
The Design of an SoC-based Programmable
Controller Development Platform

Alexandre Courtemanche

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

December 2014

A thesis submitted to McGill University in partial fulfilment of the requirements for the
degree of Master of Engineering.

c© 2014 Alexandre Courtemanche

2014/12/02

i

Abstract

This thesis presents the development of the basis for an industrial controller based on

System-on-Chip FPGA (SoC FPGA) technology as well as its accompanying suite of de-

velopment tools. The objective of the project is to design an industrial controller devel-

opment platform that can gracefully handle both high-level and low-level functionalities.

A demonstration of Hardware-in-the-Loop (HIL) simulation with a graphical interface on

a SoC FPGA using open-source software is one of the main pillars of the contributions of

this thesis. First, a review of the embedded system design methodologies, the basics of

co-processor design, and of development environments is presented. Next, the controller

architecture’s design process, which has produced multiple prototypes, is shown. The first

prototype uses a decoupled architecture with a separate Central Processing Unit (CPU) and

Field Programmable Gate Array (FPGA). A PCB demonstrating memory accesses from a

microcontroller has been designed. Another prototype simulates a decoupled architecture

composed of a powerful ARM core and an FPGA connected by PCI-Express (PCI-e). The

most recent design is one based on SoC FPGA technology. To show the possibilities of

this platform, a suite of example digital IP cores have been designed and simulated. Fur-

thermore, a collection of development tools has been assembled and configured to enable

developers to use this platform. In addition to the standard GNU tools, the thesis puts

an emphasis on the modification of open-source simulation software to enable development

with HIL simulation.

ii

Sommaire

Ce mémoire de mâıtrise présente l’élaboration de la base d’un contrôleur industriel, qui

sera construit à partir de la technologie des SoC FPGAs, ainsi que la collection d’outils

de développement qui l’accompagne. L’objectif du projet est de concevoir un plateforme

de développement pour des contrleurs industriels qui possèdent à la fois des fonctionalités

de bas-niveau et de haut-niveau. La démonstration d’une simulation HIL avec interface

graphique qui utilise des logiciels libres est l’une des contributions académique principales

de ce mémoire. Premièrement, une révision des méthodologies en conception de systèmes

embarqués, de la base de conception de co-processeurs, ainsi que des environnements de

développement est présenté. Ensuite, le procédé de développement de l’architecture, qui a

produit plusieurs prototypes, est démontré. Le premier prototype emploie une architecture

découplée qui utilise un processeur et FPGA séparé. Un circuit qui démontre les accès

mémoire á partir d’un microcontrôleur a été fabriqué. Un autre prototype simule une

architecture découplée qui est composée d’un processeur ARM et d’un FPGA connecté

par PCI-e. La plus récente conception est basée sur la technologie SoC FPGA. Pour

faire une démonstration des possibilités de cette plateforme, une collection de modules

numériques ont été conçus et simulés. De plus, une collection d’outils de développement a

été assemblée et configurée afin permettre aux développeurs d’utiliser cette plateforme. En

plus des logiciels GNU standards, ce mémoire de mat̂rise mets l’accent sur la modification

des logiciels libres de simulation afin de permettre le développement avec de la simulation

HIL.

iii

Acknowledgments

First, I would like to thank my parents André Courtemanche and Ingrid Pitchen for their

support and dedication to my education. It is thanks to their encouragement during the

hard times and their constant determination to seeing me succeed that it has been possible

for me to attain one of the most difficult achievements in higher education. I consider this

thesis the pinnacle achievement of my academic career and it would not have been possible

without them.

Secondly, I would like to thank my supervisor Zeljko Zilic for giving me the opportu-

nity to work in a world-class academic research laboratory and to learn from some of the

top researchers in electrical engineering. I will also give special thanks to Jean-Samuel

Chenard for the generous donation of his time and expertise as well as the opportunity to

collaborate with his company Motsai Research. From explaining the subtleties of applying

for government scholarships, to reviewing the layout of my first PCB, and meticulously

reviewing this thesis, Jean-Samuel has helped me almost every step of the way. I want to

thank my friend and colleague Ben Nahill for helping me solve some of the most difficult

engineering problems and for teaching me a great deal about PCB design. His hard work,

determination, and ’can-do’ attitude has inspired me to become a better engineer. I wish to

thank all of the Microprocessor Systems students and want to point out that even though I

was teaching the course material to them as the teaching assistant, I learned as much from

them as they learned from me. I am grateful to the Fonds Québécois de la Recherche sur

la Nature et les Technologies for their financial assistance during my degree.

Finally, I wish to thank Andréanne Moreau for her constant support and encouragement

during my master’s studies.

iv iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Overview . 1

1.1.2 System-on-Chips . 2

1.1.3 Development Environment . 2

1.2 Actors . 3

1.3 Contributions . 3

1.4 Thesis overview . 4

2 Background 5

2.1 Dealing with evolvability in embedded system design 5

2.2 Computer Buses . 8

2.3 FGPA-based System-on-Chips . 10

2.3.1 FPGA . 10

2.3.2 SoC-FPGA . 10

2.3.3 FPGA Tools . 11

2.4 Hardware/Software Co-Design . 12

2.5 Memory-Mapped Co-Processors . 12

2.5.1 Co-processors . 13

2.5.2 Memory-Mapped Interface . 14

2.6 LMS-based Adaptive Filters . 15

2.6.1 Adaptive Filters . 15

2.6.2 Least Mean Squares Algorithm . 17

2.7 Development Environments . 17

Contents v

2.7.1 CMSIS-SVD . 17

2.7.2 Python . 18

2.7.3 Scilab . 19

2.7.4 Graphical algorithm design with Xcos 19

2.7.5 Hardware-in-the-loop Simulation 20

3 System Architecture 22

3.1 System Requirements . 22

3.2 System Overview . 22

3.3 Initial Design Decisions . 24

3.3.1 Prior platform . 24

3.3.2 Initial Proposal . 24

3.3.3 F4-Discovery Daughter Board . 27

3.3.4 FSMC Latency . 29

3.3.5 Separate CPU and FPGA linked by PCI-Express 31

3.4 SoC FPGA based design . 32

3.4.1 Overall Architecture . 33

3.4.2 Hard Processor System . 34

3.4.3 Real-Time Microcontroller . 35

3.4.4 System Interconnect . 35

3.5 Operating System Configuration . 37

3.5.1 Boot flow . 37

3.5.2 Device Tree Structure . 38

3.5.3 Userspace I/O . 39

3.6 Dealing with evolvability . 40

3.6.1 Software Evolvability . 41

3.6.2 Evolvability of requirements . 42

3.7 Comparison with other works . 43

4 Design Details 44

4.1 Case Study: PID Controller . 44

4.1.1 Implementation . 45

4.1.2 Simulation . 45

Contents vi

4.2 Case Study: Numerically Controlled Oscillator 47

4.2.1 Implementation . 47

4.2.2 Simulation . 49

4.2.3 Potential Applications . 49

4.3 Case Study: LMS Adaptive Filter . 50

4.3.1 Simulation . 50

4.3.2 Implementation . 51

5 Development Environment 55

5.1 API Languages . 55

5.2 Scilab and Xcos . 56

5.3 Hardware-in-the-Loop modelling with Scilab on a Desktop PC 57

5.3.1 Motivation . 57

5.3.2 Experimental Setup . 58

5.3.3 Software Setup . 59

5.3.4 Experimental Results and Analysis 63

5.4 Using Scilab and Xcos on the SoCFPGA 67

5.4.1 Workflow proposal . 68

5.4.2 Hardware-in-the-Loop Simulation with SoCFPGA 68

5.5 Register Map Viewer . 71

5.5.1 Motivation . 71

5.5.2 Features . 72

5.5.3 Design . 74

5.5.4 Comparison with other tools . 75

5.5.5 Possible improvements . 76

6 Conclusion 77

6.1 Summary . 77

6.2 Future Work . 77

A F4-Discovery Daughter Board Schematics 79

B Python Code 80

B.1 LUT Memory Content generation . 80

Contents vii

B.2 PID python script . 81

References 83

viii viii

List of Figures

2.1 Example dependency graph of an embedded system with its associated re-

quirements . 7

2.2 SVD file format hierarchy . 18

2.3 General Architecture of an HIL testbench 20

3.1 Golden Lion Overall Structure . 23

3.2 FPGA Internal Structure . 25

3.3 EIM to Wishbone transaction . 26

3.4 F4-Discovery Board . 28

3.5 F4-Discovery Daughter System Overview 29

3.6 Single 16-bit transaction . 31

3.7 PCI-e Transaction Burst Access . 32

3.8 Arrow SoCKit . 33

3.9 SoC FPGA Overall Architecture . 34

3.10 Unified Address Space . 36

3.11 System synthesis report . 36

3.12 Preloader Generation . 38

3.13 Userspace I/O Framework . 40

3.14 Golden Lion dependency graph . 42

4.1 PID Interface Module . 45

4.2 Hardware PID Step Response . 46

4.3 NCO Hardware Structure . 48

4.4 NCO Implementation . 49

4.5 Magnitude Response of reference filter . 51

List of Figures ix

4.6 Coefficient Values of Adaptive Filter . 52

4.7 Serial Adaptive Filter . 53

5.1 Comparison of time used for 2000 MMAP memory transactions. 57

5.2 M-STF4BB Base Board . 58

5.3 Overall System Configuration . 60

5.4 Graphical Xcos Window . 61

5.5 Ethernet Relay . 62

5.6 Real Time vs. Simulation Time Plot for USB at Fs = 5 Hz 63

5.7 Real-Time vs. Simulation Time for UDP 64

5.8 Fs = 1 KHz . 64

5.9 Fs = 5 KHz . 64

5.10 Packet Exchange Time Histogram at Fs = 1 KHz 66

5.11 Packet Exchange Time Histogram with improvements at Fs = 5 KHz . . . 67

5.12 Real-Time vs. Simulation Time on ARM Cortex-A9 70

5.13 Fs = 100 Hz . 70

5.14 Fs = 166 Hz . 70

5.15 Writing to a memory-mapped register . 73

5.16 Reading a memory-mapped register . 74

A.1 STM32F4-Discovery Board . 79

1 1

Chapter 1

Introduction

1.1 Motivation

1.1.1 Overview

The digital age is a period in human history characterized by an economy based on informa-

tion computerization. It is allowing rapid global communications and networking to shape

modern society. It is also important to note that the information age has been formed by

monumental advances in microelectronics technology. As the fabrication process and tech-

nology used in the semiconductor industry improves and engineers find ways to fit more

and more transistors together on a microelectronics circuit, computing power grows expo-

nentially year-to-year. Today, modern microprocessors offer high processing capabilities at

very low cost. For example, recent ARM-based microprocessors can offer similar computing

performance to what was present in personal computers 15 years ago but at a significantly

smaller form factor and energy consumption. As the cost of computing decreases, it is now

economically feasible to integrate more computing capabilities in new fields of activity.

In many end applications such as robotics and industrial control, computer systems

need to provide a very high degree of precision as well as quick and deterministic reaction

times. At the same time, there is also a desire for these systems to provide a higher degree

of intelligence and Human-Machine Interaction (HMI) features. General purpose computer

systems can usually provide the former but cannot provide the latter. Building a solution

that can address all of these needs while keeping costs and complexity low can be very

challenging.

2014/12/02

1 Introduction 2

This thesis proposes using modern microelectronics technology to address the challenge

of unifying general computing features such as video output, networking, and HMI with

the ability to provide quick and deterministic reaction times in an easy-to-use computer

architecture. The solution takes the form of a computer system on which it is easy for an

engineer to build software that uses both types of capabilities.

This development platform is developed in tight collaboration with MotSAI Research as

well as with funding from the government of Quebec and the government of Canada. The

project’s name is Golden Lion and will be used as the basis to a set of controllers that can

be used on industrial machines, high-precision control systems, and other similar fields.

1.1.2 System-on-Chips

Customers who purchase a computer of any form, whether it is an on-board computer in a

car or a home PC, demand as many functionalities as possible from the products they buy.

This has pushed the microelectronics industry to integrate as many features as possible

into a given electronic circuit, as opposed to building circuits that are dedicated to a small

number of roles. This trend has produced what is called a System-on-Chip (SoC), which

is an electronic chip that can perform a large number of roles concurrently, whether it is

communicating over the internet, producing a video output to a screen, or performing the

role of a computer’s CPU, the central ”brain” of a computer. The advent of SoCs allows

computer engineers to build computer systems that can perform more functions and use

less electronic parts to do so. This technology is at the core of the Golden Lion project

and allows it to contain many features while retaining its small form factor and reduced

complexity.

1.1.3 Development Environment

A development environment is a set of software tools that help a computer programmer

create programs that run on a particular platform. These environments reduce the time

it takes for a programmer to create fully-functional programs. As SoC manufacturers in-

tegrate more features into smaller form factors, the inherent complexity of these devices

increases. This makes it more difficult for developer who uses these devices in their products

to get them to the market in reasonable time frame. To address this difficulty, manufactur-

ers provide software tools that abstract away the technical details of developing for their

1 Introduction 3

platform. It has become the standard for manufacturers to provide intellectual property

and design examples to allow a developer to build a system in weeks as opposed to years.

Many vendors leverage established standards so that software developers can use famil-

iar development environments and get it up-and-running quickly. For example, in the field

of embedded systems engineering, GNU/Linux is set to become the operating system of

choice on embedded SoCs due to its vast array of established software libraries and tools.

Furthermore, more and more engineers want to design and test their real-time algo-

rithms using a technique called HIL simulation. HIL simulation is a technique where the

development and testing of algorithms is done using an actual actual plant as opposed to

a simulation of it. It can also involve the use of a embedded controller interacting with

a plant simulation. By testing a design with actual hardware, using this technique can

reduce development time and time to market.

Golden Lion stands on the shoulder of giants. By using Free and Open-Source Software

(FOSS), it has been possible to create a functional prototype for Golden Lion within a

small fraction of the time it would take had all the software been written from scratch.

FOSS is free to use, distribute, and modify. It has lower costs, and in most cases costs

only a fraction of their proprietary counterparts. FOSS also allows programmers that use

Golden Lion for their projects to be familiar with the tools right away and help them finish

their project as quickly as possible.

1.2 Actors

It is important to define the main actors that are referenced in this thesis. The objective

of the project is to design the flexible baseline of a computer system that developers and

integrators use to build a working solution for an end-user. Developers, engineers and

integrators use the base design to build their applications. They are also referred to as the

user of the baseline system and its suite of development tools. The operator is the person

that uses the end-application of the computer system that the integrator has built.

1.3 Contributions

In this thesis, the basis for an industrial programmable controller is designed using the

latest SoC FPGA technology. A hardware and software architecture has been devised to

1 Introduction 4

fulfill this purpose and is compared to other existing computer architectures. The main

academic contribution is the demonstration of open-source simulation software performing

HIL simulation on a SoC FPGA. An analysis of the performance of the HIL testbench

in comparison to other setups is performed. Accompanying this is a novel command-line

debugging tool to assist programmers in developing their application.

1.4 Thesis overview

Following the introduction, this thesis will give an overview of existing real-time and co-

processor architectures as well as techniques used to optimize performance of these systems.

Various aspects such as the design flow related to real-time controller development will be

also examined.

Chapter 3 will discuss the architecture design decisions and trade-offs. The quantitative

and qualitative requirements of the platform will be elaborated upon. Design decisions

involving both the software and hardware portions of the system as well as issues related

to the particular use of the operating system will be also be covered.

Chapter 4 will cover the details of the design of some of the system’s IP blocks. The

protocols used in the experiments as well as the basic setup will be elaborated.

In Chapter 5, the various development environments to help engineers create their

applications on the Golden Lion platform and their associated workflows will be explored.

This chapter contains the main contributions of this thesis. It will be shown how open-

source tools can be used in the context of HIL simulation.

Finally, the last chapter will contain the conclusion and suggestions for future work as

well as potential improvements to the real-time architecture and development environments.

5 5

Chapter 2

Background

In this section, the background work on systems related to various components of the

project’s architecture will be reviewed. First, there is an overview of the published works

on how to deal with evolvability in industrial system design, which is one of the main in-

tended end applications for this platform. Next, an overview of the technology of computer

buses will be performed. Today’s modern SoC FPGA are then reviewed and analysed in

terms of what features they offer to the development of this platform. One of the basic

IP cores designed for this thesis is an LMS-based adaptive filter, which is why the basics

of adaptive filtering are covered. A brief overview of techniques in hardware/software co-

design are explained. Following this, an overview in the design of co-processors as well

as their associated connectivity to the main processor is shown. Finally, the documenta-

tion and publications related to the various tools used in embedded system development

are presented. This includes a review of Model-based design (MBD) software as well as

techniques such as HIL simulation.

2.1 Dealing with evolvability in embedded system design

The methodologies for embedded system design have changed continuously as technologies

available to the designers have improved. With that improvement of technology comes

additional complexity. This can sometimes cause an increase in development time.

The lifetime of an embedded system often does not end at delivery. In many applica-

tions, such as in industrial electronics system design, there are many situations where there

is a need to add new features or apply new requirements after the first deployment. The

2014/12/02

2 Background 6

reality is that embedded systems exist within the constraint of economics. It would not

make sense for an owner of a system or a system maintainer to completely overhaul their

machines every time there is an evolution in technology. Sometimes, using new technology

results in under-the-hood improvements that are not always immediately apparent to the

user or do not always yield immediate monetary results. Legacy industrial systems are

becoming more and more common as it is costly to constantly upgrade industrial systems.

Obsolescence is also a big problem as it can get very costly to replace parts that are no

longer fabricated, obliging maintainers to keep a stock of spare parts. A decision process

has been proposed to deal with the increasing challenge for owners of stable working sys-

tems to deal with the obsolescence and phasing out of older parts [1]. Even algorithms [2]

and simulations [3] have been developed help estimate the costs of part obsolescence and

plan for the related eventualities. Researchers are also looking at FPGAs to approach this

problem [4]. This approach makes sense, because Intellectual Property (IP) blocks like an

embedded CPU can be programmed in an FPGA and this IP block can be more easily

transferred to a more modern FPGA when this part becomes obsolete. This way, the same

functionalities can be achieved and there is very little porting work to do.

