

\0 lla/ies indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
00 explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 3
, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Controls RR(90% CL} Cases Controls RR(90% CL} 

141. Trichloroethylene 825 2100 25 60 1.3 (0.8, 2.0) 9 31 0.8 (0.4, 1.5) 

142. Perchloroethylene * 843 2138 Il 29 1.1 (0.6, 2.1) 6 19 1.0 (0.4, 2.2) 

143. Acetone 829 2110 20 51 1.0 (0.6, 1.7) 11 22 1.2 (0.6, 2.4) 

144. Benzene 683 1779 162 367 1.0 (0.8, 1.2) 36 93 0.9 (0.6, 1.3) 

145. Toluene 728 1852 120 302 0.9 (0.8, 1.2) 32 99 0.8 (0.5, 1.1) 

146. Xylene 748 1905 96 244 0.9 (0.8, 1.2) 13 32 1.1 (0.6, 2.1) 

147. Styrene 847 2122 10 44 0.5 (0.3, 0.9) 6 28 0.4 (0.2, 0.9) 

148. Phenol 842 2134 Il 30 0.8 (0.4, 1.6) 

149. Animal & Vege.Glues * 822 2086 34 79 1.0 (0.7, 1.4) 13 29 0.8 (0.5, 1.5) 

150. Turpentine 795 2054 58 112 1.2 (0.9, 1.6) 33 59 1.3 (0.9, 1.9) 

151. Linseed Oil 799 2074 53 91 1.3 (1.0, 1.8) 6 9 1.3 (0.5, 3.3) 

152. Synthetic Adhesives * 718 1826 133 313 1.0 (0.8, 1.2) 59 165 0.8 (0.6, 1.1) 

153. Solvents 470 1326 375 809 1.2(1.0,1.4) 227 487 1.2 (1.0, 1.5) 

154. Waxes, Polishes * 795 2038 56 121 0.9 (0.7, 1.3) 18 37 0.8 (0.5, 1.4) 

a Each row corresponds to a separate regression model to estimate the effects ofthat chemical alone, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, alcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as controls, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

\0 Italics indicate the particular chemical will not appear in further tables of results for more complex regression models (see table 6-5 for 
\0 explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 a, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Controls RR(90% CL} Cases Controls RR(90% CL) 

155. Leaded Gasoline 733 1924 122 237 1.1 (0.9, 1.4) 50 104 1.1 (0.8, 1.5) 

156. Kerosene * 784 2067 69 94 1.6 (1.2, 2.2) 26 21 2.7 (1.6, 4.5) 

157. Diesel Oil 810 2090 45 78 1.4 (1.0, 1.9) 18 32 1.6 (0.9, 2.7) 

158. Heating Oil 802 2091 53 79 1.4 (1.0, 2.0) 24 24 2.2 (1.3, 3.7) 

159. Mineral Spirits * 741 1921 110 240 1.2 (1.0, 1.5) 64 134 1.3 (1.0, 1.8) 

160. Lubric.Oils & Greases * 554 1519 291 626 1.2(1.0,1.4) 84 155 1.3 (1.0, 1.7) 

161. Cutting Fluids * 769 1994 85 166 1.3 (1.0, 1.7) 33 69 1.2 (0.8, 1.8) 

162. Asphalt * 824 2101 30 63 0.9 (0.6, 1.3) 13 22 1.1 (0.6,2.1) 

163. Coal Tar and Pitch 830 2125 23 41 1.0 (0.7, 1.7) 12 16 1.3 (0.7, 2.6) 

164. Creosote 847 2137 5 26 0.7 (0.3, 1.7) 2 9 0.8 (0.2, 3.3) 

165. Hydraulic Fluid * 818 2086 37 81 1.0 (0.7, 1.4) 4 8 1.3 (0.4, 3.8) 

166. Other Mineral Oils * 818 2086 32 78 1.0 (0.7, 1.4) 5 14 0.8 (0.3, 2.0) 

167. Jet Fuel 851 2143 6 26 0.6 (0.3, 1.4) 4 18 0.6 (0.2, 1.6) 

168. Aviation Gasoline 851 2143 6 28 0.6 (0.3, 1.2) 4 19 0.6 (0.2, 1.5) 

a Each row corresponds to a separate regression model to estimate the effects ofthat chemical alone, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, alcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as contrais, differed statistically fram the 
estimates using the electorallist series as contrais (see appendices for estimates using the electorallist series). 

0 fla/ies indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
0 explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 8
, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Controls RR(90% CL} Cases Con trois RR(90% CL} 

169. Mineral Spirits + BTX 687 1845 158 314 1.3 (1.0, 1.5) 100 196 1.3 (1.0, 1.6) 

170. Cutting Fluids pre 1955 791 2042 65 127 1.3 (1.0, 1.7) 21 41 1.4 (0.9, 2.3) 

17l. Cutting Fluids post 1955 * 793 2058 62 102 1.7 (1.2, 2.3) 25 46 1.5 (0.9, 2.3) 

172. Other Paints, Varnishes 729 1879 124 277 1.1 (0.9, 1.4) 57 111 1.2 (0.9, 1.6) 

173. Wood Vamishes, Stains 797 2060 56 104 1.2(0.9,1.7) 32 58 1.4 (0.9, 2.0) 

174. Inks * 817 2100 37 69 1.5 (1.0, 2.2) 17 40 1.1 (0.7, 1.9) 

175. Metal Coatings * 780 2010 74 147 1.2 (0.9, 1.6) 30 62 1.2 (0.8, 1.8) 

176. Cyanides * 834 2118 17 43 1.0 (0.6, 1.7) 9 19 0.8 (0.4, 1.7) 

177. Fluorides 809 2109 42 60 1.8 (1.3, 2.7) 6 10 1.4 (0.5, 3.6) 

178. Chromium (VI) Comp. * 758 1980 90 163 1.4 (1.1, 1.8) 12 26 1.5 (0.8, 2.9) 

179. Hypochlorites * 806 2036 45 124 0.7 (0.5, 1.0) 30 66 0.9 (0.6, 1.3) 

180. Nitrates 848 2137 8 23 0.9 (0.4, 1.9) 2 7 0.6 (0.2, 2.4) 

181. Beryllium Compounds 851 2161 5 9 1.1 (0.4, 3.0) 

182. Magnesium Compounds 837 2137 19 29 1.9 (1.1, 3.4) 6 Il 2.2 (0.9, 5.8) 

a Each row corresponds to a separate regression model to estimate the effects ofthat chemical alone, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, alcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as control s, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

0 fla/ics indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
expl anati on). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 a, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Controls RR(90% CL} Cases Controls RR(90% CL) 

183. Aluminium Compounds * 635 1767 199 370 1.4 (1.2, 1.7) 51 96 1.6 (l.l, 2.2) 

184. Titanium Compounds 808 2068 44 96 1.1 (0.8, 1.6) 7 12 1.4 (0.6, 3.4) 

185. Vanadium Compounds 841 2150 16 22 1.5 (0.8, 2.8) 

186. Chromium Compounds * 716 1901 130 242 1.4 (l.l, 1.8) 15 33 1.4 (0.8, 2.6) 

187. Manganese Compounds 784 2049 71 120 1.5 (l.l, 2.0) 14 16 3.0 (1.5, 6.1) 

188. Iron Compounds * 604 1651 248 505 1.2 (1.0, 1.5) 122 228 1.4 (l.l, 1. 7) 

189. Cobalt Compounds * 833 2129 20 40 1.4 (0.9, 2.3) 4 14 0.8 (0.3, 2.1) 

190. Nickel Compounds 770 2029 79 133 1.7 (1.3, 2.2) 12 22 1. 7 (0.9, 3.3) 

191. Copper Compounds * 725 1917 128 241 1.3 (1.1, 1.6) 55 101 1.6 (l.l, 2.1) 

192. Zinc Compounds 743 1957 107 200 1.4 (l.l, 1.7) 25 30 2.4 (l.5, 3.9) 

193. Arsenic Compounds * 816 2087 31 74 0.8 (0.6, 1.2) Il 25 0.9 (0.5, 1.8) 

194. Silver Compounds * 829 2112 24 58 1.2 (0.8, 1.9) 10 21 1. 7 (0.9, 3.5) 

195. Cadmium Compounds 845 2151 11 18 1. 7 (0.9, 3.5) 4 7 1.6 (0.5, 4.8) 

196. Tin Compounds * 758 1984 92 177 1.4 (l.l, 1.8) 14 28 1.3 (0.7, 2.3) 

a Each row corresponds to a separate regression model to estimate the effects ofthat chemical al one, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, a1cohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as control s, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). - ltaUes indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 0 

N explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 a, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Controls RR(90% CL) Cases Controls RR(90% CL) 

197. Antimony Compounds * 831 2127 19 39 1.3 (0.8, 2.2) 4 10 1.1 (0.4,3.2) 

198. Tungsten Compounds * 846 2141 Il 30 1.4 (0.7, 2.6) 5 15 1.0 (0.4, 2.4) 

199. Gold Compounds 842 2148 12 20 2.0 (1.0,4.0) 4 7 2.6 (0.8, 8.4) 

200. Mercury Compounds 836 2122 17 35 1.3 (0.7, 2.2) 

201. Lead Compounds 406 1153 434 979 1.0 (0.9, 1.2) 55 99 1.1 (0.8, 1.6) 

202. Alkanes (CI8+) 518 1439 320 697 1.2 (1.0, 1.4) 101 185 1.3 (1.0, 1.7) 

203. Alkanes (CI-C4) * 767 1978 82 188 1.1 (0.8, 1.4) 15 23 1.8 (1.0, 3.3) 

204. Alkanes (C5-C 17) 479 1429 368 717 1.4 (1.2, 1. 7) 207 376 1.5 (1.3, 1.8) 

205. Aliphatic Alcohols 768 1969 83 191 1.0 (0.8, 1.3) 34 75 1.1 (0.8, 1.6) 

206. Aliphatic Aldehydes 643 1586 146 378 0.8 (0.7, 1.0) 28 83 0.8 (0.5, 1.2) 

207. Chlorinated Alkanes * 751 1908 93 210 1.1 (0.9, 1.4) 41 83 1.5 (1.0, 2.1) 

208. Unsat.Aliph.Hydrocarb. 800 2060 54 105 1.5 (1.1, 2.0) 6 0.3 (0.0, 2.1) 

209. Chlorinated Alkenes 793 2018 42 103 1.2 (0.8, 1.7) 15 46 1.0 (0.6, 1.6) 

210. Aliphatic Esters 826 2093 29 70 1.1 (0.7, 1.6) 16 35 1.3 (0.7, 2.2) 

a Each raw corresponds to a separate regression model to estimate the effects ofthat chemical alone, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, alcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as contraIs, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

0 Italics indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
w 

explanation). 



Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 a, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Controls RR(90% CL} Cases Con trois RR(90% CL) 

211. Aliphatic Ketones 795 2006 47 134 0.8 (0.6, 1.1) 22 63 0.8 (0.5, 1.3) 

212. Fluorocarbons 839 2114 16 56 0.6 (0.4, 1.1) 18 0.2 (0.0, 1.1) 

213. Glycol Ethers 827 2115 26 50 1.1 (0.7, 1.7) 8 6 3.7 (l.4, 9.9) 

214. PAR (Any) * 230 749 581 1327 1.1 (1.0, 1.4) 80 130 1.4 (1.0, 1.8) 

215. PAH (Other) 662 1755 187 402 1.2(1.0,1.4) 80 182 1.0 (0.8, 1.3) 

216. PAH (Wood) 814 2072 40 88 1.0 (0.7, 1.4) 17 31 1.1 (0.7,2.0) 

217. PAH (Petroleum) * 269 851 561 1275 1.1 (1.0, 1.3) 393 828 1.2(1.0,1.4) 

218. PAH (Coal) 766 2013 84 146 1.4 (1.0, 1.8) 35 62 1.2 (0.8, 1.8) 

219. Benzo(a)pyrene 622 1703 220 421 1.2 (1.0, 1.4) 42 71 1.3 (0.9, 1.8) 

220.MAH 513 1423 331 710 1.2 (1.0, 1.4) 97 203 1.2 (0.9, 1.5) 

221. Aromatic Alcohols * 809 2039 21 69 0.9(0.6,1.4) 2 23 0.3 (0.1, 1.0) 

222. Aromatic Amines * 798 2006 55 147 0.9 (0.7, 1.2) 3 20 0.4 (0.1,1.2) 

223. Phthalates 836 2101 15 56 0.5 (0.3, 0.9) 4 8 1.2 (0.4, 3.8) 

224. Isocyanates 840 2136 16 33 1.0 (0.6, 1.7) 2 5 0.9 (0.2, 4.0) 

a Each row corresponds to a separate regression model to estimate the effects of that chemical al one, with adjustment only for the non-
occupational confounders: age, income, ethnicity, cigarette use, alcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as control s, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 

0 Ita/ics indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
+>- explanation). 
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Table 7-3: Exposure frequencies and rate ratio estimates, from strategy 2 8
, for 231 chemicals, at two levels of exposure 

Unexposed Any exposure Substantial exposure 
Cases Controls Cases Con trois RR(90% CL} Cases Con trois RR(90% CL} 

225. Cleaning Agents * 695 1811 154 335 1.0 (0.8, 1.2) 89 208 0.9 (0.7, 1.1) 

226. Pharmaceuticals 843 2135 13 36 1.2 (0.7, 2.2) 2 17 0.4 (0.1, 1.6) 

227. Laboratory Products * 849 2146 7 26 1.1 (0.5, 2.2) 5 17 1.3 (0.5, 3.3) 

228. Fertilizers 797 2052 57 112 1.2 (0.9, 1.6) 24 54 0.9 (0.6, 1.4) 

229. Pesticides 791 2039 54 116 1.0 (0.7, 1.3) 20 48 0.8 (0.5, 1.3) 

230. Biocides 763 1933 78 211 0.8 (0.6, 1.0) 35 80 1.0 (0.7, 1.4) 

231. Bleaches 849 2143 6 28 0.5 (0.2, 1.1) 3 10 0.7 (0.2, 2.3) 

a Each row corresponds to a separate regression model to estimate the effects ofthat chemical alone, with adjustment only for the non
occupational confounders: age, income, ethnicity, cigarette use, alcohol use, respondent status, years of education, and recreational activity. 
* An asterisk indicates that one or both of the estimates, which in this table use the cancer series as control s, differed statistically from the 
estimates using the electorallist series as controls (see appendices for estimates using the electorallist series). 
Ita/ics indicate the particular chemical will not appear in further tables ofresults for more complex regression models (see table 6-5 for 
explanation). 



7.4 Comparison of estimates from different modeling strategies 

One objective of the thesis was to compare the results of the semi-Bayes models to the 

results ofthe more conventional modeling approaches. Given the very large number of 

chemicals that were analyzed, it was necessary to summarize and synthesize the results 

for the purpose ofinter-strategy comparisons. This section shows the distributions of the 

ensemble ofbeta estimates as weIl as cross-tabulated comparisons ofresults for a few 

informative pairings of models. 

7.4.1 Distribution of estimates obtained from the modeling strategies 

Table 7-4 provides the characteristics for the estimates ofbeta (log RR) for the ensemble 

of 184 parameters in the models for any level of exposure and of 146 parameters in the 

models of the substantiallevel of exposure. Although aIl 231 parameters were estimated 

in strategies 1,2, and 3 (see Table 6-6), for comparison purposes, only the 184 or 146 

parameters found in the other strategies were used for this table. 

The location of the distribution of estimates (the mean and median of the regression 

coefficients) indicates that strategies 1 and 2 resulted in beta estimates that tended to be 

generally higher than estimates from the other strategies. The estimates from strategy 3, 

which adjusted for seven currently suspected lung carcinogens, were centered closer to 

zero. This shift partly suggests that strategies 1 and 2 likely overestimated several effects, 

and that this could be due to uncontrolled confounding from other occupational 

chemicals. Most of the distributions of estimates obtained from the higher numbered 

strategies were centered close to zero, which is what would be expected if many (or most) 

ofthe chemicals being assessed were not causally related to lung cancer. 

Strategy 4 used a separate regression model for each chemical, with the data-dependent 

selection of other chemicals as confounders. For any level of exposure, the number of 

other chemicals included as confounders ranged from 46 to 57 with an average of 53. At 

the substantiallevel of exposure, the numbers ranged from 24 to 36 with an average of 31. 

In modeling strategy 5, using an automatic forward selection strategy, the beta estimates 

and their standard errors were assumed to equal zero for those chemicals which did not 

satisfy the entry criterion (P-value ~.25). With this strategy, at any level of exposure, 

106 



55 of 184 chemicals remained in the model, and at the substantiallevel of exposure, 31 of 

146 chemicals remained in the mode!. The low average standard error and very high 

kurtosis in Table 7-4 reflect the large number of zeroes that correspond to estimates for 

chemicals not entered in the mode!. 

Table 7-4: Characteristics of the distributions of the ensemble ofbeta estimates for several 
approaches to modeling the occupational chemicals 

Anylevelofexposure Model strategy a 

_(K=184) 
1 2 3 4 5 6 7 8 

Mean beta 0.14 0.11 0.01 0.01 0.01 -0.02 0.00 0.01 
Median beta 0.20 0.12 0.02 0.05 0.00 0.00 0.01 0.01 
Standard deviation of betas 0.29 0.30 0.30 0.44 0.37 0.53 0.25 0.24 
Average of estimated standard errors 0.23 0.25 0.26 0.33 0.10 0.43 0.31 0.30 
Skewness of betas -0.83 -0.39 -0.51 -0.56 -0.71 -0.01 0.12 0.19 
Kurtosis of betas 1.36 0.46 0.57 2.26 7.05 2.50 0.38 0.32 
Lowest RR estimate b 0.36 0.44 0.39 0.14 0.14 0.13 0.52 0.50 
Highest RR estimate 2.04 2.24 1.96 3.76 3.67 7.53 2.34 2.10 

Substantiallevel of exposure Model strategy a 

(K=146)_ 
1 2 3 4 5 6 7 8 

Mean beta 0.21 0.17 0.07 0.03 0.03 0.03 0.04 0.05 
Median beta 0.20 0.16 0.05 -0.01 0.00 0.06 0.04 0.02 
Standard deviation of betas 0.37 0.39 0.39 0.50 0.32 0.64 0.23 0.27 
Average of estimated standard errors 0.36 0.39 0.40 0.45 0.10 0.61 0.38 0.38 
Skewness of betas 0.14 0.54 0.61 -0.08 -0.07 -0.09 0.09 0.32 
Kurtosis of betas 0.27 0.34 0.58 0.17 7.07 0.58 -0.65 -0.06 
Lowest RR estimate b 0.45 0.49 0.44 0.25 0.25 0.18 0.63 0.55 
Highest RR estimate 3.44 3.71 3.47 3.60 3.60 5.62 1.76 2.21 

a Strategies 2-8 include adjustment for eight non-occupational confounders (see text). Each 
chemical assessed in a separate regression model: (1) age-adjusted only, (2) adjustment only for 
non-occupational confounders, (3) adjustment for seven currently suspected lung carcinogens, (4) 
automatic forward selection of other chemicals as confounders using P<0.25. An chemicals 
assessed in a single large regression model: (5) automatic forward selection ofwhich chemicals 
to include using P<O.25, (6) an chemicals included, (7) semi-Bayes shrinkage of estimates from 
strategy 6 using a common prior, (8) semi-Bayes shrinkage of estimates from strategy 6 using sets 
of exchangeability. b RR is rate ratio, the exponentiated beta. 

As more parameters were added to the models, the standard errors of the betas predictably 

increased. However, the shrinkage from the semi-Bayes models meant that even with 

hundreds of parameters being estimated, strategies 7 and 8 resulted in standard errors that 

were on average similar to or lower than those from the simpler strategies. 
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To assess how similar was the ranking of the point estimates from different modeling 

strategies, Table 7 -5 shows non-parametric rank correlation coefficients for the ensemble 

of estimates with each pairing of models. The Spearman correlation coefficient measures 

the correlation of the ranks of the estimates produced by the two models being compared. 

The results of Table 7-5 suggest that adding the non-occupational confounders to the 

model (strategy 2) and adding the seven suspected carcinogens to the model (strategy 3) 

both had sorne influence on the parameter estimates for the occupational chemicals, but it 

was the mutual adjustment for many occupational chemicals (strategies 4 through 8) that 

changed the ranking ofthe estimates appreciably. The estimates from strategy 7 remained 

highly correlated with the estimates of strategy 6, likely because the semi-Bayes 

shrinkage did not change the relative magnitude oftoo many of the estimates. Estimates 

from modeling strategy 5 tended to have the lowest correlation with estimates from other 

strategies. This undoubtedly was due to the point estimates for many chemicals being set 

to a value of zero. 
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Table 7-5: Spearman correlation coefficients among the logistic beta estimates from several 
modeling strategies 

Any level of Modeling strategy a 

exposure 

(K=J84) 
2 3 4 5 6 7 8 

1 0.89 0.81 0.54 0.47 0.50 0.60 0.58 

2 1.00 0.95 0.58 0.50 0.55 0.66 0.64 

3 1.00 0.63 0.51 0.61 0.72 0.69 

4 1.00 0.68 0.84 0.90 0.88 

5 1.00 0.60 0.67 0.66 

6 1.00 0.95 0.94 

7 1.00 0.98 

Substantial Modeling strategy a 

levelof 
exposure 

2 3 4 5 6 7 8 
(K=146) 

1 0.89 0.82 0.63 0.40 0.53 0.59 0.53 

2 1.00 0.94 0.71 0.46 0.60 0.66 0.64 

3 1.00 0.79 0.48 0.65 0.73 0.70 

4 1.00 0.56 0.81 0.86 0.84 

5 1.00 0.46 0.52 0.48 

6 1.00 0.94 0.84 

7 1.00 0.93 

a Strategies 2-8 include adjustment for eight non-occupational confounders (see text). Each 
chemical assessed in a separate regression model: (1) age-adjusted only, (2) adjustment only for 
non-occupational confounders, (3) adjustment for seven currently suspected lung carcinogens, (4) 
automatic forward selection of other chemicals as confounders using P<O.25. An chemicals 
assessed in a single large regression model: (5) automatic forward selection ofwhich chemicals 
to include using P<0.25, (6) an chemicals included, (7) semi-Bayes shrinkage of estimates from 
strategy 6 using a common prior, (8) semi-Bayes shrinkage of estimates from strategy 6 using sets 
of exchangeability. 
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7.4.2 Further comparisons of the distributions of parameter estimates from 
different modeling approaches 

An alternative representation of the behaviour of the different models would classify their 

estimates into broad categories ofP-values, representing common views of evidence and 

statistical significance. Table 7-6 summarizes the distributions ofthe chemical-specific 

point estimates, using categories of direction of effect and ofP-values. Each row displays 

the counts of estimates that faH on either side of unit y, with further divisions by levels of 

P-values, using 0.05 to 0.15 to indicate a 'grey zone' of marginal statistical non

significance. Estimates with P-value ~ 0.15 were considered definitely non-significant 

and were grouped together regardless ofwhich side of unit y they feH, because their 

departures from 1.0 were believed to reflect mostly sampling error. 

In Table 7-6, strategies 1 and 2, and to a lesser extent, strategies 3 to 5, had far more 

elevated or statisticaHy significant estimates than the strategies based on the single model 

approach that used all variables. Few elevated estimates were observed in the results of 

the semi-Bayes models. This was as expected. Shrinkage estimators should reduce the 

number of imprecise estimates that are likely spuriously large. Strategy 6, however, did 

not employa Bayesian methodology, and alternative reasons for fewer elevated estimates 

are necessary. Sorne possible explanations might be that the simpler models did not 

account for the full extent of mutual confounding among the chemicals, and as such had 

inappropriately elevated estimates; or, alternatively, that the large model for strategy 6 

involved 'over-adjustment' for the effects of several chemicals, for example if all the 

substances composed largely of silica had their estimates attenuated due to the inclusion 

of silica in the model. At any level of exposure, the addition of the seven suspected 

carcinogens in strategy 3 seemed to eliminate many of the elevated estimates from 

strategy 2, supporting the view of unaccounted confounding from, at the very least, the 

seven suspected carcinogens. That strategy 4 did not behave this way might be explained 

by the eriterion used for eonfounder inclusion, namely a significant P-value, which would 

tend to only include chemicals associated with lung cancer irrespective of their roles as 

confounders. One noteworthy aspect of the results of strategy 4 is that while 

benzo(a)pyrene was occasionally selected for inclusion in the models, the rest of the 

seven suspected carcinogens of strategy 3 were not. 

110 



Table 7-6: Distributions of estimates from the different modeling strategies, according to 
direction of effect and P-value 

Any level of 
RR<1.0 RR<1.0 RR>1.0 RR>1.0 

exposure P -;;::'0.15 

(K=184) 
P < 0.05 0.05 -s;.p < 0.15 0.05 -s;.p < 0.15 P < 0.05 

1 0 7 108 24 45 

2 2 6 125 29 22 

'" 
~ 3 5 7 153 14 5 
..... 
~ ..... 4 8 11 137 18 10 
~ 

~ 5 8 8 149 8 11 .-..... 
{5 6 3 10 153 14 4 
~ 7 1 4 172 4 3 

8 1 3 174 3 3 

Substantial 
levelof RR<1.0 RR<1.0 RR>1.0 RR>1.0 

exposure P -;;::'0.15 
P < 0.05 0.05 -s;.p < 0.15 0.05 -s;.p < 0.15 P < 0.05 

(K=146) 

1 1 1 104 11 29 

2 0 1 111 16 18 

'" 
~ 3 1 2 127 6 10 
..... 
~ 4 4 6 117 12 7 ..... 
~ 

~ 5 3 2 130 6 5 .-..... 
{5 6 2 4 123 14 3 
~ 7 0 1 142 3 0 

8 0 1 139 6 0 

a Strategies 2-8 inc1ude adjustment for eight non-occupational confounders (see text). Each 
chemical assessed in a separate regression model: (1) age-adjusted only, (2) adjustment only for 
non-occupational confounders, (3) adjustment for seven currently suspected lung carcinogens, (4) 
automatic forward selection of other chemicals as confounders using P<0.25. AlI chemicals 
assessed in a single large regression model: (5) automatic forward selection ofwhich chemicals 
to include using P<O.25, (6) all chemicals included, (7) semi-Bayes shrinkage of estimates from 
strategy 6 using a common prior, (8) semi-Bayes shrinkage of estimates from strategy 6 using sets 
of exchangeability. 

111 



At the substantiallevel of exposure, only three estimates remained statistically significant 

at alpha 0.05 with the full model strategy 6. No estimates appeared statistically 

significant in the two semi-Bayes models (strategies 7 and 8), likely because the 

substantial-Ievel exposure analysis resulted in estimates with relatively large variances, 

which the semi-Bayes shrinkage would have compensated for by shifting those estimates 

closer to the common mean. 

A comparison was made of the observed numbers of statistically significant results with 

the number expect on the global null hypothesis. At the a=0.05 level, it can be expected 

that the number of statistically significant estimates would be 0.05* 184=9.2 at the 'any 

exposure' level, and 0.05*146=7.3 at the 'substantial exposure' level. In Table 7-6, for 

any level of exposure, strategies 1 and 2 resulted in 45 and 24 statistically significant 

estimates, respectively. This was far more than expected by the simple calculation. 

While these departures from the two calculated values could be explained by a failure to 

account for any confounding in the former model, and confounding due to occupational 

carcinogens in the latter model, the results do provide sorne supporting evidence for the 

presence oftrue carcinogens in the study population, whether or not these were 

documented in the Montreal study. This is especially the case as the statistically 

significant estimates did not occur symmetrically above and below unity. The calculation 

for expected numbers, however, would be inappropriate if applied to the semi-Bayes 

results, because spuriously large or chance estimates would have already been corrected 

with the semi-Bayes estimator. 

While Table 7-6 shows how the distribution of results compare across strategies, similar 

looking distributions do not necessarily mean the same chemicals were earmarked as 

statistically significant. The following four tables compare the distributions with the 

same tabulations of direction of effect and ranges ofP-value as above, but now with 

cross-tabulated results for comparisons between se1ected pairs of modeling strategies. 

These four comparisons were chosen to highlight the influences of a few specific 

characteristics of the different strategies. The distributions in Table 7-7 show what 

influence the addition of the seven suspected lung carcinogens had on the set of estimates. 

The bottom row shows eight chemicals whose estimates were significant with P

value<0.05 in model2, but which became non-significant (P-value>0.15) in model3, 
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after additional adjustment for confounding from the suspected risk factors. In total, 17 

chemicals earmarked as statistically significant by mode12 were 'eliminated' in mode13. 

One shou1d notice, however, that a change in P-va1ue may not necessari1y imp1y an 

important change in the point estimate. An examp1e of one of the eight chemica1s is mi1d 

steel dust, whose point estimates and 90% confidence interva1s under mode1s 2 and 3, 

respective1y, were 1.3 (1.1, 1.7) and 1.2 (0.9, 1.5), indicating that the 'loss of significance' 

was due to a combination of a slightly 10wer point estimate with near1y constant standard 

error. Thus, contrary to what might be gleaned from the cross-tabulation, these estimates 

were actually very simi1ar, which evokes the difficulty of interpreting results using a P

value metric, combining both the magnitude of the estimate and its precision. 

Table 7-7: Contrasting the distribution of results from strategies 2 and 3, ANY level of 
exposure: the effect of adding seven chemicals as confounders, chosen a priori 

Strategy 3 a 

RR<1.0 RR<1.0 

P < 0.05 0.05 ~ P < 0.15 

P ~.15 RR>1.0 

0.05 ~ P < 0.15 

RR>1.0 

P < 0.05 

RR<1.0 

P < 0.05 

RR<1.0 

0.05 ~ P < 0.15 

P ~.15 

RR>1.0 

0.05 ~P < 0.15 

RR>1.0 

P < 0.05 

2 o 

3 3 

o 4 

o o 

o o 

o o o 

o o o 

121 o o 

24 5 o 

8 9 5 

a Each chemical in a separate regression model: Strategy 2 adjusts only for non-occupational 
confounders, and strategy 3 further adjusts for seven currently suspected lung carcinogens. 

On the preventive side of the sca1e, and contrary to what wou1d be expected of 

occupationa1 carcinogens, three of the 'grey zone' estimates in mode12 became 

statistically significant with the addition of the seven suspected 1ung carcinogens in 
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strategy 3. On close examination, the estimates for these three chemicals were shifted 

downward to a degree that is greater than the increase in variance from adding variables 

to the model. For example, one of the chemicals is polyvinyl chlorate, whose point 

estimates and 90% confidence intervals under models 2 and 3, respectively, were 0.7 (0.4, 

1.1) and 0.6 (0.3, 1.0). 

Table 7-8 compares estimates that had been adjusted only for the seven currently 

suspected or recognized lung carcinogens, chosen a priori (strategy 3), with the estimates 

from the model where aIl chemicals were adjusted for each other, involving no pre

selection (strategy 6). 

Table 7-8: Contrasting the distribution of results from strategies 3 and 6, ANY level of 
exposure: the effect of simultaneously adjusting for aIl chemicals 

RR<l.O 

P <0.05 

RR<l.O 

0.05 ~ P < 0.15 

P ~.15 

RR>l.O 

0.05 ~ P < 0.15 

RR>l.O 

P < 0.05 

RR<l.O 

P < 0.05 

1 

o 

2 

o 

o 

RR<l.O 

0.05 ~P < 0.15 

1 

1 

8 

o 

o 

Strategy 6" 

P ~.15 

3 

6 

131 

11 

2 

RR>l.O 

0.05 ~P < 0.15 

o 

o 

9 

3 

2 

RR>l.O 

P < 0.05 

o 

o 

3 

o 

1 

a Strategy 3: Each chemical in a separate regression model, with adjustment for non-occupational 
confounders and seven currently suspected lung carcinogens. Strategy 6: AlI chemicals in a 
single model with further adjustment for non-occupational confounders. 

The cross-tabulation shows that several estimates from the two models were quite 

different. The confidence intervals in strategy 6 were on average 65% wider than those of 

strategy 3, somewhat complicating the interpretation of the table. In principle, strategy 6 
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should have less confounding bias than strategy 3 due to the completeness of the mutual 

adjustment among the chemicals, but this would be offset by the far greater variance of 

these estimates and the possibility of over-adjustment of certain estimates. 

Table 7-9 shows the results of taking the maximum likelihood estimates in a single 

regression model (strategy 6), and pulling them back toward close to unit y with a semi

Bayes shrinkage estimator (strategy 7). There was a good amount of agreement between 

the two approaches. When the results did differ, many ofthe 'grey zone' estimates in 

strategy 6 became clearly statistically non-significant (P-value > 0.15) after accounting 

for their imprecision. 

Table 7-9: Contrasting the distribution of results from strategies 6 and 7, ANY level of 
exposure: the effect of shrinkage to handle imprecision in strategy 6 

Strategy 7 a 

RR<l.O 

P <0.05 

RR<l.O 

0.05 ~ P < 0.15 

P ~.15 RR>l.O 

0.05 ~P < 0.15 

RR>l.O 

P < 0.05 

RR<l.O 

P <0.05 

RR<l.O 

0.05 ~ P < 0.15 

P ~.15 

RR>l.O 

0.05 ~ P < 0.15 

RR>l.O 

P < 0.05 

1 2 

o 2 

o o 

o o 

o o 

o o o 

8 o o 

153 o o 

11 3 o 

o 1 3 

a Strategy 6: AlI chemicals in a single regression model. Strategy 7: Estimates from model6 
shrunk to a common prior, under assumption of aIl parameters exchangeable. 

Finally, Table 7-10 shows how the semi-Bayes models were affected by replacing the 

common prior, where all chemical effects were assumed exchangeable (strategy 7), with a 

prior that separated chemicals into sets of exchangeable effects based on chemical and 
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physical properties and previous evidence oflung carcinogenicity (strategy 8). There was 

close agreement between the point estimates and P-values yielded by these two 

approaches. Most estimates changed very little. One of the few chemicals influenced by 

the inclusion of categories of exchangeability was lead chromate, whose point estimates 

and 90% interval estimates under models 7 and 8, respectively, were 1.1 (0.6, 2.1) and 1.4 

(0.7, 2.8), though inference on its effect would hardi y be altered. 

Table 7-10: Contrasting the distribution of results from strategies 7 and 8, ANY level of 
exposure: the effect of specifying categories of exchangeability based on expert 
opinion 

Strategy 8 a 

RR<1.0 

P < 0.05 

RR<l.O 

0.05 ~P < 0.15 

P ~.15 RR>l.O RR>1.0 

0.05 ~P < 0.15 P < 0.05 

RR<1.0 

P < 0.05 

RR<l.O 

0.05 ~ P < 0.15 

P ~.15 

RR>1.0 

0.05 ~ P < 0.15 

RR>1.0 

P <0.05 

1 o 

o 2 

o 1 

o o 

o o 

o o 

2 o 

171 o 

1 3 

o o 

a Strategy 7: Estimates from model 6 shrunk to a common prior, under assumption of aU 
parameters exchangeable. Strategy 8: Estimates from model6 shrunk within sets of 
exchangeability, based on shared chemical and physical properties. 

o 

o 

o 

o 

3 

For a last comparison of the distributions ofpoint estimates from the various modeling 

strategies, Figure 7-1 displays scatter plots of the logistic beta estimates for a selection of 

models, and is a graphical representation of much of the results shown above. Strategies 

1 and 2 were dropped at this point, partly for space considerations but also because the 

other strategies had preferable properties, and these were rather simplistic approaches. 
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Figure 7-1: Scatter plots of logistic beta estimates for different pairings of modeling strategies, ANY level of exposure 

Strategy 3 

· , · .-, 
) .. ' ". 

•• Ir.' . : ...... . ,. . . .. 
_ •••• H •• _ ... H. 'H".'-

Modeling strategies 
Each chemical assessed in a separate regression mo( 
(3) Adjustment for seven currently suspected lung Cé 

(4) Automatic forward selection of other chemicals é 

P-value<O.25 . 

Strategy 4 
Ali chemicals assessed in a single large regression II 
(5) Automatic forward selection ofwhich chemicals 

P-value<O.25, 

el: 
cinogens, 

s confounders, using a 

odel: 
o include in the model, using a 

Il 
1 

· . (6) A single maximum likelihood model with ail che · , •• micals included, 
~ ... , tyi. li 

1 

.~ . . ~ .. . · 
L. · . _'.H 

tIJ 

'--...• .- .. · 
· CD · . .. • • r-

1 
.. ... 

+' . . 
.~ ....... :. -tIJ .. . .. . 

· . 

~ oS 
1 
; .. 

tIJ 
. :'4.~ 

1 

1'·_-_· 

OQI 

. 

· . , 

1 

1 
. ____ .J • 
. ..... _ ...... '--

1 

__ 1. 

. 
1 

1 
1 

1 

. .. 
(7) Semi-Bayes shrinkage of estimates from mode! t 

•• JI' 

/ 1 

(8) Semi-Bayes shrinkage of estimates from mode! t 

..<l 

1 

on chemical and physical properties . 
.... 

using a common prior, 
using sets of exchangeabiIity based 

1 Strategy 5 . . 
. . . . . . ' . . f.. . , . 

(o •• 
-"'" .. 

.1!- .. 
'1\ . . 

• \. <t -~,. 1 ..... , . , . . , . . 1 . 
1. 1 Strategy 6 , 

. . . . . . 
. : ~ .. . -.. •• 1]. •• .. . .JIll!". . . . . 

~~ 
~ .. ~' . " . ,.t. . . ., ',., . ... : .. 

1 ~ --_. Strategy 7 

fi . ~. ::- Il .~.. .:.~. Il .. J.~::.: Il . dIlIIIF·-· Il L 
ni ~ ~ 1. ~.I: •• "'4' , 
b : • .. '..- • 

tIJ 1 1 l " Il , LI ___ -'--__ ----' 

* Ali axes represent a range of -2.1 to +2.1 on the scale for logistic coefficients 



Neither these plots nor most of the results ofthis section suggest which of the models are 

better than others, but the results do show varying levels of discordance among the 

empirical estimates. The closer the spread of points lies to the bottom-Ieft, upper-right 

diagonal of the plots in Figure 7-1, the more similar these models behaved in terms of 

their point estimation. 

The estimates of strategy 3 tended to be quite different from the estimates of the more 

complex strategies, and, in addition, the point estimates from strategy 3 showed only 

moderate agreement with estimates from the semi-Bayes analysis (strategy 8). In 

contrast, strategies 4 and 6 resulted in estimates that were proportional to, but often more 

extreme than, the estimates from strategies 7 and 8. 

Strategy 5 produced distinct plots because many of the estimates were set to zero as a 

result of the variable being deleted (P-value>0.25) from the regression model. The plot 

comparing strategies 4 and 5 shows the estimates falling nearly perfectly along two lines. 

For the estimates along the diagonal, the automatic selection procedures produced 

regression equations that were very similar. In other words, the same chemicals tended to 

be retained as confounders in each of the many regression equations of strategy 4, and 

these were nearly the same chemicals that were selected for inclusion in the single 

regression equation of strategy 5. 

Strategies 7 and 8 produced very similar plots. Adding the categories of exchangeability 

to the semi-Bayes models had only minor influence on the estimates. 
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7.5 Models acco un ting for potential mutual confounding among the 
ch emicals 

Accounting for potential mutual confounding among the occupational chemicals was a 

primary objective of the thesis. Strategies were considered that inc1uded adjustment for 

the effects of only a few other chemicals, while other strategies involved the simultaneous 

adjustment for the effects of a large number of chemicals. Table 7-11 presents results for 

the 184 chemicals found in the larger modeling strategies. Only four of the eight 

strategies were considered here, at two levels of exposure. These strategies represent 

differing degrees of control for any mutual confounding among the chemicals (see section 

6.9). Moving across the columns, the models begin by choosing seven currently 

suspected lung carcinogens as a priori confounders (strategy 3), choosing many 

confounders via an automatic P-value selection (strategy 4), and avoiding pre-selection by 

inc1uding all the chemicals simultaneously (strategies 7 and 8). As for the latter, it would 

be natural to inc1ude in this table the estimates from strategy 6, the unrestricted logistic 

regression, but those estimates were imprecise and not intended for interpretation. 

Instead, the semi-Bayes estimates are presented. These models used the estimates from 

the model of strategy 6 and shrunk them using a second-Ievel model. 

In Table 7-11, the substances are grouped by the categories of exchangeability used in 

semi-Bayes strategy 8. This allowed sorne visual assessment ofwhether sets of chemicals 

had similar effects or not. So, for example, all chemicals that are polypeptides were 

grouped together in the same sub-section of the table. A few substances were repeated 

several times if they belonged to several categories, though the row of values reported 

will be identical. For example, the same estimates for asbestos (5) are found under the 

categories previous evidence, fibrous inorganic dusts, and silica-containing compounds. 

Following each category label is a descriptor ofwhich levels of exposure that category 

was used in. For example, the chromates category has only the word 'any' following the 

label. This means that the covariate for the chromates category was not used in the 

second-Ievel regression model at the substantiallevel of exposure, because too few 

chemicals remained in that set. 
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Table 7-11 is designed so that by "reading downward" in the columns ofsemi-Bayes 

results (strategies 7 and 8), it is possible to know which chemicals were adjusted for each 

other in the single logistic model. For example, lead chromate (40) was included in the 

model for any level of exposure, but not in the model for substantial-Ievel exposure 

effects, due to sparse data at that level. 

The last section ofthe table, titled "not in a category", lists the estimates for chemicals 

which were included in the semi-Bayes regression models but not in any particular 

category of exchangeability. These estimates were still shrunk toward the overall prior 

mean, close to unit y, but they tended not to share chemical and physical properties with 

other chemicals on the list. 

Previous evidence (oflung carcinogenicity) was not represented with a dichotomous 

covariate in the models, as the other categories were. For the purpose ofthis table, 

however, the chemicals listed in that section are those that had non-zero values for 

previous evidence. 

120 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

Previous evidence [Any, Substantial] b 

5. Asbestos 1.0 (0.8,1.3) 1.5 (1.0,2.4) 1.l (0.8,1.4) 2.0 (1.2,3.3) 1.0 (0.7, 1.3) 1.4 (0.9,2.3) 1.0 (0.7,1.3) 1.4 (0.9,2.4) 

6. CrystalIine Silica 1.2 (1.0,1.5) 1.6 (1.2,2.2) 0.9 (0.7,1.2) 1.6 (1.l,2.2) 1.0 (0.8, 1.4) 1.3 (0.8, 1.9) 1.0 (0.8,1.3) 1.3 (0.9,1.9) 

34. Iron Oxides 0.9 (0.7,1.l) 0.7 (0.5,1.1) 0.8 (0.6, 1.l) 0.7 (0.4, 1.l) 0.8 (0.5, 1.l) 0.8 (0.5, 1.3) 0.7 (0.5,1.0) 0.8 (0.5,1.2) 

40. Lead Chromate 0.7 (0.4,1.2) 1.l (0.2,5.6) 1.3 (0.7,2.6) 1.l (0.6, 2.0) 1.4 (0.7,2.8) 

76. Soot 1.0 (0.7,1.4) 1.6 (0.9,2.7) 1.2 (0.8,1.8) 1.l (0.6,1.9) 0.9 (0.6, 1.4) 0.9 (0.5, 1.7) 0.9 (0.6,1.4) 1.0 (0.5,1.8) 

97. Coal Gas 0.6 (0.3, 1.l) 1.4 (0.3,6.8) 0.5 (0.2,1.2) 0.7 (0.3, 1.5) 0.7 (0.4,1.4) 

104. Chromium Fumes 2.0 (1.2,3.2) 2.1 (0.7,6.6) 1.3 (0.8,2.2) 1.7 (0.6,5.1) 1.4 (0.7, 2.9) 1.4 (0.7, 3.1) 1.9 (0.6,6.1) 1.6 (0.7,4.0) 

107. Nickel Fumes 1.7 (1.1,2.8) 1.3 (0.8,2.1) 1.l (0.5, 2.3) 0.8 (0.3,2.5) 

117. Diesel Eng.Emissions 1.l (0.9,1.4) 1.l (0.9,1.5) 1.l (0.9,1.4) 1.4 (1.0,1.9) 1.l (0.9, 1.4) 1.2 (0.8, 1.7) 1.l (0.9,1.4) 1.2 (0.8,1.7) 

132. Sulphuric Acid 0.9 (0.7,1.2) 0.7 (0.4,1.3) 0.7 (0.5,1.l) 0.7 (0.4,1.3) 0.8 (0.5, 1.2) 0.8 (0.4, 1.6) 0.8 (0.5,1.2) 0.8 (0.4,1.5) 

163. Coal Tar and Pitch 0.9 (0.5,1.4) 1.0 (0.5,2.3) 0.8 (0.5,1.4) 1.0 (0.5,2.1) 0.9 (0.5, 1.6) 1.l (0.5, 2.1) 0.9 (0.6,1.5) 1.1 (0.6,2.0) 

181. Beryllium Compounds 0.7 (0.2,2.1) 0.5 (0.1,1.9) 0.8 (0.4, 1.8) 0.8 (0.4,1.7) 

193. Arsenic Compounds 0.7 (0.5,1.1) 0.9 (0.5,1.7) 0.9 (0.6,1.5) 0.7 (0.4,1.5) 0.8 (0.5, 1.3) 0.9 (0.5, 1.8) 0.7 (0.4,1.3) 1.2 (0.5,2.7) 

a AlI strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AlI 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a corn mon prior, strategy 8, 

N semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not aIl of the categories of exchangeability were used in the modeling 
...... at the substantiallevel of exposure, so a descriptor folIows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

195. Cadmium Compounds 1.5 (0.7,3.0) 1.4 (0.5,4.4) 0.9 (0.4,2.2) 0.9 (0.2,3.2) 0.9 (0.5, 1.8) 1.1 (0.5,2.4) 1.0 (0.5,2.2) 1.1 (0.4,2.8) 

214. PAH (Any) 1.0 (0.9,1.3) 1.2 (0.8,1.8) 0.9 (0.8,1.1) 1.1 (0.7,1.5) 1.0 (0.7, 1.3) 1.3 (0.8, 2.0) 1.0 (0.7,1.3) 1.2 (0.8,1.9) 

219. Benzo(a)pyrene 1.1 (0.9,1.4) 1.0 (0.6,1.6) 1.0 (0.8,1.3) 1.2 (0.7,2.2) 1.1 (0.8, 1.5) 0.9 (0.5, 1.7) 1.1 (0.8,1.5) 1.0 (0.5,1.7) 

Polypeptides [Any, Substantial] b 

43. Wooi Fibres 0.9 (0.7,1.3) 0.8 (0.5,1.2) 1.0 (0.7,1.5) 0.9 (0.5,1.3) 1.0 (0.6, 1.5) 0.9 (0.5, 1.6) 1.0 (0.6,1.5) 1.0 (0.6,1.8) 

47. Fur Oust 1.3 (0.7,2.3) 0.9 (0.4,2.1) 1.4 (0.8,2.7) 1.0 (0.4,2.3) 1.2 (0.7, 2.1) 1.1 (0.6,2.2) 1.2 (0.7,2.1) 1.2 (0.6,2.4) 

48. Hair Oust 1.0 (0.5,2.0) 1.1 (0.5,2.9) 0.9 (0.4,1.9) 1.2 (0.5,3.1) 1.0 (0.5, 2.0) 1.3 (0.6,2.7) 1.0 (0.5,2.0) 1.4 (0.6,3.1) 

51. Leather Oust 0.8 (0.5,1.2) 0.9 (0.4,1.7) 1.0 (0.6,1.7) 1.1 (0.5,2.3) 0.9 (0.6, 1.6) 1.2 (0.6, 2.4) 1.0 (0.6,1.6) 1.3 (0.7,2.6) 

Polysaccharides [Any, Substantial] b 

42. Cotton Oust 0.9 (0.7,1.2) 0.9 (0.6,1.3) 1.1 (0.8,1.4) 0.9 (0.6,1.3) 1.0 (0.7, 1.5) 0.9 (0.6, 1.5) 1.0 (0.7,1.5) 0.9 (0.6,1.5) 

44. Wood Oust 1.1 (0.9,1.4) 1.3 (1.0,1.6) 1.1 (0.9,1.4) 1.2 (0.9,1.6) 1.1 (0.9, 1.4) 1.1 (0.8, 1.5) 1.1 (0.9,1.4) 1.1 (0.8,1.5) 

45. Grain Oust 0.9 (0.7,1.2) 0.9 (0.6,1.4) 0.8 (0.6,1.2) 1.1 (0.7,1.8) 0.9 (0.6, 1.3) 1.1 (0.7, 1.7) 0.9 (0.6,1.3) 1.0 (0.7,1.6) 

46. Flour Oust 1.0 (0.7,1.4) 0.7 (0.4,1.2) 1.1 (0.7,1.6) 0.7 (0.4,1.2) 1.0 (0.7, 1.5) 0.8 (0.5, 1.3) 1.0 (0.7,1.5) 0.8 (0.5,1.3) 

49. Starch Oust 1.5 (0.8,2.7) 1.4 (0.5,3.6) 1.3 (0.6,2.5) 0.8 (0.3,2.4) 1.2 (0.7, 2.1) 1.0 (0.5, 2.2) 1.2 (0.7,2.1) 1.0 (0.5,2.0) 

a AlI strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AlI 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a corn mon prior, strategy 8, 

N semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not aIl of the categories of exchangeability were used in the modeling 
N at the substantiallevel of exposure, so a descriptor foIlows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

50. Sugar Oust 1.6 (0.9,3.0) 1.3 (0.5,3.4) 1.6 (0.8,3.3) 1.6 (0.6,4.8) 1.5 (0.8, 2.7) 1.2 (0.6, 2.5) 1.5 (0.8,2.6) 1.1 (0.6,2.3) 

52. Tobacco Oust 1.1 (0.5,2.4) 0.8 (0.2,3.0) 1.2 (0.5,2.6) 0.9 (0.2,3.2) 1.1 (0.6,2.0) 0.9 (0.4, 2.1) 1.1 (0.6,2.1) 0.9 (0.4,1.9) 

75. Cellulose 1.1 (0.8,1.5) 1.0 (0.6,1.8) 1.4 (1.0,1.9) 0.9 (0.5,1.6) 1.2 (0.9, 1.7) 1.0 (0.6, 1.6) 1.2 (0.9,1.7) 0.9 (0.5,1.6) 

Fibrous inorganic dusts [Any, Substantial] b 

2. Inorg.lnsul.Dust 1.0 (0.7,1.3) 1.0 (0.6,1.5) 0.8 (0.6,1.2) 0.6 (0.3,1.2) 0.8 (0.5, 1.2) 0.7 (0.4, 1.2) 0.8 (0.5,1.2) 0.7 (0.4,1.2) 

5. Asbestos 1.0 (0.8,1.3) 1.5 (1.0,2.4) 1.1 (0.8,1.4) 2.0 (1.2,3.3) 1.0 (0.7, 1.3) 1.4 (0.9, 2.3) 1.0 (0.7,1.3) 1.4 (0.9,2.4) 

9. Glass Fibres 0.8 (0.6,1.1) 0.7 (0.3,1.3) 0.9 (0.5,1.6) 0.7 (0.3,1.7) 0.8 (0.5, 1.3) 0.9 (0.4, 1.7) 0.8 (0.5,1.3) 0.8 (0.4,1.6) 

19. Mineral Wooi Fibres 1.0 (0.7,1.3) 0.6 (0.3,1.2) 1.1 (0.7,1.9) 0.6 (0.3,1.5) 1.2 (0.7, 1.9) 0.8 (0.4, 1.6) 1.2 (0.7,1.9) 0.8 (0.4,1.5) 

Silica containing compounds [Any, Substantial] b 

3. Excavation Oust 1.3 (1.0,1.8) 1.5 (1.1,2.2) 1.3 (1.0,1.7) 1.2 (0.8,1.8) 1.2 (0.9, 1.7) 1.3 (0.9, 2.0) 1.2 (0.9,1.7) 1.3 (0.9,2.0) 

5. Asbestos 1.0 (0.8,1.3) 1.5 (1.0,2.4) 1.1 (0.8,1.4) 2.0 (1.2,3.3) 1.0 (0.7, 1.3) 1.4 (0.9, 2.3) 1.0 (0.7,1.3) 1.4 (0.9,2.4) 

6. Crystalline Silica 1.2 (1.0,1.5) 1.6 (1.2,2.2) 0.9 (0.7,1.2) 1.6 (1.1,2.2) 1.0 (0.8, 1.4) 1.3 (0.8, 1.9) 1.0 (0.8,1.3) 1.3 (0.9,1.9) 

7. Portland Cement 1.3 (0.9,1.7) 1.2 (0.8,1.7) 1.4 (1.0,2.0) 1.1 (0.7,1.7) 1.3 (0.9, 1.9) 1.2 (0.8, 1.9) 1.3 (0.9,1.9) 1.2 (0.8,1.8) 

8. Glass Oust 1.9 (1.0,3.3) 0.7 (0.3,1.8) 1.5 (0.8,2.9) 0.6 (0.2,1.7) 1.4 (0.8, 2.5) 0.9 (0.4, 1.8) 1.5 (0.9,2.6) 1.0 (0.5,1.9) 

a AlI strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. Ail 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a common prior, strategy 8, 

N semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not aIl of the categories of exchangeability were used in the modeling 
W at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4,7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simuItaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

9. Glass Fibres 0.8 (0.6,1.1) 0.7 (0.3,1.3) 0.9 (0.5,1.6) 0.7 (0.3,1.7) 0.8 (0.5, 1.3) 0.9 (0.4, 1.7) 0.8 (0.5,1.3) 0.8 (0.4,1.6) 

10. Industrial Talc 0.7 (0.5,1.1) 0.6 (0.3,1.3) 0.9 (0.5,1.5) 0.6 (0.2,1.3) 0.8 (0.5, 1.3) 0.8 (0.4, 1.7) 0.8 (0.5,1.4) 0.9 (0.5,1.8) 

Il. Brick Oust 0.8 (0.6,1.2) 0.7 (0.3,1.5) 1.2 (0.7,2.0) 0.7 (0.3,1.5) 1.2 (0.7, 2.0) 0.8 (0.4, 1.5) 1.2 (0.8,2.0) 0.8 (0.4,1.6) 

12. Clay Oust 1.6 (1.0,2.6) 1.1 (0.5,2.4) 2.1 (1.2,3.6) 1.2 (0.5,3.0) 1.6 (1.0, 2.8) 1.2 (0.6, 2.4) 1.8 (1.0,3.2) 1.2 (0.6,2.7) 

13. Concrete Oust 1.0 (0.8,1.4) 1.3 (0.9,1.9) 1.0 (0.7,1.5) 1.5 (1.0,2.3) 1.0 (0.7, 1.4) 1.3 (0.8, 1.9) 1.0 (0.7,1.5) 1.3 (0.8,1.9) 

19. Mineral Wooi Fibres 1.0 (0.7,1.3) 0.6 (0.3,1.2) l.l (0.7,1.9) 0.6 (0.3,1.5) 1.2 (0.7, 1.9) 0.8 (0.4, 1.6) 1.2 (0.7,1.9) 0.8 (0.4,1.5) 

23. Cosmetic Talc 1.5 (0.8,2.7) 0.4 (0.1,1.6) 1.9 (1.0,3.7) 1.6 (0.9, 3.0) 1.6 (0.8,3.2) 

27. Silicon Carbide 0.9 (0.7,1.3) 1.0 (0.5,2.1) 0.7 (0.4, l.l) 0.8 (0.3,2.0) 0.7 (0.5, l.l) 1.2 (0.6, 2.3) 0.8 (0.5,1.2) 1.1 (0.6,2.2) 

Metal dusts (excluding oxides) [Any, Substantial] b 

14. Bronze Oust 0.8 (0.4,1.6) 0.7 (0.3,1.9) 0.6 (0.3,1.4) 0.5 (0.2,1.4) 0.8 (0.4, 1.4) 0.8 (0.4, 1.7) 0.7 (0.4,1.5) 0.6 (0.2,1.8) 

15. Brass Oust 1.4 (0.9,2.3) 1.5 (0.7,3.1) 1.2 (0.7,2.1) 1.3 (0.6,3.0) 1.2 (0.7, 2.1) 1.3 (0.7,2.6) 1.3 (0.8,2.3) 2.0 (0.9,4.5) 

16. Stainless Steel Oust 1.4 (1.0,1.9) 1.5 (0.9,2.6) 1.2 (0.8,1.9) 1.5 (0.8,2.7) l.l (0.7, 1.6) 1.3 (0.7, 2.4) l.l (0.7,1.7) 1.4 (0.7,2.7) 

17. Mild Steel Oust 1.2 (1.0,1.5) l.l (0.8,1.5) 1.2 (0.9,1.6) 1.2 (0.8,1.7) 1.2 (0.9, 1.6) 1.1 (0.7, 1.6) 1.2 (0.9,1.6) 1.2 (0.8,1.8) 

21. Aluminium Alloy Oust 1.4 (1.0,1.9) 1.1 (0.7,1.8) 1.5 (1.0,2.3) 1.6 (0.9,2.6) 1.3 (0.9, 1.9) 1.2 (0.7, 2.1) 1.3 (0.9,1.9) 1.2 (0.7,2.2) 

a Ail strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AU 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a common prior, strategy 8, 

N semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not ail ofthe categories of exchangeability were used in the modeling 
~ at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90%. CL) RR (90% CL) RR (90% CL) 

33. Iron Oust 0.9 (0.6,1.4) 0.6 (0.3,1.2) 0.9 (0.5,1.4) 0.5 (0.2,1.0) 0.9 (0.6, 1.4) 0.7 (0.4, 1.4) 0.8 (0.5,1.3) 0.6 (0.3,1.1) 

35. Copper Oust 1.2 (0.8,1. 7) 2.6 (1.3,5.3) 1.2 (0.7,1.9) 2.1 (1.0,4.5) 1.2 (0.7, 1.9) 1.7 (0.9, 3.2) 1.2 (0.8,2.0) 1.9 (0.9,3.9) 

36. Zinc Oust 1.4 (0.9,2.3) 3.5 (1.1,11.1) 1.6 (0.9,2.9) 2.7 (0.7,10.7) 1.2 (0.7, 2.1) 1.3 (0.6,3.1) 1.2 (0.7,2.1) 1.7 (0.6,4.9) 

Metal oxide dusts [Any, Substantial] b 

26. Alumina 1.2 (0.9,1.5) 1.4 (0.9,2.2) 1.6 (1.2,2.3) 1.7 (0.9,3.0) 1.4 (1.0, 1.9) 1.6 (0.9, 2.8) 1.4 (1.0,1.9) 1.7 (1.0,3.1) 