Papers have also been written on how to manage the evolvability of embedded systems

where the management of legacy technology becomes inevitable. For example, there are

papers that discuss how to design an embedded system with evolvability in mind by using

an approach based on concept creation and buffer interface wrappers[5].

Hallmans et al. discuss this problem [6] and propose a methodology for handling evolv-

ability in complex embedded control systems that are expected to function for a long time

[7]. The authors present a method to minimize the work required to maintain existing

functions as well as implement new ones. They specifically identify two major challenges

when dealing with maintaining embedded systems over a long life cycle. The first prob-

lem is of obsolete components, which makes it difficult to repair or even prepare for new

features to existing systems. Here are the following options for dealing with this: You can

choose to buy components for the rest of the system’s life cycle, you can replace the broken

component with a new one, or if that is not possible, you can replace a larger part of the

system. The next challenge is the capability to accommodate new requirements on top

of the existing installation. The authors specifically present the issue of cybersecurity as

an example: when increasing connections to the internet are established in the workplace,

it becomes necessary to protect these systems against possible vulnerabilities arising from

2 Background 7

these connections. In addition to these two difficulties is the issue of having a structured

for testing and verification once new features are applied.

Here is an interesting component of their methodology: One enumerates all of the

requirements of a unit along with its dependencies and its included functions. This includes

the functions (filters, amplifiers, Analog-to-Digital Converter (ADC)s, User Interface (UI),

etc) and their associated resources: configurations, communication (data buses, external

buses, communication interfaces), Input/Output (I/O), and hardware platforms. With

this enumeration, one associates each requirement with certain function as well as its set

of supporting resources and build a dependency graph such as the one in Figure 2.1. By

representing these functions in a graph, you can more readily determine the impact of the

failure of a component and the implications of an eventual upgrade or repair.

Fig. 2.1 Example dependency graph of an embedded system with its asso-
ciated requirements

F: Functions

T: Configurations

C: Communications

I or O: Inputs or Outputs

H: Hardware

2 Background 8

They also describe how this methodology can be used with functions and its associated

resources in release handling. This is useful since it is important to keep track over time

which functions are included in different releases and versions of a product. Their proposed

release handling method deals with this by immediately identifying possible conflicts in a

dependency graph. It also allows a company to identify which versions of their devices

need to be verified for a particular function F.

2.2 Computer Buses

In computer architecture, a computer bus is a communication system used to transfer in-

formation between components of a computer. It can also be used to transfer information

from one computer to another. Generally, a computer consists of a CPU to perform math-

ematical operations on data, main memory to keep hold of that data, as well as a variety

of peripherals to send that data back and forth with the world outside of the computer.

Modern systems can have more complicated architectures and can include a larger

number of components. For example. multi-core CPUs, primary and secondary hard

drives, Graphics Processing Unit (GPU)s, networking peripherals, and screen displays all

need to communicate with each other. Different types of buses are used depending on

the requirements of the particular application. Generally, buses connecting closely placed

components are more performant than ones connecting to components that are far apart.

For example, on-chip buses that connect a CPU to its closely placed peripherals such as

the cache and fast memory components that are on the same die are several orders of

magnitude faster than buses that connect a CPU to peripheral cards. Over the years, there

has been a lot of effort spent by researchers in improving the bandwidth and latency of

different buses. As a result, bus design has taken on many different forms and has become

more complex. Depending on the different applications, buses can be serial or parallel,

synchronous or asynchronous.

In the 1990s, most of the computer peripherals were connected to the CPU through a

bus standard called Peripheral Component Interconnect (PCI) [8]. PCI started out as a

32-bit bus that operated in the range of 33 MHz that could be upgraded to accommodate

64 bits. As technology improved over the years, the operating frequency has also increased.

The bus could only handle a maximum of five devices at a time. However, using a parallel

bus has its limits.

2 Background 9

As it turns out, serial transmission is faster than parallel transmission due to the num-

ber of bottlenecks involved [9]. One of the problems with parallel transmission is the

phenomenon of crosstalk, where communicating parallel wires interfere with each other,

either through attenuation, induction or cross-coupling. With these errors, it becomes nec-

essary to process them at the receiving end, which increases the overall overhead. Another

problem is that it cannot be guaranteed that all of the signals going from the transmitter

to the receiver will arrive at the same time. This means that the operating frequency is

only as fast as the slowest of the signal lines. This synchronization problem is made worse

when the signal lines go through long distances (such as in desktop motherboards) and the

length differential between the signals lines is exacerbated.

Because of this, the computer electronics industry has shifted from using parallel trans-

mission to serial transmission technology such as Serial ATA (SATA) or PCI-e. Increasingly,

PCI-e is becoming the standard for high-performance communication between a computer’s

CPU and its peripherals. It is the successor to the the parallel PCI and AGP serial bus

standards. The improvements of PCI-e over PCI are striking. Because of the parallel

nature of PCI, the speed of the bus was limited to its slowest connected peripheral and

was limited to one master at a time in a single direction. In contrast, PCI-e supports

full-duplex two-wire serial communication between any two endpoints with no limits on

concurrent accesses between multiple endpoints on the PCI-e interconnect. Each two-wire

serial connection is called a PCI-e lane. Each lane can operate as fast as 4 Gbit/s [10]. To

increase the bandwidth on a PCI-e connection, the number of PCI-e lanes to the peripheral

can simple be increased. The superiority of PCI-e can be explained by the fact that at

high frequencies, it is easier to make a single connection go 16 times faster than to double

the speed of 8 connections. On the software side, the PCI-e standard uses a packet based

protocol for the transaction. From the point of view of the CPU, the Operating System

(OS)’s kernel detects PCI-e endpoints with their associated Base Address Register (BAR)

which allows for communication through memory access instructions.

For the last decade, designers have been trending towards Network-on-Chips (NoCs)

topology for internal communication between nodes in an Integrated Circuit (IC). Even in

2002, researchers were seeing NoCs as the next thing in SoC design [11]. NoC technology is

a communication system that is present inside modern ICs and is used for interconnecting

different IP cores. It can be used to connect modules that may be in different clock domains.

Bridging different clock domains is important, since modern ICs no longer can rely on only

2 Background 10

one clock signal to remain synchronized and are vulnerable to clock skew effects. For on-

chip communication bus structures, the present trend concretising is towards a NoC-based

topology. There are publications that propose NoC topology in a design. For example,

Dally and Towles propose replacing design-specific global on-chip wiring with a general-

purpose on-chip interconnection network. They say that their approach has advantages in

structure, performance and modularity. It results in significantly lower power dissipation,

higher propagation velocity and higher bandwidth than what is possible with conventional

circuitry [12].

2.3 FGPA-based System-on-Chips

2.3.1 FPGA

An FPGA is an integrated circuit that can be configured by a designer after manufacturing.

It implements digital logic that is specified by a designer using Hardware Description Lan-

guage (HDL). An FPGA can contain programmable logic blocks as well as a hierarchy of

reconfigurable interconnects that allow the blocks to be connected together. The big advan-

tage of using FPGA in designs is flexibility and post-release updates to add new features or

to fix bugs. Using an FPGA for a digital logic design as opposed to an Application Specific

Integrated Circuit (ASIC) is that it shortens the time it takes to get a product to market.

There are many companies in the business of manufacturing FPGAs. The main competing

vendors in this space are Xilinx, Altera and Microsemi (formerly known as Actel). Devices

specialties range from low-cost chips intended for embedded applications, to very expensive

high-end chip that can deliver a lot of processing power intended for telecommunication or

intensive video processing applications for example.

2.3.2 SoC-FPGA

Electronic integration of multiple functions into single chips has been undergoing ever since

the creation of the IC. Today, this trend persists within the domain of FPGAs with the

introduction of the SoC FPGA. A SoC FPGA combines the flexibility of programmable

logic with the performance of an ASIC. The most popular examples of this type of circuit

are the Xilinx Zynq family and the Altera SoCFPGA. Both these product families contain

ASIC processor blocks based on the ARM Cortex-A series of processors alongside their

2 Background 11

collection of peripherals. The Cortex-A series is an embedded processor IP block sold

by ARM Holdings [13]. It is used in a wide variety of applications such as mobile and

embedded end uses. It posesses the standard components most CPUs should have, such

as multiple levels of cache memory, multiple cores, a 32-bit Instruction Set Architecture

(ISA). Its vendor, ARM Holdings, is a fabless company whos business model is based on

selling their CPU blocks to third-parties who take care of the actual manufacturing. By

integrating these CPU blocks into the same die as the FPGA, FPGA designers help system

designers use less electronic components in their solution. By using less electronic parts in

a design, it can allow for lower power consumption and cause less integration headaches.

2.3.3 FPGA Tools

Although previously very expensive and costly to develop, PCI-e IP cores have become

standard in the development suites distributed by the main FPGA vendors [14] [15]. Being

imprinted onto the silicon dies and connected to Serializer/Deserializer (SerDes) high-speed

serial transceivers, these ’hard’ IP cores make it much easier to develop applications that

are accessible by PCI-e. Accompanying this IP is a set of HDL files that provides the

verification engineer with an application programming interface (API) to help simulate the

behaviour of a PCI-e endpoint. Research regularly leverages this technology in experiments.

For example, Cao et al. use the Xilinx Development tools and free-of-charge IP cores to

run a PCI-e root complex on one development board as well as an endpoint on another

one. It includes an AXI-PCIe bridge which translates the BAR to AXI protocol. They

have also written device drivers to control the root complex and ultimately they want to

control other SOPC devices with this method [16].

An important component of the suite of development tools from FPGA vendors is the

system-level design tool. This sort of tool allows designers to create their FPGA design at

the top level by binding together IP cores that are either created by the designer or by the

FPGA vendor. In the case of Altera’s tool, QSys, it gives designers access to an automatic

NoC generator and its associated bus translators that bind together the IP cores in the

system.

2 Background 12

2.4 Hardware/Software Co-Design

Hardware/Software Co-Design (HSCD) is any design technique for the creation of systems

with both hardware and software components. At the core, it is a technique that uses the

synergism of hardware and software design to meet system-level objectives. Embedded sys-

tems design is particular because the hardware and the software must be designed together

to make sure that the solution meets performance, cost, function and reliability goals. It

requires delicately balancing of software and hardware resource requirements. Cost is an

important consideration when choosing either hardware or software for the implementation

of a product [17]. The technique has evolved over the years and has readily taken many

forms as researchers have been looking at ways to improve the workflow associated with

this technique.

Even in the 1990s, the potential of FPGAs for HSCD was being recognized. In an invited

paper on HSCD published in the IEEE proceedings in 1997, De Micheli and Gupta explain

how FPGAs are game changers in the context of HSCD [18]. FPGA technology can be

reconfigured after manufacturing to perform tasks better than if they had been performed

on a microprocessor. This can be done without changing the underlying hardware as

opposed to digital design using Very Large Scale Integration (VLSI). In this paper, they say

that the main challenge of HSCD is identifying the crucial portions of software algorithms

and implementing them in either hardware or programmable hardware components [18].

The first part of the challenge is addressed by determining if it is worth porting a particular

section under bandwidth and communication constraints. Although primarily done by

humans at first, there are papers and software tools that present algorithms that produce

hardware/software partitions [19] [20]. The second part is addressed by generally available

synthesis tools that are usually available from an FPGA’s vendor.

2.5 Memory-Mapped Co-Processors

A computer system designer can optimize the execution of different types of algorithms by

making hardware modules available. When algorithms are executed in specialized hardware

modules as opposed to being executed on a general purpose processor, the execution speed

is often increased by orders of magnitude. There are numerous papers that explore the use

of co-processors to speed up the computation of specific algorithms. An important issue

2 Background 13

is the mechanism with which a computer system’s CPU core communicates with hardware

co-processors and vice-versa.

2.5.1 Co-processors

Research in co-processor design is not recent. There are many publications from the 1980s

and 1990s that discuss off-loading mathematical operations to a separate digital circuit. In

1990, Chu and Yaohan published a paper that discusses the direction and areas of interest

in the design of co-processors. They define coprocessor computers as application-specific,

subordinate processors that work jointly under the control of the main processor[21]. They

give the example of using co-processors to hasten the computation of floating-point oper-

ations. This is something that Diodato et al. experimented with when they published an

academic paper on the design of a single-chip VLSI co-processor that performs floating-

point operations[22].

Co-processors exist for a wide variety of end applications. Their roles can be as specific

as providing a parsing engine for compilation [23] to display graphics accelerators. Display

and graphics computation consists of a large portion of the motivation for co-processor

design. The need for graphics display has been present since the appearance of screens

for personal computers. As early as 1987, semiconductor designers have been designing

graphics accelerators for consumer use [24].

There are also many other publications that mention the use of co-processors to offload

specific algorithms to improve processing time where real-time performance is important.

In the late 1980s and 1990s, the use of co-processors in applications that require real-time

performance such as communications [25], medical imaging [26], real-time task scheduling

[27][28][29], real-time image processing[30] and compression [31] [32], kalman-filtering [33]

and signal processing [34][35]. Real-time applications also include video decoding for con-

sumer PCs. Video decoding is also a useful target application for co-processors due to the

heavy weight of this type of computation and the improvement to the overall performance

it can bring. As a result, a lot of research has gone towards designing MPEG-4 decoders.

MPEG-4 was a common coding standard for multimedia applications. Berekovic et al

present the design of an MPEG-4 video VLSI decoder [36]. Today, co-processor products

are appearing for a wide range of end-applications, from small embedded devices to high-

end server applications [37]. A big development in the field of server-side computing is the

2 Background 14

incorporation of FPGAs as a co-processor to optimize certain portion of search algorithms

in Microsoft’s Bing search engine [38].

2.5.2 Memory-Mapped Interface

Memory-mapped I/O is a method for performing bi-directional information transfer from

a computer’s CPU to its peripherals. Using this technique, I/O devices are accessed using

memory instructions that access the same bus as the rest of the system memory. As a

result, overall system design is simplified and can result in faster and simpler hardware.

Comparatively, port-mapped I/O uses a special category of CPU instructions which are

dedicated to accessing I/O devices and have a separate address space. Port-mapped I/O

can sometimes be called isolated I/O because it is isolated from main memory. This is

the case for some of Intel’s processor chips [39] for example. Most co-processors need to

interface with the main CPU. The concept is not new. For example, the floating-point

accelerator IC designed by Diodato et al[22] is accessible from the CPU by memory-map.

A good deal of research has been done to examine the effects of the choice of interface

on the performance of the system. For example, Hodjat et al. examine the situation of

interfacing a LEON core with a custom cryptographic processor. [40]. The authors explore

the interface choice to the encryption co-processor to optimize the cycle count, throughput,

LUT usage and energy usage. They consider both the Custom Peripheral Interface (CPI)

and a memory-mapped interface (through an AMBA bus). The authors conclude that

using the CPI to interact with the AES core is much faster than having a memory-mapped

interface.

An important use case for memory-mapped co-processors is dealing with a large amount

of information transfer. One way for the CPU to transfer information through a peripheral’s

I/O ports is to use dual-port BRAM to directly map the inputs and outputs of peripherals to

the computer’s memory space using a Wishbone interface [41]. This provides the advantage

of not having to implement a direct memory access (DMA) system that gives the CPU

access to the information. As soon as the incoming bytes arrive, they are immediately

made available in the memory-map.

Memory-mapping is not restricted to embedded systems. Due to the large amount of

file handling in server database systems, a lot of research has been performed to examine

the different ways to manipulating hard-disk data. Song et al. examine the performance

2 Background 15

differences between using mmap() to perform I/O on a file handler as opposed to using

the traditional read() and write() when performing data-intensive applications [42]. The

authors suggest improvements that would help reduce latency and throughput by modifying

the Linux kernel. As it turns out, there are differences in performances for both approaches

depending on the actual size of the file. For large files that exceed the size of the physical

memory, the I/O performance advantages of mmap() are not present. The reason for this is

because the virtual memory system does not take advantage of the features of modern flash

storage devices. In essence, using Memory-mapped Input/Output (MMIO) for a large data

sets does not scale well. The authors suggest an improvement to the situation by suggesting

multiple improvements to the Linux kernel. They present a solution that guarantees a

performance that matches traditional file I/O using read() and write() in cases where there

are cache misses for the memory calls and they also guarantee improved performance for

situations in which there are cache hits. The main optimizations come from reducing the

overhead of the virtual memory subsystem for file-/IO by doing multiple inter-processor

interrupts instead of doing per-page IPIs. The results show the most improved throughput

for random reads and slightly improved throughput for sequential reads. The experiment

also shows reduced latency for random reads and sequential writes.

2.6 LMS-based Adaptive Filters

There is a major advantage to implementing an algorithm such as a filter on an FPGA

as opposed to a CPU, due to the easily exploitable parallelism of the filter. It can take a

CPU a large amount of clock cycles to perform the same amount of signal filtering that an

FPGA can perform in just a few clock cycles. An important type of filter used in many

applications such as communications and signal processing is that of the adaptive filter.

2.6.1 Adaptive Filters

In many applications, it may be necessary to adjust the response of a given filter due to

continuously changing conditions. Adaptive filters address this. The objective of adaptive

filters is to modify a given FIR filter so that its output signal d∗(n) matches a desired signal

d(n). To modify the FIR filter, the coefficients are updated with the use of an adaptive

algorithm. The generic adaptive model is shown in equation 2.4, where each filter tap w

converges to a desired value over time. In essence, the input signal is distorted by a given

2 Background 16

physical channel used for communication as well as other factors such as the quantization

of the input. The system is modeled as an FIR filter hHc which takes in the input samples

x[n].

The variable filter itself is a p order FIR with coefficients:

wn = [wn(0), wn(1), ..., wn(p− 1)]T (2.1)

The error signal is

e(n) = d(n)− d∗(n) (2.2)

where x(n) is the input samples vector:

x(n) = [x(n), x(n− 1), ..., x(n− p+ 1)]T (2.3)

The coefficients of the FIR filter are updated with the means of a correction factor 4w,

which is determined by the chosen adaptive algorithm:

wn+1 = wn +4w (2.4)

The system requirements are what dictate the choice of the specific adaptive algorithm

to use (LMS, RLS, BLMS, etc) as well as the length of the FIR filter. A large number of

coefficients are used when the channel has a high distortion rate. However, it is the rate

of change of distortion that affects how fast the filter has to readjust itself and if parallel

or serial updating of the filter coefficients is needed. So technically, you can end up with

a filter with a large number of coefficients but since the variation in the system is slow

relative to the system clock, a serial updating of the taps can be used to reduce area and

power usage.

The main optimization points in adaptive filters are the rate of convergence, the resource

utilization, and the power consumption. You can often trade off area usage for speed of

convergence. A parallel versus serial implementation is exactly this, where the speed of

convergence of a parallel implementation trumps the serial one, but the resource utilization

is much higher. The only way to make a serial implementation as quick as a parallel

implementation is to increase clock speed, which increases power consumption.

2 Background 17

2.6.2 Least Mean Squares Algorithm

The basic idea behind the Least Mean Squares (LMS) filter is to use the gradient descent

to converge to the optimal filter weights. The algorithm starts off by assuming the filter

weights are small, and determines the change of filter taps using the gradient of the mean

square error.

wn+1 = wn + µx(n)e(n) (2.5)

The main advantage of LMS is its low complexity of computation relative to other

adaptive algorithms such as the Recursive Least Squares Filter. However, it is not the

algorithm that converges the most rapidly, which is needed in some high-speed applications.

For the interested reader, a more thorough analysis of this type of filter was performed in

the 1970’s by Widrow and Hoff [43].

2.7 Development Environments

In the general sense, a development environment is a set of programming tools that allows

a developer to build applications for an intended target application.

2.7.1 CMSIS-SVD

The CMSIS System View Description (SVD) format formalizes the description of the system

contained in many of ARM’s microcontrollers. The information ranges from high level

functional descriptions of a peripheral all the way down to the definition and purpose of

an individual bit field in a memory mapped register [44]. It is arranged in an Extensible

Markup Language (XML) format. The hierarchy is represented in Figure 2.2. The top-level

element is the device that is being programmed on. The next level is the set of peripherals

(UART, I2C, HDMI, DMA, etc.). Inside each of those peripherals are registers used to

observe and control the behaviour of the peripheral. Each register has a set of fields which

represent a particular control value, which is located at a predetermined bit offset in the

register. The fields can take a range of possible values that are associated with a description

of the behaviour called enumerated values (Ex. Bit EN = 1 (On), EN = 0 (Off)). Vendor

specific formats can also be added to the hierarchy if needed.

2 Background 18

Fig. 2.2 SVD file format hierarchy

The SVD format is mainly used as a method to standardize the way information about

a register map is represented to an ARM CPU. It is mostly used by silicon to help devel-

opment tools provide a comprehensive debugging environment in Integrated Development

Environments (IDEs). This format is also used in the context of describing the contents

of the memory-mapped devices programmed inside an FPGA. On Altera’s platform, when

the QSys tools generates HDL describing the system in the FPGA, it also creates an SVD

file. IP component designers have to create their own SVD file to become a part of the

final documentation about the internal register map.

2.7.2 Python

Python is a general-purpose scripted programming language that is friendly and easy to

learn [45]. The language is ideal for quickly programming prototype applications, but it

also provides constructs that can be used for building large-scale applications. For example,

2 Background 19

in an application note written by Jean-Samuel Chenard on using Userspace I/O (UIO),

Python is used for quickly prototyping memory-mapped peripherals [46]. It integrates very

easily with modern POSIX-based OSs such as Linux and OS X. Because of its portability,

it is also often used in embedded Linux systems of all kinds. It possesses a large standard

library, which is often referred to as its greatest strength, as well as an official repository of

user-build packages called Pypi. Python contains modules that can connect to Graphical

User Interfaces (GUIs), regular expressions, unit testing, etc. It also possesses widely used

OS system calls. The programmer can even program critical software components in C and

use it by linking to it from Python.

2.7.3 Scilab

Scilab is an open-source software for numerical computation. It is similar to commercial

simulation software such as MATLAB [47]. It includes hundreds of mathematical functions

and can be applied to many fields such as control, simulation, optimization and signal

processing. [48] introduces Scicos for the first time as an extension of Scilab. It is presented

as a system builder that incorporates both discrete and continuous-time components. It

introduces the basic blocks such as the fundamental discrete-time event block where the

outputs equal a function of the inputs that is updated at an event signal, the static block

where the output is simply a function of the inputs, the event generator blocks, etc. They

regularly use Simulink as reference guide in, for example, use cases and user interface.

2.7.4 Graphical algorithm design with Xcos

Xcos is an extension of scilab as a graphical user interface for systems modelling and

simulation [49]. Models can be designed, loaded, saved, compiled and simulated. Xcos

is freely available with Scilab. It is a tool dedicated to the modelling and simulation of

hybrid dynamic systems which include both continuous and discrete simulation models.

The editor allows the representation of models as block diagrams that can be connected

to each other. Blocks can represent models designed by the user or that were pre-shipped

with Scilab.

There are papers that have been written about the use of Xcos for professional devel-

opment. For example, Guezar et al. explore the use of hybrid simulation in Scicos [50]. In

fact this is the paper that introduced simulations in Scicos, which is the ancestor of Scilab

2 Background 20

in this respect. In particular, they want to simulate hybrid systems, which are systems that

have both discrete states/events such as state transitions and continuous elements, such as

a temperature value in a room or a charge on a capacitor. In particular, they show that

they are able to simulate a voltage booster.

2.7.5 Hardware-in-the-loop Simulation

HIL simulation is when simulation software is executed with a mix of simulated an actual

hardware components. There are control interfaces that allow communication between the

simulation software running on a desktop computer and external hardware. This simulation

is used to test an electronic component such as a microcontroller or an FPGA (in the field

is usually called an Electronic Control Unit (ECU)), which instead of being connected to

the real equipment under control, it is actually connected to a simulation. The general

architecture of a HIL testbench setup is shown in Figure 2.3.

Fig. 2.3 General Architecture of an HIL testbench

HIL testbenches are generally used in the context of the development of real-time em-

bedded systems. Instead of testing the algorithm of an embedded system on an actual plant,

the system is tested on a plant simulated on a computer. This can provide significant cost

savings for developing and testing embedded applications. HIL simulation is a technique

that was first used mainly in the aerospace industry as a means to verify and validate the

algorithms of cyber-physical systems [51]. It is used in an increasing number of fields of

engineering such as the automobile industry to test active breaking systems, traction con-

trol systems, electronic stability programs [52] [53] as well as autonomous driving programs

[54]. This technique does raise some challenges such as complex interfacing requirements

2 Background 21

and the ability of the simulation software to accurately replicate a real plant and execute

within strict real-time deadlines. However, even with relatively weaker processing power of

computer in the 1990s, this technique has shown that it can lead to reduced development

time and time to market. It has also been shown that it can help ensure the safety and

reliability of electronic components that run complex algorithms [51].

There are papers that have been published that use HIL testbenches to test the perfor-

mance of scheduling algorithms [55] when the communication is under the effect of jitter.

However, there are not many publications that examine the different communication medi-

ums between the computer and the control interfaces. This thesis will try to address this

by proposing a HIL simulation testbench that is suitable for use with SoC FPGAs and

analyze its performance and reliability for algorithm development.

22 22

Chapter 3

System Architecture

In this chapter, the overall requirements of the Golden Lion computer system as well as the

design decisions leading to its final form are explained and compared with related works.

An analysis of its flexibility and its evolvability is performed.

3.1 System Requirements

The main system requirement for this project is to have a computer system that can per-

form low-level capabilities such as fine-timing manipulations and high-throughput process-

ing that only an FPGA or an ASIC can provide. At the same time, it is also a requirement

for this computer system to offer high-level processing capabilities such as HMI and net-

working. The high-level and low-level functionalities need to be tightly integrated without

the possibility of them interfering with each other. The failure of one portion of the system

should not cause the failure of the other. For example, a crash in the system’s UI program

should not have any detrimental effect on the strict real-time functionalities of the system.

There is also a need for the system to be inherently modular and it has to be simple and

easy to add or remove IP blocks inside the FPGA co-processor.

3.2 System Overview

The Golden Lion project is designed as a two-level processing architecture which effec-

tively segregates the real-time demands of an application from the soft-time demands such

as networking, monitoring and HMI. The platform will rely on proven computer archi-

2014/12/02

3 System Architecture 23

tecture fundamentals, such as structured memory access, cache coherence and memory

protection mechanisms. These foundations will contribute to strengthening the system’s

robustness. One of the core fundamentals of this platform is the separation of computing

resources between its real-time portions which deal with tight response constraints and

non-real-time capabilities which deal with a higher level of control. This allows for the

segmentation of a problem between its more relaxed soft real-time requirements and hard

real-time constraints. The hard real-time portions of the system are handled by a memory-

mapped FPGA co-processor. The key to the success of the implementation is the unified

memory mapping between the main processor and its co-processor(s).

Fig. 3.1 Golden Lion Overall Structure

The system consists of a high-performance Linux system which is expected to have

enough RAM, flash to offer decent UI application as well as solid networking and graphics.

The hard real-time microcontroller will have the role of executing tasks with hard real-time

requirements alongside the FPGA. The FPGA will be used to control the I/O devices,

First In First Out (FIFO) buffers, and MotSAI’s IP cores that control the backplane pins.

Communication between the microcontrollers and the FPGA will be performed with the

3 System Architecture 24

use of a memory-mapped interface connected to a shared memory space. Other vital safety

mechanisms such as watchdog timers and monitors as well as a power subsystem will be

added.

3.3 Initial Design Decisions

3.3.1 Prior platform

Prior to the start of the Golden Lion project, MotSAI Research had developed a platform

consisting of an LPC microcontroller which communicated to an FPGA through an serial

peripheral interface (SPI) port. The role of this platform was to generate analog and digital

output signals. Although the final product addressed the client’s needs, MotSAI would need

to improve the design in order to create an all-encompassing solution for a broader range

of applications.

3.3.2 Initial Proposal

With the experience gained from the design of the previous board, MotSAI proposed the

design of a new system which still consists of microcontrollers and an FPGA, but this

time is connected by a memory-mapped interface. At the start of the project, the initial

proposed architecture consisted of an STM32F4 microcontroller and an Freescale i.MX6Q

processor both connected to an FPGA. This formed a decoupled architecture with multiple

processing points. The main difference between the prior platform and this one is that the

microcontrollers would interface with the FPGA through a memory-map interface instead

of through SPI. Using a parallel memory mapped interface as opposed to a serial bus like

SPI to communicate with the rest of the system has the advantage of greatly increasing

the possible bandwidth and reducing the latency.

The Freescale i.MX6Q microprocessor was chosen as the high-level microprocessor in

this project. It has an ARM Cortex-A9 quad core processor that has a high clock rate (1.2

Ghz) and ample cache memory (32 KByte instruction and data caches as well as 1 MByte L2

cache). It supports a wide range of diverse features such as a graphics acceleration, image

processing as well as display and camera interfaces. The image processing is of interest due

to the potential image processing applications that MotSAI intends to target. The support

for external busses is also very diverse. Not only are basic serial busses like inter-integrated

3 System Architecture 25

circuit (I2C), SPI and universal asynchronous receiver/transmitter (UART) featured, but

more advanced busses like PCI-e 2.0 and universal serial bus (USB) are also supported.

Monitors, real-time clocks (RTCs) and security features are also standard on this chipset.

In the system, the STM32F4 has the role of the real-time microcontroller. Its available

features include an ARM Cortex-M4 processor with a high clock rate (168 MHz) and a

floating point unit (FPU). It also includes peripherals such as USB, Ethernet MAC and

serial peripheral busses like I2C and SPI. The microcontroller also includes a flexible static

memory controller (FSMC) peripheral that allows accesses to external peripheral memory.

This controller is what was going to be used to talk to the FPGA.

Fig. 3.2 FPGA Internal Structure

The internal structure of the FPGA is represented in Figure 3.2. The inside of the

FPGA logic consists of an open-spec interconnect SoC bus called Wishbone [56]. Wishbone

is an interconnection bus that makes SoC design re-use easy by offering a standard data

exchange protocol. It supports many modern bus features such as interrupt vectors, user-

defined tags, single-clock data transfers, and more. One of the most interesting features is

3 System Architecture 26

the multi-master capability of the bus, which is especially useful in this case since the goal

was to connect the Linux processor and the real-time microcontroller on the same bus.

At first, it seemed like a good idea to connect the processor directly to the SoC bus on

the FPGA. This is an approach that has been used by designers before [57]. It is possible

to do this using the i.MX6Q’s Extenal Interface Module (EIM) which is meant to interface

with devices external to the chip. It provides both synchronous and asynchronous accesses

to devices with SRAM-like interfaces. Since the EIM does not generate the exact signal

patterns that are needed to control a Wishbone interface, it is necessary to translate the

EIM bus transactions to Wishbone transactions so that it is compatible with the SoC bus

on the FPGA. Bus transaction translation is necessary but can slow down the accesses

and a performance bottleneck can be created as a result of the slower performance of the

EIM compared to the SoC bus. A simulation of a simple read/write transaction from the

i.MX6Q to the Wishbone bus is pictured in Figure 3.3. The first row of the waveforms is

the EIM clock, and the FPGA clock is the second row. It is clear in the picture that the

EIM takes longer to complete a transaction than the wishbone bus master.

Fig. 3.3 EIM to Wishbone transaction

There are many issues that arise when using this sort of configuration. One issue is that

it adds complexity to the internal bus design since the transaction converter is not trivial.

3 System Architecture 27

It is implemented as a state machine and contains six states. Another issue that arises

is Cross-Domain Crossing (CDC). Although the simulation pictured in Fig. 3.3 does not

take into account CDC, it can be a serious issue in designs where there are two ICs that

communicate in an asynchronous manner. When taking into account CDC in a design, one

has to consider the instance of metastability, which is the phenomenon in which signals

do not assume stable 0 or 1 states for a certain time duration during operation. If such

a signal in one domain crosses to the other, it can corrupt a good portion of the signals

on the other logic portion with the different clock domain. There are known techniques

to either dramatically decrease the chance of glitches or to simply remove the possibility

altogether [58].

3.3.3 F4-Discovery Daughter Board

To prototype the functionality of the FSMC on the STM32F4, it was decided that a ba-

sic base board would be constructed. The name of this base board is the F4-Discovery

Daughter board. In addition to prototyping memory-mapped communication from the mi-

crocontroller, it was also designeded for use in the Microprocessor Systems course (ECSE

426) to assisst in the education of McGill undergraduate students in the Computer Engi-

neering program.

The circuit board was meant as a base board to an STM32F4-Discovery kit (pictured

in Fig A.1). The reason this was done (as opposed to creating a circuit board with the

microcontroller already placed) was because it was less complex to leverage an existing

design than to do everything from scratch. The fact that the ST-Link programmer was

integrated is also a nice addition since there is no need to use an external JTAG programmer.

The F4-Discover Daughter board contains many features geared towards education ap-

plications. One of the most important components is a gyroscope chip for firmware devel-

opment with significant tilt angle awareness and for interacting with MEMS sensors. A

USB-to-Serial FTDI chip will allow the microcontroller to output large amounts of data to

a connected PC, without necessarily being in debug mode. It will also allow students to

add features such as a user shell to increase user-based interactions. An on-board audio

input jack is also installed so that a wide variety of signal and/or audio processing features

can be explored. The addition of the audio input along with the MEMS microphone can

be used to explore the processing power of the Cortex-M4s FPU and can lead to interesting

3 System Architecture 28

Fig. 3.4 F4-Discovery Board

embedded applications. The SD card slot that is also installed with the board will be ideal

for storing and processing input samples.

A CPLD is used to manage most of the interrupt lines coming from all of the external

peripherals. For example, instead of the accelerometer interrupt line being permanently

assigned to a particular external interrupt line, it is reconfigurable to any of the microcon-

trollers external interrupt lines by the digital logic programmed in the CPLD. This allows

for flexibility in terms of the peripherals used in various projects.

Last but not least, a Lego Mindstorms NXT sensor port has also been added for the

purpose of assisting students learning about low-level drivers. This is probably one of the

most unique features of this project. For a number of years, it has been used in Computer

Engineering classes at McGill to introduce concepts in robotics, software and electronics.

3 System Architecture 29

Fig. 3.5 F4-Discovery Daughter System Overview

Along with a reasonably powerful mobile computer, the NXT kit offers a wide variety of

sensors and peripherals. So far, students have only interacted with these sensors from a

high-level programming perspective. A simple function call was enough to get a sensor

value. One of the objectives of adding an NXT port to this board is to reacquaint students

with these familiar sensors that they used in their first year of schooling, but this time,

expose them to the under-the-hood concepts of sensor communications.

3.3.4 FSMC Latency

The speed of the FSMC memory bus was calculated according to the clock tree schematic

provided by the ST Microelectronics. The memory transactions are sent in an asynchronous

manner, which means there is no clock signal involved in the transaction. The discovery

board comes with an 8 MHz external crystal oscillator. The latency of the memory call is

calculated as follows: This 8 MHz signal is directed to a phase-locked loop (PLL) that sets

the signal speed to the maximum amount allowed at the system clock level, which is 168

3 System Architecture 30

MHz. The PLL sets its output frequency as

HSE ∗N
M

(3.1)

where N represents the multiplier and M represents the divisor of the respective input

frequency HSE. The signal is then redirected to another divisor P before becoming the

SYSCLK signal. To achieve the maximum system clock frequency allowed, the multipler

M is set to 336 and the divisors M and P are set to 8 and 2, respectively.

SYSCLK =
HSE ∗N
M ∗ P

=
8 MHz ∗ 336

8 ∗ 2
= 168 MHz (3.2)

The SYSCLK signal propagates to the Advanced High-Performance Bus (AHB)’s clock

without modification from prescalers or multipliers. This signal propagates to the FSMC.