29. Calcium Oxide 1.0 (0.7,1.4) 1.1 (0.7,1.9) 0.7 (0.5,1.1) 1.0 (0.6,1.8) 0.8 (0.6, 1.2) 0.9 (0.5, 1.6) 0.9 (0.6,1.2) 1.1 (0.6,1.9) 

32. Titanium Dioxide 0.9 (0.6,1.3) 1.8 (0.6,5.0) 1.1 (0.6,2.1) 1.5 (0.5,4.8) 1.2 (0.7, 2.0) 1.3 (0.6, 2.8) 1.1 (0.6,2.0) 1.6 (0.7,3.7) 

34. Iron Oxides 0.9 (0.7,1.1) 0.7 (0.5,1.1) 0.8 (0.6,1.1) 0.7 (0.4,1.1) 0.8 (0.5, 1.1) 0.8 (0.5, 1.3) 0.7 (0.5,1.0) 0.8 (0.5,1.2) 

37. Zinc Oxide 1.0 (0.7,1.6) 0.8 (0.2,2.8) 1.5 (0.9,2.7) 1.3 (0.7,2.2) 1.3 (0.7,2.3) 

38. Lead Oxides 1.5 (0.9,2.5) 1.9 (0.8,4.9) 1.3 (0.7,2.5) 1.7 (0.7,4.7) 1.3 (0.8,2.3) 1.4 (0.7, 3.0) 1.3 (0.7,2.4) 1.6 (0.6,3.8) 

Metal oxide fumes [Any, Substantial] b 

98. Gas Welding Fumes 1.3 (1.0,1.7) 1.4 (1.0,2.0) 1.1 (0.8,1.5) 1.0 (0.6,1.7) 1.3 (0.9, 1.8) 0.9 (0.5, 1.5) 1.2 (0.9,1.8) 0.9 (0.6,1.6) 

99. Arc Welding Fumes 1.0 (0.8,1.3) 1.3 (0.9,1.9) 0.7 (0.5,0.9) 0.5 (0.3,0.9) 0.7 (0.4, 1.0) 0.7 (0.4, 1.3) 0.7 (0.5,1.0) 0.7 (0.4,1.2) 

100. Soldering Fumes 1.0 (0.7,1.4) 1.2 (0.8,1.9) 1.0 (0.7,1.5) 1.0 (0.6,1.6) 0.9 (0.6, 1.3) 1.0 (0.6, 1.7) 0.9 (0.6,1.3) 1.0 (0.6,1.7) 

a AlI strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AlI 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a corn mon prior, strategy 8, 

N semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not aIl of the categories of exchangeability were used in the modeling 
VI at the substantiallevel of exposure, so a descriptor folIows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90%. CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

101. Metal Oxide Fumes 1.2 (1.0,1.4) 1.4 (1.1,1.9) 1.1 (0.8,1.5) 0.9 (0.6,1.3) 1.1 (0.7, 1.5) 1.3 (0.8,2.1) 1.1 (0.7,1.5) 1.3 (0.8,2.1) 

102. Aluminium Fumes 1.2 (0.7,1.9) 0.8 (0.4,1.9) 0.6 (0.3,1.2) 0.3 (0.1,0.7) 0.7 (0.4, 1.2) 0.7 (0.3, 1.4) 0.7 (0.4,1.3) 0.7 (0.3,1.6) 

103. Calcium Oxide Fumes 1.1 (0.8,1.5) 1.2 (0.7,1.9) 0.7 (0.5,1.2) 0.6 (0.3,1.3) 0.8 (0.5, 1.5) 0.6 (0.3, 1.2) 0.9 (0.5,1.5) 0.7 (0.4,1.3) 

104. Chromium Fumes 2.0 (1.2,3.2) 2.1 (0.7,6.6) 1.3 (0.8,2.2) 1.7 (0.6,5.1) 1.4 (0.7, 2.9) 1.4 (0.7, 3.1) 1.9 (0.6,6.1) 1.6 (0.7,4.0) 

105. Manganese Fumes 1.4 (1.0,1.9) 3.3 (1.5,7.0) 1.0 (0.6,1.6) 1.8 (0.7,4.6) 1.1 (0.6, 1.8) 1.4 (0.7, 2.9) 1.2 (0.7,2.2) 2.2 (0.9,5.5) 

106. Iron Fumes 1.2 (0.9,1.6) 1.4 (1.0,2.1) 0.9 (0.6,1.3) 0.8 (0.5,1.5) 0.8 (0.5, 1.3) 1.0 (0.5, 1.9) 0.7 (0.4,1.2) 0.6 (0.3,1.3) 

107. Nickel Fumes 1.7 (1.1,2.8) 1.3 (0.8,2.1) 1.1 (0.5, 2.3) 0.8 (0.3,2.5) 

108. Copper Fumes 1.8 (1.2,2.7) 2.1 (1.1,3.9) 1.5 (0.9,2.4) 2.2 (1.0,4.5) 1.5 (0.9, 2.6) 1.3 (0.7, 2.6) 1.5 (0.9,2.7) 1.6 (0.7,3.6) 

109. Zinc Fumes 1.3 (0.9,1.9) 2.6 (1.3,5.1) 0.9 (0.5,1.6) 1.5 (0.6,3.7) 0.9 (0.5, 1.5) 1.2 (0.6, 2.4) 0.9 (0.5,1.5) 1.4 (0.6,3.3) 

110. Silver Fumes 1.2 (0.7,2.1) 1.4 (0.6,3.3) 0.6 (0.2,1.3) 1.1 (0.4,3.0) 0.8 (0.4, 1.5) 1.1 (0.5, 2.3) 0.8 (0.4,1.5) 1.0 (0.5,2.0) 

Ill. Tin Fumes 1.4 (1.0,2.0) 1.0 (0.5,2.1) 1.1 (0.6,2.1) 0.5 (0.2,1.3) 1.0 (0.6, 1.8) 1.0 (0.5, 2.0) 0.8 (0.4,1.6) 0.6 (0.2,1.7) 

112. Lead Fumes 1.3 (0.9,1.8) 0.8 (0.3,1.6) 1.0 (0.5,2.0) 0.5 (0.2,1.1) 1.1 (0.6, 1.9) 0.8 (0.4, 1.8) 1.2 (0.6,2.1) 0.9 (0.4,2.1) 

130. Nitric Acid 0.8 (0.4,1.5) 0.5 (0.2,1.5) 0.7 (0.3,1.7) 0.5 (0.1,1.8) 0.8 (0.4, 1.5) 0.9 (0.4, 2.0) 0.8 (0.4,1.5) 0.8 (0.3,1. 7) 

ft Ali strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. Ali 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a corn mon prior, strategy 8, 

N semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not ail of the categories of exchangeability were used in the modeling 
0\ at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-level analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time reeression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90%. CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

Heavy metal compounds [Any, Substantial] b 

14. Bronze Oust 0.8 (0.4,1.6) 0.7 (0.3,1.9) 0.6 (0.3,1.4) 0.5 (0.2,1.4) 0.8 (0.4, 1.4) 0.8 (0.4, 1.7) 0.7 (0.4,1.5) 0.6 (0.2,1.8) 

15. Brass Oust 1.4 (0.9,2.3) 1.5 (0.7,3.1) 1.2 (0.7,2.1) 1.3 (0.6,3.0) 1.2 (0.7, 2.1) 1.3 (0.7,2.6) 1.3 (0.8,2.3) 2.0 (0.9,4.5) 

16. Stainless Steel Oust 1.4 (1.0,1.9) 1.5 (0.9,2.6) 1.2 (0.8,1.9) 1.5 (0.8,2.7) 1.1 (0.7, 1.6) 1.3 (0.7,2.4) l.l (0.7,1.7) 1.4 (0.7,2.7) 

35. Copper Oust 1.2 (0.8,1.7) 2.6 (1.3,5.3) 1.2 (0.7,1.9) 2.1 (1.0,4.5) 1.2 (0.7, 1.9) 1.7 (0.9, 3.2) 1.2 (0.8,2.0) 1.9 (0.9,3.9) 

35. Copper Oust 1.2 (0.8,1.7) 2.6 (1.3,5.3) 1.2 (0.7,1.9) 2.1 (1.0,4.5) 1.2 (0.7, 1.9) 1.7 (0.9,3.2) 1.2 (0.8,2.0) 1.9 (0.9,3.9) 

38. Lead Oxides 1.5 (0.9,2.5) 1.9 (0.8,4.9) 1.3 (0.7,2.5) 1.7 (0.7,4.7) 1.3 (0.8,2.3) 1.4 (0.7, 3.0) 1.3 (0.7,2.4) 1.6 (0.6,3.8) 

39. Basic Lead Carb. 1.2 (0.7,1.9) 1.4 (0.3,6.1) 1.7 (1.0,3.0) 1.2 (0.6, 2.2) 1.2 (0.6,2.2) 

40. Lead Chromate 0.7 (0.4,1.2) 1.1 (0.2,5.6) 1.3 (0.7,2.6) 1.1 (0.6, 2.0) 1.4 (0.7,2.8) 

104. Chromium Fumes 2.0 (1.2,3.2) 2.1 (0.7,6.6) 1.3 (0.8,2.2) 1.7 (0.6,5.1) 1.4 (0.7, 2.9) 1.4 (0.7, 3.1) 1.9 (0.6,6.1) 1.6 (0.7,4.0) 

107. Nickel Fumes 1.7 (1.1,2.8) 1.3 (0.8,2.1) 1.1 (0.5, 2.3) 0.8 (0.3,2.5) 

108. Copper Fumes 1.8 (1.2,2.7) 2.1 (1.l,3.9) 1.5 (0.9,2.4) 2.2 (1.0,4.5) 1.5 (0.9, 2.6) 1.3 (0.7,2.6) 1.5 (0.9,2.7) 1.6 (0.7,3.6) 

112. Lead Fumes 1.3 (0.9,1.8) 0.8 (0.3,1.6) 1.0 (0.5,2.0) 0.5 (0.2, l.l) 1.1 (0.6, 1.9) 0.8 (0.4, 1.8) 1.2 (0.6,2.1) 0.9 (0.4,2.1) 

155. Leaded Gasoline 1.1 (0.8,1.3) 0.9 (0.6,1.3) 1.1 (0.9,1.5) 0.8 (0.6,1.2) 1.0 (0.7, 1.4) 0.9 (0.5, 1.4) 1.0 (0.7,1.5) 0.9 (0.6,1.6) 

a AlI strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AlI 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a common prior, strategy 8, 

N semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not ail of the categories of exchangeability were used in the modeling 
'1 at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3,4,7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90 % CL) RR (90% CL) 

193. Arsenic Compounds 0.7 (0.5,1.1) 0.9 (0.5,1.7) 0.9 (0.6,1.5) 0.7 (0.4,1.5) 0.8 (0.5, 1.3) 0.9 (0.5, 1.8) 0.7 (0.4,1.3) 1.2 (0.5,2.7) 

195. Cadmium Compounds 1.5 (0.7,3.0) 1.4 (0.5,4.4) 0.9 (0.4,2.2) 0.9 (0.2,3.2) 0.9 (0.5, 1.8) 1.1 (0.5,2.4) 1.0 (0.5,2.2) 1.1 (0.4,2.8) 

Monocyclic aromatic hydrocarbons [Any, Substantial] b 

144. Benzene 1.0 (0.8,1.2) 0.8 (0.5,1.1) 1.3 (1.0,1.8) 0.8 (0.5,1.3) 1.2 (0.9, 1.8) 1.1 (0.6, 1.9) 1.2 (0.8,1.7) 1.0 (0.6,1.7) 

145. Toluene 0.8 (0.7,1.0) 0.7 (0.5,1.0) 0.7 (0.5,1.0) 0.6 (0.4,0.9) 0.8 (0.5, 1.2) 0.8 (0.4, 1.3) 0.8 (0.5,1.2) 0.8 (0.4,1.3) 

146. Xylene 0.8 (0.7,1.1) 0.9 (0.5,1.7) 0.8 (0.6,1.1) 0.7 (0.3,1.4) 1.0 (0.6, 1.6) 1.0 (0.5, 1.9) 1.0 (0.6,1.5) 0.9 (0.5,1.8) 

147. Styrene 0.4 (0.2,0.7) 0.3 (0.1,0.7) 0.1 (0.1,0.4) 0.5 (0.2, 1.1) 0.5 (0.2,1.1) 

Polycyclic aromatic hydrocarbons [Any, Substantial] b 

76. Soot 1.0 (0.7,1.4) 1.6 (0.9,2.7) 1.2 (0.8,1.8) 1.1 (0.6,1.9) 0.9 (0.6, 1.4) 0.9 (0.5, 1.7) 0.9 (0.6,1.4) 1.0 (0.5,1.8) 

214. PAH (Any) 1.0 (0.9,1.3) 1.2 (0.8,1.8) 0.9 (0.8,1.1) 1.1 (0.7,1.5) 1.0 (0.7, 1.3) 1.3 (0.8, 2.0) 1.0 (0.7,1.3) 1.2 (0.8,1.9) 

219. Benzo(a)pyrene 1.1 (0.9,1.4) 1.0 (0.6,1.6) 1.0 (0.8,1.3) 1.2 (0.7,2.2) 1.1 (0.8, 1.5) 0.9 (0.5, 1.7) 1.1 (0.8,1.5) 1.0 (0.5,1.7) 

Engine emissions [Any, Substantial] b 

115. Gas Eng.Emissions 0.8 (0.7,1.0) 0.8 (0.7,1.0) 0.9 (0.8,1.1) 1.0 (0.8,1.2) 0.9 (0.6, 1.2) 1.1 (0.8, 1.5) 0.9 (0.7,1.2) 1.1 (0.8,1.5) 

117. Diesel Eng.Emissions 1.1 (0.9,1.4) 1.1 (0.9,1.5) 1.1 (0.9,1.4) 1.4 (1.0,1.9) 1.1 (0.9, 1.4) 1.2 (0.8, 1.7) 1.1 (0.9,1.4) 1.2 (0.8,1.7) 

a AlI strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AlI 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a common prior, strategy 8, 

N semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not aIl of the categories of exchangeability were used in the modeling 
00 at the substantiallevel of exposure, so a descriptor folIows each category label, indicating in which exposure-level analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simuItaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

121. Jet Fuel Eng.Emiss. 0.4 (0.1,1.3) 0.5 (0.2,1.6) 0.8 (0.4, 1.8) 0.9 (0.4,1.9) 

122. Propane Eng.Emiss. 1.6 (1.0,2.5) l.l (0.6,2.0) 1.5 (0.9,2.5) 1.1 (0.6,2.0) 1.4 (0.8, 2.2) 1.0 (0.5, 1.7) 1.4 (0.8,2.2) 0.9 (0.5,1.7) 

Inorganic acid mists [Any, Substantial] b 

85. Hydrogen Fluoride 1.7 (l.l,2.6) 1.3 (0.4,4.3) 1.0 (0.6,1.8) 2.2 (0.5,9.0) 1.3 (0.7,2.1) 1.2 (0.5, 2.7) 1.2 (0.7,2.0) 1.0 (0.4,2.3) 

89. Hydrogen Chloride 0.9 (0.7,1.2) 1.0 (0.6,1.6) l.l (0.7,1.6) 0.9 (0.5,1.5) 0.9 (0.6, 1.4) 1.1 (0.6, 2.0) 0.9 (0.6,1.4) l.l (0.6,1.9) 

126. Inorg.Acid Solutions l.l (0.9,1.4) 0.9 (0.6,1.4) 1.0 (0.7,1.4) 0.7 (0.4,1.3) 1.1 (0.8, 1.6) 0.7 (0.4, 1.2) l.l (0.8,1.6) 0.7 (0.4,1.2) 

129. Plating Solutions 0.9 (0.4,1.8) l.l (0.4,3.5) 1.0 (0.4,2.3) 0.9 (0.4, 1.8) 0.8 (0.4,1.7) 

130. Nitric Acid 0.8 (0.4,1.5) 0.5 (0.2,1.5) 0.7 (0.3,1.7) 0.5 (0.1,1.8) 0.8 (0.4, 1.5) 0.9 (0.4, 2.0) 0.8 (0.4,1.5) 0.8 (0.3,1.7) 

131. Phosphoric Acid 1.5 (0.8,2.9) 0.7 (0.2,3.3) 0.9 (0.4,2.3) l.l (0.5,2.1) 1.0 (0.5,2.0) 

132. Sulphuric Acid 0.9 (0.7,1.2) 0.7 (0.4,1.3) 0.7 (0.5,l.l) 0.7 (0.4,1.3) 0.8 (0.5, 1.2) 0.8 (0.4, 1.6) 0.8 (0.5,1.2) 0.8 (0.4,1.5) 

Resins and resin-containing compounds [Any, Substantial] b 

53. Natural Rubber 1.2 (0.8,1. 7) 0.3 (0.1,0.9) 3.8 (1.9,7.6) 2.3 (1.3,4.1) 2.1 (1.3,3.5) 

55. Plastic Oust 0.8 (0.6,1.2) 0.7 (0.4,1.4) 0.9 (0.6,1.4) 0.8 (0.4,1.7) 0.9 (0.6, 1.4) 0.9 (0.5, 1.6) 0.9 (0.6,1.4) 0.9 (0.5,1.6) 

61. Cellulose Nitrate 0.6 (0.4, l.l) 0.6 (0.3,1.2) 0.9 (0.4,1.8) 0.6 (0.3,1.3) 0.8 (0.4, 1.4) 0.9 (0.4, 1.8) 0.8 (0.5,1.4) 0.9 (0.5,1.7) 

a AlI strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. Ali 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a corn mon prior, strategy 8, 

N semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not aIl of the categories of exchangeability were used in the modeling 
\0 at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4,7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

62. Polyvinyl Chloride 0.6 (0.3,1.2) 0.8 (0.2,3.1) 0.4 (0.2,0.9) 0.8 (0.4, 1.4) 0.8 (0.5,1.5) 

63. Polyvinyl Acetate 0.6 (0.4,0.9) 0.5 (0.3,1.0) 0.6 (0.4, 1.1) 0.7 (0.4,1.2) 

64. Poly-Acrylates 1.0 (0.6,1.6) 1.1 (0.5,2.4) 2.9 (1.5,5.7) 1.3 (0.5,3.3) 1.7 (0.9, 3.1) 1.4 (0.7, 2.9) 1.6 (0.9,2.8) 1.3 (0.6,2.5) 

65. Alkyds 0.8 (0.6,1.2) 0.8 (0.3,1.7) 1.3 (0.7,2.3) 0.7 (0.3,1.6) 0.9 (0.5, 1.6) 0.8 (0.4, 1.7) 0.9 (0.5,1.6) 0.8 (0.4,1.7) 

66. Epoxies 1.6 (0.8,3.1) 2.2 (0.8,6.1) 1.4 (0.6,3.2) 3.3 (0.9,11.8) 1.4 (0.7, 2.6) 1.4 (0.6, 3.2) 1.3 (0.7,2.4) 1.2 (0.6,2.7) 

67. Phenol-Formald. 1.3 (0.9,1.8) 0.6 (0.2,1.5) 1.2 (0.7,2.0) 0.6 (0.2,1.8) 1.2 (0.7, 2.0) 0.9 (0.4, 1.9) 1.2 (0.8,2.0) 0.8 (0.4,1.8) 

68. Urea-Formald. 1.4 (1.0,1.9) 0.7 (0.2,1.9) 2.0 (1.2,3.5) 0.8 (0.3,2.4) 1. 7 (1.0, 2.7) 1.0 (0.5, 2.2) 1.6 (1.0,2.5) 1.0 (0.5,2.0) 

69. Polyurethanes 1.2 (0.7,2.1) 1.4 (0.5,3.5) 1.8 (0.9,3.6) 2.0 (0.7,5.6) 1.2 (0.6, 2.2) 1.0 (0.5, 2.3) 1.2 (0.7,2.1) 1.0 (0.5,2.1) 

70. Styrene-Buta.Rubber 0.8 (0.6,1.2) 0.2 (0.1,0.8) 0.3 (0.2,0.7) 0.6 (0.3, 1.0) 0.6 (0.4,1.1) 

71. Polychloroprene 1.0 (0.7,1.5) 1.2 (0.3,4.3) 1.0 (0.6,1.7) 1.0 (0.6, 1.8) 1.1 (0.6,1.7) 

149. Animal & Vege.Glues 0.9 (0.6,1.3) 0.9 (0.5,1.6) 0.8 (0.5,1.3) 0.9 (0.5,1.7) 0.9 (0.6, 1.3) 0.9 (0.5, 1.5) 0.9 (0.6,1.3) 0.8 (0.5,1.4) 

151. Linseed Oil 1.1 (0.8,1.6) 0.9 (0.3,2.4) 0.9 (0.6,1.4) 0.7 (0.2,1.9) 0.9 (0.6, 1.5) 1.0 (0.4, 2.2) 0.9 (0.6,1.5) 0.9 (0.5,2.0) 

152. Synthetic Adhesives 0.9 (0.8,1.2) 0.8 (0.6,1.1) 0.8 (0.6,1.1) 0.7 (0.5,0.9) 0.8 (0.6, 1.1) 0.7 (0.5, 1.0) 0.8 (0.6,1.1) 0.7 (0.5,1.0) 

173. Wood Varnishes, Stains 1.1 (0.8,1.5) 1.3 (0.8,1.9) 1.5 (1.0,2.4) 1.6 (1.0,2.6) 1.1 (0.7, 1.7) 1.3 (0.8, 2.2) 1.1 (0.7,1.7) 1.2 (0.7,2.1) 

a AlI strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AlI 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a corn mon prior, strategy 8, 

;:; semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not aIl of the categories of exchangeability were used in the modeling 
o at the substantiallevel of exposure, so a descriptor folIows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

174.lnks 1.5 (1.1,2.3) 1.1 (0.7,1.9) 1.8 (1.1,2.7) 0.9 (0.5,1.7) 1.3 (0.8, 2.1) 1.0 (0.5, 1.8) 1.3 (0.8,2.1) 1.0 (0.5,1.8) 

175. Metal Coatings 1.1 (0.8,1.4) 1.0 (0.6,1.5) 1.4 (1.0,2.0) 1.0 (0.6,1.6) 1.3 (0.9, 1.8) 1.1 (0.7, 1.9) 1.2 (0.9,1.8) 1.1 (0.7,1.8) 

Carbonaceous compounds [Any, Substantial] b 

73. Coal Oust 1.2 (0.9,1.7) 1.4 (0.9,2.2) 1.0 (0.7,1.4) 1.2 (0.7,1.9) 1.0 (0.7, 1.5) 1.1 (0.7, 1.9) 1.0 (0.7,1.5) 1.1 (0.6,1.9) 

74. Carbon Black 1.2 (0.8,1.7) 0.7 (0.3,1.6) 1.0 (0.6,1.7) 0.7 (0.2,1.9) 1.0 (0.6, 1.6) 0.9 (0.4, 1.9) 0.9 (0.6,1.5) 0.9 (0.3,2.2) 

78. Graphite Oust 0.6 (0.3,1.2) 0.4 (0.1,2.4) 0.3 (0.1,0.8) 0.6 (0.3, 1.2) 0.6 (0.3,1.2) 

Aliphatic alkanes (CS-CI7) [Any, Substantial] b 

155. Leaded Gasoline 1.1 (0.8,1.3) 0.9 (0.6,1.3) 1.1 (0.9,1.5) 0.8 (0.6,1.2) 1.0 (0.7, 1.4) 0.9 (0.5, 1.4) 1.0 (0.7,1.5) 0.9 (0.6,1.6) 

156. Kerosene 1.6 (1.2,2.1) 2.6 (1.5,4.4) 1.4 (1.0,2.0) 2.6 (1.5,4.6) 1.2 (0.9, 1.8) 1.8 (1.0, 3.0) 1.2 (0.9,1.7) 1.8 (1.1,3.1) 

157. Diesel Oil 1.2 (0.8,1.8) 1.3 (0.7,2.4) 1.6 (1.1,2.4) 1.7 (0.9,3.2) 1.2 (0.8, 1.8) 1.2 (0.7, 2.2) 1.2 (0.8,1.8) 1.4 (0.8,2.4) 

158. Heating Oil 1.3 (0.9,1.9) 1.9 (1.1,3.3) 1.2 (0.8,1.7) 2.0 (1.1,3.5) 1.2 (0.8, 1.9) 1.5 (0.9, 2.6) 1.2 (0.8,1.8) 1.6 (0.9,2.7) 

159. Mineral Spirits 1.1 (0.9,1.4) 1.2 (0.9,1.7) 1.3 (1.0,1.7) 1.3 (1.0,1.9) 1.1 (0.8, 1.5) 1.1 (0.8, 1.6) 1.1 (0.8,1.5) 1.2 (0.8,1. 7) 

167. Jet Fuel 0.6 (0.3,1.4) 0.5 (0.2,1.4) 0.4 (0.2,1.0) 0.7 (0.3, 1.5) 0.8 (0.4,1.5) 

168. Aviation Gasoline 0.5 (0.2,1.2) 0.5 (0.2,1.3) 0.4 (0.2,1.0) 0.6 (0.3, 1.4) 0.7 (0.4,1.4) 

a Ali strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. Ali 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a common prior, strategy 8, 

;:;:; semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not ail of the categories of exchangeability were used in the modeling 
- at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-level analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4,7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time ree:ression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

Aliphatic alcohols [Any, Substantial] b 

133. Methanol 0.8 (0.6,1.2) 1.3 (0.7,2.3) 1.0 (0.7,1.6) 1.5 (0.8,2.9) 0.8(0.5,1.4) 1.1 (0.6,2.1) 0.9 (0.5,1.3) 1.2 (0.7,2.4) 

134. Ethanol 1.5 (0.8,2.6) 1.2 (0.3,5.1) 1.9 (1.0,3.6) 1.8 (0.4,8.1) 1.4 (0.7, 2.5) 1.2 (0.5, 2.7) 1.3 (0.7,2.3) 1.4 (0.5,3.4) 

135. Ethylene Glycol 0.7 (0.5,1.0) 1.1 (0.7,1.9) 1.0 (0.6, 1.8) 1.0 (0.6,1.7) 

136. Isopropanol 1.1 (0.7,1.5) 1.2 (0.7,2.2) 1.2 (0.7,1.8) 1.2 (0.6,2.3) 0.9 (0.6, 1.5) 1.2 (0.7, 2.2) 0.9 (0.6,1.5) 1.3 (0.7,2.5) 

Aliphatic chlorinated hydrocarbons [Any, Substantial] b 

138. Carbon Tetrachloride 1.0 (0.7,1.4) 1.5 (0.9,2.5) 1.4 (0.9,2.2) 1.6 (0.9,2.8) 1.1 (0.7, 1.8) 1.4 (0.8, 2.4) 1.1 (0.7,1.7) 1.6 (0.9,2.8) 

139. Methylene Chloride 0.8 (0.5,1.3) 1.8 (0.8,4.2) 1.1 (0.5,2.1) 2.0 (0.8,4.9) 0.9 (0.5, 1.6) 1.1 (0.5, 2.3) 0.9 (0.5,1.7) 1.4 (0.6,3.2) 

140. 1,1,1.-Trichlorethane 1.7 (0.9,3.1) 1.8 (0.8,3.9) 2.7 (1.3,5.7) 2.2 (0.9,5.4) 1.4 (0.8, 2.6) 1.4 (0.7, 2.8) 1.4 (0.8,2.4) 1.6 (0.8,3.4) 

141. Trichloroethylene 1.2 (0.8,1.9) 0.8 (0.4,1.5) 1.2 (0.7,2.1) 1.1 (0.6, 2.1) 1.1 (0.6,2.0) 

142. Perchloroethylene 1.0 (0.5,1.9) 1.0 (0.4,2.2) 1.1 (0.5,2.3) 0.9 (0.5, 1.7) 0.9 (0.5,1.8) 

209. Chlorinated Alkenes 1.1 (0.8,1.6) 0.9 (0.5,1.6) 1.2 (0.8,1.8) 1.1 (0.6, 1.9) 1.1 (0.6,1.8) 

Inorganic gases [Any, Substantial] b 

79. Hydrogen 0.8 (0.5,1.3) 1.1 (0.3,3.8) 1.3 (0.6,2.8) 0.9 (0.5, 1.7) 0.9 (0.5,1.6) 

a Ali strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. Ali 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a common prior, strategy 8, 

:::; semi-Bayes shrinkage ofestimates from strategy 6 using sets ofexchangeability. b Not ail of the categories ofexchangeability were used in the modeling 
N at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-level analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

80. Carbon Monoxide 1.1 (0.9,1.3) 1.0 (0.8,1.4) 0.9 (0.8,1.1) 0.8 (0.5,1.2) 1.1 (0.8, 1.5) 0.9 (0.5, 1.5) 1.1 (0.8,1.5) 0.9 (0.5,1.4) 

81. Hydrogen Cyanide 0.9 (0.5,1.6) 0.6 (0.3,1.5) 2.0 (0.8,4.9) 1.3 (0.6, 2.6) 1.2 (0.6,2.4) 

82. Ammonia 0.9 (0.7,1.1) 0.8 (0.5,1.1) 1.0 (0.7,1.4) 0.8 (0.5,1.3) 1.1 (0.8, 1.5) 0.9 (0.5, 1.4) 1.1 (0.8,1.5) 0.9 (0.5,1.4) 

83. Nitrogen Oxides 1.6 (1.3,2.0) 1.6 (1.0,2.5) 2.6 (1.9,3.7) 2.4 (1.4,4.2) 2.1 (1.5,3.1) 1.7 (1.0,3.0) 2.1 (1.5,2.9) 1.6 (1.0,2.8) 

84. Ozone 1.3 (0.9,1.8) 0.9 (0.4,2.2) 0.8 (0.5,1.3) 0.4 (0.1,1.5) 0.9 (0.6, 1.5) 0.7 (0.3, 1.6) 0.9 (0.6,1.5) 0.8 (0.4,1.6) 

85. Hydrogen Fluoride 1.7 (1.1,2.6) 1.3 (0.4,4.3) 1.0 (0.6,1.8) 2.2 (0.5,9.0) 1.3 (0.7, 2.1) 1.2 (0.5, 2.7) 1.2 (0.7,2.0) 1.0 (0.4,2.3) 

86. Sulphur Dioxide 0.9 (0.7,1.1) 0.7 (0.4,1.4) 0.5 (0.4,0.7) 0.4 (0.2,0.9) 0.6 (0.4, 0.8) 0.8 (0.4, 1.6) 0.6 (0.4,0.9) 0.9 (0.5,1.6) 

87. Hydrogen Sulphide 1.0 (0.7,1.4) 0.6 (0.3,1.5) 1.5 (0.9,2.3) 1.4 (0.5,3.7) 1.3 (0.8, 2.0) 1.1 (0.5,2.4) 1.3 (0.8,2.0) 1.1 (0.5,2.3) 

88. Chlorine 0.5 (0.3,0.8) 0.7 (0.3,1.5) 0.6 (0.3,1.2) 1.1 (0.4,2.9) 0.7 (0.4, 1.3) 1.0 (0.5, 2.1) 0.7 (0.4,1.3) 1.0 (0.5,2.0) 

89. Hydrogen Chloride 0.9 (0.7,1.2) 1.0 (0.6,1.6) 1.1 (0.7,1.6) 0.9 (0.5,1.5) 0.9 (0.6, 1.4) 1.1 (0.6,2.0) 0.9 (0.6,1.4) 1.1 (0.6,1.9) 

97. Coal Gas 0.6 (0.3,1.1) 1.4 (0.3,6.8) 0.5 (0.2,1.2) 0.7 (0.3, 1.5) 0.7 (0.4,1.4) 

Organic gases (CI-C4) [Any, Substantial] b 

91. Methane 0.9 (0.6,1.3) 2.6 (1.3,5.4) 1.0 (0.7,1.6) 2.5 (1.2,5.5) 1.1 (0.7, 1.7) 1.7 (0.8, 3.2) 1.0 (0.6,1.7) 2.1 (0.9,4.9) 

92. Propane 1.1 (0.8,1.6) 0.8 (0.2,3.4) 1.8 (0.7,4.7) 0.9 (0.2,4.3) 1.2 (0.6, 2.1) 0.9 (0.4, 2.2) 1.1 (0.6,2.0) 1.5 (0.5,4.5) 

a AlI strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression mode!: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AlI 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a common prior, strategy 8, 

;:; semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not aIl of the categories of exchangeability were used in the modeling 
W at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simultaneous adjustment 
Strategy 3 8 Strategy 4 8 Strategy 7 8 Strategy 8 8 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90"/0 CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90 % CL) 

94. Acetylene 1.3 (0.9,1.9) 0.3 (0.0,2.4) 0.9 (0.6,1.4) 0.9 (0.6, 1.4) 0.9 (0.6,1.5) 

Inorganic salts [Any, Substantial] b 

25. Sodium Carbonate 1.0 (0.5,1.9) 0.8 (0.3,1.7) 1.1 (0.6,2.1) 1.1 (0.5,2.1) 

30. Calcium Sulphate 1.0 (0.8,1.3) 1.2 (0.9,1.7) 1.1 (0.8,1.5) 1.3 (0.9,1.9) 1.0 (0.7, 1.5) 1.2 (0.8, 1.8) 1.0 (0.7,1.5) 1.2 (0.8,1.9) 

31. Calcium Carbonate 0.8 (0.6,1.2) 1.2 (0.6,2.2) 0.8 (0.5,1.2) 1.3 (0.7,2.6) 0.9 (0.6, 1.3) 1.3 (0.7,2.5) 0.9 (0.6,1.3) 1.4 (0.7,2.6) 

Magnesium compounds [Any] b 

10. Industrial Talc 0.7 (0.5,1.1) 0.6 (0.3,1.3) 0.9 (0.5,1.5) 0.6 (0.2,1.3) 0.8 (0.5, 1.3) 0.8 (0.4, 1.7) 0.8 (0.5,1.4) 0.9 (0.5,1.8) 

23. Cosmetic Talc 1.5 (0.8,2.7) 0.4 (0.1,1.6) 1.9 (1.0,3.7) 1.6 (0.9, 3.0) 1.6 (0.8,3.2) 

Aluminium compounds [Any, Substantial] b 

12. Clay Oust 1.6 (1.0,2.6) 1.1 (0.5,2.4) 2.1 (1.2,3.6) 1.2 (0.5,3.0) 1.6 (1.0, 2.8) 1.2 (0.6, 2.4) 1.8 (1.0,3.2) 1.2 (0.6,2.7) 

21. Aluminium Alloy Oust 1.4 (1.0,1.9) 1.1 (0.7,1.8) 1.5 (1.0,2.3) 1.6 (0.9,2.6) 1.3 (0.9, 1.9) 1.2 (0.7, 2.1) 1.3 (0.9,1.9) 1.2 (0.7,2.2) 

26. Alumina 1.2 (0.9,1.5) 1.4 (0.9,2.2) 1.6 (1.2,2.3) 1.7 (0.9,3.0) 1.4 (1.0, 1.9) 1.6 (0.9, 2.8) 1.4 (1.0,1.9) 1.7 (1.0,3.1) 

102. Aluminium Fumes 1.2 (0.7,1.9) 0.8 (0.4,1.9) 0.6 (0.3,1.2) 0.3 (0.1,0.7) 0.7(0.4,1.2) 0.7(0.3,1.4) 0.7 (0.4,1.3) 0.7 (0.3,1.6) 

a Ali strategies inc1ude adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AlI 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a corn mon prior, strategy 8, 

t:; semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not ail of the categories of exchangeability were used in the modeling 
~ at the substantiallevel of exposure, so a descriptor folIows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3,4,7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time rel!ression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90%. CL) RR (90% CL) RR (90% CL) 

Chromates [Any] b 

40. Lead Chromate 0.7 (0.4,1.2) 1.1 (0.2,5.6) 1.3 (0.7,2.6) 1.1 (0.6, 2.0) 1.4 (0.7,2.8) 

104. Chromium Fumes 2.0 (1.2,3.2) 2.1 (0.7,6.6) 1.3 (0.8,2.2) 1.7 (0.6,5.1) 1.4 (0.7, 2.9) 1.4 (0.7, 3.1) 1.9 (0.6,6.1) 1.6 (0.7,4.0) 

Manganese compounds [Any, Substantial] b 

16. Stainless Steel Dust 1.4 (1.0,1.9) 1.5 (0.9,2.6) 1.2 (0.8,1.9) 1.5 (0.8,2.7) 1.1 (0.7, 1.6) 1.3 (0.7, 2.4) 1.1 (0.7,1.7) 1.4 (0.7,2.7) 

17. Mild Steel Dust 1.2 (1.0,1.5) 1.1 (0.8,1.5) 1.2 (0.9,1.6) 1.2 (0.8,1.7) 1.2 (0.9, 1.6) 1.1 (0.7, 1.6) 1.2 (0.9,1.6) 1.2 (0.8,1.8) 

105. Manganese Fumes 1.4 (1.0,1.9) 3.3 (1.5,7.0) 1.0 (0.6,1.6) 1.8 (0.7,4.6) 1.1 (0.6, 1.8) 1.4 (0.7, 2.9) 1.2 (0.7,2.2) 2.2 (0.9,5.5) 

Iron compounds [Any, Substantial] b 

16. Stainless Steel Dust 1.4 (1.0,1.9) 1.5 (0.9,2.6) 1.2 (0.8,1.9) 1.5 (0.8,2.7) 1.1 (0.7, 1.6) 1.3 (0.7,2.4) 1.1 (0.7,1.7) 1.4 (0.7,2.7) 

17. Mild Steel Dust 1.2 (1.0,1.5) 1.1 (0.8,1.5) 1.2 (0.9,1.6) 1.2 (0.8,1.7) 1.2 (0.9, 1.6) 1.1 (0.7, 1.6) 1.2 (0.9,1.6) 1.2 (0.8,1.8) 

33. Iron Dust 0.9 (0.6,1.4) 0.6 (0.3,1.2) 0.9 (0.5,1.4) 0.5 (0.2,1.0) 0.9 (0.6, 1.4) 0.7 (0.4, 1.4) 0.8 (0.5,1.3) 0.6 (0.3,1.1) 

34. Iron Oxides 0.9 (0.7,1.1) 0.7 (0.5,1.1) 0.8 (0.6,1.1) 0.7 (0.4,1.1) 0.8 (0.5, 1.1) 0.8 (0.5, 1.3) 0.7 (0.5,1.0) 0.8 (0.5,1.2) 

106. Iron Fumes 1.2 (0.9,1.6) 1.4 (1.0,2.1) 0.9 (0.6,1.3) 0.8 (0.5,1.5) 0.8 (0.5, 1.3) 1.0 (0.5, 1.9) 0.7 (0.4,1.2) 0.6 (0.3,1.3) 

a Ali strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. Ali 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a common prior, strategy 8, 

~ semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not ail of the categories of exchangeability were used in the modeling 
VI at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-level analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time re2ression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90%. CL) 

Nickel compounds [Any] b 

16. Stainless Steel Oust 1.4 (1.0,1.9) 1.5 (0.9,2.6) 1.2 (0.8,1.9) 1.5 (0.8,2.7) 1.1 (0.7, 1.6) 1.3 (0.7,2.4) 1.1 (0.7,1.7) 1.4 (0.7,2.7) 

107. Nickel Fumes 1.7 (1.1,2.8) 1.3 (0.8,2.1) 1.1 (0.5, 2.3) 0.8 (0.3,2.5) 

Copper compounds [Any, Substantial] b 

14. Bronze Oust 0.8 (0.4,1.6) 0.7 (0.3,1.9) 0.6 (0.3,1.4) 0.5 (0.2,1.4) 0.8 (0.4, 1.4) 0.8 (0.4, 1.7) 0.7 (0.4,1.5) 0.6 (0.2,1.8) 

15. Brass Oust 1.4 (0.9,2.3) 1.5 (0.7,3.1) 1.2 (0.7,2.1) 1.3 (0.6,3.0) 1.2 (0.7, 2.1) 1.3 (0.7,2.6) 1.3 (0.8,2.3) 2.0 (0.9,4.5) 

35. Copper Oust 1.2 (0.8,1.7) 2.6 (1.3,5.3) 1.2 (0.7,1.9) 2.1 (1.0,4.5) 1.2 (0.7, 1.9) 1.7 (0.9, 3.2) 1.2 (0.8,2.0) 1.9 (0.9,3.9) 

108. Copper Fumes 1.8 (1.2,2.7) 2.1 (1.1,3.9) 1.5 (0.9,2.4) 2.2 (1.0,4.5) 1.5 (0.9, 2.6) 1.3 (0.7,2.6) 1.5 (0.9,2.7) 1.6 (0.7,3.6) 

Zinc compounds [Any, Substantial] b 

15. Brass Oust 1.4 (0.9,2.3) 1.5 (0.7,3.1) 1.2 (0.7,2.1) 1.3 (0.6,3.0) 1.2 (0.7, 2.1) 1.3 (0.7,2.6) 1.3 (0.8,2.3) 2.0 (0.9,4.5) 

36. Zinc Oust 1.4 (0.9,2.3) 3.5 (1.1,11.1) 1.6 (0.9,2.9) 2.7 (0.7,10.7) 1.2 (0.7, 2.1) 1.3 (0.6, 3.1) 1.2 (0.7,2.1) 1.7 (0.6,4.9) 

37. Zinc Oxide 1.0 (0.7,1.6) 0.8 (0.2,2.8) 1.5 (0.9,2.7) 1.3 (0.7, 2.2) 1.3 (0.7,2.3) 

109. Zinc Fumes 1.3 (0.9,1.9) 2.6 (1.3,5.1) 0.9 (0.5,1.6) 1.5 (0.6,3.7) 0.9 (0.5, 1.5) 1.2 (0.6, 2.4) 0.9 (0.5,1.5) 1.4 (0.6,3.3) 

a Ali strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. Ali 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a common prior, strategy 8, 

;:; semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not ail of the categories of exchangeability were used in the modeling 
0'\ at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-level analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time ree:ression models 
Strategy 3 a Strategy 4 a 

Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

Tin compounds [Any, Substantial] b 

14. Bronze Dust 

111. Tin Fumes 

0.8 (0.4,1.6) 0.7 (0.3,1.9) 

1.4 (1.0,2.0) 1.0 (0.5,2.1) 

Lead compounds [Any, Substantial] b 

38. Lead Oxides 1.5 (0.9,2.5) 1.9 (0.8,4.9) 

39. Basic Lead Carb. 

40. Lead Chromate 

112. Lead Fumes 

155. Leaded Gasoline 

Not in a category 

1. Abrasives Dust 

18. Inorg.Pigments 

20. Extenders 

22. Ashes 

1.2 (0.7,1.9) 

0.7 (0.4,1.2) 

1.3 (0.9,1.8) 

1.1 (0.8,1.3) 

1.4 (0.3,6.1) 

1.1 (0.2,5.6) 

0.8 (0.3,1.6) 

0.9 (0.6,1.3) 

1.1 (0.9,1.3) 0.9 (0.7,1.2) 

1.2 (0.9,1.5) 1.4 (0.8,2.4) 

0.8 (0.6,1.1) 0.7 (0.3,1.3) 

1.3 (0.8,2.1) 1.5 (0.8,3.0) 

0.6 (0.3,1.4) 0.5 (0.2,1.4) 

1.1 (0.6,2.1) 0.5 (0.2,1.3) 

1.3 (0.7,2.5) 

1. 7 (1.0,3.0) 

1.3 (0.7,2.6) 

1.0 (0.5,2.0) 

1.1 (0.9,1.5) 

1.7 (0.7,4.7) 

0.5 (0.2,1.1) 

0.8 (0.6,1.2) 

0.7 (0.5,1.0) 0.8 (0.6,1.1) 

1.5 (1.0,2.2) 3.0 (1.3,7.0) 

0.8 (0.5,1.3) 0.3 (0.1,0.7) 

2.3 (1.3,4.1) 2.2 (1.0,4.8) 

Single large model with simultaneous adjustment 
Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

0.8 (0.4,1.4) 0.8 (0.4,1.7) 0.7 (0.4,1.5) 0.6 (0.2,1.8) 

1.0 (0.6, 1.8) 1.0 (0.5, 2.0) 0.8 (0.4,1.6) 0.6 (0.2,1.7) 

1.3 (0.8,2.3) 1.4 (0.7, 3.0) 1.3 (0.7,2.4) 1.6 (0.6,3.8) 

1.2 (0.6, 2.2) 1.2 (0.6,2.2) 

1.1 (0.6, 2.0) 1.4 (0.7,2.8) 

1.1 (0.6, 1.9) 0.8 (0.4, 1.8) 1.2 (0.6,2.1) 0.9 (0.4,2.1) 

1.0(0.7,1.4) 0.9(0.5,1.4) 1.0 (0.7,1.5) 0.9 (0.6,1.6) 

0.8 (0.6, 1.0) 0.8 (0.5, 1.1) 0.8 (0.6,1.0) 0.8 (0.5,1.1) 

1.4 (0.9, 2.1) 1.3 (0.7,2.5) 1.3 (0.9,2.0) 1.2 (0.7,2.3) 

0.8 (0.5, 1.3) 0.7 (0.4, 1.5) 0.8 (0.5,1.3) 0.8 (0.4,1.5) 

1.5 (0.8, 2.7) 1.4 (0.7, 2.9) 1.5 (0.8,2.5) 1.3 (0.7,2.5) 

a AlI strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AlI 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a common prior, strategy 8, 

;::; semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not aIl of the categories of exchangeability were used in the modeling 
-..,J at the substantiallevel of exposure, so a descriptor foIlows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

24. Borates 1.7 (0.9,3.5) 4.1 (1.1,15.9) 2.0 (0.8,5.4) 1.3 (0.6, 2.6) 1.2 (0.7,2.3) 

28. Sulfur 0.7 (0.4,1.4) 1.4 (0.4,5.4) 0.7 (0.3,1.5) 2.5 (0.6,10.3) 0.7 (0.4, 1.4) 1.3 (0.5, 3.0) 0.8 (0.4,1.4) 1.2 (0.6,2.4) 

41. Organic Oyes & Pig. 0.9 (0.7,1.2) 1.3 (0.7,2.5) 0.8 (0.5,1.2) 1.6 (0.9,3.2) 0.9 (0.6, 1.3) 1.3 (0.7, 2.4) 0.9 (0.6,1.3) 1.2 (0.7,2.1) 

56. Rayon Fibres 0.9 (0.6,1.5) 1.3 (0.6,2.6) 1.0 (0.5,1.8) 1.5 (0.6,3.5) 0.9 (0.5, 1.6) 1.3 (0.7,2.8) 0.9 (0.5,1.5) 1.3 (0.7,2.4) 

57. Acrylic Fibres 0.9 (0.5,1.5) 1.1 (0.5,2.2) 0.7 (0.3,1.4) 1.2 (0.6,2.5) 0.9 (0.5, 1.6) 1.1 (0.6,2.3) 0.9 (0.5,1.5) 1.1 (0.6,2.1) 

58. Polyester Fibres 1.1 (0.7,1.6) 0.9 (0.5,1.5) 1.2 (0.7,2.0) 0.9 (0.5,1.6) 1.1 (0.7,2.0) 1.2 (0.6, 2.3) 1.1 (0.7,1.9) 1.1 (0.6,2.0) 

59. Nylon Fibres 1.1 (0.7,1.7) 0.9 (0.5,1.8) 1.5 (0.9,2.6) 1.0 (0.5,2.1) 1.3 (0.8, 2.3) 1.1 (0.5, 2.1) 1.3 (0.7,2.1) 1.1 (0.6,2.0) 

60. Acetate Fibres 0.8 (0.4,1.5) 0.8 (0.2,2.5) 0.6 (0.3,1.3) 1.0 (0.3,3.2) 0.9 (0.4, 1.6) 0.8 (0.4, 1.9) 0.9 (0.5,1.6) 0.8 (0.4,1.7) 

93. Formaldehyde 0.9 (0.7,1.1) 0.8 (0.5,1.2) 0.9 (0.7,1.2) 0.8 (0.5,1.4) 1.0 (0.8, 1.4) 0.9 (0.5, 1.6) 1.0 (0.8,1.3) 0.9 (0.6,1.5) 

95. Phosgene 0.7 (0.3,1.3) 5.3 (0.4,73.6) 1.2 (0.5,3.1) 0.9 (0.5, 1.9) 0.9 (0.5,1.8) 

96. Spray Gases 1.0 (0.6,1.8) 0.6 (0.2,1.7) 0.8 (0.4,1.5) 0.5 (0.2,1.6) 1.0 (0.5, 1.8) 0.8 (0.4, 1.7) 1.0 (0.5,1.7) 0.8 (0.4,1.6) 

114. Cooking Fumes 0.8 (0.6,1.1) 0.9 (0.6,1.3) 0.7 (0.5,1.0) 0.8 (0.5,1.3) 0.8 (0.6, 1.2) 0.9 (0.6, 1.5) 0.8 (0.6,1.2) 0.9 (0.6,1.4) 

116. Coal Comb.Products 1.2 (0.8,1.7) 0.9 (0.5,1.8) 0.9 (0.6,1.4) 0.9 (0.5,1.6) 1.0 (0.7, 1.6) 0.7 (0.4, 1.5) 1.0 (0.7,1.6) 0.8 (0.4,1.5) 

118. Liquid Fuel Comb.Prod. 1.1 (0.8,1.5) 0.9 (0.6,1.4) 0.9 (0.6,1.3) 0.6 (0.4,1.1) 0.9 (0.6, 1.4) 0.8 (0.5, 1.4) 1.0 (0.7,1.4) 0.8 (0.5,1.3) 

a AlI strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AlI 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a cornmon prior, strategy 8, 

;::; semi-Bayes shrinkage of estirnates from strategy 6 using sets of exchangeability. b Not aIl of the categories of exchangeability were used in the rnodeling 
00 at the substantiallevel of exposure, so a descriptor folIows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simultaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

120. Natural Gas Comb.Prod. 0.7 (0.5,1.1) 0.9 (0.4,2.1) 0.5 (0.3,0.8) 0.5 (0.2,1.2) 0.7 (0.4, 1.1) 0.8 (0.4, 1.6) 0.7 (0.4,1.1) 0.8 (0.4,1.5) 

123. Plastics Pyrol.Prod. 0.5 (0.3,0.8) 0.4 (0.2,0.9) 0.8 (0.4,1.6) 0.5 (0.2,1.1) 0.7 (0.4, 1.3) 0.7 (0.3, 1.5) 0.7 (0.4,1.3) 0.8 (0.4,1.5) 

124. Rubber Pyrol.Prod. 0.9 (0.5,1.5) 0.7 (0.3,1.5) 1.2 (0.6,2.5) 1.6 (0.6,4.2) 1.0 (0.5, 1.9) 1.3 (0.6,2.8) 1.0 (0.6,1.8) 1.2 (0.6,2.4) 

125. Propane Comb.Prod. 1.0 (0.6,1.4) 1.6 (0.8,3.1) 0.6 (0.4,1.0) 1.5 (0.7,3.3) 0.7 (0.3, 1.2) 0.8 (0.4, 1.8) 0.7 (0.4,1.3) 0.8 (0.4,1.7) 

127. Alkali, Caustic Solutions 1.3 (0.9,1.7) 1.5 (0.9,2.5) 1.7 (1.2,2.4) 2.1 (1.3,3.6) 1.6 (1.1, 2.2) 1.7 (1.0, 2.8) 1.5 (1.1 ,2.2) 1.6 (1.0,2.6) 

137. Acetic Acid 1.0 (0.6,1.6) 1.1 (0.5,2.3) 1.0 (0.6,1.6) 1.7 (0.8,3.8) l.l (0.7, 1.9) 1.3 (0.7,2.6) 1.1 (0.7,1.8) 1.2 (0.7,2.2) 

143. Acetone 1.0 (0.6,1.6) 1.2 (0.6,2.4) 0.8 (0.4,1.5) 1.1 (0.5,2.3) 0.9 (0.5, 1.5) l.l (0.6, 2.1) 0.9 (0.5,1.5) 1.1 (0.6,2.0) 

148. Phenol 0.7 (0.4,1.4) 0.8 (0.3,2.1) 0.8 (0.4, 1.6) 0.8 (0.5,1.6) 

150. Turpentine 1.0 (0.7,1.4) 1.2 (0.8,1.8) 1.2 (0.8,1.7) 1.2 (0.8,1.9) 0.9 (0.6, 1.5) 0.8 (0.5, 1.4) 0.9 (0.6,1.4) 0.8 (0.5,1.4) 

153. Solvents l.l (0.9,1.3) 1.1 (0.9,1.4) 1.1 (0.9,1.4) 1.2 (1.0,1.6) 1.1 (0.9, 1.4) 1.2 (0.9, 1.6) 1.1 (0.9,1.4) 1.1 (0.9,1.5) 

154. Waxes, Polishes 0.9 (0.7,1.2) 0.9 (0.5,1.5) 1.1 (0.7,1.6) 1.0 (0.5,1.7) 1.0 (0.7, 1.6) 0.9 (0.5, 1.6) 1.1 (0.7,1.5) 0.9 (0.6,1.5) 

160. Lubric.Oils & Greases 1.1 (0.9,1.4) 1.1 (0.8,1.5) 1.1 (0.9,1.4) 1.1 (0.8,1.5) 1.0 (0.8, 1.3) l.l (0.8, 1.6) 1.0 (0.8,1.3) 1.1 (0.8,1.6) 

161. Cutting Fluids 1.3 (1.0,1.7) 1.2 (0.8,1.7) 1.4 (1.0,2.0) 1.0 (0.6,1.5) 1.2 (0.8, 1.7) 1.0 (0.6, 1.6) 1.2 (0.8,1.7) 0.9 (0.6,1.5) 

162. Asphalt 0.8 (0.5,1.2) 0.9 (0.5,1.7) 0.7 (0.4,1.1) 0.7 (0.3,1.3) 0.8 (0.5, 1.3) 1.0 (0.5, 1.8) 0.8 (0.5,1.3) 0.9 (0.5,1.7) 

a Ail strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AIl 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a corn mon prior, strategy 8, 

w semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not aIl of the categories of exchangeability were used in the modeling 
'-0 at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-Ievel analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4, 7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simuItaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

164. Creosote 0.7 (0.3,1.6) 0.8 (0.2,3.1) 0.5 (0.2,1.4) 0.6 (0.1,2.6) 0.8 (0.4, 1.7) 0.8 (0.4, 1.9) 0.8 (0.4,1.6) 0.8 (0.4,1.7) 

165. Hydraulic Fluid 0.8 (0.6,1.3) 0.9 (0.3,2.9) 1.1 (0.7,1.8) 0.8 (0.2,2.6) 1.0 (0.6, 1.6) 1.0 (0.5, 2.2) 1.0 (0.6,1.6) 1.0 (0.5,2.0) 

179. Hypochlorites 0.7 (0.5,1.0) 0.9 (0.6,1.3) 0.7 (0.5,1.1) 0.9 (0.6,1.4) 0.9 (0.6,1.4) 1.0 (0.6, 1.7) 0.9 (0.6,1.3) 1.0 (0.6,1.6) 

180. Nitrates 0.9 (0.4,1.9) 0.6 (0.1,2.3) 0.3 (0.1,0.8) 0.2 (0.1,1.1) 0.6 (0.3, 1.3) 0.7 (0.3, 1.6) 0.7 (0.4,1.3) 0.7 (0.4,1.5) 

185. Vanadium Compounds 1.3 (0.6,2.9) 0.8 (0.4,1.8) 1.0 (0.5, 2.1) 1.0 (0.5,2.0) 

189. Cobalt Compounds 1.3 (0.7,2.1) 0.8 (0.3,2.1) 1.1 (0.6,2.1) 1.2 (0.6, 2.1) 1.2 (0.7,2.0) 

197. Antimony Compounds 1.3 (0.8,2.3) 1.1 (0.4,3.2) 0.8 (0.4,1.6) 1.2 (0.4,3.9) 0.9 (0.5, 1.6) 1.0 (0.5, 2.3) 0.9 (0.5,1.6) 1.0 (0.5,2.0) 

198. Tungsten Compounds 1.4 (0.7,2.6) 0.9 (0.4,2.3) 1.3 (0.6,2.8) 1.1 (0.5, 2.2) 1.1 (0.6,2.0) 

199. Gold Compounds 1.8 (0.9,3.5) 2.2 (0.7,7.2) 1.5 (0.6,3.8) 1.3 (0.6, 2.5) 1.2 (0.7,2.3) 

200. Mercury Compounds 1.0 (0.6,1.8) 1.3 (0.6,3.0) 1.3 (0.7, 2.4) 1.2 (0.7,2.2) 

212. Fluorocarbons 0.6 (0.3,1.0) 0.2 (0.0,1.2) 0.5 (0.3,1.0) 0.6 (0.3, 1.1) 0.6 (0.4,1.2) 

213. Glycol Ethers 1.0 (0.6,1.5) 3.3 (1.2,8.9) 1.2 (0.7,2.1) 3.6 (1.1,11.3) 1.0 (0.6, 1.7) 1.6 (0.7, 3.5) 1.0 (0.6,1.6) 1.4 (0.7,2.8) 

223. Phthalates 0.4 (0.2,0.7) 1.0 (0.3,3.3) 0.4 (0.2,0.7) 0.6 (0.3, 1.2) 0.6 (0.4,1.2) 

224. Isocyanates 0.9 (0.5,1.6) 0.8 (0.2,3.5) 2.7 (1.1,6.4) 1.3 (0.6, 2.5) 1.2 (0.6,2.3) 

a Ali strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression model: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. AlI 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a common prior, strategy 8, 

~ semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not ail of the categories of exchangeability were used in the modeling 
o at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-level analyses it was used. 



Table 7-11: Rate ratio estimates, from strategies 3, 4,7, and 8, for 184 chemicals, at two levels of exposure, grouped by the categories of 
exchangeability used in the semi-Bayes modeling 

One-chemical-at-a-time regression models Single large model with simuItaneous adjustment 
Strategy 3 a Strategy 4 a Strategy 7 a Strategy 8 a 

Any Substantial Any Substantial Any Substantial Any Substantial 
RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

228. Fertilizers 1.3 (0.9,1.8) 1.0 (0.6,1.6) 1.5 (1.0,2.3) 1.1 (0.6,1.8) 1.4 (0.9, 2.2) 1.1 (0.6, 1.8) 1.4 (0.9,2.1) 1.0 (0.6,1.7) 

229. Pesticides 1.1 (0.8,1.5) 0.8 (0.5,1.5) 1.1 (0.8,1.7) 0.9 (0.5,1.4) 1.0 (0.6, 1.6) 1.0 (0.6, 1.8) 1.0 (0.7,1.6) 1.0 (0.6,1.7) 

230. Biocides 0.8 (0.6,1.0) 1.0 (0.7,1.4) 0.7 (0.5,1.0) 0.9 (0.6,1.5) 0.8 (0.6, 1.2) 1.0 (0.6, 1.7) 0.8 (0.6,1.2) 1.0 (0.6,1.6) 

231. Bleaches 0.5 (0.2,1.1) 0.7 (0.2,2.3) 0.5 (0.2,1.3) 0.7 (0.2,2.6) 0.7 (0.4, 1.5) 0.9 (0.4, 2.0) 0.8 (0.4,1.5) 0.9 (0.4,1.8) 

a Ail strategies include adjustment for eight non-occupational confounders (see text). Each chemical assessed in a separate regression mode!: strategy 3, 
adjustment for seven currently suspected lung carcinogens, strategy 4, automatic forward selection of other chemicals as confounders using P<0.25. Ali 
chemicals assessed in a single large regression model: strategy 7, semi-Bayes shrinkage of estimates from strategy 6 using a common prior, strategy 8, 

~ semi-Bayes shrinkage of estimates from strategy 6 using sets of exchangeability. b Not ail of the categories of exchangeability were used in the modeling 
- at the substantiallevel of exposure, so a descriptor follows each category label, indicating in which exposure-Ievel analyses it was used. 