One clock cycle is defined as

HCLK =
1

168 MHz
= 5.9 ns (3.3)

Since the data lines are used for both addressing and data, a lot of bandwidth is taken by

the fact that the address of the transaction needs to be set up before transferring it. The

speed of the FSMC is based on the configurations of the address setup and hold times as

well as the data setup time. The amount of time it takes for a single 16-bit transaction is

defined as

HCLK ∗ (Tasu + (Tdsu + 1)) (3.4)

where HCLK is the time per clock cycle as calculated in (3.3), Tasu is the address setup

time, and Tdsu is the data setup time, both in terms of the number of clock cycles. There-

fore, this means that one 16-bit transaction should take 5.9 ∗ (2 + (2 + 1)) = 29.5ns.

To demonstrate the function of the FSMC and to verify the predicted latency, the FSMC

pins that are connected to the LCD touch screen and are also connected to a 200 MHz

logic analyzer. The signal trace is exported to a Modelsim compatible format and analyzed.

A single memory transaction is shown in Figure 3.6. As predicted, the transaction takes

approximately 30 ns if it is calculated as the time from when the NWE signal goes low for

the first to the time when the signal goes back to high for the last time. However, this

figure cannot be used to make specific assumptions about the bandwidth of the bus, since

3 System Architecture 31

Fig. 3.6 Single 16-bit transaction

there is bus turnaround time in between transfers that must be taken into account.

3.3.5 Separate CPU and FPGA linked by PCI-Express

PCI-e is an increasingly popular protocol for internal data transmission with high-bandwidth

requirements. As a result, more and more FPGAs come equipped with circuitry capable of

performing PCI-e operations. These are called PCI-e ’hard’ IP cores. FPGA manufacturers

have been adding ready-made PCI-e functionality to make it easier for system designers

to create co-processors accessible by memory-map. PCI-e can be used for either server,

desktop or embedded applications. However, because of high power consumption of this

bus, it is mostly used in desktops and servers. This bus was strongly considered for the

communication between the i.MX6Q Linux processor and the FPGA due to the great po-

tential for high-speed communications between the two chips. There was also the fact that

it is relatively easy to set up on the FPGA side thanks to the hard-ip created by Altera.

Another argument in favor of this option is that the i.MX6 contains a PCI-e peripheral with

already-made drivers available. In the case of the FPGA family that was chosen for the

Golden Lion project, the Cyclone V, the FPGAs came with a four-lane second generation

PCI-e hard-ip core. Second generation PCI-e connections are rated as being as fast as 4

Gbit/s per lane [14] [10]. Since Cyclone V FPGAs can have up to 4 full-duplex lanes active,

the maximum possible bandwidth for this PCI-e connection can be calculated as

x1 lane = 5.0 Gbps @ 8b/10b encoding = 500 MB/s

x4 lanes = 4 ∗ 500 MB/s per direction = 2 GB/s duplex

3 System Architecture 32

A Modelsim simulation of the serial transfer in a of information from the PCI-e endpoint

to an on-chip memory is pictured in Figure 3.7.

Fig. 3.7 PCI-e Transaction Burst Access

These numbers were very encouraging, but there is one big downside to this option,

which is that it would have required laying out the high-speed serial connections on a

printed circuit board (PCB), which is very difficult and would require expensive engineering

design automation (EDA) tools that were not available. Because of this, it was decided

that another format of architecture would be required for this system.

3.4 SoC FPGA based design

Designing a system based on a single SoC FPGA over a system that is based on decoupled

parts has a clear advantages. The most obvious one is that all of the potential design

difficulties related to integrating discrete components together are avoided. The other

advantage is that the associated workflow for creating and testing the firmware, the register

transfer logic (RTL), the linux kernel and the userspace programs is more straightforward.

Integrating everything together is much easier when it is done on one chip. There are

also significant cost savings associated with reducing board size and using less components.

Altera’s SoC FPGAs seemed like the most appealing option due to the availability of

sophisticated tools [59] and sufficient amount of documentation and support. It contains an

ARM-based Hard Processor System (HPS) consisting of an 800 MHz processor, peripherals,

and memory interfaces with the FPGA fabric.

3 System Architecture 33

The circuit board used to develop experiments and prototype algorithms is the Arrow

SoCKit development board, pictured in Figure 3.8.

Fig. 3.8 Arrow SoCKit

3.4.1 Overall Architecture

The overall architecture based on a SoC FPGA is pictured in Figure 3.9. It retains the

same overall arrangement as the previous proposals: a high-powered embedded processor

running Linux, a real-time microcontroller and an FPGA fabric. However, the different

components are more tightly coupled.

3 System Architecture 34

Fig. 3.9 SoC FPGA Overall Architecture

3.4.2 Hard Processor System

The ARM-based HPS present on the chip runs a Linux OS that does not have ”hard”

real-time constraints. Its role is to handle HMI and networking functions as well as be the

master of the rest of the system. This is also where the processor runs the API for MotSAI’s

IP cores. It is not as powerful as the i.MX6Q, which runs at a higher clock rate, has more

cores, and contains more peripherals. However, the HPS is powerful enough to provide

reasonable performance for HMI and networking applications. This family of FPGAs will

3 System Architecture 35

only get more powerful HPSs as technology improves. If there is a need to take on more

powerful work loads in the future, the need could be fulfilled by more powerful embedded

HPS modules in the future. The HPS logic communicates with the rest of the FPGA fabric

through the means of three different bridges [60]. The FPGA-to-HPS bridge provides access

to the peripherals and memory in the HPS. This is how a bus master on the FPGA would

send data to the HPS or access any of its peripherals. The HPS-to-FPGA bridge provides

a high-bandwidth master interface with an address space of 1 GB (minus 64 MB which is

occupied by the lightweight bridge) to access any of the peripherals implemented on the

FPGA. The lightweight bridge is similar to the HPS-to-FPGA bridge except the width of

the accesses cannot be changed and the possible address map is smaller (64 MB).

3.4.3 Real-Time Microcontroller

Instead of having an off-chip real-time microcontroller like an STM32F4 that communicates

by FSMC, it was decided to simply synthesize a soft processor and put it into the FPGA

fabric. The NIOS II processor is one of the soft processors made available through the

Altera development suite. This processor is capable of running at up to 160 MHz for the

version that is free-of-charge and up to 200 MHz for the more sophisticated version [61].

oThis means it has reasonable performance compared to the maximum frequency of 168

MHz that the STM32F4 can run at. The microcontroller’s instruction and data memories

reside on an on-chip memory module. It is even possible to synthesize more than one

instance of the NIOS on the FPGA and dedicate each one to their specific function(s).

It is also possible to add custom instructions if needed. This processor was targeting the

FreeRTOS real-time operating system.

3.4.4 System Interconnect

One of the most important features of this architecture is the unified system memory map.

The NIOS real-time microcontroller addresses the peripherals in the rest of the system with

the same address space as the HPS.

This provides exceptional flexibility for future developements and makes it easy to add

new IP cores and adapt the system as they are developed. All of the components of the

system present in the FPGA fabric are interconnected and communicate with each other

through an internal SoC interconnect designed by Altera. The interconnect is a network-

3 System Architecture 36

Fig. 3.10 Unified Address Space

based topology where transactions between masters and slaves are done with the use of

packets [62]. It automatically manages clock-domain crossing and the transportation of

transaction packets from the source to the destination. Modules communicate to this

interconnect as either a master or a slave by initiating Avalon Memory-Mapped (AV-MM)

transactions. These transactions are specified by the Avalon Bus specification and are

interpreted by the interconnect to send it to the right place. Some IP cores that generate

a lot of information can send that data through a streaming interface (Avalon-ST) to a

FIFO buffer. These FIFO buffers are then accessible through the processor’s memory-map.

Interrupts generated by peripherals are also redirected throughout this interconnect to their

respective recipients.

Fig. 3.11 System synthesis report

The synthesis of a basic system as described above gives the following report. As can

be seen in Figure 3.11, there is only a fraction of the available adaptive logic modules

3 System Architecture 37

(ALMs) that are used for the basis system, which leaves ample room for additional IP

cores. Running the timing analyzer on the FPGA logic gives a maximum frequency of 70

MHz.

3.5 Operating System Configuration

The OS running on the HPS is Ubuntu Linux 12.04 running with a kernel 3.9. Linux

is a monolithic kernel that includes the expected kernel components such as a scheduler,

memory management, networking, an API, inter-process communication (IPC), and is

mostly POSIX-compliant. Because it is monolithic, it includes device drivers, file systems,

as well as a port for most existing computer architectures.

Most embedded system file systems are either taken pre-compiled from ARM distribu-

tion like Android, Debian or Ubuntu. If one chooses, the entire file system can also be

compiled using the Yocto project. Compiling the kernel and all of the programs yourself

has the advantage of providing more flexibility. However, it can become tedious in the long

run to support everything yourself. For these reasons, it was decided that the Golden Lion

project would be based on the Ubuntu distribution. The support from Canonical and the

rest of the community maintainers will make future maintenance much easier.

3.5.1 Boot flow

The HPS boot starts when one of the processors is released from reset. It starts by executing

the code that resides in the internal boot Read-Only Memory (ROM). The boot ROM

performs minimal configuration and loads the preloader. Generally, the preloader can be

found in multiple sources such as an SPI flash memory, the FPGA fabric, or from an

SDMMC flash card. In this case, the preloader comes from an 32 GB SD card.

The HPS boots through the following stages:

1. Boot ROM

2. Preloader

3. U-Boot

4. Linux

3 System Architecture 38

The preloader is the program that configures the clocking, pinmuxing, pin I/O pa-

rameters (drive strength, logic levels, etc.), the RAM, and loads U-boot into the RAM.

It is based on the secondary program loader (SPL), which is an open source bootloader.

The source files for this bootloader is generated by an Altera program, which takes in the

handoff files generated by the QSys tool [62] during synthesis. The flow for generating the

bootloader is shown in Figure 3.12.

U-boot is the next major component of the boot flow. U-boot is an open-source boot-

loader with comprehensive support for managing and loading boot images. In this case,

the image being booted is the Linux kernel. The program’s main purpose is to manage the

images and the rest of the hardware features before the boot of the OS.

Fig. 3.12 Preloader Generation

The Linux kernel manages the rest of the boot up until the start of the intended applica-

tion process. The start kernel() function called from the bootloader performs the majority

of the system startup, including interrupts, memory management and hardware device

driver initializations. Once the kernel has started, the scheduler and the idle processes are

the first processes to get spawned. In this case, the first process is init, which is the stan-

dard in the Ubuntu 12.04 LTS distribution. As a side note, systemd is starting to overtake

init as the standard first process in Linux distributions such as Debian, Arch, Fedora and

Ubuntu and will be seen more often in the future.

3.5.2 Device Tree Structure

The way to inform the kernel bootloading process of the available devices on the running

hardware is to associate it with a device tree structure (DTS) file. The DTS is a structured

file that contains the description of the running hardware and the available devices that is

passed to the kernel at boot time. In the workflow generally associated with SoC FPGAs,

3 System Architecture 39

DTS files are among the handoff files generated during FPGA synthesis bitstream. The

kernel does not interpret a plain DTS file, instead it interprets a compiled version of it called

a device tree blob (DTB). When referred to a particular device in the DTS, the kernel loads

the appropriate device driver to handle it. Once a device is registered, a running process

has to pass through the kernel to interact with it.

3.5.3 Userspace I/O

Another way for the designer to interact with the hardware is to go through a memory-map

function call on the /dev/mem device, which is a device abstraction representation of the

physical memory of the computer. One of the ways to use /dev/mem to interact with

hardware is to create a hardware driver program that runs in userspace and knows exactly

which devices there are and where they are addressed. Memory-mapping /dev/mem gives

complete control of the entire physical memory address space to the program. Normally,

a process running in user space can only access virtual memory pages granted to it by

the OS, and physical memory is off-limits. The main motivation of this method is that

it does not require the designer to inform the kernel of a device’s existence to interact

with it. However, there are a number of disadvantages to this approach. First, a program

that interacts with /dev/mem requires root permissions to function to do so. Second, the

fact that the program has access to the entire physical memory makes it potentially very

dangerous if it accesses unauthorized areas (areas reserved for the kernel, for example) and

can take down an entire system. There is also no means of using interrupts.

This is where UIO comes in. UIO is a generic framework for handling devices in

userspace [63]. Within this framework, device handling is split between a small part in

the kernel space, which handles memory reservation and interrupt handling, and the part

in the userspace that handles device functionality. It is a compromise between writing a

full-fledged Linux driver, which can be time-consuming and difficult to debug, and directly

accessing physical memory, which has its own advantages and disandvantages. The intro-

duction of UIO as part of the Linux kernel was not unanimous, as many top contributors

expressed reservations about its security [64] and the opening the door to situations where

hardware vendors could circumvent the GPL license [65]. However, in the end, it was added

as a permanent addition to the kernel.

Loading the UIO kernel module provides the structure necessary for individual user UIO

3 System Architecture 40

Fig. 3.13 Userspace I/O Framework

drivers to be loaded and executed. User UIO drivers are the ones that contain the minimum

information about the memory space of the target device and provide a callback for the

interrupts generated by that device. This allows for the program that actually interacts

with the device to be written as a userspace program by performing an mmap() on the

/dev/uiox and /sys/class/uiox/* file handlers. Using UIO is great for rapid prototyping

of drivers for devices residing in a programmable logic fabric. Such devices change often

and the UIO framework offers the required flexibility that fully implemented drivers rarely

provide. This is why it has been used to prototype and control many of Golden Lion’s core

IP modules in the FPGA described in Chapter 4.

3.6 Dealing with evolvability

When designing an embedded system, a designer has to increasingly take into account the

capacity for that system to adapt to a change in requirements and part obsolescence. In

other words, embedded systems have to be designed with evolvability in mind [1]. Basing

the design of the Golden Lion project on SoC FPGA technology brings about significant

advantages in this regard.

Deploying an embedded system based on an FPGA means that there is a good chunk

3 System Architecture 41

of the IP developed for that system that is RTL. Since RTL is portable to other FPGAs, in

the event that the FPGA malfunctions and has to be changed, the same IP core can easily

be ported to a new family. This is similar to approaches suggested by publications in this

field of research [4] that strongly suggest FPGAs as the basis of the design for industrial

systems.

3.6.1 Software Evolvability

Porting firmware to a new platform is a different story. Being able to simply move a

compiled binary blob from one platform to another is very rare. By the time obsolescence

does actually happen, it is very likely that a generation or more’s difference in processor

architecture will make that firmware blob incompatible. A synthesizable ”soft” processor

like the NIOS II, which is used as the real-time microcontroller in Golden Lion, can help

avoid some of these issues. In the event of obsolescence, a soft processor can simply be

transferred to a new FPGA along with its firmware and avoid any new issues. However,

there is a caveat, since the synthesizable processor being used is strongly associated with

the FPGA manufacturer and cannot be used in an FPGA manufactured by a company like

Xilinx since it is an encrypted IP core. Because of this, it is probable that Golden Lion

will be based Altera’s FPGAs in the long run.

Porting firmware to different architectures is a situation that Hallmans et al. present

as a case study [6], where a legacy system based on a decoupled chip and FPGA can be

upgraded to a system based on a Xilinx SoC FPGA that contains an ARM Cortex-A9

processor.s This is a case that is strongly considered in the design of this platform, which

is why a SoC FPGA based design has been chosen. The only difference is that their use

case considers replacing a CPU architecture with a different one. The approach in the case

of Golden Lion is to keep the same soft-processor across multiple generations of FPGA

families.

Choosing Linux as the OS for the high-level processing portion of the system is one of

the best ways to deal with evolvability. Dealing with legacy Linux applications is not too

difficult, thanks to the fundamentally open-source nature of the OS. Because it is open-

source, it has the flexibility to adapt to new requirements. It also relies on the efforts of a

large community of developers who are constantly fixing bugs and developing new features.

The fact that there are no license fees or royalties and that there are multiple providers of

3 System Architecture 42

software means that it is the more economical choice as well as less expensive to improve

and modify in the long run.

3.6.2 Evolvability of requirements

As a design evolves over time, different functions are added or removed depending on

changes in requirements. Hallmans et al. have developed a novel method for gauging the

effect of adding or removing features for the whole system [7]. This method is based on

drawing a dependency graph between different features of a system. There is a set of

dependency requirements for each function F that depend on set of communication (C)

and I/O modules (IO). Hardware platforms are represented by H.

Fig. 3.14 Golden Lion dependency graph

A dependency graph based on this method has been drawn to show the evolvability

of the platform over time and is pictured in Figure 3.14. Because the core of the overall

system is modular, all of the functional requirements have no co-dependency and are easily

interchangeable. Removing or adding a function does not depend on the rest of the system

and is not a complicated process.

3 System Architecture 43

3.7 Comparison with other works

The architecture of this system resembles other system architectures that use SoC FPGAs

as their core. Since FPGA vendors supply most of the digital structures that interconnect

different IP cores, most designers are going to use these pre-designed structures for their

projects. The end result is a SoC FPGA-based system that uses the provided interconnects

and its accompanying memory-map mechanisms very similar to the one in Golden Lion.

Even with Xilinx SoC FPGAs, the end result can be very similar, as is seen in this proposed

system design that renders images of the Mandelbrot set [66]. Researchers have also used

this form of architecture for video encoding [32]. Their designs are very similar to Golden

Lion because it relies on on-chip peripheral busses for communication between the main

processors and the co-processors.

Many commercial products take advantage of SoC FPGA. A notable one is HIL test

simulators designed by Opal-RT technologies [67]. Their architecture is similar to the

prototype described in section 3.3.5, in the sense that it uses a high-powered CPU connected

to an FPGA co-processor by PCI-e. The FPGA fabric is used to generate the high-frequency

signals communicating with external ECUs and external busses. The difference is that their

high-powered CPU is intel-based, while the one described in section 3.3.5 is an ARM quad-

core. They also don’t use a real-time microcontroller.

The way the co-processor and the main processor interact is less coupled than some

implementations [40]. Hodjat et al. use a custom LEON core instead of a hard ARM

core and use special instructions instead of a memory-map to communicate with the co-

processor. Although they find that using a custom instruction increases performance, it

would be difficult to replicate this approach with an ARM core that is not modifiable.