Many estimates were consistent across aH approaches. The tirst chemicallisted, asbestos 

(5) for instance, had estimates close to 1.0 at any level of exposure across aH models, and 

estimates close to 1.5 at the substantiallevel of exposure in three of the four models. 

Taking into account the unadjusted estimates for asbestos from Table 7-3, to sorne extent 

these results suggest that there is very little confounding of asbestos by chemicals other 

than the seven currently suspected lung carcinogens used in strategy 3. In contrast, sorne 

chemicals did appear to be confounded by other occupational chemicals, possibly 

highlighting the inadequacy of the simpler models that made more restrictive assumptions 

about which chemicals would be considered confounders. 

For the most part, the addition ofthe categories of exchangeability (comparing estimates 

from strategy 7 to estimates from strategy 8) resulted in only minor changes in the 

estimates. Slightly larger influences can be seen in the results of a few chemicals, such as 

chromium fumes (104), whose estimate in strategy 7 (without the categories) was 1.4, but 

shifted upwards to 1.9 in strategy 8. 

7.5.1 Estimates of the effects of chemical and physical properties on the risk of 
Jung cancer 

Visu al inspection 

Discerning patterns from a visual inspection of the estimates by categories in Table 7-11 

is difficult because several of the categories involved a large number of substances. 

Nevertheless, in strategy 8, it appeared that there were sorne categories that 

predominantly contained chemicals with estimates that were 'elevated', though not 

necessarily statisticaHy so, over the estimates from strategy 7. These categories included 

polypeptides, metal dusts (excluding oxides), metal oxide dusts, heavy metal compounds, 

aliphatic chlorinated hydrocarbons, organic gases (C1-C4), chromates, copper 

compounds, and zinc compounds. 

Second-level semi-Bayes estimates 

A more quantitative appreciation of the influence ofthese categories is possible by 

inspecting the estimates from the second-Ievel model of strategy 8. These second-Ievel 

coefficients, for the regression models ofboth levels of exposure, are provided in Table 7-

12. The estimates are to be read as would be normal coefficients in a linear regression; 
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that is, expected change in the logistic coefficient for a particular chemical if that 

chemical belonged to that particular category, depending on the exposure level. This 

translates to the effects on the risk oflung cancer by the second-Ievel covariates, the 

chemical and physical properties. For instance, the estimate for heavy metal compounds 

at any level of exposure was 0.214. Thus, exp(0.214)=1.2 is the expected rate ratio 

estimate for the effect of heavy metal compounds on the risk of lung cancer. With the 

exception of Z 1, an the category-covariates were dichotomous: chemicals either 

be10nged to the category or they did not. Z1, on the other hand, represented previous 

evidence (of lung carcinogenicity of a chemical) in the form of a continuous covariate 

(see step iii, section 6.10). Its associated parameter estimate has a curious interpretation, 

in that it is the expected change in the log-odds of lung cancer for a one unit increase in 

the variable, which would be the case if the prior belief for the effect of the chemical was 

a 'residual' relative risk of 2.7 (corresponding approximately to el). 

143 



Table 7-12: Estimated coefficients of second-Ievel variables in semi-Bayes analyses 

Parameter estimates 

Variable 
Secand-level characteristic, used 
ta specify exchangeable effects Any expasure Substantial 

expasure 

Zl Previous evidence -0.460 0.437 

Z2 Polypeptides 0.030 0.190 

Z3 Polysaccharides 0.117 -0.038 

Z4 Fibrous inorganic dusts -0.144 -0.272 

Z5 Silica containing compounds 0.184 0.111 

Z6 Metal dusts (excluding oxides) -0.007 0.081 

Z7 Metal oxide dusts 0.061 0.388 

Z8 Metal oxide fumes -0.088 -0.020 

Z9 Heavy metal compounds 0.214 -0.017 

ZlO Monocyclic aromatic hydrocarbons -0.207 -0.133 

Zl1 Polycyclic aromatic hydrocarbons 0.040 0.009 

Z12 Engine emissions 0.050 0.056 

Z13 Inorganic acid mists -0.052 -0.171 

Z14 Resins and resin-containing 0.064 -0.036 
compounds 

Z15 Carbonaceous compounds -0.212 -0.037 

Z16 Aliphatic alkanes (C5-C17) -0.004 0.318 

Z17 Aliphatic alcohols 0.016 0.270 

ZI8 Aliphatic chlorinated hydrocarbons 0.084 0.432 

Z19 Inorganic gases 0.024 0.034 

Z20 Organic gases (C1-C4) 0.030 0.568 

Z21 Inorganic salts -0.006 0.254 
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Parameter estimates 

Variable 
Secand-Ievel characteristic, used 
ta specify exchangeable effects Any expasure Substantial 

expasure 

Z22 Magnesium compounds -0.018 

Z23 Aluminium compounds 0.179 0.023 

Z24 Chromates 0.719 

Z25 Manganese compounds 0.331 0.792 

Z26 Iron compounds -0.243 -0.618 

Z27 Nickel compounds -0.197 

Z28 Copper compounds 0.022 0.376 

Z29 Zinc compounds 0.103 0.360 

Z30 Tin compounds -0.305 -0.712 

Z31 Lead compounds -0.087 -0.123 

7.5.2 An ex ample of an approximate semi-Bayes calculation 

The estimates shown in Table 7-12 were used to shrink first-Ievel chemical estimates to 

supposedly more accurate point values. Using lead chromate (40) as an example, the 

semi-Bayes estimate would be calculated by substituting lead chromate's z-matrix values 

into the estimated second-Ievel regression equation and then averaging with the first-Ievel 

maximum likelihood estimate. Lead chromate belonged to three categories of 

exchangeability: heavy metal compounds (Z9), chromates (Z24), and lead compounds 

(Z31), and in addition had a non-zero value for the intercept (Z 1), which in this case 

encapsulated the effect ofhow 1 specified previous evidence oflung carcinogenicity (see 

step iii, section 6.10). Thus, at any level of exposure, the following equation would 

approximately represent the semi-Bayes estimate for lead chromate: 

bsb,any= [-0.460(Zl) +0.214(Z9) + 0.719(Z24)-0.087(Z31)]Wl + 0.240W2, 
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where the coefficients for ZI, Z9, Z24, and Z31 were reported in Table 7-12, 0.240 was 

the original maximum likelihood estimate (from model6, results not shown), and the 

weights, Wl and W2, were inversely proportional, respectively, to the specified prior 

variance, T2=0.246, and the estimated variance of the maximum likelihood estimate for 

lead chromate, in this case being 0.24. Values of 1 were substituted in for Z9, Z24, and 

Z31, indicating lead chromate belonged to those particular categories (the zeroes for the 

other Z-variables explain why only these four variables appear in the above equation). 

And the value of 0.8 was substituted into ZI, indicating that the prior belieffor the effect 

oflead chromate was a rate ratio of eO.8 ~ 2.2 (see step iii, section 6.10). Substituting in 

aH the values led to, 

bsb,any= [-0.460(0.8) +0.214(1) + 0.719(1)-0.087(1)]wl + 0.240W2 , 

bsb,any= 0.477wl + 0.240W2 , 

Thus, depending on the weighting, the semi-Bayes estimate for lead chromate would faH 

somewhere between the rate ratios of exp(0.477) and exp(0.240). The semi-Bayes 

estimate for lead chromate, from Table 7-11, was log(1.367)=0.313, which faHs almost 

halfway between the estimated prior mean and maximum likelihood estimate. 
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7.6 Ranking and selection of occupational substances 

One of the objectives of the thesis was to eannark occupational substances that were most 

likely involved in the etiology of lung cancer and that would be prioritized for further 

examination. Although there are several ways of ranking and selecting, for the reasons 

outlined in section 6.11, the chemicals were primarily ranked according to the magnitude 

of the estimates yielded by the semi-Bayes approach ofstrategy 8, resulting in sections A 

and B of Table 7-13. Section A shows the selected chemicals from the results at any level 

of exposure, while section B shows the selected chemicals from the results at the 

substantiallevel of exposure. From a more conventional modeling approach to selecting 

the chemicals (strategy 3), sections C and D correspond, respectively, to the results from 

any level of exposure and the substantiallevel of exposure. 

Special notice should be given to which chemicals were considered with each modeling 

strategy. The approach of modeling strategy 3 analyzed the entire set of 231 chemicals, 

while the semi-Bayes approach was restricted to the 184 chemicals that could be assessed 

simultaneously in a single regression model. For this reason, more chemicals could have 

been earmarked in sections C and D, which were the results from strategy 3. 
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Table 7-13: Four variations of the ranking and selection of occupational chemicals 

A. Ranking by point estimate (STRA TE GY 8, semi-Bayes regression), for ANY level of exposure, with selection by statistical 
significance, tail area values, and previous evidence. 

AnX Ex~osure Substantial Ex~osure 
Reason for Exp Exp 
Selection ~ Cases RR(90% CL) AN2 Cases RR (90% CL) AN2 

53. Natural Rubber Sig 44 2.1 (1.3, 3.5) 23.1 NEc 

83. Nitrogen Oxides Sig 240 2.1 (1.5,2.9) 123.4 36 1.6 (1.0, 2.8) 14.1 
104. Chromium Fumes Tail 43 1.9 (0.6, 6.1) 20.3 8 1.6 (0.7, 4.0) 3.1 
12. Clay Dust Sig 28 1.8 (1.0, 3.2) 12.5 9 1.2 (0.6, 2.7) 1.7 
23. Cosmetic Talc Tail 13 1.6 (0.8, 3.2) 5.1 NEc 

68. Urea-Formald. Tail 50 1.6 (1.0, 2.5) 18.6 4 1.0 (0.5, 2.0) 0 
64. Poly-Acrylates Tail 29 1.6 (0.9, 2.8) 10.5 8 1.3 (0.6, 2.5) 1.6 
108. Copper Fumes Tail 47 1.5 (0.9,2.7) 16.3 16 1.6 (0.7, 3.6) 5.8 
127. Alkali, Caustic Solutions Sig 72 1.5 (1.1, 2.2) 24.7 23 1.6 (1.0, 2.6) 8.4 
40. Lead Chromate Prey 35 1.4 (0.7, 2.8) 9.4 NEC 

117. Diesel Eng.Emissions Prey 165 1.1 (0.9, 1.4) 17.4 81 1.2 (0.8, 1.7) 11.9 
219. Benzo(a)pyrene Prey 220 1.1 (0.8, 1.5) 19.1 42 1.0 (0.5, 1.7) 0 
6. Crystalline Silica Prey 238 1.0 (0.8, 1.3) 2.3 81 1.3 (0.9, 1.9) 17.0 
195. Cadmium Compounds Prey Il 1.0 (0.5, 2.2) 0.1 4 1.1 (0.4, 2.8) 0.3 

a Selection of which chemicals to include in this table depended on the analytic approach. Selection of estimates required aRR> 1.0 and one of 
the following: statistically significant estimate with P-value::SO.l (Sig), previous evidence as to what are currently thought of as lung carcinogens 
(Prev), or -- only in the case of the semi-Bayes models -- a point estimate in the extreme tai! region of the distribution of estimates (Tai!) . 
b Attributable number. When RR ::s 1, AN=O. C Not estimated at this exposure level. 



Table 7-13: Four variations of the ranking and selection of occupational chemicals 

B. Ranking by point estimate (STRA TEGY 8, semi-Bayes regression), for the SUBSTANTIAL level of exposure, with selection by 
statistical significance, tail area values, and previous evidence. 

Any EXQosure Substantial EXQosure 
Reason for Exp Exp 
Selection !! Cases RR(90%CL) AN!! Cases RR(90%CL) AN!! 

105. Manganese Fumes Tail 60 1.2 (0.7, 2.2) 10.5 14 2.2 (0.9, 5.5) 7.7 
91. Methane Tail 41 1.0 (0.6, 1.7) 1.5 13 2.1 (0.9, 4.9) 6.8 
15. Brass Dust Tail 24 1.3 (0.8, 2.3) 6.1 10 2.0 (0.9, 4.5) 5.0 
35. Copper Dust Tail 47 1.2 (0.8, 2.0) 9.0 14 1.9 (0.9, 3.9) 6.6 
156. Kerosene Sig 69 1.2 (0.9, 1.7) 12.7 26 1.8 (1.1,3.1) 11.8 
104. Chromium Fumes Prey 43 1.9 (0.6, 6.1) 20.3 8 1.6 (0.7, 4.0) 3.1 
5. Asbestos Prey 177 1.0 (0.7, 1.3) 0 34 1.4 (0.9, 2.4) 10.3 
6. Crystalline Silica Prey 238 1.0 (0.8, 1.3) 2.3 81 1.3 (0.9, 1.9) 17.0 
214. PAH (Any) Prey 581 1.0 (0.7, 1.3) 0 80 1.2 (0.8, 1.9) 15.6 
193. Arsenic Compounds Prey 31 0.7 (0.4, 1.3) 0 Il 1.2 (0.5, 2.7) 1.9 
117. Diesel Eng.Emissions Prey 165 1.1 (0.9, 1.4) 17.4 81 1.2 (0.8, 1.7) 11.9 
195. Cadmium Compounds Prey 11 1.0 (0.5, 2.2) 0.1 4 1.1 (0.4, 2.8) 0.3 
163. Coal Tar and Pitch Prey 23 0.9 (0.6, 1.5) 0 12 1.1 (0.6,2.0) 0.7 

a Selection of which chemicals to include in this table depended on the analytic approach. Selection of estimates required aRR> 1.0 and one of 
the following: statistically significant estimate with P-value:SO.l (Sig), previous evidence as to what are currently thought of as lung carcinogens 

:; (Prev), or -- only in the case of the semi-Bayes models -- a point estimate in the extreme tail region of the distribution of estimates (Tail). 
'.a b Attributable number. When RR:S 1, AN=O. C Not estimated at this exposure level. 



Table 7-13: Four variations of the ranking and selection of occupational chemicals 

C. Ranking by point estimate (STRA TEGY 3, conventionallogistic regression), for ANY level of exposure, with selection by 
statistical significance and previous evidence. 

Any EXQosure Substantial EXQosure 
Reason for Exp Exp 
Selection "- Cases RR (90% CL) ANQ Cases RR(90% CL) ANQ 

104. Chromium Fumes Sig 43 2.0 (1.2, 3.2) 21.0 8 2.1 (0.7,6.6) 4.1 
182. Magnesium Compounds Sig 19 1.9 (1.1, 3.3) 8.8 6 1.9 (0.7, 4.9) 2.8 
8. Glass Dust Sig 18 1.9 (1.0, 3.3) 8.3 6 0.7 (0.3, 1.8) 0 
108. Copper Fumes Sig 47 1.8 (1.2, 2.7) 21.2 16 2.1 (1.1,3.9) 8.3 
107. Nickel Fumes Sig 42 1.7 (1.1, 2.8) 17.7 NEC 
171. Cutting Fluids post 1955 Sig 62 1.7 (1.2, 2.4) 25.8 25 1.4 (0.9, 2.3) 7.1 
85. Hydrogen Fluoride Sig 38 1.7 (1.1, 2.6) 15.8 4 1.3 (0.4, 4.3) 0.9 
177. Fluorides Sig 42 1.6 (1.1,2.4) 16.1 6 1.4 (0.5, 3.8) 1.8 
83. Nitrogen Oxides Sig 240 1.6 (1.3, 2.0) 91.4 36 1.6 (1.0, 2.5) 13.8 
122. Propane Eng.Emiss. Sig 28 1.6 (1.0, 2.5) 10.5 15 1.1 (0.6, 2.0) 1.7 
156. Kerosene Sig 69 1.6 (1.2, 2.1) 25.5 26 2.6 (1.5, 4.4) 15.8 
174. Inks Sig 37 1.5 (1.1, 2.3) 13.1 17 1.1 (0.7, 1.9) 2.1 
195. Cadmium Compounds Prey Il 1.5 (0.7, 3.0) 3.6 4 1.4 (0.5, 4.4) 1.2 
190. Nickel Compounds Sig 79 1.5 (1.1, 2.0) 25.3 12 1.7 (0.7, 3.8) 4.9 
21. Aluminium Alloy Dust Sig 63 1.4 (1.0, 1.9) 17.4 25 1.1 (0.7, 1.8) 2.7 
204. Alkanes (C5-C17) Sig 368 1.4 (1.1, 1.6) 99.2 207 1.5 (1.2, 1.8) 67.4 
98. Gas Welding Fumes Sig 115 1.3 (1.0, 1.7) 29.4 50 1.4 (1.0, 2.0) 13.4 
178. Chromium (VI) Comp. Sig 90 1.3 (1.0, 1.7) 21.9 12 1.5 (0.8, 2.8) 3.8 
161. Cutting Fluids Sig 85 1.3 (1.0, 1.7) 20.5 33 1.2 (0.8, 1.7) 4.5 
196. Tin Compounds Sig 92 1.3 (1.0, 1.7) 21.4 14 1.1 (0.6, 2.0) 1.3 

a Selection of which chemicals to include in this table depended on the analytic approach. Selection of estimates required aRR> 1.0 and one of 
the following: statistically significant estimate with P-value:SO.l (Sig), previous evidence as to what are currently thought of as lung carcinogens 

VI 
(Prev), or -- only in the case of the semi-Bayes models -- a point estimate in the extreme tail region of the distribution of estimates (Tail). 

0 b Attributable number. When RR :s 1, AN=O. C Not estimated at this exposure level. 
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Table 7-13: Four variations of the ranking and selection of occupational chemicals 

183. Aluminium Compounds Sig 199 1.3 (1.0, 1.6) 43.4 51 1.4 (1.0, 2.0) 14.3 
4. Metallic Dust Sig 276 1.3 (1.1, 1.5) 57.7 138 1.4 (1.1, 1.8) 38.5 
6. Crystalline Silica Sig 238 1.2 (1.0, 1.5) 42.6 81 1.6 (1.2, 2.2) 30.9 
117. Diesel Eng.Emissions Prey 165 1.1 (0.9, 1.4) 20.3 81 1.1 (0.9, 1.5) 10.1 
219. Benzo(a)pyrene Prey 220 1.1 (0.9, 1.4) 24.4 42 1.0 (0.6, 1.6) 0 
5. Asbestos Prey 177 1.0 (0.8, 1.3) 7.1 34 1.5 (1.0,2.4) 11.7 
214. PAH (Any) Prey 581 1.0 (0.9, 1.3) 22.7 80 1.2 (0.8, 1.8) 15.2 
76. Soot Prey 91 1.0 (0.7, 1.4) 0.2 26 1.6 (0.9, 2.7) 9.3 

a Selection of which chemicals to include in this table depended on the analytic approach. Selection of estimates required aRR> 1.0 and one of 
the following: statistically significant estimate with P-value:S0.1 (Sig), previous evidence as to what are currently thought of as lung carcinogens 
(Prev), or -- only in the case of the semi-Bayes models -- a point estimate in the extreme tail region ofthe distribution of estimates (Tail). 
b Attributable number. When RR:S l, AN=O. < Not estimated at this exposure level. 



Table 7-13: Four variations ofthe ranking and selection of occupational chemicals 

D. Ranking by point estimate (STRA TEGY 3, conventionallogistic regression), for the SUBSTANTIAL level of exposure, with 
selection by statistical significance and previous evidence. 

Any EXQosure Substantial EXQosure 
Reason for Exp Exp 
Selection il Cases RR(90%CL) ANQ Cases RR(90%CL) ANQ 

24. Borates Sig Il 1.7 (0.9, 3.5) 4.6 4 4.1 (1.1, 15.9) 3.0 
36. Zinc Dust Sig 26 1.4 (0.9, 2.3) 8.0 5 3.5 (1.1, 11.1) 3.6 
213. Glycol Ethers Sig 26 1.0 (0.6, 1.5) 0 8 3.3 (1.2,8.9) 5.6 
105. Manganese Fumes Sig 60 1.4 (1.0, 1.9) 16.6 14 3.3 (1.5, 7.0) 9.7 
90. Natural Gas Sig 24 0.9 (0.6, 1.4) 0 8 3.1 (1.1, 8.3) 5.4 
187. Manganese Compounds Sig 71 1.3 (0.9, 1.7) 15.1 14 2.9 (1.4, 6.0) 9.1 
35. Copper Dust Sig 47 1.2 (0.8, 1.7) 6.8 14 2.6 (1.3, 5.3) 8.7 
91. Methane Sig 41 0.9 (0.6, 1.3) 0 13 2.6 (1.3, 5.4) 8.0 
109. Zinc Fumes Sig 39 1.3 (0.9, 1.9) 8.9 16 2.6 (1.3, 5.1) 9.8 
156. Kerosene Sig 69 1.6 (1.2, 2.1) 25.5 26 2.6 (1.5, 4.4) 15.8 
192. Zinc Compounds Sig 107 1.2 (0.9, 1.5) 17.3 25 2.1 (1.2,3.6) 13.1 
108. Copper Fumes Sig 47 1.8 (1.2, 2.7) 21.2 16 2.1 (1.1,3.9) 8.3 
104. Chromium Fumes Prey 43 2.0 (1.2, 3.2) 21.0 8 2.1 (0.7,6.6) 4.1 
158. Heating Oil Sig 53 1.3 (0.9, 1.9) 13.0 24 1.9 (1.1,3.3) 11.7 
83. Nitrogen Oxides Sig 240 1.6 (1.3, 2.0) 91.4 36 1.6 (1.0, 2.5) 13.8 
6. Crystalline Silica Sig 238 1.2 (1.0, 1.5) 42.6 81 1.6 (1.2, 2.2) 30.9 
191. Copper Compounds Sig 128 1.3 (1.0,1.6) 26.5 55 1.6 (1.1, 2.3) 20.2 
76. Soot Prey 91 1.0 (0.7, 1.4) 0.2 26 1.6 (0.9,2.7) 9.3 
5. Asbestos Prey 177 1.0 (0.8, 1.3) 7.1 34 1.5 (1.0, 2.4) 11.7 
3. Excavation Dust Sig 109 1.3 (1.0, 1.8) 27.3 69 1.5 (1.1,2.2) 23.6 

a Selection of which chemicals to include in this table depended on the analytic approach. Selection of estimates required aRR> 1.0 and one of 
the following: statistically significant estimate with P-value:SO.l (Sig), previous evidence as to what are currently thought of as lung carcinogens 

VI 
(Prev), or -- only in the case of the semi-Bayes models -- a point estimate in the extreme tail region of the distribution of estimates (Tail). 

IV b Attributable number. When RR:S 1, AN=O. C Not estimated at this exposure level. 
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Table 7-13: Four variations of the ranking and selection ofoccupational chemicals 

204. Alkanes (C5-C17) Sig 368 1.4 (1.1, 1.6) 99.2 207 1.5 (1.2, 1.8) 67.4 
101. Metal Oxide Fumes Sig 190 1.2 (1.0, 1.4) 28.3 87 1.4 (1.1, 1.9) 26.7 
195. Cadmium Compounds Prey Il 1.5 (0.7, 3.0) 3.6 4 1.4 (0.5, 4.4) 1.2 
97. Coal Gas Prey 8 0.6 (0.3, 1.1) 0 2 1.4 (0.3, 6.8) 0.6 
4. Metallic Dust Sig 276 1.3 (1.1, 1.5) 57.7 138 1.4 (1.1, 1.8) 38.5 
214. PAR (Any) Prey 581 1.0 (0.9, 1.3) 22.7 80 1.2 (0.8, 1.8) 15.2 
117. Diesel Eng.Emissions Prey 165 1.1 (0.9, 1.4) 20.3 81 1.1 (0.9, 1.5) 10.1 
40. Lead Chromate Prey 35 0.7 (0.4, 1.2) 0 3 1.1 (0.2, 5.6) 0.2 
163. Coal Tar and Pitch Prey 23 0.9 (0.5, 1.4) 0 12 1.0 (0.5, 2.3) 0.4 

a Selection of which chemicals to include in this table depended on the analytic approach. Selection of estimates required aRR> 1.0 and one of 
the following: statistically significant estimate with P-yalue::SO.l (Sig), preyious evidence as to what are currently thought of as lung carcinogens 
(Prev), or -- only in the case of the semi-Bayes models -- a point estimate in the extreme tail region of the distribution of estimates (Tail). 
b Attributable number. When RR ::s l, AN=O. C Not estimated at this exposure level. 



The four different approaches in Table 7-13 provided four different selections of 

chemicals. Aside from a few chemicals being chosen in aIl cases based on previous 

evidence, there were no other chemicals that appeared on both ofthe semi-Bayes lists; the 

chemicals earmarked at any level of exposure were different from those earmarked at the 

substantiallevel of exposure. Even the currently suspected carcinogens were not, in their 

entirety, reproduced on both lists. This is because many of the chemicals that are 

currently suspected ofbeing lung carcinogens had, in the analyses, point estimates that 

were just below unit y, precluding them from appearing on these lists. 

The conventional approach (strategy 3) produced many more statistically significant 

estimates than the semi-Bayes approach. One explanation is the fact that 231 chemicals 

were considered in strategy 3, over the 184 chemicals in strategy 8. For example, 

magnesium compounds (182) is second on the list of section C, but was not included at aIl 

in the semi-Bayes modeling, and so could not appear on the lists of sections A and B. 

As expected, the estimates from strategy 3 did not have the same distributional properties 

as the estimates from model 8. Many more statistically significant estimates occurred, but 

these estimates did not predominantly occur in the extreme tails of the distributions as 

they did in the semi-Bayes models. As a result, had the 'tail region' criterion been 

implemented to select estimates from strategy 3 (see section 6.11.2), more than twice as 

many chemicals would have appeared as there currently are in sections C and D. 

Comparing the results of parts C and D, based on the selection of estimates from the two 

exposure levels ofmodeling strategy 3, several chemicals showed consistently elevated 

estimates with P-value ~ 0.1. These included chromium fumes (104), copper fumes 

(108), nitrogen oxides (83), kerosene (156), alkanes (C5-C17) (204), and metallic dust 

(4). 

Comparing across the conventional and semi-Bayes strategies, nitrogen oxides (83) and 

copper fumes (108) were both earmarked at any level of exposure, while manganese 

fumes (105) and copper dust (35) were both earmarked at the substantiallevel of 

exposure. 

An estimate of the numbers of cases attributable to each of the chemical exposures was 

provided as a me ans of appreciating the impact of exposure in the study population. As 
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an alternative, ranking by the attributable number (AN) would have produced a very 

different picture as to which chemicals would have been selected. Noteworthy are the 

results for nitrogen oxides and alkanes (C5-C17), both ofwhich were highly prevalent in 

the study population and had high estimates for AN across most of the modeling 

strategies. 

The estimated values for the AN were not always consistent with logic. For example, in 

section A of the semi-Bayes results, crystalline silica (6) had an AN at any level of 

exposure of 2.3, while at the substantiallevel of exposure it was 17.0. As the latter 

exposure level was subsumed by the former, this result was not logically possible, 

highlighting the instability of such empirical estimates. 

Combining the four lists resulted in a total of 53 chemicals, which were carried forward 

for further analyses. Of the 53, Il were inc1uded solely because they are currently 

recognized as or suspected ofbeing lung carcinogens, while the remaining 42 chemicals 

had supporting evidence from the present results. 

7.7 Secondary analyses on selected chemicals 

The following analyses were only applied to the 53 chemicals earrnarked in the previous 

section. In sorne cases, results for particular chemicals were omitted if the estimate was 

deemed too imprecise and unstable, which tended to occur among those chemicals with 

low prevalence in the study population. 

7.7.1 Concentration, duration, and time windows of exposure 

Results presented in the previous sections aIl relied on a composite index of exposure, 

which combined the exposure characteristics of concentration, frequency, duration, and 

certainty into a cumulative lifetime index. To explore the different characteristics of 

exposure, Table 7-14 presents estimates of the rate ratios by concentration, duration, and 

two time windows of exposure (see section 6.13.1). 

Many of the estimates in the table were imprecise and somewhat unstable due to the more 

finely restricted definitions of variables for these analyses. Nevertheless, substances 

whose estimates suggested a response curve with increasing concentration, inc1uded: 

metallic dust, copper dust, zinc dust, soot, natural gas, gas wei ding fumes, metal oxide 
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fumes, zinc fumes, kerosene, magnesium compounds, zinc compounds, glycol ethers, and 

any source ofpolycyclic aromatic hydrocarbons (PAR). 

In a similar fashion, two categories of duration of exposure were assessed. Only a few 

substances showed a clear pattern of stronger associations with lung cancer when the 

cumulative duration of exposure exceeded ten years: excavation dust, crystalline silica, 

heating oil, and manganese compounds. 

The effects of exposures in two different windows oftime were also analyzed. As in the 

previous analyses, the data was occasionally too sparse to support analyses of separate 

windows of time. Thus, too few people were exposed to borates, for example, in the 

window proximal to diagnosis, so the resulting estimate was too unstable to report. 

Although an estimate for borates was shown for the exposure window oftwenty or more 

years prior to diagnosis, even that estimate might be considered too imprecise to be 

meaningful. Sorne of these results are nevertheless suggestive of certain periods being 

more relevant for the effects of the exposure. Substances showing their strongest 

association with lung cancer for exposure in the 5 to 15 years before diagnosis, included: 

excavation dust, metallic dust, asbestos, glass dust, urea-formaldehyde, hydrogen 

fluoride, chromium fumes, manganese fumes, nickel fumes, copper fumes, kerosene, 

cutting fluids, cutting fluids post 1955, fluorides, aluminium compounds, manganese 

compounds, nickel compounds, and cadmium compounds. Substances showing their 

strongest association with lung cancer for exposures more than 20 years before diagnosis, 

included: clay dust, brass dust, and aluminium alloy dust. 
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Table 7-14: Rate ratio estimates, for selected chemicals, by concentration, duration, and windows of exposure, with adjustment 
for non-occupational confounders 

Concentration a Duration Time windows prior to diagnosis 
Low/medium High 1-10 years 10+ years 5-20 years 20+ years 
RR(90% CL} RR(90% CL} RR(90% CL} RR(90% CL} RR(90% CL} RR(90% CL} 

3. Excavation Dust 1.3 (0.8, 2.1) 1.5 (1.1, 1.9) 1.1 (0.8, 1.6) 1.8 (1.3, 2.5) 1.8 (1.0, 3.2) 1.1 (0.8, 1.6) 

4. Metallic Dust 1.2 (1.0, 1.5) 1.5 (1.2, 1.8) 1.3 (1.0, 1.6) 1.4 (1.1, 1. 7) 1.5 (1.0, 2.2) 1.2 (0.9, 1.6) 

5. Asbestos 1.2 (0.9, 1.4) 1.2 (0.8, 1.9) 1.2 (0.9, 1.7) 1.1 (0.9, 1.4) 2.0 (1.2, 3.3) 1.0 (0.7, 1.5) 

6. Crystalline Silica 1.2 (1.0,1.4) 1.4 (1.1,1.9) 1.0 (0.8, 1.3) 1.4 (1.1,1.7) 1.2 (0.8,2.0) 1.0 (0.8, 1.3) 

8. Glass Dust 4.2 (1.8, 10.3) 1.1 (0.5, 2.2) 1.8 (0.8, 4.2) 1.9 (0.9, 4.2) 4.1 (1.1, 15.0) 1.4 (0.5, 3.8) 

12. Clay Dust 2.6 (1.2, 5.4) 1.6 (0.9, 2.8) 1.6 (0.9, 3.0) 2.4 (1.2, 4.7) 1.2 (0.4, 3.8) 2.0 (1.0, 3.8) 

15. Brass Dust 1.3 (0.7,2.7) 1.8 (0.9,3.3) 2.5 (1.1,5.3) 1.2 (0.7, 2.2) 0.6 (0.1, 3.9) 2.4 (1.1, 5.1) 

21. Aluminium Alloy Dust 1.6 (1.0, 2.4) 1.3 (0.9, 2.0) 1.6 (1.1, 2.5) 1.3 (0.9, 1.9) 1.0 (0.5, 2.1) 1.6 (1.0, 2.5) 

23. Cosmetic Talc 2.3 (1.1,4.9) 0.4 (0.1, 1.4) 3.6 (0.9, 13.7) 1.0 (0.5, 2.0) 12.0 (1.6, 89.6) 4.0 (1.1, 15.0) 

24. Borates 1.6 (0.7, 3.6) 3.2 (0.9, 11.3) 1.0 (0.3, 4.4) 2.4 (1.1, 5.2) 0.9 (0.2, 3.5) 

35. Copper Dust 1.0 (0.6, 1.4) 2.5 (1.3, 4.7) 1.1 (0.7, 1.8) 1.3 (0.8, 2.1) 0.9 (0.4, 2.0) 1.2 (0.7, 2.1) 

36. Zinc Dust 1.2 (0.7, 2.1) 5.8 (1.9,17.7) 2.4 (1.1, 5.0) 1.3 (0.8, 2.3) 1.3 (0.3, 6.0) 1.8 (0.9, 3.6) 

40. Lead Chromate 1.1 (0.7, 1.6) 1.5 (0.4, 5.3) 1.2 (0.6, 2.3) 1.1 (0.7, 1.7) 1.2 (0.5, 2.9) 1.1 (0.5, 2.3) 

53. Natural Rubber 1.5 (1.0, 2.2) 0.5 (0.2, 1.1) 1.6 (0.9,2.6) 0.9 (0.6, 1.5) 1.2 (0.4, 3.6) 1.2 (0.7, 2.2) 

64. Poly-Acrylates 1.3 (0.8,2.1) 1.1 (0.5, 2.4) 1.2 (0.5, 2.8) 1.3 (0.8, 2.0) 1.2 (0.5, 2.5) 0.5 (0.1, 3.6) 

AlI estimates are in reference to 'never exposed' 

VI 
• High concentration was defined by 3-point chemist codings for concentration and frequency as both above 2 (high); low/medium concentration was 

-.l defined as any combination of the 3-point chemist codings for concentration and frequency if at least one was between 1 and 2 (low to medium). 
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Table 7-14: Rate ratio estimates, for selected chemicals, by concentration, duration, and windows of exposure, with adjustment 
for non-occupational confounders 

Concentration a Duration Time windows prior to diagnosis 
Low/medium High 1-10 years 10+ years 5-20 years 20+ years 
RR(90% CL} RR(90% CL} RR(90% CL} RR(90% CL} RR(90% CL} RR{90% CL) 

68. Urea-Formald. 1.5 (1.1,2.2) 1.0 (0.4, 2.5) 1.5 (0.8,2.7) 1.4(1.0,2.1) 2.2 (1.0, 5.2) 1.3 (0.6, 3.0) 

76. Soot 1.0(0.7,1.3) 1.8 (1.2, 2.8) 1.3 (0.9, 1.9) 1.1 (0.8, 1.5) 1.4 (0.8, 2.8) 1.0 (0.7, 1.5) 

83. Nitrogen Oxides 1.6 (1.3, 1.9) 1.4 (0.9, 2.1) 1.9 (1.4, 2.4) 1.4 (1.2, 1.8) 2.4 (1.6,3.7) 1.5 (1.2, 2.0) 

85. Hydrogen Fluoride 2.2 (l.4, 3.4) 1.2 (0.5, 3.4) 1.8 (0.9, 3.7) 2.1 (1.3,3.4) 3.8 (1.5,9.6) 1.1 (0.5, 2.4) 

90. Natural Gas 0.8 (0.5, 1.2) 4.2 (l.4, 12.5) 2.2 (l.0, 4.6) 0.7 (0.4, 1.3) 1.3 (0.6, 2.9) 1.2 (0.2, 9.4) 

91. Methane 0.9 (0.6, 1.4) 1.5 (0.8, 3.0) 1.2 (0.7,2.0) 0.9 (0.6, 1.4) 1.4 (0.7, 3.1) 0.8 (0.4, 1.5) 

97. Coal Gas 0.4 (0.2, 1.1) 1.4 (0.4,4.8) 0.7 (0.2,2.0) 0.5 (0.2, 1.4) 0.4 (0.1, 1.3) 

98. Gas Welding Fumes 1.3 (0.9, 1.7) 1.8 (1.3, 2.4) 1.6 (1.1, 2.4) 1.4 (1.1, 1.8) 1.8 (1.1, 3.0) 1.7 (1.1, 2.6) 

101. Metal Oxide Fumes 1.0 (0.8, 1.3) 1.7 (1.3, 2.2) 1.3 (1.0, 1.7) 1.3 (1.0, 1.6) 1.4 (0.9, 2.1) 1.2 (0.9, 1.7) 

104. Chromium Fumes 2.3 (1.5,3.6) 2.0 (0.9,4.4) 2.4 (1.2,4.9) 2.2 (l.4, 3.5) 4.4 (1.8, 10.7) 1.9 (0.9, 4.1) 

105. Manganese Fumes 1.5 (1.1, 2.2) 2.0 (1.1, 3.7) 1.3 (0.8,2.1) 1.9 (1.3, 2.9) 2.4 (1.1, 4.9) 1.1 (0.7, 1.9) 

107. Nickel Fumes 2.3 (1.5, 3.6) 1.5 (0.7,3.4) 1.9 (0.9, 3.8) 2.3 (l.4, 3.5) 3.8 (1.6, 8.8) 1.5 (0.7, 3.4) 

108. Copper Fumes 2.0 (1.2, 3.3) 2.3 (1.3, 4.0) 2.4 (1.3, 4.4) 2.0 (1.3, 3.2) 2.9 (1.1, 7.7) 1.6 (0.8, 3.0) 

109. Zinc Fumes 1.2 (0.7, 1.9) 2.7 (1.5, 4.8) 1.2 (0.7, 2.3) 1.9 (1.2, 3.0) 1.7 (0.7, 4.1) 1.0 (0.5, 1.9) 

117. Diesel Eng.Emissions 1.2 (0.9, 1.5) 1.2 (0.9, 1.5) 1.3 (1.0, 1.9) 1.1 (0.9, 1.4) 1.2 (0.8, 1.8) 1.4 (0.9, 2.1) 

AlI estimates are in reference to 'never exposed' 

a High concentration was defined by 3-point chemist codings for concentration and frequency as both above 2 (high); low/medium concentration was 
defined as any combination of the 3-point chemist codings for concentration and frequency if at least one was between 1 and 2 (low to medium). 
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Table 7-14: Rate ratio estimates, for selected chemicals, by concentration, duration, and windows of exposure, with adjustment 
for non-occupational confounders 

Concentration a Duration Time windows prior to diagnosis 
Low/medium High 1-10 years 10+ years 5-20 years 20+ years 
RR{90% CL} RR{90% CL} RR{90% CL} RR{90% CL} RR{90% CL} RR{90% CL} 

122. Propane Eng.Emiss. 4.4 (2.0, 9.5) 1.2 (0.7, 2.0) 1.8 (0.8, 4.0) 1.7 (1.0, 2.9) 1.9 (0.9, 4.0) 1.7 (0.1, 24.6) 

127. Alkali, Caustic Solutions 1.4 (1.0, 2.0) 1.2 (0.8, 1.7) 1.0 (0.7, 1.5) 1.6 (1.1, 2.3) 1.2 (0.6, 2.4) 0.9 (0.6, 1.5) 

156. Kerosene 1.2 (0.8, 1.7) 2.6 (1.6,4.2) 1.4 (0.9, 2.1) 1.8 (1.2, 2.7) 4.4 (1.2, 16.7) 1.3 (0.9, 1.8) 

158. Heating Oil 1.2 (0.8, 1.9) 1.7 (1.1,2.7) 1.0 (0.6, 1.6) 1.8 (1.2,2.8) 1.7 (0.8, 3.6) 1.0 (0.6, 1.8) 

161. Cutting Fluids 1.3 (0.9, 1.8) 1.4 (1.0, 1.9) 1.1 (0.7, 1.6) 1.5 (1.1, 2.1) 3.2 (1.6, 6.5) 0.9 (0.6, 1.3) 

163. Coal Tar and Pitch 0.6 (0.2, 1.5) 1.3 (0.8,2.3) 1.4 (0.7, 2.9) 0.9 (0.5, 1.6) 3.1 (0.4, 23.8) 1.3 (0.7,2.6) 

171. Cutting Fluids post 1955 1.7 (1.2,2.6) 1.4 (0.9, 2.3) 1.3 (0.7,2.5) 1.7 (1.2,2.4) 3.1 (1.6, 6.2) 0.8 (0.3,2.3) 

174. Inks 2.5 (l.4, 4.5) 1.1 (0.7, 1.8) 1.5 (0.8,2.7) 1.6 (1.0, 2.5) 1.8 (0.8, 4.2) 1.2 (0.6, 2.4) 

177. Fluorides 2.1 (l.4, 3.1) 1.2 (0.5, 2.9) 1.6 (0.8, 3.0) 2.0 (1.3, 3.2) 3.4 (1.5, 7.7) 1.1 (0.6, 2.3) 

178. Chromium (VI) Comp. 1.4 (1.1, 1.9) 1.5 (0.9,2.6) 1.4 (1.0, 2.2) 1.4 (1.0, 1.9) 1.6 (0.9, 2.8) 1.3 (0.8, 2.0) 

182. Magnesium Compounds 1.3 (0.6, 2.6) 3.7 (1.6,8.8) 2.1 (0.8, 5.4) 1.8 (0.9, 3.7) 1.1 (0.1, 7.6) 1.3 (0.5, 3.1) 

183. Aluminium Compounds 1.4 (1.1, 1.7) 1.6 (1.2, 2.2) 1.6 (1.2, 2.1) 1.3 (1.1, 1.7) 1.9 (1.3, 3.0) 1.1 (0.8, 1.5) 

187. Manganese Compounds 1.4 (1.0, 1.9) 2.0 (1.1, 3.6) 1.2 (0.7, 1.8) 1.8 (1.2, 2.5) 2.5 (1.3,4.9) 0.9 (0.5, 1.4) 

190. Nickel Compounds 1.8 (1.3,2.4) 1.3 (0.7, 2.5) 1.3 (0.8, 2.2) 1.9 (1.3, 2.5) 1.9 (1.0, 3.6) 1.2 (0.7, 2.2) 

191. Copper Compounds 1.2 (0.9, 1.6) 1.5 (1.1,2.0) 1.3 (0.9, 1.7) 1.3 (1.0, 1.7) 1. 7 (0.9, 3.4) 0.9 (0.7, 1.3) 

Ail estimates are in reference to 'never exposed' 

• High concentration was defined by 3-point chemist codings for concentration and frequency as both above 2 (high); low/medium concentration was 
defined as any combination of the 3-point chemist codings for concentration and frequency if at least one was between 1 and 2 (low to medium). 



Table 7-14: Rate ratio estimates, for selected chemicals, by concentration, duration, and windows of exposure, with adjustment 
for non-occupational confounders 

Concentration a Duration Time windows prior to diagnosis 
Low/medium High 1-10 years 10+ years 5-20 years 20+ years 
RR(90% CL} RR(90% CL) RR(90% CL} RR(90% CL) RR(90% CL} RR(90% CL) 

192. Zinc Compounds 1.2 (1.0, 1.6) 2.0 (1.2, 3.2) 1.5 (1.0, 2.2) 1.3 (1.0, 1.7) 1.0 (0.5, 2.0) 1.2 (0.8, 1.7) 

193. Arsenic Compounds 0.7 (004, 1.1) 1.0 (0.6, 1.8) 0.9 (0.5, 1.5) 0.7 (004, 1.2) 0.5 (0.1, 3.5) 0.6 (004, 1.0) 

195. Cadmium Compounds 2.0 (0.8, 5.1) 1.5 (0.6, 4.1) 1.5 (0.5, 4.5) 1.9 (0.8, 4.6) 9.8 (2.0, 48.8) 0.6 (0.2, 2.3) 

196. Tin Compounds lA (1.1, 1.9) 1.4 (0.8,2.5) 1.6 (1.0,2.3) 1.4 (1.0, 1.8) 2.4 (1.2, 4.9) 1.1 (0.7, 1.7) 

204. Alkanes (C5-C17) 1.4 (1.1, 1.6) 1.5 (1.2, 1.8) lA (Ll, 1.8) lA (1.2, 1.7) 1.3 (0.9, 1.9) 1.3 (1.0, 1.7) 

213. Glycol Ethers 0.9 (0.6, 1.5) 3.6 (lA, 9.5) 1.7 (0.9, 3.2) 0.9 (0.5, 1.6) 0.8 (0.3, 1.9) 1.6 (0.7, 3.7) 

214. PAR (Any) 1.1 (1.0, 1.3) 1.6 (1.1,2.5) 1.1 (0.9, 1.5) 1.1 (1.0, 1.4) 0.8 (0.6, 1.2) 1.0 (0.8, 1.4) 

219. Benzo(a)pyrene 1.2 (1.0, 1.4) 1.4 (1.0, 1.9) 1.2 (0.9, 1.6) 1.2 (0.9, lA) lA (0.9, 204) 1.1 (0.9, lA) 

AIl estimates are in reference to 'never exposed' 

...... a High concentration was defined by 3-point chemist codings for concentration and frequency as both above 2 (high); low/medium concentration was 
~ defined as any combination of the 3-point chemist codings for concentration and frequency ifat least one was between 1 and 2 (low to medium). 



7.7.2 Occupational chemicals and histological subtypes of lung cancer 

Ofthe 857 cases oflung cancer, 159 were diagnosed as small cell carcinomas, 359 as 

squamous cell carcinomas, and 167 as adenocarcinomas. The rest were diagnosed as 

other cell types, or the histological diagnosis was uncertain. The results of Table 7-15 

show the subtype-specific estimates for the effects of the chemicals (see section 6.13.2), 

each only adjusted for the standard eight non-occupational confounders (modeling 

strategy 2). 

Of the se1ected chemicals, many appeared to show results that would suggest certain 

chemicals were more re1ated to one histological subtype of lung cancer over the others. 

Chemicals that showed evidence ofbeing related predominantly to small cell carcinomas, 

inc1uded: excavation dust, asbestos, and alkali caustic solutions. Chemicals showing 

evidence of an association with squamous cell carcinomas, inc1uded: glass dust, brass 

dust, aluminium alloy dust, urea-formaldehyde, propane engine emissions, magnesium 

compounds, any source ofpolycyc1ic aromatic hydrocarbons, and benzo(a)pyrene. 

FinaIly, only borates showed evidence of an association primarily with adenocarcinomas. 

Special notice should be given to the fact that these analyses focused on any level of 

exposure history, and did not assess the substantial exposure level. And even at any leve1 

of exposure, many of the estimates were too imprecise to report. 

161 



Table 7-15: Rate ratio estimates, from strategy 2, for selected chemicals, with respect to histological subtypes of lung cancer 

AlIlung cancer Small cell Squamous cell Adenocarcinoma 
Exp Exp Exp Exp 

Cases RR(90% CL} Cases RR(90% CL} Cases RR(90% CL} Cases RR(90% CL} 
3. Excavation Oust 109 1.5 (1.2, 1.8) 29 2.5 (1.7,3.8) 42 1.3 (0.9, 1.8) 11 0.7 (0.4, 1.2) 

4. Metallic Oust 276 1.3 (Ll, 1.6) 64 2.0 (1.5, 2.7) 111 1.2 (1.0, 1.5) 54 1.3 (1.0, 1.8) 

5. Asbestos 177 1.2 (1.0, 1.4) 41 1.6 (Ll, 2.2) 70 Ll (0.8, 1.4) 32 Ll (0.7, 1.5) 

6. Crystalline Silica 238 1.3 (Ll, 1.5) 47 1.5 (Ll, 2.0) 109 1.4 (Ll, 1.8) 34 0.8 (0.6, 1.2) 

8. Glass Dust 18 2.0 (Ll, 3.5) 2 0.9 (0.2, 3.2) 8 2.2 (Ll, 4.7) 3 1.5 (0.5,4.3) 

12. Clay Oust 28 1.9 (1.2, 3.0) 6 2.1 (1.0, 4.6) 16 2.6 (1.5, 4.4) 2 0.6 (0.2, 2.2) 

15. Brass Dust 24 1.6 (1.0, 2.6) 13 1.8 (1.0, 3.3) 5 2.0 (0.9, 4.6) 

21. Aluminium Alloy Dust 63 1.5 (Ll, 2.0) 12 1.5 (0.9, 2.6) 31 1.7 (1.2, 2.5) Il 1.3 (0.8, 2.4) 

23. Cosmetic Talc 13 1.3 (0.7,2.4) 6 1.3 (0.6, 2.8) 

24. Borates Il 2.0 (1.0, 3.9) 3 2.2 (0.8, 6.5) 6 5.8 (2.5, 13.4) 

35. Copper Dust 47 1.3 (0.9, 1.8) 11 1.6 (0.9, 2.8) 20 1.2 (0.8, 1.9) 9 1.3 (0.7,2.3) 

36. Zinc Dust 26 1.6 (1.0, 2.6) 9 3.0 (1.5, 5.8) 12 1.8 (1.0, 3.3) 5 1.6 (0.7, 3.8) 

40. Lead Chromate 35 Ll (0.8, 1.7) 4 0.7 (0.3, 1.7) 18 1.3 (0.8, 2.2) 6 Ll (0.5, 2.3) 

53. Natural Rubber 44 1.2 (0.8, 1.7) 8 1.2 (0.6, 2.2) 19 Ll (0.7, 1.8) 5 0.7 (0.3, 1.6) 

64. Poly-Acrylates 29 1.3 (0.8, 1.9) 6 1.3 (0.6, 2.9) 14 1.4 (0.8, 2.3) 2 0.4 (0.1, 1.5) 

68. Urea-Formald. 50 1.5 (Ll, 2.1) 10 1.7 (0.9, 3.1) 24 1.7 (Ll, 2.7) 8 Ll (0.6, 2.1) 

76. Soot 91 1.2 (0.9, 1.5) 14 1.0 (0.6, 1.6) 42 1.3 (0.9, 1.7) 14 0.9 (0.6, 1.5) 

83. Nitrogen Oxides 240 1.6 (1.3, 1.9) 54 2.2 (1.6, 3.0) 107 1.7 (1.3, 2.1) 42 1.3 (1.0, 1.8) 

85. Hydrogen Fluoride 38 2.0 (1.3, 2.9) 9 2.5 (1.3, 4.9) 17 2.1 (1.2,3.5) 7 1.5 (0.7, 3.1) 

-- 90. Natural Gas 0\ 
IV 

24 1.0 (0.6, 1.5) 7 1.7 (0.8, 3.5) 10 1.0 (0.6, 1.9) 4 0.9 (0.4, 2.1) 



Table 7-15: Rate ratio estimates, from strategy 2, for selected chemicals, with respect to histological subtypes oflung cancer 

Alliung cancer Small cell Squamous cell Adenocarcinoma 
Exp Exp Exp Exp 

Cases RR{90% CL} Cases RR{90% CL} Cases RR{90% CL} Cases RR{90% CL) 
91. Methane 41 1.0 (0.7, 1.4) 9 1.3 (0.7,2.4) 20 1.2 (0.8, 1.9) 7 0.9 (0.5, 1.8) 

97. Coal Gas 8 0.6 (0.3, 1.2) 3 0.5 (0.2, 1.5) 

98. Gas Welding Fumes 115 1.5 (1.2, 1.8) 28 1.9 (1.3, 2.8) 48 1.4 (1.1, 1.9) 21 1.3 (0.8, 1.9) 

101. Metal Oxide Fumes 190 1.3 (1.1, 1.5) 45 1.7 (1.2, 2.4) 82 1.4 (1.1, 1.7) 36 1.2 (0.8, 1.6) 

104. Chromium Fumes 43 2.2 (1.5, 3.3) 12 3.2 (1.8, 5.7) 20 2.3 (1.4,3.7) 7 1.5 (0.7, 3.1) 

105. Manganese Fumes 60 1.6 (1.2, 2.2) 16 2.4 (1.4, 3.9) 24 1.5 (1.0, 2.3) 13 1.7 (1.0, 2.8) 

107. Nickel Fumes 42 2.1 (l.4, 3.1) 12 3.0 (1.7, 5.4) 19 2.1 (1.3,3.5) 7 1.5 (0.7, 3.0) 

108. Copper Fumes 47 2.2 (1.5, 3.1) 9 2.1 (1.1,4.0) 25 2.5 (1.6, 3.9) 7 1.7 (0.8, 3.4) 

109. Zinc Fumes 39 1.6 (1.1, 2.3) 8 1.8 (0.9, 3.5) 16 1.4 (0.9, 2.4) 8 1.8 (0.9, 3.4) 

117. Diesel Eng.Emissions 165 1.2 (1.0, 1.5) 32 1.4 (1.0, 2.0) 77 1.4(1.1,1.8) 24 0.9 (0.6, 1.3) 

122. Propane Eng.Emiss. 28 1.7 (1.1, 2.6) 4 1.4 (0.6, 3.4) 15 1.9 (1.1, 3.3) 5 1.7 (0.7, 3.9) 

127. Alkali, Caustic Solutions 72 1.3 (1.0, 1.7) 15 1.6 (1.0, 2.6) 32 1.3 (0.9, 1.9) 10 0.9 (0.5, 1.6) 

156. Kerosene 69 1.6 (1.2, 2.2) 10 1.2 (0.6, 2.1) 32 1.7 (1.2, 2.5) 14 1.8 (1.0, 3.0) 

158. Heating Oil 53 1.4 (l.0, 2.0) 12 1.9 (1.1, 3.3) 24 1.5 (1.0, 2.3) 12 1. 7 (1.0, 3.0) 

161. Cutting Fluids 85 1.3 (1.0, 1.7) 22 2.1 (1.4,3.2) 38 1.5 (1.0, 2.1) 18 1.5 (1.0, 2.4) 

163. Coal Tar and Pitch 23 1.0 (0.7, 1.7) 4 0.9 (0.4, 2.3) 10 1.0 (0.5, 1.9) 3 0.7 (0.3, 1.9) 

171. Cutting Fluids post 1955 62 1.7 (1.2, 2.3) 16 2.5 (1.5, 4.1) 25 1.8 (1.2, 2.7) 14 2.0 (1.2, 3.3) 

174. Inks 37 1.5 (1.0,2.2) 7 1.4 (0.7, 2.8) 12 1.2 (0.7, 2.1) 8 1.5 (0.8, 2.9) 

177. Fluorides 42 1.8 (1.3, 2.7) 9 2.1 (1.1,4.1) 19 2.0 (1.2, 3.2) 9 1.8 (0.9, 3.3) 

0\ 178. Chromium (VI) Comp. 90 1.4 (1.1, 1.8) 18 1.6 (1.0, 2.5) 41 1.5 (1.1,2.1) 18 1.4 (0.9, 2.2) 
w 
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Table 7-15: Rate ratio estimates, from strategy 2, for selected chemicals, with respect to histological subtypes oflung cancer 

Alllung cancer Small cell Squamous cell Adenocarcinoma 
Exp Exp Exp Exp 

Cases RR{90% CL} Cases RR{90% CL} Cases RR{90% CL} Cases RR{90% CL) 
182. Magnesium Compounds 19 1.9 (1.1, 3.4) 4 1.9 (0.7, 4.9) 9 2.2 (1.1, 4.5) 4 2.0 (0.8, 5.1) 

183. Aluminium Compounds 199 1.4(1.2,1.7) 39 1.6 (1.2,2.3) 95 1.6 (1.3, 2.1) 32 1.1 (0.8, 1.5) 

187. Manganese Compounds 71 1.5 (1.1, 2.0) 18 2.0 (1.3, 3.3) 30 1.5 (1.0, 2.2) 16 1.6 (1.0, 2.7) 

190. Nickel Compounds 79 1.7 (1.3, 2.2) 18 2.1 (1.3,3.3) 35 1.7 (1.2, 2.4) 15 1.5 (0.9, 2.5) 

191. Copper Compounds 128 1.3 (1.1, 1.6) 30 1.8 (1.2, 2.6) 60 1.5 (1.1,2.0) 20 1.0 (0.6, 1.5) 

192. Zinc Compounds 107 1.4 (1.1, 1.7) 24 1.8 (1.2, 2.7) 48 1.4 (1.0, 1.9) 19 1.3 (0.9,2.1) 

193. Arsenic Compounds 31 0.8 (0.6, 1.2) 5 0.8 (0.3, 1.7) 19 1.3 (0.8, 2.0) 6 0.8 (0.4, 1.7) 

195. Cadmium Compounds Il 1.7 (0.9, 3.5) 2 1.7 (0.5, 6.2) 5 1.9 (0.8, 4.7) 3 2.4 (0.8, 7.1) 

196. Tin Compounds 92 1.4 (1.1, 1.8) 18 1.4 (0.9, 2.3) 40 1.4 (1.0, 2.0) 20 1.6 (1.0, 2.4) 

204. Alkanes (C5-C17) 368 1.4 (1.2, 1.7) 66 1.4 (1.0, 1.8) 169 1.6 (1.3, 2.0) 70 1.4 (1.0, 1.8) 

213. Glycol Ethers 26 1.1 (0.7, 1.7) 12 1.2 (0.7, 2.1) 3 0.5 (0.2, 1.4) 

214. PAR (Any) 581 1.1 (1.0, 1.4) 103 1.2 (0.8, 1.6) 261 1.4 (1.1, 1.8) 114 1.2 (0.9, 1.6) 

219. Benzo(a)pyrene 220 1.2 (1.0, 1.4) 37 1.1 (0.8, 1.6) 103 1.3 (1.0, 1.7) 38 1.0 (0.7, 1.4) 



7.8 Sensitivity analyses 

The following sections are comprised of a number of verifications ofthe methods used in 

the regression models. The purpose of this section is to provide sorne means for 

evaluating how sensitive results were to particular assumptions and, in sorne cases, to 

give a sense ofhow valid certain design decisions were. 

7.8.1 Semi-Bayes models 

In semi-Bayes modeling, the prior variance is considered a smoothing parameter that 

determines how far estimates are pulled back towards the mean of the set of estimates, 

and care must be taken when specifying its value. 1 specified a tenfold range for the prior 

variance in the model without any exchangeability information (strategy 7) and a 

sevenfold range when the 31 covariates for exchangeability were added to the second 

level of the model (strategy 8). Analyses were carried out that assumed three other values 

for the prior variance: infinity (corresponding to the maximum likelihood estimator), 

twofold, and 0 (empirical-Bayes). Table 7-16 presents the mean ofthe beta logistic 

coefficients and the mean ofthe standard errors for the set of 184 parameters modeled at 

any level of exposure. Three chemicals were also se1ected as examples of different 

behaviours ofthe models under the various assumptions. 

As expected, the smaller the specified value ofthe prior variance, the more the estimates 

were shrunk to the prior mean, which would be close 0.014 (or an RR of 1.01) for this set 

of 184 estimates, as seen in the panel ofthe naïve prior, under the empirical Bayes design. 

Examples, such as glass dust, highlight that sorne point estimates were indeed sensitive to 

the specification of the prior variance, though inference based on statistical tests would 

not have changed. With the naïve prior, the empirical value for the effect of exposure to 

glass dust shifted from 1.43 (with sorne shrinkage) to 1.10 (with more shrinkage); 

however, the associated P-value would have remained statistically non-significant. The 

prior variances also had an appreciably large influence on the width of the confidence 

intervals for all estimates. In both semi-Bayes strategies, the intervals at the twofold 

specification were on average half the length of the intervals at the tenfold and sevenfold 

specification. 
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Table 7-16: Sensitivity ofresults to various specifications of the prior variance, T2
, at ANY level of exposure, for K=184 

chemicals 

Common prior (Naïve mode/) b Exchangeability information b 

MLE a 

T2= 00 c 

Strategy 6 
Semi-Bayes Semi-Bayes Empirical- Semi-Bayes Semi-Bayes Empirical-

T2@lOfold c T2@2fold c 
Bayes T2@7fold c T2@2fold c 

Bayes 

Strategy 7 
T2=0 c 

Strategy 8 
T2=0 c 

Mean beta -0.018 0.002 0.010 0.014 0.008 0.017 0.021 

Mean standard error 0.427 0.309 0.151 0.046 0.303 0.180 0.102 

Se/ected chemicals: d RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

Asbestos 1.01 (0.73, 1.38) 0.99 (0.74, 1.33) 0.98 (0.80, 1.20) 1.01 (0.98, 1.05) 0.97 (0.73,1.31) 0.93 (0.72, 1.20) 0.92 (0.73, 1.16) 

Glass Dust 1.61 (0.78,3.33) 1.43 (0.81,2.54) 1.1 0 (0.84, 1.45) 1.02 (0.94, 1.1 0) 1.49 (0.86, 2.59) 1.23 (0.91, 1.65) 1.14(1.01,1.29) 

Silicon Carbide 0.65 (0.38, 1.1 0) 0.72 (0.46, 1.12) 0.92 (0.72, 1.17) 1.01 (0.95, 1.07) 0.76 (0.49,1.18) 0.98 (0.74, 1.28) 1.13 (1.01,1.26) 

a MLE is maximum likelihood estimate, ail chemicals in a single regression mode l, strategy 6. 

b 'Common prior' refers to the strategy where ail chemical effects were assumed exchangeable, whereas 'exchangeability information' refers to 
the strategy with infonnation about chemical properties and previous evidence added to the second-Ievel mode!. 

c T2, the prior variance, was set at 0.35 for a tenfold range offirst-Ievel parameter estimates, 0.25 for a sevenfold range, 0.03 for a twofold range, 
or 0, which indicates empirical-Bayes was used instead and the prior variance was estimated instead of specified. The hypothetical value of 
infinity for T2 implies no shrinkage and thus the MLE. 

d Three chemicals were selected to illustrate different behaviours of the estimates under the various assumptions . 



A number of approaches were also considered for how to handle the covariate for 

previous evidence in the second-Ievel model ofstrategy 8 (see step iii, 6.10). The primary 

approach was, for most chemicals, to set the second-Ievel covariate to zero, signifying the 

null value for previous evidence, and for the few currently suspected carcinogens, to set 

the value to magnitudes suggested by recent meta-analyses. For sensitivity analyses, 

other approaches were considered: assigning values of one for all the suspected 

carcinogens (reducing the covariate to a dichotomous variable), or removing the covariate 

for previous evidence entirely. Aside from an effect on a couple of chemicals, estimates 

were not affected materially by these different assumptions (data not shown). For 

example, standard errors were unaffected down to several decimal places, and the average 

ofthe logistic beta estimates, when comparing the primary approach to the approach 

where previous evidence was excluded, shifted from 0.008 to 0.004. 

7.8.2 Full model for strategy 6 

The main results for the full model analysis (strategy 6), and consequently the semi-Bayes 

analyses (strategies 7 and 8), made use of a model with variables for 184 chemicals at any 

level of exposure. Of the 231 chemicals considered, many were eliminated for conceptual 

reasons (see section 6.8), but reasonable disagreement is possible as to which chemicals 

should have remained in this model. Table 7-17 describes the sensitivity of the maximum 

likelihood estimates in the full model to other regression model designs. While these 

models differed as to the number of chemicals included in the estimation, for 

comparability purposes, the descriptive statistics in the table were based on the 110 

chemicals common to all four of the designs discussed below. 

Compared to my preferred model, results from the model that included nearly all the 

chemicals simultaneously (section A, K=228 chemicals) showed only moderately similar 

point estimates (Spearman correlation, rho=0.81). This larger model resulted in 

confidence interva1s that were on average 19% longer. Many of the adjustments in this 

model, however, would be deemed inappropriate, leading to nearly certain over

adjustment of effects (see section 6.8). Sorne of the chemicals whose estimates changed 

appreciably, included: hydrogen cyanide, whose rate ratio estimates changed from 3.2 in 

my preferred model to 0.9 in the larger model; creosote, with a shift from 0.62 to 0.09; 
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and nickel fumes, with a shift from 0.3 to 1.8. The chemicals whose estimates shifted 

dramatically tended to be those that occurred with low prevalence in the study population, 

or were highly correlated with other chemicals. 

Compared to the preferred model, results from the model that deleted nearly aIl chemicals 

that could potentially pose sorne conceptual difficulties with the interpretation of adjusted 

estimates (section B, K=117 chemicals) showed similar results (Spearman correlation, 

rho=0.87) with few point estimates noticeably affected. 

Finally, the model with deletions of one of each pair of chemicals that were highly 

correlated (section C, K=170 chemicals, deletions ifr>0.7), possibly leading to issues of 

multi-collinearity in my preferred model, showed little difference in a comparison of 

respective point estimates (Spearman correlation, rho=0.90). Two exceptions inc1uded: 

nickel fumes, whose point estimate shifted from 0.3 to 1.7; and natural rubber, whose 

estimate shifted from 6.4 to 1.9. 
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Table 7-17: Sensitivity of resnlts to varions designs of the regression model for strategy 6 

A. B. C. 

Essentially no Stricter deletion Deletion of 
Strategy 6 G deletion of of chemicals chemicals to avoid 

(K=J84) chemicals even for minor r>O. 7 c 
. b 

(K=228) 
lssues 

(K=J70) 
(K=JJ7) 

Mean beta d 0.033 0.039 0.014 0.014 

Mean standard error d 0.431 0.514 0.376 0.404 

Selected chemicals: e RR (90% CL) RR (90% CL) RR (90% CL) RR (90% CL) 

Asbestos 1.01 (0.73, 1.38) 1.00 (0.72, 1.39) 0.94 (0.72, 1.23) 1.00 (0.73, 1.37) 

Glass Dust 1.61 (0.78,3.33) 1.41 (0.66,3.01) 1.56 (0.81, 3.03) 1.67 (0.81, 3.41) 

Silicon Carbide 0.65 (0.38, 1.10) 0.76 (0.43, 1.37) 0.66 (0.41, 1.07) 0.64 (0.38, 1.06) 

a Strategy 6 involved logistic regression with variables for aU 184 chernicals estirnated sirnultaneously. 

b Minor issues included possible over-adjustrnent of effects, such as with silica and the silica-based excavation dust. 

C For each pair of variables with a Spearman correlation greater than 0.7, one of the pair was deleted. 

d For cornparison purposes, the rnean values were calculated on the 110 chernicals cornrnon to aU four designs. 

e Three chernicals were selected to illustrate the behaviour of the estirnates under the various designs. 



7.8.3 Control series options 

Given the design of the study, two sources for the control series were possible: men 

diagnosed with cancers other than lung cancer, and men contacted through an electoral 

list or via random digit dialling (see section 4.2.3). Although the analyses of the thesis 

used the cancer patients for the control series, it was important to consider whether 

estimates would have been different had the other option for the controls been used. The 

results in Figure 7-2 compare the main estimates (cancer control series, N=2172) to the 

estimates using the electoral-li st control series (N=533). A third option was also inc1uded 

(see section 6.14.2): an equal-parts combination of the cancer series and electoral-list 

series (N=1066). The electorallist series and cancer series options resulted in point 

estimates that were often quite different, near randomly distributed, as the diffuse scatter 

in box A demonstrates. Compared to the cancer series, the confidence limits from the 

electorallist design were on average 46% wider and the confidence limits from the equal

parts combined control series were 18% wider, on average. 

Figure 7-2: Scatter plots comparing logistic coefficients from three different design options 
for the control series 

A 
Bectoral list series 

. . . . . . .. 
• 

. . . . 

B 
Combined series 

. .. . . 

The appendices provide rate ratio and confidence limit estimates for all the chemicals 

under the different designs of the control series. 

7.8.4 Respondent statns 

Since sorne of the questionnaire respondents in the Montreal study were acting as proxies 

for the study subject (usually a spouse), and since proxy response may be ofpoorer 

quality for occupational history than self-response, proxy status was inc1uded as a 
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dichotomous variable in the statistical analyses. In order to evaluate whether proxy status 

indeed confounded the associations between occupational exposures and lung cancer and 

whether statistical adjustment was sufficient, analyses were conducted that restricted the 

study population to self-responders. The scatter plot in Figure 7-3 compares the estimates 

for all chemicals. Estimates were similar between the two approaches. 

Figure 7-3: Scatter plot comparing logistic coefficients, under two options for controlling 
respondent status 

Self-responders only 

7.8.5 Issues related to possible over-adjustment of estimates 

Due to the conceptual issues with adjusting the effects of particular chemicals for the 

effects of others, many chemicals were not inc1uded in the larger modeling strategies. 

Section 6.8 discussed many ofthese issues and Table 6-5 lists those chemicals not 

inc1uded in the preferred full model design of 184 chemicals. Nevertheless, issues still 

remained that posed sorne difficulties in the interpretation of the estimated logistic 

coefficients. For example, compounds such as excavation dust and Portland cement were 

retained in the model even though they are both composed largely of silica. This may 

have lead to the effect of silica itself being underestimated. The results in Table 7-18 are 

from analyses that attempted to c1arify sorne of these issues. In all cases, the table lists 

which chemicals were included in each run of the regression model, usually adding the 

variables for one chemical at a time, although the order of additions was arbitrary. AlI 

models inc1uded adjustment for the standard set of eight non-occupational confounders. 
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Since estimates appeared relatively stable across the variations of the models, conceptual 

issues with chemical definitions could, for the most part, be ignored when interpreting the 

parameter estimates in the tables of main results. However, the following exceptions 

should be noted: 

The estimate for crystalline silica gradually shifted c10ser to unit y with each addition to 

the model of a silica-composed compound. While 1 cannot rule out the role of 

confounding, this result is also consistent with the presence of over-adjustment in the 

larger models, in respect to the effect of silica. 

Although they are distinct chemicals, natural rubber and styrene-butadiene rubber are 

often blended together prior to use. This functional relationship, in addition to the high 

correlation of the variables in the dataset (r=0.82), caused sorne difficulties for the 

interpretation of the mutually adjusted estimates. The estimates from the mutually 

unadjusted/adjusted approaches provided quite different pictures ofthe relative effects. 

Chromium fumes and nickel fumes were highly correlated (r=0.97). Each appeared to 

have an elevated estimate when assessed individually, but when adjusted for each other, 

the estimates shifted radically with large increases in the estimated variance, indicating 

the instability of the logistic regression estimation in these simpler models, as well as in 

strategy 6. 
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Table 7-18: Sensitivity of results, for selected chemicals, with respect to issues of 
over-adjustment of estimates 

Exp 
Topie Model a Chemical (id) Cases RR(90% CL) 
Silica and various dusts 

1 Crystalline Silica (6) 238 1.3 (1.1, 1.5) 

2 Crystalline Silica (6) 238 1.2 (1.0, 1.5) 
Abrasives Dust (1) 237 1.1 (1.0, 1.4) 

3 Crystalline Silica (6) 238 1.1 (0.9, 1.3) 
Abrasives Dust (1) 237 1.2 (1.0, 1.4) 
Excavation Dust (3) 109 1.4 (1.0, 1.8) 

4 Crystalline Silica (6) 238 1.0 (0.8, 1.3) 
Abrasives Dust (1) 237 1.2 (1.0, 1.4) 
Excavation Dust (3) 109 1.4 (1.0, 1.8) 
Portland Cement (7) 79 1.2 (0.9, 1.6) 

5 Crystalline Silica (6) 238 1.0 (0.8, 1.3) 
Abrasives Dust (1) 237 1.2 (1.0, 1.4) 
Excavation Dust (3) 109 1.4 (1.0, 1.8) 
Portland Cement (7) 79 1.3 (0.9, 1.7) 
Brick Dust (11) 34 0.8 (0.5, 1.2) 

6 Crystalline Silica (6) 238 1.0 (0.8, 1.2) 
Abrasives Dust (1) 237 1.2 (1.0, 1.4) 
Excavation Dust (3) 109 1.4 (1.1, 1.9) 
Portland Cement (7) 79 1.3 (1.0, 1.8) 
Brick Dust (11) 34 0.8 (0.5, 1.2) 
Clay Dust (12) 28 1.9 (1.2, 3.1) 

7 Crystalline Silica (6) 238 1.0 (0.8, 1.3) 
Abrasives Dust (1) 237 1.2 (1.0, 1.4) 
Excavation Dust (3) 109 1.5 (1.1,2.0) 
Portland Cement (7) 79 1.3 (1.0, 1.8) 
Brick Dust (11) 34 0.8 (0.5, 1.2) 
Clay Dust (12) 28 1.9 (1.2, 3.0) 
Concrete Dust (13) 97 0.9 (0.7, 1.3) 

Glass dust and fibres 
1 Glass Dust (8) 18 2.0 (1.1, 3.5) 

2 Glass Fibres (9) 50 0.9 (0.7, 1.2) 

a Model numbers refer to separate regression models, each including only the chemicals listed to 
the right, with adjustment for the standard eight non-occupational confounders. 
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Table 7-18: Sensitivity of results, for selected chemicals, with respect to issues of 
over-adjustment of estima tes 

Exp 
Topic Model a Chemical (id) Cases RR(90% CL) 

3 Glass Dust (8) 18 2.0 (1.1, 3.5) 
Glass Fibres (9) 50 0.9 (0.7, 1.2) 

Rubber 
1 Natural Rubber (53) 44 1.2 (0.8, 1.7) 

2 Styrene-Buta.Rubber (70) 38 0.9 (0.6, 1.3) 

3 Natural Rubber (53) 44 2.4 (1.3, 4.4) 
Styrene-Buta.Rubber (70) 38 0.4 (0.2, 0.8) 

Engine emissions 
1 Gas Eng.Emissions (115) 379 0.9 (0.8, 1.1) 

2 Diesel Eng.Emissions (117) 165 1.2 (1.0, 1.5) 

3 Jet Fuel Eng.Emiss. (121) 3 0.4 (0.2, 1.3) 

4 Propane Eng.Emiss. (122) 28 1.7 (1.1, 2.6) 

5 Gas Eng.Emissions (115) 379 0.9 (0.8, 1.0) 
Diesel Eng.Emissions (117) 165 1.3 (1.0, 1.5) 

6 Gas Eng.Emissions (115) 379 0.9 (0.8, 1.0) 
Diesel Eng.Emissions (117) 165 1.2 (1.0, 1.5) 
Jet Fuel Eng.Emiss. (121) 3 0.5 (0.2, 1.4) 

7 Gas Eng.Emissions (115) 379 0.9 (0.8, 1.0) 
Diesel Eng.Emissions (117) 165 1.2 (1.0, 1.5) 
Jet Fuel Eng.Emiss. (121) 3 0.4 (0.2, 1.3) 
Propane Eng.Emiss. (122) 28 1.7 (1.1, 2.7) 

8 Carbon Monoxide (80) 478 0.9 (0.7, 1.2) 
Nitrogen Oxides (83) 240 2.3 (1.7, 3.0) 
Sulphur Dioxide (86) 144 0.5 (0.4,0.7) 
PAR (Any) (214) 581 1.1 (0.9, 1.3) 
Benzo(a)pyrene (219) 220 1.1 (0.9, 1.4) 
Soot (76) 91 1.0 (0.8, 1.4) 

a Model numbers refer to separate regression models, each including only the chemicals listed to 
the right, with adjustment for the standard eight non-occupational confounders. 
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Table 7-18: Sensitivity of results, for selected chemicals, with respect to issues of 
over-adjustment of estimates 

Exp 
Topic Model a Chemical (id) Cases RR(90% CL) 

9 Gas Eng.Emissions (115) 379 0.8 (0.6, 1.0) 
Diesel Eng.Emissions (117) 165 1.1 (0.9, 1.4) 
Jet Fuel Eng.Emiss. (121) 3 0.4 (0.1, 1.2) 
Propane Eng.Emiss. (122) 28 1.7 (1.1, 2.7) 
Carbon Monoxide (80) 478 1.1 (0.8, 1.4) 
Nitrogen Oxides (83) 240 2.1 (1.6,2.8) 
Sulphur Dioxide (86) 144 0.5 (0.4, 0.7) 
PAR (Any)(214) 581 1.1 (0.9, 1.4) 
Benzo(a)pyrene (219) 220 1.1 (0.8, 1.4) 
Soot (76) 91 1.1 (0.8, 1.5) 

Polycyc1ic aromatic hydrocarbons 
1 PAR (Any) (214) 581 1.1 (1.0, 1.4) 

2 Benzo(a)pyrene (219) 220 1.2 (1.0, 1.4) 

3 PAR (Any) (214) 581 1.1 (0.9, 1.3) 
Benzo(a)pyrene (219) 220 1.2 (1.0, 1.4) 

4 PAR (VVood) (216) 40 0.9 (0.6, 1.3) 
PAR (Petroleum) (217) 561 1.1 (0.9, 1.3) 
PAR (Coal) (218) 84 1.3 (1.0, 1.7) 
PAR (Other) (215) 187 1.2 (1.0, 1.4) 

5 PAR (Any) (214) 581 0.9 (0.6, 1.5) 
Benzo(a)pyrene (219) 220 1.1 (0.9, 1.4) 
PAR (VVood) (216) 40 0.9 (0.6, 1.3) 
PAR (Petroleum) (217) 561 1.1 (0.7, 1.8) 
PAR (Coal) (218) 84 1.3 (0.9, 1.7) 
PAR (Other) (215) 187 1.2 (1.0, 1.4) 

N atural gases 
1 Natural Gas (90) 24 1.0 (0.6, 1.5) 

2 Coal Gas (97) 8 0.6 (0.3, 1.2) 

3 Hydrogen (79) 19 0.8 (0.5, 1.5) 
Carbon Monoxide (80) 478 1.2 (1.0, 1.4) 
Hydrogen Sulphide (87) 37 1.0 (0.7, 1.5) 
Methane (91) 41 1.0 (0.7, 1.5) 

a Model numbers refer to separate regression models, each including only the chemicals listed to 
the right, with adjustment for the standard eight non-occupational confounders. 
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Table 7-18: Sensitivity of results, for selected chemicals, with respect to issues of 
over-adjustment of estimates 

Exp 
Topic Model a Chemical (id) Cases RR(90% CL) 

4 Natural Gas (90) 24 0.9 (0.4, 1.7) 
Coal Gas (97) 8 0.4 (0.1, 1.1) 
Hydrogen (79) 19 1.3 (0.6, 2.5) 
Carbon Monoxide (80) 478 1.2 (La, 1.4) 
Hydrogen Sulphide (87) 37 1.0 (0.7, 1.4) 
Methane (91) 41 1.3 (0.7,2.3) 

High correlation between chromium and nickel fumes 
1 Chromium Fumes (104) 43 2.2 (1.5, 3.3) 

2 Nickel Fumes (107) 42 2.1 (1.4,3.1) 

3 Chromium Fumes (104) 43 4.1 (0.6,27.2) 
Nickel Fumes (107) 42 0.5 (0.1,3.7) 

Dusts and fumes 
1 Copper Dust (35) 47 1.3 (0.9, 1.8) 

2 Copper Fumes (108) 47 2.2 (1.5, 3.1) 

3 Copper Dust (35) 47 1.0 (0.7, 1.5) 
Copper Fumes (108) 47 2.1 (1.4,3.1) 

4 Iron Dust (33) 37 1.1 (0.7, 1.6) 

5 Iron Fumes (106) 94 1.4 (1.1, 1.8) 

6 Iron Dust (33) 37 1.0 (0.7, 1.4) 
Iron Fumes (106) 94 1.4(1.1,1.8) 

7 Zinc Dust (36) 26 1.6 (La, 2.6) 

8 Zinc Fumes (109) 39 1.6 (1.1, 2.3) 

9 Zinc Dust (36) 26 1.4 (0.8, 2.2) 
Zinc Fumes (109) 39 1.5 (1.0, 2.2) 

a Model numbers refer to separate regression models, each including only the chemicals listed to 
the right, with adjustment for the standard eight non-occupational confounders. 
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7.8.6 Issues related to correlation and confounding 

This section explores how the estimates for particular chemicals change with the graduaI 

addition of other chemicals, up to the size of the full model strategy of 184 chemicals. A 

few chemicals were chosen for illustrative purposes. 

The estimates for asbestos are displayed in box A of Figure 7-4. The x-axis lists the 

number of chemicals included in the model at that part of the plot, where the leftmost 

value represents the mode1 for the unadjusted effect of asbestos. Fluctuations in the 

estimate for a chemical can reflect any combination of the following: random deviations, 

adjustment for confounding, combined impact of minor amounts of confounding, minor 

amounts of over-adjustment, and small sample bias. 

Even this small sample ofthree chemicals illustrated that there was no single pattern 

which described all chemicals. While the important changes to each of the chemical's 

estimates occurred in the left extreme of the graph, that is, after adjusting for a few 

important confounders, it could not be predicted with certainty that the inclusion ofmore 

covariates would have had the effect of decreasing or increasing the RR estimates. These 

phenomena seem to be idiosyncratic and depend on the complex inter-correlations among 

the chemical exposures. 
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Figure 7-4: Tracking the logistic beta estimate for a chemical across models with the 
graduaI addition of variables for aIl other chemicals 
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8 Discussion 

8.1 Limitations of the study and of the analyses 

When interpreting the results ofthe present thesis, several considerations must be borne in 

mind: suspected and expected study biases, issues with exposure assessment, and 

limitations in the design of the analyses. 

8.1.1 Selection of study subjects 

The case series of lung cancer patients would have represented a near-complete 

ascertainment of cases arising in metropolitan Montreal, but patients with lung cancer 

were exc1uded from the study for three non-contiguous years of the six years of 

recruitment (Siemiatycki, 1991). The case series can nevertheless be considered a 

random sample oflung cancer cases over the years of the study, as any systematic 

difference in characteristics of cases arising in different years is very unlikely. 

The control series of cancer patients, representing near-complete ascertainment of the 

respective types of cancer from the Montreal-area hospitals, were restricted to residents of 

metropolitan Montreal. The electoral-li st control series was sampled from an 

enumeration of the Quebec population, and also restricted to residents of metropolitan 

Montreal (Siemiatycki, 1991). Thus, both options for the control series were consistent 

with sound epidemiologic design (Rothman and Greenland, 1998), and in theory could be 

considered equivalent for representing the distributions of exposures in the source 

population (Miettinen, 1999). However, the scatter plot in Figure 7-2, comparing 

estimates using the cancer series to estimates using the electoral-li st series, suggests that 

in practice there were many discrepancies between the pairs of estimates. 

The response rates of the cancer series were, on average, higher than the response rate of 

the electoral-list series. The average response rate ofthe cancer series was 81.5%, 

ranging from 63% to 92% for the different subtypes of cancer, while 72% of the men 

responded who were contacted on the electorallist or from random digit dialling. Insofar 

as low response rates can induce unrepresentative or biased samples, the cancer series 

would have been less prone to such a bias. 
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8.1.2 Bias from choice of cancers in the control series 

It would have been desirable to remove from the control series, for each chemical of 

interest, those cancers known to be associated with the chemical (Rothman and 

Greenland, 1998). For example, in the assessment ofaromatic amines and lung cancer, 

removing bladder cancer would have beenjustified (Ward et al., 1991; Markowitz and 

Levin, 2004). However, because of the lack of any relevant knowledge about the 

potential carcinogenic effects ofthe majority ofthe chemicals in the database, it was 

utterly unfeasible to conduct such a tailored set of analyses. Instead, an attempt was made 

to design a cancer control series which would be acceptable for nearly aIl the chemicals in 

the study. This was done by restricting the number of subjects with any of the subtypes of 

cancer, so that no single cancer site accounted for more than 10% ofthe total cancer 

controls. However, bias was still a possibility if certain chemicals were strongly related 

to any of the cancer types in the control series. An example of a plausible magnitude of 

this bias was given in section 6.3. 

8.1.3 Confounding bias 

Twenty variables were used to represent the eight non-occupational confounders that 

were adjusted for throughout the analyses. The extent to which these eight 'confounders' 

actually brought about confounding of the chemical estimates was not assessed, as it 

would be different for every chemical. 

Of the potential non-occupational confounders considered for adjustment in the models, 

two suspected determinants of the risk oflung cancer were not inc1uded: family history 

(Shaw et al., 1991) and diet (Byers, 1994). Family history oflung cancer was not 

collected in the Montreal study. However, it is unlikely that it would be even moderately 

correlated with exposure to particular chemicals. The non-occupational characteristics, in 

general, would more likely be correlated with employment in occupations, and only 

indirectly with particular chemical exposures. Questions on diet were inc1uded in the 

interviews and questionnaires of the Montreal study, but the questions were not 

comprehensive and it would be expected that the data on particular diet items would be of 

questionable quality. Sorne ofthis data was previously translated into an index ofbeta

carotene consumption, but too many study subjects were missing data for this variable to 
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be included in the models. As with family history, any confounding of the chemical 

effects due to diet would likely be minor. 

Despite my attempts to adjust the effects of all the chemicals for mutual confounding in 

strategies 3 through 8, a number of considerations would suggest that residual 

confounding among the chemicals was still present. The foremost reason is the crude 

nature of representing exposures in the models. A single variable, corresponding to an 

ever/never dichotomization of lifetime work history, might not offer thorough control for 

the entire effect of an important confounding risk factor. Added to this, measurement 

error in the exposure variables would also leave sorne residual confounding in the models 

that purported to adjust for the effects of other chemicals (Armstrong, 1998). 

8.1.4 Quality of data 

Diagnoses of cancers were obtained through the pathology departments of all the 

participating hospitals of the Montreal study (Siemiatycki, 1991). Each case was eligible 

for the study only following histological confirmation. The diagnosis of lung cancer is 

not considered to be very difficult or error-prone, and so it is unlikely that there would be 

many false-positives among the lung cancer cases included in the study. There may have 

been under-ascertainment oftrue lung cancers that were not histologically confirmed. 

Misclassification among the histological subtypes of lung cancer was more likely, 

because at the time of study recruitment the histological designation was more difficult 

and occasionally ambiguous (Bruce Case, personal communication). Such errors may be 

expected to be nondifferential with respect to any of the chemical exposures assessed, so 

that any resulting bias of the estimates would tend to be toward the null. 

Another concem relates to the validity of occupational exposure information obtained 

from proxy respondents, which accounted for 20% of the completed interviews among the 

cancer patients. Spouses and other relatives would provide less information about the 

work history ofthe study subject, and this wou Id have the effect on the chemists' expert 

exposure assessment of shifting it closer to that of a traditional job-exposure matrix. This 

in tum could introduce exposure misclassification. However, in a sensitivity analysis, 

adjusting for respondent status provided similar results to restricting the study to self

responders (see section 7.8.4). 
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The occupational hygienists coded exposures with a consensus process that should have 

minimized exposure misc1assifications (Siemiatycki, 1996). Re-codes have occurred over 

the years for particular groups of substances, and this also presumably improved the 

accuracy of the exposure codes. Based on the chemists' coding of exposure certainty, the 

regression models used in this thesis also inc1uded two variables for each chemical to 

distinguish uncertain and certain exposures. Further, information about the disease status 

of study subjects was not made available to the chemists. Given these precautions, to the 

extent that misc1assification might have still occurred, it would have resulted in bias 

toward the null due to non-differential misc1assification. 

In contrast, if non-differential misc1assifications of different exposures are correlated, 

then this can unexpectedly lead to bias away from the null (Chavance et al., 1992; 

Kristensen, 1992). While correlated errors could be expected for determinants like 

smoking history and alcohol use, it would be minimized in the exposure assessment of the 

occupational chemicals. This is because the interview information was filtered several 

times through several occupational hygienists, who also incorporated information external 

to the study in their assessments, such as from consultations with experts and from 

bibliographie sources (Siemiatycki, 1991). 

8.1.5 Issues related to the analytic strategies 

Definition of exposure variables 

The analyses of chemicals were carried out at two levels of exposure, any and substantial, 

with the latter being a subset of the former. The designation of 'exposed at any level' was 

based on the comparison to exposure in the general environmental, but it had no c1ear 

definition in terms ofunits of concentration per volume. Likewise, the designation of 

'substantial exposure' was not based on absolute exposure levels, but was rather a relative 

construct. In general, benchmarking would be possible by considering the occupations 

common to these levels in the Montreal population. This, however, would be an 

imperfect algorithm and would not provide a solution in the present thesis for interpreting 

point estimates, which relate to cumulative exposures across separate jobs. The point 

estimates reported in the thesis, then, must be interpreted only on a relative scale and only 
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qualitatively, with 'any' exposure corresponding to an average oflower concentrations 

and shorter durations than 'substantial' exposure. 

The algorithm used to combine the different characteristics of exposure into a single 

index relied on somewhat arbitrary assumptions about the relative importance of 

concentration versus duration. More finely crafted levels of exposure, beyond the present 

use of 'any' and 'substantial', would require even stronger assumptions about how to 

weight low concentration/long duration exposures versus high concentration/short 

duration exposures. 1 sidestepped this issue by avoiding defining low and moderate 

exposure levels, especially as these definitions would have had to suffice for all 231 

chemicals investigated in the thesis. Besides, many of the chemicals occurred with too 

Iowa prevalence to have supported finer categories in the estimation. 

Without better knowledge of the induction and latency times (Rothman, 1981) for each 

chemica1-lung cancer association, a simple approach was used by defining a single five

year period prior to diagnosis that was deemed irrelevant to the onset of the disease. 

Accordingly, the five years of exposure before diagnosis or interview were discounted. 

The standard use of five years would have introduced error due to misclassification if the 

minimum induction period was much longer (Rothman, 1981), as is certainly the case for 

sorne occupational substances. In the secondary analyses, the designation of the mutually 

exclusive time windows of 5 to 20 years and 20+ years before diagnosis was entirely 

arbitrary. Far more sophisticated approaches are available to analyze lag periods (Rachet 

et al., 2003). The analysis of exposures in the time window of20 or more years prior to 

diagnosis often resulted in imprecise estimates. The results were nevertheless reported 

because rule-out evidence of carcinogenicity cannot be provided by only analyzing 

exposure periods close to diagnosis, especially when there is uncertainty about the true 

latencylinduction period (IARC, 2004a). 

Exchangeability in the semi-Bayes model 

The accuracy of the results from the semi-Bayes models is dependent on the assumptions 

made about the exchangeability of groups of chemical effects (Greenland, 2000a). The 

categories of exchangeability developed for this project were based on the chemical and 

physical properties ofthe occupational chemicals. If the 30 categories specified in the 
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semi-Bayes model did not reflect the true nature of the carcinogenicity of the 

occupational chemicals, then the accuracy of the results of the semi-Bayes models would 

be affected. For example, a category called 'solvents' was discarded early in the process 

of designing the categories of exchangeability. This was because many different types of 

chemicals are considered solvents, and there would not be common properties suggesting 

that they would have similar effects on lung cancer. Inc1uding the category of solvents in 

the semi-Bayes models might have shrunk the estimates ofthese different chemicals to an 

inappropriate common mean. However, almost aIl ofthe chemicals assessed in the thesis 

were expected to have relatively small magnitudes of effect on lung cancer, which in turn 

implies that any misspecification of exchangeability would not have resulted in large 

degrees of error. 

There were other characteristics of the occupational chemicals that might ideally have 

been inc1uded in the model. For example, partic1e size would be predictive of the 

respirability of dusts, and it would plausibly be related to their carcinogenicity to lung 

tissue. Many of the chemicals, however, occurred in a variety of industrial processes at 

different temperatures and with a different spectrum of adsorbed chemicals, thus making 

it difficult to attribute a single value for partic1e size to a given chemical. 

8.2 Methodological findings 

8.2.1 The modeling strategies 

Although several modeling strategies were implemented in the thesis, most were used for 

comparative purposes only. Strategies 1 and 2, for example, were too simplistic for a 

study of multiple occupational exposures, but they were nevertheless inc1uded to observe 

whether they resulted in appreciably different results when compared to the more 

complex analyses. Because of the very large number of results generated by aIl these 

models, chemical-specific estimates from several of the strategies were not shown. 

Nevertheless, general comments can be made about sorne of the benefits and expected 

problems of each approach. 

Strategy 1 involved adjusting the effect of each chemical for age only. This resulted in 

over 20% of the chemicals identified as 'statistically significant', but this finding could 
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largely be attributed to ignoring confounding from non-occupational and occupational 

risk factors. 

Strategy 2 involved adjusting the effect of each chemical only for eight non-occupational 

confounders, which involves the explicit assumption that no confounding occurred among 

the chemicals. Given the presence of sorne high correlations among the exposures, 

several ofthese estimates could represent over-estimates. 

Strategy 3 assessed each chemical in a separate regression model, with adjustment for the 

standard eight non-occupational confounders and for seven suspected lung carcinogens. 

Considering the ensemble of chemicals assessed in the thesis, the mean of the logistic 

beta estimates shifted closer to zero compared to the estimates of strategies 1 and 2. This 

would arguably represent a more reasonable distribution of estimates if it is expected that 

most of the chemicals among the 231 assessed in the thesis would not be lung 

carcinogens. Furthermore, little was lost in terms of precision by adding the seven 

suspected lung carcinogens over what was included in the models of strategy 2, as the 

standard errors were similar. Strategy 3 also had the benefit of avoiding the automaticity 

and arbitrary criteria of strategies 4 and 5 in the selection of confounders. Choosing 

which chemicals to include for confounding purposes drew on expert opinion and 

previous research findings, which is desirable since knowledge of subject matter should 

be an important input to regression modeling (Robins and Greenland, 1986). This 

approach also involved the recognition that either too few or too many covariates can 

harm estimation (Starr et al., 1986). 

On the other hand, a philosophical objection to all the approaches involving K models for 

K exposures is that they can result in mutually contradictory models. For example, a 

chemical will be included in the model when it is the focus of estimation, and the 

estimated logistic beta can be any value from negative infinity to positive infinity. But in 

the next model, when it is being treated as a potential confounder, its estimated effect 

would be set to exactly zero if it were deleted from the model. This objection takes on 

relevance when the objective of a study is to estimate the separate effects of each of a set 

of exposures. Whether this would have practical implications in the estimation would 

depend on the complex pattern of correlations among the variables. 
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Strategy 4 involved a separate model for each chemical being assessed, and other 

chemicals were added to this model as confounders using an automatic forward selection 

with a P-value =:; 0.25 criterion for entry. While approximately 50 chemicals were 

included as confounders in each of the separate regression models, on average the 

estimated variances were similar to or even higher than the variances from the semi

Bayes models, which included 184 chemicals in a single model. Strategy 4 offered little 

over the other approaches. The criterion for including a chemical as a confounder was 

based on a P-value, which has been widely criticized as an inappropriate indicator ofthe 

extent ofconfounding (Greenland, 1989b; Weinberg, 1993; Hernberg, 1996; Nurminen, 

1997; Hernan et al., 2002). From Table 7-6, the failure ofthe P-value-based criterion to 

identify sorne important confounders might be one explanation for why so many more 

chemicals had elevated estimates in strategy 4 compared to strategy 3, especially in the 

analyses at any level of exposure. An alternative approach to the P-value criterion would 

be to limit covariates to those that bring about a predetermined change in the regression 

coefficient of the main exposure, such as a 10% relative change (Mickey and Greenland, 

1989; Maldonado and Greenland, 1993). This latter strategy was not incorporated in the 

present thesis because it is ill-suited to assessing studies ofhundreds of exposures. 

Strategy 5 was the first of the strategies to attempt the estimation of the chemicals in a 

single model. While aIl 184 chemicals were eligible for the model, the only chemicals 

included were those that had a statistically significant point estimate with P-value =:; 0.25. 

The untenable ide a behind this approach was that if a chemical's estimate was not 

statistically significant, then it in fact was truly equal to unit y (which was operationalized 

by excluding the chemical from the model). Such an approach to assessing a set of 

exposures introduces discontinuities into the estimation by setting several effects to the 

null value without confidence limits. If the objective of a study is to estimate the effects 

ofK chemicals, then such an approach to modeling represents far too much certainty 

about the majority ofthe effects. In comparison, the semi-Bayes approach only shrinks 

estimates toward the prior mean, which in this study would be close to the null value, and 

it provides a confidence interval for each estimate. 

Strategy 6 involved a single logistic regression model with variables for aIl 184 

chemicals. Using a so-caIled full model has been advocated by theoreticians, though 
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there is recognition that such models would rarely have sufficient data to be properly fit 

(Miettinen, 1985). Suggestions for modeling often begin with the full model and follow 

with a backwards deletion ofunnecessary variables using a P-value criterion for exit (Sun 

et al., 1996). However, one of the reasons for using the semi-Bayes models was to 

estimate the entire panel of exposures and avoid dropping variables from the model. In 

my own analyses, the RR estimates from strategy 6 were often large and imprecise, which 

was expected because of the small ratio of lung cancer cases to exposure variables in the 

logistic regression. The full model was used in the present thesis solely as an interim step 

to the semi-Bayes approaches. 

Strategy 7 involved the same single model as in strategy 6, but now a semi-Bayes prior 

was specified that assumed that the effects of all the chemicals were exchangeable. There 

were far fewer statistically significant estimates in the semi-Bayes model results than in 

any of the non-Bayesian strategies. Curiously, no estimates were statistically elevated 

with substantial exposures, although this could partly be explained by the imprecise 

nature of aIl the analyses at that level, thus involving extensive shrinkage of estimates. In 

this thesis, the assumption of complete exchangeability of all effects was neither plausible 

nor advisable (Greenland, 2000a), and it might have led to inappropriate shrinkage of 

point estimates. For example, the estimates ofthe effects of chromium VI compounds 

tended to be lower in strategy 7 than when they were separated into a category of 

exchangeability in strategy 8. 

Strategy 8 was also based on a single logistic regression model of 184 chemicals, but now 

with a semi-Bayes prior that grouped the chemicals by the similarity oftheir chemical 

properties. It also involved incorporating subject-matter knowledge in terms ofwhich 

chemicals could be included simultaneously in a regression (like strategy 6). Introducing 

the information about the chemical properties influenced very few of the estimates 

compared to the simpler approach of strategy 7. Results were also insensitive with 

respect to how the second-Ievel covariate, that represented previous evidence, was 

represented in the models. Even entirely excluding the covariate for previous evidence 

did not materially affect the results (see section 7.8.1). These results highlight the 

uncertainty of CUITent knowledge about what determines an occupational chemical's 

carcinogenicity. 
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Summary of noteworthy influences of the modeling strategies 

The present results inc1uded several comparisons of the distributions of estimates derived 

from the different models. There were several noteworthy patterns that emerged from 

these comparisons. In terms of the greatest influences in the various strategies, 

comparing the small-model approach (strategy 3) to the large-model approach (strategy 6) 

resulted in often dissimilar estimates. Incorporating the simplistic semi-Bayes prior 

(strategy 7) over the large-model, maximum likelihood approach (strategy 6), also greatly 

influenced the estimates in terms of shrinking large and imprecise estimates to lower, 

more reasonable values. On the other hand, the introduction of expert opinion in terms of 

the categories of exchangeability based on chemical and physical properties (strategy 8), 

had only a negligible influence on nearly all estimates when compared to naïve shrinkage 

to a common prior mean (strategy 7). In fact, de Roos et al (2001) also found, in their 

occupational cancer study, that inc1uding second-Ievel covariates for crudely defined 

chemical properties only somewhat changed estimates compared to models with a simple 

prior. They found that where the magnitude of estimates changed, typically if the 

substance belonged to several categories of chemical properties, a loss of precision also 

occurred. Presumably, these estimates would nevertheless be more accurate than those of 

maximum like1ihood (Greenland, 1993). 

The particular circumstance of chromium fumes and nickel fumes would be a good 

example in which to explore the properties associated with sorne of these modeling 

strategies. Almost everyone exposed to nickel fumes was also exposed to chromium 

fumes. Therefore, it would be very difficult to separate their effects with the present data. 

Estimates for both of these chemicals were statistically significantly greater than 1.0 in 

the results from strategy 3 (chromium fumes, 2.0 (1.2, 3.2), and nickel fumes, 1.7 (1.1, 

2.8)), which examined them separately and without mutual adjustment. However, 

because of the near-collinearity between them (r=0.97), the two estimates may be almost 

completely confounded. By including the two exposures in a single model (strategy 6), 

the collinearity drove the respective estimates to unreasonably large and imprecise values: 

7.5 (0.8, 69.2) for chromium fumes, and 0.2 (0.0, 2.4) for nickel fumes. This is a pattern 

observed with near-collinear variables (Kleinbaum et al., 1998). In contrast, strategy 7 

resulted in both estimates being shrunk to somewhat more similar values, both of which 
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were closer to unit y (respectively, 1.4 (0.7, 2.9) and 1.1 (0.5,2.3)). This dramatic 

shrinkage occurred because of the very high standard errors. In this sense, strategy 7 

accounted for near-collinearity while still allowing for the mutual adjustment of the 

effects ofthese two chemicals. Finally, the assumptions of exchangeability in strategy 8 

included separate categories for nickel compounds and chromium compounds. Based on 

these assumptions, which were used to bolster the estimates of all the chemicals when 

data was sparse, the estimate for chromium fumes was elevated further to 1.9 (0.6, 6.0), 

but the estimate for nickel fumes remained close to unit y, 0.8 (0.3,2.5). This occurred 

partly because other chromium compounds also had elevated estimates, influencing the 

estimate of the effect of chromium fumes. 

Preference in certain modeling strategies 

Of the eight main approaches to modeling, strategy 3 and strategy 8 represented what 

appear to be, respectively, the most common and the most preferred (Greenland, 1993) 

strategies for analyzing a set ofmultiple exposures. For these reasons, the results ofboth 

strategies were used to select those chemicals that would be followed-up with further 

analyses. Comparison of the distributions of estimates resulting from these analytic 

approaches showed that the corresponding point estimates were often quite different. 

Accordingly, they led to prioritizing entirely different chemicals in the section on ranking 

and selection (see section 7.6). 

In the situation where one wishes to prioritize chemicals or to make inferences on a set of 

multiple exposures, empirical Bayes models have been widely advocated over 

conventional strategies (Thomas, 1985; Greenland and Robins, 1991), especially ifthere 

is a high cost to following false leads (Steenland et al., 2000). Of course, the re-ordering 

of parameters using empirical Bayes methods is driven by the exchangeability 

assumptions, and thus relies on their validity (Morris, 1983b). In the present study, the 

specification of a single large model was complicated by the overlapping definitions of 

many chemicals. This included 'chemicals' that actually represented groups of chemicals 

(like arsenic compounds) and chemicals that were complex mixtures of other chemicals 

(like gasoline exhaust). In the present thesis, the assessment of the semi-Bayes models 

attempted to distinguish two separate issues: the nature ofthe mutual adjustment ofthe 
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effects ofmany chemicals in a single model, and the nature of the semi-Bayes shrinkage 

of multiple estimates. Further comments on each ofthese two issues are found below. 

8.2.2 Comments on mutually adjusting the effects of occupation al chemicals 

In designing the full model with the independent effects of 184 chemicals estimated 

simultaneously, an even larger model and, altematively, a smaller model were considered 

as the best approach for strategy 6 (see section 6.14.2). Several questions were pertinent 

in arriving at the number of 184: do any ofthe reported estimates have complicated 

interpretations due to other mutual adjustments? do any of the mutual adjustments lead to 

potential over-adjustment? is it logically inappropriate to adjust the effects of this 

chemical for the effects ofthat one? is there interest in distinguishing the effects of any 

particular sets of chemicals? The answers to these questions, along with a certain amount 

ofreasoning and logic, were used to arrive at the final model proposed for strategy 6. For 

example, should the effects of gasoline exhaust be adjusted for the effects of diesel 

exhaust, even though they have a similar profile of emissions? And furthermore, should 

these effects be adjusted for the effects of the emissions themselves, like carbon 

monoxide and nitrogen oxide? This process of reasoning was not based on statistical 

criteria, but rather on subject-matter knowledge. The rate ratio estimates in the tables of 

results (such as in Table 7-11) needed to be easily interpretable, but that requirement was 

balanced against the need to estimate unconfounded effects and effects ofthe relative 

contributions of these chemicals, especially in the face of multiple high correlations. 

Inasmuch as the full model (strategy 6) involved a mutual adjustment of the effects of 

individual chemicals, it must be borne in mind that this model is a theoretical construct 

that involves many assumptions. For example, it is not logically possible to consider the 

effect of, say, whole diesel exhaust, while holding fixed the exposure levels of many of its 

constituent emissions, and yet, in princip le, this is what the fully-adjusted model was 

intended to accomplish. Thus, the point estimates for whole diesel exhaust correspond to 

the theoretical remaining effect of diesel exhaust after having removed the effects of 

individual emissions. While biases of over-adjustment were unavoidable to sorne extent, 

the ones that were identified appeared to have only rarely made a difference in terms of 

the numerical estimates, as shown in the sensitivity analyses (see section 7.8.5). The 
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over-adjustment of estimates poses conceptual difficulties nonetheless when interpreting 

the results of a few identified sets of chemicals, such as silica-based exposures and engine 

exhausts. 

8.2.3 Further comments on the semi-Bayes models 

Semi-Bayes and empirical Bayes models have been strongly advocated for analyzing 

multiple exposures (Thomas et al., 1985; Greenland, 1992) Part of the argument 

supporting such models is based on the concem that in a modellike that of strategy 3, the 

opinions regarding whether a particular chemical should be included as a confounder or 

not, are represented with too much certainty. The model in strategy 6, and the models 

based on it (strategies 7 and 8), avoided pre-selecting which chemicals confounded each 

other by estimating all their effects simultaneously, and it did this within a Bayesian 

framework. On the other hand, the size of the model, the risk of over-adjusting several 

effects, the difficulties of specifying a meaningful Bayesian prior, and unfamiliarity with 

the software necessary for Bayesian modeling would naturally lead to hesitation about 

using this modeling approach. Empirical Bayes models, in general, sit uneasily between 

Frequentist methods and Bayesian methods. Largely due to criticisms of the arbitrariness 

of the different estimation techniques used in empirical-Bayes analyses (Robert, 2001), 

pure Bayesians have also criticised these approaches. For example, Lindley (1983) has 

written that "no one is less Bayesian than an empirical Bayesian." But others have sought 

to clarify the commonalities between Frequentist and Bayesian models under the 

framework ofmultilevel modeling (Greenland, 2000a). 

Large numbers of independent variables 

Shortly after the introduction of the maximum likelihood logistic function, cautions in its 

use and misuse began to appear (Gordon, 1974). Multiple logistic regression was 

developed as a tool for handling several independent variables in relatively sparse data 

(Walker and Duncan, 1967), especially in circumstances that stratified analyses, like the 

Mantel-Haenszel, could not handle. Gordon (1974) suggested that in any application of 

multiple logistic regression, the results should be explored by reverting to stratified 

analyses. However, in the context ofthe present thesis, it would be impossible to verify 

the regression estimates in this fashion. For example, the logistic regression (strategy 6) 
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analysis of the 184 chemicals at any level of exposure could be thought of in terms 

necessary for a Mantel-Haenszel analysis. This would require the following numbers of 

dichotomous variables: one for the dependent variable, 184 for the exposures of interest, 

125 to account for uncertain levels of exposure, and 20 for the non-occupational 

confounders. This would be equivalent to i2184i25220 ::::: 2.18 X 1099 cells of data. 

Gordon (1974) goes on to write that even with a modest amount ofsample data, it is 

practically impossible to test the appropriateness of the assumptions underlying logistic 

regression, and we must "rely on other evidence (or our hopes) for assurance that the 

procedures used are relevant." However, stratification has strict limits, beyond which it 

will have "exceeded the limitations of the data" (Rothman and Greenland, 1998). 

Regression methods have been shown to handle far larger numbers of variables because 

of the much stronger assumptions made about the nature of the relationships under study 

(Robins and Greenland, 1986). Indeed, unless relevant product terms are explicitly 

included in the multiple regression model, constancy ofRR for a given independent 

variable across levels of all other variables is imposed. 

Regression modeling of multiple exposures has traditionally involved choosing models 

that make strict 'dichotomized' assumptions about which variables are and are not 

potential confounders. The decision to limit the number of exposures that are represented 

simultaneously is justified if the savings in precision from a smaller model offsets any 

potential biases (Robins and Greenland, 1986). AlI the modeling approaches in the thesis 

involved this complex trade-off. Combining precision and bias into a single measure, the 

square of the variance of the estimator plus the square of the bias, results in the mean 

squared error (Efron, 1975), which is a common measure of estimation inaccuracy 

(Greenland, 2000a). This measure has been used in many studies that have advocated the 

gains to be had from the semi-Bayes estimation of multiple parameters (Greenland, 1992). 

In the present results, however, from empirical data alone, the result of the trade-off 

between bias and variance is not obvious, as bias cannot be estimated because the 'true' 

parameter values remain unknown. 

As for the large numbers of chemicals that were modeled simultaneously, the common 

rule-of-thumb holds that the ratio of the number ofparameters to be estimated to the 

number of observed 'outcomes' should be at least 1: 10 (HarrelI, Jr. et al., 1985; Peduzzi 
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et al., 1996). However, empirical Bayes analyses with reasonable priors can involve far 

more parameters than is suggested by this rule-of-thumb (Witte et al., 1994), and 

Hierarchical Bayesian mode1s in general can often have more parameters than data points 

(Gelman et al., 1995). This is because, in multilevel models, the higher-level parameters 

structure sorne dependence among the lower-level parameters, and problems of 

overfitting bias are avoided. In this thesis, the semi-Bayes models were fit with only 

approximate fitting methods, which nevertheless still have less restrictive limitations than 

conventional approaches (Greenland, 1993). 

An objection to the semi-Bayes models might have less to do with the Bayesian portion of 

the modeling and more to do with the need to estimate a single model that inc1udes 

hundreds ofvariables. An alternative strategy might have been to change the preliminary 

steps of the semi-Bayes modeling, by drawing the effect estimates from separate 

chemical-specific regression models (Berger, 1983), such as the estimates from strategy 3. 

However, it should be noted that due to the presence of many high correlations among 

chemicals, this would be tantamount to creating a shrinkage estimator based on mutually

confounded estimates. 

Semi-Bayes modeling as sensitivity analysis 

The semi-Bayes models in the present thesis produced estimates for many chemicals 

nearly equivalent to those from the less 'data stretching' analyses, such as strategy 3. 

This gives sorne reassurance regarding the results from the conventional approach to 

modeling. On the other hand, in the situations where the two types of estimates in fact 

diverged, the semi-Bayes models might have identified an estimate from a simpler 

modeling approach that should be questioned. In this fashion, Greenland (2000c) has 

suggested that it is not necessary to make a commitment to the point estimates from the 

semi-Bayes model; instead, the results can be used as a form of sensitivity analysis for the 

results from the conventional analyses. 

Although extremely implausible estimates can be a waming about problems of sparse data 

in finely matched or finely stratified studies (Witte et al., 1994; Greenland, 2000c), a 

potentially greater concern is with undetected small sample bias occurring within a 

reasonable range of estimated effects. Small sample bias refers to an 'away from unit y' 
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bias in the maximum likelihood estimator, given sparse data or a relatively large ratio of 

parameters to data (Cordeiro and McCullagh, 1991). When this is combined with inflated 

estimates from small study biases, such as from misclassification and confounding 

(Rothman and Greenland, 1998), it can lead to estimates being spuriously statistically 

significant or incorrectly perceived as elevated (Greenland, 2000c). In small studies, and 

in large studies assessing many parameters, small sample biases can have moderately 

large influences, in which case bias correction is an important consideration (Cordeiro 

and McCullagh, 1991). The semi-Bayes approach is one example ofa model that corrects 

for such problems. 

Assumptions of exchangeability 

Decisions about the choice of exchangeable categories and prior variances in strategy 8 

could reasonably differ among experts. The process of justifying the information that 

comprises the Bayesian prior is part of the Bayesian oeuvre, but difficulties in specifying 

priors have always been the subject of sorne of the criticisms of Bayesian methods 

(Moore, 1997). In multiple-exposure studies, one difficulty with specifying 

exchangeability is that variables representing exposures should be measured on 

comparable scales if the parameters are to be viewed as exchangeable (Greenland, 1992). 

This could have been a particularly difficult problem in the present study. For instance, 

intensity of exposures to fumes, dusts, and liquids have no obviously common and 

meaningful scale on which to be measured. The issue was somewhat sidestepped by 

using dichotomous variables to represent exposed/unexposed histories, similar to the 

approaches of Thomas (1985), Greenland (1992), and de Roos (2001). A related problem 

has to do with how one views the exchangeability of parameters when the operational 

definitions of any and substantial exposure levels are on relative scales and, thus, different 

across chemicals. The following justification was used in the present thesis: in the 

absence ofknowledge about the carcinogenicity of the chemicals, it is not possible to 

specify whether a relatively high concentration of one chemical would have a higher or 

lower effect on lung cancer compared to a relatively low concentration of another 

chemical. From this perspective, the exchangeability of their effects is a reasonable 

belief. 
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8.3 Substantive findings 

The work histories ofthe study subjects often involved numerous exposures. Among the 

3029 cancer patients used for the present analyses, Il % were not exposed to any of the 

231 chemicals assessed in the thesis. At the other extreme, one individual had exposure 

to 96 of the chemicals at one time or other in his life. In a community-based study of 

occupational chemicals, the large numbers ofhighly correlated exposures makes 

attribution of cases of lung cancer to any one of these chemicals aIl the more difficult. 

Further, while it is possible to establish that sorne occupational exposures are associated 

with lung cancer in the study population, identifying which of the chemicals evaluated in 

the study was the carcinogen can be a challenge (more so ifthe true occupational 

carcinogen was not inc1uded in the study). 

8.3.1 Priorities among the occupational chemicals 

Several chemicals were flagged by the ranking and selection methods in section 7.6, and 

for several ofthese 1 found supporting evidence across both levels of exposure and from 

the various secondary analyses. As discussed in section 6.11, results worth flagging 

depended on the model. Statistically significant results with P-value < 0.1 were always 

identified. In the semi-Bayes results (strategy 8, which modeled chemical properties as 

weIl), large point estimates were also used as supporting evidence, regardless of their 

statistical significance. The present results did not always show confirmatory evidence of 

previously suspected carcinogens in this population. Several of the reasons for this are 

discussed in the next section, with respect to specific chemicals. For many other 

chemicals, the balance of evidence could be indicative of a lack of an association with 

lung cancer. However, 'negative' evidence from the present thesis would not be 

sufficiently convincing for establishing that certain chemicals do not cause lung cancer. 

Lung cancer is a multi-factorial disease (Samet, 1994), and any one occupational 

exposure would likely play but a small part. Further, the presence of several 'attenuation 

biases' and the uncertain mixture of concentrations (on an absolute scale) make such 

'negative' evidence less convincing than the evidence supporting an etiologic role. 

Table 8-1lists aIl 53 chemicals selected in section 7.6. Regardless ofthe results in the 

present thesis, a few more chemicals were added to the table because they have been 
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evaluated by lARC. For example, beryllium compounds is listed in this table because 

lARC has classified it as a definite carcinogen (lARC, 1993), with suggestive evidence of 

lung carcinogenicity. However, its point estimates for the putative association with lung 

cancer were consistently below unit y in most of the present analyses, and thus it was not 

eligible for the list of flagged chemicals in section 7.6. The table summarizes the 

substantive evidence from the thesis, including the results from modeling strategies 3 and 

8, as well as results from the secondary analyses. To put the results in the context of 

previous evidence, the evaluations taken by lARC in their monograph series on 

occupational substances were listed alongside each chemical. lARC classifies whether 

chemicals are carcinogenic to humans. It does not report if chemicals are carcinogenic 

for particular cancers. The classifications reported in Table 8-1 reflect lARC' s 

classification only if the evidence was strong or suggestive for an effect on lung cancer. 

Insofar as mutual confounding among the chemicals was an issue in the main results of 

the simpler modeling strategies, it would equally affect all the results of the secondary 

analyses. As supporting evidence of the carcinogenic effects of the chemicals, then, the 

results on exposure characteristics and histological subtypes of lung cancer must be 

viewed with this potential bias in mind. 

For most known occupational carcinogens, the main epidemiologic evidence of 

carcinogenicity has come from occupational cohort studies and animal research. The 

cohort studies typically involved workers with very high exposure levels (Checkoway et 

al., 2004). By contrast, in a community-based case-control study such as the Montreal 

study, exposure levels can range from very low to very high. For example, only 4 

workers with a history of asbestos mining were found in the Montreal study population. 

The remaining asbestos-exposed workers were involved in jobs with typically low-Ievel 

exposure, such as painters, carpenters, plumbers, and sheet metal workers, among others. 