However, it is possible to use this approach with one of the ”soft” NIOS processors by

adding custom instructions.

There exist system designs based on SoC FPGAs that use automated software/hardware

co-design compilers [68]. These compilers compile code that leverage the presence of both

processors and the programmable logic fabric. The disadvantage of this approach is that

it can be difficult to make sure that the system behaves as intended. It is also difficult to

deal with evolvability, as these compilers are mostly proprietary today and may not work

very well with different families of FPGAs. For this reason, that approach was not used in

our project.

44 44

Chapter 4

Design Details

In this chapter, the design details and performance analysis of the components of the

development platform are described. The design of individual IP cores are shown as a case

study in the use of the Golden Lion platform. They were chosen in accordance to the context

of programmable controller in an industrial environment as well as basic components that

should run on FPGAs. The details in the implementation are also explained and compared

to architectures illustrated in the literature.

4.1 Case Study: PID Controller

The Proportional-Integral-Derivative (PID) controller is one of the most widely used feedback-

based control algorithms in the field of industrial control systems. Normally, this type of

algorithm is executed on a microcontroller and can perform relatively well in most situ-

ations. In this case, it was decided to implement the algorithm on an FPGA for several

reasons. First, the concept of redundancy and reliability is important in the context of

industrial applications. With FPGAs, placing several PID modules in a single unit is not

difficult and a malfunctioning CPU will not necessarily cause it to crash. Moreover, adding

more PID cores alongside it will not affect the behaviour of the individual cores because

of the ability of FPGAs to execute algorithms completely independently and in parallel.

Consequently, it was deemed fitting that this would be one of the example uses of the

Golden Lion platform.

4 Design Details 45

4.1.1 Implementation

The implementation of the PID block is based on the standard control algorithm that

produces an output u(t) based on the control input r(t) and the behavior of the plant y(t).

It is adjustable by tweaking the gain values Kp, Ki and Kd. This particular PID block

used in Golden Lion is one that was designed in-house by Dr. Omid Sarbishei at MotSAI

Research. It was designed and simulated using Scilab [48].

The IP block is wrapped around a control interface which consists of a set of registers

that are accessible by the CPU through memory accesses, as can be seen in Figure 4.1.

The CPU can change the PID’s Kp, Ki and Kd during operation as well as its modes of

operation. The accesses to this IP core block come through the Avalon-MM interconnect

as described in Section 3.4.4.

Fig. 4.1 PID Interface Module

4.1.2 Simulation

Normally, a controller produces a control output sample based on the feedback of the plant

on each pulse of the clock signal fed that is fed into it. In the case where the controller is

being validated, it requires that the PID produce an output sample when the CPU tells it

to. This requires the control interface of the PID to have a feature where the controller is

in one-shot mode and evaluates one sample only when explicitly signaled. The real-time

(default) mode is the mode where it produces an output at each clock pulse. The mode can

4 Design Details 46

be controlled by one of the memory-mapped control registers. The verification program

on the CPU side runs as a Python script. Accesses to the FPGA is done through a C

module which contains the logic of interacting with the components in the FPGA through

/dev/mem.

To verify the proper functioning of the PID block, it requires the CPU to feed the

controller sample input values as well as the feedback of a simulated plant. The test

vectors are comprised of r(t), y(t) and the expected feedback of the controller u(t). To

obtain a step response from the controller, the input test vector r(t) is a step input. The

FPGA’s step response is pictured in Figure 4.2.

Fig. 4.2 Hardware PID Step Response

By saving the returned input values from the PID and comparing them to the ones

obtained in the Scilab simulation, the CPU can make sure that the PID is functioning

correctly while programmed in the FPGA. This is a form of HIL testing since the plant

is being simulated while the controller is actually is being executed. The plant output,

reference and controller output signals are all precomputed through simulation and are

loaded into memory for the duration of the validation.

4 Design Details 47

4.2 Case Study: Numerically Controlled Oscillator

A Numerically Controlled Oscillator (NCO) is a digital signal generator which creates a

discrete-time and discrete-valued sinusoidal waveform. NCOs are widely used in industrial

applications such as control and communication systems. They are usually used in con-

junction with a Digital-to-Analog Converter (DAC) to create a Direct Digital Synthesizer

(DDS). Among the obligatory sine and cosine waveforms, this particular NCO was also

designed to generate a sawtooth and square signals. This IP core is implemented as a

component that can be connected to the rest of the system from the beginning. Similar to

the PID detailed earlier, all of the control and status registers are accessible by memory

map through an Avalon interface.

4.2.1 Implementation

At the core of the design is a continuously incrementing phase accumulator. The phase

of all the generated waveforms is defined by this register. To generate the sine and cosine

waveforms, the accumulated phase signal is fed into an on-chip dual-port ROM that acts as

an Look-up Table (LUT) for sinusoidal waveforms. Some implementations use two separate

LUTs for the sine and cosine waveforms. In this, it was decided to use only one LUT for

both by creating the cosine phase signal by adding π
2

radians to the sine phase signal. This

was done to reduce on-chip memory usage as much as possible. All of the waveforms except

the square wave (which takes only one bit) have 12 bits of resolution to limit the amount

of on-chip memory taken up by the LUT. The outputs of the waveforms are of unsigned

format, which means that a 1 is added to the output of the sine and cosine functions to

make the range always positive.

The waveform contained in the LUT is generated using the Python code in B.1. The

code takes in the data width as well as the address width and produces a list of output

values in a text file. The synthesizer uses this text file to fill the contents of the LUT before

operation. Its contents are described by the equation 4.1:

LUT(x) = S ∗ (1 + sin(
2πx

L
)) (4.1)

where x is the address signal being fed into the ROM, L is the length of the LUT in terms

4 Design Details 48

of number of samples and S is the scaling factor calculated according to the data width:

S = 2B−1 − 1 (4.2)

Multiplying the sine wave by the scaling factor S is meant to make the sine waveform take

the full possible range of the data width B.

Fig. 4.3 NCO Hardware Structure

The oscillation frequency of the NCO is controlled by how much the phase is incremented

at each clock cycle. The phase increment register contains the exact value in radians that

is incremented and represents the discrete frequency at which the oscillator is operating.

Since the 12 most significant bits (MSBs) of the phase accumulation register are used as in

the input into the LUT, only an increment of the 21st bit will have an effect on the output

waveform. The oscillating frequency is determined by:

Fnco =
Fclk

232−Ba
(4.3)

where Fclk is the frequency of the input clock and Ba is the amount of address bits (which

is also the width of the phase accumulation register). A diagram of the structure of the

NCO is pictured in Fig. 4.3. It is important to note that due to the digital nature of

the circuit, there can be distortions that appear in the output waveform. A phenomenon

known as phase truncation may occur when truncating the phase accumulation register.

Phase truncation introduces non-harmonic distortion proportional to the number of bits

being truncated. This can become a problem when dealing with frequency shifts with many

4 Design Details 49

decimal points or frequency shifts represented by non-rational numbers such as multiples

of π or
√

2.

Fig. 4.4 NCO Implementation

4.2.2 Simulation

To verify the proper functioning of the NCO as well as its component Avalon control

interface, a testbench consisting of an Avalon bus functional model (BFM) was designed.

The BFM itself is produced by Altera. A simple use case in which the CPU changes the

frequency of the sinusoidal waves as well as the sawtooth and square waves is pictured in

Figure 4.4. One can easily notice that the frequency of all the waveforms change at the

same time. This happens because all of the waveforms are tied to the same phase values.

Possible improvements could include being able to control the frequency of the different

waveforms separately. It would also be valuable to MotSAI Research to build a proper

DDS based on this NCO to execute complex control algorithms.

4.2.3 Potential Applications

Somce it is paired with a real-time microcontroller, the NCO can perform various useful

Digital Signal Processing (DSP) applications. Because both the phase and frequency are

accessible and modifiable by an external processor of both the sin and cos functions,

4 Design Details 50

analog modulation schemes such as Phase Modulation (PM) and Frequency Modulation

(FM) are possible. Digital modulation schemes such as Frequency Shift Keying (FSK),

Multiple Frequency Shift Keying (MFSK), and PM are also possible. The logical step from

implementing these encoding schemes is to provide an interface for the GNU radio project

[69] which is a great way to provide visibility to the platform.

One of the NCO’s main intended applications is for industrial machines with large

servo motors. By pairing the NCO with a feedback control system, it can constitute a key

component of a DDS system. A DDS is ideal for driving motors that have sinusoidal inputs

and where the precise control of the rotation of a motor is needed.

4.3 Case Study: LMS Adaptive Filter

In industrial design, filters are used quite often for many application including signal pro-

cessing and control. As an important example of what is possible with the Golden Lion

platform, a special type of LMS adaptive filter was designed. Although a software imple-

mentation of the algorithm is quite viable for most situations, a hardware implementation

is still necessary for some high-speed applications. In fact, most filtering algorithms can be

implemented very well on a FPGA. The following section explains the design process for

an adaptive filter that is simulated and later implemented in an FPGA.

4.3.1 Simulation

When designing an adaptive filter, its convergence rate is important in the situation where

a training signal is being used for calibration. There are some cases where an adaptive

filters convergence rate might not be fast enough for high-speed data transmission. A slow

convergence rate increases the proportion of the training signal in the total transmission,

which has the consequence of reducing the overall effective bandwidth. This is an example

use case where the implementation in an FPGA is ideal.

To start off the implementation, a golden software model was made so that the design

could be verified to be correct. A script in MATLAB simulated the algorithm using floating

point representation on all of the signals. This was done so as to concentrate on designing

the algorithm itself and not get bogged down on the implementation details of fixed-point

arithmetic. The simulation itself consisted of an LMS adaptive filter that attempts to

converge to a given FIR filter. The FIR had an order of 140 coefficients and was designed

4 Design Details 51

Fig. 4.5 Magnitude Response of reference filter

to be a band pass filter with pass band going from Fpass = 1.6 KHz to Fstop = 2.4 KHz

with a magnitude response pictured in Figure 4.5.

The model transmission signal x[n] being fed into both filters is a sine wave of 2.0 KHz

integrated with noise of variance of 0.5. The adaptive filter starts out with its filter weights

at 0 but converges to the values of the reference FIR as you feed it more and more values.

In the simulation, it takes as much as 8000 samples for the taps to converge to the right

values. The variance in the noise and gain had to be tweaked carefully in order to have a

reasonable convergence rate and to be able to converge to the right values. Fig. 4.6 shows

the convergence of the filter to the appropriate filter values. The coefficients are pictured

on the y-axis and time is on the x-axis. The values converge to the ones in the ideal FIR

filter.

4.3.2 Implementation

During the design of this adaptive filter, an emphasis was placed on resource and area usage.

To reduce area usage a serial architecture was chosen. The serial design that was devised

is one that was described by a publication by Bernocchi et al. [70] but without the RNS

arithmetic. The authors describe the circuit as updating the filter weights one at a time to

be able to only have one MAC unit for the weights and one MAC unit for the data path.

The implementation presented by this paper is what is used for this module. The final

implementation takes up a lot more control modules for the data path so that everything

syncs up properly. The entire block diagram is shown in Fig. 4.7. A state machine controls

4 Design Details 52

Fig. 4.6 Coefficient Values of Adaptive Filter

the multiplexer’s select lines to be able to coordinate the data path properly. The algorithm

emulated is described in a series of steps:

1. Shift in the input

2. Compute the output sample by multiplying each weight with the appropriate pipeline

value using the Samples MAC Unit

3. Once a sample has been computed, recalculate all the weights individually using the

computed error sample error(n) = desired(n)− y(n).

4. Once all the weights have been computed go back to step 1

4 Design Details 53

Fig. 4.7 Serial Adaptive Filter

The weights should converge to the right value after a few thousand samples. The most

unique aspect of this design is the fact that there are only two MAC units for the entire

adaptive filter. There is the Samples MAC Unit which is a standard MAC and there is

4 Design Details 54

the Weight MAC unit which is pictured in Fig.5. The only difference between the weight

MAC unit and a standard one is the fact that there are multiple values that accumulate

every cycle, instead of the same value. This should result in big savings in terms of total

amount of multipliers. This is an important conclusion if the amount of FPGA multipliers

is limited. However, a register array will still be needed in order to retain the weights in

memory.

Simulation

To compare the convergence rates and resource utilizations of both types of filters, both

were implemented. A standard FIR filter was designed and contained the same order as

the one that was implemented in MATLAB. The signals being fed into the filters through

File I/O are generated in MATLAB. Doing a test of the standard implementation of the

adaptive filter was straight-forward because it was being fed the same clock rate as the

reference FIR reference filter. However, the tricky part is the fact that it takes 2N clock

cycles to create a sample as opposed to the FIR filter that creates a sample every clock

pulse. This meant that the clock that was fed into the reference FIR filter had to be divided

so as to be in sync with the reference FIR.

55 55

Chapter 5

Development Environment

This section describes the use of various development tools to create programs that run

on the Golden Lion platform. It will explore the use of programming languages amd

simulation software and debugging tools built to assist engineers that use this platform for

their products and experiments. This chapter contains the main academic contributions

of this thesis, which is to demonstrate and analyze the use of a HIL simulation testbench

with SoC FPGAs and the design of a tool that helps debug memory-mapped peripherals.

5.1 API Languages

The Golden Lion project is essentially a collection of intellectual property modules that run

on modern hardware. To allow purchasers of this platform to use the IP, there is a need

to give access to it from developers’ programs. Since it is not possible to expose the IP to

every programming language out there, a select few have been chosen for their strengths

and weaknesses that do not overlap.

The first language chosen for an exposed API is C. C is a language that has been in

use since the 1980s. Its main strength is its speed of execution. Providing an API for this

language is mainly for power users that want to get all of the extra ounces of computing

power they can get from the hardware.

The second language is Python. Python has the advantage of being a language that is

easy to read, write, and understand. The semantics are simple and the programmer can get

some reasonable execution speed out of it as long as he or she does not attempt too much

parallel processing with it. An example hook that was built in Python is the one for the

5 Development Environment 56

PID controller implemented on the FPGA. With this Python file pid.py (in Appendix B.2),

a programmer is able to verify that the digital module is functioning properly, start, stop,

and is able to adjust the parameters. All of the communication is done through the CPU’s

memory map. Some interesting experiments can be performed with it without having to

delve too far into the complications of messing around with the FPGA itself. It can also

be used for interacting with peripherals through UIO, similarly to how it was done in an

application note written by Jean-Samuel Chenard [46] and described in section 3.5.3.

5.2 Scilab and Xcos

After careful research and experimentation, the Scilab simulation software has been chosen

due to the availability of documentation and its flexibility [48]. Another reason is Scilabs

ability to simulate both discrete and continuous-time models in the same simulation envi-

ronment without any difficulty. Moreover, the software kit Xcos which is included in Scilab

allows for easy development of simulation models. This was a big motivating factor in

choosing this software. Xcos is very similar in feature sets to existing commercial products.

However, unlike most commercial products, Xcos is open-source. Being open-source is a

great advantage because it gives access to the internal workings of the software and al-

lows for modification of the software if necessary. It also has a plugin so that Modelica [71]

blocks can be used. Modelica is a non-proprietary language which models complex physical

systems containing electrical, electronic and other subcomponents. Using modelica blocks

can decrease the development time if a user wishes to test equipment with complex physical

models. The availability of custom C hooks from inside Scilab simulations is a useful tool

for experimenting with various mediums for outside communication.

The Ptolemy II simulation software [72] was also considered due to its quite extensive

toolbox and its ability to create custom blocks in the form of actors. However, the only

downside was that the simulation itself runs on a Java Virtual Machine. Any calls to the

native memory are required to go through the Java Native Interface (JNI). An experiment

has been performed to compare the latency of writing to physical memory from both native

C and from the Java Virtual Machine. It consists of both implementations which perform

thousands of consecutive memory writes. The time it takes to perform these writes is

recorded and compared. The results of these tests can be seen in Figure 5.1.

The tests show that using the Java Native Interface (JNI) for memory transactions to

5 Development Environment 57

Fig. 5.1 Comparison of time used for 2000 MMAP memory transactions.

physical memory can have a significant impact on performance due to the Java Virtual

Machine (JVM)’s overhead. As a result, the option of using the Ptolemy II simulation

software is abandoned. Although Xcos also uses Java for the UI, the actual exchanges to

the hardware are made in C thanks to the custom hooks available in Scilab.

5.3 Hardware-in-the-Loop modelling with Scilab on a Desktop

PC

5.3.1 Motivation

When designing modern industrial PLCs, there is a need to be able to test control algo-

rithms without necessarily having access to industrial machinery, which these algorithms

control. This need can be resolved by simulating a plant on synchronous modelling software

that is being executed on a PC. This form of HIL allows for quicker validation of controller

platforms. Although this is a feature that is present in proprietary software systems such

as MATLAB Simulink [47] and National Instruments LabVIEW, it is desirable to intro-

duce this feature in existing open-source modelling software so that it can be used without

having to deal with licensing costs and to allow for a more flexible experimental platform

and for direct product derivatives to be built. Ultimately, this form of modelling will be

available to developers using the Golden Lion platform.

5 Development Environment 58

5.3.2 Experimental Setup

This section describes the setup and results of an experiment where synchronous simulation

software is run on a PC. In this particular case, it is desirable to link the discrete time

model to interact with actual external hardware. One of the key issues in synchronous

computation is the fact that simulation execution time depends on the convergence time of

continuous models as well as the update time of discrete models. The latency of a system

call to the hardware and how much effect it has on the real (physical) simulation time and

the resulting system-level constraints are studied. The external hardware is run in a closed

loop simulation with continuous time software running on a Linux system, which forms a

proper HIL system.

Two communication mediums were considered for connecting a PC to the external

hardware: USB and Ethernet. Peripheral access through USB allows for a middle ground

for moderate latency and bandwidth measures. For the sake of software simplicity running

on both the PC and the microcontroller, a virtual COM port layer is added on top of

the USB connection and all communications are done through the port. The connection

appears as a simple serial connection from the PC’s perspective and can be accessed as a

TTY device. Communication through a networking protocol such as UDP or TCP has the

advantage of being very flexible in terms of the implementation and protocol used. The

latency can vary depending on the setup and traffic. The main advantage of this option is

the fact that it can be extended for a large amount of different applications and situations.

Fig. 5.2 M-STF4BB Base Board

5 Development Environment 59

The PC running the Scilab simulation software was is equipped with an Intel Core i5-

2400 running at 3.10 GHz with 8 GBs of memory. To execute the control algorithm, the

STM32F4 [73] was chosen due to its high clock rate, powerful on-chip peripherals with their

associated peripheral drivers and ample documentation. The available software stack for

this platform also allowed for quick setup of the test environment. The ICs demonstration

board, the STM32 F4-Discovery board, provides access to many external peripherals that

are used in the experimentation, such as the USB port. It also allows for the use of the

Embest Ethernet expansion board such as the one picture in Figure 5.2. This expansion

board allows for a quick deployment of a UDP server.

5.3.3 Software Setup

The conceptual model of the whole system is pictured in Figure 5.3. The simulation contains

a reasonably simple plant represented by a continuous-time block running alongside, and

interacting with, a discrete-time block that serves as an interface to the microcontroller.

The discrete block represents a piece of C code that executes when an input discrete event

occurs. The piece of C code contains the callback that performs computations on the set

of inputs and produces a set of outputs. In this case, the code contains system calls which

sends information about the plant to the hardware and receives the feedback from the

controller. This effectively creates a closed-loop feedback system. It is pictured in Figure

5.4.

On the simulation side, it was not necessary to create overly complicated continuous

models since most of the objective of the experiment is to verify the capability of the hard-

ware blocks to keep up with the running simulation. The simulated plant is a weighted

object on which a force can be applied. Applying a force on the object causes it to move,

which is simulated by the three integral blocks, which calculate the accumulation of dis-

placement and speed as a result of the applied force. The position of the object can be

described as

s(t) =

∫ ∫
a(t)dt+

∫
v(t)dt

where a is the acceleration, v is the velocity and s is the position at time t, which is

what is being computed in the simulation.

The simulation relays the information about the position of the mass to the input

block, which sends the position of the object to the hardware on which a control algorithm

5 Development Environment 60

Fig. 5.3 Overall System Configuration

is running. The hardware responds with a desired output force which is applied to the

object, effectively closing the feedback loop.

The discrete event generators trigger the callbacks of the discrete function blocks and

can be adjusted to have the discrete block executed at a particular frequency. In our

particular case, the sampling frequency is set at 1 kHz, which is a commonly found update

frequency in industrial control. On the microcontroller’s side, things were also kept as

simple as possible. The microcontroller would either execute a bang-bang or PID controller.

The ChibiOS real-time operating system (RTOS) was chosen in order to have a structure

for guaranteed real-time response as well as the software stack for the microcontrollers

peripherals. It is one of the best real-time operating systems in terms of code size and

real-time performance. The benchmarks for jitter and context switching are very good

compared to some other operating systems [74]. To have access to an IP stack on the

STM32F4, the minimalist lwIP [75] was used as well as an example project containing

an already-made echo UDP server. The echo server was modified to read the contents of

packets and return the output of a control algorithm such as PID.

5 Development Environment 61

Fig. 5.4 Graphical Xcos Window

Communicating to the external hardware through UDP turned out to be more com-

plicated than through USB. An ethernet card had to be connected to the PCI bus on the

Linux PC so that it can access the internet and communicate with the microcontroller at

the same time. The OS also had to be configured such that all packets sent to addresses

having a certain range would end up on the microcontrollers side. The simulation soft-

ware does not communicate directly with the microcontroller and send the packets itself.

Instead, it communicates with a separate program running concurrently using shared mem-

ory. The exchange of information between simulation software and the relay program is

arbitrated using pthreads. This program then relays this information to the networking

stack and expects the response from the microcontroller. Once the response packet from

the microcontroller comes back, it forwards it to the simulation. The information flow

is pictured in Figure 5.5. This configuration has the advantage of abstracting away the

medium of communication between the computer and the STM32F4 from the point of

view of the simulation software. As a result, the communication medium used by the relay

is interchangeable with others.

As the simulation is executed, there is a divergence that accumulates between the time

passing in Scilab and actual physical time. This is a crucial measure for HIL systems

5 Development Environment 62

Fig. 5.5 Ethernet Relay

because it can evaluate how closely the simulation of the plant resembles the real thing and

how well the algorithm being tested will react. If the discrete time block takes too much

time to respond, it will slow down the simulation software to a point where it diverges

from reality. The sampling frequency at which the discrete model performs data exchanges

with actual hardware has an effect on the physical time and simulation time relationship.

If the sampling frequency is too high, the external hardware will not be able to keep up

with the simulation software. The discrete model response time is related to the time it

takes for an Ethernet packet to leave the PC and reach the microcontroller, get processed

by the control algorithm, and get back to the PC. This is called the packet exchange time.

The higher the response time, the bigger the time divergence. Furthermore, the jitter of

the response time from the hardware can cause some problems for the performance of the

real-time system. The interested reader can read a publication by Yu et al. that attempt

to analyze the effect of jitter on the performance of PI and PID controllers [76].

To summarize, this experiment examines the following metrics:

1. Simulation time versus actual time

2. Maximum Sampling Frequency

3. Packet exchange time

4. Jitter of the response time

5 Development Environment 63

5.3.4 Experimental Results and Analysis

USB Virtual COM Port

The speed performance of the exchange of information between the simulation and the

hardware when using USB communication turned out to be disappointing. In fact, the

maximum functional sampling rate that could be achieved was 5 Hz before the simulation

time and physical time started diverging. 5.3.4 shows how at 5 Hz, there is an increasing

differential between simulation time started diverging from the beginning. The staircase

shape of the real-time curve is simply the result of the simulation blocking before updating

this metric on the scope and the relatively slow update frequency of the running simulation.

In other words, the simulation software calculated an elapsed simulation time of 5 seconds,

but by querying the host computer, it can show that the actual time that has elapsed is

actually 7 seconds.

Fig. 5.6 Real Time vs. Simulation Time Plot for USB at Fs = 5 Hz

The slow response time can be partly explained by the fact that the USB Virtual COM

driver will usually wait for multiple characters before sending out a string in the stream

buffer. This is problematic if you only want to send a few characters each time (as is

the case in our situation). The most optimal solution would be to create an HID driver

from scratch. However, even with a barebone USB solution, it won’t perform much better

due to USB buffering. In any case, USB has the disadvantage of being unreliable over

long distances and less flexible. As a consequence, the possibility of using USB has been

abandoned.

5 Development Environment 64

Ethernet/UDP

It turns out that the performance of UDP is actually much better than the performance of

USB. When running at 1 kHz, which is pictured in Figure 5.8, the real time and simulation

times follow each other much more closely. In fact, there is reasonable time correlation when

setting the sampling frequency up to 3 kHz. However, the time metrics start to dissociate

when setting the frequency to more than 5 kHz (Figure 5.9). A kilohertz sampling frequency

is viable for simple control systems.

Fig. 5.7 Real-Time vs. Simulation Time for UDP

Fig. 5.8 Fs = 1 KHz

Fig. 5.9 Fs = 5 KHz

Response time jitter for UDP packets

Most implementations of feedback control systems can be susceptible to timing jitters.

Thus, an important metric to be analyzed is the jitter of the response time. A varying

sampling frequency can affect the operation of the control algorithm. Generally, the effect

of jitter is to produce a frequency-selective attenuation as well as a uniform spectral density

5 Development Environment 65

component in the resulting signal [77]. This can be detrimental to the operation of the

control algorithm.

The objective of the experiment is to establish how much variability in the response

time there is in this specific HIL situation when using UDP as the means of communication

between the simulated plant and the real-time controller. The main causes of jitter in this

situation are the context of the execution of the kernel, the network hardware and the

network traffic. Since the testbench comprises of a system running on a non-deterministic

OS, it is entirely possible that control packets are delayed due to unrelated activites of the

computer system (for example, a user saving a file during the running simulation). There

are ways to reduce the effects of these events such as optimizing the algorithm of the relay

or by increasing the priority of the simulation process.

To monitor the packet exchange time, all the packets are given a specific tracking number

and Wireshark [78] is used to track the leaving and returning of individual packets on the

network. The analysis of the network exchange lasts 5 seconds of simulation time. Figure

5.10 is a histogram of the times it took for a packet to be sent to the UDP server and received

back. The majority of the packet exchange times lie around the 0.1 millisecond mark.

However, there are many outliers in the range between 800 microseconds to 1 millisecond,

and a bit more in the 1 millisecond to 1.5 millisecond range. This is problematic because a

minimum stable sampling frequency of 1 KHz is needed for any serious control application.

To remedy this, optimizations on the microcontroller side can provide major improve-

ments to the consistency of the distribution of the deltas. An improvement to the Ethernet

relay algorithm to make it consume less CPU cycles also had an effect. The improved

results can be seen in Figure 5.11:

With the improvements, most packets end up having a delta in the range of 50 to

150 microseconds. The outliers only reside in the range of 200 to 216 microseconds (the

maximum being 216 microseconds). This shows that the network and STM32F4 parts

of the feedback loop occupy a small portion of the feedback loop. Therefore, a sampling

frequency of 1 KHz can easily be sustained if it is needed.

Comparison with other HIL testbenches

This HIL test bench is similar to what has been done in other research projects. For ex-

ample, Abugchem et al. present a real-time HIL simulation platform [79]. Similar to our

5 Development Environment 66

Fig. 5.10 Packet Exchange Time Histogram at Fs = 1 KHz

platform, it uses a simulated model build on a desktop PC that is connected to the em-

bedded real-time processor. The outputs of the PC are produced according to a simulated

model and sent to a controller and controller behaviour is sent back to the PC to close

the control loop. However, the focus of their experiment is different. They want to use

this testbench to test the effects of different scheduler schemes on the behaviour of the

controller. The direction of their research has continued on this path with more publica-

tions that explore different configurations such as the parametrization configuration of the

control algorithm [55]. By contrast, this experiment is designed to test the limits of this

testbench setup. They examine the response jitter caused by different scheduling schemes

and computing loads on the embedded controller but they have not taken into account

the possibility of errors due to the jitter in the communication link between the PC and

the embedded controller. Another important difference is the set of software that is used.

In their test bench, which is based on the RTE-SIM environmment [80], they mostly use

proprietary software which is less flexible than open-source. They also base their experi-

mental setup on a Windows machine. By contrast, in this test bench, all of the software

5 Development Environment 67

Fig. 5.11 Packet Exchange Time Histogram with improvements at Fs = 5
KHz

tools used on the desktop are open-source. By leverage an open-source OS (Linux) and

simulation software (Scilab/Xcos), it was possible to have more control and to maximize

the performance of the test bench setup.

5.4 Using Scilab and Xcos on the SoCFPGA

Simulation software is a valuable addition to a development environment. In the case of

the Golden Lion platform, including simulation software as part of the development suite

can introduce interesting additions to the workflow. In this section, it will be shown how

running Scilab and Xcos on the SoC FPGA processor can open up possibilities for a design

workflow that does not require coding skills. This section will show how a control system

engineer will be able to develop an algorithm using the graphical features of Scilab/Xcos

and deploy it to the rpoposed platform easily. Additionally, this section will examine the

possibility of using Scilab for an as/more reliable HIL test bench than the one based on a

desktop PC and an external microcontroller presented in the previous section.

5 Development Environment 68

5.4.1 Workflow proposal

To help designers build efficient applications for the Golden Lion platform using Scilab, a

Scilab and Xcos toolbox is built to give access to computation accelerators on the FPGA

through simple function calls. This MotSAI Scilab toolbox is usable both on the embedded

platform and on the desktop. The toolbox would contain a set of API calls corresponding to

what is contained in the FPGA. A workflow based around this Scilab toolbox is proposed.

First, consider a use case in which an engineer wants to design a control algorithm which

takes in input signals, performs computations on these signals and produces the appropriate

output control signals. An example of this could be a developer who would like to create

an output waveform with a set of frequency components. In this scenario, the developer

develops the initial design on a desktop computer running Scilab. In the Scilab program

containing the application, calls are made to the API to activate the waveform synthesizer

features on the FPGA. The next step would be to transfer the .xcos or .sci file to the SoC

FPGA and open it in Scilab from there. Using graphical .xcos files assumes that there the

SoC FPGA is connected to a keyboard and mouse for user input as well as a connected

screen. Once opened in Scilab, the simulation appears as though it were designed on the

desktop, except that the hardware will behave as intended. The developer executes the

program and observes the behavior of the HIL and the plant simulation. Depending on

the behaviour of the program (if there is a bug or uninteneded behaviour), the developer

would perform changes on the desktop and restart the iteration loop.

It should be noted that Xcos is not essential to this workflow since it is essentially a

graphical wrapper around Scilab. One could easily design their algorithm entirely in Scilab

and deploy it on the SoC FPGA as is. If it is decided that Xcos it not to be used, it entirely

removes a layer of complexity on the runtime of the application and will improve execution

speed.

5.4.2 Hardware-in-the-Loop Simulation with SoCFPGA

In the previous section, an experimental testbench was set up between an external PC

and a microcontroller to determine the reliability of a HIL setup for testing an algorithm

running on a micro-controller. This section will explore this concept further, except that

the simulation and the external hardware will be further integrated by running both on the

same chip. The SoC FPGA chip that is used in this setup has powerful features, including

5 Development Environment 69

a ARM Cortex-A9 dual-core processor that is capable of running Ubuntu as well as a large

FPGA fabric. Having such a processor allows it to run simulation software such as Scilab

at a reasonable speed. However, the main advantage of transferring the testbench to the

SoC FPGA is the fact that the information transfer between the unit being tested and the

running simulation will undergo less jitter and will perform at a lower latency. The fact

that the unit tested is in the FPGA and the simulation runs on the processor means that

information travels through memory transfer rather than through an external bus such as

Ethernet or USB. The downside of this HIL setup is that the simulation software does

not run as fast on the ARM Cortex-A9 as it does running on a Intel Core i5TM. This

approach may simply move the system bottleneck from the information transfer bus to the

processor. This subsection will examine whether putting the HIL test setup on the SoC

FPGA improves the performance of the testbench or makes it worse.

A new simulation file is used in this particular setup. This Xcos simulation is mostly

the same as in the previous section. The simulated plant and the hooks to plot the real

vs. simulated times are the same. Keeping track of real time is done through a system call

every time an execution of the discrete time block is made. The test runs for 25 seconds.

However, instead of making the PID block be a communication to an external processor, it

is a connection to a PID algorithm implemented on the FPGA fabric. The metric used to

determine the viability of a HIL platform is whether the simulation time diverges from the

real time. To do this, the simulation is run at different frequencies to determine the exact

sampling rate at which it breaks down.

As it turns out, having the HIL set up on the ARM processor core does not allow for

a greater sampling frequency than having the HIL setup on the desktop. The transfer of

information between the simulation and the hardware is almost instantaneous (a single

memory instruction) and the computation of the PID algorithm takes 3 clock cycles at 50

MHz the execution of the simulation software is considerably slowed down by the heavy load

of the simulation software (the graphical application). Figure 5.12 shows the divergence

between simulation time and real time when executed at different sampling frequencies. The

simulation runs fine at 100 Hz sampling frequency. However, as the sampling frequency is

increased, the divergence starts appearing, as can be seen in Figure 5.13 to Figure 5.14. A

possible solution to this problem is to segregate the graphical and real-time portions of the

simulation software to the two different cores.

The conclusion of this experiment is that this form of HIL testbench involving only a

5 Development Environment 70

Fig. 5.12 Real-Time vs. Simulation Time on ARM Cortex-A9

Fig. 5.13 Fs = 100 Hz

Fig. 5.14 Fs = 166 Hz

5 Development Environment 71

SoC FPGA is not as effective as on a desktop computer with an external connection to the

unit under test, despite the downsides of having a relatively slower link between the two in

the latter case. The main problem is the lack of speed of the ARM Cortex-A9 present on

the SoCFPGA. Although the HIL and the link to it are very fast, the simulation software

as well as its graphical portion Xcos is too much of a burden on the processor that is

mainly intended for embedded applications. However, it is worth noting that in the near

future, SoC FPGAs might get a serious upgrade due to the recent partnership with Intel

to fabricate their chips [81]. Although the deal is limited to manufacturing technology

for now, if Altera decides to incorporate x86 processors inside their FPGAs or if Intel

uses programmable logic in their CPU (the area of the die would probably be dominated

by the x86 core), it would boost the processing power, allowing for graphical simulation

applications like Xcos to run more smoothly.

5.5 Register Map Viewer

In addition to the collection of tools allowing for development with HIL simulation, there is

a need for tools meant for debugging device drivers interacting with peripherals on the SoC.

This section presents the development of a tool for interacting and debugging peripherals

that are described by a SVD file and that are accessible by a CPU’s memory map.

5.5.1 Motivation

Because of complex integration of multiple components, SoCs contain many peripherals

that perform different functions. In order for these peripherals to be used by the system

developer, the OS has to take them in charge by the means of a device driver, which

are computer programs that control peripherals that are attached to the computer bus.

However, sometimes the device driver does not function correctly and contain bugs, so it

can become necessary for the developer to bypass the device driver and understand what

is going on methodically.

To understand the behaviour of a memory-mapped peripheral and debug it, one must

read and write to its registers. The manual debugging method is not trivial and can open

the way for many mistakes to be made. For example, if there is unwanted behaviour from

a peripheral and the developer wants understand and fix the problem.

The workflow for this situation would be the following:

5 Development Environment 72

1. Look up the address of a particular register from the datasheet in the peripheral that

needs to be debugged.

2. Find the bit offset of a field you want to read from.

3. Write a program that reads and writes to the system physical memory.

4. Use this program to read and write to specific fields in the registers of the peripheral

and translate the results in hexadecimal human input.

5. Interpret the hexadecimal output of the program and understand the bug.

Every step in this workflow is vulnerable to small errors. The biggest problem is that it

involves humans interpreting hexadecimal values and inferring the register content meaning

from those values. This process is very prone to human error and those errors can have

dire consequences and be very difficult to locate as they pertain to device drivers.