These results, in sorne cases, provide evidence for whether effects manifest at such 

exposures levels, whieh is a topie of debate for even recognized carcinogens, like asbestos 

(LaD ou et al., 2001; Siemiatyeki, 2001). 
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Table 8-1: Summary of present resuIts, and comparison to decisions ta ken by IARC monograph series 

Exposure level of main results that 
supported an effect of the chemical a Resu/ts from secondary analyses that 

supported an effect of the chemical b lARC classification C 

Occupational substance Strategy 3 Strategy 8 

127. Alkali, caustic solutions - Any Small cell NE 

204. Alkanes (C5-C 17) Any, Sub NE - NE 

21. Aluminium alloy dust Any - Window 20+ years, squamous cell 
NE (l for beryllium-aluminium 

alloy) 

183. Aluminium compounds Any NE Window 5-15 years 
NE (l for Aluminium 

production) 

193. Arsenic compounds - - - 1 

5. Asbestos Sub - Window 5-15 years, small cell 1 

219. Benzo(a)pyrene - - Squamous cell 2A 

181. Beryllium compounds - - - 1 

24. Borates Sub - Adenocarcinoma NE 

15. Brass dust - Sub Window 20+ years, squamous cell NE 

a For the conventional (strategy 3) and semi-Bayes (strategy 8) approaches, the words ANY or SUB are listed if the estimates were earmarked by the 
methods ofranking and selection at those respective exposure levels, while NE (not evaluated) in the semi-Bayes column indicates the substance was 
not in the model of 184 chemicals. b Exposure characteristics are listed if the results indicated dose-response with concentration or duration, or if 
the exposure had its effect predominantly in one of the two time windows analyzed or with one of the three histological subtypes of lung cancer. C 

lARC evaluations are coded as 1 (carcinogenic to humans), 2A (probably carcinogenic), 2B (possibly carcinogenic), 3 (not c1assifiable), 4 (probably 
not carcinogenic), and NE (not evaluated). 
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Table 8-1: Summary of present results, and comparison to decisions taken by lARe monograph series 

Exposure level of main results that 
supported an effect of the chemical a Results from secondary analyses that 

supported an effect of the chemical b lARe classification C 

Occupational substance Strategy 3 Strategy 8 

195. Cadmium compounds - - Window 5-15 years 1 

104. Chromium fumes Any Any Window 5-15 years 
1 (for chromium VI 

compounds) 

178. Chromium VI compounds Any NE - 1 

12. Clay dust - Any Window 20+ years NE 

97. Coal gas - - - 1 

163. Coal tar and pitch - - - 1 

191. Copper compounds Sub NE - NE 

35. Copper dust Sub Sub Concentration NE 

108. Copper fumes Any, Sub Any Window 5-15 years NE 

23. Cosmetic talc - Any - 3 

6. Crystalline silica Any, Sub - Duration 1 

a For the conventional (strategy 3) and semi-Bayes (strategy 8) approaches, the words ANY or SUB are listed if the estimates were earmarked by the 
methods ofranking and selection at those respective exposure levels, while NE (not evaluated) in the semi-Bayes column indicates the substance was 
not in the model of 184 chemicals. b Exposure characteristics are listed if the results indicated dose-response with concentration or duration, or if 
the exposure had its effect predominantly in one of the two time windows analyzed or with one of the three histological subtypes oflung cancer. C 

IARC evaluations are coded as 1 (carcinogenic to humans), 2A (probably carcinogenic), 2B (possibly carcinogenic), 3 (not classifiable), 4 (probably 
not carcinogenic), and NE (not evaluated). 
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Table 8-1: Surnmary of present results, and cornparison to decisions taken by lARe rnonograph series 

Exposure level of main results that 
supported an effect of the chemical a Results /rom secondary analyses that 

supported an effect of the chemical b lARC classification c 

Occupational substance Strategy 3 Strategy 8 

161. Cutting fluids Any - Window 5-15 years NE 

170. Cutting fluids pre 1955 - NE - 1 (for mineraI oils) 

171. Cutting fluids post 1955 Any NE Window 5-15 years NE 

117. Diesel engine emissions - - - 2A 

3. Excavation dust Sub - Duration, window 5-15 years, small 
NE 

cell 

177. Fluorides Any NE Window 5-15 years 3 

98. Gas welding fumes Any - Concentration 2B 

115. Gasoline engine emissions - - - 2B 

8. Glass dust Any - Window 5-15 years, squamous cell 2A (for manufacturing) 

9. Glass fibres - - - 3,2B 

213. Glycol ethers Sub - Concentration 3 

a For the conventional (strategy 3) and semi-Bayes (strategy 8) approaches, the words ANY or SUB are listed if the estimates were earmarked by the 
methods ofranking and selection at those respective exposure levels, while NE (not evaluated) in the semi-Bayes column indicates the substance was 
not in the model of 184 chemicals. b Exposure characteristics are Iisted if the results indicated dose-response with concentration or duration, or if 
the exposure had its effect predominantly in one of the two time windows analyzed or with one of the three histological subtypes of lung cancer. C 

IARC evaluations are coded as 1 (carcinogenic to humans), 2A (probably carcinogenic), 2B (possibly carcinogenic), 3 (not classifiable), 4 (probably 
not carcinogenic), and NE (not evaluated). 



Table 8-1: Summary of present results, and comparison to decisions taken by IARC monograph series 

Exposure level of main results that 
supported an effect of the chemical a Results from secondary analyses that 

supported an effect of the chemical b lARe classification C 

Occupational substance Strategy 3 Strategy 8 

158. Heating oil Sub - Duration 3 (light distillates) 

85. Hydrogen fluoride Any - Window 5-15 years 3 

174.lnks Any - - 3 

126. Inorganic acid solutions - - - 1 (for acid mists containing 
sulphuric acid) 

156. Kerosene Any, Sub Sub Concentration, window 5-15 years 3 

40. Lead chromate - - - 1 

201. Lead compounds - NE - 2A (for inorganic lead) and 3 
(for organic lead) 

182. Magnesium compounds Any NE Concentration, squamous cell NE 

187. Manganese compounds Sub NE Duration, window 5-15 years NE 

105. Manganese fumes Sub Sub Window 5-15 years NE 

a For the conventional (strategy 3) and semi-Bayes (strategy 8) approaches, the words ANY or SUB are listed ifthe estimates were earmarked by the 
methods ofranking and selection at those respective exposure levels, while NE (not evaluated) in the semi-Bayes column indicates the substance was 
not in the model of 184 chemicals. b Exposure characteristics are listed if the results indicated dose-response with concentration or duration, or if 
the exposure had its effect predominantly in one of the two time windows analyzed or with one of the three histological subtypes of lung cancer. C 

N IARC evaluations are coded as 1 (carcinogenic to hum ans), 2A (probably carcinogenic), 2B (possibly carcinogenic), 3 (not classifiable), 4 (probably 
g not carcinogenic), and NE (not evaluated). 
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Table 8-1: Summary of present results, and comparison to decisions taken by lARe monograph series 

Exposure level of main results that 
supported an efJect of the chemical a Results from secondary analyses that 

supported an efJect of the chemical b lARe classification c 

Occupational substance Strategy 3 Strategy 8 

101. Metal oxide fumes Sub - Concentration NE (Evaluated individuaIly) 

4. Metallic dust Any, Sub NE Concentration, window 5-15 years NE (Evaluated individuaIly) 

91. Methane Sub Sub - 3 

90. Natural gas Sub NE Concentration NE (evaluated individuaIly) 

53. Natural rubber - Any - NE (1 for rubber industry) 

190. Nickel compounds Any NE Window 5-15 years 1 (2B for metallic nickel) 

107. Nickel fumes Any - Window 5-15 years 1 

83. Nitrogen oxides Any, Sub Any - NE 

214. PAHs - - Concentration, squamous cell Depends on particular PAH 

64. Poly-acrylates - Any - 3 (for polymethyl methacrylate) 

122. Propane engine emissions Any - Squamous cell NE 

a For the conventional (strategy 3) and semi-Bayes (strategy 8) approaches, the words ANY or SUB are listed if the estimates were earmarked by the 
methods ofranking and selection at those respective exposure levels, while NE (not evaluated) in the semi-Bayes column indicates the substance was 
not in the model of 184 chemicals. b Exposure characteristics are listed if the results indicated dose-response with concentration or duration, or if 
the exposure had its effect predominantly in one of the two time windows analyzed or with one of the three histological subtypes oflung cancer. C 

IARC evaluations are coded as 1 (carcinogenic to humans), 2A (probably carcinogenic), 2B (possibly carcinogenic), 3 (not classifiable), 4 (probably 
not carcinogenic), and NE (not evaluated). 



Table 8-1: Summary of present results, and comparison to decisions taken by IARC monograph series 

Exposure level of main results that 
supported an effect of the chemical a Results from secondary analyses that 

supported an effect of the chemical b lARe classification C 

Occupational substance Strategy 3 Strategy 8 

76. Soot - - Concentration 1 

196. Tin compounds Any NE - NE 

68. Urea-formaldehyde - Any Window 5-15 years, squamous cell NE 

192. Zinc compounds Sub NE Concentration NE 

36. Zinc dust Sub - Concentration NE 

109. Zinc fumes Sub - Concentration NE 

a For the conventional (strategy 3) and semi-Bayes (strategy 8) approaches, the words ANY or SUB are Iisted if the estimates were earmarked by the 
methods of ranking and selection at those respective exposure levels, while NE (not evaluated) in the semi-Bayes column indicates the substance was 
not in the model of 184 chemicals. b Exposure characteristics are Iisted if the results indicated dose-response with concentration or duration, or if 
the exposure had its effect predominantly in one of the two time windows analyzed or with one of the three histological subtypes of lung cancer. C 

N IARC evaluations are coded as 1 (carcinogenic to hum ans), 2A (probably carcinogenic), 2B (possibly carcinogenic), 3 (not c1assifiable), 4 (probably 
~ not carcinogenic), and NE (not evaluated). 



8.3.2 Comments on selected chemicals 

The foIlowing comments refer to the findings of several of the chemicals evaluated in the 

thesis, and it places these results in the context ofpreviously published evidence. For 

space considerations, not aIl the chemicals are discussed. 

Aluminium aUoy dust. The present results are consistent with previous evidence of lung 

cancer risks in the aeronautical industry, occasionaIly attributed to a beryllium-aluminium 

alloy (lARC, 1993). Although aluminium compounds per se have not been evaluated by 

IARC, aluminium production workers have been identified as having higher risk of lung 

cancer (lARC, 1987a). This has been attributed to exposure to coal tars (Armstrong and 

Theriault, 1996) and polycyclic aromatic hydrocarbons (Armstrong et al., 1994). 

Arsenic compounds. Arsenic compounds were not tlagged as possibly carcinogenic in the 

present results, possibly due to the diverse forms of arsenic chemicals that were included 

in this group. Increases in the risk of lung cancer have been observed in epidemiologic 

studies of copper smelter workers, who have heavy exposures to arsenic (Lee-Feldstein, 

1986), as weIl as decreases in risk following cessation of exposure among workers at a 

copper smelter (Enterline and Marsh, 1980). One study indicated that arsenic may have a 

unique concave form to its exposure-response curve (Enterline et al., 1987a), which could 

also explain the low estimates observed here. 

Asbestos. Results for asbestos at any level of exposure were consistent with the lack of an 

effect on lung cancer. While different modeling strategies resulted in different inferences, 

the estimates of at least one model at substantiallevels of exposure were suggestive of a 

smaIl effect. Secondary results indicated an effect on squamous ceIl tumours. In those 

few previous studies that evaluated asbestos and histological types of lung cancer, there 

was no evidence of a specificity of effect on particular ceIl types (Churg, 1994). A 

limitation of the present results is that there was no distinction of the effects of 

amphibole- and chrysotile-type asbestos exposures, for which there is considerable 

controversy as to their relative roles in lung cancer (Henderson et al., 2004). Sorne 

evidence suggests that the effect of asbestos occurs only 15 or 20 years (and possibly up 

to 35 years) after initial exposure (Selikoff et al., 1979). The present secondary results 

suggest that the relevant exposure was primarily in the 5 to 15 years prior to diagnosis. 
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The majority of the exposure to asbestos in the Montreal study was of the chrysotile form, 

though amphibole exposures were also involved. A recent attempt at pooling studies of 

only chrysotile exposures resulted in a meta-analysis summary SMR for lung cancer of 

2.4 (Li et al., 2004). These findings were primarily among miners, asbestos producers, 

and textile workers, and exposures in those industries are known to be orders of 

magnitude higher than exposure levels in the bulk of the industries in which Montreal 

workers received their asbestos exposure. There remains controversy as to the effects of 

low-Ievel exposures and as to whether workplaces are sufficiently regulated (LaD ou et al., 

2001; Camus, 2001; Siemiatycki, 2001). A recent review (Laden et al., 2004) and a 

recent meta-analysis (Goodman et al., 2004) ofmotor vehicle mechanics, who would be 

expected to have low exposures to asbestos as a result of automobile brake repair, 

concluded that evidence did not support an increased risk oflung cancer. 

Cadmium compounds. Evaluation of cadmium has been difficult due to the frequent 

concomitant exposure with other recognized lung carcinogens (lARC, 1993). Aside from 

a slightly elevated estimate for exposure in the 5 to 15 years prior to diagnosis, the present 

results offer little to support the hypothesis of a causal relation. Although cadmium has 

been categorized as a definite carcinogen by IARC, results from occupational studies 

have been inconsistent (World Health Organization, 1992) and at least one recent study 

has not supported cadmium's lung carcinogenicity (Sorahan and Esmen, 2004). Recent 

recommendations have downgraded the level of certainty that cadmium is carcinogenic to 

humans (Jarup, 2003). 

Crystalline silica. Silica has been associated with several serious iHnesses, including lung 

cancer (Steenland, 2005). In the present results, the estimated effect of silica disappeared 

when adjusted for the effects of other chemicals. This may have been related to an over

adjustment of silica's estimate in the semi-Bayes models because of the inclusion of other 

chemicals chiefly composed of silica, like excavation dust, Portland cement, and brick 

dust. AH the modeling strategies showed limited evidence of an increasing exposure

response curve, including the results of analyzing duration in the secondary analyses. 

Several studies have identified dose-surrogates for silica exposure, like duration, that are 

related to the risk of lung cancer (lARC, 1997). On the other hand, the relationship with 

duration has not been consistently observed (Hughes et al., 2001). 
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Cuttingfluids. Cutting fluids used before 1955 were composed largely of mineraI oils. 

Treated mineraI oils have been evaluated by lARC as definitely carcinogenic for sorne 

forms of cancer (lARC, 1987a), but evidence for lung carcinogenicity has been less 

consistent. Higher lung cancer mortality has been seen in metalworkers (AcquavelIa et 

al., 1993; Kazerouni et al., 2000), and effects are often attributed to the release of PARs. 

The present results do not support an effect of early exposure to cutting fluids on lung 

cancer. Oddly, several elevated estimates were noted with exposures to cutting fluids 

formulated after 1955, which purportedly release less PARs and tend to be comprised of 

emulsified mineraI oils and synthetic fluids. 

Diesel engine emissions. Various approaches were attempted to assess the effect of diesel 

exhaust, such as whether or not to adjust for the effects of other whole engine exhausts 

and particular engine emissions. In aIl formulations of the regression models, the point 

estimates for diesel exhaust did not change appreciably and were always consistent with 

little or no effect on the risk oflung cancer. Many ofthe emissions of diesel are 

themselves suspected carcinogens, sorne being common to cigarette smoke. The 

evaluation of diesel exhaust by lARC as a probable carcinogen (lARC, 1989) was not 

maintained in the later evaluation of the Environmental Protection Agency (Hughes et al., 

2001), mostly due to the perceived weaknesses ofmany of the epidemiologic studies. 

Further, with CUITent stricter emission control standards, past studies oftypical diesel 

exposure may not be appropriate guides to the effects of CUITent exposures (Bunn, III et 

al., 2004). 

Glass dusts and fibres. Manufacturers of art glassworks have been evaluated by lARC as 

probably carcinogenic (lARC, 1987a), though a recent update to a large cohort found that 

the previously elevated risks (Wingren and Englander, 1990) were no long evident 

(Wingren, 2004), possibly due to improved workplace hygiene. Glass dust exposure was 

flagged in the results of the conventional models, though this elevated estimate 

disappeared upon adjustment for the effects of other occupational chemicals. AlI the 

present results for the exposure to glass fibres were consistent with a lack of an effect on 

lung cancer. The recent evaluations of man-made vitreous fibres by lARC (1988; 2002) 

were mainly based on two epidemiologic studies (Boffetta et al., 1999; Marsh et al., 

2001a; Marsh et al., 2001b). Exposures to insulation glass wool and continuous glass 
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filament remained unclassifiable as to carcinogenicity, while special-purpose glass fibres 

were classified as possibly carcinogenic. 

Lead compounds. The present results on lead compounds, including lead chromate, lead 

fumes, and lead oxides showed consistent evidence of a lack of an effect on lung cancer. 

Although lARC has evaluated inorganic lead compounds as possibly carcinogenic (lARC, 

1987a), a recent meta-analysis suggests only a possibly weak association with lung cancer 

(Steenland and Boffetta, 2000a). Concomitant exposures, such as to arsenic compounds, 

have presented difficulties with the interpretation of epidemiologic studies. 

Nickel and chromium compounds. The present results showed only an inconsistent 

association of nickel compounds with lung cancer. Separating the effect of nickel fumes 

from chromium fumes was, for the most part, not possible due to the high correlation 

between the two exposures, and there was insufficient exposure at substantiallevels to 

estimate the effect ofnickel fumes in this study population. Nevertheless, in a model 

adjusting for non-occupational characteristics and seven lung carcinogens, which included 

the general category of chromium VI compounds, a statistically elevated point estimate 

resulted for nickel fumes. This estimated effect disappeared upon inclusion of the rest of 

the occupational chemicals, but the attenuation was driven by the presence of chromium 

fumes in the model. Distinguishing these chemicals in the semi-Bayes prior (strategy 8), 

resulted in the estimate of nickel fumes remaining close to unit y while that of chromium 

fumes was slightly elevated (though not statistically). Chromium fumes and hexavalent 

chromium in general were both flagged in several of the present results, including an 

elevated estimate for chromium fumes in the 5 to 15 years prior to diagnosis. The 

majority of nickel exposure in the Montreal study consisted ofmetallic nickel, which 

lARC has evaluated as only possibly carcinogenic to humans (lARC, 1990). Studies of 

lung cancer and nickel have mostly identified water-soluble nickel as carcinogenic 

(Grimsrud et al., 2002). A recent study, however, supported the excess risk oflung 

cancer among nickel refinery workers, even after eliminating the effects of other potential 

carcinogenic chemicals (Grimsrud et al., 2005). 

Nitrogen oxides. Nitrogen oxides (NO) have not been evaluated by IARC, and the World 

Health Organization (1997) concluded that insufficient evidence existed to evaluate their 
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carcinogenic potency. An observed excess risk of lung cancer has been linked to 

environmental air pollution, particularly to levels of NO (Nafstad et al., 2003). Although 

that study used NO measurement as a sUITogate for air pollution and exposure to other 

possible carcinogens, at least sorne evidence suggests that NO derivatives can play a part 

in lung carcinogenesis (Masri et al., 2005). A weak association has also been observed 

with lung cancer mortality and fertilizer workers (Bulbulyan et al., 1996). The present 

results for NO were consistent across models, and the magnitude of the effect on lung 

cancer was one of the strongest among the chemicals assessed. 

Polycyclic aromatic hydrocarbons. PARs are ubiquitous exposures common to air 

pollution, cooking fumes, and many occupational sources. Benzo(a)pyrene, in particular, 

has been evaluated as definitely carcinogenic to humans (lARC, 1983), but epidemiologic 

evidence in general has not been sufficient to evaluate the carcinogenic effects ofP ARs 

(Boffetta et al., 1997). The present results from the main modeling strategies did not 

support elevated risks in respect to PAR exposures, however caution is necessary when 

interpreting these particular results because of the strong assumptions made in all the 

models. Secondary results, however, flagged effects in relation specifically to squamous 

cell tumours, and an exposure-response trend of concentration was evident when PARs 

were considered as a whole group. In the sensitivity analyses, weak evidence pointed to 

elevated risk of PARs originating from coal. The exposure to PARs from 'other sources' 

(id 215), referring to PARs from food, plastics, and paints, also had an elevated point 

estimate. Interpreting these results is complicated by the complex relationships among 

P ARs and other chemicals that adsorb them. 

Soot. The evaluation of soot and lung cancer is based on only a few epidemiologic 

studies (lARC, 1987a). Among chimney sweeps, excess lung cancer mortality has been 

observed (Rogstedt et al., 1982), with sorne limited evidence for a specificity for small 

celliung carcinomas (Evanoff et al., 1993). The present results were inconsistent, with 

only the secondary results for a trend with concentration being statistically significant. 

Several recognized lung carcinogens were not flagged in the CUITent results, inc1uding 

coal gas, coal tar and pitch, beryllium compounds, and lead chromate. Several reasons 

could be postulated for why these chemicals did not result in elevated estimates in this 
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study population. One reason is that they may have occurred predominantly at low 

exposure levels. A second reason is that each occurred with low prevalence, and the 

associated estimates were thus imprecise. 

8.4 Summary 

This thesis focused on the effects of 231 occupational chemicals on the risk of lung 

cancer. The International Agency for Research on Cancer has evaluated many ofthese 

substances, and sorne attempt was made to place the present results in the context of this 

'previous evidence.' However, the nature of the list of231 chemicals, which includes 

many overlapping chemical groups and complex mixtures, posed sorne difficulty with this 

task. The following can be taken as a crude guide to the overall results. lARC has 

classified about fourteen of the 231 chemicals as definite carcinogens, with strong 

evidence for lung carcinogenicity, and three as probable carcinogens. Among these, the 

following eight chemicals were found to have at least sorne supporting evidence in the 

present thesis: asbestos, benzo(a)pyrene, cadmium compounds, chromium fumes, 

chromium VI compounds, crystalline silica, nickel fumes, and soot. For six of the 

chemicals previously suspected ofbeing carcinogenic for lung, namely arsenic 

compounds, beryllium compounds, coal gas, coal tar and pitch, diesel exhaust, and lead 

chromate, there was little evidence of an association in the Montreal study population, 

though low prevalence may have contributed to this. Of the other chemicals that have not 

been evaluated by IARC, the current results offer suggestive evidence of an increased risk 

oflung cancer due to these exposures: caustic alkali solutions (such as sodium and 

potassium hydroxides), aluminium compounds, borates, brass dust, clay dust, copper 

compounds, copper dust, copper fumes, various cutting fluids, excavation dust, 

magnesium compounds, manganese compounds, nitrogen oxides, propane exhaust, tin 

compounds, urea-formaldehyde, and zinc compounds. Finally, for many of the remaining 

chemicals, the balance of evidence from the results would be indicative of a lack of an 

association with lung cancer. On the whole, the results from this study provided sorne 

unique evidence on the risk of lung cancer in relation to a large range of occupational 

chemicals, for which little is known about their carcinogenic effects. 
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A key feature of this thesis was the adjustment for mutual confounding among the 

chemical exposures. Eight modeling strategies were used to assess the effects of the 

chemicals, from simple models that assumed no confounding among the occupational 

exposures, to complex models adjusting for aIl effects simultaneously in a Bayesian 

framework. The number ofhigh correlations among the chemicals would have 

expectedly led to overestimation of many effects if the correlations between irrelevant 

chemicals and genuine lung carcinogens had not been accounted for. Indeed, the 

estimated effects of many chemicals appeared to be inflated in the simpler modeling 

strategies. 

The use of a single logistic regression model avoided what are often ad hoc decisions and 

methods for choosing which chemicals will be included as confounders and which 

chemicals will not be. However, this model could not have been efficiently fit without 

applying it within a semi-Bayes framework, which improves estimation by shrinking 

implausible estimates to more reasonable values in the face ofbiases caused by sparse 

data. Furthermore, the semi-Bayes model allowed for the inclusion ofnear-collinear 

variables, a situation that is known to introduce a type of confounding that typically 

cannot be resolved in conventional analyses. 

The semi-Bayes model incorporated expert opinions at the stage of analysis, by grouping 

sets of chemicals by their shared chemical properties. In princip le, this extra information 

should have resulted in more accurate estimates for aIl the chemicals analyzed. In fact, 

the inclusion of chemical properties did not materially influence the results over a simpler 

form of the semi-Bayes model. This perhaps reflects the uncertain nature of the current 

state ofknowledge about the relevant characteristics involved in occupational 

carcinogenesis. 

In conclusion, this doctoral dissertation provides a large body of evidence towards a better 

understanding of the risk of lung cancer, as it pertains to the many chemical exposures 

that are widespread in the workplace. The application of semi-Bayes modeling offered 

several benefits over more conventional approaches, but any gains predicated on theory 

should be tempered with an understanding of sorne of the limitations of modeling 

hundreds of chemical effects in a single model. 
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8.5 Suggestions for future research 

A natural extension ofthe present work would be to follow-up on several of the chemicals 

that the results of the thesis identified as possibly carcinogenic for lung cancer. Since the 

results from the Montreal study represent the only evidence available for many of the 

chemicals, replications would be necessary to distinguish the 'false positives' from the 

'true positives.' Even among those chemicals previously suspected ofbeing 

carcinogenic, past assessments were occasionally based on limited epidemiologic 

evidence, and so follow-up ofwell-known chemicals is necessary. 

The semi-Bayes model is an attractive approach to analyses of multiple exposures that has 

been available for decades and yet has not been widely used. More work is necessary to 

understand the tradeoffs between possible drawbacks and gains from undertaking this 

more complex analytic approach. In particular, a simulation study would be necessary to 

address sorne of the questions that were raised (and unanswered) by the present thesis. 

The present work involved only a descriptive comparison of the results from the different 

modeling strategies, but for the next step, a valuable contribution would involve an 

evaluation of the relative accuracies of the semi-Bayes model and the approach involving 

a separate regression model for each chemical. Surprisingly, such an analysis was 

missing from comparisons performed in previous simulation studies (Greenland, 1993; 

Witte and Greenland, 1996). Furthermore, these studies have tended to simulate data 

involving smaller samples and fewer parameters than the Montreal study, and so those 

results may not have been applicable to the present application of semi-Bayes modeling. 

With so many chemicals assessed simultaneously, improvements in the semi-Bayes 

model might be possible. Further estimation accuracy might be gained by adding a third 

level to the hierarchy, involving higher parameters that would describe the chemical 

properties themselves. Exploration of such 'Bayesian empirical Bayes' models might be 

warranted (Greenland, 2000a; Robert, 2001). Other applications ofsemi-Bayes models in 

occupational cancer research are also possible. Analyses at the level of occupational 

groups or industries have historically been a fruitful source of information about 

occupational carcinogens, and an application of semi-Bayes models to these analyses 

might also serve to improve estimation. The second-Ievel model, which imposes the 
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exchangeahility assumptions, could he hased on whether the occupations or industries 

share a similar profile ofknown carcinogens. There are likely many other worthwhile 

applications of semi-Bayes models in occupational cancer research and epidemiologic 

research, in general. 
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Appendices 

1. Letter of ethics approval 



2. The occupational chemicals 

The following lists include all substances considered in this thesis. Table A-1 lists the 

chemicals by their identification number, Table A-2 lists them alphabetically, and Table 

A-3 lists them with descriptive text about the chemicals. The text was abstracted from 

Siemiatycki (1991), which in turn was based on texts by Parmeggiani (1983) and Brady 

(1977). Table A-3 also includes the prevalence of each chemical. This was calculated as 

the proportion of individuals with any level of exposure in their lifetime work history. 

The text further includes whether or not other chemicals were automatically coded if that 

particular chemical was coded, the occupations which had the largest numbers of men 

exposed to that particular chemical, and the top three other correlated chemicals. 

Brady GS and Clauser HR. Materials Handbook, llth Edition, New York: McGraw
Hill, 1977. 

Parmeggiani L. Encyclopedia of Occupational Health and Safety, 3rd Edition, Geneva: 
International Labor Office, 1983. 

Siemiatycki J. Risk Factors for Cancer in the Workplace, Boston: CRC Press, 1991. 



Table A-l: List of occupation al chemicals, by identification number 

1. Abrasives Dust 

2. Inorganic Insulation Dust 

3. Excavation Dust 

4. Metallic Dust 

5. Asbestos 

6. Crystalline Silica 

7. Portland Cement 

8. Glass Dust 

9. Glass Fibres 

10. Industrial Talc 

Il. Brick Dust 

12. Clay Dust 

13. Concrete Dust 

14. Bronze Dust 

15. Brass Dust 

16. Stainless Steel Dust 

17. Mild Steel Dust 

18. Inorganic Pigments 

19. Mineral Wooi Fibres 

20. Extenders 

21. Aluminium Alloy Dust 

22. Ashes 

23. Cosmetic Talc 

24. Borates 

25. Sodium Carbonate 

26. Alumina 

27. Silicon Carbide 

28. Sulfur 

29. Calcium Oxide 

30. Calcium Sulphate 

31. Calcium Carbonate 

32. Titanium Dioxide 

33. Iron Dust 

34. Iron Oxides 

35. Copper Dust 

36. Zinc Dust 

37. Zinc Oxide 

38. Lead Oxides 

39. Basic Lead Carbonate 

40. Lead Chromate 

41. Organic Dyes and Pigments 

42. Cotton Dust 

43. Wooi Fibres 

44. Wood Dust 

45. Grain Dust 

46. Flour Dust 

47. Fur Dust 

48. Hair Dust 

49. Starch Dust 

50. Sugar Dust 



51. Leather Dust 77. Rubber Dust 

52. Tobacco Dust 78. Graphite Dust 

53. Natural Rubber 79. Hydrogen 

54. Synthetic Fibres 80. Carbon Monoxide 

55. Plastic Dust 81. Hydrogen Cyanide 

56. Rayon Fibres 82. Ammonia 

57. Acrylic Fibres 83. Nitrogen Oxides 

58. Polyester Fibres 84. Ozone 

59. Nylon Fibres 85. Hydrogen Fluoride 

60. Acetate Fibres 86. Sulphur Dioxide 

61. Cellulose Nitrate 87. Hydrogen Sulphide 

62. Polyvinyl Chloride 88. Chlorine 

63. Polyvinyl Acetate 89. Hydrogen Chloride 

64. Poly-Acrylates 90. Natural Gas 

65. Alkyds 91. Methane 

66. Epoxies 92. Propane 

67. Phenol-Formaldehyde 93. Formaldehyde 

68. Urea-Formaldehyde 94. Acetylene 

69. Polyurethanes 95. Phosgene 

70. Styrene-Butadiene Rubber 96. Spray Gases 

71. Polychloroprene 97. Coal Gas 

72. Fabric Dust 98. Gas Welding Fumes 

73. Coal Dust 99. Arc Welding Fumes 

74. Carbon Black 100. Soldering Fumes 

75. Cellulose 101. Metal Oxide Fumes 

76. Soot 102. Aluminium Fumes 



103. Calcium Oxide Fumes 

104. Chromium Fumes 

105. Manganese Fumes 

106. Iron Fumes 

107. Nickel Fumes 

108. Copper Fumes 

109. Zinc Fumes 

110. Silver Fumes 

111. Tin Fumes 

112. Lead Fumes 

113. Other Pyrolysis Fumes 

114. Cooking Fumes 

115. Gasoline Engine Emissions 

116. Coal Combustion Products 

117. Diesel Engine Emissions 

118. Liquid Fuel Combustion Products 

119 . Wood Combustion Products 

120. Natural Gas Combustion Products 

121. Jet Fuel Engine Emissions 

122. Propane Engine Emissions 

123. Plastics Pyrolysis Products 

124. Rubber Pyrolysis Products 

125. Propane Combustion Products 

126. Inorganic Acid Solutions 

127. Alkali, Caustic Solutions 

128. Javel Water 

129. Plating Solutions 

130. Nitric Acid 

131. Phosphoric Acid 

132. Sulphuric Acid 

133. Methanol 

134. Ethanol 

135. Ethylene Glycol 

136. Isopropanol 

13 7. Acetic Acid 

138. Carbon Tetrachloride 

139. Methylene Chloride 

140. 1, 1,1.-Trichlorethane 

141. Trichloroethylene 

142. Perchloroethylene 

143. Acetone 

144. Benzene 

145. Toluene 

146. Xylene 

147. Styrene 

148. Phenol 

149. Animal and Vegetable Glues 

150. Turpentine 

151. Linseed Oil 

152. Synthetic Adhesives 

153. Solvents 

154. Waxes, Polishes 



155. Leaded Gasoline 181. Beryllium Compounds 

156. Kerosene 182. Magnesium Compounds 

157. Diesel Oil 183. Aluminium Compounds 

158. Heating Oil 184. Titanium Compounds 

159. Mineral Spirits 185. Vanadium Compounds 

160. Lubricating Oils and Greases 186. Chromium Compounds 

161. Cutting Fluids 187. Manganese Compounds 

162. Asphalt 188. Iron Compounds 

163. Coal Tar and Pitch 189. Cobalt Compounds 

164. Creosote 190. Nickel Compounds 

165. Hydraulic Fluid 191. Copper Compounds 

166. Other Mineral Oils 192. Zinc Compounds 

167. Jet Fuel 193. Arsenic Compounds 

168. Aviation Gasoline 194. Silver Compounds 

169. Mineral Spirits+BTX 195. Cadmium Compounds 

170. Cutting Fluids pre 1955 196. Tin Compounds 

171. Cutting Fluids post 1955 197. Antimony Compounds 

172. Other Paints,Vamishes 198. Tungsten Compounds 

173. Wood Vamishes, Stains 199. Gold Compounds 

174. Inks 200. Mercury Compounds 

175. Metal Coatings 201. Lead Compounds 

176. Cyanides 202. Alkanes (CI8+) 

177. Fluorides 203. Alkanes (CI-C4) 

178. Chromium (VI) Compounds 204. Alkanes (C5-C17) 

179. Hypochlorites 205. Aliphatic Alcohols 

180. Nitrates 206. Aliphatic Aldehydes 



207. Chlorinated Alkanes 227. Laboratory Products 

208. Unsaturated Aliphatic Hydrocarbons 228. Fertilizers 

209. Chlorinated Alkenes 229. Pesticides 

210. Aliphatic Esters 230. Biocides 

211. Aliphatic Ketones 231. Bleaches 

212. Fluorocarbons 

213. Glycol Ethers 

214. PAH (Any source) 

215. PAH (Other) 

216. PAH (From wood) 

217. P AH (From petroleum) 

218. PAH (From coal) 

219. Benzo( a )pyrene 

220. Monocyc1ic Aromatic Hydrocarbons 

221. Aromatic A1cohols 

222. Aromatic Amines 

223. Phthalates 

224. Isocyanates 

225. Cleaning Agents 

226. Pharmaceuticals 



Table A-2: List of occupational chemicals, alphabetical 

1,1,1.-Trichlorethane, 140 

A 

Abrasives Oust, 1 

Acetate Fibres, 60 

Acetic Acid, 137 

Acetone, 143 

Acetylene, 94 

Acrylic Fibres, 57 

Aliphatic Alcohols, 205 

Aliphatic Aldehydes, 206 

Aliphatic Esters, 210 

Aliphatic Ketones, 211 

Alkali, Caustic Solutions, 127 

Alkanes (C18+), 202 

Alkanes (C1-C4), 203 

Alkanes (C5-C17), 204 

Alkyds, 65 

Alumina, 26 

Aluminium Alloy Oust, 21 

Aluminium Compounds, 183 

Aluminium Fumes, 102 

Ammonia,82 

Animal and Vegetable Glues, 149 

Antimony Compounds, 197 

Arc We1ding Fumes, 99 

Aromatic Alcohols, 221 

Aromatic Amines, 222 

Arsenic Compounds, 193 

Asbestos, 5 

Ashes,22 

Asphalt, 162 

Aviation Gasoline, 168 

B 

Basic Lead Carbonate, 39 

Benzene, 144 

Benzo(a)pyrene, 219 

Beryllium Compounds, 181 

Biocides, 230 

Bleaches, 231 

Borates, 24 

Brass Oust, 15 

Brick Oust, Il 

Bronze Oust, 14 

c 

Cadmium Compounds, 195 

Calcium Carbonate, 31 

Calcium Oxide, 29 

Calcium Oxide Fumes, 103 

Calcium Sulphate, 30 

Carbon Black, 74 



Carbon Monoxide, 80 

Carbon Tetrachloride, 138 

Cellulose, 75 

Cellulose Nitrate, 61 

Chlorinated Alkanes, 207 

Chlorinated Alkenes, 209 

Chlorine, 88 

Chromium (VI) Compounds, 178 

Chromium Compounds, 186 

Chromium Fumes, 104 

Clay Dust, 12 

Cleaning Agents, 225 

Coal Combustion Products, 116 

Coal Dust, 73 

Co al Gas, 97 

Co al Tar and Pitch, 163 

Cobalt Compounds, 189 

Concrete Dust, 13 

Cooking Fumes, 114 

Copper Compounds, 191 

Copper Dust, 35 

Copper Fumes, 108 

Cosmetic Talc, 23 

Cotton Dust, 42 

Creosote, 164 

Crystalline Silica, 6 

Cutting Fluids, 161 

Cutting Fluids post 1955, 171 

Cutting Fluids pre 1955, 170 

Cyanides, 176 

D 

Diesel Engine Emissions, 117 

Diesel Oil, 157 

E 

Epoxies,66 

Ethanol, 134 

Ethylene Glycol, 135 

Excavation Dust, 3 

Extenders,20 

F 

Fabric Dust, 72 

Fertilizers, 228 

Flour Dust, 46 

Fluorides, 177 

Fluorocarbons, 212 

Formaldehyde,93 

Fur Dust, 47 

G 

Gas Welding Fumes, 98 

Gasoline Engine Emissions, 115 

Glass Dust, 8 

Glass Fibres, 9 



Glycol Ethers, 213 

Gold Compounds, 199 

Grain Dust, 45 

Graphite Dust, 78 

H 

Hair Dust, 48 

Heating Oil, 158 

Hydraulic Fluid, 165 

Hydrogen, 79 

Hydrogen Chloride, 89 

Hydrogen Cyanide, 81 

Hydrogen Fluoride, 85 

Hydrogen Sulphide, 87 

Hypochlorites, 179 

1 

Industrial Talc, 10 

Inks, 174 

Inorganic Acid Solutions, 126 

Inorganic Insulation Dust, 2 

Inorganic Pigments, 18 

Iron Compounds, 188 

Iron Dust, 33 

Iron Fumes, 106 

Iron Oxides, 34 

Isocyanates, 224 

Isopropanol, 136 

J 

Javel Water, 128 

Jet Fuel, 167 

Jet Fuel Engine Emissions, 121 

K 

Kerosene, 156 

L 

Laboratory Products, 227 

Lead Chromate, 40 

Lead Compounds, 201 

Lead Fumes, 112 

Lead Oxides, 38 

Leaded Gasoline, 155 

Leather Dust, 51 

Linseed Oil, 151 

Liquid Fuel Combustion Products, 118 

Lubricating Oils and Greases, 160 

M 

Magnesium Compounds, 182 

Manganese Compounds, 187 

Manganese Fumes, 105 

Mercury Compounds, 200 

Metal Coatings, 175 

Metal Oxide Fumes, 10 1 

Metallic Dust, 4 

Methane, 91 



Methanol, 133 

Methylene Chloride, 139 

Mild Steel Dust, 17 

Mineral Spirits, 159 

Mineral Spirits+BTX, 169 

Mineral Wool Fibres, 19 

Monocyclic Aromatic Hydrocarbons, 220 

N 

Natural Gas, 90 

Natural Gas Combustion Products, 120 

Natural Rubber, 53 

Nickel Compounds, 190 

Nickel Fumes, 107 

Nitrates, 180 

Nitric Acid, 130 

Nitrogen Oxides, 83 

Nylon Fibres, 59 

o 

Organic Dyes and Pigments, 41 

Other Mineral Oils, 166 

Other Paints, Vamishes, 172 

Other Pyrolysis Fumes, 113 

Ozone, 84 

p 

Perchloroethylene, 142 

Pesticides, 229 

Pharmaceuticals, 226 

Phenol,148 

Phenol-Formaldehyde,67 

Phosgene,95 

Phosphoric Acid, 131 

Phthalates, 223 

Plastic Dust, 55 

Plastics Pyrolysis Products, 123 

Plating Solutions, 129 

Poly-Acrylates, 64 

Polychloroprene,71 

PAH (Any), 214 

PAH (Coal), 218 

PAH (Other), 215 

P AH (Petroleum), 217 

PAH (Wood), 216 

Polyester Fibres, 58 

Polyurethanes, 69 

Polyvinyl Acetate, 63 

Polyvinyl Chloride, 62 

Portland Cement, 7 

Propane, 92 

Propane Combustion Products, 125 

Propane Engine Emissions, 122 

R 

Rayon Fibres, 56 



Rubber Dust, 77 

Rubber Pyrolysis Products, 124 

S 

Silicon Carbide, 27 

Silver Compounds, 194 

Silver Fumes, 110 

Sodium Carbonate, 25 

Soldering Fumes, 100 

Solvents, 153 

Soot,76 

Spray Gases, 96 

Stainless Steel Dust, 16 

Starch Dust, 49 

Styrene, 147 

Styrene-Butadiene Rubber, 70 

Sugar Dust, 50 

Sulfur,28 

Sulphur Dioxide, 86 

Sulphuric Acid, 132 

Synthetic Adhesives, 152 

Synthetic Fibres, 54 

T 

Tin Compounds, 196 

Tin Fumes, 111 

Titanium Compounds, 184 

Titanium Dioxide, 32 

Tobacco Dust, 52 

Toluene, 145 

Trichloroethylene, 141 

Tungsten Compounds, 198 

Turpentine, 150 

U 

Unsaturated Aliphatic Hydrocarbons, 208 

Urea-Formaldehyde, 68 

V 

Vanadium Compounds, 185 

W 

Waxes, Polishes, 154 

Wood Combustion Products, 119 

Wood Dust, 44 

Wood Vamishes, Stains, 173 

Wool Fibres, 43 

X 

Xylene, 146 

Z 

Zinc Compounds, 192 

Zinc Dust, 36 

Zinc Fumes, 109 

Zinc Oxide, 37 



Table A-3: List of occupation al chemicals, with descriptions 

1. Abrasives Dust. Dust generated from abrasives during the manufacturing of abrasives or 
during abrading, smoothing, or polishing of metals, wood, stones, concrete, jewehy, etc. The 
abrasive could be of a single composition such as silica, or aggregate material containing alumina 
or silicon carbide, with binders such as vitrified glass, resins or rubber. Main occupations: metal 
machinists; carpenters; motor vehicle mechanics. Lifetime prevalence: 23.9%. Top three 
positively correlated chemicals: Alumina (r=0.7), Aluminium Compounds (r=0.7), and Metallic 
Dust (r=0.5). 

2. Inorganic Insulation Dust. Dust arising from the placement or removal of any inorganic heat 
insulating materials including asbestos (chrysotile or amphibole), mineraI wool, glass fibers and 
vermiculite/perlite. Main occupations: pipefitters and plumbers; stationary engineers; carpenters. 
Lifetime prevalence: 11.2%. Top three positively correlated chemicals: Mineral Wool Fibres 
(r=0.7), Glass Fibres (r=0.6), and Asbestos (r=0.5). 

3. Excavation Dust. Dust generated by digging, blasting, drilling, removing or transporting earth 
or rock for the purpose of mining or quarrying or for the construction of roads, railroads, tunnels 
and buildings. Main occupations: construction laborers; excavators; truck drivers. Lifetime 
prevalence: 10.1%. Top three positively correlated chemicals: Crystalline Silica (r=0.6), 
Concrete Dust (r=0.4), and Portland Cement (r=0.3). 

4. Metallic Dust. Any metal dusts generated, regardless of the specific metals involved or 
whether they are known or unknown. Most metals will have undergone a certain amount of 
surface oxidation but exposure to specific metal oxides (e.g., lead oxides; iron oxides) was coded 
only when the main exposure was to the oxide itself and not to the metal dust. Main occupations: 
metal machinists; motor vehicle mechanics; welders and flame cutters. Lifetime prevalence: 
27.7%. Top three positively correlated chemicals: Mild Steel Dust (r=0.7), Iron Compounds 
(r=0.7), and Metal Oxide Fumes (r=0.6). 

5. Asbestos. A combination of chrysotile and amphibole fibers, both of which are naturally 
occuring fibrous hydrated silicates. Chrysotile fibres are curly serpentine fibers made up of tiny 
individual fibrils which take the shape of a spirally wound tube. Chrysotile asbestos is the type 
most used for textiles, friction materials (e.g. brake and clutch linings) and floor tiles. Main 
occupations: motor vehicle mechanics; welders and flame cutters; stationary engineers. The 
amphibole fibers are straight and needle-like silicate structures generally more brittle than 
chrysotile asbestos fibers. They are useful because of their resistance to heat, wear and corrosion 
and are generally mixed with chrysotile in asbestos-cement building products, in fire-resistant 
insulation boards and in other insulation products. Main occupations: stationary engineers; 
pipefitters and plumbers; electricians. Lifetime prevalence: 16.9%. Top three positively 
correlated chemicals: Inorg.Insul.Dust (r=0.5), Soot (r=0.4), and Nitrogen Oxides (r=0.4). 

6. Crystalline Silica. The crystalline forms of free silica are quartz, cristobalite and tridymite. 
Many sands, clays and rocks are largely composed of small silica crystals; exposure to silica 
occurred mainly because of sand used in construction, in sand blasting, in foundry molds, clay, 
glass and stone processing, pottery and brick making. Exposure also occurred to workers 
involved in mining, quarrying, and rock and soil drilling. Main occupations: carpenters; 
construction laborers; cabinet and wood fumiture makers. Lifetime prevalence: 23.7%. Top 
three positively correlated chemicals: Excavation Dust (r=0.6), Concrete Dust (r=0.5), and 
Portland Cement (r=0.4). 

7. Portland Cement. A powder that can be made into a paste by the addition ofwater, used in 
construction for bonding bricks, concrete blocks and stone and for producing concrete slabs, 
pipes, etc. It consists of about 75% calcium silicates, 5-10% calcium aluminates, 5% calcium 



sulphate, 5-10% calcium-aluminium-iron compounds and 1-4% oxides of sodium, potassium and 
magnesium. Main occupations: construction laborers; stone masons; carpenters. Lifetime 
prevalence: 7.3%. Top three positively correlated chemicals: Concrete Dust (r=0.5), Crystalline 
Silica (r=0.4), and Brick Dust (r=0.4). 

8. Glass Dust. Glass is an inorganic product of fusion which has cooled to a rigid solid without 
undergoing crystallization. The properties of glasses are determined by their chemical 
composition and since this can vary infinitely, there are thousands of different glasses available. 
Potential exposures have been in the construction industry (cutting and installing glass do ors and 
windows) and during grinding, buffing or polishing of opticallenses, prisms, and reflective 
optics. Main occupations: opticians; glass cutters; glass installers. Lifetime prevalence: 1.4%. 
Top three positively correlated chemicals: Plastic Dust (r=0.1), Abrasives Dust (r=0.1), and 
Aluminium Compounds (r=0.1). 

9. Glass Fibres. Manufactured from the raw ingredients of glass but with processes designed to 
create fibrous material. These filament fibers have been used mainly as insulators, as plastic 
reinforcing materials and in special textiles. Main occupations: carpenters; pipefitters and 
plumbers; motor vehicle mechanics. Lifetime prevalence: 5.9%. Top three positively correlated 
chemicals: Mineral Wool Fibres (r=0.6), Inorg.Insul.Dust (r=0.6), and Styrene (r=0.4). 

10. lndustrial Talc. Talcs are hydrated magnesium silicates. Depending on where it is mined, 
commercially available industrial talc is very often geologically associated with other mineraIs 
including carbonates, quartz and varying amounts ofasbestos mineraIs (amphiboles and 
serpentine) in the form of chains or fibres. Industrial grade talcs are widely used as extenders in 
paints, plastics, ceramic products and paper coatings and in the rubber industry as extenders and 
dusting powders. Main occupations: painters; motor vehicle mechanics; farmers. Lifetime 
prevalence: 4.3%. Top three positively correlated chemicals: Titanium Dioxide (r=0.5), 
Extenders (r=0.5), and Titanium Compounds (r=0.4). 

Il. Brick Dust. Dust generated by the cutting or breaking ofbricks, excluding fireclay bricks 
used for refractory purposes. Included are bricks made from hard burned clay used for buildings, 
walls and paving, and bricks used for fancy walls which are made with sand or lime. Main 
occupations: masons; construction laborers; firefighters. Lifetime prevalence: 3.8%. Top three 
positively correlated chemicals: Concrete Dust (r=0.4), Portland Cement (r=0.4), and Phosgene 
(r=0.3). 

12. Clay Dust. Most clays are composed mainly of silica and alumina; they form a paste with 
water and can be hardened when heated. Clays have been used for making pottery, tiles, bricks, 
pipes and refractory materials and as extender pigments in paints. Main occupations: foundry 
molders and coremakers; painters; foundry laborers. Lifetime prevalence: 2.3%. Top three 
positively correlated chemicals: Linseed Oil (r=0.3), Calcium Oxide Fumes (r=0.3), and Iron 
Fumes (r=0.2). 

13. Con crete Dust. Dust generated by the cutting, polishing or breaking of concrete which 
consists of Portland cement, sand, gravel or crushed rock and water. Cast concrete is placed in 
forms, in a wet state, at the point of use at the construction site and allowed to harden into the 
form ofbeams, floor slabs and walls. Main occupations: construction laborers; carpenters; 
firefighters. Lifetime prevalence: 9.5%. Top three positively correlated chemicals: Crystalline 
Silica (r=O.5), Portland Cement (r=O.5), and Excavation Dust (r=0.4). 

14. Bronze Dust. Dust generated when objects made of bronze are cut, abraded, machined, 
polished, etc. The term bronze is generally applied to any copper alloy where tin is the other 
major alloying element, although small amounts of other elements are added to modify the 
characteristics of the bronzes. The product obtained by adding tin to copper is more fusible than 



copper and thus better suited for casting. Main occupations: metal machinists; tool and dye 
makers; foundry molders and coremakers.. Automatics: copper compounds; tin compounds. 
Lifetime prevalence: 1.3%. Top three positive1y correlated chemicals: Tin Compounds (r=0.4), 
Silicon Carbide (r=0.3), and Brass Dust (r=0.3). 

15. Brass Dust. Dust generated when objects made ofbrass are cut, abraded, machined, 
polished, etc. Brasses are the most widely used alloys of copper. They are fundamentally binary 
alloys of copper with zinc but often their properties are modified by addition of other elements in 
small amounts. Brasses are stronger than copper and are used in structural applications. Uses 
include bulletjackets, imitation goldjewelry, plumbing hardware, pipes, radiator cases and 
condenser tubing. Main occupations: metal machinists; machine tool operators; metal grinders. 
Automatics: copper compounds; zinc compounds. Lifetime prevalence: 2.1%. Top three 
positively correlated chemicals: Zinc Compounds (r=0.4), Copper Compounds (r=0.4), and 
Silicon Carbide (r=0.4). 

16. Stainless Steel Dust. Dust generated when objects made of this metal are cut, abraded, 
machined, polished, etc. Stainless steel is available in many different compositions but the most 
common one, usually known as 18-8 stainless steel, is 18% chromium and 8% nickel. Many 
other elements such as titanium, molybdenum, niobium, silicon and others are also added in small 
quantities to customize the steel for special purposes. Main occupations: metal machinists; 
welders and flame cutters; rail transport equipment mechanics. Automatics: chromium 
compounds; iron compounds; nickel compounds. Lifetime prevalence: 4.5%. Top three 
positively correlated chemicals: Nickel Compounds (r=0.8), Chromium Compounds (r=0.6), and 
Chromium Fumes (r=0.5). 

17. Mild Steel Dust. Dust generated when objects made ofthis metal are cut, abraded, machined, 
polished, etc. Mild steel is essentially a combination of iron and carbon (less than 2% carbon). 
AlI steels contain manganese (usually at least 0.3%) and small amounts of other metals, which 
provide the strength and hardness that is required by the construction and manufacturing 
industries. Main occupations: metal machinists; welders and flame cutters; motor vehicle 
mechanics. Automatics: manganese compounds; iron compounds. Lifetime prevalence: 16.5%. 
Top three positively correlated chemicals: Iron Compounds (r=0.8), Metallic Dust (r=0.7), and 
Abrasives Dust (r=0.5). 

18. Inarganic Pigments. Insoluble white or colored powders ofvery fine particle size (0.01 - 1.0 
microns) which imparts color and/or other properties (e.g. anti-corrosive properties) to other 
materials either when mixed intimately with them (dispersion or suspension) or when applied 
over their surfaces in a thin layer. Inorganic pigments can be subdivided into white (which 
includes titanium dioxide) ,and other colors (iron oxides, lead chromate, etc.) both ofwhich can 
be ofnatural or synthetic origin. Organic pigments were coded separately. Main occupations: 
painters; paper product makers; printshop workers. Lifetime prevalence: 9.2%. Top three 
positively correlated chemicals: Organic Dyes & Pig. (r=0.6), Extenders (r=0.6), and Alkyds 
(r=0.6). 

19. Mineral Waal Fibres. Mineral wool is a glassy fibrous silicate material made by melting and 
fiberizing slags (slag wool) or natural rocks (rock wool). Mineral wool has been used since the 
1930's, mainly as a thermal and acoustical insulator. Main occupations: carpenters; pipefitters 
and plumbers; stationary engineers. Lifetime prevalence: 6.0%. Top three positively correlated 
chemicals: Inorg.Insul.Dust (r=0.7), Glass Fibres (r=0.6), and Calcium Sulphate (r=0.4). 

20. Extenders. A variety of substances used to modify the physical, thermal, mechanical or 
electrical properties of the products (paints and metal coatings, adhesives, rubber and plastics) to 
which they are added or to reduce the overall cost of such products. The chemical composition 
and function of an extender depend on the industry in which the extender is used. Highest 



exposure concentrations to extenders occurred during the blending of the raw materials. Main 
occupations: construction painters; motor vehicle refinishers; motor vehicle mechanics. Lifetime 
prevalence: 5.6%. Top three positively correlated chemicals: Inorg.Pigments (r=0.6), Alkyds 
(r=0.6), and Titanium Dioxide (r=0.6). 

21. Aluminium Al/oy Dust. Dust generated when objects made ofthis alloy are cut, abraded, 
machined, polished, etc. Pure aluminium (Al) possesses many desirable characteristics: light 
weight, pleasing appearance, good malleability, high electrical and thermal conductivity and 
excellent resistance to corrosion. However, in order to achieve the hardness and strength required 
for industrial use, it must be alloyed with other metals such as copper and magnesium. 
Aluminium alloys have been widely used for transportation equipment because oftheir high 
strength/weight ratios. Main occupations: metal machinists; aircraft assembly workers; welders 
and flame cutters. Automatics: aluminium compounds. Lifetime prevalence: 5.9%. Top three 
positively correlated chemicals: Aluminium Compounds (r=0.5), Silicon Carbide (r=0.4), and 
Cutting Fluids (r=0.4). 

22. Ashes. The non-combustible residue left after the buming of any susbtance. They contain 
the residues of aIl non-volatile substances (e.g. oxides, salts, non-metallic elements) that may 
have been present in fuel. They are found in largest quantities in industrial processes in which 
fuel is converted into heat in fumaces, kilns, ovens and boilers. Main occupations: stationary 
engineers; firefighters; boiler room workers. Lifetime prevalence: 2.9%. Top three positively 
correlated chemicals: Soot (r=0.5), Phosgene (r=0.5), and Vanadium Compounds (r=0.4). 

23. Cosmetic Talc. Talcs are hydrated magne sium silicates. Only the pure white talcs 
(impureties can color it gray, green, brown or red) used in cosmetics and toilet preparations are 
included in this category. Cosmetic talcs are hand sorted, screened, ground very fine and bolted 
through silk clotho Consumer talc products marketed before 1973 may have been contaminated to 
varying degrees by asbestos. Main occupations: barbers and hairdressers; nurse's aides; 
physicians and surgeons. Lifetime prevalence: 1.3%. Top three positively correlated chemicals: 
Hair Dust (r=0.5), Ethanol (r=0.3), and Spray Gases (r=0.3). 

24. Borates. The main substances in this category are borax (Na2B407.10H20), used in the 
manufacture of special kinds of glass, enamels and glazes, as a scouring and cleansing agent, as a 
flux in welding and in the soap, leather and cosmetics industries and boric acid (H3B03), a white, 
crystalline powder used as a preservative and as a weak antiseptic. Main occupations: jewellers; 
watch repairmen; dental prosthesis makers. Lifetime prevalence: 1.0%. Top three positively 
correlated chemicals: Gold Compounds (r=0.5), Silver Fumes (r=0.5), and Silver Compounds 
(r=0.5). 

25. Sodium Carbonate. Aiso known as soda ash, this chemical is an odorless, white, hygroscopic 
powder considered to be one of the most important industrial alkalis. It occurs naturally but may 
also be manufactured from salt, ammonia and carbon dioxide. It has been used for cleansing, for 
softening water, for conditioning boiler feed water (lime-soda process), in glass as a flux to 
prevent fogging, for refining oils, for the treatment of ores, in the wood-pulp industry, and in soap 
making. Main occupations: stationary engineers; photographers; textile processors. Lifetime 
prevalence: 1.6%. Top three positively correlated chemicals: Vanadium Compounds (r=0.4), 
Alkali, Caustic Solutions (r=0.4), and Beryllium Compounds (r=0.3). 

26. Alumina. Oxide of aluminium, Al203 and its various polymorphs and hydrated species. 
Corundum (both natural and synthetic), the crystalline form of alumina, has been widely used as 
an abrasive while the trihydrate is used as an extender pigment in paints, plastics, cosmetics, etc. 
Main occupations: metal machinists; motor vehicle mechanics; carpenters. Automatics: 
aluminium compounds. Lifetime prevalence: 15.2%. Top three positively correlated chemicals: 
Aluminium Compounds (r=0.9), Abrasives Dust (r=0.7), and Silicon Carbide (r=0.5). 



27. Silicon Carbide. A bluish-black, crystalline, artificial mineraI characterized by extreme 
hardness, a high melting point and chemical inertness. 1t has been used mainly as an abrasive in 
the form of granules or powder for shaping, cleaning or polishing surfaces. Other applications 
include refractories and wear-resistant surfaces. Main occupations: metal machinists; pipefitters 
and plumbers; motor vehicle mechanics. Lifetime prevalence: 5.5%. Top three positively 
correlated chemicals: Alumina (r=0.5), Aluminium Compounds (r=0.5), and Abrasives Dust 
(r=0.4). 

28. Sulfur. A non-metallic element which exists in several allotropic forms, obtained by the 
distillation of iron pyrites, as a by-product of metal smelting, and from natural gas. Its most 
important use (90 %) has been in the production of sulphuric acid. Other uses have included 
match manufacture, vulcanization ofrubber, bleaching agent ofpaper pulp and wool, and as an 
agricultural insecticide. Main occupations: farmers; railway mechanics; rubber workers. 
Lifetime prevalence: 1.3%. Top three positively correlated chemicals: Rubber PyroI.Prod. 
(r=0.3), Industrial Talc (r=0.2), and Rubber Dust (r=0.2). 

29. Calcium Oxide. Aiso known as lime, calcium oxide is produced by calcining lime stone 
(calcium carbonate). Large amounts of lime (or hydrated lime, Ca(OH)2, which was also coded 
here) have been used in pulp and paper making, as a soil treatment in agriculture and as a 
'whitewash' to coat stables, dairies and other farm buildings. It has also been used in masonry 
mortars, plasters, stucco, and unhairing of skins in leather manufacturing. Main occupations: 
farmers; stationary engineers; masons. Lifetime prevalence: 7.0%. Top three positively 
correlated chemicals: Grain Dust (r=0.3), Portland Cement (r=0.3), and Fertilizers (r=0.3). 

30. Calcium Sulphate. Aiso known as gypsum, calcium sulphate is a widely distributed naturally 
occurring mineraI. It has been used to produce gypsum wallboard which consists of a core of 
gypsum sandwiched between two layers of paper. Other uses have been as dental plasters for 
making tooth impressions, orthopedic plasters, pottery plasters, lamp bases, and patching 
compounds. Main occupations: painters; carpenters; other construction workers. Lifetime 
prevalence: 9.8%. Top three positively correlated chemicals: Inorg.InsuI.Dust (r=0.4), Mineral 
Wooi Fibres (r=0.4), and Concrete Dust (r=0.4). 

31. Calcium Carbonate. A mineraI occurring naturally in a great variety of calcite rocks which 
are collectively known as limestone. It has been used as a flux in the melting of iron, as a filler in 
asphalt, putty, crayons, paints, rubber, plastics and linoleum, for writing on blackboards and as a 
mild abrasive in polishes. Main occupations: painters and plasterers; teachers; stationary 
engineers. Lifetime prevalence: 6.2%. Top three positively correlated chemicals: Titanium 
Dioxide (r=0.3), Extenders (r=0.3), and Titanium Compounds (r=0.3). 

32. Titanium Dioxide. This extremely dense, powerful opaque white inorganic pigment has great 
hi ding power. 1t is absolutely inert and therefore permanent. The best quality is produced from 
ilmenite. It has been used as a pigment in paints, paper, plastics, floor coverings, inks, rubber, 
ceramics, roofing granules, textiles and as a fluxing agent in welding electrodes. Main 
occupations: construction painters; motor vehicle refinishers; motor vehicle mechanics. 
Automatics: titanium compounds. Lifetime prevalence: 3.9%. Top three positively correlated 
chemicals: Titanium Compounds (r=0.9), Alkyds (r=0.6), and Extenders (r=0.6). 

33. Iron Dust. Iron (Fe) dust is produced when objects made ofiron are cut, abraded, machined, 
polished, etc. Iron is a silvery white metal, capable oftaking a fine polish. It oxidizes readily in 
the presence of air and water. Exposures to both pure (ingot iron, wrought iron) and cast irons 
were included here. Cast iron contains from 2 to 4% carbon in the form of graphite or as iron 
carbide. It has been widely used in automobiles parts such as brake drums, gears, camshafts, 
hydraulic cylinders, etc., in fireplaces and in kitchen utensils. Iron containing alloys were coded 
separately. Main occupations: metal machinists; pipefitters and plumbers; metal grinders. 



Automatics: iron compounds. Lifetime prevalence: 4.1 %. Top three positively correlated 
chemicals: Iron Compounds (r=0.4), Silicon Carbide (r=0.3), and Cutting Fluids pre 1955 
(r=0.3). 

34. Iron Oxides. AlI oxides ofiron (e.g., Fe304, Fe203, FeO.Fe203). The most important uses 
ofthese compounds have been in pigments for plastics, leather, bricks, textiles, paper and 
concrete products. Exposure to iron oxides is widespread; this also includes exposure to rust. 
Main occupations: construction painters; motor vehicle mechanics; motor vehicle refinishers. 
Automatics: iron compounds. Lifetime prevalence: 10.4%. Top three positively correlated 
chemicals: Iron Compounds (r=0.6), Lead Chromate (r=0.5), and Chromium (VI) Comp. (r=0.4). 

35. Copper Dust. Dust generated when objects made of copper (Cu) are cut, abraded, machined, 
polished, etc. Copper is a yellowish red metal which is relatively very malleable. The metal gives 
a brilliant luster when polished and is second only to sil ver in electrical conductivity. It has been 
used in the electrical industry, in water piping, kitchenware, electric motors, coils, and dynamos. 
Main occupations: machinists and machine tool operators; pipefitters and plumbers; metal 
grinders. Automatics: copper compounds. Lifetime prevalence: 4.6%. Top three positively 
correlated chemicals: Copper Compounds (r=0.6), Soldering Fumes (r=0.4), and Lead Fumes 
(r=0.4). 

36. Zinc Dust. Dust generated when objects made of or plated with zinc (Zn) are cut, abraded, 
machined, polished, etc. This bluish-white crystalline metal is obtained from a number of 
sulphides (the most important one is sphalerite) or oxide ores. It has been used extensively as 
anticorrosion protection, mainly on steel and iron. It can be applied as a metal by hot dip 
galvanizing or flame spraying, or used as a pigment in paints. Main occupations: pipefitters and 
plumbers; sheet-metal workers; machinists and machine tool operators. Lifetime prevalence: 
2.3%. Top three positively correlated chemicals: Zinc Compounds (r=0.5), Lead Fumes (r=0.5), 
and Tin Fumes (r=0.4). 

37. Zinc Oxide. A white, water insoluble powder widely used as a pigment and accelerator in 
paints and rubbers. In paints it resists the action of ultraviolet light and atmospheric sulphur, and 
prevents growth of mildew and fungus. Other uses include insulating compounds, sunscreen 
lotions, and paper coatings. Main occupations: painters; paint mixers; dental prosthesis makers. 
Automatics: zinc compounds. Lifetime prevalence: 3.2%. Top three positively correlated 
chemicals: Basic Lead Carb. (r=0.6), Lead Chromate (r=0.6), and Zinc Compounds (r=0.5). 

38. Lead Oxides. AlI oxides oflead. Red lead (Pb304), and litharge (PbO) which is the yellow 
lead monoxide, have been used extensively as pigments in paints to protect steel substrates 
against corrosion. Lead oxides have also been used in the manufacture of glass and in fluxing of 
earthenware. Lead dioxide (Pb02) is the principle active constituent in the positive plate for lead 
storage batteries. Main occupations: construction painters; motor vehicle refinishers; ship deck 
workers. Automatics: lead compounds. Lifetime prevalence: 1.8%. Top three positively 
correlated chemicals: Alkyds (r=0.3), Inorg.Pigments (r=0.3), and Metal Coatings (r=0.3). 

39. Basic Lead Carbonate. Commonly known as white lead, this compound is a white, 
amorphous powder made from metallic lead. It is one of the oldest lead pigments for paints; it 
has also been used in putty and ceramics. Main occupations: construction painters; pipefitters 
and plumbers; paint mixers. Automatics: lead compounds. Lifetime prevalence: 2.3%. Top 
three positively correlated chemicals: Linseed Oil (r=0.6), Zinc Oxide (r=0.6), and Lead 
Chromate (r=0.5). 

40. Lead Chromate. This category includes not only PbCr04 itself, commonly known as chrome 
yelIow, but aIl other other addition compounds containing the lead chromate (e.g., PbO.PbCr04). 
These are considered to be the most versatile of the inorganic pigments with a good range of 



colors. They are relatively inexpensive, and have been used in wood and metal coatings, printing 
inks, and as coloring agents in rubber and paper. Main occupations: construction painters; motor 
vehicle refinishers; motor vehicle mechanics. Automatics: chromium (VI) compounds; 
chromium compounds; lead compounds. Lifetime prevalence: 3.2%. Top three positively 
correlated chemicals: Chromium (VI) Comp. (r=0.6), Titanium Dioxide (r=0.6), and Zinc Oxide 
(r=0.6). 

41. Organic Dyes and Pigments. Dyes are colored substances which impart their color effects to 
materials by staining, being absorbed or by chemically reacting; they are used for coloring 
textiles, leather, paper, plastics, petroleum products and food. Pigments are essentially insoluble 
in the liquid media in which they are dispersed and are mainly used for paints and plastics. 
Inorganic pigments were coded separately. Main occupations: construction painters; motor 
vehicle refinishers; printing press operators. Lifetime prevalence: 8.0%. Top three positively 
correlated chemicals: Aromatic Amines (r=0.7), Inorg.Pigments (r=0.6), and Lead Chromate 
(r=0.5). 

42. Cotton Dust. Dust generated during carding, spinning, weaving, cutting, sewing or handling 
of cotton or cotton-containing textiles. Cotton is a natural fiber obtained from the Gossypium 
plant; chemically it is about 90% cellulose and 6% moi sture , the remainder being impurities. The 
textile may have been treated with starches, dyes, inks, sizing or other finishing materials which 
may have been coded separately. Main occupations: tailors and dressmakers; sewing machine 
operators; laundry workers and dry cleaners. Lifetime prevalence: 8.8%. Top three positively 
correlated chemicals: Fabric Dust (r=0.7), Wooi Fibres (r=0.6), and Synthetic Fibres (r=0.6). 

43. Waal Fibres. Dust generated during carding, spinning, weaving, knitting, cutting, sewing 
and handling ofwool or wool-containing textiles. Wooi fibers are produced from the hair of 
sheep or of other animaIs (goats, llamas). These natural fibers are often blended with synthetic 
fibers (e.g., acrylic fibers) to make up yarn or textiles. They are often treated with starches, dyes, 
inks, sizing or other finishing materials, sorne of which were coded separately. Main 
occupations: tailors and dressmakers; sewing machine operators; laundry workers and dry 
cleaners. Lifetime prevalence: 6.1 %. Top three positively correlated chemicals: Synthetic 
Fibres (r=0.7), Polyester Fibres (r=0.7), and Fabric Dust (r=0.6). 

44. Wood Dust. Generally composed of cellulose, hemicellulose, and lignin but may also include 
chemicals such as pentachlorophenols and chromated copper arsenate used to improve decay 
resistance of wood. Wood dust is one of the most common and oldest of occupational exposures. 
Main occupations: carpenters; cabinet and wood furniture makers; other construction workers. 
Lifetime prevalence: 22.2%. Top three positively correlated chemicals: Crystalline Silica 
(r=0.4), Urea-Formald. (r=0.4), and Calcium Sulphate (r=0.4). 

45. Grain Dust. Dust produced when grains such as wheat, barley and rice are harvested, milled, 
transported or handled in any other way. The highest exposure concentrations were attributed to 
grain millers and longshoremen while the lowest exposures were given to farm workers. Lifetime 
prevalence: 7%. Main occupations: general farmers; dockworkers; dairy farmers. Lifetime 
prevalence: 7.1 %. Top three positively correlated chemicals: Fertilizers (r=0.4), Pesticides 
(r=0.4), and Calcium Oxide (r=0.3). 

46. Flour Dust. Dust produced when milled cereals such as wheat, corn, rye, oats, barley and 
millet are packaged, transported, used for cooking and baking or handled in any other way. Main 
occupations: bakers; chefs and cooks; dockworkers. Lifetime prevalence: 3.6%. Top three 
positively correlated chemicals: Cooking Fumes (r=0.3), Sugar Dust (r=0.3), and Natural Gas 
Comb.Prod. (r=0.2). 



47. Fur Dust. Dust produced when the furs of aquatic species such as beaver, otter, muskrat and 
seal or ofnorthern land species such as fox, wolf, mink, weasel, squirrel, bear, badger, marten 
and raccoon are processed, cut and sewn. Main occupations: furriers; hide and pelt processors; 
sewing machine operators. Lifetime prevalence: 1.7%. Top three positively correlated 
chemicals: Leather Dust (r=0.2), Acetate Fibres (r=0.1), and Methanol (r=0.1). 

48. Haïr Dust. Hair is found as a covering and protection on bodies ofnearly all mammals, 
including man. In this study, hair dust was coded for exposure to human hair and to the hair of 
non fur-producing animaIs such as cattle, horses, pigs and goats. Main occupations: barbers and 
hairdressers; upholsterers; hide and pelt processors. Lifetime prevalence: 1.1 %. Top three 
positively correlated chemicals: Cosmetic Talc (r=0.5), Spray Gases (r=0.3), and Fluorocarbons 
(r=0.3). 

49. Starch Dust. Starch is a soft, white, odorless powder produced from grains such as corn, 
wheat, rice, potatoes and yams. Starches have been widely used in foodstuffs, adhesives, textile 
and paper sizing, gelling and thickening agents, and fillers. They have also been used in mining 
as flocculating agents, in the manufacture of explosives and many chemicals, and as carriers for 
pigments, inks and dyes. Main occupations: printing press operators; textile weavers; textile 
winders. Lifetime prevalence: 1.3%. Top three positively correlated chemicals: Other Mineral 
Oils (r=0.2), Cotton Dust (r=0.2), and Phosphoric Acid (r=0.2). 

50. Sugar Dust. Dust ofnatural sweeteners that are used in the food and beverage industry. The 
main sugar used is sucrose, which is a disaccharide of the formula C 12H220 Il, obtained from 
sugar cane and beets. Main occupations: bakers; dockworkers; food and beverage processors. 
Lifetime prevalence: 1.2%. Top three positively correlated chemicals: Flour Dust (r=0.3), 
Starch Dust (r=0.1), and Alkanes (CI-C4) (r=0.1). 

51. Leather Dust. Dust generated from skins and hides of animaIs after they have been cured or 
tanned by the action of oils, or chemically acted upon by tannins. Leather dust consists of the 
light, fluffy fibers blown from the buffing and sueding wheels in tanneries or in leather product 
industries. Main occupations: shoemakers; leather cutters; hide and pelt processors. Lifetime 
prevalence: 3.1%. Top three positively correlated chemicals: Natural Rubber (r=0.3), Synthetic 
Adhesives (r=0.3), and Polychloroprene (r=0.2). 

52. Tobacco Dust. Tobacco is produced from the plant of the genus Nicotiana; it has been used 
for smoking and chewing, tobacco snuff, as an insecticide, and for production of nicotine. 
Tobacco dust exposure mainly occurred during the manufacture of cigars, cigarettes, pipe or 
chewing tobacco or snuff, and to sorne extent to tobacco farmers. Main occupations: tobacco 
processors; farmers; other tobacco workers. Lifetime prevalence: 0.8%. Top three positively 
correlated chemicals: Fertilizers (r=0.1), Pesticides (r=0.1), and Creosote (r=0.1). 

53. Natural Rubber. Obtained by tapping the bark of the rubber tree and coagulating the milky 
latex. The rubber is then masticated and blended with various other ingredients such as pigments, 
vulcanization agents, accelerators, antioxidants, and plasticizers. Often blended with SBR rubber 
to make automobile tires and other rubber goods, the naturallatex may also be used alone in 
dipped goods such as gloves, toys, and balloons and in adhesives. Main occupations: 
shoemakers; motor vehicle mechanics; service station attendants. Lifetime prevalence: 4.4%. 
Top three positively correlated chemicals: Rubber Dust (r=0.9), Styrene-Buta.Rubber (r=0.8), 
and Rubber Pyrol.Prod. (r=0.4). 

54. Synthetic Fibres. Dust generated during the manufacturing, spinning, weaving, cutting 
sewing or handling of artificial or truly synthetic fibers or of textiles containing artificial or 
synthetic fibers. Artificial fibers are those in which the fiber-forming material is ofnatural origin 
(eg., viscose rayon which is regenerated cellulose and celluose acetate fibers) and the true 



synthetic fibers are those in which the fiber-forming material is derived from petrochemicals or 
coal chemicals. They are often treated with starches, dyes, inks, sizing or other finishing 
materials, sorne ofwhich were coded separately. Main occupations: tailors and dressmakers; 
textile cutters; pressers. Lifetime prevalence: 6.4%. Top three positively correlated chemicals: 
Polyester Fibres (r=0.8), Fabric Dust (r=0.7), and Wooi Fibres (r=0.7). 

55. Plastic Dust. Dust produced when a plastic (of any polymer) material is eut, ground or 
abraded. It was not coded for paints or adhesives even when these substances produced dusts 
such as in sanding operations. The main constituents are: polymer resins; color pigments 
(inorganic and organic), filler pigments, anti-UV agents, plasticizers, fungicides, fire-retardants, 
stabilizers and anti-static agents. Main occupations: pipefitters and plumbers; shoemakers; 
dentists. Lifetime prevalence: 5.4%. Top three positively correlated chemicals: Polyvinyl 
Chloride (r=0.4), Plastics Pyrol.Prod. (r=0.4), and Synthetic Adhesives (r=0.3). 

56. Rayon Fibres. The oldest man-made fiber, rayon is produced mainly by the viscose process 
from cellulose. This fiber has been used in wearing apparel (especially in linings and 
undergarments), car and home upholstering, hospital sanitary products and as tire cord. Main 
occupations: tailors and dressmakers; upholsterers; pressers. Automatics: synthetic fibers. 
Lifetime prevalence: 2.5%. Top three positively correlated chemicals: Acetate Fibres (r=0.7), 
Polyester Fibres (r=0.6), and Nylon Fibres (r=0.6). 

57. Acrylic Fibres. Includes both acrylic and modacrylic fibers. Acrylic (Orlon®) fibers are 
made up of long chain polymers composed of at least 85% by weight acrylonitrile units; 
modacrylic fibers are polymers composed ofless than 85% but at least 35% by weight of 
acrylonitrile units. A relatively new fiber (first produced commercially in 1949), it resembles 
wool and has often been used as a replacement for it in clothing and upholstery fabrics, yams and 
carpets. Main occupations: tailors and sewing machine operators; upholsterers; pressers. 
Automatics: synthetic fibers. Lifetime prevalence: 2.3%. Top three positively correlated 
chemicals: Polyester Fibres (r=0.7), Nylon Fibres (r=0.6), and Synthetic Fibres (r=0.6). 

58. Polyester Fibres. Synthetic fibers containing at least 80% ofa long-chain polymer composed 
of an ester of a dihydric alcohol (usually ethylene glycol) and terephthalic acid. They should not 
be confused with polyester resins which are coded separately. First produced in 1941, polyester 
(Dacron®) fibers, have been widely used in garments, bedding (e.g., permanent press fabrics), 
carpets, stuffing for pillows, toys, sleeping bags and comforters as weIl as for thermal insulation 
ofwinter outerwear. Main occupations: tailors and dressmakers; sewing machine operators; 
textile cutters. Automatics: synthetic fibers. Lifetime prevalence: 4.2%. Top three positively 
correlated chemicals: Synthetic Fibres (r=0.8), Acrylic Fibres (r=0.7), and Wooi Fibres (r=0.7). 

59. Nylon Fibres. The first truly synthetic fiber, nylon is a manufactured fiber in which the fiber 
forming substance is any long-chain polyamide having recurring amide groups (HN-C=O) as an 
integral part of the polymer chain. Nylon (polyamide) fibers, should not be confused with 
polyamide resins which were coded separately. Type 6 and 6/6 nylon dominate the textile fiber 
field. More than 60% of the total volume of nylon fibers produced is used in home fumishings, 
mostly carpets and upholstering. It has also been used in clothing, especially water-resistant 
outerwear, sweaters and hosiery. Main occupations: textile cutters; sewing machine operators; 
upholsterers. Automatics: synthetic fibers. Lifetime prevalence: 2.8%. Top three positively 
correlated chemicals: Synthetic Fibres (r=0.6), Rayon Fibres (r=0.6), and Polyester Fibres 
(r=0.6). 

60. Acetate Fibres. These synthetic fibers, introduced in the mid 1920's, are made up of 
cellulose acetate, a chemical derivative of the naturally occurring polymer cellulose. Included are 
both types of fibers: acetate, made from partially hydrolyzed cellulose and triacetate, fibers that 
are fully acetylated. These fibers are mostly used in wearing apparel (women's clothing, 



undergarments and linings). Main occupations: tailors and dressmakers; textile cutters; sewing 
machine operators. Automatics: synthetic fibers. Lifetime prevalence: 1.7%. Top three 
positively correlated chemicals: Rayon Fibres (r=0.7), Polyester Fibres (r=0.6), and Nylon Fibres 
(r=0.5). 

61. Cellulose Nitrate. A thermoplastic resin made by treating cellulose (cotton linters) with a 
mixture ofnitric and sulphuric acids. Cellulose will unite with 1 to 6 molecules to make two 
types of cellulose nitrate which are both coded under this rubric. The lower nitrates are used for 
plastics and coatings and the higher nitrates, known as nitrocellulose, for explosives. Main 
occupations: painters; automobile repairmen; wood furniture makers. Lifetime prevalence: 
2.5%. Top three positively correlated chemicals: Aliphatic Esters (r=0.6), Phthalates (r=0.5), and 
Aliphatic Ketones (r=0.5). 

62. Polyvinyl Chloride. The general formula for pure PVC is (CH2CHCI)n but sorne 
copolymers with polyvinyl acetate are also coded here. The principal markets for these 
thermoplastic resins have been plumbing pipes and fittings, toys, packaging, flooring and 
coatings. Main occupations: ship and railway car painters; pipefitters and plumbers; plastic 
product manufacturing workers. Lifetime prevalence: 1.6%. Top three positively correlated 
chemicals: Plastic Dust (r=0.4), Plastics Pyrol.Prod. (r=0.3), and Aliphatic Ketones (r=0.2). 

63. Polyvinyl Acetate. These thermoplastic resins, of general formula (CH3CHCOOCH3)n, are 
obtained by polymerizing vinyl acetate. They have been mainly used in emulsion-type trade sale 
paints and in wood adhesives. Other end uses include textile and paper coatings. Main 
occupations: construction painters; carpenters and wood cabinet makers. Lifetime prevalence: 
2.8%. Top three positively correlated chemicals: Wood Varnishes, Stains (r=0.4), Poly
Acrylates (r=0.4), and Mercury Compounds (r=0.4). 

64. Poly-Acrylates. Thermoplastic resins produced by polymerization of the esters of acrylic or 
methacrylic acid. The most important resin is polymethylmethacrylate (sheet plastic produced 
with this resin is commonly know as plexiglass). First produced commercially in 1931, acrylic 
plastics have been widely used as a substitute for glass and for dental prosthesis. Acrylic resins 
have also been widely used in coatings, most notably in water-based trade sale paints and in 
motor vehicle paints. Main occupations: construction painters; motor vehicle refinishers; 
dentists and dental prosthesis makers. Lifetime prevalence: 2.9%. Top three positively 
correlated chemicals: Titanium Dioxide (r=0.6), Titanium Compounds (r=0.5), and Lead 
Chromate (r=0.5). 

65. Alkyds. Thermosetting oil-modified polyester resins made by the esterification of a polybasic 
acid with a polyhydric alcohol; the resins are reacted with oils, fatty acids or other resins. They 
have been used extensively in solvent-based coatings (especially trade sale paints) and in printing 
inks. Main occupations: painters, automobile repairmen; paint mixers. Lifetime prevalence: 
4.2%. Top three positively correlated chemicals: Titanium Dioxide (r=0.6), Extenders (r=0.6), 
and Inorg.Pigments (r=0.6). 

66. Epoxies. Thermosetting synthetic resins characterized by a highly strained triangular ring 
consisting of an oxygen atom bonded to two adjoining and bonded carbon atoms. They are 
usually made by reacting epichlorohydrin with polyhydroxy compounds (very often bisphenol A). 
Excellent mechanical and electrical properties have made these resins very useful in adhesives, 
resistant coatings and electrical insulating materials. Main occupations: painters; watch and 
clock repairmen; electric and electronic equipment operators. Lifetime prevalence: 1.2%. Top 
three positively correlated chemicals: Borates (r=0.2), Cadmium Compounds (r=0.2), and 
Methylene Chloride (r=0.2). 



67. Phenol-Formaldehyde. Thermosetting resins prepared by reacting phenol with 
formaldehyde; they are among the oldest of the synthetic plastic materials, dating back to 1909. 
They have been widely used in adhesives (especially outdoor plywood bonding), foundry molds 
and cores (as a binder for sand), brake linings (as a binder for the asbestos fibers), coatings 
(electrical insulating vamishes), resin-bonded grinding wheels, laminates, thermal and acoustical 
insulation materials (as a binding agent for glass fibers or mineraI wool) and in castings. Main 
occupations: carpenters; cabinet and wood furniture makers; electric and electronic equipment 
fabricators. Lifetime prevalence: 3.8%. Top three positive1y correlated chemicals: Urea
Formald. (r=0.6), Phenol (r=0.4), and Aromatic Alcohols (r=0.3). 

68. Urea-Formaldehyde. These resins are among the most widely used of the amino resins 
(resins produced by the addition reaction between formaldehyde and such compounds as urea, 
melamine, aniline, ethylene, sulphonamide). They are used extensively as plywood and 
partic1eboard adhesives, especially for indoor use (fumiture partic1eboard, indoor use plywood). 
In the past they were also used for imparting wrinkle recovery to cellulosic fabrics but have been 
gradually replaced by melamine resins. Urea-formaldehyde resins are still widely used in molded 
plastics (especially e1ectrical wall plates and connectors, lighting fixtures and reflectors) and in 
oven-cured industrial finish coatings (porcelain-type finish). Main occupations: carpenters; 
cabinet and wood furniture makers; adhesives mixers. Lifetime prevalence: 4.3%. Top three 
positively correlated chemicals: Phenol-Formald. (r=0.6), Synthetic Adhesives (r=0.4), and 
Wood Dust (r=0.4). 

69. Polyurethanes. Generally considered to coyer all products ofreaction between isocyanates 
and polyhydroxy compounds. These resins have been used in a great variety ofproducts: rigid 
and flexible foam products, hard and soft plastic products, e1astomers, paints, vamishes and 
adhesives. Main occupations: motor vehic1e refinishers; upholsterers; textile workers. Lifetime 
prevalence: 1.6%. Top three positive1y correlated chemicals: Isocyanates (r=0.5), Titanium 
Dioxide (r=0.2), and Poly-Acrylates (r=0.2). 

70. Styrene-Butadiene Rubber. SBR is a copolymer of 1,3-butadiene and styrene (with butadiene 
fumishing at least 50% of the polymer units). It is a general purpose rubber often blended with 
natural rubber. Tire manufacturing represents the largest single rubber application and the large st 
end use of SBR rubber. Water-based trade sale paints were formulated with SBR in the early 
50's. Main occupations: construction painters; motor vehic1e mechanics; shoemakers and 
repairmen. Lifetime prevalence: 4.2%. Top three positively correlated chemicals: Natural 
Rubber (r=0.8), Rubber Dust (r=0.7), and Zinc Oxide (r=0.3). 

71. Polychloroprene. The world's entire production of chloroprene (CH2=CClCHCH2) is used 
in the manufacture ofpolychloroprene latex and rubber (also called neoprene). These e1astomers 
have been wide1y used in synthetic adhesives, mainly solvent-based contact cements. Their 
excellent resistance to oils, chemicals and sunlight have also led to their use in a variety of rubber 
products such as conveyer belts, footwear, hose covers and wire coverings. Main occupations: 
carpenters; shoemakers; cabinet and wood furniture makers. Lifetime prevalence: 3.1%. Top 
three positively corre1ated chemicals: Synthetic Adhesives (r=0.4), Toluene (r=0.4), and Urea
Formald. (r=0.3). 

72. Fabric Dust. Dust generated during cutting, sewing or handling of fabrics made of either 
natural or synthetic fibers. The fabric may contain pigments used to print or dye the fabric, sizing 
or other finishing materials which may contribute to the toxicity of the dust and which may have 
been coded separately. Main occupations: tailors and dressmakers; textile cutters; textile 
shippers and material handlers. Lifetime prevalence: 9.8%. Top three positively correlated 
chemicals: Cotton Dust (r=O.7), Synthetic Fibres (r=0.7), and Wooi Fibres (r=0.6). 



73. Coal Dust. Coal is composed mainly of carbon with smaller amounts ofhydrogen, nitrogen, 
oxygen, sulphur and other organic aromatic compounds. In the past, it was used primarily as a 
fuel. The greatest exposure to coal dust occurs among miners and others who handled it in its 
raw form. Main occupations: stationary engineers; truck drivers (coal delivery); coal miners. 
Lifetime prevalence: 5.4%. Top three positive1y corre1ated chemicals: Coal Comb.Products 
(r=0.5), PAR (Coal) (r=0.4), and Ashes (r=0.3). 

74. Carbon Black. An amorphous powdered carbon resulting from the incomplete combustion of 
liquid or gaseous hydrocarbons in a limited air supply. It contains essentially 88-95% elemental 
carbon, 0.4-11 % oxygen and 0.05-0.8% hydrogen. Includes all types: furnace black, thermal 
black, channel black, etc. It has been used mainly to reinforce rubber for tires and other rubber 
articles and as a pigment in inks and paints. Main occupations: rubber molders and mixers; 
printers and typesetters; painters. Lifetime prevalence: 5.0%. Top three positively corre1ated 
chemicals: Inorg.Pigments (r=0.6), Aromatic Amines (r=0.5), and Lead Chromate (r=0.4). 

75. Cellulose. The main constituent of the cell walls ofplants. Industrial cellulose is made from 
wood or cotton pulp. It is used for paper making but also as a starting material for cellulose 
acetate and cellulose nitrate. Exposure has been mainly coded to workers exposed to paper 
fibres. Main occupations: material handlers; paper product manufacturing workers; shippers and 
receivers. Lifetime prevalence: 5.8%. Top three positive1y correlated chemicals: Inks (r=0.3), 
Animal & Vege.G1ues (r=0.2), and Inorg.Pigments (r=0.2). 

76. Soot. A black carbonaceous substance formed by the combustion of coal, wood, oil or other 
fuel. In addition to carbon and PARs, it may contain other mineraI constituents as well as trace 
amounts of metals (e.g., lead, vanadium, barium, chromium). The composition of soot varies 
according to the fuel and the completeness of the combustion. Main occupations: motor vehicle 
mechanics; stationary engineers; firefighters. Lifetime prevalence: 8.5%. Top three positively 
correlated chemicals: Benzo(a)pyrene (r=0.6), Ashes (r=0.5), and Sulphur Dioxide (r=0.5). 

77. Rubber Dust. Includes rubber dusts ofboth natural and synthetic origin. Whenever possible, 
the specific type ofrubber used was also coded (mainly styrene-butadiene rubber or natural 
rubber). Highest exposures occurred during buffing of tires in recapping operations; exposure 
was also coded often to shoe repairmen and shoemakers because of rubber sole buffing. Main 
occupations: Motor vehicle mechanics; shoemakers and repairmen; dental prosthesis makers. 
Lifetime prevalence: 3.7%. Top three positively correlated chemicals: Natural Rubber (r=0.9), 
Styrene-Buta.Rubber (r=0.7), and Rubber Pyrol.Prod. (r=0.4). 

78. Graphite Dust. Graphite is a form of carbon in which carbon atoms are arranged in a 
hexagonal, layerlike crystalline structure. Natural graphite, which has a grayish black color, has 
been used for pencils, as a stove polish, in foundry mold facings, in packing seals and as a 
lubricant. The artificial variety may be made by heating carbon to a temperature of nearly 
3000°C and holding for a sufficient time for formation of the orderly hexagonal crystal pattern. 
Main occupations: electricians; refractory brick layers and repairmen; aluminium refinery 
workers. Lifetime prevalence: 1.1 %. Top three positively correlated chemicals: Phenol (r=0.3), 
Phenol-Formald. (r=0.2), and Aromatic A1cohols (r=0.2). 

79. Hydrogen. The lightest known substance. It is one of the main consitituents of coal gas. It 
is a colorless, odorless gas used as a rocket fuel, a welding fuel, a reducing agent, a reagent in 
various organic synthesis, a hydrogenating agent for vegetable or animal oils and as a raw 
material in the manufacturing of ammonia and hydrogen chloride. Occupational exposures have 
mainly occured due to hydrogen being liberated as an unwanted by-product in industrial 
processes. Main occupations: electroplaters; chefs and cooks; pipefitters and plumbers. Lifetime 
prevalence: 2.1%. Top three positive1y correlated chemicals: Coal Gas (r=0.7), Plating 
Solutions (r=0.4), and Methane (r=0.4). 



80. Carbon Monoxide. A colorless, tasteless and almost odorless gas which is lighter than air 
and burns in air with a blue flame. It is an active reducing agent for chemicals at elevated 
temperatures, but is mostly encountered as a waste product of incomplete combustion of 
carbonaceous material. Potential sources of carbon monoxide exposure include engine emissions 
(gasoline diesel, jet fuel, etc.), foundry furnaces and other industrial furnaces, welding operations, 
etc. Main occupations: motor vehicle drivers; motor vehicle mechanics and repairmen; welders 
and flame cutters. Lifetime prevalence: 50.0%. Top three positively correlated chemicals: Gas 
Eng.Emissions (r=0.7), Lead Compounds (r=0.7), and PAR (Any) (r=0.7). 

81. Hydrogen Cyanide. A colorless gas with the characteristic smell of bitter almonds. It has 
been used in extraction of gold, in extermination of rodents and insects in orchards and tobacco 
farms, in metallurgy and in jewelry manufacturing. Occupational exposure also occurred to 
electroplaters (cyanide solutions) and firefighters (plastic pyrolysis). Main occupations: 
firefighters; electroplaters; jewellers. Automatics: cyanides. Lifetime prevalence: 1.7%. Top 
three positively correlated chemicals: Cyanides (r=0.9), Phosgene (r=0.5), and Isocyanates 
(r=0.5). 

82. Ammonia. A by-product of coal distillation and is also produced by passing nitrogen, 
hydrogen and a catalyst through an electric arc. It is an important source ofvarious nitrogen 
containing compounds. An enormous quantity of ammonia is used in the production of 
fertilizers. As agas it has been used in refrigeration and in nitriding, bright annealing, and for 
sintering metals. As an aqueous solution (NH40H), it has been used in the textile and 
pharmaceutical industries, in medicine, in trade sale paints, in fire extinguishers and in consumer 
cleaning products. Main occupations: janitors; painters; firefighters. Lifetime prevalence: 
10.5%. Top three positively correlated chemicals: Biocides (r=0.4), Waxes, Polishes (r=0.3), 
and Cleaning Agents (r=0.3). 

83. Nitrogen Oxides. Formed when nitrogen is oxidized in a high temperature flame, an electric 
arc or an internaI combustion engine. The source of the nitrogen is often the atmosphere itself of 
which nitrogen is a major constituent. The oxides are rarely released pure into the atmosphere, 
but occur as mixtures, the composition of which depends upon the source and the local 
conditions. Main occupations: welders and flame cutters; motor vehicle mechanics; pipefitters 
and plumbers. Lifetime prevalence: 21.6%. Top three positively correlated chemicals: Sulphur 
Dioxide (r=0.7), Metal Oxide Fumes (r=0.5), and Iron Fumes (r=0.5). 

84. Ozone. A bluish gas with a slightly pungent odor. It is generated from oxygen on exposure 
to ultraviolet radiation and in the vicinity of electrical sources. It is a powerful oxidizer capable 
ofbreaking down most organic compounds. The potential sources of exposure to ozone in 
industry are leakages from ozone-using processes, high voltage electrical equipment, electric arc 
welding, electric furnaces, photocopying machines, and in the bleaching of textiles, paper pulp, 
starch and sugar. Main occupations: welders and flame cutters; mechanics; pipefitters and 
plumbers. Lifetime prevalence: 6.2%. Top three positively correlated chemicals: Calcium 
Oxide Fumes (r=0.7), Iron Fumes (r=0.6), and Manganese Fumes (r=0.6). 

85. Hydrogen Fluoride. Anhydrous hydrogen fluoride is a colorless gas prepared by the action 
of sulphuric acid on calcium fluoride. It is strongly corrosive and irritating. Aqueous solution 
and salts ofhydrofluoric acid are used in the production offluorides and plastics, in frosting and 
etching glass, in polishing crystals, in enameling and galvanizing iron, in working silk, in analytic 
chemistry, and to increase the porosity of ceramics. In our study, many exposures resulted from 
thermal degradation of fluoride coatings on welding electrodes Main occupations: welders and 
flame cutters; sheet metal workers; pipefitters and plumbers. Automatics: fluorides. Lifetime 
prevalence: 2.9%. Top three positively correlated chemicals: Fluorides (r=0.9), Ozone (r=0.5), 
and Manganese Fumes (r=0.5). 



86. Sulphur Dioxide. A colorless, non-flarnmable gas with a pungent odor. It can be 
manufactured by the combustion of sulphur, the roasting of sulphides or the ca1cining of 
sulphates. It is an intermediate in the production of sulphuric acid and is used as a bleaching 
agent in various industries. However most exposures occur when the gas is released as an 
unwanted by-product of fuel-buming operations or in the smelting of sulphide ores. Main 
occupations: foundry workers; stationary engineers; welders. Lifetime prevalence: 15.5%. Top 
three positively correlated chemicals: Nitrogen Oxides (r=0.7), Benzo(a)pyrene (r=0.5), and Soot 
(r=0.5). 

87. Hydrogen Sulphide. A flarnmable, poisonous gas which has the characteristic smell ofrotten 
eggs. It occurs naturally as a decomposition product of metal sulphides and other organic matter 
in mines, springs and sewers. It is also a by-product of many chemical processes involving 
rayon, rubber, petroleum products, leather, and coke production. Main occupations: miners; 
quarry workers; farmers. Lifetime prevalence: 4.5%. Top three positively correlated chemicals: 
Phosgene (r=0.3), Sulphur Dioxide (r=0.3), and Rubber Pyrol.Prod. (r=0.3). 

88. Chlorine. This gas has a distinctive, irritating odor and a yellowish-green color. It is mainly 
produced cornmercially by electrolysis ofbrine. Chlorine has been used for the production of 
bleaching powders, the treatment ofwater supplies and refuse and for chlorination in swirnming 
pools. Exposure to chlorine may also occur when hypochlorites are used as bleaches and 
cleaning agents. Main occupations: launderers; textile processors; pipefitters and plumbers. 
Lifetime prevalence: 2.4%. Top three positively correlated chemicals: Phosgene (r=0.5), 
Hydrogen Cyanide (r=0.4), and Cyanides (r=0.4). 

89. Hydrogen Chloride. This colorless gas, heavier than air, may be used directly as a catalyst. 
However, the aqueous solution ofhydrogen chloride, known as hydrochloric or muriatic acid, is 
more commonly used industrially for pickling and cleaning metal parts, in the production of 
glues, in the manufacture of chlorine and pharmaceuticals, for tanning, etching, and for treating 
oils and fats. Hydrogen chloride is also an unwanted contaminant in certain operations such as 
plastic pyrolysis (e.g., firefighters) and galvanizing. Main occupations: pipefitters and plumbers; 
bricklayers; jewellers. Lifetime prevalence: 6.9%. Top three positively correlated chemicals: 
Inorg.Acid Solutions (r=0.5), Hydrogen Cyanide (r=0.4), and Cyanides (r=0.4). 

90. Natural Gas. A mixture oflight aliphatic hydrocarbon gases, chiefly methane, in increasing 
demand as a fuel because of its low sulphur content. It has been distributed in the Montreal area 
since 1957. Mainly used in power plants, industrial process heating and space heaters, the highest 
exposure in our study occurred among pipe fitters and plumbers repairing gas leaks. It was also 
frequently coded as a background exposure for those exposed to the combustion products of 
natural gas (e.g., cooks). Main occupations: chefs and cooks; restaurant managers; stationary 
engineers. Automatics: alcanes (CI-C4); methane. Lifetime prevalence: 2.6%. Top three 
positively correlated chemicals: Methane (r=0.7), Natural Gas Comb.Prod. (r=0.7), and Alkanes 
(CI-C4) (r=0.5). 

91. Methane. A colorless odorless gas, it is the principal constituent of natural gas. It is 
sometimes known as marshgas (decomposition ofnatural organic matter) and as firedamp in coal 
mines. Methane has been used as a fuel for cooking and heating, and as a raw material for many 
synthetic products such as formaldehyde, acetylene, and hydrogen cyanide. Main occupations: 
chefs and cooks; restaurant managers; coal miners. Automatics: alkanes (CI-C4). Lifetime 
prevalence: 4.5%. Top three positively correlated chemicals: Natural Gas (r=0.7), Alkanes (Cl
C4) (r=0.7), and Natural Gas Comb.Prod. (r=0.5). 

92. Propane. A hydrocarbon used as a raw material for the production of several chemicals such 
as propylene, hydrogen and perchloroethylene. It is used extensively by pipefitters and plumbers 
as a welding fuel and as fuel in restaurants and laboratories. Main occupations: chefs and cooks; 



pipefitters and plumbers; restaurant managers. Automatics: alkanes (C1-C4). Lifetime 
prevalence: 3.8%. Top three positively correlated chemicals: Propane Comb.Prod. (t=0.9), 
Alkanes (C1-C4) (t=0.6), and Lead Fumes (t=0.3). 

93. Formaldehyde. A colorless gas obtained by the oxidation ofmethyl alcohol, it is marketed as 
a 37% solution by weight under the name of formalin. Formaldehyde has been mainly used for 
plastics and resin manufacture (see urea-formaldehyde, melamine-formaldehyde and phenol 
formaldehyde), as a disinfectant and fumigant and as a preservative and hardener of tissues in 
embalming fluids. Exposure to formaldehyde in the workplace can result from the use of 
formaldehyde gas or formaldehyde solutions, from outgassing or thermal decomposition of 
formaldehyde resins or from thermal decomposition of other resins, plastics or organic materials. 
Main occupations: carpenters; textile workers; laundry workers and dry cleaners. Automatics: 
aliphatic aldehydes. Lifetime prevalence: 14.3%. Top three positively correlated chemicals: 
Aliphatic Aldehydes (t=0.9), Urea-Formald. (t=0.3), and Phenol-Formald. (t=0.2). 

94. Acetylene. A colorless gas obtained by reaction of calcium carbide and water or produced 
from petroleum; it is normally marketed compressed in cylinders. It is used extensively for 
welding and flame cutting of metals and as a starting material for other chemicals. Main 
occupations: welders and flame cutters; motor vehicle mechanics; pipefitters and plumbers. 
Automatics: unsaturated aliphatic hydrocarbons. Lifetime prevalence: 4.3%. Top three 
positively correlated chemicals: Unsat.Aliph.Hydrocarb. (t=0.9), Gas Welding Fumes (t=0.6), 
and Iron Fumes (t=0.5). 

95. Phosgene. A colorless gas at room temperature which is made by the action of chlorine on 
carbon monoxide. Once used as a war gas, it was later used mainly in the manufacture of many 
organic chemicals. Exposure mainly occurs as a product of combustion of volatile chlorinated 
sol vents. Main occupations: firefighters, welders and flame cutters; dry cleaners. Lifetime 
prevalence: 1.5%. Top three positively correlated chemicals: Hydrogen Cyanide (t=0.5), 
Cyanides (t=0.5), and Chlorine (t=0.5). 

96. Spray Gases. Gaseous propellants used to form aerosols with liquids or solids. The most 
common spray gases are chlorofluorocarbons, chlorinated hydrocarbons, propane, butane, 
vinylchloride (not used as a propellant since 1974) and methylene chloride. Many personal 
hygiene products (hair sprays, shaving lather, deodorants and antiperspirants) contain spray gases. 
Main occupations: barbers and hairdressers; motor vehicle mechanics; janitors. Lifetime 
prevalence: 1.8%. Top three positively correlated chemicals: Fluorocarbons (t=0.5), Hair Dust 
(t=0.3), and Cosmetic Talc (t=0.3). 

97. Coal Gas. Produced by heating coal, usually in the presence of steam, at temperatures in 
excess of 750°C. The composition of the resulting gas can vary but contains roughly 50-53% 
hydrogen, 25-30% methane and 5-10% carbon monoxide; it has been used as a fuel for heating 
homes and for cooking in restaurants. Main occupations: chefs and cooks; welders and flame 
cutters; bakers. Automatics: alkanes (C1-C4); carbon monoxide; hydrogen; methane; hydrogen 
sulphide. Lifetime prevalence: 1.1%. Top three positively correlated chemicals: Hydrogen 
(t=0.7), Methane (t=0.5), and Alkanes (C1-C4) (t=0.3). 

98. Gas Welding Fumes. Any fumes generated during the joining or cutting ofmetals using gas 
welding techniques. In this process the heat of fusion is obtained from combustion of oxygen and 
one of several gases such as acetylene, methylacetylene-propadiene (MAPP), propane, and 
hydrogen. Gas welding fumes include metal fumes from base and filler metals, fumes from the 
fluxes and from the combustible gases used. Main occupations: welders and flame cutters; motor 
vehicle mechanics; industrial equipment mechanics. Lifetime prevalence: 10.8%. Top three 
positively correlated chemicals: Metal Oxide Fumes (t=0.7), Arc Welding Fumes (t=0.6), and 
Acetylene (t=0.6). 



99. Arc Welding Fumes. Any fumes generated during the j oining or cutting of metals using arc 
welding techniques. In this process the heat of fusion is obtained by striking an electric arc 
between an electrode and the metal workpiece. The fumes coded here would include those 
generated from the base metal, from the electrodes and from electrode coverings (which may 
contain inorganic and organic fluxing compounds) and/or their decomposition products. Main 
occupations: welders and flame cutters; industrial equipment mechanics; motor vehicle 
mechanics. Lifetime prevalence: 10.9%. Top three positively correlated chemicals: Metal 
Oxide Fumes (r=0.6), Gas Welding Fumes (r=0.6), and Ozone (r=0.6). 

100. Soldering Fumes. Fumes generated during soldering operations. Soldering is the joining of 
metal using a filler metal (solder) with a melting point less than 400°C. The quality of the fumes 
depends on the composition of the solder and of the fluxes and on the production techniques used. 
Main occupations: pipefitters and plumbers; electric and electronic equipment repairmen; 
construction electricians. Lifetime prevalence: 6.3%. Top three positively correlated chemicals: 
Tin Compounds (r=0.7), Lead Fumes (r=0.5), and Tin Fumes (r=0.5). 

101. Metal Oxide Fumes. Any oxidized metal fumes formed during high temperature treatment 
of metals in industrial operations such as welding, casting, smelting, etc. Exposure to metal oxide 
fumes was also coded when metallic compounds (e.g. thermal decomposition ofpaints containing 
inorganic pigments during welding operations) are vaporized. Main occupations: welders and 
flame cutters; pipefitters and plumbers; motor vehicle mechanics. Lifetime prevalence: 19.1%. 
Top three positively correlated chemicals: Gas Welding Fumes (r=0.7), Arc Welding Fumes 
(r=0.6), and Iron Fumes (r=0.6). 

102. Aluminium Fumes. Fumes produced during high temperature processes involving 
aluminium (AI)-containing alloys or ores. The major use of aluminium has been structural, in the 
building, aircraft, and automotive industries; it has also been used in housewares, and in 
containers and packaging. Exposure to aluminium fumes has generally occurred during welding, 
casting or smelting and refining operations. Main occupations: welders and flame cutters; 
aluminium refinery workers; motor vehicle repairmen. Automatics: aluminium compounds. 
Lifetime prevalence: 2.1%. Top three positively correlated chemicals: Copper Fumes (r=0.4), 
Fluorides (r=0.4), and Chromium Fumes (r=0.4). 

103. Calcium Oxide Fumes. Fumes generated during high temperature processes involving 
calcium oxide (CaO). Exposure occurs during steel making where slag forming materials such as 
calcium oxide and dolomite are added to the charge as fluxing agents and in certain welding 
operations because carbon steel electrode coverings may contain calcium oxide. Main 
occupations: welders and flamecutters; mechanics; foundry molders and coremakers. Lifetime 
prevalence: 6.5%. Top three positively correlated chemicals: Iron Fumes (r=0.8), Manganese 
Fumes (r=0.7), and Ozone (r=0.7). 

104. Chromium Fumes. Fumes generated during high temperature processes involving 
chromium (Cr)-containing alloys or ores. Exposure can occur during foundry work, welding 
operations, flame cutting, etc. High exposure has been coded to stainless steel or high chromium 
(Cr) alloy steel welders, especially to those using manual metal arc welding techniques. Main 
occupations: we1ders and flame cutters; industrial equipment mechanics; pipefitters and 
plumbers. Automatics: chromium compounds; chromium (VI) compounds. Lifetime 
prevalence: 3.2%. Top three positively correlated chemicals: Nickel Fumes (r=1.0), Nickel 
Compounds (r=0.6), and Chromium (VI) Comp. (r=0.6). 

105. Manganese Fumes. Fumes generated during high temperature processes involving 
manganese (Mn) or manganese-containing aHoys. Since aH commercial steel contains sorne 
manganese which has been introduced in the process of deoxidizing and desulphurizing and to 
build the strength of the steel, almost aH welders ofmild and stainless steel have been coded for 



manganese fume exposures. Main occupations: welders and flame cutters; pipefitters and 
plumbers; foundry workers. Automatics: manganese compounds. Lifetime prevalence: 5.2%. 
Top three positively correlated chemicals: Manganese Compounds (r=0.9), Iron Fumes (r=0.7), 
and Calcium Oxide Fumes (r=0.7). 

106. Iron Fumes. Fumes generated during high temperature processes involving iron (Fe) or 
iron-containing alloys. Exposure to iron fumes occurred during smelting, foundry work, welding 
and flame cutting operations. Main occupations: welders and flame cutters; motor vehicIe 
mechanics; pipefitters and plumbers. Automatics: iron compounds. Lifetime prevalence: 8.8%. 
Top three positively correlated chemicals: Calcium Oxide Fumes (r=0.8), Manganese Fumes 
(r=0.7), and Manganese Compounds (r=0.7). 

107. Nickel Fumes. Fumes generated during high temperature processes involving nickel (Ni)
containing alloys or ores. The use ofhigh alloyed steels containing a higher proportion of nickel 
has been increasing in the chemical and aircraft industries resulting in increased exposure to 
nickel containing aerosols. Exposure occurred mainly during smelting, casting, welding and 
flame cutting operations. Main occupations: welders and flame cutters; industrial equipment 
mechanics; pipefitters and plumbers. Automatics: nickel compounds. Lifetime prevalence: 
3.2%. Top three positively correlated chemicals: Chromium Fumes (r=1.0), Nickel Compounds 
(r=0.7), and Chromium (VI) Comp. (r=0.6). 

108. Copper Fumes. Fumes generated during high temperature processes involving copper (Cu), 
copper-containing alloys or ores. Exposure to copper fumes generally occurs during welding, 
casting, or smelting and refining operations. Main occupations: welders and flame cutters; 
pipefitters and plumbers; foundry molders and coremakers. Automatics: copper compounds. 
Lifetime prevalence: 3.5%. Top three positively correlated chemicals: Zinc Fumes (r=0.6), 
Copper Compounds (r=O.5), and Tin Fumes (r=0.5). 

109. Zinc Fumes. Fumes generated during high temperature processes involving zinc (Zn)
containing alloys or ores. Exposure can occur during foundry and galvanizing operations, brass, 
bronze and babbitt making and during welding of zinc-containing alloys such as those used in 
roofing material, pipelines, appliances, and other galvanized materials. Main occupations: 
welders and flame cutters; pipefitters and plumbers; construction electricians. Automatics: zinc 
compounds. Lifetime prevalence: 3.3%. Top three positively correlated chemicals: Copper 
Fumes (r=0.6), Zinc Compounds (r=0.6), and Tin Fumes (r=0.5). 

110. Si/ver Fumes. Fumes generated during high temperature processes involving silver (Ag), 
silver-containing alloys or ores. Exposure occurred mainly in foundry, flame cutting, welding, 
soldering andjewelry making occupations. Main occupations: jewellers; tools and die makers; 
welders and flame cutters. Automatics: silver compounds. Lifetime prevalence: 1.5%. Top 
three positively correlated chemicals: Silver Compounds (r=0.7), Borates (r=0.5), and Copper 
Fumes (r=0.4). 

111. Tin Fumes. Fumes generated during high temperature processes involving tin and tin (Sn)
containing alloys or ores. Tin melts at a relatively low temperature (232°C). It is used 
extensively in solder alloys. Tin fumes have been coded to workers in plumbing and pipe-fitting 
occupations where gas welding or torches are used, but they have not been coded to workers 
using electric soldering irons which operate at a much lower temperature. Main occupations: 
pipefitters and plumbers; welders and flame cutters; motor vehicle mechanics. Automatics: tin 
compounds. Lifetime prevalence: 4.3%. Top three positively correlated chemicals: Lead Fumes 
(r=0.8), Tin Compounds (r=0.7), and Soldering Fumes (r=0.5). 

112. Lead Fumes. Fumes generated during high temperature processes involving lead (Pb), lead
containing alloys or lead-containing ores. During roasting of ores a substantial amount of lead is 



released into the environment. Exposure has been especially prominent in certain foundry 
operations, in the soldering oftin cans and radiators, in the recycling ofbattery plates and babbitt 
metal, in the manufacturing of shots and bullets, in the spraying of molten lead alloys and in the 
casting of type metals. Main occupations: pipefitters and plumbers; welders and flame cutters; 
sheet metal workers. Automatics: lead compounds. Lifetime prevalence: 3.9%. Top three 
positively correlated chemicals: Tin Fumes (r=0.8), Tin Compounds (r=0.5), and Soldering 
Fumes (r=0.5). 

113. Other Pyrolysis Fumes. A mixture of gases, fumes and particulates of variable composition 
generated by the heating or burning of organic substances. fucluded are those fumes which did 
not fit in any of the other pyrolysis or combustion product categories on our list. Examples are 
the pyrolysis of paint during heat stripping or welding of coated surfaces, or fumes generated 
during welding of oil-covered surfaces. Main occupations: welders and flame cutters; tool and 
dye makers; pipefitters and plumbers. Automatics: PARs from any source; PARs from other 
sources. Lifetime prevalence: 16.8%. Top three positively correlated chemicals: PAR (Other) 
(r=0.9), Metal Oxide Fumes (r=0.6), and Iron Compounds (r=0.5). 

114. Cooking Fumes. A mixture of volatile substances ofvariable composition resulting from 
the thermal degradation of fats and other food constitutents. Significant quantities of aliphatic 
aldehydes (formaldehyde and acrolein) have been measured. The temperature and method used 
for cooking (deep-frying, roasting, charcoal broiling), the type offat involved and the number of 
times it has previously been heated can influence the level of contaminants present in the 
resulting fumes. Main occupations: chefs and cooks; bakers; restaurant managers. Automatics: 
aliphatic aldehydes. Lifetime prevalence: 6.3%. Top three positively correlated chemicals: 
Aliphatic Aldehydes (r=0.3), Natural Gas Comb.Prod. (r=0.3), and Flour Dust (r=0.3). 

115. Gasoline Engine Emissions. Emissions of internaI combustion engines running on leaded 
or unleaded gasoline (automobiles, aircraft, lawnmovers, motorboats, chainsaws). Main 
occupations: truck, taxi and car (driver-salesmen) drivers; motor vehicle mechanics; 
woodcutters. Automatics: alcanes (C5-C17); benzo(a)pyrene; carbon monoxide; lead 
compounds; nitrogen oxides; PARs from any source; PARs from petroleum; sulphur dioxide. 
Lifetime prevalence: 41.5%. Top three positively correlated chemicals: Lead Compounds 
(r=0.8), Carbon Monoxide (r=0.7), and PAR (Petroleum) (r=0.7). 

116. Coal Combustion Products. A mixture of gases and particulates generated when coal is 
used as a heat or energy source. fucludes variable amounts of particulates such as carbon, silica, 
alumina and iron oxides as well as gases such as aldehydes, carbon monoxide, nitrogen oxides, 
hydrocarbons and sulphur oxides. Coal combustion has been widespread in certain industries and 
was also widely used for domestic purposes until the 1950's. Main occupations: railway 
transport workers; construction workers; stationary engineers. Automatics: benzo(a)pyrene; 
carbon monoxide; nitrogen oxides; PARs from any source; PARs from other sources; sulphur 
dioxide. Lifetime prevalence: 4.5%. Top three positively correlated chemicals: PAR (Coal) 
(r=0.8), Coal Dust (r=0.5), and Benzo(a)pyrene (r=0.4). 

117. Diesel Engine Emissions. Emissions of internaI combustion engines running on diesel 
fuels. Engines operating on diesel fuels are used in mines and quarries, rail ways, buses, trucks 
etc. Although many workers exposed to gasoline engine emissions would also be exposed to 
smaller amounts of diesel exhaust, a separate exposure to diesel emissions was coded only when 
the worker was exposed to higher than environmental background levels. Main occupations: 
truck drivers, bus drivers, heavy machinery operators. Automatics: alkanes (C5-C17); 
benzo(a)pyrene; carbon monoxide; nitrogen oxides; PARs from any source; PARs from 
petroleum; soot; sulphur dioxide. Lifetime prevalence: 15.2%. Top three positively correlated 
chemicals: Diesel Oil (r=0.3), PAR (Petroleum) (r=0.3), and PAR (Any) (r=0.3). 



118. Liquid Fuel Combustion Products. A mixture of gases and particulates generated when 
liquid fuel is used as a heat or energy source. Inc1udes variable amounts of gases such as carbon 
monoxide, nitrogen oxides, sulphur dioxide. Liquid fuel is mainly used as a heating fuel in 
domestic, commercial and industrial heating installations. Main occupations: stationary 
engineers; pipefitters and plubmers; construction workers. Automatics: carbon monoxide; 
nitrogen oxides; sulphur dioxide. Lifetime prevalence: 6.7%. Top three positively correlated 
chemicals: Sulphur Dioxide (r=0.4), Heating Oil (r=0.4), and Vanadium Compounds (r=0.4). 

119. Wood Combustion Products. A mixture of gases and particulates generated when wood is 
used as a heat or energy source. Inc1udes variable amounts of gases such as aldehydes and carbon 
monoxide, benzo(a)pyrene and other PARs. Main occupations: farmers; firefighters; chefs and 
cooks. Automatics: aliphatic aldehydes; benzo(a)pyrene; carbon monoxide; PARs from any 
source; PARs from wood. Lifetime prevalence: 4.2%. Top three positively correlated 
chemicals: PAR (Wood) (r=1.0), Phosgene (r=0.4), and Benzo(a)pyrene (r=0.3). 

120. Natural Gas Combustion Products. A mixture of gases generated when natural gas is used 
as a heat or energy source. Contains substantial amounts of nitrogen oxides but unlike most other 
combustion products, little carbon monoxide. Natural gas has been widely available in Montreal 
since 1957 and was used extensively for cooking purposes. Main occupations: food and 
beverage workers; sheet metal workers; stationary engineers. Automatics: nitrogen oxides. 
Lifetime prevalence: 3.1%. Top three positively correlated chemicals: Natural Gas (r=0.7), 
Methane (r=0.5), and Alkanes (CI-C4) (r=0.4). 