5.5.2 Features

To address this complexity, a tool called the Register Map Viewer has been created to assist

the developer with correctly viewing the register map defined by a chip manufacturer as

well as help the developer read and write to specific fields in a register.

In order to obtain information about the register map of the device, the tool parses a

CMSIS-SVD file [44] that is given by the manufacturer or that is automatically generated

based on the synthesized contents of an FPGA. The SVD parser is derived by one built

by Ben Nahill [82]. More functions were added to take into account the possible values

a register could take with the use of enumerated values. The auto-complete function au-

tomatically shows the possible options for the different peripherals, registers, fields, and

values according to what the user chooses. This way, the developer will avoid having to

look through documentation to figure out the address and bit offset of the field he wants

to write to, thus reducing the risk of errors. Using this tool, it becomes much simpler to

read and write to specific registers.

Figure 5.15 provides an example use case in which a user would want to write a character

to the transmit buffer of a UART peripheral present on a Freescale i.MX6Q processor. With

this tool, it becomes much easier to perform this task, since it already contains much of

the information contained in the register documentation. First, the user loads a preparsed

5 Development Environment 73

Fig. 5.15 Writing to a memory-mapped register

python object tree containing the information about the register map into the memory.

Then, the user types the command to write to a register (writereg) and presses tab. This

makes the program show all of the available peripheral prefixes. The user continues to refine

his choice using the auto-complete features until the full name of the intended peripheral

is chosen. The program then offers the user a choice of different registers contained in that

peripheral, and the auto-complete helps the user type out the complete intended register

name. The user then types the desired value and executes the write command.

Another important feature of this tool is reading a memory-mapped register. An ex-

ample use case of this would be when a user wants to read the contents of a UART control

register, which is pictured in Figure 5.16. The initial program flow is the same as in the

case in which the user would need to write to a register, and functions the same way in

terms of helping the user find the intended register name. After the execution of the read

command, the contents of the chosen registers are displayed. The hexadecimal value is

interpreted according to the SVD file and each field is explained, eliminating the need for

5 Development Environment 74

constantly reviewing the documentation.

Fig. 5.16 Reading a memory-mapped register

5.5.3 Design

The tool is accessible by the user as a Python script [45]. The parsing of the of the SVD

file is done using the lxml library [83] which automatically generates a python object file

containing the information about the tree structure of the XML. However, parsing an xml

file can take a big amount of processing power depending on the size of the file. Since SVD

5 Development Environment 75

files are generally very big (the one for the i.MX6Q is 15.5 MBs, which is huge for a text

file), parsing them can take a long time. In order to avoid performing such a workload

on an embedded system, the parsing of the tree can be done externally (generally on a

high-powered desktop or server) and deployed on the embedded system in the form of a

pickle object. Loading a python pickle object takes a fraction of the time as it does loading

and parsing the original XML file.

The part of the program that accesses the physical memory is written in C and is

compiled into a dynamic library. This section is decoupled from the parts that handle the

user interface and the management of the register database. Since programs are forbidden

from accessing areas outside of the allocated virtual memory space, access to the physical

memory is done by performing a memory-map mmap() call to /dev/mem. The python

script portion of the program accesses the dynamic library using the ctypes module. In

order to deploy a command-line interpretation feature, the python cmd module is used.

This module provides a framework for creating command-line interpreters and provides

features such as auto-complete, command memory, and many other tools that are regularly

used in command-line applications.

5.5.4 Comparison with other tools

Looking at registers of a running system is nothing new. There are many modern com-

mercial debugging utilities that are more sophisticated than the one presented [84] [85].

However, they are expensive and require non-negligible amount of processing power to use.

The Register Map Viewer is one of the only command-line tools that is lightweight enough

to run on the target system and that can be used to view the content of registers at runtime.

By comparison, some other tools have been made run on a remote PC and transmit register

information via gdb [82]. By running on the target system, the program allows for much

greater flexibility. For example, it allows the user to debug running applications without

necessarily having access to a PC or a JTAG debugger. This means that a developer has

access to features of a modern debugging tool and can fix problems remotely with the use

of a terminal.

5 Development Environment 76

5.5.5 Possible improvements

Although being able to run through the terminal is one of the key features of this tool, the

core of the program is decoupled enough from the user interface features that it would be

possible to use the core debugging features with a GUI. Instead of showing the different

registers and fields in a terminal, they could be shown in a window and changed using

buttons and text fields similar to how it is done in a modern commercial IDE like Keil

uVision [85] and ARM DS-5 [84].

It would also be interesting to explore the possibility of leveraging the capabilities of an

FPGA to store and transmit massive amounts of data for the purpose of debugging. Being

able to monitor the contents of an FPGA register over an amount of time and being able to

access this information from a program running on the embedded processor could be useful

in some situations. The functionality would be similar to how the internal logic analyzers

like Altera’s SignalTap [59] and Xilinx’s ChipScope [86] work, but it would be gathering

data and sent to a userspace program instead of to a PC connected by JTAG. As an example

use case, a developer could want to monitor the behavior of an FPGA peripheral that is

being controlled by a Linux kernel module. An FPGA would be programmed so that it

would hold trace data relevant to a certain peripheral (a sort of ”debug” compilation mode)

in a buffer for a fixed number of clock cycles. The program, running in userspace, would

then take in the samples and visually show them to the user to help the debugging process.

Although this would require recompiling the bitstream in a ”debug” mode and can take

a lot of time, FPGA reconfiguration techniques exist that allow the debugging loop to be

shortened [87].

77 77

Chapter 6

Conclusion

6.1 Summary

In this master’s project, the basis for Motsai Research’s next generation computing plat-

form for industrial embedded systems has been proposed and prototyped. By leveraging

a computer system based on SoC FPGA technology, it was possible for the system to be

at the cutting edge of development in the electronics industry. The solution’s architecture

is based on a CPU, an FPGA, and a soft real-time microcontroller. It is sophisticated

enough to be able to fulfill both low-level and high-level computing roles. The design of

basic IP cores such an NCO, a PID and LMS based adaptive filter has been described. The

main academic contribution of this thesis is the demonstration of open-source simulation

software performing HIL simulation on a SoC FPGA. The possibility of using free software

for HIL simulation allows engineers to build embedded systems more quickly and expand

the platform with adapted components.

6.2 Future Work

Although its basis is functional and usable, the Golden Lion platform constitutes a flexible

baseline on which to build an end application or sophisticated modeling tool. Improvements

can be made on multiple fronts. The most obvious improvement is to use the research in

this thesis to make a product destined for industrial applications. It is important to build a

basic module containing the SoC FPGA and at minimum one bank of DDR3 memory. This

module can be connected to a I/O PCB containing the electrical protections and isolation

6 Conclusion 78

appropriate for industrial applications. For the real-time microcontroller being synthesized

inside the logic fabric, its Arithmetic Logic Unit (ALU) can be optimized to use less re-

sources when executing fixed-point operations using transforms for imprecise datapaths

[88] [89]. This could be an interesting avenue for future work. Interested readers may want

to learn about methods for verification of datapath circuits through error modeling [90].

Improvements can also be made on the software side. First, the existing IP cores can be

improved so that they have more features and have more comprehensive software drivers.

Many other peripherals and drivers can be created. Next, because of the inevitable future

improvements in SoC FPGA technology, the HIL testbench running in Xcos and Scilab

should be able to run more smoothly than what has been shown in the test run in section

5.4.2. The register viewer tool presented in Section 5.5 can be improved by creating a

graphical interface around it, or by giving it the ability to handle larger amounts of register

information.

79 79

Appendix A

F4-Discovery Daughter Board

Schematics

Fig. A.1 STM32F4-Discovery Board

2014/12/02

80 80

Appendix B

Python Code

B.1 LUT Memory Content generation

import math

f = open(’sinewave.txt’,’w’)

data_width = 12;

addr_width = 12;

rom_length = 2** addr_width;

scaling_factor = (2**(data_width -1)) -1

sine_wave = [scaling_factor * \

(1+ math.sin(2 * i * math.pi/rom_length)) for i in range(rom_length)]

for x in sine_wave:

f.write("{0:012b}\n".format(int(x))) http ://only -vlsi.blogspot.ca /2008/04/ parallel -vs-serial -data -transmssion.html

f.close ()

B Python Code 81

B.2 PID python script

from devmem import *

bridge_base_addr = 0xff200000

base_offset = 0x0000

pid_offset = bridge_base_addr + base_offset

class pid(object):

""" docstring for interacting with the PID"""

registers = {’kp’:pid_offset , ’ki’:pid_offset +1, ’kd’:pid_offset +2,

’pid_in ’:pid_offset +3, ’pid_ref ’:pid_offset +4,

’eval’:pid_offset +5, ’pid_out ’:pid_offset +15}

def __init__(self):

self.dm = DevMem ()

self.offsets = [0x0 ,0x1 ,0x2 ,0x3]

self.resetvalues = [0,1,2,3,4]

reg = self.dm.read(pid_offset + self.offsets [2])

if reg == self.resetvalues [2]:

print("hurray it works!")

def verify_pid(self):

f = open("InY.txt", ’r’)

g = open("InRef.txt", ’r’)

o = open("pid_out.txt", ’r’)

v = open("pid_hardware_out.txt", ’w’)

InY = []

InRef = []

pidout = []

for line in f:

InY.append(int(line))

for line in g:

InRef.append(int(line))

B Python Code 82

for line in o:

pidout.append(int(line))

self.start_evaluating ()

i=0

out =123

valid = 1

while(pidout[i] != -1 and i < 20000 and valid == 1) :

self.dm.write(self.registers[’pid_in ’], InY[i])

self.dm.write(self.registers[’pid_ref ’], InRef[i])

out = self.dm.read(self.registers[’pid_out ’])

if (i != 0) and out != pidout[i]:

valid = 0

else:

v.write(str(out)+’\n’)

i = i+1

v.close()

def set_pid_params(self):

self.dm.write(self.registers[’kp’], 65536)

self.dm.write(self.registers[’ki’], 21475)

self.dm.write(self.registers[’kd’], 6554)

def start_evaluating(self):

self.dm.write(self.registers[’eval’], 1)

if __name__ == ’__main__ ’:

mypid = pid()

mypid.set_pid_params ()

mypid.verify_pid ()

print("finished")

83 83

References

[1] T. J. Talley, “IEEE industrial electronics conference 2003: development process
for replacement of an obsolete microcontroller,” in Industrial Electronics Society,
2003. IECON’03. The 29th Annual Conference of the IEEE, vol. 2. IEEE,
2003, pp. 1552–1556. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=1280288

[2] M. Paska, P. Dvorak, S. Racek, and E. Janecek, “Model based support for life cycle
management of i&c systems,” in EUROCON, 2007. IEEE, 2007, pp. 2217–2220.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4400452

[3] X. Meng, B. Thornberg, and L. Olsson, “Component obsolescence management model
for long life cycle embedded system,” in AUTOTESTCON, 2012 IEEE. IEEE, 2012,
pp. 19–24. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=
6334547

[4] J. Torresen and T. A. Lovland, “Parts obsolescence challenges for the
electronics industry,” in Design and Diagnostics of Electronic Circuits and
Systems, 2007. DDECS’07. IEEE, 2007, pp. 1–4. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4295267

[5] W. Ahmed and D. Myers, “Maintainable embedded system design to accommodate
incremental change,” in Integrated Circuits, 2007. ISIC’07. International Symposium
on., 2007, pp. 158–161. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=4441821

[6] D. Hallmans, T. Nolte, and S. Larsson, “Industrial requirements on evolution of an
embedded system architecture.” IEEE, Jul. 2013, pp. 668–673. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6605869

[7] D. Hallmans, T. Nolte, and Larsson, “A method for handling evolvability in
a complex embedded system,” in Emerging Technologies & Factory Automation
(ETFA), 2013 IEEE 18th Conference on. IEEE, 2013, pp. 1–8. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6648016

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1280288
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1280288
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4400452
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6334547
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6334547
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4295267
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4295267
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4441821
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4441821
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6605869
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6648016

References 84

[8] PCI-SIG. (2011) Conventional PCI. [Online]. Available: http://www.pcisig.com/
specifications/conventional/

[9] “Parallel vs serial data transmission,” 2008. [Online]. Available: http://only-vlsi.
blogspot.ca/2008/04/parallel-vs-serial-data-transmssion.html

[10] PCI-SIG, “PCI express 3.0 frequently asked questions,” 2012. [Online]. Avail-
able: http://www.pcisig.com/news room/faqs/pcie3.0 faq/PCI-SIG PCIe 3 0 FAQ
Final 07102012.pdf

[11] L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,”
Computer, vol. 35, no. 1, pp. 70–78, 2002. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=976921

[12] W. J. Dally and B. Towles, “Route packets, not wires: On-chip interconnection
networks,” in Proc. DAC. IEEE, 2001, pp. 684–689. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=935594

[13] ARM, “Cortex-a series,” Jul. 2014. [Online]. Available: http://www.arm.com/
products/processors/cortex-a/

[14] Altera, “Cyclone v device overview,” Dec. 2013. [Online]. Available: http:
//www.altera.com/literature/hb/cyclone-v/cv 51001.pdf

[15] J. Beneke and Avnet, “Designing with the xilinx 7 se-
ries PCIe embedded block,” Apr. 2012. [Online]. Avail-
able: http://www.em.avnet.com/en-us/design/trainingandevents/Documents/
X-FEST%202012%20PRESENTATIONS/xfest12 pdf pcie v1 1 april29.pdf

[16] Y. Cao, Y. Zhu, X. Wang, J. Jiang, and M. Qiu, “An FPGA based PCI-e root complex
architecture for standalone SOPCs.” IEEE, Apr. 2013, pp. 149–152. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6546010

[17] W. H. Wolf, “Hardware-software co-design of embedded systems [and prolog],”
Proceedings of the IEEE, vol. 82, no. 7, pp. 967–989, 1994. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=293155

[18] G. De Michell and R. K. Gupta, “Hardware/software co-design,” Proceedings
of the IEEE, vol. 85, no. 3, pp. 349–365, 1997. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=558708

[19] Y. Zou, Z. Zhuang, and H. Chen, “HW-SW partitioning based on genetic algorithm,”
in Evolutionary Computation, 2004. CEC2004. Congress on, vol. 1. IEEE, 2004, pp.
628–633. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=
1330916

http://www.pcisig.com/specifications/conventional/
http://www.pcisig.com/specifications/conventional/
http://only-vlsi.blogspot.ca/2008/04/parallel-vs-serial-data-transmssion.html
http://only-vlsi.blogspot.ca/2008/04/parallel-vs-serial-data-transmssion.html
http://www.pcisig.com/news_room/faqs/pcie3.0_faq/PCI-SIG_PCIe_3_0_FAQ_Final_07102012.pdf
http://www.pcisig.com/news_room/faqs/pcie3.0_faq/PCI-SIG_PCIe_3_0_FAQ_Final_07102012.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=976921
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=976921
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=935594
http://www.arm.com/products/processors/cortex-a/
http://www.arm.com/products/processors/cortex-a/
http://www.altera.com/literature/hb/cyclone-v/cv_51001.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_51001.pdf
http://www.em.avnet.com/en-us/design/trainingandevents/Documents/X-FEST%202012%20PRESENTATIONS/xfest12_pdf_pcie_v1_1_april29.pdf
http://www.em.avnet.com/en-us/design/trainingandevents/Documents/X-FEST%202012%20PRESENTATIONS/xfest12_pdf_pcie_v1_1_april29.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6546010
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=293155
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=558708
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=558708
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1330916
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1330916

References 85

[20] H. P. Peixoto and M. F. Jacome, “Algorithm and architecture-level design
space exploration using hierarchical data flows,” in Application-Specific Systems,
Architectures and Processors, 1997. Proceedings., IEEE International Conference on.
IEEE, 1997, pp. 272–282. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=606833

[21] Y. Chu, “Application-specific coprocessor computer architecture,” in Application
Specific Array Processors, 1990. Proceedings of the International Conference on.
IEEE, 1990, pp. 653–664. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=145500

[22] P. W. Diodato, J. A. Fields, M. E. Thierbach, and M.-S. Tsay, “The
design of an IEEE standard math accelerator unit,” Solid-State Circuits,
IEEE Journal of, vol. 20, no. 5, pp. 993–997, 1985. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1052426

[23] Y. Chu and K. Itano, “A top-down parsing co-processor for compilation,” in System
Sciences, 1989. Vol. I: Architecture Track, Proceedings of the Twenty-Second Annual
Hawaii International Conference on, vol. 1. IEEE, 1989, pp. 403–413. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=47182

[24] O. Queinnec, “A graphics co-processor and its display processor ICs,” Consumer
Electronics, IEEE Transactions on, no. 4, pp. 551–556, 1987. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4071595

[25] J. H. Schiller, “A flexible co-processor for high-performance communication support,”
in Global Telecommunications Conference, 1995. GLOBECOM’95., IEEE, vol. 2.
IEEE, 1995, pp. 1445–1449. [Online]. Available: http://ieeexplore.ieee.org/xpls/
abs all.jsp?arnumber=502641

[26] W. W. Loh and F. J. Dickin, “A novel computer architecture for real-time solution
of inverse problems [electric impedance tomography],” in Advances in Electrical
Tomography (Digest No: 1196/143), IEE Colloquium on. IET, 1996, pp. 22–1.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=578016

[27] D. Niehaus, K. Ramamritham, J. A. Stankovic, G. Wallace, C. Weems, N. Burleson,
and J. Ko, “The spring scheduling co-processor: Design, use, and performance,”
in Real-Time Systems Symposium, 1993., Proceedings. IEEE, 1993, pp. 106–111.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=393510

[28] J. Starner, J. Adomat, J. Furunas, and L. Lindh, “Real-time scheduling co-
processor in hardware for single and multiprocessor systems,” in EUROMICRO
96. Beyond 2000: Hardware and Software Design Strategies., Proceedings of the

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=606833
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=606833
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=145500
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=145500
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1052426
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=47182
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4071595
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=502641
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=502641
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=578016
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=393510

References 86

22nd EUROMICRO Conference. IEEE, 1996, pp. 509–512. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=546476

[29] M. Vetromille, L. Ost, C. A. Marcon, C. Reif, and F. Hessel, “Rtos scheduler
implementation in hardware and software for real time applications,” in Rapid System
Prototyping, 2006. Seventeenth IEEE International Workshop on. IEEE, 2006, pp.
163–168. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=
1630765

[30] R. Hartenstein, J. Becker, and R. Kress, “An embedded accelerator for
real-time image processing,” in Real-Time Systems, 1996., Proceedings of the
Eighth Euromicro Workshop on. IEEE, 1996, pp. 83–88. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=557821

[31] O. A. Nava and A. D. Prez, “Acceleration of fractal image compression using the
hardware-software co-design methodology.” IEEE, Dec. 2009, pp. 167–171. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5382046

[32] X. Niu, L. Galarza, Y. Gao, and J. Fan, “Software-hardware co-design for video
coding acceleration,” in System Theory (SSST), 2012 44th Southeastern Symposium
on. IEEE, 2012, pp. 57–60. [Online]. Available: http://ieeexplore.ieee.org/xpls/
abs all.jsp?arnumber=6195122

[33] Massicotte, D Barwicz, A., “An application-specific processor dedicated to kalman-
filter-based correction of spectrometric data,” vol. 1, Hamamatsu, May 1994, pp. 352
– 356.