121. Jet Fuel Engine Emissions. The combustion products of the kerosene-type fuel used mainly 
to power civil and sorne military aircraft. It contains sorne of the same constituents as gasoline 
exhaust although concentrations are reportedly smaller in jet exhaust. Main occupations: air 
transport workers; aircraft mechanics. Automatics: alkanes (C5-CI7); benzo(a)pyrene; carbon 
monoxide; nitrogen oxides; PARs from petroleum; PARs from any source; sulphur dioxide. 
Lifetime prevalence: 0.8%. Top three positively correlated chemicals: Jet Fuel (r=0.5), Aviation 
Gasoline (r=0.3), and Chlorinated Alkenes (r=0.2). 

122. Propane Engine Emissions. Emissions ofintemal combustion engines running on propane. 
Inc1udes variable amounts of gases such as carbon monoxide, nitrogen oxides, and sorne 
hydrocarbons resulting from incomplete combustion. Potential exposure to propane engine 
emissions are coded mainly to propane powered lift trucks operators. Main occupations: 
material handlers; stevedores and freight handlers; shippers and receivers. Automatics: alkanes 
(CI-C4); carbon monoxide; nitrogen oxides. Lifetime prevalence: 2.3%. Top three positively 
correlated chemicals: Propane (r=0.2), Alkanes (CI-C4) (r=0.2), and PAR (Petroleum) (r=0.1). 

123. Plastics Pyrolysis Products. A mixture of gases, fumes and soot resulting from the thermal 
degradation of plastic products. Individual constituents vary depending on the type of plastic and 
the temperature involved. Carbon monoxide, carbon dioxide, methane, aliphatic and aromatic 
hydrocarbons are the main gases. The fumes often contain products resulting from an incomplete 
combustion, such as aldehydes, fatty acids and oligomers, etc. Main occupations: firefighters; 
dental prosthesis makers; plastic molders. Automatics: PARs from any source; PARs from other 
sources. Lifetime prevalence: 2.9%. Top three positively correlated chemicals: Styrene (r=OA), 
Hydrogen Cyanide (r=0.4), and Phosgene (r=0.4). 

124. Rubber Pyrolysis Products. A mixture of gases, fumes and soot resulting from the thermal 
degradation of rubber (both natural and synthetic) or rubber products. The composition of the 
resulting fume varies greatly and depends mainly on the type of rubber, the presence of chemical 
additives and on the temperature of the process. Typically, these mixtures could contain amines, 
N-nitrosamines, organic sulphides, carbon disulphide and PARs. Main occupations: firefighters; 
rubber bonding workers; rubber mixers. Automatics: PARs from any source; PARs from other 



sources. Lifetime prevalence: 2.3%. Top three positively correlated chemicals: Phosgene 
(r=0.5), Hydrogen Cyanide (r=0.4), and Plastics Pyro1.Prod. (r=0.4). 

125. Propane Combustion Products. Propane gas is a convenient combustion fuel because it is 
marketed in bottles, as opposed to natural gas which is delivered though permanent gas lines. 
Exposure to the combustion products of propane occurs mainly because of its use as a cooking 
fuel (especially where natural gas is unavailable, e.g., trains) a welding torch fuel (especially used 
in plumbing, pipe-fitting andjewelry work) and as a fuel for softening roofing asphalt. Main 
occupations: pipefitters and plumbers; chefs and cooks; restaurant managers. Automatics: 
nitrogen oxides. Lifetime prevalence: 3.1%. Top three positively correlated chemicals: Propane 
(r=0.9), Alkanes (C1-C4) (r=0.6), and Lead Fumes (r=0.3). 

126. Inorganic Acid Solutions. Inorganic acids are high volume chemicals used extensively in 
chemical process industries (fertilizers, soap, rayon, film and explosives manufacturing, etc.). 
Solutions ofhydrochloric, sulphuric and nitric acids are the main substances inc1uded in this 
category. They have been used in batteries, as metal c1eaners, as chemical reagents in 
laboratories and in the pharmaceutical industry. Main occupations: service station attendants; 
auto mechanics; metal platers. Lifetime prevalence: 13.0%. Top three positively correlated 
chemicals: Sulphuric Acid (r=0.6), Hydrogen Chloride (r=0.5), and Hydraulic Fluid (r=0.3). 

127. Alkali, Caustic Solutions. Sodium and potassium hydroxide, known respectively as caustic 
soda and caustic potash, are the main chemicals in this category. However, exposure to other 
alkaline solutions (e.g., sodium carbonate solutions) or alkaline solutions ofunknown 
composition were also inc1uded here. Caustics have been used in the manufacture of rayon, 
mercerized cotton, soap, paper, explosives and dyestuffs. They have also been used in textile 
scouring and c1eaning baths, for the etching of aluminium, for tin plating, for water softening, as 
oyen cleaners, as drain openers and in laundering and bleaching. Main occupations: stationary 
engineers; pipefitters and plumbers; janitors. Lifetime prevalence: 7.0%. Top three positively 
correlated chemicals: Sodium Carbonate (r=0.4), Bleaches (r=0.3), and Inorg.Acid Solutions 
(r=0.3). 

128. Javel Water. A c1ear solution containing sodium hypochlorite and sodium chloride with a 
strong irritating odor which is known by several trade names such as Javex, Chlorosol and 
Chlorox. 1t is widely used as a household bleach and disinfectant and as a bleaching agent in the 
textile industry. Main occupations: janitors; launderers; butchers. Automatics: hypochlorites. 
Lifetime prevalence: 5.3%. Top three positively correlated chemicals: Hypochlorites (r=1.0), 
Biocides (r=0.5), and Cleaning Agents (r=0.4). 

129. Plating Solutions. Inc1udes all the electrolytes used for electroplating processes, whether 
the base product is metal or plastic. These are aqueous solutions containing, among other 
constituents, the salt of the metal being plated. Several inorganic acids are also used routinely, 
namely, boric, hydrochloric, hydrofluoric and sulphuric. Alkaline solutions are based primarily 
on sodium or potassium hydroxide. Main occupations: electroplaters; electrotypers; machine 
tool operators. Lifetime prevalence: 1.1%. Top three positively correlated chemicals: Hydrogen 
(r=0.4), Cyanides (r=0.4), and Hydrogen Cyanide (r=0.4). 

130. Nitric Acid. A reddish fuming liquid usually marketed in aqueous solutions. The main uses 
of nitric acid are in the production of fertilizers and explosives. It has also been used in metal 
degreasing, electroplating, and as a reagent in chemicallaboratories. Main occupations: 
electroplaters; jewellers; engravers. Automatics: inorganic acid solutions. Lifetime prevalence: 
1.3%. Top three positively correlated chemicals: Plating Solutions (r=0.4), Inorg.Acid Solutions 
(r=0.3), and Cadmium Compounds (r=0.3). 



131. Phosphoric Add. A colorless, syrupy liquid usually sold as an aqueous solutions containing 
between 10 and 90% acid. It is mostly converted into calcium or ammonium phosphates for 
fertilizers, but can also be used to etch metals for better paint adhesion. Phosphoric acid has also 
been used in the textile, rubber and food industries. Main occupations: printing press (offset) 
operators; motor vehic1e refinishers; motor vehic1e mechanics. Automatics: inorganic acid 
solutions. Lifetime prevalence: 1.3%. Top three positively correlated chemicals: Inorg.Acid 
Solutions (r=0.3), Inks (r=0.3), and Aliphatic Esters (r=0.2). 

132. Sulphuric Add. An oily, highly corrosive liquid made by buming sulphur to the dioxide, 
oxidizing to the trioxide and reacting with steam. Produced industrially for over 200 years, this is 
an important raw material in the manufacture of fertilizers, rayon, and soap and is also commonly 
used in chemistry laboratories and in the pharmaceutical industry. It has also been used in the 
pickling and c1eaning of metals, as an electrolyte in batteries, and in the purification of petroleum 
products. Main occupations: motor vehicle mechanics; sheet metal workers; tool and die makers. 
Automatics: inorganic acid solutions. Lifetime prevalence: 9.8%. Top three positively 
corre1ated chemicals: Inorg.Acid Solutions (r=0.6), Hydraulic Fluid (r=0.4), and Sulphur Dioxide 
(r=0.4). 

133. Methanol. Also known as methyl alcohol, this chemical is the first member of a 
homologous series of monohydric aliphatic alcohols. It can be obtained by destructive distillation 
of wood at about 350°C, but is now mainly synthesized from carbon monoxide. Methanol has 
been used as the starting material in the manufacture of many chemical products (e.g., 
formaldehyde), as a solvent in inks, paints and vamishes and for fur c1eaning. It is also used in 
antifreeze mixtures and as an additive for aircraft fuel injection fluids. Main occupations: motor 
vehic1e mechanics; construction painters; service station attendants. Automatics: aliphatic 
alcohols. Lifetime prevalence: 4.9%. Top three positive1y correlated chemicals: Aliphatic 
Alcohols (r=0.7), Ethylene Glycol (r=0.6), and Hydraulic Fluid (r=0.4). 

134. Ethanol. A colorless, flammable, volatile liquid with a pleasant odor but a buming taste, 
produced by fermentation of carbohydrates or synthetically from acetylene or ethylene. Also 
known as ethyl alcohol, it is used in variety of a1coholic beverages. Industrial or denatured 
alcohol is used as a solvent in the manufacturing of drugs, plastics, lacquers, polishes, perfumes, 
cosmetics and rubber accelerators. Main occupations: barbers and hairdressers; brewery 
workers; biologists. Automatics: aliphatic a1cohols. Lifetime prevalence: 1.6%. Top three 
positively correlated chemicals: Aliphatic A1cohols (r=0.4), Cosmetic Talc (r=0.3), and Hair 
Dust (r=0.3). 

135. Ethylene Glycol. A colorless syrupy liquid produced from ethylene dichloride or ethylene 
chlorohydrin and lime. It is used mainly as anti-freeze for automobile-engine cooling systems but 
has also been used in the production of explosives (nitrated), in cellophane, hydraulic fluids, 
adhesives and radio condenser pastes. Main occupations: motor vehic1e mechanics; construction 
painters; service station attendants. Lifetime prevalence: 4.1%. Top three positively correlated 
chemicals: Methanol (r=0.6), Hydraulic Fluid (r=0.5), and Aliphatic Alcohols (r=0.5). 

136. Isopropanol. A colorless, flammable, mobile liquid, produced by the hydration of 
propylene from cracked gases. It has been used mainly in the manufacture of acetone, but is also 
used in extraction processes, as a solvent (chiefly for oils, perfumes and synthetic resins), in 
liniments, skin lotions, cosmetics and pharmaceuticals. It has been used in rubbing alcohols and 
as an antistalling agent in winter grade motor fuels. Main occupations: motor vehic1e mechanics; 
barbers and hairdressers; printing press (offset) operators. Automatics: aliphatic alcohols. 
Lifetime prevalence: 4.1 %. Top three positively correlated chemicals: Aliphatic Alcohols 
(r=0.7), Methanol (r=0.4), and Glycol Ethers (r=0.4). 



137. Acetic Acid. An organic acid with a pungent odor and sour taste, it is manufactured 
commercially by the oxidation of ethyl alcohol. It is the principal ingredient of vinegar. In 
industry it has been used as a raw material for a variety of chemical syntheses, as a mild acid in 
textile dyeing and printing, and as a solvent for insecticides. Main occupations: photographic 
processors; painters; photoengravers. Lifetime prevalence: 3.6%. Top three positively 
correlated chemicals: Arsenic Compounds (r=0.4), Bleaches (r=0.3), and Pesticides (r=0.2). 

138. Carbon Tetrachloride. A nonflammable heavy, colorless liquid obtained by the 
chlorination of carbon disulphide. It is an exceptionaly good solvent. Before the 1970s it was 
extensively used as a degreaser in metal fabricating and in the textile dry cleaning industry. It 
was also used as a solvent in household spot removing products and in fire extinguishers. Now it 
is mainly used in the production of fluorocarbons and chlorinated rubbers and as a grain 
fumigant. Main occupations: firefighters; metal machinists; electricians. Automatics: 
chlorinated alkanes. Lifetime prevalence: 4.4%. Top three positively correlated chemicals: 
Chlorinated Alkanes (r=0.6), Phosgene (r=0.4), and Trichloroethylene (r=0.3). 

139. Methylene Chloride. Aiso known as dichloromethane, this nonflammable colorless liquid is 
prepared by the chlorination of chloromethane or methane. It has outstanding solvent properties. 
It has been used as a paint remover and solvent degreaser, in aerosol formulations, and as a 
solvent in food and drug processing. Main occupations: construction painters; paint mixers; 
cabinet and wood fumiture makers. Automatics: chlorinated alkanes. Lifetime prevalence: 
2.1 %. Top three positive1y corre1ated chemicals: Chlorinated Alkanes (r=0.4), Titanium Dioxide 
(r=0.4), and Alkyds (r=0.4). 

140. l,l,l.-Trichlorethane. Aiso known as methyl chloroform, this colorless liquid has 
exceptional solvent and nonflammable properties making it useful as a c1eaning solvent for 
electric motors, generators, and many other electrical and electronic apparatus. It has replaced 
carbon tetrachloride in metal degreasing (which was banned because of the toxicity associated 
with this product). It has also been used as a chemical intermediate in the production of 
vinylidene chloride. Main occupations: electricians; industrial equipment mechanics; rail 
transport equipment mechanics. Automatics: chlorinated alkanes. Lifetime prevalence: 1.3%. 
Top three positively corre1ated chemicals: Chlorinated Alkanes (r=0.3), Trichloroethylene 
(r=0.3), and Chlorinated Alkenes (r=0.3). 

141. Trichloroethylene. A colorless liquid prepared from 1,2-dichloroethane. Aiso known as 
Tri-c1ene®, it has been widely used as a solvent in vapor degreasing since the early 1930s; it 
provides economical c1eaning of greases, tars, oils and fats from metal parts. Other applications 
have inc1uded decaffeinating coffee (as an extraction solvent) and as a solvent for adhesives and 
lubricants. Main occupations: machinists; aircraft mechanics; industrial equipment mechanics. 
Automatics: chlorinated alkenes. Lifetime prevalence: 2.8%. Top three positively corre1ated 
chemicals: Chlorinated Alkenes (r=0.8), Carbon Tetrachloride (r=0.3), and 1,1,1.-Trichlorethane 
(r=0.3). 

142. Perchloroethylene. A stable colorless liquid, also known as tetrachloroethylene. It is 
nonflammable and has exceptionally good solvent properties. As a solvent it is used in both cold 
c1eaning and vapor degreasing of metals and is the solvent of choice in the textile dry c1eaning 
industry. It has also been used as a chemical intermediate for the production offluorocarbons, 
and to a lesser extent as a heat-exchange fluid, and as a drug against hook worms. Main 
occupations: dry c1eaners; aircraft mechanics; industrial equipment mechanics. Automatics: 
chlorinated alkenes. Lifetime prevalence: 1.3%. Top three positively correlated chemicals: 
Chlorinated Alkenes (r=0.5), Carbon Tetrachloride (r=0.2), and Trichloroethylene (r=0.2). 

143. Acetone. A family of organic compounds represented by general formula RCOR', 
containing a carbonyl group (=CO) linked to two carbon atoms. Acetone (which is also coded 



separately) and methyl ethyl ketone (MEK) are widely used in industry as solvents for resins 
(nitrocellulose, acrylic and epoxies) and for synthetic adhesives. Main occupations: painters; 
carpenters; motor vehicle mechanics. Lifetime prevalence: 2.3%. Top three positively 
correlated chemicals: Aliphatic Ketones (r=0.6), Aliphatic Esters (r=0.3), and Cellulose Nitrate 
(r=0.2). 

144. Benzene. A clear, volatile liquid, derived from coal or petroleum. Industrial benzene which 
may contain impureties is often known as benzol. It is used as a reagent (chemical and 
pharmaceutical industries), a solvent (rubber and adhesive industries) and as a constituent of 
motor fuels. Exposure to benzene was often the result of exposure to solvent mixtures such as 
pre-1970 mineraI spirits. Main occupations: motor vehicle mechanics; service station attendants; 
shoemakers. Automatics: MARs. Lifetime prevalence: 17.5%. Top three positively correlated 
chemicals: Xylene (r=0.7), Leaded Gasoline (r=0.6), and MAR (r=0.6). 

145. Toluene. A liquid derived from co al or petroleum. Industrial toluene which may contain 
impureties is often known as toluol. It is used as a solvent (in paints, inks and rubber adhesives), 
in the production of explosives, dyestuffs and many other chemicals, and in gasoline blending. 
Exposure to toluene was often the result of exposure to solvent mixtures such as pre-1970 mineraI 
spirits. Main occupations: motor vehicle mechanics; motor vehicle refinishers; carpenters. 
Automatics: MARs. Lifetime prevalence: 13.9%. Top three positively correlated chemicals: 
Xylene (r=0.8), Benzene (r=0.6), and MAR (r=0.6). 

146. Xylene. A clear liquid produced both from petroleum and coal tar and marketed principally 
as a mixture of ortho, meta and para isomers. Itis generally referred to as mixed xylenes. 
Industrial grades of xylene which may contain impureties are often called xylol. Xylenes are 
used as sol vents in lacquers, vamishes, inks, dyes and adhesives and as components in gasoline. 
Exposure to xylene was often the result of exposure to solvent mixtures such as pre-1970 mineraI 
spirits. Main occupations: motor vehicle mechanics; motor vehicle refinishers; shoemakers. 
Automatics: MARs. Lifetime prevalence: 11.2%. Top three positively correlated chemicals: 
Toluene (r=0.8), Benzene (r=0.7), and MAR (r=0.5). 

147. Styrene. A colorless viscous liquid, produced mainly by dehydrogenation of ethylbenzene. 
It is mainly used in the production of plastic resins and synthetic rubbers such as polystyrene 
plastics and foams, acrylonitrile-butadiene-styrene (ABS), and styrene-acrylonitrile (SAN) resins, 
and styrene-butadiene rubber (SBR). Occupational exposure has occurred in plants producing the 
monomer, in polymerization plants and during fabrication of plastic products from unsaturated 
polyesters dissolved in styrene. Main occupations: motor vehicle mechanics; motor vehicle 
refinishers; plastic molders. Automatics: MARs. Lifetime prevalence: 1.8%. Top three 
positively correlated chemicals: Isocyanates (r=0.6), Phosgene (r=0.5), and Plastics Pyrol.Prod. 
(r=0.4). 

148. Phenol. A white crystalline material derived from coal tar. This aromatic alcohol is mainly 
used in the chemical industry to manufacture phenol-formaldehyde resins, bisphenol-A (used to 
manufacture epoxy and polycarbonate resins) and various other chemicals. It has also been used 
as a wound disinfectant and a bactericide. Low-Ievel exposures can also result from thermal 
degradation ofphenol-formaldehyde resins (in foundries where these resins are binders for sand 
molds and cores or in electrical mator vamishing operations where phenol-formaldehyde is used 
as an electrical insulating vamish). Main occupations: electric motor repairmen; foundry 
workers; brewery workers. Automatics: aromatic alcohols. Lifetime prevalence: 1.4%. Top 
three positively correlated chemicals: Aromatic Alcohols (r=0.7), Phenol-Formald. (r=0.4), and 
Graphite Dust (r=0.3). 

149. Animal and Vegetable Glues. Natural glues that include commercial gelatine (hydrolyzed 
animal collagen, hides, bones, etc.), casein (casein with lime), soybean adhesives (soybean flour 



dispersed in an alkaline solution), dextrines (hydrolysed starches), and mucilages. These 
adhesives have been used for wood and paper products but their use has declined somewhat since 
the advent of synthetic adhesives. Main occupations: painters and paper hangers; plasterers; 
cabinet and wood furniture makers. Lifetime prevalence: 3.7%. Top three positively correlated 
chemicals: Synthetic Adhesives (r=0.3), Cellulose (r=0.2), and Wood Vamishes, Stains (r=0.2). 

150. Turpentine. An oil obtained by ste am distillation of the resin which exudes when various 
conifer trees are cut. The exact composition ofthis mixture ofterpenes varies according to the 
country and tree of origin. It has long been recognized as an important solvent and thinner in the 
paint industry and as a source of resins; it has also been used in the manufacture of linoleum, soap 
and inks. Main occupations: painters; carpenters; ship workers. Lifetime prevalence: 5.6%. 
Top three positively correlated chemicals: Linseed Oil (r=0.6), Basic Lead Carb. (r=0.5), and 
Other Paints,Vamishes (r=0.5). 

151. Linseed Oil. A mixture of the glycerides oflinolic, linoleic, stearic and palmitic acid. It is a 
golden yellow, amber or brown liquid that is classified as a drying oil; it has been used for years 
as a binder in paints and in foundry molds. Main occupations: painters, foundry molders and 
core-makers; cabinet and wood furniture makers. Lifetime prevalence: 4.8%. Top three 
positively correlated chemicals: Turpentine (r=0.6), Basic Lead Carb. (r=0.6), and Zinc Oxide 
(r=0.4). 

152. Synthetic Adhesives. Includes an adhesives based on synthetic resins and rubbers such as 
formaldehyde resins, epoxy resins, polyvinyl acetate resins and hot melts. Many of these 
adhesives contain organic sol vents. Adhesives are used in many industries, particularly cabinet 
making and in the furniture and shoe industries. Main occupations: shoemakers; carpenters; 
cabinet and wood furniture makers. Lifetime prevalence: 14.7%. Top three positively correlated 
chemicals: Polychloroprene (r=0.4), Urea-Formald. (r=0.4), and Solvents (r=0.4). 

153. So/vents. Organic liquids used as paint thinners, spot removers, dry cleaning agents, 
diluents, degreasers, chemical reagents, liquid extraction agents, and for many other purposes. 
Among the first organic liquids used for this purpose were turpentine, benzene, gasoline and 
naphtha. More recently, non-flameable chlorinated hydrocarbons came into wider use. Main 
occupations: motor vehicle mechanics; painters; metal machinists. Lifetime prevalence: 39.1%. 
Top three positively correlated chemicals: Alkanes (C5-C17) (r=0.6), MAR (r=0.6), and Mineral 
Spirits+BTX (r=0.5). 

154. Waxes, Polishes. Includes waxes and polishes for floors, automobiles, leather and furniture. 
These may contain a variety of substances of animal and vegetable origin such as fatty acids in 
combination with higher alcohols, petroleum distillates (kerosene, mineraI spirits, paraffin 
waxes), abrasives, and perfumes. Main occupations: janitors; shoemakers; firefighters. Lifetime 
prevalence: 5.8%. Top three positively correlated chemicals: Cleaning Agents (r=0.4), Biocides 
(r=0.4), and Javel Water (r=0.3). 

155. Leaded Gasoline. A mixture ofhydrocarbons in the C4 to C12 range produced from 
petroleum and consisting mainly of straight-chain paraffins which boil within the temperature 
range of about 30°C to 200°C. It is used as a fuel for automobiles, marine engines and other 
small engines. In the years covered by this study most gasoline was blended with lead alkyls to 
increase its octane number. Main occupations: garage mechanics and repairmen; service station 
attendants; farmers. Automatics: alkanes (C5-C17); benzene; lead compounds; MARs; toluene; 
xylene. Lifetime prevalence: Il.9%. Top three positively correlated chemicals: Benzene 
(r=0.6), Alkanes (C5-C17) (r=0.5), and MAR (r=0.4). 

156. Kerosene. A petroleum fraction boiling between approximately 180°C and 320°C. It 
usually consists of a mixture of hydrocarbons containing lOto 16 carbons per molecule. It has 



been widely used as an illuminant, as a cleaning solvent and in insecticides. It is chemically 
similar to jet fuel and to sorne heating oils. Main occupations: woodcutters; farmers; printshop 
workers. Automatics: alkanes (C5-CI7); MARs. Lifetime prevalence: 5.4%. Top three 
positively correlated chemicals: Alkanes (C5-CI7) (r=0.3), Wood Dust (r=0.2), and Leaded 
Gasoline (r=0.2). 

157. DieselOil. Complex combination ofhydrocarbons produced by the distillation of crude oil. 
It consists of hydrocarbons having carbon numbers predominantly in the range C9-C20 and 
boiling in the range ofapproximately 163°C to 375°C. This category encompasses aIl grades of 
diesel fuel from light automotive fuels up to heavy marine fuels. Main occupations: motor 
vehicle mechanics; other mechanics; truck drivers. Automatics: alkanes (C5-C 17); PARs from 
any source; PARs from petroleum; MARs. Lifetime prevalence: 4.1%. Top three positively 
correlated chemicals: Diesel Eng.Emissions (r=0.3), Leaded Gasoline (r=0.3), and Alkanes (C5-
C17) (r=0.3). 

158. Heating Oil. Aiso known as fuel oil, heating oil is a mixture ofhydrocarbons derived from 
crude oil by various refining processes. Its chemical composition is similar to that of diesel oil. 
Two broad classes ofheating oil are included in this category: the lighter distillates used as 
domestic fuel, and the residuals are mainly used in industrial or commercial installations. In this 
study, most exposures were to the domestic heating oils. Main occupations: stationary engineers; 
truck drivers (fuel delivery); construction workers. Automatics: alkanes (C5-C17); PARs from 
any source; PARs from petroleum; MARs. Lifetime prevalence: 4.4%. Top three positively 
correlated chemicals: Vanadium Compounds (r=0.5), Liquid Fuel Comb.Prod. (r=0.4), and 
Alkanes (C5-CI7) (r=0.3). 

159. Mineral Spirits. Refined petroleum solvents with carbon chain lengths ofC5-C12 and 
boiling ranges of 150°C-210°C, used since 1970. Various solvent mixtures known as VM&P 
naphtas (Vamish makers and painters' naphthas), Stoddart solvent and White spirits are included 
here but purely aliphatic mixtures such as petroleum ethers, which generally boil at lower 
temperatures, are excluded. A typical chemical composition for mineraI spirits would be: 80-
86% saturated hydrocarbons, 1% olefins, 0.1% benzene and 13-19% other aromatics. Main 
occupations: painters; motor vehicle repairmen; stationary engineers. Automatics: alkanes (C5-
CI7); MARs. Lifetime prevalence: II.6%. Top three positively correlated chemicals: Mineral 
Spirits+BTX (r=0.5), MAR (r=0.5), and Alkanes (C5-CI7) (r=0.5). 

160. Lubricating Oils and Greases. Lubricants are substances which are intended to reduce 
friction between surfaces in relative motion. They can be of animal, vegetable or mineraI origin 
and although aIl three types are included in this category, most subjects were exposed to mineraI 
oil-based products. The term greases applies to solid or semi-solid lubricants. Most lubricants 
are formulated with a variety of additives. Main occupations: motor vehicle repairmen; 
machinists; farmers. Automatics: alcanes (CI8+); benzo(a)pyrene; lead compounds; MARs; 
PARs from any source; PARs from petroleum. Lifetime prevalence: 30.3%. Top three 
positively correlated chemicals: Alkanes (CI8+) (r=0.9), PAR (Petroleum) (r=0.5), and PAR 
(Any) (r=0.5). 

161. Cutting Fluids. Fluids used in metal cutting, machining and drawing processes to cool, 
clean and reduce friction on the workpieces. This category encompasses aIl types of cutting 
fluids whether of animal, vegetable or mineraI origin. Before 1955, straight mineraI oils 
predominated whereas now emulsified cutting fluids (mixtures of straight mineraIs oils and water 
in proportions running from 1/10 to 1/50) and synthetic cutting fluids are more widely used. For 
this reason, this category was further divided into cutting fluids pre 1955 and cutting fluids post 
1955. Main occupations: machinists; tool and die makers; pipefitters and plumbers. See cutting 
fluids pre 1955 and cutting fluids post 1955. Lifetime prevalence: 8.3%. Top three positively 



correlated chemicals: Cutting Fluids pre 1955 (r=0.9), Cutting Fluids post 1955 (r=0.8), and 
Metallic Dust (r=0.5). 

162. Asphalt. A thermoplastic dark brown to black cementitious substance in which the 
predominant constituents are bitumens obtained by the processing of petroleum crude oils. 
Asphalt used for roofing, road surfacing, insulating vamishes, acid resistant paints and similar 
products may contain earthy materials such as sand or limestone. Main occupations: pavers; 
roofers; truck drivers (asphalt delivery). Automatics: PARs from any source; PAR from 
petroleum. Lifetime prevalence: 3.1%. Top three positively correlated chemicals: Coal Tar and 
Pitch (r=0.3), Crystalline Silica (r=0.2), and PAR (Co al) (r=0.2). 

163. Coal Tar and Pitch. By-products of the destructive distillation of coal, coal-tars are 
complex combinations of hydrocarbons, phenols and heterocyclic compounds, while pitches, 
which are derived from coal tar, contain PARs and their methyl and polymethyl derivatives as 
weIl as heteronuclear compounds. They have been used for waterproof coatings, for road 
surfaces and as a chemical feedstock. Petroleum-derived products have gradually replaced such 
coal-tar based products. Pitch is still used for waterproof marine coatings but its main use is in 
the manufacture of electrodes. Main occupations: roof ers; pipefitters and plumbers; aluminium 
refinery workers. Automatics: benzo(a)pyrene; PARs from coal; PARs from any source. 
Lifetime prevalence: 2.1%. Top three positively correlated chemicals: PAR (Coal) (r=0.5), 
Asphalt (r=0.3), and Benzo(a)pyrene (r=0.3). 

164. Creosote. A brownish to black oily liquid obtained from high temperature carbonization of 
coal tar. It consists of a mixture of guaïacol, cresol, phenol, pyrol, pyridine and other aromatic 
compounds. For industrial uses, it is mixed with coal tar and petroleum and used in the 
preservation of wood for railroad ties, telegraph poles, pilings for piers and blocks for flooring. 
It has also been used as a harsh disinfectant, an animal dip and as a lubricant for die molds. Main 
occupations: railway trackmen; roofers; power linemen. Automatics: aromatic alcohols; 
benzo(a)pyrene; PARs from any source; PARs from coal. Lifetime prevalence: 1.0%. Top three 
positively correlated chemicals: Aromatic Alcohols (r=0.6), PAR (Coal) (r=0.4), and Excavation 
Dust (r=0.2). 

165. Hydraulic Fluid. Moving parts of many industrial machines are actuated by hydraulic 
fluids which are under pressure. Many are mineral-oil based (straight mineraI oils or oil-water 
emulsions) but other oils (i.e., castor oil), solvents (most notably glycols or glycol ethers) and 
synthetic fluids are also used. Small quantities of various additives are usually present. Main 
occupations: Motor vehicle mechanics; aircraft mechanics; service station workers. Lifetime 
prevalence: 3.9%. Top three positively correlated chemicals: Ethylene Glycol (r=0.5), Methanol 
(r=0.4), and Glycol Ethers (r=0.4). 

166. Other Mineral Oils. These petroleum-derived oils contain relatively high molecular-weight 
paraffinic, cycloparaffinic and aromatic hydrocarbons. The composition of these oils is similar to 
that of sorne lubricating oils, hydraulic fluids or cutting fluids. This category included textile oils, 
heat treating oils, rolling oils, drawing oils, rubber oils, forging oils, mold-release oils and the 
mineraI oils used in ink formulations. Main occupations: printshop workers; textile workers; 
forgers. Automatics: alcanes (CI8+); benzo(a)pyrene; MAHs; PAHs from petroleum; PAHs 
from any source. Lifetime prevalence: 3.6%. Top three positively correlated chemicals: Inks 
(r=0.4), Carbon Black (r=0.3), and Aromatic Amines (r=0.3). 

167. Jet Fuel. The two main types of jet fuel, kerosene and wide-cut were included in this 
category. Kerosene type is a relatively high flash point range petroleum distillate within the 
kerosene boiling range, typically between 169°C and 235°C. Wide-cut type is a relatively wide 
boiling range volatile petroleum distillate including both gasoline and kerosene fractions with a 
range of 61°C to 235°C. Main occupations: aircraft mechanics and repairmen; dockworkers; 



refinery pipefitters and plumbers. Automatics: alkanes (C5-C17); MARs. Lifetime prevalence: 
1.1 %. Top three positively correlated chemicals: Aviation Gasoline (r=0.6), Jet Fuel Eng.Emiss. 
(r=0.5), and Diesel Oil (r=0.2). 

168. Aviation Gasoline. Fuel used to power small piston engine aircraft. Although similar in 
composition to leaded automotive gasoline, aviation gasoline has a higher content ofbranched 
alkanes and a more limited boiling range of about 50°C to 170°C. Main occupations: aircraft 
mechanics and repairmen; military and civil aircraft pilots; refinery pipefitters and plumbers. 
Automatics: alkanes (C5-C17); benzene; lead compounds; MARs; toluene; xylene. Lifetime 
preva1ence: 1.1%. Top three positively correlated chemicals: Jet Fuel (r=0.6), Jet Fuel 
Eng.Emiss. (r=0.3), and Benzene (r=0.2). 

169. Mineral Spirits+BTX Refined petroleum solvents with carbon chain lengths ofC5-C12 
and boiling ranges of 150°C-210°C, used before 1970. Before 1970 mineraI spirits contained 
relatively higher amounts ofbenzene, toluene and xylene due to ignorance oftheir toxic effects. 
A typical chemical composition for mineraI spirits before this time period would roughly be: 80-
86% saturated hydrocarbons, 1% olefins, and 13-19% aromatics (usually containing at least 1 % 
benzene and relatively greater quantities oftoluene and xylene than mineraI spirits post 1970). 
Main occupations: motor vehicle repairmen; painters; stationary engineers. Automatics: alkanes 
(C5-CI7); benzene; MARs; toluene; xylene. Lifetime prevalence: 15.6%. Top three positively 
correlated chemicals: Alkanes (C5-CI7) (r=0.6), MAR (r=0.6), and Mineral Spirits (r=0.5). 

170. Cutting Fluids pre 1955. Fluids used before 1955 in metal cutting, machining and drawing 
processes to cool, clean and reduce friction on the workpieces. Prior to 1955, most cutting fluids 
in use were straight mineraI oils. Furthermore, the refining process used in this period did not 
involve solvent extraction and consequently these oils contained relatively high levels of PARs. 
Main occupations: machinists; pipefitters and plumbers; tool and die makers. Automatics: 
alcanes (CI8+); benzo(a)pyrene; cutting fluids; MARs; PARs from any source; PARs from 
petroleum. Lifetime prevalence: 6.3%. Top three positively correlated chemicals: Cutting 
Fluids (r=0.9), Cutting Fluids post 1955 (r=0.6), and Metallic Dust (r=0.4). 

171. Cutting Fluids post 1955. Fluids used since 1955 in metal cutting, machining and drawing 
processes to cool, clean and reduce friction on the workpieces. Although straight mineraI oils are 
still used, there has been an increased tendency to use aqueous oil emulsions or synthetic cutting 
fluids. Furthermore, the use of solvent-extracted oils has led to reduced quantities of PARs in 
these oils. Main occupations: machinists; pipefitters and plumbers; tool and die makers. 
Automatics: alcanes (C18+); benzo(a)pyrene; cutting fluids; MARs; PARs from any source; 
PARs from petroleum. Lifetime prevalence: 5.4%. Top three positively corre1ated chemicals: 
Cutting Fluids (r=0.8), Cutting Fluids pre 1955 (r=0.6), and Mild Steel Dust (r=0.4). 

172. Other Paints, Varnishes. Paints used on surfaces other than metal and varnishes used on 
surfaces other than wood. A paint is a dispersion of a finely divided pigment in a liquid 
composed of a resin or binder and a volatile solvent used to coyer plaster, wood, gyproc and 
metal. Trade sale paints such as alkyds, acrylic latexes and caseins (in the past) were included. 
Main occupations: painters; carpenters;janitors. Lifetime prevalence: 13.2%. Top three 
positively correlated chemicals: Turpentine (r=0.5), Wood Vamishes, Stains (r=O.4), and 
Solvents (r=0.4). 

173. Wood Varnishes, Stains. Varnishes are light-bodied quick drying products that form a 
glossy or mat finish on application. Oleoresinous varnishes are made of resins in drying oils, 
mixed with driers and thinning agents such as alcohols, ethers, and naphthas. Varnishes based on 
alkyds and urethanes have largely replaced them. Stains are varnishes containing enough 
pigment or dye to alter the appearance of a wood surface. Main occupations: painters; 



carpenters; cabinet and wood furniture makers. Lifetime prevalence: 5.3%. Top three positively 
correlated chemicals: Turpentine (r=0.5), Polyvinyl Acetate (r=0.4), and Alkyds (r=0.4). 

174. Inks. Colored liquids or pastes used for writing, drawing, marking, and printing. Writing 
ink usually contains ferrous sulphate and indigo dye with tannic acid. Various formulations of 
printing inks are available to meet the demands of specific print jobs. Newspaper inks, for 
instance usually contain carbon black and various mineraI oils. Ink pigments may be inorganic 
(including lead chromates) or organic (including benzidine yeIlows). Main occupations: 
type setters and printers; draughtsmen; business machine repairmen. Lifetime prevalence: 3.5%. 
Top three positively correlated chemicals: Carbon Black (r=0.4), Other Mineral Oils (r=0.4), and 
Inorg.Pigments (r=0.3). 

175. Metal Coatings. Paints and coatings used specifically for metals and made up of 
combinations of oxidizing alkyds, epoxies, formaldehyde resins, thermosetting acrylics, 
polyesters and others. A paint is a dispersion of a finely divided pigment in a liquid composed of 
a resin or binder and a volatile solvent used to coyer plaster, wood, gyproc and metal. These 
coatings may be applied to motor vehicles, structural steel, ships, home applicances, metal 
fumiture, etc. Main occupations: motor vehicle refinishers; construction painters; motor vehicle 
mechanics. Lifetime prevalence: 7.3%. Top three positively correlated chemicals: Alkyds 
(r=0.4), Inorg.Pigments (r=0.4), and Extenders (r=0.4). 

176. Cyanides. Includes hydrogen cyanide (which was also coded separately), sodium, 
potassium and calcium cyanide and aIl other salts ofhydrocyanic acid. Molten sodium cyanide is 
used in metallurgy in case-hardening processes and cyanide solutions are widely used in 
electroplating. Cyanides have also been used to clean brass, copper and other metal surfaces, in 
the extraction of gold, in photography, and in insecticides. Main occupations: firefighters; 
electroplaters; jewellers. Lifetime prevalence: 2.0%. Top three positively correlated chemicals: 
Hydrogen Cyanide (r=0.9), Phosgene (r=0.5), and Plating Solutions (r=0.4). 

177. Fluorides. Includes exposures to aIl fluorides (e.g., Na3AIF6, sodium aluminium fluoride, 
also called cryolite, used as a flux in the production of aluminium, in the fabrication of special 
glasses, porcelain and in insecticides). Sorne welding electrode coatings contain a calcium 
carbonate-calcium fluoride system; this is thermally degraded during welding to silicon 
hexafluoride which gives rise to hydrogen fluoride in the presence of water. Sodium, potassium 
and calcium fluorides are also present in the welding environment. Main occupations: mineraI 
ore treaters; welders; aluminium refinery workers. Lifetime prevalence: 3.4%. Top three 
positively correlated chemicals: Hydrogen Fluoride (r=0.9), Ozone (r=0.5), and Manganese 
Fumes (r=0.5). 

178. Chromium (VI) Compounds. Comprises hexavalent chromium (Cr) compounds found in 
chromium fumes and in various chromium compounds. The most important compounds in this 
hexavalent state are sodium and potassium dichromate, chromic acid and a number of pigments 
such as lead chromate, (which was coded separately), zinc chromate and strontium chromate. 
These compounds have many industrial applications as a consequence of their acidic and oxidant 
properties and their ability to form strongly colored and insoluble salts. They have been used in 
the manufacture of important inorganic pigments which are used in paints, artist's colors, glasses 
and glazes. They have also been used in chrome plating, for corrosion inhibition and in wood 
preservation, leather tanning, textile dyeing, lithography and chrome plating. Main occupations: 
metal painters; welders and flame cutters; motor vehicle mechanics. Automatics: chromium 
compounds. Lifetime prevalence: 8.4%. Top three positively correlated chemicals: Chromium 
Compounds (r=0.8), Lead Chromate (r=0.6), and Chromium Fumes (r=0.6). 

179. Hypochlorites. ncludes both sodium and calcium hypochlorites. These compounds 
decompose easily in water and are used as a source of chlorine for cleaning, bleaching and 



samtIzmg. A water solution of sodium hypochlorite known as javel water is used extensively in 
the laundry industry. These bleaching powders have also been used in the textile and paper pulp 
industries. Main occupations: laundry workers; textile bleachers; janitors. Lifetime prevalence: 
5.6%. Top three positively correlated chemicals: Javel Water (r=1.0), Biocides (r=0.5), and 
Cleaning Agents (r=OA). 

180. Nitrates. Inorganic compounds containing one or several-N03 functional groups. Sodium, 
potassium and ammonium nitrates are the main substances inc1uded here. They have been used 
in the manufacture of explosives, fertilizers, glass, pyrotechnics, welding fluxes and matches; in 
steel heat treating, and in meat processing. Main occupations: munitions assemblers; meat 
packers; pipefitters and plumbers. Lifetime prevalence: 1.0%. Top three positively correlated 
chemicals: Zinc Dust (r=0.2), Tin Fumes (r=0.2), and Propane Comb.Prod. (r=O.2). 

181. Beryllium Compounds. Comprises beryllium (Be) fumes, dust from beryllium-containing 
alloys and ores and all other beryllium-containing substances. Due to the high cost ofberyllium, 
it is not used in engineering or as a construction material. It is increasingly used in the atomic 
energy industry, and in alloys for anti-spark tools and machinery parts such as bushings and 
current carrying springs which are subjected to abnormal wear, vibrations, or shocks. Stationary 
engineers and engine and boiler-room crew in ships have been exposed from coal ashes, which 
contain beryllium compounds. Main occupations: stationary engineers; metal machinists. 
Lifetime prevalence: 0.5%. Top three positively correlated chemicals: Cobalt Compounds 
(r=0.4), Sodium Carbonate (r=0.3), and Ashes (r=0.3). 

182. Magnesium Compounds. Comprises magnesium (Mg) dust, magnesium fumes (which was 
also coded separately), magnesium-containing alloys and ores and all other magnesium
containing substances (e.g., magnesium oxide, magne sium chloride, magnesium sulphate and 
magne sium metasilicates). Magnesium being an active metal, it is rarely used as a construction 
material. However, due to its lightness it is mainly used as an alloying element. It has been used 
as a desulphurizer and deoxidizer in the production of copper and nickel based alloys, and in 
pyrotechnics and signal flares. Magnesium compounds have also been used in insulating cement, 
pipe insulation and in fertilizers. Magnesite, a mineraI composed of magnesium carbonate mixed 
with sorne iron carbonate and ferric oxide, is a valued refractory material for crucibles, furnace 
brick and linings and high temperature electrical insulation. Main occupations: stationary 
engineers; metal machinists; foundry workers. Lifetime prevalence: 1.6%. Top three positively 
correlated chemicals: Copper Dust (r=0.2), Nickel Compounds (r=0.2), and Aluminium Alloy 
Dust (r=0.2). 

183. Aluminium Compounds. Comprises dust from aluminium (Al)-containing alloys and 
aluminium fumes (both ofwhich were also coded separately), dust from aluminium-containing 
ores and aIl other aluminium-containing substances (sorne ofwhich were also coded separately, 
e.g. alumina, alum). The major industrial uses of aluminium have been in the construction, 
aircraft, and electrical industries. Alumina has been used extensively as an abrasive in a wide 
variety of machine tools such as fast cutting and grinding wheels and in refractories. Main 
occupations: metal machinists; carpenters; welders and flame cutters. Lifetime prevalence: 
18.8%. Top three positively correlated chemicals: Alumina (r=0.9), Abrasives Dust (r=0.7), and 
Aluminium Alloy Dust (r=O.5). 

184. Titanium Compounds. Comprises dust from titanium (Ti)-containing alloys and ores, 
titanium dioxide dust and fumes (both of which were also coded separately) and all other 
titanium-containing substances. Titanium metal is obtained commerciaIly from two ores: rutile 
and ilmenite. It has been used in jet engine components and as an alloying element in steels. 
Main occupations: construction painters; motor vehic1e refinishers; metal machinists. Lifetime 



prevalence: 4.6%. Top three positively correlated chemicals: Titanium Dioxide (r=0.9), Alkyds 
(r=0.6), and Extenders (r=0.6). 

185. Vanadium Compounds. Comprises vanadium (V) dust, vanadium fumes, and dust from 
vanadium-containing alloys and ores and all other vanadium-containing substances. Exposure to 
vanadium compounds has been mainly restricted to mining and milling of vanadium containing 
ores. Engine and boiler-room workers may also be exposed because the ashes and soot of oil
fired burners contain vanadium pentoxide. Main occupations: stationary engineers. Lifetime 
prevalence: 1.3%. Top three positively correlated chemicals: Heating Oil (r=0.5), Antimony 
Compounds (r=0.5), and Sodium Carbonate (r=0.4). 

186. Chromium Compounds. Comprises chromium (Cr) dust, chromium fumes, chromium (VI) 
compounds (all ofwhich were also coded separately), dust from chromium-containing alloys 
(including stainless steel which was coded separately) and ores and all other chromium
containing substances. Many chromium compounds have been used in the manufacture of 
important inorganic pigments. Main occupations: construction painters; metal machinists; 
welders and flame cutters. Lifetime prevalence: 12.3%. Top three positively correlated 
chemicals: Chromium (VI) Comp. (r=0.8), Nickel Compounds (r=0.7), and Stainless Steel Dust 
(r=0.6). 

187. Manganese Compounds. Comprises manganese (Mn) dust, manganese fumes (which were 
also coded separately), dust from manganese-containing alloys and ores and all other manganese
containing substances. Manganese is a sil very-white metal found in a number of mineraIs, with 
iron ores and in most rocks. It is used mainly as an alloying element to improve the strength and 
hardness of steels and and to reduce the oxygen and sulphur naturally present in the iron ore. 
Sorne manganese compounds have also been used in the manufacturing of dry cell batteries, as 
oxidizing agents (e.g., potassium permanganate) in the chemical industry, and as drying agents 
for linseed oil-based paints. Organo-manganese compounds have also been used as antiknock 
additives in gasoline. Main occupations: welders and flame cutters; pipefitters and plumbers; 
metal grinders. Lifetime prevalence: 6.3%. Top three positively correlated chemicals: 
Manganese Fumes (r=0.9), Iron Fumes (r=0.7), and Calcium Oxide Fumes (r=0.6). 

188. Iron Compounds. Comprises iron (Fe) dust, iron oxides and iron fumes (all ofwhich were 
also coded separately), dust from iron-containing alloys (mild and stainless steel were also coded 
separately), iron-containing ores and all other iron-containing substances. Iron is the most 
common of the commercial metals and forms a large group ofmaterials known as ferroalloys. 
Several iron compounds have been used as paint pigments, polishing compounds, and coatings 
for magnetic tapes while the soluble salts have been used as dyeing mordants, catalysts, 
fertilizers, in sewage treatments, and in feeds. Main occupations: metal machinists; welders and 
flame cutters; motor vehicle mechanics. Lifetime prevalence: 24.9%. Top three positively 
correlated chemicals: Mild Steel Dust (r=0.8), Metallic Dust (r=0.7), and Metal Oxide Fumes 
(r=0.6). 

189. Cobalt Compounds. Comprises cobalt (Co) fumes, dust from cobalt-containing alloys and 
ores and all other cobalt-containing substances (e.g., acetate, oleate, resinate). Most cobalt has 
been used for high temperature alloys. Cobalt is added to tool steels to increase the strength and 
hardness of those required to operate at high speed and high temperature. A variety of organic 
salts of cobalt, such as resinate, oleate and acetate etc. have been used extensively as drying 
agents for paints, inks and vamishes. Other cobalt compounds have been used in pottery to 
improve color. Main occupations: tool and die makers; metal machinists; stationary engineers. 
Lifetime prevalence: 2.0%. Top three positively correlated chemicals: Tungsten Compounds 
(r=0.7), Beryllium Compounds (r=0.4), and Cutting Fluids post 1955 (r=0.3). 



190. Nickel Compounds. Comprises nickel (Ni) dust and nickel fumes, (both ofwhich were also 
coded separately), dust from nickel-containing aIloys (inc1uding stainless steel, which was coded 
separately) and ores and aIl other nickel-containing substances. Most exposures in this study 
occurred through the use of nickel-based aIloys, mainly stainless steel. Other major uses have 
been in plating where more nickel has been used than any other metal, and as a catalyst in 
hydrogenation of organic compounds. Main occupations: metal machinists; welders and flame 
cutters; metal grinders. Lifetime prevalence: 7.0%. Top three positively correlated chemicals: 
Stainless Steel Dust (r=0.8), Chromium Compounds (r=0.7), and Nickel Fumes (r=0.7). 

191. Copper Compounds. Comprises copper (Cu) dust and copper fumes (both ofwhich were 
also coded separately), dust from copper-containing aIloys and ores and aIl other copper
containing substances. Copper compounds have been used in electroplating solutions, insecticides 
and fungicides; copper-containing aIloys have been used in jewelry and silverware. Main 
occupations: farmers; pipefitters and plumbers; metal machinists. Lifetime prevalence: 12.2%. 
Top three positively correlated chemicals: Copper Dust (r=0.6), Copper Fumes (r=0.5), and Tin 
Compounds (r=0.4). 

192. Zinc Compounds. Comprises zinc (Zn) dust, zinc fumes (both ofwhich were also coded 
separately), dust from zinc-containing aIloys and ores and aIl other zinc-containing substances 
(including zinc oxide which was also coded separately). Zinc sulphide, a white powder, has been 
used as a pigment in paints, for whitening rubber, and for paper coating. Main occupations: 
construction painters; pipefitters and plumbers; motor vehicle refinishers. Lifetime prevalence: 
10.1 %. Top three positively correlated chemicals: Zinc Fumes (r=0.6), Zinc Oxide (r=0.5), and 
Zinc Dust (r=0.5). 

193. Arsenic Compounds. Comprises arsenic (As) dust, arsenic fumes, dust from arsenic
containing alloys and ores and aIl other arsenic containing substances (e.g., calcium, sodium and 
lead arsenate). Although use of the metal is limited to a few applications involving lead-arsenic 
alloys, several compounds have been widely used as insecticides. The smelting and refining of 
arsenic-containing ores (e.g., copper smelting and refining) and boiler cleaning (ashes and soot 
may contain arsenic trioxide) are other potential sources of exposure. Main occupations: general 
farmers; crop and vegetable farmers; stationary engineers. Lifetime prevalence: 3.5%. Top three 
positively correlated chemicals: Acetic Acid (r=0.4), Pesticides (r=0.4), and Phosgene (r=0.3). 

194. Si/ver Compounds. Comprises silver (Ag) dust, silver fumes (which were also coded 
separately), dust from silver-containing alloys and ores and aIl other silver-containing substances. 
Silver (Ag) is a white metal which occurs in the native state or combined with sulphur and 
chlorine. Copper, lead and zinc ores frequently contain silver and most of the production ofthis 
metal is a by-product of the refining ofthese metals. Silver and its compounds have been used in 
photography, electrical applications,jewelry and silverware, brazing aIloys, and mirrors. Main 
occupations: jeweIlers; tool and die makers; dental prosthesis makers. Lifetime prevalence: 
2.7%. Top three positively correlated chemicals: Silver Fumes (r=0.7), Gold Compounds 
(r=0.5), and Borates (r=0.5). 

195. Cadmium Compounds. Comprises cadmium (Cd) dust and cadmium fumes (both ofwhich 
were also coded separately), dust from cadmium-containing alloys and ores and aIl other 
cadmium-containing substances (e.g. cadmium sulphide, selenide, nitrate). Cadmium has been 
widely used in electroplating as a protective coating for iron, steel, and copper. Cadmium 
compounds such as cadmium sulphide and cadmium selenide are important coloring pigments for 
plastics, paints, etc. Main occupations: tool and die makers; jeweIlers; pipefitters and plumbers. 
Lifetime prevalence: 1.0%. Top three positively correlated chemicals: Silver Fumes (r=0.4), 
Nitric Acid (r=0.3), and Silver Compounds (r=0.3). 



196. Tin Compounds. Comprises tin (Sn) dust, tin fumes (both ofwhich were also coded 
separately), dust from tin-containing alloys and ores and all other tin-containing substances. 
Organo-tins have been used as plastics stabilizers, biocides and as catalysts. Main occupations: 
pipefitters and plumbers; motor vehic1e mechanics; typesetters and printing press (letterpress) 
operators. Lifetime prevalence: 8.9%. Top three positively correlated chemicals: Soldering 
Fumes (r=0.7), Tin Fumes (r=0.7), and Lead Fumes (r=0.5). 

197. Antimony Compounds. Comprises antimony (Sb) dust, antimony fumes, dust from 
antimony-containing alloys and ores and aU other antimony-containing substances. Antimony 
itself is a lustrous, silvery blue 0 white, extrernely brittle rnetal. When aUoyed with other rnetals, 
it increases hardness, lowers me1ting points and reduces shrinkage upon freezing. In this study, 
most exposures were due to antimony-Iead aUoys used as type metal, storage battery plates, 
buUets, tank linings, bearing metals, etc. Residual soot or ashes may also contain antimony 
compounds. Main occupations: stationary engineers; printing press (letterpress) operators; 
typesetters. Lifetime prevalence: 1.9%. Top three positively correlated chemicals: Vanadium 
Compounds (r=0.5), Other Mineral Oils (r=0.3), and Inks (r=0.3). 

198. Tungsten Compounds. Comprises tungsten (W) dust, tungsten fumes, and dust from 
tungsten-containing aUoys and ores and aU other tungsten-containing substances. Tungsten (W), 
a white, heavy metal, is widely distributed in smaU quantities in nature but is mostly obtained 
from scheelite, wolframite and a few other ores. It has one of the highest melting points (3400°C) 
of all metals, a property that renders it very useful for lamp filaments, electric contacts, rocket 
nozzles and in electronic applications. The most important tungsten compound is the carbide 
(WC), which has been used in cutting tool bits. Tool steels containing up to 18% oftungsten are 
generally used in machining steels. Main occupations: metal machinists; tool and die makers; 
machine tool operators. Lifetime prevalence: 1.4%. Top three positively correlated chemicals: 
Cobalt Compounds (r=0.7), Cutting Fluids post 1955 (r=0.3), and Silicon Carbide (r=0.3). 

199. Gold Compounds. Comprises gold (Au) dust, gold fumes (which were also coded 
separate1y), dust from gold-containing alloys and ores and aU other gold-containing substances. 
Due to the high cost of gold, it is not used as a construction or engineering material except as a 
coating on spacecraft for radiation control. Gold has also been used for coinage, omaments, 
jewelry, dentistry and (alloyed with platinum and sil ver) for chemically resistant apparatus. It is 
nomally aUoyed with copper and silver to increase hardness. Main occupations: jewellers; dental 
prosthesis makers; watch and c10ck repairmen. Lifetime prevalence: 1.1 %. Top three positively 
correlated chemicals: Silver Compounds (r=0.5), Borates (r=0.5), and Silver Fumes (r=0.4). 

200. Mercury Compounds. Comprises metallic mercury (Hg) (which was also coded separately), 
dust from mercury-containing amalgams and ores and all other mercury-containing substances. 
Mercury compounds have been used as agricultural and industrial poisons; sorne organo-mercuric 
compounds have been used as antiseptics. Other mercury compounds are or have been used in 
taxidermy, in carroting rabbit fur for fe1t hats, in the manufacture of explosives and in paints as 
antifouling and mildew-proofing agents. Main occupations: construction painters; chemists; 
paint mixers. Lifetime prevalence: 1.7%. Top three positively correlated chernicals: Poly
Acrylates (r=0.5), Zinc Oxide (r=0.4), and Polyvinyl Acetate (r=0.4). 

201. Lead Compounds. Comprises lead dust (Pb), lead oxides and lead fumes (all ofwhich were 
also coded separately), dust from lead-containing alloys and ores and all other lead-containing 
substances (e.g., lead chromate, basic lead carbonate, which were also coded separately). 
Inorganic lead compounds have been used in agriculture and as pigments in rubber, plastics and 
paints. Organic lead compounds, such as tetraethyl or tetramethyllead, have been used as 
antiknock compounds in leaded gasolines, while lead alloys have been commonly used as solders. 
Main occupations: motor vehic1e drivers and driver-salesmen; motor vehicle rnechanics; painters. 



Lifetime prevalence: 46.6%. Top three positively correlated chemicals: Gas Eng.Emissions 
(r=0.8), Carbon Monoxide (r=0.7), and PAR (Petroleum) (r=0.6). 

202. Alkanes (CI8+). Includes aIl saturated hydrocarbons having more than 18 carbon atoms, 
with the general formula CnH2n+2. They are aU solids at standard conditions. One mixture of 
these long-chained hydrocarbons, known as petroleumjeUy, is widely used in lubricating oils and 
greases and for compounding in rubber and resins. Highly refined, it is used in the 
pharmaceutical industry. Parrafin waxes, which were also coded separately, also faIl into this 
category. Main occupations: motor vehicle mechanics; metal machinists; business and industrial 
machine mechanics. Lifetime prevalence: 33.6%. Top three positively correlated chemicals: 
Lubric.Oils & Greases (r=0.9), PAR (Petroleum) (r=0.5), and PAR (Any) (r=0.5). 

203. Alkanes (CI-C4). Includes the first four similarly structured compounds caIled paraffins, 
namely: methane, ethane, propane and butane. They are gaseous at standard temperatures and are 
used as fuels or as raw materials in the chemical industry. Main occupations: chefs and cooks; 
pipefitters and plumbers; restaurant managers. Lifetime prevalence: 8.9%. Top three positively 
correlated chemicals: Methane (r=0.7), Propane (r=0.6), and Propane Comb.Prod. (r=0.6). 

204. Alkanes (C5-CI7). Saturated hydrocarbons, straight or branched-chained with the general 
formula CnH2n+ 2, containing between 5 and 17 carbon atoms. They are liquids at standard 
conditions. They are the main components of petroleum solvents such as petroleum ether, rubber 
solvent, VM&P naphthas, mineraI spirits, Stoddard solvent, kerosene and fuels such as gasoline, 
jet fuel and heating oils. Main occupations: motor vehicle mechanics; painters; carpenters. 
Lifetime prevalence: 35.8%. Top three positively correlated chemicals: MAR (r=0.8), Solvents 
(r=0.6), and Mineral Spirits+BTX (r=0.6). 

205. Aliphatic Alcohols. Aliphatic hydrocarbon derivatives in which one hydrogen atom is 
replaced by an -OH group. This includes methanol, ethanol, isopropanol (aU ofwhich were also 
coded separately) and propanol. These alcohols are generaUy used as solvents in toiletries, 
pharmaceuticals, and surface coatings, as rubbing compounds, and in fur cleaning. Ethanol is 
used in alcoholic beverages. Main occupations: motor vehicle mechanics; barbers and 
hairdressers; service station attendants. Lifetime prevalence: 9.0%. Top three positively 
correlated chemicals: Methanol (r=0.7), Isopropanol (r=0.7), and Ethylene Glycol (r=0.5). 

206. Aliphatic Aldehydes. A family of organic compounds represented by general formula 
RCHO (where R is a hydrogen or an alkyl group). The most important exposures in this group 
are formaldehyde (which was also coded separately and is widely used in various industries) and 
acrolein (a pyrolysis product ofmany organic compounds). Main occupations: chefs and cooks; 
carpenters; textile workers. Lifetime prevalence: 17.3%. Top three positively correlated 
chemicals: Formaldehyde (r=0.9), Cooking Fumes (r=0.3), and Plastics Pyrol.Prod. (r=0.3). 

207. Chlorinated Alkanes. Saturated hydrocarbons in which at least one hydrogen is replaced by 
a chlorine atom. This replacement increases many desirable properties such as specific gravity 
and boiling points, and reduces flammability. These materials, e.g., methylene chloride, 
chloroform, carbon tetrachloride, and 1, l, l-trichloroethane (aIl of which were also coded 
separately), are used as solvents for fats and oils, for metal degreasing, for drycleaning of textiles, 
as refrigerants, in insecticides, and in fire extinguishers. Main occupations: motor vehicle 
mechanics; construction painters; aircraft mechanics. Lifetime prevalence: 10.0%. Top three 
positively correlated chemicals: Carbon Tetrachloride (r=0.6), Methylene Chloride (r=0.4), and 
Chlorinated Alkenes (r=0.4). 

208. Unsaturated Aliphatic Hydrocarbons. AlI organic compounds containing only carbon and 
hydrogen atoms and at least one carbon-carbon double or triple bond, i.e., alkenes and alkynes. 
Ring compounds are excluded. The main substances included in this category were acetylene, 



ethylene (both ofwhich were also coded separately) and propylene. Main occupations: welders 
and flame cutters; pipefitters and plumbers; motor vehicle mechanics. Lifetime prevalence: 
5.2%. Top three positively correlated chemicals: Acetylene (r=0.9), Gas Welding Fumes (r=0.5), 
and Iron Fumes (r=0.5). 

209. Chlorinated Alkenes. Unsaturated hydrocarbons in which one or more hydrogens are 
replaced with chlorine atoms. These relatively nonflammable, organic compounds are used in 
dry cleaning of textiles and in metal degreasing. Examples are trichloroethylene, 
perchloroethylene and vinyl chloride (aIl ofwhich were also coded separately). Main 
occupations: barbers and hairdressers; metal machinists; aircraft mechanics. Lifetime 
prevalence: 4.8%. Top three positively correlated chemicals: Trichloroethylene (r=0.8), 
Perchloroethylene (r=0.5), and Chlorinated Alkanes (r=0.4). 

210. Aliphatic Esters. Compounds with the general formula RC=OOR' (R and R' are aliphatic 
groups) produced by reacting an alcohol and an acid. The main substances included here are the 
formates and the acetates (methyl, ethyl, propyl, butyl, etc.). They have been used mainly as 
solvents for resins (nitrocellulose), and in the production ofvamishes, artificialleather and 
pharmaceuticals. Main occupations: painters; motor vehicle mechanics; cabinet and wood 
fumiture makers. Lifetime prevalence: 3.3%. Top three positively correlated chemicals: 
Aliphatic Ketones (r=0.6), Cellulose Nitrate (r=0.6), and Phthalates (r=0.4). 

211. Aliphatic Ketones. A family of organic compounds represented by general formula RCOR', 
containing a carbonyl group (=CO) linked to two carbon atoms. Acetone (which is also coded 
separately) and methyl ethyl ketone (MEK) are widely used in industry as sol vents for resins 
(nitrocellulose, acrylic and epoxies) and for synthetic adhesives. Main occupations: painters; 
carpenters; motor vehicle mechanics. Lifetime prevalence: 6.0%. Top three positively 
correlated chemicals: Acetone (r=0.6), Aliphatic Esters (r=0.6), and Cellulose Nitrate (r=0.5). 

212. Fluorocarbons. Paraffinic compounds in which one or more hydrogen atoms are replaced 
by fluorine. They may also contain chlorine. They have been used mainly in tire extinguishers, 
as refrigerants, as cleaning solvents, and as propellants in variety of products ranging from paints 
and insecticides to cosmetics such as perfumes, hair sprays and deodorants. Main occupations: 
tirefighters; barbers and hairdressers; electric and electronic equipment in staIl ers and repairmen. 
Lifetime prevalence: 2.4%. Top three positively correlated chemicals: Phosgene (r=0.5), Spray 
Gases (r=0.5), and Hydrogen Cyanide (r=0.4). 

213. Glycol Ethers. Synthetic organic liquids with sweetish odors and high boiling points 
generally manufactured by reaction of an epoxide (ethylene, propylene or butylene oxide) with 
the appropriate alcohol. Miscibility ofthese ethers with water and organic solvents makes them 
especially useful as mutual solvents in many oil-water compositions. They have been used as 
sol vents for various resins, lacquers, paints, vamishes, dyes, inks, printing pastes, cleaning agents, 
liquid soaps, and even cosmetics. They have also been used widely as components ofhydraulic 
fluids and as chemical intermediates. Main occupations: motor vehicle mechanics; janitors; 
construction painters. Lifetime prevalence: 2.5%. Top three positively correlated chemicals: 
Hydraulic Fluid (r=0.4), Aliphatic Alcohols (r=0.4), and Ethylene Glycol (r=0.4). 

214. Polycyclic Aromatic Hydrocarbons (Any). Polycyclic aromatic hydrocarbons are a group of 
chemicals made up of three or more benzene rings interlinked in various arrangements. They are 
naturally present in fossil fuels or can be formed by thermal decomposition of any organic 
material containing carbon and hydrogen. Because the profile of PARs produced depends, 
among other factors, on the source material which gives rise to PAR exposure, four categories 
corresponding to various classes of source materials were created: PARs from coal, PARs from 
petroleum; PARs from wood and PARs from other sources. In addition, exposure to 
benzo(a)pyrene was coded. The category described here was assigned whenever one of the 



specific categories mentioned above was coded. Main occupations: motor vehicle drivers and 
driver-salesmen; motor vehicle repairmen; machinists. Lifetime prevalence: 63.0%. Top three 
positively correlated chemicals: PAR (Petroleum) (r=0.9), Carbon Monoxide (r=0.7), and Gas 
Eng.Emissions (r=0.6). 

215. Polycyclic Aromatic Hydrocarbons (Other). Polycyclic aromatic hydrocarbons are a group 
of chemicals made up of three or more benzene rings interlinked in various arrangements. They 
are naturally present in fossil fuels or can be formed by thermal decomposition of any organic 
material containing carbon and hydrogen. This category was used to assign exposures to PARs 
when the source material did not correspond to one of the three specific categories: coal, wood, 
petroleum. PARs present in pyrolysis products of plastic, paint, rubber, food or other organic 
compounds would have been coded here. Main occupations: welders and flame cutters; roof ers; 
chefs and cooks. Automatics: PARs from any source. Lifetime prevalence: 19.4%. Top three 
positively correlated chemicals: Other Pyrolysis Fumes (r=0.9), Metal Oxide Fumes (r=0.6), and 
Iron Compounds (r=0.5). 

216. Polycyclic Aromatic Hydrocarbons (Wood). Polycyclic aromatic hydrocarbons are a group 
of chemicals made up of three or more benzene rings interlinked in various arrangements. They 
are naturally present in fossil fuels or can be formed by thermal decomposition of any organic 
material containing carbon and hydrogen. Wood combustion is an important source of 
benzo{a)pyrene (which is coded separately) and of other PARs. In fact, the quantity of 
benzo{a)pyrene in soots produced during wood combustion and coal combustion can be of the 
same order of magnitude. Main occupations: farmers; firefighters; chefs and cooks. Automatics: 
PARs from any source. Lifetime prevalence: 4.2%. Top three positively correlated chemicals: 
PAR (Wood) (r=1.0), Phosgene (r=0.4), and Benzo{a)pyrene (r=0.3). 

217. Polycyclic Aromatic Hydrocarbons (Petroleum). Polycyclic aromatic hydrocarbons are a 
group of chemicals made up of three or more benzene rings interlinked in various arrangements. 
They are naturally present in fossil fuels or can be formed by thermal decomposition of any 
organic material containing carbon and hydrogen. Crude oil, certain petroleum-derived 
substances (e.g., heavy fuel oil, asphalt, etc.) and their combustion products contain PARs, albeit 
in smaller quantities than similar coal-derived products. Furthermore, concentrations of PARs 
may increase in sorne ofthese products during use (e.g., used motor oils). Main occupations: 
Motor vehicle drivers and salesmen; motor vehicle repairmen; machinists. Automatics: PARs 
from any source. Lifetime prevalence: 60.6%. Top three positively correlated chemicals: PAR 
(Any) (r=0.9), Gas Eng.Emissions (r=0.7), and Carbon Monoxide (r=0.6). 

218. Polycyclic Aromatic Hydrocarbons (Coal). Polycyclic aromatic hydrocarbons are a group 
of chemicals made up of three or more benzene rings interlinked in various arrangements. They 
are naturally present in fossil fuels or can be formed by thermal decomposition of any organic 
material containing carbon and hydrogen. The most important sources of PARs (in terms of 
quantity of PARs released on a weight percent basis) in the workplace are coal tar products. Coal 
tar products are used at high temperatures in many industrial processes such as aluminium 
smelting and iron and steel production, thereby emitting PARs into the work atmosphere. Main 
occupations: stationary engineers and boiler room workers; railway trackmen; pipefitters and 
plumbers. Automatics: PARs from any source. Lifetime prevalence: 7.6%. Top three 
positively correlated chemicals: Coal Comb.Products (r=0.8), Coal Tar and Pitch (r=0.5), and 
Benzo{a)pyrene (r=0.5). 

219. Benzo(a)pyrene. A number offive and six-membered ring PARs are regarded as being 
carcinogenic and among these, benzo(a)pyrene, a six ring compound, has been the subject of 
special interest. It is the most frequently studied PAR and analytical methods for its 
determination have been available for a long time; in fact, determination of the benzo(a)pyrene 



exposure has often been used as a proxy for P AH exposure. The highest concentrations of 
benzo(a)pyrene occur in coal tar products. Main occupations: motor vehicle mechanics; 
machinists; foundry workers. Automatics: P AHs from any source. Lifetime prevalence: 21.2%. 
Top three positively correlated chemicals: Soot (r=0.6), Sulphur Dioxide (r=0.5), and P AH 
(Co al) (r=0.5). 

220. Monocyclic Aromatic Hydrocarbons. MAHs are those hydrocarbons that possess the 
special properties associated with the benzene nucleus or ring, in which six carbon-hydrogen 
groups are arranged at the corners of the hexagon. This includes aIl aromatic compounds that 
have only one benzene ring including substituted products such as xylene, toluene, styrene (aIl of 
which were also coded separately), phenol and ethyl benzene and others. These substances are 
present in certain petroleums, solvents, motor and heating fuels and coal tar distillates. Main 
occupations: motor vehicle mechanics; metal machinists; painters. Lifetime prevalence: 34.4%. 
Top three positively correlated chemicals: Alkanes (C5-CI7) (r=0.8), Benzene (r=0.6), and 
Mineral Spirits+BTX (r=0.6). 

22l. Aromatic Alcohols. Includes aIl phenolic derivatives such as phenol itself(which was also 
coded separately), hydroquinone (a reducing agent in photographic developing baths), o-phenyl 
phenol (contained in Lysol®), hexachlorophene (Phisohex®, an antibacterial detergent used in 
hospitals), pyrocatechol (an antioxidant in rubber) and resorcinol (used in tanning). Creosote 
(also coded separately), obtained from coal tar, also contains a small amount of phenol. Main 
occupations: janitors; railway trackmen; roofers. Lifetime prevalence: 3.0%. Top three 
positively correlated chemicals: Phenol (r=0.7), Creosote (r=0.6), and Phenol-Formald. (r=0.3). 

222. Aromatic Amines. Aromatic hydrocarbons in which at least one hydrogen atom has been 
substituted by a primary, secondary or tertiary amino group. The main compounds coded here 
are aniline, benzidine and naphtylamines. Other chemical groups may also be present on the 
aromatic ring. Many dyes and organic pigments contain the aromatic amine function. Main 
occupations: painters; printshop workers; shoemakers and repairmen. Lifetime prevalence: 
6.7%. Top three positively correlated chemicals: Organic Dyes & Pig. (r=0.7), Carbon Black 
(r=0.5), and Inorg.Pigments (r=0.5). 

223. Phthalates. Because oftheir low vapor pressures and chemical stability, various esters of 
phthalic acid such as diethyl, dibutyl and di-n-octyl are used as plasticizers to impart flexibility to 
certain plastics, notably polyvinyl chloride or PVC. Main occupations: motor vehicle 
refinishers; plastics workers; carpenters. Lifetime prevalence: 2.3%. Top three positively 
correlated chemicals: Cellulose Nitrate (r=0.5), Aliphatic Esters (r=0.4), and Titanium Dioxide 
(r=0.4). 

224. Isocyanates. Represented by the general formula R-N=C=O, these are basic constituents in 
the production of polyurethanes, which in tum are used as flexible and rigid foams and in resins, 
paints and varnishes. Toluene diisocyanate (TDI) is the most commonly used of the isocyanates 
but aIl other types were included. Main occupations: motor vehicle refinishers; motor vehicle 
mechanics; foundry workers. Lifetime prevalence: 1.6%. Top three positively correlated 
chemicals: Styrene (r=0.6), Polyurethanes (r=0.5), and Phosgene (r=0.5). 

225. Cleaning Agents. Materials which have cleansing action such as soap. Their main function 
is to aid water in the cleaning process. They may be simple sulphonated fatty acids or complex 
synthetic materials. Organic solvents were excluded here and have been coded separately. Main 
occupations: janitors; chefs and cooks; restaurant busboys. Lifetime prevalence: 16.1 %. Top 
three positively correlated chemicals: Javel Water (r=0.4), Hypochlorites (r=0.4), and Biocides 
(r=0.4). 



226. Pharmaceuticals. AIl products used as sedatives, tranquilizers, narcotics, painkillers, and 
aIl other prescription and non-prescription drugs and remedies. Veterinary medicines were also 
inc1uded. Main occupations: pharmacists; physicians and surgeons; pharmaceutical industry 
workers. Lifetime prevalence: 1.6%. Top three positively correlated chemicals: Laboratory 
Products (r=0.2), Biocides (r=0.1), and Mercury Compounds (r=0.1). 

227. Laboratory Products. A general category used to code exposure to a laboratory 
environment. Main occupations: chemical engineers; chemists; physical science technicians. 
Lifetime prevalence: 1.1%. Top three positive1y correlated chemicals: Nitric Acid (r=0.2), 
Acetone (r=0.2), and Ethanol (r=0.2). 

228. Fertilizers. Materials that are added to the soil to supply plant food either directly or by 
chemical reaction with the soi!. Commercial fertilizers include nitrates, phosphates, potash salts, 
calcium salts or mixtures ofthese. Main occupations: farmers; nursery workers; dockworkers. 
Lifetime prevalence: 5.6%. Top three positively correlated chemicals: Pesticides (r=0.7), Grain 
Dust (r=0.4), and Arsenic Compounds (r=0.3). 

229. Pesticides. Substances capable ofkilling sorne form of organism that is deemed to be 
undesirable. Pesticides inc1ude insecticides, herbicides, rodenticides, fungicides, molluscicides 
and nematodicides. Farming is the main occupation in which pesticides are used in large 
quantities, and are likely to be handled in an unsafe manner. Main occupations: farmers; 
dockworkers; nursery workers. Lifetime prevalence: 5.6%. Top three positive1y correlated 
chemicals: Fertilizers (r=0.7), Grain Dust (r=0.4), and Arsenic Compounds (r=0.4). 

230. Biocides. Inc1udes aIl products used to disinfect, deodorize, sterilize and sanitize. This 
implies the capability ofkilling micro-organisms (algae, bacteria, viruses, etc.). This group 
therefore inc1udes bactericides, algicides, fungicides, germicides and preservatives. Agricultural 
pesticides were coded separately. Main occupations: janitors; painters; barbers and hairdressers. 
Lifetime prevalence: 9.5%. Top three positively correlated chemicals: Hypochlorites (r=0.5), 
Javel Water (r=0.5), and Ammonia (r=0.4). 

231. Bleaches. Substances or mixtures which have the ability to chemically remove dyes or 
pigments that exist naturally in a material or that have been added to it in an industrial process. 
They are widely used in the treatment of cellulose, in the pulp and paper industry and of course in 
the textile industry. The main active agents found in bleaches inc1ude chlorine, calcium 
hypochlorite, potassium hypochlorite, sodium hypochlorite (Javex), chlorine dioxide, sodium 
chlorate, hydrogen peroxide and detergents (several ofwhich have also been coded separately). 
Main occupations: laundry workers and dry c1eaners; photographers; photographic processors. 
Lifetime prevalence: 1.1%. Top three positively correlated chemicals: Hypochlorites (r=0.4), 
Chlorine (r=0.4), and Javel Water (r=0.4). 



3. SAS matrix language program for semi-Bayes modeling 

The SAS-IML program below is taken directly from Witte et al. (1998) with errata 

corrected. Changes were made to incorporate the present data and prior, but the semi

Bayes estimation portions of the program were left unchanged. Whereas the original 

pro gram also calculated empirical-Bayes estimates, the program below refers only to 

semi-Bayes estimation. 

Bis the n by 1 column vector ofbeta coefficients from a logistic regression, n being the 

number of determinants; Z is the n by k matrix of the prior information, k being the 

number of second-Ievel covariates; V is the n by n matrix ofbeta covariance values; and 

T2 is the n by 1 vector of specified prior variances. 

/* Initialize variables: */ 

np=nrow(Z); 

ncol=ncol(Z); 

df2=np-ncol(Z); 

Inp=I(np); 

/* Number offirst-stage parameters. */ 

/* Number of second-stage parameters, inc1uding 
an intercept term. * / 

/* Second-stage degrees offreedom. */ 

/* Creating an n by n identity matrix */ 

max _ c=50; count=O; /* Maximum number and count of iterations. * / 

/* Undertake second-stage linear regression: * / 

w=inv(v+t2#Inp); /* Weight matrix. */ 

wv=w*v; wz=w*z; 

ws=sum(w); 

vs=inv(t(Z)*w*Z); 

bs=vs*(t(wz)*b ); 

e=b-(Z*bs ); 

rsst=t( e )*w* e; 

rms=np*rsst/( df2 *ws); 

/* Invert 2nd-stage information. */ 

/* 2nd-stage coefficient estimates. */ 

/* Residual from 2nd-stage estimates. */ 

/* Total residual sums of squares. */ 

/* Residual mean square. */ 

/* Calculate posterior expectations of 1 st-stage parameters: */ 

wvc=wv; 

hatw=Z*vs*t(wz); 

st2=sqrt(t2*t(t2)); 

/* Projection ofb to prior mean. */ 

hatp=wvc*hatw + w#st2 + (wv-wvc); /* Projection ofb to posterior mean. */ 



vp=v-t(wvc )* (Inp-hatw) *v; 

npa=trace(hatp ); 

bp=hatp*b; 

/* Estimated posterior covariance. * / 

/* Effective mode1 degrees offreedom. */ 

/* Estimated posterior mean. * / 

/* Ca1culate variances for interval estimates: * / 

varvp=vecdiag(vp ); 

do i=l to np; 

stderr[i]=sqrt(varvp[i]); 

bpn[i]=bp[i]; 

end; 

Example of matrices 

/* Transforming diagonal into an n by 1 vector, */ 

/* of posterior variances. * / 

/* standard errors of the posterior estimates * / 

/* the posterior estimates * / 

The following are example matrices like the ones 1 used in my analyses with the SAS

IML program. Assuming an analysis offive substances, the following represents the 5xl 

column vector of fitted maximum likelihood coefficients, extracted from SAS PROC 

LOGISTIC output, B=[-0.139, -0.206, 0.363, 1.738, -0.683]; the 5x5 matrix ofbeta 

covanances, 

v= 
r 
0.~~33 

-0.0001 

0.0008 - 0.0025 - 0.0062 - 0.00021 ' 

0.0014 0.0047 -0.0030 0.1671 

also extracted from PROC LOGIS TIC using the COVOUT option; the 5x3 matrix of 

prior information, here representing a continuous intercept term for previous evidence 

and two other categories of exchangeability coded dichotomously as either 0 or 1, 

0.18 0 1 

0 1 0 

z= 0 1 0 

0 0 0 

0.64 0 1 

and the 5xl column vector ofprior variances, all set to reflect a tenfold range, T2=[0.35, 

0.35,0.35,0.35,0.35]. 



4. Results Irom using different definitions 01 the control series 

Two different options for defining the control series in the study were available from the 

Montreal study. Patients with cancer other than of the lung were used as the control 

series for the main body of results in the thesis. This section provides results using the 

alternative option, which was comprised of 533 men identified from either an electoral 

list or random digit dialling procedure. A third option is also inc1uded, involving an 

equal-weight combination of the cancer and electoral-li st series: a random sample of 533 

men with cancer diagnoses were added to the 533 men of the electorallist series. Table 

A-4 provides rate ratios and 90% confidence limits for alI 231 chemicals under these 

different design options. AlI results correspond to modeling strategy 2, where the effect 

of each chemical was adjusted for eight non-occupational confounders: age, ethnicity, 

income, education, recreational activity, history of cigarette smoking, history of alcohol 

consumption, and respondent status. 



Table A-4: Rate ratio estimates, from strategy 2, for 231 chemicals, at ANY level of 
exposure, using three different designs for the control series 

Electorallist 
Cancer Series series Combined series 

Exp (N=2172) (N=533) (N=1066) 
Cases RR(90% CL} RR(90% CL} RR(90% CL} 

1. Abrasives Dust 237 1.2 (1.0, 1.4) 1.2 (0.9, 1.5) 1.2 (1.0, 1.5) 

2. Inorg.Insu1.Dust 112 1.1 (0.9, 1.4) 1.1 (0.8, 1.5) 1.1 (0.8, 1.4) 

3. Excavation Dust 109 1.5 (1.2, 1.8) 1.8 (1.2,2.7) 1.5 (1.1, 2.0) 

4. Metallic Dust 276 1.3 (1.1, 1.6) 1.4 (1.1, 1.8) 1.3 (1.1, 1.6) 

5. Asbestos 177 1.2 (1.0, 1.4) 1.3 (1.0, 1.7) 1.2 (1.0, 1.5) 

6. Crystalline Silica 238 1.3 (1.1, 1.5) 1.3 (1.0, 1.7) 1.3 (1.1, 1.6) 

7. Portland Cement 79 1.4 (1.0, 1.8) 1.6 (1.1, 2.5) 1.6 (1.2, 2.3) 

8. Glass Dust 18 2.0 (1.1,3.5) 2.8 (1.0, 7.4) 2.1 (1.0, 4.3) 

9. Glass Fibres 50 0.9 (0.7, 1.2) 0.9 (0.6, 1.4) 0.9 (0.6, 1.3) 

10. Industrial Talc 35 0.9 (0.6, 1.2) 0.8 (0.5, 1.2) 0.9 (0.6, 1.4) 

11. Brick Dust 34 0.9 (0.6, 1.3) 1.8 (1.0, 3.4) 1.6 (0.9, 2.6) 

12. Clay Dust 28 1.9 (1.2, 3.0) 1.5 (0.8,2.7) 2.0 (1.2, 3.5) 

l3. Concrete Dust 97 1.2 (0.9, 1.5) 1.1 (0.7, 1.5) 1.1 (0.8, 1.5) 

14. Bronze Dust 11 1.0 (0.5, 1.9) 0.9 (0.4, 2.3) 1.1 (0.5, 2.3) 

15. Brass Dust 24 1.6 (1.0, 2.6) 1.6 (0.8, 3.0) 1.6 (0.9, 2.8) 

16. Stainless Steel Dust 51 1.6 (1.2, 2.2) 1.3 (0.8, 2.1) 1.1 (0.8, 1.6) 

17. Mild Steel Dust 169 1.3 (1.1, 1.6) 1.1 (0.8, 1.5) 1.2 (1.0, 1.5) 

18. Inorg.Pigments 93 1.3 (1.0, 1.6) 1.2 (0.9, 1.8) 1.1 (0.8, 1.4) 

19. Mineral Wool Fibres 61 1.1 (0.8, 1.5) 1.2 (0.8, 1.8) 1.1 (0.8, 1.6) 

20. Extenders 49 1.0 (0.7, 1.3) 1.0 (0.7, 1.6) 0.9 (0.6, 1.3) 

21. Aluminium Alloy Dust 63 1.5 (1.1, 2.0) 0.9 (0.6, 1.3) 0.9 (0.7, 1.3) 



Electorallist 
Cancer Series series Combined series 

Exp (N=2172) (N=533) (N=1066) 
Cases RR(90% CL} RR(90% CL} RR(90% CL} 

22. Ashes 36 1.4 (0.9, 2.1) 1.0 (0.6, 1.7) 1.2 (0.7, 1.9) 

23. Cosmetic Talc 13 1.3 (0.7,2.4) 1.1 (0.4, 2.5) 1.4 (0.7, 3.0) 

24. Borates 11 2.0 (1.0, 3.9) 6.4 (2.0, 20.2) 

25. Sodium Carbonate 15 1.2 (0.7, 2.1) 1.0 (0.5, 2.1) 1.1 (0.6, 2.0) 

26. Alumina 160 1.3 (1.1, 1.6) 1.2 (0.9, 1.7) 1.2 (1.0, 1.6) 

27. Silicon Carbide 51 1.1 (0.8, 1.5) 0.9 (0.6, 1.5) 0.8 (0.6, 1.2) 

28. Sulfur 9 0.7 (0.4, 1.4) 0.5 (0.2, 1.1) 0.6 (0.3, 1.2) 

29. Calcium Oxide 69 1.1 (0.8, 1.4) 0.9 (0.6, 1.4) 1.2 (0.9, 1.7) 

30. Calcium Sulphate 100 1.2 (0.9, 1.5) 1.1 (0.8, 1.5) 1.0 (0.8, 1.4) 

31. Calcium Carbonate 46 1.0 (0.7, 1.3) 0.7 (0.5, 1.1) 0.7 (0.5, 1.0) 

32. Titanium Dioxide 38 1.1 (0.8, 1.6) 1.2 (0.7, 2.0) 1.0 (0.6, 1.5) 

33. Iron Dust 37 1.1 (0.7, 1.6) 1.4 (0.9, 2.4) 1.1 (0.7, 1.6) 

34. Iron Oxides 101 1.1 (0.9, 1.4) 1.2 (0.9, 1.7) 1.1 (0.9, 1.5) 

35. CopperDust 47 1.3 (0.9, 1.8) 1.5 (0.9, 2.4) 1.2 (0.8, 1.7) 

36. Zinc Dust 26 1.6 (1.0, 2.6) 1.3 (0.7,2.5) 1.4 (0.8, 2.4) 

37. Zinc Oxide 34 1.2 (0.8, 1.8) 1.2 (0.7, 2.1) 1.0 (0.6, 1.5) 

38. Lead Oxides 22 1.8 (1.1, 2.9) 1.6 (0.8, 3.2) 1.4 (0.8, 2.4) 

39. Basic Lead Carb. 28 1.4 (0.9, 2.2) 1.1 (0.6, 2.0) 1.0 (0.6, 1.7) 

40. Lead Chromate 35 1.1 (0.8, 1.7) 1.1 (0.7,2.0) 1.1 (0.7, 1.7) 

41. Organic Dyes & Pig. 70 1.0 (0.8, 1.3) 1.2 (0.8, 1.8) 1.0(0.7,1.4) 

AlI estimates adjusted for eight non-occupational confounders: age, ethnicity, income, education, 
recreational activity, history of cigarette smoking, history of a1cohol consumption, and respondent 
status. 



Electorallist 
Cancer Series series Combined series 

Exp (N=2172) (N=533) (N=1066) 
Cases RR(90% CL} RR(90% CL} RR(90% CL} 

42. Cotton Dust 65 0.9 (0.7, 1.2) 1.5 (0.9, 2.3) 1.0(0.7,1.4) 

43. Wool Fibres 41 0.9 (0.6, 1.3) 1.3 (0.8, 2.2) 1.1 (0.7, 1.6) 

44. Wood Dust 227 1.2 (1.0, 1.4) 0.9 (0.7, 1.1) 1.0 (0.8, 1.2) 

45. Grain Dust 60 0.9 (0.7, 1.2) 0.9 (0.6, 1.3) 0.9 (0.6, 1.3) 

46. Flour Dust 36 1.0 (0.7, 1.4) 1.0 (0.6, 1.6) 1.1 (0.7, 1.7) 

47. Fur Dust 14 1.2 (0.7, 2.1) 1.1 (0.4, 2.5) 1.0 (0.5, 2.0) 

48. HairDust 9 0.9 (0.5, 1.9) 0.9 (0.3,2.7) 1.4 (0.6, 3.6) 

49. Starch Dust 14 1.4 (0.8, 2.6) 0.9 (0.4, 1.9) 1.2 (0.6,2.4) 

50. Sugar Dust 15 1.6 (0.9, 3.0) 1.1 (0.5,2.6) 1.5 (0.7,3.0) 

51. Leather Dust 21 0.7 (0.5, 1.1) 1.0 (0.5, 2.1) 0.7 (0.4, 1.2) 

52. Tobacco Dust 9 1.0 (0.5, 2.1) 0.7 (0.3, 1.8) 1.0 (0.4, 2.2) 

53. Natural Rubber 44 1.2 (0.8, 1.7) 1.4 (0.8, 2.4) 1.2 (0.8, 1.8) 

54. Synthetic Fibres 45 0.9 (0.7, 1.2) 0.9 (0.5, 1.4) 1.0 (0.7, 1.4) 

55. Plastic Dust 43 0.9 (0.7, 1.3) 1.3 (0.8,2.1) 0.9 (0.6, 1.3) 

56. Rayon Fibres 20 0.9 (0.6, 1.5) 1.3 (0.6, 2.8) 1.1 (0.6, 2.0) 

57. Acrylic Fibres 18 0.8 (0.5, 1.4) 2.9 (0.9, 8.8) 1.4 (0.7, 2.8) 

58. Polyester Fibres 31 1.0 (0.7, 1.5) 1.8 (0.9, 3.4) 1.2 (0.8, 2.0) 

59. Nylon Fibres 23 1.1 (0.7, 1.7) 1.1 (0.5, 2.3) 1.1 (0.6, 2.0) 

60. Acetate Fibres 12 0.8 (0.4, 1.5) 0.6 (0.3, 1.5) 0.8 (0.4, 1.6) 

61. Cellulose Nitrate 18 0.7 (0.4, 1.2) 0.9 (0.5, 1.7) 0.7 (0.4, 1.2) 

AIl estimates adjusted for eight non-occupational confounders: age, ethnicity, income, education, 
recreational activity, history of cigarette smoking, history of alcohol consumption, and respondent 
status. 



Electorallist 
Cancer Series series Combined series 

Exp (N=2172) (N=533) (N=1066) 
Cases RR(90% CL} RR(90% CL} RR(90% CL} 

62. Polyvinyl Chloride 11 0.6 (0.3, 1.2) 1.3 (0.5, 3.4) 0.5 (0.2, 0.9) 

63. Polyvinyl Acetate 21 0.7 (0.4, 1.0) 0.8 (0.4, 1.5) 0.8 (0.5, 1.4) 

64. Poly-Acrylates 29 1.3 (0.8, 1.9) 1.6 (0.9, 2.9) 1.4 (0.8, 2.2) 

65. Alkyds 39 1.0 (0.7, 1.5) 1.6 (0.9, 2.8) 1.1 (0.7, 1.7) 

66. Epoxies 13 1.8 (1.0, 3.5) 2.9 (1.0, 8.2) 2.4 (1.1, 5.5) 

67. Phenol-Fonnald. 47 1.5 (1.0, 2.1) 0.8 (0.5, 1.3) 1.1 (0.7, 1.6) 

68. Urea-Fonnald. 50 1.5 (1.1,2.1) 0.9 (0.6, 1.5) 1.2 (0.8, 1.7) 

69. Polyurethanes 18 1.4 (0.8, 2.4) 1.9 (0.7, 4.9) 1.7 (0.8, 3.5) 

70. Styrene-Buta.Rubber 38 0.9 (0.6, 1.3) 0.9 (0.6, 1.5) 0.8 (0.6, 1.3) 

71. Polychloroprene 30 1.1 (0.7, 1.6) 1.1 (0.6, 1.9) 1.2 (0.8, 1.9) 

72. Fabric Dust 77 0.9 (0.7, 1.2) 0.9 (0.6, 1.3) 0.9 (0.6, 1.2) 

73. Coal Dust 63 1.4 (1.0, 1.9) 1.0 (0.6, 1.4) 0.9 (0.7, 1.3) 

74. Carbon Black 52 1.3 (0.9, 1.7) 1.1 (0.7, 1.7) 1.2 (0.8, 1.7) 

75. Cellulose 58 1.1 (0.8, 1.5) 0.8 (0.6, 1.2) 1.0 (0.7, 1.4) 

76. Soot 91 1.2 (0.9, 1.5) 1.1 (0.8, 1.6) 1.1 (0.8, 1.5) 

77. RubberDust 31 0.9 (0.6, 1.3) 1.2 (0.7, 2.2) 1.0 (0.6, 1.5) 

78. Graphite Dust 8 0.7 (0.3, 1.4) 1.4 (0.4, 4.5) 1.2 (0.5, 3.0) 

79. Hydrogen 19 0.9 (0.5, 1.4) 1.6 (0.7, 3.7) 1.3 (0.7,2.6) 

80. Carbon Monoxide 478 1.2 (1.0,1.4) 1.1 (0.9, 1.3) 1.1 (1.0, 1.4) 

81. Hydrogen Cyanide 14 0.9 (0.5, 1.6) 2.2 (0.8, 5.8) 1.3 (0.6, 2.6) 

AIl estimates adjusted for eight non-occupational confounders: age, ethnicity, income, education, 
recreational activity, history of cigarette smoking, history of alcohol consumption, and respondent 
status. 



Electorallist 
Cancer Series series Combined series 

Exp (N=2172) (N=533) (N=1066) 
Cases RR(90% CL} RR(90% CL} RR(90% CL} 

82. Ammonia 86 0.9 (0.7, 1.2) 1.3 (0.9, 1.9) 1.0 (0.8, 1.4) 

83. Nitrogen Oxides 240 1.6 (1.3, 1.9) 1.5 (1.2, 1.9) 1.4 (1.1, 1.7) 

84. Ozone 67 1.5 (1.1,2.0) 1.6 (1.1, 2.5) 1.3 (1.0, 1.9) 

85. Hydrogen Fluoride 38 2.0 (1.3, 2.9) 1.8 (1.0, 3.2) 1.9 (1.2, 3.1) 

86. Sulphur Dioxide 144 1.1 (0.9, 1.3) 1.2 (0.9, 1.7) 1.1 (0.8, 1.3) 

87. Hydrogen Sulphide 37 1.0 (0.7, 1.5) 0.9 (0.6, 1.6) 1.0 (0.6, 1.5) 

88. Chlorine 15 0.5 (0.3, 0.9) 0.8 (0.4, 1.9) 0.6 (0.4, 1.2) 

89. Hydrogen Chloride 59 1.0 (0.8, 1.3) 1.2 (0.8, 1.9) 1.0 (0.7, 1.4) 

90. Natural Gas 24 1.0 (0.6, 1.5) 0.7 (0.4, 1.3) 0.8 (0.5, 1.3) 

91. Methane 41 1.0 (0.7, 1.4) 0.7 (0.5, 1.2) 0.8 (0.5, 1.2) 

92. Propane 39 1.2 (0.9, 1.8) 0.7 (0.5, 1.2) 0.9 (0.6, 1.4) 

93. Formaldehyde 125 0.9 (0.7, 1.1) 1.0 (0.8, 1.4) 1.1 (0.8, 1.4) 

94. Acetylene 47 1.6 (1.1, 2.2) 1.6 (1.0, 2.6) 1.6 (1.1, 2.4) 

95. Phosgene 11 0.8 (0.4, 1.4) 1.5 (0.6, 4.0) 0.9 (0.4, 1.8) 

96. Spray Gases 15 1.0 (0.6, 1.7) 0.9 (0.4, 1.8) 1.2 (0.6, 2.4) 

97. Coal Gas 8 0.6 (0.3, 1.2) 0.7 (0.2, 2.1) 0.8 (0.3,2.0) 

98. Gas Wei ding Fumes 115 1.5 (1.2, 1.8) 1.9 (1.4, 2.7) 1.7 (1.3, 2.2) 

99. Arc Welding Fumes 107 1.2 (0.9, 1.5) 1.1 (0.8, 1.5) 1.0 (0.8, 1.4) 

100. Soldering Fumes 55 1.1 (0.8, 1.5) 1.4 (0.9, 2.2) 1.2 (0.8, 1.7) 

101.Metal Oxide Fumes 190 1.3 (1.1, 1.5) 1.6 (1.2,2.1) 1.4 (1.2, 1.8) 

AlI estimates adjusted for eight non-occupational confounders: age, ethnicity, income, education, 
recreational activity, history of cigarette smoking, history of alcohol consumption, and respondent 
status. 



Electoral Iist 
Cancer Series series Combined series 

Exp (N=2172) (N=533) (N=1066) 
Cases RR(90% CL} RR(90% CL} RR(90% CL} 

102. Aluminium Fumes 23 1.4 (0.9, 2.3) 1.0 (0.5, 2.0) 0.9 (0.5, 1.5) 

103. Calcium Oxide Fumes 66 1.3 (1.0, 1.8) 1.3 (0.9, 1.9) 1.2 (0.9, 1.7) 

104. Chromium Fumes 43 2.2 (1.5, 3.3) 1.7 (1.0, 2.9) 1.6 (1.0, 2.4) 

105. Manganese Fumes 60 1.6 (1.2, 2.2) 1.3 (0.8, 1.9) 1.2 (0.9, 1.7) 

106. Iron Fumes 94 1.4 (1.1, 1.8) 1.4 (1.0, 1.9) 1.3 (1.0, 1.7) 

107. Nickel Fumes 42 2.1 (1.4,3.1) 2.0 (1.1, 3.4) 1.6 (1.1,2.5) 

108. Copper Fumes 47 2.2 (1.5, 3.1) 1.9 (1.1, 3.4) 1.8 (1.1, 2.7) 

109. Zinc Fumes 39 1.6 (1.1, 2.3) 1.3 (0.8, 2.2) 1.6 (1.0, 2.5) 

110. Silver Fumes 15 1.4 (0.8, 2.4) 2.1 (0.8, 5.6) 1.4 (0.7, 2.7) 

111. Tin Fumes 49 1.6 (1.1, 2.2) 1.7 (1.0, 2.8) 1.6 (1.1, 2.4) 

112. Lead Fumes 41 1.4 (1.0, 2.0) 1.4 (0.9, 2.3) 1.5 (1.0, 2.3) 

113. Other Pyrolysis Fumes 171 1.3 (1.1, 1.6) 1.2 (0.9, 1.5) 1.2 (1.0, 1.5) 

114. Cooking Fumes 57 0.8 (0.6, 1.1) 0.7 (0.4, 1.0) 0.8 (0.6, 1.1) 

115. Gas Eng.Emissions 379 0.9 (0.8, 1.1) 0.8 (0.7, 1.0) 0.9 (0.8, 1.1) 

116. Coal Comb.Products 51 1.4 (1.0, 2.0) 1.3 (0.8, 2.0) 1.3 (0.9, 1.9) 

117. Diesel Eng.Emissions 165 1.2 (1.0, 1.5) 1.4 (1.1, 1.9) 1.3 (1.0, 1.7) 

118. Liquid Fuel Comb.Prod. 71 1.2 (0.9, 1.6) 1.5 (1.0, 2.4) 1.6 (1.1, 2.2) 

119. Wood Comb.Products 40 1.0 (0.7, 1.4) 1.1 (0.7,2.0) 1.2 (0.8, 1.9) 

120. Natural Gas Comb.Prod. 23 0.7 (0.5, 1.1) 0.7 (0.4, 1.3) 0.7 (0.4, 1.2) 

121.Jet Fuel Eng.Emiss. 3 0.4 (0.2, 1.3) 0.7 (0.2, 3.5) 0.8 (0.2, 2.8) 

AlI estimates adjusted for eight non-occupational confounders: age, ethnicity, income, education, 
recreational activity, history of cigarette smoking, history of alcohol consumption, and respondent 
status. 



Electorallist 
Cancer Series series Combined series 

Exp (N=2172) (N=533) (N=1066) 
Cases RR(90% CL} RR(90% CL} RR(90% CL} 

122. Propane Eng.Emiss. 28 1.7 (1.1, 2.6) 3.8 (1.6,9.2) 2.7 (1.4, 5.2) 

123. Plastics Pyrol.Prod. 17 0.6 (0.4, 0.9) 0.9 (0.5, 1.9) 0.6 (0.3, 1.0) 

124. Rubber Pyrol.Prod. 20 0.9 (0.6, 1.5) 1.3 (0.6, 2.9) 0.9 (0.5, 1.6) 

125. Propane Comb.Prod. 30 1.1 (0.7, 1.6) 0.6 (0.4, 1.0) 0.8 (0.5, 1.2) 

126. Inorg.Acid Solutions 129 1.2 (1.0, 1.5) 1.3 (1.0, 1.8) 1.2 (0.9, 1.5) 

127. Alkali, Caustic Solutions72 1.3 (1.0, 1.7) 1.3 (0.9, 1.9) 1.2 (0.9, 1.7) 

128. Javel Water 44 0.7 (0.5, 1.0) 0.6 (0.4, 1.0) 0.7 (0.5, 1.0) 

129. Plating Solutions 10 1.1 (0.5, 2.2) 1.3 (0.5, 3.9) 1.3 (0.5,2.9) 

130. Nitric Acid 9 0.8 (0.4, 1.6) 3.2 (0.9, Il.3) 1.3 (0.6,3.1) 

131. Phosphoric Acid 14 1.7 (0.9, 3.1) 3.2 (1.1, 9.2) 1.9 (0.8, 4.2) 

132. Sulphuric Acid 90 1.0 (0.8, 1.3) 1.4 (0.9, 2.0) 1.0 (0.8, 1.4) 

133. Methanol 44 1.0 (0.7, 1.3) 0.7 (0.4, 1.1) 0.7 (0.5, 1.0) 

134. Ethanol 15 1.4 (0.8, 2.5) 0.7 (0.4, 1.5) 1.0 (0.5, 1.9) 

135. Ethylene Glycol 38 0.9 (0.6, 1.2) 0.8 (0.5, 1.3) 0.8 (0.5, 1.2) 

136. Isopropanol 40 1.1 (0.8, 1.6) 1.0 (0.6, 1.6) 1.0 (0.6, 1.5) 

137. Acetic Acid 28 0.9 (0.6, 1.4) 0.9 (0.5, 1.5) 0.8 (0.5, 1.3) 

138. Carbon Tetrachloride 36 1.0(0.7,1.4) 0.9 (0.5, 1.4) 1.0 (0.6, 1.5) 

139. Methylene Chloride 17 0.9 (0.6, 1.6) 0.8 (0.4, 1.6) 1.0 (0.5, 1.8) 

140. 1, l , 1. -Trichlorethane 16 1.8 (1.0, 3.3) 1.3 (0.6, 3.2) 1.3 (0.6, 2.5) 

141. Trichloroethylene 25 1.3 (0.8, 2.0) 1.5 (0.7,3.0) 1.5 (0.8, 2.6) 

AlI estimates adjusted for eight non-occupational confounders: age, ethnicity, income, education, 
recreational activity, history of cigarette smoking, history of alcohol consumption, and respondent 
status. 



Electorallist 
Cancer Series series Combined series 

Exp (N=2172) (N=533) (N=1066) 
Cases RR(90% CL} RR(90% CL} RR(90% CL} 

142. Perchloroethylene 11 1.1 (0.6,2.1) 3.1 (1.0, 9.5) 2.6 (1.1, 6.3) 

143. Acetone 20 1.0 (0.6, 1.7) 0.9 (0.5, 1.6) 0.8 (0.5, 1.4) 

144. Benzene 162 1.0 (0.8, 1.2) 1.2 (0.9, 1.6) 1.2 (1.0, 1.5) 

145. Toluene 120 0.9 (0.8, 1.2) 1.2 (0.8, 1.6) 1.1 (0.8, 1.4) 

146.Xylene 96 0.9 (0.8, 1.2) 1.1 (0.8, 1.5) 1.1 (0.8, 1.4) 

147. Styrene 10 0.5 (0.3, 0.9) 0.8 (0.4, 2.0) 0.9 (0.4, 1.9) 

148. Phenol 11 0.8 (0.4, 1.6) 0.9 (0.4, 2.1) 0.7 (0.4, 1.5) 

149. Animal & Vege.Glues 34 1.0 (0.7, 1.4) 1.6 (0.9, 2.9) 1.2 (0.7, 1.8) 

150. Turpentine 58 1.2 (0.9, 1.6) 1.0 (0.7, 1.6) 0.9 (0.7, 1.3) 

151. Linseed Oil 53 1.3 (1.0, 1.8) 1.1 (0.7, 1.8) 0.9 (0.7, 1.4) 

152. Synthetic Adhesives 133 1.0 (0.8, 1.2) 0.9 (0.7, 1.3) 1.0 (0.8, 1.2) 

153. Solvents 375 1.2 (1.0, 1.4) 1.2 (1.0, 1.5) 1.2 (1.0, 1.4) 

154. Waxes, Polishes 56 0.9 (0.7, 1.3) 1.1 (0.7, 1.8) 0.9 (0.6, 1.3) 

155. Leaded Gasoline 122 1.1 (0.9, 1.4) 1.0(0.7,1.4) 1.2 (0.9, 1.5) 

156. Kerosene 69 1.6 (1.2, 2.2) 1.1 (0.7, 1.7) 1.5 (1.0,2.2) 

157. Diesel Oil 45 1.4 (1.0, 1.9) 2.0 (1.1, 3.6) 1.6 (1.0, 2.4) 

158. Heating Oil 53 1.4 (1.0, 2.0) 1.5 (0.9, 2.5) 1.6 (1.1, 2.4) 

159. Mineral Spirits 110 1.2 (1.0, 1.5) 1.1 (0.8, 1.5) 1.1 (0.9, 1.4) 

160. Lubric.Oils & Greases 291 1.2 (1.0, 1.4) 1.0 (0.8, 1.2) 1.0 (0.8, 1.2) 

161. Cutting Fluids 85 1.3 (1.0, 1.7) 0.9 (0.6, 1.2) 0.9 (0.7, 1.2) 

AlI estimates adjusted for eight non-occupational confounders: age, ethnicity, income, education, 
recreational activity, history of cigarette smoking, history of alcohol consumption, and respondent 
status. 



Electorallist 
Cancer Series series Combined series 

Exp (N=2172) (N=533) (N=1066) 
Cases RR{90% CL} RR{90% CL} RR{90% CL} 

162. Asphalt 30 0.9 (0.6, 1.3) 0.8 (0.4, 1.4) 0.7 (0.5, 1.1) 

163. Coal Tar and Pitch 23 1.0 (0.7, 1.7) 0.9 (0.5, 1.8) 1.0 (0.6, 1.7) 

164. Creosote 5 0.7 (0.3, 1.7) 0.3 (0.1, 0.9) 0.6 (0.2, 1.5) 

165. Hydraulic Fluid 37 1.0 (0.7,1.4) 0.9 (0.6, 1.5) 0.9 (0.6, 1.3) 

166. Other Mineral Oils 32 1.0 (0.7, 1.4) 1.7 (0.9, 3.0) 1.3 (0.8, 2.2) 

167.Jet Fuel 6 0.6 (0.3, 1.4) 0.5 (0.2, 1.5) 0.6 (0.2, 1.6) 

168. Aviation Gasoline 6 0.6 (0.3, 1.2) 1.0 (0.3, 3.5) 0.7 (0.3, 1.6) 

169. Mineral Spirits+BTX 158 1.3 (1.0, 1.5) 1.1 (0.8, 1.5) 1.2 (1.0, 1.5) 

170. Cutting Fluids pre 1955 65 1.3 (1.0, 1.7) 1.0 (0.6, 1.4) 0.9 (0.7, 1.3) 

171. Cutting Fluids post 1955 62 1.7 (1.2,2.3) 1.0 (0.7, 1.5) 1.1 (0.8, 1.5) 

172. Other Paints,Vamishes 124 1.1 (0.9, 1.4) 1.1 (0.8, 1.6) 1.0 (0.8, 1.3) 

173. Wood Vamishes, Stains 56 1.2 (0.9, 1.7) 1.3 (0.8, 2.0) 1.3 (0.9, 1.8) 

174.Inks 37 1.5 (1.0, 2.2) 1.1 (0.7, 1.9) 1.3 (0.8, 2.0) 

175. Metal Coatings 74 1.2 (0.9, 1.6) 1.4 (0.9, 2.0) 1.4 (1.0, 2.0) 

176. Cyanides 17 1.0 (0.6, 1.7) 2.1 (0.9,5.1) 1.5 (0.8, 2.8) 

177. Fluorides 42 1.8 (1.3,2.7) 2.0 (1.1, 3.4) 1.9 (1.2, 3.0) 

178. Chromium (VI) Comp. 90 1.4 (1.1, 1.8) 1.3 (0.9, 1.9) 1.3 (1.0, 1.7) 

179. Hypochlorites 45 0.7 (0.5, 1.0) 0.6 (0.4, 1.0) 0.7 (0.5, 1.0) 

180. Nitrates 8 0.9 (0.4, 1.9) 1.6 (0.5, 4.9) 1.3 (0.5, 3.2) 

181. Beryllium Compounds 5 1.1 (0.4, 3.0) 0.8 (0.2, 2.8) 0.8 (0.3, 2.4) 

AH estimates adjusted for eight non-occupational confounders: age, ethnicity, income, education, 
recreational activity, history of cigarette smoking, history of alcohol consumption, and respondent 
status. 



Electorallist 
Cancer Series series Combined series 

Exp (N=2172) (N=533) (N=1066) 
Cases RR(90% CL} RR(90% CL} RR(90% CL} 

182. Magnesium Compounds 19 1.9 (1.1, 3.4) 1.2 (0.6, 2.5) 1.2 (0.7, 2.3) 

183. Aluminium Compounds 199 1.4 (1.2, 1.7) 1.3 (1.0, 1.7) 1.3 (1.0, 1.6) 

184. Titanium Compounds 44 1.1 (0.8, 1.6) 1.3 (0.8,2.1) 1.0 (0.7, 1.5) 

185. Vanadium Compounds 16 1.5 (0.8, 2.8) 0.9 (0.4, 2.0) 1.2 (0.6, 2.4) 

186. Chromium Compounds 130 1.4 (1.1, 1.8) 1.3 (1.0, 1.8) 1.3 (1.0, 1.6) 

187. Manganese Compounds 71 1.5 (1.1, 2.0) 1.1 (0.8, 1.6) 1.1 (0.8, 1.6) 

188.Iron Compounds 248 1.2 (1.0, 1.5) 1.3 (1.0, 1.7) 1.2 (1.0, 1.5) 

189. Cobalt Compounds 20 1.4 (0.9, 2.3) 0.7 (0.4, 1.2) 0.9 (0.6, 1.6) 

190. Nickel Compounds 79 1.7 (1.3, 2.2) 1.6 (1.1, 2.3) 1.3 (0.9, 1.7) 

191. Copper Compounds 128 1.3 (1.1, 1.6) 1.4 (1.0, 1.9) 1.3 (1.0, 1.6) 

192. Zinc Compounds 107 1.4 (1.1, 1.7) 1.2 (0.9, 1.7) 1.3 (1.0, 1.6) 

193. Arsenic Compounds 31 0.8 (0.6, 1.2) 1.0 (0.5, 1.7) 0.9 (0.5, 1.4) 

194. Silver Compounds 24 1.2 (0.8, 1.9) 1.4 (0.7, 2.7) 1.2 (0.7, 2.1) 

195. Cadmium Compounds 11 1.7 (0.9, 3.5) 1.4 (0.5, 3.6) 1.5 (0.7,3.4) 

196. Tin Compounds 92 1.4 (1.1, 1.8) 1.6 (1.1, 2.3) 1.7 (1.2, 2.3) 

197. Antimony Compounds 19 1.3 (0.8, 2.2) 1.9 (0.9, 4.0) 2.0 (1.1, 3.8) 

198. Tungsten Compounds 11 1.4 (0.7, 2.6) 0.5 (0.3, 1.1) 0.7 (0.4, 1.4) 

199. Gold Compounds 12 2.0 (1.0, 4.0) 1.2 (0.5, 2.9) 1.7 (0.7, 3.6) 

200. Mercury Compounds 17 1.3 (0.7,2.2) 1.4 (0.6,3.0) 1.1 (0.6, 2.0) 

201. Lead Compounds 434 1.0 (0.9, 1.2) 1.0 (0.8, 1.2) 1.0 (0.8, 1.2) 

AlI estimates adjusted for eight non-occupational confounders: age, ethnicity, income, education, 
recreational activity, history of cigarette smoking, history of alcohol consumption, and respondent 
status. 



Electorallist 
Cancer Series series Combined series 

Exp (N=2172) (N=533) (N=1066) 
Cases RR(90% CL} RR(90% CL} RR(90% CL} 

202. Alkanes (CI8+) 320 1.2 (1.0, lA) 1.0 (0.8, 1.3) 1.0 (0.9, 1.2) 

203. Alkanes (C1-C4) 82 1.1 (0.8, lA) 0.7 (0.5, 1.1) 0.9 (0.7, 1.2) 

204. Alkanes (C5-CI7) 368 lA (1.2, 1.7) lA (1.1, 1.8) 1.5 (1.2, 1.8) 

205. Aliphatic Alcohols 83 1.0 (0.8, 1.3) 0.8 (0.6, 1.1) 0.9 (0.6, 1.1) 

206. Aliphatic Aldehydes 146 0.8 (0.7, 1.0) 1.0 (0.8, lA) 1.0 (0.8, 1.3) 

207. Chlorinated Alkanes 93 1.1 (0.9, lA) 0.9 (0.7, 1.3) 1.0 (0.7, 1.3) 

208. Unsat.Aliph.Hydrocarb. 54 1.5 (1.1,2.0) 1.5 (1.0, 2.4) 1.5 (1.0, 2.1) 

209. Chlorinated Alkenes 42 1.2 (0.8, 1.7) 1.5 (0.9, 2.6) lA (0.9, 2.2) 

210. Aliphatic Esters 29 1.1 (0.7, 1.6) 1.3 (0.8, 2.2) 1.2 (0.7, 1.8) 

211. Aliphatic Ketones 47 0.8 (0.6, 1.1) 0.9 (0.6, 1.3) 0.8 (0.5, 1.1) 

212. Fluorocarbons 16 0.6 (004, 1.1) 0.6(0.3,1.1) 0.7 (004, 1.3) 

213. Glycol Ethers 26 1.1 (0.7, 1.7) 1.3 (0.7, 2.5) 1.0 (0.6, 1.7) 

214.PAH (Any) 581 1.1 (1.0, lA) 0.9 (0.7, 1.2) 1.0 (0.8, 1.2) 

215.PAH (Other) 187 1.2 (1.0, lA) 1.1 (0.9, lA) 1.1 (0.9, 1.3) 

216.PAH (Wood) 40 1.0 (0.7, lA) 1.1 (0.6, 1.9) 1.2 (0.8, 1.9) 

217.PAH (Petroleum) 561 1.1 (1.0, 1.3) 0.9 (0.7, 1.2) 1.0 (0.8, 1.2) 

218.PAH (Coal) 84 lA (1.0, 1.8) 1.1 (0.7, 1.5) 1.2 (0.9, 1.7) 

219. Benzo(a)pyrene 220 1.2 (1.0, lA) 1.2 (0.9, 1.5) 1.1 (0.9, lA) 

220.MAH 331 1.2 (1.0, lA) 1.2 (1.0, 1.5) 1.2 (1.0, lA) 

221. Aromatic Alcohols 21 0.9 (0.6, lA) 0.5 (0.3, 0.9) 0.6 (004, 1.1) 

AlI estimates adjusted for eight non-occupational confounders: age, ethnicity, income, education, 
recreational activity, history of cigarette smoking, history of alcohol consumption, and respondent 
status. 



Electorallist 
Cancer Series series Combined series 

Exp (N=2172) (N=533) (N=1066) 
Cases RR(90% CL} RR(90% CL} RR(90% CL} 

222. Aromatic Amines 55 0.9 (0.7, 1.2) lA (0.9, 2.2) 1.0 (0.7, 1.5) 

223. Phthalates 15 0.5 (0.3, 0.9) 0.8 (004, 1.6) 0.7 (004, 1.2) 

224. Isocyanates 16 1.0 (0.6, 1.7) 1.6 (0.6, 3.8) 1.3 (0.7, 2.6) 

225. Cleaning Agents 154 1.0 (0.8, 1.2) 0.8 (0.6, 1.0) 0.9 (0.7, 1.1) 

226. Phannaceuticals 13 1.2 (0.7, 2.2) 1.2 (0.5, 2.6) 1.3 (0.7,2.7) 

227. Laboratory Products 7 1.1 (0.5, 2.2) 1.5 (0.5,4.3) 1.8 (0.7, 4.8) 

228. Fertilizers 57 1.2 (0.9, 1.6) 1.5 (0.9, 204) 1.3 (0.9, 1.9) 

229. Pesticides 54 1.0 (0.7, 1.3) 0.9 (0.6, lA) 0.9 (0.6, 1.3) 

230. Biocides 78 0.8 (0.6, 1.0) 0.8 (0.6, 1.1) 0.7 (0.6, 1.0) 

231. Bleaches 6 0.5 (0.2, 1.1) 0.8 (0.3,2.7) 0.6 (0.2, 1.5) 

AIl estimates adjusted for eight non-occupational confounders: age, ethnicity, income, education, 
recreational activity, history of cigarette smoking, history of alcohol consumption, and respondent 
status. 