[34] D. E. Borth, I. A. Gerson, J. R. Haug, and C. D. Thompson, “A
flexible adaptive FIR filter VLSI IC,” Selected Areas in Communications,
IEEE Journal on, vol. 6, no. 3, pp. 494–503, 1988. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1917

[35] O. Gay-Bellile and E. Dujardin, “Architecture of a programmable FIR filter
co-processor,” in Circuits and Systems, 1998. ISCAS’98. Proceedings of the 1998
IEEE International Symposium on, vol. 5. IEEE, 1998, pp. 433–436. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=694525

[36] M. Berekovic, P. Pirsch, T. Selinger, K.-I. Wels, C. Miro, A. Lafage, C. Heer, and
G. Ghigo, “Architecture of an image rendering co-processor for MPEG-4 systems,”
in Application-Specific Systems, Architectures, and Processors, 2000. Proceedings.
IEEE International Conference on. IEEE, 2000, pp. 15–24. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=862374

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=546476
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1630765
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1630765
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=557821
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5382046
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6195122
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6195122
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1917
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=694525
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=862374

References 87

[37] IBM, “IBM systems cryptographic hardware products,” Apr. 2014. [Online].
Available: http://www-03.ibm.com/security/cryptocards/

[38] R. McMillan, “Microsoft supercharges bing search with programmable chips,” Jun.
2014. [Online]. Available: http://www.wired.com/2014/06/microsoft-fpga/

[39] Intel, “Intel 64 and IA-32 architectures software developers manual,” Sep.
2013. [Online]. Available: http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html?iid=tech vt tech+64-32 manuals

[40] A. Hodjat and I. Verbauwhede, “Interfacing a high speed crypto accelerator to an
embedded CPU,” in Signals, Systems and Computers, 2004. Conference Record of the
Thirty-Eighth Asilomar Conference on, vol. 1. IEEE, 2004, pp. 488–492. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1399180

[41] R. A. Melo, D. M. Caruso, and S. E. Tropea, “Memory-mapped i/o
over dual port BRAM on FPGA,” in Programmable Logic (SPL), 2012
VIII Southern Conference on. IEEE, 2012, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6211780

[42] N. Y. Song, Y. J. Yu, W. Shin, H. Eom, and H. Y. Yeom, “Low-latency
memory-mapped i/o for data-intensive applications on fast storage devices.” IEEE,
Nov. 2012, pp. 766–770. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6495887

[43] B. Widrow, J. M. McCool, M. Larimore, and C. R. Johnson, “Stationary and
nonstationary learning characteristics of the LMS adaptive filter,” Proceedings
of the IEEE, vol. 64, no. 8, pp. 1151–1162, 1976. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1454555

[44] “CMSIS-SVD: System view description.” [Online]. Available: http://www.keil.com/
pack/doc/CMSIS/SVD/html/index.html

[45] P. S. Foundation, “Python.org,” Jun. 2014. [Online]. Available: https://www.python.
org/

[46] J.-S. Chenard, “Linux userspace i/o as a mechanism for rapid hardware driver devel-
opment,” 2012.

[47] “MATLAB - the language of technical computing.” [Online]. Available: http:
//www.mathworks.com/products/matlab/

[48] R. Nikoukhah and S. Steer, “SCICOS-a dynamic system builder and simulator,”
in Computer-Aided Control System Design, 1996., Proceedings of the 1996 IEEE

http://www-03.ibm.com/security/cryptocards/
http://www.wired.com/2014/06/microsoft-fpga/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html?iid=tech_vt_tech+64-32_manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html?iid=tech_vt_tech+64-32_manuals
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1399180
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6211780
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6495887
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6495887
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1454555
http://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
http://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
https://www.python.org/
https://www.python.org/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/

References 88

International Symposium on. IEEE, 1996, pp. 430–435. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=555330

[49] “Xcos - hybrid dynamic systems modeler and simulator | scilab professional partner.”
[Online]. Available: http://www.openeering.com/xcos

[50] F. El Guezar, H. Bouzahir, P. Acco, K. Afdel, and D. Fournier-Prunaret, “Modeling
and simulation in scicos: A case study,” in Computational Intelligence and Intelligent
Informatics, 2007. ISCIII’07. International Symposium on. IEEE, 2007, pp. 105–110.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4218404

[51] D. Maclay, “Simulation gets into the loop,” IEE Review, vol. 43, no. 3, pp. 109–112,
May 1997.

[52] T. Hwang, J. Roh, K. Park, K. H. Lee, K.-W. Lee, S.-J. Lee, and Y.-J. Kim, “Devel-
opment of HILS systems for active brake control systems.” Busan: IEEE, Oct. 2006,
pp. 4404 – 4408.

[53] J. M. Cho, D. H. Hwang, K. C. Lee, J. W. Jeon, D. Y. Park, Y. J. Kim,
and J. S. Joh, “Design and implementation of HILS system for ABS ECU of
commercial vehicles,” in Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE
International Symposium on, vol. 2. IEEE, 2001, pp. 1272–1277. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=931663

[54] W. Deng, Y. H. Lee, and A. Zhao, “Hardware-in-the-loop simulation for
autonomous driving,” in Industrial Electronics, 2008. IECON 2008. 34th
Annual Conference of IEEE. IEEE, 2008, pp. 1742–1747. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4758217

[55] F. Abugchem, M. Short, and D. Xu, “An experimental HIL study on the jitter
sensitivity of an adaptive control system,” in Emerging Technologies & Factory
Automation (ETFA), 2013 IEEE 18th Conference on. IEEE, 2013, pp. 1–8. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6647944

[56] OpenCores, “Wishbone b4,” 2010. [Online]. Available: http://cdn.opencores.org/
downloads/wbspec b4.pdf

[57] J. Park and P. C. Diniz, “An external memory interface for FPGA-based
computing engines.” in FCCM, 2001, pp. 267–268. [Online]. Available: http:
//www.isi.edu/∼pedro/PUBLICATIONS/ParkDiniz.fccm2001.pdf

[58] C. E. Cummings, “Clock domain crossing (CDC) design & verification techniques
using SystemVerilog,” 2008.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=555330
http://www.openeering.com/xcos
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4218404
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=931663
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4758217
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6647944
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://www.isi.edu/~pedro/PUBLICATIONS/ParkDiniz.fccm2001.pdf
http://www.isi.edu/~pedro/PUBLICATIONS/ParkDiniz.fccm2001.pdf

References 89

[59] A. Corporation, “Design debugging using the SignalTap II logic analyzer,” in Quartus
II Handbook Version 13.1, vol. 3.

[60] Altera, “HPS FPGA AXI bridges,” in Cyclone V Device Handbook. 101 Innovation
Drive, San Jose, CA 95134: Altera, Feb. 2014, vol. 5.

[61] “NIOS II performance benchmarks,” Nov. 2013. [Online]. Available: http:
//www.altera.com/literature/ds/ds nios2 perf.pdf

[62] Altera, “Qsys interconnect,” in Quartus II Handbook, Nov. 2013.

[63] H. J. Koch and H. Linutronix Gmb, “Userspace i/o drivers in a realtime
context,” in The 13th Realtime Linux Workshop, 2011. [Online]. Available:
http://www.osadl.org/fileadmin/dam/rtlws/12/Koch.pdf

[64] L. Torvalds, “Re: [GIT PATCH] more driver core patches for 2.6.19,” Dec. 2006.
[Online]. Available: https://lkml.org/lkml/2006/12/13/228

[65] H. J. Koch, “UIO: user-space drivers,” Jun. 2007. [Online]. Available: http:
//lwn.net/Articles/236880/

[66] C. Ross and W. Bohm, “Using FIFOs in hardware-software co-design for fpga based
embedded systems,” in Field-Programmable Custom Computing Machines, 2004.
FCCM 2004. 12th Annual IEEE Symposium on. IEEE, 2004, pp. 318–319. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1364657

[67] OPAL-RT, “Power electronic laboratories solution RCP HIL sys-
tem,” 2012. [Online]. Available: http://www.opal-rt.com/new-product/
op4500-simulator-rt-lab-rcp-hil-system

[68] L. Moss, H. Gurard, D. Dare, and D. Bois, “Recent experience on an ESL framework for
rapid design exploration using hardware-softweare codesign for ARM based FPGAs,”
2012.

[69] F. S. Foundation, “Gnu radio,” Jun. 2014. [Online]. Available: http://gnuradio.org/
redmine/projects/gnuradio/wiki

[70] G. L. Bernocchi, G.-C. Cardarilli, A. Del Re, A. Nannarelli, and M. Re, “Low-power
adaptive filter based on RNS components,” in Circuits and Systems, 2007. ISCAS
2007. IEEE International Symposium on. IEEE, 2007, pp. 3211–3214. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4253362

[71] M. Association, “Modelica and the modelica association,” Sep. 2014. [Online].
Available: https://www.modelica.org/

http://www.altera.com/literature/ds/ds_nios2_perf.pdf
http://www.altera.com/literature/ds/ds_nios2_perf.pdf
http://www.osadl.org/fileadmin/dam/rtlws/12/Koch.pdf
https://lkml.org/lkml/2006/12/13/228
http://lwn.net/Articles/236880/
http://lwn.net/Articles/236880/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1364657
http://www.opal-rt.com/new-product/op4500-simulator-rt-lab-rcp-hil-system
http://www.opal-rt.com/new-product/op4500-simulator-rt-lab-rcp-hil-system
http://gnuradio.org/redmine/projects/gnuradio/wiki
http://gnuradio.org/redmine/projects/gnuradio/wiki
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4253362
https://www.modelica.org/

References 90

[72] C. Brooks, E. A. Lee, and S. Tripakis, “Exploring models of computation with
ptolemy II,” in Hardware/Software Codesign and System Synthesis (CODES+ ISSS),
2010 IEEE/ACM/IFIP International Conference on. IEEE, 2010, pp. 331–332.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5751519

[73] STMicroelectronics, “STM32f4 reference manual,” Sep. 2013.

[74] ChibiOS, “ChibiOS/RT homepage [ChibiOS/RT free embedded RTOS].” [Online].
Available: http://www.chibios.org/dokuwiki/doku.php

[75] K. Mansley, S. Goldschmidt, and A. Dunkels, “lwIP - a lightweight TCP/IP stack
- summary [savannah].” [Online]. Available: http://savannah.nongnu.org/projects/
lwip/

[76] W. Yu, D. I. Wilson, J. Currie, and B. R. Young, “The robustness of PI and
PID controllers in the presence of sampling jitter,” Chemical Process Control VIII,
FOCAPO/CPC, 2012. [Online]. Available: http://www.nt.ntnu.no/users/skoge/
prost/proceedings/cpc8-focapo-2012/data/papers/004.pdf

[77] A. v. Balakrishnan, “On the problem of time jitter in sampling,” Information
Theory, IRE Transactions on, vol. 8, no. 3, pp. 226–236, 1962. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1057717

[78] G. Combs, “Wireshark.” [Online]. Available: http://www.wireshark.org/

[79] F. Abugchem, M. Short, and D. Xu, “A test facility for experimental HIL analysis of
industrial embedded control systems.” Krakow: IEEE, Sep. 2012, pp. 1–4.

[80] M. Short and C. Cox, “RTE-SIM: A simple, low-cost and flexible environment to
support the teaching of real-time and embedded control,” International Journal of
Electrical Engineering Education, vol. 48, pp. 339–358, Oct. 2011.

[81] Intel and Altera, “Altera and intel extend manufacturing partnership to
include development of multi-die devices,” Mar. 2014. [Online]. Avail-
able: http://newsroom.intel.com/community/intel newsroom/blog/2014/03/26/
altera-and-intel-extend-manufacturing-partnership-to-include-development-of-multi-die-devices

[82] B. Nahill, “PyCortexMDebug,” 2013. [Online]. Available: https://github.com/
bnahill/PyCortexMDebug

[83] S. Behnel, “lxml - processing XML and HTML with python,” Jun. 2014. [Online].
Available: http://lxml.de/

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5751519
http://www.chibios.org/dokuwiki/doku.php
http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/projects/lwip/
http://www.nt.ntnu.no/users/skoge/prost/proceedings/cpc8-focapo-2012/data/papers/004.pdf
http://www.nt.ntnu.no/users/skoge/prost/proceedings/cpc8-focapo-2012/data/papers/004.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1057717
http://www.wireshark.org/
http://newsroom.intel.com/community/intel_newsroom/blog/2014/03/26/altera-and-intel-extend-manufacturing-partnership-to-include-development-of-multi-die-devices
http://newsroom.intel.com/community/intel_newsroom/blog/2014/03/26/altera-and-intel-extend-manufacturing-partnership-to-include-development-of-multi-die-devices
https://github.com/bnahill/PyCortexMDebug
https://github.com/bnahill/PyCortexMDebug
http://lxml.de/

References 91

[84] Altera and ARM, “ARM development studio 5 (DS-5) altera edition toolkit,” Jun.
2014. [Online]. Available: http://www.altera.com/devices/processor/arm/cortex-a9/
software/proc-arm-development-suite-5.html

[85] ARM, “Keil MDK-ARM,” Jun. 2014. [Online]. Available: http://www.keil.com/arm/
mdk.asp

[86] Xilinx, “ChipScope pro and the serial i/o toolkit.” [Online]. Available: http:
//www.xilinx.com/tools/cspro.htm

[87] Z. Poulos, Y.-S. Yang, J. Anderson, A. Veneris, and B. Le, “Leveraging
reconfigurability to raise productivity in FPGA functional debug,” in Proceedings of
the Conference on Design, Automation and Test in Europe. EDA Consortium, 2012,
pp. 292–295. [Online]. Available: http://dl.acm.org/citation.cfm?id=2492781

[88] Y. Pang, K. Radecka, and Z. Zilic, “Optimization of imprecise circuits represented by
taylor series and real-valued polynomials,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 29, no. 8, pp. 1177–1190, Aug.
2010. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5512688

[89] K. Radecka and Z. Zilic, “Arithmetic transforms for compositions of sequential and
imprecise datapaths,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 7, pp. 1382–1391, Jul. 2006. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1634633

[90] K. Radecka and Z.Zilic, “Using arithmetic transform for verification of datapath circuits via error
modeling,” in VLSI Test Symposium, 2000. Proceedings. 18th IEEE, 2000, pp. 271–277.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=843855

http://www.altera.com/devices/processor/arm/cortex-a9/software/proc-arm-development-suite-5.html
http://www.altera.com/devices/processor/arm/cortex-a9/software/proc-arm-development-suite-5.html
http://www.keil.com/arm/mdk.asp
http://www.keil.com/arm/mdk.asp
http://www.xilinx.com/tools/cspro.htm
http://www.xilinx.com/tools/cspro.htm
http://dl.acm.org/citation.cfm?id=2492781
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5512688
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5512688
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1634633
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=843855

	Introduction
	Motivation
	Overview
	System-on-Chips
	Development Environment

	Actors
	Contributions
	Thesis overview

	Background
	Dealing with evolvability in embedded system design
	Computer Buses
	FGPA-based System-on-Chips
	FPGA
	SoC-FPGA
	FPGA Tools

	Hardware/Software Co-Design
	Memory-Mapped Co-Processors
	Co-processors
	Memory-Mapped Interface

	LMS-based Adaptive Filters
	Adaptive Filters
	Least Mean Squares Algorithm

	Development Environments
	CMSIS-SVD
	Python
	Scilab
	Graphical algorithm design with Xcos
	Hardware-in-the-loop Simulation

	System Architecture
	System Requirements
	System Overview
	Initial Design Decisions
	Prior platform
	Initial Proposal
	F4-Discovery Daughter Board
	FSMC Latency
	Separate CPU and FPGA linked by PCI-Express

	SoC FPGA based design
	Overall Architecture
	Hard Processor System
	Real-Time Microcontroller
	System Interconnect

	Operating System Configuration
	Boot flow
	Device Tree Structure
	Userspace I/O

	Dealing with evolvability
	Software Evolvability
	Evolvability of requirements

	Comparison with other works

	Design Details
	Case Study: PID Controller
	Implementation
	Simulation

	Case Study: Numerically Controlled Oscillator
	Implementation
	Simulation
	Potential Applications

	Case Study: LMS Adaptive Filter
	Simulation
	Implementation

	Development Environment
	API Languages
	Scilab and Xcos
	Hardware-in-the-Loop modelling with Scilab on a Desktop PC
	Motivation
	Experimental Setup
	Software Setup
	Experimental Results and Analysis

	Using Scilab and Xcos on the SoCFPGA
	Workflow proposal
	Hardware-in-the-Loop Simulation with SoCFPGA

	Register Map Viewer
	Motivation
	Features
	Design
	Comparison with other tools
	Possible improvements

	Conclusion
	Summary
	Future Work

	F4-Discovery Daughter Board Schematics
	Python Code
	LUT Memory Content generation
	PID python script

	References

